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Abstract 

miR-122, the most abundant liver-specific microRNA (miRNA), is 

involved in many different biological functions, including cholesterol 

metabolism, hepatitis C virus replication, and hepatocarcinogenesis. Previous 

studies have shown that downregulation of miR-122 in hepatocellular 

carcinoma (HCC) correlates with metastasis and poor prognosis. Deregulated 

expression of miRNAs in liver resulting from the loss of Dicer1, a critical 

enzyme involved in miRNA processing, induced spontaneous HCC 

development. Among the deregulated miRNAs in HCC, miR-122 is drastically 

reduced in HCC. Based on these observations, our hypothesis is that miR-

122 is a liver-specific tumor suppressor and its loss may promote 

hepatocarcinogenesis.  

To test this hypothesis, we generated germ-line (KO) and liver-specific 

(LKO) miR-122 knockout mice. Both KO and LKO mice exhibited hepatic 

microsteatosis and hepatic inflammation at early adult stage. Serum analysis 

showed significantly reduced cholesterol and elevated alkaline phosphatase 

level. Further, lipid analysis showed accumulated hepatic triglyceride, which 

correlated with increased de novo triglyceride synthesis and reduced 

triglyceride secretion. These pathological phenotypes became more 

pronounced with age. By 6 month both KO and LKO mice develop hepatic 
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steatosis, inflammation, and fibrosis. After twelve months, these mice produce 

spontaneous liver tumors resembling HCC. The HCC incidences were ~30% 

and ~50% in LKO and KO mice, respectively. Microarray and realtime RT-

PCR analysis attributed these pathological phenotypes to dysregulated 

expression of signaling pathways involved in triglyceride synthesis, cytokine 

expression, and oncogenesis. Among the deregulated genes, Agpat1, Cidec 

and Mapre1 were identified for the first time as the direct targets of miR-122. 

Exploration of the mechanism leading to hepatic inflammation in KO and LKO 

mice led to the identification of CD11bhighGr-1+ subtype of inflammatory cells 

increased in the liver of KO mice. These cells were determined as the major 

source of high levels of IL-6 and TNF-α that accumulated in the livers of KO 

and LKO mice. Ccl2, a reported myeloid chemo-attractant, was induced in 

hepatocytes of KO and LKO mice and was inversely regulated by miR-122 in 

vitro. Taken together, these results further support tumor suppressor and anti-

inflammatory role of miR-122.  

To establish further the tumor suppressor role of miR-122, we tested 

the feasibility of the therapeutic delivery of miR-122 to the liver and tumor 

cells by lipid-based nanoparticles, which is recognized as a safe delivery 

method due to its biocompatibility. We developed a novel LNP, designated 

LNP-DP1, consisting of a conditionally ionizable cationic lipid, 2-dioleyloxy-

N,N-dimethyl-3-aminopropane (DODMA), egg PC, cholesterol (Chol) and 

Chol-polyethylene glycol (Chol-PEG). Ectopic expression of miR-122 in HCC 
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cell lines by LNP-DP1 reduced expression of miR-122 targets, such as 

Adam10, by >95%. The biodistribution analysis revealed that hepatocytes and 

tumor epithelial cells preferentially took up systemic circulated LNP-DP1 

conjugated fluorescence labeled siRNA. Serum profile of treated mice 

showed that LNP-DP1 did not induce significant liver or kidney damage in 

mice. Realtime RT-PCR and western blot analysis demonstrated 

downregulation of several target genes of miR-122 after systemic delivery of 

LNP-DP1 conjugated miR-122. This result suggested that miR-122 was 

successfully released from LNP-DP1 and was functional in hepatocytes and 

tumor cells. Furthermore, intratumoral injection of LNP-DP1 conjugated miR-

122 into HCC xenograft developed in nude mice resulted in suppression of 

tumor growth within 30 days of miR-122 delivery, which correlated well with 

reduced expression of its target genes such as Adam10 and proliferation 

markers such as Ki67.  

In conclusion, these findings revealed critical functions for miR-122 in 

liver metabolism, hepatic immune response, and in hepatocarcinogenesis. 

This study underscores the necessity to monitor HCV patients receiving long-

term miR-122 inhibition therapy are likely to have increased risk of developing 

HCC. The application of miR-122 delivery by LNP-DP1 in animal HCC model 

suggested potential utility of miR-122 therapy for selected HCC patients 

negative for HCV.  
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Chapter 1. Introduction 

	
  

1.1 Hepatocellular carcinoma (HCC) 

Hepatocellular carcinoma is the sixth most common malignant cancers 

and causes 0.69 million deaths each year worldwide according to he 

GLOBOCAN (2008) and Cancer Incidence in Five Continents databases [1]. 

In United States, despite the improved survival rate of patients with most 

malignancies, 5-year survival of patients with HCC has remained less than 

10%. The poor outcome of patients with HCC is mainly due to the late stage 

detection with over two-thirds of patients diagnosed at advanced stages [2], 

when patients are symptomatic and exhibit different degrees of liver 

malfunction. For the patients diagnosed at an early stage, there are the 

options of curable treatments that includes resection, liver transplantation, or 

percutaneous treatment. However, these treatments can only be applied to 

30% of patients under restricted condition [3]. Therefore, to increase the 

treatment options for patients that are not qualified for existing criteria for 

surgical removal, it is necessary to develop novel therapeutic strategies for 

HCC treatment.  
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1.2 Epidemiology and risk factors of HCC 

	
   The incidence of hepatocellular carcinoma varies a lot among 

different regions worldwide. The incidence and mortality rate of HCC is very 

high in developing countries, especially those of Southeast Asia and sub-

Saharan Africa, whereas it is much lower in developed countries, such as 

Europe, Japan and North America (Figure 1.1). Overall, 80% of HCC cases 

were diagnosed in developing countries and the rest of 20% were found in the 

developed countries [1]. 

  The risk factors of HCC vary with different regions. In high-incidence 

region such as Taiwan, China and sub-Saharan Africa, the major risk factor of 

HCC is hepatitis B virus (HBV) infection. Cirrhosis developing from chronic 

HBV infection accounts for 70% to 90% of HBV-related HCC [4]. Since high 

rate of mother-to-infant transmission (vertical transmission) of HBV is the 

major cause of chronic HBV infection, the worldwide immunization of infants 

has been reported to be the most effective method to reduce chronic HBV 

carrier rates and HCC in population [5-8]. Other than cirrhosis, HBV also 

induces HCC through the integration of HBV DNA to the genome of 

hepatocytes. Numerous sites of HBV  

integration have been reported to closely associate with carcinogenesis [9-

12]. Furthermore, it has been shown that HCC patients expressed abundant 

RNA and protein of Hepatitis B virus X (HBx) in the absence of HBV 

replication [13, 14]. Many studies based on HBx transgenic mice have shown 

that HBx overexpression promoted c-myc [15] or carcinogen [16] induced 
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hepatocarcinogenesis.  The oncogenic mechanisms of HBx may be through 

transactivation of many signaling pathway such involved in 

hepatocarcinogenesis (see review [17])  

 In developed countries, such as West and Japan, Hepatitis C virus 

(HCV) infection is the major cause of HCC. About 50-70% of HCC cases in 

Europe and North America are associated with HCV infection [18]. The 

incidence of HCC in HCV infected patients is highly dependent on the degree 

of hepatic fibrosis. A large cohort study conducted in Japan for 2890 HCV 

infected patients has shown that patients with severe grade of hepatic fibrosis 

has higher HCC incidence (~8 fold) than patients with low-grade hepatic 

fibrosis [18]. Unlike HBV infection, there is no vaccination available to prevent 

HCV infection [19].  

 Other major risk factors are Aflatoxin and alcohol. Aflatoxin can be 

metabolized by specific cytochrome P450 enzymes in liver to form reactive 

oxygen species (aflatoxin-8, 9-epoxide), which may bind to DNA and cause 

mutation leading to HCC development [20]. Alcoholism is a serious problem 

in America and Europe, and it is increasing in Asia. Although alcohol is not a 

liver carcinogen in murine model [21, 22], alcohol-induced cirrhosis was 

reported to be major cause of HCC in some region [23, 24], but the detail 

mechanism is still controversial. The possible mechanisms reported so far 

include loss of heterozygosity of tumor suppressor genes [25], alcohol derived 

carcinogenic acetaldehyde [26, 27], and DNA methylation [28, 29]. 



	
  
	
  

	
   4	
  

1.3 Pathological grading of HCC 

 Due to the rapid enhancement of detection technique, more HCC 

patients can be diagnosed at early HCC stage. Therefore, characteristic of 

HCC prognosis from increasing cases at early stage of HCC was documented 

and reported in a better way. Four key factors are needed to determine the 

prognosis of patients with HCC [30]: (1) tumor stage at diagnosis; (2) overall 

health of the patient; (3) hepatic synthetic function; and (4) efficacy of 

treatment. These standards are particularly useful to define the HCC stage of 

patients and help to decide the applicable treatment at different stages. From 

the research point, biopsy of HCC are examined and classified into four 

grades. Grade I has the mildest level of malignancy whereas grade IV has the 

severest level. The following are the pathological features used to determine 

tumor stages according to Edmondson-Steiner’s grading system [31]:  

• Normal liver: Normal liver is composed of hepatocytes arranged in 

single-cell thick plates separated by vascular sinusoids. From the 

sectioned tissue, the liver is composed of lobules, which are a 

hexagonal structure. The center of each lobule is central vein and the 

single-cell hepatocytes plates radiate from central vein to the perimeter 

of the lobule. Portal tracts surrounding the lobules are mainly 

composed of portal veins, bile ducts, and hepatic arteries. Functionally, 

the blood enters liver from portal veins and hepatic arteries to portal 

tracts and then flows into vascular sinusoid and finally drains into 
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central vein, which connect to inferior vena cava (Figure 1.2 and 

1.3A).  

• Grade I HCC (well differentiated HCC): the tumor consists of uniformly 

distributed well-differentiated cancerous tissue showing an irregular 

thin trabecular pattern without capsule outlining the nodule. Also, portal 

tracts can be seen in the lesion. Further, the tumor at this grade shows 

markedly increased cell density (Figure 1.3B). 

• Grade II HCC (moderately differentiated HCC): The tumor cells have 

abundant eosinophilic cytoplasm with round nuclei and distinct 

nucleoli. The nucleus to cytoplasm ratio is almost equal to that of a 

normal hepatocyte. The tumor tissue shows a trabecular pattern 

consisting of several to tens of layers of cancer cells (Figure 1.3C).  

• Grade III HCC (poorly differentiated HCC):  The tumor cells have 

markedly less cytoplasm with a high nucleus to cytoplasm ratio (Figure 

1.3D). At this stage, HCC is subdivided into solid type and giant-cell 

type. Solid type HCC lacks sinusoid-like blood spaces Giant-cell type 

HCC presents pleomorphism and indistinct trabecular pattern.  

• Grade IV HCC (undifferentiated or anaplastic HCC): The tumor cells 

also exhibit less cytoplasm with oval and/or round nuclei. However, 

due to the lack of specific type of cells or structure at this stage for 

identification, it is hard to identify Grade IV HCC with the biopsy 

without surrounding tissues of cirrhosis. 
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1.4 Options and potential challenges of HCC treatment 

Generally, there are many potential options for the HCC patients that 

are diagnosed at the early stage of HCC. These treatment options include 

resection, liver transplantation, percutaneous treatment, and transarterial 

embolization.  

• Percutaneous treatment: it is usually used as a first-line treatment on 

early HCC patients. A typical percutaneous treatment is percutaneous 

ethanol administration, which has advantages of low cost, low 

technical requirement, and less complication after treatment. For HCC 

smaller than 3 cm, the percutaneous ethanol injection can suppress 

the tumor growth with 70%~100% of successful rate [32].  

• Resection: For HCC patients at advanced stage, surgical resection is 

considered as the most efficient way to remove tumors. However, strict 

criteria of selection are applied before the surgery. For example, portal 

hypertension is considered as a important indicator of patients not 

suitable for liver resection. Statistically, seventy-four percent 5 years 

survival rate  post-surgery in patients without clinically relevant portal 

hypertension, whereas there is only 25% of survival rate for patients 

with portal hypertension [33, 34]. Furthermore, postoperative tumor 

recurrence occurred in 70% of patients in 5 years [35].  

• Liver transplantation: HCC patients with cirrhosis and small HCC 

(maximal diameter < 5cm and < 3 nodules) are usually suggested to 

receive liver transplantation. The 5-year survival rate reaches about 
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70% for patients with or without cirrhosis [36, 37]. However, the 

shortage of liver donation becomes the major obstacle of 

transplantation [36]. Therefore, under careful selection criteria, liver 

resection is still considered as first-line treatment for patients who are 

too critical to wait for transplantation [36]. 

• Transarterial embolization (TAE): TAE is a very common HCC 

treatment, which is applied to patients with asymptomatic multinodular 

HCC without curative options according to Barcelona-Clinic Liver 

Cancer Group staging classification and treatment schedule [38]. The 

main effect of TAE is to block the hepatic arterial supply of tumor that 

leads to tumor apoptosis by tumor cells. Many reports have pointed out 

the improved survival rate of the combination of TAE and 

percutaneous ethanol ablation [39] or chemotherapy [40], such as 

Doxorubicin. However, TAE was shown to induce hypoxic tumor 

microenvironment, which further enhances angiogenesis and 

stimulates recurrence of HCC [41].  

 

1.5 Involvement of miRNAs in hepatocarcinogenesis 

In the past decade, the discovery of miRNAs and its biological function 

opened up a new page for the gene regulation distinct from transcriptional 

control. The involvement of miRNAs in cellular functions and cancers will be 

discussed in the following paragraphs: 
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1.5.1 Mechanism of miRNAs biogenesis  
	
  

miRNAs are short noncoding RNAs consisting of about 22 nucleotides 

that negatively regulate expression of coding genes. The biogenesis of 

miRNAs were initially determined based on the studies on miRNA-

23a~27a~24-2, a 2.2-kb transcript containing three miRNAs [42]. This gene is 

predominantly transcribed into primary miRNAs (pri-miRNA) by polymerase II 

(pol II), which starts transcription by binding to a pol II dependent promoter 

(~600 bp). However, this promoter lacks all typical promoter elements. In fact, 

identification of the microRNA promoter is still a challenging task [42-44]. 

Most known miRNAs were found to overlap with fixed transcription units. 

Some miRNAs in this subset were located within introns of protein-coding 

genes, while some were found in both introns and exons of 66 mRNA-like 

noncoding RNAs (mlncRNAs) [45]. Therefore, the majority of miRNAs may be 

transcribed together with associated mRNAs and processed into pri-miRNA 

afterward in nucleus.   

Figure 1.4 summarizes the processing of miRNA. The pri-miRNA is 

sequentially processed by microprocessor complex, which is comprised of 

Drosha, a RNAse III ribonucleases, and DGCR8, a cofactor of Drosha [46, 

47]. Pri-miRNAs has a specific hairpin-shaped secondary structure that is 

recognized and asymmetrically cleaved by Drosha to form a 60-70 nucleotide 

miRNA precursor (pre-miRNA). The pre-miRNA was then transported from 

nucleus to cytoplasm by the mediation of exportin-5 (Exp-5) in a Ran 

guanosine triphosphate-dependent manner [48]. Exp-5 mediated export is an 
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important step to ensure the sequence accuracy since the knockdown of Exp-

5 by RNAi greatly affects the yields of mature miRNA and Exp-5 interacts 

weakly with incorrect processed pre-miRNAs.  

In cytoplasm, Dicer, also a RNAse III endonucleases, interacts with 

TRBP (Tar RNA binding protein) to mediate further processing of pre-miRNA 

to a ~22 nucleotidelong mature miRNA [49]. Pre-miRNA is dimerized with 

Dicer by binding to the two domains of Dicer, PAZ and dsRBD (double-

stranded RNA binding domain) [50]. After cleavage by Dicer, a ~22 nucleotide 

miRNA duplex is produced and usually one strand of this duplex will be 

degraded. Mature miRNA harbors a 5’ phosphate and a 2-nucleotide 3’ 

overhang and is later incorporated into effector complexes known as miRISC 

(miRNA-containing RNA-induced silencing complex), the effector of RNA 

interference system (RNAi). miRISC contains a key component protein, which 

is Argonaute 2 (Ago2). The Argonaute protein family has a characteristic PAZ 

domain, which is critical in miRNA binding to miRISC, and a PIWI domain, 

which resembles the function of RNase H endonuclease to catalyze the 

cleavage of mRNA [51].   

 

1.5.2 Mechanism of miRNAs silencing gene expression 
 

Generally, miRNAs regulate gene expression in animal cells through 

two mechanisms: (1) reducing translation of target mRNAs, and (2) targeting 

mRNAs for increased decay through endonuclease and exonuclease 

cleavage.  
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• Reducing translation of target mRNAs:  

In 1993, Lee et al. found that lin-4 miRNA reduced the expression of 

lin-14 protein without reducing the amount of lin-14 mRNA [52, 53]. This 

interesting observation suggests that miRNA may regulate target 

expression by suppressing translation. For the mechanism, many studies 

showed that miRNA/RISC complex decrease the rate of translation 

initiation to inhibit translation. This conclusion was drawn by many 

observations. First, AGOs, miRNAs, and the matching target genes 

accumulate in P-bodies [54, 55]. P-bodies are known as a site of mRNA 

degradation because it contains untranslated mRNAs which are targeted 

for degradation [56, 57]. Evidence showed that a mutated lin-41 mRNA 

lacking binding site of let-7 are not transported to P-bodies, which 

suggested the involvement of miRNA in the suppression of translation by 

targeting mRNA to P-bodies [58] (Figure 1.5A). Interestingly, miR-122 

was also found to bind the 3’UTR of Cationic Amino acid Transporter 1 

(CAT-1) and induced its translational repression through shifting CAT-1 

mRNA to P-bodies [59]. Second, artificial tethering of translation factors to 

mRNA to start translation can inhibit the miRNA dependent repression [55]. 

This evidence suggested the effect of miRNA starts before the assembly 

of translation complex (Figure 1.5B). Taken together, it is proposed that 

miRNA may suppress the translation initiation through the kinetic 

competition for target mRNAs between translation complex and miRISC 
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within P-bodies. However, more researches are needed to reveal the 

detail mechanism. 

• Targeting mRNA to increased decay:  

In addition to the translational repression of target mRNAs, it has been 

shown that miRNAs may target mRNAs to exonuclease-mediated decay. 

Studies show that the expression level of miRNAs inversely correlated 

with the level of target genes [60, 61]. The depletion of essential 

components of miRNA pathways, such as Dicer or AGOs, also increases 

the transcript levels of target genes [60, 62]. The mechanisms leading to 

these observations are quite different between plant and animal cells. In 

plant cells, miRNA can form fully or nearly complimentary matching to 

target mRNA and direct the endonucleolytic cleavage on target mRNA [63]. 

The cleaved mRNA then undergoes exonuclease mediated decay. In 

contrast, in animal cells, miRNA directly leads their targets to be degraded 

by exonuclease (5’ to 3’ mRNA decay pathway). In this pathway, the 

mRNAs are first deadenylated by the CAF1-CCR4-NOT deadenylase 

complex and then decapped by DCP2 [64, 65]. The decapped mRNAs are 

ultimately degraded by the major cytoplasmic exonuclease XRN1.  

	
  

1.5.3 The involvement of miRNAs in cancer 
	
  

In the past decade, miRNA based researches have revealed the 

essential role of miRNA in carcinogenesis. The dysregulated miRNA 

expression is either the cause or the result of tumor development. Based on 
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these studies, more novel strategies were designed to treat or diagnose 

cancer related diseases. In 2002, Calin et al. reported the loss of 

chromosome 13 in patients with chronic lymphocytic leukemia (CLL) [66]. In 

this study, they identified two miRNA genes, miR-15 and miR-16, were both 

absent or downregulated in most CLL patients due to the deletion in 

chromosome 13. This report was the first one to suggest that the deregulation 

of miRNA alone can lead to cancer development. Further studies pointed out 

that many fragile sites on the chromosome that are commonly amplified or 

deleted in cancer contained miRNA genes [67]. These key findings promoted 

intensive studies in the following decade to identify many abnormally 

amplified oncogenic or deleted tumor suppressor miRNAs in cancer cells.   

Interestingly, miR-17-92 cluster, usually overexpressed in patients with 

CLL [68] and lung cancer [69], was also identified in a frequently amplified 

region on the chromosome 13 in human B-cell lymphoma [70, 71]. To 

experimentally determine its role in tumorigenesis, miR-17-92 clustered was 

ectopically expressed in mouse B-cell model. The results showed that miR-

17-92 cluster act together with c-Myc overexpression to accelerate the tumor 

growth in mouse. Similar finding was made in colorectal cancer [72]. miR-17-

92 was therefore suggested as the first potential non-coding oncogene.  In 

the following year, many other microRNAs are identified as oncogene, 

including miR-155 in B-cell malignancy [73] and miR-21 in different types of 

cancer [74, 75].   
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In contrast, some miRNAs exhibit tumor suppressor function by the 

control of oncogenic proteins. For example, let-7 was shown to inhibit RAS 

protein in lung cancer and its expression is frequently reduced in patients with 

lung cancer [76]. RAS overexpression was found in many different cancer 

types [77-79]. The subject miRNA in this thesis, miR-122, was also 

demonstrated as a tumor suppressor in our previous studies [80, 81]. miR-

122 was reduced in rodent HCC models and in human primary HCC. Many 

targets of miR-122 are critical for cell proliferation and will be discussed in the 

latter chapters [82].   

 

1.5.4 The deregulated miRNAs in HCC 
	
  
	
   As in other cancer types, miRNAs are also frequently deregulated in 

HCC and are involved in many different stages of tumor development, 

including cell proliferation, resistance to apoptosis, metastasis. These 

discoveries may shed some light on the development of novel therapy for 

HCC. Table.1.1 summarized the deregulated miRNAs that were reported in 

multiple studies in HCC. Many of these miRNAs such as miR-21 [83], 

miR221/222 [84], and miR199 [85] were also deregulated in other cancer 

types, 

	
   MiRNAs affect cell proliferation by targeting genes involved in the 

control of cell cycle. For example, cyclins are targeted by many miRNA 

related to HCC development. Cyclin D2 and cyclin E2 are direct targets of 

miR-26a, which is reduced in HCC [86].  Ectopic expression of miR-26a by 
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viral delivery in c-Myc HCC model was shown to suppress the tumor growth. 

Also, expression of miR-221 which promotes tumor growth by repressing 

CDK inhibitor p27 [87] in vitro, was shown to closely correlated with HCC. 

Through indirect effect, miR-21 was shown to induce rapid CyclinD1 

expression to promoter liver regeneration and possibly involved in 

hepatocarcinogenesis[88]. CDK6, a direct target of miR-124, which is reduced 

in HCC and induces cell cycle arrest at the G1-S transition [89]. Recently, 

systemic delivery of miR-124 in a carcinogen induced HCC animal model was 

shown to suppress tumor growth [90].  

 MiRNAs also regulate apoptotic genes to affect tumor growth. The 

major protein family involved in the regulation of apoptosis is Bcl-2 protein 

family, which includes both pro-apoptotic (Bim, Bmf, Bax, Bak, Bid) and anti-

apoptotic (Bcl-2, Bcl-W, Bcl-XL, Mcl-1) members. Several miRNAs regulate 

apoptosis by targeting Bcl-2 protein family. For example, miR-122, the tumor 

suppressor in HCC [80], targets Bcl-W to block its anti-apoptotic function [91].  

In contrast, miR-221 and miR-25 target Bmf and Bim, respectively to help 

tumor cells escape from apoptosis [92, 93]. 

 A third way by which miRNAs regulate the tumor progression is 

through regulating target genes involved in tumor invasion and metastasis. 

MiR-21 is an intensively studied miRNAs promoting tumor metastasis in 

different types of cancers [94-96]. In HCC patient samples, the expression of 

the phosphatase and tensin homolog (PTEN) tumor suppressor is increased 

when miR-21 is decreased [97]. Further ectopic expression of miR-21 in HCC 
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cell line decreases tumor cell proliferation, migration, and invasion. Cell 

migration was promoted in normal human hepatocytes transfected with 

precursor miR-21. PTEN affects cell migration and invasion by 

dephosphorylating focal adhesion kinase (FAK) and increasing expression of 

MMP2 and MMP9. Interestingly, miR-221/222 was also shown to enhance 

HCC cell migration by targeting PTEN [98]. These findings suggested that 

some key genes involved tumor development are simultaneously regulated by 

multiple miRNAs in HCC. Furthermore, c-Met, also an important gene 

involved in tumor metastasis, is a direct target of two miRNAs, miR-34a [99] 

and miR-23b [100], in HCC models. c-Met is well-studied as the receptor for 

hepatocyte growth factor (HGF) [101]. The upregulation of c-Met may induce 

phosphorylation of its downstream effectors such as ERK1/2, the key factors 

influencing the tumor invasion and migration [102, 103].  

	
  

1.6 Therapeutic research for HCC 

To develop new strategies for HCC, it is important to establish 

experimental animal models to reveal the molecular pathogenesis of 

hepatocarcinogenesis. Therefore, it is critical that animal models mimic the 

characteristics of HCC, including etiology, genetic alteration, tumor types, and 

physiological similarity. Mouse (Mus musculus) is the best model system for 

HCC study mainly because of the well-established gene targeting method on 

mice, short lifespan (~3 years) of mice and similar genetic background of 

mice compared to human [104]. Based on the mouse HCC models, a variety 
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of therapeutic approaches are developed and tested, including radiation 

based therapy, chemotherapy, tumor removal surgery, and gene therapy.  

 

1.6.1 Mouse models of HCC 
 

• Xenograft model: 

This animal tumor model was established at late 60s’ by implanting 

large amount of cultured cells subcutaneously in nude mice, which is a 

type of immunodeficient mice [105]. The wide usage of this model is 

because of  several advantages, including less technical requirement, 

easier monitoring of the tumor growth, and faster growth of cultured tumor 

cells. However, later studies revealed that the simplified subcutaneous 

tumor xenograft model cannot mimic the complexity of tumor 

microenvironment in situ. Specifically, the tumor architecture, vasculature, 

and genetic heterogeneity are all quite different between subcutaneous 

xenograft model and in situ tumor xenograft, or so called autochthonous 

tumor, from tumor bearing animals. To improve this problem of 

subcutaneous model, orthotopic xenograft model is used to transplant in 

situ tumor tissue from human patient or animal model to the target organ 

immunodeficient nude mice [106]. However, as mentioned in the third 

chapter of this thesis, the tumor structure in orthotopic or xenograft model 

is still not comparable to the spontaneous liver tumor due to the 

surrounded fibrotic tissue induced after the transplantation (Figure 3.6). 
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• Genetically engineered animal models:   

Since more genes were identified as oncogenes and tumor 

suppressors in many studies, genetic alteration of these genes in mice 

was utilized to generate spontaneous HCC. Such models are ideal to 

examine the molecular mechanism leading to cancer development. 

Generally, genetically engineered animal are categorized as either 

transgenic or endogenous models [107]. To induce spontaneous tumor, 

transgenic mice are genetically engineered to overexpress oncogenes or 

dominant-negative tumor suppressor genes. Briefly, a recombinant DNA 

was delivered to the pronucleus of a fertilized mouse egg by microinjection 

[108] or lentiviral infection [109]. However, the ectopic expression in the 

conventional transgenic model is not tissue dependent and may induce 

tumor formation in other organs. Therefore, a tissue specific inducible 

system is established by using a tissue specifically activated promoter to 

drive target gene expression in the specific organ. For example, albumin 

promoter is used to activate gene expression in liver [110]. Another type of 

genetically engineered model is endogenous model, which is either 

“knockout” the target genes from genome or “knockin” target gene 

expression under the control of endogenous promoter. Again, the effect of 

gremline mutation is not tissue specific because it is present in all cell 

types of mice and is constitutively altered. Conditional regulation of gene 

expression is developed to express gene of interest in specific location or 

at specific time-point [111]. To achieve this, bi-transgenic mice are 
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generated by crossing transgenic mice carrying inducible transactivator 

gene to another transgenic mice carrying engineered genes controlled by 

transactivator. Cre-Lox system is a well-studied method to conditionally 

delete tumor suppressor genes. In this system, Cre recombinase 

catalyzes a site-specific recombination to delete out the gene of interest 

flanked by two Lox P sites. The promoter that activated the Cre 

expression is designed to express under the desired condition. For 

example, the Albumin-Cre system functions by inducing or deleting 

transgene in hepatocytes in early adult stage.  

• Diethylnitrosamine induced HCC model: 

In the chemical carcinogenesis models HCC is initiated by mutations in 

normal cells followed by promoting the clonal expansion of mutated 

cells. Therefore, it is necessary to induce liver to DNA damage when 

liver is at the proliferative stage. One of the most well known models is 

Diethylnitrosamine (DEN) induced HCC model [112]. In this model, 

DEN was injected to mice at day postnatal 14 when liver is highly 

proliferative, and liver tumor will develop at the age of 30 weeks after 

DEN injection. Cytochrome P450 (CYP) was shown to activate DEN 

and generated DNA-adducts to cause DNA damage and apoptosis to 

hepatocytes [113]. A small number of cells will survive from the 

damage and evolve into dysplastic foci and dysplastic nodules. It has 

been shown that DEN exposure promotes more HCC in newborn and 

infant mice than adult mice [114]. To accelerate the progress of 



	
  
	
  

	
   19	
  

tumorigenesis, liver resections or chemicals are applied after the DEN 

exposure to promote the clonal expansion of neoplastic cells. 

Combination of DEN exposure and partial hepatectomy in rat model, 

which is also known as Solt-Farber method [115], can induce 

preneoplastic foci within one week after surgery. Similar effect was 

observed with the combination of DEN exposure and phenobarbital 

feeding [116]. Phenobarbital was shown to facilitate the growth of 

proliferative cells and therefore increased HCC incidence. 

	
  

1.6.2 miRNA based gene therapy for HCC 
	
  

The main goal of gene therapy is to restore the deregulated gene 

expression in diseased organism. In the past, gene therapy is not feasible 

because of the lack of knowledge of molecular mechanism and techniques to 

deliver genetic material. Today, fast growing discoveries of novel genes 

involved in carcinogenesis, including miRNAs, greatly highlight the 

therapeutic potential of gene delivery. The development of vehicle for 

miRNAs delivery was shifted from in vitro cell culture, experimental animal 

models and recently to clinical applications [117]. The delivery methods can 

be divided into viral and non-viral method.   

• Viral delivery method 

The advantage of viral delivery is a single administration of low dose 

yields the long-term expression of miRNA in both dividing and non-dividing 

cells. The viral vector is constructed with genes encoding the hairpin structure 
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of miRNA under the control of promoter activated by polymerase II or 

polymerase III. Adeno-associated virus (AAV) is commonly used to deliver 

miRNA to prove the therapeutic potential. AAV simultaneously infect dividing 

and non-diving cells and stay in an extrachromosomal state without 

integrating its genes into host’s genome. Kota et al. have performed the 

therapeutic delivery of miR-26a to Myc overexpression induced HCC model 

and successfully suppress the tumor growth compared to the control group 

[86]. Although Myc is not the direct target of miR-26a, the tumor growth is 

suppressed by the miR-26a mediated downregulation of the genes 

downstream to Myc. Furthermore, adenoviral delivery of let-7a to a 

xenografted lung cancer model also significantly repressed the tumor growth 

[118]. The respiratory inhalation of adenovirus encoding let-7a significantly 

reduces the spontaneous lung tumor growth by 66%. However, the treatment 

did not completely kill the tumor cells due to the transient expression of let-7 

from the adenoviral vector [119]. 

• Non-viral delivery method 

Due to the surface negative charge, naked miRNAs are hard to be 

taken up by cells without delivery vehicle. Therefore, different strategies are 

developed to deliver miRNA, anti-miRNA, or siRNA in vitro and in vivo, 

including stabilization of the anti-miRNA in circulation by modification of anti-

miRNA structure [120], modified siRNA with ligands of the receptors 

expressed on hepatocytes [121], and conditional dissociation of miRNA and 

vehicles [122]. Rozema et al. have developed a polymer named Dynamic 
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PolyConjugates (DPC) to conditionally release miRNA in the endosome, 

which is a subcellular organelle that contains more acidic environment 

compared to other subcellular structures. [122]. Without the acidic 

environment, DPC is tightly associated with miRNAs during the whole period 

of circulation. Another strategy is to increase targeting specificity of the 

compound conjugated to miRNAs. Because of its biocompatibility and 

preferential uptake by the liver and jejunum, cholesterol is conjugated to 

siRNA to specifically downregulate its target, ApoB [123]. Recently, an 

important advance of siRNA/miRNA delivery to the liver is the development of 

stable nucleic-acid lipid particles (SNALP), which is a natural cationic lipid 

nanoparticle. Zimmermann et al. have used SNALP based delivery of siRNA 

to target APOB mRNA to the liver of non-human primates [124]. Notably, with 

a single intravenously injection, APOB was downregulated by 90% and the 

effect lasted for 11 days without causing tissue toxicity. SNALP has been 

tested in clinical trial and may be developed as a medicine in the near future 

[125]. These progresses suggest strong therapeutic potential of SNALP 

conjugated miRNA in cancer.  
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Figure 1.1 Summary of HCC incidence (red bar) and mortality (blue bar) 

in males and females worldwide 

X-axis indicated the cases per 100,000 people and Y-axis indicated the area 

inspected. This figure is a reprint with permission from Dr. Ferlay [1]. 
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Figure 1.2 H&E staining of normal mouse liver sections. 

A hexagonal lobule is surrounded by portal tract (white line) and the single-

cell layer of hepatocytes (magnified in inset) radiates from central vein (CV) to 

portal tract. Scale bar: lower left: 150µm; right left: 50µm. The picture is taken 

from the liver section of a six-month old C57/Bl6J mouse� � �



� � �

Figure 1.3 H&E staining of tumor sections at different HCC stages 

(A) Normal liver. (B) Grade I: well differentiated HCC. (C) Grade II: medially 

differentiated HCC. (D) Grade III: poorly differentiated HCC (Arrow: Giant cell). 

D is a reprint modified from data on Pathpedia.com with permission. Scale 

bar: 50µm. 
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Figure 1.4 Biogenesis of microRNA in cells. 

MicroRNA are first transcribed into pri-microRNA through Pol II/III mediated 

transcription. The pri-microRNA is then cleaved by Drosha/DGCR8 complex 

to form pre-microRNA and is exported into cytoplasm by Exportin-5. The pre-

microRNA is further cleaved by Dice/TRBP complex to form a microRNA 

duplex, which gives one strand of mature microRNA that suppresses target 

gene expression. This figure is a reprint with permission from Dr. Diederichs 

[126]  
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Figure 1.5 Two models of miRNA mediated translation repression 

(A) First, miRNA loaded RISC block ongoing translation by binding to 3’UTR 

of the target mRNA. The mRNA bound by RISC was then targeted to P-

bodies for degradation. (B) Second model proposed that RISC suppressed 

the translation by preventing ribosomal initiation. This figure was adapted with 

permisson [127].  
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microRNA Up/Down miRMA cluster Cancers other 

than HCC 

miR-18 Up mir-17–92 No 

miR-21 Up - Ovarian, glioblastoma, 

 lung, breast 

miR-221 Up mir221/222 Colon, pancreas, stomach,  

bladder, glioblastoma, thyroid 

miR-222 Up mir221/222 Stomach, pancreas 

miR-224 Up mir224/452 Prostate, Thyroid 

miR-122 Down - No 

miR-125a Down mir-99b/let7-

e/125a 

Breast, Ovarian, Lung 

 Down miR125b-1/let7a-

2/miR100 

Breast, Ovarian 

miR-130a Down   Breast, Lung 

miR-150 Down - No 

miR-199a-1-5p Down - Ovarian 

miR-199a-2-5p Down mir-199a2/214 Ovarian 

miR-199b Down - Ovarian, Lung 

miR-200a Down mir-

200b/200a/429 

No 

miR-200b Down mir-

200b/200a/429 

Ovarian 

 

Table 1.1 Deregulated miRNAs identified in HCC 

This is a modified reprint modified with permission [128]. 
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Chapter 2. The loss of miR-122 induces steatohepatitis and 

spontaneous HCC in miR-122 knockout mice 

	
  

	
  

2.1 Abstract 

miR-122, a highly abundant liver-specific microRNA (miRNA), 

regulates cholesterol metabolism and is essential for Hepatitis C Virus (HCV) 

replication. Reduced miR-122 expression in hepatocellular carcinoma (HCC) 

correlates with metastasis and poor prognosis. Nevertheless, the 

consequences of sustained miR-122 loss-of-function in vivo have not been 

determined. Here we demonstrate that germ-line or liver-specific deletion of 

the mouse miR-122 locus results in microsteatosis, chronic hepatitis, and the 

development of tumors resembling HCC.  These pathologic manifestations 

are associated with dysregulated expression of oncogenic pathways and the 

infiltration of liver parenchyma with inflammatory cells that produce pro-

tumorigenic cytokines including IL-6 and TNF-a. These findings reveal critical 

functions for miR-122 in the maintenance of liver homeostasis and have 

important therapeutic implications including the potential utility of miR-122 

delivery for selected patients with HCC and the need for careful monitoring of 

patients receiving miR-122 inhibition therapy for HCV. 
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2.2 Introduction 

miR-122 is a highly conserved liver-specific microRNA (miRNA) that 

constitutes 70% of the cloned hepatic miRNA in adult mouse [129]. Several 

key observations underscore the importance of miR-122 in liver biology and 

disease.  First, antisense-mediated inhibition of miR-122 in mice leads to the 

induction of genes that are normally repressed in adult liver [130], suggesting 

that this miRNA is important for the maintenance of the terminally-

differentiated hepatocyte gene expression program. Furthermore, miR-122 

inhibition reduces serum cholesterol by causing the downregulation of genes 

involved in cholesterol biosynthesis including the rate limiting enzyme HMG-

CoA reductase (Hmgcr) [130], thereby protecting animals from diet-induced 

hypercholesterolemia [131]. Additionally, miR-122 plays a non-canonical role 

in the life-cycle of the Hepatitis C virus (HCV).  Through interaction with two 

seed sequence binding sites located at the 5'-end of the HCV genomic RNA, 

miR-122 performs an incompletely understood function that is essential for 

replication of the virus [132]. Accordingly, intravenous administration of locked 

nucleic acid (LNA) antisense miR-122 oligonucleotides reduces viral load in 

HCV infected chimpanzees [133], a therapeutic approach that is currently 

under clinical investigation for HCV in humans. 

 Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer 

worldwide and the third leading cause of cancer-related death [134]. HCC 

often occurs in the setting of underlying liver dysfunction, especially chronic 

inflammation and cirrhosis. We have previously demonstrated that miR-122 
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expression is reduced during the initiation and progression of 

hepatocarcinogenesis in rats fed a diet deficient in folic acid, choline, and 

methionine that induces nonalcoholic steatohepatitis (NASH) [81].  

Downregulation of miR-122 is also prevalent in human NASH patients [135].  

Moreover, reduced expression of miR-122 is common in human HCC cell 

lines and tumors and low expression of this miRNA correlates with poor 

prognosis and metastasis in HCC patients [reviewed in [136]].  Ectopic 

expression and depletion studies in HCC cell lines have demonstrated that 

miR-122 exhibits pleiotropic anti-tumorigenic activities including the inhibition 

of proliferation and metastasis.  Moreover, ectopic expression of miR-122 

sensitizes HCC cells to anti-cancer drugs such as doxorubicin [82] and 

sorafenib [80]. 

Despite these indications of a critical role for miR-122 in liver 

physiology and disease, and the potential for this miRNA as a therapeutic 

target for HCV and perhaps other disease states, the consequences of 

genetic loss-of-function of this miRNA in vivo have yet to be documented.  

Here we describe the generation and characterization of mice with germ-line 

knockout (KO) or liver-specific knockout (LKO) of the miR-122 locus. Both KO 

and LKO mice develop normally and are viable and, consistent with studies 

performed using antisense-mediated miR-122 inhibition [130, 131, 137], 

exhibit reduced serum cholesterol.  In contrast to transient inhibition studies, 

however, miR-122 KO and LKO animals develop microsteatosis, hepatitis, 

and fibrosis in early adult life and later develop spontaneous tumors 
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resembling HCC.  Hepatocarcinogenesis is likely initiated in these animals 

through the upregulation of several oncogenic pathways coupled with liver 

injury associated with the infiltration of inflammatory cells which produce the 

pro-tumorigenic cytokines IL-6 and TNF-a. These findings provide important 

insight into the natural functions of this miRNA, establish its role as a tumor 

suppressor in vivo, and underscore the need for caution when implementing 

miR-122 inhibition therapies. 

 

 

2.3 Materials and Methods 

2.3.1 Generation of liver specific (LKO) and germline miR-122 knockout 

(KO) mice 

miR-122 conditional knockout (miR-122loxP/loxP or floxed) mice were 

generated as depicted in Figure S1A. miR-122loxP/loxP littermates served as 

controls in all studies. Animals were housed in a helicobacter-free facility and 

were handled and euthanized following institutional guidelines.  

 

2.3.2 Serological, histological and immunohistochemical analysis  

 
Serum was isolated from mice by cardiac puncture after CO2 

asphyxiation and cervical dislocation following overnight fasting. Biochemical 
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analysis of enzymes, and lipids in the sera was performed at the OSU mouse 

phenotyping core facility using VetAce (Alfa Wassermann system).  

For histology, tissues were fixed in 4% paraformadehyde and frozen in 

O.C.T. or embedded in paraffin. H&E, Oil-Red-O, PAS, and Masson’s 

Trichrome staining of liver sections were performed as described [138, 139]. 

For immunohistochemical analysis, the slides were dewaxed, subjected to 

antigen retrieval at 95oC for 30 minutes followed by incubation with the 

antibodies and color development by the DAB method. The scoring of 

inflammation and steatosis were performed on H&E stained sections (100x 

magnification) using the following criteria: (1) Scoring criteria for inflammation: 

score=0: no inflammation; score=1: mild lymphocytic infiltration in the portal 

triad; score=2: severe lymphocytic infiltration in portal triad; score=3: 

extended infiltration of lymphocytes throughout liver.  (2) Scoring criteria for 

steatosis: score=0: no steatosis; score=1: microsteatosis; score=2: 

microsteatosis and mild macrosteatosis; score=3: severe macrosteatosis.  All 

scoring was performed by two blinded pathologists. 

 

2.3.3 Transmission Electron Microscopy  

For transmission electron microscopy (TEM), animals were perfused 

through the portal vein with 2.5% glutaraldehyde. The liver was post-fixed in 

2% OsO4, embedded in resin, and sectioned. After locating the periportal area 

in thick (1µm) toluidine blue (EMS), thin (<90nm) sections were cut on an 
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ultramicrotome (Leica UC6) and were post-stained with uranyl acetate. 

Electron micrographs were taken using an FEI Philips Tecnai T-12. 

 

2.3.4 Measurement of hepatic triglyceride synthesis  

The in vivo triglyceride synthesis rate was determined by measuring 

3H1 - glycerol incorporation into hepatic triglycerides following a published 

protocol [140, 141]. 

 

2.3.5 Hepatic triglyceride secretion 

After overnight fasting, mice were injected via the tail vein with Triton 

WR1339 (Sigma) [142], a lipoprotein lipase inhibitor. Blood was collected 

from the tail vein and the serum triglyceride levels were measured at 0, 1, and 

3 hours post-injection. 

 

2.3.6 Microarray analysis of liver RNA 

Total RNA from the livers of male mice was isolated using Trizol 

(Invitrogen), purified using mini RNeasy columns (Qiagen), and the integrity 

and quantity of the RNA was assessed using an Agilent Bioanalyzer and 

Nanodrop RNA 6000, respectively. Total RNA was labeled using the 

Affymetrix Whole Transcript Sense Labeling kit and hybridized to the 

Affymetrix Mouse Exon 1.0 ST array following the manufacturer’s protocol at 

the Microarray Shared Resource Facility, Ohio State University 
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Comprehensive Cancer Center. The microarray data was deposited in the 

GEO database. Microarray data analysis methodology is described in the 

Supplementary Methods.  

2.3.7 Real-time RT-PCR analysis 

Real-time RT-PCR analysis of mRNAs was performed using SYBR 

Green chemistry. Relative expression was calculated using ∆∆CT method 

[143]. The primer sequences are provided in the Supplementary Materials. 

 

2.3.8 Western blot analysis 

Mouse liver microsomes were purified following a published protocol 

[144].  Whole tissue or microsomal extracts were prepared as described [145] 

and subjected to western blot analysis with specific antibodies using 

supplier’s protocol.  The signal was detected using ECL western blotting 

reagent. Details of the antibodies used are provided in the Supplementary 

Materials. 

 

2.3.9 Microarray analysis of the tumor RNA  

Agilent 4X44 platform was used to assess gene expression in liver 

tumors from 4 LKO and 4 KO mice and in normal liver from age-matched 

control mice using manufacturer’s protocol. Further details are provided in the 

Supplementary Methods.  
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2.3.10 Flow cytometric analysis 

Flow analysis of liver immune cells was performed as described [146]. 

The following antibodies reactive with murine cells were obtained from BD 

Biosciences: Gr1 (RB6-8c5), CD11b (M1/70), CD3 (145-2C11), CD19 (1D3), 

NK1.1 (PK136), IL-6 (MP5-20F3), and TNF-α (MP6-XT22). CCR2 mAb 

(475301) was purchased from R&D Systems.  

 

2.3.11 Generation of liver specific (LKO) and germline miR-122 knockout 

(KO) mice.  

The targeting vector was constructed by amplifying homology arms 

from 129SvJ genomic DNA and cloning them into pBlueScript SK (pBSK) 

(Strategene). mmu-miR-122 gene with the flanking region (569bp) was PCR 

amplified and cloned into pFlox-Frt-Neo [147].  Floxed mmu-miR-122-neo 

was subcloned into pBSK flanked by 5’- and 3’-arms (Figure S1). 

Electroporation of mouse ES cells and subsequent generation of chimeric 

mice from targeted clones were performed at the University of Michigan 

Knockout Mouse Core Facility. Two of the mutant clones were transmitted 

through the mouse germ line, which was confirmed by analysis of tail DNA by 

PCR. miR-122loxP/loxP littermates served as controls in all studies. Animals 

were housed in a helicobacter-free facility and were handled and euthanized 

following institutional guidelines.  
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2.3.12 Measurement of hepatic triglyceride synthesis.  

The in vivo triglyceride synthesis rate was determined by measuring 

3H1-glycerol incorporation into hepatic triglycerides following a published 

protocol [140, 141]. Briefly, 8-10 week-old mice were trained to feed during 3h 

periods from 9 A.M. to 12 noon every day for two weeks. On the day of the 

experiment, after a 3 hour feeding and subsequent 1h fasting, 3H1 glycerol 

(50mCi/150ml) was injected IP. Twenty minutes later, mice were sacrificed 

and livers were harvested. Total lipid was extracted from 0.3g of liver tissue 

and separated on a TLC plate. Triglyceride spots were scraped from the 

plate, suspended in the scintillation cocktail and counted in a scintillation 

counter.  The tritium incorporated into hepatic triglycerides was normalized to 

serum 3H1 level in each mouse. 

 

2.3.13 Determination of Triglyceride synthesis in primary mouse 

hepatocytes transfected with siRNA.  

Primary hepatocytes were isolated from LKO or KO mice with 

collagenase-based method as previously described [148]. The cell viability 

over 85% was determined by trypan blue staining before seeded onto 12 well 

plates at 5x105 cells per well in culture medium (Williams’ Medium E with 10% 

FBS, 10mM HEPES and 10 nm insulin plus penicillin and streptomycin) and 

cultured overnight. The hepatocytes were transfected with a mixture of 

50nmol/L gene-specific siRNA or scrambled si-RNA (Smartpool si-Genome 

from Dharmacon) and 2ul/ml lipofectamine 2000 (Invitrogen) in culture 
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medium without antibiotics. After 6 hours of incubation, the mixture was 

replaced with culture medium. After 48h the culture medium was replaced 

with 10uCi/ml [3H1]-glycerol in FBS free culture medium containing 5% fatty 

acid free BSA and 0.3mM oleic acid. TG synthesis in transfected mouse 

hepatocytes was determined by extracting lipids and separating TG on TLC 

plates followed by counting 3H1 incorporation in TG in a scintillation counter. 

 

2.3.14 Microarray analysis.  

Total RNA from the livers of male mice fasted overnight was isolated 

using Trizol (Invitrogen), purified using mini RNeasy columns (Qiagen), and 

the integrity and quantity of the RNA was assessed using an Agilent 

Bioanalyzer and Nanodrop RNA 6000, respectively. Total RNA was labeled 

using the Affymetrix Whole Transcript Sense Labeling kit and hybridized to 

the Affymetrix Mouse Exon 1.0 ST array following the manufacturer’s protocol 

at the Microarray Shared Resource Facility, Ohio State University 

Comprehensive Cancer Center.  

 Affymetrix GeneChip Mouse Exon 1.0 ST Array with 23,332 probe-sets 

was used for gene expression profiling of 5 control (miR-122loxP/loxP) and 5 

LKO mice. Signal intensities were quantified by Affymetrix software. 

Background correction and normalization was performed and gene 

expression level was summarized over probes using the RMA method [149].  

A filtering method based on the percentage of samples with expression 

values below the noise level was applied to filter out probe-sets with little or 
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no expression, resulting in 11,670 detectable probe-sets. Generalized linear 

models were used to detect differentially expressed genes between the 

control (floxed) and LKO mice. In order to improve the estimates of variability 

and statistical tests for differential expression, a variance smoothing method 

was employed [150]. The significance level was determined by controlling the 

average number of false positives [151].  A p-value of 0.0001 was used as the 

significance cutoff, allowing an average number of false positives of 1.2. The 

microarray data was deposited in the GEO database (accession number 

GSE20610). 

 

2.3.15 Microarray analysis of the tumor RNA 

The Agilent 4X44 platform was used to assess gene expression in liver 

tumors from 4 LKO and 4 KO mice and in normal liver from age-matched 

control mice using manufacturer’s protocol.  Briefly, highly purified total RNA 

from each group was hybridized to microarray slides overnight, washed, and 

then scanned with an Agilent G2505C Microarray Scanner. The raw signal 

intensity for each probe was extracted from the image data using Agilent 

Feature Extraction 10.5 (FE) and analyzed by the mathematical software 

package “R”. The log2 intensity ratio of red to green was normalized to the 

sum of log2 intensities of red and green. This normalization adjusts the red 

and green intensities relative to one another so that the red/green ratios are 

an unbiased representation of true ratios. The microarray data has been 

deposited in the GEO database (accession number GSE31731).  
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2.3.16 Ingenuity Pathway Analysis 

The IPA application (http://www.ingenuity.com/products/IPA/Free-Trial-

Software.html) was used to identify gene networks that were overrepresented 

among the genes that exhibited ≥1.5 fold up- or down-regulation with a P-

value ≤0.0001 in LKO livers. A significance score of ≥3 indicates that there is 

a less than 1 in 1000 chance that the highlighted genes were assembled into 

a network due to a random chance.  

 

2.3.17 Plasmid construction 

Coding regions and/or 3´ UTRs were PCR amplified from 129/SvJ 

genomic DNA and subsequently cloned into the multiple cloning sites of 

psiCHECK2 (Promega), a reporter vector expressing both renilla and firefly 

luciferase. 

 

2.3.18 Accession numbers 

The microarray data on control and LKO livers and tumors was 

deposited in the GEO database (accession numbers GSE20610 and 

GSE31731, respectively).  
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2.4 Results 

2.4.1 Liver specific (LKO) and germ-line (KO) miR-122 loss-of-function 

results in an altered serum lipid profile 

The mmu-miR-122 gene is located on chromosome 18 and is 

transcribed independently of any known gene.  To determine its biological 

function, we generated a miR-122 conditional knockout allele (miR-122loxP) in 

mice using homologous recombination. miR-122loxP mice were crossed to 

Albumin (Alb)-Cre mice to produce LKO mice (Figure 2.1A).  To generate KO 

mice, miR-122loxP mice were initially crossed to E2a-Cre mice and then 

backcrossed to remove the Cre transgene. Both KO and LKO mice were born 

alive, fertile and were not notably different from control (floxed or wild-type) 

mice in terms of their body weight and growth (data not shown).   

Northern and Southern blotting and real-time RT-PCR were used to 

confirm deletion of the miR-122 gene and loss of miR-122 expression in LKO 

livers of 10 week-old mice, a time-point sufficient for complete Cre-mediated 

deletion in Alb-Cre hepatocytes [110] (Figure 2.2A, 2.1B, 2.3A). A significant 

increase in the expression of known targets such as AldoA, Slc7a1, Cs, and 

Ccng1 [131, 152] confirmed functional depletion of miR-122 in LKO livers 

(Figure 2.3B). In KO mice, expression of miR-122 was abolished without 

influencing the levels of several other abundant liver-enriched miRNAs such 

as miR-148, miR-192 and miR-194 (Figure 2.2B). Real-time RT-PCR and 

western blot analysis demonstrated increased expression of known miR-122 
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targets including Adam-10 [80], Pparb/d, Smarcd1/Baf60a [153], and Iqgap1 

[130] (Figure 2.3C, D).   

We next examined liver function in 8-10 week-old LKO mice by 

measuring the serum profile of liver enzymes and metabolites after overnight 

fasting (Table 2.1).  Among the lipids, total cholesterol was reduced in the 

serum of LKO mice by 30% (P=1.8E-04) without significantly altering 

triglyceride levels, corroborating previous observations in mice [130, 131] and 

primates [120, 133] depleted of miR-122 by administration of antisense 

oligonucleotides.  These mice also exhibited a pronounced decrease in low-

density lipoprotein (LDL)-cholesterol (~56.5%, P=1.56E-06) and a moderate 

decrease in high-density lipoprotein (HDL)-cholesterol (~25.1%, P=0.01). 

Finally, serum alkaline phosphatase (ALP) increased two-fold (P=4.67E-11) in 

LKO mice.  The serum profile of 5 week old KO mice was very similar to that 

of the LKO mice (Table 2.2).  

 

2.4.2 LKO mice develop hepatic microsteatosis due to triglyceride 

accumulation in early adult life  

Histopathological analysis revealed distinctive features in livers of 8-10 

week old LKO mice. Sinusoids in LKO mice were compressed by swollen 

hepatocytes containing multiple small clear vacuoles, likely representing lipid 

droplets (Figure 2.4A). Microsteatosis in LKO mice was confirmed by Oil-

Red-O staining (Figure 2.4B) and transmission electron microscopy (TEM) 

(Figure 2.5A). Storage of liver glycogen was reduced in LKO mice after 
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overnight fasting, as demonstrated by PAS staining (Figure 2.4B). LKO livers 

also exhibited proliferation of bile duct and oval cells as shown by increased 

CK-19 and A6 positive cells, respectively (Figure 2.5B). Liver histology and 

serology were similar in male and female LKO mice (data not shown).  

 Quantification of hepatic lipids revealed a 2.5-fold increase in 

triglyceride levels without a change in cholesterol levels in LKO mice (Figure 

2.6A,B). The accumulation of triglyceride could be the result of altered 

synthesis, secretion, and/or uptake.  Measurement of 3H1-glycerol 

incorporation into hepatic triglycerides showed a small (25%) but significant 

(P=0.02) increase in de novo triglyceride synthesis in LKO mice (Figure 

2.6C). Hepatic triglyceride secretion in LKO mice was measured by 

monitoring serum triglyceride levels after injecting Triton WR1339, an inhibitor 

of lipoprotein lipase. Triglyceride secretion was reduced to 43% and 46% of 

control levels after 1 and 3 hours, respectively, (Figure 2.6D). Thus, 

increased synthesis and reduced secretion contribute to triglyceride 

accumulation in the livers of LKO mice.  

 

2.4.3 Genes involved in lipid metabolism and cellular proliferation and 

survival are abnormally expressed in livers of LKO mice 

To investigate the mechanisms underlying the abnormalities observed 

in miR-122-deficient mice, hepatic gene expression was examined in 8-10 

week old control and LKO mice (n=5 of each genotype) by microarray 

analysis.  An examination of the potential enrichment of all possible 
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hexamers, heptamers, and octamers in the 3´ UTRs of the transcripts 

upregulated in miR-122-deficient livers using the Sylamer algorithm [154] 

revealed that the only statistically-significantly enriched motifs of these 

lengths corresponded to sites that match the miR-122 seed sequence (Figure 

2.7). These results indicate that the altered expression of a significant fraction 

of dysregulated transcripts in LKO livers is attributable to direct, canonical 

targeting by miR-122. 

Ingenuity Pathway Analysis (IPA) of molecular and cellular functions of 

a stringent set (threshold P≤0.0001) of 194 upregulated and 121 

downregulated genes in LKO livers identified 7 major networks of 

dysregulated genes (Table 2.3). Genes involved in lipid metabolism were 

highly represented within these networks. Notably, among the upregulated 

genes were two key enzymes, Agpat1 and Mogat1 that catalyze triglyceride 

biosynthesis [155]. Microarray analysis also showed increased expression of 

several additional genes in this pathway including Agpat3, Agpat9, Ppap2a, 

Ppap2c, and Dgat1, albeit at a lower significance threshold (P≤0.05) (Table 

2.4).  Real-time RT-PCR confirmed the significant upregulation of these 

transcripts (Figure 2.8A). Additionally, Cidec (Fsp27), a lipid droplet-binding 

protein that promotes triglyceride accumulation in hepatocytes in vivo [156], 

was elevated (Figure 2.8A).  Western blot analysis confirmed increased 

protein levels of Agpat1 and Ppap2a in microsomal extracts (Figure 2.8B) 

without significant alteration of Cyp2e1, a microsomal marker. Agpat3, 

Agpat9, Cidec, Dgat1, and Mogat1 were elevated in whole liver extracts 
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(Figure 2.8C). Collectively, the altered expression of these genes would be 

expected to increase triglyceride biosynthesis and storage in the liver, as 

observed in KO/LKO mice.    

To assess whether miR-122 can indeed regulate the expression of the 

aforementioned factors involved in triglyceride metabolism, we measured 

their mRNA levels in a mouse hepatoma cell line (Hepa) after transient 

overexpression (~40 fold increase) or depletion (~40% decrease) of miR-122 

(Figure 2.9A,B). Ectopic miR-122 reduced Agpat1, Agpat3, Agpat9, Dgat1, 

Cidec, Ppap2a and Ppap2c expression, whereas depletion of miR-122 

upregulated these transcripts (Figure 2.9C).  Mogat1 was not detectable in 

these cells (data not shown). Furthermore, reporter plasmids were 

constructed with a renilla luciferase open reading frame followed by the 3´ 

UTRs of Agpat1 or Cidec [harbouring 3 and 1 miR-122 binding sites, 

respectively, as predicted by TargetScan [157]]. miR-122 strongly repressed 

luciferase expression from the Agpat1 reporter and, to a lesser extent, from 

the Cidec reporter (Fig. 2.10).  Mutations in the putative miR-122 binding 

sites abrogated reporter repression consistent with the direct targeting of 

these transcripts by this miRNA. Finally, knockdown of Agpat1 in hepatocytes 

isolated from LKO/KO mice reduced TG synthesis, suggesting that Agpat1 

plays a key role in TG accumulation in LKO/KO livers (Figure 2.11A, B). 

In addition to genes that regulate lipid metabolism, IPA highlighted the 

abnormal expression of many genes involved in development, cellular 

proliferation and death, and cancer (Table 2.3). Many of these dysregulated 
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genes are known to exhibit altered expression in HCC and, in some cases, 

functionally contribute to hepatocarcinogenesis.  Such genes include 

components of the insulin-like growth factor 2 (Igf2), Ras, and b-catenin 

(Ctnnb1) signaling pathways (Figure 2.12), as well as other genes known to 

play a role in HCC such as Epcam [158], c-Myc [159], Mapre1 [160], and 

Rhoa [161].  Real-time RT-PCR validated the upregulation of several of these 

transcripts in LKO livers (Figure 2.13A and Table 2.5) and western blotting 

documented the increased expression of the majority of these proteins in KO 

livers (Figure 2.13B).  In addition, miR-122 overexpression or inhibition in 

Hepa cells resulted in concordant expression changes of selected key genes 

including H19, Igf2, Ctnnb1, Epcam, Mapre1, Mapkapk2, and c-Myc (Figure 

2.9D).  Among these, Mapre1 was validated as a target of miR-122 using 

reporter assays (Figure 2.10). In contrast, Igf2 and H19 do not appear to be 

directly regulated by miR-122 since comparable upregulation of both 

unspliced hnRNA and fully-spliced mRNA was observed for these transcripts 

(Figure 2.14A). Although Igf2 and H19 appear to be transcriptionally 

upregulated in LKO/KO livers, bisulfite sequencing did not reveal significant 

changes in the methylation status of DMR located between these two genes 

(Figure 2.14B). The observed upregulation of these genes in early adult life 

suggested that these mice might be predisposed to liver cancer as they age.  
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2.4.4 Recruitment of monocytes and neutrophils to livers of miR-122 

LKO/KO mice leads to inflammation and production of pro-tumorigenic 

cytokines 

Since many genes involved in cell proliferation and survival were 

significantly upregulated in LKO/KO livers, we aged these animals to 

determine whether they are tumor prone or exhibit any other adult-onset 

pathology. Importantly, aged miR-122 LKO mice did not exhibit significant 

repopulation of the liver with hepatocytes that escape Cre-mediated deletion, 

as has been observed in mice with liver-specific deletion of Dicer [138] 

(Figure 2.15).  At 6 months of age, LKO/KO mice developed severe 

steatohepatitis (Figures 2.16-18) with visible foci of altered hepatocytes (inset 

of second panel of Figure 2.16). Trichrome staining revealed bridging 

fibrosis. Like younger LKO mice, 6 month old KO mice exhibited increased 

hepatic triglyceride levels without a significant change in hepatic cholesterol 

after overnight fasting (Figure 2.17B). A significant increase in serum ALP 

and GGT levels, consistent with hepatobiliary disease, was observed (Table 

2.7).  

Inflammation is a major contributing factor to malignant transformation 

in HCC and other tumor types [162].  In particular, the inflammatory cytokines 

IL-6 and TNF-a have been shown to promote HCC development [163]. We 

therefore characterized the inflammatory cells that infiltrate hepatic 

parenchyma in miR-122 LKO/KO mice and the cytokines they produce. 

Consistent with the histologic appearance of LKO/KO livers (Figures 2.16-
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18), direct quantification of infiltrating inflammatory cells revealed a two-fold 

increase in the livers of KO mice (Figure 2.19A). Flow cytometry documented 

that the hepatic population of CD11bhighGr1+ cells, previously classified as 

monocytes and neutrophils [164], was >3-fold higher in 10-month old non-

tumor bearing KO mice than in controls (Figure 2.19B, C). Intracellular flow 

cytometry demonstrated that CD11bhighGr1+ cells from KO livers produce a 

high level of IL-6 (Figure 2.20A) and TNF-α (Figure 2.20B).  

In settings of chronic liver injury, the myeloid chemo-attractant Ccl2 is 

induced in hepatocytes and other liver resident cells [165] and is an important 

driver of hepatic inflammation [166].  In miR-122 LKO/KO mice, intrahepatic 

CD11bhighGr1+ cells expressed Ccr2, the Ccl2 receptor, and displayed higher 

expression of Ccr2 than those in the peripheral blood (Figure 2.20C). We 

therefore hypothesized that activation of the Ccl2-Ccr2 axis in miR-122 

LKO/KO mice leads to recruitment of CD11bhighGr1+ cells, causing hepatic 

inflammation and injury. Indeed, microarray analysis of mRNA from 5 week 

old KO livers showed a >3 fold (P=0.0003) increase in expression of Ccl2 

(data not shown), which was confirmed by real-time RT-PCR in LKO/KO 

livers (Figure 2.21A) and cultured hepatocytes (Figure 2.21B).  Ectopic miR-

122 expression downregulated Ccl2 in LKO/KO hepatocytes (Figure 2.21C, 

D) and in Hepa cells (Figure 2.22A, B) whereas depletion of miR-122 

increased Ccl2 levels (Figure 2.22A, B). Moreover, in KO livers, Ccl2 mRNA 

levels were increased greater than unspliced hnRNA levels (Figure 2.22C), 

consistent with both transcriptional and post-transcriptional mechanisms 
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contributing to Ccl2 upregulation. The RNA22 algorithm [167] identified a 

potential miR-122 binding site in the 3' UTR of Ccl2 (Figure 2.22D).  Upon 

inhibition of miR-122 in Hepa cells, a Ccl2 3' UTR reporter construct produced 

a moderate but significant increase in luciferase activity whereas a reporter 

with a mutation in the miR-122 binding site was not affected by miR-122 

inhibition (Figure 2.22E). These data support a model whereby Ccl2 is 

induced in miR-122 LKO/KO livers both directly through the targeting of this 

transcript by miR-122 and indirectly as a response to the underlying 

hepatocyte injury present in these animals. The resulting recruitment of 

CD11bhighGr1+ cells leads to the production of pro-inflammatory and tumor-

promoting cytokines including IL-6 and TNF-α, initiating a well-described 

pathogenic sequence which would be expected to predispose to HCC [163].  

 

2.4.5 LKO and KO mice develop HCC with age 

Consistent with the upregulation of oncogenic pathways and the 

infiltration of liver with inflammatory cells that produce pro-inflammatory 

cytokines (Figure 2.19-22), both LKO and KO mice developed moderately to 

poorly differentiated Afp-positive HCCs with age (Figure 2.23A).  Thirteen out 

of 26 male LKO mice developed spontaneous liver tumors (1-12 macroscopic 

tumors observed per animal) whereas 2 out of 20 female LKO mice 

developed HCC in 12-17 months (Table 2.8). In contrast, both male (10/20) 

and female (9/19) KO mice developed HCCs with approximately equal 

penetrance after 11-15 months (Figure 2.9). However, the average tumor 
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weight and grade were significantly higher in male compared to female KO 

mice.  One out of 20 heterozygous KO mice also developed HCC at 4.5 

month of age (data not shown). Among the tumor-bearing mice, three were 

also found to have lung metastases (Figure 2.23A). Serum IL-6 was 

significantly increased in tumor-bearing male but not in female LKO/KO mice 

(Figure 2.23B), which correlated with greater tumor incidence in male LKO 

mice and higher tumor burden and tumor grade in the male KO mice. 

Western blot analysis of tumors from miR-122 LKO/KO mice demonstrated 

significant upregulation of several proteins that are known to be increased in 

human HCC e.g. Afp, Cxcr4 [168], Mapre1 [160] or play a causal role in 

tumorigenesis, e.g. c-Myc [169], b-catenin [170], Rhoa [171], RhoC [172] 

(Figure 2.23C).  Similar upregulation of these proteins in a lung tumor is 

consistent with its identity as a metastatic HCC. 

Gene expression profiles were assessed in LKO/KO tumors and 

compared to a previously reported analysis of gene expression in human 

HCCs with high and low miR-122 expression [173]. A moderated t-test was 

first used to obtain a list of genes that were dysregulated in LKO/KO tumors, 

which include 29 upregulated genes and 51 downregulated genes (Figure 

2.23D). The expression levels of these genes were sufficient to stratify the 

human tumor samples into high and low miR-122 expressing clusters 

(P=0.046), indicating that loss of miR-122 expression results in similar effects 

on gene expression in human and mouse tumors.  
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2.5 Discussion 

 In this study, we investigated the biologic function of miR-122 through 

the generation and characterization of mice with liver-specific (LKO) and 

constitutional (KO) deletion of this miRNA locus. These experiments extend 

previous findings obtained through transient miR-122 inhibition in mice using 

antisense oligonucleotides, which reported that inhibition of this miRNA is well 

tolerated and results in reduced serum cholesterol. In contrast to these prior 

results, our study revealed that prolonged loss-of-function of miR-122 leads to 

accumulation of hepatic triglycerides and hepatic inflammation, which 

precedes the later onset of fibrosis and tumors resembling HCC. The 

upregulation of several gene products that catalyze triglyceride biosynthesis 

and storage in miR-122 LKO/KO mice, including the newly identified direct 

miR-122 targets Agpat1 and Cidec, provides a plausible explanation for the 

triglyceride accumulation and steatosis observed in the livers of these 

animals. Although a tumor suppressor role for miR-122 has previously been 

proposed based on in vitro studies and expression analyses of human HCC 

samples, our findings provide the first in vivo evidence that loss of this miRNA 

is sufficient to initiate highly-penetrant HCC development. Furthermore, the 

analysis of miR-122 LKO/KO animals has provided important novel 

mechanistic insights into the tumor suppressor activity of this miRNA. 

 It is well established that liver damage and inflammation potently 

promote the development of HCC and, in humans, this tumor type nearly 

always arises in the setting of underlying liver injury [134].  Thus, chronic 
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steatohepatitis in miR-122 LKO/KO mice is an important component of the 

pathology, which leads to HCC in these animals. The earliest observable 

abnormality in miR-122 LKO/KO animals is steatosis which is a well-known 

cause of hepatic injury and inflammation [174]. In addition, upregulation of the 

chemokine Ccl2, both directly through loss of targeting by miR-122 and 

indirectly as a consequence of liver injury, results in the intrahepatic 

recruitment of CD11bhighGr1+ inflammatory cells which locally produce pro-

tumorigenic cytokines including IL-6 and TNF-α [163]. The importance of 

underlying inflammation in HCC development in these mice is further 

highlighted by the greater tumor incidence and higher tumor burden and 

grade in male LKO and KO mice, respectively. In humans, HCC exhibits a 

similar sex bias with 2-4 fold greater incidence in males [134, 175]. This bias 

is believed to be partially attributable to the greater susceptibility of males to 

injury-induced hepatic inflammation and hepatocyte proliferation mediated by 

IL-6, whose production is suppressed by estrogens in females [176]. Indeed, 

circulating IL-6 is increased in tumor-bearing male, but not female LKO/KO 

mice, likely contributing to the increased severity of hepatocarcinogenesis in 

male mice in this model.  

 The ability of miR-122 to suppress tumorigenesis when delivered to a 

non-inflammatory Myc-driven HCC model establishes that this miRNA 

performs a tumor suppressor function that is independent of its role in 

reducing inflammation and maintaining hepatocyte integrity. This activity is 

likely mediated by the ability of miR-122 to directly and indirectly control a 
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broad program of gene expression, which includes key factors that influence 

HCC pathogenesis such as Igf2, b-catenin, Cyclin D1, c-Myc, Epcam, 

Mapre1, Iggap1, and Rhoa. miR-122 also appears to be essential for 

maintenance of the mature hepatocyte gene expression program as 

manifested by the re-activation of fetal genes including Afp, H19, and Igf2 in 

LKO/KO mice.  In the setting of tonically increased signaling through 

canonical oncogenic pathways, the expansion of immature hepatocytes in an 

inflammatory microenvironment likely results in a state of highly increased 

Since miR-122 is downregulated in NASH [135], the efficacy of miR-122 

delivery for reducing progression to cirrhosis and HCC in relevant animal 

models of this disease is worthy of investigation.  However, given the 

essential role of miR-122 in HCV replication [177], the treatment of HCC or 

other liver diseases arising in the context of HCV infection would not be an 

appropriate setting for miR-122 delivery.   

 Lastly, miR-122 inhibition therapy using an LNA-modified antisense 

oligonucleotide, SPC3639, is currently in phase II clinical trials for the 

treatment of HCV infection [133]. Treatment of HCV-infected chimpanzees 

with SPC3639 reduced viremia and hepatitis without causing any adverse 

effects during the 12 week period of the study [133]. However, our 

examination of miR-122 LKO or KO mice has demonstrated that the chronic 

loss of miR-122 causes steatohepatitis and altered liver function that 

ultimately leads to liver cancer. Multiple explanations may account for the 

apparent discrepancy between the phenotypes observed after transient 
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inhibition versus genetic deletion of miR-122. First, the more severe 

phenotype in LKO and KO mice might arise due to a developmental defect 

resulting from the absence of miR-122 throughout gestation or it may result 

from the effects of complete deletion of the miRNA as opposed to partial loss-

of-function achieved with chemical inhibitors. Alternatively, the development 

of liver damage and the resulting sequela might simply require a longer period 

of miR-122 depletion beyond that which has been examined using injected 

inhibitors. Distinguishing between these possibilities will be a priority for future 

research. Nevertheless, the insights gained through the study of mice lacking 

miR-122 should aid the design of safe therapeutic strategies based on miR-

122 inhibition.   
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Figure 2.1 Generation of conditional and germ-line miR-122 knockout 

mice (A) Schematic representation of the generation of conditional and 

A 

B 
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germ-line miR-122 knockout mice. The targeting vector was generated by 

amplifying homology arms from 129SvJ genomic DNA, which were cloned 

into pBSK. Targeted mouse ES cell clones and chimeric mice were generated 

at the University of Michigan Knockout Mouse Core Facility. Two independent 

targeted clones were transmitted through the mouse germ line.  (B) Southern 

blot analysis of liver DNA from 10 week-old mice of the indicated 

genotypes. Hind III-digested liver DNA was subjected to Southern blot 

analysis with probes specific for 5´- and 3´- arms as well as the miR-122 

locus to confirm correct targeting and Cre-mediated recombination.  The 5´ 

probe recognizes a ~9.5 kb fragment from the WT allele and a ~3.3 kb 

fragment from miR-122loxP allele.  The 3´ probe recognizes a ~9.5 kb WT 

fragment and a ~4.6 kb miR-122loxP fragment.  Cre-mediated deletion of miR-

122 was confirmed by loss of a ~1.8 kb fragment detected with the miR-122 

probe.  
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A 
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Figure 2.2 Northern blot analysis of miRNA levels in liver of LKO (A) and 
KO (B) 
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A B

C D 

Figure 2.3 Expression of miR-122 target genes in LKO mice. (A) 

Quantitative PCR (qPCR) analysis of liver RNA from 10 week-old mice 

confirmed reduced miR-122 expression in heterozygous and 

homozygous LKO mice. miR-122 and RNU6B were measured in DNase-

treated total RNA using respective Taqman assay kits (Invitrogen). Each 

sample was analyzed in triplicate (n=4).  (B,C) qPCR analysis confirmed 

�



	
  
	
  

	
   58	
  

upregulation of validated miR-122 targets in LKO (B) and KO livers (C). 

DNase-treated total RNA was subjected to qPCR using the SYBR Green 

method (n=4 mice per condition).  Data was normalized to Gapdh. C, LKO, 

and KO denote control (floxed), liver-specific (LKO), and germline (KO) miR-

122 knockout mice, respectively. (D) Protein levels of validated miR-122 

targets are increased in livers of 5 week-old miR-122 KO mice.  Whole 

liver extracts prepared as described [178] were subjected to western blot 

analysis with specific antibodies.     
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Figure 2.4 Liver morphology, lipid accumulation and glycogen depletion 

of LKO mice. (A) Representative liver sections of 8 week old control (floxed) 

and LKO mice after overnight fasting (n=8-10 mice per genotype). Scale bars: 

upper panel 200µm, lower panel, 25µm. (B) Oil-Red-O and PAS-stained liver 

sections from 8 week old LKO mice after overnight fasting (n=5 pe genotype). 

Scale bars: upper panel, 100µm; lower panel, 100µm; insets, 25µm. 

A 

B 
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Figure 2.5 Electronic microscopy (EM) and immunohistochemical 

analysis of LKO mice. (A) EM of liver sections from 12 week old LKO mice.  

Lipid droplets (L), endoplasmic reticulum (ER), mitochondria (M), and nucleus 

(N) are labeled. Scale bars: upper panel: 2µm; lower panel: 450nm. (B) CK19 

and A6 staining of bile duct and oval cells, respectively, in LKO livers (n=3 

mice per genotype). Scale bars: upper panels: 100µm, inset, 5µm; lower 

panel: 25µm. 

B 

A 
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Figure 2.6 Dysregulated metabolism of triglyceride (TG) and cholesterol 

in LKO (A) Hepatic triglyceride (TG) and (B) cholesterol levels in 10 week old 

LKO mice. For this and subsequent panels, error bars represent standard 

deviations. (C) De novo TG synthesis in liver as measured by 3H1-glycerol 

incorporation. (D) TG secretion as measured by monitoring serum TG levels 

after administration of Triton WR1339. 

A B

C D 
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Figure 2.7 Sylamer analysis of mRNA expression from miR-122 LKO 

Sylamer plots [154] showing the enriched hexamers (upper), heptamers 

(middle), and octamers (lower) in transcripts that are upregulated in LKO 

livers.  All motifs that reached statistical significance are highlighted in color 

on the plots and correspond to matches to the miR-122 seed sequence as 

shown on the left. 
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Figure 2.8 RNA and protein expression of genes involved in triglyceride 

synthesis and storage in LKO livers. . (A) Expression of genes involved in 

triglyceride synthesis and storage in LKO livers. For this and subsequent 

panels, qPCR values represent means from triplicate measurements with 

multiple samples (n=4-5). Statistical significance was calculated using a 2-

tailed t-test. (B,C) Protein was extracted from (B) microsomal or (C) whole 

liver extract. Cyp2e1 and Gapdh are the normalizers in each panel. 

A 

B C 
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Figure 2.9 miR-122 negatively regulates the expression of genes involved 

in triglyceride biosynthesis and hepatocarcinogenesis. (A,B) miR-122 

expression in mouse Hepa cells after transient transfection of miR-122 (A) 

mimic or (B) inhibitor. NC-mimic and anti-NC represent negative controls. (C) 

Relative expression of genes in the triglyceride biosynthesis pathway 

A B 

C

A 

D 
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normalized to Gapdh expression 40-48 hours after transfection with miR-122 

mimic or inhibitor. Expression in negative control-transfected cells was 

assigned a value of 1. The data represent the mean of 2 independent 

experiments ± standard deviations (each sample analyzed in triplicate). 

Statistical analyses were performed using the 2-tailed t test. mimic. . (D) miR-

122 negatively regulates the expression of genes involved in 

hepatocarcinogenesis. The experiment was performed as described in Fig. 

S3B. 
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Figure 2.10 Agpat1 and Mapre1 are the direct targets of miR-122 Renilla 

luciferase activity (LUC2) produced from wild type or mutant Agpat1, Cidec, 

and Mapre1 3´ UTR reporter plasmids or empty vector normalized to firefly 

luciferase activity (LUC1) produced from the same plasmid after transfection 

into Hepa cells together with negative control RNA (NC) or miR-122 Error 

bars represent standard deviations derived from 3 independent experiments. 
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Figure 2.11 TG synthesis was mainly affected by Agpat1 in hepatocytes 

(A) Hepatocytes isolated from 3 LKO and 2 KO mice were transfected with 

50nM gene-specific or scrambled siRNA for 6h and after 48h cells were 

incubated with 3H1-glycerol for 15 minutes and 3H1–incorporation in purified 

TG was measured in 5x105 cells. (B) qRT-PCR analysis demonstrating 

depletion of specific RNAs in hepatocytes transfected with gene-specific 

siRNAs.  

A
A 

B
"

"
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Figure 2.12 The IPA network of Igf2 signaling and downstream effectors 

including Ras and b-catenin (CTNNB1) is dysregulated in LKO livers. The first 

number below each gene represents the fold change in expression (log2) in 

LKO livers compared to controls while the second number represents the P 

value associated with the expression change.  The shapes represent the 

functional class of each gene.  
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Figure 2.13 Expression of genes involved in development, cellular 

proliferation and death, and cancer Expression of transcripts (A) and 

proteins (B) related to hepatocarcinogenesis in LKO/KO livers  

A 

B
A
A 
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Figure 2.14 Igf2 and H19 are transcriptionally upregulated in miR-122 

LKO livers. (A) qPCR analysis demonstrated comparable upregulation of 

Igf2 and H19 unspliced hnRNA and fully spliced mRNA in LKO livers. n=4. (B) 

Methylation profile of DMR (Differentially Methylated Region) upstream 

of H19 gene is not significantly altered. Genomic DNA from LKO/KO and 

control livers was subjected to bisulfite sequencing with DMR-specific primers

[179].  Black and white boxes represent methylated and unmethylated CpG 

respectively. 
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Figure 2.15 miR-122 LKO livers do not undergo repopulation with non-

recombined miR-122-expressing hepatocytes. Northern blot analysis 

confirmed that expression of miR-122 is negligible in tumors (T) and matching 

benign liver tissues (N or L) in aged LKO mice. C, control mice. 
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Figure 2.16 miR-122 LKO mice develop hepatitis and fibrosis with age.  

Portal inflammation, steatosis, and fibrosis in 6 month old LKO mice. The 

inset depicts foci of altered hepatocytes as observed in some livers. 8-10 

mice of each genotype were analyzed after overnight fasting. Scale bars: top 

panel, 200µm; second and third panel and inset, 25µm; fourth panel; 200µm. 
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Figure 2.17 miR-122 KO mice develop hepatitis and fibrosis with age. (A) 

Portal inflammation, steatosis, and fibrosis in 6 month old KO mice. Scale 

bars: upper panel, 200µm; middle panel, 25µm and lower panel, 100µm. (B)

Hepatic triglyceride and cholesterol levels in 6 month old mice.   

A 

B 
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Figure 2.18 miR-122 LKO and KO mice develop hepatitis and fibrosis 

with age. (A,B) Portal inflammation, steatosis, and fibrosis in 6 month old (A) 

LKO and (B) KO mice. Scale bars: upper panel, 200µm; middle panel, 25µm 

and lower panel, 100µm. 

A 

B
A

LKO

KO 
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Figure 2.19. Infiltration of IL-6-producing CD11bhighGr1+ cells in livers of 

LKO/KO mice. (A) Immune cells from the liver of 10-week old male KO and

control mice were quantified by trypan blue exclusion. (B, C) The percentage 

of CD11bhighGr1+ cells is significantly increased in 10-month old non-tumor 

bearing LKO/KO mice. Flow cytometric data for one representative pair of 

mice (B) and summary data for three mice (C) are shown. 
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Figure 2.20 Cytometric analysis of cell types expressing IL6, TNF-α, and 

CCR2 (A) Intracellular flow cytometric analysis indicates that CD11bhighGr1+ 

cells but not lymphoctytes from the liver express IL-6. (B) Liver CD11bhighGr1+ 

cells produce TNF-α. Liver immune cells were enriched by Percoll density 

gradient centrifugation and subjected to surface staining with Gr1, CD11b, 

CD3, CD19, and NK1.1 antibodies, followed by intracellular staining for TNF-

A 

B C 
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α.  (C) Liver CD11bhigh cells have higher surface expression of Ccr2 than 

peripheral blood CD11bhigh cells.  Liver immune cells were enriched by Percoll 

density gradient centrifugation and peripheral blood cells were collected after 

clearance by red blood cell lysis buffer. Both liver and blood immune cells 

were subjected to surface staining with Gr1, CD11b, CCR2, CD3, CD19, and 

NK1.1 antibodies. 
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Figure 2.21 Loss of miR-122 correlated with Ccl2 expression in primary 

hepatocytes (A) qPCR analysis of Ccl2 expression in LKO (10 week old) and 

KO (5 week old) livers compared to age-matched controls. (B) Ccl2

expression is increased in LKO hepatocytes.   Hepatocytes isolated from KO 

and control (floxed) male mice were cultured overnight before RNA isolation. 

Ccl2 mRNA abundance was measured by qPCR and the data was 

normalized to Gapdh. (C, D) Ccl2 expression (C) is reduced in LKO/KO 

hepatocytes (isolated from 2 LKO and 1 KO mouse) upon overexpression of 

miR-122 (D). NC-S, scrambled negative control.   
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D
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Figure 2.22 Ccl2 is a direct target gene of miR-122. (A, B) Ccl2 (A) or miR-

122 (B) expression in Hepa cells transfected with miR-122 mimic vs. control 

(NC-S) or anti-miR-122 (miR-122-AS) vs. control (NC-AS). (C) Induction of 

spliced Ccl2 mRNA and unspliced Ccl2 hnRNA in KO livers (paired t-test 

shown). (D) Predicted miR-122 binding site in the 3' UTR of Ccl2 and 

corresponding mutant site. (E) Luciferase reporter assays as described in Fig. 

2D.  
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Figure 2.23 miR-122 LKO mice develop spontaneous HCC with age. (A) 

Representative photographs of liver and lung tumors that developed in 

LKO/KO mice.  Left lower panel shows a representative H&E and Afp (inset)-

stainedsection. Inset in right lower panel shows an H&E stain identifying the 

lung tumor as metastatic HCC. Scale bars: lower left panel: 25µm; left insets: 

35µm; right insets: 25µm. (B) Analysis of serum markers of liver function in 

control and tumor-bearing LKO/KO mice represented as mean ± SEM. P 

values was calculated using the Welch’s test after log transformation. (C) 

Serum IL-6 levels in control and tumor-bearing LKO/KO mice represented as 

mean ± SEM. P values were calculated using 2-tailed t-test. (D) Western blot 

analysis of whole tissue extracts demonstrated upregulationof HCC related 

proteins in liver and lung tumors. (E) Heat map anddendrogram showing that 

the expression levels of genes that are dysregulatedin tumors from LKO/KO 

mice are sufficient to classify human HCCs into high and low miR-122-

expressing subsets. Significance of this classification was assessed by using 

a bootstrap method. The heatmaps and dendrograms were generated after 

sampling of random gene lists of the same size from all mouse genes, then. 

P-value was obtained by calculating percentage of equal or better 

classification of HCC samples compared to the mouse gene list. 
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ALP 

(U/L) 

ALT 

(U/L) 

Chl 

(mg/dL) 

HDL-Chl 

(mg/dL) 

LDL-Chl 

(mg/dL) 

TG 

(mg/dL) 

Control 

(n=16) 

Median ± SE 

102.6 ± 

33.2 

 

71.3 ± 

19.7 

 

116.6 ± 

28.3 

 

63.3± 

19.2 

 

32.6 ±  

9.8 

 

103.9 ± 

28.8 

 

LKO 

(n=14) 

Median ± SE 

225.6 ± 

31.7 

 

91.7 ± 

96.5 

 

79.7 ± 

15.9 

 

47.4 ± 

11.5 

 

14.2 ±  

4.3 

 

95.3 ± 

13.1 

 

P-value 

 

4.67E-11* 

 

 

0.41 

 

 

1.8E-04* 

 

 

0.01* 

 

 

1.56E-06* 

 

 

0.33 

 

 

Table 2.1 Serum profiles of 8-10 week old control and miR-122 LKO 
mice. 

Serum was collected from mice by cardiac puncture after overnight fasting. 

Biochemical analysis of serum enzymes, and lipids was performed at the 

OSU mouse phenotyping core facility using VetAce (Alfa Wassermann 

system).  The control mice included 7 male and 9 female. The LKO mice 

included 6 male and 8 female.  Bilirubin levels (total and direct) were not 

altered (data not shown). Abbreviations: ALP, alkaline phosphatase; ALT, 

alanine aminotransferase; Chl, cholesterol; HDL-Chl, high-density lipoprotein 

cholesterol; TG, triglyceride; LDL-Chl, low-density lipoprotein cholesterol. 

Statistical significance was determined by student’s 2-tailed t test. P-

value<0.05 indicated by asterisks. 
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66 ALP (U/L) ALT (U/L) 
Chl 

(mg/dL) 

HDL-Chl 

(mg/dL) 

TG 

(mg/dL) 

Control 

(n=7) 

Median ± SE 

262.9 ± 51.5 42.5 ± 15.3 130.2 ± 70.7 47.4 ±27.7 
194 ± 

101.5 

KO 

(n=8) 

Median ± SE 

615.1 ± 69.2 44.2 ± 13.7 61.8 ± 25.0 21.6 ± 10.0 
156.2 ± 

74.7 

P-value 5.82E-07* 0.812 0.033* 0.039* 0.421 

 

Table 2.2 Serum profiles of 5 week old control and miR-122 KO mice 

Serum was collected from mice by cardiac puncture after overnight fasting. 

Control mice included 4 male and 3 female. KO mice included 4 male and 4 

female. Statistical significance was determined by student’s 2-tailed t test. P-

value<0.05 indicated by asterisks.  
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Table 2.3. Networks identified by Ingenuity Pathway Analysis among 

dysregulated genes in livers of miR-122 LKO mice. The IPA application 

(http://www.ingenuity.com/products/IPA/Free-Trial-Software.html) was used to 

identify gene networks that were overrepresented among the genes that 

exhibited ≥1.5 fold up- or down-regulation with a P-value ≤0.0001 in LKO 

livers. A significance score of ≥3 indicates that there is a less than 1 in 1000 

chance that the highlighted genes were assembled into a network due to a 

random chance. 

 

#

  

IPA 

Score 

Network functions 

1 33 
Organismal Survival, Cellular Movement, Cellular 

Growth and Proliferation 

2 18 
Lipid Metabolism, Small Molecule Biochemistry, 

Nucleic Acid Metabolism 

3 16 
Lipid Metabolism, Small Molecule Biochemistry, 

Molecular Transport 

4 15 
Amino Acid Metabolism, Molecular Transport, 

Small Molecule Biochemistry 

5 15 
Organismal Development, Hematological Disease, 

Immunological Disease 

6 13 
Lipid Metabolism, Molecular Transport, Small 

Molecule Biochemistry 

7 13 Cell Death, Gene Expression, Cancer 
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Table 2.4. Genes involved in lipid metabolism that are dysregulated in 

the livers of miR-122 LKO mice. qPCR analyses were performed in 

triplicate. The primer sequences are provided in the supplemental methods. 

Relative expression was calculated using the ∆∆CT method [178]. Statistical 

analysis of the qPCR data was performed using the student’s t 2-tailed test.  

 

Pathway Gene qPCR 
(LKO/control) P-value Microarray 

(LKO/control) P-value 

Triglyceride  Agpat1 10.8 2.5E-07 4.72 3.15E-12 

synthesis Agpat3 2.2 0.015 1.25 0.002 

 Agpat9 2.0 0.007 1.22 0.037 

 Mogat1 14.5 0.000 3.23 0.000 

 Dgat1 2.1 0.036 1.2 0.004 

 Ppap2a 2.0 0.022 1.3 0.001 

 Ppap2c 1.6 0.011 1.3 0.034 

Fatty acid  Acly 0.62 0.031 0.65 1.93E-05 

synthesis Chrebp 0.59 0.000 0.58 2.86E-07 

 Srebp1c 0.56 0.010 0.58 7.05E-05 

 Scd1 0.18 0.050 0.28 0.0002 

 Acs14 2.34 0.010 1.91 2.65E-05 

Fatty acid  Ehhadh 2.10 0.002 2.32 1.38E-05 

oxidation Ucp2 4.92 0.000 4.39 1.00E-09 

Cholesterol 

synthesis 
Hmgcr 0.69 0.050 0.68 0.000 

Lipid Stard4 0.59 0.014          0.69   3.24E-06 

transport (Stard2) 3.38 0.05 1.78 6.00E-05 

 
Slc27a1 

(FATP1) 
3.52 0.008 2.19 0.000 

Lipid 

storage 

Cidec 

(Fsp27) 
10.42 0.000 6.29 1.99E-07 
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Pathway Gene qPCR 
(LKO/control) P-value Microarray 

(LKO/control) P-value 

Cancer H19 493 0.000 118.45 0.000 

 Afp 8.33 0.001 1.72 0.001 

 Igf2 185 0.050 4.41 0.000 

 MapKapk2 1.73 0.020 1.72 0.000 

  Ctnnb1 1.27 0.000 1.71 0.000 

 c-Jun         1.9 0.000 1.93 0.001 

 Epcam 2.58 0.003 1.59 0.002 

 Ccng1 3.12 0.010 2.27 0.000 

 Ccnd1 7.13 0.030 3.54 0.000 

 Gadd45b 5.66 0.012 2.30 0.000 

 c-Myc 1.60 0.035 1.21 0.097 

 Rhoa 1.60 0.010 1.26 0.000 

 
Table 2.5 Genes related to hepatocarcinogenesis are significantly 

upregulated in miR-122 LKO livers. qRT-PCR analyses were performed in 

triplicate. The primer sequences are provided in the supplemental methods. 

Relative expression was calculated using the ∆∆CT method [178]. Statistical 

analysis of the qPCR data was performed using the student’s t 2-tailed test.  
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Pathway Gene qPCR 
(LKO/control) P-value Microarray 

(LKO/control) P-value 

Cancer H19 493 0.000 118.45 0.000 

 Afp 8.33 0.001 1.72 0.001 

 Igf2 185 0.050 4.41 0.000 

 MapKapk2 1.73 0.020 1.72 0.000 

  Ctnnb1 1.27 0.000 1.71 0.000 

 c-Jun         1.9 0.000 1.93 0.001 

 Epcam 2.58 0.003 1.59 0.002 

 Ccng1 3.12 0.010 2.27 0.000 

 Ccnd1 7.13 0.030 3.54 0.000 

 Gadd45b 5.66 0.012 2.30 0.000 

 c-Myc 1.60 0.035 1.21 0.097 

 Rhoa 1.60 0.010 1.26 0.000 

 
Table 2.6 Genes related to hepatocarcinogenesis are significantly 

upregulated in miR-122 LKO livers. qRT-PCR analyses were performed in 

triplicate. The primer sequences are provided in the supplemental methods. 

Relative expression was calculated using the ∆∆CT method [178]. Statistical 

analysis of the qPCR data was performed using the student’s t 2-tailed test.  
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 ALP (U/L) ALT (U/L) GGT (U/L) 

Control 

(n=7) 

Median ± SE 

81.0 ± 42.64 54.6 ± 18.2 0.67 ±0.82 

KO 

(n=5) 

Median ± SE 

252.3 ± 63.0 54.6 ± 18.2 4.2 ± 2.4 

P-value 0.0002* 0.10 0.007* 

 

Table 2.7 Serum profiles of 6 month old control and miR-122 KO mice  

Serum was collected from mice by cardiac puncture after overnight fasting. 

Control mice included 7 males and KO mice included 5 males. Statistical 

significance was determined by student’s 2-tailed t test. P-value<0.05 

indicated by asterisks.  
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 Control miR-122 LKO 

mice examined 27 (M:F=15:12) 46 (M:F=26:20) 

mice with HCC 0 15 (M:F=13:2) 

HCC grade 1 0 2 (M:F=2:0) 

HCC grade 2 0 7 (M:F=7:0) 

HCC grade 3 0 6 (M:F=4:2) 

tumor size (mm2) 0 219.9 ± 197.4 

tumor numbers 0 2.69 ± 3.11 

total tumor weight (g) 0 2.98 ± 3.43 

largest tumor weight (g) 0 1.48 ± 1.23 

 
Table 2.8 Summary of the incidence and characteristics of the tumors 

that developed in 12-17 month-old LKO mice  Mice within the age group of 

12-17 months were randomly selected to examine. HCC grading was based 

on Edmondson-Steiner’s grading system [PMID: 13160935]. All 

measurements of tumor were presented as mean ± SD. Abbreviation: M, 

male; F, female. 
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 Control miR-122 KO 

mice examined 24 (M:F=12:12) 39 (M:F=20:19) 

mice with tumor 0 19 (M:F=10:9) 

tumor size (mm2) 0 146.2 ± 97.1  

tumor numbers  0 2.55 ± 2.11 

total tumor weight (g) 0 1.63 ± 1.12 

largest tumor weight (g) 0 1.15 ± 0.78 

 
Table 2.9 Summary of the incidence and characteristics of the tumors 

that developed in 10-15 month old KO mice Mice within the age group of 

10-15 months were randomly selected to examine. All measurements of 

tumor were presented as mean ± SD. Abbreviation: M, male; F, female. 
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 miR-122 KO-male miR-122 KO-female 

HCC incidence 10/20 9/19 

HCC grade 1 3 6 

HCC grade 2 6 2 

HCC grade 3 1 1 

tumor size >50 mm2 8/10 5/9 

tumor numbers 2.50 ± 1.38 2.89 ± 2.52 

total tumor weight (g) 2.02 ± 1.03 1.20 ± 0.88 

largest tumor weight (g) 1.37 ± 0.64 0.91 ± 0.78 

 
Table 2.10 Summary of the incidence and characteristics of HCC 

developed in 10-15 month old KO male and female mice Mice within the 

age group of 10-15 months were randomly selected to examine. HCC grading 

was based on Edmondson-Steiner’s grading system [PMID: 13160935]. HCC 

incidences were presented as the number of HCC bearing mice divided by 

the total examined mice number. Similar way was used for the number of 

mice bearing tumor size over 50 mm2. All measurements of tumor were 

presented as mean ± SD.  
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Chapter 3. Liposomal delivery of miR-122 to HCC cell lines and DEN 

induced HCC animal model 

	
  

	
  

3.1 Abstract 

To restore dysregulated gene expression resulting from loss of 

microRNA, lipid nanoparticles (LNPs) were developed as vehicles for 

systemic delivery. The novel LNPs, termed LNP-DP1, consist of a 

conditionally ionizable cationic lipid, 2-dioleyloxy-N,N-dimethyl-3-

aminopropane (DODMA), egg PC, cholesterol (Chol) and Chol-polyethylene 

glycol (Chol-PEG). miR-122 is the most abundant liver-specific tumor 

suppressor microRNA, which is downregulated in primary HCC. Transfection 

of miR-122 to HCC cell lines by LNP-DP1 diminished expression of miR-122 

targets by >95%. LNP-DP1 was preferentially taken up by hepatocytes and 

tumor epithelial cells as demonstrated by systemic delivery of fluorescence 

labeled siRNA by LNP-DP1 in different mouse models of HCC. LNP-DP1 did 

not induce significant liver or kidney damage in mice. miR-122 was 

successfully delivered and found to be functional in hepatocytes and tumor 
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cells as demonstrated by downregulation of several target genes. To 

demonstrate therapeutic potential of miR-122, LNP-DP1 encapsulating miR-

122 was intratumorally injected into HCC xenograft developed in nude mice. 

The tumor growth was significantly suppressed within 30 days after delivery 

of miR-122, which correlated well with reduced expression of its target genes 

and proliferation marker. These data demonstrate the potential of LNP 

mediated microRNA delivery as an alternate strategy for HCC therapy. 

	
  

	
  

3.2 Introduction 

     Hepatocellular carcinoma (HCC) is the fifth most common cancer 

worldwide and the third leading cause of cancer-related deaths [134, 180, 

181]. In United States, the incidence of HCC has almost tripled during the 

past two decades and has become one of the fastest growing cancers [182]. 

HCC often occurs in the liver predisposed to hepatic steatosis, chronic 

hepatitis, fibrosis, and cirrhosis [134]. The major factor contributing to the 

increase in HCC-related deaths is late diagnosis and the lack of effective 

drugs or therapeutic strategies. While surgical removal of tumor tissues is an 

effective approach to protect relatively healthy liver tissue [183], it is only 

applicable to a small subset of HCC patients who have with specific 

pathological conditions, such as confined tumor mass without portal 
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hypertension. Therefore, there is an urgent need to develop novel therapeutic 

strategy to treat this deadly disease.  

     A promising strategy is to deliver the tumors either microRNAs (miR 

mimics) that function as tumor suppressors or anti-oligos to miRs that exhibit 

oncogenic characteristics. MicroRNAs regulate many biological processes 

including development, metabolism and aging [184, 185]. MicroRNAs are 

essential for liver homeostasis since loss of Dicer1, a central enzyme in 

microRNA processing, compromises liver functions and promotes 

hepatocarcinogenesis in mice[138, 186, 187]. Recent findings have 

suggested therapeutic potential of microRNAs against liver cancer [86, 90, 

188]. We have demonstrated that the level of miR-122, the most abundant 

and developmentally regulated liver-specific microRNA [129, 152], is 

drastically reduced in human and rodent HCCs and that its overexpression 

inhibits the growth of HCC cell lines [80, 81]. More importantly, miR-122 is a 

biomarker for HCCs with poor prognosis and metastasis[189-191]. Other 

microRNAs, including miR-199a and miR-26a, also inhibit 

hepatocarcinogenesis and, therefore, exhibit therapeutic potential against this 

cancer[85].  

      Several approaches, such as hydrodynamic injection [192, 193], viral 

infection[194, 195] and nanoparticles [124, 196], were developed to deliver 

siRNA/microRNAs to cells to modulate gene expression. Cationic lipids, or 

lipid-like materials based nanoparticles, are the most well studied vesicles for 

delivery of siRNA in vivo [197, 198]. After endocytosis, the cationic lipids form 
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ion pairs with anionic phospholipids of the endosomal membrane. 

Subsequently, this newly formed cone shape ion pairs may disrupt the 

endosomal membrane and promote the release of encapsulated siRNA from 

the endosome to exert its biological function within cells [199, 200]. For 

example, stable nucleic acid lipid particle (SNALP), a new formulation of 

cationic LNPs, has been successfully used to deliver siRNA for silencing 

target genes in non-human primates and is currently being tested in clinical 

trials [124, 201, 202].  

	
  	
  	
  	
   	
  In this study, we developed a new LNP-DP1 formulation to 

systemically deliver liver-specific miR-122 to HCC and thus provide proof-of-

concept for the potential of exogenous miR-122 mimic in HCC therapy. 

Because synthetic miRNA and siRNA molecules share similar properties, we 

used the fluorescence labeled siRNA to demonstrate the preferential uptake 

of LNP-DP1 by the liver and HCC. A miR-122 knockout mouse model 

generated in our laboratory was used to evaluate the altered expression of 

cancer-related genes by systemic administration of miR-122 using novel LNP-

DP1 for delivery. Here, we report significant inhibition of HCC growth in 

xenograft mice model following intratumoral delivery of miR-122 by LNP-DP1. 
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3.3 Materials and Methods 

3.3.1 Materials  

2-Dioleyloxy-N,N-dimethyl-3-aminopropane (DODMA) was purchased 

from Genzyme Pharmaceuticals (Cambridge, MA). Egg phosphatidylcholine 

(egg PC) was purchased from Lipoid (Newark, NJ). Cholesterol (Chol) was 

purchased from Sigma-Aldrich (St. Louis, MO). 1,2-Dimyristoyl-sn-glycerol 

[methoxy(polyethylene glycol)-2000] (DMG-PEG), 1,2-Distearoyl-sn-glycerol 

[methoxy(polyethyleneglycol)- 2000] (DSG-PEG), a-(3b)-Cholest-5-en-3-yl-W-

hydroxy [methoxy (polyethylene glycol)] (Chol-PEG) were from NOF America 

Corporation (White Plains, NY). N-palmitoyl-sphingosine-1 -succinyl 

[methoxy(polyethylene glycol) 2000] (Ceramide- PEG), 1,2-Dimyristoyl-sn-

glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (C14-

PE-PEG), 1,2-Distearoyl-sn-glycero-3-phospho- ethanolamine-N- 

[methoxy(polyethylene glycol)-2000] (DSPE-PEG), 1,2-Dipalmitoyl-sn-

glycero- 3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] 

(C16-PE-PEG) were obtained from Avanti Polar Lipids (Alabaster, AL). Other 

chemicals and reagents were obtained from Sigma-Aldrich (St. Louis, MO) 

and were of analytical grade. All tissue culture media and supplies were 

obtained from Invitrogen (Carlsbad, CA). Luciferase (GL2 + GL3) siRNA (AM 

4629), negative control siRNA (AM 4611), cy3 labeled control siRNA (AM 

4621) and FAM labeled control siRNA (AM 4620) were obtained from Applied 

Biosystems (Austin, TX). miRNA-122 mimic and non-targeted control mimic 

were purchased from Dharmacon (Pittsburgh, PA). 
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3.3.2 Preparation of miRNA encapsulated LNPs  

The cationic liposomes were prepared as described previously with 

minor modification[203]. Briefly, an ethanolic lipid solution composed of 

DODMA/EggPC/Chol/PEG-lipid at 45:15:35:5 (molar ratio) was mixed wth 20 

mM HEPES (pH7.4) solution at room temperature. Ethanol was removed by 

dialysis using a MWCO 10,000 Dalton Float-A-Lyzer (Spectrum Laboratories 

Inc., Rancho Dominguez, CA) against 20 mM HEPES (pH=7.4) buffer for 2 

hours at room temperature. The resulting liposomes were filtered and 

sterilized. miRNA encapsulated LNPs were prepared by mixing cationic 

liposomes with an equal volume of miRNA in 20 mM HEPES buffer at room 

temperature for 15 min. The weight ratio of lipids to miRNA was 10:1. For 

intravenous injection to mice, the miRNA-LNPs were centrifuged and 

concentrated to 200 ml using the Amicon® Ultra-4 Ultracel-50k Da centrifugal 

device (Millipore, Billerica, MA). The encapsulation efficiency of miRNA in 

LNPs was determined by RiboGreen assay (Invitrogen, Carlsbad, CA). The 

siRNA encapsulated LNPs were prepared by following the same method. The 

particle size of LNPs was determined by dynamic light scattering using a 

particle sizer BI-200SM (Brookhaven Instruments Corp., Holtsville, NY) in an 

intensity-weighted mode. Following dilution in water, the zeta potentials (ζ) of 

LNPs were measured using a ZetaPALS zeta potential analyzer (Brookhaven 

Instrument Corp., Holtsville, NY). The Smoluchowski model was used to 

calculate the zeta potential and the mean ± SD was reported. 
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3.3.3 Liver tumor models  

The animal studies were carried out in accordance with the internal 

Institutional Animal Care and Use Committee guidelines at The Ohio State 

University. All athymic nude mice were obtained from Harlan Laboratory 

(Indianapolis, IN). Nude mice were inoculated subcutaneously with SK Hep-1 

cells (5×106) to produce HCC xenograft model. Biodistribution study was 

performed when the tumors reached ~200 mm3. DEN induced tumor model 

was developed as described[176]. Briefly, on postnatal day 14, miR-122 

knockout mice received IP injections of DEN (25 µg of DEN/g body weight; 

Sigma-Aldrich. (St. Louis, MO), which induced hepatocyte DNA damage 

through DNA adduct formation and subsequently led to liver tumor after 6-8 

months. For orthotopic tumor model, SK Hep-1 cells (5x106) were mixed with 

50ml Matrigel (1 µg/µL; BD Biosciences, San Diego, CA) and were 

intrahepatically implanted into nude mice under sterile conditions. 

 

3.3.4 Antitumor activity of miR-122 encapsulated LNP-DP1 in xenograft 

model  

Female athymic nude mice (16~18 g) (Harlan Laboratory, Indianapolis, 

IN) were used for investigating the antitumor efficacy in vivo. Briefly, 

approximately 5×106 SK Hep-1 cells were injected subcutaneously into the 

flanks of the nude mice. When tumors reached 150~180 mm3 in volume, mice 
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were randomly divided into three treatment groups (eight for each). Mice were 

injected intratumorally twice a week for 4 weeks with 10 mg of miR-122 mimic 

or scrambled siRNA (Dharmacon, Pittsburgh, PA) encapsulated in LNP-DP1. 

Anti-tumor activity was evaluated in terms of tumor size (V), which was 

estimated by the equation V = a×b2/2, where a and b are the major and minor 

axes of the tumor, respectively, as measured by a caliper.  

 

3.3.5 Cell culture and transfection study  

SK Hep-1 cells, stably expressing the firefly luciferase gene, were 

plated at a concentration of 2×104 cells/well in 48-well plates and grown to 60-

70% confluency prior to transfection. Luciferase specific siRNA (Luci-siRNA) 

and negative control siRNA (NC siRNA) (Dharmacon, Pittsburgh, PA) were 

formulated into LNPs. Cells were treated with various siRNA-LNPs at 

indicated concentrations and incubated for 24 hours at 37°C and 5% CO2. 

The downregulation of luciferase activity was determined using Luciferase 

Reagent (Promega, Madison, WI), using a Berthold MicroLumatPlus LB96V 

plate luminometer and normalized to the total protein of each well. 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA) transfected and nontrasfected 

cells were used as control. SMMC-7221 cell line was transfected with Bcl-2 

siRNA using LNP-DP1. Hiperfect (Qiagen, Valencia, CA) transfected and 

non-transfected cells were used as control. The downregulation of Bcl-2 was 

measured by quantitative real time PCR (qRT-PCR). Similarly, Hep3B cells 

were transfected with miR-122 mimic and negative control miR using LNP-
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DP1. The miR-122 level and downregulation of several miR-122 targets were 

measured by qRT-PCR. 

 

3.3.6 In vivo biodistribution study of LNP-DP1  

             All animal studies were conducted with approval from Institutional 

Animal Care and Use Committee at The Ohio State University. To study the 

in vivo biodistribution of LNP-DP1, cy3-labeled siRNA was formulated into 

LNP-DP1 as a probe. LNP-DP1 containing 50 µg of cy3-labeled siRNA in a 

total volume of 0.2 ml was delivered into normal ICR mice (Harlan Laboratory, 

Indianapolis, IN) or mice bearing various tumors by i.v. injection. Mice were 

sacrificed after 4 hours, tissue samples from lung, kidney, spleen, heart and 

tumor were harvested and fixed in 4% paraformaldehyde in PBS (pH=7.4) for 

6 hours followed by overnight incubation in a 30% sucrose/PBS solution at 

4°C. Fixed tissue samples were then placed into block holders containing 

O.C.T. freezing medium (Fisher Scientific, Pittsburgh, PA) and snap-frozen on 

dry ice. The frozen blocks were sectioned using cryostat at 4mm. Cellular 

membranes and nuclei were stained with Alexa-488 Phalloidin (Invitrogen, 

Carlsbad, CA) and DAPI (Vector, Burlingame, CA), respectively for 5 min at 

room temperature. Green fluorescence of actin filament, red fluorescence of 

cy3-siRNA and blue fluorescence of DAPI were observed by an Olympus 

FV1000 Filter Confocal Microscope (Olympus Optical Co., Tokyo, Japan). 

The liver and tumor tissues were also observed under Olympus FV1000MPE 

two-photon microscopy (Olympus Optical Co., Tokyo, Japan) to check the 
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collagen distribution. For IVIS imaging, ICR mice were given i.v. injections of 

cy5-labeled siRNA encapsulated LNP-DP1. After 4 hours, mice were 

euthanized and tissues were collected and fixed in 4% paraformaldehyde for 

12 hours. The tissues were then soaked in 30% sucrose for another 12 hours. 

The fluorescence signals of cy5 emitted by the whole tissues were measured 

using a Xenogen IVIS-200 Optical In Vivo Imaging System (Caliper Life 

Sciences, Hopkinton, MA). 

 

3.3.7 Biological evaluation of LNP-DP1 mediated delivery of miR-122 in 

miR-122KO model  

Eight- to twelve-week-old miR-122 knockout mice were treated with 

either negative control or miR-122 mimic (Dharmacon, Pittsburgh, PA) 

conjugated LNPs via tail vein injection at a dose of 2.5 mg/kg for three times 

within 9 days. The Livers were harvested and analyzed by qRT-PCR and 

Western blot to determine the expression level of miR-122 and its targets, 

respectively. Total RNA was extracted using Trizol reagent (Invitrogen, 

Carlsbad, CA). To measure mature miR-122 expression, total RNA was first 

reverse transcribed into cDNA using the TaqMan MicroRNA reverse 

transcription kit (Applied Biosystems, Carlsbad, CA). The qRT-PCR 

amplification of cDNA was then performed using TaqMan MicroRNA assay 

(Applied Biosystems, Carlsbad, CA). To measure the expression of miR-122 

target genes at the mRNA level, the total RNA was transcribed into cDNA 

using the first-strand cDNA synthesis kit (Invitrogen, Carlsbad, CA). The 
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resulting cDNA was amplified by qRT-PCR. To analyze the expression of 

miR-122 target genes at the protein level, protein extracts from liver tissues 

were separated by SDS-PAGE and subjected to Western blot analysis with 

specific antibodies.  

 

3.3.8 Statistical analysis The data is presented as the mean ± SD of 

triplicate unless otherwise indicated. Statistical significance is calculated by 

student t-test and a p-value <0.05 is considered as significant.  

 

 

3.4 Results 

3.4.1 Optimization of PEG-lipids for LNPs mediated delivery of miR-122 

to HCC cell lines 

LNPs are comprised of an ionizable cationic lipid DODMA, EggPC, 

cholesterol (Chol) and PEG-lipid (Figure 3.1A,B). Owing to the steric 

shielding of hydrophilic PEG materials, PEG-lipids are widely used to 

increase the in vivo stability and enhance circulation half-life of LNPs 

compared to their non-PEGylated counterparts. Since very strong shielding 

would influence the transfection ability of LNPs, we sought to identify the 

optimal amount of PEG-lipid for miRNA delivery in vivo. LNPs consisting of 

seven different PEG-lipids with average diameter of ~100 nm and neutral 

surface charge were prepared. The mean diameter and zeta potential of LNP-
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DP1 containing Chol-PEG were 102.2±15.2 nm and -3.94±0.75 mV, 

respectively (Figure 3.1C).  

    To test the transfection efficiency of different LNPs, we first examined 

the efficacy of luciferase specific siRNA in silencing luciferase expression in a 

HCC cell line (Sk Hep-1) stably expressing firefly luciferase (Figure 3.1C). 

The data suggested that LNP-DP1 formulation, in which PEG was conjugated 

to cholesterol, was the best modification of PEG particles in terms of 

luciferase silencing among all LNPs examined. Its transfection efficiency was 

better than that of lipofectamine® 2000, a well-known commercial transfection 

agent.  

    To evaluate the efficiency LNP-DP1 in targeting mRNA, LNP-DP1 

containing Bcl-2 specific siRNA (LNP-DP1-Bcl-2-siRNA) was used to 

transfect SMMC7721 cells. qRT-PCR analysis showed that the Bcl-2 level 

was significantly reduced in cells transfected with LNP-DP1-Bcl-2-siRNA 

compared to cells transfected with scrambled siRNA and nontransfected cells 

(Figure 3.1D). Notably, the knockdown efficiency of LNP-DP1-Bcl-2-siRNA 

was comparable to Hiperfect®, a commercially available lipid based 

transfection agent. We then studied the delivery of miR-122 in Sk Hep-1 cells 

that do not express this liver specific microRNA and performed qRT-PCR to 

quantify the level of miR-122 and its target genes. As expected, the miR-122 

level significantly increased (over 500-fold) in cells transfected with LNP-DP1-

miR-122 compared to the negative control (Figure 3.2A). Consistent with the 

elevated levels of this miRNA, its target genes such as Srf, Igf1r and Adam10 
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were significantly downregulated by 99.2%, 99.6% and 97.6%, respectively 

(Figure 3.2B). These results confirm that Chol-PEG based LNP is an 

excellent delivery system for si/miRNAs in HCC cells in vitro.  

 

3.4.2 In vivo liver targeting delivery mediated by LNP-DP1 

    Due to their vital role in liver related diseases such as hepatocellular 

carcinoma, hepatocytes are the major cells for liver-targeted delivery. 

Because the properties of miRNA mimics are similar to those of synthetic 

siRNAs, a cy3 labeled siRNA encapsulated into LNP-DP1 was used to 

evaluate the efficacy of LNP-DP1 mediated systemic delivery of miRNA to the 

liver. The in vivo distributions of LNP-DP1 in mice were examined by confocal 

and IVIS imaging. Confocal images of sections of the liver and other organs 

showed that the labeled particles predominantly accumulated in the liver 

(Figure 3.3A) and to a lesser extent in the spleen (Figure 3.3B). In the liver, 

the particles were not just trapped in the sinusoid space but were efficiently 

taken up by the hepatocytes as shown under a higher magnification. The 

fluorescent signal of delivered particles was not detectable in other organs, 

such as heart, kidney and lung and was barely detectable in the spleen 

(Figure 3.3B).  

    We also evaluated the distribution of LNP-DP1 mediated siRNA 

delivery using the IVIS imaging system. LNP-DP1 facilitated predominant 

accumulation of cy5 labeled siRNA in the liver and to a much lower level in 
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the spleen and kidney (Figure 3.3C). These results corroborated very well 

with the confocal data (Figs. 3.3A, B). Notably, LNP-DP1 was more efficient 

than commercially available Invivofectamine in delivering the siRNA to the 

liver tumor. 

    Serum analysis showed insignificant toxicity in mice treated with the 

LNP-DP1 formulation (Figure 3.4). Comparable serum alanine 

aminotansferase (ALT) and aspartate aminotransferase (AST) levels between 

LNP-DP1 and saline-injected animals indicated that there was no significant 

liver damage caused by the particles. The normal serum level of blood urea 

nitrogen (BUN) and creatine kinase (CK) suggested that the kidney function 

was normal in these mice. Taken together, these data suggested that LNP-

DP1 formulation could be used to deliver siRNA and miRNA specifically to the 

liver without causing systemic toxicity. 

 

3.4.3 Efficacy evaluation of LNP-DP1 mediated delivery to liver tumors 

    To examine the efficiency of LNP-DP1 delivery to tumor tissues, we 

used diethylnitrosamine (DEN)-induced HCC model. DEN, a liver carcinogen, 

is frequently used as an animal model for HCC because its tumor structure 

and vessel formation resemble those of human HCC [204]. Therefore, we 

used this model to test whether LNP-DP1 can be systemically delivered to 

tumors localized in the liver. Four hours after injecting intravenously LNP-DP1 

particles encapsulated with cy3-siRNA, both tumors (section I) and 
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peritumoral liver lobes (section II) from mice were processed for sectioning 

and staining. Confocal microscopy showed significant levels of cy3-siRNA 

particles (red) in hepatocytes in the liver and in tumors (Figure 3.5A), 

indicating significant uptake of LNP-DP1 particles to HCCs. The higher 

collagen density in tumor is known to impede deeper penetration of 

nanoparticles [205]. Two-photon confocal microscopic analysis in the present 

study, however, showed low collagen density (shown in yellow color in 

images) in both HCC (section I) and benign liver (section II), which explains 

efficient localization of LNP-DP1 in the DEN-induced HCC (Figure 3.5B).  

    We next investigated the delivery of LNP-DP1 in two additional liver 

cancer models, namely SK Hep-1 xenograft and Hep-3B orthotopic models.  

After 4 hours of intravenous administration of cy3-siRNA encapsulated in 

LNP-DP1, the mice were sacrificed. Confocal microscopy of liver and tumor 

sections showed much higher accumulation of cy3-siRNA in livers relative to 

tumors in both models (Figs. 3.6A, B). Very high collagen content 

surrounding the tumor cells was detected by two-photon confocal imaging in 

both xenograft and orthortopic models (Figure 3.6C), indicating poor blood 

supply and strong delivery barriers for LNPs in the tumors. 

 

3.4.4 LNP-DP1 mediated delivery of miR-122 specifically downregulates 

miR-122 target genes in liver and tumor tissues 

    To evaluate the efficiency of LNP-DP1 mediated delivery of microRNA 

and the resultant downregulation of specific target genes, we took advantage 
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of miR-122 knockout (miR-122KO) mice that do not express miR-122 in the 

liver. LNP-DP1-miR-122 and LNP-DP1-negative control was injected 

intravenously (2.5 mg/kg) to the miR-122KO. Following LNP-mediated 

delivery of miR-122, the expression level of its target genes was measured by 

qRT-PCR and Western blot analyses. qRT-PCR analysis of the livers from 

these animals after one week of treatment showed significant increase (2.79 

fold, P=0.002) in the miR-122 level with concomitant decrease in two target 

mRNAs of miR-122 namely, Adam10 and Mapre1 (Figures 3.7A, B).   

    To determine if miR-122 can also be delivered to the tumors, LNP-

DP1-miR-122 was injected intravenously to the animals bearing the DEN-

induced liver tumors. Five miR-122KO mice injected twice a week with LNP-

DP1-miR-122 (2.5 mg/kg) showed a significantly higher miR-122 level in the 

liver after one week (Figure 3.7C), and the protein levels of Adam10, Srf, 

Mapk inversely correlated with the delivered miR-122 level in the tumors that 

originally lacked miRNA (Figure 3.7D). Adam10 and Srf were identified 

earlier as direct targets of miR-122 [80]. Notably, suppression of target genes 

and Mapk was significantly higher in the tumor than in the liver, which was 

consistent with higher uptake of miR-122 in the tumor (14 fold vs 4 fold). 

These results suggested that microRNAs could be delivered to both normal 

liver and tumor tissues. Furthermore, the downregulation of several target 

genes of miR-122 suggested that the LNP-DP1 carrying miR-122 could be 

released from the nanoparticles to exert its function in vivo. 
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3.4.5 Intratumoral delivery of miR-122 containing LNP-DP1 suppresses 

the growth of HCC xenografts in nude mice 

    To assess the therapeutic potential of the miR-122 mimic, we chose to 

use a HCC xenograft mouse model bearing the SK Hep-1 tumor for effective 

monitoring of the temporal changes in tumor growth. Due to poor blood 

supply and high collagen distribution (Figure 3.6C) in subcutaneous 

xenograft tumors, the systemic delivery efficiency of the LNP-DP1 carrying 

microRNA to these tumors was lower than that in spontaneous tumor 

(Figures 3.5A, 3.6A). To increase the delivery efficiency, we injected LNP-

DP1-miR-122 or LNP-DP1-negative control RNA intratumorally to xenograft 

tumors and monitored the tumor growth. As expected, the tumor size and 

weight of the group following miR-122 uptake were significantly smaller than 

that of the negative control group, which could be detected as early as 7 days 

after the first injection (Figures 3.8A-C). Notably, the tumor size of the group 

that received miR-122 mimic in LNP-DP1 increased nearly 2.5 fold (tumor 

size at 26th days: 380.1 ± 69.1 mm3) after 26 days of treatment whereas it 

increased about 6-fold (tumor size at 26th days: 995.5 ± 259.1 mm3) in the 

negative control group that did not receive exogenous miR-122. qRT-PCR 

analysis also showed significantly higher levels of miR-122 in the tumors 

supplemented with miR-122 (Figure 3.9A). Among the target genes of miR-

122, Adam10 was significantly reduced in the xenograft tumor tissue (Figure 

3.9B). Further, the proliferation of LNP-DP1-miR-122 injected tumors was 

significantly lower than the untreated controls, as demonstrated by the 
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reduced number of Ki-67 positive cells (Figure 3.9C). The body weight of 

both mouse groups was comparable (data not shown). Overall, this 

experiment showed that, miR-122 can be efficiently delivered to the xenograft 

tumor by intratumoral injection that leads to suppression of tumor growth 

probably due to inhibition of expression of its target genes.  

 

3.5 Discussion  

     Gene therapy has been proposed and implemented in some cases to 

reverse the abnormal gene expression resulting from genetic or epigenetic 

alterations, without surgical removal of the tumors[206-208]. While siRNA-

mediated silencing of the expression of a specific disease-causing target 

gene holds great promise for cancer therapy, it is likely that redundant genes 

with complementary functions could compensate for the function of the 

depleted genes. As an alternative, microRNA-based therapy is being 

intensely pursued because miRNAs can target multiple genes. Because of 

their low serum stability, the development of safe and effective in vivo delivery 

systems is of central importance to realize the effectiveness of DNA or RNA 

based therapeutic applications. Numerous strategies including viral [86, 195, 

209] and non-viral systems [120, 192, 210, 211] have been applied in animal 

models of HCC or in patients for targeting RNAi to liver tumors. Although viral 

delivery of RNAi produces significant ectopic expression of target genes, non-

viral systems are still considered a safer choice due to its lower 
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immunogenicity. Among the non-viral delivery approaches, LNPs have shown 

significantly higher potential for the delivery of DNA or RNA in vitro and in vivo 

[212, 213].  

    The LNP formulation developed in the present study is based on a 

commercially available cationic lipid, DODMA. DODMA has a protonatable 

tertiary amine head group and it is an ionizable cationic lipid [203, 214]. The 

charge of the head group of DODMA is pH dependent. The nanoparticle-

mediated delivery of miRNAs has several advantages. First, when the 

particles are taken up by cells and encapsulated by endosomes, the more 

acidic environment in the endosomes will promote the release of miRNA from 

LNP by the fusion between the cationic DODMA and anionic lipids of 

endosomal bilayers. Second, incorporation of PEG prevents aggregation and 

aids in the formation of uniform and small nanoparticles, which can be 

accomplished with the use of PEG-lipid conjugates to synthesize LNP. Seven 

PEG-lipids were examined by evaluating siRNA mediated luciferase silencing 

in SK Hep-1 cells. The LNP-DP1 formulation containing Chol-PEG lipid 

showed the best delivery efficiency of siRNA against the promoter sequence 

of luciferase among all examined PEG-lipids examined to date (Figure 3.1C). 

The nano-sized particles may be accessible to hepatocytes by passive 

targeting delivery. Upon reaching the liver, the nanoparticles could exit the 

intravascular space to directly access hepatocytes as long as the particle size 

is smaller than the pore size of fenestrated vasculature (100~150 nm in 

diameter)[215, 216]. More recent research suggested that ApoE could act as 
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an endogenous targeting ligand to facilitate uptake of ionizable LNPs to 

hepatocytes in vivo[217]. LNPs can be more selectively accumulated in liver 

tumors by passive targeting via the enhanced permeability and retention 

(EPR) effect. It is noteworthy that three different HCC models exhibited 

dramatically different responses to LNP-DP1 mediated delivery of 

fluorescence labeled siRNA. Transport barriers to drug delivery arise from 

abnormal characteristics of the tumor microenvironment. The dense interstitial 

structure, such as high levels of collagen, is one of the major abnormal 

physical and physiological properties that contribute to the transport barriers 

for nanoparticles. Generally, the diffusion rate is inversely correlated with the 

collagen level. In the present study, the primary tumors developed in the DEN 

model exhibit minimal collagen distribution, thereby achieving the best uptake 

of LNP-DP1 compared to the subcutaneous and orthotopic HCC models.  

   We performed three different experiments to demonstrate the potential 

of the LNP-DP1-miR-122 complex. First, we used fluorescence microscopy to 

show that significant amount of siRNA/LNP-DP1 complex was taken up by 

HCC cells using fluorescence microscopy. Second, a significant increase in 

the miR-122 level detected by qRT-PCR with concomitant decrease in 

several miR-122 targets after delivery (Figure 3.7D) was indicative of the 

successful release of miR-122 from LNP-DP1. Third, we used an established 

xenograft animal model, instead of a long-term monitoring of liver tumor 

growth in animals, to precisely monitor the tumor progression after the 

delivery of the LNP-DP1-miR-122 complex. It is noteworthy that the tumor 



	
  
	
  

	
   112	
  

growth was significantly suppressed after one month of treatment. The 

immunohistochemistry with the Ki67 antibody indicated reduced proliferation 

of the xenograft tumor after treatment. Admittedly, a large cohort of animal 

study in a DEN-induced HCC model will be necessary to determine the 

proper dosage and duration of LNP-DP1-miR-122 delivery. Nevertheless, the 

present study has provided important data that supports the potential 

application of the LNP-DP1-miR-122 complex in HCC therapy. In the absence 

of adequate success in the treatment of HCC and in light of dramatic increase 

in the incidence of HCC in the western world, this novel strategy to deliver an 

important liver-specific tumor suppressor miRNA directly to the tumor is a 

significant advance. 
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Figure 3.1 LNPs mediated delivery of miRNA122 to HCC cell lines in 

vitro.  

(A) Schematic of miRNA encapsulated by PEG (green) modified LNPs and 

(B) the structure of cationic lipid DODMA. (C) Reduced luciferase expression 

in SK Hep1 cell lines transfected with siRNA. Using different types of LNPs, 

SK Hep-1 cell lines were transfected with 100 nM siRNA against the promoter 

sequence of luciferase. The reduction in luciferin luminescence intensity, 

detected at 24 hours post-transfection, was determined as the measure of 

luciferase knockdown. The signal intensity was normalized to that of control 

untreated cells. LNPs used and their components of PEG-lipids were: LNP-

A B 

C D 
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DP1: Chol-PEG; LNP-DP2: Ceramide-PEG; LNP-DP3: DSPE-PEG; LNP-

DP4: DMG-PEG; LNP-DP5: C14-PE-PEG; LDP-DP6: C16-PE-PEG; LDP-

DP7: DSG-PEG. (D) SMMC7721 cell lines were transfected with Bcl-2 siRNA, 

using lipofectamine and LNP-DP1 for 48 hours. Reduction of Bcl-2 expression 

was determined by qRT-PCR. Bcl-2 level of each group was normalized to 

untreated cells. 
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Figure 3.2 LNP-DP1 mediated delivery of miR-122 to HCC cell line in 

vitro (A) LNP-DP1 mediated delivery of miR-122 in Hep3B cell line and (B) 

the target gene downregulations were evaluated by qRT-PCR.  

A 

B 



� � � �

Figure 3.3 In vivo liver targeting delivery mediated by LNP-DP1 (A, B) 

Confocal microscopic imaging of liver sections (A) and other organs (B). Mice 

were injected with LNP-DP1 carrying cy3-siRNA via tail vein. After 4 hours the 

liver was harvested and sections were counterstained as described in 

methods and materials. Scale bar=20 µm. (C) Tissue distribution of LNP 

carrying cy5-siRNA. Four hours after intravenous administration, tissues were 

harvested and cy5 fluorescence signals were measured by IVIS imaging. 

A B 

C 
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Figure 3.4 In vivo toxicity analysis of the systemic delivery of LNP-DP1 

carrying miR-122.  
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Figure 3.5 In vivo biodistribution of LNP-DP1 mediated delivery in three 

liver tumor models. (A) Confocal microscopic imaging analysis of liver 

(section II) and tumor (section I) for LNP-DP1. (B) Two-photon confocal 

imaging of collagen distribution in DEN induced mice model. All mice were 

treated by cy3 -siRNA (2.5 mg/kg) in LNP-DP1 by i.v. injection for 4 hours. 

Scale bar=20 µm.  
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Figure 3.6 In vivo biodistribution of LNP-DP1 mediated delivery in

xenograft and Hep3B orthotopic liver tumor models. (A) Confocal 

microscopic imaging of liver and tumor sections for LNP-DP1 in SK Hep-1 

xenograft mice model. (B) Confocal microscopic imaging of liver and tumor 

sections for LNP-DP1 in Hep-3B orthotopic mice model. (C) Comparative 

studies of collagen distribution of xenograft and othortopic models by two-

photon confocal imaging. All mice were treated by cy3 -siRNA (2.5 mg/kg) in 

LNP-DP1 by i.v. injection for 4 hours. Scale bar=20 µm.  

C 



� � � �

Figure 3.7 LNP-DP1 mediated delivery of miR-122 specifically 
downregulates target genes in liver and tumor tissues. LNP-DP1

encapsulated miR-122 was delivered twice a week to normal (n=4) or tumor-

be� aring (n=5) miR-122 knockout mice at a concentration of 2.5 mg/kg by i.v. 

injection. After one week, mice were sacrificed and processed. (A, C) Total 

liver RNAs from (A) normal and (C) tumor-bearing mice were extracted and 

analyzed by qRT-PCR to determine the level of miR-122 normalized to 

RNU6B. (B, D) Total liver proteins from (B) normal and (D) tumor-bearing 

mice were extracted and analyzed by Western blot with designated 

antibodies. The miR-122 level in miR-122KO injected with miR-122 mimic or 

scrambled (NC RNA). miR-122 level in mice injected with NC RNA was 

assigned as value of 1.   
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Figure 3.8 Intratumoral delivery of miR-122 in LNP-DP1 suppresses the 

growth of liver tumor xenografts in nude mice. (A) The tumor growth 

curves of xenograft tumors in nude mice intratumorally injected with negative 

control LNP-DP1-siRNA and LNP-DP1-miR-122. P-value: *, P<0.05; **, 

P<0.01; ***, P<0.001. (B) The average weight of xenograft tumors harvested

at the end of treatment. (C) Pictures of representative xenograft tumors 

harvested at the end of treatment. Scale bar=1 cm.  
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Figure 3.9 Intratumoral delivery of miR-122 in LNP-DP1 suppresses the 

growth of liver tumor xenograft in nude mice. (A, B) Expression of (A) 

miR-122 and (B) its targets. (C) Immunohistochemistry with Ki67 antibody. 

The dark brown stained cells are Ki67-positive. Scale bar=20 µm. 
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Chapter 4. Conclusion and future development 

 

 

 MiRNA-122 is one of the very intensively studied miRNAs in the field 

and its multiple biological function determined by previous literature suggests 

its critical roles in metabolism, cell proliferation, and hepatocarcinogenesis. 

Our finding is the first report showing in vivo function of miR-122 using miR-

122 knockout mouse model. Most importantly, the phenotypes of germ-line 

and liver-specific knockout mice strongly suggest that miR-122 functions as a 

tumor suppressor in the liver by maintaining differentiation state, normal lipid 

metabolism and orchestrating the infiltration of inflammatory cells in the liver. 

Our study has demonstrated that the loss of miR-122 alone is a critical causal 

factor to induce cholesterol downregulation, TG accumulation, hepatic 

inflammation, that eventually trigger HCC development in mouse liver. 

Microarray demonstrated that numerous important genes involved in lipid 

metabolism and cell proliferation are deregulated by the loss of miR-122. 

Furthermore, the delivery of the miR-122 using the novel cationic lipid based 

nanoparticles successfully knocked down its target genes in HCC cell lines, 

miR-122 KO liver, DEN induced tumor model, and, most importantly, 

suppressed the tumor growth in xenograft HCC model. Taken together, these 

evidences not only support the main impression about the role of miR-122 in 
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cholesterol reduction, but also suggest the therapeutic potential of miR-122 in 

HCC.  

 The establishment of the miR-122 KO mice provides a good animal 

model to study miR-122 related subjects and HCC development resulting 

from the loss of miR-122. First, miR-122 was discovered to promote hepatitis 

C viral (HCV) replication and translation by binding to 5’UTR of viral 

transcripts, which is responsible for tropism of HCV in hepatocytes [218, 219]. 

Therefore, our animal model provides a good platform to study the in vivo 

effect of the complete loss of miR-122 on HCV replication in liver. More 

importantly, it will be a good model to study the potential mutated clones of 

HCV may be developed after long term infection in miR-122 KO mice. To do 

this, it will be necessary to generate miR-122 KO overexpressing CD81 and 

occluding in livers in order to be infected by HCV[220]. In Chimpanzee, there 

is no mutation was detected in the genome of the HCV that escaped anti-

miR-122 treatment for 12 weeks [133]. However, mutational status of the 

virus after prolonged treatment is lacking. Multiple treatment options can be 

tested on these mutated clones survived from anti-miR-122 treatment.  

 Second, our data pointed out an interesting observation that, at latter 

adult stage, miR-122 germ-line knockout (KO) exhibited a more advance 

phenotype than the miR-122 liver specific knockout (LKO). This is true for the 

phenotype of steatosis, hepatic inflammation, and the onset time and 

incidences of HCC. Therefore, it is highly possible that miR-122 deleted in 

non-hepatocytes cell types may have additive effect on the existing 
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phenotype originally caused by liver specific deletion of miR-122.  For 

example, in mouse embryonic fibroblasts, miR-122 was found to repress 

cytoplasmic polyadenylation element binding protein (CPEB) and 

subsequently suppressed P53 expression. This effect can be reversed by 

GLD-2 depletion followed by miR-122 reduction [221]. Also, it cannot be ruled 

out the significant increased population of CD11bhighGr-1+ may be due to the 

miR-122 deletion in immune cells since we did observe a severer hepatic 

inflammation in KO liver at six months. These observations suggested the 

possibilities that miR122 also paly a role in non-hepatocyte cells. 

 Third, Gatfield et al. have found a miR-122-dependent circadian 

regulation of several important circadian genes, including Peroxisome 

proliferator-activated receptor b/d (Ppar b/d) [153]. The circadian regulated 

level of pri-miR-122, but not constant level of mature miR-122, is responsible 

for this circadian regulation. It will be interesting to study the alteration of 

circadian rhythm under the context of miR-122 knockout mice. The 

comparison of gene expression profile between miR-122 KO and anti-miR-

122 treated mice may shed some light on the role of pri-miR-122. It is likely 

the deregulated lipid metabolism may be affected by the deregulated 

circadian rhythm. 

 In summary, miR-122 is now one of the most potential miRNA for 

therapeutic application in HCV infection and hypercholesterolemia. Our miR-

122 knockout model extends the knowledge about the effect of long-term loss 

of miR-122 and coins new thoughts for the strategies of anti-miR-122 based 
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HCV treatment. Furthermore, in the near future, miR-122 deficient mice can 

be widely utilized to study its role in different liver disease including alcohol 

and NASH induced hepatocarcinogeneis.   
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