

Approaches to Automatically Constructing Polarity Lexicons for Sentiment

Analysis on Social Networks

Thesis

Presented in Partial Fulfillment of the Requirements for the Degree Master of

Science in the Graduate School of The Ohio State University

By

Vinh Khuc, B.S.

Graduate Program in Computer Science and Engineering

The Ohio State University

2012

Thesis Committee:

Prof. Rajiv Ramnath, Advisor

Prof. Jay Ramanathan

Copyright by

Vinh Khuc

2012

ii

Abstract

Sentiment analysis is a task of mining subjective information expressed in

text, and has received a lot of focus from the research community in Natural

Language Processing in recent years. With the rapid growth of social networks,

sentiment analysis is becoming much more attractive to Natural Language

Processing researchers. Identifying words or phrases that carry sentiments is a

crucial task in sentiment analysis. The work in this thesis concentrates on

automatically constructing polarity lexicons for sentiment analysis on social

networks.

 One of the challenges in sentiment analysis on social networks is the lack

of domain-dependent polarity lexicons and there is a need for automatically

constructing sentiment lexicons for any specific domain. Two proposed methods

are based on graph propagation and topic modeling. Our experiments confirm

the quality of the polarity lexicons constructed using these two algorithms.

iii

Dedication

iv

Acknowledgements

v

Vita

June 2008 ……………………………….. B.S.

 Department of Applied Mathematics

 and Computer Science

 Moscow State University

September 2009 – present …………….. Graduate Student

 Department of Computer Science

 and Engineering

 The Ohio State University

Publications

Khuc, V. N., Shivade, C., Ramnath, R., & Ramanathan, J. 2012. Towards

building large-scale distributed systems for twitter sentiment analysis.

In: Proceedings of the 27th Annual ACM Symposium on Applied

Computing (SAC '12). ACM, New York, NY, USA. pp. 459--464.

Field of Study

Major Field: Computer Science

vi

Table of Contents

Abstract .. ii

Dedication ... iii

Acknowledgements .. iv

Vita ... v

List of Tables .. ix

List of Algorithms .. x

List of Figures ... xi

Chapter 1: Introduction ... 1

1.1. Sentiment Analysis .. 1

1.2. Social Networks .. 2

1.3. Twitter Sentiment Analysis .. 2

1.4. Research Challenges .. 3

Chapter 2: Related Work .. 5

2.1. Lexicon-Based Approach .. 5

2.2. Machine-Learning-Based Approach .. 6

vii

2.3. Hybrid Approach ... 6

Chapter 3: A Large-Scale Distributed Lexicon Builder for Twitter Sentiment

Analysis .. 8

3.1. Architecture ... 8

3.2. Hadoop ... 9

3.3. HBase ... 10

3.4. Algorithm ... 10

3.4.1. Co-occurrence matrix ... 11

3.4.2. Computing similarity scores and constructing the word-graph 13

3.4.3. Discarding edges with low weights .. 16

3.4.4. Propagating sentiment scores .. 17

3.4.5. Computing final sentiment scores .. 19

3.5. Experiment .. 20

3.5.1. Setup ... 20

3.5.2. Results ... 21

3.6. Discussion .. 24

Chapter 4: Topic Modeling-Based Approach to Construct Sentiment Lexicons for

Twitter ... 26

viii

4.1. Topic Modeling ... 26

4.1.1. Latent Dirichlet Allocation .. 26

4.1.2. Labeled Latent Dirichlet Allocation ... 28

4.1.3. Topical N-grams ... 28

4.2. Topic Modeling Approach for Generating Sentiment Lexicons 29

4.2.1. Graphical model representation ... 29

4.2.2. Learning and inference .. 33

4.3. Experiment .. 35

4.4. Discussion .. 38

Chapter 5: Evaluation of Constructed Sentiment Lexicons 39

5.1. Lexicon-Based Sentiment Classifier .. 39

5.2. Experiment .. 40

5.3. Results and Discussion ... 42

5.4. Future Work ... 43

References ... 45

ix

List of Tables

Table 1 .. 13

Table 2 .. 16

Table 3 ... 17

Table 4 .. 23

Table 5 .. 27

Table 6 .. 30

Table 7 .. 32

Table 8 .. 36

Table 9 .. 41

Table 10 .. 42

x

List of Algorithms

Algorithm 1 .. 12

Algorithm 2 .. 14

Algorithm 3 .. 15

Algorithm 4 .. 17

Algorithm 5 .. 19

Algorithm 6 .. 40

xi

List of Figures

Figure 1 ... 9

Figure 2 ... 11

Figure 3 ... 21

Figure 4 ... 22

Figure 5 ... 30

Figure 6 ... 37

Figure 7 ... 37

Figure 8 ... 41

1

Chapter 1: Introduction

 Social networks have become very popular in the past few years. Users

on social networking sites usually express opinions about topics that they are

interested in. Recent surveys have stated that both customers and product

producers are being influenced more by opinions on online reviews and social

networks than by traditional media [1]. For that reason, sentiment analysis on

social networks has attracted a lot of interest in the field of Natural Language

Processing (NLP) in recent years. In sentiment analysis, identifying polarity

words is a crucial task. Due to the issue of domain-polarity dependency, there is

a need for automatic construction of polarity lexicons for any specific domain. In

NLP, there are two popular approaches: graph-based and probabilistic modeling-

based. The work in this thesis focuses on graph-based and statistical algorithms

for automatically building polarity lexicons for lexicon analysis on social networks.

1.1. Sentiment Analysis

 Sentiment analysis is a task of determining polarity in opinions, feelings,

and attitudes expressed in text sources. A sentiment analysis tool should predict

whether the underlying opinion in a given text is positive, negative, or neutral.

Increasing interest in this research area is due to many useful applications

associated with it: calculating public opinion polls of presidential elections in

blogosphere, measuring customer satisfaction from product reviews, and

2

customer feedback from websites (Amazon, BestBuy, etc.) and social networks

(Twitter, Facebook, etc.), to name a few.

1.2. Social Networks

 Over the last few years, social networks have emerged as a new

communication channel between people. Social networking services are

connecting people who have the same interests and activities regardless of their

geographic borders. As of March 2012, Twitter, an online social networking and

microblogging service for publishing brief message updates, is estimated to have

more than 140 million active users. These users are creating approximately 340

million messages, which are called tweets and are limited to 140 characters, a

day [2]. Twitter has drawn a dramatic surge of interest from the research

community [3,4,5,6,16]. Unlike other Web-based social networking services that

focus on friendship connections, Twitter employs the “following-follower” model,

where a Twitterer is able to choose who he/she wants to follow without any

granted permission. Conversely, he/she can also be followed by other Twitterers

without granting permission. With very low latency of message delivery, Twitter is

considered a real-time communication platform that allows users to receive

updated posts as soon as they are published by others.

1.3. Twitter Sentiment Analysis

 Twitter is also considered a customer relationship platform, where

customers are able to easily post reviews about products and services. Providers

also can interact with their customers by replying directly to these posts. Many

3

companies have started collecting Twitter data in order to measure customer

satisfaction about their products.

1.4. Research Challenges

 In this section, some research challenges in the field of Twitter sentiment

analysis are highlighted and serve as the basis for the methods developed in this

thesis.

 Twitter messages are short and may contain misspelled words. Thus,

traditional NLP techniques, which are designed for working with formal

languages, perform poorly when applied to tweets [6].

 Tweets have the following special characteristics. First, Twitters have the

tendency to include emoticons and punctuation characters to express their

sentiment, for example, “downloading apps for my iphone! So much fun :-) There

literally is an app for just about anything”. Second, tweets may contain

abbreviated words due to the limit of 140 characters: “Watchin Espn..Jus seen

this new Nike Commerical with a Puppet Lebron..sh*t was hilarious...LMAO!!!”

Last, repeated characters are used to express the degree of sentiment, such as

“Stopped to have lunch at McDonalds. Chicken Nuggetssss! :) yummmmmy.”

Thus, misspellings are introduced in tweets as a result of the described

characteristics.

 Traditional opinion lexicons such as SentiWordNet [7] are constructed for

detecting sentiment in formal language documents such as customer feedback

forms, news articles, etc. Those opinion lexicons would not help us extract

correct sentiment from tweets. For instance, in the tweet “This is soo goooddd!!!,”

4

the word “goooddd” is obviously a misspelled word and is not included in

traditional sentiment lexicons. Therefore, the tweet would be classified as

“neutral.”

 Another challenge is that Twitter users can express their opinions about

different topics. When talking about wine, one may post a negative message

such as “This wine is green!” The word “green” in this tweet carries a negative

meaning about the wine product. However, this word would be neutral without

knowing the context. Apparently, “green” is not contained in any general-purpose

opinion lexicon as a negative word. In addition, adding sentiment words manually

for each topic consumes a lot of time and effort.

 The identified challenges are the basis for us to develop algorithms for

automatically building sentiment lexicons for a given topic.

5

Chapter 2: Related Work

 This section briefly summarizes related work on sentiment

analysis/opinion mining. In addition to the lexicon-based approach, we will review

machine learning-based methods as well as methods that utilize both sentiment

lexicons and machine learning techniques.

2.1. Lexicon-Based Approach

 The lexicon-based approach has been developed to perform opinion

mining at sentence level and document level by searching for polarity words from

a predefined word list [8,9,10,11]. This list is called an opinion lexicon and it

contains positive and negative words. If there is no polarity word presented in a

sentence/document, the sentence/document is labeled as neutral. We

emphasize that existing sentiment lexicons have been constructed from formal

language text sources, and therefore do not include slang words, misspelled

words, or emoticons.

 A graph-based algorithm has been introduced for deriving opinion lexicons

from Web data [12]. In this algorithm, a graph G = (V, E) is first constructed. Each

node v	 ∈ V represents a unique word w	 and two nodes v	, v� are connected by

an edge e	� = �	v	, 	v�� 	∈ E if two words w	, w� have a similar score above a

certain threshold. A list of negative and positive words are identified initially and

marked as seed words, which are represented as seed nodes in the graph G. In

6

order to discover other sentiment words, the authors propagate sentiment scores

from seed nodes into their neighbor nodes. In Chapter 3, we will describe an

adapted version of this technique to build sentiment lexicons for Twitter using

only a small set of emoticons.

2.2. Machine Learning-Based Approach

 This approach has been used by Pang et al. [13] to analyze sentiment in

movie reviews. Three supervised machine learning algorithms, Naïve Bayes,

Maximum Entropy, and Support Vector Machines (SVM) are used for

comparison. The experiment results confirm that the SVM algorithm gives better

accuracy than Naïve Bayes and Maximum Entropy. Go et al. [3] compared the

same algorithms on Twitter data using distant supervision and obtained similar

results. The works from both Pang et al. and Go et al. classify text into negative

and positive categories only.

2.3. Hybrid Approach

 The hybrid approach combines lexicons and machine learning algorithms

for sentiment analysis. Zhang et al. [4] introduced an entity-level method in which

training data is created automatically by assigning an unlabeled tweet into

positive or negative categories based on its included sentiment words. The

training data is then fed into an SVM classifier. Their results show that the

accuracy of the SVM classifier is improved using the augmented training data.

 Another method to utilize both sentiment lexicons and machine learning

algorithms is proposed by Agarwal et al. [14]. In their work, opinion words are

generated by extending the Dictionary of Affect in Language using WordNet [15].

7

The constructed opinion words contain approximately 8,000 English words in

which each word has a sentiment score ranging from 1 to 3. These scores are

then normalized by diving by 3. Negative words are those that have sentiment

scores below 0.5, whereas words with scores above 0.8 are positive. Remaining

words with scores ranging from 0.5 to 0.8 are considered neutral. These

sentiment scores are then used as prior polarity. Part-of-Speech (POS) tags

together with prior polarity are then used to derive senti-features for SVM

classifier.

8

Chapter 3: A Large-Scale Distributed Lexicon Builder for Twitter Sentiment

Analysis

 In this chapter, a large-scale distributed system is proposed for extracting

sentiment words from Twitter posts. This lexicon builder adapts the idea from the

work of Velikovich et al, [12], in which a graph connecting words is constructed to

identify sentiment words with a given set of seed polarity words. However, the

original method was designed for constructing a lexicon from Web data, which

has different properties from Twitter data.

3.1. Architecture

 Our method is implemented using Hadoop [18], an open source

implementation of the MapReduce framework [19], and hence, it scales well by

simply adding commodity computers. The graph data is stored in HBase [20], a

Bigtable-like database [21] built on top of Hadoop, and therefore, scales well

also.

 The resulting sentiment lexicons are then consumed by a sentiment

classifier that uses a lexicon-based approach to detect sentiment in tweets. The

system architecture is described in Figure 1.

9

Figure 1. Large-scale distributed lexicon builder and classifier for Twitter

sentiment analysis.

3.2. Hadoop

 Hadoop [18] is an Apache open-source software that supports data-

intensive applications. It is an implementation of Google’s MapReduce idea [19].

The MapReduce framework is a programming model designed for scalable and

distributed computing on clusters of commodity computers.

 A MapReduce job consists of Map and Reduce steps. In the Map step, the

large input data is divided into smaller parts by a master node and those parts

are fed into worker nodes in the cluster for processing. The partial results

produced by worker nodes are then collected back by the master node in the

Reduce step. These gathered partial results are combined in an appropriate way

to calculate the final output for the original large input data.

10

3.3. HBase

 Apache HBase [20] is a Bigtable-like [21] database software built on top of

Hadoop and has been used as a large-scale and distributed data storage. HBase

tables can serve as input and output for Hadoop’s MapReduce jobs, and

therefore, are chosen to store the large graph data for our lexicon builder.

3.4. Algorithm

 Our lexicon builder uses the idea from the work of Velikovich et al. [12] to

construct sentiment lexicons for Twitter data where the seed polarity words are

emotional icons (or emoticons) such as “:D”, “:)” or “:-(“ as examples. Our lexicon

builder is implemented in a scalable and distributed way with the help of Hadoop

and HBase.

 The co-occurrences for each pair of words are calculated first and then

are used to compute the cosine similarity scores to construct a word graph. Each

node in the graph represents a word and two nodes are connected by an edge

with the weight equal to the cosine similarity scores of words represented by

these nodes. Edges with low weights are then discarded. After that, sentiment

scores are propagated from the seed nodes into their neighbor nodes to help

identify polarity words (Figure 2).

11

Figure 2. Graph connecting words/phrases.

 In our implementation, tweets are normalized first so that repeated

characters are reduced. For example, we map both words “gooodddd” and

“goooodd” to “goodd” by replacing every “ooo” and “ddd” by “oo” and “dd”,

respectively. This approach is similar to the approach used in the work by Go et

al. [3]. Next, a POS tagger1, which is created specifically for Twitter data by

Gimpel et al. [16], is used to extract nouns, adjectives, adverbs, verbs,

interjections, abbreviations, emoticons, and hashtags from the input tweets with

the assumption that only those words contain sentiment. This filtering step is

done for reducing the size of the word-graph.

 Next, we will describe our algorithm, which is based on the MapReduce

framework.

 3.4.1. Co-occurrence matrix. Co-occurrence matrix A��� (N is the

number of words) contains information about how many times the word i co-

1 http://code.google.com/p/ark-tweet-nlp/

12

occurs with the word j. The MapReduce job for calculating the co-occurrence

matrix is described in Algorithm 1.

For each tweet t:

1. Lowercase t.

2. Separate t into a list of tokens: word_listt = twokenize(t).

3. Remove tokens which are not nouns, adjectives, adverbs, verbs,

interjections, abbreviations, hashtags, or emoticons from word_listt.

In mapper:

a) For each word w from word_listt , emit <w, v> where v is a word or a phrase

within a window size T from w.

b) Similarly, for each phrase p, emit <p, v>

In reducers:

a) Count the number of entries <u, v> as the number of co-occurrences k

between u and v.

b) Insert the value k into table co-occurrence_matrix at row u and column v in

the column family “co-occurence”.

Algorithm 1. Computing co-occurrence matrix.

 In order to reduce to the size of the matrix, we include only unigram and

bigram words into word_listt, where a bigram word is formed by two consecutive

13

unigram words. An HBase table is used to store the co-occurrence matrix and

has the schema described in Table 1.

Key Column family “co-occurrence”

w1 w1:k11 w2:k12 … wn:k1n

… … … … ...

wn w1:kn1 w2:kn2 … wn:knn

Table 1. Co-occurrence table.

 3.4.2. Computing similarity scores and constructing the word-graph.

The similarity score between two words W	 and W� is defined as the cosine

similarity cosine_sim(w	, w�)	between their presenting vectors

w	 = (k	�, k	�, … , k	!) and w� = (k��, k��, … , k�!), respectively. In order to save

computing time by not re-computing vector lengths, all vectors

w	 = (k	�, k	�, … , k	!) are normalized into unit vectors w′	 = (k′	�, k′	�, … , k′	!).
Hence, cosine_sim(w	, w�) is calculated as the pairwise dot-product between the

unit vectors w	# as follows:

cosine_sim(w	, w�) = 	$k#	% ∗ k#�%
!

%'�
(1)

 In the work of Elsayed et al. [17], a MapReduce algorithm was introduced

for computing pairwise cosine similarity for a very large collection of vectors. The

idea behind their work is based on the following observation: the index c in

14

Formula (1) contributes to the right-hand side sum if both coordinates k#	% and

k#�% are non-zero. Therefore, if we denote C	 = *	c	|	k#	% 	≠ 0	}, then Formula (1) is

equivalent to the following formula:

cosine_sim(w	, w�) = 	 $ k#	% ∗ k#�%
	

%∈/0∩/2
(2)

 The pseudo-code for the MapReduce job for vector length normalization

and calculating the set of indices C	 is described in Algorithm 2.

In mappers:

 For each vector wi:

a) Compute its length leni.

b) For every non-zero coordinate wc, emit <wc ,<wi, normic>> where normic =

kic/leni.

In reducers:

 Do nothing.

Algorithm 2. Vector normalization and non-zero coordinate indexing.

 The cosine similarity scores are calculated in a separate MapReduce job

as follows:

15

In mappers:

 For each key wc:

For every pair of its values <wu, normuc> and <wv, normvc>, emit <<wu, wv>,

cosine_simc>, where cosine_simc = normuc*normvc.

In reducers:

 For each key <wu, wv>:

a) Take cosine similarity score between wu and wv as the sum of all

associated values cosine_simc: cosine_sim(w4, w5) = ∑ cosine_sim%% .

b) If cosine_sim(w4, w5) ≥ α, insert into the graph table two edges (wu, wv)

and (wv, wu) with the same weight cosine_sim(wu, wv).

Algorithm 3. Cosine similarity calculation and graph table creation.

 Similar to the co-occurrence table, the graph table schema has the format

described in Table 2.

16

Key Column family “weight”

w1 w1:p11 w2:p12 … wn:p1n

… … … … ...

wn w1:pn1 w2:pn2 … wn:pnn

Table 2. Graph table.

 3.4.3. Discarding edges with low weights. The purpose of discarding

edges with low weights is to avoid propagating sentiment scores from seed

words to non-sentiment words, and also to improve the speed of sentiment score

propagation. As described in the pseudo-code in Algorithm 4, an edge e	� =
(w	, w�) is retained if it is in the list of TOP_N highest weighted edges adjacent to

nodes w	 and w�.

In mappers:

 For each key wi in the graph table:

Calculate a list L1 of TOP_N highest weighted edges adjacent to wi and a list

L� = L\L� where L – list of all edges adjacent to wi.

 a) For each edge e ∈ L�, emit <e, L1>.

 b) For each edge e′ ∈ L�, emit <e, ∅>.

17

In reducers:

 For each key e, there are two associated values L’, L’’,

a) If one of the associated values is ∅, remove edge e from the graph

table.

b) If e is not in one of the TOP_N highest weighted edges in the

combination list L = L′ ∪ L′′, edge e is also removed.

Algorithm 4. Discarding edges with low weights.

 3.4.4. Propagating sentiment scores. Sentiment scores are propagated

from seed nodes into their neighbor nodes located within the distance D from the

seed nodes. The HBase table “propagate” has the following structure:

Key Column family “visited”

wseed_1 wi1:‘’ … wj1:‘’

… … … ...

wseed_k wik:‘’ … wjk:‘’

Table 3. Propagate table.

 In Table 3, we put nodes that are reachable from seed nodes as qualifiers

under the column family “visited”. For instance, in the row corresponding to the

18

seed node wseed_1, the qualifiers w	�, … ,w�� are the nodes reachable from the

seed node wBCCD_� within the distance D. Algorithm 5 illustrates how score

propagation is implemented in MapReduce jobs.

Initial:

a) Put into the propagate table, rows <wseed_i, <visited: wseed_i, ‘’>>, where i = 1, 2,

…, k and k is the number of seed nodes.

b) Create a column family named “alpha” in the graph table and insert values <

wi, <alpha: wi, 1>>.

Repeat the following MapReduce job D times:

In mappers:

 For each key wseed_i in the propagate table:

 For each qualifier wiu of column family “visited” in row wseed_i:

 For each node wiv that is not in column family “visited” in row wseed_i and is

adjacent to wiu in the word graph, emit < wseed_i, < wiu, wiv>>.

In reducers:

 For each key wseed_i:

19

a) Retrieve α	4 from entry < wseed_i, <alpha: wiu, α	4>> in the graph table. If that

entry does not exist, assign α	4 ≔ 0.

b) Similarly for α	5.
c) Get the weight ω45 of edge (wiu, wiv) from the graph table.

d) If α	4 < α	5 ∗ ω45, update α	4 ≔ α	5 ∗ ω45 in the graph table.

e) Insert into the propagate table entry <wseed_i, <visited: wiv, ‘’>> to mark wiv as

visited from wseed_i

Algorithm 5. Sentiment score propagation.

 3.4.5. Computing final sentiment scores. This is the final step where the

sentiment scores are computed and sentiment words are discovered. As can be

seen, each node w	 in the graph has two types of scores: score	I is the sum of

scores accumulated from positive seed words and score	J - from negative seed

words. These two scores are then combined to get the final sentiment score

score	 as shown in the following formula:

score	 = score	I − β ∗ score	J	(3)
where β is defined as

β = ∑ score	I	∑ score	J	

 The final sentiment scores of all nodes in the graph are computed in three

MapReduce jobs. The first one calculates score	I and score	J. The next job is

20

executed to get the value β. Finally, the scores score	 are generated according to

Formula (3).

3.5. Experiment

 In this section, we will conduct an experiment to build sentiment lexicons

for Twitter using the described lexicon builder. Its performance and scalability

also will be evaluated.

 3.5.1. Setup. The input Twitter corpus2 for the lexicon builder consists of

only tweets that have either smileys “:)” or frownies “:(”.

 Because Twitter posts do not follow any specific grammar structure,

simply separating words by white spaces does not work. For example, in the

tweet “I lovee iPhone:)”, the emoticon “:)” is not separated from the word “iPhone”

by white spaces. Therefore, a tokenizer created specifically for tweets, called

Twokenizer3, is used for extracting unigram and bigram words.

 In addition to the emoticons, nouns, adjectives, verbs, interjections,

abbreviations, and hashtags are used for constructing the word graph. The

emotions serve as the seed nodes. When computing sentiment scores in the last

step, we keep only nodes with absolute sentiment scores at least 1.0 and save

them as polarity words.

 In our experiment, the parameters are set as follows: distance D = 4,

TOP_N = 100, window size T = 6, threshold α = 0.01. We run the lexicon builder

on a Hadoop cluster with 5 nodes on Amazon EC2. Each node is a medium

2 https://sites.google.com/site/twittersentimenthelp/for-researchers
3 https://github.com/vinhkhuc/Twitter-Tokenizer

21

instance with 2 virtual cores (2.5 EC2 Compute Units each) and 1.7 GB of

memory. Two mappers and two reducers are executed on each node. We

measure lexicon builder’s running time with datasets consisting of 100,000,

200,000, and 300,000 tweets chosen from the input Twitter corpus.

 3.5.2. Results. Figure 4 shows the performance of the lexicon builder with

different datasets and different number of nodes. The number of unique words

(unigrams and bigrams) for each dataset is shown in Figure 3. The number of

unique words increases linearly with the number of tweets due to our naive way

of forming bigram phrases and the small amount of training tweets being used.

Figure 3. Number of unique words by the number of tweets.

22

Figure 4. Running time of the lexicon builder with different numbers of nodes and

different amounts of tweets.

In Figure 4, the execution time of our lexicon builder with the dataset of 200,000

tweets for a cluster of 2 machines, and the dataset of 300,000 tweets for a

cluster of less than 4 machines is not reported due to many OutOfMemory errors

when running Hadoop and HBase in a cluster of a small number of nodes. The

results have confirmed that lexicon builder’s running time decreases when more

machines are added. In particular, for the dataset of 100,000 tweets, the

execution time is decreased by 35% when moving from 2 machines to 3

machines, by 40% when moving from 2 to 4 machines, and by 47% when moving

from 2 to 5 machines. Similarly, with the dataset of 300,000 tweets, the running

time is decreased by 23% when increasing from 4 to 5 machines. However, the

23

running time does not decrease linearly due to the latency of Hadoop and the

default settings of HBase tables.

 Since the settings of HBase tables are kept as default (i.e., without block

caching, Bloom filter, compression, etc.), the execution time may be reduced

further when these settings are turned on.

 Table 4 shows sample sentiment words in the lexicon constructed using a

dataset of 384,397 tweets in which 232,442 tweets contained smileys and

151,955 tweets contained frownies. The final lexicon has 2,411 positive and

1,018 negative words.

Positive Negative

awesome damn

lovee stupid

long weekend completely exhausted

honey moon proper weird

pain stop totally helpless

yess eww

wohoo fml

hurray boored

finish schoolwork home sick

Table 4. Sentiment words/phrases from the resulting lexicon.

24

3.6. Discussion

 The experiments have shown the scalability of our lexicon builder in

automatically generating sentiment lexicons according to a given training dataset,

in this case, a collection of tweets containing either smileys or frownies. The

execution time can be reduced by adding machines into the cluster thanks to

Hadoop and HBase.

 Although the experiment has not been conducted for constructing

sentiment lexicons for any specific topic, such as food, movie, etc., we argue that

our lexicon builder is capable of generating sentiment lexicons for any topic if the

input training dataset is relevant to that topic.

 However, there are some issues that need to be solved in future work:

• First, some positive words may be assigned incorrectly with negative

sentiment scores, and similarly for negative words. This issue occurs due

to the fact that Twitterers may write tweets in a negation manner. For

example, the bigram word “stop coughing” frequently follows a negation

word, such as “cannot stop coughing :(so much for sleeeping.” In this

example, a sentiment relationship between “stop coughing” and the seed

word “:(“ is likely to be established. Consequently, “stop coughing” may be

extracted eventually as a negative word.

• Second, in our implementation, the word graph is difficult to update using

added training data without re-constructing from scratch. Moreover, it is

hard to maintain different word graphs for different topics.

25

• Third, in order to reduce the size of the word graph, a POS tagger is used

to filter out words that may not contain sentiments. Therefore, we have to

use different POS taggers for different languages. As far as we know, the

Twitter POS tagger [16] is the first POS tagger created specifically for

Twitter data and it only works for tweets in English.

26

Chapter 4: Topic Modeling-Based Approach to Construct Sentiment

Lexicons for Twitter

4.1. Topic Modeling

 Topic models are probabilistic models for extracting potential topics that

occur in an archive of documents. Probabilistic topic models [22,23] have drawn

interest from researchers from different backgrounds, including NLP, machine

learning, information retrieval, etc. Topic modeling has been used in topical

analysis of scientific journals [24], Wikipedia articles [25], social networks [26],

etc.

 4.1.1. Latent Dirichlet Allocation. In recent years, Latent Dirichlet

Allocation (LDA) has gained popularity among NLP researchers. By modeling

documents as a mixture of distributions over words, LDA [23] is capable of

discovering hidden “topics”, i.e. distributions over words, in a large collection of

documents. In LDA, a topic, which is not assigned a name, is a cluster of words

that tend to co-occur frequently in the same document. In general, words under

one topic are connected to each other through similar semantic relations.

Therefore, one is able to understand the contents of a document by simply

reading words under the discovered topics with highest probabilities.

27

Topic 1 (Airline) Topic 2 (Food+Movie) Topic 3 (Bank)
united king bank
pilot moon america
new eating just
flight eat credit
drunk like get
con team new
travel jacob card
american cheese like
arrested ship chase
charged twilight time

Table 5. Latent topics discovered from a collection of tweets using LDA.

 Table 5 shows an example of three latent topics discovered from a Twitter

corpus using LDA. By reading through the words corresponding to each topic, it

is obvious that Topic 1 is Airline, Topic 3 is Bank, and Topic 2 is a mix of Food

and Movie topics. In LDA, because the number of topics is a parameter, when we

provide smaller numbers of topics than the actual number of latent topics existing

in the corpus, some of them may combine into one, as seen in Topic 2.

 LDA relies on the assumption that the topic distribution has a Dirichlet

prior and each document is a mixture of different topics. Moreover, word order in

a document is ignored, i.e., words are independent from each other. Because of

the bag-of-words assumption, some topics are difficult to interpret by just reading

through their associated words.

 As a fully unsupervised algorithm, LDA does not offer a way of

incorporating supervised labels into its learning process. In other words, LDA has

no mechanism to tune extracted topics to suit user’s needs even if labeled

resources are available.

28

 4.1.2. Labeled Latent Dirichlet Allocation. In some problems, such as

document browsing, the user may want to see all documents that are relevant to

a chosen label. One approach to these problems is finding associations between

words in documents and their most suitable labels. For example, if the word

“yummy” is known to be related to the label “food” and the word “melody” is

associated with the label “music”, we can easily extract documents for those

labels. However, these tasks cannot be done with LDA because topic names are

not known beforehand and LDA often extracts topics in an unsupervised manner.

 Labeled Latent Dirichlet Allocation (Labeled LDA) [27] is an LDA’s

supervised learning version in which a constraint is made by establishing a one-

to-one correspondence between latent topics and user-defined labels. Labeled

LDA, therefore, allows word--label relationships to be learned directly by

constraining the topic model to extract only topics that are in a predefined list.

 4.1.3. Topical N-grams. The topic models such as LDA and its extension

Labeled LDA rely on the bag-of-words assumption where word order in a

document is totally ignored. However, in the real world, this is not true because

word order is very important for lexical meaning. In other words, the aggregation

of individual words in a phrase cannot provide the same meaning as the whole

phrase. For instance, the phrase “sex and the city” is about movie, but it will have

a totally different meaning if we sum up the meanings of the individual words

“sex”, “and”, “the”, “city”. Similarly, the phrase “kill cancer” does not carry the

same meaning as its constituent words “kill” and “cancer.”

29

 A topic model called Topical N-grams (TNG) [28] was proposed for

discovering both topical unigram words and n-gram phrases that are associated

with latent topics. TNG is an extension of LDA, where observed bigram statuses

are introduced to determine whether two consecutive unigram words can be

connected to form a phrase. In particular, TNG is able to distill n-gram phrases

depending on the nearby information.

4.2. Topic Modeling Approach for Generating Sentiment Lexicons

 In this section, we propose our topic model for automatically generating

sentiment lexicons. In LDA, if we consider positive and negative as two “topics”,

then the words associated with these two topics become sentiment lexicons that

we wish to obtain.

 Our topic model is called Labeled Topical N-grams (Labeled TNG), which

is inspired by two topic models, Labeled LDA and TNG. Sentiment label

supervision is incorporated so that the topic model is constrained to use only

labels from the document’s label set. The extracted sentiment phrases are very

useful for sentiment analysis because we can capture the whole meaning of

phrases and, therefore, we are able to avoid the problem of incorrectly summing

up the meanings of individual words.

 4.2.1. Graphical model representation. The graphical model

representation of Labeled TNG is described in Figure 5.

30

Figure 5. Graphical model representation of Labeled TNG.

Symbol Description

K Number of topics

M Number of documents

V Number of unique words

NS Number of word tokens in document m

w	S The ith word in document m

z	S The topic associated with the word w	S	in the document m

Table 6. Notation for Labeled TNG (continued)

31

Table 6 (continued)

x	S The bigram status for the words w	J�S and w	S in the document m

θS The Discrete distribution of topics w.r.t. document m

ψX The Bernoulli distribution of presence/absence of observed topic z in

document m

φX The Discrete distribution of words w.r.t. topic z

σX[The Bernoulli distribution of bigram status variables w.r.t. topic z and

word w

πX[The Discrete distribution of words w.r.t. topic z and word w

λS The topic presence/absence indicators for document m

α The Dirichlet prior of θ

αS The Dirichlet prior of θS w.r.t the topics presented in document m

β The Dirichlet prior of φ

γ The Beta prior of σ

δ The Dirichlet prior of π

ψ The Beta prior of λ
LS The document-specific label projection matrix w.r.t document m

32

The generative process of Labeled TNG can be described as follows:

1. For each topic z, draw Discrete distribution φX from Dirichlet prior β.

2. For each topic z and each word w, draw Bernoulli distribution σX[from

Beta prior γ.
3. For each topic z and each word w, draw Discrete distribution πX[from

Dirichlet prior δ.
4. For each document m:

a. For each topic z, draw λXS from Bernoulli distribution ψX.
b. Draw αS = LS 	 ∗ 	α.

c. Draw a Discrete distribution θS from Dirichlet prior αS.

d. For each word at position i in document m:

i. Draw a bigram status x	S from Bernoulli distribution σX0`ab [0`ab .

ii. Draw a topic z	S from Discrete distribution θS.

iii. If x	S = 0, draw a word w	S from Discrete distribution φX0b;

otherwise, draw w	S from Discrete distribution πX0b[0`ab .

Table 7. The generative process of Labeled TNG.

33

 For each document m, the document vector label is defined as τS =
*	z	|	λXS = 1	} [27]. For instance, if λXS = *	1, 0, 1, 0}, then τS = *	1, 3	}. The label

project matrix LS of size MS ∗ K, where MS = |τS|, is defined as follows:

L	�S =	 d 1, if	τ	S = j		0, otherwise
 Hence, the Dirichlet prior α is projected to αS with the project matrix LS as

follows:

αS = LS 	 ∗ 	α = *	αhab , αhib , …	 , αhjbb }
 For instance, with τS = *	1, 3	}, i.e., document m is assigned with two

topics 1 and 3, we have αS = *	α�, αk	}.
 4.2.2. Learning and inference. Similar to the original topic model TNG

[28], we use collapsed Gibbs sampling [29] for inferring Labeled TNG as follows:

P(x	 = l	|	w, z, xJ	, α, β, γ, δ) ∝

nC4n,J	# 	+ 		γn∑ (nC4np,J	#�np'q +	γnp)

∗ 	
rst
su 		nvw,J	 	+ 		βw∑ (nvwp,J	 	+ 	βwp)xwp'�

,			if	x	 = l = 0
nv4w,J	## 	+ 		δw∑ (nv44p,J	##x4p'� 	+ 		δ4p) ,				if	x	 = l = 1

and

P(z	 = k	|	w, zJ	, x, α, β, γ, δ) ∝

34

nSv,J	 + αv	∑ (nSvp,J		 +	αvp)yvp'�

∗ 	
rst
su nvw,J	 	+ 	βw∑ (nvwp,J	 +	βwp)xwp'�

, if	x	 = l = 0
nv4w,J	## +	δw∑ (nv44p,J	## +	δ4p)x4p'�

, if	x	 = l = 1

The hyper-parameters are estimated as follows:

θSv =	 nSv +	αv∑ (nSvp +	αvp)yvp'�

φvw =	 nvw +	βw∑ (nvwp +	βwp)xwp'�

σC4n = nC4n# +	γn∑ (nC4np# +	γnp)�np'q

πv4w =	 nv4w## +	δw∑ (nv44p## +	δ4p)x4p'�

where xJ	 is the bigram status for all words except word w	,
 zJ	 is the topics of all words except word w	,

nvw,J	 is the number of times the word t except the word w	 is assigned the

topic k,
nSv,J	 is the number of times a word in document m is assigned to topic k
except word w	,
nC4n,J	# is the number of times the bi-gram status x	 = l w.r.t the previous

word u = w	J� and its topic e = z	J�,
and

35

nv4w,J	## is the number of times the word t except the word w	 is assigned to

the topic k followed by the previous word u in a bi-gram phrase.

4.3. Experiment

 For the experiment, we use Labeled TNG to build sentiment lexicons

using the Stanford Twitter data set4. This dataset consists of 1,600,000 tweets in

which 800,000 tweets are positive and 800,000 tweets are negative. These

tweets are assigned labels automatically by searching for emoticons.

 In our observation, tweets may be assigned both positive and negative

labels. For instance, “@wolkenmalerin someone showed it to me ;D i think its

awesome. so sad :(but it's a great documentation. everyone should watch it.

<33”. Therefore, in addition to the sentiment labels provided in the original

dataset, we added the negative labels into positive tweets if they contains frownie

icons and similarly we added positive labels into negative tweets if they contain

smiley icons.

 Unlike the experiment conducted in Chapter 4 for the graph-based

approach, for Labeled TNG, we use the whole dataset of 1,600,000 tweets. Also,

we do not remove stop words except those words with a single character.

 We set the following values for K, α, β, γ, δ:
K = 2

α = (α�, α�, … , αv) , where 	α	 =	 {qy

β = (β�, β�, … , βx), where β	 = 0.01

4 https://sites.google.com/site/twittersentimenthelp/for-researchers

36

γ = (γ�, γ�), where γ� = 0.2 and γ� = 1000

δ = (δ�, δ�, … , δx), where δ	 = 0.01

 We ran Gibbs sampling in 10,000 iterations for inferring Labeled TNG on

Ubuntu 12.04 server 64-bit with 2.2 GHz Dual Core 2 and 4GB of memory. The

resulting lexicon is post-processed so that stop words and phrases in which more

than half of constituent words are stop words are removed. Table 8 shows

polarity words and phrases in the final lexicon.

N-grams Positive Negative

1-grams good, love, wonderful sad, stupid, headache

2-grams thank you, good sleep,
happy birthday, cant wait,
first kiss

not fun, tummy ache, still
sick, too long

3-grams an amazing boyfriend, was
fucking hilarious, my
american idol

stuck in traffic, could n't
find, had swine flu

4-grams let 's party tomorrow, let out
early today, yuu da fukin
best

miss my long hair, outlook
not so good, still not feeling
well

Table 8. Examples of resulting sentiment lexicon for unigrams and different n-

grams.

 Each word/phrase has positive and negative scores. To combine them

into a single sentiment score, we use the following formula:

37

senti_score(w) = pos_score(w) − neg_score(w)
 In the final sentiment lexicon, we obtained 648,715 positive and 617,877

negative words/phrases. The distribution of words/phrases in the final lexicon is

shown in Figure 6 and Figure 7 for positive and negative categories, respectively.

Figure 6. Distribution of positive words/phrases.

Figure 7. Distribution of negative words/phrases.

38

4.4. Discussion

 As can seen in both Figure 6 and Figure 7, 2-gram, 3-gram, and 4-gram

phrases are the major type of phrases in the resulting lexicon. This suggests that

Twitter users usually form phrases from 2, 3, or 4 individual words to express

their opinions.

 In the next chapter, we will run an experiment to evaluate the quality of the

lexicons constructed by the graph-based and Labeled TNG-based approaches.

39

Chapter 5: Evaluation of Constructed Sentiment Lexicons

In this chapter, we will conduct an experiment to evaluate the quality of the

sentiment lexicons constructed in Chapter 3 and Chapter 4.

5.1. Lexicon-Based Sentiment Classifier

 In order to evaluate the quality of sentiment lexicons built by the graph-

based and Labeled TNG-based methods, we use a lexicon-based sentiment

classifier which searches for sentiment words/phrases in a tweet and sum up

their sentiment scores. If the total score is larger than zero or less than zero, the

tweet is assigned the positive or negative label, respectively. The tweet is

classified as neutral if the total score is zero, i.e., no sentiment words/phrases

are found.

 In addition, the resulting lexicons built by both the graph-based and

Labeled TNG-based approaches are augmented with emoticons with appropriate

scores. A prefix trie T is created for each sentiment lexicon for fast lookup.

Algorithm 6 shows how the prefix trie is used in the sentiment classifier.

Input: tweet t, prefix tree p_trie

Output: sentiment label

1. Assign total_score := 0

40

2. Tokenize the input tweet word_listt := twokenize(t)

3. For each word w	 ∈ word_listt :

a. Assign it to the current phrase p := w	.
b. Retrieve a word/phrase u from p_trie that approximately matches p.

c. If u is p, then augment the phrase p with the next word w	I�, i.e.

p := <p, w	I�>. Otherwise, accumulate the sentiment score of

phrase p into total_score and reset p with the next word.

4. Output the sentiment label according to the sign of total_score.

Algorithm 6. Lexicon-based sentiment classifier.

5.2. Experiment

 We ran the sentiment classifier with the testing dataset from the Stanford

Twitter corpus. This testing dataset contains 359 tweets in which 177 tweets are

negative and 182 tweets are positive. The testing tweets are labeled manually

and are about various topics: company, location, product, etc. [3]. The accuracies

obtained by applying Algorithm 6 with sentiment lexicons constructed by both

lexicon builders are reported in Figure 8.

41

Figure 8. Accuracy of the lexicon-based sentiment classifier for lexicons

constructed by graph propagation method and Labeled TNG.

Lexicon Graph-based Labeled TNG-based

Number of training tweets 384,397 1,600,000

Number of positive

words/phrases

2,411 648,715

Number of negative

words/phrases

1,018 617,877

Total words/phrases 3,429 1,266,592

Table 9. Summary information for each sentiment lexicon.

Table 9 summarizes the number of unique positive and negative

words/phrases in lexicons built by two methods, graph propagation and Labeled

TNG. We also compared the quality of lexicons constructed by these two

42

methods with a baseline lexicon obtained from Twitrratr5 in 2009. This lexicon

contains 174 positive and 185 negative unigram words. A unigram search

method uses Twitrratr lexicon to count the number of positive and negative single

words appearing in a tweet to assign appropriate sentiment label. This method

works similarly to our baseline sentiment classifier when the lexicon contains only

polarity unigrams and the score of each unigram is either -1 or +1. Table 10

shows the accuracies of sentiment classifiers using three lexicons (where all

words and phrases are included).

Lexicon Graph-based Labeled TNG-based Unigram Search

Accuracy 72.42% 81.06% 65.20%

Table 10. Accuracies of the sentiment classifier for each lexicon.

5.3. Results and Discussion

 The reported accuracies have confirmed the high quality of our

constructed sentiment lexicons. Both sentiment lexicons constructed by graph

propagation and Labeled TNG methods provide better quality than the baseline

lexicon. The sentiment lexicon built with Labeled TNG provides higher accuracy

than the one constructed using graph-based approach. This can be explained by

the fact that Labeled TNG is trained with the whole training dataset whereas the

graph-based method only uses a part of it.

5http://twitrratr.com

43

 The high accuracy of the sentiment lexicon constructed using Labeled

TNG is obtained thanks to the use of n-gram words whereas using bigram words

from the lexicon built by the graph-based approach seems to hurt the accuracy.

This indicates that Labeled TNG is capable of extracting more meaningful

phrases than the graph-based method, which natively forms bigram phrases from

two consecutive words.

 As we mentioned earlier, word order plays a very important role in

sentiment analysis. By capturing n-gram words, we are able to capture the

semantics of a sentence better and, therefore, gain better accuracy in sentiment

extraction.

5.4. Future Work

 The results obtained in the experiment are very promising. However, there

are still some issues to be solved in future work:

• Due to the limited computing resources, we were not able to create

sentiment lexicons using the graph-based approach with the whole

training dataset. This issue can be solved in the future by using a larger

Hadoop and HBase cluster.

• The current implementation of Labeled TNG only runs in a single machine,

and hence, does not scale with the training dataset and the number of

topics (for general topic extraction). There have been some efforts to scale

LDA algorithm using the MapReduce framework [30, 32]. In the future

work, we will incorporate these ideas into our lexicon builder because LDA

and Labeled TNG share similar mathematical models.

44

• Although Labeled TNG is able to handle training tweets with multiple

labels, the obtained sentiment scores do not reflect the sentiment strength

because the scores are computed based on word frequencies. For

instance, the phrase “extremely happy” has a lower score than the word

“happy” due to the fact that “happy” is used more frequently in positive

tweets than “extremely happy”. This issue can be solved by modifying

Labeled TNG so that it can be trained with tweets marked with continuous

sentiment scores rather than just discrete labels “positive” and “negative”.

This solution is similar to supervised LDA proposed by Blei et al. [31].

However, similar to the original LDA algorithm, supervised LDA relies on

bag-of-words assumption where word order is ignored.

45

References

[1] Pang, B., & Lee, L. 2008. Opinion mining and sentiment analysis.

Foundations and Trends in Information Retrieval: Vol. 2: No 1–2, pp 1-135.

[2] Twitter blog. Twitter turns six. http://blog.twitter.com/2012/03/twitter-turns-

six.html.

[3] Go, A., Bhayani, & R., Huang, L. 2009. Twitter sentiment classification using

distant supervision. Technical report, Stanford.

[4] Zhang, L., Ghosh, R., Dekhil, M., Hsu, M., & Liu, B. 2011. Combining lexicon-

based and learning-based methods for Twitter sentiment analysis. Technical

report, HP Laboratories.

[5] Weng, J., Lim, E., Jiang, J., & He, Q. 2010. TwitterRank: Finding topic-

sensitive influential twitterers. In: Proceedings of the Third ACM International

Conference on Web Search and Data Mining (WSDM '10). ACM, New York, NY,

USA. pp. 261--270.

[6] Finin,T., Murnane, W., Karandikar, A., Keller, N., Martineau, J., & Dredze, M..

2010. Annotating named entities in Twitter data with crowdsourcing.

In: Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and

46

Language Data with Amazon's Mechanical Turk (CSLDAMT '10). Association for

Computational Linguistics, Stroudsburg, PA, USA, pp. 80-88.

[7] SentiWordNet – A lexical resource for opinion mining.

http://sentiwordnet.isti.cnr.it/.

[8] Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. 2011. Lexicon-

based methods for sentiment analysis. Comput. Linguist. 37, (2): 267--307.

[9] Hu, M., & Liu, B. 2004. Mining and summarizing customer reviews. In:

Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD '04). ACM, New York, NY, USA. pp. 168--177.

[10] Kim, S., & Hovy, E. 2004. Determining the sentiment of opinions. In:

Proceedings of the 20th International Conference on Computational Linguistics

(COLING '04). Association for Computational Linguistics, Stroudsburg, PA, USA.

[11] Ding, X., Liu, B., & Yu, P.S. 2008. A holistic lexicon-based approach to

opinion mining. In: Proceedings of the International Conference on Web Search

and Web Data Mining (WSDM '08). ACM, New York, NY, USA. pp. 231-240.

[12] Velikovich, L., Blair-Goldensohn, S., Hannan, K., & McDonald, R. 2010. The

viability of web-derived polarity lexicons. In: Human Language Technologies: The

2010 Annual Conference of the North American Chapter of the Association for

Computational Linguistics (HLT '10). Association for Computational Linguistics,

Stroudsburg, PA, USA. pp. 777--785.

47

[13] Pang, B., Lee, L., & Vaithyanathan, S. 2002. Thumbs up? Sentiment

classification using machine learning techniques. Proceedings of the Conference

on Empirical Methods in Natural Language Processing (EMNLP). pp. 79--86.

[14] Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. 2011.

Sentiment analysis of Twitter data. ACL Workshop on Language in Social Media

(LSM '11). pp. 30--38.

[15] Fellbaum, C. 1998. Wordnet, an electronic lexical database. Cambridge, MA,

MIT Press.

 [16] Gimpel, K., Schneider, N., O'Connor, B., Das, D., Mills, D., Eisenstein, J.,

Heilman, M., Yogatama, D., Flanigan, J., & Smith, N.A. Part-of-speech tagging

for Twitter: Annotation, features, and experiments. 2011. In: Proceedings of the

49th Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies: short papers - Volume 2 (HLT '11), Vol. 2. Association

for Computational Linguistics, Stroudsburg, PA, USA. pp. 42-47.

[17] Elsayed, T., Lin, J., & Oard, D.W. 2008. Pairwise document similarity in large

collections with MapReduce. In: Proceedings of the 46th Annual Meeting of the

Association for Computational Linguistics on Human Language Technologies:

Short Papers (HLT-Short '08). Association for Computational Linguistics,

Stroudsburg, PA, USA. pp. 265--268.

[18] Apache Hadoop – An open-source software for reliable, scalable, distributed

computing. http://hadoop.apache.org/.

48

[19] Dean, J., & Ghemawat, S. 2008. MapReduce: Simplified data processing on

large clusters. Commun. ACM 51, 1 (January 2008), pp. 107--113.

[20] Apache HBase – a Hadoop database, http://hbase.apache.org/.

[21] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows,

M., Chandra, T., Fikes, A., & Gruber R.E. 2006. Bigtable: A distributed storage

system for structured data. In: Proceedings of the 7th USENIX Symposium on

Operating Systems Design and Implementation - Volume 7 (OSDI '06), Vol. 7.

USENIX Association, Berkeley, CA, USA. pp.15--15.

[22] Hofmann, T. 1999. Probabilistic latent semantic indexing. In: Proceedings of

the International. Conference on Research and Development in Information

Retrieval (SIGIR). pp. 50—57.

[23] Blei, D.M., Ng, A.Y., & Jordan, M.I. 2003. Latent Dirichlet Allocation. J.

Mach. Learn. Res., 3:993--1022, ISSN 1533-7928.

[24] Blei, D.M., & Lafferty, J.D. 2006. Dynamic topic models. In: Proceedings of

the 23rd International Conference on Machine Learning (ICML), pp. 113—120.

[25] Hoffman, M.D., Blei, D.M., & Bach, F. 2010. Online learning for latent

Dirichlet allocation. Advances in Neural Information Processing Systems (NIPS),

23:856—864.

[26] Ritter, A., Cherry, C., & Dolan, B. 2010. Unsupervised modeling of Twitter

conversations. In: Human Language Technologies: The 2010 Annual Conference

of the North American Chapter of the Association for Computational Linguistics

49

(HLT '10). Association for Computational Linguistics, Stroudsburg, PA, USA.

pp.172--180.

[27] Ramage, D., Hall, D., Nallapati, R., & Manning, C.D. 2009. Labeled LDA: A

supervised topic model for credit attribution in multi-labeled corpora. In:

Proceedings of the 2009 Conference on Empirical Methods in Natural Language

Processing: Volume 1. Association for Computational Linguistics, Stroudsburg,

PA, USA. pp. 248--256.

[28] Wang, X., McCallum, A., & Wei, X. 2007. Topical N-grams: Phrase and topic

discovery, with an application to information Retrieval. In: Proceedings of the

2007 Seventh IEEE International Conference on Data Mining (ICDM '07). IEEE

Computer Society, Washington, DC, USA. pp. 697--702.

[29] Griffiths, T.L., & Steyvers, M. 2004. Finding scientific topics. PNAS, 1: 5228--

5235.

[30] Smola, A. & Narayanamurthy, S. 2010. An architecture for parallel topic

models. Proc. VLDB Endow. 3, 1-2 (September 2010): 703--710.

[31] Blei, D., & McAuliffe. J. 2008. Supervised topic models. Neural Information

Processing Systems 21: 121--128.

[32] Zhai, K., Boyd-Graber, J., Asadi, N., & Alkhouja, M. L. 2012. Mr. LDA: a

flexible large scale topic modeling package using variational inference in

MapReduce. In Proceedings of the 21st international conference on World Wide

Web (WWW '12). ACM, New York, NY, USA, 879-888.

