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Abstract

Abstraction is our most powerful tool for understanding the universe scientifically.

In computer science, the term “abstraction” is overloaded, and its referents have not

been enunciated with sufficient clarity. A deep understanding of what abstraction

is and the different ways it can be employed would do much to strengthen both the

research and the practice of software engineering.

Specifically, this work focuses on abstraction into pure mathematics as it pertains

to the intellectual complexity of computer programming. A Grand Challenge for

software engineering research is to develop a verifying compiler, which takes as input

a computer program and a rigorous specification of its intended behavior, and which

only generates an executable if the code is proven correct via automated reasoning.

The hypothetical verifying compiler would radically change the face of technology by

guaranteeing that code always behaves as it should. We investigate the ways in which

good abstractions, maximally exploited, can make this dream a reality.

This document presents, at varying levels of technical detail, evidence for the util-

ity of abstractions in software. We show how standard approaches to programming,

even in the realm of “formal methods,” lack full abstraction. We argue that data

abstraction should be achieved via purely mathematical modeling, and that this ap-

proach enables modular, scalable verification of complete system behavior. We also

warn that a programming language’s formal semantics can dramatically impact the
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feasibility of a verifying compiler for that language. One of our main results is that the

class of “functional” programming languages cannot be soundly verified by the perva-

sive existing methods due to an insidious and subtle issue related to data abstraction

and relational specifications. We build on this unsoundness proof by sketching a new

solution, and fragments of a new functional programming language that incorporates

it.
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Chapter 1: Introduction: What is Abstraction?

§1.1 Overview

This work is a meditation on abstraction, conducted at various levels of technical

detail (of abstraction, if you will). We begin by discussing the term’s use in differ-

ent intellectual disciplines, and then move on to clarifying its overloaded usage in

computer science.

The subdomain of computing we’re interested in is verification—rigorously prov-

ing that programs are correct. We advocate a particular method for versatile software

abstractions known as “purely mathematical modeling,” and we detail an approach to

verification that exploits mathematical abstractions to prove that code written in an

imperative programming language meets its formal specifications. This verification

project, known as “Resolve,” is discussed in technical detail, including an overview

of its architecture, tool support, and notable achievements.

We also propose a new fork of the Resolve project, one that facilitates verification

of a “functional” programming language in the spirit of Lisp or Haskell. The nature

of functional languages introduces new issues of semantics that the current Resolve

research program has not had to deal with. This work proves the unsoundness of
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a widespread approach to data representation verification, and proposes a new lan-

guage mechanism and proof rule that fixes the problem. Because automation is such

an important aspect of the grand challenge, existing tools for automated reasoning

are examined, and some results about decision procedures in mathematical logic are

discussed.

§1.2 The Term “Abstraction”

Like any organ, the brain consists of large parts (such as the hippocam-
pus and the cortex) that are made up of small parts (such as “maps” in
the visual cortex), which themselves are made up of smaller parts, until
you get to neurons . . . whose orchestrated firing is the stuff of thought.
The neurons are made up of parts like axons and dendrites, which are
made up of smaller parts like terminal buttons and receptor sites, which
are made up of molecules, and so on.

This hierarchical structure makes possible the research programs of
psychology and neuroscience. The idea is that interesting properties of
the whole (intelligence, decision-making, emotions, moral sensibility) can
be understood in terms of the interaction of components that themselves
lack these properties. This is how computers work; there is every reason
to believe that this is how we work, too.

(Paul Bloom. “First Person Plural.” The Atlantic, Nov. 2008.)

Renowned psychologist Paul Bloom observes in his Atlantic essay that the ability

to decompose a complicated system into its constituents is a powerful aid to human

understanding. Decomposition is not a necessary task—laypeople use the concept

“brain” without knowing the taxonomy this quotation details, and my parents can

work their laptop without knowing about paging or threads or registers. However,

as the second paragraph of Bloom’s quote suggests, decomposition is necessary if we

are to answer “why” questions about a system. Decomposition of a system into parts

whose interactions can be investigated to explain the nature of the whole is sometimes

referred to as a “top-down” view.
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A top-down decomposition seems useful when one needs to analyze an existing

system and discover how it works. When one wants to create a complex system,

there is a dual strategy that works “bottom-up”: simpler, well-understood pieces are

arranged appropriately and then forgotten about as one moves to higher and higher

degrees of sophistication. As an example, consider a civil engineer designing a bridge.

There are certain to be many specific requirements and constraints on the problem

given the environment and materials available, but reliable “black-box” components

such as trusses and girders can be employed so that the engineer doesn’t have to

“start from scratch.” As some parts are assembled, they comprise larger units that

can then be thought of holistically, and so the bridge can be built without the engineer

ever needing to reason about all the interactions on all the different levels of detail

simultaneously. Indeed, bridges are so complicated, and science has developed such

robust top-down views, that this black-boxing seems absolutely necessary, lest we

drown in the details of covalent bonds as we try to cross a river.

The examples of the brain’s structural architecture and the engineer’s level-ascending

thought process are instructive in that they are concrete: one can point to them and

say: “that is abstraction.” To state a general definition would require moving away

from the specific details of any one example: ironically, one must engage in abstraction

to define abstraction.

§1.2.1 “Abstraction” in Common Parlance

Abstraction is defined by the New Oxford American Dictionary as “the process

of considering something independently of its associations, attributes, or concrete ac-

companiments.” Not only is this process at work when one designs a bridge, it’s also

3



necessary for anybody wishing to write a dictionary definition. To define “abstrac-

tion,” the NOAD ’s authors had to pick many examples of abstraction occurring in

reality, and then consider what they all shared, despite differences in their details.

What the authors must have discovered was that they themselves were embroiled in

a situation that could serve as one of their own examples at that very moment. If

this all seems very, well, abstract, then perhaps we should seek more definitions to

aid our understanding.

In his book Everything and More: A Compact History of∞, David Foster Wallace

characterizes three different ways we use “abstract” as an adjective [75]:

1. Drawn away from particular examples

2. Arcane, abstruse

3. Compartmentalized

One could characterize these definitions as metaphysical, normative, and structural,

respectively. In the metaphysical sense, arithmetic is an abstract model of the practi-

cal task of counting collections of individual entities. In the normative sense, Foucault

was an abstract writer. In the structural sense, to crib an example from Wallace, one’s

knowledge that our genes drive us to love our children is abstract relative to the tan-

gible emotions one feels about one’s children. The normative definition is not useful

for our discussion here, although it should become ironic after we elaborate all the

ways abstraction increases understanding. We will also set aside definition three; it

is an interesting and less common usage, but in the technical vocabulary we will soon

advocate, definition three relates more to the term “information hiding” than “ab-

straction.” Let us follow the suggestion of definition one, and consider “abstraction”

4



to be the process of moving away from concrete particulars and thinking holistically

relative to some detailed view. We will continue to refine this notion by analyzing

the term “abstraction” as it is used in the world of science.

§1.2.2 “Abstraction” in Science

As was alluded to earlier, there’s an interesting contrast between Bloom’s top-

down modularized view of the brain and an engineer’s bottom-up design of a bridge.

The decomposition of the brain’s structure into smaller and smaller units that explain

larger-scale phenomenon is an after-the-fact (a posteriori) abstraction (this character-

ization is due to [77]). Neurosurgeons did not invent axons and dendrites in an effort

to cause electrical signals to be transmitted across the brain, but a civil engineer (or,

to foreshadow, a computer programmer) does invent new assemblages of units that

can be thought of more simply as black-boxed wholes. This is a priori abstraction.

The natural sciences are mostly concerned with a posteriori abstractions. Physi-

cists, chemists, and biologists, for example, seek the best explanations for observed

phenomenon, where simplicity and predictive power are the main criteria of compar-

ison. Building a hierarchy of such abstractions is useful for facilitating explanation

and prediction at multiple levels of detail. Any formal relationships between levels

are valued for their ability to establish causality, or at least a model for how to think

about causal connections in the system [77].

Applied sciences, like linguistics, nuclear technology, or civil engineering, are more

focused on a priori abstractions. Practitioners in these fields build new systems to

solve new problems, and they manage the intellectual complexity of their projects by

omitting details whenever it is safe to do so. Of course these abstractions are still best
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structured in a hierarchy for purposes of flexibility and robust analysis. Relationships

that can be established between levels in the hierarchy serve as justification of the

system’s suitability. Going back to the bridge example, its designer may do a statics

calculation to argue that some assemblage of trusses can be thought of as a black-box

component capable of bearing some specific load.

Our observable reality lives somewhere in the middle of this milieu: we perform a

posteriori abstractions to understand how the elements of the physical world interact

and affect us, and we use that knowledge to construct a priori abstractions that

serve our purposes. It should be clear that in either direction, abstraction is an

indispensable aid to human understanding.

In this survey of abstraction’s role in science, mathematics is an interesting outlier.

Throughout the history of mathematics, new abstractions have often been heavy-

weight theoretical contributions that complicate rather than simplify matters. When

one wishes to generalize a theorem that is obvious in some small domain, the theorem

may become false, or at a bare minimum its proof substantially more difficult. Non-

Euclidian geometries provide a persuasive example of the difficulty of abstraction in

math: it took over two thousand years for geometers to draw away from the particu-

lars of the parallel postulate and create a more general theory that black-boxed the

intersection properties of parallel lines.

Computer science is in essence a fusion of these two worlds—it is a discipline in

which pragmatic issues of real-world technology and theoretical insights similar to

those of math and logic synergize in a tangled mutual feedback loop. Thus it may

not be surprising that the meaning of “abstraction” in this field has become mud-

dled. Indeed, some computer scientists view abstraction as a complication, only to
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be countenanced out of a duty to robustness and generality. We disagree, and seek

to demonstrate that abstraction is the key to computer science, not just aestheti-

cally or theoretically, but in the real study of solving problems with computers, i.e.,

software engineering. More specifically, we’ll consider abstraction’s role in software

verification—the practice of proving code correct.

§1.2.3 “Abstraction” in Computing

In writing a computer program, the laws of reality don’t constrain the possible

approaches to a problem, at least not with the same severity that they do in bridge

building, circuit design, or hydraulic systems. This freedom makes programming

an arguably more creative task, but also one fraught with more opportunities for

mistakes at all degrees of insidiousness. Programming has spawned a wide variety of

research into best practices, design patterns, workflow processes, and ergonomics. As

one should anticipate by this point, these conceptual aids make use of abstraction.

In fact, abstraction is so pivotal to the tractability of computer science, that research

in computing has helped to forge the beginnings of a true ontology for the concept of

abstraction itself.

This ontology begins with the idea that the information processed by a computer

can be abstracted over along different dimensions. For example, one prevalent coding

strategy is to organize programs into units called “procedures,” each of which performs

one specific task. With this design, tasks that need to be performed multiple times

can be coded once but executed repeatedly via function calls. Unsurprisingly, this is

known as “procedural abstraction.” The advantage, aside from having a single point
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of control over changes in any particular task, is that once the procedures are written

their algorithmic details can be forgotten about: they just do what they do, somehow.

Given its obvious utility, both for managing intellectual complexity and simplify-

ing code maintenance, procedural abstraction is now ubiquitous and taken for granted;

a different dimension of information organization has become the focus of study.

“Data abstraction” is the process of uniting primitive pieces of data such as integers

and characters into more intricately structured wholes. The real power of data ab-

straction lies in the fact that the person performing the abstraction decides how the

new amalgamation of data can be manipulated, and can choose to restrict end-users

of the abstraction to only those operations that make sense for the whole.

One simple example is a “rational number” data type represented by two integers,

which might helpfully be named num and denom. The user of a rational number might

need the ability to increment its value by one, but simply adding one to either (or

both) of its so-called “data members” will not get the job done. num and denom should

only be changed in ways that make sense relative to the conceptual meaning we’re

ascribing to them—to effect a real increment, the denominator should be added to

the numerator. Here’s a procedure that will do the trick, written in a programming

language called “Resolve,” which will be discussed later:

1 procedure Increment (updates r : Rat iona l )
2 Add( r .num, r . denom)
3 end Increment

8



Formalizing the connection between the data that “actually exist”1 and our thoughts

about what the data “really mean” is a key topic in the theory of programming lan-

guages with data abstraction—a topic we will return to later in this work.

We’ve seen now the essence of what’s come to be known as “Object-Oriented Pro-

gramming,” wherein a program is organized primarily by identifying the structured

data that interact in a proposed solution to a problem. Object-Orientation says,

roughly, that each “noun” in the description of a system (for example, a rational

number) should be the target of a data abstraction. These data abstractions define

families of objects called “datatypes,” and objects of conceptually related datatypes

can beneficially interact and collaborate through a language construct known as “in-

heritance.”2

One programming role in an OO/component-based system is the identification,

design, and implementation of useful data abstractions and their inheritance rela-

tionships. A separate role is the utilization of this infrastructure to achieve the de-

sired end result. These roles are known, respectively, as “implementer” and “client.”

This will all be unpacked in more detail, but the important points for now are that

component-based software is the most popular programming methodology in current

use, that its fundamental task consists of performing data abstraction, and that good

data abstractions enable clearly delineated and simplified programming roles. Thus, a

1Remember: no data actually exist if we consider the a priori abstractions that computer engi-
neers make when they build a machine, e.g., integers are made up of bytes which are made up of
bits, which are realized in hardware and modeled by electrical or magnetic phenomena, etc.

2Object-Oriented Programming is a wide and deep area of study. Many differing definitions
of its essence have been proffered, and experts would surely dispute the details of any particular
description, including the one given here. We wish only to establish some connection with this
commonly used term, and for the remainder of this work will adopt the less loaded and more
descriptive term “component-based software.” Inessential complexities of object-orientation, such
as the issue of reference types vs. value types, are not the focus of this work.
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deep understanding of data abstraction lies at the foundations of software engineering

research and practice.

In common data abstraction terminology, “encapsulation” means the ability to

protect data from outside manipulation, and is often provided by built-in language

mechanisms, e.g., the private keyword of C++ and Java. The disciplined use of

encapsulation to completely shield data members from the view of clients is known

as “information hiding,” and is usually considered necessary to industrial-strength

component-based programming. Encapsulation and information hiding are sometimes

posited as synonyms of abstraction, but really they are specialized technical terms for

certain practical characteristics of some data abstractions. “Abstraction,” even if we

restrict ourselves to the domain of computing, is a broader concept—more abstract,

one could say.

Regardless of the different dimensions along which abstraction can be performed

in computing, and regardless of the finer-grained characterizations of abstractions

in component-based software, we conclude by distinguishing two “flavors” of data

abstraction that computing employs extensively: generalization and reconceptualiza-

tion.

§1.2.3.1 Generalization

Consider again the quote that began this chapter. Bloom’s decomposition of the

brain, and his assertion that “this is how computers work” might lead one to concoct

a paragraph like this:

Like any operating system, the Linux kernel consists of large parts (such
as the scheduler and the memory manager) that are made up of small
parts (such as “map” data structures), which themselves are made up of
smaller parts, until you get to machine instructions . . . whose orchestrated
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firing is the stuff of computation. The machine instructions are made up
of parts like instruction codes and addresses, which are made up of smaller
parts like bits, which are made up of voltage differences, and so on.

Actually, there’s a more abstract paragraph we could write:

Like any [x1], the [x2] consists of large parts (such as the [x3] and the [x4])
that are made up of small parts (such as [x5]), which themselves are made
up of smaller parts, until you get to [x6] . . . whose orchestrated firing is
the stuff of [x7]. The [x6] are made up of parts like [x8] and [x9], which
are made up of smaller parts like [x10], which are made up of [x11], and so
on.

Let’s call this last form a “paragraph template.” In order to create a paragraph that

describes the top-down view of some system, we can simply replace our x variables

with the appropriate terms. Some choices will of course yield nonsense—let x1 be

“prime number,” let x2 be “sauerkraut,” let x3 be “vacuum of space,” and so on. We

could imagine stating some restrictions on the terms we choose for the ‘x’es: that

they should all be noun phrases seems obvious, but moreover, they should exhibit

certain relationships among each other, which cause the resulting paragraph to have

identifiable meaning. As an example, one requirement is that ‘x11’s should be in some

sense small relative to ‘x6’es. There are certainly several other such conditions.

Bloom has given us, implicitly, a schematic for generating a rather elegant En-

glish paragraph describing the decomposition of any system that has seven levels of

abstraction (I counted seven). All we had to do to obtain this schematic is “draw

away from the particular examples” of the brain. It’s clear, then, that our template is

“abstract” in the metaphysical sense of §1.2.1. We will consider situations such as the

foregoing, in which concrete details can be replaced by “stand-ins” to create a reusable

template, to be the first flavor of abstraction. We’ll describe these abstractions with

the term “generalization.”
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Generalization is employed extensively throughout the practice of software engi-

neering. A language mechanism known as “templating” in C++ and “generic pro-

gramming” in Java is the most direct example. A template/generic is a schematic for

generating data abstractions, wherein some details are left open for clients to fix as

they see fit. A client’s declaration of a template, in which they decide how to “fill in

the blanks” that the template has left open, is known as an “instantiation.”

In the most common case, templates are used for “container classes”—datatypes

that are meant to hold other pieces of data and process them in some particular

manner. Templating is used for containers so that they can be written once and then

instantiated by clients to hold different varieties of data. For instance, a queue is a

type of container that processes its elements in a “first in, first out” manner, and is

usually written as a template for maximum generality and thus reusability. Below, we

show the client-view (“contract”) of a queue in Resolve. The details will be discussed

in the next chapter, but for now the reader should note that in the first line the

contract is parameterized by a type, which is given the name “Item” so that it can be

referred to throughout the rest of the contract. This parameterization is the essence

of generalization in templating/generic programming: it means that the queue will

behave the same way for any type which is provided as this “Item” parameter.

1 contract QueueTemplate ( type Item )
2
3 uses UnboundedIntegerFac i l i ty
4
5 math subtype QUEUE MODEL i s string of Item
6
7 type Queue i s modeled by QUEUE MODEL
8 exemplar q
9 in i t i a l i zat ion ensures
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10 q = empty string
11
12 procedure Enqueue (updates q : Queue , clears x : Item )
13 ensures
14 q = #q ∗ <#x>
15
16 procedure Dequeue (updates q : Queue , replaces x : Item )
17 requires
18 q /= empty string
19 ensures
20 #q = <x> ∗ q
21
22 function Length ( restores q : Queue ) : I n t e g e r
23 ensures
24 Length = | q |
25
26 function IsEmpty ( restores q : Queue ) : control
27 ensures
28 IsEmpty = ( q = empty string )
29
30 end QueueTemplate

§1.2.3.2 Reconceptualization

The upshot of generalization in software engineering is that all the different par-

ticular instances of a generalized component are thought of the same way; the actual

values ascribed to the parameters do not impact the way that the generic behaves.

When one thinks about how to compute with a Queue, the question of what the

“Item” actually is doesn’t matter. In other words: if we had not generalized, and

had written a Queue that was only allowed to contain, say, integers, we would reason

about it exactly the same way: as a mathematical string. Lines 5 and 7 above make

this explicit. As a preview of things to come, we remark here that in fact all contracts
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in Resolve provide a mathematical model for how to reason about a component with-

out revealing its implementation details. Resolve contracts are abstractions; most

interesting contracts involve both data- and procedural abstraction.

Naturally, we are left to consider the implementer’s view of such data abstractions.

As was discussed in section §1.2.2, a relationship between the actual data members

that make the Queue work and the client’s model of how to reason about Queue

behavior is necessary if we are to convince ourselves that an implementation does

what it should.

Below we see a “realization” (the Resolve term denoting a component imple-

menter’s view) of the Queue template. It uses another template called “List” to get

its job done, so of course a client’s view of that contract would be necessary to really

understand how this realization works.3

1 real ization L i s t R e a l i z a t i o n implements QueueTemplate
2
3 uses ListTemplate
4 uses I s P o s i t i v e for UnboundedIntegerFac i l i ty
5
6 f a c i l i t y L i s t F a c i l i t y i s ListTemplate ( Item )
7
8 type representation for Queue i s (
9 i t e m l i s t : L i s t

10 )
11 exemplar q
12 convention
13 q . i t e m l i s t . l e f t = empty string
14 correspondence function
15 q . i t e m l i s t . r i g h t
16 end Queue
17

3This is an important point that will be emphasized later. Note for now that it’s only the
client’s view of List (and of “UnboundedIntegerFacility” with its extension called “IsPositive”) that
is necessary here.
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18 procedure Enqueue (updates q : Queue , clears x : Item )
19 AdvanceToEnd ( q . i t e m l i s t )
20 I n s e r t ( q . i t e m l i s t , x )
21 Reset ( q . i t e m l i s t )
22 end Enqueue
23
24 procedure Dequeue (updates q : Queue , replaces x : Item )
25 Remove ( q . i t e m l i s t , x )
26 end Dequeue
27
28 function Length ( restores q : Queue ) : I n t e g e r
29 Length := RightLength ( q . i t e m l i s t )
30 end Length
31
32 function IsEmpty ( restores q : Queue ) : control
33 variable l en : I n t e g e r
34 l en := RightLength ( q . i t e m l i s t )
35 IsEmpty := not I s P o s i t i v e ( l en )
36 end IsEmpty
37
38 end L i s t R e a l i z a t i o n

The important part of this realization for our present discussion is the correspon-

dence function. Also known as an “abstraction function,” a correspondence function

is a rigorous mathematical statement of how the data members used to realize a con-

tract can be reconceptualized as a value of the component’s mathematical model.4

Most languages do not feature special syntactic slots for correspondence functions,

and yet software engineers still must engage in the mental process of reconceptualiza-

tion. Even when working in languages that are cavalier about the rigor with which

such abstractions are expressed, reconceptualizations are necessary in order to work ef-

fectively in most large systems. Lisp, for example, is a revered programming language

4In fact, allowing abstraction relations is known to be useful [68]. We discuss this in detail in
Chapter 6.
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that allows values of its fundamental data structure, the s-expression, to be recon-

ceptualized as sets by building in operations such as union and intersection [29].

There is no formal correspondence function—indeed sets and s-expressions really have

the same type in Lisp—but the language still facilitates some degree of reconceptu-

alization to simplify the programmer’s thinking.

§1.3 Software Verification

Verification is perhaps the loftiest goal of software engineering. Its most complete

hypothetical form, the so-called “verifying compiler” has been promoted as a “grand

challenge” for computer science, similar in scope to putting a man on the moon or

mapping the human genome [37].

What “verification” really means for software is the ability to prove mathemati-

cally that a program (or some other unit of code) does exactly what it’s supposed to

do. This of course requires a precise mathematical statement of the code’s intent—

known as the formal specification—and a rigorous mathematical view of exactly what

any given piece of code means. Some programming language definitions provide a for-

mal semantics, which defines the mathematical meaning of any legal piece of code in

the language. These languages, of which Resolve is one, are obviously our best hope

for achieving verification.

We can think of the specification of some desired behavior and the semantics of

code purporting to implement it each as a relation—a set of input/output pairs. The

specification states which outputs are legal for which inputs, and the semantics states

which outputs the code may actually give for any given input. Verification means

being able to prove, ideally automatically, whether or not the semantics really is a

16



subset of the specification. In full generality, verification is known to be impossible

due to the undecidability of the mathematics normally used in the specifications.

In practice, however, verification of real programs appears tractable, as it is almost

always more a matter of detailed bookkeeping and disciplined annotation than of

proving deep mathematical theorems [42].

The aforementioned verifying compiler is a piece of software that can turn source

code written in a high-level programming language into an executable file, but only

after first verifying the source code relative to its specification. Such a tool would

mean the end of testing, debugging, and patching in the software engineering process,

at least with respect to problems inside the code (verification cannot ensure that

somebody won’t unplug the computer, for example). The verifying compiler is a

grand challenge because, among other reasons, its scope is so broad. It must be able

to prove (or refute) the claimed correctness of any program in its accepted language,

and ideally to do so with no human guidance or interaction. Many existing approaches

to verification can prove certain limited properties (e.g., that no arrays are accessed

outside of their bounds), or can prove programs relative to some safety assumptions

(e.g., that the code doesn’t create any aliases), or make conservative approximations

of what the code will do when run and thus leave open the possibility of false negatives,

but a full verifying compiler remains a lofty research goal.

§1.4 Organization

Armed with a clearer view of what “abstraction” means technically, and how

related terms like “information hiding” and “generalization” differ subtly, we are pre-

pared to explore abstraction’s role in software engineering, specifically verification.
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This work is focused on the ways in which abstraction, specifically reconceptualiza-

tion, is necessary in all plausible attempts at a verifying compiler.

In Chapter 2, we discuss the role of mathematics in quality software engineering

abstractions. We formulate an argument for “strict abstraction,” and contrast this

approach with related work. We present new examples in a specific language for

strict abstraction, demonstrating its generality and reusability. We also discuss the

role that interactive proof assistants can play in the development of mathematical

theories to enable strict abstraction. We contribute a new development in the Coq

proof assistant, defining and proving theorems for a large portion of mathematical

string theory.

Chapter 3 presents a verification strategy for client code written in a program-

ming language that employs strict abstraction. We define two different views of

programming language semantics, and contrast them in terms of client reasoning and

verifiability. We also discuss our participation in a competition among different soft-

ware verification research groups, comparing our approaches to others and identifying

issues involving insufficient abstraction.

In Chapter 4, we move from the client view to the implementer’s view, and explain

how strict abstraction with some new annotation constructs can facilitate proofs of

correctness for data representation. After discussing the method in the framework of

procedural programming, we shift to a functional language, and present one of our

key theoretical results: an unsoundness for referential transparency in expressions

involving abstract data types verified by a widely accepted proof rule. We propose a

new rule and a new workflow in the verified software process to solve the problem.
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Chapter 5 discusses tool support for software verification, specifically the Resolve

verification tool chain at OSU. After identifying another abstraction issue involving

the degree to which push-button proof automation can properly be expected in soft-

ware verification, we discuss our work on SplitDecision, a custom-built prover that

implements a new decision procedure for a fragment of mathematical string theory.

Our approach is contrasted with important related work, particularly ACL2 and Co-

q/Ynot.

Finally, in Chapter 6 we argue that our emphasis on abstraction opens new doors

for future verification technologies. We explore the feasibility of automating proofs

of data representations that use abstraction relations, discuss the potential of incor-

porating specifications into memoizing interpreters for functional languages, and also

suggest some syntactic constructs for iteration that can ease the annotation burden

and increase the reusability of iterative code.
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Chapter 2: Achieving Strict Abstraction with Mathematical

Modeling

§2.1 The Resolve Approach

Now that we know what abstraction is, we should consider the technical details of

how it is utilized in software engineering. How do we express abstractions in computer

programs? If expressions in a programming language are the concrete particulars that

we want to draw away from, in what language do we talk about them? Once we’ve

decided on a “target language” for conveying our abstractions, can it be used to

facilitate tasks other than verification?

Answering these questions in effect establishes a foundation for the study and

practice of software engineering. The particular answers that we will commit to are

those of an approach known as “Resolve” (sometimes “RESOLVE”). In this chapter,

we will present a “specification language,” which Resolve uses for expressing data

abstractions and intended program behavior in terms of pure mathematics. We’ll ex-

plain why this choice of language is advantageous, providing a historical perspective

on specification techniques and contrasting Resolve to other popular methodologies.

Finally, we will demonstrate the broader utility of Resolve’s specification language in
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other domains of computing, and discuss how existing tools can support the develop-

ment of new mathematical abstractions in the specification language.

§2.1.1 Choosing a Specification Language

Recall the definition of software verification given in the previous chapter: prov-

ing mathematically that a code unit does exactly what it’s supposed to do. This

definition precipitates an important insight: verification requires a rigorous state-

ment of the code’s intended behavior. Such statements are commonly called “formal

specifications.” We will focus on formal statements of the code’s input/output be-

havior, not orthogonal characteristics such as average-case running time or memory

consumption. In other words, we’re interested in proving program correctness in the

sense of functionality, not non-functional properties like performance. Henceforth we

will abbreviate “formal behavioral specification” as just “specification” or “spec.”

§2.1.1.1 A Selected History of Specification Methodologies

The idea of software verification dates back to the 1960s [25, 55, 35], but there

is a marked lack of theoretical cohesion in the field, largely due to the fact that

the approaches to specification employed have varied wildly. Bertrand Meyer is

widely considered the progenitor of “programming by contract”—separating code

from specifications—in his object-oriented language Eiffel [56]. Eiffel specifications

are executable, however, so they can be contrasted with the purely mathematical

approaches inspired by Hoare, e.g., the observation that (higher-order) predicate cal-

culus suffices to specify even complicated constructs such as first-class procedures [22].

On the whole, formalisms for program specification can be seen as lying on a con-

tinuum. At one end there are fully programmatic approaches to verification, wherein
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specs simply are code. ACL2 [40], which will be discussed in some detail shortly, is

a popular example of this approach, as is Microsoft’s Spec# [6]. At the other end of

the spectrum are purely mathematical specification languages such as Resolve [20].

Of course there are many approaches that combine both viewpoints—JML specifica-

tions [62] are written in an augmented subset of the programming language that is

executable under certain conditions, and Dafny specifications [49] are programming

expressions in an intermediate-level language that are restricted to a small domain of

quasi-mathematical programming types such as sets and sequences.

§2.1.1.2 A Case Study in Three Modern Specification Languages

For the sake of parsimony if nothing else, one might initially decide that specifi-

cations should be programmatic. As was mentioned above, some serious verification

projects do employ this strategy. A key design decision of the Resolve project places

it at the other end of the spectrum: Resolve practices “strict abstraction,” i.e., recon-

ceptualization in terms of purely mathematical modeling.5 Strict abstraction consists

of treating all pieces of data as mathematical values such as real numbers or finite

sets (rather than, say, as contiguous chunks of bits in memory, or as references to said

chunks), and using mathematical logic to express, in a declarative fashion, intended

code behavior in terms of these values. On this view, the specification of a piece of

code is just a mathematical relation, perhaps not even a computable one, between

incoming and outgoing values.

One advantage of mathematical modeling is that it results in highly reusable

specifications. A Resolve-style spec describes behavior in a programming-language

5“Reconceptualization” is in some sense a misnomer. To a client, the mathematical model of a
component is the only conceptualization possible.
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agnostic fashion, thus easing the dreaded “annotation burden” that commonly hinders

software verification in practice. The key idea here is that specifying intended program

behavior is itself a serious intellectual task, and so one would like to be able to specify

behavior “once and for all” with no regard to the concrete details of any particular

programming language. It should be clear from the previous chapter that a reusable

spec language is itself an abstraction. As a case-study in specification reusability,

we chose a common programming (and verification) task—sorting a collection of

numbers—and found real examples of how different specification languages formally

express this behavior.

Below we see a sort specification (from [18]) that uses JML [62], an augmented

subset of Java often used in verification projects relating to Java such as ESC4 [38]

or KeY [7]. Note that numbers is an array of integers that is in scope for this speci-

fication, and length is an accessible attribute of it.

1 /∗@ public normal behavior
2 @ requires numbers != n u l l && numbers . l ength > 0 ;
3 @ ensures \ old ( numbers . l ength ) == numbers . l ength ;
4 @ ensures (\ f o r a l l i n t i ; 0 <= i &&
5 i < \ old ( numbers . l ength ) ;
6 (\ e x i s t s i n t j ; 0 <= j &&
7 j < numbers . l ength ;
8 numbers [ j ] == \ old ( numbers [ i ] ) ) ) ;
9 @ ensures (\ f o r a l l i n t i ; 0 <= i &&

10 i < numbers . length −1;
11 numbers [ i ]<=numbers [ i +1 ] ) ;
12 @∗/

Firstly, this specification demonstrates how it can sometimes be difficult to prop-

erly formalize correctness properties that might seem obvious and/or intuitive in

natural language. The JML above actually fails to properly express sorting—the
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desired property that the sorted array be a permutation of the incoming argument

is incorrectly specified. To see this, consider that if \old(numbers) is [2, 1, 2] and

numbers is [1, 1, 2], the spec is satisfied and yet the latter is not the sorted version of

the former; numbers is not even a permutation of \old(numbers) in this case.

Aside from the presumably repairable correctness issues, we point out that this

JML spec is inexorably wedded to programming language particulars. Note that the

first meaningful token of the spec is public—a Java keyword concerning access control

that has no meaning in many other programming languages. Note also the mention of

null, another keyword that concerns a detail of Java’s programming model, namely

the fact that there is a special value shared by all Java reference types. Furthermore

we emphasize that although operators such as && and == may look mathematical,

they actually denote executable functions built into the programming language.6 We

grant that to a JML partisan, these are all advantageous facts because they mean

that this specification can be executed as a run-time check,7 but for our purposes

here they are a hinderance to abstraction/reusability: this spec does not express the

notion of sorting in any language that differs substantively from Java.

The canonical specification of sorting in ACL2, a verification suite for functional

programming, is also not reusable. Its formulation, taken directly from the current

(as of March 2012) version of the ACL2 repository [39], is shown below.

1 ( defthm orderedp−i s o r t
2 ( orderedp ( i s o r t x ) ) )

6Indeed, their meanings do not even match those of the corresponding mathematical operations:
&& is short-circuiting, which is consistent with but not identical to logical conjunction, and worse,
== tests equality of reference, not of value, in some cases.

7This depends upon all the quantifications being bounded, by the way, and also the ability to
make deep copies of any parameters whose \old values are mentioned.
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3
4 ( defthm true−l i s t p−i s o r t
5 ( true− l i s t p ( i s o r t x ) ) )
6
7 ( defthm how−many−i s o r t
8 ( equal (how−many e ( i s o r t x ) )
9 (how−many e x ) ) )

Essentially, the specification states that the isort function preserves the “list-

ness” of its argument (ACL2 is an untyped programming language) and returns a

sorted permutation of that argument. This seems like the right idea, but again it is too

concrete-bound. If nothing else, the heavily parenthesized prefix notion used in ACL2

suggests that this spec will not be well-formed in less exotic languages. Furthermore,

just as in the JML example, this specification depends upon other programmatic

functions, e.g., how-many and true-listp, and has no well-defined meaning in their

absence. Indeed, the ACL2 verification philosophy only allows code to be proven

equivalent to other code, rather than correct relative to some qualitatively different

description of intended behavior.

Of course we should not be surprised to find that specifications of interesting

behavior depend upon other definitions, but the key insight here is that reusability

demands these dependencies not involve programming operations. Below, we show

a Resolve specification for sorting that is fully reusable. This specification has been

successfully employed in a Resolve verification case study [44].

1 procedure Sort (updates q : Queue )
2 ensures
3 IS PERMUTATION (q , #q ) and
4 IS NONDECREASING ( q )
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IS PERMUTATION and IS NONDECREASING are defined below. Crucially, these are

mathematical definitions. They concern strings of integers—a mathematical type—

and thus are not committed to any one programming language, nor even any one

programming type. The definitions are well-formed and meaningful for any program-

ming type mathematically modeled as a string of integers (likely candidates include

Queues, Stacks, Sequences, and Lists). This dimension of abstraction is absent in the

JML and ACL2 examples, which were specific to arrays and lists of integers, respec-

tively. Of course, the reusability of Resolve’s Sort spec could be further increased by

using templates to eliminate the commitment to strings of integers ; this additional

layer of abstraction was omitted only for simplicity of presentation.

1 definition OCCURS COUNT (
2 s : string of integer ,
3 i : integer
4 ) : integer sa t i s f i e s
5 i f s = empty string
6 then OCCURS COUNT ( s , i ) = 0
7 else
8 there exists x : integer , r : string of integer
9 ( ( s = <x> ∗ r ) and

10 ( i f x = i
11 then OCCURS COUNT ( s , i ) = OCCURS COUNT ( r , i ) + 1
12 else OCCURS COUNT ( s , i ) = OCCURS COUNT ( r , i ) ) )
13
14 definition IS PERMUTATION (
15 s1 : string of integer ,
16 s2 : string of integer
17 ) : boolean i s
18 for a l l i : integer
19 (OCCURS COUNT ( s1 , i ) = OCCURS COUNT ( s2 , i ) )
20
21 definition IS PRECEDING (
22 s1 : string of integer ,
23 s2 : string of integer
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24 ) : boolean i s
25 for a l l i , j : integer
26 where (OCCURS COUNT ( s1 , i ) > 0 and
27 OCCURS COUNT ( s2 , j ) > 0)
28 ( i <= j )
29
30 definition IS NONDECREASING (
31 s : string of integer
32 ) : boolean i s
33 for a l l a , b : string of integer
34 where ( s = a ∗ b)
35 (IS PRECEDING (a , b ) )

§2.1.2 The Resolve Specification Language

A detailed description of the Resolve specification language is laid out in [34], but

a brief overview is in order here. We will use the Sort specification and its related

math definitions given above as driving examples, because they illustrate most of the

important issues for our purposes in this work.

The process of specifying intended code behavior is best thought of in two phases:

(1) establish a context of relevant purely mathematical definitions, and then

(2) use special syntactic slots in the language to link these mathematical notions

to the relevant aspects of the code.

This division of labor is itself an advantageous abstraction: a mathematician can do

productive work in the first phase without needing to consider the task of computer

programming at all.

§2.1.2.1 Math Types and Subtypes

To facilitate mathematical modeling, a small, highly expressive selection of math-

ematical theories are considered “built-in” to the spec language, and serve as the
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rudiments for modeling programmatic data. New “math subtypes” can be created by

combining and/or placing constraints on existing ones.

The important built-in theories in the foregoing examples are string and integer.

strings are ordered8 arrangements of values of some particular mathematical type

(integer in this case). They are defined inductively—a string is either empty or

is the extension of some string by an additional element—and they can be “recur-

sively instantiated” (e.g., we can have a string of string of integer). Other

important built-in theories not used in the Sort example include tuples (ordered

fixed-length collections with named fields), booleans, sets (unordered collections with

no duplicates), multisets (unordered collections that allow duplicates), binary trees,

functions, real numbers, etc. The collection of math theories is extensible, but we

predict extensions will rarely be required because combining these rudiments in smart

ways and/or using constraints usually suffices. For example, the natural numbers in

Resolve are a subtype defined by constraining the values of the integer math type

to be non-negative.

§2.1.2.2 Math Definitions

In addition to constructing math subtypes to be used for modeling purposes,

phase one of the specification workflow involves defining relations between mathe-

matical values. These are labeled with the keyword definition; four were shown

earlier in connection with Sort. Each definition has a name, a list of parameters,

a return type, and a body. A definition’s body can be an expression that explicitly

8The word “ordered” is somewhat overloaded because of the ACL2 example in the previous §.
Here, “ordered” means that the order of entries in a string is part of that string’s identity. For
example, the string inequality 〈1, 2〉 6= 〈2, 1〉 is true, whereas it would be false if these had been
sets instead, i.e., {1, 2} = {2, 1}. In the ACL2 example, orderedp was an executable function that
tested whether the elements in a list were arranged in nondecreasing value order.
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defines the definition’s value (usually in terms of the parameters), or it can be a pred-

icate that is true for any element of the relation. The former (“explicit definitions”)

use the keyword is, whereas the latter (“implicit definitions”) are distinguished with

the keyword satisfies. Note that in the body of an implicit definition, the re-

turn value is denoted by a parameterized invocation of the definition’s name, e.g.,

OCCURS COUNT(s, i) in the body of OCCURS COUNT. As we see in the examples, the

bodies of definitions are just statements of predicate calculus—all first-order in this

example, although higher-order formulations are also allowed.

§2.1.2.3 Contracts

For phase two—tying the pure math to selected programmatic entities—the spec

language uses special syntactic slots. In other words, a well-formed Resolve pro-

gram has specific locations at which mathematical formalizations of behavior must

be placed for verification to be possible. The most common of these are the requires

and ensures annotations that are used to specify operations.9 The requires clause

defines what must be true of the incoming parameter values for any legal call to the

operation, and the ensures clause formally expresses the results of the call, often by

relating incoming and outgoing parameter values. The special token # is prefixed to

a parameter name in an ensures clause to denote that parameter’s incoming value.

It should be obvious that # is never needed to express requires clauses.10 We refer

to an operation’s requires and ensures clauses collectively as its “contract.”

9A note on Resolve terminology: “procedure” refers to a programming operation that does not
return a value but instead can change some or all of its parameters. These are sometimes called
“void functions” in other languages. “Function” refers to a programming operation that leaves its
parameters unchanged but returns a value. An “operation” is any procedure or function. No Resolve
operations return a value and alter a parameter.

10We could say that every mention of a parameter in a requires clause has an implicit # that we
omit just for brevity’s sake.
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§2.1.2.4 Parameter Modes

The header of a programming operation has other syntactic slots for specifications

in addition to its contract: each parameter is annotated with a mode. Each Resolve

parameter mode is denoted with a keyword that attempts to capture its meaning in

English: restores, clears, replaces, and updates. The first two of these are just

abbreviations of conjuncts that are often desired in ensures clauses—if a parameter

x is in restores mode, this means the same as conjoining x = #x to the operation’s

ensures clause, and clears means the same as conjoining is initial(x), where

is initial(x) is just a reserved way of denoting the initialization ensures pred-

icate. We saw an initialization ensures annotation in the contract for Queue in

Chapter 1; it states a condition which constrains the initial value that objects of a

programmatic type (like Queue) take on when they are declared (or cleared, as we’ve

just seen). The updates and replaces modes indicate that the outgoing value of

the parameter can be different from the incoming value—in updates mode the new

value may depend on the old value, and in replaces it may not. clears of course

now appears to be a special case of replaces, but it is more specific and is used often

enough to merit special treatment.

§2.1.2.5 Other Slots

Resolve has another syntactic slot, annotated as “is modeled by”, for declaring

that some specific programming type is modeled by some mathematical one. For

example, Queue is modeled by string of Item, where Item is the mathematical

model of the Queue’s template parameter. There are more syntactic slots—the care-

ful reader will remember at least one of them from our discussion of Queue’s List
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realization—but we’ll reserve their explanations until they’re needed. At this point,

the Resolve specifications encountered thus far in this chapter should be intelligible.

§2.2 The Wider Applicability of Our Specification Language

We remark for emphasis that the two-phase nature of the Resolve specification

process achieves strict abstraction, in the sense that the specs are statements of or-

dinary predicate calculus that are programming language independent. Specs are

only married to programmatic constructs by a small number of well-defined syntactic

slots, such as operation contracts. To demonstrate the utility of strict abstraction,

we will now present two examples of how our specification language can be a useful

formalism in domains not related to verification, nor even to Resolve programs.

§2.2.1 Modeling Multithreaded Computing

In [72], we brought Resolve-style specification to bear on the problem of modeling

multithreaded computation. Specifically, we wished to define a purely mathematical

model of basic Java-style concurrency [48], which features reference semantics, and

the ability to lock access to objects via synchronized methods. For generality, we

also modeled locks that aren’t specific to an object, e.g., to provide mutual exclusion

on a critical section. Below we list the definitions we created to formalize this model.

1 math subtype HEAP STATE i s
2 partial function of ( ob j i d : OBJECT ID, va l : OBJECT VALUE)
3
4 math subtype CONTROL FLOW STATE i s
5 string of (m: METHOD SIGNATURE, ob j id : OBJECT ID)
6
7 math subtype THREAD i s ( th r i d : THREAD ID,
8 a c t i v e : boolean ,
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9 c f s : CONTROL FLOW STATE)
10
11 math subtype SYNCH LOCK i s (
12 ob j id : OBJECT ID, locked : boolean ,
13 ho lder : THREAD, waitersForSynch : f in i t e set of THREAD,
14 waitersForUnsynch : f in i t e set of THREAD)
15 exemplar l
16 constraint
17 i f l . l ocked then
18 l . ho lder . a c t i v e and l . ho lder . c f s /= empty string and
19 IS SYNCHNRONIZED( head ( l . ho lder . c f s ) .m) and
20 for a l l w: THREAD
21 where (w i s in l . waitersForSynch )
22 ( not w. a c t i v e and
23 IS SYNCHRONIZED( head (w. c f s ) .m) and
24 head (w. c f s ) . ob j i d = head ( l . ho lder . c f s ) . ob j id )
25
26 math subtype OTHER LOCK i s ( locked : boolean , ho lder : THREAD,
27 wa i t e r s : f in i t e set of THREAD)
28 exemplar l
29 constraint
30 i f l . l ocked then
31 for a l l w: THREAD where (w i s in l . wa i t e r s )
32 ( not w. a c t i v e )
33
34 math subtype THREADED SYSTEM i s (
35 heap : HEAP STATE, threads : f in i t e set of THREAD,
36 synch locks : f in i t e set of SYNCH LOCK,
37 o t h e r l o c k s : f in i t e set of OTHER LOCK)

This model is not a complete characterization of typical Java concurrency—for

example, it does not state that every thread whose control flow is at a synchronized

method on some already-locked object must be inactive and in the lock’s waiting

set, nor does it characterize waitersForUnsynch at all—but it was sufficient for the

purpose of [72], which was to provide a well-defined domain in which we could discuss

the definition and implementation of a new lock written in the style of aspect-oriented
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programming. This idea of underspecification will become important in a different

setting in Chapter 4.

§2.2.2 Specifying Functional Constructs

A programming language is considered “functional” if it deemphasizes the idea

of a “state”—a mapping of variable names to values that persists and mutates as

the program executes. A functional program is not an arrangement of commands

that execute one after another, but rather a single expression that is evaluated by

evaluating subexpressions and combining results. In such a language, all procedural

abstractions are “functions” in the sense defined in footnote 9. This may seem like

a straightforward restriction of standard “imperative” programming, but the history

of computing is rife with contributions spawned from this more minimal, unadorned

approach.

Functional programming’s role as an engine of innovation is partly due to seem-

ingly inconsequential syntactic characteristics. Most notably, the quintessential func-

tional language, Lisp [29], uses a parenthesized prefix notation, which allows code itself

to be treated as a simply structured piece of programmatic data.11 Thus, powerful

advanced programming techniques like macros and reflection are natural in Lisp. We

glimpsed Lisp syntax earlier, in the ACL2 specification of sort—ACL2 is a dialect of

Lisp that makes a good candidate for verification because it is “purely functional.” In

fact, “ACL” stands for “Applicative Common Lisp,” and “applicative” is a synonym

for the usage of “pure” that we are about to elaborate.

11The name of the primitive data type that Lisp code is a member of is “list,” and the etymology
of the name “Lisp” is “List Processing Language.” We will formalize the meaning of “list” shortly.
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Most industrial-strength functional programming languages are not “pure,” mean-

ing that some of their constructs alter an argument or have some other effect which

causes a “state” to persist across the execution of multiple programming commands.

The most basic example of impurity is assignment to a variable. Purely functional

languages like ACL2 disallow such complications, making the translation from code

to mathematics much more direct. In some sense this is a boon for verification, and

indeed ACL2 has many achievements to boast of. However, the deceptively mathe-

matical nature of pure functional programming obscures the importance of mathe-

matical modeling and leads to reusability issues as discussed in §2.1.1. We seek to

remedy this situation by showing that the Resolve specification language is just as

useful for formalizing important constructs of functional programming as it has been

in imperative programming.

Before demonstrating Resolve’s utility for modeling these constructs, we must

emphasize that such a demonstration runs quite contrary to functional programming

orthodoxy. The oft-claimed advantage of functional programming, particularly the

pure form, is that “the code is the spec,” meaning that purely functional code is

so clean and rigorously understood that it itself serves as a formal explanation of

its behavior. This is why, for example, ACL2 users sometimes refer to the programs

they write as “models,” and why strict abstraction is not (to this author’s knowledge)

present in any existing effort to verify functional programs.

However, the “code is specification” viewpoint implies that attempts to prove

functional programs correct do not actually comprise “verification” in the sense that

we’ve defined—in such a setting, there is no qualitatively different description of
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intended behavior relative to which verification can be performed. A primary mo-

tivation for the work we present in this document is the observation that all known

efforts to verify functional programs just prove code to be functionally equivalent to

other code. If that other code is broken, then code that is proven correct will still fail

in practice. We should be concerned about this, because the literature of computer

science abounds with discoveries of subtle, detrimental flaws in even straightforward

computational settings—see the repeated argument issues of Cook [17] or Bloch’s dis-

covery of a fatal flaw in the most common binary search and mergesort algorithms [9].

§2.2.2.1 S-Expressions and Proper Lists

In response to these concerns about unsoundness, we wish to imbue the verification

of functional languages with strict abstraction. There are serious theoretical compli-

cations here relating to the semantics usually ascribed to purely functional programs.

These issues will be addressed in Chapter 4, but for now let’s begin by presenting a

Resolve definition of a new mathematical type, one isomorphic to the fundamental

data structure of all the most popular functional languages: the S-Expression. The

aforementioned “lists” of languages like Lisp are in fact S-Expressions, but for reasons

that will become clear soon it is useful to henceforth avoid the overloaded term “list.”

Structurally, an S-Expression is a binary tree. However, it differs from binary trees

in that its non-leaf nodes are unlabeled. Due to this difference in kind, and also just

for the sake of a workable example, we choose to add S-Expressions as a math module,

i.e., an extension of the small collection of Resolve mathematical theories [34]. The

core of this theory is shown below.
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1 mathematics S EXPRESSION THEORY (math type LABEL)
2
3 math type S EXPRESSION of LABEL
4
5 math operation NIL : S EXPRESSION of LABEL
6
7 math operation ATOM ( l : LABEL) : S EXPRESSION of LABEL
8
9 math operation CONS (

10 car : S EXPRESSION of LABEL
11 cdr : S EXPRESSION of LABEL
12 ) : S EXPRESSION of LABEL
13
14 axiom atom neq n i l i s
15 for a l l l : LABEL (ATOM( l ) /= NIL)
16
17 axiom atom neq cons i s
18 for a l l car , cdr : S EXPRESSION of LABEL, l : LABEL
19 (CONS( car , cdr ) /= ATOM( l ) )
20
21 axiom c o n s n e q n i l i s
22 for a l l car , cdr : S EXPRESSION of LABEL
23 (CONS( car , cdr ) /= NIL)
24
25 axiom a t o m i n j e c t i v e i s
26 for a l l l , m: LABEL ( i f ATOM( l ) = ATOM(m) then l = m)
27
28 axiom c o n s i n j e c t i v e i s
29 for a l l car1 , car2 , cdr1 , cdr2 : S EXPRESSION of LABEL
30 ( i f CONS( car1 , cdr1 ) = CONS( car2 , cdr2 )
31 then car1 = car2 and cdr1 = cdr2 )
32
33 axiom i nduct i on i s
34 for a l l s : set of S EXPRESSION, l : LABEL
35 car , cdr : S EXPRESSION
36 ( i f (NIL i s in s and ATOM( l ) i s in s and
37 ( i f ( car i s in s and cdr i s in s )
38 then CONS( car , cdr ) i s in s ) )
39 then s = universal set )
40
41 end S EXPRESSION THEORY
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This definition of S-Expressions is just a minimalistic kernel. For this theory

to be useful in practice, it should be more expressive, with more definitions and

theorems about the relationships among S-Expressions. One particularly useful sub-

set of S-Expressions is that of “proper lists,” which have a strictly right-branching

structure—i.e., all left branches are LABELs, and which terminate with a NIL. A math

subtype defining proper lists is shown next.

1 definition IS PROPER LIST (
2 a : S EXPRESSION of T
3 ) : boolean i s
4 s = NIL or
5 ( there exists l : T, cdr : S EXPRESSION of T
6 ( s = CONS(ATOM( l ) , cdr ) and IS PROPER LIST( cdr ) ) )
7
8 math subtype PROPER LIST of T i s S EXPRESSION of T
9 exemplar a

10 constraint
11 IS PROPER LIST( a )

Languages like Lisp often provide functions to compute the length of a proper

list—its height when considered as an S-Expression, minus one for the terminal NIL—

and to append one proper list onto another. Resolve definitions describing this func-

tionality are given below, and they make use of the fact that a proper list can be

thought of abstractly by just considering the string consisting of all the LABELs in its

left branches, in top-to-bottom order. Contrast this to the “code is spec” approach,

wherein the recursive programmatic definitions of these functions would be consid-

ered a sufficient description of their behavior. In the Resolve approach, we see that

there are now qualitatively different descriptions (in terms of mathematical string

theory) of the length and append functions relative to which any of their possible
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implementations, recursive or otherwise, could be verified.

1 definition STRING OF (
2 s : PROPER LIST of T
3 ) : string of T s a t i s f i e s
4 i f s = NIL
5 then STRING OF( s ) = empty string
6 else there exists l : T, cdr : PROPER LIST of T
7 ( s = CONS(ATOM( l ) , cdr ) and
8 STRING OF( s ) = <l> ∗ STRING OF( cdr )
9

10 definition LEN (
11 s : PROPER LIST of T
12 ) : integer i s
13 |STRING OF( s ) |
14
15 definition APPEND (
16 s : PROPER LIST of T,
17 t : PROPER LIST of T
18 ) : PROPER LIST of T s a t i s f i e s
19 STRING OF(APPEND( s , t ) ) = STRING OF( s ) ∗ STRING OF( t )

§2.2.2.2 Map, Filter, and Fold

In terms of theoretical innovation, the Map function is probably the most important

fundamental construct that can be credited to functional programming. Map applies

a function to every element of a proper list. The reason why Map is closely tied to

functional programming is that it requires a function to be passed as a parameter, and

as we mentioned above, functional languages make code (read: function implementa-

tions) easy to treat as data. No such treatment of code as data occurs in our definition

of MAP below, however—remember that the Resolve snippets shown in this chapter

depict specifications, not code, and that this strict separation is advantageous. MAP

(likewise f) is not executable, but in practice would be used in the specification of
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something that is. For example, a programming function called Map involving pro-

gramming objects modeled as PROPER LISTs could have “ensures STRING OF(Map)

= MAP(STRING OF(s), f)” as its contract. Note that the typographical convention

of using all caps for math definition names helps avoid ambiguity in Resolve spec-

ifications, since the name of a programming function may appear in its contract’s

ensures clause to denote the function’s return value.

1 definition MAP (
2 s : string of T1 ,
3 f : function of (T1 , T2)
4 ) : string of T2 s a t i s f i e s
5 i f ( s = empty string )
6 then MAP( s , f ) = empty string
7 else
8 there exists i : T1 , t : string of T1
9 ( s = <i> ∗ t and

10 MAP( s , f ) = <f ( i )> ∗ MAP( t , f ) )

In addition to its aesthetic elegance, MAP is powerful because it lends itself to

parallelization—Google’s algorithms are examples of demanding computational tasks

that leverage MAP extensively [19]. Two closely related constructs with similar advan-

tages are FILTER and FOLD. FILTER eliminates the elements of a list that fail some

provided test, and FOLD computes a result by applying an operator successively to

each element of a list starting with some seed value. For example, FOLDing addition

over the list of the first three nonzero natural numbers and starting with a seed of

zero yields 6. Resolve definitions for FILTER and FOLD are given below.

1 definition FILTER (
2 s : string of T,
3 p : function of (T, boolean )
4 ) : string of T s a t i s f i e s
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5 i f ( s = empty string )
6 then FILTER( s ) = empty string
7 else
8 there exists l : T, t : string of T
9 ( s = <l> ∗ t and

10 i f (p( l ) )
11 then FILTER( s , p ) = <l> ∗ FILTER( t , p)
12 else FILTER( s , p ) = FILTER( t , p ) )
13
14 definition FOLD (
15 s : string of T2 ,
16 v : T1
17 f : function of ( (T1 , T2) , T1)
18 ) : string of T1 s a t i s f i e s
19 i f ( s = empty string )
20 then FOLD( s , v , f ) = v
21 else
22 there exists l : T1 , t : string of T1
23 ( s = t ∗ <l> and
24 FOLD( s , v , f ) = f (FOLD( t , v , f ) , l ) )

Note that the latter definition expresses left-to-right folding. Some functional

languages provide both directions of folding as built-in functions; the right-to-left

direction is of course easy to specify in a manner entirely analogous to this, although

its recursive implementation would be markedly different than in the left-to-right

case. Again we see utility in the expressiveness of strict abstraction.

Having seen that formalizations of the common data structures and algorithmic

constructs of functional programming are feasible in Resolve, we’ll conclude this chap-

ter with a discussion of how automated tools for mathematical proofs can aid in the

engineering of specifications.
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§2.3 Tool Support for Mathematical Theory Development

Consider the alternative method for defining the length of a proper list shown

below. The recursive nature of this definition is similar in spirit to how one would

actually code a length function in a functional programming language.

1 definition LEN2 (
2 s : PROPER LIST of T
3 ) : integer sa t i s f i e s
4 i f ( s = NIL) then LEN2( s ) = 0
5 else
6 there exists l : T, cdr : PROPER LIST of T
7 ( s = CONS(ATOM( l ) , cdr ) and
8 LEN2( s ) = 1 + LEN2( cdr ) )

We may be curious to know whether or not this definition is equivalent to our

original, string-based version. For example, if the body of LEN2 was the semantics

a functional programming language ascribed to a recursive implementation of length

(a likely scenario), and if our original LEN was used to specify that function, proving

the two definitions equivalent would essentially be a verification of the code. We can

conduct this proof by hand:

Claim. Let T be a mathematical type. ∀s : PROPER LIST of T, LEN(s) = LEN2(s).

Proof. Let s be an arbitrary PROPER LIST of T. We proceed by induction on s. In

the base case, s = NIL. Since STRING OF(NIL) = empty string, we have LEN(s) = 0.

The definition of LEN2 gives LEN2(NIL) = 0 as well.

Our inductive hypothesis states that when s = CONS(ATOM(l), c) for some T l and

PROPER LIST of T c, LEN(c) = LEN2(c). Now for our induction step, assume that

s = CONS(ATOM(l), c) for some T l and PROPER LIST of T c. By the definition of
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STRING OF we have LEN(s) = |〈l〉 ∗ STRING OF(c)|, which by string theory is equal to

1 + |STRING OF(c)|. The second term is just LEN(c), so by inductive hypothesis and

the definition of LEN2 we have LEN(s) = 1 + LEN(c) = 1 + LEN2(c) = LEN2(s), thus

completing the induction step. �

Notice that, despite the fact that S-Expression theory and its attendant definitions

are all meant to serve as a model of programmatic data, proofs of properties of S-

Expressions are conducted in ordinary mathematics. This again is an upshot of strict

abstraction. It should be clear now that there are multiple separable roles in the

Resolve-style software verification workflow, e.g., specification writer, math theory

developer, programmer, etc. We will elaborate these roles into a full vision of the

Resolve verified software process in Chapter 5.

The property we’ve proven here is quite simple, and yet its proof is non-trivial and

provides a glimpse of the “bookkeeping overhead” that proofs relating to verification

often entail [42]. Formally proving mathematical properties with full rigor—a practice

that most math texts do not even attempt—carries a heavy burden of intellectual

complexity, much of it due to “clerical” matters like properly formulating inductive

hypotheses rather than developing deep mathematical insights. It seems natural,

then, to look for automated assistance. We conclude our survey of math’s role in

verification by discussing tool support for developing mathematical theories.

§2.3.1 Isabelle

Isabelle [59] is an interactive proof assistant that is commonly employed for a

wide range of mathematical and computational tasks. Researchers in the verification

community use Isabelle to help manage the bookkeeping of difficult proofs, and also
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use scripts called “tactics” to run Isabelle in an automatic, “push-button” manner.

Isabelle is also used for heavyweight mathematical proofs and formalization efforts,

e.g., a formally checked proof of the prime number theorem [4].

An investigation of Isabelle’s suitability as a push-button prover for Resolve has

been conducted [43]. The most pertinent aspect of this work for our purposes here

is that Resolve mathematical theories can be incorporated into Isabelle’s automated

reasoning process by axiomatizing them using a syntax similar in spirit to that of our

S-Expression theory, and by providing a witness to the existence of a satisfying theory

via built-in Isabelle types. The full details are contained in a Resolve researcher’s

Ph.D dissertation [41], and we augment this work by investigating a different tool

that is often cited as an alternative to Isabelle: Coq.

§2.3.2 Coq

The Coq Proof Assistant [8] is an interactive implementation of the Calculus of

Inductive Constructions, an intuitionistic logic with a theory of types that models

the inductive data types typical of strongly-typed functional programming languages

such as ML and Haskell. The Coq type system is rich enough to facilitate verification

based on the Curry-Howard isomorphism [30], meaning that the types of objects in

Coq can be arbitrary logical formulae, and that a well-typed program can be consid-

ered a constructive proof of the formula that program’s type encodes. This makes

Coq similar in a sense to ACL2—it is simultaneously a programming language and a

logic for proving properties of programs. In contrast to ACL2, though, Coq is stati-

cally typed, and these types are what serve as specifications. In other words, ACL2

proves programs equivalent to other programs, with these other programs comprising
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the descriptions of behavior relative to which verification is performed, whereas Coq

proves programs type-correct, with type signatures serving as these descriptions.

The reader may already be getting a sense that the theoretical trappings of Coq are

extremely technical and language-specific. However, continuing in the vein of strict

abstraction, this author has chosen to use Coq solely as a programming language-

independent tool for developing mathematical theories. This approach simplifies

matters tremendously, and no other work is known to use Coq in such a manner.

The intuitionistic nature of Coq, specifically the Calculus of Inductive Construc-

tions, restricts the kinds of mathematical theories that can be expressed. Coq data

types—which for our simplified purposes should be thought of as Resolve math

theories—can only be defined by a collection of (perhaps inductive) constructor func-

tions, and these are automatically assumed to have certain properties, most notably

injectivity and disjointness of images. Fortunately, many Resolve math theories fit

this mold, and Coq eases their development by providing a relatively simple frame-

work for expressing theories and proving theorems about them with less clerical over-

head. The listing below shows a definition of proper lists in Coq syntax, along with

the reply that Coq gives when the definition is entered. The Implicit Arguments

directives are not important for conceptual purposes here, they just allow future ref-

erences to plist to omit the Type parameter.

1 Coq < Inductive p l i s t (X:Type ) : Type :=
2 Coq < | n i l : p l i s t X
3 Coq < | cons : X −> p l i s t X −> p l i s t X.
4 p l i s t i s de f i ned
5 p l i s t r e c t i s de f i ned
6 p l i s t i n d i s de f ined
7 p l i s t r e c i s de f i ned
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8
9 Coq < Implicit Arguments n i l [ [ X ] ] .

10
11 Coq < Implicit Arguments cons [ [ X ] ] .

This definition is different than the one we formulated in Resolve, because in Coq

we did not first define S-Expressions and then subsequently define proper lists as a

subset of them. Such “math subtyping” is indeed possible in Coq, but it involves

precisely those type system complications that we wish to avoid here. It should

be clear nonetheless that the definition of plist creates a type that is structurally

equivalent to our previous description of proper lists—plists’ derivation trees are

isomorphic to PROPER LISTs.

The response from the Coq environment indicates that four new facts are auto-

matically deduced from the proper list data type declaration. The first, plist is just

the definition of the datatype itself. plist rect and plist rec are of no practical

interest here, but the other, plist ind, is in a sense equivalent to S-Expression the-

ory’s induction axiom: it states that any property which holds of nil and also of all

conses whose argument plist satisfies the property is true of all proper lists. The

body of this definition is shown in Coq syntax below (for our purposes, Prop can be

thought of as the type of boolean mathematical values in Coq).

1 Coq < Check p l i s t i n d .
2 p l i s t i n d
3 : f o ra l l (X : Type) (P : p l i s t X −> Prop ) ,
4 P n i l −>
5 ( f o ra l l ( x : X) (p : p l i s t X) , P p −> P ( cons x p ) ) −>
6 f o ra l l p : p l i s t X, P p
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As a final demonstration of Coq’s efficacy as a tool for theory development, we

will prove our previous claim regarding LEN and LEN2 inside the Coq environment.

Since LEN depends on string theory, which is not built in to Coq, a definition of

string, as well as some of its fundamental operators—length (| |), concat (∗), and

stringleton (〈 〉)—are prerequisite to this exercise. The author has conducted a

lengthy development of a large portion of Resolve string theory, which includes these

definitions, inside of Coq. This appears as Appendix A as the end of this document.

In addition to those fundamental string definitions, we will of course need to de-

fine STRING OF, LEN, and LEN2 inside of Coq. It will also be useful to define a lemma

relating stating that a the length of a stringleton concatenated with another string

is one plus the length of that string. All four of these definitions are shown in the

following listing, which is lengthy due to the verbosity of the Coq proof interaction.

We will discuss the Coq proof process next.

1 Coq < Fixpoint s t r i n g o f (X:Type) (p : p l i s t X) : s t r i n g X :=
2 Coq < match p with
3 Coq < | n i l => empty st r ing
4 Coq < | cons a q => concat ( s t r i n g l e t o n a ) ( s t r i n g o f X q )
5 Coq < end .
6 s t r i n g o f i s r e c u r s i v e l y de f ined ( dec r ea s ing on 2nd argument )
7
8 Coq < Implicit Arguments s t r i n g o f [ [ X ] ] .
9

10 Coq < Definition l en1 (X:Type) (p : p l i s t X) : nat :=
11 Coq < l ength ( s t r i n g o f p ) .
12 l en1 i s de f ined
13
14 Coq < Implicit Arguments l en1 [ [ X ] ] .
15
16 Coq < Fixpoint l en2 (X:Type) (p : p l i s t X) : nat :=
17 Coq < match p with
18 Coq < | n i l => 0
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19 Coq < | cons a q => S ( l en2 X q )
20 Coq < end .
21 l en2 i s r e c u r s i v e l y de f ined ( dec r ea s i ng on 2nd argument )
22
23 Coq < Implicit Arguments l en2 [ [ X ] ] .
24
25 Coq < Lemma l e n s t r i n g l e t o n c o n c a t :
26 Coq < f o ra l l (X:Type) ( x : X) ( s : s t r i n g X) ,
27 Coq < l ength ( concat ( s t r i n g l e t o n x ) s ) = S ( l ength s ) .
28 1 subgoal
29
30 ============================
31 f o ra l l (X : Type) ( x : X) ( s : s t r i n g X) ,
32 l ength ( concat ( s t r i n g l e t o n x ) s ) = S ( l ength s )
33
34 l e n s t r i n g l e t o n c o n c a t < i nduct i on s .
35 2 subgoa l s
36
37 X : Type
38 x : X
39 ============================
40 length ( concat ( s t r i n g l e t o n x ) empty st r ing ) =
41 S ( l ength empty st r ing )
42
43 subgoal 2 i s :
44 l ength ( concat ( s t r i n g l e t o n x ) ( ext s x0 ) ) =
45 S ( l ength ( ext s x0 ) )
46
47 l e n s t r i n g l e t o n c o n c a t < s impl .
48 2 subgoa l s
49
50 X : Type
51 x : X
52 ============================
53 1 = 1
54
55 subgoal 2 i s :
56 l ength ( concat ( s t r i n g l e t o n x ) ( ext s x0 ) ) =
57 S ( l ength ( ext s x0 ) )
58
59 l e n s t r i n g l e t o n c o n c a t < r e f l e x i v i t y .
60 1 subgoal
61
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62 X : Type
63 x : X
64 s : s t r i n g X
65 x0 : X
66 IHs : l ength ( concat ( s t r i n g l e t o n x ) s ) = S ( l ength s )
67 ============================
68 length ( concat ( s t r i n g l e t o n x ) ( ext s x0 ) ) =
69 S ( l ength ( ext s x0 ) )
70
71 l e n s t r i n g l e t o n c o n c a t < s impl .
72 1 subgoal
73
74 X : Type
75 x : X
76 s : s t r i n g X
77 x0 : X
78 IHs : l ength ( concat ( s t r i n g l e t o n x ) s ) = S ( l ength s )
79 ============================
80 S ( l ength ( concat ( s t r i n g l e t o n x ) s ) ) = S (S ( l ength s ) )
81
82 l e n s t r i n g l e t o n c o n c a t < r e w r i t e −> IHs .
83 1 subgoal
84
85 X : Type
86 x : X
87 s : s t r i n g X
88 x0 : X
89 IHs : l ength ( concat ( s t r i n g l e t o n x ) s ) = S ( l ength s )
90 ============================
91 S (S ( l ength s ) ) = S (S ( l ength s ) )
92
93 l e n s t r i n g l e t o n c o n c a t < r e f l e x i v i t y .
94 Proof completed .

Fixpoint is the Coq keyword for recursive function definitions, nat is a built-in

type for nonnegative integers, and S is its successor function. When a Lemma (or a

Theorem, as we’ll see shortly) is introduced, the Coq top-level enters a new mode of

interaction wherein the user must supply a proof. Each prompt for user input ends

with a < symbol. Coq proofs are usually constructed in a backwards-reasoning style
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via commands called “tactics”—subroutines for symbol manipulation that have been

established to be sound relative to the Calculus of Inductive Constructions. A rich

arsenal of tactics are available in Coq, but only a few are necessary to prove our

lemma:

induction Breaks into cases on a given variable, using the variable’s type definition—

its constructors—to determine the form of each case. In the case of an inductive

constructor (such as ext, which is string’s extension function), then the ap-

propriate inductive hypothesis is automatically generated for that case.

simpl Performs simple rewriting of terms in the goal using the bodies of any defini-

tions mentioned.

reflexivity Discharges a goal of the form x = x.

rewrite Changes the goal by rewriting terms directionally in accordance with the

assumption mentioned. In our proof of len stringleton concat, the goal

was changed so that any of its subformulas matching the left-hand side of the

inductive hypothesis were rewritten in the form indicated by the right-hand

side.

With these definitions in scope, we can now state and prove the claim of len1’s

and len2’s equivalence. This proof is entirely isomorphic to the one we conducted

by hand earlier, but in Coq the proof process becomes a simple matter of knowing

which tactic to apply at each step; the bookkeeping of rewriting terms, generating

inductive hypotheses, and managing cases is all automatic. Before listing the proof,

we need to describe one more built-in tactic:
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unfold Rewrites a defined name with the body of its definition. This is often neces-

sary to facilitate further simplifications via simpl.

1 Coq < Theorem l e n s e q u a l :
2 Coq < f o ra l l (X:Type) (p : p l i s t X) , l en1 p = len2 p .
3 1 subgoal
4
5 ============================
6 f o ra l l (X : Type) (p : p l i s t X) , l en1 p = len2 p
7
8 l e n s e q u a l < i nduct i on p .
9 2 subgoa l s

10
11 X : Type
12 ============================
13 len1 n i l = len2 n i l
14
15 subgoal 2 i s :
16 l en1 ( cons X x p) = len2 ( cons X x p)
17
18 l e n s e q u a l < unfo ld l en1 .
19 2 subgoa l s
20
21 X : Type
22 ============================
23 length ( s t r i n g o f n i l ) = len2 n i l
24
25 subgoal 2 i s :
26 l en1 ( cons X x p) = len2 ( cons X x p)
27
28 l e n s e q u a l < s impl .
29 2 subgoa l s
30
31 X : Type
32 ============================
33 0 = 0
34
35 subgoal 2 i s :
36 l en1 ( cons X x p) = len2 ( cons X x p)
37
38 l e n s e q u a l < r e f l e x i v i t y .
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39 1 subgoal
40
41 X : Type
42 x : X
43 p : p l i s t X
44 IHp : l en1 p = len2 p
45 ============================
46 len1 ( cons X x p) = len2 ( cons X x p)
47
48 l e n s e q u a l < s impl .
49 1 subgoal
50
51 X : Type
52 x : X
53 p : p l i s t X
54 IHp : l en1 p = len2 p
55 ============================
56 len1 ( cons X x p) = S ( len2 p)
57
58 l e n s e q u a l < r e w r i t e <− IHp .
59 1 subgoal
60
61 X : Type
62 x : X
63 p : p l i s t X
64 IHp : l en1 p = len2 p
65 ============================
66 len1 ( cons X x p) = S ( len1 p)
67
68 l e n s e q u a l < unfo ld l en1 .
69 1 subgoal
70
71 X : Type
72 x : X
73 p : p l i s t X
74 IHp : l en1 p = len2 p
75 ============================
76 length ( s t r i n g o f ( cons X x p ) ) = S ( l ength ( s t r i n g o f p ) )
77
78 l e n s e q u a l < s impl .
79 1 subgoal
80
81 X : Type
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82 x : X
83 p : p l i s t X
84 IHp : l en1 p = len2 p
85 ============================
86 length ( concat ( s t r i n g l e t o n x ) ( s t r i n g o f p ) ) =
87 S ( l ength ( s t r i n g o f p ) )
88
89 l e n s e q u a l < r e w r i t e −> l e n s t r i n g l e t o n c o n c a t .
90 1 subgoal
91
92 X : Type
93 x : X
94 p : p l i s t X
95 IHp : l en1 p = len2 p
96 ============================
97 S ( l ength ( s t r i n g o f p ) ) = S ( l ength ( s t r i n g o f p ) )
98
99 l e n s e q u a l < r e f l e x i v i t y .

100 Proof completed .

The fragment of the S-Expression theory in Coq glimpsed thus far has been a very

small example, meant only to convey the plausibility of Coq as a useful tool to aid

the formulation of mathematical theories for Resolve. As was mentioned before, the

author has conducted a much larger case study, which defines and proves a substantial

portion of mathematical string theory, shown in Appendix A.

It is our hope that the reader is now pondering the wider applicability of tools

like Coq for software verification. Can automated tools synthesize code and speci-

fications to create “verification conditions,” i.e., the logical formulae whose validity

corresponds to the correctness of the code? Can proof assistants like Coq be used to

decide the truth or falsehood of these verification conditions? Do such proofs always

require detailed interaction via tactics? We will answer all of these questions in good

time, but for now it remains to be seen how a human, let alone a computer program,
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could make meaningful formal connections between code and specifications in order

to determine whether or not a program is correct.
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Chapter 3: Modular Program Verification, Take One: Client

Programming

§3.1 The Resolve Imperative Programming Language

Having seen the key features of the Resolve specification language, we now move

on to an investigation of the imperative programming language that the current tools

developed at OSU verify. What does Resolve code look like, and by what process can

one prove that a Resolve program satisfies its formal behavioral specification? Again,

we present this material by example, and trust the reader to abstract away from it.

The listing below shows Resolve code that satisfies the Sort specification discussed

in the previous chapter.12

1 real ization S e l e c t i o n S o r t (
2 function AreInOrder ( restores i : Item ,
3 restores j : Item ) : control
4 ensures
5 AreInOrder = ARE IN ORDER ( i , j )
6 ) implements Sort for QueueTemplate
7

12No compiler for the Resolve programming language dialect described here currently exists; al-
though this code can be verified as correct, it cannot be compiled and executed. No technical
impediment stands in the way of a Resolve compiler—it is considered a straightforward enough task
that it has never been a priority of our research program. However, there is a compiler for another
dialect of Resolve [69].
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8 local procedure RemoveMin (updates q : Queue ,
9 replaces min : Item )

10 requires
11 q /= empty string
12 ensures
13 IS PERMUTATION ( q ∗ <min>, #q ) and
14 IS PRECEDING (<min>, q )
15 . . .
16 end RemoveMin
17
18 procedure Sort (updates q : Queue )
19 variable so r t ed : Queue
20 loop
21 maintains
22 IS PERMUTATION ( q∗ sorted , #q∗#sor t ed ) and
23 IS NONDECREASING ( so r t ed ) and
24 IS PRECEDING ( sorted , q )
25 decreases | q |
26 while not IsEmpty ( q ) do
27 variable min : In t eg e r
28 RemoveMin (q , min )
29 Enqueue ( sorted , min )
30 end loop
31 q :=: so r t ed
32 end Sort
33 end S e l e c t i o n S o r t

At a coarse view, our Sort algorithm only does three things: it declares a vari-

able called sorted for storing the sorted Queue it builds, it iteratively transfers the

smallest thing in q to the end of sorted over and over until q is empty, and then it

exchanges q with sorted13, thus updating q in accordance with the contract for Sort

from the previous chapter. This is the classic “selection sort” algorithm, presented in

the Resolve programming language. We have omitted the body of RemoveMin in the

13Those familiar with languages like Java and C++ may have expected an assignment operator
(:= or =) instead, but in Resolve, swapping (:=:) is the primary operator for moving data. This
choice has many practical advantages, which we discuss in [61].
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above code both to simplify the presentation, and also to emphasize that its speci-

fication is a sound conceptualization of its behavior—callers of RemoveMin need not

know how it is implemented, only what it does. Notice also that this realization is

parameterized by an AreInOrder function, thus liberating the implementation from

a commitment to any one particular order by which to sort the data.

§3.1.1 Loop Invariants and Partial vs. Total Correctness

We see in the Sort realization a new syntactic slot for formal specification: a

maintains clause, also called a loop invariant. Loop invariants are a common anno-

tation construct that predate Resolve and trace their history to some of the earliest

efforts at program verification [35]. An invariant allows the behavior of a loop to be

reasoned about statically, i.e., without having to consider the individual iterations

that will occur when the program is executed. In fact, an invariant can be used to

reason about the results of a loop’s execution even in the absence of confidence that

the loop will ever terminate. This is known as the partial correctness approach—

partial correctness verification consists of proving that a program is correct relative

to its specification provided that the program actually terminates. Resolve pursues

a total correctness strategy by adding a decreases clause to the loop invariant. The

decreases clause contains an expression over some well-founded set, usually natural

numbers. To prove that the loop will actually terminate when executed, the body of

the loop must be shown to decrease this well-founded measure unconditionally.

The maintains clause relates values at the beginning of a loop iteration to those

at the end of an iteration, and so by transitivity it expresses how the values of the
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program variables immediately prior to the loop relate to those after the loop has ter-

minated. In addition, we know that the negation of the loop condition (the guard) is

also true immediately after the end loop statement: either we never entered the loop

or else it terminated by failing its guard. The conjunction of these two mathematical

assertions—the maintains clause and the negated guard—gives a characterization of

the program state immediately after the loop, without having to consider the loop

iteration-by-iteration.

Loop invariants are in essence a formal statement of the thought process that the

programmer must undergo in order to write a correct loop in the first place; Resolve

(like many other verification systems) simply requires that programmers make this

reasoning explicit via formal annotation.

Occasionally, other mathematical properties relevant to the correctness of an al-

gorithm are helpful to express inside its implementation, either for documentation

purposes, or to provide “hints” to the automated reasoning techniques we will soon

discuss. Resolve offers a syntactic slot labeled confirm for stating such properties. As

a trivial example, we could have written confirm sorted = empty string between

lines 19 and 20 in our Sort realization.

We will say more about the role of programmer annotations in a framework for

push-button verification when we discuss tool support in Chapter 5. For now, note

once more that each annotation slot in Resolve is filled by with an assertion in the

specification language, never mentioning any programming operations or operators.14

This, roughly, is the syntactic characterization of strict abstraction. However, in

14Except for the aforementioned special case of mentioning the name of a function in its ensures
clause to denote its return value
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Chapter 6 we will consider a scenario in which a programming operation name may

be mentioned in an assertion in a manner that preserves strict abstraction.

Having now seen examples of both Resolve specifications and code, along with

the small well-defined interface between these two worlds, we will now examine the

Resolve verification strategy. What we require are rules for combining the mathemat-

ical meaning of code (its semantics), with the specifications/annotations presented

heretofore, into verification conditions : sentences of predicate calculus whose truth

corresponds to the correctness of the code relative to its spec.

§3.2 Tabular Verification in Resolve

The linchpin of the Resolve verification methodology we will describe is a dia-

gram known as a tracing table [67]. A tracing table for the selection sort code seen

in §3.1 is shown below. The general idea of a tracing table is to depict the state

of the program—the values of all in-scope programming variables—and in particular

to show how each line of code will affect the state of the program when executed.

Every state is given a numeric index, and each boxed row of the table shows what is

known at that state and what is required in order for the next piece of code to be

legal. Subscripts are affixed to all programming variables mentioned in tracing ta-

bles, so the variables’ values at different states can be differentiated. Note that some

straightforward abbreviations, such as 〈〉 for the empty string, have been adopted for

simplicity’s sake in this tracing table:
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State Path Conds Facts Obligations

0
variable sorted: Queue

1

sorted1 = 〈〉 IS PERM(q1 ∗ sorted1, q1 ∗ sorted1)
q1 = q0 IS NONDEC(sorted1)

IS PREC(sorted1, q1)
q1 6= 〈〉 ⇒ 0 < |q1|

loop

maintains

IS PERMUTATION (q * sorted, #q * #sorted) and

IS NONDECREASING (sorted) and IS PRECEDING (sorted, q)

decreases |q|

2
q2 6= 〈〉 IS PERM(q2 ∗ sorted2, q1 ∗ sorted1)

IS NONDEC(sorted2)
IS PREC(sorted2, q2)

variable min: Integer

3
q2 6= 〈〉 q3 = q2 q3 6= 〈〉

sorted3 = sorted2

min3 = 0
RemoveMin(q, min)

4
q2 6= 〈〉 sorted4 = sorted3

IS PERM(q4 ∗ 〈min4〉, q3)
IS PREC(〈min4〉, q4)

Enqueue(sorted, min)

5

q2 6= 〈〉 q5 = q4 IS PERM(q5 ∗ sorted5, q2 ∗ sorted2)
sorted5 = sorted4 ∗ 〈min4〉 IS NONDEC(sorted5)
min5 = 0 IS PREC(sorted5, q5)

|q5| < |q2|
end loop

6

IS PERM(q6 ∗ sorted6, q1 ∗ sorted1)
IS NONDEC(sorted6)
IS PREC(sorted6, q6)
q6 = 〈〉

q :=: sorted

7
q7 = sorted6 IS PERM(q7, q0)
sorted7 = q6 IS NONDEC(q7)

A state’s “Facts” consist of the postcondition of the previous line of code (if it

was a procedure call), statements of equality between subscripted variables (e.g., due

to a swap, or due to the “frame property”—the fact that variables not mentioned

in a line of code remain unchanged in the next state), or the loop invariant (if the

current state is the first inside a loop or the first immediately following a loop). Also,

the 0th state of a procedure that has a precondition will contain a manifestation of
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that requires clause (with the appropriate substitutions of indexed actual parameter

names for formal parameters) as a fact. Contrariwise, the “Obligations” at a state

consist of the requires clause of the procedure we are about to call (if the next

line of code contains a call), the ensures clause of the current operation (if this is

the final state in a procedure body), or the loop invariant (if the current state is

the one immediately preceding the start of a loop, or is the final state in a loop’s

body). Of course, confirm statements also cause an obligation to be introduced.

“Path Conditions” are additional facts that are assumed to be true inside of control

structures (ifs and loops) due to their guards.

It is interesting to observe the manifestations of the loop invariant at various states

in the Sort tracing table. We see in state 1 that the invariant must hold prior to

the loop, but that here there is no difference between variables with a # and those

without. At such points, loop invariants formulated carefully can often be proven by

simple properties such as the reflexivity of a definition like IS PERMUTATION. Inside of

the loop but prior to the first line of its body, the invariant is available as facts, and

it appears as an obligation immediately after the body’s final line of code. Finally,

the invariant is available as a fact immediately after the loop. Our tracing table thus

demonstrates exactly how loop invariants are used to reason about a loop’s behavior

without considering multiple iterations of its body. The reader should be able to

convince herself at this point that generating tracing tables is a purely mechanical

process, albeit somewhat complicated by issues such as choosing correct state indices

to correspond to the meaning of # in invariants and postconditions.
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§3.2.1 VCs, Soundness and Relative Completeness

Let Pi denote the conjunction of all path conditions at state i. Likewise, let Ai be

the conjunction of that state’s facts (what we “assume”) and let Ci be the conjunction

of that state’s obligations (what we must “confirm”). Then verifying a piece of code

by the tabular approach consists of proving, for each state index n, the following

formula:

∧
0≤i≤n

(Pi ⇒ Ai)⇒ (Pn ⇒ Cn)

For a given table, each implication that arises by applying this formula to a par-

ticular state is known as a verification condition (“VC”). The formula demonstrates

that “facts” are only available for the proof of an obligation if the path conditions

those facts are true under actually obtain. Furthermore, the formula shows that any

obligation guarded by a false path condition leads to a VC that is vacuously true due

to a false antecedent—such VCs correspond to unreachable or “dead” code, which

the tabular proof process can discover by determining Pn to be unsatisfiable. This

is one way in which the tabular proof strategy can provide useful feedback when an

attempted verification fails [3].

The soundness and relative completeness of the tabular approach have been proven

elsewhere [46, 33]. We could now proceed to prove this selection sort code correct,

although carrying the proof through in full detail would be quite tedious. Again

we see that automated proof assistants have an important role to play in program

verification. For the sake of example, we show a simplified form of one of Sort’s

verification conditions in Fig. 3.1.
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(s1 = 〈〉
∧ q1 = q0

∧ IS PERM(q1 ∗ s1, q1 ∗ s1)
∧ IS NONDEC(s1)

∧ IS PREC(s1, q1)

∧ IS PERM(q6 ∗ s6, q1 ∗ s1)
∧ IS NONDEC(s6)

∧ IS PREC(s6, q6)

∧ q6 = 〈〉
∧ q7 = s6

∧ s7 = q6)

=⇒
IS PERM(q7, q0)

Figure 3.1: A Sort verification condition. Some straightforward abbreviations,e.g.,
s for sorted, have been adopted for simplicity’s sake. Some available facts that are
not useful for the proof of this VC (but not all of them) have been omitted, i.e., those
arising from the loop body.
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In [33], Heym observes that the definition of “completeness” for a verification

technique must not only account for the incompleteness of formal systems due to

Gödel’s theorems [58], but also the possibility that a program may be correct yet

insufficiently annotated. Not only are programs whose meanings are Gödel sentences

unverifiable, but so might be programs whose loop invariants are not sufficiently

strong. A verification system is called “relatively complete” if all valid programs

whose mathematical interpretations are provable in mathematical logic can be proven

correct, perhaps by strengthening annotations such as loop invariants.

§3.2.2 Two Views of Programming Language Semantics

If RemoveMin were incorrect, i.e., if the code that actually executed when Sort

called RemoveMin did not meet its contract, then Sort would be incorrect as well,

regardless of whether or not the obligations in Sort’s tracing table could all be proven.

The reason for this vulnerability is that tabular verification in Resolve is a completely

modular task—verifying a piece of code involves only the specifications (never the

code) of the components and operations that code depends on.

As an exercise, we could force the tabular methodology to process Sort in a

less modular way. Namely, we could inline the body of RemoveMin (not yet seen),

rather than making it a procedural abstraction. A tracing table for this new ap-

proach to Sort is given below. The code for RemoveMin appears between states 3

and 11. AreInOrder is a comparison function for Integers, so this code still has

external dependencies, even with RemoveMin inlined, however, the previous version’s

vulnerability to an incorrect RemoveMin has been obviated.
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State Path Conds Facts Obligations

0
variable sorted: Queue

1

sorted1 = 〈〉 IS PERM(q1 ∗ sorted1, q1 ∗ sorted1)
q1 = q0 IS NONDEC(sorted1)

IS PREC(sorted1, q1)
q1 6= 〈〉 ⇒ 0 < |q1|

loop

maintains

IS PERMUTATION (q * sorted, #q * #sorted) and

IS NONDECREASING (sorted) and IS PRECEDING (sorted, q)

decreases |q|

2
q2 6= 〈〉 IS PERM(q2 ∗ sorted2, q1 ∗ sorted1)

IS NONDEC(sorted2)
IS PREC(sorted2, q2)

variable min: Integer

3
q2 6= 〈〉 q3 = q2

sorted3 = sorted2

min3 = 0
variable tmp: Queue

4

q2 6= 〈〉 min4 = min3 q4 6= 〈〉
q4 = q3
sorted4 = sorted3

tmp4 = 〈〉
Dequeue (q, min)

5
q2 6= 〈〉 q4 = 〈min5〉 ∗ q5 IS PERM(tmp5 ∗ q5 ∗ 〈min5〉,

tmp5 = tmp4 tmp5 ∗ q5 ∗ 〈min5〉)
sorted5 = sorted4 IS PREC(〈min5〉, tmp5)

loop

maintains IS PERMUTATION(tmp * q * <min>, #tmp * #q * <#min>) and

IS PRECEDING(<min>, tmp)

decreases |q|

while not IsEmpty (q) do

6
q2 6= 〈〉 IS PERM(tmp6 ∗ q6 ∗ 〈min6〉,
q6 6= 〈〉 tmp5 ∗ q5 ∗ 〈min5〉)

IS PREC(〈min6〉, tmp6)
variable x: Integer

7

q2 6= 〈〉 min7 = min6 q7 6= 〈〉
q6 6= 〈〉 q7 = q6

sorted7 = sorted6

tmp7 = tmp6

x7 = 0
Dequeue (q, x)

8

q2 6= 〈〉 min8 = min7

q6 6= 〈〉 sorted8 = sorted7

tmp8 = tmp7

q7 = 〈x8〉 ∗ q8
if not AreInOrder (min, x) then

q2 6= 〈〉 min9 = min8

9 q6 6= 〈〉 sorted9 = sorted8
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¬min8 ≤ x8 tmp9 = tmp8

q9 = q8
x9 = x8

min :=: x

10

q2 6= 〈〉 min10 = x9

q6 6= 〈〉 x10 = min9

¬min8 ≤ x8 sorted10 = sorted9

tmp10 = tmp9

q10 = q9
end if

11

q2 6= 〈〉 ¬min8 ≤ x8 ⇒ min11 = min10

q6 6= 〈〉 ¬min8 ≤ x8 ⇒ q11 = q10
¬min8 ≤ x8 ⇒ sorted11 = sorted10

¬min8 ≤ x8 ⇒ tmp11 = tmp10

¬min8 ≤ x8 ⇒ x11 = x10

min8 ≤ x8 ⇒ min11 = min8

min8 ≤ x8 ⇒ q11 = q8
min8 ≤ x8 ⇒ sorted11 = sorted8

min8 ≤ x8 ⇒ tmp11 = tmp8

min8 ≤ x8 ⇒ x11 = x8

Enqueue (tmp, x)

12

q2 6= 〈〉 min12 = min11 IS PERM(tmp12 ∗ q12 ∗ 〈min12,
q6 6= 〈〉 sorted12 = sorted11 tmp5 ∗ q5 ∗ 〈min5〉)

tmp12 = tmp11 ∗ 〈x11〉 IS PREC(〈min12〉, tmp12)
q12 = q11 |q12| ≤ |q6|
x12 = 0

end loop

13

q2 6= 〈〉 q13 = 〈〉
IS PERM(tmp13 ∗ q13 ∗ 〈min13〉,

tmp5 ∗ q5 ∗ 〈min5〉)
IS PREC(〈min13〉, tmp13)

q :=: tmp

14

q2 6= 〈〉 min14 = min13

sorted14 = sorted13

tmp14 = q13
q14 = tmp13

Enqueue (sorted, min)

15

q2 6= 〈〉 min = 0 IS PERM(q15 ∗ sorted15, q1 ∗ sorted1)
sorted15 = sorted14 ∗ 〈min14〉 IS NONDEC(sorted15)
tmp15 = tmp14 IS PREC(sorted15, q15)
q15 = q14 |q15| = |q2|

end loop

16

q16 = 〈〉
IS PERM(q16 ∗ sorted16, q1 ∗ sorted1)
IS NONDEC(sorted16)
IS PREC(sorted16, q16)

q :=: sorted

17
q17 = sorted16 IS PERM(q17, q0)
sorted17 = q16 IS NONDEC(q17)
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The inlined body of RemoveMin makes clear how decision structures are processed

in tabular verification: the then clause (and the else clause if there is one) carries

additional path conditions corresponding to the truth value of the if guard for that

clause, and at the end of the structure facts are added relating the values of the

variables to the final values they took on in each clause. These are phrased as impli-

cations, with the guard (or its negation, in the case of fall-through or an else clause)

as the antecedent.

The contrast between inlining and procedural abstraction concretized in our two

tracing tables is emblematic of a larger issue, namely, how to think of the meaning of a

procedure call when formulating code’s semantics. One could argue that the meaning

of an operation call is just its body, or take the opposing view that the call’s meaning

is just its contract.15 For our discussion, let us call the former contention synthesized

semantics, and the latter decoupled semantics. The term “synthesized” invokes the

idea of a bottom-up reasoning process, whereas “decoupled” emphasizes the philos-

ophy that code and specs are separate entities whose relation is only established by

verification.

In a synthesized semantics approach, the “real” tracing table, even for the original

realization of Sort shown in §3.1, is the long table that inlines RemoveMin. With de-

coupled semantics, our first, briefer table is a legitimate representation of our selection

sort implementation’s meaning. Krone [46] justifies a decoupled view of semantics by

giving a sound and relatively complete method for reasoning about operation calls in

terms of the operations’ contracts. Heym [33] builds on this work by relating Krone’s

proof method to the tabular method evinced here via a “bridge rule” that preserves

15In either case, appropriate actual-for-formal parameter substitution is of course necessary.
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soundness and relative completeness. Crucial to both of these works is Resolve’s rela-

tional semantics—the principle that a piece of code’s mathematical meaning may be

a relation and not a function. In the next chapter we will see that when we consider

data representations, a discrepancy between decoupled and synthesized semantics can

lead to unsoundness when verifying programs in languages where every operation is

a function.

Decoupled semantics are pragmatically advantageous to the reasoning, and thus

the verification, process. For any operation whose body contains more than one line

of code, inlining results in a table with more states, and also eliminates the use of

that operation’s contract from the table altogether. Hence, although inlining reduces

annotation burden—e.g., no contract for RemoveMin need be formulated to verify

Sort—it increases bookkeeping overhead and hinders one’s ability to recognize “easy”

VCs by adding more facts and obligations. The situation is even worse when we con-

sider recursive operations. An attempt to inline these yields an infinite tracing table,

and so their synthesized semantics must be derived by other, more intellectually com-

plex means such as fixed-point combinators. [26] gives an elegant presentation of the

Y-combinator, which facilitates reasoning about recursion in the style of synthesized

semantics—i.e., without specifications, and without the need for infinite inlining—

but such theoretical encumbrances are unnecessary and unwieldy by the lights of

decoupled semantics.

Aside from the problems of recursion and VC complexity, we can argue against

synthesized semantics by remembering Chapter 1’s argument that abstraction, specif-

ically reconceptualization, eases intellectual complexity by allowing entities such as
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programming operations to be treated as black boxes. How RemoveMin algorithmi-

cally attains the behavior its contract specifies is conceptually immaterial to the cor-

rectness of Sort—from the perspective of modularly establishing Sort’s correctness,

it is only the what and not the how of RemoveMin that is important.

The modular view of software systems enabled by decoupled semantics also pro-

motes interchangeability of component realizations, which is crucial for non-functional

requirements such as efficiency. Consider, for example, that there are many useful

realizations of Sort that have markedly different performance characteristics, and

client programmers should have the flexibility to experiment with different choices

of sorting algorithm without having to rewrite, nor reverify, their client code. With

decoupled semantics, we can prove a program that uses Sort correct once and for all,

and if the Sort realization is later changed to a different (verified) algorithm (say,

Quicksort), the proof of the client program still stands: the proof never depended on

that code anyway.

In some sense, the principle of reuse is a dual of interchangeability, and like

interchangeability, it is well facilitated by decoupled semantics. Typically, we think

of reusability as a property of code: an abstraction such as RemoveMin (or Queue, for

that matter) might be useful in a wide variety of applications and algorithms, and

it would be silly to copy and paste its realization into many different programs. For

one thing, this would mean surrendering a single point of control over change, thus

making the code less maintainable.

As was hinted at in the discussion of interchangeability, the concept of reuse also

applies to proofs of programs: once Sort has been verified, any program can reliably

invoke it as a black box, and once a client program is verified in relation to some black
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box, the realization of that contract can be changed to any other verified one without

impacting to proof’s validity. This avoidance of re-conducting proofs is crucial to the

scalability of software verification. Notice that strict abstraction is what makes proof

reuse possible: if we didn’t have a purely mathematical view of Sort’s behavior, we

couldn’t fully ignore its implementation details.

From the perspectives of bookkeeping overhead, leveraging reconceptualization,

interchangeability, and reuse, tabular verification with decoupled semantics has been

seen to be a wise choice for practical, scalable software verification. Furthermore, we

have seen the pivotal role that abstraction plays in this view. We can now synthesize

these insights into a description of a sound, relatively complete, realistic verification

environment. The core principles of such a system are:

(1) Use strict abstraction in all specifications/annotations.

(2) Formulate VCs in accordance with the tabular method and decoupled semantics.

(3) Flag components that have been changed since the last time they were verified.

(4) When verifying a piece of code, only the flagged components that it depends on

need to be re-verified. Once verified, these components’ flags should be removed

so proof reuse is leveraged in later verifications.

The last two items indicate how interchangeability and reuse can be enabled in a

verification environment while maintaining soundness by noticing when proofs actu-

ally need to be re-conducted.
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§3.3 Resolve in the Verification Research Community

The Resolve tool suite, currently being developed in parallel at Clemson University

and Ohio State, adheres to the principles enumerated above. A broad overview is

available as a journal article [66]. A deeper analysis of the specific tools in use at

Ohio State appears in a recent Ph.D dissertation [3], and in Chapter 5 of this work,

wherein we discuss proof automation. Here, we elaborate some notable achievements

of the Resolve research effort at OSU, and relate them to the state of the art in the

broader verification community.16

The examples we present here serve not only to demonstrate Resolve’s suitability

to the task of software verification, but also to establish that the community at

large has not sufficiently embraced abstraction. Violations of abstraction will be

revealed not only in competing verification technologies, but also in the statements

of verification challenge problems themselves.

§3.3.1 The First Verified Software Competition

At the 2010 conference on Verified Software: Theories, Tools, and Experiments,

members of the Verified Software Initiative organized a competition to pit different

verification tools against each other. After the competition, the participating research

teams remained in dialogue and collaborated on an award-winning experience report

detailing their approaches to the competition’s five verification challenges [45]. This

author was not present at the competition itself, but was the sole representative of

16Of course, verification is a wide-ranging discipline encompassing many approaches, some of which
have little to do with the specific methods discussed thus far. For example, in embedded systems,
control systems, and other relatively small domains of computing, a powerful technique called model
checking is employed extensively, as opposed to the “theorem proving”-based methods of Resolve
and other attempts at meeting Hoare’s Grand Challenge [37].
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the Resolve research group in the aforementioned experience report. We formulated

solutions to all five of the competition’s verification challenges in Resolve—only six

out of 11 groups were able to do so. Some interesting details are presented below,

and our full solutions are available in Appendix B.

§3.3.1.1 Modeling Arrays in Resolve

The first two problems of the Verified Software Competition involved programming

with arrays. We quote all problem statements verbatim from [45]:

Problem One: Given an N-element array of natural numbers, write
a program to compute the sum and the maximum of the elements in the
array. Prove the postcondition that sum <= N * max.

Problem Two: Invert an injective (and thus surjective) array A of N
elements in the subrange from 0 to N-1. Prove that the output array B is
injective and that B[A[i]] = i for 0 <= i < N.

The statement of the first problem is somewhat mystifying. Consider the follow-

ing purported implementation:

1 procedure FindMaxAndSum ( restores a : Array ,
2 replaces max : Integer ,
3 replaces sum : I n t e g e r )
4 Clear (max)
5 Clear (sum)
6 end FindMaxAndSum

This code doesn’t even inspect a, and yet it satisfies the only postcondition that

the problem demands, since clearing an Integer in Resolve makes its value zero.

sum <= N * max is not a pertinent postcondition for FindMaxAndSum, but rather a

trivial corollary of FindMaxAndSum’s correctness. Although this implementation is

clearly contrary to the spirit of the problem, one is left to wonder whether some other
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implementation, which seems to compute the max and the sum but fails due to a sub-

tle error, might also “accidentally” satisfy the sum <= N * max postcondition. The

failure to distinguish genuine specifications of code correctness from mathematical

corollaries will be analyzed further in Chapter 5, when we investigate the question of

what automated tools should and should not be able to prove.

Setting aside the underspecification of Problem One, we now discuss Resolve’s

solutions to these two problems. From the perspective of strict mathematical ab-

straction, arrays do not comprise an interesting new theory. Arrays are of primary

importance in many programming languages partly for historical reasons and partly

for their performance characteristics (i.e., constant-time random access), but the

functionality they provide is easy to express mathematically with existing theories.

Interestingly, while the first problem is easy to express in a string-based model, the

specification of problem two is arguably more elegant when modeling arrays as sets

of (index, value) pairs.

This is a form of modularity not yet encountered, but also well-accommodated

by Resolve: mathematical models of data (“concepts”) are interchangeable just like

their implementations (“realizations”). Of course there are dependencies involved:

when, for example, a loop invariant in client code needs to talk about the value of

an array, it must commit to one (and only one) of these models. There is thus not a

single point of control over model change in client code,17 but the different dimensions

of expressiveness alternative models offer make them useful in some settings. Model

changes should rarely if ever be necessary; for these two problems we chose to perform

a model change just as a demonstration of this facility in Resolve. Appendix B depicts

17Unfortunately, nor is there a single point of control over model change in code that implements a
concept (i.e., the “data representation”). Data representations will be discussed in the next chapter.
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the two different models of arrays in full detail, as well as client code that solves the

challenge problems themselves.

In both models, integers are used to represent the upper- and lower-bounds of

the array. This is a degree of abstraction not offered by the arrays built in to most

mainstream languages (e.g., C/C++): it is useful to choose a lower bound of 1, for

example, when using arrays as a constant-time random access representation of binary

trees, so that for any node with index i, indices 2i and 2i+1 can be reliably computed

to obtain the location of the left and right children.

In addition to the subtleties of array modeling, these two challenge problems bring

to light another important aspect of Resolve verification: the use of universal algebraic

lemmas about math definitions to help prove VCs without needing to reason about

quantifiers. Consider for example the VC shown in Fig. 3.2, which arises from state

17 of FindMaxAndSum, wherein the loop invariant must be proven to be true at the

end of the loop body.

Fig. 3.2 involves a primitive of string theory not yet encountered: the “sub-

string” function. Its name is written in lower-case to distinguish it from specifier-

supplied definitions such as SUM and IS MAX OF. substring is parameterized by a

string, a starting position, and an ending position. The substring it identifies in-

cludes the entry at the starting position, but not the one at the ending position, e.g.,

substring(〈α, β, γ, δ〉, 1, 3) = 〈β, γ〉. It is a total relation (all mathematical definitions

in Resolve are)—its value is an empty string in ill-defined cases, for example:
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(a0.lb ≤ a0.ub+ 1

∧ |a0.s| = (ao.ub− a0.lb) + 1

∧ a0.s 6= 〈〉
∧ substring(a0.s, a0.lb− a0.lb, (a0.lb− a0.lb) + 1) = 〈max 7〉
∧ substring(a0.s, a0.lb− a0.lb, (a0.lb− a0.lb) + 1) = 〈sum8〉
∧ count10 ≤ a0.ub

∧ a0.lb ≤ count10

∧ count10 ≤ a0.ub+ 1

∧ IS MAX OF(substring(a0.s, 0, count10 − a0.lb),max 10)

∧ 0 ≤ (a0.ub− count10) + 1

∧ substring(a0.s, count10 − a0.lb, (count10 − a0.lb) + 1) = 〈value12〉
∧ max 10 < value12)

=⇒
SUM(substring(a0.s, 0, count10 − a0.lb)) + value12 =

SUM(substring(a0.s, 0, (count10 + 1)− a0.lb))

Figure 3.2: A FindMaxAndSum verification condition.
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substring(〈α, β, γ, δ〉, 1, 1)

=substring(〈α, β, γ, δ〉, 1, 99)

=substring(〈α, β, γ, δ〉,−3, 1)

=substring(〈α, β, γ, δ〉, 3, 1) = 〈〉.

Now in order to prove the VC shown in Fig. 3.2, we should find the antecedent

clauses (“givens”) that are actually relevant to the truth of the consequent, and then

use definitions of and/or properties about the things mentioned in order to show that

the consequent actually holds. The penultimate given is the linchpin of the proof: the

fact that the entry in a0.s at position (count10 − a0.lb) is value12, combined with our

understanding of what SUM means, demonstrates that the two SUMs of the consequent

really are equal. Discharging this VC with an achingly rigorous automated proof

assistant such as Coq or Isabelle, however, would involve much pedantic complexity.

The implicit definition of SUM would certainly have to be involved (thus introducing

an existential quantification—a notoriously difficult structure to reason about auto-

matically), as would the meaning of substring, expressed either as another implicit

definition, or by axioms and theorems in string theory itself.

These kinds of issues—automatic reasoning involving quantifiers, selection of well-

behaved math-theoretic primitives, etc.—are precisely what many research teams at

the Verified Software Competition investigate most actively. Resolve takes a more

abstract approach: we simply attempt to avoid as much proof complexity as possible

by reasoning in terms of universal algebraic lemmas, which allow VCs involving math
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definitions to be proven without expanding the definitions themselves and introducing

quantifiers.18

Universal algebraic lemmas are another crystallization of the principle of proof

reuse: if some property is useful to the proofs of multiple VCs, then reusability dictates

that property should be proven once, and then applied without further proof wherever

necessary. The idea of separate roles in the verified software process again seems wise:

a math expert can work on developing and proving a rich set of lemmas, perhaps with

bookkeeping assistance from a tool like Coq or Isabelle, completely independently

of programming experts who assemble components and write algorithms to solve

computational problems.

For the completeness of our discussion, we present in Fig. 3.3 two lemmas that

enable a proof of Fig. 3.2’s VC without expanding the definitions of SUM and substring.

These particular lemmas are straightforward to prove, especially if an assistant like

Coq is employed, but in general the development of useful lemmas for a theory is

itself a critical aspect of abstraction-embracing software verification.

It should be clear how the lemmas in Fig. 3.3 could be used to show that Fig. 3.2’s

pertinent antecedents—particularly the second-to-last one, and a few others estab-

lishing that the integer arguments to substring are valid—establish its consequent.

A recent report by Resolve practitioners at Ohio State [73] empirically investigates

the ramifications of lemma-based rewriting as opposed to expanding mathematical

definitions, and concludes that lemmas offer advantages meriting their further inves-

tigation. This work is ongoing.

18We will conduct a more substantive discussion of Resolve’s proof automation techniques in §5.
We provide a glimpse here simply to contrast Resolve’s approach with the others at the Verified
Software Competition.
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0 ≤ start ∧ start ≤ end ∧ end < |s| =⇒
substring(s, start , end + 1) =

substring(s, start , end) ∗ substring(s, end , end + 1)

SUM(s ∗ 〈i〉) = SUM(s) + i

Figure 3.3: Two rewrite rules useful in the proof of FindMaxAndSum.

§3.3.1.2 Broken Abstraction in Problem Statements

Problem Three: Given a linked-list representation of a list of inte-
gers, find the index of the first element that is equal to zero. Show that
the program returns a number i equal to the length of the list if there
is no such element. Otherwise, the element at index i must be equal to
zero, and all the preceding elements must be non-zero.

A recurring theme in the software verification literature, indeed a primary mo-

tivation for this dissertation, is a lack of proper emphasis on abstraction. Problem

statements such as the one above are examples of this phenomenon. Why fix the

representation of the list to be a linked-list pointer structure? With a proper abstrac-

tion and a smart choice of data representation, realizations of the list datatype not

involving pointers can offer amortized performance that is equally efficient.19 Why

fix the type of data in the list to be integers? Isn’t any type with an equality test

reasonable for this task? Why fix the value the code searches for to be zero? Why fix

the exceptional behavior (i.e., what happens when zero isn’t in the list)? In fact, if

we read Problem Three legalistically, it doesn’t even require a procedural abstraction

at all—a main body that implements list searching apparently would have been an

19Indeed, the fifth problem of this very competition involved one such data representation.
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acceptable solution, despite the fact that it would arguably demonstrate a disregard

for basic principles of modern software engineering.

A more abstract reformulation of the problem, allowing solutions with a proper

degree of genericity and modularity, might read as follows:

Problem Three, Emended: Write a procedure to find the first oc-
currence of some caller-specified value in a list. Prove that it is correct.

Or, if we are specifically interested in the ability to prove code about indirection,

e.g., via pointers, we should write something like:

Problem Three, Emended and Amended: Write a procedure to
find the first occurrence of some caller-specified value in a list. Prove
that it is correct. In addition, verify a linked-list realization of the list
datatype.

The key observation of this last formulation is that linked lists have nothing to

do with the task of searching. Ordered arrangements of data—of which lists are one

example—are easily modeled mathematically, and searching is expressible in terms of

this model. So, following the principles argued for thus far, strict abstraction should

be adopted: list searching should be expressed as a contract written in terms of a

mathematical model, an algorithm implementing searching can be verified relative

to that contract, and as an entirely separate verification task, realizations of the

datatype, such as linked lists, can be proven correct.20 Appendix B shows a list

template concept (i.e., the entries are not fixed to be integers), an enhancement

adding the ability to search for an arbitrary value (i.e., the target is not fixed to

20An argument could be made for adding searching to the core “kernel” of functionality that the
list datatype provides if having access to a particular representation such as a linked-list allowed the
searching to be implemented more efficiently. This is not the case here: the list concept as specified
in Resolve can be implemented as a linked-list (or in other ways), and searching can be programmed
on a client-view without any negative impact of the asymptotic running time of the algorithm. This
is evidence of the quality of Resolve’s list concept.
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be zero), and a verified implementation of that contract. The issues of specification

and implementation of pointers in Resolve constitute ongoing and active research,

which has generated some interest within the research community represented at the

Verified Software Competition itself [47].

§3.3.2 The Resolve Verification Benchmarks

In [12], we argued that benchmark problems and formal competitions are effective

and under-utilized methods for advancing the state of the art in the field of software

engineering. Verification is a prime example of a discipline that stands to gain from

these practices, as the Verified Software Competition demonstrates. Indeed, the Re-

solve research group has published a collection of benchmark problems [78] intended

to spur tool development and encourage scalable design along the lines enumerated

at the beginning of this section.

The benchmarks proposed by the Resolve group are intended to serve as early,

incremental guideposts for verification systems that can remain practical as they are

scaled up to larger problems. The first benchmark problem is to verify algorithms

for simple arithmetic—adding and multiplying numbers—but later problems involve

data representations, I/O streams, and finally an end-user application that integrates

solutions to the previous problems as an exercise in modularity and reuse.

These benchmark problems were not cherry-picked for the purposes of Resolve

proselytizing—indeed some of them remain unsolved in the current version of Re-

solve at Ohio State. Encouragingly, there has been some interest in the verification

community in sharing solutions to these benchmarks, and also in proposing new ones.

79



Notably, the Dafny [49] group, affiliated with Microsoft Research, has published pro-

posed solutions to all eight benchmark problems [50], although their solutions often

made dramatically simplifying assumptions that arguably obscured the true spirit of

the benchmarks [14]. These investigators have also formulated an interesting set of

new problems focusing on data structure invariants [51], and several other groups have

responded in turn to these challenges. Thus, Resolve is currently playing an active

role in the ongoing discussion and comparison of qualitatively different verification

approaches in the research community. We now elaborate on two such approaches for

the sake of contrast.

§3.3.3 Dafny

In [14], we reviewed the benchmark solutions proposed by the Dafny group at

Microsoft Research, and discussed modularity and abstraction issues of the sort em-

phasized in this work.

Dafny is a programming language whose semantics is defined by translation into

an intermediate language called Boogie [5]. Boogie verification conditions can be

discharged by Microsoft’s Z3 proof tool [57]. The Dafny language features Java-like

reference semantics and a unique selection of primitives, including generic set and seq

collection types that serve both as programmatic entities and as quasi-mathematical

models of other container types. set and seq are interesting conflations of domains

that Resolve keeps strictly separate, and there are some serious ramifications to this

entanglement.

Consider as an example the Dafny Array component shown below.
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1 class Array {
2 var contents : seq<int >;
3
4 method I n i t (n : i n t ) ;
5 requires 0 <= n ;
6 modifies t h i s ;
7 ensures | contents | == n ;
8
9 function Length ( ) : i n t

10 reads t h i s ;
11 { | contents | }
12
13 function Get ( i : i n t ) : i n t
14 requires 0 <= i && i < | contents | ;
15 reads t h i s ;
16 { contents [ i ] }
17
18 method Set ( i : int , x : i n t ) ;
19 requires 0 <= i && i < | contents | ;
20 modifies t h i s ;
21 ensures | contents | == | old ( contents ) | ;
22 ensures contents [ . . i ] == old ( contents [ . . i ] ) ;
23 ensures contents [ i ] == x ;
24 ensures contents [ i + 1 . . ] == old ( contents [ i + 1 . . ] ) ;
25 }

Despite the field declaration and apparently programmatic mentions of the seq

called contents, the Dafny methodology considers components such as Array to be

interfaces. However, a seq is not a purely abstract mathematical entity used only to

describe the functionality of Array operations; instead it is a real programmatic object

that can only be mentioned in specifications if it is an actual field of a particular Array

representation. In other words, there is no is modeled by slot in Dafny, and so fields

that comprise a datatype’s “abstract” value are intermixed with real representation

fields. Dafny’s workaround is to allow certain variables to be “ghosted,” meaning that

they can be declared and mutated, but they are not actually allocated at runtime,
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and no actual program behavior should depend on them. Ghost variables exist in

Resolve as well, where they are known as “adjunct” variables, but are used in very

limited circumstances—their use in Dafny is pervasive, and displaces a more modular

approach to data representation, which will be discussed in the next chapter.

Notice that the Array operations Length and Get are specified not with contracts,

but rather with expressions involving contents. These are called “pure methods,”

because they are side-effect free and can be expressed in a manner analogous to Re-

solve’s explicit definitions. However, unlike Resolve definitions, they are also intended

to be executable; implementers don’t override them. Thus quasi-mathematical types

such as seqs must be programmatically realized in any implementation of Dafny,

which of course provokes questions of efficiency, and precludes interchangeability of

different implementations, thus hindering abstraction.

In addition to our review of Dafny’s benchmark solutions in [14], we also investi-

gated the relationship between Dafny’s infrastructure and issues of abstraction in [13].

One glaring problem enunciated in that work is the fact that Dafny specifications seem

to use == to denote equality of values, but for user-defined types == computes only

reference equality. For example, a1 == a2 would not be a correct assertion of the

equality of two Arrays in Dafny, because a1 == a2 is true iff a1 and a2 are references

to the exact same portion of memory. A client cannot consistently think of variable

values as mathematical entities in such a setting; a severe abstraction problem.
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§3.3.4 Jahob

Jahob [79] is a verification system that targets the Java programming language,

attempting to handle the maximum possible amount of functionality that industrial-

strength Java offers. This approach differs markedly from the limited linguistic do-

mains of Resolve and Dafny, for example. In [79], the authors elaborate their efforts

in verifying linked data structures, including a linked-list implementation of Java’s

HashMap interface. We identified substantial modularity problems in the Jahob solu-

tion in [13].

As published in [79], Jahob’s verification of HashMap is actually unsound. The issue

has to do with the fact that, because of Java’s reference semantics, clients can define a

(key, value) mapping and retain an alias to key. Then, key can be mutated in a way

that changes its hashCode, thus breaking the representation invariant stating that all

(key, value) pairs reside in the bucket corresponding to their hashCode. The Jahob

authors revealed in personal communication with our research group that the interface

of Object, the most fundamental superclass of Java, was changed to guarantee hash

code immutability—a profound deviation from Jahob’s goal of verifying “real” Java

code, and also a serious abstraction issue, since proper understanding of HashMap’s

specification now requires inspecting a redefinition of Object.

§3.4 Conclusion

Having now presented the Resolve programming language, the tabular verifica-

tion method based upon decoupled semantics, and comparisons and contrasts among

Resolve and other state of the art verification systems, we should pause to consider

what technical issues remain to be discussed. The discussions of Dafny and Jahob
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clearly indicate that verifying data representations, as opposed to client code that

treats datatypes as black-box concepts, is a subtle issue that can easily introduce

abstraction problems or all-out unsoundness. In the next chapter, we will discuss

Resolve’s approach to proofs of correctness for data representations, and see that this

approach is not universally applicable. Specifically, we will return to the issue of

functional programming languages, first glimpsed in Chapter 2, and discover that a

functional variant of Resolve would be unsound if the approach to data representation

verification were left unchanged. We will propose a solution to this serious theoretical

problem.
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Chapter 4: Modular Program Verification, Take Two:

Realization Programming

§4.1 Verifying Realizations in Resolve

Having completed our presentation of “client view” programming (and verifica-

tion) in Resolve—that is, the style of programming that uses data abstractions but

does not provide code to make them work—we are now ready to investigate the

“implementer’s view,” in which new data abstractions are designed and realized pro-

grammatically.

Chapter 1’s contract for Queue was our first example of a data abstraction. Being

a contract component, it describes queues at the level of abstraction appropriate to

clients: it defines what a queue can do without showing how that behavior is accom-

plished algorithmically. That contract describes the queue kernel, which is a term

connoting the core functionality of a data abstraction, rather than its enhancements,

e.g., an operation for sorting. A kernel contract conveys three essential pieces of

information:

(1) The mathematical model of the component in question (Queue is modeled by a

string of items, where “item” refers to the mathematical model of the template

parameter).
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(2) A predicate that is true for initial values of the type (The value of an initial

Queue is the empty string).

(3) Signatures and contracts for the kernel operations (The kernel operations for

Queue are Enqueue, Dequeue, Length, and IsEmpty).

Also in Chapter 1, we saw one of many possible realizations (also known as imple-

mentations ; we will use the terms interchangeably) of QueueTemplate. It used a List

object to simulate the behavior of Queue, and contained a correspondence function,

which states the mathematical relationship between the kernel realization’s List and

the abstract Queue value it purports to represent. The correspondence function is

never executed; it is a mathematical function. There is never a time when the List

is computationally converted into a Queue.

We wish to describe the process of verification for such data representations. Al-

though it would be possible to conduct this discussion with respect to the List

representation of Queue,21 we will instead focus on a different, more interesting

representation—one that uses two Stacks, one of which holds its data in reverse

order, to represent a Queue efficiently. This component comprised Resolve’s solution

to the fifth VSComp challenge problem [45]. We will describe the realization and its

verification in detail, and then proceed to show that this same data representation

verification process has a serious problem if we apply it to functional programming

languages of the type glimpsed in Chapter 2.

Before we show the implementation of Queue that uses two Stacks, we must ex-

plain what a Stack is. Again, modularity demands that a client’s view of Stack is

21Indeed, the current Resolve tools at OSU verify the List realization of Queue fully automatically.
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sufficient here: Stack’s implementation is free to vary independently of the behav-

ior clients observe because there is a strict abstraction boundary between client and

implementer, i.e., between the mathematical and the programmatic view of Stack’s

functionality. In other words, verification of kernel realizations uses decoupled se-

mantics.

The listing below shows the contract for Stack. It is similar to Queue, but its

operations for adding and removing data—Push and Pop, respectively—behave in a

“last in, first out” manner, unlike the “first in, first out” behavior of Enqueue and

Dequeue.

1 contract StackTemplate ( type Item )
2
3 uses UnboundedIntegerFac i l i ty
4
5 math subtype STACK MODEL i s string of Item
6
7 type Stack i s modeled by STACK MODEL
8 exemplar s
9 in i t i a l i zat ion ensures

10 s = empty string
11
12 procedure Push (updates s : Stack , clears x : Item )
13 ensures
14 s = <#x> ∗ #s
15
16 procedure Pop (updates s : Stack , replaces x : Item )
17 requires
18 s /= empty string
19 ensures
20 #s = <x> ∗ s
21
22 function IsEmpty ( restores s : Stack ) : control
23 ensures
24 IsEmpty = ( s = empty string )
25
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26 function Length ( restores s : Stack ) : I n t e g e r
27 ensures
28 Length = | s |
29 end StackTemplate

The Queue realization we will use to explain proofs for correctness of data rep-

resentations in shown below. Some contracts that the implementation depends on,

i.e., Reverse and Concatenate for Stack, are not shown, but are straightforward

and informally explained by their names. The body of FixThings is omitted, and

is unnecessary for verification of this kernel implementation according to decoupled

semantics.

1 real ization TwoStacks implements QueueTemplate
2
3 uses StackTemplate
4 uses Reverse for StackTemplate
5 uses Concatenate for StackTemplate
6 f a c i l i t y S t a c k F a c i l i t y i s StackTemplate ( Item )
7
8 type representation for Queue i s (
9 f r o n t : Stack , back : Stack , l ength : I n t e g e r

10 )
11 exemplar q
12 convention
13 | q . back | <= | q . f r o n t | and
14 q . l ength = | q . back | + | q . f r o n t |
15 correspondence function
16 q . f r o n t ∗ r e v e r s e ( q . back )
17 end Queue
18
19 local procedure FixThings (updates s1 : Stack ,
20 updates s2 : Stack )
21 ensures
22 | s2 | <= | s1 | and
23 s1 ∗ r e v e r s e ( s2 ) = #s1 ∗ r e v e r s e (#s2 )
24 . . .
25 end FixThings

88



26
27 procedure Enqueue (updates q : Queue , clears x : Item )
28 Push ( q . back , x )
29 FixThings ( q . f ront , q . back )
30 Increment ( q . l ength )
31 end Enqueue
32
33 procedure Dequeue (updates q : Queue , replaces x : Item )
34 Pop ( q . f ront , x )
35 FixThings ( q . f ront , q . back )
36 Decrement ( q . l ength )
37 end Dequeue
38
39 function Length ( restores q : Queue ) : I n t e g e r
40 Length := Repl i ca ( q . l ength )
41 end Length
42
43 function IsEmpty ( restores q : Queue ) : control
44 variable zero : I n t e g e r
45 IsEmpty := AreEqual ( q . length , ze ro )
46 end IsEmpty
47
48 end TwoStacks

§4.1.1 Convention and Correspondence

A kernel implementation in Resolve defines a tuple of concrete values, a repre-

sentation, that will be manipulated programmatically to simulate the behavior the

kernel contract describes mathematically. The syntactic slot for this tuple definition

is marked by the keywords type representation. There are two additional cru-

cial annotations unique to implementer’s view, the aforementioned correspondence

function, which links concrete states to the abstract values they represent,22 and the

22In general, relations are known to be necessary here [68], but currently the OSU Resolve tools
only support functions, which constitute the more common case. The proof strategy we will present
for data representations is known to accommodate abstraction relations [32, 21]. We discuss some
issues for the automation of proofs of data representations that use abstraction relations in Chapter
6.
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convention, which is a formal restriction of the legal concrete states. The convention

acts as an additional requires and ensures clause for each kernel operation: it is as-

sumed to be true as a precondition to any kernel operation implementation, and in

order to be correct, each kernel operation implementation must satisfy the convention

as a postcondition. Conventions are usually used to assist the kernel implementer in

devising simpler code by ruling out problematic cases. In Chapter 1’s List represen-

tation of Queue, the convention stated that the left side of the List was empty, which

simplified the implementation of (amongst other things) Length by eliminating the

need to sum the lengths of both the List’s sides. Notice that conventions are essen-

tially a concrete state analog of the constraints we saw in Chapter 2 for restricting

the legal values of a mathematical subtype.

For the TwoStacks representation, the convention states that the back Stack

must be at most as long as the front Stack. This assumption actually doesn’t

help simplify the kernel operation implementations, but rather helps (potentially)

to improve the performance of the Queue relative to some restrictive assumptions

that the VSComp organizers imposed. Specifically, this challenge problem concerned

implementing a Queue with good amortized performance using two singly-linked lists.

Although Resolve doesn’t preclude the ability to use pointers [47], a more direct

solution in our framework was to use Stacks, which have the same functionality as

the challenge problem assumed for linked lists, namely the abilities to prepend a

new element onto a stack, concatenate two stacks, and reverse the order of a stack’s

entries.

90



To see how the solution requested in VSComp only potentially offers a performance

advantage, we should discuss some non-functional behavior of the data representa-

tion. The first key assumption to a performance analysis of this implementation is

that the Stack kernel operations Push and Pop run in constant time. The straight-

forward singly-linked list implementation of Stack—omitted harmlessly, thanks to

strict abstraction and decoupled semantics—does indeed offer this performance pro-

file. Furthermore, observe that representing a queue as a singly-linked list would not

allow the Queue kernel operations to all have constant running times: only one end of

the list is directly accessible. So the problem concerns leveraging Stack to somehow

speed up Queue. This is where the convention and correspondence come into play.

The correspondence states that we can represent a Queue by storing its entries in

two Stacks, the second of which stores its entries in reverse order (relative to their

order in our model of the Queue: a string). This is advantageous because now an

Enqueue can be simulated by Pushing the argument onto back—a constant-time task.

Dequeue is likewise just a Pop off of front.

There are subtle dangers involved in this approach, which the convention ad-

dresses. If there were no convention constraining the legal representation values,

front could be empty on some calls to Dequeue, and just Popping off of back instead

would be incorrect, since its entries are in reverse order. The convention protects

against this problematic case by requiring that the length of front always be at least

the length of back. Thus, front is only empty if there are no entries at all in the

Queue—precisely the case that Dequeue’s precondition disallows.

It now seems that Enqueue and Dequeue can both have constant-time performance,

save for the fact that sometimes entries will have to be moved from the front to the
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back (or vice versa), which is what the local helper operation FixThings is for: if

its first argument is too short, it concatenates the reverse of its second argument

onto the first one, and clears the second argument. So when a kernel operation calls

FixThings (q.front, q.back), the lengths of the Stacks are altered so that they

satisfy the convention, and the order of their entries, interpreted as a Queue by the

correspondence, is preserved. The final non-functional assumption that caused the

VSComp organizers to refer to this as a good “amortized complexity” implementation

of Queue is that FixThings is the only place where a linear-time algorithm might be

necessary: the tasks of reversing and concatenating singly-linked lists—Stacks, in our

solution—require linear running time. The idea is that over the course of a Queue’s

usage, things will not have to be fixed too dramatically, particularly in the common

use case that interleaves many of the calls to Enqueue and Dequeue.

The fifth VSComp challenge problem is yet more evidence for a lack of proper

emphasis on abstraction in the larger verification community. It is Resolve’s approach,

not the statement of the problem itself, that evinces a proper separation between

the roles of client and implementer, and thus between functional and nonfunctional

requirements. Due to our verification methodology’s use of decoupled semantics, we

can omit the code for FixThings entirely and never consider what its running time

might be. When clients do care about performance, it can be expressed without

revealing concrete details. A new kind of component might be proposed to address

this issue—one which expresses the running time of an algorithm in big-oh notation

without showing its code, for example. Nothing of the sort was done here, but

Resolve’s emphasis on modularity suggests such a component-based solution.
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§4.1.2 The Classical Proof Approach

The tabular approach of the previous chapter can be employed for verification

of kernel implementations, but it must be modified to reflect the fact that the cor-

respondence function intercedes between the programmatic values the code actually

manipulates and the abstract values of the kernel type, in terms of which the contract

is written. The correctness criterion was first formulated in [36], and then later re-

vised in [32] to account for an incompleteness issue. The authors of [21] build on this

work by incorporating preconditions, conventions, and constraints, and establishing

the soundness and relative completeness of their approach in a setting very similar to

that of Resolve. [68] exemplifies the approach by verifying a complex data abstraction

involving an abstraction relation in Resolve. We will thus characterize the Resolve

methodology for proofs of correctness of data representation as “classical” due to its

rich history in the literature.23

To facilitate an explanation of the “classical” proof rule, we first define a straight-

forward notation for composition of relations:

Given P ⊆ S × T,Q ⊆ T × U, and R ⊆ T,

P ◦Q def≡ {(x, z) | ∃y ∈ T, (x, y) ∈ P ∧ (y, z) ∈ Q}

R ◦Q def≡ {(y) | ∃x ∈ T, (x) ∈ R ∧ (x, y) ∈ Q}

Now, at an intuitive level, a proof of correctness for a data representation con-

sists of showing that for each kernel operation implementation op, Sem(op) ◦AR ⊆

AR ◦ Spec(op), where Sem(op) is the decoupled semantics of the kernel operation

23It should be noted that none of these cited works make use of a tabular reasoning method as
has been seen in this work so far. However, Heym’s aforementioned bridge rule [33] links tabular
reasoning to the more standard backwards reasoning approach in a manner that is proven to preserve
soundness and relative completeness.
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implementation, Spec(op) is the operation’s specification, and AR is the abstraction

relation. We hasten to remark that this formula is inaccurate in a subtle, technical

sense that we will discuss, but it is still useful for the purposes of high-level explication:

it states that any abstract value corresponding (according to the abstraction relation)

to a concrete state that the semantics of the operation (i.e., the code implementing

it) results in must be a value that the specification allows as a result, relative to

any abstract value our starting concrete state corresponded to. This rather nuanced

property is perhaps best clarified by a commutative diagram, shown in Fig. 4.1.

The commutative diagram depicts visually the core criterion for valid kernel op-

eration implementations: that they remain inside the envelope of behavior that the

operation specification allows. The concrete state space—the implementer’s view of

the kernel—before and after the operation is executed is shown on the bottom-left

and bottom-right, respectively. The abstract state space—the client’s view—is shown

above each of these. It must be the case that, for any legitimate “concrete pre state”

(the shaded region on the bottom left), the operation implementation results in a

concrete result that corresponds to an abstract result allowed by the spec. The term

“legitimate” in the previous sentence has a rigorous meaning according to [68]. Specif-

ically, we only need to consider concrete pre states that satisfy the convention and

correspond to abstract values that satisfy the operation’s precondition. Moreover, the

commutative diagram as shown fails to properly express the role of the convention;

as we’ve said, the convention is assumed to be true in the concrete pre state, and

the operation implementation must only yield concrete post states that satisfy the

convention. The lack of accounting for preconditions, conventions, and constraints is

94



ARAR

Spec

Sem

Figure 4.1: A commutative diagram illustrating the proof rule for correctness of data
representations.
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the sense in which the “classical” rule Sem(op) ◦AR ⊆ AR ◦Spec(op) is inaccurate

for Resolve.

If the abstraction relation is a function, we can verify operation implementations in

a kernel by simply applying the normal tabular approach, with a few modifications to

account for the special syntactic slots of kernel implementations, and their meanings:

(1) In the table’s first state, include the convention as a fact.

(2) In the table’s last state, include the convention as an obligation.

(3) In the table’s first state, for each operation parameter of the kernel’s type, add

as a fact an equality between that parameter and a representation tuple.

(4) In the table’s last state, for each operation parameter of the kernel’s type, add

as a fact an equality between that parameter and a representation tuple

The first two modifications cause the convention to serve as a representation in-

variant consistently throughout the kernel, the last two are direct applications of the

correspondence precisely in the states where the table makes mention of the opera-

tion’s contract, and thus needs a connection between the representation(s) and the

abstract value(s) of the kernel-type parameter(s). The abstract value of kernel-type

parameters (Queues, in our example), will not be mentioned in intermediate states of

the table, only fields of the representation. Notice that there are no distinguished pa-

rameters in Resolve, so it is possible for more than one parameter of the kernel’s type

to appear in a kernel operation’s signature; our discussion of kernel implementation

correctness can be generalized easily to such cases.

A kernel implementation is correct if all of its operations can be verified with this

modified tabular approach and any of its helper operations (like FixThings) can be

96



verified with the original tabular approach of Chapter 3.24 To complete our view of

kernel verification in Resolve, we show the tracing table for one of Queue’s kernel

operations, Dequeue:

State Path Conds Facts Obligations

0

q0 6= 〈〉 q.front0 6= 〈〉
q0 = q.front0 ∗ reverse(q.back0)
|q.back0| ≤ |q.front0|
q.length0 = |q.back0|+ |q.front0|

Pop (q.front, x)

1
q.front0 = 〈x1〉 ∗ q.front1
q.length1 = q.length0

q.back1 = q.back0

FixThings (q.front, q.back)

2

|q.back2| < |q.front2|
q.front2 ∗ reverse(q.back2) =

q.front1 ∗ reverse(q.back1)
q.length2 = q.length1

x2 = x1

Decrement (q.length)

3

q.length3 = q.length2 − 1 q0 = 〈x3〉 ∗ q3
q.front3 = q.front2 |q.back3| ≤ |q.front3|
q.back3 = q.back2 q.length3 = |q.back3|+ |q.front3|
x3 = x2

q3 = q.front3 ∗ reverse(q.back3)

Notice that the convention appears as the third and fourth facts in state 0, and the

correspondence appears as the second fact. In state 3, the final state, the correspon-

dence appears as the fifth fact and the convention appears as the second and third

obligations. Everything else in the table is derived by the usual tabular approach as

described in Chapter 3.

24[21] also gives two proof obligations that are not specific to any particular kernel operation im-
plementation: every concrete state satisfying the convention must correspond to some abstract value,
and every abstract value in the image of the abstraction relation should satisfy any constraints that
were made on the abstract state space. These obligations are trivially satisfied in most reasonable
kernel implementations, and are not crucial to our discussion here. We address these issues in more
detail in Chapter 6.
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§4.2 The Soundness Problem

Although the tabular method of verification modified for kernel implementations is

sound and relatively complete in Resolve, there are nontrivial semantic issues in play

which make this so. To facilitate an analysis of these subtleties, we will now demon-

strate that the approach seen in the previous section actually yields unsoundness in

a slightly different but entirely reasonable computational setting.25

In addition to clarifying crucial terms and proving the unsoundness of a seemingly

reasonable verification approach, we will also propose a new solution to the problem.

§4.2.1 Functional Semantics and Referential Transparency

The slightly different setting for verification we will consider is that of a functional

programming language. Recall from Chapter 2 that in a functional programming

language, all operations behave as functions. That is, they leave their arguments

unchanged and return a value. More specifically, we will consider pure functional

languages, which lack the notion of state altogether. In a pure functional language,

every operation, when executed, behaves as a true mathematical function—its return

value is determined entirely by its arguments’ values, and all calls to the same oper-

ation with the same arguments yield the same result. We will refer to this property

as functional semantics.

A key advantage to pure functional programming is the property of referential

transparency, first enunciated by Quine [63] and defined by him as follows: “I call

a mode of containment φ referentially transparent if, whenever an occurrence of a

singular term t is purely referential in a term or sentence ψ(t), it is purely referential

25Throughout this section, we will often quote verbatim and at length from the latest revision [11]
of our technical report [10], currently in review.
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also in the containing term or sentence φ(ψ(t))”. In formalizing this idea for program-

ming languages, Søndergaard and Sestoft [71] conclude by saying informally, “[A]n

operator is referentially transparent if it preserves applicability of Leibniz’s law, or

substitutivity of identity: the principle that any subexpression can be replaced by any

other equal in value.” Reasoning on the basis of referential transparency is a major

practical assumption of functional languages. For example, it is used in refactoring:

if not is a negation operation for some user-defined type that behaves like a boolean,

then (not (not b)) should be able to be rewritten as just b without changing the

meaning of the program. It might seem that referential transparency is an immediate

and unequivocal consequence of functional semantics, yet this is not quite so. We will

show that referential transparency is unsound in any language that combines three

common and useful features: (1) functional semantics, (2) the ability to perform data

abstractions of the sort seen previously in this work (these are sometimes called ab-

stract data types, or just ADT s), and (3) the ability to write specifications that are

relations and not functions (operation contracts in Resolve, for example, grant this

ability).

Referential transparency seems to lie at the heart of reasoning about (and thus

verifying) functional programs. Reasoning about software behavior by applying refer-

ential transparency when it is not valid to do so entails unsoundness: one can predict

that two values are equal, whereas in fact they are not when the program is executed.

On the other hand, reasoning about software behavior by failing to apply referential

transparency when it is valid to do so entails a troublesome incompleteness: one can-

not predict that two values are equal,26 whereas in fact they are when the program

26This is not the same as predicting that the two values are unequal.
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is executed. In this sense our analysis raises a dilemma for programming language

and verification system designers: soundness vs. relative completeness. It might seem

at first that the answer to this dilemma is relatively easy: of course one should give

up relative completeness rather than soundness, lest verification yield false positives.

But giving up relative completeness here has serious practical consequences. It en-

tails not being able to rely on referential transparency—even though in some cases

it might be valid to rely on it—and hence relinquishing various means of simplified

reasoning it provides. The solution we will formulate seeks to restore the soundness

of referential transparency by establishing the criteria for its valid usage, instead of

just concluding that referential transparency must be abandoned outright in the face

of our unsoundness example, which conclusion would yield relative incompleteness.

§4.2.2 A Small, Finite Example

Our first example shows the unsoundness problem in a very concise, albeit slightly

contrived, form. This serves to isolate the essential roots of the problem (functional

semantics, relational specifications, and data abstraction) from inessential complex-

ities such as operation preconditions, non-functional abstraction relations, infinite

value domains, recursion, etc.

Consider first an ADT called Z4, which is modeled by natural numbers modulo

4 (we write this set as Z4), and which implements a small amount of basic arith-

metic for them. Since the domain of this ADT contains only four values, we may

conveniently express the specifications of these operations as explicit input/output

relations rather than with requires and ensures clauses. For an operation with one

parameter (leading to a binary input/output relation), we use the two-tuple (x, y) to
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denote that, on input x, y is an allowable return value; similarly, for an operation

with no parameters (a unary relation), we use the one-tuple (y) to denote that y is

an allowable return value. The Z4 operation specifications are:

Spec(Zero)
def≡ {(0)}

Spec(One)
def≡ {(1)}

Spec(Half)
def≡ {(0, 0), (1, 0), (2, 1), (3, 1)}

Spec(Double)
def≡ {(0, 0), (1, 2), (2, 0), (3, 2)}27

Now, suppose we wish to implement a new ADT called Coin, which has two possible

values, corresponding to the two faces of a coin. A boolean obviously suffices as

the mathematical model of Coin. As with the Z4 ADT above, we give set-based

specifications of the Coin operations:

Spec(Heads)
def≡ {(true)}

Spec(Tails)
def≡ {(false)}

Spec(MakeHeads)
def≡ {(true, true), (false, true)}

Spec(Toss)
def≡ {(true, true), (true, false),

(false, true), (false, false)}

27The observant reader will notice that the value 3 is not reachable by this interface. Another 0-ary
operation called three could be added without changing the forthcoming example of unsoundness
(a consequence of modularity)—it is omitted only for simplicity’s sake.
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Note that Spec(Toss) is a relation and not a function, and is the only such

specification in our example. So, for instance, Toss (Heads ()) is permitted by

the specification to return either true or false. However, if reasoning about a client

program is to soundly leverage referential transparency, Toss must always return the

same value whenever it is called with equal arguments: tossing a true Coin must

always yield the same result, and likewise for a false Coin.

Suppose now an implementer of Coin chooses to represent a Coin value using a

Z4 value that is conceptually interpreted modulo 2, where 0 represents true and 1

represents false. In other words, the abstract Coin value is realized concretely by a

Z4, with a simple abstraction function establishing their correspondence. A realiza-

tion for Coin can then be written as shown below.

1 real ization Z4Rea l i za t i on implements Co inFac i l i t y
2
3 uses Z 4 F a c i l i t y
4
5 type representation for Coin i s (
6 va lue : Z4
7 )
8 exemplar c
9 correspondence function

10 ( ( c . va lue ) mod 2) = 0
11 end Coin
12
13 function Heads ( ) : Coin
14 Heads . va lue := Zero ( )
15 end Heads
16
17 function Ta i l s ( ) : Coin
18 Ta i l s . va lue := One ( )
19 end Ta i l s
20
21 function MakeHeads ( restores c : Coin ) : Coin
22 MakeHeads . va lue := Double ( c . va lue )
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23 end MakeHeads
24
25 function Toss ( restores c : Coin ) : Coin
26 Toss . va lue := Hal f ( c . va lue )
27 end Toss
28
29 end Z4Rea l i za t i on

Now, to show that this code correctly implements Coin, we should adopt the proof

strategy introduced in this chapter. Because of the small, finite nature of the exam-

ple, and the lack of any convention, constraint or operation precondition to consider,

we can omit the tracing tables for each operation, and instead just demonstrate that

the semantics of each kernel operation, interpreted through the correspondence, re-

mains within the envelope of behavior allowed by the operation’s specification. In

other words, our proof obligations are precisely those demanded by the classical rule

Sem(op) ◦ AR ⊆ AR ◦ Spec(op). In the following table, we expand the quantifier

structure of this formula and explain its meaning informally. C and A denote the

concrete and abstract state spaces, respectively. For our example, C = {0, 1, 2, 3}

and A = {true, false}.

∀c1 ∈ C, For any concrete pre state,
∀a2 ∈ A, for any abstract value,

(∃c2 ∈ Sem(c1), if the operation computes a result
(c2, a2) ∈ AR)⇒ corresponding to the abstract value,

(∃a1 ∈ AR(c1), then the concrete pre state must correspond to a
(a1, a2) ∈ Spec value that the spec maps to our abstract result.

Table 4.2: An expanded explanation of the classical proof rule.

The rule is obviously different in the case of 0-ary operations, for which there

is no “pre-state,” but this is a straightforward adjustment: just omit AR from the
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right-hand side of the classical rule. Applying [32]’s proof rule to our Coin example,

we see that the following four formulas are proof obligations, which, if true, establish

the correctness of the purported Z4-based implementation:

(a) Sem(Heads) ◦ AR ⊆ Spec(Heads)

(b) Sem(Tails) ◦ AR ⊆ Spec(Tails)

(c) Sem(MakeHeads) ◦ AR ⊆ AR ◦ Spec(MakeHeads)

(d) Sem(Toss) ◦ AR ⊆ AR ◦ Spec(Toss)

Since each kernel operation body is a “one-liner” simply invoking a Z4 opera-

tion, and because of our modular, decoupled semantics philosophy, Sem for each

operation is just the specification of whatever Z4 operation it invokes. For example,

Sem(Toss) = Spec(Half). It is easy to establish all four proof obligations; the nec-

essary intermediate calculations are given in Table 4.3:

Proof
Left-hand side Right-hand side

Obligation
(a) {(true)} {(true)}
(b) {(false)} {(false)}

(c)
{(0, true), (1, true), {(0, true), (1, true),
(2, true), (3, true)} (2, true), (3, true)}

(d)
{(0, true), (1, true) {(0, true), (0, false), (1, true),
(2, false), (3, false)} (1, false), (2, true), (2, false)

(3, true), (3, false)}
Table 4.3: Calculations establishing the correctness of our Coin imple-
mentation.
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With these sets fully elaborated, we see by inspection that the proof obligations,

each of which states the left-hand side is a subset of the right-hand side, are satisfied.

The proof of correctness for this data representation is complete.

We are now in a position to see the unsoundness problem as an issue with reasoning

based on referential transparency. Consider a client of Coin, working in a language

with functional semantics. We present two different programming expressions, and

show the decoupled semantics reasoning that our client could perform about them:

Toss (MakeHeads (Heads ())) (4.1)

= Spec(Toss)(Spec(MakeHeads)(Spec(Heads))

= Spec(Toss)(Spec(MakeHeads)(true))

= Spec(Toss)(true)

Toss (MakeHeads (Tails ())) (4.2)

= Spec(Toss)(Spec(MakeHeads)(Spec(Tails))))

= Spec(Toss)(Spec(MakeHeads)(false))

= Spec(Toss)(true)

Having seen that both expressions are equal, referential transparency now dictates

that either can be replaced with the other in any piece of program text without

altering its meaning. This seems to be a natural consequence of functional semantics:

the specifications allow (toss true) to return either one of two different values, but

functional semantics demand that this value be the same each time the expression is

evaluated. If the two expressions are not actually equal when the code is executed,

such replacement is not allowed and thus referential transparency is unsound.
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apply Double

Evaluate MakeHeads

1
0 3

2
1

0
3

2
10

3

2

true false
true false true false

AR AR

Evaluate Toss

apply Half

AR

coin

Z4

Figure 4.2: A step-by-step illustration of the evaluation of expression 4.1, showing
the values in both the abstract and concrete state spaces. The shaded cloud in the
final abstract state space indicates allowed relational behavior.

We now explain diagrammatically the unexpected runtime behavior of expres-

sions 4.1 and 4.2. Execution of the bodies of Toss, MakeHeads, and Heads in ex-

pression 4.1 proceeds as illustrated in Fig. 4.2; for expression 4.2, see Fig. 4.3. These

figures track not only the boolean Coin values step-by-step through the abstract state

space, but also the Z4 values that represent those Coins through the concrete state

space. The step-by-step evaluation of expression 4.1 leads to a return value of true,

whereas the step-by-step evaluation of expression 4.2 leads to a return value of false.

And so we see the confluence of functional semantics, relational specifications, and

abstract data types resulting in the unsoundness of reasoning based on referential

transparency: 4.1 and 4.2 are not substitutable for each other, even though client-

view reasoning demonstrates that they are equal.
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apply Double

Evaluate MakeHeads
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AR AR

Evaluate Toss

apply Half

AR

coin

Z4

Figure 4.3: A step-by-step illustration of the evaluation of expression 4.2, showing
the values in both the abstract and concrete state spaces.

The problem is that there has been a failure to distinguish between (1) the se-

mantics of each program function being a mathematical function on the concrete

(representation) domain, and (2) the client’s understanding of each program function

as a mathematical function on the abstract domain of the ADT. Our example shows

that Toss is not a function on the abstract domain: Toss (true) has two different

values depending on the concrete representation of the argument. This is illustrated

in the “Evaluate Toss” and “Apply Half” transitions of Figures 4.2 and 4.3.

In an intuitive sense, the implementation of Toss seems somehow biased towards

the “history” of the coin, i.e., the face that coin initially showed can impact the

results of a toss, even if the coin has been “reset” to heads prior to the toss. The

specification of Toss combined with functional semantics dictates that history should

not matter: Toss was not parameterized by a “coin history” parameter to bring this
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attribute into the scope of client-view reasoning, and so history should be irrelevant

to the function’s result. This is the essence of referential transparency.

To salvage referential transparency, it might be recommended that relational spec-

ifications be disallowed on the grounds that they seem in some sense discordant with

the code’s presumed functional behavior. When we consider common ADTs such

as collection components, however, this position appears untenable. In general, any

unordered collection requires a way for clients to iterate through its contents. If the

type of the container’s contents is left completely unconstrained—as it should, for

reusability’s sake—then there is no straightforward way of specifying this behavior

functionally. Such a specification would place onerous requirements on the instanti-

ation, e.g., a total ordering for the contents type so that a particular value could be

singled out as the result of each iteration. On the other hand, omitting such an oper-

ation renders collections cumbersome in practice, as [31] demonstrates. In that work,

the author specifies a Set ADT in a purely functional manner, but must immediately

resort to ungainly workarounds to compensate for its lack of relational behavior. For

example, in a proposed solution to the set-covering problem, the design forces the

collection of subsets to be passed in as a list of sets—because if it were passed in as a

set of sets (which would make logical sense), then there would be no way to actually

examine or process the subsets as the solution requires.

Another attempt to repudiate problematic cases such as Coin might be to demand

that we choose data representations that correspond to abstract values in a one-to-

one fashion, thus collapsing functions on abstract domains and functions on concrete

domains into a single notion. However, this amounts to a relinquishment of true
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abstraction. The ability to represent a single abstract value in multiple ways is

essential, not only for elegant design, but also for efficiency.

§4.2.3 A “Real” Example: Sets

Consider a new data abstraction for finite sets, specified in a “functional style,” as

shown in FunctionalSetTemplate below. The math definition MEMBER is an infelicity

due only to current restrictions on the Resolve tools at OSU: they require that the

ensures clause of all functions be written explicitly, i.e., by giving a mathematical

expression identifying the return value. We work around this syntactic limitation by

defining MEMBER relationally (it can return any member of its argument set), and then

using it in the explicit definition of MemberFrom. Currently, the verification condition

generator does not accommodate functions which have preconditions, so all of the

specifications in FunctionalSetTemplate are total, even though this involves some

slight inelegances, such as defining the behavior of Remove on an empty set: Remove

will simply return an initial Item in this case. There is no theoretical hinderance re-

quiring these limitations on Resolve VC generation; the necessary refinements simply

haven’t been implemented yet.

1 contract FunctionalSetTemplate ( type Item )
2
3 definition MEMBER ( s : f in i t e set of Item ) : Item
4 s a t i s f i e s
5 i f s = empty set then
6 there exists x : Item
7 ( i s i n i t i a l ( x ) and MEMBER( s ) = x )
8 else
9 (MEMBER( s ) i s in s )

10
11 math subtype FSET MODEL i s f in i t e set of Item
12
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13 type FSet i s modeled by FSET MODEL
14 exemplar s
15 in i t i a l i zat ion ensures
16 s = empty set
17
18 function Add ( restores s : FSet ,
19 restores x : Item ) : FSet
20 ensures
21 Add = s union {x}
22
23 function MemberFrom ( restores s : FSet ) : Item
24 ensures
25 MemberFrom = MEMBER( s )
26
27 function Remove ( restores s : FSet ,
28 restores x : Item ) : FSet
29 ensures
30 Remove = s \ {x}
31
32 function IsEmpty ( restores s : FSet ) : control
33 ensures
34 IsEmpty = ( s = empty set )
35
36 end FunctionalSetTemplate

Below, we list an implementation of FunctionalSet that uses a Queue as the

representation. Our convention states that the Queue contains no duplicates, by

demanding that the length of the Queue be equal to the size of its set of entries. Our

correspondence states that the FSet the Queue represents is simply the set of all the

Queue’s elements. To add an element to our FSet, we can just do an Enqueue, so long

as we account for the possibility that the item may have already been in the Queue.

The EliminateDuplicates enhancement is thus invoked. EliminateDuplicates is

left unimplemented—as always, thanks to decoupled semantics no implementation is

necessary. Remove uses a Queue enhancement which, given a Queue and an Item,
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moves that Item to the front of the Queue if it is one of the Queue’s entries.

1 real ization QueueReal izat ion (
2 function Repl i ca ( restores i : Item ) : Item
3 ensures
4 Repl i ca = i ,
5 function AreEqual ( restores i : Item ,
6 restores j : Item ) : control
7 ensures
8 AreEqual = ( i = j )
9 ) implements FunctionalSetTemplate

10
11 uses UnboundedIntegerFac i l i ty
12 uses QueueTemplate
13 uses El iminateDup l i ca te s for QueueTemplate
14 uses MoveToFront for QueueTemplate
15 uses Repl i ca for QueueTemplate
16
17 f a c i l i t y QueueFac i l i ty i s QueueTemplate ( Item )
18
19 type representation for FSet i s (
20 queue : Queue
21 )
22 exemplar s
23 convention
24 | s . queue | = | e lements ( s . queue ) |
25 correspondence function
26 elements ( s . queue )
27 end FSet
28
29 function Add ( restores s : FSet , restores x : Item ) : FSet
30 variable y : Item
31 y := Repl i ca ( x )
32 Add . queue := Repl i ca ( s . queue )
33 Enqueue (Add . queue , y )
34 El iminateDup l i ca te s (Add . queue )
35 end Add
36
37 function MemberFrom ( restores s : FSet ) : Item
38 Clear (MemberFrom)
39 i f not IsEmpty ( s . queue ) then
40 variable x : Item
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41 Dequeue ( s . queue , MemberFrom)
42 x := Repl i ca (MemberFrom)
43 Enqueue ( s . queue , x )
44 end i f
45 end MemberFrom
46
47 function Remove ( restores s : FSet , restores x : Item ) : FSet
48 Remove . queue := Repl i ca ( s . queue )
49 i f not IsEmpty ( s . queue ) then
50 variable y : Item
51 MoveToFront (Remove . queue , x )
52 Dequeue (Remove . queue , y )
53 i f not AreEqual (x , y ) then
54 Enqueue (Remove . queue , y )
55 end i f
56 end i f
57 end Remove
58
59 function IsEmpty ( restores s : FSet ) : control
60 IsEmpty := IsEmpty ( s . queue )
61 end IsEmpty
62
63 end QueueReal izat ion

Notice the use of Replica functions in this realization. Resolve has value se-

mantics, meaning that all variables and function invocations denote actual values,

not references. Assignment in Resolve is a matter destructively moving the value

indicated by the right-hand side to the variable appearing on the left, so a Replica

function is necessary in situations where destruction is not desired, e.g., to adhere to

restores mode for x on line 31. Not all types are guaranteed to have Replica avail-

able, so we parameterize our realization by the necessary Replica function: clients

will only be able to instantiate the QueueRealization of FunctionalSetTemplate

if they provide a Replica function for the Item type. Likewise, not all Items have
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equality functions available, but our implementation of Remove requires one, so we

parameterize the implementation by this as well.

Again, this implementation can be proven correct by the classical proof rule [10],

but it leads to unsoundness when all the kernel operations are considered referen-

tially transparent. Consider two different programming expressions involving FSets

of integers: Add (Add (s, 0), 1) and Add (Add (s, 1), 0). A client can use the

specification of Add to determine that they both denote the same set: {0, 1}, but one

cannot be substituted for the other transparently: if we assume that s is the empty

set, then MemberFrom (Add (Add (s, 0), 1)) will return 0 whereas MemberFrom

(Add (Add (s, 1), 0)) will return 1. This is due to the different order in which

the Add implementation’s Enqueues will be performed.

§4.3 A Proposed Solution

We emphasize that the unsoundness of referential transparency constitutes a se-

rious abstraction problem. Some functional programmers would respond to our ex-

amples by claiming that they would never consider expressions such as Add (Add

(s, 0), 1) and Add (Add (s, 1), 0) equal because they realize that they yield

unequal representations, but this means that they are reasoning about the code in a

non-modular, and thus non-scalable manner. It is simply untenable to think down

to the realization level about every data abstraction in a real program. Moreover,

in some cases, the code implementing a component may be inaccessible due to per-

missions settings, or volatile due to dynamic class reloading. We must think about

data abstractions according to their interfaces only, and referential transparency is

unsound when we do.
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And so devising a satisfactory solution to the unsoundness hinges on a key ques-

tion: should one be allowed to replace expressions whose abstract values are equal

in any program without changing its meaning? Certainly data abstraction should be

preserved in all of its complexity-taming generality; it is the necessity of referential

transparency that is being called into question. We propose a new proof rule for

the correctness of data representations requiring that they respect referential trans-

parency, and also discuss a workaround to allow problematic implementations such

as our Toss and MemberFrom, should they be desired.

To preserve referential transparency for ADT operations, the rule for proofs of

correctness of data representation must be changed in order to guarantee that func-

tional behavior in the concrete domain always leads to functional behavior in the

abstract. We propose a new proof rule to express this requirement:

∀a1 ∈ dom(Spec),∃!a2 ∈ Spec(a1), AR−1(a1)× {a2} ⊆ Sem ◦ AR

dom(Spec) is the domain of the relation defined by the operation’s specification, i.e.,

values that satisfy its precondition. The inverse of the abstraction relation, AR−1,

maps abstract values to the set of concrete values that correspond to it. Table 4.4

restates this rule in an expanded form with an informal description of its meaning.

Essentially, the rule dictates that the semantics of an operation’s implementation

must make the operation behave as some particular linearization of its specification,

which might be a relation. The rule is easily extended to the case of 0-ary operations:

∃!a, (a) ∈ Spec ∧ Sem ◦ AR = {(a)}
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In other words, there must be exactly one satisfactory abstract result that all concrete

states the implementation computes correspond to.

∀a1 ∈ dom(Spec), For all legal calls,
∃!a2 ∈ Spec(a1) there’s one legal result such that,
∀c1 ∈ AR−1(a1), for any concrete representation

of that legal pre state
∀c2 ∈ Sem(c1), for any concrete result the

implementation computes,
a2 ∈ AR(c2) that result corresponds to

the one legal result.
Table 4.4: An expanded presentation of our proposed new proof rule
for data representations.

Recalling the Coin example, our new proof rule prevents two different concrete

representations of Heads from yielding different abstract results when supplied as ar-

guments to Toss. This makes Toss less interesting from an intuitive perspective, since

it now lacks nondeterminacy, but it restores referential transparency: the proposed

implementation of Toss can no longer be verified, and an assumption of referential

transparency for all operations dictates that it shouldn’t be. One verifiable imple-

mentation of Toss would be:

Toss.value := Zero ()

Allowing non-determinism in such a framework is a subtle theoretical issue. Bur-

ton [15] makes an interesting suggestion along these lines: referential transparency

can be preserved if all operations are additionally parameterized by a lazy infinite

tree of pseudorandom boolean values. This would obviously complicate client-view

reasoning, perhaps intractably so, but the idea jibes with our new proof rule since

this tree would be part of the abstract state.
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We note that our rule is not entirely limiting. It does not, for example, demand

that all specifications be functional, nor that abstraction relations be one-to-one, nor

even that the semantics must take all representations of some legal pre state to one

particular concrete result.

In the absence of consensus about the role that referential transparency really

should play in functional languages, the most prudent way to leverage this new rule

is a two-tiered approach to proofs of data representations. For each operation in an

ADT implementation, we can first attempt to prove it with our new rule. If this

proof succeeds, then the operation implementation is valid and respects referential

transparency. If the proof fails, we should attempt to prove the operation implemen-

tation using the original method. If that proof succeeds, then that implementation

should be considered valid, but it should be flagged as referentially opaque, and client-

view reasoning about code should not be allowed to apply referential transparency to

subexpressions that mention that operation. If the attempted old-style proof of the

operation fails altogether, then the ADT implementation is invalid.

This approach would preserve referential transparency whenever possible, and

would automate the process of flagging problematic implementations like the origi-

nal Z4 implementation of Toss, so that clients will not unsoundly apply referential

transparency.

§4.4 Conclusion

We have argued that the two-level view of program meaning, i.e., the distinction

between clients and implementers of a concept enabled by strict abstraction, is an

ideal approach to component-based software engineering. Furthermore, we have seen
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that this view can be leveraged for full functional verification of real programs: the

method for verifying client code was explained in Chapter 3, and the current chapter

has explained implementation verification.

In the quest for a verifying compiler, the role of proof automation is essential.

Not only must a verifying compiler be able to generate verification conditions whose

validity implies the correctness of the code relative to its specifications, it should

also automatically discharge these proof obligations in a “push-button” manner. We

therefore continue by discussing the extent to which the Resolve verification tools

operate automatically.
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Chapter 5: Tools for Modular Verification

§5.1 Introduction: How Hard is Proof Automation?

As we have argued, Resolve’s emphasis on abstraction helps to manage the ambi-

tious scope of software verification. Chapter 2 established that the choice of writing

specifications in pure mathematics—as opposed to a special-purpose language that

includes programming syntax—allows intended functionality to be described in a sim-

ple and reusable manner. In Chapter 3 we saw that procedural abstractions can be

proven independently of client code because of operation contracts. If a synthesized

semantics approach were chosen instead, the verification process would not have been

modular, i.e., it would have depended upon the operation implementations rather

than their contracts. This was seen to be tantamount to inlining every operation

body, thus substantially increasing the complexity of the tracing table. In Chapter 4

we saw that well-chosen abstractions help to manage the difficulty of data represen-

tation verification. For example, in the Resolve solution to the VSComp challenge

problem involving two singly-linked lists implementing a Queue, we observed that

pointers were not at all related to the essence of the problem, which was the “last in,

first out” nature of singly-linked lists. Thus we abstracted away from pointer struc-

tures altogether and used two Stacks for our representation. While investigations
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into the incorporation of pointers into Resolve have been promising [47], it seems

clear that their use should be far less pervasive than in languages like C++, and

they should be hidden behind boundaries of strict abstraction for ease of reasoning.

Indeed, our TwoStacks realization is easy to verify.

The broader lesson of these excursions has been that abstraction is the key to writ-

ing maintainable, comprehensible, and verifiable software. When quality abstractions—

specifically mathematical models for programming types, operations with contracts,

algorithms annotated with loop invariants and assertions, and data representations

with conventions and correspondences—are an integral part of the development pro-

cess, no leaps of human ingenuity can sneak into the program undocumented. And

since these specification constructs document the insights underlying abstractions

in the language of mathematics, they can easily be incorporated into a mechanical

reasoning process to facilitate verification, as we have seen in our tracing tables.

A verifying compiler for Resolve need not implement decision procedures for arbi-

trarily complex and subtle mathematical formulas, but rather just the intellectually

simple (if clerically complicated) VCs that result from modular reasoning about well-

designed component-based software. The VCs that arise in Resolve are almost never

formulas that would interest, let alone stump, a logician. They tend instead to be

simple implications that are superficially complicated by an abundance of indexed

variables and extraneous facts. In [42], we analyzed 865 VCs generated from a cata-

log of Resolve enhancements and found that over 75% of them could be proven using

at most one antecedent conjunct. The fact that this analysis did not include VCs

generated from realization code should not trouble us given the discussion in the pre-

vious chapter: the only differences in realization verification as the Resolve tools at
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OSU currently approach it is the inclusion of the convention as an extra fact in the

first state and obligation in the last state, and an equality between any kernel-type

parameters and their concrete representations via the abstraction function as a fact

in the first and last states. Resolve’s current treatment of realization verification does

not lead to qualitatively different verification conditions, save for the fact that more

mathematical theories may be involved in a realization.

Abstraction will now be seen as the key not only to programming and proofs of

programs, but also to the automation of such proofs. This observation hinges on the

importance of separate roles in the verified software process. Chapter 3 hinted at

this distinction, and we shall now discuss it in detail. We begin with an illustrative

example.

§5.1.1 Example: S and K Combinators

The Second Verified Software Competition was held in January of 2012. No Re-

solve group officially participated, but our investigations into the competition’s chal-

lenge problems again revealed an insufficient emphasis on abstraction. Consider for

example the second of the five challenge problems, quoted verbatim from [24]:

The Turing-complete language of S and K combinators is sometimes
used in compilation of functional programming languages. For this prob-
lem, you will write a simple interpreter for combinators, and prove several
properties about this interpreter. The syntax of combinators is defined
by:

terms t ::= S | K | (t t)

We will use a call-by-value (CBV) interpreter, based on this definition
of contexts:

CBV contexts C ::= � | (C t) | (v C)

values v ::= K | S | (K v) | (S v) | ((S v) v)
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The expression C[t] denotes the term that we obtain by replacing �
with t in context C. It is recursively defined as follows:

�[t] = t

(C t1)[t] = (C[t] t1)

(v C)[t] = (v C[t])

The single-step reduction relation −→ can then be defined this way:

C[((K v1) v2)] −→ C[v1]

C[(((S v1) v2) v3)] −→ C[((v1 v3) (v2 v3))]

The reduction relation is the reflexive transitive closure
∗−→ of the

single-step reduction relation. We will also write /−→ if there is no t′ such
that t −→ t′. For example, K /−→.

Implementation Task
1. Define a data type for representing combinator terms and implement

a function reduction which, when given a combinator term t as input,
returns a term t′ such that t

∗−→ t′ and t′ /−→, or loops if there is no such
term.

Verification Tasks
1. Prove that if reduction(t) returns t′, then t

∗−→ t′ and t′ /−→.
2. Prove that function reduction terminates on any term which does

not contain S.
3. Consider the meta-language ks defined by

ks 0 = K

ks (n+ 1) = ((ks n) K)

Prove that reduction applied to the term (ks n) returns K when n
is even, and (K K) when n is odd.

This problem definition is obviously rather long and arcane. A better way of

describing the system would simply be to say:

• The only atomic terms in the system are S and K, and new terms can be formed

by applying one term to another.

• K is a function that takes two arguments, and returns the value of the second

one. (i.e., K(x, y) = x)
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• S is a function that takes three arguments, and returns the value obtained

by applying the first argument to the third, and then applying that result to

the result of applying the second argument to the third. (i.e., S(x, y, z) =

(x(z))(y(z)))

• Both functions are curried, e.g., S(x) returns a (curried) binary function defined

by (S(x))(y, z) = (x(z))(y(z)).

Now the challenge’s tasks consist of implementing a data type for abstract syntax

trees in the SK system, implementing a reduction function and proving some termi-

nation properties about it, and proving a special property concerning formulas only

containing a flat sequence of Ks.

The most important observation to make about this problem is that almost none

of it has anything to do with software verification. Granted, SK-combinators com-

prise an interesting formal system, but their properties and proofs are sophisticated

exercises that concern a mathematical theory, not a piece of code. A data abstraction

for SK formulae would be straightforward to implement,28 as would be a direct trans-

lation of the reductions described above, but verification of this code would (should)

consist only of showing that it behaves as its specifications describe, not that it has any

additional special properties. The goal of verification is to prove code correct relative

to its specification, not to automatically prove arbitrarily sophisticated mathematical

insights. The latter is precisely the false hope concerning formalism that Gödel so

profoundly dashed nearly a century ago.

28One idea would be to use a binary tree whose interior nodes are ignored and whose leaves are
all S or K, very similar to Chapter 2’s S-Expressions.
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If there were a non-trivial alternative algorithm for SK reduction, and we wanted

to prove that its implementation produced the same results as the straightforward

mathematical description defined in the problem statement, or if there were some op-

timized data structure for representing SK formulae that we wanted to prove correct,

then this would be an interesting (and probably challenging) software verification

task. However, as it stands, the SK challenge problem doesn’t actually address any

functionality that a properly abstracted software verification process should be re-

sponsible for.

§5.1.2 What Should Be Automated

There is of course a fine line between the domain of the mathematician and that

of the software verifier. Whereas a property such as the termination state of an

SK formula consisting of an odd number of Ks has been argued to be outside the

proper scope of automated verification, certainly some large amount of mathematical

reasoning must be automated if the dream of “push-button” verification is to become

a reality.

The first and best answer to this dilemma is to architect one’s verification sys-

tem so that both roles, mathematical theory development and software engineering,

interact synergistically. The extensibility of Resolve’s mathematical theory library is

one example of this accommodation. Adcock [3] discusses ideas for translating failed

verification attempts into feedback that programmers can use to debug their code (in

the case of a false VC), or that mathematicians can use to strengthen their theory

developments (in the case of a VC that may be true but cannot be proven auto-

matically). Another important idea along these lines would be to give specification
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writers the ability to include universal algebraic lemmas about their definitions, and

then augment the proof process to incorporate these. The correctness of programs

verified in this manner would hinge upon the validity of the lemmas, which mathe-

maticians could prove offline, perhaps with the help of proof assistants like Coq or

Isabelle. A more ambitious idea would be write an algorithm that generates poten-

tially useful lemmas (according to some heuristic) automatically, and attempts to

prove them valid. This would reduce the burden on humans of mathematical theory

development. With these comments on system architecture in mind, we shall now

describe the current state of Resolve’s automation tools.

§5.2 The Resolve Tool Suite

Fig. 5.1 is a visual depiction of a software verification workflow—specifically, it is

the model envisioned by the Resolve research group [66]. Executable tools are drawn

as rectangles, human-generated artifacts are drawn as ovals, and data flowing between

components are drawn as arrows. Arrows labeled with checkmarks or ‘x’s indicate

“yes” or “no” answers that a tool may generate. The two shaded regions represent

the distinct roles of programmer and mathematician previously discussed.

The process of generating VCs from code and specifications was described for

client and implementation code in Chapters 3 and 4, respectively. The development

of specifications, mathematical theories, and supplementary lemmas was discussed

primarily in Chapter 2. The two ‘x’s emitting from the automated prover correspond

to the feedback that a failed verification could generate.

The proof checker is an additional component that addresses the possibility of

incorrectness in the automated prover itself. The motivating idea is that the prover
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Figure 5.1: The Resolve verification workflow.

can generate a “proof certificate”—a step-by-step description of the incremental de-

ductions that the prover makes, and their justifications—which can then be checked

for soundness by a markedly simpler program that is deemed correct by usual means

(testing, inspection, or even “manual” verification). Proof checking is not a focus for

this work as it has little to do with abstraction. The tools at OSU do not currently

employ a proof checker, but it is one of several ongoing Resolve research projects [70].

The other two tools in Figure 5.1, the VC generator and the automated prover,

are both under active development at OSU. We now describe some of our work on

the latter.
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§5.2.1 SplitDecision

Many different tools for automated proof exist, and indeed several have been

employed for Resolve specifically. One effective tool we use is a custom-built prover

known as SplitDecision. An extensive analysis of the tool is given by its primary

developer in [3]; here we give a high-level view and detail one specific facility of which

we were the initial implementer.

Despite the availability of many powerful tools for automated proofs, the Split-

Decision project arose mostly out of necessity. Proof tools intended for mathematical

audiences (e.g., Isabelle [59] and Mizar [28]) tend to lack automation, for precisely

the reasons described earlier: the kinds of proofs that mathematicians are interested

in require substantial human insight and interaction. Provers intended for software

verification, on the other hand (e.g., KeY [7], Z3 [57]), often restrict the available

types to programmatic primitives like finite arrays and bounded integers, or deal

with one programming language exclusively. As we have seen before with respect to

specification languages, competing verification technologies, referential transparency,

and statements of verification challenge problems, the state of the art in automated

provers also reflects a sub-optimal leveraging of abstraction.

SplitDecision aims for the middle ground between mathematical generality and

automatability. As its name advertises, its greatest strengths are its decision proce-

dures and its ability to perform the case splits common to natural deduction. An

ancillary advantage is that, unlike third-party tools, which must be treated as black

boxes, SplitDecision can be used as a testing ground for experimental new proof

strategies and theory developments, such as the decision procedure for strings we will

describe shortly.
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SplitDecision works by negating the logical formula it receives as input, convert-

ing this negation to disjunctive normal form, and performing rewrites to the disjuncts

in an effort to find contradictions. When a rewrite converts a disjunct into a con-

tradiction, such as x = y ∧ x 6= y, the entire disjunct is removed. If all disjuncts

are removed, then the negated formula is false and thus the input VC is true. If

not all the disjuncts are removed, then the formula that SplitDecision arrives at is

a predicate describing potential counterexamples to the original verification condi-

tion.29 Recall that variables in VCs are implicitly universally quantified, and thus

the variables appearing in SplitDecision formulas after the initial negation has been

performed (including any fresh variables introduced in the proof process) are all im-

plicitly existentially quantified. A witness to such an existentially quantified formula

is a counterexample establishing the invalidity of the input VC.

The key data abstraction in SplitDecision is called Logical Formula, a tree of

labels containing information about the structure of the sub-formula rooted at that

node, such as the kind at the root (CONSTANT, SYMBOL, etc.) and the mathematical

type of the sub-formula (e.g., integer, string of boolean). The technical chal-

lenges in implementing SplitDecision’s proof process are managing the potentially

exponential increase in formula size incurred by DNF conversion and case splits, and

performing the substitutions necessitated by SplitDecision’s rewrite rules quickly. [3]

addresses these difficulties admirably. Aside from such design issues, the most novel

aspect of the SplitDecision project thus far is its implementation of a new decision

procedure for a fragment of mathematical string theory.

29Due to incompleteness in the tool, this predicate may be too weak; it may identify cases that
are not actually counterexamples.
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§5.2.1.1 A Decision Procedure for Strings

A string is an ordered homogenous collection of items allowing duplications. By

“homogenous,” we mean that all entries in a string have the same mathematical type

(they may themselves be strings of integers, for example). A Resolve development

of string theory, described in [34], has been critical for modeling containers such as

Queues and Stacks with strict abstraction. An interdisciplinary research effort with

the logician Harvey Friedman has reaped a substantial reward along these lines: a

formally proven decision procedure for a large fragment of (finite) string theory. The

decision procedure itself is presented in [27], and we describe the fragment it decides

below.

The procedure is capable of deciding any formula in the propositional calculus

whose atomic propositions are: equalities between two strings (s = t), equalities or

inequalities between two objects of the string’s entry type (x = y, x < y),30 equalities

or inequalities between two integers (i = j, i < j),31 and two special predicates on

strings: WINC and VAL. WINC takes a string as an argument, and its meaning

is that the entries in the string occur in weakly increasing order. VAL takes three

parameters, a string, an integer, and an object, and is true iff the entry in the string

at the given numeric position is equal to the object. These atomic formulas can be

negated, conjoined, or disjoined to create what we’ll call a “string formula” decidable

by the procedure.

30This implies that only strings of linearly-ordered types are allowed, but the procedure does
accommodate strings of unordered types so long as none of the order-based operators are employed.

31Since the decision procedure works by converting a string formula to one of Presburger arith-
metic, integer expressions involving addition, subtraction, absolute value, and division or mod by
constants greater than 1 are all allowed.
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In addition to the predicates mentioned above, the other operators available for

strings in these formulae are 〈〉 (the empty string constant), the unary string con-

structor (〈x〉 is the string of length 1 containing only x), and concatenation (s ∗ t).

After its original formulation, we discovered that a reverse function for strings could

be added without weakening the decidability result. String variables (e.g., α, β) are

allowed as well, and arise often due to the tabular verification approach.

We will not reiterate all of the rewrite rules in [27]. There are 26 in total. The

rules execute in two phases. In the first phase, 24 different rules are applied nondeter-

ministically to reduce the formula into a restricted form, which is then converted by

two additional rules into a formula in Presburger arithmetic, a decidable linear arith-

metic. We implemented this algorithm in Resolve/C++, a dialect of C++ created

at OSU that uses strict abstraction. Theoretically, Resolve/C++ is easy to translate

into the pure Resolve that our tools verify; one hope of our research program is that

SplitDecision itself could eventually be verified, although hoping that such a verifica-

tion would automatically establish the soundness of the string decision procedure is

a folly similar to hoping to automatically prove arcane results about SK combinator

theory.

Representative examples of rules from phase one of the decision procedure include:

• Replace any conjuncts of the form s = 〈〉, where s contains an object variable,

with false.

• Replace any term of the form |s ∗ t|, where s and t are string expressions, by

|s|+ |t|, replacing |〈x〉| by 1 and |〈〉| by 0 as necessary.
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• Replace conjuncts of the form WINC(α ∗ β) with WINC(α) ∧ WINC(β) ∧

VAL(α, |α|, x) ∧ VAL(β, 1, y) ∧ x ≤ y, where x and y are fresh object variables

for the formula.

• Replace any conjuncts of the form ¬WINC(s) with VAL(s, n, x)∧VAL(s,m, y)∧

n < m ∧ y < x, where n, m, x, and y are fresh variables for the formula. (VAL

numbers positions of α as 1..|α|.)

• On encountering a conjunct of the form VAL(〈y〉 ∗ t, i, x), perform a split: add

a new disjunct identical to the one containing the VAL. In one of these two

identical disjuncts, replace the VAL by i = 1 ∧ x = y. In the other, replace the

VAL by i > 1 ∧ VAL(t, i− 1, x).

• Replace any conjuncts of the form VAL(〈y〉, i, x) with i = 1 ∧ x = y.

At the end of phase one, the only remaining atomic sub-formulas involving strings

are WINCs and VALs whose string arguments are just string variables. In phase two,

each disjunct is processed separately, and its WINCs and VALs are replaced by im-

plications not involving strings, thus resulting in an existential formula of Presburger

arithmetic:

• For every distinct pair of VALs on the same string variable in a disjunct,

VAL(α, i, x) and VAL(α, j, y), such that WINC(α) does not appear in this dis-

junct, add i = j ⇒ x = y as a conjunct. Once all such VAL pairs are processed,

remove them all from the disjunct.

• For every distinct pair of VALs on the same string variable in a disjunct,

VAL(α, i, x) and VAL(α, j, y), such that WINC(α) does appear in this disjunct,
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add i = j ⇒ x = y ∧ i < j ⇒ x ≤ y ∧ x < y ⇒ i < j as a conjunct.32 Once all

such VAL pairs are processed, remove them all from this disjunct.

The string decision procedure implemented in SplitDecision lies at the heart of

many of the VC proofs conducted and analyzed in our aforementioned work on book-

keeping in proof automation [42].

§5.3 Tool Support for Verifying Functional Languages

In Chapter 2, we discussed the pragmatic advantages of programming in a “func-

tional style,” but noted that the existing verification tool for the most popular func-

tional language, i.e., the ACL2 project for verifying Lisp, lacks abstraction into math-

ematics. This is perhaps unsurprising—historically, Lisp has been considered to be

such a beautiful and math-like language that it needs no specifications. Several factors

explain this mindset, among them: (1) Lisp was arguably the first modern language

to be defined with true mathematical formality [53], (2) Lisp’s parenthesized prefix

notation feels natural, particularly to those familiar with lambda calculus, (3) Lisp’s

built-in integers are unbounded, so the programming operations for arithmetic (as-

suming a correct interpreter) really behave exactly as mathematics dictates, without

overflow issues, and (4) Lisp’s core semantics are small and intellectually tractable

(e.g., a very readable five-page definition in [54]). However, Lisp has grown since its

inception, and now includes features that undermine its theoretical purity and built-in

operations whose behavior is far from intuitive; specifications using strict abstraction

would be a valuable addition. We shall reinforce this idea by examining shortcomings

32There is an error in [27] regarding this rule. It calls for the conjunct to contain i < j ⇔ x < y,
but this is not true: in a weakly increasing string, i < j and x = y is possible.
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in by far the most successful verification effort for Lisp, and then investigate other

existing technologies for verifying functional programs.

§5.3.1 ACL2

Rather than proving that Lisp programs always behave in accordance with their

specifications, ACL2 proves arbitrary theorems that are expressed in the very same

syntax as the programming language. ACL2 is thus two things in one: a programming

language, and an interactive theorem prover. This conflation has some benefits, but

can also be dangerously confusing. For example, ACL2’s documentation claims to

list “the Common Lisp primitives supported by ACL2” [1], but the list includes

logical functions such as implies, which are not defined in Common Lisp and are

only intended to be used with the ACL2 theorem prover. In ACL2, one can define a

function33:

ACL2 !> (defun foo (x y) (implies x y))

Since FOO is non-recursive, its admission is trivial.

and then prove some logical property about it:

ACL2 !> (defthm false-antecedent (foo nil x))

Q.E.D.

However, this interaction immediately leads to an error when we try to leverage

our foo function and the property proven about it inside of a standard Common Lisp

interpreter (as opposed to ACL2’s):

33In each of our example ACL2 interactions, we show a proper substring of the response given by
the top-level, omitting details not relevant to our discussion
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[1]> (defun foo (x y) (implies x y))

FOO

[2]> (foo nil ’x)

*** - EVAL: undefined function implies

Thus, to the degree that ACL2 allows statements of its logic to be intermingled

with the programming language it purports to verify, its prover is unsound in the

sense that the code it verifies does not work reliably in a Common Lisp interpreter.

ACL2 is not, as it claims to be, a “very small subset of full Common Lisp” [1].

Of course, we could mitigate this problem by performing a syntactic check for any

functions not part of Common Lisp in “verified” ACL2 developments. However, the

issue is exacerbated by the fact that some Common Lisp functions are overridden

with different meanings in ACL2, e.g., round in Common Lisp returns two values,

but in ACL2 it only returns one.

ACL2 checks all function definitions for termination before admitting them. A

straightforward attempt to define addition:

ACL2 !> (defun my-add (x y) (if (<= x 0)

y

(my-add (1- x) (1+ y))))

leads to an error, because the prover cannot determine that this function terminates

on all inputs. This due to the lack of any restrictions on the kind of values x and

y may take on—the correct definition requires a guard demanding that x and y be

natural numbers:

ACL2 !> (defun my-add (x y) (if (and (natp x) (natp y))
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(if (<= x 0)

y

(my-add (1- x) (1+ y)))

nil))

In addition to the conflation of programming language and proof logic glimpsed

already, my-add demonstrates the second major shortcoming of ACL2 in terms of

insufficient abstraction: we can only prove our function correct relative to other code.

There is no way in ACL2 to prove the claim: “my-add performs true mathematical

addition for all natural number arguments.” Instead, we can only prove claims such as:

“my-add computes the same thing as the + operator on all natural number arguments”:

ACL2 !>(defthm my-add-is-+ (implies (and (natp x) (natp y))

(equal (+ x y) (my-add x y))))

Q.E.D.

Given our earlier discussion about the fact that + in Lisp really does perform

addition without the usual computational complications like overflow, ACL2’s lack of

mathematical modeling may not seem particularly detrimental. Then again, given our

surprising discoveries about round and implies, what reason is there to think that

the + mentioned in our theorem is the + that Common Lisp interpreters implement?

Proving theorems about code that are expressed as code amounts to a verification

strategy in which there is no qualitatively different description of behavior that we

can rely on for conceptual understanding.

In practice, ACL2 has enjoyed considerable success despite these shortcomings,

because it is used primarily for interactive verification of low level structures whose
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intended behavior can be defined with recursive functions. For example, ACL2 has

been used to prove that the translation of a processor’s microcode for computing

square roots into a collection of Lisp functions performs the computation accurately,

relative to a definition of square root in terms of ACL2’s implementation of rational

arithmetic [65]. ACL2 researchers have published many such accomplishments. We

intend our critiques not as diminution, but simply as evidence that ACL2 is not apt

for verifying the correctness of functional code relative to a specification using mathe-

matical modeling, a technique whose advantages have been observed throughout this

work.

§5.3.2 Coq

Like ACL2, Coq [8] is both a programming language and a theorem prover. Un-

like ACL2, however, Coq uses a rich type system to distinguish between programs

and statements of mathematical logic. Coq is an implementation of the Calculus of

Inductive Constructions, a typed lambda calculus with subtle theoretical tweaks that

facilitate, e.g., strong normalization, the option of avoiding impredicative sorts, and

coinductive definitions of infinite objects. These are all advanced mathematical topics

that range far beyond the scope of basic client programming that we have concerned

ourselves with thus far—we will focus our discussion on an example that shows Coq

being employed to verify a “real-world” algorithm of the sort that a Resolve program-

mer might be interested in.

Our example is a implementation of the insertion sort algorithm for lists, where

the entries are natural numbers ordered by the usual ≤. We will define the algorithm

and prove theorems that culminate in establishing the algorithm’s correctness. The
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skeleton of this file is an example by Andrew Appel at the Oregon Programming

Languages Summer School [2]; we will make clear the portions that we authored.

After a prelude consisting of some pertinent lemmas, Appel defines his insertion

sort algorithm:

1 Fixpoint i n s e r t ( i : nat ) ( l : l i s t nat ) :=
2 match l with
3 | n i l => i : : n i l
4 | h : : t => i f b l e n a t i h then i : : h : : t e l s e h : : i n s e r t i t
5 end .
6
7 Fixpoint s o r t ( l : l i s t nat ) : l i s t nat :=
8 match l with
9 | n i l => n i l

10 | h : : t => i n s e r t h ( s o r t t )
11 end .
12
13 Example s o r t p i : s o r t [ 3 , 1 , 4 , 1 , 5 , 9 , 2 , 6 , 5 , 3 , 5 ] =
14 [ 1 , 1 , 2 , 3 , 3 , 4 , 5 , 5 , 5 , 6 , 9 ] .
15 Proof .
16 s impl . r e f l e x i v i t y .
17 Qed .

insert is a helper function for inserting one number into the correct position in

a list, and sort uses insert to sort its argument, a list of naturals. Example is a

small theorem demonstrating that sort behaves as expected on one particular input

list. It is proven by the simpl tactic, which just applies the definition of sort to its

argument on the left-hand side of the equation.

Next, Appel defines a useful lemma, and we supply a proof for it. We omit the

fully detailed interaction with the Coq top-level, which shows the proof state at each

step in the derivation, instead just listing the tactics that were employed to complete

the proof. Some important tactics were explained in Chapter 2; our purpose here is
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just to give the flavor of a typical Coq verification, specifically the amount of human

guidance necessary to conduct even basic proofs. Permutation is a predicate defined

in a Coq library. This library also establishes useful theorems about Permutation,

such as Permutation refl, which states that any list is a permutation of itself. As

in Chapter 2, we see that Coq can be useful for mathematical theory development,

so long as we trust its kernel to be consistent with standard mathematics.

1 Theorem i n s e r t pe rm : f o ra l l i l ,
2 Permutation ( i n s e r t i l ) ( i : : l ) .
3 Proof .
4 i n t r o s . induct i on l as [ | head t a i l ] .
5
6 s impl . apply Pe rmuta t i on r e f l .
7
8 Case ” l i s non−empty ” . s impl .
9 remember ( b l e n a t i head ) as i l t h e a d .

10 de s t ruc t i l t h e a d .
11
12 SCase ” i goes in f r o n t ” . apply Pe rmuta t i on r e f l .
13
14 SCase ” i goes e l s ewhere ” .
15 a s s e r t ( Permutation ( head : : i n s e r t i t a i l )
16 ( head : : i : : t a i l ) ) .
17 apply perm skip . assumption .
18
19 a s s e r t ( Permutation ( head : : i : : t a i l )
20 ( i : : head : : t a i l ) ) .
21 apply perm swap .
22
23 apply perm trans with ( l ’ :=( head : : i : : t a i l ) ) .
24 assumption . assumption .
25 Qed .
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Now we can proceed to prove that sort returns a permutation of its argument.

Recall from Chapter 2 that this is a crucial correctness property for sorting algo-

rithms.

1 Theorem sort perm : f o ra l l l , Permutation l ( s o r t l ) .
2 Proof .
3 induct i on l as [ | head t a i l ] .
4
5 s impl . apply perm ni l .
6
7 s impl . apply Permutation sym .
8
9 a s s e r t ( Permutation ( i n s e r t head ( s o r t t a i l ) )

10 ( head : : ( s o r t t a i l ) ) ) .
11 apply in se r t pe rm .
12
13 a s s e r t ( Permutation ( head : : s o r t t a i l )
14 ( head : : t a i l ) ) .
15 apply perm skip . apply Permutation sym . apply I H t a i l .
16
17 apply perm trans with ( l ’ :=( head : : s o r t t a i l ) ) .
18 assumption . assumption .
19 Qed .

It remains to be proven that sort actually returns a list whose entries occur in in-

creasing order. Unlike Permutation, there is no sorted predicate in the Coq libraries

that we will rely on. Instead, Appel requests we write an “inductive predicate” of

our own to capture this notion. An inductive predicate is a predicate defined by com-

pletely characterizing the situations which make it true. It is similar in structure to

an inductive datatype, with named constructors for each qualitatively different case

of the predicate’s truth. Here is our inductive predicate sorted:

1 Inductive so r t ed : l i s t nat −> Prop :=
2 | n i l s o r t e d : so r t ed n i l
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3 | s i n g l e s o r t e d : f o ra l l (n : nat ) , ( s o r t ed [ n ] )
4 | n o n n i l s o r t e d : f o ra l l (n h : nat ) ( t : l i s t nat ) ,
5 so r t ed (h : : t ) −> (n <= h) −> ( so r t ed (n : : h : : t ) )
6 | t a i l s o r t e d : f o ra l l (h : nat ) ( t : l i s t nat ) ,
7 so r t ed (h : : t ) −> so r t ed t
8 | w i t h i n s e r t s o r t e d : f o ra l l ( i h : nat ) ( t : l i s t nat ) ,
9 so r t ed (h : : t ) −> (h <= i ) −> so r t ed (h : : i n s e r t i t ) .

sorted can be viewed as a family of five predicates. nil sorted states that

the empty list is sorted, tail sorted states that the tail (or “cdr,” in Chapter 2’s

S-Expression theory) of a sorted list is also sorted, and so on.

We can now state and prove a useful lemma about the insert helper function:

1 Theorem i n s e r t s o r t e d : f o ra l l l i ,
2 so r t ed ( l ) −> so r t ed ( i n s e r t i l ) .
3 Proof .
4 induct i on l as [ | h t ] .
5 Case ” l i s n i l ” . s impl . i n t r o s . apply s i n g l e s o r t e d .
6 Case ” l i s h : : t ” . i n t r o s .
7 remember ( b l e n a t i h ) as i l t h . d e s t ruc t i l t h .
8
9 SCase ” i <= h ” . s impl . r e w r i t e <− H e q i l t h .

10 apply n o n n i l s o r t e d . assumption .
11 symmetry in H e q i l t h .
12 apply b l e n a t t r u e in H e q i l t h . assumption .
13
14 SCase ” i > h ” . s impl . r e w r i t e <− H e q i l t h .
15
16 a s s e r t ( so r t ed t ) .
17 apply t a i l s o r t e d in H. assumption .
18
19 apply w i t h i n s e r t s o r t e d . assumption .
20 symmetry in H e q i l t h .
21 apply f a l s e b l e n a t e in H e q i l t h . omega .
22 Qed .

Notice that the proof uses the named constructors of sorted. sorted can be

thought of, then, as defining five different categories of “evidence” that establish the
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sorted-ness of a list. Useful definitions of inductive predicates are crucial to proving

theorems in Coq. The proof of insert sorted would have been substantially more

complicated if, for example, with insert sorted were not defined in sorted. Fi-

nally, we prove that sort returns a sorted list:

1 Theorem s o r t s o r t e d : f o ra l l l , s o r t ed ( s o r t l ) .
2 Proof .
3 induct i on l as [ | h t ] . s impl . apply n i l s o r t e d .
4 s impl . apply i n s e r t s o r t e d . assumption .
5 Qed .

Coq does not use mathematical modeling, so we see the unfortunate admixture

of programming function invocations and mathematical definitions like sorted, but

on the other hand there is no other language that Coq purports to be verifying,

so this conflation cannot lead to “false positive” proofs like we saw with implies

in ACL2. And unlike Resolve, Coq proofs are by default entirely non-automated.

There are rudimentary accommodations for automating proofs in Coq, e.g., a tactic

called auto, but they are limited. auto only solves goals that can be proven by

some combination of the intros, apply, and reflexivity tactics [60]. If further

automation is desired, the user can program customized tactics using Coq’s built-in

Ltac language, but this is a daunting programming challenge having little to do with

mathematical proof, again circumventing the role of the mathematician in Resolve’s

envisioned verified software process. Next we will briefly inspect Ynot, an alternative

framework for program proof in Coq.
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§5.3.3 Ynot

Ynot is a Coq library developed by a research group at Harvard University. It

axiomatizes a monad [74] called Cmd that is parameterized by pre- and post-conditions;

the type signature of a function in Ynot is a Cmd and thus gives a contract for the

function. These contracts are phrased in terms of assertions about the heap, allowing

code written in the style of functional languages like ML to be verified by separation

logic [64]. We will show an example from the Ynot Tutorial [16], which gives some

practical applications that make for interesting contrasts with Resolve.

The Ynot component that we will inspect is a Stack, whose functionality is the

same as that shown for Resolve in Chapter 4. The model of the Ynot Stack is a Coq

list, treated quasi-mathematically as a ghost variable, similar to what was explained

for Dafny in Chapter 3. To establish this model, we define a rep function, which,

given a Stack and a list it purports to represent, returns a predicate on heap states

in which this representation holds.

1 Variable T: Set .
2 Record node : Set := Node {data : T;
3 next : opt ion ptr } .
4 Fixpoint l i s t R e p ( l s : l i s t T) (hd : opt ion ptr )
5 { s t r u c t l s } : hprop :=
6 match l s with
7 | n i l => [ hd = None ]
8 | h : : t => match hd with
9 | None => [ Fa l se ]

10 | Some hd => Ex i s t s p :@ opt ion ptr ,
11 hd−−>Node h p ∗ l i s t R e p t p
12 end
13 end .
14 (∗ { s t r u c t l s } i s an unnecessary annotat ion i n d i c a t i n g
15 that l i s t R e p terminates by s t r u c t u r a l l y reduc ing l s ∗)
16
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17 Definition s tack := ptr .
18 Definition rep q l s := Ex i s t s po :@ opt ion ptr ,
19 q−−>po ∗ l i s t R e p l s po .

In this listing, we define a Node record for a singly-linked list implementation

of Stack, and define a function listRep, which, given a list and a pointer, gives

a predicate on heaps in which the pointer points to a head of a singly-linked list

whose data fields are those of the list argument. We can thus represent a Stack

as a pointer, where rep is just the existence of a pointer whose listRep is the list

modeling our Stack. Needless to say, this is a substantially more complicated manner

of representation definition than was seen for Resolve in Chapter 4.

The push s x operation can be specified by stating as a precondition that s rep-

resents some particular list ls, and as a postcondition that s represents x::ls, where

:: is the cons function in Coq.

1 Parameter push : f o ra l l (T: Set ) ( s : t T)
2 ( x : T) ( l s : [ l i s t T] ) ,
3 Cmd ( l s ˜˜ rep s l s )
4 ( fun : un i t => l s ˜˜ rep s ( x : : l s ) ) .

The square brackets around list T indicate that ls is a ghost parameter, and

the ˜˜ is a necessity of Ynot’s implementation: programmers must explicitly indicate

whenever a ghost variable is referred to by employing this operator. The pre- and

postconditions of the Cmd monad are, it is safe to say, somewhat less readable than

those written in the Resolve style, although for practiced functional programmers the

discrepancy is not so severe.
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Finally, we can show the simultaneous code and proof of push’s implementation.

We say “simultaneous” because of the way that Ynot works: we state the Cmd ex-

pression for push as a definition, which then introduces it as a proof obligation. Ynot

defines a special tactic called refine, inside of which we write our ML-style code. The

definition of this tactic accounts for the meaning of this code in terms of separation

logic, and attempts to prove that according to this semantics, the Cmd precondition

implies the postcondition.

1 Definition push : f o ra l l s x l s ,
2 Cmd ( l s ˜˜ rep s l s )
3 ( fun : un i t => l s ˜˜ rep s ( x : : l s ) ) .
4 i n t r o s . r e f i n e (hd <− ! s ;
5 nd <− New (Node x hd ) ;
6 {{ s : := Some nd }} ) ; t .

The syntax of the code inside of refine is somewhat obscure. This is due to

Ynot’s need to define operators for programming in their ML-style language without

overriding existing Coq operators. <- is assignment, ! is pointer dereferencing, and

::= assigns a pointer the reference of the object mentioned on its right-hand side.

The double brackets around the last line of code indicate weakening of the precon-

dition and strengthening of the postcondition in a Hoare-style program proof [35]:

the precondition and the state of the heap after executing the assignment of Some

nd to s implies push’s postcondition. t is a custom-defined proof tactic in the afore-

mentioned Ltac that discharges the proof obligations remaining after refine. Ynot

encourages the development of customized proof tactics in conjunction with authoring

code. This is roughly isomorphic to Resolve’s discipline of documenting programmer

insights with formal annotations, but strict abstraction makes Resolve annotations
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more readable, as they are phrased in mathematics rather than in an internal language

for proof automation like Ltac.

Ynot is syntactically quite dissimilar from Resolve, and its targeting of a functional

language with reference semantics via monads and separation logic makes a direct

theoretical comparison rather difficult. We do not wish to assert that either approach

is absolutely better than the other, but we feel that Resolve’s value semantics and

strict abstraction are likely to have more wide appeal. Moreover, we are not aware of

any use of Ynot for verifying client code, only implementations of data abstractions.

We suspect that the difficulties of modularity with respect to reference semantics

glimpsed previously in Jahob and Dafny will be present in Ynot as well.

§5.4 Conclusion

This chapter has presented a workflow for verified software in Resolve, and has

discussed some implementation details of this toolchain. Notably, we discussed our

implementation of a decision procedure for mathematical strings. We also investigated

some related proof tools for other languages.

We have now completed a broad survey of component-based software verification

in Resolve, highlighting issues of abstraction in every step of the process. The choice

of specification language, the decision to use strictly mathematical modeling, the use

of decoupled semantics for reasoning about code, conventions and correspondences

for proving data representations correct relative to a model, and the separable roles

of programmer and mathematician in the verification environment are all examples

of abstraction-focused design decisions that improve the modularity, and thus the
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pragmatic feasibility of software verification. We have also sought, whenever possible,

to contrast these decisions with cases of insufficient abstraction in related work.

Having elaborated at length abstraction’s primacy to tractable software verifica-

tion, we will conclude this dissertation with glimpses at future work that seek to fur-

ther increase abstraction’s prominence in Resolve. We do not consider these problems

solved; just hinting at possible future developments is itself a research contribution,

which we hope others will build upon as Resolve continues to grow.
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Chapter 6: New Directions for Abstraction-Embracing

Software

§6.1 Introduction

The running theme of this work has been an investigation of abstraction’s role

in software engineering, particularly how abstractions can be leveraged for modular,

automated software verification. By no means is this work the end of that story. In

fact, we wish above all else to raise issues concerning abstraction to the attention

of the research community, not to proclaim them all solved outright. In this final

chapter, we suggest some areas for future research, all of which can be considered

continuations of our emphasis on abstraction.

§6.2 Abstraction Relations

In Chapter 4 we discussed verification of implementation code in Resolve. We

pointed out that although our automated tools currently support only abstraction

functions, the proof method they are based on is known to accommodate abstraction

relations [21]. This is advantageous, because it has been discovered that abstraction

relations are in fact necessary for efficiency and good design of some data abstrac-

tions [68].
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Recently, the Resolve/Reusable Software Research Group (RSRG) has been ex-

ploring the possibility of automating data representation proofs in which the corre-

spondence is a relation and not a function. Because our proof rules for correctness for

data representations introduce an existential quantifier when an abstraction relation

is involved, new annotations should be added to realization components so that the

prover does not have to engage in the difficult task of automatically finding a suitable

witness.

In Fig. 4.1, we diagrammed the primary intuition behind verifying data repre-

sentations, but also noted that this methodology was incomplete relative to the rich

annotation constructs used in Resolve data abstractions, i.e., convention for restrict-

ing the concrete state space of a representation and constraint for restricting the

abstract state space of a model. A more accurate depiction of Resolve data represen-

tation correctness is shown in Fig. 6.1.

As Fig. 6.1 illustrates, the image of the abstraction relation for values that satisfy

the convention must be a subset of the constraint, so that no invalid abstract values

may be represented in the implementation. This means that to verify a realization,

we must prove:

∀c ∈ convention,∀a ∈ AR(c), a ∈ constraint (6.1)

Since (6.1) is purely universal, no special witness-providing annotation is neces-

sary. Another condition on correct implementations, however, dictates that every

convention-satisfying value must correspond to something:

∀c ∈ convention,∃a ∈ constraint, a ∈ AR(c) (6.2)
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ARAR

Spec

Sem

constraint

constraint

convention convention

AR AR

Figure 6.1: A commutative diagram for verification of implementations in Resolve.
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To automate this proof, implementers should write an “instance function,” which,

given a concrete value, gives one particular abstract value it should correspond to.

The prover can then check to see whether this is actually true.

The proof obligation that makes use of the instance function is conducted once

for the entire representation; it does not concern any particular kernel operation.

Additional annotations are useful to automate the proofs of existentials introduced

by the rules for proving the individual kernel operations.

The conceptual idea underlying abstraction relations is that representation values

correspond to equivalence classes of abstract values, and these equivalence classes

consist of the abstract values that the client cannot distinguish among based on the

calls that she has made thus far (these histories of calls on ADTs are sometimes

called “scenarios”). When a new call is made, the contract may dictate that some

of the values in our equivalence class result in a set of legal results that is disjoint

from what some other values in our equivalence class would result in—i.e., the call

may “discriminate” between different possible incoming abstract values. Fig. 6.1

depicts this situation by showing two disjoint sets of results in the top-right. If the

concrete result that the call actually computes fails to mirror this discrimination, i.e.,

when the concrete result does not correspond to a subset of the results allowed for

one particular abstract pre-state, then the implementation is incorrect. This is why

an existential quantification is introduced when proving kernel operations that use

abstraction relations; the proof obligation is:

∀c1 ∈ convention, AR(c1) ⊆ (constraint ∩ dom(Spec)) =⇒ (6.3)

(∃a1 ∈ (constraint ∩ dom(Spec)),Sem(c1) ◦ AR ⊆ Spec(a1))
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The intersections with constraint are not necessary if the one time proof of (6.1)

has been performed. In any case, (6.3) demands that, for any legal concrete pre-

state, there should be one abstract value it corresponds to such that the result of

executing the kernel operation corresponds to a subset of the values the specification

allows as legal results for that abstract value. To provide a witness for this abstract

pre-state, the implementer should provide a “precursor function,” which, given a

concrete value c1 and an abstract result a2, gives an abstract value a1 such that

Sem(c1) ◦AR ⊆ Spec(a1). Notice it is important that the precursor function might

be parameterized not only by a concrete value but also by an abstract result; the

correct precursor may depend upon that result, as was shown in Fig. 6.1. If the

abstract result were a member of the topmost dark bubble in the upper-right of that

figure, then the topmost dot on the upper-left should be the precursor.

Finally, we should observe that the question of whether or not a concrete pre-

state is legal at all also involves an existential quantification. This was implicit in

the antecedent of formula (6.3). Some concrete values might correspond to a subset

of the abstract state space that “overlaps” the subset of legal calls, with some values

qualified for the call to the kernel operation and others violating the precondition

(but not the constraint, if formula (6.1) has been proven). This means that the

client is currently holding a value that is not guaranteed to be legal for the call to

the kernel operation, and so cannot make the call and expect correct results. In the

programming-by-contract discipline, this is the client’s responsibility, so all we need to

do for verification of the implementation is make sure that such values are discounted

from the proof obligation 6.3, hence the antecedent guarding that formula. The prover

needs to be able to identify when that antecedent is false, so that it doesn’t subject
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that concrete value to the proof of the consequent. We can expand the negation of

the antecedent as follows, and see that it involves another existential quantification:

∃a1 ∈ AR(c1),¬constraint ∨ a1 /∈ dom(Spec) (6.4)

If (6.1) has been proven we know the first disjunct of (6.4) is unnecessary; it can

never be false. The disqualifier function should act as a sort of “worst-case identifier”:

given a concrete state, it should give a corresponding abstract value that fails to meet

the kernel operation’s precondition, if such a value exists. Happily, failure to provide a

good disqualifier function is not a soundness issue. If the disqualifier doesn’t correctly

identify concrete states on which the call is illegal, then the prover will try (and fail) to

establish the truth of (6.3) for those concrete states, thus rejecting the implementation

as incorrect. Recall from §3.2.1 that the definition of completeness in a verification

system using programmer-supplied assertions should be relative to the strength of

those assertions. Just as a correct program with weak invariants might fail to be

verified, so might an implementation with inapt disqualifier, precursor, or instance

function annotations.

§6.3 Specification-Aware Memoization

The tabular method of verification leverages the decoupled semantics view of code

to reason about the values of variables at each state of the program. Specifications

are the keystone of this approach: they are what allow us to know what the results of

each call will be, and they allow us to determine whether any illegal calls are made.

If code is verified, then it behaves in accordance with its specifications, and if Hoare’s

vision of a verifying compiler is realized, then we would never attempt to execute

unverified code. It thus makes sense to ask whether specifications could be used to
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aid the execution of verified programs. We now consider such a possibility. As with

many of our discussions, we focus on functional programming, wherein execution is

usually an interpretive process—we execute a functional program by evaluating it like

a mathematical expression, interpreting the meaning of each syntactic construct we

encounter in accordance with the language’s semantics.

In the interpretation of classical functional programming languages like Lisp, func-

tion evaluation proceeds in a very specific manner: first all of the function’s arguments

are evaluated, and then the function is applied to these resulting values. However,

other purely functional languages take a “non-strict” or “lazy” approach: arguments

are only evaluated if/when they are needed.34 This is similar in spirit to the dis-

tinction between bottom-up and top-down views of abstraction we made in Chapter

1—Lisp takes a bottom-up approach, evaluating expressions by bubbling results up

their abstract syntax trees, whereas Haskell works top-down, evaluating subexpres-

sions only if they are needed and stopping as soon as it has sufficient information.

Since interpreters for lazy functional languages work by evaluating subexpressions

as their values are needed for other computations, the optimization technique known

as memoization is often advantageous. Memoization consists of saving the value

computed for an expression so that it need not be recomputed if the expression

arises elsewhere during evaluation. A memoizing interpreter essentially maintains a

mapping from expressions to values. Whenever an expression needs to be evaluated in

the process of interpretation, this map is consulted first. If the expression appears as

a key in the map, its value is utilized in the evaluation. If not, its value is computed,

and the appropriate new (key, value) pair is added to the mapping.

34Haskell is a popular example of a lazy functional languages [52].
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In evaluating the expression (in Haskell-like syntax):

minus (plus 1 (minus (plus 1 1) 1)) (minus 2 1)

the subexpression minus 2 1 will arise at least three times, although non-strict se-

mantics implies that the order in which these three occurrences will be evaluated is

not entirely fixed. We depict and annotate one potential sequence of evaluation in

Table 6.1. At each step of evaluation, we underline the subexpression that will be

interpreted next:

Expression Note

minus (plus 1 (minus (plus 1 1) 1)) (minus 2 1)

minus (plus 1 (minus (plus 1 1) 1)) 1 Memoize (minus 2 1, 1)

minus (plus 1 (minus 2 1)) 1 Memoize (plus 1 1, 2)
minus (plus 1 1) 1 Using memoized result

minus 2 1 Using memoized result
1 Using memoized result

Table 6.1: An example of memoized lazy interpretation in a Haskell-like
language.

This process seems closely linked to the property of referential transparency, dis-

cussed at length in our examples of unsoundness. Indeed, expressions involving refer-

entially opaque operations cannot be correctly rewritten by memoization, as we have

seen in Chapter 4.

Memoization exemplifies a curious lack of abstraction in common implementa-

tions of functional languages: the identities of objects are not values of some math-

ematical model as Chapter 2 advocated, nor are they usually references in the heap

(e.g., sharing common substructures is a nearly universal technique for taming the

memory footprint of functional language implementations). Instead, programmers in
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languages like Haskell are led to think of the identities of their objects as particu-

lar arrangements of constructors and operation invocations, because these are what

determine the values that will be computed (and memoized). When presented with

our unsoundness example involving Coins in Chapter 4, these programmers would

respond that Toss should not be assumed to return the same result on MakeHeads

(Heads ()) as on MakeHeads (Tails ()), because it’s clear from inspection that

these two arguments are not “equal.” As we argued in that chapter, this line of rea-

soning constitutes a severe relinquishment of abstraction, and we reject it in favor of

mathematical modeling.

To that end, we propose that a new approach to memoization could be under-

taken, in which the values in the map are values of the mathematical model of the key

expression’s type. An expression involving Coins would be memoized as a boolean,

an expression involving Queues would be memoized as a string of items, and so on.

Of course, in the presence of relational specifications, it will not always be possi-

ble to determine the value of an expression from the specifications of the operations

it mentions, but functional specifications are common enough to justify further in-

vestigations into specification-aware memoization. In a functional language that uses

strict abstraction, whenever a function Foo is specified by giving an explicit definition

of its return value in terms of its arguments, this specification can be used directly

for filling in the memoization mappings for expressions involving that function.

§6.4 Model-Aware Iteration

Ideally, a loop invariant is an annotation that documents the insights that the

programmer forged while designing an iterative algorithm. However, in mundane
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cases, loop invariants can become tedious, and the necessity of annotating every

loop with an invariant can be an obstacle rather than an aid. Some static analyses

attempt to deal with this issue via heuristics for automatic inference of invariants [23].

Of course this approach is flawed in that automated invariant inference could cause

code that does not behave as the programmer intended to be verified: the inferred

invariant might be qualitatively different than the one the programmer would have

written, and might reflect properties that she did not desire her code to exhibit. We

suggest a different approach, which (in the spirit of abstraction) attempts to “reuse”

invariants for simple iterative patterns by moving them into reusable components and

invoking them with reader-friendly syntax.

Consider iterating over one of the data abstractions for “collections” that we have

seen in this work. For example, Queue is an ordered collection of items that are

processed in a “first in, first out” manner. Stack is like Queue but for the fact

that it processes data “last in, first out.” Many computational tasks involving these

components are commutative: the order in which they compute with the collection’s

items is immaterial, e.g., incrementing every entry in a Queue of integers. Moreover,

some collections lack the notion of “order” altogether (anything modeled by a set

or a multiset), or only offer a partial order, with some elements being incomparable

(trees and binary trees). For components like these, the need for client code to define

one particular order of computation among a collection’s elements seems needlessly

specific, it would be better to have the ability to just say what computation should

be applied to each element.

155



Below we show a new Resolve contract for incrementing all of a Queue’s entries. We

emphasize again a consequence of strict abstraction: the fact that ADD ONE’s induc-

tive definition seems to describe a left-to-right incrementing of its argument string’s

entries has no bearing on the order in which AddOne must actually compute its result.

1 contract AddOne enhances QueueOf IntegerFac i l i ty
2
3 definition ADD ONE (
4 s : string of integer
5 ) : string of integer
6 s a t i s f i e s restr ict ion
7 i f ( s = empty string )
8 then ADD ONE( s ) = empty string
9 else

10 for a l l t : string of integer , i : integer
11 where ( s = <i> ∗ t )
12 (ADD ONE( s ) = < i+1> ∗ ADD ONE( t ) )
13
14 procedure AddOne (updates q : Queue )
15 ensures
16 q = ADD ONE(#q )
17
18 end AddOne

Recalling the discussion of MAP in Chapter 2, we can reformulate this contract

without introducing any new quantifications as follows:

1 contract AddOne enhances QueueOf IntegerFac i l i ty
2
3 definition INCREMENT ( i : integer ) : integer
4 i s i+1
5
6 procedure AddOne (updates q : Queue )
7 ensures
8 q = MAP(INCREMENT, #q )
9

10 end AddOne
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MAP in fact seems to be the perfect abstraction for problems of the sort we’re

considering. If we wanted to sum all of the Queue’s entries, FOLD would be apt.

One of many possible implementations of the AddOne contract is shown in the

following listing.

1 real ization I t e r a t i v e implements AddOne
2 for QueueOf IntegerFac i l i ty
3
4 procedure AddOne (updates q : Queue )
5 variable tmp : Queue
6 loop
7 maintains
8 tmp ∗ MAP(INCREMENT, q ) = MAP(INCREMENT,#q )
9 decreases

10 | q |
11 while not IsEmpty ( q ) do
12 variable x : I n t e g e r
13 Dequeue (q , x )
14 Increment ( x )
15 Enqueue (tmp , x )
16 end loop
17 tmp :=: q
18 end AddOne
19
20 end I t e r a t i v e

However, it now becomes clear that only one line of code has anything to do with

incrementing an integer, everything else is boilerplate for the iteration. Specifically,

we will use the word “boilerplate” to refer to lines 4 through 16 of the Iterative

realization of AddOne, where line 7 (the invariant) and line 13 (the interesting por-

tion of the loop body) are the only portions free to change. Rather than write this

boilerplate code for each such iteration we’d like to perform on a Queue, it would

be nicer to just write programming expressions of the form Map (q, Increment),
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where the specification of Map is a straightforward application of our math definition

MAP. The first problem with this approach is that Increment is a procedure, not a

function. The math definition for MAP that we gave in Chapter 2 was parameterized

by a function. We could define a new MAP function that is parameterized by a unary

relation (the mathematical model of procedures with a single parameter), as follows:

1 definition MAP (
2 s : string of T1 ,
3 r : set of (T1 , T2)
4 ) : string of T2 s a t i s f i e s
5 i f ( s = empty string )
6 then MAP( s , r ) = empty string
7 else
8 there exists i : T1 , t : string of T1
9 ( s = <i> ∗ t and

10 ( i , j ) i s in r
11 MAP( s , r ) = <j> ∗ MAP( t , r ) )

This new definition of MAP accommodates unary programming procedures or func-

tions,35 but it is not satisfiable if r is not total. In addition to this complication, there

are implementation issues involved with reifying operations as data so that they can

be passed to Map. Instead, we could imagine implementing AddOne via a new syntactic

construct as follows:

1 f o r each x in q
2 Increment ( x )
3 end f o r

35If functions are viewed, as is common, as sets of pairs
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for each...in...end for can be implemented as a macro that expands into the

boilerplate evinced in the Iterative implementation of Queue, where the “interest-

ing” portion of the loop is replaced by the body of the for each, and the invariant is

changed so that the relation mapped to the strings q and #q is the composition of the

specs of operations the for each body invokes on x. We discussed relational compo-

sition in Chapter 4, where we showed that the decoupled semantics of a sequence of

procedure calls is just the appropriate relational composition of their specifications.

To make for each available for a component, an extension should be written that

provides the boilerplate appropriate to that component—Sets will not be iterated

upon in the same manner as we have shown for Queues, for example. Boilerplate for

Set is shown below.

1 variable tmp : Set
2 loop
3 maintains
4 there exists s s t r , o l d s s t r : string of Item
5 ( e lements ( s s t r ) = s and
6 e lements ( o l d s s t r ) = #s and
7 tmp union elements (MAP( , s s t r ) ) =
8 elements (MAP( , o l d s s t r ) ) )
9 decreases

10 | s |
11 while not IsEmpty ( s ) do
12 variable x : Item
13 RemoveAny ( s , x )
14
15 Add (tmp , s )
16 end loop
17 s :=: tmp

In general, for each could be considered just one instance of a broader family of

iteration constructs that the programming language could offer for collections. Often
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in Sets, for example, one might like to perform some computation on all distinct pairs

of entries:

f o r each d i s t i n c t (x , y ) in s

end f o r

This of course would require different boilerplate to be provided, but the idea

is that this syntax is readable, and natural to properly abstracted client reasoning,

because it is phrased in terms of a mathematical model. Traditional approaches to

the issue of iteration, i.e., iterators and higher-order functions, lack this degree of

abstraction. Iterators at best require new mathematical models [76], or else involve

modularity problems such as reasoning about iterator return values that are references

to the contents of data structures, as in Java. Higher-order functions are a common

solution in settings that already reify operations as data, but they lack mathematical

modeling; the meaning of a map expression in Haskell requires knowing the imple-

mentation of the function it is provided as an argument. Our proposed approach

eliminates this problem, allowing client-view reasoning about all operations invoked

in a for each.

§6.5 Conclusions

In this final chapter, we have demonstrated that a view of programming that

emphasizes abstraction opens new avenues of research. We have seen that proof

automation, language implementation, and language design all offer opportunities for

embracing abstraction that the state of the art does not currently account for. We
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hope that this work will continue, and that the power of abstraction will be ever more

appreciated as it tames larger problems and engenders more reusable solutions.

More broadly, we have completed our discussion of abstraction as the key to

programming. We have seen that generalization and reconceptualization ameliorate

issues of specification and implementation, and that the power of a programmer to

reason about her code is due to the use of good abstractions for hiding irrelevant

details and providing a sound model of software component behavior. We began

by defining our terms and surveying abstraction’s role in science, and then focused

on the term’s multifarious usage in the field of software engineering. We discussed

verification in particular, showing a specification language and a program proof tech-

nique that leverages strict abstraction into pure mathematics. We discussed data

abstractions, saw that the issue of functional semantics could introduce unsoundness

into modular client reasoning based on decoupled semantics, and presented a solution

to the problem. Finally we discussed proof automation and future directions, thus

concretizing our abstract discussion with real applications.

We conclude in the hope that this work lies along a critical path to solving Hoare’s

challange, and that the dream of a verifying compiler will someday be achieved, with

abstraction in the starring role.
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[58] E. Nagel and J. R. Newman. Gödel’s Proof. New York University Press, revised
edition, 2001.

[59] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[60] B. C. Pierce, C. Casinghino, M. Greenberg, V. Sjoberg, and B. Yorgey. Soft-
ware Foundations. Distributed electronically, http://www.cis.upenn.edu/

~bcpierce/sf, 2011.

[61] S. M. Pike, W. D. Heym, B. Adcock, D. Bronish, J. Kirschenbaum, and B. W.
Weide. Traditional assignment considered harmful. In The 2009 International
Conference on Object Oriented Programming, Systems, Languages and Applica-
tions, pages 909–916, New York, 2009. ACM.

[62] E. Poll, P. Chalin, D. Cok, J. Kiniry, and G. T. Leavens. Beyond assertions:
Advanced specification and verification with JML and ESC/Java2. In Formal
Methods for Components and Objects (FMCO) 2005, Revised Lectures, pages
342–363. Springer, 2006.

[63] W. V. O. Quine. Word and Object. MIT Press, 1960.

[64] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
LICS ’02, pages 55–74, Washington, DC, USA, 2002. IEEE Computer Society.

[65] D. M. Russinoff. A mechanically checked proof of correctness of the AMD K5
floating point square root microcode. Form. Methods Syst. Des., 14(1):75–125,
Jan. 1999.

[66] M. Sitaraman, B. Adcock, J. Avigad, D. Bronish, P. Bucci, D. Frazier, H. Fried-
man, H. Harton, W. Heym, J. Kirschenbaum, J. Krone, H. Smith, and B. Weide.
Building a push-button resolve verifier: Progress and challenges. Formal Aspects
of Computing, 23(5):607–626, 2011.

[67] M. Sitaraman, S. Atkinson, G. Kulczycki, B. W. Weide, T. J. Long, P. Bucci,
W. D. Heym, S. M. Pike, and J. E. Hollingsworth. Reasoning about software-
component behavior. In ICSR-6: Proceedings of the 6th International Conerence
on Software Reuse, pages 266–283, London, UK, 2000. Springer-Verlag.

167

http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf


[68] M. Sitaraman, B. W. Weide, and W. F. Ogden. On the practical need for
abstraction relations to verify abstract data type representations. IEEE Trans.
Softw. Eng., 23(3):157–170, 1997.

[69] H. Smith, H. Harton, D. Frazier, R. Mohan, and M. Sitaraman. Generating
verified Java components through RESOLVE. In Proceedings of the 11th In-
ternational Conference on Software Reuse: Formal Foundations of Reuse and
Domain Engineering, ICSR ’09, pages 11–20, Berlin, Heidelberg, 2009. Springer-
Verlag.

[70] H. Smith, K. Roche, M. Sitaraman, J. Krone, and W. F. Ogden. Integrating
math units and proof checking for specification and verification. In Proceedings of
the 7th International Workshop on Specification and Verification of Component-
Based Systems (SAVCBS 2008), pages 59–67, November 2008.

[71] H. Søndergaard and P. Sestoft. Referntial transparency, definiteness and unfold-
ability. Acta Informatica, 27:505–517, 1990.

[72] N. Soundarajan, D. Bronish, and R. Khatchadourian. Formalizing reusable
aspect-oriented concurrency control. In Proceedings of the 23rd International
Conference on Software Engineering & Knowledge Engineering (SEKE’2011),
pages 111–114, July 2011.

[73] A. Tagore, D. Zaccai, and B. Weide. Automatically proving thousands of ver-
ification conditions using an SMT solver: An empirical study. In A. Goodloe
and S. Person, editors, NASA Formal Methods, volume 7226 of Lecture Notes in
Computer Science, pages 195–209. Springer Berlin, 2012.

[74] P. Wadler. Monads for functional programming. In Advanced Functional Pro-
gramming, First International Spring School on Advanced Functional Program-
ming Techniques (Tutorial Text), pages 24–52, London, UK, 1995. Springer-
Verlag.

[75] D. F. Wallace. Everything and More: A Compact History of ∞. W. W. Norton
& Company, Inc., 2003.

[76] B. W. Weide. SAVCBS 2006 challenge: Specification of iterators. In Proceedings
of FSE Workshop on Specification and Verification of Component-Based Systems
(SAVCBS), pages 75–77, Portland, OR, November 2006.

[77] B. W. Weide. Software verification with towers of abstraction. Foundational
Adventures: Conference in Honor of the 60th Birthday of Harvey M. Friedman,
2009.

168



[78] B. W. Weide, M. Sitaraman, H. K. Harton, B. Adcock, P. Bucci, D. Bronish,
W. D. Heym, J. Kirschenbaum, and D. Frazier. Incremental benchmarks for
software verification tools and techniques. In Proceedings of the 2008 Workshop
on Verified Software: Theories, Tools, and Experiments, pages 84–98. Springer-
Verlag, 2008.

[79] K. Zee, V. Kuncak, and M. Rinard. Full functional verification of linked data
structures. In Proceedings of the 2008 ACM SIGPLAN conference on Program-
ming language design and implementation, PLDI ’08, pages 349–361, New York,
NY, USA, 2008. ACM.

169



Appendix A: Resolve String Theory in Coq

Require Import BoolEq .
Require Import Arith .
Require Import Omega .

Inductive s t r i n g (X:Type ) : Type :=
| empty str ing : s t r i n g X
| ext : s t r i n g X −> X −> s t r i n g X.

Implicit Arguments empty str ing [ [ X ] ] .
Implicit Arguments ext [ [ X ] ] .

Theorem ext not empty : f o ra l l (X:Type) ( a : X) ( s : s t r i n g X) ,
( ext s a <> empty str ing ) .

Proof .
congruence .

Qed .

Theorem e x t i n j 1 : f o ra l l (X:Type) ( a b : X) ( s t : s t r i n g X) ,
( ext s a = ext t b) −> a = b .

Proof .
congruence .

Qed .

Theorem e x t i n j 2 : f o ra l l (X:Type) ( a b : X) ( s t : s t r i n g X) ,
( ext s a = ext t b) −> s = t .

Proof .
congruence .

Qed .

Theorem e q u a l e x t e n s i o n s :
f o ra l l (X:Type) ( s t : s t r i n g X) ( x : X) ,
( s = t ) −> ( ext s x ) = ( ext t x ) .

Proof .
i n t r o s . r e w r i t e −> H. r e f l e x i v i t y .

Qed .

Fixpoint concat (X:Type) ( s t : s t r i n g X) : s t r i n g X :=
match t with
| empty str ing => s
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| ext t ’ x => ext ( concat X s t ’ ) x
end .

Implicit Arguments concat [ [ X ] ] .

Notation ”x ∗∗ y” :=
( concat x y ) ( at l e v e l 50 , l e f t a s s o c i a t i v i t y ) : nat scope .

Theorem c o n c a t l e f t i d :
f o ra l l (X:Type) ( s : s t r i n g X) , empty str ing ∗∗ s = s .

Proof .
i n t r o s . induct i on s . s impl . r e f l e x i v i t y .

s impl . r e w r i t e −> IHs . r e f l e x i v i t y .
Qed .

Theorem c o n c a t r i g h t i d :
f o ra l l (X:Type) ( s : s t r i n g X) , s ∗∗ empty str ing = s .

Proof .
i n t r o s . s impl . r e f l e x i v i t y .

Qed .

Theorem c o n c a t r i g h t c a n c e l :
f o ra l l (X:Type) ( a b c : s t r i n g X) , b ∗∗ a = c ∗∗ a −> b = c .

Proof .
i n t r o s . induct i on a . s impl in H. assumption .
s impl in H. apply e x t i n j 2 in H. apply IHa . assumption .

Qed .

Theorem conca t a s so c : f o ra l l (X:Type) ( a b c : s t r i n g X) ,
( a∗∗b)∗∗ c = a ∗∗(b∗∗ c ) .

Proof .
i nduct i on c as [ | c ’ x ] . s impl . r e f l e x i v i t y .
s impl . r e w r i t e −> x . r e f l e x i v i t y .

Qed .

Fixpoint l ength (X:Type) ( s : s t r i n g X) : nat :=
match s with
| empty str ing => 0
| ext s ’ x => S ( l ength X s ’ )
end .

Implicit Arguments l ength [ [ X ] ] .

Notation ” | x |” := ( l ength x ) ( at l e v e l 5 0 ) : nat scope .

Theorem l en 0 imp l i e s empty :
f o ra l l (X:Type) ( s : s t r i n g X) , | s | = 0 −> s = empty str ing .

Proof .
d e s t ruc t s . i n t r o s . r e f l e x i v i t y .
i n t r o s . s impl in H. i n v e r s i o n H.

Qed .
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Theorem concat sums l engths :
f o ra l l (X:Type) ( s t : s t r i n g X) , | s ∗∗ t | = | s |+ | t | .

Proof .
i n t r o s . induct i on t . s impl . omega . s impl . omega .

Qed .

Theorem e q u a l l e n p r e f i x e s 1 :
f o ra l l (X:Type) ( a b c d : s t r i n g X) ,

( a∗∗b) = ( c∗∗d) −> ( | b | = | d | ) −> b = d .
Proof .

i nduct i on b .
i n t r o s . s impl in H0 . symmetry in H0 . symmetry .

apply l en 0 imp l i e s empty . assumption .
i n t r o s . d e s t ruc t d . s impl in H0 . i n v e r s i o n H0 .

s impl in H0 . i n v e r s i o n H0 . c l e a r H0 . s impl in H.
i n v e r s i o n H. c l e a r H.
a s s e r t (b=d ) . apply IHb with ( c :=c ) . assumption .
assumption . r e w r i t e −> H. r e f l e x i v i t y .

Qed .

Theorem e q u a l l e n p r e f i x e s 2 :
f o ra l l (X:Type) ( a b c d : s t r i n g X) ,

( a∗∗b) = ( c∗∗d) −> ( | b | = | d | ) −> a = c .
Proof .

i nduct i on b .
i n t r o s . s impl in H0 . symmetry in H0 .

apply l en 0 imp l i e s empty in H0 .
r e w r i t e −> H0 in H. s impl in H. assumption .

i n t r o s . d e s t ruc t d . s impl in H0 . i n v e r s i o n H0 .
s impl in H. i n v e r s i o n H. c l e a r H. s impl in H0 .
i n v e r s i o n H0 . c l e a r H0 . apply IHb with (d:=d ) .
assumption . assumption .

Qed .

Theorem e q u a l i m p l i e s e q u a l l e n :
f o ra l l (X:Type) ( a b : s t r i n g X) , a = b −> | a | = | b | .

Proof .
i n t r o s . r e w r i t e −> H. r e f l e x i v i t y .

Qed .

Theorem e x t o f c o n c a t : f o ra l l (X:Type) ( s t : s t r i n g X) ( x : X) ,
ext ( s ∗∗ t ) x = s ∗∗ ( ext t x ) .

Proof .
i n t r o s . s impl . r e f l e x i v i t y .

Qed .

Notation ”<< x >>” :=
( ext empty str ing x ) ( at l e v e l 5 0 ) : nat scope .

Theorem s t r i ng l e t on no t empty :
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f o ra l l (X:Type) ( x :X) , <<x>> <> @empty string X.
Proof .

congruence .
Qed .

Theorem s t r i n g l e t o n l e n 1 : f o ra l l (X:Type) ( x :X) , |<<x>>| = 1 .
Proof .

s impl . r e f l e x i v i t y .
Qed .

Theorem s t r i n g l e t o n i n j :
f o ra l l (X:Type) ( x y : X) , <<x>> = <<y>> −> x = y .

Proof .
congruence .

Qed .

Theorem l e n 1 i m p l i e s s t r i n g l e t o n :
f o ra l l (X:Type) ( s : s t r i n g X) ,
| s |=1 −> exists x :X, s = <<x>>.

Proof .
i n t r o s . d e s t ruc t s . s impl in H. i n v e r s i o n H.
s impl in H. i n v e r s i o n H. apply l en 0 imp l i e s empty in H1 .

r e w r i t e −> H1 . exists x . r e f l e x i v i t y .
Qed .

Theorem c o n c a t s t r i n g l e t o n i s e x t :
f o ra l l (X:Type) ( s : s t r i n g X) ( x : X) ,

( s ∗∗ <<x>>) = ( ext s x ) .
Proof .

i n t r o s . s impl . r e f l e x i v i t y .
Qed .

Fixpoint rev (X:Type) ( s : s t r i n g X) : s t r i n g X :=
match s with
| empty str ing => empty str ing
| ext t x => <<x>> ∗∗ ( rev X t )
end .

Implicit Arguments rev [ [ X ] ] .

Theorem r e v s t r i n g l e t o n :
f o ra l l (X:Type) ( x : X) , ( rev (<<x>>)) = <<x>>.

Proof .
s impl . r e f l e x i v i t y .

Qed .

Theorem r ev concat :
f o ra l l (X:Type) ( s t : s t r i n g X) ,

( rev ( s ∗∗ t ) ) = ( rev t ) ∗∗ ( rev s ) .
Proof .

i nduct i on t . s impl . r e w r i t e −> c o n c a t l e f t i d . r e f l e x i v i t y .
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s impl . r e w r i t e −> IHt . r e w r i t e −> conca t a s so c . r e f l e x i v i t y .
Qed .

Theorem r e v r e v c a n c e l s :
f o ra l l (X:Type) ( s : s t r i n g X) , ( rev ( rev s ) ) = s .

Proof .
i nduct i on s . s impl . r e f l e x i v i t y .

s impl . r e w r i t e −> r ev concat . r e w r i t e −> IHs .
r e w r i t e −> r e v s t r i n g l e t o n .
r e w r i t e −> c o n c a t s t r i n g l e t o n i s e x t . r e f l e x i v i t y .

Qed .

Theorem r e v t r a n s f e r :
f o ra l l (X:Type) ( s t : s t r i n g X) , ( rev s ) = t −> s = ( rev t ) .

Proof .
i n t r o s . r e w r i t e <− H. r e w r i t e −> r e v r e v c a n c e l s .
r e f l e x i v i t y .

Qed .

Theorem r e v e q u a l s r e v i m p l i e s e q u a l :
f o ra l l (X:Type) ( s t : s t r i n g X) , ( rev s ) = ( rev t ) −> s = t .

Proof .
i n t r o s . apply r e v t r a n s f e r in H.
r e w r i t e −> r e v r e v c a n c e l s in H. assumption .

Qed .

Theorem e q u a l i m p l i e s r e v e q u a l s r e v :
f o ra l l (X:Type) ( s t : s t r i n g X) , s = t −> ( rev s ) = ( rev t ) .

Proof .
i n t r o s . apply r e v t r a n s f e r . r e w r i t e −> r e v r e v c a n c e l s .
assumption .

Qed .

Theorem c o n c a t l e f t c a n c e l :
f o ra l l (X:Type) ( a b c : s t r i n g X) , a ∗∗ b = a ∗∗ c −> b = c .

Proof .
i nduct i on a . i n t r o s . r e w r i t e −> c o n c a t l e f t i d in H.

r e w r i t e −> c o n c a t l e f t i d in H. assumption .
i n t r o s . r e w r i t e <− c o n c a t s t r i n g l e t o n i s e x t in H.

r e w r i t e −> conca t a s so c in H.
r e w r i t e −> conca t a s so c in H. apply IHa in H.
apply e q u a l i m p l i e s r e v e q u a l s r e v in H.
r e w r i t e −> r ev concat in H. s impl in H.
r e w r i t e −> r ev concat in H. s impl in H.
i n v e r s i o n H. apply r e v e q u a l s r e v i m p l i e s e q u a l .
assumption .

Qed .

Theorem l e n g t h i s s u m i m p l i e s c o n c a t :
f o ra l l (X:Type) ( s : s t r i n g X) (m n : nat ) ,
| s | = (m + n) −> exists ! t : s t r i n g X, exists ! u : s t r i n g X,
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s = t ∗∗ u /\ | t | = m /\ | u | = n .
Proof .

i nduct i on s . i n t r o s . s impl in H. a s s e r t (m=0). omega .
a s s e r t (n=0). omega . c l e a r H. exists empty str ing .
unfo ld unique . s p l i t . exists empty str ing . s p l i t . s p l i t .
s impl . r e f l e x i v i t y . s p l i t . s impl . symmetry . assumption .
s impl . symmetry . assumption . i n t r o s . decompose [ and ] H.
r e w r i t e −> c o n c a t l e f t i d in H2 . assumption .
i n t r o s . d e s t ruc t H. decompose [ and ] H. c l e a r H.
r e w r i t e −> H0 in H2 . apply l en 0 imp l i e s empty in H2 .
symmetry . assumption .
i n t r o s . s impl in H.
ca s e eq ( beq nat n 0 ) .

i n t r o s . apply beq nat t rue in H0 . a s s e r t (S ( | s | ) = m) .
omega . c l e a r H. exists ( ext s x ) . un fo ld unique . s p l i t .
exists empty str ing . s p l i t . s p l i t .
r e w r i t e −> c o n c a t r i g h t i d . r e f l e x i v i t y . s p l i t . s impl .
assumption . s impl . omega . i n t r o s . decompose [ and ] H.
r e w r i t e −> H0 in H5 . apply l en 0 imp l i e s empty in H5 .
symmetry . assumption . i n t r o s . d e s t ruc t H.
decompose [ and ] H. c l e a r H. r e w r i t e −> H0 in H6 .
apply l en 0 imp l i e s empty in H6 . r e w r i t e −> H6 in H4 .
r e w r i t e −> c o n c a t r i g h t i d in H4 . assumption .
i n t r o s . apply b e q n a t f a l s e in H0 .
a s s e r t ( | s | = m + (n−1)) . omega . c l e a r H.
a s s e r t ( exists ! t : s t r i n g X, exists ! u : s t r i n g X,

s = t ∗∗ u /\ | t | = m /\ | u | = n−1).
apply IHs . assumption . de s t ruc t H. unfo ld unique in H.
decompose [ and ] H. c l e a r H. de s t ruc t H2 .
decompose [ and ] H. c l e a r H. exists x0 . unfo ld unique .
s p l i t . exists ( ext x1 x ) . s p l i t . s p l i t . r e w r i t e −> H5 .
s impl . r e f l e x i v i t y . s p l i t . assumption . s impl .
r e w r i t e −> H7 . omega . i n t r o s . decompose [ and ] H.
c l e a r H. r e w r i t e −> H5 in H6 .
r e w r i t e −> e x t o f c o n c a t in H6 .
apply c o n c a t l e f t c a n c e l in H6 . assumption . i n t r o s .
d e s t ruc t H. decompose [ and ] H. c l e a r H.
r e w r i t e −> H5 in H9 . r e w r i t e −> e x t o f c o n c a t in H9 .
apply e q u a l l e n p r e f i x e s 2 with (b:=( ext x1 x ) ) (d:=x2 ) .
assumption . s impl . r e w r i t e −> H7 . r e w r i t e −> H11 . omega .

Qed .

Theorem r e v l e n g t h :
f o ra l l (X:Type) ( a : s t r i n g X) , | a |= | rev a | .

Proof .
i n t r o s . induct i on a . s impl . r e f l e x i v i t y .

s impl . r e w r i t e −> concat sums l engths . s impl .
r e w r i t e −> IHa . r e f l e x i v i t y .

Qed .

Fixpoint prt btwn (X:Type) (m n : nat )
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( s : s t r i n g X) : s t r i n g X :=
match s with
| empty str ing => empty str ing
| ext s ’ x =>

i f ( andb ( Compare dec . l eb ( | s ’ | ) m)
( negb ( beq nat ( | s ’ | ) m) ) )

then empty str ing
e l s e i f ( andb ( Compare dec . l eb m ( | s ’ | ) )

( andb ( Compare dec . l eb ( | s ’ | ) n)
( negb ( beq nat ( | s ’ | ) n ) ) ) )

then ( ext ( prt btwn X m n s ’ ) x )
e l s e prt btwn X m n s ’

end .

Implicit Arguments prt btwn [ [ X ] ] .

Theorem prt btwn past end :
f o ra l l (X:Type) (n : nat ) ( s : s t r i n g X) ,

(n >= | s | ) −> ( prt btwn 0 n s = s ) .
Proof .

i nduct i on s as [ | s ’ ] . i n t r o s . s impl . r e f l e x i v i t y .
i n t r o s . s impl .
a s s e r t (n >= | s ’ | ) .

s impl in H. omega .
a s s e r t ( prt btwn 0 n s ’ = s ’ ) .

apply IHs ’ . assumption .
c l e a r IHs ’ . c l e a r H0 . r e w r i t e −> H1 .
a s s e r t ( andb ( Compare dec . l eb ( | s ’ | ) 0)

( negb ( beq nat ( | s ’ | ) 0 ) ) = f a l s e ) .
d e s t ruc t s ’ . s impl . r e f l e x i v i t y . s impl in H. r e f l e x i v i t y .

r e w r i t e −> H0 . c l e a r H0 .
a s s e r t ( Compare dec . l eb ( | s ’ | ) n = true ) .

s impl in H.
a s s e r t ( | s ’ | <= n ) . omega .
apply l e b c o r r e c t in H0 . assumption .
r e w r i t e −> H0 . c l e a r H0 .
a s s e r t ( negb ( beq nat ( | s ’ | ) n) = true ) .

s impl in H. apply Bool . n e g b t r u e i f f .
a s s e r t (n <> ( | s ’ | ) ) . omega . apply b e q n a t f a l s e i f f .
omega . r e w r i t e −> H0 . c l e a r H0 . s impl . r e f l e x i v i t y .

Qed .

Inductive o c c u r s c t (X:Type ) : X −> s t r i n g X −> nat −> Prop :=
| empty occurs :

f o ra l l ( v : X) , o c c u r s c t X v empty str ing 0
| nonempty occurs in :

f o ra l l ( v x : X) ( s : s t r i n g X) (n : nat ) ,
o c c u r s c t X v s n −>

x = v −> o c c u r s c t X v ( ext s x ) (n + 1)
| nonempty occurs out :

f o ra l l ( v x : X) ( s : s t r i n g X) (n : nat ) ,
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o c c u r s c t X v s n −> x <> v −>
o c c u r s c t X v ( ext s x ) n .

Implicit Arguments o c c u r s c t [ [ X ] ] .

Theorem o c c u r s s t r i n g l e t o n 1 : f o ra l l (X:Type) ( x y : X) ,
x = y −> o c c u r s c t x (<<y>>) 1 .

Proof .
i n t r o s . apply nonempty occurs in with (n :=0) .
apply empty occurs . congruence .

Qed .

Theorem o c c u r s s t r i n g l e t o n 0 : f o ra l l (X:Type) ( x y : X) ,
x <> y −> o c c u r s c t x (<<y>>) 0 .

Proof .
i n t r o s . apply nonempty occurs out .
apply empty occurs . congruence .

Qed .

Theorem occur s conca t :
f o ra l l (X:Type) ( x : X) ( s t : s t r i n g X) ( n1 n2 : nat ) ,

o c c u r s c t x s n1 −>
o c c u r s c t x t n2 −> o c c u r s c t x ( s ∗∗ t ) ( n1 + n2 ) .

Proof .
i n t r o s . induct i on H0 .

s impl . r e w r i t e −> p l u s 0 r . assumption .
s impl . r e w r i t e −> p l u s a s s o c . apply nonempty occurs in .

apply IHoccur s c t . assumption . assumption .
s impl . apply nonempty occurs out . apply IHoccur s c t .
assumption . assumption .

Qed .

Theorem o c c u r s t o r e v :
f o ra l l (X:Type) ( x : X) ( s : s t r i n g X) (n : nat ) ,

o c c u r s c t x s n −> o c c u r s c t x ( rev s ) n .
Proof .

i n t r o s . induct i on H.
s impl . apply empty occurs .
s impl . r e w r i t e −> plus comm . apply occur s conca t .

apply nonempty occurs in with (n :=0) .
apply empty occurs . assumption . assumption .

s impl . apply occur s conca t with ( n1 :=0) .
apply nonempty occurs out .
apply empty occurs . assumption . assumption .

Qed .

Theorem occu r s f r om rev :
f o ra l l (X:Type) ( x : X) ( s : s t r i n g X) (n : nat ) ,

o c c u r s c t x ( rev s ) n −> o c c u r s c t x s n .
Proof .

i n t r o s . apply o c c u r s t o r e v in H.
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r e w r i t e −> r e v r e v c a n c e l s in H. assumption .
Qed .

Fixpoint power (X: Type) ( s : s t r i n g X) (n : nat ) : s t r i n g X :=
match n with
| 0 => empty str ing
| S n ’ => ( power X s n ’ ) ∗∗ s
end .

Implicit Arguments power [ [ X ] ] .

Theorem sum exponents :
f o ra l l (X:Type) ( s : s t r i n g X) (m n : nat ) ,

power s (m + n) = power s m ∗∗ power s n .
Proof .

i nduct i on n .
s impl . r e p l a c e (m+0) with m. r e f l e x i v i t y . omega .
r e p l a c e (m + S n) with (S (m + n ) ) . s impl . r e w r i t e −> IHn .

r e w r i t e <− conca t a s so c . r e f l e x i v i t y . omega .
Qed .

Theorem empty power : f o ra l l (X:Type) (n : nat ) ,
power ( @empty string X) n = ( @empty string X) .

Proof .
i nduct i on n .

s impl . r e f l e x i v i t y .
s impl . r e w r i t e −> IHn . r e f l e x i v i t y .

Qed .

Theorem l eng th o f power :
f o ra l l (X:Type) ( s : s t r i n g X) (n : nat ) ,
| power s n | = n ∗ | s | .

Proof .
i nduct i on n . s impl . r e f l e x i v i t y .

s impl . r e w r i t e −> concat sums l engths .
r e w r i t e −> IHn . omega .

Qed .

Theorem pow concat eq concat pow :
f o ra l l (X:Type) ( s : s t r i n g X) (n : nat ) ,

power s n ∗∗ s = s ∗∗ power s n .
Proof .

i nduct i on n . s impl . r e w r i t e −> c o n c a t l e f t i d . r e f l e x i v i t y .
s impl . r e w r i t e <− conca t a s so c . r e w r i t e −> IHn .
r e f l e x i v i t y .

Qed .

Theorem power o f r ev : f o ra l l (X: Type) ( s : s t r i n g X) (n : nat ) ,
rev ( power s n) = power ( rev s ) n .

Proof .
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i nduct i on n . s impl . r e f l e x i v i t y .
s impl . r e w r i t e <− IHn . r e w r i t e <− r ev concat .

apply e q u a l i m p l i e s r e v e q u a l s r e v .
apply pow concat eq concat pow .

Qed .

Inductive p r e f i x (X:Type ) : s t r i n g X −> s t r i n g X −> Prop :=
| i s p r e f i x : f o ra l l ( s t : s t r i n g X) ,

( ( exists u : s t r i n g X, ( t = s ∗∗ u ) ) −> p r e f i x X s t ) .

Implicit Arguments p r e f i x [ [ X ] ] .

Theorem p r e f i x r e f l :
f o ra l l (X:Type) ( s : s t r i n g X) , p r e f i x s s .

Proof .
i n t r o s . apply i s p r e f i x . exists empty str ing .
r e w r i t e −> c o n c a t r i g h t i d . r e f l e x i v i t y .

Qed .

Theorem pr e f i x an t i s ym : f o ra l l (X:Type) ( s t : s t r i n g X) ,
p r e f i x s t −> p r e f i x t s −> s = t .

Proof .
i n t r o s . i n v e r s i o n H. c l e a r H2 H3 . i n v e r s i o n H0 . c l e a r H3 H4 .
de s t ruc t H1 . de s t ruc t H2 .
a s s e r t ( x = empty str ing ) . r e w r i t e −> H1 in H2 .

apply e q u a l i m p l i e s e q u a l l e n in H2 .
r e w r i t e −> concat sums l engths in H2 .
r e w r i t e −> concat sums l engths in H2 .
a s s e r t ( | x | = 0 ) . omega . apply l en 0 imp l i e s empty .
assumption .

r e w r i t e −> H3 in H1 . r e w r i t e −> c o n c a t r i g h t i d in H1 .
symmetry . assumption .

Qed .

Theorem p r e f i x t r a n s : f o ra l l (X:Type) ( s t u : s t r i n g X) ,
p r e f i x s t −> p r e f i x t u −> p r e f i x s u .

Proof .
i n t r o s . i n v e r s i o n H. c l e a r H2 H3 . i n v e r s i o n H0 . c l e a r H3 H4 .
de s t ruc t H1 . de s t ruc t H2 . r e w r i t e −> H1 in H2 .
r e w r i t e −> conca t a s so c in H2 .
apply i s p r e f i x . exists ( x ∗∗ x0 ) . assumption .

Qed .

Theorem u n i q u e s u f f i x : f o ra l l (X:Type) ( s t : s t r i n g X) ,
p r e f i x s t −> exists ! u : s t r i n g X, t = s ∗∗ u .

Proof .
i n t r o s . i n v e r s i o n H. c l e a r H1 H2 . de s t ruc t H0 .
exists x . unfo ld unique . s p l i t . assumption .
i n t r o s . r e w r i t e −> H0 in H1 .
apply c o n c a t l e f t c a n c e l in H1 . assumption .

Qed .
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Theorem p r e f i x s m a l l e r : f o ra l l (X:Type) ( s t : s t r i n g X) ,
p r e f i x s t −> | s | <= | t | .

Proof .
i n t r o s . i n v e r s i o n H. c l e a r H1 H2 . de s t ruc t H0 .
r e w r i t e −> H0 . r e w r i t e −> concat sums l engths . omega .

Qed .
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Appendix B: Resolve Solutions For The First Verified

Software Competition

All problem statements are quoted from [45]. The solution to Problem Five was

presented in an improved form in Chapter 4. The solution shown here is the one

submitted for the publication of [45], and it includes some infelicities such as the lack

of a representation field for the length of the Queue, and dead code at the beginning

of Dequeue.

Problem One

Given an N-element array of natural numbers, write a program to com-
pute the sum and the maximum of the elements in the array. Prove the
postcondition that sum <= N * max.

1 contract ArrayOfUnboundedIntegerAsStr ingFaci l i ty
2
3 uses UnboundedIntegerFac i l i ty
4
5 definition DIFFER ONLY AT (
6 s1 : string of integer ,
7 s2 : string of integer ,
8 d : f in i te set of integer
9 ) : boolean

10 i s
11 | s1 | = | s2 | and
12 for a l l i : integer
13 where ( i i s not in d)
14 ( su b s t r i n g ( s1 , i , i + 1) = s ub s t r i n g ( s2 , i , i + 1) )
15
16 math subtype ARRAY MODEL i s (
17 lb : integer ,
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18 ub : integer ,
19 s : string of integer
20 )
21 exemplar a
22 constraint
23 a . lb <= a . ub + 1 and
24 | a . s | = a . ub − a . lb + 1
25
26 type ArrayOfInteger i s modeled by ARRAY MODEL
27 exemplar a
28 in i t i a l i zat ion ensures
29 a = (1 , 0 , empty string )
30
31 procedure SetBounds (updates a : ArrayOfInteger ,
32 restores lower : Integer ,
33 restores upper : I n t e g e r )
34 requires
35 lower <= upper
36 ensures
37 a . lb = lower and a . ub = upper
38
39 procedure SwapItem (updates a : ArrayOfInteger ,
40 restores i : In teger ,
41 updates x : I n t e g e r )
42 requires
43 a . lb <= i and i <= a . ub
44 ensures
45 a . lb = #a . lb and
46 a . ub = #a . ub and
47 DIFFER ONLY AT ( a . s , #a . s , { i − a . lb }) and
48 su b s t r i n g ( a . s , i − a . lb , i − a . lb + 1) = <#x> and
49 su b s t r i n g (#a . s , i − #a . lb , i − #a . lb + 1) = <x>
50
51 function LowerBound ( restores a : ArrayOfInteger ) : I n t e g e r
52 ensures
53 LowerBound = a . lb
54
55 function UpperBound ( restores a : ArrayOfInteger ) : I n t e g e r
56 ensures
57 UpperBound = a . ub
58
59 end ArrayOfUnboundedIntegerAsStr ingFaci l i ty

1 contract Get enhances ArrayOfUnboundedIntegerAsStr ingFaci l i ty
2
3 procedure Get ( restores a : ArrayOfInteger ,
4 restores i : In teger ,
5 replaces value : I n t e g e r )
6 requires
7 a . lb <= i and
8 i <= a . ub
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9 ensures
10 there exists s , t : string of integer
11 ( a . s = s ∗ <value> ∗ t and
12 | s | = i − a . lb )
13
14 end Get

1 contract FindMaxAndSum enhances ArrayOfUnboundedIntegerAsStr ingFaci l i ty
2
3 definition SUM ( s : string of integer ) : integer
4 s a t i s f i e s
5 i f ( s = empty string )
6 then (SUM( s ) = 0)
7 else
8 there exists x : integer , t : string of integer
9 ( s = <x> ∗ t and

10 SUM( s ) = x + SUM( t ) )
11
12 definition IS MAX OF ( s : string of integer , i : integer ) : boolean
13 i s
14 i i s in e lements ( s ) and
15 for a l l j : integer where ( j i s in e lements ( s ) )
16 ( j <= i )
17
18 procedure FindMaxAndSum ( restores a : ArrayOfInteger ,
19 replaces max : Integer ,
20 replaces sum : I n t e g e r )
21 requires
22 a . s /= empty string
23 ensures
24 sum = SUM( a . s ) and
25 IS MAX OF( a . s , max)
26
27 end FindMaxAndSum

1 real ization I t e r a t i v e implements FindMaxAndSum for
2 ArrayOfUnboundedIntegerAsStr ingFaci l i ty
3
4 uses Add for UnboundedIntegerFac i l i ty
5 uses Get for ArrayOfUnboundedIntegerAsStr ingFaci l i ty
6
7 procedure FindMaxAndSum ( restores a : ArrayOfInteger ,
8 replaces max : Integer ,
9 replaces sum : I n t e g e r )

10 variable count : I n t e g e r
11 variable hi : I n t e g e r
12
13 Clear (max)
14 Clear (sum)
15 count := LowerBound ( a )
16 h i := UpperBound ( a )
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17
18 Get ( a , count , max)
19 Get ( a , count , sum)
20 Increment ( count )
21
22 loop
23 maintains
24 a = #a and
25 h i = a . ub and
26 a . lb <= count and
27 count <= hi + 1 and
28 sum = SUM( su bs t r i ng ( a . s , 0 , count−a . lb ) ) and
29 IS MAX OF( s ub s t r i n g ( a . s , 0 , count−a . lb ) , max)
30 decreases
31 a . ub − count + 1
32 while ( not I sGreate r ( count , h i ) ) do
33 variable value : I n t e g e r
34 Get ( a , count , va lue )
35 i f ( I sGreate r ( value , max) ) then
36 max := Repl i ca ( va lue )
37 end i f
38 Add (sum , value )
39 Increment ( count )
40 end loop
41
42 end FindMaxAndSum
43
44 end I t e r a t i v e

Problem Two

Invert an injective (and thus surjective) array A of N elements in the
subrange from 0 to N-1. Prove that the output array B is injective and
that B[A[i]] = i for 0 <= i < N.

1 contract ArrayOf Intege rAsSetOfPa i r sFac i l i ty
2
3 uses UnboundedIntegerFac i l i ty
4
5 definition IS PARTIAL FUNCTION (
6 m: f in i te set of ( i : integer , x : integer )
7 ) : boolean
8 i s
9 for a l l i1 , i2 , x1 , x2 : integer

10 where ( ( i1 , x1 ) i s in m and ( i2 , x2 ) i s in m)
11 ( i f i 1 = i 2 then x1 = x2 )
12
13 definition IS VALID ARRAY (
14 lb : integer ,
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15 ub : integer ,
16 t a b l e : f in i t e set of ( i : integer , x : integer )
17 ) : boolean
18 i s
19 IS PARTIAL FUNCTION ( t a b l e ) and
20 for a l l i : integer
21 ( there exists x : integer
22 ( ( ( i , x ) i s in t a b l e ) i f f
23 ( lb <= i and i <= ub ) ) )
24
25 math subtype ARRAY MODEL i s (
26 lb : integer ,
27 ub : integer ,
28 t a b l e : f in i t e set of ( i : integer , x : integer )
29 )
30 exemplar a
31 constraint
32 a . lb <= a . ub + 1 and
33 IS VALID ARRAY ( a . lb , a . ub , a . t a b l e )
34
35 definition DIFFER ONLY AT (
36 a1 : ARRAY MODEL,
37 a2 : ARRAY MODEL,
38 i : integer
39 ) : boolean
40 i s
41 a1 . lb = a2 . lb and
42 a1 . ub = a2 . ub and
43 for a l l j : integer , x : integer
44 where ( j /= i )
45 ( ( ( j , x ) i s in a1 . t a b l e ) i f f ( ( j , x ) i s in a2 . t a b l e ) )
46
47 definition ALL INITIAL (
48 a : ARRAY MODEL
49 ) : boolean
50 i s
51 for a l l i : integer
52 ( ( i , 0) i s in a . t a b l e i f f ( a . lb <= i and i <= a . ub ) )
53
54 type Array i s modeled by ARRAY MODEL
55 exemplar a
56 in i t i a l i zat ion ensures
57 a = (1 , 0 , empty set )
58
59 procedure SetBounds (updates a : Array ,
60 restores lower : Integer ,
61 restores upper : I n t e g e r )
62 ensures
63 a . lb = lower and
64 a . ub = upper and
65 ALL INITIAL ( a )
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66
67 procedure SwapItem (updates a : Array ,
68 restores i : In teger ,
69 updates x : I n t e g e r )
70 requires
71 a . lb <= i and i <= a . ub
72 ensures
73 ( i , x ) i s in #a . t a b l e and
74 ( i , #x ) i s in a . t a b l e and
75 DIFFER ONLY AT ( a , #a , i )
76
77 function LowerBound ( restores a : Array ) : I n t e g e r
78 ensures
79 LowerBound = a . lb
80
81 function UpperBound ( restores a : Array ) : I n t e g e r
82 ensures
83 UpperBound = a . ub
84
85 end ArrayOf IntegerAsSetOfPa i r sFac i l i ty

1 contract I n v e r t I n j e c t i o n enhances ArrayOf Intege rAsSetOfPa i r sFac i l i ty
2
3 definition VALUES IN BOUNDS ( a : ARRAY MODEL) : boolean
4 i s
5 IS VALID ARRAY ( a . lb , a . ub , a . t a b l e ) and
6 for a l l i , x : integer where ( ( i , x ) i s in a . t a b l e )
7 ( a . lb <= x and x <= a . ub)
8
9 definition IS INVERTED UP TO (

10 c : integer , a : ARRAY MODEL, b : ARRAY MODEL) : boolean
11 i s
12 IS VALID ARRAY ( a . lb , a . ub , a . t a b l e ) and
13 IS VALID ARRAY (b . lb , b . ub , b . t a b l e ) and
14 a . lb = b . lb and
15 a . ub = b . ub and
16 for a l l i , x : integer where ( ( i , x ) i s in a . t a b l e )
17 ( ( i < c and (x , i ) i s in b . t a b l e ) or
18 ( i >= c and (x , 0) i s in b . t a b l e ) )
19
20 procedure I n v e r t I n j e c t i o n (updates a : Array )
21 requires
22 VALUES IN BOUNDS( a )
23 ensures
24 a . lb = #a . lb and a . ub = #a . ub and
25 IS INVERTED UP TO ( a . ub+1, #a , a )
26 end I n v e r t I n j e c t i o n

1 real ization I t e r a t i v e implements I n v e r t I n j e c t i o n for
2 ArrayOf IntegerAsSetOfPa i r sFac i l i ty
3
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4 procedure I n v e r t I n j e c t i o n (updates a : Array )
5 variable counter : I n t e g e r
6 variable hi : I n t e g e r
7 variable temp : Array
8 counter := LowerBound ( a )
9 h i := UpperBound ( a )

10 SetBounds ( temp , counter , h i )
11 loop
12 maintains
13 a = #a and
14 h i = #hi and
15 temp . lb = a . lb and
16 temp . ub = a . ub and
17 a . lb <= counter and
18 counter <= a . ub + 1 and
19 IS INVERTED UP TO ( counter , a , temp )
20 decreases
21 a . ub − counter + 1
22 while ( not I sGreate r ( counter , h i ) ) do
23 variable value : I n t e g e r
24 variable counterCopy : I n t e g e r
25 SwapItem (a , counter , va lue )
26 counterCopy := Repl i ca ( counter )
27 SwapItem (temp , value , counterCopy )
28 SwapItem (a , counter , va lue )
29 Increment ( counter )
30 end loop
31 a :=: temp
32 end I n v e r t I n j e c t i o n
33
34 end I t e r a t i v e

Problem Three

Given a linked-list representation of a list of integers, find the index
of the first element that is equal to zero. Show that the program returns
a number i equal to the length of the list if there is no such element.
Otherwise, the element at index i must be equal to zero, and all the
preceding elements must be non-zero.

1 contract L i s t O f I n t e g e r F a c i l i t y
2
3 uses UnboundedIntegerFac i l i ty
4
5 math subtype LIST MODEL i s ( l e f t : string of integer ,
6 r i g h t : string of integer )
7
8 type L i s t i s modeled by LIST MODEL
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9 exemplar l
10 in i t i a l i zat ion ensures
11 l . l e f t = empty string and l . r i g h t = empty string
12
13 procedure I n s e r t (updates s : L i s t , clears x : I n t e g e r )
14 ensures
15 s . l e f t = #s . l e f t and
16 s . r i g h t = <#x> ∗ #s . r i g h t
17
18 procedure Remove (updates s : L i s t , replaces x : I n t e g e r )
19 requires
20 s . r i g h t /= empty string
21 ensures
22 s . l e f t = #s . l e f t and
23 #s . r i g h t = <x> ∗ s . r i g h t
24
25 procedure Advance (updates s : L i s t )
26 requires
27 s . r i g h t /= empty string
28 ensures
29 s . l e f t ∗ s . r i g h t = #s . l e f t ∗ #s . r i g h t and
30 | s . r i g h t | = |#s . r i g h t | − 1 and
31 | s . l e f t | = |#s . l e f t | + 1
32
33 procedure Reset (updates s : L i s t )
34 ensures
35 | s . l e f t | = 0 and
36 s . r i g h t = #s . l e f t ∗ #s . r i g h t
37
38 procedure AdvanceToEnd (updates s : L i s t )
39 ensures
40 | s . r i g h t | = 0 and
41 s . l e f t = #s . l e f t ∗ #s . r i g h t
42
43 function LeftIsEmpty ( restores s : L i s t ) : control
44 ensures
45 LeftIsEmpty = ( | s . l e f t | = 0)
46
47 function RightIsEmpty ( restores s : L i s t ) : control
48 ensures
49 RightIsEmpty = ( | s . r i g h t | = 0)
50
51 function LeftLength ( restores s : L i s t ) : I n t e g e r
52 ensures
53 LeftLength = | s . l e f t |
54
55 function RightLength ( restores s : L i s t ) : I n t e g e r
56 ensures
57 RightLength = | s . r i g h t |
58
59 end L i s t O f I n t e g e r F a c i l i t y
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1 contract FindEntry enhances L i s t O f I n t e g e r F a c i l i t y
2
3 procedure FindEntry (updates s : L i s t ,
4 restores x : Integer ,
5 replaces i : I n t e g e r )
6 ensures
7 s . l e f t ∗ s . r i g h t = #s . l e f t ∗ #s . r i g h t and
8 x i s not in e lements ( su b s t r i ng ( s . l e f t ∗ s . r i ght , 0 , i ) ) and
9 ( i f x i s in e lements ( s . l e f t ∗ s . r i g h t ) then

10 su b s t r i n g ( s . l e f t ∗ s . r i ght , i , i +1) = <x>)
11
12 end FindEntry

1 real ization I t e r a t i v e implements FindEntry for L i s t O f I n t e g e r F a c i l i t y
2
3 uses Boo l eanFac i l i t y
4
5 local procedure MoveFenceTo (updates s : L i s t , restores x : I n t e g e r )
6 ensures
7 s . l e f t ∗ s . r i g h t = #s . l e f t ∗ #s . r i g h t and
8 x i s not in e lements ( s . l e f t ) and
9 ( i f ( x i s in e lements ( s . r i g h t ) ) then

10 ( su b s t r i n g ( s . r i ght , 0 , 1) = <x>))
11
12 variable value : I n t e g e r
13 Reset ( s )
14
15 i f not RightIsEmpty ( s ) then
16 Remove ( s , va lue )
17 loop
18 maintains
19 x = #x and
20 s . l e f t ∗ <value> ∗ s . r i g h t =
21 #s . l e f t ∗ <#value> ∗ #s . r i g h t and
22 x i s not in e lements ( s . l e f t )
23 decreases
24 | s . r i g h t |
25 while not RightIsEmpty ( s ) and not AreEqual (x , va lue ) do
26 I n s e r t ( s , va lue )
27 Advance ( s )
28 Remove ( s , va lue )
29 end loop
30
31 i f AreEqual (x , va lue ) then
32 I n s e r t ( s , va lue )
33 else
34 I n s e r t ( s , va lue )
35 Advance ( s )
36 end i f
37 end i f
38 end MoveFenceTo
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39
40 procedure FindEntry (updates s : L i s t ,
41 restores x : Integer ,
42 replaces i : I n t e g e r )
43 MoveFenceTo ( s , x )
44 i := LeftLength ( s )
45 end FindEntry
46 end I t e r a t i v e

Problem Four

Write and verify a program to place N queens on an N×N chess board
so that no queen can capture another one with a legal move. If there is
no solution, the algorithm should indicate that.

1 contract SequenceOf IntegerWithSubst r ingFac i l i ty
2
3 uses UnboundedIntegerFac i l i ty
4
5 type Sequence i s modeled by string of integer
6 exemplar t
7 in i t i a l i zat ion ensures
8 t = empty string
9

10 procedure Add (updates t : Sequence ,
11 restores pos : Integer ,
12 restores x : I n t e g e r )
13 requires
14 0 <= pos and pos <= | t |
15 ensures
16 | t | = |#t | + 1 and
17 su b s t r i n g ( t , 0 , pos ) = su b s t r i n g (#t , 0 , pos ) and
18 su b s t r i n g ( t , pos , pos+1) = <x> and
19 su b s t r i n g ( t , pos+1, | t | ) = su bs t r i ng (#t , pos , |#t | )
20
21 procedure Remove (updates t : Sequence ,
22 restores pos : Integer ,
23 replaces x : I n t e g e r )
24 requires
25 0 <= pos and pos < | t |
26 ensures
27 | t | = |#t | − 1 and
28 su b s t r i n g ( t , 0 , pos ) = su b s t r i n g (#t , 0 , pos ) and
29 su b s t r i n g (#t , pos , pos+1) = <x> and
30 su b s t r i n g ( t , pos , | t | ) = su bs t r i ng (#t , pos+1, |#t | )
31
32 procedure Swap (updates t : Sequence ,
33 restores pos : Integer ,
34 updates x : I n t e g e r )
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35 requires
36 0 <= pos and pos < | t |
37 ensures
38 | t | = |#t | and
39 su b s t r i n g ( t , 0 , pos ) = su b s t r i n g (#t , 0 , pos ) and
40 su b s t r i n g ( t , pos , pos+1) = <#x> and
41 su b s t r i n g ( t , pos , pos+1) = <x> and
42 su b s t r i n g ( t , pos+1, | t | ) = su bs t r i ng (#t , pos+1, |#t | )
43
44 function Length ( restores t : Sequence ) : I n t e g e r
45 ensures
46 Length = | t |
47
48 function IsEmpty ( restores t : Sequence ) : control
49 ensures
50 IsEmpty = ( t = empty string )
51
52 end SequenceOf IntegerWithSubst r ingFac i l i ty

1 contract FindNQueensPlacement
2 enhances SequenceOf IntegerWithSubst r ingFac i l i ty
3
4 definition COLUMNS ARE CONSISTENT (
5 i : integer , j : integer ,
6 board : string of integer
7 ) : boolean
8 i s
9 there exists q1 , q2 : integer

10 ( va l ( board , i , q1 ) and va l ( board , j , q2 ) and
11 q1 /= q2 and
12 | q1 − q2 | /= | i − j | )
13
14 definition PREFIX IS CONSISTENT WITH (
15 l en : integer , i : integer ,
16 board : string of integer ) : boolean
17 i s
18 l en > 0 and
19 for a l l j : integer where (0 <= j and j < l en )
20 (COLUMNS ARE CONSISTENT ( i , j , board ) )
21
22 definition IS A BOARD PREFIX
23 ( b o a r d s i z e : integer , board : string of integer ) : boolean
24 i s
25 | board | <= b o a r d s i z e and
26 for a l l q : integer
27 where ( q i s in e lements ( su b s t r i ng ( board , 0 , | board | ) ) )
28 (0 <= q and q < b o a r d s i z e )
29
30 definition CONSISTENT BOARD EXISTS WITH
31 (n : integer , board : string of integer ) : boolean
32 i s
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33 there exists boa rd r e s t : string of integer
34 ( | board | + | boa rd r e s t | = n and
35 IS A BOARD PREFIX (n , board ∗ boa rd r e s t ) and
36 for a l l i , j : integer
37 where (0 <= i and i < n and
38 0 <= j and j < n and i /= j )
39 (COLUMNS ARE CONSISTENT ( i , j , board ∗ boa rd r e s t ) ) )
40
41 procedure FindNQueensPlacement
42 ( restores n : Integer , updates board : Sequence )
43 requires
44 | board | <= n
45 ensures
46 i f CONSISTENT BOARD EXISTS WITH (n , #board ) then
47 ( | board | = n and
48 CONSISTENT BOARD EXISTS WITH (n , board ) )
49 else
50 ( board = #board )
51
52 end FindNQueensPlacement

1 real ization Recurs ive implements FindNQueensPlacement
2 for SequenceOf IntegerWithSubst r ingFac i l i ty
3
4 uses Boo l eanFac i l i t y
5 uses Subtract for UnboundedIntegerFac i l i ty
6 uses AbsoluteValue for UnboundedIntegerFac i l i ty
7
8 local procedure I s C o n s i s t e n t ( restores board : Sequence ,
9 restores pos : Integer ,

10 replaces r e s u l t : Boolean )
11 requires
12 pos >= 0 and pos <= | board |
13 ensures
14 r e s u l t = PREFIX IS CONSISTENT WITH( pos , pos , board )
15
16 variable q : I n t e g e r
17 Clear ( r e s u l t )
18 loop
19 maintains
20 board = #board and
21 pos = #pos and
22 q <= pos and
23 r e s u l t = PREFIX IS CONSISTENT WITH(q , pos , board )
24 decreases
25 pos − q
26 while I sGreate r ( pos , q ) and IsTrue ( r e s u l t ) do
27 variable qHeight : I n t e g e r
28 variable posHeight : I n t e g e r
29 variable h o r i z D i s t : I n t e g e r
30 variable ve r tD i s t : I n t e g e r
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31
32 Swap ( board , q , qHeight )
33 Swap ( board , pos , posHeight )
34
35 i f AreEqual ( qHeight , posHeight ) then
36 Negate ( r e s u l t )
37 else
38 h o r i z D i s t := Repl i ca ( pos )
39 Subtract ( hor i zDi s t , q )
40 ve r tD i s t := Repl i ca ( posHeight )
41 Subtract ( ver tDis t , qHeight )
42 AbsoluteValue ( ve r tD i s t )
43 i f AreEqual ( ver tDis t , h o r i z D i s t ) then
44 Negate ( r e s u l t )
45 end i f
46 end i f
47
48 Swap ( board , q , qHeight )
49 Swap ( board , pos , posHeight )
50
51 Increment ( q )
52 end loop
53 end I s C o n s i s t e n t
54
55 procedure FindNQueensPlacement ( restores n : Integer ,
56 updates board : Sequence )
57 decreases n − | board |
58
59 variable boardLength : I n t e g e r
60 boardLength := Length ( board )
61 i f not AreEqual (n , boardLength ) then
62 variable done : Boolean
63 variable i : I n t e g e r
64 Add ( board , boardLength , i )
65 loop
66 maintains
67 n = #n and
68 i <= n and
69 boardLength = #boardLength and
70 su b s t r i n g ( board , 0 , boardLength ) =
71 su b s t r i n g (#board , 0 , boardLength ) and
72 ( i f done then
73 | board | = n and
74 CONSISTENT BOARD EXISTS WITH(n , board ) )
75 decreases
76 n − i
77 while I sGreate r (n , i ) and not IsTrue ( done ) do
78 variable iCopy : I n t e g e r
79 variable r e s u l t : Boolean
80 iCopy := Repl i ca ( i )
81 Swap ( board , boardLength , iCopy )
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82 I s C o n s i s t e n t ( board , boardLength , r e s u l t )
83 i f IsTrue ( r e s u l t ) then
84 variable newBoardLength : I n t e g e r
85 FindNQueensPlacement (n , board )
86 newBoardLength := Length ( board )
87 i f AreEqual ( newBoardLength , n) then
88 Negate ( done )
89 end i f
90 end i f
91 Increment ( i )
92 end loop
93 i f not IsTrue ( done ) then
94 Remove ( board , boardLength , i )
95 end i f
96 end i f
97 end FindNQueensPlacement
98
99 end Recurs ive

Problem Five

An applicative queue with a good amortized complexity can be im-
plemented using a pair of linked lists, such that the front list joined to
the reverse of the rear list gives the abstract queue. The queue offers
the operations Enqueue(item:T) to place an element at the rear of the
queue, Tail() to return the queue without the first element, and Front()

to return the first element of the queue. The implementation must main-
tain the invariant queue.rear.length <= queue.front.length (prove
this). Also, show that a client invoking the above operations observes an
abstract queue given by a sequence.

1 contract QueueTemplate ( type Item )
2
3 uses UnboundedIntegerFac i l i ty
4
5 math subtype QUEUE MODEL i s string of Item
6
7 type Queue i s modeled by QUEUE MODEL
8 exemplar q
9 in i t i a l i zat ion ensures

10 q = empty string
11
12 procedure Enqueue (updates q : Queue , clears x : Item )
13 ensures
14 q = #q ∗ <#x>
15
16 procedure Dequeue (updates q : Queue , replaces x : Item )
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17 requires
18 q /= empty string
19 ensures
20 #q = <x> ∗ q
21
22 function Length ( restores q : Queue ) : I n t e g e r
23 ensures
24 Length = | q |
25
26 function IsEmpty ( restores q : Queue ) : control
27 ensures
28 IsEmpty = ( q = empty string )
29
30 end QueueTemplate

1 real ization StackRea l i z a t i on implements QueueTemplate
2
3 uses StackTemplate
4 uses Reverse for StackTemplate
5 uses Concatenate for StackTemplate
6 uses Add for UnboundedIntegerFac i l i ty
7
8 f a c i l i t y S t a c k F a c i l i t y i s StackTemplate ( Item )
9

10 type representation for Queue i s (
11 f r o n t : Stack ,
12 back : Stack
13 )
14 exemplar q
15 convention
16 | q . back | <= | q . f r o n t |
17 correspondence function
18 q . f r o n t ∗ r e v e r s e ( q . back )
19 end Queue
20
21 local procedure FixThings (
22 updates s1 : Stack ,
23 updates s2 : Stack
24 )
25 ensures
26 i f |#s1 | < |#s2 | then
27 ( s1 = #s1 ∗ r e v e r s e (#s2 ) and s2 = empty string )
28 else
29 ( s1 = #s1 and s2 = #s2 )
30
31 variable l1 , l 2 : I n t e g e r
32 l 1 := Length ( s1 )
33 l 2 := Length ( s2 )
34 i f I sGreate r ( l2 , l 1 ) then
35 Reverse ( s2 )
36 Concatenate ( s1 , s2 )
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37 end i f
38 end FixThings
39
40 procedure Enqueue (updates q : Queue , clears x : Item )
41 Push ( q . back , x )
42 FixThings ( q . f ront , q . back )
43 end Enqueue
44
45 procedure Dequeue (updates q : Queue , replaces x : Item )
46 i f IsEmpty ( q . f r o n t ) then
47 Concatenate ( q . f ront , q . back )
48 Reverse ( q . f r o n t )
49 end i f
50 Pop ( q . f ront , x )
51 FixThings ( q . f ront , q . back )
52 end Dequeue
53
54 function Length ( restores q : Queue ) : I n t e g e r
55 variable l en : I n t e g e r
56 Length := Length ( q . f r o n t )
57 l en := Length ( q . back )
58 Add ( Length , l en )
59 end Length
60
61 function IsEmpty ( restores q : Queue ) : control
62 IsEmpty := IsEmpty ( q . f r o n t ) and IsEmpty ( q . back )
63 end IsEmpty
64
65 end StackRea l i z a t i on
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