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CHAPTER|
INTRODUCTION

The purpose of this study is to determine various effects on
precise geoid undulation computations at two laser tracking
stations located on Mt. Haleakala, Maui, Hawaii. The emphasis of
this study is on the effect of precise terrain corrections on geoid
undulations, but other effects were also studied.

The original computations upon which this study were based
were from a thesis done by Despotakis (1987). The gravity data,
used both in this report and by Despotakis, were two minute by two
minute mean free-air gravity anomalies, derived from point free-air
anomalies and altimetry in a five degree by five degree area
surrounding the two laser stations.

Numerous computational changes were made, and their effects
upon the geoid undulation were studied. This study will include the
effect of different methods of terrain correction computation;
different potential coefficient reference fields and maximum
degrees of expansion; different ellipsoidal parameters and different
crustal densities assumed for terrain correction computations.

Many computational methods were used throughout this study,
some of which have been used unquestioningly for years due to their

relative accuracy. Now with the accuracy of ellipsoidal parameters
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and geoid undulations approaching centimeter level, these set
techniques are seen to reveal errors which were, in the past,
considered negligible. There is, however, a trade-off for not using
the old assumptions -- computer time. Often the use of
approximations can save many minutes of computer time which will
only yield changes on the centimeter level. It is now necessary to
re-evaluate the approximations made in geoid computations based on
accuracy requirements for the final geoid undulation.

Chapter 2 explains the formulas used in the computation of the
geoid undulation. In particular, truncation theory is discussed.

Chapter 3 deals with the necessary gravity reductions and
corrections necessary for the formulas in Chapter 2 to be valid.

Chapter 4 describes the physical locations and attributes of
the laser stations. The different geodetic reference systems are
also discussed in this chapter.

Chapter 5 outlines the various methods of numerically
integrating the Stokes' integral and their effects on the undulation.
It also contains the final undulations obtained using the different
computational schemes; different geodetic reference systems;
different crustal densities; and different potential reference fields
and maximum degrees of expansion.

Chapter 6 summarizes the computations done in this study and
draws conclusions from those computations. Also, possible future

sources of research are mentioned.




CHAPTER lI
FORMULAS USED
21 Th kes' In I

The Stokes’ integral is one of the fundamental formulas in
physical geodesy, and was first used by G.G. Stokes in 1849 to solve

for geoid undulations from terrestrial anomalies (Heiskanen and

Moritz, 1967):

N=iﬂAg S(y) do
4757 °

where:

R mean earth radius

Y mean normal gravity for the earth

o the sphere of integration

S(y) Stokes' function

Ag gravity anomaly, to be discussed in Chapter 3

For a clear derivation of the Stokes' integral see Zhao (1989). The

development of the Stokes' integral is not relevant here, only the
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knowledge that many approximations are made for equation 2-1 to

be valid when applied to the earth.

2.2 Assumptions in th kes' Integral

Most gravimetric computations are initially formulated with
many assumptions, with corrections made to the initial result to
give more correct results. This is done because formulas are less
complex when selected assumptions are made. This section will
deal with the derivation of the most correct geoid computations
starting from first assumptions.

The Stokes' integral is extremely simple in its formulation,
but very unrealistic assumptions are made for it to work, to the
accuracy required, in its original form. They are (Despotakis, ibid):

1) The surface of the geoid is a sphere

2) Integration is carried out over the entire geoid with an
infinite number of point gravity anomalies

3) No mass outside of the geoid exists (both terrestrial and
extra-terrestrial)

4) The mass of the reference ellipsoid is equal to the true
mass of the earth

5) The normal potential on the ellipsoid equals the gravity
potential on the geoid

8) The ellipsoid's center coincides with the earth's center of

mass.
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Some of these assumptions or approximations require the
calculation of correction terms that will yield more accurate
results. For example, the spherical approximation (item 1) may be
removed by applying ellipsoidal correction terms which are
discussed in Section 5.2.5.1. Also, the integration over the entire
geoid (item 2) may be replaced with a computational method known
as Molodensky's truncation method which is discussed in Section 2.4.
The existence of external masses can be removed using Helmert's

second method of condensation which is discussed in Chapter 3.
2.3 Potential fficient Model

The classical method of solving Laplace's equation has been
through the use of spherical harmonics, using an infinite series of

fully normalized potential coefficients (FNPC's), C,nand §nm:

V(r,0,1) G—i () E(Cnmcosmk+8nmsmmk)an(cose)

(2-2)
where:
V(r,0,)) Potential at a point P(r,6,A)
r Geocentric distance to point P
0 Co-latitude of point P
A Longitude of point P
GM Geocentric gravitational constant of the
earth




a Equatorial radius of ellipsoid which refers
r,o,A

Enm Fully normalized Legendre functions

n Degree

m Order, m<=n

The term potential coefficient model (PCM) will refer to any
group of FNPC's known up to some degree. Despotakis (ibid) used the
PCM OSU86F (Rapp and Cruz, 1986) - a PCM complete to degree 360.
He used it only up to degree 180 in his computations. In addition to
OSU86F, the more recent models OSU89B and OSU91A will be used in
this study. The numerical results from different PCM’'s are tabulated
in Chapter 5.

In areas of the world where the geoid changes gradually, an
accurate PCM up to degree 180 or 360 may yield acceptable resuits
in the calculation of the undulation. In areas of rugged terrain, such
as Hawaii, where the geoid changes rapidly, errors of meters can
occur if the PCM alone is used to calculate the undulation, because
high frequency information cannot be obtained considering the
degree to which current PCM's are known. Therefore, the PCM is best
used in combination with terrestrial gravity data for the
computation of the undulation. This combination is known as

truncation theory and is discussed in the next section.




2.4 Truncation Theory

The idea of integrating over the entire geoid with an infinite
number of gravity anomalies is a limiting factor in geoid
computations for two reasons. The first is the inability to ever have
an infinite number of gravity anomalies, and the second is the
decreasing effect which gravity anomalies have on the geoid as one
goes further away from a small area around a point of interest. The
area surrounding a point of interest is called a “cap” while the area
outside of the cap is called the “outer zone”. The idea of truncation
theory is the summing of two influences on the geoid undulation, one
from the cap and one from the outer zone, to get the whole
undulation. The computation of the cap contribution will be done
with terrestrial gravity data, while the outer zone effect is
computed using a high degree potential coefficient model. The
computation of these two individual influences is simpler than
attempting an integration over the entire geoid.

It is important to note that neither the cap contribution nor
the outer zone contribution will be errorless, even if no errors enter
into the collection of their individual data. The cap will never have
an infinite number of gravity anomalies and the outer zone will
never have an infinite number of potential coefficients. However,
dense gravity anomalies and high degree reference fields may give
results to the accuracy needed for the determination of the geoid.

Truncation theory is based upon changing the way the Stokes'

integral is evaluated. First, the integration is broken into two
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parts, one for the surface of the geoid inside the cap (c;) and one for

the outer zone (c-o;):
R
Ag S(y) do + Ag S(y) do
4y f f 4my f f ° Y

The following derivation is from Despotakis (ibid).

The first half of equation (2-3) is the final version of the cap
contribution, however, the outer zone effect needs to be derived
from the second half of equation (2-3). This part, if integrated over
the whole sphere, could be changed in to a Legendre series.

Therefore, we introduce a new function:

= 0 0<y<vy,
(y) =
S(v) Y. <Y<T (2-4)
So that:
f Ag S(v f Ag S(v
any (2-5)
Expanding:
S = 2n+1 Q. (wJ) PA{cos )
n=0 (2-6)
where:




Qn(ve) the Fourier coefficients of S

Since 2nQn(yc) are the eigenvalues of the integral operator of the

right-hand side of equation (2-5), equation (2-5) gives:

yid | R o=2 3 atvy 8,
ny YnO (2_7)

Substituting into equation (2-3) yields:

N__ff Ag S(y) do + 2 Y Qyv) Ag,
47':7 27 n=0 (2-8)

where:

GM RN g 5
AgHr,0,A) = —; (n-1)(r3) Y (Cnmcos MA + S, Sin mA| Py, (cos 6)

r m=0
(2-9)
E.nm,gnm Fully normalized Potential Coefficients
of the Disturbing Potential
a the equatorial radius of the ellipsoid used in

the computation of the FNPC's.
For a complete derivation, see Despotakis (ibid, pp 6-10)
From the preceding equations, we can see that the two effects

on the geoid undulation, cap and outer zone, come from the
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terrestrial anomalies and the spherical harmonic reference field,
respectively. Both will have errors, since the numerical integration
only approximates the true cap integration and the spherical

harmonic reference field is only known up to a finite degree.




CHAPTER lli
GRAVITY REDUCTIONS AND EXTERNAL MASSES

.1 Free-Air R ion

The gravity anomaly used in the Stokes' integral is the
difference between gravity on the geoid (gp) and normal gravity on

the ellipsoid (yqQ):
Ag =0p- Yq (3-1)
Normal gravity may be calculated using equation (3-2):

2 2
ay,cos ¢ +by,sin ¢

- ,\/ 2 2 2 2
acos ¢+bsin¢ (3-2)
where:
Ya normal gravity at the equator
Yo normal gravity at the pole
a semi-major axis of ellipsoid
b semi-minor axis of ellipsoid

11
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Gravity is not measured on the geoid itself, but on the surface of the
earth (see figure 1). Let gs be the measured value, gp be the reduced
value on the geoid, and H be the orthometric height between points P
and S.

\ Surface

— Q Geoid
Ellipsoid

FIGURE 1

The relationship between the Ellipsoid, Geoid, and Earth’s Surface

If we assume that no masses exist between the geoid and the

surface of the earth, then equation (3-3) shows the mathematical
connection between gp and gg:

oH (3-3)

For simplicity, we assume gravity changes linearly over H, so

that (3-3) becomes:



gp=0s - —
oH (3-4)

Since we don't know og/oH we estimate it by Jy/oh so that:

gp=0s - —H
dh (3-5)

The value -(dy/0h)H is known as the free-air gradient (F), and

has the value:

F

(.3086) H (3-6)
Thus:
gp ~gs + F = gs + (.3086)H (3-7)

Through equations (3-1), (3-2) and (3-7), we are able to
calculate Ag values at any point (¢,A), given ¢,A,gs,H. These free-air
anomalies may be used in the Stokes' integral for the calculation of
the geoid undulation. However, the undulation calculated using free-
air anomalies will not be the correct undulation because masses
external to the geoid exist, which contradicts our earlier
assumption. The next sections will discuss how to correct the
'free-air undulation' by mathematically shifting the external masses

so they are no longer external to the geoid.
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3.2 External Masses

The undulation obtained using free-air gravity anomalies in the
Stokes' integral contains errors because Laplace's equation is not
satisfied rigorously. Therefore, some mathematical scheme must be
used to shift or move the masses so that they are no longer external
to the geoid. This shifting of the external masses may change both
the free-air gravity anomalies and the location of the geoid itself.
This second change, known as the indirect effect, can be very
complicated to compute, depending on the method used to shift the
external masses (Wichiencharoen, 1982). Therefore, it is desirable
to choose a method of shifting the external masses which has a
small, easy to calculate, indirect effect. The indirect effect will be
discussed in more detail in section 3.3.

Helmert’s second method of condensation will be the method
used in this study to shift the external masses because of its simple
formulation and small indirect effect. Helmert's second} method of
condensation does not remove the external masses, but condenses
them down along the local vertical to form an infinitesmally thin
layer of mass on the geoid, so that the total mass of the earth
remains unchanged. This reduces, but does not eliminate the
indirect effect.

Schematically, Helmert's second method of condensation may
be thought of as removing all external masses and then condensing
them back in an infinitesmally thin layer on the geoid. Heiskanen

and Moritz (1967, p. 145) claim that the removal of the topography
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compensates that of the condensed layer and therefore: 'the free-air
anomalies may be considered as approximations of condensed
anomalies." As will be seen later, this is not true to today's
accuracy. Moritz (1968, p. 41) states that the difference between
the attraction of the external masses and the condensed layer is the

terrain correction, which is, in a flat-earth approximation:

+oco +4co 2
) [h(x,y) - h
Tcp=1—Gf f p(x,y) [n(x.y) - hy ix dy
2 d3

(3-8)

where:

(xp,yp) point where TC is calculated

(x,y) each point distant from (xp,yp), used in the

calculation of TC

hp height of point P(xp,yp)

h(x,y) height of point (x,y)

d="V(x - xpf +(y - yp)?

p(x,y) crustal density of mass-column at (x,y)
The Helmert anomalies are:

AgH=Ag +TC (3_9)

The formulation of the terrain corrections approximates the curved

earth by a flat plane extending to infinity. The errors introduced due
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to this approximation will be assumed negligible for the purposes of

this study.
.3 _Indir Eff n ry Indir f

The condensation of the masses external to the geoid causes a
gravitational potential change everywhere. Thus, when the masses
are shifted (condensed, removed, etc.) the equipotential surface
originally associated with the true geoid moves to a new position

and is now called the co-geoid. See Figures 2 and 3.

Before Condensation

p#0

TN

Ellipsoid  Geoid ~ Topography

FIGURE 2

The location of masses before condensation
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After Condensation

Former Topography

p=0 Co-geoid
p#0
\ Mass Layer (on
\ \geoid)

Ellipsoid

FIGURE 3

The location of masses, and co-geoid after condensation

The difference in elevation between the geoid and the co-geoid (8N)
at a point is known as the indirect effect on the geoid undulation and
can be computed knowing the change in potential (W), caused by the

condensing of the masses, through Brun's formula:

Y (3-10)

Wichiencharoen (ibid) investigated many ways to calculate the
indirect effect and found that the simplest way, though less

accurate, was using Grushinsky's formula:

2
—nGpH
Y (3-11)
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This will be the formula used in this study for the calculation of the
indirect effect. Through equation (3-11) we see that the indirect
effect is always negative. This means that in Helmert's second
method of condensation, the co-geoid lies above the geoid.

It is very important to note that the use of the Helmert
anomalies in the Stokes' integral will yield the undulations of the
co-geoid, not the geoid. This is because the location of the
equipotential surface associated with the modified geoid is
computed. Therefore, the indirect effect must be added to the
Helmert undulation to get the undulation of the undisturbed, or
original geoid:

- fj Agy S( do+—20\|1()Agn+8N|
Yy 'Yn 0 (3_12)

However, this formula is not yet complete. As stated, the co-
geoid undulation is calculated using the Helmert anomalies. But the
Helmert anomalies refer to the geoid, not the co-geoid, and so they
must be corrected to refer to the co-geoid if the undulation of the
co-geoid is to be correctly calculated. Because the co-geoid lies
above the geoid, and no masses exist between the two surfaces, a
free-air reduction is done to reduce the Helmert anomalies from the

geoid to the co-geoid. This free-air reduction is known as the
secondary indirect effect on the gravity anomalies (8gg)):
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Thus, 38gg| is added to Agy in Stokes' integral to yield the undulation
of the co-geoid, and 8N| is added to that to yield the undulation of

the geoid:
R R <
- 4_U (Agyy+ 89 S(w) do + - Y Qv Agn+ N,
nYy J /o, Y n=0 (3-14)
4 A heri rrection

One more external mass will be considered in this study -- the
mass of the atmosphere. Like Helmert's second method of
condensation, the mass of the atmosphere is condensed down along
the local vertical to the geoid. Therefore, a correction to the
Helmert anomalies must be computed as well as the indirect effect
and secondary indirect effect of condensing the atmosphere.
However, the indirect effect on geoid undulations and secondary
indirect effect on gravity anomalies due to condensing the
atmosphere are considered negligible, so we shall only calculate
corrections to the Helmert anomalies. This is one of the most
difficult corrections to calculate precisely due to the constantly
shifting masses and changing atmospheric densities. Yet it is also
very small (under 1 mgal) and so if a reasonably accurate model of
the atmosphere is used, the correction can be calculated to the

accuracy needed. One such model is (Wichiencharoen, ibid):
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-5 -9 2
3g, =10.8658- 9.727x10 H+3.482x10 H |mgals (3-15)

where:
H orthometric height in meters

These corrections are added to the Helmert anomalies and used in

the Stokes' integral:

N = e ff (AgH+SgS|+89A)S(\y) d6+—— 2 Qiyo) Agn+ N,
ny

2Y n=0 (3-16)




CHAPTER IV
PHYSICAL DATA NEAR THE LASER STATION
4.1 The laser Station

The laser tracking station of interest in this study is on Mt.
Haleakala, the highest peak on the island of Maui. Two benchmarks
are located at this station, points 7120 and 7210. Point 7120 is a
physical monument, but 7210 is defined as the intersection of the
horizontal and vertical antennae axes of the laser mount.

Figure 4 shows a three dimensional view of 5'x5 mean
elevations in the 5 degree area surrounding the laser station
(18°<¢9<23°, 201°<A<206°). Most of these elevations are bathymetric,
with only the smallest tip of each high point being an island.
However, the quick rise of these masses from the sea floor causes
the islands to be very steep and rugged, meaning that terrain
corrections will need to be calculated on as small of a grid as
possible. Figure 5 shows the same elevations, with bathymetry
removed, that is only the masses above the sea level are shown. Due
to the nature of the plotting package used, the vertical scale is
highly exaggerated, yet it is useful to see that certain islands
(Hawaii, especially) rise much higher and steeper than some

surrounding islands.

21
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In Figures 4 and 5, the longitude is the azimuth of the viewer,
relative to the figure, from south, positive east and the latitude is
the angle of elevation of the viewer. Thus in Figure 4, the viewer is
Southwest of the islands (-45°), elevated 30 degrees above sea
level, looking Northeast toward the islands.

Initial plots made of this area indicated that the 80,000 point
shoreline file used for the contour maps, in subroutine World of the
GSPP plotting package, contained variable errors. Upon checking the
shoreline file with USGS quad sheets, the errors in the shoreline file

were found to be:
5 < error¢ < 13

-7' < errory < 2'

Because no systematic shift was found between the shoreline
file, and values measured from USGS quad sheets, two options were
available -- 1) apply a different correction to each point in the
shoreline file to properly align it with USGS values or 2) apply a
systematic shift which would give a ‘best fit’ visually between the
zero elevation line (from the 5 elevation data) and the shoreline. In
the interest of time, option 2 was used. The best fit between the
zero elevation line and the shorelines was found by adding the
following shifts to the shoreline points in the 5 degree area of
interest:

Onew = $oid + 12 2"
Anew =%old - 6 53

An elevation contour map with these shifts is shown in Figure 6.
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3-D view of 5x5 mean bathymetric and MSL elevations near Maui.
View is from Southwest, at an elevation of 30 degrees, looking
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FIGURE 5

3-D view of 5x5 mean elevations above Mean Sea Level near Maui.
View is from Southwest, at an elevation of 30 degrees, looking

Northeast
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The original geodetic coordinates of the laser stations were
given in the SL.6 system (Robbins, 1985), which were converted to
the OSU GRS reference ellipsoid of 1987 (Despotakis, 1987). More
recent coordinates were given for these stations in the SL7.1
system (Pavlis, 1991), which were then converted to the OSU GRS
reference ellipsoid of 1991. The geometric parameters of these four

ellipsoids are given below:

TABLE 1

Geometric parameters of four reference ellipsoids

Ellipsoid a (meters) 1/f
SL 6 6378144.11 298.255
OSU GRS 87 6378136.0 298.257222101
SL 7.1 6378137.0 298.257
OSU GRS 91 6378136.3 298.257222101

The equatorial radius of OSU GRS 91 is from Rapp (1991).
The following methods were used for transforming geodetic

coordinates from one reference ellipsoid to another (Goad, 1988):

(0.1.h)g g = (X.y.2) = (0.M.h) gy GRS 87
@Mh)gL 7.4 (xy,2) = (0.M0) oy GRS 91
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The first step in these transformations makes use of the following

equations:
X=(N+h)cos¢pcosAr
Y=(N+h)cosésink (4-1)
Z = (N(1-6°) + h) sin ¢
where:
N radius of curvature in the prime vertical
e first eccentricity of the ellipsoid

The second step uses an iterative process around ¢ and h, as well as

the following equation:

- 1

A =tan (Y/X) (4-2)

The iterative process (Goad, 1988) is based on the following relation
between changes in the Cartesian quantities P (horizontal distance

from spin axis) and Z (vertical distance above equatorial plane) and

changes in the geodetic quantities ¢ and h:

9P 9P |
HE 2
AZ % % Ah
|96 oh | (4-3)
where:
P=(N+h)cos¢ (4-4)

Z=(N(1-e) +h) sin ¢ (4-5)
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Equation (4-3) may alternately be written:

P 3P

Ao | 20 oh | [aP
Ah| Loz oz | [AZ

3 oh (4-6)

Step 1) Given X, Y, Z, calculate true P and Z:

P=% X2+Y2 (4-7)

Z=7 (4-8)
Step 2) Use P and Z to calculate approximate values of ¢ and h:

q>=tan-1 (Z/P) (4-9)

[ 2 _2
h=¥P +Z - 6371000 (meters) (4-10)

Step 3) Calculate N:

N = a
1/ 2 2
1-esin ¢ (4-11)

Step 4) Calculate P and Z from the approximate values of ¢ and h:

P=(N+h)cos¢
Z-(N(1-e) +h)sin ¢
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Step 5) Calculate AP, AZ, dP/d¢, dP/dh, dZ/d¢, dZ/oh and use equation
4-4 to get A9 and Ah. If Ao and Ah are less than a set tolerance
(10-10 radians for ¢, and 10-10 m for h) then the iteration stops.
Otherwise, add A¢ and Ah to old values of ¢ and h and repeat steps 3-
5.

The orthometric heights used by Despotakis (1987) were given
originally by Alfano (1986) but more recent values became available
from Pavlis (1991). These different values are given in Table 2. The
orthometric heights are given with respect to an unclearly defined
reference mean sea level which cause some uncertainties in the N
values.

As a basis for comparison, two sets of different geodetic
coordinates and different orthometric heights were used throughout
this study -- 1) Old values (from SL.6) referring to OSU GRS 87 and
2) Newer values (from SL.7.1) referring to OSU GRS 91.

The coordinates of the two stations are shown in Table 2.




system and on 1991 ellipsoid from SL7.1 reference system.

TABLE 2
Coordinates of 7120 and 7210 on 1987 ellipsoid from SL6& reference

30

STA.| ELLIPSOID | SYSTEM o A h (m) H(m) |N=h-H
7120 | OSU GRS 87| SL.6 20° 42" 27.3880” | 203° 44’ 38.1020" | 3068.7162 ]| 3048.2530 | 20.4632
7210 | OSU GRS 87] SL.6 20° 42’ 25.9920” | 203° 44" 38.6000” | 3069.2871 | 3048.7980 | 20.4891
7120 | OSU GRS 91| SL7.1 | 20° 42’ 27.3946” | 203° 44’ 38.2422” | 3068.4885 | 3048.2529 ] 20.2356
7210 | OSUGRS 91| SL7.1 | 20° 42’ 25.9761” | 203° 44’ 38.7427" | 3068.2231 | 3047.9500 | 20.2731

4 3 Gravimetric Data

The free-air gravity anomalies used by Despotakis (1987) were

derived from point values from the National Geodetic Survey (NGS)

and

University (L-D GOCU) as well as altimetry data.

had

values to the blank areas.

shown in Figure 7.

anomaly file with 2’x2’

201°<A<206°.

the Lamont-Doherty Geological

mean values

The final result was a 5°x5°

Observatory of Columbia

Where point values

free-air

insufficient coverage, altimetry values were used to assign
The distribution of the point values is
gravity

in the area 18°<¢<23°,

The free-air gravity anomalies used by Despotakis (ibid) refer

to OSU GRS 87.

These were transformed to refer to OSU GRS 91 for
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this study. The geometric and gravimetric constants used in this

transformation are given in Table 3:

TABLE 3

Geometric and gravimetric parameters of two reference ellipsoids

Ellipsoid a (meters) 1/ GM (km3/s2) o (radss)
OSU GRS 87 6378136.0 208.257222101 398600.440 | 7.29115x10-11
OSU GRS 91 6378136.3 298.257222101 | 398600.436 | 7.29115x10-11

The new value of GM is that used in GEM-T2 (Marsh, 1989).
The transformation scheme used is similar to that used by

Despotakis (ibid), where:

AQg7=0obs~ Yg7+-3086 H (0 meter) (4-12)

and

AQgq=gobs~ Yo1+-3086H (401 meter) (4-13)

where:

H is Orthometric Height.

Since ggpg and .3086 H are the same in both systems, the following

relation can be written:

AQg1=Adg7+Yg7- Yot (4-14)
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Table 4 shows the normal gravity values for both systems at the

equator and pole.
TABLE 4

Normal gravity values at the pole and equator on two ellipsoids

Ellipsoid Ya (mgal) Yb (mgal)
OSU GRS 87 983,125.0830 979,828.8507
OSU GRS 91 983,124.9807 979,828.7487

These values are then used with equation (3-2) to find the value
Y87 ~Y91:

787' YQ1=0'102 mgal (4_15)

Thus, 0.102 mgal must be added to the 1987 free-air gravity
anomalies to refer them to the 1991 ellipsoid constants.

A contour map of the point anomalies in the 1991 system of
constants, with a contour interval of 25 mgal, is shown in Figure 8.
The maximum and minimum values of the free-air gravity anomalies

are 675.234 and -133.943 mgals respectively.




33

LONGITUDE
201 202 203
e3 el == : '

2e

2l

n
o

LATITUDE

—
w

18

201 202 203 20y 205 - 206
LONGITUDE
FIGURE 7
Distribution of point free-air gravity anomalies from NGS and
L-D GOCU




34

LONGITUDE

203

206

205

204

202

201

23

22

18

o P d) e, (L

AR c\p\\&\\mmvmwwwwyé Dn,VﬂMrf )

) / ‘ ,

l/u |s ii\m &x@.&\\ : 7W R

ST R ¢
‘ S ‘\\% I =

Wi o

LN - s S

21/ |

P S S e S

.Mﬂ\oﬁ s E e A et

S g s LG
el oI AL S

Y AR

EYAS _ as A}u T lo

¥ N & S @ @

o
J0NLTLB7

206

205

204

203

202

201

LONGITUDE

FIGURE 8
1991 Free-air gravity anomaly contours with C.l.= 25 mgal




35
4.4 Elevation Daia

Two sources of elevation data were available -- 5'x5 gridded
mean elevations to 1 meter, which we will call ETOPO5U (Sloss,
1988) and 3"x3” gridded point elevations to 1 meter which we will
call DMA DTED (U.S. Dept. of Defense, 1988). The 5’ elevations were
available globally, but the 3” elevations were only available in five
1°x1° cells near the laser station. Figure 9 shows where the 3"
elevations were available.

As seen in Figure 9, most areas with land are covered by 3”
elevations. In those areas with land, inside a cap of radius 2°, where
3” elevations were not available, the 5 values were densified into
3” values. This was done primarily so that numerical integration
programs would have a consistent grid size with which to work. Due
to the limited number of these areas and their distances from the
laser station, the errors involved in this procedure will be

considered negligible.
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|
<1 | 7120, 7210

3" elevs

18

201 206

FIGURE 9

Location of land, cap and 3" elevations inside a 5 degree area

36




CHAPTERYV
COMPUTATIONAL METHODS AND NUMERICAL RESULTS

5.1 Computational Methods

This section will explain the various computational methods
used in this study. Many non-traditional corhputations were

examined and used involving the numerical integration of the Stokes’

Integral, and therefore will be explained in detail here.

This sub-section discusses the various ways that the geoid
undulation computation can be affected by different interpretations
of the numerical integration of the Stokes’ Integral. The various
ways of analytically treating the Stokes’ Integral will be shown
with conclusions drawn on which methods are more accurate than
others, which are faster, and which are the overall best for use on a

computer.

37
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1.1.1.The Integration Poin

Clearly, the integration of the Stokes’ integral is not possible
in an analytical sense, and therefore requires a numerical
integration using finite cells, Ac, in place of the infinitely small
cells, do. This introduces the question of how to interpret the value
of the spherical distance, y. The computationally simplest and
crudest way is to compute a value of y to the center of each Ac cell
(6¢c, Ac) and do a numerical integration over the cap. The use of the
center point of the Ac cell is important. To use any other point (6, A)
to calculate v would mean the undulation obtained from equation (3-
16) would refer to a point offset from the laser station by the same
amount as the point (6, A) is offset from the (6¢c, Ac). See Figures 10
and 11 for details.

Improperly referenced Ac cells could introduce errors of a non-
negligible size depending on the size of the Ao cell and how far the
laser station (0’, A’) is from (6¢, A¢c). In Despotakis (ibid), each w
was calculated to the Northwest corner, of each Ac cell, instead of
the middle, which introduced errors in his cap contribution
calculations on the order of 20 cm. It should be noted that the error
was not introduced in his formulation of the problem, but in the
computer program used to calculate the undulation. Thus, if
formulas are not properly implemented, the results will not be

correct.
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e', A

FIGURE 10

An example of a properly referenced Ac cell yielding correct

FIGURE 11

An example of an improperly referenced Ac cell yielding incorrect
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1.1.2 Th f -Cell

The idea of using sub-cells for more accurate numerical
integration was adopted from Rapp (1975), with the changes made in
Despotakis (ibid) to apply the sub-cell breakdown to a cap of radius
2°. The individual Ac cell (of size 2'x2’) is broken down into sub-
cells, the number depending upon vy (calculated to the center of the
original cell), which were then used in the numerical integration.
Rapp (ibid) suggests the calculation of S(y) for each y corresponding
to a sub-cell. The average value of S(y) is then used in the
numerical integration of the entire cell. As will be seen in section
5.2.4, this method introduces noticeable but negligible errors (under
1cm) in the numerical integration procedure. The following method

was initially used for the sub-cell breakdown:

y<4’ 64 sub-cells
4’<y<8’ 16 sub-cells
8'<y<12’ 4 sub-cells
12'<y<2° 1 sub-cell

where vy refers to the spherical distance to the center of the original
cell. This breakdown was modified when 3” elevation data was used
so that the numerical integration of sub-cells would correspond
exactly to the 3” elevation data (and thus 3” terrain corrections,
atmospheric corrections and secondary indirect effects) which were
available.  Wherever 3" terrain corrections were calculated, the

following scheme was used for sub-cell breakdown:
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If 3” are data available, then divide 2'x2’ Ac cell into 1600 sub-

cells

The number of sub-cells (1600) corresponds exactly to the number
of 3"x3” areas in one 2'x2’ original cell. As will be seen, all cells
where y<12’ contain 3” data. Thus, when 3” data were used, the
original breakdown scheme is voided, and the original Ac cells were
either broken down into 1600 sub-cells (if 3" data was available) or

1 sub-cell (if no 3” data was available).

One of the most time consuming functions of computing geoid
undulations is the calculation of the Stokes’ function at every point
at which integration is carried out. Numerous people have chosen a
simpler method of interpolating S(y) from a table between full
seconds of arc. This method is good while the accuracy of geoid
computations remains greater than 1cm, but when the numerical
integration is carried out in a very dense area surrounding the
computation point, the interpolation may start to break down, and
errors in geoid undulation computations may be noticeable at the 1
cm level. To check the possible errors in the interpolation of the
Stokes’ function, the calculated and interpolated values of S(y) were
compared. Table 5 shows that the error in the interpolation of S(y)

exceeds +1.0 when y<1’, and gets increasingly worse as y approaches

zero. This table is slightly deceiving, as maximum errors occur near
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(but not exactly at) the half-second marks. As y approaches even
seconds, the error Sint - Scalc approaches zero. Figure 12 shows

this phenomenon better.




TABLE 5
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Comparison of linearly interpolating and rigorously calculating the

Stokes’ function, y in seconds

v Scalc__ Sint AS v Scalc__ Sint AS
0.5 825096.1 412564.4 412,531.7 |30.5” 13550.1 13553.7 3.6
1.5 275053.3 309431.0 34,377.6 | 31.5 13120.6 131239 3.3
2.5 165043.9 1719194 6875.6 32.5 12717.6 12720.6 3.0
3.5 117896.6 120352.2 2455.6 33,5 12338.6 12341.3 2.7
4.5 91703.5 92849.5 1145.9 345 11981.5 11984.1 2.5
5.5 75035.1 175660.1 625.1 355 11644.6 11646.9 2.3
6.5 63495.3 63873.1 377.8 36.5 11326.2 11328.3 2.1
7.5 55032.7 55278.3 245.6 37.5 110247 11026.7 2.0
8.5 48561.3 48729.8 168.5 38.5 10738.9 10740.7 1.8
9.5 43452.2 43572.8 120.6 39.5 10467.5 10469.2 1.7
10.5 39316.3 39405.6 89.3 40.5 10209.6 10211.2 1.6
11.5 35899.6 35967.5 67.9 41.5 9964.1 9965.5 1.4
12.5 33029.6 33082.5 52.9 42.5 9730.1 9731.5 1.3
13.5 30584.7 30626.7 42.0 435 95069 9508.2 1.3
14.5 28477.1 28511.0 33.9 44.5 92937 92949 1.2
15.5 26641.4 26669.1 27.7 45.5 9089.9 9091.0 1.1
16.5 25028.2 25051.2 23.0 46.5 88949 8895.9 1.0
17.5 23599.3 23618.6 19.3 47.5 8708.0 8709.0 1.0
18.5 223249 22341.2 16.3 48.5 8528.9 8529.8 0.9
19.5 21181.2 21195.2 13.9 49.5 8357.0 8357.9 0.9
20.5 20149.1 20161.1 12.0 50.5 81919 8192.7 0.8




Table 5 (continued),

v Scalc__ Sint AS v Scalc _Sint AS
21.5” 19213.0 192234 10.4 51.5” 8033.2 8034.0 0.8
22.5 18360.1 18369.2 9.1 52.5 7880.6 7881.3 0.7
23.5 17579.8 17857.7 8.0 53.5 7733.6 7734.4 0.7
24.5 16863.1 16870.2 7.0 545 7592.1 7592.8 0.6
25.5 16202.7 16208.9 6.2 55.5 7455.7 7456.3 0.6
26.5 15592.1 15597.7 5.5 56.5 17324.1 7324.7 0.6
27.5 15025.9 15030.0 5.0 57.5 7197.1 7197.6 0.5
28.5 14499.5 14503.9 4.5 58.5 7074.4 7074.9 0.5
29.5 14008.7 14012.7 4.0 59.5 6955.8 6958.3 0.5
30.5 13550.1 13553.7 3.6 60.5 6841.1 6841.6 0.5

44
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FIGURE 12

Difference between linearly interpolating and rigorously calculating

the Stokes’ function relative to v

If the sub-cell breakdown forces yw to approach 30” or less,
then the interpolated S(y) value for a sub-cell will diverge from the
true S(y) value. Naturally, this will only occur in those cells
directly surrounding the computation point, yet these are the most
influential areas on the geoid undulation, and the possibility of this
error affecting the geoid undulation should be considered.

Therefore, due to the high number of sub-cells used around the laser

e e e £ g 187 T bttt 2t A
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stations, calculation of the Stokes’ function was chosen over
interpolation for the sake of avoiding any possible errors which may
be introduced. We will see in section 5.2.4 that the error introduced
by interpolating the Stokes’ function in this study is minimal (under

1 cm).

1.1.4 Eight w intear n rically_th kes’ Inteqgral

Written in a numerical integration form, the Stokes’ integral

is:
23 206
N= 5 Y aglen) Slen)]ac
4Ty y=18 A=201 (5-1)
where:
y(o,A) <2°

Ac = Ap AL = 2" x 2’ (in radians)

R,xn,y,Ag are all fixed for a certain ¢,A so the question is how to
evaluate a particular S[wy(¢,A)]Ac at each ¢,A. The following eight

methods were investigated for their computational accuracy.

n

S(y)Ac = 2 Scalc(l\l’ij) Ao-ij

n
=11=1 (5-2a)



S(y)Ac = - Ao

S(¥)A6 = Scaie (Weonte) A

S(\V)AG = Sint(\vcenter) Ac

47

(6-2b)

(5-3a)

(5-3b)

(5-4a)

(5-4b)

(5-5a)

(5-5b)
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Note that the summations of i,j up to n refer to the sub-cell
breakdown of the Ao cell. Equation 5-2a is the computationally
longest method, yet it approaches true integration as n approaches
infinity. Equation 5-3a uses an average value of S(y), calculated
from the individual S(y) values corresponding to each sub-cell.
Equation 5-4a uses an average value of vy, calculated from the
individual y values corresponding to each sub-cell, which is then
used in the Stokes’ function. Equation 5-5a is the crudest form of
numerical integration, with no sub-cell breakdown. This method has
no dependence upon n since there are no sub-cell breakdowns
involved.

Alone of these equations, 5-2a is the only one which
approaches true integration as n approaches infinity. Equation 5-3a
will be seen to converge to values very close to those in equation 5-
2a; equation 5-4a converges to values smaller than equation 5-2a;
equation 5-5a does not converge, but remains constantly lower than
equation 5-2a.

Each equation, 5-2b, 5-3b, 5-4b, 5-5b corresponds to the
equation above it, but with S(y) being interpolated instead of
rigorously calculated. As stated in the previous section, the smaller
y gets, the larger the errors become in the interpolation of S(y), so
calculation versus interpolation was chosen for the numerical
integration. Rapp (1975) suggests using an average S(y) value,
where S(y) is interpolated on a table (equation 5-4b), but, to
minimize the errors in the numerical integration computations,

equation 5-2a was chosen because of its proximity to true




49

integration. This unfortunately added time to the computations, and
as will be seen later, the trade off of higher accuracy for longer

computational time may not be worth the cost.

This section will take the information from the previous
section and previous chapters and list the actual numerical results
of the various computational methods described. The goal of this
chapter is to discover two things -- 1) Why was there a 2 meter
discrepancy between the given and calculated undulations at 7120
and 7210 in Despotakis (ibid) and 2) What is the best agreement
between given and calculated undulations which can be achieved

with the numerous variables to be outlined in section 5.2.1.?

5.2.1. Computational Variables

The computation of the Stokes' Integral was used for all cap
contributions to the geoid undulation. The corrections to the free-
air gravity anomalies have been discussed in chapter 3, and all were
applied in the computations.

So far, a number of ways to compute the geoid undulation have
been discussed, and some conclusions drawn, but the actual
computations will present an idea of how the terrain around Maui
and surrounding islands affects the geoid undulation at the laser

station, if at all. Certain variables cannot be known with absolute
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accuracy, including crustal density, geodetic coordinates, and
orthometric heights. For this reason, the following variables were
used in the computations:

1) Use two different sets of ellipsoidal
coordinates/orthometric heights on two different reference
ellipsoids. In the first, the coordinates were given in the SL6
system and converted to the OSU GRS 1987 ellipsoid. This was the
method used by Despotakis (ibid), and will hereafter be referred to
as the 'old' system. The second set of coordinates are more recent
and given in the SL7.1 system and converted to the OSU GRS 1991
ellipsoid, which will be known as the 'new' system.

2) Use two different crustal density assumptions . The first
was the mean density for the earth, 2.67x103 kg/m3. The second, a
mean density for basalt, based on the volcanic nature of the
Hawaiian Islands, 2.9x103 kg/m3. The true mean density may lie
between these two values, but as will be shown, this will have only
a slight impact (around 1-2 cm) on the final answer.

3) Compute terrain corrections on three different sizes of
grids -- 2'x2’, 30"x30”, and 3"x3”. These will be used to determine
if the data density of 3"x3” was necessary to accurately calculate
the terrain correction.

4) Use three different spherical harmonic reference fields.
The first was OSU86F, used by Despotakis (ibid). The second,
OSU89B; and the third, OSU91A. Each field was used to degrees 180
and 360.
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Terrai i ion

The computation of terrain corrections (TC’s) was done for
three types of elevation data -- 2'x2’, 30"x30” and 3”x3” values.
All TC's in the 5°x5° area around Hawaii (18°<$<23°,201°<A<206°)
were calculated with COGEOIDV, a Fast Fourier Transform (FFT)
program, capable of processing 600x600 points, used for TC
calculations (Wang, 1991, personal communication). For a complete
discussion of the use of FFT's in calculating TC’s, see Zhao (1989).
The first step in the TC calculations was to develop a 7°x7°
elevation file (17°<¢<24°,200°<A<207°) with elevations on a 3"x3”
grid. Although we only want TC’s in the 5°x5° area, we must have
extra elevations around the edges for an FFT border. The 3"x3”
gridded elevations in the 7°x7° area were derived from the two
elevation files, ETOPO5U and DMA DTED (see section 4.4). Because
the elevations in ETOPO5U are on a 5'x5’ grid, these values were
‘spread’ onto a 3"x3” grid. By ‘spreading’ the 5’ values, we mean to
assume that the given mean elevation in a 5x5 area is constant
over that area, and thus that elevation may be assigned to any point
in the 5x5 area. In areas where 3” elevation data were already
available, no changes were made. But in areas without 3” elevation
data, each 5x5 area had its mean elevation (from ETOPOS5U) ‘spread’
onto a 3"x3” grid in that 5x5 area. Thus in each 5x5' area,
100x100 elevations (5'x5'/3"x3") of identical value were assigned

to every 3"x3” grid point. The 2'x2’ and 30"x30” elevations were
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these 20'x20’ areas, some radically high TC’'s were occurring (many
over 1000 mgals). Because of this, a second method of calculating
3"x3” TC’s was used. In this second method, the same 20°'x20’ area
was used, but it was first broken into four 10’x10’ areas (200x200
points) with a border of 10’ (200 points). It was hoped that this
would prevent the ‘border error’ by buffering the TC’s with an FFT
border of 200 points. Unfortunately, this was not the case. Even in
this second method, the ‘border error’ occured, although on a smaller
scale (order of 100-200 mgals). Also, in this second method, the
edges of the four 10'x10’ areas did not always fit neatly to each
other. Figure 14 has shown a 20'x20’ area whose 3"x3” TC’s were
processed by method 1. Figure 15 shows the same area, but
processed by method 2. Notice the obvious linear offset where the
10'x10’ areas meet. This non-matching was not common to all
areas. Figure 16 shows an area where 3”x3” TC’s were calculated
with method 1, and Figure 17 shows the same area with method 2.
Notice that in this particular area, in both cases of calculation (3-
1 and 3”-2), that no border problem arises (Figure 16), nor is there
any non-matching of edges (Figure 17). This was the case for most
areas checked -- that is, border errors in method 1 (3"-1) lead to
some non-matching of edges in method 2 (3”-2).

All areas where 3"x3” elevations were originally available
(before spreading 5'x5’ elevations) had TC's calculated. Also, one
20'x20’ area which did not originally contain 3”x3” elevations had
3"x3” TC’s calculated in it. This was done specifically because of

its closeness (30-70 km) to the laser station All areas where 3"x3”
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derived by averaging the 3"x3” elevation file (covering 7°x7°) into 2’
or 30” grid sizes.

In the case of 2'x2’ data, The number of TC’s calculated was
150 x 150 (5°x5°), with a border of 30 points (1°). This was done
with one run of COGEOIDV.

For 30”"x30” data, two ways of calculating TC’s were used.
The first method (30”-1) was to break the 5°x5° area around the
station into 4 parts, each containing 300 x 300 points (2.5°x2.5°),
with a border of 120 points (1°). This sub-sectioning is shown in
Figure 13. Each part was then processed by COGEOIDV, and the 4
parts combined into a 600 x 600 TC file covering the 5°x5° area
around the station. This was done because of the limitation of
COGEOIDV to processing 600 x 600 points, which includes the border
around the points. The second method (30”-2) was to calculate all
600 x 600 TC’s (5°x5°) in one run of COGEOQOIDV. This meant that NO
FFT border was put around these points. However, the elevations
outside of the 5°x5° area are almost all zero. Therefore, the errors
in this method were expected to be minimal. As seen later, there is
hardly any difference between these two methods.

Calculating all TC’s in the 5°x5° area with one run of COGEOIDV
was not possible with the 3”x3” values because it would have had to
calculate 6000 x 6000 values. Therefore, for 3"x3” TC’s, 2 methods
were used. For the first method, areas of 400 x 400 points (20" x
20’) with a border of 100 points (5’) were processed with each run
of COGEOIDV. Initial plots of these terrain corrections revealed a

‘border error’ in some areas (see Figure 14). Along the edges of
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TC’s were calculated are shown on Figure 18, with corresponding
code numbers for each area. The justification for calculating 3"x3”
TC’s in an area where only 5x5 elevations were available can be
made because this area contains no crustal masses above sea level
(i.,e. it is completely water covered), thus all elevations above sea
level in this 20'x20’ area are zero. The only areas which surround
this area and which have crustal masses above sea level, are those
areas which originally had 3"x3” elevations available. Thus, no
error should be introduced in the calculation of 3"x3” TC’s in this
area, because all elevations (whether on 3” or 5 grid) in this area
are zero. Finally, in those areas where 3” TC’'s were not calculated,
2" TC's were used.

Thus, in the program to calculate the cap contribution, the
sub-cell breakdown was 1600 sub-cells in those areas outlined with
heavy dark lines in Figure 18, and 1 sub-cell in all other areas.

Although the use of 30” or 2’ elevation data does not require
the 1600 sub-cell breakdown which is used with the 3” data, this
sub-cell breakdown was maintained for 2’, 30” and 3” TC’s so that
no effects of different computational schemes would enter the
undulation computations.

To alleviate the problem of the border error, a ‘filter was
applied to the 20’x20’ areas containing 3"x3” TC’s. This filter
would examine the TC’s along the edge of the 20'x20’ area for values
of TC larger than 100 mgals. If TC’s above 100 mgal were found,
they were set to zero. Admittedly, this is not a very accurate way

to alleviate the problem, and in the future, it may be useful to
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examine ways to properly remove the border problem. It will first
become necessary to fully understand the cause of the problem. It
may be that the border error is not caused only by using too small of

an FFT border for the computations.
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Division of 5°x5° area into 4 parts for 30"x30” TC calculation,
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FIGURE 14
3” Terrain corrections, using 20’x20’ FFT with 5 border, Cl=2mgal,

Area surrounding Mt. Mauna Kea (Code number 2.12)
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3” Terrain corrections, using 10’x10’ FFT with 10’ border, Cl=2mgal

Area surrounding Mt. Mauna Kea (Code number 2.12)
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FIGURE 16
3” Terrain corrections, using 20’x20’ FFT with 5’ border, Cl=2mgal

Afea surrounding Mt. Haleakala (Code number 5.13)
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FIGURE 17
3” Terrain corrections, using 10'x10° FFT with 10’ border, Cl=2mgal

Area surrounding Mt. Haleakala (Code number 5.13)
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were used and 3”x3"terrain corrections were calculated
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Tables 6 and 7 show the average, standard deviation, RMS,
maximum and minimum values for the TC’s over land and over seas
which are associated with each grid size used in the computation of
the TC’'s. In those cases where the TC's were calculated in areas
smaller than 5°x5° (30”-1 and 3”-1 and 3"-2), the statistical
values are for each individual file are not shown, only the overall
values.

It will be important in the rest of this report to know which
terrain corrections are most accurate. As a method of comparison,
two references were used. Mt. Mauna Kea, on the island of Hawaii,
has a rigorously calculated (using rings) terrain correction of 36
mgals (Heiskanen and Vening Meinesz, 1958). This value was also
rigorously calculated by a program known as TC (Forsberg, 1984)
which calculates terrain corrections by prism formulas. The value
computed by TC was 43.6 mgals. The data used in this calculation
were 3" elevations inside a radius of 30 km, and 2’ elevations from
30 km out to 200 km. Since no detailed information concerning the
exact source of the data used by Heiskanen and Vening Meinesz was
available, we assume the more accurate value comes from the TC
program, 43.6 mgals. Therefore, we will look for the terrain
correction calculation which best fits this particular value. Figure
19 is an elevation plot of 3” elevations in the 20’x20’ area around
Mt. Mauna Kea. The corresponding TC plot was previously shown as
Figure 14 (and Figure 15). Figure 20 shows elevations in the same
area, but on a 30"x30” mean grid. Lastly, Figure 21 shows the

30"x30” TC’s in this area. Notice, first, that the TC plot is
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smoother for the 30" elevations than it is for the 3” elevations.
This is as expected, since the 30" elevations are mean values of the
3” elevations. However, notice that in Figure 14 (3” TC’s), the TC
associated with Mt. Mauna Kea is only 42.2 mgals, but in Figure 21
(30" TC's) the TC is 55.9 mgals. Thus, when using FFT for the
calculation of terrain corrections, the 3” elevations yield better
accuracy, even though they disregard data outside of their small

(20'x20" or 10'x10’) computational areas.

i
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TABLE 6

Statistical values of terrain corrections over land areas (mgal),
p=2.67x103 kg/m3

TC’s Average | Std. Dev. RMS Min Max

2'x2’ 6.88 7.02 9.83 0.05 50.10

30”-1 7.93 7.62 11.00 0.09 59.90

30"-2 7.94 7.63 11.01 0.09 59.75

3"-1 6.61 7.08 8.82 0.03 79.00

37-2 6.15 6.97 8.49 0.06 79.15
TABLE 7

Statistical values of terrain corrections over sea areas (mgal),
p=2.67x103 kg/m3

TC’s Average | Std. Dev. RMS Min Max
2’x2’ 0.11 0.32 0.34 0.00 6.10
307-1 0.12 0.38 0.40 0.00 10.65
307-2 0.13 0.38 0.40 0.01 10.60
37-1 0.32 1.09 1.03 0.00 42.14
37-2 0.21 0.71 0.71 0.00 45.37




FIGURE 19

Elevation plot around Mauna Kea using 3" elevations, Cl=100 m
(Code number 2.12)
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Elevation plot around Mauna Kea using 30" elevations, Cl=100 m

(Code number 2.12)
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221 The Cr I

As the time approaches when the precision of geoid
calculations approaches the centimeter level, certain fundamentally
accepted assumptions will need to be re-examined for their
applicability. One of those assumptions is the density of the crust
of the earth. The commonly accepted value of 2.67x103 kg/m3 is not
acceptable for use in the area of the Hawaiian islands!. Although no
true mean value is known for the area, due to the volcanic nature of
the islands, it is reasonable to assume that the density of basalt
(2.9x103 kg/m3) is near the mean value of all crustal masses above
the geoid in the integration cap.

The most accurate way to treat the crustal density in geoid
calculations would be to have a density model relative to geodetic
coordinates which would yield higher accuracy in terrain corrections
by leaving density inside the integration instead of assuming a mean
value and moving density outside of the integration. However, no
such crustal density model was available, and thus the possible
mean values of 2.67x103 and 2.9x103 kg/m3 were both used for
comparison.

Unquestionably, the most time consuming calculations done in
this report were the terrain corrections. Fast Fourier Transform
methods were used to calculate terrain correétions, yet dozens of

computer hours still went into these calculations due to the dense

1 Professor Ralph Von Frees, Department of Geological Sciences, The Ohio State
University, Personal Communication




69
nature of the elevations. Because terrain correction calculations
require a crustal density assumption, it became important to
develop a simple way to calculate TC’'s with a new density
assumption, without needing to run another FFT program. Equation
5-6 shows the dependence upon density assumptions made in the cap

integration of the Stokes' integral:

Ncap(p1)=4—f:Y f f (Ag + TCp,) + 3gs(p 1) +3g,) Sw)do + 8N )

(5-6)
where:
Ag Free-air gravity anomalies
which may be written in the following notation:
Neap,= Nag + ONyc, + 8N8951,+ SN, + 0N}, (5-7)
where:
R
Nag=-—- [ [ g S(v) do
41‘5'}' o, (5_8)

R
Nt =—— TC S(y) d
T Any ff 1) Sty do (5-9)
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R
5ngs.1=4_mf 8gs((p+) S(y) do

(5-10)
8NA=—ff89A
Any (5-11)
2
W=
g (5-12)

Equations 5-9, 5-10 and 5-12 are all dependent upon the
crustal density assumption made. It is unreasonable to recreate the
entire calculations of these quantities if a simple transformation is
available. Looking at the equations for terrain correction, secondary

indirect effect and indirect effect, we see:

TC, = —Gp1ﬁ f p) dx dy

(5-13)
Gp, H
505, = 3086 8N, = .3086| 1
Y (5-14)
Gp, H
-T
Y (5-15)

Notice that each of these is linearly dependent upon the density

assumption made. Thus, to calculate quickly the new values of
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terrain correction, secondary indirect effect and indirect effect
with a new mean crustal density assumption, one can use the

following equtions:

P2

TC, = —2 TC;
P1 (5-16)
P2
891, = — 89g,
P (5-17)
8N, = P2 5N,
P1 (5-18)

Thus, if the cap contribution to the geoid undulation is
calculated once for a known density, and each component part
(equations 5-8 through 5-12) is known, then it is a simple matter to
re-calculate quickly the cap contribution using any other density.

Equation 5-19 shows the basic formula for cap contribution with
density po:

Ncap2= NAg + 6NTC2+ 6N895|2+ BNA + 6N|2 (5_1 g)

but this may be written in terms of precalculated values using
density py:
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Noapy= Nag+ 22 8Nyg, + L2 8Ny + 8N + D2 8N,

P1 P1 P1 (5-20)

Equation (5-20) will be very useful in determining the effect on
geoid undulations assuming a crustal density other than 2.67x103

kg/m3-
2. | _Aver rrection

The terrestrial mean anomalies used in the calculation of the
cap contribution to the geoid undulation may differ from the mean
anomalies implied by the potential coefficient model used in the
outer zone calculation through the following equation (Despotakis,
ibid, p. 81):

Ag =Ag +dl\Ag (5-21)
where:

T

Ag Terrestrial mean anomaly (or terrain
corrected terrestrial mean anomaly, if TC’s
are used)

.8

Ag Mean anomaly implied by a potential

coefficient model
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For a complete derivation of the equations used, see Despotakis
(ibid, p. 81-886).

For now, we will present the numerical results of the local
average correction without the use of terrain corrections. We will
see that the calculations show that without terrain corrections the
local average correction is inapplicable in this area, and if terrain
corrections are applied, the results become even worse.

The formula for the local average correction (using the

original Stokes’ integral) is:

0 R P T
2y (5-22)

where:

T
Agq Average of terrestrial mean anomalies inside
integration cap
P
Ago

Average of potential coefficient model (PCM)

mean anomalies inside integration cap

The value of Qg (v, =2°) is:

Qo (W, =2° =-0.075620
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So that the corresponding local average correction, a, in m/mgal of

the correction 8NO is

a=0.0245854 m/mgal

Thus, the computation of 3NO is done by:

0 P T
N =alAgg - Agy (5-23)

Before listing the numerical values, it is necessary to mention
that the values listed for the average anomalies in the Hawaiian
area in Despotakis (ibid, p. 61) are incorrect. Those averages were
taken over a 5°x5° area surrounding the laser stations, not over the
integration cap itself. The difference , as will be seen, is
significant.

The numerical values of the average anomalies are shown in
Table 8 below. For simplicity, not all reference fields, maximum
degrees of expansion, nor ellipsoids are used. Conclusions can be

drawn from just the information listed below:




TABLE 8
Terrestrial and PCM mean anomalies and their respective local

average corrections

Old System
T
AQq OSUB86F (to 180) OSUB86F (to 360)
P P
46.68 mgal Agg = 39.33 mgal Agg =41.29 mgal
P T P T
Adqp - AQg=-7.35 AQq - Agg=-5.39
mgal mgal
sNC =-1.807 m NG =-1.325 m
New System
T
AQq OSU91A (to 180) OSU91A (to 360)
P P
46.78 mgal Agg =37.23 mgal Agg =39.42 mgal
P T P T
Adg - Agg=-9.55 Adqp - AQy=-7.36
mgal mgal
0 0
SN =-2.348 m SN =-1.809 m
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T P
In Despotakis, the values of Ag,, Aggand SNO were:

T
Agq = 25.30 mgal

P
Agg = 23.21 mgal

5N0 = -0.513 m

which are obviously quite different from the values above for
OSU86F (to 180) in the old system. This difference is strictly from
averaging over a 5°x5° area, instead of restricting the averaging
over the cap only.

Note that the anomalies used above do not include the mean

terrain corrections. |If these values were added to the terrestrial

P T
mean anomalies, the difference Adq - A9y would approach 15 mgal,

which would subsequently lead to local average corrections of
magnitude 3-4 meters.

Despotakis assumed that the terrestrial mean anomalies were
in error from those anomalies implied by the reference field.
However, as seen above, this assumption yields ‘corrections’ which
severely alter the calculated undulation, and therefore are
considered inapplicable for this area, and will be ignored.
Additional study is warrented on the validity of the local average

correction.
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Table 9 shows the cap contribution to the geoid undulation
(hereafter just called the cap contribution) by using free-air gravity
anomalies alone. All 8 possible numerical integration equations
were used (see section 5.1.1.4), using the original sub-cell
breakdown (section 5.1.1.2). The outlined values correspond to the
method reported by Despotakis (ibid), before applying local average
corrections. However, as mentioned earlier, Despotakis’ cap
contributions were too low by around 20 c¢cm due to an error in his
computer program (see section 5.1.1.1), and therefore his reported
values do not agree with the values on Table 9. Table 10 contains
the same information as Table 9, but using the 1600 sub-cell
breakdown of Figure 18. The outlined values are those used in this
study. Both the old and new reference systems are shown in these
tables.

Looking at Tables 9 and 10, some things became obvious
immediately

First, the difference between interpolating and calculating the
Stokes’ function is minimal. Even though the errors in S(y) are very
large near the station, they are not large enough to affect
significantly the calculated undulation. The largest difference seen
is 4 mm. Also, the difference between equations 5-2a, 5-2b, 5-3a
and 5-3b is very small. Thus, for the calculation of the cap
contribution, equation 5-3b (used by Despotakis, ibid) would be

nearly as accurate as 5-2a (used in this study). Equation 5-2a was
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chosen in this study as the best possible estimate to true
integration - the very smallest errors possible due to computational
methods were wanted, so that the emphasis of this study could be on
the effects of terrain, not the effects of computational methods.
But for calculations where errors due to computational methods can
be less than 1cm, equation 5-3b would be the best choice, as it
takes much less computer time, and yields results extremely close
to 5-2a.

Equaﬁons 5-4a and 5-4b were investigated as a possible way
to avoid lengthy computations, in the same way as equations 5-3a
and 5-3b. However, the results of 5-4a and 5-4b yield poorer results
than a crude integration using no sub-cells (equations 5-5a, 5-5b).
Obviously they are insufficient for use in geoid computations.

When calculating the contribution of the terrain corrections to
the cap calculation (N7, Equation 5-9), for 3" (both methods), 30”
(both methods) and 2’ elevation files, one expects the denser 3” data

to contain more information about the irregularities in the terrain,
and thus to have the most accurate values of Nt¢.
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Cap contribution from free-air gravity anomalies using Ac

breakdown of Despotakis (64-16-4-1 sub-cells)

Old Reference Ellipsoid New Reference Ellipsoid
7120 7210 7120 7210

Eqn. 5-2a 20.967 m 20.995 m 20.990 m 21.018 m
5-2b 20.968 20.998 20.990 21.020
5-3a 20.967 20.995 20.990 21.017
5-3b 20.968 20.998 20.990 21.020
5-4a 20.540 20.535 20.563 20.558
5-4b 20.540 20.535 20.563 20.558
5-5a 20.898 20.882 20.931 20.914
5-5b 20.898 20.882 20.931 20.914
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TABLE 10

Cap contribution from free-air gravity anomalies using new Ac

breakdown (1600 sub-cells)

Old Reference Ellipsoid New Reference Ellipsoid
7120 7210 7120 7210

Egn. 5-2a 20.986 m 20.985 m 21.008 m 21.007m
5-2b 20.989 20.988 21.011 21.011
5-3a 20.986 20.985 21.008 21.007
5-3b 20.989 20.988 21.011 21.011
5-4a 20.532 20.527 20.555 20.550
5-4b 20.532 20.527 20.555 20.550
5-5a 20.898 20.882 20.931 20.914
5-5b 20.898 20.882 20.931 20.914

Table 11 contains the values of Ny for 3” (both methods), 30”

(both methods) and 2’ elevation files in both the old and new system,
assuming possible crustal densities of 2.67x103 kg/m3 and 2.9x103
kg/m3. Remember that the 3” TC's were not calculated over the
whole cap, and that 2’ TC's were used in those areas where 3” TC's
weren’t calculated. The values of Ny were identical (to the mm)
for both the old and new reference systems, and so no distinction is
made on Table 11between them.

Tables 12 and 13 show all elements of the cap contribution,
and their sum for the values of p=2.67x103 kg/m3 and p=2.9x103
kg/m3.
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Terrain correction contributions to the geoid undulation cap

calculation (N1c)

TC pr r Density Station (in either old or new
Grid interval system)
(-method) p (kg/m3) 7120 7210
3”/2’°-1 2.67x103 0.547 m 0.548 m
37/2°-2 “ 0.532 0.532
30" - 1 “ 0.653 0.653
30" - 2 “ 0.653 0.654
2’ “ 0.572 0.572
37/2’-1 2.9x103 0.594 m 0.594 m
37/2'-2 “ 0.578 0.578
307 - 1 : 0.709 0.709
30" - 2 : 0.709 0.710
2’ : 0.621 0.621




TABLE 12
Cap contribution to the geoid undulation, in meters, p=2.67x1 03
kg/m3

Ellip. Sta. Elevs | Nag  Nrc  Nsg, Nsgy, N, Neap
OSuU87 7120 3”-1 | 2098 0547 0206 -0.001 -0531 21.207
“ “ 3”7-2 (2098 0532 0206 -0001 -0531 21.192
“ “ 30”-1]| 2098 0653 0209 -0001 -0.531 21.316
“ “ 307-2| 2098 0.653 0209 -0001 -0531 21.316
“ “ 2' 12098 0572 0209 0001 0531 21.235
“ 7210 37-1 20985 0548 0206 -0001 -0531 21.207
“ “ 37-2 (20985 0532 0206 -0001 -0531 21.191
“ “ 30”-1| 20985 0653 0209 -0001 -0531 21.315
“ “ 30”-2| 20985 0654 0209 -0001 -0531 21.316
« “ 2' 120985 0572 0209  -0.001 _ -0.531 21.234
OSUgi 7120 3”-1|21.008 0547 0206 -0001 -0531 21.229
“ " 3”-2 (21008 0532 0206 -0001 -0531 21.214
“ “ 30”-1| 21008 0653 0209 -0001 -0.531 21.338
“ “ 307-2| 21008 0653 0209 -0001 -0.531 21.338
“ “ 2’ 121008 0572 0209 0001 0531 21.257
“ 7210 3”-1|21.007 0548 0206 -0.001 -0531 21.229
83”-2 (21007 0532 0206 -0001 -0531 21.213
“ “ 30”"-1| 21007 0653 0209 -0001 -0.531 21.336
“ “ 307-2| 21007 0654 0209 -0.001 -0.531 21.337
“ “ 2’ 21007 0572 0209 -0.001 -0531 21.256
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TABLE 13
Cap contribution to the geoid undulation, in meters, p=2.9x1 03
kg/m3
Ellip. _Sta.__Elevs | Nag  Nrg Nsg, Nsgg  N;  Neap
OSus7 7120 3”-1 2098 0594 0206 -0.002 -0577 21.207
“ " 3”-2 12098 0578 0206 -0002 -0577 21.191
“ “ 30”-1| 2098 0709 0209 -0002 -0577 21.325
“ “ 307-2| 2098 0709 0209 -0002 -0577 21.325
“ “ 2' 12098 0621 0209 -0002 -0.577 21.237
“ 7210 3”-1 20985 0595 0206 -0002 -0577 21.207
“ “ 3”-2 20985 0578 0206 0002 -0577 21.190
“ “ 30”-1| 20985 0709 0209 -0.002 -0577 21.324
“ “ 307-2( 20985 0710 0209 -0002 0577 21.325
“ “ 2> 120985 0621 0209 -0002 0577 21.236
OSuU91 7120 37"-1 (21008 0.594 0206 -0002 0577 21.229
“ “ 3”7-2]21.008 0578 0206 -0002 -0577 21.213
“ “ 30"-1] 21008 0709 0209 -0.002 -0.577 21.347
« . 30”-2| 21008 0709 0209 -0.002 -0.577 21.347
“ “ 2' 121008 0621 0209 -0002 0577 21.259
“ 7210 3”-1 21007 0595 0206 -0002 -0577 21.229
“ “ 3”-21121.007 0578 0206 -0002 -0577 21.212
“ “ 30”-1| 21007 0709 0209 -0002 -0.577 21.346
“ “ 30"-1( 21007 0710 0209 -0.002 -0.577 21.347
‘ “ 2’ 21007 0621 0209 -0002 0577 21.258
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As outlined in Chapter 2, the calculation of the outer zone
effect is done using spherical harmonic reference fields.

Table 14 shows the results of the outer zone calculations
(equation 2-7) when using the three different reference fields to

degrees 180 and 360 in both the old and new system.

TABLE 14

Outer zone contribution (meters) to the geoid undulation

Model
OSU 86 F OoSu 89 B OSU91 A
Ellip. Sta. 180 360 180 360 180 360

osug7 7120 -1.830 -2.023 -1.035 -1.244 -0.929 -1.139

“ 7210 -1.831 -2.023 -1.035 -1.244 -0.929 -1.139

Oosu9t 7120 -1.830 -2.023 -1.034 -1.244 -0.929 -1.139

“ 7210 -1.831 -2,023 -1.035 -1.244 -0.929 -1.139




85

The calculation of the geoid undulation through Stokes’
integral is in error because it is in spherical approximation, instead
of ellipsoidal. Therefore, ellipsoidal corrections need to be
calculated to correct for this spherical approximation. The exact
equations and software used in Despotakis (ibid, p 73-80) were used
in this calculation, and ellipsoidal corrections were calculated using
all three potential coefficient models used in this study.

Despotakis (ibid) calculated the ellipsoidal corrections to the
Stokes’ integral using OSU86F up to degree 36. The size of the
correction was so small, that continuing the calculations beyond
that degree would yield no extra information. Despotakis found the
correction term to be 1.5 mm for the OSU86F spherical harmonic
reference field. Various reference fields and their corresponding

ellipsoidal corrections are given below in Table 15.

TABLE 15

Ellipsoidal corrections using various reference fields. Units in

meters
Model
Station OSuUs6F osuseB OSU91A
7120 0.0015 0.0022 0.0015
7210 0.0015 0.0022 0.0015
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For simplicity in later tables, we will apply the ellipsoidal
corrections to the outer zone effect in Table 16, and use these
values through the rest of the report, remembering that the
ellipsoidal corrections are corrections to the complete undulation,
not to the outer zone effect.
TABLE 16
Outer zone contribution (meters) to the geoid undulation plus

ellipsoidal corrections. Units are meters

Model

OSU 86 F osSu89B OSU91 A
Ellip. Sta. 180 360 180 360 180 360

osug7 | 7120 -1.828 -2.021 -1.033 -1.242 -0.927 -1.137

“ 7210 -1.829 -2.021 -1.033 -1.242 -0.927 -1.137

Oosuot1 | 7120 -1.828 -2.021 -1.032 -1.242 -0.927 -1.137

“ 7210 -1.829 -2.021 -1.033 -1.242 -0.927 -1.137

5.2.6 Undulation from Various Potential Coefficient Models

We have used spherical harmonic reference fields to calculate
the outer zone effect on the geoid undulation.” It is possible to
calculate the entire geoid undulation with only a reference field if
the cap size (y.) is set to zero. In this case, no terrestrial gravity
data would be required, however, the finite degree of the reference

field will introduce errors to the calculated undulation, especially
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in areas of high-frequency information (rugged terrain) such as
Hawaii.

Despotakis (ibid) calculated an undulation at 7120 and 7210
using the reference field OSU86F up to degree 180. He found a
discrepancy between the undulation obtained from physical
measurements and the undulation calculated from OSU86F to be near
7.5 meters. This large difference indicates that the limited degree
of OSU8B6F cannot accurately describe the geoid in the rugged area of
Maui. Table 17 shows the calculated undulation at 7120 and 7210
using the same three reference fields as used in the previous
section, up to degrees 180 and 360. The discrepancies seen in each
of these values indicates that we still have a long way to go in
producing a finite degree set of harmonic coefficients which can
accurately describe rugged areas of the geoid. Note also, that
OSU91A appears to be less accurate than OSU89B when compared to

the given undulations, assuming the given undulation is correct.

——p—
'
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TABLE 17

Geoid undulations calculated by reference fields alone.

Units are meters

Model

OSU 86 F OSU 89 B OSU91 A
Ellip. Sta. GivenN | 180 360 [ 180 360 [ 180 360

osug7 7120 20.463 |11.854 13.019|14.128 15.905|13.752 15.526

“ 7210 20.489 |11.858 13.021]14.132 15.907113.756 15.528
— |

OosuU91 7120 20.236 |11.855 13.019|14.128 15.905|13.752 15.526

“ 7210 20.273 |11.858 13.021]|14.132 15.907|13.756 15.528

5.2.7 The Entire Geoid Undulation

Using the results in sections 5.2.4 and 5.2.5, many
combinations of cap contribution and outer zone contribution can be
made. However, it is unreasonable to use old reference fields with
new station coordinates, etc. In Tables 18 and 19, the combinations
of 3”7, 30” and 2 TC’s with the 3 reference fields are shown. Note
that in Tables 12 and 13, the largest effect of assuming changing
the crustal density assumption was 0.9 cm. Thus, we will assume
p=2.9x103 kg/m3 for the rest of this report with the understanding
that the impact of this assumption is minimal. Also, the difference
in effect on the undulation between 30”-1 and 307-2 TC's is

negligible, so we will not differentiate them either. Lastly, the
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large difference in OSU89B and OSU91A from OSUS86F indicate that

these later reference fields are more accurate than their
predecessors, which is expected. We shall pair OSU86F and OSU89B
with the old system calculations to compare to Despotakis’ values,
and OSU89B and OSU91A with the new system calculations to show
the best current calculation of the geoid undulation at this laser
station.

A row of data for values calculated without using terrain

corrections is shown as a basis of comparison. These values come
strictly from NAg, Nsa., Outer zone, and ellipsoidal corrections.



TABLE 18

90

Geoid Undulation from the Combined Cap, Outer Zone, Indirect Effect,

and Ellipsoidal Corrections, Old system

Station TC’s OSU86F | OSU86F | OSU89B | OSU89B
To 180 To 360 To 180 To 360

7120 No TC’s [ 19.364 m[19.171 m[20.159 m| 19.950 m
“ 3”-1 19.379 19.186 20.174 19.965

) 3”-2 19.363 19.170 20.158 19.949

! 30" 19.497 19.304 20.292 20.083

: 2’ 19.409 19.216 20.204 19.995
7210 [ No TC’s 1 19.362 m|19.170 m|20.158 m) 19.949 m
* 3”-1 19.378 19.186 20.174 19.965

“ 37-2 19.361 19.169 20.157 19.948

- 30" 19.495 19.303 20.291 20.082

: 2’ 19.407 19.215 20.203 19.994
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TABLE 19

Geoid Undulation from the Combined Cap, Outer Zone, Indirect Effect,

and Ellipsoidal Corrections, New system

Station TC’s OSU89B [ OSU8B9B | OSU91A | OSU91A
To 180 To 360 To 180 To 360

7120 No TC’s | 20.182 m| 19.972 m | 20.287 m| 20.077 m
i 3”-1 20.197 19.987 20.302 20.092
: 37-2 20.181 19.971 20.286 20.076
: 30" 20.315 20.105 20.420 20.210
i} 2’ 20.227 20.017 20.332 20.122

7210 No TC’s | 20.180 m| 19.971 m| 20.286 m| 20.076 m
: 3”7-1 20.196 19.987 20.302 20.092
“ 37-2 20.179 19.970 20.285 20.075
¢ 30” 20.313 20.104 20.419 20.209
: 2’ 20.225 20.016 20.331 20.121
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The difference between the physically measured undulation and
the best combinations of calculated undulations for the old system
are found in Table 20.

The difference between the physically measured undulation and
the best combinations of calculated undulations for the new system

are found in Table 21.

TABLE 20
Given undulations minus calculated undulations, Old system.

Units are cm.

Station TC'’s OSU86F | OSU86F | OSU89B | OSU89B
To 180 To 360 To 180 To 360
7120 | NoTC's [ 109.9 129.2 30.4 51.3
“ 37-1 108.4 127.7 28.9 49.8
“ 37-2 110.0 129.3 30.5 51.4
“ 30” 96.6 115.9 17.1 38.0
“ 2’ 105.4 124.7 25.9 46.8
7210 [ NoTCs | 112.7 131.9 33.1 54.0
“ 37-1 111.1 130.3 31.5 52.4
" 37-2 112.8 132.0 33.2 54.1
“ 30" 99.4 118.6 19.8 40.7
" 2’ 108.2 127.4 28.6 49.5




TABLE 21
Given undulations minus calculated undulations , New system.

Units are cm.

Station TC’s OSuU89B [ OSU8BIB | OSU91A | OSU91A
To 180 To 360 To 180 To 360
7120 | No TC’s 5.4 26.4 -5.1 15.9
- 3"-1 3.9 24.9 -6.6 14.4
¢ 3"-2 5.5 26.5 -5.0 16.0
- 30" -7.9 13.1 -18.4 2.6
‘ 2’ 0.9 21.9 -9.6 11.4
7210 | No TC’s 9.3 30.2 -1.3 19.7
: 3"-1 7.7 28.6 -2.9 18.1
- 37-2 9.4 30.3 -1.2 19.8
- 30~ -4.0 16.9 -14.6 6.4
: 2’ 4.8 25.7 -5.8 15.2




94

Tables 20 and 21 show that the calculated undulations agree
with the given undulations to a range of 17.1 to 132.0 cm in the old
system, and -18.4 to 30.3 cm in the new system. Because the
computational methods used can have an impact on the undulation at
the centimeter level, it is important to understand that any
agreement between given and calculated values at a smaller level
than 10 cm would not be completely meaningful due to many errors
at the cm and mm level which can affect the undulation. Therefore
the improvement of reference fields, and gravity data collection
will need to be implemented at the same time as better methods of
numerical integration, terrain correction calculation and density
modelling.

It is alarming to see that when compared to the given
undulations, the 3” data has yielded worse results than the 30” data.
However, it must first be noted, that we have assumed the given
undulations to be free of errors, a poor approximation at best.
Realistically, if 3” TC’s were calculated accurately, the values of
the TC’s should yield accurate values of N7, and N which agree with
the true undulations better than the 30” TC's. Because so much care
was taken to determine exact TC’s at the 3” level, it may be fair to
assume that the disagreement between given undulations and
calculated undulations (with 3" TC’s) is due to error in the given
undulations. How and where these errors occur is unknown, but may

be because the orthometric height used to calculate the given
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undulations was measured from MSL instead of from the geoid. This
difference, known as sea surface topography (SST) could easily be in
the order of magnitude to correct the disagreement between the
given and calculated undulations (with 3” TC’s). However, no value
for SST that could be known to be consistant, time wise, with the
height in this area was known, nor was the particular tide station
from which the orthometric heights were measured known. This
should be an area of future investigation.

Note, also, that the difference between using terrain
corrections on a 3” grid, and not using terrain corrections at all is
very small (under 2 cm). This agreement is slightly in error because
the border errors were never properly removed from the FFT
calculations. Yet, this agreement goes along with a conclusion of
Moritz (1968) which we stated earlier, which is that the terrain
corrected gravity anomalies may be approximated by the free-air
anomalies.

One of the original purposes of this study was to determine
why such a large discrepancy occurred in Despotakis (ibid, p. 96)
between calculated and given undulations. Table 22 shows the

numerical values which Despotakis found in his study.
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TABLE 22

Undulation calculations from Despotakis (ibid)

Station Ncap =Nag+Nsga | outer zone with NTotal
OSU86F to 360

7120 20.77 -1.83 18.93

7210 20.80 -1.83 18.96

Note, first, that the cap contribution (Ncap) is immediately in
error by 21.6 cm (in 7120) and 18.5 cm (in 7210) due to incorrect
referencing of the Ac cells in the program used by Despotakis (see
section 5.1.1.1).

Because Despotakis used no terrain corrections to his

undulations at 7120 and 7210, his Ngap equalled his Nag+Ngga-

However, we see on Tables 12 and 13 that with the effect of the
terrain, the Ncap and NAg+N59A may differ by as much as 12.1 or

13.1 cm (depending on which p is used). As seen on Table 16, the
difference between the outer zone effect with OSU86F (to 360) and
OSU89B (to 360) is 77.9 cm. Thus, in this case, the effect of using
an improved reference field is more than four times that of using
terrain corrections on an extremely densified digital terrain model.
Finally, the results of Tables 19 and 21 show the most up-to-
date information about the undulation around points 7120 and 7210.
Immediately we see that the use of a reference field up to degree

360 does not appear to yield better overall agreement with the given
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undulation, yet we do not know that the given undulation is not in
error itself.

The questions of which reference field to use, and which
crustal density is correct remain. As mentioned, the volcanic nature
of the Islands means that the crustal density is somewhere closer to
2.9x103 kg/m3 rather than 2.67x103 kg/m3, however it has been
shown that this has an effect less than 1 cm. Lastly, one sees that
combining the cap contribution with 30” TC’s with the outer zone
effect, using OSU91A (to degree 180), gives the best possible
agreement with the given undulations. This alone should warrant
further study as to why the less dense elevations, and lower degree

reference field yield the best agreement with given undulations.




CHAPTER VI
SUMMARY AND CONCLUSIONS

Geoid undulations were calculated at two laser station
benchmarks (7120, 7210) located on Mt. Haleakala, Maui, Hawaii
with corrections being made for the terrain and atmosphere. The
method of truncation was used where a cap of radius y,=2°
contained the terrestrial gravity data describing the high frequency
information and a spherical harmonic reference field was used to
describe the low frequency information outside of that cap.
Elevations were available on a 3”x3” grid for most land areas inside
of yo and 5'x5’ elevations were used to fill in the rest of the
elevations. Using the given ellipsoidal coordinates in the SL6 and
SL7.1 systems as well as given orthometric heights, the undulations
at the laser station were calculated as N=h-H and compared to
undulations calculated with truncation theory.

The improvement in using terrain corrections in geoid
undulation computations was seen to be dependent upon the grid
density of the elevation data available, the method of calculating

TC’s, and the crustal density assumption. Most influential was the

grid density of the available elevation data. The NT¢ value using 3”
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TC’s was lower than that using 30” or 2’ data by 2.5 to 11.6 cm.
Thus, 3” TC’s yielded lower undulations than 30” or 2° TC’s. These
undulations from 3” elevation data disagree with the given
undulations by -6.6 to 19.8 cm when used with the OSU91A reference
field.

In calculating 3” TC’s, a ‘border error’ occurred, where
extraordinarily large TC’s were produced from the FFT calculations,
along the borders of some 20’x20’ calculation areas. This problem
could not be resolved, and the large values were simply set to zero.

More important to the geoid undulation was seen to be the
improvement of the spherical harmonic reference field used to
calculate the outer zone effect. As shown earlier in section 5.2.8,
the use of OSU89B over OSU86F changed the outer zone effect on the
order of 78 cm, which improved the agreement between given and
calculated undulations. The use of OSU91A, however, changed the
outer zone effect by 10 cm, but not conclusively improving it. The
computation of the geoid undulation through the spherical harmonic
reference field alone shows that high frequency information still is
not adequately contained in a limited degree reference field --
especially in the Hawaiian Islands, where the terrain changes very
rapidly.

The use of a different, possibly more accurate, crustal density
assumption was seen to impact the final undulation by less than 1
cm.

The best agreement between given undulations and calculated

undulations was under 10 cm, which is within the limits of noise in
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these computations, though this did not occur using 3" TC’s and
OSU91A to degree 360, as would be expected because of their higher

accuracy and resolution.

nclusion

The agreement between the given and calculated undulations
using the 3” TC’s is acceptable given the possible noise sources in
this study. However, the 3” TC’s yielded undulations which
disagreed with the given undulations worse than the 30” TC'’s.
Because we have seen that the 3” TC’s were very accurately
calculated, we assume that some bias exists in the given
undulations on the order of 15-20 cm. The source of this bias is
unknown, but may be due to sea surface topography (SST). Assuming
the given orthometric heights were measured to MSL tide gages, then
a correction to the orthometric height should be made for the
difference between MSL and the geoid. This difference is SST. No
current value is known for the SST value on Maui, nor is the exact
tide gage station known, from which the orthometric height was
measured.

We have also seen that the use of lengthy, though more
computationally accurate, numerical integration programs are not
worth the additional computer time. The additional accuracy of
under 1cm is considered not worth increasing computer time by

many minutes.
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For the outer zone effect, the use of any spherical harmonic
reference field less accurate than OSU89B will introduce non-
negligible errors in the outer zone effect. Also, the use of
ellipsoidal corrections is seen to be negligible irregardless of the

reference field chosen.
r f F

For the calculation of detailed terrain corrections (with FFT's)
to be more accurate, it will be necessary to examine the effect of
neglecting elevations outside of the FFT border. This can be done
with an FFT program capable of processing 6000 x 6000 points
simultaneously, in order to compare TC's to values calculated in
small areas and combined into larger files. As stated earlier, the
3’x3” TC’'s could only be calculated in 20'x20’ areas thereby
neglecting many elevations in the nearby area.

Also, using a more dense gravity anomaly field may yield more
accurate results, as (we assume) the denser TC’s did. To improve
the Npg values, the use of higher density Ag files directly
surrounding the calculation point may yield better results than
calculated in this report.

Lastly, the source of the disagreement between the undulation
calculated using 3” TC’s and the given undulation should be
investigated. We have speculated that the SST is the source of this

error.
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If all these things are done to improve the calculation of the
undulation, they may help drive the errors in calculation down to the
centimeter level. If this were to happen, some currently accepted
computational methods would need to be changed, because we have
seen that interpolation of the Stokes’ function, numerical
integration of the Stokes’ integral, accurate crustal densities, and
the density of elevation data can have significant effects on the

undulation at the centimeter level.
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