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Abstract 
 

 Utilities operating nuclear power plants in the United States are required to 

demonstrate that their plants comply with the safety requirements set by the U.S. Nuclear 

Regulatory Commission (NRC). How to show adherence to these limits through the use 

of computer code surrogates is not always straightforward, and different techniques have 

been proposed and approved by the regulator. The issue of compliance with regulatory 

limits is examined by rephrasing the problem in terms of hypothesis testing. By using this 

more rigorous framework, guidance is proposed to choose techniques to increase the 

probability of arriving at the correct conclusion of the analysis. The findings of this study 

show that the most straightforward way to achieve this goal is to reduce the variance of 

the output result of the computer code experiments.  

 By analyzing different variance reduction techniques, and different methods of 

satisfying the NRC’s requirements, recommendations can be made about the best-

practices, that would result in a more accurate and precise result. This study began with 

an investigation into the point estimate of the 0.95-quantile using traditional sampling 

methods, and new orthogonal designs. From there, new work on how to establish 

confidence intervals for the outputs of experiments designed using variance reduction 

techniques was compared to current, regulator-approved methods. Lastly, a more direct 

interpretation of the regulator’s probability requirement was used, and confidence 

intervals were established for the probability of exceeding a safety limit. From there, 
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efforts were made at combining methods, in order to take advantage of positive aspects of 

different techniques.  

 The results of this analysis show that these variance reduction techniques can 

provide a more accurate and precise result compared to current methods. This means an 

increased probability of arriving at the correct conclusion, and a more accurate 

characterization of the risk associated with events. While several of these methods are 

asymptotic in nature, which presents potential drawbacks, issues of convergence appear 

to be outweighed by the reduction in variance, and improvement of the information 

contained in the results. Using this knowledge, recommendations were made about the 

applicability of these methods in the field of reactor safety, and about future regulatory 

limits and their implications.  
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Chapter 1:  Introduction 
 

1.1 Problem Description 

 Since the inception of commercial nuclear power, utilities operating nuclear 

power plants have been required to meet safety objectives set forth by the U.S. Nuclear 

Regulatory Commission (NRC), and its predecessor, the Atomic Energy Commission 

(AEC). These safety guidelines have made it necessary for the power plant operators to 

demonstrate that their plants comply with the requirements set in place to protect public 

health. Due to the large cost, complexity, and potential hazards of nuclear power, 

demonstration of compliance cannot be done through integral experiments with actual 

operating plants. Instead, complex computer codes were developed that simulate the 

plant’s response to a variety of situations. The codes are validated by comparison with 

experiments that typically involve some degree of scaling or simulation. The codes then 

act as a surrogate for the real nuclear systems they represent. It is the responsibility of the 

nuclear safety analyst to use these computer codes in an effort to determine whether the 

performance of a nuclear power plant would satisfy safety requirements under a given set 

of conditions. The analyst does this by performing a series of code calculations that 

predict how the plant would perform over the range of anticipated accident scenarios. The 

results of the analysis are then compared with a safety limit to determine acceptability. 

The applicability of these computer code results to the assurance of satisfaction of safety 
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requirements is not always clear, and there has been great debate over the interpretation 

of parameters and limits. In recognition that there are uncertainties in the ability of the 

computer code to represent the actual plant behavior, the historical safety approach taken 

by the NRC was to incorporate non-mechanistic conservatism in the analysis models. 

 More recently, the NRC has allowed the licensee to perform best-estimate plus 

uncertainty analyses for comparison with safety limits. However, questions remain about 

the interpretation of these requirements, and how to best demonstrate adherence to them. 

This shift to risk-informed safety analysis has provided utilities with flexibility in their 

analysis methods, but deterministic conservatism is still prevalent in the requirements of 

the NRC. Techniques that increase the accuracy of these best-estimate safety analysis 

methods, while reducing unnecessary conservatism, are of value to both the regulator and 

utility.  

1.2 Objective 

 The objective of this work is to identify statistical methods that can most 

efficiently increase the probability of reaching the correct conclusion during a safety 

analysis comparison to regulatory limits by increasing the accuracy and precision of the 

results of these computer code experiments. This analysis will focus less on the suitability 

of these computer codes to act as a surrogate for the actual systems, but will emphasize 

the examination of the output results of the computer code experiments and how they 

pertain to set limits and constraints. The analysis will involve several tasks which will be 

performed using numerical experiments: 
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1) Compare techniques for the estimation of quantiles of the output distributions 

of numerical experiments. This includes newer experiment designs, such as 

orthogonal Latin hypercubes. The goal is to determine the most efficient 

techniques, and to demonstrate whether it is possible to achieve the same level 

of accuracy when using fixed input values, as compared to a form of random 

sampling.  

2) Explore alternatives to the NRC-approved method of crude Monte Carlo using 

order statistics for the establishment of confidence intervals for the quantiles 

of an output distribution of a computer code analysis. This includes 

determining the applicability of recent work on variance reduction techniques 

to the goals set by the NRC.  

3) Explore alternative methods of satisfying the NRC’s statistical requirements. 

The exploration includes an examination of the use of confidence intervals for 

probability estimations rather than for estimated quantiles of the output 

distributions. The examination consists of a comparison between methods and 

attempts at combining the methods.  

4) Comment on and discuss the results of these analyses, and the implications 

towards future regulatory guidelines.  

1.3 Scope 

 This work will expand on previous research in the statistical and computer science 

fields. It will focus on the demonstration of recently published statistical techniques and 

comparisons to current, regulator-approved methods. This will be done using systems 
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representative of those encountered during a nuclear power plant safety analysis. The 

goal is to assess the applicability of these methods in the field of nuclear safety analysis, 

and to provide guidance about the best-practices to achieve the highest probability of 

correct conclusion when comparing results to a limit value. 

 Accomplishing this goal will entail formulating a more rigorous approach to the 

limit value comparison, which will allow for a uniform assessment of different methods 

and techniques. The expectation is that a more detailed examination of the process of 

comparisons to a limit value will allow the strengths and potential weakness of current 

methods to be seen. The more detailed examination will also provide direction to the 

areas where there is the biggest room for improvement. From there, through the use of 

representative experiments, the prospective improvement from newer techniques can be 

evaluated.  

1.4 Dissertation Overview 

 Chapter 2 of this work will provide background and historical context for the 

problem analyzed. This includes the regulatory motivations, a comparison of various 

uncertainty and sensitivity analysis techniques, and a more formal phrasing of the 

problem using hypothesis testing. Chapter 3 focuses on the techniques used to estimate 

quantiles of output distributions. New work in the field has provided techniques which 

may offer a step-forward in sampling methodology. This chapter also describes, in detail, 

several systems which were used throughout this work to test statistical methods. The 

systems are chosen to mimic situations encountered in nuclear safety analysis. Chapter 4 

focuses on the methods to establish confidence intervals for the quantiles of output 
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distributions. Once again, recent developments in the field have provided new options, 

which need to be benchmarked against current techniques. Chapter 5 goes beyond current 

regulatory practice, examining the meaning of certain regulatory requirements, and 

proposing alternative methods not based on quantiles of output distributions, but on 

probability. New combinatory techniques are also examined as a way of improving the 

chances of analyses achieving the correct result. Chapter 6 offers a discussion of the 

results and the applicability of the methods analyzed to actual nuclear power plant safety 

analyses. This also includes a segment on recommendations for future work and research.   
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Chapter 2: Background 
 

 This section begins with a history of U.S. nuclear power plant governmental 

regulatory bodies, and the evolution of their guidelines (Section 2.1). Secondly, an 

overview of hypothesis testing is presented (Section 2.2). The purpose of this overview is 

to provide a more rigorous framework for the process of comparisons of computer code 

outputs to regulatory limits. This framework will be used throughout this work. Lastly, a 

brief overview of uncertainty and sensitivity analysis methods is presented in order to 

provide background on the current techniques available and to offer a point of 

comparison to the methods documented in Sections 3, 4, and 5 (Section 2.3).  

2.1 Regulatory Background  

 This section provides a history of regulatory limits imposed by the NRC and other 

regulatory bodies, and their interpretation. It also includes a discussion about proposed 

future regulatory guidelines and possible restrictions the limits may impose.  

2.1.1. History of Regulatory Bodies 

 While the Atomic Energy Act of 1946 marked the development of the Atomic 

Energy Commission (AEC) to oversee nuclear power in the U.S., it wasn’t until the 

subsequent Atomic Energy Act of 1954 that commercial nuclear power began to appear 

as a reality. With this revision to the original law, the federal government made it 

possible for private companies to gain access to restricted data about the production of 
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nuclear power. This law also assigned the AEC with the dual mandate of both 

“encouraging widespread participation in the development and utilization of atomic 

energy”, and the role to “protect the health and safety of the public [1].”  

 While the main focus of the AEC was the protection of the public’s health and 

safety, many in the commission were aware that overly restrictive regulation could 

endanger the industry’s future. As AEC Commissioner Willard F. Libby remarked, “Our 

great hazard is that this great benefit to mankind will be killed aborning by unnecessary 

regulation [2].” However, the AEC realized that assurance of reactor safety was a must, 

as a single accident could deal a death-blow to the industry as a whole. What was not as 

clear was which requirements the AEC should mandate in order to demonstrate reactor 

safety.  

 The formulation of guidelines was also hindered by the fact that the AEC was 

assigned the onus of constructing at least six pilot plants of different designs. This made 

universal standards difficult and the licensing of new plants began on a case-by-case 

basis. These varied reactor designs, coupled with limited operating experience and 

material property knowledge, meant that most safety questions were a matter of 

engineering judgment and safety analysis was not constrained by concrete or quantifiable 

goals [2]. The development of a more structured regulatory process coincided with the 

formation of the Advisory Committee on Reactor Safeguards, which was a panel of 

outside experts who would conduct their own independent review of plant applications 

and regulatory structure.  
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 In the 1960s, the nuclear industry grew rapidly from small demonstration reactors 

to orders for substantially larger plants. At that point, concern rose as to the adequacy of 

protective features in the event of loss of coolant accidents (LOCAs). The Ergen Study, 

commissioned by the AEC, indicated that emergency core cooling systems would be 

required for those plants [3]. The AEC then initiated a substantial research program to 

develop a computational capability to analyze the plant response to a LOCA and an 

experimental program to assist in model development and validation. The initial 

computer codes were extremely crude relative to modern capabilities. In addition, loss of 

coolant experiments indicated that the two-phase flow phenomena associated with 

reflooding the reactor and quenching an over-heated core were complex. In response to 

these considerations, regulatory guidelines were designed in order to account for these 

potential deficiencies.  

2.1.2. Evolution of Design-Basis Safety Requirements 

  The initial approach to safety analysis is referred to as deterministic, in that 

uncertainties were not considered in a statistical manner. Under a deterministic approach,  

“Regulators … simply tried to imagine “credible” mishaps and their consequences at a 

nuclear facility and then required the defense-in-depth approach—layers of redundant 

safety features—to guard against them [2].” These deterministic measures focused on the 

use of conservative assumptions, large safety margins, and layers of redundant and 

diverse safety systems. Based partly on the results of the Ergen study and Loss of Flow 

Tests (LOFT) experiments, an emergency core cooling rulemaking led to the 

development of acceptance criteria for accident response during a LOCA. Prescriptive 
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acceptance criteria for emergency core cooling system performance were provided in 

Appendix K to Part 50 of the Code of Federal Regulations [4] in early 1974. More 

detailed information about the criteria established in Appendix K, along with methods 

used to demonstrate adherence to these limits, is provided in Section 4.  

 By late 1974, President Nixon asked congress to create a new agency with the 

sole focus of industry regulation. This marked the end of the AEC, and the Nuclear 

Regulatory Commission (NRC) began operations in 1975. The NRC was now the final 

arbiter of regulatory issues, and was not hampered with the developmental issues of the 

AEC. The following year, the final version of a major reactor risk study, WASH-1400 [5] 

or Rasmussen Report, on the probability of severe accidents at nuclear power plants was 

issued. While the report represented a major step forward in safety analysis through the 

use of Probabilistic Risk Assessment (PRA), criticism over the data used in report and the 

projected pathways to a major accident resulted in the NRC withdrawing its endorsement 

of its conclusions [2]. However, the accident at Three Mile Island (TMI) in 1979 led to a 

reevaluation of the NRC’s safety requirements, and its view of PRA. 

 After TMI, applications for new reactors stopped, and the NRC turned its 

attention towards decommissioning and plant renewals. As the NRC began issuing 

guidelines on applications for life extensions, the industry began to push back against, 

what they thought, were onerous regulatory measures. A report by the Tower Perrin 

consulting firm in the 1990’s criticized the NRC for a regulatory approach which it 

viewed as “negative and punitive” and not focused on the prioritization of risk [2]. 

Among these complaints was the argument that NRC guidelines focused too heavily on 
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deterministic regulations that left industry little flexibility in carrying out safety analyses. 

The report also recommended the use of performance-based regulations, and the ability 

for plants to perform risk analyses, like PRAs.  

 The use of PRA had been debated at the NRC since WASH-1400, and more 

studies were conducted in the late 1980’s. Initially, the NRC considered PRA to be only a 

safety research activity. However, many of the aspects of the accident at TMI were 

effectively predicted by WASH-1400. PRAs also offered the ability to prioritize events 

based on risk, and the opportunity to lessen possibly overly-conservative deterministic 

approaches. One of the conclusions of WASH-1400 was that reactor risk is dominated by 

Beyond-Design-Basis Accidents. For some specific scenarios, such as anticipated 

transients without scram and station blackout accidents, the question of adequate 

protection was raised and special requirements have been established, which have 

effectively extended the design-basis and have become incorporated into the licensing 

basis. Thus, for those events, NRC provides regulatory oversight to assure compliance. 

2.1.3. PRA in Regulatory Decisionmaking 

 The publishing of NUREG-1150, Severe Accident Risks: An Assessment of Five 

U.S. Nuclear Power Plants [6], in 1990 marked a turning point in the NRC towards risk-

based concepts. Not only did it expand on the use of PRAs, but it incorporated 

uncertainty into the analysis, unlike WASH-1400 which addressed parameter uncertainty 

post-process. By 1995, the NRC issued a policy statement encouraging the use of PRA in 

all regulatory matters [7], and further guidance on the expectations and best practices 

when conducting a PRA followed in [8],[9],[10],[11].   
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 While the NRC has accepted the move to PRA, it has not given up many 

characteristics of the deterministic analyses of the past. Instead, the NRC encourages the 

use of PRA “in a manner that compliments the NRC’s deterministic approach and 

supports the NRC’s traditional defense-in-depth philosophy [12].” Regulatory Guide 

(RG) 1.174 [9] was one of the first NRC documents to outline how deterministic and 

PRA methods could be used in combination for integrated regulatory decisionmaking. 

Recently, the NRC has sought to provide a clearer picture of how these two approaches 

can be used in unison. Figure 2. 1 shows an outline from the recently published NUREG-

2150, A Proposed Risk Management Regulatory Framework [13], which details the 

process of balancing risk assessment and deterministic techniques (called the “traditional 

approach”) in what it calls a technical analysis. This proposed approach by the NRC 

considers the uncertainty analyses and best estimate models of a risk assessment, but uses 

the upper bounds of these results in comparison to safety limits with built-in margin and 

conservatism. The safety margin is a combination of both regulatory and design margin, 

as shown in Figure 2. 2, and historical upper bound assumptions will be discussed in 

Section 3 and Section 4. 
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Figure 2. 1: Balancing Risk Assessments and Deterministic Techniques [13] 

 

 
Figure 2. 2: Safety Margin Definition [14] 

 



 

13 
 

In this safety margin framework, there is conservatism not only in the value reported by 

the designer, but in the regulatory limit, which is placed well below the assumed ultimate 

capacity of the system. Recent work has sought to recharacterize this margin in a 

probabilistic, risk-informed manner as the distance between two uncertain parameters, the 

system load, and the system capacity [15]. As seen in Figure 2. 3, the potential hazard 

arises from the possible overlap between the two distributions, and the degree of overlap 

is constrained by the regulator.  

 

 
Figure 2. 3: Incorporation of Probabilistic Safety Margin 

 

As will be discussed in Section 4, the location of the safety limits when using these 

distributions is still being considered.   

 It appears that the NRC’s use of decision criteria and limits will continue for the 

foreseeable future. More detail on the specifics of limits currently in place, those limits 
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proposed for the future, and the techniques used to demonstrate adherence to these limits 

will be given in Section 4.  

2.2 Hypothesis Testing 

 The process of testing the output of an analysis against a certain goal or limit can 

be explained more thoroughly using hypothesis testing. Hypothesis testing is a method to 

make decisions based on the resulting data of an analysis. Hypothesis testing usually 

begins with an assumption about a parameter of the analysis output. Here, a parameter is 

the true value, or a property of the full population distribution. On the other hand, the 

analysis or experiment provides a statistic. This statistic is based on the sample 

population used in the analysis, as explained in Table 2. 1. 

 

Table 2. 1: Parameter and Statistic Definition  

Parameter True property of full population  
Ex: 0.95-quantile of the true distribution 

Statistic Property of sample 
Ex: 0.95-quantile estimation using n samples 

  

 

In this process, an initial guess about a parameter will be made, then the test statistic will 

be found using experimentation (physical or computer modeling), and will be used as a 

point of comparison. The initial assumption is called the Null Hypothesis H0, and usually 

refers to a default or general position. An example would be if an experiment was 

undertaken to test the effectiveness of a new drug. The null hypothesis would be the 

assumption that the drug has no effect. Conversely, there is the Alternative Hypothesis 
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H1, which in the example above would be the statement that the new drug does have 

some non-random influence or effect.  

 It is important to note that the burden of proof is on the analyst to make the case 

for the alternative H1. To make this clearer, it can be thought of as a court case in the 

judicial system. The burden of proof is on the prosecutor to prove that a defendant is 

guilty (H1). If the evidence is insufficient of conviction, then the conclusion is the null 

hypothesis H0, not guilty. The defendant is “innocent until proven guilty,” in much the 

same way that H0 is assumed true unless proven otherwise.  

2.2.1. Types of Hypothesis Testing and Associated Errors 

 The actual process of testing can be done in various ways. Table 2. 2 shows a 

comparison of three possible procedures. In general, the three methods follow the same 

approach, but use different test statistics for comparison.  

 

Table 2. 2: Three Approaches of Hypothesis Testing [16] 

Step Test Statistic Approach P-Value Approach Confidence Interval Approach 
1 State H0 and H1 State H0 and H1 State H0 and H1 

2 Determine test size α and find 
the critical value (CV) 

Determine test size α Determine test size α or 1-α, and a 
hypothesized value 

3 Compute a test statistic (TS) Compute a test statistic and its p-
value 

Construct the (1-α)100% 
confidence interval (CI) 

4 Reject H0 if TS > CV Reject H0 if p-value < α Reject H0 if a hypothesized value 
does not exist in CI 

5 Substantive interpretation Substantive interpretation Substantive interpretation 
    

 

The test statistic approach calculates a test statistic from the empirical data found during 

the analysis. This test statistic is then compared to a critical value, usually from a 

standardized normal distribution. The p-value approach calculates a probability, using 
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the test statistic, that reflects the measure of evidence against H0 [17], referred to as the p-

value. Whether the p-value is greater or less than the metric 𝛼 (discussed below) 

determines if the results are “statistically significant.” The confidence interval approach 

calculates a confidence interval around a statistic. It is then used to see if the 

hypothesized value falls into that interval or not. This approach will be examined in detail 

in Section 4. Usually, all three types of hypothesis testing can be reworded or 

reformulated to form a test that would fall under one of the other categories, as will be 

seen in Section 4.  

 With any hypothesis test, there are four possible outcomes, shown in Table 2. 3. 

 

Table 2. 3: Hypothesis Testing Outcome Possibilities 

 𝐻0 is true 𝐻1 is true 

Accept 𝐻0 Correct Conclusion 
1-α 

Incorrect Conclusion  
Type-II Error 

β 

Accept 𝐻1 
Incorrect Conclusion  

Type-I Error 
α: Size of test 

Correct Conclusion 
1-β: Power of test 

   

 

The first possible outcome is the correct conclusion to accept H0 when indeed H0 is true. 

The second outcome is the incorrect conclusion to reject H0 when it is in fact true. This is 

referred to as a Type-I error, or a false positive. Its probability is given the value 𝛼, which 

is called the size of the test or significance level. It is important to note that this is not the 

actual size of the test (i.e. how many samples were taken or how many computer code 

runs were conducted), but the probability of committing a Type-I error. Conversely, the 

first outcome, accept H0 when H0 is true, occurs with probability 1 − 𝛼. Many times, the 
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value for 𝛼 is assigned a priori as a measure of the willingness to accept false positives, 

and the test is designed to satisfy that requirement. 

 The third possible outcome is the correct conclusion to accept the alternative 

hypothesis H1 when it is indeed true. The last outcome is the incorrect conclusion to 

reject H1 when it is true. This is called a Type-II error, or a false negative, and occurs 

with probability 𝛽. On the other hand, the correct conclusion to accept H1 when H1 is 

true, occurs with probability 1 − 𝛽, which is called the power of a test. Unlike 𝛼, 𝛽 is 

usually not defined beforehand, but its value is dependent on the experiment design that 

was constructed for a specific 𝛼, and several other factors, as will be described in Section 

2.2.2.  

 The following example is presented in order to make this testing process more 

comprehendible. For example, assume there is a regulatory safety limit with value 𝐺, that 

represents a prescribed limit that the true 0.95-quantile 𝜉0.95 of the output of a safety 

analysis cannot exceed. In this case, the hypothesis test is defined with null hypothesis 

H0: 𝜉0.95 > 𝐺 and alternative hypothesis H1: 𝜉0.95 ≤ 𝐺. This framework puts the burden of 

proof on H1, which hypothesizes that the true 0.95-quantile value of the output falls 

below the prescribed limit. 

 In this example, the analyst carries out a certain number of computer simulations 

to estimate the 0.95-quantile of the system’s output (more information on how to estimate 

a quantile value is presented in Section 3). This estimation of 𝜉0.95, 𝜉0.95 (the ~ will be 

used throughout this work to denote an estimated value), is then compared to the limit 𝐺 

using either a critical value, p-value, or confidence interval. Based on this result, H1 will 
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either be accepted or rejected. Both errors, Type-I: the system appearing to satisfy the 

safety limit when the true quantile does not, or Type-II: the system appearing to fail the 

safety limit when the true quantile satisfies the limit, are possible depending on the 

location of the true 0.95-quantile. Based on the type of test used, an acceptable value for 

𝛼 would have been decided a priori, and the test would have been built around it.   

2.2.2. Reducing Error 

 Both errors have negative impacts. Type-I errors would appear to be the more 

serious error since a system is being approved that should not be. However, Type-II 

errors also have drawbacks, since a system will be viewed as failing when it should not. 

This type of error could mean that time and resources will be dedicated to fixing a 

potentially non-existent problem, when they could have been applied more productively. 

The goal of the safety analysis should be to reduce both Type-I and Type-II errors 

(reduce 𝛼 and 𝛽). This not only helps reduce false positives, but helps assure that safety 

measures are most effectively addressing true safety issues. 

 Since 𝛼, the probability of committing Type-I errors, is usually fixed (common 

values chosen are 0.05 or 0.01), then the focus is on reducing 𝛽. This can only be done in 

three ways: 

 1. Increase the distance (or Δ) between H0 and H1  
 2. Increase the sample size n 
 3. Increase 𝛼 

Obviously, the third option is not acceptable, which leaves only two other methods. 

Increasing the distance between H0 and H1 will help reduce Type-II errors, but it is 

usually outside the analyst’s control. The limit is often times set by some other 
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organization, and typically the system cannot be changed substantially. This leaves only 

one available option, increasing the sample size. In our example, this would mean more 

computer code runs, but even with today’s technology, computer runs are expensive and 

time consuming. There is a possible solution though. The reason increasing the sample 

size reduces 𝛽 is because it reduces the sample variance. This increases the precision of 

the sample statistic, which in turn makes the probability of error less likely. Therefore, 

the way to reduce 𝛽 is to find techniques that decrease the sample variance without the 

need to increase the sample size.  

2.3 Overview of Uncertainty and Sensitivity Analysis 

 This section gives a brief overview of various sensitivity and uncertainty analysis 

(SA and UA) methods. This is done in order to offer a better understanding of the current 

methods available for these analyses, and how the techniques detailed in this work 

compare to other methods in the field. Here, SA is defined as in the book Uncertainty by 

Morgan and Henrion [18] as “the computation of the effect of changes in input values or 

assumptions (including boundaries and model functional form) on the outputs”, and UA 

as “the computation of the total uncertainty induced in the output by quantified 

uncertainty in the inputs and models, and the attributes of the relative importance of the 

input uncertainties in terms of their contributions.”  To state this explanation more 

simply, an UA is the investigation of the output space and its properties (usually mean, 

variance, higher moments, etc). SA is the examination of the relationship between input 

parameters and their effects on the value of the output. 
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 This section will center on the analysis of input uncertainty. While many of these 

techniques can be used to handle model or parameter uncertainty, the main focus of this 

work is on methods related to input uncertainty. However, this input uncertainty may be 

either aleatory (stochastic in nature), or epistemic (relating to a lack of knowledge of 

specific value). Also, this review will focus on SA and UA methods based on classical or 

Bayesian probability theory. It will not cover some of the lesser known alternatives, like 

fuzzy logic [19], possibility theory [20], Dempster–Shafer (evidence) theory [21] 

[22], and info-gap decision theory [23]. While some very exciting developments are 

occurring in these fields, in a matter of brevity, they will not be discussed here.  

 For ease of reference, the following notation will be used. A system will involve d 

input variables, 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑑), and output variable 𝑦. The vector 𝒙 is a realization 

of a random vector 𝑿 (capital letters will denote random variables, and lower case will be 

a corresponding realization). Hence, 𝑦 is also a realization of random variable 𝑌, and the 

relationship between the input and output can be described in Eq.  1, which shows the 

output has its own probability density function (PDF). The total number of runs (where a 

run is the creation of a sample from the system) conducted will be denoted by n.  

 𝑌 = 𝑓(𝑋1,𝑋2, … ,𝑋𝑑) = 𝑓(𝑿) Eq.  1 

 To aid in the presentation of the material, this overview will be split into 

subsections based on the major methods of SA/UA. Section 2.2.1 will document 

screening designs, Section 2.2.2 will cover local methods, Section 2.2.3 will cover global 

methods, and Section 2.2.4 will cover the application of Bayesian techniques. Local 

methods will be defined as the process to determine the sensitivity (or in local methods 
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the derivative) of an input variable on the output at a given location. Global methods will 

be defined as the process to determine the sensitivity across the total input uncertainty 

space. Expanded definitions will be given in the following sections. Screening methods 

are documented separately since they are applicable at the local and global levels. Many 

of the methods detailed in these sections are summarized from [24] and [25].  

Lastly, certain elements of UA will not be covered in this section for several 

reasons. First, the figures of merit being pursued by an analyst doing an UA can vary 

greatly depending on the analyst’s goal. This review will focus on the most common 

goal, the moments of the output distribution. Second, many of these techniques, such as 

those to determine quantiles of the output distribution, or establish confidence bounds, 

will be discussed in length in Section 3, Section 4, and Section 5.    

2.3.1. Screening Designs 

 The task of screening designs is to identify the most influential input variables 

amongst a large number of inputs. It is commonly assumed that in a model with many 

input variables, only a few inputs will dominate the response. This assumption is 

somewhat based on Pareto’s law of income distribution within nations, where there are 

many potential factors, but the distribution can largely be characterized by several 

important variables [24]. Screening designs can be either local or global depending on 

how they are applied. However, most screening designs return only a qualitative 

assessment of the input factors’ importance.  
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2.2.1.1. Classical/Global One-at-a-Time Methods 

 One-at-a-time (OAT) [26] methods consist of first conducting a model run with 

all input variables at their nominal value. Then, a single input is perturbed a set amount 

(usually the two extremes of the input range are chosen as perturbation values), while 

keeping the other variables at their nominal values. The change in the output between the 

nominal and perturbed trial reveal the influence of that variable. Here, classical OAT 

refers to a local analysis, which is only valid if the function’s response at that point can 

be modeled linearly. This usually involves 2𝑑 + 1 trials, and provides no information on 

the interaction between variables.  

 Global, or Morris, OAT [27] investigates the entire input uncertainty space. It 

takes 𝑟 local measures at different points of the input range. Each value is then changed 

OAT and results in a total number of 2𝑟𝑑 runs. This method does produce some 

information about input interactions, but only a qualitative indication. It does not specify 

which variables have interaction, just that it exists.  

 Both of these methods do depend somewhat on the given range of the input 

variables, but are not dependent on the input variable distribution, since the sample points 

are either chosen at the extremes, or uniformly from the range.  

2.2.1.2. Full/Fractional Factorials 

 Perhaps the most common screening method involves full and fractional factorials 

[28]. A full factorial consists of splitting each input variable range into 𝑟 levels, then 

conducting runs of all possible combinations of these levels. A positive feature of this 

technique is that it’s possible to determine high level interactions between input variables 
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along with the main effects. However, the amount of runs necessary for a full factorial 

design grows quickly with the number of levels and variables; 𝑟𝑑 number of runs is 

necessary, where r is the number of levels, and 𝑑 is the number of variables. Obviously, 

these designs become infeasible for a large number of inputs on a complex system.  

 Fractional factorials reduce the number of runs necessary by using only certain 

combinations of input levels [28]. While this method results in fewer runs, it also means 

that higher order interactions will be lost, and certain assumptions must be made about 

the negligibility of these interactions. The designs can be formed in order to assure 

certain interactions can be accounted for. The level of interaction which can be found is 

often called the design Resolution. A Resolution III design means only main effects can 

be determined, and they will be confounded with interaction terms. This is not a problem 

if those interactions are considered negligible when compared to the main effects. 

Resolution IV designs allows two-factor interactions to be found along with main effects, 

but also results in an increase in runs. Resolution V allows three-factor interactions to be 

found, and so on. Usually, fractional factorials are designed using orthogonal arrays. 

Orthogonality helps ensure that effects are balanced, or sum to zero, across inputs. There 

are many subsets of fractional factorial designs, such as Taguchi arrays [29], which are a 

type of Resolution III orthogonal design. More information on fractional factorial 

resolution and orthogonal designs will be presented in Section 3.  
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2.3.1.3. Cotter’s Design, Iterated Fractional Factorials, and Sequential Bifurcation 

 As a way around the interaction assumptions required for fractional factorials, 

Cotter proposed Systemic Fractional Replicate Design (SFRD) [30]. SFRD accomplishes 

this using the following procedure.  

1. Initial run with all variables at their low levels 
2. d runs with each factor, in turn, at its upper level, while others remain at low 

level 
3. d runs with each factor, in turn, at its low level, while others remain at high 

level 
4. One runs with all factors at high level 

 
 In total, SFRD requires 2d+2 runs. The difference in the output between these 

runs can be used to estimate the order of importance of the variables. However, a 

potential drawback is that certain variable’s effects may cancel out other effects, and 

there’s no way for the analyst to check for this situation. This method also lacks 

precision, since input variables are only being evaluated at their extremes. For SFRD, the 

importance measures have a variance equal to 𝜎2 4⁄ , while a fractional replicate with n 

runs would have a variance of 𝜎2 𝑛⁄  [24]. 

 Iterated Fractional Factorial Design (IFFD) [31] uses fewer runs than there are 

variables, but allows for the estimation of main, quadratic, and two-factor interaction 

effects of influential variables. This is done by taking three levels per input variable, low, 

middle, and high, then using these values in a series of two-level and three-level, 

Resolution IV fractional factorial designs. It also takes advantage of folded matrices, 

which are matrices that are the mirror image of another matrix (i.e. all low values would 

be switched to high and high values would be switched to low) to filter out confounded 
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effects. Through stepwise regression, influential variables can be discovered. This 

process is best equipped for models that have very few influential input variables.  

 Bettonvil’s Sequential Bifurcation (SB) [32] is a group-screening technique. For 

this method, it is required that the variables have known signs that the analyst can 

identify. These signs are important because this method involves grouping parameters 

into clusters. All the variables in a cluster are assigned the same level for a run (low or 

high). If a run shows that a cluster is not influential, those variables are dropped. If a run 

shows a cluster is influential, that cluster is split in two and the process is repeated, hence 

the name sequential bifurcation. At the end of this process, the only remaining clusters 

will include a single, important variable. This gives the main effects of those variables. If 

two-factor interactions are desired, the process can be repeated using a foldover 

technique. This process is very efficient in terms of computational effort, but requires a 

high level of analyst effort, as it is necessary to discern influential clusters for every trial 

[24].  

2.3.1.4. Summary of Screening Designs 

 Each screening design has advantages and disadvantages depending on the 

particular analysis. OAT, full factorials, and SFRD allow for no assumptions about the 

interactions, but OAT and full factorials require a very large amount of runs, and SFRD 

lacks precision and can result in effects cancelling each other. Fractional factorials can 

determine main effects and interactions in a much more efficient manner, but requires 

certain assumptions to be made about the system. IFFD is efficient and effective, but only 
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if there are a few dominating variables. SB is efficient and simple to apply, but relies 

heavily on analyst knowledge and cannot capture higher order interactions. 

 While this section has focused on the use of screening designs to identify 

important variables, they can also be used for UA. Many of these designs, such as full 

and fractional factorials, can be used to create regression fits or response surfaces. These 

can be used to satisfy the more typical UA goals of identifying the moments and shape of 

the output distribution. 

2.3.2. Local Methods 

 Local methods provide the slope of the model output distribution at a given set of 

values. For local SA, this slope is the goal of the examination, but for UA, local methods 

can provide a quick, efficient technique for a preliminary exploration of the model. This 

section will cover, what are commonly called, deterministic local methods. These 

methods do not express the output in terms of probability, or sample from an input 

distribution. They are best used on systems where the output can be expressed as a fixed, 

direct function of the inputs. These local methods usually fall under two categories, those 

that numerically solve for the slope, and those that analytically find the partial 

derivatives. In either case, extensive prior knowledge or assumptions about the 

distributions of the input variables is usually not needed, since only a small interval is 

being explored. However, some methods require detailed knowledge of model 

parameters.  
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2.3.2.1. Brute-Force Method (Indirect Method) 

 The Brute-Force Method (BFM) [24] consists of slightly perturbing input 

variables, one-at-a-time, around some nominal value. These perturbations, and their 

resulting output, allow for an estimation of the slope at the nominal value. This method 

uses the finite-difference approximation and relies on local linearity, so it is not suited for 

highly nonlinear systems, or models that vary many orders of magnitude in small 

intervals. While the process seems straightforward, it can consist of a period of trial and 

error. This is due to that fact that if the perturbation interval is selected too wide, it can 

violate the local linearity, but if the interval is too small, it is often dominated by the 

round-off bias of the model. This method usually requires d+1 runs, or 2d runs if central 

difference approximation is used. It is essentially a subset of OAT techniques.  

2.3.2.2. Differential Methods (Direct Method, Green Function Method, 

Miller/Frencklach, Poly. Approx.) 

 To explain how differential methods work, it is necessary to start with the time-

dependent, differential-algebraic equation seen in Eq.  2. 

 𝑑𝒚
𝑑𝑡

= 𝑓(𝒚,𝒙), 𝒚(0) = 𝒚0 
Eq.  2 

Here, y is the vector of output variables, and x is the vector of input variables. Any 

change in x will also cause a subsequent change in the solution ys. This change can be 

expressed by a Taylor series expansion seen in Eq.  3, 

 
𝒚𝑠(𝑡,𝒙 + ∆𝒙) = 𝒚𝑠(𝑡,𝒙) + �

𝜕𝑦𝑖
𝜕𝑥𝑖

𝑘

𝑗=1

∆𝑥𝑖 +
1
2
��

𝜕2𝑦𝑖
𝜕𝑥𝑙𝜕𝑦𝑗

∆𝑥𝑙∆𝑥𝑗 + ⋯
𝑘

𝑗=1

𝑘

𝑙=1

 
Eq.  3 
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where, 𝜕𝑓𝑦𝑖 𝜕𝑥𝑗⁄  are called the first-order sensitivities (also called matrix S), 

𝜕2𝑓𝑦𝑖 𝜕𝑥𝑙𝜕𝑥𝑗  � are the second-order sensitivities, and so on. A differential analysis 

consists of the following four steps: 

1. Base values and ranges for input variables are selected 
2. A Taylor series approximation for the model is developed from the base values 
3. Variance propagation techniques are used to estimate uncertainty in y  
4. Taylor series approximations are used to estimate the importance of input 

variables 
 

 In general, only the first-order sensitivities are found. However, to find these 

sensitivities, matrix S, the analytical solution to Eq.  2 must be known. This is only 

possible in the simplest cases. These next methods have been developed to overcome this 

shortfall. 

 The Direct Method (DM) [24] differentiates Eq.  2 with respect to xi, as seen in 

Eq.  4, called the sensitivity differential equations. 

 𝑑
𝑑𝑡

𝜕𝒚
𝜕𝑥𝑖

= 𝐽
𝜕𝒚
𝜕𝑥𝑖

+
𝜕𝑓
𝜕𝑥𝑖

 
Eq.  4 

The matrix form can be seen in Eq.  5. 

 𝑆 = 𝐽�̇� + 𝐹𝑆 Eq.  5 

Here, 𝐽 = {𝜕𝑓𝑖 𝜕𝒚⁄ } is called the Jacobian matrix, and 𝐹 = {𝜕𝑓𝑖 𝜕𝑥𝑖⁄ }, the parametric 

Jacobian. The DM solves the ODE in Eq.  4. However, to solve this ODE in an actual 

model, all the system parameters need to be known. This obviously becomes impractical 

as the model becomes more complex. The computational effort is also linearly 

proportional to the number of variables. 
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 The Decoupled Direct Method (DDM) [33] [34] allows a numerical shortcut by 

exploiting a relationship between Eq.  2 and Eq.  4. Both these equations have the same 

Jacobian; therefore, the sensitivity equation can be solved with the original equation. It’s 

important to note that the information about the system parameters is still necessary. 

 The Green Function Method (GFM) [24] differentiates Eq.  2 with respect to the 

initial values y0. This creates an initial value sensitivity matrix, or Green function, which 

is then able to be solved using more easily evaluated integrals. The DDM method is much 

easier to implement, and the GFM is only faster when there are many more system 

parameters than input variables. 

 The Method of Miller and Frenklach [35] uses a series of simpler empirical 

equations as a replacement for the model. It is very difficult, and time consuming, to find 

suitable empirical equations which can replace the more complex model, but if they exist, 

differentiating them can produce the same sensitivity results. Polynomial approximation 

uses Lagrange interpolation polynomials to approximate the solution of the sensitivity 

differential equations, but this method has not been applied to real world problems.  

2.3.2.3. Forward and Adjoint Sensitivity Analysis Procedure 

 Forward Sensitivity Analysis Procedure (FSAP) [36] [37] uses Gâteaux 

differentials, which is a directional derivative that maps functions from one space to 

another. This means FSAP can find the differential of the original equation in the 

direction of the perturbation of the inputs, which yields a forward sensitivity system. This 

system then needs to be solved. This results in a computational effort equal to that of 

DDM. This is not surprising since FSAP is viewed as a generalization of DDM over a 
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total differentiation. This also means that, like DDM, FSAP becomes impractical for 

large systems with many parameters.  

 Adjoint Sensitivity Analysis Procedure (ASAP) [36] [37] reduces the 

computational effort by creating an adjoint function which only needs to be solved once. 

This can be done independently of the solution of the original model (unlike DDM which 

uses the same Jacobian to solve both equations). While ASAP is far more efficient than 

DDM or FSAP, it does require that an adjoint sensitivity system is available, and this 

construction may not be a trivial task. Still, ASAP tends to be the most efficient method 

for large-scale systems with many parameters.  

2.3.2.4. Local Uncertainty Analysis 

 While local methods cannot completely provide the UA’s goal, which would be to 

create a probability density function of the output, it can provide a first estimate result or 

give the basic characteristics of the function near that region. Using propagation of error, 

a linear estimate can be given for the variance of the model output based on the 

individual variables’ derivatives. This linear estimate is essentially the sum of the 

contributions of the uncertainties from each input variable.  

 It is also possible to use propagation of error (propagation of moments) to find 

other moments of the output, such as the expected value, but this is usually done through 

non-deterministic methods, like sampling. While these techniques will be discussed in the 

global section, it is possible for them to be used on a smaller, local analysis. It is also 

important to note that with these deterministic local methods, the SA is conducted first, 
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and then any UA is conducted using those results. This is not the case for global, 

statistical techniques, where the process is reversed.  

2.3.2.4. Summary of Local Methods 

 Overall, the BFM is by far the easiest method to implement, and requires no extra 

model development or differentiation using system parameters. However, it is time 

consuming and requires the use of trial and error to set the perturbation range. Of the 

differential methods, GFM is the most computationally expensive and is rarely used. 

DDM requires many model evaluations and scales linearly with the number of variables. 

FSAP becomes essentially equal to DDM in terms of computation, but can prove 

advantageous if the number of outputs exceeds the number of inputs. Both are impractical 

for large systems. ASAP is by far the most efficient method, but if the adjoint system is 

not developed at the same time as the model, it can be difficult to create.  

2.3.3. Global Methods 

 Global methods will be defined here by the following two statements. First, all 

input variables must be varied simultaneously. Second, the complete range of the input 

values must be investigated. Unfortunately, this creates two problems. First, since all 

input variables are changed at once, the result is actually a multidimensional average of 

all the variables’ effects. Second, the shape of the output distribution will be directly 

affected by the assumed input distributions. This second problem cannot be overstated 

and will be discussed further in this section.  
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2.3.3.1. Global Adjoint Sensitivity Analysis Procedure 

 Before reviewing the statistical global methods, it should be mentioned that there 

is one proposed deterministic global design. The Global Adjoint Sensitivity Analysis 

Procedure (GASAP) [24] is an extension of ASAP. Since it is not possible to use Taylor 

series at a global level (since Taylor series are a local concept), GASAP uses a global 

homotopy-based method. The method is complex, to say the least, and relies on both the 

forward and adjoint sensitivity systems to explore, exhaustively and efficiently, the entire 

input and output uncertainty space in order to determine important factors of the 

distributions (such as critical points, turning points, etc). As of now, GASAP has yet to 

be tried on a large scale system [24].  

2.3.3.2. Monte Carlo Methods 

 Monte Carlo (MC) methods consist of drawing random, or quasi-random, samples 

from input probability distributions. The procedure includes the following five steps: 

1. Define distributions of the uncertain input variables 
2. Sample values from these input distributions 
3. Evaluate the model at the sample points 
4. Perform an UA using the results of the evaluation 
5. Perform a SA by some type of mapping of the results to input variables 

 
This section will be split into two subsections. The first subsection will discuss various 

means used to sample from the input distributions. The second subsection will include 

some of the techniques used to perform a SA using the results of a MC method.  
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Sampling 

 The most basic form of sampling is crude Monte Carlo (CMC) random sampling. 

In this method, samples are chosen randomly (or pseudo-randomly if a machine performs 

the selection, as explained below), from the input distributions. The samples selected will 

occur in direct proportionality to their probability distribution, which again shows the 

importance of the selected input distributions. Also, each sample is selected 

independently of the others, as long as there is no correlation between inputs. If there is 

correlation between inputs, additional steps need to be taken to assure the two input 

samples are properly related. This is often done through the use of rank-correlated pairing 

techniques.  

 Random sampling does have several weaknesses. First, there is no guarantee a 

certain region of the input distribution will be sampled, and usually a large number of 

runs is necessary to ensure proper coverage. Conversely, if the distribution has infinite 

tails, there is a non-negligible chance of sampling a negative or zero value. This can be 

avoided by truncating the distributions however [38]. Second, random sampling can be 

inefficient if samples are drawn from areas too close to previous samples. This, again, 

means large numbers of samples will be needed.   

 In order to improve on the efficiency of random sampling, many variance 

reduction techniques (VRTs) have been created. VRTs are methods used to improve the 

precision of a sampling scheme by either using previous knowledge of the inputs to 

reduce their variability, or tractable features of the model to adjust or correct outputs [39]. 

The most basic VRT is stratified sampling. This is the process of dividing the input 
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distribution into subregions, or strata. Then samples are drawn evenly from the different 

strata. This process helps ensure coverage over the input distribution. It can be carried out 

in different ways.  

 A basic form of stratified sampling is importance sampling (not to be confused 

with importance measures, which will be discussed later). Using this procedure, the input 

distributions are divided in a way that ensures the more “important” regions of the 

distributions will be sampled more frequently. This can be accomplished using analyst 

opinion; an example would be if an analyst knew that the higher values of an input will 

have a larger effect on the output, so the higher regions are divided into more strata than 

the lower values. It can also be carried out using a structured method, like the relation to 

the expected value of a similar variable. In essence, importance sampling modifies the 

input distribution in a way that allows the more influential regions of the original 

distribution to be sampled with more precision. It is important to note, the strata in 

importance sampling are often not of the same probability. The strata must then be 

weighted, according to their probability areas, in order for the final result to be consistent 

with the original distributions.  

 Perhaps the most popular form of stratified sampling is Latin Hypercube 

Sampling (LHS). LHS is a conceptually simple form of stratified sampling, where the 

strata are created using equal probability intervals. This method helps ensure coverage 

over the whole input distribution space, while not changing the distribution shape or 

requiring probability weights to be added post-process. LHS is the preferred method of 

stratification when there is little knowledge about the input variables. This is because 
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LHS does not depend on analyst opinion, or any ranking of input importance. Each input 

variable is divided on probability only. In terms of UA, LHS has repeatedly been shown 

to be more efficient than random sampling in the determination of the output’s mean and 

population distribution. One positive of LHS is that it is possible to reweight samples if 

the shape of the input distribution has changed a posteriori [40]. This eliminates the need 

for repeated computer code or system runs, and allows the results that have already been 

found to be modified. LHS was analyzed in detail in this work, and more information 

about implementing the technique is provided in the following sections.   

 Another, relatively simply, VRT is the method of antithetic variates (AV). In this 

technique, a random input sample is selected, xi (normalized 0 ≤ 𝑥𝑖 ≤ 1), then an 

additional sample is formulated that is negatively correlated to xi, which in this case 

would be 𝑥𝑖2 = 1 − 𝑥𝑖. Both samples are used to evaluate the model; then the two 

outputs, y1 and y2, are averaged. If the two samples were selected independently, the 

variance of the final output, 𝑦�, would be of the form seen in Eq.  6. 

 
𝑣𝑎𝑟(𝑦�) =

𝑣𝑎𝑟(𝑦1)
2

=
𝑣𝑎𝑟(𝑦2)

2
 

Eq.  6 

However, using antithetic variates, the variance is reduced by the formula seen in Eq.  7. 

 
𝑣𝑎𝑟(𝑦�) =

𝑣𝑎𝑟(𝑦1) + 𝑣𝑎𝑟(𝑦2) + 2𝑐𝑜𝑣(𝑦1,𝑦2)
4

 
Eq.  7 

There are several weaknesses with this approach though. First, if the input variable has a 

skewed or non-symmetric distribution, the negative correlation metric will be reduced. 

The second issue arises if input variables are correlated. If proper steps aren’t taken to 

handle this correlation, antithetic variates can actually result in a greater variance than 
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random sampling. More detail about the actual implementation of AV can be found in the 

Section 4.2.   

 The control variates method [39] is another VRT that, like importance sampling, 

that could use some prior knowledge about the system. There are many ways to apply 

control variates, but the most common technique is to use a known statistic similar to the 

output of interest. In this way, that known statistic is used to modify the output result. If 

the output of interest is 𝐸[𝑓(𝑥)], and 𝛼 = 𝐸[𝑤(𝑥)] is known. Then the output can be 

modified using Eq.  8, 

 𝑓∗(𝑥) = 𝑓(𝑥) − 𝑐(𝑤(𝑥) − 𝛼) Eq.  8 

where c is a coefficient that can be optimized by using the covariance between f(x) and 

w(x), as seen in Eq.  9. 

 
𝑐 = −

𝑐𝑜𝑣(𝑓,𝑤)
𝑣𝑎𝑟(𝑓)

 
Eq.  9 

Using this approach, the variance of 𝑓∗(𝑥) is reduced by the order seen in Eq.  10. 

 
𝑣𝑎𝑟�𝑓∗(𝑥)� = �1 −

[𝑐𝑜𝑣(𝑓,𝑤)]2

𝑣𝑎𝑟(𝑓) �𝑣𝑎𝑟(𝑓(𝑥)) 
Eq.  10 

The obvious difficulty when using control variates is choosing and optimizing the control 

function 𝑤(𝑥).  

 It should also be noted that there are methods of quasi-random sampling. Perhaps 

the most well-known of these techniques are the Sobol’ LPτ sequences. These are referred 

to as low-discrepancy sequences, where discrepancy is a measure of the equidistribution 

of the points. By using these sequences to sample input variables, it is possible to 

converge to the solution at a faster rate than random sampling. It has also been proven 
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that quasi-random sampling can outperform random sampling and LHS for non-

monotonic systems.  

 It should also be added here that there are possible problems when using a 

pseudo-random number generator. Almost every real analysis using a type Monte Carlo 

sampling will involve the use of a machine programmed with a pseudo-random number 

generator. While these samples may seem random, they are actually deterministic and 

will begin to repeat after some period. Usually this period is beyond the number of 

samples used in any experiment, but it is a possibility. Also, these pseudo-random 

number generators may return samples that are correlated in some fashion. In some cases, 

shuffling, where the seed value of the random number generator is changed between 

samples, is recommended to break up sequential correlations [41]. 

Sensitivity Analysis 

 As stated previously, there are many techniques to perform SA with MC methods, 

but they rely on the results of the UA. The simplest, and most intuitive, form of SA for 

MC methods is the examination of the scatterplots. This involves simply plotting the 

output against an input variable, then trying to distinguish trends, relationships, and 

thresholds. If there are only a few dominating variables, scatterplots can usually identify 

them with almost no additional work. Scatterplots are particularly useful with LHS since 

there is full stratification along the input variable range. However, scatterplots are only a 

qualitative tool, and it can be difficult to rank variables without a process of 

normalization or simple regression fits. A simple way to expand on a scatterplot is to use 

the Pearson product moment correlation coefficient (PEAR) [25]. This is just the linear 
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correlation coefficient between an input variable and the output. If a model is non-linear, 

it’s possible to use the variables’ ranks instead of the raw data; this is called the 

Spearman coefficient (SPEA).  

 It is possible to take this model fitting to the next step, in order to obtain a 

quantitative result, by doing a full regression analysis. Since this is a very popular 

method, and other techniques depend on its results, it will be reviewed in more detail. A 

simple regression fits develops a model, of the form seen in Eq.  11, by mapping between 

the input variables and the output, 

 
𝑦� = 𝑏0 + �𝑏𝑗𝑥𝑗

𝑑

𝑗=1

+ 𝜀 
Eq.  11 

where 𝑏𝑗 (𝑗 = 1, … ,𝑑) are the coefficients to be determined, and ɛ is the error term 

defined by the difference between the predicted output 𝑦� and the actual output y. The 

most common method to determine the coefficients of Eq.  11is by using the method of 

least-squares. This technique is widely documented elsewhere, and will not be detailed 

here [42]. It is important to determine how well the regression model fits the actual data. 

A common metric to judge the fit is the sum of squares, which is defined in Eq.  12, 

 𝑆𝑆𝑡𝑜𝑡 = 𝑆𝑆𝑟𝑒𝑔 + 𝑆𝑆𝑟𝑒𝑠 

𝑆𝑆𝑡𝑜𝑡 = �(𝑦𝑘 − 𝑦�)2
𝑛

𝑘=1

 

 𝑆𝑆𝑟𝑒𝑔 = �(𝑦�𝑘 − 𝑦�)2
𝑛

𝑘=1

 

𝑆𝑆𝑟𝑒𝑠 = �(𝑦�𝑘 − 𝑦𝑘)2
𝑛

𝑘=1

 

Eq.  12 
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where n is the total number of runs conducted, 𝑦�𝑘 is the regression model estimate, 𝑦𝑘is 

the actual run result, and 𝑦� is the mean of 𝑦𝑘. These are referred to as the total sum of 

squares, regression sum of squares, and residual sum of squares. They can be used to find 

the ratio R2, found in Eq.  13. 

 𝑅2 = 𝑆𝑆𝑟𝑒𝑔/𝑆𝑆𝑡𝑜𝑡 Eq.  13 

When R2 is close to 1, it can indicate that the regression model is accounting for most of 

the uncertainty in the system. When using SS or R2, it is important to check to make 

certain the model is not overfit to the data. This means the model is not fitting to the 

overall trend of the data, but including variations between sample point results. While 

this is usually not the case with linear regression fits, it is a possibility with response 

surfaces, which will be detailed later. Another method to determine the adequacy of a 

regression model uses the predicted error sum of squares (PRESS), seen in Eq.  13.   

 
𝑃𝑅𝐸𝑆𝑆𝑘 = �[𝑦𝑖 − 𝑦�𝑖(𝑘)]2

𝑛

𝑖=1

 Eq.  14 

PRESS works by excluding a system observation from the regression fit, and then tests 

the fit’s prediction against the actual value. The smaller the PRESS value, the better the 

regression fit predicted the data point.  

 Once a regression fit is created and determined to be adequate, a SA can 

commence. The first (and most obvious) way to rank the input variables is to normalize 

the coefficients of the regression fit. This will give a basic ranking of the input variables 

now that they are all on the same scale. One way to do this is to normalize the input and 

output variables to a mean of zero and standard deviation of one. These new coefficients 
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are called the standardized regression coefficients (SRCs). A formal definition is given in 

Eq.  15, where Eq.  11 has been algebraically reformulated to yield, 

 𝑦� − 𝑦�
�̂�

= �
𝑏𝑗�̂�𝑗
�̂�

𝑑

𝑗=1

𝑥𝑗 − �̅�𝑗
�̂�𝑗

 

𝑦� = �
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𝑛

𝑛

𝑘=1
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1 2⁄
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Eq.  15 

where 𝑏𝑗�̂�𝑗 �̂�⁄  are the SRCs, and can provide the variable importance.  

 It is also possible to determine importance by using the partial correlation 

coefficients (PCCs). This is done by developing two regression models; one model that 

includes the influence of all variables, and a model where the influence of all variables, 

other than the one of interest, has been removed. By a comparison of these results, the 

linear relationship between the input variables and the output can be determined, which 

has the other input variables’ linear effects removed. In essence, the PCC is a measure of 

the strength of the linear relationship between an input and output after a correction has 

been made to account for the other variables, while the SRCs measure the effect on the 

output by a perturbation of an input value. They are similar, but can provide different 

importance measures.  

 There are drawbacks to using regression fits. Since it is based on a linear 

relationship between the inputs and output, it can perform poorly when the system in 

non-linear. This would yield a very low value for R2 (below one and near zero, meaning a 

poor fit). However, as long as the relationships are monotonic, rank transformations can 
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be used to deal with nonlinearity. This is done by replacing either the input or output data 

with its rank order (1, 2, 3, … ,𝑛). Then a regression fit is made to this rank data, rather 

than the original data structure. If R2 is larger using the rank transformation, the model 

has been improved. From there, the standardized rank regression coefficients (SRRCs) 

and partial rank correlation coefficients (PRCCs) can be found as before. It is important 

to note that the SRRCs and PRCCs now give data about the new regression model. Care 

must be taken translating these results back to the original system.  

 It should be noted here, that if the original design matrix were orthogonal (not 

randomly sampled, but using a design of experiment like a fractional factorial), 

determining the regression coefficients and correlation coefficients greatly simplifies to a 

single equation for each. This simplification has been part of the motivation to create 

other orthogonal or near orthogonal designs, such as orthogonal Latin hypercubes.  

 One last point on regression modeling; new regression techniques have been 

developed recently and should be mentioned. Argonne National Lab (ANL) has been 

developing a polynomial regression technique (using polynomial chaos expansion) which 

not only fits to the system input and output data, but uses the sensitivities to improve the 

regression surrogate [43]. This is done by automatic differentiation while the system code 

is conducting trials. These variable derivatives greatly increase the accuracy of the 

regression fit surrogate. While this process is still new, it is an interesting intersection of 

different methods of UA and SA. ANL claims that the calculation of these sensitivities 

while the code is running is possible, and has been demonstrated, but access to the system 



 

42 
 

codes and a large amount of effort would be needed to introduce this technique to an 

existing code. There is also Bayesian regression, which will be discussed in Section 4.  

 It is possible to use formal test statistics on a regression analyses, but one should 

be cautious, since many of these statistical techniques are based on assumptions that are 

not applicable to deterministic codes (codes that always produce the same result for a 

given input). Instead, two-sample tests, such as the Smirnov test [44], Cramer-von Mises 

test [45], the Mann-Whitney test [46], and the two sample t-test are sometimes used. 

These can be applied to the regression model or the original system. Most of these tests 

work by partitioning input variables based on quantiles of the output. If the input variable 

differs for the two quantile regions of the output, it can be viewed as influential. This 

provides only a qualitative ranking, and the result can vary greatly depending on what 

output quantiles are chosen and which samples are used.   

 There is a different approach to constructing a regression analysis, when there are 

many input variables, and some knowledge about their ranking is known. This method is 

known as stepwise regression and uses the following procedure: 

1. A regression model is constructed using only the most influential input variable 
2. A new regression model is constructed using the first and second most 

influential input variables 
3. A third regression model is constructed using the first three most influential 

input variables 
⋮ 

 This process is continued until adding subsequent variables is no longer 

meaningful. Obviously, to conduct this technique, some type of ranking of the input 

variables must already exist. This can be done by developing a simple regression fit, 
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determining the SRCs, and using those in an effort to develop a better model. As before, 

it is especially important to keep track of R2 and the overall model fit to ensure the 

analysis is ending at the right time.  

2.3.3.3. Measures of Importance (Variance Based Methods) 

Correlation Based 

 Measures of importance [25], or variance based methods, can be used in 

conjunction with MC methods. While there are different techniques, they all, essentially, 

try to provide a solution to Eq.  16, which is known as the correlation ratio [47]. 

 𝑉𝑎𝑟𝑥𝑗[𝐸�𝑌�𝑋𝑗 = 𝑥𝑗�]
𝑉𝑎𝑟(𝑌)

 
Eq.  16 

This is a ratio of the output variance based on input variable x, to the total output 

variance. The numerator of this equation is referred to as the variance correlation 

expectation (VCE), and the total ratio is called the correlation ratio. There are issues with 

this formulation though; it can be highly influenced by input variables with long-tailed 

distributions. This formulation tends to also lack robustness, and in an effort to increase 

the robustness, Iman and Hora [48] proposed using the following, modified form in Eq.  

17. 

 𝑉𝑎𝑟𝑥𝑗[𝐸�𝑙𝑜𝑔𝑌�𝑋𝑗 = 𝑥𝑗�]
𝑉𝑎𝑟(𝑙𝑜𝑔𝑌)

 

 

Eq.  17 

Here, the expectation value is estimated using regression analysis. While this increases 

robustness, it makes it more difficult to translate the results back to the original system. 

While these two equations might seem straightforward, estimating VCE can be difficult. 
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The detailed derivation can be found in literature [25], but often times it is necessary to 

conduct multiple replications of sampling schemes, like LHS, or requires resampling. 

Both methods can quickly become computationally expensive. 

Method of Sobol’ 

 Sobol’[49]  used a different approach to determine input sensitivities. Under this 

method, the system f(x) is decomposed into summands of increasing dimensionality. This 

can be seen in Eq.  18. 

 
𝑓(𝑥1, … , 𝑥𝑑) = 𝑓0 + �𝑓𝑖(𝑥𝑖) +

𝑑

𝑖=1

 

� 𝑓𝑖𝑗�𝑥𝑖 , 𝑥𝑗� + ⋯+ 𝑓1,2,…,𝑑(𝑥1, … , 𝑥𝑑)
1≤𝑖<𝑗≤𝑑

 
Eq.  18 

Using the fact that the integral of a summand over its own variables is zero, and that the 

summands end up orthogonal [24], the equation can be simplified down until a total 

variance, D, of  f(x) can be reached, as seen in Eq.  19, 

 
𝐷 = � 𝑓2(𝑥)𝑑𝑥 − 𝑓02

Ω𝑘
 Eq.  19 

where Ωk is the k-dimensional input variable space. Partial variances can be found using 

Eq.  20. 

 
𝐷𝑖1,…,𝑖𝑠 = � …� 𝑓𝑖1,…,𝑖𝑠

2 �𝑥𝑖1 , … , 𝑥𝑖𝑠�𝑑𝑥𝑖1 …𝑑𝑥𝑖𝑠
1

0

1

0
 

Eq.  20 

Then the sensitivity measures, 𝑆𝑖1,…,𝑖𝑠, are simply the ratio of the partial variances to the 

whole. Si is the first-order sensitivity measure, which is the main effect of the input 

variable on the output. These sensitivities end up being the same as the most reduced 

version of the VCE analysis. Sij, when i≠j, is the second-order sensitivity, and measures 
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the interaction effect. This kind of analysis becomes impractical for systems with many 

factors though, since a separate sample of size n is required for each S, which would be n 

× 2d total samples. The number of runs can be reduced by using a special sampling 

strategy called Winding Stairs [50].  

Fourier Amplitude Sensitivity Test  

 The Fourier Amplitude Sensitivity Test (FAST) [51],[52], [53], [54] can arrive at 

the same sensitivities as Sobol’, but uses a different path to get there. This is done by 

converting a multidimensional integral into a one-dimensional integral by using a search 

curve [25]. This permits sensitivities to be found for input variables independently. The 

mathematic explanation can be difficult, but by a transformation into s space, FAST 

converts the problem into a set of scalar variables, s, and angular frequencies, ω. This can 

be seen in Eq.  21, where 𝐺𝑖 is the transformation function. 

 𝑥𝑖 = 𝐺𝑖(𝑠𝑖𝑛𝜔𝑖𝑠),     𝑖 = 1, … ,𝑑 Eq.  21 

An expectation value for the output can be found by the transformation out of s space, as 

seen in Eq.  22, where f(s) consists of the transformation functions Gi. 

 
𝐸(𝑌) =

1
2𝜋

� 𝑓(𝑠)𝑑𝑠
𝜋

−𝜋
 

Eq.  22 

The variance can be approximated using Fourier series properties, as seen in Eq.  23, 

 
𝑉𝑎𝑟(𝑌) =

1
2𝜋

� 𝑓2(𝑠)𝑑𝑠 − [𝐸(𝑌)]2
𝜋

−𝜋
 

≈ 2�(𝐴𝑗2 + 𝐵𝑗2)
∞

𝑗=1

 Eq.  23 
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where A and B are Fourier coefficients. In order to properly identify these coefficients, a 

certain number of runs must be conducted. There are various sampling strategies, but a 

search curve is the most frequently used. This curve changes all input variable values 

simultaneously, and systematically explores the input uncertainty space. There are 

different search curves that can be used, which explore the space in different manners. 

The contribution to the total variance of Y can be found using Eq.  24. 

 
𝐷𝜔𝑖 ≈ 2 �(𝐴𝑝𝜔𝑖

2 + 𝐵𝑝𝜔𝑖
2 )

∞

𝑝=1

 Eq.  24 

The ratios of these individual variances to the total variance, Eq.  23, are the first-order 

sensitivities Si, which are the same as the Sobol’ sensitivities. The minimum sample size 

to compute Di is (2Mωmax+1), where M is the maximum harmonic taken into 

consideration, and ωmax is the maximum frequency set. It is possible to find total 

sensitivity indices using, what is called, extended FAST, which gives information about 

the residual variance. FAST is much more efficient than Sobol’ to obtain the same first-

order sensitivities.  

2.3.3.4. Response Surface Method 

 A response surface is an approximation for the model that is then used a surrogate 

for more detailed UA and SA [55]. This method consists of six steps: 

1. Select ranges and distributions for input variables 
2. Develop a DOE defining variable combinations for desired evaluations 
3. Evaluate the model 
4. Construct response surface 
5. UA 
6. SA 
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 There are many ways to develop the design of experiment (DOE) in step two. Full 

and fractional factorials can be used, or MC sampling. While structured designs, like 

factorials, help ensure that specific interactions will be found, it is not possible to assign 

probabilistic weights. This is possible with MC sampling though, and can aid in the 

construction of the output’s mean and variance. Just like regression fits, the method of 

least-squares is the most popular technique to complete step four. The resulting surface is 

used in the same way that the Taylor series is used in the differential analyses for SA. A 

drawback of the response surface method is that it usually takes a large number of runs to 

model interactions properly. Otherwise, assumptions need to be made about the 

magnitude and importance of these interactions. 

2.3.3.5. Reliability Algorithms 

 Reliability algorithms [25] take a different approach than previous methods, and 

are best suited when the analyst is researching whether an output will exceed some failure 

criterion. These algorithms search the input space for the point that is most likely to lead 

to failure. Once this is determined, first-order (or second-order) sensitivities are found 

around that area. This gives information about how the different input variables are 

driving risk. These are known as First and Second Order Reliability Methods (FORM and 

SORM). These techniques do not use random sampling, but use optimization algorithms 

to search out these failure points. The math can be difficult, but the procedure can be 

summed up in three steps: 
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1. Formulate some performance function 𝑔(𝑿) 
2. Transform the problem: instead of using specific values of X to find a value of 

Y, a specific value of Y is used to determine the highest risk areas of X 
3. An optimization algorithm searches the input uncertainty space for the values 

which will give that specific Y value. This is done through a reliability index, 
which calculates the distance between an output point and the desired output 
point of Y. These algorithms use partial derivatives to converge on the highest 
risk areas of the input uncertainty space 

 
 This may not seem that difficult, but there’s no guarantee of convergence, and the 

optimization algorithms may need tuning. This method has proven more efficient than 

MC sampling for some systems, but if a system is highly nonlinear, the partial derivatives 

will not help with convergence. This limits the use of FORM and SORM in large, highly 

complex, black-box type systems.  

2.3.3.6. Global Methods Summary 

 Sampling based methods are the most common UA/SA techniques currently 

found in industry. They tend to be straightforward and easy to implement. However, they 

are strongly dependent on the assumed input distributions. These assumptions carry 

through the analysis to the UA and SA, and can greatly shape the results. They can 

become difficult to use if many input variables are correlated, or if the system is highly 

non-linear or non-monotonic. Also, randomly sampling can quickly become cost 

prohibitive, but VRTs or quasi-random sampling can help reduce the number of runs 

necessary. There are many different options to conduct a SA using sampling, but they all 

come after an UA, which is the opposite of the local methods in Section 2.2.2. Of these 

methods, studies have shown SRRCs and PRCCs to be very robust, especially when used 

in conjunction with LHS.  
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 Variance based methods work off a simple principle, but can become difficult to 

implement. Even the most efficient method, FAST, is usually unworkable for a large 

system. Studies have shown they can handle non-monotonic systems though, but at a 

high computational cost.  

 Response surfaces are a very popular method for UA and SA since they allow a 

much simpler and faster running surrogate to be used in place of the original system. The 

biggest problem arises when determining the quality of the response surface. It is possible 

to create a very accurate response surface, but at the cost of many initial trials, which 

partially defeats the purpose of using a surrogate. 

 FORM and SORM are very innovative techniques which reverse the UA. It is a 

process to learn more about the input variables based on an overall goal. The methods can 

be efficient, but as the system becomes more complex, the optimization algorithms may 

begin to struggle. This can increase the number of trials necessary, or end up with a 

solution that cannot converge.  

2.3.4. Bayesian Techniques 

 Bayesian techniques are based on the, now famous, formulation by Thomas 

Bayes, seen in Eq.  25,  

 
𝑝(𝜃|𝑦) =

𝑝(𝜃, 𝑦)
𝑝(𝑦)

=
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
 Eq.  25 

where 𝑝(𝜃) is the prior, or marginal of 𝜃,  𝑝(𝑦|𝜃) is the likelihood, 𝑝(𝜃|𝑦) is the 

posterior, and 𝑝(𝑦) is the normalizing constant, or marginal of y. In essence, what Bayes 

formula is expressing is the updating of prior knowledge, using the likelihood (new 
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data/knowledge), to arrive at a new probability, the posterior. The most commonly used 

form of Bayes theorem drops the normalizing constant, and instead uses the proportion 

seen in Eq.  26.  

 𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) Eq.  26 

2.3.4.1. Bayesian Linear Regression 

 While it is possible to use the formulation in Eq.  26 directly in an UA or SA, 

Bayes theorem is more commonly used as a way of determining the coefficients of a 

regression analysis, so that will be the method detailed here [56]. A regression fit can be 

seen as the conditional distribution of some output y, given x. A more formal expression 

is given in Eq.  27,  

 𝑝(𝑦|𝐵, 𝑥) Eq.  27 

where, the vector B is the coefficients of the regression fit. The conditional mean is given 

in Eq.  28,  

 𝐸(𝑦𝑖|𝐵,𝜎2) = 𝐵1𝑥𝑖1 + ⋯+ 𝐵𝑘𝑥𝑖𝑑 Eq.  28 

where 𝜎2 is the conditional variance, and i is the trial number, i=1, 2,…, n. Then the 

likelihood can be viewed as the normal distribution in Eq.  29 [57]. 

 𝑝(𝑦𝑖|𝐵,𝜎2) = 𝑁(𝐵1𝑥𝑖1 + ⋯+ 𝐵𝑘𝑥𝑖𝑑 ,𝜎2) Eq.  29 

The posterior probability, or desired result, becomes Eq.  30, 

 𝑝(𝐵,𝜎2|𝑌,𝑋) ∝ Π𝑖𝑝(𝑦𝑖|𝐵,𝜎2) × 𝑝(𝐵,𝜎2) Eq.  30 

where 𝑝(𝐵,𝜎2), the prior, is usually non-informative (such as uniform(𝐵, 𝑙𝑜𝑔𝜎2)), unless 

the analyst is quite certain in a particular type of outcome. It is rare that this equation can 



 

51 
 

be solved analytically; instead sampling from the prior can be used. This is done by 

envisioning the marginal posterior as the integral in Eq.  31. 

 𝑝(𝐵|𝑦) = �𝑝(𝐵|𝜎2,𝑦)𝑝(𝜎2|𝑦)𝑑𝜎2 Eq.  31 

 Then samples are taken from 𝑝(𝜎2|𝑦); these are used to find 𝑝(𝐵|𝜎2,𝑦), and the 

resulting sample represents a point on the posterior. There are other ways to conduct 

sampling, and the most popular method is using a Gibbs sampler (Markov Chain Monte 

Carlo), which draws from the conditional distributions. When using sampling, it is 

important for the analyst to observe the output because the results usually do not begin 

with samples that are from the posterior distribution, but will converge to the correct 

distribution over a finite amount of time. 

 There are many different reasons why a Bayesian linear regression model would 

be preferred over the classical approach. In Bayesian analysis, it is relatively easy to build 

hierarchical models with many levels of uncertain variables. It also can be used in the 

case where there is missing data in the analysis. It’s also possible to build “generalized” 

linear regression models, which can be fit to non-normal output distributions. Additional 

terms can also be added to the regression fit to help account for random (trial) error. 

There are also more detailed regression fit approaches, such as Bayesian Multivariate 

Adaptive Regression Spines (BMARS) [58]; these and other Gaussian process emulators 

can be used as a surrogate for the model itself, similar to a response surface, which allows 

a maximization of the UA and SA information from a limited amount of actual code trial 

data.   
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Chapter 3: Quantile Estimation and Orthogonal Arrays 
  

 If the goal of an analysis is to gain an understanding of the output of a system 

with uncertain inputs, the simplest way to characterize this output space is through the 

use of the distribution’s moments. These moments include properties like the mean, 

variance, skewness, and kurtosis. However, finding the higher moments can involve 

conducting many system runs in order to discern these details. The easiest moment to 

estimate is the mean, but this provides very little information about the output, especially 

if the goal is to compare the extremes of the output distribution against some type of 

limit. The mean provides even less information if the output distribution is asymmetric 

(which is almost always the case when analyzing highly complex systems) or when the 

output ranges over several orders of magnitude, since it will give no indication of what 

percentage of the distribution falls above or below that value.  

 Instead of using the mean, or carrying out a large number of runs to determine the 

higher moments, quantiles of the output distribution can be estimated instead. A quantile 

is a point taken at an interval of a random variable’s cumulative distribution function 

(CDF). For example, take the CDF shown in Figure 3. 1. Here, the quantile level 𝑝 is set 

to 0.95, and the value of the 0.95-quantile 𝜉0.95 is ≈ 706. What this means is that 95% of 

the distribution falls between −∞ and ~706.  
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Figure 3. 1: CDF with 0.95-Quantile 

 

This value is sometimes referred to as the 95th-percentile, where a percentile is just the 

quantile level 𝑝 times 100. It can be seen that a quantile expresses more information than 

an estimation of the mean since it gives an indication of the percentage of the distribution 

that falls above or below that value. This is a much more useful metric than the mean if 

the goal of the analysis is to compare the output to a prescribed limit. 

 This section compares design of experiment (DOE) methods to estimate the 0.95-

quantile of the output distribution of a system. The 0.95-quantile was chosen because it 

has historically been reported as the characterization of the upper regions of an output 

distribution in nuclear reactor safety analyses [6]. The goal is to find techniques that 

result in the most accurate and precise estimation of the quantile in as few system-runs as 

possible.  For this analysis, accuracy and precision are defined as in Table 3. 1. 
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Table 3. 1: Accuracy and Precision Definitions 

Accuracy Distance from estimated quantile  
value to true quantile  

Precision The spread or range of possible 
estimated quantile values 

  

 

 Simply estimating the quantile of a distribution would not qualify as a hypothesis 

test, under the definition given in Section 2, without some comparison to a hypothesized 

value using a critical value, p-value, or confidence interval. However, as subsequent 

sections will show, estimating a quantile is often one of the first steps to completing a 

hypothesis test. Improving the quality (i.e. the precision and accuracy) of the quantile 

estimation may help reduce the probability of Type-I and Type-II errors (𝛼 and 𝛽 in 

Section 2.2).  

 This chapter begins with an overview of quantile estimation techniques, before 

describing the various DOE methods analyzed here (Section 3.1). From there, systems 

representative of those analyzed in a nuclear reactor safety analysis will be used to 

compare the accuracy and precision of the quantile estimations found by using these 

DOE methods (Section 3.2). Using these results, recommendations are made about the 

applicability of the DOE methods for use in safety analyses (Section 3.3).  

3.1 Techniques 

3.1.1. Quantile Estimation 

 This section will review the process for estimating a quantile from empirical data. 
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To state the problem more formally, suppose there is a system that has as its input a 

random vector X, and output Y with cumulative distribution function (CDF) F. By 

inverting F, the p-quantile 𝜉𝑝 can be found, as seen in Eq.  32, 

𝜉𝑝 = 𝐹−1(𝑝) Eq.  32 

meaning, if 𝑝 = 0.95, 𝜉0.95 is the true 0.95-quantile. If the goal was to find 𝜉𝑝 using 

CMC estimation and simulation, independent and identically distributed (i.i.d.) samples 

𝑌1,𝑌2, … ,𝑌𝑁 from distribution F would be generated. From there, the empirical 

cumulative distribution function 𝐹�𝑛 can be computed, as in Eq.  33, 

𝐹�𝑛(𝑦) =
1
𝑛
�𝐼(𝑌𝑖 ≤ 𝑦)
𝑁

𝑖=1

 Eq.  33 

where 𝐼(𝐴) is the indicator function of a set A, which assumes value 1 on A and 0 on the 

complement 𝐴𝐶. The p-quantile estimator is then computed by inverting 𝐹�𝑛, 𝜉𝑝,𝑛 =

𝐹�𝑛
−1(𝑝).  

𝜉𝑝,𝑛 is usually calculated using order statistics, where the outputs 𝑌1,𝑌2, … ,𝑌𝑛 

would be sorted in ascending order 𝑌(1) ≤ 𝑌(2) ≤ ⋯ ≤ 𝑌(𝑛), where 𝑌(𝑖) is the i-th smallest 

of the samples. At this point, there are several different methods that can be used to find 

the quantile estimator 𝜉𝑝,𝑛. The main differences between these methods relates to the 

placement of the output results on the probability scale. For example, if 50 computer code 

runs are conducted and the output results are ordered from smallest to largest in order to 

create an empirical cumulative distribution function, should the lowest result be placed at 

𝑝𝐶  =  0.0, at 𝑝𝑐  = 1/50 = 0.02, or at the midpoint of that range at 𝑝𝑐 = 0.1 (where 𝑝𝑐 

is the cumulative probability)?  Since the analysis here is concerned with comparing 



 

56 
 

different sampling methods, the choice of quantile interpolation method is less important 

as long as all sampling techniques use the same method.  

 For this analysis, the highest ordered result will be given 𝑝𝐶  =  1.0, which will 

give the lowest results 𝑝𝐶  =  1/𝑛. So to estimate the quantile, the output results will be 

ordered as before, 𝑌(1) ≤ 𝑌(2) ≤ ⋯ ≤ 𝑌(𝑛), where 𝑌(𝑖) is the ith smallest of the samples. 

Then 𝜉𝑝,𝑛 = 𝑌(⌈𝑛𝑝⌉) where ⌈∙⌉ is the round-up function. Using the round-up function 

circumvents the need for interpolation.  

 For example, if 32 runs are conducted, 32 results will be obtained and will be 

ordered. Each result has equal probability of 1/32 =  0.03125. If the lowest result is 

placed at 𝑝𝑐 =  0.03125 (rather than at 𝑝𝑐  =  0.0); this means the 30th ordered result will 

have 𝑝𝑐  =  0.9375, and the 31st ordered result will have 𝑝𝑐  =  0.96875. So the 0.95-

quantile will be considered the 31st ordered result. While these techniques provide an 

estimation of the quantile, they do not provide any indication of the level of confidence of 

the value, which will be detailed in Section 4.  

 It should be noted here, that this method to estimate quantile values has been 

proven for use with the techniques in Section 3.1.2, but not for those in Section 3.1.3. 

However, it is used for all methods in order for a consistent comparison between the 

methods to be made. 

3.1.2. Traditional Methods - Crude Monte Carlo and Latin Hypercube Sampling 

 The simplest technique to estimate a quantile of the output distribution of a 

system is to use crude Monte-Carlo (CMC) sampling for the selection of input values. 
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This is the most common method used in computer experiments that contain continuous 

input variable distributions. However, CMC is not always the most efficient method for 

quantile estimation. As mentioned in Section 2, the output of a CMC analysis can vary 

greatly, especially at low run levels.  

 Latin Hypercube Sampling (LHS) is probably the most commonly used variance 

variance reduction technique (VRT). LHS is popular because the stratification of the 

input values relies only on probability, and is not based on knowledge about the system. 

This makes the technique easier to apply generally than other VRTs, such as control 

variates. It was developed by McKay [59] and induces correlation among the simulated 

outputs in order to increase statistical efficiency, under certain conditions. LHS is a 

subset of stratified sampling, and what differentiates LHS from other stratified techniques 

is the way the strata are chosen. With LHS, the input parameter distributions are split into 

a number of equal probability intervals. Figure 3. 2 and Figure 3. 3 demonstrate how this 

would be done on a normal distribution, if one wanted to split the input variable space 

into five intervals. After each input distribution is divided into equal probability strata, a 

value is selected randomly from the distribution inside each stratum. This method helps 

ensure that the input uncertainty space is covered adequately in fewer runs than CMC, 

but it also retains the properties of each sample having equal probability, and a stochastic 

element to the selection of the input values. LHS is preferred over CMC sampling for 

estimating a high quantile, such as the 0.90- or 0.95-quantile, when computational costs 

are an issue [24].   
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Figure 3. 2: Dividing a Normal CDF into Five Equal Probability Bins [60] 

 

 
Figure 3. 3: Dividing a Normal PDF into Five Equal Probability Bins [60] 

 

3.1.3. Orthogonal Arrays and Orthogonal Latin Hypercubes 

 In physical experiment design, uncertain or tunable inputs are often assigned 

several different levels which represent different regions of the input distribution space. 

This is done because using continuous input distributions with randomly sampled values 

in the physical world could be extremely difficult, if not impossible, due to the limitations 
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when controlling physical factors. For the analyst to characterize the output distribution 

space, they run some combination of these levels. As mentioned in Section 2, they could 

conduct full or fractional factorials depending on the goal of the analysis.  

 The most thorough way to test a system using fixed levels would be to try all 

possible combinations of levels in a full factorial experiment. While full factorial 

experiment design would provide the most data about the system, such as the input 

interactions which would be needed to form a response surface, the amount of runs 

necessary to conduct such an experiment is often times unrealistic. In order to get similar 

data in less runs, fractional factorials are used that are designed to return the desired 

characteristic of the output distribution. As stated in Section 2.3.1.2, fractional factorials 

are characterized by their resolution or strength, where a higher resolution implies that 

higher-order interaction terms can be found.   

 Resolution III fractional factorials are most commonly used as screening designs. 

Since only main effects can be found, with higher order terms considered negligible, 

these designs are used as the first step of an analysis where less important inputs are 

screened out from a large number of inputs. Then, a more in-depth analysis using a 

higher order fractional factorial is conducted on the remaining inputs.  

 While there are many ways to design fractional factorials, the most common 

method is to use an orthogonal array (OA). Orthogonal vectors are vectors of the same 

length which have an inner product, the sum of the products of their corresponding 

elements, of zero. OAs consist of a group of vectors which are all orthogonal to one 

another. Using this orthogonality in a fractional factorial allows certain input interactions 
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to be screened out or neutralized. This property is what makes OAs popular as a 

fractional factorial DOE. While OAs are frequently used for the DOE of physical 

experiments, they are less often found in random sampling designs. 

 In an attempt to use OAs in the realm of computer experiments, where input 

values can be sampled at random and not given prescribed levels, LHS designs based on 

OAs were developed [61]. These LHS designs use OAs to roughly determine which 

interval of each distribution should be selected for each run. This is in contrast to the 

usual LHS design, where the selection of which intervals to use on each run is random. 

The hope was that the space covering properties of the orthogonal array would help 

optimize the LHS design’s own space covering attributes. Recent research [62] has 

shown that it is in fact possible to create orthogonal LHS (OLHC) designs. These are 

designs where the final run order is actually orthogonal, and not just loosely based on an 

orthogonal design. OLHCs are essentially the same as regular LHSs, but the run order of 

the intervals of each distribution is determined to satisfy the orthogonal properties 

between the variables. Here, the terminology OLHC is used because the orthogonality 

simply refers to the design of the run order, but not whether the values chosen to 

represent the strata are sampled or static (as explained in Section 3.2.1). These designs 

can be used with constant level values and without sampling, as in physical experiments; 

however, they are only Resolution II, meaning not even main effects can be resolved 

from the analysis since they are confounded with the main effects of other inputs. 

 In this work, OA designs are being tested outside of their common use, which is 

to determine the coefficients of a response surface, or to calculate the importance ranking 



 

61 
 

of input parameters. Instead, they are being used to estimate quantiles of the output 

distribution. The motivation behind this application is to determine if the orthogonal 

properties of these designs carry any advantage when estimating quantiles when 

compared to traditional techniques.  

3.2 Experiments 

 The following experiments were designed in order to test these methods for use in 

nuclear safety analyses. Experiments were devised that would mimic common safety 

analysis situations. This included starting with a simple nonlinear equation, moving to a 

response surface surrogate for RELAP5, and conducting a risk assessment event tree 

analysis. This section begins with a description of how the methods in Section 3.1 were 

applied in these experiments. 

3.2.1. Methods Analyzed 

 For this analysis, both Resolution III OAs and Resolution II OLHC were applied 

using two techniques. First, prescribed values were used for the levels specified in the 

design of experiment (DOE). This means a constant value was chosen to represent that 

region of the distribution. It was selected by using the midpoint of the interval in 

probability space. Figure 3. 4 illustrates how this representative value was found. The 

midpoint of the interval with bounds 0.0 and 0.2 is used to find the corresponding x-axis 

value of the CDF. This method is sometimes used in LHS designs in order to create a 

more uniform sampling design [18]. 

 



 

62 
 

 
Figure 3. 4: Input CDF Split into Five Intervals with Chosen Midpoint 

 

 Second, these intervals were treated similarly to the intervals of a traditional LHS 

design, where values are selected randomly from the interval. Here, the random selection 

is made from the probability space in order to account for the distribution shape, just like 

a normal LHS design, as seen in Figure 3. 5. In this figure, a value is chosen randomly 

from the interval between 0.0 and 0.2. Once the value of 0.174 is selected, it is used to 

find the x-axis value of the CDF, x1, that corresponds to that location. Both orthogonal 

methods, using both techniques to determine the level values, were compared to CMC 

sampling and traditional LHS. These methods were compared at three different run 

levels: 16, 32, and 64 runs. These levels were chosen because OAs and OLHCs designs 

can only be constructed at certain run levels, and these presented the most available 

options of OA and OLHC designs.   
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Figure 3. 5: Input CDF Split into Five Intervals with Randomly Selected Value 

 

3.2.2. Nonlinear Equation 

 The first test conducted used an equation found in previous literature on sampling 

schemes [63]. This equation is simply a statistical test; it has no physical meaning. It is 

used due to its complexity and since it is difficult to model accurately with a second-

order response surface. This equation was chosen as a first step to see how the proposed 

methods would perform with a nonlinear equation, since many such equations are found 

in large severe accident computer codes. It is defined in Eq.  34, 

𝑌 = 5 + (2 + 9𝑋1)0.7 ln(2 + 2𝑋3 + 𝑋32) + (1 + 2𝑋3)1.2𝑒𝑋42 + 𝑋22 Eq.  34 

where the uncertain input parameters 0 ≤ 𝑋1,𝑋2,𝑋3,𝑋4 ≤ 2, and Y is considered the output 

of interest, which would be compared to a prescribed safety goal.    
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3.2.2.1. Normal Inputs 

 For this test, all four inputs to Eq.  34 were assumed to be truncated normal 

distributions with mean 1.0 and standard deviation 0.22639. These distribution 

parameters were chosen in order for 99.99% of the non-truncated normal distribution to 

fall between 0 and 2. First, a CMC experiment with 108 runs was conducted in order to 

estimate the true 0.95-quantile of the system. The result was a 0.95-quantile of 40.6457, 

which would be considered the “true” 0.95-quantile. Figure 3. 6 shows the output 

distribution of the system for a 105-run CMC trial, which is shown simply to give the 

reader an idea of the range of possible outputs.  

 

 
Figure 3. 6: Nonlinear Equation with Normal Input Histogram 105 CMC Runs 
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 In order to test the experiment design methods listed in Section 3.1, each design 

was used for up to 105 trials, where a trial is a set of runs (a run is defined as in Section 

2.3, where it is the creation of a sample from the system). So a single trial may consist of 

a set of 16, 32, or 64 runs, and result in a single estimated quantile value. Doing multiple 

trials gives information about the spread of the estimated quantile values using that 

method. Not all methods could be tested for 105 trials though. For the lower run levels, 

such as 16 and 32, when using OAs or OLHCs with fixed midpoints, the number of 

possible combinations of experiment design may be limited. For example, for the 

Resolution III OA with 16 runs, an OA known as L16’ was used. This is a four level 

design and can handle up to five inputs, as seen in Figure 3. 7. 

 

Run 
Input 

1 2 3 4 5 

1 1 1 1 1 1 
2 1 2 2 2 2 
3 1 3 3 3 3 
4 1 4 4 4 4 
5 2 1 2 3 4 
6 2 2 1 4 3 
7 2 3 4 1 2 
8 2 4 3 2 1 
9 3 1 3 4 2 
10 3 2 4 3 1 
11 3 3 1 2 4 
12 3 4 2 1 3 
13 4 1 4 2 3 
14 4 2 3 1 4 
15 4 3 2 4 1 
16 4 4 1 3 2 

Figure 3. 7: A L16’ Resolution II OA with Input Levels for Each Run 
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Since fixed midpoints are used and the system is deterministic, if the same design is 

repeated, it will give the same result. This experiment only had four inputs however, 

which meant 120 permutations of the experiment design were possible (the number of 

permutations is found using the formula 𝑛!/(𝑛 − 𝑟)!, where n is the number of things to 

chose from, and r is the number of things chosen). For the L32’ Resolution III OA used 

for 32 runs, there were 3024 possible permutations. The same situation occurred when 

using fixed midpoints with OLHC designs. Figure 3. 8 shows the OLHC used for 16 runs. 

 

Run 
Input 

1 2 3 4 5 6 7 8 9 10 11 12 

1 -15 5 9 -3 7 11 -11 7 -9 3 -15 5 

2 -13 1 1 13 -7 -11 11 -7 -1 -13 -13 1 

3 -11 7 -7 -11 13 -1 -1 -13 9 -3 15 -5 

4 -9 3 -15 5 -13 1 1 13 1 13 13 -1 

5 -7 -11 11 -7 11 -7 7 11 5 15 -3 -9 

6 -5 -15 3 9 -11 7 -7 -11 13 -1 -1 -13 

7 -3 -9 -5 -15 1 13 13 -1 -5 -15 3 9 

8 -1 -13 -13 1 -1 -13 -13 1 -13 1 1 13 

9 1 13 13 -1 -9 3 -15 5 11 -7 7 11 

10 3 9 5 15 9 -3 15 -5 3 9 5 15 

11 5 15 -3 -9 -3 -9 -5 -15 -11 7 -7 -11 

12 7 11 -11 7 3 9 5 15 -3 -9 -5 -15 

13 9 -3 15 -5 -5 -15 3 9 -7 -11 11 -7 

14 11 -7 7 11 5 15 -3 -9 -15 5 9 -3 

15 13 -1 -1 -13 -15 5 9 -3 7 11 -11 7 

16 15 -5 -9 3 15 -5 -9 3 15 -5 -9 3 

Figure 3. 8: A 16 Run OLHC Design (Resolution II OA) with 12 Inputs* 

*to ensure orthogonality, the interval numbering scheme is as follows: 

[-15, -13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15] 
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Since this design could handle up to twelve inputs, and only four are used here, this 

implied 11,880 possible experiment designs. Obviously, this was not a constraint when 

random sampling from the intervals was used since even the same experiment design 

would result in different values being chosen from each interval.  

 Table 3. 2 presents a table of the OA and OLHC designs used for this analysis. 

These OAs can be found in Appendix A. 

 

Table 3. 2: List of OAs Used for Each Run Level* 

Number 
of Runs 

OA 
Resolution 

III 

OLHC 
Resolution 

II 

16 L16' OLHC.16 

32 L32’ OLHC.32 

64 OA.64 OLHC.64 

   *The OAs can be found in Appendix A 

  

 The results of the analysis can be seen in Table 3. 3. Three values are presented 

for each case. The first value is a sample mean of the 0.95-quantile estimation of the 105 

trials conducted, followed by the sample standard deviation (denoted S.D.) of each trial’s 

0.95-quantile estimation. The standard deviation should be viewed with caution, since as 

stated above, the method with fixed midpoints may have involved less than 105 trials, 

unlike the sampled methods. Finally, a percent error is given. This is the most useful 

metric to compare the different methods. As seen in Eq.  35, this is the mean of the 

percent difference of the quantile estimation of each trial and the “true” 0.95-quantile. 
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Percent Difference =  
1
𝑛
�

�𝜉𝑖 − 𝜉�
𝜉

𝑛

𝑖=1

𝑥100 

where,  
𝜉 = "true" 0.95-quantile = 40.6457 
𝜉𝑖 = Estimated 0.95 − quantile of ith trial 
𝑛 = number of trials 

Eq.  35 

 

Table 3. 3: Results for 105 Trials for Nonlinear Equation with Normal Inputs 

Number 
of Runs(a) Metric CMC LHS OA - Res III OLHC - Res II 

Midpoint(b) Sampling(b) Midpoint(b) Sampling(b) 

16 
Mean of 𝜉 45.13 47.35 38.02 46.12 43.97 47.43 
S.D. of 𝜉 13.08 12.18 1.22 12.67 5.06 12.17 

% Difference(c) 21.38 20.74 6.45 20.17 11.30 20.20 

32 
Mean of 𝜉 41.58 41.37 37.05 41.98 40.87 41.29 
S.D. of 𝜉 6.83 3.82 0.93 6.20 3.31 3.38 

% Difference(c) 12.31 7.44 8.85 10.94 6.40 6.49 

64 
Mean of 𝜉 40.18 40.04 36.60 40.36 40.16 40.13 
S.D. of 𝜉 4.18 2.43 0.65 3.65 1.86 1.93 

% Difference(c) 8.15 4.98 9.96 7.03 3.90 4.00 
(a)Number of runs in a single trial, (b)See Section 3.2.1, (c)See Eq.  35 

 

 As the results show, LHS and OLHC, using sampling and fixed midpoints, 

outperformed CMC sampling and Resolution III OAs in relation to the percent difference 

metric. For example, at the 32-run level, CMC had a percent difference of 12.31 and the 

Resolution III OA using sampling had a percent difference of 10.94, while LHS had a 

value of 7.44, and OLHC using midpoints and sampling had values of 6.40 and 6.49, 

respectively.  Resolution III OAs using sampling also outperformed CMC sampling using 

the percent difference value by a smaller margin. When using fixed midpoints, 

Resolution III OAs were the only method that underestimated the 0.95-quantile at low 

run levels, resulting in a mean of 38.02 compared to the true 0.95-quantile value of 

40.646, and the accuracy actually got worse as the number of runs was increased, as the 
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percent difference metric increased from 6.45 to 9.96. The precision of the estimated 

quantile values increased (i.e. the S.D. was lower) when using LHS when compared to 

CMC, which is expected since LHS is a VRT. However, OLHC using sampling had a 

greater reduction in variance than normal LHS, where at the 64-run level, LHS had a S.D. 

of 2.43, but OLHC using sampling had a S.D. of 1.93. 

3.2.2.2. Non-Normal Inputs 

Next, the experiment in Section 3.2.2.1 was repeated, but the normally distributed 

inputs were replaced with a variety of distributions, as seen in Eq.  36. 

𝑥1 − 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(0.173) 
𝑥2 − 𝑁(1.0, 0.226392) 
𝑥3 − 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0.0, 0.162) 
𝑥4 − 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,2) 
 

Eq.  36 

This was done in order to remove any possible influence from the use of normal 

distributions. Once again, the exponential and normal distributions were truncated at 0 

and 2, and the parameters are chosen in order for 99.99% of the non-truncated 

distribution to fall within that interval. Since the lognormal distribution has no values 

which fall below 0, 99.995% of the non-truncated distribution falls below 2, and 100% of 

the uniform distribution is between those bounds. A 108-run CMC trial resulted in a 0.95-

quantile value of 148.650. Figure 3. 9 shows the output distribution for a 105-run CMC 

trial. Once again, this is done to give the reader an idea of the output distribution shape. 

Compared to the previous example in Section 3.2.2.1, this output has a longer tail at high 

values, which results in a much higher value for the 0.95-quantile.  
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Figure 3. 9: Nonlinear Equation with Non-normal Inputs Histogram 106 CMC Runs 

 

 Table 3. 4 shows the results of this experiment. As with the previous experiment, 

OLHC and LHS had, on average, the most accurate result, in regards to the percent 

difference, as can be seen at the 32-run level, where LHS had a percent difference of 

9.71, OLHC using sampling had a percent difference of 8.85, while CMC had a percent 

difference of 20.17. Resolution III OA’s with sampling once again fared better than CMC 

sampling in regards to the percent difference, but when using fixed midpoints, it again 

consistently underestimated the quantile, with a mean of 103.58 at the 16-run level, 

compared to a true value of 148.65. Also, the results when using OLHC for both 

midpoints and sampling were, once again, very similar. 

 



 

71 
 

Table 3. 4: Results of 105 Trials for Nonlinear Equation with Non-normal Inputs 

Number 
of Runs(a) Metric CMC LHS OA - Res III OLHC - Res II 

Midpoint(b) Sampling(b) Midpoint(b) Sampling(b) 

16 
Mean of 𝜉 153.70 173.79 103.58 159.56 173.02 175.54 
S.D. of 𝜉 49.22 31.20 1.14 43.80 19.39 30.89 

% Difference(c) 27.47 20.72 30.32 24.94 16.95 21.15 

32 
Mean of 𝜉 145.15 153.17 102.17 147.29 151.74 152.23 
S.D. of 𝜉 36.71 17.83 2.13 32.64 14.43 16.31 

% Difference(c) 20.17 9.71 31.27 18.02 7.84 8.85 

64 
Mean of 𝜉 140.80 144.38 102.34 142.44 145.72 145.03 
S.D. of 𝜉 26.97 11.96 0.55 23.69 9.45 10.08 

% Difference(c) 15.18 6.94 31.15 13.37 5.29 5.84 
        (a)Number of runs in a single trial, (b)See Section 3.2.1, (c)See Eq.  35 

 

3.2.3. LOCA Response Surface  

 The next system analyzed was a second-order response surface, developed by 

French [64], which models the peak clad temperature of a nuclear power reactor during a 

LOCA. This equation was chosen because it is designed to act as a surrogate for the 

RELAP5 [65] plant deck from which it was created. While it is a relatively simple 

equation, it is a step towards a realistic nuclear safety analysis. This response surface is 

shown in Eq.  37, 

𝑌 = 𝑎 + 𝑏1𝑋1 + ⋯+𝑏11𝑋11 + 𝑐1𝑋12 + ⋯+ 𝑐11𝑋112 + 𝑑1𝑋1𝑋2 + ⋯+ 𝑑55𝑋11𝑋10 
 

𝑋1, … ,𝑋11 = 𝑁(0.5,0.12) Eq.  37 

where a, bi, ci, and di are constant coefficients and the eleven inputs 𝑋1, … ,𝑋11 are 

independent normal random variables which are truncated at 0 and 1. The inputs are 

certain normalized reactor properties. The output Y is peak cladding temperature in 

degrees Fahrenheit. The result of a 108-run CMC experiment yielded a “true” 0.95-
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quantile of 1683.65°F. Figure 3. 10 shows the distribution of a 105 CMC trial. In this 

case, the higher end of the distribution is fairly compact.  

 

 
Figure 3. 10: RELAP Response Surface Histogram 106 CMC Runs 

 

Since this system had eleven inputs, some OAs had to be changed to accommodate more 

inputs. Table 3. 5 shows the OAs and OLHCs used for this analysis. 

 

Table 3. 5: List of OAs Used for Each Run Level* 

Number 
of Runs 

OA 
Resolution 

III 

OLHC 
Resolution 

II 

16 L16 OLHC.16 

32 L32 OLHC.32 

64 OA.64 OLHC.64 

   *The OAs can be found in Appendix A 
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 The results of this experiment can be seen in Table 3. 6. As in previous 

experiments, LHS and OLHC outperform the other methods in regards to the percent 

difference, as can be seen at the 32-run level, for example, where LHS has a perecent 

difference on 1.03, OLHC using sampling has a value of 0.95, while CMC is 1.25. The 

OLHC designs are again very similar whether using midpoints or sampling. Also, unlike 

the two previous examples, the Resolution III OA using midpoints actually increases in 

accuracy as the number of runs grows, from a percent difference of 2.12 to 0.82, but it is 

still the poorest performer of all the methods. 

 

Table 3. 6: Results of 105 Trials for LOCA Response Surface 

Number 
of Runs(a) Metric CMC LHS OA - Res III OLHC - Res II 

Midpoint(b) Sampling(b) Midpoint(b) Sampling(b) 

16 
Mean of 𝜉 1691.27 1697.80 1647.90 1692.18 1699.64 1701.60 
S.D. of 𝜉 39.08 34.20 10.11 36.28 29.38 31.92 

% Difference(c) 1.85 1.67 2.12 1.71 1.50 1.62 

32 
Mean of 𝜉 1683.25 1685.92 1648.37 1683.88 1687.83 1688.10 
S.D. of 𝜉 26.56 21.89 6.74 24.11 19.81 20.15 

% Difference(c) 1.25 1.03 2.10 1.13 0.93 0.95 

64 
Mean of 𝜉 1679.36 1680.62 1670.96 1679.85 1682.04 1681.98 
S.D. of 𝜉 18.45 14.85 8.79 13.58 11.85 11.90 

% Difference(c) 0.90 0.72 0.82 0.67 0.57 0.57 
        (a)Number of runs in a single trial, (b)See Section 3.2.1, (c)See Eq.  35 

 

3.2.4. PRA Event Tree 

 The next example was designed to represent a probabilistic risk assessment (PRA) 

for a nuclear power plant. The example contains three initiating events; a small, medium, 
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and large break LOCA with associated system failures resulting in core damage. Each of 

these initiating events has its own Level-I core damage event tree, as seen in Figure 3. 11, 

Figure 3. 12, and Figure 3. 13. These event trees are very similar to those used in PRAs 

for actual plants. The events within the trees are indentified with letters that represent the 

success/failure of safety features, such as those associated with the ECCS. The result of 

each scenario in these trees indicates whether core damage has occurred, and if so, which 

damage-state the core is in. Once again, only a symbolic number is used to represent each 

of the four core damage-states.  

 

Initiating 
Event 

  A   B   Path 
Core 

Damage 
Damage 

State 

        
 

      
l1 No X 

Large 
   

    
  

 
LOCA 

 
      

 
l2 Yes 3 

      
 

    l3 Yes 2 

  
        

  
 

Figure 3. 11: Large Break LOCA Core Damage Event Tree 

 

Initiating 
Event 

  C   A   B   Path 
Core 

Damage 
Damage 

State 

        
m1 No X 

      
    

  
 

Medium 
   

      
 

m2 Yes 3 
LOCA 

 
      

 
    m3 Yes 2 

      
 

        m4 Yes 1 

   
          

  
 

Figure 3. 12: Medium Break LOCA Core Damage Event Tree 
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Initiating 
Event 

C 
  

D 
  

A 
  

E 
  

B 
  

Path 
Core 

Damage 
Damage 

State 

            
s1 No X 

          
    

  
 

        
      

 
s2 Yes 4 

      
      

  
  s3 No X 

      
  

 
  

 
    

  
 

    
      

 
      

 
s4 Yes 4 

    
  

 
  

   
    s5 Yes 3 

Small 
 

      
 

            s6 No X 
 LOCA 

 
  

 
  

     
    

  
 

 
    

 
  

 
          

 
s7 Yes X 

  
  

 
      

   
    s8 Yes 1 

  
  

   
            s9 Yes 1 

  
                    

  
 

Figure 3. 13: Small Break LOCA Core Damage Event Tree 

 

 In a specific assigned core damage-state, the progression of core damage and the 

threats posed to the integrity of the containment are similar. For this example, there are 

two linked containment event trees that characterize the modes and timing of failure that 

are possible. The first containment event tree, shown in Figure 3. 14, characterizes early 

threats to containment failure. Early failure is particularly important because, for the 

associated magnitude of release and limited time for evacuation of the neighboring 

population, there is some potential for large doses to the population to result in radiation 

sickness sufficiently severe to result in fatality. If there is no early failure of containment 

(and no potential for offsite early fatalities), a late containment failure tree is analyzed, 

shown in Figure 3. 15. These containment event trees are based off examples in 

NUREG/CR-6595 [66]. In total, each run of the event tree series results in 841 unique 

end-state scenarios.  
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  Figure 3. 14: Early Containment Failure Event Tree 
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Figure 3. 15: Late Containment Failure Event Tree 
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 The offsite dose is calculated using the Gaussian dispersion model described in 

NUREG-1465 [67], starting with the calculation of 𝜒 𝑄⁄  in Eq.  38,  

𝜒
𝑄

=
𝑒
−� 𝑦

2

2𝜎𝑦2
�� ℎ

2

2𝜎𝑧2
�

𝜋𝜎𝑦𝜎𝑧𝑢
 Eq.  38 

where , 

𝑢 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 (𝑚 𝑠⁄ ) 
𝑦 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑙𝑢𝑚𝑒 𝑎𝑥𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (𝑚) 
ℎ = 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚) 
𝜎𝑦 = 𝑃𝑎𝑠𝑞𝑢𝑖𝑙𝑙 − 𝐺𝑖𝑓𝑓𝑜𝑟𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 (𝑚) 
𝜎𝑧 = 𝑃𝑎𝑠𝑞𝑢𝑖𝑙𝑙 − 𝐺𝑖𝑓𝑓𝑜𝑟𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 (𝑚) 

 

From there, the inhalation and submersion doses can be found according to Eq.  39 and 

Eq.  40. The offsite dispersion and dose calculations are made at a distance of 1 km from 

the release point, and along the centerline of the plume (as is required for regulatory 

analyses [68], [69]). The dose conversion factors are found from [70]. The core 

radionuclide inventory was calculated using [71]. 

𝐷𝐼𝑛ℎ = 𝑅 ∙ 𝑄 ∙
𝜒
𝑄
∙ 𝐷𝐶𝐹 Eq.  39 

 
𝐷𝑆𝑢𝑏 = 𝑄 ∙

𝜒
𝑄
∙ 𝐷𝐶𝐹 

Eq.  40 

where,  

𝐷𝐼𝑛ℎ = 𝐼𝑛ℎ𝑎𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑜𝑠𝑒 (𝑟𝑒𝑚) 
𝐷𝑆𝑢𝑏 = 𝑆𝑢𝑏𝑚𝑒𝑟𝑠𝑖𝑜𝑛 𝐷𝑜𝑠𝑒 (𝑟𝑒𝑚) 
𝑅 = 𝐼𝑛ℎ𝑎𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑚3/𝑠) 
𝑄 = 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝐶𝑖) 
𝐷𝐶𝐹 = 𝐷𝑜𝑠𝑒 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟  

 

 
 In total, there are 27 uncertain parameters. These are listed in Table 3. 7, along 

with their distribution shape. 
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Table 3. 7: PRA Event Tree Uncertainties 

  Uncertainty Distribution* 
1 Small LOCA Initiating Event Frequency Lognormal(0,1) 
2 Medium LOCA Initiating Event Frequency Lognormal(0,1) 
3 Large LOCA Initiating Event Frequency Lognormal(0,1) 
4 C Uniform(0,1) 
5 D Normal(0.05,0.01) 
6 A Normal(0.005,0.001) 
7 E Uniform(0,1) 
8 B Exponential(0.8) 
9 Containment Isolated or Not Bypassed Exponential(0.8) 
10 RCS Depress. Exponential(0.8) 
11 Core Damage Arrested w/o VB Exponential(0.8) 
12 No Induced Steam Generator Tube Rupture Exponential(0.8) 
13 No Containment Failure or VB Exponential(0.8) 
14 No Potential for Early Fatalities Exponential(0.8) 
15 Cavity Flooded Exponential(0.8) 
16 Core Debris Coolable Exponential(0.8) 
17 CHR Operating and Effective Exponential(0.8) 
18 Late Hydrogen Combustion Exponential(0.8) 
19 Early Release Fraction Noble Gases Beta(2,2) 
20 Early Release Fraction Iodine Beta(2,2) 
21 Late Release Fraction Noble Gases Uniform(0,1) 
22 Late Release Fraction Iodine Beta(2,60) 
23 Wind Speed Beta(2,2) 
24 Release Height Uniform(0,1) 
25 Pasquill-Gifford Coefficient Horizontal Diffusion Beta(2,2) 
26 Pasquill-Gifford Coefficient Vertical Diffusion Beta(0.8,5) 
27 Containment Leak Rate Beta(2,2) 
*Many of the uncertainties are not the distribution of the actual parameter, but of 

a scaling factor or part of a larger formula 

 

For this analysis, the figure of merit is the mean risk, which is defined in Eq.  41, 

𝑅� = �𝐹𝑖 ∙ 𝐷𝑖

𝑤

𝑖=1

 Eq.  41 

where 𝑅� is the mean risk, 𝑤 = 841 or the total number of scenarios per run of the PRA, 

𝐹𝑖 is the frequency of the i-th scenario, and 𝐷𝑖 is the offsite dose of the i-th scenario. So 

each run of the PRA will result in a single value for the mean risk. The 0.95-quantile 

mean risk of a 108-run CMC trial was 0.00300 rem/yr.  Figure 3. 16 shows an empirical 
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CDF of the output for a 105-run CMC trial. As the figure shows, the output ranges over 

many orders of magnitude.  

 

 
Figure 3. 16: Empirical CDF of Mean Risk 105-Run CMC Trial 

 

 Since this system contained 27 inputs, Resolution III OAs and Resolution II 

OLHCs were not available for the 16 run level. Table 3. 8 lists the arrays used for this 

experiment. Table 3. 9 contains the results of this experiment. Here, it is important to 

note that the percent difference may appear large, especially when compared to the 

previous examples. However, the output distribution of this analysis had a range of 

several orders of magnitude, so the percent difference will appear greater than the 

examples which had a smaller range of possible outcomes.  
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Table 3. 8: List of OAs Used for Each Run Level(a) 

Number 
of Runs 

OA 
Resolution 

III 

OLHC 
Resolution 

II 

16 X X 

32 L32 OLHC.32 

64 OA.64.32(b) OLHC.64 
(a)The OAs can be found in Appendix A, (b)OA.64.32 is  

a Resolution IV OA since no Resolution III OAs 
 are available for that run level and number of inputs 

 

Table 3. 9: Results of 105 Trials for PRA LOCA Analysis 

Number 
of Runs(a) Metric CMC LHS OA - Res III OLHC - Res II 

Midpoint(b) Sampling(b) Midpoint(b) Sampling(b) 

16 
Mean of 𝜉 0.00890 0.00987         
S.D. of 𝜉 0.01778 0.01754         

% Difference(c) 217.94 235.30         

32 
Mean of 𝜉 0.00405 0.00403 0.00061 0.00409 0.00374 0.00401 
S.D. of 𝜉 0.00309 0.00216 0.00006 0.00300 0.00168 0.00193 

% Difference(c) 63.83 49.86 79.66 60.26 39.70 46.16 

64 
Mean of 𝜉 0.00290 0.00289 0.00060 0.00292 0.00282 0.00291 
S.D. of 𝜉 0.00129 0.00090 0.00004 0.00118 0.00068 0.00072 

% Difference(c) 32.53 23.42 80.11 29.70 19.07 19.27 
(a)Number of runs in a single trial, (b)See Section 3.2.1, (c)See Eq.  35 

 

 As with the previous experiments, LHS and OLHC designs outperform the other 

methods in the percent difference metric, with LHS at 49.85, OLHC using sampling at 

46.15, and CMC at 63.83, for the percent difference at the 32-run level. Once again, 

OLHCs using sampling and static midpoints provides a more accurate result on average 

than LHS. While Resolution III OAs outperform CMC sampling when using a sampling 

approach, the use of static midpoints results in the worst performance of all the methods, 
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grossly underestimating the mean risk, with a mean of 0.00061 at the 32-run level 

compared to a true value of 0.003 . 

3.3 Discussion 

 The results in Section 3.2 indicate the OLHC designs, whether using static 

midpoints or interval sampling, are the most accurate and precise of the analyzed 

methods when determining the 0.95-quantile of the output distribution. The results also 

show that if it is necessary for an analysis to use set static values, such as midpoints, 

OLHCs are the preferred method over the use of a Resolution III OAs, if the quantile 

estimation is the only goal of the analysis. If the research is also focused on capturing 

input interactions, it may be necessary to go to a higher order OA. These results are not 

completely surprisingly since the creation of Resolution III OAs was not focused on 

quantile estimation, but other factors such as input screening. The poor performance of 

Resolution III OAs when using static midpoint is most likely a result of the low number 

of intervals. This means the midpoints of intervals will be far from the tails of the 

distribution and may not characterize certain areas of the output distribution.  

 The indicated ability for OLHCs to outperform LHS, even when using static 

midpoint values is an interesting outcome and more work should be done into possible 

uses of OLHCs. Certain setbacks do still exist with OLHCs though, as they can be 

difficult to create and may not exist for a system with a large numbers of inputs in 

combination with low run levels.  
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Chapter 4: Confidence Intervals for Quantiles 
 

 This section expands on the concept of quantile estimation, explained in Section 

3, by introducing confidence intervals for the point estimate of the quantile. Confidence 

intervals for quantiles are currently used in nuclear reactor safety analyses as a method to 

demonstrate adherence to NRC safety limits. This section details these NRC criteria, and 

the evolution of methods used to show satisfaction of these safety requirements (Section 

4.1). From there, a more detailed analysis of the current NRC-accepted sampling method 

is presented, along with a detailed derivation of a new VRT confidence interval method, 

that has recently been proven [72] (Section 4.2). Lastly, the new VRT method and the 

current NRC-accepted method are compared using systems designed to represent those 

encountered during nuclear reactor safety analyses (Section 4.3), and conclusions relating 

to the probability of achieving the correct conclusion during an analysis are presented 

(Section 4.4).  

4.1. Background 

4.1.1. Regulatory History 

 As mentioned in Section 2, the initial approach to the treatment of modeling 

uncertainties in regulatory analysis was to use non-mechanistic, conservative models. In 

the implementation of the Part 50 Appendix K of the Code of Federal Regulations [4], 

which describes a prescription for the conservative treatment of uncertainties in the 
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analysis of LOCAs, it became apparent that what was thought to be conservative might 

not be conservative in all cases, and that conservative regulatory models could be 

misleading with regard to the improvement of reactor safety. The transition to best-

estimate plus uncertainty regulatory requirements began with an amendment to 10 CFR 

50.46 [73] in 1988, which allowed for realistic modeling of LOCAs. While this rule-

change signaled an advancement in regulatory safety analysis, the statistical requirements 

of the output result were vague, stating only that there should be a “high level of 

probability that the criteria would not be exceeded.” 

 In 1989, the NRC issued RG 1.157 [74], which helped clarify the procedure for 

performing a best-estimate calculation relating to the design bases for essential safety 

systems. It set the standard for the handling of computational uncertainty for nuclear 

safety applications by stating that a 95% probability level is considered acceptable to the 

NRC staff for comparison of best-estimate predictions to safety limits. However, the 

ambiguity of the term “95% probability level” remained an issue for the analyst. 

 The most obvious solution to the “95% probability” requirement was to estimate 

the 0.95-quantile of the output distribution. One method to do this was to perform a large 

number of CMC random sampling runs and simply order and count the results until 95% 

of the runs fell below that threshold. The large number of runs required by CMC to 

obtain sufficient accuracy represented a major problem for safety analysts, due to 

minimal computing power and extended code run times. There was also the question of 

just how many runs would be necessary for an analyst to be able to claim that the 

estimate of the 0.95-quantile was sufficiently accurate.  
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 Response-surface methods [55] were initially proposed as a way of reducing runs 

and increasing knowledge of the overall behavior of the parameters of interest. An 

advantage of this method is that it employs a fixed matrix of runs to be conducted to 

obtain the desired surface. This property not only gives the analyst a plan to provide to 

the regulator, but also produces a level of understanding about the impact of different 

input parameters. However, like the large-sample CMC case, run designs often needed to 

be very large to capture input interactions and nonlinearities, and the only way around 

this was to group input parameters based on the analyst’s judgment [75]. In response to 

these considerations, methods were developed that required a smaller number of runs, but 

which could satisfy the regulatory guidelines. 

 Both Areva [76] and Westinghouse [75] developed approaches to the use of CMC 

using order statistics (CMC-OS) for their regulatory LOCA analyses. While the method 

of CMC-OS was first considered for use in the nuclear industry in the 1970’s [77], it 

wasn’t until the NRC published NUREG-1475 [78], a guide to applying statistics, in 

1994 that the NRC provided a more comprehensive picture of its use for regulatory 

requirements [79]. Gesellschaft für Anlagen-und Reaktorsicherheit (GRS) helped bring 

CMC-OS to the thermal hydraulic and safety fields soon after that [80]. Major steps 

forward occurred in 2003 and 2004 with publications by Guba, Pál, and Makai [81], and 

Nutt and Wallis [82]. These works not only expanded on how CMC-OS could be used in 

safety analyses, but also proposed the use of CMC-OS in regards to the 95% probability 

reporting requirement. The solution provided by Nutt and Wallis [82] to this question was 

to report a 95% one sided confidence interval for the 0.95-quantile of the output 
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distribution. Based on the works of Wilks [83] and Wald [84], this method simulates the 

model using CMC to establish a confidence interval for a tolerance interval. This method 

was considered acceptable by the NRC in regards to the 95% probability requirement 

[75], and is discussed in detail in Section 4.2.1.  

 While the acceptance of the 95% confidence interval for the 0.95-quantile has 

been adopted by the NRC for satisfying design basis accident requirements, there are 

other safety applications for which less stringent requirements may be appropriate, such 

as for the analysis of beyond-design-basis events. For the analysis of these events, 

similar, but less stringent limits could be established, such as the use of a high value 

confidence interval for a lower quantile.   

4.1.2. Confidence Intervals and Hypothesis Testing 

 This section explains, in detail, the meaning of a confidence interval, clarifies its 

use within a hypothesis test, and presents a comparison of confidence intervals and 

credible intervals. From there, a framework is developed to more rigorously present the 

NRC’s probability requirement in terms of hypothesis testing, and the possible scenarios 

where errors in conclusion could occur are detailed.  

4.1.2.1. Confidence Intervals 

 A confidence interval (CI) gives an estimated range of values which is likely to 

include an unknown population parameter, with the estimated range being calculated 

from a given set of sample data [85]. The confidence level determines how frequently the 

calculated interval will contain the parameter. Unlike a point estimate, which only gives a 
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single estimated value for a parameter, a CI gives a range in which that parameter is 

estimated to lie.  

 While the concept of a CI may seem straightforward, its meaning is constantly 

misinterpreted. An example will help explain this common mistake. Imagine the goal of 

an analysis is to estimate the location of the p-quantile 𝜉𝑝 of a distribution. After n 

number of samples have been taken from the distribution (either through physical 

sampling or computer code simulations), an estimate of the quantile value is made 𝜉𝑝. 

This is the point estimate. In order to give more information about the possible location 

of the true quantile, a CI is calculated (the process to obtain a CI will be described in 

Section 4.2). The estimated quantile, along with the bounds of the CI are shown 

graphically in Figure 4. 1. 

 

 
Figure 4. 1: Estimated Quantile with Confidence Interval 

 

For this example, say a two-sided CI is constructed using a 90% confidence level. The 

mistake usually comes with the interpretation of this interval. Many times, CI results will 
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be reported with the comment that there is a 90% probability of the true parameter lying 

within the CI. This is a mistake. The CI gives no probabilistic information. The true 

parameter is fixed, not a random variable. Therefore, the probability of the true parameter 

lying within the CI is 0.0 or 1.0. It either does or it does not. The CI does not report 

uncertainty about the parameter, but uncertainty about the sampling method. If the 

analysis was repeated with new samples, and a new CI was constructed, 90% of the time 

this interval will include the true parameter. A CI only makes sense if more samples can 

be taken. If every possibility has been sampled, the CI becomes meaningless.  

 The meaning of a CI is often times confused with that of a credible interval. A 

credible interval (sometimes called a Bayesian CI), is a probabilistic statement about the 

location of the parameter. The reason that this statement can be made during a Bayesian 

analysis is because the distribution’s parameter was assumed to be a random variable 

from the start. This is not the case in frequentist statistics, where it is assumed that there 

is only one true value of the parameter. With a credible interval, it is possible to make a 

statement such as “there is a 90% probability of the parameter lying within the credible 

interval.” 

 The question could be asked here, then why use CIs instead of Bayesian credible 

intervals? As mentioned in Section 2.1, there was great debate over the acceptance of 

PRA in nuclear safety analysis during the 1980’s and 1990’s. A subset of this debate 

centered on the use of frequentist (classical) statistics versus the use of Bayesian 

(subjective) statistics. An issue of Reliability Engineering & System Safety was dedicated 

to the practicality of each method within a PRA [86], and the NRC weighed in with 
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NUREG-1489, A Review of NRC Staff Uses of Probabilistic Risk Assessment [87], in 

1994. Here, the NRC offered guidelines on the use of PRA, including the statement that, 

“There is general agreement that both frequentist and subjectivist interpretations 

of probability are appropriate for use in PRA. However, one view or the other 

may be preferable for particular analyses.” 

The NRC provided guidance on the use of frequentist and Bayesian statistics in NUREG-

1489 [87]. In this document, advantages and disadvantages of each method were noted. A 

selection of these pros and cons can be found in Table 4. 1. 

 

Table 4. 1: Frequentist and Bayesian Pros and Cons [87] 

Method Frequentist (Classical) Statistics Bayesian (Subjective) Statistics 

Advantages 

- Results depend only on data 
- Good estimates with large quantity of data 
- Historical precedence, well known and 

widely used 

- Provides logical and unified approach to the 
use of prior information 

- Has probabilistic interpretation which can be 
easily propagated through a PRA 

- Easily updates 
- More applicable when generic data exists 

Disadvantages 

- Confidence interval has no probabilistic 
interpretation 

- Cannot use prior relevant information 
- Very difficult to propagate confidence 

intervals through fault or event tree 
models 

- Sensitive to the way data is collected 

- Suitable prior must be identified and justified 
- Sensitive to prior distribution 
- Less well know and accepted, may require 

more effort to implement and interpret  

 

 

As the table shows, the main drawbacks of frequentist statistics lie in their inability to use 

relevant prior information, and the difficulties when propagating uncertainty. Using this 

information, NUREG/CR-6823, Handbook of Parameter Estimation for Probabilistic 

Risk Assessment [88], recommends using Bayesian statistics for parameter estimation. 
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This would seem like a definitive answer to which technique should be used for the goal 

of parameter estimation and comparison to a limit, but that is not the case. When 

NUREG/CR-6823 refers to “parameter estimation” it means the estimation of system 

parameter distributions for use in a PRA. This includes component failure rates, initiating 

event frequencies, and equipment non-recovery probabilities. This definition is not 

necessarily the same as used in this document, where parameter estimation is the 

estimation of a true property of a distribution, such as a quantile. In the case of 

NUREG/CR-6823, estimating system and component parameters involves collecting 

experimental component data and previous plant history. These data can come from 

many sources, and could have been collected in different ways. This is one of the reasons 

why the ability to specify priors is of great advantage. Also, once the parameters are 

estimated, they will be inputs into a PRA, so the ease at which Bayesian uncertainties can 

be propagated through an analysis is another big advantage. Neither of these reasons is 

applicable to the analysis being conducted here. 

 In the regulatory analysis of comparing a system parameter to a limit value, the 

use of prior information presents potential difficulties. It may be problematic to justify 

any prior for use in a regulatory analysis, if it could be shown that this prior would 

modify the results in the licensee’s favor. This is one of the reasons why the VRTs of 

control variates and importance sampling are not investigated in this work. Also, the data 

are not collected from many different sources, but from a single analysis that was 

conducted according to regulatory guidelines. So the data are regular and frequentist 

statistics can be applied. Lastly, the results of the analysis are the ultimate motivation for 
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its collection. They are not inputs into a larger system, but the final goal. This means the 

ease by which the confidence interval can be propagated is not a concern.  

 Even without those advantages, Bayesian statistics would still seem like a more 

natural fit to the NRC’s “95% probability” requirement, since credible intervals return 

probabilistic information. However, this is not necessarily the case. The probability 

requirement is fulfilled by the use of the 0.95-quantile, not the confidence or credible 

interval. The use of the 0.95-quantile implies that there is a 95% probability of the output 

of the system being below that value. The use of the confidence interval simply provides 

an estimation of the quantile location. So the probability characteristics of the quantile are 

retained, and there is not necessarily an advantage to an additional probabilistic statement 

about the location of the quantile provided by the credible interval. It may be that there 

are other benefits to the additional probabilistic statement, but for this work that is not the 

case. Also, as stated in this section, the CI gives an indication of the uncertainty in the 

sampling method, not the system uncertainty. This is a positive in this application, since 

the quantile satisfies the probability requirement related to system uncertainty, and CI 

provides the regulator with confidence regarding how the experiment was conducted (i.e. 

the sampling scheme). For these reasons, the use of CIs rather than credible intervals 

would appear acceptable in this application.  

 As mentioned before, the confidence level gives a percentage of how often the 

true parameter will lie within the interval. The confidence limits are the upper and lower 

bounds of the CI. While the example in Figure 4. 1 shows a two-sided CI, it is also 

possible to construct a one-sided confidence interval (OSCI). This tends to be the more 
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useful CI for the problems described here, since the approximate location of a parameter 

is not the main interest, rather its location compared to a limit or goal value. 

4.1.2.2. Relation to Hypothesis Testing 

 Usually, simply reporting CIs for an estimation of a population parameter is not 

considered a hypothesis test. This is because hypothesis tests relate to a single 

conclusion, such as statistical significance versus no statistical significance, where a CI is 

only the reporting of a range of plausible values for that system parameter. Many times a 

CI could be reworded to become a hypothesis test [28], and as Section 2.2 mentioned, 

there is a confidence interval approach to hypothesis testing. In this case, instead of 

simply reporting a CI around a sample statistic, some hypothesized value for that 

parameter is compared to see if it falls in or out of that interval. Increasingly, this 

approach to hypothesis testing is gaining favor over the use of p-values, and recent 

medical journal publications now prefer CIs to the use of p-values [17]. CIs are gaining 

preference over p-value testing because they are more informative than the p-value 

approach [89]. A CI provides a measure of accuracy of the parameter estimation that a 

point estimate and significance value do not.  

 The terminology laid out by the NRC to meet the 95% probability reporting 

requirement can be reworded in order to create a hypothesis test that would fall into the 

confidence interval approach category. As stated in Section 2.2, a hypothesis test begins 

with an assumption about a parameter, but uses a statistic for the decisionmaking process. 

In the case of an output distribution satisfying a regulatory limit with at least 95% 

probability, the null hypothesis H0 is that the true 0.95-quantile of the output distribution 
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is above the regulatory limit (assigned value b). The alternative hypothesis H1 is that the 

true 0.95-quantile of the system is below the regulatory limit b, as shown in Table 4. 2. 

 

Table 4. 2: Hypothesis Test Alternatives 

H0 
True 0.95-quantile 𝜉0.95 > b 
System fails test 

H1 
True 0.95-quantile 𝜉0.95 < b 
System passes test 

  

 

By making H0 the case where the true quantile is above the limit, the default position is 

that the system should fail the regulatory test because there is a greater than 95% 

probability of the output of the system being greater than b. Since this is the null 

hypothesis, the analyst must prove that this is not the case, or to state it another way, the 

analyst must provide a statistically significant amount of evidence that the true 0.95-

quantile of the output is below limit b. Obviously, the parameter 𝜉0.95 is unknown. 

Therefore, the quantile estimator 𝜉0.95 will be used, with a 95% OSCI, as the test statistic.  

 To make this more clear, Figure 4. 2 shows quantile estimator 𝜉𝑝, and a one-sided 

confidence interval (OSCI) for the p-quantile 𝜉𝑝 (note: the OSCI actually extends to −∞, 

but obviously negative values are not realistic). 
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Figure 4. 2: One-sided CI for Quantile Estimator 𝜉𝑝 

 

As the figure shows, the interval extends from 0 to value 𝜉𝑝 + 𝐶𝐼. If the limit value b falls 

anywhere within this interval, the system should not pass the test. Therefore, the null 

hypothesis should be accepted if the limit value b is within the interval 0 to value 𝜉𝑝 +

𝐶𝐼. The alternative hypothesis should be accepted if the limit value b is not in this 

interval. Since the CI is one-sided, there is only one way the limit value b could not fall in 

the interval, which would be by exceeding the highest bound. Using a 95% OSCI is 

equivalent to testing the null hypothesis at the 𝑃 < 0.05 level. Another way of saying this 

is that if b falls in this interval, there is a not insignificant possibility (where the line 

between significant and insignificant is made by the 95% confidence) that it could be at a 

value equal to, or below, the true population parameter 𝜉𝑝.   

 Since the problem is being phrased in terms of hypothesis testing, more 

explanation is needed on how errors will arise in this framework. As described in Section 
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4.1.2.1, a 95% OSCI implies that the true parameter value will be captured by the interval 

95 times out of 100. This means that 5% of the time the top bound of the OSCI created 

from the samples will be at a value lower than the true quantile. This scenario is shown in 

Figure 4. 3. 

 

 
Figure 4. 3: True Quantile above OSCI 

 

Even though the true quantile lies outside the interval created by the OSCI, this does not 

directly imply that a Type-I error (false positive) will be committed. A Type-I error will 

only occur if the limit value b happens to have been set at a value between the upper 

bound of the OSCI and the true quantile, as shown in Figure 4. 4 (it is important to note 

here, that the limit value b is a fixed parameter that was set before the analysis; the error 

interval in Figure 4. 4 simply shows a range created by the upper bound of the OSCI 

where, if the limit b had been placed, a Type-I error would occur).  
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Figure 4. 4: OSCI with Type-I Error 

 

Therefore, the size of the test 𝛼 is at most 0.05 (assuming a correct 95% OSCI). The 

actual value for 𝛼 will depend on the location of the upper bound of the OSCI in relation 

to limit b. The larger the distance between the upper bound of the OSCI and the true 

quantile, the closer 𝛼 could be to 0.05, since the error interval in Figure 4. 4 will grow 

wider. Since the limit b is set beforehand, independently of the analysis, as the error 

interval grows wider, the probability of the top bound of the OSCI falling below b will 

increase, meaning 𝛼 will get closer to 0.05. It should be noted that even if a Type-I error 

does not occur, there can still be mistakes caused by these ~5% of results. Even if the 

hypothesis test were to reach the right conclusion, the underestimation of the true quantile 

can lead to incorrect decisions in relation to the ranking of the severity of accidents (or 

whatever situation the analyst may be investigating), and this fault should not be 

underestimated.  
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 A Type-II error would occur in the following scenario. In this case, the OSCI does 

incorporate the true quantile. However, the OSCI is so large that it also includes the limit 

value b, even though it is set above the true quantile, as show in Figure 4. 5. As the figure 

shows, the error can be induced by the size of the CI, but it is also possible that the 

quantile estimator 𝜉𝑝 is above the true quantile, which means no matter the width of the 

CI, there is still a chance of a Type-II error, as show in Figure 4. 6.  

 

 
Figure 4. 5: OSCI with Type-II Error1 

 

 

                                                 
1 In Figure 4. 5 and Figure 4. 6, it appears that the true quantile has changed value in comparison to Figure 4. 4; using 
frequentist statistics, the true quantile is fixed, it would actually be the empirical CDF and OSCI that have changed 
from the previous figure 
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Figure 4. 6: OSCI with Type-II Error with Over Estimation of Quantile 

 

 Like 𝛼, the value for 𝛽 is bound by the value of the confidence level. With a 95% 

confidence interval, only 5% of trials will result in the true quantile exceeding the top 

bound of the OSCI. This means the true quantile will be within the bounds of the OSCI 

95% of the time. However, the OSCI does not give any information about the location of 

the true parameter within the CI, just a value to the possibility of its location within the 

bounds. This means 𝛽 has a theoretical top bound of 0.95, if the limit value b happened to 

be set only slightly above the true quantile. Obviously, a test that resulted in a 𝛽 value 

close to 0.95 would not be of much use. The actual value for 𝛽 is completely dependent 

on the accuracy of the quantile estimation, and the precision of the CI. The probability of 

the upper bound of the OSCI lying above the true quantile and above the limit value b 

will increase as the overestimation of the 0.95-quantile by the OSCI increases. The closer 

the point estimate is to the true quantile, and the skinnier the CI, the smaller 𝛽 will be.  
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 In this framework it is possible to reduce the value for both 𝛼 and 𝛽. To reduce 𝛼, 

the upper bound of the OSCI must be as close to the true quantile as possible during those 

~5% of times when the OSCI does not incorporate it. To reduce 𝛽, the accuracy of the 

quantile estimation and the precision of the CI should both be improved. The only way to 

accomplish these tasks without increasing the number of samples (assuming the analyst 

has no control over the limit value) is to reduce the variance of the test statistic.  

 Beyond committing errors during regulatory analysis, there are other reasons 

utilities and regulators would like to increase the accuracy of resulting confidence for a 

quantile, or similar, value. The margin from the resulting value to the safety limit is also 

of use. Significant margin may allow utilities to increase reactor temperature or power, 

increasing profit. As Westinghouse has stated, “The quantification and tracking of the 

margin (to the safety limit) is most often requested by both the plant operator and the 

regulator,…” [75].  

4.2. Methods 

 This section documents the procedure to establish confidence intervals for 

quantiles using various methods. For the techniques using VRTs, more detail is given 

about the derivation of the method since they have only recently been proven. There is 

also a small aside about the asymptotic methods and hypothesis testing. This is included 

here in order to offer a point of comparison for the methods detailed in Section 5, which 

use a different test statistic.  
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4.2.1. Crude Monte Carlo using Order Statistics 

 There are several key properties that make CMC-OS appealing to nuclear safety 

analysts. The biggest benefits of the CMC-OS method are that it is nonparametric and 

non-asymptotic. Nonparametric means that the method is independent of the outputs’ 

probability distribution, as long as it is continuous. Since it is non-asymptotic, the validity 

of the confidence statement holds exactly for certain finite sample sizes n and does not 

depend on n growing toward infinity. Called bracketing by Nutt and Wallis [82], the 

CMC-OS method first fixes an integer 𝑟 ≥ 1 (variable m in Nutt and Wallis [82]) and then 

determines the number n of runs necessary so that the r-th largest output of the n runs is a 

valid 95/95 value, which is the upper endpoint of an 95% upper one-sided confidence 

interval for 𝜉0.95. Then the NRC criterion is verified by checking if the 95/95 value lies 

below the safety limit. With this method, it is also possible to find the number n of runs 

necessary to construct a valid confidence interval for any quantile.  

 The required value for n, when 𝑟 = 1, can be determined as follows. Suppose that 

n i.i.d. runs are performed, giving n i.i.d. outputs, and consider the true p-quantile 𝜉𝑝. 

Each of the n outputs has probability p of lying below 𝜉𝑝, so the probability that all n 

outputs are less than 𝜉𝑝 is pn. Thus, the probability that at least one output is larger than 

𝜉𝑝 is 1-pn, so the probability that the largest of the n outputs is greater than 𝜉𝑝 is 

𝛽 = 1 − 𝑝𝑛. 
 

Eq. 42 

Setting 𝛽 = 𝑝 = 0.95 and solving for n in Eq. 42 results in 𝑛 = 59. Thus, if 59 CMC runs 

are conducted, then the largest (i.e., 𝑟 = 1) of the 59 outputs is a 95/95 value. If a 95% 

confidence interval is desired for the 0.75-quantile, then 𝛽 = 0.95,  𝑝 = 0.75, and 𝑛 = 11. 
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This means if 11 runs are conducted and ordered, the largest output can be taken as a 

95/75 value.  

 A drawback of taking the largest of 59 runs as the 95/95 value or the largest of 11 

runs as a 95/75 is that it will typically have large variance since the number of CMC runs 

is so small. This usually leads to a large range of possible 95/95 values, which in most 

cases will be conservative in the sense that they are considerably larger than the true 

quantile of the probability distribution of the model's output. To obtain a more accurate 

95/95 or 95/75 value, the value of r can be increased, which will lead to larger run size n. 

Here, accuracy is defined as the distance from the 95/95 or 95/75 value to the true 

quantile 𝜉𝑝, and precision is the spread or range of possible 95/95 or 95/75 values. For 

𝑟 ≥ 1, the argument used to obtain Eq. 42 can be generalized to show that the probability 

that the r-th largest of the n outputs is larger than 𝜉𝑝 is 

𝛽 = 1 − �
𝑛!

𝑖! (𝑁 − 𝑖)!

𝑛

𝑖=𝑛−𝑟+1

𝑝𝑖(1 − 𝑝)𝑛−1. 

 

Eq. 43 

Now set 𝛽 = 𝑝 = 0.95 and fix 𝑟 ≥ 1 in Eq. 43. Then solving for n gives the number of 

runs needed to ensure that the r-th largest output of the n runs is a valid 95/95 value. For 

example, if 𝑟 = 1, then Eq. 43 reduces to Eq. 42, resulting in 𝑛 = 59, as before. If 𝑟 = 3, 

then 𝑛 = 124, so the third largest output from the 124 runs is a valid 95/95 value.  

 As stated before, the potential downsides from CMC-OS arise not from the 

resulting values being invalid, but from the variance and conservatism of the results. 

First, at lower run levels, the 95/95 value will, on average, be overly conservative. This 

can be seen in Figure 4. 7, based on a similar plot by Nutt and Wallis [82]. This figure 
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shows for the different values of r, the probability density of the 95/95 value of a CMC-

OS analysis. The probability density is computed by taking the derivative of Eq. 43 with 

respect to p and is shown as a function of p. Thus, the function gives the likelihood of the 

95/95 value lying in a small interval around the p-quantile for different values of p. For 

𝑟 = 1, which corresponds to 𝑛 = 59, the 95/95 value is more likely to fall in an interval 

near the 1.0-quantile than an interval near the 0.95-quantile. Even at 𝑟 = 40 (𝑛 = 1008 

runs), the 95/95 value is more likely to be near the 0.96-quantile than the 0.95-quantile.  

 

 
Figure 4. 7: Dependence on the Order Selected to Represent 0.95-Quantile 

 

The same is true when trying to find a 95/75 value, as Figure 4. 8 shows. Even at 𝑛 = 886 

runs, the resulting value is more likely to be near the 0.77-quantile than the 0.75-quantile. 
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Figure 4. 8: Dependence on the Order Selected to Represent 0.75-Quantile 

 

 Secondly, as stated above, since CMC sampling is used, the variance of the 95/95 

value can be very high when r (and subsequently n) is small, so the likely range of 95/95 

values is large. This is even more so when estimating a 95/75, since as Figure 4. 8 shows, 

as few as 11 runs can be conducted to find a 95/75 value. In certain cases, this can mean 

that even though only ~5% of trials will fall below the actual quantile (due to the 95% 

confidence), there is a not-insignificant chance that they could fall well below. This could 

potentially cause a Type-I error during the analysis, and result in a value that is closer to 

the true capacity limit of the system, as shown in the safety margin characterization in 

Figure 2. 2. 

4.2.2. Asymptotic Methods 

 In contrast to the CMC-OS method, which states a priori a set number of runs 

which must be conducted to establish a confidence interval for a quantile, it is also 
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possible to establish other confidence intervals by proving a central limit theorem (CLT) 

as the number of runs grows large. This method has long been known when using CMC 

sampling [90], but until recently, has not been proven when using variance reduction 

techniques (VRTs), described in Section 2.  

 The following sections review asymptotic confidence intervals for CMC 

sampling, and discuss the recent work to expand their applicability to VRTs. For this 

work, only LHS and AV were investigated. This is because these methods can generally 

be applied without using features of the system. Using a VRT that relies on detailed 

knowledge about the system to adjust sampling methods or outputs, such as importance 

sampling and some types of control variates, may cause reluctance among regulators 

since they cannot be applied generally. It is important to note that assumptions are still 

needed about the system when using LHS and AV to guarantee they reduce variance. 

Both methods are essentially guaranteed to reduce the variance of the output if the system 

is a monotone function of the inputs, meaning increasing an input value will lead to the 

output either always decreasing or always increasing. It is still possible to get variance 

reduction if this is not true, but it is not ensured [91]. 

 For this explanation, suppose output Y from the simulation model can be 

represented as  

𝑌 = 𝑔(𝑈1,𝑈2, … ,𝑈𝑑), 
 

Eq. 44 

where g is a given (deterministic) function having a fixed number d of arguments and 

𝑈1,𝑈2, … ,𝑈𝑑 are i.i.d. uniform[0,1] random variables. The function g, which takes the d 

the i.i.d. uniforms and transforms them into a single output Y, can be quite complicated, 
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and it may not be possible to express g in closed-form. For example, a LOCA simulation 

might have s input random variables that are fed into a detailed computer code, which 

then computes an output Y. In this case, the function g transforms the d uniforms into 

samples of the s input variables, runs the computer code with these inputs, and produces 

an output Y (in many settings, 𝑠 = 𝑑, and each input variable 𝑋𝑗 is sampled from its 

distribution 𝐺𝑗 via inversion, i.e., 𝑋𝑗 = 𝐺𝑗−1(𝑈𝑗)). Let F be the CDF of Y, so for 0 < 𝑝 < 1, 

the p-quantile is 𝜉𝑝 = 𝐹−1(𝑝) ≡ inf {𝑥 ∶ 𝐹(𝑥) ≥ 𝑝}. 

4.2.2.1. Review of CMC 

 This section reviews how to use CMC to estimate and construct an asymptotically 

valid confidence interval for 𝜉𝑝 based on a CLT when Y has the form in Eq. 44. It is 

possible to generate n i.i.d. copies of Y by first generating nd i.i.d. uniform[0,1] random 

variables 𝑈𝑖,𝑗 , 𝑖 = 1,2, … ,𝑛, 𝑗 = 1,2, … ,𝑑, where d is as defined in Eq. 44. These uniforms 

can be arranged in an 𝑛 × 𝑑 array 

𝑈1,1 𝑈1,2 ⋯
𝑈2,1 𝑈2,2 ⋯
⋮

𝑈𝑛,1

⋮
𝑈𝑛,2

⋱
⋯

    

𝑈1,𝑑
𝑈2,𝑑
⋮

𝑈𝑛,𝑑

, 

 

Eq. 45 

where the ith row is used to generate the ith output 𝑌𝑖, i.e., 

𝑌1 = 𝑔�𝑈1,1,𝑈1,2, … ,𝑈1,𝑑� 

𝑌2 = 𝑔�𝑈2,1,𝑈2,2, … ,𝑈2,𝑑� 

       ⋮ 

𝑌𝑛 = 𝑔�𝑈𝑛,1,𝑈𝑛,2, … ,𝑈𝑛,𝑑� 
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Each 𝑌𝑖 has the distribution F because the d entries in the ith row of Eq. 45 are i.i.d. 

uniforms, as required by Eq. 44. Moreover, 𝑌1,𝑌2, … ,𝑌𝑛 are independent by the 

independence of the n rows in Eq. 45. Then the CMC p-quantile estimator is computed as 

𝜉𝑝,𝑛 = 𝐹�𝑛−1(𝑝), where 𝐹�𝑛 is defined in Eq.  33 (for the following derivations, a hat ⋀ will 

be used to denote an estimated parameter using CMC sampling, and the tilde ~ will be 

used to denote an estimated parameter using a VRT).  

 To establish a CI for 𝜉𝑝 based on the CMC point estimator 𝜉𝑝,𝑛, it must be shown 

that 𝜉𝑝,𝑛 satisfies a CLT as the number n of samples grows large. One way of establishing 

this is by first proving that 𝜉𝑝,𝑛 satisfies a so-called Bahadur representation; see [92]. Let 

f denote the derivative, when it exists, of F, and assume that 𝑓�𝜉𝑝� > 0. Now consider the 

following heuristic argument. When n is large, 𝐹�𝑛 ≈ 𝐹−1(𝑝) = 𝜉𝑝. Because 𝐹�𝜉𝑝� = 𝑝 by 

definition, it can be seen that 𝐹(𝜉𝑝,𝑛) ≈ 𝑝, so a Taylor approximation yields 

𝑝 ≈ 𝐹(𝜉𝑝,𝑛) 
    ≈ 𝐹�𝜉𝑝� + 𝑓�𝜉𝑝�(𝜉𝑝,𝑛 − 𝜉𝑝) 
    ≈ 𝐹�𝑛�𝜉𝑝� + 𝑓�𝜉𝑝��𝜉𝑝,𝑛 − 𝜉𝑝�, 

 
where the last approximation holds because 𝐹�𝑛 ≈ 𝐹. Rearranging terms leads to 𝜉𝑝,𝑛 =

𝜉𝑝 + �𝑝 − 𝐹�𝑛�𝜉𝑝��/𝑓�𝜉𝑝�, which approximates a quantile estimator by a linear 

transformation of a CDF estimator.  

 Bahadur [92] makes this argument mathematically rigorous. In particular, suppose 

that the second derivative 𝐹′′ of 𝐹 exists and is bounded in a neighborhood of 𝜉𝑝, and that 

𝑓�𝜉𝑝� > 0. Then Bahadur proves that  

𝜉𝑝,𝑛 = 𝜉𝑝 + 𝑝−𝐹�𝑛(𝜉𝑝)
𝑓(𝜉𝑝)

+ 𝑅𝑛′ , where 𝑅𝑛′ = 𝑂�𝑛−3 4⁄ log𝑛� as 𝑛 → ∞ with probability 1. 
 

Eq. 46 
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This is known as a Bahadur representation. 

 Under weaker conditions, Ghosh [93] establishes a variant of a weaker version of 

Eq. 46, which will be useful and sufficient for the following proof. Specifically, let 𝑝𝑛 be 

a perturbed value of p converging to p as 𝑛 → ∞, and let 𝜉𝑝𝑛,𝑛 = 𝐹�𝑛−1(𝑝𝑛) (working with a 

perturbed 𝑝𝑛 rather than a fixed p will allows an asympotitc CI to be constructed for 

𝜉𝑝when applying VRTs). Also, let ⇒ denote convergence in distribution (Section 1.2.4 of 

[94]). Then [93] shows that if 𝑓�𝜉𝑝� > 0, then  

𝜉𝑝𝑛,𝑛 =  𝜉�̇�𝑛 +
𝑝 − 𝐹�𝑛(𝜉𝑝)
𝑓(𝜉𝑝)

+ 𝑅𝑛 

 
Eq. 47 

with 

√𝑛𝑅𝑛 ⇒ 0 as 𝑛 → ∞ 
 Eq. 48 

where 

𝜉�̇�𝑛 = 𝜉𝑝 +
𝑝𝑛 − 𝑝
𝑓(𝜉𝑝)

 

 
Eq. 49 

when 𝑝𝑛 = 𝑝 + 𝑂(1 √𝑛⁄ ). If f is also continuous in a neighborhood of 𝜉𝑝, then Eq. 47 and 

Eq. 48 hold for all 𝑝𝑛 → 𝑝 with 

𝜉�̇�𝑛 = 𝐹−1(𝑝𝑛). 
 

Eq. 50 

 The results in Eq. 47 and Eq. 48 ensure that the CMC quantile estimator 𝜉𝑝,𝑛 

satisfies a CLT. To show this, fix 𝑝𝑛 = 𝑝 in Eq. 47 so 𝜉�̇�𝑛 = 𝜉𝑝, rearrange terms and scale 

by √𝑛 to obtain  

√𝑛�𝜉𝑝,𝑛 − 𝜉𝑝� = √𝑛 �
𝑝 − 𝐹�𝑛�𝜉𝑝�
𝑓�𝜉𝑝�

� + √𝑛𝑅𝑛. 

 
Eq. 51 
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Eq.  33 shows that 𝐹�𝑛(𝜉𝑝) is the sample average of i.i.d. indicator functions 𝐼(𝑌𝑖 ≤ 𝜉𝑝), 

𝑖 = 1,2, … ,𝑛, each of which has mean p and variance 0 < 𝑝(1 − 𝑝) < ∞. Hence, the first 

term on the right side of Eq. 51 satisfies a CLT (see p. 28 of [94]), with limit 

𝑁(0, 𝑝(1 − 𝑝) 𝑓2�𝜉𝑝�⁄ ) as 𝑛 → ∞, where 𝑁(𝑎, 𝑏2) denotes a normal random variable with 

mean a and variance b2. The second term on the right side of Eq. 51 vanishes (in 

distribution) as 𝑛 → ∞ by Eq. 48, so Slutsky’s theorem (p. 19 of [94]) ensures that 

√𝑛�𝜉𝑝,𝑛 − 𝜉𝑝� ⇒ 𝑁(0,𝑝(1 − 𝑝) 𝑓2(𝜉𝑝)⁄ ) as 𝑛 → ∞, or equivalently, 

√𝑛
�𝑝(1 − 𝑝)𝜆𝑝

�𝜉𝑝,𝑛 − 𝜉𝑝� ⇒ 𝑁(0,1)   as  𝑛 → ∞, 

 
Eq. 52 

where 

𝜆𝑝 =
1

𝑓�𝜉𝑝�
, 

 
Eq. 53 

which is known as the sparsity function [95] or the quantile density function [96]. One 

interpretation of the CLT is that the left of Eq. 52 will have approximately a standard 

(i.e., mean 0, variance 1) normal distribution for large n. 

 The CLT in Eq. 52 illustrates one reason why a Bahadur representation is useful. 

The latter shows that a quantile estimator can be approximated as a linear transformation 

of a CDF estimator, which typically is a sample average so it satisfies a CLT. Thus, a 

Bahadur representation provides insight into why a quantile estimator, which is not a 

sample average, satisfies a CLT. 

 Once the CLT in Eq. 52 has been established, it can then be unfolded to obtain a 

confidence interval for 𝜉𝑝. Let 𝓏𝛽 = Φ−1(1 − 𝛽) for any 0 < 𝛽 < 1, where Φ is the CDF 

of 𝑁(0,1). Then  
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 1 − 𝛼 = 𝑃{−𝑧𝛼/2 ≤ 𝑁(0,1) ≤ 𝑧𝛼/2} 

≈ 𝑃 �−𝑧𝛼/2 ≤
√𝑛

�𝑝(1 − 𝑝)𝜆𝑝
(𝜉𝑝,𝑛 − 𝜉𝑝) ≤ 𝑧𝛼/2� 

= 𝑃 �𝜉𝑝,𝑛 − 𝑧𝛼/2
�𝑝(1 − 𝑝)𝜆𝑝

√𝑛
≤ 𝜉𝑝 ≤ 𝜉𝑝,𝑛 + 𝑧𝛼/2

�𝑝(1 − 𝑝)𝜆𝑝
√𝑛

� 

 

where the approximation holds for large n by the CLT. Hence,  

�𝜉𝑝,𝑛 − 𝑧𝛼/2
�𝑝(1 − 𝑝)𝜆𝑝

√𝑛
, 𝜉𝑝,𝑛 + 𝑧𝛼/2

�𝑝(1 − 𝑝)𝜆𝑝
√𝑛

� ≡ �𝜉𝑝,𝑛 ± 𝑧𝛼/2
�𝑝(1 − 𝑝)𝜆𝑝

√𝑛
� 

 
Eq. 54 

is an asymptotically valid (two-sided) 100(1 − 𝛼)% confidence interval for 𝜉𝑝. Since 𝜆𝑝 is 

unknown, for the CI in Eq. 54 to be implementable in practice, it must be replaced with a 

consistent estimator �̂�𝑝,𝑛; i.e., �̂�𝑝,𝑛 ⇒ 𝜆𝑝 as 𝑛 → ∞. If such an estimator exists, then 

𝐽𝑛 = �𝜉𝑝,𝑛 ± 𝑧𝛼/2
�𝑝(1 − 𝑝)�̂�𝑝,𝑛

√𝑛
� 

is another asymptotic two-sided 100(1 − 𝛼)% CI for 𝜉𝑝, which is asymptotically valid in 

the sense that 

𝑃{𝜉𝑝 ∈ 𝐽𝑛} → 1 − 𝛼    𝑎𝑠    𝑛 → ∞. 

Now the key issue is constructing a consistent estimator �̂�𝑝,𝑛 of 𝜆𝑝 from Eq. 53. Since 

𝜆𝑝 = 1/𝑓(𝜉𝑝) = 𝑑
𝑑𝑝
𝐹−1(𝑝) = limℎ→0[𝐹−1(𝑝 + ℎ) − 𝐹−1(𝑝 − ℎ)]/(2ℎ) by the chain rule of 

differentiation, a natural estimator for 𝜆𝑝 is the (central) finite difference  

�̂�𝑝,𝑛 =
𝐹�𝑛−1(𝑝 + ℎ𝑛) − 𝐹�𝑛−1(𝑝 − ℎ𝑛)

2ℎ𝑛
, 

 
Eq. 55 
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where ℎ𝑛 > 0 is a user-specified (small) parameter known as the bandwidth or smoothing 

parameter  (see Section VII.1 of [97] or Section 7.1 of [39] for overviews of finite-

difference estimators). If ℎ𝑛 → 0 and 𝑛ℎ𝑛 → ∞ as 𝑛 → ∞, then [98] and [99] prove the 

consistency of �̂�𝑝,𝑛 as 𝑛 → ∞. More detail on this estimator is provided in Section 4.2.2.5. 

Rather than a two-sided CI for 𝜉𝑝, an asymptotic upper one-sided 100(1 − 𝛼)% CI 

for 𝜉𝑝 can be developed  

�−∞, 𝜉𝑝,𝑛 + 𝑧𝛼
�𝑝(1 − 𝑝)�̂�𝑝,𝑛

√𝑛
�. 

 
Eq. 56 

Setting 𝛼 = 0.05 (so 𝑧𝛼 = 1.645), then the upper endpoint of Eq. 56 is an asymptotically 

valid 95/95 (resp., 95/75) value for CMC as 𝑛 → ∞ when 𝑝 = 0.95 (resp., 𝑝 = 0.75). 

 To implement this procedure for a OSCI, the following code in Figure 4. 9 can be 

used, where p is the quantile, n is the number of runs, ceil is the round-up function, and 

NN is the standard normal critical point for the desired confidence level. This code first 

estimates the quantile 𝜉𝑝,𝑛, called Xi, using the ordered results Y_ordered, and the round 

–up function. Then the CFD in Eq. 55 is calculated. Next, the quantity to the right-hand 

side of the plus sign in Eq. 56 is calculated using these results. Lastly, the OSCI in Eq. 56 

is calculated. 
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%%% CMC Asymptotic 
    Xi=Y_ordered(ceil(p*n));      % Quantile Estimation using ordered results 
    CFDhigh=Y(ceil((p+hn)*n));    % CFD High Point 
    CFDlow=Y(ceil((p-hn)*n));     % CFD Low Point 
    CFD=(CFDhigh-CFDlow)/((ceil((p+hn)*n)-ceil((p-hn)*n))/(n));  %CFD 
    add_on=NN*((sqrt(p*(1-p))*CFD)/sqrt(n));  % Confidence Term 
    Xi_w_conf=Xi+add_on;          % Quantile Estimation plus Confidence 

 
Figure 4. 9: MATLAB Code Implementation of CMC Quantile Asymptotic Method 

  

 The hypothesis test at the beginning of this section can now be written more 

rigorously using the above asymptotic CMC formulation. The quantile-estimator (here 

the quantile will be 0.95 for ease of reference) is 𝜉0.95 and satisfies the following CLT: 

√𝑛
𝜏

(𝜉0.95 − 𝜉0.95) ≈ 𝑁(0,1) Eq. 57 

for large n, where  

𝜏 =
�0.95(1 − 0.95)

𝑓(𝜉0.95)
 Eq. 58 

as can be seen in Eq. 56. Here, �̂� will be an estimator for 𝜏 (using the CFD in Eq. 55). 

Then the upper endpoint of the OSCI U is 

𝑈 = 𝜉0.95 + 𝑧
�̂�
√𝑛

, Eq. 59 

where z is the standard normal critical point for a 95% confidence interval, and a 95/95 

criterion is satisfied when 𝑈 ≤ limit value,  

 For a limit value b, the hypothesis test alternatives for a comparison to the true 

0.95-quantile become: 

H0: 𝜉0.95 > 𝑏 

H1: 𝜉0.95 ≤ 𝑏 
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Then Eq. 59 can be rearranged to show when to reject H0, 

𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 
𝜉0.95 − 𝑏
�̂� √𝑛⁄

≤ −𝑧 Eq. 60 

Eq. 60 is equivalent to saying that the 95/95 value is less than the limit b. Similarly, 

𝑎𝑐𝑐𝑒𝑝𝑡 𝐻0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 
𝜉0.95 − 𝑏
�̂� √𝑛⁄

> −𝑧 Eq. 61 

which is the same as saying the 95/95 value is greater than the limit b.   

Comment on CMC and Quantile Test 

 When using samples that are i.i.d., like those with CMC, it is possible to conduct 

a hypothesis test known as the quantile test. The quantile test is a type of binomial test 

that investigates the hypothesized location of a distribution quantile. It will appear very 

similar to the hypothesis test framework laid out in Section 4.1.2, but it will help 

demonstrate the relation between CMC-OS and the asymptotic CMC method [100].  

 The easiest way to explain the quantile test is through example. Imagine a random 

variable U. An analyst wants to take n samples from U to see if the 0.75-quantile of U is 

greater than 20 (for example). If this is true, then < 75% of the n samples should be less 

than 20, and > 25% of the samples should be more than 20. If this is not the balance seen 

in the samples, then it will give an indication of the direction of the true 0.75-quantile. 

The hypothesis choices are similar to before: 

H0: The 0.75-quantile is less than or equal to 20 

H1: The 0.75-quantile is greater than 20 

This can be rephrased in terms of probability, where 

H0: 𝑃(𝑈 ≤ 20) ≥ 0.75 
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H1: 𝑃(𝑈 ≤ 20) < 0.75 

which is essentially a binomial test because the samples are either less than or equal to 

20, or not. This can be thought of the number of successes and failures in a binomial test 

(also similar to the derivation of CMC-OS in Section 4.2.1.). In this example, the size of 

the test 𝛼 will be assigned 0.05. So using the binomial distribution in Eq. 62, it’s possible 

to find how many samples must fall above 20 in order for the significance of the results 

to exceed 1 − 𝛼.  

𝑃(𝑈 < 𝑢) = �
𝑛!

𝑘! (𝑛 − 𝑘)!
� 𝑝𝑘(1 − 𝑝)𝑛−𝑘 Eq. 62 

If 𝑛 = 15 samples, 𝑝 = 0.75, and the number of samples < 20 is 𝑘, the binomial formula 

gives the following probabilities: 

 𝑃(𝑘 ≤ 13) = 0.9198 

𝑃(𝑘 ≤ 14) = 0.9866 

This means that in order to satisfy the significance level 1 − 𝛼 = 0.95, at least two 

samples out of 15 should exceed 20 in order for H1 to accepted.  

 As can be seen, the process of using CMC-OS in comparison to a limit value is 

essentially a quantile test. In the example just given, if 𝑛 = 59 samples and the quantile 

𝑝 = 0.95, then the result would be 𝑃(𝑘 ≥ 59) = 0.0485, which means there is a less 

than 0.05 probability of the hypothesized value being exceeded by the true 0.95-quanitle, 

which is the same result as using the CMC-OS method. This relates to the asymptotic 

CMC method because of the normal approximation of the binomial distribution. The 

normal approximation to a binomial distribution 𝐵(𝑛, 𝑝) is 𝑁(𝑛𝑝,𝑛𝑝(1 − 𝑝)). This 
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means instead of using the binomial formula in Eq. 62, the number of successes needed 

to achieve the significance level can be found using Eq. 63, 

𝑡(1−𝛼) = 𝑛𝑝 + 𝑧(1−𝛼)�𝑛𝑝(1 − 𝑝) Eq. 63 

where 𝑧 is the standard normal critical value, and 𝑛 − 𝑡(1−𝛼) is the number of success 

necessary out of 𝑛 samples. Eq. 63 is simply the mean of the normal distribution plus the 

standard deviation times a scaling factor, but closely resembles the asymptotic CMC 

method in Eq. 56.  

 The same formula can be used to establish CIs for quantiles too. The difference 

between this result and the one shown in the asymptotic CMC results in Eq. 56 is the 

desired information. The result here would give the rank of the ordered sample that 

would be closest to the desired confidence level. For example, if 100 samples were taken 

and the 95/95 value was desired, Eq. 63 would return 98.585, which would mean the 99 

ordered result would satisfy the 95/95. However, this means the confidence will actually 

exceed 95% since the result did not fall directly on an ordered result, so the solution will 

be conservative. The asymptotic CMC method outlined in Section 4.2.2.1 does not return 

an ordered result, but the actual value of the bounds of the CI. Both methods can be 

viewed as a result of the CLT, however the form in Eq. 63 is non-asymptotic. Due to this 

similarity between the methods, it would be assumed that asymptotic CMC should be less 

conservative than CMC-OS at low run levels, but as the number of runs increases, the 

two methods will converge to the same solution.  
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4.2.2.2. VRTS 

For the case when applying VRTs, Chu and Nakayama [72] have developed 

methods for constructing asymptotically valid CIs for 𝜉𝑝, which is presented here. Let 𝐹�𝑛 

be an estimate of the CDF 𝐹, where 𝐹�𝑛 is obtained by simulating using a VRT with 

sampling budget 𝑛 (Sections 4.2.2.3 and 4.2.2.4 give examples for some specific VRTs). 

Then a VRT 𝑝-quantile estimator is  

𝜉𝑝,𝑛 = 𝐹�𝑛−1(𝑝). 

The asymptotic validity of the method in [72] for constructing a CI for 𝜉𝑝 based on 𝜉𝑝,𝑛 

relies on showing that the VRT quantile estimator satisfies a Bahadur representation 

analogous to the CMC version in Eq. 47 and Eq. 48. Specifically, let 𝜉𝑝𝑛,𝑛 = 𝐹�𝑛−1(𝑝𝑛) be 

the VRT 𝑝𝑛-quantile estimator, with 𝑝𝑛 a perturbed value of 𝑝, and assume that 𝑓(𝜉𝑝) > 0. 

Then Chu and Nakayama develop a set of general conditions (denoted as Assumptions 

A1, A2, and A3 in [72], these assumptions are given in Appendix B) on the VRT CDF 

estimator 𝐹�𝑛 to ensure that  

𝜉𝑝𝑛,𝑛 = 𝜉�̇�,𝑛 +
𝑝 − 𝐹�𝑛(𝜉𝑝)
𝑓(𝜉𝑝)

+ 𝑅𝑛 

 
Eq. 64 

with 

√𝑛𝑅𝑛 ⇒ 0    as    𝑛 → ∞, 
 Eq. 65 

where 𝜉�̇�,𝑛 is as in Eq. 49 when 𝑝𝑛 = 𝑝 + 𝑂(1/√𝑛). If 𝑓 is further assumed to be 

continuous in a neighborhood of 𝜉𝑝 and Assumption A2 in [72] is slightly strengthened, 

then Eq. 64 and Eq. 65 hold with 𝜉�̇�,𝑛 defined in Eq. 50 for all 𝑝𝑛 → 𝑝 as 𝑛 → ∞. Chu and 

Nakayama [72] show that their Assumptions A1, A3 and the stronger version of A2 hold 
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(under various moment conditions) for importance sampling, combined importance 

sampling and stratification, antithetic variates and control variates; Nakayama [101] 

establishes the same for a type of Latin hypercube sampling.  

As in the case of CMC in Section 4.2.2.1, the Bahadur representation in Eq. 64 and 

Eq. 65 implies that the VRT 𝑝-quantile estimator satisfies a CLT  

√𝑛
𝜅𝑝

(𝜉𝑝,𝑛 − 𝜉𝑝) ⇒ 𝑁(0,1)    as    𝑛 → ∞, 

 
Eq. 66 

where 

𝜅𝑝 = 𝜓𝑝𝜆𝑝, 
 Eq. 67 

𝜓𝑝2 is the asymptotic variance in the CLT 

√𝑛(𝑝 − 𝐹�𝑛(𝜉𝑝)) ⇒ 𝑁(0,𝜓𝑝2) 
 

Eq. 68 

for the VRT CDF estimator 𝐹�𝑛 at 𝜉𝑝, and 𝜆𝑝 is defined in Eq. 55. The value of 𝜓𝑝 depends 

on the particular VRT used and equals �𝑝(1 − 𝑝) for CMC (compare Eq. 52 and Eq. 66). 

It turns out that developing a consistent estimator 𝜓�𝑝,𝑛 of 𝜓𝑝 is straightforward; the 

following sections present such estimators for specific VRTs. The value of 𝜆𝑝 is 

independent of the VRT applied, and can be estimated using a (central) finite difference  

�̃�𝑝,𝑛 =
𝐹�𝑛−1(𝑝 + ℎ𝑛) − 𝐹�𝑛−1(𝑝 − ℎ𝑛)

2ℎ𝑛
, 

 
Eq. 69 

where ℎ𝑛 > 0 is the bandwidth. Chu and Nakayama [72] prove that if their Assumptions 

A1-A3 hold and 𝑓(𝜉𝑝) > 0, then 

�̃�𝑝,𝑛 ⇒ 𝜆𝑝    as    𝑛 → ∞ 
 

Eq. 70 



 

116 
 

for ℎ𝑛 = 𝑐/√𝑛 for any constant 𝑐 > 0. If it is assumed that 𝑓 is continuous in a 

neighborhood of 𝜉𝑝 and a slightly stronger version of Assumption A2 from [72] holds, 

then Eq. 70 is true for bandwidths satisfying  

ℎ𝑛 → 0    and    √𝑛ℎ𝑛 → 𝑏    for  some    𝑏 ∈ (0,∞]    as    𝑛 → ∞. 
 Eq. 71 

For example, ℎ𝑛 = 𝑐𝑛−𝑣 satisfies Eq. 71 for constants 𝑐 > 0 and 0 < 𝑣 ≤ 1/2. Thus, an 

asymptotically valid two-sided 100(1 − 𝛼)% CI for 𝜉𝑝 when applying a VRT is 

�𝜉𝑝,𝑛 ± 𝑧𝛼/2
𝜓�𝑝,𝑛�̃�𝑝,𝑛

√𝑛
�. 

 
Eq. 72 

Also, an asymptotically valid upper one-sided 100(1 − 𝛼)% CI for 𝜉𝑝 is 

�−∞, 𝜉𝑝,𝑛 + 𝑧𝛼
𝜓�𝑝,𝑛�̃�𝑝,𝑛

√𝑛
�, 

 
Eq. 73 

whose upper endpoint is an asymptotically valid 95/95 (resp., 95/75) value when 

applying the VRT with 𝛼 = 0.05 and 𝑝 = 0.95 (resp., 𝑝 = 0.75). 

Eq. 70 holds when ℎ𝑛 = 𝑐/√𝑛 for some constant 𝑐 > 0 because of the following (the 

other cases of ℎ𝑛 satisfying Eq. 70 can be handled in a similar manner; see [72] for 

details). In Eq. 69, note that 𝐹�𝑛−1(𝑝 + ℎ𝑛) = 𝜉𝑝+ℎ𝑛,𝑛 and 𝐹�𝑛−1(𝑝 − ℎ𝑛) = 𝜉𝑝−ℎ𝑛,𝑛, so the 

Bahadur representation in Eq. 64 and Eq. 65 can be used to analyze the finite difference. 

Since 𝑝 ± ℎ𝑛 = 𝑝 ± 𝑐/√𝑛 = 𝑝 + 𝑂(1/√𝑛), 𝜉�̇�,𝑛 is set as in Eq. 49; thus, Eq. 64 and Eq. 65 

imply there exist 𝑅𝑛,1 and 𝑅𝑛,2 satisfying √𝑛𝑅𝑛,𝑖 ⇒ 0, 𝑖 = 1,2, such that  
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�̃�𝑝,𝑛 =
1

2ℎ𝑛
��𝜉𝑝 +

𝑝 + ℎ𝑛 − 𝑝
𝑓(𝜉𝑝)

+
𝑝 − 𝐹�𝑛(𝜉𝑝)
𝑓(𝜉𝑝)

+ 𝑅𝑛,1�

− �𝜉𝑝 +
𝑝 − ℎ𝑛 − 𝑝
𝑓(𝜉𝑝)

+
𝑝 − 𝐹�𝑛(𝜉𝑝)
𝑓(𝜉𝑝)

+ 𝑅𝑛,2�� 

        =
1

2ℎ𝑛
�

2ℎ𝑛
𝑓(𝜉𝑝)

+ 𝑅𝑛,1 − 𝑅𝑛,2� 

        ⇒
1

𝑓(𝜉𝑝)
= 𝜆𝑝 

 

as 𝑛 → ∞ since 𝑅𝑛,𝑖/(2ℎ𝑛) = √𝑛𝑅𝑛,𝑖/(2𝑐) ⇒ 0 for 𝑖 = 1,2, Eq. 65. 

4.2.2.3. Antithetic Variates 

Instead of generating independent outputs as in CMC, the method of antithetic 

variates (AV) generates outputs in negatively correlated pairs, which can reduce variance; 

see Section V.3 of [97] for an overview of AV. If both 𝑌 and 𝑌′ each have marginal 

distribution 𝐹 and are negatively correlated, then (𝑌,𝑌′) is called an AV pair. One way to 

simulate such a pair is to generate 𝑑 i.i.d. 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0,1] random variables 𝑈1,𝑈2, … ,𝑈𝑑, 

and then set 𝑌 = 𝑔(𝑈1,𝑈2, … ,𝑈𝑑) and 𝑌′ = 𝑔(1 − 𝑈1, 1 − 𝑈2, … ,1 − 𝑈𝑑), where 𝑔 is from 

Eq. 44. Clearly, 𝑌 has CDF 𝐹 by Eq. 44, but 𝑌′ also does since each 1 − 𝑈𝑗 is also 

𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0,1]. If 𝑔 is monotonic in each argument 𝑈𝑗, then 𝑌 and 𝑌′ are guaranteed to be 

negatively correlated (p. 181 of [102]), which will ensure a variance reduction, as will be  

shown shortly. AV can still result in a variance reduction when 𝑔 is not monotonic in 

each argument, but it may be difficult to prove. 

To estimate 𝜉𝑝 using AV, generate 𝑛/2 AV pairs (𝑌𝑖 ,𝑌𝑖′), 𝑖 = 1,2, … ,𝑛/2, where 𝑛 is 

even. This can be accomplished by generating i.i.d. uniforms as in Eq. 45, but with 𝑛/2 
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rows rather than 𝑛. Then set 𝑌𝑖 = 𝑔(𝑈𝑖,1,𝑈𝑖,2, … ,𝑈𝑖,𝑑) and 𝑌𝑖′ = 𝑔(1 − 𝑈𝑖,1, 1 − 𝑈𝑖,2, … ,1 −

𝑈𝑖,𝑑). The then AV estimator 𝐹�𝑛 of the CDF 𝐹 can be computed as  

𝐹�𝑛(𝑦) =
1
𝑛/2

�  
𝑛/2

𝑖=1

1
2

[𝐼(𝑌𝑖 ≤ 𝑦) + 𝐼(𝑌𝑖′ ≤ 𝑦)], 

 

Eq. 74 

and the resulting AV estimator of 𝜉𝑝 is 𝜉𝑝,𝑛 = 𝐹�𝑛−1(𝑝). 

It can be shown that for each 𝑦, 𝐹�𝑛(𝑦) has no greater variance than the CMC 

estimator 𝐹�𝑛(𝑦) in Eq.  33. Note that  

    𝑉𝑎𝑟[𝐹�𝑛(𝑦)] = �
1
𝑛/2

�
2
�  
𝑛/2

𝑖=1

1
4
𝑉𝑎𝑟[𝐼(𝑌𝑖 ≤ 𝑦) + 𝐼(𝑌𝑖′ ≤ 𝑦)] 

                           = �
1
𝑛/2

�
1
4

(𝑉𝑎𝑟[𝐼(𝑌 ≤ 𝑦)] + 𝑉𝑎𝑟[𝐼(𝑌′ ≤ 𝑦)] + 2𝐶𝑜𝑣[𝐼(𝑌 ≤ 𝑦), 𝐼(𝑌′ ≤ 𝑦)]) 

 = �
1
𝑛/2

�
1
2

(𝐹(𝑦)(1 − 𝐹(𝑦)) + 𝐶𝑜𝑣[𝐼(𝑌 ≤ 𝑦), 𝐼(𝑌′ ≤ 𝑦)]) Eq. 75 

≤
𝐹(𝑦)(1 − 𝐹(𝑦))

𝑛
= 𝑉𝑎𝑟[𝐹�𝑛(𝑦)], 

 

Eq. 76 

since the negative correlation of 𝑌𝑖 and 𝑌𝑖′ implies the same for 𝐼(𝑌 ≤ 𝑦) and 𝐼(𝑌′ ≤ 𝑦) 

because 𝑔(𝑥) = 𝐼(𝑥 ≤ 𝑦) is monotonic in 𝑥 (p. 181 of [102]). Thus, AV can reduce the 

variance of the estimator of 𝐹(𝑦) compared to CMC, which leads to the AV 𝑝-quantile 

estimator 𝜉𝑝,𝑛 having smaller variance. 

Avramidis and Wilson [103] develop this AV estimator of 𝜉𝑝, which they prove 

satisfies the CLT in Eq. 66, but they do not consider the estimation of the asymptotic 

variance 𝜅𝑝2 in the CLT to construct a CI for 𝜉𝑝. To address this issue, Chu and Nakayama 

[72] prove that the AV CDF estimator 𝐹�𝑛 satisfies their Assumptions A1, A3 and the 

stronger version of A2 without any extra conditions required. Thus, if 𝑓(𝜉𝑝) > 0, then the 
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AV quantile estimator satisfies the Bahadur representation in Eq. 64 and Eq. 65 with 𝜉�̇�𝑛 

in Eq. 49 for 𝑝𝑛 = 𝑝 + 𝑂(1/√𝑛). Moreover, Eq. 64 and Eq. 65 hold with 𝜉�̇�𝑛 in Eq. 50 for 

any 𝑝𝑛 → 𝑝 when 𝑓 is also continuous in a neighborhood of 𝜉𝑝. In either case, this implies 

the AV 𝑝-quantile estimator 𝜉𝑝,𝑛 satisfies the CLT in Eq. 66. To derive an expression for 

𝜓𝑝2 in Eq. 68 when applying AV, which is needed to determine 𝜅𝑝 in Eq. 67, note that by 

Eq. 74, 𝐹�𝑛(𝜉𝑝) is the sample average of 𝑛/2 quantities 𝑍𝑖 ≡ [𝐼(𝑌𝑖 ≤ 𝜉𝑝) + 𝐼(𝑌𝑖′ ≤ 𝜉𝑝)]/2. 

Since the 𝑍𝑖, 𝑖 = 1,2, … ,𝑛/2, are i.i.d. with finite variance, the CLT in Eq. 68 holds with 

𝜓𝑝2 = 2𝑉𝑎𝑟[𝑍𝑖]. Hence, it follows from Eq. 75 that  

𝜓𝑝2 = 𝑉𝑎𝑟[𝐼(𝑌 ≤ 𝜉𝑝)] + 𝐶𝑜𝑣[𝐼(𝑌 ≤ 𝜉𝑝), 𝐼(𝑌′ ≤ 𝜉𝑝)] 

      = 𝑝(1 − 𝑝) + 𝐸[𝐼(𝑌 ≤ 𝜉𝑝) 𝐼(𝑌′ ≤ 𝜉𝑝)] − 𝐸[𝐼(𝑌 ≤ 𝜉𝑝)] 𝐸[𝐼(𝑌′ ≤ 𝜉𝑝)] 

      = 𝑝(1 − 2𝑝) + 𝑃{𝑌 ≤ 𝜉𝑝,𝑌′ ≤ 𝜉𝑝} 
 

since 𝐸[𝐼(𝑌 ≤ 𝜉𝑝)] = 𝐸[𝐼(𝑌′ ≤ 𝜉𝑝)] = 𝑝. Chu and Nakayama[72] show that 

𝜓�𝑝,𝑛
2 = 𝑝(1 − 2𝑝) +

1
𝑛/2

�  
𝑛/2

𝑖=1

𝐼(𝑌𝑖 ≤ 𝜉𝑝,𝑛,𝑌𝑖′ ≤ 𝜉𝑝,𝑛) 

 

Eq. 77 

consistently estimates 𝜓𝑝2, so 𝜓�𝑝,𝑛 ⇒ 𝜓𝑝 as 𝑛 → ∞. Substituting Eq. 77 into Eq. 72 and Eq. 

73 then results in asymptotically valid two-sided and one-sided 100(1 − 𝛼)% CIs for 𝜉𝑝 

when applying AV. 

Computing the AV quantile estimator and constructing the corresponding CI require 

inverting the AV CDF estimator in Eq. 74, which can be accomplished as follows. Define 

𝐴2𝑖−1 = 𝑌𝑖 and 𝐴2𝑖 = 𝑌𝑖′ for 𝑖 = 1,2, … ,𝑛/2. Let 𝐴(1) ≤ 𝐴(2) ≤ ⋯ ≤ 𝐴(𝑛) be the order 
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statistics of the 𝐴𝑗, 𝑗 = 1,2, … ,𝑛. Then for any 0 < 𝑞 < 1, it is possible to compute 

𝐹�𝑛−1(𝑞) = 𝐴(⌈𝑛𝑞⌉), where ⌈⋅⌉ denotes the round-up function. 

 To implement AV within a computer code, the procedure in Figure 4. 10 can be 

used.  As with the asymptotic CMC code in Figure 4. 9, first the quantile estimation Xi is 

made using the ordered results of all n samples, called Y_tot. Then the CFD is calculated 

using all n samples. Next, the summation in Eq. 77 is found using MATLAB’s built-in 

indicator function. This is used to find 𝜓�𝑝,𝑛, called psi, then the additional confidence 

term is added to the quantile estimation. 

 

%%% Antithetic Variates 
    Xi=Y_tot(n*p);                  % Quantile Estimation using all n samples 
    CFDhigh=Y_tot(ceil((p+hn)*n));  % CFD High Point 
    CFDlow=Y_tot(ceil((p-hn)*n));   % CFD Low Point 
    CFD=(CFDhigh-CFDlow)/((ceil((p+hn)*n)-ceil((p-hn)*n))/n); %CFD 
    prob=mean(Y <= Xi & YY <= Xi);  % Indicator Function sum in Eq. 77 
    psi=sqrt(p*(1-2*p)+prob);       % Psi calculation 
    add_on=NN*((psi*CFD)/sqrt(n));  % Confidence Term 
    Xi_w_conf=Xi+add_on;            % Quantile Estimation plus Confidence 

 
Figure 4. 10: MATLAB Code Implementation of AV Quantile Confidence Method 

 

4.2.2.4. Latin Hypercube Sampling 

As detailed in Section 3.1.2, Latin hypercube sampling (LHS) is an extension of 

stratified sampling (Chapter 5 of [104]) in multiple dimensions, and it induces 

correlations among the outputs, which can reduce variance. It has been used frequenctly 

in nuclear engineering [40], although not presently for the calculation of 95/95 values in 

uncertainty analyses of LOCAs. Avramidis and Wilson [103] develop LHS quantile 
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estimators, but they do not develop CIs based on the estimators. Nakayama [101] shows 

how the general framework of [72] applies to a type of replicated LHS (rLHS), thus 

allowing the construction of an asymptotically valid CI for a quantile when using rLHS. 

Rather than generating a single LHS sample of size 𝑛, the basic idea of rLHS in 

[101] is to generate the 𝑛 = 𝑚𝑡 samples as 𝑚 independent LHS samples, each of size 𝑡. 

For each independent LHS sample 𝑘 = 1,2, … ,𝑚, let 𝑈𝑖,𝑗
(𝑘), for 1 ≤ 𝑖 ≤ 𝑡 and 1 ≤ 𝑗 ≤ 𝑑, be 

𝑡𝑑 i.i.d. 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0,1] random variables, which can be arranged as a 𝑡 × 𝑑 array  

𝑈1,1
(𝑘) 𝑈1,2

(𝑘) ⋯ 𝑈1,𝑑
(𝑘)

𝑈2,1
(𝑘) 𝑈2,2

(𝑘) ⋯ 𝑈2,𝑑
(𝑘)

⋮ ⋮ ⋱ ⋮
𝑈𝑡,1

(𝑘) 𝑈𝑡,2
(𝑘) ⋯ 𝑈𝑡,𝑑

(𝑘)

. 

Then let 𝜋𝑗
(𝑘) = (𝜋𝑗

(𝑘)(𝑖): 𝑖 = 1,2, … , 𝑡) for 1 ≤ 𝑗 ≤ 𝑑 and 1 ≤ 𝑘 ≤ 𝑚 be 𝑑𝑚 independent 

permutations of (1,2, … , 𝑡), which are also independent of the 𝑈𝑖,𝑗
(𝑘). Thus, 𝜋𝑗

(𝑘)(𝑖) is the 

value to which 𝑖 is mapped in the permutation 𝜋𝑗
(𝑘). Then define  

𝑉𝑖,𝑗
(𝑘) =

𝜋𝑗
(𝑘)(𝑖) − 1 + 𝑈𝑖,𝑗

(𝑘)

𝑡
    for    1 ≤ 𝑖 ≤ 𝑡    and    1 ≤ 𝑗 ≤ 𝑑. 

For each 1 ≤ 𝑘 ≤ 𝑚, arrange the 𝑉𝑖,𝑗
(𝑘) into a 𝑡 × 𝑑 array  

𝑉1,1
(𝑘) 𝑉1,2

(𝑘) ⋯ 𝑉1,𝑑
(𝑘)

𝑉2,1
(𝑘) 𝑉2,2

(𝑘) ⋯ 𝑉2,𝑑
(𝑘)

⋮ ⋮ ⋱ ⋮
𝑉𝑡,1

(𝑘) 𝑉𝑡,2
(𝑘) ⋯ 𝑉𝑡,𝑑

(𝑘)

. 

 

Eq. 78 

It is straightforward to show that each 𝑉𝑖,𝑗
(𝑘) has a 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0,1] distribution. Moreover, by 

the independence of the permutations 𝜋1
(𝑘),𝜋2

(𝑘), … ,𝜋𝑑
(𝑘), the columns of Eq. 78 are 

independent. Thus, defining  
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𝑌1
(𝑘) = 𝑔(𝑉1,1

(𝑘),𝑉1,2
(𝑘), … ,𝑉1,𝑑

(𝑘)),

𝑌2
(𝑘) = 𝑔(𝑉2,1

(𝑘),𝑉2,2
(𝑘), … ,𝑉2,𝑑

(𝑘)),
⋮

𝑌𝑡
(𝑘) = 𝑔(𝑉𝑡,1

(𝑘),𝑉𝑡,2
(𝑘), … ,𝑉𝑡,𝑑

(𝑘)),

 

 

Eq. 79 

and each 𝑌𝑖
(𝑘) has CDF 𝐹 by Eq. 44. But the rows in Eq. 78 are dependent because all of 

the entries in column 𝑗 depend on the same permutation 𝜋𝑗
(𝑘), so 𝑌1

(𝑘),𝑌2
(𝑘), … ,𝑌𝑡

(𝑘) are 

dependent. Let 𝑌1
(𝑘),𝑌2

(𝑘), … ,𝑌𝑡
(𝑘) be an LHS case of run size 𝑡. Now replicating this 

procedure 𝑚 independent times leads to 

𝑌1
(1) 𝑌1

(2) ⋯ 𝑌1
(𝑚)

𝑌2
(1) 𝑌2

(2) ⋯ 𝑌2
(𝑚)

⋮ ⋮ ⋱ ⋮
𝑌𝑡

(1) 𝑌𝑡
(2) ⋯ 𝑌𝑡

(𝑚)

, 

 

Eq. 80 

where each column in Eq. 80 corresponds to one LHS case of run size 𝑡, as in Eq. 79. The 

columns in Eq. 80 are independent since the 𝑚 LHS cases are generated independently, 

but the entries within a column are dependent since they are generated using LHS. The 

𝑛 = 𝑚𝑡 values in Eq. 80 are an rLHS sample with 𝑚 cases, each with run size 𝑡. 

The rLHS estimator of the CDF 𝐹 is then  

𝐹�𝑚,𝑡(𝑦) =
1
𝑚𝑡

�  
𝑚

𝑘=1

�  
𝑡

𝑖=1

𝐼(𝑌𝑖
(𝑘) ≤ 𝑦), 

 

Eq. 81 

and the rLHS 𝑝-quantile estimator is 𝜉𝑝,𝑚,𝑡 = 𝐹�𝑚,𝑡
−1 (𝑝). Nakayama [101] proves that if 

𝑓(𝜉𝑝) > 0, then the following Bahadur representation holds:  

𝜉𝑝𝑚,𝑚,𝑡 = 𝜉�̇�𝑚 +
𝑝 − 𝐹�𝑚,𝑡(𝜉𝑝)

𝑓(𝜉𝑝)
+ 𝑅𝑚,𝑡    𝑤𝑖𝑡ℎ   √𝑚𝑅𝑚,𝑡 ⇒ 0   𝑎𝑠   𝑚 → ∞    with 𝑡 �ixed, 

 

Eq. 82 

where 𝜉�̇�𝑚 = 𝜉𝑝 + (𝑝𝑚 − 𝑝)/𝑓(𝜉𝑝) when 𝑝𝑚 = 𝑝 + 𝑂(1/√𝑚). If in addition 𝑓 is continuous 

is a neighborhood of 𝜉𝑝, then Eq. 82 holds with 𝜉�̇�𝑚 = 𝐹−1(𝑝𝑚) for all 𝑝𝑚 → 𝑝 as 𝑚 → ∞ 
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(these results are established in [101] by proving that Assumptions A1, A3 and the 

stronger version of A2 from [72] hold for LHS). It then follows that 𝜉𝑝,𝑚,𝑡 satisfies the 

CLT 

√𝑚
𝜅𝑝

�𝜉𝑝,𝑚,𝑡 − 𝜉𝑝� ⇒ 𝑁(0,1)   𝑎𝑠    𝑚 → ∞    with 𝑡 �ixed, 

 

Eq. 83 

where 𝜅𝑝 has the form in Eq. 67. To construct a CI for 𝜉𝑝 based on Eq. 83, an estimator 

for 𝜅𝑝 = 𝜓𝑝𝜆𝑝 must be developed. 

As before, the Bahadur representation in Eq. 82 allows a consistent estimator for 𝜆𝑝 

to be developed, which is needed to construct a CI for 𝜉𝑝 based on the CLT in Eq. 83. If 

𝑓(𝜉𝑝) > 0, then  

�̃�𝑝,𝑚,𝑡 =
𝐹�𝑚,𝑡
−1 (𝑝 + ℎ𝑚) − 𝐹�𝑚,𝑡

−1 (𝑝 − ℎ𝑚)
2ℎ𝑚

 

 

Eq. 84 

satisfies �̃�𝑝,𝑚,𝑡 ⇒ 𝜆𝑝 as 𝑚 → ∞ with 𝑡 fixed when ℎ𝑚 = 𝑐/√𝑚 for any constant 𝑐 > 0. If 𝑓 

is also continuous in a neighborhood of 𝜉𝑝, then �̃�𝑝,𝑚,𝑡 ⇒ 𝜆𝑝 as 𝑚 → ∞ for fixed 𝑡 for any 

ℎ𝑚 ≠ 0 satisfying ℎ𝑚 → 0 and √𝑚ℎ𝑚 → 𝑏 for some 𝑏 ∈ (0,∞] as 𝑚 → ∞. 

To derive an expression for 𝜓𝑝2 in Eq. 68, note that 𝐹�𝑚,𝑡(𝑦) = 1
𝑚
∑  𝑚
𝑘=1 𝑊(𝑘)(𝑦), where  

𝑊(𝑘)(𝑦) =
1
𝑡
�  
𝑡

𝑖=1

𝐼(𝑌𝑖
(𝑘) ≤ 𝑦). 

Now 𝑊(1)(𝜉𝑝),𝑊(2)(𝜉𝑝), … ,𝑊(𝑚)(𝜉𝑝) are i.i.d. with finite variance since 0 ≤ 𝑊(𝑘)(𝜉𝑝) ≤

1. Thus, 𝐹�𝑚,𝑡(𝜉𝑝) satisfies the CLT in Eq. 68 with  

𝜓𝑝2 = 𝑉𝑎𝑟[𝑊(𝑘)(𝜉𝑝)]. 

Nakayama [101] develops  
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𝜓�𝑝,𝑚,𝑡
2 =

1
𝑚 − 1

�  
𝑚

𝑘=1

[𝑊(𝑘)(𝜉𝑝,𝑚,𝑡) −𝑊�𝑚]2 

 as a consistent estimator (as 𝑚 → ∞ with 𝑡 fixed) of 𝜓𝑝2, where  

𝑊�𝑚 =
1
𝑚
�  
𝑚

𝑘=1

𝑊(𝑘)(𝜉𝑝,𝑚,𝑡). 

Substituting 𝜉𝑝,𝑚,𝑡, �̃�𝑝,𝑚,𝑡, and 𝜓�𝑝,𝑚,𝑡 for 𝜉𝑝,𝑛, �̃�𝑝,𝑛, and 𝜓�𝑝,𝑛, respectively, in Eq. 72 and 

Eq. 73 then result in asymptotically valid two-sided and one-sided 100(1 − 𝛼)% CIs for 

𝜉𝑝 when applying rLHS. 

Constructing the CIs requires inverting the rLHS CDF estimator in Eq. 81, which 

can be done as follows. Define 𝐵(𝑘−1)𝑚+𝑖 = 𝑌𝑖
(𝑘) for 𝑖 = 1,2, … , 𝑡, and 𝑘 = 1,2, … ,𝑚. Let 

𝐵(1) ≤ 𝐵(2) ≤ ⋯ ≤ 𝐵(𝑚𝑡) be the order statistics of the 𝐵𝑗, 𝑗 = 1,2, … ,𝑚𝑡. Then for any 

0 < 𝑞 < 1, then the q-quantile value is 𝐹�𝑚,𝑡
−1 (𝑞) = 𝐵( 𝑚𝑡𝑞 ). 

This technique can be implemented in a computer code using Figure 4. 11. Once 

again,  Y_tot is the ordered results from all m cases, which is used to find the quantile 

estimation  Xi. Then the CFD is calculated using all 𝑛 = 𝑚𝑡 samples. Next, the 

individual values of W for each case are found using MATLAB’s built-in indicator 

function, and the ordered results from each LHS case, which are called y. The mean of 

these values for W is used to find 𝑊�𝑚, called W_bar. This is used in the calculation of 

𝜓�𝑝,𝑚,𝑡, called psi. This is than used to calculate the addition confidence term which is 

added to the quantile estimation to result in a one-side CI. 
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%%% rLHS  
    Xi=Y_tot(ceil(p*m*t));           % Quantile Estimation 
    CFDhigh=Y_tot(ceil((p+hm)*m*t)); % CFD High Point 
    CFDlow=Y_tot(ceil((p-hm)*m*t));  % CFD Low Point 
    CFD=(CFDhigh-CFDlow)/((ceil((p+hm)*m*t)-ceil((p-hm)*m*t))/(m*t));  %CFD 
    for num=1:m                      % Loop through Cases 
        Wmk(num)=mean(y(num,:)<=Xi); % Indicator Function Summation for W  
    end 
    W_bar=mean(Wmk);                 % W_bar Calculation  
    psi=sqrt((1/(m-1))*sum((W_bar-Wm).^2));  % Psi calculation 
    add_on=NN*((psi*CFD)/sqrt(m));   % Confidence Term 
    Xi_w_conf=Xi+add_on;             % Quantile Estimation plus Confidence 
 

Figure 4. 11: MATLAB Code Implementation of LHS Quantile Confidence Method 

 

There is a tradeoff between the amount of variance reduction from rLHS and the rate 

of the convergence of the confidence interval's coverage. If an analyst takes many cases 

of a small run size, meaning large 𝑚 but small 𝑡, then the asymptotics will converge more 

quickly, since the large 𝑚 will help satisfy the CLT in Eq. 83. But the small run sizes will 

not reduce the quantile estimator's variance by as much as large run sizes would. As the 

run size 𝑡 increases, the quantile estimator will have lower variance, but to remain at the 

same number 𝑛 of total runs, the number 𝑚 of cases must be reduced, and the coverage 

can suffer. 

4.2.2.5. Derivative Estimation and Bandwidth 

Section 4.2.2.1-4.2.2.4 considered central finite-difference (CFD) estimators Eq. 55, 

Eq. 69, and Eq. 84 to estimate the derivative 𝜆𝑝 in Eq. 53. This method of derivative 

estimation is very similar to the brute force method of sensitivity analysis described in 

Section 2.3.2.1. Implementing these estimators in practice requires the user to specify the 

bandwidth ℎ𝑛 (or ℎ𝑚), and the particular choice for ℎ𝑛 can have a large impact on the 
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quality of the estimators. Previous work with asymptotic CMC provides some guidance 

on the choice for ℎ𝑛. For example, [98] and [99] show that under certain conditions, 

taking ℎ𝑛 = 𝑐1𝑛−1/5 for some constant 𝑐1 asymptotically minimizes the mean-square error 

of the CFD estimator of 𝜆𝑝. Also, the coverage error of CIs can be asymptotically 

minimized by taking ℎ𝑛 = 𝑐2𝑛−1/3 for some constant 𝑐2; see [105]. The values of 𝑐1 and 

𝑐2 depend on the CDF 𝐹 and 𝑝, and these papers provide data-based methods for 

estimating 𝑐1 and 𝑐2. 

The CFD estimators in Eq. 55, Eq. 69, and Eq. 84 are each symmetric in the sense 

that the inverse of the estimated CDF is evaluated at perturbed values that are symmetric 

about 𝑝. However, the symmetric CFD estimator often overestimates 𝜆𝑝 when 𝑝 ≈ 1, as 

in the case of the 0.95-quantile. To see why, suppose that the CDF 𝐹(𝑦) has a density 

𝑓(𝑦) that is differentiable and strictly decreasing for all 𝑦 sufficiently large (this is true 

for many common distributions, including the normal, lognormal, gamma and Weibull). 

Thus, the density's derivative 𝑓′(𝑦) < 0 for all sufficiently large 𝑦. Then defining 

𝑄(𝑝) = 𝐹−1(𝑝) as the quantile function, its first derivative 𝑄′(𝑝) = 𝜆𝑝 = 1/𝑓(𝜉𝑝) > 0 and 

its second derivative 𝑄′′(𝑝) = −𝑓′(𝜉𝑝)/𝑓3(𝜉𝑝) > 0 for 𝑝 ≈ 1. Hence, as shown in Figure 4. 

12, 𝑄(𝑝) is increasing and convex for 𝑝 ≈ 1. This leads to the symmetric CFD typically 

overestimating 𝜆𝑝 because 𝑄(𝑝), whose derivative 𝑄′(𝑝) = 𝜆𝑝 is being estimated with the 

finite difference, has slope that is increasing as 𝑝 increases. Similarly, a backward finite-

difference (BFD) estimator such as [𝐹�𝑛−1(𝑝) − 𝐹�𝑛−1(𝑝 − ℎ𝑛)]/ℎ𝑛 will often underestimate 

𝜆𝑝, as shown in Figure 4. 13. 
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Figure 4. 12: Overprediction of Derivative using CFD 

 

 
Figure 4. 13: Underprediction of Derivative using BFD 
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This suggests that it may be more accurate to estimate 𝜆𝑝 by using an asymmetric 

CFD estimator [𝐹�𝑛−1(𝑝 + ℎ𝑛) − 𝐹�𝑛−1(𝑝 − ℎ𝑛′ )]/(ℎ𝑛 + ℎ𝑛′ ), where ℎ𝑛′ ≠ ℎ𝑛. Figure 4. 12 

shows that choosing ℎ𝑛′ > ℎ𝑛 > 0 may be beneficial because the slope of 𝑄(𝑝) increases 

as 𝑝 grows. Experiments were carried out using these asymmetric CFD esimators, and 

more detail is available in Appendix C (other estimators of 𝜆𝑝 are also possible; for 

example, Falk [106] develops a kernel estimator of 𝜆𝑝 for CMC, and Nakayama [107] 

considers another type of kernel estimator when using importance sampling). 

4.3 Experiments 

 Nakayama demonstrated the method for estimating the confidence interval in Eq. 

72 and Eq. 73 on a small stochastic activity network (SAN) [72], [101]. However, since 

the present work focuses on the use of these methods in nuclear safety analysis, the 

systems detailed in Section 3.2 were used to compare the techniques detailed in Section 

4.2 since they would more closely mimic common safety analysis situations. This 

included starting with the simple nonlinear equation (Section 4.3.1), moving to a 

response-surface surrogate for the thermal-hydraulic computer code RELAP5 (Section 

4.3.2), conducting a PRA involving the comparison of beyond-design-basis accidents to a 

risk limit curve (Section 4.3.3), and finally, using a large severe-accident analysis 

computer code (Section 4.3.4). The results presented here will focus on the comparison 

between CMC-OS and the asymptotic methods using a symmetric CFD for the derivative 

estimator. More information on the experiments with an asymmetric CFD can be found in 

Appendix C. 
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4.3.1. Nonlinear Equation 

 First, the nonlinear equation detailed in Section 3.2.2 was used to compare the 

methods of establishing confidence intervals for quantiles. This included using only 

normally distributed inputs, then non-normal inputs.  

4.3.1.1. Normal Inputs 

 As in Section 3.2.2, a large CMC experiment with 108 runs was conducted in 

order to estimate the true 0.75- and 0.95-quantile of the system. The 0.95-quantile was 

chosen in order to see how these methods would perform when trying to satisfy the 95/95 

criterion. The 0.75-quantile was chosen in order to test the applicability to possible 

future, less stringent, requirements, such as a 95/75. The result was a 0.95-quantile of 

40.6457, which would be considered the “true” 0.95-quantile, and a “true” 0.75-quantile 

of 29.3887.  

 These quantiles were found in order for the distance between the calculated 95/95 

and 95/75 values and the “true” quantiles to be found. This distance would be considered 

a measurement of the accuracy of the 95/95 and 95/75 values. It is important to point out 

that poor accuracy, as defined here, does not mean that the 95/95 or 95/75 values are not 

valid, but that significant overestimation of the quantiles is not desired and could 

potentially lead to Type-II errors, or incorrect safety analysis decisions. Figure 4. 14 

shows the output distribution of the system for a 105-run CMC trial, which is shown 

simply to give the reader an idea of the range of possible outputs. The output is fairly 

compact at lower levels, but does have a long tail at higher values, meaning the higher 

quantiles are separated by a larger margin than the low quantiles. 
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Figure 4. 14: Histogram of 105 Run CMC Trial 

 

 Each method to calculate a 95/95 and 95/75 value was repeated for 104 trials. 

Here, a trial is a complete experiment that would be undertaken during a safety analysis. 

For example, one CMC-OS trial may consist of 59 computer code runs to find a single 

95/95 value. For each method, 104 trials were conducted so that the spread of possible 

95/95 and 95/75 values could be found. This gives information about the precision of 

each method. Once again, poor precision does not mean that the 95/95 or 95/75 values 

are invalid, but a technique that provides these values over a large range is undesirable, 

especially if decisions are to be made about the system based on the results.  

 Each method was tested at several different total run levels. These run levels are 

based off the results for n in Eq. 43 for CMC-OS. They start with the lowest possible run 
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level using CMC-OS (𝑟 = 1), and increase from there. For rLHS, several representative 

values were chosen for the run size t for which 𝑚𝑡 ≈ 𝑛. This gives information about the 

tradeoff between the size of m and t as described at the end of Section 4.2.2.4.  

 As described in Section 4.2.2.5, the derivative 𝜆𝑝 in Eq. 53 is estimated using a 

CFD estimator, and determining the proper bandwidth ℎ𝑚 is not trivial. Small changes in 

the bandwidth parameters c and v in ℎ𝑚 = 𝑐𝑛−𝑣 can greatly impact the calculation of the 

CI. Also, while there has some been some guidance provided on the selection of these 

parameters when using the CFD to establish asymptotic CIs during a CMC simulation, 

there is less direction when using VRTs since asymptotic CIs have only recently been 

proven. Nakayama [101] provides some insight into the selection of v from the SAN 

example, which appeared to show 𝑣 = 1/2 was more efficient for estimating quantiles 

close to 1. So for the experiments presented here, 𝑣 = 1/2 was used for all run levels. 

Small experiments were conducted with v set to other values, but the results are not 

presented here. 

 Table 4. 3 notes the values chosen for the constant c. For each run level, 

asymptotic CMC, AV, and rLHS all used the same values for c and v. It is unlikely that 

there is one set of optimal values for all three simulation methods, but the values were 

kept constant so that a consistent comparison could be made between the methods. The 

value for c is smaller at lower run levels to ensure that in the CFD in Eq. 55, the inverse 

of the CDF estimator is evaluated at a point strictly less than 1. As the number of runs 

increases, the value for c can grow without resulting in a value of the inverse CDF 

estimator exceeding 1. Different values for c were used depending whether the 0.75- or 
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0.95-quantile was being estimated. Since the 0.75-quantile is further from the top value of 

the inverse CDF at 1, a wider bandwidth could be used. At low run levels, the selected 

value for c can cause completely different qualitative results. This is due to the 

coarseness of the estimated CDF, since it is constructed with relatively few samples. So a 

small change in the value of c can mean the values selected from the inverse CDF for the 

CFD estimator could differ by a wide margin. As the number of runs grows large (>

500), the selection of c becomes less impactful (although not trivial) since the estimated 

CDF is more developed. While both c and v could have been picked individually for each 

system tested, the goal is to determine values which are applicable to many systems, and 

that are not problem-specific. 

 

Table 4. 3: Values for c in Bandwidth ℎ𝑚 (or ℎ𝑛) = 𝑐𝑛−𝑣 for Varying Run Sizes n 

n c  p 
59 0.3 

0.95 

93 0.3 
124 0.4 
311 0.5 
548 0.5 
1008 0.5 
  2004 0.5 
   11 0.8 

0.75 

29 0.8 
40 1.0 
135 1.25 
246 1.25 
459 1.75 
886 1.75 
   
    

For each experiment, a detailed look at particular scenarios is presented first, followed by 

the complete numerical results.  
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 As stated, the first run level conducted was based on the lowest value for which a 

95/95 value could be found using CMC-OS. Figure 4. 15 shows a comparison of the 

histograms of the 104 95/95 values for CMC-OS at 59 runs and rLHS at 60 runs (m=6, 

t=10). The numerical results are in Table 4. 4. It is important to note that these are not 

histograms of the output distribution of the system, but rather for the 95/95 values for 104 

complete trials. This means that 59 CMC-OS runs were conducted for each trial, and each 

trial resulted in one 95/95 value. As these results show, the rLHS method was not only 

more accurate, with a mean of 50.23 compared to a mean of 57.79 using CMC-OS, but 

also more precise, with about half the standard deviation. Both methods had ~5% of trials 

fall below the “true” quantile (called % Below “true” in Table 4. 4), which is to be 

expected with a 95% confidence interval. These results mean that the rLHS method is 

less likely to cause both Type-I and Type-II testing errors. 
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Figure 4. 15: Comparison of 95/95 Value Histograms for 104 Trials – 59 Runs 

 

Table 4. 4: Comparison of 95/95 Values for 104 Trials – 59 Runs 

  6x10 rLHS 59 CMC-OS 
Mean of 104 95/95 Values 50.23 57.79 
S.D. of 104 95/95 Values 8.56 16.52 

% Below “true” 5.40% 5.10% 
    

 

 Figure 4. 16 and Table 4. 5 show the same results, but now for 124-run CMC-OS 

trials and 120-run rLHS trials (m=12, t=10). The scale on Figure 4. 16 is kept the same as 

in Figure 4. 15 to show the reduction in variance that naturally occurs with increased run 

size. The trend of rLHS being both more accurate and more precise continues at this 

higher run level. 
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Figure 4. 16: Comparison of 95/95 Value Histograms for 104 Trials – 124 Runs  

 

Table 4. 5: Comparison of 95/95 Values for 104 Trials – 124 Runs 

 12x10 rLHS  124 CMC-OS  
Mean of 104 95/95 Values 46.38 48.80 
S.D. of 104 95/95 Values 4.06 6.14 

% Below “true” 4.15% 4.90% 
 

 

 Before viewing the complete numerical results, there are several important points 

to note; the first being the number of runs conducted. Since the number n of runs 

conducted was based on levels for CMC-OS, it may not have been possible for AV 

(which needs an even number of runs) and rLHS (which used several different values for 

t in this work) to achieve that exact number. Therefore, run values for AV and rLHS were 

chosen as close as possible. For rLHS, this was done by dividing the number of runs 
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necessary for CMC-OS by the number chosen for t, then taking the closest whole number 

for the value for m. For example, if 59 CMC-OS runs were conducted and for rLHS 

𝑡 = 10, 59/10 = 5.9, so 𝑚 = 6 resulting in 60 total runs. Once again, representative 

values were chosen for t, but these are not the only options. Certain run levels were not 

conducted for some sizes of t, since the value for m would have been equal to two, and 

too low to properly satisfy the CLT. That is why there are several blank areas on the 

tables at low run levels. An exception was made at the lowest run level when finding a 

95/75 (𝑛 = 11) to provide a comparison to CMC-OS, as will be seen. 

 Next, five metrics are provided for the numerical results of the asymptotic CMC, 

AV, and rLHS methods. These include:  

1. The mean of the 95/95 or 95/75 values over all trials  
2. The standard deviation of the 95/95 or 95/75 values over all trials 
3. The percent of trials that fell below the “true” quantile (this is expected to be 

~5%) 
4. The coverage, or the percent of trials where the “true” quantile falls within the 

constructed 90% two-sided confidence interval for 𝜉𝑝 (this confidence interval 
is defined in Eq. 54 for CMC, and Eq. 72 for AV and rLHS). Its expected 
value is ~90%. 

5. The average value for the derivative estimator �̂�𝑝 or �̃�𝑝 over all trials 

Only the first three values are given for CMC-OS since no derivative estimation is 

necessary, and only a one-sided CI was found (although two-sided CIs are also possible).  

 Lastly, all tables include a comparison between asymptotic CMC, AV, and rLHS 

using a central finite-difference estimator for the derivative 𝜆𝑝 and an exact value for 𝜆𝑝, 

which was calculated numerically using a CFD and a large-run CMC trial. This is 

presented in order to measure the effect of having to estimate the derivative 𝜆𝑝. 
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 The complete results for the experiment with the nonlinear equation using normal 

inputs, when calculating 95/95 values, can be found in Table 4. 6. 

 

Table 4. 6: 95/95 Results 104 Trials – Nonlinear Eq. Normal Inputs 

 
CFD for 𝝀𝒑 Exact 𝝀𝒑 

n CMC-
OS CMC AV rLHS CMC AV rLHS 

t=10 t=20 t=30 t=10 t=20 t=30 

59 

57.79 54.28 52.23 50.23 48.56   49.60 47.22 45.99 44.80 Mean* 
16.52 11.88 10.82 8.56 7.43   5.33 4.01 3.16 3.05 S.D. * 
5.10 5.36 7.75 5.40 5.40   0.95 1.67 2.25 6.41 % Below 

 90.31 91.18 93.31 93.53   85.69 95.00 93.34 90.68 Covg. 
  256.76 260.75 269.15 277.06   156.60 156.60 156.60 156.60 Avg. 𝝀�𝒑 

93 

50.96 49.03 49.83 47.51 45.56 45.92 46.86 47.42 45.83 44.18 44.53 
8.45 6.69 6.84 5.10 4.32 3.92 3.74 3.68 2.89 2.65 2.63 
5.48 6.59 4.63 4.58 8.51 4.63 2.07 1.06 1.25 8.22 5.65 

 90.27 92.57 92.16 88.95 89.40 89.69 91.39 89.89 87.44 84.72 
  215.05 218.02 213.45 213.03 218.92 156.60 156.60 156.60 156.60 156.60 

124 

48.80 48.03 48.06 46.38 45.26 45.09 45.47 45.48 44.39 43.61 43.44 
6.14 5.39 5.45 4.06 3.38 3.33 3.03 2.99 2.24 2.11 2.15 
4.90 5.07 4.86 4.15 5.17 5.35 3.81 2.97 2.90 7.79 9.55 

 93.52 94.03 94.64 92.35 92.18 90.71 92.04 92.67 86.37 85.30 
  236.28 236.08 233.71 236.20 238.26 156.60 156.60 156.60 156.60 156.60 

311 

44.77 44.57 44.58 43.76 42.91 42.92 43.91 43.89 43.23 42.55 42.51 
2.78 2.59 2.56 1.95 1.47 1.44 1.97 1.94 1.50 1.24 1.26 
4.88 4.76 4.45 3.63 5.37 4.81 3.40 3.08 2.58 5.80 6.72 

 92.56 93.28 93.48 91.69 91.97 89.98 90.45 89.99 88.76 87.96 
  189.40 190.79 190.81 186.29 189.13 156.60 156.60 156.60 156.60 156.60 

548 

43.45 43.28 43.26 42.77 42.31 42.23 43.04 43.02 42.56 42.14 42.07 
1.89 1.82 1.76 1.34 1.08 1.02 1.49 1.43 1.10 0.95 0.93 
5.62 6.02 5.73 4.30 5.34 5.40 4.36 3.98 3.17 5.26 6.03 

 90.84 91.58 92.20 91.45 91.07 89.47 90.18 89.82 89.33 88.87 
  172.86 173.02 174.75 175.02 173.91 156.60 156.60 156.60 156.60 156.60 

1008 

42.62 42.49 42.49 42.11 41.83 41.76 42.39 42.39 42.03 41.77 41.71 
1.27 1.26 1.22 0.95 0.77 0.73 1.08 1.04 0.82 0.70 0.67 
5.54 6.33 5.64 5.39 5.89 5.58 4.76 4.13 3.66 5.07 5.44 

 90.19 91.12 90.67 90.18 90.35 89.75 90.75 89.89 89.35 89.29 
  165.09 165.03 165.82 165.59 165.29 156.60 156.60 156.60 156.60 156.60 

2004 

42.03 41.93 41.91 41.62 41.48 41.49 41.89 41.87 41.59 41.45 41.46 
0.87 0.87 0.84 0.66 0.54 0.52 0.77 0.75 0.58 0.50 0.48 
4.95 6.36 6.05 6.15 5.75 4.60 5.08 4.44 4.69 4.98 4.31 

 89.65 90.09 89.75 89.76 90.16 89.37 90.47 89.65 89.27 89.17 
  161.98 162.28 161.92 162.65 161.87 156.60 156.60 156.60 156.60 156.60 

* Mean and S.D. of the 104 95/95 Values 

 

 As the table shows, CMC-OS and asymptotic CMC converge to approximately 

the same solution as the number of runs grows large. This is to be expected, as the 

comment in Section 4.2.2.1 explains the relation between the two methods. Using an 
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exact value for 𝜆𝑝 at the lowest run level, asymptotic CMC has fairly poor coverage. This 

may seem odd since the only part of the formula left to estimate is the quantile. However, 

at this low run level, the quantile estimator may not have converged. This is compounded 

with the use of the round-up function, which has a larger impact at low run levels. So the 

coverage appears poor. When using asymptotic CMC with an estimated 𝜆𝑝 at this run 

level, the derivative is overestimated; this causes the CI to increase in size, so the effects 

of the poor quantile estimation are not as obvious.  

 The complete table of results also shows the tradeoff between run size and case 

number when using rLHS. The more cases, the quicker the convergence, since it is the 

number of cases which satisfies the CLT. However, the larger the run size, the more 

variance reduction will be seen when compared to CMC. As the table shows, the results 

when 𝑡 = 10 tend to converge the fastest, but the accuracy and precision of the result 

improves when using 𝑡 = 20 and 𝑡 = 30. Lastly, AV does show variance reduction when 

compared to CMC and CMC-OS, but not to the extent of rLHS. 

 The following figures and tables show the comparisons when finding a 95/75 

value. The lowest run level possible for CMC-OS is 11 runs. Figure 4. 17 and Table 4. 7 

show the results for 11-run CMC-OS trials and 10-run rLHS trials (m=2, t=5). 
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Figure 4. 17: Comparison of 95/75 Value Histograms for 104 Trials – 11 Runs 

 

Table 4. 7: Comparison of 95/75 Values for 104 Trials – 11 Runs 

  2x5 rLHS  11 CMC-OS  
Mean of 104 95/75 Values 35.88 42.08 
S.D. of 104 95/75 Values 4.63 12.02 

% Below “true” 0.93% 4.22% 
 

 

As to be expected, the variance of the resulting CMC-OS 95/75 is very large due to how 

few CMC runs are being conducted. While the rLHS method is much more accurate and 

precise, less than 1% of the runs fell below the “true” 0.75-quantile. This might seem like 

a positive at first, but it is a sign that the method has not converged to the proper 

coverage level. This is not surprising since the number of cases 𝑚 = 2, and large m is 
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needed for the CLT to hold. More cases are necessary for the coverage of the rLHS 

method to converge.  

 Due to the high variance at 11 runs, it is likely the analyst would perform more 

runs to find a 95/75 value. Figure 4. 18 and Table 4. 8 show the results for 40-run CMC-

OS trials and 40-run rLHS trials (m=8, t=5). Once again, the rLHS method outperforms 

the CMC-OS method. However, with m now equal to 8, the rLHS has ~4% of trials 

falling below the “true” quantile and is closer to convergence. Varying the values for c 

and v in the derivative estimator for rLHS may also improve convergence, but this would 

not be known in a real analysis since only one trial is conducted.  

 

 
Figure 4. 18: Comparison of 95/75 Value Histograms for 104 Trials – 40 Runs 
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Table 4. 8: Comparison of 95/75 Values for 104 Trials – 40 Runs 

 8x5 rLHS  40 CMC-OS  
Mean of 104 95/75 Values 31.48 33.47 
S.D. of 104 95/75 Values 1.33 2.74 

% Below “true” 3.91% 4.23% 
 

 

 The complete numerical results for the 95/75 values can be found in Table 4. 9. 

As the table shows, the rLHS method has not converged at the 𝑛 = 11 run level, since 

only two LHS cases are conducted. However, by the 𝑛 = 29 run level, the rLHS method 

at 𝑡 = 5 has ~5% of trials below the true quantile, and the coverage is almost 90%. So 

convergence appears to occur quickly. The coverage appears worse at the 𝑛 = 40 level 

for rLHS, but this is probably a result of the change in the bandwidth values at that level. 

A look at the average value for �̃�𝑝 shows that the derivative estimation actually got worse 

at this level (from 30.48 to 32.93, with an actual value of 25.43). As the rest of the results 

show, this was the only run level, other than 𝑛 = 11, in which the coverage was not 

approximately equal to 90%. Other results to note from the table are that AV once again 

reduces variance when compared to CMC-OS and asymptotic CMC, but not to the extent 

of rLHS. Also, asymptotic CMC shows less conservatism than CMC-OS at low run 

levels, but they converge to approximately the same values at high run levels, which is to 

be expected. Lastly, the tradeoff between run size and the number of cases when using 

rLHS continues to be present, as 𝑡 = 5 converges faster, but 𝑡 = 10 and 𝑡 = 15 provide a 

greater variance reduction.  
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Table 4. 9: 95/75 Results 104 Trials – Nonlinear Eq. Normal Inputs 

 
CFD for 𝝀𝒑 Exact 𝝀𝒑 

n CMC-
OS CMC AV rLHS CMC AV rLHS 

t=5 t=10 t=15 t=5 t=10 t=15 

11 

42.08 38.22 37.76 35.88     35.79 34.46 33.05   Mean* 
12.02 7.44 7.10 4.63   3.71 2.42 2.04  S.D.* 
4.22 5.38 3.68 0.93   0.95 0.01 1.64  % Below 

 90.05 95.71 94.96   87.77 97.34 86.09  Covg. 
  36.97 40.69 49.54     25.43 25.43 25.43   Avg. 𝝀�𝒑 

29 

34.44 33.65 33.48 31.94 31.65   32.62 32.94 31.57 31.38   
3.54 3.07 2.77 1.67 1.59  2.01 1.71 1.34 1.40  4.37 5.45 3.63 4.51 5.77  3.56 0.19 4.54 6.76  
 92.47 94.76 90.44 85.66  91.20 94.76 87.44 82.29    33.22 29.51 30.48 29.59   25.43 25.43 25.43 25.43   

40 

33.47 32.75 32.78 31.48 31.23 30.95 32.02 32.06 30.97 30.79 30.66 
2.74 2.37 2.16 1.33 1.33 1.45 1.70 1.40 1.09 1.15 1.27 
4.23 5.62 3.05 3.91 7.10 14.96 4.41 0.74 6.96 11.16 16.19 

 92.79 96.24 94.09 89.18 72.13 91.28 96.12 88.92 83.35 69.98 
  31.92 31.90 32.93 32.35 31.20 25.43 25.43 25.43 25.43 25.43 

135 

31.21 31.13 30.98 30.51 30.29 30.40 31.01 30.85 30.44 30.22 30.34 
1.17 1.13 0.94 0.65 0.59 0.61 0.96 0.76 0.61 0.56 0.58 
4.97 5.10 3.07 3.59 5.90 4.25 3.57 1.53 3.55 6.65 4.71 

 90.71 95.57 90.57 90.04 88.47 89.80 95.50 88.79 88.20 86.43 
  27.37 27.52 27.60 27.53 27.39 25.43 25.43 25.43 25.43 25.43 

246 

30.66 30.61 30.60 30.14 30.10 30.05 30.56 30.54 30.11 30.08 30.02 
0.81 0.79 0.68 0.47 0.44 0.45 0.70 0.57 0.44 0.42 0.43 
5.16 5.17 2.65 4.98 4.98 6.39 3.88 1.40 4.88 5.02 6.83 

 90.89 95.53 90.50 89.63 89.25 89.98 95.25 89.48 88.61 88.13 
  26.63 26.65 26.73 26.57 26.72 25.43 25.43 25.43 25.43 25.43 

459 

30.24 30.29 30.24 29.97 29.89 29.89 30.25 30.20 29.94 29.87 29.87 
0.57 0.57 0.47 0.34 0.31 0.31 0.52 0.42 0.32 0.30 0.30 
6.18 5.08 2.83 3.99 5.11 4.87 4.15 1.95 3.91 5.65 5.35 

 91.05 95.72 91.34 91.15 90.73 89.99 95.37 90.08 89.66 89.11 
  26.62 26.66 26.72 26.70 26.68 25.43 25.43 25.43 25.43 25.43 

886 

30.03 30.02 30.01 29.78 29.76 29.75 30.00 29.99 29.77 29.75 29.74 
0.39 0.39 0.33 0.24 0.22 0.22 0.37 0.30 0.23 0.22 0.22 
4.83 5.19 2.51 4.71 4.78 4.85 4.37 1.78 4.57 4.62 4.74 

 90.50 95.61 91.00 90.42 90.24 90.11 95.41 90.58 89.98 89.57 
  26.05 26.02 25.99 26.01 26.07 25.43 25.43 25.43 25.43 25.43 

* Mean and S.D. of the 104 95/75 Values 

 

4.3.1.2. Non-Normal Inputs 

 Next, the nonlinear equation experiment was repeated, but with the non-normal 

inputs described in Section 3.2.2. As before, a 108-run CMC experiment was conducted 

in order to determine the “true” quantiles. Here, the 0.95-quantile was found to be 

106.727, and the 0.75-quantile was 34.216. Figure 4. 19 shows the output distribution for 
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a 105-run CMC trial. Once again, this is done to give the reader an idea of the output 

distribution shape. Compared to the previous example in Section 4.3.1.1, this output has a 

fatter right tail, which results in the 0.75- and 0.95-quantiles being much further apart. 

 

 
Figure 4. 19: Histogram of 105 Run CMC Trial 

 

 The same procedure as the previous example was followed, starting with a 

comparison between 104 trials of 59 CMC-OS runs and 60 rLHS runs (m=6, t=10). 

Figure 4. 20 and Table 4. 10 have these results. The trend continues with rLHS being 

more precise and accurate. However, at this level over 6% of rLHS trials fell below the 

“true” quantile. This could again be a sign that the asymptotics have not converged yet 

for proper coverage, or that the values for c and v are not appropriate. Nevertheless, even 

though the rLHS has a greater percentage of 95/95 values fall below the “true” quantile, 
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these values still do not fall as low as values when using CMC-OS. As mentioned in 

Section 4.1.2.2, the probability of committing a Type-I error is not only dependent on the 

percentage of trials that fall below the true quantile, but on the distance from those trials 

to the true quantile. So even though the rLHS method at this run level may not have 

converged to the proper coverage level, it is not possible to say whether the rLHS method 

would be more likely to experience a Type-I error than CMC-OS without knowing the 

placement of the limit value.  

 

 
Figure 4. 20: Comparison of 95/95 Value Histograms for 104 Trials – 59 Runs 

 

Table 4. 10: Comparison of 95/95 Values for 104 Trials – 59 Runs 

 6x10 rLHS 59 CMC-OS 
Mean of 104 95/95 Values 133.68 153.12 
S.D. of 104 95/95 Values 19.90 31.63 

% Below “true” 6.64% 4.82% 
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 Figure 4. 21 and Table 4. 11 have the results for 124-run CMC-OS trials and 120-

run rLHS trials (m=12, t=10). For rLHS, the percent below the “true” quantile is now 

closer to 5% and may be a sign that the coverage is converging properly.  

 

 
Figure 4. 21: Comparison of 95/95 Value Histograms for 104 Trials – 124 Runs 

 

Table 4. 11: Comparison of 95/95 Values for 104 Trials – 124 Runs 

 
12x10 rLHS  124 CMC-OS  

Mean of 104 95/95 Values 125.79 133.98 
S.D. of 104 95/95 Values 13.01 17.25 

% Below “true” 5.72% 5.01% 
 

 

 The complete numerical results are in Table 4. 12. As the table shows, the rLHS 

method using 𝑡 = 10, while not converged at 𝑛 = 59, appears to converge at the next 
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highest run level of 𝑛 = 93. However, the coverage is worse at the 𝑛 = 124 level. A 

closer inspection shows that, once again, the derivative estimation got worse with 

increasing run level (from 814.74 to 853.58, with an actual value of 745.73). This again is 

a result of changing the bandwidth parameters as the number of runs increases. This 

shows the impact that small changes in these parameters can have at low run levels.  

  

Table 4. 12: 95/95 Results 104 Trials – Nonlinear Eq. Non-normal Inputs 

 
CFD for 𝝀𝒑 Exact 𝝀𝒑 

n CMC-
OS CMC AV rLHS CMC AV rLHS 

t=10 t=20 t=30 t=10 t=20 t=30 

59 

153.12 151.04 138.67 133.68 127.97  145.13 132.92 129.10 123.36 Mean* 
31.63 28.53 25.00 19.90 16.59  21.11 19.31 13.94 12.93 S.D.* 
4.82 4.98 9.00 6.64 7.36  3.71 9.23 3.37 7.78 % Below 

 89.13 88.54 91.57 91.22  89.34 89.12 94.02 90.11 Covg. 

 872.37 873.46 877.69 911.32  745.73 745.73 745.73 745.73 Avg. 𝝀�𝒑 

93 

139.86 137.53 141.98 131.54 122.20 125.21 134.28 138.22 129.58 119.33 123.39 
21.43 20.61 20.96 16.71 13.58 13.22 16.81 16.14 12.49 12.90 11.23 
5.01 6.01 3.73 5.02 10.68 5.82 5.25 2.52 1.80 16.12 5.24 

 88.98 92.72 90.95 86.64 87.84 90.14 94.48 91.96 80.99 86.86 

 833.13 836.20 814.74 823.99 839.44 745.73 745.73 745.73 696.73 745.73 

124 

133.98 131.75 132.23 125.79 120.71 120.40 127.74 128.14 123.14 118.48 118.07 
17.25 16.46 16.49 13.01 11.25 11.05 14.22 14.17 10.41 9.83 9.62 
5.01 6.18 5.79 5.72 9.61 8.99 7.36 6.75 4.27 11.57 11.44 

 91.23 91.90 92.18 87.15 87.55 90.13 90.53 92.43 83.68 83.42 

 870.07 871.86 853.58 875.24 878.60 745.73 745.73 745.73 745.73 745.73 

311 

123.01 122.74 123.19 119.25 115.15 115.18 121.57 121.99 118.40 114.59 114.53 
9.82 9.88 9.80 7.81 6.17 6.16 9.20 9.03 6.81 5.71 5.79 
4.85 5.26 4.28 4.57 7.69 7.85 5.29 4.89 3.62 7.78 8.52 

 90.44 92.10 91.26 88.82 88.65 90.13 90.84 90.44 87.13 87.09 

 803.44 803.77 802.32 800.32 805.29 745.73 745.73 745.73 745.73 745.73 

548 

118.18 118.02 118.10 115.73 113.26 112.96 117.59 117.69 115.39 112.98 112.67 
7.27 7.37 7.24 5.72 4.61 4.46 7.02 6.79 5.13 4.30 4.20 
5.74 6.17 5.65 5.33 7.39 7.54 6.22 5.07 4.03 7.23 7.54 

 89.53 90.34 89.82 88.98 88.89 89.70 90.83 90.06 88.27 87.78 

 773.57 773.07 776.79 781.79 781.79 745.73 745.73 745.73 745.73 745.73 

1008 

115.26 115.16 114.97 113.18 111.56 111.26 114.96 114.79 113.02 111.44 111.16 
5.34 5.40 5.27 4.10 3.30 3.22 5.19 5.04 3.75 3.09 3.04 
5.69 5.73 5.59 5.16 6.63 7.61 5.60 5.25 4.51 6.38 6.87 

 89.40 89.70 90.19 89.78 88.14 89.75 90.18 89.98 89.21 88.51 

 762.97 761.96 764.98 765.89 764.29 745.73 745.73 745.73 745.73 745.73 

2004 

112.77 112.56 112.40 111.03 110.19 110.26 112.45 112.31 110.96 110.13 110.20 
3.67 3.74 3.70 2.89 2.33 2.25 3.66 3.58 2.70 2.21 2.14 
4.99 5.93 6.19 6.58 6.70 5.59 5.88 5.98 5.66 5.92 5.11 

 89.64 89.25 89.14 89.27 89.59 89.93 89.49 89.48 89.22 89.28 

 759.30 757.59 756.36 758.79 760.86 745.73 745.73 745.73 745.73 745.73 
* Mean and S.D. of the 104 95/95 Values 
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 Also, the table shows that while the rLHS method with larger run sizes provides 

even more variance reduction, it takes much longer to converge in this case. The 

coverage level converges to ~90% fairly quickly, but the percent below the true quantile 

stays above 5% even at higher run levels.  

 Figure 4. 22, Figure 4. 23, Table 4. 13 and Table 4. 14 have the results for 

estimating 95/75 values using CMC-OS and rLHS at 11 runs and 886 runs. As with the 

previous example, the rLHS method is much more precise and accurate than the CMC-

OS method. However, once again the rLHS method has less than 5% of trials below the 

“true” quantile at the lowest run level, which is a sign that the CLT asymptotics have not 

yet converged. By the large run level in Table 4. 14, the proper coverage level has been 

established, and even at this high run level, rLHS is still more accurate and precise. 

 

 
Figure 4. 22: Comparison of 95/75 Value Histograms for 104 Trials – 11 Runs 
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Table 4. 13: Comparison of 95/75 Values for 104 Trials – 11 Runs 

  2x5 rLHS  11 CMC-OS  
Mean of 104 95/75 Values 68.90 100.45 
S.D. of 104 95/75 Values 16.50 42.36 

% Below “true” 0.14% 4.18% 
 

 

 
Figure 4. 23: Comparison of 95/75 Value Histograms for 104 Trials – 886 Runs 

 

Table 4. 14: Comparison of 95/75 Values for 104 Trials – 886 Runs 

 177x5 rLHS  886 CMC-OS  
Mean of 104 95/75 Values 35.88 38.19 
S.D. of 104 95/75 Values 1.00 2.51 

% Below “true” 4.82% 4.98% 
 

 

 The complete results are in Table 4. 15. Some of the same issues from the normal 

input example continue here, with non-convergence at the lowest run level, and the 
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derivative estimation getting worse at 𝑛 = 40, due to the bandwidth parameter changes. 

However, it also takes rLHS, with 𝑡 = 5, longer to converge in this example than with 

normal inputs. A look at the results shows that even when using the exact value for the 

derivative, convergence does not occur until the run level is greater than 200. This means 

the issue is most likely due to the difficulty in estimating the quantile and not with the 

bandwidth parameters. However, even when the coverage is poor, rLHS always errors on 

the conservative side, meaning < 5% of trials fall below the true quantile, rather than 

> 5%, which could increase the probability of a Type-I error.  

 Also, the table shows that the complexity of this equation, while increasing the 

difficulty of the quantile estimation, also benefits rLHS, since it provides a far more 

accurate and precise solution than CMC-OS, even before complete convergence. This 

means that even though rLHS is not providing the exact coverage level of 90%, it is still 

far less likely to result in a solution that may cause a Type-I or Type-II error than CMC-

OS since it returns 95/75 values which more properly characterize the 0.75-quantile.  
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Table 4. 15: 95/75 Results 104 Trials – Nonlinear Eq. Non-normal Results 

 
CFD for 𝝀𝒑 Exact 𝝀𝒑 

n CMC-
OS CMC AV rLHS CMC AV rLHS 

t=5 t=10 t=15 t=5 t=10 t=15 

11 

100.45 81.39 64.12 68.90     75.40 58.59 58.71   Mean* 
42.36 35.62 22.55 16.50   22.76 13.78 7.54  S.D.* 
4.18 6.71 6.76 0.14   0.01 0.01 0.01  % Below 

 85.38 90.38 99.60   85.40 94.47 99.72  Covg. 
  180.09 185.13 214.13     152.20 152.20 152.20   Avg. 𝝀�𝒑 

29 

67.62 60.64 55.72 47.29 44.55   55.12 54.57 44.75 43.16   
22.44 18.47 15.99 6.68 5.04  11.92 10.38 5.12 4.44  4.73 5.63 5.23 0.85 0.64  0.02 0.01 0.69 0.56  
 91.75 90.58 97.20 96.07  92.74 91.89 97.01 95.34    193.96 161.83 188.67 176.72   152.20 152.20 152.20 152.20   

40 

61.48 55.08 52.32 44.49 42.01 38.34 51.07 48.16 41.67 39.76 37.52 
18.23 14.50 12.10 5.34 4.38 8.83 9.98 8.41 4.30 3.77 7.11 
4.43 5.16 3.88 1.79 1.72 39.19 0.30 0.26 2.66 5.41 39.19 

 92.62 94.07 97.68 97.11 16.95 93.62 93.23 96.37 92.10 16.95 
  187.79 197.47 198.94 202.00 196.95 152.20 152.20 152.20 152.20 152.20 

135 

46.34 45.21 42.52 39.29 37.78 38.18 44.38 41.77 38.80 37.43 37.88 
8.08 7.49 5.88 2.65 2.11 2.14 5.79 4.57 2.56 2.05 2.08 
4.93 5.40 6.25 2.48 3.62 2.42 1.72 2.35 3.73 4.96 3.30 

 90.45 90.97 93.57 93.95 89.78 90.29 91.40 91.32 92.13 87.28 
  165.73 167.17 169.48 166.92 166.17 152.20 152.20 152.20 152.20 152.20 

246 

42.48 41.81 40.66 37.50 37.09 36.54 41.43 40.20 37.27 36.94 36.41 
5.46 5.23 4.23 1.89 1.60 1.52 4.21 3.41 1.88 1.57 1.49 
4.72 5.85 4.77 3.97 3.18 5.69 2.64 2.34 5.12 3.68 6.67 

 90.70 91.99 93.10 92.37 90.35 90.49 90.99 91.78 91.38 88.91 
  160.55 164.22 162.88 160.61 160.42 152.20 152.20 152.20 152.20 152.20 

459 

39.57 39.72 38.56 36.51 36.17 36.04 39.48 38.56 36.37 36.07 35.94 
3.59 3.53 2.91 1.38 1.18 1.08 3.02 2.91 1.38 1.17 1.07 
5.92 4.99 5.26 4.49 4.41 4.02 2.94 5.26 5.57 5.10 4.80 

 91.50 91.43 92.77 92.04 91.70 90.83 91.45 91.29 90.62 90.22 
  159.37 160.20 161.19 160.43 160.55 152.20 152.20 152.20 152.20 152.20 

886 

38.19 38.02 37.37 35.88 35.67 35.50 37.95 37.31 35.84 35.64 35.47 
2.51 2.45 1.99 1.00 0.85 0.79 2.17 1.77 1.00 0.84 0.78 
4.98 5.35 4.71 4.82 3.91 4.98 3.48 3.14 5.22 4.14 5.12 

 90.82 91.52 91.10 91.18 90.46 90.77 91.02 90.71 90.50 90.00 

 155.21 155.22 155.21 155.38 154.91 152.20 152.20 152.20 152.20 152.20 
* Mean and S.D. of the 104 95/75 Values 

 

4.3.2. LOCA Response Surface 

 The LOCA response surface detail in Section 3.2.3 was again used as the next 

step to a more realistic safety analysis scenario. Historically, the large LOCA has 

represented the most extreme challenge as the design basis for a plant’s emergency core 

cooling system. For best-estimate plus uncertainty analysis, a 95/95 criterion has been 
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imposed on the entire spectrum of LOCA break sizes. Because the likelihood of a very 

large pipe break is extremely small, consideration has been given to using risk-informed 

requirements for emergency core cooling systems. In this approach, a transition break 

size would be established based on the expected frequency of breaks as a function of size. 

Below the transition break size, the 95/95 criterion would still be imposed. Above the 

transition break size, less conservatism would be applied (such as a 95/75 criterion). 

 The result of a 108-run CMC experiment yielded a “true” 0.95-quantile of 

1683.65°F and 0.75-quantile of 1607.07°F. Figure 4. 24 shows the distribution of a 105-

run CMC trial. In this case, the upper tail decays very quickly, so the 0.75- and 0.95-

quantiles are fairly close together. 

 

 
Figure 4. 24: Histogram of 105 Run CMC Trial 
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 As before, the first test conducted was at the minimum number of runs necessary 

to find a 95/95 value using CMC-OS. Figure 4. 25 and Table 4. 16 show the results for 

59-run CMC-OS trials and 60-run rLHS trials (m=6, t=10). The rLHS method continues 

to show better performance than CMC-OS, but less so than in the previous examples. 

This is most likely due to the output distribution shape. Unlike the previous non-linear 

equation examples, the output distribution does not have a long tail at the higher 

quantiles. Since CMC-OS only uses a single value to calculate a 95/95 value, it is less 

likely that this value is significantly larger than the true 0.95-quantile. So the variance 

reduction from rLHS is not as large. Also, the rLHS analysis has >6% of trials falling 

below the “true” quantile versus the 5% expected. Once again, this could be related to 

convergence, or to the selection of bandwidth parameters. It may have been possible to 

select bandwidth parameters that resulted in exactly 5% of trials falling below the “true” 

quantile, but again the challenge is finding bandwidth parameters that are applicable to a 

variety of systems and sample sizes. 
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Figure 4. 25: Comparison of 95/95 Value Histograms for 104 Trials – 59 Runs 

 

Table 4. 16: Comparison of 95/95 Values for 104 Trials – 59 Runs 

  6x10 rLHS  59 CMC-OS  
Mean of 104 95/95 Values 1,715.98 1,730.89 
S.D. of 104 95/95 Values 23.32 31.83 

% Below “true” 6.58% 4.73% 
 

 

 Figure 4. 26 and Table 4. 17 have the results for 124-run CMC-OS trials and 120-

run rLHS trials (m=12, t=10). At this level, the rLHS is closer to the proper coverage 

level (as the complete results in Table 4. 18 show, the coverage level is ~90%). If this 

were a real safety analysis, the rLHS method would result in a 95/95 value that was, on 

average, 10°F lower than using CMC-OS. 
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Figure 4. 26: Comparison of 95/95 Value Histograms for 104 Trials – 124 Runs 

 

Table 4. 17: Comparison of 95/95 Values for 104 Trials – 124 Runs 

 12x10 rLHS  124 CMC-OS  
Mean of 104 95/95 Values 1,701.51 1,711.62 
S.D. of 104 95/95 Values 11.66 17.90 

% Below “true” 5.61% 4.69% 
 

 

 The complete results can be found in Table 4. 18. As with the previous examples, 

convergence appears to occur fairly quickly, although here it takes until the 𝑛 = 93 run 

level to approach the appropriate values. Also like the previous examples, changing the 

bandwidth parameters at lower run levels causes the derivative estimation to get worse at 

𝑛 = 311, but it does not have a great effect on the coverage, which is still ~90%. More 
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work needs to be done on how to properly increase the bandwidth of the derivative 

estimation at these low run levels, and more will be said on this topic in Section 4.4.  

 

Table 4. 18: 95/95 Results 104 Trials – LOCA Response Surface 

 
CFD for 𝝀𝒑 Exact 𝝀𝒑 

n CMC-
OS CMC AV rLHS CMC AV rLHS 

t=10 t=20 t=30 t=10 t=20 t=30 

59 

1,730.9 1,727.6 1,715.5 1,716.0 1,712.5   1,720.4 1,708.4 1,708.6 1,707.5 Mean* 
31.83 28.30 24.70 23.32 25.62  20.19 17.83 16.59 22.91 S.D.* 
4.73 4.91 9.00 6.58 10.10  2.96 7.71 6.25 13.31 % Below 

 89.12 88.94 91.20 86.26  88.70 90.04 91.24 82.74 Covg. 
  849.91 853.12 867.07 866.65   695.70 695.70 695.70 739.92 Avg. 𝝀�𝒑 

93 

1,717.3 1,714.4 1,718.2 1,709.9 1,705.9 1,707.3 1,710.2 1,713.5 1,707.2 1,703.6 1,704.7 
21.67 20.50 21.28 18.23 19.90 19.73 16.02 15.48 13.95 15.75 15.92 
4.80 5.84 4.34 5.74 12.11 9.67 4.68 2.05 3.74 9.90 8.54 

 89.08 92.13 89.60 83.23 81.63 89.30 93.98 90.26 84.93 81.35 
  807.86 807.37 783.16 771.50 792.16 695.70 695.70 695.70 695.70 695.70 

124 

1,711.6 1,709.0 1,708.9 1,701.5 1,704.3 1,703.4 1,703.9 1,704.1 1,701.5 1,700.5 1,699.8 
17.90 16.41 16.24 11.66 14.93 15.63 13.42 13.00 11.66 12.09 12.99 
4.69 5.31 4.87 5.61 7.22 9.38 6.32 5.06 5.61 8.23 10.51 

 92.26 92.96 90.78 89.92 86.35 89.90 91.59 90.78 87.31 83.95 
  851.29 845.28 695.70 837.51 834.45 695.70 695.70 695.70 695.70 695.70 

311 

1,699.4 1,699.0 1,699.6 1,697.3 1,695.4 1,695.8 1,697.6 1,698.1 1,696.0 1,694.4 1,694.6 
10.08 9.77 9.56 8.28 8.11 8.43 8.71 8.44 7.32 7.19 7.50 
5.38 5.23 4.29 4.56 6.67 6.93 5.27 3.85 3.99 6.39 6.94 

 90.84 92.24 91.40 89.83 89.28 89.63 91.05 90.41 88.97 87.97 
  766.44 767.96 766.79 754.68 764.04 695.70 695.70 695.70 695.70 695.70 

548 

1,694.9 1,694.6 1,694.6 1,693.2 1,692.5 1,692.4 1,694.1 1,694.0 1,692.2 1,692.0 1,691.9 
7.10 7.09 6.94 6.15 6.01 5.99 6.49 6.29 6.11 5.46 5.49 
5.51 5.92 5.32 5.41 6.51 6.74 5.57 4.79 7.56 6.02 6.44 

 90.28 90.87 90.13 90.01 89.34 89.74 90.63 86.81 89.63 88.67 
  729.53 731.8 733.23 734.49 732.66 695.70 695.70 655.47 695.70 695.70 

1008 

1,691.8 1,691.6 1,691.5 1,690.6 1,690.1 1,690.0 1,691.4 1,691.3 1,690.4 1,689.9 1,689.9 
5.10 5.15 5.07 4.42 4.31 4.30 4.80 4.68 4.06 3.98 3.99 
5.25 5.83 6.00 5.33 6.55 6.68 5.38 5.21 4.41 5.61 5.82 

 89.73 89.69 89.76 89.33 88.72 89.52 89.85 90.13 89.56 89.12 
  715.13 714.66 715.42 714.66 713.76 695.70 695.70 695.70 695.70 695.70 

2004 

1,689.4 1,689.2 1,689.1 1,688.3 1,688.2 1,688.4 1,689.1 1,689.0 1,688.2 1,688.2 1,688.3 
3.59 3.63 3.58 3.09 2.99 3.00 3.44 3.36 2.90 2.81 2.83 
5.34 6.12 5.81 6.48 5.95 5.76 5.35 5.25 5.67 4.96 5.10 

 89.26 89.43 89.37 89.66 88.83 89.62 89.44 89.78 90.19 89.01 

 708.07 709.23 706.91 706.91 707.70 695.70 695.70 695.70 695.70 695.70 
* Mean and S.D. of the 104 95/95 Values 

 

 Figure 4. 27 and Figure 4. 28 show the results for 95/75 estimates, with numerical 

results in Table 4. 19 and Table 4. 20. As with the previous examples, the rLHS method 

is closer to the “true” quantile. However, once again it has <5% of trials below “true” at 
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the lowest run level, since only two LHS cases are being performed to satisfy the CLT. 

As the run level gets higher, and the rLHS method converges to the proper coverage 

level, it still provides a better characterization of the 0.75-quantile, as Figure 4. 28 and 

Table 4. 20 show at ~246 runs. 

 

 
Figure 4. 27: Comparison of 95/75 Value Histograms for 104 Trials – 11 Runs 

 

Table 4. 19: Comparison of 95/75 Values for 104 Trials – 11 Runs 

  2x5 rLHS  11 CMC-OS  
Mean of 104 95/75 Values 1,660.96 1,677.04 
S.D. of 104 95/75 Values 30.93 42.55 

% Below “true” 2.50% 4.35% 
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Figure 4. 28: Comparison of 95/75 Value Histograms for 104 Trials – 246 Runs 

 

Table 4. 20: Comparison of 95/75 Values for 104 Trials – 246 Runs 

 
49x5 rLHS  246 CMC-OS  

Mean of 104 95/75 Values 1,615.03 1,619.82 
S.D. of 104 95/75 Values 5.08 7.73 

% Below “true” 5.61% 5.20% 
 

 

 The complete results are in Table 4. 21. Once again, while not converged at 

𝑛 = 11, rLHS appears to have converged by 𝑛 = 29. However, the number of trials 

falling below the true quantile increases to over 5% at 𝑛 = 40. At first, this might seem 

to be caused by changing the bandwidth parameters (as in the previous examples), but 

there is a difference here. A closer look shows that using the exact value for the 

derivative, at this run level, results in over 9% of trials falling below the true quantile. 
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That means the error at this run level is more likely caused by difficulty estimating the 

quantile, rather than the derivative estimation. By the next highest run level, the quantile 

estimation issue is resolved. Also, rLHS provides a larger gain here than when estimating 

the 0.95-quantile. At 𝑛 = 29, rLHS returns a 95/75 value that is 15°F lower on average, 

than the result when using CMC-OS.  

 

Table 4. 21: 95/75 Results 104 Trials – LOCA Response Surface 

 
CFD for 𝝀𝒑 Exact 𝝀𝒑 

n CMC-
OS CMC AV rLHS CMC AV rLHS 

t=5 t=10 t=15 t=5 t=10 t=15 

11 

1,677.0 1,675.7 1,649.2 1,661.0     1,669.7 1,645.6 1,654.8   Mean* 
42.55 42.29 31.67 30.93   36.10 25.56 24.48  S.D.* 
4.35 4.64 8.01 2.50   4.83 5.14 1.82  % Below 

 89.61 89.65 95.30   90.62 92.82 95.37  Covg. 
  311.07 303.97 321.47     282.85 282.85 282.85   Avg. 𝝀�𝒑 

29 

1,646.6 1,643.7 1,641.6 1,631.6 1,628.8   1,640.5 1,641.2 1,630.7 1,628.1   
23.50 23.59 21.35 16.20 16.78  22.54 17.50 14.84 15.80  4.94 5.90 4.22 5.52 8.53  6.84 1.82 5.36 8.50  
 90.14 92.47 88.55 82.50  90.17 94.46 88.00 81.74    307.11 286.46 298.65 296.91   282.85 282.85 282.85 282.85   

40 

1,640.8 1,636.9 1,631.4 1,625.5 1,623.6 1,623.1 1,634.6 1,630.0 1,623.9 1,622.3 1,622.0 
19.74 19.62 17.08 13.42 13.93 22.45 19.21 15.21 12.74 13.28 20.92 
4.25 6.25 7.34 7.96 11.46 27.03 7.73 6.10 9.34 12.63 27.00 

 90.59 90.02 89.58 84.18 44.50 89.61 90.71 87.18 82.21 44.44 
  303.08 297.92 306.96 306.65 308.19 282.85 282.85 282.85 282.85 282.85 

135 

1,624.6 1,624.9 1,620.7 1,618.9 1,616.5 1,617.9 1,624.6 1,620.4 1,618.7 1,616.3 1,617.7 
10.53 10.69 8.96 7.07 6.62 6.79 10.57 8.37 6.79 6.46 6.57 
4.73 4.85 6.38 4.33 7.46 5.19 5.06 5.51 4.27 7.85 5.37 

 89.47 90.15 89.38 88.37 87.53 89.85 90.57 88.78 87.72 86.84 
  289.10 288.07 290.34 290.02 290.02 282.85 282.85 282.85 282.85 282.85 

246 

1,619.9 1,619.9 1,617.9 1,615.0 1,614.8 1,614.3 1,619.7 1,617.8 1,614.9 1,614.7 1,614.2 
7.81 7.93 6.69 5.07 4.83 4.95 7.83 6.34 4.93 4.71 4.85 
5.12 5.29 5.29 5.68 5.29 6.87 5.45 4.43 5.55 5.24 6.83 

 89.56 89.79 90.02 89.33 88.12 89.77 90.36 89.91 89.38 87.94 
  286.98 285.72 286.99 286.37 287.41 282.85 282.85 282.85 282.85 282.85 

459 

1,615.9 1,616.7 1,614.6 1,612.8 1,612.5 1,612.5 1,616.6 1,614.5 1,612.8 1,612.4 1,612.4 
5.61 5.68 4.77 3.73 3.49 3.46 5.66 4.60 3.65 3.44 3.40 
5.65 4.45 5.67 5.97 5.90 5.90 4.58 5.37 6.12 5.77 5.82 

 90.31 90.46 89.97 89.98 88.83 90.28 90.46 89.32 89.84 88.88 
  286.08 286.03 286.76 286.97 286.43 282.85 282.85 282.85 282.85 282.85 

886 

1,613.8 1,613.8 1,612.7 1,611.3 1,611.1 1,611.0 1,613.8 1,612.7 1,611.3 1,611.1 1,611.0 
4.05 4.09 3.46 2.65 2.49 2.49 4.09 3.38 2.60 2.46 2.46 
5.03 4.88 5.41 5.04 5.17 5.75 5.21 4.80 5.05 5.05 5.64 

 90.24 89.33 90.28 89.55 89.27 90.10 89.89 90.22 89.57 89.38 

 284.01 283.80 284.34 284.07 283.99 282.85 282.85 282.85 282.85 282.85 
* Mean and S.D. of the 104 95/95 Values 
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4.3.3. PRA Event Tree 

 The PRA event tree analysis detailed in Section 3.2.4 was repeated for these 

techniques.  However, instead of the figure of merit being mean risk, a more detailed 

characterization of the output was desired. Recall, each time the PRA is carried out, 841 

unique scenarios are created. Each one of these scenarios has a frequency and a 

consequence assigned to it. Even though there are 841 unique scenarios, there are 

actually only 13 different consequence levels. This is due to the fact that the offsite dose 

is mostly dependent on the time of release and release fraction of core inventory. As the 

event trees in Section 3.2.4 show, there are four possible core damage-states (1, 2, 3, 4), 

and three possible times of release (early, late, and leakage). This gives 12 possible levels 

of consequence. In addition to these 12 levels, there is also the release associated with 

those events that had no core damage. This consequence is related to the radioactive 

material released from the primary system into containment, and then leaked out of 

containment. These consequence levels can be seen in Table 4. 22. 

 

Table 4. 22: Consequence Bins 

Bin Core Damage 
State 

Time of 
Release 

1 1 Early 
2 1 Late 
3 1 Leakage 
4 2 Early 
5 2 Late 
6 2 Leakage 
7 3 Early 
8 3 Late 
9 3 Leakage 
10 4 Early 
11 4 Late 
12 4 Leakage 
13 Undamaged Leakage 
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Each of the 841 unique scenarios falls into one of these 13 consequence bins. Therefore, 

the frequencies of the scenarios that fall into each bin can be summed. This will give a 

final output of 13 bins each with a consequence level and a frequency. Figure 4. 29 shows 

an example output from the PRA analysis, with the 13 points on a consequence versus 

frequency plot.  

 

 
Figure 4. 29: Example of PRA Output 

 

These points can also be used to create a complementary cumulative distribution function 

(CCDF). This is done by summing the frequency of the events, starting with the event 

with the largest consequence. Figure 4. 30 shows the CCDF version of the output for the 

example listed in Figure 4. 29. 
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Figure 4. 30: Example CCDF Output of PRA 

 

 Historically, the results of PRAs have been used to provide risk insights but have 

not been required to satisfy quantitative risk limits. In NUREG-1860, the NRC developed 

a draft technology-neutral framework that could be applied in the future to advanced 

nuclear power plant designs independent of the type of design [14]. NUREG-1860 

introduces the concept of a frequency-consequence limit curve in which the PRA 

scenarios would be aggregated into Licensing Basis Events (LBEs), each of which would 

be required to fall below the limit curve presented Figure 4. 31. Although the LBEs are 

based on the results of PRAs, the manner in which the characteristic frequency and 

consequence of an LBE is determined and compared with the limit curve does not 

actually constrain the risk. If the risk analyst refines the risk assessment, for example by 

dividing a small break loss of coolant accident into two break sizes, it becomes easier to 

satisfy the criteria. In theory, it would be possible to have an infinite number of LBEs 

with infinite risk and still satisfy the limit curve. 
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Figure 4. 31: Technology Neutral Framework F-C Limit Curve 

 

Because of these concerns about the NUREG-1860 limit curve approach, an alternative 

limit curve approach has been proposed [108] in which a limit curve is used that 

establishes a bound on the CCDF of the LBEs (and thus a bound on risk), as seen in 

Figure 4. 32. In this case the limit curve has a slope of -1 (on log-log scale) in the low 

consequence region and a slope of -1.5 for higher consequence events. The curves are 

pinned at an offsite dose of 25 rem at a frequency of 1E-4 per year, since this is the site 

boundary dose limit for design basis accidents. 
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Figure 4. 32: Proposed CCDF Limit Curve 

 

 The historical display of PRA results as presented in NUREG-1150 [6] (for which 

a 100-run LHS design was examined) shows the family of CCDFs obtained through the 

performance of the uncertainty analysis. Curves showing the 0.05-quantile, median, mean 

and 0.95-quantile of these CCDFs are presented graphically, but no consideration is given 

to the confidence level of these statistics. NUREG-1855 [7] provides more guidance 

about the reporting of PRA results in relation to a regulatory guideline, but stops short of 

giving specific requirements. Instead, it states analysts should provide “A qualitative 

statement of confidence in the conclusion and how it has been reached” and that “to 

support the statement of confidence, the analyst should identify the key sources of 

uncertainty that were addressed.” The metric usually provided by a PRA is the mean or 

higher quantile. In the following examples, the 0.75- and 0.95-quantiles will be used, 

with a high level of confidence (95%). 
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4.3.3.1. Comparison with a Risk Limit Curve 

 The first PRA analysis undertaken sought to compare the output results to the 

CCDF limit curve presented in Figure 4. 32. While the construction of the CCDF curve 

for a single PRA run is straightforward, the creation of a quantile or 95/95 CCDF curve is 

more complex. This is due to several causes. First, there is uncertainty not only in the 

frequency of the scenarios, but in the consequence. This means that scenarios are shifted 

along both the x and y axes. Secondly, due to the uncertainties, a single run’s CCDF 

curve may be in the higher regions of the output distribution at one part of the plot, but be 

in the lower regions in another part. This means that a 95/95, or even a 0.95-quantile, 

curve cannot be selected directly from the resulting curves of the n number of runs. 

Instead, a curve must be created by point-by-point comparison.  

 In order to create a quantile CCDF curve of the resulting distribution, the resulting 

points from within each consequence bin were viewed directly. Figure 4. 33 shows how 

this was done. For each of the 13 consequence bins, the points from each run of the PRA 

create a spread of possible values. Figure 4. 33 shows the results for 100 CMC runs for 

the 13th consequence bin of Table 4. 22 (the bin with the lowest consequence level, as 

shown by the comparison to the example in Figure 4. 29). The spread covers both the x 

and y axes. In order to find a 0.95-quantile value, the 0.95-quantile consequence and the 

0.95-quantile frequency are determined. Here, the 0.95-quantile dose is ~0.0129 rem and 

the 0.95-quantile dose is ~0.00184 /yr. A new point is created using these values, and is 

considered the 0.95-quantile point for that consequence bin.  
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Figure 4. 33: Demonstration of Quantile Estimation 

 

Obviously, the created quantile point will be overly conservative because it does not 

represent the output of an actual scenario, but a conglomeration of the worst 

consequences and frequencies. As the plot shows, the points that had higher 

consequences fell at lower frequencies, and the points with higher frequencies were 

located at lower consequence levels, meaning the constructed 0.95-quantile point is not 

necessarily realistic. A less conservative technique may have been to find a type of 

Euclidean distance, in log-log space, of each point to the projected limit value in Figure 

4. 32. Then use this distance as the output metric, meaning the runs would be sorted 

based on the value of this distance. This would mean each point is now only a function of 

one variable, distance, rather than an x and y coordinate. The initial calculation of this 

distance would be more difficult, but it would simplify the analysis. However, using the 
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technique shown in Figure 4. 33 to calculate a quantile provided a consistent means of 

comparing the confidence interval methods described in Section 4.2, and the error is in 

the conservative direction for both the frequency and consequence.  

 In order to create a quantile CCDF curve, the process described above was 

repeated for each of the 13 consequence bins. This results in Figure 4. 34, where a 0.95-

quantile point has been found for each of the 13 bins. While the results may look 

confusing, the actual calculation of the individual bins was not difficult due to the fact 

that the consequence bins always fell in the same order. This was the case since the core 

damage states and times of release magnitudes would stay in the same order regardless of 

the value of the uncertainties.  

 

 
Figure 4. 34: Quantile Calculation for all 13 Bins 
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Using the results of Figure 4. 34, a 0.95-quantile CCDF curve could be created. This is 

shown in Figure 4. 35, in comparison to the 13 consequence bin points, and in Figure 4. 

36, in comparison to the 100 CCDFs created by the 100 individual PRA runs.  

 

 
Figure 4. 35: 0.95-Quantile CCDF Curve 
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Figure 4. 36: 0.95-Quantile CCDF Curve with 100 CCDFs 

 

 A similar technique was used to form confidence intervals. For the asymptotic 

methods, a CI was found in respect to the consequence and in respect to a frequency. 

These were then used to construct a total CI point for that consequence bin, and this 

process was repeated for all the consequence bins in order to form a CI CCDF curve. For 

CMC-OS, if 59 runs were conducted, for example, the highest consequence value for that 

bin, and the highest frequency value for that bin were combined to form a 95/95 point. If 

93 runs were conducted, the second highest values of consequence and frequency were 

combined to form a 95/95 point, and so on.  

 A 106-run CMC trial was conducted first to establish the “true” 0.75- and 0.95-

quantile CCDF curve. Figure 4. 37 shows the results of a smaller, 25,000-run CMC trial 

since it was infeasible to plot the large trial. This plot is presented just to show the spread 
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of possible outcomes and where the “true” 0.75- and 0.95-quantile fall. As the figure 

shows, the 0.95-quantile does not satisfy the limit curve because it violates the line at 

~200 rem. The 0.75-quantile does satisfy the limit curve.   

 

 
Figure 4. 37: CCDF Curves for 25,000 Run CMC Trial 

 

 Next, Figure 4. 38 show the 95/95 CCDF curves for 104 trials of 59 CMC-OS 

runs. It is important to remember that each trial consisted of 59 individual runs, where 

each run resulted in its own CCDF curve. The CCDF curves on Figure 4. 38 represent the 

95/95 value CCDF curve of each of the 104 trials. Here, all 104 95/95 curves are 

compared to the “true” 0.95-quantile curve, and the candidate safety goal, presented as a 

black line. If the CCDF curve lies to the left of the safety curve, it satisfies the safety 

limit. As can be seen, the “true” 0.95-quantile violates the safety limit at one interval 
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around 200 rem. Therefore, the result of this analysis should conclude that the system 

does not pass.  

 

 
Figure 4. 38: Comparison of 95/95 Curves to Limit Curve for 104 CMC-OS Trials 

 

Next, Figure 4. 39 shows the same results, but for 104 trials of a rLHS design with m=6 

and t=10. Since the characterization of these curves results in a large amount of data, only 

these qualitative plots are presented as evidence of the reduction in margin by the rLHS 

method.  
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Figure 4. 39: Comparison of 95/95 Curves to Limit Curve for 104 rLHS Trials 

 

 There are several factors to note from these results. First, 95/95 CCDF curves 

from CMC-OS and rLHS both have means that fail the safety goal limit, which is the 

correct conclusion, but at this low run level, both methods have means well above the 

“true” 0.95-quantile, and do not characterize the curve well. If a criterion as stringent as 

95/95 was imposed, it would be necessary to perform more runs if more informative 

results were required. Second, and more importantly, is that for the CMC-OS trials, there 

were a few trials where all points of the 95/95 CCDF curve satisfied the safety goal. The 

“true” 0.95-quantile does not satisfy the safety goal, since it violates the curve at ~200 

rem and 10-5 /yr. This means that there is small chance that an analyst could commit a 

Type-I error, or believe, falsely, that the system had fulfilled the safety goal. This error 

does not occur with the rLHS trials. 
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 Since the 95/95 requirement may be overly-stringent for this type of analysis, 

95/75 values were also calculated. Here, Figure 4. 40 and Figure 4. 41 show the results 

for 104 trials of 11 CMC-OS runs and 10 rLHS runs (m=2, t=5).  

 

 
Figure 4. 40: Comparison of 95/75 Curves to Limit Curve for 104 CMC-OS Trials 
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Figure 4. 41: Comparison of 95/75 Curves to Limit Curve for 104 rLHS Trials 

 

At this run level, the mean of the CMC-OS trials violates the safety limit, while the mean 

of the rLHS trials does not. This example demonstrates how the large variance of CMC 

sampling can lead to incorrect conclusions being made from the analysis. Even though 

the rLHS method does have trials that also violate the safety goal, it is far less likely that 

a Type-II error would be committed with the rLHS method than with CMC-OS method.   

 Figure 4. 42 and Figure 4. 43 show similar results but for 104 trials of 40 CMC-

OS runs and 40 rLHS runs (m=8, t=5). Once again, the large variance of the CMC-OS 

causes some trials to violate the safety limit, and could lead to a Type-II error. None of 

the rLHS trials violate the safety limit.  
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Figure 4. 42: Comparison of 95/75 Curves to Limit Curve for 104 CMC-OS Trials 

 

 
Figure 4. 43: Comparison of 95/75 Curves to Limit Curve for 104 LHS Trials 
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4.3.3.2. Comparison with an LBE Limit Curve 

 Next, a comparison was made to the LBE limit curve presented in Figure 4. 31. 

For this example, the 13 consequence bins described in Table 4. 22 were assumed to be 

analogous to the LBEs of NUREG-1860. Figure 4. 44 shows a comparison of offsite dose 

consequence bins for 104 trials of a 59-run CMC-OS and 60-run LHS design (m=6, t=10). 

Even though there are 13 consequence bins, only three are shown to keep the figure 

legible and to illustrate the trend. The rectangles are designed using the 0.01- and 0.99-

quantile consequence and frequencies values of the 95/95 values of those bins from all 

104 trials. This means on the x-axis, the left side of the rectangle is at the 0.01-quantile 

offsite dose from 104 95/95 values, and the right side of the rectangle is at the 0.99-

quantile of the offsite dose from 104 95/95 values. The top and bottom are the same but 

for the 0.01- and 0.99-quantile frequencies of the 104 95/95 values. This helps show the 

range of possible 95/95 values, for each bin, using that method. If points lie to the left of 

the curve, they satisfy the limit curve. As can be seen, the three “true” values satisfy the 

frequency-consequence limit curve.  
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Figure 4. 44: Comparison of 95/95 Value Consequence Bins to Limit Curve 

 

As the figure shows, even though the “true” points satisfy the curve, both methods greatly 

overestimate the value. However, rLHS does get slightly closer than CMC-OS. This test 

was repeated with 95/75 values, with Figure 4. 45 showing the results for 104 trials of 11-

run CMC-OS and 10-run rLHS (m=2, t=5). Here, the rLHS method is noticeably better at 

approximating the location of the “true” quantile point. The CMC-OS range covers 

higher and lower values than the rLHS method. Figure 4. 46 repeats this for 40-run 

CMC-OS trials and 40-run rLHS trials (m=8, t=5). As the figure shows, the rLHS method 

once again provides a better characterization of the 0.75-quantile points.  
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Figure 4. 45: Comparison of 95/75 Value Consequence Bins to Limit Curve 

 

 
Figure 4. 46: Comparison of 95/75 Value Consequence Bins to Limit Curve 
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4.3.4. MELCOR LOCA Analysis 

 The next analysis was conducted to compare the methods using an actual nuclear 

power plant severe accident analysis computer code. The code used for this analysis was 

MELCOR 2.1, developed by Sandia National Lab [109]. This code was chosen not only 

because it is used in real nuclear safety analyses, but because it represents a “large and 

complex” model. Here, a large model is one requiring significant amounts of human, 

computational, or other resources in its construction and operation [18]. Complex means 

the system is made up of a large number of parts that interact in a nonsimple way [110]. 

Morgan and Henrion actually use NRC “general purpose regulatory model” computer 

codes as an example of a large and complex system [18]. The scenario chosen was based 

on a MELCOR demonstration problem presented in CR-6119 [111]. It represents a large 

break LOCA at the now retired Zion Nuclear Power Plants (ZNPP) near Chicago. 

 MELCOR is not an NRC-approved computer code for the performance of the 

analysis of loss of coolant accidents for regulatory submittals, like the RELAP5 computer 

code discussed earlier. The treatment of some two-phase flow phenomena is not of the 

level of fidelity required for regulatory-analyses. MELCOR is primarily used for the 

analysis of severe accidents in which, for example, there is not only a pipe break leading 

to loss of coolant, but also a failure of the emergency core cooling system, as done in this 

example. Nevertheless, MELCOR does a detailed nodalization of the reactor coolant 

system, models fuel pin heat and clad oxidation, and solves the Navier-Stokes flow 

equations. 
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 Both units at ZNPP are Westinghouse four-loop pressurized water reactors 

(PWRs) with large, dry containments. The MELCOR nodalization of the plant can be 

seen in Figure 4. 47, with a diagram of the core nodalization in Figure 4. 48. The plant 

nodalization is split into two loops. The first loop represents the single loop in the plant 

with the pressurizer, and the other loop represents a combination of the other three loops 

of the plant.  

 

 
Figure 4. 47: ZNPP MELCOR Nodilization [111] 
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Figure 4. 48: ZNPP MELCOR Core Nodilization [111] 

 

 The scenario represents a double-ended guillotine rupture of the pressurizer loop 

at the reactor coolant pump inlet (node 521 in Figure 4. 47). Following the break, three 

Emergency Core Cooling Systems (ECCS) should activate: high pressure injection (HPI), 

which is provided by the charging pumps, intermediate pressure injection (IPI), which is 

provided by the safety injection pumps, and low pressure injection (LPI), which is 

provided by the residual-heat-removal pumps. However, in this scenario, their flowrates 

are considered uncertain, and the time of activation of LPI is delayed and uncertain. 

Table 4. 23 Contains a full list of uncertainties.  
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Table 4. 23: MELCOR LOCA Analysis Uncertainties 

  Uncertainty Distribution* 
1 HPI Flowrate Beta(2,5) 
2 IPI Flowrate Beta(2,5) 
3 LPI Flowrate Beta(2,5) 
4 LPI Activation Time Uniform(300,1100) 
5 Decay Heat Multiplier Normal(0.0,2.57) 
6 Accumulator Temperature Uniform(3250,3350) 
7 Accumulator Pressure Uniform(0.0706,0.0716) 
8 Accumulator Volume Uniform(24.07,26.07) 
9 Refueling Water Storage Tank Volume Uniform(3150,3250) 
10 Reactor Power  Uniform(3.25e9,3.35e9) 

*Many of the uncertainties are not the distribution of the actual parameter, 
but of a scaling factor or part of a larger formula 

 

The break occurs at time 0 sec, with LPI activation occurring anywhere from 300 to 1100 

seconds after. The analysis ends shortly after the activation of LPI, since even its 

minimum flow condition in this experiment is sufficient to temporarily cool the core.  

 The output of interest is again the PCT of the core, which is compared to the NRC 

limit of 2200°F [73]. Due to the long run-times of the MELCOR analysis, only CMC-OS, 

asymptotic CMC, and rLHS were evaluated. First, the “true” 0.95-quantile of the system 

was calculated using a 5,000-run CMC experiment. This returned a “true” 0.95-quantile 

of 1293.16°F. The empirical CDF in Figure 4. 49 shows the shape of the distribution. 

What is interesting to note, from this figure, is the slope of the distribution near the higher 

quantiles. While the slope is fairly constant until the 0.90-quantile, it quickly steepens, 

and there is almost a 1000°F range between the 0.90- and 0.99-quantile. This sensitivity 

is due to the heat released from zirconium oxidation, which increases exponentially with 

temperature. 
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Figure 4. 49: Empirical CDF of Peak Clad Temp. – 5,000 Runs 

 

 Due to the time burden when running a large, complex code like MELCOR, 

unlike the previous examples, 104 independent trials of each method could not be 

performed. Instead, for CMC-OS and asymptotic CMC, a large 5000-run trial was 

conducted. For the analysis here, a random number of the 5000 outputs would be drawn 

as a trial output. For example, at 𝑛 = 59, 59 of the 5000 outputs were chosen at random, 

and treated as a separate trial. This process was repeated for 104 trials. Obviously, this 

introduces some correlation in the results, since the same output value will be used more 

than once. However, the likelihood of pulling the exact same 59 outputs is extremely 

small. Using 5000 outputs, this means there are 8.88𝑥10137 different combinations of 59 

runs possible. The repeated use of trials has a bigger effect on CMC-OS than asymptotic 

CMC due to the way the CIs are calculated. Using asymptotic CMC, the sample variance 
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is used to calculate the CI, meaning many of the output results are used in the calculation. 

However, using CMC-OS, simply the highest value of the 59 outputs is taken as the 

95/95 value. This means the highest values of the 5000 outputs will be repeatedly chosen 

as the 95/95 values. This could influence the results, and more will be said on this topic.   

 For rLHS, 500 cases of 10 LHS runs were conducted. If the desired run level was 

60, then 6 of these 500 cases would be chosen at random in order to produce a trial. For 

rLHS, the number of combinations is smaller at 2.11𝑥1013 since the choice is 6 out of 

500, instead of 59 out of 5000. Like asymptotic CMC, since the CI for rLHS found by 

calculating a sample variance, the effect of repeating results is less than with CMC-OS.  

 The results for 104 trials of CMC-OS and asymptotic CMC at 59 runs, and rLHS 

at 60 runs (𝑡 = 10, 𝑚 = 6) are shown in Table 4. 24. Here, the coverage and “percent 

below true” results appear to show that the asymptotic methods are, at the very least, 

close to convergence, with coverage values at ~90% and “percent below true” near 5%. 

Also, rLHS results in a 95/95 value that is, on average, about 150°F closer to the actual 

0.95-quantile than those 95/95 values found with CMC-OS, with a mean of the rLHS 

95/95 values of 1590.53°F compared to 1740.14°F when using CMC-OS. This could 

mean a very significant gain in margin for an operating power plant. The values for the 

standard deviation should be viewed with caution since, as mentioned above, by using 

repeated output values, certain results may occur multiple times (especially in the case of 

CMC-OS) and influence the spread of 95/95 values.  
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Table 4. 24: MELCOR - Comparison of 95/95 Values for 104 Trials – 59 Runs 

 
6x10 rLHS  59 CMC  59 CMC-OS   

Mean of 104 95/95 Values 1590.53 1668.42 1740.14  
S.D. of 104 95/95 Values 197.13 253.26 275.38  

% Below “true” 5.67% 5.01% 5.10%  
Coverage 89.67% 87.53%   

 

 In order to confirm that the repeated use of output values did not drastically sway 

the results, another analysis was performed, but without using the same output result 

more than once. This was done by performing only 80 trials. Since 5000 CMC runs were 

performed, 59 ∗ 80 = 4720, which meant that output results could be chosen without 

repetition (the values were chosen without replacement). For rLHS, 6 ∗ 80 = 480, which 

is less than the 500 cases conducted. So again, this would prevent output results from 

being used multiple times. These results are in Table 4. 25. As the table shows, the results 

are nearly identical to the repeated trial results in Table 4. 24 (since only 80 trials are 

being performed, the statistical sample is not that large, so the methods may not have 

exactly 5% of trials “below true”). So it appears that the repeated trial results from above 

are accurate, and that the gain when using rLHS is real. 

 

Table 4. 25: MELCOR - Comparison of 95/95 Values for 80 Trials – 59 Runs 

 
6x10 rLHS  59 CMC  59 CMC-OS   

Mean of 80 95/95 Values 1580.32 1665.52 1742.31  
S.D. of 80 95/95 Values 190.65 262.26 270.82  

% Below “true” 6.10% 3.80% 6.32%  
Coverage 91.46% 91.14%   
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 This analysis was repeated for the 𝑛 = 93 run level. Table 4. 26 shows the results 

for 104 trials of 93 CMC-OS and asymptotic CMC runs, and 90 rLHS runs (𝑡 = 10, 

𝑚 = 9), using the repeated trial method described above. While CMC-OS at this run 

level shows a substantial improvement in accuracy compared to the 𝑛 = 59 run level, 

with over a 100°F reduction in margin, it still results in a 95/95 value that, on average, is 

approximately 100°F higher than the resulting value when using rLHS.  

 

Table 4. 26: MELCOR - Comparison of 95/95 Values for 104 Trials – 93 Runs 

 
9x10 rLHS  93 CMC  93 CMC-OS   

Mean of 104 95/95 Values 1527.21 1559.53 1622.69  
S.D. of 104 95/95 Values 159.92 191.33 209.85  

% Below “true” 5.91% 6.01% 4.92%  
Coverage 89.42% 89.64%   

 

  

 Once again, this run level was examined without using repeated output values, by 

conducting only 50 trials. The results for this experiment are shown in Table 4. 27, and 

like the previous example, they show very little variation from the repeated trial results 

(again, the important value is the mean, since the statistical sample for the “% below 

true” is small).  

 

Table 4. 27: MELCOR - Comparison of 95/95 Values for 50 Trials – 93 Runs 

 
9x10 rLHS  93 CMC  93 CMC-OS   

Mean of 50 95/95 Values 1524.71 1552.93 1623.14  
S.D. of 50 95/95 Values 163.16 194.70 218.62  

% Below “true” 4.00% 8.00% 6.00%  
Coverage 92.00% 88.00%   
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 These results show a potentially large improvement in accuracy by using rLHS 

instead of CMC-OS. This is caused, in part, by the shape of the output distribution. As 

Figure 4. 49 showed, the higher quantiles of the output distribution spanned over 1000°F. 

Since CMC-OS only uses the top output result, or the second highest result when 𝑛 = 93, 

it could be choosing values which are substantially higher than the true 0.95-quantile. 

Figure 4. 7 in Section 4.2.1 showed that CMC-OS is more likely to return a 95/95 value 

near the 0.99- or 1.0-quantile at the 𝑛 = 59 run level. Since those higher quantiles are far 

from the 0.95-quantile in this example, CMC-OS induces a large amount of excess 

conservatism. This situation is avoided using the asymptotic methods, since the quantile 

is estimated directly, and the CIs are calculated using a sample variance which takes into 

account more than one point of the output samples. This leaves these methods less 

vulnerable to one or two very high output values.  

4.4. Discussion  

 These experiments indicate that rLHS can provide more accurate and precise 

confidence intervals for quantiles than CMC-OS. This would mean a reduction in the 

probability of  both Type-I and Type-II errors. However, the rLHS method is not without 

its faults. As several results showed, at low run levels, the method may not have 

converged. This can result in too many trials resulting in a 95/95 or 95/75 value falling 

below the actual quantile. An interesting point though is that even when this did occur, 

the rLHS trial results still did not fall as far below the “true” quantile as some CMC-OS 

trials. So it is not possible to say whether this would result in more Type-I errors than 
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CMC-OS without knowing the actual location of the safety limit, which will be examined 

in more detail in Section 5.  

 There may be ways to help resolve the convergence issue. Additional experiments 

on different types of systems can lead to more guidance about the proper selection of the 

parameters of the derivative estimator. Also, it is possible to improve coverage of the 

constructed rLHS confidence interval by replacing the normal critical point with a critical 

point from a Student-t distribution with m-1 degrees of freedom, where m is the number 

of LHS cases. Since the Student-t distribution has somewhat heavier tails than a normal 

distribution, this results in slightly wider and more conservative CIs. It may help to 

ensure that the number of trials falling below the true quantile does not exceed 5%, but 

this will also reduce the accuracy. Lastly, as explained in Section 4.2.2.4, it appears that 

conducting more cases of a smaller size (increase m, decrease t) aids in the convergence, 

since the validity of the CLT requires that the number m of cases grows large.  

 Specifically, more work should be conducted on how to increase the bandwidth of 

the CFD at very low run levels. As several examples showed, the derivative estimation 

actually got worse as the number of runs increased because the bandwidth parameters 

were changing. One interesting note on this point though is that a better derivative 

estimation at low run levels does not necessarily mean better coverage. As the derivative 

estimation improves, the width of the CI decreases. This means the quantile estimation 

plays a bigger role. If the quantile estimation has not converged, which can be the case at 

low run levels, then it will dominate the error and disrupt the coverage level. Even though 
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this quantile estimation error is present when the derivative is overestimated, the 

increased width of the CI tends to negate the errors caused by the quantile estimation.  

 Finally, it should be noted that this work in no way challenges the validity of 

CMC-OS for the calculation of confidence intervals for quantiles. Conversely, all the 

experiments carried out here demonstrated that the results of the CMC-OS did have 

~95% confidence of exceeding the desired quantile. However, when estimating a 0.95-

quantile, CMC-OS is vulnerable to returning a 95/95 value which considerably 

overestimates the true quantile when the output distribution has a fatter tail at these 

higher quantiles. This is a result of CMC-OS only using a single output value to derive a 

95/95 value. The further the extremes of the output distribution (i.e. the 0.99-quantile) are 

from the 0.95-quantile, the greater the probability that the CMC-OS 95/95 value will be a 

greater distance from the 0.95-quantile.  

4.4.1. Applicability to OLHC 

 Given the performance benefits of OLHCs, shown in Section 3, it would be 

assumed that the use of OLHCs when establishing CIs for quantiles would also be 

superior to ordinary LHS. However, this was not the case. This section details the 

experiments conducted, and offers explanations about the cause of the error.  

4.4.1.1. Experiments 

 As with the other methods detailed at the beginning of Section 4, the use of 

OLHCs, using the CI technique in Section 4.2.2.3, was tried on the several representative 

systems. Upon starting these tests, problems appeared with the outputs of the OLHC’s 
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analyses. As run sizes grew, the confidence levels were not converging properly. Table 4. 

28 shows a comparison of the results when using OLHCs to ordinary rLHS for the 

nonlinear equation with normal inputs (the rLHS results are the same as in Table 4. 6).  

 

Table 4. 28: Comparison of rLHS and OLHC Results 

  rLHS OLHC   
n t=10 t=20 t=30 t=16 t=32 

59 

50.23 48.56   45.12 Mean* 
8.56 7.43  8.32 S.D.* 
5.40 5.40  32.78 % Below 
93.31 93.53  42.52 Covg. 
269.15 277.06   299.21 Avg. 𝝀�𝒑 

93 

47.51 45.56 45.92 46.21 47.61 
5.10 4.32 3.92 3.96 3.73 
4.58 8.51 4.63 3.81 0.44 
92.16 88.95 89.40 88.97 84.22 
213.45 213.03 218.92 237.31 248.06 

124 

46.38 45.26 45.09 45.16 46.62 
4.06 3.38 3.33 3.23 3.21 
4.15 5.17 5.35 4.31 0.27 
94.64 92.35 92.18 92.27 91.14 
233.71 236.20 238.26 259.08 269.03 

311 

43.76 42.91 42.92  42.63 43.72 
1.95 1.47 1.44 1.48 123 
3.63 5.37 4.81 7.71 0.29 
93.48 91.69 91.97 90.42 81.97 
190.81 186.29 189.13 198.12 180.88 

548 

42.77 42.31 42.23 41.87 43.23 
1.34 1.08 1.02 1.04 0.89 
4.30 5.34 5.40 11.36 0.06 
92.20 91.45 91.07 86.95 67.37 
174.75 175.02 173.91 179.09 165.49 

1008 

42.11 41.83 41.76 41.41 42.77 
0.95 0.77 0.73 0.74 0.63 
5.39 5.89 5.58 14.83 0.02 
90.67 90.18 90.35 83.79 43.32 
165.82 165.59 165.29 168.15 153.35 

2004 

41.62 41.48 41.49 41.04 42.53 
0.66 0.54 0.52 0.51 0.44 
6.15 5.75 4.60 22.03 0.01 
89.75 89.76 90.16 77.31 12.35 
161.92 162.65 161.87 165.30 150.86 

* Mean and S.D. of the 104 95/95 Values 
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As the results show, OLHC clearly does not converge to the correct coverage levels, with 

a coverage level of ~77% at 𝑛 = 2004 when 𝑡 = 16 for OLHC, and a coverage level of 

about 12% when 𝑡 = 32. Also, the trends are not even consistent between the different 

run sizes. When 𝑡 = 16, the percent of trial below true errs to the low side as the number 

of runs grows with an increasing percentage falling below the true quantile (22% of trials 

when 𝑛 = 2004), but when 𝑡 = 32, the percent below true errs on the high side (only 

0.01% of trials when 𝑛 = 2004). Even when the OLHC are close to the correct coverage 

levels, the results tend to be worse than with ordinary rLHS.  

 The use of OLHCs was shown in Section 3 to establish more accurate and precise 

quantile estimations than LHS on the same system, and the CIs are based on these 

quantile estimations. It would seem that OLHCs should provide more accurate and 

precise CIs also, but the results show the opposite. There are several possible 

explanations for this phenomenon. The next step was to investigate why this was the 

case.  

4.4.1.2. Analysis of Error 

  First, as mentioned in Section 3, the quantile estimation method used here has not 

been proven for OLHCs. Since this has not been proven, OLHCs no longer fall under the 

CI proof in Section 4.2.2.3. However, it seems unlikely that this alone is the reason for 

the error. As the Section 3 results showed, OLHCs were better at estimating the quantile 

values than ordinary LHS. So even if it has not been mathematically proven, 

heuristically, the quantile estimation method appears to work fine for OLHCs. 
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 The second possible reason for the OLHCs lack of convergence could be with 

how the actual experiments were carried out. The OLHCs used in the experiments were 

based off a larger OLHC design. For example, the 16-run OLHCs were created using a 

16- run OLHC that could handle up to 12 possible inputs. This means it had 12 columns. 

Since only four inputs were needed for the nonlinear equation, the order of the columns 

could be changed to create a new 4-input OLHC design. The number of possible designs 

can be calculated using Eq. 85, 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 =
𝑛!

(𝑛 − 𝑟)!
 Eq. 85 

where n is the number to choose from, and r is the number chosen, as explained in 

Section 3. This means there was a total of 11880 possible permutations of the 4-input, 16-

run OLHC design. This may seem like a large number, but remember, each trial consisted 

of multiple OLHC cases, each with its own design. Then 104 trials were conducted, so the 

number of designs adds up fast. Take for example the 16-run OLHC experiment at the 

548-run level. This means each trial consisted of 34 cases (548/16 = 34.25). So 34 

OLHC designs were used for each trial, and then this was repeated for 104 trials. This 

means, in total, there were 340,000 OLHC designs used. Obviously designs were 

repeated, since there were only 11880 permutations possible. Since the designs were 

repeated, it is possible that the resulting values could be biased towards those particular 

designs. An experiment was conducted to see if this was the case. 

 If it is true that the only reason the coverage levels are not correct is because of 

the repeated OLHC designs, then this problem should not exist if less trials are conducted 

and run designs are not repeated. To test this, the 16-run OLHC experiment from Table 4. 
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28 was repeated for the 548-run level. This time, a variety of trial sizes was used, starting 

with only 100 trials. At the 548-run level, there were 34 cases per trial, so this means a 

total of 3400 OLHC designs were used, which is far below the maximum of 11880. This 

was then repeated for 200, 500, 1000, 5000, 10000, and 50000 trials. If the repeated 

OLHC designs are biasing the result, the coverage level should be correct at the lower 

trial levels, and then get worse as the number of trials increases. This test was also 

conducted for a 32-run OLHC design at the 311- and 548-run level, in order to make sure 

the results were consistent. These results can be found in Figure 4. 50.   

 

 
Figure 4. 50: Coverage Level with Differing Trial Numbers 

 

As the figure shows, the coverage levels do not start out at 0.90, and then get worse. 

Instead, they remain fairly consistent. This would seem to be a definitive answer. The 
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repeated OLHC designs appear to have no effect on the incorrect coverage levels, since 

the coverage level is still incorrect even when the designs are not repeated many times. 

There must be a separate cause for the incorrect coverage levels.  

 The third possible explanation has to do with how CIs are established on LHS 

designs. Recall from Section 4.2.2.3 that since the results of a LHS design are not i.i.d., 

multiple cases of LHS are used since those multiple LHS designs are i.i.d. because they 

are created randomly. There is a difference here between ordinary rLHS and OLHCs. As 

explained in the previous paragraph, the OLHC designs are constructed from random 

permutations of a larger OLHC design. This could mean that the results of the OLHCs 

are not truly i.i.d. If they are not i.i.d., then the resulting values are correlated in some 

fashion which violates the derivation in Section 4.2.2.3. More analysis was conducted to 

see if this could be the cause. 

 As shown in Section 3, it is already known that OLHCs provide a more accurate 

and precise quantile estimation than ordinary rLHS when using the nonlinear equation 

with normal inputs. However, in Section 3, the quantile estimation was made using a 

single LHS or OLHC case. This is not how the quantile is estimated for the CI. In Eq. 81, 

the quantile is estimated using all the runs from the m number of cases. So even if 

OLHCs provided a better estimation in a single case, they may not provide a better 

estimation when combining many cases. A quick comparison of the empirical CDFs 

created from combining these cases showed a potential issue. Figure 4. 51 shows this 

comparison for rLHS and OLHC trial at the 1008-run level.  
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Figure 4. 51: Combined Empirical CDF Comparison 

  

As the figure shows, ordinary rLHS creates a smooth empirical CDF curve, while the 

OLHC design creates a curve with several bends or knees. This results in a different 0.95-

quantile estimation for the OLHC method than the rLHS method. To see if this trial was 

unique or represented a trend, the quantile estimations over 104 trials was recorded for 

each method at each run level. These results can be seen in Figure 4. 52, which shows the 

average quantile estimation, over all cases, for 104 trials.  
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Figure 4. 52: Quantile Estimation Convergence Comparison 

 

As the figure shows, even though the two rLHS methods fluctuate some at lower levels, 

they converge to the true quantile. However, the OLHC trials do not. They converge to 

values above and below the true quantile (which explains why, in Table 4. 28, one 

errored to the high side, and one erred to the low side). Clearly, even though OLHCs 

performed better when estimating a quantile using a single case, they will incorrectly 

estimate a quantile when combining cases. Why this is the case is not yet exactly known, 

but as explained above, it is most likely related to the OLHCs not being completely 

independent and identically distributed. More work is needed to see if this is in fact the 

only cause of error, and if so, whether there is a method that can be used to establish CIs 

with OLHCs.  
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4.4.2. Application to Risk-Informed Safety Margin Characterization 

 As mentioned in Section 2.1.1, there has been recent work investigating the use of 

a Risk-Informed Safety Margin Characterization (RISMC), depicted in Figure 2. 3. While 

this may seem like a radically different approach to safety margin calculation, the 

methods used to demonstrate adherence to the goal may not change. As shown in Figure 

2. 3, the RISMC is a comparison between a capacity curve and a load curve. The most 

straightforward way to estimate the risk of failure would be to calculate an overlap 

coefficient (OVL) [112]. The OVL is an indicator of how much the range of the two 

distributions overlap. While recent work has been done in this field to investigate 

techniques to establish CIs [113], the fact that the distributions in this analysis are 

empirically derived and not standard distributions, like a normal or exponential, makes 

finding this coefficient more complicated. Other work has focused on nonparametrics 

[114][115], but the problem here remains difficult since the comparison is between the 

extremes of the two distributions, which are not easy to characterize without many runs 

being conducted. Instead, the use of quantiles may accomplish the same goal, but in a 

way that is easier to implement.  

 For example, if physical or computational experiments were conducted to 

determine the capacity of the system, this would result in a distribution similar to the one 

found in Figure 4. 53 (although it is unlikely to resemble a normal distribution). 
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Figure 4. 53: Capacity Distribution 

 

From there, the rule-making body, which is this case is the regulator, could specifying the 

amount of overlap between this curve and the load curve in different ways.  

 The first, and easiest, possible comparison is to choose a low quantile of the 

capacity curve, and a high quantile of the load curve, and check to make sure the low 

quantile of the capacity curve is at a higher value. Since this is done using empirical data, 

OSCIs can be used in place of the direct quantile estimation. Figure 4. 54 shows how a 

OSCI (or credible interval if the data is from many sources) could be found for the low 

quantile (in this case the 0.05-quantile) of the capacity curve.  

 



 

198 
 

 
Figure 4. 54: Capacity Distribution with Example Limit 

 

Then this value could be compared to an upper OSCI for a high quantile on the load 

distribution, which would be found by a utility, as seen in Figure 4. 55.  

 

 
Figure 4. 55: Capacity versus Load with OSCI’s 

 

If the upper OSCI of the 0.95-quantile of the load is below the lower OSCI of the 0.05-

quantile of the capacity, then the system passes the test. This comparison is essentially 
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the same as placing a limit on the amount of overlap between the two curves. However, 

unlike the OVL, estimating these quantiles does not require the extremes of the two 

distributions to be characterized in great detail.  

 The second possible technique would be to specify a low quantile on the capacity 

curve, as before, and then attempt to calculate how much of the load curve is above that 

limit. Figure 4. 56 shows what this would look like.  

 

 
Figure 4. 56: Comparison with Low Quantile and Overlap 

 

This would be done by interpolating the quantile of this value on the load distribution. 

For example, the limit value (the OSCI for the 0.05-quantile) may fall between the 0.93- 

and 0.94-quantiles of the load distribution. A limit could be placed on how much overlap 

would be permitted. This is easier than a direct calculation of the overlap of the two 

distributions because the comparison is made to a single value. However, this procedure 

becomes essentially the same as the comparison of quantiles in the previous paragraph. 
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The only difference is that the amount of overlap is computed then compared to the limit 

on that amount, and the previous method uses the maximum amount of overlap (which in 

that case was the 0.95-quantile) and compares it directly, but the end result would be the 

same. 

 Lastly, the previous method could be restated in terms of probability. This method 

is investigated in detail in Section 5. As will be shown, this method will also directly find 

the probability of overlap between the values, and CIs can be established on this 

probability.  

4.4.3. Adding Cases and Possibility of Error 

 When using the rLHS method, multiple cases of LHS runs are performed. Unlike 

CMC-OS, there is no set number of total runs that needs to be conducted. This means, 

using rLHS, an analyst would perform some number of LHS cases, and then analyze the 

results to find a OSCI and compare it to a regulatory limit. However, an analyst could 

always add another LHS case to the results and reanalyze the results. This may be a cause 

of concern among some regulators, who think that analysts will try to “game” the system, 

or in other words, if the initial conclusion is not the desired result, they will continue to 

take LHS cases in the hopes that the next result will be more favorable. Obviously, this is 

possible, but how large is the danger associated with it? 

 To test this, an experiment was conducted using the nonlinear equation with 

normal inputs (described in Section 3.2.2), in order to discover the consequences of 

adding additional LHS cases. An initial trial was conducted of 𝑚 = 6 cases of 𝑡 = 10 

runs (60 runs total). Using this data, a 95/95 value was found, and compared to a pseudo 
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limit value placed at 40.5, which is just below the 0.95-quantile of 40.646. The limit 

value being placed here meant that the system should not pass the test since the limit is 

below the 0.95-quantile. This is a very challenging experiment since the limit and 0.95-

quantile are so close. From there, the conclusion of pass or fail would be recorded, and 

then an additional LHS case of 10 runs would be added to the results (70 runs total), and 

the conclusion would be analyzed again. From there, the amount of times the correct 

conclusion was reached at each step could be compared. 

 First, Table 4. 29 shows the conclusion probability results for this analysis for 104 

trials. Here, the likelihood of getting the correct conclusion increases as the extra LHS 

case is added, which is to be expected.  

 

Table 4. 29: Conclusion Probabilities for 104 Trials 

Conclusion After 60 runs  
(m=6, t=10) 

After additional  
10 runs (70 total) 

Fail Test 9525 9730 
Pass Test 475 270 

 

 

The real question is how many of the 9525 trials which appeared to fail the test at the 60 

run level, would incorrectly appear to pass the test after the extra cases was added. Table 

4. 30 has these results, which show that of the 9525 trials which initially failed the test, 

only 28 would switch to a pass after the addition of an extra case. This means there was 

only a 0.3% chance of success using this method to “game the system.”  
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Table 4. 30: Conclusion Probabilities after Initial Failure Conclusion 

Conclusion After 70 runs  
Fail Test 9497 
Pass Test 28 
Total 9525 

 

 

 This probability may seem low, but a better comparison would be against CMC-

OS, since it is also possible to conduct additional runs in the hopes of getting a different 

result. For example, if an analyst conducted 59 runs to determine a 95/95 value, and this 

value failed against a safety limit, an additional 34 CMC runs could be conducted to 

achieve the next highest run level, 93. Then the results could be tested again.   

 The framework from the previous example was repeated, but in this case, 60 

rLHS runs were conducted, than an additional three LHS cases of 10 runs were added. 

This was compared against CMC-OS at 59 runs, then at 93 runs. Table 4. 31 shows the 

conclusions percentages after each step for 104 trials.  

 

Table 4. 31: Comparison of Conclusions between CMC-OS and rLHS for 104 Trials 

 CMC-OS rLHS 

Conclusion After 59 Runs After additional 
34 Runs (93 total) 

After 60 runs  
(m=6, t=10) 

After additional  
30 runs (90 total) 

Fail Test 9510 9535 9538 9600 
Pass Test 490 465 462 400 

 

 

As the results show, at ~60 runs, rLHS is slightly more accurate, with 9538 trials 

resulting in the correct conclusion, compared to 9510 with CMC-OS. However, once 
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again the question is how many of these trials that initially showed a failure (which is 

correct), became a “pass” when the additional runs were added. Table 4. 32 shows these 

results. For CMC-OS, of the original 9510 failure trials, 230 concluded that the system 

passed after the 34 runs were added. That is ~2.4%. For rLHS, 219 of the 9538 trials 

went from failing to passing, or ~2.3% (the reason this percentage is higher than the 0.3% 

when adding only one additional case, as shown in Table 4. 30, is because as more cases 

are added, the influence of the initial cases is reduced, so the correlation between the 

original conclusion and the new conclusion becomes smaller). So even though it is 

possible to try to beat the system using both methods, it appears to not be any more likely 

to occur with rLHS than with CMC-OS. 

 

Table 4. 32: Conclusion Probabilities at ~90 Runs after Initial Failure Conclusion 

Conclusion CMC-OS rLHS 
Fail Test 9280 9319 
Pass Test 230 219 
Total 9510 9538 
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Chapter 5: Quantiles vs. Probability 
 

 Even though the current NRC-approved method of satisfying the probability 

requirement in [74] is to establish confidence intervals for quantiles, there may be 

alternatives. The most literal interpretation of the NRC requirement would be to establish 

confidence intervals for a probability, rather than a quantile. This may seem like restating 

the same thing, but there are differences between the two statements.  

 By establishing a confidence for a quantile, a statement is being made about the 

location of that particular parameter of the output distribution. For a safety analysis, this 

value is found, then used to compare against the safety limit. However, finding a 

confidence for a probability combines these two steps. Here, the probability of the output 

exceeding the safety limit is found directly, and then a confidence is found on that 

probability.  

 In terms of hypothesis testing, it is similar to the framework laid out in Section 4, 

but involves the use of a different test statistic. So even using the same data, the 

probability method (P-method) and quantile method (Q-method) may produce different 

conclusions. More detail on this hypothesis test, along with methods to find these 

asymptotic confidence intervals for a probability are described in the next section.  
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5.1. Methods 

 As in Section 4.2, suppose there is a system with output Y and CDF F. Unlike 

Section 4, the goal here is to estimate the probability of the output Y being less than a 

constant 𝑏 (the limit value). To state this more rigorously, take 𝜃 to be this probability, 

where 𝜃 = 𝑃(𝑌 ≤ 𝑏) = 𝐹(𝑏), and assuming 0 < 𝜃 < 1. If 𝜃 is greater than 0.95, that 

means there is a greater than 95% probability that the output Y is less than the limit value 

b. In order to satisfy a 95/95 criterion, the goal is to provide a 95% lower OSCI (LOSCI) 

for 𝜃. So if (𝐿, +∞) is a 95% LOSCI for 𝜃, the 95/95 criterion is satisfied if 𝐿 ≥  0.95. 

This means there is a 95% confidence that there is at least a 95% probability that the limit 

value will be greater than the output of the system. The derivation of the methods in 

Sections 5.1.1, 5.1.2, and 5.1.3 are summarized from [116].  

5.1.1. CMC using Probability Method 

 This task can be accomplished using CMC since 𝜃 = 𝐸[𝐼(𝑌 ≤ 𝑏)], so it can be 

estimated using a sample average, and the LOSCI is the same as when estimating the 

mean. If 𝑌1,𝑌2, … ,𝑌𝑛 are i.i.d. samples from the CDF 𝐹, as in Sections 3 and Section 4, 

let 𝑉𝑖 = 𝐼(𝑌𝑖 ≤ 𝑏), so 𝑉1,𝑉2, … ,𝑉𝑛 are also i.i.d., with mean 𝜃. Therefore, the sample 

average 𝑉�𝑛 can be found using Eq.  86.  

𝑉�𝑛 =  
1
𝑛
�𝑉𝑖

𝑛

𝑖=1

 Eq.  86 

Then the sample variance 𝑆𝑛2 can be found using Eq.  87. 

𝑆𝑛2 =
1

𝑛 − 1
�(𝑉𝑖 − 𝑉�𝑛

𝑛

𝑖=1

)2  Eq.  87 
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The LOSCI for 𝜃 can be found in Eq.  88, 

�𝑉�𝑛 − 𝑧
𝑆𝑛
√𝑛

, +∞� Eq.  88 

where 𝑧 is the standard normal critical point for the confidence level desired, as before. 

This method is asymptotically valid since the sample average 𝑉�𝑛 satisfies the CLT in Eq.  

89, 

√𝑛(𝑉�𝑛 − 𝜃) ⟹𝑁(0,𝜎2)  Eq.  89 

as 𝑛 → ∞, and the sample standard deviation 𝑆𝑛 ⟹ 𝜎 as 𝑛 → ∞.  

 As in the previous sections of this work, an example of how this technique can be 

implemented in a computer code can be found in Figure 5. 1, where limit is the safety 

limit, and NN is the normal critical point for the desired confidence level. This code 

compares each output value to the limit value, in order to calculate 𝑉𝑖, called V, and 𝑉�𝑛, 

called V_bar. These values are then used to find the root of the sample variance 𝑆𝑛, called 

Sn. Finally, the probability plus confidence is found.  

 

%%% CMC P-Method 
    V=(Y <= goal);                       % V Calculation using Indicator Fun. 
          V_bar=mean(V);                       % V_bar calculation 
    Sn=sqrt((1/(n-1))*sum((V-V_bar).^2));% Sn Calculation  
    prob_w_conf=V_bar-NN*(Sn/sqrt(n));   % Final Prob. with Confidence 

 
Figure 5. 1: MATLAB Code Implementation of CMC Probability Method  

 

5.1.2. rLHS using Probability Method 

 As in Section 4, a different method must be used to find a confidence interval for 

a probability using LHS. Once again, this is due to the fact the outputs of the LHS design 
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are not i.i.d. Therefore, a new approach is needed to find a sample average, which can be 

used to satisfy a CLT. As before, this is done by taking multiple cases m, each with t 

number of runs. Since the m cases are generated independently, their outputs can used to 

create a sample average.  

 Here, Eq.  90 shows how the average value for 𝑉 can be found for one LHS case. 

The nomenclature is the same as before, where 𝑌𝑖,𝑗 is the ith output from the jth LHS 

case, and  𝑉𝑖,𝑗 = 𝐼(𝑌𝑖,𝑗 ≤ 𝑏). 

𝑊𝑗(𝑡) =  
1
𝑡
�𝑉𝑖,𝑗

𝑡

𝑖=1

 Eq.  90 

Then Eq.  91 shows the sample average of the case averages 𝑊1(𝑡),𝑊2(𝑡), … ,𝑊𝑚(𝑡), 

which are i.i.d.  

𝑊�𝑚,𝑡 =  
1
𝑚
�𝑊𝑗(𝑡)
𝑚

𝑗=1

 Eq.  91 

Eq.  90 and Eq.  91 can be simplified to Eq.  92, which shows that 𝑊�𝑚,𝑡 is the sample 

average over all 𝑉𝑖,𝑗. 

𝑊�𝑚,𝑡 =  
1
𝑚
�

1
𝑡
�𝑉𝑖,𝑗

𝑡

𝑖=1

𝑚

𝑗=1

=
1
𝑚𝑡

��𝑉𝑖,𝑗

𝑡

𝑖=1

𝑚

𝑗=1

 Eq.  92 

Since each 𝑌𝑖,𝑗  ~ 𝐹, the expected value of 𝑊�𝑚,𝑡 is still 𝜃, as with the CMC example. This 

can be seen in Eq.  93. 

𝐸[𝑊�𝑚,𝑡] =  
1
𝑚
�

1
𝑡
�𝐸[𝑉𝑖,𝑗]
𝑡

𝑖=1

𝑚

𝑗=1

=
1
𝑚𝑡

��𝐸[𝐼(𝑉𝑖,𝑗 ≤ 𝑏)] = 𝜃
𝑡

𝑖=1

𝑚

𝑗=1

 Eq.  93 



 

208 
 

The sample variance 𝑆𝑚,𝑡
2  can be found using the sample average 𝑊�𝑚,𝑡 and the value of 

𝑊𝑗(𝑡) from each of the m cases, as seen in Eq.  94. 

𝑆𝑚,𝑡
2 =

1
𝑚 − 1

�(𝑊𝑗(𝑡) −𝑊�𝑚,𝑡

𝑚

𝑗=1

) 2 Eq.  94 

 From there, a CLT can be satisfied with either 𝑚 → ∞ with t remaining fixed, or 

with 𝑡 → ∞ as m remains fixed. Practically, it is easier to implement the method with t 

remaining fixed (since the LHS design must be made with the value for t known 

beforehand), so that will be the method detailed here. Since 0 ≤ 𝑉𝑖,𝑗 ≤ 1, then 0 ≤

 𝑊𝑗(𝑡) ≤ 1, as seen in Eq.  90. Also, since 𝑊𝑗(𝑡) is bounded, it must have finite variance. 

Since 𝑊1(𝑡),𝑊2(𝑡), … ,𝑊𝑚(𝑡) are i.i.d., the CLT in Eq.  95 holds 

√𝑚(𝑊�𝑚,𝑡 − 𝜃) ⟹𝑁(0,𝜎𝑡2) Eq.  95 

as 𝑚 → ∞ with t fixed.  Since 0 < 𝜃 < 1 is assumed, it ensures that 𝜎𝑡2, or the sample 

variance 𝑆𝑚,𝑡
2  is strictly positive. Then an asymptotically valid LOSCI can be found in 

Eq.  96,  

�𝑊�𝑚,𝑡 − 𝑧
𝑆𝑚,𝑡

√𝑚
, +∞� Eq.  96 

as 𝑚 → ∞ with fixed t, and 𝑆𝑚,𝑡 ⟹ 𝜎𝑡 as 𝑚 → ∞ with fixed t.  

 This method can be implemented using the following computer code in Figure 5. 

2, where again limit is the safety limit, and NN is the normal critical point for the desired 

confidence level. Here, the code cycles through each LHS case, calculating 𝑉𝑖,𝑗, and 

𝑊𝑗(𝑡) in Eq.  90, called V_bar, since it can also be viewed as the average value of 𝑉𝑖,𝑗 for 
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that particular LHS case. This is then used to find 𝑊�𝑚,𝑡, called W_bar, and the root of the 

variance 𝑆𝑚,𝑡, called Smt. 

 

 

%%% rLHS P-Method 
    for j=1:m                       % For each LHS case 
        V(j)=(Y(j,:) <= goal);      % V for the runs in that LHS case 
   V_bar(j)=mean(V(j));        % V_bar for that LHS case 
    end 
    W_bar=(1/m)*sum(V_bar);                    % W_bar Calculation  
    Smt=sqrt((1/(m-1))*sum((V_bar-W_bar).^2)); % Smt Calculation 
    prob_w_conf=W_bar-NN*(Smt/sqrt(m));        % Final Prob. with Confidence 
 

Figure 5. 2: MATLAB Code Implementation of rLHS Probability Method 

 

5.1.3. Probability Test Statistic and Hypothesis Testing 

 As described at the start of Section 5, using the P-method is another way to 

perform the hypothesis test described in Section 4. The only difference is the test statistic 

used in the calculation. Rewording Eq.  89 gives 

√𝑛
𝜎�

(𝑉�𝑛 − 𝜃𝑏) ≈ 𝑁(0,1)  Eq. 97 
 

as 𝑛 → ∞, where 𝜃𝑏 is the probability of the output 𝑌 exceeding the limit value b, and 𝜎� 

is the estimator of the variance of  𝑌, and can be found from Eq.  87. Using the CLT, the 

LOSCI for 𝜃𝑏, which will be denoted L, would equal 

𝐿 =  𝑉�𝑛 − 𝑧
𝜎�
√𝑛

  
Eq. 98 
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where z is the standard normal critical value for that confidence level. In order to satisfy 

the 95% confidence for the 95% probability criterion, 𝐿 ≥ 0.95. The hypothesis test 

choices are straightforward.  

H0: 𝜃𝑏 < 0.95 

H1: 𝜃𝑏 ≥ 0.95 

The scenario where H0 is rejected can be described by rearranging Eq. 98, 

𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 
𝑉�𝑛 − 0.95
𝜎� √𝑛⁄

≥ 𝑧 Eq. 99 

which is equivalent to 𝐿 ≥ 0.95. Similarly, 

𝑎𝑐𝑐𝑒𝑝𝑡 𝐻0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 
𝑉�𝑛 − 0.95
𝜎� √𝑛⁄

< 𝑧 Eq. 100 

which is the same as 𝐿 < 0.95.  

 Obviously, one big drawback with the P-method compared to the Q-method is 

that there is no information regarding the margin to the limit value in terms of the figure 

of merit. While the analyst will know the probability margin, it can be hard to translate 

this back into the output units. However, the Q-method from Section 4 can be applied to 

the data also in order to get this information if it was desired, since both methods are 

conducted post-process.  

5.2. Experiments 

 For this analysis, the nonlinear equation, using both normal and non-normal 

inputs, and the LOCA response surface were used to provide a comparison between the 

P- and Q-method. Only these systems were used because there were many different types 
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of confidence techniques to implement, so it was necessary to use system which that were 

not computationally intensive.  

5.2.1. Nonlinear Equation 

5.2.1.1. Normal Inputs 

 Once again, the first system to be used in the analysis was the nonlinear equation 

with normal inputs, detailed in Section 3.2.2. Here, the result of interest was the 

percentage of correct conclusion, or the percent of trials where the analyst would arrive at 

the correct decision regarding whether the system satisfied or violated a limit. This test 

was done by assigning arbitrary limits at certain quantiles of the output distribution. In a 

real analysis, the limit value would not be derived from the output distribution, but would 

be set by the regulator according to some certain safety constraints. However, this was 

done here so that consistent limits could be examined across multiple systems.  When 

estimating a 95% confidence for a 0.95-quantile (Q-method) or 95% confidence for a 

95% probability (P-method), the results were compared to a limit value at the 0.90-

quantile of the output distribution, and at the 0.98-quantile. When estimating a 95% 

confidence for a 0.75-quantile or 95% confidence for a 75% probability, the results were 

compared to a limit value at the 0.70- and 0.80-quantile of the output distribution, since a 

limit at these values would be close to the true 0.75-quantile, and present a challenging 

test situation.  

 The first experiment compared a 95% confidence for the 0.95-quantile or for the 

95% probability to a limit value at the true 0.90-quantile. Figure 5. 3 shows where the 
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true 0.95-quantile and limit value lie on the output distribution. Here the correct 

conclusion of the analysis is that the system fails the test, since the true 0.95-quantile is 

higher than the limit at the 0.90-quantile.  

 

 
Figure 5. 3: Comparison of Limit and 0.95-Quantile 

 

 Since the limit value is below the 0.95-quantile, there are only two possible 

conclusions: correctly identifying that the system fails the limit, or conversely, 

incorrectly finding that the system is under the limit. This means the only error possible is 

a Type-I error, a false positive. This will occur when the result of the analysis falls below 

the limit value in the case of the quantile analysis, or when the probability of falling 

below the limit is above 0.95 in the case of the probability analysis. The possible 

outcomes using Q-method are shown in Figure 5. 4. As this figure shows, the 95% OSCI 
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could fall below the true 0.95-quantile value and still result in the correct conclusion. It is 

the distance which the 95/95 value falls below the true 0.95-quantile that will determine 

whether a Type-I error occurs.  

 

 
Figure 5. 4: Limit Value with Possible Conclusions 

 

It is a similar situation for the P-method, where the correct probability outcome is 90%. 

Even if the probability outcome is over 90%, an error will only occur if the outcome is 

≥ 95%. 

 Since there is a 95% confidence in the result of either analysis technique, the 

value for 𝛼, the probability of Type-I errors, is bounded at 5% (assuming the asymptotic 

methods have converged properly). However, how close 𝛼 is to 5% depends on the 
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accuracy and precision of the analysis. The more accurate and precise the method, the 

smaller the value for 𝛼 will be. For this experiment, 104 trials were conducted with each 

method. The results of this analysis can be seen in Figure 5. 5. Here, the five methods 

compared are: 

1. rLHS: 95% OSCI for 0.95-quantile (Q-Method) 
2. rLHS: 95% LOSCI for probability (P-Method) 
3. CMC: 95% OSCI for 0.95-quantile (Q-Method) 
4. CMC: 95% LOSCI for probability (P-Method) 
5. CMC-OS: 95% OSCI for 0.95-quantile 

Each method was tested at several different run levels (59, 93,124, 311, 548, and 1008), 

with 104 trials being conducted at each run level. As the figure shows, all methods had 

Type-I errors occur less than 5% of the time, with rLHS using the Q-method committing 

the least amount of errors. rLHS using the P-method was a close second, followed by 

CMC using the Q-method and CMC-OS. CMC using the P-method was by far the worst 

performer.  
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Figure 5. 5: Type-I Error Percentage for 104 Trials – 0.90-Quantile 

 

 The numerical results can be found in Table 5. 1, where the percentage of Type-I 

errors is given. Since the error percentage was so low, the test was repeated with the limit 

at the 0.94-quantile, which was a more challenging scenario. These results can be seen in 

Table 5. 2. Here, the trends from the 0.90-quantile limit continue, with the rLHS Q-

method being the best performer, and the Q-method, in general, outperforming the P-

method.  The P-method also appears to take a longer time to converge, with several 

values exceeding the upper-bound of α for a properly converged OSCI of 5%, such as 

with CMC at 𝑛 = 59 (12.6%) and rLHS with 𝑡 = 20 and 𝑛 = 93 (13.8%).  
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Table 5. 1: 𝛼 Percentage – Nonlinear Eq. Normal Inputs – 0.90-Quantile 

    rLHS 

  CMC Q-Method P-Method 
n* CMC-OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30 
59 0.15 0.15 1.51 0.01 0.0 X 0.12 0.24 X 
93 0.04 0.08 0.27 0.0 0.0 0.0 0.0 0.12 0.01 

124 0.03 0.04 0.11 0.0 0.0 0.0 0.0 0.01 0.0 
153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
311 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1008 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

*104 Trials per run level 

 

 

Table 5. 2: 𝛼 Percentage – Nonlinear Eq. Normal Inputs – 0.94-Quantile 

    rLHS 

  CMC Q-Method P-Method 
n* CMC-OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30 
59 2.45 2.72 12.60 2.10 1.63 X 5.57 2.95 X 
93 2.54 2.97 7.70 1.23 2.05 0.97 3.56 13.8 4.66 

124 1.74 2.93 5.36 1.37 1.53 1.66 2.04 4.23 1.95 
153 0.87 1.55 1.85 0.61 0.41 0.44 0.79 0.42 0.58 
311 0.44 0.88 0.84 0.16 0.14 0.18 0.14 0.15 0.10 
1008 0.15 0.27 0.29 0.05 0.01 0.03 0.04 0.0 0.01 

*104 Trials per run level 

 

 

 In the next analysis, the limit value was placed at the true 0.98-quantile, which 

meant the system should pass the test since the limit is above the true 0.95-quantile. Here, 

the two possible conclusions are that the system correctly passes the test, or committing a 

Type-II error, a false negative, where the system does not appear to pass the test. Figure 

5. 6 shows the possible conclusions and their related intervals. As the figure shows, if the 

95% OSCI for the 0.95-quantile falls below the true quantile, there is no error. However, 

there is very little room to over-estimate the quantile. If the 95% OSCI for the 0.95-

quantile falls above 48.453, the analyst will commit a Type-II error.  
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Figure 5. 6: Limit Value with Possible Conclusions  

 

In respect to the probability method, the correct probability outcome should be 0.98. 

However, as long as the outcome result is greater than 0.95, the system will still pass the 

test.  

 The results of this analysis can be found in Figure 5. 7, with numerical results in 

Table 5. 3, which gives the percentage of Type-II errors out of 104 trials. In this case, the 

P-method using both rLHS and CMC outperforms the other techniques, with about a 50% 

reduction in errors at 𝑛 = 59 compared to the Q-method results. Using rLHS with the Q-

method achieves fewer errors than CMC using the Q-method at every run level, and 

CMC-OS, which performed the worst and resulted in 𝛽 ≈ 70% when the run level was 
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59. This means only ~30% of the time would the analyst have correctly concluded that 

the system should pass the test.  

  

 
Figure 5. 7: Type-II Error Percentage for 104 Trials – 0.98-Quantile 

 

Table 5. 3: 𝛽 Percentage – Nonlinear Eq. Normal Inputs – 0.98-Quantile 

    rLHS 

  CMC Q-Method P-Method 
n* CMC-OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30 
59 69.68 64.60 33.17 50.19 40.71 X 35.52 36.74 X 
93 56.70 47.89 29.23 35.71 19.74 22.12 26.86 16.74 10.00 

124 46.05 33.2 24.79 18.76 9.33 7.58 21.62 19.11 12.23 
153 9.34 5.93 5.09 1.53 0.08 0.05 1.52 0.12 0.08 
311 0.92 0.65 0.44 0.05 0.0 0.0 0.06 0.0 0.0 
1008 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

*104 Trials per run level 

 

 This analysis was repeated for the 0.75-quantile, and a limit value placed at the 

0.70-quantile. The outcomes of this analysis are similar to the ones described in Figure 5. 
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4, where only a Type-I error is possible. For these tests, the following run levels were 

used: 11, 29, 40, 135, 246, 459, and 886. These results can be found in Figure 5. 8 and 

Table 5. 4. As the figure shows, even though the value for 𝛼 is bound at 5%, the P-

method results have values greater than 5%. This is because, at the lowest run level, only 

11 runs were conducted. This may be too small for some of the asymptotic methods to 

converge, which is why the 𝛼 error percentage is greater than 5%. At the next highest run 

level, all the methods are correctly under 5%. As the results show, rLHS using the Q-

method is once again the best performer with very few Type-I errors (under 0.5% when 

using rLHS and 𝑡 = 5). This is similar to the 0.90-quantile limit value results in Figure 5. 

5.  

 

 
Figure 5. 8: Type-I Error Percentage for 104 Trials – 0.70-Quantile 
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Table 5. 4: 𝛼 Percentage – Nonlinear Eq. Normal Inputs – 0.70-Quantile 

    rLHS 

  CMC Q-Method P-Method 
n* CMC-OS Q-Method P-method t=5 t=10 t=15 t=5 t=10 t=15 
11 2.07 2.61 11.37 0.44 X X 22.51 X X 
29 1.16 1.34 3.80 0.30 0.29 7.34 1.89 0.29 2.38 
40 0.85 1.24 2.35 0.10 0.28 3.44 0.81 0.28 0.30 

135 0.17 0.21 0.27 0.0 0.0 0.01 0.02 0.03 0.03 
246 0.03 0.05 0.05 0.0 0.0 0.0 0.0 0.0 0.0 
459 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
886 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

*104 Trials per run level 

 

 This analysis was repeated using a limit at the 0.80-quantile, which is similar to 

the situation presented in Figure 5. 6, where only a Type-II error is possible. The results 

are presented in Figure 5. 9 and Table 5. 5. Here, rLHS using the Q-method and CMC-

OS are at the same level for 𝛽 when 𝑛 = 11, but the rLHS method quickly outperforms 

the CMC-OS method as the number of runs increases, and convergence improves. The P-

method begins as the best performer, but soon becomes essentially equivalent to the Q-

method. Once again, these discrepancies at the lowest run level are a consequence of non-

convergence at 11 runs. It is important to note the drastic improvement in correct 

conclusion when using the rLHS methods at the intermediate run levels, when compared 

to the CMC methods. At 𝑛 = 246, the LHS methods are below 10% error, while the 

CMC methods are at 30-40%.    
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Figure 5. 9: Type-II Error Percentage for 104 Trials – 0.80-Quantile 

 

Table 5. 5: 𝛽 Percentage – Nonlinear Eq. Normal Inputs – 0.80-Quantile 

    rLHS 

  CMC Q-Method P-Method 
n* CMC-OS Q-Method P-method t=5 t=10 t=15 t=5 t=10 t=15 
11 91.11 88.06 67.79 92.35 X X 53.05 X X 
29 86.09 82.77 71.75 74.23 66.2 47.12 64.29 55.37 48.61 
40 83.84 78.69 71.02 67.07 59.39 53.91 60.82 65.51 62.18 

135 62.28 57.59 53.33 29.50 17.40 23.64 26.36 21.59 23.42 
246 41.24 37.39 35.05 7.39 5.54 4.75 8.82 5.91 6.25 
459 15.88 16.92 15.88 0.49 0.25 0.22 0.54 0.34 0.25 
886 2.57 2.59 2.57 0.0 0.0 0.0 0.01 0.0 0.0 

*104 Trials per run level 

 

5.2.1.2. Non-normal Inputs 

 These tests were repeated for the nonlinear equation with non-normal inputs 

detailed in Section 3.3.1.2. Here, only the numerical results are presented, with Table 5. 6 

containing the results for a limit value at the 0.90-quantile, and Table 5. 7 containing the 
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results for a limit value at the 0.94-quantile. The trend from the example with normal 

inputs continues, with the Q-method outperforming the P-method when the limit value is 

less than the 0.95-quantile, with essential zero errors for the Q-method when the limit 

was at the 0.90-quantile, and less than 3% errors with a limit at the 0.94-quantile. Also, 

rLHS continues to incur less Type-I errors than the CMC-OS approach. As with the 

previous example, it appears that the P-method takes longer to converge, with several 

results over the bound of 5%, when the limit is placed at the 0.94-quantile.  

 

Table 5. 6: 𝛼 Percentage – Nonlinear Eq. Non-normal Inputs – 0.90-Quantile 

    rLHS 

  CMC Q-Method P-Method 
n* CMC-OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30 
59 0.16 0.20 1.29 0.0 0.0 X 0.01 0.0 X 
93 0.06 0.09 0.32 0.0 0.0 0.0 0.0 0.11 0.0 

124 0.01 0.0 0.06 0.0 0.0 0.0 0.0 0.01 0.0 
153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
311 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1008 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

*104 Trials per run level 

 

Table 5. 7: 𝛼 Percentage – Nonlinear Eq. Non-normal Inputs – 0.94-Quantile 

    rLHS 

  CMC Q-Method P-Method 
n* CMC-OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30 
59 2.82 3.04 12.91 2.21 1.64 X 4.92 1.45 X 
93 2.22 2.99 7.74 1.13 2.26 0.60 2.67 18.25 3.72 

124 1.86 2.98 5.25 1.87 2.06 1.78 1.77 7.15 1.22 
153 1.04 1.70 2.05 0.42 0.41 0.34 0.55 0.26 0.27 
311 0.47 0.90 0.86 0.17 0.14 0.09 0.17 0.11 0.05 
1008 0.19 0.30 0.31 0.02 0.0 0.0 0.03 0.0 0.0 

*104 Trials per run level 

 

 This test was repeated for a limit at the 0.98-quantile, with the results in Table 5. 

8. Once again, the error percentages are very high at low run levels (greater than 30% for 
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all methods), but the P-method incurs about half as many errors as the Q-method, which 

is consistent with the previous example. Also, rLHS using the Q-method greatly 

outperforms CMC-OS with about a 40% reduction in errors.  

 

Table 5. 8: 𝛽 Percentage – Nonlinear Eq. Non-normal Inputs – 0.98-Quantile 

    rLHS 

  CMC Q-Method P-Method 
n* CMC-OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30 
59 70.10 70.21 33.57 41.61 28.18 X 34.08 35.10 X 
93 56.82 52.80 29.53 36.36 16.12 20.79 25.68 18.01 17.57 

124 46.39 40.28 24.21 21.36 8.27 7.45 20.77 20.60 19.62 
153 10.47 10.17 5.39 2.25 0.19 0.15 1.39 0.20 0.29 
311 1.03 1.04 0.62 0.08 0.01 0.0 0.03 0.02 0.0 
1008 0.02 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 

*104 Trials per run level 

 

 As before, these tests were repeated for the 0.75-quantile, with results in Table 5. 

9 and Table 5. 10. The trends established before continue, with the Q-method being the 

best performer when the limit is below the estimated quantile, and the P-method 

performing better when the limit is above the estimated quantile. What is also interesting 

to note is that for this system, rLHS using the Q-method did not commit any errors when 

the limit was at the 0.90- or 0.70-quantile, and it was the only method to not contain any 

errors. In the case of the 0.70-quantile, this is most likely a result of convergence issues at 

the 𝑛 = 11 run level. As the results in Section 4 showed, at this run level, the number of 

trials falling below the true quantile was much less than 5%. The results in Table 5. 10 

appear to confirm this since, at 𝑛 = 11, rLHS using the Q-method has the highest error 

rate, but at every other run level, rLHS is much better than the CMC methods (such as at 
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𝑛 = 135, where rLHS using the Q-method and 𝑡 = 5 has a 5.89% error probability, 

compared to 61.78% using CMC-OS).  

 

Table 5. 9: 𝛼 Percentage – Nonlinear Eq. Non-normal Inputs – 0.70-Quantile 

    rLHS 

  CMC Q-Method P-Method 
n* CMC-OS Q-Method P-method t=5 t=10 t=15 t=5 t=10 t=15 
11 1.85 6.83 11.24 0.0 X X 24.20 X X 
29 1.11 4.96 3.72 0.0 0.0 1.91 1.64 0.17 0.04 
40 1.03 4.33 2.66 0.0 0.0 1.32 0.43 0.05 0.0 

135 0.13 0.46 0.33 0.0 0.0 0.0 0.0 0.0 0.0 
246 0.04 0.14 0.09 0.0 0.0 0.0 0.0 0.0 0.0 
459 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
886 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

*104 Trials per run level 

 

Table 5. 10: 𝛽 Percentage – Nonlinear Eq. Non-normal Inputs – 0.80-Quantile 

    rLHS 

  CMC Q-Method P-Method 
n* CMC-OS Q-Method P-method t=5 t=10 t=15 t=5 t=10 t=15 
11 91.48 78.04 67.90 96.53 X X 22.39 X X 
29 86.10 68.76 71.79 63.26 57.38 19.44 32.10 30.22 29.52 
40 83.36 64.05 71.32 43.80 35.12 28.05 38.36 39.01 40.04 

135 61.78 53.07 53.64 5.89 0.78 1.23 3.21 1.51 1.10 
246 41.19 34.46 35.84 0.20 0.03 0.0 0.28 0.07 0.03 
459 16.27 16.48 16.27 0.0 0.0 0.0 0.0 0.0 0.0 
886 3.01 2.69 3.01 0.0 0.0 0.0 0.0 0.0 0.0 

*104 Trials per run level 

 

5.2.2. LOCA Response Surface 

 Lastly, the tests were repeated using the LOCA response surface detailed in 

Section 3.2.3. Here, the complete list of results presented in Table 5. 11. A closer 

examination of these results shows the same trend as the two previous examples. The Q-

method incurs fewer errors when the limit is below the estimated quantile, and the P-

method incurs fewer errors when the limit is above the estimated quantile. Also, the rLHS 
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approach using the Q-method consistently outperforms CMC-OS. It should be noted that 

for the 0.94-quantile, the CMC-OS method appears to have less errors than the rLHS Q-

method, but if the results from Table 4. 18 are viewed again, it shows that the rLHS Q-

method had over 6% of trials below the true quantile, which means there were 

convergence issues at low run levels for that design. This discrepancy disappears at the 

next highest run level, and the rLHS and CMC-OS methods end up essentially 

equivalent. Once again, when the limit value is above the true quantile, the improvement 

when using the rLHS methods can be very large, with an approximately 50% reduction in 

errors when compared to the CMC methods.  
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Table 5. 11: Incorrect Conclusion Percentages – LOCA Resp. Surf. 

    rLHS 

  CMC Q-Method P-Method 
n* CMC-OS Q-Method P-method t=10 t=20 t=30 t=10 t=20 t=30 

0.90-Quantile         59 0.25 0.24 1.45 0.06 0.08 X 0.33 0.15 X 
93 0.07 0.04 0.31 0.04 0.03 0.02 0.08 0.52 0.06 

124 0.02 0.01 0.14 0.01 0.02 0.01 0.02 0.01 0.02 
153 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
311 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1008 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.94-Quantile         59 2.91 2.81 11.85 3.10 4.35 X 7.23 6.81 X 
93 2.15 2.45 7.36 2.01 4.54 3.88 5.11 10.41 6.82 

124 1.64 2.72 5.31 2.24 3.11 4.00 3.67 3.17 2.63 
153 0.76 1.43 1.67 0.94 1.02 1.37 1.19 1.03 1.31 
311 0.44 0.63 0.89 0.30 0.45 0.32 0.31 0.41 0.35 
1008 0.14 0.29 0.27 0.07 0.06 0.06 0.04 0.04 0.04 

          0.98-Quantile         59 69.52 68.67 33.62 51.35 44.93 X 34.46 34.40 X 
93 56.59 50.46 29.05 42.32 33.36 35.98 27.47 23.15 28.08 

124 45.29 39.46 23.26 28.99 23.37 23.05 22.34 26.06 30.70 
153 9.97 8.67 4.82 3.78 1.93 2.48 2.33 2.34 2.41 
311 0.80 0.60 0.35 0.15 0.17 0.16 0.11 0.14 0.13 
1008 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
          
0.70-Quantile   t=5 t=10 t=15 t=5 t=10 t=15 
11 2.13 4.51 11.11 0.39 X X 22.28 X X 
29 1.19 3.81 3.94 0.62 0.54 7.79 1.40 1.70 2.34 
40 0.64 2.60 2.01 0.60 0.87 3.17 0.57 0.47 0.34 

135 0.18 0.27 0.31 0.01 0.01 0.0 0.03 0.0 0.0 
246 0.02 0.07 0.09 0.0 0.0 0.0 0.0 0.0 0.0 
459 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
886 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.80-Quantile         
11 91.48 85.32 68.63 91.43 X X 55.19 X X 
29 86.13 75.88 71.96 67.39 64.72 47.47 66.42 58.70 50.53 
40 83.73 72.77 71.50 55.71 53.75 50.65 62.06 68.99 64.39 

135 61.68 60.50 53.14 33.40 21.27 28.19 29.31 25.77 25.85 
246 40.98 40.89 34.97 10.90 8.15 7.22 10.88 8.05 8.43 
459 15.42 18.92 15.42 1.04 0.59 0.65 1.10 0.57 0.56 
886 2.79 3.27 2.79 0.02 0.0 0.01 0.0 0.0 0.0 

*104 Trials per run level 

 

5.3. Analysis of Results 

 As the results show, the Q-method appears to outperform the P-method when the 

limit value is less than the estimated quantile, but the P-method performs better when the 
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limit value is above the estimated quantile. The following calculations in Sections 5.3.1, 

5.3.2, and 5.3.3 are summarized from [116], and shed light on why this is the case. 

5.3.1. P-Method Analysis 

 To compare the Q-method and P-method, define the quantile level q with 

0 < 𝑞 < 1, and let the limit value 𝑏 ≡ 𝑏𝑞 = 𝐹−1(𝑞). So when 𝑞 < 0.95, the correct 

conclusion will be accepting H0, or that the system should not pass the test, since the limit 

b is below the true 0.95-quantile. When 𝑞 > 0.95, the correct conclusion is to reject H0, 

meaning the system passes the test, since the limit b is above the true 0.95-quantile.  

 For the P-method, when 𝑞 < 0.95, the correct conclusion occurs when 𝐿 < 0.95, 

which is the same as accepting H0, and it occurs with probability 𝑃(𝐿 < 0.95). When 

𝑞 > 0.95, the correct conclusion occurs when 𝐿 ≥ 0.95, which is the same as rejecting 

H0, and occurs with probability 𝑃(𝐿 ≥ 0.95). 

 The probability of achieving the correct conclusion using the P-method can be 

developed by approximating 𝑃(𝐿 < 0.95) and 𝑃(𝐿 ≥ 0.95) for different values of q. 

Since 𝑏 ≡ 𝑏𝑞 = 𝐹−1(𝑞), then 𝐸[𝑉] = 𝑃�𝑌 ≤ 𝑏𝑞� = 𝑞, where 𝑉 = 𝐼�𝑌 ≤ 𝑏𝑞�, as 

described in Section 5.1.1, and the variance 𝜎𝑏𝑞
2  of Y is 𝑞(1 − 𝑞). Then specializing the 

CLT in Eq. 97 to the case when 𝑏 = 𝑏𝑞,  

√𝑛
𝜎�𝑛

(𝑉�𝑛 − 𝑞) ≈ 𝑁(0,1) Eq. 101 

for large n, since  𝜃𝑏 = 𝑞, and the variance estimator 

𝜎�𝑛2 ≈ 𝜎𝑏𝑞
2 = 𝑞(1 − 𝑞) 

Eq. 102 
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for large n. Therefore, using the hypothesis test statistic laid out in Eq. 100 of Section 

5.1.3, the probability of  (𝐿 < 0.95) can be approximated by first adding the deviation of 

the limit value from the quantile (0.95 − 𝑞 𝜎� √𝑛⁄⁄ ) to both sides, 

𝑃(𝐿 < 0.95) = 𝑃 �
𝑉�𝑛 − 0.95
𝜎� √𝑛⁄

< 𝑧� = 𝑃 �
𝑉�𝑛 − 𝑞
𝜎� √𝑛⁄

< 𝑧 +
0.95 − 𝑞
𝜎� √𝑛⁄

�. Eq. 103 

Then substituting the results from Eq. 101 into the left-hand side of the operator, and 

using Eq. 102 on the right-hand side gives, 

𝑃(𝐿 < 0.95) ≈ 𝑃 �𝑁(0,1) < 𝑧 +
0.95 − 𝑞

�𝑞(1 − 𝑞) 𝑛⁄
� = Φ�𝑧 + √𝑛

0.95 − 𝑞
�𝑞(1 − 𝑞)

� Eq. 104 

for large n, where Φ is the CDF of a standard normal. Also, the inverse case for 𝑃(𝐿 ≥

0.95 can be found, 

𝑃(𝐿 ≥ 0.95) = 1 − 𝑃(𝐿 < 0.95) ≈ 1 −Φ�𝑧 + √𝑛
0.95 − 𝑞
�𝑞(1 − 𝑞)

� 

                                                              = Φ�−𝑧 − √𝑛
0.95 − 𝑞
�𝑞(1 − 𝑞)

� 
Eq. 105 

for large n by the symmetry of the normal density function.  

 When 𝑞 < 0.95, by Eq. 104, the probability of the correct conclusion for the P-

method satisfies,  

𝑃(𝐿 < 0.95) ≈ Φ�𝑧 + √𝑛
0.95 − 𝑞
�𝑞(1 − 𝑞)

� → 1 
Eq. 106 

as 𝑛 → ∞ since √𝑛(0.95 − 𝑞) �𝑞(1 − 𝑞) → ∞�  as 𝑛 → ∞. 

 When 𝑞 > 0.95, by Eq. 105, the probability of the correct conclusion for the P-

method satisfies, 
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𝑃(𝐿 ≥ 0.95) ≈ Φ�−𝑧 + √𝑛
0.95 − 𝑞
�𝑞(1 − 𝑞)

� → 1 
Eq. 107 

as 𝑛 → ∞ since 𝑞 > 0.95 ensures  √𝑛(0.95 − 𝑞) �𝑞(1 − 𝑞) → ∞�  as 𝑛 → ∞. 

 The following will now compare how quickly the probabilities of correct 

conclusion converge to 1 for the P-method as sample size n grows for a fixed q. When 

𝑞 < 0.95, the approximation to the probability of correct conclusion in Eq. 106 satisfies, 

Φ�𝑧 + √𝑛
0.95 − 𝑞
�𝑞(1 − 𝑞)

� > Φ(z) = 0.95 
Eq. 108 

for all n since √𝑛(0.95 − 𝑞) �𝑞(1 − 𝑞) > 0�  for 𝑞 < 0.95. Therefore, as long as the 

CLT approximation in Eq. 106 holds, meaning as long as the asymptotics have converged 

properly, then the probability of correct conclusion is always greater than 0.95 when 

𝑞 > 0.95. This is consistent with the experiments in Section 5.2, where the probability of 

correct conclusion is greater than 0.95 (meaning 𝛼 ≤ 0.05), even when n is not very large 

(other than the trials at 𝑛 = 11 where the asymptotics had not converged properly).  

 On the other hand, when 𝑞 > 0.95, the probability of correct conclusion in Eq. 

107 also converges to 1, but the approximate probability  

Φ�−𝑧 + √𝑛
0.95 − 𝑞
�𝑞(1 − 𝑞)

� 
Eq. 109 

is not always greater than 0.95 for all n because of the – 𝑧 in the argument. Rather Eq. 

109 exceeds 0.95 only when n is large enough so that – 𝑧 + √𝑛 0.95−𝑞
�𝑞(1−𝑞)

> 𝑧; i.e., when 

𝑛 > 4𝑧2𝑞(1−𝑞)
(0.95−𝑞)2

, which can be quite large when 𝑞 ≈ 0.95. In other words, when q is only 

slightly larger than 0.95, the probability of the correct conclusion can be much less than 1 
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unless n is very large. This is consistent with the results in Section 5.2, when the limit 

value was placed at 𝑞 = 0.98. 

 To put this another way, when 𝑞 < 0.95, the correct conclusion is to accept H0. 

Since H0 is the null hypothesis and gets the “benefit of doubt”, as explained in Section 

2.1.2, it is not difficult to establish. This can be seen in Eq. 98, where if q is only slightly 

less than 0.95, the point estimate 𝑉𝑛�  is given extra help by subtracting 𝑧𝜎� √𝑛⁄ , thus 

making it more likely that 𝐿 < 0.95. 

 On the other hand, when 𝑞 > 0.95, the correct conclusion is to reject H0, but this 

is harder to establish (as in the judicial example in Section 2, it would require evidence 

“beyond a reasonable doubt”). In Eq. 98, it can be seen that when q is only slightly 

greater than 0.95, it is harder for 𝐿 ≥ 0.95 because 𝑧𝜎� √𝑛⁄  is subtracted from the point 

estimate 𝑉𝑛� , so it must also overcome the value of the 𝑧𝜎� √𝑛⁄  term.  

5.3.2. Q-Method Analysis 

 For the Q-method, assuming the same criterion laid out in the previous section, 

when 𝑞 < 0.95, the correct conclusion occurs when 𝑈 > 𝑏𝑞 (where U is the OSCI for the 

0.95-quantile, as defined in Eq. 59), which is the same as accepting H0, and occurs with 

probability 𝑃(𝑈 > 𝑏𝑞). This means the system fails the test. When 𝑞 > 0.95, the correct 

conclusion occurs when 𝑈 ≤ 𝑏𝑞, which is the same as rejecting H0, and occurs with 

probability 𝑃(𝑈 ≤ 𝑏𝑞).  

 As with the P-method, approximations can be found for these probabilities. Since 

𝑈 ≤ 𝑏𝑞 is equivalent to rejecting H0 at level 0.05, starting from the hypothesis test 
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detailed in Section 4.2.2, and subtracting the deviation from the true quantile to the limit, 

√𝑛
𝜏� (𝜉0.95 − 𝑏𝑞), to both sides gives,  

𝑃�𝑈 ≤ 𝑏𝑞� = 𝑃 �
𝜉0.95,𝑛 − 𝑏𝑞
�̂� √𝑛⁄

≤ −𝑧� = 𝑃 �
𝜉0.95,𝑛 − 𝜉0.95

�̂� √𝑛⁄
≤ −𝑧 −

√𝑛
�̂�

(𝜉0.95 − 𝑏𝑞)� Eq. 110 

Then using the CLT approximation in Eq. 57 and �̂� ≈ 𝜏,  

𝑃�𝑈 ≤ 𝑏𝑞�  ≈ 𝑃 �𝑁(0,1) ≤ −𝑧 −
√𝑛
𝜏
� = Φ�−𝑧 −

√𝑛
𝜏

(𝜉0.95 − 𝑏𝑞)� Eq. 111 

Also, as with the P-method, the conversing case can be found 

𝑃�𝑈 > 𝑏𝑞� = 1 − 𝑃�𝑈 < 𝑏𝑞� ≈ 1 −Φ�−𝑧 −
√𝑛
𝜏

(𝜉0.95 − 𝑏𝑞)� 

                                                        = Φ�𝑧 +
√𝑛
𝜏

(𝜉0.95 − 𝑏𝑞)� 
Eq. 112 

once again by the symmetry of the normal density function.  

 When 𝑞 < 0.95, by Eq. 112, the probability of the correct conclusion satisfies 

𝑃�𝑈 > 𝑏𝑞� ≈ Φ�𝑧 +
√𝑛
𝜏

(𝜉0.95 − 𝑏𝑞)� → 1 Eq. 113 

as 𝑛 → ∞ since 𝑏𝑞 = 𝐹−1(𝑞) < 𝐹−1(0.95) = 𝜉0.95 for 𝑞 < 0.95. 

 When 𝑞 > 0.95, by Eq. 111, the probability of correct conclusion is  

𝑃�𝑈 ≤ 𝑏𝑞� ≈ Φ�−𝑧 +
√𝑛
𝜏

(𝑏𝑞 − 𝜉0.95)� → 1 Eq. 114 
 

as 𝑛 → ∞ since 𝑞 > 0.95 implies 𝑏𝑞 = 𝐹−1(𝑞) > 𝜉0.95, so √𝑛
𝜏
�𝑏𝑞 − 𝜉0.95� →  ∞ as 

𝑛 → ∞. 
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 The same comparison of the rates of convergence to 1 as n grows large can be 

made as in the previous section, with the same results. The probability of correct 

conclusion converges faster when 𝑞 < 0.95 than when 𝑞 > 0.95. 

 5.3.3. Comparison between Methods 

 The following calculations seek to prove why the Q-method outperforms the P-

method when 𝑞 < 0.95. The probabilities of correct conclusion for both methods were 

provided earlier in Eq. 106 and Eq. 113. The only difference between these 

approximations is their arguments to Φ, with 𝑧 + √𝑛 0.95−𝑞
�𝑞(1−𝑞)

 for the P-method, and 

𝑧 + √𝑛
𝜉0.95−𝑏𝑞

𝜏
 for the Q-method. If it can be shown that this argument for the Q-method 

is larger than that for the P-method when 𝑞 < 0.95, then it will give some explanation of 

why the Q-method outperforms the P-method in the experiments in Section 5.2 when 

𝑞 < 0.95. 

 The goal is to show, 

𝜉0.95 − 𝑏𝑞
𝜏

>
0.95 − 𝑞
�𝑞(1 − 𝑞)

. 
Eq. 115 

A first-order Taylor approximation for 𝑏𝑞 gives 

𝑏𝑞 = 𝐹−1(𝑞) ≈ 𝐹−1(0.95) +
𝑞 − 0.95
𝑓(𝜉0.95)

= 𝜉0.95 +
𝑞 − 0.95
𝑓(𝜉0.95)

 Eq. 116 

since 𝑑
𝑑𝑝
𝐹−1(𝑝) = 1 𝑓(𝐹−1(𝑝))⁄ = 1 𝑓(𝜉𝑝)⁄  by the chain rule of calculus. Using the 

definition of 𝜏 in Eq. 58, 

                                          
𝜉0.95 − 𝑏𝑞

𝜏
≈

(0.95 − 𝑞) 𝑓(𝜉0.95)⁄

�0.95(1 − 0.95) 𝑓(𝜉0.95)⁄
 

Eq. 117 
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                                                             =
(0.95 − 𝑞)

�0.95(1 − 0.95)
 

This result satisfies the goal of showing that Eq. 115 holds because 

 
(0.95 − 𝑞)

�0.95(1 − 0.95)
 >

0.95 − 𝑞
�𝑞(1 − 𝑞)

 Eq. 118 

for 0.05 < 𝑞 < 0.95. 

 A similar analysis can show why the P-method outperforms the Q-method when 

𝑞 > 0.95. The probabilities for correct conclusion using the P- and Q-methods are given 

by Eq. 107 and Eq. 114. Here, the differences are still in respect to their arguments to Φ; 

the P-method’s argument is now −𝑧 + √𝑛 0.95−𝑞
�𝑞(1−𝑞)

, and the Q-method’s argument is 

−𝑧 + √𝑛
𝜉0.95−𝑏𝑞

𝜏
. Therefore, the definition of 𝜏 in Eq. 58 and of 𝑏𝑞 in Eq. 116 implies 

𝑏𝑞 − 𝜉0.95

𝜏
≈

(𝑞 − 0.95) 𝑓(𝜉0.95)⁄

�0.95(1 − 0.95) 𝑓(𝜉0.95)�
=

𝑞 − 0.95
�0.95(1 − 0.95)

<
𝑞 − 0.95
�𝑞(1 − 𝑞)

 Eq. 119 
 

since 𝑞 > 0.95. Therefore, the argument to Φ for the P-method is larger than that for the 

Q-method when 𝑞 > 0.95. This means the probability of the P-method reaching the 

correct conclusion converges to 1 faster than the Q-method when 𝑞 > 0.95, and explains 

the results seen in Section 5.2. 

5.4. Combined Methods 

 Since the Q-method outperforms when 𝑞 < 0.95, and the P-method outperforms 

when 𝑞 > 0.95, efforts were made to combine the two methods in a way that would 

result in a higher percentage of correct conclusions. This technique would seek  

agreement between the two methods before a decision was made.  
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 For this technique, rLHS will be used since it has proved to offer the greatest 

variance reduction in the experiments in Section 4.3 and Section 5.3. The procedure starts 

with the analyst carrying out some number of LHS cases m, where each case has t runs, 

as before. After a minimum number of cases have been simulated, the results will be 

analyzed to see if the Q-method and P-method are in agreement in regards to their 

conclusion. If they are, that conclusion will be taken as the final result. If they are not, an 

additional LHS case will be conducted, and then the results will be viewed again. This 

will continue until both methods are in agreement. The flowchart in Figure 5. 10 shows 

an example of this analysis using 𝑡 = 10 and a minimum 𝑚 = 6. The hope is that waiting 

until both methods are in agreement will lead to fewer incorrect conclusions than each 

method individually, even if it means conducting additional cases in order to get 

agreement.  
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Figure 5. 10: Combined Method Flowchart 

 

 It should be noted here, that there are dangers when carrying out multiple 

hypothesis tests, with differing test statistics, from the same data set. The biggest danger 

is in regards to “cherry-picking” the desired result from multiple hypothesis tests without 

disclosing the full extent of the tests and their results [117]. This is not the case here, 

since both test statistics will be used and reported. However, since both tests use the same 

data, their results will be correlated to an extent. Another possible danger by combining 

test statistics in the manner presented here is that the attributes of the 95% confidence, in 

Conduct 6 cases of 10 LHS runs 
(60 runs total) 

Conduct analysis using both 
P-method and Q-method 

 

Do P-method 
and Q-method 

conclusions 
agree? 

 

No Add case of 10 
LHS runs to data 

 

Report Conclusion 
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relation to the probability of committing a Type-I error (𝛼), are not necessarily 

guaranteed. As shown in Section 4 and at the beginning of Section 5, using a 95% 

confidence provided a top bound for 𝛼 of 5%. However, by combining the two test 

statistics in this simple fashion, it no longer guarantees this bound for 𝛼. There are ways 

to design processes like these, referred to as sequential decision procedures, to ensure that 

the confidence property remains [118], but that analysis was not done for this technique.  

 Several test cases were conducted with this technique, but a direct comparison to 

the results in Section 4 and Section 5 is difficult. This is due to the fact that the amount of 

runs needed to reach a conclusion using this combined method will not be known 

beforehand. The runs will continue until the methods are in agreement. This means the 

results will not present a direct comparison to the previous results at assigned run levels.  

 The first comparison used the nonlinear equation with normal inputs, detailed in 

Section 3.2.2. For this test, when estimating a 95/95, the minimum number of runs 

conducted before a conclusion could be reached was 60. This level was chosen since the 

methods had not previously been examined at lower run levels for estimating a 95/95, 

since 59 was the minimum for CMC-OS. Table 5. 12 shows the results with a limit value 

at the 0.94-quantile, which is a very challenging situation. Here, the results presented are 

the number of trials, out of 104, that reached a conclusion, whether correct or incorrect, at 

that run level. These results can be compared to the results in Table 5. 2, where 

prescribed run levels were used. As Table 5. 12 shows, overall, the combined method had 

a success rate of 98.13%. This compares to a success rate of 97.90% when using the 

rLHS Q-method alone at 60 runs, and 94.43% when using the rLHS P-method alone at 60 
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runs. So there seems to be a slight improvement, even though it is not a direct 

comparison. The reason the total in Table 5. 12 does not equal 10,000 is because some 

trials did not reach a consensus between the two methods before the maximum amount of 

cases was added.  

 

Table 5. 12: Correct vs. Error Nonlinear Eq. Normal Inputs – 0.94 

 Runs Conducted 
 60 70 80 90 100 110 120 130 140 Total 
Correct Conclusion  9420 275 97 8 6 5 0 1 0 9813 
Error (α)  118 2 58 4 4 1 0 0 0 108 

 

 

 This test was repeated with a limit at the 0.98-quantile, as seen in Table 5. 13. 

These results can be compared to Table 5. 3. Here, the combined method had a success 

rate of 62.01%. Using the rLHS Q-method alone, at 60 runs, returned a success rate of 

49.81%, so there is a stark improvement by using the combined method. However, the 

rLHS P-method had a success rate at 60 runs of 64.48%. So using the combined method 

did not quite achieve the kind of reduction in errors that using the P-method alone 

provided.  

 

Table 5. 13: Correct vs. Error Nonlinear Eq. Normal Inputs – 0.98 

 Runs Conducted 
 60 70 80 90 100 110 120 130 140 Total 
Correct Conclusion  4428 197 1145 284 35 3 57 0 34 6201 
Error (β)  2850 589 260 54 10 20 2 6 1 3795 
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 Another test was conducted to see the influence of starting the analysis at a higher 

minimum run level, since most of the errors in the previous example occurred at the 

lowest run level. In this case, the minimum for m was 10, or 100 total runs. These results 

can be found in Table 5. 14. Here, the success rate is 76.43%, while using the rLHS Q-

method alone at 90 runs had a success rate of 64.29%, and using the P-method alone had 

a rate of 73.14%. So the combined method did provide a higher probability of success 

than using Q-method or P-method alone.  

 

Table 5. 14: Correct vs. Error Nonlinear Eq. Normal Inputs – 0.98 (Higher Start) 

  Runs Conducted 
 100 110 120  130 140 150 160 170 180 190 Total 
Correct Conclusion  6607 31 742 9 167 2 4 44 2 19 7643 
Error (β)  1702 466 42 107 3 11 4 8 1 2 2349 

 

 

 These tests were repeated for the nonlinear equation using non-normal inputs. 

Table 5. 15 shows the results for a limit at the 0.94-quantile. This resulted in a correct 

conclusion percentage of 98.20%, which once again was only modestly better than using 

the Q-method alone, which had a success rate at 60 runs of 97.79%, and the P-method 

alone (95.08%).  

  

Table 5. 15: Correct vs. Error Nonlinear Eq. Non-normal Inputs – 0.94 

 Runs Conducted 
 60 70 80 90 100 110 120 130 140 Total 
Correct Conclusion  9487 235 70 13 7 7 0 0 0 9820 
Error (α)  120 2 52 4 1 0 1 0 0 180 
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With the limit placed at the 0.98-quantile, the success rate was 64.62%, which was better 

than the Q-method alone (58.38%), but slightly worse than the P-method alone (65.92%) 

at the 60 run level. These results can be seen in Table 5. 16. So again, there appears to be 

an advantage to the combined method since it’s better than both the P- and Q-method 

with a limit below the quantile, and better than the Q-method alone with a limit above the 

quantile.  

 

Table 5. 16: Correct vs. Error Nonlinear Eq. Non-normal Inputs – 0.98 

 Runs Conducted 
 60 70 80 90 100 110 120 130 140 Total 
Correct Conclusion  4936 143 833 313 73 15 87 4 27 6462 
Error (β)  2486 710 222 56 15 27 0 12 1 3533 

 

 

 Lastly, the combined method was tested on the LOCA response surface from 

Section 3.2.3. Table 5. 17 shows the results for a limit placed at the 0.94-quantile. The 

success rate was 98.58%, which was slightly better than the Q-method alone (96.90%), 

and better than the P-method alone (92.77%), but P-method had not converged properly 

at the 60 run level, since the correct conclusion percentage is <95%. One interesting 

result is that the combined method appears to have prevented that same error from 

occurring here. Even though the P-method may not have been properly converged at the 

lowest run level, the addition of the Q-method prevented a large number of incorrect 

conclusions being reported.  
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Table 5. 17: Correct vs. Error LOCA Response Surface – 0.94 

 Runs Conducted 
 60 70 80 90 100 110 120 130 140 Total 
Correct Conclusion  9158 345 118 15 8 7 4 1 0 9658 
Error (α)  210 18 93 8 2 3 3 0 3 342 

 

 

 Table 5. 18 shows the results with a limit at the 0.98-quantile. Here, the combined 

method had a success rate of 60.98%, which was far better than the Q-method alone 

(48.65%) and only slightly worse than the P-method alone (65.54%) at 60 runs. The 

apparent trend from the previous two tests continues, with a slight improvement over the 

other methods when the limit is below the quantile estimation, and a large improvement 

over the Q-method when the limit is above the quantile. 

 

Table 5. 18: Correct vs. Error LOCA Response Surface – 0.98 

 Runs Conducted 
 60 70 80 90 100 110 120 130 140 Total 
Correct Conclusion  4266 284 1023 272 97 24 71 8 24 6098 
Error (β)  2902 606 288 37 21 29 3 7 2 3899 

 

 

5.5. Discussion 

 The results of this section appear to show that establishing confidence intervals 

for a probability could be used for a direct comparison to regulatory limits. However, the 

experimental results, and subsequent discussion, showed that the P-method is less 

efficient at reaching the correct conclusion when the limit value is below the quantile of 

interest. On the other hand, the exact opposite outcome occurs when the limit value is 
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above the quantile of interest, since the results and discussion show that the P-method is 

more efficient than the Q-method at arriving at the correct conclusion. Both the P-method 

and Q-method for rLHS also appeared less likely to commit errors, regardless of the 

location of the limit value, when compared to CMC-OS, as long as the asymptotics had 

converged properly (which was not always the case at the lowest run levels). When the 

limit was above the quantile, the increased probability of correct conclusion when using 

rLHS compared to CMC-OS, could be sizable. 

 In an effort to take advantage of the positive aspects of both methods, a technique 

was devised that required agreement between the methods before a decision could be 

made. Through experiments, it was shown that this technique can improve the probability 

of correct conclusion when the limit is below the quantile, when compared to the P- and 

Q-method alone. When the limit is above the quantile, the results also showed that the 

combined method can greatly improve the probability of correct conclusion when 

compared to the Q-method alone, and return essentially equivalent probabilities when 

compared to the P-method alone. However, this combined method also has drawbacks, 

since the number of runs needed is not known beforehand, and it requires the data to be 

analyzed repeatedly (though time/effort for the data analysis should be small in 

comparison to the time needed for large, complex code runs). It is also possible to 

conduct a trial that does not result in agreement even after a large amount runs. While 

this possibility was small, it could result in many more code runs, meaning lost time and 

expensive computational costs. Also, it may be possible to combine the P- and Q-
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methods within a more rigorous framework that ensures the 95% confidence level is 

preserved [116].  

  

 

  



 

243 
 

 

 

Chapter 6: Conclusions and Recommendations for Future Work 
 

 The issue of comparison between computer code outputs and regulatory limits 

was defined more rigorously through the use of hypothesis testing. This framework 

provided guidance on how to increase the probability of correct conclusion. Since certain 

factors are out of the analyst’s control, such as the placement of limit values, the system 

characteristics, and the acceptable level of error, the only technique left to increase the 

correct conclusion percentage was to decrease the variance of the analysis result. 

Therefore, VRTs were analyzed in order to gauge their applicability to this goal. 

 The first step in this analysis involved investigating methods to increase the 

accuracy and precision of a point estimate of the 0.95-quantile. This included a 

comparison between CMC and LHS, but also a detailed study of the use of OAs and 

OLHCs. As was expected, LHS provided a more accurate and precise quantile estimation 

than CMC. However, OLHCs outperformed regular LHS, even when using static 

midpoints, rather than sampled values. This result is particularly important, as the use of 

static midpoints simplifies that process of modifying input distributions post-analysis, 

without the need for re-running the computer code. The potential of OLHCs appears 

promising, and a more thorough investigation into their use should be done. 

Unfortunately, the results from Section 4 showed that the method to establish CIs for the 

quantiles of an rLHS design may be unsuitable for use with OLHCs. A closer look 

indicated that this was a result of the dependence between different OLHC designs. It 
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may be possible to create OLHC designs that are truly independent, and that may resolve 

this issue. Lastly, the use of higher resolution OAs was shown to be inappropriate for the 

estimation of the 0.95-quantile, if static midpoints were used. This appears to be a 

consequence of the size of the intervals created using an OA. Since fewer intervals are 

used, they become wider, and the tails of the distributions are not analyzed when using 

midpoints. However, using higher resolution OAs with sampling did slightly outperform 

the CMC method, but not to the extent of LHS or OLHC.   

 Section 4 provided an investigation into the applicability of new methods to 

establish CIs for the quantiles of an output distribution created using a VRT [72] to the 

field of nuclear safety analysis. The results demonstrated that rLHS and AV can provide 

a more accurate and precise result, especially when estimating a CI for a quantile value 

near a long distribution tail. However, there are convergence issues at very low run 

levels. There may be ways to alleviate some of these convergence issues (or at least 

ensure that the error is on the conservative side), and as more tests are completed, 

increased guidance on the selection of bandwidth parameters, or other appropriate 

derivative estimation techniques, will arise. Interestingly, the results also showed that a 

more accurate derivative estimation at the lowest run levels may not always be desirable. 

While the increased accuracy decreases the size of the CI, it may also make the result 

more vulnerable to error in the quantile point estimate. Even when the rLHS method had 

not converged to the proper levels, it always provided resulting values over a smaller 

range than CMC-OS. As the results from Section 5 showed, at essentially every run level 

(even the lowest levels, where convergence may not have occurred), the probability of 
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error when using rLHS was equivalent to or smaller than using CMC-OS. Finally, it was 

shown that the possibility of “gaming” the system was no greater when using rLHS than 

with CMC-OS.  

 It was also shown that a more direct interpretation of the NRC probability 

requirement was possible by establishing CIs for the probability of exceeding a safety 

limit value. This technique appeared to have a higher probability of correct conclusion, 

when compared to the Q-method, if the limit value was above the quantile of interest, but 

the opposite was true when the limit was below the quantile. A detailed look into the 

mathematics behind both methods demonstrated why this is the case. One issue using the 

probability method is that it only provides information about margin to the safety limit in 

terms of probability, not the output units of the system or limit value. However, since 

both the Q- and P-method are performed post-process, it is possible to use both 

techniques and derive the desired data.  

 Since both the P- and Q-method could be applied to the same data, a technique 

was devised that attempted to take advantage of the positive properties of both methods. 

This technique waited for agreement between the two methods before establishing a 

conclusion. It appeared that this method improved the probability of correct conclusion, 

but a direct comparison to previous results was difficult, since the number of runs 

necessary for agreement is not known a priori. This is also the biggest downside to the 

method, since the analyst has no idea how many runs will be necessary, and there is a 

small, but nonzero, possibility of needing to perform a large amount of runs.  
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 Based on this information, recommendations about the applicability of these 

techniques for use in nuclear safety analysis can be made. First, a look into NRC 

recommendations on risk assessment procedures showed that the use of CIs rather than 

Bayesian credible intervals appears to be appropriate for this application. This is the case 

since prior information is difficult to use in regulatory analyses, the results will not be 

propagated through more systems, the data are created in a normal way, and the 

probability requirement is fulfilled by the use of the quantile, while the CI only provides 

information about the accuracy of the sampling scheme. Also, if a RISMC is to be used, 

the use of quantiles may provide similar information to an overlap probability, without 

the need for detailed information about the extremes of the output distribution. Since this 

information is not needed, the amount of runs necessary for the analysis should be 

reduced. Also, the use of lower quantiles, such as the 0.75-quantile, with high confidence 

may be appropriate for regulatory limits on beyond-design-basis accidents. Techniques 

were shown on how this could be done in comparison to the limit curve in the TNF, and a 

proposed CCDF limit curve.  

 The recommendation of the asymptotic methods, like rLHS, for use in regulatory 

analyses is more nuanced. While there were convergence issues for these methods at the 

lowest levels possible when using CMC-OS, the deviation from the proper coverage 

levels was never extreme (meaning the coverage levels were off by only a couple 

percent). The results from Section 5 also showed that the rLHS consistently had a higher 

probability of correct conclusion than CMC-OS. So if the regulator’s first concern is 

arriving at the correct conclusion, rLHS would appear to be acceptable. From the utility 
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point-of-view, the use of rLHS could result in a substantial increase in accuracy. This 

may provide more opportunity for increasing reactor properties, like temperature and 

power. For both the regulator and utility, the increased accuracy and precision can 

provide better guidance about which accidents have the greatest associated risk. Correctly 

prioritizing accident scenarios based on risk is one of the best ways to systematically 

increase safety, as the Tower Perrin firm report pointed out. So even considering the 

convergence issues, it is hard to justify why the rLHS method would not be acceptable 

for use in safety analysis.  

 Perhaps the greatest opportunity for future work, along this line of research, is 

associated with the examination of other VRTs. It is possible for control variates and 

importance sampling to provide much greater variance reduction than even rLHS. As 

mentioned in Section 4, there are additional constraints which must be considered when 

using these methods in relation to if/how previous knowledge is used. However, if 

acceptable approaches are found, these methods may be able to offer great benefits in 

reducing regulatory error, increasing margin to safety limits, and generally improving the 

knowledge and characterization of the output distribution of safety analyses.  
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Appendix A: Orthogonal Arrays 
 

 The following figures list the OAs used in Section 3; they are taken from [119]. 

Some of the OLHC designs are not listed here due to their size, but they were created 

using the methods outlined in [62]. 

 

Run Input 
1 2 3 4 5 

1 1 1 1 1 1 
2 1 2 2 2 2 
3 1 3 3 3 3 
4 1 4 4 4 4 
5 2 1 2 3 4 
6 2 2 1 4 3 
7 2 3 4 1 2 
8 2 4 3 2 1 
9 3 1 3 4 2 
10 3 2 4 3 1 
11 3 3 1 2 4 
12 3 4 2 1 3 
13 4 1 4 2 3 
14 4 2 3 1 4 
15 4 3 2 4 1 
16 4 4 1 3 2 

Figure A. 1: L16’ – 16 Run Resolution III OA – 4 Levels 
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Run Input 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 
3 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 
4 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 
5 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 
6 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 
7 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 
8 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 
9 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 
10 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 
11 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 
12 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 
13 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 
14 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 
15 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 
16 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 
Figure A. 2: L16 – 16 Run Resolution III OA – 2 Levels 
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Run Input 
1 2 3 4 5 6 7 8 9 

1 1 1 1 1 1 1 1 1 1 
2 1 2 2 2 2 2 2 2 2 
3 1 3 3 3 3 3 3 3 3 
4 1 4 4 4 4 4 4 4 4 
5 2 1 1 2 2 3 3 4 4 
6 2 2 2 1 1 4 4 3 3 
7 2 3 3 4 4 1 1 2 2 
8 2 4 4 3 3 2 2 1 1 
9 3 1 2 3 4 1 2 3 4 
10 3 2 1 4 3 2 1 4 3 
11 3 3 4 1 2 3 4 1 2 
12 3 4 3 2 1 4 3 2 1 
13 4 1 2 4 3 3 4 2 1 
14 4 2 1 3 4 4 3 1 2 
15 4 3 4 2 1 1 2 4 3 
16 4 4 3 1 2 2 1 3 4 
17 1 1 4 1 4 2 3 2 3 
18 1 2 3 2 3 1 4 1 4 
19 1 3 2 3 2 4 1 4 1 
20 1 4 1 4 1 3 2 3 2 
21 2 1 4 2 3 4 1 3 2 
22 2 1 4 2 3 4 1 3 2 
23 2 3 2 4 1 2 3 1 4 
24 2 4 1 3 2 1 4 2 3 
25 3 1 3 3 1 2 4 3 2 
26 3 2 4 4 2 1 3 3 1 
27 3 3 1 1 3 4 2 2 4 
28 3 4 2 2 4 3 1 1 3 
29 4 1 3 4 2 4 2 1 3 
30 4 2 4 3 1 3 1 2 4 
31 4 3 1 2 4 2 4 3 1 
32 4 4 2 1 3 1 3 4 2 

Figure A. 3: L32’ – 32 Run Resolution III OA – 4 Levels 
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 Input 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
3 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 
4 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 
5 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 
6 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 
7 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 
8 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 
9 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 

10 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 
11 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 
12 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1 
13 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 
14 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 1 1 
15 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 
16 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1 1 2 2 2 2 
17 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 
18 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 
19 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 
20 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 
21 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 
22 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 
23 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 
24 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2 2 1 
25 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 
26 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 
27 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 
28 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 
29 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 
30 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 
31 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 
32 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 1 

Figure A. 4: L32 – 32 Run Resolution III OA – 2 Levels 
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Run Input 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 1 3 1 2 0 2 0 1 2 2 3 2 2 2 1 3 0 1 1 0 0 
3 2 1 2 3 0 3 0 2 3 3 1 3 3 3 2 1 0 2 2 0 0 
4 3 2 3 1 0 1 0 3 1 1 2 1 1 1 3 2 0 3 3 0 0 
5 0 1 3 1 2 0 2 0 1 2 2 3 2 2 2 1 3 0 1 1 0 
6 1 2 2 3 2 2 2 1 3 0 1 1 0 0 3 2 3 1 0 1 0 
7 2 0 1 2 2 3 2 2 2 1 3 0 1 1 0 0 3 2 3 1 0 
8 3 3 0 0 2 1 2 3 0 3 0 2 3 3 1 3 3 3 2 1 0 
9 0 2 1 2 3 0 3 0 2 3 3 1 3 3 3 2 1 0 2 2 0 

10 1 1 0 0 3 2 3 1 0 1 0 3 1 1 2 1 1 1 3 2 0 
11 2 3 3 1 3 3 3 2 1 0 2 2 0 0 1 3 1 2 0 2 0 
12 3 0 2 3 3 1 3 3 3 2 1 0 2 2 0 0 1 3 1 2 0 
13 0 3 2 3 1 0 1 0 3 1 1 2 1 1 1 3 2 0 3 3 0 
14 1 0 3 1 1 2 1 1 1 3 2 0 3 3 0 0 2 1 2 3 0 
15 2 2 0 0 1 3 1 2 0 2 0 1 2 2 3 2 2 2 1 3 0 
16 3 1 1 2 1 1 1 3 2 0 3 3 0 0 2 1 2 3 0 3 0 
17 0 0 1 3 1 2 0 2 0 1 2 2 3 2 2 2 1 3 0 1 1 
18 1 3 0 1 1 0 0 3 2 3 1 0 1 0 3 1 1 2 1 1 1 
19 2 1 3 0 1 1 0 0 3 2 3 1 0 1 0 3 1 1 2 1 1 
20 3 2 2 2 1 3 0 1 1 0 0 3 2 3 1 0 1 0 3 1 1 
21 0 1 2 2 3 2 2 2 1 3 0 1 1 0 0 3 2 3 1 0 1 
22 1 2 3 0 3 0 2 3 3 1 3 3 3 2 1 0 2 2 0 0 1 
23 2 0 0 1 3 1 2 0 2 0 1 2 2 3 2 2 2 1 3 0 1 
24 3 3 1 3 3 3 2 1 0 2 2 0 0 1 3 1 2 0 2 0 1 
25 0 2 0 1 2 2 3 2 2 2 1 3 0 1 1 0 0 3 2 3 1 
26 1 1 1 3 2 0 3 3 0 0 2 1 2 3 0 3 0 2 3 3 1 
27 2 3 2 2 2 1 3 0 1 1 0 0 3 2 3 1 0 1 0 3 1 
28 3 0 3 0 2 3 3 1 3 3 3 2 1 0 2 2 0 0 1 3 1 
29 0 3 3 0 0 2 1 2 3 0 3 0 2 3 3 1 3 3 3 2 1 
30 1 0 2 2 0 0 1 3 1 2 0 2 0 1 2 2 3 2 2 2 1 
31 2 2 1 3 0 1 1 0 0 3 2 3 1 0 1 0 3 1 1 2 1 
32 3 1 0 1 0 3 1 1 2 1 1 1 3 2 0 3 3 0 0 2 1 
33 0 0 2 1 2 3 0 3 0 2 3 3 1 3 3 3 2 1 0 2 2 
34 1 3 3 3 2 1 0 2 2 0 0 1 3 1 2 0 2 0 1 2 2 
35 2 1 0 2 2 0 0 1 3 1 2 0 2 0 1 2 2 3 2 2 2 
36 3 2 1 0 2 2 0 0 1 3 1 2 0 2 0 1 2 2 3 2 2 
37 0 1 1 0 0 3 2 3 1 0 1 0 3 1 1 2 1 1 1 3 2 
38 1 2 0 2 0 1 2 2 3 2 2 2 1 3 0 1 1 0 0 3 2 
39 2 0 3 3 0 0 2 1 2 3 0 3 0 2 3 3 1 3 3 3 2 
40 3 3 2 1 0 2 2 0 0 1 3 1 2 0 2 0 1 2 2 3 2 
41 0 2 3 3 1 3 3 3 2 1 0 2 2 0 0 1 3 1 2 0 2 
42 1 1 2 1 1 1 3 2 0 3 3 0 0 2 1 2 3 0 3 0 2 
43 2 3 1 0 1 0 3 1 1 2 1 1 1 3 2 0 3 3 0 0 2 
44 3 0 0 2 1 2 3 0 3 0 2 3 3 1 3 3 3 2 1 0 2 
45 0 3 0 2 3 3 1 3 3 3 2 1 0 2 2 0 0 1 3 1 2 
46 1 0 1 0 3 1 1 2 1 1 1 3 2 0 3 3 0 0 2 1 2 
47 2 2 2 1 3 0 1 1 0 0 3 2 3 1 0 1 0 3 1 1 2 
48 3 1 3 3 3 2 1 0 2 2 0 0 1 3 1 2 0 2 0 1 2 
49 0 0 3 2 3 1 0 1 0 3 1 1 2 1 1 1 3 2 0 3 3 
50 1 3 2 0 3 3 0 0 2 1 2 3 0 3 0 2 3 3 1 3 3 
51 2 1 1 1 3 2 0 3 3 0 0 2 1 2 3 0 3 0 2 3 3 
52 3 2 0 3 3 0 0 2 1 2 3 0 3 0 2 3 3 1 3 3 3 
53 0 1 0 3 1 1 2 1 1 1 3 2 0 3 3 0 0 2 1 2 3 
54 1 2 1 1 1 3 2 0 3 3 0 0 2 1 2 3 0 3 0 2 3 
55 2 0 2 0 1 2 2 3 2 2 2 1 3 0 1 1 0 0 3 2 3 
56 3 3 3 2 1 0 2 2 0 0 1 3 1 2 0 2 0 1 2 2 3 
57 0 2 2 0 0 1 3 1 2 0 2 0 1 2 2 3 2 2 2 1 3 
58 1 1 3 2 0 3 3 0 0 2 1 2 3 0 3 0 2 3 3 1 3 
59 2 3 0 3 0 2 3 3 1 3 3 3 2 1 0 2 2 0 0 1 3 
60 3 0 1 1 0 0 3 2 3 1 0 1 0 3 1 1 2 1 1 1 3 
61 0 3 1 1 2 1 1 1 3 2 0 3 3 0 0 2 1 2 3 0 3 
62 1 0 0 3 2 3 1 0 1 0 3 1 1 2 1 1 1 3 2 0 3 
63 2 2 3 2 2 2 1 3 0 1 1 0 0 3 2 3 1 0 1 0 3 
64 3 1 2 0 2 0 1 2 2 3 2 2 2 1 3 0 1 1 0 0 3 

Figure A. 5: OA.64 – 64 Run Resolution III OA – 4 Levels
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Run Input 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 
5 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
6 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 
7 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 
8 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 
9 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

10 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 
11 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 
12 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 
13 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 
14 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 
15 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 
16 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
18 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 
19 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 
20 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 
21 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 
22 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 
23 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 
24 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 
25 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
26 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 
27 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 
28 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 
29 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 
30 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 
31 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 
32 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 
33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
34 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 
35 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 
36 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 
37 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 
38 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 
39 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 
40 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 
41 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
42 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 
43 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 
44 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 
45 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 
46 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 
47 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 

Continued 

268 



 

269 
 

48 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 
49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
50 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
51 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
52 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 
53 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
54 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 
55 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 
56 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 
57 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
58 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 
59 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 
60 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 
61 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 
62 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 
63 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 
64 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 

Figure A. 6: OA.64.32 – 64 Run Resolution IV OA – 2 Levels 

 

Run Input 
1 2 3 4 5 6 7 8 9 10 11 12 

1 -15 5 9 -3 7 11 -11 7 -9 3 -15 5 
2 -13 1 1 13 -7 -11 11 -7 -1 -13 -13 1 
3 -11 7 -7 -11 13 -1 -1 -13 9 -3 15 -5 
4 -9 3 -15 5 -13 1 1 13 1 13 13 -1 
5 -7 -11 11 -7 11 -7 7 11 5 15 -3 -9 
6 -5 -15 3 9 -11 7 -7 -11 13 -1 -1 -13 
7 -3 -9 -5 -15 1 13 13 -1 -5 -15 3 9 
8 -1 -13 -13 1 -1 -13 -13 1 -13 1 1 13 
9 1 13 13 -1 -9 3 -15 5 11 -7 7 11 
10 3 9 5 15 9 -3 15 -5 3 9 5 15 
11 5 15 -3 -9 -3 -9 -5 -15 -11 7 -7 -11 
12 7 11 -11 7 3 9 5 15 -3 -9 -5 -15 
13 9 -3 15 -5 -5 -15 3 9 -7 -11 11 -7 
14 11 -7 7 11 5 15 -3 -9 -15 5 9 -3 
15 13 -1 -1 -13 -15 5 9 -3 7 11 -11 7 
16 15 -5 -9 3 15 -5 -9 3 15 -5 -9 3 

Figure A. 7: OLHC.16 – 16 Run Resolution II OLHC 
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Appendix B: VRT Confidence Interval Derivation Assumptions 
 

From [72], 

- Let 𝐹�𝑛 be an estimated CDF created using a VRT. 

Assumptions (using notation described in Section 4.2.2): 

A1. 𝑃{𝐹�𝑛(𝑥) is monotonically increasing in x} → 1 as 𝑛 → ∞. 

A2. For every 𝑎𝑛 = 𝛰�𝑛−1 2⁄ �, 

 √𝑛 ��𝐹�𝜉𝑝 + 𝑎𝑛� − 𝐹�𝜉𝑝�� − �𝐹�𝑛�𝜉𝑝 + 𝑎𝑛� − 𝐹�𝑛�𝜉𝑝��� ⇒ 0, as 𝑛 → ∞. 

A3. √𝑛�𝐹�𝑛(𝜉𝑝) − 𝐹(𝜉𝑝)� ⇒ 𝑁(0,𝜓𝑝2) as 𝑛 → ∞ for some 0 < 𝜓𝑝 < ∞.  
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Appendix C: Complete Confidence for Quantiles Results 
 

 The following tables provide the complete results for the experiments performed 

in Section 4. In additional to the results presented within Section 4, these tables also 

include the use of asymmetric CFDs for the derivative estimation for the asymptotic 

methods. As explained in Section 4.2.2.5, using a symmetric CFD may result in the 

overestimation of the derivative when used near the upper quantiles of the empirical 

CDF. The hope was that an asymmetric CFD, which was more heavily weighted toward 

the lower ranges of the distribution, would provide a more accurate derivative estimation. 

In the tables, three asymmetric CFDs are used. These are titled “Asym CFD for 𝜆” 

followed by a number: 1.25, 1.50, and 2.00. These numbers indicate the weighting of the 

asymmetric CFD. For example, 1.25 means that the CFD is found using a high-side point 

of 𝐹−1(𝜉𝑝,𝑛 + ℎ𝑛) and a low-side point of 𝐹−1(𝜉𝑝,𝑛 − 1.25 ∗ ℎ𝑛). So the higher the 

multiplier, the more heavily the CFD is weighted toward the lower regions of the 

distribution.  

 There are also two version of the symmetric CFD presented. One is labeled as 

“CFD for 𝜆”, and the other is labeled “CFD(rounding) for 𝜆”. The difference between 

these two methods has to do with the calculation of the denominator of the CFD in Eq. 

55. The first method uses 2 ∗ ℎ𝑛 for the denominator. While this may seem like the 

obvious solution, there is a potential problem. Remember, for the calculation of the 

inverse CDF 𝐹−1, the round-up function is used. This means the distance between the 
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two points in the numerator of Eq. 55 may not actually be 2 ∗ ℎ𝑛 (if a symmetric CFD is 

used). Instead, the round-up function will cause the distance to be slightly different. In 

the method with the “rounding” label, the denominator is calculated using the exact 

distance between the points in the numerator, and not 2 ∗ ℎ𝑛. These results were the ones 

presented in Section 4, since they appeared to offer a more accurate estimation of the 

derivative.  

 Table C. 1 and Table C. 2 contain the results for the nonlinear equation with 

normal inputs when finding a 95/95 and 95/75 value. The main point to note from these 

results, which has not been previously mentioned, is the accuracy of the asymmetric CFD 

methods. At lower run levels, the asymmetric CFDs do provide a more accurate 

derivative estimation than the symmetric CFDs. However, this has some unintended 

effects when estimating a 95/95 value. As the table shows, when using a symmetric CFD 

at 𝑛 = 59, the overestimation of the derivative caused the coverage of the CI to be too 

wide (i.e. >90%), but this also kept the number of 95/95 values falling below the true 

quantile to remain around 5%. Using the asymmetric CFD, the derivative estimation was 

more accurate, but the increased accuracy caused the bounds of the CI to narrow. While 

this meant the coverage was closer to being correct (i.e. ~90%), the amount of trials 

falling above or below that interval was not equal. Instead, more trials errored to the low 

side. A closer inspection of the results (not listed here), show that at this run level, the 

quantile esimation 𝜉95,𝑚,𝑡 tends to error slightly below the true quantile. So with the 

narrower CI, more 95/95 values will error to the low side, causing the “% below” to be 

>5%.  The exact opposite happens at the lowest run level when estimating a 95/75. Here, 
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since the quantile estimator 𝜉75,𝑚,𝑡 tends to error above the actual quantile, not only does 

the coverage improve at 𝑛 = 11 using the asymmetric CFD, but the “% below” also gets 

closer to 5%. Also, when finding a 95/75, the difference betweent the derivative 

estimations when using a symmetric or asymmetric CFD is lessened. This is due to the 

0.75-quantile lying further from the extremes of the CFD, so the slope of the inverse CFD 

is also smaller. So the symmetric CFD does not overestimate the derivative to the same 

extent as when using a 0.95-quantile.  

 The problem with the asymmetric CFDs, as shown in the tables, is that as the 

number of runs grows large, they begin to underestimate the derivative. The most 

accurate derivative estimation may use an asymmetric CFD when the run size is small, 

then move to a symmetric CFD as the run size grows. It may be possible to use an 

asymmetric weighting coefficient, similar to the 1.25, 1.50, and 2.00 from above, that is 

inversely proportional to the number of runs. For example, a formula like 30/𝑛 could be 

used for the coefficient. That way, when 𝑛 = 60, the weighting coefficient would be 0.5, 

but when 𝑛 = 500, it would be only 0.06. This is just one possibility, and more work 

should be done investigating this method. However, it may be the case that no general 

formula applies to many systems, and that the best methods are problem-specific.  
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 Table C. 3 and Table C. 4 contain the full results for the nonlinear equation with 

non-normal inputs. The results of the asymmetric CFD are very similar to the previous 

example. When finding a 95/95 value, the asymmetric CFD provides a more accurate 

derivative estimation. However, this increased accuracy causes the CI to narrow, and 

with the quantile estimation again erroring to the low side, more than 5% of the 95/95 

trials fall below the true quantile. Again, the opposite occurs when finding a 95/75, since 

the quantile estimation tends to error to the high side, so the narrower CI improves the 

coverage, and the “% below”. When using the larger weighting for the asymmetric CFD 

when finding a 95/75, the derivative is underestimated even at the lowest run level. Once 

again, this is because the derivative of the inverse CDF at the 0.75-quantile is already 

much smaller since it is further from 1.00, and the symmetric CFD estimation is better 

than at the 0.95-quantile. Also, as in the previous example, the asymmetric CFDs begin to 

underestimate the derivative as the number of runs grows large.  
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 Table C. 5 and Table C. 6 present the complete results for the LOCA response 

surface experiment. As in the previous two examples, when finding a 95/95 value at 

𝑛 = 60, the quantile estimation of the asymptotic methods tends to underestimate the true 

quantile. This means the asymmetric CFD methods improve the coverage, with the 

accurate derivative estimation, but the “% below” is >5%.  Also, unlike the previous two 

examples, when finding a 95/75, the asymmetric CFDs actual overestimate the derivative 

when compared to the symmetric CFDs, at the lowest run level. This is the only 

experiment where that phenomena is seen. As Figure 4. 24 showed, the output 

distribution was very compact at the high end, and the 0.75-quantile was very close to the 

peak of the histogram. This means, at 𝑛 = 11, the low-side point of the asymmetric CFD 

is going to fall to a much lower value, and the derivative estimation will actually be too 

large. As the run size grows larger, this problem disappears, and the asymmetric CFD 

underestimates the derivative when compared to the symmetric CFDs.  
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