
Modeling, Parametrization, and Diagnostics for Lithium-Ion
Batteries with Automotive Applications

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

James Marcicki, M.S.

Graduate Program in Graduate Program in Mechanical Engineering

The Ohio State University

2012

Dissertation Committee:

A.T. Conlisk, Co-Advisor

Giorgio Rizzoni, Co-Advisor

Marcello Canova

Yann Guezennec



c© Copyright by

James Marcicki

2012



Abstract

Lithium-ion (Li-ion) batteries are a promising source of electrical energy storage due to

their improved energy and power densities coupled with potential cost savings compared

to previous battery chemistries. However, significant research is needed to achieve a level

of technical maturity that enables greater market pentration in the electrified vehicle seg-

ment. Energy density is currently an opportunity for improvement, and this shortcoming

is compounded by the unavoidable aging process that shortens battery life by reductions in

the energy and power that a battery can deliver.

Model-based analysis may be used to identify and suggest mitigation strategies for

the performance limiting factors. Most battery models are macroscopic and ignore the

presence of interfaces between the solid and liquid phases. In these regions, known as

the electrical double layer, the ionic concentration and potential vary rapidly. A better

understanding of the electrical double layer leads to improved models for interfacial charge

transfer. The potential variation within the electrical double layer may also modify the rate

of side reactions that occur in close proximity to the electrode surface, when compared with

macroscopic models.

Model order reduction techniques applied to the partial differential equations of porous

electrode theory leads to models that can be used for parameter estimation and large-scale

aging simulations, but retain important aspects of electrochemistry. Since the developed

models of lithium ion transport and potential variation across the battery unit cell are of

ii



low computational order, parameter estimation techniques may be incorporated to gain in-

sight into the set of parameters that represent aging. Application of nonlinear least squares

estimation is particularly powerful because the models exhibit dependence on electrochem-

ical parameters that have physical meaning. Two case studies are presented for the reduced

order modeling techniques that incorporate chemistry-specific phenomena.

Model-based diagnostics are useful to understand the aging process, since in situ meth-

ods for measuring the aging process are often not feasible due to the small spatial dimen-

sions and long time scales involved. Diagnostic methods are applied to characterize the

process of capacity loss for the two studied cell types. Once the performance limiting

mechanisms are understood, predictive models can be developed. To address the instance

where loss of cyclable lithium is deemed the dominant capacity fade mode, a capacity fade

model is developed based on a novel interpretation of sold-electrolyte interphase (SEI)

layer growth.

This dissertation contains the development of reduced-order models suitable for aging

parameter estimation, an identification of the dominant capacity fade mechanisms via a

model-based analysis for two types of commercially available Li-ion cells, a micro-scale

model of the electrical double layer near each electrode, and a novel model of SEI growth.

In future work, the SEI growth model can be integrated with improved understanding of

the electrical double layer to provide high fidelity capacity fade prediction.
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Chapter 1: Introduction and Overview

1.1 Introduction: Batteries in Automotive Applications

Batteries have an extensive history in stationary and mobile energy storage applications.

In particular, the use of batteries in the automotive industry dates to the beginning of the

20th century. Originally batteries were conceived as the central source of propulsion power,

but they did not gain widespread use due to low energy density and high cost. Instead,

hydrocarbon-fueled combustion engines emerged as the universally accepted power system

because they exhibit high specific power output as well as low cost. Additionally, the gas

tank holding a hydrocarbon liquid fuel source is a far more energy dense storage system

than a typical battery (Van Mierlo et al., 2006). Thus, to provide the vehicle range that

customers desire, the only battery featured in automotive applications for many years was

a lead-acid unit that served as the power supply for the engine starter motor. The internal

combustion engine was the sole source of propulsion.

In the late 1990’s, automotive manufacturers began to investigate the use of nickel-

metal hydride (Ni-MH) batteries for hybrid vehicle (HEV) applications (Snyder et al.,

2009; Karden et al., 2007). A HEV provides superior fuel economy compared to a conven-

tional vehicle by storing energy within that is usually wasted as heat during vehicle braking,

then using the stored energy during periods of vehicle acceleration (Baumann et al., 2000).
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To accomplish this task many energy storage systems have been proposed, including hy-

draulic, pneumatic, or kinetic concepts, but the current technology of choice remains the

electrochemical cell. In particular, the development of Ni-MH chemistry made the HEV

concept feasible because it exhibited greater specific power than the already commonplace

lead-acid chemistry. For approximately the next ten years, Ni-MH cells were the tech-

nology of choice for vehicle propulsion applications as HEV market acceptance steadily

increased (Jenn et al., 2012).

During the mid-to-late 2000’s, consumers began to demand greater fuel economy due

to economic and environmental influences. As one of many diverse technical solutions

in response to this consumer preference, automakers pursued the option of increasing the

energy storage capabilities of the typical HEV battery. To accomplish the task of increased

energy storage within the stringent volume requirements of a typical light-duty vehicle,

Li-ion cells were introduced (Srinivasan, 2008). This increased energy storage capability

combined with increased specific power after switching from Ni-MH to Li-ion chemistry

resulted in the ability to propel the vehicle by battery power alone. Moreover, adding

the capability to charge the vehicle battery using household alternating current (AC) power

created the plug-in hybrid electric vehicle (PHEV). The increased amount of battery energy

and ability to charge from a household supply means that consumers do not need gasoline

if operating the vehicle for a short distance, generally up to 40 miles. Trips farther than

40 miles will still use significantly less hydrocarbon fuel than a conventional vehicle due

to the energy supplied by the battery in the charge-depleting initial phase of the trip. Once

the battery energy has been depleted, the vehicle will operate as a charge-sustaining HEV.

As Li-ion cells were developed to meet PHEV goals, they also replaced Ni-MH as the

preferred technology for HEV applications due to their superior power density.
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The ultimate stage of vehicle electrification is the battery electric vehicle (BEV or EV).

This vehicle does not possess an internal combustion engine, relying solely on battery

power for propulsion. Its range is directly dependent on the energy stored within the Li-

ion battery pack. Since packs are typically size to address range concerns, they have more

than adequate power capabilities to handle acceleration demands and rapid charging during

braking.

Figure 1.1 summarizes the preceding discussion by use of a Ragone plot. Devices that

exhibit higher values on the horizontal axis can provide faster acceleration in a vehicle ap-

plication by supplying more energy within a specified time period. Those that demonstrate

higher values along the vertical axis can provide greater vehicle range by supplying a spec-

ified amount of power for a longer time period. Each chemistry is plotted as a band along

the chart, because engineering design changes can be made to tailor the technology for a

specific power- or energy-oriented applications. As battery technology has progressed, it

has become increasingly feasible for automotive applications. United States Department

of Energy goals for HEV, PHEV, and EV battery performance have been made public by

the United States Advanced Battery Consortium (USABC) (Anonymous, 2002, 2012c,a).

These goals are specified on the Ragone plot, and it is evident that PHEV and HEV goals

are met by current Li-ion technology. However, the EV goal is still beyond the current state

of battery performance. Additionally the internal combustion engine and gasoline tank sys-

tem has roughly an order of magnitude better specific energy storage than current Li-ion

batteries.

A second way of assessing the technological progress of Li-ion batteries is the star chart

shown in Figure 1.2. This plot has been developed with a focus on the PHEV application

though results are essentially generalizable to the BEV and HEV applications as well. This
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Figure 1.1: Ragone plot of specific power versus specific energy (Srinivasan, 2008) for
various vehicle propulsion candidates.

figure gives a qualititative assessment of which battery perfromance traits are meeting the

long-term technology goals, and which require further research. Overall, the base level of

performance is adequate to meet the imposed power and energy demands. This reflects the

fact that 40 miles of all-electric range is adequate for most customers when used in conjunc-

tion with an internal combustion engine that can extend the trip length if necessary. Further

work is required in the areas of reducing system cost and ensuring that automotive battery

packs will perform to customer expectations throughout their expected life. These areas are

related, since one solution to enhance the usable life of the system is to design it to exceed

the required performance at the beginning of life, so that performance goals are still met

after significant performance degradation due to aging. Though this solution is feasible as

a near-term, immediately implementable approach, it increases cost and long-term research

should search for a more elegant approach to adequately satisfying life requirements.
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Figure 1.2: Star chart of battery performance characteristics (Srinivasan, 2008) compared
with USABC goals for PHEVs (Howell, 2012).

This chapter provides context for the use of Li-ion batteries in automotive applications.

The benefits of Li-ion technology compared with other chemistries and areas requiring

further research are highlighted. A brief overview of how batteries work leads to the dis-

cussion of the physical structure and fabrication process of Li-ion batteries. Definitions

of important terms that will be used throughout the rest of the dissertation are given, and

finally the main objectives of the dissertation are stated.

1.2 How Batteries Work

Electrochemical batteries produce a useful electrical current, denoted by the symbol I

throughout this dissertation, by converting stored chemical energy into electrical energy.
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Figure 1.3: Schematic of the direction of ion and electron movement, and the labeling of
anode and cathode, during battery discharge and charge.

The batteries considered for automotive applications consist primarily of a negative elec-

trode, positive electrode, electrically insulating separator, and a solvent containing a dis-

solved lithium salt. The schematic of Figure 1.3 gives a view of the relative positions of

the battery components.

The primary chemical reaction that drives all commonly used batteries is called an

oxidation-reduction reaction. The reaction takes place via two half–reactions at two loca-

tions within the battery called electrodes. The anode, also called the negative electrode,

is where ions are oxidized. Oxidation is a chemical process where a molecule (called the

oxidized species) loses one or more electrons. Equation 1.1 shows a typical reaction for

the negative electrode of a Li-ion battery

LixC6 ⇀↽ Li+ + e− + C6 (1.1)

where 0 ≤ x ≤ 1 is a fractional measure of the amount of lithium stored within the elec-

trode, normalized by the saturation (maximum) value, and is referred to interchangeably
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as composition, degree of lithiation, or fractional occupancy. A carbon-based electrode

has been assumed, hence the C reactant, though other materials can be substituted with

minimal modifications. This reaction is not a true chemical reaction, rather it represents

the process of intercalation by which lithium is stored in the solid portion of the electrode.

The intercalation process is reversible and when lithium is removed from the electrode it is

called de-intercalation.

The cathode, also called the positive electrode, is where ions are reduced. Reduction

is a chemical process where a molecule (called the reduced species) gains one or more

electrons. Equation 1.2 gives a typical reaction for the positive electrode of a Li-ion battery

Li+ + e− +M ⇀↽ LiyM (1.2)

where y has the same definition as x used previously for the anode, but instead refers

to the cathode, and M refers generally to a metal oxide or phosphate compound such as

FePO4, Mn2O4, or other compounds. Depending on whether the cell is being charged or

discharged, either electrode can be the anode or cathode at a given instant. However, the

‘positive’ or ‘negative’ electrode labels do not change depending on the direction of current

flow. The ‘positive’ label always refers to the electrode with higher potential, and the

‘negative’ lablel to the electrode with lower potential. Throughout this work, the discharge

convention is chosen such that the term negative electrode is used interchangeably with the

term anode, and positive electrode is used interchangeably with cathode.

The schematic of Figure 1.3 illustrates the path of electrons and lithium ions for charge

and discharge. In between the half–reaction taking place at each electrode, the electrons

traverse an external circuit and provide useful energy in the form of electricity if the battery

is being discharge. During charging, energy must be supplied to the cell to drive current

from the positive electrode to the negative electrode. A separator that is permeable to ions
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but not electrons lies between the electrodes to prevent an electrical short circuit. A liquid

or gel solvent, containing a dissolved salt known as electrolyte, permeates the entire cell

volume and enables ion transfer between the electrodes.

As a specific example, consider the lithium-ion battery illustrated in Figure 1.3. During

discharge, lithium ions are removed from the negative electrode and deposited into the

liquid solvent. The ions diffuse within the liquid, through the separator region, to the

cathode where they are accepted into the solid material. Transport of lithium ions into the

cathode solid material completes the oxidation-reduction reaction. During charging, the

process is repeated in reverse.

1.3 Physical Structure and Fabrication of Li-Ion Batteries

The physical structure of the battery and each of its components is now discussed in

greater detail. The cells that will be examined throughout this dissertation are either of a

cylindrical format constructed via the “jelly-roll” method, or a pouch format constructed via

folding and/or stacking of rectangular unit cell layers. A unit cell refers to the combination

of two electrodes and the separator. Figure 1.4 gives a visual overview of these cell designs.

Cylindrical cells were originally favored because they theoretically offer better protection

against environmental contaminants. However, the pouch or prismatic format has gained

acceptance in recent years due to better volumetric energy density when incorporating cells

into a pack. Prismatic cells can be stacked more efficiently with minimal gaps as compared

to cylindrical cells.
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(a)

(b)

Figure 1.4: Unit cell orientation within a) cyclindrical and b) pouch cell geometry.
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1.3.1 Electrodes

The construction of each electrode begins with an active material powder, that is a

collection of roughly spherical or ellipsoid active material particles of a diameter rang-

ing from nanometers to micrometers. This powder is mixed with a mixture of conductive

carbon filler material and polyvinylidene fluoride (PVDF) glue that immobilizes the par-

ticles known as a binder. The completed mixture forms a thick slurry or paste that does

not flow but is still conformable. To construct each electrode, the active material paste

is deposited in a thin layer onto a long strip of metal foil, the width of which is roughly

equal to the diameter of the cylindrical battery casing. The metal foil is called the current

collector, because it transports the generated electrical current to the external battery tabs.

Metal foil must be used due to its very high conductivity. It is typically made of copper

for the anode and aluminum for the cathode. The active material paste in each electrode

contains compounds that are carefully chosen to drive the overall chemical reaction of the

cell, which produces a useful electrical current. The electrodes are referred to as “porous”

electrodes because they consist of a packing of active material particles with liquid–filled

pores throughout. The general properties of porous electrodes that are common between

the anode and cathode are summarized in Table 1.1, and Figure 1.5 shows scanning elec-

tron microscopy (SEM) images of common anode and cathode structures. Figure 1.6 shows

a three-dimensional rendering obtained from the reconstruction of X-ray tomography data

(Shearing et al., 2010).

At this point the properties of the active material compounds typically used for Li-

ion cell anodes are discussed. The most common present technology is a lithium/graphite

compound, generally referred to as LixC6 for the rest of this dissertation. The formulations

of this graphite compound exhibit different degrees of graphite crystalline structure based

10



(a) (b)

Figure 1.5: Scanning electron microscopy images of electrode structures for a) LiyMn2O4

positive electrode (Deiss et al., 2001) and b) LixC6 negative electrode (Safari & Delacourt,
2011b). Individual active material particles are clearly visible as large spheres in image (a),
and have a more flake-like structure in image (b).

Figure 1.6: A slice of negative electrode from a tomography reconstruction process (Shear-
ing et al., 2010). Electrode thickness is in the vertical direction.
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Property Value
Binder volume fraction 5 - 10 %
Porosity 30 - 40 %
Mean Active Material Particle Radius 10−9 − 10−6 m
Thickness 50− 100 ×10−6 m

Table 1.1: Typical properties of porous electrodes.

on their formation processes, which leads to slight variations of electrochemical properties.

For instance, (Lee et al., 2002) analyzed two different types of mesocarbon microbead

(MCMB) carbon electrodes, formed by heat treating at different temperatures. It is shown

that the samples treated to higher temperatures (2800◦C compared with 1000◦C) exhibited

larger mean particle diameter (25 µm compared with 6 µm). It appears that greater amounts

of heat treatment can cause greater ordering of the graphite structure, as shown by well-

defined voltage plateaus in the open-circuit voltage for the samples treated at 2800◦C. In

general the lithium/carbon anodes have a specific capacity of approximately 372 mAh/g

(Ohzuku et al., 1993), which is usually higher than their cathode partner. They often exhibit

higher electrical conductivity than the cathode, usually on the order of 100 S/m (Levi &

Aurbach, 1997).

There are other anode chemistries that have matured beyond the research stage, such

as titanate oxide (Nakahara et al., 2003). This chemistry exhibits excellent cycle life due

to the minimization of side reactions that are comparatively more destructive for carbon-

based electrodes. This mitigation of side reactions is possible due to the elevated potential

relative to Li/Li+ of around 1.5 V . However, they are not commonly used due to this

high voltage characteristic which leads to a significant reduction in specific energy when

incorporated within a cell as the negative electrode.

12



The cathode paste also consists of a conductive filler, binder, and active material, but

replaces the LixC6 compound with a lithium metal oxide or phosphate of general chemical

formula LiyM , where M is a metallic compound. The specific capacity is typically in the

range of 100− 200 mAh/g (Ohzuku & Brodd, 2007), which requires thicker electrodes to

achieve the same capacity as compared with anodes. The electrical conductivity is lower

than for carbon-based electrodes and takes a value anywhere between 10−3 − 101 S/m

(Ohzuku & Brodd, 2007) depending on the additives incorporated in the electrode slurry.

1.3.2 Separator

When the cell sandwich is manufactured, an electrically non-conducting layer must be

placed between the anode and cathode to prevent short circuits. It may either be held in

place with adhesive or left floating within the sandwich. Typically the “float” method is

more common due to less time and cost involved. This layer is referred to as the separator,

and may consist of a single or multiple layers of porous polyethylene or polypropylene.

Although its purpose is to serve as an electrical barrier between the electrodes, it must also

be porous to allow for the transport of lithium ions dissolved in the liquid solvent. The

porosity may vary depending on the manufacturer, but generally falls between 0.3 and 0.7

(Zhang, 2007). Dimensional stability with respect to mechanical stresses and shrinking is

a very important separator characteristic. Consistent tortuosity is also important to prevent

dendrite growth that can cause a short circuit between electrodes (Anonymous, 2012b).

A separator that is generally representative of those used throughout industry, and has

been used in the half-cell experiments of this dissertation, is Celgard R© 2400. The dimen-

sion that serves as separation between the electrodes is 25 µm. The material is a single
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layer of microporous, polypropylene membrane designed for low temperature lithium bat-

teries. Celgard claims it has excellent resistance to acids and bases, uniform pore structure

with high chemical and thermal stability, zero shrinkage to reduce the possibilities of inter-

nal shorting, and oxidation resistance. Its technical data is summarized in Table 1.2. Other

Property Value
Thickness 25 µm
Porosity 41 %
Average Pore Diameter 0.043 µm
TD Shrinkage @ 363 K / 1 hour 0 %
MD Shrinkage @ 363 K / 1 hour 5 %
Puncture Strength 450 g
Tensile Strength, MD 1420 kg/cm2

Tensile Strength, TD 140 kg/cm2

Table 1.2: A listing of separator technical properties. Transverse direction is denoted by
TD and machine direction is denoted by MD.

(a) (b)

Figure 1.7: (a) Uni-layer separator SEM image and (b) tri-layer separator SEM image
(Anonymous, 2011).
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separators, known as tri-layer separators, contain a three layer sandwich of polypropylene-

polyethylene-polypropylene (PP-PE-PP). The polypropylene layers provide oxidation re-

sistance for better long term cycling performance while the polyethylene inner layer pro-

vides faster shutdown due to melting upon overheating (Venugopal et al., 1999; Troffkin

et al., 1993). This is possible because the melting point of polyethylene is approximately

105 - 130◦C, while that of polypropylene is 130 - 170◦C. An SEM image of a mono-layer

separator, courtesy of Celgard, is shown in Figure 1.7a, while a tri-layer separator is shown

in Figure 1.7b. The uni-layer picture has the direction across the unit cell (from anode to

cathode) as into the page. The tri-layer picture is a side-view where the direction across the

unit cell runs vertically.

1.3.3 Assembly

At this point, it should be reiterated that the three main components of the cell sandwich

are porous, disregarding the metal foil current collectors that serve as a substrate for the

active material. This allows the electrolyte solution to permeate throughout the electrodes

and separator and provides a transport mechanism for the lithium ions produced from the

reactions at the electrodes. The electrolyte solvent is generally a mixture of carbonates

such as ethylene carbonate (EC), dimethyl carbonate (DMC), or diethyl carbonate (DEC).

The electrolyte salt may be any of several salts containing Li, though a common example

is LiPF6. The salt concentration is usually near 1.0 M because the liquid conductivity

is a strong function of the salt concentration and usually exhibits a maximum near this

concentration.
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To complete the cell fabrication, the entire cell sandwich is assembled by rolling, fold-

ing, or stacking and placed within a hermetically sealed casing that is filled with electrolyte

solution. Quite often, the amount of liquid electrolyte solution added is small so that only

the pores of the solid matrix are wetted an no free liquid can visibly be observed. The best

analogy of this situation is a minimally damp sponge that contains some amount of liquid,

but so little that none can be removed by squeezing it. The porous nature of both electrodes

will generally result in a need to account for ion transport within both the solid and liquid

phases.

1.4 General Definitions

This section details the general terms that form the foundational knowledge used through-

out this dissertation.

A Faradaic current is defined as the electrical current produced by the intended oxi-

dation and reduction reactions that occur at each electrode. Other terms such as external

current, main current, or current demand may be used interchangeably with this term

throughout this dissertation. The sign convention for current is that a discharge current is

positive (energy supplied by the cell) and a charge current is negative (energy supplied to

the cell).

The open-circuit voltage (OCV) of an electrochemical cell is defined as the voltage

measured across the cell terminals after the system has been allowed to reach equilibrium.

This means that there is no current being passed and that all macroscopic concentration

gradients within the solid and liquid phases are negligible. For Li-ion batteries, the OCV

is a strong function of the total charge throughput history of the cell. Specifically, as the
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cell is discharged, the OCV will decrease as the amount of charge removed increases. The

OCV is the potential difference of the two electrodes.

The capacity of an electrochemical cell is defined as the amount of charge stored within

the cell between specific voltage limits that are defined by the cell manufacturer. It is

typically measured using a cell charged to 100% SOC and allowed to reach equilibrium

followed by discharging the cell to the lower voltage limit using a constant current. Upon

reaching the lower voltage limit, capacity is defined as the integral of current,

Q =

∫ tf

0

I(t) dt (1.3)

The upper voltage limits for commercially available Li-ion cells are usually from 3.6 to 4.2

V, while the lower voltage limits vary from 2.0 to 2.8 V depending on the cell chemistry.

Consideration of the voltage limits is an important facet of calculating the cell capacity,

because these limits place a constraint on the final time tf , defined as the elapsed time

since the start of the test when the lower voltage limit is reached. In this sense, Eq. (1.3) is

misleading, because the final time is not arbitrarily chosen but instead it is the time when a

voltage limit is reached. A voltage range must be specified because harmful side reactions

or catastrophic fires can occur outside the voltage limits. The capacity of a cell is directly

related to the mass of active material it contains, where active material is defined as a

component of the electrode solid phase that can store lithium. Inactive material refers to

all other solid components such as the conductive additives and binder.

The C-rate is a current magnitude specified as a multiple of the cell capacity. For

instance, a 1C rate is the current required to fully discharge the cell in a period of one

hour. A 2C rate would take 1/2 hour to discharge, while a C/2 rate would take two hours to

discharge.
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The cell state-of-charge (SOC) is defined as the amount of charge stored within the cell

at any instant in time, normalized by the maximum amount of charge that may be stored

by the cell within the voltage limits specified by the cell manufacturer. Operationally, it is

defined as

SOC(t) = SOC(0)− 100

Q

∫ tf

0

I(t)dt (1.4)

where Q is the nominal cell capacity and the initial condition SOC(0) is usually specifed

as equal to 100% after charging the cell to the upper voltage limit, and then executing a

constant voltage hold for several minutes to hours depending on the desired precision of

the initial condition, since current tapers towards zero with time at constant voltage. At

zero current the system is at equilibrium. The factor of 100 is included as a conversion

factor to a percentage basis, but SOC can alternatively be defined as 0 < SOC < 1.

The internal resistance of an electrochemical cell defines the immediate deviation

from the equilibrium voltage that occurs when a current is passed. The overpotential of a

cell is defined as the total voltage deviation from the equilibrium value at any point in time.

An illustration of the effects of the internal resistance after passing a discharge current is

shown in Figure 1.8, where an initial overpotential, ∆V0, and a current input, I , are used

to define an initial resistance R0 = ∆V0

I
. The initial resistance is the sum of ohmic and ki-

netic contributions that are discussed in more detail in Chapter 2. These contributions have

time scales of around 1 kHZ and 10 Hz respectively (Barsoukov & Macdonald, 2005), so

it appears to be an instantaneous response when viewing system-level voltage and current

measurements. At longer time scales of 1 Hz to the 1 mHz range, other electrochemical

processes contribute to the additional observed overpotential defined as ∆V1.

The process of aging for an electrochemical cell is defined as performance degradation

that evolves over a time scale that is much longer than that of the voltage dynamics. The
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Figure 1.8: Definition of internal resistance after passing a discharge current. a) The current
passed by the cell and b) the voltage response. The internal resistance during a charge
current causes the voltage to rise above the equilbrium value.
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mechanisms for aging are numerous and will be discussed in the following chapters of this

dissertation. The system-level effects caused by aging are a reduction of cell power and

energy capabilities that are caused by increased internal resistance and reduced capacity. A

side reaction is any chemical reaction that occurs within the cell that is not associated with

the Faradaic current, and side reactions are a common cause of aging.

1.5 Thesis Objectives

The objectives of this dissertation are the following:

• Develop a first-principles model of electrical double layer effects in Li-ion batteries.

• Develop reduced-order models that retain a parametric dependence on electrochem-

ical and physical parameters.

• Use these models as a tool to interpret experimental aging data and identify funda-

mental mechanisms for capacity fade.

• Based on the knowledge gained from the previous two objectives, develop a predic-

tive capacity fade model that is based on first principles.

Chapter Two discusses the fundamental equations needed to develop models of the po-

tential and concentration dynamics during Li-ion battery charge/discharge processes. Be-

ginning with the fundamentals of electrochemistry, governing equations are derived and

solution methods are discussed, beginning with computationally complex models and end-

ing with low-order realizations.

Chapter Three presents a model of the electrical double layer in Li-ion batteries. Ac-

counting for this region that exists within nanometers of each electrode surface can lead to
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different local potential prediction. This potential can be linked to the rate of side reactions

in close proximity to the electrode surface.

Chapter Four applies model-order reduction techniques to the partial differential equa-

tions of ionic transport. A low-order model is derived and parameterized to predict the

experimentally measured battery voltage for a wide range of temperature, SOC, and cur-

rent inputs. Then, the model is compared with experimental data from an aging campaign

and the parameters responsible for capacity fade during battery aging are estimated using

nonlinear least squares.

Chapter Five extends the model structure developed in Chapter Four to a cell featuring

an electrode that is a composite mixture of active materials. After validating the model with

experimental data, it is compared with data from an aging study to examine the mechanisms

for capacity fade. Once loss of lithium is established as the dominant mode of capacity

fade, a model of solid-electrolyte interphase (SEI) growth is used to explain the lithium

loss. Then, capacity fade is simulated for the conditions of the aging experiments, and the

simulated capacity fade is compared with experimental data.

Chapter Six is a summary of the main points from each chapter. Future work is sug-

gested that builds upon the results presented in this dissertation.
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Chapter 2: Mathematical Modeling of Li-Ion Batteries

2.1 Introduction

This chapter introduces the governing equations used to model the ionic concentration

and potential dynamics within Li-ion batteries. The overall goal of the battery models

presented in this dissertation is to predict battery terminal voltage while revealing informa-

tion about the internal electrochemical processes of the cell. First the governing equations

of electrochemistry are introduced, then they are applied specifically to the Li-ion battery

problem. A hierarchical approach is used to present a number of modeling techniques,

ranging from distributed parameter models towards lumped, low-order models. A number

of solution methods are discussed with a focus on methods that are commonly utilized to

avoid the complexity of a numerical solution. Then, common battery aging mechanisms

are reviewed along with a set of diagnostic techniques used to assess the effects of aging

on battery performance.

2.2 Governing Equations for Electrochemical Systems

The field of electrochemistry consists of thermodynamics, interfacial kinetics, and mass

transport. Each plays an important role in determining the time-varying voltage of an elec-

trochemical cell. Thermodynamics defines the maximum achievable power and/or energy
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for the cell, whereas kinetics and transport represent deviations from the thermodynamic

ideal that act to reduce cell performance.

2.2.1 Thermodynamics

Recall from Chapter 1 that the open-circuit voltage (OCV) of the cell is defined as the

potential difference between electrodes that would be reached for a given state-of-charge,

if the cell is at thermodynamic equilibrium. By applying the principles of thermodynamics,

the physical meaning of the OCV can be identified. For the following discussion, chemi-

cal and thermodynamic reversibility is assumed since thermodynamics deals with systems

at equilibrium, and reversibility is a result of that requirement. This corresponds to the

condition that no current flows within the cell, so that by definition any side reaction cur-

rents responsible for the aging process are neglected as well. The Gibbs free energy, G, is

defined generally as (Moran & Shapiro, 2004)

G = H − TS = U + pV̄ − TS (2.1)

where H is enthalpy, T is temperature, S is entropy, U is internal energy, p is pressure, and

V̄ is volume. The change in Gibbs free energy is

∆G = ∆U + V̄∆p+ p∆V̄ − T∆S − S∆T (2.2)

However, a Li-ion cell operates at constant pressure, and for this analysis constant tem-

perature is also assumed so that terms involving change of pressure or temperature can be

neglected. Furthermore, the change of internal energy for a system with these assumptions

while undergoing a chemical reaction is

∆U = T∆S − p∆V̄ − neFφ (2.3)
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where ne is the number of electrons that are lost or gained during the chemical reaction,

and F is Faraday’s constant. The reduction (oxidation) potential φ is also referred to as

the OCV and given the symbol U throughout the remainder of this dissertation, but in this

instance U already refers to internal energy. The reduction potential is treated as a known

quantity since it can be measured experimentally by assembling a cell with the electrode of

interest as the working electrode with a lithium counter/reference electrode. It is defined as

a potential where reactants are reduced, gaining an electron. Substituting the definition of

internal energy into Eq. (2.2) gives

∆G = −neFφ (2.4)

When reactions occur at non-standard conditions, the activity of the reaction constituents

must be accounted for. In a non-standard case, the Gibbs free energy is calculated as

∆G = ∆G0 + R̄T ln

(
Πaproducts
Πareactants

)
(2.5)

where G0 represents the Gibbs free energy change at standard conditions, R̄ is the univer-

sal gas constant, T is temperature, a represents the activity of a species, and the symbol Π

means multiplication of terms. For instance, Πaproducts means multiplication of the activity

coefficient of all products. Applying Eq. (2.4) to the Gibbs free energy at standard condi-

tions gives ∆G0 = neFφ
0. Substituting this expression into Eq. (2.5) gives the definition

of the reduction potential for non-standard conditions as

φ = φ0 − R̄T

neF
ln

(
Πaproducts
Πareactants

)
(2.6)

Equation 2.6 is known as the Nernst equation and it is used to define the electrochemical

potential, or the open-circuit voltage (OCV) of an electrode. The full cell OCV is equal to

the difference of ∆G quantities for the reaction that produces a Faradaic current associated
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with each of the two electrodes. Therefore, the cell voltage is found by taking the difference

of Eq. (2.6) for the positive electrode and the negative electrode.

It should be noted that in virtually all cases, the intercalation reaction contains several

unknown steps that are neglected when writing intercalation reactions in the standard form,

such as Eq. (1.2), repeated here for convenience

LixC6 ⇀↽ Li+ + e− + C6 (2.7)

The unknown steps associated with the intercalation process make calculating the Gibbs

free energy difficult. Additionally, the potentials vary dramatically as a function of the

amount of lithium contained within the electrode due to the effect of ion-ion interactions

(Verbrugge & Koch, 1996) on ionic activity, since the concentrations are typically much

greater than in a dilute solution.

At ths point, the concentration of lithium present in the electrodes is discussed to mo-

tivate the need to include the activity coefficient term within the Nernst equation. Typical

concentrations are on the order of 20–30 M depending on the active material of the elec-

trodes and the electrode state-of-charge. There is a well-defined relationship between the

saturation capacity of lithium within the electrode solid phase cmax, the specific capacity

of the electrode active material q, Faraday’s constant F , and the active material density ρ.

cmax =
qρ(1000)(3.6)

F
(2.8)

Saturation capacity values are usually reported asmol/m3, so the conversion factor of 1000

is used to change to units of mAh/g to mAh/kg, and 3.6 is used to change from coulombs

to Ah. It is constructive to calculate the saturation capacity for common materials such as

graphite in the anode and iron phosphate, manganese oxide, and a nickel transition metal

oxide in the cathode. The parameter values are shown in Table 2.1.
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LiC6 LiFePO4 LiMn2O4 LiNi1/3Co1/3Al1/3O2

q
(
mAh
g

)
370 170 105 135

ρ
(
kg
m3

)
2250 2550 4220 4710

cmax
(
mol
m3

)
30500 16320 16530 23640

Table 2.1: Parameter values and resulting saturation concentrations for typical electrode
materials.

Due to the high concentrations involved in the solid phase of each electrode, the Nernst

equation (Eq. (2.6)) applied within Li-ion battery modeling usually requires a model of

the activity coefficients of the involved species. The inclusion of the activity coefficient

model can be accounted for by considering an excess free energy, GE . Several models are

available for the excess Gibbs function (Conlisk, 2011; Taylor & Kooijman, 1991; Taylor

& Krishna, 1993) and a detailed analysis of all the models is outside the scope of this

dissertation. One model (Wohl, 2004; Verbrugge & Koch, 1996) that has been applied to

Li-ion negative electrodes writes the excess free energy as

GE =

nE∑
k=2

Ωkx
k (2.9)

where the fractional occupancy or composition, x = c/cmax for a negative electrode and

y = c/cmax for a positive electrode, has been substituted for concentration and nE is the

number of fitting terms needed to provide arbitrarily good agreement with experimental

data. The terms Ωk are a set of empirical coefficients that define the effect of ion-ion

interactions on the activity coefficient. The activity coefficients, f , of each species are

related to the excess Gibbs free energy by

f = exp

(
1

R̄T

∂

∂nm

(
nmG

E
))

(2.10)
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Figure 2.1: (a) Exploded side-view of a two electrode coin cell setup used to measure OCV
and (b) experimental data for a graphite negative electrode, along with the prediction of Eq.
(2.11) without inclusion of the excess Gibbs term.

where nm is the number of moles of the species. Substituting Eq. (2.9) into Eq. (2.10), and

then substituting that result into Eq. (2.5) gives a logical fitting function for the OCV of a

non-ideal solid solution electrode (Verbrugge & Koch, 1996) as

φ = φ0 +
R̄T

neF
ln

(
1− x
x

)
−

nE∑
k=2

kΩkx
k−1 (2.11)

Though this approach is theoretically closer to the true meaning of the OCV, since

only the unknown coefficients Ωk are left to be identified, it is not often employed, since

it nonetheless relies on empirical coefficients. Any general expression for the reduction

potential versus x or y that provides agreement with the experimental data is acceptable.

Often, a simple experimentally-based interpolation table is utilized for modeling purposes

after sufficient filtering of the data to remove noise.

Typically, the electrode of interest is assembled as the working electrode in a two or

three electrode setup, with the two electrode setup illustrated in Figure 2.1a. Lithium metal
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is used as the counter and reference electrode. Between the lithium metal and the working

electrode a layer of insulating separator material is placed. The case thickness and number

of springs or spacers must be designed so that electrical contact is maintained between the

cell case and the electrodes.

Figure 2.1b indicates the result obtained for a graphite electrode, where a constant

current discharge of C/20 is used to discharge/charge the cell between voltage limits of

10 mV to 1.2 V . A current this small serves as an approximation to the true OCV, since the

resistive effects are small. As the amount of intercalated lithium approaches the saturation

capacity of the active material, the potential relative to lithium metal approaches 0 V . The

prediction of Eq. (2.11) without inclusion of the excess Gibbs term is also plotted, to

demonstrate the need for activity coefficient models. The voltage predicted by Eq. (2.11)

without the excess Gibbs term has as high as 60% error for the range 0.6 < x < 0.9 and it

also does not predict the sharp rise in voltage for x < 0.2.

As a final note on thermodynamic considerations, the Gibbs free energy of a reaction

such as Eq. (2.7) can also be written in terms of the sum of electrochemical potentials,

µ. Electrochemical potentials account for the change in chemical energy as well as elec-

trostatic potential, so they are frequently needed when charged ions are considered in a

chemical reaction. The relationship between Gibbs free energy and electrochemical poten-

tial is G =
∑n

i=1 µinm,i, where n is the number of species, so that the preceding discussion

of thermodynamics could have been written in terms of electrochemical potential. Though

it was not needed for the general discussion of electrode OCV, the electrochemical potential

will be revisited in a later section to derive the potential variation for a liquid concentrated

solution.
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The amount of time-varying deviation from the OCV is defined as the overpotential of

the cell and may be associated with ohmic sources, charge transfer kinetics, or concentra-

tion polarization. These factors are described in detail in the following sections.

2.2.2 Ohmic Factors

The ohmic overpotential is the result of several sources, namely the imperfect electrical

contact between the slurry coating and the metallic current collectors, weld joints between

the current collectors and external battery tabs, conduction of electrons through the depth

of the porous electrode in the solid phase, and ionic conduction in the liquid phase. Of all

the sources of overpotential, it is the simplest to model because it requires only a straight-

forward application of Ohm’s law
dφ

dx
=

I

σA
(2.12)

where I is current, A is the area available for conduction, φ is potential, σ is the conduc-

tivity, and x is the coordinate along the conduction path. The conductivity is a material

property, that is often a function of temperature, and defines the ability of the material to

transport electrons and therefore transfer an electrical current. It relates the gradient of

electrical potential to the current density, I/A, traveling in the medium. In general current

is a vector, but in one-dimension the vector symbol (→) is not included to simplify the

notation.

The integral form of Eq. (2.12) is commonly applied when the prediction of the poten-

tial as a function of the spatial coordinate is not needed, but rather only the difference in

potential between two points is required. If the conductivity is not a function of space, then

V = φ(x2)− φ(x1) = IR (2.13)
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where the potential difference φ(x2) − φ(x1) is now denoted as a voltage V , R = (x2 −

x1)/(σA), and the distance between x2 and x1 defines the total conduction length. Figure

2.2 illustrates the potential and voltage for a situation with A = 1 m2, I = 1 A, and

R = 0.25 Ω.
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Figure 2.2: Demonstration of the potential and voltage for Eq. (2.13), with A = 1 m2,
I = 1 A, and R = 0.25 Ω.

2.2.3 Kinetics

In Li-ion electrochemistry, kinetic theory is used to study the rate of the oxidation-

reduction reaction that transfers ions across the interface between the solid electrode and

liquid electrolyte. It is also used to model the irreversible side reactions responsible for the

formation of the solid-electrolyte interphase layer. At equilibrium, both the forward and

backward directions of a reversible reaction, such as the process of inserting lithium into

the solid host structure, occur at an equal rate. The kinetic overpotential of the reaction
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(a) (b)

Figure 2.3: Reaction rate bias during a) charge and b) discharge.

results from the finite overpotential, or voltage beyond the equilibrium value, needed to

bias the oxidation-reduction reaction in the desired discharge or charge direction. This

aspect is illustrated by Figure 2.3.

In Figure 2.3a, the reaction occurs at a voltage that is less than that of the OCV for a

representative active material particle of a negative electrode. This results in an increase of

the rate of Li+ ion reduction, and a decrease in the rate of Li oxidation. The net effect is a

flux of Li+ ions leaving the liquid phase and entering the solid phase, in a process known

as intercalation.

In Figure 2.3b, the case of de-intercalation is considered, where the reaction occurs

at a voltage that is greater than the OCV. This causes the reduction reaction to occur at a

reduced rate, and the oxidation rate to increase. The net effect is a flux of Li+ ions leaving

the solid phase and entering the liquid phase, in a process known as de-intercalation.
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Butler-Volmer Kinetics

The following gives a derivation of the kinetic expression typically used in Li-ion bat-

tery modeling for the calculation of reaction rates, which relies on an equilbrium voltage

function. Much of the derivation is taken from (Newman & Thomas-Alyea, 2004).

Before any modeling of reaction kinetics can begin, the chemical reactions being stud-

ied must obviously be specified. Until this point, the oxidation-reduction reaction has

only been discussed in general terms. Consider the processes that occur during discharge,

though the processes that occur during charge are not difficult to determine simply by re-

versing the direction of current flow in the cell and following the order of events backwards.

For instance, during charge, the left arrow (backward direction) of Eqs. (2.14) and (2.15)

would occur. For the purposes of this discussion, lithium is assumed to exist in its atomic

form in the solid phase of each electrode, though the exact valence of intercalated Li+ is

still an active topic of research. When Li de-intercalates from the host matrix and enters the

liquid phase, it loses an electron and thus becomes a lithium ion with valence equal to one.

This process creates an open site in the host matrix which the lithium atom once occupied.

The reaction is summarized for the negative electrode in Eq. (2.14).

LixC6 ⇀↽ Li+ + e− + C6 (2.14)

where a carbon-based electrode has been assumed, hence the compound C6, though other

materials can be substituted with minimal modifications. The convention for all reactions in

this work will be to have the forward direction indicate cell discharge. The atomic lithium in

the anode solid phase is represented by the left-hand side termLixC6, the lithium ions in the

liquid phase are represented by Li+, and the open site in the anode solid phase created by

de-intercalation is given by C6. The reason six carbon atoms are required for each lithium

32



atom is that the lithium atom fills the intersticial space in the material structure left between

six carbon atoms. In the cathode, the lithium ions from the liquid phase intercalate into the

solid phase, and an open site that was once available is now occupied by a lithium atom.

The cathode half reaction is described by (2.15), where again the right arrow indicates the

direction of the reaction during discharge

Li+ + e− +M ⇀↽ LiyM (2.15)

where M refers generally to a metal oxide or phosphate compound such as iron phosphate

(FePO4) or manganese oxide (Mn2O4). The lithium ions in the liquid phase are repre-

sented by Li+, the open site within the cathode solid phase is given by M , and the atomic

lithium in the cathode solid phase is defined by LiyM .

Next, Le Chatelier’s principle is applied to quantitatively describe the reaction rate as a

function of the reactant concentrations. This principle states that when a chemical system

at equilibrium experiences a change in operating conditions such as reactant concentrations

or temperature, the equilibrium will shift to counteract the change and a new equilibrium

will be established. First we apply it to Eq. (2.14). An increase in LixC6 will cause the rate

of the forward reaction to increase, whereas an increase in Li+ or C6 will cause the rate of

the reverse reaction to increase. For Eq. (2.15), an increase in Li+ or FePO4 will increase

the rate of the forward reaction while an increase in LiyFePO4 will increase the rate of the

backward reaction.

At this point, we begin to use the notation described in Table 2.2 to be consistent with

the notation of the model development later in this dissertation. A bit of discussion on

why the quantities cA,an,max − cA,an and cA,ca,max − cA,ca are introduced is required. The

symbolC6 represents an open site in the solid. The number of open sites is equal to the total

number of sites, cmax, minus the number of occupied sites, cA,an. Therefore the symbol C6
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Table 2.2: Notation equivalency between reaction equations and symbols used for model
development.

Model Symbols Reaction Equation Symbols
cA Li+

cA,an,max − cA,an C6

cA,ca,max − cA,ca M
cA,an LixC6

cA,ca LiyM

is equivalent to the quantity cmax − cA,an. A similar discussion applies in the cathode for

the relationship between cA,ca,max − cA,ca and the symbol FePO4.

The net rate of a reaction is equal to the difference between the rate of the forward

reaction and the rate of the backward reaction, written as

i

neF
= kfcRexp

(
(1− α)neF

R̄T
φ

)
− kbcOexp

(
−αneF

R̄T
φ

)
(2.16)

where i is current density in A/m2, kf and kb are rate constants for the forward and back-

ward reactions, respectively, and cR and cO are the concentrations of the reduced and oxi-

dized reactants, respectively. Here we use the term reduced and oxidized reactants loosely

to mean any reactant on the same side of the reaction equation as a reduced or oxidized

species, so that cO and cR can actually represent multiple species. The combination of

the k values along with the exponential dependence on potential represent rate constants

with potential-dependent activation energies. The dependence on temperature is Arrhenius,

which is the term given to the dependence on temperature of the form exp(1/T ). The quan-

tity φneF/R̄T is referred to as the “energy” of the reaction. It is assumed that the chemical
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reaction of interest produces electrons, so that it is appropriate to use current density to

define the reaction rate.

The units of the rate constants depend on the number of reactants included in the cR

and cO terms as well as the order of the reaction. As an example, consider the case of a

first order reaction with one reactant. Current density has units of A/m2, and the reactant

has units of mol/m3. Thus, the rate constant must have units of m/s. Other situations

involving more than one reactant will have different rate constant units.

The parameter α is called the reaction symmetry factor. It defines the fraction of applied

potential that contributes to the forward (1 − α) and backward (α) reaction rates. It takes

values between zero and one, with the most common assumption as α = 0.5. Still, the

limiting cases provide insight into the parametric effects of this constant. For instance, if α

is equal to zero, we have

i

neF
= kfcRexp

(
neF

R̄T
φ

)
− kbcO (2.17)

In this specific case, the backward reaction rate is a function solely of kb and cO and has

no dependence on the potential. It essentially reduces the backward reaction rate to a first-

order chemical reaction, instead of an electrochemical reaction. Next consider α equal to

one,
i

neF
= kfcR − kbcOexp

(
−neF
R̄T

φ

)
(2.18)

With this assumption, the forward reaction rate is a function solely of kf and cR and has no

dependence on the potential. Both of these cases (α = 0 and α = 1) are not physically rel-

evant when considering the intercalation process within lithium-ion batteries, though they

may have some relevance when considering side reactions. To identify the exact value of α,

one would need to perform potentiostatic sweeps in a half-cell setup and consider whether
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Figure 2.4: Demonstration of the effects of the symmetry factor on the current-voltage
relationship of charge transfer.

the voltage-current plot is symmetric. Figure 2.4 gives an illustration of the dependence of

the current-voltage relationship on α.

For the limiting cases of α = 0 and α = 1, the current reaches a saturation value in

one direction. Symmetry about the origin of this plot indicates α = 0.5. The system-level

result of this fundamental parameter is that it determines whether the electrode polarization

is dependent on the direction of current. In other words, the electrode resistance is not

dependent on the direction of the current for α = 0.5. Since this is the behavior observed

from the cell-level current-voltage relationship of the cells studied in this dissertation, the

assumption that both negative and positive electrodes have α equal to 0.5 is used throughout

the model development of later sections. However, the rest of the derivation will proceed

without this assumption to maintain generality.
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The equations describing the rate of Eq. (2.14) and Eq. (2.15) are respectively

i

neF
= kfcA,anexp

(
(1− α)neF

R̄T
φan

)
− kbcA(cA,an,max − cA,an)exp

(
−αneF

R̄T
φan

)
(2.19)

i

neF
= kfcA(cA,ca,max − cA,ca)exp

(
(1− α)neF

R̄T
φca

)
− kbcA,caexp

(
−αneF

R̄T
φca

)
(2.20)

Equation (2.19) is the rate equation at the anode while Eq. (2.20) is the rate equation of

the cathode. Note that ian = ica in order to achieve a closed electrical circuit and conserve

charge.

As discussed previously, the equilibrium potential is the value of the potential difference

between each electrode and the liquid phase, at which the rates of the forward reaction

and the backward reaction will become equal. This value of potential is called U , the

equilibrium potential, and is highly material-dependent. Previous discussion used U for

internal energy, but from this point forward it represents equilibrium potential, or OCV.

The following derivation focuses on Eq. (2.19), though the method can be applied at

either the anode or the cathode with minimal modifications. Setting ian = 0 such that the

forward and backward rates are equal gives

kfcA,anexp

(
(1− α)neF

R̄T
Uan

)
= kbcA(cA,an,max − cA,an)exp

(
−αneF

R̄T
Uan

)
(2.21)

Solving for Uan gives

Uan =
R̄T

neF
ln

(
kbcA(cA,an,max − cA,an)

kfcA,an

)
(2.22)

Now, replace φan with ηan = φan − Uan in Eq. (2.14), where η is referred to as the applied

overpotential with the subscript indicating the electrode of interest. Substituting this and
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Eq. (2.22) into Eq. (2.19) gives

ian
neF

=kfcA,anexp

[
(1− α)neF

R̄T
ηan + (1− α)ln

(
kbcA(cA,an,max − cA,an)

kfcA,an

)]
− kbcA(cA,an,max − cA,an)exp

[
−αneF

R̄T
ηan − αln

(
kbcA(cA,an,max − cA,an)

kfcA,an

)]
(2.23)

Further algebraic simplifications can be obtained by removing the natural logarithm terms

from the exponential

ian
neF

=kfcA,anexp

[
(1− α)neF

R̄T
ηan

](
kbcA(cA,an,max − cA,an)

kfcA,an

)(1−α)

− kbcA(cA,an,max − cA,an)exp

[
−αneF

R̄T
ηan

](
kbcA(cA,an,max − cA,an)

kfcA,an

)−α
(2.24)

Then, distributing the exponent (α or 1− α) throughout all the terms gives

ian
neF

=kαf k
1−α
b cαA,an(cA(cA,an,max − cA,an))1−α

·
(
exp

[
(1− α)neF

R̄T
ηan

]
− exp

[
−αneF

R̄T
ηan

]) (2.25)

The exchange current density for the anode is defined as

i0 = neFk
α
f k

1−α
b cαA,an(cA(cA,an,max − cA,an))1−α (2.26)

Then, with the assumption of α equal to 0.5, setting ne = 1 because one lithium ion is

intercalated per electron, lumping all ki’s into one k, and writing the difference in expo-

nentials as hyperbolic sine, we have the final form typically used in Li-ion battery modeling

literature

ian = 2i0sinh

(
F

2R̄T
ηan

)
(2.27)

with i0 = Fkan
√
cA,ancA (cA,an,max − cA,an) . Again, the derivation process could be

repeated for the cathode following similar steps.

If the electrodes are metallic, and therefore not limited by a saturation capacity as in

electrodes that operate via intercalation, then there is no dependence on sites within the host
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matrix as a reactant. This is because the plating/stripping process on a metallic electrode is

a fundamentally different process than intercalation. The rate equation based on Eq. (2.16),

but for a metal electrode, is

i

neF
= kfcRexp

(
(1− α)neF

R̄T
φ

)
− kbcmexp

(
−αneF

R̄T
φ

)
(2.28)

The concentration cm = ρm/Mm is the molar density of the metal used to fabricate the

electrode, with ρm as the metal density and Mm as the metal molecular weight. Note that

this approach implies that cm is a constant, meaning diffusion is not limiting for the process.

Following the procedure of the previous section to obtain an exchange current density via

algebraic manipulations gives

i0 = neFk
α
f k

1−α
b cαRc

1−α
m (2.29)

For lithium metal, the exchange current density tends to be large because cm = 76900

mol/m3 when taking ρ = 0.534 g/cm3 and Mm = 6.94 g/mol. This situation results in

low overpotentials when lithium metal is used as a counter/reference electrode, making a

two-electrode setup sufficient in most cases involving lithium. Equation (2.29) does not

have a dependence on available sites within the solid, as Eq. (2.26) does.

Tafel Kinetics

Beginning from Eq. (2.27), simplifications may be introduced when the applied over-

potential η is large. This results in the reaction proceeding predominantly in the forward or

backward direction depending on the sign of the overpotential. Quantitatively this implies

i = i0exp

(
αF

R̄T
η

)
or i = −i0exp

(
−(1− α)F

R̄T
η

)
(2.30)

Julius Tafel made the experimental observation that the current density varies exponentially

with the overpotential for large overpotentials (Burstein, 2005), so Eq. (2.30) is called the
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Figure 2.5: Plot of Eq. (2.30) that demonstrates the Tafel slope (Burstein, 2005) for large
overpotentials.

Tafel approximation of the Butler-Volmer law (van Schalkwijk & Scrosati, 2002). Figure

2.5 shows the linear trend of the current-voltage relationship for large overpotentials, when

plotting on a semi-log plot. The Tafel slope between points (i1, V1) and (i2, V2) is labeled

as 2.303 R̄T
αF

for the linear portion of the plot. The factor of 2.303 = ln(10) comes from

computing the slope of voltage versus decade of current rather than voltage versus current.

Since it is typical in battery modeling literature to assume α = 0.5, the value of the Tafel

slope lies in using it to estimate the exchange current density. The current and voltage are

experimentally measured quantities, so the exchange current density is estimated as

i0 = i · 10(− ηαF
2.303R̄T ) (2.31)

Typically many points would be used to obtain an average estimate of the exchange current

density in order to reduce the experimental uncertainty of the calculation.
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Low-Field Kinetics

If the overpotential η is small, a linearized form of the Butler-Volmer kinetics may be

applied. This approach is called the ”low-field” approximation. Taking the derivative of

Eq. (2.27) gives
di

dη
=
i0αF

R̄T

[
exp

(
αF

R̄T
η

)
− exp

(
−αF
R̄T

η

)]
(2.32)

The term within brackets is equal to cosh
(
αF
R̄T
η
)
, which equals one when its argument

equals zero. For η � R̄T/(αF ), the term within brackets can be taken as approximately

one. Applying this simplification gives

di

dη
=
i0αF

R̄T
(2.33)

Comparing this expression with the typical manifestation of Ohm’s law, V = IRct, sug-

gests that for Butler-Volmer kineticsRct = R̄T
αFi0

, a quantity that is called the charge-transfer

resistance. It may be extracted from electrochemical impedance spectroscopy experiments

(Barsoukov & Macdonald, 2005) since these inherently use a small signal.

2.2.4 Transport

The transport of species within a Li-ion cell is an important fundamental process be-

cause transport limitations occuring in both the solid and liquid phases will affect the cell

voltage. The Poisson Nernst-Planck equations are used to model the concentration of ionic

species as well as the potential field. These equations are general enough to be applied

to either the solid or liquid phase within a Li-ion cell, though different sets of assump-

tions apply for each. The Poisson Nernst-Planck equations are accurate for dilute solutions

that do not exhibit significant interaction between ions; in many situations involving the
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chemistries commonly used in Li-ion batteries, concentrated solution theory provides im-

proved agreement with experimental data. For this reason, concentrated solution theory is

also discussed.

The Poisson Nernst-Planck Equations

The Poisson Nernst-Planck (PNP) equations are used to model the transport of ionic

species. The conservation of mass for an arbitrary ion i is given by

∂ci
∂t

+∇ · ~Ni = −R̃i(t) (2.34)

where the ionic concentration is denoted as ci, the ionic flux asNi, and the local production

(or depletion) of ions due to a chemical reaction as R̃i. In the separator region of a Li-ion

battery, R̃i = 0, while in the electrodes it is determined through a nonlinear coupling of

the solid and liquid phases by the Butler-Volmer law. In the general case, the flux contains

contributions from diffusion, migration, and convection (Conlisk, 2011). However in a

Li-ion battery there is no fluid convection, so the flux is

~Ni = −Di∇ci +
Di

R̄T
ziFci ~E (2.35)

in which the diffusion coefficient isDi, zi is the valence of the ion, F is Faraday’s constant,

~E is the electric field, R̄ is the universal gas constant, and T is the cell temperature. In the

general case temperature can be a function of space and time.

The potential must also be defined since it is a factor in determining the ionic flux due

to migration. The potential and electric field are related by Maxwell’s equation (Fleisch,

2008) such that

~E = −∇φ (2.36)
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In a dilute solution, where the electrostatic potential dominates, the potential φ satisfies

Poisson’s equation such that

−∇ · ε̄e∇φ = ρe (2.37)

where ε̄e is the electrical permittivity of the medium in which transport occurs, which is

often assumed to be invariant of space for a uniform medium. By performing a simple

summation over the number of species n, the charge density per unit volume, ρe, is defined

as

ρe = F
n∑
i=1

zici (2.38)

Combining Poisson’s equation (2.37), the charge density definition (2.38), and the electric

field definition (2.36) gives the final dimensional form of the equation for potential

∇2φ = −F
ε̄e

n∑
i=1

zici (2.39)

The definition of the electrical current density in a flowing electrolyte solution having

concentration gradients is derived in a similar fashion to the charge density, by summing

over all charged constituents

~J = F
n∑
i=1

zi ~Ni (2.40)

Equations (2.34) and (2.39) are a complete set ofN+1 equations, whereN is the number of

ionic species in the solution, that can be solved for theN ionic concentrations and potential

distribution after specification of appropriate boundary conditions.

An alternate form of Eq. (2.35), written in terms of the current density rather than the

potential gradient (Taylor & Krishna, 1993), can be useful since batteries are often operated

with a controlled current instead of a controlled voltage. It is convenient for the following

analysis to define the electrical conductivity, κi, of species i as

κi =
F 2

R̄T
ciz

2
iDi (2.41)
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as well as the equivalent electrical conductivity of the mixture, κ, which is the sum of all

species conductivities

κ =
F 2

R̄T

n∑
i=1

ciz
2
iDi (2.42)

The transference number, ti, is defined as the ratio of the species conductivity to the mixture

conductivity

ti =
κi
κ

(2.43)

These parameters are purely algebraic expressions that do not require any assumptions for

their definition at this point. They clearly depend on the ionic concentrations, which vary in

space, so in later analysis if they are moved outside a gradient operator there is an implicit

assumption of negligible concentration gradients. Inserting the flux definition of Eq. (2.35)

into Eq. (2.40) and solving for the potential gradient while making use of the conductivity

definitions gives

∇φ = −
~i

κ
− F

κ

n∑
i=1

ziDi∇ci (2.44)

Now substituting Eq. (2.44) into Eq. (2.35) gives the flux in terms of the ionic current

density

~Ni = −Di∇ci +
ti
ziF

~i+
ti
zi

n∑
i=1

zjDj∇cj (2.45)

where the definition of the transference number has also been utilized. This expression

may be simplified even further by grouping all terms that involve a concentration gradient

and thereafter defining an effective diffusion coefficient

Di,eff = Di −
ti
zi

n∑
i=1

zjDj
∇cj
∇ci

(2.46)

which, upon substitution into Eq. (2.45) yields (Taylor & Krishna, 1993)

~Ni = −Di,eff∇ci +
ti
ziF

~i (2.47)
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This is the dilute form of the flux that is commonly applied in Li-ion battery literature,

since the convection term civi has been neglected.

The discussion to this point has considered the most general case of a three-dimensional

geometry and no negligible flux terms. Further simplifications can be made in several in-

stances relevant to Li-ion battery modeling. For example, a one-dimensional geometry is

often considered to be sufficient based on a dimensional analysis of the unit cell geometry,

illustrated in Figure 2.6. The unit cell components (negative electrode, separator, posi-

Figure 2.6: Unit cell geometry where x dimension is O(10−4) m, while y and z (into the
page) dimensions are O(100) m.

tive electrode) have length and width on the order of several centimeters to meters. Their

thickness, however, is on the order of 10−4 m. This results in the gradients in the y and z

directions to be negligible compared to the x direction.

The convective flux within the liquid phase has been neglected because volume changes

in the electrodes are not considered. If galvanostatic charge or discharge is being consid-

ered, the time derivative on the left-hand side of Eq. (2.34) is zero based on the time scale

of discharge (hours) compared with the time scale of transport (several seconds).

Further simplifications depend on the condition of electroneutrality, which states that

there is no charge separation over a macroscopic distance (Newman & Tiedemann, 1975).
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If the liquid phase is assumed to be electroneutral for the bulk region, where the term bulk

referes to any region that is a sufficient distance away from the interface between solid and

liquid, and the galvanostatic case is considered, then an analytical solution to the set of Eqs.

(2.34) and (2.39) is possible.

In the solid phase, other simplifications are possible. Again, the convection flux may

be neglected if volume expansion effects are negligible. Migration is not applicable for

two reasons. First, significant variations in potential do not exist within an active material

particle. This is a generally accepted assumption due to the small size of active material

particles and the conductive carbon coating that is typically applied to enhance their con-

ductivity. Second, it may be assumed that there is a net zero charge in the solid phase due

to fast electron transport relative to lithium diffusion. The resulting transport equation for

the solid phase is a diffusion equation,

∂ci
∂t

= ∇ · (Di∇ci) (2.48)

The solid phase transport process is important because the concentration of lithium at the

active material particle surface determines several of the important thermodynamic and

kinetic characteristics discussed in previous sections.

The dynamics of the cell voltage after the initial overpotential are driven primarily by

increasing concentration polarization. This aspect is illustrated by Figure 2.7. A repre-

sentative graphite electrode particle has been used for this discussion, but the explanation

applies equally well to most presently utilized Li-ion chemistries. Due to diffusion limi-

tations, the surface concentration of lithium, cn(Rn, t), may be significantly different than

the average concentration contained within the active material particle. The average con-

centration indicates the concentration level that the would be reached if the current were

interrupted and the cell were allowed to come to equilibrium. The difference between the
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Figure 2.7: Concentration overpotential due to difference between mean concentration and
surface concentration. Difference between solid and dashed lines indicating voltage on the
vertical axis gives concentration overpotential.

two concentrations is represented by the solid and dashed lines indicating points along the

x-axis, and this variation leads to a variation in the OCV indicated along the y-axis. This

variation is referred to as solid concentration overpotential.

Concentrated Solution Theory

The term concentrated solution refers to an electrolyte/solvent mixture in which there

are important interactions between ionic species that require modification of the flux de-

scription (Newman & Chapman, 1973). In the dilute solution development, the species are

assumed to interact only with the solvent, while in the concentrated solution development
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interactions between all species are considered. Transport properties in the dilute solution

section contained only one subscript because it is clear that the species interact only with

the solvent. In this section, a dual subscript such as Dij indicate the transport property

resulting from the interaction of species i with species j.

The definition of the flux, Eq. (2.35), from dilute solution theory can be replaced by the

multicomponent transport equation (Newman & Thomas-Alyea, 2004)

ci∇µi = R̄T
n∑
j=1

cicj
cTDij

(~vj − ~vi) (2.49)

where µi is the electrochemical potential of species i, n is the number of species in the

solution, Kij = R̄T
cicj
cTDij

is a friction coefficient characterizing species interactions, Dij is

the diffusion coefficient based on interactions between species i and species j, and ~vi is the

average velocity of species i such that ~Ni = ci~vi. For each index i, the index j denotes the

interaction between species i and the species indicated by j. The total concentration within

the solution is cT =
∑n

i=1 ci.

For this analysis, a two ion system is considered since most current cases of interest

for Li-ion batteries consist of a salt composed of a single positive and single negative ion.

Additionally, further analysis requires the inversion of Eq. (2.49) to obtain the flux as a

function of the driving electrochemical potential µi, and the inversion procedure is simplest

for a two ion system. Denoting properties of the positive ion with a subscript +, and those

of the negative ion with−, the two independent flux equations that emerge from Eq. (2.49)

are

~N+ = − ν+D̄

νR̄T

cT
c0

c∇µe +
~it0+
z+F

~N− = − ν−D̄
νR̄T

cT
c0

c∇µe +
~it0−
z−F

(2.50)
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where c0 refers to the solvent concentration, and in general in this section the subscript

0 refers to solvent properties, µe = ν+µ+ + ν−µ−, and the ν values are determined by

the stoichiometry of the electrolyte salt dissociation reaction. As an example consider the

complete dissociation of lithium hexaflourophosphate (LiPF6) into positive and negative

ions

LiPF6 ⇀↽ Li+ + PF−6 (2.51)

Here there is one positive and one negative ion produced per salt molecule. Thus, ν+ = 1,

ν− = 1, and ν = ν+ + ν− = 2. Note that the ν+ and ν− quantities are defined in the

same manner as stoichiometric coefficients. However, when later defining the potential

of a concentrated solution there will be a reference electrode reaction in addition to the

salt dissociation reaction of Eq. (2.51). Therefore, the ν symbol is used to distinguish

electrolyte dissociation quantities from those of the reference electrode. There is no depen-

dence on the composition, x or y, as was observed for the intercalation reactions specified

in Eqs. (2.14) and (2.15) respectively.

Prior discussion featured a diffusion coefficient, D, that relates the ionic flux to the

concentration gradient. The term D̄ is a diffusion coefficient for the entire salt based on the

gradient of electrochemical potential, which is the true thermodynamic driving force, and

its definition

D̄ =
D+D− (z+ − z−)

z+D+ − z−D−
(2.52)

emerges from the algebraic manipulations required when inverting Eq. (2.49) (Newman &

Thomas-Alyea, 2004). This relationship between D̄ and D, is used to relate the gradient of

chemical potential of the electrolyte in terms of the concentration gradient of salt

D̄

νR̄T

cT
c0

c∇µe = D

(
1− dlnc0

dlnc

)
∇c (2.53)
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Figure 2.8: Hypothetical reference electrode used to develop the equations describing po-
tential in a concentrated solution. Position II exhibits a greater electrochemical potential
than Position I.

Using Eq. (2.53) to substitue the electrochemical potential for the concentration gradient

into the general flux definition gives

~N = D

(
1− dlnc0

dlnc
∇c
)
−

~it0+
z+ν+F

(2.54)

Comparing Eq. (2.54) with Eq. (2.35), there are many similarities. The convective flux

term is unchanged, as is the migration term. If the variation of the solvent concentration

with respect to the salt concentration is small, so that dlnc0
dlnc � 1, then the flux expressions

are equivalent. Physically this implies that the change of the solvent/solute system volume

with addition of the solute is negligible.

The potential must also be modified when considering concentrated solution theory.

To develop the equations describing the variation of potential in an electrolytic solution,

consider the situation of Figure 2.8 where a reference electrode is immersed in a liquid

electrolyte solution (van Schalkwijk & Scrosati, 2002). A general reaction equation for a
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reference electrode immersed in electrolyte is (Newman & Thomas-Alyea, 2004)

s−µ− + s+µ+ + s0µ0 = −neFφ (2.55)

Figure 2.8 shows the specific case where s0 = 0 and s− = 0, which will often be the

case for Li-ion batteries, but the rest of the derivation proceeds with the general form.

Since this is a reference electrode, the current passed by the electrode is negligible and the

electrode/electrolyte system is in equilibrium. An alternative analysis that reaches the same

conclusions as the reference electrode considers a junction of two dissimilar liquids (Bard

& Faulkner, 2001).

Next, consider moving the electrode from on spatial Position I to spatial Position II,

indicated in Figure 2.8. There is a variation in electrochemical potential due to the variation

in salt concentration between Position I and Position II. This variation could also be due to a

variation in the electrostatic potential, though a concentration gradient is easier to visualize

as an exemplary case. Note that the presence of a concentration gradient in this sense does

not violate the requirement of equilibrium conditions as discussed in the thermodynamics

section, since equilibrium refers to the electrode/electrolyte interface and not to the entire

electrolyte system in this sense. Thus the gradient between Position I and Position II of Eq.

(2.55) is

s−∇µ− + s+∇µ+ + s0∇µ0 = −neF∇φ (2.56)

At this point, the individual electrochemical potentials will be replaced by the current

density and the chemical potential by algebraic manipulations (Newman & Thomas-Alyea,

2004). This is desirable since the chemical potential is related to the ionic concentration

of salt by Eq. (2.53). To accomplish this task, the flux expressions of Eqs (2.50) are
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substituted into the multicomponent diffusion equation, Eq. (2.49) to give

1

z−
∇µ− = −F

κ
~i− t0+

z+ν+

∇µe (2.57)

Here κ is still the conductivity of the solution, but has a new definition because interactions

between all species are now considered rather than only interactions between the species

and solvent
1

κ
=

−R̄T
cT z+z−F 2

(
1

D+−
+

c0t
0
−

c+D−

)
(2.58)

The consideration of interactions in this two-ion system gives an additional term, 1/D+−. If

more species were present there would be additional interaction terms. The quantity µ0 can

be eliminated from Eq. (2.56) by means of the Gibbs-Duhem equation, c0dµ0 + cdµe = 0

(Moran & Shapiro, 2004). Then combining terms that are multiplying the gradient of

electrochemical potentials and noting that s+z+ + s−z− = −ne gives

s+µ+ + s−µ− =
s+

ν+

∇µe −
ne
z−
∇µ− (2.59)

Substituting this result into the equilibrium condition, Eq. (2.55), gives

−F∇E =

(
s+

neν+

− s0c

nec0

)
∇µe −

1

z−
∇µ− (2.60)

The potential is now defined in terms of the electrochemical potential and the current den-

sity by

∇φ =
~i

κ
− κ

F

(
s+

neν+

+
t0+
z+ν+

− s0c

nec0

)
∇µe (2.61)

where s is the stoichiometry coefficient of the reference electrode reaction, for example

given in Figure 2.8, t0+ is the transference number, and z is the ion valence, and ν is the

number of moles of ions each mole of salt contains. Since the electrochemical potential is

related to the concentration gradient, which is typically of more interest, it is preferable to
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insert the concentration dependence

∇φ =
~i

κ
− νR̄T

F

(
s+

neν+

+
t0+
z+ν+

− s0c

nec0

)(
1− dlnc0

dlnc

)(
1 +

dlnf
dlnc

)
∇c (2.62)

In summary, Eq. (2.54) and (2.62) of concentrated solution theory may be used in place of

Eq. (2.35) and (2.39).

2.3 Hierarchy of Modeling Techniques for Li-Ion Batteries

There are many techniques that are capable of modeling lithium-ion battery perfor-

mance, where performance modeling is defined as predicting the battery voltage in re-

sponse to current and temperature inputs. A performance modeling literature review is

now conducted by organizing the contributions into a hierarchical framework that allows

for a unique comparison of the various model structures, functionalities and potential appli-

cations. The hierarchical arrangement displayed in Figure 2.9 gives an introduction to the

various model structures that will be discussed. This arrangement is viewed as a family of

models that predict the performance of battery systems, but with application-specific com-

plexity. The hierarchy separates into two distinct branches representing two fundamentally

different modeling methods. The starting point for the right side of the hierarchy is the

porous electrode model structure (Newman & Tiedemann, 1975; Doyle et al., 1993; New-

man & Thomas-Alyea, 2004). This model is useful in cell design studies and for developing

an understanding of the fundamental processes that occur during battery operation. The left

branch represents models that apply the equivalent circuit analogy to predict the electrical

dynamics of batteries using an empirical approach that provides limited information about

internal processes. Both branches achieve simplifications by reducing the number of spa-

tial dimensions that are modeled. Model order reduction techniques can also be applied,

as discussed in more detail in a later section of this chapter. Model order reduction refers
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Figure 2.9: Hierarchical arrangement of various approaches for modeling electrochemical
systems.

to the process of applying mathematical or phenomenolgical simplifications to a physical

problem to reduce the number of differential and algebraic equations that must be solved.

In order to model battery performance, the system is considered to be a collection of

unit cells, comprised of a negative electrode, separator, and positive electrode, as illustrated

in Figure 2.10. If the battery temperature is uniform, then typically one unit cell is used

to represent the performance of the entire battery. Consideration of multiple, coupled unit

cell models to model spatially non-uniform heat generation within a Li-ion cell can lead to

improved cell design strategies (Kim et al., 2011). However, for the cell geometry and dis-

charge rates considered in this dissertation, non-uniform thermal effects are not prevalent

and one unit cell is considered sufficient.
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Figure 2.10: Schematic of unit cell as a cross-section along x. Ellipsis implies repeated
unit cells.

2.3.1 Porous Electrode Models

Porous electrode models predict the concentration and potential in the liquid and solid

phases of an electrochemical cell using the superposition approach illustrated in Figure

2.11. The porous electrode is a complex, tortuous mixture of particles held together by

binder and conductive coating. Porous electrode models take a macroscopic approach

and assume electroneutrality. The main outcome of electroneutrality is the current den-

sity based on the projected current collector area is constant, implying∇ ·~i = 0, where~i is

the current density. However, current can be conducted in either the solid,~is, or the liquid,

~ie, phase such that~i =~ie +~is and

∇ ·~is +∇ ·~ie = 0 (2.63)
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Figure 2.11: Representation of the porous electrode geometric complexity (top) and the
idealized modeling approach using superposition (bottom).
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At the current collector, electrons carry the current and the flux of lithium ions is zero

because the current collector is a solid metal film. This is indicated in Figure 2.11, where

~ie = 0 and~is = ~i at the current collector. At the separator, no electronic current can flow

since the separator is electrically insulating. Thus~is = 0 and~ie = ~i. These considerations

will serve as useful boundary conditions for modeling.

The transfer current density, j, defines the rate of current divergence within each phase,

or equivalently the amount of current transmitted between the phases at each x coordinate

∇ ·~is = −∇ ·~ie = aij(x, t) (2.64)

where ai = 3εi/Ri is the surface area of the electrode per unit volume, εi is the electrode

active volume fraction, and Ri is the active particle radius. The parameter ai takes i = n

for x values in the negative electrode and i = p for x values in the positive electrode. The

quantity j is a function of space and time, since it depends on lithium concentration and

potential. While j has the same units as ~i, it is a current density based on actual active

surface area of the electrode rather than projected current collector area.

If we discretize the partial differential equations into a number of discrete x nodes, the

superposition approach leads to considering one active material particle at each node point.

The transport equations of concentrated solution theory derived in the previous section are

utilized in each phase, and the transfer current is modeled using Butler-Volmer kinetics.

All transport and conductivity properties are treated as effective values, rather than using

values that apply for a pure, uniform material. The Bruggeman coefficient, brug, is used

to modify the electronic conductivity and diffusion coefficient based on the tortuosity of

the conduction or diffusion path respectively (Patel et al., 2003). This parameter accounts

for the empirical observation that transport is slower and electronic conductivity is lower

than predicted by merely accounting for the volume fraction of the porous media, giving
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effective values σeff = σεbrug and Deff = Dεbrug respectively. The quantity ε is the vol-

ume fraction of the phase of interest. Since ε < 1, inclusion of the Bruggeman coefficient

always gives a lower effective property value. In order to simplify the model notation, prop-

erties are treated as effective values when discussing porous electrode theory even though

the eff subscript is not carried throughout the model discussion.

To begin, consider the potential in the solid phase. This is current in the form of elec-

trons flowing in a conductive medium, which is governed by Ohm’s law, Eq. (2.12). Based

on the approximation introduced by Figure 2.11, only one spatial dimension is modeled and

therefore the vector notation for current density is removed. Differentiating this expression

once with respect to x leads to

∂2φs
∂x2

=
j(x, t)

σs
with φ = φrel at x = 0 and ∂φs

∂x
= i

σs
at x = Lcell (2.65)

Only potential differences between the positive and negative electrode are relevant, so φrel

is actually arbitrary. It is usually convenient to either set φrel = 0, and this convention is

used unless explicitly stated otherwise.

Next, conservation of charge for the liquid phase is modeled using the potential for

a concentrated solution. Beginning from Eq. (2.62) in one-dimension, simplifying as-

sumptions are made. Considering a two-ion electrolyte and the dissociation reaction of Eq.

(2.51) with the reference electrode reaction of Figure 2.8, ν = 2, ν+ = 1, s0 = 0, ne = 1,

and ν+ = 1. Additionally, assume negligible variation of the solvent concentration with

respect to the salt concentration, which amounts to neglecting volume change of the solvent

as additional solute is added, so that dlnc0
dlnc � 1. Differentiating the result with respect to x
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gives

∂2φe
∂x2

− 2R̄T

F

∂

∂x

((
1 +

dln(f)

dln(ce)

)
∂lnce
∂x

)
= −j(x, t)

κ
with ∂φe

∂x
= 0 at x = 0, Lcell

(2.66)

Next, lithium transport in the solid phase is modeled using Eq. (2.48), applied to the

spherical particle geometry.

∂cs
∂t

=
Ds

r2

∂

∂r

(
r2∂cs
∂r

)
with ∂cs

∂r
= 0 at r = 0 and ∂cs

∂r
= −j(x,t)

DF
at r = R (2.67)

The boundary condition links the tranfer of lithium ions between the solid and liquid

phases.

Equation (2.34) is used to model the concentration of lithium ions in the liquid phase,

with the flux defined in Eq. (2.54) and the reaction term as j(x, t)

εe
∂ce
∂t

=
∂

∂x

(
De

∂ce
∂x

)
− ai

(
1− t+0

)
F

j(x, t) with ∂ce
∂x

= 0 at x = 0, Lcell (2.68)

The surface area per unit volume, ai, converts the surface flux from active material particles

into a volumetric source/sink in the liquid phase.

The transfer current density is a function of the local concentration and potential

j(x, t) = i0

(
e
αF
R̄T

η − e− (1−α)F

R̄T
η
)

(2.69)

with i0 = Fk
√
cs(R, t)ce(x, t) (cmax − cs) and η = U − φs − φL. The battery terminal

voltage is is defined as the difference betwen the solid phase potential evaluated at the

current collector boundaries

V (t) = φs(Lcell, t)− φs(0, t)−RcI(t) (2.70)

The quantity Rc is a contact resistance that accounts for the ohmic losses in the current

collectors and at weld joints between the current collectors and external battery tabs.
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This basic model structure has seen numerous applications and chemistry-specific vari-

ations. It was applied to the LiFePO4 electrode in order to understand the low power

capability of the material (Srinivasan & Newman, 2004b,a) and its interesting response

of increasing resistance with respect to depth of discharge during current pulses Thomas-

Alyea (2008). It has been used to study the effects of modeling a particle size distribution

(Darling & Newman, 1997; Stephenson et al., 2007) on rate capabilities and overall power

output. It has been applied to high current pulse modeling (Bernardi & Go, 2011; Fang

et al., 2009) since it accounts for the spatially non-uniform transfer current that occurs in

such situations. The formulation is general enough to allow for a high amount of modeling

complexity, such as the inclusion of a thermal energy balance to study temperature tran-

sients during high current operation (Bernardi et al., 1985; Rao & Newman, 1997; Srini-

vasan & Wang, 2002; Smith & Wang, 2006a), materials that exhibit phase change during

intercalation (Christensen et al., 2006), or mixed active material electrodes (Albertus et al.,

2009).

2.3.2 Uniform Utilization Models

The porous electrode equations, Eq. (2.65) to Eq. (2.68), are distributed, coupled dif-

ferential equations. The numerical solution methods required make them difficult to solve

in real-time. For real-time applications involving estimation or control with a micropro-

cessor that would be common in an embedded application such as an electric vehicle, a

lumped model is needed. Such a model can be derived by assuming the transfer current

has no spatial dependence, leading to the term ‘uniform utilization” since lithium is added

and removed to the electrode uniformly with respect to the x coordinate of the unit cell in

Figure 2.10. and instead the total current is averaged over the entire active surface area to
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compute an average transfer current density

ji(t) =
I(t)

ALiai
(2.71)

where i = p, n to indicate the positive or negative electrode. Equation (2.67) is solved

subject to this boundary condition. This amounts to considering a single, average particle

with lithium transport that represents the electrode. The liquid phase is only considered as

an ohmic resistance. This approach is often called the single particle model and it was first

developed for Ni-MH batteries Haran et al. (1998). The system may be conceptualized as

in Figure 2.12. The kinetic overpotential, η, is modeled by inverting the Butler-Volmer law,

Figure 2.12: Single particle model conceptual representation.

Eq. (2.69), to yield

η =
R̄T

αF
sinh−1

(
j(t)

2i0

)
(2.72)

The resulting battery terminal voltage is

V (t) = (Up(t)− Un(t))− (ηp(t)− ηn(t))−RcI(t) (2.73)

if we exclude complex effects such as hysteresis or resistive-reactant overpotential. Since

the transfer current density is assumed to be known, and the liquid phase transport is not
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considered, the coupling between these equations is eliminated, the computational require-

ments are considerability reduced, and real-time estimation is possible. A number of papers

(Di Domenico et al., 2008a,b; Speltino et al., 2009; Santhanagopalan & White, 2006) have

successfully applied this model structure to the problem of SOC estimation during pulse

operation. Cycling results for this model have been presented alongside porous electrode

and polynomial approximation models (Santhanagopalan et al., 2006) to illustrate their

utility for low current rates. As mentioned previously, this approach does not allow for

concentration gradients in the liquid phase, whose relaxation effects are observable in the

cell voltage during following interruption of a charge or discharge current (see Figure 1.8).

An approach which does include relaxation effects is pursued in Chapter 4.

2.3.3 Analogy–Based Models

This branch of the hierarchy is not discussed in detail as it is not the main focus of

this proposal. It should be noted that systematic methods of parameterization have been

applied more frequently to equivalent circuit models than to electrochemical models. For

instance, the extended Kalman Filter (EKF) has been used to perform dual state and param-

eter identification for a fourth order equivalent circuit model (Plett, 2004a,b,c). Subspace

methods have been used (Hu & Yurkovich, 2011; Hu et al., 2009) to parameterize a linear

parameter-varying model to account for the temperature and SOC dependence of battery

resistance (Hu et al., 2011). Offline nonlinear methods have been used to identify the rele-

vant parameters for ohmic and charge transfer resistance (Juang et al., 2011).

2.4 Selected Solution Methods for the Governing Equations

This section gives some potential solution methods for the governing equations. Nu-

merical methods are briefly discussed, but are not emphasized. Instead, more focus is
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placed on methods that result in a small number of algebraic or ordinary differential equa-

tions, since these are more suitable for design of battery management systems.

2.4.1 Numerical

Popular numerical solution methods include the finite difference method (Ciarlet &

Lions, 1990) and finite volume method (West & Fuller, 1996). Solving sets of coupled

differential equations with either method is a standard problem (Parker et al., 1980). An

excellent review of these numerical solution methods for convective-diffusion equations

has been conducted (Botte et al., 2000).

2.4.2 Model Order Reduction

In this section, a comparison of model order reduction (MOR) techniques will be pre-

sented for a model problem to demonstrate the effectiveness of a particular MOR ap-

proach known as the Pade approximate method. The model problem is diffusion in a

one-dimensional cartesian coordinate system, with the domain pictured in Figure 2.13.

The governing equation for diffusion in the domain of Figure 2.13 is

Figure 2.13: Modeling domain for model order reduction example calculations.

∂c∗

∂t∗
= D

∂2c∗

∂x∗2
(2.74)
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where c∗ is a salt concentration, andD is the salt diffusion coefficient. The imposed bound-

ary conditions are
∂c∗

∂x∗

∣∣∣∣
x∗=0

= 0, D
∂c∗

∂x∗

∣∣∣∣
x∗=L

= −N (2.75)

where N is the flux of salt at the boundary, and would be defined by the current density of

Eq. (2.69) in the case of solid diffusion in a Li-ion cell. The initial condition is c∗(x∗, 0) =

c0cmax where 0 < c0 < 1.

To reduce the number of arbitrary parameters, the equations are non-dimensionalized

according to x = x∗/L, c = c∗/cmax, and t = t∗D/L2. Note that in this section, the ∗

superscript indicates dimensional quantities and all other quantities are non-dimensional.

Additionally define the parameter ψ = NL
Dcmax

to simplify the non-dimensional boundary

condition. The resulting governing equation and boundary conditions are

∂c

∂t
=
∂2c

∂x2
(2.76)

∂c

∂x

∣∣∣∣
x=0

= 0,
∂c

∂x

∣∣∣∣
x=1

= −ψ (2.77)

The nondimensional initial condition is c(x, 0) = c0. In order for the following model order

reduction techniques to be effective, a key assumption is that the only desired solution of

the problem is the concentration at a specific x location. In this instance, that location is

x = 1 , but the technique applies equally well for any location within the domain.

Analytical Solution for Steady Boundary Flux

An analytical solution is obtained by the separation of variables method for a steady

flux. Normally in non-homogeneous problem, a steady solution would be defined that

satisfies the corresponding boundary conditions. However, with the prescribed boundary

conditions of this problem, there is no steady solution because the salt concentration within
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the modeling domain continually increases in time. Instead, the solution is broken into

three parts (Crank, 1975)

c(x, t) = u(x) + w(x, t) + c̄(t) (2.78)

corresponding to a steady term u(x) that defines the shape of the long-time response, but

not its magnitude; a transient term w(x, t) that defines the difference between u(x) and

the actual solution at time t; and c̄(t), the time-varying mean concentration. The transient

term w(x, t)→ 0 for large t. First the solution for the mean concentration is computed by

integrating Eq. (2.76) ∫ 1

0

∂c

∂t
dx =

∂c

dx

∣∣∣∣
x=1

− ∂c

dx

∣∣∣∣
x=0

(2.79)

which after substituting known terms results in

dc̄

dt
= −ψ (2.80)

The integration gives c̄(t) = −ψt + 0.2, where 0.2 corresponds to the initial condition.

Next, the proposed solution of Eq. (2.78) is substituted into Eq. (2.76) to obtain

∂w

∂t
+
dc̄

dt
=
∂2w

∂t2
+
d2u

dx2
(2.81)

Requiring that w(x, t) satisfies Eq. (2.76) individually, and substituting for c̄(t) yields

dc̄

dt
=
d2u

dx2
(2.82)

This expression is integrated twice to give u(x) = −ψ x2

2
+ c1x + c2 where c1 and c2

are arbitrary constants that are identified using the boundary conditions. From the first

condition of Eq. (2.77), c1 = 0. The second boundary condition is satisfied automatically,

so an additional condition is required, utilizing the previously described constraint that

w(x, t) → 0 for large t. This leaves c = c̄ + u, which upon integration reveals that
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∫ 1

0
u(x)dx = 0, since

∫ 1

0
cdx =

∫ 1

0
c̄dx. Using this integral to solve for the remaining

constant gives c2 = ψ/6.

Now, solutions have been obtained for c̄(t) and u(x), leaving only w(x, t) to solve via

Eq. (2.76) with homogeneous, zero flux boundary conditions. This is a straightforward

separation of variables problem, which requires the assumption of w(x, t) = T (t)X(x),

and the solution is given by Crank (1975)

w(x, t) =
∑
n=1

−2(−1)n

(nπ)2
cos(nπx)e−(nπ)2t (2.83)

The total solution obtained by substituting the solutions of w(x, t), c̄(t), and u(x) into Eq.

(2.78) is now

c(x, t) = c0 + ψ

(
1

6
− x2

2
− t
)
− 2

∑
n=0

(−1)n

(nπ)2
cos(nπx)e−(nπ)2t (2.84)

Keep in mind that this solution requires a steady boundary flux. In order to compare the

frequency response of the analytical PDE solution to various MOR techniques, a solution

in the Laplace domain is required.

Analytical Solution in the Laplace Domain

The Laplace transform is defined as

F (s) =

∫ ∞
0

e−stf(t)dt (2.85)

where f(t) is any function that is locally integrable on [0,∞], and here s = −jw with

j =
√
−1. Capital symbols are used to indicate the Laplace transform of lower case

symbols. Applying this operator to Eq. (2.76) gives

sC(x, s)− ∂2C

∂x2
= 0 (2.86)
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Treating s as a parameter, this is a second-order ordinary differential equation in C(x),

which can be solved by the characteristic equation method (Boyce & DiPrima, 2009). Ap-

plying the boundary conditions of Eq. (2.77), and evaluating the solution at the location of

interest (x = 1) gives
C(1, s)

Ψ(s)
=

e
√
s + e−

√
s

√
s
(
e
√
s − e−√s

) (2.87)

Pade Approximation of the Frequency Response

To obtain a reduced-order representation of the boundary concentration dynamics, the

coefficients of a low-order transfer function are identified using moment matching. The

approximate transfer function of order N for the system of Eqs. (2.76) and (2.77) is given

by

P (s) =
a0 + a1s+ · · ·+ aN−1s

N−1

s (1 + b2s+ · · ·+ bNsN−1)
(2.88)

where the coefficients are to be identifed as a function of the boundary conditions and

dimensional parameters. The identification procedure requires evaluating the limit as s →

0 of Eq. (2.87) and its derivatives. A single coefficient of the approximate transfer function

can be identifed for each limit that is computed. As an example, consider a second order

transfer function. First evaluate the limit of Eq. (2.87)

lim
s→0

s
C(1)

Ψ(s)
= 1 (2.89)

noting that Eq. (2.87) is actually undefined at zero, so it is first multiplied by s, and then

the limit is computed. Next, the limit of the second-order realization of Eq. (2.88), after

multiplying by s so that the limit actually exists, is

lim
s→0

sP (s) = a0 (2.90)
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Equating Eq. (2.89) with Eq. (2.90) gives a0 = 1. Next, the limit of the derivative of (2.76)

is evaluated

lim
s→0

d

ds

(
s
C(1)

Ψ

)
=

1

3
(2.91)

Next, the limit of the derivative of the second-order realization of Eq. (2.88) is evaluated

lim
s→0

d

ds
(sP (s)) = a1 − b2a0 (2.92)

To complete the coefficient identification process for the second-order realization, the limit

of the second derivative of both the analytical solution and the approximate transfer func-

tion must be computed.

lim
s→0

d2

ds2

(
s
C(1)

Ψ

)
= − 2

45
(2.93)

lim
s→0

d2

ds2
(sP (s)) = 2b2 (a0b2 − a1) (2.94)

By equating Eq. (2.89) and Eq. (2.90), Eq. (2.91) and (2.92), and Eq. (2.93) and (2.94),

a system of three equations with three unknowns is established

a0 = 1

a1 − b2a0 =
1

3

2b2 (a0b2 − a1) = − 2

45

(2.95)

The solution of the system in Eq. (2.95) gives the approximate traansfer function coeffi-

cients. The process is repeated for third and fourth order approximations, but two additional

derivatives are required for an increase of one in the approximation order. The approxima-

tions for orders one through four are summarized in Table 2.3.

Polynomial Approximation

The polynomical approximation assumes that the concentration profile at any time is

given by a polynomial of arbitrary order. Usually a second-order polynomial is used to give
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Table 2.3: Pade approximate transfer functions (TFs) up to fourth order for Eq. (2.87).

Order 1st 2nd 3rd 4th

TF
1

s

1 +
2

5
s

s

(
1 +

1

15
s

) 1 +
4

9
s+

1

63
s2

s

(
1 +

1

9
s+

1

945
s2

) 1 +
6

13
s+

10

429
s2 +

4

19305
s3

s

(
1 +

5

39
s+

2

715
s2 +

1

135135
s2

)

a parabolic profile. To begin let

cp(x, t) = cp,1(t) + cp,2(t)x2 (2.96)

This satisfies the first boundary condition of Eq. (2.77) automatically. The second boundary

condition yields

2cp,2(t) = −ψ (2.97)

or cp,2(t) = −ψ/2. To identify cp,1(t), compute the volume-averaged concentration via Eq.

(2.76) and Eq. (2.96), and equate the results∫ 1

0

cp,1(t) + cp,2(t)x2dx = cp,1(t) +
cp,2(t)

3
(2.98)

∫ 1

0

∂c

∂t
dx =

∫ 1

0

∂2c

∂t2
dx (2.99)

dc̄

dt
=
∂c

∂x

∣∣∣∣
x=1

− ∂c

∂x

∣∣∣∣
x=0

(2.100)

c̄ = −ψt+ c0 (2.101)

Then solving for a(t) gives a(t) = −ψt+ c0 + ψ/6. Evaluating this result at x = 1 gives

cp(1, t) = t+ c0 + 1/3 (2.102)
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Figure 2.14: Frequency response of analytical solution to PDE and Pade approximations
of various order of truncation.

Frequency Response and Step Response Predictions

All results in this section use ψ = 1, and c0 = 0.2, but the results are generalizable

for any value of ψ and c0. Figure 2.14 compares the frequency response of the analytical

solution, given by Eq. (2.87), the family of Pade approximate models, and the polynomial

model. The results show that each Pade approximation to the analytical solution matches

well for low frequencies. As the frequency increases, error is introduced due to the neglect

of high frequency poles during the Pade approximation procedure. As the approximation

order increases, both the magnitude and the phase exhibit better agreement for higher fre-

quencies. To select the best model for an application, information about the frequency
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Figure 2.15: Step response of analytical solution to PDE, Pade approximations of various
order, and polynomial approximation.

content of the input signal is used to decide a cutoff frequency, above which the dynamics

are unimportant. Then the lowest order Pade approximation that matches the frequency

response up to the cutoff frequency is selected.

The polynomial approximation exhibits the poorest agreement of all the models because

it greatly overpredicts the response magnitude for high frequency. Although it matches at

low frequency similar to the Pade approximations, it begins to depart from the PDE solution

at a lower frequency.

Figure 2.15 compares the step response in the time domain of the analytical solution

to the Pade approximations of various order and the polynomial approximation. The re-

sponses for Pade approximations higher than third order are not shown because they exhibit

no appreciable difference compared to the third order response. The initial response to the
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step input is more accurate for the third order Pade approximation than the second order

approximation. However, both are significantly more accurate than the polynomial approx-

imation, which does not include the transient dynamics at short times. In the context of a

battery model, this means that the polynomial method is incapable of modeling the voltage

transients that occur during initiation or interruption of current as illustrated in Chapter 1.

The Pade method is capable of representing these dynamics.

2.5 The Effects of Battery Aging

This section begins by reviewing common battery aging mechanisms and their sytem-

level effects. Then, diagnostic techniques that are used to assess the aging process and

may be performed during battery operation, meaning without diassembling the cell, are

presented.

2.5.1 Review of Battery Aging Mechanisms

The following are a collection of cell aging mechanisms discussed in the lithium-ion

battery literature. The effects of each mechanism are ultimately combined to characterize

performance degradation at the cell level.

Agglomeration of Solid Electrode Particles

Agglomeration is defined as a process where smaller electrode particles combine with

one another to form particles with a larger mean radius. Agglomeration of electrode par-

ticles has been characterized experimentally (Nagpure et al., 2010), resulting in increased

electrode porosity, decreased specific surface area, and possible de-bonding of particles

from the substrate. The authors also refer to the process as grain coarsening, since the
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Figure 2.16: Demonstration of decreasing surface area while holding active material vol-
ume constant. The example uses three particles but the result holds for any number of
particles.

fine (small radius) particles at the beginning of life become coarse (large radius) agglom-

erates as the battery ages. Scanning spreading resistance microscopy is used to visually

confirm this mechanism in aged lithium-ion cell cathode material. No mechanism has

been proposed yet for the driving force behind the observed particle coarsening. Particle

agglomeration could be linked in two ways to increased resistance.

First, the electrode surface area per unit volume may change as a result of coarsening.

If mass is conserved and connections to the electronic matrix are maintained, combining a

group of particles into a single, larger particle does not necessarily reduce active material

of the electrode. However, it does reduce the total electrochemically active surface area of

the electrode. Figure 2.16 shows an example of this effect, where constant density has been

assumed so that active material mass and volume are proportional.

Reducing the available surface area for Faradaic current production will cause a higher

apparent current density for the cell surface area, leading to greater overpotential with

charge transfer being the most affected. Therefore, as the process continues and the mean

particle radius increases, the resistance of the cell rises.
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Second, electronic contact loss can occur between carbon particles, the current col-

lector and carbon, the binder and carbon, or between binder and current collector (Vetter

et al., 2005) as part of the agglomeration process. Removal of the physical connections

between these areas manifests itself as an increase in the battery impedance due to de-

creasing solid phase conductivity. Also, several studies mention that as structural changes

continue, internal stresses increase and cracks in the particles may develop, which could

impact electronic connectivity. While mechanical stresses during intercalation have been

modeled (Renganathan et al., 2010), they have only been related to aging in the context of

solid-electrolyte interphase (SEI) layer growth (Deshpande et al., 2012).

Formation of the Solid-Electrolyte Interphase Layer

Chemical reactions between the electrolyte and active material, termed a solvent de-

composition reaction, form a deposit over both the cathode and anode surfaces (Vetter

et al., 2005; Arora & White, 1998), though the anode is favored due to its low potential

relative to Li/Li+. This side reaction occurs simultaneously with the faradaic current that

is normally present during battery operation, and is widely considered among the dominant

aging effects that must be considered to accurately predict battery life. The effects of SEI

growth that are observed at the system-level are impedance rise and capacity fade.

Several electrolyte decomposition reactions have been proposed (Arora & White, 1998).

The most relevant reactions are those that contain carbonate solvent reduction, such as

propylene carbonate (PC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). Of

these, the most commonly considered reaction is the ethylene carbonate (EC) reduction

and subsequent formation of SEI products, because EC is a widely used electrolyte solvent

and molecular dynamics simulations have indicated that it is likely to undergo reduction at

voltages common to Li-ion batteries (Goers et al., 2011; Markle et al., 2011; Bedrov et al.,
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2012). The proposed electrolyte decomposition reaction for EC is proposed as a two-step

process (Arora & White, 1998; Safari & Delacourt, 2011c; Safari et al., 2009) that involves

the one-electron reduction of EC molecules

EC + e− ⇀↽ EC− (2.103)

2EC− + 2Li+ ⇀↽ (CH2OCO2Li)2 + C2H4 (2.104)

The primary SEI product is dilithium ethylene dicarbonate, (CH2OCO2Li)2. The reac-

tions that result in SEI production have both a voltage and temperature dependence. In-

creased temperature accelerates the rate of SEI growth (Vetter et al., 2005) as does high

charging voltages corresponding to low negative electrode potential.

It has been proposed that this mechanism causes capacity fade during storage periods

(Broussely et al., 2005, 2001), and a parabolic capacity fade expression in time was derived

from kinetic and transport principles for the storage case. This parabolic expression comes

from the integrating a diffusion-limited transport expression with the assumption of con-

stant potential. Capacity fade that results from film growth in a variety of operation modes

has been included in a single particle model of the battery dynamics (Safari et al., 2009;

Ning et al., 2006; Santhanagopalan et al., 2006). Results indicate that there is a change in

the rate of capacity fade as aging progresses (Safari et al., 2009), with the authors attributed

to diffusion in the SEI layer. They presented simulation results, validated with experimen-

tal data, for both potentiostatic rest and cycling. However, they required different sets of

reaction rate constants to match the experimental data for each capacity fade mode.

The classical view of SEI growth posits that the thickness of the layer steadily increases

as the number of moles of product increases. Surface area coverage of the SEI is assumed

to be uniform throughout the electrode. The increase of SEI thickness is generally viewed
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Figure 2.17: Diagram of the classical view of SEI growth, where δ(t) increases as addi-
tional moles of SEI layer are produced.

as either kinetic-limited or diffusion-limited. The diffusion-limited rate of SEI growth

decreases with increasing layer thickness. This phenomenon is widely attributed to poor

diffusion of solvent molecules through the SEI layer, such that reactants of the side reaction

cannot reach the graphite surface to produce additional SEI product as the layer thickness

increases. A schematic outline of the classical view of SEI growth is given in Figure 2.17.

Insight regarding this classical view may be obtained by applying a time scale analysis

to the equation describing solvent transport, based on the diffusion time scale through the

SEI layer. The time scale of transport through the SEI thickness is τD = L2
SEI/DEC , where

LSEI is the characteristic maximum SEI thickness and DEC is the solvent diffusion coeffi-

cient. A typical free diffusion coefficient of Li+ through carbonate solvent is 1.5 × 10−10

m2/s (Valoen & Reimers, 2005). Though the solvent molecules are clearly larger than

a proton, they exhibit similar diffusion coefficients within carbonate solvents (Hayamizu,

2012). Considering a maximum SEI layer thickness of LSEI = 10 nm gives a diffusion
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time constant of much less than one second for transport of either molecule through the

SEI.

However, it is well known from the literature that aging takes place on a much longer

time scale characteristic of the kinetics of side reactions. The time scale of aging is

τa =
Q

dQ/dt
(2.105)

where Q is the cell capacity, and dQ/dt is its time derivative. The initial calendar capacity

fade rate is approximately 0.5% per month. Inserting Q = 15 Ah gives τa ≈ 108 s.

This further allows an estimate of the side reaction current density based on dQ/dt =

iSEIanAnLnεn/F . Using an = 3/Rn, Rn = 2× 10−6 m, A = 0.877 m2, Ln = 50× 10−6

m, and εn = 0.5 gives iSEI ≈ 1.0 × 10−4 A/m2. The disparity between the time scales

of capacity fade and diffusion through the SEI layer removes any diffusion limitations

associated with the side reaction current and predicts that the solvent concentration at the

graphite surface is equal to the bulk value for all time. It follows that the SEI growth will be

kinetically limited for any reasonable thickness of the SEI and solvent diffusion coefficient,

a result which contradicts previously proposed diffusion-limitations (Safari et al., 2009;

Safari & Delacourt, 2012).

Here the ∗ superscript is used to indicate dimensional variables, and all others are non-

dimensional. The typical transport equation for the solvent within the SEI region is pure

diffusion, since these molecules are not charged. Transforming to non-dimensional form

gives
∂cEC
∂t

=
τDEC

L2
SEI

∂2cEC
∂x2

(2.106)

where cEC is the solvent concentration and the scales are cEC = c∗EC/c0 and x = x∗/LSEI

with τ as either the diffusion or aging time scale. The boundary conditions are based
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on a side reaction flux at the electrode surface and equating the bulk concentration to the

concentration just inside the SEI layer

DEC∂cEC
∂x

= ~NEC atx = 0, cEC =
ρEC
MEC

atx = L(t) (2.107)

where ~NEC is the flux of EC molecules determined by the side reaction rate such that

NEC = iSEILSEIρEC
FDECMEC

, MEC is the molar mass of EC, and ρEC is the density of EC. The

interpretation of Eqs. (2.106) and (2.107) depends on how the time scale is chosen and the

magnitude of the side reaction current density.

To have a diffusion-limited mechanism, where the time scale of diffusion is roughly the

same order of magnitude as the time scale for aging, requires that the diffusion coefficient is

approximately 1.0× 10−22 m2/s. This value is much less than typical self-diffusion values

for EC in carbonate solvent (Hayamizu, 2012). Even applying the common Bruggeman

coefficient correction D = D(εL)brug for diffusion through tortuous, porous media (Patel

et al., 2003) does not produce diffusion coefficients small enough for a non-trivial solution

of Eq. (2.106). A typical Bruggeman coefficient of 4.0 and assuming a porosity of 50%

gives a hindered diffusion coefficient of 9 × 10−12 m2/s, still several orders of magnitude

too low for diffusion-limited SEI.

The correct order of magnitude is not obtained unless it is assumed that the SEI layer

has porosity of < 1% combined with a Bruggeman coefficient of 4.0. In this cases, it is

questionable whether Li+ intercalation could still proceed without drastic overpotentials

that would be observable from system-level voltage and current measurements.

Lithium Metal Deposition (Plating)

Lithium metal deposition refers to the process of lithium precipitating from the liquid

solvent onto the electrode surface (Vetter et al., 2005; Broussely et al., 2001), resulting

78



in capacity fade. Lithium plating occurs on electrodes that operate near the open-circuit

potential of pure lithium, which includes most carbon anodes in commercially available

cells. The precipitation occurs when the threshold of 0 V relative to Li/Li+ is crossed,

and occurs at a rate proportional to the overpotential relative to the 0 V equilibrium (Harris

et al., 2010).

Most carbon electrodes exhibit low overpotential during normal operation. Since the

overpotential is generally low, plating is not a problem at room temperature despite main-

taining an open-circuit potential that is less than 100 mV relative to Li/Li+. At tempera-

tures less than room temperature, the intercalation of Li+ into the carbon electrode begins

to require more overpotential to maintain a given net current due to the Arrhenius depen-

dence of the rate constant. Lithium deposition occurs when the desired phenomena, inter-

calation becomes too slow, and the plating potential threshold of 0 V is reached. Increasing

overpotential makes reaching the 0 V threshold more likely. From the standpoint of mit-

igating this mechanism, maintaining a moderate temperature (near room temperature) is

beneficial (Broussely et al., 2001). However, higher temperatures result in faster SEI film

growth (generally described by an Arrhenius dependence) and aggravate other corrosion

mechanisms within the cell. Combined modeling and experiments with a 3-electrode cell

are performed in (Fang et al., 2010) to illustrate the temperature dependence of the over-

potential in the negative electrode.

Mechanical Cracking Due to Fatigue Stress

Mechanical stresses in the solid phase of the anode and cathode have been modeled

recently. Initial work used the typical solid-solution active material as a representative ex-

ample (Renganathan et al., 2010; Verbrugge & Cheng, 2008; Zhao et al., 2010; Christensen

& Newman, 2006) and the assumption of static equilibrium (Cheng & Verbrugge, 2010b),
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with the main conclusion that the stress profile within an active material particle is roughly

proportional to the concentration profile. This relationship is due to the non-negligible vol-

ume displaced by Li+ ions as they intercalate into the host matrix, with the displacement

they cause representing a strain to the active material. The authors of (Cheng & Verbrugge,

2010a) used Hasselmans crack propagation model to establish a criterion for crack propa-

gation in spherical electrode particles as a function of the intercalation rate and parameters

such as the diffusion coefficient and saturation concentration. Non-ideal geometries are ex-

amined in (Zhang et al., 2007), leading to the conclusion that particle morphology plays a

significant role in predicting stress, and shaping particles as ellipsoids may have a theoreti-

cal benefit in reducing intercalation stresses. Finally, (Deshpande et al., 2011) looked at the

effects of mechanical stresses within materials that undergo a phase change during inter-

calation. Concentration discontinuities at phase boundaries result in stress discontinuities,

which the authors propose as a mechanism for cracking.

Active Material Dissolution

For some positive electrode chemistries, active material dissolution into the electrolyte

solvent is a prominent aging effect. Though it is present to some extent for many olivine

(Iltchey et al., 2003), layered (Sclar et al., 2009), and spinel (Huang et al., 1999) structures,

it is particularly severe for lithium manganese oxide, LiMn2O4. This mechanism was

proposed after testing variations of electrode and electrolyte composition and correlating

improved capacity retention with the amount dissolved Mn measured in the electrolyte

(Gummow et al., 1994; Jang et al., 1996; Amatucci et al., 1999). These initial results lead

to the proposed dissolution reaction

2Mn3+ →Mn4+ +Mn2+ (2.108)
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and the realization that a shuttling mechanism causes additional capacity fade at graphite

negative electrodes exposed to dissolved Mn. A common approach to analyzing this mech-

anism is to construct coin cells with LiMn2O4 positive electrodes and either Li or some

form of carbon as a negative electrode. Fabricating electrodes with varying degrees of sur-

face area showed that decreased surface area led to decreased capacity fade, confirming a

reaction-based degradation mechanism (Xia et al., 2000).

An extensive study for multiple temperatures and positive electrode chemistries while

retaining a graphite counter electrode confirmed that negative electrode capacity is also

significantly degraded when dissolved Mn is present (Tsunekawa et al., 2002). This data,

when combined with measurements of the concentration of Mn ions in solution and refer-

ence electrode measurements of negative electrode impedance (Amine et al., 2004), gives

evidence that Mn ions migrate to the carbon negative. There they either catalyze the

solid electrolyte interphase reaction or replace lithium ions in the host matrix (Wohlfahrt-

Mehrens et al., 2004; Tsujikawa et al., 2011; Cho et al., 2010).

Many experimental techniques have been applied to gain insight into this degrada-

tion mechanism. Qualitatively, imaging techniques such as scanning electron microscopy

and transmission electron microscopy are common. To evaluate electrochemical perfor-

mance, researchers have used galvanostatic cycling, cyclic voltammetry, and electrochem-

ical impedance spectroscopy. X-ray diffraction, X-ray photoelectron spectroscopy, and en-

ergy dispersive spectroscopy are often used to characterize the crystal structure and chem-

ical composition of electrodes before and after inducing dissolution. Differential pulse

polarography (Jang et al., 1996) has been used to measure the concentration of dissolved

manganese within the electrolyte solution by performing measurements at specified inter-

vals after cycling. The dissolution reaction has also been studied by thermogravimetric
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analysis and differential thermal analysis (Xia et al., 2000). Precise quantitative measure-

ments of the amount of dissolved manganese on the counter electrode have been made with

an inductively coupled plasma optical emission spectrometer (Tsujikawa et al., 2011) or an

atomic absorption spectrophotometer (Tsunekawa et al., 2002).

On the modeling front, there are fewer numbers of prior work. The dissolution process

has been linked to the decrease of secondary active volume, and therefore capacity fade,

in the positive electrode (Park et al., 2011; Cai et al., 2013). The presented dissolution

models depends on electrode potential and temperature, however they are not validated

with experimental data. Furthermore, the authors did not model the interaction of dissolved

manganese ions and the negative electrode.

2.5.2 Aging Diagnostic Methods

There are many ways to assess the aging process in Li-ion batteries. These include de-

tailed ex-situ characterization, in-situ performance measurements, and model-based char-

acterization. Of these techniques, only in-situ performance measurements and model-based

characterization are considered in this dissertation. This is because these methods are non-

disruptive and can be applied with minimal intrusiveness during an aging campaign.

Hybrid Pulse Power Characterization Test

The hybrid pulse power characterization (HPPC) test (Anonymous, 2010) is used to

assess the internal resistance of an electrochemical cell. As a side benefit, it also furnishes

information related to the OCV of the cell. Figure 2.18 shows an overview of experimental

data for an entire HPPC test.

The procedure consists of ten-second duration, high current inputs followed by rest

periods to allow the cell to return to equilibrium before the next high current input. The
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Figure 2.18: Demonstration of the (a) current and (b) voltage during a standard HPPC test.

exact current is determined by the nominal battery voltage and the battery size factor. The

procedure for calculating these procedures is given in (Anonymous, 2010).

Capacity Test

Capacity assessments are performed by charging the cell using the protocol recom-

mended by the manufacturer, then discharging at constant current to the lower voltage

limit. Once the lower voltage limit is reached, the capacity is defined as

Q =

∫ tf

0

I(t) dt (2.109)

where I is the cell current. Figure 2.19 illustrates the current and voltage during a capacity

test, as well as the calculation of the capacity from the raw data. The horizontal axis is

scaled in terms of time and also capacity. Plotting the voltage versus units of capacity is

more effective than time since small variations in current can lead to significant variations

in discharge time, but the effects on capacity remain small. In this example, the capacity

value at tf is 15 Ah.
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Figure 2.19: Demonstration of the current and voltage during a capacity test.

Differential Voltage (Capacity) Technique

The differential voltage technique has gained interest from battery researchers after re-

cently being utiilized within aging studies conducted by the United States national labora-

tories (Bloom et al., 2005a,b, 2006, 2010). It requires galvanostatic data for its application,

and generally works best for low rate (C/10 or less) discharge or charge. Low rates are pre-

ferred for two reasons. First, testing the cell at a low rate ensures that only thermodynamic

effects are being observed and the changes in the transport or kinetic parameters that occur

with aging do not affect the measurement. Second, the signal can be more aggressively

filtered if the rate is low. Filtering is important because the technique relies on the deriva-

tive of the measured signal, which contains high-frequency noise. Since there is an upper

limit on the sampling rate, usually 10 to 100 Hz, extending the duration of the experiment
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effectively gives more samples per experiment to apply filtering. The differential voltage is

defined as

Qmax
dV

dQ
= f(Q) (2.110)

where V is the cell voltage, Qmax is the measured capacity at the lower voltage limit which

serves as a normalization factor for the quantity dV/dQ, and Q is the incremental capacity

gained at each time. The function f(Q) depends on the cell voltage during discharge and

must be obtained experimentally. Alternatively, the differential capacity is defined as the

reciprocal of dV/dQ.

Both quantities are generally plotted versus cell voltage to show the amount of charge

being stored at each voltage. Hence, they provide a measure of the incremental charge that

may be stored as a function of cell voltage, and increased differential voltage (decreased

differential capacity) indicates that the cell is storing less charge at a given voltage. Usually

the differential voltage is preferred since the derivatives of the half-cell voltages may be

summed in a straightforward manner, instead of being inverted as in differential capacity.

This is apparent from V = Up − Un, which after differentiation gives dV = dUp − dUn.

The theory supporting the differential analysis of aging mechanisms is that each degra-

dation mode will affect the cell voltage in a unique manner. Simulation results can be used

to confirm this hypothesis for a fictitious graphite (C) and Ni1/3Co1/3Mn1/3O2 (NMC)

cell. Figure 2.20a shows the individual half cell OCVs as well as the full cell OCV, which

can be used as an approximation for a low-rate discharge since they represent the limit of

the voltage response to an infinitesimally small discharge current. The capacity loss due to

loss of cyclable lithium and loss of active volume (sites) is set to an identical 20% in each

case, and the voltages in each scenario differ by a maximum of only 15 mV at any point.
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Thus, it is difficult to determine from the cell voltage measurement what the degradation

mechanism is.

Figure 2.20b shows the derivatives of the half cell voltages and the full cell voltage,

which is the sum of the half cell contributions. The middle plot of Figure 2.20b contains

several peaks that correspond to the transitions between plateaus of the negative electrode

voltage. The lower plot has labeled these peaks for each scenario. By examining the shift

of these peaks, as well as the distance between each peak, the aging mechanism can be

identified. A change in the amount of cyclable lithium does not affect the distance between

peaks because the electrode has not lost capacity, it only contains less lithium; however, a

loss of active material means that the electrode itself contains less capacity, regardless of

the amount of available lithium. This causes the distance between peaks to become closer

as the capacity decreases. In summary if considering only the distance along the horizontal

axis then

|P1− P2|BOL = |P1− P2|x0 > |P1− P2|εn (2.111)

and the distinction between loss of cyclable lithium and loss of active material can be made

from cell-level voltage measurements.
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2.6 Summary

In this chapter, the governing equations of electrochemistry have been presented in the

context of Li-ion batteries. The principles describing thermodynamics, kinetics, ohmic

losses, and transport are reviewed. Then, the modeling conventions needed to apply these

equations to voltage and lithium concentration predictions for a battery cell are reviewed

along with relevant literature. After presenting the equations of porous electrode theory,

a simplified modeling approach is also reviewed based on the assumption that the transfer

current density is uniform with respect to electrode thickness. Selected solution methods

are reviewed with a focus on model order reduction techniques that require less computa-

tion than numerical methods.

After reviewing the modeling approaches that describe the beginning-of-life concentra-

tion and potential dynamics, aging mechanisms are introduced. Several prominent aging

mechanismsm are reviewed, along with their effects on battery performance characteristics.

A brief set of system-level diagnostics that may be used to analyze battery performance dur-

ing aging conclude the chapter, with a focus placed on tests that do not require disassembly

of the cell such that battery usage can continue after completion of the test.
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Chapter 3: Effects of the Electrical Double Layer Within a Simplified

Li-Ion Battery Model

3.1 Introduction

Modeling is extremely important to advancing the science of electrochemical energy

storage. Direct and dynamic measurements of concentration and electric potential profiles

within a Lithium-ion (Li-ion) cell are currently not possible due to the micro-scale physical

dimensions of the battery electrodes and separator. As a result, researchers have relied on

modeling as a means of understanding the complex processes governing electrochemical

cells. As discussed in the previous chapter, there have been a number of fundamental stud-

ies of Li-ion battery operation based on porous electrode theory (Newman & Tiedemann,

1975). With this methodology, detailed knowledge of the surface morphology of electrodes

and separator, which is difficult to obtain and computationally prohibitive to model, is not

required. However, the separation of solid and liquid phases is somewhat arbitrary, and

models based on porous electrode theory present a macroscopic interpretation of battery

electrochemistry.

Since porous electrode models compute averaged quantities over a region that is small

with respect to the overall electrode dimensions but large compared to the pore structure
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Figure 3.1: Illustration of the electrical double layer for the equilibrium case with zero
current. Concentrations and potential vary rapidly within the electrical double layer and
are constant outside.

(Newman & Tiedemann, 1975), Li-ion battery modeling literature typically applies the as-

sumption of electroneutrality within commonly used non-aqueous liquid electrolytes. This

assumption is justified based on the assertion that charge separation over a macroscopically

significant distance (the volume averaging distance) would require a prohibitively large

electric field (Newman & Thomas-Alyea, 2004). However at the boundary between the

liquid and solid phases, an interfacial region known as the electrical double layer (EDL)

exists where the assumption of electroneutrality no longer holds (Newman, 1965). This

region is pictured in Figure 3.1. The diffuse layer contains mobile charges. Charge separa-

tion begins in this layer due to interaction between the ions in the liquid and the potential
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of the solid phase. The Stern layer is very narrow, only one to two ions thick, and contains

immobilized charge.

The EDL in its most simplifed representation is a region that stores charge. A method

of accounting for capacitive effects of the EDL in cell terminal voltage has previously been

presented (Ong & Newman, 1999), but the scope of that research did not encompass some

important features of the EDL such as the coupling between ion concentration and potential

described in several classical works (Bazant et al., 2005; Smyrl & Newman, 1967; Chu &

Bazant, 2005; Dukhin et al., 2005). Given the general lack of literature pertaining to the

EDL as it applies to Li-ion batteries, it is appropriate to examine this feature in greater

detail.

A more accurate understanding of the EDL is important for its impact on interfacial

charge transfer. Porous electrode models postulate that charge transfer kinetics are gov-

erned by the potential difference between the solid phase and the electroneutral portion of

the liquid outside the EDL (Newman & Thomas-Alyea, 2004). This assumption is made

implicitly in the application of Butler-Volmer kinetics, which is treated as a semi-empirical

relationship (though possessing fundamental origins) between the local intercalation cur-

rent and the potential difference between solid and liquid relative to the open-circuit voltage

versus a hypothetical lithium reference electrode. However, the Stern layer is the location

of the reaction plane and the potential difference across it represents the actual activation

energy barrier for the intercalation reaction (Bazant et al., 2005). Thus it is of fundamental

interest to consider only the Stern layer potential difference when examining the current-

voltage relationship of electrode kinetics. A complete methodology for dividing the po-

tential difference of the EDL between the diffuse layer and the Stern layer is discussed in

(Bazant et al., 2005) in relation to a micro-battery, and for galvanic cells in (Biesheuvel
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et al., 2005). Results are presented for a range of kinetic rate constants selected to examine

various limits of battery operation with no particular system studied. For an intercalation

battery, the effective rate constant changes over the course of discharge due to the change in

exchange current density driven by the degree of intercalation within active material. This

change is governed by the composition ranges of the electrodes chosen by the manufacturer

and the cell state of charge (SOC), and provides a physical mechanism for alteration of the

effective rate constants over the course of discharge.

The objectives of this research are to gain insight into electrical double layer modeling

through comparisons with experimental data from a commercially available intercalation

battery, and to do so using a purely analytical model structure. The presented model struc-

ture accounts for the potential difference in the electroneutral liquid within the separator

pores, as well as a microscopic interpretation of the EDL, which leads to a novel view of

electrode kinetics. The model development is presented first, the Poisson Nernst-Planck

equations are used to model liquid phase transport and solve a representative solid diffu-

sion problem in each electrode. Two limiting descriptions of the EDL are used to exam-

ine the impact of the EDL potential on the cell overpotential. After obtaining analytical

solutions for all variables of interest the experimental procedure for gathering data from

commercially available cells is discussed. The case study uses a graphite anode and iron

phosphate cathode, and electrolyte composed of 1 M LiPF6 dissolved in a 1:1 mixture of

ethylene carbonate and dimethyl carbonate. Model results are compared with galvanostatic

discharge data and the areas impacted by the microscopic hypotheses of the EDL are dis-

cussed. Additional dynamics that are related to the resistive reactant nature of the cathode

are introduced, and finally conclusions and areas for future work are given.
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Figure 3.2: Modeling domain showing a separator pore connecting solid portions of anode
and cathode and spatial coordinate definition. Dimensions are not to scale.

3.2 Model Development

To develop a model suitable for comparing microscopic hypotheses of the EDL we

consider the transport of ions that occurs along a single liquid-filled pore of the separator

that terminates at solid faces of the anode and cathode. Throughout this chapter, the (∗)

superscript is used to indicate a dimensional quantity, and the terms without superscripts

are dimensionless. Figure 3.2 shows the modeled domain of this work in the context of the

full unit cell typically modeled in literature.

3.2.1 Separator Liquid Phase

The assumptions used to derive the governing equations are as follows. First, significant

concentration and potential gradients occur only in the direction through the thickness of a

unit cell, indicated by x in Figure 3.2. Second, bulk convection of the electrolyte solvent

is neglected. Third, the external current is independent of time. Finally, the liquid phase
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ionic transport occurs via steady state conditions since the time scale of liquid transport is

much less than the duration of the capacity test.

The Poisson Nernst-Planck (PNP) equations are used to model transport of charged

species in dilute solutions. The simplicity that dilute solution theory offers compared with

concentrated solution theory is a benefit when interested in factors such as the limiting cases

of the EDL discussed in the introduction. In dimensional form, the simplified equations that

result from the previously listed assumptions are

Di
∂2c∗i
∂x∗2

+
DiziF

R̄T

(
∂c∗i
∂x∗

∂φ∗

∂x∗
+ c∗i

∂2φ∗

∂x∗2

)
= 0 (3.1)

where c∗i gives the ionic concentration with i = A corresponding to Li+ ions and i = B

denoting PF−6 ions,D and z are the diffusion coefficient and valence respectively of the ion

indicated via subscripts, and φ∗ is the electric potential in the liquid phase. Conceptually,

Eq. (3.1) states that the sum of fluxes due to diffusion and migration are balanced at steady

state. The electric potential is governed by Poisson’s equation

ε̄e
∂2φ∗

∂x∗2
= −F (zAc

∗
A + zBc

∗
B) (3.2)

where ε̄e is the permittivity of the liquid solvent taken to be an average of the two main

solvent components, ethylene carbonate (EC) and dimethyl carbonate (DMC). This is a

differential formulation of Gauss’s Law, which states that the electric field is proportional

to the net enclosed charge within a differential control volume.

Specifying the boundary conditions of Eq. (3.2) is a non-trivial task due to the lack

of direct knowledge of the potential at the solid surfaces of each electrode. However the

boundary conditions for Eq. (3.1) are readily drawn from the physical consideration that

there is no flux of PF−6 ions into the solid phase; that is, consider the active material at

either electrode as a permselective membrane that only allows passage of Li+ ions. Setting
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the PF−6 flux equal to zero gives

∂c∗B
∂x∗

+
Fc∗BzB
R̄T

∂φ∗

∂x∗
= 0 at x∗ = 0, Lsep for all t (3.3)

where x∗ = 0 denotes the surface of the cathode, and x∗ = Lsep is the coordinate for the

anode surface. Furthermore, the flux of Li+ ions is fixed by the cell current density i∗

∂c∗A
∂x∗

+
Fc∗AzA
R̄T

∂φ∗

∂x∗
=

i∗

DAF
at x∗ = 0, Lsep for all t (3.4)

The discussion of boundary conditions for Eq. (3.2) is deferred until a later section of this

chapter because Eq. (3.2) is not solved explicitly. Instead the dimensionless form is used

to justify the division of the problem into electroneutral and non-electroneutral regions and

the resulting simplified problem is solved analytically.

Next the governing equations for the liquid phase are converted to dimensionless form.

To begin the spatial coordinate x is scaled as

x =
x∗

Lsep
(3.5)

where Lsep is the separator thickness. The liquid phase concentrations are scaled based

upon the nominal electrolyte concentration

cA =
c∗A
cA,0

and cB =
c∗B
cB,0

(3.6)

where cA,0 = cB,0 = c0 since the liquid is macroscopically electroneutrality, and c0 is the

average electrolyte concentration. The classical definition of the potential scale is employed

where

φ = φ∗
F

R̄T
(3.7)

The potential scale is equal to 26 mV at a temperature of 298 K, which is the condition

describing all results in this work. The dimensionless current density i is defined as

i =
i∗

iD
(3.8)

95



where iD is the diffusion-limited current density,

iD =
Dc0F

Lsep
(3.9)

which takes a value of approximately 630 A/m2. This quantity is equal to one-fourth

the value of the current that would cause the electroneutral electrolyte concentration to

approach zero at the electrode where reduction occurs.

The dimensionless liquid phase governing equations may now be readily derived. The

conservation of mass equations for either the anion or cation are

∂2ci
∂x2

+ zi

(
∂ci
∂x

∂φ

∂x
+ ci

∂2φ

∂x2

)
= 0 (3.10)

where both concentration and potential are dimensionless. The dimensionless boundary

conditions become
∂cB
∂x

+ cBzB
∂φ

∂x
= 0 at x = 0, 1 for all t (3.11)

∂cA
∂x

+ cAzA
∂φ

∂x
= i at x = 0, 1 for all t (3.12)

where the dimensionless current density has been introduced. The dimensionless potential

equation is

ε2
∂2φ

∂x2
= −(zAcA + zBcB) (3.13)

where again both concentration and potential are dimensionless. The parameter ε = λ
Lsep

arises from converting Eq. (3.2) to dimensionless form. The parameter λ is defined as

λ =

√
ε̄eR̄T

F 2c0

(3.14)

and called the Debye length. It is directly related to the thickness of the equilibrium EDL,

which is typically described as O(ε). Using typical parameter values for the system of this

work, the Debye length is 0.33 nm and ε value is O(10−5). These parameters indicate a very
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small EDL thickness relative to all other dimensions of the system. Again, Eq. (3.10) and

3.13 are steady due to the constant boundary conditions and the liquid phase time constant

being much smaller than total elapsed time during a capacity test.

3.2.2 Electrode Solid Phase

The diffusion dynamics in the active material of each electrode play an important role

in determining the cell output voltage. It is assumed that the intercalation process occurs

as diffusion into a single phase in both graphite and lithium iron phosphate. This approach

has been shown to work well in a previous study (Safari & Delacourt, 2011b) and the

exact physics of the two-phase nature of iron phosphate are still openly debated (Singh

et al., 2008; Srinivasan & Newman, 2004b,a). Furthermore, the EDL structure is the focus

of this chapter and a less complex treatment of the solid phase is acceptable. The time-

varying concentration of cations in the solid phase of either electrode is described in terms

of the ionic flux. The convective term normally associated with ionic transport may be

assumed zero if volume changes in the active material are neglected, and migration may

be neglected if significant variations in potential do not exist (van Schalkwijk & Scrosati,

2002). Graphite is a good electronic conductor and therefore the assumption of negligible

potential variation within a particle, and thus negligible migration, is applied to the anode.

Though iron phosphate is a poor conductor, this assumption is also applied to the cathode

due to the small size of cathode particles leading to insignifcant variation of potential within

a particle. It is assumed that a sufficient amount of electrons are present to ensure a net zero

charge within the solid, but their presence is not actively modeled.

The solid transport equation resulting from the previous assumptions is

∂c∗A,j
∂t∗

= Dj

∂2c∗A,j
∂x∗j

2 (3.15)
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where Dj is the solid phase diffusion coefficient which takes different values in the anode

(j = an) and cathode (j = ca). The boundary conditions are

∂c∗A,j
∂x∗j

= 0 at x∗j = 0, Dj

∂c∗A,j
∂x∗j

=
i∗j
εjF

at x∗j = Lj (3.16)

where εj denotes the volume fraction of active material within the electrode, and Lj is the

effective diffusion length. The inactive material encompasses conductive additives, poly-

mer binder, and void volume, all of which is incapable of allowing lithium intercalation.

Note that x∗j is defined locally within the solid phase such that x∗j = 0 refers to the in-

terface between the current collector and the active material slurry and x∗j = Lj denotes

the interface between the active material slurry and the separator. For simplicity, the same

coordinate system is maintained for both electrodes, though in reality the electrodes would

mirror each other.

At the interface between the current collector and the electrode, there can be no flux of

ions because the current collector consists of a solid metal film, which corresponds to the

first of Eqs. 3.16. The boundary condition at the interface between the electrode and the

separator, the second of Eqs. 3.16, has a non-zero flux related to the ionic current in the

cell which must be scaled based on the volume fraction of active material. A minus sign

would be needed when considering the cathode, to account for the fact that a discharge

current causes a flux of ions into the active material. This information is summarized in the

schematic of Figure 3.3.

The initial conditions of the solid diffusion problem are directly related to the range

of lithiation incurred by the electrodes, which is typically a design parameter of Li-ion

cells that must be determined empirically. Again referring to the conditions for a capacity

test, we assume the cell is fully charged initially to the upper voltage limit of 3.6 V which

corresponds to 100 % SOC as specified by the manufacturer. The initial degree of lithiation
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Figure 3.3: Summary of the boundary conditions for solid diffusion within electrode active
material, presented in general form for either the anode or the cathode.

is approximately

c∗A,an(x, 0) = 0.80cA,an,max c∗A,ca(x, 0) = 0.025cA,ca,max (3.17)

where cA,an,max and cA,ca,max are the saturation concentrations of the anode and cathode

active material respectively. To determine these initial conditions, the work of (Safari &

Delacourt, 2011b) is referenced as an initial starting point followed by empirical modifica-

tions to achieve agreement with experimental data.

Unlike the liquid phase governing equations, the solid phase cannot be assumed to be

in steady state, because the amount of lithium in each electrode is unsteady. Thus a time

scale needs to be introduced based on the characteristic time of diffusion for cations within

the solid phase,

tj = t∗
Dj

L2
j

(3.18)

where t∗ indicates the dimensional time. The spatial variable is scaled by the total electrode

thickness

xj =
x∗j
Lj

(3.19)
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The concentration scale in the solid phase is based upon the saturation concentration ac-

cording to

cA,j =
c∗A,j

cA,j,max
(3.20)

The governing equation becomes

∂cA,j
∂tj

=
∂2cA,j
∂x2

j

(3.21)

The boundary conditions are

∂cA,j
∂xj

= 0 at xj = 0,
∂cA,j
∂xj

=
Lj

DjcA,j,max

J∗

εjF
=

i∗

iD,s,j
at x = 1 (3.22)

During the process of converting to dimensionless equations, the boundary flux is scaled

by the quantity iD,s,j . The solid and liquid phases have been presented as if they are self-

contained problems. In reality the coupling between them is enforced by the continuity of

the ionic current and its inclusion in their boundary conditions. This ionic current must

remain continuous across the EDL to conserve mass.

3.2.3 Reaction Kinetics

The procedure described in Chapter 2 is used to develop the kinetic expressions. For

the chemistry of interest, the anode reaction is given by

LixC6 ⇀↽ Li+ + e− + C6 (3.23)

where atomic lithium in the anode solid phase (cA,an) is represented by the left-hand side

term LixC6, the lithium ions in the liquid phase (cA) are represented by Li+, and the open

site in the anode solid phase created by de-intercalation (cA,an,max − cA,an) is given by C6.

The cathode reaction is defined by

LiyFePO4 ⇀↽ Li+ + e− + FePO4 (3.24)
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where the lithium ions in the liquid phase are again represented by Li+, the open site within

the cathode solid phase (cA,ca,max − cA,ca) is given by FePO4, and the atomic lithium

in the cathode solid phase (cA,ca) is defined by LiyFePO4. These reactions govern the

charge/discharge process with the right arrow indicating oxidation and the left arrow indi-

cating reduction. Oxidation corresponds to a positive reaction current and reduction to a

negative reaction current in both electrodes.

For the procedure of applying Le Chatelier’s principle (Atkins, 1993), the reader is

again referred to Chapter 2. The resulting rate equations are

i∗j = k∗o,jc
∗
A,je

(1−α)F

R̄T
∆φ∗s,j − k∗r,jc∗A,∞,j(cA,j,max − c∗A,j)e−

αF
R̄T

∆φ∗s,j (3.25)

where each k∗ is a reaction rate constant which relates the conditions of the reaction

to the net reaction rate, ∆φ∗s,j is the Stern layer potential difference which will be dis-

cussed in greater detail in the following sections, and c∗A,∞,ca = c∗A(0) for the cathode and

c∗A,∞,an = c∗A(1) for the anode is the concentration of Li+ ions at the interface between the

EDL and the electroneutral liquid. The parameter α is referred to as a symmetry factor or

transfer coefficient, as discussed in Chapter 2. These rate equations will be used to derive

an analytical current-voltage relationship for a steady current. They are similar to the re-

lationships presented by (Bazant et al., 2005), but with the addition of the dependence on

filled and open sites in the active material matrix.

Equation (3.25) is of the same form as Eqs. (2.19) and (2.20). However, in this chapter

solutions are presented for the concentration and potential in the EDL region, so these local

solutions are used in place of the bulk values of Chapter 2.

As stated previously, the Stern layer voltage is only part of the entire potential drop

within the EDL in the general case. In fact the entire potential difference of the EDL,

∆φEDL,j , is equal to the sum of the Stern layer and diffuse layer potentials such that
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Figure 3.4: Definition of potential differences in the electrical double layer at anode and
cathode. The potential profile in the bulk is omitted.

∆φEDL,j = ∆φs,j + ζj , where we use ζj to represent the diffuse layer potential and refer to

it as the zeta potential. Visually, we represent the assignment of the total EDL potential dif-

ference to the Stern layer and the diffuse layer in Figure 3.4. A positive current with i > 0,

directionally from the anode to the cathode, requires a positive potential difference across

the anode EDL (∆φEDL,an = φan−φ(1)> 0) and a negative potential difference across the

cathode EDL (∆φEDL,ca = φca − φ(0) < 0). Imposing i > 0 also corresponds to discharg-

ing the cell in the sign convention of this work, which requires ian > and ica < 0 to match

the oxidation/reduction sign convention. We present Eq. (3.25) in dimensionless form by

dividing both sides by the diffusion-limited current density. We also recognize that the ar-

guments of the exponential terms are in fact dimensionless to give the final dimensionless
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form as

ij = ko,jcA,je
(1−α)∆φs,j − kr,jcA,∞,j(1− cA,j)e−α∆φs,j (3.26)

where i is used to denote the dimensionless current density, as was discussed previously

in the boundary conditions for solid and liquid transport. The diffusion-limited current

density is utilized in the process of converting to non-dimensional form because it yields an

expression that has all terms of order unity except for the arbitrary reaction rate constants.

From this point forward, we omit subscripts unless absolutely necessary and note that for

a positive (discharge) current, i∗an = i∗ and i∗ca = −i∗ due to the sign convention associated

with oxidation and reduction currents. The individual concentrations and rate constant are

still dimensional, but their product is dimensionless. This does not pose any mathematical

difficulties because the two terms appear as a product for the rest of the analysis in this

work. The pre-multipliers of the exponential terms are directly related to the state of charge

of each electrode. As stated in the introduction this provides a physical mechanism for

altering the values of the rate constants during the discharge process, or in this instance the

product of the rate constant and the reactants.

3.3 Solution of the Governing Equations

This section details the solution of the previously derived governing equations. First the

solution of the electroneutral liquid phase is presented. Next, the separation of variables

method is used to solve for the lithium concentration in each electrode solid phase. Finally,

the solutions for ionic concentration and potential are derived for the two limiting descrip-

tions of the EDL. These sets of solutions are utilized by the polarographic relationships in

the Helmholtz and Gouy-Chapman limit, which conclude the section.
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3.3.1 Solutions in the Separator

At this point, an analytical solution to the governing equations is derived. Equations

(3.10) and (3.13) with corresponding boundary conditions comprise a system of three cou-

pled ordinary differential equations when considering the ionic concentrations indepen-

dently. The coupling is stiff due to the introduction of the ε parameter. In order to make

the system mathematically tractable, the analysis is divided to deal with the electroneutral

region (commonly referred to as the ‘bulk’) and the EDL separately. To develop an equa-

tion for the bulk solution it is first noted that in the bulk, the ionic concentrations are equal

(cA(x) = cB(x) = c(x)) everywhere to establish electroneutrality. Then the equations for

each individual ionic concentration are summed and integrated with i constant to obtain

i = 2
∂c

∂x
(3.27)

Equation (3.27) will be solved directly via integration. The constant of integration must be

determined by applying conservation of mass for the anion

1∫
0

cB(x)dx = 1 (3.28)

This conservation of mass condition comes from the constraint that there is no flux of PF−6

ions into the solid portion of either electrode, which implies that the total number of anions

within the liquid must be constant. Integrating Eq. (3.27) and applying Eq. (3.28) gives

c(x) =
i

2

(
x− 1

2

)
+ 1 (3.29)

To obtain an equation for the electric potential the equation describing the ionic concen-

tration of the anion is subtracted from that of the cation, and the result is integrated to

yield

i = 2c
∂φ

∂x
(3.30)
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Since an expression for the bulk concentration has already been derived, it may be substi-

tuted and integration performed again to obtain

φ(x) = ln

(
1 +

i

2

(
x− 1

2

))
(3.31)

3.3.2 Solutions in the Electrode Solid Phase

The solution to the solid transport problem is found by the same method as presented

for Eq. (2.74). Doing so yields the solution

cA,j(xj, tj) = cA,j(xj, 0) +
i∗

iD,s,j

(
tj +

3x2
j − 1

6
− 2

π2

∞∑
n=1

(−1)n

n2
e−n

2π2tjcos (nπxj)

)
(3.32)

Even for small t, the solution of Eq. (3.32) does not change appreciably by including more

than five terms from the infinite series. For large t, the infinite series is inconsequential

due to the exponential term and the solution becomes linearly increasing with respect to t

and parabolic in the spatial coordinate x. If the external current density i is constant then

the solution for the bulk, steady state, liquid concentration and potential, as well as the

time-varying solid concentration in each electrode, is given for all time.

3.3.3 Solutions in the Electrical Double Layer

The solution in the EDL depends on the limiting assumption being applied, which cor-

responds to either the Helmholtz limit or the Gouy-Chapman limit. In the Helmholtz limit,

all the potential difference associated with the EDL is assumed to be present across the

Stern plane. As a result, no diffuse charge exists in the EDL and no solution describing

the concentration of anions and cations in the diffuse layer of the EDL is required. If it is

assumed that the entire potential difference of the EDL occurs across the Stern layer, then

∆φEDL,j = ∆φs,j , and the solution for ∆φs,j is found starting from Eq. (3.26) with the
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assumption that α = 0.5. Using symbolic algebra software gives

∆φs,j = ln

1

2

ij +
√
i2 + 4ko,jcA,jkr,jc∞,j − 4ko,jc2

A,jkr,jc∞,j

ko,jcA,j

 (3.33)

In the Gouy-Chapman limit it is assumed that the potential difference across the Stern layer

is zero and the diffuse layer accounts for all of the double layer potential. This limit allows

for the presence of diffuse charge in the EDL and requires an inner solution that is valid

within a region of width O(ε) at x = 0 and x = 1. The full solution is then equal to

the sum of the solutions within the EDL and the electroneutral region with the common

part subtracted. This methodology applies to both concentration and potential. Previously

it was stated that the Stern layer potential difference is the actual driving force for the

electrochemical reaction. However, this is inconsistent with the current assumption that the

potential difference across the Stern layer is zero. Thus in this instance the more common

approach is used where the entire double layer potential difference is the driving force for

the reaction. The rate equation, Eq. (3.26), becomes

ij = ko,jcA,j − kr,jc∞,j(1− cA,j)e−ζj (3.34)

Equation (3.34) is solved for ζj , resulting in

ζj = ln

(
kr,jcA,∞,j(1− cA,j)

ko,jcA,j − ij

)
(3.35)

This gives the total potential difference across the EDL, such that ∆φEDL,j = ζj . We apply

the Boltzmann distribution for ionic concentration which is valid for equilibrium conditions

ci(y) = c∞,je
−ziφ(y) (3.36)

where c∞,j is the concentration at the interface between the EDL and the electroneutral

liquid as x tends to zero or one, y = x
ε

is the inner solution spatial variable, and φ(y) is
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the inner potential. The solution for potential in the EDL is found by solving Poisson’s

equation subject to the previously applied Boltzmann distribution of ionic concentration

d2φ

dy2
= sinh(φ) (3.37)

To solve Eq. (3.37), multiply by 2dφ
dy

and integrate twice to obtain

φEDL,j(y) = 4tanh−1

(
tanh

(
ζj
4
e−y
))

(3.38)

Equations 3.36 and 3.38 are collectively referred to as the Poisson-Boltzmann distribution

for the classical EDL.

3.3.4 Polarographic Relationships

The entire liquid phase solution, encompassing solutions in the electroneutral portion

as well as the EDL, may be viewed in terms of a polarographic relationship for the case

of a steady external current. The term polarographic refers to the steady state relationship

between current and voltage which defines the amount of overpotential required to sustain a

given current through the liquid phase, and this overpotential manifests itself as a deviation

from the cell open circuit voltage. This is an important component of predicting the cell

voltage during a charge or discharge.

Helmholtz Limit

We note that in general the voltage difference across the separator (referred to inter-

changeably as the liquid voltage, VL) is given by the sum of the voltage difference in the

electroneutral liquid and that of each EDL

VL(t) = ∆φEDL,an + 2tanh−1(i) + ∆φEDL,ca (3.39)
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where the inverse hyperbolic tangent term arises from the potential difference in the elec-

troneutral separator liquid, and the other two terms are associated with the potential differ-

ence across the electrical double layer. Upon substitution of Eq. (3.33) into Eq. (3.39), the

current voltage relationship becomes

VL(t) = 2tanh−1(i) + ln

(
ko,cacA,ca
ko,ancA,an

i+
√
i2 + 4ko,ancA,ankr,ancA(1)(1− cA,an)

−i+
√
i2 + 4ko,cacA,cakr,cacA(0)(1− cA,ca)

)
(3.40)

The first term, 2tanh−1(i), defines the voltage in the electroneutral liquid. The natural

logarithm term represents the voltage of the EDLs at the anode and cathode.

The current-voltage relationship must be modified to account for the use of an equilib-

rium potential during model development. Typical open-circuit voltages for the anode and

cathode are empirically obtained using half-cell measurements, where the working elec-

trode is assessed relative to a lithium metal counter/reference electrode. The zero current

EDL potential is inherently included in the measured data, so the EDL voltage value at

zero current is subtracted from the measured open-circuit voltage. The overall process is

similar for either the Helmholtz limit or the Gouy-Chapman limit of the following sec-

tion, with the only difference being a change in the form of the polarographic expression.

Mathematically, the preceding discussion is accomplished as

ṼL(t) = VL(t)− VL(t)|i=0 (3.41)

where VL(t) on the right-hand side is defined in Eq. (3.40) and ṼL(t) on the left-hand side

accounts for only the non-equilibrium portion of the EDL potential.
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Gouy-Chapman Limit

Before presenting the polarographic relationship, the complete solutions for potential

and concentration are given. The complete solution for potential is equal to the electroneu-

tral solution plus the inner solution, minus their common part

φ(x) =ln

(
i
2

(
x− 1

2

)
+ 1(

1− i
4

) (
1 + i

4

))+ 4tanh−1

(
tanh

(
ζca
4

)
e−

x
ε

)
+4tanh−1

(
tanh

(
ζan
4

)
e−( 1−x

ε )
) (3.42)

where the common part is equal to the bulk value at x = 0 and x = 1. Following a similar

methodology, the complete solution for concentration is

ci(x) = 1 +
i

2

(
x− 1

2

)
+

(
1− i

4

)(
e−zi(φ(x)) − 1

)
+

(
1 +

i

4

)(
e−zi(φ(x)) − 1

)
(3.43)

where φ(x) is defined in Eq. (3.42). Noting that φEDL,ca = −ζca due to the convention of

Figure 3.4 where the zeta potential is defined relative to the bulk liquid potential, and sub-

stituting the result from Eq. (3.35), the current voltage relationship of Eq. (3.39) becomes

VL(t) = 4tanh−1(i) + ln

(
kr,an(1− cA,an)

ko,ancA,an − i
ko,cacA,ca + i

kr,ca(1− cA,ca)

)
(3.44)

The electroneutral portion of the EDL voltage, 2tanh−1(i), remains as discussed previ-

ously. However an additional 2tanh−1(i) and natural logarithm term are associated with

the EDL voltage in the Gouy-Chapman limit. Again Eq. (3.41) must be applied to account

for only the non-equilibrium portion of the EDL in the cell voltage. This is different from

the expression derived using the assumption that the entire potential difference of the EDL

occurs in the Stern layer. We will further explore the similarities and differences between

Eq. (3.40) and 3.44 in the Results and Discussion section, including comparing models

using each hypothesis to experimental data. The aim of this comparison is to understand
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if one model more accurately describes the nano-scale physics of a commercially available

Li-ion cell. As discussed in (Bazant et al., 2005), there is an infinite number of possibilities

for division of the entire EDL potential across the Stern layer and the diffuse layer deter-

mined by the capacitance of each layer. However in the Results and Discussion it is noted

that the results are ultimately quite similar when comparing the two extremes discussed

here, so further investigtion of the intermediate cases is outside the scope of this paper. A

result of the preceding sections is that the overpotential required in the EDL is determined

in closed form by the battery SOC, the current, and the solution of the fully electroneutral

portion of the liquid in both limiting cases.

3.4 Results and Discussion

In this section, results obtained from the solution of the governing equations for a gal-

vanostatic capacity test are presented. The applicability of the limiting descriptions of the

EDL in view of system-level considerations and experimental data is also discussed, and fi-

nally empirical modifications to the theoretical current-voltage relationship are introduced.

3.4.1 Definition of Cell Terminal Voltage

The output voltage is obtained by moving from cathode to anode and summing the

voltages encountered, recalling that Ṽ ∗L (t) contains the effects of both the electroneutral

liquid as well as the EDL

V ∗(t) = U∗ca (cca(L, t))− U∗an (can(L, t))− ṼL
∗
(t)−Rci

∗(t) (3.45)
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Figure 3.5: Open-circuit voltage curves for cathode and anode.

An ohmic resistance Rc accounts for the initial ohmic polarization that is not due to the

bulk liquid. The quantity Rc is the sum of ohmic losses from the solid phase of the elec-

trode, poor contact between iron phosphate particles and the conductive matrix (Safari &

Delacourt, 2011b; Srinivasan & Newman, 2004b), and conduction through the current col-

lectors. The sum of voltage losses is treated as a deviation away from the open-circuit

voltage between electrodes given by the difference of U∗ca and U∗an.

The difference in the open-circuit voltages is taken as the thermodynamic maximum

voltage that can be achieved under ideal conditions during discharge (Bernardi & Go,

2011), though the concentration overpotential in the solid phase is embedded in these func-

tions through their dependence on the surface concentration rather than the mean solid

concentration. These functions for the anode and cathode are defined in Figure 3.5.
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The parameter values used to produce the simulation results of the following section are

documented in Table 3.1. The source of each parameter is defined by the superscript next to

Table 3.1: Summary of model parameters used for simulation results. Sources are: a)
measured, b) estimated from available experimental data, c) from literature.

Parameter Definition Value
εan anode active material volume fractionb 0.44
εca cathode active material volume fractionb 0.36
ε̄e liquid permittivityc 46 F/m
A current collector areaa 0.19 m2

cA,max,an saturation concentration of Li+ in anode active materialc 30500 mol/m3

cA,max,ca saturation concentration of Li+ in cathode active materialc 16300 mol/m3

can(xan, 0) initial degree of anode intercalationc 0.80
cca(xca, 0) initial degree of cathode intercalationc 0.025

c0 electroneutral concentrationc 1000 mol/m3

D effective liquid phase diffusion coefficientc 1.7 ×10−10 m2/s
Dan anode solid phase diffusion coefficientb 4.0 ×10−14 m2/s
Dca cathode solid phase diffusion coefficientc 8.0 ×10−18 m2/s
Lan anode effective diffusion lengthb 3.4 µm
Lca cathode effective diffusion lengthb 31 nm
Lsep separator thicknessc 25 µm
ko,an anode oxidation rate constantb 2.5 ×10−3 A ·m/(mol · s)
ko,ca cathode oxidation rate constantb 4.0 ×10−7 A ·m/(mol · s)
kr,an anode reduction rate constantb 2.5 ×10−3 A ·m4/(mol2 · s)
kr,ca cathode reduction rate constantb 4.0 ×10−7 A ·m4/(mol2 · s)
Rc contact resistanceb 26× 10−3 Ωm2

T temperature 298 K

the parameter definition. For measured parameters, AFM and SEM images from the Center

for Automotive Research and the Nanoprobe Laboratory for Bio- and Nanotechnology and

Biomimetics were examined using image analysis software. Active material volume frac-

tions were tuned based on the measured electrode volumes to match the composition range

of the electrodes given by (Safari & Delacourt, 2011a). Since the anode is the capacity-

limiting electrode during discharge in this instance, its diffusion coefficient was estimated
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using the capacity difference between capacity tests of varying current magnitude. Specif-

ically, the value was adjusted to account for the difference in capacity between the C/3 and

C/1.2 tests reported in the Experimental section.

The rate constants are adusted using the following process. First the experimentally

measured voltage for the C/3 rate is subtracted from the cell open-circuit voltage defined

by the first two terms of Eq. (3.45). This gives the amount of overpotential experienced

by the cell over the course of a discharge cycle. Then the rate constant values and contact

resistance are adjusted so that the last two terms of Eq. (3.45) give an adequate fit to the

voltage losses. Since there are four values of the rate constant, assumptions are made to

simplify the fitting process. The forward and backward rate constants are assumed to be

equal. The anode rate constant values are set high enough to give minimal contribution

to the overpotential, since this is generally the case for graphite electrodes operating near

room temperature. This leaves only the cathode rate constant and contact resistance to

fit the observed overpotential. The rate constant values are identified only for the lowest

current and then used to predict the voltage at higher currents. To add another set of data

to test the predictive nature of the model, 3C capacity test data from (Safari & Delacourt,

2011b) is also plotted.

3.4.2 Analytical Predictions

The steady state profiles for concentration using each of the limiting hypotheses are

plotted in Figure 3.6. The profiles computed using the Gouy-Chapman limit will be largely

the same as those for the Helmholtz limit, except for a small region of O(10−5) near either

solid boundary. Since the liquid phase transport reaches steady-state quickly compared

to the total discharge time, the concentration in the liquid is a function of only space and
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Figure 3.6: Steady state dimensionless concentration profiles in the liquid obtained from
Eq. (3.29) for varying dimensionless current density. (a) The Helmholtz limit which ne-
glects the presence of diffuse charge and corresponding variation in potential near x = 0
and x = 1. (b) The Gouy-Chapman limit with ε = 10−2 (artificially large only to enhance
EDL visibility) assuming 50% SOC. Note the presence of diffuse charge within an O(ε)
layer at x = 0 and x = 1.
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current density. As the limiting discharge current (i = 4) is approached the concentration at

the cathode surface goes to zero. During a charge condition, the steady-state concentration

near the anode would approach zero for currents close to the limiting value.

The solution for potential is plotted in Figure 3.7, showing it is logarithmic with re-

spect to the spatial coordinate. The total potential difference is non-linear with respect to

the current and this non-linearity influences the concentrations at the Stern plane as well.

The potential difference between the electrodes approaches zero as the current approches

its limiting value. From cell level measurements one could expect a large magnitude of

overpotential for currents near the limit, though in reality this limit is not easily approached

before other limitations such as ohmic overpotential or solid diffusion become prohibitive.

Figure 3.8a gives a comparison of the polarographic expression relating current and

steady state voltage in the liquid for the Helmholtz and Gouy-Chapman limits. Recall that

this is a sum of the potential difference within the electroneutral liquid and the overpo-

tential of the EDL. To produce Figure 3.8a, the solid concentration values are set to their

corresponding values for each SOC of interest. Then the current is swept from zero to the

limiting value while holding all other variables constant to give a polarographic curve for

the liquid between electrodes. The plotted curves resulting from each limiting description

of the EDL are fairly similar in several respects. First, both curves tend to shift upward

or downward as the cell SOC is varied. However the Helmholtz limit exhibits symmetry

about 50% SOC in its polarographic curves whereas the Gouy-Chapman limit does not.

The polarographic curves of the Gouy-Chapman limit also tend to shift by a larger amount

as the cell state of charge varies.

A final interesting point of Figure 3.8a is the voltage response at low current density.

Due to the high value of the diffusion limited current density in this case, operation in the
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Figure 3.7: Steady state dimensionless potential profiles in the liquid obtained from Eq.
(3.31) for varying dimensionless current density, using (a) the Helmholtz limit and (b)
the Gouy-Chapman limit. Gouy-Chapman results use ε = 10−2 (artificially large only to
enhance EDL visibility) and assume 50% SOC. The presence of diffuse charge modifies
the total potential difference shown in (b) compared to (a).
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Figure 3.8: (a) Steady state relationship between dimensionless current and voltage from
Eqs. (3.40) and (3.44) for varying cell state of charge. Parameter values are taken from
Table 3.1. (b) Comparison of kinetic losses due to EDL and electroneutral liquid from
Eqs. (3.40) and (3.44) for a range of current values. Full discharge cycle is simulated.
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region |i| > 0.5 is not expected. Furthermore for current rates of less than or equal to 1C,

|i| ≤ 0.02 , and this corresponds to the region displayed in the inset of Figure 3.8a. In

the context of lithium ion battery literature, the double layers are assumed to be thin and

the Butler-Volmer kinetic law is applied based on concentration and potential values in the

bulk. Reflecting on the solutions, this essentially implies that battery literature employs

the Helmholtz limit for the EDL and neglects the possibility of diffuse charge caused by a

non-negligible zeta potential.

To continue the comparison between the two models, the overpotential due to charge

transfer in the Helmholtz limit is plotted in Figure 3.8b along with the overpotential ac-

cording to the Gouy-Chapman limit. The comparison is made at the C/3, C/1.2, and 4.8C

rates which corresponds to i = 5.6 × 10−3, 1.5 × 10−2, and 8.7 × 10−2 respectively. This

differs from the results of Figure 3.8a because here a current is fixed and the resulting time-

varying response of concentration and potential is computed. The curves show qualitative

similarity but the Gouy-Chapman limit exhibits significantly greater variation in voltage

over the course of discharge. Additionally the Gouy-Chapman limit at the highest current

level shows the beginning of an increase in overpotential near the end of discharge that

could be associated with a voltage knee if it were larger in magnitude.

Finally the solid phase diffusion solution is examined. The spatial distribution of Li+

concentration within the solid phase of each electrode is plotted at various times during

a discharge at 4.8C rate in Figure 3.9. This current is chosen because it is large enough

to highlight the spatial gradients that occur, which tend to be less apparent at lower rates.

Since the cathode actually exhibits a phase change, solving the diffusion equation is an

empirical method of accounting for rate effects.
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Figure 3.9: Concentration of Li+ within (a) cathode and (b) anode given by Eq. (3.32) for
a full discharge cycle with i = 8.7 × 10−2 and parameter values from Table 3.1. Current
collector is positioned at xca = 0 and xan = 1, while the interface between electrode and
separator is at xca = 1 and xan = 0. Time scale shown is based on the anode, since it limits
discharge capacity.
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3.4.3 Experimental

Data obtained from a cylindrical graphite/iron phosphate cell with can dimensions of 26

mm diameter by 65 mm height (26650) are used for comparative purposes and to examine

the validity of the double-layer assumptions. Galvanostatic capacity tests are performed at

current rates of C/3, C/1.2, and 4.8C. Data is collected at 10 Hz and current is commanded

using a PLA800-60-300 power load and supply from American Reliance, Inc. Temperature

is fixed at 25◦C using an AC-027 Peltier junction from TE Technology, Inc. along with

sufficient insulation to prevent excessive power draw by the Peltier junction. The lower

voltage limit is 2.5 V while the upper limit is 3.6 V, as defined by the manufacturer. During

charging, constant voltage is enforced at the upper voltage limit for 30 minutes.

Comparison of Theoretical Model Structure with Experimental Data

The model output using the Helmholtz limit is compared with experimental data in Fig-

ure 3.10 for multiple current rates. There is generally good agreement between the steady-

state model using the Helmholtz limit of the EDL and the experimental data gathered at

low current. The model results diverge from the experiment for the highest discharge rates.

This is to be expected however, because several factors are neglected in developing this

simplified model that would have a growing impact as the current rate increases. These

factors include the neglect of the non-uniform reaction rate with respect to the thickness

of the electrode, neglect of thermal effects, and neglect of the resistive reactant nature of

lithium iron phosphate (Thomas-Alyea, 2008; Safari & Delacourt, 2011a). Given that the

model overpredicts the cell voltage compared to the experimental data at the highest cur-

rent, the most likely factor to improve the model predictions is inclusion of the time-varying

resistance of the cathode that results from the resistive reactant effects.
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Figure 3.10: Comparison of model output (lines) and experimental data (symbols) for a
range of current rates using Helmholtz limit. The charge values along the x axis are ob-
tained as the integral of the constant current rate magnitude with respect to time. Parameter
values are taken from Table 3.1, and error magnitude for experimental data is ± 5 mV .

The model output using the Gouy-Chapman limit is compared with experimental data

in Figure 3.11 for multiple current rates. Recall that the Gouy-Chapman hypothesis allow-

ing for mobile charge in the diffuse layer gives a wider variation in the kinetic overpotential

over the course of the discharge. The wide variation in the overpotential magnitude leads

to the non-physical phenomena of the voltage actually increasing during the course of dis-

charge. The comparison between limiting cases of the EDL is made using equivalent rate

constants for each case. It remains an open issue whether different rate constants could be

selected for the Gouy-Chapman limit that would provide better agreement with experimen-

tal data. Whether these results are an indication that the double layer structure within the

battery studied for this work tends to have more immobile charge in the Stern layer than
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Figure 3.11: Comparison of model output (lines) and experimental data (symbols) for a
range of current rates using Gouy-Chapman limit. The charge values along the x axis
are obtained as the integral of the constant current rate magnitude with respect to time.
Parameter values are taken from Table 3.1 and error magnitude for experimental data is ±
5 mV .

mobile charge in the diffuse layer is left as an interpretation for the reader. The Gouy-

Chapman results also diverge from the experimental data for the 4.8C current for the same

reasons discussed in the context of the Helmholtz limit.

Empirical Inclusion of Resistive Reactant Effects

It is clear from the preceding results that some effects which may be important for

accurately predicting cell terminal voltage during high discharge currents have not been

included in the theoretical development of the model. As discussed previously, the resistive

reactant nature of iron phosphate results in increasing overpotential with respect to depth

of discharge. The difference between model output and experimental data is plotted in
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Figure 3.12: Fit of the resistive reactant overpotential after comparison of model developed
from theory and experimental data. Increasing overpotential is modeled as a linear function
of depth of discharge.

Figure 3.12, for the range of 0.8 to 1.8 Ah during discharge (roughly the middle third of

the discharge curve). It is proposed that this difference between model and experiment is

due solely to resistive reactant effects, and is hereafter referred to as the resistive reactant

overpotential, Vrr.

In constructing a semi-empirical model of the resistive reactant effects, the region for

parameter identification is restricted to the plotted region of 0.8 and 1.8Ah. This is because

the middle portion of the discharge curve is less prone to errors from the effects of incorrect

initial conditions that may cause large errors in predicted voltage at the beginning and

end of the discharge process. These potentially large errors arise because the open-circuit

voltage varies rapidly with respect to SOC in these regions. As one may observe from

Figure 3.12, the resistive reactant overpotential is roughly linear with respect to charge
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Table 3.2: Summary of empirical corrections to account for resistive reactant nature of
cathode material.

C-Rate d(V )
dAh

(V/Ah) dRr
dAh

(Ωm2/Ah)
C/3 5.6× 10−3 40× 10−3

C/1.2 1.84× 10−2 49× 10−3

4.8C 6.94× 10−2 32× 10−3

removed. The slope of the unmodeled overpotential is of use as a fitting parameter, so a

linear least squares problem is formulated as

~Vr − Vr,0 = Vr,1 ~Q (3.46)

where Vr,0 is the initial unmodeled overpotential (the value at Q = 0.8 Ah), and Vr,1 is the

constant slope of the overpotential versus capacity. When solving the least squares prob-

lem, ~Vr−Vr,0 is a vector of values corresponding to the difference between the experimental

data and model predicted voltage and ~Q is a vector of capacity values. The solution to the

least squares problem is given by

~Vr,1 =
(
~Vr − Vr,0

)
~QT ( ~Q~QT )−1 (3.47)

where the slope Vr,1 is in terms of V olts/Ah. Dividing by the magnitude of the discharge

current density gives a slope in terms of Ωm2/Ah, as documented in Table 3.2. When

comparing the unmodeled overpotential on a voltage basis, there is a wide discrepancy

between the various discharge rates reported in Table 3.2. However when the rate of voltage

change is scaled based upon the magnitude of the discharge current, the values for each

discharge rate show much less variation. Based on the analysis outlined in Figure 3.12 and
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Table 3.2, a resistance that varies with respect to depth of discharge is included in the model

as

Rr = 32× 10−3Q (3.48)

where the value of the overpotential slope from the 4.8C discharge, 32 ×10−3, has been

used, and Q is measured from an initial value of zero at the beginning of discharge to the

final capacity value at the end of discharge. The value from the 4.8C rate is used because

it tends to have the largest overpotential and thus the greatest signal to noise ratio, which is

a benefit during the parameter identification process. The overpotential slopes for the C/3

and C/1.2 are more likely to be corrupted by the presence of noise in the data, which was

discussed previously in relation to the magnitude of error for Figure 3.10 and Figure 3.11.

The resistance Rr is added to the original contact resistance Rc in Eq. (3.45). The

comparison between model and experiment when the resistive reactant effect of iron phos-

phate is included is shown in Figure 3.13. In general the agreement is improved for all the

discharge rates, although the capacity at the 4.8C rate is still underpredicted due to neglect

of thermal effects. Most likely internal heating has raised the cell core temperature enough

to cause an elevated diffusion coefficient and enable improved utilization of active mate-

rial. Another potential factor is the use of only one representative effective diffusion length

(analagous to particle size). The inclusion of multiple particle sizes could improve model

accuracy for higher rates as discussed in (Srinivasan & Newman, 2004b).

3.5 Summary and Conclusions

A simplified model structure that uses analytical expressions for the electroneutral liq-

uid concentration and potential, kinetic overpotential, and solid lithium concentration in

each electrode has been presented. The primary conclusion is that the presence of diffuse
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Figure 3.13: Comparison of model output (lines) and experimental data (symbols) for a
range of current rates using Helmholtz limit with resistive reactant effect included. The
charge values along the x axis are obtained as the integral of the constant current rate
magnitude with respect to time. Parameter values are taken from Table 3.1.

charge in the EDL causes greater initial overpotential and greater variation of overpoten-

tial with respect to battery state of charge when modeled in an intercalation battery. This

conclusion is derived from the inclusion of aspects of interfacial physics that have been

negelected in prior work and the comparison between limiting cases of the EDL. This

analysis also provides insight for understanding the Butler-Volmer representation of inter-

facial charge transfer typically applied within battery models. Rather than interpreting the

Butler-Volmer law as a relationship between bulk properties of the solid and liquid, it may

be conceptualized as governing the relationship between the reaction rate and the Stern

layer voltage if diffuse charge is not present.
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Furthermore, modifications have been proposed to the theoretical current-voltage rela-

tionship of the EDL and electroneutral liquid. It has been shown that a single resistance

value that increases with depth of discharge improves the agreement with experimental

data for a range of galvanostatic discharge experiments from C/3 to 4.8C. The model pre-

sented in this chapter captures essential features describing capacity such as the amount of

cyclable lithium, active material volume fraction, and rate limitations. Its main advantage

is the computational simplicity it offers while still providing agreement with galvanostatic

discharge data.

In Chapter 5, a model of solid-electrolyte interphase growth is presented. This model

depends on the potential in close proximity to the electrode surface. Inclusion of the effects

of the EDL may lead to different predictions of the rate of SEI growth due to modification

of the local potential.
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Chapter 4: Reduced-Order Model Design, Parametrization, and

Aging Analysis for Graphite / LiFePO4 Cells

4.1 Introduction

As stated in Chapter 1, Li-ion batteries are a key technology for enabling the electri-

fication of the automobile, due to their improved energy and power density, and potential

cost savings compared to previous battery chemistries (Karden et al., 2007; Snyder et al.,

2009; Sioshansi & Denholm, 2009). Chapter 2 established that considerable efforts are

directed to modeling Li-ion battery performance, specifically predicting the output voltage

in response to current and ambient temperature input conditions.

In this chapter, a novel modeling approach bridges the gap between the complex mul-

tiscale models based on the porous electrode theory and the models based on the single

particle approximation discussed in Chapter 2. The objective is to develop a reduced-order

electrochemical model for Li-ion battery cells that reduces the partial differential equations

(PDEs) or lithium transport to a mathematical structure amenable for estimation and control

purposes, namely as a low-order system of linear ordinary differential equations (ODEs).

The model should accurately predict the cell output voltage dynamics in a broad range of

C-rate conditions and retain a parametric dependence on electrochemical quantities that

are measurable. The proposed model takes advantage of a formal model-order reduction

method based on Pade approximation, as presented in Chapter 2.
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The model is identified using a systematic procedure that utilizes experimental data

which exercises only a subset of the sysem dynamics. Each phase of parametrization in-

corporates previously identified parameters to reduce the number of unknown values being

identified by any one procedure and to ensure that the identified values retain their physi-

cal interpretation. The model is extensively validated via comparison with current profiles

ranging from constant current pulses to the United States Department of Energy PHEV

charge depleting (CD) profile (Anonymous, 2010), each for operating temperatures rang-

ing from 5◦C to 55◦C.

Following the model design and parametrization, the advantages of the developed model

are demonstrated by applying the model to estimation of electrochemical parameters dur-

ing a battery aging campaign. The approach can be considered a formal procedure for

understanding degradation mechanisms in a cell that has unknown causes for aging. It also

provides a pathway to create model-based state-of-health (SOH) estimators.

Before beginning with the model design, it is useful to review model-order reduction

(MOR) techniques that have been presented in literature. Most current efforts have focused

on reducing the simulation time associated with electrochemical models by reducing the

order and dimensionality of the equations describing the mass diffusion in the solid phase

of the electrodes. The polynomial approximation reviewed in Chapter 2 is a common

technique, (Subramanian et al., 2005; Santhanagopalan et al., 2006; Subramanian et al.,

2001), as well as the finite volume discretization (Smith & Wang, 2006b), and the Pade

approximation methods (Forman et al., 2011). Proper orthogonal decomposition has also

been applied as a MOR approach (Cai & White, 2009, 2010), and semi-analytical solutions

have been presented, in some cases allowing for a variable diffusion coefficient in the solid

phase (Santhanagopalan & White, 2008).
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Other research has focused on model reformulation (Subramanian et al., 2009; Ra-

madesigan et al., 2010; Subramanian et al., 2007; Northrop et al., 2011; Subramanian

et al., 2004) or obtaining an impedance-based model through residue grouping (Smith

et al., 2008, 2007). These methods allow one to deduce a model that is simple enough

for parameter (Boovaragavan et al., 2008) or state-of-charge (SOC) (Smith et al., 2010) es-

timation. A set of numerical eigenvalues for the PDEs of lithium transport is generated for a

particular model and parameter set, but as the battery parameters change due to aging, such

as reduced electrode porosity or loss of active material, it is difficult to interpret how the

eigenvalues will respond. This limits the applicability of these methods for real-time, long

term life estimation with moderate to severe levels of battery power or energy degradation.

Most of the above methods pose several limits in their application, as they either require

a priori knowledge of the system inputs, or still involve the solution of nonlinear, coupled

ODEs respectively. Furthermore, most applications of MOR methods to electrochemical

models (for instance, see (Forman et al., 2011), (Santhanagopalan et al., 2006)) focus on

simplifying the porous electrode PDEs for reducing the computational burden. In this

sense, there is considerable interest today in the application of MOR techniques to extract

extremely low-order battery cell models oriented to model-based control or estimation,

particularly in relation with aging and life-cycle prediction.

Another potential option is to augment single particle models with a representation of

the liquid phase diffusion dynamics. One approach is to account for relaxation gradients

in the liquid phase by empirically fitting relaxation data to an ODE-based model (Schmidt

et al., 2010a) that resulted from a modal transform approach. This model has been used

SOH estimation (Schmidt et al., 2010b). However, the liquid phase model of (Schmidt
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Table 4.1: Cell internal physical dimensions.
Parameter Definition Value
Ln negative electrode thickness 50× 10−6 m
Lsep separator thickness 25× 10−6 m
Lp positive electrode thickness 98× 10−6 m
Rn negative active particle radius 3.5× 10−6 m
Rp positive active particle radius 50× 10−9 m
A current collector area 1.9× 10−1 m2

et al., 2010a) is still not parametric in the sense that it is not obtained from physically mea-

surable parameters such as the salt diffusion coefficient, component porosities, or compo-

nent thicknesses. The model presented in this chapter retains parametric dependence on

physically measurable properties.

4.2 Experimental Setup

In this chapter, a cylindrical cell of diameter 26 mm and height of 65 mm (26650) is

considered with nominal capacity of 2.3 Ah and nominal voltage of 3.3 V . The cell elec-

trolyte is assumed to be 1.0M LiPF6 in a 1:1 mixture of EC:DMC, and the negative/positive

electrode couple is LixC6/LiyFePO4. The relevant internal geometric dimensions of the

cell are summarized in Table 4.1. With the exception of the negative active particle radius,

which is fixed to a typical literature value, each of these measurements were obtained from

microscopy imaging techniques or basic measurements performed on a disassembled cell.

Data for model validation, including the cell terminal voltage, current, and temperature

are recorded using a sample frequency of 10 Hz. Current demands are controlled at a

frequency of 100 Hz using a Kepco load and Lambda supply with a Labview interface to
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Figure 4.1: Current and SOC profile during aging campaign of cell cycled at 2C current
between 0% and 30% SOC.

a standard PC. Thermoelectric temperature control is achieved using a Peltier junction that

is in direct contact with the aluminum cell fixture.

The aging campaign uses a design-of-experiments to evaluate system-level capacity and

power fade. The aging campaign conducted on the cells consists of charge/discharge cy-

cling while controlling the cell surface temperature at 55◦C. This elevated temperature is

chosen to accelerate the degradation process while ideally maintaining the same degrada-

tion mode as typical automotive operating conditions. Depth-of-discharge and current rate

are varied using a full factorial DOE approach to investigate the effect of each factor on the

performance degradation rate. State of charge information is obtained by post-processing

the measured current throughput of the cell, and the duty cycle current is controlled to pro-

duce a triangular SOC waveform between selected maximum and minimum SOC values.
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The SOC levels are 0–10 %, 0–20%, and 0–30%. The current rates used are 2C, 4C,

and 8C. This gives 9 total experiments based on the possible permutations of these two

factors. An example of the input current profile and the calculated SOC for the cell aged

with 2C current and 0–30% SOC is plotted in Figure 4.1.

4.3 Model Development

Figure 4.2 provides a schematic description of the model considered in this study, show-

ing the solid and liquid phase computation domains as well as the subscript i = p or n to

indicate the positive or negative electrode respectively. The proposed model structure stems

from the single particle principle (Haran et al., 1998), with the introduction of two novel

extensions. First, a time-varying resistance that accounts for the resistive reactant nature

of the LiyFePO4 electrode (Thomas-Alyea, 2008) is included. Second, the concentration

overpotential from the liquid phase is modeled by applying the assumption of uniform in-

tercalation current density to generate a solution for the liquid diffusion PDE. While the

time-varying resistance is specific to systems with low solid phase electronic conductivity,

the liquid phase model is applicable to all porous Li-ion electrodes.

The model description begins with the definition of the cell output voltage V (t), which

results from subtracting the overpotential arising from several electrochemical phenomena

from the time-varying open circuit voltage (OCV)

V (t) =(Up(t)− Un(t))− (φe(Lc, t)− φe(0, t))

− (ηp(t)− ηn(t))− (Rr(t) +Rc) I(t)− Vh(t)
(4.1)

As discussed in (Roscher & Sauer, 2011), a significant path dependence of the OCV

for both LiyFePO4 and LixC6 has been observed, leading to hysteresis. Hysteresis refers

to the behavior when the OCV at a specified SOC is different depending on the current
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Figure 4.2: Schematic of unit cell idealized geometry with solid (r) and liquid (x) diffusion
domains.

history used to reach that SOC. This phenomenon is modeled as a first order system with

gain H and hysteresis transition factor Γ (Hu et al., 2011)

dVh
dt

= |I|Γ(T ) (H(T, SOC)− Vh) (4.2)

The quantity Vh determines the deviation in the OCV at the specified SOC. Upon inspec-

tion, if the current is zero, the hysteresis voltage does not change. As explained in (Roscher

& Sauer, 2011) there are actually some relaxation phenomena that may be a result of hys-

teresis that occur on the time scale of seconds following the interruption of current, but Eq.

(4.2) models only the hysteresis effect that remains after large duration rest periods.

Deviations from the thermodynamic OCV when passing current may be attributed to

ohmic, kinetic, and concentration overpotential, where each can occur in the solid or liquid

phase. While the ohmic overpotential may be neglected in the negative electrode due to
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the high conductivity of LixC6 (≈100 S/m), it is a significant loss in the positive electrode.

Though the exact source of increasing ohmic resistance with respect to depth of discharge is

unknown, a likely explanation is the LiyFePO4 electrode selectively charging or depleting

the active material in an ohmically dominated fashion, such that the current density moves

from areas with higher conductivity to lower.

Some authors have proposed that the current density moves through the electrode thick-

ness from the current collector to the separator (Srinivasan & Newman, 2004b). Others

have suggested that the local current density shifts from particles with low electronic con-

tact resistance to the conductive carbon coating to those with higher contact resistance as

low-resistance sites are depleted (Safari & Delacourt, 2011a). The same phenomena has

also been interpreted as a current density that is non-uniform along the particle surface in

the polar and asimuth coordinates, which in theory requires a three-dimensional solution

though the authors retained the one-dimensional spherical model (Thomas-Alyea, 2008).

The first approach requires the solution of the fully coupled set of porous electrode

PDEs. A particle size distribution is required for the second approach, which may add

a prohibitive number of model states while also requiring an iterative procedure to solve.

Each of these aspects are undesirable for control or estimation applications. To avoid these

difficulties, the resistive reactant effect is conceptualized here as a pure integrator, causing

an increasing resistance with respect to depth-of-discharge during a current pulse response

Rr(t) =
RpLcond(t)

3LpAεp

1

σp
(4.3)

where Rp is the particle radius, Lp is positive electrode thickness, A is the current collector

area, εp is the active material volume fraction, and σp is the electrical conductivity. The con-

duction length Lcond(t) is computed by considering the path for current along a spherical

active material particle. If current needed to travel along the entire half-circumference of
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an active material particle to reach the conductive matrix, then the total conduction length

would be πRp. Thus the actual conduction length increases in time at a rate proportional to

the current according to
dLcond
dt

=
πRp|I|

Fcmax,pLpAεp
(4.4)

where cmax,p is the saturation concentration. The ohmic loss from this resistance is referred

to as the resistive reactant or time-varying ohmic overpotential. It is added to a similar loss

arising from the contact resistance Rc, also referred to as the initial ohmic overpotential, as

shown in Eq. (4.1).

Concentration overpotential in the solid phase occurs due to the limited ability of

lithium ions to diffuse through the active material. This phenomenon is modeled by solving

the mass diffusion equation describing transport within a representative spherical particle

of active material
∂ci
∂t

=
Di

r2

∂

∂r

(
r2∂ci
∂r

)
(4.5)

where c represents the concentration of lithium, and D is the diffusion coefficient. The

imposed boundary conditions are:

∂ci
∂r

∣∣∣
r=0

= 0 , Di
∂ci
∂r

∣∣∣
r=Ri

= −ji(t)
F

(4.6)

representing symmetry at the center of the particle and a prescribed flux at the particle

surface. The surface value of lithium concentration, ci(Ri, t) governs many facets of the

electrochemical behavior of the cell. For instance, concentration overpotential results from

the variation between the mean concentration and the surface value.

The intercalation current density ji(x, t) has been assumed constant with respect to the

direction x along the unit cell thickness

ji(x, t) = ji(t) =
I(t)

aiALi
(4.7)
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where ai is the surface area per unit volume defined as 3εi/Ri. The kinetic overpotential,

ηi, is governed by the Butler-Volmer law. Inverting the Butler-Volmer law leads to the

expression for the kinetic overpotential

ηi =
R̄T

αF
sinh−1

(
ji(t)

2i0,i

)
(4.8)

with the exchange current density i0,i defined as:

i0,i = Fki

√
ci(Ri)ce,i(cmax,i − ci(Ri)) (4.9)

Increased values of the kinetic rate constants ki will lead to decreased kinetic overpotential.

As the surface concentration ci approaches the saturation value cmax,i, or tends to zero, the

kinetic overpotential increases.

The liquid phase contains ohmic and concentration sources of overpotential according

to the concentrated solution theory presented in Chapter 2. The governing equation of

transport within the liquid is given by

εe
∂ce
∂t

= De
∂2ce
∂x2

+
ai
(
1− t+0

)
F

ji(t) (4.10)

where εe is the liquid phase volume fraction and t+0 is the transference number. Based on the

assumption introduced by Eq. (4.7), uniform intercalation current within each electrode,

the intercalation current ji(t) is assumed as piecewise constant in the positive and negative

electrode, and zero in the separator region. The imposed boundary conditions at each end

of the unit cell are
∂ce
∂x

∣∣∣
x=0,Lc

= 0 (4.11)
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Additionally, the ion flux and concentration must be matched at the boundaries between

each domain

De,n
∂ce
∂x

∣∣∣
x=L−

n

= De,sep
∂ce
∂x

∣∣∣
x=L+

n

ce

∣∣∣
x=L−

n

= ce

∣∣∣
x=L+

n

De,sep
∂ce
∂x

∣∣∣
x=((Lsep+Ln)−)

= De,p
∂ce
∂x

∣∣∣
x=((Lsep+Ln)+)

ce

∣∣∣
x=((Lsep+Ln)−)

= ce

∣∣∣
x=((Lsep+Ln)+)

(4.12)

The potential is dependent upon the concentration according to

∂φe
∂x

= −ie(t)
κ

+
2R̄T (1− t+0 )

F
(1 + β)

∂ln(ce)

∂x
(4.13)

The activity coefficient β is treated as a tunable constant parameter, though in reality it

depends nonlinearly on the lithium salt concentration. The current density in the liquid

phase, ie, is straightforward to determine by the uniform utilization assumption. The po-

tential at x = 0 is set to zero since only potential differences are considered relevant when

computing the cell voltage. Then Eq. (4.13) may be integrated directly to obtain the poten-

tial difference between x = 0 and x = Lc after solving Eq. (4.10), since all terms are at

minimum piecewise constant with respect to x.

The structure of the electrochemical model is summarized in Figure 4.3. The three dif-

fusion PDEs predict the transfer of ionic species in the solid phase of the two electrodes and

in the liquid phase. The predicted concentrations are then used to determine the half-cell

open circuit potentials and the kinetic overpotentials, through a set of nonlinear algebraic

equations.
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As can be observed in the block diagram, the diffusion PDEs are decoupled due to

the modeling assumptions introduced. Moreover, according to the inverted Butler-Volmer

equation, Eq. (4.8), the kinetic overpotentials associated with charge transfer between the

liquid and solid phase depend only on the concentration values at the interface, and not on

the spatial distribution within the solid and liquid domains. This provides an opportunity

for applying model-order reduction to obtain a computationally efficient solution.

4.4 Model Order Reduction

The Pade MOR technique discussed in Chapter 2 is now applied to Eqs. (4.5) and

(4.10). The Pade approximation is a frequency-based, realization-preserving MOR method

used to transform the solid and liquid diffusion PDEs into a reduced-order system of ODEs.

This approach has the advantage of retaining the physical meaning of the coefficients in the

reduced-order model. Though not strictly necessary for SOC estimation, it is beneficial for

applications to real-time, model-based SOH estimation.

4.4.1 Approximation of the Solid Diffusion PDE

According to Eq. (4.5) the Lithium intercalation in the solid phase is described by a

boundary value problem including a parabolic, constant coefficient PDE and two boundary

conditions of the second kind. In the case of a constant current, both boundary conditions

are steady and there is an analytical solution. In general though, one boundary condition is

time-varying so an analytical solution can only be obtained by applying Duhamel’s super-

position integral (Doyle et al., 1993; Ozisik, 2002). For estimation and control applications,

a more efficient approach to obtain an approximate solution can be formulated by taking
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the Laplace transform (defined in Chapter 2) of Eqs. (4.5 - 4.6) (Muratori et al., 2010a,b)

Di
d2Ci(s)

dr2
+

2Di

r

dCi(s)

dr
− sCi(s) = 0 (4.14)

∂Ci(s)

∂r

∣∣∣
r=0

= 0 , Di
∂Ci(s)

∂r

∣∣∣
r=Ri

= −Ji(s)
F

(4.15)

where s = −jω is the independent variable after executing the transform. Then introduce

the substitution Wi = Cir and compute the corresponding derivatives

dWi

dr
= Ci + r

dCi
dr

(4.16)

d2Wi

dr2
= 2

dCi
dr

+ r
d2Ci
dr2

(4.17)

Dividing Eq. (4.17) by r and substituting into Eq. (4.14) gives(
d2Wi

dr2
− s

Di

Wi

)
= 0 (4.18)

whose general solution is readily found as

Wi(r, s) = rCi (r, s) = Aexp

r
√

s

Di

+Bexp

−r
√

s

Di

 (4.19)

The Lithium concentration at the surface of the particle is determined by inserting the

boundary conditions defined by Eq. (4.15) into the general solution to determine the un-

known coefficients A and B, and then calculating the solution at r = Ri. Based on this

procedure, a transcendental transfer function is obtained, relating the solid phase surface

concentration to the current density

Ci(s)

Ji(s)
=

(
R2
i

3D2
i εiF

)
sinh

(√
sRi
Di

)
√

s
Di
Ricosh

(√
s
Di
Ri

)
− sinh

(√
s
Di
Ri

) (4.20)

Following (Muratori et al., 2010a,b; Forman et al., 2011), Eq. (4.20) is related to a

diffusion-based mass transport process; hence its behavior can be modeled as a low-pass
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filter. This facilitates the use of a Pade approximation method to obtained a linearized

representation of the model

Ci(s)

Ji(s)
≈ Gi(s) =

m0,i +m1,i +m2,i + ...+mN,i

s(b0,i + ...+ bN,i)
(4.21)

The coefficients of Eq. (4.21) can be analytically obtained from the transcendental

transfer function through moment matching (Antoulas, 2005; Forman et al., 2011). This

allows the approximated model to preserve its physical consistency, through the presence

of parameters such as the solid diffusion coefficient and particle radius. The coefficients

for orders one to three are documented in Table 4.3.

The frequency responses of the transcendental PDE solution and the Pade approximate

transfer functions of various orders are compared in Figure 4.4. The behavior of the analyt-

ical solution is characteristic of an integrator at low frequencies, which is expected because

it accumulates lithium according to the current being passed.

4.4.2 Approximation of the Liquid Diffusion PDE

According to Eq. (4.10) the Lithium transport in the electrolyte is described by a

parabolic PDE with homogenous boundary conditions and a spatially piecewise constant,

time-varying, source term. The Laplace transform of Eq. (4.10) is

sCe(s)−De
d2Ce(s)

dx2
− γ I(s)

ALiai
= 0 (4.22)

where the substitutions γ =
ai(1−t+0 )

Fεe
and ji = I

ALiai
have been made to simplify nota-

tion. The boundary conditions at the cathode and anode current collectors (Eq. (4.11))

and matching conditions at the internal boundaries of the cell (separator/anode and sepa-

rator/cathode defined in Eq. (4.12)) are not repeated here because they do not change fol-

lowing the application of the Laplace transform. To simplify the calculation of the liquid
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Figure 4.4: Frequency response of surface concentration, c(R, s), predicted by Eq. (4.20)
for the solid diffusion PDE, and Pade approximations of various truncation order.

phase transfer functions, we note that for the given cell geometry Ln ≈ 1
4
Lc, Lsep ≈ 3

20
Lc,

Lp ≈ 3
5
Lc. Then, following the computation of the analytical solution of Eq. (4.22), the

transfer function for the negative electrode is found by evaluating at x = 0

Ce(s)

γI(s)
=
−12sinh

(
7
20

√
s
De
Lc

)
− 5sinh

(√
s
De
Lc

)
3sALcsinh

(
7
5

√
s
De
Lc

)
sinh

(
3
5

√
s
De
Lc

)
+

12sinh
(

3
5

√
s
De
Lc

)
− 5sinh

(
1
5

√
s
De
Lc

)
3sALcsinh

(
7
5

√
s
De
Lc

)
sinh

(
3
5

√
s
De
Lc

)
+

12sinh
(

7
5

√
s
De
Lc

)
− 12sinh

(
23
20

√
s
De
Lc

)
3sALcsinh

(
7
5

√
s
De
Lc

)
sinh

(
3
5

√
s
De
Lc

)
(4.23)
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Similarly, the transfer function representing the effects of the liquid diffusion dynamics

on the ion concentration at the positive electrode boundary (x = Lc) is given by:

Ce(s)

γI(s)
=

12sinh
(

1
4

√
s
De
Lc

)
+ 5sinh

(
2
5

√
s
De
Lc

)
3sALcsinh

(√
s
De
Lc

)
−

5sinh
(√

s
De
Lc

)
3sALcsinh

(√
s
De
Lc

)
(4.24)

Following the same moment matching procedure discussed for the solid phase diffusion

problem, a Pade approximant can be found to obtain a linear model expressing the con-

centration of lithium ions in the electrolyte at the current collector interface of the two

electrodes, as functions of the current densities.

The frequency responses of the transcendental PDE solution and the corresponding

Pade approximations are compared in Figures 4.5 and 4.6. The diffusion dynamics in

the liquid phase exhibit behavior that is characteristic of a low-pass filter. The integrator

behavior of the solid phase is not observed for the liquid phase, since there is no net change

in the amount of lithium held in the liquid by the assumption of electroneutrality. The Pade

approximate transfer functions provide better agreement for the liquid phase diffusion than

for the solid up to a frequency of 10 Hz. It is not clear why the agreement is better for

the liquid than for the solid, for equal approximation order, but possible reasons can be

identified. First, the boundary conditions for each problem are different, and the liquid

phase includes a source/sink term while the solid does not. Second, the time constant

associated with transport in the solid is less than that of the liquid.

Table 4.3 summarizes the transfer functions for the liquid phase for approximations up

to the third order. Again, the coefficients of the transfer functions are based on the physical

parameters of the unit cell model, such as the geometry, porosity, and diffusion coefficients,
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Figure 4.5: Frequency response of liquid diffusion PDE for x = 0 predicted by Eq. (4.23)
and Pade approximations at various orders of truncation.
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and any numerical coefficients should remain constant throughout the battery’s service life.

For instance, a numerical substitution was used based on the relative thicknesses of the

negative electrode, separator, and positive electrode, but the component thicknesses are not

expected to change during aging.

Table 4.2: Pade approximate transfer functions (up to third order) for the solid diffusion
dynamics.

Order Solid
1st 3

sRi

2nd
3
Ri

+ 2
7

Ri
Di

s

s

(
1+ 1

35

R2
i

Di
s

)

3rd
3
Ri

+ 4
11

Ri
Di

s+ 1
165

R3
i

D2
i

s2

s

(
1+ 3

55

R2
i

Di
s+ 1

3465

R4
i

D2
i

s2
)

Table 4.3: Pade approximate transfer functions (up to third order) for the liquid diffusion
dynamics.

Order Liquid, x = Lc Liquid, x = 0

1st
0.25 Lc

De

AF

(
1+0.112

L2
c

De
s

) 0.33 Lc
De

AF

(
1+0.092

L2
c

De
s

)

2nd
0.25 Lc

De
+0.0045

L3
c

D2
e
s

AF

(
1+0.13

L2
c

De
s+0.0029

L4
c

D2
e
s2

) 0.33 Lc
De

+0.012
L3
c

D2
e
s

AF

(
1+0.13

L2
c

De
s+0.0029

L4
c

D2
e
s2

)

3rd
0.25 Lc

De
+0.0065

L3
c

D2
e
s+4.9×10−5 L5

c
D3

e
s2

AF

(
1+0.14

L2
c

De
s+0.0040

L4
c

D2
e
s2+2.9×10−5 L5

c
D3

e
s3

) 0.33 Lc
De

+0.011
L3
c

D2
e
s−1.5×10−5 L5

c
D3

e
s2

AF

(
1+0.13

L2
c

De
s+0.0024

L4
c

D2
e
s2−2.8×10−6 L5

c
D3

e
s3

)

4.4.3 Selection of the Model Order

The appropriate order of each transfer function can be decided based on the frequency

content of the current input and by setting a trade-off between the number of states and the

ability of the model to capture the frequency response of the PDE-based model. Based on
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Figure 4.7: Frequency content of battery current profile for charge sustaining HEV on
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the results shown in Figures 4.4-4.6, the approximate transfer functions present increasing

error with respect to the analytical solution as the frequency content of the input signal in-

creases. This conclusion is drawn from the divergence of the approximate transfer functions

from the analytical solution with increasing frequency. In order to ascertain the highest de-

sired frequency where accuracy should be maintained, and therefore the approximation

order, a typical current profile must be obtained from the application of interest.

To this extent, Figure 4.7 shows the frequency distribution of the battery current profile

obtained from a fast Fourier transform. The current profile is obtained from experimen-

tal testing on a prototype series-parallel HEV (Di Filippi et al., 2010) with respect to two

regulatory driving cycles, namely the US06 highway cycle and the Federal Urban Dy-

namometer Schedule (FUDS). By integrating the frequency spectrum, a measure of the
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power contained within the signal up to a given frequency is computed. The two cases

presented are quite similar, in that 90% of the signal power is within frequencies less than

2.5Hz as indicated by the dashed line. Using this information and examining the results of

the Pade approximations in Figures 4.4, 4.5, and 4.6, it is possible to determine an optimal

order of truncation for each transfer function. Specifically, a first order truncation is chosen

to model the liquid diffusion dynamics and a third order truncation is chosen for the solid

diffusion dynamics.

The resulting reduced-order model is shown in Figure 4.8, in block diagram form. The

current input, converted to current density, feeds the reduced transfer functions calculat-

ing the boundary concentration dynamics within the solid and liquid phases. The outputs

are then used to determine the concentration-dependent open-circuit potentials and charge

transfer overpotentials, through nonlinear algebraic functions.
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Note that the procedure above described can be easily extended to other current profiles

for electrified vehicles, based on regulatory cycles or fleet data, and that the two federal

cycles considered here are only exemplary cases.

4.5 Model Parametrization Analysis

This section illustrates the procedure for defining the model parameters, based on non-

linear identification techniques. Rather than fitting all parameters purely through optimiza-

tion methods, an attempt is here made to carefully exercise the system with select experi-

mental inputs so as to limit the number of parameters that influence the output voltage, then

identify that subset of parameters from experimental data. This approach has the advantage

of providing a trade-off between two prevalent approaches, namely pure nonlinear identifi-

cation from cell-level performance data and extensive experimental characterization using

half-cell testing. Though more intuition regarding the electrochemical dynamics of the sys-

tem is required as compared to a numerical approach, the procedure still relies mostly on

cell-level performance data with the exception of utilizing half-cell OCV curves.

First the active volume fractions and composition ranges of the positive and negative

electrodes are estimated from cell OCV data. During this process, the maximum hysteresis

voltage is characterized as a function of temperature and SOC. Next, resistance parameters

are estimated from cycling data over a wide range of temperatures. Lastly, the diffusion

parameters are identified through a combination of literature sources and tuning to match

experimental voltage relaxation data. The capacity utilization from multi-rate capacity tests

are combined with an inverse model to compute the negative electrode diffusion coefficient,

and current pulses are used to modify the liquid phase diffusion and activity coefficients

after selecting values from literature as a useful starting point.
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Figure 4.9: Open-circuit voltage curves for positive and negative electrode.

4.5.1 Identification of Capacity-Related Parameters

The OCV for the cell model can be found starting from the OCV curves relative to

Li/Li+ for the positive and negative electrodes, obtained experimentally from half-cell

testing or from literature. In detail, the functional form of the positive OCV (Safari &

Delacourt, 2011b) is

Up(y) =3.432− 0.843e−80.249(1−y)1.319 − 3.247× 10−6e20.264(1−y)3.800

+

3.2482× 10−6e20.264(1−y)3.799
(4.25)

Similarly, the functional form of the negative OCV (Safari & Delacourt, 2011b) is

Un(x) =0.638 + 0.542e−305.5309x + 0.044tanh

(
−x− 0.196

0.109

)
−

0.198tanh

(
x− 1.057

0.085

)
− 0.686tanh

(
x+ 0.012

0.053

)
−

0.018tanh

(
x− 0.569

0.086

) (4.26)

Figure 4.9 shows the OCV curves for the positive and negative electrode. While the

OCV of each electrode is known, the composition range determined by the initial degree
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of lithiation and the active volume fraction of each electrode must still be identified using

full-cell OCV data. To this extent, an experimental procedure was conducted where the cell

is first discharged to the manufacturer-recommended lower voltage limit of 2.0 V . Then

a charge current pulse is executed to add 5-10% capacity to the cell, followed by a wait

period of 1 hour to allow the cell to reach equilibrium. The cell voltage after 1 hour is

recorded as the OCV for the appropriate SOC based on current integration. This procedure

is repeated until the manufacturer-recommended upper voltage limit of 3.6 V is reached.

The voltage data collected during this procedure is plotted in Figure 4.10 as ‘Experimental

Charge’. Then, the current direction is reversed and the entire process is repeated, with the

voltage data plotted as ‘Experimental Disharge’. The difference between these data at each

SOC is used to assess the amount of hysteresis associated with the cell OCV.

The following procedure allows the identification of the model parameters related to

the scaling and initial conditions of the half cell potentials while eliminating the influence

of the any overpotential on the output voltage. The mean of the charge and discharge

OCV data is the input to a nonlinear least square procedure to perform the estimation of

the electrode composition ranges. The algorithm consists of finding the optimal set of

parameters ~P ∗ = [x∗0, y
∗
0, ε
∗
n, ε
∗
p] minimizing the cost function in Eq. (4.27), where the

error ~e is a vector of differences between the experimental OCV data and the predicted

OCV (~e(SOC) = Vexp(SOC) − V (SOC)). The nonlinear least square problem is cast as

follows:

~P ∗ = argmin
[x∗0,y

∗
0 ,ε

∗
n,ε

∗
p]

(
1

2
(∆~P )T

∂2~e

∂ ~P 2
(∆~P ) + (∆~P )T

∂~e

∂ ~P

)
(4.27)

The trust region reflective algorithm (Coleman & Li, 1994; Shi et al., 2009) is used to

solve Eq. (4.27). The fitted model OCV resulting from the solution of Eq. (4.27) is plotted

in Figure 4.10. The maximum hysteresis voltage, plotted in the lower subplot of Figure
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Table 4.4: Summary of hysteresis parameters as a function of temperature.

Temperature h1 h2

5◦C −2.4× 10−4 6.02× 10−2

20◦C −4.0× 10−4 5.09× 10−2

55◦C −3.0× 10−4 3.95× 10−2

4.10, is calculated as one half the difference between the charge and discharge OCV data at

each SOC. After observing the trend of the experimental data, it is fit with a linear function,

H(T, SOC) = h1(T )× SOC + h2(T ) (4.28)

where h1 and h2 are identified for various temperatures to create a one-dimensional in-

terpolation table. The resulting linear fit for the 20◦C case is also plotted in Figure 4.10.

There are cyclic variations from the overall linear trend that are believed to arise from ex-

perimental error associated with the current integration procedure, preventing the selection

of exactly the same SOC set point when approaching from charge and discharge directions.

Since these are believed to be associated with experimental error and not an actual elec-

trochemical feature, the linear fit of maximum hysteresis voltage is considered sufficient.

Other temperatures showed qualitatively similar agreement with the linear function, as the

hysteresis calculation is repeated for the 5◦C, and 55◦C data, and a linear fit of maximum

hysteresis with respect to SOC is calculated for each temperature. The fitting parameters

are summarized in Table 4.4.

It is assumed that the half-cell OCV and composition ranges do not vary over the tem-

perature range from 5◦C to 55◦C. Verification of this assumption is possible using extensive
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Figure 4.10: a) Experimental OCV data and model fitted to mean of charge and discharge
data, where measurements taken while traversing the SOC range from 0% towards 100%
are indicated as ’Experimental Charge’, and those from 100% towards 0% are denoted
’Experimental Discharge’. b) Hysteresis voltage and linear fit with respect to SOC.

half-cell fabrication and testing at multiple temperatures. However, this is considered out-

side the scope of this paper and model agreement is acceptable without modifying the OCV

or estimated composition range to consider temperature dependence within the presented

range.

4.5.2 Identification of Resistance-Related Parameters

The objective of this section is to identify the temperature dependence of the parameters

responsible for determining the time-varying cell resistance, including the ohmic factorRc,

the kinetic rate constants of each electrode (ki of Eq. (4.9)), the activity coefficient of the

liquid (β of Eq. (4.13)), and the diffusion coefficients, D, in each phase.
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Initial Overpotential

As a current input is introduced, both ohmic and kinetic resistance contribute in deter-

mining the initial overpotential, R0, as defined in Chapter 1, but here called R. In general

it is difficult to determine each electrode rate constant and the remaining ohmic resistance

without half-cell testing or literature data. Here, a method is proposed that takes advantage

of the nonlinearity associated with the kinetic overpotential (Juang et al., 2011) to distin-

guish between ohmic and kinetic resistance. This nonlinearity, when combined with careful

assumptions and experimental data for a range of temperature conditions, allows one to in-

dividually identify the temperature dependence of the rate constants for each electrode and

the remaining ohmic component of resistance.

For this procedure, it is assumed that the kinetic overpotential of each electrode is negli-

gible above a certain reference temperature. This assumption takes advantage of the strong

variation of the exchange current with respect to temperature that most Li-ion chemistries

exhibit. Experimentally, a variation of resistance with respect to current is observed at low

temperature conditions, which is assumed to be directly related to the exchange current

density via the kinetic rate constant.

For the negative electrode, a reference temperature of 20◦C is assumed, since typically

the negative electrode does not contribute significantly to the cell overpotential at room

temperature (Bernardi & Go, 2011). For the positive electrode the reference temperature

is selected as 55◦C, and though this choice is arbitrary it reflects two key considerations.

First, the kinetic overpotential of the positive electrode is non-negligible at room tempera-

ture. Second, there should be a limiting temperature where kinetic overpotential from the

positive electrode is no longer a factor. An Arrhenius temperature dependence is assumed
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of the form

P = P1exp

(
−
(
P2

T
− P2

Tref

)P3
)

(4.29)

where P1 fixes the parameter value at the reference temperature, P2 is the activation energy

that governs the temperature dependence of each parameter, and P3 is a unitless number

that is useful in obtaining agreement with experimental data in non-ideal cases. Since there

has been supporting data in literature (Smart et al., 2007) for a unity value of P3 as applied

to the temperature dependence of kinetic rate constants, we fix P3 = 1 for both the positive

and negative rate constants. However, commonly used positive electrode active materials

have displayed similar electronic conductivity properties to semiconductors (Park et al.,

2010). Taking P3 6= 1 is useful in situations where there may be a range of activation en-

ergies for a given process, such as those associated with semiconductor-like behavior such

as ion-hopping (Leon et al., 1997). The ohmic fit accounts at least partially for the active

material conductivity, so the ohmic fitting procedure allows for P3 6= 1. The functional

form of Eq. (4.29) is also used to describe the temperature dependence of the diffusion and

activity coefficients discussed in later sections.

The conducted experiments gathered resistance data for temperatures of -10, 5, 20, 35,

and 55◦C. For each temperature, currents from 1C to 10C are tested, except at -10◦C,

where current is limited to 5C due to power limitations at cold temperatures. To begin, the

positive electrode characteristics are isolated by using data from each temperature above

20◦C. The variation in resistance with respect to current is computed using Eq. 4.30

∆ (R) = R|10C−R|1C =
1

I|10C

R̄T

F
sinh−1

(
jp|10C

2i0,p

)
− 1

I|1C
R̄T

F
sinh−1

(
jp|1C
2i0,p

)
(4.30)

Note that the contact resistance and ohmic contributions from the liquid phase are not

included. This is because they do not change with respect to current, and so they do not
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impact Eq. (4.30). All parameters in Eq. (4.30) are fixed except for the exchange cur-

rent density, or equivalently the rate constant. Various values of the rate constant may be

selected to effectively vary the exchange current density and produce different values of

∆ (R). After matching the experimental ∆ (R) for temperatures above 20◦C, where the

negative electrode kinetic overpotential is neglected, a positive electrode rate constant as-

sociated with each tested temperature is found. The resulting data are fit using Eq. (4.29)

to provide a smooth interpolation and extrapolation function.

For temperatures below 20◦C, the positive temperature dependence identified for tem-

peratures above 20◦C is extrapolated and included in the total overpotential. Then the

variation of resistance with respect to current is fit using the negative rate constant, using a

similar procedure to the positive electrode with Eq. 4.31 replacing Eq. (4.30).

∆ (R) = R|10C −R|1C =

1

I|10C

(
R̄T

F
sinh−1

(
jp|10C

2i0,p

)
+
R̄T

F
sinh−1

(
jn|10C

2i0,n

))
−

1

I|1C

(
R̄T

F
sinh−1

(
jp|1C
2i0,p

)
+
R̄T

F
sinh−1

(
jn|1C
2i0,n

)) (4.31)

The plots of resistance variation versus rate constant value for each electrode are plotted

in Figure 4.11. The variation in resistance observed experimentally at each temperature is

plotted as a dashed horizonatl line. The variation in resistance as a function of the rate

constant is plotted as a solid line, with the positive electrode indicated on the left vertical

axis and the negative electrode indicated on the right vertical axis. The three intersection

points for each electrode are used to define the parameters P1 and P2 of Eq. (4.29), where

P = kp or kn.

Due to the superior surface area per unit volume of the iron phosphate positive elec-

trode, the rate constant values are generally smaller than those of the negative electrode to
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Figure 4.11: Variation of the resistance between 1C and 10C current pulses versus the
required rate constant to achieve the resistance variation. Dashed lines indicate the ex-
perimentally observed level of variation at each temperature and intersect the electrode to
which the variation is attributed.

achieve a similar level of resistance variation. Once the rate constant identification pro-

cedure has been completed, the kinetic component of the cell resistance is known. The

temperature dependence of the ohmic resistance must account for the remaining portion

of the resistance data. Here, a nonlinear least-squares problem is formulated to find the

optimal parameter set for the ohmic resistance, ~P ∗ = [Rc,1, Rc,2, Rc,3], as

~P ∗ = argmin
[Rc,1,Rc,2,Rc,3]

(
Rexp(I, T )−Rc,1exp

(
−
(

Rc,2

Tref,Rc
− Rc,2

T

)Rc,3)
−

1

I

R̄T

F
sinh−1

(
I

2i0,p

)
− 1

I

R̄T

F
sinh−1

(
I

2i0,n

)
−
(
φe(Lc, 0

+)− φe(0, 0+)
))
(4.32)

The liquid phase ohmic contributions, represented by (φe(Lc, 0
+)− φe(0, 0+)), are com-

puted from the ohmic term of Eq. (4.13) with the notation of t = 0+ indicating the result
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Table 4.5: Arrhenius coefficients of parameters that vary with respect to cell temperature.

Parameter R1 R2 R3 Tref
Rc 8.24 ×10−3 1740 1.96 328
σp 7.6 ×10−7 1740 1.96 328
kn 1.8 ×10−6 7120 1.00 268
kp 2.9 ×10−7 1860 1.00 328
Dn 1.9 ×10−14 2050 1.00 293
De 3.6×10−11 10000 0.50 262
β 2.35 140 0.30 338

is taken immediately following the onset of current. Concentration overpotential is irrele-

vant since the instantaneous resistance is being considered. The conductivity properties as

a function of temperature are taken directly from (Valoen & Reimers, 2005). The rest of

the parameters have been identified by the preceding analyses leaving Rc,1, Rc,2, and Rc,3

for identification. Figure 4.12 shows the final comparison between experimental resistance

recorded for each temperature and the model fit. The identification procedure reveals that

the stretched exponential coefficient is non-zero for the contact resistance. This is required

to achieve agreement with the data after identifying the Arrhenius dependence of the rate

constants and has occasionally been observed for the electronic conductivity of Li-based

systems (Rivera et al., 2003). The variation of resistance with respect to current is captured

well even for the most severe case at -10◦C, where the total variation is over 20 mΩ. Ta-

ble 4.5 summarizes the Arrhenius coefficients for each parameter that exhibits temperature

dependence.
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Figure 4.12: Comparison of experimental resistance data with fitted model prediction.

Time-Varying Ohmic Overpotential

As discussed during the model development of this chapter, there are increasing ohmic

contributions during a charge or discharge current pulse related to the poor electronic con-

ductivity of iron phosphate. The conductivity of the positive electrode is identified empir-

ically, since the electrode is composed of several constituents (active material, binder, car-

bon) of vastly different properties making it difficult to predict without experimental data.

To perform the fitting procedure, the identified capacity and intial resistance parameters are

used to model a low-rate (≤ 1C) galvanostatic discharge. The iron phosphate conductivity

is considered constant with respect to SOC, since it has been reported previously that it

does not change with composition (Chung et al., 2002).
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Figure 4.13: Error as a function of capacity removed during a galvanostatic discharge and
model prediction of resistive reactant overpotential after identification of positive electrode
conductivity.

The region for parameter identification is restricted to 0.2 to 1.6Ah, because this region

of the discharge curve is less prone to transient errors from the effects of slightly imperfect

initial conditions that may cause large errors in predicted voltage at the beginning and end

of the discharge process. The error between the model prediction and experimental data

tends to increase linearly for a fixed current value as charge is removed from the cell. It

may be fit by solving the linear least squares problem

Vr(t) = Vr,0 +
RpLcond(t)

3LpAεp

I

σp
t (4.33)

Here Vr is the overpotential error and Vr,0 is the initial unmodeled overpotential (the value

at Q = 0.2 Ah). When solving the least squares problem, Vr(t) is a vector of values

corresponding to the difference between the experimental data and model predicted voltage.
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The constant term Vr,0 is subtracted from the vector Vr(t) to form a vector Ṽr(t), and t is a

vector of time values corresponding to Ṽr(t). The solution to the least squares problem is

given by

σp =
(
Ṽr(t)(M)T (M(M)T )−1

)−1

(4.34)

where M =
R2
pIt

3Fcmax,p(LpAεp)2 . Inserting values for the known constants gives σp = 7.6 ×

10−7 S/m, which is within the range of values reported in literature (Bewlay et al., 2004)

given that the exact amount of conductive carbon additive is unknown.

Figure 4.13 shows the error as a function of discharge capacity and the model fit to

the error used to select a conductivity value. Although the identification procedure is per-

formed only for 20◦C, it is assumed that this conductivity value shares the same temper-

ature dependence as the initial ohmic resistance, since theoretically these phenomena are

related.

4.5.3 Diffusion Parameters

The solid diffusion coefficient of the negative electrode is tuned to match the exper-

imentally observed difference in capacity between the C/3 and 1C rates, after fixing the

particle size to a typical literature value. This may be approached quantitatively through

the use of an inverse function, where the analytical solution of Eq. (4.5) for a constant cur-

rent is related to the potential of the negative electrode at the end of discharge to ascertain

the end-of-discharge Li+ concentration, and therefore the diffusion coefficient. Following

a procedure similar to the one presented in Chapter 2 for the analytical solution of Eq.

(2.74), the analytical solution for the non-homogeneous, steady boundary condition case of
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Eq. (4.5), where N0 = −Dn
∂cn
∂r

∣∣∣
r=Rn

, is

(cn(r, t)− cn(r, 0))
Dn

N0Rn

=
3Dnt

R2
n

+
1

2

r2

R2
n

− 3

10
−

2
Rn

r

N∑
j=1

(
sin(λjr)

λ2
jR

2
nsin(λjRn)

exp(−Dnλ
2
j t)

) (4.35)

The λj coefficients are given by the positive roots of

Rnλjcot(Rnλj) = 1 (4.36)

where an arbitrary number of terms of the infiinte eigenvalue series may be used. Analysis

of the required number of eigenvalues indicated that there are minimal accuracy gains be-

yond 10 terms. The goal is to use Eq. (4.35) to identify the diffusion coefficient by relating

the concentration at the end of discharge and the current magnitude to the diffusion coef-

ficient. The input to the procedure is the external current rate for the capacity test, which

fixes N0 to a constant value. Based on experimental measurement, the total time of the C/3

or 1C capacity test tf is known. The voltage at the end of the capacity test is dictated by the

lower voltage limit. Rearranging the terminal voltage expression in terms of the limiting

concentration at the end of discharge, cn(Rn, tf ), gives

cn(Rn, tf ) =cmax,nU
−1
n (Up(tf )− (φe(Lc, tf )− φe(0, tf ))

−(ηp(tf )− ηn(tf ))− (Rr(tf ) +Rc) I − Vh(tf )− Vmin)
(4.37)

This procedure assumes that the negative electrode OCV is invertible, which is typically a

good assumption at the end of discharge away from the characteristic plateaus found for

composition values approaching one. The limiting concentration values for each current are

plotted as horizontal dashed lines in Figure 4.14. The limiting concentration as a function

of the diffusion coefficient is also plotted by sweeping Eq. (4.35) over a range of values

for Dn. The intersection of the symbols with the limiting concentration lines gives the
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diffusion coefficient that precisely matches the experimentally observed capacity for each

rate, either C/3 or 1C.

If the model was a perfect representation of the electrochemistry occuring within the

cell, the value of the diffusion coefficient predicted by this method would be constant re-

gardless of rate. Regardless the predicted values are close and an average may be used

without introducing significant model error. The agreement obtained by the diffusion co-
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Figure 4.14: Negative electrode diffusion coefficient identification via inversion of the
spherical diffusion analytical solution for a steady boundary flux. Lines indicate the fi-
nal concentration for each current, defined by Eq. (4.37), and the symbols indicate the final
concentration predicted by Eq. (4.35) as a function of the diffusion coefficient.

efficient tuning procedure is shown in Figure 4.15. The difference between the capacity

delievered at each rate is only around 2%, but the diffusion coefficient tuning procedure

has matched the experimental data well.
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Figure 4.15: Relative capacity utilization for two examples of low rate galvanostatic dis-
charge. The identified negative diffusion coefficient matches the capacity decrease when
comparing C/3 to the 1C rate.

Once the diffusion coefficient has been identified for room temperature, the tempera-

ture dependence is estimated based upon comparisons with capacity tests conducted at the

same rate, but varying temperatures. The resulting Arrhenius coefficients, to be utilized in

Eq. (4.29), are documented in Table 4.5 for each parameter that depends on temperature.

The positive diffusion coefficient is set to a literature value since the complex phase change

process of iron phosphate is not modeled. This omission, when combined with the charac-

teristic plateau of the iron phosphate OCV, renders the model voltage prediction somewhat

insensitive to the value of the positive diffusion coefficient. However it is noted that the

selected diffusion coefficient gives qualitative agreement with the behavior at various cur-

rent rates in the solid solution region at high cell SOC (low positive electrode composition)

near 20◦C.

165



The diffusion coefficient, transference number, and activity coefficient of LiPF6-based

electrolyte have been experimentally characterized as a function of concentration and tem-

perature for standard carbonate solvents (Valoen & Reimers, 2005). To incorporate their

results into the simplified modeling approach of this work, the parameter values from the

equivalent nominal concentration value of 1mol/L are used. The reported diffusion coeffi-

cient is combined with an assumed Bruggeman coefficient of 2.8 (Patel et al., 2003) and an

experimentally tuned porosity value to compute the effective diffusion coefficient. Given

the reported value of 1.5×10−10 m2/s in (Valoen & Reimers, 2005), using a porosity value

of 0.52 to calculate an effective diffusion coefficient based on the method given in Chap-

ter 2 gives good agreement with the time constant of relaxation following interruption of

current.

While the time constant is governed by the effective diffusion coefficient, the magnitude

of the relaxation voltage is determined by the activity coefficient. It was found that a higher

activity coefficient than reported in (Valoen & Reimers, 2005) resulted in better agreement

with the experimental data through greater diffusion overpotential in the liquid phase. This

could be possible for several reasons. First, the activity coefficient of the present model

does not vary with concentration, and the local concentrations at either end of the cell

during high current operation could be much different than the nominal value, which in turn

would lead to greater potential variation if a concentration-dependent activity coefficient

were used.

Another possible reason for the increased activity coefficient could be that some dynam-

ics associated with the OCV hysteresis are being assigned to the liquid phase. For example,

other authors have characterized a hysteresis effect with a time constant much smaller than

the long-term effect modeled in this work (Roscher & Sauer, 2011), and the larger activity
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Table 4.6: Summary of model parameters taken as independent of operating conditions.

Parameter Definition Value
εn negative active volume fraction 0.35
εp positive active volume fraction 0.35
x0 initial negative composition 0.74
y0 initial positive composition 0.026
t+0 transference number of Li+ 0.39
α Butler-Volmer transfer coefficient 0.5
εe liquid volume fraction 0.52
brug bruggeman coefficient 2.8

coefficient could be partly accounting for the fast initial relaxation of the OCV hysteresis.

Note that the solid diffusion coefficients had been previously identified and their effects

are inherently included when obtaining agreement between model and experiment during

voltage relaxation.

4.6 Model Validation

This section compares the model performance with experimental data to validate the

preceding methodology. A variety of charge sustaining (CS) and charge depleting (CD)

experiments have been performed. Charge sustaining experiments feature current pulses

that are symmetric with respect to charge and discharge, so that the battery operates within

a small window of SOC. Charge depleting experiments exhibit more discharge current than

charge current, such that the cell SOC decreases throughout the course of the experiment.

The two quantitative error metrics are the root-mean-square (RMS) error and 95th per-

centile error, indicating 95% of observed error is less than the reported value.
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Figure 4.16: Input current profile and SOC trajectory for CS validation.

4.6.1 Charge Sustaining Operation

The first set of validation data, meant to imitate CS HEV operation, is comprised of

constant current pulses of magnitudes ranging from 1C to 10C. The time duration of each

pulse is set to achieve a change in SOC of 10%. Each discharge pulse is followed by a

corresponding charge pulse such that the overall profile is charge neutral about a given

SOC. After several charge neutral pulses about a given SOC, a 1C current is used to set

SOC for the next set of current demands followed by a thirty minute rest period to ensure

the system reaches equilibrium. The overall current profile and the corresponding SOC

trajectory are plotted in Figure 4.16.

168



250 260 270 280 290 300 310

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Time (min)

V
ol

ta
ge

 (
V

)

297 299 301
2.4

2.7

3

3.3

 

 

Model
Experiment

Figure 4.17: Comparison of model predictions with experimental data for charge sustaining
profile and temperature of 5◦C.

These inputs are applied for temperatures of 5◦C, 20◦C, and 55◦C. Figures 4.17, 4.18,

and 4.19 compare the model prediction with experimental data for these three cases respec-

tively, for a SOC of 40%. The model accuracy for other SOC conditions is documented in

Table 4.7.

Examining the voltage response in detail, it becomes apparent that the initial overpoten-

tial upon application of a current demand is predicted well for all temperatures considered.

This agreement beteen model and experiment validates the resistance parameter identifi-

cation procedure from a system peformance prediction standpoint, though admittedly it

cannot be determined whether the extracted Arrhenius coefficients correspond to the true

nature of each parameter or simply provide agreement with the experimental data. The

inclusion of the liquid phase concentration and potential dynamics leads to significantly
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Figure 4.18: Comparison of model predictions with experimental data for charge sustaining
profile and temperature of 20◦C.
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Figure 4.19: Comparison of model predictions with experimental data for charge sustaining
profile and temperature of 55◦C.
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Table 4.7: Summary of model error for CS operation, reported as RMS/95th percentile
(mV ).

Temperature (oC) / SOC(%) 15 20 35 40 55 60 75
5 24.7 / 55.2 27.8 / 49.3 30.9 / 61.7 27.6 / 46.6 37.1 / 69.7 29.8 / 57.4 27.3 / 55.0
20 21.7 / 42.1 17.0 / 36.3 14.9 / 31.7 13.9 / 29.0 19.3 / 39.8 14.8 / 34.8 9.8 / 21.0
55 15.7 / 26.0 9.2 / 21.4 9.5 / 20.2 13.0 / 23.7 8.1 / 17.0 7.7 / 17.8 9.7 / 20.5

more accurate prediction of the cell voltage during the relaxation phase following current

interruption and for high current conditions.

Based on the results shown, it is evident that the model provides better agreement at

20◦C than at the two extreme temperatures, though the results are better for 55◦C than

for 5◦C. The reason for this may be the discrepancies between the fitted OCV, recorded

at 20◦C, and the experimental values begin to become more significant for extreme tem-

peratures. The noted discrepancies could be related to changes in the thermodynamic

OCV driven by entropy considerations or simply a more pronounced hysteresis phenom-

ena. There is also a general tendency to overpredict the overpotential during charging for

low-temperature operation. As a result, though the initial resistance is accurately captured

at temperatures down to -10◦C using the documented identification procedure, these lim-

itations create a practical lower temperature bound around 5◦C for validating the model

predictions. This does not pose a serious practical concern, since most systems will be

severely power limited below 5◦C and it may be expected that a satisfactory thermal man-

agament system will prevent the battery temperature from reaching such low levels.

Following authors who have examined the sources of overpotential using porous elec-

trode models (Srinivasan & Newman, 2004b; Bernardi & Go, 2011), we illustrate the rel-

ative magnitude of each overpotential source during a 10C discharge beginning from 50%
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Figure 4.20: Illustration of various sources of overpotential during a 10C discharge.

SOC, at 20oC, in Figure 4.20. The discharge duration is chosen to remove 10% SOC from

the cell, similar to the current demands of the CS validation profile.

The dominant source of overpotential is the contact resistance, Rc, which also includes

the lumped effect of the initial ohmic resistance of the solid matrix of the positive electrode

in this model structure. The time-varying solid phase ohmic losses, referred to interchange-

ably as the resistive reactant effect, contribute a minor amount of overpotential in this case

because of the short duration of the current pulse. During longer current pulses, such as

the limiting case of a constant current capacity test discussed previously, the resistive reac-

tant overpotential becomes more apparent. As expected positive kinetic losses are greater

than those in the negative electrode, though neither is as large as the ohmic losses since

the example is taken at 20oC. Liquid ohmic losses are of the same order as the kinetic

losses, and liquid phase diffusion contributes a fair amount to the total overpotential since
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the current rate is high. The overpotential from the liquid also tends to increase continually

indicating that a steady profile is not reached by the end of the pulse duration. Finally, the

solid diffusion overpotential of either electrode is surprisingly small, despite the formation

of significant concentration gradients as is expected for high current rates. The lack of

overpotential is due to the minimal variation of each half-cell OCV with respect to compo-

sition, and should not be interpreted as the solid phase having faster diffusion than in the

liquid. There are significant concentration gradients present in the solid due to transport

limitations, but the opportunities for developing overpotential are less.

Upon interruption of the current, the ohmic and kinetic contributions vanish. The sub-

sequent relaxation phase is dominated by the decay of the liquid phase concentration gradi-

ents. The solid concentration overpotential relaxes more quickly, again due to the minimal

variation of each half-cell OCV with respect to composition and not because the solid con-

centration gradient relaxes more quickly than in the liquid. The hysteresis effect is also

visible, causing a lower voltage than predicted by the bulk SOC change of the electrode

even after complete relaxation of the solid and liquid phase concentration gradients.

4.6.2 Charge Depleting Operation

Validation results are also included for a CD profile. This ensures that the model main-

tains sufficient performance predictions for current profiles that are not nominally charge

sustaining. The profile is extracted from the United States Department of Energy battery

test manual for PHEVs (Anonymous, 2010). The current and SOC trajectories are plotted

in Figure 4.21. Similarly to the CS validation, these experiments are repeated at tempera-

tures of 5◦C, 20◦C, and 55◦C.
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Figure 4.21: Current demand and SOC trajectory for charge depleting validation.

Figure 4.22 shows the model voltage prediction and experimental data for the CD pro-

file at 55◦C, while Figures 4.23 and 4.24 show zoomed views for sets of the repeated current

cycle. The model performance is acceptable, though it is worth discussing two instances

where the errors between model and experimental data are largest. In the initial portion of

the profile, there are some brief transient errors at high SOC. These could be related to the

neglect of the temperature dependence of the lithium diffusion coefficient for LiyFePO4.

The second instance of notable model error is during the latter stages of the profile, where

cell SOC is low. Throughout most of the profile, it appears there is a steady offset between

the model prediction and experimental data, though transient overpotential is still captured

well. The steady nature of the error indicates inaccurate SOC prediction in either of the

two electrodes leading to inaccurate OCV, insufficient characterization of the dependence

of the OCV on temperature, or insufficient hysteresis modeling.
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Figure 4.22: Model performance compared with experimental data for charge depleting
operation at 55◦C, showing the entire CD profile.
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Figure 4.23: Model performance compared with experimental data for charge depleting
operation at 55◦C, showing the CD profile segment from 9 minutes to 15 minutes.
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Figure 4.24: Model performance compared with experimental data for charge depleting
operation at 55◦C, showing the CD profile segment from 34 to 40 minutes.

The first two hypotheses can be eliminated in light of the charge sustaining operation

data. If they did contribute to the model error at low SOC, it would have been revealed by

the data plotted in Figures 4.17, 4.18, 4.19, and documented in Table 4.7; however, model

performance is better there than exhibited during CD operation. The characterization of the

hysteresis used relatively short duration current pulses that caused no greater than a 10%

change in SOC. The CD profile, although not a continuous discharge, is overall charge

depleting for a duration of one hour and therefore may be incurring some greater amount

of hysteresis than captured by previous experiments.

In a fashion similar to the CS profile, the overall cell resistance is overpredicted during

the high current demands of the profile. Additionally, the model generally overpredicts the

overpotential during both discharge and charge. The most likely cause is thermal gradients
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Table 4.8: Summary of model error for CD operation, reported as RMS/95th percentile
(mV ).

Temperature RMS/95th percentile (mV)
5oC 96.0 / 220
20oC 43.6 / 86.2
55oC 19.5 / 42.5

within the cylindrical cell that are not as well managed due to the larger overall rate of

current throughput in this case as compared to the charge sustaining case. This would lead

to a warmer bulk average temperature and thus a lower overall resistance. It should also

be noted that overall this current profile represents a much more dynamic situation than

the CS profile, with more step changes in the current, so there could be additional unmod-

eled effects contributing to model error during the rapid transitions between discharge and

charge, or vice versa. The error between the model predicted voltage and the experimental

result for all tested CD conditions is summarized in Table 4.8.

4.7 Sensitivity Analysis

A sensitivity study was conducted to examine the main factors and factor interactions

that could contribute to capacity fade, based on the described model. The parameter subset

is chosen as the active material volume fractions in the positive and negative (εp and εn,

respectively), and the initial amount of cyclable lithium in the positive (y0) and negative

(x0) normalized by the saturation value. To compute the sensitivity, the model capacity

prediction is determined using the nominal parameter set and a parameter set perturbed by
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Table 4.9: Discharge capacity sensitivity summary.
Parameter S(Q)

x0 1.01× 100

y0 0
εn 1.01× 100

εp 2.92× 10−4

x0 ∪ εn 1.92× 100

x0 ∪ y0 1.01× 100

x0 ∪ εp 1.01× 100

εn ∪ y0 1.01× 100

εn ∪ εp 1.01× 100

εp ∪ y0 2.92× 10−4

x0 ∪ εn ∪ y0 1.92× 100

x0 ∪ εn ∪ εp 1.92× 100

x0 ∪ εp ∪ y0 1.01× 100

εn ∪ εp ∪ y0 1.01× 100

x0 ∪ y0 ∪ εn ∪ εp 1.92× 100

10% (∆P ). The sensitivity of capacity with respect to each parameter is

S(Q) =
∆Q/Q

∆P/P
(4.38)

All possible cases are studied, ranging from single parameter changes to four-factor in-

teractions. For example, x0 ∪ y0 represents the case where both parameters are perturbed

by 10%. Table 4.9 summarizes the results of the sensitivity study when including factor

interactions for discharge capacity. Based on this preliminary analysis, it appears that the

discharge capacity is not correlated to the positive electrode parameters. While these pa-

rameters have a noticeable effect on the charge capacity, they are effectively unobservable

during discharge due to the flat OCV curve of the LiyFePO4 electrode (see Figure 4.9)
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and the cell composition ranges. For this reason they can be removed from the parame-

ter identification process, but devising methods for identifying the aging properties of the

positive electrode will be the subject of future work.

4.8 Nonlinear Estimation of Cell Aging Parameters

A nonlinear estimation procedure was defined based on the reduced-order electrochem-

ical model to obtain the evolution of the aging parameter set throughout the cell life.

Based on the preliminary sensitivity analysis and results available in the literature (San-

thanagopalan et al., 2008; Liu et al., 2008; Ramadass et al., 2004), the normalized initial

lithium concentration in the anode, x0, and the active volume fraction εn were considered

as the parameters that mostly affect the capacity degradation. In addition, the electrical

conductivity σp of the positive electrode is included in the parameter set to account for the

noticeable increase in slope of the normally flat discharge curve for the batteries used in

this work. The decrease of electrical conductivity during aging is expected and most likely

has a role in power fade as well.

In a similar fashion to the identification of capacity-related parameters discussed previ-

ously in this chapter, a nonlinear least square procedure is implemented based on the trust

region reflective algorithm (Coleman & Li, 1994; Shi et al., 2009). In this case, the algo-

rithm consists of finding the optimal set of parameters ~P ∗ = [x∗0, ε
∗
n, σ

∗
p] minimizing the

cost function in Eq.(4.39), where the error ~e is a vector of differences between the experi-

mental data and the predicted voltage (ê(t) = Vexp(t) − V (t)). The nonlinear least square

problem is cast as:

~P ∗ = argmin
[x0,εn,σp]

(
1

2
(∆~P )T

∂2~e

∂ ~P 2
(∆~P ) + (∆~P )T

∂~e

∂ ~P

)
(4.39)
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Table 4.10: Bounds for parameter estimation algorithm.
Parameter Upper Bound Lower Bound

x0 0.5 0.9
εn 0.2 0.7
σp 0 0.5

The gradients of Eq. (4.39) are computed using a finite-difference approach. The trust

region reflective algorithm is particularly advantageous because it allows for bounded es-

timation and the aging parameters in question have physical boundaries. In particular, the

normalized initial lithium concentrations may range from 0 to 1, but the initial value is

likely to range from 0.5 to 0.9 to ensure efficient use of available capacity, and to prevent

overcharging, respectively. The active volume fraction will not be greater than 0.70 due to

the porosity of the electrode and the addition of conductive agents and binders. The active

volume fraction lower bound is chosen conservatively low to allow for the possibility of

a large amount of active material loss during aging. The conductivity cannot be negative,

and should not increase from the value estimated at BOL. The described bounds for each

parameter included in the estimation scheme are summarized in Table 4.10.

Figure 4.25, compares the model voltage prediction to the capacity test data from BOL,

several intermediate stages of life, and the assessment from the end of testing. As expected,

the cell capacity progressively decreases as aging cycles continue towards EOL. For clarity,

only results that exhibited a decrease in capacity compared to the prior lowest assessment

are plotted. Every plot exhibits at least four assessments from BOL to EOL. The model

agreement is generally unchanged throughout life, suggesting that the mechanisms of aging

are being captured by the estimation procedure.
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Figure 4.25: Model prediction of voltage based on estimated aging parameters, compared
with experimental data during selected capacity assessments.
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The parameter values needed to produce the agreement between the model and ex-

perimental voltage are plotted in Figure 4.26. Both the active material volume fraction

and initial composition of the negative electrode show a decreasing trend. The electronic

conductivity of the positive electrode also has a decreasing trend with respect to charge

throughput; however, the decrease in conductivity is noticeably larger and sometimes ex-

hibits a step change while other times it decreases in the same gradual manner as capacity.

The decrease of active material is in agreement with experimental studies from literature

(Liu et al., 2008) which state that active material loss in the negative electrode can be a

significant source of performance degradation in the LixC6/LiyFePO4 system. Further

detailed analysis is needed to identify the mechanisms underlying these trends, particularly

the loss of active material which could be due to fracturing of electrode particles (Chris-

tensen & Newman, 2006).

From a system standpoint, the apparent close correlation between the active material

volume fraction and the cell capacity suggested by Figure 4.26 is quite useful. A regression

analysis could be performed to correlate the active volume fraction with capacity through-

out battery life. Recall that the electrical conductivity of the positive electrode was included

only to reduce the RMS error between experimental and model voltage prediction. There-

fore, even though it does tend to decrease during aging, it is not included in the capacity

regression. Further detailed analysis is needed to determine whether consideration of only

the active volume fraction provides accurate capacity prediction throughout battery life for

all cells, or if the loss of cyclable lithium should also be considered.

The utility of this finding lies in the fundamental significance of capacity versus that of

the active material volume fraction. Capacity is a concept defining the amount of charge

contained in an electrochemical energy storage device between specified voltage limits.
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Figure 4.26: Parameter estimates and experimentally measured capacity from capacity as-
sessments. Relative values are normalized by the beginning-of-life value.
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The volume fraction is an actual physical parameter which effects the electrical dynamics

of the cell, and as such it may be possible to estimate its value from voltage and current

measurements. Combined with an open loop model for capacity fade, accurate online

estimation of cell capacity may be possible.

4.9 Summary and Future Work

A reduced order model of LixC6/LiyFePO4 cylindrical cells has been developed for

large scale simulation, control, and estimation applications. The assumption of uniform uti-

lization that is common for previously published reduced order models is used to develop a

novel model extension incorporating the concentration and potential dynamics of the liquid

phase. Both the solid and liquid phase diffusion dynamics exhibit nonlinear transfer func-

tions that are approximated with the Pade method. This approach has the advantage of pre-

serving the parameters of the parent model, and ultimately their physical meaning, which

is useful for SOC and SOH estimation. Parameterization techniques that excite a confined

portion of the overall cell dynamics are used to identify the required electrochemical pa-

rameters and their Arrhenius dependence on temperature. The parametrization procedure

is validated with experimental data for a range of temperatures, SOC, and current rates, and

the model proves to be robust.

After conducting a sensitivity analysis of the discharge capacity with respect to several

model parameters, a set of capacity fade parameters associated with the negative elec-

trode were identified, namely the active material volume fraction, and the initial amount

of cyclable lithium. The result of the parameter estimation is that capacity is correlated to

physical parameters that cause measurable effects on the cell output voltage. This suggests

it is possible to perform estimation of capacity from the battery current-voltage dynamics
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without performing a distinct capacity test, a result that is significant for the estimation of

battery SOC and SOH for hybrid electric vehicle applications. Future work should be fo-

cused on designing robust, real-time estimation schemes for the negative electrode capacity

fade parameters.
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Chapter 5: Modeling, Aging Analysis, and Capacity Fade Model for

Composite Electrode Automotive Pouch Cells

5.1 Introduction

Recently researchers and battery manufacturers have developed and commercialized

Li-ion cells with electrodes consisting of multiple active materials (Park et al., 2007; John-

son et al., 2005; Whitacre et al., 2008). Specifically, composite LiNi1/3Mn1/3Co1/3O2 −

LiMn2O4 (NMC – LMO) cells have been directed towards plug-in hybrid electric vehicles

(Dubarry et al., 2009a,b; Belt et al., 2011; Park et al., 2007; Nam et al., 2009). Layered

NMC cathodes have high specific capacity and good thermal stability but poor performance

at high rates (Nam et al., 2009). Single component LMO spinel cathodes have high rate ca-

pability and low cost (Belt et al., 2011; Fergus, 2010), but suffer from poor cycle life due to

Mn dissolution into the electrolyte solvent (Jang et al., 1996; Xia et al., 2000; Du Pasquier

et al., 1999). By mixing these complimentary chemistries together into a single electrode,

a composite cell with high capacity and high rate capability can be achieved (Park et al.,

2007; Johnson et al., 2005; Whitacre et al., 2008). Mixing NMC with LMO also reduces

Mn dissolution, improving cycle and calendar life (Dubarry et al., 2009a,b; Jeong et al.,

1999; Yang et al., 2006). A pouch cell using composite NMC–LMO positive electrode is

pictured in Figure 5.1.
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Figure 5.1: Picture of a pouch cell including aspects of the manufacturing process (Alamgir
et al., 2011).

While the advantages of composite electrodes are apparent, there is still the need to

characterize the aging process for these cells. Many studies have been conducted to char-

acterize the aging mechanisms of single active material electrodes composed of NMC and

LMO; however the interaction between the materials within a composite structure may have

non-intuitive aging consequences. Therefore, there is a need to identify and understand the

predominant sources of aging in composite cells.

The aging process for cells using LMO electrodes has been examined using x-ray

diffraction spectra and other ex-situ techniques. The dissolution of Mn into the elec-

trolyte and subsequent deposition on the anode was confirmed, leading to capacity loss

(Du Pasquier et al., 1999; Liu et al., 2009). Other studies have shown capacity fade and

resistance rise due to Mn dissolution in the electrolyte (Jang et al., 1996), and subsequent

loss of contact between the spinel and carbon matrix (Xia et al., 2000). The presence of
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the carbon matrix also aided Mn dissolution via oxidation of the electrolyte solvent on the

carbon surface.

For NMC cells, multiple thermal, electrochemical, and x-ray spectral techniques have

identified lithium-carbonate formation on the electrode surface in the presence of air, re-

sulting in loss of oxygen from the active material and loss of cyclable lithium (Haik et al.,

2010). The NMC active material has been shown to react with standard LiPF6 electrolyte

salts at the surface of the electrode, a process made more severe by using smaller, nano-

scale particles (Sclar et al., 2009). The use of differential capacity (voltage) analysis (Smith

et al., 2007; Dubarry et al., 2009a,b; Bloom et al., 2005b,a, 2006, 2010) to detect the pro-

gression of aging has been applied to cells with NMC positive electrodes. This method

associates various peaks of the dQ/dV (dV/dQ) versus cell voltage curve with reactions and

phase changes of each electrode. The specific degradation mechanism is then discerned by

analyzing the progression of each peak throughout aging.

The reviewed literature has characterized the aging mechanisms of electrodes com-

posed of NMC and LMO singly; however, the aging interaction between the materials

within a composite structure may be complex. Structural changes of various composite

cathodes have been studied using x-ray diffraction spectra (Park et al., 2007; Johnson et al.,

2005; Nam et al., 2009; Cabana et al., 2009; Du Pasquier et al., 1999). Recently an ag-

ing campaign was conducted to establish the path dependence of resting and cycling for

composite NMC – LMO cells, where operating temperature, resting state of charge (SOC),

and rest period between cycles was varied Belt et al. (2011). Differential capacity analy-

sis was used on composite NMC – LMO cells Dubarry et al. (2009a,b) to suggest a two

stage aging process. First, cyclable lithium is consumed to initiate solid-electrolyte inter-

phase (SEI) layer growth on the electrode surfaces. Second, continued SEI growth leads to
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hindered interfacial kinetics and loss of positive active material accelerates capacity fade.

However, the graphical procedure usually applied to half-cell potentials in conjunction with

differential capacity assessments cannot be used to understand loss of a single component

of a composite electrode. Instead, a model-based approach can be useful to predict changes

that result from loss of a single component.

Initial attempts have been made to model composite electrode cells. The porous elec-

trode model (Newman & Tiedemann, 1975; Doyle et al., 1993) was extended to incor-

porate multiple active materials (Albertus et al., 2009). The model was validated with

galvanostatic discharge and electrochemical impedance spectroscopy (EIS) tests of com-

posite LiNi1/3Co1/3Al1/3O2 − LiMn2O4 cells. However, there have been no attempts to

apply these models towards studying aging to understand the mechanisms responsible for

capacity and power fade in composite cells, as has been performed on several occasions for

single material electrodes.

This chapter presents experimental results for composite automotive pouch cells aged

under dynamic duty cycles with periodic state of health assessments. Dependence of charge

rate, minimum SOC, temperature, and charge sustaining/depleting operation on the aging

process is analyzed. A reduced order, electrochemical model is developed, parametrized

with half cell data, and validated with full-cell data. The model parameters are empirically

scheduled to fit differential capacity as the cells age subject to hypothesized degradation

mechanisms. The agreement between model and experiment is related to the likelihood

and severity of proposed aging mechanisms.

After establishing the loss of cyclable lithium as the main capacity fade mechanism, an

electrochemical model of solid-electrolyte interphase growth is presented. The model is

used to predict lithium loss as a function of the negative electrode potential, temperature,
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and time. Storage and cycling cases are simulated, and the effect of the SEI film resistance

on the SEI growth rate is discussed.

5.2 Experimental

In this section, experimental methods are discussed. First the method for producing

aged cells with controlled experimental conditions is documented. Next, the procedure for

fabricating coin cells in order to characterize each electrode of the pouch cell is discussed.

The coin cells are cycled galvanostatically (constant current) to obtain the open-circuit

voltage of each electrode versus a lithium reference.

5.2.1 Aging Campaign

Pouch cells with composite LMO/NMC positive electrode and graphite (C) negative

electrode are used to study battery degradation for a PHEV duty cycle. They possess 15

Ah nominal capacity and 3.75 V nominal voltage. The test hardware consists of a 400

A, 25 V load and 400 A, 8 V supply individually controlled via Labview software and

a personal computer. The United States Advanced Battery Consortium (USABC) PHEV

charge depleting and charge sustaining profiles (Anonymous, 2010) define the aging duty

cycles. These power-based profiles are plotted in Figure 5.2 after applying a battery scaling

factor of 94, chosen to approximate a PHEV with 10 mile CD range.

For cells assigned to CD operation, the basic profile defined in Figure 5.2 is repeated

either five, six, or seven times to cause a depth of discharge of approximately 55, 65, or

75%, respectively. Then the cell is charged at either C/3, 3C/2, or 5C rate to a voltage of

4.15 V , where a constant voltage (CV) portion finishes the charge to 95% SOC and the

entire cycle is repeated. The cells charging at 5C rate are meant to represent a fast charge

situation, so the CV duration is set to five minutes instead of the twenty minute duration
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Figure 5.2: a) Charge depleting duty cycle and b) charge sustaining duty cycle.

used for the other charge rates. For cells performing CS operation, the SOC is set by using

the cell open-circuit voltage (OCV) versus SOC curve to select the voltage corresponding

to 45%, 35%, or 25% SOC. A voltage window of ± 10 mV is enforced around the nomi-

nal setpoint, and if the OCV of the cell violates this window, a small amount of charge is

used to bring the cell back within the operating window. The test conditions for all cells

considered in the aging study are summarized in Tables 5.1 and 5.2.

Table 5.1: Summary of test conditions for CD aging experiments, all conducted at 30◦C.
Charge Rate C/3 C/3 C/3 3C/2 3C/2 3C/2 5C 5C 5C

SOC (%) 95 - 40 95 - 30 95 - 20 95 - 40 95 - 30 95 - 20 95 - 40 95 - 30 95 - 20
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Table 5.2: Summary of test conditions for CS and mixed CD:CS aging experiments.
SOC (%) 45 35 25 35 35 35 35

Temperature (◦C) 30 30 30 30 30 10 45
CD:CS Ratio 0:1 0:1 0:1 1:1 1:3 1:1 1:1

5.2.2 Half Cell Experiments

Half cell experiments are conducted to parametrize an electrochemical model for de-

tailed analysis of the aging data. Positive and negative electrode samples are harvested

by disassembling a pouch cell that had not been subjected to aging experiments. Elec-

trode disks of 15 mm diameter are punched from the cell stack, and the electrode coating

is removed from one side with 1-methyl-2-pyrolidinone solvent to expose the bare metal

current collector without exposing the working side of the electrode to the solvent. All

electrode materials are thoroughly dried inside a vacuum oven before being transferred to

an Argonne filled glovebox with less than 0.1 ppm O2 and H2O for cell assembly. Coin

cell cases of 20 mm diameter and 3.2 mm height (2032) are used for this study, as de-

scribed in Chapter 2. Lithium metal electrodes of 17 mm diameter are used as the counter

and reference electrode. A single layer of 19 mm diameter separator material (type 2400

provided by Celgard, LLC) is placed between the working and reference electrodes. The

electrolyte mixture utilizes a 1:1 EC:DMC solvent with 1M LiPF6 salt. After crimping,

three C/10 formation cycles are conducted followed by three C/5 cycles, where the capacity

rate is determined by area-scaling the measured capacity of the fully assembled pouch cell.

Following formation, capacity tests are conducted at C/20 and C/10 rates to characterize

the capacity loading and OCV of each electrode.
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Table 5.3: Governing equations describing the concentration and potential dynamics.
Equations (5.1) - (5.4) represent the particle sub-model, while Eqs. (5.5) - (5.7) represent
the liquid sub-model.

Variable Governing Equation
ηi ηi(t) = Ui(t)− φi(t)−RiγjIi(t) (5.1)
ci

∂ci
∂t =

Ds,i

r

(
r2 ∂ci

∂r

)
, ∂ci∂r = 0 at r = 0, Di

∂ci
∂r = − ji(t)F at r = Rp,i (5.2)

ji ji(t) = 2i0,isinh
(

F
2R̄T

ηi(t)
)

=
γjIi

aiALεi
(5.3)

i0,i i0,i = Fki
√
ce (cmax,i − ci(Rp,i)) ci(Rp,i) (5.4)

ce εe
∂ce
∂t = De

∂2ce
∂x2 +

ai(1−t0+)
F ji(t) (5.5)

φe
∂φe

∂x = − ie(t)
σe

+
R̄T (1−t+0 )

F (1 + β)∂ln(ce)
∂x (5.6)

Ve Ve(t) = φe(Lc, t)− φe(0, t) (5.7)
V V (t) = φp(t)− φn(t)− Ve(t)−RcI(t) (5.8)

5.3 Model Development

The model presented in this chapter is intrinsically different from prior work because

it is able to model electrodes composed of multiple active materials in a computationally

efficient manner. The overall structure of the model builds upon the model structured pre-

sented in Chapter 4 with an important extension; two types of particles are included in each

electrode. In the negative electrode, the two particles define a coarse representation of a

solid-electrolyte interphase (SEI) layer thickness distribution that will be discussed in more

detail in the following sections. In the positive electrode, the two particles represent each

active material of the NMC – LMO composite.

The fundamental assumption is that the particles pass current while maintaining a uni-

form potential, in a process that is analogous to impedances operating in parallel within

an electrical circuit (for electrical circuit background see (Rizzoni, 2003)). However, there

are nonlinear, dynamic terms that are significant contributors to the cell overpotential. The

model structure is outlined in Figure 5.3, with equations summarized in Table 5.3.
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Figure 5.3: Schematic of model structure composed of liquid and particle sub-models.

Solving the nonlinear system of equations corresponding to coupling between multiple

active material particles first requires an initialization criteria for the local current, denoted

as the fraction parameter γj times the current I(t). Once the initial current division is

established, an iterative solution is completed as follows. The concentration of Eq. (5.2)

is solved by the Pade approximation method detailed in Chapter 4, using the local current

associated with each particle. The predicted concentration is used to calculated the OCV

of each particle. The OCV (Uj), overpotential resulting from the non-linear contribution

from the Butler-Volmer law (ηj), and overpotential due to the linear ohmic resistance Rj

are computed for each particle sub-model as

φ = Uj −RjIγj − ηj(Iγj) (5.9)

This gives np equations, where np is the number of active material particle types in the

electrode, j is the particle index. There are np + 1 unknowns corresponding to the np local
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currents and the electrode potential φ, so an additional equation is needed which ensures

that the local currents sum to the total external current

np∑
j=1

γj = 1 (5.10)

The system of np + 1 nonlinear equations defined by applying Eq. (5.9) to each particle

along with Eq. (5.10) is solved using an iterative nonlinear solver. After the liquid sub-

model potential has been computed and the iterative solution has been completed for each

electrode, the cell voltage is determined by Eq. (5.8).

5.4 Aging Analysis

The results of this section are divided into three sub-sections, beginning with the sum-

mary of the experimental aging campaign. Next, half cell results are presented and used

to parametrize the model, followed by validation with full cell data for a dynamic current

profile. Then the model is used to simulate prospective aging scenarios by empirically

scheduling a subset of model parameters and performing a comparison between model and

experimental differential capacity plots.

5.4.1 Pouch Cell Aging

To begin the aging analysis, a summary of the experimental capacity test data is pre-

sented in Figure 5.4.
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There is a distinct difference in the capacity fade level between cells operating in CD

mode and those operating in CS mode. Cells that operated in the mixed CD:CS regime ex-

hibited capacity fade at a weighted average rate of the two modes. Despite differences in the

degradation rate, the cells tended to follow a common degradation trend of ∆Q = c1(Ah)c2 ,

with c2 ≈ 0.45, c1 ≈ 0.10 for CD mode, and c1 ≈ 0.025 for CS mode. It is interesting

that differences in charge rate, and minimum SOC in CD mode did not produce measurable

differences in the capacity fade rate when plotted versus total capacity throughput. One po-

tential explanation for this finding is the reduced CV time of the high charge rate reduced

the total time spent at high SOC, which in turn reduced the overall rate and severity of the

aging process to offset the effects of the high charge rate.

5.4.2 Aging Mechanism Assessment

Next, differential capacity is used to analyze the source of capacity fade. First, the cell

OCV must be fit using half cell data so that features of the differential capacity plot can

be assigned to either the negative or positive electrode. Low-rate, galvanostatic, half cell

experiments were used to characterize the individual half cell OCVs. The individual elec-

trode OCVs are scaled and shifted relative to one another to identify the capacity loading,

or equivalently the active volume fraction, and the initial SOC in each electrode. A nonlin-

ear least squares approach, similar to the approach of Chapter 4, is used rather than relying

on initial half cell capacity measurements due to the complexities involved in identifying

the formation cycle irreversible lithium loss. A summary of this procedure is shown in

Figure 5.5.
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Figure 5.5: (a) Half cell OCV with identified full cell SOC range and (b) agreement with
full cell OCV measurement.
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Figure 5.6: (a) Differential capacity assessment for the cell tested in charge depleting mode
with 25% minimum SOC, 5C charge rate, at 30 ◦C. Accumulated charge throughput at the
end of testing is indicated on the lower plot. (b) Relationship between 3.5 V dQ/dV peak
and capacity fade magnitude for all tested cells. Operating conditions are intentionally not
labeled to emphasize the general trend of the entire aging campaign rather than a specific
cell result.
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The identifed SOC ranges are indicated on each half cell plot of Figure 5.5a. These

identified SOC ranges are used to give a prediction of the full cell OCV, and this prediction

is compared with the experimental cell OCV in Figure 5.5b. Overall the half cell prediction

agrees well except for a slight underprediction of the cell voltage for low SOC.

Figure 5.6a shows the differential capacity plots (as defined in Chapter 2) at beginning-

of-life (BOL) and at the end of testing for the cell experiencing the highest level of capacity

fade, which is the 5C charge rate, 25% minimum SOC, CD case. The main source of

capacity fade is the loss of the 3.5 V peak, indicated by the dashed ellipse. Above 3.5

V , the changes are mostly negligible. Although results for only one cell are plotted, this

finding is common to all cells tested as part of this aging campaign. Figure 5.6b plots the

3.5 V dQ/dV peak value versus the magnitude of capacity fade for each cell at the end

of testing, which corresponds to capacity fade values ranging from 3% to over 10%. The

3.5 V peak value is linearly correlated with capacity fade regardless of the cell operating

condition or capacity fade level. The common degradation trend of all cells for capacity

fade versus total Ah throughput, combined with the agreement in changes of differential

capacity during aging, suggests that the mechanism of capacity fade is not a function of the

operating conditions explored within this work.

There are several potential mechanisms that could be responsible for the loss of the 3.5

V peak, but two main hypotheses are discussed here. First, the positive electrode capacity

could be reduced during aging such that it becomes the limiting electrode. In this case, the

negative electrode would not be de-lithiated to the composition that corresponds to the 3.5

V peak. Loss of positive electrode capacity could be due to loss of either LMO or NMC

active material, or some combination of both. In this paper, results are presented for loss of

LMO due to the dissolution phenomenon associated with this chemistry (Liu et al., 2009).
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The second proposed mechanism involves non-uniform solid-electrolyte interphase (SEI)

layer growth that creates a distribution of SEI thickness throughout the negative electrode,

which corresponds to a a distribution of film resistances. See Chapter 2 for a discussion of

the classical views of SEI growth.

Prior research has proposed that different levels of lithiation throughout the electrode

could cause the separation of dQ/dV peaks into separate, smaller peaks (Bloom et al.,

2006). Here it will be demonstrated that the same effect can be achieved with a coarse

approximation of a film resistance distribution.

5.4.3 Model Parametrization and Validation

The first step of parametrizing the electrochemical model is to match the thermody-

namic behavior of each electrode. In the case of the negative electrode, this requires a

simple procedure that utilizes an interpolation table of the experimentally measured half

cell OCV. This approach was used in place of fitting an analytical function to more accu-

rately match the derivative of the characteristic voltage plateaus. For the positive electrode,

the half cell OCV versus Li/Li+ for LMO and NMC are cited from literature (Kim et al.

(2012) and Shaju et al. (2004) respectively). Then, the model is used to predict several

prospective C/10 discharge curves while treating the relative volume fraction of each ma-

terial as an adjustable parameter, but matching the total active material volume identified

previously. Figure 5.7a shows the prospective discharge curves for several candidate active

material mixtures.

Since the comparison between model and experiment is performed at a low rate, it

should be minimally impacted by the chosen resistance parameters and primarily governed

201



0 20 40 60 80 100
3

3.5

4

4.5

Electrode SOC (%)

V
ol

ta
ge

 (
V

)

50 60 70 80
3.6

3.7

3.8

3.9

4

Electrode SOC (%)

V
ol

ta
ge

 (
V

)
 

 

Experiment
70/30 LMO/NMC
64/36 LMO/NMC
58/42 LMO/NMC

Figure 5.7: Model prediction of C/10 galvanostatic discharge for various prospective mix-
tures of LMO/NMC, with 64/36% LMO/NMC showing the closest agreement with the
experimental data.

by the capacity contributions and OCV of the electrode components. The model agrees best

with the experimental data for 64/36% LMO/NMC relative percentage. The characteristic

knee that occurs upon transition from primarily using LMO to primarily using NMC is

matched well for this active material mixture. A relatively small range of prospective curves

is plotted even though several other simulations were conducted, because the additional

simulation results continued to diverge away from the optimal result in the same direction

as the plotted results. For instance, the 50/50% result exihibited an earlier onset of the

transitional knee, whereas the 75/25% mixture pushes the feature further towards higher

depth-of-discharge.

Due to differences in the area-specific impedance between the full cell and coin cells

that arise from the fabrication process, the half cell data is not used to identify the ohmic and
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Table 5.4: Summary of model parameters used for simulation results.
Parameter Definition Value

C LMO NMC
Rp primary particle radius (µm) 3.5 2 2
ε active material volume fraction 0.51 0.32 0.18
cmax saturation concentration of Li+ (mol/m3) 30540 17160 35340
Ds solid phase diffusion coefficient (m2/s) 1.5 ×10−14 6.5 ×10−15 6.5 ×10−15

k kinetic rate constant 3 ×10−8 1.9 ×10−9 2.5 ×10−10

q specific capacity (mAh/g) 372 109 156
L electrode thickness (µm) 50 70
A current collector area (m2) 0.877
D liquid phase diffusion coefficient (m2/s) 1.7 ×10−10

c0 electroneutral concentration (mol/m3) 1000
Lsep separator thickness (µm) 25
t0+ transference number 0.37

kinetic resistance parameters or diffusion coefficients. Instead, literature values are used,

and tuning with full cell data is applied where necessary. The full set of model parameters

and their sources are summarized in Table 5.4.

Cell performance data is used to validate the model predictions. First the model is

compared with galvanostatic discharge data for two separate rates in Figure 5.8a. The

model voltage prediction is plotted alongside experimental data for the CD aging duty

cycle in Figure 5.8b, where the data is taken shortly after the onset of the aging campaign

so that the cell is still at the BOL stage.

In the galvanostatic case, although the dependence of the capacity on the discharge rate

is minimal for the rates presented, the model adequately captures this effect. The model

overpredicts the effects of the graphite plateaus for the 1C rate, resulting in greater variation

in dV/dQ than is present in the experimental data. For the charge depleting data, agreee-

ment is good for the entire SOC range, with 95% of the error less than 23 mV . Overall the

model and experiment exhibit good agreement, which gives confidence that the model has
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Figure 5.8: (a) Model prediction of galvanostatic discharge for low and moderate rates. (b)
Model prediction for a dynamic CD profile.
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captured the performance features of each electrode. Next, the model is used to interpret

the previously described changes in the differential capacity plot.

5.4.4 Model-Based Aging Analysis

At this point, the model is used to simulate the effects of aging mechanisms that may

produce the experimentally identified capacity fade and differential capacity data. A single

cell from the aging campaign is used for this case study with CD operation, 5C charging,

and 25% minimum SOC. A capacity assessment at BOL as well as two levels of capcity

fade are studied in order to confirm whether the proposed aging mechanisms match the

aging evolution versus total charge throughput of the experimental data.

An empirical approach is used where the model parameters are first scheduled to achieve

the desired level of capacity fade, then the galvanostatic discharge is simulated. For the pos-

itive electrode case, the volume fraction of LMO is reduced to achieve the experimentally

observed level of capacity fade. For the SEI growth case, the initial amount of cyclable

lithium is reduced to match the experimentally observed capacity fade. Two particles of

equal volume fraction are simulated in the negative electrode. One particle has a con-

stant, small film resistance representative of the initial SEI thickness after formation, while

the film resistance of the other particle increases proportionately with the loss of cyclable

lithium. The additional film resistance, RSEI , beyond the formation value is defined as

RSEI =
δSEI

σSEI (anRn)ALn
with δSEI =

∆xcmax,nMSEIS

ρSEIan
(5.11)

where δSEI is the SEI thickness, σSEI is the SEI conductivity, ∆x is the decrease in x0

compared its initial value, MSEI is the molecular weight of SEI, S is the stoichiometric

coefficient relating moles of lithium to moles of SEI product, and ρSEI is the density of
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the SEI. Figure 5.9a shows the parameter values used to simulate the capacity tests and

compute the associated differential capacity. The required reduction of LMO volume frac-

tion is greater than the reduction in cell capacity. This is because the LMO has a smaller

specific capacity than the NMC material, and therefore contributes less to the capacity per

unit volume.
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Figure 5.9: (a) Relationship between relative parameter values and capactiy fade. Param-
eters are εLMO for the LMO loss case and x0 for the SEI growth case. (b) Graphical rep-
resentation of two hypothetical SEI thickness distributions with a two-point approximation
of each distribution indicated by symbols.

Two examples of SEI thickness distributions are plotted in Figure 5.9b as a probability

density function versus thickness. Since the exact distribution is unknown, both Gaussian

and uniform density are shown. In general these thickness variations may arise from local

morphological conditions that are favorable for SEI growth, or variations in the growth rate

with respect to the electrode thickness due to gradients of the local electrolyte concentration

and potential. A quantitative understanding of the distribution is outside the scope of this

work, but the proposed concept is used in an empirical manner.
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The results associated with simulating each possible degradation mechanism are given

in Figure 5.10. The model output is compared with the experimental data at 5% and 10%

capacity fade values.
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Figure 5.10: (a) Differential capacity assessment at beginning of life (BOL), and at two
stages of degradation. Experiment is indicated by symbols, and lines indicated model fit.
Only one line is shown for the BOL stage since the cases are identical when no aging is
present. (b) Constant current (1C) discharge experiment (symbols) and simulation (lines),
indicating low voltage prediction by LMO loss mechanism for equivalent capacity fade
values.

As discussed previously, there are minimal changes in the experimental data for the

region greater than 3.8 V . The SEI growth case predicts a slight shift to lower voltages of

the features in this region, as does the LMO loss case. However, the most important part

of the plot is the reduction in the 3.5 V peak value cited previously. The SEI growth case

predicts a gradual removal of the peak that corresponds well with the experimental data.
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The LMO loss results show a reduction in the peak, but it is still present to a greater extent

than the experimental data indicates for the 5% capacity fade case. For the 10% capacity

fade simulation, the peak has been removed by both the SEI growth and LMO loss cases.

However, the LMO loss case has significant error in the 3.75 to 3.85 V region that causes

underprediction of the voltage for the 0.5 to 0.7 relative capacity range of Figure 5.10b.

It is possible that there are simultaneous contributions to capacity fade from each mech-

anism. In particular, it may be possible that positive electrode limitations become more

apparent for long-term aging beyond the initial stages of aging analyzed here.

5.5 Development of Cyclable Lithium Loss Model for Capacity Fade

The previous analysis indicated that loss of cyclable lithium is a dominant aging effect

for the presented aging campaign in this chapter. In the proposed model of SEI growth,

which differs from the classical views presented in Chapter 2, it is assumed that the loss of

cyclable lithium due to the SEI side reaction can follow two possible scenarios encompass-

ing either a site-limited or kinetic-limited growth mode. It is stressed that these processes

occur simultaneously, and physically they represent the distinction between increased sur-

face area coverage and thickness evolution of the SEI respectively. It will be demonstrated

that the dynamic interaction between the two reaction modes, and the inclusion of both the

EC reduction reaction and the SEI product formation reaction are required to properly cap-

ture the time-dependent rate of capacity fade. Figure 5.11 further illustrates the difference

between the site-limited and kinetic-limited growth regimes.

In this theory, the side reaction process begins by transport of solvent molecules from

the bulk to the graphite surface in a process that is not hindered by the presence of SEI

208



(a)

(b)

Figure 5.11: Schematic diagrams of the SEI growth process for the a) site-limited and b)
kinetic-limited growth regimes (not to scale).

regardless of thickness. An electron from the graphite electrode is used to reduce the sol-

vent molecules located at the graphite surface. The graphite electrode is now slightly less

negatively charged than prior to the reaction. As a result, it loses attraction for one Li+ ion,

which de-intercalates and diffuses into the liquid phase. The site-limited model assumes

outward expansion of the thin SEI layer onto previously uncovered graphite surface. Un-

der this assumption, reactants are readily available at the reaction sites so the reduced EC

molecule reacts immediately with surrounding Li+, and it is assumed that Eq. (5.12) is not

rate limiting in this process. The additional SEI molecule leads to increased area coverage

of the SEI, and as the SEI reaction proceeds the number of reaction sites is reduced by SEI

coverage.

Both the initial reduction reaction and the SEI product formation depend explicitly on

the time-varying amount of available sites, θ(t), in moles. Beginning from Eqs. (2.103)

209



and (2.104), the revised reactions reflecting the site dependence are

EC + θ(t) + e− ⇀ EC− (5.12)

2EC− + 2Li+ + θ(t) ⇀ (CH2OCO2Li)2 + C2H4 (5.13)

The symbol θ(t) is not a participant in the reaction, but merely indicates that a reaction site

is required for the reaction to proceed. The kinetic-limited regime requires the transport of

solvent molecules through the pre-existing SEI to the graphite surface, but as highlighted by

the previous time scale analysis, this transport step cannot be rate limiting. At the graphite

surface, solvent molecules are reduced by electrons supplied by the graphite electrode sur-

face. Since the reaction is taking place in a location where SEI has previously formed, it

is assumed that there is a greatly reduced number of sites available on the graphite surface

for the EC reduction reaction to continue.

This modeling convention reflects the consideration that some SEI will continuously

form at the graphite surface due to breakdown of the existing layer and subsequent re-

exposure of available sites, but that the rate of this process is significantly reduced com-

pared with forming SEI on pristine graphite. The reduced EC molecule is transported

away from the electrode surface into the SEI volume. Then it proceeds to form SEI as a

volumetric reaction within the existing SEI to increase the thickness of the layer. Unlike

the site-limited SEI production, there is no site dependence for Eq. (5.15) since it occurs

volumetrically throghout the existing SEI instead of at the graphite surface. The revised

reactions for this SEI growth regime are

EC + χθ0 + e− ⇀ EC− (5.14)

2EC− + 2Li+ ⇀ (CH2OCO2Li)2 + C2H4 (5.15)
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where θ0 is the initial number of reaction sites, and χ � 1 is a parameter that defines

the small number of remaining surface sites after the graphite is covered by SEI. This

represents the consideration that SEI growth does not stop completely once the graphite

surface is covered, but instead continues at a reduced rate. Continued SEI growth means

that EC is still being reduced at the graphite surface, but the process is hindered by the

presence of existing SEI attached to the graphite.

5.5.1 Reaction Rate Modeling

The characterization of the number of sites and the effect of the number of sites on

the rate of EC reduction are important contributions of this model. By inspection of Eqs.

(5.12), (5.13), (5.14), (5.15), the amount of reduced EC will not be limiting if the number of

sites is large. However, as the number of sites decreases, so will the rate of EC− production

such that the rate of SEI product formation predicted by Eq. (5.15) will decrease. The

side reaction current density, iSEI is obtained for each growth regime by modeling the rate

of either Eq. (5.13) or (5.15). The total rate of active lithium consumption by the side

reaction, with units of g/s, is

dmLi

dt
=
MLi

F
(ISEI,s + ISEI,k) (5.16)

where ISEI,s is the site-limited rate, ISEI,k is the kinetic-limited rate, MLi is the molecular

weight of lithium, and mLi is the mass of lithium consumed by the side reaction. It can be

reported in g or converted to Ah.

The rate of the side reaction has been defined in terms of a current to stress that Li+

ions are the primary reactant of interest. Next, define cEC as the concentration of EC

solvent, cEC− as the concentration of reduced EC,B as the number of moles of SEI product

CH2OCO2Li, and c as the Li+ concentration. Then the rate of formation of the SEI
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product, in mol/s, for the site-limited regime is found by multiplying the side reaction

current density by the available area. The result is

dBs

dt
=
iSEI,s
F

θ(t)

ρθ
(5.17)

where iSEI,s is the site-limited current density and ρθ is a surface density conversion factor,

relating the number of sites to electrode surface area. The quantity ρθ has units of mol/m2,

and θ has units of moles. Currently ρθ is treated as an empirical parameter. The initial

number of sites is defined as θ0 = ρθanAnLnεn. Next the site-limited current density is

defined as

iSEI,s = i0,sexp

(
−φnF
R̄T

)
(5.18)

where i0,s defines the exchange current density of the side reaction and the Arrhenius ex-

ponential term characterizes the dependence of the reaction rate on the potential of the

negative electrode, φn. A Tafel expression has been used since Eq. (5.12) is assumed to

proceed only in one direction due to irreversibility of film formation. The exchange current

density is

i0,s = FkSEI,scECc (5.19)

where kSEI,s is the rate constant for Eq. (5.13), cEC is the concentration of EC molecules,

and c is lithium concentration. Combining Eqs. (5.17), (5.18), and (5.19) gives the con-

densed expression for the site-limited SEI production rate

ISEI,s =
FkSEI,scECθ(t)

ρθ
exp

(
−φnF
R̄T

)
(5.20)

Since in most relevant cases the negative electrode potential will vary in time, Eq. (5.20) is

integrated numerically.

For the kinetic-limited regime the rate, dBk/dt = ISEI,k/F , is

dBk

dt
=
iSEI,k

(
θ0−θ(t)
ρθ

)
Lavg(t)

F
(5.21)
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where iSEI,k is the volumetric current density of the kinetic-limited side reaction, and

Lavg(t) is the average thickness of the SEI. The thickness of the SEI product formed by

the described mechnism is non-uniform, since it spreads to cover the electrode surface area

over a non-negligible time frame and SEI begins kinetic-limited thickness growth immedi-

ately after formation. The portions of the layer that form initially will have a longer time

period for kinetic-limited growth and therefore develop a larger thickness than SEI formed

at less favorable sites later in the process. The volumetric current density is characterized

by an exchange current density and exponential dependence on potential

iSEI,k = i0,kexp

(
−φnF
R̄T

)
(5.22)

The definition of the exchange current density is

i0,k = FkSEI,kcEC−c (5.23)

where kSEI,k is the rate constant for Eq. (5.15) and cEC− is the concentration of reduced

EC ions. Combining Eqs. (5.21), (5.22), and (5.23) gives the condensed expression for

kinetic-limited SEI production

ISEI,k = FkSEI,kcEC−c

(
θ0 − θ(t)

ρθ

)
Lavg(t)exp

(
−φnF
R̄T

)
(5.24)

The only remaining unknown of the preceding discussion is the concentration of reduced

EC molecules, which is coupled to the kinetic-limited reaction rate.

5.5.2 Conservation Analysis for Reduced EC

A control volume analysis is used to compute the concentration of reduced EC within

the SEI layer. A one-dimensional approach could be used with respect to the SEI thickness,

but this would imply a non-uniform rate of SEI production throughout the existing SEI
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Figure 5.12: Control volume analysis for determining the mass of reduced EC within the
SEI region.

layer, with consequences that make predicting cell performance much more complicated.

A flux of EC− occurs at the graphite surface due to the reduction of EC that occurs there.

Throughout the SEI, a volumetric reaction consumes the EC− molecules to increase the

thickness of the exisiting SEI. The fluxes and sinks governing the mass of EC− within

the SEI layer are summarized in Figure 5.12, where it has been assumed that all EC− is

consumed by the side reaction, rather than exiting the SEI layer without reacting. The

differential equation defining the mass of EC− within the SEI is

δavg(t)
dcEC−

dt
= NEC− − iSEI,kδavg(t) (5.25)

Based on the disparity between the diffusion time scale and the aging time scale, the av-

erage SEI thickness is treated as constant in the above conservation equation. The flux

NEC− is defined by Eq. (5.18), except that the number of sites is set to a fixed fraction

of the initial value so that the exchange current density becomes fixed. This reflects the

fact assumption that a majority of the available reduction sites have been occupied by SEI

once the graphite surface is covered, causing EC reduction to take place at a reduced rate
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beneath the pre-existing SEI

NEC− = kred,kcECχθ0exp

(
−φnF
R̄T

)
(5.26)

Equation (5.26) defines a constant flux term with the exception of the time varying negative

electrode potential. The volumetric reaction term iSEI,k is defined by Eq. (5.22). Since this

sink term also depends on the EC− concentration, Eq. (5.25) must be solved in a coupled

fashion. Here the Crank-Nicholson implicit method is applied. This gives the average

EC− concentration within the SEI as a function of time, which is then used to compute the

volumetric reaction rate and resulting loss of cyclable Li+.

5.5.3 Consequences of SEI Growth

The relationship between the number of moles of SEI product and several important

electrochemical parameters is now discussed. To begin, the number of moles produced via

the site-limited mechanism is related to the electrode surface area covered by SEI film. A

mass balance approach is used with an assumed value for the initial thickness of SEI upon

formation as δ0, and noting that δ0θSEIρSEI = BsMSEI , which is essentially computing

the site-limited SEI mass using two equivalent calculations. Then the number of available

sites is computed as

θ(t) = θ0 −
Bs(t)MSEIρθ

ρSEIδ0

(5.27)

Note that all the terms are constant except for Bs(t), and that the number of sites is mono-

tonically decreasing. Additionally, the relationship θ(t) + θSEI(t) = θ0, where θSEI(t) is

the number of sites covered by SEI.

A similar mass balance procedure is followed for the kinetic-limited regime to relate

the number of moles of SEI product produced to the SEI thickness. For a unit surface area
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of SEI formed in the time interval t = ti to t = ti + ∆t, the SEI thickness at time t = tf is

found as

δ(t) = δ0 +

∫ tf

ti+∆t

dBk

dt

MSEI

∆ASEIρSEI
dt (5.28)

where the initial thickness that is created when new surface area is covered by SEI has

been included. The term ∆A is the newly formed SEI surface area created within the time

interval t = ti to t = ti + ∆t, given by

∆ASEI =
θSEI(ti + ∆t)− θSEI(ti)

ρθ
(5.29)

Finally, the effect of the SEI on system-level cell performance is defined. The area-

specific impedance added by the SEI is defined as

RSEI(t) =
δ(t)

σSEI
(5.30)

This is multiplied by the particle surface area covered by SEI to give a resistance. The

previously described thickness distribution gives rise to a resistance distribution.

The capacity stored within the SEI layer can be computed as a function of the SEI

volume by performing a material balance on the number of moles of Li stored in the SEI

layer.

∆Q(t) = sLi (Bk(t) +Bs(t))
F

3600
(5.31)

where the 3600 term is a conversion factor from coulombs to Ah, and sLi denotes the num-

ber of moles of Li per mole of SEI product. This expression is written as the time-varying

loss ∆Q that is removed from the initial capacity to give the capacityQ(t) = Q(0)+∆Q(t)

versus time, and it makes several assumptions. First, it assumes that the negative electrode

is capacity limiting so that there is a direct correlation between cell capacity and nega-

tive electrode capacity. It also assumes that the open-circuit voltages relative to Li/Li+ of
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each electrode satisfy the relationship ∂Up/∂Q � ∂Un/∂Q, a condition satisfied by most

commonly used electrode materials. Finally, it assumes that loss of cyclable lithium is the

dominant mode of capacity fade experienced by the cell.

The assumption of ∂Up/∂Q � ∂Un/∂Q is supported by the electrode OCV data plot-

ted in Figure 5.13. In order to simplify the problem and ease understanding, the constant

voltage storage case at 100% SOC is used in the following discussion, but the same prin-

ciples apply for any cycling case followed by a standard constant current/constant voltage

(CC/CV) charge to the cell upper voltage limit. The critical point of the discussion is that

the cell is charged to the same upper voltage limit each time, which may actually correspond

to different amounts of cyclable lithium in each lithium as long as their voltage difference

remains the same. This upper voltage limit defines the initial condition of each electrode.

Figure 5.13 shows an illustration of the composition range of each electrode and the effects

of capacity fade governed by loss of cyclable lithium from the negative electrode.

At the beginning of life, the pouch cell analyzed in prior sections of this chapter ex-

hibits 15 Ah of capacity. For discussion purposes, assume that the SEI layer side reaction

consumes 3 Ah of cyclable lithium, equivalent to 0.0634 mol, 0.44 g, or 20% of the initial

cell capacity. This causes a shift to the right of the initial condition in the negative elec-

trode, such that the new initial condition begins at the point defined by 3 Ah, 89.9 mV .

This 5 mV increase in the negative electrode initial condition requires a corresponding in-

crease in the positive electrode voltage to achieve the upper voltage limit upon charging

to 100% SOC. However, the shift along the x-axis needed to achieve this 5 mV increase

of the OCV is much smaller in the positive electrode than in the negative electrode since
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Figure 5.13: Change in electrode operating points introduced by loss of cyclable lithium
from the negative electrode, and resulting loss of cell capacity.
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∂Up/∂Q � ∂Un/∂Q. Therefore, the capacity fade of the negative electrode directly im-

pacts the cell capacity, and the cell capacity is roughly the same as the negative electrode

capacity for significant losses of cyclable lithium.

Further loss of cyclable lithium beyond the 3Ah (20%) degradation level will have sim-

ilar effects, since ∂Up/∂Q � ∂Un/∂Q is satisfied by the positive electrode until roughly

4.5 V . At this point, the cell has experienced severer levels of capacity fade that are outside

the scope of this model. Furthermore, at 4.5 V electrolyte breakdown increases rapidly at

the positive electrode and the assumptions of this model are no longer valid.

5.5.4 Capacity Fade Prediction

The SEI growth and subsequent capacity fade during storage is modeled, since this

condition does not require integration with a model of the battery dynamics. The initial

state of charge is set to either 100%, 80%, 60%, or 40% and constant voltage is maintained,

presumably through a trickle charge that is of the correct magnitude to counteract self-

discharge of the cell. Figure 5.14a shows the side reaction current versus time for the

simulation, as well as the individual contributions from the site-limited and kinetic-limited

regimes. It is evident that initially the side reaction rate due to expansion of the SEI across

the available electrode surface area dominates.

However, the rate decreases as the available sites are consumed. The kinetic-limited rate

is initially zero, then begins to rise as the surface area covered by SEI expands. Eventually,

the kinetic-limited rate surpasses the site-limited rate as the available sites trends toward

zero, indicating nearly all of the graphite surface is covered with SEI at the end of the

simulation. Then, the kinetic-limited regime continues at a steady pace for the remainder
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Figure 5.14: (a) Total side reaction current as the sum of contributions from site-limited
(Eq. (5.20)) and kinetic-limited (Eq. (5.24)) regimes for the 100% SOC aging condition.
(b) Capacity fade calculation from Eq. (5.31) for storage at various storage SOC values.
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Figure 5.15: a) Concentration of EC− within the SEI region and b) trend of negative elec-
trode SOC during aging.

of battery life, indicating that the concentration of EC− reaches a steady state within the

SEI layer.

Figure 5.14b displays the capacity fade prediction for the 100%, 80%, 60%, and 40%

SOC storage conditions showing decreasing levels of capacity fade as SOC decreases,

though each prediction follows a similar trend. The time dependence is initially an ex-

ponential decay caused by the loss of nucleation sites, and the resulting effect on the site-

limited reaction rate. This exponential followed by a linear trend produces a result that

is similar to power law empirical predictions that are often employed. Degradation trends

that are linear can also be represented by the model as the overall capacity fade trend is

determined by the relative magnitudes of each reaction rate constant, which are fitting pa-

rameters at this stage of model maturity.

Figure 5.15a plots the concentration of EC− within the SEI layer as a function of time

for the 100% SOC condition. Since this is a storage simulation instead of cycling, the con-

centration of EC− reaches a steady value rapidly. However, the magnitude of the steady
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state concentration is dependent upon the volumetric SEI reaction rate, which changes for

each SOC storage condition. The results show that the relative change in the volumetric re-

action rate is of the same order of magnitude as the relative change ini the surface reduction

flux, causing the concentration to exhibit minimal dependence on the storage SOC. Initial

“ringing” of the solution is due to taking large time steps in order to simulate months of

storage in a minimal computing time, and are sometimes observed for the Crank-Nicholson

method despite being a stable numerical approach.

Figure 5.15b plots the decreasing trend of SOC of the negative electrode for each SOC

aging condition. This decrease in the cyclable lithium of the negative electrode is the same

phenomena that causes the shift towards lower capacity with aging discussed in relation

to Figure 5.13. Essentially, the change in x of LixC6 is proportional to the capacity fade

level, but this gives a visual representation of how Li+ is consumed causing the negative

electrode SOC to shift relative to the positive electrode SOC and disrupt the intended cell

balance. The initial value, rate of decline, and final value decrease with decreasing cell

storage SOC.

5.6 Summary and Future Work

An aging campaign has been conducted to establish the degradation trend of compos-

ite cathode pouch cells. An assessment of differential capacity data at various points of

life has established that the reduction in charge storage at 3.5 V is the primary cause of

capacity fade. A model-based analysis has been used to examine various electrochemical

mechanisms for the capacity loss, and it was found that a distribution of SEI thicknesses

accompanied by corresponding loss of cyclable lithium agrees well with experimental data.

Future work will investigate the possibility of positive electrode contributions to capacity
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fade as aging becomes more severe. Long-term aging predictions require knowledge of

whether factors that limit the growth of SEI will cause positive electrode capacity reduc-

tion to become significant over time.

The mechanistic knowledge gained by this aging analysis has been used to develop an

electrochemical model of SEI layer growth. The SEI product formation reaction occurs

volumetrically within the SEI layer and the EC reduction occurs at the graphite surface,

requiring open sites. Capacity fade results have been presented for the storage case, where

it is assumed that a charging current is present to counteract the discharge effect of the side

reaction current. Future work will focus on calibrating this model to predict the capacity

fade trends of the pouch cell aging campaign, including cycling results for charge depleting

and charge sustaining conditions.
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Chapter 6: Summary

6.1 Introduction

In this dissertation, the aging process of Li-ion batteries has been investigated through

the use of novel modeling techniques combined with parameter estimation and experimen-

tal diagnostics. Theoretical modeling tools have been developed ranging from a first prin-

ciples, localized approach to system-oriented models based on volume-averaged quantities.

These models have been validated for two chemistries that are relevant to electrified vehicle

powertrains. Aging has been analyzed via parameter estimation, experimental diagnostics,

and first-principles modeling of the side reactions that consume cyclable lithium.

6.2 Mathematical Modeling of Li-Ion Batteries

There are many techniques that are capable of modeling lithium-ion battery perfor-

mance, where performance modeling is defined as predicting the battery voltage in re-

sponse to current and temperature inputs. The field of electrochemical modeling combines

the contributions of thermodynamics, kinetics, and transport to predict the time-varying

voltage of an electrochemical cell. The battery modeling literature does not account for

electrical double layer effects, and there is a lack of reduced order modeling methods for

224



predicting cell voltage for automotive operating conditions that feature large (compared to

cell capacity), dynamic currents.

Aging mechanisms and their sytem-level effects must be included in high fidelity per-

formance models. To assist with the identification of aging effects, diagnostic techniques

have been presented including power, energy, and differential capacity assessments.

6.3 Electrical Double Layer Effects in Li-Ion Batteries

A simplified model structure that uses analytical expressions for the electroneutral liq-

uid concentration and potential in the separator, kinetic overpotential caused by the elec-

trical double layers, and solid lithium concentration in each electrode has been presented.

The primary conclusion is that the presence of diffuse charge in the electrical double layer

causes greater initial overpotential and greater variation of overpotential with respect to

battery state of charge when modeled in an intercalation battery. The resistive effects of

the cathode solid matrix have been added to the theoretical current-voltage relationship of

the EDL and electroneutral liquid. It has been shown that a single resistance value that in-

creases with depth of discharge improves the agreement with experimental data for a range

of galvanostatic discharge experiments from C/3 to 4.8C.

Future work can investigate the relationship between SEI growth rate and the variation

in potential that is predicted by including the effects of the electrical double layer. Classical

porous electrode models correspond to the Helmholtz limit of the double layer, but using

the Gouy–Chapman limit may modify the aging rate and cause a propensity for the SEI

to exhibit variations in density throughout the layer thickness, since local growth rates are

highly dependent on the local potential value.
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6.4 Graphite/LiFePO4 Cell Modeling and Aging Analysis

A reduced order model of LixC6/LiyFePO4 cylindrical cells has been developed for

large scale simulation, control, and estimation applications. The liquid phase diffusion dy-

namics have been included to more accurately model battery performance for high currents.

Both the solid and liquid phase diffusion dynamics exhibit nonlinear transfer functions that

are approximated with the Pade method to provide a computationally efficient solution.

This approach has the advantage of preserving the parameters of the parent model, and

ultimately their physical meaning, which is useful for SOC and SOH estimation. Param-

eterization techniques that excite a confined portion of the overall cell dynamics are used

to identify the required electrochemical parameters and their temperature dependence. The

parametrization procedure is validated with experimental data for a range of temperatures,

SOC, and current rates, and the model structure proves to be robust.

After establishing that the model represents battery performance, a sensitivity analysis

was conducted for the discharge capacity with respect to several model parameters. A set

of aging parameters were identified, namely the active material volume fraction and the

initial amount of cyclable lithium of the negative electrode. The result of the parameter

estimation is that capacity is correlated to a physical parameter set that has noticeable

effects on the cell output voltage. This suggests it is possible to perform estimation of

capacity from the battery current-voltage dynamics without performing a distinct capacity

test, a result that is significant for the estimation of battery SOC and SOH for hybrid electric

vehicle applications. Future work will focus on developing estimation algorithms for SOH

and investigating prognostics methods. Additionally the knowledge of parameter trends

versus charge throughput can be combined with a cumulative damage model to form a

semi-empirical, predictive model of capacity fade.
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6.5 Composite Electrode Cell Modeling, Aging Analysis, and SEI Growth
Modeling

An aging campaign has been conducted to establish the capacity fade of composite

cathode pouch cells based on minimum SOC, charge rate, and operating mode (charge de-

pleting or charge sustaining). Half cell experiments were performed in order to obtain the

OCV vs. Li/Li+ for each electrode of the pouch cell individually, which leads to the as-

signment of differential capacity features to each electrode. An assessment of differential

capacity data at various points of life has established that the reduction in charge storage

at 3.5 V correlates well with the measured capacity fade, a feature that corresponds to the

negative electrode. A model-based analysis that models explicitly the dual materials within

the composite cathode has been used to examine various electrochemical mechanisms for

the capacity loss, including LMO dissolution, and it was found that a distribution of SEI

thicknesses accompanied by corresponding loss of cyclable lithium agrees well with exper-

imental data. Future work will investigate the possibility of positive electrode contributions

to capacity fade due to LMO dissolution as aging becomes more severe. Long-term aging

predictions require knowledge of whether factors that limit the growth of SEI will cause

positive electrode capacity reduction to become significant over time.

The mechanistic knowledge gained by this aging analysis has been used to develop an

electrochemical model of SEI layer growth. The SEI product formation reaction occurs

volumetrically within the SEI layer and the EC reduction occurs at the graphite surface,

requiring open sites. This growth mechanism differs from classical views and does not

require unrealistically small transport parameters to reproduce experimentally observed

capacity fade rates. Capacity fade results have been presented for the storage case, where

it is assumed that a charging current is present to counteract the discharge effect of the side
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reaction current. Future work will focus on calibrating this model to predict the capacity

fade trends of the pouch cell aging campaign, including long-term cycling results for charge

depleting and charge sustaining conditions. Also, the relationship between the site-limited

growth rate and the distribution of SEI thickness will be studied in conjunction with the

SEI resistance distribution that reproduces experimental differential capacity data.
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