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ABSTRACT

In real-world listening environments, speech reaching our ear is often accompa-

nied by acoustic interference such as environmental sounds, music or another voice.

Noise distorts speech and poses a substantial difficulty to many applications including

hearing aid design and automatic speech recognition. Monaural speech segregation

refers to the problem of separating speech based on only one recording and is a widely

regarded challenge. In the last decades, significant progress has been made on this

problem but the challenge remains.

This dissertation addresses monaural speech segregation from different interfer-

ence. First, we research the problem of unvoiced speech segregation which is less

studied compared to voiced speech segregation probably due to its difficulty. We pro-

pose to utilize segregated voiced speech to assist unvoiced speech segregation. Specif-

ically, we remove all periodic signals including voiced speech from the noisy input and

then estimate noise energy in unvoiced intervals using noise-dominant time-frequency

units in neighboring voiced intervals. The estimated interference is used by a sub-

traction stage to extract unvoiced segments, which are then grouped by either simple
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thresholding or classification. We demonstrate that the proposed system performs

substantially better than speech enhancement methods.

Interference can be nonspeech signals or other voices. Cochannel speech refers

to a mixture of two speech signals. Cochannel speech separation is often addressed

by model-based methods, which assume speaker identities and pretrained speaker

models. To address this speaker-dependency limitation, we propose an unsupervised

approach to cochannel speech separation. We employ a tandem algorithm to perform

simultaneous grouping of speech and develop an unsupervised clustering method to

group simultaneous streams across time. The proposed objective function for cluster-

ing measures the speaker difference of each hypothesized grouping and incorporates

pitch constraints. For unvoiced speech segregation, we employ an onset/offset based

analysis for segmentation, and then divide the segments into unvoiced-voiced and

unvoiced-unvoiced portions for separation. The former are grouped using the com-

plementary masks of segregated voiced speech, and the latter using simple splitting.

We show that this method achieves considerable SNR gains over a range of input SNR

conditions, and despite its unsupervised nature produces competitive performance to

model-based and speaker independent methods.

In cochannel speech separation, speaker identities are sometimes known and clean

utterances of each speaker are readily available. We can thus describe speakers using

models to assist separation. One issue in model-based cochannel speech separation is

generalization to different signal levels. Since speaker models are often trained using

spectral vectors, they are sensitive to energy levels of two speech signals in test. We
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propose an iterative algorithm to separate speech signals and estimate the input SNR

jointly. We employ hidden Markov models to describe speaker acoustic characteristics

and temporal dynamics. Initially, we use unadapted speaker models to segregate two

speech signals and then use them to estimate the input SNR. The input SNR is then

utilized to adapt speaker models for re-estimating the speech signals. The two steps

iterate until convergence. Systematic evaluations show that our iterative method

improves segregation performance significantly and also converges relatively fast. In

comparison with related model-based methods, it is computationally simpler and

performs better in a number of input SNR conditions, in terms of both SNR gains

and hit minus false-alarm rates.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

As Helmholtz noted in 1863, we humans have a remarkable ability of listening out

the sound of interest in a mixture of acoustic sources [31]. Cherry used the term

“cocktail party problem” [14] to vividly describe how complex our listening environ-

ment can be and what an amazing task we are performing everyday. How do humans

manage to selectively listen to the source of interest and organize the complex acous-

tic environments? In his famous book [9], Bregman attributes auditory segregation

to auditory scene analysis (ASA) and summarizes the segregation process into two

stages: segmentation and grouping. In segmentation, the input sound is decomposed

to segments, each of which is a contiguous time-frequency (T-F) region originating

mainly from a single sound source. The grouping stage combines segments that likely

arise from the same source into a stream. While these tasks seem effortless to hu-

mans, they remain major difficulties for machines. Based on the ASA principles,

many computational systems are designed and aim to realize speech segregation in a
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number of important applications, including hearing aid design [21] and robust speech

recognition [1].

The main focus of this dissertation is monaural speech segregation, i.e., separating

speech from interference in a single recording. Acoustic interference can be nonspeech

sounds or other voices. In the former case, one often relies on the acoustic differences

between speech and interference for separation. One difficult problem in this sce-

nario is unvoiced speech segregation. Unvoiced speech consists of unvoiced fricatives,

stops and affricates [101], and is highly susceptible to interference due to relatively

weak energy and lack of harmonic structure. In the literature, speech enhancement

methods [61] work with the whole noisy utterance and have the potential to deal

with unvoiced speech. But these methods often assume some statistical properties of

the interference and lack the ability to deal with general interference. For example,

spectral subtraction often assumes that the noise is stationary and uses the first few

frames to estimate the noise. Such an assumption is often problematic in practice.

Other noise estimation methods such as the minimum statistics based algorithm [63]

also make the assumption that noise is stationary or quasi-stationary. From a dif-

ferent perspective, model-based methods separate speech signals by searching for

the best model combination to match the mixture and estimate the speech sources

(e.g. [84]). Model-based techniques can be applied to separating unvoiced speech,

but the assumption that the mixture consists of only speech utterances of trained

speakers limits the scope of their application. Observing the different properties of

unvoiced and voiced speech, we perform the separation in two steps: voiced speech
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separation first and then unvoiced speech separation. We assume that voiced speech

corresponds to pitched frames and unvoiced speech pitchless frames. As such, we get

the benefit that T-F regions in voiced intervals dominated by noise provide the infor-

mation to estimate noise in nearby unvoiced speech intervals. This then motivates us

to subtract the estimated noise from the mixture in unvoiced intervals to segregate

unvoiced speech.

Acoustic interference can also be other voices. We refer to the problem of separat-

ing a speech signal from another voice as cochannel speech separation. Existing meth-

ods address cochannel speech separation mainly by employing speaker models. These

methods often assume that clean utterances of a speaker are available a priori, and

some methods further assume the identities of two participating speakers to be known.

For example, in computational ASA, Shao and Wang use a tandem algorithm [39] to

generate simultaneous speech streams, and then group them sequentially by maximiz-

ing a joint score based on speaker identification and sequential grouping [96]. Another

system models speakers using hidden Markov models (HMM) and performs separa-

tion by utilizing automatic speech recognition [3]. Other methods separate voices

at the frame level using models such as factorial HMMs, Gaussian mixture mod-

els (GMM) and nonnegative matrix factorization (NMF) [32], [111], [85], [84], [98].

However, the requirement on speaker-dependent models and speaker identities is of-

ten hard to meet in a general scenario. This motivates us to design a generic method

to separate cochannel speech without any prior knowledge about speakers. We will

exploit acoustic differences of two speakers and use clustering for separation.
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Unsupervised methods have the benefits of not needing speaker models for sep-

aration. However, speaker information can be readily available in some scenarios.

For example, in a meeting, talkers are often known and their clean utterances can be

collected in advance. As another example, in a cockpit of an aircraft, the identities

of a pilot and a co-pilot are often known and fixed. In these scenarios, we can uti-

lize speaker models to better separate cochannel speech. One issue in model-based

cochannel speech separation is the mismatch between training and test signal levels.

For example, in a minimum mean square error (MMSE) based method [85], GMMs

are trained using log-spectral vectors, which are sensitive to speech energy levels. The

method in [85] trains speaker models at a fixed signal level and separates mixtures

with nonzero input SNR using unmatched models. As expected, the performance is

worse than using matched models. We observe that speaker models can be adapted

to different signal levels if the input SNR is known. However, to estimate the input

SNR one needs to somehow segregate the speech signals first. This creates a “chicken

and egg” problem and one common approach to address this dilemma is an iterative

method. This motivates us to design an iterative system to separate speech signals

and estimate the input SNR jointly.

1.2 Objectives

This dissertation focuses on monaural speech separation in the presence of nonspeech

or speech interference. We will first study speech separation from nonspeech interfer-

ence by focusing on unvoiced speech separation. When interference is another voice,
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we utilize speaker acoustic differences and design an unsupervised method to separate

cochannel speech. Lastly, in scenarios where speaker prior information is available, we

describe speakers using statistical models and then perform separation. We elaborate

these objectives as follows:

• Unvoiced Speech Separation. The fact that unvoiced speech is weak and lacks

harmonic structure motivates us to deal with it using different methods from

voiced speech segregation. One way of doing this is to perform the two sep-

aration tasks sequentially, first voiced speech segregation and then unvoiced

speech segregation. The advantage of this strategy is that, after voiced speech

segregation, the noise-dominant T-F units thus segregated provide noise esti-

mates for neighboring unvoiced intervals. Given the estimates, we can then use

speech enhancement algorithms such as spectral subtraction to separate un-

voiced speech. Our objective in this study is to segregate unvoiced speech from

nonspeech interference and develop a complete system capable of segregating

both voiced and unvoiced speech in general noisy environments.

• Unsupervised Cochannel Speech Separation. As we discussed in Sect. 1.1, one

limitation current cochannel speech separation methods face is that they require

the availability of pretrained speaker models for separation. We aim to remove

this limitation by designing an unsupervised separation method. Our problem

resembles speaker clustering [102] but has two unique challenges. First, T-F

speech regions in cochannel conditions contain spectrally separated components
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while the speech sections in speaker clustering are frequency complete. Second,

a speech region in our work is much shorter than a speech section in speaker

clustering. In this study, we will first survey speaker clustering methods and

then design an appropriate objective function for cochannel speech separation.

We will mainly study clustering for efficient unsupervised grouping. Grouping

of unvoiced speech will also be studied and we put all components together to

produce a complete unsupervised system for cochannel speech separation.

• Model-based Cochannel Speech Separation. Current model-based methods for

cochannel speech separation have several limitations, and one of them is the

mismatch between training and test signal levels. In this study, we aim to

tackle this problem and generalize model-based systems to different SNR con-

ditions. Our first goal is to build a system capable of modeling speaker acoustic

characteristics and their temporal dynamics. We will survey systems employ-

ing different modeling techniques and then develop ours by considering both

performance and generalization issues. A key issue in generalizing model-based

methods to different SNR conditions is to match the speaker models to the signal

levels in a test condition, and we will study methods for signal level detection as

well as speaker model adaptation. In addition, the complexity of model-based

methods often increases fast as one incorporates more knowledge/constraints,

and approximation methods for source estimation will also be studied.
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1.3 Organization of Dissertation

The rest of this dissertation is organized as follows. The next chapter introduces the

background on monaural speech segregation and related work in cochannel speech

separation.

Chapter 3 presents a computational ASA based approach incorporating spectral

subtraction for unvoiced speech segregation. The proposed system first removes esti-

mated voiced speech, and the periodic parts of the interference based on cross-channel

correlation. We next estimate the noise energy in unvoiced intervals using segregated

speech in neighboring voiced intervals. Then unvoiced speech segregation occurs in

two stages: segmentation and grouping. In segmentation, we apply spectral sub-

traction to generate T-F segments in unvoiced intervals. Unvoiced speech segments

are subsequently grouped by analyzing their frequency characteristics. The proposed

algorithm will be compared with related methods.

Chapter 4 describes a novel unsupervised approach to separate cochannel speech.

Currently, cochannel speech separation is predominantly addressed using model-based

approaches, which require pretrained speaker models and often prior knowledge of

speaker identities. Our unsupervised approach follows the two main stages of com-

putational ASA: segmentation and grouping. For voiced speech segregation, the

proposed system utilizes the tandem algorithm for simultaneous grouping and then

unsupervised clustering for sequential grouping. The clustering is performed by max-

imizing the ratio of between- and within-group speaker distances while penalizing
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within-group concurrent pitches. To segregate unvoiced speech, we first produce un-

voiced speech segments based on onset/offset analysis. The segments are grouped

using the complementary binary masks of segregated voiced speech streams. Despite

its simplicity, our approach produces significant SNR improvements across a range

of input SNRs, and yields competitive performance in comparison to other speaker-

independent and model-based methods.

Chapter 5 proposes an iterative model-based algorithm for cochannel speech sep-

aration. This algorithm addresses the issue of mismatch between training and test

signal levels. The iterative algorithm first obtains initial estimates of source signals

using unadapted speaker models and then detect the input SNR of the mixture. The

input SNR is then used to adapt the speaker models for more accurate estimation.

The two steps iterate until convergence. Compared to searching a given set of SNR

levels, this method is not limited to predefined SNR levels. Evaluations demonstrate

that the iterative procedure converges quickly in a considerable range of SNRs and

improves separation results substantially. Comparisons show that the proposed sys-

tem performs significantly better than related model-based systems.

We conclude the dissertation in Chapter 6, where contributions and insights of

this dissertation are summarized and future research directions are pointed out.
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CHAPTER 2

BACKGROUND

This chapter first introduces basic knowledge of computational auditory scene analy-

sis, and then we survey related monaural speech separation algorithms. Speaker clus-

tering methods, which motivate us to design an unsupervised method for cochannel

speech separation, are then reviewed. Finally, we introduce model-based cochannel

speech separation methods.

2.1 Computational Auditory Scene Analysis

Computational auditory scene analysis aims to achieve speech segregation based on

perceptual principles [108]. Following the ASA theory, CASA performs speech seg-

regation typically in two steps: segmentation and grouping. Given an input signal,

a CASA system would first filter it into different frequency channels using a bank

of gammatone filters [81], and the filtered signals would then be divided into time

frames. The resultant representation is called a cochleagram [108]. In the segmenta-

tion stage, the input signal is decomposed to T-F segments, each of which is deemed

to originate mainly from a single sound source. The grouping stage combines the T-F
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segments that likely arise from the same source into a stream. Grouping itself has

two processes: simultaneous grouping and sequential grouping. Simultaneous group-

ing organizes sound components across frequency to produce simultaneous streams,

and sequential grouping links them across time to form (source) streams. In general,

CASA methods can be divided into two categories depending on whether separation

is performed mainly using features or models. Representative features used in CASA

include pitch or harmonicity, ampitude modulation, onsets and onsets, etc., while

model-based methods often capitalize on spectral or cepstral features to describe

speakers (or sources). CASA methods make few assumptions about source sounds

and presumably generalize well in practice.

The ideal binary mask (IBM) has been suggested as a main goal of CASA [106].

The IBM is a binary T-F matrix where each T-F unit is labeled either as always

target dominant with a value of 1 or as interference dominant with a value of 0. The

IBM is constructed by comparing the SNR within each T-F unit against a local SNR

criterion (LC) [11]. The IBM builds on the auditory masking phenomenon [71] and

is well defined for multiple intrusions in different environments. It is shown that the

IBM achieves optimal SNR gains under certain conditions [57]. Subject tests have

shown that speech segregated by IBM leads to dramatic intelligibility improvements

for both normal-hearing and hearing-impaired listeners [11], [55], [109]. In addition,

such a goal is still reasonable when room reverberation is present [88].
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2.2 Monaural Speech Segregation

2.2.1 CASA-Based Approaches

In the past decades, many CASA systems have been developed for monaural speech

separation. An early system in [110] employs fundamental frequencies to separate the

voices of two speakers. Various auditory features are extracted for grouping in [10]

and top-down methods are employed in [23]. In [107], an oscillator network is used

to perform speech separation based on oscillatory correlation.

More recently, Hu and Wang develop a pitch-based system to segregate voiced

speech [35,36]. This system utilizes pitch for simultaneous grouping and significantly

improves the SNR of segregated speech under various noisy conditions. This system

is further developed to perform pitch detection and voiced speech segregation in

tandem [33,39]. The tandem algorithm first extracts T-F segments by cross-channel

correlation and then detects pitch based on harmonicity and temporal continuity.

Then, the algorithm expands estimated pitch contours and re-estimates the associated

binary masks. The updated masks are used in turn to refine the pitch contours.

The above two steps iterate until convergence. Supervised learning is employed in

monaural speech separation and produces good performance in both anechoic and

reverberant situations [49]. Research in [49] further shows that pitch plays a key role

in monaural speech separation and an HMM-based pitch tracker is proposed in [48]

for robust pitch tracking in reverberant situations.
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In addition to pitch, other features such as onsets and offsets are employed to seg-

ment speech [37]. Onsets correspond to sudden increases of acoustic energy and often

start auditory events. Offsets, on the other hand, indicate the ends of events. The

method in [37] first detects onset/offset points and then links them across frequency

to form onset/offset fronts. Segments are then produced by pairing onset and offset

fronts in multiple scales. Note that this method works for both voiced and unvoiced

speech. Based on segmentation results, a multilayer perceptron (MLP) is utilized

to classify each segment into unvoiced speech or nonspeech interference [38]. Other

features such as the instantaneous frequency are also used in monaural speech sep-

aration [29]. From another perspective, the system in [56] utilizes auditory features

for segmentation and then groups sources by maximizing a speech quality evaluation

criterion.

Speaker models are also utilized in CASA methods. The method in [96] em-

ploys the tandem algorithm for simultaneous grouping and then sequentially groups

simultaneous streams by using speaker models. In this method, the assignment of

simultaneous streams is jointly determined by speaker identification and sequential

grouping. Based on this system, a robust speech recognition system is built to work

in cochannel conditions in [94]. Similar CASA-based systems model speakers using

HMMs and perform separation by utilizing automatic speech recognition [4]. Other

models such as eigenvoices are also employed to adapt speakers for speech separa-

tion [111].

Monaural speech separation techniques have been used to assist binaural speech
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segregation. For example, a system in [113] integrates monaural and binaural analysis

to jointly achieve localization and sequential grouping. A model-based method in

[112] combines a probabilistic model of the binaural cues with a statistical source

model for source localization and separation. Similarly, a system in [62] proposes to

integrate a fragment-based approach with binaural localization cues in a probabilistic

framework for speech recognition.

2.2.2 Speech Enhancement Algorithms

Speech enhancement methods have been proposed to enhance noisy speech based on

a single recording [61]. Representative algorithms include spectral subtraction [8],

Wiener filtering [91], MMSE based estimation [24], and subspace analysis [25]. Spec-

tral subtraction enhances noisy speech by subtracting estimated noise from the mix-

ture. Subtraction can be performed either in the magnitude domain or power spectral

domain. The phase of noisy speech is often used to synthesize the time-domain en-

hanced signal. Multiple noise estimation methods are proposed, such as a minimum

statistics based algorithm [64] and time-recursive averaging [16]. Wiener filtering al-

gorithms assume that speech and noise Fourier transform coefficients are independent

Gaussian random variables and estimate complex speech spectrum by minimizing the

square error between the estimated and underlying true speech. For example, Lim

and Oppenheim use an autoregressive model to estimate the Wiener filter [58]. Var-

ious Wiener-type algorithms are investigated in [45]. MMSE-based algorithms mini-

mize the squared error between estimated and true speech magnitudes. Ephraim and
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Malah assume that Fourier transform coefficients of speech satisfy a zero-mean Gaus-

sian distribution and propose an MMSE estimator for estimating speech magnitudes.

Lastly, subspace analysis methods assume that speech lies in a different subspace from

noise and enhance speech by removing the noise space. Singular value decomposition

or Karhunen-Loève transform are often used in this type of algorithms [61].

Speech enhancement methods work with the whole noisy utterance and there-

fore have the potential to deal with both voiced and unvoiced speech. However, as

we describe above, speech enhancement methods often make assumptions about the

statistical properties of interference, which limit their ability in dealing with general

interference.

2.3 Speaker Clustering

As we have pointed out in Sect. 1.2, sequential grouping shares a similar goal as

speaker clustering, i.e. to group speech sections based on speaker identities. In the

following subsections, we survey unsupervised speaker clustering methods.

2.3.1 Speaker Diarization

Speaker diarization aims to solve the “who speaks when” problem under multitalker

environments such as conversational speech and broadcast news [102]. A general

speaker diarization system consists of three main stages: speech detection, speaker

segmentation, and speaker clustering.
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The Bayesian information criterion (BIC) has been used for speaker segmenta-

tion [13, 20]. BIC based methods formulate segmentation as a model selection prob-

lem. Given two sections of speech samples, a single Gaussian is used to model the

two speech sections if one hypothesizes that they are from a single speaker, or two

Gaussians if two speakers. The model with a higher BIC is chosen and the corre-

sponding hypothesis is taken. Then, adjacent speech sections are merged according

to the hypotheses. Besides the BIC criterion, other metrics are employed for speaker

change detection, such as the Kullback-Leibler (KL) divergence [97] and a generalized

likelihood ratio in [51,78].

On the other hand, speaker segmentation may be accomplished with the aid of

speaker clustering [53, 80]. This is accomplished by first chopping an audio signal

into a sequence of short segments that can be considered homogeneous, and then

clustering them into different speakers. However, these methods often require the

initial segments to be long enough. The study by Ofoegbu et al. [80] on intra- and

inter-speaker distances of voiced speech suggests that a segment has to contain a

minimum of 5 phones for speaker separability. Various clustering methods, hierarchi-

cal or partitional, are employed for this task. Hierarchical (agglomerative) clustering

is used in conjunction with the BIC criterion in [13]. Similar methods employing

hierarchical clustering can be found in [102]. Partitional clustering methods are also

applied. In [78], two Gaussian mixture models, each representing one speaker, are

built from two speaker-homogeneous segments on the fly.

Model-based methods are often employed in unsupervised speaker clustering.
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In [103], Tsai et al. construct an eigenvoice space to model the generic voice character-

istics. In clustering, an utterance is first projected to the eigenvoice space and group-

ing is carried out in the projected space by optimizing the cluster purity. In [51], sta-

tistical sampling techniques are used to select generic speaker models. In clustering,

each speech segment is assigned to a generic model which has the maximum likelihood

of generating that segment, and all segments assigned to the same model are used to

adapt the generic model to a speaker-dependent model. Liu and Kubala [60] propose

an online method, similar to the leader-follower clustering, to group speech segments

and show better performance compared to hierarchical methods. In addition, speaker

segmentation and clustering are sometimes combined to perform segmentation and

clustering jointly [67].

We have directly applied some speaker clustering algorithms to sequential group-

ing, e.g. the iterative clustering method in [78] and the leader-follower clustering

in [60], but obtained unsatisfactory results. The reason, we believe, is because speech

sections in sequential grouping are partially masked in frequency and usually much

shorter. To overcome the limitation that a simultaneous stream is too short for di-

rect clustering, we propose to hypothesize sequential grouping first and then pool the

information from multiple simultaneous streams for grouping (see Chapter 4).

2.3.2 Clustering Based on Between- and Within-Cluster Distances

Clustering refers to the task of assigning a set of samples into groups so that samples

in the same group are more similar to each other than those in other groups [114].
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As introduced in Sect. 1.2, we want to utilize clustering to sequentially group simul-

taneous streams in an unsupervised way. In this case, the first step is to define an

appropriate objective function.

Studies in cluster validation have proposed many criteria to assess clustering re-

sults [114]. Validation criteria can be divided into three categories: external criteria,

internal criteria and relative criteria. Among them, the internal criteria make use of

only the clustering data and do not depend on any external or prior information.

One of these criteria is the Dunn index [22]. This index measures the clustering

performance by comparing the within-cluster and between-cluster distances. But as

shown in [6], the Dunn index is sensitive to outliers due to the form of enumerators

and denominators. Based on the general structure of the Dunn index, a number

of similar indices are proposed to overcome this limitation. For example, instead

of using the minimum distance of two samples in a group, the average distance of

all pairs of samples is used to avoid the effect of outliers [6]. For the same reason,

Hausdorff metric [82] is used in defining the distance function. On the other hand,

new strategies are proposed to ameliorate the sensitivity to outliers [6].

Another validation index, called the Davies-Bouldin index [18], attempts to max-

imize the ratio of between- and within-cluster distances. The Davies-Bouldin index

is calculated as a mean of several sub-indices corresponding to individual clusters. In

the Dunn index, the within-cluster variance is measured by the maximum diameter

of individual clusters, while here it is measured by the sum of average within-cluster

distances in each cluster.
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Other than the above two indices, Milligan and his colleagues have tested and

compared the performance of a large number of clustering validation indices [68–70].

Different clustering algorithms and as many as 30 internal validation indices are

examined and their performances are compared. In their study, clustering data are

artificially constructed and two external indices are first applied to ensure distinct

clustering is present in the data. Performances of different clustering algorithms and

criteria are examined based on the correlation between the testing criteria and the

external criteria or the comparison between the output clusters and original clusters.

Related indices involving the comparison of between- and within-cluster distances

are briefly described as follow. The Gamma statistic [2] is computed from the number

of consistent comparisons involving between- and within-cluster distances and the

number of inconsistent ones. Hartigan [30] proposed to use the ratio between the

sum of squared distance between clusters and that of within-cluster as a statistic in

clustering validation. McClain and Rao [65] employed a criterion consisting of the

ratio of two terms. One corresponds to the within-cluster distance and the other the

between-cluster distance. Mountford [73] used a ratio with the sum of the average

within-cluster distances subtracted by the average distance between clusters in the

enumerator and a measure of within-cluster variation in the denominator.

2.4 Model-based Cochannel Speech Separation

Model-based methods often formulate separation as an estimation problem, i.e., given

an input mixture one estimates the two underlying speech sources. To solve this
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underdetermined problem, a general approach is to represent the speakers by two

trained models, and the two patterns (each from one speaker) best approximating

the mixture are used to reconstruct the sources. For example, an early study in [89]

employs a factorial HMM to model a speaker and a binary mask is generated by

comparing the two estimated sources. In [85], GMMs are used to describe speakers

and speech signals are estimated by an MMSE estimator. In MMSE estimation, the

posterior probabilities of all Gaussian pairs are computed and used to reconstruct

the sources (see [84] for a similar system). The GMM-based methods in [85] and [84]

do not model the temporal dynamics of speech. In [32], a layered HMM model is

employed to model both temporal and grammar dynamics by transition matrices. A

2-D Viterbi decoding technique is used to detect the most likely Gaussian pair in

each frame and a maximum a posteriori (MAP) estimator is used for estimation. In

a speaker-independent setting, Stark et al. [100] propose a factorial HMM to model

vocal tract characteristics and use detected pitch to reconstruct speech sources. In

addition to these methods, other models are applied to capture speakers, including

eigenvectors to model and adapt speakers [111], nonnegative matrix factorization

based models in [75] and [98], and sinusoidal models [74]. In CASA, Shao and Wang

use the tandem algorithm to generate simultaneous speech streams, and then group

them sequentially by maximizing a joint speaker identification score with sequential

grouping where speakers are described by GMMs [96]. Another CASA based system

models speakers using HMMs [3].
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CHAPTER 3

UNVOICED SPEECH SEPARATION FROM

NONSPEECH INTERFERENCE VIA CASA AND

SPECTRAL SUBTRACTION

3.1 Introduction

Monaural speech segregation is a particularly difficult task because only one recording

is available and one cannot exploit the spatial information of sources present in multi-

microphone situations. In a monaural case, one has to rely on the intrinsic properties

of speech, such as harmonic structure and onset to perform segregation [9]. Research

employing these features has made considerable advances in voiced speech segregation

for anechoic [10], [35], [56] and reverberant conditions [49]. In contrast, the unvoiced

speech segregation problem has not been much studied (see [38] for an exception) and

remains a big challenge. In this chapter, we study monaural segregation of unvoiced

speech from nonspeech interference.

As we introduced in Sect. 2.2.2, speech enhancement methods often make as-

sumptions about the statistical properties of interference, which limits their ability
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in dealing with general interference. Another class of techniques, called model-based

speech separation, focuses on modeling source patterns and formulates separation as

an estimation problem in a probabilistic framework. As we surveyed in Sect. 2.4,

model-based techniques have the potential to segregate unvoiced speech, but the as-

sumption that the mixture consists of only speech utterances of pretrained speakers

limits the scope of their applications.

As a subset of consonants, unvoiced speech consists of unvoiced fricatives, stops,

and affricates [101], [52]. Recently, Hu and Wang studied unvoiced speech segrega-

tion and successfully extracted a majority of unvoiced speech from nonspeech inter-

ference [38]. They utilized onset and offset cues to extract candidate unvoiced speech

segments. Acoustic-phonetic features are then used to separate unvoiced speech in a

classification stage. In [40], we incorporated spectral subtraction and noise type in

unvoiced speech segregation. The evaluation shows promising results but the group-

ing method involves a large amount of training and is designed for mixtures only at

one SNR level.

In this chapter, we extend the idea of spectral subtraction based segmentation

in [40] and propose a simpler framework for unvoiced speech segregation. First,

our system segregates voiced speech by using a tandem algorithm [39]. We then

remove voiced speech as well as periodic components in interference based on cross-

channel correlation. As periodic portions are removed, the interference is expected

to become more stationary. Then unvoiced speech segregation occurs in two stages:

segmentation and grouping. In segmentation, we first estimate interference energy in
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unvoiced intervals by averaging the mixture energy in inactive units (those labeled as

0) in neighboring voiced intervals. Estimated noise energy is then used by spectral

subtraction to generate unvoiced T-F segments. In the grouping stage, unvoiced

speech segments are extracted based on thresholding or classification.

The work presented in this chapter has been published in IEEE Transactions on

Audio, Speech, and Language Processing [42].

3.2 Background and Voiced Speech Segregation

Our system is shown in Fig. 1. Noisy speech is first analyzed by an auditory periphery

model [108] and voiced speech is segregated using a tandem algorithm [39]. The

segregated voiced speech is subsequently removed along with the periodic portions of

interference from the mixture, and unvoiced speech segmentation and grouping are

then carried out.

3.2.1 Peripheral Processing and Feature Extraction

To analyze noisy speech, the system first decomposes the signal in the frequency

domain using a bank of 64 gammatone filters with center frequencies equally dis-

tributed on the equivalent rectangular bandwidth scale from 50 Hz to 8000 Hz [81].

The gammatone filterbank is a standard model of cochlear filtering. The output

of each channel is then transduced by the Meddis hair cell model [66]. Details of

auditory peripheral processing can be found in [108]. In the time domain, channel

22



��������		
�

�
�
�
��
�
��
	

��
��


��
� ������	�����
	

�����������

�	
���	�����

����

��������

�����������
��������


�������	������	

�������

�	��	�
�	��

�����
	��

��		
�

�����
	��

�	��	���

���
	�����
����
��

Figure 3.1: Schematic diagram of the proposed unvoiced speech segregation system. The system first performs voiced
speech segregation. The segregated voiced speech and periodic portions of interference are then removed in
a periodic signal removal stage. Unvoiced speech segregation then occurs in two stages: segmentation and
grouping. In segmentation, the system performs spectral subtraction on noise estimated using the voiced binary
mask. Unvoiced speech segments are subsequently grouped to form an unvoiced speech stream.
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outputs are decomposed to 20-ms time frames with a 10-ms frame shift. The resulting

time-frequency representation is called a cochleagram [108].

Let uc,m denote a T-F unit at channel c and frame m, and r(c,m) the correspond-

ing hair cell output. We calculate a normalized correlogram by using the following

autocorrelation function (ACF)

A(c,m, τ) =

∑N/2
n=−N/2+1 r(c,mN/2 + n)r(c,mN/2 + n+ τ)√∑N/2

n=−N/2+1 r
2(c,mN/2 + n)

∑N/2
n=−N/2+1 r

2(c,mN/2 + n+ τ)
(3.1)

where τ denotes the time delay, and the frame length N is 320 corresponding to 20 ms

with a sampling frequency of 16 kHz. Within each frame, the ACF carries periodicity

information of the filter response and the delay corresponding to the global peak of

the ACF indicates the dominant pitch period. In implementation, time delay τ varies

between 0 ms and 12.5 ms, which includes the plausible pitch range of human speech.

Harmonics of voiced speech are resolved in the low frequency range, but not at high

frequencies. Each high frequency filter responds to multiple harmonics so that the

response is amplitude modulated and the envelope of the response fluctuates at the F0

(fundamental frequency) of the voiced speech [108]. Therefore, to encode unresolved

harmonics, we extract the envelope of the response by half-wave rectification and

bandpass filtering with the passband from 50 Hz to 550 Hz [49]. The envelope ACF

of uc,m, AE(c,m, τ), is then calculated similarly to (3.1).

Neighboring channels responding to the same harmonic or formant tend to have
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high cross-channel correlation [107]. We calculate the cross channel correlation be-

tween uc,m and uc+1,m by

C(c,m) =
1

L+ 1

L∑
τ=0

Â(c,m, τ)Â(c+ 1,m, τ) (3.2)

where Â(c,m, τ) denotes the normalized ACF with zero mean and unity variance,

and L = 200 corresponds to the maximum time delay of 12.5 ms. In addition, we

calculate the cross-channel correlation of response envelope between uc,m and uc+1,m,

CE(c,m), similarly to (3.2).

3.2.2 Voiced Speech Segregation

After feature extraction, we use the tandem algorithm [39], [33] to estimate a voiced

binary mask. The main purpose of estimating a voiced binary mask is to identify

inactive T-F units in voiced intervals to estimate noise energy in unvoiced intervals.

Following [33], we extract a 6-dimensional feature vector for uc,m

xc,m =



A(c,m, τm)

int(f(c,m) · τm)

|f(c,m) · τm − int(f(c,m) · τm)|

AE(c,m, τm)

int(fE(c,m) · τm)

|fE(c,m) · τm − int(fE(c,m) · τm)|



(3.3)

In (3.3), τm is the estimated pitch period at frame m. A(c,m, τm) measures periodicity

similarity between the unit response and the estimated pitch at frame m. f(c,m)
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denotes the estimated average instantaneous frequency of the response within uc,m,

which is estimated using the zero-crossing rate of A(c,m, τ). The function int(x)

returns the nearest integer. The product f(c,m) · τm provides another feature to

determine the periodicity of a T-F unit, and its closest integer indicates a harmonic

number. The third feature measures the deviation of the product from its nearest

harmonic number. While the first three features in (3.3) are extracted from filter

responses, the last three are extracted from response envelopes (indicated by the

subscript E).

Given the pitch-based feature vector in (3.3), we train an MLP to label T-F units

for each channel. The training samples are generated by mixing 100 utterances ran-

domly selected from the training part of the TIMIT database [27] and 100 nonspeech

interferences [34] at 0 dB. Feature extraction needs F0, which is extracted from clean

speech utterances by Praat [7] in training. The IBM is generated with an LC of 0

dB and used to provide the desired output in training. All 64 MLPs have the same

architecture of 6 input nodes, one hidden layer of 5 nodes and 1 output node accord-

ing to [39]. The hyperbolic tangent activation function is used for both hidden and

output layers. Since our system adopts a 64-channel filterbank in peripheral process-

ing, we halve the frequency range in neighbor based unit labeling to 4 and retrain the

MLP classifier. In addition, the thresholds for response and envelope cross channel

correlations in initial mask estimation are set to 0.935 and 0.94, respectively. In test-

ing, the tandem algorithm performs pitch estimation and voiced speech segregation

jointly.
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3.3 Unvoiced Speech Segregation

The basic idea of our unvoiced speech segregation method is to capitalize on the

segregated voiced speech to estimate interference energy. Since the estimated voiced

binary mask contains inactive T-F units during voiced intervals, we utilize them to

estimate noise energy and subtract it from the mixture during unvoiced intervals

in order to form unvoiced segments. Before unvoiced segregation, we first remove

periodic signals.

3.3.1 Periodic Signal Removal

Unvoiced speech is aperiodic in nature. Therefore, the T-F units that contain periodic

signals do not originate from unvoiced speech and should be removed. Specifically,

we consider unit uc,m to be dominated by a periodic signal if either of the following

two conditions is satisfied: uc,m is included in the segregated voiced stream, or the

unit has a high cross-channel correlation. The second condition stems from the obser-

vation that T-F units dominated by a periodic signal tend to have high cross-channel

correlations [107]. The cross-channel correlation is deemed high if it is above a certain

threshold

C(c,m) > θR or CE(c,m) > θE (3.4)

Here, θR and θE are thresholds for the response and envelope cross-channel cor-

relation, respectively. To maintain a balance between periodic signal removal and

unvoiced speech preservation, the thresholds need to be carefully chosen. To find
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appropriate values, we vary both thresholds from 0.86 to 1 and calculate the percent

of unvoiced speech energy loss. In this analysis, 100 speech sentences from the IEEE

sentence database recorded by a single female speaker [46] are mixed with 15 non-

speech interferences (see Sect. 3.4 for details) at 0 dB to generate mixtures. Different

parts of an interfering signal are used in analysis and evaluation. Here, the first half

of interference is mixed with speech for analysis or training, while in evaluation the

second half is used. An interference is either cut or concatenated with itself to match

the length of a corresponding speech signal. IBM is generated with an LC of 0 dB,

and we use the portions in unvoiced intervals to represent ideally segregated unvoiced

speech. To generate the unvoiced IBM, pitch contours are detected from clean speech

using Praat. In addition, to exclude voiced speech which is not strongly periodic,

we remove segments in the unvoiced IBM extending below 1 kHz. We calculate the

percent of unvoiced speech lost with respect to total unvoiced speech in each noisy

speech utterance and present the mean in Fig. 3.2. As shown in the figure, when

both thresholds are set to 0.86, about 10% of unvoiced speech is wrongly removed. As

the thresholds increase, less unvoiced speech is lost. To achieve a good compromise,

we choose θR to be 0.9 and θE to be 0.96. As indicated by the figure, less than 2% of

the unvoiced speech is lost in this case.

We have considered choosing different thresholds for different noise types. By

analyzing the percentages of unvoiced speech loss for each noise type separately, we

observe that, with the chosen thresholds, the loss percentages for different noises are
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Figure 3.2: The unvoiced speech energy loss as a function of thresholds for response
and envelope cross-channel correlations. The horizontal axes represent
two thresholds θR and θE, and the vertical axis represents the percent of
unvoiced speech energy loss.

all smaller than 6%. This indicates that the fixed thresholds perform well for individ-

ual noise types. As a result, we do not expect significant performance improvements

by using different thresholds for different noise types. Of course, using fixed thresh-

old values is desirable as it does not need detection of noise types, which would be

required if thresholds need to be tuned based on noise type.

Based on the criterion in (3.4), we detect T-F units dominated by periodic signals

and merge neighboring ones to form a mask. Together with the voiced binary mask

obtained in Sect. 3.2.2, we produce a periodic mask whereby active units are removed

from the consideration of unvoiced speech grouping. Periodic signal removal serves

two purposes. First, it reduces the possibility of false detection in unvoiced speech

29



segregation. Second, the removal of periodic signal tends to make interference more

stationary. Consequently, the noise estimated in voiced intervals is generalized to

neighboring unvoiced intervals. To show how this process improves noise estimation,

we calculate the root mean square (RMS) error of noise energy estimation for each

channel with or without periodic signal removal. The RMS error is measured over

unvoiced speech intervals, which are determined by the tandem algorithm. Here, 100

speech utterances different from those in the above analysis are randomly selected

from the IEEE database and mixed with the bird chirp noise [33] at 0 dB for evalu-

ation. Fig. 3.3 shows the mean RMS errors. The dotted line denotes the error with

the cross-channel correlation thresholds set to 1, which amounts to no periodic signal

removal. In contrast, the solid line represents the error with the chosen thresholds.

The RMS error with periodic signal removal is uniformly smaller than that without

the removal, especially at high frequencies where the energy of bird chirp noise is

concentrated.

3.3.2 Unvoiced Speech Segmentation Based on Spectral Subtraction

After the removal of periodic signals, we deal with the mixture of only unvoiced speech

and aperiodic interference. Obviously, the pitch-based feature vector in (3.3) cannot

be used to segregate unvoiced speech. Our method first estimates the aperiodic por-

tions of background noise and then removes it during unvoiced intervals. Without the

periodic signals, we estimate the aperiodic interference energy in an unvoiced interval

by averaging the mixture energy within inactive T-F units in the two neighboring
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Figure 3.3: Mean RMS errors of noise energy estimation over frequencies for bird
chirp noise. The overall estimation performance with the chosen thresh-
olds (solid line) is better than that without periodic signal removal (dotted
line).

voiced intervals. For channel c, the interference energy (in dB) is estimated as

N̂dB(c,m) =

m1−1∑
i=m1−l1

EdB(c, i) · (1− y(c, i)) +
m2+l2∑
i=m2+1

EdB(c, i) · (1− y(c, i))

m1−1∑
i=m1−l1

(1− y(c, i)) +
m2+l2∑
i=m2+1

(1− y(c, i))

(3.5)

where m ∈ [m1,m2], EdB(c, i) denotes the energy within uc,i in dB, and y(c, i) its

estimated binary label. m1 and m2 are the indices of the first and last frames of the

current unvoiced interval respectively, and l1 and l2 the frame lengths of the preceding

and succeeding voiced intervals, respectively. For the unvoiced interval at the start or

end of an utterance, estimation is only based on the succeeding or preceding voiced

interval, respectively. In the situation where no inactive unit exists in the neighboring

voiced intervals for certain channels, we search for the two further neighboring voiced

intervals and continue this process until at least one of them contains inactive units.

All detected inactive units are then used for estimation. If no inactive unit exists in
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this channel, the mixture energy of the first 5 frames is averaged to obtain the noise

estimate. Besides averaging, we have tried linear interpolation and smoothing spline

interpolation [19], but got no better performance.

Our segmentation method employs spectral subtraction, which is a widely used

approach for enhancing signals corrupted by stationary noise [61]. Letting X(c,m)

be noisy speech energy and N̂(c,m) the estimated energy of aperiodic portions of

noise in uc,m, we estimate the local SNR (in dB) in this unit as

ξ(c,m) = 10 log 10
(

[X(c,m)− N̂(c,m)]+/N̂(c,m)
)

(3.6)

where the function [x]+ = x if x ≥ 0 and [x]+ = 0 otherwise. Notice that N̂(c,m) =

10(N̂dB(c,m)/10). A T-F unit is then labeled as 1 if ξ(c,m) is greater than 0 dB, or 0 oth-

erwise. Notice that estimating the local SNR using (3.6) is equivalent to performing

power spectral subtraction [5], except that here we either keep or discard the mixture

energy in uc,m depending on ξ(c,m). We have investigated the over-subtraction tech-

nique proposed by Berouti et al. [5], where noise is over-estimated to better attenuate

music noise, and found an over-subtraction factor of 2 to be a good tradeoff. Thus

we double the noise estimate in (3.6) during labeling. Unvoiced speech segments are

subsequently formed by merging neighboring active T-F units in the T-F domain.

As an illustration, Fig. 3.4(a) shows a T-F representation of the 0-dB mixture

of a female utterance, “The lamp shone with a steady green flame,” from the IEEE

sentence database and the bird chirp noise, where a brighter unit indicates stronger

energy. Fig. 3.4(b) shows the segregated voiced speech and the periodic portions of
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Figure 3.4: Illustration of unvoiced speech segmentation via spectral subtraction. (a)
Cochleagram of a female utterance, The lamp shone with a steady green
flame, mixed with the bird chirp noise at 0 dB. (b) Voiced speech as well
as periodic portions of interference detected in the mixture. (c) The com-
bination of (b) and estimated aperiodic noise energy in unvoiced intervals.
(d) Candidate unvoiced speech segments after spectral subtraction.

the interference detected using cross-channel correlation. Estimated aperiodic noise

in unvoiced intervals is shown in Fig. 3.4(c) together with segregated voiced speech

and periodic interfering signals. Fig. 3.4(d) shows the extracted unvoiced speech

segments based on the subtraction of Fig. 3.4(c) from Fig. 3.4(a) using (3.6). In

segmentation, we take the segments in the unvoiced IBM as the ground truth, where

the unvoiced IBM corresponds to the non-pitch portions of IBM.
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3.3.3 Unvoiced Segment Grouping

Spectral subtraction based segmentation captures most of unvoiced speech, but some

segments correspond to residual noise. To extract only unvoiced speech segments

and remove residual noise is the task of grouping. Before grouping, let us analyze

the characteristics of unvoiced speech. An unvoiced fricative is produced by forcing

air through a constriction point in the vocal tract to generate turbulence noise [101].

In English, unvoiced fricatives consist of the labiodental (/f/), dental (/T/), alveolar

(/s/), and palatoalveolar (/S/). Except for the labiodental, the acoustic cavity of an

unvoiced fricative is so small that resonance concentrates at high frequencies. For

example, the alveolar fricative often has a spectral peak around 4.5 kHz, which de-

pends on the natural frequency of the acoustic cavity of a speaker who pronounces

that fricative. An unvoiced stop is generated by forming a complete closure in the

vocal tract first and then releasing it abruptly [101]. At the stop release multiple

acoustic events happen, including a transient, a burst of frication noise, and aspira-

tion noise. As a result, the energy of an unvoiced stop usually concentrates in both

middle (1.5 kHz–3 kHz) and high frequency bands (3 kHz–8 kHz). The unvoiced af-

fricate, /tS/, can be considered as a composite of a stop and a fricative. In summary,

the energy of unvoiced speech often concentrates in the middle and high frequency

ranges. This property, however, is not shared by nonspeech interference. To explore

spectral characteristics of unvoiced speech and noise segments, we analyze their en-

ergy distributions with respect to frequency. Specifically, lower and upper frequency
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bounds of a segment are used to represent its frequency span. Notice that our task

is to segregate only unvoiced speech; therefore, we consider voiced speech that is not

strongly periodic as noise too. A statistical analysis is carried out using the 0-dB mix-

tures of 100 speech utterances and 15 interferences described in the first paragraph

of Sect. 3.3.1. Fig. 3.5(a) shows the normalized energy distribution of segments with

respect to the segment lower bound and Fig. 3.5(b) the upper bound. In the plots,

a white bar represents the aggregated energy of all unvoiced speech segments with a

certain frequency bound and a black bar represents that of all interference segments.

Energy bars are normalized to the sum of 1. For clear illustration, the bar with lower

energy is displayed in front of the bar with higher energy for each frequency bound

in the figure. The unvoiced IBM with an LC of 0 dB is used for ideal classification,

i.e., segments with more than half of energy overlapping with the unvoiced IBM are

considered as unvoiced speech and others as interference. We observe from the figure

that unvoiced speech segments tend to reside at high frequencies while interference

segments dominate at low frequencies. Interference is effectively removed at high

frequencies probably because the corresponding noise estimate is relatively accurate

due to weak voiced speech at these frequencies. Based on our analysis and acoustic-

phonetic characteristics of unvoiced speech [101], we can simply select segments with

a lower bound higher than 2 kHz or an upper bound higher than 6 kHz as unvoiced

speech and remove others as noise. We call this grouping method thresholding.

We can also formulate grouping as a hypothesis test and perform classification.

Let S denote the segment to be classified. The two hypotheses are H0: S is dominated
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Fig. 5. Normalized energy distribution of unvoiced speech segments (white) and interference segments (black) over (a) segment lower bound and (b) segment
upper bound.

spectively. This objective function penalizes labeling errors
in segments with higher energy more than those with lower
energy, hence maximizing the overall SNR. The configuration
of the MLP is the same as that in Section II-B except that the
hidden layer has three nodes as determined by ten-fold cross
validation. The 0-dB mixtures described in the first paragraph
of Section III-A are used for training and segments are com-
pared with the unvoiced IBM to obtain desired labels. The
performance of Bayesian classification is compared with that
of simple thresholding in Section IV-A.
In addition, we have tried to incorporate the prior probability

ratio in classification as in [13] but obtain no better perfor-
mance. We have also considered using Bayesian classification
of acoustic–phonetic features in [13] to group unvoiced seg-
ments. The performance did not improve maybe because of the
assumption of independence among frames within a segment.
Our features, on the other hand, are extracted from the whole
segment. In terms of dimensionality, the acoustic phonetic fea-
ture used in [13] is 128-dimensional while ours is only 3-D. As
a result, the MLP training for Bayesian classification using (7)
is much faster.

IV. EVALUATION AND COMPARISON

We evaluate the proposed algorithm using a noisy speech
corpus composed of 100 utterances and 15 nonspeech interfer-
ences. The 100 test sentences are randomly selected from those
of the IEEE sentences not used in training (see Section III-C).
All utterances are downsampled from 20 to 16 kHz and each
is mixed with an individual interference at the SNR levels of
5, 0, 5, 10, and 15 dB. The interference set comprises electric

fan (N1), white noise (N2), crowd noise at a playground (N3),
crowd noise with clapping (N4), crowd noise with music (N5),
rain (N6), babble noise (N7), rock music (N8), wind (N9), cock-
tail party noise (N10), clock alarm (N11), traffic noise (N12),
siren (N13), bird chirp with water flowing (N14), and telephone
ring (N15) [13]. They cover a wide variety of real-world noise
types. As mentioned in Section III-A, the first half of an inter-
ference is mixed with speech to create mixtures in training or
analysis, while in testing the second half is used.

The computational objective of our proposed system is to es-
timate the unvoiced IBM. Hence, we adopt the SNR measure in
[14] and consider the resynthesized speech from the unvoiced
IBM as the ground truth

SNR (10)

where and are the signals resynthesized using the
ideal and estimated unvoiced binary masks, respectively. The
unvoiced IBM is determined by pitch contours extracted from
clean speech signals using Praat. For estimation, pitch contours
are detected from mixtures using the tandem algorithm. In both
cases, an LC of 0 dB is used to generate the IBM for all SNR
conditions. As mentioned earlier, to obtain only unvoiced IBM,
segments extending below 1 kHz are removed unless they could
correspond to unvoiced speech at high SNRs (above 10 dB) for
some interferences.

A. SNR Performance

We evaluate the system performance based on simple thresh-
olding described in Section III-C. To quantitatively evaluate
the performance, an SNR gain is computed from the output
SNR of segregated speech subtracted by the initial SNR of
the mixture over unvoiced intervals. As mentioned earlier, a
total of 100 mixtures are used for evaluation for each noise
and input SNR condition. The SNR gains are shown in Table I.
Our system achieves considerable SNR improvements for the
large majority of noise and input SNR conditions, especially
at low input SNRs. On average, the proposed system obtains
an SNR gain of 18.5 dB when the input SNR is 5 dB. The
SNR gain decreases gradually as the input SNR increases, and
at 15-dB input SNR there is small degradation in a few noise
conditions. Across all noise types and input SNR levels, the
system generates an overall 10.8-dB SNR gain. It is worth
noting that the performance of our system for nonstationary
noises [e.g., cocktail party noise (N10) and siren (N13)] is
not necessarily worse than for stationary noises, especially at
relatively high-input SNR conditions. We have also evaluated

Figure 3.5: Normalized energy distribution of unvoiced speech segments (white) and interference segments (black) over (a)
segment lower bound and (b) segment upper bound.
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by unvoiced speech, and H1: S is dominated by interference. For classification, we

construct 3 features for segment S

XS =
(
fSL , f

S
U , ||S||

)
(3.7)

where fSL and fSU denote the frequency lower and upper bounds of S, respectively.

The third feature is the size (the number of T-F units) of segment S. We retain S as

unvoiced speech if

P (H0|XS) > P (H1|XS) (3.8)

As MLP directly estimates the a posterior probability [79], we train an MLP to

estimate P (H0|XS); note that P (H1|XS) = 1− P (H0|XS). Here, we adopt an SNR-

based objective function in [49] for MLP training

J =
∑
S

(d(S)− y(S))2 · E(S)/
∑
S

E(S) (3.9)

where E(S) denotes the energy in segment S, and d(S) and y(S) are the desired

(binary) and actual MLP outputs, respectively. This objective function penalizes

labeling errors in segments with higher energy more than those with lower energy,

hence maximizing the overall SNR. The configuration of the MLP is the same as

that in Sect. 3.2.2 except that the hidden layer has 3 nodes as determined by 10-fold

cross validation. The 0-dB mixtures described in the first paragraph of Sect. 3.3.1

are used for training and segments are compared with the unvoiced IBM to obtain

desired labels. The performance of classification is presented with that of simple

thresholding in Sect. 3.4.
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In addition, we have tried to incorporate the prior probability ratio in classifi-

cation as in [38] but obtain no better performance. We have also considered us-

ing classification of acoustic-phonetic features in [38] to group unvoiced segments.

The performance did not improve maybe because of the assumption of independence

among frames within a segment. Our features, on the other hand, are extracted from

the whole segment. In terms of dimensionality, the acoustic phonetic feature used

in [38] is 128-dimensional while ours is only 3-dimensional. As a result, the MLP

training for classification using (3.7) is much faster.

3.4 Evaluation and Comparison

We evaluate the proposed algorithm using a noisy speech corpus composed of 100

utterances and 15 nonspeech interferences. The 100 test sentences are randomly

selected from those of the IEEE sentences not used in training (see Sect. 3.3.3).

All utterances are downsampled from 20 kHz to 16 kHz and each is mixed with an

individual interference at the SNR levels of 5, 0, 5, 10, and 15 dB. The interference set

comprises electric fan (N1), white noise (N2), crowd noise at a playground (N3), crowd

noise with clapping (N4), crowd noise with music (N5), rain (N6), babble noise (N7),

rock music (N8), wind (N9), cocktail party noise (N10), clock alarm (N11), traffic

noise (N12), siren (N13), bird chirp with water flowing (N14), and telephone ring

(N15) [38]. They cover a wide variety of real-world noise types. As mentioned in

Sect. 3.3.1, the first half of an interference is mixed with speech to create mixtures

in training or analysis, while in testing the second half is used.
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The computational objective of our proposed system is to estimate the unvoiced

IBM. Hence, we adopt the SNR measure in [39] and consider the resynthesized speech

from the unvoiced IBM as the ground truth

SNR = 10 log10

(∑
n

S2
I [n]/

∑
n

(SI [n]− SE[n])2

)
(3.10)

where SI [n] and SE[n] are the signals resynthesized using the ideal and estimated un-

voiced binary masks, respectively. The unvoiced IBM is determined by pitch contours

extracted from clean speech signals using Praat. For estimation, pitch contours are

detected from mixtures using the tandem algorithm. In both cases, an LC of 0 dB

is used to generate the IBM for all SNR conditions. As mentioned earlier, to obtain

only unvoiced IBM, segments extending below 1 kHz are removed unless they could

correspond to unvoiced speech at high SNRs (above 10 dB) for some interferences.

3.4.1 SNR Performance

We evaluate the system performance based on simple thresholding described in Sect.

3.3.3. To quantitatively evaluate the performance, an SNR gain is computed from

the output SNR of segregated speech subtracted by the initial SNR of the mixture

over unvoiced intervals. As mentioned earlier, a total of 100 mixtures are used for

evaluation for each noise and input SNR condition. The SNR gains are shown in Table

3.1. Our system achieves considerable SNR improvements for the large majority of

noise and input SNR conditions, especially at low input SNRs. On average, the

proposed system obtains an SNR gain of 18.5 dB when the input SNR is -5 dB. The

SNR gain decreases gradually as the input SNR increases, and at 15-dB input SNR

39



Input SNR (dB) N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 Average

-5 22.7 15.9 20.4 21.9 18.2 16.1 9.2 17.3 20.1 19.4 17.3 21.7 20.9 18.5 18.1 18.5

0 19.3 12.6 17.7 19.6 14.1 13.3 11.1 16.1 18.6 17.2 13.4 19.0 16.2 14.8 14.3 15.8

5 12.8 8.6 13.8 14.3 10.7 10.0 10.6 12.6 9.9 13.8 9.2 15.3 9.5 9.0 7.1 11.1

10 4.8 4.5 9.3 9.4 7.6 6.4 8.3 8.3 5.4 9.2 3.4 10.4 5.3 4.9 5.0 6.8

15 -0.4 1.0 4.7 4.8 3.4 3.6 4.5 4.2 -0.2 3.6 -1.5 3.9 0.4 0.2 0.5 2.2

Table 3.1: SNR gain (in dB) at different noisy and input SNR conditions
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there is small degradation in a few noise conditions. Across all noise types and input

SNR levels, the system generates an overall 10.8 dB SNR gain. It is worth noting

that the performance of our system for nonstationary noises (e.g. cocktail party noise

(N10) and siren (N13)) is not necessarily worse than for stationary noises, especially at

relatively high input SNR conditions. We have also evaluated the system performance

with different over-subtraction factors but got no improvement. In particular, when

the factor is greater than 3, the overall SNR gain decreases gradually as the factor

increases. It is probably because of the loss of unvoiced speech due to over-estimated

noise.

In addition, we have evaluated the system performance using classification and

found that the classification method performs comparably with simple thresholding

at all input SNR conditions. When averaged across different noises, the two meth-

ods perform almost equally. The lack of a significant improvement in classification is

probably because the two frequency bounds chosen empirically are already very effec-

tive. Since simple thresholding does not require any training, this grouping method

should be more desirable in real applications.

3.4.2 Comparisons

We compare our system (simple thresholding) with the unvoiced speech segregation

system proposed by Hu and Wang in [38], the only previous system directly dealing

with unvoiced speech segregation to our knowledge. In their system, segmentation is

performed by multiscale onset-offset analysis and grouping is based on classification
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as mentioned earlier. We retrain their MLP classifier using the 100 speech utterances

mixed with 15 nonspeech interferences described in the first paragraph of Sect. 3.3.1.

The training and test conditions of the Hu and Wang system match exactly those

of our system, i.e., the first half of each interference is used in training while the

second half is for testing. In training, the unvoiced IBM provides the desired output.

For both methods, the tandem algorithm is used for voiced speech segregation. The

results are shown by solid curves in Fig. 3.6. Our proposed algorithm performs better

than their system with an average of 1.6 dB SNR improvement over all input SNR

levels. In terms of computational complexity, the proposed algorithm is much simpler

than the Hu and Wang algorithm. First, spectral subtraction based segmentation

is more efficient than the multiscale onset-offset analysis since the latter needs to

analyze the signal in different scales. Second, grouping based on simple thresholding

is computationally much simpler. It requires no training for MLP based segment

removal and classification, which is time-consuming with 128-dimensional feature

vectors in [38]. We have also tried a supervised learning algorithm [49] for voiced

speech segregation. The supervised learning algorithm performs a little better than

the tandem algorithm with training using the 100 speech utterances mixed with 15

nonspeech interferences described in the first paragraph of Sect. 3.3.1. As a result, one

might expect unvoiced segregation performance to improve slightly. But we observed

that the system employing the supervised learning algorithm obtains almost the same

results.
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Figure 3.6: Comparison in terms of SNR gain between the proposed algorithm and
the Hu and Wang algorithm. Two kinds of pitch contours are used: 1)
voiced speech and pitch contours detected using the tandem algorithm
(solid line) and 2) voiced speech segregated using the supervised learning
algorithm with ideal pitch contours (dotted line).

Errors in pitch tracking influence the determination of voiced and unvoiced inter-

vals, hence likely degrading the unvoiced speech segregation performance. To evaluate

how pitch tracking errors affect segregation performance, we perform unvoiced speech

segregation using ideal pitch contours, which are extracted from clean speech utter-

ances using Praat. As shown in Fig. 3.6, using ideal pitch contours in the supervised

learning algorithm improves unvoiced speech segregation, and our system with simple

43



thresholding obtains a larger SNR improvement over the Hu and Wang system: 2.8

dB on average.

The insensitivity to different voiced speech segregation methods with detected

pitch suggests that our noise estimation is not very sensitive to voiced mask esti-

mation. To further test how robust our system is, we have applied ideal voiced

segregation. Specifically, the estimated binary mask is replaced by the IBM at voiced

frames. As shown in Fig. 3.7, the system with ideal voiced mask information only

performs slightly better. On average, it improves the SNR performance by only about

0.1 dB. With ideal pitch, the performance difference in terms of voiced mask is about

0.4 dB. This comparison shows that our system is not much affected by estimated

voiced binary mask.

Since spectral subtraction plays a major role in the segmentation stage of our

system, it is informative to compare our algorithm with speech enhancement meth-

ods. To isolate the effects of the grouping stage of our CASA based system, we apply

spectral subtraction alone to segregate unvoiced speech, i.e., the segments generated

using spectral subtraction with an over-subtraction factor of 2 are directly combined

to form an unvoiced stream. In addition, we also compare with a Wiener algorithm

based on a priori SNR estimation (Wiener-as), which is reported as the best perform-

ing speech enhancement algorithm in speech intelligibility evaluations [45]. In this

case, we binarize the amplitude gain in Wiener estimation with the threshold of 0.5

to generate segments and form a binary mask (see [55]). In both methods, noise is

estimated in the same way as explained in Sect. 3.3.2 except that no periodic signal
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Figure 3.7: SNR comparison between using estimated voiced binary mask and ideal
voiced binary mask. Two pitch contours are used in voiced speech segre-
gation: 1) pitch contours extracted by the tandem algorithm (solid line)
and 2) ideal pitch contours extracted from clean speech utterance using
Praat (dotted line).

removal is carried out. As in our method of obtaining the unvoiced IBM, we remove

the portions of the estimated unvoiced mask below 1 kHz to evaluate unvoiced speech

segregation performance.

Fig. 3.8 shows the comparative results. As observed in the figure, the proposed

algorithm performs much better than either of the two speech enhancement methods.

In the case of using only spectral subtraction, the largest gap is about 10 dB when

the input SNR is -5 dB and the gap is about 1.8 dB as the input SNR increases to
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Figure 3.8: Comparison with two speech enhancement methods at different SNR lev-
els. The two representative methods are spectral subtraction (SS) and a
priori SNR based Wiener algorithm (Wiener-as).

15 dB. The Wiener-as algorithm performs worse than spectral subtraction. We have

also evaluated the SNR gains of the speech enhancement methods without binary

masking, and only the Wiener-as method obtains about 1 dB improvement. Even in

this case the performance gap from the proposed method is still large. It is worth

noting that large gains at low input SNR levels are particularly useful for people with

hearing loss [21]. Hence the need to improve SNR in these conditions is more acute

than at high input SNRs.

Estimation and reduction methods have been proposed to deal with nonstationary
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noises in speech enhancement. For example, the algorithm in [99] trains codebooks

for individual noises using a priori noise information and uses the codebooks to esti-

mate speech and noise jointly. The system in [59] addresses noise tracking in highly

nonstationary environments. Instead of building models using a priori noise informa-

tion, this system relies on only noisy observations and utilizes harmonicity of voiced

speech and unvoiced speech lengths to inform noise update. Since our system is

designed specifically for separating unvoiced speech, direct comparisons with such

speech enhancement methods are not appropriate. Nonetheless, we want to point out

that our system deals with all interferences in a general way by first making them

more stationary and then using general speech and noise characteristics for separa-

tion. As pointed out by the authors, the method in [59] may not work when noise

exhibits harmonic properties. For a few common noises used (e.g. white and babble),

our SNR gains are competitive although we should caution that test conditions and

detailed SNR metrics are not the same.

Motivated by the relationship between intelligibility and labeling errors in IBM

estimation [55], we have also evaluated our system performance in terms of error

percentages in unit labeling. The overall percentage of mask error is calculated as

the average error rate per frame for entire speech, counting flips from 0s to 1s and

from 1s to 0s, relative to the IBM. These error rates are given in Table 3.2. We

have also examined two different types of error, misses and false alarms, which have

been shown to have different impacts on speech intelligibility with false alarms to be

particularly harmful [55]. Specifically, we compute the miss error as the per-frame
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average percentage of active units wrongly labeled as inactive ones, and the false

alarm error as the per-frame average percentage of inactive units wrongly labeled

as active ones. Results are also shown in Table 3.2 and indicate that miss errors

are much more prevalent than false alarm errors in our system. In comparison with

the overall rates of the two representative speech enhancement algorithms examined

in [55], our algorithm achieves considerably lower error rates.

Input SNR

-5 0 5 10 15

Overall 14.2 17.89 22.11 26.63 31.26

Miss 70.37 60.45 57.09 55.88 55.47

False alarm 2.62 3.56 4.56 5.61 6.08

Table 3.2: Average per-frame labeling error (%) in IBM estimation

3.5 Discussion

Unvoiced speech separation is a challenging task. Our proposed CASA system uti-

lizes segregated voiced speech to assist unvoiced speech segregation. Specifically, the

system first removes periodic signals from the noisy input and then estimates inter-

ference energy by averaging mixture energy within inactive T-F units in neighboring
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voiced intervals. The estimated interference is used by spectral subtraction to extract

unvoiced segments, which are then grouped by either simple thresholding or classi-

fication. A systematic comparison shows the proposed system outperforms a recent

system in [38] over a wide range of input SNR levels. In addition, segmentation

based on spectral subtraction is simpler and faster than multiscale onset-offset anal-

ysis, and grouping based on simple thresholding does not need MLP training. Our

CASA based approach also performs substantially better than speech enhancement

methods, indicating the effectiveness of a grouping stage.

In our study, the segregation performance is measured in terms of SNR gain in un-

voiced intervals. Since unvoiced speech is generally much weaker than voiced speech

in an utterance, high unvoiced SNR gains we have obtained will not directly trans-

late to comparable improvements when measuring over whole utterances. However,

unvoiced speech accounts for a significant portion of total speech and is important for

speech intelligibility [38]. The lack of separate treatment of unvoiced speech could be

a main reason for the well-known lack of speech intelligibility improvement of speech

enhancement methods [45].

We use a 64-channel gammatone filterbank in T-F analysis. Compared with sys-

tems employing 128-channel filterbanks [38], [39], [49], the use of a 64-channel fil-

terbank halves the computing time. In terms of segregation performance, we have

observed comparable performance to that using a 128-channel filterbank. We have

also reduced the number of channels in other algorithms used in our system, such
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as the tandem algorithm and supervised learning algorithm, to 64 and found sim-

ilar performance. Those comparisons indicate that a 64-channel filterbank may be

sufficient for T-F analysis in CASA systems, as in perceptual studies [109].

Speech interference, which often occurs in a meeting or a daily conversation, is not

considered in this study. To tackle this problem in our framework, a multipitch tracker

would be needed and the system has to address the sequential grouping problem [93].

In [105], voiced-voiced separation and unvoiced-voiced (or voiced-unvoiced) separation

have been studied, but not unvoiced-unvoiced separation. Our future research will

address multi-talker separation problem.

50



CHAPTER 4

AN UNSUPERVISED APPROACH TO COCHANNEL

SPEECH SEPARATION

4.1 Introduction

Cochannel speech separation refers to the task of separating a voice of interest from an

interfering voice when they are transimitted in the same communication channel (i.e.

cochannel). Previous studies show that hearing-impaired listeners have substantially

greater difficulty in understanding speech in the presence of a competing voice [12,26].

As we introduced in Sect. 2.4, existing approaches to separation of cochannel speech

mainly employ model based methods. Model-based methods can achieve satisfactory

performance when pretrained models are available and match those of participating

speakers (i.e. supervised). However, this requirement is often hard to meet in a

general scenario.

We propose an unsupervised method for cochannel speech separation. The pro-

posed method performs speaker separation without using pretrained speaker models;
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instead it uses the information available from a cochannel signal. Our system fol-

lows the two main stages of CASA: segmentation and grouping [108]. Grouping itself

consists of simultaneous and sequential grouping. Simultaneous grouping organizes

sound components across frequency to produce simultaneous streams, and sequential

grouping aggregates them across time to form streams.

In speaker diarization, unsupervised speaker clustering has been used to organize

homogeneous speech sections into different speaker groups [102]. However, as we

mentioned in Sect. 2.3.1, there are several unique challenges in sequential grouping

of cochannel speech. First, in cochannel conditions two speakers have a large overlap,

and thus simultaneous streams consist of spectrally separated components. Second,

a simultaneous stream is often much shorter than a section in speaker diarization. In

addition, unvoiced speech poses a big difficulty for cochannel speech separation due

to its weak energy and lack of harmonic structure.

To segregate voiced speech, we first perform simultaneous grouping using the

existing tandem algorithm [39]. The output of the algorithm is simultaneous streams,

each of which is a contiguous group of T-F units considered to be dominated by a

single speaker. Here, simultaneous streams correspond to binary masks, which are

estimates of the IBM [108]. A clustering method is then proposed to sequentially

group simultaneous streams into two speakers. Consistent with the output of the

tandem algorithm, we assume that a speaker utters either voiced (pitched) speech

or unvoiced speech in a single time frame. To segregate unvoiced speech, we first

employ a multiscale onset/offset analysis [37] to produce unvoiced speech segments.
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For the unvoiced segments overlapping in time with the voiced speech of a segregated

speaker, we group them based on the already-segregated voiced speech. Unsupervised

segregation of unvoiced-unvoiced portions is extremely challenging. Such portions,

however, constitute a very small percentage of cochannel speech, and we simply split

each unvoiced segment equally into two speakers.

To our knowledge, this study represents the first comprehensive unsupervised

approach to cochannel speech separation. We note that earlier CASA methods tend to

be unsupervised, and some were tested using two-voice mixtures (e.g. [35]). However,

these unsupervised methods do not deal with sequential grouping, and the test signals

were carefully chosen so that the target speech was an all-voiced, connected (i.e.

without pause) utterance to avoid the issue of sequential grouping. Unsupervised

cochannel speech separation has been studied in a limited fashion by utilizing frame-

level spectral comparison [72] or pitch continuity [95], but performance is rather poor

(see comparisons in [95]).

Previous CASA-based approaches employ primitive features for separating cochan-

nel speech at individual frames and group them across neighboring frames (e.g. [35]

and [39]) but they still leverage speaker models to group temporally separated simul-

taneous streams [96], [94], i.e. the sequential grouping problem. Similar CASA-based

systems have the same issues and often employ HMMs for grouping [3]. A recent sys-

tem in [42] is capable of segregates both voiced and unvoiced speech but only deals

with nonspeech interference. A preliminary version of our approach was published
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in [41]. Different from the preliminary version, here we propose a simpler and com-

plete system for cochannel speech separation, and compare our system with several

other methods across a range of input SNR conditions.

The rest of this chapter is organized as follows. We first provide an overview of the

system in Sect. 4.2. Sect. 4.3 describes segregation of voiced speech, and Sect. 4.4

deals with unvoiced speech. Evaluation and comparison are given in Sect. 4.5, and

we conclude this chapter in Sect. 4.6. The work presented in this chapter has been

submitted to IEEE Transactions on Audio, Speech, and Language Processing [43].

4.2 System Overview

A diagram of our system is shown in Fig. 4.1. Cochannel speech is first analyzed by

an auditory periphery consisting of 128 gammatone filters whose center frequencies

spread uniformly in the ERB (equivalent rectangular bandwidth) scale from 50 Hz

to 8000 Hz [108]. Each filtered signal is then divided into 20-ms time frames with

10-ms frame shift. A T-F unit corresponds to a specific time frame and frequency

band, and the resulting representation is called a cochleagram [108]. A gammatone

feature (GF) vector is extracted for each frame by downsampling each of the 128-

channel outputs to 100 Hz (corresponding to a frame shift of 10 ms) along the time

dimension and compressing the magnitude of each downsampled output by a cubic

root operation [93]. GF vectors form a T-F matrix which is a variant of cochleagram.

The proposed system first performs voiced speech segregation and then unvoiced

speech separation. Each output simultaneous stream from the tandem algorithm is
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Figure 4.1: The diagram of the proposed cochannel speech separation system. Cochannel speech is first processed by an
auditory peripheral model. Separation of voiced speech is then carried out and followed by unvoiced speech
separation.
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associated with a pitch contour (a set of continuous pitch points). For each frame

of a simultaneous stream, the corresponding binary mask is used to mask the noisy

GF, and the masked GF is converted to gammatone frequency cepstral coefficients

(GFCC) using the discrete cosine transform [93]. In this way, each simultaneous

stream is represented by a collection of GFCCs. Multiple simultaneous streams are

clustered into two groups by maximizing the speaker difference based on GFCCs.

After clustering, the simultaneous streams in each group are combined to form a

voiced binary mask. In unvoiced speech segregation, we group unvoiced segments

in unvoiced-voiced (UV) intervals using the complimentary mask of the segregated

voiced speech, i.e., we calculate the overlap between an unvoiced segment and the

complementary binary mask of segregated voiced speech for each speaker, and assign

the segment accordingly. For segments in unvoiced-unvoiced (UU) intervals, we sep-

arate them by a simple split. Lastly, our system combines the estimated voiced and

unvoiced masks to form two complete speaker masks.

4.3 Voiced Speech Separation

In this section, we describe voiced speech separation in detail. The tandem algo-

rithm is introduced in the following subsection for simultaneous grouping and then

we present a clustering algorithm for unsupervised sequential grouping. Note that our

simultaneous grouping carried out by the tandem algorithm integrates neighboring

segregated frames associated with the same pitch contour (needed to connect a con-

tinuous signal broken down by time windowing) and produces simultaneous streams
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(or simultaneously organized streams), each of which is defined as a section of seg-

regated speech in consecutive frames. Sequential grouping then assigns simultaneous

streams into two speakers over the entire duration of cochannel speech.

4.3.1 Simultaneous Grouping

The tandem algorithm performs simultaneous grouping using low-level features [39].

First, the tandem algorithm extracts T-F segments by cross-channel correlation. For

each frame, a dominant pitch is estimated from the segments and the T-F units with

periodicity consistent with the estimated pitch are labeled as 1. The remaining units

in the segments are used to produce another pitch as well as its corresponding mask

labels. Estimated pitch points are then joined across time to form pitch contours

based on pitch continuity and mask similarity. After initial estimation, the algorithm

expands the estimated pitch contours and relabels the associated masks. The updated

masks are used in turn to reestimate pitch contours. The iteration between pitch

detection and mask estimation continues until convergence. The output from the

tandem algorithm is a set of simultaneous streams (binary masks) and their associated

pitch contours. In Fig. 4.2, we show an example of estimated simultaneous streams

from a cochannel speech signal.
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Figure 4.2: An example of estimated simultaneous streams generated by the tandem
algorithm. Each simultaneous stream is denoted by a distinct color.

4.3.2 Sequential Grouping

We formulate sequential grouping as a problem of unsupervised clustering: simulta-

neous streams are clustered into two speaker groups. In the following, we describe

the proposed clustering algorithm in detail.

Objective Function

Clustering aims to find a partition of data so that the samples in the same cluster are

close while those in different clusters are far apart. This is often achieved by maxi-

mizing an objective function (or minimizing a cost function). To group simultaneous

streams into two speakers, one clustering objective function would be the ratio of the

between-cluster speaker difference and the within-cluster difference [114].
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Given a hypothesized binary label vector g with each element denoting the label

of a simultaneous stream, all simultaneous streams can be assigned in two clusters.

As GFCCs are shown to model speakers well for speaker identification [96] and related

cepstral features are often used in speaker clustering [102], we thus use GFCCs to

measure speaker distances. To represent each cluster, we extract a GFCC vector for

each frame of a simultaneous stream (as described in Sect. 4.2) and pool all frame-

level GFCCs in that cluster. We measure the between-speaker difference using the

between-cluster scatter matrix

SB(g) =
2∑

k=1

Nk(g) · [mk(g)−m][mk(g)−m]T (4.1)

and within-speaker coherence by within-cluster scatter matrix

SW (g) =
2∑

k=1

∑
x∈Ck(g)

[x−mk(g)][x−mk(g)]T (4.2)

where x denotes a 30-dimensional GFCC vector, Ck(g) represents the kth hypothe-

sized cluster according to g, and Nk(g) and mk(g) are the number of GFCC vectors

and the sample means in Ck(g), respectively. The dimensionality of g is equal to the

number of simultaneous streams. m is the mean of all data. The superscript T de-

notes transpose. Based on (4.1) and (4.2), we measure the speaker distance between

the two clusters by the trace of the ratio of the between-cluster and within-cluster

matrices

O(g) = tr(S−1W (g)SB(g)). (4.3)

The trace has the intuitive meaning that it measures the ratio of the between- and
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within-cluster scatter matrices along the eigenvector dimensions. We provide a de-

tailed interpretation of (4.3) in Appendix A.

Our objective function has a nonparametric form. In speaker clustering, vari-

ous parametric distance functions were proposed to measure speaker differences [47].

These distance functions are often derived by assuming a certain parametric distri-

bution on the data. Representative distance functions include Mahalanobis distance,

Hotelling’s T 2 statistic, generalized likelihood ratio, Kullback-Leibler divergence and

Bhattacharya distance. We have tried them but found no improvement over our non-

parametric form. We have also tried other nonparametric measures based on between-

and within-cluster distances in [70], such as the Caliński and Harabasz index, but have

not found a better metric.

Constrained Objective Function

When maximizing (4.3), two simultaneous streams with temporally overlapping pitch

contours should not be assigned to the same speaker. To restrict these groupings,

one simple method is to reject all hypotheses that generate concurrent pitches within

any individual cluster. However, in practice, pitch trackers have errors and clustering

should not be too rigid.

Let M denote the total number of frames in a cochannel speech, and r the ratio

of the most overlapping frames we want to tolerate. We design a soft constraint using

a linear function

P (g) = min(mg/(rM), 1), 1 ≥ r > 0 (4.4)
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where mg denotes the total number of within-group overlapping pitch frames with

respect to g. Basically, P (g) increases as mg increases. It is 0 when there is no

concurrent pitch within individual clusters and increases linearly as the number of

overlapping frames increases. Eventually, it saturates to 1 when mg ≥ rM . We

have also considered different relationships between P (g) and mg, e.g. a sigmoid

function [41], but found similar results. We thus choose (4.4) because of its simplicity.

Combining (4.4) and (4.3), we define the objective function as

J(g) = O(g)− λP (g), λ ≥ 0 (4.5)

where O(g) is constrained by P (g) and λ is a parameter accounting for different value

ranges of O(g) and P (g) and controls the balance between the two terms. We note

that λ should be pre-determined and the optimization in (4.5) is with respect only

to g.

We note that there are two free parameters, λ and r, in J(g). For λ, we expect

max
g

(O(g)) to be an appropriate choice since it scales O(g) and P (g) to comparable

ranges. On the other hand, the choice of r should depend on the accuracy of estimated

pitch. A small r should be used for accurately estimated pitch contours while a larger

r is needed to tolerate over-detection errors. Empically, we find r = 10% to be a

good choice. Our analysis in Sect. 4.5.1 validates the above choices and shows that

clustering performance is not sensitive to the two parameters as long as they are in

some reasonable ranges.
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Figure 4.3: A tree structure to enumerate all sequential grouping possibilities. Each layer of the tree represents the grouping
of a specific simultaneous stream (SS), and each branch (0 or 1) denotes a possible label of the simultaneous
stream. A path from the root node (leftmost) to any leaf node (rightmost) represents a specific sequential
grouping of all simultaneous streams.
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Search

Given the objective function, clustering can be formulated as an optimization prob-

lem, i.e., ĝ = argmaxgJ(g). The optimal grouping can be found by an exhaustive

search, which can be applied when the length of the cochannel speech is relatively

short. For longer signals, we can use a beam search [90] to approximate the solution.

Given N simultaneous streams, we can enumerate the groupings of all simultaneous

streams using a tree structure in Fig. 4.3. An exhaustive search amounts to compar-

ing all the paths of the tree while the beam search prunes the paths along the tree.

To avoid local maxima, we set the beam width W to be greater than 1.

IfW ≥ 2N , the beam search is equivalent to the exhaustive search. WhenW < 2N ,

we start by first assigning the two simultaneous streams with the largest number of

overlapping frames to two speakers. If there is no overlapping between any pair

of simultaneous streams, we randomly choose two simultaneous streams and assign

them to two speakers. Then, all unprocessed simultaneous streams are ranked by

their start time (the time of the first frame) and grouped one by one sequentially.

For each simultaneous stream, we hypothesize its assignment (0 or 1) and only keep

the W paths with the highest scores according to (4.5). At the last simultaneous

stream, we choose the path with the highest score as our solution. Empirically, we

find W = 16 to be a good tradeoff between speed and performance in our task. In this

case, the complexity of our search method is O(N). We also tried a genetic algorithm

in [41] and obtained reasonable performance. However, the genetic algorithm has

many parameters to determine, which complicates the search algorithm.
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When the search is done, all simultaneous streams are grouped into two speech

streams, each corresponding to the voiced speech of one speaker.

4.4 Unvoiced Speech Separation

Unvoiced speech constitutes about 20 to 25% of spoken English in terms of both

occurrence frequencies and time durations [38]. In our system, unvoiced speech is

first segmented. We then group unvoiced segments in UV portions based on segre-

gated voiced speech, and split the energy in segments in UU portions equally to two

speakers.

4.4.1 Segmentation

Unvoiced speech is segmented using a multiscale onset/offset analysis [38]. Onsets

correspond to sudden increases of acoustic energy and often start auditory events.

Offsets, on the other hand, indicate the ends of events. The method in [38] first detects

onset/offset points and then links them across frequency to form onset/offset fronts.

Segments are then produced by pairing onset and offset fronts in multiple scales.

Since onset/offset based segmentation utilizes energy fluctuations, the segments thus

formed include both voiced and unvoiced speech. To retain only unvoiced segments,

we remove the parts of segments overlapping with segregated voiced speech, i.e.,

any T-F unit in onset/offset based segments and also included in segregated voiced

speech is removed. Contiguous T-F regions in the remaining parts thus correspond to
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Figure 4.4: Unvoiced speech segments produced by onset/offset based segmentation.
Different segments are indicated by different colors.

unvoiced segments, denoted by S. Fig. 4.4 illustrates the unvoiced segments obtained

from the cochannel speech in Fig. 4.2.

Given the pitch contours of two speakers, frames in cochannel speech can be

classified into three kinds: two-pitch frames, one-pitch frames and no-pitch frames.

Two-pitch frames correspond to the intervals when both speakers utter voiced speech.

One-pitch frames correspond to UV intervals. We take the parts of S in one-pitch

frames and extract each contiguous T-F region as an unvoiced segment in UV por-

tions. Similarly, the parts of S in no-pitch frames are used to produce unvoiced

segments in UU portions. Here, we use estimated pitch contours of two speakers

from Sect. 4.3 to determine UV and UU intervals.
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4.4.2 Sequential Grouping

For unvoiced speech segments in UV portions, we group them by leveraging the

complementary masks of segregated voiced masks. Given two speakers a and b in

cochannel speech, we first denote that the UV frames of speaker a are those pitched

by speaker b. In these frames, the voiced mask (from speaker b) corresponds to

voiced speech but the complementary mask (the masked T-F units) may include the

unvoiced speech of speaker a. We can thus use this complementary mask to label

unvoiced segments for speaker a. Similarly, we can obtain another complementary

mask to label unvoiced segments for speaker b.

We now formalize the above description. First, two voiced binary masks from

Sect. 4.3 are designated as speaker a and b. For speaker a, we flip its voiced binary

mask (changing 0 to 1 and 1 to 0) and take the portions in the UV frames of speaker

a as the complementary mask CMa (i.e. setting the mask values in the other portions

to 0). Similarly, we can obtain CMb for speaker b. For each unvoiced segment S,

we calculate its T-F energy overlapping with CMa and CMb in the cochleagram and

denote the sum of overlapping as Ea and Eb, respectively. S is labeled as

gS =


a if Eb ≥ Ea ≥ 0

b if Ea > Eb ≥ 0

(4.6)

All unvoiced segments in UV portions are labeled one by one using (4.6).

The above method deals with only unvoiced segments in UV portions but not

UU portions. Unvoiced speech accounts for about 25% of spoken English in time

duration [38] and thus we expect that UU portions account for a small percentage
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(6%) of total frames. We analyzed all 0-dB mixtures in the test part of the speech

separation challenge (SSC) corpus [17] and find that the UU portions constitute only

about 10% of total unvoiced speech energy. We thus adopt a very simple way to

separate UU portions: equally splitting the energy of the unvoiced segments in UU

portions into two speakers. We have tried other simple alternatives such as randomly

assigning each segment to one speaker or each segment to both speakers but the

performance is worse.

By combining the segregation results from both UV and UU portions we have

segregated all unvoiced speech signals. Together with segregated voiced speech, we

obtain two completely segregated speech signals for two speakers.

4.5 Evaluation and comparison

We use the two-talker mixtures in the test part of the SSC corpus [17] for evaluation.

The input SNR of cochannel speech ranges from -6 dB to 6 dB with an increment of

3 dB. For each SNR condition, we randomly select 100 cochannel speech mixtures for

testing. Among them, 51 are different gender mixtures, 23 are male-male mixtures

and 26 are female-female mixtures. The contents of cochannel speech are the same

across different SNRs. All test mixtures are downsampled from 25 kHz to 16 kHz for

faster processing.

We evaluate the segregation performance of our system based on the SNR gain

of the target. The SNR gain is calculated as the output SNR of segregated speech
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subtracted by the input SNR. For each segregated speech, we take the resynthesized

speech from the overall IBM as the ground truth and measure the output SNR as

SNR = 10 log10(
∑
n

S2
I [n]/

∑
n

(SI [n]− SE[n])2), (4.7)

where SI [n] and SE[n] are the signals resynthesized from the IBM and an estimated

IBM, respectively. Note that a waveform signal can be obtained from a binary

mask [108]. We note that, in our test conditions, target and interfering speakers

are symmetric, e.g. an interferer at 6 dB can be considered as a target at -6 dB.

Thus, at each input SNR, we calculate the target SNR gain as the average of the

target SNR gains at that input SNR and the interferer SNR gains at the negative of

that input SNR. For example, the SNR gain at -6 dB is the average of the target SNR

gain at the -6 dB input SNR and the interferer SNR gain at the 6 dB input SNR.

In addition to the estimated simultaneous streams (ESS) produced by the tandem

algorithm [39], we also test our system using ideal simultaneous streams (ISS) to see

the potential of clustering with better simultaneous streams. To generate them, we

first detect pitch contours from premixed utterances (clean) using Praat [7] and the

corresponding portions of the IBM are taken as ideal simultaneous streams. Since our

algorithm is unsupervised, we designate the estimated mask having more overlapping

energy with the target IBM as the target mask.
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4.5.1 System Configuration

Before systematical evaluation, we analyze the performance of our system with differ-

ent parameter settings. We first test the sensitivity of our clustering to two parame-

ters, r and λ, in (4.5), with the output SNR calculated by comparing the estimated

voiced IBM against the overall IBM. Exhaustive search is used in this analysis.

Fig. 4.5 shows the average target SNR gain across all input SNR conditions as

a function of r and λ. As shown in the figure, the best average SNR gain is 4.8 dB

when r = 10% and λ = max
g

O(g). The performance does not change much when the

parameters vary within a considerable range. When r is fixed to 10%, the SNR gain

decreases to 4.4 dB when λ is 0 (i.e., no constraint is used), and to 4.4 dB with λ =∞,

which amounts to using a hard constraint of not allowing any pitch overlapping. The

degradation in the latter case is because the tandem algorithm has over-detection

errors in pitch tracking, which can be better tolerated by a soft constraint. Without

such errors, a hard constraint should be better. We have also tried using only the

constraint in (4.4) for clustering and the SNR gain is 2.3 dB. This indicates that the

objective function plays a more important role than the pitch constraint. On the

other hand, clustering performance is relatively stable with respect to r in our test

range from 5% to 30%.

We have also compared the clustering performances of the beam search and ex-

haustive search. The beam search performs about 0.1 dB worse but speeds up the

clustering by about 91%. The speedup of the beam search becomes less significant
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Figure 4.5: Voiced speech segregation performance with different values of r and λ.

when we measure the total separation time, i.e. including the time for peripheral

processing, simultaneous grouping and unvoiced speech segregation. In this case, the

system employing the beam search is about 36% faster. This is due to the short test

mixtures (about 1.9 s on average) in the SSC corpus, which make the time spent on

search comparable to that on other processing components. As the length of cochan-

nel speech grows, the speedup will increase correspondingly. We employ the beam

search in the following evaluation.

4.5.2 Performance of Voiced Speech Separation

Figures 4.6 and 4.7 show the performance of voiced speech segregation using either

ESS or ISS under a range of input SNR conditions. The results with ESS are shown
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Figure 4.6: The SNR gains of segregated cochannel speech with different portions of
unvoiced speech incorporated using estimated simultaneous streams.

by the black bars in Fig. 4.6. Our system achieves significant SNR gains across all

SNR conditions, especially at low SNRs. The SNR gain is 8 dB at the input SNR

of -6 dB, and it decreases gradually as input SNR increases. At the input SNR of

6 dB, the SNR gain is about 0.9 dB. On average, the proposed system obtains an

SNR gain of 4.7 dB across all input SNR conditions. The performance with ISS is

presented by black bars in Fig. 4.7. In this case, the system achieves a substantially

higher SNR gain: 13 dB on average. The SNR gain is 19.0 dB at the input SNR of -6

dB and 7.5 dB when the input SNR increases to 6 dB. The higher SNR gains in the

ISS case indicate that the proposed sequential grouping method benefits from better

simultaneous streams.

In both ESS and ISS cases, we have also obtained the performances of ideal

sequential grouping (ISG). In ISG, we assign a simultaneous stream to the target

if more than half of its energy overlaps with the target IBM and to the interferer
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Figure 4.7: The SNR gains of segregated cochannel speech with different portions of
unvoiced speech incorporated using ideal simultaneous streams.

otherwise. Compared to ISG, the proposed system performs 1.4 dB and 0.9 dB

worse in ESS and ISS cases, respectively, suggesting that the performance of our

unsupervised clustering is not far from ISG.

4.5.3 Performance of Unvoiced Speech Separation

As described in Sect. 4.4, unvoiced speech segregation in UV and UU portions are

carried out separately. In each type of portions, we calculate the SNR gain as the

output SNR subtracted by the initial SNR in the corresponding portions. The perfor-

mance of our system in UV portions is shown in the UV row in Table 4.1. In the ESS

case, the SNR gain in UV portions is 11.7 dB when the mixture SNR is -6 dB, and

decreases to 6.7 dB as the mixture SNR increases to 6 dB. Across all mixture SNR

conditions, the average SNR gain in UV portions is about 9.6 dB. Since sequential

grouping of the UV portions utilizes segregated voiced speech, we also evaluate the
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UV segregation performance using ISS. Note that in the ISS case the system still per-

forms sequential grouping for voiced speech separation and estimates unvoiced speech

segments. As shown in the ISS column of Table 4.1, the SNR gain in UV portions

increases dramatically in every input SNR condition. The SNR gain is 31.2 dB at -6

dB input SNR and is still 19.0 dB at 6 dB input SNR. The average SNR gain is 25.1

dB with ISS, an improvement of 15.5 dB compared to the ESS case. This strongly

suggests that unvoiced speech segregation in UV portions should greatly improve by

improving simultaneous grouping.

Due to the weak energy of unvoiced speech, the high SNR gain in UV portions

may not translate to the overall SNR gain. To see how segregation of the UV portions

improves overall segregation, we add segregated unvoiced speech from UV portions

to segregated voiced speech. The results are presented by the gray bars in Fig. 4.6

and 4.7 for ESS and ISS situations, respectively. In the ESS case, the overall SNR

increases except at -6 dB where the SNR gain without unvoiced speech segregation is

already high. On average, the overall SNR gain is improved by about 0.4 dB. In the

ISS case, the improvement occurs for all SNR conditions and the average is 3.9 dB.

Lastly, we evaluate the performance of the system in UU portions. As shown in

the UU row of Table 4.1, our simple splitting algorithm achieves average SNR gains

of 2.0 dB and 1.2 dB in UU portions for ESS and ISS cases, respectively. We add

segregated unvoiced speech from UU portions to the previously segregated voiced

and unvoiced signals and present overall segregation results in Figures 4.6 and 4.7 by

white bars. Note that the UU portions only constitute a very small part of the overall
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Table 4.1: SNR gains (in dB) of unvoiced speech separation across different input SNR conditions with two types of
simultaneous streams

Unvoiced portions ESS ISS

-6 dB -3 dB 0 dB 3 dB 6 dB -6 dB -3 dB 0 dB 3 dB 6 dB

UV 11.7 10.6 9.8 9.1 6.7 31.2 28.6 25.3 21.6 19.0

UU 4.4 3.5 2.4 0.6 -1.1 4.4 3.2 1.6 -0.4 -2.9
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energy, and the segregation performances on average remain the same in both ESS

and ISS cases. In addition, we have evaluated the performance of ISG for unvoiced

segments in UU portions and found overall performance to improve by 0.3 dB on

average. This indicates that the separation of UU portions plays an insignificant role

in overall speech segregation.

All the evaluations above use the IBM-modulated SNR measure in (4.7), i.e. we

compare the segregated signals to IBM-segregated mixture. To broaden our results,

we also evaluate the performance using a conventional SNR, i.e. with the original

target signal as the ground truth in (4.7). The results are presented in Figs. 4.8 and

4.9. Across all input SNRs, we obtain an average SNR gain of 4.6 dB in the ESS case

and 8.7 dB in the ISS case. Thus, the SNR improvements either in an IBM-modulated

sense or the conventional sense are substantial. These improvements are expected to

facilitate cochannel speech processing applications such as hearing prosthesis and

recognition. The differences between the conventional SNR and the IBM-modulated

SNR are large in the ISS case (about 8 dB) mainly because of the mismatch between

a binary masked signal and the original signal. To verify this, we use the IBM to

segregate the target and achieve a conventional SNR gain of 9.9 dB. Since this is an

upper bound for all estimated binary masks, our separation performance in the ISS

case is very competitive.

75



−6 −3 0 3 6
0

2

4

6

8

Mixture SNR (dB)

S
N

R
 g

ai
n 

(d
B

)

 

 

Voiced
Voiced+UV
Voiced+UV+UU

Figure 4.8: The conventional SNR gains of segregated cochannel speech with different
portions of unvoiced speech incorporated using estimated simultaneous
streams.

4.5.4 Comparison

We compare the voiced speech segregation of our system to a background model

(BM) based method in [96] since both algorithms operate on simultaneous streams

for segregation. In the BM method, a speaker is modeled as a 64-component GMM

model using the utterances in the training part of the SSC corpus. For each cochannel

signal, the BM method forms a target speaker set by randomly selecting 10 speakers

including the target, and constructs a background interferer model by combining the

remaining 24 speakers in the SSC corpus except the interferer. As mentioned in [96],

this corresponds to a situation where the system is only familiar with the target.

Simultaneous streams in the BM method are also produced by the tandem algorithm,

and are grouped by maximizing a joint speaker identification score. The BM method

only segregates voiced speech. For unvoiced speech separation, we compare with
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Figure 4.9: The conventional SNR gains of segregated cochannel speech with differ-
ent portions of unvoiced speech incorporated using ideal simultaneous
streams.

another model-based method by Shao et al. [94]. This method first extracts unvoiced

speech segments using onset/offset analysis and then uses the detected speaker pair

from the BM method to group them.

The comparison between the proposed system and the aforementioned model-

based systems is shown in Fig. 4.10, where the solid lines show the performance of

our system and the dashed lines represent that of the BM+Shao et al. method. In the

ESS case, our algorithm performs a little better than their model-based method across

all input SNR conditions, with the largest improvement (1.2 dB) at the input SNR

of 0 dB. On average, our algorithm outperforms the BM+Shao et al. method by 0.7

dB. In the ISS case, the proposed system performs considerably better at every input

SNR condition. Compared to the model based method, the largest improvement is

8.8 dB at the input SNR of 6 dB, and the smallest improvement is 5.6 dB at the input
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Figure 4.10: Comparisons of the proposed algorithm with a model-based method
over different input SNR conditions using different types of simultaneous
streams.

SNR of -6 dB, with the average improvement about 7.2 dB. The larger improvement

in the ISS case indicates that our method benefits more from improved simultaneous

streams. In addition, we note that our unsupervised method is computationally more

efficient.

In addition to overall segregation, we have also compared with the BM and Shao

et al. method for voiced and unvoiced speech separation separately. For voiced

speech segregation, our system performs better than the BM method by 0.6 dB, and

the improvement is significantly larger in the ISS case: 3.6 dB. We repeat that the

output SNR is calculated by comparing the estimated voiced binary mask to the

IBM for both voiced and unvoiced speech. On the other hand, in UV portions, the

proposed method outperforms the Shao et al. method by 0.6 dB in the ESS case
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and 9.5 dB in the ISS case. In UU portions, our system performs 1.1 dB and 0.7

dB better in ESS and ISS cases, respectively. In UV or UU portions, the SNR gain

is calculated as the output SNR subtracted by the initial SNR in the corresponding

portions.

We further compare to a supervised NMF method in [98], which uses the identities

of two underlying speakers and their corresponding models for separation. This NMF

method is chosen for comparison as it yields competitive performance among different

NMF methods (e.g. [54], [92], and [15]). In this method, each speaker is represented

by a set of convolutive nonnegative matrix factorization (CNMF) bases trained from

clean speech signals. To separate cochannel speech, the bases corresponding to the

two participating speakers are concatenated to perform CNMF on the mixture to

learn a weight matrix, which is then broken into two parts corresponding to the two

sets of bases to reconstruct individual speech signals. To compare with our method,

we perform CNMF in the cochleagram domain using the implementation in [28]. As

in [98], we operate in the amplitude spectrum domain and use about 30 s to 40 s

speech signals from the training part of the SSC corpus to train a CNMF model for

each speaker. We use 500 iterations in training and 200 in testing. To find appropriate

parameters, we tried the time spans of 2, 4, 6 and 8 frames, and the numbers of bases

of 20, 40 and 80. Among all combinations, we obtain the best performance when the

time span is 8 and the number of bases is 20, and they are used in the comparison.

We compare our method with the CNMF using a conventional SNR measure,

i.e. using the original target signal as ground truth in (4.7). The SNR gains of
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Figure 4.11: Comparisons of the proposed algorithm with a speaker-dependent
CNMF method at different input SNR conditions.

the two systems are shown in Fig. 4.11. We observe that the proposed system

performs equally or slightly better than CNMF at positive input SNRs, and slightly

worse at negative input SNRs. In addition to directly using the reconstructed source

signals, we have also derived a binary mask based on the estimated sources of CNMF-

based separation but applying this did not improve the performance. One possible

reason the CNMF does not outperform our unsupervised method is that it does not

model the temporal dynamics between sets of convolutive bases. In [75], an HMM is

incorporated to model this temporal structure.

Finally, we want to mention another system which is capable of separating two

speakers using speaker independent models [100]. In this system, cochannel speech
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separation is carried out jointly with pitch tracking using a source-filter based ap-

proach, where a factorial hidden Markov model (FHMM) is used for multi-pitch

tracking and vector quantization or NMF is used to model vocal tract filters. In a

speaker-independent setting, the method in [100] reports about 2.8 dB gain in terms

of target-to-masker ratio (TMR) at 0-dB input TMR. Specifically, it achieves a TMR

of about 2.8 dB in the same-gender male case, 3.8 dB in same-gender female case and

2.3 dB in the different gender case. These results represent the best performance in

several configurations, including one using NMF. On the other hand, our performance

based on the conventional SNR is about 5.0 dB at 0-dB input SNR. In addition, we

note that the system in [100] requires trained speech models for sequential grouping

(by pitch tracking in their system) and our clustering does not. In terms of time

complexity, the FHMM method takes an average of about 884.4 s to process speech

mixtures with an average length of 1.69 s [100]. In our system, the average time is

only about 37 s across all cochannel speech signals and SNR conditions. In particular,

our system spends about 32 s in voiced speech separation (with about 30 s in periph-

eral processing and simultaneous grouping, and 2 s in clustering), and 5 s in unvoiced

speech separation. The average length of cochannel mixtures in our experiments is

about 1.9 s. Our system is implemented in MATLAB with the tandem algorithm

and onset/offset based segmentation implemented in C. The experiments are run on

an Intel Xeon 2.5 GHz server with 8 GB RAM. Taking all these into account, our

system is about 24 times faster than the FHMM-based system. For computational
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complexity in terms of the O-notation for major components of the FHMM system,

the reader is referred to [100].

4.6 Concluding Remarks

We have proposed a novel unsupervised approach to cochannel speech separation.

We employ the tandem algorithm to perform simultaneous grouping and propose

an unsupervised clustering method to group simultaneous streams across time. The

proposed objective function for clustering measures the speaker difference of each

hypothesized grouping and incorporates pitch constraints. Exhaustive or beam search

is used to find the best grouping for voiced speech. An onset/offset based analysis

is employed for unvoiced speech segmentation, and then we propose to divide the

segments into unvoiced-voiced and unvoiced-unvoiced portions for separation. The

former are grouped using the complementary masks of segregated voiced speech, and

the latter using simple splitting. Systematic evaluations and comparisons show that

our method achieves considerable SNR gains over a range of input SNR conditions,

and despite its unsupervised nature produces comparable performance to model-based

and speaker independent methods.

In this work, our clustering algorithm is derived for cochannel speech with two

speakers. The algorithm could be extended to deal with more speakers since the

between and within-cluster matrices can be expanded to handle multiple speakers.

Our algorithm can also be extended to deal with separation of cochannel speech from
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nonspeech background noise. In this case, one could first separate all speech from

noise (e.g., using [42]) and then perform two speaker separation.

Another interesting question arising in this study is how robust GFCCs are in

measuring speaker differences. As in speaker identification, there may be a require-

ment on the length of cochannel speech for GFCCs to capture sufficient speaker

characteristics. We have tested the performance of our clustering with mixtures of

different lengths (from 0.5 s to 1.75 s) and obtained satisfactory results. Do GFCCs

also carry phonetic information and what are the effects of room reverberation on

GFCC features? Future research is required to answer these interesting questions.
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CHAPTER 5

AN ITERATIVE MODEL-BASED APPROACH TO

COCHANNEL SPEECH SEPARATION

5.1 Introduction

Depending on the information used in cochannel speech separation, we can classify

the algorithms into two categories: unsupervised and supervised. In unsupervised

methods, speaker identities and pretraining with clean speech are not available, while

supervised methods often assume both.

CASA methods are typically unsupervised. For example, pitch and amplitude

modulation are utilized to separate voiced portions of cochannel speech and the es-

timated pitches in neighboring frames are grouped using pitch continuity [39]. To

group temporally disjoint T-F regions, a system in [96] employs speaker models to

perform a joint estimation of speaker identities and sequential grouping. Later in [94],

the system is extended to handle unvoiced speech based on onset/offset-based seg-

mentation [37] and model-based grouping. Similarly, another CASA system extracts

speaker homogeneous T-F regions and employs speaker models and missing data
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techniques to group them into speech streams [4]. Note that the aforementioned

methods use speaker models for sequential grouping, or to group temporally disjoint

speech regions, and thus are not completely unsupervised. A recent system in [41]

applies unsupervised clustering to group speech regions into two speaker groups by

maximizing the ratio of between- and within-cluster distances.

Supervised methods refer to the model-based methods we introduced in Sect. 2.4.

When speaker information and clean utterances are available, these methods build

models to assist separation. As pointed out in [85], one problem the model-based

methods face is generalization to different input SNR levels. The system in [85] does

not address this problem and assumes that test mixtures have the same energy level as

the training mixtures. Further, the system is designed to only handle 0-dB mixtures.

The factorial HMM system in [100] employs a quantile filtering to estimate a gain for

each frame, and then use that to adjust the corresponding mean vector in a codebook.

Radfar et al. [83] proposes a search-based method to detect the input SNR but one

has to specify the search range. In this method, different gains are hypothesized and

the one maximizing likelihood of the whole utterance is taken as the estimate. The

HMM system in [32] detects the model gains jointly with the speaker identities given

a closed set of speakers, and uses an expectation-maximization (EM) algorithm to

further adapt the gains. However, the complexity of gain adaptation is quadratic to

the number of states and the convergence speed of the EM algorithm is unknown. In

other work (e.g. [74]), the input SNR is assumed to be known.

We propose a simple iterative algorithm to generalize to different input SNR
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conditions. Building on the GMM system in [85], we first incorporate temporal

dynamics using transition matrices as in [32]. Then, our algorithm estimates initial

T-F masks for two speakers by assuming that the input SNR is 0 dB. The initial masks

are used to estimate an utterance-level SNR, which is in turn used to adapt the speaker

models. Then, the adapted models are used in a new iteration of separation. The

above two steps iterate until both input SNR and the estimated masks become stable.

Our iterative algorithm does not need to specify a search range for SNR. Experiments

show that it converges relatively fast and is computationally simple. Comparisons

show that the proposed algorithm significantly outperforms related methods.

The rest of this chapter is organized as follows. We first present the basic model

in Sect. 5.2. Sect. 5.3 describes iterative estimation. Evaluation and comparison are

given in Sect. 5.4, and we conclude this chapter in Sect. 5.5. The work presented

in this chapter has been submitted to IEEE Transactions on Audio, Speech, and

Language Processing [44].

5.2 Model-based Separation

We first introduce speaker models and source estimation methods. Throughout the

chapter, we denote vectors by boldface lowercase and matrices by boldface uppercase

letters. Given two speakers a and b, the time-domain cochannel speech signal is a

simple addition of two source speech signals. Decomposing the signals into the T-F
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domain using a linear filterbank and assuming two source signals are uncorrelated at

each channel, we have

Y (c,m) = Xa(c,m) +Xb(c,m) (5.1)

where Xa(c,m) and Xb(c,m) denote the power spectrum at the T-F unit of channel c

and time frame m of speaker a and b, respectively, and Y (c,m) is the spectrum of the

mixture. We then take the logarithm of all entities and use log-max approximation to

model the relationship between the mixture and sources: in the log-spectral domain,

the mixture at each T-F unit is equal to the stronger source. Thus, (5.1) can be

approximated as

y(c,m) ≈ max(xa(c,m), xb(c,m)). (5.2)

where xa(c,m), xb(c,m) and y(c,m) represent the logarithms of Xa(c,m), Xb(c,m)

and Y (c,m), respectively. The log-max approximation is originally proposed in [76]

to describe the mixing process of speech and noise in robust speech recognition, and

later employed in two-speaker separation. A mathematical analysis in [85] shows

that the approximation error in (5.2) is quite small even when two sources have equal

energy in a T-F unit.

5.2.1 Speaker Models

We use a gammatone filterbank consisting of 128 filters to decompose the input signal

into different frequency channels [108]. The center frequencies of the filters spread
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logarithmically from 50 Hz to 8000 Hz. Each filtered signal is then divided into 20-

ms time frames with 10-ms frame shift, resulting in a cochleagram. The log-spectra

are computed by taking the element-wise logarithm of the energy in the cochleagram

matrix.

Following [85], we build speaker models using GMMs. For each speaker, we build

a 128-dimensional GMM from the log spectra of their clean utterances. As in [85],

we use a diagonal covariance matrix for each Gaussian for efficiency and tractability.

Letting xa be the log-spectral vectors of speaker a, the GMM for speaker a can be

parameterized as

p(xa) =
K∑
k=1

pa(k)
128∏
c=1

N(xca;µ
c
a,k, σ

c
a,k) (5.3)

where K is the number of Gaussians indexed by k, c the index of frequency channels,

and xca the cth element of xa. N(·;µca,k, σca,k) denotes a one-dimensional Gaussian

distribution with mean µca,k and variance σca,k, which correspond to the cth dimension

of the kth Gaussian in the GMM. In addition, pa(k) denotes the prior of kth Gaussian.

Similarly, the model of speaker b is

p(xb) =
K∑
k=1

pb(k)
128∏
c=1

N(xcb;µ
c
b,k, σ

c
b,k). (5.4)

For each speaker, the conditional distribution given a specific Gaussian is a 128-

dimensional Gaussian distribution, i.e. p(xa|ka) =
128∏
c=1

N(xca;µ
c
a,ka , σ

c
a,ka) and p(xb|kb) =

128∏
c=1

N(xcb;µ
c
b,kb
, σcb,kb), where ka and kb are two Gaussian indices, and p(xca|ka) and

p(xcb|kb) are one-dimensional Gaussians.
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Given the above speaker models and the mixing equation (5.2), Reddy and Raj

derive a per-channel statistical relationship between the mixture and two sources [85].

Using the log-max approximation in (5.2), they calculate the cumulative distribution

of yc given two Gaussians ka and kb as

Φyc(y|ka, kb) = P (yc ≤ y|ka, kb) = P (xca ≤ y, xcb ≤ y) (5.5)

where P (·) represent a probability. Under the assumption that speaker a and b are

independent, (5.5) becomes

P (xca ≤ y, xcb ≤ y) = P (xca ≤ y) · P (xcb ≤ y) = Φxca(y) · Φxcb
(y) (5.6)

where Φxca(·) and Φxcb
(·) are cumulative distributions of speaker a and b, respectively.

Taking the derivatives on both sides of (5.6), we have the probability density function

of yc given ka and kb

p(yc|ka, kb) = pxca(yc|ka)Φxcb
(yc|kb) + pxcb(y

c|kb)Φxca(yc|ka). (5.7)

Here, we use subscripts xca and xcb to differentiate the probability functions for speaker

a and b. In a probabilistic manner, (5.7) provides a way of approximating the mixture

using two clean speaker models, which in turn can be used to estimate two source

signals given the mixture as the observation.

5.2.2 Source Estimation

One method to estimate the sources is the MMSE estimator, which aims to minimize

the expectation of the square error between the estimated and underlying true signals
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given the observations [85]. As a result, for a log spectral vector y, the cth element

of source xa can be estimated as

x̂ca =

∫ ∞
−∞

xca · p(xca|y). (5.8)

According to the total probability theory, p(xca|y) in (5.8) can be expanded

p(xca|y) =
∑
ka,kb

p(ka, kb|y)p(xca|ka, kb, yc). (5.9)

Note that p(xca|ka, kb, yc) here only depends on yc instead of y due to the diagonal

covariance assumption. The posterior p(ka, kb|y) in (5.9) can be calculated as

p(ka, kb|y) =
pa(ka)pb(kb)p(y|ka, kb)∑
k′a,k

′
b
pa(k′a)pb(k

′
b)p(y|k′a, k′b)

(5.10)

where p(y|ka, kb) =
128∏
c=1

p(yc|ka, kb) again because of the diagonal covariance matrix.

On the other hand, p(xca|ka, kb, yc) in (5.9) can be computed by using the Bayes rule

p(xca|ka, kb, yc) =
p(xca, y

c|ka, kb)
p(yc|ka, kb)

(5.11)

=
pxca(xca|ka)pxcb(yc|kb)

p(yc|ka, kb)
δ(xca < yc)

+
pxca(yc|ka)Φxcb

(yc|kb)
p(yc|ka, kb)

δ(xca = yc). (5.12)

From (5.11) to (5.12) the constraint xca ≤ yc and the log-max assumption are used,

and a detailed derivation can be found in [76]. We then incorporate (5.10) and (5.12)

to (5.9), and combine with (5.8) to estimate the source speaker a

x̂ca =
∑
ka,kb

p(ka, kb|y)

p(yc|ka, kb)
{pxcb(y

c|kb)[µca,kaΦxca(yc|ka)− σca,kapxca(yc|ka)]+

Φxcb
(yc|kb)pxca(yc|ka)yc}. (5.13)
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The MMSE estimate of speaker b can be computed similarly.

In addition to directly estimating the sources, [85] also gives a soft mask estimate

for speaker a as

p(xca > xcb|y) =
∑
ka,kb

p(ka, kb|y)p(xca > xcb|yc, ka, kb) (5.14)

=
∑
ka,kb

p(ka, kb|y)pxca(yc|ka)Φxcb
(yc|kb)/p(yc|ka, kb). (5.15)

Note the soft mask for speaker b is p(xca ≤ xcb|y) = 1− p(xca > xcb|y). In [85], the soft

mask is found to perform consistently better than a binarized mask.

An alternative to the MMSE estimator is a MAP estimator, which is used in [32]

for two-speaker separation. The essence of MAP estimation is similar to MMSE but,

instead of using every pair of Gaussians in (5.9), it only uses the most likely Gaussian

pair

{k∗a, k∗b} = arg max
ka,kb

p(ka, kb|y) (5.16)

where k∗a and k∗b correspond to the pair of Gaussians yielding the highest posterior

probability among all possible pairs. The estimate of source signals can be computed

similarly to (5.13) but using only k∗a and k∗b . A soft mask can also be derived like

(5.14) using only k∗a and k∗b . In experiments we find the performance of the MAP

estimator is similar to that of MMSE, mainly because at each frame one pair of

Gaussians often approximate the mixture much better than others.
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5.2.3 Incorporating Temporal Dynamics

The cochannel speech separation system in [85] models speaker characteristics using

GMMs and ignores the temporal information of speech signals. A natural extension

to the GMMs to incorporate temporal dynamics is using a factorial HMM model [32].

Specifically, for each speaker, we can estimate the most likely Gaussian index for each

frame in a clean utterance using a MAP estimator. Each utterance thus generates

a sequence of Gaussian indices. The transitions between all neighboring Gaussian

indices are then used to build a 2-D histogram, which can then be normalized to

produce a transition matrix.

In the factorial HMM system in [32], the hidden states of the two HMMs at each

frame are the most likely Gaussian indices of two speakers. While the detection of

the Gaussian indices is based on only individual frames in [85], a 2-D Viterbi search

is used in [32] to find the most likely Gaussian index sequences. Specifically, the 2-D

Viterbi integrates all frames and the transition information across time to find the

most likely two Gaussian sequences, each of which corresponds to one speaker [104].

We use δt(ka, kb) to denote the highest probability along a single path accounting

for the first t frames and ending at state ka, kb

δt(ka, kb) = max
s1a,s

1
b ,...,s

t−1
a ,st−1

b

p(s1a, s
1
b , ..., s

t
a = ka, s

t
b = kb,y1,y2, ...yt|λ) (5.17)

where sta and stb denote the hidden states of speaker a and b at time frame t, respec-

tively, and λ represents the factorial HMM. As in [104], we compute (5.17) iteratively
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by

δt(ka, kb) = max
k′a,k

′
b

δt−1(k
′
a, k
′
b) · p(ka|k′a) · p(kb|k′b) · p(yt|ka, kb) (5.18)

where p(ka|k′a) is the transition probability of speaker a from state k′a to ka, and

p(kb|k′b) is that of speaker b. p(yt|ka, kb) can be calculated similarly as in (5.10). The

optimal Gaussian index sequences are detected by a 2-D Viterbi decoding [104], and

the MAP estimator is used for estimating sources.

In (5.18), an exhaustive search for each pair of ka and kb across T frames has a

complexity of O(TK4), where K is the number of Gaussians for each speaker and T

is the number of frames. It is time consuming if K is relatively large. In our study,

we use a beam search to speed up the process. Given a beam width of W , we only

search for the W most likely previous state pairs (i.e., k′a and k′b in (5.18)), and the

time complexity is reduced to O(TWK2). The results presented in Sect. 5.4 indicate

that a beam width of 16 gives a comparable performance to the exhaustive search.

5.3 Iterative Estimation

As mentioned in Sect. 5.1, model-based methods such as [85] face the difficulty of

generalizing to different mixing conditions. It is partly because the GMMs are trained

using log-spectral vectors, and hence are sensitive to the overall speech energy. More

importantly, if the GMMs of two speakers are trained using clean utterances at certain

energy levels, in testing they need to be adjusted according to the input SNR. In [85],
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mixtures with nonzero input SNR are separated using unadjusted models but the

performance is worse.

We propose to detect the input SNR and use that to adapt the speaker models and

re-estimate the sources. To estimate the input SNR from the mixture one has to first

have some source information. Thus, SNR detection and source estimation become a

chicken-and-egg problem, i.e., the performance of one task depends on the success of

the other. One general approach to deal with this type of problem is to perform an

iterative estimation (e.g. [39]). In the initial stage of the iterative procedure, we apply

the unadapted speaker models to obtain initial separation. Based on the initial source

estimates, we calculate the input SNR and use that to adapt the speaker models. The

adapted models are in turn used to re-estimate the sources. The two steps iterate

until convergence. As an alternative, we also explore a search-based method which

jointly estimates sources and the input SNR.

5.3.1 Initial Mask Estimation

For a pair of speakers, we first perform an initial estimate by using their models pre-

trained using clean utterances at a per-utterance energy level of 60 dB. Initially, the

input SNR is assumed to be 0 dB, and a mixture is scaled to an energy level of 63 dB

corresponding to the addition of two 60-dB source signals. We use the 2-D Viterbi

decoding based on (5.18) to detect the most likely Gaussian index sequence and then

estimate a soft mask of the target speaker using the MAP estimator in Sect. 5.2.2.
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5.3.2 SNR Estimation and Model Adaptation

Denoting the estimated soft masks of speaker a and b as Ma and Mb, respectively, we

use them to filter the mixture cochleagram to obtain the corresponding segregated

signals. With the mixture cochleagram Ey, the SNR of the target and interferer in

the cochleagram domain can be calculated as

R = 10 log10

(∑
c,m Ey(c,m) ·Ma(c,m)∑
c,m Ey(c,m) ·Mb(c,m)

)
(5.19)

where Ma(c,m) denotes the ratio of speaker a at the T-F unit of channel c and

frame m, and Mb(c,m) = 1 −Ma(c,m). R corresponds to the input SNR of the

filtered speech signals. As analyzed in [77], due to gammatone filtering, one has to

compensate for the loss of energy to calculate the SNR of the original time-domain

signals. However, in our work, the frequency range of the gammatone filterbank is

between 50 and 8000 Hz and both target and interference are speech signals with

sampling frequency of 16 kHz. There is thus little energy loss in the filtering process,

and the estimated SNR of filtered signals is close to that of the original time-domain

signals. Thus, we directly use the SNR of filtered signals in (5.19) as our estimate.

We then adapt two speaker models to match the estimated input SNR. In partic-

ular, the target speaker model (speaker a) is fixed (i.e. trained by using 60-dB clean

utterances) and we adapt the interferer model and the mixture. Given an input SNR

of R dB, the interfering signal energy level is thus

10 log10(
∑
t

x2b [t]/T ) = 60−R. (5.20)
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This is, instead of using 60-dB utterances, the interferer model should be trained using

60 − R dB signals, and the original utterances should be scaled by a multiplicative

factor of 10−R/10. Since the difference lies in a constant factor, we can directly scale

the parameters of the GMM models, i.e., the mean and variance. Specifically, the

means of the interferer GMM are scaled by an additive factor of β = log(10−R/10) since

log-spectral vectors are used in training, while the variances will remain unchanged

because β is an additive factor.

On the other hand, the mixture energy level can be computed by combining the

target and interfering signal levels

10 log10(y
2[t]/T ) = 10 log10(

∑
t

(x2a[t] + x2b [t])/T )

= 60 + 10 log10(1 + 10−R/10) (5.21)

where y[t] is the time-domain cochannel signal, and xa[t] the source signal of speaker

a. In the above calculation we assume that the time-domain target and interfering

signal are uncorrelated at each frame. Given (5.20) and (5.21), we have adapted the

interfering speaker model and the mixture, and created a more matched condition for

separation.

5.3.3 Iterative Estimation

Given any input mixture, we first obtain the initial mask estimates Ma,0 and Mb,0

as described in Sect. 5.3.1. Given Ma,0 and Mb,0, we then estimate the input SNR
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using (5.19). The estimated SNR is used to adapt the model of speaker b and mix-

ture by (5.20) and (5.21), respectively. They are then used together with the target

speaker model to reestimate the soft masks based on the 2-D Viterbi decoding de-

scribed in Sect. 5.2.3 and the MAP estimator in Sect. 5.2.2. To get the maximal

performance, the iterative process should continue until neither the estimated input

SNR nor speaker masks change. But empirically we observe that the separation per-

formance becomes stable when the estimated input SNR change is smaller than 0.5

dB. We thus use this as the stop criterion and terminate the estimation process when

the difference of estimated input SNRs between two iterations is less than 0.5 dB.

As an illustration, Fig. 5.1(a) shows a cochleagram of a cochannel signal at -9 dB

consisting of two male utterances, where a brighter unit indicates stronger energy.

Fig. 5.1(b) shows the clean target speech and Fig. 5.1(c) the clean interfering speech,

and our goal is to estimate these two source signals. We show initially segregated

target and interferer in Fig. 5.1(d) and Fig. 5.1(e), respectively, and final segregated

target and interferer are presented in Fig. 5.1(f) and Fig. 5.1(g), respectively. As

shown in the figure, the iterative estimation improves the quality of segregated speech

signals.

5.3.4 An Alternative Method

In addition to the iterative method, we have also tried a search-based method to

jointly estimate the source state sequences and the input SNR. For example, we use

a test corpus described in Sect. 5.4 and hypothesize the input SNR in a range from
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Figure 5.1: Illustration of separating two male utterances in cochannel conditions.
(a) Cochleagram of the cochannel speech with an input SNR of -9 dB.
(b) Cochleagram of clean target. (c) Cochleagram of clean interferer. (d)
Cochleagram of initially segregated target. (e) Cochleagram of initially
segregated interferer. (f) Cochleagram of segregated target after itera-
tive estimation. (g) Cochleagram of segregated interferer after iterative
estimation.
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-9 to 6 dB with an increment of 3 dB. At each hypothesized input SNR, we adapt

the mixture and interfering speaker model according to (5.20) and (5.21), and use

them to detect state sequences using the 2-D Viterbi decoding and then estimate the

soft masks based on the MAP estimator. For all hypothesized SNR conditions, we

calculate the joint likelihood of all mixture frames and the Gaussian sequences being

generated by the factorial HMM, and the hypothesized input SNR corresponding

to the highest likelihood is selected as the detected value. The corresponding state

sequence is then used for estimation. We have evaluated the performance of this

method using the corpus described in Sect. 5.4 and it is about 0.5 dB worse than the

iterative method and is computationally more expensive. Note that the discrete SNR

range includes the true value in each testing condition to avoid errors due to the use

of discrete SNR levels. How to specify the input SNR levels in search is unclear in

practice.

5.4 Evaluation and Comparisons

We use two-talker mixtures in the SSC corpus [17] for evaluation. For each speaker,

a 256-component GMM model is trained using all of the speaker’s clean utterances

in the training set. In training, each clean utterance is normalized to a 60-dB energy

level, and the log-spectra are calculated as described in Sect. 5.2.1. An HMM model

is then built upon each GMM using the same utterances as described in Sect. 5.2.3.

The test part of the SSC corpus contains two-speaker mixtures with the input SNR

ranging from -9 dB to 6 dB with an increment of 3 dB, and it is used for evaluation.
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We randomly select 100 two-speaker mixtures in each SNR condition for testing. Note

that the mixture utterances are the same across different SNRs. The 100 mixtures

contain 51 different-gender mixtures, 23 male-male mixtures and 26 female-female

mixtures. All test mixtures are downsampled from 25 kHz to 16 kHz for faster

processing.

We evaluate the segregation performance using the SNR gain of the target speaker,

which is calculated as the output SNR of segregated target speech subtracted by the

corresponding input SNR. For each segregated target, we take its clean speech signal

as the ground truth and compute the output SNR as

SNR = 10 log10

(∑
n

x2a[t]/
∑
n

(xa[t]− x̂a[t])2
)
, (5.22)

where xa[t] and x̂a[t] are the original clean signals and signals resynthesized from the

estimated mask, respectively. Note that a waveform signal can be obtained from a

soft mask [108]. In our test conditions, target and interfering speakers are treated

symmetrically, e.g. an interferer at 6 dB is considered as a target at -6 dB. Thus, at

each input SNR, we calculate the target SNR gain as the average of the target SNR

gain at that input SNR and the interferer SNR gain at the negative of that input

SNR. For example, the SNR gain at -6 dB is the average of the target SNR gain at

the -6 dB SNR and the interferer SNR gain at the 6 dB SNR.

5.4.1 System Configuration

As we mentioned in Sect. 5.2.3, an exhaustive 2-D Viterbi search is time consuming

and we use beam search for speedup. The beam width W needs to be chosen to
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Figure 5.2: SNR gains of the target speaker at different input SNR conditions with
the beam width varying from 1 to 256.

balance the performance and complexity. In Fig. 5.2, we vary W from 1, 4, 16,

64, to 256, and the corresponding target SNR gains are shown in different curves.

For the largest beam width of 256 the beam search already performs comparably to

an exhaustive search. On the other hand, a beam width of 1 amounts to a greedy

algorithm where we only keep the path with the highest likelihood at each frame.

In Fig. 5.2, we observe that when W is between 16 and 256, the SNR gains at

all conditions are almost the same. But the gains degrade significantly when W is

further reduced. We thus choose W to be 16. Compared to an exhaustive search, the

computational complexity is greatly reduced from O(TK4) to O(TK2).

Another parameter impacting the system performance is the the number of itera-

tions in iterative estimation. In our experiments, we observe that the estimated input
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SNR and masks become stable quickly. Figs. 5.3 and 5.4 show the SNR and mask es-

timation performance, respectively, in terms of the number of iterations. In Fig. 5.3,

we measure the SNR estimation performance as the difference of the estimated from

the true input SNRs. Each curve in the figure corresponds to the estimation errors

at one SNR condition. Before any estimation (i.e., number of iterations = 0), the

input SNR is assumed to be 0 dB and the error is the negative of the underlying true

SNR. After the first iteration, the errors decrease significantly for all SNR conditions

except for the 0-dB case. This is because at 0 dB the initial estimate happens to be

the same as the true SNR, and any estimation can only deviate away from 0 dB. In

this case, we observe that the estimated SNR gets a little worse and then becomes

stable. For other SNR conditions, the errors keep decreasing as more iterations are

performed, and all of them become stable by the 5th iteration. In Fig. 5.4, we mea-

sure the performance of mask estimation by the SNR gain of the segregated target.

Initially, the SNR gain is 0 dB, and then the quality of estimated masks improves

substantially after the iteration starts. As shown in the figure, the first iteration

brings about 4 to 8 dB improvements for all SNR conditions and the second iteration

mainly improves the performance at -6 and -9 dB (by 1.8 and 3 dB, respectively).

The performance at most SNR conditions become stable after three iterations. At

-9 dB, the estimated mask gains a small improvement for further iterations. In the

experiments, we observe that the estimated masks often become stable when the es-

timated input SNR changes less than 0.5 dB. Thus we use this as the stop criterion
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Figure 5.3: Input SNR estimation error (in dB) as a function of number of iterations
used in the iterative estimation.

for iterative estimation. By this criterion, an average of 3 iterations is often enough

for convergence.

5.4.2 Comparisons

We compare the proposed system to related model-based methods, which include the

MMSE-based system by Reddy & Raj in [85], a similar system based on a MAP

estimator, and an HMM-based system incorporating temporal dynamics. The SNR

gains of these methods are presented in Fig. 5.5.

As shown in Fig. 5.5, the proposed system achieves an SNR gain of 11.9 dB at

the input SNR of -9 dB, and the gain decreases gradually as the input SNR increases.

At 9 dB, the SNR gain is about 3.9 dB. On average, our method achieves an SNR
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Figure 5.4: Mask estimation performance in terms of target SNR gain as a function
of number of iterations.

gain of 7.4 dB. Compared to Reddy & Raj, our method performs comparably at 0

dB but significantly better at other input SNRs. For example, the proposed system

performs about 2.7 dB better at -9 dB, and the improvement gets smaller as the input

SNR gets closer to 0 dB. A similar trend is also observed at positive input SNRs. On

average, the proposed system performs 1.2 dB better than the Reddy & Raj method.

In the figure we also show the performance of another MMSE method (black bars), a

version of the Reddy & Raj system that does not require the energy levels of training

and testing to be the same. In this method we assume the input SNR to be 0 dB and

scale the mixture as described in Sect. 5.3.1. As we expect, the performance is a little

worse (about 0.3 dB) than the original Reddy & Raj system due to the unmatched

signal levels. We also compare to a MAP-based separation method described in Sect.
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Figure 5.5: Comparisons to related model-based cochannel speech separation algorithms in terms of target SNR gains.
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5.2.2. Using only the most likely Gaussian pair for estimation, the MAP method

is more efficient than the MMSE method but performs about 0.1 dB worse. Our

system performs about 1.6 dB better than the MAP-based method. To isolate the

effect of iterative estimation, we have also evaluated the performance of the HMM

system alone. As shown in the figure, this method achieves an average SNR gain of

about 6.3 dB, about 0.5 dB better than the MAP-based method. This improvement

comes from the use of temporal dynamics. Comparing this performance with the

proposed system we get the benefit of iterative estimation, which further increases

the SNR gain of the HMM system by about 1.1 dB. In addition, we note that iterative

estimation can also be incorporated into other model-based systems. For example,

we add iterative estimation to the MMSE method (denoted by as MMSE-iterative in

Fig. 5.5) and obtain an improvement of 1.2 dB. Similarly, the MAP-iterative method

outperforms the original MAP method by about 1.2 dB. Lastly, to show the upper

bound performance of our system, we have utilized the true input SNR and ideal

hidden states in estimation. This ideal performance is presented as HMM-ideal in

Fig. 5.5. It is about 0.9 dB better than the proposed system, which indicates that

our system is close to the ceiling performance.

We compare to a model-based CASA system in [96]. The system in [96] first em-

ploys a tandem algorithm [39] to generate T-F speech regions, and then uses speaker

models to sequentially group them. In their system, speakers are also described by

GMMs and cepstral features are used to model speaker characteristics. As in our

training, we use all the utterances in the training part of the SSC corpus to create
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their GMM models. For a two-speaker mixture, the speaker identities are known

and we choose the corresponding GMMs for sequential grouping. The system in [96]

only segregates voiced speech, and thus we incorporate an unvoiced speech separation

module in [94] to form a complete system. The unvoiced module first extracts un-

voiced speech segments using onset/offset analysis and then uses the speaker models

to group them. As shown in Fig. 5.5, our method performs significantly better than

the CASA system by 2.4 dB on average, and the improvements are significant at all

input SNR conditions. The largest improvement is at 9 dB, and our method is about

3 dB better than the CASA system. The inferior performance of the Shao et al.

system is partially due to the inaccurate sequential grouping. To isolate this effect,

we have also performed ISG on the T-F speech regions. With the ISG grouping, Shao

et al. system performs comparably to our system.

We have compared to a factorial HMM based method which is capable of adapting

speaker models for separating mixtures with different signal levels [100]. In this

method, pitches of two speakers are first estimated by a factorial HMM. Then, vocal

tract responses are modeled by vector quantization or NMF, and used with estimated

pitches to estimate the source signals. Since the vocal tract responses are normalized

in modeling, a gain factor is introduced to scale the source spectra. Specifically,

a gain vector is calculated as the difference of the mixture and source spectra and

then quantile filtering is used to select a robust estimate. In the speaker-dependent

case, the method reports about 6.6 dB gain in terms of TMR at 0-dB input TMR.

Specifically, it achieves a TMR of about 7 dB in the same-gender female (SGF) case,
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Figure 5.6: TMR performance of the proposed algorithm in different kinds of cochan-
nel speech with 0-dB input TMR.

4.5 dB in same-gender male (SGM) case and 8.3 dB in the different gender (DG) case.

These results correspond to the best performance in a setting where NMF is used for

modeling. We evaluate our method using TMR and the results for 0-dB mixtures

are shown in Fig. 5.6. As in [100], we show the TMRs in SGM, SGF, and DG cases

separately, and the horizontal lines in the centers of the boxes correspond to means

and the distance between a line and a box boundary depicts standard deviation. The

improvements are 9.6 dB, 8.4 dB, and 10.4 dB in the SGF, SGM, and DG cases,

respectively, and on average the improvement is about 9.4 dB. These results show

that our system performs substantially better than [100] in all kinds.

In addition to the SNR performance, we also evaluate the system using a hit

minus false-alarm (HIT−FA) rate which has been shown to be a good indicator of

human speech intelligibility [50]. As in [50], we calculate the hit rate as the percent
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of correctly labeled target dominant T-F units and the false alarm (FA) rate as the

percent of incorrectly labeled interferer dominant T-F units. To calculate these rates,

we convert the soft masks to binary masks using a threshold of 0.5, i.e. the T-F units

with a probability greater than 0.5 are labeled as 1 and 0 otherwise. The HIT−FA

rates of our system and the Reddy & Raj system are shown in Fig. 5.7. We observe

that the proposed algorithm performs uniformly better than Reddy & Raj system and

Shao et al. systems at all SNR conditions. For our system, the average HIT−FA rate

is about 64.4%, and the rates are relatively stable at different input SNR conditions.

On average, it is about 7.5% better than the Reddy & Raj system, and 14.4% better

than the Shao et al. system. The performance of Shao et al. system with ISG

grouping is still worse than the proposed system. The performance gap between our

system and the Reddy & Raj system are bigger when the input SNR deviates from

0 dB. This again confirms that iterative estimation is effective for generalizing to

nonzero SNR mixtures.

5.5 Concluding Remarks

We have proposed an iterative algorithm for model-based cochannel speech separa-

tion. First, temporal dynamics is incorporated into speaker models using HMM. We

then present an iterative method to deal with signal level differences between training

and test conditions. Specifically, the proposed system first uses unadapted speaker

models to segregate two speech signals and detects the input SNR. The detected SNR

is then used to adapt the interferer model and the mixture for re-estimation. The
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Figure 5.7: Comparisons to other model-based speech separation algorithms in terms
of Hit−FA rates.

two steps iterate until convergence. Systematic evaluations show that our iterative

method improves segregation performance significantly and also converges quickly.

Comparisons show that it performs significantly better than related model-based

methods in terms of SNR gains as well as HIT−FA rates.

We note that SNR estimation in our system uses the whole mixture, which would

not be feasible for real-time applications. However, one can slightly modify it to

work in real time. For example, at one frame, one could use only previous frames

for Viterbi decoding and SNR detection. The detected SNR could be used to adapt

speaker models for separation in later frames and then get updated correspondingly.

Such an update may be performed periodically to track the input SNR, and the

update frequency would depend on the extent to which the input SNR varies.
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In this work, our description is limited to two-talker situations as in related model-

based methods. The proposed system could be extended to deal with multi-talker

separation problems. For example, the MMSE estimators can be extended to perform

three-talker separation according to [85]. As for iterative estimation, one can estimate

the energy ratios between multiple speakers instead of the SNR in the two-speaker

case, and adapt the speaker models accordingly. One issue in multi-talker situations

is that the complexity of (5.16) is exponential to the number of speakers, and a faster

decoding method thus needs to be used (e.g. [85] and [86]).
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CHAPTER 6

CONTRIBUTIONS AND FUTURE WORK

6.1 Contributions

Monaural speech separation is a very difficult task, and this dissertation addresses

speech separation from different types of interference. First, we have proposed a sim-

ple and efficient method to segregate unvoiced speech from nonspeech interference and

produced a complete CASA-based system for monaural speech segregation. To over-

come the limitation of speaker dependency in model-based methods, we propose an

unsupervised method for cochannel speech separation. In addition, we have addressed

the problem of generalizing model-based speech separation methods to different SNR

conditions.

In Chapter 3, we proposed a CASA-based system which utilizes segregated voiced

speech to assist unvoiced speech segregation. Specifically, the system first removes

periodic signals from the noisy input and then estimates interference energy by aver-

aging mixture energy within inactive T-F units in neighboring voiced intervals. The

estimated interference is used in a subtraction to extract unvoiced segments, which are
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then grouped by either simple thresholding or classification. A systematic comparison

shows that the proposed system outperforms a recent system in [38] over a wide range

of input SNR levels. In addition, our segmentation stage is simpler and faster than

multiscale onset-offset analysis, and grouping based on simple thresholding does not

need MLP training. Our CASA based approach also performs substantially better

than speech enhancement methods, indicating the effectiveness of a grouping stage.

In Chapter 4, we develop an unsupervised cochannel speech separation capable of

separating two speech signals without prior knowledge of speakers. To our knowledge,

this is the first comprehensive unsupervised cochannel speech separation system in the

field. We employ unsupervised clustering in two speaker separation, and maximize

a novel objective function measuring speaker difference for separation. In addition,

we consider all speech T-F regions jointly and incorporates pitch to constrain the

clustering. Exhaustive or beam search is proposed to find the best grouping for

voiced speech. On the other hand, we employ an onset/offset based analysis to

segment unvoiced speech, and divide the segments into unvoiced-voiced and unvoiced-

unvoiced portions for separation. Systematic evaluations and comparisons show that

our method achieves considerable SNR gains over a range of input SNR conditions,

and performs comparable to model-based and speaker independent methods.

Chapter 5 describes an iterative model-based system for cochannel speech sepa-

ration. HMMs are employed to model speaker acoustic characteristics and tempo-

ral dynamics, and we then propose an iterative approach to jointly estimate speech

signals and the input SNR. Systematic evaluations show that our iterative method
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improves segregation significantly, while converging relatively fast. It is computation-

ally simpler and performs better than related model-based methods in a number of

input SNR conditions in terms of both SNR gains and HIT−FA rates.

6.2 Insights Gained

Through the course of this dissertation we have obtained a number of insights. In

Chapter 3, we segregate voiced and unvoiced speech in two steps. This is due to

the insight that unvoiced speech has very different characteristics compared to voiced

speech and one has to explore its unique properties for separation. In terms of com-

bining two segregation schemes, we perform voiced and unvoiced speech segregation

sequentially because we want to use interference dominant T-F units in voiced frames

to estimate noise. Later spectral subtraction makes use of this energy estimate and

segregates unvoiced speech. Realizing that capturing the characteristics of unvoiced

speech is the key to separation, we explore speech production mechanisms of un-

voiced speech and utilize the property that unvoiced speech resides in relatively high

frequencies for grouping. Traditional speech enhancement methods do not improve

the speech intelligibility probably because of the lack of the separate treatment of

unvoiced speech.

In unsupervised cochannel speech separation, the gist of our separation method

is to maximize the distance of two groups of simultaneous streams. Most traditional

methods perform this by utilizing speaker models but we perform this directly in the

feature space. This enables us to avoid the use of speaker models. Due to the wide
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use of cepstral features in speaker recognition, we choose GFCCs as the features to

form two speaker clusters. Our objective function is the trace of the ratio of between-

and within-cluster scatter matrices, and maximizing this objective function amounts

to maximize the difference of two speaker groups and at the same time minimize the

within-group distances. This objective function was demonstrated to be better than

criteria concerning only between- or within-group distances. In addition, we note

that speech specific constraints such as pitch can be incorporated in this clustering

framework to reduce the search space. In summary, given an appropriate objective

function, two-speaker separation can be formulated as an optimization problem.

In model-based cochannel speech separation, we find the notion of iterative es-

timation to be very useful in generalization. This iterative estimation is first used

in [39] to perform pitch detection and voiced speech segregation jointly. In Chapter

5, we carry out two-speaker separation jointly with input SNR estimation. Such an

iterative procedure resembles a feedback loop in control systems and appears to be

particularly helpful in adapting speaker models to different SNR situations. We think

such an iterative method can be a general idea for speech separation.

6.3 Future Work

In the unsupervised cochannel speech separation system in Chapter 4, we cluster

speech simultaneous streams by maximizing the between-cluster distance and mini-

mizing the within-cluster distance. GFCCs are used as the feature and the trace-based

objective function is the best performing one among several others we explored. A
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deeper question would be how to design the objective function to directly maximize

the output SNR (or Hit−FA). An analysis of the distribution of the GFCCs may help

us find a more appropriate objective function. On the other hand, our results in Sect.

4.5 are based on the SSC corpus, which has a relatively small vocabulary. It will

be interesting to see how our system performs in a corpus with a larger vocabulary

such as TIMIT [27] or the IEEE corpus [46]. In addition, the performance of this

algorithm in reverberant situations remains unclear.

In Chapter 4 we deal with the separation of unvoiced-unvoiced portions by split-

ting the unvoiced speech equally into two speakers. We have also explored acoustic

cues such as formants, transitions of spectral peak frequencies, and temporal gaps in

voiced-unvoiced transitions for grouping UU segments, but did not obtain satisfac-

tory results. An alternative approach to group UU segments is to use model-based

methods. For example, we can build speaker models using segregated voiced speech

and then use them to separate UU portions based on the method described in Sect.

5.2.2. Due to the limited amount of segregated voiced speech, one way of building

a speaker model is to adapt a universal background model [87]. Yet another way of

grouping unvoiced speech is to formulate it as a speech recognition problem. First,

unvoiced speech can be segmented using an onset/offset based algorithm [37], and

groupings of unvoiced speech segments can be found by maximizing a speech recog-

nition score. To keep the system unsupervised, one can train a speaker-independent

HMM model for speech recognition.

Following the above idea, we can also use the speaker models built using segregated
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voiced speech to re-separate all frames of cochannel speech (i.e., not only the UU

portions). Then, segregated speech signals can be used to update the speaker models.

One can potentially devise an iterative algorithm for unsupervised cochannel speech

separation.

We want to point out that the HMM-based framework in Chapter 5 can be ex-

tended to incorporate more speaker information. In this work, the acoustic properties

of speakers are described by GMMs and temporal dynamics is modeled by a transition

matrix. One can add more layers on top of the HMM to incorporate more speaker in-

formation. For example, a grammar layer is added in [32] to utilize speech recognition

for separation. We have tried adding speech types (i.e. voiced or unvoiced) or pitch

as hidden variables in an additional layer but did not obtain significant improvement.

But one could explore other speech regularities and incorporate them in the current

framework.

Finally, this dissertation addresses the problems of segregating speech from non-

speech or speech interference separately. In reality, these two kinds of interference

can be present at the same time. In this case, one can perform separation by first seg-

regating all speech signals from nonspeech interference using the method in Chapter

3, and then segregate the target speech from competing voices by methods described

in Chapter 4 or 5. When there are multiple competing voices, one can extend the

methods in Chapter 4 or 5 to deal with multi-talker conditions as we discussed in

Sect. 4.6 and 5.5.
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APPENDIX

A. Interpretation of the trace-based objective function

To analyze the meaning of the proposed objective function in (4.3), we start by

performing an eigendecomposition for SW

PTSWP = ΛW (A1)

where ΛW is a diagonal matrix, and P is an orthonormal matrix consisting of the

eigenvectors. Let P̂ = PΛ
−1/2
W and we can rewrite (A1) as

P̂TSW P̂ = I (A2)

where I denotes an identity matrix. Then we consider the matrix P̂TSBP̂. It is

symmetric (because SB is symmetric), and we can also decompose it as

QT (P̂TSBP̂)Q = ΛB (A3)

where Q is orthonormal and ΛB is diagonal.
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Defining a new matrix R = P̂Q, we can use R to diagonalize SW and SB simul-

taneously based on (A2) and (A3)

RTSWR = QT P̂TSW P̂Q = QT IQ = I (A4)

RTSBR = QT (P̂TSBP̂)Q = ΛB (A5)

We then prove that R is an eigenvector matrix for S−1w SB

R−1(S−1W SB)R = R−1S−1W (RT )−1(RT )SBR (A6)

= (RTSWR)−1(RTSBR) (A7)

= I−1ΛB = ΛB. (A8)

Finally, we rewrite our objective function in (4.3) as

tr(S−1W SB) = tr(R−1S−1W SBR) (A9)

= tr(ΛB) =
∑
i

λB,i (A10)

where λB,i denotes the ith diagonal element in ΛB. We thus see that the objective

function is actually a sum of all eigenvalues of S−1W SB. Each of these eigenvalue

represents the ratio between SB and SW on the corresponding eigenvector dimension.
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