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Abstract 

  

Sentiment analysis is a task of mining subjective information expressed in 

text, and has received a lot of focus from the research community in Natural 

Language Processing in recent years. With the rapid growth of social networks, 

sentiment analysis is becoming much more attractive to Natural Language 

Processing researchers. Identifying words or phrases that carry sentiments is a 

crucial task in sentiment analysis. The work in this thesis concentrates on 

automatically constructing polarity lexicons for sentiment analysis on social 

networks. 

 One of the challenges in sentiment analysis on social networks is the lack 

of domain-dependent polarity lexicons and there is a need for automatically 

constructing sentiment lexicons for any specific domain. Two proposed methods 

are based on graph propagation and topic modeling. Our experiments confirm 

the quality of the polarity lexicons constructed using these two algorithms. 
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Chapter 1: Introduction 

 

 Social networks have become very popular in the past few years. Users 

on social networking sites usually express opinions about topics that they are 

interested in. Recent surveys have stated that both customers and product 

producers are being influenced more by opinions on online reviews and social 

networks than by traditional media [1]. For that reason, sentiment analysis on 

social networks has attracted a lot of interest in the field of Natural Language 

Processing (NLP) in recent years. In sentiment analysis, identifying polarity 

words is a crucial task. Due to the issue of domain-polarity dependency, there is 

a need for automatic construction of polarity lexicons for any specific domain. In 

NLP, there are two popular approaches: graph-based and probabilistic modeling-

based. The work in this thesis focuses on graph-based and statistical algorithms 

for automatically building polarity lexicons for lexicon analysis on social networks. 

1.1. Sentiment Analysis 

 Sentiment analysis is a task of determining polarity in opinions, feelings, 

and attitudes expressed in text sources. A sentiment analysis tool should predict 

whether the underlying opinion in a given text is positive, negative, or neutral. 

Increasing interest in this research area is due to many useful applications 

associated with it: calculating public opinion polls of presidential elections in 

blogosphere, measuring customer satisfaction from product reviews, and 
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customer feedback from websites (Amazon, BestBuy, etc.) and social networks 

(Twitter, Facebook, etc.), to name a few. 

1.2. Social Networks 

 Over the last few years, social networks have emerged as a new 

communication channel between people. Social networking services are 

connecting people who have the same interests and activities regardless of their 

geographic borders. As of March 2012, Twitter, an online social networking and 

microblogging service for publishing brief message updates, is estimated to have 

more than 140 million active users. These users are creating approximately 340 

million messages, which are called tweets and are limited to 140 characters, a 

day [2]. Twitter has drawn a dramatic surge of interest from the research 

community [3,4,5,6,16]. Unlike other Web-based social networking services that 

focus on friendship connections, Twitter employs the “following-follower” model, 

where a Twitterer is able to choose who he/she wants to follow without any 

granted permission. Conversely, he/she can also be followed by other Twitterers 

without granting permission. With very low latency of message delivery, Twitter is 

considered a real-time communication platform that allows users to receive 

updated posts as soon as they are published by others. 

1.3. Twitter Sentiment Analysis 

 Twitter is also considered a customer relationship platform, where 

customers are able to easily post reviews about products and services. Providers 

also can interact with their customers by replying directly to these posts. Many 
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companies have started collecting Twitter data in order to measure customer 

satisfaction about their products. 

1.4. Research Challenges 

 In this section, some research challenges in the field of Twitter sentiment 

analysis are highlighted and serve as the basis for the methods developed in this 

thesis. 

 Twitter messages are short and may contain misspelled words. Thus, 

traditional NLP techniques, which are designed for working with formal 

languages, perform poorly when applied to tweets [6]. 

 Tweets have the following special characteristics. First, Twitters have the 

tendency to include emoticons and punctuation characters to express their 

sentiment, for example, “downloading apps for my iphone! So much fun :-) There 

literally is an app for just about anything”. Second, tweets may contain 

abbreviated words due to the limit of 140 characters: “Watchin Espn..Jus seen 

this new Nike Commerical with a Puppet Lebron..sh*t was hilarious...LMAO!!!” 

Last, repeated characters are used to express the degree of sentiment, such as 

“Stopped to have lunch at McDonalds. Chicken Nuggetssss! :) yummmmmy.” 

Thus, misspellings are introduced in tweets as a result of the described 

characteristics. 

 Traditional opinion lexicons such as SentiWordNet [7] are constructed for 

detecting sentiment in formal language documents such as customer feedback 

forms, news articles, etc. Those opinion lexicons would not help us extract 

correct sentiment from tweets. For instance, in the tweet “This is soo goooddd!!!,” 
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the word “goooddd” is obviously a misspelled word and is not included in 

traditional sentiment lexicons. Therefore, the tweet would be classified as 

“neutral.” 

 Another challenge is that Twitter users can express their opinions about 

different topics. When talking about wine, one may post a negative message 

such as “This wine is green!” The word “green” in this tweet carries a negative 

meaning about the wine product. However, this word would be neutral without 

knowing the context. Apparently, “green” is not contained in any general-purpose 

opinion lexicon as a negative word. In addition, adding sentiment words manually 

for each topic consumes a lot of time and effort. 

 The identified challenges are the basis for us to develop algorithms for 

automatically building sentiment lexicons for a given topic. 
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Chapter 2: Related Work 

 

 This section briefly summarizes related work on sentiment 

analysis/opinion mining. In addition to the lexicon-based approach, we will review 

machine learning-based methods as well as methods that utilize both sentiment 

lexicons and machine learning techniques. 

2.1. Lexicon-Based Approach 

 The lexicon-based approach has been developed to perform opinion 

mining at sentence level and document level by searching for polarity words from 

a predefined word list [8,9,10,11]. This list is called an opinion lexicon and it 

contains positive and negative words. If there is no polarity word presented in a 

sentence/document, the sentence/document is labeled as neutral. We 

emphasize that existing sentiment lexicons have been constructed from formal 

language text sources, and therefore do not include slang words, misspelled 

words, or emoticons. 

 A graph-based algorithm has been introduced for deriving opinion lexicons 

from Web data [12]. In this algorithm, a graph G = (V, E) is first constructed. Each 

node v	 ∈ V represents a unique word w	 and two nodes v	, v� are connected by 

an edge e	� = �	v	, 	v�� 	∈ E if two words w	, w� have a similar score above a 

certain threshold. A list of negative and positive words are identified initially and 

marked as seed words, which are represented as seed nodes in the graph G. In 
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order to discover other sentiment words, the authors propagate sentiment scores 

from seed nodes into their neighbor nodes. In Chapter 3, we will describe an 

adapted version of this technique to build sentiment lexicons for Twitter using 

only a small set of emoticons. 

2.2. Machine Learning-Based Approach 

 This approach has been used by Pang et al. [13] to analyze sentiment in 

movie reviews. Three supervised machine learning algorithms, Naïve Bayes, 

Maximum Entropy, and Support Vector Machines (SVM) are used for 

comparison. The experiment results confirm that the SVM algorithm gives better 

accuracy than Naïve Bayes and Maximum Entropy. Go et al. [3] compared the 

same algorithms on Twitter data using distant supervision and obtained similar 

results. The works from both Pang et al. and Go et al. classify text into negative 

and positive categories only. 

2.3. Hybrid Approach 

 The hybrid approach combines lexicons and machine learning algorithms 

for sentiment analysis. Zhang et al. [4] introduced an entity-level method in which 

training data is created automatically by assigning an unlabeled tweet into 

positive or negative categories based on its included sentiment words. The 

training data is then fed into an SVM classifier. Their results show that the 

accuracy of the SVM classifier is improved using the augmented training data. 

 Another method to utilize both sentiment lexicons and machine learning 

algorithms is proposed by Agarwal et al. [14]. In their work, opinion words are 

generated by extending the Dictionary of Affect in Language using WordNet [15]. 
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The constructed opinion words contain approximately 8,000 English words in 

which each word has a sentiment score ranging from 1 to 3. These scores are 

then normalized by diving by 3. Negative words are those that have sentiment 

scores below 0.5, whereas words with scores above 0.8 are positive. Remaining 

words with scores ranging from 0.5 to 0.8 are considered neutral. These 

sentiment scores are then used as prior polarity. Part-of-Speech (POS) tags 

together with prior polarity are then used to derive senti-features for SVM 

classifier. 
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Chapter 3: A Large-Scale Distributed Lexicon Builder for Twitter Sentiment 

Analysis 

 

 In this chapter, a large-scale distributed system is proposed for extracting 

sentiment words from Twitter posts. This lexicon builder adapts the idea from the 

work of Velikovich et al, [12], in which a graph connecting words is constructed to 

identify sentiment words with a given set of seed polarity words. However, the 

original method was designed for constructing a lexicon from Web data, which 

has different properties from Twitter data. 

3.1. Architecture 

 Our method is implemented using Hadoop [18], an open source 

implementation of the MapReduce framework [19], and hence, it scales well by 

simply adding commodity computers. The graph data is stored in HBase [20], a 

Bigtable-like database [21] built on top of Hadoop, and therefore, scales well 

also. 

 The resulting sentiment lexicons are then consumed by a sentiment 

classifier that uses a lexicon-based approach to detect sentiment in tweets. The 

system architecture is described in Figure 1. 
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Figure 1. Large-scale distributed lexicon builder and classifier for Twitter 

sentiment analysis. 

 

3.2. Hadoop 

 Hadoop [18] is an Apache open-source software that supports data-

intensive applications. It is an implementation of Google’s MapReduce idea [19]. 

The MapReduce framework is a programming model designed for scalable and 

distributed computing on clusters of commodity computers. 

 A MapReduce job consists of Map and Reduce steps. In the Map step, the 

large input data is divided into smaller parts by a master node and those parts 

are fed into worker nodes in the cluster for processing. The partial results 

produced by worker nodes are then collected back by the master node in the 

Reduce step. These gathered partial results are combined in an appropriate way 

to calculate the final output for the original large input data. 
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3.3. HBase 

 Apache HBase [20] is a Bigtable-like [21] database software built on top of 

Hadoop and has been used as a large-scale and distributed data storage. HBase 

tables can serve as input and output for Hadoop’s MapReduce jobs, and 

therefore, are chosen to store the large graph data for our lexicon builder. 

3.4. Algorithm 

 Our lexicon builder uses the idea from the work of Velikovich et al. [12] to 

construct sentiment lexicons for Twitter data where the seed polarity words are 

emotional icons (or emoticons) such as “:D”, “:)” or “:-(“ as examples. Our lexicon 

builder is implemented in a scalable and distributed way with the help of Hadoop 

and HBase. 

 The co-occurrences for each pair of words are calculated first and then 

are used to compute the cosine similarity scores to construct a word graph. Each 

node in the graph represents a word and two nodes are connected by an edge 

with the weight equal to the cosine similarity scores of words represented by 

these nodes. Edges with low weights are then discarded. After that, sentiment 

scores are propagated from the seed nodes into their neighbor nodes to help 

identify polarity words (Figure 2). 
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Figure 2. Graph connecting words/phrases. 

 

 In our implementation, tweets are normalized first so that repeated 

characters are reduced. For example, we map both words “gooodddd” and 

“goooodd” to “goodd” by replacing every “ooo” and “ddd” by “oo” and “dd”, 

respectively. This approach is similar to the approach used in the work by Go et 

al. [3]. Next, a POS tagger1, which is created specifically for Twitter data by 

Gimpel et al. [16], is used to extract nouns, adjectives, adverbs, verbs, 

interjections, abbreviations, emoticons, and hashtags from the input tweets with 

the assumption that only those words contain sentiment. This filtering step is 

done for reducing the size of the word-graph. 

 Next, we will describe our algorithm, which is based on the MapReduce 

framework. 

 3.4.1. Co-occurrence matrix. Co-occurrence matrix A��� (N is the 

number of words) contains information about how many times the word i co-

                                                           
1 http://code.google.com/p/ark-tweet-nlp/ 
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occurs with the word j. The MapReduce job for calculating the co-occurrence 

matrix is described in Algorithm 1. 

 

For each tweet t: 

1. Lowercase t. 

2. Separate t into a list of tokens: word_listt = twokenize(t). 

3. Remove tokens which are not nouns, adjectives, adverbs, verbs, 

interjections, abbreviations, hashtags, or emoticons from word_listt. 

In mapper: 

a) For each word w from word_listt , emit <w, v> where v is a word or a phrase 

within a window size T from w. 

b) Similarly, for each phrase p, emit <p, v> 

In reducers: 

a) Count the number of entries <u, v> as the number of co-occurrences k 

between u and v. 

b) Insert the value k into table co-occurrence_matrix at row u and column v in 

the column family “co-occurence”. 

 
Algorithm 1. Computing co-occurrence matrix. 

 

 In order to reduce to the size of the matrix, we include only unigram and 

bigram words into word_listt, where a bigram word is formed by two consecutive 
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unigram words. An HBase table is used to store the co-occurrence matrix and 

has the schema described in Table 1. 

 
Key Column family “co-occurrence” 

w1 w1:k11 w2:k12 … wn:k1n 

… … … … ... 

wn w1:kn1 w2:kn2 … wn:knn 

 

Table 1. Co-occurrence table. 

 

 3.4.2. Computing similarity scores and constructing the word-graph. 

The similarity score between two words W	 and W� is defined as the cosine 

similarity cosine_sim(w	, w�)	between their presenting vectors 

w	 = (k	�, k	�, … , k	!) and w� = (k��, k��, … , k�!), respectively. In order to save 

computing time by not re-computing vector lengths, all vectors 

w	 = (k	�, k	�, … , k	!) are normalized into unit vectors w′	 = (k′	�, k′	�, … , k′	!). 
Hence, cosine_sim(w	, w�) is calculated as the pairwise dot-product between the 

unit vectors w	# as follows: 

cosine_sim(w	, w�) = 	$k#	% ∗ k#�%
!

%'�
(1) 

 In the work of Elsayed et al. [17], a MapReduce algorithm was introduced 

for computing pairwise cosine similarity for a very large collection of vectors. The 

idea behind their work is based on the following observation: the index c in 
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Formula (1) contributes to the right-hand side sum if both coordinates k#	% and 

k#�% are non-zero. Therefore, if we denote C	 = *	c	|	k#	% 	≠ 0	}, then Formula (1) is 

equivalent to the following formula: 

cosine_sim(w	, w�) = 	 $ k#	% ∗ k#�%
	

%∈/0∩/2
(2) 

 The pseudo-code for the MapReduce job for vector length normalization 

and calculating the set of indices C	 is described in Algorithm 2. 

 

In mappers: 

   For each vector wi: 

a) Compute its length leni. 

b) For every non-zero coordinate wc, emit <wc ,<wi, normic>> where normic = 

kic/leni. 

In reducers: 

   Do nothing. 

 
 

Algorithm 2. Vector normalization and non-zero coordinate indexing. 
 

 The cosine similarity scores are calculated in a separate MapReduce job 

as follows: 
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In mappers: 

   For each key wc: 

For every pair of its values <wu, normuc> and <wv, normvc>, emit <<wu, wv>, 

cosine_simc>, where cosine_simc = normuc*normvc. 

 

In reducers: 

   For each key <wu, wv>: 

a) Take cosine similarity score between wu and wv as the sum of all 

associated values cosine_simc: cosine_sim(w4, w5) = ∑ cosine_sim%% . 

b) If cosine_sim(w4, w5) ≥ α, insert into the graph table two edges (wu, wv) 

and (wv, wu) with the same weight cosine_sim(wu, wv). 

 
Algorithm 3. Cosine similarity calculation and graph table creation. 

 

 Similar to the co-occurrence table, the graph table schema has the format 

described in Table 2. 
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Key Column family “weight” 

w1 w1:p11 w2:p12 … wn:p1n 

… … … … ... 

wn w1:pn1 w2:pn2 … wn:pnn 

 

Table 2. Graph table. 

 

 3.4.3. Discarding edges with low weights. The purpose of discarding 

edges with low weights is to avoid propagating sentiment scores from seed 

words to non-sentiment words, and also to improve the speed of sentiment score 

propagation. As described in the pseudo-code in Algorithm 4, an edge e	� =
(w	, w�) is retained if it is in the list of TOP_N highest weighted edges adjacent to 

nodes w	 and w�. 
 

In mappers: 

   For each key wi in the graph table: 

Calculate a list L1 of TOP_N highest weighted edges adjacent to wi and a list 

L� = L\L� where L – list of all edges adjacent to wi. 

        a)    For each edge e ∈ L�, emit <e, L1>. 

        b)    For each edge e′ ∈ L�, emit <e, ∅>. 
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In reducers: 

   For each key e, there are two associated values L’, L’’, 

a) If one of the associated values is ∅, remove edge e from the graph 

table. 

b) If e is not in one of the TOP_N highest weighted edges in the 

combination list L = L′ ∪ L′′, edge e is also removed. 

 

Algorithm 4. Discarding edges with low weights. 

 

 3.4.4. Propagating sentiment scores. Sentiment scores are propagated 

from seed nodes into their neighbor nodes located within the distance D from the 

seed nodes. The HBase table “propagate” has the following structure: 

 

Key Column family “visited” 

wseed_1 wi1:‘’ … wj1:‘’ 

… … … ... 

wseed_k wik:‘’ … wjk:‘’ 

 

Table 3. Propagate table. 

 

 In Table 3, we put nodes that are reachable from seed nodes as qualifiers 

under the column family “visited”. For instance, in the row corresponding to the 



18 

 

seed node wseed_1, the qualifiers w	�, … ,w�� are the nodes reachable from the 

seed node wBCCD_� within the distance D. Algorithm 5 illustrates how score 

propagation is implemented in MapReduce jobs. 

 

Initial: 

a) Put into the propagate table, rows <wseed_i, <visited: wseed_i, ‘’>>, where i = 1, 2, 

…, k and k is the number of seed nodes. 

b) Create a column family named “alpha” in the graph table and insert values < 

wi, <alpha: wi, 1>>. 

 

Repeat the following MapReduce job D times: 

In mappers: 

   For each key wseed_i in the propagate table: 

     For each qualifier wiu of column family “visited” in row wseed_i: 

         For each node wiv that is not in column family “visited” in row wseed_i and is 

adjacent to wiu in the word graph, emit < wseed_i, < wiu, wiv>>. 

  

In reducers: 

   For each key wseed_i: 
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a) Retrieve α	4 from entry < wseed_i, <alpha: wiu, α	4>> in the graph table. If that 

entry does not exist, assign α	4 ≔ 0. 

b) Similarly for α	5. 
c) Get the weight ω45 of edge (wiu, wiv) from the graph table. 

d) If α	4 < α	5 ∗ ω45, update α	4 ≔ α	5 ∗ ω45 in the graph table. 

e) Insert into the propagate table entry <wseed_i, <visited: wiv, ‘’>> to mark wiv as 

visited from wseed_i 

 

Algorithm 5. Sentiment score propagation. 

 

 3.4.5. Computing final sentiment scores. This is the final step where the 

sentiment scores are computed and sentiment words are discovered. As can be 

seen, each node w	 in the graph has two types of scores: score	I is the sum of 

scores accumulated from positive seed words and score	J - from negative seed 

words. These two scores are then combined to get the final sentiment score 

score	 as shown in the following formula: 

score	 = score	I − β ∗ score	J	(3) 
where β is defined as 

β = ∑ score	I	∑ score	J	  

 

 The final sentiment scores of all nodes in the graph are computed in three 

MapReduce jobs. The first one calculates score	I and score	J. The next job is 
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executed to get the value β. Finally, the scores score	 are generated according to 

Formula (3). 

 

3.5. Experiment 

 In this section, we will conduct an experiment to build sentiment lexicons 

for Twitter using the described lexicon builder. Its performance and scalability 

also will be evaluated. 

 3.5.1. Setup. The input Twitter corpus2  for the lexicon builder consists of 

only tweets that have either smileys “:)” or frownies “:(”. 

 Because Twitter posts do not follow any specific grammar structure, 

simply separating words by white spaces does not work. For example, in the 

tweet “I lovee iPhone:)”, the emoticon “:)” is not separated from the word “iPhone” 

by white spaces. Therefore, a tokenizer created specifically for tweets, called 

Twokenizer3, is used for extracting unigram and bigram words. 

 In addition to the emoticons, nouns, adjectives, verbs, interjections, 

abbreviations, and hashtags are used for constructing the word graph. The 

emotions serve as the seed nodes. When computing sentiment scores in the last 

step, we keep only nodes with absolute sentiment scores at least 1.0 and save 

them as polarity words. 

 In our experiment, the parameters are set as follows: distance D = 4, 

TOP_N = 100, window size T = 6, threshold α = 0.01. We run the lexicon builder 

on a Hadoop cluster with 5 nodes on Amazon EC2. Each node is a medium 

                                                           
2 https://sites.google.com/site/twittersentimenthelp/for-researchers 
3 https://github.com/vinhkhuc/Twitter-Tokenizer 
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instance with 2 virtual cores (2.5 EC2 Compute Units each) and 1.7 GB of 

memory. Two mappers and two reducers are executed on each node. We 

measure lexicon builder’s running time with datasets consisting of 100,000, 

200,000, and 300,000 tweets chosen from the input Twitter corpus. 

 3.5.2. Results. Figure 4 shows the performance of the lexicon builder with 

different datasets and different number of nodes. The number of unique words 

(unigrams and bigrams) for each dataset is shown in Figure 3. The number of 

unique words increases linearly with the number of tweets due to our naive way 

of forming bigram phrases and the small amount of training tweets being used. 

 

 

Figure 3. Number of unique words by the number of tweets. 

 



22 

 

 

Figure 4. Running time of the lexicon builder with different numbers of nodes and 

different amounts of tweets. 

  

In Figure 4, the execution time of our lexicon builder with the dataset of 200,000 

tweets for a cluster of 2 machines, and the dataset of 300,000 tweets for a 

cluster of less than 4 machines is not reported due to many OutOfMemory errors 

when running Hadoop and HBase in a cluster of a small number of nodes. The 

results have confirmed that lexicon builder’s running time decreases when more 

machines are added. In particular, for the dataset of 100,000 tweets, the 

execution time is decreased by 35% when moving from 2 machines to 3 

machines, by 40% when moving from 2 to 4 machines, and by 47% when moving 

from 2 to 5 machines. Similarly, with the dataset of 300,000 tweets, the running 

time is decreased by 23% when increasing from 4 to 5 machines. However, the 
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running time does not decrease linearly due to the latency of Hadoop and the 

default settings of HBase tables. 

 Since the settings of HBase tables are kept as default (i.e., without block 

caching, Bloom filter, compression, etc.), the execution time may be reduced 

further when these settings are turned on.  

 Table 4 shows sample sentiment words in the lexicon constructed using a 

dataset of 384,397 tweets in which 232,442 tweets contained smileys and 

151,955 tweets contained frownies. The final lexicon has 2,411 positive and 

1,018 negative words. 

 

Positive Negative 

awesome damn 

lovee stupid 

long weekend completely exhausted 

honey moon proper weird 

pain stop totally helpless 

yess eww 

wohoo fml 

hurray boored 

finish schoolwork home sick 

 

Table 4. Sentiment words/phrases from the resulting lexicon. 
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3.6. Discussion 

 The experiments have shown the scalability of our lexicon builder in 

automatically generating sentiment lexicons according to a given training dataset, 

in this case, a collection of tweets containing either smileys or frownies. The 

execution time can be reduced by adding machines into the cluster thanks to 

Hadoop and HBase. 

 Although the experiment has not been conducted for constructing 

sentiment lexicons for any specific topic, such as food, movie, etc., we argue that 

our lexicon builder is capable of generating sentiment lexicons for any topic if the 

input training dataset is relevant to that topic. 

 However, there are some issues that need to be solved in future work: 

• First, some positive words may be assigned incorrectly with negative 

sentiment scores, and similarly for negative words. This issue occurs due 

to the fact that Twitterers may write tweets in a negation manner. For 

example, the bigram word “stop coughing” frequently follows a negation 

word, such as “cannot stop coughing :( so much for sleeeping.” In this 

example, a sentiment relationship between “stop coughing” and the seed 

word “:(“ is likely to be established. Consequently, “stop coughing” may be 

extracted eventually as a negative word. 

• Second, in our implementation, the word graph is difficult to update using 

added training data without re-constructing from scratch. Moreover, it is 

hard to maintain different word graphs for different topics. 
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• Third, in order to reduce the size of the word graph, a POS tagger is used 

to filter out words that may not contain sentiments. Therefore, we have to 

use different POS taggers for different languages. As far as we know, the 

Twitter POS tagger [16] is the first POS tagger created specifically for 

Twitter data and it only works for tweets in English. 

  



26 

 

 

 

Chapter 4: Topic Modeling-Based Approach to Construct Sentiment 

Lexicons for Twitter 

 

4.1. Topic Modeling 

 Topic models are probabilistic models for extracting potential topics that 

occur in an archive of documents. Probabilistic topic models [22,23] have drawn 

interest from researchers from different backgrounds, including NLP, machine 

learning, information retrieval, etc. Topic modeling has been used in topical 

analysis of scientific journals [24], Wikipedia articles [25], social networks [26], 

etc. 

 4.1.1. Latent Dirichlet Allocation. In recent years, Latent Dirichlet 

Allocation (LDA) has gained popularity among NLP researchers. By modeling 

documents as a mixture of distributions over words, LDA [23] is capable of 

discovering hidden “topics”, i.e. distributions over words, in a large collection of 

documents. In LDA, a topic, which is not assigned a name, is a cluster of words 

that tend to co-occur frequently in the same document. In general, words under 

one topic are connected to each other through similar semantic relations. 

Therefore, one is able to understand the contents of a document by simply 

reading words under the discovered topics with highest probabilities. 
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Topic 1 (Airline) Topic 2 (Food+Movie) Topic 3 (Bank)
united  king  bank  
pilot  moon  america  
new  eating  just  
flight  eat  credit  
drunk  like  get  
con  team  new  
travel  jacob  card  
american  cheese  like  
arrested  ship  chase  
charged  twilight  time   

Table 5. Latent topics discovered from a collection of tweets using LDA. 

 

 Table 5 shows an example of three latent topics discovered from a Twitter 

corpus using LDA. By reading through the words corresponding to each topic, it 

is obvious that Topic 1 is Airline, Topic 3 is Bank, and Topic 2 is a mix of Food 

and Movie topics. In LDA, because the number of topics is a parameter, when we 

provide smaller numbers of topics than the actual number of latent topics existing 

in the corpus, some of them may combine into one, as seen in Topic 2. 

 LDA relies on the assumption that the topic distribution has a Dirichlet 

prior and each document is a mixture of different topics. Moreover, word order in 

a document is ignored, i.e., words are independent from each other. Because of 

the bag-of-words assumption, some topics are difficult to interpret by just reading 

through their associated words. 

 As a fully unsupervised algorithm, LDA does not offer a way of 

incorporating supervised labels into its learning process. In other words, LDA has 

no mechanism to tune extracted topics to suit user’s needs even if labeled 

resources are available. 
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 4.1.2. Labeled Latent Dirichlet Allocation. In some problems, such as 

document browsing, the user may want to see all documents that are relevant to 

a chosen label. One approach to these problems is finding associations between 

words in documents and their most suitable labels. For example, if the word 

“yummy” is known to be related to the label “food” and the word “melody” is 

associated with the label “music”, we can easily extract documents for those 

labels. However, these tasks cannot be done with LDA because topic names are 

not known beforehand and LDA often extracts topics in an unsupervised manner. 

 Labeled Latent Dirichlet Allocation (Labeled LDA) [27] is an LDA’s 

supervised learning version in which a constraint is made by establishing a one-

to-one correspondence between latent topics and user-defined labels. Labeled 

LDA, therefore, allows word--label relationships to be learned directly by 

constraining the topic model to extract only topics that are in a predefined list. 

 4.1.3. Topical N-grams. The topic models such as LDA and its extension 

Labeled LDA rely on the bag-of-words assumption where word order in a 

document is totally ignored. However, in the real world, this is not true because 

word order is very important for lexical meaning. In other words, the aggregation 

of individual words in a phrase cannot provide the same meaning as the whole 

phrase. For instance, the phrase “sex and the city” is about movie, but it will have 

a totally different meaning if we sum up the meanings of the individual words 

“sex”, “and”, “the”, “city”. Similarly, the phrase “kill cancer” does not carry the 

same meaning as its constituent words “kill” and “cancer.” 
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 A topic model called Topical N-grams (TNG) [28] was proposed for 

discovering both topical unigram words and n-gram phrases that are associated 

with latent topics. TNG is an extension of LDA, where observed bigram statuses 

are introduced to determine whether two consecutive unigram words can be 

connected to form a phrase. In particular, TNG is able to distill n-gram phrases 

depending on the nearby information. 

4.2. Topic Modeling Approach for Generating Sentiment Lexicons 

 In this section, we propose our topic model for automatically generating 

sentiment lexicons. In LDA, if we consider positive and negative as two “topics”, 

then the words associated with these two topics become sentiment lexicons that 

we wish to obtain. 

 Our topic model is called Labeled Topical N-grams (Labeled TNG), which 

is inspired by two topic models, Labeled LDA and TNG. Sentiment label 

supervision is incorporated so that the topic model is constrained to use only 

labels from the document’s label set. The extracted sentiment phrases are very 

useful for sentiment analysis because we can capture the whole meaning of 

phrases and, therefore, we are able to avoid the problem of incorrectly summing 

up the meanings of individual words. 

 4.2.1. Graphical model representation. The graphical model 

representation of Labeled TNG is described in Figure 5. 
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Figure 5. Graphical model representation of Labeled TNG. 

 

Symbol Description 

K Number of topics 

M Number of documents 

V Number of unique words 

NS Number of word tokens in document m 

w	S The ith word in document m 

z	S The topic associated with the word w	S	in the document m 

 

Table 6. Notation for Labeled TNG (continued) 
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Table 6 (continued) 

 

x	S The bigram status for the words w	J�S  and w	S in the document m 

θS The Discrete distribution of topics w.r.t. document m 

ψX The Bernoulli distribution of presence/absence of observed topic z in 

document m 

φX The Discrete distribution of words w.r.t. topic z 

σX[ The Bernoulli distribution of bigram status variables w.r.t. topic z and 

word w 

πX[ The Discrete distribution of words w.r.t. topic z and word w 

λS The topic presence/absence indicators for document m 

α The Dirichlet prior of θ 

αS The Dirichlet prior of θS w.r.t the topics presented in document m 

β The Dirichlet prior of φ 

γ The Beta prior of σ 

δ The Dirichlet prior of π 

ψ The Beta prior of λ 
LS The document-specific label projection matrix w.r.t document m 
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The generative process of Labeled TNG can be described as follows: 

 

 

1. For each topic z, draw Discrete distribution φX from Dirichlet prior β. 

2. For each topic z and each word w, draw Bernoulli distribution σX[ from 

Beta prior γ. 
3. For each topic z and each word w, draw Discrete distribution πX[ from 

Dirichlet prior δ. 
4. For each document m: 

a. For each topic z, draw λXS from Bernoulli distribution ψX. 
b. Draw αS = LS 	 ∗ 	α. 

c. Draw a Discrete distribution θS from Dirichlet prior αS. 

d. For each word at position i in document m: 

i. Draw a bigram status x	S from Bernoulli distribution σX0`ab [0`ab . 

ii. Draw a topic z	S from Discrete distribution θS. 

iii. If x	S = 0, draw a word w	S from Discrete distribution φX0b; 

otherwise, draw w	S from Discrete distribution πX0b[0`ab . 

 

Table 7. The generative process of Labeled TNG. 
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 For each document m, the document vector label is defined as τS =
*	z	|	λXS = 1	} [27]. For instance, if λXS = *	1, 0, 1, 0}, then τS = *	1, 3	}. The label 

project matrix LS of size MS ∗ K, where MS = |τS|, is defined as follows: 

L	�S =	 d 1, if	τ	S = j		0, otherwise 
 Hence, the Dirichlet prior α is projected to αS with the project matrix LS as 

follows: 

αS = LS 	 ∗ 	α = *	αhab , αhib , …	 , αhjbb } 
 For instance, with τS = *	1, 3	}, i.e., document m is assigned with two 

topics 1 and 3, we have αS = *	α�, αk	}. 
 4.2.2. Learning and inference. Similar to the original topic model TNG 

[28], we use collapsed Gibbs sampling [29] for inferring Labeled TNG as follows: 

P(x	 = l	|	w, z, xJ	, α, β, γ, δ	)  ∝ 

nC4n,J	# 	+ 		γn∑ (nC4np,J	#�np'q +	γnp) 

∗ 	
rst
su 		nvw,J	 	+ 		βw∑ (nvwp,J	 	+ 	βwp)xwp'�

,			if	x	 = l = 0
nv4w,J	## 	+ 		δw∑ (nv44p,J	##x4p'� 	+ 		δ4p) ,				if	x	 = l = 1

 

and 

P(z	 = k	|	w, zJ	, x, α, β, γ, δ)   ∝ 
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nSv,J	 + αv	∑ (nSvp,J		 +	αvp)yvp'�
 

∗ 	
rst
su nvw,J	 	+ 	βw∑ (nvwp,J	 +	βwp)xwp'�

, if	x	 = l = 0
nv4w,J	## +	δw∑ (nv44p,J	## +	δ4p)x4p'�

, if	x	 = l = 1
 

The hyper-parameters are estimated as follows: 

θSv =	 nSv +	αv∑ (nSvp +	αvp)yvp'�
 

φvw =	 nvw +	βw∑ (	nvwp +	βwp)xwp'�
 

σC4n = nC4n# +	γn∑ (	nC4np# +	γnp)�np'q  

πv4w =	 nv4w## +	δw∑ (nv44p## +	δ4p)x4p'�
 

where xJ	 is the bigram status for all words except word w	, 
 zJ	 is the topics of all words except word w	, 

nvw,J	 is the number of times the word t except the word w	 is assigned the 

topic k, 
nSv,J	 is the number of times a word in document m is assigned to topic k 
except word w	, 
nC4n,J	#  is the number of times the bi-gram status x	 = l w.r.t the previous 

word u = w	J� and its topic e = z	J�, 
and 
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nv4w,J	##  is the number of times the word t except the word w	 is assigned to 

the topic k followed by the previous word u in a bi-gram phrase. 

4.3. Experiment 

 For the experiment, we use Labeled TNG to build sentiment lexicons 

using the Stanford Twitter data set4. This dataset consists of 1,600,000 tweets in 

which 800,000 tweets are positive and 800,000 tweets are negative. These 

tweets are assigned labels automatically by searching for emoticons. 

 In our observation, tweets may be assigned both positive and negative 

labels. For instance, “@wolkenmalerin someone showed it to me ;D i think its 

awesome. so sad :( but it's a great documentation. everyone should watch it. 

<33”. Therefore, in addition to the sentiment labels provided in the original 

dataset, we added the negative labels into positive tweets if they contains frownie 

icons and similarly we added positive labels into negative tweets if they contain 

smiley icons. 

 Unlike the experiment conducted in Chapter 4 for the graph-based 

approach, for Labeled TNG, we use the whole dataset of 1,600,000 tweets. Also, 

we do not remove stop words except those words with a single character. 

 We set the following values for K, α, β, γ, δ: 
K = 2 

α = (α�, α�, … , αv) , where 	α	 =	 {qy  

β = (β�, β�, … , βx), where β	 = 0.01 

                                                           
4 https://sites.google.com/site/twittersentimenthelp/for-researchers 
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γ = (γ�, γ�), where γ� = 0.2 and γ� = 1000 

δ = (δ�, δ�, … , δx), where δ	 = 0.01 

 We ran Gibbs sampling in 10,000 iterations for inferring Labeled TNG on 

Ubuntu 12.04 server 64-bit with 2.2 GHz Dual Core 2 and 4GB of memory. The 

resulting lexicon is post-processed so that stop words and phrases in which more 

than half of constituent words are stop words are removed. Table 8 shows 

polarity words and phrases in the final lexicon. 

 

N-grams Positive Negative 

1-grams good, love, wonderful sad, stupid, headache 

2-grams thank you, good sleep, 
happy birthday, cant wait, 
first kiss 

not fun, tummy ache, still 
sick, too long 

3-grams an amazing boyfriend, was 
fucking hilarious, my 
american idol 

stuck in traffic, could n't 
find, had swine flu 

4-grams let 's party tomorrow, let out 
early today, yuu da fukin 
best 

miss my long hair, outlook 
not so good, still not feeling 
well 

 

Table 8. Examples of resulting sentiment lexicon for unigrams and different n-

grams. 

 

 Each word/phrase has positive and negative scores. To combine them 

into a single sentiment score, we use the following formula: 



37 

 

senti_score(w) = pos_score(w) − neg_score(w) 
 In the final sentiment lexicon, we obtained 648,715 positive and 617,877 

negative words/phrases. The distribution of words/phrases in the final lexicon is 

shown in Figure 6 and Figure 7 for positive and negative categories, respectively. 

 

 

Figure 6. Distribution of positive words/phrases. 

 

 

Figure 7. Distribution of negative words/phrases. 
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4.4. Discussion 

 As can seen in both Figure 6 and Figure 7, 2-gram, 3-gram, and 4-gram 

phrases are the major type of phrases in the resulting lexicon. This suggests that 

Twitter users usually form phrases from 2, 3, or 4 individual words to express 

their opinions. 

 In the next chapter, we will run an experiment to evaluate the quality of the 

lexicons constructed by the graph-based and Labeled TNG-based approaches. 
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Chapter 5: Evaluation of Constructed Sentiment Lexicons 

  

In this chapter, we will conduct an experiment to evaluate the quality of the 

sentiment lexicons constructed in Chapter 3 and Chapter 4. 

5.1. Lexicon-Based Sentiment Classifier 

 In order to evaluate the quality of sentiment lexicons built by the graph-

based and Labeled TNG-based methods, we use a lexicon-based sentiment 

classifier which searches for sentiment words/phrases in a tweet and sum up 

their sentiment scores. If the total score is larger than zero or less than zero, the 

tweet is assigned the positive or negative label, respectively. The tweet is 

classified as neutral if the total score is zero, i.e., no sentiment words/phrases 

are found. 

 In addition, the resulting lexicons built by both the graph-based and 

Labeled TNG-based approaches are augmented with emoticons with appropriate 

scores. A prefix trie T is created for each sentiment lexicon for fast lookup. 

Algorithm 6 shows how the prefix trie is used in the sentiment classifier. 

 

Input: tweet t, prefix tree p_trie 

Output: sentiment label 

1. Assign total_score := 0 
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2. Tokenize the input tweet word_listt := twokenize(t) 

3. For each word w	 ∈ word_listt : 

a. Assign it to the current phrase p := w	. 
b. Retrieve a word/phrase u from p_trie that approximately matches p. 

c. If u is p, then augment the phrase p with the next word w	I�, i.e. 

p := <p, w	I�>. Otherwise, accumulate the sentiment score of 

phrase p into total_score and reset p with the next word. 

4. Output the sentiment label according to the sign of total_score. 

 

Algorithm 6. Lexicon-based sentiment classifier. 

 

5.2. Experiment 

 We ran the sentiment classifier with the testing dataset from the Stanford 

Twitter corpus. This testing dataset contains 359 tweets in which 177 tweets are 

negative and 182 tweets are positive. The testing tweets are labeled manually 

and are about various topics: company, location, product, etc. [3]. The accuracies 

obtained by applying Algorithm 6 with sentiment lexicons constructed by both 

lexicon builders are reported in Figure 8. 
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Figure 8. Accuracy of the lexicon-based sentiment classifier for lexicons 

constructed by graph propagation method and Labeled TNG. 

 

Lexicon Graph-based Labeled TNG-based 

Number of training tweets 384,397 1,600,000 

Number of positive 

words/phrases 

2,411 648,715 

Number of negative 

words/phrases 

1,018 617,877 

Total words/phrases 3,429 1,266,592 

 

Table 9. Summary information for each sentiment lexicon. 

 

Table 9 summarizes the number of unique positive and negative 

words/phrases in lexicons built by two methods, graph propagation and Labeled 

TNG. We also compared the quality of lexicons constructed by these two 
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methods with a baseline lexicon obtained from Twitrratr5 in 2009. This lexicon 

contains 174 positive and 185 negative unigram words. A unigram search 

method uses Twitrratr lexicon to count the number of positive and negative single 

words appearing in a tweet to assign appropriate sentiment label. This method 

works similarly to our baseline sentiment classifier when the lexicon contains only 

polarity unigrams and the score of each unigram is either -1 or +1. Table 10 

shows the accuracies of sentiment classifiers using three lexicons (where all 

words and phrases are included). 

 

Lexicon Graph-based Labeled TNG-based Unigram Search 

Accuracy 72.42% 81.06% 65.20% 

 

Table 10. Accuracies of the sentiment classifier for each lexicon. 

 

5.3. Results and Discussion 

 The reported accuracies have confirmed the high quality of our 

constructed sentiment lexicons. Both sentiment lexicons constructed by graph 

propagation and Labeled TNG methods provide better quality than the baseline 

lexicon. The sentiment lexicon built with Labeled TNG provides higher accuracy 

than the one constructed using graph-based approach. This can be explained by 

the fact that Labeled TNG is trained with the whole training dataset whereas the 

graph-based method only uses a part of it. 

                                                           
5http://twitrratr.com 
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 The high accuracy of the sentiment lexicon constructed using Labeled 

TNG is obtained thanks to the use of n-gram words whereas using bigram words 

from the lexicon built by the graph-based approach seems to hurt the accuracy. 

This indicates that Labeled TNG is capable of extracting more meaningful 

phrases than the graph-based method, which natively forms bigram phrases from 

two consecutive words. 

 As we mentioned earlier, word order plays a very important role in 

sentiment analysis. By capturing n-gram words, we are able to capture the 

semantics of a sentence better and, therefore, gain better accuracy in sentiment 

extraction. 

5.4. Future Work 

 The results obtained in the experiment are very promising. However, there 

are still some issues to be solved in future work: 

• Due to the limited computing resources, we were not able to create 

sentiment lexicons using the graph-based approach with the whole 

training dataset. This issue can be solved in the future by using a larger 

Hadoop and HBase cluster. 

• The current implementation of Labeled TNG only runs in a single machine, 

and hence, does not scale with the training dataset and the number of 

topics (for general topic extraction). There have been some efforts to scale 

LDA algorithm using the MapReduce framework [30, 32]. In the future 

work, we will incorporate these ideas into our lexicon builder because LDA 

and Labeled TNG share similar mathematical models. 
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• Although Labeled TNG is able to handle training tweets with multiple 

labels, the obtained sentiment scores do not reflect the sentiment strength 

because the scores are computed based on word frequencies. For 

instance, the phrase “extremely happy” has a lower score than the word 

“happy” due to the fact that “happy” is used more frequently in positive 

tweets than “extremely happy”. This issue can be solved by modifying 

Labeled TNG so that it can be trained with tweets marked with continuous 

sentiment scores rather than just discrete labels “positive” and “negative”. 

This solution is similar to supervised LDA proposed by Blei et al. [31]. 

However, similar to the original LDA algorithm, supervised LDA relies on 

bag-of-words assumption where word order is ignored. 
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