
Discrete Laplace Operator: Theory and Applications

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in the Graduate School of The Ohio State

University

By

Pawas Ranjan, B.Tech.

Graduate Program in Computer Science and Engineering

The Ohio State University

2012

Dissertation Committee:

Tamal K. Dey, Advisor

Yusu Wang, Advisor

Rephael Wenger

Rick Parent

Daniel Burghelea

c© Copyright by

Pawas Ranjan

2012

Abstract

The eigen-structures (eigenvalues and eigenfunctions) of the Laplace-Beltrami op-

erator have been widely used in a broad range of application fields that include mesh

smoothing, compression, editing, shape segmentation, matching, and parametriza-

tion, among others. While the Laplace operator is defined (mathematically) for a

smooth domain, the underlying manifold is often approximated by a discrete mesh.

Hence, the spectral structure of the manifold Laplacian is estimated from some dis-

crete Laplace operator constructed from this mesh.

Recently, several different discretizations have been proposed, each with its own

advantages and limitations. Although the eigen-structures have been found to be

useful in graphics, not much is known about their behavior when a surface is deformed

or modified. The objective of my thesis is two-fold. One is to study, and to develop

theory for, changes in the eigen-structures of the discrete Laplace operator as the

underlying mesh is changed. The other is to explore applications for the spectral

theory of shape perturbations in areas like shape matching and deformation.

In particular, our work shows that the discrete Laplace is stable against noise

and sampling. We also show that both the discrete and continuous Laplace change

continuously as the underlying mesh or surface is deformed continuously, without

introducing changes to the topology. Not only do these results help in providing a

better theoretical understanding of the discrete Laplace operator, they also give us a

ii

solid base for developing applications. Indeed, we present two such applications: one

that deals with shape matching and another that performs fast mesh deformations.

Specifically, combining our theoretical results with concepts from persistent ho-

mology, we create a concise global shape signature that can be used for matching

different shapes. Given our results regarding similarity of eigen-structures of similar

shapes, our matching algorithm allows us to match even partially scanned or incom-

plete models, regardless of their pose or orientation. We also present a framework

that uses eigenvectors to create an implicit skeleton of a shape and use it to deform

the shape, producing smooth and natural looking deformations. By using the eigen-

vectors, we are able to reduce the problem size from the number of mesh vertices

(hundreds to millions) to the number of eigenvectors used (tens to hundreds).

iii

To my parents, for their untiring support and patience.

iv

Acknowledgments

I am grateful to my advisors Prof. Tamal Dey and Prof. Yusu Wang for their

support, their belief and their help which got me through some very tough times, both

academic and personal. Their enthusiasm and creative thinking drove and shaped

not only my work, but also my outlook. They introduced me to a world that artfully

combines mathematics and computer science, and for that I am forever in their debt.

I would also like to thank my lab mates, especially Issam, Josh, Kuiyu and Oleksiy

for their help and support and for sharing their vast knowledge with the rest of us.

This work would not have been possible without their help. They taught me a very

valuable lesson indeed: when it comes to writing quality papers, conversations with

friends and peers can be just as instrumental as advisors.

I would also like to thank Prof. Rephael Wenger, Prof. Mikhail Belkin, Prof. Rick

Parent and Prof. Daniel Burghelea for agreeing to be on my candidacy and defense

committees. Their questions, comments and suggestions helped vastly improve this

dissertation.

Finally, I would like to thank my parents for bringing me into this world and

indulging my selfish request of traveling halfway around the globe to pursue higher

studies. Nothing would have been possible without their support and patience.

v

Vita

2002 .AISSCE, Kendriya Vidyalaya,
IIT Powai

2006 .B.Tech Computer Engg.,
Dr. B.A.T.U., Lonere

2007-present .Direct PhD,
Dept. Of Computer Science and Engg.,
The Ohio State University.

Publications

Research Publications

T. K. Dey, P. Ranjan, Y. Wang “Convergence, Stability, and Discrete Approximation
of Laplace Spectra”. Proceedings of the Twenty-first Annual ACM-SIAM Symposium
on Discrete Algorithms (2010), 650–663.

T. K. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, Y. Wang “Persistent Heat Signature for
Pose-oblivious Matching of Incomplete Models”. Proceedings of the Eighth Annual
Eurographics Symposium on Geometry Processing (2010), 1545:1554.

T. K. Dey, P. Ranjan, Y. Wang “Eigen Deformations of 3D Models”. The Visual
Computer, Volume 28, Issue 6-8, 585-595.

Fields of Study

Major Field: Computer Science and Engineering

vi

Table of Contents

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vi

List of Tables . x

List of Figures . xi

1. Introduction . 1

1.1 Discrete Laplace Operator . 2
1.1.1 Properties . 4
1.1.2 Types . 5

1.2 Applications . 8
1.2.1 Use of eigenvalues . 8
1.2.2 Use of eigenvectors . 9
1.2.3 Use of eigenprojections . 10

1.3 Contribution . 12
1.3.1 Convergence and Stability of the mesh Laplacian spectra . . 13
1.3.2 Stability under topological noise 13
1.3.3 Applications in shape matching 14
1.3.4 Using eigenvectors for shape deformation 15

2. Discrete Laplace Operator . 16

2.1 Mesh Laplace Operator . 16
2.2 Gaussian-weight graph Laplacian 18

vii

2.3 Heat operator . 19

3. Convergence, Stability, and Discrete Approximation of Laplace Spectra [26] 21

3.1 Approach Overview . 23
3.1.1 Overview of Approaches and Results 23

3.2 Perturbation of Manifold and Stability 26
3.3 Spectra Convergence between Discrete and Continuous Laplacians . 34
3.4 Experiments . 45
3.5 Conclusion and Discussion . 48

4. Weighted Graph Laplace Operator under Topological Noise [27] 50

4.1 Problem Formulation . 52
4.2 Step 1: Correspondences . 54

4.2.1 Bipartite graph construction 55
4.2.2 Bipartite Matching in G . 58

4.3 Step 2: Bounding Spectra Distance 68
4.4 Experiments . 72

5. Persistent Heat Signature for Pose-oblivious Matching of Incomplete Mod-
els [24] . 76

5.1 Heat Kernel Signature . 79
5.1.1 Heat Kernel Signature . 80
5.1.2 Discrete setting . 81

5.2 Persistent Heat Maxima . 81
5.2.1 Persistence . 82
5.2.2 Region merging . 85

5.3 Matching . 90
5.4 Results . 91
5.5 Conclusion and Discussion . 96

6. Eigen Deformation of 3D Models [25] . 98

6.1 Eigen-framework . 103
6.1.1 Eigen-skeleton . 104

6.2 Algorithm . 106
6.2.1 Step 1: Coarse Guess-Target Configuration 107
6.2.2 Step 2: Eigen-skeleton Deformation 108
6.2.3 Step 3: Shape Recovery . 112

6.3 Implementation . 114
6.3.1 Recovery details . 114

viii

6.3.2 Choice of number of eigenvectors 115
6.3.3 Additional modifications . 117
6.3.4 Interactivity . 119

6.4 Results . 119
6.5 Conclusion and Discussion . 123

7. Conclusion . 125

Bibliography . 129

ix

List of Tables

Table Page

5.1 Query models and top five matches returned for each query. Letters
C, P, I indicate complete, partial, and incomplete models respectively. 92

5.2 Each entry shows Top-3 / Top-5 hit rates for our method, EVD, and
LFD. “32 incompl.” includes both partial and incomplete queries and
“18 compl.” includes only pose-altered queries. The database contains
300 models. 93

5.3 All experiments are carried out on a Dell computer with Intel 2.4GHz
CPU and 6GB RAM. 95

5.4 Each entry shows Top-3 / Top-5 hit rates for our method using HKS,
AGD and GC feature points. 96

6.1 Timing data (in seconds) for our algorithm 122

6.2 Comparison of relative RMS errors in deformations using as-rigid-as-
possible (ARAP) and our method (ED) 123

x

List of Figures

Figure Page

1.1 The horse model shown in (a) is reconstructed in (b)-(h) using the indi-
cated number of eigenvectors of the mesh Laplacian. More eigenvectors
are able to capture the the finer details. 8

1.2 Top 12 eigenvectors of the graph Laplacian. Nodal sets (vertices with
zero eigenfunction value) are shown in gray. 10

3.1 Theorems relating different operators are shown on top of the arrows.
Double arrows indicate the two main new results in this chapter, and
lead to those results specified by dotted arrows. 25

3.2 Errors in the (a) eigenvalues and (b) eigenvectors of discrete Laplacian
of meshes of unit sphere with increasing number of vertices. 45

3.3 Original, noisy, and non-uniform meshes for the same genus 3 surface.
Bottom : comparison of their eigenvalues. 46

3.4 (a) Some near-isometric deformations of a human. (b) An example of
non-isometric deformation. (c) Comparison of spectra computed from
five isometric and two non-isometric deformations. 47

3.5 Snapshots of continuous deformation of an eight loop and plot of spec-
tra of corresponding meshes. 48

4.1 (a) Dark region is the anchor-region RM induced by the black anchor-nodes

(other anchor-nodes are not shown): RM consists of points from M within

δ Euclidean distance to black points. Light regions are anomalous regions

X1, . . . ,X4. (b) The intermediate region RN ⊂ M contains anomalous regions

X1 and X4 fully, and X2 partially. (c) The witness anchor-region R
+
N
⊂ N of

RM includes anomalous regions Y1, Y2 and Y4 fully. 56

xi

4.2 Left: Connecting two tori with increasingly larger bridges. Right:
Comparison of eigenvalues . 73

4.3 Left: Increasingly large perturbation of points on a surface. Right:
Comparison of eigenvalues . 73

4.4 Left: Increasingly large region of topological change on a torus. Right:
Comparison of eigenvalues . 74

4.5 Topological changes on the Armadillo. Top Row: Original Armadillo
model; and a variation with two fingers joined. Bottom Row: An-
other variation with two fingers touching; and a model with two fingers
touching and another finger touching the nose. Right: Comparison of
eigenvalues for t2 = 0.0001 . 75

5.1 Given a query Armadillo model that is pose-altered, incomplete, and
partially scanned, our method first computes the heat kernel signature
function at a certain scale, and then extract a set of HKS maxima
(red dots) using persistent homology. Feature vectors computed at
these maxima are then used to search for the most similar models,
be it complete, partial, or incomplete, in a shape database. A few top
matches are shown. The black curves are the boundary curves of either
partial or incomplete models. Correspondence between segmentations
of different models is shown with consistent coloring. 77

5.2 Consistent identification of the persistent HKS maxima for different
human / animal models in different poses. The two human models
on the right are incomplete and partially scanned models with black
curves being boundary curves. 83

5.3 Persistence based merging on an Airplane model. (a) Initially, every
triangle represents a region; (b) shows the segmentation after merging
all zero-persistence regions. The central triangle of every remaining
region corresponds to a maximum of input function h. (c) A and B

are two maxima, for the gray and orange regions, respectively, with A
having a larger h value; (d) after the merging, A stays the maximum
for the new region (gray colored). 89

5.4 Top five matches for an incomplete Octopus query model by our algo-
rithm, EVD, and LFD. 94

xii

6.1 Creating correct cages for meshes . 99

6.2 Comparing with green coordinates . 100

6.3 Comparisons when we stretch the arm and bend the leg of the ar-
madillo. Note that our method handles stretching better than as-
rigid-as-possible (ARAP), and extreme bending better than harmonic
coordinates (HC). 102

6.4 Stretching the arm of the armadillo. Note that spectral mesh defor-
mation (SMD), causes the entire mesh to deform in order to preserve
the mesh volume. 103

6.5 The dragon model with its eigen-skeleton created using 8 eigenvectors 108

6.6 Left picture: A coarse discontinuous initial guess. Rotating the entire
region of interest (colored red) causes the discontinuity at its boundary.
We use the mesh connectivity information from the original mesh to
further emphasize this point. Right picture: After step 2, we obtain a
smooth transition across the boundary. 111

6.7 Adding details back to the dragon . 113

6.8 Far Left: head of camel. Right: Eigen-skeleton of the head of the camel
constructed using 8, 50 and 300 eigenvectors, respectively. 116

6.9 Adding details back to the dragon; Left: Directly from eigen-skeleton,
Right: After iterative improvement 118

6.10 Bending a bumpy plane (dense mesh) 120

6.11 Bending a bumpy plane (coarse mesh) 120

6.12 Moving the arm of Neptune using our method and spectral mesh de-
formation (SMD) . 121

6.13 Twisting a bar using our method . 121

6.14 Editing the dancing children . 122

xiii

6.15 Deforming the elk model . 123

xiv

Chapter 1: Introduction

Spectral methods for mesh processing and analysis rely on the eigenvalues, eigen-

vectors, or eigenspace projections derived from appropriately defined mesh operators

to carry out desired tasks. Early work in this area can be traced back to the seminal

paper by Taubin [90], where spectral analysis of mesh geometry based on a combi-

natorial Laplacian aids our understanding of the low-pass filtering approach to mesh

smoothing. Over the two decades, the list of applications in the area of geometry

processing which utilize the eigen-structures of a variety of mesh operators in differ-

ent manners have been growing steadily. Many works presented so far draw parallels

from developments in fields such as graph theory, computer vision, machine learning,

graph drawing, numerical linear algebra, and high-performance computing. Partic-

ularly, the Laplace operator has become increasingly important due to the special

properties exhibited by its eigenvectors.

While the Laplace operator is defined (mathematically) for a smooth domain, it

is not possible to store such surfaces on computers. Instead, the underlying manifold

is often approximated by a discrete mesh, and the spectral structure of the manifold

Laplacian is estimated from some discrete Laplace operator constructed from this

mesh. The discrete Laplace operator and its eigen-structures are capable of capturing

information about the shape at varying levels of detail.

1

Although the Laplace operator and its eigen-structures have many interesting

properties useful for practical applications, not much is known about the behavior

of the Laplace operator and its discrete counterpart when a surface is deformed or

modified. The objective of my thesis is to study the behavior of the eigen-structures of

the discrete Laplace operator as the underlying mesh is changed, possibly introducing

changes to the topology (like adding or removing loops or boundary components).

The work will also explore possible applications of these eigen-structures and their

properties for performing shape matching, segmentation and deformation.

The rest of the chapter is organized as follows: in Section 1.1, we will look at

some important properties and different versions of the discrete Laplace operator.

in Section 1.2, we will briefly discuss some of the applications of the various eigen-

structures of the discrete Laplacian. Finally, in Section 1.3, we will give an overview

of the contributions of this thesis in both theoretical and application-based fields.

1.1 Discrete Laplace Operator

Laplace Operator Consider a smooth, compact manifold M of dimension m iso-

metrically embedded in some Euclidean space IRd. Given a twice continuously differ-

entiable function f ∈ C2(M), let ∇Mf denote the gradient vector field of f on M.

The Laplace-Beltrami operator ∆M of f is defined as the divergence of the gradient;

that is, ∆Mf = div(∇Mf). For example, if M is IR2, then its Laplacian has the

familiar form ∆IR2f = ∂2f
∂x2 +

∂2f
∂y2

.

The Laplace operator has many interesting properties. For example, it is isometry

invariant. i.e. the Laplace operator remains the same for shapes undergoing isometric

deformations. It is also known that the eigenfunctions of the Laplace operator are

2

real-valued, orthonormal and form a basis for all real-valued square integrable func-

tions defined on the manifold. Further study of the Laplace operator, as well as its

generalizations for higher order exterior derivatives can be found in the book [77] by

Steve Rosenberg.

Discrete Setting In practice, the underlying manifold is often approximated by a

discrete mesh. Discrete Laplacian operators are linear operators that act on functions

defined on such meshes. These functions are specified by their values at the vertices.

Thus, if a mesh K has n vertices, then functions on K will be represented by vectors

with n components and a mesh Laplacian will be described by an n× n matrix.

Loosely speaking, a discrete Laplacian operator locally takes the difference be-

tween the value of a function at a vertex and a weighted average of its values at

the first-order or immediate neighbor vertices. Although we will briefly discuss gen-

eralizations, for introductory purposes a Laplacian, L, will have a local form given

by

(Lf)i = b−1
i

∑

j∈N(i)

wij(fi − fj) (1.1)

The edge weights, wij, are symmetric: wij = wji. The factor b−1
i i is a positive

number. Its expression as an inverse allows for formulation of the Laplace operator as

a product of two symmetric positive-semidefinite matrices L = B−1W . This, in turn,

enables us to use efficient numerical solvers for generalized eigenproblem Wφ = λBφ.

A Laplacian satisfying Equation (1.1) is called a first order Laplacian because its

definition at a given vertex involves only the one-ring neighbors. On a manifold

3

triangle mesh, the matrix of such an operator will be sparse, with an average of seven

non-zero entries per row.

1.1.1 Properties

The discrete Laplace operator and its eigen-structures (i.e. eigenvalues and eigen-

vectors) have several important properties, some of which follow from the continuous

counterpart, that make it an important operator commonly used in spectral methods.

We will discuss some of those properties in this section.

Zero row sum.

An important property imposed by Equation (1.1) is the zero row sum. If f is

a constant vector, i.e., one all of whose components are the same, then f lies in the

kernel of L, since Lf = 0 for an operator L with zero row sum. This implies that the

constant vectors are eigenvectors of L with eigenvalue zero. It is known [63, 62] that

the multiplicity of the zero eigenvalue equals the number of connected components in

the mesh.

Eigenvector orthogonality.

An operator that is locally expressed by 1.1 can be factored into the product of a

diagonal and a symmetric matrix

L = B−1S

where B−1 is a diagonal matrix whose diagonal entries are the b−1
i , and S is a

symmetric matrix whose diagonal entries are given by Sii =
∑

j∈N(i)wij and whose

off diagonal entries are wij. Since L itself is not symmetric in general, its eigenvectors

4

are not necessarily orthogonal with respect to the standard dot product. However, if

we define the inner (or dot) product as

〈f, g〉B = fTBg (1.2)

then the eigenvectors of L are orthogonal with respect to that product.

Positive semi-definiteness.

Equation (1.1) does not guarantee that L is positive semidefinite, but such a

property is desirable in a Laplacian operator: the zero eigenvalue associated with the

constant (zero frequency) eigenvectors should be the smallest one. However, it is easy

to show that if the weights wijs are non-negative, then L is positive semi-definite with

respect to the appropriate inner product 1.2.

1.1.2 Types

Over the last two decades, many different discretizations of the Laplace operator

have been proposed. Some of them simply behave like the continuous counterpart,

while others have been shown to actually converge to the Laplace operator of the

original smooth surface being discretized as a mesh. We will briefly introduce some

of the discretizations in this section. Further discussions and convergence properties

of these operators can be found in Chapter 2.

Combinatorial Graph Laplace.

Given a mesh with edges E, the adjacency matrix W of the mesh is defined as:

5

Wij =

{
1 if (i, j) ∈ E
0 otherwise

The degree matrix D is defined as

Dij =

{
di = |N(i)| if i = j
0 otherwise

di is said to be the degree of vertex i. W and D are n×n matrices, where n = |V |,

number of vertices in the mesh. We define the graph Laplace matrix G as

G = D −W

Referring to Equation (1.1), G corresponds to setting bi = 1 and wij = Wij for all

i, j. The operator G is also known as the Kirchoff operator [66], as it has been

encountered in the study of electrical networks by Kirchoff. In that context, the

(weighted) adjacency matrix W is referred as the conductance matrix [38].

Weighted Graph Laplace.

It is trivial to extend the above definition to weighted graphs, where the graph

adjacency matrix W would be defined by Wij = w(eij) = wij, for some edge weight

w : E → IR+, whenever (i, j) ∈ E. Then, it is necessary to define the diagonal entries

of the degree matrix D as Dii =
∑

j∈N(i)wij. In particular, [5] uses Gaussian weights

on a nearest neighbor graph constructed from point cloud sampled from a hidden

manifold.

6

Cotangent Laplace.

The cotangent Laplace tries to discretize the smooth version of Laplace operator

by introducing parameters based on local mesh geometry. The cotangent Laplace

operator C is defined as:

(Cf)i =
∑

j∈N(i)

cotαij+cotβij

2
(fi − fj)

where angles αij and βij are subtended by the edge (i, j) as shown in

figure on the right. In reference to 1.1, C is obtained by setting bi = 1

for all i and wij =
cotαij+cot βij

2
for all (i, j). If (i, j) is a boundary edge,

the cot βij term vanishes. This corresponds to imposing von Neumann boundary

conditions [93].

Mesh Laplace.

In [7], a discrete mesh-Laplacian Lt was proposed, where t is some parameter. It

is defined by

(Ltf)i =
1

t(4πt)m/2

∑

j∈N(i)

Aje
−

‖vi−vj‖2

4t (fi − fj)

where m is the intrinsic dimension of the mesh, and Aj is
1

m+1
-th of the total volume

of all m-simplices incident to the vertex vj.

7

(a) Original (b) 800 (c) 300 (d) 100

(e) 50 (f) 10 (g) 5 (h) 3

Figure 1.1: The horse model shown in (a) is reconstructed in (b)-(h) using the indi-
cated number of eigenvectors of the mesh Laplacian. More eigenvectors are able to
capture the the finer details.

1.2 Applications

The spectral methods have found a wide variety of usage in computer graphics.

They can be broadly divided into methods that use the eigenvalues, and the ones

that use the eigenvectors.

1.2.1 Use of eigenvalues

Drawing analogies from discrete Fourier analysis, one would treat the eigenvalues

of a mesh Laplacian as measuring the frequencies of their corresponding eigenfunctions

[90]. However, it is not easily seen what the term frequency means exactly in the

context of eigenfunctions that oscillate irregularly over a manifold. Furthermore,

since different meshes generally possess different operators and thus different eigen-

bases, using the magnitude of the eigenvalues to pair up corresponding eigenvectors

8

between the two meshes for shape analysis, e.g., correspondence, is unreliable [19].

Despite of these issues, much empirical success has been obtained using eigenvalues

as global shape descriptors for graph [83] and shape matching [45].

Besides directly employing the eigenvalues as graph or shape descriptors, spectral

clustering methods use the eigenvalues to scale the corresponding eigenvectors so as

to obtain some form of normalization. [13] scale the eigenvectors by the squares of the

corresponding eigenvalues, while [45] provide justification for using the square root

of the eigenvalues as a scaling factor. The latter choice is consistent with the scaling

used in spectral clustering [65], normalized cuts [80], and multidimensional scaling

[22].

1.2.2 Use of eigenvectors

Eigenvectors are typically used to obtain an embedding of the input shape in

the spectral domain. After obtaining the eigen-decomposition of a specific operator,

the coordinates of vertex i in a k-dimensional embedding are given by the i-th row

of matrix Φk = [φ1, · · · , φk], where φ1, · · · , φk are the first k eigenvectors from the

spectrum (possibly after scaling). Whether the eigenvectors should be in ascending

or descending order of eigenvalues depends on the operator that is being used. For

the Laplacian operators, eigenvectors corresponding to the smallest eigenvalues are

used to compute spectral embeddings.

For example, spectral clustering makes use of such embeddings. [65] present a

method where the entries of the first k eigenvectors corresponding to the largest

eigenvalues of a normalized affinity matrix are used to obtain the transformed coordi-

nates of the input points. Additionally, the embedded points are projected onto the

9

Figure 1.2: Top 12 eigenvectors of the graph Laplacian. Nodal sets (vertices with
zero eigenfunction value) are shown in gray.

unit k-sphere. Points that possess high affinities tend to be grouped together in the

spectral domain, where a simple clustering algorithm, such as k-means, can reveal

the final clusters.

1.2.3 Use of eigenprojections

If a mesh operator possesses a set of orthogonal eigenvectors, with respect to inner

product as defined in 1.2, and given by the columns of matrix Φ, then any discrete

function defined on the mesh vertices, given by a vector x, can be transformed into

the spectral domain by

x̃ = V TBx

10

These spectral transforms are closely related to the Fourier transform that is the

foundation of signal processing theory. In geometry processing, the signal considered

is often the embedding function that specifies the 3D coordinates of each vertex. This

signal is commonly referred to as the geometry of the mesh. Thus the geometry signal

is an n× 3 matrix P whose i-th row is the transpose of the position vector of the i-th

vertex. The resulting coefficients P̃ = V TBP are then a representation of the mesh

geometry in the spectral domain.

As in the case of Fourier analysis, the intuition is that when the signal is trans-

formed into the spectral domain, it might be easier to carry out certain tasks because

of the relation of the coefficients to low and high frequency information. For example,

the projections of P with respect to the eigenvectors of the graph Laplacian can be

used for mesh compression [48]. That is, a set of the transformed coefficients from the

high-frequency end of the spectrum can be removed without affecting too much the

approximation quality of the mesh, when it is reconstructed by the inverse transform.

Figure 1.1 shows the result of reconstructing a horse model by using different number

of eigenvectors.

For spectral watermarking of meshes [66] however, it is the low-frequency end of

the spectrum that is to be modulated. This way, the watermark is less perceptible

and the watermarked mesh can become resilient against such attacks as smoothing.

An important reason for the sudden gain in popularity of the discrete Laplace

operators in spectral methods is the fact that their eigenvectors possess similar prop-

erties as the classical Fourier basis functions. By representing mesh geometry using a

discrete signal defined over the manifold mesh surface, it is commonly believed that

a Fourier transform of such a signal can be obtained by an eigenspace projection of

11

the signal along the eigenvectors of a mesh Laplacian. Indeed, the classical Fourier

transform of a periodic 1D signal can be seen as the decomposition of the signal into

a linear combination of the eigenvectors of the Laplacian operator.

An important distinction between the mesh case and the classical Fourier trans-

form however is that while the latter uses a fixed set of basis functions, the eigenvectors

which serve as Fourier-like bases for mesh signal processing would change depending

on mesh connectivity, geometry, and which type of Laplacian operator is adopted.

Nevertheless, the eigenvectors of the mesh Laplacian all appear to exhibit harmonic

behavior, loosely referring to their oscillatory nature. They are seen as the vibration

modes or the harmonics of the mesh surface with their corresponding eigenvalues as

the associated frequencies.

In Figure 1.2, we give color plots of the first 12 eigenvectors of the combinatorial

graph Laplacian of the Max Planck mesh, where the entries of an eigenvector are

color-mapped. As we can see, the harmonic behavior of the eigenvectors is evident.

1.3 Contribution

The purpose of this thesis is to study the theoretical properties of the discrete

Laplace operator and to explore their possible applications in the field of computer

graphics. In Chapters 3 and 4 ([26], [27]), we study the discrete Laplace spectra and

its stability. Later on, in Chapters 5 and 6 ([24], [25]) we study some applications to

shape matching and deformation, respectively.

12

1.3.1 Convergence and Stability of the mesh Laplacian spec-
tra

We start with a study of the spectrum of mesh-Laplace operator and its relation

to the spectrum of the (smooth) Laplacian. We pose the following two questions in

an effort to learn about the stability of the Laplace operator, as well as its discrete

counterpart.

P1. Given a manifold and a simplicial mesh that approximates it, how does the

spectrum of the (discrete) mesh-Laplacian relate to that of (smooth) Laplace

operator? Does the former converge to the latter as the sampling becomes

denser?

P2. Given two ’similar’ manifolds, how close are their (smooth) Laplacian spec-

tra? What about the spectra of the discrete Laplacian computed from meshes

approximating the two manifolds.

In Chapter 3, we will show that the mesh-Laplacian spectrum is, in fact, ’close’

to the spectrum of the Laplace operator, and that the eigenvalues of the discrete

operator actually converge to those of the smooth analog, as the sampling becomes

denser. We will also show that the mesh-Laplacian spectrum of two meshes approxi-

mating ’similar’ manifolds are also ’close’. The rigorous definitions of ’similarity’ and

’closeness’ can be found in Chapter 2. We close Chapter 3 with some experimental

results to back up our theoretical findings.

1.3.2 Stability under topological noise

Next, we move on to study the behavior of discrete Laplace operators when modi-

fications to a manifold change its topology. Our previous stability study required that

13

the input manifold be approximated by a mesh structure. The perturbation consid-

ered also needed to preserve the manifold topology and be smooth in the first order.

We relax both the conditions. We concentrate on the Gaussian-weighted (discrete)

graph Laplacian, which works directly on the point cloud data sampled from a man-

ifold, without the need of a triangulation. The Gaussian-weighted (discrete) graph

Laplacian is a popular and commonly used operator, known for its simplicity as well

as the fact that it converges to the manifold Laplacian. We also modify the notion of

’similarity’ used in Chapter 3 to allow topological changes. Since topological changes

can alter geodesic distances dramatically, the stability of the smooth Laplacian can-

not be guaranteed. However, we show that the weighted graph Laplacian under such

perturbations is still stable. We use results from bipartite graph matching matrix

perturbation theory to prove our claim. The details are presented in 4, along with

experiments that corroborate our claim.

1.3.3 Applications in shape matching

In later chapters, we shift our focus from theory to practice. Our theoretical

results tell us that not only is the spectrum of the mesh-Laplacian stable, but it is

also similar for similar meshes. Hence, we should be able to use the spectrum to

create a signature in order to match different shapes or meshes. In Chapter 5, we

create such a signature. We use a function called the Heat Kernel Signature, or the

HKS, which was first developed by Sun et al. in their paper [88]. The HKS has

deep connections with the Laplace operator, which are explored in Chapter 2. In

fact, the HKS can be computed by using the eigenvalues and the eigenvectors of the

Laplace operator. This was one of the biggest reasons for choosing the HKS to create

14

our shape matching signature. Next, we used elements from persistent homology to

create an algorithm to pick out the ’important’ values of the HKS and discard the

rest. The details of this procedure, along with various results and comparisons with

other matching algorithms, are also presented in Chapter 5.

1.3.4 Using eigenvectors for shape deformation

Finally, we wrap up the thesis with an application that allows a user to freely

deform shapes or models. A bulk of the current body of work on surface deformation

and animation relies on extra structures like cages or skeletons which need to be

provided by the user, in addition to the model they wish to deform. Our work aims

to alleviate this problem by creating an implicit skeleton using the eigenvalues and

eigenvectors of the mesh-Laplacian. We then use these eigenvectors, along with our

skeleton, to guide the deformation. The result is a fast and easy to use software which

is presented in Chapter 6, along with the details of the mechanism used to create the

skeletons and guide the deformations.

15

Chapter 2: Discrete Laplace Operator

Before proceeding to the main contributions of this thesis, it is important to first

introduce the discrete Laplace operators and related tools that will be used in the rest

of the chapters. We will start with formal definitions and brief studies of the mesh-

Laplacian and then move on to the Gaussian-weighted graph Laplacian. We will also

take a look at the Heat operator, which is another operator defined on manifolds. It

is of particular interest to us since it share its eigenvectors with the Laplace operator,

a fact that we will exploit in Chapter 5

2.1 Mesh Laplace Operator

As seen in Chapter 1 several discretizations of the Laplace operator for meshes

have been proposed. In [7], Belkin et al. proposed the so-called mesh-Laplace opera-

tor, which is the first discrete Laplacian that pointwise converges to the true Laplacian

as the input mesh approximates a smooth manifold better. Specifically, for any C2-

smooth scalar function f defined on a manifoldM and its restriction f̂ on vertices of a

meshK, |∆Mf(x)−DK f̂(x)|∞ converges to zero asK converges toM , where ∆M and

DK denote the Laplacian of M and its discrete approximation from K, respectively.

16

This result can be easily extended to higher dimensional manifolds1. Experimental

results also show that this operator indeed produces accurate approximation of the

Laplace operator under various conditions, such as noisy data input, and different

sampling conditions etc [92].

Given a simplicial meshK with all vertices lying onM , we say that it ε-approximates

a smooth manifold M if (i) for any point p ∈ M , there is a sample point (i.e, a ver-

tex) from K that is at most ερ(M) away; and (ii) the projection map φ from the

underlying space |K| of K onto M is a homeomorphism and its Jacobian is bounded

by 1 +O(ε) at any point in the interior of the m-simplices. Intuitively, the first con-

dition ensures that the mesh is sufficiently fine. However, a very fine mesh can still

provide a poor approximation to the underlying surface. Hence we need the second

condition to ensure that the distortion between |K| and M is small. We remark that

for an m-manifold embedded in IRm+1 (such as a surface embedded in IR3), such an

ε-approximation is equivalent to the (ε, η)-approximation used in [7] with η = O(ε),

which bounds both the sampling density and the normal deviation.

In the discrete setting, an input function f is only available at vertices of K, and

thus can be represented as an n-dimensional vector f̂ = [f(v1), . . . , f(vn)]
T where

V = {v1, . . . , vn} is the set of vertices in K. In [7], Belkin et al. propose a discrete

mesh-Laplacian LK
t , where t is some parameter. Being a linear operator, this discrete

analog of the Laplace operator is an n by n matrix. It is defined by:

LK
t f(vi) =

1

t(4πt)m/2

∑

vj∈V

Aje
−

‖vi−vj‖2

4t (f(vi)− f(vj)),

1The extension to d-manifolds embedded in IRd+1 is straightforward. When the co-dimension is
greater than 1, one needs to define the sampling condition appropriately to guarantee the convergence
of the normal space.

17

where Aj is 1
m+1

-th of the total volume of all m-simplices incident to the vertex vj.

This discrete operator LK
t pointwise converges to the Laplace operator ∆M of M .

More precisely,

Theorem 2.1.1 ([7]). Set t(ε) = ε
1

2.5+α for an arbitrary fixed positive number α > 0.

Then for any f ∈ C2(M) and any point x ∈M ,

lim
ε→0

sup
K(ε)

|LK(ε)
t(ε) f(x)−∆Mf(x)| = 0,

where the supremum is taken over all ε-approximations K(ε) of M .

2.2 Gaussian-weight graph Laplacian

Weighted graph Laplace operator. An underlying manifold is often approxi-

mated by simply a point cloud data (PCD) sampled from the manifold, instead of

a triangulation. We thus need a discrete PCD version of the Laplace-Beltrami op-

erator. A popular choice in this setting is the so-called Gaussian-weighted graph

Laplacian, both for its simplicity and for its convergence to the manifold Laplacian

with increasing number of uniformly randomly sampled points.

Let M be a smooth, compact m-dimensional manifold without boundary which is

isometrically embedded in IRd and thus equipped with a natural Riemannian metric

induced from IRd. We use dIRd(x, y) to denote the Euclidean distance between two

points x, y ∈ IRd and dM(x, y) to denote the geodesic distance between x and y on

M when x, y are on M ⊆ IRd. For simplicity of exposition, we replace dIRd(x, y) with

‖x− y‖ when it appears in the exponent.

Consider a set of discrete sample points P = {p1, . . . , pn} ⊂ M. Given a func-

tion f : P → IR, the Gaussian-weighted graph Laplace is defined with respect to a

18

parameter t > 0 as

LtPf(pi) =
1

n
· 1

(4πt)m/2t

n∑

j=1

e−
‖pi−pj‖2

4t (f(pi)− f(pj)), (2.1)

where n = |P | is the number of sample points. Since a discrete function f : P → IR

can be represented as an n-dimensional vector [f(p1), f(p2), . . . , f(pn)]
T , LtP is an n×n

matrix where

LtP [i][j] =

− 1

n
· 1
(4πt)m/2t

e−
‖pi−pj‖2

4t , if i 6= j

1
n
· 1
(4πt)m/2t

∑
l 6=i,l∈[1,n] e

−
‖pi−pl‖

2

4t , if i = j
(2.2)

It has been shown [4, 6] that if the set P samples M uniformly randomly according to

the volume measure on M, then as n tends to infinity and t tends to 0 at appropriate

rates, LtP converges to ∆M both pointwise and in spectrum.

2.3 Heat operator

No discussion of the Laplace operator can be truly complete without the Heat

operator. Given a Riemannian manifold M , the heat operator Ht w.r.t. a parameter

t ∈ IR is an operator on L2(M), the space of square integrable functions on M .

Specifically, imagine that there is an initial heat distribution on M at time 0. Now

the heat starts to diffuse and this diffusion process is governed by the following heat

equation, where u(x, t) denotes the amount of heat at a point x ∈ M at time t,

and △ is the Laplace-Beltrami operator of M : △u(x, t) = −∂u(x,t)
∂t

. Given a function

f : M → IR, the heat operator applied to f gives the heat distribution at time t

with f being the initial heat distribution. That is, Htf = u(·, t) if u(·, 0) = f . For a

square integrable function f , a unique solution to the heat equation exists, and Htf

has the form: Htf(x) =
∫
M
ht(x, y)f(y)dµy, where dµy is the volume form at y, and

ht :M ×M → IR is the so-called heat kernel function.

19

Heat kernel. Intuitively, for two points x, y ∈M , ht(x, y) measures the amount of

heat that passes from y to x within time t out of unit heat at y. IfM is the Euclidean

space IRd, then the corresponding heat kernel is: ht(x, y) = 1
(4πt)d/2

e−||x−y||2/4t. For

a general manifold M , however, there is no known explicit expression for the heat

kernel. There is fortunately an alternative way to represent the heat kernel. More

specifically, the heat operator is compact, self-adjoint, and positive semi-definite.

Thus it has discrete spectrum 1 = ρ0 ≥ ρ1 ≥ . . . ≥ 0 with Htφi = ρiφi. By the

Spectral Theorem, the heat kernel can be written as:

ht(x, y) =
∑

i≥0

ρiφi(x)φi(y). (2.3)

i.e., if we know the spectrum and eigenfunctions of the heat operator, we can then

compute the heat kernel function. We can compute the spectrum of the heat operator

via the Laplace-Beltrami operator ∆ of M , which is related to the heat operator as

Ht = e−t∆. This means that Ht and ∆ share the same eigenfunctions φi, and their

eigenvalues satisfy ρi = e−tλi , where ∆φi = λiφi. In other words, we can compute the

heat kernel by ht(x, y) =
∑

i≥0 e
−tλiφi(x)φi(y).

20

Chapter 3: Convergence, Stability, and Discrete

Approximation of Laplace Spectra [26]

One of the most popular discrete Laplacians is the cotangent scheme (which was

briefly discussed in Section 1.1) for surfaces embedded in three-dimensional space,

originally proposed in [28, 70], and its variants [23, 58, 59, 100]. The cotangent

scheme has several nice properties, including the so-called weak convergence (which,

roughly speaking, means convergence in the sense of inner product) [42, 97]. How-

ever, in general, it does not provide the standard pointwise convergence [100, 101],

though there are some convergence results for certain special meshes and manifolds

[100]. Nevertheless, in his Ph.D dissertation, Wardetzky showed a convergence result

for spectra based on the cotangent scheme when the surface mesh satisfies some mild

conditions on the aspect ratio of the triangles [96]. Reuter et al. computed a dis-

crete Laplace operator using the finite element method, and obtained good practical

performance [73].

In Chapter 2, we saw that the mesh Laplacian also has nice convergence properties

and is also known to be robust against noise and sampling conditions. However, so far,

no general convergence result is known for the eigen-structures of any discrete Lapla-

cian for meshes in arbitrary dimensions, even though many practical applications rely

on these structures. In general, pointwise convergence between two operators is not

21

strong enough to imply the convergence of their respective eigenvalues nor eigenfunc-

tions. As mentioned above, partial spectrum convergence result was obtained for

surface meshes based on the cotangent scheme [96]. For high dimensional manifolds,

convergence result is known only under the statistical setting — if input points are

randomly sampled from the underlying manifold, Belkin and Niyogi showed that the

eigen-structure of the weighted graph Laplacian of these points converges to that of

the manifold Laplacian [5].

In Section 3.3, we present the first result relating the eigen-structure of some dis-

crete Laplacian from meshes with the manifold Laplacian for m-manifolds embedded

in IRd. We focus on the mesh-Laplacian proposed in [7] and show that its eigenvalues

converge to those of the manifold Laplacian as the mesh approximates a smooth man-

ifold better. The new result is achieved by showing that the mesh-Laplace operator

converges to the manifold Laplacian not only pointwise, but in fact under a stronger

operator norm when considered in a certain appropriate Sobolev space.

In Section 3.2, we investigate a related question of how stable the Laplacian spec-

trum and its discrete approximation are as the underlying manifold is perturbed. We

give explicit bounds for the Laplacian spectra of two “close by” manifolds, and present

a convergence result for their discrete approximations. This is the first stability result

for discrete Laplace operators.

In Section 3.4, we provide experimental evidence showing that the mesh Laplacian

indeed produces good estimates of spectra of the manifold Laplacian, and is robust

to noise and deformations.

22

3.1 Approach Overview

Problem definition. In this chapter, we aim to understand the stability of the

spectrum of the Laplace operator and its discrete analog. The first question we

consider is:

P1. How does the spectrum of the mesh-Laplacian LK
t relate to that of ∆M . Does

the former converge to the latter as the sampling becomes denser?

The second problem aims to understand the stability of the Laplacian spectrum (both

the continuous and discrete versions) when the underlying manifold M is perturbed.

Specifically, given two smooth and compact m-manifolds M and N embedded in IRd,

we say that M and N are δH-close if there is a homeomorphism Ψ : M → N such

that (1) ‖x − Ψ(x)‖ = O(δH) for any x ∈ M , and (2) the Jacobian of the map Ψ is

bounded by |JΨ− 1| = O(δH) at any point of M .

P2. How are the spectra of ∆M and ∆N , as well as the spectra of the discrete

Laplacian computed from meshes approximating M and N , related.

3.1.1 Overview of Approaches and Results

To connect the Laplace operator and its approximation, we need an intermediate

operator LM
t , called the functional approximation of ∆M , first introduced in [3]. Given

a point p ∈M and a function f :M → IR, it is defined as:

LM
t f(x) =

1

t(4πt)m/2

∫

y∈M

e−
‖x−y‖2

4t (f(x)− f(y)) dy. (3.1)

The intuition behind using this operator is two-fold. First, the closed form of the

Laplace operator is unavailable for general manifolds, making it hard to analyze di-

rectly. Secondly, while the Laplace operator is an unbounded operator, this functional

23

Laplacian is bounded with a simple spectral structure. This facilitates us to use the

standard perturbation theory to analyze the stability of this operator. The connec-

tion between the functional Laplacian and ∆M can be summarized in the following

theorem [3, 5].

Theorem 3.1.1 ([3, 5]). For a function f ∈ C2(M), we have that

lim
t→0

∥∥LM
t f −∆Mf

∥∥
∞

= 0.

Furthermore, let {λi} and {λ̂i} denote the discrete eigenvalues of ∆M and LM
t enu-

merated in non-decreasing order. Then, for any fixed i and for t small enough (more

precisely, t < 1
2λi

), we have |λi − λ̂i| = O(t
2

m+6).

In [7], it was shown that given a mesh K that ε-approximates M , LM
t can be ap-

proximated by the mesh Laplacian LK
t with pointwise convergence guarantee. When

combined with the above theorem, this implies Theorem 2.1.1. However, to answer

Question P1, we need a stronger (than pointwise) convergence result between LK
t and

LM
t . Specifically, in Section 3.3, we show the following result, which is obtained by

bounding the operator norm of the difference between LK
t and LM

t in an appropriate

functional space.

Theorem 3.1.2. Given a smooth m-manifold M , let K(ε) denote a simplicial mesh

K that ε-approximates M . Let {λ̂i} and {λDi (ε)} denote the set of non-decreasing

discrete eigenvalues of LM
t and of L

K(ε)
t , respectively. Then, for any fixed i, we have

that limε→0 |λ̂i − λDi (ε)| = 0.

This result, combined with Theorem 3.1.1, gives an answer to Question P1 of this

chapter, which is stated below. The relation between these results is illustrated in

Figure 3.1.

24

Theorem 3.1.3. Given a smooth m-manifold M and a simplicial mesh K(ε) that

ε-approximates M , let {λi} and {λDi (ε)} denote the set of non-decreasing discrete

eigenvalues of ∆M and of L
K(ε)
t , respectively. Then, for any fixed i, we have that

limt,ε, ε

t
m
2 +3

→0 |λi − λDi (ε)| = 0.

∆M

ww

Thm 3.1.3

''
oo Thm 3.1.1 //

OO

Thm 3.1.5

��

LM
t

ks Thm 3.1.2 +3
KS

Thm 3.1.4
��

LK
tOO

Thm 3.1.6
��

∆N
oo // LN

t
ks +3 LQ

t

Figure 3.1: Theorems relating different operators are shown on top of the arrows.
Double arrows indicate the two main new results in this chapter, and lead to those
results specified by dotted arrows.

To answer Question P2, the main component is a perturbation result for the

functional Laplace operator. Specifically, let Spec(A) denote the spectrum of an

operator A. We show that:

Theorem 3.1.4. Given two δH-close m-manifolds M and N , the Hausdorff dis-

tance between Spec(LM
t) and Spec(LN

t) is O(δH

t
m
4 +2). That is, for any eigenvalue

λ̂ ∈ Spec(LM
t) and ω̂ ∈ Spec(LN

t), we have that dist(λ̂, Spec(LN
t)) = O(δH

t
m
4 +2) and

dist(ω̂, Spec(LM
t)) = O(δH

t
m
4 +2), where dist(x,X) := infy∈X |y − x|.

Combining this result with Theorem 3.1.1 bounds the spectra of ∆M and of ∆N

(Theorem 3.1.5 below); and combining it with Theorem 3.1.2 leads to spectral con-

vergence of discrete Laplacians for meshes approximating M and N , as N converges

to M (Theorem 3.1.6 below). These relations are also illustrated in Figure 3.1.

25

Theorem 3.1.5. Let {λi} and {ωi} be the non-decreasing eigenvalues of ∆M and ∆N

with multiplicity. Then, for any λi, there exists δH0 > 0 such that if M and N are

δH-close for any δH < δH0, then |λi − ωi| = O(δ
8

m2+14m+56

H).

Theorem 3.1.6. Let M and N be two m-manifolds that are δH-close, and K(ε) and

Q(ε) be two simplicial meshes ε-approximating M and N , respectively. Let {λDi } and

{ωD
i } be the non-decreasing eigenvalues of LK

t and LQ
t with multiplicity. Then, for

any fixed i, we have that as N converges to M and as the meshes approximate better,

lim
δH ,ε, ε

δ
m
2 +3

H

,
δH

t
m
4 +2

→0
|λDi − ωD

i | = 0.

Outline. In the rest of this chapter, instead of following the above order where we

introduced the results, we first prove Theorem 3.1.4 and 3.1.5 in Section 3.2, as this

will illustrate some of the main ideas of our approach. The proof for Theorem 3.1.2 is

more technical, and we will present a sketch of it as well as proofs for the remaining

results in Section 3.3.

3.2 Perturbation of Manifold and Stability

In this section, we study the behavior of the spectrum of ∆M and its discrete

approximation as the underlying manifold M is perturbed to another manifold N

that is δH-close to M . The main component is to relate the spectrum of LM
t with

that of LN
t (i.e, Theorem 3.1.4) which we focus on now. Here we consider the Hilbert

spaces L2(M) and L2(N), which are the spaces of square integrable functions on M

and on N , respectively. Notice that for any compact manifold X, the functional

Laplacian LX
t is a self-adjoint and bounded operator in L2(X) (equipped with the

standard L2 norm).

26

Roughly speaking, if the norm of the difference between two operators is bounded

in some space, then the distance between their spectra is also bounded. Hence, we

wish to bound the operator norm of LM
t −LN

t . However, the two operators LM
t and LN

t

are defined over two different spaces, L2(M) and L2(N), respectively. Thus, they are

not directly comparable. Now assume Ψ : M → N is a homeomorphism between M

and N that satisfies the δH-closeness conditions. We compare the operator LM
t with

the pull-back operator of LN
t . Specifically, given an operator A : L2(N) → L2(N),

its pullback via Ψ, denoted by Ψ∗(A) : L2(M) → L2(M), is defined by: given any

function f ∈ L2(M), we obtain another function in L2(M) which is A(f ◦Ψ−1) ◦Ψ.

Lemma 3.2.1. A and Ψ∗(A) share the same eigenvalues. The eigenfunctions of

Ψ∗(A) are {gi ◦Ψ} where gi are the eigenfunctions of A.

Proof: Take an eigenfunction gi of A with eigenvalue ρ, that is, Agi = ρgi. Now

consider f = gi ◦Ψ and consider Ψ∗(A)f . We have that

Ψ∗(A)f = A(f ◦Ψ−1) ◦Ψ = A(gi) ◦Ψ = ρgi ◦Ψ = ρf.

The opposite direction is similar.

Since LN
t and its pullback share the same spectrum, it suffices to compare LM

t with

Ψ∗(LN
t). The following result will be needed later:

Claim 3.2.1. Given an m-manifold M embedded in IRd, for small enough t > 0,

∫
M
e−

‖x−y‖2
4t dy = O(t

m
2).

Proof: Choose r = (t)1/4 ≤ ρ/2 as a constant small enough, where ρ is the reach

of the manifold M . Let B be the ball centered at point x with radius r, and MB the

27

intersection between B and M . First, observe that e−
r2

4t ≤ o(tα) for any α > 0 when

t is small enough, as

lim
t→0

e−
r2

4t /tα = lim
t→0

e
− 1

4
√
t/tα = 0.

It then follows that

∫

M\MB

e−
‖x−y‖2

4t dy ≤ V ol(M)e−
r2

4t = o(tm/2). (3.2)

On the other hand, consider the map from MB to Tx, where Tx is the tangent space

at x of M . Obviously, Tx is a m-dimensional subspace. Consider the projection map

φ :MB → Tx. For r < ρ/2, φ is injective. It is shown in [7] that the Jacobian of φ at

any y ∈MB is bounded by 1 +O(r2/ρ2). Same bound holds for the Jacobian of φ−1

for any z ∈ φ(MB). This also implies that

‖φ(y)− x‖ ≥ (1−O(r2/ρ2))‖y − x‖.

Applying change of variables, we have:

∫

MB

e−
‖x−y‖2

4t dy =

∫

φ(MB)

e−
‖x−φ−1(z)‖2

4t Jφ−1(z)dz

≤
∫

φ(MB)

e−
(1−O(r2/ρ2))‖x−z‖2

4t (1 +O(
r2

ρ2
))dz

≤
∫

φ(MB)

eO(
r2‖x−z‖2

4t
)e−

‖x−z‖2
4t (1 +O(

√
t))dz

≤
∫

φ(MB)

2eO(r
4

4t
)e−

‖x−z‖2
4t dz

≤ O(1) ·
∫

φ(MB)

e−
‖x−z‖2

4t dz

≤ O(1) ·
∫

IRm

e−
‖x−z‖2

4t dz ≤ O(tm/2).

The last inequality follows from Claim 3.1 from [56]. The claim then follows from

this and Equation (3.2).

28

Lemma 3.2.2. The L2-norm of the difference of LM
t and Ψ∗(LN

t) is bounded by

‖LM
t −Ψ∗(LN

t)‖ = O(δH

t
m
4 +2).

Proof: Set c = 1
t(4πt)m/2 and Gt(x, y) = e−

‖x−y‖2
4t . Given two points x, y ∈ M , note

that ‖Ψ(x)−x‖ = O(δH) and ‖Ψ(y)−y‖ = O(δH) sinceM and N are δH-close. Thus

|Gt(Ψ(x),Ψ(y))−Gt(x, y)| = O(
δH
t
)Gt(x, y).

Now, given a function f : M → IR and a point x ∈ M , note that Ψ∗(LN
t)f(x) =

LN
t (f ◦Ψ−1) ◦Ψ(x). Setting g = f ◦Ψ−1 and p = Ψ(x), we have that:

Ψ∗(LN
t)f(x) = LN

t g(p) = c

∫

N

Gt(p, q)[g(p)− g(q)]dq.

By change of variables, we then obtain:

Ψ∗(LN
t)f(x) = c

∫

Ψ−1(N)

Gt(p,Ψ(y))[g(p)− g ◦Ψ(y)]JΨ|ydy

= c

∫

M

Gt(Ψ(x),Ψ(y))[f(x)− f(y)]JΨ|ydy

where JΨ|y is the Jacobian of the map Ψ at y ∈ M , and is bounded by | JΨ|y −

1 |= O(δH) due to the δH-closeness condition. Comparing this with LM
t f(x) (recall

29

Equation (3.1)), we have that:

∣∣∣Ψ∗(LN
t)f(x)− LM

t f(x)
∣∣∣ ≤ c

∫

M

∣∣f(y)
(
Gt(Ψ(x),Ψ(y))[1 +O(δH)]−Gt(x, y)

)∣∣ dy

+ c

∫

M

∣∣f(x)
(
Gt(Ψ(x),Ψ(y))[1 +O(δH)]−Gt(x, y)

)∣∣ dy

= c |
∫

M

Gt(Ψ(x),Ψ(y))f(y)dy −
∫

M

Gt(x, y)f(y)dy

+O(δH)

∫

M

Gt(Ψ(x),Ψ(y))f(y)dy |

+ c

∫

M

∣∣f(x)
(
Gt(Ψ(x),Ψ(y))(1 +O(δH))−Gt(x, y)

)∣∣ dy

≤ c ·O(δH
t
)
[∫

M

Gt(x, y)|f(y)|dy + |f(x)|
∫

M

Gt(x, y)dy
]

≤ c ·O(δH
t
)
[
‖f‖

√∫

M

G2
t (x, y)dy + |f(x)|

∫

M

Gt(x, y)dy
]

≤ O(
δH

t
m
4
+2

)‖f‖+O(
δH
t2

)|f(x)|.

The last but one inequality follows from the fact that 〈f, g〉 ≤ ‖f‖ · ‖g‖ for any two

functions. The last inequality follows from Claim 3.2.1. Hence the square of the

L2-norm of Ψ∗(LN
t)f − LM

t f is bounded by:

‖Ψ∗(LN
t)f − LM

t f‖2 =
∫

M

[
Ψ∗(LN

t)f(x)− LM
t f(x)

]2
dx

≤ O(
δ2H
t
m
2
+4

)

∫

M

(
‖f‖2 + f 2(x) + 2‖f‖ · |f(x)|

)
dx

≤ O(
δ2H
t
m
2
+4

)
(
‖f‖2 · ‖1‖+ ‖f‖2 + 2‖f‖2

)

≤ O(
δ2H
t
m
2
+4

)‖f‖2,

where 1 is the constant function and ‖1‖ = volume(M). Hence ‖Ψ∗(LN
t)f−LM

t f‖ =

O(δH/t
m
4
+2)‖f‖ for any function f , where the big-O notation hides terms depending

only on the underlying manifold M . The lemma then follows.

30

This result and Equation (2) from [94] imply that for any eigenvalue ω̂ ∈ Spec(LN
t),

we have that dist(ω̂, Spec(LM
t)) = O(δH

t
m
4 +2). Now switching the role of M and N in

Lemma 3.2.2, we obtain a symmetric result that for any eigenvalue λ̂ ∈ Spec(LM
t),

we have that dist(λ̂, Spec(LN
t)) = O(δH

t
m
4 +2). Theorem 3.1.4 then follows from these

two results. We remark that the distance between spectra of LM
t and LN

t depends

not only on δH , the closeness between M and N , but also on t inversely. Intuitively,

this is expected as the parameter t in the functional Laplacian Lt specifies the width

of the Gaussian kernel and thus the range of the region around x ∈ M influencing

LM
t f(x). Hence, the larger t is, the stronger the smoothing effect it has, while the

smaller t is, the more sensitive the functional Laplacian is to the perturbation of the

underlying manifold, which leads to larger error between the corresponding spectra.

Proof of Theorem 3.1.5. It is well known that the Laplace operator only has

real and isolated eigenvalues with finite multiplicity. We wish to build a one-to-one

relationship between Spec(∆M) and Spec(∆N) and bound their distance. To achieve

this using Theorems 3.1.1 and 3.1.4 (recall Diagram 3.1), there are two main technical

issues to be addressed. First, the operator LX
t , although bounded and self-adjoint,

is not compact. Hence, it may have non-isolated a continuous spectrum (e.g, all

values within an interval are eigenvalues). Second, Theorem 3.1.4 only bounds the

Hausdorff distance between spectra of LM
t and LN

t , while we wish to obtain a one-to-

one relationship between (their lowest) eigenvalues.

For the first issue, given an operator T , recall that SpecDis(T) denotes the set

of isolated eigenvalues of T with finite multiplicity, and SpecEss(T) = Spec(T) \

SpecDis(T) is the so-called essential spectrum of T .

31

Claim 3.2.2 ([5]). The essential spectrum of LX
t is contained in (1

2
t−1,∞). The

smallest eigenvalue of LX
t is 0, and the discrete spectrum of LX

t is contained in the

interval [0,Θ(1
t
)).

In other words, even though LM
t contains a continuous spectrum, those with low

values (smaller than 1
2
t−1) are isolated with finite multiplicity, and can be potentially

related to those of LN
t in a one-to-one manner. These first few eigenvalues are also

what are typically used in practice. As t goes to zero, the interval [0, 1
2
t−1) will contain

more and more isolated eigenvalues.

Claim 3.2.2 was shown in [5, 95]. We provide an intuition here: Set c(t) = 1
t(4πt)m/2

and Gt(x, y) = e−
‖x−y‖2

4t . It turns out that the operator LX
t can be rewritten as

LX
t = MX

t − IXt , where MX
t f(x) = g(x) · f(x) with g(x) = c(t)

∫
X
Gt(x, y)dy, and

IXt f(x) = c(t)
∫
X
Gt(x, y)f(y)dy. In other words, MX

t is a multiplication operator and

IXt is an integral operator. It is easy to verify that both are self-adjoint in L2(X), and

the former is bounded while the latter is compact. It then follows that the essential

spectrum of LX
t coincide with the range of the function g(·) (i.e, [inf g(x), sup g(x)]).

The range of this function g(·) was shown in [5] and Claim 3.2.2 thus follows.

For the second issue, consider the first k eigenvalues {λ̂i} of LM
t and {ω̂i} of LN

t ,

in non-decreasing order, where k is an integer such that λ̂k <
1
2
t−1 and ω̂k <

1
2
t−1 (i.e,

the first k isolated eigenvalues). Theorem 3.1.1 from [5] states that for each i < k,

|λi − λ̂i| = O(t
2

m+6). In other words, the first few eigenvalues from LM
t one-to-one

correspond to the first few eigenvalues from ∆M . The same statement holds for the

lowest eigenvalues {ωi} for ∆N and {ω̂i} for LN
t .

Now we wish to also establish a one-to-one correspondence between (lowest) eigen-

values {λ̂i} and {ω̂i}. Imagine a sequence of manifolds {N(δH)}δH→0 that converges to

32

M , where N(δH) is δH-close to M . This induces a sequence of functional Laplacians

{LN(δH)
t }δH→0, and Lemma 3.2.2 states that this sequence of functional Laplacians

converges in operator norm to LM
t as δH goes to zero. It then follows from Proposi-

tion 6 in [95] that, for any isolated eigenvalue λ̂ ∈ SpecDis(LM
t) with multiplicity m,

and any open interval I ∈ IR containing λ̂ but no other eigenvalue from SpecDis(LM
t),

there exists some δH0 > 0 such that for any δH < δH0, exactly m (not necessarily

distinct) eigenvalues of LN(δH)
t are contained in I. A similar result, in fact, holds for

a finite set of consecutive isolated eigenvalues from SpecDis(LM
t).

λ̂iNow, imagine we plot the first k isolated eigenvalues

λ̂is of LM
t on a real line. See the right figure where each empty dot is a distinct

eigenvalue of LM
t with multiplicity. For each one, we choose an open interval around

it as shown in the figure (so their closures partition the line). Proposition 6 in [95]

says that eventually (when δH is small enough), for the ith eigenvalue, only exactly

mi number of eigenvalues from Spec(LN(δH)
t) will fall in the interval around it, where

mi is the multiplicity of λ̂i. (The right figure shows an example where mi = 3, and

the black dots represents eigenvalues of LN(δH)
t .) This idea, combined with the one-to-

one correspondence result between λi and λ̂i, eventually implies that when t is small

enough and when δH

t
m
4 +2 is smaller than the separation gap between two consecutive

λis (which is a quantity depending only on the underlying manifoldM when t is small

enough), there is a one to one correspondence between λ̂i and ω̂i and their distance

is O(δH

t
m
4 +2). Specifically, each empty dot in the real line will be a set of mi number

of λ̂s clustered within a ball of radius O(t
2

m+6) where mi is the multiplicity of the

eigenvalue λi of ∆M , and Proposition 6 in [95] states that there will be exactly mi

number of ω̂s in the corresponding interval.

33

Finally, combining this with Theorem 3.1.1, we choose t = δ
4(m+6)

m2+14m+56

H so that the

two convergence rates, between ∆M (resp. ∆N) and LM
t (resp. LN

t), and between LM
t

and LN
t , respectively, are balanced (i.e, t

2
m+6 = δH

tm/4+2). Theorem 3.1.5 then follows.

The various conditions in these theorems on the value of the eigenvalues are to ensure

that the eigenvalues fall in the discrete spectrum for the functional Laplacian. Their

existence does not matter for those lowest eigenvalues, which are the interesting ones

in practice.

3.3 Spectra Convergence between Discrete and Continuous
Laplacians

In this section, given a meshK that ε-approximates a smooth compactm-manifold

M embedded in IRd, we relate the spectrum of ∆M to that of its discrete approxi-

mation. By Theorem 3.1.1, we only need to show spectral convergence between the

functional Laplace LM
t and the mesh-Laplacian LK

t (i.e, Theorem 3.1.2). Similar to

previous section, we will achieve this by showing that the latter converges to the

former in some operator norm. The main difference and challenge is that we now

need to define the functional space we use to compare the relevant operators more

carefully.

Specifically, the discrete Laplacian LK
t is a linear operator in IRn where n is the

number of vertices in K; while LM
t is an operator in an infinite dimensional functional

space. Hence, in Step 1, we first construct a continuous operator CK
t , which (almost)

shares the same spectrum as the discrete operator LK
t , and which, at the same time,

is well-defined in certain a common functional space along with LM
t . Next, in Step

34

2, we bound the operator norm of the difference between CK
t and LM

t in this space,

which will in turn relate their spectra.

The Sobolev space Hs. The common functional space we use to compare CK
t and

LM
t is the s-th Sobolev space Hs and we will choose s = m

2
+ 1. The norm in Hs is

the Sobolev norm ‖g‖Hs =
[∑s

i=0 ‖g(i)‖2
]1/2

, where g(i) is the i-th weak derivative2

of g and ‖ · ‖ denotes the standard L2 norm. The key property of Hs for s ≥ m
2
+ 1

that we will need is the following [91] and its corollary.

Lemma 3.3.1 ([91]). Let f ∈ Hs(M) with s ≥ m/2 + 1 where m is the intrinsic

dimension of the manifoldM . Then f is Lipschitz with the Lipschitz constant bounded

by C‖f‖Hs for some universal constant C.

Corollary 3.3.1. Given any f ∈ Hs(M) with s ≥ m/2 + 1, ‖f‖∞ ≤ C ′‖f‖Hs with

some universal constant C ′ depending only on the underlying manifold M .

Proof: The Lipschitz constant of f is bounded by C‖f‖Hs by Lemma 3.3.1. For

any two points x, y ∈M ,

∣∣∣|f(x)| − |f(y)|
∣∣∣ ≤ |f(x)− f(y)| ≤ C‖f‖Hs · |x− y|

≤ C ·Diameter(M) · ‖f‖Hs .

Let p ∈ M be a point so that |f(p)| = minx |f(x)|; note that |f(p)| ≤ ‖f‖ ≤ ‖f‖Hs .

It then follows that |f(x)| − |f(p)| ≤ C ·Diameter(M) · ‖f‖Hs , implying

|f(x)| ≤ |f(p)|+ C ·Diameter(M) · ‖f‖Hs ≤ C ′‖f‖Hs .

The corollary then follows.

2The weak derivative is a generalization of the derivative of a function f , when f is not necessarily
differentiable in the usual sense, and these two notions coincide when f is differentiable. For our
purpose, the reader can think of it as the ordinary derivative.

35

From now on, we fix s = m/2 + 1. There are two main reasons behind relating

the operators of interest in the space Hs(M), instead of using some other spaces, say

the space of square integrable functions L2(M).

(i) We can extend the discrete operator LK
t into a well-defined and well-behaved

operator in Hs(M). Intuitively, this is not possible in L2(M), as functions in L2(M)

are not defined pointwise (two functions can be arbitrarily different at a finite set

of points while the L2-norm of their difference is zero); while at the same time, LK
t

requires point evaluations (as it is only defined at discrete sample points). Corollary

3.3.1 guarantees that the point evaluations in Hm/2+1(M) are not only defined, but

also bounded (Hi(M) is, in fact, a reproducing kernel Hilbert space for i ≥ m/2+1).

(ii) It turns out that we cannot bound the L2-norm distance of relevant operators

(which is the operator norm in L2(M)). As we will see later, this happens because the

Lipschitz constant of the input function appears while bounding the L2-norm of the

operator difference. Lemma 3.3.1 says that the Lipschitz constant can be bounded

by the s-th Sobolev norm of f , which again suggests that we should use the space

Hs(M).

Step 1: Continuous extension for LK
t . We define operator CK

t : Hs(M) →

Hs(M) as:

CK
t f(x) :=

1

t(4πt)m/2

n∑

i=1

AiGt(x, vi)
(
f(x)− f(vi)

)
.

Intuitively, we extend the kernel function from an n by n matrix (i.e, Gt(vj, vi)’s) to

a continuous (Gaussian) kernel function defined on M × IRn. A similar extension was

used in [95] to relate the graph Laplacian with the functional Laplacian.

36

Roughly speaking, there is a “one-to-one” correspondence between the eigenvalues

(as well as eigenfunctions) of the operator CK
t and those of the discrete operator LK

t .

To make this correspondence more precise, set a function dK :M → IR as

dK(x) =
1

t(4πt)m/2

n∑

i=1

AiGt(x, vi)

and define the multiplication operator SK : Hs(M) → Hs(M) as SKf(x) = dK(x)f(x).

Set WK : Hs(M) → Hs(M) as

WKf(x) =
1

t(4πt)m/2

n∑

i=1

[
AiGt(x, vi)f(vi)

]
.

It is easy to check that the operator CK
t = SK −WK . In space Hs(M) where point

evaluation is bounded (recall Hs(M) is a reproducing kernel Hilbert space), SK is a

bounded multiplication operator and WK is a compact operator [95]; implying that

CK
t is bounded.

Unfortunately, the spectrum of CK
t may contain continuous spectrum. However,

similar to the case of LX
t in Section 3.2, since WK is compact, it turns out that

SpecEss(CK
t) = SpecEss(SK) = range(dK), where range(dK) is the range of the func-

tion dK (i.e, range(dK) = [infx dK(x), supx, dK(x)]). Lemma 3.3.2 can then be derived

by results from [95] and Lemma 3.3.3 follows from elementary calculations:

Lemma 3.3.2. The essential spectrum of CK
t coincide with the range of the function

dK. For ε and t small enough, range(dK) (and thus SpecEss(CK
t)) is contained in

(1
2
t−1,∞). The discrete spectrum of CK

t contains finite number of real eigenvalues,

and is contained in the interval [0,Θ(1
t
)).

Lemma 3.3.3. 1. If ρ is an eigenfunction of CK
t with arbitrary eigenvalue λ, then

the n-vector ρ̂ = [ρ(v1), . . . , ρ(vn)]
T ∈ IRn is an eigenvector of LK

t with eigen-

value λ.

37

2. If λ /∈ range(dK) = SpecEss(CK
t) is an eigenvalue with multiplicity m, and

ρ1, . . . , ρm are the corresponding eigenfunctions, then LK
t has an eigenvalue λ

also with multiplicity m, with the set of n-vectors ρ̂1, . . . , ρ̂m being the corre-

sponding m eigenvectors.

3. If λ /∈ range(dK) is an eigenvalue for LK
t with multiplicity m, and ρ̂1, . . . , ρ̂m

being the corresponding m eigenvectors, then λ is an eigenvalue of CK
t with

multiplicity m, corresponding to a set of eigenfunctions ρ1, . . . , ρm such that

ρi(x) =
1

t(4πt)m/2
·
∑n

j=1AjGt(x, vj)ρ̂i[j]

dK(x)− λ
.

These results state that the interesting eigenvalues (i.e, with lowest values) are

isolated with finite multiplicity, and that there is a one-to-one correspondence between

such eigenvalues of CK
t and of LK . A similar extension was used in [95] to relate the

graph Laplacian with the functional Laplacian.

Step 2: Relation between CK
t and LM

t . Let D = LM
t −CK

t denote the difference

between operators LM
t and CK

t . We aim to show that ‖Df‖Hs ≤ O(ε)‖f‖Hs for any

function f ∈ Hs(M), which will then imply that ‖D‖Hs = O(ε). First, the following

result bounds the derivatives of the Gaussian kernel function.

Lemma 3.3.4. G
(i)
t (x, y) =

∑⌊ i
2
⌋

j=0O(i
i)‖x−y‖i−2j

(2t)i−j Gt(x, y) The derivative is taken with

respect to the variable x.

Proof: Recall that Gt(x, y) = e−
‖x−y‖2

4t . We will prove the following statement by

induction (which immediately implies Lemma 3.3.4).

G
(i)
t (x, y) =

∑⌊i/2⌋
j=0 cj,i

‖x−y‖i−2j

(2t)i−j Gt(x, y) where

38

c0,0 = 1, c0,i = −c0,i−1,

cj,i = (i− 2j + 1)cj−1,i−1 − cj,i−1, 0 < j ≤ ⌊i/2⌋,

cj,i = 0, otherwise.

and |cj,i| = O((i+ 1)i).

Now for the base case i = 1, we have

G
(1)
t (x, y) = −‖x− y‖

2t
Gt(x, y) = c0,1

‖x− y‖
2t

Gt(x, y)

=

⌊i/2⌋∑

j=0

cj,i
‖x− y‖i−2j

(2t)i−j
Gt(x, y).

Thus the claim holds. For G
(i+1)
t (x, y), we need to consider two cases - when i is odd

and when i is even.

Case 1: i is odd: Inductive hypothesis states

G
(i)
t (x, y) = Gt(x, y)

[
c0,i

‖x− y‖i
(2t)i

+ c1,i
‖x− y‖i−2

(2t)i−1
+ . . .+ c i−1

2
,i

‖x− y‖
(2t)

i+1
2

]

We then have:

G
(i+1)
t (x, y) = Gt(x, y)

[
ic0,i

‖x− y‖i−1

(2t)i
− c0,i

‖x− y‖i+1

(2t)i+1

+ (i− 2)c1,i
‖x− y‖i−3

(2t)i−1
− c1,i

‖x− y‖i−1

(2t)i

+ . . .+ c i−1
2

,i

1

(2t)
i+1
2

− c i−1
2

,i

‖x− y‖2
(2t)

i+3
2

]

39

Grouping terms together, we get

G
(i+1)
t (x, y) = Gt(x, y)

[
− c0,i

‖x− y‖i+1

(2t)i+1
+ [ic0,i − c1,i]

‖x− y‖i−1

(2t)i

+ [(i− 2)c1,i − c2,i]
‖x− y‖i−3

(2t)i−1
+ . . .

+ [3 · c i−3
2

,i − c i−1
2

,i]
‖x− y‖2
(2t)

i+3
2

+ c i−1
2

,i

1

(2t)
i+1
2

]

=

i+1
2∑

j=0

cj,i+1
‖x− y‖i+1−2j

(2t)i+1−j
Gt(x, y)

where

c0,i+1 = −c0,i,

cj,i+1 = ((i+ 1)− 2j + 1)cj−1,i − cj,i, 0 < j ≤ i+1
2
,

cj,i+1 = 0, otherwise.

Case 2: i is even: Can be shown by a similar argument to Case 1.

Finally, to bound the value of cji , note that cj,i = (i − 2j + 1)cj−1,i−1 − cj,i−1 ≤

i|cj−1,i−1| − cj,i−1. One can then easily the use substitution method to show that

cj,i = O((i+ 1)i).

We remark that for simplicity, here we proceed as if x is a one-dimensional variable.

In general, x ∈ M is of m-dimension and one needs to compute the derivative w.r.t

all mixed terms of coordinates. This will increase the bound by a factor that is

exponential in m, but will not affect our final results.

Theorem 3.3.1. Set D(j)f = (Df)(j) to be the j-th (weak) derivative of the function

Df . We have that ‖D(j)f‖ = O
(

ε
tj+2 (‖f‖Hj

+ ‖f‖Hm/2+1
)
)
for j ≥ 0, where the big-O

notation hides constants exponential in j and dependent on the underlying manifold

M .

40

This implies that ‖LM
t − CK

t ‖Hs = O(ε
ts+2) for any s ≥ m/2 + 1.

Proof: Recall that D = LM
t −CK

t . Set c(t) to be the constant 1
t(4πt)m/2 , and let |K|

denote the underlying space of the mesh K. One way to interpret the mesh-Laplacian

LK
t (as well as CK

t) is that, for any m-dimensional simplex σ ∈ K, subdivide it to

m + 1 equal volume portions, with every portion σ′ being represented by a different

vertex, say v, of σ. We refer to the vertex v as the pivot pz of every point z in this

portion σ′ ⊂ σ. The sampling condition of K implies that ‖z − pz‖ = O(ε). This

way, we can rewrite

CK
t f(x) = c(t)

∫

|K|

Gt(x, pz)(f(x)− f(pz))dz,

and thus

Df(x) = c(t)

∫

M

Gt(x, y)(f(x)− f(y))dy − c(t)

∫

|K|

Gt(x, pz)(f(x)− f(pz))dz.

Let φ : |K| →M be the homeomorphism between |K| andM so thatK ε-approximates

M . By change of variable z = φ−1(y), we get the following where Jy is the Jacobian

of the map φ−1 :M → |K| at y ∈M .

Df(x) = c(t)

∫

M

Gt(x, y)(f(x)− f(y))dy − c(t)

∫

M

Gt(x, py)(f(x)− f(py))Jydy
]

= c(t)
[∫

M

Gt(x, py)f(py)Jydy −
∫

M

Gt(x, y)f(y)dy
]

− c(t)
[∫

M

Gt(x, py)f(x)Jydy −
∫

M

Gt(x, y)f(x)dy
]
.

41

It then follows that

D(j)f(x) = c(t)
[∫

M

G
(j)
t (x, py)f(py)Jydy −

∫

M

G
(j)
t (x, y)f(y)dy

]

+ c(t)
[∫

M

j∑

i=0

[G
(i)
t (x, y)f (j−i)(x)] dy (3.3)

−
∫

M

j∑

i=0

[G
(i)
t (x, py)f

(j−i)(x)] Jydy
]

On the other hand, since ‖y − py‖ = O(ε), we have

‖x− y‖j −O(ε‖x− y‖j−1) ≤ ‖x− py‖j ≤ ‖x− y‖j +O(ε‖x− y‖j−1) (3.4)

(1−O(ε/t))Gt(x, y) ≤ Gt(x, py) ≤ (1 +O(ε/t))Gt(x, y) (3.5)

Let Gt to denote Gt(x, y) and α = O(ii) to simplify exposition. Using Lemma 3.3.4,

we have:

G
(i)
t (x, y)−G

(i)
t (x, py) ≤

⌊i/2⌋∑

j=0

|cj,i|
∣∣∣∣
‖x− py‖i−2j

ti−j
Gt(x, py)−

‖x− y‖i−2j

ti−j
Gt

∣∣∣∣

≤
⌊i/2⌋∑

j=0

α
[
(1 +O(

ε

t
))
‖x− py‖i−2j

ti−j
Gt −

‖x− y‖i−2j

ti−j
Gt

]

(Using 3.5)

≤
⌊i/2⌋∑

j=0

α
[
(1 +O(

ε

t
))Gt

(‖x− y‖i−2j

ti−j
+
ε‖x− y‖i−2j−1

ti−j

)

− ‖x− y‖i−2j

ti−j
Gt

]

(Using 3.4)

≤
⌊i/2⌋∑

j=0

αGt

[
O(
ε

t
)
‖x− y‖i−2j

ti−j
+O(ε)

‖x− y‖i−2j−1

ti−j

]

≤
⌊i/2⌋∑

j=0

αO(
εDi−2j

ti−j+1
)Gt ≤ O(

iDiε

ti+1
)Gt(x, y),

42

where D is the diameter of the manifold M . Furthermore, as ‖x − y‖ ≤ D and

Gt(x, y) ≤ 1,

G
(i)
t (x, y) = O(

i ·Di

ti
Gt(x, y)) = O(

1

ti
)Gt(x, y)

Combined with Equation (3.3) and that |Jy − 1| = O(ε), we have that (again, Gt

denotes Gt(x, y)):

1

c(t)
| D(j)f(x) ≤

∣∣∣∣
∫

M

[
G

(j)
t (x, py)f(py)Jy −G

(j)
t f(y)

]
dy

∣∣∣∣

+

j∑

i=0

∣∣∣∣f (j−i)(x)

∫

M

[
G

(i)
t −G

(i)
t (x, py)Jy

]
dy

∣∣∣∣

≤
∣∣∣∣
∫

M

[(1 +O(ε))
[
O(

εGt

tj+1
) +G

(j)
t

]
f(py)−G

(j)
t f(y)]dy

∣∣∣∣

+

j∑

i=0

∣∣∣∣f (j−i)(x)

∫

M

[
G

(i)
t − (1 +O(ε))(O(

εGt

ti+1
) +G

(i)
t)
]
dy

∣∣∣∣

≤
∣∣∣∣
∫

M

O(
εGt

tj+1
)f(py)dy +

∫

M

G
(j)
t [(1 +O(ε))f(py)− f(y)]dy

∣∣∣∣

+

j∑

i=0

∣∣∣∣f (j−i)(x)

∫

M

[
O(

ε

ti+1
)Gt −O(ε)G

(i)
t

]
dy

∣∣∣∣

≤
∣∣∣∣
∫

M

O(
ε

tj+1
)Gt

[
O(ε)Lipf + f(y)

]
dy

∣∣∣∣

+

∣∣∣∣
∫

M

O(
εGt

tj
)
[
Lipf + f(y)

]
dy

∣∣∣∣+
j∑

i=0

f (j−i)(x)

∫

M

O(
εGt

ti+1
)dy

Hence

D(j)f(x) ≤ c(t)O(
εLipf

tj+1
)

∫

M

Gtdy + c(t)O(
ε

tj+1
)

∣∣∣∣
∫

M

Gtf(y)dy

∣∣∣∣

+ c(t)

j∑

i=0

f (j−i)(x) ·O(ε

ti+1
)

∫

M

Gtdy

where Lipf is the Lipschitz constant of the function f , which is bounded by C‖f‖Hs by

Lemma 3.3.1. Furthermore, by Corollary 3.3.1, f(y) ≤ ‖f‖∞ ≤ C ′‖f‖Hs . Combining

43

these with Claim 3.2.1 we have that:

| D(j)f(x) |≤ O(
ε

tj+2
)‖f‖Hs +

j∑

i=0

f (j−i)(x)O(
ε

ti+2
).

This implies

‖D(j)f‖ ≤ O(
ε

tj+2
)‖f‖Hs +O(

ε

tj+2
)

j∑

i=0

‖f (j−i)‖

= O(
ε

tj+2
)‖f‖Hs +O(

jε

tj+2
)‖f‖Hj

= O(
ε

tj+2
)(‖f‖Hs + ‖f‖Hj

).

The bound on the s-th Sobolev norm for LM
t − CK

t then follows easily.

Putting everything together. Now, for a fixed t, consider a sequence of meshes

{K(ε)}ε→0 that ε-approximates M and converges to M as ε goes to zero. This

induces a sequence of discrete Laplace operators {LK(ε)
t }ε→0 as well as a sequence of

their continuous extensions {CK(ε)
t }ε→0 in the Sobolev space Hm/2+1(M). All these

operators have only real eigenvalues. Theorem 3.3.1 implies that the sequence of

operators {CK(ε)
t }ε→0 converges in operator norm to the functional Laplacian LM

t as

ε goes to zero. Using Proposition 6 in [95], by a similar argument as the one used

in Section 3.2, when ε is small enough, there is a one to one correspondence between

the lowest few eigenvalues of CK(ε)
t and SpecDis(LM

t) such that the i-th one from

SpecDis(CK(ε)
t) converges to the ith one from SpecDis(LM

t) as ε goes to zero. Since

CK(ε)
t shares discrete eigenvalues with L

K(ε)
t (precise statement in Lemma 3.3.3), this

then implies Theorem 3.1.2. Finally, Theorem 3.1.3 follows from this and Theorem

44

(a) (b)

Figure 3.2: Errors in the (a) eigenvalues and (b) eigenvectors of discrete Laplacian
of meshes of unit sphere with increasing number of vertices.

3.1.1. By 3.3.1, the condition ε

t
m
2 +3 → 0 in the limit guarantees that the sequence of

continuous extensions {CK(ε)
t }ε→0 converges to LM

t in operator norm.

Proof of Theorem 3.1.6. Imagine that we have a sequence of manifolds {NδH}δH→0

that is δH-close to M and δH converges to zero. Now choose t(δH) = Ω(δ
4

m+8
−ν

H) for

some small constant ν > 0 and denote LNδH

t(δH) by LN(δH). By Lemma 3.2.2, the

sequence of manifolds
(
NδH

)
δH→0

induces a sequence of operators
(
LN(δH)

)
δH→0

that

converges to LM
t in operator norm. Combining Theorem 3.1.2, Theorem 3.1.6 then

follows from a similar argument as above.

3.4 Experiments

In this section, we show through experiments that the spectrum of the mesh

Laplacian [7] converges to that of the manifold Laplacian, is robust, and changes

smoothly with smooth deformation of a surface. For all our experiments, we normalize

the input surface to diameter 1. We use the code from Belkin et al. [7] to compute the

mesh-Laplacian, and use MATLAB R© to find its first 300 eigenvalues and eigenvectors.

45

Figure 3.3: Original, noisy, and non-uniform meshes for the same genus 3 surface.
Bottom : comparison of their eigenvalues.

To demonstrate the convergence behavior, we consider a sequence of increasingly

denser meshes approximating a unit sphere, for which we can obtain the ground

truth. We use an adaptive t, which is set to be 6 times the average edge length in

the mesh. Hence, t becomes smaller as the meshes become denser. The results are

shown in Figure 3.2, where we plot the error of each of the first 300 eigenvalues /

eigenfunctions (x-axis is the index of the eigenvalue/eigenfunction). In (a) we plot

for each i, the difference |λi − λDi |, where λi and λDi are the ith eigenvalue of the

manifold and mesh Laplacians, respectively. In (b) we plot the error in eigenvectors.

Specifically, note that the restriction of each ground truth eigenfunction φi to the

vertices of the mesh gives us a vector φ̂i. We compute the error as the L2-norm

distance between φ̂i and the corresponding discrete eigenvector of the mesh Laplacian.

If an eigenvalue has multiplicity more than 1, we project the discrete eigenvector

into the eigenspace spanned by the restricted eigenfunctions corresponding to that

eigenvalue and return the error as distance between this vector and its projection. As

we can see, the eigenvalues and eigenvectors converge to ground truth as the sampling

density increases.

46

(a) (b) (c)

Figure 3.4: (a) Some near-isometric deformations of a human. (b) An example of
non-isometric deformation. (c) Comparison of spectra computed from five isometric
and two non-isometric deformations.

Next, we show that, with a fixed t, the mesh-Laplacian is robust against changes in

the sampling density, noise, and quality of sampling. Here we use a more interesting

genus 3 surface (see Figure 3.3), and plot the spectra of different meshes in the bottom

picture, where x-axis is the index of each eigenvalue, and y-axis is the value. All these

curves are close, indicating that the discrete Laplacian spectra are resilient to these

changes.

For nearly isometric deformations, we use various poses of a human figure (Figure

3.4), and show that the discrete Laplacian spectrum is robust against such defor-

mations. Finally, we investigate how the discrete Laplacian spectrum changes as

the manifold undergoes larger deformations. Specifically, we continuously deform a

figure-eight loop and plot the corresponding discrete Laplacian spectra. See Figure

3.5 and note the spectrum also changes continuously with the deformations.

47

Figure 3.5: Snapshots of continuous deformation of an eight loop and plot of spectra
of corresponding meshes.

3.5 Conclusion and Discussion

This chapter provides the first result showing that eigenvalues of a certain dis-

crete Laplace operator [7] approximated from a general mesh in d-dimensional space

converge to those of the manifold Laplacian as the mesh converges to a smooth man-

ifold. It also shows that the spectrum of this discrete mesh-Laplacian is stable when

the smooth manifold is perturbed, which is demonstrated by experimental studies.

This helps to provide theoretical guarantees for applications using the mesh-Laplace

operator.

In this chapter, we only focus on the eigenvalues of the Laplace operator. Another

important family of eigen-structures is the set of Laplacian eigenfunctions. Indeed,

these eigenfunctions have been widely used in spectral mesh processing applications.

We believe that similar convergence results can be obtained for the eigenfunctions as

48

well 3 using the separation gap between consecutive distinct eigenvalues. Experimen-

tal results also show that eigen-spaces are stable. We leave the precise statement and

formal proof of stability for eigenfunctions as an immediate future work.

Another future work is to investigate similar problems for discrete point-cloud

Laplace operator, constructed from a set of unorganized points sampled from a hidden

manifold. Such input is common as demonstrated by the plethora of high dimensional

data in various scientific and engineering applications. As a result, many recent work

focus on processing point data for spectral shape analysis. It appears that results

from this chapter can be extended to the point-clouds Laplacian proposed in [55]

when the input points is a so-called (ε, η)-sample of a manifold M ; namely, (i) for

every point p ∈ M there is a sample point at most ερ(M) away, where ρ(M) is

the reach of M , and (ii) no two sample points are within distance ηρ(M). It will

be interesting to see whether similar results can be established for the more general

ε-sampling without the η-sparsity condition. In Chapter 2 we will show that the

weighted graph Laplacian proposed in [5] is stable against topological changes made

in a small region with respect to a parameter t.

Finally, most of our results only show convergence instead of explicitly bounding

the error between the discrete and true Laplacian spectra. An explicit error bound

not only helps the theoretical understanding of discrete mesh Laplacian but also has

practical implications. It will be interesting to explore this direction.

3To be more careful, for eigenvalues with multiplicity more than one, we should consider the
eigenspace spanned by the corresponding eigenfunctions.

49

Chapter 4: Weighted Graph Laplace Operator under

Topological Noise [27]

As discussed in Chapter 2, Gaussian-weighted graph Laplace is a popular operator

due to the fact that it works directly on point cloud data (PCD), without relying

on triangulations. Naturally, the question of robustness of this discrete Laplacian

with respect to perturbations of the sampled manifold becomes a practical issue. In

particular, estimating the change in spectrum of the discrete Laplacian for PCDs

sampled from manifolds M and its perturbed version N becomes important. In the

previous chapter, we showed that both manifold and discrete Laplacians are stable

when the perturbation is “nice” in the sense that there is a homeomorphism between

M and N that cause minor area distortion. This however forbids, for example, small

topological changes between M and N.

In this chapter, we aim to study the stability of the weighted graph Laplacian

under more general perturbations. In particular, we allow arbitrary changes to the

hidden manifold as along as they are localized in the ambient space and the area

distortion is small. Manifold Laplacians may change dramatically in this case. Nev-

ertheless, we show that the weighted graph Laplacians computed from two sets of

points uniformly randomly sampled from M and its perturbed version N maintain

a small distance in their spectra (i.e, sequence of eigenvalues). This distance can

50

be bounded in terms of the perturbation and some intrinsic properties of M and N.

Intuitively, the discrete graph Laplacians with parameters chosen appropriately are

oblivious to perturbations that are localized in the ambient space.

Contributions. Our previous stability study requires that the input

manifold is approximated by a mesh structure. The perturbation con-

sidered there needs to preserve the manifold topology and be smooth in

the first order. In some sense, such a perturbation model is necessary

as it also bounds changes in the manifold Laplacians. Now, we aim to

relax on both fronts. First, since we will focus on the Gaussian-weighted graph Lapla-

cian, we do not need triangulations. Second, we introduce the δ-closeness between

two manifolds which generalizes δH-closeness from Section 3.1 to allow for arbitrary

though localized changes including topological ones. See the right figure for an ex-

ample where the right hand of the human may either touch or not touch the human

body within the circled region, causing a potential topological difference. Since this

relaxed perturbation model can alter geodesic distances dramatically, the manifold

Laplacian may change significantly under it. However, we show that the weighted

graph Laplacian under such perturbations remains stable.

Specifically, we consider two sets of points P and Q uniformly randomly sampled

from two δ-close manifolds M and N. We provide an asymptotic upper bound on the

distance between the spectra of the weighted graph Laplacians LtP and LtQ constructed

from P and Q respectively. This bound tells us how the spectra distance depends on

the size of the perturbation δ, and on the parameter t used to construct the graph

Laplacians. This bound is proven for two uniformly randomly sampled sets of points.

This choice is reasonable since (i) the theoretical guarantee of the weighted graph

51

Laplacian is only established for such PCDs, and (ii) in practice, especially in high

dimensional applications, input points are often sampled by certain random processes.

Our result is obtained by a novel way to establish a one-to-one correspondence

between the two input sample point sets via the so-called “anchor-regions” that we

will introduce later, and the Halls theorem, in the probabilistic setting. In Section

4.4, we show some experiments that confirm our theoretical results.

4.1 Problem Formulation

δ-closeness. In Section 3.1, we defined a notion of δH-closeness between homeomor-

phic manifolds. Now, we will relax the definition to allow topological changes. Recall

that, given two topological spaces A,B ⊆ IRd, a map f : A→ B is a δ-diffeomorphism

if f is a diffeomorphism, dIRd(x, f(x)) ≤ δ, and 1− δ ≤ ‖Jfx‖ ≤ 1 + δ for any x ∈ A,

where Jfx is the Jacobian of the map f at x. N, our inputs are two smooth and com-

pact m-manifolds M and N embedded in IRd. Manifolds M and N are δ-close if there

exists two sets of open regions X = {X1, . . . ,Xm}, Xi ⊂ M, and Y = {Y1, . . . ,Ym},

Yi ⊂ N where the closures of Xis (and of Yis) are pairwise disjoint and the following

conditions hold.

(C1) There is a δ-diffeomorphism Φ : M \ X → N \ Y under which ∂(closure(Xi)) is

mapped to ∂(closure(Yi)) for any i ∈ [1,m] where ∂(·) denotes the boundary.

(C2) For any i = 1, . . . ,m, Xi and Yi are contained within a Euclidean d-ball of

radius δ and (1− δ)vol(Xi) ≤ vol(Yi) ≤ (1 + δ)vol(Xi).

52

X1

X2

X3

M

Y1

Y2

Y3

N

Intuitively, N is a perturbed version of M. The re-

gions in X and Y are the anomalous regions where

arbitrary changes, including topological changes,

can happen. See the right figure for an illustration, where two types of topological

changes happen in Y1 and Y2, respectively. Such arbitrary changes can be tolerated

as long as they are restricted to a small Euclidean ball, and the areas of corresponding

anomalous regions are similar (i.e, condition C2).

High level framework. Given two δ-close manifolds M and N, let P and Q be two

sets of n points, uniformly randomly sampled from M and N according to volume

measures. We compute the weighted Graph Laplacians LtP and LtQ from P and Q

respectively, for some parameter t. Our goal is to show that the spectrum of LtP is

close to that of LtQ with high probability. We prove this via the following two steps.

Step 1. We show that, with high probability, there is a one-to-one correspondence

ψ : P → Q such that dIRd(p, ψ(p)) = O(δ) for any p ∈ P .

Step 2. Based on the one-to-one correspondence obtained from Step 1, we show that

the matrix norm ‖LtP − LtQ‖ is bounded from above by a function E(δ, t) which

in turn gives an upper bound on the distance of the spectra for LtP and LtQ.

Our main result (stated below) follows from these two steps. Let i(M) denote the

injectivity radius of M, and µ be the isoperimetric constant of M, see Chavel [14] for

definitions of these quantities.

Theorem 4.1.1. Let M be a smooth compact m-dimensional manifold embedded in

IRd with vol(M) = 1, and N be its δ-close perturbation with δ < min{1
8
, i(M)}. Let P

and Q be two sets of points uniformly randomly sampled from M and N, respectively,

53

with |P | = |Q| = n = Ω(1
δ4m

). Let LtP and LtQ be the corresponding Gaussian-weighted

graph Laplacians computed from them, with the parameter t = Ω(δ2−ε) for any ε >

0. With high probability (at least 1 − O(1

n
1
4
)), the eigenvalues of LtP and LtQ satisfy

|λi(LtP) − λi(L
t
Q)| = O(δ4/5

tm/2+7/5) for any i ∈ [1, n]. In particular, |λi(LtP) − λi(L
t
Q)| =

O(δ
1
3) if t ≥ δ

1
15
14m+3 . The big-O and big-Ω notations hide constants that depend solely

on M.

Isoperimetric constant. Our bounds depend on a concept called the isoperimet-

ric constant. Given a m-dimensional compact Riemannian manifold A, the isoperi-

metric constant µ(A) of A is defined as µ(A) = infR⊂A
vol(∂R)
vol(R)

, where R ranges

over m-dimensional open subsets of A, with vol(R) ≤ vol(A)/2, and vol(∂R) refers

to the (m-1)-dimensional volume of the boundary of R. This implies that given

any m-dimensional open subset R ⊆ A with volume at most vol(A)/2, we have

vol(∂R) ≥ µ(A)vol(R). The isoperimetric constant, also called the Cheeger isoperi-

metric constant, is an intrinsic quantity of the manifold A and it is closely related to

the first non-zero eigenvalue of the Laplace-Beltrami operator of A [14].

4.2 Step 1: Correspondences

We are given two random samples P and Q, of size n each, from two δ-close

manifolds M and N. The goal is to show that, with high probability, there exists

a one-to-one correspondence ψ : P → Q such that corresponding pairs of points

are close. To achieve this goal, we construct a bipartite graph G = (V,E) where

V = P ∪ Q and E ⊆ P × Q so that dIRd(p, q) = O(δ) for each edge (p, q) ∈ E.

Given a node p ∈ P , let Ng(p) ⊆ Q denote the set of neighbors of p in Q, and

define Ng(S) =
⋃

p∈S Ng(p) for any subset S ⊆ P . We then argue that with high

54

probability, we have |S| ≤ |Ng(S)| for all subsets S of P . It then follows from

Hall’s Theorem that with high probability, there is a perfect bipartite matching of G,

inducing a one-to-one correspondence ψ : P → Q with dIRd(p, ψ(p)) = O(δ) for any

p ∈ P .

4.2.1 Bipartite graph construction

Our construction of the bipartite graph for points P ∪Q uses “anchor-nodes” and

“anchor-regions” as detailed below. First, an (ε1, ε2)-sample of a manifold M is a set

of points S ⊂ M such that (i) for any point x ∈ M, there is a sample point s ∈ S

within ε1 geodesic distance away from x; and (ii) any two sample points s1, s2 ∈ S

are at least ε2 geodesic distance apart. A set of anchor-nodes A = {a1, . . . , ar} of M

is simply a (δ, δ)-sample of M.

Constructing an (δ, δ)-sample. We can compute a set of anchor-nodes A =

{a1, . . . , ar} ⊂ M, which is simply a (δ, δ)-sample of M, using the following standard

iterative procedure.

Initialize A with an arbitrary point a1 ∈ M. In the i-th round after constructing

Ai−1 := {a1, . . . , ai−1}, identify the point from M that is furthest away, in terms of

geodesic distance, from points in Ai−1 and set it as ai if this distance is at least δ.

We stop when this distance is smaller than δ. The procedure creates a (δ, δ)-sample.

Indeed, no point in M can be further than δ away from its nearest neighbor in A

(otherwise, the procedure will continue), and no two ai and aj, i < j, are within δ

distance since aj is at least δ away from ai.

The following observation is straightforward.

55

Observation 4.2.1. Assume that δ < i(M). For a (δ, δ)-sampling A of M, we have

that |A| = O(1/δm), where the big-O notation hides constants that depend on the

intrinsic property of M.

Proof: Compute the geodesic Voronoi diagram of A on M. We claim that the

Voronoi cell Vor(ai) for each point ai ∈ A contains the geodesic ball of radius δ/2

centered at ai. Indeed, if this is not the case, then there exists some point y on the

boundary of Vor(ai) such that dM(y, ai) < δ/2. Since y is on the boundary of Vor(ai),

there is another site, say aj ∈ A such that dM(y, aj) = dM(y, ai) and thus dM(ai, aj) < δ

by triangle inequality. This contradicts the fact that A is a (δ, δ)-sample. The volume

of a geodesic ball with radius δ/2 is CMδ
m where CM is a constant that depends on

the intrinsic curvature of M and δ/2 is smaller than the injectivity radius. It follows

that vol(Vor(ai)) = Ω(δm) implying |A| = O(1/δm) by a packing argument.

RM

X1

M

X2

X3

X4

RM

X1

M

X2

X3

X4

R
+
M

N

Y4

Y3

Y2

Y1

R
+
N

(a) (b) (c)

Figure 4.1: (a) Dark region is the anchor-region RM induced by the black anchor-nodes

(other anchor-nodes are not shown): RM consists of points from M within δ Euclidean

distance to black points. Light regions are anomalous regions X1, . . . ,X4. (b) The interme-

diate region RN ⊂ M contains anomalous regions X1 and X4 fully, and X2 partially. (c) The

witness anchor-region R
+
N
⊂ N of RM includes anomalous regions Y1, Y2 and Y4 fully.

56

Anchor-regions. Consider an arbitrary subset of anchor-nodesA ⊆ A. Let dIRd(x,A)

denote the smallest Euclidean distance from x to any point in A. The anchor-region

RM(A) on M induced by A is the set of points whose distance to A is at most δ; that is,

RM(A) = {x ∈ M | dIRd(x,A) ≤ δ}. We call A the defining subset for RM(A). There

are 2|A| = 2O(1/δm) number of anchor-regions on M, each defined by one subset of

A. Next, we define the set of anchor-regions on the manifold N. Each anchor-region

RM = RM(A) gives rise to one anchor-region R+
N
= R+

N
(A) on N which is constructed

via an intermediate region RN. We refer to R+
N
as the witness anchor-region of RM.

See Figure 4.1 for an illustration.

First, we construct an intermediate region RN ⊆ M, which contains all points from

M within ρδ Euclidean distance to RM; that is, RN = {x ∈ M | dIRd(x,RM) ≤ ρδ}. The

value of ρ = O(1) will be specified shortly; it depends on the isoperimetric constant

of the manifold M. Next, we “map” the region RN to R+
N
⊆ N. Specifically, recall that

there is a δ-diffeomorphism Φ : M \ X → N \ Y . We set R+
N
= Φ(RN \ X) ∪⋃i∈I Yi,

where I = {i ∈ [1,m] | Xi∩RN 6= ∅} is the set of indices of anomalous regions from M

that intersect RN. Intuitively, the witness anchor-region R+
N
on N of an anchor-region

RM ⊆ M is obtained by thickening RM by ρδ Euclidean distance on M, and then map

RN to R+
N

on N. Since the diffeomorphism only exists between M \ X and N \ X ,

we need to process the intersection of RN with anomalous regions separately when

“mapping” RN onto N.

Observation 4.2.2. (i) Given an anchor-region RM(A) induced by A ⊆ A, its witness

anchor-region in N satisfies that R+
N
(A) =

⋃
a∈A R+

N
(a). (ii) Given an anchor-node

a ∈ A, we have dIRd(a, y) ≤ (ρ+ 2)δ for any point y ∈ R+
N
(a).

57

Graph construction. We now build a bipartite graph G = (V,E) from input point

sets P ⊂ M and Q ⊂ N as follows: The vertex set is V = P ∪ Q. For each point

p ∈ P , let a(p) ∈ A denote the nearest neighbor of p in the set of anchor-nodes

A. We connect p to all points in Q falling inside the region R+
N
(a(p)) ⊆ N; that

is, Ng(p) = Q ∩ R+
N
(a(p)) in G. For each point q ∈ Ng(p), by Observation 4.2.2,

dIRd(a(p), q) ≤ (ρ + 2)δ. Furthermore, since A is a (δ, δ)-sample of M, we have that

dM(p, a(p)) ≤ δ. We thus have:

Claim 4.2.1. For any edge (p, q) in G, p ∈ P , q ∈ Q, and dIRd(p, q) ≤ (ρ+3)δ = O(δ).

Claim 4.2.2. Given any subset S ⊆ P , let AS = {a(s) ∈ A | s ∈ S} be the union

of nearest anchor-nodes to each point in S. Then S ⊆ P ∩ RM(AS) and Ng(S) =

Q ∩ R+
N
(AS).

4.2.2 Bipartite Matching in G

Consider the graph G = (V,E) as constructed above. We wish to show that, for a

uniform random sample P of M and Q of N, there exists a perfect bipartite matching

in G with high probability.

In what follows, we assume that M has volume 1. By the δ-closeness we have

(1− δ)vol(M) ≤ vol(N) ≤ (1 + δ)vol(M); thus 1− δ ≤ vol(N) ≤ 1 + δ. Let µ = µ(M)

be the isoperimetric constant for M. We assume that δ ≤ min{1
8
, i(M)}, and ρ =

max{3, 8
µ
+ 2}. Note that by this choice of ρ, we have that ρµ ≥ 8.

Given a region R, let #X(R) denote the number of points from a point set X

contained inside R. We prove the following key result later in this section.

58

Lemma 4.2.1. Given two δ-close compact and smooth m-manifolds M and N with

vol(M) = 1 and δ < min{1
8
, i(M)}, let P and Q be two sets of n = Ω(1

δ4m
) ran-

dom samples from M and N respectively. Then, with probability at least 1 − O(1

n
1
4
),

#P (RM) ≤ #Q(R
+
N
) for all anchor-regions RM ⊆ M and their witness anchor-regions

R+
N
⊆ N.

Our main result in this section follows from the above lemma.

Theorem 4.2.1. Let M and N be two δ-close compact and smoothm-manifolds embed-

ded in IRd with vol(M) = 1, and δ < min{1
8
, i(M)}. Let P and Q be n uniform random

samples of M and N, respectively. Then for large enough n = Ω(1
δ4m

), there is a one-

to-one correspondence ψ : P → Q such that for any p ∈ P , dIRd(p, ψ(p)) ≤ (ρ + 3)δ

where ρ = max{3, 8
µ
+ 2}.

Proof: Consider the anchor-regions in M and their witness anchor-regions in N

as described in Section 4.2.1. Then construct the bipartite graph G = (V,E) as

described earlier. Now consider the following two events:

(Event-1): #P (RM) ≤ #Q(R
+
N
) for all anchor-regions RM ⊆ M and their witness

anchor-regions R+
N
⊆ N; and (Event-2): |S| ≤ |Ng(S)| for all subsets S ⊆ P .

By Claim 4.2.2, for each subset S ⊆ P , there is always an anchor-region RM such

that |S| ≤ #P (RM) and Ng(S) = #Q(R
+
N
). Hence Event-2 must happen if Event-1

happens. This means that Prob[Event-1] ≤ Prob[Event-2]. By Lemma 4.2.1, we

have that Prob[Event-1] ≥ 1−O(1
n
), implying that Prob[Event-2] ≥ 1−O(1

n
).

If Event-2 happens, then by Hall’s Theorem there is a perfect bipartite matching

in the graph G. This provides a one-to-one correspondence ψ : P → Q, where there

59

is an edge in the bipartite graph G between each pair (p, ψ(p)). By Claim 4.2.1,

dIRd(p, ψ(p)) ≤ (ρ+ 3)δ, which completes the proof.

It remains to prove Lemma 4.2.1. To this end, we first take an arbitrary but fixed

anchor-region RM ⊆ M and its witness anchor-region R+
N

⊆ N, and argue that

#M(RM) ≤ #N(R
+
N
) with high probability. Let RN be the thickening of RM by ρδ

in M as used in the construction of R+
N
in Section 4.2.1. We distinguish two cases

depending on the volume of RN. Lemma 4.2.1 then follows from these results and the

union-bound.

Case 1: vol(RN) ≤ vol(M)
2

.

First, we aim to obtain a relation between the volumes of RM and R+
N
. To do so,

we relate the volumes of RN and R+
N
, and then those of RM and RN.

Claim 4.2.3. vol(R+
N
) ≥ (1− δ)vol(RN).

Proof: By construction, R+
N

= Φ(RN \ X) ∪ ⋃i∈I Yi, where I = {i ∈ [1,m] |

Xi∩RN 6= ∅} is the set of indices of those anomalous regions Xi intersecting RN. Since

the map Φ is a δ-diffeomorphism, we have vol(Φ(RN \ X)) ≥ (1− δ)vol(RN \ X). On

the other hand, by the δ-closeness between M and N, for each i ∈ I,

vol(Yi) ≥ (1− δ)vol(Xi) ≥ (1− δ)vol(RN ∩ Xi).

Putting these two together, we obtain the claim.

Claim 4.2.4. If vol(RN) ≤ vol(M)
2

, then vol(RN) ≥ (1 + 8δ)vol(RM).

Proof: Let RM(l) denote {x ∈ M | dM(x,RM) ≤ l}, that is, the region expanded

from RM by geodesic distance l. For l ≤ ρδ, we have RM ⊆ RM(l) ⊆ RM(ρδ) ⊆ RN as RN

60

contains all points within Euclidean distance ρδ to RM. Let bndVol(l) = vol(∂RM(l)).

Since vol(RM(l)) ≤ vol(RN) ≤ vol(M)/2, we have that bndVol(l) ≥ µ · vol(RM(l)) ≥

µ · vol(RM). It then follows that

vol(RN)− vol(RM) ≥ vol(RM(ρδ))− vol(RM)

=

∫ ρδ

0

bndVol(l)dl ≥
∫ ρδ

0

µ · vol(RM)dl = ρµδ · vol(RM).

Since ρµ ≥ 8, we have that vol(RN)− vol(RM) ≥ 8δ · vol(RM). The claim then follows.

Combining the above two claims we obtain the following corollary:

Corollary 4.2.1. If vol(RN) ≤ vol(M)
2

, then we have vol(R+
N
) ≥ (1 + 4δ)vol(RM).

Lemma 4.2.2. For an anchor-region RM, with RN and R+
N
defined as above, if vol(RN) ≤

vol(M)
2

, we have #P (RM) ≤ #Q(R
+
N
) with probability at least 1− e−Ω(δm+2n). The big-O

and big-Ω notations contain constants depending on the intrinsic property of manifold

M only.

Proof: Set r = vol(RM). Since P is a uniform random sample of M according to

volume measure, #P (RM) is a random variable and its expected value is rn. Further-

more, by construction, vol(RM) is at least the size of a geodesic ball with radius δ

centered at some anchor-node a ∈ A. Hence for δ < i(M), vol(RM) ≥ CMδ
m, where m

is the dimension of the manifold M, and CM is a constant depending on the intrinsic

curvature of M. It then follows from Chernoff bound (the upper tail) that

Prob[#P (RM) ≥ (1 + δ)rn] ≤ e−rnδ2/4 ≤ e−CMδm+2n/4.

On the other hand, the expected number of points from Q falling in R+
N
, i.e, the

expected size of #Q(R
+
N
), is n · vol(R+

N
)/vol(N) which is at least 1+4δ

1+δ
rn by Corollary

61

4.2.1 and the bound on vol(N). Note that since δ ≤ 1
8
, we have that (1 + δ) ≤

(1−δ)(1+4δ)
(1+δ)

. Hence using Chernoff bound (the lower tail), we have that

Prob[#Q(R
+
N
) ≤ (1 + δ)rn] ≤ Prob[#Q(R

+
N
) ≤ (1− δ) · (1 + 4δ)

(1 + δ)
· rn]

≤ Prob[#Q(R
+
N
) ≤ (1− δ)Exp[#Q(R

+
N
)]]

≤ e−Exp[#Q(R+
N
)]δ2/2 = e−Ω(δm+2n).

The two inequalities imply that Prob[#P (RM) ≤ #Q(R
+
N
)] ≥ 1− e−Ω(δm+2n).

Case 2: vol(RN) ≥ vol(M)/2.

This case is more complicated to handle than the previous case. First, the relation

between vol(RM) and vol(R+
N
) as given in Corollary 4.2.1 is no longer true. Hence

instead of relating the volumes of RM and of R+
N
, we now need to relate the volumes

of their complements in M and N respectively: R̂M = M \ RM and R̂+
N

= N \ R+
N
.

The technical details of the proofs in this section are also more involved. In what

follows, we first show the following lemma. Let R̂N = M \ RN be the complement of

the intermediate region RN.

Lemma 4.2.3. If vol(RN) ≥ vol(M)
2

, then vol(R̂+
N
) ≤ vol(R̂M)

1+2δ
.

Here, the aim is to obtain a relation between the volumes of R̂M and R̂+
N
. To do

so, we first relate the volumes of R̂N and R̂+
N
, and then those of R̂M and R̂N.

Claim 4.2.5. vol(R̂+
N
) ≤ (1 + δ)vol(R̂N).

Proof: Set I = {i ∈ [1,m] | Xi ∩ RN 6= ∅} to be the set of indices of anomalous

regions from M intersecting the anchor-region RN. Given the δ-diffeomorphism Φ, it

is easy to see that

vol(R̂+
N
\ Y) = vol(Φ(R̂N \ X)) ≤ (1 + δ)vol(R̂N \ X).

62

Furthermore, since vol(RN) ≤ vol(RN \ X) +
⋃

i∈I vol(Xi), we have that vol(R̂N) ≥

vol(R̂N \ X) +
⋃

i/∈I vol(Xi). It then follows that

vol(R̂+
N
) = vol(R̂+

N
\ Y) +

⋃

i/∈I

vol(Yi) ≤ (1 + δ)vol(R̂N \ X) + (1 + δ)
⋃

i/∈I

vol(Xi)

≤ (1 + δ)vol(R̂N).

Claim 4.2.6. If vol(RN) ≥ vol(M)
2

, then vol(R̂N) ≤ vol(R̂M)
(1+4δ)

.

Proof: Since vol(RN) ≥ vol(M)/2, we have that vol(R̂N) ≤ vol(M)/2. First, sup-

pose vol(RM) ≤ (1− 4δ)vol(M)/2. The claim then follows in this case as we have:

vol(R̂M) ≥ vol(M)− (1− 4δ)vol(M)

2
≥ (1 + 4δ)vol(M)

2
≥ (1 + 4δ)vol(R̂N).

Hence we now consider the remaining case where vol(RM) ≥ (1− 4δ) · vol(M)
2

. Similar

to Section 4.2.2, let RM(l) := {x ∈ M | dM(x,RM) ≤ l}. Set R̂M(l) = M \ RM(l), which

is the region shrunk from R̂M by geodesic distance l. Since RN includes all points

within ρδ Euclidean distance to RM, we have RM ⊆ RM(l) ⊆ RM(ρδ) ⊆ RN for any

l ≤ ρδ, implying that

vol(R̂N) ≤ vol(R̂M(ρδ)) ≤ vol(R̂M(l)) ≤ vol(R̂M).

Let bndVol(l) denote the volume of the boundary of RM(l) which is also the vol-

ume of the boundary of R̂M(l); that is, bndVol(l) = vol(∂RM(l)) = vol(∂R̂M(l)). If

vol(R̂M(l)) ≤ vol(M)
2

, then we have

bndVol(l) ≥ µ · vol(R̂M(l)) ≥ µ · vol(R̂N). (4.1)

63

If vol(R̂M(l)) ≥ vol(M)
2

, then we have that bndVol(l) ≥ µ · vol(RM(l)) ≥ µ · vol(RM).

Since we have assumed that vol(RM) ≥ (1− 4δ) · vol(M)
2

, this implies that

bndVol(l) ≥ µ(1− 4δ) · vol(M)/2 ≥ µ(1− 4δ) · vol(R̂N). (4.2)

Putting Equations (4.1) and (4.2) together, and observing that ρµ ≥ 8 and δ ≤ 1
8
, we

have

vol(R̂M)− vol(R̂N) ≥ vol(R̂M)− vol(R̂M(ρδ))

=

∫ ρδ

0

bndVol(l)dl ≥ ρδµ(1− 4δ) · vol(R̂N) ≥ 4δ · vol(R̂N).

The claim then follows.

Combining Claims 4.2.5 and 4.2.6, Lemma 4.2.3 follows.

Next, we make the following observation:

Observation 4.2.3. If R̂+
N
6= ∅, then R̂M contains at least a geodesic ball with radius

ρδ.

Proof: Let ũ be an arbitrary point in R̂+
N
⊆ N. We now identify a “pre-image” u

of ũ in M. If ũ /∈ Y then simply set u = Φ−1(ũ) ∈ R̂N to be the pre-image of ũ under

the diffeomorphism Φ : M \ X → N \ Y . Otherwise, assume that ũ ∈ Yj. Then we

pick an arbitrary point from Xj as u; note, Xj ∩ RN = ∅ as ũ /∈ R+
N
. Hence in either

case, the “pre-image” u falls in the region R̂N. Therefore its nearest Euclidean and

geodesic distance to RM is at least ρδ, implying the claim in the observation.

Let us define R′
M

and R′
N
as follows. Imagine that we start with the region RM,

and obtain an intermediate region R′
M
by growing RM by (ρ− 2)δ Euclidean distance,

instead of by ρδ Euclidean distance as we construct RN = RN(ρ). That is, R′
M

:=

{x ∈ M | dIRd(x,RM) ≤ (ρ − 2)δ}. We then construct R′
N
from R′

M
in the same way

64

as constructing R+
N
from RN. Let R̂′

N
and R̂′

M
denote the complement of R′

N
and R′

M
.

Obviously, R′
M
⊆ RN and R′

N
⊆ R+

N
. Reverse relations hold for their complements. We

first prove that, under the condition that R̂+
N
6= ∅, we have that vol(R̂′

N
) ≥ CMδ

k/2.

Claim 4.2.7. If R̂+
N
6= ∅, then vol(R̂′

N
) ≥ (1− δ)CMδ

k ≥ CMδ
k/2.

Proof: Since R̂+
N

6= ∅, consider any point ũ ∈ R̂+
N
. We now compute a point

u ∈ R̂N as follows: if ũ /∈ X, then simply set u to be the pre-image of ũ under the

diffeomorphism Φ : M \ X → N \ Y . Otherwise, if ũ ∈ Yi for some i, then chose u as

an arbitrary point from Xi. By construction of R+
N
, Xi ∩ RN = ∅, hence u must lie in

R̂N.

Now let Bu(r) denote region Bu(r) := {x ∈ M | dIRd(x, u) ≤ r}. (Note, we are

using Euclidean distance dIRd instead of geodesic distance dM here.) Next, we claim

that Bu(2δ) ⊆ R̂′
M
. Indeed, note that RN is obtained by enlarging R′

M
by 2δ Euclidean

distance. If any point x ∈ Bu(2δ) is in R′
M
, then u will be covered by RN when we

enlarge R′
M
by 2δ Euclidean distance; contradiction. Hence Bu(2δ) ⊆ R̂′

M
.

Let I = {i | Xi ∩ R′
M

6= ∅} denote the set of indices of anomalous regions from

M that intersects R′
M
. Since each anomalous region is enclosed within a Euclidean

ball of radius δ, and since Bu(2δ) ∩ R′
M

= ∅, we have that the smaller region Bu(δ)

satisfies that Bu(δ) ∩
⋃

i∈I Xi = ∅. Set B′ to be Bu(2δ) \
⋃

i∈I Xi. It then follows that

Bu(δ) ⊆ B′, and thus vol(B′) ≥ vol(Bu(δ)) ≥ CMδ
k.

On the other hand, compute the “image” of B′ in N, denoted by B̃ ⊆ N as

follows: Let J = {j | Xj ∩ B′ 6= ∅}, and set B̃ = Φ(B′ \ X) ∪ ⋃j∈J Yj. Note

J ∩ I = ∅ since B′ = Bu(2δ) \
⋃

i∈I Xi. This means that B̃ ∩ R′
N
=, that is, B̃ ⊆ R̂′

N

and thus vol(R̂′
N
) ≥ vol(B̃). By the δ-closeness between M and N, we have that

vol(B̃) ≥ (1− δ)CMδ
k. The claim then follows.

65

Lemma 4.2.4. For an anchor-region RM, with RN and R+
N
defined as above, if vol(RN) ≥

vol(N)
2

, then #P (RM) ≤ #Q(R
+
N
) with probability at least 1−e−Ω(δm+2n). The big-O and

big-Ω notations contain constants that depend on M only.

Proof: First, if R̂+
N
= ∅, then the claim holds as #Q(R

+
N
) = n. So from now on, we

assume that R̂+
N
6= ∅. In this case, it follows from Observation 4.2.3 that R̂M contains

at least one geodesic ball with radius ρδ. Since ρ ≥ 1, vol(R̂M) ≥ CMδ
m, for δ smaller

than the injectivity radius, where CM is a constant that depends on intrinsic curvature

of the manifold M.

We now show that #P (R̂M) ≥ #Q(R̂
+
N
) with high probability, which will imply

the lemma. Since P is a uniform random sample of M with respect to the volume

measure, we have that Exp[#P (R̂M)] = vol(R̂M) · n. By Chernoff bound (the lower

tail), we have

Prob[#P (R̂M) ≤ (1− δ

4
)vol(R̂M)n] ≤ e−vol(R̂M)nδ2/32 ≤ e−CMδm+2n/32. (4.3)

Next, we aim to bound m = #Q(R̂
+
N
). Since Q is a uniform random sample of N,

Exp[m] =
vol(̂R+

N
)·n

vol(N)
≥ vol(̂R+

N
)·n

1+δ
. We first assume that vol(R̂+

N
) ≥ CMδ

m. In this case,

Exp[m] ≥ CMδ
kn/(1 + δ) ≥ CMδ

kn/2. Chernoff bound (the upper tail) provides:

Prob[m ≥ (1− δ

4
)vol(R̂M)n] ≤ Prob[m ≥ (1− δ

4
)(1 + 2δ)vol(R̂+

N
)n]

≤ Prob[m ≥ (1− δ

4
)(1 + 2δ)(1− δ)Exp[m]]

≤ Prob[m ≥ (1 +
δ

4
)Exp[m])]

≤ e−δ2Exp[m]/64 ≤ e−Ω(δm+2n). (4.4)

Combining Equation (4.4) with Equation (4.3), we have that #Q(R̂
+
N
) ≤ #P (R̂M), thus

#P (RM) ≤ #Q(R
+
N
), with probability at least 1− e−Ω(δk+2n), when vol(R̂+

N
) ≥ CMδ

m.

66

What remains is to prove our lemma when vol(R̂+
N
) ≤ CMδ

m. In this case, we can

no longer directly apply previous argument, because we cannot lower-bound Exp[m],

thus upper-bound the probability in Equation (4.4) any more. It turns out that

Lemma 4.2.2 and 4.2.3 holds when replacing RN and R+
N
with R′

M
and R′

N
. (Indeed,

in all the proofs, we only require that we grow RM by radius (ρ− 2)δ.)

Now if vol(R′
M
) ≤ vol(M)

2
, then by Lemma 4.2.2 we have that with probability

at least 1 − e−Ω(δm+2n) we have that #P (RM) ≤ #Q(R
′
N
). Since R′

N
⊆ R+

N
, we have

#P (RM) ≤ #Q(R
+
N
) which proves our lemma.

Finally, consider the last case when vol(R′
M
) ≥ vol(M)

2
. Set s = #Q(R̂′

N
) and we

have, from Claim 4.2.7 and the bound on vol(N) that

vol(R̂′
N
) · n

1− δ
≥ Exp[s] =

vol(R̂′
N
) · n

vol(N)
≥ vol(R̂′

N
) · n

1 + δ
≥ 1− δ

1 + δ
· CMδ

m · n ≥ CMδ
m · n/2.

On the other hand, by Lemma 4.2.3, vol(R̂M) ≥ (1 + 2δ)vol(R̂′
N
). Hence, similar to

Equation (4.4), we have that:

Prob[s ≥ (1− δ

4
)vol(R̂M)n] ≤ Prob[s ≥ (1− δ

4
)(1 + 2δ)vol(R̂′

N
)n]

≤ Prob[s ≥ (1− δ

4
)(1 + 2δ)(1− δ)Exp[s]]

≤ Prob[s ≥ (1 +
δ

4
)Exp[s])]

≤ e−δ2Exp[s]/64 ≤ e−Ω(δm+2n). (4.5)

Since R′
N

⊆ R+
N
, we have m = #Q(R̂

+
N
) ≤ s. It then follows that Prob[m ≥

(1 − δ
4
)vol(R̂M)n] ≤ Prob[s ≥ (1 − δ

4
)vol(R̂M)n] ≤ e−Ω(δm+2n). Combining this with

Equation (4.3), we have that when R̂+
N
6= ∅, #Q(R̂

+
N
) ≤ #P (R̂M), that is, #P (RM) ≤

#Q(R
+
N
), with probability at least 1− e−Ω(δk+2n).

67

Intuitively, by using a smaller expansion radius (ρ−2)δ, we show that the volume

of R̂′
N
is at least (roughly) CMδ

m, so that we can continue to bound the size of s using

Chernoff bound (the upper tail) as in Equation (4.4) 4.

Proof of Lemma 4.2.1. By Observation 4.2.1, there are 2Θ(1/δm) number of anchor-

regions in M and in N. By Lemma 4.2.2 and 4.2.4, for each anchor-region RM ⊂ M and

its witness anchor-region R+
N
⊂ N, with probability at least 1− e−Ω(δm+2n), #P (RM) ≤

#Q(R
+
N
). It then follows from union bound that #P (RM) ≤ #Q(R

+
N
) for all anchor-

region RM simultaneously with probability at least

1− e−Ω(δm+2n) · 2Θ(1
δm

) ≥ 1− e−Ω(δm+2n)+Θ(1
δm

) = 1−O(
1

n
1
4

)

for sufficiently large n, say n = Ω(1
δ4m

), thus proves Lemma 4.2.1.

4.3 Step 2: Bounding Spectra Distance

We now assume that we are given two sets of n points P = {p1, . . . , pn} and

Q = {q1, . . . , qn} sampled from hidden m-manifolds M and N, respectively, such that

dIRd(pi, qi) = ‖pi−qi‖ ≤ (ρ+3)δ = O(δ) for any i ∈ [1, n], where ρ = max{3, 8
µ
+2} is

a constant depending on the isoperimetric constant µ of the manifold M. Notice that

Theorem 4.2.1 implies that we have such inputs with high probability when P and Q

are uniformly randomly sampled from M and N according to their volume measures.

Now consider the weighted graph Laplacians LtP and LtQ constructed from P and Q,

respectively. Our goal is to show that the spectra of these two graph Laplacians are

close. We achieve this by showing that the matrix 2-norm ‖LtP − LtQ‖ of the matrix

4We remark that all our earlier results hold if we choose (ρ−2)δ as the expansion radius, instead
of using ρδ, when constructing the intermediate region RN from RM. The reason we use current
choice of ρ is precisely to handle this case

68

LtP−LtQ is bounded, which further bounds the spectra distance of LtP and LtQ by Weyl’s

Theorem for eigenvalue perturbations [64].

For simplicity, set Gij :=
1

(4π)
k
2 t

k
2 +1

· e
−‖pi−pj‖2

4t and G̃ij :=
1

(4π)
k
2 t

k
2 +1

· e
−‖qi−qj‖2

4t for

any i, j ∈ [1, n]. Notice that LtP [i][j] = − 1
n
Gij and LtQ[i][j] = − 1

n
G̃ij for i 6= j.

First, we need the following key result. This lemma bounds |Gij − G̃ij|, which is

then used to bound ‖LtP − LtQ‖.

Lemma 4.3.1. |Gij − G̃ij| = O(δ4/5

tm/2+7/5) if t = Ω(δ2−ε) for any positive real ε > 0.

In particular, |Gij − G̃ij| = O(δ1/3) for t ≥ δ
1

15
14m+3 . The big-O and big-Ω notations

hide constants depending on the isoperimetric constant µ of the manifold M.

Proof: For simplicity, denote Cµ := ρ + 3. By the one-to-one closeness between

points in P and in Q, we have that dIRd(pi, qi) = ‖pi− qi‖ ≤ Cµδ for constant Cµ ≥ 6.

For every i, j ∈ [1, n], the triangle inequality imply that ‖pi−pj‖−2Cµδ ≤ ‖qi−qj‖ ≤

‖pi − pj‖+ 2Cµδ.

We distinguish two cases: ‖pi − pj‖ ≤ τ and ‖pi − pj‖ > τ for some parameter

τ ≥ 4Cµδ whose value is to be specified later.

Case 1: ‖pi − pj‖ ≤ τ .

Since τ ≥ 4Cµδ, we have that δτ = Ω(δ2). We can then bound G̃ij from below as

follows as long as Cµ
2δ2

t
< 1 and Cµδτ

t
< 1:

G̃ij =
1

(4π)
k
2 t

k
2
+1

· e
−(‖qi−qj‖)2

4t ≥ 1

(4π)
k
2 t

k
2
+1

· e
−(‖pi−pj‖+2Cµδ)2

4t

≥ Gij · e
−Cµ

2δ2

t · e
−Cµδ‖pi−pj‖

t ≥ Gij · e
−Cµ

2δ2

t · e
−Cµδτ

t

≥ Gij(1−
O(δ2)

t
)(1− O(δτ)

t
) ≥ Gij · (1−

O(δτ)

t
).

69

Now we bound G̃ij from above. First, assume that ‖pi − pj‖ ≤ 2Cµδ. Since

e−
‖qi−qj‖2

4t ≤ 1, we have G̃ij ≤ 1

(4π)
k
2 t

k
2 +1

. It then follows that, for Cµ
2δ2

t
< 1, we

have

G̃ij ≤
1

(4π)
k
2 t

k
2
+1

= Gij/e
−(‖pi−pj‖)2

4t = Gij · e
(‖pi−pj‖)2

4t ≤ Gij · e
Cµ

2δ2

t

≤ Gij · (1 +O(
δ2

t
)).

Otherwise, τ ≥ ‖pi − pj‖ ≥ 2Cµδ. In this case we have that ‖qi − qj‖2 ≥ (‖pi − pj‖−

2Cµδ)
2. Hence for Cµ

2δτ

t
< 1,

G̃ij ≤
1

(4π)
k
2 t

k
2
+1

· e
−(‖pi−pj‖−2Cµδ)2

4t ≤ Gij · e
−Cµ

2δ2

t · e
Cµδ‖pi−pj‖

t ≤ Gij · e
Cµδ‖pi−pj‖

t

≤ Gij · (1 +O(
δτ

t
)).

Putting the above inequalities together, and using the fact that Gij = O(1
tm/2+1), we

have

E≤ := |Gij − G̃ij| = Gij ·O(
δτ

t
) = O(δτ/t

m+4
2) when ‖pi − pj‖ ≤ τ.

Case 2: ‖pi − pj‖ > τ .

Recall that ‖qi − qj‖ ≥ ‖pi − pj‖ − 2Cµδ. If ‖pi − pj‖ > τ , and τ ≥ 4Cµδ, then

‖qi − qj‖ > τ − τ/2 > τ/2. It then follows

G̃ij =
1

(4π)
k
2 t

k
2
+1

· e
−‖qi−qj‖2

4t ≤ 1

(4π)
k
2 t

k
2
+1

· e−τ2

16t .

Since e−
1
x ≤ x2 for any x > 0, we have

E> := |G̃ij −Gij| ≤ G̃ij ≤
1

(4π)
k
2 t

m
2
+1

·O((t
τ 2

)2) = O(
1

τ 4t
m
2
−1

)

when ‖pi − pj‖ > τ.

70

We balance the two error terms E≤ and E> by choosing τ = t3/5

δ1/5
so that E≤ = E> =

δ4/5

tm/2+7/5 . The condition
Cµ

2δ2

t
< 1, Cµ

2δτ

t
< 1, and τ ≥ 4Cµδ can be satisfied as long as

t = Ω(δ2−ε) for any ε > 0. Finally, if t > δ
1

15k
14 +3 , we have that E≤ = E> = O(δ1/3).

The lemma follows.

Given a matrix (operator) D, let λi(D) denote its i-th smallest eigenvalue. We

have the following result.

Theorem 4.3.1. Let P = {p1, . . . , pn} and Q = {q1, . . . , qn} be two sets of n points

such that ‖pi − qi‖ = O(δ) for every i ∈ [1, n]. Let LtP and LtQ be the corresponding

Gaussian-weighted graph Laplacians computed from P and Q, respectively. The eigen-

values of LtP and LtQ satisfy |λi(LtP) − λi(L
t
Q)| = O(E(δ, t)), where E(δ, t) = δ4/5

tm/2+7/5 .

In particular, E(δ, t) = O(δ
1
3) if t ≥ δ

1
15
14m+3 .

Proof: First, notice that the Gaussian-weighted graph Laplace matrix is sym-

metric. Set matrix D to be the difference between LtP and LtQ; that is D[i][j] =

LtP [i][j] − LtQ[i][j] for all i, j ∈ [1, n]. Consider the definition of LP [i][j] in Equation

(2.2). By Lemma 4.3.1,

|D[i][j]| = 1

n
· |Gij − G̃ij| = O(E(δ, t)/n), for each i 6= j.

For diagonal entries, we have

|D[i][i]| ≤
n∑

j=1

1

n
· |Gij − G̃ij| = O(E(δ, t)), i ∈ [1, n].

Hence the matrix 1-norm of D satisfies

‖D‖1 =
n

max
j=1

n∑

i=1

|D[i][j]| = O(E(δ, t)),

71

and the matrix ∞-norm of D satisfies

‖D‖∞ =
n

max
i=1

n∑

j=1

|D[i][j]| = O(E(δ, t)).

Since the matrix 2-norm ‖D‖2 satisfies ‖D‖2 ≤
√
‖D‖1‖D‖∞, we have that ‖D‖2 =

O(E(δ, t)). By Weyl’s theorem for eigenvalue perturbation of Hermitian matrices

(see e.g., [64]), the distance between corresponding eigenvalues of the matrix LtQ and

LtP = LtQ +D is bounded by the matrix 2-norm of the difference matrix D, which is

O(E(δ, t)).

Our main result, Theorem 4.1.1 stated earlier, then follows from Theorems 4.2.1

and 4.3.1.

4.4 Experiments

In this section, we show through experiments that the discrete (weighted-graph)

Laplace operator is indeed stable against small topological changes. We also show that

the weighted-graph Laplace operator changes smoothly with the size of the region of

topological change for a fixed t. In our experiments, we use the first 300 eigenvalues.

First, we show the effect of a small topological change on the eigenvalue, and how

this effect changes with the size of the region of change. Figure 4.2 shows two tori

connected using a very thin bridge, and then increasing the size of the connecting

bridge. The graph depicts the top 300 eigenvalues at different stages of this process

for t2 = 0.00001. We can see that for smaller changes, the eigenvalues are similar,

since the region of change is small when compared with our choice of t. however, for

a larger region of change, the eigenvalues deviate more from the original surface.

72

Figure 4.2: Left: Connecting two tori with increasingly larger bridges. Right: Com-
parison of eigenvalues

Figure 4.3: Left: Increasingly large perturbation of points on a surface. Right: Com-
parison of eigenvalues

A similar trend is also seen when non-topological noise is added to a surface. For

example, Figure 4.3 shows a surface and with increasing perturbation of points. The

eigenvalues change smoothly for small t as the perturbations become larger.

Figure 4.4 shows another example of a torus with another small torus attached

to it, incrementing its genus, and hence changing its topology. Then, we gradually

increase the size of this attached torus until it becomes as large as the original torus.

73

Figure 4.4: Left: Increasingly large region of topological change on a torus. Right:
Comparison of eigenvalues

Here, we fix our t to be much larger (t2 = 0.001). Note that the eigenvalues still differ

a lot since the region of change is large in all the cases.

Finally, figure 4.5 shows the effect of multiple topological changes for the armadillo

model. We fix our t to be t2 = 0.0001. Here, the eigenvalues are similar despite

multiple topological changes in different regions of the model. For a larger region of

change (top-right model), however, the change in eigenvalues is noticeable.

74

Figure 4.5: Topological changes on the Armadillo. Top Row: Original Armadillo
model; and a variation with two fingers joined. Bottom Row: Another variation
with two fingers touching; and a model with two fingers touching and another finger
touching the nose. Right: Comparison of eigenvalues for t2 = 0.0001

75

Chapter 5: Persistent Heat Signature for Pose-oblivious

Matching of Incomplete Models [24]

With this chapter, we shift our focus from theoretical studies to building applica-

tions that are able to exploit our theoretical results. The first of two such applications

that we will discuss lies in the filed of shape matching.

The need for effective and efficient shape retrieval algorithms is ubiquitous in a

broad range of applications in science and engineering. With the increasing under-

standing of shape geometry and topology in the context of shape similarity, workable

solutions for shape retrieval are being produced. Numerous work drawing upon in-

sightful ideas such as [16, 34, 35, 45, 67, 68] have made this possible. See also a

comprehensive comparison study [82] and a survey [89]. The performances of some

shape retrieval algorithms can also be seen at the Shape retrieval contest website [1].

The problem of shape matching and retrieval is not trivial even if only rigid

body transformations are allowed to vary the shapes [49, 69]. Further difficulty

ensues if shape variations include small deformations [8, 61]. Even more realistic

assumption should allow the shapes to vary in pose meaning that the intrinsic metric

is not distorted much though the three dimensional embedding varies widely. Spectral

methods have shown remarkable resilience to shape variations caused by the extrinsic

metric while remaining stable under small changes in the intrinsic metric [52, 78, 74].

76

Figure 5.1: Given a query Armadillo model that is pose-altered, incomplete, and
partially scanned, our method first computes the heat kernel signature function at
a certain scale, and then extract a set of HKS maxima (red dots) using persistent
homology. Feature vectors computed at these maxima are then used to search for the
most similar models, be it complete, partial, or incomplete, in a shape database. A
few top matches are shown. The black curves are the boundary curves of either partial
or incomplete models. Correspondence between segmentations of different models is
shown with consistent coloring.

As a result, researchers have started to study this approach more in depth [45, 68, 71,

88]. In this chapter we explore this approach to address one of the main difficulties still

existing for shape retrieval systems– pose-oblivious matching of partial and incomplete

3D models.

The matching of a partial or an incomplete model against a complete one cannot

rely on features that are too global. At the same time, any matching relying on only

local measures becomes susceptible to noise caused by small perturbations. Therefore,

we need something in between which can describe shape features at different scales.

The Heat Kernel Signature (HKS) recently introduced in [88] bears this multi-scale

property. However, it has not yet been demonstrated how this signature can be used

effectively for partial or incomplete shape retrievals from a database that may itself

contain partial or incomplete models. We provide such a scheme which is both robust

and scalable for large data sets.

77

Our method is based on a novel synergy between HKS and persistent homology.

Given a surface M with an initial distribution of unit heat concentrated at any point

x ∈ M , the HKS at x at time (i.e, duration of the flow) t provides the amount of

heat retained at x after heat dissipates for time t according to the well known heat

equation. This heat dissipation is determined by the intrinsic geometry of M and the

influence of shape features on the heat flow can be controlled by regulating the time.

Small time scales dissipate heat over a small region and thereby allow local features

to regulate the heat whereas large time scales allow global features to exert more

influence. This suggests that one can use HKS at different time values to describe

features at multiple scales. Indeed, Ovsjanikov el al. use this as a shape descriptor

for every vertex of an input surface, and quantize the space of shape descriptors

by k-means clustering to obtain a succinct set of representative features [68]. They

represent an input shape based on the distribution of its shape descriptors with respect

to these representative features, and develop an efficient shape retrieval system.

The distribution-based features tend to be less discriminating for partial matching.

The HKS function is more likely to remain similar on a surface and its partial

counterpart when t is relatively small. However, a small diffusion interval tends to

increase the local variation in the HKS function values, and makes it more sensitive

to noise. To counter this, we bring in the tool of persistent homology [31] to identify

important features.

We argue that the critical points, in particular, the maxima ofHKS, serve as good

candidates for feature points. We consider only persistent features, which are HKS

maxima that persist beyond a given threshold. To compute such maxima, instead

of using the standard persistent algorithm, we employ a region merging algorithm

78

that bypasses detecting persistence values of all critical points and focuses only on

eliminating those maxima that are not persistent. As a byproduct we also obtain

a segmentation of the surface that appears to be robust, and consistent between a

shape and its partial versions even if they are in different poses (see the last box in

Figure 5.1). This may be of independent interest.

The persistent feature points, together with a multi-scaleHKS description at each

points, provide a concise yet discriminating shape descriptor for the input surface,

which is also robust under near-isometric deformations and partial occlusions. Indeed,

experimental results show that our algorithm is able to match partial, incomplete,

and pose-altered query shapes in a database of moderate size efficiently and with a

high success rate. In our paper [24], for large input data, we also develop an efficient

algorithm to approximate HKS values to make our algorithm scalable.

We remark that using point signatures for matching is not new, and there has

been much previous work proposing and investigating various point signatures; see

e.g [18, 37, 81]. However, our method relies on a novel synergy between the multi-scale

HKS and the topological persistence algorithm. Our algorithm is the first software

designed specifically for matching partial, incomplete, as well as pose-modified shapes

in a database. Experimental results show that our method is robust, very efficient,

and quite effective in partial shape retrieval.

5.1 Heat Kernel Signature

Our matching algorithm relies on the Heat Kernel Signature (HKS) proposed and

analyzed in [88] (a scale-invariant version was used in [36]). This shape descriptor is

derived from the heat operator which we briefly describe first.

79

5.1.1 Heat Kernel Signature

The heat kernel function has many nice properties; see [88] for a detailed discus-

sion. The family of heat kernel functions uniquely defines the underlying manifold up

to an isometry; thus it is very informative and a potentially good tool to construct a

shape descriptor.

Specifically, Sun et al. propose the following Heat Kernel Signature (HKS) as a

shape descriptor for a manifold M [88].

HKSt(x) = ht(x, x) =
∑

i≥0

e−tλiφi(x)
2. (5.1)

Where ht is the kernel of Heat operator, which was briefly discussed in Section 2.3.

Intuitively, it measures how much heat is left at time t for the point x ∈ M if unit

amount of heat is placed at point x when t = 0. HKS inherits many nice properties

of the heat kernel. It is invariant to isometric deformations, and not sensitive to noise

or even slight topological changes. It is multi-scale: as t gets larger, the eigenfunctions

corresponding to large eigenvalues play a smaller role, hence only the main features

of the shape detected by small eigenvalues matter. Most importantly, HKS is almost

as informative as the family of functions ht(., .)t>0 (see Theorem 1 in [88]). At the

same time, it reduces the family of two-variables kernel functions to a family of single-

variable functions, and is hence more succinct and much easier computationally.

HKS Maxima. It is well-known [40] that as t → 0, there is an asymptotic

expansion of the HKS function at every point x ∈M of the form:

HKSt(x) = ht(x, x) = (4πt)−d/2
∑

i≥0

ait
i,

where a0 = 1 and a1 =
1
6
s(x) with s(x) being the scalar curvature at point x. For a

2-manifold M , s(x) is simply the Gaussian curvature at x. Thus intuitively, the heat

80

diffusion for small t is governed by intrinsic curvature. Heat tends to diffuse slower at

points with positive curvature and faster with negative curvature. This suggests that

critical points of HKS correspond to features of the shape, where maxima of HKS

capture the tips of protrusions or the bottoms of concave areas. Hence, we propose

to use HKS maxima as feature points for shape matching. It turns out that we can

select only a handful of persistent feature points for matching.

5.1.2 Discrete setting

In the discrete setting, the input is a triangular mesh K whose underlying space is

homeomorphic to a smooth surface M . To compute the HKS, one needs to compute

the eigenvectors and eigenvalues of the Laplace-Beltrami (thus heat) operator. As ob-

served in Chapter 1, several discrete Laplace operators for meshes have been developed

in the literature. The most popular ones are the cotangent-scheme [28, 23, 70, 96] and

the finite element method based approach [72, 74]. We use the mesh-Laplacian pro-

posed in [7] for two reasons. First, the construction of this mesh-Laplacian is based on

the heat diffusion idea, making it consistent and perhaps natural for computing Heat

Kernel Signatures. Second, the mesh-Laplacian is the only current discrete Laplace

operator so that both the operator itself and its spectrum converge to those of the

manifold Laplacian with increasing mesh density while requiring no constraints on

triangle qualities, as seen in Chapter 5.

5.2 Persistent Heat Maxima

Our goal is to compute a signature of a shape from its HKS functions. To

make the size of the signature concise, we want to select a subset of vertices of the

mesh that may find correspondences in HKS values in a shape which we want it to

81

match. We may take the critical points, in particular, the maxima of the HKS as

this subset. This subset itself could possibly be large. Furthermore, discretization

errors and small variations in the shapes may cause many maxima to loose their

correspondences in a similar shape. Therefore, we need a mechanism to select a small

subset of these maxima that hopefully remain stable under small perturbations but

allow pose variations.

One might think that the HKS at a large time scale t provides a few such stable

maxima since such a HKS function describes the input shape at a large scale. How-

ever, the criticality of a point p is decided not only by the function value at p, but also

by its relative value compared to its neighbors. Some unimportant local maxima at

small t may survive for large t thereby invalidating t alone as a discriminating factor

in filtering maxima. Furthermore, computing HKS at a large t value makes it more

sensitive to partial and incomplete shapes. Hence we take the strategy that, first, we

compute the HKS function for a moderately small t so that partial similarity tends

to be well preserved. We next use the concept of persistent homology [31] to select a

subset of the maxima that have large persistence. Experimental results suggest that

this strategy produces robust feature points across partial and incomplete shapes.

5.2.1 Persistence

We now briefly review the concept of persistent homology. We refer the readers to

the original persistence paper [31] and the survey [30] for detailed discussions. Let K

be the triangulation whose underlying space, denoted |K|, is a surface possibly with

boundaries. Suppose we have a HKS function h : V → R defined on vertices V of

82

Figure 5.2: Consistent identification of the persistent HKS maxima for different hu-
man / animal models in different poses. The two human models on the right are
incomplete and partially scanned models with black curves being boundary curves.

K. One can linearly interpolate h over all edges and triangles to obtain a piecewise

linear function, still denoted by h : |K| → R.

The critical points of h occur at vertices of K where the homology of the sub-level

sets {x ∈ |K| s.t. h(x) < α} changes. Using the concept of persistent homology [31],

one can define the persistence of these critical vertices. Informally speaking, while

sweeping |K| from minh to maxh, we inspect the topology change of the sub-level

set at critical values which are values taken by critical vertices: either new topology

is generated or some topology is destroyed, where topology is quantified by a class

of ‘cycles’. A critical vertex is a creator if new topology appears and a destroyer

otherwise. It turns out that every destroyer v2 is uniquely paired with a creator v1

in the sense that v2 destroys a topology created at v1. The persistence of v1 and v2

is defined as Persh(v1) = Persh(v2) = h(v2)− h(v1), which indicates how long a class

of cycles created at v1 lasts before it gets destroyed at v2. A creator is either paired

with a unique destroyer, or unpaired, in which case it has infinite persistence.

83

For a surface, there are three types of critical points, maxima, minima, and saddles.

We are interested in computing the maxima with large persistence, which roughly cor-

respond to feature points that are hard to remove by perturbing the HKS function

values. The persistence pairings and values can be computed by the standard persis-

tent algorithm on a filtration of K dictated by h. Specifically, modify h as:

h̄ : K → R, σ 7→ w where w is maximum h over vertices of σ.

Sort the simplices in K with increasing order of h̄ values . If two simplices have the

same value but different dimensions, break the tie by putting the lower dimensional

one first. Otherwise, break the tie arbitrarily. Note, this enforces any face of a

simplex to appear before this simplex in the sorted order. Hence this sorted order

σ1, σ1, . . . , σn defines a filtration of K: ∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K, where each Ki

is a sub-complex of K and Ki+1 \Ki = σi.

The persistence algorithm when run on this filtration pairs up triangles with edges

and edges with vertices. For paired simplices σ1, σ2 with h̄(σ1) ≤ h̄(σ2), we define

their persistence as Persh̄(σ1) = Persh̄(σ2) = h̄(σ2) − h̄(σ1). It is known that Persh

and Persh̄ have the following relation for a piecewise-linear function h. This justifies

the discretized framework .

Proposition 5.2.1 ([20]). Assume that σ1 is paired with σ2, and let v1 and v2 be the

vertices of σ1 and σ2 respectively with the highest h value. Either v1 = v2 in which

case it is a regular (non-critical) vertex. Otherwise, v1 is paired with v2 for h and

Persh(v1) = Persh(v2) = Persh̄(σ1) = Persh̄(σ2).

By the above result, if a maximum v of h is paired with a saddle point u, then a

triangle incident to v gets paired with an edge incident to u in the filtration induced

84

by h̄. The persistence value for v can also be computed by persistence value of

that triangle. Hence it is safe to work with the filtration induced by h̄ to compute

persistence of critical points of h.

5.2.2 Region merging

It turns out that for a piecewise-linear function defined on a triangulation of a

surface, one can compute the persistence pairing between maxima and saddles (as

well as minima and saddles) by sweeping the function value from large to small and

maintaining the connected components throughout the course via a union-find data

structure [31]. The process takes O(n log n) time (or O(nα(n)) time if vertices are

already sorted), where n is the number of vertices and α(n) is the inverse Acker-

mann’s function which grows extremely slowly. We are interested only in computing

important HKS maxima, that is, those corresponding triangles whose persistence

values are more than a prescribed threshold. Instead of computing the complete list

of persistence pairings, we employ a region merging algorithm that computes these

pairings up to a level dictated by an input parameter λ.

Specifically, this algorithm cancels maxima-saddle or equivalently triangle-edge

pairs till only those maxima whose persistence values are more than a threshold are

left. As a by product, this merging algorithm also produces an explicit segmentation

of the surface which seems to be stable w.r.t. partial and incomplete input and which

could be of independent interest (see Figure 5.2). This induced segmentation is also

later used to help us to approximate the HKS maxima for large data sets [24].

The merging algorithm partitions the entire surface M = |K| into regions which

are grown iteratively. Each region maintains a central triangle and its pair edge which

85

together provide a persistence value. At any stage, the central triangle t of R is the

triangle with the highest function value in R, and its pair edge pr(t) is the edge with

the highest function value among all edges in the boundary ∂R of R. Equivalently,

the pair edge pr(t) is also the edge among all edges in ∂R such that the difference

between h̄(t) and h̄(pr(t)) is minimized. The current persistence of region R is defined

as this difference: p(R) = h̄(t)− h̄(pr(t)).

Initially, each region R consists of a single triangle t ∈ K, The central triangle of

R is t itself whose pair-edge pr(t) is: pr(t) = argmaxe∈∂t(h̄(e)). At any generic step,

let R be the region whose persistence value p(R) is minimal among all regions —

for regions with the same persistence values, we first process the one whose central

triangle has a smaller h̄ value. Let t be the central triangle in R paired with the edge

e ∈ ∂R. Let R′ be the unique region adjacent to e other than R. Let t′ be the central

triangle of R′ and e′ its pair edge. We merge R and R′ to region R ∪R′. The central

triangle t′ of R′ becomes the central triangle of this merged region whose pair edge

is updated with the edge e′′ in ∂(R ∪ R′) that has the largest h̄ value. Note that it

is necessary that h̄(t′) ≥ h̄(t) and h̄(e′′) ≤ max{h̄(e), h̄(e′)} as R is the region with

the smallest persistence chosen for merging. Hence the persistence p(R ∪R′) for the

merged region becomes larger than or equal to both p(R) and p(R′). If ∂(R ∪ R′) is

empty, then the central triangle is unpaired. We continue this process till the minimal

persistence value of any current region exceeds an input threshold λ. The following

result explains the utility of the merging algorithm.

Proposition 5.2.2. At any stage of the merging algorithm, if R is the region with

minimal persistence value p(R), then Persh̄(t) = p(R) where t is the central triangle

in R, and the edge pr(t) pairs with t w.r.t the function h̄.

86

In particular, the set of central triangles t of regions that survive after merging

with threshold λ > 0 are exactly the set of triangles with persistence Persh̄(t) ≥ λ.

Proof: Recall that at any stage of the merging process, we maintain a central

triangle t and its pair edge e for every region R. We always choose the region with the

current smallest persistence for merging. It is easy to verify that this greedy strategy

maintains the following invariant: t has the highest h̄ value among all triangles in R,

and e has the highest h̄ value among all edges in the boundary ∂R.

We prove the proposition by taking the matrix view of the persistence algorithm

which reduces the initial incidence matrix iteratively. In the original persistence

algorithm [31], when a new triangle t is considered, columns for certain triangles which

are on the left (older triangles) are added to the column of t till the lowest 1 in the

column of t does not have another such lowest 1 in its row. This lowest 1 corresponds

to the edge to which t pairs. If no such 1 exists, t is declared unpaired. It turns

out that [21], it is not necessary to execute this algorithm sequentially as proposed

in the original persistence algorithm. Let D be the original edge-triangle incidence

matrix that respects the filtration order. One can add columns of D arbitrarily with

the constraint that a column is added only to a column on its right, i.e., a triangle’s

column is added only to another triangle’s column which is younger. If these additions

provide a unique lowest 1 for each triangle column, then Cohen-Steiner et al. showed

that the triangle-edge pairing is same as the original persistence pairing [21].

In our merging algorithm we are simulating this column additions with the guar-

antee that we reach a unique pairing. Each column of a triangle t represents the

boundary of the region R it is currently central to. The edge e currently paired with

t corresponds to the lowest 1 in this column (as it has the highest function value

87

among all edges in ∂R). We merge the region R with minimal persistence value to

another region R′ adjacent to e. That is, we add the column of t to the column of

another triangle t′ which is central to R′, and t′ has 1 at the entry corresponding to

e.

Since e is also in ∂R′, it is necessary that the pairing edge e′ for t′ at this point

has a function value that is at least as large as that of e; i.e, h̄(e′) ≥ h̄(e). On

the other hand, as R is the region currently with the smallest persistence, we have

p(R) ≤ p(R′). It follows that h̄(t) < h̄(t′). Hence the central triangle t′ of R′ must

be younger than the central triangle of R. This means our algorithm simulates the

column addition to the right. Furthermore, when we merge R with R′, the paired

edge of its central triangle is absorbed in the merged region R ∪ R′ as we consider

modulo-2 addition in persistence homology. This edge will not be paired in the future.

Using induction, one can show that the central triangle of R pairs uniquely with its

pair edge at the time of merging. The first statement of proposition 2 follows.

Since we merge in non-decreasing order of persistence values of the regions, com-

bining the first half of the proposition with Proposition 5.2.1, the second half of the

claim follows.

In other words, the above result implies that our algorithm merges regions with

respect to the persistence order induced by the function h̄, which by Proposition 5.2.1,

is then connected to the persistence order of the function h. Note that at the begin-

ning, all the regions we merge have zero-persistence value. These do not correspond

to pairings between critical points of h (the case where v1 = v2 in Proposition 5.2.1).

An example of the merging process is shown in Figure 5.3.

88

Figure 5.3: Persistence based merging on an Airplane model. (a) Initially, every trian-
gle represents a region; (b) shows the segmentation after merging all zero-persistence
regions. The central triangle of every remaining region corresponds to a maximum
of input function h. (c) A and B are two maxima, for the gray and orange regions,
respectively, with A having a larger h value; (d) after the merging, A stays the max-
imum for the new region (gray colored).

Using the union-find data structure to maintain intermediate regions, and a priority-

queue to maintain the order of regions to be processed, this merging process takes

O(n log n) time in the worst case. However, it terminates faster for lower threshold

λ, and it also produces a segmentation of the input domain, which is in some sense

a combinatorial version of the stable manifold decomposition induced by the input

function. We remark that the merging idea has been used before to produce seg-

mentations [15, 39]. However, we show that our merging process and the resulting

segmentation respect the topological persistence pairing.

Finally, the above procedure is for handling 2-manifold without boundary. Given

a surface M with boundary, assume E ′ is the set of boundary edges, the algorithm

simply ignores edges in E ′ when computing the boundary of each region. This is

equivalent to first seal all the holes in M and convert M to a manifold M ′ without

boundary; and then perform the persistence algorithm on M ′. To seal a hole in M (a

loop C in ∂M), we add a dummy vertex v with function value lower than all vertices

in M , and then connect all edges in C to v.

89

5.3 Matching

Feature vector. We now identify a small set of persistent heat maxima as feature

points to concisely represent an input shape. Specifically, we use a fixed number

κ, and perform the region-merging process till the remaining number of regions left

equals κ. Experimentally we observe that κ = 15 maxima are usually sufficient to

capture most prominent features, which we fix from now on. See the two Giraffe

models in Figure 5.2 for an example, where similar feature points are captured for

both the partial scan (left picture) and the complete version (right picture).

Next, we construct a feature vector for each one of the κ = 15 selected feature

point. Since HKS for different time values describe local geometry at different scales,

we compute HKS values for different t at each of the feature points — such a multi-

scale description of local shape helps to enhance the discriminability of our feature

vectors. We choose 15 different time scales to compute a 15D feature vector for

each feature point. The time scales are chosen relative to a constant τ which is

the parameter used for computing the discrete Laplace operator. The algorithm

in [7] approximates the discrete Laplacian based on a heat-dissipation process whose

duration is determined by τ . Hence we take τ as the time unit, as it is not meaningful

to use the eigenvectors of a HKS constructed at a resolution smaller than τ . In our

experiments we fix τ to be 0.0002 and we consider t = α ∗ τ where α varies over 5,

20, 40, 60, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000.

Scoring. Let F1 and F2 be the set of feature vectors computed for two surfaces

M1 and M2, respectively. Each Fi is a collection of 15 feature vectors, where each

vector is of dimension 15. For two vectors f1 ∈ F1 and f2 ∈ F2, we use the L1-norm

90

||f1 − f2||1 to measure their distance. The matching score between M1 and M2 is

computed as

∑

f1∈F1

minf2∈F2 ||f1 − f2||1 +
∑

f2∈F2

minf1∈F1 ||f1 − f2||1.

Note that this scoring function does not satisfy the triangle inequality. One could use

more sophisticated distance functions for scoring. We resort to this simple scoring

function since it already provides good results. Once F1 and F2 are given with a

preprocessing, computation of the scores becomes very efficient for such a small set

of vectors.

5.4 Results

Database. To test our matching method, we build a database of 300 shapes

divided into 21 classes (dogs, horses, airplanes, chairs, glasses, humans, etc.), where

each class has more than one shape including partial and incomplete versions. We

create our own database mainly because we want to emphasize the robustness of

our method for pose-oblivious partial and incomplete matching and existing shape

databases do not necessarily cater to this need. Models in our database are collected

from available sources [17, 84], to which we add partial and incomplete versions of

them. The partial scan data is generated by taking a random viewing direction and

keeping all vertices of a complete model that are visible from this direction. The

incomplete data is generated by removing one or more portions off a complete model

using cutting planes. For every pose of a model, only one version of it (i.e, either the

complete model, its partial scan, or the incomplete version of it) is in the database or

in the set of query models. There are 50 query models. Among them, 18 are complete

91

Query Top five matches

Table 5.1: Query models and top five matches returned for each query. Letters C, P,
I indicate complete, partial, and incomplete models respectively.

models, and 32 are partial or incomplete models. Finally, we scale each shape to a

unit bounding box to factor out the global scaling.

Parameters. For all models, we compute mesh-Laplacian and its eigenvectors using

a universal time-unit τ = 0.0002. For each model, we then compute 15 persistent

maxima for the HKS function at time 5τ , which we observe provides robust feature

points across partial and incomplete models. We then construct, for every persistent

maximum, a feature vector of 15D as described in Section 5.3. A shape is now

represented by 15 feature vectors, each of dimension 15.

Hit rate. Given a query shape, we compute the matching score between it and every

shape in the database. The top 5 matches for some queries are shown in Table 5.1.

We also compute a hit rate as follows. For a query shape in a class, there is a Top-k

92

hit if a model is retrieved from the same class within the top k matches. For N query

shapes, the Top-k hit rate is the percentage of the Top-k hits with respect to N .

#queries ours EVD LFD

32 incompl. 88% / 91% 62% / 62% 56% / 59%

18 compl. 78% / 83% 100% / 100% 39% / 39%

50 total 84% / 88% 76% / 76% 50% / 52%

Table 5.2: Each entry shows Top-3 / Top-5 hit rates for our method, EVD, and LFD.
“32 incompl.” includes both partial and incomplete queries and “18 compl.” includes
only pose-altered queries. The database contains 300 models.

We compare our method with two competitive shape retrieval methods: Eigen-

value descriptor (EVD) method of [45] and Light Field Distribution (LFD) method

of [16]. We chose these two methods because EVD represents a state-of-the-art spec-

tral technique for articulated shape retrieval, and LFD represents a technique that

has been reported to be one of the best in literature for rigid models [82]. Table 5.2

shows the Top-3 and Top-5 hit rates of all three methods for 50 query models.

We find that, if pose variations are disallowed and models are complete or even

near-complete, all three methods work very well achieving a hit rate close to 100%

with LFD performing the best (details of this result omitted here). If only pose

variations are allowed, EVD performs quite well for retrieving different pose variations

of input queries as the second row in Table 5.2 shows. However, for pose-altered

models with significant incompleteness our method beats LFD and EVD by large

margin as the first row in Table 5.2 exhibits. An example of the top 5 matches

returned for an incomplete Octopus query by these methods is shown in Figure 5.4.

93

Figure 5.4: Top five matches for an incomplete Octopus query model by our algorithm,
EVD, and LFD.

An additional advantage of our method over EVD and LFD is that it can also provide

correspondences between matching features in models.

Timing data. We present the timing data of all three algorithms in Table 5.3. To

make our algorithm scalable, we use the exact algorithm for models with 25K vertices

or less, and run the approximation algorithm HKS-simp to compute HKS for larger

data. For EVD algorithm, the timing reported is obtained by an optimized version

of the original implementation obtained from the authors. To handle large meshes

using EVD, we also follow their original strategy to first decimate the models with

QSlim to 3K vertices, and then process them for matching. For LFD algorithm, we

use the original implementation from the authors. LFD is slowest in terms of the

retrieval time though its preprocessing time for models is the best. EVD has the

94

fastest retrieval time and its preprocessing time is comparable to ours, although its

accuracy for partial and incomplete query shapes is worse than our algorithm.

Pre-processing (sec)

Model #v ours EVD LFD
Plier 4.8k 9.4 7.9 0.7
Hand 8.7k 19.8 8.1 1.0
Octopus 11.0k 25.2 8.5 1.3
Teddy 12.6k 30.7 8.6 1.4
Human 15.2k 42.8 8.9 1.5
Dragon 1000k 712.0 28.0 40.0
Elephant 1500k 1032.0 37.0 60.0

Retrieval time (sec) 0.02 0.006 36.0

Table 5.3: All experiments are carried out on a Dell computer with Intel 2.4GHz CPU
and 6GB RAM.

Validity of Persistent Maxima. We choose persistent maxima as feature points

for matching. We provide some experimental results to validate this choice. First,

Figure 5.2 shows that the persistent maxima and their induced segmentations are

rather robust in practice for different models in various poses, and in their partial

and incomplete versions.

Next, we conduct the following experiment: we replace the HKS maxima by

extrema of the average geodesic distance (AGD) as in [103] and by extrema of discrete

Gaussian curvature (GC) computed using the method from [60]. We compute the top

15 persistent AGDmaxima and GCmaxima by the region merging algorithm and then

construct feature vectors for these feature points to match shapes. The Top-3 and

Top-5 hit rates of the three algorithms using different feature points (i.e, persistent

95

HKS, AGD, or GD maxima) are reported in Table 5.4. AGD takes global information

into account, thus does not match well for partial / incomplete models. GC takes only

a very local neighborhood into account, thus the function value at each point does not

reflect global features very well, and performs the worst. Interestingly, the hit-rate

for the GC method will improve if one first sparsify the set of potential feature points

by keeping only one extremum within every neighborhood of an appropriate size.

However, the question is then how one should choose the size of this “neighborhood”,

and it is not clear whether there is any natural choice for it.

#queries ours (HKS) AGD GC

32 incompl. 88% / 91% 78% / 81% 38% / 41%

18 compl. 78% / 83% 72% / 94% 83% / 89%

50 total 84% / 88% 76% / 86% 55% / 58%

Table 5.4: Each entry shows Top-3 / Top-5 hit rates for our method using HKS, AGD
and GC feature points.

5.5 Conclusion and Discussion

In this chapter we combined techniques from spectral theory and computational

topology to design a method for matching partial and incomplete shapes. Heat Kernel

Signature functions from spectral theory provide a way of capturing features of a

shape at various scales. However, discretization and approximations at various stages

inject noise into this function which requires a filtering. We achieve this filtering by

identifying maxima of this function that are persistent. Heat values of these maxima

96

at different time scales become the signature of the shape with which a simple scoring

scheme can be adopted for matching.

Our results show that the method is quite effective in shape matching. It out-

performs existing techniques for pose-oblivious matching of partial and incomplete

models. Our current method requires manifold meshes, although it can tolerate

mild discrepancies in this regard. It would be interesting to investigate whether

this method can be adapted to handle triangle soups in general. We also remark

that our algorithm consistently fails to match shapes in the category “Snake” in our

experiments. This is perhaps because that snakes do not possess many “features”

that the HKS describes. It will be interesting to investigate how one can enhance

our algorithm so that it can handle a broader range of shapes.

Finally, we remark that in this chapter, we compute eigenvectors of the mesh-

Laplacian without enforcing any boundary condition. It is believed that the mesh-

Laplacian assumes certain implicit boundary condition, although it has not been

shown what this boundary condition is. It will be interesting to further investigate in

this direction to see for example whether changing the boundary condition (by using,

say, the accurate high-order finite element method based approach in [72]) will affect

our matching results significantly.

97

Chapter 6: Eigen Deformation of 3D Models [25]

The final contribution of this thesis is another application. In this chapter, we

use our theoretical understanding of the Laplace operator to create a framework that

will allow us to freely deform shapes without asking the user for extra structures, like

cages, skeletons etc.

The creation of deformed models from an existing one is a quintessential task in

animations and geometric modeling. A user availing such a system would like to

have the flexibility in controlling the deformation in real-time while preserving the

isometry. In recent years, considerable progress has been made to meet these goals

and a number of approaches have been suggested.

Some of the earliest techniques for mesh deformation involved using skeletons

[102]. A user typically creates a skeletal shape which is bound to the mesh. The

mesh is then deformed by deforming the skeleton and transforming the changes back

to the mesh. This approach puts a burden on the user to create an appropriate

skeleton and bind the mesh to it. Later work [29, 2, 99] sought to reduce this burden

by automatically creating a skeleton. Automatic generation of good skeletons and

accurate transformation of deformations from skeleton to mesh remain challenging

till today.

98

(a) cage intersects with mesh (b) self -intersecting cage

Figure 6.1: Creating correct cages for meshes

Later approaches replaced the skeletons with a sparse cage surrounding the mesh

and then controlled the deformation through the movement of the cage. The use

of a cage is akin to the concept of control polyhedron that is used for free-form

deformations. The authors in [79] introduced the concept of control polyhedron and

others refined it later [50, 57]. It is well recognized that a control polyhedron does

not provide sufficient flexibility to deform meshes with complicated topology and

geometry [46, 54]. More recent techniques increase this flexibility by introducing

sophisticated coordinate functions that bind the cage to the mesh. In general, each

vertex of the mesh is associated with weights called coordinates for each vertex of

the cage. This allows the mesh vertices to be represented as a linear combination

of the vertices of the cage. Cage based techniques vary in how the weights of the

vertices are computed. Early attempts include extending the notion of barycentric

coordinates to polyhedra [47, 70, 98]. More recently, Mean Value Coordinates [32, 33,

51], Harmonic [46] and Green [54] Coordinates have been proposed for the purpose.

The authors in [54] pointed out that the Mean Value and Harmonic Coordinates

do not necessarily preserve shapes though they provide affine invariant deformations.

They overcome this difficulty by providing a real-time deformation tool that preserves

99

(a) Original Mesh (b) Green Coordinates (c) Our Method

Figure 6.2: Comparing with green coordinates

shapes. Recently, in [44], Sorkine et al. use biharmonic coordinates to integrate cages

and skeletons under a single framework. This allows the user to use different types

of techniques simultaneously based on the result desired. Also, in [9], Ben-Chen et

al. use a small set of control points on the original mesh to guide the deformation

of the cage. Nevertheless, the limitation of creating pseudo structures like cages and

skeletons by users still persists.

Creating pseudo structures, especially cages, can be time-consuming and tricky,

as Figure 6.1 illustrates. The cage on the left, for example, fails to envelop the mesh

correctly. The cage on the right envelops the entire mesh, but has self-intersections

leading to incorrect calculation of coordinates. It falls upon the user to manually

move the cage vertices to rectify the cage, which can become time-consuming. A

100

user typically spends more time creating a good cage, than deforming the mesh. The

state-of-the art would be enhanced if one can have a tool that has the capabilities

of Green Coordinates but without the need for the cage. Our approach is geared

towards that. Figure 6.2 illustrates the point by showing how our method produces

similar quality deformations as Green Coordinates but without any cage.

There are other approaches that impart the deformation directly to the surface

mesh and thus eliminate the need for intermediate structures like cages or skeletons;

see e.g, [10, 11, 43, 87, 86, 105]. These techniques usually optimize an energy func-

tion tied to the deformation and user control to achieve high quality deformations.

However, they either require non-linear solvers or multiple iterations of linear solvers

to compute new vertex positions, making them slower for large meshes. Also see [12]

for a survey on various deformation techniques that use the Laplacian operator to

formulate the energy.

Our work We introduce a novel approach that allows the user to apply the de-

formation directly to the mesh but without solving any non-linear system and thus

improving both time and numerical accuracy. The method uses a skeleton but with-

out explicitly constructing one. It computes the eigenvectors of the Laplace-Beltrami

operator to provide a low frequency harmonic functional basis which helps creating

an implicit skeleton. The skeleton is a high-level abstraction of the shape of the mesh,

lacking small features and details. It deforms this skeleton by computing a new set

of eigen coefficients. These coefficients are solutions of a linear system which can be

computed in real-time. Finally, it adds the details back to the skeleton to get the

101

(a)ARAP (b) HC (c) Our method

Figure 6.3: Comparisons when we stretch the arm and bend the leg of the armadillo.
Note that our method handles stretching better than as-rigid-as-possible (ARAP),
and extreme bending better than harmonic coordinates (HC).

deformed mesh. We point out that, unlike other skeleton-based approaches, our im-

plicit skeleton is simply the original mesh whose vertex coordinates are derived from

a truncated set of eigenvectors.

Our eigen-framework retains the advantages of both the cage-based and cage-less

approaches. Figures 6.2,6.10,6.13 illustrate this point. Our deformation software

is easy to use and efficient. We are also able to handle both isometric as well as

non-isometric deformations like stretching gracefully, as shown in Figures 6.3 and

??.

Comparison with previous work on spectral deformation Recently, Rong et

al. [75, 76] proposed a deformation framework using the eigenvectors of the Laplace

operator. Although this seems similar to our approach, the reasons why we use

eigenvectors are different. In particular, Rong et al. perform as-rigid-as-possible

[86] deformations by trying to preserve the Laplace operator. However, they use the

eigenvectors to change the problem domain from spatial to spectral, thereby reducing

102

(a) Our Method (b) SMD

Figure 6.4: Stretching the arm of the armadillo. Note that spectral mesh deformation
(SMD), causes the entire mesh to deform in order to preserve the mesh volume.

the size of the optimization problem to the number of eigenvectors used. Usually, they

need at least 100 eigenvectors, and more eigenvectors make their final deformation

look better.

Our method, on the other hand, just needs a functional basis of low frequency

harmonic functions in which the meshes are represented. We use low frequency eigen-

vectors in order to get a smooth fit for a target deformation since our goal is to

guarantee a smoothly varying deformation rather than isometry. Hence, we can guide

deformations by using as few as 8 eigenvectors. Furthermore, since we do not try to

preserve the Laplace operator, and hence isometry, we can handle stretching better

than [75, 76], as Figure 6.4 illustrates.

Also, [75, 76] use deformation transfer based techniques to recover details, and

sometimes produce artifacts in the deformed mesh, as shown in Figure 6.12. We

develop a more sophisticated iterative technique to recover the details with greater

accuracy. Finally, in [75, 76], the positions of the constrained vertices need to be

changed each time the user wish to change the scope of the deformation, increasing

users’ burden to specify the intended deformation.

103

6.1 Eigen-framework

As mentioned in Chapter 1, the Laplace-Beltrami operator has many useful prop-

erties and has been widely used in many geometric processing applications. For

example, it is well known that the Laplace operator uniquely decides the intrinsic

geometry of the input manifold M. Hence, isometric manifolds share the same Lapla-

cian, which makes the Laplace operator a natural tool to capture or describe isometric

deformation. Indeed, this idea has been used to build local coordinates for mesh edit-

ing and deformation to help produce as-rigid-as possible type of deformation [85, 105].

The eigenfunctions of the Laplace operator form a natural basis for square integrable

functions defined on M. Analogous to Fourier harmonics for functions on a circle,

Laplacian eigenfunctions with lower eigenvalues correspond to low frequency modes,

while those with higher eigenvalues correspond to high frequency modes that describe

the details of the input manifold M.

In our problem, the input is a triangular mesh approximating a hidden surface M.

In such case, we need a discrete version of the Laplace operator computed from this

mesh. Several choices are available in the literature [7, 23, 41, 70, 73]. Again, we use

the mesh-Laplacian developed in [7], although other discretizations of the Laplace

operator should also be fine. See [12] for a discussion of the effects that the various

discretizations have on Laplacian based surface deformation techniques.

6.1.1 Eigen-skeleton

Given the Laplace operator ∆M of an input manifold, let φ1, φ2, . . . denote the

eigenfunctions of ∆M. These eigenfunctions form a basis for L2(M), the family of

square integrable functions on M. Hence we can re-write any function f ∈ L2(M) as

104

f =
∑∞

i=1 α
iφi, where α

i = 〈f, φi〉 and 〈·, ·〉 is the inner product in the functional space

L2(M). Under this view, the function f can be considered as a vector α = [α1, α2, . . .]

in the infinite-dimensional eigenspace spanned by the Laplacian eigenfunctions.

Now, consider the coordinate functions (fx, fy, fz) defined on M whose values at

each point are simply the x, y and z-coordinate values of the point, respectively.

By re-writing these coordinate functions, we can represent a surface by three vectors

(αx, αy, αz) in its eigenspace. We call these the coordinate weights of M. The embed-

ding of a manifold is fully decided by its coordinate weights once the eigenfunctions

are given.

Finally, since higher eigenfunctions have higher frequencies and hence capture

smaller details, we can truncate the number of eigenfunctions (i.e, use only the top

few coordinate weights) for reconstructing the surface to get varying levels of detail.

Eigen-skeleton Given a surface mesh, also denoted by M, with n vertices, we com-

pute the eigenvectors of the mesh-Laplacian computed from M, denoted still by

φ1, . . . , φn. We now restrict ourselves to the first few, say m < n, eigenvectors of the

shape. This gives us a higher level abstraction of the surface that captures its coarser

features. Specifically, let P = {p1, p2, · · · , pn} be the set of points reconstructed

from the vertex set V = {v1, v2, · · · , vn} of M using only the first m eigenvectors

φ1, φ2, . . . , φm of the mesh-Laplacian. That is, if

f̂x = Σm
i=1α

i
xφi, f̂y = Σm

i=1α
i
yφi, f̂z = Σm

i=1α
i
zφi,

105

then pi = {f̂x(vi), f̂y(vi), f̂z(vi)} for i = 1, · · · , n. Consider the mesh K = Km with

vertices pi and the connectivity same as that of M. We call this mesh the eigen-

skeleton 5 of M. For different values of m, the eigen-skeleton Km abstracts the input

surface M at different levels of detail.

6.2 Algorithm

Our algorithm will compute the target configuration by deforming the eigen-

skeleton. In particular, the eigen-skeleton Km is decided by the 3m coordinate weights

α1
x, . . . , α

m
x ; α

1
y, . . . , α

m
y and α1

z, . . . , α
m
z . We will deform the eigen-skeleton by com-

puting a new set of coordinate weights by solving only a linear system. Since the

number of eigenvectors used is typically much smaller than the number of vertices

involved in deformation, a solution can be obtained in real-time. We will see later

that, other than being efficient, the use of coordinate weights also has the advantage

that the deformation tends to be smooth across the entire shape. Since the new eigen-

skeleton lacks smaller features, we design a novel and effective algorithm to add back

details using the one-to-one correspondence between the vertices of the eigen-skeleton

and the original mesh. The high level framework for our algorithm is described in

Algorithm 1. Next, we describe each step in detail.

6.2.1 Step 1: Coarse Guess-Target Configuration

Our software uses a standard and simple interface for the user to specify the

intended target configuration. First, the user selects a mesh region that he wishes to

deform. We call it the region of interest, R, and let VR ⊆ V denote the set of vertices

5The concept of eigen-skeletons is not new and has been used for mesh compression in [48]. For
more applications, please refer to the survey papers [53, 104].

106

Algorithm 1: Deformation Framework

Input : Input mesh M

Output: Deformed mesh M∗

1 begin
2 Compute eigen-skeleton K for M
3 While (user initiates deformation) {
4 Step 1: Interpret user-specified deformation and

5 compute a coarse target configuration K̃

6 Step 2: Obtain K∗, a smooth approximation to K̃

7 Step 3: Add shape details to obtain M∗

8 }

in this region. Next, the user specifies the type of transformation desired for the

region of interest, which can be either a translation-type or a rotation-type. The user

then indicates the target configuration by simply dragging some point, say v ∈ VR,

to its target position ṽ.

From the type of transformation combined with the position of v and ṽ, our algo-

rithm computes either a translational vector t = ṽ−v if the desired transformation is

a translation-type, or a rotational pivot p and a rotation matrix r if the desired trans-

formation is a rotation-type. We then compute a coarse target configuration K̃ for

the eigen-skeleton K using the following simple procedure: For all points vi /∈ VR, the

target position for the corresponding point pi in the eigen-skeleton is simply p̃i = pi.

For each point vi ∈ VR, if the type of transformation is translation, then the target

position is p̃i = pi + t. If the type of transformation is rotation, then the target

position is p̃i = r(pi − p) + p.

In other words, we simply cut the region of interest and apply to it the target

transformation indicated by the user, while the rest of the shape remains intact.

Such an initial guess of target configuration is of course rather unsatisfactory. In fact,

107

Figure 6.5: The dragon model with its eigen-skeleton created using 8 eigenvectors

the deformation is not even continuous (along the boundary of the region of influence

R, there is a dramatic, non-continuous change in the deformation). However, we

will see later that in Step 2, our algorithm takes this initial target configuration and

produces a much better, smoothly bent eigen-skeleton. See Figures 6.5 and 6.6 for an

example: in order to bend the body of the dragon, we specify a rotation on the back

half of the dragon. We then apply this rotation on the entire region of interest in the

eigen-skeleton to obtain a target configuration K̃, as shown in the left image in Figure

6.6. Note that Step 2 will produce a nice, global deformation for the eigen-skeleton,

as shown on the right in Figure 6.6.

Observe that the translation-type and rotation-type motions are only high-level

guidance for producing the final deformation in Step 2. The final deformation is of

course not necessarily rigid. A stretching effect, for example, can be achieved by a

simple translation-type motion. From the user’s point of view, the amount of work

to specify the deformation is very little and rather intuitive, while the algorithm

reconstructs a more complex deformation from the user’s coarse input.

108

6.2.2 Step 2: Eigen-skeleton Deformation

After Step 1, we have a guess-target configuration K̃ for the eigen-skeleton K. In

this step, we wish to compute an improved target deformed eigen-skeleton K∗ from

the guess-target configuration K̃. In Step 3 described in next section, we will add

details back to K∗ to obtain a deformed surface M∗ for the input surface M. The

following diagram illustrates successive structures.

M
Get

skeleton
// K

Step 1

guess target
//
K̃

Step 2

improve target
// K∗

Step 3

add details
// M∗

vi // pi // p̃i // p∗i // v∗i

Recall that p̃i is the position of the ith vertex vi in the guess-target skeleton K̃. Now

consider the coordinate functions (f̃x, f̃y, f̃z) of the guess-target skeleton K̃. Note,

each function f̃a, where a ∈ {x, y, z}, is a function M → IR on the input surface

M. The guess configuration K̃ is often far from being satisfactory. In particular,

by cutting the region of influence and simply translating and rotating this part, a

discontinuity exists at the boundary of region of influence. In other words, there

is no smooth transition across the cut. See the enlarged picture in Figure 6.6 left

image. This means that the coordinate functions f̃a are not smooth across the cut.

To get a smooth deformed skeleton, we wish to find a smooth approximation f ∗
a for

each f̃a. This will give rise to an improved deformed skeleton K∗ with the ith vertex

p∗i = (f ∗
x [i], f

∗
y [i], f

∗
z [i]).

To this end, note that since the eigenfunctions φjs of M form a basis for the family

of square-integrable functions on M, each f̃a can be written as a linear combination

of all eigenfunctions φis for i = 1, . . . , n. Furthermore, eigenfunctions with low eigen-

values are analogous to modes with low-frequency while those with high eigenvalues

109

correspond to high-frequency modes. Since we aim to obtain a smooth reconstruction

of f̃a, we want to ignore high frequency modes. Hence we find a smooth reconstruc-

tion of f̃a using only the top m low-frequency eigenfunctions φ1, . . . , φm of M. This is

achieved as follows: Suppose f ∗
a =

∑m
j=1 α̃

j
aφj, and Aj = (α̃j

x, α̃
j
y, α̃

j
z) for j = 1, . . . ,m.

We want to find weights (α̃x, α̃y, α̃z) that minimize the following energy function

where φj[i] is the value of the j-th eigenfunction φj on the vertex vi:

E =
n∑

i=1

‖
m∑

j=1

Ajφj[i]− p̃i‖2. (6.1)

Intuitively, the discontinuity in the coordinates of guess-target configuration K̃ re-

quires high frequency eigenfunctions to reconstruct it, and using only low-frequency

modes produces smoother f ∗
a s, which induces better deformed skeleton K∗. See the

right picture of Figure 6.6 — the skeleton reconstructed from new coordinate weights

(α̃x, α̃y, α̃z) after Step 2 shows a smooth transition from the region of interest to the

rest.

An alternative interpretation Before we describe how we minimize the above

energy function, we provide an alternative interpretation for the formulation of our

energy function. Recall after Step 1, we have a guess-target configuration K̃ for the

eigen-skeleton K, and p̃i is the position of vertex vi in this skeleton K̃. Intuitively, if

K̃ turns out to be the eigen-skeleton of an isometric deformation M̃ of M, then there

exist new coordinate weights (α̃x, α̃y, α̃z), such that

‖
m∑

j=1

Ajφj[i]− p̃i‖2 = 0 ∀vi ∈ V

where Aj = (α̃j
x, α̃

j
y, α̃

j
z) represents the j-th entry of each α̃a. This is true because

the manifold M̃ has the same eigenfunctions as M, and its corresponding coordinate

110

Figure 6.6: Left picture: A coarse discontinuous initial guess. Rotating the entire
region of interest (colored red) causes the discontinuity at its boundary. We use the
mesh connectivity information from the original mesh to further emphasize this point.
Right picture: After step 2, we obtain a smooth transition across the boundary.

functions can be written as a linear combination of the eigenfunctions of M̃ (i.e.

φ1, . . . , φn). The new coordinate weights α̃a are simply the first m coefficients for

φ1, . . . , φm in this linear combination.

If the deformation is not isometric, then we can try to find the best fit (α̃j
x, α̃

j
y, α̃

j
z)

for j ∈ [1,m] by minimizing the above quantity over all vertices in V , that is, mini-

mizing the energy function as defined in Equation (6.1). Experimental results show

that our method tends to preserve isometry in practice when such a deformation is

possible; see for example Figure 6.10 and Table 6.2. At the same time, since we do

not try to preserve the Laplace operator, we can handle non-isometric deformations

like stretching in a more natural manner, compared to [86, 76, 75]; see for example

Figures 6.4 and ??.

Minimizing the Energy function E There are 3m variables in the energy function

in Equation (6.1). To minimize E, we compute its gradient with respect to Ak

∂E

∂Ak

= 2
n∑

i=1

φk[i]

(
m∑

j=1

Ajφj[i]− p̃i

)

= 2

(
m∑

j=1

Aj〈φk · φj〉 − (〈φk · f̃x〉, 〈φk · f̃y〉, 〈φk · f̃z〉)
)

111

where (f̃x, f̃y, f̃z) are the coordinate functions of the guess-target skeleton. Now,

setting the partial derivatives to zero for all Ak, we get

m∑

j=1

〈φk · φj〉Aj = (〈φk · f̃x〉, 〈φk · f̃y〉, 〈φk · f̃z〉)

which leads to a linear system of equations in the following form: ΦA∗ = b, where Φ

is an m by m matrix with Φi,j = 〈φi · φj〉 6 , A∗ is an m by 3 matrix with A∗
i,· = Ai

and b is also an m by 3 matrix with the ith row as (〈φi · f̃x〉, 〈φi · f̃y〉, 〈φi · f̃z〉). Using

A∗ as coordinate weights, we reconstruct the new deformed eigen-skeleton K∗.

6.2.3 Step 3: Shape Recovery

We now have the deformed eigen-skeleton K∗. Since we use only the top few

eigenvectors for deformation, this skeleton lacks small features and fine details of the

original mesh. To obtain the deformed mesh M∗, we need to add appropriate details

back to K∗.

In order to keep track of all the shape details, when creating the original eigen-

skeleton K, we also keep track of the difference between vi and its reconstruction pi.

We call it the detail vector which is given by dvi = vi − pi. However, since the mesh

is deforming, we cannot simply add dvi back to p̃i.

To address this issue, we keep track of dvi in a local coordinate frame around pi.

In particular, for each pi, we compute three axes that are given by: (i) the normal at

pi, (ii) projection of an edge incident at pi onto a tangent plane at pi, and (iii) a third

vector orthogonal to the previous two. This frame remains consistent with the local

orientation of the vertex. For each detail vector dvi , we record its coordinates in this

6In the ideal case, the Laplace-Beltrami operator is symmetric, which makes its eigenvectors
orthonormal, and Φ the identity matrix. However, we use area weights when building the Laplace-
Beltrami operator, which makes it asymmetric, and Φ a matrix with non-zero off diagonal entries.

112

local frame, which is the projection of dvi onto the three axes. After the eigen-skeleton

is deformed to a new configuration K∗, we compute the new frames, and reconstruct

d̃vi using the same coordinates but in the new frame. We then obtain the deformed

location ṽi for vertex vi by adding the new detail vector back to the skeleton point

p̃i; that is, ṽi = p̃i + d̃vi .

A drawback of this local-frame based scheme is that the resulting eigen-skeleton

becomes very thin near the extremities, with a lot of small features collapsing together,

when very few eigenvectors are used. This leads to poor normal estimation around

sharp features. See the dragon foot in Figure 6.7(a). To overcome this difficulty, we

compute two sets of new detail vector d̃vi : one is obtained by using the local-frames

as described above, denoted by d̃
(1)
vi ; and the other, denoted by d̃

(2)
vi , is obtained by

simply applying the target deformation transformation computed in Step 1 to the

original dvi . The advantage of d̃
(2)
vi is that it tends to preserve local details. However,

just using d̃
(2)
vi alone has the problem that the changes around boundary of R are

often dramatic. See the body of the dragon in Figure 6.7(b).

To get the best out of both strategies, we obtain a final detail vector d̃vi by

interpolating between the two detail vectors d̃
(1)
vi and d̃

(2)
vi . In particular, we assign a

large weight to the local-frame based detail vector (i.e, d̃
(1)
vi) near the boundary of R

and diminish away from the boundary both inside and outside R. We do so because

we observed that the normal estimation (and hence d̃
(1)
vi) is reliable away from the

extremities and near the boundary of the region of interest and that d̃
(2)
vi provides

accurate recovery of the sharp features. This works for most models commonly used

in the real world, although it is theoretically possible for a mesh and its corresponding

skeleton to be very thin even in regions away from the extremities. The details of

113

(a) Local frame (b) Transformed(c) Interpolated
vectors vectors vectors

Figure 6.7: Adding details back to the dragon

this interpolation scheme are described in Section 6.3.1. Figure 6.7 shows results for

recovering the details of the deformed dragon using each individual strategies (a, b)

and using the integrated strategy (c).

6.3 Implementation

6.3.1 Recovery details

For interpolating the detail vectors, we need to assign a weight to each vertex

which should depend on how far it is from the boundary of the region of interest.

To do this, we need to (1) identify the boundary ∂R of the region of interest R; (2)

compute a per-vertex function denoting the distance from the boundary ∂R; and (3)

use this function to assign the interpolation weights.

The boundary vertices are identified by considering all vertices in R and simply

choosing the ones whose one-ring neighborhood contains vertices that are not in R.

114

We precompute the one-ring neighborhoods on the original mesh just once to reduce

computation time during actual deformation of the mesh.

Next, we first compute the following function for each vertex vi: g(vi) = minv∈∂R dg(vi, v),

where ∂R is the set of boundary vertices of the region of interest R, and dg(vi, v) de-

notes the geodesic distance between two vertices. Again, we precompute the all-pair

geodesic distance matrix once for the original mesh and use it subsequently for all

deformations.

Once we have g, we find the approximate diameter of R as diamR = maxv∈R g(v).

We use the diameter to compute two cutoff values δ1 = diamR
8

, and δ2 = diamR
4

The

interpolation weights are then computed as:

w(vi) =

1 if g(vi) < δ1
0 if g(vi) > δ2
δ2−g(vi)
δ2−δ1

otherwise

The final detail vector at each vertex vi is then

d̃vi =

(
w(vi) ·

d̃
(1)
vi

‖d̃(1)vi ‖
+ (1− w(vi)) ·

d̃
(2)
vi

‖d̃(2)vi ‖

)
· ‖d̃(1)vi

‖

Note that the two detail vectors d̃
(1)
vi and d̃

(2)
vi have the same length. The above

formula simply interpolates their directions to obtain d̃vi . Intuitively, the closer a

point is to the boundary ∂R of the region of interest, the larger role the local-frame

detail vector d̃
(1)
vi plays to guarantee smooth transition. When a point is far from

∂R, the skeleton tends to be much thinner, and in this case we rely more on the

transformation-based detail vector d̃
(2)
vi to reconstruct d̃vi .

115

6.3.2 Choice of number of eigenvectors

The eigenvectors capture details at different scales. Consequently, the use of

different number of eigenvectors for deformation causes changes at different scales.

Figure 6.8: Far Left: head of camel. Right: Eigen-skeleton of the head of the camel
constructed using 8, 50 and 300 eigenvectors, respectively.

In general, the eigen-skeleton created with only the top few eigenvectors causes

shape changes at a global level. To capture local changes, we need a larger number

of eigenvectors. Specifically, if the region of interest R is small, then we need more

eigenvectors to build the skeleton so that R is reconstructed reasonably well in this

skeleton and the change of the corresponding coordinate weights are sufficient to

deform R. See Figure 6.8 where if we choose too few eigenvectors, the eigen-skeleton

of the ear collapses into roughly a point, and cannot represent the ear at all. Since

deformation is computed for the eigen-skeleton, the deformation of the ear cannot be

described by such a skeleton. Using more eigenvectors we can capture the ear in the

skeleton and further deform it.

On the other hand, if the region of interest is large, the change usually needs to

be spread over a large area. If we now choose too many eigenvectors, minimizing

the energy function in Step-2 tries to preserve local details of the eigen-skeleton (as

there are more terms, i.e, Ajs with large j, describing them). Roughly speaking, the

optimization of the weights of the lower eigenvectors is overwhelmed by the large

116

number of higher eigenvectors. Hence, the deformation of the eigen-skeleton returned

in Step 2 tends to have some dramatic changes for a few points while trying to preserve

local details elsewhere. Therefore in the case of a large region of interest, we need to

choose a small number of eigenvectors to build the eigen-skeleton so that the weight

for global deformation is emphasized.

In summary, the number of eigenvectors nev to be used to reconstruct the eigen-

skeleton should be chosen based on the size of R, the region of interest. At the

same time, it turns out that the deformation returned by our algorithm is rather

robust with respect to nev, as long as nev is within a reasonable range. We thus use

the following simple strategy to decide nev. First, compute δ3 = diamR
diam(V \R)

, where

diam(V \R) = maxv 6∈Rg(v) is the approximate diameter of the complement of the

region of interest. Now choose nev as:

nev =

8 if δ3 ≥ 0.75
50 if 0.75 > δ3 ≥ 0.1
300 otherwise

This simple strategy works well for all the models we experimented with. However,

the user can easily override these defaults to choose their own value for nev.

6.3.3 Additional modifications

Finally, we observe that since the eigen-skeleton can be rather coarse when nev is

small (8 or 50), the local frame estimation sometimes simply becomes too error-prone

on K∗
nev

to recover a smooth shape through the interpolation strategy.

For this reason, we iteratively improve the quality of the eigen-skeleton based

on the algorithm introduced in Section 6.2 as follows: Recall that K∗
m denotes the

117

Figure 6.9: Adding details back to the dragon; Left: Directly from eigen-skeleton,
Right: After iterative improvement

deformed eigen-skeleton reconstructed using m eigenvectors. Instead of directly re-

covering the deformed mesh M∗ from K∗
m, we first recover another intermediate eigen-

skeleton K̃n′ from K∗
nev

, with n′ > nev using Algorithm 1. This is achieved by using

the detail vectors to record the change from K̃nev to K̃n′ , instead of K̃nev to the original

mesh M. In particular, in our software, nev = 8 or 50, and n′ = 300 (this iterative

approach is not needed if nev = 300). The result is an eigen-skeleton that already

captures the main deformation, and that also contains sufficient details.

Next, we feed K̃n′ as the coarse-guess configuration to the linear solver in Step 2

to obtain a new deformed eigen-skeleton K∗
n′ . This is done to smooth out any errors

that may have been introduced due to poor local frame estimation on K∗
nev

. We then

use this new eigen-skeleton K∗
n′ and local-frame based detail estimation (instead of

the interpolation method) to recover the shape-detail of the deformed mesh M∗. See

Figure 6.9 for an example. The final deformation algorithm for the case that nev = 8

or 50 is summarized in the following diagram.

Iteration 1:

Knev

Step 1 // K̃nev

Step 2 // K∗
nev

Step 3

Interpolation based
// K̃n′

118

Iteration 2:

K̃n′
Step 2 // K∗

n′
Step 3

local-frame based
// M∗

For the case where nev = 300, the original algorithm 1 is applied as before. We

remark that potentially one can perform more iterations to improve the deformation

quality. However, we observe in practice that two iterations provide a good trade-off

between quality and simplicity / efficiency.

6.3.4 Interactivity

To make the software interactive, we precompute the eigenvectors for the mesh

along with the matrix Φ since it depends on the original mesh only. Notice that Φ

is symmetric and hence can be factored using Cholesky decomposition. We also pre-

compute the all-pairs geodesic distance matrix used for interpolating detail vectors.

To maintain interactive rates, we only deform the eigen-skeleton. Once the user is

satisfied with the shape of the eigen-skeleton, the details are added. When deforming

the eigen-skeleton, the right-hand side (b) for our linear-solver can be quickly com-

puted by multiplying the matrix of eigenvectors with a matrix containing the coarse

guess. We can then compute the new coordinate weights by performing simple back-

ward and forward substitutions. The entire process is simple and can be computed in

real-time. Adding details can be a little slow (see Table 6.1) since we need to compute

the normal for each vertex and hence is separated from the interactive part.

6.4 Results

We implemented our deformation algorithm using C, OpenGL and MATLAB.

For comparisons, we wrote our own code for as-rigid-as-possible deformations [86]

119

(a) Original plane (b) As-rigid-as-possible

(c) Harmonic Coordinates (d) Our method

Figure 6.10: Bending a bumpy plane (dense mesh)

(a) As-rigid-as-possible (b) Our method

Figure 6.11: Bending a bumpy plane (coarse mesh)

and used the implementation of cage-based deformation using harmonic coordinates

provided in open-source software called blender. For spectral surface deformation,

we used the code provided by the authors.

Figure 6.3 compares our method with harmonic coordinates and as-rigid-as-possible

deformations. For as-rigid-as-possible deformation, red dots denote the fixed vertices,

while yellow dots represent the vertices that are moved. The partial cages used for de-

forming using harmonic coordinates are depicted using black edges. For our method,

the red portions are the regions of interest. Figures 6.10 and 6.11 show the results

120

(a) Original model(b) Our method (c) SMD

Figure 6.12: Moving the arm of Neptune using our method and spectral mesh defor-
mation (SMD)

of bending a plane with smooth bumps using different techniques. Harmonic coor-

dinates are not able to orient the details correctly while for as-rigid-as-possible, the

quality of the deformation seems to depend om mesh density.

The timing data for different stages of our algorithm are presented in Table 6.1.

Timings of Step 1 and 2 are coupled together since they are used in each step of

interactive deformation. Step 3 is used after the user is satisfied with the shape of the

skeleton. Table 6.2 compares the root mean square error in edge lengths. Our method

introduces very little error in edge lengths, similar to as-rigid-as-possible approach

which aims to optimize such error. Figure 6.13 shows the result of twisting a bar

using our method, while Figures 6.15 and ?? shows that we can handle meshes of

arbitrary genus.

We also present comparisons with spectral mesh deformation in Figures 6.4, 6.12.

The results of spectral mesh deformation are global and cannot be constrained to

small regions. For example, in Figure 6.4, even though only the arm was stretched,

the entire mesh got deformed in an attempt to preserve the volume and the Laplace

operator of the mesh. Our method is able to handle such deformations more naturally.

121

Figure 6.13: Twisting a bar using our method

Model (#
vertices)

nev Step1 & 2 Step 3

Armadillo
(25k)

50 0.018 0.125

dragon
(22.5k)

8 0.013 0.161

camel (7k)
8 0.002 0.049

300 0.012 0.013
plane
(10k)

50 0.016 0.061

bar
(13.5k)

50 0.017 0.074

children
(20k)

50 0.017 0.095

Table 6.1: Timing data (in seconds) for our algorithm

Also, the detail recovery method used in spectral mesh deformation can introduce

artifacts into the deformed mesh. For example, in Figure 6.12, although only the

arm was moved, the staff of Neptune got slightly deformed as well. Even the hand

looks unnatural after the deformation. This happens because 100 eigenvectors are

not enough to capture the finer details of the model.

122

Figure 6.14: Editing the dancing children

Figure 6.15: Deforming the elk model

6.5 Conclusion and Discussion

In this chapter, we presented an eigen-based framework for mesh deformation that

works in real-time without any help from an intermediate structure. It allows iso-

metric deformations as well as non-isometric deformations such as stretching. Several

experimental results confirm the effectiveness of the method.

As any other existing technique, one drawback of our method is that it does

not guarantee the deformed mesh to be free of self-intersections. Although it is not

frequent, self-intersections may happen near the boundary of the region of interest

123

Model ARAP ED

Armadillo (Stretch Arm) 0.0023 0.0022
Armadillo (Bend Knee) 0.001 0.0007
Armadillo (Combined) 0.0052 0.0021

plane 0.0028 0.0022

Table 6.2: Comparison of relative RMS errors in deformations using as-rigid-as-
possible (ARAP) and our method (ED)

in case of relatively large deformations. Designing a software that deforms meshes

in real-time without self-intersections and intermediate structures remains to be a

challenging open question.

124

Chapter 7: Conclusion

The purpose of this thesis is two-fold: to study the theoretical properties of the

mesh Laplace and to provide applications that exploit these properties in the field of

computer graphics. In Chapter 3, we provided theoretical proofs about the stability

of the mesh Laplace operator under various types of perturbations such as noise

and non-isometric topology preserving deformations. We also showed that the eigen-

structures of the manifold Laplace are stable as well and change smoothly as the

underlying manifold is deformed.

In Chapter 4, we considered modifications that altered the topology of the mesh

in a small region and provided theoretical proofs and error bounds on the Gaussian-

weighted graph Laplace when a mesh is subjected to such alterations.

In Chapter 5, we used the Heat operator, which is closely related to the Laplace

operator, to construct a global shape descriptor that allowed us to match partial or

incomplete models in a pose-oblivious manner. Here, we exploited the fact that the

Laplace operator does not change when a mesh is deformed isometrically. We also

used the fact that the Heat operator can capture details at multiple scales and hence

is resilient to the the partial nature of the meshes at small scales.

In Chapter 6, we used the eigenvectors of the Laplace operator to deform meshes.

The eigenvectors are capable of capturing the features of a mesh at multiple scales.

125

The main focus was to project the mesh into a spectral domain using the top few

eigenvectors and performing deformations in spectral coordinates. Since low fre-

quency eigenvectors capture coarse details and higher frequencies capture finer de-

tails, we formulated our approach so that the globalness of the deformation could be

controlled by simply changing the number of eigenvectors used.

Our current results for stability of discrete Laplace operator under topological

noise use the Gaussian-weighted graph Laplace operator built from some nearest

neighbor graph of a point cloud data that has been uniformly randomly sampled

from a manifold. Such samples are common in high dimensions since most data is

created by sampling manifold based on some probability distribution. This, however,

is not true for 3D data. Point clouds in 3D are often obtained by scanning actual

objects. The resulting point clouds are rarely a uniformly random sampling of the

original surface.

Our current stability results for the mesh Laplace are only valid so long as there

are no topological changes. However, scanned data often has a lot of errors including

topological noise such as small holes and handles not present on the original object.

Hence, there is a need to extend our results to other variations of the discrete Laplace

operator, such as the mesh Laplace, so that the stability results can be more general

and practical for three dimensional data.

An important point to note is that our error bounds under topological noise are

valid only for the discrete Laplace operator and cannot be extended to the contin-

uous Laplace-Beltrami operators of the manifolds from which the point clouds were

sampled. An immediate question is whether it is even possible to give an error bound

126

on the Laplace-Beltrami operator when topological changes are allowed. Answering

this question can be another line of future work.

On the applications side, although there has been a lot of work on automatic mesh

segmentation, performing labeled segmentation still remains an open and challenging

problem. Labeled segmentation involves segmenting an object and assigning labels

to the segments, usually based on a user provided labeled segmentation of a generic

object. For example, the user may provide a labeled segmentation of a horse model

and ask for a similar segmentation of other animal models. A common way to achieve

this is to first segment the target shape and then transfer the labels by matching

segments. This, however, requires the initial segmentation to be good. An alternate

approach is to use a data-driven approach that learns the labeled segmentation from

a training data set, and then performs simultaneous labeling and segmentation.

Since the eigen-structures of discrete Laplace of similar shapes are also similar, it

should be possible transfer labels from one shape to another. The similarity of eigen-

structures can also make the task of learning labels easier for data-driven approaches.

Deformation transfer is also important area of research in computer graphics which

involves transferring deformations from a source mesh onto a target mesh. This is

of particular importance in the animation community, since it allows an animator to

animate one model and then simply transfer the deformations to other models.

In Chapter 6, we saw how eigenvectors can be used to obtain a coarse represen-

tation of a shape by using the top few eigenvectors. We also saw how this skeletal

representation can be made more and more detailed by using the higher eigenvectors.

A possible application of this can be multi-scale deformation transfer. Observing and

transferring the changes in source eigen-skeleton onto the target eigen-skeleton alone

127

can reduce the problem size from number of vertices in the mesh to the number of

eigenvectors used. Furthermore, by increasing or decreasing the number of eigenvec-

tors used, we can control the scale unto which the deformations are observed and

transferred.

128

Bibliography

[1] Shape retrieval contest. http://www.aimatshape.net/event/SHREC.

[2] I. Baran and J. Popović. Automatic rigging and animation of 3D characters.
In Proc. SIGGRAPH ’07, pages 72:1–72:8.

[3] M. Belkin and P. Niyogi. Laplacian Eigenmaps for dimensionality reduction
and data representation. Neural Computation, 15(6):1373–1396, 2003.

[4] M. Belkin and P. Niyogi. Convergence of laplacian eigenmaps. In NIPS, pages
129–136, 2006.

[5] M. Belkin and P. Niyogi. Convergence of Laplacian Eigenmaps. Preprint, 2008.

[6] M. Belkin and P. Niyogi. Towards a theoretical foundation for laplacian-based
manifold methods. Journal of Computer and System Sciences, 74(8):1289–1308,
2008.

[7] M. Belkin, J. Sun, and Y. Wang. Discrete laplace operator on meshed sur-
faces. In Proceedings of the twenty-fourth annual symposium on Computational
geometry, SCG ’08, pages 278–287, New York, NY, USA, 2008. ACM.

[8] M. Ben-Chen and C. Gotsman. Characterizing shape using conformal factors.
In Proc. Workshop on Shape Retrieval ’08.

[9] M. Ben-Chen, O. Weber, and C. Gotsman. Variational harmonic maps for space
deformation. In Proc. SIGGRAPH ’09, pages 34:1–34:11.

[10] M. Botsch and L. Kobbelt. Real-time shape editing using radial basis functions.
Comput. Graph. Forum, 24(3):611–621, 2005.

[11] M. Botsch, M. Pauly, M. Gross, and L. Kobbelt. Primo: coupled prisms for
intuitive surface modeling. In Proc. SGP ’06, pages 11–20.

[12] M. Botsch and O. Sorkine. On linear variational surface deformation methods.
IEEE Trans. on Visualization and Comput. Graph., 14(1):213–230, Jan. 2008.

129

[13] T. Caelli and S. Kosinov. An eigenspace projection clustering method for in-
exact graph matching. IEEE Trans. Pattern Anal. Mach. Intell., 26:515–519,
April 2004.

[14] I. Chavel. Riemannian Geometry: A Modern Introduction. Cambridge Univer-
sity Press, second edition, 2006.

[15] F. Chazal, L. J. Guibas, S. Oudot, and P. Skraba. Analysis of scalar fields
over point cloud data. In Proc. 20th ACM-SIAM Sympos. Discrete Algs., pages
1021–1030, 2009.

[16] D.-Y. Chen, X. P. Tian, Y.-T. Shen, and M. Ouhyoung. On visual similarity
based 3D model retrieval. Comput. Graph. Forum, 22(3):223–232, 2003.

[17] X. Chen, A. Golovinskiy, , and T. Funkhouser. A benchmark for 3D mesh
segmentation. Proc. SIGGRAPH ’09, pages 73:1–73:12.

[18] C. Chua and R. Jarvis. Point signatures: A new representation for 3D object
recognition. International Journal of Computer Vision, 25(1):63–85, 1996.

[19] A. Clements and H. Zhang. Robust 3d shape correspondence in the spectral
domain. In Proc. of Shape Modeling International, pages 118–129, 2006.

[20] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Extending persistence using
poincaré and lefschetz duality. Foundations of Computational Mathematics,
9(1):79–103, 2009.

[21] D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov. Vines and vineyards
by updating persistence in linear time. In Proc. 22nd Annu. ACM Sympos.
Comput. Geom., pages 119–126, 2006.

[22] T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, London, 1994.

[23] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing of irregu-
lar meshes using diffusion and curvature flow. Computer Graphics, 33(Annual
Conference Series):317–324, 1999.

[24] T. K. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, and Y. Wang. Persistent heat
signature for pose-oblivious matching of incomplete models. Comput. Graph.
Forum, 29(5):1545–1554, 2010.

[25] T. K. Dey, P. Ranjan, and Y. Wang. Eigen deformation of 3d models. The
Visual Computer, 28:585–595.

130

[26] T. K. Dey, P. Ranjan, and Y. Wang. Convergence, stability, and discrete ap-
proximation of laplace spectra. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pages 650–663,
Philadelphia, PA, USA, 2010. Society for Industrial and Applied Mathematics.

[27] T. K. Dey, P. Ranjan, and Y. Wang. Stability of weighted graph laplace spectra
under topological noise. Under revision, 2012.

[28] J. Dodziuk. Finite-difference approach to the hodge theory of harmonic forms.
American Journal of Mathematics, 98(1):79–104, 1978.

[29] H. Du and H. Qin. Medial axis extraction and shape manipulation of solid
objects using parabolic PDEs. In Proc. ACM Sympos. Solid Modeling Appl.
’04, pages 25–35.

[30] H. Edelsbrunner and J. Harer. Persistent homology — a survey. In Twenty
Years After, eds. J. E. Goodman, J. Pach and R. Pollack, AMS., 2007.

[31] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and
simplification. Discrete Comput. Geom., 28:511–533, 2002.

[32] M. S. Floater. Mean value coordinates. Comput. Aided Design, 20(1):19–27,
2003.

[33] M. S. Floater, G. Kos, and M. Reimers. Mean value coordinates in 3D. Comput.
Aided Design, 22(7):623–631, 2005.

[34] T. Funkhouser and P. Shilane. Partial matching of 3D shapes with priority-
driven search. In Proc. SGP ’06, pages 131–142.

[35] R. Gal and D. Cohen-Or. Salient geometric features for partial shape matching
and similarity. ACM Trans. Graph., 25(1):130–150, 2006.

[36] K. Gebal, J. A. Bærentzen, H. Aanæs, and R. Larsen. Shape analysis using the
auto diffusion function. Comput. Graph. Forum, 28(5):1405–1413, 2009.

[37] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Robust global regis-
tration. In Proc. Symp. Geom. Processing (SGP), pages 197–206, 2005.

[38] S. Guattery and G. L. Miller. Graph embeddings and laplacian eigenvalues.
SIAM J. Matrix Anal. Appl., 21:703–723, February 2000.

[39] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann. A topo-
logical approach to simplification of three-dimensional scalar functions. IEEE
Trans. Vis. Comput. Graph., 12(4):474–484, 2006.

131

[40] J. H. P. McKean and I. M. Singer. Curvature and the eigenvalues of the Lapla-
cian. J. Differential Geom., 1(1–2):43–69, 1967.

[41] K. Hildebrandt and K. Polthier. On approximation of the laplacebeltrami op-
erator and the willmore energy of surfaces. In Proc. SGP ’11, pages 1513–1520.

[42] K. Hildebrandt, K. Polthier, and M. Wardetzky. On the convergence of met-
ric and geometric properties of polyhedral surfaces. Geometriae Dedicata,
123(1):89–112, December 2006.

[43] K. Hildebrandt, C. Schulz, C. V. Tycowicz, and K. Polthier. Interactive surface
modeling using modal analysis. ACM Trans. Graph., 30(5):119:1–119:11, Oct
2011.

[44] A. Jacobson, I. Baran, J. Popović, and O. Sorkine. Bounded biharmonic weights
for real-time deformation. Proc. SIGGRAPH ’11, pages 78:1–78:8.

[45] V. Jain and H. Zhang. A spectral approach to shape-based retrieval of articu-
lated 3d models. Comput. Aided Des., 39:398–407, May 2007.

[46] P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki. Harmonic coordinates
for character articulation. In Proc. SIGGRAPH ’07, pages 71:1–71:10.

[47] T. Ju, S. Schaefer, J. Warren, and M. Desbrun. A geometric construction of
coordinates for convex polyhedra using polar duals. In Proc. SGP ’05, pages
181–186.

[48] Z. Karni and C. Gotsman. Spectral compression of mesh geometry. In Pro-
ceedings of the 27th annual conference on Computer graphics and interactive
techniques, SIGGRAPH 2000, pages 279–286, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[49] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Symmetry descriptors and
3D shape matching. In Proc. SGP ’04, pages 115–123.

[50] K. G. Kobayashi and K. Ootsubo. T-ffd:free-form deformation by using trian-
gular mesh. In Proc. Sympos. Solid Modeling Appl. ’03, pages 226–234.

[51] T. Langer, A. Belyaev, and H.-P. Seidel. Spherical barycentric coordinates. In
Proc. SGP ’06, pages 81–88.

[52] B. Lévy. Laplace-Beltrami eigenfunctions towards an algorithm that “under-
stands” geometry. In Proc. Internat. Conf. Shape Model. Applications ’06,
Invited Talk.

132

[53] B. Levy. Laplace-beltrami eigenfunctions: Towards an algorithm that under-
stands geometry. In IEEE International Conference on Shape Modeling and
Applications, invited talk, 2006.

[54] Y. Lipman, D. Levin, and D. Cohen-Or. Green coordinates. In Proc. SIG-
GRAPH ’08, pages 78:1–78:10.

[55] C. Luo, I. Safa, and Y. Wang. Approximating gradients for meshes and point
clouds in Rd via diffusion metric. Computer Graphics Forum, 28(5):1497–1508,
2009.

[56] C. Luo, J. Sun, and Y. Wang. Integral estimation from point cloud in d-
dimensional space: A geometric view. In Proc. 25th Annu. ACM Sympos.
Comput. Geom., 2009.

[57] R. MacCracken and K. I. Joy. Free-form deformations with lattices of arbitrary
topology. In Proc. SIGGRAPH ’96, pages 181–188.

[58] U. F. Mayer. Numerical solutions for the surface diffusion flow in three space
dimensions. comput. Appl. Math, 20(3):361–379, 2001.

[59] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential
geometry operators for triangulated 2-manifolds. In Proc. VisMath’02, 2002.

[60] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-
geometry operators for triangulated 2-manifolds. In VisMath’02, 2002.

[61] N. J. Mitra, L. J. Guibas, J. Giesen, and M. Pauly. Probabilistic fingerprints
for shapes. In Proc. SGP ’05.

[62] B. Mohar. Some applications of laplace eigenvalues of graphs. In Graph Sym-
metry: Algebraic Methods and Applications, volume 497 of NATO ASI Series
C, pages 227–275. Kluwer, 1997.

[63] B. Mohar and S. Poljak. Eigenvalues in combinatorial optimization. In IMA Vol-
umes in Mathematics and Its Applications., volume 50, pages 107–151. Springer-
Verlag, 1993.

[64] Y. Nakatsukasa. Absolute and relative Weyl theorems for generalized eigenvalue
problems. Linear Algebra and its Applications, 432(1):242–248, 2010.

[65] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and
an algorithm. In ADVANCES IN NEURAL INFORMATION PROCESSING
SYSTEMS, pages 849–856. MIT Press, 2001.

133

[66] R. Ohbuchi, S. Takahashi, T. Miyazawa, and A. Mukaiyama. Watermarking
3d polygonal meshes in the mesh spectral domain. In Graphics interface 2001,
GRIN’01, pages 9–17. Canadian Information Processing Society, 2001.

[67] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Matching 3D models
with shape distributions. In Proc. SMI ’01, pages 154–166.

[68] M. Ovsjanikov, A. M. Bronstein, M. M. Bronstein, and L. J. Guibas. Shape
google: a computer vision approach to invariant shape retrieval. In Proc. NOR-
DIA (ICCV Workshops) ’09, pages 320–327.

[69] M. Pauly, R. Keiser, and M. Gross. Multi-scale feature extraction on point-
sampled surfaces. Comput.s & Graph., 22:281–289, 2003.

[70] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their
conjugates. Experimental Mathematics, 2(1):15–36, 1993.

[71] M. Reuter. Hierarchical shape segmentation and registration via topologi-
cal features of laplace-beltrami eigenfunctions. Internat. J. Computer Vision,
89(2):287–308, 2010.

[72] M. Reuter, S. Biasotti, D. Giorgi, G. Patane, and M. Spagnuolo. Discrete
Laplace-Beltrami operators for shape analysis and segmentation. Comput.s &
Graph., 33(3):381–390, 2009.

[73] M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace-beltrami spectra as ”shape-
dna” of surfaces and solids. Computer-Aided Design, 38(4):342–366, 2006.

[74] M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace-beltrami spectra as ”shape-
dna” of surfaces and solids. Computer-Aided Design, 38(4):342–366, 2006.

[75] G. Rong, Y. Cao, and X. Guo. Spectral surface deformation with dual mesh.
In Proc. Internat. Conf. on Comput. Animation and Social Agents ’08, pages
17–24.

[76] G. Rong, Y. Cao, and X. Guo. Spectral mesh deformation. The Visual Comput.,
24(7-9):787–796, 2008.

[77] S. Rosenberg. The Laplacian on a Riemannian Manifold. Cambridge University
Press, 1997.

[78] R. M. Rustamov. Laplace-Beltrami eigenfunctions for deformation invariant
shape representation. In Proc. SGP ’07, pages 225–233.

[79] T. W. Sederberg and S. R. Parry. Free-form deformation of solid geometric
models. In SIGGRAPH ’86, pages 151–160.

134

[80] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI), 2000.

[81] P. Shilane and T. Funkhouser. Selecting distinctive 3d shape descriptors for
similarity retrieval. In Shape Modeling International, 2006.

[82] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The Princeton shape
benchmark. In SMI ’04.

[83] A. Shokoufandeh, D. Macrini, S. Dickinson, K. Siddiqi, and S. W. Zucker. In-
dexing hierarchical structures using graph spectra. IEEE Trans. Pattern Anal.
Mach. Intell., 27:1125–1140, July 2005.

[84] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix, and S. Dickinson.
Retrieving articulated 3D models using medial surfaces. Machine Vision and
Applications, 19(4):261–274, 2008.

[85] O. Sorkine. Differential representations for mesh processing. Computer Graphics
Forum, 25(4):789–807, 2006.

[86] O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In Proc. SGP
’07, pages 109–116.

[87] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl, and H.-P. Seidel.
Laplacian surface editing. In Proc. SGP ’04, pages 179–188.

[88] J. Sun, M. Ovsjanikov, and L. J. Guibas. A concise and provably informative
multi-scale signature based on heat diffusion. In Proc. SGP ’09, pages 1383–
1392.

[89] J. W. Tangelder and R. C. Veltkamp. A survey of content based 3D shape
retrieval methods. Multimedia Tools Appl., 39(3):441–471, 2008.

[90] G. Taubin. A signal processing approach to fair surface design. In Proceedings
of the 22nd annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’95, pages 351–358, New York, NY, USA, 1995. ACM.

[91] M. E. Taylor. Partial Differential Equations: Basic Theory. Springer-Verlag
New York Inc., 1996.

[92] K. Thangudu. Practicality of laplace operator, 2009. Master Thesis, The Ohio
State University, Computer Science and Engineering Department.

[93] B. Vallet and B. Lvy. Spectral geometry processing with manifold harmonics.
Computer Graphics Forum (Proceedings Eurographics), 2008.

135

[94] K. Veselić. Spectral perturbation bounds for selfadjoint operators i. Operators
and Matrices, 2(3):307–339, 2008.

[95] U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering.
Ann. Statist., 36(2):555–586, 2008.

[96] M. Wardetzky. Discrete Differential Operators on Polyhedral Surfaces – Con-
vergence and Approximation. PhD thesis, Freie Universität Berlin, 2006.

[97] M. Wardetzky. Convergence of the cotangent formula: An overview. In A. I.
Bobenko, J. M. Sullivan, P. Schröder, and G. Ziegler, editors, Discrete Differ-
ential Geometry, pages 89–112. Birkhuser, to appear.

[98] J. Warren. Barycentric coordinates for convex polytopes. Advances in Compu-
tational Math., 6(2):97–108, 1996.

[99] O. Weber, O. Sorkine, Y. Lipman, and C. Gotsman. Context-aware skeletal
shape deformation. pages 265–274.

[100] G. Xu. Discrete laplace-beltrami operators and their convergence. Comput.
Aided Geom. Des., 21(8):767–784, 2004.

[101] Z. Xu, G. Xu, and J.-G. Sun. Convergence analysis of discrete differential
geometry operators over surfaces. In IMA Conference on the Mathematics of
Surfaces, pages 448–457, 2005.

[102] S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel. Free-form skeleton-driven mesh
deformations. In Proc. ACM Sympos. Solid Modeling Appl. ’03, pages 247–253.

[103] H. Zhang, A. Sheffer, D. Cohen-Or, Q. Zhou, O. van Kaick, and A. Tagliasac-
chi. Deformation-drive shape correspondence. Computer Graphics Forum,
27(5):1431–1439, 2008.

[104] H. Zhang, O. van Kaick, and R. Dyer. Spectral mesh processing. Computer
Graphics Forum, accepted, 2009.

[105] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y. Shum. Large
mesh deformation using the volumetric graph laplacian. ACM Trans. Graph.,
24(3):496–503, 2005.

136

