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Abstract

Computational steering technology was introduced in the late 1980s as a combina-

tion of real-time visualization and real-time manipulation of program state. Despite

several decades of progress, computational steering has not seen wide-spread adop-

tion due to a number of inherent problems with the technology. The paper presents a

Language And Platform Independent Steering (LAPIS) system that addresses many

of the these problems, and significantly lowers the technical barrier for entry into

the use of computational steering, making it a viable technology for not just com-

puter scientists, but for the scientific computing community at large. LAPIS is a

language independent API standard that allows for interoperability between systems,

languages, and models. Presented in this paper are the advantages of steering sys-

tems, as well as the problems. Additionally, the design considerations that led to the

basic structure of the LAPIS system, a discussion of the architecture of the system,

and a number of example applications that have been successfully implemented with

the LAPIS structure are also presented.
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Chapter 1: Introduction to the Field of Computational

Steering

The field of scientific high performance computing is populated by diverse prob-

lems each spanning a wide variety of technical and scientific areas. Solving these

problems has resulted in many techniques for simulation, processing, and generally

leveraging the computational power available today exist. Amongst these techniques

there are high successful, well adopted paradigms, such as parallel distributed com-

puting with MPI, OpenMP, and other standard libraries, or rapid prototyping with

tools like MATLAB. At the same time, there are other techniques that, despite im-

mense promise, have failed to become mainstream practices. Computational Steering

is one such field with an enormous promise of benefit to the researcher, allowing them

to act in concert with their simulations rather than as just a instigator and mortician

to them. The obvious questions this raises are therefore “What factors have kept

computational steering for being widely adopted?” and “What steps can be taken

to address this problem and speed the adoption of this useful and highly valuable

technique?” The body of work presented in this dissertation seeks to identify and

resolve the reasons for this lack of adoption though the creation of a new and novel

computational steering tool, the LAPIS System.

1



1.1 Computational Steering Defined

Despite more than two decades of research and development, significant theoret-

ical as well as realized advantages (for example, [?]), and a wide variety of available

tools [?,?,?,?,?,?], computational steering has failed to become a mainstream compu-

tational paradigm [?]. Computational steering (or simply ‘steering’) can be defined a

number of different ways. Most generally, steering can be thought of as any computer

application that both: 1) presents its current internal state and, 2) allows manipu-

lation of that state to effect its output. However, this definition is overly board, as

nearly all interactive applications, video games, word processors, development envi-

ronments, fall into this category. In practice, the concept of computational steering is

further refined by requiring that, without user input, the program can, nominally, do

something [?], and additionally, that the program in question is a simulation or other

scientific, technical, or high performance application. This group of applications will

nominally be refer to as ‘simulations’.

1.1.1 Open- vs. Closed- Loop Simulation

Traditional computational simulation (see Figure 1.1) is an iterative loop of three

primary steps: running a simulation, analyzing results, and refinement of parame-

ters. Each step in the loop must finish before the next step can begin, and each step

typically requires user interaction in order to start execution, making the process

“open-loop”. Computational steering developed as a merging of traditional compu-

tational simulation and real time visualization as a means of “closing the loop” [?]

by allowing all three steps of the simulation process to happen simultaneously. Com-

putational steering has also been defined as the interactive control over an executing
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computational process [?] which describes any of a large number of computational

systems wherein the user is able to direct the flow of computation in real time via

textual, graphical and other interfaces.

Figure 1.1: Traditional vs. Steered Simulations: Traditional simulation is a very stochas-
tic process of steps, each taking place in isolation, with the researcher at times
playing no more roll than a process scheduler. Steering allows the researcher
to act as an active participant in the ongoing simulation, allowing human
insight and intuition to play a part in scientific computing

1.1.2 Components of Computational Steering Systems

There are two important functional aspects to a “closed loop” computational steer-

ing system [?]. First the system must allow the researcher to visualize the running

simulation in real time. In doing so, the researcher can directly observe the inner

workings of their simulation through the “window” granted to them via this real time

visualization. This changes the researchers simulation from an abstract computation

to something more like a virtual laboratory experiment. Such a window allows prob-

lems with the simulation, such as erroneous or uninteresting behavior, to be detected
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early, allowing for early termination of faulty experiments [?,?,?]. Additionally, this

“window” allows the researcher to watch the evolution of the system state as the

simulation progresses which may well illuminate behaviors that would not be present

in the output of the simulation.

The second functional aspect computational steering systems must posses is the

ability of the user to manipulate data within the simulation in real time. While the

ability to manipulate the internal state of a running simulation is useful in its own

right, the addition of the “window” described above makes such manipulations far

more powerful. Such systems change the very nature of computational simulation

from that of an iterative “test, check, retest” tool to something much more powerful,

intuitive, and immersive. Simulation changes from an inherently iterative tool to

an interactive one, allowing researchers to gain additional insight into the principles

underlying their simulations [?, ?]. In fact, a number of one-off system implemen-

tations demonstrate the variety of uses this paradigm makes possible. For instance,

engineers can use simulation to help design and optimize new components or prod-

ucts [?]. Steered simulations can be used as learning environments for students [?]

as well as experimental tools [?]. Finally, steering reduces wasted computation by

allowing a more immediate response to poorly running simulations [?], the early ter-

mination of experiments that are erroneous or have reached a steady state [?,?], and

the reuse of previously performed computation [?,?,?].

In typical computational steering implementations there are three distinct portions

of code that must be considered [?] (see Figure 1.2). The most obvious component

of the steered simulation is the simulation itself, weather preexisting and modified

for steering, or developed within a steering framework, or otherwise. The second
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component, nearly as obvious, is a user interface through which the end user can

steer the simulation. The last component, referred to as middleware, sometimes seen

as a collection of sensors and actuators [?], allows the end user visualize the current

state of the simulation, and affect that same state by connecting the user interface to

the simulation. Each of these components is important in it’s own right and each are

discussed separately below.

Figure 1.2: A Generalized Client/Server Steering System Architecture. Note the roll of
actuators and sensors is dependent on the perspective of the user interface
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The User Simulation

In order for a simulation to make use of steering, the simulation must either have

been developed as a steered application from the beginning, or alternatively been an

existing code that was fully developed prior to any intention of using computational

steering. Implementing steering in the latter of these cases requires additions to the

simulation source code. These additions allow external code to read and write to

key variables within the simulation, and through the manipulation of these variables

steering is enabled. The process of editing the source code of an existing simulation to

add steering functionality is referred to either as “tooling” or “instrumentation” [?].

In theory, computational steering is applicable to nearly all areas of simulation

and with the right tools any simulation could be tooled appropriately to allow steer-

ing. However, in order to see significant benefit from computational steering the

simulation must be sufficiently complex and long running so that the user has time

to connect, observe, and adjust parameters in real time. Simulations with extremely

large parameter spaces, long running iterative simulations, and simulations who’s in-

ternal state is easily representable graphically tend to be the most suitable targets

for computational steering implementations. There are numerous examples of steered

simulations that have been quite successful, including applications in medicine [?],

Computational Fluid Dynamics [?], Molecular Dynamics [?], as well as many others.

A more thorough discussion of computational steering applications can be found in

section 2.2.2.
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Figure 1.3: An output interface showing currents and turbulence from a simulation of lake
Eire circa 1990 [?]. Outputs of this system also included volume and contour
renderings of temperature.

The User Interface

The second portion of code critical to steering systems is the user interface which

is composed of all the mechanisms that allow the user to view and manipulate the

simulation state. Early computational steering systems, being derived from real-

time visualization systems of the time, used simple 2-D graphs [?] (see figure 1.3).

Today, in addition to such 2-D output, mechanisms for the display of simulation

state include text output of numerical values, or full 3-D renderings [?,?,?], or even

three dimensional displays shown through specialty hardware [?,?]. Mechanisms for

the manipulation of simulation state were again originally derived from real-time

simulations, and as such took the form of 2-D GUIs [?] (see figure 1.4). Inputs can

additionally come in the form of a scripting language or console-style text input [?],

3-D widgets embedded in the graphical display [?], or even monitoring programs [?].
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Through a combination of both display and manipulation mechanisms a user interface

for computational steering is created. In the case of multi-model simulations, there

are many cases where the output of one model acts as the input to another model,

in which case there need not be any human user interface between these two models.

Instead, such systems are built around programming interfaces of various types and

structure, and a user interface for steering may interact with one or only a few, or

every model involved in the multi-model simulation. In all cases, such input and

output interfaces can be seen an opening though which data may be added to or

extracted from the simulation.

The Middleware, Sensors & Actuators

The third component involved in steering systems is the interconnection between

the user interface and the simulation, often referred to as “middleware.” This mid-

dleware is responsible for forwarding information from the simulation to the user

interface for rendering and receiving input from the user interface and applying that

input to the simulation in order to affect change. The requirements for middleware

can change dramatically from system to system and simulation to simulation. This

results in middleware that is most often custom coded for each situation, which in

turn results in poor portability and reusability of the middleware. Additionally, the

middleware must deliver high bandwidth, low latency communication between the

user interface and the simulation in order to make the computational steering tool

as effective as possible [?]. These additional requirements make the development of

middleware highly difficult but also critical to the overall performance of steering sys-

tems. The functional components of middleware are sometimes collectively referred

to as sensors and actuators. A sensor is any mechanism that shows information to the
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Figure 1.4: An early computational steering graphical user interface used in the simula-
tion of turbulence in lake Eire circa 1990 [?]. Controls include buttons for
controlling the simulation and slider bars for controlling various input param-
eters.

user and, conversely, an actuator is any mechanism that manipulates data within the

simulation. Interestingly, from the perspective of the simulation, the rolls of sensors

and actuators are reversed.
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1.1.3 Organization of Computational Steering Systems

Steering systems found throughout the literature make use of the components

discussed above in a wide range of organizational paradigms. The most common of

these is a client-server model wherein the simulation code acts as a data server to a

steering front end, often in the form of a GUI (as seen in [?], for example). Another

common model is a client-distributed worker model, where the user interface plays the

roll of the client to the system, much the same as the client-server model. However in

this case, the back end ‘server’ of the system is a collection of computers processing in

parallel, often as part of a larger supercomputer cluster (see [?] for example). Other

systems exist as hybrids of these forms [?,?], or in other configurations such as found

in [?], where several layers of management applications separate the end user from

the graphical and numerical applications they are steering. Some systems are even

more complicated, involving specialty hardware for certain tasks, such as [?]. Many of

these models can also be found with a discrete and separately running data repository

system of some sort [?]. While the organization of these systems varies quite a bit, the

one commonality between them all is a communication medium, usually network base,

over which all the data exchange, coordination, and other communication occurs.

1.1.4 A More Generalized View of Computational Steering
Systems

When considering the components (section 1.1.2) and organization (section 1.1.3)

of computational steering systems, a number of important observations can be made.

Most importantly, a totally generic model of steering can be constructed. Specifically,

steering systems can all be modeled as a number of pieces of code running in separate
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memory spaces, connected via a middleware by way of actuators and sensors. These

separate memory spaces may be different locations in the physical memory of a single

machine, different physical computers in a parallel system, or even different computer

centers located on a computational grid (see figure 1.5).

Figure 1.5: Despite significant differences in implementation, steering systems that run
on a single system, a distributed system, or the grid are all identical when the
specifics of the connecting structure are abstracted.

It should also be noted that, when creating a steering tool, there is no reason for

the tool to distinguish between steered code and interface code. Weather the end

user wishes to create a client-server organized steered simulation, or use any other

organization, a tool that makes no such distinction can be used and intentionally

limited in it’s use to create such a system. Conversely, a steering tool that requires a

client-server model, for instance, would be more difficult to use in modeling a complex

coordination of components.

Along a similar line, when creating a steering tool, there is no compelling rea-

son to distinguish between actuators and sensors. As noted in section 1.1.2, what

constitutes a sensor or an actuator is purely a matter of perspective. Rather than
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Sensors and Actuators, a more general “published data” model can be used. In the

a published data model, each component of the steering system (be it simulation,

interface, data repository, etc.) simply makes the data available, or “publishes” it.

Any other component of the system can act upon that published data when and how

they like.

From all these observations, it can be concluded that computational steering is a

communication problem, albeit with some special requirements. Specifically, commu-

nication should be initialized unilaterally, without a priori knowledge of when such

communications will occur on the part of the other components in the system. Also,

it can be seen that most, if not all steering systems could be implemented on a peer-

to-peer network of separately running components (see figure 1.6), all utilizing the

same communication mechanism to share data between each other arbitrarily.

Figure 1.6: A Generalized Steering System Architecture. In this case, nodes can be user
interfaces, simulations, data stores, or any other computational resource in-
volved in the steering system. No distinction is made between nodes or be-
tween sensors and actuators
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1.2 Motivations for and Advantages of Computational Steer-
ing

Computational steering provides a number of advantages that are difficult or im-

possible to obtain without the use of steering. While there are a number of distinct

advantages, they generally fall into either novel ways to approach computational

problems or advantages in computation time, effort and resource usage.

1.2.1 Novel Problem Solutions With Computational Steering

As discussed later in section 2.2.1, there are four notable forms of computational

steering, model exploration, performance steering, algorithm exploration, and multi-

model simulations. All four of these forms of simulation are difficult, if not impossible

to achieve using traditional simulation techniques. Model exploration represents a

separate paradigm from traditional simulation, where, by definition, computational

steering is involved. Model exploration allows the researcher to apply domain knowl-

edge, intuition, insight, and hard-to-imitate human thought processes to the act of

simulation and problem solving. Such systems present opportunities for investigation

that are unparalleled in traditional simulation. While performance analysis and op-

timization can certainly be performed without steering in many cases, in some cases,

the ability to apply human thought processes to the task has yielded significant re-

sults where programmatic optimization fails. Algorithm development can certainly

take place without computational steering, and indeed even without computation to

some extent. However, the highly interactive nature of algorithm steering systems

provide an unprecedented level of flexibility, allowing the user to experiment in ways

never before possible. While there are certainly examples of multi-model simulations
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that do not use computational steering systems, such structures fit very naturally into

the computational steering paradigm, as interactions between models fall naturally

into the definition of steering, where the input-generating model acts as the steering

agent for the input-accepting model. Implementation of multi-model simulations with

a steering system should, in theory, be nearly a trivial amount of increased effort over

that of developing the models themselves, and indeed, this proves to be true with

LAPIS, as discussed later in section 5.5.6. All four of these examples represent new

ways to think about problem solving that have, in the past and without steering,

been impossible or rejected due to the high level of difficulty in implementation.

1.2.2 Enhanced Efficiency and Speed With Decreased Effort
With Computational Steering

In general, in open-loop scientific simulation (see figure 1.1), a researcher will first

create a set of parameters which determines the output of the simulation at run time.

As each run of the simulation produces only one set of results, the researcher must use

their best judgment in choosing starting parameter sets. The researcher can apply

extensive experimental observation, theoretical knowledge, experience, and/or results

of prior simulation runs, once prior to the new simulation run in order to chose a

parameter set that will result in the most interesting, useful, or illustrative simulation

run. Once all of these factors are considered by the researcher, the parameter set

is created and the simulation is run. After the simulation finishes execution, the

researcher analyzes its output and determines whether or not the parameter set needs

further refinement.
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Open loop simulation is inherently inefficient for several reasons. First, the re-

searcher cannot determine whether the choices made during the creation of the pa-

rameter set were well-considered until post-simulation analysis of results. Only after

a complete run of the simulation will the scientist be able to analyze its output

and determine the quality of the chosen parameter set. Only after this analysis can

new insight gained from the simulation run be incorporated into subsequent simula-

tions [?,?]. Secondly, the linear nature of the open-loop methodology prevents efficient

exploratory analysis of the simulation parameter space [?,?] as exploring any single

point in the simulation space requires the simulation to be run to completion. Finally,

if during a given run the simulation enters an uninteresting state, or an erroneous

state, the computation time used by the that run of the simulation is wasted [?, ?].

Computational steering is capable of addressing all of these inefficiencies by “closing

the loop,” allowing researchers to visualize and interact with their simulations as they

are running, mitigating these problems [?,?].

1.3 Contribution of LAPIS to the Field of Computational
Steering

This dissertation presents an important and novel approach to computational

steering. Specifically, the development of the Language And Platform Independent

Steering (LAPIS) system was novel in it’s consideration of the full field of computa-

tional steering, its history, its benefits and limitations, the tools targeting end-users,

and with a historical understanding of similar developments, like that of OpenMP

and the MPI standard library. The implementation of LAPIS is likewise novel in its

platform and programing language agnosticism, and its very high level of flexibility

coupled with a minimal amount of duplicated implementation effort between target
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languages, platforms, and scales. Finally, the use of the LAPIS system in implement-

ing steering systems has been kept as simple as possible, opening up the usage of the

LAPIS system to a wide range of end users, most importantly including those who

are not intrinsically a part of the computer engineering/computer science community

already. At the same time, the LAPIS system is complete enough in implementation

to allow for highly sophisticated tools to be constructed.

1.4 Definition of Terms Used Within This Work

Before proceeding to the remainder of this work a number of key terms should be

defined and understood by the reader, as they will be used extensively for brevity as

well as clarity of meaning.

middleware: All of the software involved in connecting nodes in the steering net-

work to one another.

node: Any computational process, regardless of function, making use of a computa-

tional steering tool to act as part of a steering system. Specifically, with LAPIS, any

process that instantiates an instance of the LAPIS API and connects to the LAPIS

steering network is defined as a node.

publish: The act of one node making data available to other nodes on the steering

network. Past tense form: available for reading or writing.

simulation: Any process within a steering system that produces data that will be

used by either the end user or other nodes within the steering system
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steering: Used to refer the act of steering. Other forms will be used with similar

meaning.

steering network: A collection of nodes all connected via the same steering tool

and acting in coordination as a computational steering system. Specifically, with

LAPIS, the term steering network refers to the peer-to-peer network formed by the

nodes.

steering system: See: steering network

tooling: The act of adding code to an existing program in order to allow it to be

used as part of a steering system.

1.5 Organization of This Dissertation

The dissertation has so far defined computational steering, including steerings

components, and system level organization. In chapter 2, a summary of the historical

development of the field is presented, considering forms of steering, areas of use, de-

velopment of user interfaces, conceptual and technical developments, and the scale of

computational steering systems. In chapter 3, an analysis of computational steering

systems and research is presented that explains the failure of wide spread adoption

of computational steering as a scientific computing technique. Additionally, a new

approach to computational steering systems is presented, along with an analysis that

shows how the organization and design of the LAPIS system will overcome the limi-

tations is discussed in chapter 3. Chapter 4 presents the LAPIS standard definitions,

a detailed view of the implementation of all components of the LAPIS system, as
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well as a detailed explanation of the usage of the LAPIS system. Finally, chapter 5

presents a number of example implementations that make use of the LAPIS system

to create a variety of steering simulations and systems.
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Chapter 2: Background Review of Literature on

Computational Steering

In order to understand both the motivations and importance of computational

steering, as well as understand steering’s lack of acceptance, it is important to first

understand the history and development of the field. This chapter lays out a time line

of the developments in computational steering since it’s inception. Included below is a

discussion of the forms of computational steering, areas of usage, areas of development

and experimentation, as well as scaling effort.

2.1 The Birth of Computational Steering

The field of computational steering is entering its third decade of existence since

the idea was laid out in the paper “Grasping Reality Through Illusion – Interactive

Graphics Serving Science” by Fredrick P. Brooks, Jr., 1988 [?]. This work presents the

idea of extending real-time visualization by allowing user interaction. The impetus for

the development of this idea came from a long history of simulation and visualization.

Over the decades since the ENIAC was used to calculate artillery trajectories

for the army during World War II [?], computers have played an increasing role in

scientific endeavor, particularly in the simulation of experiments to dangerous, costly,

or difficult to perform. Since the ENIAC, simulations grew in scale, complexity,
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and ambition to the point where simulations generating simple numerical values or

graphs were no longer sufficient for meaningful analysis [?,?]. The growing complexity

of data generated by simulations led to the development of more specialized and

sophisticated graphical display techniques, which are now collectively referred to as

visualization [?,?].

With visualization aiding analysis, simulations grew further in scale and complex-

ity to the point where visualization after the fact was no longer sufficient to make

effective use of simulation [?]. With this growing complexity came growth of simula-

tion run times to days, weeks, or even months. Consequently, poorly chosen starting

parameters could potentially waste large amounts of computation time. Overall, the

open-loop design of simulation was, and still is, insufficient for timely analysis of large,

long running simulations.

2.2 The Evolution of Computational Steering

The first intellectual step toward computational steering was in 1988 by Brooks [?]

when the idea of interacting with a running simulation was introduced. The need

for interactive simulations, combined with the research momentum behind modern

visualization techniques in the late 1980s led to the development of the first computa-

tional steering applications. Subsequently, research in computational steering can be

divided into a number of categories, including fields of use, user interfaces, steering

techniques, and system scaling. Progress in each of these areas is discussed in further

detail below.
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2.2.1 Forms of Computational Steering

While development of computational steering applications often requires a dif-

ferent thought process from traditional simulation development, steering opens the

door to a number of simulation models that are otherwise unavailable, inefficient, or

extremely difficult to implement using traditional thinking and traditional simulation

methodologies. Of particular note are model exploration systems, performance opti-

mization systems, algorithm exploration systems [?, ?, ?], and multi-model systems.

Each of these classification is discussed in more detail below.

Model Exploration

Model Exploration systems allow the user to interact with a simulation, algorithm,

or model in real-time in order to gain increased depth of understanding, insight, and

intuition [?,?,?,?]. Examples of such systems include a 3D turbulence model of lake

Erie [?] (see figures 1.4 and 1.3 in section 1.1.2), developed at the Ohio Supercom-

puter Center, computational mechanics simulations [?] from the University of Illinois,

molecular dynamics simulations [?, ?] (see figure 2.1 below) from the University of

Utah, and microwave radiation interaction simulations [?] (see figure 2.4 from the

Navel Research Laboratory, along with many other applications [?]. For several rea-

sons model exploration is the most frequently encountered class of steering in the

literature. First, steerings most obvious use is steering the simulation itself, allowing

for experimentation with the underlying scientific principles that are being modeled.

Second, given the large number of existing scientific simulations, there are many op-

portunities for the creation of model exploration steering systems. Finally, many of

the recognized benefits of steering are particularly applicable to model exploration.
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Specifically, the ability to guide a simulation into interesting regions of execution [?],

the noted enhancements in comprehension and insight that steering provides [?, ?],

and the ability to play “what-if” games [?,?], among other benefits, have all served

as incentives for the development of model exploration steering. In addition to the

benefits above, model exploration systems can be used for virtual prototyping [?,?,?]

and teaching applications [?].

Figure 2.1: An example Model Exploration interface from [?]. The figure shows the de-
formation of a lattice of atoms during a molecular dynamics nanoindentation
simulation.

Performance Optimization

The performance optimization class of steering systems manipulate the running

simulation in ways that only affect its performance, not the results of the underly-

ing simulation, for instance, the load balancing of computational workload between
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processors in a distributed computation. Performance optimization steering evolved

out of interactive debugging tools as well as performance analysis tools. Coupling

these ideas with that of interactive monitoring and steering of an application created

the performance optimization class of steering application. There are many examples

of successful performance optimization applications including a load balancing tool

for molecular dynamics simulations [?]. There are also several development environ-

ments built specifically for performance steering, including the Pablo Performance

Environment [?] from the University of Illinois, the Falcon Steering System [?] (see

figure 2.2) from the Georgia Institute of Technology, and a tool for the RealityGRID

environment [?]. With these tools, developers can create systems for interactive load

balancing of applications, allowing the application of human intuition for effective

load balancing. The application of human intuition is useful in situations where

information that cannot be captured algorithmically can be used to achieve higher

performance and efficiency [?].

Figure 2.2: An example of performance steering from [?]. The left hand figure shows a
more sophisticated partitioning achieved though steering. The chart on the
right shows the performance improvement though use of the technique.
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Algorithm Exploration

Algorithm exploration is the third class of computational steering applications

where users can experiment with computational methodologies within simulation

code. This includes trying different algorithms or implementations for common com-

putational tasks, like Fourier transforms, root finding, searching, and others. Exam-

ples of the algorithm exploration class are rare, largely because algorithmic steering is

of more limited use and requires significantly more program modification and sophisti-

cation. While the literature contained few distinct examples of algorithm exploration

applications [?,?], algorithmic steering is perhaps the most interesting use of steering.

In effect algorithmic steering acts as an application that helps the scientist develop

the simulation itself, not just experiment with a steered simulation.

Multi-Model Simulations

Multi-model simulations are simulations made of collections of independently func-

tioning models. Such simulations are often used to unify initially disparate work from

different researchers. Linking independent models into a multi-model simulation is

a complicated task involving significant modification to each of the individual mod-

els. Modifications including implementing communication protocols between models,

synchronization, data transformation and so on. Unlike the other three forms of com-

putational steering, multi-model simulation arose external to the field of computa-

tional steering. However, multi-model simulations fit into the computational steering

paradigm quite well and through the use of computational steering, it is possible to

minimize the required modifications and reduce the complexity of such integration.

Steering tools can potentially handle communication and data transformation, as well
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as provide mechanisms for model synchronization and the transfer of data between

models. While work in this area is sparse, we have demonstrated implementation of

such a multi-model simulation via both the Driver/Engine demonstration model and

the CDI Web Simulator, both discussed below in sections 5.4 and 5.5.2.

2.2.2 Computational Steering Fields of Use

Given the widespread adoption of simulation as a useful scientific technique, it

is surprising that computational steering has not been more frequently used [?,?,?],

though there have been a number of significant and interesting research efforts into

its use. One of the first steering applications was a large scale (for its time) fluid dy-

namics and weather modeling program developed at the Ohio Supercomputer Center

to study turbulence in Lake Erie [?]. Three years later, the VASE steering environ-

ment was developed and used to steer computational mechanic simulations [?]. At

the same time, steering was first being used for finite element analysis [?], n-body

simulations [?] and hydrodynamics [?]. In the years subsequent to this, steering

has been leveraged in numerous other areas including molecular dynamics [?] and

medicine [?] (1994) (see figure 2.3), atmospheric simulations [?] (1995), genetic al-

gorithms [?] and volume rendering [?] (1996), nuclear research, gas dynamics, and

astrophysics [?] (1997), microscopy [?] and seismology [?] (1998). Since 2000, compu-

tational steering has found additional use in other fields including, but not limited to,

manufacturing [?], microwave simulations [?], civil engineering [?], HVAC design [?]

and computational fluid dynamics [?, ?]. While many research areas have examples

of steering applications, there are many fields in which the technique has not yet

been leveraged. Despite the demonstrated advantages of flexibility, power, insight,
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and efficiency provided by steering, widespread acceptance of the technology has been

slow.

Figure 2.3: An early computational steering implementation for use in medicine, specifi-
cally placement of electrodes for implanted defibrillator [?].

2.2.3 User Interfaces for Steering Systems

While Brooks envisions many interesting interfaces for computational steering sys-

tems, few have been realized [?]. The first generation of steering user interfaces used

basic, two dimensional application windows for input, much like those of common

desktop applications (see figure 1.4 [?]). However, even the earliest steering appli-

cations made use of three dimensional renderings for output of simulation results

to the user (see figure 1.3). Some more recent work has included efforts to create
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systems supporting dynamic user interfaces based on XML mark-ups or other such

information exchanges [?].

Given the multidimensional data that computational steering applications handle,

the limitations of two dimensional interfaces were quickly realized and user interfaces

were adapted to accommodate this high dimensional data. Within four years, there

were already example systems where the simulation state was displayed as a three

dimensional rendering and through manipulation of this rendering, the user provided

input to the system [?, ?] (see figure 2.3 for an example of the SCIRun interface).

Shortly thereafter, an effort was made to control a steered simulation through script-

ing languages and console like interfaces [?]. Another alternative development was

the use of an algorithm to steer simulations [?,?].

All of the above steering methods have advantages and disadvantages. Simple

two dimensional interfaces are easy to develop and are easy to use, however they are

limited in their flexibility, intuitiveness and ability to handle complex data. Three

dimensional interfaces are far more powerful and intuitive and can handle complex,

high dimensional data, but require significantly more development effort and can be

inflexible. A scripting language provides both flexibility and power, but requires a

highly trained user, perhaps even the developer of the steered simulation. Finally,

having an algorithm steer a simulation allows mundane and repetitive steering tasks

to be handled by the computer, freeing the user to focus on more important issues

during computation. However, algorithms such as this cannot handle all steering

decisions and can be very inflexible. Today, examples of all of these methodologies

are present in the literature.
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In addition to these developments, a number of other novel ideas and approaches

to interacting with simulation state have been developed. Steering environments

have been developed that include parameterized cameras, allowing the user to link

the cameras settings, location, and operation to internal simulation data [?]. Other

systems have developed methods for providing haptic feedback to the user based on

simulation state and the users interaction with said state [?]. Other systems now allow

multiple users to interact with simulation state simultaneously [?], while still others

have been created to leverage much more immersive virtual environments [?,?,?] (see

figure 2.4 for example). Finally, in our ever-more connected and networked world,

steering interfaces have been developed for use via the web [?, ?] and though web-

connected PDAs [?].

Figure 2.4: An example of Model Exploration using a novel user interface, the CAVE
virtual environment from [?]. The figure shows a user interacting with a
running microwave radiation simulation via a virtual CAVE environment.
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2.2.4 Steering Systems Extensions and Advanced Techniques

Over the last two decades of development, considerable effort has been expended

in developing the three computational steering techniques discussed in section 2.2.2

specifically related to computational steering, namely model exploration, performance

steering, and algorithmic steering. Research in these areas have created numerous

discrete instances of steering applications, as well as a number of steering development

environments. These efforts have helped to refine the field in general, and have led

to research in other aspects of steering. The extensions and techniques developed

to expand the function and enhance development, debugging, and performance of

steering systems are discusses topically below.

Check-pointing

Check-pointing, first demonstrated in a steering system in [?], is the process of

periodically saving the internal state of the steering application as it runs. These saved

states can be used to implement “Stop and Rewind” techniques [?] (see figure 2.5),

allowing the simulation to be rewound and rerun, either to re-observe the simulation

run or to start a new branch of execution by changing a key variable. Using a check-

pointing system to explore various simulation paths is often referred to as ‘Parameter

Searching’ as it allows the user to search for optimal parameter sets given a fixed

staring point. Parameter searching allows for efficient experimentation as shown in [?].

There have also been research efforts in using check-pointing for fault tolerance and

computational relocation [?]. While check-pointing is not exclusive to computational

steering, steering combined with check-pointing provides a distinct advantages that

traditional check-pointing simulations cannot emulate.
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Figure 2.5: Checkpointing, a technique in which a running simulation periodically saves
current state to disk, is a technique frequently used in high performance com-
puting and simulation to ensure that in the event of a crash, computation
can later be resumed with minimal loss of effort. With the addition of some
sort of state management, as shown, a check-pointing system can be expanded
into a simulation system that allows the end user to stop, rewind, replay, and
explore alternative execution paths. Computational steering systems easily
lend themselves to such techniques.

Consistency

Another direction of research is consistency considerations. Inconsistencies be-

tween the state of the simulation and the state of the visualization presented to the

user can cause considerable problems, including decreased efficiency and incorrect

steering [?]. There have been a number of research efforts aimed at developing a

visualization that is consistent with the internal state of the simulation [?]. Work in

this area is generally applicable to the entire field of computational steering in theory,

but due to the fragmented nature of the development tools, implementation of these

concepts is difficult.
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Collaboration & Algorithmic Steering

With the ability to expose the internal state of a simulation, computational steer-

ing provides a unique opportunity for researchers to make observations and work

together on simulations, both in development, and at run-time. A number of efforts

have been made to enable such collaboration [?,?,?,?]. These systems allow multiple

researchers to access, observe, and manipulate a remote simulation from geographi-

cally separate computers.

Rather than having multiple researchers work together, another branch of research

has focused on allowing a researcher to work in coordination with code designed to

steer a simulation algorithmically. First described by Vetter and Schwan in [?] and [?]

and later implemented by Swan et. al. in [?], algorithmic steering systems are con-

trolled by a user defined algorithm rather than user input. Algorithmic steering allows

the user to focus on system behavior rather than system control. If a situation arises

that the algorithm is incapable handling, the user can take manual control until the

algorithm can resume control. Algorithmic steering has been used to in a variety of ar-

eas including computational fluid dynamics, product design, and microwave radiation

simulation [?,?,?].

Development and Design

Significant research efforts have also been made in the advancement of develop-

ment techniques. Most notable amongst this research are the efforts to develop visual

programming models and languages [?,?] in which a developer uses structural blocks

to build simulations. The intent behind such systems was to ease the tradition-

ally complex task of simulation development, particularly when steering is involved.
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Though the use of structural blocks which already contain the steering elements, the

task of tooling a simulation was largely removed from the developer of the simula-

tion. Along very similar lines, there has been work in developing a data-flow model

for steered simulations [?] where the main organization of the code centers on how

data moves though the simulation.

There has also been work regarding some design aspects of computational steering

systems, such as the creation of a steering system such that when not in use has min-

imal performance impact on the tooled simulation [?]. More recent efforts have also

focused on expanding support for steering systems used with other high performance

computing libraries, such as CUDA [?,?]. Other recent efforts include investigations

of better architectural structures and better methodologies for data transmission [?].

Other Research Efforts

In addition to those discussed above, there have been a few other research ef-

forts for furthering the development of computational steering. In [?], the idea of

performance steering was implemented. Later, performance steering was likewise im-

plemented for the RealityGRID system [?]. Along a different line, there have been

research efforts specifically on logging in a computational steering environment [?].

Computational steering research has also investigated issues of debugging code via

“time-travel” [?]. Other efforts have looked at mitigating high complexity simula-

tion by first creating a ‘path’ in a low resolution mode [?] before performing a full

simulation along that path.
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2.2.5 Computational Steering System Scaling

Simulation, visualization and computational steering are highly computationally

intensive tasks. Since the first computational steering experiments and systems, su-

percomputers and specialty workstations have been involved to perform simulation

and visualization [?]. As simulations have grown in scale and complexity, their com-

putational requirements have also grown. Additionally, there is an increasing require-

ment for visualization in order to comprehend higher complexity simulations, and

efforts have been made to enable such visualizations [?]. This increasing computa-

tional demand is countered by technological developments that today offer enough

power on the average desktop to perform simulations and visualizations at scales

inconceivable even 10 years ago.

Given the increasing demands of simulations and the increasing power of desktop

systems, there has been significant effort in moving computational steering to both

large scale parallel platforms as well as desktops systems. Efforts to move computa-

tional steering to large scale parallel platforms include Falcon [?] and others [?], the

efforts to parallelize the SCIRun Environment [?], and the development of a compu-

tational steering API for the RealityGRID grid environment [?] as well a other GRID

systems [?]. Research in moving steering to the desktop have included the creation of

steering environments designed to run entirely on a single system as well as environ-

ments that make use of graphics hardware found in most modern desktop to speed

up the steered simulation and visualization [?]. These developments make computa-

tional steering available to more potential users of the technique. The technology and
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demand are both in place for the development of a single tool that is capable of de-

veloping computational steering applications for grids, clusters, individual desktops,

and all architectures in between.

2.3 Observations on the Field of Computational Steering

Considering all of the above, a number of insightful observations can be made with

regard to the field of computational steering. First, the modern state of computa-

tional steering is discussed. Second, the commonalities present within computational

steering systems are enumerated and discussed.

2.3.1 Modern Computational Steering

Computational steering environments and applications can now be found on a

variety of platforms, from single processor workstations, to massively multiprocessor

clusters, to grid based systems. Steering systems have developed to take advantage of

various new hardware and software technologies and today, most research focuses on

extending steering environments to take advantage of new technology or the creation

of steering solutions for specific problems. However, while a wide variety of steering

systems exist, there is no single, simple, hardware independent, and unified solution.

2.3.2 Commonalities and Base Structures Implicit in Com-
putational Steering Systems and Techniques

There are a number of themes and trends found in the computational steering lit-

erature. Most notable amongst them is that, at their base, all computational steering

systems are fundamentally about two things. First and foremost, steering is about

the manipulation of the internal state of a running computation from outside that
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computation. This computation can be a simulation, code driving a display mecha-

nism of some sort, a user interface, or any other piece of code. Second, computational

steering is about how the moving of data between computational elements to affect

said changes to internal state. In many cases, this communication takes place over

the network, in other cases, via exchange of files though a networked file system.

In all cases, however, this communication takes place. While there are many other

commonalities, such as the presence of a client interface, or the presence of a central

coordination point between compute elements and the steering elements, none are

nearly as universal as the two discussed above. These two commonalities were key

in the decision making processes involved in the creation of a new computational

steering interface.
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Chapter 3: Design of a Computational Steering System for

Mainstream Acceptance

Today both the required hardware and software tools exists to make a fully fea-

tured computational steering environment very successful. Further, it has been shown

that steering is a very useful, powerful and efficient computational methodology [?].

Additionally, computational steering shows clear advantages of putting a researcher

within the computational loop, where they can apply abstract domain knowledge and

intuition to their simulation. Given the proven and potential benefits of steering, the

expectation would be for its widespread usage. It is therefore both surprising and

disappointing that steering has not gained wider acceptance in computational science.

Key to this lack of acceptance are a number of serious and common problems

with existing computational steering designs. In order to resolve these problems, a

solution is proposed which considers not only the problems but additionally consid-

ers commonalities found throughout the field of steering discussed in sections 1.1.4

and 2.3, as well as accepted and well tested steering system structures discussed in

section 1.1.2. Also considered are historical matters of high performance computing

tool history, design, and adoption specifically with regard to the MPI and OpenMP

parallel computing libraries. Finally, all of the above considerations are tempered

with consideration of practical matters of system design. All of these considerations
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are discussed in detail below. Then, in the next chapter, an in-depth discussion of

the architecture and implementation of the LAPIS system resulting from all of these

considerations is presented.

3.1 Historical Trends in High Performance Computing Li-
braries

First considered is the parallel that can be drawn between the problems facing

computational steering today and those facing parallel computing prior to the adop-

tion of OpenMP and MPI. Like steering, early parallel programs were developed

individually, as there were limited tool-sets available, usually all implementing simi-

lar behavior, but only available as a vendor specific implementation [?]. Additionally,

early parallel programs were tied to the hardware on which they were developed [?].

Until standard tool-sets became available, the same parallel functionality had to be re-

peatedly developed by different researchers working on different projects or platforms.

This resulted in a high development cost for parallel programming, and the adoption

of parallelization was slower than expected. Computational steering has followed a

similar development path, and its adoption has also been slower than expected. In

the case of parallel programming, the creation of standard and open source libraries,

such as MPI and OpenMP, has been critical to its wide spread adoption [?,?]. Like-

wise, an open standard library for computational steering would aid in its adoption.

Therefore, the LAPIS system has been developed around a proposed standard for

steering tools. Additionally, LAPIS will be licensed as free, open source software, but

will allow for third parties to commercialize the software, so long as the standards set

forth are not violated.
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3.2 Consideration and Leveraging of Commonalities Within
Computational Steering

As observed in section 1.1.4, there are a several important commonalities found

throughout the field of computational steering that seem to be nearly universal. One

of the key conclusions that can be drawn from these commonalities is that all steering

systems could be modeled by a peer-to-peer network of computational nodes and that

such a modeling would not limit the desired architecture of a simulation. Toward that

end, LAPIS has been designed to use a high level model of a fully-connected peer-

to-peer network. Additionally, observation shows that there is no intrinsic reason

to vary the function of specific nodes and toward this end each node within the

network uses a three layer software stack. This creates greater consistency in design

and structure and additionally addresses many of the problems found within steering

systems (discussed in section 3.3) by creating important isolations and abstractions.

Both the high level design and the node level design are discussed in detail below.

3.2.1 High Level Design

The high level structure of the LAPIS system is that of an interconnected net-

work of separately running nodes. Specifically, the steering network (see figure 3.1) is

a completely connected peer-to-peer network, meaning that every node attached to

the network is aware of all other nodes attached to the network and communication

between any two nodes is dependent only on the sending and receiving nodes. This

view includes systems that run completely on a single system, where the medium is

the systems memory, as well as systems running on grid systems, where the Internet
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is the medium and all others in between. In addition to being a valid model at vari-

ous system scales, this view accommodates all four classes of computational steering

discussed in section 2.2.1. Additionally LAPIS supports all steering systems, regard-

less of whether component processes communicate directly or through an arbitrator

process of some sort. From the networks perspective, all the nodes function using the

same communication protocol, though communication volume from different nodes

may differ. Additionally, the developer is welcome to create any artificial limitations

on which nodes may communicated with each other. So, while one node may be the

simulation itself, and another the steering interface for the simulation, the network

handles both the same way. A high level architecture that treats all nodes identically

minimizes system complexity while maximizing flexibility. If functionally different

nodes were treated non-uniformly, only nodes whose functionality was understood by

the network could be used in the steering system.

Given this top level model, consideration must be given to the mechanism for

communication between nodes on the steering network. As discussed in section 1.1.2,

the roll of sensors and actuators, while seemingly opposite, are in face entirely deter-

mined by the point of view of the code interacting with them. An actuator used by a

GUI is in effect a sensor from the perspective of the steered simulation. Likewise, a

sensor used by a GUI to observe a simulation acts effectively as an actuator, affecting

change in behavior on the part of the end user. Toward this end, a more perspective

neutral mechanism has been devised. Specifically, all nodes attached to the steering

network have the ability to “GET” and “SET” variables published by other nodes.

“GET” and “SET” operations are always viewed as such, regardless of perspective.
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Figure 3.1: The high level architecture that will be used by the LAPIS system. Note that
each application may use a different supported language and thus a different
implementation of the API layer. Also, the LAPIS steering network it not
explicitly implemented but rather is effectively created via a coordination of
the Daemon layers, communicating though the COM layers.
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When a node requests remote data, that is always a GET, weather from the per-

spective of the requesting node, or the node that owns the requested data. Likewise,

when a node request data be sent to a remotely published variable to overwrite it’s

value, that is always viewed as a SET, regardless of perspective. Implementation of

this mechanism ensures that the intent of an operation is always clear. Additionally,

the GET and SET methods are implemented such that their execution can take place

more immediately, rather than relying on the node that controls the data to respond

explicitly to each request.

Another factor to consider in this design is the mechanism by which new nodes

connect to the steering network and, correspondingly how nodes disconnect and how

faults are handled. For simplicity of operation, the implementation of these details

should be taken as much out of the hands of the simulation developer as possible. To

this end, connecting to the steering network should require only the address of one

node already attached to the network. From this initial connection, the new node

should be able to receive all needed information about the network, and likewise,

all the nodes on the network should be informed of the presence of the new node.

Likewise, in order to disconnect, the end user should only have to make a simple API

call, without any need to provide specific information. Disconnection and resynchro-

nization of the network should be handled seamlessly. Finally, in the event of a node

failure, the system should have built in mechanisms that automatically prune failed

nodes from the system, while ensuring that all remaining nodes maintain a consistent

view of the network. All of this high level functionality in the LAPIS system is as a

result of uniform behavior programmed into the individual nodes.
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Figure 3.2: Proposed Software Stack

3.2.2 Node-Level Design

Individual nodes will use the three layer software stack shown in figure 3.2 for a

wide variety of important reasons, mostly related to addressing the identified prob-

lems faced by most steering systems. Generally, the layers of abstraction and isolation

provided are very valuable to addressing the known problems of many steering sys-

tems. Details of these issues and how the abstraction address them are discussed

below in section 3.3. Key to the design of the software stack is that regardless of the

functionality of the node, the same software stack will be used to implement steering

and attach to the network. Architecture details of the top layer API, bottom layer

communication interface, and middleware Daemon are each discussed in detail below.
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Top Layer: The LAPIS API

The top level of the software stack focuses on isolating the users choice of de-

velopment language from the implementation details of the middleware Daemon and

communication layer COM. As the API Layer is the component of the LAPIS system

that developers will interface with, it is imperative that it remain as constant and

easy to use as possible. To that end, a central factor in the development of the API

layer is the development of an API layer standard interface. Such a standard interface

allows for development of multiple versions of the API for different languages while

ensuring that the syntax of the API remains the simple and as constant as possible

between languages. Likewise, there interface between the API layer and the middle-

ware layer is also a defined standard, ensuring that development of APIs in a variety

of languages is as straightforward as possible.

The primary goal of the API is to allow users to develop simulations and other

software components that read data from and write data to other nodes on the net-

work. In order to achieve this goal, the API implements a Get and Set method,

however other functions are required before these methods are useful. The API pro-

vides methods that register data within the users code with the middleware, allowing

remote nodes to read and write to it, a process referred to as “publishing”. Likewise,

there are methods that unregister data and control write-access to the published

data. Finally, a number of methods provided are focused on creation, maintenance,

and connecting to the steering network, as well as the gathering of information about

the network. Through these API calls, the users code becomes a node on the steering

network, publish data, and read and write to remotely published data. The base API
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provides sufficient functionality to implement common computational steering tasks,

such as saving and loading computational checkpoints.

Middleware Layer: The LAPIS Daemon

The middle level of the software stack is responsible for four major tasks. First,

the middleware uses the communication layer (referred to as ‘COM’) to establish and

maintain the steering network between nodes. Second, the middle layer creates a list

of nodes in the network, as well as a list of published data on each node. Third, the

middleware is responsible for forwarding Get and Set related messages to the API so

that data transfers can be setup and executed. Finally, the middleware responds to

API calls from the users code by requesting data from other nodes via the communi-

cation layer. By implementing this layer in Java, all of this complex functionality can

be system independent, depending only on an appropriate Java based communication

layer. Using the same middleware software regardless of platform and helps greatly to

resolves issues of data compatibility between different languages that different nodes

may use.

Communication Layer: The LAPIS COM

The bottom of the software stack will implement communication between nodes in

the network in Java, based on a standard communication interface that will be used

by the middleware. This communication interface allows the middleware layer access

to read and modify data on other nodes. Additionally, the middleware responds to

control messages send by the communication layer when the communication layer re-

ceives requests for data from other nodes. Using such an interface allows for different
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implementations of the communication layer to be used to cover different circum-

stances and communication methods. This effectively removes the last dependency

the middleware has to the hardware and software configuration of the underlying

system.

3.3 Identifying and Addressing Problems in Existing Com-
putational Steering Systems

A number of central problems exist in computational steering systems that have

critically held back its adoption by mainstream scientific computing efforts. Develop-

ment difficulty is a key problem with new techniques, particularly when presented to

researchers who primarily focus is fields other than computational science. Concerns

over maintainability and portability of steered simulations will keep many users away,

as they value their simulation too much to put it at such risk of obsolescence. Many

computational steering systems impose a structure that may not agree with the sim-

ulation developer, or may be flatly incompatible. Problems with data security and

data compatibility are often too critically important or too complex for developers

to overcome. Also, any technology that may negatively effect the performance char-

acteristics of a simulation is likely to be deemed not worth the performance penalty.

Finally, a lack of third party support for higher level software tools and more interest-

ing hardware and software applications means that the field lacks some of the range

and variety of other computing technologies. All of these issues are discussed in detail

below.

In order to create a steering system with wider acceptance, the most important

design metric should be in addressing the problems identified previously in existing

computational steering systems. Issues of development difficulty can be addressed
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with careful creation of a user API, and to some extent by the 3-layer software stack

discussed above (see figure 3.2). Issues of portability, maintainability, and 3rd party

support can all also be addressed with the 3-layer software stack. A middle layer

written in a platform independent language encapsulates the majority of complex

code, and links the top and bottom abstraction layers. This structure provides the

user with a simple and consistent interface, while at the same time providing platform

independence for the tools execution and communication. Structural, Data, and

performance issues can all be addresses with careful design considerations. Each of

these problems is discusses in detail below, along with a discussion of how they are

resolved though the implementation of LAPIS.

3.3.1 Difficulty in Development of Computational Steering
Applications

The first shortcoming slowing the widespread acceptance of steering is the diffi-

culty of development associated with computational steering infrastructures. For a

research scientist looking to use computational steering, development will take one of

two forms: instrumentation of existing code [?], or creation of a new simulation in a

specialty steering environment, such as with the SciRun2 environment [?]. In either

of these cases the researcher must extend their own programming ability by learning

either a new programming library or a new development method, as in many cases,

steering is an unfamiliar technology to scientists as first noted in [?]. The average

researcher using high performance computing has a very low threshold of difficulty

before they deem learning a new technology to not be worth the trouble. Upon hit-

ting any resistance at all, the probability of a researcher continuing to learn a new

technology or technique drops staggeringly in many cases.
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As first noted by both [?] and [?], computational steering systems available today

often require not only domain knowledge relevant to the simulation, but also a non-

trivial understanding of computational steering. As many researchers have already

pushed themselves in learning programming techniques involving parallel program-

ming, numerical methods, system software and I/O, adding yet another are of required

expertise is often quite inhibitive. This is particularly true when the steering systems

available to the researcher are complicated to setup as well as use. The difficulty in

using steering systems was first noted in [?], and subsequently by [?] and [?], and this

trend continues today. In fact, there have been significant research efforts made into

tools specifically designed to help integrate steering tools with simulations [?].

Additional difficulties in development tie into issues discussed in sections 3.3.2,

3.3.3 and 3.3.4. Specifically, there has been a trend in computational steering research

to develop domain specific steering systems. In addition to being domain specific,

many systems are machine, language, or architecture dependent. Finally, different

steering systems often impose different organizational structures in order to use them.

All of this combined leads to a high likelihood that effort a researcher puts into

learning to use a steering system will only pay limited dividends, and will only pay

those dividends for a limited time frame. Additionally, the variation between different

systems will make updating code to newer systems and setups non-trivial and quite

possibly highly costly in terms of development effort.

As an interesting consequence of these critical variations between steering systems,

a large amount of duplicate effort has been expended toward porting various steering

solutions to various platforms, rather than toward advancing tool sets for compu-

tational steering. This duplication of effort is much like the early developmental of
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parallel computing before the MPI and OpenMP standards. Custom parallel devel-

opment systems were provided by machine manufacturers, and had little in common

with each other, beyond their objective of enabling parallel computing. Much like

steering, this led to a very large amount of reinvention prior to the widespread avail-

ability of the MPI and OpenMP libraries. Today, manufacturers still often provide

parallel development tools, in the form of custom implementations of the MPI and

OpenMP standard libraries.

Addressing Development Difficulty

Development difficulty can be addressed in two ways, first through a concerted

effort to keep the tool as simple as possible while at the same time providing all the

functionality needed to implement any arbitrary steering system. Provided functions

should be simple, yet powerful, unambiguously named and implemented, and should

require a minimum of input parameters to accomplish a given task. The second

way of addressing development difficulty is to create a tool that is available for use

in many languages with as little syntactical difference as possible. This has three

primary benefits, first it prevents the potential user from needing to learn a specific

language and port their code to make use of the steering tool. Second, existing users

of the steering tool need not worry about having to relearn the usage of the tool if

they choose to start using a new language. Finally, researchers working in different

languages can share ideas on the usage of the steering tool without need for any

syntactical or architectural translation.

The LAPIS system was developed with all of the above considerations in mind.

LAPIS provides a simple API that is easy to understand, set up, initialize, and use.

At the same time, the LAPIS API is complete enough in function to implement
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any more complex steering mechanism or structure that may be required. API calls

involve a minimum of input parameters and use a simple text based name-space for

distinguishing nodes and data within nodes. The proposed LAPIS standard API

interface presented in the following chapter will ensure that when new versions of

the API become available, they will use nearly identical syntax, and their usage will

remain consistent and simple to use.

3.3.2 Maintainability Challenges With Steered Applications

The second shortcoming in current steering applications is that of maintainability.

Once a simulation has been built or instrumented with a steering tool, it becomes

linked to that steering technology. As many steering tools have requirements in terms

of communication mechanisms, availability of hardware and software, and system spe-

cific configuration, the steered application inherits these requirements. Changes to

the operating environment that violate these requirements results in a failure of not

just the steering tool, but the entire simulation. This makes the use of steering tech-

nologies difficult, particularly in dynamic environments like a supercomputer center,

and even potentially dangerous to the continued development of the simulation.

In addition to the loss of flexibility that can result from the inclusion of a steering

tool as part of a simulation, there must also be consideration given to the effects of

the simulation development itself. Specifically, inclusion of the steering code has the

potential to cause a branching in the simulation development into two distinct efforts,

both with and without steering. This will likely happen in any case where inclusion

of the steering tool will prevent the simulation from being run without the usage of

said tool.
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Increasing Maintainability

In a similar vein to portability, creating a steering tool that does not inhibit

maintainability is key to a tool gaining wide-spread acceptance. Also similar to

issues with portability, many steering tools fail in this regard. Inclusion of many

computational steering tools permanently and unavoidably change the underlying

simulation code such that is much always be run with the steering tool included.

Ideally, a steering tool should be designed such that inclusion of the tool will not

require that the tool be used, does not require the user to change update code when the

tool itself is updated, and requires the simulation developer to change their simulation

code as only minimally.

A 3-layer software stack again helps us meet these design goals. A careful design

strategy with regard to the API layer will minimize the required insertion of code into

user simulations, and no design compromises need be given to the other two layers.

Likewise, additional careful design in the API layer will effectively allow steering

implementations that are effectively deactivated when steering is not in use. More

complex steering implementations can similarly be designed and implemented with

negligible impact, but design details of such system will vary widely. Finally, so long

as standard interfaces between the layers are strictly observed, changes to the Daemon

or communicator layer should not effect simulations that use the API layer in any

way.

Through the use of the three-layer software stack, the LAPIS system maintains a

high percentage of the users code original maintainability. Though careful usage and

design, simulations can be developed where use of the steering tool is not implicitly

required. LAPIS may, however, be explicitly required based on how the user chooses
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to use the software tool. That is, if the simulation is dependent on the internal state

of the front end, or expects its own internal state to be set by some front end, then it

will obviously not function without that front end. This, however, is not a limitation

imposed by LAPIS, but rather by the usages of LAPIS by a simulation developer.

However, with minimal consideration it is possible to use LAPIS within an existing

simulation in order to make it steerable without effecting the simulations ability to

run without any steering agent being present.

3.3.3 Portability Issues with Steered Applications

The third shortcoming steering systems currently face is that of portability. While

viable steering systems are available for a wide range of hardware, most support only

a handful of specific platforms. Given the variety of hardware used in scientific com-

puting, a lack of cross platform compatibility is a critical issue. For any given system,

a steering tool must be compatible with not just the systems processor architecture,

but also the systems general setup including network hardware, file system structure,

batch processing system, and so on. For example, some steering tools require direct

socket connections between components [?], while others rely on a shared memory

architecture [?], and still others make use of the message passing interface (MPI)

for communication [?]. In all these examples, and indeed most steering systems [?],

the communication method is fixed. Depending on the system, any of these com-

munication methods may or may not be possible. Additionally, should the system

configuration change, for example, for security reasons, and a given mechanism be-

come unavailable, any steering system dependent upon that mechanism, and thus
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any simulations made with the steering tool, will break. In addition to communica-

tion mechanism, there are potentially countless other dependencies a steering system

might rely on for proper function. In fact, many systems are tied to a specific setup [?].

Use of such steering tools ties the developer not just to the use of the tool, but to all

the dependencies of that tool.

Ensuring Portability

In order better encourage the adoption of a computational steering system by the

scientific computing community at large, the steering system in question must be

designed with portability in mind. Many existing steering systems fail in this regard,

either requiring platform specific compilation, specific hardware, specific operating

system, or specific programing language in order to function. Portability is increased

when the steering tool can be run on any hardware platform (“hardware agnostic”),

on any operating system (“OS agnostic”), and on any communication medium (“com-

munication agnostic”) [?]. The software stack presented above in figure 3.2 offers a

significant and novel approach to increasing portability, and successfully increases

portability in all the respects. Additionally, the software stack presented allows for

changes in system behavior via very small configuration changes at run-time.

The API level allows an interface to the core functionality of the tool to be devel-

oped in whatever language the simulation developer cares to use, without requiring

reimplementation of the whole steering system. The Daemon layer is implemented in

a platform independent language (in the case of LAPIS, JAVA was used), therefore

most of the core functionality of the steering tool does not require reimplementation

in order to support new languages. Finally, the communication layer, also imple-

mented in a platform independent language (again, for LAPIS, this is done in JAVA),
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abstracts details of inter-node communication. In this way, a move between sys-

tems that use different communication mechanisms only requires a run-time swap of

communication layers (or ’COMs’). In a similar fashion, by changing from a com-

municator that runs entirely within the local system to a distributed communicator,

the manner and scale in which the simulation is run can be changed with very little

effort.

The LAPIS system isolates as much of the complex functionality as possible within

platform independent code bodies, primarily the Daemon, and secondarily the COM

module. This ensures that these two layers of the system can run on just about any

platform in just about any circumstances. As an end goal of the LAPIS system is

to have a wide range of available APIs, and the language of the API chosen will

match the language of the code in which it is used, LAPIS will add no constraints to

portability beyond that which the users choice of programming language has already

added.

3.3.4 Structural Constraints Imposed By Steering Tools

Another potentially serious issue with computational steering tools is one of code

organization, structure, and architecture. Many systems distinguish between elements

of the steered simulation, such as distinguishing between client and server portions of

code [?]. Such distinctions can add arbitrary structure to the simulations made with

the steering tool that would not otherwise be present [?]. In order to use such steering

tools, the developer is forced into whatever arbitrary structure the steering tool uses,

and often this arbitrary structure can make modification of code for steering quite

difficult [?] and may lead to design compromises that result in performance loss. Along
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similar lines, the systems upon which computational steering simulations are run may

impose their own restrictions, such as batch processing systems. Such systems can

make starting and steering a simulation more complicated, and possibly impossible

in some cases [?,?,?].

Easing Structural Constraints

Throughout the literature available on computational steering, there are numerous

examples of steering tools that impose an architectural constraint upon any simula-

tion that makes use of the tool. For example, some steering tools utilize a central

data store, against which all the other components of the system synchronize. Such

a structure may well be useful in many steered simulation systems, however it can

be said with absolute certainty that not all simulations would benefit from such an

organization. Thus, it is critical that any steering system we design use an organiza-

tional structure that is flexible enough to emulate any needed organization, without

incurring a significant performance penalty. A peer-to-peer network as suggested

in section 3.2 can be used to model any such structure simply by ignoring certain

connections in favor of others. The LAPIS system is designed around such a peer-to-

peer network structure and thus avoids imposing any sort of artificial architectural

or organizational constraint upon systems that make use of it. Additionally, by mak-

ing no differentiation between nodes withing the steering network based on function,

role, position, or anything else, it additionally imposes no restrictions upon the type,

distribution, and demographics of nodes within the steering network.
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3.3.5 Computational Steering and Data Issues

Computational steering systems can also cause issues and concerns with regard

to simulation and steering data. Most obviously, if different components of a com-

putational steering system are written in different languages, or even are running

on different hardware platforms, there may be fundamental differences between data

types, such as bit order, bit length, precision, and so on [?]. With traditional sim-

ulation, such issues rarely, if ever, arise, with the possible exception of input data

sets. With multiple processes, possibly running on multiple machines, such compati-

bility issues become much more likely. Additionally, with steered parallel simulations,

consistently addressing objects that span memory spaces can pose a significant prob-

lem [?]. Finally, with internal simulation state being transfered between different

processes, an issue may arise with regard to the security of that same data [?].

Managing Data Issues

First, steering systems are often in the interesting position of having different

components constructed in different languages, using different tools, systems, and

techniques. As such, the data format for a particular type of data my vary between

elements of the steered system. By using a three layer software stack as discussed, data

format can be normalized by the API layer so that all internal data transfers occur

in a single agreed upon format, and that data formats at each end of communication

are the native formats of the APIs involved, and thus, the component code as well.

In addition to formatting issues, there are some applications for which data security

is also of key importance, and a steering system used in those scenarios must provide

some mechanism of security for transfers of data between nodes of the system.
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Within the LAPIS system, both formatting an security issues are addressed. First,

data formatting is unified by the API layer, and all data transfers below the API and

between nodes takes place in a unified format, specifically, using data formatting com-

patible with the JAVA language. When a new API is written for a new language, any

differences in data representation must be handled within that new API, and incom-

ing data must be translated to the local languages representation, if needed. Likewise,

data sent out form the API layer must be translated into the JAVA representation.

Data security, on the other hand, is handled though implementation of a COM layer

module that implements whatever inter-node security measures are required.

3.3.6 Performance Issues with Computational Steering Sys-
tems

Still another issue that must be considered when looking at the use of steering

systems is that of performance and stability. It has been noted in numerous fields

that a centralized design creates an obvious single point of failure, and computational

steering is no exception [?]. As such, any computational steering system that requires

a centralized point of control is introducing potentially serious stability concerns. Ad-

ditionally, even loss of a periphery component of a computational steering application

could result in the total failure of the entire simulation. It has also been noted that in

some computational steering tools, required steering function calls must be included

within the main computational loop, and as such represent a measurable performance

loss [?].
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Minimizing Performance Impact

Performance overhead in steering tools is of critical importance as the primary

target for the use of steering tools is that of high performance, high complexity

simulations and computations. If inclusion of a steering tool into the simulation code

causes a significant degradation when in use, or even worse, at all times, any potential

benefit of efficiency or performance gained from the involvement of a human operator

may quickly be lost. This is especially true for long running simulations that only

occasionally require human interaction. In the case of LAPIS, the system has been

designed such that when not in use, there is no processor overhead (or nearly none,

in the case of MATLAB) for the inclusion of LAPIS in a code. Both the Daemon

and COM layer of the LAPIS system are designed to only require CPU time when

the system is not in a steady-state. If no node on the LAPIS steering system is

performing actions, then no cycles are being devoted to the steering tool.

3.3.7 Supporting Software and Hardware by Steering Tools
& Environments

The final shortcoming in current steering applications is a lack of support for a

wide variety of languages, hardware, and third party software tools. Scientific simu-

lations use a wide range of programming languages, specialty hardware, and specialty

software libraries and tools. In order for researchers to consider steering an an option,

steering infrastructures must support these languages and tools. Unfortunately this

is usually not the case, with steering systems supporting only one or a few languages

each. Additionally, while many of the steering tools available support some of the

various specialty software libraries and tools, few steering tools support a wide range.
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Providing an Easy Target for Third Party Development

If independent third party software and hardware can be developed for the steering

system, it will help greatly in the steering tool garnering wide spread acceptance.

The three level software stack, along with the API and COM standard make such

development by third parties significantly easier. Either the third party can develop

their tool to make use of the API layer calls, or they can implement their tool in

place of the API layer itself, so long as the tools function meets the standard set for

the APIs function. Along with greater ease of development of third party software

tools, third party hardware can, likewise, be built to rely upon software drivers that

operate on top of or as the API layer of the software stack.

The LAPIS standard API interface provides sufficient function for the development

significantly more complex and powerful tools than the methods within the API itself.

Additionally, it provides this with the guarantee that should underlying details of

the system change, the API interface will not. This assurance allows third party

developers the confidence needed to invest time and effort into the creation of new

and more powerful, varied, and application specific tools that has not previously

existed in the field of computational steering.

3.4 Practical Design Considerations

The final area of consideration in the design of the LAPIS system is the practical

implications of all of the design choices above. All of the topics discussed below

are more or less the necessary result of choices made above, rather than choices

unto themselves. There are three specific topics that should be understood. First,

the choice of development language for the Daemon and COM layers, the division of
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functionality between the API, Daemon, and COM, and the programmatic structures

that must be present within a language in order to implement a version of the LAPIS

API.

First, given the need for as much of the system as possible to be inherently multi-

platform with as little reimplementation required as possible, there were two language

choices for implementing the Daemon and the COM layers that were seriously con-

sidered, Java and Python. While both languages offer much the same in the way of

available libraries, function and cross-platform operation, Java is still far more widely

available in practice. Most every Unix-based operating system has an available JVM,

as does Windows, and in general, they are easily obtainable and installable.

Second, the need to minimize the complexity of both using the steering system

to implement steered simulations, as well as implementing new components for the

steering system itself, results in the most complex and significant functionality of the

system being moved into the Daemon layer. This is also done to minimize the need

for reimplementation of critical components and processes. In the end, the implemen-

tation of a COM only slightly more sophisticated than simply forwarding messages

between the steering network and the Daemon layer. The API, while slightly more

complex than the COM, is still very reasonable in terms of difficulty of implemen-

tation, and should be approachable by a developer of moderate experience. Finally,

design of the API itself has focused on minimizing the number of parameters for each

method in order to simplify it’s usage.

Finally, all of the above design choices and requirements result in certain require-

ments of a language before the LAPIS API can be implemented. First and foremost,

as all communication between layers occurs via local sockets, the target language
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must have a compatible sockets library. Additionally critical is the ability to address

data via reference, or achieve the equivalent functionality. Specifically, two threads in

the same memory space must be able to access the exact same data object. The cho-

sen language must also support threading in some fashion, with the developer being

able to control the function of both threads, and both threads must have access to a

common memory space. This requirement can be worked around in some cases, for

instance the MATLAB API makes use of the timer object in MATLAB rather than a

true thread. Finally, the language must support some sort of blocking mechanism, or

at worst a sleep mechanism combined with a polling loop (again, see the MATLAB

version of the API for an example of such a work-around).
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Chapter 4: The Development and Use of the LAPIS System

Working with the design choices discussed in chapter 3, the various components of

the LAPIS system were developed. Prior to discussion of any specific implementation

details, a brief discussion of the high level functionality is presented. Implementation

details of the LAPIS Daemon, the first TCP/IP LAPIS COM layer, and the LAPIS

Java and MATLAB API layers all follow, and are discussed below in detail. Addi-

tionally, the details of developing steered simulations and steering interfaces with the

LAPIS system are discussed. Also discussed are the details of developing new com-

ponents (APIs and COMs, most specifically) that interface with the LAPIS system.

Finally a summary of the abilities and features of the LAPIS system, in the context

of the problems discussed previously, is presented.

4.1 Structure and Behavior of the Overall System

The high level behavior of the LAPIS system and steering network should be dis-

cussed prior to any discussion of the actual software components that implement the

behavior. The LAPIS system architecture, described previously in chapter 3, is that

of a peer-to-peer network of nodes. Each node is a three level software stack com-

prised of a user simulation making use of the LAPIS API, the middleware Daemon,
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and the COM layer. As discussed, there is no explicit implementation of the steer-

ing network. Rather, the behavior that establishes the peer-to-peer steering network

is emergent behavior as the result of interaction between the Daemon layers of the

nodes involved in the steering network. However, in order to understand some of the

implementation decisions in the node layers, one must understand the process that is

used to create the peer-to-peer network as well as keep it consistent.

As a fully interconnected network of nodes, ensuring each node has a consistent

and complete view of the steering network’s structure is critical to proper operation of

the LAPIS system. A complete and consistent view is achieved by means of an update

mechanism that takes place whenever a nodes is added or removed from the steering

network. The process starts when a new node, (A), sends an update message to a

known member of the steering network, (B). This update message includes all nodes

and data elements known to (A). When a node receives such an update message, it

follows the following rules:

1. Compare the incoming list of nodes and data to the local list of nodes data and

create a list of differences

2. Add the nodes and data on the list of differences to the local list of nodes.

3. If there are any nodes or data on the list of differences, send an update message

to that node that includes the updated local list of nodes and data

4. If there are no nodes on the list of differences, take no further action

The following series of figures (4.1 - 4.5) illustrate the process by which this update

routine takes place in order to ensure a consistent network view amongst all members

of the steering network.
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Figure 4.1: Step 1: A new node, (A), starts and connects to the network via a known
member of the network, (B).

Figure 4.2: Step 2: (A) sends a complete copy of its node list to (B), (B) sends a complete
copy of its node list to (A)
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Figure 4.3: Step 3: (A) compares the list received from (B), and notes all new nodes. (B)
likewise compares list of received nodes from (A) and notes all new nodes

Figure 4.4: Step 4: For all new nodes detected, both (A) and (B) send a new update
message, including a list of all known nodes. Each of these nodes, (C) and
(D), return a list of known nodes to (A).
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Figure 4.5: Step 5: All nodes compare received lists to their internal list of nodes. If, at
this point, no new nodes are found, the update process ends.
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4.2 Development of the LAPIS Software Layers

The development of LAPIS was initially focused in three main areas: the Daemon,

the Java API and the TCP/IP Communicator. After developing these components, a

MATLAB version of the API was developed as well. The details of the development

work and implementation of each of components is covered in detail in this section.

The first layer of the LAPIS software stack developed was the middleware layer, also

referred to as the LAPIS Daemon. Along with the development of the Daemon was the

development of a standard list of LAPIS Control Messages. The Daemon connects the

API, and thus the user’s code, to the COM, and thus to the steering network. Given

its central nature, and the fact that the initial TCP/IP COM and API were also going

to be written in Java, the Daemon was the logical place to begin. This way, various

classes developed for the Daemon would be useful in the development of both the

TCP/IP COM and the API. Development of the TCP/IP COM started when further

progress of the Daemon was inhibited by an inability to test interoperability between

Daemon layers. Likewise, development of the Java API was started when testing

of features in the Daemon became impractical to perform without the API. Out of

necessity, much of the development of all three components was done in parallel. In

the following section, however, discussion of the implementations of these components

is limited to one component at a time. Finally, after development of the middleware

layer, the TCP/IP COM layer, and the Java API, a Matlab API was developed

as well to allow for inter-language testing. The development process and specific

implementation details of each component are discussed in full detail below.
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4.2.1 A Summary of LAPIS Control Messages

Interactions between the layers of the LAPIS system, as well as in between nodes

on the steering network, are all performed via a standard set of LAPIS control mes-

sages. Before further discussing the API, Daemon, or COM implementations or stan-

dards, a summary of LAPIS control messages is required. The table below lists all

the LAPIS message names, along with their use. A full specification of each message,

along with a descriptions of the fields that make up the message is given later in this

chapter.

4.2.2 The LAPIS Daemon Layer Implementation

Development of the LAPIS Daemon started with the development of the over-

all structure of the Daemon. The overall architecture was laid out (see figure 4.6)

and from this a list was created of the data classes and functional classes needed.

Once these and various supporting classes were developed, the LAPIS Control Mes-

sages needed for fully implementing communication between the API Daemon, and

COM were fully specified (see table 4.1, above). Finally, with both of these in place,

the entire functional unit of the Daemon was created and tested to ensure desired

functionality.

The Listener Object

The API and the COM both produce LAPIS Control Messages to which the

Daemon must respond. These messages can arrive at any time and without any

pre-knowledge on the part of the Daemon. The Listener object runs in a separate

thread of execution, so at not to interfere with the operation of the other listener

or the worker (see figure 4.7), and monitors a local socket acting as a producer in a
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Data Control Messages
PUBLISH Signals newly published data object

LOCK Signals a change in read/write status of a data object
REDACT Removes a data object from the steering network
ERROR Used for sending error messages

GET & SET Control Messages
GET Sent by the API to the Daemon layer to start a GET process

GET SETUP Sent by the Daemon to the COM, continues setup of GET
process

GET BEGIN Sent by the Daemon to the API, starts data transfer of GET
process

GET DONE Sent by the API to the Daemon, starts clean up of GET process
GET FINISH Sent by the Daemon to the COM, completes cleanup of GET

process
SET Sent by the API to the Daemon layer to start a SET process

SET SETUP Sent by the Daemon to the COM, continues setup of SET pro-
cess

SET BEGIN Sent by the Daemon to the API, starts data transfer of SET
process

SET DONE Sent by the API to the Daemon, starts clean up of SET process
SET FINISH Sent by the Daemon to the COM, completes cleanup of SET

process
Network Maintenance Control Messages

INITIALIZE Initializes a new steering network
CONNECT Connect to a node in the steering network

DISCONNECT Disconnect from the steering network
UPDATE Message generated when Connect or Disconnect are used, or

anytime an UPDATE message contains node or data lists dif-
ferent from a nodes internal state

CLOSE Shuts down the LAPIS system entirely. Generates a DISCON-
NECT message if currently connected

Information Control Messages
NODE LIST Requests or contains a list of all nodes in the steering network

ELEMENT LIST Requests or contains a list of all data in the steering network
DEBUG Used for sending debugging messages

MESSAGE Used for sending system messages
MISC Used for any other miscellaneous messages

Table 4.1: A summary of LAPIS control messages and their usage. Details of message
format and the LAPIS Command Message Standard can be found later in this
chapter in sections 4.4.
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Figure 4.6: Architectural structure of the LAPIS Daemon. The overall structure of the
LAPIS Daemon follows the producer/consumer design pattern, where the pro-
ducers are the Listeners and the consumer is the Worker. LAPIS Steering
Network structure is stored via the Node and Data tables.

producer-consumer design pattern the Daemon implements. In the case of the API

listener, the other end of this socket connects to the API, and for the COM listener,

to the COM. Both listeners I/O block on their socket when incoming data is not

available. As soon as data becomes available on that socket the Listener reads the

data in, and attempts to parse a LAPIS Control Message. If a valid message is found,

the Listener adds the message to the end of the Message queue, then resumes listening

to the socket.

Control Message Objects and the Message Queue

In between layers of the LAPIS system LAPIS Control Messages are exchanged via

sockets as character strings. Withing the Daemon layer, LAPIS Control Objects are

represented and exchanged as a Java Control Message object. When listeners parse

incoming data form the sockets they monitor, they produce control message objects.

The Control Message object class has a variety of utility methods. These include

a method for parsing a string into a control message object, another for writing a

control message object to a socket, another for converting a control message object
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Figure 4.7: Organization of computational threads involved in the execution of the LAPIS
Daemon. The main execution thread first starts the API and COM Listener
threads before entering the Worker routine.

into a string, and finally a collection of methods that allow retrieving fields of the

control message object for use in other processing tasks.

The Message Queue object keeps a collection of all control messages that the

listeners have parsed. The message queue provides methods for adding and removing

control messages, but beyond that, it does no processing of its own. Rather, the

Worker thread (discussed below in section 4.2.2) uses the message queue as a source

for LAPIS Control Messages upon which it must act.

The Node & Data Objects and Tables

Information about the steering network is stored within the Daemon as collections

of objects, one for each node and published data object. The Node Token object

contain all the relevant information about a particular node in the steering network.

These tokens are stored within the Node Table object. The Node Table provides

methods for translation from node name to node address, and vice versa. The Node

Table is also used in generation of the update messages and node list messages that

the Daemon produces.
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Likewise, the Data Token objects contain all relevant information about a pub-

lished data object on the steering network, including the relevant Node Token of the

publisher. Like the Node Tokens, Data Tokens are stored as a collection in the Data

Table object. As with the Node Table, the Data Table is used whenever the Dae-

mon produces an update message or a data list message. Likewise, when information

about remote data is needed by the node, the Data Table provides that information.

The Worker

The main workhorse of the Daemon and by far the most complex body of code is

the Worker process. The Worker reads LAPIS Control Messages from the Message

Queue and processes each one sequentially, performing a wide variety of tasks. LAPIS

API calls result in LAPIS Control Messages being sent to the API Listener, which

in turn adds the messages to the Message Queue. These messages are processed

by the Worker and when appropriate, forwarded to the COM for distribution to

the appropriate end points in the Steering Network. Likewise, messages from other

Daemons on the Steering Network are received and processed by the Daemon and,

when necessary, forwarded to the API layer.

The Worker plays a central roll in the central layer of the LAPIS Software stack.

As such the Worker is responsible for a large number of functions. The Worker re-

sponds directly to node and data list requests sent from the API layer. Setting up and

tear down of the connection frameworks needed to perform GET and SET operations

is coordinated by the Worker. The Worker handles the generation and processing

of UPDATE messages to ensure that the steering network remains consistent and
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operational. Finally, the Worker handles distribution of PUBLISH, REDACT, CON-

NECT and DISCONNECT messages to the broader network, again to help maintain

consistency between nodes on the Steering Network.

The implementation of the Worker is a single while-loop that executes until in-

structed (by the API sending a CLOSE message) to terminate. At each iteration of

the loop, the Daemon removes a LAPIS Control Message from the Message Queue,

acting as a consumer in the producer-consumer design pattern. After removing the

message, the Worker enters the appropriate section of the worker body to handle

that message, executes the handling routine, and then returns to the top of the loop.

When no message is available on the Message Queue, the Worker blocks until a mes-

sage becomes available.

4.2.3 The LAPIS API Layer Implementation, Java Version

In development of the Java version of the LAPIS API, first the functional require-

ments of the API were defined. Next, the structure of the API was laid out and the

classes needed to develop the API were either borrowed from the development of the

Daemon, or developed themselves. This entire process mirrored the process used in

creating the Daemon. Once implemented, the API was tested along with the Daemon

to ensure that the interaction between these components worked as expected. Sub-

sequent of completion of the Java version of the API, a MATLAB version of the API

was implemented (see section 4.2.4). Despite some significant limitations in MAT-

LAB environment, the MATLAB versions of the API functions nearly identically to

the Java version.
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Unlike traditional APIs, the LAPIS steering API implements more than just the

methods it provides to the end user. In order to respond to requests from other

members of the LAPIS Steering Network, the LAPIS API must first be initialized,

and as a part of that initialization, a Monitor thread must be created (see figure 4.8).

The implementation of the API and monitor thread are each covered in full detail

below.

Figure 4.8: Roll of the Monitor thread in relation to the main user simulation thread.
Nominally, while core simulation code is running, the Monitor thread is I/O
blocking, using no resources. This only changes for two reasons. First, if the
simulation leaves the computational kernel and calls a LAPIS API method,
it will block on the method until the Monitor thread receives a responds and
wakes the main thread. Second, when the monitor thread receives a request
from the Daemon, the Monitor thread will process this request before resuming
its I/O blocked state.

The API Monitor Thread Implementation

The Monitor thread serves two purposes. First, the Monitor thread returns re-

sponses from the Daemon related to to certain API calls made by the user, specifically

requests for node lists and data lists. The user simulation generates a NODE LIST

or ELEMENT LIST message and sends this message to the Daemon and then blocks,

waiting for a response from the Daemon. When the monitor thread receives a
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NODE LIST or ELEMENT LIST message from the Daemon, it wakes the blocked

API call, which then returns the list to the user code. The second roll of the monitor

thread is to provide a mechanism for GET and SET requests to be serviced with-

out any interaction from the user simulation thread and without any development

requirement by the end user of the LAPIS API. When GET and SET related control

messages are received by the monitor thread it handles the setup of socket connections

to the COM and transmission of data from the user simulation to the socket.

The Monitor thread itself is implemented as a while loop that runs until the LAPIS

System is shutdown, much the same as the Worker thread within the Daemon. Within

the loop, the Monitor I/O blocks on a local socket connected to the LAPIS Daemon.

When messages from the Daemon come in on this socket, they are parsed by the

Monitor thread and immediately acted upon. Depending on the type of message the

Monitor thread receives, different actions are required by the LAPIS API standard

(discussed in section 4.4.2). The Monitor thread takes whatever actions are required

before resuming its I/O block on the socket.

The API Method Implementations

The implementations of the LAPIS API methods are done primarily via the cre-

ation of LAPIS Control Messages that are immediately forwarded to the LAPIS Dae-

mon. Specifics of what Control Messages must be sent for specific API calls is covered

thoroughly below in section 4.4.2. In most cases, the method simply requires a mes-

sage be formed and sent to the Daemon. However in some cases thread of execution

calling the method blocks, as discussed above, until the Monitor thread receives a

response form the Daemon and wakes the thread.
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4.2.4 The LAPIS API Layer Implementation, MATLAB Ver-
sion

The structure of the MATLAB version of the LAPIS API is very similar to that of

the Java version, with a few subtle but key differences. First and foremost, MATLAB

does not support explicit, user controllable threads. As such, the Monitor Thread

of the Java implementation is replaced with a MATLAB Timer object whose handle

function has similar functionality. Rather than continuously run and block on I/O,

the timer polls the socket connection to the Daemon intermittently, at a user-settable

rate. While this is a less ideal solution than a I/O block, it is still relatively low

overhead and provides the same functionality with only slightly more latency.

Secondly, and more critically, MATLAB support for multitasking is minimal and

insufficient to allow for tasks to block on I/O. In any case where an I/O block was used

in the Java version, a polling loop with a system wait call has been substituted. While

this mechanism is far less ideal than I/O blocking in terms of efficiency and response

rate, it is functional and still allows for implementation of a full featured and complete

version of the API. Aside from these differences, implementation, development and

usage details of the MATLAB API are the same as that of the Java version.

4.2.5 The LAPIS COM Layer Implementation

For the first implementation of the communicator layer, a design based on simple

TCP/IP-sockets was chosen. A TCP/IP-socket based design provides the most widely

applicable solution, if not the technically best solution in many cases. The COM

was developed in the same manner as the API and the Daemon, starting with a

definition of the COMs operation, followed by the development of classes, and finally
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development of the functional whole using those classes. The organization of the

software components that make up the COM can be seen in figure 4.9. Of particular

note in this diagram is the Data transfer thread class used by the COM. Data transfer

threads are lightweight and are spawned and exist only for the duration of a data

transfer. Data transfer threads allow the COM to continue responding to requests

even during heavy and sustained data transfers.

Figure 4.9: The TCP/IP Com structure: A Copy of the Data Transfer Thread Object
is spawned every time that a GET or SET command is issued and exists for
only the duration of the data transfer.

The TCP/IP COM implementation consists of a main execution thread that

creates the Local Port Listener thread and the Remote Port Listener thread be-

fore exiting. During initialization, the main execution thread uses specified set-

tings found in the LAPIS.properties file (see section 4.3 for more information on

the LAPIS.properties file) to determine if the TCP/IP instance should be created on

the systems external or internal interface.
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The Local Port Listener and Remote Port Listener are implemented with nearly

identical structure, however their response to incoming messages is quite different.

For specifics of the COM standard and the way in which LAPIS Control Messages

must be handled by the COM, see section 4.4.3. Beyond the specifics of control

message handling, both listeners operate in a manner similar to the listeners used

in the Daemon. Both attach too a listening port and both attach to a writing port.

For the Local Port Listener, the listener reads data from a socket connected to the

Daemon and writes data to a socket connected to the LAPIS Steering Network. For

the Remote Port Listener, the arrangement is inverted. When no data is present on

the listening port, the listener is I/O blocked and creates no computational overhead.

When the COM needs to set up a data transfer between its own node and another

node on the steering network, the listener creates an instance of the Data Transfer

Thread instantiated with directionality appropriate for the situation. For instance,

in the case of a GET initialized by the listeners own node, the Local Port Listener

will set up and start a data transfer thread that reads data from a socket connected

to another node on the LAPIS Steering network’s COM and and writes that data to

a local socket connected to the local copy of the API.

4.3 Developing With the LAPIS System

The goal of the LAPIS system is to provide simulation developers a unified, sim-

ple, yet powerful set of programming tools for the implementation of computational

steering systems and simulations. LAPIS uses a shared data model for the implemen-

tation of steering. Each component of a steered system simply ’publishes’ data that

it wishes to share, making the data available to all other components on the steering
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network for reading and (optionally) writing. Key to the operation of LAPIS is that

nodes that publish data need take no other action in order to make the data available.

No priori knowledge about the timing, number, or nature of data reads and writes

are needed as all subsequent details are handled by the LAPIS system.

4.3.1 Prerequisites of Use

In order to program with the LAPIS system successfully, there are 4 compo-

nents that are required: the LAPIS API library in the language appropriate for-

mat, the Daemon JAR file, a COM JAR file, and the LAPIS.properties file. The

LAPIS.properties file should be in the running directory of the code that uses the

LAPIS API. The location of the Daemon and COM JAR files are specified within the

LAPIS.properties file, along with a number of other user configurable settings. There

is no additional setup required in order to run code that includes the LAPIS API.

4.3.2 The LAPIS API Overview

The LAPIS API provides a minimal functional set of methods for the application

developer. The table below summarizes names of these methods. Each method is

discussed in detail below, including a small example piece of pseudo-code.

The LAPIS Constructor

Prior to using any other functions of the LAPIS system, an instance of the LAPIS

API must be created. For object oriented languages, this will be done through an

object constructor. For non-object oriented languages, this will be done with a func-

tion that spawns another thread of execution and creates some globally accessible

data objects. The constructor requires only a single parameter, the string name the
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[constructor] publish
initialize redact
connect lock

disconnect unlock
nodes get

elements set
close

Table 4.2: The standard methods the LAPIS API provides, as required by the LAPIS API
standard (see section 4.4.2 for more detail on the standard.

node should be identified with on the steering network. The following pseudo-code

example illustrates the use of the constructor. The code creates an instance of the

LAPIS API in an object named ‘lapis’.

main()

{ // The following line is the LAPIS constructor

LapisApi lapis = new LapisApi(‘ThisNode’)

lapis.Close()}

Figure 4.10: Pseudo-code example of use of the Constructor

The Initialize Method

After creating a copy of the LAPIS API, if no steering network has yet been

established by other nodes, the Initialize method is used to start a new steering

network. The method takes no parameters and returns nothing. The following code

shows the use of the Initialize routine.
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main()

{ // The following line is the LAPIS constructor

LapisApi lapis = new LapisApi(‘ThisNode’)

// create a new steering network

lapis.Initialize()

// close the API

lapis.Close()}

Figure 4.11: Pseudo-code example of use of the Initialize

The Connect Method

The Connect method is used by a copy of the API in order to connect the node

to the steering network. Connecting to the network with this method automatically

results in the other layers of the LAPIS system going through a synchronization

routine. The Connect method takes two string variables as arguments. The value of

the first string is the name of the node to connect to. The second string is the address

of the node to connect to. The code snippet below shows an example of use.

main()

{ // The following line is the LAPIS constructor

LapisApi lapis = new LapisApi(‘ThisNode’)

// connects to the node named "OtherNode"

lapis.Connect("OtherNode", "127.0.0.1:12345")

// close the API

lapis.Close()}

Figure 4.12: Pseudo-code example of use of the Connect
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The Disconnect Method

The Disconnect method disconnects the node from the steering network. It takes

no parameters and returns nothing. The code snippet below shows the method in

use.

main()

{ // The following line is the LAPIS constructor

LapisApi lapis = new LapisApi(‘ThisNode’)

// connects to the node named "OtherNode"

lapis.Connect("OtherNode", "127.0.0.1:12345")

// disconnects to the steering network

lapis.Disconnect()

// close the API

lapis.Close()}

Figure 4.13: Pseudo-code example of use of the Disconnect

The Nodes Method

The Nodes method is used to get a listing of all the nodes attached to the steering

network. The method takes no parameters and returns a comma separated list of

node names, as a string. The following code sample shows the use of the Nodes

method.

The Elements Method

The Elements method is much like the Nodes method, but returns a comma

separated list of data-node pairs in the form of [data name]@[node name].
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main()

{ // The following line is the LAPIS constructor

LapisApi lapis = new LapisApi(‘ThisNode’)

// connects to the node named "OtherNode"

lapis.Connect("OtherNode", "127.0.0.1:12345")

// disconnects to the steering network

String nodeList = lapis.Nodes()

// parse the string

String[] tokens = tokenize(nodeList, ’,’);

...

Figure 4.14: Pseudo-code example of use of the Nodes

The Close Method

The Close method is called to close the instance of the API and clean up all the

layers and various threads and components that make up the LAPIS system. If the

node is not disconnected when this method is called, the API first disconnects from

the steering network. This method takes no parameters and returns no value. After

the Close method is called, the LAPIS API object should not be used again. The

following code shows the use of the Close method.

The Publish Method

The Publish method is used to make a variable available on the steering network.

Scalars, vectors, 2D and 3D arrays of Integer, Double, or Character types can be

published. The method takes a string name that the variable will be published, a

reference to the object itself, and a boolean value that indicates if the variable is

read-only. The code below shows the use of the Publish method.
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main()

{ // The following line is the LAPIS constructor

LapisApi lapis = new LapisApi(‘ThisNode’)

// Do simulation/steering stuff

// close the API instance

lapis.Close()}

Figure 4.15: Pseudo-code example of use of the Close

main()

{ // The following line is the LAPIS constructor

LapisApi lapis = new LapisApi(‘ThisNode’)

// create and publish a variable

Integer[] state = new Integer[]

lapis.Publish("SimulationState", state, 0)

...

Figure 4.16: Pseudo-code example of use of the Publish

The Redact Method

The Redact method removes availability of a published variable from the steering

network. The method takes the string name that the variable is published under.

The code below illustrates the function of the Redact method.
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main()

{ // The following line is the LAPIS constructor

LapisApi lapis = new LapisApi(‘ThisNode’)

// create and publish a variable

Integer[] state = new Integer[]

lapis.Publish("SimulationState", state, 0)

// ‘state’ can be read and written to by other

// nodes on the steering network

lapis.Redact("SimulationState")

// ‘state’ is no longer avialable on the steering network

Figure 4.17: Pseudo-code example of use of the Redact

The Lock Method

The Lock method changes the state of a published variable to read-only. The

method only takes a single parameter, the text name of the variable to be locked.

The code below illustrates the use of the Lock method (as well as the Unlock method,

discussed below).

The Unlock Method

The Unlock method changes the state of a published variable so that it is no

longer read-only. As with Lock, it takes a string with the name of the variable to be

changed. See the Lock code example for an example

The Get Method

The Get method is used to get a copy of the current state of a remote published

variable. It requires two parameters, one string of the name of the node name, and
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main()

{ // The following line is the LAPIS constructor

LapisApi lapis = new LapisApi(‘ThisNode’)

// create and publish a variable

Integer[] state = new Integer[]

lapis.Publish("SimulationState", state, 0)

// ‘state’ can be read and written to by other

// nodes on the steering network

lapis.Lock("SimulationState")

// ‘state’ can now only be read

lapis.Unlock("SimulationState")

// ‘stat’ can now be written to again

lapis.Redact("SimulationState")

// ‘state’ is no longer avialable on the steering network

Figure 4.18: Pseudo-code example of use of the Lock

one string of the variable name. The code example below shows the use of the Get

method. The code assumes a remote node named ‘RemoteNode’, has published a

variable ‘RemoteData’.

The Set Method

The Set method is used to set the value of a remotely published data. It requires

three parameters, one string of the name of the node name, one string of the data

name, and a reference to a data variable to use as a source of data to set the remote

data. The code below shows the use of the Set method under the same circumstances

as the code sample for Get previously.
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main()

{ // The following line is the LAPIS constructor

LapisApi lapis = new LapisApi(‘ThisNode’)

lapis.Connect("RemoteNode")

Integer[] remoteData = lapis.Get("RemoteData", "RemoteNode")

...

Figure 4.19: Pseudo-code example of use of the Get

main()

{ // The following line is the LAPIS constructor

LapisApi lapis = new LapisApi(‘ThisNode’)

Integer[] data = new Integer[]

lapis.Connect("RemoteNode")

lapis.Set("RemoteData", "RemoteNode", data)

...

Figure 4.20: Pseudo-code example of use of the Set

4.3.3 Initialization of the API and Steering Network

Before a body of code can use the LAPIS API, it must first create an instance of

the LAPIS API Object (or equivalent, depending on language). The constructor (or

other, language appropriate method) that creates the LAPIS API object is responsible

for starting the processes involved in the creation and running of the Daemon layer

and the COM layer. Once these processes have been started and the API object is
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returned to the users code, the user may move on to connecting to the LAPIS steering

network, publishing and redacting data, read remotely published data, writing to

remotely published data, and in all other ways interact with other nodes on the

steering network.

Initialization of the steering network is done by the first node that is executed

by the user. This may be a simulation that starts running via a batch scheduler

process, it may be a collaborator located in a different lab starting up a collaboration

interface, or a management interface that is started prior to scheduling simulations to

run on a supercomputer, as just a few possible examples. LAPIS has been left without

implicit structure as much as possible, making all of these organizations and more

readily and easily available to the end user when they create their computational

steering-enabled simulation. Much as network initialization can take many forms,

connecting to the network can as well. Multiple distributed processes each connecting

to a management interface form a steering network. Two collaborators connecting to a

running simulation form a steering network, as do a collection of models all connecting

to each other form a steering network. Again, these are just a few examples of the

many different forms a LAPIS steering network may take.

4.3.4 Example Software Structures for Use with the LAPIS
Steering System

There are a number of different software structures that are useful in the creation

of steering systems that are easily created with the LAPIS system. A number of these

structures are discussed below, with pseudo-code examples.

87



Low-Overhead State Sharing

Amongst the most useful features of steering systems is the ability to periodically

monitor the internal state of a running simulation. With the LAPIS system, this

is exceptionally easy to implement on the simulation side (more effort is, of course,

required on the monitoring and visualization side). Additionally, the design of LAPIS

ensures that when not actively being monitored the simulation will experience no

performance impact. Implementation of simulation state sharing follows the pseudo-

code below (figure 4.21). In order to implement monitoring, the visualization node

will need to use the GET command to read the simulation state.
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main()

{ lapis = new LapisApi(‘ThisNode’)

lapis.Connect(‘ThatNode’)

Integer[][] SimField = new Integer[][]

lapis.Publish(SimField, ‘ThisVariable’)

// pre-simulation tasks

while(simulating)

{ // run simulation core }

// post-simulation tasks

lapis.Close()}

Figure 4.21: Pseudo-code for implementation of simple simulation state sharing. Note
that no changes are required within the main simulation loop at all.

Pausing a Simulation

Another relatively simple but very useful mechanism that can be easily imple-

mented with LAPIS is the simulation-side pausing of execution. Implementation of

simulation pausing is slightly more complicated than simple state sharing, but only

requires one significant change to the core simulation loop. While not over-head free,

implementation in the manner shown below (see figure 4.22) ensures of a minimal

impact on simulation performance. When the client side application wishes to pause

the running simulation, it uses a Set method to set the pause flag. To resume the

simulation, another Set method is used to clear the pause flag will resume execution

of the simulation.
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main()

{ lapis = new LapisApi(‘ThisNode’)

lapis.Connect(‘ThatNode’)

Integer[][] SimField = new Integer[][]

Integer Pause = 0

lapis.Publish(SimField, ‘ThisVariable’)

lapis.Publish(Pause, ‘Pause_Flag’)

// pre-simulation tasks

while(simulating)

{ if (Pause_Flag != 0)

{ //pause 500 ms }

else

{ // run simulation core }

}

// post-simulation tasks

lapis.Close()}

Figure 4.22: Pseudo-code for implementation of simulation pausing. The only overhead
when the simulation is not paused is a single ‘if’ statement once per simula-
tion outer loop iteration.

Check-Pointing

Once simulation-side pausing is implemented, implementing check-pointing is a

simple matter of writing a client-side application that will periodically pause the

simulation, read, and then record the simulations state. Below is pseudo-code (figure

4.23) that could be used to implement such a client. In the case of this code, the

client will be a single-checkpoint-per-run implementation. This could be extended to

a periodic check-pointing client by adding an outer loop and either regular timing

controls or a user interface.
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main()

{ lapis = new LapisApi(‘Checkpointer’)

lapis.Connect(‘Simulation’)

Integer[][] state = lapis.Get(‘SimulationState’, ‘Simulation’);

Integer timeStep = lapis.Get(‘SimulationTimeSTep’, ‘Simulation’);

Double sigma = lapis.Get(‘SimulationSigma’, ‘Simulation’);

// collect other relevant state from simulation

// write all collected state to disk

lapis.Close()}

Figure 4.23: Pseudo-code for implementation of a check-pointing node. An outer loop
after the initialization and connection to the LAPIS network would allow for
a repeated collection of checkpoints.

Simulation Rewinding

Simulation rewinding is a computational technique where the end user of the

simulation can revert the simulation to a previously run time-step with the intension

of making some parameter change and watching the simulation re-run and observing

the new state. Simulation rewinding can be implemented as an extension of check-

pointing systems by creating regular check-points and creating a mechanism to pause

a simulation, select a check-point, and load the saved state back into the simulation.

The following pseudo-code (see figure 4.24) is for a rewinding interface that will issue

commands to a remote steered simulation to rewind that simulation to a previous

state. This code assumes that previously recorded states exist, and that the simulation

implements a pause loop and publishes all relevant data to the steering network.
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main(Integer rewindAmount)

{ lapis = new LapisApi(‘Rewinder’)

lapis.Connect(‘Simulation’)

lapis.Set(‘Pause_Flag’, ‘Simulation’, 1)

Integer timestep = lapis.Get(‘SimulationTimeSTep’, ‘Simulation’)

timestep = timestep - rewindAount

Integer[][] state = file.load(‘checkpoint_’ + timestep)

lapis.Set(‘SimulationState’, ‘Simulation’, state);

lapis.Set(‘SimulationTimeSTep’, ‘Simulation’, timeStep);

// load from disk and SET other relevant simulation state

lapis.Set(’Pause_Flag’, ’Simulation’, 0);

lapis.Close()}

Figure 4.24: Pseudo-code for implementation of a rewinding node. A user interface would
better allow for selection of previous states and handling cases of multiple
rewinds per execution.

Controlling a State-Diagram-Based Simulation

Much like the implementation of a pause flag within the simulation loop can

easily allow a developer to pause their simulation, a more complicated state diagram

based simulation could be controlled. As with the pause flag, publishing to the

steering network the variable that represents the state of the simulation will allow

a remote user interface to modify that state. A slightly more advanced approach

might be to create a monitoring application that is also attached to the steering

network that monitors some other state variables within the simulation and changes
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the state variable appropriately and autonomously before alerting a user interface

(again, attached to the steering network) by setting a flag within the user interface

code.

Managing Dynamically Growing Data Sets

In many simulations, the output of data occurs continuously as the simulation ex-

ecutes. In cases like these, it is possible to leverage the LAPIS system to publish data

to the steering network for access to other bodies of code (User interfaces, monitors,

other models, etc) in such a way that the data is still accessible even if the generating

simulation looses scope on the data. The snippet of pseudo-code below (figure 4.25)

would be within the main simulation loop, but not within the individual time-step

loop. The simulation would be setup to run a determined number of time-steps upon

each iteration of the outer most loop.
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Integer week = 0

input = load(initial_conditions)

// main simulation loop

while (simulating)

{ Integer[] output = new Integer[]

output = SimulateOneWeek(input)

lapis.Publish(output, ’output_’ + week.toString())

input = output

week = week + 1}

lapis.Close()}

Figure 4.25: Pseudo-code for publishing data vectors that grow wile the execution of the
simulation proceeds. Note that even though output is reinitialized at each
execution of the loop, each copy is preserved within the LAPIS framework.

4.4 Developing Extensions for the LAPIS System

In addition to providing a simple and intuitive interface for simulation developers,

LAPIS provides various layers of abstraction that will allow for third party developers

to extend the functionality of LAPIS.These layers provide a mechanism for creating

additional APIs and communicator modules, as well as feature rich, higher level

specialty systems. Connections between the API, Daemon, and communicator are

all done via a small set of well documented messages over local TCP/IP ports. This

standard and open method of control message passing allows developers to create

new API and communicator versions for their own and community use. Additionally,

the system does not require that an API even be present. Any module that responds
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appropriately to LAPIS control message from the Daemon can be used instead of a

standard API. In this way, developers can create other components that access and

manipulate the LAPIS steering network without relying on the default API provided,

should more specialized functionality be needed. Finally, given the low level and

flexibility, higher level tools can and should be developed on top of the API, providing

simulation developers with more specialized tools, APIs, and modules. At the same

time, developing these tools on a base standard helps ensure code reuseability and

robustness.

4.4.1 LAPIS Control Messages

All communication between layers of the LAPIS system that make up a node, and

in between nodes thought the steering network, with the exception of the transfer of

data, is handled via LAPIS Control Messages. When working on the creation of a

new API, or when working on a software module that takes the place of the API and

works directly with the Daemon layer, understanding the format and purpose of all

of these messages is critical. Below is a summary of all the LAPIS Control Messages.

For each message (or collection of similar messages) a table is given with the message

format and a description of what each field in the format represents. Additionally,

the function of each message is given.

DEBUG, MESSAGE, MISC, and ERROR Messages

These message types are all included as a means of sending various types of in-

formation between nodes that would not otherwise be transmittable with the other

control message types.

Field Description
MESSAGE The message as plain text that is being sent.

95



NODE LIST and ELEMENT LIST Messages

These messages are requests form the API for a list of nodes or data elements, or

a response from the Daemon with the list attached.
Field Description

CSV List In the case of NODE LIST and ELEMENT LIST messages orig-
inating from the Daemon layer, a CSV list of either node names
or data names will be included in this field. In the case of EL-
EMENT LIST, the each data element will have the form (data
name)@(node name).

PUBLISH Message

The PUBLISH messages is sent by the API whenever a new data element is

published to the steering network. Additionally, the Daemon forwards the PUBLISH

message to all other nodes in order to update them of the PUBLISH event.
Field Description

ORIGIN NAME The name of the node the PUBLISH message originated
from

DATA NAME The name of the data object being published
LOCK STATE Weather or not the data is read-only

DESTINATION ADDRESS This field is not filled in by the API when sending the
PUBLISH message to the Daemon. The Daemon uses
this field in broadcasting the message to all other nodes.
This field is the address to which the message should be
forwarded.

REDACT Message

The REDACT messages is sent by the API whenever a published data element is

redacted from the steering network making it unavailable. Additionally, the Daemon

forwards the REDACT message to all other nodes in order to update them of the

REDACT event.
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Field Description
ORIGIN NAME The name of the node the REDACT message originated

from
DATA NAME The name of the data object being redacted

DESTINATION ADDRESS This field is not filled in by the API when sending the
REDACT message to the Daemon. The Daemon uses
this field in broadcasting the message to all other nodes.
This field is the address to which the message should be
forwarded.

LOCK Message

The LOCK messages is sent by the API whenever a the lock state of a published

data element is changed. Additionally, the Daemon forwards the LOCK message to

all other nodes in order to update them of the LOCK event.
Field Description

ORIGIN NAME The name of the node the LOCK message originated
from

DATA NAME The name of the data object whose lock state is being
changed

LOCK STATE Weather or not the data is being locked or unlocked
DESTINATION ADDRESS This field is not filled in by the API when sending the

LOCK message to the Daemon. The Daemon uses this
field in broadcasting the message to all other nodes.
This field is the address to which the message should
be forwarded.

GET Message

The GET messages is sent by the API to the Daemon in order to initiate a transfer

of a remotely published variables state to the requesting node. When the Daemon

receives the GET message, it will translate the message into a GET SETUP message

which is forwarded along to the COM.
Field Description

OWNER NAME The name of the node the owns the requested data
DATA NAME The name of the data object being requested
XFER PORT NUMBER The port number that should be used for the data trans-

fer between the API and the COM on this node
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GET SETUP Message

The GET SETUP message is sent by the Daemon to the COM to continue the

process of setting up the data transfer channel for the GET request. When the COM

gets the GET SETUP request, it forwards it to the relevant node in the steering

network. When the COM on that node receives the GET SETUP message it for-

wards along to that nodes Daemon. That Daemon will translate the message into a

GET BEGIN message before sending it along to the API of the node that owns the

requested data.
Field Description

ORIGIN ADDRESS The address of the node the GET request originated
from

DESTINATION ADDRESS The address of the node that owns the data requested
by the GET

DATA NAME The name of the data object being requested
XFER PORT NUMBER The port number that should be used for the data trans-

fer between the API and the COM on this node
XFER TAG The unique tag associated with the transfer, assigned

by the Daemon

GET BEGIN Message

The GET BEGIN message is sent by a Daemon to the API when the Daemon

receives an external GET SETUP message. The GET SETUP message is translated

to a GET BEGIN message which is forwarded to the API that owns the requested

data.
Field Description

ORIGIN NAME The name of the node the GET request originated from
DATA NAME The name of the data object being requested
XFER PORT NUMBER The port number that should be used for the data trans-

fer between the API and the COM on this node
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SET Message

The SET messages is sent by the API to the Daemon in order to initiate a transfer

new data to a remotely published variable. When the Daemon receives the SET

message, it will translate the message into a SET SETUP message which is forwarded

along to the COM.
Field Description

OWNER NAME The name of the node the owns the variable the data
will be written to

DATA NAME The name of the data object being written to
XFER PORT NUMBER The port number that should be used for the data trans-

fer between the API and the COM on this node

SET SETUP Message

The SET SETUP message is sent by the Daemon to the COM to continue the pro-

cess of setting up the data transfer channel for the SET request. When the COM gets

the SET SETUP request, it forwards it to the relevant node in the steering network.

When the COM on that node receives the SET SETUP message it forwards along

to that nodes Daemon. That Daemon will translate the message into a SET BEGIN

message before sending it along to the API of the node that owns the target data.
Field Description

ORIGIN ADDRESS The address of the node the SET request originated
from

DESTINATION ADDRESS The address of the node that owns the variable that will
be written to

DATA NAME The name of the data object being written
XFER PORT NUMBER The port number that should be used for the data trans-

fer between the API and the COM on this node
XFER TAG The unique tag associated with the transfer, assigned

by the Daemon
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SET BEGIN Message

The SET BEGIN message is sent by a Daemon to the API when the Daemon

receives an external SET SETUP message. The SET SETUP message is translated

to a SET BEGIN message which is forwarded to the API that owns the target variable.
Field Description

ORIGIN NAME The name of the node the SET request originated from
DATA NAME The name of the data object being written to
XFER PORT NUMBER The port number that should be used for the data trans-

fer between the API and the COM on this node

INITIALIZE Message

The INITIALIZE message is sent from the API to the Daemon to inform the

Daemon process that the steering network has been initialized. At the moment, this

has no impact, but the functionality has been reserved for future implementation

needs.

Field Description
NUMBER This field has been reserved for future use.

CONNECT Message

The CONNECT message is sent from the API to the Daemon to initialize the

connection process to the steering network. When the Daemon receives this message,

it results in the generation of an UPDATE message to the connection point.
Field Description

ORIGIN NAME The name of the node the CONNECT request origi-
nated from (this node)

ORIGIN ADDRESS The address of the node the CONNECT request origi-
nated from (this node)

DESTINATION NAME The nae of the node to connect to
DESTINATION ADDRESS The address of the node to connect to
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DISCONNECT Message

The DISCONNECT message is sent by the API to the Daemon, which forwards

it on to every node on the steering network.
Field Description

ORIGIN NAME The name of the node the DISCONNECT request orig-
inated from (this node)

ORIGIN ADDRESS The address of the node the DISCONNECT request
originated from (this node)

UPDATE Message

The UPDATE message is sent between Daemons, following the process described

in section 4.1. When Daemons receive UPDATE messages, they compare the node

list and data list to that contained on the Daemon already. A list of nodes that are

only one one of the two lists is generated. Then, UPDATE messages are sent to all

of those nodes.
Field Description

ORIGIN NAME The name of the node the UPDATE message originated
from

ORIGIN ADDRESS The address of the node the UPDATE request origi-
nated from

CSV NODES A CSV list of known nodes
CSV DATA A CSV list of published data, in (dataname) @ (node-

name) format.
DESTINATION ADDRESS The address of the node the UPDATE message should

be sent to.

CLOSE Message

The CLOSE message is sent by the API to shutdown the Daemon and COM

process and clean up the node before exiting. If the Daemon receives a CLOSE

message and is not disconnected, it generates a DISCONNECT message prior to

shutting down the COM and itself. The CLOSE message has no parameters.
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4.4.2 LAPIS API Layer Development: The LAPIS API Stan-
dard

In development of new API layer extensions to LAPIS such as new language APIs

or other components that directly interface with the Daemon layer, the LAPIS API

standard provides an important guide for implementation. This API standard is

composed of two distinct parts: the standard handling of API method calls and the

standard handling of LAPIS Control Messages by the API layer. For development

of APIs, both of these standards must be adhered to, however for development of all

other API layer applications that do not implement the LAPIS API, only the standard

response to control messages must be considered. Each of these halves of the API

standard are discussed method by method or message by message, accordingly, below.

Standard Requirements for LAPIS API Methods

When implementing a version of the LAPIS API, all of the following methods

must be implemented. A description of what actions each method must perform is

given below in the heading under the method name.

The Constructor Method The constructor method is responsible for starting

the Daemon. Upon starting the Daemon, the Daemon will output the nodes address

on the steering network. This value should be parsed and recorded by the API

constructor as part of the APIs state. Additionally, the mechanism that handles

control messages sent from the Daemon must be started here.

Initialize Method This method must create and send a INITIALIZE control mes-

sage to the Daemon.
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Connect Method This method must create and send a CONNECT message to

the Daemon.

Disconnect Method This method must create and send a DISCONNECT message

to the Daemon.

NodeList Method This method must create and send a NODE LIST message to

the Daemon and then block until the monitor thread wakes the API thread. At this

point, the method must return the node list.

ElementList Method This method must create and send a ELEMENT LIST mes-

sage to the Daemon and then block until the monitor thread wakes the API thread.

At this point, the method must return the element list.

Publish Method This method must create and send a PUBLISH message to the

Daemon for the passed data name and reference. Additionally, it should record

the variable reference, and whatever other information may later be needed by the

monitor thread in order to handle GET and SET requests.

Redact Method This method must create and send a REDACT message to the

Daemon for the passed data name. Additionally, it should remove any record made

of the variable from whatever method was used to store it when it was published

Lock Method This method must create and send a LOCK message for the appro-

priate data name passed to the method.

103



Unlock Method This method must create and send a UNLOCK message for the

appropriate data name passed to the method.

Get Method This method must create and send a GET message to the Daemon

that includes a local port number. This method then must read the transfered data

stream from the port and return the reconstructed data object.

Set Method This method must create and send a SET message to the Daemon

that includes a chosen local port. Then it must write the passed data to a local port.

Close Method This method must create and send a CLOSE message to the Dae-

mon. Then, it must shut down the monitor thread and any and all local socket

connections associated with the Daemon.

Standard Requirements for LAPIS API handling of LAPIS Control Mes-
sages

DEBUG, MESSAGE, MISC, ERROR Whenever the API receives one of these

four message types, it should log the type of message, and the message text into

whatever logging system is in use.

GET BEGIN

SET BEGIN

NODE LIST When the API monitor receives a NODE LIST message from the

Daemon, it should store the list contained within the message in a location where
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the waiting API call can access it, then wake the API call via whatever appropriate

mechanism is available.

ELEMENT LIST When the API monitor receives a ELEMENT LIST message

from the Daemon

4.4.3 LAPIS COM Layer Development: The LAPIS COM
Standard

Similar to API layer development, a LAPIS COM standard provides a guide for

implementation. The standard covers all the actions the COM must take when certain

LAPIS Control Messages are received, either from the external interface, whatever

mechanism that may be, or from the internal socket that connects the Daemon layer

to the COM layer. All LAPIS Control Messages are forwarded from the interface

they arrive on to the other interface, and all such messages that require no further

action are not listed in this section. The following list covers all the control messages

for which a standard COM must take additional action.

Internal Listener Responses

This section covers all control messages sent by the Daemon to the COM.

GET SETUP When the COM internal listener receives a GET SETUP message

from the Daemon, it must create a data transfer thread that reads data from a

connection to the steering network and writes that data to a local socket provided in

the message. It must then replace the socket in the message with the address on the

steering network used for that connection before forwarding the message though the

steering network to the destination node.
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SET SETUP When the COM internal listener receives a SET SETUP message

from the Daemon, it must create a data transfer thread that reads data from a local

socket provided in the message, and writes that data to an address on the steering

network. It must then replace the socket in the message with the address on the

steering network that was used for that connection before forwarding the message

though the steering network to the destination node.

CLOSE When the Daemon sends a CLOSE message to the COM, it immediately

terminates both listener threads and ends execution.

External Listener Responses

This section covers all messages the COM receives by monitoring the steering

network.

GET SETUP When the COM implementation receives a GET SETUP message

from the steering network, it must create a data transfer thread that reads from a

local socket connected to the API, and write the data to the steering network address

provided in the message. Prior to forwarding the message on to the Daemon, the

steering network address must be replaced with the local socket used by the transfer

thread.

SET SETUP When the COM implementation receives a SET SETUP message

from the steering network, it must create a data transfer thread that reads from the

steering network address provided in the message, and write the data to a local socket

connected to the API. Prior to forwarding the message on to the Daemon, the steering

network address must be replaced with the local socket used by the transfer thread.
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4.5 Summary of Key System Features, Advantages, and
Abilities of the LAPIS System

With a full implementation of the LAPIS system for both Java and MATLAB, it

has become clear that the feature set of LAPIS is such that it resolves most of the

problematic issues presented by steering systems. The development difficulty often

associated with the use of steering systems is mitigated by means of a very simple and

easy to understand API, simple installation, and simple setup. A scientific simulation

developer can pick up and learn to use the LAPIS system in a short period of time with

relatively little effort compared to other available solutions, and without changing the

entire paradigm by which they develop.

Simulation portability and maintainability are likewise maintained. Simulations

can be switched from running entirely on a single machine to running across a dis-

tributed collection of nodes with little more than a single change in a configuration

file. Thanks to the cross platform compatibility of Java, the only constraint on where

the users simulation can run is the users simulation itself. Even systems with differ-

ent security constraints on inter-system communication can be accommodate via an

appropriate COM implementation. Additionally, there is no reason to fork develop-

ment of the simulation code body into steered and unsteered versions. So long as the

simulation makes use of the LAPIS system carefully, the steering functionality can

go unused and when not utilized represents nearly zero overhead.

The LAPIS system will also help encourage more third party software and hard-

ware development and support. With the LAPIS API and COM standards, third

party developers have a target to aim for in the development of more sophisticated

academic and commercial tools. Additionally, knowing the standards will remain in
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place will give assurance to the third party developers that effort put forth to create

such applications and systems will not be in vain.

Along with this issues, LAPIS helps address a host of smaller problems previously

discussed. Data compatibility between languages and systems is handled at the API

layer, freeing the simulation developer of any thought of the issue. Data security

issues can be addressed by implementation of a COM module that encrypts all data

traffic between nodes in the steering network. LAPIS imposes no specific architec-

ture on the simulation developer and provides enough flexibility to sufficiently model

any architecture the developer may desire. Finally, LAPIS provides a steering solu-

tion with extremely low overhead in idle steering states, allowing the simulation to

maintain a high level of throughput.
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Chapter 5: Implementations of Example Simulations with

LAPIS

To date, the LAPIS system has been used to implement a variety of example

models and systems. These examples serve both as debugging opportunities, system

tests and as demonstrations of the abilities of the LAPIS system in a variety of

situations. In addition to the academic examples, the LAPIS system has been used

to implement a multi-model simulation related to the NSF CDI project. Each of these

examples as well as the multi-model simulation are discussed in further detail below.

5.1 Steering Conway’s Game of Life

The first application of the MATLAB version of the LAPIS was creating a steered

version of the Conway’s Game of Life. Conway’s Game of Life was chosen as MAT-

LAB includes an open source implementation (see appendix A for unmodified source,

and appendix A for the modified code). Using the existing implementation of the

Game of Life as a starting point for development demonstrates how to apply LAPIS

to an existing software structure. At the same time, this example shows how little

development effort is required to create a steering tool from existing code and how
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adding steering code to an existing code body has little to know impact on perfor-

mance or function of that code. Additionally, using the Game of Life allows the

demonstration of LAPIS’ ability to decouple user interfaces from simulation cores.

5.1.1 Technical Description of the Demo

Conways Game of Life is a so called “0 player game” [?] in which a field of pixels

and a basic template are used to simulate a collection of cells. The game follows the

following simple rules to determine if at the next step if any given cell will be ‘live’

or ‘dead’:

1. Any live cell with fewer than two live neighbors dies

2. Any live cell with two or three live neighbors lives

3. Any live cell with more than three live neighbors dies

4. Any dead cell with exactly three live neighbors becomes a live cell

The stock MATLAB implementation of the Game of Life includes a graphical display

of the field of pixels on which the simulation takes place, and some basic controls

including a start and stop button (see figure 5.1). This stock program was modified

with four minor ways in order to convert it to a steered, pause-able version: A section

that declares an instance of the steering API and that published the data field were

added (see figure 5.2), also a flag-check in the main execution loop was added and

all references to the field variable, X were modified to X.d (see figure 5.3). While

running, the resulting version of the game of life looks and functions identically to

the original in the absence of steering.

110



Figure 5.1: The Stock Game of Life Interface

Paired with the modified version of the Game of Life is a simple steering GUI (see

figure 5.4). The GUI connects to the running instance of the modified Game of Life.

Once connected, the GUI allows the user to pause the remote execution. When the

Game of Life is paused the current state of the game is downloaded by the steering

GUI and displayed. The user can then interactively add points to the field by clicking

on grid points in the steering GUI. When the user resumes the remote simulation,

an updated version of the field is automatically sent to the game before the game

resumes.
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% ====== Start of Demo
set(axHndl,'UserData',play,'DrawMode',...

'fast','Visible','off');
m = 101;
%−−−added code for LAPIS−−−−−−−−−−−−−−−−−−−−−−−−−−
lapi = LapisApi('GameOfLife');
X = LapisData('field', zeros(m,m));
pause flag = LapisData('pause', 0);
lapi.Publish('field', X, 0);
lapi.Publish('pause', pause flag, 0);
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p = −1:1;
for count=1:15,

Figure 5.2: Initialization of the Game Of Life, additions included to initialize the LAPIS
API and publish data to the steering network.

5.1.2 Lessons Learned from this Demo

As the first full-featured demo created using the LAPIS system, it quickly became

clear that the start-up process for the LAPIS API was unnecessarily complicated. As

such, it was subsequently modified to require fewer parameters and less information

from the user. Additionally, this showed that adding an ‘if’ statement within the

main execution loop that checks a pause flag is an effective way to pause a running

simulation so that steering actions can take place synchronously. This methodology

has been used in a number of other applications subsequently.

5.2 Managing Hill Climbing Clients with a Manager Inter-
face Using LAPIS

The second example implemented was a multi-system, multi-language hill-climbing

demonstration. The hill climbing demonstration further demonstrates LAPIS’ ability

to distribute independent computational components with little effort on the part of
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while get(axHndl,'UserData')==play,
if(pause flag.d(1) == 0)

% How many of eight neighbors are alive.
N = X.d(n,:) + X.d(s,:) + X.d(:,e) + X.d(:,w) + ...
X.d(n,e) + X.d(n,w) + X.d(s,e) + X.d(s,w);
% A live cell with two live neighbors, or any cell with three
% neigbhors, is alive at the next time step.
X.d = double((X.d & (N == 2)) | (N == 3));

Figure 5.3: Start of the Game Of Life simulation loop with added ‘pause’ code and X
replaced with X.d

the developer.Additionally, Hill Climbing example demonstrates the interoperability

between languages that LAPIS provides. Finally, the hill climbing demonstration

shows an example management interface created with LAPIS. The system consists of

three distinct components: MATLAB hill-climbers, Java hill-climbers, and a MAT-

LAB management GUI, from which users can inspect and manage the hill-climbers

as they run. All coordination between the MATLAB management GUI and the hill-

climbers is done through the LAPIS system. The hill climbers have the capacity to act

autonomously, but are also designed to take real-time direction from the management

GUI.

5.2.1 The Hill-Climber Manager GUI

The management GUI (see figure 5.5 and appendix A for code) provides a view

of all the active hill climbers and their current state. The GUI is started before the

hill climbers and the climbers register with the manager when they start, populating

a list-box on the management GUI. By selected individual hill climbers from the list-

box, the management GUI can be used to view the path the selected climber has taken
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Figure 5.4: The Steered Game of Life User Interface: Changes made in the steering in-
terface (foreground) are reflected in the simulation (background) when the
simulation is resumed.

and the climbers current state. Additionally, the user can perturb the climber if it

has reached a steady state, reset the climber entirely, pause the climbers progress, or

upload a new topography to the climber, all with single button presses. From the end

users perspective, the implementation language of the climber is unknown and there

is no functional difference between the Java climbers and the MATLAB climbers.

5.2.2 The Java and Matlab Hill Climbers

Both the MATLAB and Java hill climbers (see appendix A for code) use a simple

template method to find peaks in a topography. The climber inspects the values of
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Figure 5.5: The Hill-Climbing Director

all values in the topography grid of it’s 8-neighbors. Upon finding the largest, the

climber then sets it’s current position to the position amongst the 8-neighbors with

the highest value (or leaves the position value alone if none of the 8-neighbors have

a higher value). The climbers behavior at a given time-step is determined by an

internal state variable. Initially, the state variable is set to an initialization state.

This causes the climber to download the topography provided by the manager GUI

and then switch to the climbing state. Nominally, once the climber is in the climbing

state it performs a step of hill climbing at every iteration of the simulation loop unless

a peak has been found, or external action has been taken, such as state modification

by the Climbing Manager. The climbers allow for such external changes of state by

publishing a state variable. The climbers internal state can be set so as to pause

the climber, cause the climber to randomly deviate from it’s current location, or to

download a new topography. Despite being implemented in different languages, both

the Java and MATLAB climbers operate identically as far as the director is concerned.
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The manner in which the climbers access the internal state of the manager, and the

way in which the manager manipulates the internal state of the climbers does not

vary at all between languages. Additionally, the implementation details relating to

this functionality are nearly identical in both the Java and MATLAB versions.

5.2.3 Lessons Learned from this Demo

The most striking lesson learned during this demo was with regard to the limita-

tions of the MATLAB timer system. Specifically, an I/O blocked timer in MATLAB

cannot be interrupted by another timer. As the MATLAB version of LAPIS uses

a timer internally in order to approximate threading, and since that timer thread

might block, inclusion of another I/O blocking timer that blocks on LAPIS calls can

cause deadlock. Currently, there is no known way around this problem, but hopefully

The Mathworks will improve the explicit multi-threading support in future versions

of MATLAB.

5.3 A Simple Multi-Model Simulation of a Sailboat, Wind &
Current Connected Via LAPIS

The Sailboat model simulates the path of a sailboat in the presence of wind

and water currents. This example demonstrates the use of the LAPIS framework in

the creation of a multi-model simulation based on similar component models with

each component model executing independently and asynchronously. The example

involves three component simulations: the sailboat simulator, the current simulator

and the wind simulator. The wind and water simulations each generate a constantly

varying two dimensional vector field used to represent force vectors applied by the

corresponding environmental factor. The sailboat tracks it’s own position and velocity
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vector through each of it’s iteration loops and samples the near by space in both the

wind and water vector fields continuously, using the near by vectors to compute both

a new position and velocity at each time step.

5.3.1 Wind and Water Models

The wind and water models are nearly exactly the same in terms of implementation

(see appendix A for code), varying only by choice of a central periodic function. The

models both generate a slowly varying vector fields based on these periodic functions.

This vector field is an internal state variable of the simulation and is published to the

LAPIS steering network at the initialization of the models at run-time. Subsequent

to the publishing of this internal state, the models makes no additional reference to

the LAPIS API for the remainder of execution time, thus limiting performance loss

due to use of the LAPIS steering tool. At the end of simulation, the models make one

final call to the LAPIS API to clean up the execution environment prior to exiting.

The models create their internal vector fields state at each time step of simulation.

This process starts with evaluation of the the periodic functions below for the water

current field (eq. 5.1) and the wind current field (eq. 5.2) over a 20 by 20 integer

grid. This evaluation results in a 20 by 20 grid of values that represent a topography.

Using this topography, the gradient is calculated at each of the points in the 20 by

20 grid, resulting in the desired internal vector field. Finally, after generation of this

vector field, the values of dx and dy are incremented by a small random amount in

order to induce smooth variation between points in the vector field between time-

steps. While the simulation does not implement an accurate model of wind or water

current, changing to a more accurate model of water and wind current and sailboat
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model does not require any significant addition LAPIS integration effort. The wind

and water current simulators run independently and asynchronously from each other

and the sailboat simulation. Both simulations simply generate data and never initiate

communication with the sailboat model. Example vector field outputs can be found

in figures 5.6 and 5.7.

water(x, y) = sin((x + dx)2) + cos(x + dx)2

+ sin((x + dx) ∗ (y + dy)) + sin(y) (5.1)

wind(x, y) = sin((x + dx)2) + cos(x + dx)2

+ sin((x + dx) ∗ (y + dy)) + sin(y) + sin((y + dy)2) (5.2)

5.3.2 Sailboat Models

The sailboat model (see appendix A for code) contains no internally published

state and has no external inputs into the model. The sailboat model instead relies

entirely upon the published state of the wind and water models, and upon LAPIS to

access that published state. At each time-step, the sailboat first updates its position

based upon an internal velocity vector computed during the previous time-step. Then,

the sailboat model GETs a copy of the vector fields from both the wind and water

models. The sailboat model then takes the vectors closest to it’s current location in

both fields and computes a linear average vector representing the influence of wind
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Figure 5.6: The vector field generated at one particular time-step of the Water Models
execution

and water currents at the current time-step. Using these two vectors, the sailboats

current velocity vector and position, the sailboat model computes a new velocity

vector, and the computational loop for the current time-step ends. The results of this

simulation are displayed in real-time via an output plot generated by the sailboat

model. An example execution of the simulation can be seen in figure 5.8, where the

wind vector field is shown in blue, the water vector field is shown in blue, and the

path of the sailboat is shown in red. Note that the edges of the simulation field wrap

in both directions (representing a flattened toroid).
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Figure 5.7: The vector field generated at one particular time-step of the Wind Models
execution

5.4 Implementation of a Feed-Back Control System of a
Driver & an Engine With LAPIS

The Driver & Engine multi-model simulation highlights the ability of LAPIS to

act as an interconnect between independently executing models arranged in a feed-

back loop. By making such connections, LAPIS can be used to efficiently create more

complicated multi-model simulations, control system simulations, or data-flow simu-

lation out of stand alone, simpler component simulations. In the case of this example,

the Driver simulation seeks to model the behavior of a driver when presented with

a speed limit and the velocity output of a engine or vehicle. At the same time, the
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Figure 5.8: The Boat simulation is a simple multi-model simulation. The boat reads
a position vector from both other simulations to determine it’s next travel
vector.

Engine simulation models the behavior of typical engine, responding to an accelerator

pedal position. Both of these models run asynchronously and in separate memory

spaces, as with the previous models. Unlike previous models, the behavior of each

model is specifically tied to the internal state of the companion model. Additionally,

the Driver simulation includes a graphical output that demonstrates how LAPIS can

be used to monitor the state of a long running simulation with little to no perfor-

mance impact on the simulation itself. Both the Driver and Engine model as well as

the graphical output are discussed in more detail below.
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Figure 5.9: Driver/Engine Model is arranged in an asynchronous feedback loop where the
instantaneous state of each model directly influences the next state of each
model

The Driver Model

The roll of the Driver model in this example is to simulate the behavior of the

driver of a theoretical vehicle. Similar to the sailboat model in the previous example,

the Driver model runs asynchronously from the Engine model, and also relies on

internal data from the engine model to compute it’s internal state at each time-step

(see appendix A for code). Unlike the sailboat model in the previous example, the

Driver model does publish its internal state variables for use by the Engine model.

The driver model reads values from a ’speed limit’ file gets the current speed of the

vehicle from the engine model via a call to the LAPIS ‘GET’ command. Using these

two values, the driver model produces a pedal position value.

The Engine Model

The engine model likewise runs asynchronously from the driver model (see ap-

pendix A for code). At the start of each iteration, the pedal position from the Driver

model is read, again with a LAPIS ‘GET’ command. The accelerator pedal position

and the previous speed of the engine are used by the Engine model to calculate the

new engine speed for the next time-step. The Engine models dependence on the

Driver models ‘pedal position’ state, and the Driver models dependence on the En-

gine models ‘engine speed’ state creates a rudimentary feedback loop. This feedback
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loop allows two simple models to engage in more complex and interesting behavior,

and emergent behavior is seen from the overall simulation (see figure 5.10).

The Output Plot

The output plot acts as a window into the simulation (see figure 5.10). The

GUI starts with the driver Driver model and output from both models is plotted

during each iteration of the driver model. This window allows the user to observe

the emergent behavior of the two models. In this case, the parameters and sampling

speeds of both the Driver model and Engine model lead to an oscillation around the

speed limit. The user can observe qualitatively that the model is most likely stable,

though the response of the model to the speed limit input file is less than ideal. For a

more interesting and thorough investigation of this system, a steering GUI could be

created that gives user access to the internal parameters of both models, including

sample speed, and allows the user to control the speed limit input rather than using a

file. Such a setup would allow for real-time, intuition based experimentation. While

the resulting parameter set might no be idealized, it will doubtlessly be much closer to

an idealized parameter set than a randomly selected parameter set. Such a resulting

parameter set would then be an ideal starting point for a more rigorous and thorough

optimization problem.

5.5 The Use of LAPIS in Implementation of the CDI Multi-
Model Simulation

LAPIS has been used as part of the NSF Cyber-enabled Discovery and Innovation

(CDI) project, specifically in the creation of several multi-model simulations of energy

consumption and provisioning. The CDI project seeks to study power consumption,
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Figure 5.10: Example output of the Driver/Engine model. In this case, the models result
in an emergent behavior of oscillation around the speed limit.

generation and provisioning, transportation, and technological effects on the power

grid. A deeper understanding of these factors will allow for a better understanding of

how advanced technologies (such as plug-in hybrid electric vehicles, renewable energy

sources, smart grids, and so on), government policy (tax policy, credits, incentives,

etc) and human behavior interact. Understanding these factors will allow development

of better social policies, allow for all levels of government and industry to better

prepare for technological changes coming in the near future, and will allow consumers

to better understand how certain technologies, policies and behaviors effect their daily

lives.

LAPIS will act as a mechanism for coordination within the CDI Multi-Model

simulation. Modeling such a wide variety of behaviors, systems, and functions requires

a multi-disciplinary team, and a diverse collection of models. Developing all of these

different facets as a single, monolithic model is infeasible. At the same time, the
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required level of interaction between the models during simulation makes running the

models in isolation equally infeasible. Given this, the LAPIS system was chosen as a

means of interconnecting these models into a larger multi-model simulation. Initial

work has already been done and several successfully multi-model simulations have

been built using the LAPIS system to interconnect models. These simulations have

included sophisticated household energy consumption models, power system commit

and dispatch optimization models, and commercial and industrial power consumption

models. These initial simulation setups are a starting point for larger and more

sophisticated end-user systems that will be developed as the project progresses. As

the overall multi-model simulation grows in size and complexity, the roll of LAPIS

will become critical to the systems ability to operate.

To date, two different multi-model systems have been developed, and a third more

advanced system is in active development. Each of these systems is described below.

5.5.1 The First Generation CDI Multi-Model: The Utility
Provider Simulation Website

The first CDI Multi-Model was designed and built as a proof of concept, showing

that a multi-model simulation could be built out of existing models, using LAPIS to

interconnect the components. Additionally, the first generation simulation showed

that the entire multi-model simulation could be controlled and observed via a web

based user interface. For the first generation simulation, the user takes on the roll

of a power company that must meet the power needs of a growing community. The

user chooses which type of power plant to build, and when to build them. They

must consider not only peek demand, but total system efficiency, cost, greenhouse

gas (GHG) production, and power system ramping.
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This simulations web-based front-end user interface links to models developed

as part of the CDI project running on remote computational resources (see figure

5.11. For the first generation simulation, the models used were a Residential Power

Demand (RPD) model based on the work in [?], and a Power Optimization Engine

(POE) model based on the CPLEX optimization toolbox from IBM. These models

underwent minimal modification in order to allow them to work together to provide

the relevant output data to the end user. The coordination of the models, directing

of input from the website to the models, and directing simulation results back to the

website were all accomplished with the LAPIS system though a module referred to

as the Back-End Manager (BEM). Specific details of the web-based front end, the

component models, and the BEM are discussed below.

Figure 5.11: The structure of the 1st generation CDI Multi-Model. Note that the BEM
and models may all be running on separate physical hardware.
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5.5.2 The Website

The web-based user interface (see figure 5.12) is a simple website which gives the

user the controls to select how many of each type of power plant to build each year,

as well as a control to start a year of simulation. Additionally, the website provides

feedback to the player in the form of graphs that show peak demand, critical power

spikes, total demand, total generation, population, GHG emissions, cost, and other

key factors. The website uses Apache Tomcat to implement much of its functionality,

sending input in the form of a JSON file from the user via a socket connection to

the BEM. Once input is sent, the Tomcat process then waits, monitoring the same

socket, until another JSON file is returned from the BEM, at which point the charts

and other data on the website are updated with the data found in the returned JSON

file.

Figure 5.12: User interface web page for the power generation/consumption simulation
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5.5.3 The Back End Manager

The Back End Manager was designed to act as an interface between the Apache

Tomcat powered front end website and the Java and MATLAB models on the back end

of the system. Requests for simulation come from the website, at which point the BEM

handles setting of initial values of the simulations, coordination of simulation runs to

ensure that data dependencies are met, and collection, packaging, and transmission

of outputs back to the front end Tomcat process. Additionally, the BEM creates the

steering network that the back end models connect to when they are started up.

The BEM is a good example of the flexibility of the LAPIS system. Many sim-

ulation systems have or require components that qualify as neither user interface or

simulation. In many computational steering systems, if the architecture of the users

simulation doesn’t conform to the architecture dictated by the steering system, either

the tool could not be used, or there would be significant recoding effort required in

order to make the existing simulation ‘fit’ the steering tool. LAPIS, however, dic-

tates no such architecture, and additionally, is flexible enough to implement any such

architecture. As such, LAPIS easily conforms to whatever software architecture the

developer might wish to use.

5.5.4 The PDM and POE Models

The first generation simulation consisted of two models, the Power Demand Model

(PDM) and the Power Optimization Engine (POE). Both models were initially devel-

oped without inclusion of the LAPIS API but both only required slight modification

in order to grant the BEM access to their internal state through LAPIS. In both
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cases, the models create instances of the LAPIS API and connect to the steering net-

work started by the BEM. Both nodes then publish critical internal state variables,

giving access to them to any other node within the steering network, including the

BEM. Additionally, both models were modified with the inclusion of a ‘run-loop’ and

a run flag, also published to the steering network. The models have internal state

variables that are expected to be set externally by the BEM. When the run flag is

set externally, the model begins computation and runs one full year of simulation,

filling another output buffer with the resulting data. When the model has completed

a years worth of simulation, it once again clears the run flag, signaling to the BEM

that computation has completed.

5.5.5 System Operation

The first generation multi-model was a coarse-grain system, performing one full

year of simulation at a time, and only upon user request. Additionally, only two

models were involved in the simulation, and they were always run sequentially rather

than in parallel. As such, a very well defined order of events was in place during the

simulation of each year of data. The specific order of events is as follows:

1. The user enters the number of plants to build and presses the ‘Run’ button.

2. The web interface sends the user’s input to the BEM as a JSON file via a local

socket connection and then waits for output from the BEM.

3. Using LAPIS, the BEM sets the initial state of the PDM (population size,

simulation year) and then sets the run flag within the PDM. The BEM then

monitors the run flag, waiting to see it cleared, signaling that the PDM has

completed a years worth of simulation.
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4. The PDM, having its run flag set, simulates one year and clears the run flag.

5. Seeing the PDM’s run flag clear, the BEM uses LAPIS to get the resulting data

from the PDM and, again using LAPIS, uses that data to set the initial state

of the POE. The BEM then sets the run flag of the POE and monitors the flag,

waiting to see it cleared.

6. The POE, having its run flag set, simulates one year and clears the run flag.

7. Seeing the POE’s run flag clear, The BEM uses LAPIS to get the output of the

POE.

8. Using the output collected from both the PDM and the POE, the BEM writes

an output JSON file and sends the data back to the Tomcat process via the

same socket it initially received the input from.

9. The web interface displays the new data to the user.

This process is repeated for every year of simulation the end user requests. Given

the amount of time taken to simulate one year within any given model, running

one year of simulation time was not ideal. Additionally, only ever running models

sequentially was also less than ideal. Finally, the initial web interface, while somewhat

functional, was far to static and overall did not interface well with the BEM and the

rest of the system. All of these issues fed into the design of the second and third

generation CDI Multi-Models.

130



5.5.6 The Second Generation CDI Multi-Model: The Con-
tinuously Executing Power Demand And Supply Model

The second generation of the CDI Multi-Model simulation was built upon the first

generation design, but includes several redesigns. First and foremost, the design of the

overall system was changed of a controlled-rate execution simulation to a continuously

executing simulation. The PDM and POE models were modified to accommodate this

methodology. Additionally, a Commercial & Industrial (CI) model was added to the

overall system. See figure 5.13 for a full diagram of the second generation Multi-

Model. All three models were modified to allow direct coordination between models.

Details of this mechanism and its implementation are discussed below in section 5.5.6.

In addition to this functional change, the initial website was abandoned as it no longer

fit with the operational paradigm of the model. In stead, data is accessed on the fly

directly from the MATLAB command line.

Figure 5.13: The structure of the 2nd generation CDI Multi-Model. Note the lack of
static user interface as well as the lack of any central controller.
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The Commercial & Industrial Model

The Commercial & Industrial (CI) model provides power demand simulation of

commercial and industrial entities that correspond to the population being simulated

at the same time by the PDM. The POE was modified to consider the output of the

CI model in the optimization calculations. Unlike the PDM and POE, the CI model

was developed from the start with the LAPIS API, however the use of LAPIS within

the model is nearly the same as LAPIS’ use in the PDM model.

Model Manifests and Hassle Free Model Integration

The most interesting part of the second generation Multi-Model simulation is the

development of the Model Manifest system. While development of various models

was undertaken by different parties, it became quite clear that tight coordination

between developers was at least undesirable, and more likely unworkable as system

complexity continues to increase. To mitigate this problem, the Model Manifest

system was introduced.

Within the Model Manifest system, each developer is responsible for maintaining

a manifest for their model. This manifest includes a number of pieces of information.

Most critically, it includes a listing of the internal state the simulation publishes, that

state’s type, size, rate of growth, and other key factors. Correspondingly, the devel-

oper of a model is responsible for monitoring the models upon which the developers

model is dependent upon for data. In this way, developers can work without signifi-

cant coordination or worry about changes made to one model breaking the function

of other models.
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5.5.7 The Third Generation CDI Multi-Model: The CDI
Simulation System

The third generation Multi-Model is currently in development, making use of the

initial concept for a web-based front end, as well as the idea of a continuously running,

non-centrally-coordinated back-end collection of models. Additionally, the system will

be set up to support multiple users simultaneously (with separate instances of back-

end models for each user). A weather model and transportation model will also be

included, once the models are fully developed and tested.

The structure of the third generation Multi-Model (see figure 5.14) again uses a

web-based front-end, but in this design, the web front end reads data to display from

a database, and writes user input to the same database. Additionally, the layout of

the user website will be generated dynamically based on the model manifests, which

will be parsed at load-time of the website. In the future, there are additionally plans

to provide the user of the site a list of available models, allow the user to connect

them into a custom structure dynamically, and start execution of the full system, all

with a simple visual interface.

On the back-end, attached to the LAPIS steering network is an Data Coordinator

that gathers all the generated states from all the models, and enters all the data

into the database. Having a single module within the steering network that has

access to all historical data generated by the models also presents an opportunity to

easily implement a check-pointing system, as well as a stop and rewind system. By

having all the models publish a pause flag and all internal state needed to set up initial

conditions, the Data Coordinator can pause all models, read data for a particular time

out of the database, and set all the internal states appropriately. Additionally, by
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parsing the manifests included with each model, this process can happen procedurally

at run-time, and adding additional models or changing existing models will require

no additional implementation, so long as manifests are maintained.

Figure 5.14: The structure of the 2nd generation CDI Multi-Model. Note the lack of
static user interface as well as the lack of any central controller.
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Chapter 6: Conclusion

Computational steering shows great potential when applied to scientific computing

problems. Despite this, limitations in existing technology make creating, maintaining

and using such systems difficult, particularly for the typical researcher. This work

provides a thorough definition of computational steering and analysis of the entire

history and development of the field of computational steering. An analysis of the

problems with computational steering, an analysis of other historical developments

in other high performance computing fields, and a number of other design considera-

tions are discussed in detail, resulting in a theoretically ideal computational steering

architecture. LAPIS has been implemented using this architecture, and a summary

of the development itself as well as the implementation details have been presented.

Finally, a collection of implementation examples have been presented, demonstrating

a range of computational techniques and abilities that LAPIS provides.

6.1 LAPIS’ Contribution to Computational Steering

Today, the LAPIS system already provides simple, robust and flexibly computa-

tional steering functionality. The API is simple enough to be quickly understood, is

easy to setup and use, and should be adoptable by any programmer of minimal expe-

rience. Such a simple to use steering system, with the level of flexibility provided by
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LAPIS, does not otherwise exist. In addition to being easy to use, the high portabil-

ity levels provided confidence that time spent developing more complex behavior will

not be wasted, and additionally, can be shared with the community at large. Like-

wise, implementation of larger system components are far more likely to be applicable

to the work of others, saving them the trouble of developing the same components

over and over again. Additionally, this framework allows for interoperability between

languages and models, all while requiring minimal changes to existing code.

The design and implementation of LAPIS addresses in part or in full every prob-

lem identified with computational steering systems, as discussed in 4.5. By simpli-

fying development, LAPIS ensures that new users will not be turned back by a high

learning curve. Maintainability and portability are both very good in comparison to

most other steering tools in the field. This ensures that simulation developers will

not risk their simulations developmental health, or limit themselves to a particular

system setup, giving developers further confidence in using LAPIS. Additionally, the

drafting of the LAPIS standards documents provides a mechanism that is historically

shown to increase adoption rates of a given computational technique. The unique

architecture of the LAPIS system additionally allows easy expansion by third party

developers, helping to ensure that a wide variety of modules and systems can be de-

veloped independently, while at the same time all making use of the same underlying

technology. LAPIS also provides flexibility to handle issues of data security, while

abstracting away issues of data compatibility and to a large extent, computational

scaling.
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6.2 Future Work

There are a number of extensions and improvements planned to the LAPIS frame-

work. While the core LAPIS systems are currently functional and already provide a

wide variety of benefits, there are a number of features that should still be added.

Tracking and confirming messages has not yet been implemented, nor has error control

for dropped, lost, or mishandled messages. Additional information about published

variables, including dimension and type, will in the future be tracked in order to

simplify the API. Also, in the future it will be possible to GET and SET subsections

of a shared data array. Finally, additional synchronization modes may be added to

allow nodes to ’subscribe’ to a remote data object, which would cause updates to

that remote data object to be pushed to the subscribing node. In addition to these

enhancements of the core software, additional APIs are planned, including C/C++,

Python, and FORTRAN. Also, additional communicators will be implemented, in-

cluding a File-based communicator for use on systems with more restrictive network

setups.

At this point, LAPIS shows great promise as a computational tool. LAPIS is

unique among steering tools and frameworks in its ease of use, flexibility, and robust-

ness. With further work, more APIs can be developed, allowing more simulations

in different languages to leverage the benefits of computational steering. Additional

COM modules will likewise increase the number of ways and locations that LAPIS

can be used on. Further work on the infrastructure of the tool will provide even more

robustness, a fuller feature set for greater efficiency in use, and new features and pos-

sibilities. Through additional use in a variety of areas, functional requirements and

abilities will be further refined into a truly universal computational steering standard.
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Appendix A: Implementation Example Code Bodies

A.1 Conways Game of Life, Steered Version Code

A.1.1 Game of Life Code

function life(action)
%LIFE MATLAB's version of Conway's Game of Life.
% "Life" is a cellular automaton invented by John
% Conway that involves live and dead cells in a
% rectangular, two−dimensional universe. In
% MATLAB, the universe is a sparse matrix that
% is initially all zero.
%
% Whether cells stay alive, die, or generate new
% cells depends upon how many of their eight
% possible neighbors are alive. By using sparse
% matrices, the calculations required become
% astonishingly simple. We use periodic (torus)
% boundary conditions at the edges of the
% universe. Pressing the "Start" button
% automatically seeds this universe with several
% small random communities. Some will succeed
% and some will fail.

% C. Moler, 7−11−92, 8−7−92.
% Adapted by Ned Gulley, 6−21−93
% Copyright 1984−2004 The MathWorks, Inc.
% $Revision: 5.10.4.1 $ $Date: 2004/08/16 01:38:30 $

addpath('/home/ben/workspace/LAPIS API Matlab');

play= 1;
stop=−1;

if nargin<1,
action='initialize';

end;
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if strcmp(action,'initialize'),
figNumber=figure( ...

'Name','Life: Conway''s Game of Life', ...
'NumberTitle','off', ...
'DoubleBuffer','on', ...
'Visible','off', ...
'Color','white', ...
'BackingStore','off');

axes( ...
'Units','normalized', ...
'Position',[0.05 0.05 0.75 0.90], ...
'Visible','off', ...
'DrawMode','fast', ...
'NextPlot','add');

text(0,0,'Press the "Start" button to see the Game of Life demo', ...
'HorizontalAlignment','center');

axis([−1 1 −1 1]);

%===================================
% Information for all buttons
labelColor=[0.8 0.8 0.8];
yInitPos=0.90;
xPos=0.85;
btnLen=0.10;
btnWid=0.10;
% Spacing between the button and the next command's label
spacing=0.05;

%====================================
% The CONSOLE frame
frmBorder=0.02;
yPos=0.05−frmBorder;
frmPos=[xPos−frmBorder yPos btnLen+2*frmBorder 0.9+2*frmBorder];
h=uicontrol( ...

'Style','frame', ...
'Units','normalized', ...
'Position',frmPos, ...
'BackgroundColor',[0.50 0.50 0.50]);

%====================================
% The START button
btnNumber=1;
yPos=0.90−(btnNumber−1)*(btnWid+spacing);
labelStr='Start';
cmdStr='start';
callbackStr='life(''start'');';

% Generic button information
btnPos=[xPos yPos−spacing btnLen btnWid];
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startHndl=uicontrol( ...
'Style','pushbutton', ...
'Units','normalized', ...
'Position',btnPos, ...
'String',labelStr, ...
'Interruptible','on', ...
'Callback',callbackStr);

%====================================
% The STOP button
btnNumber=2;
yPos=0.90−(btnNumber−1)*(btnWid+spacing);
labelStr='Stop';
% Setting userdata to −1 (=stop) will stop the demo.
callbackStr='set(gca,''Userdata'',−1)';

% Generic button information
btnPos=[xPos yPos−spacing btnLen btnWid];
stopHndl=uicontrol( ...

'Style','pushbutton', ...
'Units','normalized', ...
'Position',btnPos, ...
'Enable','off', ...
'String',labelStr, ...
'Callback',callbackStr);

%====================================
% The INFO button
labelStr='Info';
callbackStr='life(''info'')';
infoHndl=uicontrol( ...

'Style','push', ...
'Units','normalized', ...
'Position',[xPos 0.20 btnLen 0.10], ...
'String',labelStr, ...
'Callback',callbackStr);

%====================================
% The CLOSE button
labelStr='Close';
callbackStr='close(gcf)';
closeHndl=uicontrol( ...

'Style','push', ...
'Units','normalized', ...
'Position',[xPos 0.05 btnLen 0.10], ...
'String',labelStr, ...
'Callback',callbackStr);

% Uncover the figure
hndlList=[startHndl stopHndl infoHndl closeHndl];
set(figNumber,'Visible','on', ...

140



'UserData',hndlList);

elseif strcmp(action,'start'),
cla;
axHndl=gca;
figNumber=gcf;
hndlList=get(figNumber,'Userdata');
startHndl=hndlList(1);
stopHndl=hndlList(2);
infoHndl=hndlList(3);
closeHndl=hndlList(4);
set([startHndl closeHndl infoHndl],'Enable','off');
set(stopHndl,'Enable','on');

% ====== Start of Demo
set(axHndl, ...

'UserData',play, ...
'DrawMode','fast', ...
'Visible','off');

m = 101;
%−−−HBS addition: LAPISS init, data init−−−−−−−−−−−−−−−−−−−−−−−−
% create steering api instance
lapi = LapissApi('GameOfLife');
% init. steering network
lapi.Initalize();
% init of steered variables
X = LapissData('field', zeros(m,m));
pause flag = LapissData('pause', [0 0]);
% publish steered variables
lapi.Publish('field', X, 0);
lapi.Publish('pause', pause flag, 0);
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p = −1:1;
for count=1:15,

kx=floor(rand*(m−4))+2; ky=floor(rand*(m−4))+2;
X.d(kx+p,ky+p)=(rand(3)>0.5);

end;

% The following statements plot the initial configuration.
% The "find" function returns the indices of the nonzero elements.
[i,j] = find(X.d);
figure(gcf);
plothandle = plot(i,j,'.', ...

'Color','blue', ...
'MarkerSize',12);

axis([0 m+1 0 m+1]);

% Whether cells stay alive, die, or generate new cells depends
% upon how many of their eight possible neighbors are alive.
% Here we generate index vectors for four of the eight neighbors.
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% We use periodic (torus) boundary conditions at the edges of
% the universe.

n = [m 1:m−1];
e = [2:m 1];
s = [2:m 1];
w = [m 1:m−1];

while get(axHndl,'UserData')==play,
% HBS addition: check if paused
if(pause flag.d(1) == 0)

% How many of eight neighbors are alive.
N = X.d(n,:) + X.d(s,:) + X.d(:,e) + X.d(:,w) + ...

X.d(n,e) + X.d(n,w) + X.d(s,e) + X.d(s,w);

% A live cell with two live neighbors, or any cell with three
% neigbhors, is alive at the next time step.
X.d = double((X.d & (N == 2)) | (N == 3));

% Update plot.
[i,j] = find(X.d);
set(plothandle,'xdata',i,'ydata',j)
drawnow

% Bail out if the user closed the figure.
if ¬ishandle(startHndl)

return
end
pause(0.25);
% HBS addition: slow down the simulation

else
pause(0.25);
% HBS addition: wait until pause flag is clear

end

end

% ====== End of Demo
set([startHndl closeHndl infoHndl],'Enable','on');
set(stopHndl,'Enable','off');

elseif strcmp(action,'info');
helpwin(mfilename);

end; % if strcmp(action, ...

A.1.2 Steering GUI Code
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function varargout = guilife(varargin)

% Begin initialization code − DO NOT EDIT
gui Singleton = 1;
gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...
'gui OpeningFcn', @guilife OpeningFcn, ...
'gui OutputFcn', @guilife OutputFcn, ...
'gui LayoutFcn', [] , ...
'gui Callback', []);

if nargin && ischar(varargin{1})
gui State.gui Callback = str2func(varargin{1});

end

if nargout
[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else
gui mainfcn(gui State, varargin{:});

end
% End initialization code − DO NOT EDIT

function guilife OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for guilife
handles.output = hObject;

addpath('/home/ben/workspace/LAPIS API Matlab');
% Update handles structure
guidata(hObject, handles);

% UIWAIT makes guilife wait for user response (see UIRESUME)
% uiwait(handles.figure1);

function varargout = guilife OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure
varargout{1} = handles.output;

function pushbutton1 Callback(hObject, eventdata, handles)
% create the lapi object
lapi = LapissApi('GameOfLifeClient');

% connect to the address provided
lapi.Connect('GameOfLife', get(handles.edit1, 'String'));

% save the lapi instance in handles
setappdata(0, 'lapi', lapi);
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function edit1 CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), ...
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function pushbutton2 Callback(hObject, eventdata, handles)
lapi = getappdata(0, 'lapi');
if (strcmp(get(hObject, 'String'),'Pause'))

% send the 'pause' command to the GoL Server
lapi.Set('pause', 'GameOfLife', [1 0]);
% get the current field from GoL Server
field = lapi.Get('field', 'GameOfLife');
setappdata(0, 'field', field);
% display field in axes
[i,j] = find(field);
q = get(handles.axes1, 'ButtonDownFcn');
plot(handles.axes1,i,j,'.');
set(handles.axes1, 'ButtonDownFcn', q);
% change button to 'resume' mode
set(handles.pushbutton2, 'String', 'Resume');

else
% if 'resume' mode:

% send the field to GoL Server
field = getappdata(0, 'field');
lapi.Set('field', 'GameOfLife', field);
% send 'resume' command to GoL Server
lapi.Set('pause', 'GameOfLife', [0 0]);
% change button to 'pause' mode
set(handles.pushbutton2, 'String', 'Pause');

end

function axes1 ButtonDownFcn(hObject, eventdata, handles)
% sanitize the point
point = get(hObject, 'CurrentPoint');
x = round(point(1,1));
y = round(point(1,2));

% add it to field
field = getappdata(0, 'field');
field(x,y) = 1;
setappdata(0, 'field', field);

% redraw the chart
[i,j] = find(field);
q = get(handles.axes1, 'ButtonDownFcn');
plot(handles.axes1,i,j,'.');
set(handles.axes1, 'ButtonDownFcn', q);
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A.2 Hill Climbing Code

A.2.1 Hill Climbing Manager

function varargout = director(varargin)

% Begin initialization code − DO NOT EDIT
gui Singleton = 1;
gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...
'gui OpeningFcn', @director OpeningFcn, ...
'gui OutputFcn', @director OutputFcn, ...
'gui LayoutFcn', [] , ...
'gui Callback', []);

if nargin && ischar(varargin{1})
gui State.gui Callback = str2func(varargin{1});

end

if nargout
[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else
gui mainfcn(gui State, varargin{:});

end
% End initialization code − DO NOT EDIT

function director OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for director
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes director wait for user response (see UIRESUME)
% uiwait(handles.figure1);

addpath('/home/ben/workspace/LAPIS API Matlab');

% create an instance of the LAPIS API
lapi = LapissApi('Director');
setappdata(0, 'lapi', lapi);
lapi.Initalize();

% create the data field
field = LapissData('field', rsgeng2D(200,100,30,20));
setappdata(0, 'field', field);

% publish the data field
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lapi.Publish('field', field, 0);

% set default climber name
setappdata(0, 'selectedClimber', 'none');

% update the director info
set(handles.text name, 'String', 'Director');
set(handles.text address, 'String', lapi.GetAddress);

% adjust the color map
h = gcf;
map = get(h,'Colormap')
map = map(22:end,:);
set(h,'Colormap',map);

% update the graph with the mesh
mesh(field.d);

% start the polling timer
%start(handles.updateTimer);

function varargout = director OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

function listbox climbers Callback(hObject, eventdata, handles)

lapi = getappdata(0, 'lapi');
field = getappdata(0, 'field');

% set 'selected climber' name
contents = cellstr(get(hObject,'String'));
selectedClimber = contents{get(hObject,'Value')};
setappdata(0, 'selectedClimber', selectedClimber);

% download all information to display from selected climber
path = lapi.Get('path', selectedClimber)
state = lapi.Get('state', selectedClimber)
% state translation:
% 0 − reset: download field, generate random point, then climb
% 1 − climb: inspect field, climb hill
% 2 − pert: move by random vector then climb
% 3 − peak: local maximum, don't wast CPU cycles, just sit
% 4 − pause: paused by controller. Do nothing
% 5 − exit: set the exit flag on the main loop and terminate

% set pause/unpause button as appropriate for pause state
if (state == 4)
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set(handles.pushbutton pause, 'String', 'Resume');
else

set(handles.pushbutton pause, 'String', 'Pause');
end

% display climb path
hold off;
mesh(field.d);
hold on;
plot3(path(:,2), path(:,1), path(:,3), 'b+');

% display everything else
if (state == 0)

set(handles.text state, 'String', 'Resetting!');
elseif (state == 1)

set(handles.text state, 'String', 'Climbing');
elseif (state == 2)

set(handles.text state, 'String', 'Perturbed!');
elseif (state == 3)

set(handles.text state, 'String', 'Peaked');
elseif (state == 4)

set(handles.text state, 'String', 'Paused');
elseif (state == 5)

set(handles.text state, 'String', 'Exiting!');
else

set(handles.text state, 'String', 'Unknown!!!');
end

function listbox climbers CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), ...
get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function pushbutton pause Callback(hObject, eventdata, handles)
lapi = getappdata(0, 'lapi');
selectedClimber = getappdata(0, 'selectedClimber');

% get 'selected climber' name

% if unpaused
if (strcmp(get(handles.pushbutton pause, 'String'), 'Pause'))

% set state of climber to 'pause'
lapi.Set('state', selectedClimber, 4);

% set button to unpause
set(handles.pushbutton pause, 'String', 'Resume');
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else

% set state of climber to 'climbing'
lapi.Set('state', selectedClimber, 1);

% set button to pause
set(handles.pushbutton pause, 'String', 'Pause');

end

function pushbutton perturb Callback(hObject, eventdata, handles)

lapi = getappdata(0, 'lapi');
selectedClimber = getappdata(0, 'selectedClimber');

% tell the climber to generate a perturbance
lapi.Set('state', selectedClimber, 2);

function pushbutton reset Callback(hObject, eventdata, handles)

lapi = getappdata(0, 'lapi');
selectedClimber = getappdata(0, 'selectedClimber');

% set state to 'reset' −− climber will check back, redownload, and
% restart climbing automatically
lapi.Set('state', selectedClimber, 0);

function pushbutton newfield Callback(hObject, eventdata, handles)
lapi = getappdata(0, 'lapi');
field = getappdata(0, 'field');

% generate a new data field
field.d = rsgeng2D(200,100,30,20);

% loop though all clients
climbers = cellstr(get(handles.listbox climbers,'String'));
for i = 1:length(climbers)

% set state to 'reset'
lapi.Set('state', climbers{i}, 0);

end

function pushbutton refresh Callback(hObject, eventdata, handles)

lapi = getappdata(0, 'lapi');

% get list of attached nodes
nodeList = lapi.GetNodeList();
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%nodes = strtok(nodeList, ',');
nodes = textscan(nodeList, '%s', 'Delimiter', ',');
nodes = nodes{1};

% trim ourselves from the list
[¬,loc] = max(cellfun(@(fun x) (strcmp(fun x, 'Director')), nodes));

nodes temp1 = {};
nodes temp2 = {};
if(loc > 1)

nodes temp1 = nodes(1:loc−1);
end
if(loc 6= length(nodes))

nodes temp2 = nodes(loc+1:end);
end
nodes = [nodes temp1 nodes temp2];

% populate the list box with the node list
set(handles.listbox climbers, 'String', nodes);

A.2.2 Matlab Hill Climber

function climber(directorAddress)
addpath('/home/ben/workspace/LAPIS API Matlab');

% initalize base state
% states:
% 0 − reset: download field, generate random point, then climb
% 1 − climb: inspect field, climb hill
% 2 − pert: generate random vector and move to that point, then climb
% 3 − peak: local maximum, don't wast CPU cycles, just sit
% 4 − pause: paused by controller. Do nothing
% 5 − exit: set the exit flag on the main loop and terminate
state = LapissData('state', 0);

% the path the climber has taken. current location is at (0,0,:)
path = LapissData('path', zeros(100,3));

% exit flag
exit = 0;

% local copy of the field we will climb. The actual data will sit within
% a 200x200 buffered region
field = −1*inf(202,202);

% create instance of LAPIS
id = floor(1000000000*rand());
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lapi = LapissApi(['climber ' num2str(id)]);

% publish our path
lapi.Publish('state', state, 0);
lapi.Publish('path', path, 0);

% connect to the network
lapi.Connect('Director', directorAddress);

% let LAPIS connect and settle
pause(1);

% enter execution loop
while (¬exit)

disp(['current stat is ' num2str(state.d)]);
if (state.d == 0)

disp('Climber in state 0');
% clear the path
path.d = zeros(100,3);

% download field from director
field(2:201,2:201) = lapi.Get('field', 'Director');

% generate random starting point. +1s in z calc account for −inf
% buffer
path.d(1,1) = floor(200*rand());
path.d(1,2) = floor(200*rand());
path.d(1,3) = field(path.d(1,1)+1,path.d(1,2)+1);

% set state.d to climb
state.d = 1;

elseif (state.d == 1)
disp('Climber in state 1');
% get the current point. +1s account for −inf buffer
Xc = path.d(1,1)+1;
Yc = path.d(1,2)+1;

% get surrounding points
set = field(Xc−1:Xc+1,Yc−1:Yc+1);

% find the biggest point around our point
[t ypos] = max(max(set,[],1));
[t xpos] = max(max(set,[],2));

ydif = ypos−2;
xdif = xpos−2;

% if the biggest point is the middle, we are at a local max
if (xdif==0 && ydif==0)

% set state.d to peaked to save CPU cycles
state.d = 3;
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else
% shift the path down 1 space
path.d(2:end,:) = path.d(1:end−1,:);
% add the new end point
path.d(1,1) = path.d(2,1) + xdif;
path.d(1,2) = path.d(2,2) + ydif;
path.d(1,3) = field(path.d(1,1)+1, path.d(1,2)+1);

% +1s account for −inf buffer
end

% add artificial delay to simulation to represent something more
% significant
pause(0.5);

elseif (state.d == 2)
disp('Climber in state 2');
% generate a perturbance
dx = floor(20*rand())−10;
dy = floor(20*rand())−10;

% shift the path
path.d(2:end,:) = path.d(1:end−1,:);

% jump in x!
path.d(1,1) = path.d(2,1) + dx;
if (path.d(1,1) < 1)

path.d(1,1) = 1;
elseif (path.d(1,1) > 200)

path.d(1,1) = 200;
end

% jump in y!
path.d(1,2) = path.d(2,2) + dy;
if (path.d(2,1) < 1)

path.d(2,1) = 1;
elseif (path.d(2,1) > 200)

path.d(2,1) = 200;
end

% find new height
path.d(1,3) = field(path.d(1,1)+1, path.d(1,2)+1);

% set next state.d to climbing
state.d = 1;

% simulate this being hard
pause(0.5);

elseif (state.d == 3)
disp('Climber in state 3');
% just sit forever
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pause(2);

elseif (state.d == 4)
disp('Climber in state 4');
% just sit until woken
pause(0.5);

elseif (state.d == 5)
disp('Climber in state 5');
% clean up LAPIS
% set exit flag
exit = 1;

else
% report error
disp('Error: climber entered unknown state!');
% clean up LAPIS
% set exit flag
exit = 1;

end

end

A.2.3 Java Hill Climber

import java.io.IOException;

import java.util.Arrays;

import edu.osc.LAPIS.API.Java.LapissJavaApi;

public class HillClimber {

public static void main(String[] args) throws IOException,

InterruptedException {

// initalize base state

// states:

// 0 - reset: download field, and climb

// 1 - climb: inspect field, climb hill

// 2 - pert: move by random vector then climb

// 3 - peak: local maximum, don’t wast CPU cycles, just sit

// 4 - pause: paused by controller. Do nothing

// 5 - exit: set the exit flag on the main loop and terminate

// the state of the climber

// declared as an array to allow it to be shared by LAPIS

Integer[] state = new Integer[1];

state[0] = 0;

Integer[] SizeOfScalar = new Integer[1];
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SizeOfScalar[0] = 1;

// the path the climber has taken. current location is at (0,:)

Double[][] path = new Double[100][3];

Integer[] SizeOfPath = new Integer[2];

SizeOfPath[0] = 100;

SizeOfPath[1] = 3;

// exit flag

Integer exit = 0;

// local copy of the field we will climb.

Object[][] field = new Double[200][200];

// create instance of LAPIS

Long id = Math.round(1000000000*Math.random());

LapissJavaApi lapi = new LapissJavaApi("climber_"

+ id.toString());

// publish the state and path

lapi.Publish("path", path, LapissJavaApi.DOUBLE, 2,

SizeOfPath, 0);

lapi.Publish("state", state, LapissJavaApi.INTEGER, 1,

SizeOfScalar, 0);

// connect to the network

lapi.Connect("Director", args[0]);

// let LAPIS connect and settle

Thread.sleep(1000);

// enter execution loop

while (exit == 0)

{

if (state[0] == 0)

{

// clear the path out;

for(int i=0; i<100; i++)

{

path[i][0] = 0.0;

path[i][1] = 0.0;

path[i][2] = 0.0;

}
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// download the field from the director

field = (Object[][]) lapi.Get("field", "Director");

// generate random starting point.

path[0][0] = 200*Math.random();

path[0][1] = 200*Math.random();

path[0][2] = (Double)field[(int)Math.round(

path[0][0])+1][(int)Math.round(path[0][1])+1];

// change state to climb

state[0] = 1;

}

else if (state[0] == 1)

{

// get the current point. +1s account for -inf buffer

int Xc = (int)Math.round(path[0][0]) + 1;

int Yc = (int)Math.round(path[0][1]) + 1;

// make some diff variables

int Xdiff = 0;

int Ydiff = 0;

// current high

Double Zc = (Double)field[Xc][Yc];

// check the 8 neighbors for the high point

if (Xc > 0)

{

// check -1,-1

if (Yc > 0)

{

if ((Double)field[Xc-1][Yc-1] > Zc)

{

Zc = (Double)field[Xc-1][Yc-1];

Xdiff = -1;

Ydiff = -1;

}

}

// check -1,0

if ((Double)field[Xc-1][Yc] > Zc)

{

Zc = (Double)field[Xc-1][Yc];
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Xdiff = -1;

Ydiff = 0;

}

// check -1,+1

if (Yc < 200)

{

if ((Double)field[Xc-1][Yc+1] > Zc)

{

Zc = (Double)field[Xc-1][Yc+1];

Xdiff = -1;

Ydiff = 1;

}

}

}

// check 0,-1

if (Yc > 0)

{

if ((Double)field[Xc][Yc-1] > Zc)

{

Zc = (Double)field[Xc][Yc-1];

Xdiff = 0;

Ydiff = -1;

}

}

// check 0,1

if (Yc < 200)

{

if ((Double)field[Xc][Yc+1] > Zc)

{

Zc = (Double)field[Xc][Yc+1];

Xdiff = 0;

Ydiff = 1;

}

}

if (Xc < 200)

{

// check 1,-1

if (Yc > 0)

{

if ((Double)field[Xc+1][Yc-1] > Zc)

{

Zc = (Double)field[Xc+1][Yc-1];

Xdiff = 1;
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Ydiff = -1;

}

}

// check 1,0

if ((Double)field[Xc+1][Yc] > Zc)

{

Zc = (Double)field[Xc+1][Yc];

Xdiff = 1;

Ydiff = 0;

}

// check 1,1

if (Yc < 200)

{

if ((Double)field[Xc+1][Yc+1] > Zc)

{

Zc = (Double)field[Xc+1][Yc+1];

Xdiff = 1;

Ydiff = 1;

}

}

}

// if the biggest point is the middle, we are at a local max

if ((Xdiff == 0) && (Ydiff == 0))

{

state[0] = 3;

}

else

{

// shift the path down 1 space

for(int i=99; i>0; i--)

{

path[i][0] = path[i-1][0];

path[i][1] = path[i-1][1];

path[i][2] = path[i-1][2];

}

// add the new end point to the path

path[0][0] = path[1][0] + Xdiff;

path[0][1] = path[1][1] + Ydiff;

path[0][2] = Zc;

}

Thread.sleep(500);

}
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else if (state[0] == 2)

{

// generate a perturbance

int dx = (int)Math.round(20*Math.random())-10;

int dy = (int)Math.round(20*Math.random())-10;

// shift the path down 1 space

for(int i=99; i>0; i--)

{

path[i][0] = path[i-1][0];

path[i][1] = path[i-1][1];

path[i][2] = path[i-1][2];

}

// jump in x!

path[0][0] = path[1][0] + dx;

// check that we are in bounds

if (path[0][0] < 0)

{

path[0][0] = 0.0;

}

else if (path[0][0] > 200)

{

path[0][0] = 200.0;

}

// jump in y!

path[0][1] = path[1][1] + dy;

// check that we are in bounds

if (path[0][1] < 0)

{

path[0][1] = 0.0;

}

else if (path[0][1] > 200)

{

path[0][1] = 200.0;

}

// find new height.

path[0][2] = (Double)field[(int)Math.round(

path[0][0])+1][(int)Math.round(path[0][1])+1];

// set next state to climbing
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state[0] = 1;

// simulate this being hard

Thread.sleep(500);

}

else if (state[0] == 3)

{

// just sit forever

Thread.sleep(2000);

}

else if (state[0] == 4)

{

// just sit until woken

Thread.sleep(500);

}

else if (state[0] == 5)

{

// clean up LAPIS

// set exit flag

exit = 1;

}

else

{

// report error

System.out.println("Error: climber entered unknown state!\n");

// clean up LAPIS

// set exit flag

exit = 1;

}

}

}

}

A.3 Sailboat Model Code

A.3.1 Sailboat Code

function Boat( frontAddress )
%BOAT Summary of this function goes here
% Detailed explanation goes here
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% setup environment
addpath('/home/ben/workspace/LAPIS API Matlab');

% create lapis instnace
lapi = LapissApi('Boat');

% connect to front
%lapi.Connect('Front', '127.0.0.1:48237');

% create shared state
% the current position of the boat
position = LapissData('position', [10.1 10.1]);
% the last movement vector of the boat
vector = LapissData('vector', [0 0]);

% publish shared state
lapi.Publish('position', position, 0);
lapi.Publish('vector', vector, 0);

% wait until 'Wind' and 'Water' show up in node list
ready = 0;
while (¬ready)

% once there are 2 commas, start running
list = lapi.GetNodeList();
if (length(strfind(list,',')) == 2)

ready = 1;
end

end

disp('here we go!');

% create a position buffer
posbuf = [position.d];

% create a grid to use in plotting
[X,Y] = meshgrid(1:1:21);

figure

% start simulation loop
while (true)

% read Wind and water fields
wind = lapi.Get('field', 'Wind');
water = lapi.Get('field', 'Water');

% get vectors for my location
subwind = wind(floor(position.d(1)):ceil(position.d(1)), ...

floor(position.d(2)):ceil(position.d(2)),:);
subwater = water(floor(position.d(1)):ceil(position.d(1)), ...

floor(position.d(2)):ceil(position.d(2)),:);

159



% average the vectors and create the weighted sum vector
subwind = mean(mean(subwind));
subwater = mean(mean(subwater));
both = 2*subwind + subwater;

% use 25% of the previous vector and 75% of the new vector to
% create the next vector
newV = [both(1,1,1), both(1,1,2)];
oldV = vector.d;
vector.d = 0.5 * newV + 0.5 * oldV;
vector.d = vector.d / sqrt(vector.d(1)ˆ2 + vector.d(2)ˆ2);

% adjust the position by nextV
position.d = position.d + vector.d;

% check for overflow and wrap
if (position.d(1) > 20)

position.d(1) = 2.1;
elseif (position.d(1) < 2)

position.d(1) = 19.9;
end

if (position.d(2) > 20)
position.d(2) = 2.1;

elseif (position.d(2) < 2)
position.d(2) = 19.9;

end

% update the position vector
posbuf = [posbuf ; position.d];

% plot the position
cla;
hold on
quiver(X,Y,water(:,:,1),water(:,:,2))
quiver(X,Y,wind(:,:,1),wind(:,:,2))
plot(posbuf(:,1), posbuf(:,2), 'r');

% pause
pause(.25);

end

end

A.3.2 Water Feild Code
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function Water( frontAddress)
%WATER Summary of this function goes here
% Detailed explanation goes here

% setup environment
addpath('/home/ben/workspace/LAPIS API Matlab');

% create lapis instnace
lapi = LapissApi('Water');

% connect to front
lapi.Connect('Boat', frontAddress);

% create shared state
field = LapissData('field', zeros(21,21,2));

% publish shared state
lapi.Publish('field', field, 0);

% generate random init. cond.
dx = 2 * pi * rand(1,1);
dy = 2 * pi * rand(1,1);

% start simulation loop
while(true)

% generate a vector field
field.d = fieldFunction(dx, dy);

% move the field slightly
dx = dx + (pi/32) * rand(1,1);
dy = dy + (pi/32) * rand(1,1);

% pause
pause(1);

end

end

function field = fieldFunction(dx, dy)

field = zeros(21,21,2);

[X,Y] = meshgrid(−2:.2:2);

Z = sin((X+dx).ˆ2) + cos(X+dx).ˆ2 + sin((X+dx)*(Y+dy)) + sin(Y);

[DX,DY] = gradient(Z,.2,.2);
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field(:,:,1) = DX./max(max(DX));
field(:,:,2) = DY./min(min(DY));

quiver(X,Y,DX,DY);

end

A.3.3 Wind Feild Code

function Wind( frontAddress )
%WIND Summary of this function goes here
% Detailed explanation goes here

% setup environment
addpath('/home/ben/workspace/LAPIS API Matlab');

% create lapis instnace
lapi = LapissApi('Wind');

% connect to front
lapi.Connect('Boat', frontAddress);

% create shared state
field = LapissData('field', zeros(21,21,2));

% publish shared state
lapi.Publish('field', field, 0);

% generate random init. cond.
dx = 2 * pi * rand(1,1);
dy = 2 * pi * rand(1,1);

% start simulation loop
while(true)

% generate a vector field
field.d = fieldFunction(dx, dy);

% move the field slightly
dx = dx + (pi/32) * rand(1,1);
dy = dy + (pi/32) * rand(1,1);

% pause
pause(1);

end

end
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function field = fieldFunction(dx, dy)

field = zeros(21,21,2);

[X,Y] = meshgrid(−2:.2:2);

Z = sin((X+dx).ˆ2) + cos(X+dx).ˆ2 + sin((X+dx)*(Y+dy)) + sin(Y) ...
+ sin((Y+dy)ˆ2);

[DX,DY] = gradient(Z,.2,.2);

field(:,:,1) = DX./max(max(DX));
field(:,:,2) = DY./max(max(DY));

quiver(X,Y,DX,DY);

end

A.4 Driver-Engine Model Code

A.4.1 Driver Code

function NormalDriver()

addpath('/home/ben/workspace/LAPIS API Matlab working copy/');

% initalize variables and LAPIS, speed limit file
myName = 'NormalDriver';
engineName = '';
lapi = LapissApi(myName);
speedlimits = csvread('speeds.csv');

% wait for the engine to show up
enginePresent = false;
list = '';
while (¬enginePresent)

% if there is no comma, then the list is just us still.
list = lapi.GetNodeList();
enginePresent = ¬isempty(strfind(list,','));

end

% parse the list into names
[n1 n2] = strtok(list,',');
n2 = n2(2:end);

% if our name is n1, then n2 is the engine
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if (strcmp(n1, myName) == 0)
engineName = n1;

else
engineName = n2;

end

% start the engine!
lapi.Set('Start', engineName, [1 0]);

% start 'driving' (loop)
road = true;
step = 0;
limit = 0;
speed = 0;
pedal = 0;

limitbuf = [];
speedbuf = [];
pedalbuf = [];

while (road)

% get current speed limit every 10 steps
if ( floor(step/10) == (step/10) )

% if there is a speed left
if (isempty(speedlimits))

% if no more speeds, set road = 0
road = 0; % limit remains the same

else
% read a speed limit in
limit = speedlimits(1);
speedlimits = speedlimits(2:end);

end
end

% get current speed and pedal postion from engine
speed = lapi.Get('Speed', engineName);
pedal = lapi.Get('Pedal', engineName);

% apply accellerator
if (speed(1) > limit)

pedal(1) = 0;
elseif (speed(1) > limit * 0.9)

pedal(1) = min(1, 0.9 * pedal(1));
elseif (speed(1) > 0.5 * limit)

pedal(1) = min(1, pedal(1) + 0.1);
elseif (speed(1) < limit)

pedal(1) = min(1, pedal(1) + 0.25);
else

pedal(1) = pedal(1);
end
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lapi.Set('Pedal', engineName, pedal);

% report to terminal
disp('============================');
disp(['Speed Limit: ' num2str(limit)]);
disp(['Current Speed: ' num2str(speed(1))]);
disp(['Pedal Position: ' num2str(pedal(1))]);

% buffer for graphing
limitbuf = [limitbuf limit];
speedbuf = [speedbuf speed(1)];
pedalbuf = [pedalbuf pedal(1)];

% plot
cla;
hold on;
plot(limitbuf, 'ob');
plot(speedbuf, '−b');
plot(pedalbuf, '−r');
legend('Speed Limit','Current Speed','Pedal Percent');

hold off;

step = step + 1;

% end loop
end

end

A.4.2 Engine Code

function NormalEngine(driverAddress)

addpath('/home/ben/workspace/LAPIS API Matlab working copy/');

% read address of driver
driverName = 'NormalDriver';

% initalize variables and LAPIS
lapi = LapissApi('NormalEngine');
disp('connecting');
lapi.Connect(driverName, driverAddress);
disp('connected');
start = LapissData('Start', [0 0]);
pedal = LapissData('Pedal', [.1 0]);
speed = LapissData('Speed', [1 0]);
lapi.Publish('Start', start, 0);
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lapi.Publish('Pedal', pedal, 0);
lapi.Publish('Speed', speed, 0);

% wait for start signal
while (start.d == 0)

pause(.25);
end

disp('started');

% be an engine (loop until driver goes away)
while (¬isempty(strfind(lapi.GetNodeList(),',')))

% adjust speed based on accel. position
if (speed.d > 100)

speed.d = 100;
elseif (speed.d > 75)

speed.d = speed.d + 1.5 * pedal.d − 1.0;
elseif (speed.d > 50)

speed.d = speed.d + 2.0 * pedal.d − 1.0;
elseif (speed.d > 25)

speed.d = speed.d + 2.0 * pedal.d − .5;
else

speed.d = speed.d + 2.5 * pedal.d − 0.25;
end

%pause(0.05);
% (end loop)
end

end
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