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Abstract

Utilities operating nuclear power plants in the United States are required to
demonstrate that their plants comply with the safety requirements set by the U.S. Nuclear
Regulatory Commission (NRC). How to show adherence to these limits through the use
of computer code surrogates is not always straightforward, and different techniques have
been proposed and approved by the regulator. The issue of compliance with regulatory
limits is examined by rephrasing the problem in terms of hypothesis testing. By using this
more rigorous framework, guidance is proposed to choose techniques to increase the
probability of arriving at the correct conclusion of the analysis. The findings of this study
show that the most straightforward way to achieve this goal is to reduce the variance of
the output result of the computer code experiments.

By analyzing different variance reduction techniques, and different methods of
satisfying the NRC’s requirements, recommendations can be made about the best-
practices, that would result in a more accurate and precise result. This study began with
an investigation into the point estimate of the 0.95-quantile using traditional sampling
methods, and new orthogonal designs. From there, new work on how to establish
confidence intervals for the outputs of experiments designed using variance reduction
techniques was compared to current, regulator-approved methods. Lastly, a more direct
interpretation of the regulator’s probability requirement was used, and confidence

intervals were established for the probability of exceeding a safety limit. From there,

il



efforts were made at combining methods, in order to take advantage of positive aspects of
different techniques.

The results of this analysis show that these variance reduction techniques can
provide a more accurate and precise result compared to current methods. This means an
increased probability of arriving at the correct conclusion, and a more accurate
characterization of the risk associated with events. While several of these methods are
asymptotic in nature, which presents potential drawbacks, issues of convergence appear
to be outweighed by the reduction in variance, and improvement of the information
contained in the results. Using this knowledge, recommendations were made about the
applicability of these methods in the field of reactor safety, and about future regulatory

limits and their implications.
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Chapter 1: Introduction

1.1 Problem Description

Since the inception of commercial nuclear power, utilities operating nuclear
power plants have been required to meet safety objectives set forth by the U.S. Nuclear
Regulatory Commission (NRC), and its predecessor, the Atomic Energy Commission
(AEC). These safety guidelines have made it necessary for the power plant operators to
demonstrate that their plants comply with the requirements set in place to protect public
health. Due to the large cost, complexity, and potential hazards of nuclear power,
demonstration of compliance cannot be done through integral experiments with actual
operating plants. Instead, complex computer codes were developed that simulate the
plant’s response to a variety of situations. The codes are validated by comparison with
experiments that typically involve some degree of scaling or simulation. The codes then
act as a surrogate for the real nuclear systems they represent. It is the responsibility of the
nuclear safety analyst to use these computer codes in an effort to determine whether the
performance of a nuclear power plant would satisfy safety requirements under a given set
of conditions. The analyst does this by performing a series of code calculations that
predict how the plant would perform over the range of anticipated accident scenarios. The
results of the analysis are then compared with a safety limit to determine acceptability.

The applicability of these computer code results to the assurance of satisfaction of safety



requirements is not always clear, and there has been great debate over the interpretation
of parameters and limits. In recognition that there are uncertainties in the ability of the
computer code to represent the actual plant behavior, the historical safety approach taken
by the NRC was to incorporate non-mechanistic conservatism in the analysis models.
More recently, the NRC has allowed the licensee to perform best-estimate plus
uncertainty analyses for comparison with safety limits. However, questions remain about
the interpretation of these requirements, and how to best demonstrate adherence to them.
This shift to risk-informed safety analysis has provided utilities with flexibility in their
analysis methods, but deterministic conservatism is still prevalent in the requirements of
the NRC. Techniques that increase the accuracy of these best-estimate safety analysis
methods, while reducing unnecessary conservatism, are of value to both the regulator and

utility.

1.2 Objective

The objective of this work is to identify statistical methods that can most
efficiently increase the probability of reaching the correct conclusion during a safety
analysis comparison to regulatory limits by increasing the accuracy and precision of the
results of these computer code experiments. This analysis will focus less on the suitability
of these computer codes to act as a surrogate for the actual systems, but will emphasize
the examination of the output results of the computer code experiments and how they
pertain to set limits and constraints. The analysis will involve several tasks which will be

performed using numerical experiments:



1) Compare techniques for the estimation of quantiles of the output distributions
of numerical experiments. This includes newer experiment designs, such as
orthogonal Latin hypercubes. The goal is to determine the most efficient
techniques, and to demonstrate whether it is possible to achieve the same level
of accuracy when using fixed input values, as compared to a form of random
sampling.

2) Explore alternatives to the NRC-approved method of crude Monte Carlo using
order statistics for the establishment of confidence intervals for the quantiles
of an output distribution of a computer code analysis. This includes
determining the applicability of recent work on variance reduction techniques
to the goals set by the NRC.

3) Explore alternative methods of satisfying the NRC’s statistical requirements.
The exploration includes an examination of the use of confidence intervals for
probability estimations rather than for estimated quantiles of the output
distributions. The examination consists of a comparison between methods and
attempts at combining the methods.

4) Comment on and discuss the results of these analyses, and the implications

towards future regulatory guidelines.

1.3 Scope
This work will expand on previous research in the statistical and computer science
fields. It will focus on the demonstration of recently published statistical techniques and

comparisons to current, regulator-approved methods. This will be done using systems
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representative of those encountered during a nuclear power plant safety analysis. The
goal is to assess the applicability of these methods in the field of nuclear safety analysis,
and to provide guidance about the best-practices to achieve the highest probability of
correct conclusion when comparing results to a limit value.

Accomplishing this goal will entail formulating a more rigorous approach to the
limit value comparison, which will allow for a uniform assessment of different methods
and techniques. The expectation is that a more detailed examination of the process of
comparisons to a limit value will allow the strengths and potential weakness of current
methods to be seen. The more detailed examination will also provide direction to the
areas where there is the biggest room for improvement. From there, through the use of
representative experiments, the prospective improvement from newer techniques can be

evaluated.

1.4 Dissertation Overview

Chapter 2 of this work will provide background and historical context for the
problem analyzed. This includes the regulatory motivations, a comparison of various
uncertainty and sensitivity analysis techniques, and a more formal phrasing of the
problem using hypothesis testing. Chapter 3 focuses on the techniques used to estimate
quantiles of output distributions. New work in the field has provided techniques which
may offer a step-forward in sampling methodology. This chapter also describes, in detail,
several systems which were used throughout this work to test statistical methods. The
systems are chosen to mimic situations encountered in nuclear safety analysis. Chapter 4

focuses on the methods to establish confidence intervals for the quantiles of output
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distributions. Once again, recent developments in the field have provided new options,
which need to be benchmarked against current techniques. Chapter 5 goes beyond current
regulatory practice, examining the meaning of certain regulatory requirements, and
proposing alternative methods not based on quantiles of output distributions, but on
probability. New combinatory techniques are also examined as a way of improving the
chances of analyses achieving the correct result. Chapter 6 offers a discussion of the
results and the applicability of the methods analyzed to actual nuclear power plant safety

analyses. This also includes a segment on recommendations for future work and research.



Chapter 2: Background

This section begins with a history of U.S. nuclear power plant governmental
regulatory bodies, and the evolution of their guidelines (Section 2.1). Secondly, an
overview of hypothesis testing is presented (Section 2.2). The purpose of this overview is
to provide a more rigorous framework for the process of comparisons of computer code
outputs to regulatory limits. This framework will be used throughout this work. Lastly, a
brief overview of uncertainty and sensitivity analysis methods is presented in order to
provide background on the current techniques available and to offer a point of

comparison to the methods documented in Sections 3, 4, and 5 (Section 2.3).

2.1 Regulatory Background
This section provides a history of regulatory limits imposed by the NRC and other
regulatory bodies, and their interpretation. It also includes a discussion about proposed

future regulatory guidelines and possible restrictions the limits may impose.

2.1.1. History of Regulatory Bodies

While the Atomic Energy Act of 1946 marked the development of the Atomic
Energy Commission (AEC) to oversee nuclear power in the U.S., it wasn’t until the
subsequent Atomic Energy Act of 1954 that commercial nuclear power began to appear
as a reality. With this revision to the original law, the federal government made it

possible for private companies to gain access to restricted data about the production of
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nuclear power. This law also assigned the AEC with the dual mandate of both
“encouraging widespread participation in the development and utilization of atomic
energy”’, and the role to “protect the health and safety of the public [1].”

While the main focus of the AEC was the protection of the public’s health and
safety, many in the commission were aware that overly restrictive regulation could
endanger the industry’s future. As AEC Commissioner Willard F. Libby remarked, “Our
great hazard is that this great benefit to mankind will be killed aborning by unnecessary
regulation [2].” However, the AEC realized that assurance of reactor safety was a must,
as a single accident could deal a death-blow to the industry as a whole. What was not as
clear was which requirements the AEC should mandate in order to demonstrate reactor
safety.

The formulation of guidelines was also hindered by the fact that the AEC was
assigned the onus of constructing at least six pilot plants of different designs. This made
universal standards difficult and the licensing of new plants began on a case-by-case
basis. These varied reactor designs, coupled with limited operating experience and
material property knowledge, meant that most safety questions were a matter of
engineering judgment and safety analysis was not constrained by concrete or quantifiable
goals [2]. The development of a more structured regulatory process coincided with the
formation of the Advisory Committee on Reactor Safeguards, which was a panel of
outside experts who would conduct their own independent review of plant applications

and regulatory structure.



In the 1960s, the nuclear industry grew rapidly from small demonstration reactors
to orders for substantially larger plants. At that point, concern rose as to the adequacy of
protective features in the event of loss of coolant accidents (LOCAs). The Ergen Study,
commissioned by the AEC, indicated that emergency core cooling systems would be
required for those plants [3]. The AEC then initiated a substantial research program to
develop a computational capability to analyze the plant response to a LOCA and an
experimental program to assist in model development and validation. The initial
computer codes were extremely crude relative to modern capabilities. In addition, loss of
coolant experiments indicated that the two-phase flow phenomena associated with
reflooding the reactor and quenching an over-heated core were complex. In response to
these considerations, regulatory guidelines were designed in order to account for these

potential deficiencies.

2.1.2. Evolution of Design-Basis Safety Requirements

The initial approach to safety analysis is referred to as deterministic, in that
uncertainties were not considered in a statistical manner. Under a deterministic approach,
“Regulators ... simply tried to imagine “credible” mishaps and their consequences at a
nuclear facility and then required the defense-in-depth approach—Ilayers of redundant
safety features—to guard against them [2].” These deterministic measures focused on the
use of conservative assumptions, large safety margins, and layers of redundant and
diverse safety systems. Based partly on the results of the Ergen study and Loss of Flow
Tests (LOFT) experiments, an emergency core cooling rulemaking led to the

development of acceptance criteria for accident response during a LOCA. Prescriptive
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acceptance criteria for emergency core cooling system performance were provided in
Appendix K to Part 50 of the Code of Federal Regulations [4] in early 1974. More
detailed information about the criteria established in Appendix K, along with methods
used to demonstrate adherence to these limits, is provided in Section 4.

By late 1974, President Nixon asked congress to create a new agency with the
sole focus of industry regulation. This marked the end of the AEC, and the Nuclear
Regulatory Commission (NRC) began operations in 1975. The NRC was now the final
arbiter of regulatory issues, and was not hampered with the developmental issues of the
AEC. The following year, the final version of a major reactor risk study, WASH-1400 [5]
or Rasmussen Report, on the probability of severe accidents at nuclear power plants was
issued. While the report represented a major step forward in safety analysis through the
use of Probabilistic Risk Assessment (PRA), criticism over the data used in report and the
projected pathways to a major accident resulted in the NRC withdrawing its endorsement
of its conclusions [2]. However, the accident at Three Mile Island (TMI) in 1979 led to a
reevaluation of the NRC’s safety requirements, and its view of PRA.

After TMI, applications for new reactors stopped, and the NRC turned its
attention towards decommissioning and plant renewals. As the NRC began issuing
guidelines on applications for life extensions, the industry began to push back against,
what they thought, were onerous regulatory measures. A report by the Tower Perrin
consulting firm in the 1990’s criticized the NRC for a regulatory approach which it
viewed as “negative and punitive” and not focused on the prioritization of risk [2].

Among these complaints was the argument that NRC guidelines focused too heavily on



deterministic regulations that left industry little flexibility in carrying out safety analyses.
The report also recommended the use of performance-based regulations, and the ability
for plants to perform risk analyses, like PRAs.

The use of PRA had been debated at the NRC since WASH-1400, and more
studies were conducted in the late 1980’s. Initially, the NRC considered PRA to be only a
safety research activity. However, many of the aspects of the accident at TMI were
effectively predicted by WASH-1400. PRAs also offered the ability to prioritize events
based on risk, and the opportunity to lessen possibly overly-conservative deterministic
approaches. One of the conclusions of WASH-1400 was that reactor risk is dominated by
Beyond-Design-Basis Accidents. For some specific scenarios, such as anticipated
transients without scram and station blackout accidents, the question of adequate
protection was raised and special requirements have been established, which have
effectively extended the design-basis and have become incorporated into the licensing

basis. Thus, for those events, NRC provides regulatory oversight to assure compliance.

2.1.3. PRA in Regulatory Decisionmaking

The publishing of NUREG-1150, Severe Accident Risks: An Assessment of Five
U.S. Nuclear Power Plants [6], in 1990 marked a turning point in the NRC towards risk-
based concepts. Not only did it expand on the use of PRAs, but it incorporated
uncertainty into the analysis, unlike WASH-1400 which addressed parameter uncertainty
post-process. By 1995, the NRC issued a policy statement encouraging the use of PRA in
all regulatory matters [7], and further guidance on the expectations and best practices

when conducting a PRA followed in [8],[9],[10],[11].
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While the NRC has accepted the move to PRA, it has not given up many
characteristics of the deterministic analyses of the past. Instead, the NRC encourages the
use of PRA “in a manner that compliments the NRC’s deterministic approach and
supports the NRC’s traditional defense-in-depth philosophy [12].” Regulatory Guide
(RG) 1.174 [9] was one of the first NRC documents to outline how deterministic and
PRA methods could be used in combination for integrated regulatory decisionmaking.
Recently, the NRC has sought to provide a clearer picture of how these two approaches
can be used in unison. Figure 2. 1 shows an outline from the recently published NUREG-
2150, A Proposed Risk Management Regulatory Framework [13], which details the
process of balancing risk assessment and deterministic techniques (called the “traditional
approach”) in what it calls a technical analysis. This proposed approach by the NRC
considers the uncertainty analyses and best estimate models of a risk assessment, but uses
the upper bounds of these results in comparison to safety limits with built-in margin and
conservatism. The safety margin is a combination of both regulatory and design margin,
as shown in Figure 2. 2, and historical upper bound assumptions will be discussed in

Section 3 and Section 4.
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Technical Analysis

Traditional Approach

Risk Assessments

e limited set of design basis accidents
e upper bound assumptions
e stylized, conservative models
e single failure criterion

safety margins

mechanistic/physical models

conservatism (analytical)

well suited for design activities

e numerous event sequences

e systems approach

e best estimate models

s reliability analysis
vulnerability determinations
human-System Interactions
realism

well suited for operational decisions

Defense in Depth Philosophy

(measures to prevent, contain and mitigate)

Events and conditions
such as normal operation,
equipment failures,
human error, malevolent
acts, and natural hazards

Each barrier is designed
with sufficient safety
margins to maintain

functionality and account

for uncertainties

Systems that are needed
to ensure a barrier’s
functionality are designed
to ensure appropriate
reliability

Barriers, controls, and personnel are subject to
performance monitoring

Ensure that the risks
resulting from the failure
of some or all of the
established barriers and
controls, including human
errors, are maintained
acceptably low

Figure 2. 1: Balancing Risk Assessments and Deterministic Techniques [13]

Safety Margin

Designer
Margin

Regulatory
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Increasing Value of Safety Variable

Design
Analysis

Regulatory
Limit

Figure 2. 2: Safety Margin Definition [14]
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In this safety margin framework, there is conservatism not only in the value reported by
the designer, but in the regulatory limit, which is placed well below the assumed ultimate
capacity of the system. Recent work has sought to recharacterize this margin in a
probabilistic, risk-informed manner as the distance between two uncertain parameters, the
system load, and the system capacity [15]. As seen in Figure 2. 3, the potential hazard
arises from the possible overlap between the two distributions, and the degree of overlap

is constrained by the regulator.

Load Capacity

Placement of
Safety Limit?

Figure 2. 3: Incorporation of Probabilistic Safety Margin

As will be discussed in Section 4, the location of the safety limits when using these
distributions is still being considered.

It appears that the NRC’s use of decision criteria and limits will continue for the
foreseeable future. More detail on the specifics of limits currently in place, those limits
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proposed for the future, and the techniques used to demonstrate adherence to these limits

will be given in Section 4.

2.2 Hypothesis Testing

The process of testing the output of an analysis against a certain goal or limit can
be explained more thoroughly using hypothesis testing. Hypothesis testing is a method to
make decisions based on the resulting data of an analysis. Hypothesis testing usually
begins with an assumption about a parameter of the analysis output. Here, a parameter is
the true value, or a property of the full population distribution. On the other hand, the
analysis or experiment provides a statistic. This statistic is based on the sample

population used in the analysis, as explained in Table 2. 1.

Table 2. 1: Parameter and Statistic Definition

True property of full population

Ex: 0.95-quantile of the true distribution
Property of sample

Ex: 0.95-quantile estimation using n samples

Parameter

Statistic

In this process, an initial guess about a parameter will be made, then the test statistic will
be found using experimentation (physical or computer modeling), and will be used as a
point of comparison. The initial assumption is called the Null Hypothesis Hy, and usually
refers to a default or general position. An example would be if an experiment was
undertaken to test the effectiveness of a new drug. The null hypothesis would be the

assumption that the drug has no effect. Conversely, there is the Alternative Hypothesis

14



H;, which in the example above would be the statement that the new drug does have
some non-random influence or effect.

It is important to note that the burden of proof is on the analyst to make the case
for the alternative H;. To make this clearer, it can be thought of as a court case in the
judicial system. The burden of proof is on the prosecutor to prove that a defendant is
guilty (H)). If the evidence is insufficient of conviction, then the conclusion is the null
hypothesis Hy, not guilty. The defendant is “innocent until proven guilty,” in much the

same way that Hy is assumed true unless proven otherwise.

2.2.1. Types of Hypothesis Testing and Associated Errors
The actual process of testing can be done in various ways. Table 2. 2 shows a
comparison of three possible procedures. In general, the three methods follow the same

approach, but use different test statistics for comparison.

Table 2. 2: Three Approaches of Hypothesis Testing [16]

Step Test Statistic Approach P-Value Approach Confidence Interval Approach
1 State Hy and H, State Hy and H; State Hy and H;
By Determine test size a and find Determine test size o Determine test size o or 1-0, and a
the critical value (CV) hypothesized value
3 Compute a test statistic (TS) Compute a test statistic and its p-  Construct the (1-a)100%
value confidence interval (CI)
4 Reject Hy if TS > CV Reject Hy if p-value < a Reject Hy if a hypothesized value
does not exist in CI
5 Substantive interpretation Substantive interpretation Substantive interpretation

The test statistic approach calculates a test statistic from the empirical data found during
the analysis. This test statistic is then compared to a critical value, usually from a

standardized normal distribution. The p-value approach calculates a probability, using
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the test statistic, that reflects the measure of evidence against Hy [17], referred to as the p-
value. Whether the p-value is greater or less than the metric a (discussed below)
determines if the results are “statistically significant.” The confidence interval approach
calculates a confidence interval around a statistic. It is then used to see if the
hypothesized value falls into that interval or not. This approach will be examined in detail
in Section 4. Usually, all three types of hypothesis testing can be reworded or
reformulated to form a test that would fall under one of the other categories, as will be
seen in Section 4.

With any hypothesis test, there are four possible outcomes, shown in Table 2. 3.

Table 2. 3: Hypothesis Testing Outcome Possibilities

H, is true H, is true

Incorrect Conclusion
Type-II Error

p

Correct Conclusion
1-B: Power of test

Correct Conclusion

Accept Hy l-a

Incorrect Conclusion
Accept Hy Type-I Error
a: Size of test

The first possible outcome is the correct conclusion to accept Hy when indeed Hy is true.
The second outcome is the incorrect conclusion to reject Hy when it is in fact true. This is
referred to as a Type-I error, or a false positive. Its probability is given the value a, which
is called the size of the test or significance level. It is important to note that this is not the
actual size of the test (i.e. how many samples were taken or how many computer code
runs were conducted), but the probability of committing a Type-I error. Conversely, the

first outcome, accept Hyo when Hj is true, occurs with probability 1 — . Many times, the
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value for « is assigned a priori as a measure of the willingness to accept false positives,
and the test is designed to satisfy that requirement.

The third possible outcome is the correct conclusion to accept the alternative
hypothesis H; when it is indeed true. The last outcome is the incorrect conclusion to
reject H; when it is true. This is called a Type-II error, or a false negative, and occurs
with probability . On the other hand, the correct conclusion to accept H; when H; is
true, occurs with probability 1 — £, which is called the power of a test. Unlike a, f is
usually not defined beforehand, but its value is dependent on the experiment design that
was constructed for a specific a, and several other factors, as will be described in Section
2.2.2.

The following example is presented in order to make this testing process more
comprehendible. For example, assume there is a regulatory safety limit with value G, that
represents a prescribed limit that the true 0.95-quantile &, o5 of the output of a safety
analysis cannot exceed. In this case, the hypothesis test is defined with null hypothesis
Ho: éy95 > G and alternative hypothesis H;: &y 95 < G. This framework puts the burden of
proof on H;, which hypothesizes that the true 0.95-quantile value of the output falls
below the prescribed limit.

In this example, the analyst carries out a certain number of computer simulations
to estimate the 0.95-quantile of the system’s output (more information on how to estimate
a quantile value is presented in Section 3). This estimation of &; 95, &5 (the ~ will be
used throughout this work to denote an estimated value), is then compared to the limit G

using either a critical value, p-value, or confidence interval. Based on this result, H; will
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either be accepted or rejected. Both errors, Type-I: the system appearing to satisfy the
safety limit when the true quantile does not, or Type-II: the system appearing to fail the
safety limit when the true quantile satisfies the limit, are possible depending on the
location of the true 0.95-quantile. Based on the type of test used, an acceptable value for

a would have been decided a priori, and the test would have been built around it.

2.2.2. Reducing Error

Both errors have negative impacts. Type-I errors would appear to be the more
serious error since a system is being approved that should not be. However, Type-II
errors also have drawbacks, since a system will be viewed as failing when it should not.
This type of error could mean that time and resources will be dedicated to fixing a
potentially non-existent problem, when they could have been applied more productively.
The goal of the safety analysis should be to reduce both Type-I and Type-II errors
(reduce a and ). This not only helps reduce false positives, but helps assure that safety
measures are most effectively addressing true safety issues.

Since a, the probability of committing Type-I errors, is usually fixed (common
values chosen are 0.05 or 0.01), then the focus is on reducing . This can only be done in
three ways:

1. Increase the distance (or A) between Hpand H;
2. Increase the sample size n
3. Increase a

Obviously, the third option is not acceptable, which leaves only two other methods.
Increasing the distance between Hp and H; will help reduce Type-II errors, but it is

usually outside the analyst’s control. The limit is often times set by some other
18



organization, and typically the system cannot be changed substantially. This leaves only
one available option, increasing the sample size. In our example, this would mean more
computer code runs, but even with today’s technology, computer runs are expensive and
time consuming. There is a possible solution though. The reason increasing the sample
size reduces [ is because it reduces the sample variance. This increases the precision of
the sample statistic, which in turn makes the probability of error less likely. Therefore,
the way to reduce f is to find techniques that decrease the sample variance without the

need to increase the sample size.

2.3 Overview of Uncertainty and Sensitivity Analysis

This section gives a brief overview of various sensitivity and uncertainty analysis
(SA and UA) methods. This is done in order to offer a better understanding of the current
methods available for these analyses, and how the techniques detailed in this work
compare to other methods in the field. Here, SA is defined as in the book Uncertainty by
Morgan and Henrion [18] as “the computation of the effect of changes in input values or
assumptions (including boundaries and model functional form) on the outputs”, and UA
as “the computation of the total uncertainty induced in the output by quantified
uncertainty in the inputs and models, and the attributes of the relative importance of the
input uncertainties in terms of their contributions.” To state this explanation more
simply, an UA is the investigation of the output space and its properties (usually mean,
variance, higher moments, etc). SA is the examination of the relationship between input

parameters and their effects on the value of the output.
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This section will center on the analysis of input uncertainty. While many of these
techniques can be used to handle model or parameter uncertainty, the main focus of this
work is on methods related to input uncertainty. However, this input uncertainty may be
either aleatory (stochastic in nature), or epistemic (relating to a lack of knowledge of
specific value). Also, this review will focus on SA and UA methods based on classical or
Bayesian probability theory. It will not cover some of the lesser known alternatives, like
fuzzy logic [19], possibility theory [20], Dempster—Shafer (evidence) theory [21]

[22], and info-gap decision theory [23]. While some very exciting developments are
occurring in these fields, in a matter of brevity, they will not be discussed here.

For ease of reference, the following notation will be used. A system will involve d
input variables, x = (x4, x5, ..., X4), and output variable y. The vector x is a realization
of a random vector X (capital letters will denote random variables, and lower case will be
a corresponding realization). Hence, y is also a realization of random variable Y, and the
relationship between the input and output can be described in Eq. 1, which shows the
output has its own probability density function (PDF). The total number of runs (where a
run is the creation of a sample from the system) conducted will be denoted by .

Y = F(Xy, Xq, o, Xg) = F(X) Eq. 1

To aid in the presentation of the material, this overview will be split into
subsections based on the major methods of SA/UA. Section 2.2.1 will document
screening designs, Section 2.2.2 will cover local methods, Section 2.2.3 will cover global
methods, and Section 2.2.4 will cover the application of Bayesian techniques. Local

methods will be defined as the process to determine the sensitivity (or in local methods
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the derivative) of an input variable on the output at a given location. Global methods will
be defined as the process to determine the sensitivity across the total input uncertainty
space. Expanded definitions will be given in the following sections. Screening methods
are documented separately since they are applicable at the local and global levels. Many
of the methods detailed in these sections are summarized from [24] and [25].

Lastly, certain elements of UA will not be covered in this section for several
reasons. First, the figures of merit being pursued by an analyst doing an UA can vary
greatly depending on the analyst’s goal. This review will focus on the most common
goal, the moments of the output distribution. Second, many of these techniques, such as
those to determine quantiles of the output distribution, or establish confidence bounds,

will be discussed in length in Section 3, Section 4, and Section 5.

2.3.1. Screening Designs

The task of screening designs is to identify the most influential input variables
amongst a large number of inputs. It is commonly assumed that in a model with many
input variables, only a few inputs will dominate the response. This assumption is
somewhat based on Pareto’s law of income distribution within nations, where there are
many potential factors, but the distribution can largely be characterized by several
important variables [24]. Screening designs can be either local or global depending on
how they are applied. However, most screening designs return only a qualitative

assessment of the input factors’ importance.
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2.2.1.1. Classical/Global One-at-a-Time Methods

One-at-a-time (OAT) [26] methods consist of first conducting a model run with
all input variables at their nominal value. Then, a single input is perturbed a set amount
(usually the two extremes of the input range are chosen as perturbation values), while
keeping the other variables at their nominal values. The change in the output between the
nominal and perturbed trial reveal the influence of that variable. Here, classical OAT
refers to a local analysis, which is only valid if the function’s response at that point can
be modeled linearly. This usually involves 2d + 1 trials, and provides no information on
the interaction between variables.

Global, or Morris, OAT [27] investigates the entire input uncertainty space. It
takes r local measures at different points of the input range. Each value is then changed
OAT and results in a total number of 2rd runs. This method does produce some
information about input interactions, but only a qualitative indication. It does not specify
which variables have interaction, just that it exists.

Both of these methods do depend somewhat on the given range of the input
variables, but are not dependent on the input variable distribution, since the sample points

are either chosen at the extremes, or uniformly from the range.

2.2.1.2. Full/Fractional Factorials
Perhaps the most common screening method involves full and fractional factorials
[28]. A full factorial consists of splitting each input variable range into r levels, then
conducting runs of all possible combinations of these levels. A positive feature of this

technique is that it’s possible to determine high level interactions between input variables
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along with the main effects. However, the amount of runs necessary for a full factorial
design grows quickly with the number of levels and variables; % number of runs is
necessary, where r is the number of levels, and d is the number of variables. Obviously,
these designs become infeasible for a large number of inputs on a complex system.

Fractional factorials reduce the number of runs necessary by using only certain
combinations of input levels [28]. While this method results in fewer runs, it also means
that higher order interactions will be lost, and certain assumptions must be made about
the negligibility of these interactions. The designs can be formed in order to assure
certain interactions can be accounted for. The level of interaction which can be found is
often called the design Resolution. A Resolution III design means only main effects can
be determined, and they will be confounded with interaction terms. This is not a problem
if those interactions are considered negligible when compared to the main effects.
Resolution IV designs allows two-factor interactions to be found along with main effects,
but also results in an increase in runs. Resolution V allows three-factor interactions to be
found, and so on. Usually, fractional factorials are designed using orthogonal arrays.
Orthogonality helps ensure that effects are balanced, or sum to zero, across inputs. There
are many subsets of fractional factorial designs, such as Taguchi arrays [29], which are a
type of Resolution III orthogonal design. More information on fractional factorial

resolution and orthogonal designs will be presented in Section 3.
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2.3.1.3. Cotter’s Design, Iterated Fractional Factorials, and Sequential Bifurcation
As a way around the interaction assumptions required for fractional factorials,
Cotter proposed Systemic Fractional Replicate Design (SFRD) [30]. SFRD accomplishes
this using the following procedure.

1. Initial run with all variables at their low levels
2. d runs with each factor, in turn, at its upper level, while others remain at low
level

3. d runs with each factor, in turn, at its low level, while others remain at high
level
4. One runs with all factors at high level

In total, SFRD requires 2d+2 runs. The difference in the output between these
runs can be used to estimate the order of importance of the variables. However, a
potential drawback is that certain variable’s effects may cancel out other effects, and
there’s no way for the analyst to check for this situation. This method also lacks
precision, since input variables are only being evaluated at their extremes. For SFRD, the
importance measures have a variance equal to o2 /4, while a fractional replicate with n
runs would have a variance of a2 /n [24].

Iterated Fractional Factorial Design (IFFD) [31] uses fewer runs than there are
variables, but allows for the estimation of main, quadratic, and two-factor interaction
effects of influential variables. This is done by taking three levels per input variable, low,
middle, and high, then using these values in a series of two-level and three-level,
Resolution IV fractional factorial designs. It also takes advantage of folded matrices,
which are matrices that are the mirror image of another matrix (i.e. all low values would

be switched to high and high values would be switched to low) to filter out confounded
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effects. Through stepwise regression, influential variables can be discovered. This
process is best equipped for models that have very few influential input variables.
Bettonvil’s Sequential Bifurcation (SB) [32] is a group-screening technique. For
this method, it is required that the variables have known signs that the analyst can
identify. These signs are important because this method involves grouping parameters
into clusters. All the variables in a cluster are assigned the same level for a run (low or
high). If a run shows that a cluster is not influential, those variables are dropped. If a run
shows a cluster is influential, that cluster is split in two and the process is repeated, hence
the name sequential bifurcation. At the end of this process, the only remaining clusters
will include a single, important variable. This gives the main effects of those variables. If
two-factor interactions are desired, the process can be repeated using a foldover
technique. This process is very efficient in terms of computational effort, but requires a
high level of analyst effort, as it is necessary to discern influential clusters for every trial

[24].

2.3.1.4. Summary of Screening Designs
Each screening design has advantages and disadvantages depending on the
particular analysis. OAT, full factorials, and SFRD allow for no assumptions about the
interactions, but OAT and full factorials require a very large amount of runs, and SFRD
lacks precision and can result in effects cancelling each other. Fractional factorials can
determine main effects and interactions in a much more efficient manner, but requires

certain assumptions to be made about the system. IFFD is efficient and effective, but only
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if there are a few dominating variables. SB is efficient and simple to apply, but relies
heavily on analyst knowledge and cannot capture higher order interactions.

While this section has focused on the use of screening designs to identify
important variables, they can also be used for UA. Many of these designs, such as full
and fractional factorials, can be used to create regression fits or response surfaces. These
can be used to satisfy the more typical UA goals of identifying the moments and shape of

the output distribution.

2.3.2. Local Methods

Local methods provide the slope of the model output distribution at a given set of
values. For local SA, this slope is the goal of the examination, but for UA, local methods
can provide a quick, efficient technique for a preliminary exploration of the model. This
section will cover, what are commonly called, deterministic local methods. These
methods do not express the output in terms of probability, or sample from an input
distribution. They are best used on systems where the output can be expressed as a fixed,
direct function of the inputs. These local methods usually fall under two categories, those
that numerically solve for the slope, and those that analytically find the partial
derivatives. In either case, extensive prior knowledge or assumptions about the
distributions of the input variables is usually not needed, since only a small interval is
being explored. However, some methods require detailed knowledge of model

parameters.
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2.3.2.1. Brute-Force Method (Indirect Method)

The Brute-Force Method (BFM) [24] consists of slightly perturbing input
variables, one-at-a-time, around some nominal value. These perturbations, and their
resulting output, allow for an estimation of the slope at the nominal value. This method
uses the finite-difference approximation and relies on local linearity, so it is not suited for
highly nonlinear systems, or models that vary many orders of magnitude in small
intervals. While the process seems straightforward, it can consist of a period of trial and
error. This is due to that fact that if the perturbation interval is selected too wide, it can
violate the local linearity, but if the interval is too small, it is often dominated by the
round-off bias of the model. This method usually requires d+1 runs, or 2d runs if central

difference approximation is used. It is essentially a subset of OAT techniques.

2.3.2.2. Differential Methods (Direct Method, Green Function Method,
Miller/Frencklach, Poly. Approx.)
To explain how differential methods work, it is necessary to start with the time-
dependent, differential-algebraic equation seen in Eq. 2.

dy _
E_f(y'x)' Y(O)—yo

Eq. 2
Here, y is the vector of output variables, and x is the vector of input variables. Any

change in x will also cause a subsequent change in the solution y*. This change can be

expressed by a Taylor series expansion seen in Eq. 3,

- dy; 1 « 92y, Eq. 3
y3(t, x + Ax) =y5(t,x)+za—;Axi+§z axal-Axlef+"'
j=1 =17=1 ! Yi
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where, dfy;/0x; are called the first-order sensitivities (also called matrix S),
%fy;/ 0x,0x; are the second-order sensitivities, and so on. A differential analysis

consists of the following four steps:

1. Base values and ranges for input variables are selected

2. A Taylor series approximation for the model is developed from the base values

3. Variance propagation techniques are used to estimate uncertainty in y

4. Taylor series approximations are used to estimate the importance of input
variables

In general, only the first-order sensitivities are found. However, to find these
sensitivities, matrix S, the analytical solution to Eq. 2 must be known. This is only
possible in the simplest cases. These next methods have been developed to overcome this
shortfall.

The Direct Method (DM) [24] differentiates Eq. 2 with respect to x;, as seen in

Eq. 4, called the sensitivity differential equations.

doy oy o Eq. 4
dtaxi_ axl- axl-

The matrix form can be seen in Eq. 5.

S=JS+FS Eq. 5
Here, ] = {0f;/0y} is called the Jacobian matrix, and F = {df;/dx;}, the parametric
Jacobian. The DM solves the ODE in Eq. 4. However, to solve this ODE in an actual
model, all the system parameters need to be known. This obviously becomes impractical
as the model becomes more complex. The computational effort is also linearly

proportional to the number of variables.
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The Decoupled Direct Method (DDM) [33] [34] allows a numerical shortcut by
exploiting a relationship between Eq. 2 and Eq. 4. Both these equations have the same
Jacobian; therefore, the sensitivity equation can be solved with the original equation. It’s
important to note that the information about the system parameters is still necessary.

The Green Function Method (GFM) [24] differentiates Eq. 2 with respect to the
initial values y°. This creates an initial value sensitivity matrix, or Green function, which
is then able to be solved using more easily evaluated integrals. The DDM method is much
easier to implement, and the GFM is only faster when there are many more system
parameters than input variables.

The Method of Miller and Frenklach [35] uses a series of simpler empirical
equations as a replacement for the model. It is very difficult, and time consuming, to find
suitable empirical equations which can replace the more complex model, but if they exist,
differentiating them can produce the same sensitivity results. Polynomial approximation
uses Lagrange interpolation polynomials to approximate the solution of the sensitivity

differential equations, but this method has not been applied to real world problems.

2.3.2.3. Forward and Adjoint Sensitivity Analysis Procedure
Forward Sensitivity Analysis Procedure (FSAP) [36] [37] uses Gateaux
differentials, which is a directional derivative that maps functions from one space to
another. This means FSAP can find the differential of the original equation in the
direction of the perturbation of the inputs, which yields a forward sensitivity system. This
system then needs to be solved. This results in a computational effort equal to that of

DDM. This is not surprising since FSAP is viewed as a generalization of DDM over a
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total differentiation. This also means that, like DDM, FSAP becomes impractical for
large systems with many parameters.

Adjoint Sensitivity Analysis Procedure (ASAP) [36] [37] reduces the
computational effort by creating an adjoint function which only needs to be solved once.
This can be done independently of the solution of the original model (unlike DDM which
uses the same Jacobian to solve both equations). While ASAP is far more efficient than
DDM or FSAP, it does require that an adjoint sensitivity system is available, and this
construction may not be a trivial task. Still, ASAP tends to be the most efficient method

for large-scale systems with many parameters.

2.3.2.4. Local Uncertainty Analysis

While local methods cannot completely provide the UA’s goal, which would be to
create a probability density function of the output, it can provide a first estimate result or
give the basic characteristics of the function near that region. Using propagation of error,
a linear estimate can be given for the variance of the model output based on the
individual variables’ derivatives. This linear estimate is essentially the sum of the
contributions of the uncertainties from each input variable.

It is also possible to use propagation of error (propagation of moments) to find
other moments of the output, such as the expected value, but this is usually done through
non-deterministic methods, like sampling. While these techniques will be discussed in the
global section, it is possible for them to be used on a smaller, local analysis. It is also

important to note that with these deterministic local methods, the SA is conducted first,
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and then any UA is conducted using those results. This is not the case for global,

statistical techniques, where the process is reversed.

2.3.2.4. Summary of Local Methods

Overall, the BFM is by far the easiest method to implement, and requires no extra
model development or differentiation using system parameters. However, it is time
consuming and requires the use of trial and error to set the perturbation range. Of the
differential methods, GFM is the most computationally expensive and is rarely used.
DDM requires many model evaluations and scales linearly with the number of variables.
FSAP becomes essentially equal to DDM in terms of computation, but can prove
advantageous if the number of outputs exceeds the number of inputs. Both are impractical
for large systems. ASAP is by far the most efficient method, but if the adjoint system is

not developed at the same time as the model, it can be difficult to create.

2.3.3. Global Methods

Global methods will be defined here by the following two statements. First, all
input variables must be varied simultaneously. Second, the complete range of the input
values must be investigated. Unfortunately, this creates two problems. First, since all
input variables are changed at once, the result is actually a multidimensional average of
all the variables’ effects. Second, the shape of the output distribution will be directly
affected by the assumed input distributions. This second problem cannot be overstated

and will be discussed further in this section.
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2.3.3.1. Global Adjoint Sensitivity Analysis Procedure

Before reviewing the statistical global methods, it should be mentioned that there
is one proposed deterministic global design. The Global Adjoint Sensitivity Analysis
Procedure (GASAP) [24] is an extension of ASAP. Since it is not possible to use Taylor
series at a global level (since Taylor series are a local concept), GASAP uses a global
homotopy-based method. The method is complex, to say the least, and relies on both the
forward and adjoint sensitivity systems to explore, exhaustively and efficiently, the entire
input and output uncertainty space in order to determine important factors of the
distributions (such as critical points, turning points, etc). As of now, GASAP has yet to

be tried on a large scale system [24].

2.3.3.2. Monte Carlo Methods
Monte Carlo (MC) methods consist of drawing random, or quasi-random, samples
from input probability distributions. The procedure includes the following five steps:

1. Define distributions of the uncertain input variables

2. Sample values from these input distributions

3. Evaluate the model at the sample points

4. Perform an UA using the results of the evaluation

5. Perform a SA by some type of mapping of the results to input variables

This section will be split into two subsections. The first subsection will discuss various
means used to sample from the input distributions. The second subsection will include

some of the techniques used to perform a SA using the results of a MC method.
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Sampling

The most basic form of sampling is crude Monte Carlo (CMC) random sampling.
In this method, samples are chosen randomly (or pseudo-randomly if a machine performs
the selection, as explained below), from the input distributions. The samples selected will
occur in direct proportionality to their probability distribution, which again shows the
importance of the selected input distributions. Also, each sample is selected
independently of the others, as long as there is no correlation between inputs. If there is
correlation between inputs, additional steps need to be taken to assure the two input
samples are properly related. This is often done through the use of rank-correlated pairing
techniques.

Random sampling does have several weaknesses. First, there is no guarantee a
certain region of the input distribution will be sampled, and usually a large number of
runs is necessary to ensure proper coverage. Conversely, if the distribution has infinite
tails, there is a non-negligible chance of sampling a negative or zero value. This can be
avoided by truncating the distributions however [38]. Second, random sampling can be
inefficient if samples are drawn from areas too close to previous samples. This, again,
means large numbers of samples will be needed.

In order to improve on the efficiency of random sampling, many variance
reduction techniques (VRTs) have been created. VRTs are methods used to improve the
precision of a sampling scheme by either using previous knowledge of the inputs to
reduce their variability, or tractable features of the model to adjust or correct outputs [39].

The most basic VRT is stratified sampling. This is the process of dividing the input
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distribution into subregions, or strata. Then samples are drawn evenly from the different
strata. This process helps ensure coverage over the input distribution. It can be carried out
in different ways.

A basic form of stratified sampling is importance sampling (not to be confused
with importance measures, which will be discussed later). Using this procedure, the input
distributions are divided in a way that ensures the more “important” regions of the
distributions will be sampled more frequently. This can be accomplished using analyst
opinion; an example would be if an analyst knew that the higher values of an input will
have a larger effect on the output, so the higher regions are divided into more strata than
the lower values. It can also be carried out using a structured method, like the relation to
the expected value of a similar variable. In essence, importance sampling modifies the
input distribution in a way that allows the more influential regions of the original
distribution to be sampled with more precision. It is important to note, the strata in
importance sampling are often not of the same probability. The strata must then be
weighted, according to their probability areas, in order for the final result to be consistent
with the original distributions.

Perhaps the most popular form of stratified sampling is Latin Hypercube
Sampling (LHS). LHS is a conceptually simple form of stratified sampling, where the
strata are created using equal probability intervals. This method helps ensure coverage
over the whole input distribution space, while not changing the distribution shape or
requiring probability weights to be added post-process. LHS is the preferred method of

stratification when there is little knowledge about the input variables. This is because

34



LHS does not depend on analyst opinion, or any ranking of input importance. Each input
variable is divided on probability only. In terms of UA, LHS has repeatedly been shown
to be more efficient than random sampling in the determination of the output’s mean and
population distribution. One positive of LHS is that it is possible to reweight samples if
the shape of the input distribution has changed a posteriori [40]. This eliminates the need
for repeated computer code or system runs, and allows the results that have already been
found to be modified. LHS was analyzed in detail in this work, and more information
about implementing the technique is provided in the following sections.

Another, relatively simply, VRT is the method of antithetic variates (AV). In this
technique, a random input sample is selected, x; (normalized 0 < x; < 1), then an
additional sample is formulated that is negatively correlated to x;, which in this case
would be x;, = 1 — x;. Both samples are used to evaluate the model; then the two
outputs, y; and y», are averaged. If the two samples were selected independently, the
variance of the final output, y, would be of the form seen in Eq. 6.

var(y,) _ var(yz) Eq. 6
2 2

var(y) =
However, using antithetic variates, the variance is reduced by the formula seen in Eq. 7.

var(y,) + var(y,) + 2cov(yy,y2) Eq. 7
4

var(y) =
There are several weaknesses with this approach though. First, if the input variable has a
skewed or non-symmetric distribution, the negative correlation metric will be reduced.
The second issue arises if input variables are correlated. If proper steps aren’t taken to

handle this correlation, antithetic variates can actually result in a greater variance than
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random sampling. More detail about the actual implementation of AV can be found in the
Section 4.2.

The control variates method [39] is another VRT that, like importance sampling,
that could use some prior knowledge about the system. There are many ways to apply
control variates, but the most common technique is to use a known statistic similar to the
output of interest. In this way, that known statistic is used to modify the output result. If
the output of interest is E[f (x)], and @ = E[w(x)] is known. Then the output can be
modified using Eq. 8,

fre) =f) —cwx) —a) Eq. 8
where c is a coefficient that can be optimized by using the covariance between f{x) and
w(x), as seen in Eq. 9.

B _cov(f,w) Eq. 9
— war(f)

Using this approach, the variance of f*(x) is reduced by the order seen in Eq. 10.

[cov(f, wW)]?
var(f)

Eq. 10

var(f*(x)) = (1 - )var(f(x))

The obvious difficulty when using control variates is choosing and optimizing the control
function w(x).

It should also be noted that there are methods of quasi-random sampling. Perhaps
the most well-known of these techniques are the Sobol’ LP, sequences. These are referred
to as low-discrepancy sequences, where discrepancy is a measure of the equidistribution
of the points. By using these sequences to sample input variables, it is possible to

converge to the solution at a faster rate than random sampling. It has also been proven
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that quasi-random sampling can outperform random sampling and LHS for non-
monotonic systems.

It should also be added here that there are possible problems when using a
pseudo-random number generator. Almost every real analysis using a type Monte Carlo
sampling will involve the use of a machine programmed with a pseudo-random number
generator. While these samples may seem random, they are actually deterministic and
will begin to repeat after some period. Usually this period is beyond the number of
samples used in any experiment, but it is a possibility. Also, these pseudo-random
number generators may return samples that are correlated in some fashion. In some cases,
shuffling, where the seed value of the random number generator is changed between

samples, is recommended to break up sequential correlations [41].

Sensitivity Analysis

As stated previously, there are many techniques to perform SA with MC methods,
but they rely on the results of the UA. The simplest, and most intuitive, form of SA for
MC methods is the examination of the scatterplots. This involves simply plotting the
output against an input variable, then trying to distinguish trends, relationships, and
thresholds. If there are only a few dominating variables, scatterplots can usually identify
them with almost no additional work. Scatterplots are particularly useful with LHS since
there is full stratification along the input variable range. However, scatterplots are only a
qualitative tool, and it can be difficult to rank variables without a process of
normalization or simple regression fits. A simple way to expand on a scatterplot is to use

the Pearson product moment correlation coefficient (PEAR) [25]. This is just the linear
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correlation coefficient between an input variable and the output. If a model is non-linear,
it’s possible to use the variables’ ranks instead of the raw data; this is called the
Spearman coefficient (SPEA).

It is possible to take this model fitting to the next step, in order to obtain a
quantitative result, by doing a full regression analysis. Since this is a very popular
method, and other techniques depend on its results, it will be reviewed in more detail. A
simple regression fits develops a model, of the form seen in Eq. 11, by mapping between

the input variables and the output,

d
y=b0+2bjxj+g
=1

where b; (j = 1, ..., d) are the coefficients to be determined, and ¢ is the error term

Eq. 11

defined by the difference between the predicted output y and the actual output y. The

most common method to determine the coefficients of Eq. 11is by using the method of

least-squares. This technique is widely documented elsewhere, and will not be detailed

here [42]. It is important to determine how well the regression model fits the actual data.

A common metric to judge the fit is the sum of squares, which is defined in Eq. 12,
SStor = SSreg + SSres

SStor = Z(}’k }’)2

reg Z(yk Y)Z Eq. 12

SSres = Z(j}k - yk)z
k=1
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where 7 is the total number of runs conducted, yy, is the regression model estimate, y,is
the actual run result, and y is the mean of y,. These are referred to as the total sum of
squares, regression sum of squares, and residual sum of squares. They can be used to find
the ratio R*, found in Eq. 13.

R? = SS,04/SSt0t Eq. 13
When R? is close to 1, it can indicate that the regression model is accounting for most of
the uncertainty in the system. When using SS or R, it is important to check to make
certain the model is not overfit to the data. This means the model is not fitting to the
overall trend of the data, but including variations between sample point results. While
this is usually not the case with linear regression fits, it is a possibility with response
surfaces, which will be detailed later. Another method to determine the adequacy of a

regression model uses the predicted error sum of squares (PRESS), seen in Eq. 13.

n
PRESS, = ) [yi = (0 Eo. 14
i=1
PRESS works by excluding a system observation from the regression fit, and then tests
the fit’s prediction against the actual value. The smaller the PRESS value, the better the
regression fit predicted the data point.
Once a regression fit is created and determined to be adequate, a SA can

commence. The first (and most obvious) way to rank the input variables is to normalize
the coefficients of the regression fit. This will give a basic ranking of the input variables

now that they are all on the same scale. One way to do this is to normalize the input and

output variables to a mean of zero and standard deviation of one. These new coefficients
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are called the standardized regression coefficients (SRCs). A formal definition is given in

Eq. 15, where Eq. 11 has been algebraically reformulated to yield,

B 5%
=
n - n _,11/2
_zzy_k PO A €t Ol
y n’ n—1 Eq. 15
k=1 |
n 91/2
By, g Z (o = %)
J n’ J n—1
k=1 k=1

where b;§;/$ are the SRCs, and can provide the variable importance.

It is also possible to determine importance by using the partial correlation
coefficients (PCCs). This is done by developing two regression models; one model that
includes the influence of all variables, and a model where the influence of all variables,
other than the one of interest, has been removed. By a comparison of these results, the
linear relationship between the input variables and the output can be determined, which
has the other input variables’ linear effects removed. In essence, the PCC is a measure of
the strength of the linear relationship between an input and output after a correction has
been made to account for the other variables, while the SRCs measure the effect on the
output by a perturbation of an input value. They are similar, but can provide different
importance measures.

There are drawbacks to using regression fits. Since it is based on a linear
relationship between the inputs and output, it can perform poorly when the system in
non-linear. This would yield a very low value for R* (below one and near zero, meaning a

poor fit). However, as long as the relationships are monotonic, rank transformations can
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be used to deal with nonlinearity. This is done by replacing either the input or output data
with its rank order (1, 2, 3, ..., n). Then a regression fit is made to this rank data, rather
than the original data structure. If R* is larger using the rank transformation, the model
has been improved. From there, the standardized rank regression coefficients (SRRCs)
and partial rank correlation coefficients (PRCCs) can be found as before. It is important
to note that the SRRCs and PRCCs now give data about the new regression model. Care
must be taken translating these results back to the original system.

It should be noted here, that if the original design matrix were orthogonal (not
randomly sampled, but using a design of experiment like a fractional factorial),
determining the regression coefficients and correlation coefficients greatly simplifies to a
single equation for each. This simplification has been part of the motivation to create
other orthogonal or near orthogonal designs, such as orthogonal Latin hypercubes.

One last point on regression modeling; new regression techniques have been
developed recently and should be mentioned. Argonne National Lab (ANL) has been
developing a polynomial regression technique (using polynomial chaos expansion) which
not only fits to the system input and output data, but uses the sensitivities to improve the
regression surrogate [43]. This is done by automatic differentiation while the system code
is conducting trials. These variable derivatives greatly increase the accuracy of the
regression fit surrogate. While this process is still new, it is an interesting intersection of
different methods of UA and SA. ANL claims that the calculation of these sensitivities

while the code is running is possible, and has been demonstrated, but access to the system
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codes and a large amount of effort would be needed to introduce this technique to an
existing code. There is also Bayesian regression, which will be discussed in Section 4.

It is possible to use formal test statistics on a regression analyses, but one should
be cautious, since many of these statistical techniques are based on assumptions that are
not applicable to deterministic codes (codes that always produce the same result for a
given input). Instead, two-sample tests, such as the Smirnov test [44], Cramer-von Mises
test [45], the Mann-Whitney test [46], and the two sample t-test are sometimes used.
These can be applied to the regression model or the original system. Most of these tests
work by partitioning input variables based on quantiles of the output. If the input variable
differs for the two quantile regions of the output, it can be viewed as influential. This
provides only a qualitative ranking, and the result can vary greatly depending on what
output quantiles are chosen and which samples are used.

There is a different approach to constructing a regression analysis, when there are
many input variables, and some knowledge about their ranking is known. This method is
known as stepwise regression and uses the following procedure:

1. A regression model is constructed using only the most influential input variable

2. A new regression model is constructed using the first and second most
influential input variables

3. A third regression model is constructed using the first three most influential
input variables

This process is continued until adding subsequent variables is no longer
meaningful. Obviously, to conduct this technique, some type of ranking of the input

variables must already exist. This can be done by developing a simple regression fit,
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determining the SRCs, and using those in an effort to develop a better model. As before,
it is especially important to keep track of R* and the overall model fit to ensure the

analysis is ending at the right time.
2.3.3.3. Measures of Importance (Variance Based Methods)

Correlation Based
Measures of importance [25], or variance based methods, can be used in
conjunction with MC methods. While there are different techniques, they all, essentially,
try to provide a solution to Eq. 16, which is known as the correlation ratio [47].

Varx[E(Y|X; = x;)] Eq. 16
Var(Y)

This is a ratio of the output variance based on input variable x, to the total output
variance. The numerator of this equation is referred to as the variance correlation
expectation (VCE), and the total ratio is called the correlation ratio. There are issues with
this formulation though; it can be highly influenced by input variables with long-tailed
distributions. This formulation tends to also lack robustness, and in an effort to increase
the robustness, Iman and Hora [48] proposed using the following, modified form in Eq.
17.

Varx[E(logY|X; = x;)] Eq. 17
Var(logY)

Here, the expectation value is estimated using regression analysis. While this increases
robustness, it makes it more difficult to translate the results back to the original system.

While these two equations might seem straightforward, estimating VCE can be difficult.
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The detailed derivation can be found in literature [25], but often times it is necessary to
conduct multiple replications of sampling schemes, like LHS, or requires resampling.

Both methods can quickly become computationally expensive.

Method of Sobol’
Sobol’[49] used a different approach to determine input sensitivities. Under this
method, the system f(x) is decomposed into summands of increasing dimensionality. This

can be seen in Eq. 18.

d
fGuixa) = fo+ ) filx) +
i=1

Eq. 18
D Fileon) 4t fizaCoa )

1s<i<js<d
Using the fact that the integral of a summand over its own variables is zero, and that the
summands end up orthogonal [24], the equation can be simplified down until a total

variance, D, of f{x) can be reached, as seen in Eq. 19,

D = fﬂkfz(x)dx_foz Eq. 19

where Q is the k-dimensional input variable space. Partial variances can be found using
Eq. 20.

L L Eq. 20
Di1'---ris = f f fii"”is(xil, ...,xis)dxi1 de-S
0 0

Then the sensitivity measures, S; | ; , are simply the ratio of the partial variances to the

s
whole. S; is the first-order sensitivity measure, which is the main effect of the input

variable on the output. These sensitivities end up being the same as the most reduced

version of the VCE analysis. Sj, when i#j, is the second-order sensitivity, and measures
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the interaction effect. This kind of analysis becomes impractical for systems with many
factors though, since a separate sample of size 7 is required for each S, which would be »
x 24 total samples. The number of runs can be reduced by using a special sampling

strategy called Winding Stairs [50].

Fourier Amplitude Sensitivity Test
The Fourier Amplitude Sensitivity Test (FAST) [51],[52], [53], [54] can arrive at

the same sensitivities as Sobol’, but uses a different path to get there. This is done by
converting a multidimensional integral into a one-dimensional integral by using a search
curve [25]. This permits sensitivities to be found for input variables independently. The
mathematic explanation can be difficult, but by a transformation into s space, FAST
converts the problem into a set of scalar variables, s, and angular frequencies, . This can
be seen in Eq. 21, where G; is the transformation function.

x; = G;(sinw;s), i=1,..,d Eq. 21
An expectation value for the output can be found by the transformation out of s space, as
seen in Eq. 22, where f(s) consists of the transformation functions G;.

1 (" .
B0 =5 | f@)ds Fa. 22

The variance can be approximated using Fourier series properties, as seen in Eq. 23,

1 T
Var(Y) = %j_ f2(s)ds — [E(V)]?

N Eq. 2
~2) (42 +B) e 23
=1
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where 4 and B are Fourier coefficients. In order to properly identify these coefficients, a
certain number of runs must be conducted. There are various sampling strategies, but a
search curve is the most frequently used. This curve changes all input variable values
simultaneously, and systematically explores the input uncertainty space. There are
different search curves that can be used, which explore the space in different manners.

The contribution to the total variance of Y can be found using Eq. 24.

Do ~ 2 Z(A%’wi * Bpw,) Eq. 24
p=1

The ratios of these individual variances to the total variance, Eq. 23, are the first-order
sensitivities S;, which are the same as the Sobol’ sensitivities. The minimum sample size
to compute D; is (2M®uaxt1), where M is the maximum harmonic taken into
consideration, and .y 1s the maximum frequency set. It is possible to find total
sensitivity indices using, what is called, extended FAST, which gives information about
the residual variance. FAST is much more efficient than Sobol’ to obtain the same first-

order sensitivities.

2.3.3.4. Response Surface Method
A response surface is an approximation for the model that is then used a surrogate
for more detailed UA and SA [55]. This method consists of six steps:

1. Select ranges and distributions for input variables

2. Develop a DOE defining variable combinations for desired evaluations
3. Evaluate the model

4. Construct response surface

5.UA

6. SA
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There are many ways to develop the design of experiment (DOE) in step two. Full
and fractional factorials can be used, or MC sampling. While structured designs, like
factorials, help ensure that specific interactions will be found, it is not possible to assign
probabilistic weights. This is possible with MC sampling though, and can aid in the
construction of the output’s mean and variance. Just like regression fits, the method of
least-squares is the most popular technique to complete step four. The resulting surface is
used in the same way that the Taylor series is used in the differential analyses for SA. A
drawback of the response surface method is that it usually takes a large number of runs to
model interactions properly. Otherwise, assumptions need to be made about the

magnitude and importance of these interactions.

2.3.3.5. Reliability Algorithms

Reliability algorithms [25] take a different approach than previous methods, and
are best suited when the analyst is researching whether an output will exceed some failure
criterion. These algorithms search the input space for the point that is most likely to lead
to failure. Once this is determined, first-order (or second-order) sensitivities are found
around that area. This gives information about how the different input variables are
driving risk. These are known as First and Second Order Reliability Methods (FORM and
SORM). These techniques do not use random sampling, but use optimization algorithms
to search out these failure points. The math can be difficult, but the procedure can be

summed up in three steps:
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1. Formulate some performance function g(X)

2. Transform the problem: instead of using specific values of X to find a value of
Y, a specific value of Y is used to determine the highest risk areas of X

3. An optimization algorithm searches the input uncertainty space for the values
which will give that specific Y value. This is done through a reliability index,
which calculates the distance between an output point and the desired output
point of Y. These algorithms use partial derivatives to converge on the highest
risk areas of the input uncertainty space

This may not seem that difficult, but there’s no guarantee of convergence, and the
optimization algorithms may need tuning. This method has proven more efficient than
MC sampling for some systems, but if a system is highly nonlinear, the partial derivatives
will not help with convergence. This limits the use of FORM and SORM in large, highly

complex, black-box type systems.

2.3.3.6. Global Methods Summary

Sampling based methods are the most common UA/SA techniques currently
found in industry. They tend to be straightforward and easy to implement. However, they
are strongly dependent on the assumed input distributions. These assumptions carry
through the analysis to the UA and SA, and can greatly shape the results. They can
become difficult to use if many input variables are correlated, or if the system is highly
non-linear or non-monotonic. Also, randomly sampling can quickly become cost
prohibitive, but VRTs or quasi-random sampling can help reduce the number of runs
necessary. There are many different options to conduct a SA using sampling, but they all
come after an UA, which is the opposite of the local methods in Section 2.2.2. Of these
methods, studies have shown SRRCs and PRCCs to be very robust, especially when used

in conjunction with LHS.
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Variance based methods work off a simple principle, but can become difficult to
implement. Even the most efficient method, FAST, is usually unworkable for a large
system. Studies have shown they can handle non-monotonic systems though, but at a
high computational cost.

Response surfaces are a very popular method for UA and SA since they allow a
much simpler and faster running surrogate to be used in place of the original system. The
biggest problem arises when determining the quality of the response surface. It is possible
to create a very accurate response surface, but at the cost of many initial trials, which
partially defeats the purpose of using a surrogate.

FORM and SORM are very innovative techniques which reverse the UA. It is a
process to learn more about the input variables based on an overall goal. The methods can
be efficient, but as the system becomes more complex, the optimization algorithms may
begin to struggle. This can increase the number of trials necessary, or end up with a

solution that cannot converge.

2.3.4. Bayesian Techniques
Bayesian techniques are based on the, now famous, formulation by Thomas
Bayes, seen in Eq. 25,

p(0ly) = PV _ pO10p(©)
p(¥) p(¥) Eq. 25

where p(0) is the prior, or marginal of 8, p(y|6) is the likelihood, p(8]y) is the
posterior, and p(y) is the normalizing constant, or marginal of y. In essence, what Bayes

formula is expressing is the updating of prior knowledge, using the likelihood (new
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data/knowledge), to arrive at a new probability, the posterior. The most commonly used
form of Bayes theorem drops the normalizing constant, and instead uses the proportion

seen in Eq. 26.

p@ly) < p(y|0)p(6) Eq. 26

2.3.4.1. Bayesian Linear Regression

While it is possible to use the formulation in Eq. 26 directly in an UA or SA,
Bayes theorem is more commonly used as a way of determining the coefficients of a
regression analysis, so that will be the method detailed here [56]. A regression fit can be
seen as the conditional distribution of some output y, given x. A more formal expression
is given in Eq. 27,

p(yIB,x) Eq. 27

where, the vector B is the coefficients of the regression fit. The conditional mean is given
in Eq. 28,

E(yilB,O'Z) = leil +"'+kaid Eq 28
where o2 is the conditional variance, and i is the trial number, i=1, 2...., n. Then the
likelihood can be viewed as the normal distribution in Eq. 29 [57].

pi|B,0?) = N(Byxi1 + -+ + ByXiq,0%) Eq. 29

The posterior probability, or desired result, becomes Eq. 30,
2 ] ] 2 2

p(B,O' |Y7X)o<nlp(yl|BrO- )XP(B:U ) Eq 30

where p(B, 62), the prior, is usually non-informative (such as uniform(B, loga?)), unless

the analyst is quite certain in a particular type of outcome. It is rare that this equation can
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be solved analytically; instead sampling from the prior can be used. This is done by

envisioning the marginal posterior as the integral in Eq. 31.

p(Bly) = fP(Bloz,y)p(azly)da2 Eq. 31

Then samples are taken from p(o?|y); these are used to find p(B|a?,y), and the
resulting sample represents a point on the posterior. There are other ways to conduct
sampling, and the most popular method is using a Gibbs sampler (Markov Chain Monte
Carlo), which draws from the conditional distributions. When using sampling, it is
important for the analyst to observe the output because the results usually do not begin
with samples that are from the posterior distribution, but will converge to the correct
distribution over a finite amount of time.

There are many different reasons why a Bayesian linear regression model would
be preferred over the classical approach. In Bayesian analysis, it is relatively easy to build
hierarchical models with many levels of uncertain variables. It also can be used in the
case where there is missing data in the analysis. It’s also possible to build “generalized”
linear regression models, which can be fit to non-normal output distributions. Additional
terms can also be added to the regression fit to help account for random (trial) error.
There are also more detailed regression fit approaches, such as Bayesian Multivariate
Adaptive Regression Spines (BMARS) [58]; these and other Gaussian process emulators
can be used as a surrogate for the model itself, similar to a response surface, which allows
a maximization of the UA and SA information from a limited amount of actual code trial

data.
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Chapter 3: Quantile Estimation and Orthogonal Arrays

If the goal of an analysis is to gain an understanding of the output of a system
with uncertain inputs, the simplest way to characterize this output space is through the
use of the distribution’s moments. These moments include properties like the mean,
variance, skewness, and kurtosis. However, finding the higher moments can involve
conducting many system runs in order to discern these details. The easiest moment to
estimate is the mean, but this provides very little information about the output, especially
if the goal is to compare the extremes of the output distribution against some type of
limit. The mean provides even less information if the output distribution is asymmetric
(which is almost always the case when analyzing highly complex systems) or when the
output ranges over several orders of magnitude, since it will give no indication of what
percentage of the distribution falls above or below that value.

Instead of using the mean, or carrying out a large number of runs to determine the
higher moments, quantiles of the output distribution can be estimated instead. A quantile
is a point taken at an interval of a random variable’s cumulative distribution function
(CDF). For example, take the CDF shown in Figure 3. 1. Here, the quantile level p is set
to 0.95, and the value of the 0.95-quantile &, 45 is = 706. What this means is that 95% of

the distribution falls between —co and ~706.
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Figure 3. 1: CDF with 0.95-Quantile

This value is sometimes referred to as the 95th-percenti1e, where a percentile is just the
quantile level p times 100. It can be seen that a quantile expresses more information than
an estimation of the mean since it gives an indication of the percentage of the distribution
that falls above or below that value. This is a much more useful metric than the mean if
the goal of the analysis is to compare the output to a prescribed limit.

This section compares design of experiment (DOE) methods to estimate the 0.95-
quantile of the output distribution of a system. The 0.95-quantile was chosen because it
has historically been reported as the characterization of the upper regions of an output
distribution in nuclear reactor safety analyses [6]. The goal is to find techniques that
result in the most accurate and precise estimation of the quantile in as few system-runs as

possible. For this analysis, accuracy and precision are defined as in Table 3. 1.
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Table 3. 1: Accuracy and Precision Definitions

Distance from estimated quantile
value to true quantile

The spread or range of possible
estimated quantile values

Accuracy

Precision

Simply estimating the quantile of a distribution would not qualify as a hypothesis
test, under the definition given in Section 2, without some comparison to a hypothesized
value using a critical value, p-value, or confidence interval. However, as subsequent
sections will show, estimating a quantile is often one of the first steps to completing a
hypothesis test. Improving the quality (i.e. the precision and accuracy) of the quantile
estimation may help reduce the probability of Type-I and Type-II errors (a and £ in
Section 2.2).

This chapter begins with an overview of quantile estimation techniques, before
describing the various DOE methods analyzed here (Section 3.1). From there, systems
representative of those analyzed in a nuclear reactor safety analysis will be used to
compare the accuracy and precision of the quantile estimations found by using these
DOE methods (Section 3.2). Using these results, recommendations are made about the

applicability of the DOE methods for use in safety analyses (Section 3.3).

3.1 Techniques

3.1.1. Quantile Estimation

This section will review the process for estimating a quantile from empirical data.
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To state the problem more formally, suppose there is a system that has as its input a
random vector X, and output Y with cumulative distribution function (CDF) F. By

inverting F, the p-quantile &, can be found, as seen in Eq. 32,

_ -1
$p=F 1 (p) Eq 32
meaning, if p = 0.95, {y o5 is the true 0.95-quantile. If the goal was to find &, using
CMC estimation and simulation, independent and identically distributed (i.i.d.) samples

Y,,Y,,...,Yy from distribution F would be generated. From there, the empirical

cumulative distribution function £, can be computed, as in Eq. 33,

N

~ 1

Fa0) =1 ) 105 <) Eo. 33
i=1

where I (A) is the indicator function of a set A, which assumes value 1 on A and 0 on the
complement A¢. The p-quantile estimator is then computed by inverting F,, {cp‘n =
E ).

gp’n is usually calculated using order statistics, where the outputs Y3, Y5, ..., ¥,
would be sorted in ascending order Y1y < Y(3) < -+ < ¥(,y, where V(;) is the i-th smallest
of the samples. At this point, there are several different methods that can be used to find
the quantile estimator gp'n. The main differences between these methods relates to the
placement of the output results on the probability scale. For example, if 50 computer code
runs are conducted and the output results are ordered from smallest to largest in order to
create an empirical cumulative distribution function, should the lowest result be placed at
pc = 0.0,atp. =1/50 = 0.02, or at the midpoint of that range at p, = 0.1 (where p,

is the cumulative probability)? Since the analysis here is concerned with comparing
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different sampling methods, the choice of quantile interpolation method is less important
as long as all sampling techniques use the same method.

For this analysis, the highest ordered result will be given p. = 1.0, which will
give the lowest results p. = 1/n. So to estimate the quantile, the output results will be

ordered as before, Y1y < Y,y < -+ < Y(y), where Yy is the ith smallest of the samples.
Then gp'n = Y([np1) Where [] is the round-up function. Using the round-up function

circumvents the need for interpolation.

For example, if 32 runs are conducted, 32 results will be obtained and will be
ordered. Each result has equal probability of 1/32 = 0.03125. If the lowest result is
placed at p, = 0.03125 (rather than at p, = 0.0); this means the 30" ordered result will
have p, = 0.9375, and the 31* ordered result will have p, = 0.96875. So the 0.95-
quantile will be considered the 31* ordered result. While these techniques provide an
estimation of the quantile, they do not provide any indication of the level of confidence of
the value, which will be detailed in Section 4.

It should be noted here, that this method to estimate quantile values has been
proven for use with the techniques in Section 3.1.2, but not for those in Section 3.1.3.
However, it is used for all methods in order for a consistent comparison between the

methods to be made.

3.1.2. Traditional Methods - Crude Monte Carlo and Latin Hypercube Sampling
The simplest technique to estimate a quantile of the output distribution of a

system is to use crude Monte-Carlo (CMC) sampling for the selection of input values.
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This is the most common method used in computer experiments that contain continuous
input variable distributions. However, CMC is not always the most efficient method for
quantile estimation. As mentioned in Section 2, the output of a CMC analysis can vary
greatly, especially at low run levels.

Latin Hypercube Sampling (LHS) is probably the most commonly used variance
variance reduction technique (VRT). LHS is popular because the stratification of the
input values relies only on probability, and is not based on knowledge about the system.
This makes the technique easier to apply generally than other VRTs, such as control
variates. It was developed by McKay [59] and induces correlation among the simulated
outputs in order to increase statistical efficiency, under certain conditions. LHS is a
subset of stratified sampling, and what differentiates LHS from other stratified techniques
is the way the strata are chosen. With LHS, the input parameter distributions are split into
a number of equal probability intervals. Figure 3. 2 and Figure 3. 3 demonstrate how this
would be done on a normal distribution, if one wanted to split the input variable space
into five intervals. After each input distribution is divided into equal probability strata, a
value is selected randomly from the distribution inside each stratum. This method helps
ensure that the input uncertainty space is covered adequately in fewer runs than CMC,
but it also retains the properties of each sample having equal probability, and a stochastic
element to the selection of the input values. LHS is preferred over CMC sampling for
estimating a high quantile, such as the 0.90- or 0.95-quantile, when computational costs

are an issue [24].
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Figure 3. 2: Dividing a Normal CDF into Five Equal Probability Bins [60]

Figure 3. 3: Dividing a Normal PDF into Five Equal Probability Bins [60]

3.1.3. Orthogonal Arrays and Orthogonal Latin Hypercubes

In physical experiment design, uncertain or tunable inputs are often assigned
several different levels which represent different regions of the input distribution space.
This is done because using continuous input distributions with randomly sampled values

in the physical world could be extremely difficult, if not impossible, due to the limitations
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when controlling physical factors. For the analyst to characterize the output distribution
space, they run some combination of these levels. As mentioned in Section 2, they could
conduct full or fractional factorials depending on the goal of the analysis.

The most thorough way to test a system using fixed levels would be to try all
possible combinations of levels in a full factorial experiment. While full factorial
experiment design would provide the most data about the system, such as the input
interactions which would be needed to form a response surface, the amount of runs
necessary to conduct such an experiment is often times unrealistic. In order to get similar
data in less runs, fractional factorials are used that are designed to return the desired
characteristic of the output distribution. As stated in Section 2.3.1.2, fractional factorials
are characterized by their resolution or strength, where a higher resolution implies that
higher-order interaction terms can be found.

Resolution III fractional factorials are most commonly used as screening designs.
Since only main effects can be found, with higher order terms considered negligible,
these designs are used as the first step of an analysis where less important inputs are
screened out from a large number of inputs. Then, a more in-depth analysis using a
higher order fractional factorial is conducted on the remaining inputs.

While there are many ways to design fractional factorials, the most common
method is to use an orthogonal array (OA). Orthogonal vectors are vectors of the same
length which have an inner product, the sum of the products of their corresponding
elements, of zero. OAs consist of a group of vectors which are all orthogonal to one

another. Using this orthogonality in a fractional factorial allows certain input interactions
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to be screened out or neutralized. This property is what makes OAs popular as a
fractional factorial DOE. While OAs are frequently used for the DOE of physical
experiments, they are less often found in random sampling designs.

In an attempt to use OAs in the realm of computer experiments, where input
values can be sampled at random and not given prescribed levels, LHS designs based on
OAs were developed [61]. These LHS designs use OAs to roughly determine which
interval of each distribution should be selected for each run. This is in contrast to the
usual LHS design, where the selection of which intervals to use on each run is random.
The hope was that the space covering properties of the orthogonal array would help
optimize the LHS design’s own space covering attributes. Recent research [62] has
shown that it is in fact possible to create orthogonal LHS (OLHC) designs. These are
designs where the final run order is actually orthogonal, and not just loosely based on an
orthogonal design. OLHCs are essentially the same as regular LHSs, but the run order of
the intervals of each distribution is determined to satisfy the orthogonal properties
between the variables. Here, the terminology OLHC is used because the orthogonality
simply refers to the design of the run order, but not whether the values chosen to
represent the strata are sampled or static (as explained in Section 3.2.1). These designs
can be used with constant level values and without sampling, as in physical experiments;
however, they are only Resolution I, meaning not even main effects can be resolved
from the analysis since they are confounded with the main effects of other inputs.

In this work, OA designs are being tested outside of their common use, which is

to determine the coefficients of a response surface, or to calculate the importance ranking
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of input parameters. Instead, they are being used to estimate quantiles of the output
distribution. The motivation behind this application is to determine if the orthogonal
properties of these designs carry any advantage when estimating quantiles when

compared to traditional techniques.

3.2 Experiments

The following experiments were designed in order to test these methods for use in
nuclear safety analyses. Experiments were devised that would mimic common safety
analysis situations. This included starting with a simple nonlinear equation, moving to a
response surface surrogate for RELAPS, and conducting a risk assessment event tree
analysis. This section begins with a description of how the methods in Section 3.1 were

applied in these experiments.

3.2.1. Methods Analyzed

For this analysis, both Resolution IIT OAs and Resolution I OLHC were applied
using two techniques. First, prescribed values were used for the levels specified in the
design of experiment (DOE). This means a constant value was chosen to represent that
region of the distribution. It was selected by using the midpoint of the interval in
probability space. Figure 3. 4 illustrates how this representative value was found. The
midpoint of the interval with bounds 0.0 and 0.2 is used to find the corresponding x-axis
value of the CDF. This method is sometimes used in LHS designs in order to create a

more uniform sampling design [18].
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Second, these intervals were treated similarly to the intervals of a traditional LHS
design, where values are selected randomly from the interval. Here, the random selection
is made from the probability space in order to account for the distribution shape, just like
a normal LHS design, as seen in Figure 3. 5. In this figure, a value is chosen randomly
from the interval between 0.0 and 0.2. Once the value of 0.174 is selected, it is used to
find the x-axis value of the CDF, x), that corresponds to that location. Both orthogonal
methods, using both techniques to determine the level values, were compared to CMC
sampling and traditional LHS. These methods were compared at three different run
levels: 16, 32, and 64 runs. These levels were chosen because OAs and OLHCs designs
can only be constructed at certain run levels, and these presented the most available

options of OA and OLHC designs.
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3.2.2. Nonlinear Equation

The first test conducted used an equation found in previous literature on sampling
schemes [63]. This equation is simply a statistical test; it has no physical meaning. It is
used due to its complexity and since it is difficult to model accurately with a second-
order response surface. This equation was chosen as a first step to see how the proposed
methods would perform with a nonlinear equation, since many such equations are found
in large severe accident computer codes. It is defined in Eq. 34,

Y =5+ (249X)%7 In(2 + 2X5 + X2) + (1 + 2X3) 2eX% + X2 Eq. 34

where the uncertain input parameters 0 < X;, X, X3, X, < 2, and Y is considered the output

of interest, which would be compared to a prescribed safety goal.
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3.2.2.1. Normal Inputs

For this test, all four inputs to Eq. 34 were assumed to be truncated normal
distributions with mean 1.0 and standard deviation 0.22639. These distribution
parameters were chosen in order for 99.99% of the non-truncated normal distribution to
fall between 0 and 2. First, a CMC experiment with 10°® runs was conducted in order to
estimate the true 0.95-quantile of the system. The result was a 0.95-quantile of 40.6457,
which would be considered the “true” 0.95-quantile. Figure 3. 6 shows the output
distribution of the system for a 10°-run CMC trial, which is shown simply to give the

reader an idea of the range of possible outputs.
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Figure 3. 6: Nonlinear Equation with Normal Input Histogram 10> CMC Runs
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In order to test the experiment design methods listed in Section 3.1, each design
was used for up to 10° trials, where a trial is a set of runs (a run is defined as in Section
2.3, where it is the creation of a sample from the system). So a single trial may consist of
a set of 16, 32, or 64 runs, and result in a single estimated quantile value. Doing multiple
trials gives information about the spread of the estimated quantile values using that
method. Not all methods could be tested for 10° trials though. For the lower run levels,
such as 16 and 32, when using OAs or OLHCs with fixed midpoints, the number of
possible combinations of experiment design may be limited. For example, for the
Resolution III OA with 16 runs, an OA known as L;¢ was used. This is a four level

design and can handle up to five inputs, as seen in Figure 3. 7.

Run Input

1 2 3 45
1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 1 4 4 4 4
5 2 1 2 3 4
6 2 2 1 4 3
7 2 3 4 1 2
8 2 4 3 2 1
9 31 3 4 2
10 |3 2 4 3 1
11 {3 3 1 2 4
12 |3 4 2 1 3
13 14 1 4 2 3
14 14 2 3 1 4
15 14 3 2 4 1
16 |4 4 1 3 2

Figure 3. 7: A L;s> Resolution II OA with Input Levels for Each Run
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Since fixed midpoints are used and the system is deterministic, if the same design is
repeated, it will give the same result. This experiment only had four inputs however,
which meant 120 permutations of the experiment design were possible (the number of
permutations is found using the formula n!/(n — r)!, where n is the number of things to
chose from, and r is the number of things chosen). For the L3,> Resolution IIT OA used
for 32 runs, there were 3024 possible permutations. The same situation occurred when

using fixed midpoints with OLHC designs. Figure 3. 8 shows the OLHC used for 16 runs.

Run

-15
-13
-11

3 -7 -11 11 -7 -1 -13 -13 1
-7 -1 13 -1 -1 -13 9 3 15 5
-5 5 13 1 1 13 1 13 13 -1
711 7 7 11 5 15 -3 -9
5 00-15 3 9 -11 7 -7 -11 13 -1 -1 -13
39 5 -15 1 3 13 -1 -5 -15 3 9
-1 -13 -13 1 -1 -13 -13 1 -13 1 1 13

W 3 = »n|N
—

O 00 3 N W B~ W N =

'

N
1

—
—
—
—_

1 13 13 -1 -9 3 -15 5 -7 7 11
10 3 9 5 15 9 3 15 5 3 9 5 15
11 5 5 3 9 3 9 -5 -15 -11 7 -7 -11
12 7 1 -1 7 3 9 5 5 3 9 -5 -15
13 9 3 15 5 5 -15 3 9 -70-11 11 -7

,_.
~
—_
—_
1
]
|

5 15 -3 -9 -15 5 9 3

A3 0-15 05 9 -3 7 11 -1 7
615 5 9 3 15 5 9 3 15 5 -9 3

Figure 3. 8: A 16 Run OLHC Design (Resolution I OA) with 12 Inputs*

—
W
—_—
w
1
—_
1
—_

*to ensure orthogonality, the interval numbering scheme is as follows:

[-15,-13,-11,-9,-7,-5,-3,-1,1,3,5,7,9, 11, 13, 15]
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Since this design could handle up to twelve inputs, and only four are used here, this
implied 11,880 possible experiment designs. Obviously, this was not a constraint when
random sampling from the intervals was used since even the same experiment design
would result in different values being chosen from each interval.

Table 3. 2 presents a table of the OA and OLHC designs used for this analysis.

These OAs can be found in Appendix A.

Table 3. 2: List of OAs Used for Each Run Level*

OA OLHC
Number . .
of Runs Resolution Resolution
u 11 1l
16 Lig OLHC.16
32 L;, OLHC.32
64 OA.64 OLHC.64

*The OAs can be found in Appendix A

The results of the analysis can be seen in Table 3. 3. Three values are presented
for each case. The first value is a sample mean of the 0.95-quantile estimation of the 10’
trials conducted, followed by the sample standard deviation (denoted S.D.) of each trial’s
0.95-quantile estimation. The standard deviation should be viewed with caution, since as
stated above, the method with fixed midpoints may have involved less than 10 trials,
unlike the sampled methods. Finally, a percent error is given. This is the most useful
metric to compare the different methods. As seen in Eq. 35, this is the mean of the

percent difference of the quantile estimation of each trial and the “true” 0.95-quantile.
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& - ¢
§
where, Eq. 35

& = "true" 0.95-quantile = 40.6457

&; = Estimated 0.95 — quantile of it! trial
n = number of trials

x100

n

1
Percent Difference = ;Z
i=1

Table 3. 3: Results for 10° Trials for Nonlinear Equation with Normal Inputs

Number . OA - Res 111 OLHC - Res I1

of Runs® Metric CMC LHS Midpoint®™ Sampling(h) Midpoint®™ Samplinﬂ

Mean of & 45.13 47.35 38.02 46.12 43.97 47.43

16 S.D.of & 13.08 12.18 1.22 12.67 5.06 12.17

% Difference’® 21.38 20.74 6.45 20.17 11.30 20.20

Mean of & 41.58 41.37 37.05 41.98 40.87 41.29

32 S.D.of & 6.83 3.82 0.93 6.20 3.31 3.38

% Difference® 12.31 7.44 8.85 10.94 6.40 6.49

Mean of & 40.18 40.04 36.60 40.36 40.16 40.13

64 S.D.of & 4.18 243 0.65 3.65 1.86 1.93

% Difference'® 8.15 4.98 9.96 7.03 3.90 4.00

@Number of runs in a single trial, ®See Section 3.2.1, ©See Eq. 35

As the results show, LHS and OLHC, using sampling and fixed midpoints,
outperformed CMC sampling and Resolution III OAs in relation to the percent difference
metric. For example, at the 32-run level, CMC had a percent difference of 12.31 and the
Resolution IIT OA using sampling had a percent difference of 10.94, while LHS had a
value of 7.44, and OLHC using midpoints and sampling had values of 6.40 and 6.49,
respectively. Resolution ITII OAs using sampling also outperformed CMC sampling using
the percent difference value by a smaller margin. When using fixed midpoints,
Resolution IIT OAs were the only method that underestimated the 0.95-quantile at low
run levels, resulting in a mean of 38.02 compared to the true 0.95-quantile value of

40.646, and the accuracy actually got worse as the number of runs was increased, as the
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percent difference metric increased from 6.45 to 9.96. The precision of the estimated
quantile values increased (i.e. the S.D. was lower) when using LHS when compared to
CMC, which is expected since LHS is a VRT. However, OLHC using sampling had a
greater reduction in variance than normal LHS, where at the 64-run level, LHS had a S.D.

of 2.43, but OLHC using sampling had a S.D. of 1.93.

3.2.2.2. Non-Normal Inputs
Next, the experiment in Section 3.2.2.1 was repeated, but the normally distributed

inputs were replaced with a variety of distributions, as seen in Eq. 36.

x; — exponential(0.173)

x, — N(1.0,0.226392)

x3 — lognormal (0.0, 0.162) Eq. 36

x4 —uniform(0,2)
This was done in order to remove any possible influence from the use of normal
distributions. Once again, the exponential and normal distributions were truncated at 0
and 2, and the parameters are chosen in order for 99.99% of the non-truncated
distribution to fall within that interval. Since the lognormal distribution has no values
which fall below 0, 99.995% of the non-truncated distribution falls below 2, and 100% of
the uniform distribution is between those bounds. A 10%-run CMC trial resulted in a 0.95-
quantile value of 148.650. Figure 3. 9 shows the output distribution for a 10°-run CMC
trial. Once again, this is done to give the reader an idea of the output distribution shape.

Compared to the previous example in Section 3.2.2.1, this output has a longer tail at high

values, which results in a much higher value for the 0.95-quantile.
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Figure 3. 9: Nonlinear Equation with Non-normal Inputs Histogram 10° CMC Runs

Table 3. 4 shows the results of this experiment. As with the previous experiment,
OLHC and LHS had, on average, the most accurate result, in regards to the percent
difference, as can be seen at the 32-run level, where LHS had a percent difference of
9.71, OLHC using sampling had a percent difference of 8.85, while CMC had a percent
difference of 20.17. Resolution III OA’s with sampling once again fared better than CMC
sampling in regards to the percent difference, but when using fixed midpoints, it again
consistently underestimated the quantile, with a mean of 103.58 at the 16-run level,
compared to a true value of 148.65. Also, the results when using OLHC for both

midpoints and sampling were, once again, very similar.
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Table 3. 4: Results of 10° Trials for Nonlinear Equation with Non-normal Inputs

Number . OA - Res III OLHC - Res 11
of Runs® Metric CMC LHS idpoint® Sampling® _Midpoint® _ Sampling®
Mean of & 153.70  173.79 103.58 159.56 173.02 175.54
16 S.D.of & 49.22 31.20 1.14 43.80 19.39 30.89
% Difference’® 27.47 20.72 30.32 24.94 16.95 21.15
Mean of & 145.15  153.17 102.17 147.29 151.74 152.23
32 S.D.of & 36.71 17.83 2.13 32.64 14.43 16.31
% Difference® 20.17 9.71 31.27 18.02 7.84 8.85
Mean of & 140.80  144.38 102.34 142.44 145.72 145.03
64 S.D.of & 26.97 11.96 0.55 23.69 9.45 10.08
% Difference’® 15.18 6.94 31.15 13.37 5.29 5.84

@Number of runs in a single trial, ®See Section 3.2.1, ©See Eq. 35

3.2.3. LOCA Response Surface
The next system analyzed was a second-order response surface, developed by

French [64], which models the peak clad temperature of a nuclear power reactor during a
LOCA. This equation was chosen because it is designed to act as a surrogate for the
RELAPS [65] plant deck from which it was created. While it is a relatively simple
equation, it is a step towards a realistic nuclear safety analysis. This response surface is
shown in Eq. 37,

Y =a+b Xy + - +b1 X11 + 1 XF + -+ o1 XH + di X1 Xy + o+ dss X1 X10

Xy, ., X1, = N(0.5,0.1%) Eq. 37

where a, b;, ¢;, and d; are constant coefficients and the eleven inputs Xj, ..., X;; are
independent normal random variables which are truncated at 0 and 1. The inputs are

certain normalized reactor properties. The output Y is peak cladding temperature in

degrees Fahrenheit. The result of a 10%-run CMC experiment yielded a “true” 0.95-
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quantile of 1683.65°F. Figure 3. 10 shows the distribution of a 10° CMC trial. In this

case, the higher end of the distribution is fairly compact.
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Figure 3. 10: RELAP Response Surface Histogram 10° CMC Runs

Since this system had eleven inputs, some OAs had to be changed to accommodate more

inputs. Table 3. 5 shows the OAs and OLHCs used for this analysis.

Table 3. 5: List of OAs Used for Each Run Level*

OA OLHC
Number . :
of Runs Resolution Resolution
I I
16 Lis OLHC.16
32 Ly OLHC.32
64 OA.64 OLHC.64

*The OAs can be found in Appendix A
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The results of this experiment can be seen in Table 3. 6. As in previous

experiments, LHS and OLHC outperform the other methods in regards to the percent

difference, as can be seen at the 32-run level, for example, where LHS has a perecent

difference on 1.03, OLHC using sampling has a value of 0.95, while CMC is 1.25. The

OLHC designs are again very similar whether using midpoints or sampling. Also, unlike

the two previous examples, the Resolution III OA using midpoints actually increases in

accuracy as the number of runs grows, from a percent difference of 2.12 to 0.82, but it is

still the poorest performer of all the methods.

Table 3. 6: Results of 10° Trials for LOCA Response Surface

Number . OA - Res 111 OLHC - Res 11
of Runs® Metric CMC LHS Midpoint™® Sampling“’) Midpoint®™ Samplin&
Mean of & 1691.27  1697.80 1647.90 1692.18 1699.64 1701.60
16 S.D.of & 39.08 34.20 10.11 36.28 29.38 31.92
% Difference® 1.85 1.67 2.12 1.71 1.50 1.62
Mean of & 1683.25  1685.92 1648.37 1683.88 1687.83 1688.10
32 S.D.of & 26.56 21.89 6.74 24.11 19.81 20.15
% Difference® 1.25 1.03 2.10 1.13 0.93 0.95
Mean of & 1679.36  1680.62 1670.96 1679.85 1682.04 1681.98
64 S.D.of & 18.45 14.85 8.79 13.58 11.85 11.90
% Difference® 0.90 0.72 0.82 0.67 0.57 0.57

@Number of runs in a single trial, ®See Section 3.2.1, ©See Eq. 35

3.2.4. PRA Event Tree

The next example was designed to represent a probabilistic risk assessment (PRA)

for a nuclear power plant. The example contains three initiating events; a small, medium,
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and large break LOCA with associated system failures resulting in core damage. Each of
these initiating events has its own Level-I core damage event tree, as seen in Figure 3. 11,
Figure 3. 12, and Figure 3. 13. These event trees are very similar to those used in PRAs
for actual plants. The events within the trees are indentified with letters that represent the
success/failure of safety features, such as those associated with the ECCS. The result of
each scenario in these trees indicates whether core damage has occurred, and if so, which
damage-state the core is in. Once again, only a symbolic number is used to represent each

of the four core damage-states.

Initiating A B Path Core Damage
Event Damage State
11 No X
Large
LOCA 12 Yes 3
13 Yes 2

Figure 3. 11: Large Break LOCA Core Damage Event Tree

Initiating c A B Path Core Damage
Event Damage State
ml No X
Medium m2 Yes 3
LOCA m3 Yes 2
m4 Yes 1

Figure 3. 12: Medium Break LOCA Core Damage Event Tree
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Initiating C D A E B Core Damage

Event Path Damage State

sl No X
s2 Yes 4
s3 No X
s4 Yes 4
s5 Yes 3

Small s6 No X

LOCA
s7 Yes X
s8 Yes 1
s9 Yes 1

Figure 3. 13: Small Break LOCA Core Damage Event Tree

In a specific assigned core damage-state, the progression of core damage and the
threats posed to the integrity of the containment are similar. For this example, there are
two linked containment event trees that characterize the modes and timing of failure that
are possible. The first containment event tree, shown in Figure 3. 14, characterizes early
threats to containment failure. Early failure is particularly important because, for the
associated magnitude of release and limited time for evacuation of the neighboring
population, there is some potential for large doses to the population to result in radiation
sickness sufficiently severe to result in fatality. If there is no early failure of containment
(and no potential for offsite early fatalities), a late containment failure tree is analyzed,
shown in Figure 3. 15. These containment event trees are based off examples in
NUREG/CR-6595 [66]. In total, each run of the event tree series results in 841 unique

end-state scenarios.
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No Induced

. Core No
Core Containment Steam No . Large
RCS Damage . Potential
Damage Isolated or Generator Containment Path Early
Depress. Arrested . for Early
Entry Not Bypassed Tube Failure or VB . Release
w/o VB Fatalities
Rupture
1E No
2E No
3E No
4E Yes
5E No
6E No
7E No
8E Yes
9E No
10E Yes
11E No
12E Yes
Figure 3. 14: Early Containment Failure Event Tree
IE:(::: Cavit core (6} ::::in Late Large
y Debris P g Hydrogen Path g
Cont. Flooded and . Release
Coolable . Combustion
ET Effective
1L No
2L Yes
3L Yes
4L No
5L Yes
6L Yes
7L No
8L Yes
oL Yes

Figure 3. 15: Late Containment Failure Event Tree
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The offsite dose is calculated using the Gaussian dispersion model described in
NUREG-1465 [67], starting with the calculation of y/Q in Eq. 38,
(22):7)
“\202)\202
e \“Oy/\0z
x_¢ Eq. 38
Q To,0,U
where ,
u = Average Wind Speed (m/s)
y = Distance from the plume axis in the transverse direction (m)
h = Release height (m)

gy, = Pasquill — Gif ford coef ficient of Horizontal Dif fusion (m)
0, = Pasquill — Gif ford coef ficient of Vertical Dif fusion (m)

From there, the inhalation and submersion doses can be found according to Eq. 39 and
Eq. 40. The offsite dispersion and dose calculations are made at a distance of 1 km from
the release point, and along the centerline of the plume (as is required for regulatory
analyses [68], [69]). The dose conversion factors are found from [70]. The core

radionuclide inventory was calculated using [71].

X
Dmh=R-Q-6-DCF Eq. 39

X
De,, = Q-2 DCF
sub = 0 Q Eq. 40

where,

Diun = Inhalation Dose (rem)
D¢, = Submersion Dose (rem)
R = Inhalation Rate (m3/s)

Q = Activity (Ci)

DCF = Dose Conversion Factor

In total, there are 27 uncertain parameters. These are listed in Table 3. 7, along

with their distribution shape.
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Table 3. 7: PRA Event Tree Uncertainties

Uncertainty Distribution*
1 Small LOCA Initiating Event Frequency Lognormal(0,1)
2 Medium LOCA Initiating Event Frequency Lognormal(0,1)
3 Large LOCA Initiating Event Frequency Lognormal(0,1)
4 C Uniform(0,1)
5 D Normal(0.05,0.01)
6 A Normal(0.005,0.001)
7 E Uniform(0,1)
8 B Exponential(0.8)
9  Containment Isolated or Not Bypassed Exponential(0.8)
10 RCS Depress. Exponential(0.8)
11 Core Damage Arrested w/o VB Exponential(0.8)
12 No Induced Steam Generator Tube Rupture Exponential(0.8)
13 No Containment Failure or VB Exponential(0.8)
14 No Potential for Early Fatalities Exponential(0.8)
15 Cavity Flooded Exponential(0.8)
16  Core Debris Coolable Exponential(0.8)
17 CHR Operating and Effective Exponential(0.8)
18 Late Hydrogen Combustion Exponential(0.8)
19  Early Release Fraction Noble Gases Beta(2,2)
20 Early Release Fraction lodine Beta(2,2)
21 Late Release Fraction Noble Gases Uniform(0,1)
22 Late Release Fraction Iodine Beta(2,60)
23 Wind Speed Beta(2,2)
24 Release Height Uniform(0,1)
25  Pasquill-Gifford Coefficient Horizontal Diffusion Beta(2,2)
26  Pasquill-Gifford Coefficient Vertical Diffusion Beta(0.8,5)
27 Containment Leak Rate Beta(2,2)

*Many of the uncertainties are not the distribution of the actual parameter, but of
a scaling factor or part of a larger formula

For this analysis, the figure of merit is the mean risk, which is defined in Eq. 41,

R =

i

F, - D;

w
=1

Eq. 41

where R is the mean risk, w = 841 or the total number of scenarios per run of the PRA,
F; is the frequency of the i-th scenario, and D; is the offsite dose of the i-th scenario. So
each run of the PRA will result in a single value for the mean risk. The 0.95-quantile

mean risk of a 10%-run CMC trial was 0.00300 rem/yr. Figure 3. 16 shows an empirical
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CDF of the output for a 10°-run CMC trial. As the figure shows, the output ranges over

many orders of magnitude.

0.9 | —"True" 0.95—Quantile |

(x
© o o
~ o
T T T
| | |

o
w
T
|

0 L | l

107" 107"° 107° 10°° 107" 107 10° 10°
Mean Risk (rem/yr)

Figure 3. 16: Empirical CDF of Mean Risk 10°-Run CMC Trial

Since this system contained 27 inputs, Resolution IIT OAs and Resolution II
OLHCs were not available for the 16 run level. Table 3. 8 lists the arrays used for this
experiment. Table 3. 9 contains the results of this experiment. Here, it is important to
note that the percent difference may appear large, especially when compared to the
previous examples. However, the output distribution of this analysis had a range of
several orders of magnitude, so the percent difference will appear greater than the

examples which had a smaller range of possible outcomes.
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Table 3. 8: List of OAs Used for Each Run Level®

OA OLHC
Number . .
of Runs Resolution Resolution
u 111 I
16 X X
32 Ls, OLHC.32
64 0A.64.32® OLHC.64

@The OAs can be found in Appendix A, POA.64.32 is
a Resolution IV OA since no Resolution III OAs
are available for that run level and number of inputs

Table 3. 9: Results of 10° Trials for PRA LOCA Analysis

Numbe(l;) Metric CMC LHS : f)A(b; Res 111 — : (?L(I;C - Res II. -
of Runs Midpoint Sampling Midpoint Sampling™
Mean of & 0.00890  0.00987
16 S.D.of & 0.01778  0.01754
% Difference’® 217.94 235.30
Mean of & 0.00405  0.00403 0.00061 0.00409 0.00374 0.00401
32 S.D.of & 0.00309  0.00216 0.00006 0.00300 0.00168 0.00193
% Difference’® 63.83 49.86 79.66 60.26 39.70 46.16
Mean of & 0.00290  0.00289 0.00060 0.00292 0.00282 0.00291
64 S.D.of & 0.00129  0.00090 0.00004 0.00118 0.00068 0.00072
% Difference® 32.53 23.42 80.11 29.70 19.07 19.27

@Number of runs in a single trial, ®See Section 3.2.1, ©See Eq. 35

As with the previous experiments, LHS and OLHC designs outperform the other
methods in the percent difference metric, with LHS at 49.85, OLHC using sampling at
46.15, and CMC at 63.83, for the percent difference at the 32-run level. Once again,
OLHC:s using sampling and static midpoints provides a more accurate result on average
than LHS. While Resolution III OAs outperform CMC sampling when using a sampling

approach, the use of static midpoints results in the worst performance of all the methods,
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grossly underestimating the mean risk, with a mean of 0.00061 at the 32-run level

compared to a true value of 0.003 .

3.3 Discussion

The results in Section 3.2 indicate the OLHC designs, whether using static
midpoints or interval sampling, are the most accurate and precise of the analyzed
methods when determining the 0.95-quantile of the output distribution. The results also
show that if it is necessary for an analysis to use set static values, such as midpoints,
OLHC:s are the preferred method over the use of a Resolution III OAs, if the quantile
estimation is the only goal of the analysis. If the research is also focused on capturing
input interactions, it may be necessary to go to a higher order OA. These results are not
completely surprisingly since the creation of Resolution III OAs was not focused on
quantile estimation, but other factors such as input screening. The poor performance of
Resolution IIT OAs when using static midpoint is most likely a result of the low number
of intervals. This means the midpoints of intervals will be far from the tails of the
distribution and may not characterize certain areas of the output distribution.

The indicated ability for OLHCs to outperform LHS, even when using static
midpoint values is an interesting outcome and more work should be done into possible
uses of OLHC:s. Certain setbacks do still exist with OLHCs though, as they can be
difficult to create and may not exist for a system with a large numbers of inputs in

combination with low run levels.
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Chapter 4: Confidence Intervals for Quantiles

This section expands on the concept of quantile estimation, explained in Section
3, by introducing confidence intervals for the point estimate of the quantile. Confidence
intervals for quantiles are currently used in nuclear reactor safety analyses as a method to
demonstrate adherence to NRC safety limits. This section details these NRC criteria, and
the evolution of methods used to show satisfaction of these safety requirements (Section
4.1). From there, a more detailed analysis of the current NRC-accepted sampling method
is presented, along with a detailed derivation of a new VRT confidence interval method,
that has recently been proven [72] (Section 4.2). Lastly, the new VRT method and the
current NRC-accepted method are compared using systems designed to represent those
encountered during nuclear reactor safety analyses (Section 4.3), and conclusions relating
to the probability of achieving the correct conclusion during an analysis are presented

(Section 4.4).

4.1. Background

4.1.1. Regulatory History

As mentioned in Section 2, the initial approach to the treatment of modeling
uncertainties in regulatory analysis was to use non-mechanistic, conservative models. In
the implementation of the Part 50 Appendix K of the Code of Federal Regulations [4],

which describes a prescription for the conservative treatment of uncertainties in the
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analysis of LOCAs, it became apparent that what was thought to be conservative might
not be conservative in all cases, and that conservative regulatory models could be
misleading with regard to the improvement of reactor safety. The transition to best-
estimate plus uncertainty regulatory requirements began with an amendment to 10 CFR
50.46 [73] in 1988, which allowed for realistic modeling of LOCAs. While this rule-
change signaled an advancement in regulatory safety analysis, the statistical requirements
of the output result were vague, stating only that there should be a “high level of
probability that the criteria would not be exceeded.”

In 1989, the NRC issued RG 1.157 [74], which helped clarify the procedure for
performing a best-estimate calculation relating to the design bases for essential safety
systems. It set the standard for the handling of computational uncertainty for nuclear
safety applications by stating that a 95% probability level is considered acceptable to the
NRC staff for comparison of best-estimate predictions to safety limits. However, the
ambiguity of the term “95% probability level” remained an issue for the analyst.

The most obvious solution to the “95% probability” requirement was to estimate
the 0.95-quantile of the output distribution. One method to do this was to perform a large
number of CMC random sampling runs and simply order and count the results until 95%
of the runs fell below that threshold. The large number of runs required by CMC to
obtain sufficient accuracy represented a major problem for safety analysts, due to
minimal computing power and extended code run times. There was also the question of
just how many runs would be necessary for an analyst to be able to claim that the

estimate of the 0.95-quantile was sufficiently accurate.
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Response-surface methods [55] were initially proposed as a way of reducing runs
and increasing knowledge of the overall behavior of the parameters of interest. An
advantage of this method is that it employs a fixed matrix of runs to be conducted to
obtain the desired surface. This property not only gives the analyst a plan to provide to
the regulator, but also produces a level of understanding about the impact of different
input parameters. However, like the large-sample CMC case, run designs often needed to
be very large to capture input interactions and nonlinearities, and the only way around
this was to group input parameters based on the analyst’s judgment [75]. In response to
these considerations, methods were developed that required a smaller number of runs, but
which could satisfy the regulatory guidelines.

Both Areva [76] and Westinghouse [75] developed approaches to the use of CMC
using order statistics (CMC-OS) for their regulatory LOCA analyses. While the method
of CMC-OS was first considered for use in the nuclear industry in the 1970’s [77], it
wasn’t until the NRC published NUREG-1475 [78], a guide to applying statistics, in
1994 that the NRC provided a more comprehensive picture of its use for regulatory
requirements [79]. Gesellschaft fiir Anlagen-und Reaktorsicherheit (GRS) helped bring
CMC-OS to the thermal hydraulic and safety fields soon after that [80]. Major steps
forward occurred in 2003 and 2004 with publications by Guba, Pal, and Makai [81], and
Nutt and Wallis [82]. These works not only expanded on how CMC-OS could be used in
safety analyses, but also proposed the use of CMC-OS in regards to the 95% probability
reporting requirement. The solution provided by Nutt and Wallis [82] to this question was

to report a 95% one sided confidence interval for the 0.95-quantile of the output
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distribution. Based on the works of Wilks [83] and Wald [84], this method simulates the
model using CMC to establish a confidence interval for a tolerance interval. This method
was considered acceptable by the NRC in regards to the 95% probability requirement
[75], and is discussed in detail in Section 4.2.1.

While the acceptance of the 95% confidence interval for the 0.95-quantile has
been adopted by the NRC for satisfying design basis accident requirements, there are
other safety applications for which less stringent requirements may be appropriate, such
as for the analysis of beyond-design-basis events. For the analysis of these events,
similar, but less stringent limits could be established, such as the use of a high value

confidence interval for a lower quantile.

4.1.2. Confidence Intervals and Hypothesis Testing

This section explains, in detail, the meaning of a confidence interval, clarifies its
use within a hypothesis test, and presents a comparison of confidence intervals and
credible intervals. From there, a framework is developed to more rigorously present the
NRC'’s probability requirement in terms of hypothesis testing, and the possible scenarios

where errors in conclusion could occur are detailed.

4.1.2.1. Confidence Intervals
A confidence interval (CI) gives an estimated range of values which is likely to
include an unknown population parameter, with the estimated range being calculated
from a given set of sample data [85]. The confidence level determines how frequently the

calculated interval will contain the parameter. Unlike a point estimate, which only gives a
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single estimated value for a parameter, a CI gives a range in which that parameter is
estimated to lie.

While the concept of a CI may seem straightforward, its meaning is constantly
misinterpreted. An example will help explain this common mistake. Imagine the goal of
an analysis is to estimate the location of the p-quantile &, of a distribution. After n
number of samples have been taken from the distribution (either through physical
sampling or computer code simulations), an estimate of the quantile value is made fp.
This is the point estimate. In order to give more information about the possible location
of the true quantile, a CI is calculated (the process to obtain a CI will be described in
Section 4.2). The estimated quantile, along with the bounds of the CI are shown

graphically in Figure 4. 1.
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Figure 4. 1: Estimated Quantile with Confidence Interval
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For this example, say a two-sided CI is constructed using a 90% confidence level. The

mistake usually comes with the interpretation of this interval. Many times, CI results will
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be reported with the comment that there is a 90% probability of the true parameter lying
within the CI. This is a mistake. The CI gives no probabilistic information. The true
parameter is fixed, not a random variable. Therefore, the probability of the true parameter
lying within the CI is 0.0 or 1.0. It either does or it does not. The CI does not report
uncertainty about the parameter, but uncertainty about the sampling method. If the
analysis was repeated with new samples, and a new CI was constructed, 90% of the time
this interval will include the true parameter. A CI only makes sense if more samples can
be taken. If every possibility has been sampled, the CI becomes meaningless.

The meaning of a CI is often times confused with that of a credible interval. A
credible interval (sometimes called a Bayesian CI), is a probabilistic statement about the
location of the parameter. The reason that this statement can be made during a Bayesian
analysis is because the distribution’s parameter was assumed to be a random variable
from the start. This is not the case in frequentist statistics, where it is assumed that there
is only one true value of the parameter. With a credible interval, it is possible to make a
statement such as “there is a 90% probability of the parameter lying within the credible
interval.”

The question could be asked here, then why use Cls instead of Bayesian credible
intervals? As mentioned in Section 2.1, there was great debate over the acceptance of
PRA in nuclear safety analysis during the 1980’s and 1990’s. A subset of this debate
centered on the use of frequentist (classical) statistics versus the use of Bayesian
(subjective) statistics. An issue of Reliability Engineering & System Safety was dedicated

to the practicality of each method within a PRA [86], and the NRC weighed in with
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NUREG-1489, 4 Review of NRC Staff Uses of Probabilistic Risk Assessment [87], in
1994. Here, the NRC offered guidelines on the use of PRA, including the statement that,

“There is general agreement that both frequentist and subjectivist interpretations
of probability are appropriate for use in PRA. However, one view or the other

may be preferable for particular analyses.”

The NRC provided guidance on the use of frequentist and Bayesian statistics in NUREG-
1489 [87]. In this document, advantages and disadvantages of each method were noted. A

selection of these pros and cons can be found in Table 4. 1.

Table 4. 1: Frequentist and Bayesian Pros and Cons [87]

Method Frequentist (Classical) Statistics Bayesian (Subjective) Statistics
- Results depend only on data - Provides logical and unified approach to the
- Good estimates with large quantity of data use of prior information
- Historical precedence, well known and - Has probabilistic interpretation which can be
Advantages widely used easily propagated through a PRA
- Easily updates
- More applicable when generic data exists
- Confidence interval has no probabilistic - Suitable prior must be identified and justified
interpretation - Sensitive to prior distribution
- Cannot use prior relevant information - Less well know and accepted, may require
Disadvantages - Very difficult to propagate confidence more effort to implement and interpret
intervals through fault or event tree
models

- Sensitive to the way data is collected

As the table shows, the main drawbacks of frequentist statistics lie in their inability to use
relevant prior information, and the difficulties when propagating uncertainty. Using this
information, NUREG/CR-6823, Handbook of Parameter Estimation for Probabilistic

Risk Assessment [88], recommends using Bayesian statistics for parameter estimation.
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This would seem like a definitive answer to which technique should be used for the goal
of parameter estimation and comparison to a limit, but that is not the case. When
NUREG/CR-6823 refers to “parameter estimation” it means the estimation of system
parameter distributions for use in a PRA. This includes component failure rates, initiating
event frequencies, and equipment non-recovery probabilities. This definition is not
necessarily the same as used in this document, where parameter estimation is the
estimation of a true property of a distribution, such as a quantile. In the case of
NUREG/CR-6823, estimating system and component parameters involves collecting
experimental component data and previous plant history. These data can come from
many sources, and could have been collected in different ways. This is one of the reasons
why the ability to specify priors is of great advantage. Also, once the parameters are
estimated, they will be inputs into a PRA, so the ease at which Bayesian uncertainties can
be propagated through an analysis is another big advantage. Neither of these reasons is
applicable to the analysis being conducted here.

In the regulatory analysis of comparing a system parameter to a limit value, the
use of prior information presents potential difficulties. It may be problematic to justify
any prior for use in a regulatory analysis, if it could be shown that this prior would
modify the results in the licensee’s favor. This is one of the reasons why the VRTs of
control variates and importance sampling are not investigated in this work. Also, the data
are not collected from many different sources, but from a single analysis that was
conducted according to regulatory guidelines. So the data are regular and frequentist

statistics can be applied. Lastly, the results of the analysis are the ultimate motivation for
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its collection. They are not inputs into a larger system, but the final goal. This means the
ease by which the confidence interval can be propagated is not a concern.

Even without those advantages, Bayesian statistics would still seem like a more
natural fit to the NRC’s “95% probability” requirement, since credible intervals return
probabilistic information. However, this is not necessarily the case. The probability
requirement is fulfilled by the use of the 0.95-quantile, not the confidence or credible
interval. The use of the 0.95-quantile implies that there is a 95% probability of the output
of the system being below that value. The use of the confidence interval simply provides
an estimation of the quantile location. So the probability characteristics of the quantile are
retained, and there is not necessarily an advantage to an additional probabilistic statement
about the location of the quantile provided by the credible interval. It may be that there
are other benefits to the additional probabilistic statement, but for this work that is not the
case. Also, as stated in this section, the CI gives an indication of the uncertainty in the
sampling method, not the system uncertainty. This is a positive in this application, since
the quantile satisfies the probability requirement related to system uncertainty, and CI
provides the regulator with confidence regarding how the experiment was conducted (i.e.
the sampling scheme). For these reasons, the use of Cls rather than credible intervals
would appear acceptable in this application.

As mentioned before, the confidence level gives a percentage of how often the
true parameter will lie within the interval. The confidence limits are the upper and lower
bounds of the CI. While the example in Figure 4. 1 shows a two-sided CI, it is also

possible to construct a one-sided confidence interval (OSCI). This tends to be the more
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useful CI for the problems described here, since the approximate location of a parameter

is not the main interest, rather its location compared to a limit or goal value.

4.1.2.2. Relation to Hypothesis Testing

Usually, simply reporting CIs for an estimation of a population parameter is not
considered a hypothesis test. This is because hypothesis tests relate to a single
conclusion, such as statistical significance versus no statistical significance, where a CI is
only the reporting of a range of plausible values for that system parameter. Many times a
CI could be reworded to become a hypothesis test [28], and as Section 2.2 mentioned,
there is a confidence interval approach to hypothesis testing. In this case, instead of
simply reporting a CI around a sample statistic, some hypothesized value for that
parameter is compared to see if it falls in or out of that interval. Increasingly, this
approach to hypothesis testing is gaining favor over the use of p-values, and recent
medical journal publications now prefer CIs to the use of p-values [17]. Cls are gaining
preference over p-value testing because they are more informative than the p-value
approach [89]. A CI provides a measure of accuracy of the parameter estimation that a
point estimate and significance value do not.

The terminology laid out by the NRC to meet the 95% probability reporting
requirement can be reworded in order to create a hypothesis test that would fall into the
confidence interval approach category. As stated in Section 2.2, a hypothesis test begins
with an assumption about a parameter, but uses a statistic for the decisionmaking process.
In the case of an output distribution satisfying a regulatory limit with at least 95%

probability, the null hypothesis Hy is that the true 0.95-quantile of the output distribution
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is above the regulatory limit (assigned value b). The alternative hypothesis H; is that the

true 0.95-quantile of the system is below the regulatory limit b, as shown in Table 4. 2.

Table 4. 2: Hypothesis Test Alternatives

True 0.95-quantile £ 95 > b
System fails test

True 0.95-quantile {y g5 < b
System passes test

H,

H,

By making Hy the case where the true quantile is above the limit, the default position is
that the system should fail the regulatory test because there is a greater than 95%
probability of the output of the system being greater than b. Since this is the null
hypothesis, the analyst must prove that this is not the case, or to state it another way, the
analyst must provide a statistically significant amount of evidence that the true 0.95-
quantile of the output is below limit 5. Obviously, the parameter & o5 is unknown.
Therefore, the quantile estimator &, o5 Will be used, with a 95% OSCI, as the test statistic.
To make this more clear, Figure 4. 2 shows quantile estimator ggp, and a one-sided
confidence interval (OSCI) for the p-quantile &, (note: the OSCI actually extends to —oo,

but obviously negative values are not realistic).
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Figure 4. 2: One-sided CI for Quantile Estimator ggp

As the figure shows, the interval extends from 0 to value fp + CI. If the limit value b falls
anywhere within this interval, the system should not pass the test. Therefore, the null
hypothesis should be accepted if the limit value b is within the interval 0 to value fp +
CI. The alternative hypothesis should be accepted if the limit value b is not in this
interval. Since the CI is one-sided, there is only one way the limit value 4 could not fall in
the interval, which would be by exceeding the highest bound. Using a 95% OSCI is
equivalent to testing the null hypothesis at the P < 0.05 level. Another way of saying this
is that if b falls in this interval, there is a not insignificant possibility (where the line
between significant and insignificant is made by the 95% confidence) that it could be at a
value equal to, or below, the true population parameter .

Since the problem is being phrased in terms of hypothesis testing, more

explanation is needed on how errors will arise in this framework. As described in Section
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4.1.2.1, a 95% OSCI implies that the true parameter value will be captured by the interval
95 times out of 100. This means that 5% of the time the top bound of the OSCI created

from the samples will be at a value lower than the true quantile. This scenario is shown in

Figure 4. 3.
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Figure 4. 3: True Quantile above OSCI

Even though the true quantile lies outside the interval created by the OSCI, this does not
directly imply that a Type-I error (false positive) will be committed. A Type-I error will
only occur if the limit value b happens to have been set at a value between the upper
bound of the OSCI and the true quantile, as shown in Figure 4. 4 (it is important to note
here, that the limit value b is a fixed parameter that was set before the analysis; the error
interval in Figure 4. 4 simply shows a range created by the upper bound of the OSCI

where, if the limit b had been placed, a Type-I error would occur).
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Figure 4. 4: OSCI with Type-I Error

Therefore, the size of the test  is at most 0.05 (assuming a correct 95% OSCI). The
actual value for a will depend on the location of the upper bound of the OSCI in relation
to limit . The larger the distance between the upper bound of the OSCI and the true
quantile, the closer a could be to 0.05, since the error interval in Figure 4. 4 will grow
wider. Since the limit b is set beforehand, independently of the analysis, as the error
interval grows wider, the probability of the top bound of the OSCI falling below b will
increase, meaning « will get closer to 0.05. It should be noted that even if a Type-I error
does not occur, there can still be mistakes caused by these ~5% of results. Even if the
hypothesis test were to reach the right conclusion, the underestimation of the true quantile
can lead to incorrect decisions in relation to the ranking of the severity of accidents (or
whatever situation the analyst may be investigating), and this fault should not be

underestimated.
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A Type-II error would occur in the following scenario. In this case, the OSCI does
incorporate the true quantile. However, the OSCI is so large that it also includes the limit
value b, even though it is set above the true quantile, as show in Figure 4. 5. As the figure
shows, the error can be induced by the size of the CI, but it is also possible that the

quantile estimator gp is above the true quantile, which means no matter the width of the

CI, there is still a chance of a Type-II error, as show in Figure 4. 6.
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Figure 4. 5: OSCI with Type-II Error'

"In Figure 4. 5 and Figure 4. 6, it appears that the true quantile has changed value in comparison to Figure 4. 4; using
frequentist statistics, the true quantile is fixed, it would actually be the empirical CDF and OSCI that have changed
from the previous figure
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Like a, the value for §8 is bound by the value of the confidence level. With a 95%
confidence interval, only 5% of trials will result in the true quantile exceeding the top
bound of the OSCI. This means the true quantile will be within the bounds of the OSCI
95% of the time. However, the OSCI does not give any information about the location of
the true parameter within the CI, just a value to the possibility of its location within the
bounds. This means £ has a theoretical top bound of 0.95, if the limit value » happened to
be set only slightly above the true quantile. Obviously, a test that resulted in a § value
close to 0.95 would not be of much use. The actual value for § is completely dependent
on the accuracy of the quantile estimation, and the precision of the CI. The probability of
the upper bound of the OSCI lying above the true quantile and above the limit value b
will increase as the overestimation of the 0.95-quantile by the OSCI increases. The closer

the point estimate is to the true quantile, and the skinnier the CI, the smaller £ will be.
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In this framework it is possible to reduce the value for both a and . To reduce «,
the upper bound of the OSCI must be as close to the true quantile as possible during those
~5% of times when the OSCI does not incorporate it. To reduce £, the accuracy of the
quantile estimation and the precision of the CI should both be improved. The only way to
accomplish these tasks without increasing the number of samples (assuming the analyst
has no control over the limit value) is to reduce the variance of the test statistic.

Beyond committing errors during regulatory analysis, there are other reasons
utilities and regulators would like to increase the accuracy of resulting confidence for a
quantile, or similar, value. The margin from the resulting value to the safety limit is also
of use. Significant margin may allow utilities to increase reactor temperature or power,
increasing profit. As Westinghouse has stated, “The quantification and tracking of the
margin (to the safety limit) is most often requested by both the plant operator and the

regulator,...” [75].

4.2. Methods

This section documents the procedure to establish confidence intervals for
quantiles using various methods. For the techniques using VRTs, more detail is given
about the derivation of the method since they have only recently been proven. There is
also a small aside about the asymptotic methods and hypothesis testing. This is included
here in order to offer a point of comparison for the methods detailed in Section 5, which

use a different test statistic.
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4.2.1. Crude Monte Carlo using Order Statistics

There are several key properties that make CMC-OS appealing to nuclear safety
analysts. The biggest benefits of the CMC-OS method are that it is nonparametric and
non-asymptotic. Nonparametric means that the method is independent of the outputs’
probability distribution, as long as it is continuous. Since it is non-asymptotic, the validity
of the confidence statement holds exactly for certain finite sample sizes n and does not
depend on n growing toward infinity. Called bracketing by Nutt and Wallis [82], the
CMC-0OS method first fixes an integer r > 1 (variable m in Nutt and Wallis [82]) and then
determines the number 7 of runs necessary so that the r-th largest output of the »n runs is a
valid 95/95 value, which is the upper endpoint of an 95% upper one-sided confidence
interval for &, 5. Then the NRC criterion is verified by checking if the 95/95 value lies
below the safety limit. With this method, it is also possible to find the number 7 of runs
necessary to construct a valid confidence interval for any quantile.

The required value for n, when r = 1, can be determined as follows. Suppose that
n i.i.d. runs are performed, giving » i.i.d. outputs, and consider the true p-quantile &,.
Each of the n outputs has probability p of lying below &, so the probability that all »
outputs are less than &, is p". Thus, the probability that at least one output is larger than
&, is 1-p”, so the probability that the largest of the » outputs is greater than &, is

B=1-pn" Eq. 42

Setting B = p = 0.95 and solving for n in Eq. 42 results in n = 59. Thus, if 59 CMC runs
are conducted, then the largest (i.e., r = 1) of the 59 outputs is a 95/95 value. If a 95%

confidence interval is desired for the 0.75-quantile, then g = 0.95, p = 0.75, and n = 11.
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This means if 11 runs are conducted and ordered, the largest output can be taken as a
95/75 value.

A drawback of taking the largest of 59 runs as the 95/95 value or the largest of 11
runs as a 95/75 is that it will typically have large variance since the number of CMC runs
is so small. This usually leads to a large range of possible 95/95 values, which in most
cases will be conservative in the sense that they are considerably larger than the true
quantile of the probability distribution of the model's output. To obtain a more accurate
95/95 or 95/75 value, the value of r can be increased, which will lead to larger run size n.
Here, accuracy is defined as the distance from the 95/95 or 95/75 value to the true
quantile &,, and precision is the spread or range of possible 95/95 or 95/75 values. For
r = 1, the argument used to obtain Eq. 42 can be generalized to show that the probability

that the r-th largest of the n outputs is larger than &, is

n

n! . _
p=1- Z TN —oiP AP : Eq. 43

i=n-r+1

Now set f = p = 0.95 and fix r > 1 in Eq. 43. Then solving for n gives the number of
runs needed to ensure that the r-th largest output of the » runs is a valid 95/95 value. For
example, if r = 1, then Eq. 43 reduces to Eq. 42, resulting in n = 59, as before. If r = 3,
then n = 124, so the third largest output from the 124 runs is a valid 95/95 value.

As stated before, the potential downsides from CMC-OS arise not from the
resulting values being invalid, but from the variance and conservatism of the results.
First, at lower run levels, the 95/95 value will, on average, be overly conservative. This

can be seen in Figure 4. 7, based on a similar plot by Nutt and Wallis [82]. This figure
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shows for the different values of r, the probability density of the 95/95 value of a CMC-
OS analysis. The probability density is computed by taking the derivative of Eq. 43 with
respect to p and is shown as a function of p. Thus, the function gives the likelihood of the
95/95 value lying in a small interval around the p-quantile for different values of p. For

r = 1, which corresponds to n = 59, the 95/95 value is more likely to fall in an interval
near the 1.0-quantile than an interval near the 0.95-quantile. Even at r = 40 (n = 1008

runs), the 95/95 value is more likely to be near the 0.96-quantile than the 0.95-quantile.
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Figure 4. 7: Dependence on the Order Selected to Represent 0.95-Quantile

The same is true when trying to find a 95/75 value, as Figure 4. 8 shows. Even at n = 886

runs, the resulting value is more likely to be near the 0.77-quantile than the 0.75-quantile.
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Secondly, as stated above, since CMC sampling is used, the variance of the 95/95
value can be very high when r (and subsequently #) is small, so the likely range of 95/95
values is large. This is even more so when estimating a 95/75, since as Figure 4. 8 shows,
as few as 11 runs can be conducted to find a 95/75 value. In certain cases, this can mean
that even though only ~5% of trials will fall below the actual quantile (due to the 95%
confidence), there is a not-insignificant chance that they could fall well below. This could
potentially cause a Type-I error during the analysis, and result in a value that is closer to

the true capacity limit of the system, as shown in the safety margin characterization in

Figure 2. 2.

4.2.2. Asymptotic Methods

In contrast to the CMC-OS method, which states a priori a set number of runs

which must be conducted to establish a confidence interval for a quantile, it is also
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possible to establish other confidence intervals by proving a central limit theorem (CLT)
as the number of runs grows large. This method has long been known when using CMC
sampling [90], but until recently, has not been proven when using variance reduction
techniques (VRTs), described in Section 2.

The following sections review asymptotic confidence intervals for CMC
sampling, and discuss the recent work to expand their applicability to VRTs. For this
work, only LHS and AV were investigated. This is because these methods can generally
be applied without using features of the system. Using a VRT that relies on detailed
knowledge about the system to adjust sampling methods or outputs, such as importance
sampling and some types of control variates, may cause reluctance among regulators
since they cannot be applied generally. It is important to note that assumptions are still
needed about the system when using LHS and AV to guarantee they reduce variance.
Both methods are essentially guaranteed to reduce the variance of the output if the system
is a monotone function of the inputs, meaning increasing an input value will lead to the
output either always decreasing or always increasing. It is still possible to get variance
reduction if this is not true, but it is not ensured [91].

For this explanation, suppose output Y from the simulation model can be
represented as

Y =g9WU,;,U,,..,Uy), Eq. 44
where g is a given (deterministic) function having a fixed number d of arguments and
Ui, U, ..., Uy are 1.1.d. uniform[0,1] random variables. The function g, which takes the d

the 1.i.d. uniforms and transforms them into a single output Y, can be quite complicated,
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and it may not be possible to express g in closed-form. For example, a LOCA simulation
might have s input random variables that are fed into a detailed computer code, which
then computes an output Y. In this case, the function g transforms the d uniforms into
samples of the s input variables, runs the computer code with these inputs, and produces
an output ¥ (in many settings, s = d, and each input variable X; is sampled from its
distribution G; via inversion, i.e., X; = Gj‘l(Uj)). Let F be the CDF of ¥, so for0 < p < 1,

the p-quantile is &, = F~(p) = inf{x : F(x) = p}.

4.2.2.1. Review of CMC
This section reviews how to use CMC to estimate and construct an asymptotically
valid confidence interval for ¢, based on a CLT when Y has the form in Eq. 44. It is
possible to generate » 1.i.d. copies of Y by first generating nd 1.i.d. uniform[0,1] random

variables U; ;, i = 1,2,...,n, j = 1,2, ...,d, where d is as defined in Eq. 44. These uniforms

7

can be arranged in an n X d array

U1,1 U1,2 Ul,d
U2,1 U2,2 UZ,d

: S A Eq. 45
Un,l Un,z o Un,d

where the ith row is used to generate the ith output V;, i.e.,
Y= g(U1,1' Uiz, e Ul,d)

Y, = g(Uz,L Uzzs ) Uz,d)

Y, = g(Un,lr Un,Z: ey Un,d)
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Each Y; has the distribution /" because the d entries in the ith row of Eq. 45 are i.i.d.
uniforms, as required by Eq. 44. Moreover, Y;,Y,, ..., ¥, are independent by the
independence of the n rows in Eq. 45. Then the CMC p-quantile estimator is computed as
épn = B (p), where £, is defined in Eq. 33 (for the following derivations, a hat A will
be used to denote an estimated parameter using CMC sampling, and the tilde ~ will be
used to denote an estimated parameter using a VRT).

To establish a CI for &, based on the CMC point estimator fp,n, it must be shown
that €, ,, satisfies a CLT as the number n of samples grows large. One way of establishing
this is by first proving that £, ,, satisfies a so-called Bahadur representation; see [92]. Let
fdenote the derivative, when it exists, of F, and assume that f (Ep) > 0. Now consider the
following heuristic argument. When n is large, £, = F~(p) = &,. Because F(¢&,) = p by

definition, it can be seen that F(§,,,) ~ p, so a Taylor approximation yields

p~F(&pn) )

= ﬁ(fp) + f(fp)(’f?n - fp)

~ Fa(8p) + £(6) (Gpn — &),
where the last approximation holds because £, ~ F. Rearranging terms leads to &, ,, =
& + [p — Fu(&,)]/f(&,), which approximates a quantile estimator by a linear
transformation of a CDF estimator.

Bahadur [92] makes this argument mathematically rigorous. In particular, suppose

that the second derivative F” of F exists and is bounded in a neighborhood of ¢,,, and that

f(&,) > 0. Then Bahadur proves that

& _ p_ﬁn(fp)
Spn = &p F f(&)

+ Ry, where R;, = 0(n=3/*1logn) as n - oo with probability 1. Eq. 46
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This is known as a Bahadur representation.

Under weaker conditions, Ghosh [93] establishes a variant of a weaker version of
Eq. 46, which will be useful and sufficient for the following proof. Specifically, let p,, be
a perturbed value of p converging to p as n - oo, and let fpn,n = E; Y (p,) (working with a
perturbed p,, rather than a fixed p will allows an asympotitc CI to be constructed for
&pwhen applying VRTs). Also, let = denote convergence in distribution (Section 1.2.4 of

[94]). Then [93] shows that if f(£,) > 0, then

& g pb— Fn(fp)
Spun = Son ¥yt R Eq. 47
with
VnR, = 0asn - o Eq. 48
where
: Pn—PD
= + —
$pn = 9 (&) Eq. 49

when p,, = p + 0(1/vn). If fis also continuous in a neighborhood of &,, then Eq. 47 and
Eq. 48 hold for all p,, » p with
ép, = F1(pp). Eq. 50
The results in Eq. 47 and Eq. 48 ensure that the CMC quantile estimator &, ,
satisfies a CLT. To show this, fix p,, = p in Eq. 47 so E'pn = &, rearrange terms and scale

by v/n to obtain

p = E:($p)

\/ﬁ(gp,n - fp) = ﬁ(w

> + Ry, Eq. 51
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Eq. 33 shows that £, (§,) is the sample average of i.i.d. indicator functions I(Y; < &),

i = 1,2, ...,n, each of which has mean p and variance 0 < p(1 — p) < . Hence, the first
term on the right side of Eq. 51 satisfies a CLT (see p. 28 of [94]), with limit

N(,p(1 —p)/f*(&,)) as n —» oo, where N(a, b?) denotes a normal random variable with
mean a and variance b°. The second term on the right side of Eq. 51 vanishes (in
distribution) as n — oo by Eq. 48, so Slutsky’s theorem (p. 19 of [94]) ensures that

Vn(épn — &) = N(O,p(1 —p)/f?(&,)) as n — oo, or equivalently,

Vn - (&, — &) = N(0,1) as n > oo,
p

vp(1—p)

Eq. 52

where

1
A, =—,
P (gp) Eq. 53

which is known as the sparsity function [95] or the quantile density function [96]. One
interpretation of the CLT is that the left of Eq. 52 will have approximately a standard
(i.e., mean 0, variance 1) normal distribution for large .

The CLT in Eq. 52 illustrates one reason why a Bahadur representation is useful.
The latter shows that a quantile estimator can be approximated as a linear transformation
of a CDF estimator, which typically is a sample average so it satisfies a CLT. Thus, a
Bahadur representation provides insight into why a quantile estimator, which is not a
sample average, satisfies a CLT.

Once the CLT in Eq. 52 has been established, it can then be unfolded to obtain a

confidence interval for ¢,. Let 55 = @' (1 — B) for any 0 < 8 < 1, where @ is the CDF

of N(0,1). Then
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1—a=P{~z4 < N(01) < 245}

Vn .
~ P{—=24/; < m@p,n —&p) < Za/z}

Jp(1—p) Jp(1 —p)4,

- A -
=P fp,n —Zg/2 Tp < Ep < fp,n + Za/2 T}

where the approximation holds for large n by the CLT. Hence,

_ s vr(1 —p)4,
- Vn

V(1 —p), . p(1 —p)A,
N

fp,n - Za/z ’ fp,n + Za/Z \/ﬁ ‘fp,n t+ Za/z

Eq. 54

is an asymptotically valid (two-sided) 100(1 — a)% confidence interval for &,. Since 4,, is
unknown, for the CI in Eq. 54 to be implementable in practice, it must be replaced with a

consistent estimator ip'n; 1.€., ip,n = A, as n — oo. If such an estimator exists, then

A p(1-p)i,
Jn = fp,n T Za/ZTpn

is another asymptotic two-sided 100(1 — a)% CI for &,,, which is asymptotically valid in

the sense that
Piép€p}o1—a as n- .

Now the key issue is constructing a consistent estimator 4, , of 4, from Eq. 53. Since
Ay =1/f(&) = %F‘l(p) = limy,_o[F~1(p + h) — F"1(p — h)]/(2h) by the chain rule of
differentiation, a natural estimator for 4,, is the (central) finite difference

i _ﬁn_l(p‘l'hn)_ﬁn_l(p_hn)
pn = 2h,, ' Eq. 55

108



where h,, > 0 is a user-specified (small) parameter known as the bandwidth or smoothing
parameter (see Section VIIL.1 of [97] or Section 7.1 of [39] for overviews of finite-
difference estimators). If h, - 0 and nh,, - o as n — oo, then [98] and [99] prove the
consistency of 4, , as n — co. More detail on this estimator is provided in Section 4.2.2.5.
Rather than a two-sided CI for &,, an asymptotic upper one-sided 100(1 — a)% CI

for &, can be developed

vV p(l - p)ip,n
Zg————|.
Vn

<_°°' Spn Eq. 56

Setting @ = 0.05 (so z, = 1.645), then the upper endpoint of Eq. 56 is an asymptotically
valid 95/95 (resp., 95/75) value for CMC as n - o when p = 0.95 (resp., p = 0.75).

To implement this procedure for a OSCI, the following code in Figure 4. 9 can be
used, where p is the quantile, 7 is the number of runs, ceil is the round-up function, and
NN is the standard normal critical point for the desired confidence level. This code first
estimates the quantile ép,n, called Xi, using the ordered results Y ordered, and the round
—up function. Then the CFD in Eq. 55 is calculated. Next, the quantity to the right-hand
side of the plus sign in Eq. 56 is calculated using these results. Lastly, the OSCI in Eq. 56

1s calculated.
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$%% CMC Asymptotic
Xi=Y ordered(ceil (p*n));
CFDhigh=Y (ceil ( (pt+hn) *n)) ;
CFDlow=Y (ceil ( (p-hn) *n)) ;
CFD= (CFDhigh- CFDlow)/((c
add on=NN* ( (sgrt (p* (1-p)
Xi w_conf=Xi+add on;

% CFD High Point

% CFD Low Point

+hn) *n) -ceil ((p-hn)*n))/(n)); %CFD
/sgrt(n)); % Confidence Term

% Quantile Estimation plus Confidence

);
,el 1((
) *CFD

p
)
Figure 4. 9: MATLAB Code Implementation of CMC Quantile Asymptotic Method

The hypothesis test at the beginning of this section can now be written more
rigorously using the above asymptotic CMC formulation. The quantile-estimator (here

the quantile will be 0.95 for ease of reference) is €, o5 and satisfies the following CLT:

Vn .
= ($0.95 = $0.95) = N(0,1) Eq. 57
for large n, where
J0.95(1 — 0.95)
T =

f($o.95) Eq. 58

as can be seen in Eq. 56. Here, 7 will be an estimator for t (using the CFD in Eq. 55).

Then the upper endpoint of the OSCI U is

A

U= Soos +2 7 Eq. 59

where z is the standard normal critical point for a 95% confidence interval, and a 95/95
criterion is satisfied when U < limit value,

For a limit value b, the hypothesis test alternatives for a comparison to the true
0.95-quantile become:

Ho: $0.95 > b
Hi: $po5 < b
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Then Eq. 59 can be rearranged to show when to reject Hy,

f0.95 — b
reject Hy if and only if 50;95— < -z
T

N Eq. 60

Eq. 60 is equivalent to saying that the 95/95 value is less than the limit 5. Similarly,

§0.05 = b
t/\n Eq. 61

accept Hy if and only if

which is the same as saying the 95/95 value is greater than the limit b.

Comment on CMC and Quantile Test

When using samples that are i.i.d., like those with CMC, it is possible to conduct
a hypothesis test known as the quantile test. The quantile test is a type of binomial test
that investigates the hypothesized location of a distribution quantile. It will appear very
similar to the hypothesis test framework laid out in Section 4.1.2, but it will help
demonstrate the relation between CMC-OS and the asymptotic CMC method [100].

The easiest way to explain the quantile test is through example. Imagine a random
variable U. An analyst wants to take n samples from U to see if the 0.75-quantile of U is
greater than 20 (for example). If this is true, then < 75% of the » samples should be less
than 20, and > 25% of the samples should be more than 20. If this is not the balance seen
in the samples, then it will give an indication of the direction of the true 0.75-quantile.
The hypothesis choices are similar to before:

Ho: The 0.75-quantile is less than or equal to 20

Hi: The 0.75-quantile is greater than 20
This can be rephrased in terms of probability, where

Hy: P(U < 20) > 0.75
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H;: P(U £ 20) <0.75

which is essentially a binomial test because the samples are either less than or equal to
20, or not. This can be thought of the number of successes and failures in a binomial test
(also similar to the derivation of CMC-OS in Section 4.2.1.). In this example, the size of
the test @ will be assigned 0.05. So using the binomial distribution in Eq. 62, it’s possible
to find how many samples must fall above 20 in order for the significance of the results

to exceed 1 — .

n! k n-k
k!(n—k)!)p 1-=p Eq. 62

P <w =

If n = 15 samples, p = 0.75, and the number of samples < 20 is k, the binomial formula
gives the following probabilities:

P(k <13) =0.9198

P(k < 14) = 0.9866
This means that in order to satisfy the significance level 1 — a = 0.95, at least two
samples out of 15 should exceed 20 in order for H; to accepted.

As can be seen, the process of using CMC-OS in comparison to a limit value is
essentially a quantile test. In the example just given, if n = 59 samples and the quantile
p = 0.95, then the result would be P(k > 59) = 0.0485, which means there is a less
than 0.05 probability of the hypothesized value being exceeded by the true 0.95-quanitle,
which is the same result as using the CMC-OS method. This relates to the asymptotic

CMC method because of the normal approximation of the binomial distribution. The

normal approximation to a binomial distribution B(n, p) is N(np,np(1 — p)). This
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means instead of using the binomial formula in Eq. 62, the number of successes needed
to achieve the significance level can be found using Eq. 63,

t—a) = NP + Za—a)y (1 — p) Eq. 63

where z is the standard normal critical value, and n — t(;1_ is the number of success

necessary out of n samples. Eq. 63 is simply the mean of the normal distribution plus the
standard deviation times a scaling factor, but closely resembles the asymptotic CMC
method in Eq. 56.

The same formula can be used to establish Cls for quantiles too. The difference
between this result and the one shown in the asymptotic CMC results in Eq. 56 is the
desired information. The result here would give the rank of the ordered sample that
would be closest to the desired confidence level. For example, if 100 samples were taken
and the 95/95 value was desired, Eq. 63 would return 98.585, which would mean the 99
ordered result would satisfy the 95/95. However, this means the confidence will actually
exceed 95% since the result did not fall directly on an ordered result, so the solution will
be conservative. The asymptotic CMC method outlined in Section 4.2.2.1 does not return
an ordered result, but the actual value of the bounds of the CI. Both methods can be
viewed as a result of the CLT, however the form in Eq. 63 is non-asymptotic. Due to this
similarity between the methods, it would be assumed that asymptotic CMC should be less
conservative than CMC-OS at low run levels, but as the number of runs increases, the

two methods will converge to the same solution.
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4.2.2.2. VRTS
For the case when applying VRTs, Chu and Nakayama [72] have developed

methods for constructing asymptotically valid Cls for &,, which is presented here. Let £,
be an estimate of the CDF F, where F, is obtained by simulating using a VRT with
sampling budget n (Sections 4.2.2.3 and 4.2.2.4 give examples for some specific VRTs).
Then a VRT p-quantile estimator is

Spn = Bt ().
The asymptotic validity of the method in [72] for constructing a CI for ¢, based on &, ,,
relies on showing that the VRT quantile estimator satisfies a Bahadur representation
analogous to the CMC version in Eq. 47 and Eq. 48. Specifically, let ggpn,n = FE 1(p,) be
the VRT p,-quantile estimator, with p,, a perturbed value of p, and assume that £(,) > 0.
Then Chu and Nakayama develop a set of general conditions (denoted as Assumptions
Al, A2, and A3 in [72], these assumptions are given in Appendix B) on the VRT CDF

estimator £, to ensure that

s : b— Fn(fp)
Sppm = Spn T TFG) + Ry Eq. 64
with
VnR, =0 as n - oo, Eq. 65

where E'p,n is as in Eq. 49 when p, = p + 0(1/+/n). If f is further assumed to be
continuous in a neighborhood of &, and Assumption A2 in [72] is slightly strengthened,
then Eq. 64 and Eq. 65 hold with ¢, ,, defined in Eq. 50 for all p, - p as n —» . Chu and

Nakayama [72] show that their Assumptions A1, A3 and the stronger version of A2 hold
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(under various moment conditions) for importance sampling, combined importance
sampling and stratification, antithetic variates and control variates; Nakayama [101]
establishes the same for a type of Latin hypercube sampling.

As in the case of CMC in Section 4.2.2.1, the Bahadur representation in Eq. 64 and

Eq. 65 implies that the VRT p-quantile estimator satisfies a CLT

Vn .
g(fp,n - fp) = N(O:l) as n — o, Eq. 66
where
K = Voo Eq. 67
Y} is the asymptotic variance in the CLT
\/E(p - Fn(fp)) = N(O: 11012;) Eq. 68

for the VRT CDF estimator £, at ¢, and 4,, is defined in Eq. 55. The value of ¢, depends
on the particular VRT used and equals /p(1 — p) for CMC (compare Eq. 52 and Eq. 66).
It turns out that developing a consistent estimator ¥, , of 1,, is straightforward; the
following sections present such estimators for specific VRTs. The value of 1,, is

independent of the VRT applied, and can be estimated using a (central) finite difference

Z =ﬁn_1(p+hn)_ﬁn_1(p_hn)
pn 2h, ’

Eq. 69
where h,, > 0 is the bandwidth. Chu and Nakayama [72] prove that if their Assumptions

A1-A3 hold and f(§,) > 0, then

Apn =4y, as n-o o Eq. 70
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for h,, = c¢/+/n for any constant ¢ > 0. If it is assumed that f is continuous in a
neighborhood of ¢, and a slightly stronger version of Assumption A2 from [72] holds,
then Eq. 70 is true for bandwidths satisfying

h, >0 and +nh, > b for some b€ (0,0] as n— oo. Eq. 71

For example, h,, = cn™" satisfies Eq. 71 for constants ¢ > 0 and 0 < v < 1/2. Thus, an

asymptotically valid two-sided 100(1 — a)% CI for &, when applying a VRT is

f~4 Iljp,nzp,n
fp,n + Za /2 Jn | Eq. 72
Also, an asymptotically valid upper one-sided 100(1 — a)% CI for &, is
=4 &p,nzp,n
<—°°: Spm ¥ Za = = s Eq. 73

whose upper endpoint is an asymptotically valid 95/95 (resp., 95/75) value when
applying the VRT with @ = 0.05 and p = 0.95 (resp., p = 0.75).

Eq. 70 holds when h,, = ¢/+/n for some constant ¢ > 0 because of the following (the
other cases of h,, satisfying Eq. 70 can be handled in a similar manner; see [72] for
details). In Eq. 69, note that £;*(p + hy) = &,4n, n and By *(p — hy) = &,y . S0 the
Bahadur representation in Eq. 64 and Eq. 65 can be used to analyze the finite difference.
Since p + h, = p + ¢/vVn =p + 0(1/Vn), &,,, is set as in Eq. 49; thus, Eq. 64 and Eq. 65

imply there exist R, ; and Ry, , satisfying VnR,,; = 0, i = 1,2, such that
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- _L pth,—p p_Fn(gp) >
Ao = 2n, [(’fp TRy T rG,y TR

_ p_hn_p p_ﬁn(fp) )]
<f” M R T

—iﬂ+R —R ]
2R, [f Gy T T
! =A
&) P

=

as n - oo since Ry, ;/(2hy,) = VnR,;/(2¢) = 0 for i = 1,2, Eq. 65.

4.2.2.3. Antithetic Variates

Instead of generating independent outputs as in CMC, the method of antithetic
variates (AV) generates outputs in negatively correlated pairs, which can reduce variance;
see Section V.3 of [97] for an overview of AV. If both Y and Y’ each have marginal
distribution F and are negatively correlated, then (Y, Y") is called an AV pair. One way to
simulate such a pair is to generate d i.i.d. uniform|[0,1] random variables Uy, Us, ..., Uy,
and then set Y = g(Uy,U,, ...,Uy) and Y’ = g(1 — Uy, 1 — Uy, ...,1 — Uy), where g is from
Eq. 44. Clearly, Y has CDF F by Eq. 44, but Y’ also does since each 1 — U; is also
uniform[0,1]. If g is monotonic in each argument U;, then Y and Y’ are guaranteed to be
negatively correlated (p. 181 of [102]), which will ensure a variance reduction, as will be
shown shortly. AV can still result in a variance reduction when g is not monotonic in
each argument, but it may be difficult to prove.

To estimate ¢, using AV, generate n/2 AV pairs (Y;,Y;,), i = 1,2,...,n/2, where n is

even. This can be accomplished by generating i.i.d. uniforms as in Eq. 45, but with n/2
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rows rather than n. Then setY; = g(U;1,U; 5, ..., U;q) and Yy, = g(1 — U;4,1 = U;5, ..., 1 —

U; 4)- The then AV estimator £, of the CDF F can be computed as

n/2
- 1 1
Fa) =~ SU(% <y) + 10 <)) Eq. 74
n/2 - 2
and the resulting AV estimator of &, is &, ,, = F; *(p).
It can be shown that for each y, F, (y) has no greater variance than the CMC

estimator £, (y) in Eq. 33. Note that

n/2

Var[E, ()] = ( /2) z 2Varli(Yy < y) +1(Y, < y)]

= (= /2) WarlI(Y < y)] + Var[I(Y' < y)] + 2Cov[I(Y < y),1(Y' < y)])

1
= (772) 3 FOIA = FOY + Corli (¥ <107 < ) Eq. 75

< F(y)(ln— ile2) = Var[E,()], Eq. 76

since the negative correlation of ¥; and Y;, implies the same for I(Y < y) and I(Y' < y)
because g(x) = I(x < y) is monotonic in x (p. 181 of [102]). Thus, AV can reduce the
variance of the estimator of F(y) compared to CMC, which leads to the AV p-quantile
estimator &, , having smaller variance.

Avramidis and Wilson [103] develop this AV estimator of &,,, which they prove
satisfies the CLT in Eq. 66, but they do not consider the estimation of the asymptotic
variance «} in the CLT to construct a CI for &,,. To address this issue, Chu and Nakayama
[72] prove that the AV CDF estimator F, satisfies their Assumptions A1, A3 and the

stronger version of A2 without any extra conditions required. Thus, if f(§,) > 0, then the
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AV quantile estimator satisfies the Bahadur representation in Eq. 64 and Eq. 65 with &,
in Eq. 49 for p, = p + 0(1/+/n). Moreover, Eq. 64 and Eq. 65 hold with épn in Eq. 50 for
any p, — p when f is also continuous in a neighborhood of &,,. In either case, this implies
the AV p-quantile estimator £, ,, satisfies the CLT in Eq. 66. To derive an expression for
;5 in Eq. 68 when applying AV, which is needed to determine k,, in Eq. 67, note that by
Eq. 74, E,(&,) is the sample average of n/2 quantities Z; = [I(Y; < &,) +I(Y;, < &,)]/2.
Since the Z;, i = 1,2, ...,n/2, are i.i.d. with finite variance, the CLT in Eq. 68 holds with
Y5 = 2Var[Z;]. Hence, it follows from Eq. 75 that

s =Var[I(Y £&,)] + Cov[I(Y < &), I(Y' < &)]

=p(A-P)+EUY <& IY' < E) —E[Y < &) E[IY < §)]

=p(1—-2p) +P{Y <&,V <&}

since E[I(Y < &,)] = E[I(Y' < ¢,)] = p. Chu and Nakayama[72] show that

n/2
Ypn =p(1—2p)+ %Z I(Y; < &pn. Yoo < &) Eq.77
consistently estimates ¥, so 1, , = 1, as n - co. Substituting Eq. 77 into Eq. 72 and Eq.
73 then results in asymptotically valid two-sided and one-sided 100(1 — a)% ClIs for &,
when applying AV.
Computing the AV quantile estimator and constructing the corresponding CI require
inverting the AV CDF estimator in Eq. 74, which can be accomplished as follows. Define

Ay =Y and Ay; =Y, fori =1.2,..,n/2. Let A;;y < Ay < -+ < Ay be the order
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statistics of the 4;, j = 1,2, ...,n. Then for any 0 < g < 1, it is possible to compute
Ey (@) = A(nq))> Where [-] denotes the round-up function.

To implement AV within a computer code, the procedure in Figure 4. 10 can be
used. As with the asymptotic CMC code in Figure 4. 9, first the quantile estimation Xi is
made using the ordered results of all n samples, called Y tot. Then the CFD is calculated
using all » samples. Next, the summation in Eq. 77 is found using MATLAB’s built-in
indicator function. This is used to find 1/~)p,n, called psi, then the additional confidence

term is added to the quantile estimation.

%%% Antithetic Variates
Xi=Y tot(n*p):; % Quantile Estimation using all n samples
CFDhigh=Y tot(ceil((p+hn)*n)); % CFD High Point
CFDlow=Y tot(ceil((p-hn)*n)); % CFD Low Point
CFD= (CFDhigh-CFDlow) / ( (ceil ( (p+hn) *n) -ceil ( (p—hn) *n)) /n); SCFD
prob=mean (Y <= Xi & YY <= Xi);
psi=sqgrt (p* (1-2*p) tprob) ; Psi calculation
add on=NN* ( (psi*CFD)/sqrt (n)); Confidence Term
Xi w_conf=Xi+add on; % Quantile Estimation plus Confidence

Indicator Function sum in Eq. 77

o° o°

o

Figure 4. 10: MATLAB Code Implementation of AV Quantile Confidence Method

4.2.2.4. Latin Hypercube Sampling
As detailed in Section 3.1.2, Latin hypercube sampling (LHS) is an extension of
stratified sampling (Chapter 5 of [104]) in multiple dimensions, and it induces
correlations among the outputs, which can reduce variance. It has been used frequenctly
in nuclear engineering [40], although not presently for the calculation of 95/95 values in

uncertainty analyses of LOCAs. Avramidis and Wilson [103] develop LHS quantile
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estimators, but they do not develop Cls based on the estimators. Nakayama [101] shows

how the general framework of [72] applies to a type of replicated LHS (rLHS), thus

allowing the construction of an asymptotically valid CI for a quantile when using rLHS.
Rather than generating a single LHS sample of size n, the basic idea of rTLHS in

[101] is to generate the n = mt samples as m independent LHS samples, each of size t.

For each independent LHS sample k = 1,2, ...,m, let U% for1<i<tand1 <j<d,be

ij >

td 1.1.d. uniform[0,1] random variables, which can be arranged as a t X d array

() () ()
U1,1 U1,2 U1,d
(1) (*) (*)
U2,1 Uz,z Uz,d.
TG
Ut,l Ut,z Ut,d

Then let nj(k) = (nj(k)(i):i =12,..,t)for1 <j<dand 1<k <mbe dm independent
permutations of (1,2, ..., t), which are also independent of the Ui(”;). Thus, n;k)(i) is the

value to which i is mapped in the permutation nj(k). Then define

] oy _ ()
V(k) o -1+ Ul.’j
i t

for 1<i<t and 1<j<d.

For each 1 < k < m, arrange the VJ}Q into a t X d array

GG ()
V1,1 V1,2 Vl,d

GG ()
Voiw Voo o Vad Eq. 78
OO RN
Vt,l Vt,2 Vt,d

It is straightforward to show that each VL.’(;‘) has a uniform][0,1] distribution. Moreover, by

the independence of the permutations nik), ngk), . nék), the columns of Eq. 78 are

independent. Thus, defining
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y® e ®

(k)
Yy gV Vi e Vig)s

k) _ (k) ,(k) x)

Y, = g Vo' Vg, Eq. 79
o K) ( (k K

R )

and each Yi(k) has CDF F by Eq. 44. But the rows in Eq. 78 are dependent because all of

the entries in column j depend on the same permutation nj(k), SO Yl(k), Yz(k), - Yt(k) are

dependent. Let Yl(k), Yz(k), ) Yt(k) be an LHS case of run size t. Now replicating this

procedure m independent times leads to

r® y® .oy
(1) 2 (m)
v v 5 , Eq. 80
y®» y® ..oy

where each column in Eq. 80 corresponds to one LHS case of run size t, as in Eq. 79. The
columns in Eq. 80 are independent since the m LHS cases are generated independently,
but the entries within a column are dependent since they are generated using LHS. The

n = mt values in Eq. 80 are an rLHS sample with m cases, each with run size t.

The rLHS estimator of the CDF F is then

m t

F ():i 1v® < y) Eq. 81
m,tY mt i =Y q.
1

k=1 i=

and the rLHS p-quantile estimator is &, ,,; = F;,;(p). Nakayama [101] proves that if

f (&) > 0, then the following Bahadur representation holds:

p— Fm,t(fp)

&) + Rye with \/ﬁRm,t =0 as m— oo withtfixed, Eq.82
P

gpm,m,t = fpm +

where §, =&, + (pm — p)/f(§,) When p,, = p + 0(1/v/m). If in addition f is continuous

is a neighborhood of ¢, then Eq. 82 holds with f'pm = FY(p,) forallp,, > pasm - o
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(these results are established in [101] by proving that Assumptions A1, A3 and the
stronger version of A2 from [72] hold for LHS). It then follows that £, ,, ; satisfies the

CLT
m ..
\’/C—_ (&pme —&p) = N(0,1) as m — oo witht fixed, Eq. 83
p

where k,, has the form in Eq. 67. To construct a CI for §,, based on Eq. 83, an estimator
for k,, = Y, A, must be developed.

As before, the Bahadur representation in Eq. 82 allows a consistent estimator for 4,
to be developed, which is needed to construct a CI for &, based on the CLT in Eq. 83. If
f(&) >0, then

_ Fr?t,lt(p + hm) B Fr;llt(p — hm)

Xome = T Eq. 84

satisfies A, = 4, as m — oo with ¢ fixed when h,,, = ¢/+/m for any constant ¢ > 0. If f
is also continuous in a neighborhood of &,, then A,,,,, = 4,, as m — oo for fixed ¢ for any
h,, # 0 satisfying h,,, - 0 and vVmh,, — b for some b € (0, 0] as m — oo,

To derive an expression for 3 in Eq. 68, note that F,, ,(y) = %z;g;l W@ (y), where

t
1IN
W) = > 10 <)
i=1

Now WM (E,), WP (&), ..., W™ (&) are i.i.d. with finite variance since 0 < W) (¢,) <
1. Thus, Fy, (&) satisfies the CLT in Eq. 68 with

Y7 = Var[w® ().

Nakayama [101] develops
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m
~ 1 - _
Fome = ——2 ) WO G ) = Wyl
k=1

as a consistent estimator (as m — oo with ¢ fixed) of 1}, where

m

_ 1 -

Wy, = E,Z w (fp,m,t)-
=1

Substituting &, ., Ap e, and Py m ¢ for &, 1, ,, and P, ,, respectively, in Eq. 72 and
Eq. 73 then result in asymptotically valid two-sided and one-sided 100(1 — a)% ClIs for
&, when applying rLHS.

Constructing the Cls requires inverting the rLHS CDF estimator in Eq. 81, which
can be done as follows. Define By_1ym+i = Yi(k) fori =1,2,...,t,and k = 1,2,...,m. Let
By < B(z) < *** < By be the order statistics of the B;, j = 1,2, ..., mt. Then for any
0 < g < 1, then the g-quantile value is Fi, }:(q) = Bimeq)-

This technique can be implemented in a computer code using Figure 4. 11. Once
again, Y tot is the ordered results from all m cases, which is used to find the quantile
estimation Xi. Then the CFD is calculated using all n = mt samples. Next, the
individual values of W for each case are found using MATLAB’s built-in indicator
function, and the ordered results from each LHS case, which are called y. The mean of
these values for W is used to find W,,, called W_bar. This is used in the calculation of
l/)~p,m,t, called psi. This is than used to calculate the addition confidence term which is

added to the quantile estimation to result in a one-side CI.
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uantile Estimation

o

Xi=Y tot(ceil (p*m*t)); o)
CFDhigh=Y tot (ceil ((p+hm)*m*t)) CFD High Point
CFDlow=Y tot(ceil ((p-hm)*m*t)); CFD Low Point
CFD= (CFDhigh-CFDlow) / ( (ceil ( (p+hm) *m*t) -ceil ( (p—hm) *m*t) )/ (m*t)); SCEFD
for num=1:m % Loop through Cases

Wmk (num) =mean (y (num, :)<=Xi); % Indicator Function Summation for W

’

o©

o©

end

W bar=mean (Wmk) ; % W bar Calculation

psi=sqrt ((1/(m-1))*sum((W bar-Wm).”2)); % Psi calculation

add _on=NN* ( (psi*CFD) /sqrt (m)); % Confidence Term

Xi w _conf=Xi+add on; % Quantile Estimation plus Confidence

Figure 4. 11: MATLAB Code Implementation of LHS Quantile Confidence Method

There is a tradeoff between the amount of variance reduction from rLHS and the rate
of the convergence of the confidence interval's coverage. If an analyst takes many cases
of a small run size, meaning large m but small ¢, then the asymptotics will converge more
quickly, since the large m will help satisfy the CLT in Eq. 83. But the small run sizes will
not reduce the quantile estimator's variance by as much as large run sizes would. As the
run size t increases, the quantile estimator will have lower variance, but to remain at the
same number n of total runs, the number m of cases must be reduced, and the coverage

can suffer.

4.2.2.5. Derivative Estimation and Bandwidth
Section 4.2.2.1-4.2.2.4 considered central finite-difference (CFD) estimators Eq. 55,
Eq. 69, and Eq. 84 to estimate the derivative A, in Eq. 53. This method of derivative
estimation is very similar to the brute force method of sensitivity analysis described in
Section 2.3.2.1. Implementing these estimators in practice requires the user to specify the

bandwidth h,, (or h,,), and the particular choice for h, can have a large impact on the
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quality of the estimators. Previous work with asymptotic CMC provides some guidance
on the choice for h,,. For example, [98] and [99] show that under certain conditions,
taking h,, = ¢;n~1/5 for some constant c; asymptotically minimizes the mean-square error
of the CFD estimator of 4,. Also, the coverage error of Cls can be asymptotically
minimized by taking h,, = c,n~'/3 for some constant c,; see [105]. The values of ¢, and
¢, depend on the CDF F and p, and these papers provide data-based methods for
estimating c¢; and c;.

The CFD estimators in Eq. 55, Eq. 69, and Eq. 84 are each symmetric in the sense
that the inverse of the estimated CDF is evaluated at perturbed values that are symmetric
about p. However, the symmetric CFD estimator often overestimates A4, when p ~ 1, as
in the case of the 0.95-quantile. To see why, suppose that the CDF F(y) has a density
f(y) that is differentiable and strictly decreasing for all y sufficiently large (this is true
for many common distributions, including the normal, lognormal, gamma and Weibull).
Thus, the density's derivative f'(y) < 0 for all sufficiently large y. Then defining
Q(p) = F~*(p) as the quantile function, its first derivative Q'(p) = 4, = 1/f(§,) > 0 and
its second derivative Q" (p) = —f'(§,)/f3(&y) > 0 for p ~ 1. Hence, as shown in Figure 4.
12, Q(p) is increasing and convex for p =~ 1. This leads to the symmetric CFD typically
overestimating 4, because Q(p), whose derivative Q'(p) = A, is being estimated with the
finite difference, has slope that is increasing as p increases. Similarly, a backward finite-
difference (BFD) estimator such as [E;1(p) — ;1 (p — h,)]/hy, Will often underestimate

Ap, as shown in Figure 4. 13.
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Slope=CFD :
I Slope=q(p)
! =Q’(p)
: : =1/f(§5)
Q(p)=F"(p) Do
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
F—t—
0 p-h P p+h

Figure 4. 12: Overprediction of Derivative using CFD

Slope=q(p)
=Q'(p)
=1/f(&s)

Q(p)=F"(p)

Slope=BFD

0 p-h p
Figure 4. 13: Underprediction of Derivative using BFD
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This suggests that it may be more accurate to estimate A, by using an asymmetric
CFD estimator [E;Y(p + hy,) — B (p — h))]/(hy, + h}), where h), # h,,. Figure 4. 12
shows that choosing h;, > h,, > 0 may be beneficial because the slope of Q(p) increases
as p grows. Experiments were carried out using these asymmetric CFD esimators, and
more detail is available in Appendix C (other estimators of 4,, are also possible; for
example, Falk [106] develops a kernel estimator of 4, for CMC, and Nakayama [107]

considers another type of kernel estimator when using importance sampling).

4.3 Experiments

Nakayama demonstrated the method for estimating the confidence interval in Eq.
72 and Eq. 73 on a small stochastic activity network (SAN) [72], [101]. However, since
the present work focuses on the use of these methods in nuclear safety analysis, the
systems detailed in Section 3.2 were used to compare the techniques detailed in Section
4.2 since they would more closely mimic common safety analysis situations. This
included starting with the simple nonlinear equation (Section 4.3.1), moving to a
response-surface surrogate for the thermal-hydraulic computer code RELAPS5 (Section
4.3.2), conducting a PRA involving the comparison of beyond-design-basis accidents to a
risk limit curve (Section 4.3.3), and finally, using a large severe-accident analysis
computer code (Section 4.3.4). The results presented here will focus on the comparison
between CMC-OS and the asymptotic methods using a symmetric CFD for the derivative
estimator. More information on the experiments with an asymmetric CFD can be found in

Appendix C.
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4.3.1. Nonlinear Equation
First, the nonlinear equation detailed in Section 3.2.2 was used to compare the
methods of establishing confidence intervals for quantiles. This included using only

normally distributed inputs, then non-normal inputs.

4.3.1.1. Normal Inputs

As in Section 3.2.2, a large CMC experiment with 10° runs was conducted in
order to estimate the true 0.75- and 0.95-quantile of the system. The 0.95-quantile was
chosen in order to see how these methods would perform when trying to satisfy the 95/95
criterion. The 0.75-quantile was chosen in order to test the applicability to possible
future, less stringent, requirements, such as a 95/75. The result was a 0.95-quantile of
40.6457, which would be considered the “true” 0.95-quantile, and a “true” 0.75-quantile
of 29.3887.

These quantiles were found in order for the distance between the calculated 95/95
and 95/75 values and the “true” quantiles to be found. This distance would be considered
a measurement of the accuracy of the 95/95 and 95/75 values. It is important to point out
that poor accuracy, as defined here, does not mean that the 95/95 or 95/75 values are not
valid, but that significant overestimation of the quantiles is not desired and could
potentially lead to Type-II errors, or incorrect safety analysis decisions. Figure 4. 14
shows the output distribution of the system for a 10°-run CMC trial, which is shown
simply to give the reader an idea of the range of possible outputs. The output is fairly
compact at lower levels, but does have a long tail at higher values, meaning the higher

quantiles are separated by a larger margin than the low quantiles.
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Figure 4. 14: Histogram of 10> Run CMC Trial

Each method to calculate a 95/95 and 95/75 value was repeated for 10” trials.
Here, a trial is a complete experiment that would be undertaken during a safety analysis.
For example, one CMC-OS trial may consist of 59 computer code runs to find a single
95/95 value. For each method, 10*trials were conducted so that the spread of possible
95/95 and 95/75 values could be found. This gives information about the precision of
each method. Once again, poor precision does not mean that the 95/95 or 95/75 values
are invalid, but a technique that provides these values over a large range is undesirable,
especially if decisions are to be made about the system based on the results.

Each method was tested at several different total run levels. These run levels are

based off the results for # in Eq. 43 for CMC-OS. They start with the lowest possible run
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level using CMC-OS (r = 1), and increase from there. For rLHS, several representative
values were chosen for the run size ¢ for which mt = n. This gives information about the
tradeoff between the size of m and ¢ as described at the end of Section 4.2.2.4.

As described in Section 4.2.2.5, the derivative 4, in Eq. 53 is estimated using a
CFD estimator, and determining the proper bandwidth h,, is not trivial. Small changes in
the bandwidth parameters ¢ and v in h,,, = cn™" can greatly impact the calculation of the
CI. Also, while there has some been some guidance provided on the selection of these
parameters when using the CFD to establish asymptotic Cls during a CMC simulation,
there is less direction when using VRTs since asymptotic Cls have only recently been
proven. Nakayama [101] provides some insight into the selection of v from the SAN
example, which appeared to show v = 1/2 was more efficient for estimating quantiles
close to 1. So for the experiments presented here, v = 1/2 was used for all run levels.
Small experiments were conducted with v set to other values, but the results are not
presented here.

Table 4. 3 notes the values chosen for the constant ¢. For each run level,
asymptotic CMC, AV, and rLHS all used the same values for ¢ and v. It is unlikely that
there is one set of optimal values for all three simulation methods, but the values were
kept constant so that a consistent comparison could be made between the methods. The
value for ¢ is smaller at lower run levels to ensure that in the CFD in Eq. 55, the inverse
of the CDF estimator is evaluated at a point strictly less than 1. As the number of runs
increases, the value for ¢ can grow without resulting in a value of the inverse CDF

estimator exceeding 1. Different values for ¢ were used depending whether the 0.75- or
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0.95-quantile was being estimated. Since the 0.75-quantile is further from the top value of
the inverse CDF at 1, a wider bandwidth could be used. At low run levels, the selected
value for ¢ can cause completely different qualitative results. This is due to the

coarseness of the estimated CDF, since it is constructed with relatively few samples. So a
small change in the value of ¢ can mean the values selected from the inverse CDF for the
CFD estimator could differ by a wide margin. As the number of runs grows large (>
500), the selection of ¢ becomes less impactful (although not trivial) since the estimated
CDF is more developed. While both ¢ and v could have been picked individually for each
system tested, the goal is to determine values which are applicable to many systems, and

that are not problem-specific.

Table 4. 3: Values for ¢ in Bandwidth h,, (or h,) = cn™? for Varying Run Sizes n

n c p
59 0.3

93 0.3

124 0.4

311 0.5 0.95
548 0.5

1008 0.5

2004 0.5

11 0.8

29 0.8

40 1.0

135 1.25 0.75
246 1.25

459 1.75

886 1.75

For each experiment, a detailed look at particular scenarios is presented first, followed by

the complete numerical results.
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As stated, the first run level conducted was based on the lowest value for which a
95/95 value could be found using CMC-OS. Figure 4. 15 shows a comparison of the
histograms of the 10* 95/95 values for CMC-OS at 59 runs and rLHS at 60 runs (m=6,
=10). The numerical results are in Table 4. 4. It is important to note that these are not
histograms of the output distribution of the system, but rather for the 95/95 values for 10*
complete trials. This means that 59 CMC-OS runs were conducted for each trial, and each
trial resulted in one 95/95 value. As these results show, the rLHS method was not only
more accurate, with a mean of 50.23 compared to a mean of 57.79 using CMC-OS, but
also more precise, with about half the standard deviation. Both methods had ~5% of trials
fall below the “true” quantile (called % Below “true” in Table 4. 4), which is to be
expected with a 95% confidence interval. These results mean that the rLHS method is

less likely to cause both Type-I and Type-II testing errors.
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Figure 4. 15: Comparison of 95/95 Value Histograms for 10* Trials — 59 Runs

0

Table 4. 4: Comparison of 95/95 Values for 10* Trials — 59 Runs

6x10 rLHS 59 CMC-OS

Mean of 10* 95/95 Values 50.23 57.79
S.D. of 10* 95/95 Values 8.56 16.52
% Below “true” 5.40% 5.10%

Figure 4. 16 and Table 4. 5 show the same results, but now for 124-run CMC-OS
trials and 120-run rLHS trials (m=12, =10). The scale on Figure 4. 16 is kept the same as
in Figure 4. 15 to show the reduction in variance that naturally occurs with increased run
size. The trend of rLHS being both more accurate and more precise continues at this

higher run level.
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Figure 4. 16: Comparison of 95/95 Value Histograms for 10* Trials — 124 Runs

Table 4. 5: Comparison of 95/95 Values for 10* Trials — 124 Runs

12x10 rfLHS 124 CMC-OS

Mean of 10* 95/95 Values 46.38 48.80
S.D. of 107 95/95 Values 4.06 6.14
% Below “true” 4.15% 4.90%

Before viewing the complete numerical results, there are several important points
to note; the first being the number of runs conducted. Since the number 7 of runs
conducted was based on levels for CMC-OS, it may not have been possible for AV
(which needs an even number of runs) and rLHS (which used several different values for
t in this work) to achieve that exact number. Therefore, run values for AV and rLHS were

chosen as close as possible. For rLHS, this was done by dividing the number of runs
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necessary for CMC-OS by the number chosen for 7, then taking the closest whole number
for the value for m. For example, if 59 CMC-OS runs were conducted and for rLHS
t =10,59/10 = 5.9, so m = 6 resulting in 60 total runs. Once again, representative
values were chosen for ¢, but these are not the only options. Certain run levels were not
conducted for some sizes of ¢, since the value for m would have been equal to two, and
too low to properly satisfy the CLT. That is why there are several blank areas on the
tables at low run levels. An exception was made at the lowest run level when finding a
95/75 (n = 11) to provide a comparison to CMC-OS, as will be seen.

Next, five metrics are provided for the numerical results of the asymptotic CMC,
AV, and rLHS methods. These include:

1. The mean of the 95/95 or 95/75 values over all trials

2. The standard deviation of the 95/95 or 95/75 values over all trials

3. The percent of trials that fell below the “true” quantile (this is expected to be
~5%)

4. The coverage, or the percent of trials where the “true” quantile falls within the
constructed 90% two-sided confidence interval for &, (this confidence interval
is defined in Eq. 54 for CMC, and Eq. 72 for AV and rLHS). Its expected
value is ~90%.

5. The average value for the derivative estimator /Tp or A, over all trials

Only the first three values are given for CMC-OS since no derivative estimation is
necessary, and only a one-sided CI was found (although two-sided ClIs are also possible).

Lastly, all tables include a comparison between asymptotic CMC, AV, and rLHS
using a central finite-difference estimator for the derivative 4,, and an exact value for 4,
which was calculated numerically using a CFD and a large-run CMC trial. This is

presented in order to measure the effect of having to estimate the derivative 4,,.
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The complete results for the experiment with the nonlinear equation using normal

inputs, when calculating 95/95 values, can be found in Table 4. 6.

Table 4. 6: 95/95 Results 10* Trials — Nonlinear Eq. Normal Inputs

CFD for 4, Exact 4,

CMC- rLHS rLHS

oS cMC AV =10 =20 =30 cMcC AV =10 =20 =30
57.79 54.28 52.23 50.23 48.56 49.60 47.22 45.99 44.80 Mean*
16.52 11.88 10.82 8.56 7.43 5.33 4.01 3.16 3.05 S.D. *
59 5.10 5.36 7.75 5.40 5.40 0.95 1.67 2.25 6.41 % Below

90.31 91.18 93.31 93.53 85.69 95.00 93.34 90.68 Covg.
256.76 260.75 269.15 277.06 156.60 156.60 156.60 156.60 Avg. 1,

50.96 49.03 49.83 47.51 45.56 45.92 46.86 47.42 45.83 44.18 44.53
8.45 6.69 6.84 5.10 432 3.92 3.74 3.68 2.89 2.65 2.63
93 5.48 6.59 4.63 4.58 8.51 4.63 2.07 1.06 1.25 8.22 5.65
90.27 92.57 92.16 88.95 89.40 89.69 91.39 89.89 87.44 84.72
215.05  218.02 21345 213.03 21892 156.60 156.60 156.60 156.60 156.60

48.80 48.03 48.06 46.38 45.26 45.09 45.47 45.48 44.39 43.61 43.44
6.14 5.39 5.45 4.06 3.38 3.33 3.03 2.99 2.24 2.11 2.15
124 4.90 5.07 4.86 4.15 5.17 5.35 3.81 2.97 2.90 7.79 9.55
93.52 94.03 94.64 92.35 92.18 90.71 92.04 92.67 86.37 85.30
236.28  236.08  233.71 236.20  238.26 156.60 156.60 156.60 156.60 156.60

44.71 44.57 44.58 43.76 4291 42.92 43.91 43.89 43.23 42.55 42.51
2.78 2.59 2.56 1.95 1.47 1.44 1.97 1.94 1.50 1.24 1.26
311 4.88 4.76 4.45 3.63 5.37 4.81 3.40 3.08 2.58 5.80 6.72
92.56 93.28 93.48 91.69 91.97 89.98 90.45 89.99 88.76 87.96
189.40 190.79 190.81 186.29 189.13 156.60 156.60 156.60 156.60 156.60

43.45 43.28 43.26 42.71 4231 42.23 43.04 43.02 42.56 42.14 42.07
1.89 1.82 1.76 1.34 1.08 1.02 1.49 1.43 1.10 0.95 0.93
548 5.62 6.02 5.73 430 5.34 5.40 436 3.98 3.17 5.26 6.03
90.84 91.58 92.20 91.45 91.07 89.47 90.18 89.82 89.33 88.87
172.86 173.02 174.75 175.02 173.91 156.60 156.60 156.60 156.60 156.60

42.62 42.49 42.49 42.11 41.83 41.76 42.39 42.39 42.03 41.77 41.71
1.27 1.26 1.22 0.95 0.77 0.73 1.08 1.04 0.82 0.70 0.67
1008  5.54 6.33 5.64 5.39 5.89 5.58 4.76 4.13 3.66 5.07 5.44
90.19 91.12 90.67 90.18 90.35 89.75 90.75 89.89 89.35 89.29
165.09 165.03 165.82 165.59 165.29 156.60 156.60 156.60 156.60 156.60

42.03 41.93 41.91 41.62 41.48 41.49 41.89 41.87 41.59 41.45 41.46
0.87 0.87 0.84 0.66 0.54 0.52 0.77 0.75 0.58 0.50 0.48
2004  4.95 6.36 6.05 6.15 5.75 4.60 5.08 4.44 4.69 4.98 431
89.65 90.09 89.75 89.76 90.16 89.37 90.47 89.65 89.27 89.17
161.98 162.28 161.92 162.65 161.87 156.60 156.60 156.60 156.60 156.60

* Mean and S.D. of the 10* 95/95 Values

As the table shows, CMC-OS and asymptotic CMC converge to approximately
the same solution as the number of runs grows large. This is to be expected, as the

comment in Section 4.2.2.1 explains the relation between the two methods. Using an
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exact value for 1, at the lowest run level, asymptotic CMC has fairly poor coverage. This
may seem odd since the only part of the formula left to estimate is the quantile. However,
at this low run level, the quantile estimator may not have converged. This is compounded
with the use of the round-up function, which has a larger impact at low run levels. So the
coverage appears poor. When using asymptotic CMC with an estimated 4,, at this run
level, the derivative is overestimated; this causes the CI to increase in size, so the effects
of the poor quantile estimation are not as obvious.

The complete table of results also shows the tradeoff between run size and case
number when using rLHS. The more cases, the quicker the convergence, since it is the
number of cases which satisfies the CLT. However, the larger the run size, the more
variance reduction will be seen when compared to CMC. As the table shows, the results
when t = 10 tend to converge the fastest, but the accuracy and precision of the result
improves when using t = 20 and ¢ = 30. Lastly, AV does show variance reduction when
compared to CMC and CMC-OS, but not to the extent of rLHS.

The following figures and tables show the comparisons when finding a 95/75
value. The lowest run level possible for CMC-OS is 11 runs. Figure 4. 17 and Table 4. 7

show the results for 11-run CMC-OS trials and 10-run rLHS trials (m=2, =5).
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Figure 4. 17: Comparison of 95/75 Value Histograms for 10* Trials — 11 Runs

Table 4. 7: Comparison of 95/75 Values for 10* Trials — 11 Runs

2x5rLHS 11 CMC-0S

Mean of 10* 95/75 Values 35.88 42.08
S.D. of 10%95/75 Values 4.63 12.02
% Below “true” 0.93% 4.22%

As to be expected, the variance of the resulting CMC-OS 95/75 is very large due to how
few CMC runs are being conducted. While the rLHS method is much more accurate and
precise, less than 1% of the runs fell below the “true” 0.75-quantile. This might seem like
a positive at first, but it is a sign that the method has not converged to the proper

coverage level. This is not surprising since the number of cases m = 2, and large m is
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needed for the CLT to hold. More cases are necessary for the coverage of the rLHS
method to converge.

Due to the high variance at 11 runs, it is likely the analyst would perform more
runs to find a 95/75 value. Figure 4. 18 and Table 4. 8 show the results for 40-run CMC-
OS trials and 40-run rLHS trials (m=8, =5). Once again, the rLHS method outperforms
the CMC-OS method. However, with m now equal to 8, the rLHS has ~4% of trials
falling below the “true” quantile and is closer to convergence. Varying the values for ¢
and v in the derivative estimator for rLHS may also improve convergence, but this would

not be known in a real analysis since only one trial is conducted.
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Figure 4. 18: Comparison of 95/75 Value Histograms for 10* Trials — 40 Runs
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Table 4. 8: Comparison of 95/75 Values for 10* Trials — 40 Runs

8x5 rLHS 40 CMC-0OS

Mean of 10* 95/75 Values 31.48 33.47
S.D. of 10* 95/75 Values 1.33 2.74
% Below “true” 3.91% 4.23%

The complete numerical results for the 95/75 values can be found in Table 4. 9.
As the table shows, the rLHS method has not converged at the n = 11 run level, since
only two LHS cases are conducted. However, by the n = 29 run level, the rLHS method
at t = 5 has ~5% of trials below the true quantile, and the coverage is almost 90%. So
convergence appears to occur quickly. The coverage appears worse at the n = 40 level
for rLHS, but this is probably a result of the change in the bandwidth values at that level.
A look at the average value for /Tp shows that the derivative estimation actually got worse
at this level (from 30.48 to 32.93, with an actual value of 25.43). As the rest of the results
show, this was the only run level, other than n = 11, in which the coverage was not
approximately equal to 90%. Other results to note from the table are that AV once again
reduces variance when compared to CMC-OS and asymptotic CMC, but not to the extent
of r(LHS. Also, asymptotic CMC shows less conservatism than CMC-OS at low run
levels, but they converge to approximately the same values at high run levels, which is to
be expected. Lastly, the tradeoff between run size and the number of cases when using
rLHS continues to be present, as t = 5 converges faster, but ¢t = 10 and ¢ = 15 provide a

greater variance reduction.
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Table 4. 9: 95/75 Results 10* Trials — Nonlinear Eq. Normal Inputs

CFD for lp Exact lp
CMC- rLHS rLHS
" oS CMC AV =5 =10 =15 CMC AV =5 =10 =15
4208 3822 3776 3588 3579 3446 33.05 Mean*
1202 744 7.10 4.63 3.71 242 2.04 S.D.*
4 538 3.68 0.93 0.95 0.01 1.64 % Below
9005 9571 9496 8777 9734  86.09 Covg.
3697 4069  49.54 2543 2543 2543 Avg. 4,
3444 3365 3348 3194 3165 3262 3204 3157 3138
o 354 3.07 277 1.67 1.59 2,01 171 1.34 1.40
437 5.45 3.63 451 5.77 3.56 0.19 454 6.76
9247 9476 9044  85.66 9120 9476 8744  82.29
3322 2951 3048  29.59 2543 2543 2543 2543
3347 3275 3278 3148 3123 3095 3202 3206 3097 3079 _ 30.66
o 2 2 2.16 133 133 145 1.70 1.40 1.09 115 127
423 5.62 3.05 3.91 7.10 1496 441 0.74 6.96 116 16.19
9279 9624 9409  89.18 7213 9128 9612 8892 8335  69.98
3192 3190 3293 3235 3120 2543 2543 2543 2543 2543
3121 3113 3098 3051 3029 3040 3101 3085 3044 3022 3034
s L7 113 094 065 0.59 0.61 0.96 0.76 0.61 0.56 0.58
497 5.10 3.07 3.59 500 425 3.57 153 3.55 6.65 471
9071 9557  90.57  90.04 8847  89.80 9550 8879 8820  86.43
2737 2752 2760 2753 2739 2543 2543 2543 2543 2543
3066 3061 3060  30.14 3010 3005 3056 3054 3011 _ 3008 _ 30.02
e 081 0.79 0.68 0.47 044 045 070 0.57 044 042 0.43
5.16 5.17 2.65 498 498 6.39 3.88 1.40 488 5.02 6.83
9089 9553 9050  89.63 8925  89.98 9525 8948 8861  88.13
2663 2665 2673 2657 2672 2543 2543 2543 2543 2543
3024 3029 3024 2997 2989 2989 3025 3020 2994 2987  29.87
4so 057 0.57 0.47 034 031 031 0.52 0.42 032 030 030
6.18 5.08 2.83 3.99 5.11 487 4.15 1.95 3.91 5.65 5.35
9105 9572 9134 9115 9073  89.99 9537  90.08  89.66  89.11
2662 2666 2672 2670 2668 2543 2543 2543 2543 2543
3003 3002 3001 2978 2976 2975 3000 2999 2977 2975 _ 29.74
e 03 0.39 033 024 02 022 037 030 023 022 022
483 5.19 251 471 478 485 437 1.78 457 462 474
9050 9561  91.00 9042 9024  90.11 9541  90.58  89.98  89.57
2605 2602 2599 2601 2607 2543 2543 2543 2543 2543

* Mean and S.D. of the 10* 95/75 Values

4.3.1.2. Non-Normal Inputs

Next, the nonlinear equation experiment was repeated, but with the non-normal

inputs described in Section 3.2.2. As before, a 10%-run CMC experiment was conducted

in order to determine the “true” quantiles. Here, the 0.95-quantile was found to be

106.727, and the 0.75-quantile was 34.216. Figure 4. 19 shows the output distribution for
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a 10°-run CMC trial. Once again, this is done to give the reader an idea of the output
distribution shape. Compared to the previous example in Section 4.3.1.1, this output has a

fatter right tail, which results in the 0.75- and 0.95-quantiles being much further apart.
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Figure 4. 19: Histogram of 10> Run CMC Trial

The same procedure as the previous example was followed, starting with a
comparison between 10* trials of 59 CMC-OS runs and 60 rLHS runs (m=6, =10).
Figure 4. 20 and Table 4. 10 have these results. The trend continues with rLHS being
more precise and accurate. However, at this level over 6% of rLHS trials fell below the
“true” quantile. This could again be a sign that the asymptotics have not converged yet
for proper coverage, or that the values for ¢ and v are not appropriate. Nevertheless, even

though the rLHS has a greater percentage of 95/95 values fall below the “true” quantile,
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these values still do not fall as low as values when using CMC-OS. As mentioned in
Section 4.1.2.2, the probability of committing a Type-I error is not only dependent on the
percentage of trials that fall below the true quantile, but on the distance from those trials
to the true quantile. So even though the rLHS method at this run level may not have
converged to the proper coverage level, it is not possible to say whether the rLHS method
would be more likely to experience a Type-I error than CMC-OS without knowing the

placement of the limit value.
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Figure 4. 20: Comparison of 95/95 Value Histograms for 10* Trials — 59 Runs

Table 4. 10: Comparison of 95/95 Values for 10* Trials — 59 Runs

6x10 rLHS 59 CMC-OS

Mean of 10* 95/95 Values 133.68 153.12
S.D. of 10* 95/95 Values 19.90 31.63
% Below “true” 6.64% 4.82%

144



Figure 4. 21 and Table 4. 11 have the results for 124-run CMC-OS trials and 120-
run rLHS trials (m=12, =10). For rLHS, the percent below the “true” quantile is now

closer to 5% and may be a sign that the coverage is converging properly.
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Figure 4. 21: Comparison of 95/95 Value Histograms for 10* Trials — 124 Runs
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Table 4. 11: Comparison of 95/95 Values for 10* Trials — 124 Runs

12x10 rLHS 124 CMC-OS

Mean of 10* 95/95 Values 125.79 133.98
S.D. of 10%95/95 Values 13.01 17.25
% Below “true” 5.72% 5.01%

The complete numerical results are in Table 4. 12. As the table shows, the rLHS

method using t = 10, while not converged at n = 59, appears to converge at the next
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highest run level of n = 93. However, the coverage is worse at the n = 124 level. A
closer inspection shows that, once again, the derivative estimation got worse with
increasing run level (from 814.74 to 853.58, with an actual value of 745.73). This again is
a result of changing the bandwidth parameters as the number of runs increases. This

shows the impact that small changes in these parameters can have at low run levels.

Table 4. 12: 95/95 Results 10* Trials — Nonlinear Eq. Non-normal Inputs

CFD for 4, Exact 4,
CMC- rLHS rLHS
" 0OS cmC AV =10 =20 =30 CMC AV =10 =20 =30
153.12 151.04 138.67 133.68 127.97 145.13 132.92 129.10 123.36 Mean*
31.63 28.53 25.00 19.90 16.59 21.11 19.31 13.94 12.93 S.D.*
59 4.82 498 9.00 6.64 7.36 3.71 9.23 3.37 7.78 % Below
89.13 88.54 91.57 91.22 89.34 89.12 94.02 90.11 Covg.
872.37 873.46 877.69 911.32 745.73 745.73 745.73 745.73 Avg. Zp

139.86 137.53 141.98 131.54 122.20 125.21 134.28 138.22 129.58 119.33 123.39
21.43 20.61 20.96 16.71 13.58 13.22 16.81 16.14 12.49 12.90 11.23
93 5.01 6.01 3.73 5.02 10.68 5.82 5.25 2.52 1.80 16.12 5.24
88.98 92.72 90.95 86.64 87.84 90.14 94.48 91.96 80.99 86.86
833.13 836.20 814.74 823.99 839.44 745.73 745.73 745.73 696.73 745.73
133.98 131.75 132.23 125.79 120.71 120.40 127.74 128.14 123.14 118.48 118.07
17.25 16.46 16.49 13.01 11.25 11.05 14.22 14.17 10.41 9.83 9.62
124 5.01 6.18 5.79 5.72 9.61 8.99 7.36 6.75 427 11.57 11.44
91.23 91.90 92.18 87.15 87.55 90.13 90.53 92.43 83.68 83.42
870.07 871.86 853.58 875.24 878.60 745.73 745.73 745.73 745.73 745.73
123.01 122.74 123.19 119.25 115.15 115.18 121.57 121.99 118.40 114.59 114.53
9.82 9.88 9.80 7.81 6.17 6.16 9.20 9.03 6.81 5.71 5.79
311 4.85 5.26 4.28 4.57 7.69 7.85 5.29 4.89 3.62 7.78 8.52
90.44 92.10 91.26 88.82 88.65 90.13 90.84 90.44 87.13 87.09
803.44 803.77 802.32 800.32 805.29 745.73 745.73 745.73 745.73 745.73
118.18 118.02 118.10 115.73 113.26 112.96 117.59 117.69 115.39 112.98 112.67
7.27 7.37 7.24 5.72 4.61 4.46 7.02 6.79 5.13 4.30 4.20
548 5.74 6.17 5.65 5.33 7.39 7.54 6.22 5.07 4.03 7.23 7.54
89.53 90.34 89.82 88.98 88.89 89.70 90.83 90.06 88.27 87.78
773.57 773.07 776.79 781.79 781.79 745.73 745.73 745.73 745.73 745.73
115.26 115.16 114.97 113.18 111.56 111.26 114.96 114.79 113.02 111.44 111.16
5.34 5.40 5.27 4.10 3.30 3.22 5.19 5.04 3.75 3.09 3.04
1008  5.69 5.73 5.59 5.16 6.63 7.61 5.60 5.25 4.51 6.38 6.87
89.40 89.70 90.19 89.78 88.14 89.75 90.18 89.98 89.21 88.51
762.97 761.96 764.98 765.89 764.29 745.73 745.73 745.73 745.73 745.73
112.77 112.56 112.40 111.03 110.19 110.26 112.45 112.31 110.96 110.13 110.20
3.67 3.74 3.70 2.89 2.33 2.25 3.66 3.58 2.70 2.21 2.14
2004 499 5.93 6.19 6.58 6.70 5.59 5.88 5.98 5.66 5.92 5.11
89.64 89.25 89.14 89.27 89.59 89.93 89.49 89.48 89.22 89.28
759.30 757.59 756.36 758.79 760.86 745.73 745.73 745.73 745.73 745.73
* Mean and S.D. of the 10* 95/95 Values
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Also, the table shows that while the rLHS method with larger run sizes provides
even more variance reduction, it takes much longer to converge in this case. The
coverage level converges to ~90% fairly quickly, but the percent below the true quantile
stays above 5% even at higher run levels.

Figure 4. 22, Figure 4. 23, Table 4. 13 and Table 4. 14 have the results for
estimating 95/75 values using CMC-OS and rLHS at 11 runs and 886 runs. As with the
previous example, the rLHS method is much more precise and accurate than the CMC-
OS method. However, once again the rLHS method has less than 5% of trials below the
“true” quantile at the lowest run level, which is a sign that the CLT asymptotics have not
yet converged. By the large run level in Table 4. 14, the proper coverage level has been

established, and even at this high run level, rLHS is still more accurate and precise.
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Figure 4. 22: Comparison of 95/75 Value Histograms for 10" Trials — 11 Runs
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Table 4. 13: Comparison of 95/75 Values for 10* Trials — 11 Runs

2x5rLHS 11 CMC-0OS

Mean of 10* 95/75 Values 68.90 100.45
S.D. of 10%95/75 Values 16.50 4236
% Below “true” 0.14% 4.18%
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Figure 4. 23: Comparison of 95/75 Value Histograms for 10* Trials — 886 Runs

Table 4. 14: Comparison of 95/75 Values for 10" Trials — 886 Runs

177x5 tTLHS 886 CMC-OS

Mean of 10* 95/75 Values 35.88 38.19
S.D. of 10* 95/75 Values 1.00 2.51
% Below “true” 4.82% 4.98%

The complete results are in Table 4. 15. Some of the same issues from the normal

input example continue here, with non-convergence at the lowest run level, and the
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derivative estimation getting worse at n = 40, due to the bandwidth parameter changes.
However, it also takes rLHS, with t = 5, longer to converge in this example than with
normal inputs. A look at the results shows that even when using the exact value for the
derivative, convergence does not occur until the run level is greater than 200. This means
the issue is most likely due to the difficulty in estimating the quantile and not with the
bandwidth parameters. However, even when the coverage is poor, r(LHS always errors on
the conservative side, meaning < 5% of trials fall below the true quantile, rather than

> 5%, which could increase the probability of a Type-I error.

Also, the table shows that the complexity of this equation, while increasing the
difficulty of the quantile estimation, also benefits rLHS, since it provides a far more
accurate and precise solution than CMC-OS, even before complete convergence. This
means that even though rLHS is not providing the exact coverage level of 90%, it is still
far less likely to result in a solution that may cause a Type-I or Type-II error than CMC-

OS since it returns 95/75 values which more properly characterize the 0.75-quantile.
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Table 4. 15: 95/75 Results 10" Trials — Nonlinear Eq. Non-normal Results

CFD for /Ip Exact /Ip
CMC- rLHS rLHS
" oS CMC AV =5 =10 =15 CMC AV =5 =10 =15
10045 8139  64.12  68.90 7540 5859  58.71 Mean*
4236 3562 2255 1650 2276 1378 754 S.D.*
1 4.18 6.71 6.76 0.14 0.01 0.01 0.01 % Below
8538 9038  99.60 8540 9447  99.72 Covg.
180.09 18513  214.13 15220 15220  152.20 Ave. 4,
6762  60.64 5572 4729 4455 5512 5457 4475  43.16
2244 1847 1599  6.68 5.04 1192 1038  5.12 4.44
29 4.73 5.63 523 0.85 0.64 0.02 0.01 0.69 0.56
9175 9058 9720  96.07 9274  91.89  97.01 95.34
193.96  161.83  188.67  176.72 15220 15220 15220 15220
6148 5508 5232 4449 4201 3834 5107 4816 4167  39.76 3752
1823 1450 1210 534 438 8.83 9.98 8.41 4.30 3.77 7.11
40 443 5.16 3.88 1.79 1.72 3919 030 0.26 2.66 5.41 39.19

92.62 94.07 97.68 97.11 16.95 93.62 93.23 96.37 92.10 16.95
187.79 197.47 198.94  202.00 196.95 152.20 152.20 152.20 152.20 152.20

46.34 45.21 42.52 39.29 37.78 38.18 44.38 41.77 38.80 37.43 37.88
8.08 7.49 5.88 2.65 2.11 2.14 5.79 4.57 2.56 2.05 2.08
135 4.93 5.40 6.25 2.48 3.62 242 1.72 2.35 3.73 4.96 3.30
90.45 90.97 93.57 93.95 89.78 90.29 91.40 91.32 92.13 87.28
165.73 167.17 169.48 166.92 166.17 152.20 152.20 152.20 152.20 152.20

42.48 41.81 40.66 37.50 37.09 36.54 41.43 40.20 37.27 36.94 36.41
5.46 5.23 423 1.89 1.60 1.52 421 3.41 1.88 1.57 1.49
246 4.72 5.85 4.77 3.97 3.18 5.69 2.64 2.34 5.12 3.68 6.67
90.70 91.99 93.10 92.37 90.35 90.49 90.99 91.78 91.38 88.91
160.55 164.22 162.88 160.61 160.42 152.20 152.20 152.20 152.20 152.20

39.57 39.72 38.56 36.51 36.17 36.04 39.48 38.56 36.37 36.07 35.94
3.59 3.53 291 1.38 1.18 1.08 3.02 291 1.38 1.17 1.07
459 5.92 4.99 5.26 4.49 4.41 4.02 2.94 5.26 5.57 5.10 4.80
91.50 91.43 92.77 92.04 91.70 90.83 91.45 91.29 90.62 90.22
159.37 160.20 161.19 160.43 160.55 152.20 152.20 152.20 152.20 152.20

38.19 38.02 37.37 35.88 35.67 35.50 37.95 37.31 35.84 35.64 35.47
251 2.45 1.99 1.00 0.85 0.79 2.17 1.77 1.00 0.84 0.78
886 4.98 5.35 4.71 4.82 3.91 4.98 3.48 3.14 5.22 4.14 5.12
90.82 91.52 91.10 91.18 90.46 90.77 91.02 90.71 90.50 90.00
155.21 155.22 155.21 155.38 154.91 152.20 152.20 152.20 152.20 152.20

* Mean and S.D. of the 10* 95/75 Values

4.3.2. LOCA Response Surface

The LOCA response surface detail in Section 3.2.3 was again used as the next
step to a more realistic safety analysis scenario. Historically, the large LOCA has
represented the most extreme challenge as the design basis for a plant’s emergency core

cooling system. For best-estimate plus uncertainty analysis, a 95/95 criterion has been
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imposed on the entire spectrum of LOCA break sizes. Because the likelihood of a very

large pipe break is extremely small, consideration has been given to using risk-informed

requirements for emergency core cooling systems. In this approach, a transition break

size would be established based on the expected frequency of breaks as a function of size.

Below the transition break size, the 95/95 criterion would still be imposed. Above the

transition break size, less conservatism would be applied (such as a 95/75 criterion).

The result of a 10°-run CMC experiment yielded a “true” 0.95-quantile of

1683.65°F and 0.75-quantile of 1607.07°F. Figure 4. 24 shows the distribution of a 10°-

run CMC trial. In this case, the upper tail decays very quickly, so the 0.75- and 0.95-

quantiles are fairly close together.
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Figure 4. 24: Histogram of 10° Run CMC Trial
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As before, the first test conducted was at the minimum number of runs necessary
to find a 95/95 value using CMC-OS. Figure 4. 25 and Table 4. 16 show the results for
59-run CMC-OS trials and 60-run rLHS trials (m=6, t=10). The rLHS method continues
to show better performance than CMC-OS, but less so than in the previous examples.
This is most likely due to the output distribution shape. Unlike the previous non-linear
equation examples, the output distribution does not have a long tail at the higher
quantiles. Since CMC-OS only uses a single value to calculate a 95/95 value, it is less
likely that this value is significantly larger than the true 0.95-quantile. So the variance
reduction from rLHS is not as large. Also, the rLHS analysis has >6% of trials falling
below the “true” quantile versus the 5% expected. Once again, this could be related to
convergence, or to the selection of bandwidth parameters. It may have been possible to
select bandwidth parameters that resulted in exactly 5% of trials falling below the “true”
quantile, but again the challenge is finding bandwidth parameters that are applicable to a

variety of systems and sample sizes.
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Figure 4. 25: Comparison of 95/95 Value Histograms for 10* Trials — 59 Runs

Table 4. 16: Comparison of 95/95 Values for 10* Trials — 59 Runs

6x10 TLHS 59 CMC-OS
Mean of 10* 95/95 Values 1,715.98 1,730.89
S.D. of 10* 95/95 Values 23.32 31.83

% Below “true” 6.58% 4.73%

Figure 4. 26 and Table 4. 17 have the results for 124-run CMC-OS trials and 120-
run rLHS trials (m=12, =10). At this level, the rLHS is closer to the proper coverage
level (as the complete results in Table 4. 18 show, the coverage level is ~90%). If this
were a real safety analysis, the r(LHS method would result in a 95/95 value that was, on

average, 10°F lower than using CMC-OS.
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Figure 4. 26: Comparison of 95/95 Value Histograms for 10* Trials — 124 Runs

Table 4. 17: Comparison of 95/95 Values for 10" Trials — 124 Runs

12x10 rLHS 124 CMC-OS

Mean of 10* 95/95 Values 1,701.51 1,711.62
S.D. of 10* 95/95 Values 11.66 17.90
% Below “true” 5.61% 4.69%

The complete results can be found in Table 4. 18. As with the previous examples,
convergence appears to occur fairly quickly, although here it takes until the n = 93 run
level to approach the appropriate values. Also like the previous examples, changing the
bandwidth parameters at lower run levels causes the derivative estimation to get worse at

n = 311, but it does not have a great effect on the coverage, which is still ~90%. More
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work needs to be done on how to properly increase the bandwidth of the derivative

estimation at these low run levels, and more will be said on this topic in Section 4.4.

Table 4. 18: 95/95 Results 10* Trials — LOCA Response Surface

CFD for )lp Exact )lp
CMC- rLHS rLHS
" 0s CMC AV =10 =20 =30 CMC AV =10 =20 =30
1,7309 1,727.6 1,7155 1,7160 1,712.5 1,7204 1,708.4 1,708.6 1,707.5 | Mean*
31.83 2830 2470 2332 25.62 20.19 1783 1659 2291 | s
59 4.73 491 9.00 6.58 10.10 2.96 7.71 6.25 13.31 % Below
89.12 8894 9120 8626 8870  90.04 9124 8274 | Cove.
84991  853.12  867.07  866.65 69570 69570 69570  739.92 | Avg. i,

1,717.3 1,714.4 1,718.2 1,709.9 1,705.9 1,707.3 1,710.2 1,713.5 1,707.2 1,703.6 1,704.7
21.67 20.50 21.28 18.23 19.90 19.73 16.02 15.48 13.95 15.75 15.92
93 4.80 5.84 434 5.74 12.11 9.67 4.68 2.05 3.74 9.90 8.54
89.08 92.13 89.60 83.23 81.63 89.30 93.98 90.26 84.93 81.35
807.86 807.37 783.16 771.50 792.16 695.70 695.70 695.70 695.70 695.70
1,711.6 1,709.0 1,708.9 1,701.5 1,704.3 1,703.4 1,703.9 1,704.1 1,701.5 1,700.5 1,699.8
17.90 16.41 16.24 11.66 14.93 15.63 13.42 13.00 11.66 12.09 12.99
124 4.69 531 4.87 5.61 7.22 9.38 6.32 5.06 5.61 8.23 10.51
92.26 92.96 90.78 89.92 86.35 89.90 91.59 90.78 87.31 83.95
851.29 845.28 695.70 837.51 834.45 695.70 695.70 695.70 695.70 695.70
1,699.4  1,699.0 1,699.6 1,697.3 1,6954  1,695.8 1,697.6  1,698.1 1,696.0 1,694.4 1,694.6
10.08 9.77 9.56 8.28 8.11 8.43 8.71 8.44 7.32 7.19 7.50
311 5.38 5.23 4.29 4.56 6.67 6.93 527 3.85 3.99 6.39 6.94
90.84 92.24 91.40 89.83 89.28 89.63 91.05 90.41 88.97 87.97
766.44 767.96 766.79 754.68 764.04 695.70 695.70 695.70 695.70 695.70
1,6949 1,694.6 1,694.6 1,693.2 1,692.5 1,692.4  1,694.1 1,694.0 1,692.2 1,692.0 1,691.9
7.10 7.09 6.94 6.15 6.01 5.99 6.49 6.29 6.11 5.46 5.49
548 5.51 592 532 541 6.51 6.74 5.57 4.79 7.56 6.02 6.44
90.28 90.87 90.13 90.01 89.34 89.74 90.63 86.81 89.63 88.67
729.53 731.8 733.23 734.49 732.66 695.70 695.70 655.47 695.70 695.70
1,691.8 1,691.6  1,691.5 1,690.6  1,690.1 1,690.0 1,691.4 1,691.3 1,690.4 1,689.9 1,689.9
5.10 5.15 5.07 442 431 4.30 4.80 4.68 4.06 3.98 3.99
1008 5.25 5.83 6.00 5.33 6.55 6.68 5.38 521 441 5.61 5.82
89.73 89.69 89.76 89.33 88.72 89.52 89.85 90.13 89.56 89.12
715.13 714.66 715.42 714.66 713.76 695.70 695.70 695.70 695.70 695.70
1,689.4  1,689.2 1,689.1 1,688.3 1,688.2 1,688.4  1,689.1 1,689.0 1,688.2 1,688.2 1,688.3
3.59 3.63 3.58 3.09 2.99 3.00 3.44 3.36 2.90 2.81 2.83
2004 5.34 6.12 5.81 6.48 5.95 5.76 5.35 5.25 5.67 4.96 5.10
89.26 89.43 89.37 89.66 88.83 89.62 89.44 89.78 90.19 89.01
708.07 709.23 706.91 706.91 707.70 695.70 695.70 695.70 695.70 695.70
* Mean and S.D. of the 10* 95/95 Values

Figure 4. 27 and Figure 4. 28 show the results for 95/75 estimates, with numerical
results in Table 4. 19 and Table 4. 20. As with the previous examples, the rLHS method

is closer to the “true” quantile. However, once again it has <5% of trials below “true” at
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the lowest run level, since only two LHS cases are being performed to satisfy the CLT.
As the run level gets higher, and the rLHS method converges to the proper coverage
level, it still provides a better characterization of the 0.75-quantile, as Figure 4. 28 and

Table 4. 20 show at ~246 runs.
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Figure 4. 27: Comparison of 95/75 Value Histograms for 10* Trials — 11 Runs

Table 4. 19: Comparison of 95/75 Values for 10* Trials — 11 Runs

2x5rLHS 11 CMC-0S
Mean of 10* 95/75 Values  1,660.96 1,677.04
S.D. of 10* 95/75 Values 30.93 42.55
% Below “true” 2.50% 4.35%
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Figure 4. 28: Comparison of 95/75 Value Histograms for 10* Trials — 246 Runs

Table 4. 20: Comparison of 95/75 Values for 10* Trials — 246 Runs

49x5 rLHS 246 CMC-OS

Mean of 10* 95/75 Values 1,615.03 1,619.82
S.D. of 107 95/75 Values 5.08 7.73
% Below “true” 5.61% 5.20%

The complete results are in Table 4. 21. Once again, while not converged at
n = 11, rLHS appears to have converged by n = 29. However, the number of trials
falling below the true quantile increases to over 5% at n = 40. At first, this might seem
to be caused by changing the bandwidth parameters (as in the previous examples), but
there is a difference here. A closer look shows that using the exact value for the

derivative, at this run level, results in over 9% of trials falling below the true quantile.
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That means the error at this run level is more likely caused by difficulty estimating the
quantile, rather than the derivative estimation. By the next highest run level, the quantile
estimation issue is resolved. Also, rLHS provides a larger gain here than when estimating
the 0.95-quantile. At n = 29, rLHS returns a 95/75 value that is 15°F lower on average,

than the result when using CMC-OS.

Table 4. 21: 95/75 Results 10* Trials — LOCA Response Surface

CFD for lp Exact lp
CMC- rLHS rLHS
" oS CMC AV =5 =10 =15 cMC AV =5 =10 =15
16770 16757 16492  1,661.0 16697 16456 165438 Mean*
4255 4229 3167 3093 36.10 2556 2448 S.D.*
I 435 4.64 8.01 2.50 483 5.14 1.82 % Below
89.61  89.65 9530 90.62  92.82 9537 Covg.
311.07 30397 32147 28285  282.85  282.85 Avg. J,
16466 1,6437 16416 16316 16288 16405 1,6412 16307 1,628.1
o 2350 2359 2135 1620 1678 2254 1750 1484  15.80
4.94 5.90 422 5.52 8.53 6.84 1.82 5.36 8.50
90.14 9247 8855  82.50 90.17 9446  88.00  81.74
30711 28646  298.65  296.91 282.85  282.85 282.85  282.85
16408 1,6369 16314 16255 1,623.6 1623.1 1,6346 16300 16239 1,623 16220
s 1974 1962 1708 1342 1393 2245 1921 1521 1274 1328 2092
425 6.25 7.34 7.96 1146 2703 773 6.10 9.34 1263 27.00
90.59  90.02 8958  84.18 4450  89.61 9071  87.18 8221  44.44
303.08 29792 30696 30665 308.19 28285 28285 28285 28285  282.85
16246 1,6249 16207 16189 16165 16179 1,6246 16204 16187 16163 16177
s 1053 1060 896 7.07 6.62 6.79 1057 837 6.79 6.46 6.57
473 4.85 6.38 433 7.46 5.19 5.06 5.51 427 7.85 537
89.47  90.15 8938 8837  87.53  89.85  90.57 8878 8772  86.84
280.10  288.07 29034  290.02  290.02 282.85 28285 28285 28285  282.85
16199 16199 16179 16150 16148 16143 16197 16178 16149 16147 16142
g 781 7.93 6.69 5.07 483 4.95 7.83 6.34 493 471 485
5.12 5.29 5.29 5.68 5.29 6.87 5.45 4.43 5.55 5.4 6.83
89.56  89.79  90.02 8933  88.12  89.77 9036 8991 8938  87.94
286.98 28572 28699 28637 287.41 28285 28285 28285 28285  282.85
16159 16167 16146 16128 16125 16125 16166 16145 16128 16124 16124
5o 561 5.68 477 3.73 3.49 3.46 5.66 4.60 3.65 3.44 3.40
5.65 4.45 5.67 5.97 5.90 5.90 458 537 6.12 5.77 5.82
9031 9046 8997 8998 8883 9028 9046 8932 8984  88.88
286.08 28603 28676 28697 28643 282.85 282.85 282.85 282.85  282.85
16138 16138 16127 16113 1611.1 16110 16138 16127 16113 1611.1  1,611.0
ggg 405 4.09 3.46 2.65 2.49 2.49 4.09 338 2.60 2.46 2.46
5.03 4.88 5.41 5.04 5.17 5.75 521 4.80 5.05 5.05 5.64

90.24 89.33 90.28 89.55 89.27 90.10 89.89 90.22 89.57 89.38
284.01 283.80 284.34 284.07 283.99 282.85 282.85 282.85 282.85 282.85
* Mean and S.D. of the 10* 95/95 Values
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4.3.3. PRA Event Tree

The PRA event tree analysis detailed in Section 3.2.4 was repeated for these
techniques. However, instead of the figure of merit being mean risk, a more detailed
characterization of the output was desired. Recall, each time the PRA is carried out, 841
unique scenarios are created. Each one of these scenarios has a frequency and a
consequence assigned to it. Even though there are 841 unique scenarios, there are
actually only 13 different consequence levels. This is due to the fact that the offsite dose
is mostly dependent on the time of release and release fraction of core inventory. As the
event trees in Section 3.2.4 show, there are four possible core damage-states (1, 2, 3, 4),
and three possible times of release (early, late, and leakage). This gives 12 possible levels
of consequence. In addition to these 12 levels, there is also the release associated with
those events that had no core damage. This consequence is related to the radioactive
material released from the primary system into containment, and then leaked out of

containment. These consequence levels can be seen in Table 4. 22.

Table 4. 22: Consequence Bins

Core Damage  Time of

Bin State Release
1 1 Early
2 1 Late
3 1 Leakage
4 2 Early
5 2 Late
6 2 Leakage
7 3 Early
8 3 Late
9 3 Leakage
10 4 Early
11 4 Late
12 4 Leakage

13 Undamaged  Leakage
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Each of the 841 unique scenarios falls into one of these 13 consequence bins. Therefore,
the frequencies of the scenarios that fall into each bin can be summed. This will give a
final output of 13 bins each with a consequence level and a frequency. Figure 4. 29 shows

an example output from the PRA analysis, with the 13 points on a consequence versus

frequency plot.

Frequency (/yr)
=y

107" 107 107 107 10° 10’ 10°
Offsite Dose (rem)

Figure 4. 29: Example of PRA Output

These points can also be used to create a complementary cumulative distribution function
(CCDF). This is done by summing the frequency of the events, starting with the event

with the largest consequence. Figure 4. 30 shows the CCDF version of the output for the

example listed in Figure 4. 29.
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Figure 4. 30: Example CCDF Output of PRA

Historically, the results of PRAs have been used to provide risk insights but have
not been required to satisfy quantitative risk limits. In NUREG-1860, the NRC developed
a draft technology-neutral framework that could be applied in the future to advanced
nuclear power plant designs independent of the type of design [14]. NUREG-1860
introduces the concept of a frequency-consequence limit curve in which the PRA
scenarios would be aggregated into Licensing Basis Events (LBEs), each of which would
be required to fall below the limit curve presented Figure 4. 31. Although the LBEs are
based on the results of PRAs, the manner in which the characteristic frequency and
consequence of an LBE is determined and compared with the limit curve does not
actually constrain the risk. If the risk analyst refines the risk assessment, for example by
dividing a small break loss of coolant accident into two break sizes, it becomes easier to
satisfy the criteria. In theory, it would be possible to have an infinite number of LBEs

with infinite risk and still satisfy the limit curve.
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Figure 4. 31: Technology Neutral Framework F-C Limit Curve

Because of these concerns about the NUREG-1860 limit curve approach, an alternative
limit curve approach has been proposed [108] in which a limit curve is used that
establishes a bound on the CCDF of the LBEs (and thus a bound on risk), as seen in
Figure 4. 32. In this case the limit curve has a slope of -1 (on log-log scale) in the low
consequence region and a slope of -1.5 for higher consequence events. The curves are
pinned at an offsite dose of 25 rem at a frequency of 1E-4 per year, since this is the site

boundary dose limit for design basis accidents.
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Figure 4. 32: Proposed CCDF Limit Curve

The historical display of PRA results as presented in NUREG-1150 [6] (for which
a 100-run LHS design was examined) shows the family of CCDFs obtained through the
performance of the uncertainty analysis. Curves showing the 0.05-quantile, median, mean
and 0.95-quantile of these CCDFs are presented graphically, but no consideration is given
to the confidence level of these statistics. NUREG-1855 [7] provides more guidance
about the reporting of PRA results in relation to a regulatory guideline, but stops short of
giving specific requirements. Instead, it states analysts should provide “A qualitative
statement of confidence in the conclusion and how it has been reached” and that “to
support the statement of confidence, the analyst should identify the key sources of
uncertainty that were addressed.” The metric usually provided by a PRA is the mean or
higher quantile. In the following examples, the 0.75- and 0.95-quantiles will be used,
with a high level of confidence (95%).
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4.3.3.1. Comparison with a Risk Limit Curve

The first PRA analysis undertaken sought to compare the output results to the
CCDF limit curve presented in Figure 4. 32. While the construction of the CCDF curve
for a single PRA run is straightforward, the creation of a quantile or 95/95 CCDF curve is
more complex. This is due to several causes. First, there is uncertainty not only in the
frequency of the scenarios, but in the consequence. This means that scenarios are shifted
along both the x and y axes. Secondly, due to the uncertainties, a single run’s CCDF
curve may be in the higher regions of the output distribution at one part of the plot, but be
in the lower regions in another part. This means that a 95/95, or even a 0.95-quantile,
curve cannot be selected directly from the resulting curves of the » number of runs.
Instead, a curve must be created by point-by-point comparison.

In order to create a quantile CCDF curve of the resulting distribution, the resulting
points from within each consequence bin were viewed directly. Figure 4. 33 shows how
this was done. For each of the 13 consequence bins, the points from each run of the PRA
create a spread of possible values. Figure 4. 33 shows the results for 100 CMC runs for
the 13™ consequence bin of Table 4. 22 (the bin with the lowest consequence level, as
shown by the comparison to the example in Figure 4. 29). The spread covers both the x
and y axes. In order to find a 0.95-quantile value, the 0.95-quantile consequence and the
0.95-quantile frequency are determined. Here, the 0.95-quantile dose is ~0.0129 rem and
the 0.95-quantile dose is ~0.00184 /yr. A new point is created using these values, and is

considered the 0.95-quantile point for that consequence bin.
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Figure 4. 33: Demonstration of Quantile Estimation

Obviously, the created quantile point will be overly conservative because it does not

represent the output of an actual scenario, but a conglomeration of the worst

consequences and frequencies. As the plot shows, the points that had higher

consequences fell at lower frequencies, and the points with higher frequencies were

located at lower consequence levels, meaning the constructed 0.95-quantile point is not

necessarily realistic. A less conservative technique may have been to find a type of

Euclidean distance, in log-log space, of each point to the projected limit value in Figure

4. 32. Then use this distance as the output metric, meaning the runs would be sorted

based on the value of this distance. This would mean each point is now only a function of

one variable, distance, rather than an x and y coordinate. The initial calculation of this

distance would be more difficult, but it would simplify the analysis. However, using the
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technique shown in Figure 4. 33 to calculate a quantile provided a consistent means of
comparing the confidence interval methods described in Section 4.2, and the error is in
the conservative direction for both the frequency and consequence.

In order to create a quantile CCDF curve, the process described above was
repeated for each of the 13 consequence bins. This results in Figure 4. 34, where a 0.95-
quantile point has been found for each of the 13 bins. While the results may look
confusing, the actual calculation of the individual bins was not difficult due to the fact
that the consequence bins always fell in the same order. This was the case since the core
damage states and times of release magnitudes would stay in the same order regardless of

the value of the uncertainties.
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Figure 4. 34: Quantile Calculation for all 13 Bins
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Using the results of Figure 4. 34, a 0.95-quantile CCDF curve could be created. This is
shown in Figure 4. 35, in comparison to the 13 consequence bin points, and in Figure 4.

36, in comparison to the 100 CCDFs created by the 100 individual PRA runs.
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Figure 4. 35: 0.95-Quantile CCDF Curve
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Figure 4. 36: 0.95-Quantile CCDF Curve with 100 CCDFs

10

A similar technique was used to form confidence intervals. For the asymptotic

methods, a CI was found in respect to the consequence and in respect to a frequency.

These were then used to construct a total CI point for that consequence bin, and this

process was repeated for all the consequence bins in order to form a CI CCDF curve. For

CMC-0S, if 59 runs were conducted, for example, the highest consequence value for that

bin, and the highest frequency value for that bin were combined to form a 95/95 point. If

93 runs were conducted, the second highest values of consequence and frequency were

combined to form a 95/95 point, and so on.

A 10%run CMC trial was conducted first to establish the “true” 0.75- and 0.95-

quantile CCDF curve. Figure 4. 37 shows the results of a smaller, 25,000-run CMC trial

since it was infeasible to plot the large trial. This plot is presented just to show the spread
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of possible outcomes and where the “true” 0.75- and 0.95-quantile fall. As the figure
shows, the 0.95-quantile does not satisfy the limit curve because it violates the line at

~200 rem. The 0.75-quantile does satisfy the limit curve.

10
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Figure 4. 37: CCDF Curves for 25,000 Run CMC Trial

Next, Figure 4. 38 show the 95/95 CCDF curves for 10* trials of 59 CMC-0S
runs. It is important to remember that each trial consisted of 59 individual runs, where
each run resulted in its own CCDF curve. The CCDF curves on Figure 4. 38 represent the
95/95 value CCDF curve of each of the 10* trials. Here, all 10* 95/95 curves are
compared to the “true” 0.95-quantile curve, and the candidate safety goal, presented as a
black line. If the CCDF curve lies to the left of the safety curve, it satisfies the safety
limit. As can be seen, the “true” 0.95-quantile violates the safety limit at one interval
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around 200 rem. Therefore, the result of this analysis should conclude that the system

does not pass.
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Figure 4. 38: Comparison of 95/95 Curves to Limit Curve for 10* CMC-OS Trials

Next, Figure 4. 39 shows the same results, but for 10* trials of a rLHS design with m=6
and =10. Since the characterization of these curves results in a large amount of data, only

these qualitative plots are presented as evidence of the reduction in margin by the rLHS

method.
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Figure 4. 39: Comparison of 95/95 Curves to Limit Curve for 10" rLHS Trials

There are several factors to note from these results. First, 95/95 CCDF curves
from CMC-OS and rLHS both have means that fail the safety goal limit, which is the
correct conclusion, but at this low run level, both methods have means well above the
“true” 0.95-quantile, and do not characterize the curve well. If a criterion as stringent as
95/95 was imposed, it would be necessary to perform more runs if more informative
results were required. Second, and more importantly, is that for the CMC-OS trials, there
were a few trials where all points of the 95/95 CCDF curve satisfied the safety goal. The
“true” 0.95-quantile does not satisfy the safety goal, since it violates the curve at ~200
rem and 107 /yr. This means that there is small chance that an analyst could commit a
Type-I error, or believe, falsely, that the system had fulfilled the safety goal. This error

does not occur with the rLHS trials.
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Since the 95/95 requirement may be overly-stringent for this type of analysis,

95/75 values were also calculated. Here, Figure 4. 40 and Figure 4. 41 show the results

for 10* trials of 11 CMC-OS runs and 10 rLHS runs (m=2, t=5).
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Figure 4.

40: Comparison of 95/75 Curves to Limit Curve for 10* CMC-OS Trials
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Figure 4. 41: Comparison of 95/75 Curves to Limit Curve for 10" rLHS Trials

At this run level, the mean of the CMC-OS trials violates the safety limit, while the mean
of the rLHS trials does not. This example demonstrates how the large variance of CMC
sampling can lead to incorrect conclusions being made from the analysis. Even though
the rLHS method does have trials that also violate the safety goal, it is far less likely that
a Type-II error would be committed with the rLHS method than with CMC-OS method.
Figure 4. 42 and Figure 4. 43 show similar results but for 10* trials of 40 CMC-
OS runs and 40 rLHS runs (m=8, =5). Once again, the large variance of the CMC-OS
causes some trials to violate the safety limit, and could lead to a Type-II error. None of

the rLHS trials violate the safety limit.

173



|
%
T — T T

-_—
(=]
T

Frequency (/yr)

10°

= CMC-0S 75/95 -10,000 Trials

= CMC-0S 75/95 - Mean
“True” 0.75-Quantile

— Safety Goal

_77 )
107

10

| L sl L Lol L PR L i A L
1077 107 10° 10 10° 10° 10
Offsite Dose (rem)

Figure 4. 42: Comparison of 95/75 Curves to Limit Curve for 10* CMC-OS Trials
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Figure 4. 43: Comparison of 95/75 Curves to Limit Curve for 10* LHS Trials
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4.3.3.2. Comparison with an LBE Limit Curve

Next, a comparison was made to the LBE limit curve presented in Figure 4. 31.
For this example, the 13 consequence bins described in Table 4. 22 were assumed to be
analogous to the LBEs of NUREG-1860. Figure 4. 44 shows a comparison of offsite dose
consequence bins for 10* trials of a 59-run CMC-OS and 60-run LHS design (m=06, =10).
Even though there are 13 consequence bins, only three are shown to keep the figure
legible and to illustrate the trend. The rectangles are designed using the 0.01- and 0.99-
quantile consequence and frequencies values of the 95/95 values of those bins from all
10* trials. This means on the x-axis, the left side of the rectangle is at the 0.01-quantile
offsite dose from 10* 95/95 values, and the right side of the rectangle is at the 0.99-
quantile of the offsite dose from 10" 95/95 values. The top and bottom are the same but
for the 0.01- and 0.99-quantile frequencies of the 10* 95/95 values. This helps show the
range of possible 95/95 values, for each bin, using that method. If points lie to the left of
the curve, they satisfy the limit curve. As can be seen, the three “true” values satisfy the

frequency-consequence limit curve.
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As the figure shows, even though the “true” points satisfy the curve, both methods greatly
overestimate the value. However, rLHS does get slightly closer than CMC-OS. This test
was repeated with 95/75 values, with Figure 4. 45 showing the results for 10 trials of 11-
run CMC-OS and 10-run rLHS (m=2, =5). Here, the rLHS method is noticeably better at
approximating the location of the “true” quantile point. The CMC-OS range covers
higher and lower values than the rLHS method. Figure 4. 46 repeats this for 40-run
CMC-OS trials and 40-run rLHS trials (m=8, =5). As the figure shows, the rLHS method

once again provides a better characterization of the 0.75-quantile points.
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Figure 4. 45: Comparison of 95/75 Value Consequence Bins to Limit Curve
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Figure 4. 46: Comparison of 95/75 Value Consequence Bins to Limit Curve
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4.3.4. MELCOR LOCA Analysis

The next analysis was conducted to compare the methods using an actual nuclear
power plant severe accident analysis computer code. The code used for this analysis was
MELCOR 2.1, developed by Sandia National Lab [109]. This code was chosen not only
because it is used in real nuclear safety analyses, but because it represents a “large and
complex” model. Here, a large model is one requiring significant amounts of human,
computational, or other resources in its construction and operation [18]. Complex means
the system is made up of a large number of parts that interact in a nonsimple way [110].
Morgan and Henrion actually use NRC “general purpose regulatory model” computer
codes as an example of a large and complex system [18]. The scenario chosen was based
on a MELCOR demonstration problem presented in CR-6119 [111]. It represents a large
break LOCA at the now retired Zion Nuclear Power Plants (ZNPP) near Chicago.

MELCOR is not an NRC-approved computer code for the performance of the
analysis of loss of coolant accidents for regulatory submittals, like the RELAPS5 computer
code discussed earlier. The treatment of some two-phase flow phenomena is not of the
level of fidelity required for regulatory-analyses. MELCOR is primarily used for the
analysis of severe accidents in which, for example, there is not only a pipe break leading
to loss of coolant, but also a failure of the emergency core cooling system, as done in this
example. Nevertheless, MELCOR does a detailed nodalization of the reactor coolant
system, models fuel pin heat and clad oxidation, and solves the Navier-Stokes flow

equations.
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Both units at ZNPP are Westinghouse four-loop pressurized water reactors
(PWRs) with large, dry containments. The MELCOR nodalization of the plant can be
seen in Figure 4. 47, with a diagram of the core nodalization in Figure 4. 48. The plant
nodalization is split into two loops. The first loop represents the single loop in the plant
with the pressurizer, and the other loop represents a combination of the other three loops

of the plant.

598 =
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Figure 4. 47: ZNPP MELCOR Nodilization [111]
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The scenario represents a double-ended guillotine rupture of the pressurizer loop
at the reactor coolant pump inlet (node 521 in Figure 4. 47). Following the break, three
Emergency Core Cooling Systems (ECCS) should activate: high pressure injection (HPI),
which is provided by the charging pumps, intermediate pressure injection (IPI), which is
provided by the safety injection pumps, and low pressure injection (LPI), which is
provided by the residual-heat-removal pumps. However, in this scenario, their flowrates
are considered uncertain, and the time of activation of LPI is delayed and uncertain.

Table 4. 23 Contains a full list of uncertainties.
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Table 4. 23: MELCOR LOCA Analysis Uncertainties

Uncertainty Distribution*
1 HPI Flowrate Beta(2,5)
2 IPI Flowrate Beta(2,5)
3 LPI Flowrate Beta(2,5)
4 LPI Activation Time Uniform(300,1100)
5  Decay Heat Multiplier Normal(0.0,2.57)
6  Accumulator Temperature Uniform(3250,3350)
7  Accumulator Pressure Uniform(0.0706,0.0716)
8  Accumulator Volume Uniform(24.07,26.07)
9  Refueling Water Storage Tank Volume  Uniform(3150,3250)
10  Reactor Power Uniform(3.25¢9,3.35¢9)

*Many of the uncertainties are not the distribution of the actual parameter,
but of a scaling factor or part of a larger formula

The break occurs at time 0 sec, with LPI activation occurring anywhere from 300 to 1100
seconds after. The analysis ends shortly after the activation of LPI, since even its
minimum flow condition in this experiment is sufficient to temporarily cool the core.

The output of interest is again the PCT of the core, which is compared to the NRC
limit of 2200°F [73]. Due to the long run-times of the MELCOR analysis, only CMC-OS,
asymptotic CMC, and rLHS were evaluated. First, the “true” 0.95-quantile of the system
was calculated using a 5,000-run CMC experiment. This returned a “true” 0.95-quantile
of 1293.16°F. The empirical CDF in Figure 4. 49 shows the shape of the distribution.
What is interesting to note, from this figure, is the slope of the distribution near the higher
quantiles. While the slope is fairly constant until the 0.90-quantile, it quickly steepens,
and there is almost a 1000°F range between the 0.90- and 0.99-quantile. This sensitivity
is due to the heat released from zirconium oxidation, which increases exponentially with

temperature.
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Figure 4. 49: Empirical CDF of Peak Clad Temp. — 5,000 Runs

Due to the time burden when running a large, complex code like MELCOR,
unlike the previous examples, 10" independent trials of each method could not be
performed. Instead, for CMC-OS and asymptotic CMC, a large 5000-run trial was
conducted. For the analysis here, a random number of the 5000 outputs would be drawn
as a trial output. For example, at n = 59, 59 of the 5000 outputs were chosen at random,
and treated as a separate trial. This process was repeated for 10 trials. Obviously, this
introduces some correlation in the results, since the same output value will be used more
than once. However, the likelihood of pulling the exact same 59 outputs is extremely
small. Using 5000 outputs, this means there are 8.88x10'37 different combinations of 59
runs possible. The repeated use of trials has a bigger effect on CMC-OS than asymptotic

CMC due to the way the Cls are calculated. Using asymptotic CMC, the sample variance
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is used to calculate the CI, meaning many of the output results are used in the calculation.
However, using CMC-OS, simply the highest value of the 59 outputs is taken as the
95/95 value. This means the highest values of the 5000 outputs will be repeatedly chosen
as the 95/95 values. This could influence the results, and more will be said on this topic.
For rLHS, 500 cases of 10 LHS runs were conducted. If the desired run level was
60, then 6 of these 500 cases would be chosen at random in order to produce a trial. For
rLHS, the number of combinations is smaller at 2.11x10*3 since the choice is 6 out of
500, instead of 59 out of 5000. Like asymptotic CMC, since the CI for rLHS found by
calculating a sample variance, the effect of repeating results is less than with CMC-OS.
The results for 10* trials of CMC-OS and asymptotic CMC at 59 runs, and rLHS
at 60 runs (t = 10, m = 6) are shown in Table 4. 24. Here, the coverage and “percent
below true” results appear to show that the asymptotic methods are, at the very least,
close to convergence, with coverage values at ~90% and “percent below true” near 5%.
Also, rLHS results in a 95/95 value that is, on average, about 150°F closer to the actual
0.95-quantile than those 95/95 values found with CMC-OS, with a mean of the rLHS
95/95 values of 1590.53°F compared to 1740.14°F when using CMC-OS. This could
mean a very significant gain in margin for an operating power plant. The values for the
standard deviation should be viewed with caution since, as mentioned above, by using
repeated output values, certain results may occur multiple times (especially in the case of

CMC-OS) and influence the spread of 95/95 values.
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Table 4. 24: MELCOR - Comparison of 95/95 Values for 10* Trials — 59 Runs

6x10 rLHS 59 CMC 59 CMC-OS
Mean of 10* 95/95 Values 1590.53 1668.42 1740.14
S.D. of 10* 95/95 Values 197.13 253.26 275.38
% Below “true” 5.67% 5.01% 5.10%
Coverage 89.67% 87.53%

In order to confirm that the repeated use of output values did not drastically sway

the results, another analysis was performed, but without using the same output result

more than once. This was done by performing only 80 trials. Since 5000 CMC runs were

performed, 59 * 80 = 4720, which meant that output results could be chosen without

repetition (the values were chosen without replacement). For rLHS, 6 * 80 = 480, which

is less than the 500 cases conducted. So again, this would prevent output results from

being used multiple times. These results are in Table 4. 25. As the table shows, the results

are nearly identical to the repeated trial results in Table 4. 24 (since only 80 trials are

being performed, the statistical sample is not that large, so the methods may not have

exactly 5% of trials “below true”). So it appears that the repeated trial results from above

are accurate, and that the gain when using rLHS is real.

Table 4. 25: MELCOR - Comparison of 95/95 Values for 80 Trials — 59 Runs

6x10rLHS 59 CMC 59 CMC-OS
Mean of 80 95/95 Values 1580.32 1665.52 1742.31
S.D. of 80 95/95 Values 190.65 262.26 270.82
% Below “true” 6.10% 3.80% 6.32%
Coverage 91.46% 91.14%
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This analysis was repeated for the n = 93 run level. Table 4. 26 shows the results
for 10* trials of 93 CMC-OS and asymptotic CMC runs, and 90 rLHS runs (¢t = 10,
m = 9), using the repeated trial method described above. While CMC-OS at this run
level shows a substantial improvement in accuracy compared to the n = 59 run level,
with over a 100°F reduction in margin, it still results in a 95/95 value that, on average, is

approximately 100°F higher than the resulting value when using rLHS.

Table 4. 26: MELCOR - Comparison of 95/95 Values for 10* Trials — 93 Runs

9x10rLHS 93 CMC 93 CMC-OS
Mean of 10* 95/95 Values 1527.21 1559.53 1622.69

S.D. of 107 95/95 Values 159.92 191.33 209.85
% Below “true” 5.91% 6.01% 4.92%
Coverage 89.42% 89.64%

Once again, this run level was examined without using repeated output values, by
conducting only 50 trials. The results for this experiment are shown in Table 4. 27, and
like the previous example, they show very little variation from the repeated trial results
(again, the important value is the mean, since the statistical sample for the “% below

true” is small).

Table 4. 27: MELCOR - Comparison of 95/95 Values for 50 Trials — 93 Runs

9x10 rLHS 93 CMC 93 CMC-OS
Mean of 50 95/95 Values 1524.71 1552.93 1623.14

S.D. of 50 95/95 Values 163.16 194.70 218.62
% Below “true” 4.00% 8.00% 6.00%
Coverage 92.00% 88.00%
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These results show a potentially large improvement in accuracy by using rLHS
instead of CMC-OS. This is caused, in part, by the shape of the output distribution. As
Figure 4. 49 showed, the higher quantiles of the output distribution spanned over 1000°F.
Since CMC-OS only uses the top output result, or the second highest result when n = 93,
it could be choosing values which are substantially higher than the true 0.95-quantile.
Figure 4. 7 in Section 4.2.1 showed that CMC-OS is more likely to return a 95/95 value
near the 0.99- or 1.0-quantile at the n = 59 run level. Since those higher quantiles are far
from the 0.95-quantile in this example, CMC-OS induces a large amount of excess
conservatism. This situation is avoided using the asymptotic methods, since the quantile
is estimated directly, and the Cls are calculated using a sample variance which takes into
account more than one point of the output samples. This leaves these methods less

vulnerable to one or two very high output values.

4.4. Discussion

These experiments indicate that rLHS can provide more accurate and precise
confidence intervals for quantiles than CMC-OS. This would mean a reduction in the
probability of both Type-I and Type-II errors. However, the rLHS method is not without
its faults. As several results showed, at low run levels, the method may not have
converged. This can result in too many trials resulting in a 95/95 or 95/75 value falling
below the actual quantile. An interesting point though is that even when this did occur,
the rLHS trial results still did not fall as far below the “true” quantile as some CMC-OS

trials. So it is not possible to say whether this would result in more Type-I errors than
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CMC-OS without knowing the actual location of the safety limit, which will be examined
in more detail in Section 5.

There may be ways to help resolve the convergence issue. Additional experiments
on different types of systems can lead to more guidance about the proper selection of the
parameters of the derivative estimator. Also, it is possible to improve coverage of the
constructed rLHS confidence interval by replacing the normal critical point with a critical
point from a Student-t distribution with m-1 degrees of freedom, where m is the number
of LHS cases. Since the Student-t distribution has somewhat heavier tails than a normal
distribution, this results in slightly wider and more conservative Cls. It may help to
ensure that the number of trials falling below the true quantile does not exceed 5%, but
this will also reduce the accuracy. Lastly, as explained in Section 4.2.2.4, it appears that
conducting more cases of a smaller size (increase m, decrease ¢) aids in the convergence,
since the validity of the CLT requires that the number m of cases grows large.

Specifically, more work should be conducted on how to increase the bandwidth of
the CFD at very low run levels. As several examples showed, the derivative estimation
actually got worse as the number of runs increased because the bandwidth parameters
were changing. One interesting note on this point though is that a better derivative
estimation at low run levels does not necessarily mean better coverage. As the derivative
estimation improves, the width of the CI decreases. This means the quantile estimation
plays a bigger role. If the quantile estimation has not converged, which can be the case at

low run levels, then it will dominate the error and disrupt the coverage level. Even though
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this quantile estimation error is present when the derivative is overestimated, the
increased width of the CI tends to negate the errors caused by the quantile estimation.
Finally, it should be noted that this work in no way challenges the validity of
CMC-OS for the calculation of confidence intervals for quantiles. Conversely, all the
experiments carried out here demonstrated that the results of the CMC-OS did have
~95% confidence of exceeding the desired quantile. However, when estimating a 0.95-
quantile, CMC-OS is vulnerable to returning a 95/95 value which considerably
overestimates the true quantile when the output distribution has a fatter tail at these
higher quantiles. This is a result of CMC-OS only using a single output value to derive a
95/95 value. The further the extremes of the output distribution (i.e. the 0.99-quantile) are
from the 0.95-quantile, the greater the probability that the CMC-OS 95/95 value will be a

greater distance from the 0.95-quantile.

4.4.1. Applicability to OLHC

Given the performance benefits of OLHCs, shown in Section 3, it would be
assumed that the use of OLHCs when establishing CIs for quantiles would also be
superior to ordinary LHS. However, this was not the case. This section details the

experiments conducted, and offers explanations about the cause of the error.

4.4.1.1. Experiments
As with the other methods detailed at the beginning of Section 4, the use of
OLHG:s, using the CI technique in Section 4.2.2.3, was tried on the several representative

systems. Upon starting these tests, problems appeared with the outputs of the OLHC’s
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analyses. As run sizes grew, the confidence levels were not converging properly. Table 4.
28 shows a comparison of the results when using OLHCs to ordinary rLHS for the

nonlinear equation with normal inputs (the rLHS results are the same as in Table 4. 6).

Table 4. 28: Comparison of rLHS and OLHC Results

rLHS OLHC
" =10 =20 =30 ~16 =32
50.23 43.56 45.12 Mean*
8.56 743 8.32 S.D.*
59 5.40 5.40 3278 % Below
9331 93.53 42.52 Covg.
269.15 277.06 29921 Ave. ],
4751 45.56 45.92 4621 47.61
5.10 432 3.92 3.96 3.73
93 4.58 8.51 4.63 3.81 0.44
92.16 88.95 89.40 88.97 84.22
213.45 213.03 218.92 23731 248.06
4638 4526 45.09 45.16 46.62
4.06 3.38 3.33 3.23 321
124 4.15 5.17 5.35 431 0.27
94.64 92.35 92.18 92.27 91.14
233.71 236.20 238.26 259.08 269.03
4376 4291 42.92 42.63 372
1.95 1.47 1.44 1.48 123
311 3.63 537 481 7.71 0.29
93.48 91.69 91.97 90.42 81.97
190.81 186.29 189.13 198.12 180.88
4277 4231 4223 41.87 4323
1.34 1.08 1.02 1.04 0.89
548 430 534 5.40 11.36 0.06
92.20 91.45 91.07 86.95 67.37
174.75 175.02 173.91 179.09 165.49
211 41.83 41.76 41.41 4277
0.95 0.77 0.73 0.74 0.63
1008 539 5.89 5.58 14.83 0.02
90.67 90.18 90.35 83.79 4332
165.82 165.59 165.29 168.15 153.35
41.62 41.48 41.49 41.04 42.53
0.66 0.54 0.52 0.51 0.44
2004 6.15 5.75 4.60 22.03 0.01
89.75 89.76 90.16 7731 12.35

161.92 162.65 161.87 165.30 150.86
* Mean and S.D. of the 10* 95/95 Values
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As the results show, OLHC clearly does not converge to the correct coverage levels, with
a coverage level of ~77% at n = 2004 when t = 16 for OLHC, and a coverage level of
about 12% when t = 32. Also, the trends are not even consistent between the different
run sizes. When t = 16, the percent of trial below true errs to the low side as the number
of runs grows with an increasing percentage falling below the true quantile (22% of trials
when n = 2004), but when t = 32, the percent below true errs on the high side (only
0.01% of trials when n = 2004). Even when the OLHC are close to the correct coverage
levels, the results tend to be worse than with ordinary rLHS.

The use of OLHCs was shown in Section 3 to establish more accurate and precise
quantile estimations than LHS on the same system, and the CIs are based on these
quantile estimations. It would seem that OLHCs should provide more accurate and
precise Cls also, but the results show the opposite. There are several possible
explanations for this phenomenon. The next step was to investigate why this was the

casec.

4.4.1.2. Analysis of Error
First, as mentioned in Section 3, the quantile estimation method used here has not
been proven for OLHCs. Since this has not been proven, OLHCs no longer fall under the
CI proofin Section 4.2.2.3. However, it seems unlikely that this alone is the reason for
the error. As the Section 3 results showed, OLHCs were better at estimating the quantile
values than ordinary LHS. So even if it has not been mathematically proven,

heuristically, the quantile estimation method appears to work fine for OLHCs.
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The second possible reason for the OLHCs lack of convergence could be with
how the actual experiments were carried out. The OLHCs used in the experiments were
based off a larger OLHC design. For example, the 16-run OLHCs were created using a
16- run OLHC that could handle up to 12 possible inputs. This means it had 12 columns.
Since only four inputs were needed for the nonlinear equation, the order of the columns
could be changed to create a new 4-input OLHC design. The number of possible designs

can be calculated using Eq. 85,

n!
(n—n)! Eq. 85

Number of permutations =

where 7 is the number to choose from, and r is the number chosen, as explained in
Section 3. This means there was a total of 11880 possible permutations of the 4-input, 16-
run OLHC design. This may seem like a large number, but remember, each trial consisted
of multiple OLHC cases, each with its own design. Then 10* trials were conducted, so the
number of designs adds up fast. Take for example the 16-run OLHC experiment at the
548-run level. This means each trial consisted of 34 cases (548/16 = 34.25). So 34
OLHC designs were used for each trial, and then this was repeated for 10* trials. This
means, in total, there were 340,000 OLHC designs used. Obviously designs were
repeated, since there were only 11880 permutations possible. Since the designs were
repeated, it is possible that the resulting values could be biased towards those particular
designs. An experiment was conducted to see if this was the case.

If it is true that the only reason the coverage levels are not correct is because of
the repeated OLHC designs, then this problem should not exist if less trials are conducted

and run designs are not repeated. To test this, the 16-run OLHC experiment from Table 4.
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28 was repeated for the 548-run level. This time, a variety of trial sizes was used, starting
with only 100 trials. At the 548-run level, there were 34 cases per trial, so this means a
total of 3400 OLHC designs were used, which is far below the maximum of 11880. This
was then repeated for 200, 500, 1000, 5000, 10000, and 50000 trials. If the repeated
OLHC designs are biasing the result, the coverage level should be correct at the lower
trial levels, and then get worse as the number of trials increases. This test was also
conducted for a 32-run OLHC design at the 311- and 548-run level, in order to make sure

the results were consistent. These results can be found in Figure 4. 50.

Coverage Level
o
~
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Number of Trials
Figure 4. 50: Coverage Level with Differing Trial Numbers

As the figure shows, the coverage levels do not start out at 0.90, and then get worse.

Instead, they remain fairly consistent. This would seem to be a definitive answer. The
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repeated OLHC designs appear to have no effect on the incorrect coverage levels, since
the coverage level is still incorrect even when the designs are not repeated many times.
There must be a separate cause for the incorrect coverage levels.

The third possible explanation has to do with how Cls are established on LHS
designs. Recall from Section 4.2.2.3 that since the results of a LHS design are not i.i.d.,
multiple cases of LHS are used since those multiple LHS designs are i.i.d. because they
are created randomly. There is a difference here between ordinary rLHS and OLHCs. As
explained in the previous paragraph, the OLHC designs are constructed from random
permutations of a larger OLHC design. This could mean that the results of the OLHCs
are not truly i.i.d. If they are not i.i.d., then the resulting values are correlated in some
fashion which violates the derivation in Section 4.2.2.3. More analysis was conducted to
see if this could be the cause.

As shown in Section 3, it is already known that OLHCs provide a more accurate
and precise quantile estimation than ordinary rLHS when using the nonlinear equation
with normal inputs. However, in Section 3, the quantile estimation was made using a
single LHS or OLHC case. This is not how the quantile is estimated for the CI. In Eq. 81,
the quantile is estimated using all the runs from the m number of cases. So even if
OLHC:s provided a better estimation in a single case, they may not provide a better
estimation when combining many cases. A quick comparison of the empirical CDFs
created from combining these cases showed a potential issue. Figure 4. 51 shows this

comparison for rLHS and OLHC trial at the 1008-run level.
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Figure 4. 51: Combined Empirical CDF Comparison

As the figure shows, ordinary rLHS creates a smooth empirical CDF curve, while the
OLHC design creates a curve with several bends or knees. This results in a different 0.95-
quantile estimation for the OLHC method than the rLHS method. To see if this trial was
unique or represented a trend, the quantile estimations over 10" trials was recorded for
each method at each run level. These results can be seen in Figure 4. 52, which shows the

average quantile estimation, over all cases, for 10* trials.

194



42.5

42
c
% —~rLHS (t=10)
£ 415 —=QLHC (t=16)
7 ——rLHS (t=30)
o —~=OLHC (t=32)
= 41 —"True" Quantile
[1+]
=]
2 —
240.5 —
©
[(F]
> —a
<€
40
39.5 ' , L ‘
0 500 1000 1500 2000 2500

Number of Runs (m*t)
Figure 4. 52: Quantile Estimation Convergence Comparison

As the figure shows, even though the two rLHS methods fluctuate some at lower levels,
they converge to the true quantile. However, the OLHC trials do not. They converge to
values above and below the true quantile (which explains why, in Table 4. 28, one
errored to the high side, and one erred to the low side). Clearly, even though OLHCs
performed better when estimating a quantile using a single case, they will incorrectly
estimate a quantile when combining cases. Why this is the case is not yet exactly known,
but as explained above, it is most likely related to the OLHCs not being completely
independent and identically distributed. More work is needed to see if this is in fact the

only cause of error, and if so, whether there is a method that can be used to establish Cls

with OLHCs.
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4.4.2. Application to Risk-Informed Safety Margin Characterization

As mentioned in Section 2.1.1, there has been recent work investigating the use of
a Risk-Informed Safety Margin Characterization (RISMC), depicted in Figure 2. 3. While
this may seem like a radically different approach to safety margin calculation, the
methods used to demonstrate adherence to the goal may not change. As shown in Figure
2. 3, the RISMC is a comparison between a capacity curve and a load curve. The most
straightforward way to estimate the risk of failure would be to calculate an overlap
coefficient (OVL) [112]. The OVL is an indicator of how much the range of the two
distributions overlap. While recent work has been done in this field to investigate
techniques to establish CIs [113], the fact that the distributions in this analysis are
empirically derived and not standard distributions, like a normal or exponential, makes
finding this coefficient more complicated. Other work has focused on nonparametrics
[114][115], but the problem here remains difficult since the comparison is between the
extremes of the two distributions, which are not easy to characterize without many runs
being conducted. Instead, the use of quantiles may accomplish the same goal, but in a
way that is easier to implement.

For example, if physical or computational experiments were conducted to
determine the capacity of the system, this would result in a distribution similar to the one

found in Figure 4. 53 (although it is unlikely to resemble a normal distribution).
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Figure 4. 53: Capacity Distribution

From there, the rule-making body, which is this case is the regulator, could specifying the
amount of overlap between this curve and the load curve in different ways.

The first, and easiest, possible comparison is to choose a low quantile of the
capacity curve, and a high quantile of the load curve, and check to make sure the low
quantile of the capacity curve is at a higher value. Since this is done using empirical data,
OSClIs can be used in place of the direct quantile estimation. Figure 4. 54 shows how a
OSCI (or credible interval if the data is from many sources) could be found for the low

quantile (in this case the 0.05-quantile) of the capacity curve.
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Figure 4. 54: Capacity Distribution with Example Limit

Then this value could be compared to an upper OSCI for a high quantile on the load

distribution, which would be found by a utility, as seen in Figure 4. 55.

Load Upper OSCI on Capacity
0.95-Quantile

Lower OSC/ on,
0.05-Quantile

Estimated
0.05-Quantile

Estimated
0.95-Quantile

Figure of Merit Scale

Figure 4. 55: Capacity versus Load with OSCI’s

If the upper OSCI of the 0.95-quantile of the load is below the lower OSCI of the 0.05-

quantile of the capacity, then the system passes the test. This comparison is essentially
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the same as placing a limit on the amount of overlap between the two curves. However,
unlike the OVL, estimating these quantiles does not require the extremes of the two
distributions to be characterized in great detail.

The second possible technique would be to specify a low quantile on the capacity
curve, as before, and then attempt to calculate how much of the load curve is above that

limit. Figure 4. 56 shows what this would look like.

Load Capacity

Estimated
0.05-Quantile

0.05-Quantile

Overlap Area

Figure of Merit Scale

Figure 4. 56: Comparison with Low Quantile and Overlap

This would be done by interpolating the quantile of this value on the load distribution.
For example, the limit value (the OSCI for the 0.05-quantile) may fall between the 0.93-
and 0.94-quantiles of the load distribution. A limit could be placed on how much overlap
would be permitted. This is easier than a direct calculation of the overlap of the two
distributions because the comparison is made to a single value. However, this procedure

becomes essentially the same as the comparison of quantiles in the previous paragraph.
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The only difference is that the amount of overlap is computed then compared to the limit
on that amount, and the previous method uses the maximum amount of overlap (which in
that case was the 0.95-quantile) and compares it directly, but the end result would be the
same.

Lastly, the previous method could be restated in terms of probability. This method
is investigated in detail in Section 5. As will be shown, this method will also directly find
the probability of overlap between the values, and Cls can be established on this

probability.

4.4.3. Adding Cases and Possibility of Error

When using the rLHS method, multiple cases of LHS runs are performed. Unlike
CMC-OS, there is no set number of total runs that needs to be conducted. This means,
using rLHS, an analyst would perform some number of LHS cases, and then analyze the
results to find a OSCI and compare it to a regulatory limit. However, an analyst could
always add another LHS case to the results and reanalyze the results. This may be a cause
of concern among some regulators, who think that analysts will try to “game” the system,
or in other words, if the initial conclusion is not the desired result, they will continue to
take LHS cases in the hopes that the next result will be more favorable. Obviously, this is
possible, but how large is the danger associated with it?

To test this, an experiment was conducted using the nonlinear equation with
normal inputs (described in Section 3.2.2), in order to discover the consequences of
adding additional LHS cases. An initial trial was conducted of m = 6 cases of t = 10

runs (60 runs total). Using this data, a 95/95 value was found, and compared to a pseudo
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limit value placed at 40.5, which is just below the 0.95-quantile of 40.646. The limit
value being placed here meant that the system should not pass the test since the limit is
below the 0.95-quantile. This is a very challenging experiment since the limit and 0.95-
quantile are so close. From there, the conclusion of pass or fail would be recorded, and
then an additional LHS case of 10 runs would be added to the results (70 runs total), and
the conclusion would be analyzed again. From there, the amount of times the correct
conclusion was reached at each step could be compared.

First, Table 4. 29 shows the conclusion probability results for this analysis for 10*
trials. Here, the likelihood of getting the correct conclusion increases as the extra LHS

case is added, which is to be expected.

Table 4. 29: Conclusion Probabilities for 10* Trials

. After 60 runs After additional
Conclusion

(m=6, t=10) 10 runs (70 total)
Fail Test 9525 9730
Pass Test 475 270

The real question is how many of the 9525 trials which appeared to fail the test at the 60
run level, would incorrectly appear to pass the test after the extra cases was added. Table
4. 30 has these results, which show that of the 9525 trials which initially failed the test,
only 28 would switch to a pass after the addition of an extra case. This means there was

only a 0.3% chance of success using this method to “game the system.”
y g g Y
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Table 4. 30: Conclusion Probabilities after Initial Failure Conclusion

Conclusion After 70 runs
Fail Test 9497

Pass Test 28

Total 9525

This probability may seem low, but a better comparison would be against CMC-
OS, since it is also possible to conduct additional runs in the hopes of getting a different
result. For example, if an analyst conducted 59 runs to determine a 95/95 value, and this
value failed against a safety limit, an additional 34 CMC runs could be conducted to
achieve the next highest run level, 93. Then the results could be tested again.

The framework from the previous example was repeated, but in this case, 60
rLHS runs were conducted, than an additional three LHS cases of 10 runs were added.
This was compared against CMC-OS at 59 runs, then at 93 runs. Table 4. 31 shows the

conclusions percentages after each step for 10* trials.

Table 4. 31: Comparison of Conclusions between CMC-OS and rLHS for 10* Trials

CMC-0S rLHS
. After additional After 60 runs After additional
Conclusion  After SYRuns 34 p 16 03 total)  (m=6, =10) 30 runs (90 total)
Fail Test 9510 9535 9538 9600
Pass Test 490 465 462 400

As the results show, at ~60 runs, rLHS is slightly more accurate, with 9538 trials

resulting in the correct conclusion, compared to 9510 with CMC-OS. However, once
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again the question is how many of these trials that initially showed a failure (which is
correct), became a “pass” when the additional runs were added. Table 4. 32 shows these
results. For CMC-OS, of the original 9510 failure trials, 230 concluded that the system
passed after the 34 runs were added. That is ~2.4%. For rLHS, 219 of the 9538 trials
went from failing to passing, or ~2.3% (the reason this percentage is higher than the 0.3%
when adding only one additional case, as shown in Table 4. 30, is because as more cases
are added, the influence of the initial cases is reduced, so the correlation between the
original conclusion and the new conclusion becomes smaller). So even though it is
possible to try to beat the system using both methods, it appears to not be any more likely

to occur with rLHS than with CMC-0OS.

Table 4. 32: Conclusion Probabilities at ~90 Runs after Initial Failure Conclusion

Conclusion CMC-0S rLHS
Fail Test 9280 9319
Pass Test 230 219

Total 9510 9538
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Chapter 5: Quantiles vs. Probability

Even though the current NRC-approved method of satisfying the probability
requirement in [74] is to establish confidence intervals for quantiles, there may be
alternatives. The most literal interpretation of the NRC requirement would be to establish
confidence intervals for a probability, rather than a quantile. This may seem like restating
the same thing, but there are differences between the two statements.

By establishing a confidence for a quantile, a statement is being made about the
location of that particular parameter of the output distribution. For a safety analysis, this
value is found, then used to compare against the safety limit. However, finding a
confidence for a probability combines these two steps. Here, the probability of the output
exceeding the safety limit is found directly, and then a confidence is found on that
probability.

In terms of hypothesis testing, it is similar to the framework laid out in Section 4,
but involves the use of a different test statistic. So even using the same data, the
probability method (P-method) and quantile method (Q-method) may produce different
conclusions. More detail on this hypothesis test, along with methods to find these

asymptotic confidence intervals for a probability are described in the next section.
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5.1. Methods

As in Section 4.2, suppose there is a system with output ¥ and CDF F. Unlike
Section 4, the goal here is to estimate the probability of the output Y being less than a
constant b (the limit value). To state this more rigorously, take 6 to be this probability,
where 8 = P(Y < b) = F(b), and assuming 0 < 6 < 1. If 6 is greater than 0.95, that
means there is a greater than 95% probability that the output Y is less than the limit value
b. In order to satisfy a 95/95 criterion, the goal is to provide a 95% lower OSCI (LOSCI)
for 6. So if (L, +0) is a 95% LOSCI for 6, the 95/95 criterion is satisfied if L = 0.95.
This means there is a 95% confidence that there is at least a 95% probability that the limit
value will be greater than the output of the system. The derivation of the methods in

Sections 5.1.1, 5.1.2, and 5.1.3 are summarized from [116].

5.1.1. CMC using Probability Method

This task can be accomplished using CMC since 8 = E[I(Y < b)], so it can be
estimated using a sample average, and the LOSCI is the same as when estimating the
mean. IfY;, Y, ..., Y, are i.i.d. samples from the CDF F, as in Sections 3 and Section 4,
letV; =1(Y; < b),soV;,V,, ..., V, are also i.i.d., with mean 8. Therefore, the sample

average V;, can be found using Eq. 86.

1 n
o = EZVL' Eq. 86

L N -y
PR Eq. 87



The LOSCI for 6 can be found in Eq. 88,

_ S.
(- o)

Jn Eq. 88

where z is the standard normal critical point for the confidence level desired, as before.
This method is asymptotically valid since the sample average V, satisfies the CLT in Eq.
89,

Vn(V, — 6) = N(0,0?) Eq. 89
as n — oo, and the sample standard deviation S,, = g asn — oo.

As in the previous sections of this work, an example of how this technique can be
implemented in a computer code can be found in Figure 5. 1, where /imit is the safety
limit, and NN is the normal critical point for the desired confidence level. This code
compares each output value to the limit value, in order to calculate V;, called ¥, and V/,,

called V_bar. These values are then used to find the root of the sample variance S,,, called

Sn. Finally, the probability plus confidence is found.

%%% CMC P-Method

V=(Y <= goal); % V Calculation using Indicator Fun.
V_bar=mean (V) ; % V_bar calculation

Sn=sqrt ((1/(n-1))*sum((V-V_bar).”2));% Sn Calculation

prob_w conf=V bar-NN* (Sn/sqrt(n)); % Final Prob. with Confidence

Figure 5. 1: MATLAB Code Implementation of CMC Probability Method

5.1.2. rLHS using Probability Method
As in Section 4, a different method must be used to find a confidence interval for

a probability using LHS. Once again, this is due to the fact the outputs of the LHS design
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are not i.i.d. Therefore, a new approach is needed to find a sample average, which can be
used to satisfy a CLT. As before, this is done by taking multiple cases m, each with ¢
number of runs. Since the m cases are generated independently, their outputs can used to
create a sample average.

Here, Eq. 90 shows how the average value for VV can be found for one LHS case.

The nomenclature is the same as before, where V; ; is the ith output from the jth LHS

case,and V;; = I(Y;; < b).

t
1
W) = ?ZVH Eq. 90
i=1

Then Eq. 91 shows the sample average of the case averages W, (t), W, (t), ..., W, (t),

which are 1.1.d.

1 m
mt = EZWJ'(O Eq. 91
J=

Eq. 90 and Eq. 91 can be simplified to Eq. 92, which shows that W,,, , is the sample

average over all V; ;.

m ot m ot
Fone = D 0 Vs =g 0 1
Mt ity Y T o mela s Eq. 92

Since each Y; ; ~ F, the expected value of Win¢ is still 8, as with the CMC example. This

can be seen in Eq. 93.
t

m m
1 1 1
- 2515 e - 25
miat mt £ ¢

t
j=1 i=1 j=1i=1
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The sample variance S,Zn,t can be found using the sample average W,,, , and the value of

W;(t) from each of the m cases, as seen in Eq. 94.

m
She = ﬁ;wj(t) W) Eq. o4
From there, a CLT can be satisfied with either m — oo with ¢ remaining fixed, or
with t — oo as m remains fixed. Practically, it is easier to implement the method with ¢
remaining fixed (since the LHS design must be made with the value for  known
beforehand), so that will be the method detailed here. Since 0 < V; ; < 1, then 0 <
W;(t) < 1, as seen in Eq. 90. Also, since W;(t) is bounded, it must have finite variance.
Since W, (t), W, (t), ..., W, (t) are i.i.d., the CLT in Eq. 95 holds
V(W = 6) = N(0,07) Eq. 95
as m — oo with ¢ fixed. Since 0 < 8 < 1 is assumed, it ensures that g2, or the sample

variance Sp, ; is strictly positive. Then an asymptotically valid LOSCI can be found in

Eq. 96,

_ S
(Wm,t - Zl’t, +OO)

vm Eq. 96

as m — oo with fixed ¢, and S,,, s = 0, as m — oo with fixed ¢.
This method can be implemented using the following computer code in Figure 5.
2, where again /imit is the safety limit, and NN is the normal critical point for the desired

confidence level. Here, the code cycles through each LHS case, calculating V; ;, and

W;(t) in Eq. 90, called V_bar, since it can also be viewed as the average value of V; ; for
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that particular LHS case. This is then used to find W,,, ;, called W_bar, and the root of the

variance Sy, ¢, called Smt.

%$%% rLHS P-Method

for j=1:m % For each LHS case
V(i)=(Y(3,:) <= goal); % V for the runs in that LHS case
V_bar(j)=mean(V(j)); % V_bar for that LHS case

end

o\

W bar Calculation
Smt Calculation
Final Prob. with Confidence

W _bar=(1/m)*sum(V_bar) ;
Smt=sqrt((l/(m—l))*sum((V_bar—W_bar).A2));
prob w _conf=W bar-NN* (Smt/sqgrt (m));

o\

o\

Figure 5. 2: MATLAB Code Implementation of rLHS Probability Method

5.1.3. Probability Test Statistic and Hypothesis Testing

As described at the start of Section 5, using the P-method is another way to
perform the hypothesis test described in Section 4. The only difference is the test statistic
used in the calculation. Rewording Eq. 89 gives

n _
g(vn — ) ~ N(0,1) Eq. 97

as n = oo, where 0, is the probability of the output Y exceeding the limit value b, and &
is the estimator of the variance of Y, and can be found from Eq. 87. Using the CLT, the

LOSCI for 8, which will be denoted L, would equal

&
N Eq. 98
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where z is the standard normal critical value for that confidence level. In order to satisfy
the 95% confidence for the 95% probability criterion, L = 0.95. The hypothesis test
choices are straightforward.

Ho: 6, < 0.95

Hi: 6, = 0.95

The scenario where Hj is rejected can be described by rearranging Eq. 98,

iect Hy if and only if V, —0.95 -
reject Hy if and only if ———— >z
ject Ho P YN~ Eq. 99
which is equivalent to L > 0.95. Similarly,
¢ H if and onl .an—0-95<
acce if and only if ——— <z
Pt Ho P YN~ Eq. 100

which is the same as L < 0.95.

Obviously, one big drawback with the P-method compared to the Q-method is
that there is no information regarding the margin to the limit value in terms of the figure
of merit. While the analyst will know the probability margin, it can be hard to translate
this back into the output units. However, the Q-method from Section 4 can be applied to
the data also in order to get this information if it was desired, since both methods are

conducted post-process.

5.2. Experiments
For this analysis, the nonlinear equation, using both normal and non-normal
inputs, and the LOCA response surface were used to provide a comparison between the

P- and Q-method. Only these systems were used because there were many different types
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of confidence techniques to implement, so it was necessary to use system which that were

not computationally intensive.

5.2.1. Nonlinear Equation

5.2.1.1. Normal Inputs

Once again, the first system to be used in the analysis was the nonlinear equation
with normal inputs, detailed in Section 3.2.2. Here, the result of interest was the
percentage of correct conclusion, or the percent of trials where the analyst would arrive at
the correct decision regarding whether the system satisfied or violated a limit. This test
was done by assigning arbitrary limits at certain quantiles of the output distribution. In a
real analysis, the limit value would not be derived from the output distribution, but would
be set by the regulator according to some certain safety constraints. However, this was
done here so that consistent limits could be examined across multiple systems. When
estimating a 95% confidence for a 0.95-quantile (Q-method) or 95% confidence for a
95% probability (P-method), the results were compared to a limit value at the 0.90-
quantile of the output distribution, and at the 0.98-quantile. When estimating a 95%
confidence for a 0.75-quantile or 95% confidence for a 75% probability, the results were
compared to a limit value at the 0.70- and 0.80-quantile of the output distribution, since a
limit at these values would be close to the true 0.75-quantile, and present a challenging
test situation.

The first experiment compared a 95% confidence for the 0.95-quantile or for the

95% probability to a limit value at the true 0.90-quantile. Figure 5. 3 shows where the
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true 0.95-quantile and limit value lie on the output distribution. Here the correct
conclusion of the analysis is that the system fails the test, since the true 0.95-quantile is

higher than the limit at the 0.90-quantile.
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Figure 5. 3: Comparison of Limit and 0.95-Quantile

Since the limit value is below the 0.95-quantile, there are only two possible
conclusions: correctly identifying that the system fails the limit, or conversely,
incorrectly finding that the system is under the limit. This means the only error possible is
a Type-I error, a false positive. This will occur when the result of the analysis falls below
the limit value in the case of the quantile analysis, or when the probability of falling
below the limit is above 0.95 in the case of the probability analysis. The possible

outcomes using Q-method are shown in Figure 5. 4. As this figure shows, the 95% OSCI
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could fall below the true 0.95-quantile value and still result in the correct conclusion. It is
the distance which the 95/95 value falls below the true 0.95-quantile that will determine

whether a Type-I error occurs.
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Figure 5. 4: Limit Value with Possible Conclusions

It is a similar situation for the P-method, where the correct probability outcome is 90%.
Even if the probability outcome is over 90%, an error will only occur if the outcome is
> 95%.

Since there is a 95% confidence in the result of either analysis technique, the
value for a, the probability of Type-I errors, is bounded at 5% (assuming the asymptotic

methods have converged properly). However, how close « is to 5% depends on the
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accuracy and precision of the analysis. The more accurate and precise the method, the
smaller the value for a will be. For this experiment, 10* trials were conducted with each
method. The results of this analysis can be seen in Figure 5. 5. Here, the five methods
compared are:

1. rfLHS: 95% OSCI for 0.95-quantile (Q-Method)
2. rLHS: 95% LOSCI for probability (P-Method)
3. CMC: 95% OSCI for 0.95-quantile (Q-Method)
4. CMC: 95% LOSCI for probability (P-Method)
5. CMC-OS: 95% OSCI for 0.95-quantile

Each method was tested at several different run levels (59, 93,124, 311, 548, and 1008),
with 10" trials being conducted at each run level. As the figure shows, all methods had
Type-I errors occur less than 5% of the time, with rLHS using the Q-method committing
the least amount of errors. rLHS using the P-method was a close second, followed by
CMC using the Q-method and CMC-OS. CMC using the P-method was by far the worst

performer.
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Figure 5. 5: Type-I Error Percentage for 10* Trials — 0.90-Quantile

The numerical results can be found in Table 5. 1, where the percentage of Type-I
errors is given. Since the error percentage was so low, the test was repeated with the limit
at the 0.94-quantile, which was a more challenging scenario. These results can be seen in
Table 5. 2. Here, the trends from the 0.90-quantile limit continue, with the rLHS Q-
method being the best performer, and the Q-method, in general, outperforming the P-
method. The P-method also appears to take a longer time to converge, with several
values exceeding the upper-bound of a for a properly converged OSCI of 5%, such as

with CMC at n = 59 (12.6%) and rLHS with t = 20 and n = 93 (13.8%)).
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Table 5. 1: a Percentage — Nonlinear Eq. Normal Inputs — 0.90-Quantile

rLHS
CMC Q-Method P-Method

n* CMC-OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30
59 0.15 0.15 1.51 0.01 0.0 X 0.12 0.24 X
93 0.04 0.08 0.27 0.0 0.0 0.0 0.0 0.12 0.01
124 0.03 0.04 0.11 0.0 0.0 0.0 0.0 0.01 0.0
153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
311 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1008 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

*10* Trials per run level

Table 5. 2: a Percentage — Nonlinear Eq. Normal Inputs — 0.94-Quantile

rLHS
CMC Q-Method P-Method
n* CMC-0OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30
59 2.45 2.72 12.60 2.10 1.63 X 5.57 2.95 X
93 2.54 2.97 7.70 1.23 2.05 0.97 3.56 13.8  4.66
124 1.74 2.93 5.36 1.37 1.53 1.66 2.04 4.23 1.95
153 0.87 1.55 1.85 0.61 0.41 0.44 0.79 0.42 0.58
311 0.44 0.88 0.84 0.16 0.14 0.18 0.14 0.15 0.10
1008 0.15 0.27 0.29 0.05 0.01 0.03 0.04 0.0 0.01

*10* Trials per run level

In the next analysis, the limit value was placed at the true 0.98-quantile, which
meant the system should pass the test since the limit is above the true 0.95-quantile. Here,
the two possible conclusions are that the system correctly passes the test, or committing a
Type-II error, a false negative, where the system does not appear to pass the test. Figure
5. 6 shows the possible conclusions and their related intervals. As the figure shows, if the
95% OSCI for the 0.95-quantile falls below the true quantile, there is no error. However,
there is very little room to over-estimate the quantile. If the 95% OSCI for the 0.95-

quantile falls above 48.453, the analyst will commit a Type-II error.
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Figure 5. 6: Limit Value with Possible Conclusions

In respect to the probability method, the correct probability outcome should be 0.98.
However, as long as the outcome result is greater than 0.95, the system will still pass the
test.

The results of this analysis can be found in Figure 5. 7, with numerical results in
Table 5. 3, which gives the percentage of Type-II errors out of 10* trials. In this case, the
P-method using both rLHS and CMC outperforms the other techniques, with about a 50%
reduction in errors at n = 59 compared to the Q-method results. Using rLHS with the Q-
method achieves fewer errors than CMC using the Q-method at every run level, and

CMC-O0S, which performed the worst and resulted in f = 70% when the run level was
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59. This means only ~30% of the time would the analyst have correctly concluded that

the system should pass the test.
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Figure 5. 7: Type-II Error Percentage for 10* Trials — 0.98-Quantile

Table 5. 3: § Percentage — Nonlinear Eq. Normal Inputs — 0.98-Quantile

rLHS
CMC Q-Method P-Method

n* CMC-0OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30
59 69.68 64.60 33.17 50.19  40.71 X 3552 36.74 X
93 56.70 47.89 29.23 35.71 19.74 2212 26.86 16.74  10.00
124 46.05 332 24.79 18.76  9.33 7.58 21.62 19.11 12.23
153 9.34 5.93 5.09 1.53 0.08 0.05 1.52 0.12 0.08
311 0.92 0.65 0.44 0.05 0.0 0.0 0.06 0.0 0.0
1008 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

*10* Trials per run level

This analysis was repeated for the 0.75-quantile, and a limit value placed at the

0.70-quantile. The outcomes of this analysis are similar to the ones described in Figure 5.
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4, where only a Type-I error is possible. For these tests, the following run levels were
used: 11, 29, 40, 135, 246, 459, and 886. These results can be found in Figure 5. 8 and
Table 5. 4. As the figure shows, even though the value for « is bound at 5%, the P-
method results have values greater than 5%. This is because, at the lowest run level, only
11 runs were conducted. This may be too small for some of the asymptotic methods to
converge, which is why the a error percentage is greater than 5%. At the next highest run
level, all the methods are correctly under 5%. As the results show, rLHS using the Q-
method is once again the best performer with very few Type-I errors (under 0.5% when
using rLHS and t = 5). This is similar to the 0.90-quantile limit value results in Figure 5.

5.
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Figure 5. 8: Type-I Error Percentage for 10* Trials — 0.70-Quantile
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Table 5. 4: a Percentage — Nonlinear Eq. Normal Inputs — 0.70-Quantile

rLHS
CMC Q-Method P-Method
n* CMC-OS Q-Method P-method t=5 t=10 t=15 t=5 t=10 t=15
11 2.07 2.61 11.37 0.44 X X 22.51 X X
29 1.16 1.34 3.80 0.30 0.29 7.34 1.89 0.29 2.38
40 0.85 1.24 2.35 0.10 0.28 3.44 0.81 0.28 0.30
135 0.17 0.21 0.27 0.0 0.0 0.01 0.02 0.03 0.03
246 0.03 0.05 0.05 0.0 0.0 0.0 0.0 0.0 0.0
459 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
886 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

*10* Trials per run level

This analysis was repeated using a limit at the 0.80-quantile, which is similar to
the situation presented in Figure 5. 6, where only a Type-II error is possible. The results
are presented in Figure 5. 9 and Table 5. 5. Here, rLHS using the Q-method and CMC-
OS are at the same level for f when n = 11, but the rLHS method quickly outperforms
the CMC-OS method as the number of runs increases, and convergence improves. The P-
method begins as the best performer, but soon becomes essentially equivalent to the Q-
method. Once again, these discrepancies at the lowest run level are a consequence of non-
convergence at 11 runs. It is important to note the drastic improvement in correct
conclusion when using the rLHS methods at the intermediate run levels, when compared
to the CMC methods. At n = 246, the LHS methods are below 10% error, while the

CMC methods are at 30-40%.
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Figure 5. 9: Type-II Error Percentage for 10* Trials — 0.80-Quantile

Table 5. 5: § Percentage — Nonlinear Eq. Normal Inputs — 0.80-Quantile

rLHS
CMC Q-Method P-Method

n* CMC-0OS Q-Method P-method t=5 t=10 t=15 t=5 t=10 t=15
11 91.11 88.06 67.79 92.35 X X 53.05 X X

29 86.09 82.77 71.75 74.23 66.2 47.12 64.29 55.37 48.61
40 83.84 78.69 71.02 67.07 59.39 53.91 60.82 65.51 62.18
135 62.28 57.59 53.33 29.50 17.40  23.64 2636 21.59 23.42
246 41.24 37.39 35.05 7.39 5.54 4.75 8.82 591 6.25

459 15.88 16.92 15.88 0.49 0.25 0.22 0.54 034 0.25

886 2.57 2.59 2.57 0.0 0.0 0.0 0.01 0.0 0.0

*10* Trials per run level

5.2.1.2. Non-normal Inputs
These tests were repeated for the nonlinear equation with non-normal inputs
detailed in Section 3.3.1.2. Here, only the numerical results are presented, with Table 5. 6

containing the results for a limit value at the 0.90-quantile, and Table 5. 7 containing the
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results for a limit value at the 0.94-quantile. The trend from the example with normal
inputs continues, with the Q-method outperforming the P-method when the limit value is
less than the 0.95-quantile, with essential zero errors for the Q-method when the limit
was at the 0.90-quantile, and less than 3% errors with a limit at the 0.94-quantile. Also,
rLHS continues to incur less Type-I errors than the CMC-OS approach. As with the
previous example, it appears that the P-method takes longer to converge, with several

results over the bound of 5%, when the limit is placed at the 0.94-quantile.

Table 5. 6: a Percentage — Nonlinear Eq. Non-normal Inputs — 0.90-Quantile

rLHS
CMC Q-Method P-Method

n* CMC-OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30
59 0.16 0.20 1.29 0.0 0.0 X 0.01 0.0 X
93 0.06 0.09 0.32 0.0 0.0 0.0 0.0 0.11 0.0
124 0.01 0.0 0.06 0.0 0.0 0.0 0.0 0.01 0.0
153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
311 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1008 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

*10* Trials per run level

Table 5. 7: a Percentage — Nonlinear Eq. Non-normal Inputs — 0.94-Quantile

rLHS
CMC Q-Method P-Method

n* CMC-0OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30
59 2.82 3.04 12.91 221 1.64 X 492 1.45 X
93 2.22 2.99 7.74 1.13 2.26 0.60 2.67 18.25 3.72
124 1.86 2.98 5.25 1.87 2.06 1.78 1.77 7.15 1.22
153 1.04 1.70 2.05 0.42 0.41 0.34 0.55 026  0.27
311 0.47 0.90 0.86 0.17 0.14 0.09 0.17 0.11 0.05
1008 0.19 0.30 0.31 0.02 0.0 0.0 0.03 0.0 0.0

*10* Trials per run level

This test was repeated for a limit at the 0.98-quantile, with the results in Table 5.

8. Once again, the error percentages are very high at low run levels (greater than 30% for
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all methods), but the P-method incurs about half as many errors as the Q-method, which
is consistent with the previous example. Also, rLHS using the Q-method greatly

outperforms CMC-OS with about a 40% reduction in errors.

Table 5. 8: § Percentage — Nonlinear Eq. Non-normal Inputs — 0.98-Quantile

rLHS
CMC Q-Method P-Method

n* CMC-OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30
59 70.10 70.21 33.57 41.61 28.18 X 34.08 35.10 X
93 56.82 52.80 29.53 36.36 16.12  20.79  25.68 18.01 17.57
124 46.39 40.28 24.21 21.36 8.27 7.45 20.77  20.60 19.62
153 10.47 10.17 5.39 2.25 0.19 0.15 1.39 020  0.29
311 1.03 1.04 0.62 0.08 0.01 0.0 0.03 0.02 0.0
1008 0.02 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0

*10* Trials per run level

As before, these tests were repeated for the 0.75-quantile, with results in Table 5.
9 and Table 5. 10. The trends established before continue, with the Q-method being the
best performer when the limit is below the estimated quantile, and the P-method
performing better when the limit is above the estimated quantile. What is also interesting
to note is that for this system, rLHS using the Q-method did not commit any errors when
the limit was at the 0.90- or 0.70-quantile, and it was the only method to not contain any
errors. In the case of the 0.70-quantile, this is most likely a result of convergence issues at
the n = 11 run level. As the results in Section 4 showed, at this run level, the number of
trials falling below the true quantile was much less than 5%. The results in Table 5. 10
appear to confirm this since, at n = 11, rLHS using the Q-method has the highest error

rate, but at every other run level, rLHS is much better than the CMC methods (such as at
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n = 135, where rLHS using the Q-method and t = 5 has a 5.89% error probability,

compared to 61.78% using CMC-0OS).

Table 5. 9: a Percentage — Nonlinear Eq. Non-normal Inputs — 0.70-Quantile

rLHS
CMC Q-Method P-Method

n* CMC-0OS Q-Method P-method t=5 t=10 t=15 t=5 t=10 t=15
11 1.85 6.83 11.24 0.0 X X 24.20 X X
29 1.11 4.96 3.72 0.0 0.0 1.91 1.64 0.17 0.04
40 1.03 4.33 2.66 0.0 0.0 1.32 0.43 0.05 0.0
135 0.13 0.46 0.33 0.0 0.0 0.0 0.0 0.0 0.0
246 0.04 0.14 0.09 0.0 0.0 0.0 0.0 0.0 0.0
459 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
886 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

*#10* Trials per run level

Table 5. 10: § Percentage — Nonlinear Eq. Non-normal Inputs — 0.80-Quantile

rLHS

CMC Q-Method P-Method
n* CMC-0OS Q-Method P-method t=5 t=10 t=15 t=5 t=10 t=15
11 91.48 78.04 67.90 96.53 X X 2239 X X
29 86.10 68.76 71.79 63.26  57.38 19.44 32,10 3022 29.52
40 83.36 64.05 71.32 43.80 35.12  28.05 38.36 39.01 40.04
135 61.78 53.07 53.64 5.89 0.78 1.23 3.21 1.51 1.10
246 41.19 34.46 35.84 0.20 0.03 0.0 0.28 0.07  0.03
459 16.27 16.48 16.27 0.0 0.0 0.0 0.0 0.0 0.0
886 3.01 2.69 3.01 0.0 0.0 0.0 0.0 0.0 0.0

*#10* Trials per run level

5.2.2. LOCA Response Surface

Lastly, the tests were repeated using the LOCA response surface detailed in
Section 3.2.3. Here, the complete list of results presented in Table 5. 11. A closer
examination of these results shows the same trend as the two previous examples. The Q-
method incurs fewer errors when the limit is below the estimated quantile, and the P-

method incurs fewer errors when the limit is above the estimated quantile. Also, the rLHS
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approach using the Q-method consistently outperforms CMC-OS. It should be noted that
for the 0.94-quantile, the CMC-OS method appears to have less errors than the rLHS Q-
method, but if the results from Table 4. 18 are viewed again, it shows that the rLHS Q-
method had over 6% of trials below the true quantile, which means there were
convergence issues at low run levels for that design. This discrepancy disappears at the
next highest run level, and the r(LHS and CMC-OS methods end up essentially
equivalent. Once again, when the limit value is above the true quantile, the improvement
when using the rLHS methods can be very large, with an approximately 50% reduction in

errors when compared to the CMC methods.
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Table 5. 11: Incorrect Conclusion Percentages — LOCA Resp. Surf.

rLHS
CMC Q-Method P-Method

n* CMC-OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 =30
0.90-Quantile

59 025 0.24 1.45 0.06 0.08 X 0.33 0.15 X
93  0.07 0.04 0.31 0.04 0.03 0.02 0.08 0.52 0.06
124  0.02 0.01 0.14 0.01 0.02 0.01 0.02 0.01 0.02
153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
311 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1008 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.94-Quantile

59 2091 2.81 11.85 3.10 4.35 X 7.23 6.81 X
93 2.15 2.45 7.36 2.01 4.54 3.88 5.11 1041 6.82
124 1.64 2.72 5.31 2.24 3.11 4.00 3.67 3.17 2.63
153 0.76 1.43 1.67 0.94 1.02 1.37 1.19 1.03 1.31
311 044 0.63 0.89 0.30 0.45 0.32 0.31 0.41 0.35
1008 0.14 0.29 0.27 0.07 0.06 0.06 0.04 0.04 0.04
0.98-Quantile

59  69.52 68.67 33.62 51.35 4493 X 3446 34.40 X
93  56.59 50.46 29.05 4232 3336 3598 2747 23.15 28.08
124 45.29 39.46 23.26 28.99 23.37 23.05 2234 26.06 30.70
153  9.97 8.67 4.82 3.78 1.93 2.48 2.33 2.34 2.41
311 0.80 0.60 0.35 0.15 0.17 0.16 0.11 0.14 0.13
1008 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.70-Quantile =5 t=10 t=15 =5 =10 t=15
1 213 4.51 11.11 0.39 X X 22.28 X X
29 1.19 3.81 3.94 0.62 0.54 7.79 1.40 1.70 2.34
40 0.64 2.60 2.01 0.60 0.87 3.17 0.57 0.47 0.34
135 0.18 0.27 0.31 0.01 0.01 0.0 0.03 0.0 0.0
246 0.02 0.07 0.09 0.0 0.0 0.0 0.0 0.0 0.0
459 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
886 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.80-Quantile

11 91.48 85.32 68.63 91.43 X X 55.19 X X
29 86.13 75.88 71.96 6739 6472 4747 6642 58.70 50.53
40 83.73 72.77 71.50 5571  53.75 50.65 62.06 68.99 64.39
135  61.68 60.50 53.14 33.40 21.27 28.19 2931 2577 25.85
246  40.98 40.89 34.97 1090 8.15 7.22 10.88  8.05 8.43
459 1542 18.92 15.42 1.04 0.59 0.65 1.10 0.57 0.56
886 2.79 3.27 2.79 0.02 0.0 0.01 0.0 0.0 0.0

*10* Trials per run level

5.3. Analysis of Results

As the results show, the Q-method appears to outperform the P-method when the

limit value is less than the estimated quantile, but the P-method performs better when the
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limit value is above the estimated quantile. The following calculations in Sections 5.3.1,

5.3.2, and 5.3.3 are summarized from [116], and shed light on why this is the case.

5.3.1. P-Method Analysis

To compare the Q-method and P-method, define the quantile level ¢ with
0 < g <1, and let the limit value b = b, = F~1(q). So when g < 0.95, the correct
conclusion will be accepting Hy, or that the system should not pass the test, since the limit
b is below the true 0.95-quantile. When q > 0.95, the correct conclusion is to reject Hy,
meaning the system passes the test, since the limit b is above the true 0.95-quantile.

For the P-method, when g < 0.95, the correct conclusion occurs when L < 0.95,
which is the same as accepting Hy, and it occurs with probability P(L < 0.95). When
q > 0.95, the correct conclusion occurs when L > 0.95, which is the same as rejecting
Ho, and occurs with probability P(L = 0.95).

The probability of achieving the correct conclusion using the P-method can be
developed by approximating P(L < 0.95) and P(L = 0.95) for different values of g.
Since b = b, = F7'(q), then E[V] = P(Y < b,) = q, where V = I(Y < b,), as
described in Section 5.1.1, and the variance alfq of Yis q(1 — q). Then specializing the

CLT in Eq. 97 to the case when b = b,

Vn

E(Vn—Q) ~ N(0,1) Eq. 101
for large n, since 6, = q, and the variance estimator

Gr ~ o, =q(1—q) Eq. 102

227



for large n. Therefore, using the hypothesis test statistic laid out in Eq. 100 of Section

5.1.3, the probability of (L < 0.95) can be approximated by first adding the deviation of

the limit value from the quantile (0.95 — q/&/+/n) to both sides,

P(L < 0.95) P<V”_O'95< ) P(V"_q< +0'95_q>
. = — Z )= Z .
6/\n G/\n é/\n

Eq. 103
Then substituting the results from Eq. 101 into the left-hand side of the operator, and

using Eq. 102 on the right-hand side gives,

0.95 — 0.95 —
P(L < 0.95) zP(N(O,l) <Z+—q> =¢<z+\/ﬁ—q> Eq. 104

Ja@d—q)/n Va1 —q)

for large n, where @ is the CDF of a standard normal. Also, the inverse case for P(L >

0.95 can be found,
0.95 —
P(L>095)=1-P(L<095) ~1 —¢<z+\/ﬁ—q>
Va(l—q)
Eq. 105
0.95 —
val—q)

for large n by the symmetry of the normal density function.
When g < 0.95, by Eq. 104, the probability of the correct conclusion for the P-

method satisfies,

0.95 —
P(L < 0.95) = ¢<Z+\/E—q> -1

as n - oo since Yn(0.95 — q)/,/q(1 — q) > w0 asn —> oo,
When g > 0.95, by Eq. 105, the probability of the correct conclusion for the P-

method satisfies,
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0.95 —
P(L > 095) ~ & <—z + \/n—q> -1
q(1—q)

Eq. 107
as n — oo since q > 0.95 ensures Vn(0.95 — q)/\/q(1 —q) > © asn > oo.
The following will now compare how quickly the probabilities of correct

conclusion converge to 1 for the P-method as sample size n grows for a fixed g. When

q < 0.95, the approximation to the probability of correct conclusion in Eq. 106 satisfies,

0.95—g¢q _

for all n since vVn(0.95 — q)/m > 0 for g < 0.95. Therefore, as long as the
CLT approximation in Eq. 106 holds, meaning as long as the asymptotics have converged
properly, then the probability of correct conclusion is always greater than 0.95 when
q > 0.95. This is consistent with the experiments in Section 5.2, where the probability of
correct conclusion is greater than 0.95 (meaning ¢ < 0.05), even when 7 is not very large
(other than the trials at n = 11 where the asymptotics had not converged properly).

On the other hand, when g > 0.95, the probability of correct conclusion in Eq.

107 also converges to 1, but the approximate probability

095 —¢q
¢<_Z+\m\/q(1 —q)> Eq. 109

is not always greater than 0.95 for all n because of the - z in the argument. Rather Eq.

109 exceeds 0.95 only when # is large enough so that - z + \/E\/(% > z; i.e., when
4z%q(1-q) . . - .
095-0)° which can be quite large when g = 0.95. In other words, when ¢ is only

slightly larger than 0.95, the probability of the correct conclusion can be much less than 1
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unless 7 is very large. This is consistent with the results in Section 5.2, when the limit
value was placed at g = 0.98.

To put this another way, when g < 0.95, the correct conclusion is to accept Ho.
Since Hj is the null hypothesis and gets the “benefit of doubt”, as explained in Section
2.1.2, it is not difficult to establish. This can be seen in Eq. 98, where if ¢ is only slightly
less than 0.95, the point estimate I, is given extra help by subtracting z&//n, thus
making it more likely that L < 0.95.

On the other hand, when g > 0.95, the correct conclusion is to reject Hy, but this
is harder to establish (as in the judicial example in Section 2, it would require evidence
“beyond a reasonable doubt”). In Eq. 98, it can be seen that when ¢ is only slightly
greater than 0.95, it is harder for L > 0.95 because z46//n is subtracted from the point

estimate V7, so it must also overcome the value of the z8/+/n term.

5.3.2. Q-Method Analysis

For the Q-method, assuming the same criterion laid out in the previous section,
when q < 0.95, the correct conclusion occurs when U > b, (where U is the OSCI for the
0.95-quantile, as defined in Eq. 59), which is the same as accepting Hy, and occurs with
probability P(U > bg). This means the system fails the test. When g > 0.95, the correct
conclusion occurs when U < b,, which is the same as rejecting Hy, and occurs with
probability P(U < bg).

As with the P-method, approximations can be found for these probabilities. Since

U < b, is equivalent to rejecting Hy at level 0.05, starting from the hypothesis test
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detailed in Section 4.2.2, and subtracting the deviation from the true quantile to the limit,
@(60_95 — bg), to both sides gives,

g. ,n_b g ,n_f. Vn
P(Uqu)=P<%S—Z>=P< 0.95 095 _ n

‘f/\/ﬁ =>—z- T(€0.95 - bq)) Eq. 110
Then using the CLT approximation in Eq. 57 and 7 = t,
P(U<by) =P <N(O,1) <-—z-— @) = <—z - @(50.95 - bq)> Eq. 111
Also, as with the P-method, the conversing case can be found

P(U>b,)=1-P(U<b,)~1- CD(—Z —?(5095 - bq)>

Eq. 112
=0 <Z + @(50.95 - bq))

once again by the symmetry of the normal density function.

When q < 0.95, by Eq. 112, the probability of the correct conclusion satisfies

Vn
P(U>b,) ~® <z +— (o5 — bq)> -1 Eq. 113
as n — oo since by = F~1(q) < F71(0.95) = & 95 for g < 0.95.

When g > 0.95, by Eq. 111, the probability of correct conclusion is
P(U<by)~ <—z +@(bq = 50_95)> -1 Eq. 114

as n — oo since g > 0.95 implies b, = F~1(q) > &;.95, 80 @ (bg — &0.95) > o as

n — oo,
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The same comparison of the rates of convergence to 1 as n grows large can be
made as in the previous section, with the same results. The probability of correct

conclusion converges faster when g < 0.95 than when g > 0.95.

5.3.3. Comparison between Methods
The following calculations seek to prove why the Q-method outperforms the P-
method when g < 0.95. The probabilities of correct conclusion for both methods were

provided earlier in Eq. 106 and Eq. 113. The only difference between these

99579 for the P-method, and

va-q)

approximations is their arguments to @, with z +v/n

z+n %LT_bq for the Q-method. If it can be shown that this argument for the Q-method

is larger than that for the P-method when g < 0.95, then it will give some explanation of
why the Q-method outperforms the P-method in the experiments in Section 5.2 when

q < 0.95.

The goal is to show,

$0.95 — by S 095 —¢q _

T [q(1 - q) Eq. 115
A first-order Taylor approximation for b, gives

qg — 0.95 qg — 0.95

— -1 ~ F~1 —_— —
by = F7(q) = F71(0.95) + F(00s) 095 f(&0.95) Eq. 116

since % F~1(p) = 1/f(F~'(p)) = 1/f(&,) by the chain rule of calculus. Using the

definition of T in Eq. 58,

$0.95 — bq ~ (0.95 - q)/f(&o.95)
T V0.95(1 - 0.95)/f (£o.95) Eq. 117
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(0.95—-q)

J0.95(1 — 0.95)

This result satisfies the goal of showing that Eq. 115 holds because

(0.95 - q) . 0.95 —gq
J0.95(1-0.95) /q(1-q)

Eq. 118

for 0.05 < g < 0.95.
A similar analysis can show why the P-method outperforms the Q-method when
q > 0.95. The probabilities for correct conclusion using the P- and Q-methods are given

by Eq. 107 and Eq. 114. Here, the differences are still in respect to their arguments to @;

0.95—¢q

Ja(i-q)’

the P-method’s argument is now —z +vn and the Q-method’s argument is

—z++n fo'gi—_bq, Therefore, the definition of 7 in Eq. 58 and of b, in Eq. 116 implies

bg =095 (@ —0.95)/f(§00s) q — 0.95 q—0.95

= = <
T J0.95(1 = 0.95)/f(&505) /0.95(1—0.95) +/q(1—q)

since g > 0.95. Therefore, the argument to ® for the P-method is larger than that for the

Eq. 119

Q-method when g > 0.95. This means the probability of the P-method reaching the
correct conclusion converges to 1 faster than the Q-method when g > 0.95, and explains

the results seen in Section 5.2.

5.4. Combined Methods

Since the Q-method outperforms when g < 0.95, and the P-method outperforms
when g > 0.95, efforts were made to combine the two methods in a way that would
result in a higher percentage of correct conclusions. This technique would seek

agreement between the two methods before a decision was made.
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For this technique, rLHS will be used since it has proved to offer the greatest
variance reduction in the experiments in Section 4.3 and Section 5.3. The procedure starts
with the analyst carrying out some number of LHS cases m, where each case has 7 runs,
as before. After a minimum number of cases have been simulated, the results will be
analyzed to see if the Q-method and P-method are in agreement in regards to their
conclusion. If they are, that conclusion will be taken as the final result. If they are not, an
additional LHS case will be conducted, and then the results will be viewed again. This
will continue until both methods are in agreement. The flowchart in Figure 5. 10 shows
an example of this analysis using t = 10 and a minimum m = 6. The hope is that waiting
until both methods are in agreement will lead to fewer incorrect conclusions than each
method individually, even if it means conducting additional cases in order to get

agreement.
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Conduct 6 cases of 10 LHS runs
(60 runs total)

\4

Conduct analysis using both 14
P-method and Q-method J

Do P-method
and Q-method
conclusions
agree?

Add case of 10
LHS runs to data

Report Conclusion

Figure 5. 10: Combined Method Flowchart

It should be noted here, that there are dangers when carrying out multiple
hypothesis tests, with differing test statistics, from the same data set. The biggest danger
is in regards to “cherry-picking” the desired result from multiple hypothesis tests without
disclosing the full extent of the tests and their results [117]. This is not the case here,
since both test statistics will be used and reported. However, since both tests use the same
data, their results will be correlated to an extent. Another possible danger by combining
test statistics in the manner presented here is that the attributes of the 95% confidence, in
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relation to the probability of committing a Type-I error («), are not necessarily
guaranteed. As shown in Section 4 and at the beginning of Section 5, using a 95%
confidence provided a top bound for a of 5%. However, by combining the two test
statistics in this simple fashion, it no longer guarantees this bound for a. There are ways
to design processes like these, referred to as sequential decision procedures, to ensure that
the confidence property remains [118], but that analysis was not done for this technique.

Several test cases were conducted with this technique, but a direct comparison to
the results in Section 4 and Section 5 is difficult. This is due to the fact that the amount of
runs needed to reach a conclusion using this combined method will not be known
beforehand. The runs will continue until the methods are in agreement. This means the
results will not present a direct comparison to the previous results at assigned run levels.

The first comparison used the nonlinear equation with normal inputs, detailed in
Section 3.2.2. For this test, when estimating a 95/95, the minimum number of runs
conducted before a conclusion could be reached was 60. This level was chosen since the
methods had not previously been examined at lower run levels for estimating a 95/95,
since 59 was the minimum for CMC-OS. Table 5. 12 shows the results with a limit value
at the 0.94-quantile, which is a very challenging situation. Here, the results presented are
the number of trials, out of 104, that reached a conclusion, whether correct or incorrect, at
that run level. These results can be compared to the results in Table 5. 2, where
prescribed run levels were used. As Table 5. 12 shows, overall, the combined method had
a success rate of 98.13%. This compares to a success rate of 97.90% when using the

rLHS Q-method alone at 60 runs, and 94.43% when using the rLHS P-method alone at 60
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runs. So there seems to be a slight improvement, even though it is not a direct
comparison. The reason the total in Table 5. 12 does not equal 10,000 is because some
trials did not reach a consensus between the two methods before the maximum amount of

cases was added.

Table 5. 12: Correct vs. Error Nonlinear Eq. Normal Inputs — 0.94

Runs Conducted
60 70 80 90 100 110 120 130 140 Total
Correct Conclusion 9420 275 97 8 6 5 0 1 0 9813
Error (o) 118 2 58 4 4 1 0 0 0 108

This test was repeated with a limit at the 0.98-quantile, as seen in Table 5. 13.
These results can be compared to Table 5. 3. Here, the combined method had a success
rate of 62.01%. Using the rLHS Q-method alone, at 60 runs, returned a success rate of
49.81%, so there is a stark improvement by using the combined method. However, the
rLHS P-method had a success rate at 60 runs of 64.48%. So using the combined method
did not quite achieve the kind of reduction in errors that using the P-method alone

provided.

Table 5. 13: Correct vs. Error Nonlinear Eq. Normal Inputs — 0.98

Runs Conducted
60 70 80 90 100 110 120 130 140 Total
Correct Conclusion 4428 197 1145 284 35 3 57 0 34 6201
Error () 2850 589 260 54 10 20 2 6 1 3795
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Another test was conducted to see the influence of starting the analysis at a higher
minimum run level, since most of the errors in the previous example occurred at the
lowest run level. In this case, the minimum for m was 10, or 100 total runs. These results
can be found in Table 5. 14. Here, the success rate is 76.43%, while using the rLHS Q-
method alone at 90 runs had a success rate of 64.29%, and using the P-method alone had
a rate of 73.14%. So the combined method did provide a higher probability of success

than using Q-method or P-method alone.

Table 5. 14: Correct vs. Error Nonlinear Eq. Normal Inputs — 0.98 (Higher Start)

Runs Conducted
100 110 120 130 140 150 160 170 180 190 Total
Correct Conclusion 6607 31 742 9 167 2 4 44 2 19 7643
Error () 1702 466 42 107 3 11 4 8 1 2 2349

These tests were repeated for the nonlinear equation using non-normal inputs.
Table 5. 15 shows the results for a limit at the 0.94-quantile. This resulted in a correct
conclusion percentage of 98.20%, which once again was only modestly better than using
the Q-method alone, which had a success rate at 60 runs of 97.79%, and the P-method

alone (95.08%).

Table 5. 15: Correct vs. Error Nonlinear Eq. Non-normal Inputs — 0.94

Runs Conducted
60 70 80 90 100 110 120 130 140 Total
Correct Conclusion 9487 235 70 13 7 7 0 0 0 9820
Error (o) 120 2 52 4 1 0 1 0 0 180

238



With the limit placed at the 0.98-quantile, the success rate was 64.62%, which was better
than the Q-method alone (58.38%), but slightly worse than the P-method alone (65.92%)
at the 60 run level. These results can be seen in Table 5. 16. So again, there appears to be
an advantage to the combined method since it’s better than both the P- and Q-method

with a limit below the quantile, and better than the Q-method alone with a limit above the

quantile.

Table 5. 16: Correct vs. Error Nonlinear Eq. Non-normal Inputs — 0.98

Runs Conducted
60 70 80 90 100 110 120 130 140 Total
Correct Conclusion 4936 143 833 313 73 15 87 4 27 6462
Error () 2486 710 222 56 15 27 0 12 1 3533

Lastly, the combined method was tested on the LOCA response surface from
Section 3.2.3. Table 5. 17 shows the results for a limit placed at the 0.94-quantile. The
success rate was 98.58%, which was slightly better than the Q-method alone (96.90%),
and better than the P-method alone (92.77%), but P-method had not converged properly
at the 60 run level, since the correct conclusion percentage is <95%. One interesting
result is that the combined method appears to have prevented that same error from
occurring here. Even though the P-method may not have been properly converged at the
lowest run level, the addition of the Q-method prevented a large number of incorrect

conclusions being reported.

239



Table 5. 17: Correct vs. Error LOCA Response Surface — 0.94

Runs Conducted
60 70 80 90 100 110 120 130 140 Total

Correct Conclusion 9158 345 118 15 8 7 4 1 0 9658
Error (o) 210 18 93 &8 2 3 3 0 3 342

Table 5. 18 shows the results with a limit at the 0.98-quantile. Here, the combined

method had a success rate of 60.98%, which was far better than the Q-method alone

(48.65%) and only slightly worse than the P-method alone (65.54%) at 60 runs. The

apparent trend from the previous two tests continues, with a slight improvement over the

other methods when the limit is below the quantile estimation, and a large improvement

over the Q-method when the limit is above the quantile.

Table 5. 18: Correct vs. Error LOCA Response Surface — 0.98

Runs Conducted
60 70 80 90 100 110 120 130 140 Total

Correct Conclusion 4266 284 1023 272 97 24 71 8 24 6098
Error () 2902 606 288 37 21 29 3 7 2 3899

5.5. Discussion

The results of this section appear to show that establishing confidence intervals

for a probability could be used for a direct comparison to regulatory limits. However, the

experimental results, and subsequent discussion, showed that the P-method is less

efficient at reaching the correct conclusion when the limit value is below the quantile of

interest. On the other hand, the exact opposite outcome occurs when the limit value is
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above the quantile of interest, since the results and discussion show that the P-method is
more efficient than the Q-method at arriving at the correct conclusion. Both the P-method
and Q-method for rLHS also appeared less likely to commit errors, regardless of the
location of the limit value, when compared to CMC-OS, as long as the asymptotics had
converged properly (which was not always the case at the lowest run levels). When the
limit was above the quantile, the increased probability of correct conclusion when using
rLHS compared to CMC-OS, could be sizable.

In an effort to take advantage of the positive aspects of both methods, a technique
was devised that required agreement between the methods before a decision could be
made. Through experiments, it was shown that this technique can improve the probability
of correct conclusion when the limit is below the quantile, when compared to the P- and
Q-method alone. When the limit is above the quantile, the results also showed that the
combined method can greatly improve the probability of correct conclusion when
compared to the Q-method alone, and return essentially equivalent probabilities when
compared to the P-method alone. However, this combined method also has drawbacks,
since the number of runs needed is not known beforehand, and it requires the data to be
analyzed repeatedly (though time/effort for the data analysis should be small in
comparison to the time needed for large, complex code runs). It is also possible to
conduct a trial that does not result in agreement even after a large amount runs. While
this possibility was small, it could result in many more code runs, meaning lost time and

expensive computational costs. Also, it may be possible to combine the P- and Q-
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methods within a more rigorous framework that ensures the 95% confidence level is

preserved [116].
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Chapter 6: Conclusions and Recommendations for Future Work

The issue of comparison between computer code outputs and regulatory limits
was defined more rigorously through the use of hypothesis testing. This framework
provided guidance on how to increase the probability of correct conclusion. Since certain
factors are out of the analyst’s control, such as the placement of limit values, the system
characteristics, and the acceptable level of error, the only technique left to increase the
correct conclusion percentage was to decrease the variance of the analysis result.
Therefore, VRTs were analyzed in order to gauge their applicability to this goal.

The first step in this analysis involved investigating methods to increase the
accuracy and precision of a point estimate of the 0.95-quantile. This included a
comparison between CMC and LHS, but also a detailed study of the use of OAs and
OLHC:s. As was expected, LHS provided a more accurate and precise quantile estimation
than CMC. However, OLHCs outperformed regular LHS, even when using static
midpoints, rather than sampled values. This result is particularly important, as the use of
static midpoints simplifies that process of modifying input distributions post-analysis,
without the need for re-running the computer code. The potential of OLHCs appears
promising, and a more thorough investigation into their use should be done.
Unfortunately, the results from Section 4 showed that the method to establish CIs for the
quantiles of an rLHS design may be unsuitable for use with OLHCs. A closer look

indicated that this was a result of the dependence between different OLHC designs. It
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may be possible to create OLHC designs that are truly independent, and that may resolve
this issue. Lastly, the use of higher resolution OAs was shown to be inappropriate for the
estimation of the 0.95-quantile, if static midpoints were used. This appears to be a
consequence of the size of the intervals created using an OA. Since fewer intervals are
used, they become wider, and the tails of the distributions are not analyzed when using
midpoints. However, using higher resolution OAs with sampling did slightly outperform
the CMC method, but not to the extent of LHS or OLHC.

Section 4 provided an investigation into the applicability of new methods to
establish CIs for the quantiles of an output distribution created using a VRT [72] to the
field of nuclear safety analysis. The results demonstrated that rLHS and AV can provide
a more accurate and precise result, especially when estimating a CI for a quantile value
near a long distribution tail. However, there are convergence issues at very low run
levels. There may be ways to alleviate some of these convergence issues (or at least
ensure that the error is on the conservative side), and as more tests are completed,
increased guidance on the selection of bandwidth parameters, or other appropriate
derivative estimation techniques, will arise. Interestingly, the results also showed that a
more accurate derivative estimation at the lowest run levels may not always be desirable.
While the increased accuracy decreases the size of the CI, it may also make the result
more vulnerable to error in the quantile point estimate. Even when the rLHS method had
not converged to the proper levels, it always provided resulting values over a smaller
range than CMC-OS. As the results from Section 5 showed, at essentially every run level

(even the lowest levels, where convergence may not have occurred), the probability of
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error when using rLHS was equivalent to or smaller than using CMC-OS. Finally, it was
shown that the possibility of “gaming” the system was no greater when using rLHS than
with CMC-OS.

It was also shown that a more direct interpretation of the NRC probability
requirement was possible by establishing CIs for the probability of exceeding a safety
limit value. This technique appeared to have a higher probability of correct conclusion,
when compared to the Q-method, if the limit value was above the quantile of interest, but
the opposite was true when the limit was below the quantile. A detailed look into the
mathematics behind both methods demonstrated why this is the case. One issue using the
probability method is that it only provides information about margin to the safety limit in
terms of probability, not the output units of the system or limit value. However, since
both the Q- and P-method are performed post-process, it is possible to use both
techniques and derive the desired data.

Since both the P- and Q-method could be applied to the same data, a technique
was devised that attempted to take advantage of the positive properties of both methods.
This technique waited for agreement between the two methods before establishing a
conclusion. It appeared that this method improved the probability of correct conclusion,
but a direct comparison to previous results was difficult, since the number of runs
necessary for agreement is not known a priori. This is also the biggest downside to the
method, since the analyst has no idea how many runs will be necessary, and there is a

small, but nonzero, possibility of needing to perform a large amount of runs.
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Based on this information, recommendations about the applicability of these
techniques for use in nuclear safety analysis can be made. First, a look into NRC
recommendations on risk assessment procedures showed that the use of CIs rather than
Bayesian credible intervals appears to be appropriate for this application. This is the case
since prior information is difficult to use in regulatory analyses, the results will not be
propagated through more systems, the data are created in a normal way, and the
probability requirement is fulfilled by the use of the quantile, while the CI only provides
information about the accuracy of the sampling scheme. Also, if a RISMC is to be used,
the use of quantiles may provide similar information to an overlap probability, without
the need for detailed information about the extremes of the output distribution. Since this
information is not needed, the amount of runs necessary for the analysis should be
reduced. Also, the use of lower quantiles, such as the 0.75-quantile, with high confidence
may be appropriate for regulatory limits on beyond-design-basis accidents. Techniques
were shown on how this could be done in comparison to the limit curve in the TNF, and a
proposed CCDF limit curve.

The recommendation of the asymptotic methods, like rLHS, for use in regulatory
analyses is more nuanced. While there were convergence issues for these methods at the
lowest levels possible when using CMC-OS, the deviation from the proper coverage
levels was never extreme (meaning the coverage levels were off by only a couple
percent). The results from Section 5 also showed that the rLHS consistently had a higher
probability of correct conclusion than CMC-OS. So if the regulator’s first concern is

arriving at the correct conclusion, rLHS would appear to be acceptable. From the utility
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point-of-view, the use of rLHS could result in a substantial increase in accuracy. This
may provide more opportunity for increasing reactor properties, like temperature and
power. For both the regulator and utility, the increased accuracy and precision can
provide better guidance about which accidents have the greatest associated risk. Correctly
prioritizing accident scenarios based on risk is one of the best ways to systematically
increase safety, as the Tower Perrin firm report pointed out. So even considering the
convergence issues, it is hard to justify why the rLHS method would not be acceptable
for use in safety analysis.

Perhaps the greatest opportunity for future work, along this line of research, is
associated with the examination of other VRTs. It is possible for control variates and
importance sampling to provide much greater variance reduction than even rLHS. As
mentioned in Section 4, there are additional constraints which must be considered when
using these methods in relation to if/how previous knowledge is used. However, if
acceptable approaches are found, these methods may be able to offer great benefits in
reducing regulatory error, increasing margin to safety limits, and generally improving the

knowledge and characterization of the output distribution of safety analyses.
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Appendix A: Orthogonal Arrays

The following figures list the OAs used in Section 3; they are taken from [119].
Some of the OLHC designs are not listed here due to their size, but they were created

using the methods outlined in [62].

Input
Run 3y 5
1 [T 1 1 1 1
2 |1 2 2 2 2
301 3 3 3 3
4 |1 4 4 4 4
5 |21 2 3 4
6 |2 2 1 4 3
7 12 3 4 1 2
8 |2 4 3 2 1
9 |3 1 3 4 2
103 2 4 3 1
1|3 31 2 4
12 3 4 2 1 3
1304 1 4 2 3
14 |4 2 3 1 4
15 |4 3 2 4 1
16 |4 4 1 3 2

Figure A. 1: Ljs» — 16 Run Resolution IIT OA — 4 Levels
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Appendix B: VRT Confidence Interval Derivation Assumptions

From [72],

- Let £, be an estimated CDF created using a VRT.
Assumptions (using notation described in Section 4.2.2):

Al. P{E,(x) is monotonically increasing in x} = 1 asn — oo.

A2. Forevery a, = O(Tl_l/z),

Vn [(F(Ep +a,)— F(Ep)) — (F"n(fp +a,)— Fn(fp))] = 0,asn - oo

A3.Vn[E, (&) — F(§,)] = N(0,12) asn — oo for some 0 < 1, < 0.
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Appendix C: Complete Confidence for Quantiles Results

The following tables provide the complete results for the experiments performed
in Section 4. In additional to the results presented within Section 4, these tables also
include the use of asymmetric CFDs for the derivative estimation for the asymptotic
methods. As explained in Section 4.2.2.5, using a symmetric CFD may result in the
overestimation of the derivative when used near the upper quantiles of the empirical
CDF. The hope was that an asymmetric CFD, which was more heavily weighted toward
the lower ranges of the distribution, would provide a more accurate derivative estimation.
In the tables, three asymmetric CFDs are used. These are titled “Asym CFD for A”
followed by a number: 1.25, 1.50, and 2.00. These numbers indicate the weighting of the
asymmetric CFD. For example, 1.25 means that the CFD is found using a high-side point
of F1(¢,, + hy) and a low-side point of F~1(&,,, — 1.25 * hy). So the higher the
multiplier, the more heavily the CFD is weighted toward the lower regions of the
distribution.

There are also two version of the symmetric CFD presented. One is labeled as
“CFD for A7, and the other is labeled “CFD(rounding) for A”. The difference between
these two methods has to do with the calculation of the denominator of the CFD in Eq.
55. The first method uses 2 * h,, for the denominator. While this may seem like the
obvious solution, there is a potential problem. Remember, for the calculation of the

inverse CDF F~1, the round-up function is used. This means the distance between the
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two points in the numerator of Eq. 55 may not actually be 2 * h,, (if a symmetric CFD is
used). Instead, the round-up function will cause the distance to be slightly different. In
the method with the “rounding” label, the denominator is calculated using the exact
distance between the points in the numerator, and not 2 * h,,. These results were the ones
presented in Section 4, since they appeared to offer a more accurate estimation of the
derivative.

Table C. 1 and Table C. 2 contain the results for the nonlinear equation with
normal inputs when finding a 95/95 and 95/75 value. The main point to note from these
results, which has not been previously mentioned, is the accuracy of the asymmetric CFD
methods. At lower run levels, the asymmetric CFDs do provide a more accurate
derivative estimation than the symmetric CFDs. However, this has some unintended
effects when estimating a 95/95 value. As the table shows, when using a symmetric CFD
atn = 59, the overestimation of the derivative caused the coverage of the CI to be too
wide (i.e. >90%), but this also kept the number of 95/95 values falling below the true
quantile to remain around 5%. Using the asymmetric CFD, the derivative estimation was
more accurate, but the increased accuracy caused the bounds of the CI to narrow. While
this meant the coverage was closer to being correct (i.e. ~90%), the amount of trials
falling above or below that interval was not equal. Instead, more trials errored to the low
side. A closer inspection of the results (not listed here), show that at this run level, the
quantile esimation 595'm't tends to error slightly below the true quantile. So with the
narrower CI, more 95/95 values will error to the low side, causing the “% below” to be

>5%. The exact opposite happens at the lowest run level when estimating a 95/75. Here,
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since the quantile estimator &, 5,m.¢ tends to error above the actual quantile, not only does
the coverage improve at n = 11 using the asymmetric CFD, but the “% below” also gets
closer to 5%. Also, when finding a 95/75, the difference betweent the derivative
estimations when using a symmetric or asymmetric CFD is lessened. This is due to the
0.75-quantile lying further from the extremes of the CFD, so the slope of the inverse CFD
is also smaller. So the symmetric CFD does not overestimate the derivative to the same
extent as when using a 0.95-quantile.

The problem with the asymmetric CFDs, as shown in the tables, is that as the
number of runs grows large, they begin to underestimate the derivative. The most
accurate derivative estimation may use an asymmetric CFD when the run size is small,
then move to a symmetric CFD as the run size grows. It may be possible to use an
asymmetric weighting coefficient, similar to the 1.25, 1.50, and 2.00 from above, that is
inversely proportional to the number of runs. For example, a formula like 30/n could be
used for the coefficient. That way, when n = 60, the weighting coefficient would be 0.5,
but when n = 500, it would be only 0.06. This is just one possibility, and more work
should be done investigating this method. However, it may be the case that no general

formula applies to many systems, and that the best methods are problem-specific.

273



007951 09951 09951 09951 09951 9LFPl £COFL OB'SFL LLSFL 6L'SPl PSTSI STHST SLesl ILEST ILEST BLSST SSLSD Lo9S] o651 Ceesl L8191 $97T91 T6191 60CTI1 Ba'191 98851 L9E91 £6'T9l £6'091 37791
LU'6E  LT6B  S968 FL68 LE68 6198 IL98 €798 0598 OC9% €188 bEE8 BO'BR TI'88 K088 0688  LL'88 0888 LTGB  ST68 9106 OL'GE  SL68 0068  S968  6L68  S6'08  MO'GB LOOG  THGS

€F 86T 69F 69t  80S 69 €9L  TE8 SIS SF8 06§ bL9 1L 9TL  9FL  9€S  £F9  BL9 1S9 1L9  09F  SLS  §19 €09 99 66F 65§ 909  TI9 979 56'F $00T
8F0 050 8§D §LO SO PSO S90 P80 980 ¢SO bSO §90 PO 980 TS0 BSO  $90  PSO L8O €S0 bSO 990 b80 (80 TS0 bSO 80 L8O 80
OF 1P SEIF 651y 981 Oy OFIr  CS0IF LLTP O81F vPIV PP IF LGP E81F  LBIF  SPIIP 9P 1F 65 1F 8R'IF [60v ob Iy 8vIr 90t 06'1F 1y LPIF  oF It 16’1t #o'l¥ 0T
009ST 09951 09051 (9951 TUTFI LFCFI OCSFI COSFI SLFFI OC0SI 4151 DESSI S6FSI SOFSI SIssl IS0SI 68001 5001 6EU91 6LS91 66591 (8591 SL Ol 6050l FFO91 €€ 291 65001 6¢ 991
6768 SC68 6868 0668 S8F8  TESS  £C98 9098 TIO8 £IL8 SOL8 TEES 6FES  GI'BS  OC8S8  POE 9968 IV68 IK06 SE06 8106 L906 LOD6 Gl06 PEGS  LOGS PEO6 106
PES L0 99€  S0F 0F6 906 96L LS ILS k6L 99C  F99 0TL 9L SIL 969  $6'S  §S9  LI0  8§'S  68S  6ES  CI'9 €£9  TT9 619 865 L1 ¥5°S 8001
L90 0Lo |0 'l £LD LED PO ol Pl ELO LLD o0 £TL sT1 £L0 LLO SO0 pral ac'l £L0 LED 60 ¥l 9l ELD LLOD vl Cra LTl
T T G v i U 6CIF 99IF  £6'lF STEF OTTE 99TF  TUIF C0TF 6CEF  LETF 6O'IF OLTF 90TH ovTr 18T ouly  E8'lF IITF ISTE 6tTE e 08'1F Wk 15T Tk
T00ST 00051 000ST (008 TTSFL GOOFI OFLFI GG SRl COOFI IWLSl LT8G GLZOI SOSSI SCSL OFFOl FESOl GEOLI 0801 BL8OI IGELL TOGLI SLPLI O9CLI 98CLI ETZLI GTOBIL TGOLl TTLLI
L8898 €68 868 1906 €S8 CUSE 9CL8 €008 TLSS  6TSY  0S'S8 SL06 PUGS  [S88  bO6S  9L6% 9816 0306 SE06 9l'le  v806 6L06 6916 w6 el
€9 9Ts  LIE ISE €06 TE6 10 988 LI6 8L OFL  BTS €€ PEL VP9 S50 19F  LI'9 S€9 08§ T09 19§ LES 9Es 6OS 06 8rs
60 60 011 EF] 0T ST 08T oL el Tl 9T T LT el T0l LT vl ST 18 ot Tl Wl il Lroesl 68'1
LOTP FI'TF  9STF  TOEP SO'Ly  TOLIP SPTP  ORTE  L¥TP  LOTP  PITK E9CP  SO0ER 90CR  bITE  ITEV  TLTF  ITEr  TTER LUEY BTEY ITTP 16TV EEEP  CTEEP SPER
09951 09951 09951 09951 FSOST aLPPl £F 951 BEOST LECSI LTP9L 16091 ZOILL 6S1LL OTOLL OTFRLL tLOLL 9EE81 oF T8l £8081 S9l6l 0F681 £9°S81 FOLLL 0e'sel el
9GL8 988 6668 LTT6 8568 PFES  IFSS  [£68 SLUS KTS8  b6L8  LOI6 SKI6 €106 868 9L68  6ST6 876 S916 PRE6 95T6  8FI6  LE06 ¥R LIE6
we  08s  8ST 08T 669  69L  OFL €08 66F  6LS 1S9 €£9 990 9t 98F  €FS 8I'F oLt LIS 619 6 st 88F 11¢
9Tl bl NS 161 T W 6CT Tl 8§l 8KT IST VLRI @61 ¥ST S§T 85T 65T £l Stl 09T 19¢ 8LT
I1§TF SS'TFr €ttt Lot 16t Lot 88t 65Tr 8STE  9Fct 8Tty BI'tE TLTF  ILIF I9CF ISR OFbE 0LtF  LSFF  L8TF  bLiv Litr  SOFF LLFE
09°9ST 09951 09951 (99T 0901 LOF8L OFZRl LT I8I SL98I ZOFSI GFGOC CLLOT G8S0C OFLOT £GFOT I1SSCC 89ELC 0S12C GOECT EFOLT 0UGEC SCOEL GOFPL LETHC OLTFT S0SIT
0558 LE98 L9T6 T816  1L06 9898 OTLS  £F06  HD06 LS68 FSE8 C006 866 €816 l6 116 1916 9076 S0€6 9976 0F6  TSC6 0LT6  £LT6 €IF6 LT06
€66 6LL 06T TLT ISE 06 £8%  6TL  9LL 0% BUL  6L9 1SS (€9 899 €00 SUC  RUF £¥S €€ 9y LOS 00 keh 89t 659 06’y ¥TI
g1z e R £0'e £0°E SL'T I8T or'e L'y BEF 00°'e ' 69'c Lo's 06't LI'e £Te 88'E s E£l'g 09's 6E's 1% e £0e 69'9 Fl'o
PEEF 106F  6EFF TESE LVSE 06'SH OL'FF 00'SE  0S9F LEOF oFFR SOFF  SO'SH LIk TOLE  E8FF 66'FF  900F 89 TS 9TSk_SC9F  1T8F 08K ETSE  Ob'SE GT8F _ £06F 088K
G00SI 00051 00051 00051 0901 OT6LI 61651 €6SLI LGLLI SCFLI C106I LOISL 08161 TFP0T €006 GLIT 1061 ILEIC 296IC SITIT TOEIT SPEIT FPROIC SOSIC OLOET LF 86l TLITT 660C
TP PPLS G868 1976 6968 6Y'S8  OFI8S 9T68 1116 {998 6EL8 FEOS  OF06 6966 LLS G868 8698 98T 686 LL06 688 91T6  SS'E6  LT06 6506 0TLS r6 6016
96 T8 STl SKF0  LOT 689 PEEl  9T9 119 T6® 16§ 011 L9S €57 T8 19F 0€0l  bYP  6EF 659 IS8 BSF 9EF 650 LOF 086 woF Sl 8K'S €6
€97 9T 68T  89C  RLE  9C€  BFE  BFF 619 18§ 09C WS RP SL9 L9 PRE I6E 10§ L0E 1S9 WE oIS L 699 WtF 1 9L €89 8
ESPP BI'PP ERSE  ILLP 989 00SP  EIPP LE9F 098F ESLP 6ESE  ELPF SBOF OL6b  OI'8F  06'SF  S6bF 0SLF 9105 6BEF 9SSk ISLP  BEOS €06 OT9F  L1SE L9705 EE6F 96 05
09951 09951 (9951 (9951 SPLIZ 6FCIC SLS0L 95 FUC 6U0ST FRFFC SS9EC 97 St C6F9T 6LL5C SO8FC 19LFC 90LLT SI69C I£09C 9L95C 10862 SO08T SELiC
69°8 €668 LT06 LULS LE9S 1576 0976 SL68  TT68 (876 65T6 0668 CPes €56 IEE6 PRO06  1£06 6116 P0T6
60 g 8L ITH 0L SEY£I9 006 L6'S 88¢ 76 888 LLS oFs  oFs 8L 9g 80'% 8y oI's 6§
(239 9Ls SL9 9E'R O8 6 099 R9L 66 96701 FlL S8 100 6s1I £rL 958 901 8RII gL BETI w9l
096 CO0F  SUSE O06E  FRIS TLt  STeF SE0S LTSS LUSF  SL6F  t60S  SHES 908 €T0S  SKIS 8IS FE 6 FESS 6LLS
oo —2t e w.ﬂ AV ono—t 0 w_:ﬁ_ AV omo—2ml 0 Mﬂ AV omo—=t 0 w__r_ AV owo—t 0T AV OWD SODWD u
ey (0°2)¢ 40 QD widsy (§°17¢ 10 01D wksy ($7°1) 1 10§ (4D wisy ¢ 10 (Buypunoy) 410 a0 44D

G6/S6 - sinduy [ewrioN "bf Jeaul[-uUoN JoJ S)nsay dvrdwo)) : 1 *D dqe],

274



€FST  EvSC  EPSC  EPST VST I9EC  SSEC ODEC €9EC C9EC SLVC POvC  ILbC PLbC TLIC IESC  9£SC  vEsC L0O9OC 109C 66SC 909C S09C POOC 165C 966 109 009C
LS'68  B6'68 8506 TYGE 1106 €998 TLOS LOLS €698 ITLS LTSS SPSE  9CG8  8E'88 1888 LI06  1¥68 <68 K06 IF06 0016 6806 0506 €T06 8106 $6'06 ST06  LFO6
BLY O TOF LS bSY L€ BOL TOL  TL9 PIL L6096 66€ LS 0KO 919 8T €6¢ SUS S8y 8P 1P 6TS 61§ §8F 16 €LV SES 1TE €8 088
0 T £T0 050 L£0 IO €0 PO EE0 6F 0 €T0 K0 50 6 FTO €£0  6£0 IO TC0 PO €0 6£0 IO 0 KO EE0 6£0 650
PLOT  SL'6T  LL6T 06T D00E  TLGT  TLGL  bLGL  986L 9667  £L6T  bLGL  9L6T  686T  86'6T 9L 066 O00E  SLGL  9L6Z  SLGE  16GT  TOWE  SL6T  9L6T  LLGT 1667 TO0E £00E
€FST EPST  SPST  CPST EPSC 0SEC I9EC 0SS (9€C IPEC B8P T0ST 10ST TOST LLTT 89ST OL'ST $9ST 899 OL9T TLYT OL9T T99T 1s9C 899 99 899C 199¢C
1168 9968 8006 6F06 6668 €198 CL98 [IL8 6L98 6L98 TS88 I888 068 6888 [888 €06 F868  I868 £L06 SUl6  ¥EI6 €016 SOTl6  8S06 BOI6 K6 0016 9016
SES $9% 16 PSSP 19%  F08  6£9  €€8 8L 8T9  €L9  ITS 0L 9€9 oLt LF9 WS 8T IS e6E S BOS  L6T  9I'S SO €95 80 819 sk
0€0  0£0  ZE0 IF0 TS0 L€ €0 $€0 90 950 I€0 I€0 bE0 9KD 950 FE0 90 LSO 10 10 ¥€0 90 LSO IE€0 I€0 k€0 90 L0 80
LR6T  L8'6T V66T O00f  STOE 86T SR6T 066 100 8I'0S  SR6T  986L €661 PODE  £TOC S6'6T 900 9TO0E  G8GT 686 L66T  GOOE  6T0E 6867  6R6T  L66L  600E  6T0E PT0E
€FST  EFST  SPST  CFST  EFSC  19€C  I8EC OLST SLET  SLEC 9TST 1CST FOST SIST  S0ST 08°ST  €£9T 979 €L9T LS9 €L9T 699 €99 0697 SBYT KON Tilt LlLiT
€188 1988 SF68 6T06 8668 IS8 8098 898 PSUR 6IL8 OSL8 9TSE OL8E SE68 6068 €68 806 SS06 STG8 €968 0506 1116 6806 £P68 6668 906 TL16  £h16
€89 0§ 88F O£ 88¢ LIL 8EL 1LY 0TL 9L TS 0T9 LS LT 08¢ 96t 8¢S 6£9  se't 86t 99F  LI'S TE9 18T 66t OFt 98F 9a's 9T
£V TFD FFO 860 0L0 SK0 LKFD 99D  8L0  SKO  SKD  LKFO 190  6L0 VO L9060 SO BP0 LKFO L9 6L0  §KO PO LPD L0080 180
TO0E  800E  110E  8E0E  9S0E  L6'6T  £00E  900E  TEOE  BKOS 100 LOOE 010 LE0E  bSOE TI0E  1¥0E 650 SON0E OIDE  FIOE  £FOE  190E  SODE  TI0E  FI0E  SHOE  £9°0€ 99'0E
EVST  EVST VST VST EVST  VEEC CFEC 8VEC KLEC  SLEC OIST  STST  LTST LIST IIST 60°9T 6V9T 06ST 6ELT ESLT O09LT LSLT LELT PELT 669T SSLT EVLTD SELT
£F98  OU'88 6L88 (606 0868 OUER 09F8 PSSR 1998 FFSS €198 LCUB B6US 6988 COSS 8888 9106 1068 LFS8 FO06 LS06 9C16 1L06 OFB  IF68 €506 SI'l6 L9706
ILY S99 S§€  T0Y  LSE €69 €6 B9  ST6 IO €SS S®L 00§ 16L  TL9 0St 169 €09 STF  06S  6SE €09 OIS 8TF 679 19 619 TS Wy §El
8S0 950 190 90 960 090 650D S90 680 Ol 190 650D S90 060 11 90 060 T 190 680 $90 160 €'l 190 650 S90 160 £l L
PEOE  TTOC YPOE 09°0f 10T 9TO0E  FI0E  9E0E  TSOE  BY0E  TEOE  ITOE  THOE 650 6610€ OF0E 990 HOIE  OFOE  6T0E  IS0E  1L0E  E£IE OF0E  LTOE  IS0E  OLOE  EUIE 1T1€
€FST  E€PST  CPST  £FST  EFSC  LIST 99T 869T P69 O0C9T OBLT V6L FLIE ST6T SO6L FITIE SCOE #LOE OTIE SEIE  €6CE FOCE T6IE €C0E SCEE FBEE €6Cf OBLE
86'69 SCCR T68E 9616 8TI6  LL'SY €8 1068 6568 OTBS  190L 6898 0676 SSI6 SL06 0676 STT6 9516 SI'TL BI68 60H6 TEE6 6LT6 6STIL  L66B  6SHG  S¥E6  9FE6
6191 9U'LL 969 0LT I¥b 9ULl 6601 TLL  S%L  LI6 LO9I T6®  SEF  PEQ  bEL S8 SLS 499 9abl  OIL  I6E€  L6v  T9S  STSI 199 §SE 09t LIS e T
L ST el 8T oLl 6Tl T €TL F®T 8I'T 9€T LTI O£ 681 LIT 01 W1 TET srl €T €1 96T LET T €T vl 661 O0FT rLT
00°0€  6L0E LGOS 6STE  TOTE €90 ORO0E  O0TIE  €LIE  TITE  LLOE  BOIE  OETIE  PEIE  EFTE OCIE  SOTE  9STE  S60E  ETIE  SKIE  OTTE SLTE  680€  6TIE  SSIE  BTTE  GRIE LVEE
€FST  SPSC  ShSC  EbSC LSEC FIPC  WLFC  E9LC T8ST  SK9T  LLST 650 6897 o6bSC Lbit 656 SPOE 9t60 CCEE T0LT  T8LT 089T 69
6TT8  PHL8 pEE6  0TI6 €9°BL  GTPR G668 168 €818 0TL8 S806 IKI6 SE98  LL6R TP 9958 FYO06 TGT6 LPT6 P68 BULR 6906 90'EG
oLe ¥t K0 08¢ €% 6L 89 96'L s €9 %S €89 99 879 ¢9¢ LLs IS 9y Srs TR S L 6
oFL P 69T 10T ol €81 LET  LLT 11 81 BT 6T 81 KT 10€ 681 L91 09T L0E €1 19 08T 9le $SE
BEIE  LSIE 99T 0T ITIE  FFIE TSTE 16T SE1E TOIE OLTE  OEEE 191€  L9TE SSEE SOIE  t61E  EI'EE  SOEE OFIE  ELIE  TRTE O06'EE THHE
€YST VST EFST SE9E £1'8T 86'IF PTHE  666T L6LY €09€ fEEE vSor  ISO0F  L69E LoLY  S§'9C  £8bE
6098 L9S6  LLLS 18706 118 96 6506 1TS8 8CM6 9716 188 96'r6 86’16  SO0'06 8C'F6 5006 9§88
L 800 S60 s1T 0€'L 9l 8T8 WL 101 L €19 @G0 0L9  BES W01 28 k09 wr 1
rOT 9T L€ e 96'S 98t 68T St9 ISt 8I's 89 [ R I ISt ts LlL wzl
SOEE  GI'EE  GL'SE ZEHE LE9E 86'bE  LOPE  LLOE 60°SE  006E  6HLE 88¢E  TLSE  TTBE G9'SE  90°SE 9LLE 80k
S1=1__01=/ 5=/ Si=/__0l=/ = ] Si=1__0l=1 5=/ ] . SI=1__01=/ &=/ ] Si=1__ 0=/ &=/ 1=/ 0l= 5= i
ST AV oD ST AV W0 ST AV W0 SR ST AV W0 STT MY WD soowd @
F Jaexy 0°7) ¢ 103 40 wisy (s1)¢ a0y @40 wisy (§7°1) ¢ 10} 44D wisy ¢ a0) (Suypunoy) 440 a0} Q40

GL/S6 - sinduf [ewioN “bH Jeaul[-uoN JoJ S)nsay dj9[dwo)) g "D d[qel

275



Table C. 3 and Table C. 4 contain the full results for the nonlinear equation with
non-normal inputs. The results of the asymmetric CFD are very similar to the previous
example. When finding a 95/95 value, the asymmetric CFD provides a more accurate
derivative estimation. However, this increased accuracy causes the CI to narrow, and
with the quantile estimation again erroring to the low side, more than 5% of the 95/95
trials fall below the true quantile. Again, the opposite occurs when finding a 95/75, since
the quantile estimation tends to error to the high side, so the narrower CI improves the
coverage, and the “% below”. When using the larger weighting for the asymmetric CFD
when finding a 95/75, the derivative is underestimated even at the lowest run level. Once
again, this is because the derivative of the inverse CDF at the 0.75-quantile is already
much smaller since it is further from 1.00, and the symmetric CFD estimation is better
than at the 0.95-quantile. Also, as in the previous example, the asymmetric CFDs begin to

underestimate the derivative as the number of runs grows large.
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Table C. 5 and Table C. 6 present the complete results for the LOCA response
surface experiment. As in the previous two examples, when finding a 95/95 value at
n = 60, the quantile estimation of the asymptotic methods tends to underestimate the true
quantile. This means the asymmetric CFD methods improve the coverage, with the
accurate derivative estimation, but the “% below” is >5%. Also, unlike the previous two
examples, when finding a 95/75, the asymmetric CFDs actual overestimate the derivative
when compared to the symmetric CFDs, at the lowest run level. This is the only
experiment where that phenomena is seen. As Figure 4. 24 showed, the output
distribution was very compact at the high end, and the 0.75-quantile was very close to the
peak of the histogram. This means, at n = 11, the low-side point of the asymmetric CFD
is going to fall to a much lower value, and the derivative estimation will actually be too
large. As the run size grows larger, this problem disappears, and the asymmetric CFD

underestimates the derivative when compared to the symmetric CFDs.
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