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Abstract

This dissertation focuses on solving two-stage stochastic mixed integer programs (SMIPs)

with general mixed integer variables in both stages. Our setup allows randomness in all

data elements influencing the recourse problem, and moreover, general integer variables are

allowed in both stages. We develop a time-staged decomposition algorithm that uses multi-

term disjunctive cuts 1 to obtain convex approximation of the second-stage mixed-integer

programs. We prove that the proposed method is finitely convergent. Among the main

advantages of our decomposition scheme is that the subproblems are approximated by suc-

cessive linear programming problems, and moreover these can be solved in parallel. Several

variants of an SMIP example in the literature are included to illustrate our algorithms. To

the best of our knowledge, the only previously known time-staged decomposition algorithm

to address the two-stage SMIP in such generality used operations that are computationally

impractical (e.g. requiring exact value functions of MIP subproblems). In contrast, our

decomposition algorithm allows partially solving the subproblems. Following the studies of

our decomposition algorithm, we proceed with computational studies related to some of the

key ingredients of our decomposition algorithm. First, we investigate how well multi-term

disjunctions can approximate feasible sets associated with stochastic mixed-integer program-

ming problems. This part of our study is experimental in nature and we investigate both

“wait-and-see” as well as “here-and-now” formulations of stochastic programming problems.

1Disjunctive cut is the cut generated out of a set of disjunctions
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In order to study the performance for the former class of problems, we use test problems

from the integer programming literature (e.g. various versions of MIPLIB), whereas for the

latter class of problems, we use the SSLP series of instances. Another important nugget of

our decomposition algorithm is the use of multi-term disjunctions. Since the effectiveness of

our scheme depends on this feature, we also investigate ways to improve the performance of

cutting plane tree (CPT) algorithm for mixed integer programming problems. We compare

different variable splitting rules in the computational experiment. A set of algorithms for

solving multi-term CGLPs are also included and computational experiments with instances

from MIPLIB are performed.
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Chapter 1: Introduction

1.1 Motivation

Stochastic programming (SP) is one branch in the mathematical optimization field which

deals with mathematical models with random parameters. It provides one way to solve

decision-making problems under uncertainty. In particular, stochastic linear programs(SLP)

requires all decision variables to be continuous in the SP model and stochastic mixed integer

programs(SMIPs) considers modeling with mixed-integer variables. This dissertation focuses

on the latter class of models.

In SMIPs, discrete decisions need to be made both before and after the observation of the

random variables. Applications include optimal choice of server locations under uncertainty,

power generation planning under uncertainty, vaccine design and production, airline schedul-

ing, data mining and many more. It has long been recognized as an important class of models

for many practical operational problems (see e.g. [Wol80]). Despite its widespread appli-

cability, algorithmic advances to solve SMIP models have lagged other forms of stochastic

programming (SP). In addition to the standard difficulties associated with stochastic lin-

ear programming (e.g. designing scalable ways to approximate the expected recourse/value

function), SMIP models with integer variables in the second stage generates a nonconvex

and possibly discontinuous value function.
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The progress to solve SMIP models during the past decade has been significant. A

range of algorithms for different model characteristics are available. However, time-staged

decomposition algorithm for SMIP models with general integer variable in both stages has

not been well understood. The two main approaches for solving two-stage SMIP models

(with general integers in both stages), amounts to solving a large deterministic equivalent

problem (DEP) either using a general-purpose MIP solver, or combining the latter with

Lagrangian relaxation for lower bounding computations of each scenario (Caroe and Schultz

1999). However, the SP literature has demonstrated that time-staged decomposition (e.g.

L-shaped/Benders’, regularized decomposition and similar methods) is more scalable than

solving the DEP. Hence the motivation is to design a time-staged decomposition algorithm

for SMIP.

1.2 Literature Review

The decomposition algorithm for solving SMIP can be traced back to 1993 when the

integer L-shaped method was proposed in [LL93] for pure binary variables in the master

problem and mixed-integer variable in the subproblem. It is a “L-shaped” method which deals

with the problem with same structure as Benders’ decomposition allowing discrete decision

variables in both stages. In the same year, [LvdV93] showed a decomposition algorithm with

simple integer recourse. Following these two papers, there has been significant progress with

algorithms for SMIP. In 1998, the work by [CT98] presented a decomposition algorithm based

on mixed integer programming (MIP) duality, and while it was conceptually applicable to

SMIP with general mixed-integer recourse decisions, the algorithm was not easily realizable

because it required calculations involving MIP value functions. Subsequently, most authors

addressed some sub-class of these problems. For instance, the global optimization algorithm

2



of [ATS04] assumed fixed tenders (i.e. deterministic technology matrix in subproblems).

Others have addressed other sub-classes which either focus on binary mixed-integer recourse

decisions, or pure integer recourse decisions. Back in 1993, [LvdV93] first utilize the simple

recourse structure to solve SMIP with continuous variables in the first stage and general

integer variables in the second stage. Then decomposition-based cutting plane algorithms

step up. For example, the disjunctive decomposition(D2) in [SH05] for pure binary first

stage and mixed-binary second stage, decomposition based branch-and-bound using RLT

cuts in [SZ06] for mixed-binary in both stages. Novel branch-and-bound methods have been

proposed in [EGMP07] for mixed-binary in the first stage and mixed-binary in second stage,

decomposition-based branch-and-cut ([SS06]) for pure binary first stage and mixed-integer

second stage, and search-based approaches using certain IP value function characterizations

for pure integer second stage ([KSH06], [TPS12]). As a consequence of the sharper focus,

these algorithms have made significant progress with SMIP algorithms for their specialized

classes of SMIP. To better illustrate the scope of these algorithms, a table (shown in Table 1.1)

summarizes the problem structure that each algorithm can handle. Here column B means the

set of stages in which the algorithm allows having binary variables and column C denotes the

set of stages with continuous variables and column D is the set of stages for discrete(general

integer) variables. Columns T , W , g and r present whether randomness is allowed in the

corresponding part of the second stage problem.

The major road-block for developing a time-staged decomposition algorithm for SMIP

may be attributed to the fact that the value function of a mixed-integer linear program

(MILP-G) is non-convex and discontinuous. Moreover, simply evaluating the second-stage

value requires the solution of multiple NP-hard problems. We will overcome the first hurdle

by approximating the set of second-stage MIP feasible solutions by polyhedra that depend

3



Algorithm B C D T W g r
[LvdV93] {2} {1} {2} fixed fixed1 fixed random
[LL93] {1, 2} {2} {2} random fixed random random
[CS98] {1, 2} {1, 2} {1, 2} random random random random
[ATS04] {1, 2} {1} {2} fixed random random random
[SH05] {1, 2} {2} {} random fixed fixed random
[SS06] {1, 2} {2} ∅ random fixed fixed random
[SZ06] {1, 2} {1, 2} ∅ random random fixed random

[KSH06]: {1, 2} {} {1, 2} fixed fixed fixed random
[NS07]: {2} {1, 2} ∅ random fixed random random

[EGMP07]: {1} {1, 2} ∅ random random fixed random
Algorithm in Chapter 2: {1, 2} {1, 2} {1, 2} random random random random

Table 1.1: Summary of Problem Structure allowed for Decomposition Algorithms in the
Literature

parametrically on the first stage solution (x). The second hurdle (solving multiple NP-hard

problems in each iteration) will be overcome by obtaining a sequence of approximations that

are optimal as iterations proceed, but not necessarily optimal for every iteration. In order to

accomplish these goals, we will rely heavily on multi-term disjunctive cuts, as well as local

Benders’ cuts.

For mixed-binary linear programs (MILP-B), disjunctive and lift-and-project cuts ([Bal79];

[BCC93]), semidefinite relaxations ([LS91]) and reformulation-linearization technique (RLT)

([SA90],[She94]) have provided alternative approaches to generate cutting planes that define

the convex hull of feasible points of a MILP-B. For pure integer programs, we can have a

finite representation using Gomory cuts ([Gom63]). When it comes to the general mixed

integer, [AS05] provided a generalization of the RLT methodology to the case of MILP-Gs

using Lagrange Interpolation Polynomials to compute the bound factors in the RLT pro-

cess. Recently, [CKS11] uses a cutting plane tree to manage partitions needed to generate

multi-term disjunctive cuts and in [CKS12], computational experiment is conducted for this

algorithm with different normalization in the CGLP.

1simple recourse structure
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We should mention that there have been some efforts to speed up the solution of CGLP.

In [PB01a], the authors proposed methods using simplex tableau methods to solve two-term

CGLP. In [BP02], the authors proposed four methods to solve multi-term CGLP and they

suggest Benders’ decomposition algorithm is faster over the other three methods. But the

experiments reported in [BP02] were not intended to test the effectiveness of multi-term

disjunctions in solving MILP-G instances.

In this dissertation, we study a new finitely convergent decomposition algorithm to solve

SMIP with general integer variables in two stages. We investigate different ways to obtain

value function approximation for subproblems (a MILP with general integer variables) using

multi-term disjunctive cuts.

1.3 Problem Statement

In this dissertation, we consider two stage SMIP problem with bounded mixed-integer

variables in both stages. Assuming relatively complete recourse and there are finitely many

scenarios, this dissertation addresses following questions.

• Is there a convergent time-staged decomposition algorithm for solving SMIP with gen-

eral integer variables?

• Is it possible to obtain value function approximation from partial or fully optimized

MILP using Branch and Bound (B&B) method? How does it compare with value

function approximation using cutting plane tree method?

• Are there ways to enhance the computational performance of CPT algorithm? How

does the multi-term disjunctive cut compare with the standard two-term disjunctive

cut?

5



1.4 Organization of the Dissertation

The dissertation contains five chapters. The organization of the rest of this dissertation is

as follows. In Chapter 2, the decomposition algorithm for solving two stage SMIP with gen-

eral integer variables in both stages is presented. A convergence proof is included and that

is followed by illustrative examples. In Chapter 3, methods to obtain a polyhedral approx-

imation of MILP are discussed and computational experiments are conducted to compare

their performances in different stochastic programming settings. In Chapter 4, we compare

various variable splitting rules as well as ways to implement the CPT algorithm. We report

our results using multiple variants of the CPT algorithm. Finally, a summary of the research

contribution and future research direction along the line of work is shown in Chapter 5.

6



Chapter 2: Multi-term Disjunctive Decomposition for

Mixed-Integer Recourse Decisions in Stochastic Programming

2.1 Introduction

Stochastic mixed-integer programs (SMIPs) have long been recognized as an important

class of models for many practical operational problems (see e.g. [Wol80]). However, al-

gorithmic advances to solve SMIP models have lagged other forms of stochastic programs

(SP). In addition to the standard difficulties associated with stochastic linear programming

(e.g. designing scalable ways to approximate the expected recourse/value function), SMIP

formulations with mixed-integer recourse decisions in the second stage encounter value func-

tions that are possibly non-convex and discontinuous. For this reason, certain decomposition

algorithms for SMIP models were designed as scenario decomposition methods (e.g. [CT98],

[LS04]) which were designed to take advantage of special structured problems associated with

each scenario. For instance, [CT98] use the structure of unit-commitment models, whereas,

[LS04] use the structure of batch-sizing models. However, many practitioners (e.g. O’Neill

et al) have made a strong case for avoiding the dependence of decomposition algorithms on

highly specialized scenario problems because one either loses the algorithmic advantages once

the special-structure is violated, or, the user loses flexibility in modeling situations that were

7



not considered at the inception of the algorithm. For these reasons, time-staged decomposi-

tion (e.g. Benders’ decomposition) may be preferable because, although, the non-convexity

of feasible sets, and the attendant non-convexity or discontinuity of value functions poses

algorithmic challenges. In this chapter, we will study time-staged decomposition methods

that allow significantly more structures than available for SMIP today.

We are interested in designing time-staged decomposition algorithms for solving two-stage

SMIPs in which mixed-integer decisions appear in both stages. In other words, we return to

the class of models addressed in [CT98]. Fortunately, due to significant algorithmic advances

in the interim, we are able to draw upon new approximations that will not only ensure finite

convergence, but also avoid operations with intractable functions (such as the MIP value

function). The SMIP problem formulation is stated in (2.1) and (2.2).

min
x∈X∩Q1

cTx+ E[f(x, ω̃)] (2.1)

where

X = {x | Ax ≤ b, xi ≥ 0,∀i ∈ I1 = {1...n1}

xi is integer,∀i ∈ I2 ⊆ I1}

Q1 = {x | l1 ≤ x ≤ u1}

Here objective coefficient c ∈ Rn1 , constraint matrix A ∈ Rm1×n1 and right hand side b ∈ Rm1 .

Also ω̃ denotes a random variable, and for each scenario (realization) ω of ω̃, we define the

recourse function by

f(x, ω) = min g(ω)>y

s.t. W (ω)y ≥ r(ω)− T (ω)x

y ∈ Y ∩Q2

(2.2)

8



where

Y = {y | yj ≥ 0,∀j ∈ J1 = {1...n2}

yj is integer,∀j ∈ J2 ⊆ J1} ⊆ Rn2

Q2 = {y | l2 ≤ y ≤ u2}

Both X and Y are assumed to be non-empty mixed-integer sets. We assume variables x and

y are bounded by constraints defining Q1 and Q2. For subproblem (2.2), the decision variable

y ∈ Rn2 , objective coefficient g(ω) ∈ Rn2 , constraint matrix W (ω) ∈ Rm2×n2 , r(ω) ∈ Rm2

and T (ω) ∈ Rm2×n1 . We assume the random variable ω̃ can be discretized with each scenario

ω having non-zero probabilities p(ω), ∀ω ∈ Ω. The algorithm that we propose below will

impose the following assumptions on the model.

A1 The integer variables in both stages are bounded.

A2 The random variable ω̃ in the problem can be discretized into a finite number of

scenarios, ω ∈ Ω, each with an associated probability of occurrence p(ω),∀ω ∈ Ω.

A3 For any x ∈ X ∩Q1, set defined by {y|W (ω)y ≥ r(ω)− T (ω)x, y ∈ Y ∩Q2} is feasible

for all x ∈ X ∩Q1 and all ω ∈ Ω.

Due to assumption A2, (2.1) can be rewritten as:

min
x∈X∩Q1

cTx+
∑
ω∈Ω

p(ω)f(x, ω) (2.3)

For the rest of the chapter, we first introduce the overall architecture of multi-term disjunc-

tive decomposition algorithms. Subsequently, we present two closely related approximation

methods, one based on the cutting plane tree method ([CKS12]), and another we refer to

as branch-and-bound (B&B)-based convexification method. Either of these methods can be

used to convexify the second-stage, which in turn leads to a value function approximation
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for f(x, ω). Finally, several variants of an SMIP example in the literature illustrates the

applicability of the method under different settings (or structures) for SMIP models. In

addition we present preliminary evidence that this approach is more scalable than using the

deterministic equivalent problem (3) on a standard commercial MIP solver. Overall, our

approach provides the most comprehensive time-staged decomposition approach to date.

2.2 Multi-term Disjunctive Decomposition

If we denote decision variables y under scenario ω as y(ω), the deterministic equivalent

problem (DEP) formulation for (2.3) is

min
x,{y(ω)}

c>x+
∑
ω∈Ω

p(ω)
∑

g(ω)>y(ω) (2.4a)

s.t. T (ω)x+W (ω)y(ω) ≥ r(ω),∀ω ∈ Ω (2.4b)

x ∈ X ∩Q1, y(ω) ∈ Y ∩Q2 (2.4c)

When x are restricted to pure binary variables, [SF02] showed that solving problem (2.4) is

equivalent to solving (2.5) provided x = x̄ is facial with respect to Q1.

min
x∈X

c>x+
∑
ω∈Ω

p(ω)
∑

g(ω)>y(ω) (2.5a)

s.t. (x, {y(ω)}) ∈ conv{(x, {y(ω)})|T (ω)x+W (ω)y(ω) ≥ r(ω),

x ∈ Q1, y ∈ Y ∩Q2},∀ω ∈ Ω (2.5b)

x ∈ X ∩Q1, (2.5c)

When the vector x is allowed to be continuous or has some elements that are restricted to

be general integers, x = x̄ may not always be facial with respect to Q1 and as a result, pure

cutting plane algorithms may not be able to solve the general SMIP model (2.4). Instead, we

10



plan to design an algorithm which implements a successive Benders’ decomposition scheme

associated with nodes of a first-stage search tree. In order to accomplish this, our approach

combines three basic ingredients.

a) We use B&B in the first stage to ultimately enforce the facial property (as in [SZ06]).

b) We use ideas from disjunctive decomposition to ensure a finite number of successive

approximations (as in [SH05]).

c) We use multi-term disjunctions to approximate the convex hull of mixed-integer sets

(as in [CKS11]).

Let Qt(k)
1 denote the bounding constraint of node t(k) in the B&B tree in the first stage

such that the kth first-stage iterate xk ∈ Qt(k)
1 , and Qt(k)

1 ⊆ Q1. Then define

Y(Q
t(k)
1 , ω) ≡ {(x, y(ω)) | T (ω)x+W (ω)y ≥ r(ω), x ∈ X ∩Qt(k)

1 , y ∈ Y ∩Q2}. (2.6)

Also define YL(Q
t(k)
1 , ω) as a convex polyhedron such that

YL(Q
t(k)
1 , ω) ⊇ conv{Y(Q

t(k)
1 , ω)} (2.7)

While the convex hull operation above is well defined, obtaining conv{Y(Q
t(k)
1 , ω)} is an

onerous task. Instead, the cutting plane tree (CPT) provides a constructive mechanism

to obtain YL(Q
t(k)
1 , ω) and the resulting YL(Q

t(k)
1 , ω) satisfies f(xk, ω) = fkL(xk, ω) for fixed

xk ∈ vert(X ∩Qt(k)
1 ) where fkL(x, ω) is defined as

fkL(x, ω) = min{g(ω)>y : (x, y) ∈ YL(Q
t(k)
1 , ω)} (2.8)

We will exploit this new capability for the class of algorithms studied in this chapter. Thus

appealing to the CPT algorithm ([CKS11]), suppose that we are able to obtain a convex

11



representation as follows

YL(Q
t(k)
1 , ω) = {(x, y) | T (ω)x+W (ω)y ≥ r(ω),Γk(ω)x+Πk(ω)y ≥ Πk

0(ω), x ∈ X∩Qt(k)
1 , y ≥ 0}.

(2.9)

where Γk(ω)x+ Πk(ω)y ≥ Πk
0(ω) are the set of cuts added during iterations 1, . . . , k.

Proposition 1. For any ω ∈ Ω and fixed x = x̄ ∈ X ∩ Qt(k)
1 , we have f(x, ω) ≥ fkL(x, ω).

Furthermore, if x̄ ∈ vert(X ∩Qt(k)
1 ), where vert(X ∩Qt(k)

1 ) denote vertices of X ∩Qt(k)
1 , we

have f(x, ω) = fkL(x, ω).

Proof. Since YL(Q
t(k)
1 , ω) ⊇ Y(Q

t(k)
1 , ω), we have f(x, ω) ≥ fkL(x, ω). For fixed x̄ ∈ vert(X ∩

Q
t(k)
1 ), no matter whether x̄ is integer or binary, as long as x̄ ∈ vert(X∩Qt(k)

1 ), the restriction

x = x̄ is facial respect to YL(Q
t(k)
1 , ω)). Hence following ([SF02]), we have f(x, ω) = fkL(x, ω).

Proposition 1 helps us derive the decomposition algorithm for a general SMIP problem.

For fixed xk and Qt(k)
1 , the second-stage convexification process will yield the set YL(Q

t(k)
1 , ω).

Let the matrix W k(ω) denote the entire collection of cuts generated for outcome ω. Given

any subset Qt(k)
1 , not all cuts listed in W k(ω) are valid. Let σ denote a subset of all cuts that

are valid for Qt(k)
1 . Of course, σ depends on t(k), but in the interest of notational brevity,

we will use W k
σ (ω) as the submatrix of Wk(ω) to denote the cuts that are valid for Qt(k)

1 and

σ ∈ Σ(ω, t(k)) Then, and a Benders’-type lower bounding subproblem to approximate the

integer recourse (or value) function may be obtained by solving the following problem.

fkL(xk, ω) = min
∑

g(ω)>y (2.10a)

s.t. W k
σ (ω)y ≥ rkσ(ω)− T kσ (ω)xk (2.10b)

y ≥ 0 (2.10c)

12



where W k
σ (ω) =

[
W (ω)
Πk
σ(ω)

]
, rkσ(ω) =

[
r(ω)

Πk
0σ(ω)

]
, T kσ (ω) =

[
T (ω)
Γkσ(ω)

]
. When the branch

and bound (B&B) method is used to solve master problem, xk may only be a vertex for local

node t(k). So it is important to note that cuts derived for one node with bounds Qt
1 may

not be valid for other nodes with bounds Q′1 ( Qt
1. On the other hand, the cuts generated

using Qt
1 can be applied to all subsets Q′1 ⊆ Qt

1. Let s denote the index of the Benders’ cut

generated for Qt
1 in iteration k. As with cuts in the second-stage, the index s also depends

on t(k). However, letting S(t(k)) denote the entire collection of Benders’ cuts for Qt(k)
1 , the

most recent cut will be given as

ηt(k)(ω) ≥ Θk(ω)>(rkσ(ω)− T kσ (ω)x) (2.11)

where Θk(ω) is the vector of optimal dual multipliers associated with (2.10b). (2.11) can

be derived for each ω ∈ Ω in parallel. Such a Benders’ cut for the master problem can be

written as

ηt(k) ≥ ξs − ζ>s x (2.12)

where

ξs =
∑
ω∈Ω

p(ω)Θk(ω)>rkσ(ω)

ζs =
∑
ω∈Ω

p(ω)Θk(ω)>T kσ (ω).
(2.13)

The process of deriving (2.12) is considered as approximating the subproblem value function

for a given xk ∈ Q
t(k)
1 , and for all ω. Note that both (2.10) and (2.12) are valid only for

x ∈ Qt(k)
1 .

The master problem is solved by a B&B method. Suppose the set of active (non-

fathomed) nodes for 1st stage is denoted as T k1 , and let Qt
1 denote the bounding constraints

for t ∈ T1. Let Sk(t) denote a collection of Benders’ cuts generated from subproblems for
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x ∈ Qt
1 prior to (and including) iteration k. Then the lower bounding master problem for

node t at iteration k is as follows.

min c>x+ ηt (2.14a)

s.t. ηt ≥ ξs − ζsx,∀s ∈ Sk(t) (2.14b)

ηt ≥ −M, (2.14c)

x ∈ XL ∩Qt
1, (2.14d)

where −M is a valid lower bound on second stage value function, and

XL = {x | Ax ≤ b, xi ≥ 0} ⊆ Rn1 (2.15)

The entire algorithm starts from iteration k = 1 with T k1 = {o} where the root node o has

bounding constraint Qo
1 ≡ Q1 and we initialize Sk(t) as an empty set. At iteration k, a B&B

method is used to solve the master problem (2.14) until mixed-integer optimum is found.

In particular, problem (2.14) is solved for each t ∈ T k1 and for our breadth-first approach,

we choose the node with the lowest objective value as the node to branch on. Suppose this

node is t̄. Following a variable selection rule such as choosing the fractional variable with

smallest index or the most relative fractional variable as shown in (2.16) and (2.17),

θi = min{xti − lt1i, ut1i − xti} (2.16)

p ∈ argmaxi=1,...,n{
θi

ut1i − lt1i
} (2.17)

we can select variable xp and split its bounding constraint [l1p, u1p] into

[l1p, bxpc] and [dxpe, u1p], if p ∈ I2 (2.18)
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The Benders’ cut inherited from Sk(t̄) are now associated with two new nodes. Again the

node with lowest objective value among T k1 is selected and this process repeats until the

mixed-integer optimum is found.

When the master problem’s solution is found (denoted as xk), we identify the first stage

node to which xk belongs, and refer to it as Qt(k)
1 . Given xk and Qt(k)

1 , we approximate the

second stage value function for all ω as described in (2.12). With value function indexed by

the cuts in Sk(t(k)) updated, the master problem continues on finding new integer solutions

and updating the node’s value function until the node is fathomed, or the algorithm stops. A

summary of the process is shown in Algorithm 1, and we refer to it as M-D2 (for multi-term

disjunctive decomposition).

Proposition 2. Assuming the process to derive (2.12) is a finite procedure and can obtain

f(x, ω) = fL(xk, ω) for each ω ∈ Ω, then algorithm M-D2 (run with ε = 0) terminates

finitely with the incumbent solution x∗ being optimal to problem (2.1),(2.2).

Proof. (2.1) are assumed to have bounded variables, thus there are only finitely many nodes

for the B&B tree to enumerate. In the worst case, all possible combination of values for

variables in I2 are enumerated which take finitely many steps. If deriving (2.12) is a finite

process and for each ω ∈ Ω we have f(xk, ω) = fL(xk, ω), from Proposition 1. At least, the

Benders’ cut derived is precise on xk. As long as there are finite scenarios in Ω, it takes finite

steps for a decomposition algorithm using Benders’ cut to converge. Thus, it takes finitely

many steps for the algorithm to evaluate each node in the B&B tree. So algorithm M-D2

terminates finitely.
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Algorithm 1 M-D2

Initialize: Set iteration k = 1, objective value upper bound V = ∞, lower bound v =
−∞, first stage active nodes T k1 = {o} with Qo

1 ≡ {x|l1 ≤ x ≤ u1}. Set Sk(o) = ∅. Let
ε denote the stopping tolerance and (x∗, y∗(ω)) for ω ∈ Ω the incumbent solutions. Solve
problem (2.14) at node o and get its objective value vo
while true do

Update v and denote the node with the lowest objective value as t(k), and update the
lower bound:

v ← min
t∈T k

1

{vt}.

if V − v ≤ ε then STOP.
end if
if xt(k)

i for i ∈ I2 are integers then
Derive (2.12) and update Sk(t(k)).
Update V and incumbent (x∗, y∗(ω)) if yk(ω) satisfies mixed-integer restrictions for

all ω ∈ Ω.
Update vt for t ∈ T k1 by re-solving problem (2.14) with Sk(t) updated.

else
Choose variables to split and replace node t(k) with two new nodes t1(k),t2(k).
Solve problem (2.14) for the two new node and obtain vt1(k) and vt2(k).

end if
Fathom nodes for which vt ≥ V , the upper bound V : T k+1

1 ← T k1 \{t | t ∈ T k1 , V −vt ≥
ε}.

k ← k + 1
end while
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2.3 Successive value function approximations

In order to ensure that the decomposition algorithm is effective, objective function ap-

proximations generated in one iteration should be made available in subsequent iterations.

This philosophy was adopted in designing the D2 algorithm ([SH05]) where disjunctive cuts

defining the convex approximation of Y ∩ Q2 were made reusable for subsequent iterations

by convexifying the function defining the right hand side of the cuts as a relatively simple

function of the first stage decision x. The promising results from the D2 algorithm ([YS09])

for binary SMIPs motivates us to extend that algorithm into more general cases considered

in this chapter.

2.3.1 Cutting plane tree algorithm

It has been shown that only using traditional two-term disjunctive cuts ([BCC93]) to

solve MILP may lead to infinite steps ([Bal79], [OM01]). One way to overcome this is to use

the multi-term disjunctive cuts. It has been proved in [CKS11] to use multi-term disjunctive

cuts (also called CPT cuts) to solve general MILP problems in finitely many iterations. We

can apply this algorithm to solve subproblems (2.2). Similar to the D2 algorithm, we will

create the CPT cuts in a manner that they will be re-usable for different x.

Suppose that at the k-th iteration of M-D2, we have a fixed xk ∈ X ∩ Qt(k)
1 , and to

approximate f(xk, ω) we execute the cutting plane tree (CPT) algorithm for a few iterations.

To initialize a sequence of subproblem approximations of the CPT algorithm, we start with

the subproblem LP relaxation fL(x, ω) (as shown in (2.19)) is solved with x = xk . In general,

this relaxation will not yield a mixed-integer feasible point, and we will build approximations

of the mixed-integer set using the CPT cuts which will delete non-integer solutions as and

when we encounter them. For iteration d of the CPT algorithm, suppose that a non-integer
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solution is denoted yd(ω), where d is the iteration number for the subproblem algorithm.

fL(x, ω) = min g(ω)>y

s.t. W (ω)y ≥ r(ω)− T (ω)x

y ∈ YL ∩Q2

YL = {y ≥ 0, y ∈ Rn2}

(2.19)

Let T d2 denote an index set of sets that partition Q2. Qt
2 is a bounding constraint for the

variable y as shown in (2.20).

Qt
2 = {x|lt2 ≤ y ≤ ut2} for ∀t ∈ T d2 (2.20)

T d2 provides a disjunctive description of Y ∩Q2. And condition (2.21) is maintained

⋃
t∈T k

2

(YL
⋂

Qt
2) ⊇ Y ∩Q2 (2.21)

To cut off (xk, yd(ω)), a disjunctive set is constructed such that (2.22) is satisfied.

(xk, yd(ω)) /∈
⋃
t∈T d

2

{(x, y(ω)) | x ∈ X ∩Qt(k)
1 , y(ω) ∈ YL ∩Qt

2} (2.22)

As shown in [CKS12], T d2 is maintained by a tree structure (called cutting plane tree). T d2

contains all the nodes that do not have children nodes and is initialized with one node with

defining constraint Q2. If the solution yd(ω) does not satisfy the mixed-integer restrictions,

then the algorithm walks through cutting plane tree to locate the deepest node from the

root node that contains yd(ω). If this node is in T d2 (meaning it does not have any children

node), two nodes are created as its children nodes and the node is removed from T d2 . If the

node is not in T d2 , no new node is created. In this way, T d2 is updated such that conditions

(2.21) and (2.22) are satisfied (see also Algorithm 2).

Assuming that (2.22) is satisfied, we will use a cut generation linear program (CGLP)

to derive a valid inequality. While the specific form of the CGLP is not critical to the
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proof of convergence f the methodology, a linear programming structure of the CGLP is

important. The form of CGLP shown in (2.23) maximizes the depth of cut while restricting

the one-norm of the coefficients to be 1 (2.23e). This version is similar to the CGLP used by

([CKS12]), where the right-hand-side was fixed to be 1, and the one-norm of cut coefficients

was minimized.

Using (2.20), the cut generating linear program (CGLP) shown in (2.23) can be formu-

lated to derive multi-term disjunctive cuts.

max π0(ω) (2.23a)

s.t. π2j(ω) = Wj(ω)>λ2t + µ2jt − ν2jt ∀j ∈ J, t ∈ T d2 (2.23b)

π1i(ω) = Ti(ω)>λ2t + Ai
>λ1 + µ1i − ν1i ∀i ∈ I, t ∈ T d2 (2.23c)

r(ω)>λ2t + b>λ1 + lt2
>
µ2t + l

t(k)
1

>
µ1 − ut2

>
ν2t − ut(k)

1

>
ν1

≥ π1(ω)>xk + π2(ω)>yd(ω) + π0(ω) t ∈ T d2 (2.23d)∑
i∈I

α1i +
∑
j∈J

α2j = 1 (2.23e)

− α1 ≤ π1(ω) ≤ α1,−α2 ≤ π2(ω) ≤ α2 (2.23f)

α1, α2 ≥ 0, λ1, λ2t ≥ 0, ν1, ν2t ≥ 0, µ1, µ2t ≥ 0, for ∀ t ∈ T d2 (2.23g)

The cut derived is shown in (2.24).

π1(ω)>(x− xk) + π2(ω)>(y(ω)− yd(ω)) ≥ π0(ω) (2.24)

Note that (2.24) is specific to scenario ω. We can derive a cut for each scenario ω ∈ Ω.

Since (2.23) includes inequalities that are valid for X ∩ Qt(k)
1 , this CGLP combines the

convexification of x and y simultaneously.

Proposition 3. Cutting plane (2.24) is valid for feasible set {(x, y(ω)) | T (ω)x+W (ω)y(ω) ≥

r(ω), x ∈ X ∩Qt(k)
1 , y(ω) ∈ Y ∩Q2}.

19



Proof. To show that cut (2.24) is valid, it is equivalent to show that π1(ω)>x + π2(ω)>y ≥

π1(ω)>xk+π2(ω)>yd(ω)+π0(ω) is valid. For any {(x, y(ω)) | T (ω)x+W (ω)y(ω) ≥ r(ω), x ∈

X ∩Qt(k)
1 , y(ω) ∈ Y ∩Q2},

π>1 x+ π>2 y(ω) (2.25a)

=(λ>2tT (ω)x+ λ>1 Ax+ µ>1 x− ν>1 x) + (λ>2tW (ω)y(ω) + µ>2ty(ω)− ν>2ty(ω)) (2.25b)

≥r(ω)>λ2t + b>λ1 + lt2
>
µ2t + l

t(k)
1

>
µ1 − ut2

>
ν2t − ut(k)

1

>
ν1 (2.25c)

≥π1(ω)>xk + π2(ω)>yd(ω) + π0(ω) (2.25d)

The cut (2.24) is included in the second-stage formulation, leading to a stronger approx-

imation of the value function, which will be denoted fdL(x, ω). In general, after d iterations

of the CPT algorithm for the subproblem, we have

fdL(x, ω) = min g(ω)Ty (2.26a)

s.t. W (ω)y ≥ r(ω)− T (ω)x (2.26b)

Πd
2(ω)y ≥ Πd

0(ω)− Πd
1(ω)x (2.26c)

y ∈ YL ∩Q2 (2.26d)

YL = {y ≥ 0, y ∈ Rn2} (2.26e)

where constraints (2.26c) accumulate cuts generated by ancestor nodes, as well as solutions

in Qt(k)
1 . Cuts generated from first-stage solutions that do not belong to Qt(k)

1 or one of its

ancestors are not included in (2.26c). d is the number of cuts added since the approximation

algorithm starts. At any iteration, we allow at most D number of cuts to be added for each
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run of second-stage approximation algorithm. After the new cut is added, the strength-

ened LP is re-solved, and the approximation fdL(x, ω) is obtained. The algorithm continues

until either a mixed-integer optimum is found or d = D. Once the process of solving the

subproblem stops, we form a Benders’ cut as in (2.11) and return to the master problem.

Since cuts (2.24) are only valid in the (x, y(ω)) ∈ (XL∩Qt(k)
1 )×(YL∩Q2) space, they could

be reused at any subsequent iteration k+ τ , τ ≥ 1 as long as xk+τ satisfies xk+τ ∈ X ∩Qt(k)
1 .

Recall that we let Σ(ω, t(k)) denote the collection of cuts generated from node t’s ancestor

or itself. It is used to populate constraints (2.26c) at d = 1. Once optimal solution is found,

Σ(ω, t(k)) is updated to incorporate newly generated constraints.

Given xk ∈ X ∩Qt(k)
1 , the algorithm to solve subproblems ω with at most D cuts added

is shown as Algorithm-2.

Algorithm 2 CPT-D

Initialize d ← 1, set CPT tree leaves set T d2 (ω) ← {o} where o is the root node with
bounding constraint Qo

2 ← Q2.
while d ≤ D do

Populate Πd
1(ω), Πd

2(ω), Πd
0(ω) using cuts in S(ω, t). Solve fdL(x, ω) and get yd(ω).

if yd(ω) satisfies mixed-integer restrictions then, STOP and yk(ω)← yd(ω)
else

Find the deepest node σ that contains yd(ω) in T d2 .
if σ is not leaf node then,

Make splits on σ and use updated T d2 and first stage node bounds Qt(k)
1 to

formulate and solve (2.23) and obtain cut (2.24).
else

No splits are needed. Use σ and leaf nodes that don’t belong to subtree of σ
and Qt(k)

1 to formulate and solve (2.23) and obtain cut (2.24).
end if
Add the cut into Σ(ω, t(k)) and update Πd

1(ω), Πd
2(ω), Πd

0(ω) with the new cut
end if
d← d+ 1

end while
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Proposition 4. Assume that the cuts generated from (2.23) correspond to its extreme point

solutions. Then there exist finite D < ∞, such that algorithm CPT-D solves subproblems

(2.2) at scenario ω to optimal with x fixed at xk and also: fkL(xk, ω) = f(xk, ω).

Proof. When D is large enough, algorithm CPT-D is the same as using CPT algorithm

to solve the subproblem except the CGLP is different. From the finiteness proof of CPT

algorithm in [CKS11], to prove that algorithm CPT-D can obtain mixed-integer optimum

in finitely many steps, we only need to show that for fixed T k2 and Qt(k)
1 , only finitely many

constraints can be generated out of the new CGLP (2.23) as yd(ω) changes. To show that, we

know the dual of CGLP has yd(ω) only in the objective function. Since dual constraint set

stays the same as yk(ω) changes, there are only finitely many extreme points to enumerate,

thus finitely many constraint to generate out of CGLP (2.23). Thus there exists iteration

D < ∞ such that (2.2) is solved at scenario ω with x fixed at xk. Since the mixed-integer

solution is found, fkL(xk, ω) = f(xk, ω).

We use algorithm CPT-D to solve subproblem for each ω ∈ Ω and derive constraint

(2.12). In algorithmM-D2 , we initializeD ← 2 and at each iteration, incrementD ← D+2.

Therefore, in the beginning, fkL(xk, ω) = f(xk, ω) is not guaranteed. Still, we have K < ∞,

such that for k > K, D is large enough such that all subproblem is solved and we will have

fkL(xk, ω) = f(xk, ω). Compared with D2 algorithm, CPT-D algorithm requires a separate

CPT tree for each scenario to manage the multi-term disjunctions. And the multi-term

disjunctive cut derived in CPT-D algorithm is only valid for x ∈ Qt(k)
1 and it is special for

each ω. But in D2 algorithm, the disjunctive cut works for all {x | 0 ≤ x ≤ 1}. Although

the right hand side changes with different ω, the left hand side of D2 cuts derived are fixed

for all ω ∈ Ω.
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2.3.2 Branch-and-Bound based Convexification

Branch and Bound (B& B) method [LD60] is a popular method for solving MILP prob-

lems and when combined with cutting planes, these methods form the backbone for most

state-of-the-art commercial solvers. The CPT algorithm in previous section is a pure cutting

plane algorithm. The fact that it also utilizes a tree structure to manage the disjunctive

sets inspires a way that transforms the B&B tree obtained from an MILP solve to create a

polyhedral approximation that gives the same IP optimal value as obtained from the B&B

method. However, the potential size of the disjunctions encountered in B&B method makes

it non-trivial to obtain a polyhedral approximation from it. For the remainder of this section,

we describe such an algorithm and prove that this approximation can be obtained in finitely

many steps.

Suppose for fixed xk ∈ X ∩ Qt(k)
1 , subproblem f(xk, ω) is solved by a B&B method and

its optimal solution is yk(ω). Also we have the set of leaf nodes T2 = T remain
2 ∪T fathom

2 where

T remain
2 are the remaining leaf nodes in the B&B tree and T fathom

2 are the leaf nodes that

have been fathomed. Suppose the constraint set for fL(xk, ω) is

YL(xk, ω) = {y(ω)|W (ω)y(ω) ≥ r(ω)− T (ω)xk, y(ω) ∈ YL ∩Q2} (2.27)

and

Y(xk, ω) = YL(xk, ω) ∩ Y. (2.28)

Since Qt
2, ∀ t ∈ T2 are disjoint from each other, T2 provides us a disjunctive relaxation in

the space of (x, y(ω))

{X ∩Qt(k)
1 } × YD(xk, ω) = {X ∩Qt(k)

1 } ×
⋃
t∈T2

(YL(xk, ω)
⋂

Qt
2), (2.29)

Thus, the same CGLP (2.23) can be used to derive multi-term disjunctive cuts by replacing

T k2 with T2 in the formulation. The rest of algorithm is similar to CPT-D. There are two
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phase in the algorithm. The first phase is to use a B&B method to either solve the second-

stage MIP, or to use a few nodes of the B&B tree to obtain an disjunctive approximation.

In either case, we obtain T2. The second phase starts from solving fdL(xk, ω) with d = 1.

At iteration d, if the optimal solution of fdL(xk, ω) is fractional (denoted as yd(ω)), (2.23) is

formulated based on T2 and Qt
1 to cut off yd(ω). The new cut is added into S(t(k)). Then

fdL(xk, ω) is re-solved and this process continues until yd(ω) falls into YD. The method is

shown in Algorithm 3.

Algorithm 3 BB-D

Initialize iteration d← 1. Populate Πd
1(ω), Πd

2(ω), Πd
0(ω) using cuts in S(t(k)).

Solve subproblem: Solve f(xk, ω) by B&B method for D iterations and get leaf nodes
set T2 and solution y∗(ω).
while true do

Populate Πd
1(ω), Πd

2(ω), Πd
0(ω) using cuts in S(ω, t). Solve fdL(x, ω) and get yd(ω).

if yd(ω) ∈ YD then, STOP and yk(ω)← yd(ω)
end if
Use T2 and Qt

1 to formulate and solve (2.23) and obtain cut (2.24). Add the cut into
S(ω, t) and update Πd

1(ω), Πd
2(ω), Πd

0(ω) with the new cut
d← d+ 1

end while

Define clconv as the operation to get closure of the convex hull of a set and the last

iteration number of the algorithm is d∞. Then we have the following theorem.

Theorem 1. Algorithm 3 terminates in finitely many steps (i.e. d∞ < ∞). And when the

algorithm stops, we have f(xk, ω) ≥ fd∞L (xk, ω). If D is large enough to have integer optimal

from B&B solve, then f(xk, ω) = fd∞L (xk, ω)

Proof. Because T2 is fixed, as yd(ω) changes, each time a new extreme point of the CGLP

(2.23) is generated. Because there are finitely many extreme points of the CGLP and a
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subset of these corresponds to facets of clconv{YD(xk, ω)}. We will have yd(ω) ∈ YD(xk, ω)

in finitely many iterations which is the stopping criterion. For the second part of the the-

orem, also from the algorithm’s stopping rules and Proposition 4, there ∃ yd∞(ω) such

that yd∞(ω) ∈ YD(xk, ω). If yd∞(ω) = y∗(ω), then obviously f(xk, ω) ≥ fd∞L (xk, ω). On

the other hand, suppose that yd∞(ω) 6= y∗(ω). Since the B&B tree embodies the dis-

junction, it follows that y∗(ω) ∈ YD(xk, ω). Hence g(ω)>yd∞(ω) ≥ g(ω)>y∗(ω). But

since every solution generated by the algorithm is based on a approximations strength-

ened by valid inequalities, it follows that g(ω)>yd∞(ω) ≤ g(ω)>y∗(ω). It follows that

g(ω)>yd∞(ω) = g(ω)>y∗(ω). While for relatively small D, when B&B method does not

reach integer optimal, fd∞L (xk, ω) = g(ω)>yd∞(ω) = g(ω)>y∗(ω) ≥ f(xk, ω). When D is

large enough to have integer optimal, f(xk, ω) = g(ω)>y∗(ω) = fd∞L (xk, ω)

Algorithm 2 and Algorithm 3 both use multi-term disjunctive cuts to obtain value func-

tion approximation. The difference between the two algorithms is the way to construct

disjunctive sets. Algorithm-3 uses the B&B nodes to construct the disjunctive set, whereas,

Algorithm 2 iteratively builds up the disjunctive set.

2.4 Illustrative Examples and a Computational Prototype

We illustrate the workings of the algorithms of this chapter via a collection of examples.

The following presentation is based on an example that has been used by several authors,

under alternative problem structures (e.g. fixed recourse ([CS98], [ATS04]), binary recourse

variables ([Sen03]). We present extensions of these instances to more general cases such as

mixed-integer recourse, mixed-integer first-stage decisions, and random recourse matrices. In

addition to illustrating the generality of our approach, we will also present results associated
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with a prototypical implementation using Matlab. One should recognize that in general,

Matlab scripts cannot be expected to compete with CPLEX. Nevertheless, we show that

as the number of scenarios increase, the Matlab code associated with our implementation

performs better than the commercial solver, thus demonstrating the potential for the class

of algorithms presented in this chapter.

2.4.1 Illustration Examples

Example 1.1 is an extension of Example 1.0 (see Appendix A) which has been used

in the literature as an instance of binary recourse models. Example 1.1 illustrates the

performance of our algorithm when we include general integer variables in the second stage.

Example 1.1.

min − 1.5x1 − 4x2 +
∑
ω∈Ω

p(ω)f(x, ω) (2.30a)

s.t. x1, x2 binary (2.30b)

where

f(x, ω) = min − 16y1 − 19y2 − 23y3 − 28y4 + 100R (2.31a)

s.t.
[

2y1 + 3y2 + 4y3 + 5y4 −R
6y1 + 1y2 + 3y3 + 2y4 −R

]
≤ r(ω)− T (ω)x (2.31b)

yi ∈ {0, 1...5}, i = 1, ..., 4;R ≥ 0 (2.31c)

Ω = {ω1, ω2}, p(ω1) = p(ω2) = 0.5, r(ω1) =

[
5
2

]
, T (ω1) =

[
1 0
0 1

]
, r(ω2) =

[
10
3

]
,

T (ω2) =

[
1 0
0 1

]
.

The summary of applying M-D2 with CPT-D and BB-D on Example 1.1 is shown

in Table 2.1 and Table 2.2.

In Table (2.1) and (2.2), each row shows the information for one iteration of the algorithm.

Column “Node No.” denotes the number of active nodes in the B&B tree. “Cuts No” means
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Iter v V x Node No. f(x, ω1) Cuts No. f(x, ω2) Cuts No. Value function cut for Node
1 -M-5.5 Inf (1,1) 1 -57 0 -76 1 η ≥ −73.7560 + 6.2292x1 + 1.0268x2

2 -76.7292 -72 (0,1) 1 -57 0 -80.625 4 η ≥ −80.0714 + 0.8929x1 + 11.2589x2

3 -73.7560 -72.8125 (0,0) 2 -60.2979 6 -80 5 η ≥ −70.1489 + 2.4734x1 + 0.9468x2

4 -72.8125 -72 (0,1) 3 -57 0 -80 2 η ≥ −79 + 1.4583x1 + 10.5x2

5 -72.5 -72.5 (0,1) 3

Table 2.1: M-D2 with CPT-D for Example 1.1

0

(a) Iteration 1,2

0

1 2

𝑥2 ≤ 0 𝑥2 ≥ 1 

(b) Iteration 3

0

1 2

3 4

𝑥2 ≥ 1 𝑥2 ≤ 0 

𝑥1 ≥ 1 𝑥1 ≤ 0 

(c) Iteration 4

0

1 2

3 4

𝑥2 ≥ 1 𝑥2 ≤ 0 

𝑥1 ≥ 1 𝑥1 ≤ 0 

(d) Iteration 5

Figure 2.1: Master Problem B&B Tree for M-D2 with CPT-D

Iter v V x Node No. f(x, ω1) Cuts No. f(x, ω2) Cuts No. Value function cut for Node
1 -M-5.5 Inf (1,1) 1 -57 0 -76 1 η ≥ −73.7560 + 6.2292x1 + 1.0268x2

2 -76.7292 -72 (0,1) 1 -57 0 -80.1250 6 η ≥ −79.7232 + 1.5089x1 + 11.1607x2

3 -73.7560 -72 (0,0) 2 -57 6 -80 4 η ≥ −68.5 + 2x1

4 -72.5625 -72 (0,1) 2 -57 0 -80 2 η ≥ −78.8571 + 1.4643x1 + 10.3571x2

5 -72.5 -72.5 (0,1) 3

Table 2.2: M-D2 with BB-D for Example 1.1

0

(a) Iteration 1,2

0

1 2

𝑥2 ≤ 0 𝑥2 ≥ 1 

(b) Iteration 3

0

1 2

𝑥2 ≤ 0 𝑥2 ≥ 1 

(c) Iteration 4

0

1 2

3 4

𝑥2 ≥ 1 𝑥2 ≤ 0 

𝑥1 ≥ 1 𝑥1 ≤ 0 

(d) Iteration 5

Figure 2.2: Master Problem B&B Tree for M-D2 with BB-D
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the number of multi-term disjunctive cuts generated for that scenario. From the table, we

can see that both algorithms generate more cuts in the subproblem than in Example 1.0

but there is only small difference between BB-D and CPT-D for this example.

To better illustrate the algorithm, we also include two sets of figures (Figure 2.1 and

Figure 2.2) which show the master problem B&B tree at each iteration of the algorithm.

The node with black circle contains solution xk and gets value function updated in the

iteration. Similar to the result shown in the tables, there is only minor difference for the

master problem B&B tree between the two algorithms.

Example 1.2 We extend Example 1.1 by requiring general integer variables in the

first stage as well. So instead of having x1, x2 to be binary, they are allowed to be integers

and bounded by 0 ≤ x1, x2 ≤ 5. The summaries of applying two algorithms are shown in

Table 2.3 and Table 2.4. Compared to previous two examples, from Table-(2.3) and (2.4),

Iter v V x Node No. f(x, ω1) Cuts No. f(x, ω2) Cuts No. Value function cut for Node
1 -M-27.5 Inf (5,5) 1 100 0 -47 2 η ≥ −261 + 5x1 + 52.5x2

2 -261 -1 (0,0) 1 -60.9545 4 -81.9048 4 η ≥ −71.4297 + 3.7564x1 + 1.0352x2

3 -80.3241 -1 (0,3) 2 -19 0 -78.3824 6 η ≥ −89.4265 + 1.1912x1 + 13.5784x2

4 -74.3945 -1 (0,1) 3 -57 0 -80 4 η ≥ −73 + 1.45x1 + 4.5x2

5 -72.5 -72.5 (0,1) 5

Table 2.3: M-D2 with CPT-D for Example 1.2

Iter v V x Node No. f(x, ω1) Cuts No. f(x, ω2) Cuts No. Value function cut for Node
1 -M-27.5 Inf (5,5) 1 100 0 -47 2 η ≥ −261 + 5x1 + 52.5x2

2 -261 -1 (0,0) 1 -59.6667 5 -80 5 η ≥ −69.8333 + 2x1 + 1.3333x2

3 -77.8333 -1 (0,3) 2 -19 0 -76 3 η ≥ −90.25 + 14.25x2

4 -73.6667 -59.5 (3,2) 5 -38 0 -61 5 η ≥ −74.1 + 1.8667x1 + 9.5x2

5 -72.75 -62 (2,2) 5 -38 0 -66 6 η ≥ −81 + 5x1 + 9.5x2

6 -72.5 -63 (0,1) 5 -57 0 -80 0 η ≥ −70.5 + 2x1 + 2x2

7 -72.5 -72.5 (0,1) 5

Table 2.4: M-D2 with BB-D for Example 1.2
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we can see that with general integer variables in the first stage, more iterations are needed

to solve the problem. Note also that using BB-D requires more iterations than CPT-D for

the M-D2 algorithm. However, the average number of cuts for BB-D is fewer than that

used by CPT-D.

Example 1.3 The next extension is to allow randomness in the T matrix. So on top

of Example 1.2, we set T (ω1) =

[
0.1 0
0 0.5

]
, T (ω2) =

[
0.3 0.2
0 0.2

]
. The summary of

applying two algorithms are shown in Table 2.5 and Table 2.6. From Table (2.5) and (2.6)’s

Iter v V x Node No. f(x, ω1) Cuts No. f(x, ω2) Cuts No. Value function cut for Node
1 -M-27.5 Inf (5,5) 1 -22.8333 2 -66.5 2 η ≥ −91.1061 + 0.95x1 + 8.3379x2

2 -93.8561 Inf (5,0) 1 -59.3929 4 -71.3750 4 η ≥ −74.6060 + 1.8444x1 + 0.4550x2

3 -81.6960 Inf (0,2) 2 -57 0 -79.36 6 η ≥ −79.2 + 0.84x1 + 5.51x2

4 -80.8424 Inf (5,3) 2 -38 4 -66.925 8 η ≥ −65.1930 + 2.3312x1 + 0.3581x2

5 -79.48 Inf (5,2) 3 -57 0 -67.7086 10 η ≥ −84.1132 + 2.3273x1 + 5.0612x2

6 -78.6816 Inf (4,2) 4 -57 0 -69.2180 12 η ≥ −75.4437 + 0.5315x1 + 5.1043x2

7 -78.16 Inf (3,2) 4 -57 0 -70.5438 14 η ≥ −82.267 + 2.7281x1 + 5.1554x2

8 -77.8543 Inf (5,2) 6 -57 0 -66.4930 16 η ≥ −71.2465 + 4.75x2

9 -77.8065 Inf (1,1) 7 -57 3 -76 13 η ≥ −72.3252 + 5.8252x2

10 -77.69 -72 (0,1) 7 -57 1 -77.3333 20 η ≥ −67.1667
11 -77.5 -72 (2,2) 7 -57 0 -76 0 η ≥ −79.2524 + 1.1355x1 + 5.2407x2

12 -77.5 -77.5 (2,2) 7

Table 2.5: M-D2 with CPT-D for Example 1.3

Iter v V x Node No. f(x, ω1) Cuts No. f(x, ω2) Cuts No. Value function cut for Node
1 -M-27.5 Inf (5,5) 1 -22.8333 2 -65.6250 3 η ≥ −91.2652 + 1.0375x1 + 8.3697x2

2 -93.5777 Inf (5,0) 1 -57 4 -70.5 4 η ≥ −73.6806 + 1.9861x1

3 -81.6806 Inf (0,2) 2 -57 0 -76 4 η ≥ −77.2950 + 5.3975x2

4 -80.4686 -74.5 (5,3) 2 -38 6 -64.6375 5 η ≥ −65.8580 + 2.7049x1 + 0.3382x2

5 -79.7361 -74.5 (4,2) 3 -57 0 -67.5333 7 η ≥ −73.1165 + 0.2569x1 + 4.9111x2

6 -79 -74.5 (3,2) 4 -57 0 -68.4810 10 η ≥ −81.0190 + 3.7595x1 + 3.5x2

7 -77.5098 -74.5 (5,2) 5 -57 0 -66 4 η ≥ −69.8442 + 1.0174x1 + 1.6287x2

8 -77.5 -77 (2,2) 5 -57 0 -76 0 η ≥ −76.0454 + 1.1008x1 + 3.6719x2

9 -77.5 -77.5 (2,2) 5

Table 2.6: M-D2 with BB-D for Example 1.3
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result, we can conclude that BB-D needs far fewer cuts on average for solving subproblems

than CPT-D. In addition, the total number of iterations needed is also less.

2.4.2 Experiments with a Computational Prototype.

In this subsection we report experiments with a Matlab prototype to give the reader a

sense of the potential for the methodology presented in this chapter. We designed a Matlab

implementation of the M-D2 algorithm with calls to the CLPEX LP solver whenever an

LP solution was required. For all other purposes (e.g. managing the B&B tree) the Matlab

script operated in the Matlab environment. Because Matlab is a scripting language, there

are huge overheads in execution, and cannot be expected to compete with codes written in

C or C++. Such handicaps notwithstanding, we conducted an experiment to see how our

procedures scale with increases in the number of scenarios. Moreover, we wish to study how

a commercial software like CPLEX might perform on the same instances.

Three sets of instances are generated based on Example 1.1-1.3. For each example,

we create 4,9,36,121,441 scenarios by generating the right hand sides r(ω) from equidis-

tant lattice points in [5, 15] × [5, 15] with equal probability assigned to each point (this

methodology was borrowed from [ATS04]). For the four instances based on Example 1.3,

besides random right hand side r(ω) =

[
r1(ω)
r2(ω)

]
, T (ω) is also random by setting T (ω) =[

1/r1(ω) 1− 1/r1(ω)
1/r2(ω) 1− 1/r2(ω)

]
. Table 2.7 shows the result comparing M-D2 with CPT-D and

BB-D with deterministic equivalent solved by default setting of CPLEX 12.3 MILP solver

(running on Windows with Intel i7-3770K 3.5GHz). In the table, Instance 1-3 corresponds to

variations based on Example 1.1-1.3. Obj denotes the optimal objective value of the SMIP.

Var and Constr denotes the number of variables and constraints in the DEP. The entries

in column M-D2(CPT) and M-D2(B&B) denote Iterations (Master Nodes, Second-stage
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Leaf Nodes, Running Time) which correspond to the total number of iterations , the total

number of nodes in the B&B tree in the master problem, the maximum leaf nodes encoun-

tered during solving the subproblem and the total running time. The DEP column shows

the solving time of DEP from default CPLEX MIP solver. The max cpu time allowed is 20

minutes. Again, we reiterate that our algorithms were coded in the Matlab environment.

From Table 2.7’s result, between column M-D2(CPT) and M-D2(B&B), the same

result shows as in the examples that M-D2(B&B) needs less number of iterations to solve

the instance and as a result, it takes less running time for all the instances. Compared with

commercial solver’s running time on DEP, all three methods take longer time to solve the

instances as the scenarios getting larger. And for instances with 441 scenarios,M-D2(B&B)

takes less than half of running time of M-D2(CPT) to solve the three instances and the

MILP solver has difficulties to get the optimal objective within 20 minutes. Based on the

instances tested, algorithm M-D2 shows very stable results on the solving time relative to

CPLEX default MILP solver on DEP.

Scenarios Obj Var Constr M-D2(CPT) M-D2(B&B) DEP

Instance 1

4 -63.50 26 17 7 (4, 5, 0.27) 5 (4,5,0.14) 0.23
9 -66.56 56 37 20 (15, 10, 1.9) 18 (15, 10, 0.98) 0.02
36 -66.83 218 145 7 (2, 7, 1.34) 6 (2, 7, 1.01) 0.02
121 -67.17 728 485 7 (1, 8, 4.01) 6 (1, 8, 2.96) 0.16
441 -65.58 2648 1765 16 (3, 13, 41.90) 10 (2, 7, 15.27) 1.581

Instance 2

4 -63.50 26 17 20 (14, 10, 0.5) 12 (14, 10, 0.3) 0.02
9 -66.56 56 37 20 (15, 10, 1.72) 18 (15, 10, 0.94) 0.02
36 -69.86 218 145 19 (16, 10, 6.93) 18 (16, 10, 4.54) 0.03
121 -71.12 728 485 18 (16, 11, 22.46) 17 (16, 11, 13.51) 4.09
441 -69.64 2648 1765 20 (16, 20, 147.17) 18 (15, 21, 58.97) Failed(>20mins)

Instance 3

4 -63.50 26 17 18 (15, 15, 1.31) 18 (15,15,1.26) 0.00
9 -64.22 56 37 25 (20, 20, 6.57) 22 (20, 20, 3.07) 0.13
36 -65.94 218 145 28 (22, 23, 33.43) 30 (22, 23, 14.87) 4.18
121 -66.52 728 485 31 (22, 25, 122.57) 32 (22, 25, 51.03) Failed(>20mins)
441 -68.30 2648 1765 31 (23, 25, 371.61) 31 (22, 28, 134.89) Failed(>20mins)

Table 2.7: Comparison of M-D2 with DEP
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2.5 Conclusion

We develop a decomposition algorithm to solve two-stage stochastic integer program.

The algorithm allows general mixed-integer variables in both stages as well as scenario de-

pendent matrices W and T . The algorithm uses multi-term disjunctive cuts to obtain value

function approximation of the second-stage mixed-integer programs. In fact, the multi-term

disjunctive cuts can be obtained via two alternative approaches: cutting plane tree method

and branch and bound tree convexification. Both of them are proved to be finitely conver-

gent. We proved that the proposed decomposition algorithm leads to finite convergence. To

the best of our knowledge, this is the first time-staged decomposition method that allows us

to partially solve subproblems with mixed integer variables ultimately guaranteeing that a

mixed-integer optimum is obtained. Since the cutting plane generation for the second stage

is separable between scenarios, the value function approximation of subproblems for each

scenario in our decomposition scheme can be obtained in parallel.

1Obj=65.576 and the solution has numerical issues
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Chapter 3: Solving Families of Mixed Integer Programs Arising in

Stochastic Mixed Integer Programming

3.1 Introduction

As computational and theoretical advances continue, it is now possible to derive al-

gorithms for solving stochastic mixed-integer programming problems with general integer

variables (SMIP-G). It is not trivial to solve these potentially large number of NP-hard

problems which are slightly different from each other depending on how random variables

appear in the constraints. However, the solutions of families of instances are closely related.

Our investigation starts by finding good approximations of the convex hull of mixed-integer

solutions: IP convex polytope approximation that may be helpful for re-optimizing future

LP-relaxations of IPs or IPs themselves.

Our study will be experimental in nature, and we will investigate both “wait-and-see”

and “here-and-now” formulations of stochastic programming problems. In the case of wait-

and-see problems, we consider situations in which the solution may have to be implemented

in real-time, as data becomes available. The models are NP-hard problems, but we can

compensate by setting up some approximations based on historical data in advance. This is

common in many production-operations models in which weekly aggregate plans are made

prior to observations of data, and once real-time data becomes available, the models are
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updated, and there is a need to solve problems with actual data rapidly. For instance,

suppose we have ample time to solve the problem with estimated cost vector c∗ and extract

any other information deemed useful. One can create strong LP approximations and once

the true cost vector c becomes known, we must quickly, possibly in real time, verify if the

solution to the problem with estimated cost c∗ is still optimal, and, if not, produce a solution

to the problem with true cost c. The other class of models in stochastic programming are

often referred to as here-and-now models. For this class of models, some part of the plan

must be made prior to observing the data, and other pieces of the plan can be implemented

later. It is common to solve these problems by decomposing the planning process into two or

more stages. When the second stage model is an MILP, it is again necessary to solve a family

of mixed-integer linear programming (MILP) problems which may benefit from preparations

that help create stronger LP approximations. In this way, the approximation used to solve

one scenario with fixed first stage solution x can be treated as a warm-start point for other

scenarios, and also used to solve scenarios with different first-stage solution x.

3.2 Methods for approximating convex hull of mixed-integer points

For a general MILP with n variables

min
x∈X

c>x (3.1)

where X = {Ax ≥ b, x ∈ Zn1 × Rn−n1} and the first n1 variables are required to be integer,

A is a m×n matrix and the bounding constraints {lj ≤ xj ≤ uj for j = 1...n} (if they exist)

are assumed to be included in X. We define XIP as the convex hull of all the mixed-integer

feasible points in X. Of course, obtaining it for a general MILP problem is a far-reaching

goal. So we take a wider perspective and propose an outer approximation of XIP which is
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required to satisfy the following conditions

min
x∈X

c>x = min
x∈XC

c>x (3.2)

X ⊆ XC (3.3)

where XC is a convex polyhedron. While XIP is such a polyhedron, not all approximations

that satisfy (3.2-3.3) are convex hulls of X.

Branch and bound (B& B) method [LD60] is a popular method for solving MILP problems

and is included in most state-of-art MILP solvers. Recent advances in the cutting plane

methods [CKS12] for solving MILP problems make it possible to transform the B&B tree

obtained from an MILP solve to create a polyhedral approximation that gives the same IP

optimal value as obtained from the B&B method. The disjunctive nature of leaf nodes used

in the B&B method make it possible to obtain XC from it. For the remainder of this section,

we describe such an algorithm and prove that this approximation can be obtained in finitely

many steps.

Let the LP relaxation of X be

XL = {Ax ≥ b, x ∈ Rn}. (3.4)

Suppose problem (3.1) is solved by the B&B method and its optimal solution is x∗. We also

have the set of leaf nodes Q = Qremain∪Qfathom where Qremain are the remaining leaf nodes in

the B&B tree and Qfathom are the leaf nodes that are fathomed. Suppose there are T nodes

in Q with each node having bounding constraints denoted as Qt:

Qt = {x|Lt ≤ x ≤ Ut}. (3.5)

Qt, t ∈ {1, ..., T} are disjoint from each other. Q provides us a disjunctive relaxation of X:

XD =
⋃
t∈T

(XL

⋂
Qt). (3.6)
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Our plan is to develop multi-term disjunctive cuts using XD. The set of hyperplanes

that characterizes the convex hull of XD (3.6) forms a cone. To truncate this set and obtain

a bounded solution, various normalization constraints have been studied in the literature

([Bal79], [BB09], [BP02] and [BCC93]). In [CKS12], the authors compared two normaliza-

tion schemes for multi-term disjunctions. In this chapter, we use the minimum l1 norm

cut (M1NC) version of normalization although others are clearly possible [Cad10]. A cut

generation LP with the M1NC normalization formulation is:

Minimize
∑
j

|πj|

s.t. π − A>λt − µt + νt = 0, for t ∈ {1, ..., T}

b>λt + L>t µt − U>t νt ≥ π>xk + 1, t ∈ {1, ..., T}

λt ≥ 0, µt ≥ 0, νt ≥ 0 t ∈ {1, ..., T}

(3.7)

where xk is a fractional point and satisfies xk /∈ XD. The cut derived from this cut-generation

LP has the following form:

π>(x− xk) ≥ 1. (3.8)

Similar to the cutting plane tree algorithm ([CKS11]), cuts (3.8) are derived and added into

XL each time a fractional solution is encountered. The algorithm to obtain a polyhedral

approximation has two phases. In the first phase, for each fractional solution encountered in

the B&B method, a cut is derived and added into XL. In the second phase, XL is updated

until no new fractional solution is encountered. The algorithm is shown in Algorithm 4.

Define clconv as the operation to get closure of the convex hull of a set. Then we have

the following theorem.

Proposition 5. Algorithm 4 terminates in finitely many steps (say K <∞) and the resulting

XK
L satisfies conditions (3.2) and (3.3).
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Algorithm 4 A cutting plane tree algorithm to obtain a polyhedral approximation using a
B&B tree as given.
Input: XL, set of leaf nodes Q = Qleft ∪Qfathom, all fractional points that were generated
during the B&B algorithm S.
Initialize iteration k = 1, LP relaxation Xk

L ←− XL. The cardinality of Q be T .
for all fractional solution x ∈ S do:

Formulate CGLP as in (3.7) using x, XL and Q. Solve it to get a cut.
end for
Set X1

L as XL plus all derived cuts.
while true do

Solve minx∈Xk
L
c>x and get solution xk.

if xk ∈
⋃
t∈{1..T}Qt then break.

else, formulate CGLP as in (3.7) using xk, XL and Q. Solve it to get a cut.
end if
Update Xk

L with the new cut and set it as Xk+1
L .

k ← k + 1.
end while

Proof. Each time xk changes,a new extreme point of the CGLP is generated. Because there

are finitely many extreme points of the CGLP and a subset of these corresponds to facets

of clconv{XD}, we will have xK ∈ XD in finitely many iterations, which is equivalent to

the stopping rules: xK ∈
⋃
t∈{1..T}Qt. For the latter part of the theorem, also from the

algorithm’s stopping rules, there exists xK such that xK ∈ XD. If xK = x∗, then obviously

(3.2) and (3.3) are met. On the other hand, let the output of the B&B procedure be denoted

as x∗. Suppose that xK 6= x∗. Since the B&B tree embodies the disjunction, it follows that

x∗ ∈ XD. Hence c>xK ≥ c>x∗. But since every solution generated by the algorithm is based

on approximations strengthened by valid inequalities, it follows that c>xK ≤ c>x∗. It then

follows that c>xK = c>x∗.
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3.3 Computational experiments with “wait-and-see” SMIP

As discussed in the introduction, there are several occasions in which uncertainty is man-

aged using a “wait-and-see” approach. In this section, we report results of a computational

experiment using the Algorithm 4.

The experimental plan was aimed at examining the accuracy of the approximation LP

obtained by Algorithm 4 and the time consumed to obtain such an approximation. In

this experiment we will also compare the performance of multi-term disjunctions with (ar-

guably) the most popular class of disjunctive cuts, namely, the Lift-and-Project (L& P) cuts

[BCC93]).

Algorithm 5 Algorithm for approximating IP convex polytope using lift-and-project cuts

initialize iteration k = 1, LP relaxation Xk
L ←− XL. Leaves nodes set Q = Qleft∪Qfathom

with the cardinality of Q be T . Fractional solution set from B&B method S
for each fractional solution x ∈ S do

for each fractional xj where j ∈ {1...n1} do
Derive lift and project cut using xj, XL.

end for
end for
Set X1

L as XL plus all derived cuts.
while ( dotrue):

Solve minx∈Xk
L
c>x and get solution xk.

if xk ∈
⋃
t∈{1..T}Qt then break.

else
for each fractional xkj where j ∈ {1...n1} do:

Derive lift and project cut using xkj , Xk
L.

end for
end if
Update Xk

L with the new cuts and set it as Xk+1
L .

Update k ← k + 1.
end while
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Cuts are derived for each fractional variable from the solution. Although it has been

shown in [Bal79] and [OM01] that the absence of facial disjunctive properties may lead to

infinitely convergent process for general MILP if using algorithm (in Table 5). Practically

lift-and-project cuts take less time to generate.

Our computational results are reported in two steps. In the first step, we compare

the performance of each algorithm in generating the approximation XD. The second step

determines the quality of the approximations by examining the solution time to recover

optimality using MIP solver after perturbing cost vectors as well as the quality of the LP

optimum using the approximation. All experiments were conducted on an Intel CPU 2500k

running at 3.3GHz. The CPLEX 12.3 LP/MIP solver was adopted to optimize all LPs/MIPs

encountered in the algorithms. We chose the instances from MIPLIB 2003 ([BES+96]) that

could be solved by the default setting of CPLEX MIP solver within 15 minutes. The basic

information of these instances are shown in Table 3.1. Num of Cols denotes the number

of variables. Num of Rows denotes the number of constraints. Num of Rows with

Cuts denotes the number of constraints on the root node from CPLEX MIP solver. Non

Zeros denotes the non-zeros elements in the constraint matrix on the root node. In the

experiment, XLP is initialized from the root node LP by CPLEX MIP solver. Then it is

solved by the B&B algorithm. The setting for Theorem 5 is impractical in practice because

the B&B tree is normally too large to use for generating cuts using the entire B&B tree.

Instead we truncate the B&B tree to a size that is manageable for the CGLP. The size we use

in the experiment is dictated by the number of leaf nodes T . Letting NZ denote the number

of non-zero elements of the matrix defining XLP , we limit T so that NZ ∗ T ≤ 3 × 104.

Compared to the experiments shown in [CKS12], which compare the performance of using

multi-term disjunctive cuts and two-term disjunctive cuts to solve MILP, this experiment
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Instances Num of Cols Num of Rows Num of Rows with Cuts Non Zeros
aflow30a.mps 842 479 594 4680
bell3a.mps 133 123 140 400
bell5.mps 104 91 110 372
blend2.mps 353 274 300 1920
dcmulti.mps 548 290 437 3530
fixnet6.mps 878 478 698 3885
flugpl.mps 18 18 25 107
gen.mps 870 780 813 2834

glass4.mps 322 396 525 2168
gt2.mps 188 29 53 744
lseu.mps 89 28 44 696

mas74.mps 151 13 15 1998
mas76.mps 151 12 15 2075
misc03.mps 160 96 111 2564
misc07.mps 260 212 224 9036
mod008.mps 319 6 24 5014
modglob.mps 422 291 427 2063
noswot.mps 128 182 188 778
p0033.mps 33 16 36 214
p0201.mps 201 133 156 3279
p0282.mps 282 241 302 2810
p0548.mps 548 176 253 2323
pk1.mps 86 45 45 915

pp08a.mps 240 136 289 1124
pp08aCUTS.mps 240 246 392 1732

qiu.mps 840 1192 1195 4436
rgn.mps 180 24 56 1084
rout.mps 556 291 317 3782
set1ch.mps 712 492 693 2327
stein15.mps 15 36 37 128
stein27.mps 27 118 118 378
stein45.mps 45 331 331 1034
vpm1.mps 378 234 275 1171
vpm2.mps 378 234 307 1322

Table 3.1: Instances

focuses more on comparing the time needed to obtain convex approximation as well as the

quality of this approximation given a B&B tree from the MILP solution using the multi-term

and two-term disjunctive cuts.
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Cuts using Multi-term disjunctions Lift-and-Project Cuts
Instances T NZ*T Time(secs) Cuts (nos) Obj Inc Time(secs) Cuts (no.) Obj Inc

aflow30a.mps 7 32760 33.649 6 15.05% 13.837 396 0.00%
bell3a.mps 76 30400 106.54 75 1.64% 0.328 90 0.00%
bell5.mps 81 30132 58.11 41 33.97% 3.713 948 0.00%
blend2.mps 16 30720 27.222 16 0.56% 2.668 358 0.00%
dcmulti.mps 9 31770 44.382 8 15.20% 8.892 378 >100%
egout.mps 7 2912 0.094 6 95.60% 0.11 22 0.00%
fixnet6.mps 8 31080 79.701 7 14.10% 24.398 225 0.00%
flugpl.mps 149 15943 60.076 657 53.92% 9.048 2909 0.00%
gen.mps 5 14170 5.491 4 100.00% 0.344 10 100.00%

glass4.mps 14 30352 2.512 6 100.00% 16.021 1133 >100%
gt2.mps 41 30504 48.407 18 0.00% 4.009 376 INSTABLE
lseu.mps 44 30624 17.207 43 0.56% 4.15 535 INSTABLE

mas74.mps 16 31968 2.028 15 100.00% 2.309 196 33.95%
mas76.mps 15 31125 0.592 0 0.00% 4.15 171 >100%
misc03.mps 12 30768 0.577 11 100.00% 3.292 331 35.26%
misc07.mps 4 36144 0.125 3 100.00% 1.544 76 67.74%
mod008.mps 6 30084 0.671 5 37.23% 2.012 92 0.00%
modglob.mps 15 30945 39.562 1 10.39% 7.082 304 0.00%
noswot.mps 39 30342 10.639 38 NO INC 4.618 698 NO INC
p0033.mps 2 428 0 1 NO INC 0.016 2 NO INC
p0201.mps 10 32790 7.722 9 0.00% 9.5 615 0.00%
p0282.mps 11 30910 5.023 10 24.93% 6.131 487 0.00%
p0548.mps 13 30199 49.639 12 24.99% 6.645 434 0.00%
pk1.mps 33 30195 65.504 32 NO INC 4.181 480 NO INC

pp08a.mps 27 30348 171.943 26 25.36% 12.199 658 0.00%
pp08aCUTS.mps 18 31176 47.33 17 8.62% 7.503 426 0.00%

qiu.mps 7 31052 18.58 6 37.36% 9.469 224 0.00%
rgn.mps 28 30352 5.429 27 5.82% 2.933 293 0.00%
rout.mps 8 30256 9.251 7 100.00% 43.586 310 >100%
set1ch.mps 13 30251 286.104 12 64.78% 51.746 1547 0.00%
stein15.mps 133 17024 3.853 132 66.67% 7.785 945 0.00%
stein27.mps 80 30240 21.497 79 0.00% 15.164 1560 0.00%
stein45.mps 30 31020 16.177 29 0.00% 17.691 1155 0.00%
vpm1.mps 26 30446 37.113 25 NO INC 3.962 254 NO INC
vpm2.mps 23 30406 166.046 22 7.17% 6.443 397 0.00%

Sum 1448.796 1406 317.479 19035

Table 3.2: Performance of Convex Polyedral Approximations using Multi-term and Lift-and-Project Cuts
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3.3.1 Performance of Polyhedral Approximations using alternative
types of disjunctions

The experiment results are shown in Table 3.2. In the table, T denotes the leaves’ size.

Cuts count shows the number of cuts added. obj inc means the relative objective gap

closed for the convex approximation obtained. Its calculation is shown in (3.9),

(ObjC −ObjLP )/(ObjB −ObjLP ) (3.9)

where ObjC is the LP value obtained by the approximation. ObjLP is the LP relaxed

value without the B&B. ObjB is the objective value obtained from the truncated B&B. If

ObjB − ObjLP = 0, we denote the Obj Inc as NOINC. Because of instability of CGLP,

instance “gt2.mps” and “lseu” have invalid cuts in the solving process (shown in Table 3.2).

We can see from the result , there are four instances: “dcmulti”, “glass4”, “mas76” and

“rout” that give higher objectives than the B&B optimal objective value. This is when the

disjunctive cut shows better performance than B&B method under a fixed solution time.

For other instances, multi-term disjunctions provide stronger approximations (i.e., higher

LP objective values) than L&P in most cases. On average, approximation using L&P cuts

takes less time to generate while producing many more cuts.

3.3.2 Comparison of IP solution times

The next step of the experiment considers the situation in which we warm start the MILP

by using the polyhedral approximation obtained in the previous step. Instances that have

feasible approximations for both algorithms in the previous experiment are included in this

experiment. The cost coefficient ci is randomly perturbed within p% of its original value for

each instance as shown in (3.10).

ci = ci(1 + 0.01pUi) (3.10)

42



where Ui ∼ U(−1, 1) is a random variable conforming to uniform distribution between

(−1, 1). For each instance and p ∈ {5, 10, 20, 50, 100}, we examine 20 random generated cost

vectors and measure the approximations performance by comparing

1 the difference between real objective value with the objective value obtained from

solving approximation LP,

2 the solution time,

3 and the solution time after warm-starting using the approximate LP.

The methods included are

1 CPLEX MILP solver (IP),

2 using approximation by Algorithm 4 and solve it as LP (Multi-term),

3 using approximation by Algorithm 4 and solve it as IP (Multi-term warm start for IP),

4 approximation obtained by Algorithm 5 and solve it as LP (L&P LP),

5 and approximation obtained by Algorithm 5 and solve it as IP (L&P warm start for

IP).

The detailed result for deviation from the IP optimal solution is shown in Table B.1 of

Appendix-B. Suppose the approximated objective value is Va, the true value is V , and the

deviation is measured by (3.11)

(V − Va)/|V | (3.11)

For each (instance, p) pair, 20 replications are performed in the experiment. The deviation

results of the 20 replications are summarized using mean (the average of deviation), std(the
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standard deviation), 5% prc (5% percentile), 95% prc (95% percentile). If we compare

the deviation of LP optimal for the approximation from the IP optimal, approximation with

multi-term disjunctive cuts has less deviation in total. At the same time, the solution time in

Table B.2 of Appendix B shows that approximations obtained using multi-term disjunctive

cuts also takes less time in total.

When using the approximation as a starting point to continue optimizing to IP optimal,

we compare the solution time for the three methods and rank them from 1 to 3 for each

instance tested in the experiment. A summary of the solution time ranking is provided in

Table 3.3 where the numbers in the table denote how many times the method is placed as

Rank 1, 2, or 3 in the experiment. We can see from the result that L&P gets the most

counts of Rank 1 and is comparable to CPLEX. Multi-term disjunctive cuts in this case,

has the most counts of Rank 3 and least counts of Rank 1 and 2. In summary, if using

Rank Multi-term disjunctive Cuts L&P CPLEX
1 22 55 52
2 31 49 55
3 77 26 23

Table 3.3: The ranking of solution time to IP Optimal

approximation as a starting point to approach IP optimal, approximation obtained using

L&P cuts is better. If only using approximations’s LP optimal to approximate IP optimal,

approximations derived by multi-term disjunctions are better.
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3.4 Stochastic Integer Programming with Recourse

In this section, we focus our experiment on solving the stochastic mixed-integer program-

ming (SMIP) problems with recourse. The goal is to verify whether it is possible to speed

up existing SMIP algorithms using polyhedral approximations.

The specific algorithm we investigate is perhaps the oldest decomposition-based algorithm

for SMIP, namely, the integer L-shaped method of Laporte and Louveaux ([LL93]). We will

refer to this algorithm as the L2 method. Since this method requires that we solve each

subproblem MILP in each iteration, it may be possible to reduce solution times for each

scenario by warm-starting each subproblem SIP using cuts that may have been generated in

previous iterations.

Suppose we have a two-stage SMIP. Its subproblems have the following formulation for

each scenario (realization) ω of ω̃:

f(x, ω) = min gTy

s.t. Wy ≥ r(ω)− T (ω)x

y ∈ Y ∩Q

(3.12)

where

Y = {y | yj ≥ 0,∀j ∈ J1 ⊆ {1...n2}

yj is integer,∀j ∈ J2 ⊆ {1...n2}\J1} ⊆ Rn2

Q = {y | l ≤ y ≤ u}

and x is the first stage variable. Then for fixed xk and scenario ω, suppose we have the

fractional solution y∗(ω) from (3.12). The multi-term disjunctive cut (3.13) can be obtained

based on (3.7).

π>(y − y∗) ≥ min
t∈{1...T}

((r(ω)− T (ω)x)>λt + l>t µt − u>t νt) = π0(x, ω) (3.13)
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For iteration k′ > k with different xk′ or ω′ 6= ω, we can derive a new valid multi-term

disjunctive cut by just inserting xk
′ or ω′ into π(x, ω) which is generated from previous

iterations or other scenarios. We call this process “warm starting subproblems solution”.

However, it is important to note that without additional simplifications (as suggested by

convexifications proposed in Sen and Higle (2005)), cut generation can become extremely

complicated because of nested formulas using (3.13) beyond the first “warm-start”. Hence

our conclusions will be limited to only using one set of cuts, generated at the start of the

process. In the experiment, we allow generating convex polytope approximation up to a

certain iteration Ka and only one approximation generated for each scenario. After iteration

Ka, these approximation are used to warm-start the subproblem solution. The algorithm is

shown in Algorithm 6.

Algorithm 6 L2 algorithm with subproblems warm start
initialize iteration k = 1, approximation iteration limit Ka, objective value lowerbound
v = −∞, upperbound V =∞ and stopping limit ε.
while ( dotrue):

Solve master problem and obtain xk, v.
If V − v ≤ ε, break.
for each fractional scenarios ω ∈ Ω do

if k > Ka then
Solve the subproblem f(xk, ω) using B&B method.
Obtain approximation using Algorithm (Table-4) or (Table-5) for scenario ω.

else
Warm start subproblem solution.
Solve the subproblem f(xk, ω) using the approximation.

end if
Obtain the subproblems value function cut as described in L2 algorithm.
Update objective upperbound V .
Update k ← k + 1.

end for
end while
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We test the L2 algorithm using stochastic server location problem (SSLP) instances

([NS05]). The need for such models may arise in circumstances where the presence of demand

in a network is not known with certainty at the time that server location decisions need to be

made. As an example, the Department of Defense may be interested in choosing the locations

of bases, recognizing that terrorist threats may occur in the future. Similar applications

arise in situations in which discrete resources must be assigned to tasks before complete

information regarding the location or type of tasks become known. The size of the model is

captured by the name “SSLP-m-n-S”, where m is the number of potential server locations,

n is the number of potential clients and S is the number of scenarios. We generated a set

of SSLP instances following the method in ([NS05]). Table 3.4 gives the dimensions of the

deterministic equivalent problems and their subproblems for comparative purposes. Here,

the column Bvars reports the number of binary variables and the column Cvars reports

the number of continuous variables.

The experiment has five settings as shown in Table 3.5. The first one is purely the

L2 algorithm. It is compared with the decomposition algorithm described in Algorithm 6.

Inside Algorithm 6, two proposed methods are compared to get the approximation of second

stage mix-integer points’ convex hull as shown in the Approximation Algorithm column.

In addition, recall that π0(x, ω) shown in (3.13) is valid for any pair of (x, ω). Thus the

cuts derived for one scenarios approximation can be used to set up approximations for other

scenarios. To test the effectiveness of utilizing cuts from other scenarios, another option

column is inserted called Warm-starting approximation sources. The algorithm can

use either all scenarios’ cuts or merely its own cuts from previous iterations. The iterations

that allow generating cuts in the approximation are restricted by k̄ as shown in Algorithm 4

and Algorithm 5. All instances are tested under the experiment settings shown in Table 3.5
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DEP Subproblem
Instances Constrs Bvars Cvars Constrs Bvars Cvars

sslp_5_25_50 1501 6255 250 30 130 5
sslp_5_25_100 3001 12505 500 30 130 5
sslp_6_25_50 1551 7506 300 30 130 5
sslp_6_25_100 3101 15006 600 30 130 5
sslp_7_25_50 1601 8757 350 30 130 5
sslp_7_25_100 3201 17507 700 30 130 5
sslp_5_50_50 2751 12505 250 55 255 5
sslp_6_50_50 2801 15006 300 55 255 5
sslp_7_50_50 2851 17507 350 55 255 5

sslp_5_25_1000 30001 125005 5000 30 130 5
sslp_6_25_1000 31001 150006 6000 30 130 5
sslp_7_25_1000 32001 175007 7000 30 130 5
sslp_5_50_1000 55001 250005 5000 55 255 5
sslp_6_50_1000 56001 300006 6000 55 255 5
sslp_7_50_1000 57001 350007 7000 55 255 5

Table 3.4: Instances Dimension

Settings Decomposition
Algorithm

Approximation
Algorithm

Warm-starting
approximation
sources

1 L2 algorithm N/A N/A
2 Algorithm-6 Algorithm-4 scenario’s own
3 Algorithm-6 Algorithm-4 all scenarios’
4 Algorithm-6 Algorithm-5 scenario’s own
5 Algorithm-6 Algorithm-5 all scenarios’

Table 3.5: Settings Description

with k̄ ≤ 1. We also did the experiment with k̄ ≤ 3 on instances with less than 50 scenarios

for comparison purposes.

To ensure the reliability of the experiment, all computational results reported in this

section were averaged based on 10 replications. The results are shown in Table 3.6. From
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k̄ ≤ 1 k̄ ≤ 3
Settings 1 2 3 4 5 1 2 3 4 5
sslp_5_25_50 1.59 1.49 1.57 1.41 1.51 1.62 1.76 1.88 1.51 1.67
sslp_5_25_100 3.28 3.09 3.44 2.98 3.34 2.88 3.06 3.53 2.76 3.45
sslp_6_25_50 3.63 3.28 3.47 3.25 3.54 3.67 3.63 3.95 3.39 3.90
sslp_6_25_100 7.67 6.90 7.69 6.74 7.84 7.43 7.21 8.55 7.00 8.75
sslp_7_25_50 9.06 8.35 9.05 8.20 8.70 8.95 8.60 9.35 8.25 9.28
sslp_7_25_100 16.79 15.13 16.74 14.89 17.43 16.45 15.53 18.29 14.97 19.11
sslp_5_50_50 8.38 12.93 13.40 8.59 8.96 8.22 21.99 23.15 8.85 9.80
sslp_6_50_50 15.52 19.10 20.12 15.23 15.98 15.20 27.30 29.75 15.51 17.51
sslp_7_50_50 30.21 35.51 37.73 29.69 31.55 29.82 47.43 53.01 30.08 34.44
Average 10.68 11.75 12.58 10.11 10.98 10.47 15.17 16.83 10.26 11.99
sslp_5_25_1000 27.41 24.76 48.22 24.08 57.03
sslp_6_25_1000 71.20 64.86 139.80 63.86 163.20
sslp_7_25_1000 170.37 158.81 349.41 154.77 408.48
sslp_5_50_1000 156.80 249.33 418.15 158.76 296.93
sslp_6_50_1000 301.30 427.43 813.75 310.35 622.37
sslp_7_50_1000 589.21 726.47 1549.94 577.15 1320.16
Average 219.38 275.28 553.21 214.83 478.03

Table 3.6: SIP experiment solution time (secs) comparison

the result, we can see for both k̄ ≤ 1 and k̄ ≤ 3, approximation using L&P cuts achieved

the best performance, and approximation using multi-term disjunctive cuts takes the longest

time on average. The warm-start using approximation from all scenarios (settings 3 and 5)

does not help in reducing the solution time (compared with settings 2 and 4) which means

the overhead of all scenarios’ cuts is much larger than its benefits. One possible reason

is there is no overlap among the feasible regions of different scenarios. From the result of

settings 1, 2 and 4, for instances with less variables in the subproblems (e.g., n = 25), the

approximation method using multi-term disjunctive cuts (setting 2) outperforms the pure

L2 method (setting 1) and is almost the same in solution time as approximations with L&P

cuts (setting 4) for all instances. This suggests that warm-start subproblems using multi-

term disjunctive cuts also helps in solving stochastic programming problems. For instances

with more variables (e.g., n = 50), the B&B tree grows and CGLP takes longer time to
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derive multi-term disjunctive cuts, which can be seen from the details of solution times

in Figure-3.1. The time that it takes to obtain approximation is in orange color and the

remaining solution time is in blue. If we only look at the blue part, the L2 decomposition

method is warm-started more effectively by the approximation from multi-term disjunctive

cuts than from L&P cuts. The detail time data is shown in Table-3.7 where the blue part is

represented as Time spent on decomposition. Most instances (9 out of 15) shows multi-

term disjunctive cut (setting 2) are better in warm-starting the L2 algorithm excluding the

cut generating time.
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(a) sslp-m-25-50 (b) sslp-m-25-100 (c) sslp-m-25-1000

(d) sslp-m-50-50 (e) sslp-m-50-1000

Figure 3.1: The details of total solution time
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k̄ ≤ 1 Time spent on CGLP (orange) Time spent on decomposition (blue)
Settings 2 4 2 4
sslp_5_25_100 0.37 0.27 2.72 2.72
sslp_5_25_1000 3.21 2.49 21.55 21.59
sslp_5_25_50 0.20 0.12 1.29 1.29
sslp_5_50_1000 97.55 5.53 151.78 153.23
sslp_5_50_50 4.70 0.27 8.23 8.32
sslp_6_25_100 0.39 0.29 6.51 6.45
sslp_6_25_1000 4.48 2.88 60.38 60.99
sslp_6_25_50 0.21 0.14 3.07 3.12
sslp_6_50_1000 131.02 6.47 296.42 303.89
sslp_6_50_50 4.21 0.31 14.89 14.92
sslp_7_25_100 0.45 0.32 14.68 14.57
sslp_7_25_1000 6.69 3.27 152.12 151.50
sslp_7_25_50 0.26 0.16 8.10 8.04
sslp_7_50_1000 157.80 7.46 568.67 569.68
sslp_7_50_50 6.32 0.37 29.19 29.32
Average 26.24 2.15 83.85 84.60

Table 3.7: Two approximation methods detailed time comparison (secs)

3.5 Conclusion

We proposed a finite algorithm for obtaining the approximation of convex hull of mixed-

integer solutions. It uses multi-term disjunctive cus which are derived from disjunctions

formulated from the leaf nodes of a Branch and Bound tree. The method is investigated

using computations with both wait-and-see as well as here-and-now formulations of stochastic

programming problems. It is also compared with a competing algorithm that uses lift-and-

project cuts to get the approximation. Although it has been shown for some cases to incur

infinite loops, our experiment shows for both wait-and-see and here-and-now situations, the

approximations obtained from the algorithm with lift-and-project cuts is better in terms of

continuing optimization to optimality and warming-up the subproblem solution in the L2

decomposition algorithm. At the same time, the algorithm with multi-term disjunctive cuts
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needs fewer cuts to generate the same or better quality of approximations but takes a longer

time to derive the cut.
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Chapter 4: Computing with Multi-term Disjunctions under

Cutting Plane Tree Framework

4.1 Introduction

Mixed-integer linear programming (MILP) problems have been studied for decades. Nu-

merous theories and algorithms have been developed. However, the knowledge-base is far

from clear to perform post-optimality analysis for MILP problems [Gre98]. This is a major

road-block for developing solution algorithms for two-stage stochastic mixed-integer pro-

grams (SMIP). This chapter is a follow-on to two recent papers [CKS11] and [CKS12]. In

[CKS11] the authors developed a cutting plane algorithm (called CPT algorithm) for solving

general mixed-integer linear programming problems (MILP-G) using disjunctive cuts and

it is proved to a finite procedure even for instances from [OM01] and [CKS90] which are

not finite if solved only by splitting disjunctions. In [CKS12] computational experiments

are conducted for CPT algorithms with different normalization in the cut generation LP

(CGLP).

In the current chapter, we continue on the line of algorithmic work for CPT algorithm.

We compare CPT algorithm with different variable splitting rules. We also develop some

specialized methods for solving multi-term CGLP arising in the CPT algorithm. Computa-

tional comparisons are given within CPT algorithm framework for these methods. There are
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methods solving multi-term CGLP in the literature. In [BP02], the authors proposed four

methods to solve multi-term CGLP and their computational results suggest Benders’ de-

composition algorithm is faster over the other three methods. Nevertheless, the experiments

reported in [BP02] were not intended to test the effectiveness of multi-term disjunctions

in solving MILP-G instances. In [PB01a], the authors proposed methods using simplex

tableau methods to solve two-term CGLP. Although it is not for multi-term CGLP solving,

it motivates us to find similar methods for multi-term CGLP.

This chapter is organized in the following order: In section 4.2, we will briefly introduce

CPT algorithm. Based on the CPT framework, section 4.3 will state three variables splitting

strategies with comparisons using computational experiment. In section 4.4, we will study

methods for solving multi-term CGLPs. In section 4.5, we continue the experiments with

multi-term CGLP and test them in solving MILP instances. Finally, we summarize results

and suggest future research directions.

4.2 CPT cuts

Consider a mixed-integer linear programming problem with n variables

min
x∈X

cTx (4.1)

where X = {Ax ≥ b, x ∈ Zn1 × Rn−n1} and first n1 variables are required to be integer.

A is a m× n matrix and the bounding constraints {lj ≤ xj ≤ uj for j = 1...n} (if exist) are

assumed to be included in X. Let the LP relaxation of X be

XL = {Ax ≥ b, x ∈ Rn}. (4.2)

The multi-term disjunctive cuts are generated by considering a disjunctive relaxation of X:

XD =
⋃
t∈T

(XL

⋂
Qt), (4.3)
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where Qt, t ∈ {1, ..., T} are a series of bounding constraints that are disjoint from each other.

Qt = {x|Lt ≤ x ≤ Ut}. (4.4)

In the CPT algorithm, Qt’s are maintained by a tree structure T with each Qt being the

bounding constraints for a leaf node. The set XD (in Equations-4.3) is a cone. To truncate

this feasible set and obtain a bounded solution, various normalization constraints have been

studied in the literature ([Bal79], [BB09], [BP02] and [BCC93]). In [CKS12], the author

compared two normalization schemes under the CPT algorithm. Our experiment uses the

minimum one norm cut (m1nc) version [Cad10] of normalization although others are clearly

possible. The m1nc normalization formulation is:

Minimize
∑
j

|πj|

s.t. π − A>λt − µt + νt = 0, for t ∈ {1, ..., T}

b>λt + L>t µt − U>t νt ≥ π>xk + 1, t ∈ {1, ..., T}

λt ≥ 0, µt ≥ 0, νt ≥ 0 t ∈ {1, ..., T},

(4.5)

where xk is the fractional solution to be cut off. The cut derived is:

π>(x− xk) ≥ 1.

Detailed description and convergence proof of algorithms using CPT cuts to solve a general

MILP is in [CKS11]. We present a simplified version of the algorithm in Table 4.1.

4.3 Computations with different variable splitting strategies

As CPT algorithm (shown in Table 4.1) proceeds, CPT tree grows as needed. Same as

how B&B tree grows in the B&B method, there are various approaches for a CPT tree to

grow by splitting variables (Table 4.1- Step 4) and the way to split variables can influence
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• Initialize.: Set iteration k = 1, LP relaxation Xk
L ←− XL.

Let tree T k = {root} with leaf nodes number T = 1.

• While(true):

1. Solve minx∈Xk
L
c>x and get solution xk.

2. If xk ∈ Zn1 × Rn−n1 , BREAK.

3. Else, for each fractional xkj where j ∈ {1...n1}:
(a) Formulate CGLP using T k, xkj , Xk

L.
(b) Solve CGLP and get a CPT cut.

4. Split nodes in T k.
5. Update Xk

L with new CPT cuts.

• End while

Table 4.1: CPT Algorithm

the performance of the algorithm. In this section, we are going to examine the impact of

different variable splitting strategies on the CPT algorithm. The strategy used in [CKS12] is

called conservative splitting. As shown in Table 4.2, conservative splitting rule splits a node

in the CPT tree only when a variable turns from fractional number in previous LP relaex

solution vector to integer in the current solution vector. Apparently, one could allow more

aggressive variable splitting strategy. We propose two strategies which are more aggressive:

maximum gap splitting (Table 4.3) and aggressive splitting (Table 4.4).

Maximum gap splitting makes splits a little bit more than conservative since it allows

splitting in each iteration. For aggressive splitting, it is based on maximum gap splitting and

splits variables also when the current solution is not belonged to any leaf nodes of cutting

plane tree. In this situation, the variables chosen to split are based on vertices xkt calculated
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Conservative Splitting:

• Splitting conditions:

– xk belongs to a leaf node of CPT tree.

– ∃ j ∈ {1...n1} such that xk−1
j is not integer while xkj is integer.

• Variable selection:

– The first variable j that satisfies splitting condition

Table 4.2: Conservative Splitting

Maximum Gap Splitting:

• Splitting conditions:

– xk belongs to a leaf node of CPT tree.

• Variable selection:

– Suppose xk ∈ Qt, fkl (j) = min{c>x|x ∈ Xk
L

⋂
Qt

⋂
{x ≤

bxjc}} and fkr (j) = min{c>x|x ∈ Xk
L

⋂
Qt

⋂
{x ≥

dxje}}, the splitting variable is selected with the maxi-
mum gap closure: arg minj∈{1..n1}{max(fkl (j), fkr (j))}.

Table 4.3: Maximum Gap Splitting

from the dual solution of the multi-term CGLP. Detailed description of these vertices is

shown in Appendix C.

We design a computational experiment to compare these variables splitting rules under

CPT algorithm. The goal of the experiment is to examine the impact of tree exploration and

the progress of CPT algorithm. The instances we use are from MIPLIB 3.0 and MIPLIB

2003 libraries. A full description of the instances is shown in Appendix D. The experiment
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Aggressive Splitting:

• If xk belongs to a leaf node of CPT tree, the rules are same
as Maximum Gap Splitting.

• Else for each vertices supporting the CPT cut, choose a vari-
able to split.

– Variable selection:

∗ For vertex xkt ∈ Qt, the first variable that is frac-
tional is selected.

Table 4.4: Aggressive Splitting

is conducted on a machine with Quad Xeon E5430 /2.66GHz/32GB RAM under Linux.

All linear programming problems are solved by default CPLEX (v. 12.2) LP solver. The

stopping rule of the algorithm is the same as in [CKS12] (i.e. min{xkj −bxkj c, dxkj e−xkj} ≤ ε).

We set ε = 10−6. All instances are given one-hour time limit to solve. To make a more

thorough comparison, we also include a “no splitting” rule which does not use CPT tree to

record any splits on variables. It basically adds “round of” elementary cuts in each iteration.

Following this rule, the CGLP only contains one-term or two-term disjunctions depending

on each term’s feasibility.

The results are shown in Table 4.5 for MILP-B and Table 4.6 for MILP-G. The instances

with bold fonts are with greater than 1000 number of variables. Time(secs), Disj, #Iter,

#Cuts, GapCl denote the solving time in seconds (>3600 means solving time exceeds 3600

secs), the number of disjunctions (T ) at termination, the number of iterations of CPT , the

number of cuts added in total and the percentage of integrality gap closed.

As we can see from the result, in Table 4.5, for instances with relatively small number of

variables, more aggressive variable splitting obtains better integrality gap closure (i.e., misc03
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and stein15). For relatively large instances, the “no splitting” rule performs better. Similar

phenomena is captured in Table 4.5. On average, the disjunctions size (T ) on termination

increases from left to right of the table which conforms to our design intention of exploring

the tree more aggressively. However, the average gap closure does not increase. At the same

time, the average number of iterations and the average number of cuts added also decreases

as the algorithm explore CPT tree more aggressively. This implies that CPT algorithm is

slowed down. Because CPT tree is explored more aggressively, the size of disjunctions is also

growing faster. So the multi-term CGLP used in the CPT algorithm is becoming increasingly

time-consuming to solve. If there are methods that can reduce the impact of disjunction size

to the solution of multi-term CGLP, CPT algorithm may perform better.
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Instances No Splitting Conservative Splitting Maximum Gap Splitting Aggressive Strong Branching (First both) Limited
Problem Time(secs) #Disj #Iter #Cuts GapCl Time(secs) #Disj #Iter #Cuts GapCl Time(secs) #Disj #Iter #Cuts GapCl Time(secs) #Disj #Iter #Cuts GapCl
aflow30a >3600 1 27 2018 77.99% >3600 2 27 1924 75.35% >3600 4 24 1669 72.24% >3600 22 14 823 58.87%
danoint >3600 1 28 1276 3.65% >3600 3 26 1163 2.61% >3600 4 20 803 1.74% >3600 13 12 443 1.74%
dcmulti 590.71099 1 208 1786 100.00% 1326.6 3 30 1458 100.00% 2222 5 26 1236 100.00% >3600 39 15 702 94.14%
egout 0.88 1 6 85 100.00% 2.61 2 7 109 100.00% 3.394 6 8 111 100.00% 3.1 8 8 111 100.00%
enigma >3600 1 622 10136 NO GAP >3600 48 153 1584 NO GAP >3600 40 121 1520 NO GAP >3600 135 77 909 NO GAP
fixnet6 >3600 1 53 2493 97.98% >3600 5 23 1032 90.17% >3600 9 14 652 87.17% >3600 11 11 505 83.60%
glass4 >3600 1 53 6710 0.00% >3600 14 30 144 58.00% >3600 11 17 2106 0.00% >3600 4 5 261 0.00%
lseu >3600 1 154 5520 73.70% >3600 3 154 5300 63.14% >3600 7 156 5437 63.56% >3600 316 34 749 51.65%

markshare1 >3600 1 1053 6498 0.00% >3600 80 92 550 0.00% >3600 83 88 518 0.00% >3600 74 71 424 0.00%
markshare2 >3600 1 861 6111 0.00% >3600 68 77 539 0.00% >3600 66 71 487 0.00% >3600 57 57 390 0.00%

mas74 >3600 1 402 11570 9.95% >3600 2 376 10443 9.93% >3600 6 286 7584 9.76% >3600 157 101 1602 13.07%
mas76 >3600 1 333 8855 10.52% >3600 3 263 6198 10.26% >3600 8 183 2716 9.02% >3600 171 106 1516 15.10%
misc03 >3600 1 131 11095 79.54% >3600 3 136 11484 60.76% >3600 16 120 9992 59.52% 2503 77 78 4302 100.00%
misc07 >3600 1 75 10171 17.26% 1027.88 3 43 4741 12.04% >3600 3 59 7450 14.46% >3600 61 55 5198 24.91%
mod008 >3600 1 67 2070 31.81% >3600 2 73 2191 32.34% >3600 4 69 2101 31.92% >3600 70 15 205 20.01%
modglob >3600 1 13 609 99.76% 3139 5 22 829 100.00% >3600 7 12 521 98.76% >3600 11 10 432 97.20%
opt1217 >3600 1 137 6040 0.90% >3600 14 33 1014 0.53% >3600 10 72 3745 1.28% >3600 28 18 539 0.53%
p0033 >3600 1 351 8250 99.62% >3600 4 355 8608 94.44% >3600 10 268 6093 100.00% >3600 171 99 2096 99.98%
p0201 >3600 1 34 3277 84.73% >3600 2 33 3398 87.37% >3600 3 32 3215 86.66% >3600 63 15 1067 62.02%
p0282 >3600 1 67 3841 98.40% >3600 2 76 4164 98.44% >3600 5 62 3075 98.24% >3600 176 20 622 96.68%
p0548 180.98 1 28 986 100.00% 921 3 52 2180 100.00% >3600 9 18 1170 99.98% >3600 18 15 925 99.82%
pk1 >3600 1 495 8506 0.00% >3600 31 48 718 0.00% >3600 28 61 939 0.00% >3600 81 31 473 0.00%

pp08a >3600 1 62 2788 99.60% >3600 2 62 2800 99.54% >3600 3 68 3071 99.69% >3600 78 16 665 98.50%
pp08aCUTS >3600 1 60 2743 98.84% >3600 2 61 2790 98.80% >3600 5 57 2615 98.82% >3600 27 17 662 96.04%

qiu >3600 1 21 910 80.31% >3600 1 21 932 80.42% >3600 2 22 960 80.38% >3600 16 10 421 74.01%
rgn >3600 1 93 3634 63.15% >3600 3 93 3781 64.81% >3600 3 90 3685 64.12% >3600 183 29 894 58.80%

set1ch 316.36 1 31 1511 100.00% 1074 5 31 1743 100.00% 1635 8 33 1863 100.00% >3600 17 14 1224 97.54%
stein15 >3600 1 781 11685 43.99% >3600 3 767 11472 43.14% >3600 3 832 12453 43.02% 49.1129 135 39 530 100.00%
stein27 >3600 1 284 7606 28.51% >3600 3 299 8012 26.67% >3600 5 304 8134 28.65% >3600 546 51 1296 48.09%
stein45 >3600 1 120 5262 7.38% >3600 2 125 5477 7.19% >3600 7 120 5239 4.61% >3600 229 27 1100 14.56%
vpm1 65.338 1 31 871 100.00% 387 2 70 2092 100.00% 1079.08 12 52 1564 100.00% >3600 67 18 485 76.87%
vpm2 >3600 1 68 3375 90.59% >3600 2 69 3302 90.60% >3600 5 61 3112 90.78% >3600 66 17 659 78.10%
Average 1 210.91 4946.50 58.01% 10.22 116.47 3505.38 58.28% 12.41 107.06 3307.38 56.27% 97.72 34.53 1007.19 56.83%
10teams >3600 1 12 1749 0.00% >3600 1 11 1575 0.00% >3600 4 6 701 0.00% >3600 5 5 614 0.00%
air03 123.619 1 2 36 100.00% 152.848 1 2 36 100.00% 162.967 2 2 36 100.00% 243.99 2 2 36 100.00%
air04 >3600 1 2 19 1.07% >3600 1 2 15 1.07% >3600 2 2 15 1.07% >3600 2 2 15 1.07%
air05 >3600 1 2 139 13.32% >3600 1 2 124 13.14% >3600 2 2 100 11.82% >3600 2 2 100 11.82%

cap6000 >3600 1 48 848 63.88% >3600 3 25 313 59.68% 2373.81 2 35 528 61.56% >3600 25 12 101 48.72%
dano3mip >3600 1 2 3 0.00% >3600 1 2 3 0.00% >3600 2 2 2 0.00% >3600 1 1 0 0.00%
fast0507 >3600 1 2 4 0.00% >3600 1 2 4 0.00% >3600 2 2 3 0.00% >3600 1 1 0 0.00%
fiber >3600 1 35 3121 91.29% >3600 2 35 3188 90.65% >3600 5 19 1271 68.90% >3600 19 11 532 48.58%
harp2 >3600 1 12 0 0.00% >3600 1 12 0 0.00% >3600 2 11 0 0.00% >3600 2 12 10 0.00%

khb05250 121.45 1 36 369 100.00% 210.497 3 50 476 100.00% >3600 8 27 303 99.91% >3600 2 12 10 99.39%
l152lav >3600 1 20 1773 27.82% >3600 1 20 1788 28.59% >3600 3 18 1463 26.66% >3600 10 9 595 17.89%
misc06 >3600 1 108 2166 65.53% >3600 8 15 223 37.02% >3600 12 14 196 37.00% >3600 14 14 198 37.03%
mitre >3600 1 5 2568 17.79% >3600 1 4 1637 10.26% >3600 3 3 1308 9.64% >3600 3 3 1122 8.09%
mkc >3600 1 13 1323 33.61% >3600 3 7 521 19.60% >3600 6 6 414 44.38% >3600 6 6 398 44.38%

mod010 >3600 1 22 1793 42.73% >3600 2 23 1371 31.22% >3600 3 23 1826 41.36% >3600 26 12 630 22.60%
mod011 >3600 1 18 642 6.95% >3600 2 17 567 6.77% >3600 2 23 855 7.31% >3600 16 10 270 5.26%
nw04 >3600 1 9 100 0.27% >3600 3 7 66 0.24% >3600 5 8 75 0.24% >3600 7 7 64 0.20%
p2756 >3600 1 60 2306 99.97% >3600 3 59 2229 100.00% >3600 10 17 956 97.88% >3600 17 14 774 88.53%

rentacar >3600 1 22 166 82.84% >3600 2 15 128 76.42% >3600 2 2 5 0.20% >3600 6 7 57 61.07%
seymour >3600 1 4 1704 50.35% >3600 2 3 1119 30.57% >3600 2 4 1632 50.92% >3600 4 4 1553 49.11%
swath >3600 1 7 420 0.40% >3600 2 5 220 0.21% >3600 3 8 430 0.35% >3600 3 3 110 0.12%
Average 1 21.00 1011.86 37.99% 2.10 15.14 743.00 33.59% 3.90 11.14 577.10 31.39% 8.24 7.10 342.33 30.66%

Overall average 1 135.66 3387.49 49.92% 7.00 76.32 2410.85 48.31% 9.04 69.06 2225.57 46.22% 62.26 23.66 743.75 46.26%

Table 4.5: Variable Splitting Rule Comparison - Mixed Binary Instances
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Instances No Splitting Conservative Splitting Maximum Gap Splitting Aggressive Strong Branching (First both) Limited
Problem Time(secs) #Disj #Iter #Cuts GapCl Time(secs) #Disj #Iter #Cuts GapCl Time(secs) #Disj #Iter #Cuts GapCl Time(secs) #Disj #Iter #Cuts GapCl
Bell3a >3600 1 794 6286 73.23% >3600 12 125 1184 74.62% >3600 12 172 1913 74.54% >3600 36 37 242 72.83%
bell5 >3600 1 320 7666 97.56% >3600 3 130 3098 97.43% >3600 10 92 2066 97.41% >3600 61 23 399 96.04%
blend2 >3600 1 60 2934 45.90% >3600 5 83 3325 45.90% >3600 2 64 3441 48.12% >3600 64 30 895 32.17%
flugpl >3600 1 1396 13422 29.73% >3600 4 1014 10013 26.71% >3600 6 1173 11614 27.54% 2468 142 157 1499 98.92%
gen >3600 1 64 2355 98.59% >3600 2 57 2439 99.10% >3600 6 22 1049 87.59% >3600 40 19 906 89.08%
gt2 >3600 1 412 5415 100.00% >3600 13 79 1452 93.74% >3600 7 70 2020 95.71% >3600 100 22 431 93.04%

noswot >3600 1 224 10340 NO GAP >3600 7 57 3191 NO GAP >3600 17 30 1293 NO GAP >3600 35 20 962 NO GAP
rout >3600 1 42 3534 9.71% >3600 2 42 3422 8.69% >3600 2 42 3526 9.69% >3600 53 28 1143 18.81%

timtab1 >3600 1 28 3634 47.53% >3600 2 30 3833 47.08% >3600 2 30 3842 48.43% >3600 49 14 1673 43.43%
timtab2 >3600 1 16 3609 35.54% >3600 2 17 3665 35.84% >3600 3 13 2882 30.25% >3600 13 10 2053 27.49%
Average 1 348 5428.33 59.75% 5 175.22 3603.44 58.79% 5.56 186.44 3594.78 57.70% 62 37.78 1026.78 63.54%
arki001 >3600 1 20 888 13.76% >3600 1 20 899 13.76% >3600 3 18 896 17.31% 252 4 4 225 11.29%
gesa2 2781.82 1 46 2473 100.00% >3600 3 26 1607 98.40% >3600 7 22 1367 98.74% >3600 17 12 666 83.06%

gesa2_o >3600 1 31 2945 99.60% >3600 4 14 1176 81.48% >3600 6 20 1792 98.84% >3600 73 16 1499 89.65%
gesa3 865.211 1 29 1113 100.00% >3600 3 18 1386 99.87% >3600 6 22 1102 100.00% >3600 14 11 939 99.30%

gesa3_o 957.6859999 1 20 1205 100.00% >3600 3 11 1293 99.26% >3600 7 18 1192 99.98% >3600 12 11 1144 99.60%
qnet1 >3600 1 19 1651 45.98% >3600 2 15 1190 41.56% >3600 2 18 1628 45.37% >3600 52 15 1282 42.86%

qnet1_o >3600 1 24 1924 59.04% >3600 3 14 846 53.87% >3600 2 24 1884 59.11% >3600 83 18 1255 56.92%
n4-3 >3600 1 11 550 81.29% >3600 2 9 413 74.67% >3600 4 9 391 73.19% >3600 5 5 190 56.34%

mik.250-1-100.1 >3600 1 40 4492 91.28% >3600 4 43 4758 92.34% >3600 5 38 4037 90.03% >3600 83 21 2071 87.44%
dfn-gwin-UUM 0.194999933 1 1 0 0.00% 0.192000151 1 1 0 0.00% 0.25 1 1 0 0.00% 0.19 1 1 0 0.00%

Average 1 24.1 1724.1 69.10% 2.6 17.1 1356.8 65.52% 4.3 19 1428.9 68.26% 34.4 11.4 927.1 62.65%
Overall average 1 179.85 3821.8 64.67% 3.9 90.25 2459.5 62.33% 5.5 94.9 2396.75 63.26% 46.85 23.7 973.7 63.07%

Table 4.6: Variable Splitting Rule Comparison- Mixed Integer Instances
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4.4 Methods for computing with multi-term CGLPs

Last section’s result shows specialized methods for solving multi-term CGLP are neces-

sary. So we investigate some methods for solving multi-term CGLP and divide them into

two categories. The methods in the first category utilizes special structure of the constraint

matrix to reduce the time complexity. Since CGLP with multi-term disjunctions has the

block angular structure (will be shown in Section 4.4.1), special methods can be applied

to utilize the structure. The method in the other category is to approximate the original

constraint set used in the CGLP using less number of constraints. Both approaches actually

work for reducing the CGLP’s solution time based on our experiment result to be shown in

Section 4.5. To illustrate these methods, the remaining of this section is divided into three

parts with each part describing one method.

4.4.1 Basis factorization

The dual of (Equations-4.5) is:

Maximize
∑
t

zt (4.6a)

s.t. Ayt − b̄zt ≥ 0 (4.6b)

yt − L̄tzt ≥ 0 (4.6c)

yt − Ūtzt ≤ 0 (4.6d)

− 1 ≤
∑
t

yt,j ≤ 1 (4.6e)

zt ≥ 0. (4.6f)

It has the block-angular structure as shown in (Figure-4.1) where the constraints matrix with

surplus variables and the objective are in the first row of the matrix and Im (or In) is am×m

(or n×n) identity matrix given A is a m×n matrix. and because of this structure, applying
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specialized basis factorization schemes could be beneficial for large scale CGLP instances

(based on large number of disjunctions). Basis factorization method was first proposed by

[Dan55] and extended by [Win74] for solving block-angular structured linear programming

problems. [Str74] and [BL97] applied it in solving stochastic linear programming problem.



1 1 · · · 1

−A b̄ Im
−In L̄1 In
In −Ū1 In

−A b̄ Im
−In L̄2 In
In −Ū2 In

. . .
−A b̄ Im
−In L̄T In
In −ŪT In

In In · · · In In
−In −In · · · −In In



Figure 4.1: Block-angular structure

To apply the basis factorization method, for a linear program like (4.6), we denote the

basis of (4.6) as B̂ and its t-th sub block as [Bt, Et], where Bt is a feasible basis for the t-th

subsystem (4.6b). Et is the rest part of the rows that is in the basis B̂. Therefore, B̂ can be

rearranged as [
B E
C D

]
,

where C and D are the coupling constraints parts (4.6c) and are separated corresponding to

columns B and E.
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The whole basis has the structure:

B̂ =


B1 E1

. .
. .
. .
Bt Et

C1 . . . Ct D1 . . . Dt

 (4.7)

Basis factorization method works directly on the basis matrix. It is incorporated into the

simplex method. If we denote the dual value associated with basis B̂ as

[
β
π

]
=


β1

.

.

.
βT
π

 . (4.8)

These dual values can be calculated by solving:

B̂>
[
β
π

]
=

[
B> C>

E> D>

] [
β
π

]
=

[
ρ1

ρ2

]
, (4.9)

where
[
ρ1

ρ2

]
are the rearrangement of objective coefficients (4.6a) according to columns B

and E.

By solving (4.9), we get

π = (D> − E>(B>)−1C>)−1(ρ2 − E>(B>)−1ρ1), (4.10)

and for t = 1, ..., T , we have

βt = (B>t )−1(ρ1
t − C>t π). (4.11)

One step further

π = (D> −
T∑
t=1

E>t (B>t )−1C>t )−1(ρ2 −
T∑
t=1

E>t (B>t )−1ρ1
t ). (4.12)
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Notice that to obtain β and π, based on (4.12,4.11) we only need to know the inverse of matrix

B>t with size (n×n) and (D>−(B>)−1E>C>). Compared to calculating the inverse of entire

matrix with (Tm + n)2 elements, one only needs to work with matrices with (Tm2 + n2)

elements in total.

The next step of simplex algorithm is to find the leaving column. Suppose the incoming

column is
(
u
v

)
and we need to solve B̂d =

(
u
v

)
to get the leaving column. We can

factorize the basis the same way and get the directions for each box t = 1, ..., T

dλt = B−1
t (ut − Ctdπ) (4.13)

dπ = (D −
T∑
t=1

B−1
t EtCt)

−1(v −
T∑
t=1

B−1
t Etut) (4.14)

The rest of the algorithm stays the same as in simplex method.

We implemented this method for solving multi-term CGLPs. We use instance “rout” from

MIPLIB 2003 and we sampled CGLPs upto 16 disjunctions encountered during solving the

instance using CPT algorithm. Because existing commercial solvers do not provide interfaces

that allow users to specialize the solution of linear systems solved within the simplex method,

we develop is a "home-grown" implementation of the simplex method. We use Bartels-Golub

as the LU-update algorithm and implement it in Matlab. Our preliminary computational

result is shown in Figure-4.2 where the lines show the solution time curve of CGLP as the

disjunctions size getting larger (blue for normal simplex and green for factorized simplex ).

From the result, we can see that factorized simplex method is faster than traditional revised

simplex method when the partition size is greater than four. And the solution time gap is

getting larger as the disjunctions size grows. Thus basis factorization method is better than

the normal simplex method in this experiment
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Figure 4.2: A comparison between factorized simplex and normal simplex method

4.4.2 Decomposition methods

An alternative method of decomposing the matrix is to use Benders’ decomposition

[Ben62]. [PB01b]’s result shows using Benders’ decomposition with all extreme points that

are encountered during optimizing the subproblems being added to the master problem

achieves the best performance. But their results were not designed towards measuring solu-

tion time for MILP instances. We propose a slightly modified version of this iterative method

with two newly generated terms included in master problem:

Minimize
∑
j

|πj|

s.t. πj − A>j λt − µt + νt = 0 for j = 1...n, and t ∈ {tr, tl}

b>λt + L>t µt − U>t νt ≥ π>xk + 1 for t ∈ {tr, tl}

λt ≥ 0, µt ≥ 0, νt ≥ 0 t ∈ {tr, tl}.

π>xs ≥ π>x∗ + 1 for s ∈ S

π>xr ≥ 0 for r ∈ R
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where S and R are the set of extreme points and rays from
⋃
t∈{1,...,T}\{tr,tl}(XL

⋂
Qt). tr, tl

are two disjunctive sets that are generated most recently. Other extreme points and rays are

generated from other disjunctive set by checking the subproblem XL

⋂
Qt:

Minimize π>x

s.t. Ax ≥ b

Lt ≤ x ≤ Ut.

(4.15)

By solving (4.15), if the subproblem is bounded and there are extreme points x such that

π>x ≤ π>xk + 1, these x are added to S. If the subproblem is unbounded and there are

rays r such that π>r ≤ 0, these r are added to R. The algorithm stops when all the

subproblems has no legitimate points or rays to add. This iterative method is denoted

as: modified Benders’ decomposition. We devise a computational experiment to compare

different versions of Benders’ methods:

• pure Benders’ decomposition (Method 2),

• modified Benders’ decomposition (Method 3),

• and modified Benders’ decomposition with all encountered extreme points added (Method

4).

Together with CGLP solved by CPLEX (Method 1), basis factorization (Method 5) and our

self-written revised simplex method (Method 6), six methods are compared. The experiment

is conducted by sampling 5 CGLP instances for each disjunction size ranging from 1 to 13,

which are encountered during solving instance “noswot” under CPT framework. All Benders’

methods are integrated with trusted region method. The result is shown in Figure 4.3. Each

dot in the figure denotes the averaged solution time of 5 CGLP instances which are sampled

from encountered CGLPs during solving “noswot”. From the result, we can see, Method
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Figure 4.3: Comparison of solving time (secs) for multi-term CGLPs with 6 methods

3 is more stable and its CGLP solution time increases the slowest among four methods as

the number of disjunctions size getting larger. Although in Method 4 extra extreme points

are added to the master problem, these points are not worth to incorporate from the result.

Method 6 performs about the same as Method 3 for the first 5 disjunctions, from the Table 4.7

we can see it is not stable enough and a lot of instances incur numerical difficulties due to

LU factorization package.

4.4.3 Feasible region approximation

XL

⋂
Qt can be approximated using less number of constraints and we can use the ap-

proximation to derive CPT cuts. In our implementation , we use the original constraints set

with an extra constraint to represent XL for box Qt.(Note that in our previous implementa-

tion, we use Xk
L which also contains CPT cuts generated up to iteration k). The additional

constraint is obtained by aggregating constraints in XL using its dual multiplier. The dual

solution is attained when checking the feasibility of the box. Mathematically, when box t is
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Disjunction Size Number of Instances Revised Simplex Basis Factorization
1 3 3 3
2 5 5 1
3 5 3 1
4 4 4 4
5 5 4 4
6 5 0 0
7 5 0 0
8 5 0 0
9 5 0 0
10 5 0 0
11 5 0 0
12 5 0 0
13 5 0 0
14 5 0 0

Table 4.7: Instances successfully solved by revised simplex method and basis factorization
method

created, we check its feasibility by solving:

Minimize c>xt

s.t. Axt ≥ b

Lt ≤ xt ≤ Ut,

Or in the dual formulation:
Maximize b>λt + L>t µt − U>t νt

s.t. A>j λt + µt − νt = cj for j = 1...n

λt ≥ 0, µt ≥ 0, νt ≥ 0.

Using λt, we can get the aggregated constraint for box t:

ā>t x ≥ b̄

where
ātj = A>j λt for j = 1...n

b̄t = b>λt
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Using the original constraints set with an extra constraint aggregated constraints as the

representation of XL, CGLP formulation is:

Minimize
∑
j

|πj|

s.t. πj − ā>t λt − µt + νt = 0 j = 1...n, t = 1, ..., T

b̄>t λt + L>t µt − U>t νt ≥ π>xk + 1 t = 1, ..., T

πj − A>j λt − µt + νt = 0 for j = 1...n, , t = 1, ..., T

b>λt + L>t µt − U>t νt ≥ π>xk + 1 for , t = 1, ..., T

λt ≥ 0, µt ≥ 0, νt ≥ 0 t = 1, ..., T.

(4.16)

Because each box needs feasibility checking when it is created, the aggregated constraint

calculation will not incur additional optimization problem solving.

4.5 Computations

The infrastructure of the experiment stays the same as in Section 4.3. The specialized

methods for solving multi-term CGLPs we are comparing are

• directly solved by CPLEX,

• modified Benders’ decomposition,

• and aggregated approximation.

We did not include basis factorization in the comparison due to its numerical difficulties. In

the implementation, we use aggressive splitting rule across the comparison to. For Benders’

decomposition method, we use the default CPLEX LP solver while aggreated approximation

uses primal simplex solver. The computational result is shown in Table 4.8 for MILP-B

instances and Table 4.9 for MILP-G instances. From the result, we observe the aggregated
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approximation method achieves better averaged integrality gap closure than the other two

methods. It takes more iterations to run and generates more cuts on average. There are

instances that Benders’ decomposition performs better(i.e., misc03, mas74, mas76, cap6000)

but aggregated approximation is primarily more stable.
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Instances CPLEX Aggregated Approximation Modified Benders’ Decomposition
Problem Time(secs) #Disj #Iter #Cuts GapCl Time(secs) #Disj #Iter #Cuts GapCl Time(secs) #Disj #Iter #Cuts GapCl
aflow30a >3600 22 14 823 58.87% >3600 23 17 1011 67.84% >3600 3 3 48 17.32%
danoint >3600 13 12 443 1.74% >3600 17 12 474 1.74% >3600 15 13 514 1.74%
dcmulti >3600 39 15 702 94.14% >3600 51 16 765 95.96% >3600 41 13 626 92.37%
egout 3.1 8 8 111 100.00% 0.27 6 6 83 100.00% 4.2 9 9 145 100.00%
enigma >3600 135 77 909 NO GAP >3600 88 75 875 NO GAP >3600 88 75 875 NO GAP
fixnet6 >3600 11 11 505 83.60% >3600 103 21 798 91.09% >3600 4 4 116 18.02%
glass4 >3600 4 5 261 0.00% >3600 21 21 2589 0.00% >3600 9 275 103 51.10%
lseu >3600 316 34 749 51.65% >3600 391 35 762 69.39% >3600 326 36 719 55.33%

markshare1 >3600 74 71 424 0.00% >3600 34 34 198 0.00% >3600 220 197 1201 0.00%
markshare2 >3600 57 57 390 0.00% >3600 29 29 199 0.00% >3600 147 145 1018 0.00%

mas74 >3600 157 101 1602 13.07% >3600 148 57 1111 12.02% >3600 296 174 2925 14.55%
mas76 >3600 171 106 1516 15.10% >3600 145 45 822 12.21% >3600 300 206 3111 18.09%
misc03 2503 77 78 4302 100.00% >3600 198 98 6711 93.70% 1256.93 88 85 4666 100.00%
misc07 >3600 61 55 5198 24.91% >3600 132 51 4710 31.91% >3600 74 83 7972 26.57%
mod008 >3600 70 15 205 20.01% >3600 68 15 219 22.56% >3600 75 17 248 22.21%
modglob >3600 11 10 432 97.20% >3600 12 12 540 99.75% >3600 6 14 228 91.81%
opt1217 >3600 28 18 539 0.53% >3600 71 33 1003 0.53% >3600 84 31 980 0.53%
p0033 >3600 171 99 2096 99.98% 480 461 133 2919 100.00% >3600 204 51 878 99.99%
p0201 >3600 63 15 1067 62.02% >3600 135 21 1729 70.57% >3600 42 17 1346 69.51%
p0282 >3600 176 20 622 96.68% >3600 195 26 974 97.67% >3600 113 18 565 96.58%
p0548 >3600 18 15 925 99.82% >3600 15 12 622 99.61% >3600 60 15 744 98.82%
pk1 >3600 81 31 473 0.00% >3600 326 53 1111 0.72% >3600 223 61 970 0.00%

pp08a >3600 78 16 665 98.50% >3600 245 27 1105 99.17% >3600 63 16 634 98.08%
pp08aCUTS >3600 27 17 662 96.04% >3600 200 25 1054 98.02% >3600 6 6 228 73.66%

qiu >3600 16 10 421 74.01% >3600 31 11 457 74.04% >3600 2 3 37 9.91%
rgn >3600 183 29 894 58.80% >3600 369 43 1369 66.64% >3600 156 30 883 54.31%

set1ch >3600 17 14 1224 97.54% 1655 44 34 1592 100.00% >3600 5 5 412 82.00%
stein15 49.1129 135 39 530 100.00% 7.82 168 40 556 100.00% 23.07 128 37 507 100.00%
stein27 >3600 546 51 1296 48.09% >3600 1547 99 2606 52.54% >3600 499 48 1208 44.38%
stein45 >3600 229 27 1100 14.56% >3600 625 44 1872 18.13% >3600 216 29 1183 11.77%
vpm1 >3600 67 18 485 76.87% >3600 302 45 1334 98.54% >3600 134 21 587 89.77%
vpm2 >3600 66 17 659 78.10% >3600 199 41 1740 89.42% >3600 38 21 866 82.89%
Average 97.72 34.53 1007.19 56.83% 199.97 38.47 1372.19 60.12% 114.81 54.94 1141.97 52.30%
10teams >3600 5 5 614 0.00% >3600 6 6 707 0.00% >3600 3 3 235 0.00%
air03 243.99 2 2 36 100.00% 65.851 2 2 35 100.00% 265.23 2 2 36 100.00%
air04 >3600 2 2 15 1.07% >3600 2 2 15 1.07% >3600 2 2 15 1.07%
air05 >3600 2 2 100 11.82% >3600 2 2 100 11.82% >3600 2 2 100 11.82%

cap6000 >3600 25 12 101 48.72% >3600 21 10 74 45.48% >3600 23 14 98 61.96%
dano3mip >3600 1 1 0 0.00% >3600 2 2 2 0.00% >3600 2 2 2 0.00%
fast0507 >3600 1 1 0 0.00% >3600 2 2 3 0.00% >3600 2 2 3 0.00%
fiber >3600 19 11 532 48.58% >3600 50 17 1103 64.93% >3600 32 12 600 50.03%
harp2 >3600 2 12 10 0.00% 1699.547 2 2 30 0.84% >3600 2 396 1 0.00%

khb05250 >3600 2 12 10 99.39% >3600 38 16 164 99.88% >3600 5 5 49 86.31%
l152lav >3600 10 9 595 17.89% >3600 39 13 1042 22.92% >3600 22 10 767 18.76%
misc06 >3600 14 14 198 37.03% >3600 33 18 202 74.77% >3600 23 14 176 33.45%
mitre >3600 3 3 1122 8.09% >3600 4 6 3383 24.65% >3600 3 3 800 7.16%
mkc >3600 6 6 398 44.38% >3600 19 17 1953 53.13% >3600 27 19 1576 54.20%

mod010 >3600 26 12 630 22.60% >3600 41 13 791 29.65% >3600 25 14 910 28.96%
mod011 >3600 16 10 270 5.26% >3600 9 8 230 4.76% >3600 16 10 307 5.22%
nw04 >3600 7 7 64 0.20% >3600 49 15 283 0.43% >3600 5 4 44 0.13%
p2756 >3600 17 14 774 88.53% >3600 22 15 596 97.90% >3600 4 4 127 3.01%

rentacar >3600 6 7 57 61.07% >3600 2 2 5 0.20% >3600 4 3 28 41.19%
seymour >3600 4 4 1553 49.11% >3600 2 2 386 22.22% >3600 1 1 246 0.00%
swath >3600 3 3 110 0.12% 2653.13 14 9 786 0.44% >3600 7 8 408 0.37%
Average 8.24 7.10 342.33 30.66% 17.19 8.52 566.19 31.19% 10.10 25.24 310.86 23.98%

Overall average 62.26 23.66 743.75 46.26% 127.55 26.60 1052.83 48.44% 73.32 43.17 812.66 40.86%

Table 4.8: CPT with various CGLP solving comparison - Mixed Binary Instances
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Instances CPLEX Aggregated Approximation Modified Benders’ Decomposition
Problem Time(secs) #Disj #Iter #Cuts GapCl Time(secs) #Disj #Iter #Cuts GapCl Time(secs) #Disj #Iter #Cuts GapCl
Bell3a >3600 36 37 242 72.83% >3600 21 8987 9046 71.89% >3600 43 74 219 74.30%
bell5 >3600 61 23 399 96.04% >3600 287 53 899 97.40% >3600 67 28 528 96.57%
blend2 >3600 64 30 895 32.17% >3600 70 17 345 26.56% >3600 70 27 667 39.99%
flugpl 2468 142 157 1499 98.92% 2376 168 153 1449 100.00% 614.94 146 142 1365 100.00%
gen >3600 40 19 906 89.08% >3600 66 19 817 89.18% >3600 12 17 817 87.01%
gt2 >3600 100 22 431 93.04% >3600 340 47 850 99.00% >3600 27 15 316 80.96%

noswot >3600 35 20 962 NO GAP >3600 138 34 1698 NO GAP >3600 82 26 1330 NO GAP
rout >3600 53 28 1143 18.81% >3600 21 15 610 14.16% >3600 87 39 1554 22.94%

timtab1 >3600 49 14 1673 43.43% >3600 90 21 2590 45.41% >3600 65 15 1815 43.93%
timtab2 >3600 13 10 2053 27.49% >3600 21 12 2427 33.62% >3600 8 8 1499 25.75%
Average 62 37.78 1026.78 63.54% 122.2 1036 2114.78 64.14% 58.33 40.56 975.56 63.49%
arki001 252 4 4 225 11.29% >3600 3 3 87 3.48% 267.613 2 2 50 0.00%
gesa2 >3600 17 12 666 83.06% >3600 55 16 1013 93.46% >3600 4 4 114 55.45%

gesa2_o >3600 73 16 1499 89.65% >3600 19 14 1190 99.49% >3600 4 4 149 55.47%
gesa3 >3600 14 11 939 99.30% >3600 27 27 1083 100.00% >3600 7 7 525 95.65%

gesa3_o >3600 12 11 1144 99.60% >3600 18 14 1154 99.92% >3600 10 9 896 97.80%
qnet1 >3600 52 15 1282 42.86% >3600 33 13 964 42.28% >3600 26 11 804 40.55%

qnet1_o >3600 83 18 1255 56.92% >3600 71 14 848 55.98% >3600 45 13 699 53.88%
n4-3 >3600 5 5 190 56.34% >3600 9 7 314 71.13% >3600 2 2 46 27.15%

mik.250-1-100.1 >3600 83 21 2071 87.44% >3600 102 22 2209 87.10% >3600 5 5 293 72.02%
dfn-gwin-UUM 0.19 1 1 0 0.00% 0.047999859 1 1 0 0.00% >3600 3 1077 48420 0.00%

Average 34.4 11.4 927.1 62.65% 33.8 13.1 886.2 65.28% 10.8 113.4 5199.6 49.80%
Overall average 46.9 23.7 973.7 63.07% 78 474.45 1479.65 64.74% 35.75 76.25 3105.3 56.29%

Table 4.9: CPT with various CGLP solving comparison- Mixed Integer Instances
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4.6 Conclusion

In this chapter, we present two new variable splitting rules under the CPT framework.

We compare their performance with splitting rules shown previously in [CKS12] and ele-

mentary disjunctions using 53 MILP-B instances and 20 MILP-G instances from MIPLIB.

Although computational studies show elementary disjunctions performs the best on overall

average gap closure, there are instances with significant gap closured improved as the tree

being explored aggressively. We then introduce a series of algorithms for solving multi-term

CGLPs. Computational experiments with these algorithms integrated with CPT algorithms

show aggregated approximation performs the best. It is better than using two-term disjunc-

tive cuts to solve instances. Although overall average gap closure does not improve much, a

bundle of instances’ gap closure increases dramatically.

One issue that is worth to investigate in the future is the algorithm does not perform well

when the instance has large number of variables and constraints. The methods proposed in

this chapter for solving multi-term CGLPs are good for large disjunction size but relative

small problems. For relatively large sized instances, different variables splitting rules or

approximation methods may be useful.
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Chapter 5: Contributions and Future Work

Over the last two decades, there has been significant progress with algorithms for solving

SMIP problems. Nevertheless, most of the algorithms address sub-classes of these problems

which either focus on binary mixed-integer recourse decisions, or pure integer recourse deci-

sions or assumed fixed tenders. In this dissertation, we presented a decomposition algorithm

to solve two-stage stochastic mixed-integer program. The algorithm allows general mixed-

integer variables in both stages. The algorithm uses multi-term disjunctive cuts to obtain

value function approximation of the second-stage mixed-integer programs. This disserta-

tion has made algorithmic and computational contributions to the field of general stochastic

mixed-integer programming as follows

• M-D2 is the first time-staged decomposition method that is proved to be finitely

convergent. Convergence results for most other methods are restricted to certain special

cases of the model we consider. Moreover, our method combines both B&B as well as

cutting planes, and in this sense, can be looked upon as a decomposition-based branch-

and-cut algorithm. Finally, the method allows partial solutions of subproblems, which

can be solved to optimality towards the end of the method. Given that the subproblems

are mixed-integer programs, this feature avoids having to solve each set of subproblems

to optimality in every iteration.
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• We proposed two finite algorithms, each of which can construct a polyhedron which

can be used to approximate the value function of a mixed-integer program.As with

the decomposition method, our approximations are also constructed using multi-term

disjunctive cuts.We have also provided computational results which demonstrate both

strengths as well as some weaknesses of these approximations.

• In conjunction with our work on decomposition for SMIP, we have also investigated

several aspects of the CPT algorithm. In particular, we have compared the performance

of alternative ways to explore the cutting plane tree. We have also designed alternative

ways to solve problems arising in the generation of multi-term disjunctive cuts, and

computational results with these methods have also been presented.

As for future research, there are several avenues that might pursue.

• Parallel Computing. The structure of SMIP problems is ideally suited for decompo-

sition, but the full power of such methods can only be realized if we can harness the

power of parallel computing to solving multiple MIP subproblems in parallel. With

the proliferation of parallel computing technology, this feature should be added to the

algorithms proposed in this dissertation.

• Multi-stage SMIP. The M-D2 method is rather general, and can be used to decompose

multi-stage SMIPs into a sequence of two-stage SMIPs in the same manner that multi-

stage SLPs can be decomposed into a sequence of two-stage SLPs. This is possible

because of the very general structure that we allow for the two-stage model.

• The generality of the proposed scheme can also be exploited by adopting the use

of specialized cuts within our decomposition framework. For instance, it should be

relatively easy to integrate Gomory cuts [GKS12] into our algorithm, thus providing
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a platform for the first SMIP solver which can incorporate much of MIP technology,

including B&B, disjunctive cuts, and Gomory cuts.
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Appendix A: Example 1.0

Consider the following example that is shown in [SHN03] which is a variation of an

example from ([SSvdV98]).

min − 1.5x1 − 4x2 +
∑
ω∈Ω

p(ω)f(x, ω) (A.1a)

s.t. x1, x2 binary (A.1b)

where

f(x, ω) = min − 16y1 − 19y2 − 23y3 − 28y4 + 100R (A.2a)

s.t.
[

2y1 + 3y2 + 4y3 + 5y4 −R
6y1 + 1y2 + 3y3 + 2y4 −R

]
≤ r(ω)− T (ω)x (A.2b)

yi binary i = 1, ..., 4, R ≥ 0 (A.2c)

Ω = {ω1, ω2}, p(ω1) = p(ω2) = 0.5, r(ω1) =

[
5
2

]
, T (ω1) =

[
1 0
0 1

]
, r(ω2) =

[
10
3

]
,

T (ω2) =

[
1 0
0 1

]
. We first apply the M-D2 algorithm with CPT-D to solve this example.

At iteration k = 1, the algorithm starts from solving the LP relaxed master problem with

η bounded.

min − 1.5x1 − 4x2 + η (A.3a)

s.t. x1, x2 binary (A.3b)

η ≥ −M (A.3c)
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We get solution (x1, x2, η) = (1, 1,−M) with objective v = −M − 5.5. Here only the root

node is in the B&B tree. x = (1, 1) with Qo
1 = {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1} is inserted into

subproblems. Then CPT-D is called for each ω ∈ Ω.

For ω1, fL(x, ω1) is solved and we get y(ω1) = (0, 1, 0, 0.5, 0). y4 is fractional and partitions

are formed for integer variables: {y4 ≤ 0} ∩ Q2 or {y4 ≥ 1} ∩ Q2. The cut derived from

CGLP for x ∈ Qo
1 is

−2y2 − 2y4 + 2R ≥ −4 + 2x2. (A.4)

After adding the cut, fL(x, ω1) is re-optimized and the solution is y(ω1) = (0, 0, 0, 1, 0). It

satisfies integer constraints. So no more cuts are generated in this iteration.

For ω2, fL(x, ω2) is solved and we get y(ω2) = (0, 1, 0, 0, 0). Again, this solution satisfies

integer constraints, and hence, no cuts are needed. All scenarios have integer solution, so V

is updated. V = −29.

The value function cut for x ∈ Qo
1 is

−16.5x2 + η ≥ −40. (A.5)

At iteration k = 2, the master problem continues to be solved by B&B method. We get

solution (x1, x2, η) = (1, 0,−40) with objective v = −41.5. Still only the root node is in the

B&B tree. x = (1, 0) with Qo
1 = {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1} is inserted into subproblems.

CPT-D is called for each ω ∈ Ω.
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For ω1, fL(x, ω) is initialized as follows:

fL(x, ω1) = min − 16y1 − 19y2 − 23y3 − 28y4 + 100R (A.6a)

s.t. 2y1 + 3y2 + 4y3 + 5y4 −R ≤ 5− x1 (A.6b)

6y1 + 1y2 + 3y3 + 2y4 −R ≤ 2− x2 (A.6c)

− 2y2 − 2y4 + 2R ≥ −4 + 2x2 (A.6d)

0 ≤ yi ≤ 1 i = 1, ..., 4, R ≥ 0 (A.6e)

where constraint (A.6d) is from cut (A.4) generated in iteration 1. (A.6) is solved and we

get y(ω1) = (0, 1, 0, 1, 0). It satisfies integer constraints. So no cuts are needed.

For ω2, fL(x, ω2) is solved and we get y(ω2) = (0.1154, 1, 0, 0.1538, 0). y1 is the variable

we choose to split. The partitions we form are: {y1 ≤ 0} ∩ Q2 or {y1 ≥ 1} ∩ Q2. The cut

derived from CGLP for x ∈ Qo
1 is

−4.875y2 − 6.5y4 + 1.625R ≥ −6.5 + 1.625x1. (A.7)

After adding the cut, fL(x, ω2) is re-optimized and the solution is

y(ω2) = (0.056, 1, 0.222, 0, 0). (A.8)

Since y(ω2) is located on the root node, no more splits are needed. The same partition is

used: {y1 ≤ 0} ∩Q2 or {y1 ≥ 1} ∩Q2. The cut derived from CGLP for x ∈ Qo
1 is

−2.25y2 − 4.5y3 + 2.25R ≥ −2.25. (A.9)

After adding the cut, fL(x, ω2) is re-optimized and the new solution is y(ω2) = (0.06, 0.68, 0.16, 0.24, 0).

Again, y(ω2) is located on the root node, and no more splits are needed. The same partition:

{y1 ≤ 0}∩Q2 or {y1 ≥ 1}∩Q2 is used to formulate CGLP. With only y(ω2) changed, another
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cut derived from CGLP for x ∈ Qo
1 is

−2.5y3 − 2.5y4 + 2.5R ≥ −2.5 + 2.5x1. (A.10)

After adding the cut, fL(x, ω2) is re-optimized and the solution is y(ω2) = (0.1667, 1, 0, 0, 0).

y(ω2) is located still on the root node. No more splits are needed. The same partition:

{y1 ≤ 0} ∩Q2 or {y1 ≥ 1} ∩Q2 is used to formulate CGLP. The cut derived from CGLP for

x ∈ Qo
1 is

−6y1 + 1.5R ≥ 0. (A.11)

After adding the cut, fL(x, ω2) is re-optimized and the solution is y(ω2) = (0, 1, 0, 0, 0). It

satisfies integer constraints. So no more cuts are needed. All scenarios have integer solution,

so V is updated. V = −34.5

The value function cut for x ∈ Qo
1 is

−7.55x1 − 3.8333x2 + η ≥ −40.55. (A.12)

At iteration k = 3, the master problem continues to be solved by the B&B method. We

get solution (x1, x2, η) = (0, 0,−40) with objective v = −40. The solution is on node 1 with

Q1
1 = {0 ≤ x1 ≤ 0, 0 ≤ x2 ≤ 1}. Hence x = (0, 0) and Q1

1 are treated as input parameters

for CPT-D for each ω ∈ Ω.

For ω1, 0 cuts are needed. The solution is y(ω1) = (0, 1, 0, 1, 0).

For ω2, 1 cut is needed (shown below). The solution is y(ω1) = (0, 0, 0, 1, 0).

−3.6923y2 − 2.4615y3 − 3.6923y4 + 1.2308R ≥ −3.6923. (A.13)

V is updated. V = −37.5 and the value function cut for Q1
1 is

−8.3333x2 + η ≥ −37.5 (A.14)
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At iteration k = 4, with updated value function cut for node 1, the master problem

continues to be solve by B&B method. We get solution (x1, x2, η) = (0, 0,−37.5) with

objective v = −37.5. V − v ≤ ε. The algorithm stops

A short summary of using M-D2 algorithm with CPT-D to solve this problem is shown

in Table A.1.

Iter v V x Node No. f(x, ω1) Cuts No. f(x, ω2) Cuts No. Value function cut for Node
1 -M-5.5 inf (1,1) 1 -28 1 -19 0 η ≥ −40 + 16.5x2

2 -41.5 -29 (1,0) 1 -47 0 -19 4 η ≥ −40.55 + 7.55x1 + 3.8333x2

3 -40 -34.5 (0,0) 2 -47 0 -28 1 η ≥ −37.5 + 8.3333x2

4 -37.5 -37.5 (0,0) 2

Table A.1: M-D2 with CPT-D for Example 1

Each row shows the information for one iteration. Column “Node No.” denotes the num-

ber of active nodes in the B&B tree. “Cuts No” means the number of multi-term disjunctive

cuts generated for that scenario.

We also apply the same M-D2 algorithm but with BB-D to solve this example. The

algorithm starts from solving the LP relaxed master problem with η bounded.

At iteration k = 1, We get solution (x1, x2, η) = (1, 1,−M) with objective v = −M − 5.5

from the B&B method. x = (1, 1) with Qo
1 = {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1} is inserted into

BB-D for each ω ∈ Ω.

For ω1, f(x, ω1) is solved by the B&B method and we get 2 nodes in T2. With 1 cut

derived from CGLP for x ∈ Qo
1:

−2y2 − 2y4 + 2R ≥ −4 + 2x2, (A.15)

the solution falls into T2 and no more cuts are needed. y(ω1) = (0, 0, 0, 1, 0).
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For ω2, f(x, ω2) is solved by B&B method and we get 1 nodes in T2. No cuts are needed.

y(ω2) = (0, 1, 0, 0, 0). All scenarios have integer solution, so V is updated. V = −29

The value function cut for x ∈ Qo
1 is

−16.5x2 + η ≥ −40 (A.16)

At iteration k = 2, the master problem continues to be solved by B&B method. We get

solution (x1, x2, η) = (1, 0,−40) with objective v = −41.5. x = (1, 0) with Qo
1 = {0 ≤ x1 ≤

1, 0 ≤ x2 ≤ 1} is inserted into subproblems. CPT-D is called for each ω ∈ Ω.

For ω1, f(x, ω1) is initialized as follows:

f(x, ω1) = min − 16y1 − 19y2 − 23y3 − 28y4 + 100R (A.17a)

s.t. 2y1 + 3y2 + 4y3 + 5y4 −R ≤ 5− x1 (A.17b)

6y1 + 1y2 + 3y3 + 2y4 −R ≤ 2− x2 (A.17c)

− 2y2 − 2y4 + 2R ≥ −4 + 2x2 (A.17d)

yi binary i = 1, ..., 4, R ≥ 0 (A.17e)

where constraint (A.17d) is from cut (A.15) generated in iteration 1. (A.17) is solved by

B&B method and we get T2 with 1 node. So no cuts are needed. y(ω1) = (0, 1, 0, 1, 0).

For ω2, f(x, ω2) is solved by B&B method and we get T2 with 4 nodes. 4 cuts are derived

from CGLP for x ∈ Qo
1:

−8.6667y1 + 2.1667R ≥ 0

−4y3 + 4R ≥ 0

−3.75y2 − 5y4 + 1.25R ≥ −5

−x1 − y4 +R ≥ −1

(A.18)

With 4 cuts added, the solution y(ω1) = (0, 1, 0, 1, 0).
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All scenarios have integer solution, so V is updated. V = −34.5

The value function cut for x ∈ Qo
1 is

−4.5x1 − 3.8333x2 + η ≥ −37.5. (A.19)

At iteration k = 3, the master problem continues to be solve by B&B method. We get

solution (x1, x2, η) = (0, 0,−37.5) with objective v = −37.5. The solution is on node 2 with

Q1
1 = {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 0}. x = (0, 0) and Q2

1 are treated as input parameters for

BB-D for each ω ∈ Ω.

For ω1, 0 cuts are needed. The solution is y(ω1) = (0, 1, 0, 1, 0).

For ω2, 0 cuts are needed. The solution is y(ω1) = (0, 0, 0, 1, 0). V is updated. V = −37.5

and the value function cut for Q2
1 is

−2.8333x1 − 5.1667x2 + η ≥ −37.5 (A.20)

At iteration k = 4, with updated value function cut for node 2, the master problem

continues to be solve by B&B method. We get solution (x1, x2, η) = (0, 0,−37.5) with

objective v = −37.5. V − v ≤ ε. The algorithm stops

A short summary of using M-D2 algorithm with BB-D to solve this problem is shown

in Table A.2. As you may notice, there is only small difference between BB-D and CPT-D

Iter v V x Node No. f(x, ω1) Cuts No. f(x, ω2) Cuts No. Value function cut for Node
1 -M-5.5 inf (1,1) 1 -28 1 -19 0 η ≥ −40 + 16.5x2

2 -41.5 -29 (1,0) 1 -47 0 -19 4 η ≥ −37.5 + 4.5x1 + 3.8333x2

3 -37.5 -34.5 (0,0) 2 -47 0 -28 0 η ≥ −37.5 + 2.8333x1 + 5.1667x2

4 -37.5 -37.5 (0,0) 2

Table A.2: M-D2 with BB-D for Example 1

for Example 1. At iteration 2, because BB-D uses partitions with 4 terms to generate cuts

85



from the beginning, the quality of the cut is better than CPT-D which results in no more

cuts needed for subproblems in the following iterations. But CGLP with 4 terms take more

time to solve. So it is not easy to say which method is better for this example.
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Appendix B: Wait-and-see experiment result

87



Table B.1: Wait-and-see experiment objective deviation statistics

CPT LP CPT IP Lift and Project LP Lift and Project IP
Instances p mean std 5%

prc
95%
prc

mean std 5%
prc

95%
prc

mean std 5%
prc

95%
prc

mean std 5%
prc

95%
prc

aflow30a 5 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00
aflow30a 10 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00
aflow30a 20 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00
aflow30a 50 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00
aflow30a 100 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00
bell3a 5 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
bell3a 10 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
bell3a 20 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
bell3a 50 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
bell3a 100 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
blend2 5 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00
blend2 10 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00
blend2 20 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00
blend2 50 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00
blend2 100 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00
dcmulti 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dcmulti 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dcmulti 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dcmulti 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dcmulti 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
egout 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00
egout 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00
egout 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00
egout 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00
egout 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00
fixnet6 5 0.13 0.00 0.13 0.13 0.00 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.00 0.00 0.00 0.00
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fixnet6 10 0.13 0.00 0.13 0.13 0.00 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.00 0.00 0.00 0.00
fixnet6 20 0.13 0.00 0.13 0.13 0.00 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.00 0.00 0.00 0.00
fixnet6 50 0.13 0.00 0.13 0.13 0.00 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.00 0.00 0.00 0.00
fixnet6 100 0.13 0.00 0.13 0.13 0.00 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.00 0.00 0.00 0.00
flugpl 5 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
flugpl 10 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
flugpl 20 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
flugpl 50 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
flugpl 100 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
gen 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gen 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gen 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gen 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gen 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
misc03 5 0.34 0.00 0.34 0.34 0.00 0.00 0.00 0.00 0.35 0.00 0.35 0.35 0.00 0.00 0.00 0.00
misc03 10 0.34 0.00 0.34 0.34 0.00 0.00 0.00 0.00 0.35 0.00 0.35 0.35 0.00 0.00 0.00 0.00
misc03x 20 0.34 0.00 0.34 0.34 0.00 0.00 0.00 0.00 0.35 0.00 0.35 0.35 0.00 0.00 0.00 0.00
misc03 50 0.34 0.00 0.34 0.34 0.00 0.00 0.00 0.00 0.35 0.00 0.35 0.35 0.00 0.00 0.00 0.00
misc03 100 0.34 0.00 0.34 0.34 0.00 0.00 0.00 0.00 0.35 0.00 0.35 0.35 0.00 0.00 0.00 0.00
mod008 5 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00
mod008 10 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00
mod008 20 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00
mod008 50 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00
mod008 100 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.04 0.00 0.00 0.00 0.00
modglob 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
modglob 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
modglob 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
modglob 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
modglob 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p0033 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p0033 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p0033 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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p0033 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p0033 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p0201 5 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
p0201 10 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
p0201 20 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
p0201 50 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
p0201 100 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
p0282 5 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
p0282 10 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
p0282 20 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
p0282 50 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
p0282 100 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00
p0548 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p0548 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p0548 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p0548 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p0548 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pp08a 5 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00
pp08a 10 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00
pp08a 20 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00
pp08a 50 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00
pp08a 100 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.03 0.00 0.00 0.00 0.00
pp08aCUTS 5 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
pp08aCUTS 10 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
pp08aCUTS 20 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
pp08aCUTS 50 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
pp08aCUTS 100 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00
rgn 5 0.16 0.00 0.16 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.16 0.16 0.00 0.00 0.00 0.00
rgn 10 0.16 0.00 0.16 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.16 0.16 0.00 0.00 0.00 0.00
rgn 20 0.16 0.00 0.16 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.16 0.16 0.00 0.00 0.00 0.00
rgn 50 0.16 0.00 0.16 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.16 0.16 0.00 0.00 0.00 0.00
rgn 100 0.16 0.00 0.16 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.16 0.16 0.00 0.00 0.00 0.00
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set1ch 5 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00
set1ch 10 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00
set1ch 20 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00
set1ch 50 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00
set1ch 100 0.05 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00
stein15 5 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.22 0.00 0.22 0.22 0.00 0.00 0.00 0.00
stein15 10 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.22 0.00 0.22 0.22 0.00 0.00 0.00 0.00
stein15 20 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.22 0.00 0.22 0.22 0.00 0.00 0.00 0.00
stein15 50 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.22 0.00 0.22 0.22 0.00 0.00 0.00 0.00
stein15 100 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.22 0.00 0.22 0.22 0.00 0.00 0.00 0.00
stein27 5 0.28 0.00 0.28 0.28 0.00 0.00 0.00 0.00 0.28 0.00 0.28 0.28 0.00 0.00 0.00 0.00
stein27 10 0.28 0.00 0.28 0.28 0.00 0.00 0.00 0.00 0.28 0.00 0.28 0.28 0.00 0.00 0.00 0.00
stein27 20 0.28 0.00 0.28 0.28 0.00 0.00 0.00 0.00 0.28 0.00 0.28 0.28 0.00 0.00 0.00 0.00
stein27 50 0.28 0.00 0.28 0.28 0.00 0.00 0.00 0.00 0.28 0.00 0.28 0.28 0.00 0.00 0.00 0.00
stein27 100 0.28 0.00 0.28 0.28 0.00 0.00 0.00 0.00 0.28 0.00 0.28 0.28 0.00 0.00 0.00 0.00
stein45 5 0.27 0.00 0.27 0.27 0.00 0.00 0.00 0.00 0.27 0.00 0.27 0.27 0.00 0.00 0.00 0.00
stein45 10 0.27 0.00 0.27 0.27 0.00 0.00 0.00 0.00 0.27 0.00 0.27 0.27 0.00 0.00 0.00 0.00
stein45 20 0.27 0.00 0.27 0.27 0.00 0.00 0.00 0.00 0.27 0.00 0.27 0.27 0.00 0.00 0.00 0.00
stein45 50 0.27 0.00 0.27 0.27 0.00 0.00 0.00 0.00 0.27 0.00 0.27 0.27 0.00 0.00 0.00 0.00
stein45 100 0.27 0.00 0.27 0.27 0.00 0.00 0.00 0.00 0.27 0.00 0.27 0.27 0.00 0.00 0.00 0.00
vpm1 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vpm1 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vpm1 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vpm1 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vpm1 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vpm2 5 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00
vpm2 10 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00
vpm2 20 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00
vpm2 50 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00
vpm2 100 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.06 0.00 0.00 0.00 0.00
Total 8.61 0.00 9.26 0.01
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Table B.2: Wait-and-see experiment solving time

Instances p CPT LP CPT IP L&P LP L&P IP IP
aflow30a.mps 5 0.12 29.56 0.12 26.97 26.07
aflow30a.mps 10 0.19 29.70 0.09 26.52 26.40
aflow30a.mps 20 0.12 29.36 0.11 26.88 25.99
aflow30a.mps 50 0.08 29.13 0.13 25.93 25.57
aflow30a.mps 100 0.16 29.11 0.03 26.79 25.60
bell3a.mps 5 0.05 14.96 0.06 13.54 15.74
bell3a.mps 10 0.05 14.82 0.06 13.54 15.62
bell3a.mps 20 0.05 14.79 0.05 12.86 15.73
bell3a.mps 50 0.06 14.98 0.05 13.51 15.65
bell3a.mps 100 0.05 14.88 0.03 12.70 15.66
blend2.mps 5 0.06 5.88 0.06 5.35 5.34
blend2.mps 10 0.05 5.93 0.08 5.55 5.57
blend2.mps 20 0.06 5.63 0.06 5.35 5.40
blend2.mps 50 0.06 6.30 0.06 5.59 5.58
blend2.mps 100 0.06 6.12 0.05 5.71 5.79
dcmulti.mps 5 0.08 3.09 0.11 3.39 3.14
dcmulti.mps 10 0.11 3.09 0.09 3.32 3.08
dcmulti.mps 20 0.09 3.02 0.11 3.37 3.06
dcmulti.mps 50 0.11 3.06 0.13 3.39 3.02
dcmulti.mps 100 0.11 3.07 0.11 3.46 2.95
egout.mps 5 0.06 0.30 0.06 0.25 0.30
egout.mps 10 0.08 0.28 0.05 0.28 0.27
egout.mps 20 0.08 0.31 0.08 0.27 0.25
egout.mps 50 0.08 0.30 0.08 0.30 0.27
egout.mps 100 0.09 0.28 0.06 0.27 0.30
fixnet6.mps 5 0.13 4.45 0.13 5.91 5.35
fixnet6.mps 10 0.17 4.49 0.14 6.19 5.51
fixnet6.mps 20 0.11 4.46 0.13 5.85 5.65
fixnet6.mps 50 0.17 4.57 0.13 6.20 5.55
fixnet6.mps 100 0.13 4.57 0.14 5.95 5.43
flugpl.mps 5 0.09 0.73 0.16 0.55 0.48
flugpl.mps 10 0.13 0.73 0.14 0.55 0.58
flugpl.mps 20 0.08 0.76 0.17 0.48 0.47
flugpl.mps 50 0.11 0.83 0.12 0.53 0.44
flugpl.mps 100 0.06 0.78 0.12 0.55 0.47
gen.mps 5 0.16 0.42 0.11 0.47 0.50
gen.mps 10 0.14 0.45 0.14 0.44 0.47
gen.mps 20 0.14 0.58 0.11 0.47 0.42
gen.mps 50 0.17 0.42 0.11 0.40 0.44
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gen.mps 100 0.11 0.44 0.14 0.45 0.44
misc03.mps 5 0.13 3.09 0.12 2.50 3.78
misc03.mps 10 0.10 3.01 0.12 2.56 3.96
misc03.mps 20 0.09 2.95 0.11 2.58 3.42
misc03.mps 50 0.13 3.01 0.13 2.57 4.81
misc03.mps 100 0.13 3.28 0.12 2.54 4.18
mod008.mps 5 0.08 3.08 0.11 3.07 2.89
mod008.mps 10 0.11 3.34 0.11 2.71 2.59
mod008.mps 20 0.13 2.73 0.14 2.40 2.26
mod008.mps 50 0.09 2.76 0.15 2.26 2.22
mod008.mps 100 0.12 2.95 0.13 2.84 2.67
modglob.mps 5 0.12 1.52 0.14 1.44 1.55
modglob.mps 10 0.17 1.48 0.12 1.48 1.52
modglob.mps 20 0.16 1.40 0.16 1.48 1.55
modglob.mps 50 0.16 1.43 0.15 1.51 1.57
modglob.mps 100 0.16 1.49 0.16 1.54 1.59
p0033.mps 5 0.11 0.31 0.13 0.31 0.27
p0033.mps 10 0.11 0.06 0.13 0.12 0.31
p0033.mps 20 0.13 0.28 0.14 0.02 0.00
p0033.mps 50 0.13 0.31 0.14 0.28 0.31
p0033.mps 100 0.14 0.25 0.13 0.22 0.19
p0201.mps 5 0.16 2.28 0.16 2.31 2.14
p0201.mps 10 0.14 2.23 0.13 2.28 2.03
p0201.mps 20 0.14 2.37 0.14 2.31 2.17
p0201.mps 50 0.16 2.28 0.17 2.23 2.25
p0201.mps 100 0.15 2.28 0.16 2.04 2.06
p0282.mps 5 0.17 1.67 0.16 1.44 1.56
p0282.mps 10 0.16 1.64 0.19 1.42 1.56
p0282.mps 20 0.14 1.69 0.17 1.43 1.58
p0282.mps 50 0.14 1.67 0.17 1.42 1.58
p0282.mps 100 0.17 1.61 0.16 1.44 1.59
p0548.mps 5 0.14 1.05 0.16 0.94 0.92
p0548.mps 10 0.17 1.09 0.17 0.94 0.91
p0548.mps 20 0.17 1.09 0.17 0.95 0.97
p0548.mps 50 0.17 1.08 0.16 0.95 0.95
p0548.mps 100 0.17 1.08 0.17 0.94 0.95
pp08a.mps 5 0.16 3.25 0.19 3.07 2.81
pp08a.mps 10 0.17 3.25 0.19 3.32 2.72
pp08a.mps 20 0.17 3.17 0.17 2.95 3.12
pp08a.mps 50 0.17 3.20 0.19 3.04 2.73
pp08a.mps 100 0.17 3.12 0.19 3.50 2.70
pp08aCUTS.mps 5 0.17 5.33 0.17 5.55 5.87
pp08aCUTS.mps 10 0.17 5.18 0.19 6.18 4.38
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pp08aCUTS.mps 20 0.16 4.70 0.17 4.66 4.24
pp08aCUTS.mps 50 0.17 4.96 0.19 5.12 5.18
pp08aCUTS.mps 100 0.16 5.24 0.19 4.20 4.88
rgn.mps 5 0.16 3.76 0.16 2.40 2.33
rgn.mps 10 0.19 3.59 0.16 2.36 2.43
rgn.mps 20 0.19 3.73 0.17 2.40 2.42
rgn.mps 50 0.19 3.81 0.17 2.29 2.34
rgn.mps 100 0.19 3.57 0.14 2.28 2.28
set1ch.mps 5 0.20 9.05 0.31 8.60 8.53
set1ch.mps 10 0.19 9.08 0.31 8.58 8.64
set1ch.mps 20 0.27 8.88 0.17 8.61 8.78
set1ch.mps 50 0.19 9.27 0.31 8.35 8.30
set1ch.mps 100 0.19 9.22 0.27 8.75 8.52
stein15.mps 5 0.17 0.38 0.22 0.65 0.48
stein15.mps 10 0.17 0.35 0.22 0.70 0.48
stein15.mps 20 0.19 0.39 0.20 0.67 0.50
stein15.mps 50 0.20 0.39 0.19 0.69 0.50
stein15.mps 100 0.14 0.34 0.19 0.68 0.51
stein27.mps 5 0.17 5.62 0.25 3.18 1.97
stein27.mps 10 0.16 5.63 0.22 3.18 1.86
stein27.mps 20 0.20 5.55 0.23 3.21 1.87
stein27.mps 50 0.16 5.55 0.23 3.21 1.95
stein27.mps 100 0.19 5.63 0.22 3.21 2.00
stein45.mps 5 0.17 45.21 0.19 35.68 36.25
stein45.mps 10 0.20 44.60 0.20 36.30 37.13
stein45.mps 20 0.16 44.76 0.19 36.05 36.07
stein45.mps 50 0.22 44.42 0.27 34.95 37.16
stein45.mps 100 0.19 44.80 0.24 36.38 36.58
vpm1.mps 5 0.16 0.41 0.20 0.41 0.33
vpm1.mps 10 0.19 0.36 0.14 0.37 0.37
vpm1.mps 20 0.16 0.37 0.17 0.41 0.36
vpm1.mps 50 0.20 0.37 0.20 0.41 0.37
vpm1.mps 100 0.19 0.37 0.19 0.40 0.38
vpm2.mps 5 0.22 4.05 0.23 3.25 3.24
vpm2.mps 10 0.17 3.81 0.19 3.09 3.15
vpm2.mps 20 0.15 3.82 0.19 3.29 3.31
vpm2.mps 50 0.20 3.99 0.22 3.26 3.31
vpm2.mps 100 0.20 3.93 0.22 3.15 3.12
Total 17.78 751.61 19.10 651.41 663.22
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Appendix C: The vertices on the disjunctive cut

The dual solution of CGLP contains information to calculate vertices xkt that supports

the CPT cut. xkt is simplified as xt in this section.

Proposition 6. Suppose the solution of m1nc formulation 4.5 is (π, λt, µt, νt) for t ∈ {1...T}

and its dual solution (yt, zt). For boxes with zt 6= 0, there exist vertices xt = yt/zt that satisfies

π>xt = π>xk + 1.

Proof. For box t, since yt is the dual multiplier for π = A>λt + µt − νt, and zt is dual

multiplier for b>λt + L>t µt − U>t νt ≥ π>xk + 1 based on complementary slackness condition

at optimal, we have

π>yt = λ>t Ayt + µ>t yt + ν>t yt (C.1)

and

zt(b
>λt + L>t µt − U>t νt) = zt(π

>xk + 1) (C.2)

Eq C.2 can also be written as

λ>t (bzt) + µ>t (Ltzt)− νt>(Utzt) = zt(π
>xk + 1) (C.3)

From the dual of m1nc formulation 4.6, since λt is the dual multiplier for Ayt ≥ b̄zt, µt

corresponds to yt ≥ L̄tzt and µt corresponds to yt ≤ Ūtzt, also from complementary slackness,

λ>t Ayt = λ>t bzt (C.4)
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µ>t yt = µ>t Ltzt (C.5)

ν>t yt = ν>t Utzt (C.6)

Thus

π>yt = λ>t Ayt + µ>t yt + ν>t yt = λ>t (bzt) + µ>t (Ltzt)− νt>(Utzt) = zt(π
>xk + 1) (C.7)

For zt 6= 0, we have π>xt = π>xk + 1.

These vertices are from leaves nodes, they provides us the tool to continue grow CPT

tree when xk is not on the leaves node.
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Appendix D: Instances from MIPLIB 3.0 and MIPLIB 2003

Table D.1: Mixed-Binary Instances

Instance ROWS COLS NZ INT BIN CON
aflow30a 479 842 2091 0 421 421
danoint 664 521 3232 0 56 465
dcmulti 290 548 1315 0 75 473
egout 98 141 282 0 55 86
enigma 21 100 289 0 100 0
fixnet6 478 878 1756 0 378 500
glass4 396 322 1815 0 302 20
lseu 28 89 309 0 89 0

markshare1 6 62 312 0 50 12
markshare2 7 74 434 0 60 14

mas74 13 151 1706 0 150 1
mas76 12 151 1640 0 150 1
misc03 96 160 2053 0 159 1
misc07 212 260 8619 0 259 1
mod008 6 319 1243 0 319 0
modglob 291 422 968 0 98 324
opt1217 64 769 1542 0 768 1
p0033 16 33 98 0 33 0
p0201 133 201 1923 0 201 0
p0282 241 282 1966 0 282 0
p0548 176 548 1711 0 548 0
pk1 45 86 915 0 55 31

pp08a 136 240 480 0 64 176
pp08aCUTS 246 240 839 0 64 176

qiu 1192 840 3432 0 48 792
rgn 24 180 460 0 100 80

set1ch 492 712 1412 0 240 472
stein15 36 15 120 0 15 0
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stein27 118 27 378 0 27 0
stein45 331 45 1034 0 45 0
vpm1 234 378 749 0 168 210
vpm2 234 378 917 0 168 210

10teams 230 2025 12150 0 1800 225
air03 124 10757 91028 0 10757 0
air04 823 8904 72965 0 8904 0
air05 426 7195 52121 0 7195 0

cap6000 2176 6000 48243 0 6000 0
dano3mip 3202 13873 79655 0 552 13321
fast0507 507 63009 4E+05 0 63009 0
fiber 363 1298 2944 0 1254 44
harp2 112 2993 5840 0 2993 0

khb05250 101 1350 2700 0 24 1326
l152lav 97 1989 9922 0 1989 0
misc06 820 1808 5859 0 112 1696
mitre 2054 10724 39704 0 10724 0
mkc 3411 5325 17038 0 5323 2

mod010 146 2655 11203 0 2655 0
mod011 4480 10975 22271 0 96 10879
nw04 36 87482 6E+05 0 87482 0
p2756 755 2756 8937 0 2756 0

rentacar 6803 9559 41844 0 55 9504
seymour 4944 1372 33549 0 1372 0
swath 884 6805 34965 0 6724 81
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Instance ROWS COLS NZ INT BIN CON
bell3a 123 133 347 32 39 62
bell5 91 104 266 28 30 46
blend2 274 353 1409 33 231 89
flugpl 18 18 46 11 0 7
gen 780 870 2592 6 144 720
gt2 29 188 376 164 24 0

noswot 182 128 735 25 75 28
rout 291 556 2431 15 300 241

timtab1 171 397 829 107 64 226
timtab2 294 675 1482 181 113 381
arki001 1048 1388 20439 123 415 850
gesa2 1392 1224 5064 168 240 816

gesa2_o 1248 1224 3672 336 384 504
gesa3 1368 1152 4944 168 216 768

gesa3_o 1224 1152 3624 336 336 480
qnet1 503 1541 4622 129 1288 124

qnet1_o 456 1541 4214 129 1288 124
n4-3 1236 3596 14036 174 0 3422

mik.250-1-100.1 151 251 5351 150 100 1
dfn-gwin-UUM 158 938 2632 90 0 848

Table D.2: Mixed-Integer Instances
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binatorial optimization. the Journal of Global Optimization, 2005.

[NS07] Lewis Ntaimo and Suvrajeet Sen. A branch and cut algorithm for two stage
stochastic mixed binary programs with continuous first stage variables. Int. J.
Comput. Sci. Eng., 3(3):232–241, 2007.

[OM01] Jonathan H. Owen and Sanjay Mehrotra. A disjunctive cutting plane proce-
dure for general mixed-integer linear programs. Mathematical Programming,
89(3):437–448, 2001.

[PB01a] Michael Perregaard and Egon Balas. Generating cuts from multiple-term dis-
junctions. 2081:348–360, 2001.

[PB01b] Michael Perregaard and Egon Balas. Generating cuts from multiple-term dis-
junctions. In Proceedings of the 8th International IPCO Conference on Inte-
ger Programming and Combinatorial Optimization, pages 348–360, London, UK,
2001. Springer-Verlag.

[SA90] H D Sherali and W P Adams. A hierarchy of relaxations between the continu-
ous and convex hull representations for zero-one programming problems. SIAM
Journal on Discrete Mathematics, 3(3):411–430, 1990.

[Sen03] Suvrajeet Sen. Algorithms for stochastic mixed-integer programming models, vol-
ume 12. Elsevier, 2003. Handbooks in Operations Research and Management
Science.

[SF02] Hanif D. Sherali and Barbara M.P. Fraticelli. A modification of benders’ decom-
position algorithm for discrete subproblems: An approach for stochastic pro-
grams with integer recourse. Journal of Global Optimization, 22:319–342, 2002.
10.1023/A:1013827731218.

[SH05] Suvrajeet Sen and Julia L. Higle. The c3 theorem and a d2 algorithm for large
scale stochastic mixed-integer programming: Set convexification. Mathematical
Programming, 104(1):1–20, 2005.

102



[She94] Hanif D Sherali. A hierarchy of relaxations and convex hull characterizations for
mixed-integer zero-one programming problems. Discrete Applied Mathematics,
52(1):83–106, 1994.

[SHN03] S. Sen, J. Higle, and L. Ntaimo. A summary and illustration of disjunctive
decomposition with set convexification. Woodruff, D. (ed.) Network Interdiction
and Stochastic Integer Programming, pages 105–125, 2003.

[SS06] Suvrajeet Sen and Hanif D. Sherali. Decomposition with branch-and-cut ap-
proaches for two-stage stochastic mixed-integer programming. Mathematical
Programming, 106(2):203–223, 2006.

[SSvdV98] R. Schultz, L. Stougie, and van der Vlerk. Solving stochastic programs with
integer recourse by enumeration: A framework using gröbner basis. Mathematical
Programming, 83(1):229–252, 1998.

[Str74] Beata Strazicky. On an algorithm for solution of the two-stage stochastic pro-
gramming problem. Methods of operations research, 19:142–156, 1974.

[SZ06] H. D. Sherali and Xiaomei Zhu. On solving discrete two-stage stochastic pro-
grams having mixed-integer first- and second-stage variables. Mathematical Pro-
gramming, 108(2-3):597–616, 2006.

[TPS12] Andrew C. Trapp, Oleg A. Prokopyev, and Andrew J. Schaefer. On a level-set
characterization of the integer programming value function and its application
to stochastic programming. Operations Research, 2012.

[Win74] C. Winkler. Basis factorization for block-angular linear programs: unified theory
of partition and decomposition using the simplex method. Technical report,
Systems Optimization Laboratory, Stanford, 1974.

[Wol80] Richard D. Wollmer. Two-stage linear programming under uncertainty with 0−1
integer first stage variables. Mathematical Programming, 19(3):279–288, 1980.

[YS09] Yang Yuan and Suvrajeet Sen. Enhanced cut generation methods for
decomposition-based branch and cut for two-stage stochastic mixed-integer pro-
grams. INFORMS J. on Computing, 21(3):480–487, July 2009.

103


