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Abstract

The purpose of this study was to show how mathematics can be used to analyze

effects on sound. Our hope is that this may inspire student interest in mathematics.

We analyzed five common industry standard effects. Research data was gathered

using Mathematica and GarageBand software. Three versions of each effect were

used to alter pure tone sound waves of ten different frequencies using GarageBand.

Then using Mathematica’s Fourier command, the frequency spectrum of each altered

sound wave was generated. Through observation of each set of 30 frequency spectra,

the most prominent and common pure tone components were determined. For each

effect, Mathematica’s Fit command was used to determine a best fit model of the

magnitude of each component as a function of frequency.

Our models provide descriptions of the effects that are consistent with the tradi-

tional descriptions of the industry standard effects in our study. If similar research is to

be conducted, our recommendation is that more versions of each effect, a wider range

of input frequencies, and a higher sampling rate would produce function models that

are even more consistent with traditionally accepted effect descriptions. Furthermore,

an understanding of the hardware and software design used to build effects on sound

is highly recommended.
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Chapter 1: Introduction

Our goal is to explain how to use the discrete Fourier transform to analyze sound

waves and effects on sound waves. We will show that the discrete Fourier transform

produces frequency spectra of sound waves and we will analyze the frequency spectra

of sound waves that are altered by one of five standard effects. Then, using least

squares approximation, we will mathematically describe each effect.

1.1 Sound waves

Sound is the oscillation of compression waves in the atmosphere. When these

compression waves oscillate in equal intervals of time, we hear these waves as tones.

The number of cycles of a wave that oscillate per unit of time is called the frequency,

often measured in cycles per second (Hertz). The duration of each cycle is called the

period, often measured in seconds per cycle. Hence the frequency f and the period

T of a wave are related by the formula f = 1/T . The amplitude of a sound wave

is the difference between the equilibrium pressure (no pressure) and the maximum

pressure (maximum displacement of air molecules) caused by the wave. Humans hear

the frequency of a sound wave as pitch and the amplitude as volume.
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1.2 Modeling with trigonometric functions

Sound waves are longitudinal. The vibration of the sound wave (and the dis-

placement of the air molecules) is parallel to the direction in which the sound wave

propagates. When the frequency and amplitude of a sine (or cosine) wave are identical

to those of a sound wave, the sine wave can be used to represent those relevant aspects

of sound waves. Hence although sine and cosine waves are not longitudinal, they can

be used to model sound waves. The simplest of all sound waves is a pure tone.

Definition. A pure tone is a sound wave that is modeled by a function of the form

p(t) = A sin(2πft)

where A is the amplitude and f is the frequency of the pure tone.

The sound waves that we hear are rarely pure tones. Usually what we hear is the

composition or superposition of pure tones, each with its own frequency and amplitude.

The displacement of air molecules caused by a sound wave is equal to the sum of the

displacements of the individual sound waves. This is called the superposition principle.

Definition. A tone is a sound wave that is modeled by a function of the form

s(t) =
∞∑
m=0

Am sin(2πfmt)

where Am is the amplitude of the pure tone of frequency fm of the tone.

2



Chapter 2: The Frequency Spectrum

One way to analyze a tone is to determine the amplitudes of its pure tone compo-

nents. The frequency spectrum of a tone is a description of its pure tone composition in

terms of the amplitudes that correspond to the frequencies of its pure tone components.

2.1 The Fourier series

Under certain restrictions, a periodic function that models a tone has a representa-

tion as a Fourier series that describes the tone as a sum, or superposition, of pure

tones. The frequencies of these pure tones are integer multiples of the fundamental

frequency of the tone. Since the fundamental frequency 1
T

is the frequency of the

pure tone component whose wave oscillates exactly once on the interval [0, T ], the nth

pure tone in the sum has n periods on the interval [0, T ] and frequency n
T

. Hence the

Fourier series of a periodic function that models a tone decomposes the tone into a

sum of its pure tone components of frequency n
T

, providing a complete description of

the tone’s frequency spectrum.

It is important to note that for the tones of our study, and throughout the

discussions and proofs of the remainder of this thesis, we will assume that T = 1.

Notice then that the nth pure tone of the tones of our study have frequency n and

that the fundamental frequency is 1. For more general discussions and proofs, see [2].

3



Definition. Given a periodic function f with some restrictions, including piecewise

continuity on a closed and bounded interval [0, 1], the complex form of the Fourier

series of f is

f(x) =
∞∑

n=−∞

cne
i2πnx

where the Fourier coefficients cn are given by

cn =

∫ 1

0

f(x)e−i2πnxdx.

2.1.1 Fourier series convergence

In general, when a series converges to a function f , the series is said to be equal to

f(x) for all values of x. What conditions are sufficient for a Fourier series to converge

to a function? To answer this question is beyond the scope of this thesis. Instead

we show that the Fourier series of the piecewise continuous functions of our study

converge to these functions. To show this, we need the following definition.

Definition. A function f is Lipschitz at a point xL if there exists a positive constant

A such that for all x near xL where x 6= xL

|f(x)− f(xL)| 6 A |x− xL| .

Proposition 2.1.1. Let f be Lipschitz at xL. The Fourier series of f converges to f

at xL.

Proof. Suppose a function s is sampled at N equally spaced points xk for k =

0, . . . , N − 1. Then the function f that models the samples is a step function of the

4



form

f(x) =



s(x0) : x0 6 x < x1

s(x1) : x1 6 x < x2

. . .
s(xk) : xk 6 x < xk+1

s(xk+1) : xk+1 6 x < xk+2

. . .
s(xN−2) : xN−2 6 x < xN−1

s(xN−1) : xN−1 6 x < xN .

By definition, with the possible exception of the endpoints, f is Lipschitz at each

point xL within each kth interval since for each of these points, f(x) = s(xk) = f(xL).

We want to show that the Fourier series of f converges to f at each point xL.

Equivalently, we want to show that for each xL

lim
|n|→∞

SN(xL) = lim
|n|→∞

N∑
n=−N

cne
i2πnxL = f(xL).

Let the function g be defined by

g(x) =
f(x)− f(xL)

ei2πx − ei2πxL
.

Since f is Lipschitz at xL,

|f(x)− f(xL)|
|ei2πx − ei2πxL|

6 A
|x− xL|

|ei2πx − ei2πxL|
.

By L’Hospital’s Rule,

lim
x→xL

|x− xL|
|ei2πx − ei2πxL|

= lim
x→xL

1

2π |iei2πx|
=

1

2π
.

Therefore since limx→xL
|x−xL|

|ei2πx−ei2πxL| <∞, g(x) = f(x)−f(xL)

ei2πx−ei2πxL is bounded in magnitude

for x near xL. Hence
∫ 1

0
|g(x)| dx is finite.

Now let dn denote the nth coefficient of the Fourier series for g(x) so that

dn =

∫ 1

0

f(x)− f(xL)

ei2πx − ei2πxL
e−i2πnxdx.

5



Then

dn−1 − dnei2πxL =

∫ 1

0

(f(x)− f(xL))e−i2πnx

ei2πx − ei2πxL
(ei2πx/T − ei2πxL)dx

=
1

T

∫ 1

0

f(x)e−i2πnx − f(xL)e−i2πnxdx

= cn −
∫ 1

0

f(xL)e−i2πnxdx

= cn − f(xL)

∫ 1

0

e−i2πnxdx.

When n = 0, e−i2πnx = 1 and
∫ 1

0
e−i2πnxdx = 1.

When n 6= 0,
∫ 1

0
e−i2πnxdx = −f(xL)

i2πn
(e−i2πn − e−i2πn(0)) = 0.

Hence

cn =

{
dn−1 − dnei2πxL + f(xL) : n = 0
dn−1 − dnei2πxL : n 6= 0.

The partial sum SN(xL) =
∑N

n=−N cne
i2πnxL telescopes:

N∑
n=−N

cne
i2πnxL = c−Ne

−i2πNxL + . . .

+ c−1e
−i2πxL + c0e

0 + c1e
i2πxL + . . .

+ cNe
i2πNxL

= d−N−1e
−i2πNxL + · · ·+

(
d−2 − d−1e

i2πxL
)
e−i2πxL

+ d−1 − d0e
i2πxL + f(xL)

+
(
d0 − d1e

i2πxL
)
ei2πxL + · · ·+ dNe

i2π(N+1)xL

= d−N−1e
−i2πNxL + · · ·+ f(xL) + · · ·+ dNe

i2π(N+1)xL .

6



Now consider the inequality

0 6
∫ 1

0

∣∣∣∣∣g(x)−
N∑

n=−N

dne
i2πnx

∣∣∣∣∣
2

dx

=

∫ 1

0

(
g(x)−

N∑
m=−N

dme
i2πmx

)(
g(x)−

N∑
n=−N

dne
−i2πnx

)
dx

=

∫ 1

0

|g(x)|2 dx−
N∑

n=−N

|dn|2

by orthogonality.1 Therefore

N∑
n=−N

|dn|2 6
∫ 1

0

|g(x)|2 dx.

Since this inequality holds for all N , we have2

∞∑
n=−∞

|dn|2 6
∫ 1

0

|g(x)|2 dx.

Recall that
∫ T

0
|g(x)| dx is finite. It follows that lim|n|→∞ dn = 0.

Then since for each xL

SN(xL) =
N∑

n=−N

cne
i2πnxL = d−N−1e

−i2πNxL + · · ·+ f(xL) + · · ·+ dNe
i2π(N+1)xL ,

we have

lim
|n|→∞

SN(xL) = lim
|n|→∞

N∑
n=−N

cne
i2πnxL

= lim
|n|→∞

d−N−1e
−i2πNxL + · · ·+ f(xL) + · · ·+ dNe

i2π(N+1)xL

= f(xL)

for each xL.

Hence the piecewise continuous step functions of our study are Lipschitz at each

point xL, and the Fourier series of these functions converge to these functions at each

of these points xL.

1We will define and discuss orthogonality later in this chapter.

2This is known as Bessel’s Inequality.
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2.2 The Fourier transform

For the past two centuries the Fourier transform has been the primary mathematical

tool used to determine the frequency spectrum of periodic waves such as heat, light,

electricity, and sound, in a wide range of fields such as geology, astronomy, acoustics,

and quantum physics. It is important to notice in the following definition that while

the domain of f is time or space, the domain of the Fourier transform f̂ is frequency.

By transforming an otherwise difficult problem into the frequency domain, the Fourier

transform is often the key to successful problem solving.

Definition. Let f be an absolutely integrable function over R. The Fourier trans-

form of f is denoted by f̂ and is uniquely defined as a function of frequency ξ

by

f̂(ξ) =

∫ ∞
−∞

f(x)e−i2πξxdx.

The integral defining the Fourier transform is closely related to the integral that

determines the coefficients of the Fourier series of f . Indeed, if f(x) is a function

defined only on an interval of length 1, then it can be extended to a periodic function

of period 1. In this case the Fourier transform equals the integral that computes the

Fourier series coefficients.

2.3 The continuous to discrete Fourier transform

While the Fourier transform has been used for centuries, the discrete Fourier

transform was birthed in the digital age of computers as an approximation of the

Fourier transform. In a sense, the discrete Fourier transform was born out of the

necessity to process the vast amount of information that is now in discrete, sampled

8



form. It is the most appropriately chosen mathematical tool for any study of discrete

sound wave data samples.

As an approximation of the Fourier transform of a periodic function f , the discrete

Fourier transform does not exist unless f is zero outside of some finite interval. Since

each tone of our study has a 1-second duration so that T = 1, f(x) = 0 when x < 0

or x > 1. Therefore for the functions f our study, the Fourier transform of f is

f̂(ξ) =

∫ ∞
−∞

f(x)e−i2πξxdx =

∫ 1

0

f(x)e−i2πξxdx.

The key to the approximation of the Fourier transform of a function f that is zero

outside of [0, 1] is in the approximation of its integral by a Riemann sum:∫ 1

0

f(x)dx ≈
N−1∑
k=0

f(x)∆x.

Using this Riemann sum approximation, the Fourier transform is given by

f̂(ξ) =

∫ 1

0

f(x)e−i2πξxdx ≈
N−1∑
k=0

f(x)e−i2πξx∆x

where ∆x = 1
N

. Now notice that when a periodic function3 f is sampled on the

interval [0, 1] at N equally spaced points xk = k∆x = k
N

,∫ 1

0

f(x)dx =
N−1∑
k=0

f(xk)∆x.

3f might not be explicitly defined as a function. It could be given as a discrete set of data values.
We often assume that f is defined at equally spaced values xk of some variable x when, in fact, f
might be known only at these points.

9



Hence for the functions f of our study, the Fourier transform of f is given by

f̂(ξ) =

∫ ∞
−∞

f(x)e−i2πξxdx

=

∫ 1

0

f(x)e−i2πξxdx

=
N−1∑
k=0

f(xk)e
−i2πξxk∆x

=
1

N

N−1∑
k=0

f(xk)e
−i2πξxk .

As we shall see, this sum will lead to the discrete Fourier transform.

2.4 Inner product

The inner product of two complex vectors is the primary “mathematical mechanism”

of the discrete Fourier transform.

Definition. Given complex vectors x = (x0, . . . , xN−1) ∈ CN and y = (y0, . . . , yN−1) ∈

CN , an inner product on CN is a function 〈., .〉 : CN × CN → C that associates to

x and y a complex number 〈x,y〉 ∈ C that satisfies the following properties:

1. Positive-definiteness: 〈x,x〉 ≥ 0 and 〈x,x〉 = 0⇔ x = 0.

2. Linearity in the second argument: 〈x,y + z〉 = 〈x,y〉 + 〈x, z〉 and 〈x, αy〉 =

α〈x,y〉, for all complex numbers, α.

3. Conjugate symmetry: 〈x,y〉 = 〈y,x〉.

Proposition 2.4.1. Given two complex vectors x = (x0, . . . , xN−1) ∈ CN and y =

(y0, . . . , yN−1) ∈ CN ,

〈x,y〉 =
N−1∑
k=0

xkyk

defines an inner product on CN .
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Proof. We will first show that 〈x,y〉 is positive-definite. Let xk = a+bi where a, b ∈ R.

Now

xkxk = (a+ bi)(a− bi) = a2 + b2.

Since for all a, b ∈ R, a2 ≥ 0 and b2 ≥ 0, we have xkxk ≥ 0. Hence 〈x,x〉 is the sum

of nonnegative real numbers, and is also nonnegative. Furthermore, since 〈x,x〉 is

the sum of nonnegative real numbers xkxk,we have 〈x,x〉 = 0 if and only if for all k,

xk = 0. Hence 〈x,y〉 is positive-definite.

To show that 〈x,y〉 is linear in the second-argument, we will first show that

〈x,y + z〉 = 〈x,y〉+ 〈x, z〉. Let yk = c+ di where c, d ∈ R, and let zk = f + gi where

f, g ∈ R, so

(y + z)k = yk + zk = c+ di+ f + gi = c+ f + i(d+ g).

Then

〈x,y + z〉 =
N−1∑
k=0

xk(y + z)k

=
N−1∑
k=0

(a+ bi)(c+ f − i(d+ g))

=
N−1∑
k=0

(a+ bi)(c− di+ f − gi)

=
N−1∑
k=0

xk(yk + zk)

=
N−1∑
k=0

xkyk +
N−1∑
k=0

xkzk

= 〈x,y〉+ 〈x, z〉.

Hence 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉.

11



Now we want to show that 〈x, αy〉 = α〈x,y〉, for all complex numbers, α.

〈x, αy〉 =
N−1∑
k=0

xkαyk

=
N−1∑
k=0

(a+ bi)(α(c+ di))

=
N−1∑
k=0

(a+ bi)(αc+ αdi)

=
N−1∑
k=0

(a+ bi)(αc− αdi)

=
N−1∑
k=0

α(a+ bi)(c− di)

= α
N−1∑
k=0

xkyk

= α〈x,y〉.

Hence 〈x,y〉 is linear in the second argument.

To show that 〈x,y〉 is conjugate symmetric, recall that the conjugate of a sum of

complex numbers is equal to the sum of their conjugates. So

〈y,x〉 =
N−1∑
k=0

ykxk =
N−1∑
k=0

ykxk =
N−1∑
k=0

ykxk =
N−1∑
k=0

xkyk = 〈x,y〉.

Hence 〈x,y〉 is conjugate symmetric.

Hence 〈x,y〉 is positive-definite, linear in the second-argument, and conjugate

symmetric, and therefore defines an inner product on CN .

2.5 Orthogonality

Heuristically speaking, an inner product of two vectors gives information that

shows how “aligned” two vectors are. This leads us to our next definition.
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Definition. Two vectors x,y ∈ CN are orthogonal with respect to an inner product

on CN if 〈x,y〉 = 0.

Proposition 2.5.1. For k = 0, . . . , N − 1, let

sm = (ei2πm(0)/N , . . . , ei2πmk/N , . . . , ei2πm(N−1)/N) ∈ CN .

If m,n ∈ Z and m 6= n, then sm and sn are orthogonal.

Proof. We want to show
∑N−1

k=0 e
i2πmk/Nei2πnk/N = 0. Notice that for integers m and

n,
(
ei2π(m−n)/N

)N
= 1. Hence ei2π(m−n)/N is a root of the polynomial

zN − 1 = (z − 1)(zN−1 + zN−2 + · · ·+ z + 1) = (z − 1)
N−1∑
k=0

zk.

Since m 6= n, ei2π(m−n)/N 6= 1. Hence the sum is zero, and we have

N−1∑
k=0

zk =
N−1∑
k=0

(ei2π(m−n)/N)k

=
N−1∑
k=0

ei2π(m−n)k/N

=
N−1∑
k=0

ei2πmk/Ne−i2πnk/N

=
N−1∑
k=0

ei2πmk/Nei2πnk/N = 0.

Hence if m,n ∈ Z and m 6= n, then sm and sn are orthogonal.

Proposition 2.5.2. Let sm = (ei2πm(0)/N , . . . , ei2πmk/N , . . . , ei2πm(N−1)/N ) ∈ CN . Then

〈sm, sm〉 = N .

Proof. 〈sm, sm〉 =
∑N−1

k=0 e
i2πmk/Nei2πmk/N =

∑N−1
k=0 e

0 = N .

13



2.6 The discrete Fourier transform and the frequency
spectrum

The discrete Fourier transform is used to determine the frequency spectrum of

tones. This is analagous to using a prism to decompose white light while computing

the magnitude of each of its component colors. Orthogonality is the key to this process.

In order to determine if a pure tone of frequency n is present in a tone x, we take

N samples of x, generating the vector x = (s0, . . . , xN−1) ∈ CN , and compute 〈x, sn〉

where

sn = (ei2πn(0)/N , . . . , ei2πnk/N , . . . , ei2πn(N−1)/N) ∈ CN .

In this computation, orthogonality filters out the amplitude Am of any pure tone of

frequency m unless m = n. In other words, 〈x, sn〉 = 0 unless there exists a pure tone

of frequency n in tone x.

The discrete Fourier transform has several commonly used forms. We’ll adopt this

one:

Definition. Given a vector x = (x0, . . . , xk, . . . , xN−1) ∈ CN and a vector

sn = (ei2πn(0)/N , . . . , ei2πnk/N , . . . , ei2πn(N−1)/N) ∈ CN ,

the discrete Fourier transform of x is the vector X = (X0, . . . , Xn, . . . , XN−1) ∈

CN where

Xn = 〈x, sn〉 =
N−1∑
k=0

xksn(k) =
N−1∑
k=0

xke
−i2πnk/N .

Recall from section 2.3 that for the functions f of our study the Fourier transform

of f is given by

f̂(ξ) =
1

N

N−1∑
k=0

f(xk)e
−i2πξxk .

14



Hence F = (F0, . . . , Fξ, . . . , FN−1) is the discrete Fourier transform of

f = (f(x0), . . . , f(xk), . . . , f(xN−1))

where

Fξ = 〈f , sξ〉 =
N−1∑
k=0

f(xk)e
−i2πξxk = Nf̂(ξ)

and f̂(ξ) is the Fourier transform of f .

Proposition 2.6.1. Suppose that N samples of a tone

f(x) =
∞∑
m=0

Am sin(2πmx)

are taken, generating a vector f = (f(x0), . . . , f(xk), . . . , f(xN−1)) where

f(xk) =
∞∑
m=0

Am sin(2πmxk) =
∞∑
m=0

Am sin(2πmk/N),

Am is the amplitude of the pure tone of frequency m, and F = (F0, . . . , Fn, . . . , FN−1)

is the discrete Fourier transform of f . Then for all nonnegative integers n, Sn = |Fn|

is directly proportional to An.

Proof. The discrete Fourier transform of f is the vector F where

Fn = 〈f , sn〉 =
N−1∑
k=0

f(xk)ei2πnk/N

=
N−1∑
k=0

(
∞∑
m=0

(Am sin(2πmk/N))e−i2πnk/N

)

=
N−1∑
k=0

(
∞∑
m=0

(Am
ei2πmk/N − e−i2πmk/N

2i
)e−i2πnk/N

)

=
1

2i

∞∑
m=0

Am

N−1∑
k=0

(
ei2πmk/Ne−i2πnk/N − e−i2πmk/Ne−i2πnk/N

)
=

1

2i

∞∑
m=0

Am(〈sm, sn〉 − 〈s−m, sn〉).
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Suppose n = 0. Then4

Fn = F0 =
1

2i

∞∑
m=0

Am(〈sm, s0〉 − 〈s−m, s0〉)

=
1

2i
A0(〈s0, s0〉 − 〈s0, s0〉) (by orthogonality)

= 0.

Therefore for n = 0, Sn = |Fn| = 0. Since A0 is the amplitude of the pure tone of

frequency 0, A0 = 0. Hence for n = 0, Sn is directly proportional to An.

Now suppose n ∈ Z+. Then

Fn =
1

2i

∞∑
m=0

Am(〈sm, sn〉 − 〈s−m, sn〉)

=
1

2i
An(〈sn, sn〉 − 〈s−n, sn〉) (by orthogonality)

=
1

2i
An(

N−1∑
k=0

1−
N−1∑
k=0

0)

=
NAn

2i
.

Therefore for n ∈ Z+, Sn = |Fn| =
∣∣NAn

2i

∣∣ = NAn
2

.

Hence for all nonnegative integers n, Sn is directly proportional to An.

We conclude this chapter by defining the frequency spectrum of a tone s in terms

of the discrete Fourier transform.

Definition. The frequency spectrum of a tone

s(x) =
∞∑
m=0

Am sin(2πmx)

is the vector S = (S0, . . . , SN−1) where Sn = |Fn|, F = (F0, . . . , FN−1) is the discrete

Fourier transform of s = (s(x0), . . . , s(xN−1)), and s(xk) is the kth sample of s.

4Since F0 = 〈f , s0〉 =
∑N−1
k=0 f(xk)ei2π(0)k/N =

∑N−1
k=0 f(xk), F0 is equal to the sum of the

elements of the input data.
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Chapter 3: Analysis of Effects

Our goal is to analyze and model five standard effects on sound waves, namely

vibrato, chorus, flanger, phaser, and overdrive. In order to widen the scope of our

analysis, we will use pure tones of ten selected frequencies ranging from 220 Hz

to 1320 Hz: 220, 440, 495, 528, 5862
3
, 660, 7331

3
, 792, 880, and 1320 Hz. These

frequencies represent the A Dorian Minor scale, with the addition of the 220 and 1320

Hz frequencies.

Each pure tone will be separately altered by each of three versions of each of the

five effects, generating 150 tones. Using Mathematica’s Fourier command, we will

generate the frequency spectrum of each of these tones. Then based on an analysis

of 30 frequency spectra for each effect, we will use Mathematica’s Fit command

to estimate a ‘best fit’ function that models how the magnitude of each prominent

component varies with input frequency for each of the five effects. Using these models,

as well as our general frequency spectra observations, we will define how the effect

alters pure tones of varying frequencies. The definitions for each effect of our analysis

are below. We outline the analysis procedures as follows.
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3.1 Analysis procedures

3.1.1 Analysis definitions

We will classify each effect in our study as an effect, a pure tone effect, or a tone

effect. Since a tone usually consists of more than one pure tone, we need to define

what we mean when we refer to the frequency of a tone.

Definition. The frequency of a tone

s(t) =
∞∑
m=0

Am sin(2πfmt)

is the frequency fn corresponding to the maximum amplitude An, when there is a

maximum amplitude. A maximum amplitude exists when a pure tone has a greater

amplitude than the amplitude of all of the other pure tones of the tone.

We’ll denote the set of all pure tones by P and the set of all pure tones of frequency

n by Pn. Likewise, we’ll denote the set of all tones by T and the set of all tones of

frequency n by Tn. Notice that, by definition, every pure tone is a tone. Hence, P is a

proper subset of T. Also notice that, by defintion, two or more distinct tones can have

the same frequency, but two or more pure tones of the same frequency are not unique.

Hence P is the disjoint union of the Pn’s where n runs from zero to infinity, and T is

a proper super-set of the joint union of the Tn’s where n runs from zero to infinity.

Definition. An effect is a function µ : T → T.

Definition. A pure tone effect is a function γ : P→ T such that for all values of

f , γ : Pf → Tf .

Definition. A tone effect is a function Γ : T → T such that for all values of f ,

Γ : Tf → Tf .
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By definition, the input of a pure tone effect is a pure tone, and the output is a

tone whose frequency is equal to the frequency of the pure tone. Likewise, the input

of a tone effect is a tone, and the output is a tone whose frequency is equal to the

frequency of the input tone. An effect has no frequency restrictions. Its input and

output are tones of any frequency.

Note: After we determined that the effect that overdrive has on tones does not

have a linear relation to its effect on pure tones, we decided that describing effects

based on our definition of tone effect would be an overwhelmingly time-consuming

endeavor. Based on this observation we decided to focus on describing how the five

effects alter pure tones. Although it was not a primary focus of our analysis, we

determined which effects satsify our definition of pure tone effect.

3.1.2 Step-by-step procedures

The first step was to generate 10 1-second pure tones using Mathematica’s Sin

command. Then for each pure tone, we

1. used Mathematica’s Play command to take data samples of the tone at 11,025

samples per second.

2. used Mathematica’s Export command to convert the data into a .aif file.

3. used GarageBand to alter the sound wave data with one of 15 effects.

4. used Mathematica’s Import, Fullform, and Table commands to convert the

new .aif file into 11,025 data samples.

5. used Mathematica’s Fourier and ListLinePlot commands to generate and

plot the frequency spectrum of the altered sound wave data.
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1 s È 44 100 Hz È 2 channels

Figure 3.1: Using Mathematica’s Import command, a tone is imported into Mathe-
matica as the output of the GarageBand effect, Choral Stack, whose input was a 528
Hz pure tone.
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Figure 3.2: Frequency spectrum of the output tone of Choral Stack whose input was
a 528 Hz pure tone
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1 s È 44 100 Hz È 2 channels

Figure 3.3: Using Mathematica’s Import command, a tone is imported into Mathe-
matica as the output of the GarageBand effect, Chorus Shimmer, whose input was a
528 Hz pure tone. Notice the the tone’s ‘thin’ appearance correspnding to its ‘thin’
frequency spectrum below.
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Figure 3.4: Frequency spectrum of the output tone of Chorus Shimmer whose input
was a 528 Hz pure tone
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1 s È 44 100 Hz È 2 channels

Figure 3.5: Using Mathematica’s Import command, a tone is imported into Mathe-
matica as the output of the GarageBand effect, Chunky Chorus, whose input was a
528 Hz pure tone.
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Figure 3.6: Frequency spectrum of the output tone of Chunky Chorus whose input
was a 528 Hz pure tone

22



generatepuretone effect tone
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discrete
Fourier
transform

frequencyspectrumof tone

Figure 3.7: Flowchart of analysis procedures for determining the frequency spectrum
of an output tone of an effect on sound
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Execution of these steps generated 150 frequency spectra, 30 for each of the five

standard effects of our study. Our next step was to determine the four greatest Sn

values of each of the 30 frequency spectra for each effect.5 Through careful obseravtion

of each set of 120 data points, we determined the most significant and common

pure tone components of the output tones of each effect. Then recognizing that the

magnitude of each prominent component varies with input frequency, we decided

that the best way to model each of the five effects was to use Mathematica’s Fit

command to find a ‘best fit’ function model that describes how the prominence of

each component varies with the frequency of the input pure tone of frequency f .

Therefore the next step was to create a list of (f, Sn) data points for each component

of frequency n.

For example, for overdrive we determined that the most significant components

are of frequencies n = f , n = 3f , n = 4f , n = 5f , and n = 7f . For each of these five

components, 30 (f, Sn) data points were placed in a list, one for each of 10 frequencies

and three chosen examples of the overdrive effect. For example, the list for component

n = 5f contains 30 (f, S5f ) data points. Over the domain of 10 frequencies from 220

Hz to 1320 Hz, the data points in this list quantify how much the 5f component is

present in the frequency spectra of the three overdrive effects.

We found in our effect analysis that third degree polynomials best model the

behavior of effects on sound. Hence, to model how the magnitude of each component

varies with frequency, we used cubic functions6 of the form ax3 + bx2 + cx + d. In

conjunction with Mathematica’s Fit command, we determined a best fit model for

5This provided us with 600 total data points to consider, 40 for each of 15 effects, grouped in sets
of 120 per five standard effects.

6This choice was made based primarily on our frequency spectrum observations. It is certainly
possible that for some effects a 2nd or 4th degree model is a better choice.
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30datapointspercomponent,
3pointsper input frequency

best fitmodel formagnitudeofeach
componentas functionof input frequency
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10puretonesx3versionsofeffect

Figure 3.8: Flowchart of analysis procedures for modeling an effect on sound
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each significant component of each effect. Using these models we were able to define

each effect in terms of the behavior of these components over the 220 Hz to 1320 Hz

frequency domain. The final step of our analysis was to compare these definitons with

their traditionally accepted definitions. The results are decribed below.

Now that we have outlined our step-by-step procedures, we describe the method

that we used to estimate the best fit function models for the effects, the method of

least squares.

3.1.3 The method of least squares

When a set of data points do not “fit” along a line or curve, the method of least

squares is often preferred to determine a “least squares approximation” function that

models the data. Mathematica’s Fit command uses this method.

The method of least squares determines the best fit function model such that the

sum of the squares of the distances between the data points and the points of the

model is minimzed. Simply put, this method minimizes the discrete least squares

error, a real-valued, nonnegative function.

The method of least squares is based on the variance σ2
x of a set of data {x0, . . . , xN−1},

a tool commonly used by statisticians that quantifies how much a set of data varies

from its mean x. The variance is given by

σ2
x =

1

N

N−1∑
i=0

(xi − x)2.

When the method of least squares is used, larger errors are weighted more because

each error is squared in the sum. One might choose to remove such weights by using

1
N

∑N−1
i=0 (xi−x), but then not only could terms of the sum be negative, the sum would

always be zero. One might also consider using absolute values as in 1
N

∑N−1
i=0 |(xi − x)|.
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But this is also not a good choice since the absolute value function is not differentiable.

Hence although the use of the sum of the squares causes a disproportionate effect on

the fit, it enables us to work with a continuous differentiable quantity.

The discrete least squares error that is minimized by the method of least squares

is simply Nσ2
x where σ2

x is the variance of the data set of size N . Given a set of N

data points

{(f0, An0) . . . , (fN−1, AnN−1
)},

the discrete least squares error is the function

E(a, b, c, d) =
N−1∑
k=0

(Ank − g(fk))
2

=
N−1∑
k=0

((
Ank − (af 3

k + bf 2
k + cfk + d)

)2
)
.

To find the best fit model, we need to determine the values of the a, b, c, and d

coefficients such that this discrete least squares error function is minimized. This

equates to finding the values of these coefficients such that ∂E
∂a

= ∂E
∂b

= ∂E
∂c

= ∂E
∂d

= 0.

Notice that the E(a, b, c, d) values increase with the absolute values of the coefficients.

Therefore we do not need to check the boundary points for minimum values.

It suffices to compute the partial derivatives and set them equal to zero:

∂E

∂a
=

N−1∑
k=0

2
(
Ank − (af 3

k + bf 2
k + cfk + d)

)
(−f 3

k ) = 0

∂E

∂b
=

N−1∑
k=0

2
(
Ank − (af 3

k + bf 2
k + cfk + d)

)
(−f 2

k ) = 0

∂E

∂c
=

N−1∑
k=0

2
(
Ank − (af 3

k + bf 2
k + cfk + d)

)
(−fk) = 0

∂E

∂d
=

N−1∑
k=0

2
(
Ank − (af 3

k + bf 2
k + cfk + d)

)
= 0.
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Then dividing by 2 we have

N−1∑
k=0

(
Ank − (af 3

k + bf 2
k + cfk + d)

)
(−f 3

k ) = 0

N−1∑
k=0

(
Ank − (af 3

k + bf 2
k + cfk + d)

)
(−f 2

k ) = 0

N−1∑
k=0

(
Ank − (af 3

k + bf 2
k + cfk + d)

)
(−fk) = 0

N−1∑
k=0

(
Ank − (af 3

k + bf 2
k + cfk + d)

)
= 0.

Rewriting these equations in terms of linear combinations of the sums, we have(
N−1∑
k=0

f 6
k

)
a+

(
N−1∑
k=0

f 5
k

)
b+

(
N−1∑
k=0

f 4
k

)
c+

(
N−1∑
k=0

f 3
k

)
d =

N−1∑
k=0

f 3
kAnk(

N−1∑
k=0

f 5
k

)
a+

(
N−1∑
k=0

f 4
k

)
b+

(
N−1∑
k=0

f 3
k

)
c+

(
N−1∑
k=0

f 2
k

)
d =

N−1∑
k=0

f 2
kAnk(

N−1∑
k=0

f 4
k

)
a+

(
N−1∑
k=0

f 3
k

)
b+

(
N−1∑
k=0

f 2
k

)
c+

(
N−1∑
k=0

fk

)
d =

N−1∑
k=0

fkAnk(
N−1∑
k=0

f 3
k

)
a+

(
N−1∑
k=0

f 2
k

)
b+

(
N−1∑
k=0

fk

)
c+

(
N−1∑
k=0

1

)
d =

N−1∑
k=0

Ank .

Hence the values of the a, b, c, and d coefficients that minimize the discrete least

squares error function satisfy the matrix equation
∑N−1

k=0 f
6
k

∑N−1
k=0 f

5
k

∑N−1
k=0 f

4
k

∑N−1
k=0 f

3
k∑N−1

k=0 f
5
k

∑N−1
k=0 f

4
k

∑N−1
k=0 f

3
k

∑N−1
k=0 f

2
k∑N−1

k=0 f
4
k

∑N−1
k=0 f

3
k

∑N−1
k=0 f

2
k

∑N−1
k=0 fk∑N−1

k=0 f
3
k

∑N−1
k=0 f

2
k

∑N−1
k=0 fk

∑N−1
k=0 1




a
b
c
d

 =


∑N−1

k=0 f
3
kAnk∑N−1

k=0 f
2
kAnk∑N−1

k=0 fkAnk∑N−1
k=0 Ank

 .

Solutions to this equation exist if and only if the matrix

M =


∑N−1

k=0 f
6
k

∑N−1
k=0 f

5
k

∑N−1
k=0 f

4
k

∑N−1
k=0 f

3
k∑N−1

k=0 f
5
k

∑N−1
k=0 f

4
k

∑N−1
k=0 f

3
k

∑N−1
k=0 f

2
k∑N−1

k=0 f
4
k

∑N−1
k=0 f

3
k

∑N−1
k=0 f

2
k

∑N−1
k=0 fk∑N−1

k=0 f
3
k

∑N−1
k=0 f

2
k

∑N−1
k=0 fk

∑N−1
k=0 1


is invertible if and only if the determinant of M is nonzero.
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Figure 3.9: Mathematica’s Fit command uses vertical fitting. The squared distances
are vertical, not perpendicular, to the g(f) “best fit” model.

The determinant of M is nonzero if the fk values are not all equal. Hence a least

squares solution exists unless the fk values are all equal. For our study, this means

that a least squares solution exists unless the input of each effect is a tone of the same

frequency.

3.2 Effect modeling and analysis

With the exception of overdrive, the effects that we have chosen to analyze are often

categorized as modulation effects. Modulation effects change in real time according to

user specifications. These changes occur when the parameters of the effect’s processor

are varied or modulated. The most common parameters are called “delay time” and

“pitch shift.” These parameters can be manually or automatically modulated. For
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automatic modulation, most often a low-frequency oscillator is used to control the

value of the selected parameter over time. A low-frequency oscillator is a sinusoidal

signal that is commonly used to modulate parameters of other signals at a frequency

that is usually below 20 Hz.

3.2.1 Vibrato

Vibrato is a modulation effect characterized by a regular modulation of pitch. It is

often confused with tremelo which is characterized by the modulation of amplitude. It

has two fundamental parameters, the amount of pitch variation and the frequency of

pitch variation. Both of these parameters are typically controlled by a low-frequency

oscillator. The amplitude of the low frequency oscillator (or other modulation source)

determines how much the pitch modulates, and the frequency of the low frequency

oscillator determines how often the pitch modulates. Both the frequency and the

amplitude of the modulation are very low. The frequency of modulation (how often

the pitch varies) is typically between 4 and 7 Hz. The amplitude of the modulation

(amount of pitch variation) is typically between one-tenth of a semi-tone (10 cents)

and a whole tone (200 cents).

Vibrato can be used to give sound a natural, “warm” quality or to add expression

within a musical composition. It can be produced in a variety of ways by musicians.

It naturally results from the free oscillation of vocal cords, especially for high register

vocalists, and it can be produced by modulating the air flow into wind instruments or

by bending the strings of a guitar.
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After observing the frequency spectra of 30 output tones of the three vibrato effects

that we used in our analysis, we determined that by definition, since for all m and j,

α(m, j) > β(m, j), vibrato is a pure tone effect.

Definition. Vibrato is a pure tone effect ξ : P→ S such that

ω : sin(2πmt) 7→
∞∑
j=1

α(m, j) sin(2πjmt) +
m−1∑
j=1

β(m, j) sin(2π(m− j)t)

+
∞∑
j=1

β(m, j) sin(2π(m+ j)t)

where m is the frequency of the input pure tone,

α(m, j) =

{
f(m, j) : f(m, j) ≥ 0
0 : otherwise,

β(m, j) =

{
g(m, j) : g(m, j) ≥ 0
0 : otherwise,

and

f(m, 1) ≈ 0.05 + 0.0016m− 3.0× 10−6m2 + 1.5× 10−9m3,

f(m, 3) ≈ 0.3− 0.0012m+ 1.7× 10−6m2 − 7.0× 10−10m3,

f(m, 5) ≈ −0.2 + 0.0016m− 3.0× 10−6m2 + 1.75× 10−9m3,

f(m, j) ≈ 0,∀j /∈ {1, 3, 5},

g(m, 4) ≈ g(m, 6) ≈ g(m, 8) ≈ −0.05 + 0.0004m− 4.0× 10−7m2 + 1.2× 10−10m3,

g(m, j) ≈ 0,∀j /∈ {1, 2, 3}.

Our traditional and mathematical definitions are not contradictory. According to

our traditional description, vibrato is characterized by the periodic variation of the
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pitch of a sound wave. In our mathematical description, vibrato receives a pure tone of

frequency m as input and outputs a tone with a most prominent pure tone component

of frequency m and less prominent components of frequency m± j where m ∈ {1, 3, 5}.

Clearly the variations of pitch of these latter components are characteristic results of

the effect of vibrato on the original pure tone.

Also according to our traditional description, vibrato is characterized by pitch

modulation that typically varies between one-tenth of a semi-tone and a whole

tone. According to our mathematical description, vibrato is characterized by pitch

modulation of 1, 3 and 5 Hz. We should note that these values may vary with each

vibrato effect. It should not be assumed that all vibrato effects are characterized by

these particular pitch shift values. 1, 3 and 5 Hz were the most prominent pitch shift

values found in our analysis, so we defined our model accordingly.

We analyzed 30 tones, each the output of one of 3 vibrato effects whose input was a

pure tone of frequency f in Hz where 220 6 f 6 1320. One semi-tone above 220 Hz is

approximately 233 Hz. Then one-tenth of a semi-tone above 220 Hz corresponds to a

pitch variation of approximately 1.3 Hz, and one whole tone above 220 Hz corresponds

to a pitch variation of approximately 26 Hz. So according to our traditional definition,

the pitch modulation for a 220 Hz pure tone typically varies between 1.3 Hz and 26

Hz. According to our model, the pitch modulation values are 1, 3 and 5 Hz. Since our

1 Hz minimum variation is only slightly below the typical minimum, we claim that

our definitions do not contradict each other.

We suspect that for the Apple/Garageband designers of the vibrato effects that

we analyzed, 1 Hz was a simpler, easier choice than a decimal value slightly above 1

Hz for the minimum pitch variation.
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Figure 3.10: Frequency spectrum plot of the Vibrato Dri output tone whose input
was an 880 Hz pure tone
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Figure 3.11: Frequency spectrum plot of the Dark Vibrato output tone whose input
was an 880 Hz pure tone
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Figure 3.12: Frequency spectrum of the High Vibrato output tone whose input was an
880 Hz pure tone

3.2.2 Chorus

The term “chorusing” comes from the fact that each unison voice singing the same

part in a choir varies slightly in pitch with respect to the other voices. Chorus is is a

modulation effect that splits a signal into two and modulates the pitch of one of the

two signals with a low frequency oscillator (or other modulation source). When the

the two signals signals are mixed back together, the result is the “chorusing” effect of

two parts “singing” together at slightly different pitches. The amount of pitch shift is

typically very small. As the amount changes, the two signals go in and out of tune

with each other producing a “swooshing” effect. Notice that the effect applied to the

“wet” copy is basically vibrato.
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Figure 3.13: The frequency spectrum of the Chunky Chorus output tone whose input
was an 880 Hz pure tone. Notice that S2640 > S880.

After observing the frequency spectra of 30 output tones of the three chorus effects

that we used in our analysis, we determined that by definition, since there exist m

and j such that α(m, j) < β(m, j) or α(m, j) < η(m, j) or α(m, j) < ζ(m, j), chorus

is not a pure tone effect.7 See Figure 3.13. Therefore we define it simply as an effect.

Definition. Chorus is an effect ω : P→ S such that

ω : sin(2πmt) 7→
∞∑
j=1

α(m, j) sin(2πjmt) +
m−1∑

j=−m+1

β(m, j) sin(2π(m+ j)t)

+
m−1∑

j=−m+1

η(m, j) sin(2π(3m+ j)t)

+
m−1∑

j=−m+1

ζ(m, j) sin(2π(5m+ j)t)

7For instance, the maximum Sn value of the frequency spectrum for the output tone of the Chunky
Chorus effect whose input is an 880 Hz pure tone is not S880.
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where m is the frequency of the input pure tone,

α(m, j) =

{
f(m, j) : f(m, j) ≥ 0
0 : otherwise,

β(m, j) =

{
g(m, j) : g(m, j) ≥ 0
0 : otherwise,

η(m, j) =

{
h(m, j) : h(m, j) ≥ 0
0 : otherwise,

ζ(m, j) =

{
l(m, j) : l(m, j) ≥ 0
0 : otherwise,

and

f(m, 1) ≈ 0.5− 0.0005m+ 4.0× 10−7m2 − 7.0× 10−11m3,

f(m, 2) ≈ 0.04− 0.0002m+ 3.0× 10−7m2 − 1.0× 10−10m3,

f(m, 3) ≈ 0.0002m+ 1.0× 10−7m2 − 1.0× 10−10m3,

f(m, 5) ≈ −0.1 + 0.001m− 2.0× 10−6m2 + 1.25× 10−9m3,

f(m, j) ≈ 0,∀j /∈ {1, 2, 3, 5},

g(m, 1) ≈ g(m, 2) ≈ g(m, 3) ≈ 0.02− 0.000016m+ 4.0× 10−8m2 − 2.4× 10−11m3,

g(m, j) ≈ 0,∀j /∈ {1, 2, 3},

h(m, 1) ≈ h(m, 2) ≈ h(m, 3) ≈ −0.01 + 0.0001m− 7.0× 10−8m2 + 1.0× 10−11m3,

h(m, j) ≈ 0,∀j /∈ {0, 1, 2, 3},

l(m, 1) ≈ l(m, 2) ≈ l(m, 3) ≈ −0.1 + 0.0009m− 1.6× 10−6m2 + 9.0× 10−10m3,

l(m, j) ≈ 0,∀j /∈ {0, 1, 2, 3}.

According to our traditional description, chorus splits the original sound signal into

two copies and then varies the pitch of one of the two with a small pitch shift before
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mixing them back together. According to our mathematical definition, the output of

chorus is a tone whose most prominent pure tone components are of frequency m, 2m,

3m, 5m, m± j, 3m± j, and 5m± j, where j ∈ {0, 1, 2, 3}. Clearly the component of

frequency m represents the dry copy of the input pure tone, and the components of

frequency m± jrepresent the results of the small pitch shift applied to the wet copy.

But what about the components of frequency 2m, 3m, 3m± j, 5m, and 5m± j?

Recall the meaning of the term “chorusing” and imagine constructing a chrous

effect. Should the output of chorus be similar to that of vibrato except that only half

of the input signal is affected? Perhaps overtones of the fundamental, like those that

would be heard singing in a choir, should be included. With a proper adjustment

to our traditional definition that would account for these chorusing components,

our definitions would agree. Notice that our mathematical definition includes these

chorusing overtone components, but our traditional definition does not account for

them. We claim that it is our traditional definition that is lacking, not our mathematical

definition, and we suppose that either the overtone components are the result of a

much larger pitch shift or, as we will see in our analysis of the phaser effect (below),

they are the natural result of phase shifting.

3.2.3 Flanger

The name “flanging” comes from the outer edge, or flange, of a tape reel. The

flanging effect was produced by playing the same sound simultaneously on two tape

decks with a finger applied to the flange of a tape reel of one of the two tape decks.

One signal was delayed with respect to the other by different amounts depending on

the finger pressure applied. The result when the two signals are mixed together is
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another “swooshing” effect. While the chorus effect is based on a modulating pitch

shift, the flange effect is based on a modulating time delay.

Flanger is a modulation effect that splits a signal into two, then modulates the

delay time applied to one of the two signals with a low frequency oscillator (or other

modulation source), and then mixes the two signals back together. Because the delay

times are very short, typically between 1 and 15 ms, the individual delays are not

noticeable to the human ear. The result that is heard is a changing phase relationship

between the delayed and dry signals after they are mixed back together. The changing

phase relationship is due to one copy being delayed by an amount of time that is

continually varying.

After observing the frequency spectra of 30 output tones of the three flanger effects

that we used in our analysis, we determined that by definition, since for all m and j

such that j 6= 0, α(m, 0) > α(m, j), flanger is a pure tone effect.

Definition. Flanger is a pure tone effect ω : P→ S such that

ω : sin(2πmt) 7→
m−1∑
j=1

α(m, j) sin(2π(m− j)t) +
∞∑
j=1

α(m, j) sin(2π(m+ j)t)

where m is the frequency of the input pure tone,

α(m, j) =

{
f(m, j) : f(m, j) ≥ 0
0 : otherwise

and

f(m, 0) ≈ 0.2− 0.000162m+ 1.5× 10−7m2 − 1.75× 10−11m3,

f(m, 1) ≈ f(m, 2) ≈ f(m, 3) ≈ 0.00017m− 2.6× 10−7m2 + 1.13× 10−10m3,

f(m, j) ≈ 0,∀j /∈ {0, 1, 2, 3}.
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Our traditional and mathematical definitions agree. According to our traditional

definition, flanger splits the original sound signal into two ‘copies’ and then continually

varies the delay time applied to one of the two before mixing them back together.

According to our mathematical definition, the output of flanger is a tone whose

most prominent component is a pure tone of frequency m and whose less prominent

components are of frequency m±j where j ∈ {1, 2, 3}. The most prominent component

of all 30 frequency spectra is a pure tone of frequency m. This component represents the

dry copy of the input pure tone of frequency m, while the less prominent components

of frequency m± j represent the results of the modulating delay time applied to the

wet copy.

3.2.4 Phaser

Like chorus and flanger, phaser is a modulation effect that splits a signal into two,

alters one of the two, and then mixes the two signals back together, producing an effect

based upon the relationship betwen the wet and dry signals. Phaser modulates the

phase shift applied to one of the two signals by sending it through a series of all-pass

filters that shift the phase of each harmonic component of the signal by amounts that

depend on the frequency of each component, with continuously varying frequency-

dependent relationships. The filters are modulated by a low frequency oscillator (or

other modulation source) that continually changes the frequency-dependent phase-

shifting relationships. The output is a tone with an audible sweeping effect as a series

of peaks and troughs in the frequency spectrum vary over time.
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After observing the frequency spectra of 30 output tones of the three phaser effects

that we used in our analysis, we determined that by definition, since for all m and j

such that j 6= 0, α(m, 0) > α(m, j), phaser is a pure tone effect.

Definition. Phaser is a pure tone effect ω : P→ S such that

ω : sin(2πmt) 7→
m−1∑
j=1

α(m, j) sin(2π(m− j)t) +
∞∑
j=1

α(m, j) sin(2π(m+ j)t)

where m is the frequency of the input pure tone,

α(m, j) =

{
f(m, j) : f(m, j) ≥ 0
0 : otherwise

and

f(m, 0) ≈ 0.13 + 0.0004m− 7.5× 10−7m2 + 3.25× 10−10m3,

f(m, 1) ≈ f(m, 2) ≈ f(m, 3) ≈ 0.00028m− 5.0× 10−7m2 + 2.25× 10−10m3,

f(m, j) ≈ 0,∀j /∈ {0, 1, 2, 3}.

Our traditional and mathematical definitions agree. According to our traditional

definition, phaser splits the original sound signal into two and then continually varies

the phase shift of one of the two by continuously varying amounts that depend on the

frequency of each component according to a continuously varying frequency-dependent

relationship. According to our mathematical definition, the output of phaser is a

tone whose most prominent component is a pure tone of frequency m and whose less

prominent components are of frequency m± j where j ∈ {1, 2, 3}. See Figure 3.14.

Clearly the most prominent output component is of frequency m and represents the

dry copy of the input pure tone of frequency m, while the less prominent components

of frequency m± j represent the results of the modulating frequency-dependent phase-

shifting relationships. This is very similar to the flanger effect, but the magnitude of
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Figure 3.14: Using Mathematica’s Plot command, these two figures display a plot
of the two models we used for the two prominent components, of frequency n = f
(above) and of frequency n = f ± p where p is 1, 2 or 3 (below). Notice that the
magnitude of the latter components appears to be greater than the magnitude of the
n = f component in the ‘neighborhood’ of f = 1200Hz. However, notice the vertical
values are not equally scaled. It is apparent from these two figures that phaser is a
pure tone effect, by definition, since for all f , Sf > Sf±p (with the possible exception
of frequencies of approximately f = 1200Hz).
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the components of the output tones of the flanger and phaser effects have a differing

frequency dependent relationship, which of course is expected.

3.2.5 Overdrive

Overdrive is an effect that increases the amplitude of a sound or signal in order to

produce distortion at various volume levels. It is the only effect in our analysis that is

not a modulation effect. Its name comes from the technique of slightly to moderately

overdriving an amplifier to achieve clipping through increased gain. Gain, a measure

of the amplification of a signal, is the ratio of the output level of a signal to the input

level of a signal, usually measured in decibels, where a ratio of 2 corresponds to an

increase of 3 decibels. Clipping occurs when an amplifier is “driven” to produce a

signal at a level that is beyond its capabilities. In the context of sound, clipping occurs

when an amplifier is driven beyond the maximum level at which it is able to produce

a sound wave without distorting its waveform. The result is a “clipped” sound wave

(or in electrical terms, sound signal); the peaks of the wave are cut-off. More precisely,

the wave/signal is clipped at the maximum capacity of the amplifier.

Some use “overdrive” and “distortion” synonymously, but there is a clear difference

between the two. With distortion, although the original structure of the sound wave is

still noticeable, it is largely, audibly distorted. Overdrive is typically effected through

“soft clipping” where, although there is some noticeable distortion that is slightly

“crunchy” or ‘fuzzy,” the original audible harmonic structure of the sound is nearly

intact. The overdrive effect is used to produce a relatively mild level of distortion at a

lower volume level. To accomplish this, a preamp, accompanied by a gain control, is

typically used.
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A preamp is an amplifier that receives an electrical signal at a lower voltage level in

preparation for further subsequent amplification by the power amplifier. The preamp

provides the power amplifier with relatively small voltage gain but no significant

current gain, while the power amplifier provides the signal with sufficient current gain

for output. When the gain is increased enough to achieve clipping of the preamp, the

desired overdrive clipping is achieved at a lower volume level, as opposed to the higher

voltage/volume needed to clip the power amp. Finally, it should be noted that the

overdrive effect is also often accomplished at higher volume levels that clip the power

amplifier.

After observing the frequency spectra of 30 output tones of the three overdrive

effects that we used in our analysis, we determined that by definition, since there exist

m and j such that α(m, j) > α(m, 1) , overdrive is not a pure tone effect. Therefore

we define it simply as an effect.

Definition. Overdrive is an effect ω : P→ S such that

ω : sin(2πmt) 7→
∞∑
j=1

α(m, j) sin(2πjmt)

where m is the frequency of the input pure tone,

α(m, j) =

{
f(m, j) : f(m, j) ≥ 0
0 : otherwise
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Figure 3.15: In this frequency spectrum of the Fat Stack output tone whose input
was a 440 Hz pure tone, notice that for all n, S440 > Sn. Also notice that Sf , S3f , S4f ,
and S5f are the most prominent components, where f = 440 Hz.

and

f(m, 1) ≈ 1.0− 0.003m+ 3.5× 10−6m2 − 1.25× 10−9m3,

f(m, 3) ≈ 0.0001m+ 7.0× 10−7m2 − 5.0× 10−10m3,

f(m, 4) ≈ −0.05 + 0.0005m− 6.0× 10−7m2 + 2.1× 10−10m3,

f(m, 5) ≈ −0.6 + 0.005m− 0.00001m2 + 6.0× 10−9m3,

f(m, 7) ≈ −0.00004m+ 7.0× 10−7m2 − 8.0× 10−10m3,

f(m, j) ≈ 0,∀j /∈ {1, 3, 4, 5, 7}.

Again our traditional and mathematical definitions agree. According to our

traditional definition, although overdrive produces a tone that is typically mildly

distorted, the original harmonic structure of the tone is nearly intact. According to

our mathematical definition, the output of overdrive is a fairly complex tone whose
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most prominent components are of frequency m, 3m, 4m, 5m, and 7m. We conjecture

that the noticeable presence of these components is laregly, if not entirely, due to

an “across the board” boost in amplitude of all present components, making the

otherwise imperceivable components perceivable, noticeable. Hence another result

that is expected is that the output tones of overdrive have greater amplitudes than

those of the output tones of the other four effects.

Before confirming this, we have already noticed that the average Sn values of the

output tones of vibrato are greater than those of chorus, flanger and phaser. We

conjecture that this is due to an effect designer choice to boost the ampltiudes of the

vibrato output tones in order to make the m± j components more audible.

Using the 30 Sf values for each of the five effects, where f is the frequency of the

input pure tone, we found the following approximate Sf averages:

1. vibrato: 1360

2. chorus: 1308

3. flanger: 864

4. phaser: 835

5. overdrive: 1494

This data confirms our conjecture.

Note: From the above data, we see that the average Sf values for flanger and

phaser are noticeably smaller than the rest. We conjecture that this is because these

two effects are constructed with a time delay and a phase shift, respectively. This

implies no need to boost any particular components to produce the desired effect. The

45



description of both vibrato and chorus involve frequency shift, so perhaps there was

a designer need to boost particular components, resulting in an overall increase in

amplitude. Another conjecture is that the averages for flanger and phaser are low

because values of only the fundamental were used to compute the averages and the

time delay and pitch shift of flanger and phaser shift the strength in the output tone

away from the fundamental.

3.3 Analysis limitations

We first note that we analyzed only GarageBand effects. Certainly this limited the

scope of our analysis, yet we found that these effects served as a fair representation of

the standard effects of our study.

Although Mathematica is a highly powerful computational software program, it

has its limitations. We can not choose whatever sampling rate with which we want to

work. As is the case with any software program, Mathematica can only process so

much data in finite time. We will see below that the sampling rate, the number of

samples taken per second, directly determines the maximum frequency that we can

detect or analyze. The sampling rate (measured in samples per second) is twice the

maximum frequency that the discrete Fourier transform can recognize.

We must answer two fundamental questions when analyzing sound wave data.

How many frequency values, and which frequency values, can we use? There are two

fundamental parameters that must be considered when answering these questions: the

length of the time interval on which we collect the data and the sampling rate. For

example, if we collect data for 2 seconds, the longest complete oscillation that we can
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resolve has a period of precisely 2 seconds. The frequency of this wave is 1
2

cycle per

second. This would be the lowest frequency that we could resolve.

To determine which frequency values to use in our analysis, we must first consider

the waves that have an integer number of periods on the time interval [0, I]. The

wave with the largest period has one full period of I units on this interval. Then the

lowest frequency associated with the interval [0, I] is 1
I
. We’ll denote the fundamental

unit of frequency ∆ω = 1
I
. All other waves that have an integer8 number of periods

on [0, I] have a frequency that is an integer multiple of 1
I
. These are the frequencies

“recognized by” the discrete Fourier transform. The maximum frequency of these waves

is N∆ω = N
I

. We will show, however, that this is not the maximum frequency that

can be textitaccurately resolved on [0, I] by the discrete Fourer transform.

Notice that an increase in the length of the sample time I results in a longer

maximum period over the extended interval [0, I]. This results in a decrease in

frequency domain because an increase in I results in a decrease in the minimum

frequency ∆ω, which results in a decrease in the maximum frequency N∆ω = N
I

, of

the frequency domain.

Proposition 3.3.1. The maximum frequency associated with the interval [0, I] is

N∆ω where ∆ω is the fundamental unit of frequency.

Proof. The wave with the largest period on [0, I] has period I and frequency 1
I
.

The fundamental unit of frequency ∆ω is the lowest frequency associated with [0, I].

Therefore ∆ω = 1
I
. Now notice that since the number of samples along the interval I

is N and the maximum number of waves that could be sampled is the wave that has

8We are unable to consider frequencies such as 260.5 Hz in our analysis simply because 260.5 is
not an integer.
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one cycle per sample, the maximum frequency associated with the interval [0, I] is N
I

.

Hence, since N
I

= N∆ω, the maximum frequency associated with the interval [0, I] is

N∆ω.

Proposition 3.3.2. Suppose that a tone is sampled every ∆t units. Then the maxi-

mum frequency that can be accurately resolved on the interval [0, I] by the discrete

Fourer transform is

ωmax =
1

2∆t
=

1

2I/N
=
N

2
· 1

I
= ωN

2
.

Proof. If a tone or signal is sampled every ∆t units, then a wave with a period of less

than 2∆t units can not be resolved accurately because the most detail that we can

detect in a ∆t time interval is a wave that has a peak at one sample time, a valley at

the next, and a peak again at the next. This wave has a period of 2∆t units and a

frequency of 1
2∆t

units−1. Since ∆t = I
N

where N is the number of data points,

ωmax =
1

2∆t
=

1

2I/N
=
N

2
· 1

I
= ωN

2
.
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Chapter 4: Summary

We consider this a unique and successful study. We have shown how mathematics

can be used to analyze effects on sound while using the discrete Fourier transform

to compute models for five standard effects on sound. Whether or not this inspires

student interest in mathematics is yet to be determined. We know that we have only

skimmed the surface of the potential power of the discrete Fourier transform, and

there are many more ways in which we can choose to analyze sound waves and effects

on sound waves. We are confident that opportunities to share this knowledge will only

continue to increase, knowing that we have learned a great deal from these experiences,

and that there is much more to learn and to share.

4.1 Educational intent

During my sophomore year in the College of Engineering at Ohio State in 1989, I

realized that I wanted to study audio engineeering. I wasn’t certain what this might

mean, even if I could find a university that might offer such a degree. Ohio State

wasn’t one of the few on the planet in those years that did. In 1994 I received a

degree in music technology at The Evergreen State College in Olympia, Washington,

and although I had the opportunity to study such things as MIDI-based composition,

digital audio recording and editing, sampling, signal flow, and speaker design, my
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ultimate desire was to learn anything about any relationship between mathematics and

sound. Though it sometimes seemed to be, it was not a secret, how mathematics could

be used to design, synthesize, and analyze sound. But even in a music technology

based program, there was no real emphasis in applying mathematics to any of the

studies. I later received a second bachelors degree in applied mathematics at California

State University - Chico, but for the educational opportunity to study and eventually

work in a field that most certainly was growing and flourishing exponentially at the

time, it was a seemingly futile search. Strangely enough, even though the field has

blossomed, the educational opportunities have not.

Bart Snapp is the only individual I have ever known who has been willing and

able to direct my attention in such a way that I could learn about the discrete Fourier

transform while using it to analyze sound waves. It was Bart’s idea to use Fourier

analysis to analyze effects on sound. My contention is that people like Bart are much

too few and far between, so I certainly hold the intention of using this study as a

solid starting point for further educational purposes in this and related fields (other

than and including mathematics), for example, computer and electrical engineering.

As much as I know that I have finally gained a good understanding of the spectral

analysis of sound using the discrete Fourier transform, I know that I want to see this

integrated into high school curriculi as, at minimum, an inspirational device to inspire

students to want to understand and use mathematics. After all, there is never-ending

interest in music. Music technology can be at least as interesting. This would be an

excellent way to peak student interest in mathematics, mathematical and computer

sciences, and engineering.
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