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Abstract

Malicious codes are one of the biggest threats on the Internet according to the

US-CERT vulnerability database [109]. One salient example is Conficker, a malicious

code targeting MS Windows that was released in 2009. Before it was discovered, mil-

lions of computers on the Internet were infected [60]. Many approaches to malicious

code detection have been proposed. However, such approaches have a key weakness:

they do not leverage context information from target systems and input data in order

to perform detection. Malicious codes can fully utilize context information for attack

purposes, thereby evading detection. To address this issue, we propose a method-

ology that leverages such context information for malicious code detection. Based

on this methodology, we design and implement three detection systems for malicious

code detection on servers, Web browsers, and smartphones. Our first system takes

“snapshots” of a target process’s virtual memory space and leverages these snap-

shots to reveal malicious codes’ true behaviors when consuming input data. Based

on the first system, we construct the second system, which leverages Web browsers’

JavaScript code execution environment to detect malicious JavaScript codes that ex-

ploit browsers’ memory errors. Our third system uses an information flow tracking

mechanism to detect malicious codes that steal sensitive information stored in smart-

phones. We comprehensively evaluate these detection systems with many real-world
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malicious codes. Our experimental results indicate that the context information can

be used to greatly improve detection effectiveness with reasonable overhead.
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Chapter 1: Introduction

1.1 Background

Malicious codes are executable codes that can be leveraged to compromise the

security of target applications and hosts. According to the US-CERT vulnerability

database [109], they constitute one of the biggest threats to the Internet. When a

computer is infected by malicious codes, they compromise the confidentiality of data

stored thereon. Malicious codes can also compromise the data’s integrity. Worse,

such codes can leverage victim systems to infect other systems, exploiting them to

form a botnet—a network of “zombie computers” facilitating large scale attacks via

the Internet. A typical example malicious code with such functionality is Conficker.

Conficker [60] targets Microsoft (MS) Windows systems. Before its detection in

2009, millions of computers had been infected [60]. Conficker infects computers and

propagates itself by exploiting the MS08-67 vulnerability in the MS Windows Server

service [71]. This vulnerability allows attackers to remotely execute arbitrary code

when a target system receives a specially crafted remote procedure call (RPC) request.

The vulnerability can be used to create exploits with worm functionality [71].

The vulnerability occurs in the wcscpy s function, which copies a string from one

memory location to another. The function is called by the macro tcscpy s that
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does not check boundary conditions for the given string. When a very long string is

provided, a buffer overflow occurs. This can be exploited to inject malicious codes

into a target process and redirect its control flow. In MS Windows systems, the

macro tcscpy s is called by two RPC application programming interfaces (APIs),

i.e., the functions NetPathCompare() and NetPathCanonicalize() [63]. Hence, the

vulnerability can be used via RPC to inject malicious codes into a vulnerable system

and activate them. When attackers use Conficker to attack vulnerable systems, the

first step to inject shellcodes into the target processes. (Shellcode is a segment of

binary code that is not self-contained.) The detailed infection procedure is as follows

[63]:

1. Malicious users craft a packet containing a shellcode, and send it to TCP ports

139 or 445 of a victim system. These two ports are used for file and printer

sharing in MS Windows. After the target process receives the packet, the shell-

code is injected into the process’s address space. Control flow is directed to the

shellcode, activating it.

2. After the shellcode is activated, it registers itself as a service, attempts to obtain

an IP address from predefined websites, and downloads a Web server program

from the website addressed by this IP address. The shellcode enables the Web

server after the download completes.

3. Once the Web server is enabled, the shellcode scans for other vulnerable com-

puters. When a target is found, the infected computer’s IP address or Uniform
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Resource Locator (URL) is sent to the target as the payload. The target com-

puter then downloads the malicious code from the given address and commences

infection of other computers.

Conficker has infected millions of computers in the Internet. These compromised

computers are interconnected forming a botnet [31]. Such a botnet, controlled by

attackers, becomes a platform for further sophisticated attacks in cyberspace.

The Conficker example illustrates the importance of defending against malicious

code infection. Our work studies effective malicious code detection.

1.2 State of the Art

In general, malicious code is injected into target systems via input data. De-

pending on the time when malicious code detection systems are activated, current

detection methods can be classified into the following two categories:

• Detection Before Input Data Consumption (DBC): The detection systems are

activated before the target systems consume the input data. When the de-

tection systems receive these input data, they check if the data contain any

malicious code. If malicious code is found, the data are dropped and alerts are

raised; otherwise, the target systems consume the data for further processing.

Detection methods used in such systems include: (a) signature based meth-

ods, which use string patterns to check malicious code [64, 96]; and (b) code

analysis based methods, which interpret input data into machine instruction

sequences and then check if the instruction sequences exhibit malicious behav-

iors [55, 66,82–84,114].
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• Detection During Input Data Consumption (DDC): The detection systems are

activated when the target systems actually consume the input data. Their

execution will be halted if any potential vulnerabilities are exploited. These

methods include information flow tracking (IFT) [14, 77, 89], address space

randomization (ASR) [10, 80, 116], instruction set randomization (ISR) [8, 62],

data space randomization (DSR) [11], and operating system (OS) extension ap-

proaches that insert checkpoints in OS kernels or libraries to determine if calls

to vulnerable library functions are indeed safe [7, 61].

In general, DDC methods have better detection accuracy because they focus on

preventing vulnerability exploitation. When vulnerabilities are exploited, such meth-

ods raise alerts and stop execution of target processes. However, they have several

disadvantages compared with DBC methods. On the one hand, DDC methods can

greatly slow down program execution. They usually need extra codes to instrument

execution of target processes. For example, in IFT based methods [14, 77, 89], when

the value of one variable is assigned to a second variable, the first variable’s origin

information needs to be propagated to the second variable. Such propagation is per-

formed by extra code inserted by the DDC method. As a result, the target program’s

execution is considerably slowed. On the other hand, it is hard to determine the root

cause of intrusion using DDC based methods. From an intrusion detection perspec-

tive, determining what input data contain malicious code is the most crucial task.

After such input data are found, they can be used to generate signatures, which other

systems can leverage to check if their input data contain similar malicious codes.

This helps stop propagation of malicious codes in a timely manner. In DDC based

methods, program vulnerabilities can be located easily, but input data containing
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malicious code cannot be identified easily. This occurs because a target program

can have many different types of input data that can be modified many times before

vulnerability exploitation.

1.3 Motivation

Although current detection methods can be leveraged to help prevent system ex-

ploitation, they have two major disadvantages. First, some malicious codes can evade

detection by such methods. Second, some benign input data or codes can be incor-

rectly classified as malicious. These disadvantages arise because current detection

methods do not fully leverage context information from target systems or input data

while performing detection.

Current DBC based detection methods do not fully leverage such context informa-

tion while performing malicious code detection. These methods check the input data

in an environment isolated from the target process. Malicious codes that intelligently

leverage target processes’ virtual memory information can thus evade detection. One

example is the swarm attack, which leverages spatial properties of virtual memory

blocks to conduct attacks [23]. In the swarm attack, the entire shellcode is first

split into several parts that are sent via different messages to the target process,

which places these messages into different virtual memory blocks. After the last mes-

sage arrives, the shellcode contained in the last message is activated by exploiting

a memory error. This shellcode directs control flow to shellcodes received in previ-

ous messages and stored in the other blocks. The entire shellcode can be “chained

together” and executed. Such attacks cannot be detected by current DBC based de-

tection methods, which can only identify an entire shellcode in one message. When
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receiving a message, such methods place it in an isolated environment for checking.

This environment does not use the target process’s real virtual memory information

to chain together shellcodes in different messages.

In addition, current DDC based detection methods do not fully leverage context

information from input data in detection. As a result, benign data or codes can

be classified as malicious. For example, such misclassification can occur in Taint-

Droid [41], a DDC detection system that can help detect information leakage in

smartphones. In TaintDroid, any data originating from the Internet are labeled as

net. TaintDroid does not keep the data’s source information in the system. When the

data are transmitted over the Internet, TaintDroid will raise an alert to indicate that

the executed program may be malicious and is leaking sensitive information. Because

there is no source information for the data, it is difficult for a smartphone user to

determine whether the data transmission is truly illegal. Accordingly, it is difficult

for the user to determine if the executed program is truly malicious. For example,

AT&T subscribers can use the myAT&T smartphone application to pay their AT&T

bills online. Subscribers need to read the bill information from AT&T, process it,

and send it to AT&T via the application. In TaintDroid, data related to the bill are

labeled net. Later on, TaintDroid alerts the user because some labeled data will be

transmitted. In this case, without information about the data’s exact origin, it is not

easy for the user to determine the legality of the billing information flow. As a result,

the application can be incorrectly classified as malicious.

From the above discussion, it is obvious that the context information from target

systems and input data is very important in malicious code detection. Such context

information can help detection systems reduce both their false negative rates and their
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false positive rates so that malicious code can be detected more effectively. Therefore,

this dissertation focuses on leveraging such context information to detect malicious

code.

Despite over two decades of independent, academic, and industrial research, mem-

ory errors still undermine the security of computer systems [111]. Typical memory

errors are buffer overflows, which are often used to inject malicious code into target

processes’ address spaces and redirect control flows. For many years, buffer over-

flows have been ranked among the top 3 of the CWE SANS top 25 most dangerous

software errors [93]. Thus, we first explore methods that leverage target processes’

context information to detect malicious codes that exploit the processes’ memory

errors. Although our detection systems are implemented on server and desktop com-

puters, our methods can also be applied to smartphones. In addition, an increasing

number of malicious codes target smartphones [45, 108]. Malicious codes that steal

sensitive information are extremely dangerous. Hence, we further study detection

methods that leverage the context information of target processes and the context

information of data stored in smartphones to detect information leakage therein.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents our sys-

tem for detecting malicious codes in input data. Chapter 3 introduces our detec-

tion system that is used to detect malicious codes that are dynamically generated

in JavaScript codes. Chapter 4 presents our system for detecting malicious codes

targeting smartphones. Chapter 5 concludes the dissertation.
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Chapter 2: Malicious Code Detection In Network Messages

2.1 Overview

According to the US-CERT database [109], buffer overflows are very common and

among the most critical software vulnerabilities. Attackers routinely exploit these

vulnerabilities to inject malicious shellcodes and gain control of computer systems.

Unlike self-contained pieces of malware, malicious shellcodes are segments of binary

code disguised as normal input data. They are injected into a target process’s virtual

memory and hijack the process control flow. It is important to filter out messages

that contain such shellcodes before they cause damage.

Recall that the current detection approaches are classified into two categories:

detection during input data consumption-based approaches (DDC -based approaches

for short) and detection before input data consumption-based approaches (DBC -

based approaches for short). DDC-based approaches, which conduct detection when

the target process actually consumes input data, include flow tracking [14, 77, 89],

randomization [10, 80, 116], compiler extensions [1, 19, 27, 28, 43, 98], OS extensions

[7,61], and hardware modifications [70]. In spite of their strong detection capabilities,

these approaches are often heavyweight and they may not detect malicious shellcode

in a timely manner [85]. DBC-based approaches, in which input data are checked
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before the target process consumes them, can be subdivided into two categories:

static analysis [21, 22, 65, 107] and dynamic analysis [82, 83]. Static analysis uses

code-level patterns to detect malicious shellcodes in input data whereas dynamic

analysis conducts network-level emulation. Section 2.3 gives a detailed discussion of

these analyses.

In this chapter, we focus on DBC-based approaches, which are lightweight. How-

ever, such existing approaches have limited detection capability. Attacks exploit

knowledge of the target process’s runtime information to evade detection by DBC-

based approaches via techniques such as polymorphism and metamorphism. We will

present two representative examples in Section 2.3 that illustrate these attacks. The

first example uses runtime information generated by the target process and the second

uses dynamic information generated by the attack on the fly. Existing DBC-based ap-

proaches fail to detect these attacks. In general, these approaches conduct detection

by scanning input data, but they rarely utilize the target process’s runtime informa-

tion. We aim to remedy this situation by introducing a new detection methodology

to detect malicious shellcodes. We do not focus on detecting self-contained malware

programs.

We highlight our contributions in this chapter as follows.

• We propose a new malicious shellcode detection methodology in which we take

snapshots of the target process’s virtual memory immediately before input data are

consumed and “feed” these snapshots to a lightweight DBC-based malicious code

detector that we design and implement.

• We propose using these snapshots to instantiate a runtime environment that

emulates the target process’s input data consumption. This environment facilitates
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monitoring shellcodes’ behaviors. We use the snapshots to examine system calls

invoked by (executable) input data and the parameters thereof as well as the process’s

execution flow to detect malicious shellcodes.

• We implement a prototype system based on the above methodology in Debian

Linux with kernel version 2.6.26. Our system is adaptive and extensible. It is designed

to be loaded into the target process’s address space statically or dynamically. Our

system can efficiently fetch and use the target process’s virtual memory snapshots for

shellcode detection.

• We conduct extensive experiments based on real traces and thousands of ma-

licious shellcode samples. The experimental results illustrate our detection’s low

runtime overhead and high detection accuracy, which achieves lower overhead and

higher accuracy than state-of-the-art DBC-based approaches.

Note that unlike emulators such as QEMU [88] that emulate an entire OS and

processes running therein, our system only emulates instructions decoded from input

data. In addition, our detection methodology has broad adaptability. Other dy-

namic analysis techniques can be developed based on virtual memory snapshots and

DBC-based static analysis approaches can apply our methodology to augment their

shellcode detection capabilities.

Chapter Organization. The rest of this chapter is organized as follows. We intro-

duce related work and its limitations in Section 2.3. We present our system design

in Section 2.3. We present our implementation and evaluation thereof in Section 2.4.

We conclude in Section 2.5.
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Figure 2.1: In DBC-based intrusion detection approaches, the input data are checked
before they are consumed by the target process. Such state-of-the-art approaches do
not use the target process’s runtime information.

2.2 Limitations of Existing Work

Intrusion detection approaches can be classified as Detection Before Input Data

Consumption-based (DBC-based) and Detection During Input Data Consumption-

based (DDC-based).

2.2.1 DBC-Based Approaches

In this intrusion detection approach category, input data are checked as executables

before the target process consumes them as shown in Fig. 2.1. We subdivide this

category into two subcategories: static analysis and dynamic analysis.
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Static Analysis. In static analysis, input data are first disassembled and then

screened via code-level pattern analysis and matching. Patterns can be complicated

signatures or simple heuristics obtained from studying known malicious codes. In

[107], Toth and Kruegel proposed identifying exploit code by detecting NOP sleds,

an approach that the Snort IDS preprocessor also uses [48]. However, attacks can

bypass this detection by either not including NOP sleds or by using polymorphic

techniques [18, 36, 68]. Chritodorescu in [21] and [22] proposed techniques to detect

malicious patterns in executables by semantic heuristics. Lakhotia and Eric in [65]

used static analysis techniques to detect obfuscated calls in binaries. Chinchani and

van den Berg proposed a rule-based scheme in [18]. Wang et al. proposed SigFree [114]

that checks if packets contain malicious codes using “push and call” patterns and the

number of useful instructions in the longest possible execution chain.

In general, static analysis is efficient. However, it has limitations regarding accu-

racy and completeness. In [9], Bayer et al. point out that, in general, determining

program behavior via static analysis is undecidable, and binary obfuscation often

effectively thwarts both the disassembly and code analysis steps.

Dynamic Analysis. Instead of static code-level patterns, dynamic analysis detects

malicious input data by exploiting information generated during program execution

on those data. The state-of-the-art dynamic analysis approach is network-level em-

ulation, which Polychronakis et al. proposed [82, 83]. Network-level emulation dis-

assembles input data into several possible execution chains and then emulates the

execution of each chain. If any chain exhibits malicious behavior during emulation,

the input data are classified as malicious.
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1 push esp ; esp points here
2 pop eax ; [eax] <− 0xBFFF0000
3 sub eax,0x2d2d2d6c ; [eax] <− 0x92D1D294
4 sub eax,0x5858557a ; [eax] <− 0x3A797D1A
5 sub eax,0x7a7a7a7a ; [eax] <− 0xBFFF02A0
6 push eax
7 pop esp ; [esp] <− 0xBFFF02A0
8 and eax,0x2321252d ; [eax] <− 0x20012020
9 and eax,0x44424242 ; [eax] <− 0x00000000

10 sub eax,0x2d2d2d2d ; [eax] <− 0xD2D2D2D3
11 sub eax,0x252d252d ; [eax] <− 0xADA5ADA6
12 sub eax,0x655e6761 ; [eax] <− 0x48474645
13 push eax ; M[0xBFFF029c] = "EFGH"
14 sub eax,0x2d2d2d2d ; [eax] <− 0x1B1A1918
15 sub eax,0x5e5e5e5e ; [eax] <− 0xBCBBBABA
16 sub eax,0x78787879 ; [eax] <− 0x44434241
17 push eax ; M[0xBFFF0298] = "ABCD"
...

Generated 
Block N…

Generated 
Block 2

Generated 
Block 1

Decryptor 
for Block 1

Decryptor 
for Block 2…

Decryptor 
for Block N

Bootstrap 
Code

esp

Code Execution

Code Generation

Figure 2.2: Original Shellcode Execution Trace Produced by “Encode” Engine.

Even though network-level emulation can achieve better detection completeness

than static analysis, it is still prone to evasion. The problem is that it has insufficient

context information about the target process and thus it must make assumptions

during initialization and execution emulation. We will introduce two representative

examples that can bypass it.

Before we give the examples, we provide some background information to aid

understanding. Our examples are derived from shellcodes that are produced by an

adapted version of the “Encode” shellcode engine [97]. The attack mechanism of

such shellcode is illustrated in Fig. 2.2. The shellcode exploits a stack buffer overflow

to which esp points after the shellcode is injected into the target process’s address
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1 push esp ; esp points here
2 pop eax ; [eax] <− 0xBFFF0000
3 sub eax,0x2d2d2d6c ; [eax] <− 0x92D1D294
4 sub eax,0x5858557a ; [eax] <− 0x3A797D1A
5 sub eax,0x7a7a7a7a ; [eax] <− 0xBFFF02A0
6 push eax
7 pop esp ; [esp] <− 0xBFFF02A0
8 and eax,0x2321252d ; [eax] <− 0x20012020
9 and eax,0x44424242 ; [eax] <− 0x00000000

10 mov ebx,0xa0ef(ebp); 0xa0ef is known
11 cmp ebx,0x252d252d ; compare [ebx], 0x252d252d
12 jz +3 ; conditional jump
13 lidt eax ; privileged instruction
14 sub eax,ebx ; [eax] <− 0x48474645
15 push eax ; M[0xBFFF029c] = "EFGH"
16 add ebx,0x04350435
17 add ebx,0x04cb04cb
18 cmp ebx,0x2d2d3d3d ; compare [ebx], 0x2d2d2d2d
19 jz +3 ; conditional jump
20 lidt eax ; privileged instruction
21 sub eax,ebx ; [eax] <− 0x44434241
22 push eax ; M[0xBFFF0298] = "ABCD"

......

Generated 
Block N…

Generated 
Block 2

Generated 
Block 1

Decryptor 
for Block 1

Decryptor 
for Block 2…

Decryptor 
for Block N

Bootstrap 
Code

Code Execution
Code Generation

Conditional Jump

Generated 
Block N…

Generated 
Block 2

Generated 
Block 1

esp

Figure 2.3: Shellcode for Example 1.

space. After activation, this shellcode decrypts a series of encrypted payloads, each

of which contains 4 bytes. Due to the stack’s LIFO nature, the decrypted payload

is generated backwards, starting with its last four bytes. When the final decrypted

block is pushed onto the stack, the shellcode’s control flow “meets” the newly built

payload and the control flow is redirected to the decrypted instructions. Though is

difficult for static analysis to detect such attacks, network-level emulation can detect

them [83]. Now we are ready to introduce the examples.
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− Example 1: Fig. 2.3 shows the IA-32 assembly language code for the first type

of attack. Assume the attacker has some knowledge of the target process runtime

information. More specifically, he knows that a constant value is stored somewhere

in memory that can be used as well as the value in ebp, which is true for almost all

stack-based buffer overflows [23]. After zeroing eax (in instruction 9), the decryption

block process begins, again using separate decryption blocks (10–15, 16–21, . . . ) for

each four bytes of the encrypted payloads. However, the decryption blocks in this

trace rely on a constant value stored in address 0xa0ef + (ebp). This value is put

into ebx (instruction 10), and then compared with a desired value (instruction 11).

If this value differs from the one the attacker wants, decryption stops and a privi-

leged instruction is executed (instruction 13). Otherwise, decryption continues. As

network-level emulation does not have real runtime information about the target pro-

cess, all eight (emulated) general-purpose registers are initialized to hold the absolute

address of the first instruction of each execution chain. An incorrect ebp will result

in the emulated execution of instruction 13. Since lidt is a privileged operation,

which malicious shellcodes should not contain, emulation will stop and consider the

execution chain containing this instruction benign.

− Example 2: Chung and Mok proposed a new type of attack, the swarm attack,

which can defeat existing DBC-based approaches that detect malicious shellcodes one

message at a time [23]. In swarm attacks’ methodology, shellcodes can be injected via

several messages instead of one message. The authors point out that it is possible to

create the decoder inside the attacked process’s address space using multiple instances

thereof with each instance of the attack writing a small part of the decoder at the

designated location [23]. Fig. 2.4 shows the IA-32 assembly language code of an
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attack using this methodology. In this case, the entire shellcode is separated into

several blocks, each of which (except the first) is a decryptor and can only generate

one new instruction if it is executed. If the entire shellcode is sent to a target process

using one message, then network-level emulation will easily detect it [83] because the

number of newly generated instructions during emulation of the malicious shellcode

will exceed a threshold that is set in advance. According to the swarm methodology, if

each block is injected into a target process using one message via one attack instance,

the entire malicious shellcode can evade detection by network-level emulation because

the threshold for the number of newly generated instructions during the emulation of

a shellcode is too large [82,83].

The above two examples represent two types of attacks that can thwart state-

of-the-art DBC approaches. The first type exploits runtime information generated

by the target process. The second one uses information generated by the previous

attacks.

2.2.2 DDC-Based Approaches

In this intrusion detection approach category, detection is conducted while pro-

cesses consume input data. If malicious runtime behavior is detected, the process

often stops and sounds an alarm. The input data and the log of target process states

are stored for further analysis. Flow tracking [14, 77, 89] uses a taint-based method

to check whether the input data are malicious. Randomization can effectively de-

fend against attacks exploiting memory errors through address space randomization

(ASR) [10, 80, 116], instruction set randomization (ISR) [8, 62] and data space ran-

domization (DSR) [11]. OS extension approaches insert checkpoints in OS kernels or
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1 push esp ;
2 pop eax ; [eax] <− 0xBFFF0000
3 sub eax,0x2d2d2d6c ; [eax] <− 0x92D1D294
4 sub eax,0x5858557a ; [eax] <− 0x3A797D1A
5 sub eax,0x7a7a7a7a ; [eax] <− 0xBFFF02A0
6 push eax
7 pop esp ; [esp] <− 0xBFFF02A0
8 and eax,0x2321252d ; [eax] <− 0x20012020
9 and eax,0x44424242 ; [eax] <− 0x00000000

Message 1

10 sub eax,0x2d2d2d2d ; [eax] <− 0xD2D2D2D3
11 sub eax,0x252d252d ; [eax] <− 0xADA5ADA6
12 sub eax,0x655e6761 ; [eax] <− 0x48474645
13 push eax ; M[0xBFFF029c] = "EFGH"

Message 2

14 sub eax,0x2d2d2d2d ; [eax] <− 0x1B1A1918
15 sub eax,0x252d252d ; [eax] <− 0xBCBBBABA
16 sub eax,0x655e6761 ; [eax] <− 0x44434241
17 push eax ; M[0xBFFF029c] = "ABCD"

Message 3

...... ......

Code Execution
Code Generation

Bootstrap 
Code

Decryptor 
for Block N …

Decryptor 
for Block 2

Decryptor 
for Block 1

Generated 
Block N…

Generated 
Block 2

Generated 
Block 1

Payload for
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Payload for
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Payload for
Message N

Payload for
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esp

Figure 2.4: Shellcode for Example 2.

libraries to determine if calls to vulnerable library functions are safe [7,61]. In general,

DDC-based approaches have good detection completeness due to their extensive use

of context information. However, troubleshooting is inefficient [85,114].

Compared with DDC-based approaches, DBC-based approaches are efficient in

troubleshooting but their detection completeness is not as good as DDC-based ap-

proaches’ detection completeness. This is because DBC-based approaches do not
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use the runtime virtual memory information of target processes. We design a new

DBC-based detection methodology that overcomes this limitation.

2.3 System Design

2.3.1 Design Rationale

We propose taking snapshots of the target process’s virtual memory before input

data are consumed and feeding these snapshots to our DBC-based detection system.

This idea is illustrated in Fig. 2.5, where the DBC-based detector has a new input

that is the virtual memory runtime information of the target process.

A virtual memory snapshot records the state of a process’s virtual memory at this

time, including the target process’s address space and register values. In our system,

snapshots are used in the following two ways:

− Instantiating Virtual Execution Environment. Immediately before the target

process consumes data, its control flow is directed to our system. A virtual mem-

ory snapshot is taken at this moment and the detection procedure is immediately

activated, instantiating a virtual environment where the input data are executed and

monitored. Snapshots are used to initialize this environment and provide two bene-

fits. First, snapshots are critical for observing the input data’s real behaviors, as they

illustrate real execution flow. To accurately reveal shellcodes’ behavior, the environ-

ment should be able to mimic the process’s consumption of input data. In malicious

shellcodes, process state information can be used to redirect the execution flow, e.g,

for encryption or decryption as Example 1 illustrates. Without precise virtual mem-

ory information about the process, shellcodes’ execution flow can be changed or even
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Figure 2.5: We propose a new DBC-based intrusion detection methodology that feeds
a virtual memory snapshot of the target process to the detector.

interrupted. Second, since the virtual memory snapshot is compact and easy to ob-

tain, our system’s virtual environment is lightweight, unlike the environments that

complete system emulators such as QEMU create [88]. In existing DBC-based ap-

proaches, it is hard to observe real shellcode behavior in detection systems since the

target process’s virtual memory information is either assumed or ignored [82,83,114].

− Facilitating System Call-based Detection. One type of shellcode behavior that

virtual memory snapshots facilitate is system call invocation, which is valuable for

detection. Malicious shellcode must switch to kernel mode to launch OS-related op-

erations by invoking system calls. No matter how well malicious shellcode disguises
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Figure 2.6: Our System Modules.

itself, it will eventually use system calls to launch attacks. Different system call oper-

ations are distinguished by system call numbers and parameters, which are normally

stored in the registers. For example, in the IA-32 architecture, the system call num-

ber is placed into eax and its parameters are placed in ebx, ecx, edx, esi, edi and

ebp as necessary. Existing DBC-based approaches, including both static analysis and

dynamic analysis, cannot use system call invocations as detection criteria as they

lack such necessary register information [82,83,113]. As we use virtual memory snap-

shots, we can accurately distinguish among different system calls to improve detection

capability as well as accuracy.

In the following, we first introduce our system’s architecture followed by its work-

flow.

2.3.2 System Architecture

In this section, we first introduce our system’s entire architecture and then we

present its key module—the shellcode analyzer.
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Architecture

There are three modules in our system as shown in Fig. 2.6. The first module

is the Protocol Analyzer, which extracts headers from input messages and separates

the payload into several sub-payloads (fields) as necessary according to upper-layer

specifications. The second module is the Shellcode Analyzer, which is responsible

for detecting malicious shellcodes with virtual memory snapshots. It can receive

sub-payloads from the protocol analyzer, an external file, or another process within

the same host through local IPC. The third module is the the Context Information

Provider, which is an interface between the emulated execution environment and the

real one. This component assists the protocol analyzer in producing correct sub-

payloads and the shellcode analyzer in conducting detection.

Key Module – Shellcode Analyzer

The architecture of the shellcode analyzer is shown in Fig. 2.7. This module con-

sists of an instruction decoder, an instruction emulator, a malicious behavior detector,

an emulated memory system, and a set of emulated registers. The instruction decoder

iteratively decodes buffer contents into instructions and sends each one to the emula-

tor. For each instruction the emulator receives, it emulates the execution thereof, for

which the emulated memory system and registers provide a runtime virtual environ-

ment. This environment is instantiated by the virtual memory snapshot that is taken

through the virtual memory snapshot interface. During emulation, virtual memory

or register access is directed to the emulated memory system or registers.
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Figure 2.7: The Architecture of the Shellcode Analyzer.

2.3.3 Workflow

In this section, we first introduce the overview of our entire system’s workflow,

then we present our shellcode analyzer’s workflow.

Overview

Recall that our system has three modules: the protocol analyzer, the shellcode

analyzer, and the context information provider. After receiving a message from a

network, our detection system first uses the protocol analyzer to extract the message

header and then separates the payload into several sub-payloads as necessary. Then

the protocol analyzer feeds the payload (or sub-payloads) to the shellcode analyzer.

The shellcode analyzer’s instruction decoder treats the payload (or each sub-payload)
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as a byte-indexed sequence of input data. It decodes the data into different instruc-

tion sequences according to different start positions and sends them to the emulator.

The virtual memory snapshot is taken at this moment and used to instantiate the

emulation environment. The emulator executes each instruction sequence to deter-

mine whether there is any malicious behavior. If any such behavior is detected, the

sequence is considered malicious, and if this occurs, the shellcode analyzer will con-

clude that the there is malicious shellcode in the payload (or sub-payloads) and the

message is considered malicious.

Our detection system is not intended to run as an independent process. After

a target process is created, our system can be loaded into its address space either

statically or dynamically. When a target process receives a message from a network

interface, our system is activated and the control flow is directed to our system.

Shellcode Analyzer Workflow

The shellcode analyzer workflow is shown in Fig. 2.8. From each position of the

input data, the shellcode analyzer uses the virtual memory snapshot to emulate the

execution of the decoded instruction sequence. Snapshots facilitate observing real

behaviors of the input data by illustrating the real execution flow. There are two

input parameters for ShellcodeAnalyzer(). The first is base address, the starting

address of the input data to be analyzed. The second is base size, the size of the

input data.

Precise virtual memory information provided by the snapshot ensures the shell-

code’s execution flow is not interrupted. If an instruction sequence is malicious shell-

code, all of the instructions it uses are eventually reached during emulation via the

execution flow, including the shellcode’s, those generated by previous messages, and
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1 #define MALICIOUS 1
2 #define BENIGN 0
3 #define MALICIOUS SEQUENCE 1
4 #define BENIGN SEQUENCE 0
5

6 int ShellcodeAnalyzer(base addr, base size)
7 {
8 for (i = 0; i< base size; i++)
9 if (MaliciousInstructionSeq(base addr + i))
10 return MALICIOUS;
11 return BENIGN;
12 }
13

14 int MaliciousInstructionSeq(addr)
15 {
16 InitializeEmulationEnvironment();
17 instruction = InstructionDecoder(addr);
18 if (End(instruction)) return BENIGN SEQUENCE;
19 instruction.exe depth = 1;
20 while (instruction)
21 {
22 if (MaliciousSystemCall(instruction))
23 if(instruction.exe depth > exe depth threshold)
24 return MALICIOUS SEQUENCE;
25 InstructionEmulator(instruction);
26 UpdateEmulationEnvironment();
27 target = ComputeTarget(instruction);
28 prev instruction = instruction;
29 instruction = InstructionDecoder(target);
30 if (End(instruction)) break;
31 SetExecutionDepth(instruction, prevInstruction);
32 }
33 return BENIGN SEQUENCE;
34 }

Figure 2.8: Shellcode Analyzer Workflow.

those from the libraries loaded into the target process’s address space. Thus emu-

lation within the shellcode analyzer with a virtual memory snapshot can be used to

accurately observe the behaviors of polymorphic and metamorphic shellcodes as well

as shellcodes used in swarm attacks.

The key function of the shellcode analyzer is MaliciousInstructionSeq(), which

detects a malicious instruction sequence. The workflow of MaliciousInstruction-

Seq() is shown in lines 14–34 in Fig. 2.8. At the beginning of MaliciousInstruc-

tionSeq(), the emulation environment is instantiated by taking a virtual memory

snapshot. The while loop from line 20 to line 32 in Fig. 2.8 emulates a sequence of
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instructions, which continues until one of the following occurs: (1) a malicious behav-

ior is detected; (2) a privileged or invalid instruction is encountered;1 (3) an illegal

memory access occurs; (4) the number of executed instructions exceeds a threshold.

MaliciousInstructionSeq() returns BENIGN SE-

QUENCE for conditions (2)–(4) and MALICIOUS SEQUENCE for condition (1). For this

condition, a malicious behavior is defined in our system by a malicious system call

invocation. In Linux and MS Windows systems, not all system calls can compromise

the target host’s security. This depends on a system call’s number and its parameters,

which are stored in registers before a system call instruction is executed. Because of

the snapshot, the system call number and its parameters can be accurately obtained

to determine if the system call invocation is intended to compromise host security.

For example, in Linux, system call number 11 corresponds to the system function

execve, which executes a program. During emulation of an instruction, if it is a

system call instruction and the value of the emulated eax is 11, then the system call

number is 11. After checking its parameters stored in other emulated registers, if its

first parameter is /bin/sh, then we can conclude that the instruction tries to open a

root shell that can be used to compromise the host’s security. In this case, the system

call instruction will be considered to be a malicious system call.

Note that malicious shellcode normally uses several instructions to initialize sys-

tem call parameters. We also use the exe depth of an instruction that invokes a

system call to decrease false positives, which is shown in line 23 of Fig. 2.8. An

instruction’s exe depth is defined as the number of instructions from the starting

point to it during emulation of an instruction sequence. For example, suppose that

1Privileged instructions can only be executed in kernel mode while a shellcode normally runs in
user mode. If a shellcode contains a privileged instruction, it leads to an exception.
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a statement S in a for loop is executed 100 times. Then the execution depth of S

is 2 (the for statement and S). We further discuss the execution depth threshold in

Section IV.

2.3.4 Detection Example

In this section, we use the example shown in Fig. 2.3 to illustrate our system’s

entire detection procedure. We assume that this malicious shellcode is inserted into

the body of an HTTP request message and that it aims to open a root shell in an

HTTP server with an exploitable memory error. When this message is received, the

server’s control flow is directed to our system. The protocol analyzer extracts the

payload from the request body and calls the function ShellcodeAnalyzer() to ana-

lyze it. The instruction decoder will decode it into several instruction sequences, and

feed each one to the function MaliciousInstructionSeq(). Immediately before em-

ulating the execution, a virtual memory snapshot is taken. At this moment, suppose

that the value of the memory unit pointed by 0xa0ef(ebp) is 0x252d252d.

Suppose that the function MaliciousInstructionSeq() is emulating an instruc-

tion sequence that contains malicious shellcode, and the instruction being emulated is

mov ebx,0xa0ef(ebp) as shown in line 10 of Fig. 2.3. After emulating the instruc-

tion, the value of the emulated ebx is 0x252d252d. After emulating the next two

instructions, because the value of the emulated ebx is 0x252d252d, the control flow

will reach the instruction on line 15 of Fig. 2.3, namely, push eax. After emulating

it, the first decrypted instruction will be written into the emulated memory system.

Similarly, all of the encrypted instructions are decrypted and stored in the emulated

memory system.
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When the control flow later reaches the first decrypted instruction, all the de-

crypted instructions are read from the emulated memory system. Finally, the control

flow reaches a system call instruction, and then the function MaliciousSystemCall()

is called. By checking the emulated registers’ values, we discover that the system call

instruction tries to open a root shell. In this case, this system call instruction will be

considered to be a malicious system call instruction. In addition, its execution depth

exceeds the preset threshold. Thus the emulated instruction sequence is considered

malicious as are the analyzed payload and the request message. After the control

flow returns from our detection system, the server will discard the message.

2.4 Implementation and Experimental Evaluation

2.4.1 Implementation

Our detection system is implemented in Debian Linux with kernel version 2.6.26.

We build our prototype system in C using gcc 4.3.2. The prototype system focuses

on the IA-32 architecture and Linux operating systems. The core component of

our prototype system is the instruction emulator. In the following, we present its

implementation.

Our instruction emulator can interpret all IA-32 instructions and emulates a sub-

set thereof, including all general-purpose instructions and the FPU instructions that

are used to obtain injected shellcodes’ absolute addresses [59,82]. In addition, we also

emulate some system instructions such as rtdsc. This subset contains all instructions

used by known malicious shellcodes in useful computation of malicious attacks [82].

We consider our implemented subset sufficient, though extensions are feasible. When

an unimplemented instruction is encountered in emulation, if it is not a privileged
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instruction, the control flow skips it and goes to the next instruction; otherwise, em-

ulation stops. When encountering an system call instruction, namely, sysenter and

int 0x80, we check if it is one of 36 system calls that can be used to compromise

the Linux system security [73]. Besides these “malicious” system calls, we also use

the exe depth threshold to determine if the instruction truly tries to compromise the

host’s security; we set the threshold to 14 since most unencrypted malicious shellcodes

have at least 14 instructions [83, 114]. Recall that an emulation termination condi-

tion is that the number of the executed instructions reaches a threshold. According

to current research, it suffices to set the threshold to 7000 in order to detect malicious

shellcodes in the input stream [82,83]. In our system, we also use this threshold.

Besides this core component, we also implement an emulated memory system and

a virtual memory snapshot interface. The snapshot interface contains procedures to

access the host’s virtual memory snapshot and context information. Moreover, we

use the Bastard project’s libdisasm, version 0.23-pre [2] to construct our instruction

decoder. In addition, during emulation of instructions, our detection system also

collects the data that could be leveraged to implement the detection rules that are

proposed by other papers [82, 83].

We have integrated our system into glibc and we also modify some read functions

thereof. When these functions are called, they call our detection system to detect

input data before returning to the calling procedure. If an application is statically

linked to glibc, it must be rebuilt. However, when an application is dynamically

linked to glibc, rebuilding is unnecessary, as our system will be dynamically loaded

into the target process’s address space. Users can also directly use our detection

system in their source codes to check network data before they are consumed. Thus
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Figure 2.9: Collected Data Sets.

our detection system accurately obtains the virtual memory snapshot that malicious

shellcodes utilize and then the detection accuracy of our detection system can be

further increased.

2.4.2 Experiments

In this section, we use malicious shellcodes and HTTP traces to conduct our

experiments, which are divided into two parts. The first part tests our detection

system’s effectiveness. The second part measures its overhead.

Effectiveness

In this part of the experiments, we first describe the collection of the data sets that

are used to measure the false negatives and false positives of our detection system,

and then we evaluate the results of our experiments.

We collect 51 unencrypted malicious shellcodes from the Internet that target Linux

systems. We use these shellcodes in conjunction with the following encryption tools to
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generate 5000 encrypted malicious shellcodes: the Metasploit project’s JumpCallAd-

ditive, Pex, PexFnstenvMov, PexFnstenvSub, and ShikataGaNai [104] as well as AD-

Mmutate [68] and TAPiON [6]. These 5000 encrypted malicious shellcodes and the

51 unencrypted malicious shellcodes are used to test our system’s false negatives.

Since most Internet traffic is HTTP traffic, we use HTTP traces to test our sys-

tem’s false positive of our detection system. Because it is very difficult to obtain

real traces of HTTP messages that contain the entire contents thereof, we enlist four

volunteers who collect HTTP messages for six weeks and place them into data sets

1–4. The properties of these data sets are shown in Fig. 2.9, where # Requests and

# Responses denote the number of request messages and response messages, respec-

tively. The overall size of the traces are about 2.5 GB. The traffic is captured using

Fiddler [46]. After obtaining the data sets, we feed our detection system these four

data sets to test the false positives thereof.

In both of these two experiments, we run our detection system on a computer and

then we feed the data into our system for testing. In the following, we present the

evaluation of the experiments of this part.

Fig. 2.10 presents the false positives on request messages and response messages,

respectively. # Malicious is the number of messages that our system considers mali-

cious.

All request messages in these data sets are classified as benign messages with

very few false positives. Response messages have few false positives. After checking

the response messages that are classified as malicious, we find that some of them

contain MS Windows executables. Others have large binary objects that have ex-

ecution chains with malicious system call instructions and the execution depths of
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Figure 2.10: False Positives for the HTTP Traces.

these instructions exceed the preset execution depth threshold. If a user receives a

response message that is classified as malicious, he can choose to accept it, decline it,

or perform a further check based on his knowledge of desirable response messages.

After sending the 5000 encrypted malicious shellcodes to our detection system,

we find that it can detect all of them. This result is the same as other DBC-based

approaches [82, 83, 113]. Although they have the same number of false negatives

as our detection system, our system’s false positives are lower than those of other

DBC-based approaches.

Current approaches based on network-level emulation use the WX threshold to

detect malicious shellcodes, where the WX instructions are those that are executed

and are dynamically generated during shellcode emulation [83]. When we set this

threshold to 8 as suggested by [83] and use it to detect the 51 unencrypted malicious

shellcodes, we find that 31 of them cannot be detected. After studying the traces of

these shellcodes, we find that they have no sequences of WX instructions of length 8 or

larger. We feed these 51 unencrypted malicious shellcodes to our detection system and

we find that it can detect all of them. It can detect them because it uses malicious
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Figure 2.11: Net Overhead Incurred by Our System.

system calls and emulation with a virtual memory snapshot to check whether an

message contains a malicious shellcode, and all malicious shellcodes eventually invoke

system calls to launch attacks.

Furthermore, our detection system can detect the examples presented in Figs. 2.3

and 2.4 but existing DBC-based approaches cannot do so. The reason is that they

do not use the target process’s context information to detect malicious shellcode.

Overhead

In this section, we evaluate the performance of our system. Our tests consists of

two experiments. The purpose of the first experiment is to evaluate the net over-

head incurred by our detection system. The purpose of the second experiment is to

investigate how our system affects the performance of a real HTTP server.

− Experiment 1. The first experiment is conducted on a Dell Dimension 5150 ma-

chine with an Intel Pentium 4 2.8 GHz processor and 1 GB RAM. In this experiment,

we only use the HTTP request messages from the above four data sets to conduct the

experiment since the main purpose of our detection system is to protect a server. To

evaluate the net overhead incurred by our detection system, we first send a request
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message to the detection system and record the timestamps before our detection sys-

tem is invoked and after it returns. The difference between the two timestamps is

considered net overhead.

Fig. 2.11 presents our evaluation results. We believe the results are acceptable for

most Internet application servers, though they are usually much more powerful than

our test machine.

− Experiment 2. In the second experiment, we use two computers to test the

performance of our system. One is a Dell Dimension 5150 Web server with an Intel

Pentium 4 2.8 GHz processor and 1 GB RAM. The other is an IBM ThinkPad T60

Web client. Both of them are running Debian Linux with kernel version 2.6.26. They

are connected by a 100 Mbps Ethernet switch. In the following, we first present the

methods and data used in two experiments, and then we evaluate the results of these

two experiments.

In the second experiment, we use the modified glibc with our detection system

to rebuild a real Web server and evaluate our system’s influence on the server’s per-

formance. We compare the performance of a Web server using our detection system

with that of a server not using it. We use thttpd, a single-threaded open source Web

server from ACME Laboratories that is designed for simplicity, a small execution

footprint, and speed [106]. For the server using our system, when it calls read()

or recv() to read from a socket, each function uses our system to analyze the data

therefrom. Each function returns -1 if the data are identified as malicious; otherwise,

returns 0 and the data are consumed normally.

The client traffic was generated by Jef Poskanzer’s HTTP load program [58] from

the IBM machine. Clients send requests from a predefined URL list from which the
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Figure 2.12: Server Performance with Detection System.

referenced documents are stored in the server. We modified the original HTTP load

program so the client can inject malicious shellcodes in the requests. As attacks that

embed malicious payloads in the HTTP Request-Header have not yet been observed,

the original thttpd Web server without using our detection system ignores malicious

code and returns the requested documents. The server using our detection system

returns HTTP status code 400 (bad request) if there is malicious code in the request

as the read function returns -1.
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Figure 2.13: Server Performance Without Detection System.

We measured the average connection response latency by running HTTP load for

1000 fetches. Figs. 2.12 and 2.13 show the average connection latency as a function

of the percentage of traffic attacking the Web server with and without our detection

system, respectively. We randomly choose a shellcode and inject it into requests. We

observe that the average latency is stable for the original thttpd web server, as mali-

cious code is just ignored. The average latency of the server with our system decreases

as the percentage of malicious attacks increases, since request errors are returned for

connections with shellcodes. Comparing Fig. 2.12 with Fig. 2.13, we observe that the
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average response time in the system with detection is only slightly higher than in the

system without detection when there are no malicious shellcodes. When there are ma-

licious shellcodes, our prototype system actually reduces the average response time,

which means attack requests have little impact on normal requests. For malicious

messages, we observe from Fig. 2.8 that if any instruction sequence decoded from

input data is malicious, then the processing thereof terminates. We also observe that

during emulation of a malicious instruction sequence, it will be discovered before the

number of executed instructions reach the threshold. Our prototype’s experimental

results show that our approach has reasonably low performance overhead.

2.5 Summary

In this chapter, we proposed a new detection methodology in which we fed the

target process’s virtual memory snapshot into a DBC-based detector. These snap-

shots were used to instantiate a runtime environment that emulated the process’s

input data consumption. This environment helped monitoring shellcodes’ behaviors.

To detect malicious shellcodes, we used the snapshots to examine system calls in-

voked by shellcodes masquerading as input data, the system call parameters, and the

process’s execution flow. We implemented a prototype system in Debian Linux. Our

experiments with real traces showed our system’s strong runtime performance with

few false negatives and few false positives.

Although our system had few false negatives, one kind of attack may still evade

detection. Our system can detect malicious shellcode that starts from some position

in a message. If the attack only uses addresses of glibc functions to overwrite

the current stack frame’s return address [95], then the hijacked control flow will be
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directed to the function, not to a position in the message. This kind of attack can

evade detection by our system. However, such attacks are difficult to implement as

malicious users need to have complete knowledge of the target process and use very

advanced techniques.

It is possible to further reduce our system’s overhead by: (1) using static analysis

techniques to analyze input data before or during emulation; and (2) designing a

faster instruction decoder. We will address these directions in our future work.

The virtual memory snapshot is very useful at quickly and efficiently detecting

malicious shellcodes in the input stream. We believe it can assist other detection

approaches. Using this methodology in static analysis is another interesting direction

for our future work.
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Chapter 3: Malicious Code Detection In JavaScript

3.1 Overview

JavaScript (JS) is a scripting language that is widely used to enrich the functional-

ity of client-side applications, e.g., Web browsers and Adobe Reader. Unfortunately,

User experience improvement brought by JS is often accompanied by security risks

since JS codes can programmatically access these applications’ computational objects.

There are several types of JS based attacks against client-side applications [49,86,87],

the most dangerous of which exploits target processes’ memory errors using shell-

codes. Shellcodes are segments of executable codes that are injected into vulnerable

processes’ address spaces. When they are injected, attackers can execute arbitrary

code in the target hosts that can steal sensitive information, furtively download and

activate malware, and carry out other nefarious tasks.

A typical example of JS based shellcode injection attacks is to exploit Microsoft

Internet Explorer’s (IE’s) HTML object memory corruption vulnerability [112] by an

HTML document with a specially crafted JS code embedded. After IE loads the

HTML document, the crafted JS code will be parsed, compiled, and then executed,

creating many large objects in IE’s heap using heap spraying [100]. These objects
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usually contain shellcodes that will be activated when IE’s control flow is hijacked

and redirected to them.

Recently, such JS based shellcode injection attacks are growing increasingly severe

[26, 86]. This stems from two facts: (1) users do not update their Web browsers in a

timely manner yet spend more and more time surfing the Internet [51]; and (2) that

numerous browser plug-ins have been released, many of which have vulnerabilities [94].

The deteriorating situation is also witnessed by the recent popularity of “drive-by

download” attacks [87] in which users are duped into downloading JS codes that

dynamically generate shellcodes and activate them via client-side vulnerabilities.

Unfortunately, existing solutions that detect JS based shellcode injection attacks

are insufficient. Some approaches can miss shellcodes whose malicious features are

only exhibited during execution while its continuous execution requires supporting

target process runtime memory information. Some approaches cannot effectively

handle attacks in which shellcode is divided into several parts that are interconnected

using instructions that redirect control flows. We will present two representative

examples in Section 3.2 that illustrate the limitations of existing detection approaches.

We provide a review of existing solutions in Section 3.6.

In this chapter, we focus on detecting malicious JS codes that inject shellcode

into target applications. We propose a detection system that is called JSGuard and

effectively overcomes the problems of existing solutions. Similar to existing work,

we assume that the JS interpreter does not have exploitable memory errors and that

such errors exist in the application that runs the JS interpreter, plug-ins, or extension

modules. We also assume that the application and its plug-ins and extensions are

not malware. Therefore, we target malicious codes coming from external untrustable
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sources. Although we use a Web browser as an exemplary client-side target applica-

tion in the rest of this paper and our prototype system is also built within a Web

browser, our system can be used to protect other client-side applications such as

Adobe Reader.

To the best of our knowledge, our system is the first that creates an emulation

environment within the target application process’s address space that shadows the

address space information during emulation to detect malicious shellcodes in JS codes.

We perform such shadowing only when necessary. Our system accurately and compre-

hensively captures customized application information and real-time runtime memory

information in a lightweight manner; stand-alone machine simulators cannot easily

obtain this information. Because of our new design, we are now able to fully use JS

code stack frame information to optimize performance. From extensive experiments,

we find that JSGuard yields very few false negatives and false positives. These re-

sults illustrate the promise of our detection methodology. In particular, we make the

following contributions:

• We propose a new methodology that can achieve excellent detection complete-

ness. We propose leveraging the JS code execution environment information to instan-

tiate a lightweight emulation environment that reveals and monitors shellcodes’ real

behaviors. Our emulation environment also enables examination of invoked system

calls and their parameters as well as the execution flow to detect malicious shellcodes.

• We propose a multiple-level redundancy reduction technique to reduce detection

redundancy. We fully utilize JS code execution environment information to reduce

the number of times the detection system is activated and a JS string is checked. This
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information includes native methods, stack frames, and properties of each individual

JS object.

• We implement JSGuard, a prototype system using the above methodology in

Debian Linux with kernel version 2.6.26. We integrate JSGuard into the Firefox

4 Web browser. Our system is adaptive and extensible. It is designed to run in

the target process’s address space. JSGuard can efficiently fetch and use JS code

execution environment information for shellcode detection.

• We conduct extensive experiments based on real traces and thousands of ma-

licious shellcode samples. The experimental results illustrate our malicious JS code

detector has high detection accuracy with acceptable overhead.

Chapter Organization. The rest of this chapter is organized as follows. Section

3.2 provides background information and motivating examples. Section 3.3 presents

our system design and implementation and Section 3.4 presents detection examples.

Section 3.5 evaluates JSGuard’s performance. Section 3.6 reviews related works.

Section 3.7 concludes.

3.2 Limitations of Existing Work

In this section, we provide a brief background on detecting shellcode in JS objects.

Then we use two examples to illustrate the limitations of existing approaches.

3.2.1 Background: Detecting Shellcode in JS Objects

Malicious JS code usually places shellcode into objects generated at runtime and

then activates it by exploiting vulnerable applications’ memory errors. Therefore,
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detecting shellcode in JS objects is critical. Existing detection approaches can be

classified into two categories: content analysis and hijack prevention.

Content Analysis

The approaches in this category are based on scanning JS objects’ contents to

determine if they contain malicious shellcode. It can be further divided into two sub-

categories: static analysis and dynamic analysis. In static analysis, input data are

first disassembled and then screened via code-level pattern analysis and matching.

Patterns can be complicated signatures or simple heuristics that are obtained from

studying known malicious codes. A representative work is Nozzle [90]. Static analysis

detection is fast, but it is known that determining program behavior via static analysis

is generally undecidable and, often, it can be effectively thwarted by obfuscation

techniques [9].

Dynamic analysis based methods detect malicious shellcode by exploiting infor-

mation generated during shellcode execution. A representive work is [39] that uses

libemu [66] to detect shellcode in JS strings. The state of the art of dynamic analysis

is network-level emulation, which decodes input data into instruction sequences and

then emulates their execution [66,82–84]. If any of them exhibits malicious behavior

during emulation, the input data are classified as malicious. Even though network-

level emulation can achieve better detection completeness than static analysis, it is

still prone to evasion. This is because it assumes that the working shellcodes either

are self-contained or use specific memory access behaviors, i.e., their executions are

independent of the dynamics of the JS code execution environment. Without knowl-

edge of execution environments, these approaches can be fooled by shellcode whose

execution takes advantage of the virtual memory information in the target process.
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1 <SCRIPT language"text/javascript">
2 var object = preBlock;
3 while(object.length < CHUNK SIZE){
4 object +=preBlock;
5 }
6 sprayArray = new Array();
7 for (i=0; i<OBJECT NUMBER;i++){
8 sprayArray[i]=object+shelcode;
9 }

10 </SCRIPT>

Figure 3.1: Heap Spraying Framework

Hijack Prevention

As suggested by the name, hijack prevention approaches focus on preventing shell-

code from being fully executed. This is often achieved by inserting special characters

into the shellcode. A representative example is Bubble [52]. In Bubble, a JS string

object is divided into multiple units, each 25 bytes long. In each unit, Bubble inserts

0xCC (i.e., int 3) into a randomly selected position. If a JS string object contains

shellcode and the shellcode is executed, an interrupt handler will be activated when

the control flow reaches the insertion point. However, existing hijack prevention ap-

proaches cannot effectively detect shellcodes split into parts that are “interconnected”

at runtime via instructions that alter control flow, e.g., jmp and call.

In the following, we present two examples that can evade content analysis and

hijack prevention approaches, respectively. Before presenting these two examples, we

first introduce heap spraying, a key technique they use.

3.2.2 Heap Spraying

Heap spraying is an attack technique to thwart address space layout randomiza-

tion (ASLR) [10, 80], a memory protection mechanism where objects’ positions are
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randomly arranged in a process’s address space. ASLR intents to prevent attackers

from easily predicting target object addresses. However, the memory space that can

be randomized is often limited, especially in 32-bit operating systems. If we allocate

many large objects in the heap, then new objects will likely be placed in a contiguous

memory area after a number of allocations, making their positions predictable. This

technique is called heap spraying [37,100].

For example, in MS Windows Vista 32-bit systems, heap randomization shifts the

beginning of the heap by up to 2 MB, but all allocations after that are contiguous;

hence their addresses can be predicted. If we allocate 100 objects, each of which is

1 MB, then most of them will end up in the same memory range even if ASLR is

used [101].

Fig.3.1 shows a JavaScript framework to spray big objects in heaps. CHUNK SIZE

means the size of an object and OBJECT NUMBER indicates the number of objects

to be created. Shellcode is used to launch an attack and preBlock can be a NOP

sledge, which is composed of NOP-like instructions, or other kinds of bytes. In the

above example, CHUNK SIZE could be 1MB and OBJECT NUMBER could be 100.

After using the framework to allocate heap space for 100 objects, we can get the

objects with predictable positions in heap space, and then we can choose one of them

and use its address to overwrite return addresses or function pointers of vulnerable

programs with memory errors. And then the vulnerable programs’ control flows can

be directed to the ojbect’s content, and further to the shellcode contained in it.
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1 0000 6a7f push $0x7f
2 0002 59 pop %ecx
3 0003 6a08 push $eaddr;eaddr = 0x08
4 0005 5e pop %esi
5 0006 46 inc %esi
6 0007 4e dec %esi
7 0008 fec1 incb %cl
8 000a 80460ae2 addb $0xe2, 0xa(%esi)
9 000e 304c0e0b xorb %cl, 0xb(%esi, %ecx)

10 0012 00fa addb %bh, %dl
11 0014
12 .........<encrypted payload>.........
13 0093

Figure 3.2: A self-modifying shellcode example. The second column indicates the
address of each instruction, the third column indicates the instruction binary code,
and the fourth column is the IA-32 assembly code. The shellcode is mapped to address
0x0000.

1 0000 6a7f push $0x7f
2 0002 59 pop %ecx
3 0003 6a08 push $eaddr
4 0005 5e pop %esi
5 0006 46 inc %esi
6 0007 4e dec %esi
7 0008 fec1 incb %cl
8 000a 80460ae2 addb $0xe2,0xa(%esi)
9 000e 304c0e0b xorb %cl,0xb(%esi,%ecx)

10 0012 e2fa loop 0xe
11 000e 304c0e0b xorb %cl,0xb(%esi,%ecx)
12 0012 e2fa loop 0xe
13 .... ........ .......................

Figure 3.3: Execution trace of the self-modifying shellcode shown in Fig. 3.2.

3.2.3 Motivating Example 1: Thwart Content Analysis Ap-
proaches

Fig. 3.2 shows a shellcode that is modified from an example illustrated in [82]. In

the shellcode, eaddr is used to calculate the addresses at which the encrypted payload

can be accessed. Since heap spraying can make the positions of some heap objects

predictable, a skilled attacker can write JS code that first sprays target processes’
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heaps, and then inserts the shellcode into the objects whose addresses can be predicted

and determined. Because the heap objects’ addresses can be predicted, the shellcode

addresses can also be predicted, and it is not difficult to assign a value to eaddr

from which the encrypted part can be accessed. In this example, we assume that the

starting address of the shellcode is 0x0000 and eaddr is 0x0008.

This shellcode modifies its instructions at runtime. From address 0x0014 to ad-

dress 0x0093, there is an encrypted payload, which often appears to be a meaningless

or invalid instruction sequence. When the control flow reaches address 0x000a, the

instruction addb $0xe2, 0xa(%esi) will be executed. This instruction modifies the

contents of memory at address 0x0012. After it is executed, the instruction at ad-

dress 0x0012 will be modified to loop 0xe, which forms a backward loop to decrypt

instructions from 0x0093 to 0x0014. The loop is controlled by register ecx, which

decreases by 1 upon each execution of loop 0xe. Within the loop, the instruction at

address 0x000e, xorb %cl, 0xb(%esi,%ecx), is for decryption. It decrypts one byte

in each iteration. When ecx becomes 0, the loop terminates, the content stored from

0x0093 to 0x0014 is fully decrypted, and the control flow continues to the instruction

at address 0x0014, which is the last decrypted instruction. We can see this from the

shellcode execution trace that is shown in Fig. 3.3.

As there is no information that is dynamically generated during shellcode execu-

tion, e.g., register values at runtime, static analysis based detection approaches cannot

effectively handle the decrypting procedure after the shellcode is interpreted as an in-

struction sequence; these approaches only see the encrypted payload as a meaningless

or invalid instruction sequence. Malicious behaviors that are only exhibited during

execution are thus effectively concealed.
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The shellcode shown in Fig. 3.2 can also be used to evade detection by current

dynamic analysis based tools [39, 66, 82–84]. Given an input stream containing the

shellcode shown in Fig. 3.2, network-level emulation based approaches will copy the

input stream into a memory space that performs this emulation, and all read/write

operations will be performed in the emulated memory space. The real contents of

virtual memory units at the addresses calculated from eaddr are difficult to obtain.

Then the shellcode’s encrypted payload cannot be correctly decoded and emulated.

In addition, these approaches do not use information stored in other objects to detect

shellcode in the current object, which precludes shellcode detection. Since using

heap spraying can enable prediction of objects’ positions in a heap, it is not difficult

for attackers to design shellcode in JS code that makes use of information stored in

different objects. For example, if two JS objects have predictable heap positions, an

attaker can store shellcode in one and critical information for decryption in the other.

We also notice that some tools based on network-level emulation use heuristics

based on the GetPC code [59, 82] in shellcode detection, e.g., [39] uses libemu [66].

Besides the aforementioned evasion methods, a skilled attacker can evade detection by

these tools by writing shellcode without call group instruction or fstenv instruction

opcodes, e.g., using purely alphanumeric shellcode [69]. Note that the shellcode shown

in Fig.3.2 contains no bytes that can be decoded as the GetPC code.

3.2.4 Motivating Example 2: Thwart Hijack Prevention De-
tections

In this subsection, we discuss designing shellcode that can evade hijack prevention

detection.
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1 be20000505 movl $addr, %esi ;%esi<−addr
2 8976f8 movl %esi, −0x8(%esi) ;[%esi−8]<−addr
3 836ef810 subl $0x10, −0x8(%esi) ;[%esi−8]<−addr−16
4 31c0 xor %eax, %eax ;%eax<−0
5 8846f7 movb %al, −0x9(%esi) ;[%esi−9]<−0
6 8946fc movl %eax, −0x4(%esi) ;[%esi−4]<−0
7 b00b mov $0x0b, %al ;%eax<−11
8 8b5ef8 movl −0x8(%esi), %ebx
9 8d4ef8 leal −0x8(%esi), %ecx

10 8d56fc leal −0x4(%esi), %edx
11 cd80 int $0x80 ;call systemcall
12 31db xor %ebx, %ebx
13 89d8 mov %ebx, %eax
14 40 inc %eax
15 cd80 int $0x80

Figure 3.4: Shellcode example that tries to create a shell.

sub-shellcode1 sub-shellcode2 sub-shellcode3
1 be20010505 movl $Saddr,%esi
2 8976f8 movl %esi,−0x8(%esi)
3 836ef810 subl $0x10,−0x8(%esi)
4 31c0 xor %eax,%eax
5 eb09 jmp Offset1

1 8846f7 movb %al,−0x9(%esi)
2 8946fc movl %eax,−0x4(%esi)
3 b00b mov $0x0b,%al
4 8b5ef8 movl −0x8(%esi),%ebx
5 8d4ef8 leal −0x8(%esi),%ecx
6 8d56fc leal −0x4(%esi),%edx
7 cd80 int $0x80
8 eb04 jmp Offset2

1 31db xor %ebx,%ebx
2 89d8 mov %ebx,%eax
3 40 inc %eax
4 cd80 int $0x80

Figure 3.5: A shellcode can be divided into multiple parts (3 parts here). Each part,
denoted by sub-shellcode, can be connected to another part by using a jmp instruction.

Fig. 3.4 shows a shellcode that opens a root shell in Linux systems. addr is a

memory address and the memory units pointed by (addr-16) are used to store an

ASCII sequence /bin/sh, which is used by the system call opening a root shell. In

this example, we assume that addr is 0x05050020. This shellcode can be divided

into three parts as shown in Fig. 3.5. The first part, denoted sub-shellcode1, is 16

bytes long. The second part, sub-shellcode2, is 21 bytes long. The third part, sub-

shellcode3, is 7 bytes long. In sub-shellcode1, Saddr is 0x05050120 pointing to some

part of an object. The memory at address (Saddr-16) stores arguments of the system
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call used to open a root shell. These include an ASCII sequence /bin/sh. At the

end of sub-shellcode1, there is an instruction jmp Offset1, where Offset1 is the

offset between sub-shellcode1 and sub-shellcode2. This instruction diverts control

flow from sub-shellcode1 to sub-shellcode2. In sub-shellcode2, Offset2 is the offset

between sub-shellcode2 and sub-shellcode3. At the end of sub-shellcode2, instruction

jmp Offset2 diverts control flow from sub-shellcode2 to sub-shellcode3.

Using heap spraying, the arguments and the sub-shellcodes can be placed into two

different objects whose positions can be predicted. Let the arguments be placed in

object1 and sub-shellcode1, sub-shellcode2, and sub-shellcode3 be placed in object2.

Because the data structures of object1 and object2 are known to the attacker, it is not

difficult to arrange and predict the addresses of the arguments and the above three

sub-shellcodes in memory.

Consider a Web browser with a certain memory vulnerability that can be exploited

to overwrite a function pointer and thus execute arbitrary code. The attacker can use

sub-shellcode1’s address to overwrite the function pointer. After the web browser’s

control flow is directed to sub-shellcode1 and the instruction jmp Offset1 is executed,

the control flow can be directed to sub-shellcode2, and then to sub-shellcode3 through

the instruction jmp Offset2. In this way, the entire shellcode can be executed and

a root shell is opened eventually.

Existing hijack prevention approaches fail to detecting such shellcode with certain

probabilities. For example, if the three sub-shellcodes are placed at the beginning of

three 25-byte blocks in object2, the probability that the entire shellcode can evade

detection by Bubble [52] is (25 − 16)/25 × (25 − 21)/25 × (25 − 7)/25 = 4.1%. This
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probability, which implies on average more than 4 attacks can succeed per 100 trials,

is quite high.

We comment that this example also illustrates the importance of JS code execution

environment information to launch an attack. The arguments of the system calls used

by the shellcode embedded in object2 rely on information stored in object1.

These examples clearly demonstrate that it is critical to fully leverage JS code

execution environment information to detect shellcode in JS objects. In addition, to

guarantee detection completeness, it is also necessary to check all possible instruction

sequences that can be decoded.

3.3 System Design And Implementation

In this section, we present the design methodology of JSGuard, its architecture

and key components, and implementation. The detailed workflow is further illustrated

by examples in Section 3.4.

3.3.1 Design Rationale

Fundamentally, the limitations of existing approaches arise because they do not

fully use JS code execution environment information in detection. This motivates our

proposal of a new detection approach that overcomes the limitations by efficiently and

fully exploiting this information, which includes: (1) the virtual memory contents of

the target application that runs the JS interpreter; (2) the context information of

the host system, e.g., system call information; and (3) the JS code semantics, which

includes stack frames, native method information, properties of JS objects, etc.
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This environment information is used at the core of JSGuard in the following two

ways:

• Creating A Virtual Execution Environment for Detection. When our detection

system is activated, the real environment information at that moment is used to

instantiate a virtual environment where potentially malicious JS strings are executed

and monitored. Such real environment information is critical for observing the real

behaviors of possible shellcodes, as they exhibit real execution flow. In malicious

shellcodes, process state information can be used to redirect the execution flow, e.g.,

for encryption or decryption as illustrated in Example 1, or it can be leveraged to

compute arguments for system calls to perform malicious actions, as illustrated in

Example 2. Besides, some binary code existing in the virtual memory could also be

utilized to launch attacks. For example, a libc function, read(), which can be used

to read sensitive files from a vulnerable system. A shellcode can compute arguments

for read() first and then use the instruction jmp to direct control flow to read(). In

this case, the shellcode itself does not contain any instructions to call system calls to

read sensitive files so that its malicious characteristics can be hiden. Without precise

virtual memory information, the shellcode’s execution flow or characteristics can be

changed and its malicious behavior may not be captured.

In addition, using the real environment information also enable leveraging a

target system’s binary code to emulate system calls appearing in a decoded instruction

sequence, especially those that do not change processes’ states but can be used to

take part in computation of shellcode. This kind of emulation can help us observe

more possible shellcode behaviors.
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• Facilitating Multiple-level Redundancy Reduction. We propose reducing detec-

tion overhead from the following three levels. First, we should activate our detection

system as infrequently as possible. Once our detection system is activated, then the

number of JS objects to be checked should be minimal. Finally, if one JS object is to

be checked, checking should only happen when necessary (e.g., after mutable objects

have changed).

At the core of JSGuard, we achieve this multiple-level redundancy reduction by

using the following execution environment information: native methods, stack frames,

and properties of JS objects. Native methods are used by JS code to call native system

functions written in C/C++. They are “gateways” between the JS interpreter and

the external components. In JS code, any calls to external components pass through

native methods. After the JS code calls an external component, the control flow is

redirected from the JS interpreter to the external component. Our system is activated

right before the control flow enters the external components, since their vulnerabilities

are targets for malicious code. Native method information is used to distinguish built-

in JS native methods that are secure (as we assume the JS interpreter is secure) from

external ones that are written by the users and used to call their external components.

To reduce activation time, we only activate our detection system before the external

native methods are called. We further use information stored in current stack frames

to reduce the number of objects to be checked. The JS interpreter maintains a stack

frame for each JS function being interpreted including its origin information. By

searching the current stack frames, we can determine if JS functions are internal

functions or from trustable sites. If not, the objects generated in the JS functions are

checked.
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Figure 3.6: The overall architecture of JSGuard.

3.3.2 JSGuard Architecture and Key Components

JSGuard aims to detect whether JS codes embedded in web pages generate ma-

licious shellcode. If a JS code generates malicious shellcode at runtime, it will be

considered malicious. Similar to other works [39, 52], JSGuard focuses on detecting

shellcode in JS string objects since it is difficult to insert shellcode in other types of

objects.

As illustrated in Fig. 3.6, JSGuard resides in the address space of the target

process. Besides the JSGuard core that is the core functionality block that performs

detection, JSGuard also involves the JS interpreter and a list of trustable sites. The

JS interpreter determines the origins of JS functions being interpreted; only those

from external untrusted sites are further checked by the JSGuard core. The list can
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Figure 3.7: Malicious JS string detector takes JS strings from a pool maintained by
string-related operations and the JS interpreter’s GC.

1 #define BENIGN 0
2 #define MALICIOUS 1
3

4 struct JSString {
5 size t length;
6 jschar ∗chars;
7 };
8

9 int maliciousJSStringDetector(checkinglist) {
10 JSString ∗string;
11 check = checkinglist;
12 while(check != NULL) {
13 string = check−>string;
14 if(ShellcodeAnalyzer(string−>chars) == MALICIOUS)
15 return MALICIOUS;
16 check=check−>next;
17 }
18 checkinglist = NULL;
19 return BENIGN;
20 }

Figure 3.8: Workflow of malicious JS string detector.
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be maintained manually or automatically. New sites can be added into it according

to the detection results of JSGuard on them as well as the user’s knowledge. These

sites can be those that are often visited by the user, e.g., the site of the company he

or she is working for. They can be also those maintained by reputable companies or

organizations, such as Google, Microsoft, CNN, etc. If users are concerned about a

trustable site, they can always force JSGuard to check it. The entries of the list can

be host names or domain names of trustable companies and organizations.

As shown in Fig. 3.6, JSGuard core has two key components, namely, the malicious

JS string detector and the shellcode analyzer. The malicious JS string detector runs

in the JS interpreter. It prepares JS strings to be checked at runtime and then feeds

them to the shellcode analyzer. The shellcode analyzer checks if an input object’s

content contains malicious shellcode or a part thereof and reports the results back to

malicious JS string detector. If a malicious JS string is found, interpretation stops;

otherwise, it continues. In the following, we detail the malicious JS string detector

and the shellcode analyzer.

Malicious JavaScript String Detector

As shown in Fig. 3.7, the detector retrieves and checks JS strings from a checking

list, which contains all JS strings that might have malicious shellcode. The checking

list is maintained by instrumenting string-related operations and the JS interpreter’s

garbage collector (GC). For example, when a new JS string is created, it is inserted

into the checking list; when the GC reclaims a JS string, the string will be removed

from the checking list after its content is zeroed.

The basic workflow of the malicious JavaScript string detector is shown in Fig. 3.8.

The function maliciousJSStringDetector() has one input checkinglist. When
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Figure 3.9: Shellcode analyzer architecture.

called, it scans all strings in checkinglist and feeds them to shellcodeAnalyzer(),

which detects malicious shellcode in JS string contents. If shellcodeAnalyzer()

finds a JS string containing malicious shellcode, it returns MALICIOUS to malicious-

JSStringDetector(). Then maliciousJSStringDetector() stops checking the re-

maining JS strings in checkinglist and returns MALICIOUS to the JS interpreter.

The interpreter in turn stops interpreting the JS code. If no JS string is found to be

malicious, then maliciousJSStringDetector() returns BENIGN to the interpreter.

The interpreter continues interpreting the JS code.

checkinglist contains the JS strings to be checked. Every time a JS string

is generated, all current stack frames are checked. If there are any JS functions

from external untrusted sites, then we add the JS string to checkinglist. We do

so because only JS codes from external untrusted sites attempt to generate shellcode

that exploits target applications’ vulnerabilities. As JS strings are immutable objects,
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1 #define MALICIOUS 1
2 #define BENIGN 0
3 #define MALICIOUS SEQUENCE 1
4 #define BENIGN SEQUENCE 0
5

6 int ShellcodeAnalyzer(base addr, base size) {
7 for (i = 0; i< base size; i++)
8 if (MaliciousInstructionSeq(base addr + i))
9 return MALICIOUS;

10 return BENIGN;
11 }
12

13 int MaliciousInstructionSeq(addr){
14 InitializeEmulationEnvironment();
15 instruction = InstructionDecoder(addr);
16 if (End(instruction)) return BENIGN SEQUENCE;
17 instruction.exe depth = 1;
18 while (instruction) {
19 if (MaliciousSystemCall(instruction))
20 if (instruction.exe depth > exe depth threshold)
21 return MALICIOUS SEQUENCE;
22 InstructionEmulator(instruction);
23 UpdateEmulationEnvironment();
24 target = ComputeTarget(instruction);
25 prev instruction = instruction;
26 instruction = InstructionDecoder(target);
27 if (End(instruction)) break;
28 SetExecutionDepth(instruction, prevInstruction);
29 }
30 return BENIGN SEQUENCE;
31 }

Figure 3.10: Workflow of shellcode analyzer.

we can safely remove the strings from checkinglist after they have been checked

once [52].

In the JSGuard core, maliciousJSStringDetector() is called immediately before

JS code calls an external component. Recall that the malicious JS code is used to

exploit memory errors in applications using the JS interpreter or their plugins. If

the JS code does not call any external components provided by the applications or

the plugins, then any JS strings will not be used to hijack control flows of target

applications, even they have malicious shellcode. So, it is not necessary to activate

the malicious JS strings detector when there is no calling to external components.

Because the execution of the malicious JS string detector also needs to take time
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to do checking, it helps reducing extra overhead to activate the malicious JS string

detector immediately before the JS code calls an external component.

Shellcode Analyzer

The shellcode analyzer architecture is shown in Fig. 3.9. This module consists

of an instruction decoder, an instruction emulator, a malicious behavior detector, an

emulated memory system, and emulated registers.

Given a position in a JS string content, the instruction decoder decodes instruc-

tions starting at that position and sends each decoded instruction to the emulator.

For each instruction the emulator receives, it emulates the execution thereof, for which

the emulated memory system and registers provide a virtual runtime environment.

The JS code execution environment information provided to the shellcode analyzer

includes the target process’s address space, current registers, and other context in-

formation as necessary. The emulator executes each instruction sequence and the

malicious behavior detector determines whether there is any malicious behavior. If

any such behavior is detected, then the instruction sequence is considered malicious.

As a result, the shellcode analyzer concludes there is malicious shellcode in the content

buffer. Hence the JS string object is considered malicious.

During instruction sequence emulation, if there is an instruction that reads mem-

ory, the memory values are first fetched from the real memory units in the target pro-

cess’s address space. Next, these values are stored in the emulated memory system.

Future read operations to the same memory units will be directed to the emulated

memory system. If there is a write memory operation, it will be directed to the emu-

lated memory system. The write operation is never performed on the corresponding
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real memory units in the target process’s address space to avoid disturbing “normal”

JS code execution.

The shellcode analyzer workflow is shown in Fig. 3.10. From each position of the

input data, the shellcode analyzer uses the target process’s virtual memory informa-

tion to emulate the execution of the decoded instruction sequence. There are two

input parameters for ShellcodeAnalyzer(): (1) base address, the starting address

of the input data to be analyzed; and (2) base size, the size of the input data.

Precise virtual memory information ensures the shellcode’s execution flow is not

interrupted. If an instruction sequence is malicious shellcode, all of the instructions

it uses are eventually reached during emulation via the execution flow, including the

shellcode’s, those generated by previous messages, and those from the libraries loaded

into the target process’s address space. Thus emulation within the shellcode analyzer

with a virtual memory information can be used to accurately observe the behaviors

of polymorphic and metamorphic shellcodes as well as shellcodes distributed over

multiple objects.

The key function of the shellcode analyzer is MaliciousInstructionSeq(), which

detects a malicious instruction sequence. The workflow of MaliciousInstruction-

Seq() is shown in lines 13–31 in Fig. 3.10. The while loop from line 18 to line

29 in Fig. 3.10 emulates a sequence of instructions, which continues until one of the

following occurs: (1) a malicious behavior is detected; (2) a privileged or invalid

instruction is encountered;2 (3) an illegal memory access occurs; or (4) the number

of executed instructions exceeds a threshold.

2Privileged instructions can only be executed in kernel mode while shellcodes normally runs in
user mode. If a shellcode contains a privileged instruction, an exception occurs.
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In our system, a malicious behavior is defined as a malicious system call invoca-

tion. In Linux and Microsoft Windows systems, not all system calls can compromise

the target host’s security. This depends on system call numbers and parameters,

which are stored in registers before system call instructions are executed. Through

the JS code execution environment information interface, the system call number and

its parameters can be accurately obtained to determine if the system call invocation

is intended to compromise the host’s security. For example, in Linux, the system call

number 11 corresponds to the system function execve, which executes a program.

During instruction emulation, if the instruction is a system call instruction and the

value of the emulated eax is 11, then the system call number is 11. After checking

parameters stored in other emulated registers and the emulated memory system, if its

first parameter is /bin/sh, then we can conclude that the instruction tries to open a

root shell. In this case, the system call instruction will be considered malicious.

Note that shellcodes normally need several instructions to initialize system call

parameters. Therefore, we also use the exe depth of an instruction that invokes a

system call to decrease false positives. An instruction’s exe depth is defined as the

number of instructions from the starting point to it during emulation of an instruction

sequence. For example, suppose that a statement S in a for loop is executed 100

times. Then the execution depth of S is 2 (the for statement and S).

Our detection system can also leverage heuristics used in current network-level

emulation tools [39, 66, 82–84] to detect shellcode in JS strings during emulation.

However, these heuristics are confined to detect particular types of shellcode that
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exhibit self-decrypting behavior [39, 66, 82, 83] or match specific memory access pat-

terns [84]. In addition, as we said in section 3.2, they are not effective in detecting

shellcode that takes full advantage of JS code execution environment information.

3.3.3 Implementation

The JSGuard prototype system is implemented in Debian Linux with kernel ver-

sion 2.6.26 using C and C++ with gcc 4.3.2. The key component is the JSGuard core,

which comprises two major parts. The first part is a modified JS interpreter inte-

grated with the malicious JS string detector. This part is based on the SpiderMonkey

JS interpreter [102], which is used in various Mozilla products including Firefox. The

second part is the shellcode analyzer module. We implement it as a C library in

Debian Linux system. When it is called by the malicious JS string detector, the

shellcode analyzer module will be loaded into the address space of the application

that runs the JS interpreter. We also implement a Firefox extension that maintains

the list of trustable sites, which is loaded into Firefox address space when Firefox is

executed.

In the following, we first present the implementation details of the malicious JS

string detector, and then the shellcode analyzer module.

Modified JS Interpreter

In our modified JS interpreter, we implement a malicious JS string detector, which

scans JS string objects from a checkinglist and then calls the shellcode analyzer

to determine if they have malicious content. The checkinglist is maintained by

the code that we add into all functions related to JS string operations. First, we

instrument all functions related to JS string object creation. In this way, we can track
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all JS string objects generated during execution of the external JS code. Populating

the checkinglist with all strings fundamentally guarantees the completeness of our

detection. Second, before adding a JS string to checkinglist, we also use the list

of trustable sites and current stack frames to decide if the JS string should be added

to checkinglist. If all JS functions being interpreted are from trustable sites or

internal JS functions, the string will not be added to checkinglist; otherwise, it

will.

After analyzing the source code of the SpiderMonkey JS interpreter, we find all call

points that invoke native methods, and insert calls to the malicious JS string detector

at these points. Since the JS interpreter also uses native methods to implement

some built-in JS class methods, we check if a native call is calling a JS built-in

method at native call points. If this is the case, we do not activate the malicious

JS string detector; otherwise, we activate it. This is due to our assumption that

the JS interpreter has no exploitable memory errors. The native methods for JS

built-in class methods are parts of the JS interpreter, so they do not have exploitable

memory errors. However, when control flow leaves the JS interpreter to external

functions, the malicious JS string detector will be activated to check all JS strings in

the checkinglist.

We also modify the JS interpreter’s garbage collector to maintain the checkinglist,

and integrate the modified JS interpreter into the Firefox 4 Web browser.

Shellcode Analyzer

The shellcode analyzer prototype focuses on the IA-32 architecture and Linux

operating systems. Its core component is an instruction emulator. In the following,

we present its implementation.
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Our instruction emulator can interpret all IA-32 instructions and emulate a subset

thereof, including all general-purpose instructions and the FPU instructions that are

used to obtain injected shellcodes’ absolute addresses [59, 82]. In addition, we em-

ulate some system instructions such as rtdsc. This subset contains all instructions

used by known malicious shellcodes in useful computation of malicious attacks [82].

We consider our implemented subset sufficient, though extensions are feasible. When

an unimplemented instruction is encountered in emulation, if it is not a privileged

instruction, the control flow skips it and moves to the next instruction; otherwise, em-

ulation stops. When encountering a system call instruction (sysenter or int 0x80),

the shellcode analyzer will determine, with the parameters stored in the emulated

memory/register system, whether it is one of 36 system calls that can be used to

compromise the Linux system [73]. Besides these “malicious” system calls, we also

use the exe depth threshold to determine if the instruction truly tries to compro-

mise the host’s security; we set the threshold to 10 since most unencrypted malicious

shellcodes have at least 10 instructions [83,114]. To avoid an endless loop during in-

struction sequence emulation decoded from a position of a JS string’s content, we set

the threshold to 8000 for the number of executed instructions. According to current

research, such threshold is sufficient in order to detect malicious shellcodes [82, 83].

We also implement an emulated memory system, an instruction decoder built

on the Bastard project’s libdisasm with version 0.23-pre [2], and a JS code execu-

tion environment information interface that is used to fetch the application’s virtual

memory information and the host context information.
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3.4 Detection Example

In this section, we illustrate effectiveness of our detection system by presenting

the detection procedure of Example 2 in Section 2.3. We note that Example 1 in

Section 2.2 can similarly be detected by our system.

Assume that the attacker tries to exploit a Firefox external component in Linux

using a malicious JS code. He first uses heap spraying to allocate many large JS

objects, then inserts the arguments and the three sub-shellcodes, as shown in Fig.

3.5, into two objects. We denote these two objects by object1 and object2. The objects

are allocated by the attacker in two contiguous memory areas and their addresses are

predictable. Let their addresses be 0x05250020 and 0x05350020, respectively. The

JS code places the arguments in object1 with Saddr set to 0x05250084 and places

sub-shellcode1, sub-shellcode2 and sub-shellcode3 into object2 with their addresses set

to 0x05350084, 0x0535009D and 0x053500B6 respectively. Then the offset between

sub-shellcode1 and sub-shellcode2 is 9 and the offset between sub-shellcode2 and sub-

shellcode3 is 4. Hence, in Fig. 3.5, Saddr is 0x05250084, Offset1 is 9, and Offset2

is 4.

The attack starts when the three sub-shellcodes are ready in the heap. The

JS code calls the vulnerable component. Before control flow is diverted from the

JS interpreter to the external component, the JS interpreter with JSGuard invokes

maliciousJSStringDetector() to check whether there are malicious JS strings ar-

ranged in the heap. maliciousJSStringDetector()will scan JS strings in checkinglist

and send them one by one to the shellcode analyzer. At a certain moment, the shell-

code analyzer receives the content of object2.
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The shellcode analyzer decodes every possible instruction sequence starting from

each byte position of the content, and then executes it. Each instruction in the in-

struction sequence starting from the address 0x05350084 will be decoded and then

executed. When the instruction jmp Offset1, i.e., jumping to 0x0535009D, is de-

coded and executed, the shellcode analyzer will follow the control flow and begin to

decode instructions starting from 0x0535009D and execute them. Note 0x0535009D

is the starting address of the sub-shellcode2 instruction sequence. In this way, the

instruction sequence of sub-shellcode2 is discovered and executed. When system call

instruction int $0x80 is executed, we can obtain its parameters since the contents of

the emulated registers/memory system precisely reflect the run-time changes during

the emulation. The shellcode analyzer discovers that this system call instruction tries

to open a root shell. Meanwhile, this instruction’s exe depth exceeds the thresh-

old. Thus this system call instruction will be considered malicious. As a result,

the entire emulated instruction sequence is considered malicious. The shellcode an-

alyzer concludes that object2 content contains malicious shellcode and returns to

maliciousJSStringDetector(). When the malicious JS string detector receives

MALICIOUS from the shellcode analyzer, it in turn concludes that object2 is a mali-

cious JS string and the JS code being interpreted is malicious. It raises an exception

and stops interpreting JS code.

3.5 Evaluation

We conduct extensive experiments to evaluate JSGuard, particularly its detection

effectiveness and runtime overhead. We do so on a HP Pavilion a815n with one

Intel Pentium 4 3.06 GHz CPU and 1 GB RAM. The computer is connected to a
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university campus network through 100 Mbps Ethernet; it runs Debian Linux with

kernel version 2.6.26.

3.5.1 Effectiveness

Detection effectiveness is measured by false positives and false negatives.

• False Positive: 0 out of 2000. We implement a Firefox extension that automat-

ically fetches websites listed in a file. We set the time interval between two fetches to

be 50 s, which is generally sufficient for JS codes embedded in a webpage to be fully

executed. Every 50 s, the extension iteratively reads a URL from the file and then

loads the web page in a browser window. We construct a benign URL list contain-

ing 2000 URLs taken from the Alexa ranking of global top sites [3]. These are real

websites with various content and Web applications. JSGuard classifies all of them

as benign.

• False Negative: 0 out of 5051. We collect 8 real world malicious webpages

containing JS code that generate shellcode to launch attacks and we also collect

51 plain malicious shellcodes from the Internet. All of them target Linux systems.

Based on the 51 plain shellcodes, we use the following tools to generate 5000 poly-

morphic or/and metamorphic malicious shellcodes: the Metasploit project’s Jump-

CallAdditive, Pex, PexFnstenvMov, PexFnstenvSub, and ShikataGaNai [104] as well

as ADMmutate [68] and TAPiON [6], which are also used in other shellcode detection

tools [82, 83, 113, 114] to test their effectiveness. We then create 5051 JS codes that

generate these malicious shellcodes at runtime and invoke native methods that are

not built in to the JS interpreter. For example, the JS method document.write()

eventually calls a native method. Finally we craft 5051 malicious web pages with
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Firefox Version Total Time (s) Time/Page (s) Overhead/Page(s)
Original Version 491.953 1.63984 N/A

Trustable List Only 492.254 1.64085 0.00101

Table 3.1: The overhead of checking trustable sites only. “Original version” is Firefox
without our system, and “Trustable List Only” is Firefox with our detection system
enabled (JSGuard core disabled).

these malicious JS codes. We put these 5051 malicious web pages and the 8 real

world malicious web pages on our internal web server and we visit them using Fire-

fox with JSGuard on a client computer. JSGuard classifies all of them as malicious.

We also write two heap spraying JS codes, dynamically generate the two shellcode

examples presented in Section 2.2 and 2.3, and feed them to JSGuard. It correctly

classifies them as malicious.

3.5.2 Overhead

To measure JSGuard’s overhead, we use two versions of Firefox 4: one integrated

with JSGuard and an “original” version without JSGuard. We use the top 100 most

popular web sites as described by Alexa [3] as the testing dataset. In our experiments,

we visit each web site three times using both versions of Firefox, respectively. The

time we measured, rendering time, includes the times for downloading of a webpage

over the Internet, parsing and rendering of the page, and executing all JS codes in

the webpage.

We performed three types of experiments to measure overhead incurred: (1) by

only checking trustable sites; (2) by only using the JSGuard core functionality block;

and (3) by using entire JSGuard system.
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In the first experiment, we disable JSGuard and measure the overhead purely

incurred by checking trustable sites. When a user accesses a webpage from a trustable

site, ideally, all of JS codes contained in the webpage and all of JS functions called

during runtime should be from trustable sites or internal JS functions, and then

all of JS strings generated during runtime will not be put into checkinglist, and

thus JSGuard will never be activated. Therefore, the only overhead incurred by our

detection system is the time used to checking trustable sites. To conduct the first

experiment, We use the top 10,000 most popular web sites from Alexa [3] to form

a list of trustable sites. And then we use it to check if a site is trustable or not.

We think the list of such size is sufficiently large to common users. The experiment

results are shown in Table 3.1, which shows that this overhead is very low. Thus our

detection system has little impact on the rendering time when all JS functions called

during runtime are internal ones or from trustable sites.

The second experiment measures the overhead purely incurred by running JS-

Guard core without checking trustable sites. This reflects an extreme case in which

every site the user visits is assumed to be malicious, i.e., every JS string is put into

checkinglist so long as all interpreted JS functions are from external sites. As

shown in Table 3.2, the average overhead incurred by JSGuard core is 3.865 s. Note

that this result reflects performance in the worst-case scenario with a low-end ma-

chine. Indeed, studies have shown that overall user frustration increases when page

load times exceed 8–10 s [12,76]. Therefore, performance is acceptable in this extreme

case.

The third experiment measures the overhead incurred by the entire JSGuard sys-

tem. We construct a random list of 50 trustable sites from our testing dataset. The
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Firefox Version Total Time (s) Time/Page (s) Overhead/Page (s)
Original Version 491.953 1.63984 N/A

JSGuard Core Only 1651.451 5.50483 3.86499

Table 3.2: The overhead purely incurred by the JSGuard core block. “Original Ver-
sion” is Firefox without our system, and “JSGuard Core Only” is Firefox with our
system enabled (checking trustable sites disabled).

Firefox Version Total Time (s) Time/Page (s) Overhead/Page (s)
Original Version 491.953 1.63984 N/A
With JSGuard 753.059 2.51019 0.87035

Table 3.3: The overhead incurred by JSGuard. “Original Version” is Firefox without
our system, and the version with JSGuard is Firefox with our entire JSGuard system
enabled.

remaining 50 sites in our testing dataset are thus considered untrustable. The exper-

iment results are shown in Table 3.3. The average time to render one web page is

∼2.51019 s.

3.6 Related Work

Detecting shellcode in JS objects is essential to protect vulnerable applications

from JS based shellcode injection attacks. As pointed out in Section 3.2.1, most

existing shellcode detection approaches fall into two categories: content analysis and

hijack prevention.

Content analysis is particularly popular in detecting shellcode from network mes-

sages. In [107], Toth and Kruegel proposed identifying exploit code by detecting NOP

sleds. However, attacks can bypass this detection technique by either not including
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NOP sleds or by using polymorphic techniques [18, 36, 68]. Chritodorescu and col-

leagues [21,22] proposed techniques to detect malicious patterns in executables using

semantic heuristics. Lakhotia and Eric in [65] used content analysis techniques to

detect obfuscated calls in binaries. Chinchani and van den Berg proposed a rule-

based scheme in [18]. Wang et al. proposed SigFree [114] that checks if network

packets contain malicious codes using “push and call” patterns and the number of

useful instructions in the longest possible execution chain. These methods are based

on static analysis. Although they are efficient in detecting shellcode, they still can

be thwarted by using binary obfuscation [9]. To improve detection completeness,

Polychronakis et al. proposed a new network-level emulation approach [82, 83] to

detect polymorphic shellcode. Gene [84] used network-level emulation with specific

memory access pattern heuristics to detect shellcode for MS-Windows systems. Gu

et al. proposed the virtual memory snapshot based emulation approach in end sys-

tems to detect shellcode in network messages before they are processed by network

server programs [55].ShellOS provides a framework leveraging hardware visualization

to detect shellcode [99]. It requires users to dump the entire target process’s states

and load them into ShellOS in order to construct an emulation environment. A pow-

erful shellcode analyzer named ”Shellzer” is proposed in [50]. It conducts analysis

by instrumenting each instruction, which may incur undesirable overhead for online

detection.

All these approaches are useful for detecting shellcode in network messages, but

they are not directly applicable to detecting shellcode in JS strings, as such shellcode

is not transmitted in its binary form. Instead, each byte of the shellcode is trans-

mitted using its ASCII representation. In general, ASCII character sequences cannot
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be successfully decoded into the corresponding shellcode instruction sequences [39],

though this is sometimes possible [78]. Nozzle is a well known JS shellcode attack

detection tool. It scans a heap object, interprets the object content to build a con-

trol flow graph (CFG), and then use the CFG to check weather the content contains

shellcode [90]. Egele et al. propose an approach that uses libemu [66] to check

if the content of a JS string contains a sufficiently long valid instruction sequence

using network-level emulation and GetPC code based heuristics. Hijack prevention

based approaches can be used before or during shellcode execution. Such approaches

include randomization [8, 10, 11, 62, 80], OS extension [7, 61] and flow tracking tech-

niques [77,89]. In general, these approaches have good detection completeness due to

their extensive use of context information. However, their troubleshooting to find out

the root cause is inefficient [114], which often requires heavy playback or log analysis.

Recently, Gadaleta et al. propose Bubble [52], a lightweight approach that encumbers

complete execution of injected shellcode.

Recently, several machine learning based systems were proposed to detect mali-

cious JS code. Zozzle applies Bayesian classification to hierarchical features of the

JavaScript abstract syntax tree to identify syntax elements that strongly predict mal-

ware [30]. Jsand [26] emulates JS code in a virtual browser environment using machine

learning methods to capture malicious features. Prophiler [15] constructs a filter that

can quickly discard benign pages and forward potentially malicious pages to heavy-

weight analysis tools. JSGuard can complement these systems by providing malicious

code training samples.

We note that some works like Cujo [91] and Blade [67] can also prevent drive-by-

download attacks. However, their focus differs from ours, which is malicious shellcode
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detection in JS code. These works cannot prevent in-memory execution of injected

shellcode. We are also aware that tools like [16, 44] have been proposed to audit JS

activities, but they are not malicious shellcode detection systems.

3.7 Summary

In this chapter, we have proposed a new methodology to detect JS shellcode that

fully uses JS code execution environment information in an efficient manner. Follow-

ing the methodology, we implemented JSGuard and a prototype malicious JS code

detection system based on it in Debian Linux. Extensive experiments with real traces

and thousands of malicious shellcodes illustrate our detection system’s performance

with acceptable overhead and very few false negatives or false positives. Our very low

false negative and false positive rates validated our methodology’s promise for this

purpose.
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Chapter 4: Malicious Code Detection In Smartphones

4.1 Overview

Smartphones are becoming increasingly popular. According to Nielsen data from

July 2012, 54.9% of U.S. mobile users own smartphones and two out of three new

handset buyers bought a smartphone in the past three months [105]. This is mainly

due to smartphones’ all-in-one features combining communication and computing

functions, enabling a wide variety of applications (also referred to as apps).

As smartphones become more widespread, their users’ privacy and security become

critical issues. For example, a Wall Street Journal study of iOS and Android apps

revealed that 46–55% of smartphone apps transmit users’ private information such as

location and device ID over networks without users’ awareness or consent [92]. Worse,

many users are enticed to download and run smartphone apps without carefully un-

derstanding the consequences of accepting permissions prompted before installation.

This can easily lead to installation of malicious apps. In fact, Trend Micro reports

that over 25,000 Android malware samples were found in June 2012 alone [108].

Private (or sensitive) information on smartphones comes from various sources,

including sources originating from smartphones themselves and sources received from

the Internet. Fig. 4.1 illustrates this sensitive information and its leakage. On one
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Figure 4.1: Information leakage in smartphones

hand, smartphones themselves generate sensitive information such as photos, GPS

locations, and device identifiers (IMEIs/EIDs). On the other hand, smartphones can

receive sensitive information from a plethora of possible sources over the Internet.

For example, users may check their bank accounts via a browser or a bank-provided

app. Similarly, smartphones are often used for checking email contents from servers

such as Gmail or Yahoo! Mail. Privacy can be easily invaded if sensitive data from

one source were sent to another irrelevant destination, let alone an attacker-controlled

one.

Prior work such as TaintDroid [41] has demonstrated that Information Flow Track-

ing (IFT) mechanisms can be leveraged to detect leakage of sensitive information.

Specifically, TaintDroid extended the Dalvik virtual machine (VM) to tag smart-

phone data using 32 possible types based on its origin, to propagate the tags during

program execution, and to raise alerts upon detection of sending out sensitive data.

While effective at tracking a limited number of sensitive data sources, TaintDroid’s

scheme cannot scale to handle sensitive data received from many possible external

sources such as Citibank, Bank of America, and Gmail. For example, after being

normally used for accessing a bank website, a malicious browser may send the bank

74



information to some predefined attacker’s server. In this scenario, TaintDroid tags

the account information data as “network”, indicating it is from the network, and

may present a notice to the user before the data were sent over to another site. How-

ever, with the general tag “network”, rather than the precise source of the data, it is

difficult for users to determine whether it is legitimate to send the data.

Therefore, it is imperative to design an information flow tracking system for track-

ing sensitive data from a large number of possible internal and external sources on

smartphones and informing users with alerts of relevant source and destination infor-

mation before data are sent out.

However, our key challenge is tracking a vast number of information sources given

limited resources. Smartphone data can originate from many sources such as online

banks, social networking websites, etc. Any smartphone based IFT system needs

to track all these sources in each data tag. Yet tag capacity is limited, e.g., 32

bits. A näıve approach to solve this challenge is using one bit to track each source.

However, this requires many bits to track all sources, far more bits than the tag

length. This approach leads to enormous tag overhead. Also, tracking data during

program execution is not lightweight since every statement requires tag propagation.

The runtime overhead may be even higher if a compressed tag system (for saving

space overhead) is used. The bottom line is that our tracking system cannot be so

slow as to exceed users’ expectation on response time.

This chapter proposes D2Taint, a novel IFT tagging strategy using differentiated

and dynamic tracking. We partition information sources into disjoint classes that

correspond to different information sensitivities. We design a flexible tag structure

that stores these classes and their information sources in fixed-length tags. Our tag
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structure updates itself on-the-fly based on time-varying received information sources.

Our tagging strategy enables us to track at runtime numerous information sources in

multiple classes and rapidly detect information leakage from any of these sources.

In summary, our contributions are as follows:

• We propose a novel IFT strategy using differentiated and dynamic tagging.

With its flexibility, our tag scheme can handle different numbers of information

sources, ranging from a few to thousands;

• We leverage our tagging strategy to design and implement D2Taint, an IFT

system using differentiated and dynamic tagging on Nexus One smartphones running

Android 2.2;

• We experimentally evaluate D2Taint’s effectiveness with 84 real-world apps

downloaded from Google Play [54]. D2Taint reports that 71 out of the 84 eval-

uated apps leak either internal or external information to third-party destinations

and 12 out of these 71 apps leak highly sensitive internal information. D2Taint also

detects considerable external information leakage in 33 out of these 71 apps and pro-

vides detailed information about multiple external sources, which is much more than

TaintDroid can provide. Furthermore, we evaluate the performance of D2Taint and

our dynamic tag system. Our results show that D2Taint is effective at handling a

large number of sources and it can dynamically adjust its tag scheme based on users’

behavior during program execution, with moderate space and runtime overheads.

For instance, under the CaffeineMark benchmark, D2Taint’s space overhead is 4.0%,

which is slightly less than TaintDroid’s. D2Taint’s runtime overhead is 25.9% while

TaintDroid’s is 14%. This is expected, as D2Taint needs more operations for the tag

system and location information table operations.
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The rest of the chapter is organized as follows. Section 4.2 provides background

information on the Android system and IFT. Section 4.3 presents our differentiated

and dynamic tagging strategy. Section 4.4 presents the design and implementation

of D2Taint, respectively, followed by the evaluation methodology in Section 4.5. Sec-

tion 4.6 discusses our experimental results. Section 4.7 provides related work. Sec-

tion 4.8 concludes.

4.2 Mobile Operating Systems And Information Flow Track-
ing

4.2.1 Android System

Android [4] is an open, Linux-based mobile operating system for which applica-

tions (apps) are written in Java. The Android system has several “layers.” The

bottom layer is the Linux kernel. Above that are middleware libraries written in

C/C++ such as WebKit [115] and OpenGL. The next layer is the Dalvik virtual

machine, which lies above these libraries and interprets applications (apps) written in

Java. (Android’s Java is based on Apache Harmony [5].) Above that, Android pro-

vides system components written in Java that are interpreted by the Dalvik VM. The

top layer consists of (third-party) apps written in Java using these components. These

apps are compiled to Java bytecode, which is then translated to custom Dalvik EXe-

cutable (DEX) bytecode for the Dalvik VM. Each app is isolated from other apps via

a sandbox mechanism that assigns it a unique uid and gid. Apps can communicate

with each other using the Binder IPC mechanism, which enables message passing via

parcels. Android exposes mobile phone functionalities such as the camera, Internet

access, etc. to apps via a capability mechanism (“permissions”). Each app requests

a set of permissions that are displayed to users at install time. When Android runs
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the app, it verifies that the app has the necessary permissions to perform its tasks.

If not, the system throws an exception and halts the app.

Dalvik VM: Dalvik is a register-based virtual machine (VM) that interprets An-

droid applications’ DEX bytecode. (By contrast, the Java VM is stack-based.) DEX

bytecode is designed for greater compactness than Java bytecode to help save space

on resource constrained mobile devices. The Dalvik VM maintains so-called “vir-

tual” registers (registers for short) on which all operations are based. As [41] notes,

Dalvik also maintains an internal execution stack and the current method’s registers

are on the top stack frame. Register contents roughly correspond to local variables;

registers store primitive types and object references. DEX uses class fields for long-

term storage. DEX instructions only work with registers, necessitating load and store

operations on fields before and after data are used [41].

4.2.2 Information Flow Tracking Basics

Information flow tracking (IFT) is a promising and effective technique for detecting

leakage of sensitive data [74, 75, 110] and system-compromising security attacks [25,

77, 103]. It can be implemented in three different ways, including compiler analysis

on programs written in special type-safe programming languages [33, 34, 56, 74, 75],

software instrumentation at the source code, bytecode, or binary level [41, 77, 117],

and architectural support for IFT [29,103,110].

To detect leakage of sensitive data, IFT techniques generally tag (label) the source

data using a pre-defined structure, e.g., sensitivity level or source IDs. The source

data can come from I/O devices such as disks, keyboards, and cameras. For example,

data in the password file can be tagged with the highest sensitivity or the owner id
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(root) of the file. During program execution, data tags are propagated based on

certain policies. For example, a = b + c means a’s tag derives b and c’s tags. One

propagation policy could be a.tag = max(b.tag, c.tag) if we use the sensitivity level

as the tag. Finally, the technique checks the data tag against security rules whenever

certain data are sent over channels such as networks. If a security rule is violated, an

information leakage alarm is raised. An example of such rules could be “The most

sensitive data (e.g., passwords) may not be sent over the network.”

4.3 Differentiated and Dynamic Tagging

4.3.1 Design Rationale

Recall from Section 4.1 that our key challenge is tracking a vast number of in-

formation sources. Smartphone data can originate from many sources such as online

banks, social networking websites, etc. Any smartphone based IFT system needs to

track all these sources in each data tag. Yet tag capacity is limited, e.g., 32 bits. A

näıve approach to solve this challenge is using 1 bit to track each source. However,

this requires many bits to track all sources, far more bits than the tag length. This

approach leads to enormous tag overhead. On the other hand, we aim to achieve two

contradictory goals: source completeness and accuracy of source information. Source

completeness refers to how many information sources we capture. Clearly, we want

to capture as many sources as possible. Accuracy of source information refers to the

accuracy with which we map information recorded in the tag to the specific informa-

tion source that was recorded. This information recorded in the tag should uniquely

identify this information source. However, due to the limited tag length, this may be

infeasible. In summary, a better solution must be sought.

79



In this chapter, we propose a so-called differentiated and dynamic tagging strategy

to overcome the above challenge while balancing these two contradictory goals. Our

strategy is based on the following observations on at three different levels: information

sources, applications, and user behaviors.

Source Level: Different information sources may have different sensitivities in terms

of security. For example, information from online bank websites is far more sensitive

than information from news websites. As such, bank information merits a higher level

of security than news information.

Application Level: The patterns by which applications access information sources

differ for different applications. That is, these patterns follow a non-uniform dis-

tribution over the set of all applications. Some applications such as online banking

applications access only a few sources whereas others such as news aggregators access

many sources. Additionally, applications have variables that have different correla-

tions with each other. For instance, if we execute the statements a := c+d+· · ·+z and

b := 1, a is correlated with variables c, · · · , z whereas b is correlated with no other vari-

ables. Clearly, we need to capture these heterogeneous variable correlations. Thus,

we need different amounts of storage space (bits) to capture heterogeneous sources

and correlations.

User Level: We observe that smartphone users’ behavior patterns vary over time.

Consider the following real-world usage scenario. Suppose a user often reads many

news websites like cnn.com. Once or twice, the user logs in a social networking

website like Facebook to check for messages from friends and checks a bank account.

From this scenario, we can see that users access different information sources over

time. Thus, IFT needs to adapt to changing information source access patterns.

80



XX 0011 XXXX XXXX XXXX XXXX XXXX XX XX XX 

Class 1 Class 2 Class 3

16 bits 8 bits 6 bits

Tag Scheme ID

Information Source

…

10011

0000

Index

usbank.com

…

0011

citi.com

10000

…

Tag Structure Class 1 Location Information Table

Figure 4.2: Tag structure

We develop the differentiated and dynamic strategy based on these levels. By

examining the source level and application level, we develop differentiated classes,

which classify information sources based on considerations such as their information

sensitivities. Differentiated classes inform us about information sources’ sensitivity.

This information provides guidance for designing the tag scheme given limited tag

length. By examining the user level, we develop tag dynamics, in which the tag

scheme is updated on-the-fly based on properties of received information sources and

users’ access thereof. Differentiated classes and tag dynamics enable us to track many

information sources on smartphones in real-time. We discuss differentiated classes in

Section 4.3.2 and tag dynamics in Section 4.3.3.

4.3.2 Differentiated Tag Structure

Our tag structure is illustrated in Fig. 4.2. Each tag has the same fixed length.

There may be multiple tag schemes in our tag system when dynamics are considered

(we discuss dynamics shortly). We assign each tag a tag scheme ID, which is a fixed

length bit string at the beginning of the tag. We partition the remainder of the tag

into segments. Each segment corresponds to a distinct class. Each segment contains
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a certain number of information sources. Intuitively, there are fundamental tradeoffs

among the number of classes in a tag, the number of information sources that can

be stored in a class, and the number of bits used to represent an information source

in that class. In fact, the bits representing a source map to the indices of a location

information table. Each class has its own table. For a particular class, each entry

in that class’s table “describes” an information source in that class. Specifically,

each table entry maps the bits representing an information source to a text string

describing that source. As a concrete example, consider the tag in Fig. 4.2. We see

the tag is 32 bits long with a 2-bit tag scheme ID. We notice the remainder of the

tag is partitioned into three segments of lengths 16 bits, 8 bits, and 6 bits. Each

segment corresponds to a distinct class. In the first class, each information source is

represented as a 4-bit string. In particular, the bit string 0011 maps to usbank.com

in the location information table. Yet as more information sources arrive, the table

grows and this string can map to either usbank.com or citi.com. In the second class,

each information source is represented as a 4-bit string, and in the third class, each

information source is represented as a 2-bit string. (These classes’ tables are omitted

for brevity.) Notice that the source representations can have various numbers of bits

in different classes.

Examples: The following examples illustrate our differentiated tag structure.

• 32 bits, 1 class for each bit: This example assumes there is only a single tag, so

there is no tag scheme ID field. In this example, each bit in a 32-bit tag can represent

one information source. This is exactly the approach TaintDroid [41] uses. A tag

system using this approach can support 32 distinct sources and keep 32 live records

in the tag.
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• 32 bits, 2-bit tag scheme ID, 3 classes, 16/8/6 bits per class, 4/4/2 bits per

source: This example shows the tag structure in Fig. 4.2. We have three classes:

“highly sensitive”, “moderately sensitive”, and “insensitive”. We allocate 16 bits for

“highly sensitive”, 8 bits for “moderately sensitive”, and 6 bits for “insensitive”.

• 32 bits, 2-bit tag scheme ID, 2 classes, 24/6 bits per class, 3/2 bits per source:

In this example, we allocate 24 bits for the “highly sensitive” class and 6 bits for the

“insensitive” class. We can store 8 sources in the “highly sensitive” class and three

sources in the “insensitive” class. This example works for the case where there are

more sensitive sources.

Tag Parameter Settings: We can realize differentiated classes based on information

sensitivities. We can change the number of classes so long as each class stores at

least one information source representation and the tag length is fixed. Clearly, we

face tradeoffs among the class length, number of information sources represented in

each class, and the number of bits for each source representation in the tag. Our

proposed design incurs the following tradeoffs among the number of classes, number

of information sources, and bits per source.

• If we record too few sources in the tag, some sources will be absent from the

tag. If we use too few bits to represent a source, collisions can occur among sources.

Then there will be less accurate source information within a class.

• There are two special cases within a class: (1) Many sources with very few bits

per source. This works well when an application accesses few information sources

but its individual variables are correlated with many other variables; (2) Very few

sources with many bits per source. This works well when an application accesses
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many different information sources but its individual variables are only correlated

with a few variables.

• We cannot arbitrarily set the number of classes, number of sources, and bits

per source. The total number of bits is bounded by the tag space. Also, the number

of sources in a class is at most 2n, where n is the number of bits per source.

4.3.3 Tag Dynamics

We realize tag dynamics as follows. Each class can have a different length at dif-

ferent times. As new information sources arrive, we classify them based on sensitivity,

add them to the respective location information table, and place their (truncated)

indices in the tag. Based on information source knowledge, we can adjust the class

size for each class. An intuitive way is to “pre-specify” some classes and change the

tag structure once certain conditions are met, e.g., most tags have less than 50%

space usage. Another way is to perform “on-demand” machine learning (ML) based

on statistical properties of tag space usage and location information tables’ recent

hash values. With this way, we create an ML process, which collects tag information

from a normal process, and calculates a new tag structure for the normal process.

After a new tag structure is specified, the ML process sends the new tag structure to

the normal process, which can adjust its tag structure accordingly.

In designing tag dynamics, we need to consider how the tag structures should

be changed. Initially, the tag should record as many sources per class as possible

subject to the constraints described above. If most variables do not use their entire

class space during tag scheme system execution, we can assign more bits per source
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and adjust class length accordingly. For such an adjustment, we need to consider the

following two issues:

• Tag Scheme Switching: Switching among different tag schemes is crucial for

our dynamic tag system design. There are two problems: (1) determining tag scheme

configurations; and (2) determining when to switch tag schemes. We have two main

approaches: (1) pre-configured ; and (2) on-the-fly. The pre-configured approach lets

users configure their own tag schemes based on their Internet usage behaviors. Recall

the last two examples in Section 4.3.2. The tag structure can switch between these

when users access many highly sensitive information sources. For example, they can

list important websites they often visit and classify them into different classes based

on information sensitivities. All other websites and external sources are classified

as “unknown.” When users access more sensitive websites than unknown sites, the

source lengths in the sensitive class can be increased and the source lengths in the

unknown class can be shortened. Criteria for switching and the switching process

can be configured in advance. The on-the-fly approach can adjust the tag scheme

based on tag space utilization and newly arriving information sources. It is suitable

for determining when to switch tag schemes as user and application behaviors are

unpredictable. For example, if class 2 sources arrive while class 1’s space is not full,

the system allocates more space for class 2 dynamically.

• Tag merging: Tag merging is necessary for tag propagation. When multiple

tags “meet” based on variable operations, we need to generate a new tag. If both

merging tags have different tag schemes due to tag switching, we first need to convert

old tags to new tags. In a simple case, both tag schemes’ representations have the

same length and we can simply merge them in the new tag scheme. If we cannot
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Figure 4.3: D2Taint system architecture

fit all information sources in the new class, we can select source representations for

replacement. But their lengths may differ. If the length decreases in the new tag

system, some most significant bits need to be removed from the old representations.

If the length increases, we retrieve “old” indices from the table and place them into

the new class segments.

4.4 IFT with Dynamic and Differentiated Tagging

4.4.1 System Overview

Fig. 4.3 shows our D2Taint system architecture. The system has two main com-

ponents: (1) the dynamic tagging component; and (2) the information flow tracking

component.

The dynamic tagging component handles tag management and determines when

to switch tag schemes. It has three parts: (1) the dynamic tagging core; (2) the tag

generator ; and (3) the tag merger. The dynamic tagging core handles configuration of

the dynamic tag system and decides which tag scheme can be used. The tag generator

fetches or generates a tag for incoming data. The tag merger merges two tags and

generates a new tag.
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The information flow tracking component tracks a data flow from its sources until

the related data are sent out or written to files. It has three parts: (1) the tag

assigner ; (2) the tag propagator ; and (3) the tag checker. The tag assigner intercepts

incoming data through I/O channels such as networks and assigns the initial tag to the

data based on the results from the dynamic tagging component. The tag propagator

propagates data tags for each operation during program execution. The tag checker

checks the data tags for compliance with security policies when data are going to be

sent out over I/O channels. Our system also maintains a trustable site list containing

a list of websites to which data can be sent without raising any alerts. Users can

modify the list based on the IFT results.

A typical D2Taint workflow is as follows. When an application starts, the dy-

namic tagging component first loads two configuration files: one stores tag structure

definitions and the other stores user-defined classes and known data sources in each

class. Then the dynamic tagging component performs two tasks. First, this com-

ponent checks the data source list for each incoming data source passed by the tag

assigner. If found, the tag is retrieved and returned to the tag assigner. Otherwise,

a new entry for the data source is created and the new tag is returned. Second,

the dynamic tagging component tracks incoming sources’ statistics and determines

whether it should switch D2Taint to a different tag scheme.

The tag assigner intercepts I/O channels to capture incoming data. For each

incoming data source, the tag assigner consults the dynamic tagging component to

get the tag and then assigns the tag to the new data.

For each instruction being executed, the tag propagator is in charge of propa-

gating tags for a data flow. If it needs to merge multiple tags to generate a new
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tag, it gets a new tag from the dynamic tagging component. The dynamic tagging

component merges the tags from different source data and assigns the merged tag to

the destination data. For example, a binary operation a = b + c triggers tag propa-

gation a.tag = b.tag ⊕ c.tag, where ⊕ is the merge operation. The dynamic tagging

component handles tag merging differently for two cases: (1) where the tag scheme

is not switched; and (2) where b.tag and c.tag use different tag schemes.

When data are going to be sent out over I/O channels, the tag checker is activated.

It uses the list of trustable sites to check if the data are allowed to be sent to their

destinations. If this data sending event is not allowed, the tag checker raises an

exception to the user, who is asked if the data can be sent.

We implement a prototype of D2Taint on Nexus One smartphones running An-

droid 2.2. However, we see no particular difficulty applying our ideas to other smart-

phone architectures. To reduce overhead incurred by tag storage and propagation, our

D2Taint system tracks data flows for Java code at the variable level, as TaintDroid [41]

does. By instrumenting the Dalvik VM during interpretation of Java bytecode, we

can fully utilize Java objects’ semantics to store taint tags and propagate them among

objects. This helps reduce IFT’s overhead.

In the following, we present the two components in detail. First, we introduce

the dynamic tagging component, then we illustrate the information flow tracking

component.

4.4.2 Dynamic Tagging Component

The dynamic tagging component realizes management of tag schemes, tag assign-

ment, and tag merging. These functions are performed by three sub-components: the
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dynamic tagging core, the tag assigner, and the tag merger, respectively. We discuss

them in the following.

Dynamic Tagging Core

The dynamic tagging core maintains two configuration files. The first configura-

tion file stores the tag system settings, which are read and parsed into memory during

D2Taint’s initialization phase. In memory, we maintain a global array that stores set-

tings for each tag scheme. Each tag scheme setting includes the scheme number, the

number of bits per tag, the number of classes, and a pointer to the class list. In a

class structure, we record the number of classes in the tag system, the number of

bits per hashcode, the number of reserved slots for the class, and a text description

of the class. In our current implementation, we use 32 bits for a tag and 5 bits for

a hashcode by default. The first 2 bits are used to indicate the number of the tag

scheme. There are 6 available hashcode slots in a tag.

The second configuration file stores user-defined classes and each class’s known

data sources. After reading the data from the configuration file, we use a global

location information table list to record all source information. Each information

table corresponds to one class. Each source has an entry in one particular table.

Note that we only store the domain name for a source, e.g., google.com, nsf.gov,

etc. If an IP address has no corresponding domain name or hostname, we store the

first 16 bits of the address, e.g., 192.168.0.0. This helps decrease the total number of

entries in the location information tables. A domain name or an IP address suffices for

a user to determine the information source. To save space, each table is dynamically

allocated as its number of entries increase.
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The dynamic tagging core also collects statistics for incoming sources and de-

termines whether the tag scheme should be switched. In particular, after a certain

number of new sources (i.e., 50) are added into an location information table, D2Taint

decides whether to switch the tag scheme based on these new sources. D2Taint counts

the source distributions for each class, finds the best matched scheme with this dis-

tribution, and updates the current tag scheme number. This implementation incurs

a low overhead as it only makes the “switch” decision periodically after enough new

sources arrive.

Tag Generator

The tag generator uses the location information list to respond to the tag assigner’s

query when new data arrive. The tag generator checks the location information list

for each new data source. If the source is in the list, the tag is retrieved and returned

to the tag assigner. Otherwise, a new entry for the data source is created and a new

tag is returned.

Tag Merger

The tag merger performs tag merging, which is necessary for tag propagation.

When multiple tags “meet” in a corresponding bytecode instruction, a new tag has

to be generated based on the source data tags. For example, a = b + c triggers

a.tag = b.tag ⊕ c.tag. To merge tags b.tag and c.tag, we need to handle two cases:

(1) when these two tags use the same tag scheme; and (2) when they use different

tag schemes. Merging multiple tags can be seen as multiple instances of merging two

tags.
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For the first case, a new tag can be quickly formed by collecting the hashcodes

in the corresponding class segments when each class has enough room to host all

hashcodes from b.tag and c.tag. Sometimes, the classes in b.tag and c.tag contain

more sources that one class segment in a.tag can hold. To handle this case, we can

either randomly drop sources or select source tags based on their access recency or

frequency.

For the second case, we have to first convert an old tag to a new tag based on

the current tag scheme. In a simple case, the old tag scheme has the same hashcode

length as the current tag scheme. If so, we just put the hashcode into its class

segment in the new tag. When there are more hashcodes than available slots for

a class, we can either randomly select some hashcodes or keep the latest ones (i.e.,

those with larger values). But the hashcode lengths may differ among different tag

schemes. If the length decreases in the current tag scheme, certain significant bits

need to be truncated from the old hashcodes. If the length increases, we first retrieve

the hashcode indices in the location information table, hash these indices into new

hashcodes, and finally fit the hashcodes into the class segments.

4.4.3 Information Flow Tracking Component

The information flow tracking component tracks information flows from sources to

destinations in an Android application at runtime. It includes three sub-components:

(1) the tag assigner ; (2) the tag propagator ; and (3) the tag checker, which perform

tag assignment, tag propagation, and tag checking, respectively. We first discuss how

D2Taint stores tags for different data, then we discuss each sub-component. In the

following, we call the memory block that is used to store tags a taint map.
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Taint Map

In Dalvik VM, five types of variables need taint maps to store their tags: method

local variables, method arguments, class instance fields, class static fields, and arrays.

Among these data types, method local variables and method arguments are stored

in methods’ stack frames. We store tags of class static fields and arrays into their

representative objects. TaintDroid [41] does likewise. However, for the other three

variable types, our taint maps differ from TaintDroid’s. We do not store variables’

tags adjacent to them in memory. Instead, we use specific taint maps for these variable

types, as our system’s tag lengths tend to change. Further details follow:

Method local variables and method arguments. We use a stack taint map to

store tags for a method’s local variables and arguments. A stack taint map differs

from a method’s stack frame. When Dalvik VM allocates a stack frame for a method,

our system allocates a stack taint map for it. The last element of the stack taint map

is for the method’s return value.

Class instance fields. Tags for class instance fields are stored in objects’ taint

maps. An object’s taint map is stored in the memory area immediately after that

allocated for the object.

Tag Assigner

The tag assigner labels data tags according to their origins. While the data are

read, the tag assigner tries to determine the data’s origin and uses such information

to query the dynamic tagging component. After it receives the tag, the tag assigner

labels the data with the tag. If the origin information contains multiple sources, then

the tag can be used to locate multiple sources. To taint data effectively, we insert our
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tag assigner logic into file I/O, network I/O, sensor, and other library functions that

read private information, e.g., device identifiers, call histories, etc. TaintDroid [41]

also does so.

Tag Propagator

As an IFT system, D2Taint needs to instrument program execution to track data

flows. Based on this, we use the same propagation logic as TaintDroid to propagate

tags in interpreted code and native code [41]. Our system also propagates tags from

one process to another via Binder IPC, and writes the data’s source information

into the file system if the data are written to local files. The biggest difference

is TaintDroid’s use of bitwise OR to merge two or more tags, whereas we use the

method in Section 4.4.2 to merge two tags. Also, when a message is sent via Binder

IPC, our system extracts source information from the related tags and sends it with

the message via IPC. After the receiver gets the message from IPC, it extracts the

message’s source information and uses it to get a tag for tainting the received data.

Tag Checker

The tag checker is activated when data are going to be sent out via networks.

First, the tag checker leverages the list of trustable sites to determine the destination’s

trustworthiness. If the destination is trustable, the data can be sent without raising

any alerts. If the destination is not in the trustable list, our system extracts source

information from the data’s tag and then delivers it to the user, who decides if the

data can be sent to the destination. If the user does not want the data to be sent

to the destination, the tag checker blocks data sending and stops program execution;

otherwise, the data is sent out and the execution continues.
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4.5 Evaluation Methodology

We evaluate our D2Taint system in three ways: (1) real-world application study;

(2) system performance evaluation; and (3) dynamic tagging system evaluation.

In the real-world application study, we select 84 “top free” apps from Google

Play [54] in July 2012. We believe these apps represent a cross-section of those in

widespread use on Android smartphones. Since many apps are ad-supported, we be-

lieve they may potentially leak sensitive information to third parties, as prior work

suggests [41, 42]. We download these apps, install them on Nexus One smartphones

running our D2Taint system, and exercise app functionalities. We monitor app in-

stallation and execution to check if these apps leak information. We collect system

logs, IPC messages, and network traces from the phones using adb logcat. We verify

the results using tcpdump on the Nexus One’s WiFi interface. No Nexus One had a

SIM card and Bluetooth was disabled; all network traffic went through WiFi. When

apps read data from the Internet, we record the data’s sources via tags as well as

the destinations to which the data are sent. We inspect the relevant hostnames and

corresponding IP addresses to remove false positives, e.g., two different IP addresses

belonging to the same organization. For comparison purposes, we perform the same

experiments on smartphones running TaintDroid 2.3.

In the system performance evaluation, we demonstrate that D2Taint’s overhead

is reasonable. We use an unmodified Android ROM as the base of performance com-

parison. First, we test the impact of D2Taint on the user experience, especially the

execution time. We also test other common smartphone operations, including system

and networking operations. Second, we use a standard benchmark tool, Caffeine-

Mark [81], to measure D2Taint’s overhead. CaffeineMark reports scores of various
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features based on the Java execution time. Memory overhead is measured based on

CaffeineMark’s increased memory footprint on the D2Taint system.

Lastly, we evaluate the performance of dynamic tag system design and show the

benefit of such a design. We develop a test app to emulate two different usage

patterns: sequential and random. We measure the number of sources recorded in the

tags when the data are sent out via network sockets, which shows a tag’s effective

space utilization. We demonstrate the performance improvement of our dynamic tag

design in comparison to a static tag system.

4.6 Experimental Results

In this section, we present the experimental results following the above evaluation

methodology.

4.6.1 Real-world Application Study

D2Taint finds that 71 out of the 84 apps leak information to third-party des-

tinations. D2Taint reveals the paths by which the information is leaked, whereas

TaintDroid only reveals the final leakage destinations. In our experiments, we found

33 apps that transmit data among myriad various external sources, especially cloud

computing services (e.g., Amazon Web Services). To reduce false positives, D2Taint

uses the following rule: information flows whose sources and destinations are the same

are treated as legal. In addition, D2Taint provides detailed information about mul-

tiple sources when reporting to the user. By contrast, TaintDroid cannot record any

source information for external data since it only uses 1 bit to tag the data. There are

two consequences: (1) it triggers false positives whenever data flows from an external

source to that same source, which we observed frequently during experiments; and (2)
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Stock Android D2Taint

App Load 53.19 ms 58.12 ms
Download (32.3 MB) 35.73 s 38.34 s

Web Load (google.com) 735 ms 856 ms
Web Load (nytimes.com) 1081 ms 1116 ms

HttpGet 658 ms 746 ms
Write File 7.96 ms 8.02 ms
Read File 1.21 ms 1.51 ms

Socket Send 5.24 ms 6.37 ms

Table 4.1: Macrobenchmarks

it cannot keep track of data from multiple sources at once. Our experiments validate

the real-world problem of external data leakage and show that D2Taint can be used

to detect information leakage related to many external sources.

In addition, D2Taint detects that some apps send highly sensitive internal data

such as IMEIs/EIDs to third parties, particularly ad and market research compa-

nies (e.g., admob.com and flurry.com). More specifically, D2Taint finds 12 apps

leaking devices’ IMEIs/EIDs: The Weather Channel, ESPN ScoreCenter, NavFree

GPS, SWAT Army, Bible, Fruit Ninja Free, Coin Dozer, Yellow Pages, Scramble

with Friends, Words with Friends, Funny Facts Free, and IQ Test. From this aspect,

TaintDroid also reports these apps leak sensitive information.

4.6.2 System Performance Evaluation

Macrobenchmarks

Macrobenchmark results are shown in Table 4.1. Each value is averaged over 30

runs.

Application load time: We measure the time needed to load a new Android app

and display the UI. D2Taint’s overhead with respect to stock Android is 9%.
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Download time: We measure the time needed to download a 32.3 MB file from

google.com. D2Taint’s overhead is 7.3%.

Webpage load time: We measure webpage load time using a toy “Web view”

app. Specifically, the time between a UI button press and the webpage completely

loading is measured. Two types of webpages are tested: light text (google.com)

and heavy text (nytimes.com). Table 4.1 shows D2Taint’s overheads are 16% for

google.com and 3% for nytimes.com. This can be explained as follows. google.com

automatically redirects to a “mobile-friendly” webpage, leading to more webpage data

caching operations, as recorded in D2Taint logs. Since D2Taint also outputs tags into

the file when writing data, google.com’s overhead is larger than nytimes.com’s.

Input and output: Besides basic system and networking operations, we develop an

app that reads data from the “top 100” websites hosted in the U.S. [3], writes the

data to a file, reads 1,000 bytes from this file, and transmits the 1,000 bytes to a

remote machine via a socket connection. Table 4.1 shows the results. Each value is

averaged over the top 100 websites’ data with 10 runs.

The networking input and output overheads are 13% (HttpGet) and 21% (socket

transmission), respectively. The input overhead stems from the location information

table query to assign a new tag to the input data. For the output overhead, D2Taint

needs to access the location information tables to lookup source information as well

as the trustable list to determine if data transmission is allowed. The filesystem I/O

overhead is negligible: 0.5 ms for reads and writes.

Java Microbenchmark

The CaffeineMark scores are shown in Fig. 4.4. The scores roughly correspond

to the number of Java instructions executed per second. D2Taint and unmodified
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Figure 4.4: Microbenchmark: Java overhead

Android have scores 581 and 784, respectively, so D2Taint’s overhead is 25.9%. In

contrast, TaintDroid and unmodified Android have scores 967 and 1121, respectively,

and TaintDroid’s overhead is 14%. Though D2Taint’s overhead is higher than Taint-

Droid’s, D2Taint’s absolute impaired score (203) does not significantly differ from

that of TaintDroid (154). D2Taint’s extra overhead is expected since D2Taint needs

more operations for the tag system and location information table operations. In

contrast, TaintDroid uses only the “OR” operation to merge tags since its sources are

fixed and hard-coded.

We also measured CaffeineMark’s memory footprint to determine D2Taint’s space

overhead. Since the memory footprint value varies with the time after CaffeineMark

is launched, we obtained the value immediately after rebooting a system. Caffeine-

Mark consumes 21664 KB and 22528 KB in a unmodified Android system and our

D2Taint system, respectively: a 4.0% overhead. This overhead is slightly lower than

TaintDroid’s, which is 4.4% [41]. Both D2Taint and TaintDroid use the same tag

length, 32 bits. The other primary memory used by D2Taint is for the location in-

formation table. Note the location information table dynamically increases as more
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Figure 4.5: Sequential websites
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Figure 4.6: Random websites

information sources arrive. This overhead is ignored here as CaffeineMark does not

access the Internet; hence no entries would be added into the tables.

4.6.3 Dynamic Tag System Performance

We evaluate the performance of a dynamic tag system under different situations.

To do so, we measure the number of sources recorded in a tag.

In the experiments, we pre-configure four tag schemes for three classes: (1) 2/2/2

hashcode slots for classes 1/2/3 (default); (2) 4/1/1 hashcode slots for classes 1/2/3;

(3) 1/4/1 hashcode slots for classes 1/2/3; (4) 1/1/4 hashcode slots for classes 1/2/3.

Each hashcode’s length is fixed at 5 bits. The tag scheme switching is triggered after

10 new entries are added into the location information tables. We select the “best

matched” tag scheme based on the class distributions among these entries.
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We write an app to visit the top 100 websites hosted in the U.S. Websites 1–

30 are classified into class 1, 31–60 are classified into class 2, 61–90 are classified

into class 3, and the remaining 10 are unclassified. The app visits websites 1–100

sequentially or randomly. To emulate tag propagation, we combine several previously

downloaded webpages into the final “stolen” data for socket transmission. Thus, the

most recent webpage has a higher probability to be selected for combination. We run

the experiments 50 times.

The results are shown in Figs. 4.5 and 4.6. For sequential websites, a static tag

system can record at most two sources before the class 2 websites are visited. The

peak appears after class 3 are visited as all six available hashcode slots can be used.

In our D2Taint, we found tag scheme switching happened at websites 11, 41, and 71.

There are some troughs among the class transition period as the tag system has not

adjusted yet. But shortly thereafter, the average source number increases to about

four sources per tag. The final trough is caused by the unclassified websites as they

do not appear in the tag. In general, a dynamic tag system’s performance is much

better than a static tag system’s performance as the former fits the currently visited

website classes well.

For random websites, tag scheme switching occurs about five times (on average)

with D2Taint. The number of sources remains stable with the number for the static

tag system. The dynamic tag system’s performance is a little worse than the static

tag system’s, as the default tag system is “best” for random websites. Thus, the

dynamic tag system is not a good candidate for a totally random situation. But we

argue that patterns tend to arise as users visit websites and run apps.
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4.7 Related Work

Information leakage in smartphone systems has attracted considerable attention.

In numerous instances, third-party applications have leaked personal information to

remote servers [32,72,92]. Most recently, Carrier IQ [13] has gathered voluminous data

from smartphones, apparently without their owners’ knowledge. Smartphones’ sen-

sors can also leak information such as workers’ activity [47] to remote servers. Many

systems have been proposed to combat information leakage. TaintDroid [41] tracks

information flow from single third-party applications. Vision [53] extends TaintDroid

to detect implicit information flows. AppFence [57] augments TaintDroid with privacy

enforcement mechanisms. Kirin [40] and Saint [79] provide rule-based security mech-

anisms for Android that restrict application access to sensitive information. SxC [35]

adds provable security contracts to Windows Mobile for the same purpose. Other sys-

tems [34,38,42,74] leverage static analysis to discern information leaking in Android

and iOS applications. D2Taint has two key differences from existing IFT systems

for smartphones. First, D2Taint accommodates a large number of sources, including

multiple applications, and classifies them into multiple groups. Second, D2Taint’s tag

structure accommodates varying types of sources with dynamic granularity. If many

untrusted sources enter the system, each source’s hashcode occupies less space, and

vice versa.

Most IFT systems store static taint tags using shadow memory [41,89,118] or tag

maps [119]. Usually, each data byte or word corresponds to a byte or word in shadow

memory. TaintDroid [41] propagates a static taint tag through the entire Android

system; this tag’s value does not change. By contrast, D2Taint’s tag structure is

partitioned into classes, providing finer granularity than static tags.
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More generally, dynamic taint analysis [24, 77, 89, 118, 119] (also known as “taint

tracking”) is an approach for information leakage detection. Some dynamic taint

analysis approaches are based on whole-system analysis using emulation environ-

ments, [20, 118], hardware extensions [29, 103, 110], and per-process tracking with

dynamic binary translation [17, 24, 89, 119]. However, these kinds of whole-system

analysis are far too heavyweight for resource-constrained smartphones.

4.8 Summary

We proposed a novel IFT tagging strategy using differentiated and dynamic tag-

ging. Our strategy partitioned information sources into differentiated classes and

stored class and source information in IFT tags. Our strategy enabled dynamic tag

structure adaptation in real-time based on received information sources. We de-

signed and implemented D2Taint, an IFT system using our strategy, on real-world

smartphones. Our experimental evaluation illustrated D2Taint’s potential to detect

information leakage with moderate time and space overhead.
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Chapter 5: Conclusion And Future Work

In this dissertation, we propose a methodology leveraging context information

from target processes and data for malicious code detection. Based on this method-

ology, we propose and implement three detection systems that can be used to de-

tect malicious code in client, server, and smartphone applications. We also conduct

comprehensive experiments to test our detection systems in server computers, client

computers, and smartphones. Our experimental results illustrate that the context

information can be used to greatly improve detection effectiveness. In addition, the

results show that our detection systems do not incur much extra overhead when they

are activated.

Although our detection systems have very low false negative rates, some attacks

could still evade our detection. First, our shellcode detection system can detect

malicious shellcode starting from certain positions in a message or buffer. If the

attack only uses addresses of glibc functions to overwrite the current stack frame’s

return address [95], then the hijacked control flow will be directed to the function,

not to a position in the message or buffer. In this case, we cannot correctly decode an

instruction sequence for checking because the bytes in the message or in the buffer are

addresses, not instruction codes. This issue could be solved by utilizing the address

information of glibc in a target process. Given a message, we can check if there is
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a byte sequence that looks like an address of an glibc function. If it is the case, we

could decode an intruction sequence from the address and emulate its execution. If

it exhibits malicious behavior, we consider the message malicious.

Secondly, we will further study IFT mechanisms that can be leveraged to track

information flows for native binary codes in smartphones. Currently, we only track

information flows for Java codes running in the Dalvik VM. When a Java application

calls a native function written in C/C++, we only use some heuristics to propagate

tag information from its parameters to its return value. This could impact false

positive rates and some benign programs might be considered malicious. We should

track information flows in native binary codes in order to further reduce false positive

rates. However, tracking information flows in native binary codes is not trivial and

incurs much extra overhead. Since smartphones with multi-core CPUs are becoming

increasingly common, we could leverage multiple cores to design a new IFT system

for smartphones for reducing the extra overhead incurred by IFT.
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