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Abstract

Linear Discriminant Analysis (LDA) has served as a standard technique in classifica-

tion for many years. Many improvements have been proposed to boost the performance of

LDA yet maintain its simplicity, intuitive appeal, and robust nature. Lotlikar and Kothari

proposed fractional LDA (F-LDA) as an improved version of LDA. However, for a large

number of classes, F-LDA is not feasible to implement in real time due to huge computa-

tional effort in the sequential search process for each dimension to be reduced. In addition,

F-LDA is a directed projection pursuit technique, which takes several iterations to reduce

just one dimension. Our research is focused on modifying these methods to be applicable

to the face recognition problem (high-dimensional image data, large number of classes).

Simultaneous Adaptive Fractional Discriminant Analysis (SAFDA) is a procedure devel-

oped specifically to learn a specified or fixed low-dimensional subspace in which classes

are well separated by sequentially downweighting all dimensions to be removed simulta-

neously. Via analysis of a weighted between class scatter matrix of whitened data, S̃B, the

best projected space is learned through a directed projection pursuit method that focuses on

class separation in the reduced space (rather than the full space like LDA). An adaptive ker-

nel (Gaussian) was found to be the most suitable to avoid extra time considerations inherent

in cross-validation by allowing the data to determine optimal bandwidth choice. While the

SAFDA algorithm showed a marked improvement over standard LDA techniques in terms
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of classification, the additional computational time, compared to LDA, was minimal in sit-

uations involving a small number of classes (MNIST) as well as a large number of classes

(AR face database). SAFDA also provides a procedure that matches (or in some cases,

outperforms) the F-LDA benchmark in terms of classification, yet is much more feasible in

computational time and effort.
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Chapter 1: Introduction and Literature Review

A common problem in science and engineering applications involves classifying ob-

jects using features of the data. With the explosion of sensors and computers, data is

simpler to collect than ever. In fact, while the primary issue facing statisticians used to be

a lack of sufficient data to solve a problem, the modern challenges stem from the sifting

through the myriad data that is much easier to collect and store. Now that the data collec-

tion/storage process is quite simple, researchers tend to collect more data than may be truly

useful to classification. As the number of dimensions increases, both signal and/or noise

may increase. Therefore, additional information can be harmful as well as helpful (if the

added noise is greater than the signal). A classic strategy in statistics is to select features

that help to separate the classes. These techniques have been studied in great depth for

separating the noise from the signal. This chapter explores the techniques that seek to find

features/dimensions that maximize separation between classes, thereby maximizing clas-

sification accuracy. Section 1.1 examines steps of the general classification process from

full data-to-optimal reduced dimension-to-classification paradigms. Section 1.2 provides

an in-depth literature review of the face recognition problem and how current techniques

have been used to solve the very complex problem.
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1.1 Dimension Reduction, Feature Selection, and Classification

1.1.1 Why not use all the data?

Statistical science remains an ever growing field due in part to its great inroads in

extracting relevant information from large quantities of data. An explosion of these ap-

plications has occurred recently as database size dwarfed computational ability and the

technology grew to make computations feasible in real time or even tractable. Once the

computational power caught up with the theory, the field increased in scope greatly. One of

the main components of the discipline is the classification of new datapoints based either on

a labelled set of training points or simply on the clustering of the test points themselves in

some space. To meet this goal of classification, there are often dimensions (or features) that

are not useful to the actual process of discrimination, so the researcher must first remove

the ‘noise’ dimensions and make sure that the data used for classification is informative.

Determining optimal subspaces in which to perform classification procedures is one of the

main hurdles in tackling the classification problem. Using statistical reasoning, the data

from separate classes are assumed to come from some class specific distribution (whose

shape is either known or potentially unknown to the researcher) and methods of feature

selection or projection are used to mine the data for the most useful dimensions.

Due to a huge increase in computing power as of late, more research has been devoted

to the study of data mining - searching huge datasets for interesting/useful features that

may be used for classifying data. Many of these techniques were developed before the

technology existed to carry out calculations in real time, but now the focus is tackling

even larger problems that, even with today’s computing power, are somewhat intractable.

Much research has been focused on not only finding new dimension reduction/classification

techniques, but also on implementing existing techniques in a more efficient manner. This is
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more than a matter of expediency as the exponential growth of databases has again outpaced

computing power on large datasets.

The first thought that arises post-data collection is to organize the data and use all of it

to understand the underlying dataspace; however, this is often not the most advantageous

approach when seeking to maximize classification accuracy. Often, data contains few real

features/dimensions useful for classifying new test points. While it may be counterintu-

itive to seek to use only some of the collected data, it is imperative to first identify which

features of the data actually elicit separation of the classes and which features correspond

to background noise or model a feature that is identical in all classes. A simple metaphor

in face recognition would state that there are two eyes in the image, but this information

would not lead to identifying the individual. Of course, noting aspects of those eyes (shape,

color, location, etc.) might lead to understanding the space in which individuals are sepa-

rated, but the fact of having two eyes will not be very important in discrimination (except,

of course, finding the one-eyed man). Many statistical techniques have found that a clas-

sification procedure’s performance can, in fact, suffer if the entire set of collected features

is used indiscriminately. The addition of noisy features/dimensions that yield no appre-

ciable information regarding class separation can lead to a degraded understanding of the

lower-dimensional space. A statistical idea that explains this concept is the bias-variance

trade-off. The researcher needs to find the delicate balance of using the training data to

garner the best understanding of the class structure while still maintaining the ability to

generalize to unseen test points. A solid dimension reduction technique is crucial in identi-

fying those dimensions that are useful for classification and those that are extraneous noise.

One of the areas of interest today is image analysis/classification. Images are in essence

large, possibly multi-layered matrices that, when stored in a database, are too large to be
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analyzed in great depth in real time. Simple techniques such as matrix inversion become

intractable and impossible with respect to storage capacity and computing time when ap-

plied to these small n (training sample size) large p (dimension) datasets, which have now

become the norm in many practical problems.

The following notations will be used throughout this dissertation. Each observation in

the training or test set is denoted by an ordered pair (xi,yi), where xi is the p-variate vector

of predictors associated with the ith observation and yi ∈ {1,2, . . . ,C} is the respective class

label. The mean of the training set observations in class j is denoted

x̄[ j] =
1
n j

∑
i:yi= j

xi, (1.1)

where n j is the number of observations in class j.

The grand mean of all points in the training set is denoted by

¯̄x =
1
N

N

∑
i=1

xi, (1.2)

where N = number of observations.

The between and within class scatter matrices, the cornerstones of linear discriminant

analysis methods, are defined below.

Between class scatter matrix

SB =
C

∑
j=1

n j(x̄[ j]− ¯̄x)(x̄[ j]− ¯̄x)T =
C−1

∑
k=1

C

∑
j=k

nin j

N
(x̄[ j]− x̄[k])(x̄[ j]− x̄[k])

T . (1.3)

Pooled estimate of within class scatter matrix

SW =
C

∑
j=1

SW [ j], (1.4)

where

SW [ j] = ∑
i:yi= j

(xi− x̄[ j])(xi− x̄[ j])
T . (1.5)
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Section 1.1.2 discusses how determining proper features is essential to good classifica-

tion. Section 1.1.3 examines various dimension reduction techniques and their associated

assumptions, as well as situations in which a specific technique is useful. Section 1.1.4

concludes Section 1.1 with a comprehensive look at the classification schemes in the liter-

ature.

1.1.2 Dimensions vs. Features: Is there a difference?

Dimension in a statistical context can be used as a pseudonym for feature. In other

words, the dimension of the data refers to the number of features or attributes available

to describe one data point in the data set. It is important to note that not all dimensions

lead to valuable information concerning the classification of a specific data point. Some

information is often redundant or simply not informative from a classification standpoint.

Herein lies the impetus for dimension reduction in a regression or classification problem.

The rank of the data matrix tells the number of linear combinations of features that are

not redundant (sometimes nonlinear combinations could be useful as in the kernel frame-

work and not be directly discoverable via the rank). In many cases with large p small n (i.e.,

face recognition), the rank is much smaller than the dimension of the data. Some may term

the actual dimension of the data more in line with the rank (number of non-redundant linear

combinations) rather than the number of pure features. If the most informative pieces of

information can be extracted with fewer features, the signal is more easily extractable from

the noisy dataset, which leads to a clearer separation of the classes. This is because the

non-informative “dimensions” are predominantly detrimental noise, which can cause the

algorithm to focus on irrelevant features in the data and thus degrade classification results.

Dimension reduction is an extremely useful technique used to remove pieces of the data
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that are not informative for classification purposes and focus on the underlying features

that describe the class structures. Dimension reduction techniques attempt to find optimal

linearly independent directions that correspond to combinations of the original dimensions.

Not only do these techniques “weed” out the uninformative directions by removing the di-

rections associated with noise, but also combine the “informative” directions in such a way

as to impose maximum separability in the orthogonal projections.

In a regression framework, dimension reduction can be likened to feature/variable se-

lection. When performing a regression, there are often a large number of predictors from

which one can select a few to explain the response variable. Often, multiple variables

explain the variability in a similar subspace which means there is a redundancy that is un-

necessary in the model. Perhaps the variables can be combined to form one direction or

simply drop one or all of the variables that do a poor job in describing the response. When

variables in the predictor set for regression have a very low multiple correlation with the

response (after accounting for those predictors already included in the model), their addi-

tional contribution to understanding of the response is negligible and the variable is often

dropped.

Because the dimension reduction procedure is used to find which dimensions or fea-

tures are useful in classification, it must be performed prior to the implementation of one of

the classification techniques listed in Section 1.1.4. Linear Discriminant Analysis (LDA)

can be seen as a dimension reduction technique with the goal of minimizing classification

error because it involves retaining dimensions that are most significant in class separa-

tion (i.e., maximizing separation between class centroids while minimizing within class

variation). Other common dimension reduction procedures include principal component
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analysis (PCA), independent component analysis (ICA), Projection Pursuit, various com-

binations of the aforementioned, etc.

Dimension reduction is often used as a “top-down” approach in which one starts with

the full dataset, and pares it down to its most important components, whereas feature selec-

tion is used to refer to a “bottom-up” approach in which the procedure starts with nothing

and selects the most useful dimensions (or features) given those already chosen. While

these two “flavors” of selection are not equivalent in the context of the forward stepwise

vs. backward stepwise regression procedures, the ideas listed here refer more to the stan-

dard usage of the words. Both refer to the selection of optimal attributes and could be used

interchangeably with no confusion.

Sometimes the semantic usage of the word feature in image/face recognition refers to

something tangible about the item to be classified or regressed. Examples of common

features in a face recognition framework are distance between the eyes, skin color, face

shape, hair, presence/absence of glasses, etc. All of these are physical features that can be

individually explained with substantive contextual knowledge, as to why these features are

important. With the term dimension, the tendency is to believe the dimensions are simply

an abstract concept some of which are tangible and explainable features but others that are

deeply buried in the data and not easily individually explained. In fact, factor analysis is

based on combining data ‘dimensions’ into several informative and explainable ‘features’.

Obviously, the label for a given feature in factor analysis is assigned by the expert who

combines background knowledge to choose an appropriate label for the conglomeration of

dimensions.

The relationship between these synonymous ideas seem to stem from differing disci-

plines. Mathematicians and mathematically inclined literature tends to focus on the idea of
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dimension reduction and using these techniques to disregard dimensions of no assistance

in classification with complete comfort in the abstract nature of dimensions/directions in

high-dimensional space. Feature selection tends to be used more in the image classifica-

tion, engineering, and psychological fields as the concrete tends to override the abstract

in the “real-world” focus of most applied sciences. It is quite an interesting philosophical

question in which to delve to root out the intricacies of the nomenclatures, but when look-

ing at the core definition that one tends to use for dimension, the commonalities emerge. A

dimension can truly be defined as a feature or attribute of a datapoint, which exemplifies

the dual nature of this concept.

1.1.3 Dimension Reduction Techniques

There are two basic types of statistical learning frameworks known as supervised and

unsupervised. The supervised learning paradigm focuses on finding criterion that maxi-

mize class separability with respect to some metric (centroid distance, classification rate,

etc.) using the points in the training data set that are labelled a priori. Unsupervised learn-

ing techniques focus on optimizing a criterion that does not involve any labelled data. For

example, principal component analysis seeks to find directions corresponding to the great-

est variability in the data (no class consideration is included). Other unsupervised learning

methods are generally focused on clustering the data into classes that are unknown a priori

(i.e., k-means, k-medoids, etc.). The supervised learning techniques are the focus when

dealing with a general classification problem as the class labels are known for the training

set, and the goal is to find projections that maximally separate the classes. The criteria of

dimension reduction for classification stem from improving class separability. However,
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there are some unsupervised learning methods that are prevalent in the classification litera-

ture for their generalizability such as principal component analysis (PCA) and independent

component analysis (ICA).

Principal Component Analysis: PCA

Principal component analysis (also called Karhunen-Loève transform in engineering

literature) is a technique of feature selection that seeks orthogonal projection directions

of the data that maximize the total variability of the dataset (see, e.g., Abdi and Williams

(2010)). To discover directions with high variability, the eigenvectors of the covariance

matrix of the data associated with large eigenvalues are used. The standard method of

solving for these eigenvectors is to perform a spectral decomposition of the covariance

matrix. The eigenvectors associated with the largest eigenvalues are retained and form the

columns of the projection matrix, while the others are simply dropped as these directions

explain little variability in the data. As PCA is an unsupervised methodology (does not use

data labels for its separability criteria), it is not specifically geared toward the goal of the

classification problem, but has been used due to the simplicity and speed of the algorithm,

as well as good classification results in some situations.

An implicit assumption of any classification problem is that the variability between

classes is inherently larger than the variability within a class. If this were not the case, it

would be impossible to determine whether the test image was the target person or simply

a new (not in the database) image of another. PCA focuses this search for directions with

high variability on the total scatter (or covariance) matrix. Directions associated with larger

eigenvalues explain more variability in the data (in that reduced space), and, as between

class variability is assumed to be much larger than within class variability, these directions

may be most closely associated with class separability. While the algorithm does not use
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the labels in determining the optimal projection direction, the labelled data enter post-

projection to determine class centroid/covariance structure in the projected space. A test

point is then projected into the derived space and the label of the nearest class (using some

distance metric) is assigned to the test point.

Questions arise as to the usefulness of creating a projection space that does not consider

the class labels when class separation is the final goal. However, when dealing with a very

high dimensional space (often the case in image recognition), the between scatter indeed

dominates the within, which leads to positive classification results shown by using PCA

methods. Of course, this need not necessarily be the case in general. Turk and Pentland

(1991) propagated the idea of PCA into face recognition and showed the separation created

in the principal component space was indeed pronounced in most cases and led to good

classification results, as the projection was able to remove some of the noise and select

features that led to the separation of individuals. Sometimes classes are separated more

easily in dimensions of low variability, but PCA is still pervasive in the literature.

Independent Component Analysis: ICA

Another commonly used unsupervised learning technique for the classification problem

is independent component analysis (ICA). Similar to PCA, ICA focuses on maximizing a

criterion not related to the labels of the data. Rather than maximizing the variability, ICA

seeks to find projections that minimize the statistical dependence between an observation’s

components. To find directions that yield independent components, the observed data,

z, is assumed to be a transformed version of another vector s which has p independent

components. This is an inverse problem in which the goal is to solve for the underlying

independent signal s given the noisy, observed z.
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ICA is often referred to as Blind Source Separation (BSS) or “the cocktail party prob-

lem” (many people talking at once create a loud din, yet individuals can often pick out sev-

eral independent conversations simultaneously). Comprehensive overviews of the concept

of ICA are available in Comon et al. (1994), Hyvarinen and Oja (2000), and Leino (2004).

The motivation behind ICA is the fact that the distributions of independent components are

as far from normal as possible. The kurtosis (fourth central moment) of a distribution is

often used as a measure of non-normality because the kurtosis of a normal distribution is

zero. Other criteria that measure “non-normality” include negentropy (difference between

the entropy of a Gaussian variable and the entropy of the measured variable) or the negative

of mutual information (mutual information is large for a normal distribution).

As the ICA seeks to maximize some function of the kurtosis, it is much more complex

and requires an iterative procedure. For situations in which the data is indeed a mixture

of many independent features, the procedure can yield a better projection for classification

than PCA, but PCA is much more common due to comparable results in most cases and a

much simpler framework that uses only the first two moments of the data.

Locality Preserving Projections–Laplacian

Spectral graph theory (see, e.g., Chung (1997)) explores techniques, called locality

preserving projections (LPP), of projecting data into a lower dimensional space to preserve

the local structure of the data is preserved. To accomplish this goal, points that lie within an

ε-neighborhood (or k- nearest neighbors) of each point are connected to form an adjacency

map. Let vi = AT xi be a projection of the points into a lower dimensional space where

A = ||ai j|| is a connectivity matrix. The objective function to minimize is

g(v) = ∑
ij
(vi−vj)

2Wij, (1.6)
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where

ai j =

{
1 : vi and v j are connected in the adjacency graph
0 : otherwise.

Wi j =

{
e−
||vi−v j ||2

h : ai j = 1
0 : otherwise.

(1.7)

The methodology of finding the best projection that maintains the local neighborhood

(Niyogi, 2004) shows that minimizing this criterion can be learned via decomposition of

the Laplacian matrix, D−W , where W is the weight matrix defined above and D is a di-

agonal matrix in which each element is the sum of the corresponding row (column) of W.

Eigenvalue decomposition of this matrix leads to the best projection matrix under this crite-

ria. Mathematical details of this procedure for dimension reduction can be found in Belkin

and Niyogi (2003). This idea has been expanded on with the methodology of local linear

embedding (Saul and Roweis, 2000; Pan et al., 2009; De Ridder and Duin, 2002).

Additional references on unsupervised learning methods, specifically clustering, are

found in Jain et al. (1999). The remainder of this section will center on supervised learning

techniques.

Fisher Linear Discriminant Analysis Motivated Dimension Reduction

Supervised learning dimension reduction techniques are intricately intertwined with the

idea of classification. Duda et al. (2001) state the duality in the following manner: “The

conceptual boundary between feature extraction and classification proper is somewhat arbi-

trary: An ideal feature extractor would yield a representation that makes the job of classifier

trivial; conversely, an omnipotent classifier would not need the help of a sophisticated fea-

ture extractor.” This summary brings to light the dual nature of the dimension reduction
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(feature selection) algorithms and the classifier. Any method of supervised dimension re-

duction is developed to improve upon classification in some way.

To begin the description of the variety of the dimension reduction techniques, the most

sensible beginning is the seeming gold standard in most discriminant literature: Fisher

linear discriminant analysis (LDA). R. A. Fisher, often referred to as the father of modern

statistics, first discussed the idea of finding an optimal linear boundary between two classes

with common covariance as well as extending this to a multi-class framework (Fisher,

1936). In the paper, he shows the optimal projection direction for classification (orthogonal

to the boundary) to be that corresponding to the direction of least within class variability,

while maximizing the distance between class centroids (between class variability).

To find the best direction of projection for classification, Fisher examined the problem

under some assumptions:

1. Multivariate Normality of within class distribution for all classes,

2. Common within class variance/covariance structure among all classes.

While these appear to be quite restrictive assumptions, the Fisher LDA technique has been

shown to be quite robust in practice to deviations from the assumptions. The assumptions

are required to prove optimality of the solution in the (C−1) dimensional space, although

good performance is not contingent solely upon these assumptions.

One of the primary research goals has been extending the optimal LDA solution in the

two-class framework to a multi-class (C class) paradigm when seeking optimal solutions.

It is important to note that while the solution to the two-class problem yields the optimal

single dimension for classification, the same does not hold true (finding an optimal single

dimension) in the C (C > 2) class case. LDA optimality rules can, however, find the optimal
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projection in (C− 1) dimensional space (Fisher, 1936; Johnson and Wichern, 1988; Rao,

2002). With that being said, many researchers desire to reduce the space to lower than

(C−1) dimensions as the classes may be quite separated in this reduced space. The fewer

features used, the lesser the chance that noise can confuse the classification. However,

the strict optimality results do not hold when the space is less than (C− 1) dimensional.

Many of the techniques discussed below search for methods that can improve upon the low

dimensional projections garnered via LDA that can often outperform the optimal (C− 1)

dimensional space (and those of smaller dimension yielded by Fisher’s approach).

Schervish (1984) showed that an optimal single dimension existed for a three-class nor-

mal problem and found an implicit form of such a solution. As this solution was certainly

nontrivial and required a numerical method to find it, there was a gap of time before the

problem of finding optimal subspaces of size less than (C−1) was solved. In examining the

nature of the performance of LDA in dimensions lower than the optimal (C−1), Hamsici

and Martinez (2008) have shown that there is indeed a Bayes optimal one-dimensional sub-

space that can be learned from a C-class normal linear discriminant problem. First, they

proved that the region associated with the boundaries of the Bayes error function in one

dimension was convex and then used convex optimization techniques to find the optimal

projection yielding a one-dimensional subspace that minimizes Bayes error. From the op-

timal single dimension, more dimensions for separability could then be added sequentially

using the same methodology, with the constraint that each added dimension was orthogonal

to the previously determined dimensions. This solution is computationally quite intensive,

as the minimization of Bayes error in the convex region involves an extensive search, but

the results prove that LDA does not provide an optimal one-dimensional solution in the

C-class framework.
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Fisher’s criterion to find the best single direction of separation was to maximize:

J(w) =
wT SBw
wT SW w

, (1.8)

with respect to the vector, w, where the between and within scatter matrices are defined in

Equations (1.3) and (1.4) .

For the two-class problem, the solution is simply

w = S−1
W (x̄[1]− x̄[2]), (1.9)

where SW is the pooled within class covariance matrix.

To find the best one-dimensional projection, Fisher’s solution to maximize J(w) for the

C-class problem was to find the eigenvector of the matrix S
− 1

2
W SBS

− 1
2

W (or singular vector

of S−1
W SB) associated with the largest eigenvalue (singular value). This is a special case

of the problem of finding the best d-dimensional projections described in Equation (1.10)

below. In most cases, SW is not full rank (more dimensions than observations) so the

Moore-Penrose generalized inverse is used, and the solution to the optimization problem is

the generalized eigenvector of SB with respect to SW associated with the largest eigenvalue.

This corresponds to maximizing the numerator of J, subject to the constraint wT SW w = 1

with respect to w. It is often implemented by first whitening the data and searching in

the space of length one vectors (assuming SW is full rank). After whitening the data, the

optimization function for LDA is based only on the between scatter matrix of the whitened

means. Problems may arise if the assumptions listed above (multivariate normality and

more importantly equal class covariances) are violated, as the estimate of ΣW (SW ) that is

used to whiten the data may be a poor estimate for the true within class covariance matrix.
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When extending this Fisher criterion to finding the best d-dimensional subspace, the

trade-off between maximizing the between and minimizing the within scatter matrices si-

multaneously took the form of maximizing the following objective function:

J(W) =
|WT SBW|
|WT SW W|

, (1.10)

where the between and within scatter matrices are defined in Equations (1.3) and (1.4).

Duda et al. (2001) states that this is only truly optimized in (C− 1) dimensions as the SB

matrix lies, at most, in a (C−1)-dimensional space. The columns of the optimal W are the

generalized eigenvectors satisfying

SBwi = λiSW wi, (1.11)

corresponding to the largest d roots of the polynomial |SB− λSW | = 0 (see Duda et al.

(2001) for details). The eigenvectors of S
− 1

2
W SBS

− 1
2

W make up the columns of the optimal

projection matrix and can be found via spectral decomposition performed on this matrix,

i.e.,

S
− 1

2
W SBS

− 1
2

W =UΛ
−1UT , (1.12)

where Λ is a diag(λ1,λ2, . . . ,λp). The λ ’s are the eigenvalues of S
− 1

2
W SBS

− 1
2

W arranged in

decreasing order, and U = [u1,u2, . . . ,up] in which ui is the eigenvector associated with the

ith largest eigenvalue (λi).

Often, LDA is used as the standard in classification due to the supervised nature of the

algorithm and its simplicity, but PCA is simpler algorithmically. Martinez and Kak (2001)

provided an analysis of PCA techniques vs. LDA techniques. They compared these tech-

niques and found that, in most cases, LDA outperformed PCA as expected. PCA and LDA

were shown to be fairly competitive in very low-dimensional projections (1-6 roughly),

whereas LDA became the more accurate classifier as the number of retained dimensions
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increased. The primary cases in which PCA tended to provide superior performance were

when there were few samples per class or when the samples were non-uniformly selected

from the underlying distribution (poor explanation of the class covariance structure). This

is to be expected as poor understanding of the within scatter matrix (not enough data span-

ning the space) can muddle the results of LDA.

The LDA algorithm has retained a position of prominence in the classification com-

munity because of its equivalence to a Bayesian optimal boundary between two normal

classes. The assigned class can also be viewed as the closest class centroid with respect to

Mahalanobis distance. As LDA supplies optimal separation in a decision theoretic frame-

work as well as the between versus within framework, its use as a discriminant technique

remains popular.

LDA Variants

Hastie et al. (1994) refer to flexible discriminant analysis (FDA) using optimal scoring

in which LDA is likened to a multiple nonparametric regression paradigm using multiple

dummy variables, one for each class, to denote class membership. Standard LDA is shown

to be equivalent to canonical correlation analysis that associates directions of high correla-

tion between the data and the response (class label) with the projection directions (Mardia

et al., 1979). FDA modifies the standard linear regression technique to use more sophis-

ticated nonlinear regression techniques such as MARS to find nonlinear boundaries. The

purpose of FDA is to create or allow more flexibility to the rigid linear boundary constraints

of standard LDA and allow for nonlinear separation between classes via nonparametric

methods. Obviously, the computational cost is higher due to the more complex regression

techniques, but if the problem at hand is more suited to a nonlinear boundary, FDA will

outperform LDA.
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To provide a smooth decision boundary, a penalty term is often added to the regression

loss function in canonical correlation analysis which leads to penalized discriminant anal-

ysis (PDA). This is discussed in a companion paper by Hastie et al. (1995). PDA is used to

combat the issue of overfitting in LDA when there are many correlated predictors (as there

are in image space). This paper examines the LDA paradigm from the canonical correla-

tion framework and seeks to find the directions associated with least squares in a regression

setup; however, unlike the FDA methodology of using nonlinear regression techniques, a

penalized least squares approach is used to find smoother boundaries. Penalized discrim-

inant analysis is shown to be equivalent to penalized canonical correlation analysis and

penalized optimal scoring methodologies.

Hastie and Tibshirani (1996) discuss evolving LDA methods to include Gaussian mix-

tures (mixture discriminant analysis – MDA). The essential technique stems from mod-

elling the individual classes as mixtures of Gaussian distributions in which individual com-

ponents of the mixture are discovered using the EM algorithm. These subclass components

are then shrunken toward the class (component) centroid to induce more separation be-

tween classes. As proposed, MDA also incorporates FDA and PDA when finding optimal

projections to form a smooth boundary between classes.

One detractor from the standard LDA framework is the concept of outlier classes. Out-

lier classes are described in the literature (Loog et al., 2001) as classes that are very easily

separated from the others because the class mean is at a significant distance from the other

class means. Outlier classes can inflate the SB matrix by adding a class mean that sig-

nificantly departs from the others. This inflation can cause the direction of outlier class

separation to dominate the optimal projection direction at the cost of optimizing the sepa-

ration between the more “difficult to classify” groups. Fortunately, an outlier class is very
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simple to classify in most directions (as it is significantly different from the other classes

with little to no overlap) so there is really no reason to use that direction as a focus for

discrimination.

The weighted LDA methodology (wLDA) is a simple extension of the standard LDA

algorithm that can ease the effects of outlier classes. The only difference is a weight term

input into the calculation of the between scatter matrix. This weight term is inversely

related to the distance between class centroids so it downweights the contribution of a

class that is easily separated when calculating the between scatter matrix. This allows the

algorithm to focus on finding discriminative directions that focus on difficult to classify

classes as the outlier classes should be reasonably separated under almost any projection.

The between scatter matrix in the weighted LDA framework is defined as

S̃B =
C−1

∑
k=1

C

∑
j=k

w(δ jk)(x̄[ j]− x̄[k])(x̄[ j]− x̄[k])
T , (1.13)

where δ jk = ||x̄[ j]− x̄[k]|| and the weight function, w(.), is a monotonically decreasing func-

tion of the distance that decreases faster than the inverse pairwise distance squared. Com-

monly used w(δ jk) are simply δ
−h
jk , where h> 2. Note the introduction of another parameter

h in this choice of w(.) that can possibly be optimized via cross validation. Everything else

in this methodology proceeds in the same manner as in standard LDA.

This weighted LDA framework is another formulation of the Laplacian method of di-

mension reduction. The only difference is that the adjacency matrix is constructed on the

space of means rather than all datapoints. Kouropteva et al. (2003) expands the Lapla-

cian LPP usage by connecting points that are of the same class in the adjacency graph.

Weighted LDA connects all class means and seeks to find a dimension that maintains the

local properties of the class means.
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Lotlikar and Kothari (2000) posited a unique framework of the LDA approach that

utilized not only the aspects of weighted discriminant analysis, but also discussed down-

weighting the least informative dimension in an iterative manner, thereby allowing the

space to rotate as the dimension was downweighted. This introduced more flexibility into

the LDA paradigm as the dimension was removed fractionally rather than as a whole. The

fractional LDA framework is discussed more completely in upcoming sections. The results,

while quite computationally taxing, provide excellent separation of class centroids.

Tang et al. (2005) discuss this issue similar to Loog et al. (2001), but the focus is on

the effect of the outlier class on the within scatter matrix estimation. The rationale being

that if a class is well separated to begin with, its within covariance matrix should not be as

important in developing an estimate of the pooled covariance matrix. To accomplish this

goal, Tang et.al. propose a relevance weighted within scatter matrix.

SW =
C

∑
j=1

riSW [ j], (1.14)

where SW [ j] is defined in Equation (1.5) and the weight ri is related to the distance of the

ith class to the others:

ri = ∑
j 6=i

1
w(δi j)

. (1.15)

The proposed modification utilizing both weighted between and weighted within scatter

matrices produces results that are comparable or superior than the standard LDA frame-

work. The weight function defined by Tang, et.al. is directly proportional to the distance

between classes (opposite of the definition utilized in wLDA). Tang et.al. also discuss

updating the weights using an adaptive strategy.

In the image classification problem, the dimensionality of the data is much larger than

the number of observations which yields many zero eigenvalues in the within class scatter
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matrix. There have been a variety of solutions to this problem, the most common of which

is replacing the within scatter matrix with the total scatter matrix (Chen et al., 2000). The

optimal direction found in this framework leads to the same solutions, as the total scatter

matrix can be decomposed into the sum of the between and within matrices. Therefore,

finding directions which maximize the criterion

J∗(W) =
|WT SBW|
|WT ST W|

(1.16)

achieves the same goal as the standard LDA setup described in Equation (1.10). This

allows use of the total scatter matrix (ST ) which is more likely to be of higher rank than SW

(rank(ST )≤ rank(SB)+ rank(SW )). ST still may not be of full rank when working with the

extremely high-dimensional image space, because SW is almost certainly not of full rank

and it is doubtful that SB would contain enough classes to make up the discrepancy (recall,

rank(SB) ≤ (C− 1)). Other solutions discussed include projecting the data into the null

space of SW before maximizing the quantity aT SBa. This diagonalizes the within scatter

matrix before maximizing over linear projections of the between scatter.

Yu and Yang (2001) suggest an alternate formulation of the problem that seeks to first

diagonalize the between scatter matrix (project the data into the column space of SB) then

minimize over all remaining projections of the within scatter matrix. They called their ap-

proach direct-LDA (D-LDA) that only required an optimization over a (relatively) small

subspace (maximum dimension C− 1) and claimed the solution was equivalent to LDA.

Gao and Davis (2006) proved that the D-LDA solution did not necessarily match the LDA

optimal solution as the projection into the column space of SB ignores SW and can have

significant effects in the within space. Regardless, D-LDA has been used as a time saving

method that yields fairly strong (although not necessarily optimal) classification rates with
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a much smaller space to search. This methodology is often used to combat the small sam-

ple size (SSS) problem which is often the case in face recognition as small sample sizes

severely limit the estimation of the within scatter matrix (recall, D-LDA only focuses on

SW after the SB has been maximized).

Estimation of the class covariance structure for LDA is often an issue. Croux et al.

(2008) provide an efficiency analysis for the LDA procedure. They discuss using other

measures for class center and spread that are more robust in the same LDA framework and

its effects on classification error. The effects of these estimates are found using influence

functions. Outlier points’ effects are estimated and level of significance in overall perfor-

mance is calculated analytically in the two-class case, but calculations become intractable

for more classes.

Friedman (1989) examines a regularized framework of the standard LDA problem

(RDA). As estimation of the class covariances is often an issue due to small sample size, a

more robust estimate of the class covariance matrix can be garnered by shrinking the indi-

vidual classes toward a common covariance matrix. Friedman went a step further to “shrink

the shrunken estimates” toward a multiple of the identity in which the trace of the matrix

is held constant. This is a method of finding more robust estimates for the class covariance

matrices which in turn lead to better estimation of the optimal projection directions for

discrimination. As each class covariance matrix was estimated separately, the final clas-

sification was done using minimum Mahalanobis distance with different class covariance

matrices leading to quadratic boundaries.

Bensmail and Celeux (1996) further examine the regularized framework when estimat-

ing the within class covariance matrix. Often, the number of samples per class is small

when compared to the dimensionality of the space which leads to difficulty in estimation of
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SW . Their approach is a regularization approach (in a sense) in which the covariance matrix

is fit into one of a list of constrained covariance forms with fewer parameters (i.e., diagonal,

spherical, etc.). Another constraint commonly imposed in the literature is on the set of all

class covariance matrices (common (LDA), same eigenvectors different eigenvalues, or free

(QDA)). This technique, referred to as Eigenvalue Decomposition Discriminant Analysis

(EDDA), was then compared to Friedman’s RDA procedure. The results were generally

comparable as the EDDA framework allowed the data covariance structure to determine

the model selected. The computational cost was higher as many models are examined, but

the cost of forming the models is not very high due to the parsimonious nature.

PLS and other techniques

Barker and Rayens (2003) discuss a fairly simple yet not as pervasive method of di-

mensionality reduction that bridges the gap between PCA and LDA known as partial least

squares (PLS), which has been very popular in Chemometrics (see, e.g., Wold et al. (2001);

Dayal and MacGregor (1997)). It focuses on an eigen-decomposition of the correlation

structure between the predictors and the response (in this case, class label). The PLS di-

rections seek to maximize correlation between predictor and response. The technique is

very similar to LDA and requires labelled classes for training, but the standard between

and within class scatter matrices are slightly modified in the PLS paradigm.

More complex methods of dimensionality reduction, such as nonlinear manifold learn-

ing (Law and Jain, 2006) and kernel PCA/LDA (Yang et al., 2004), have been proposed.

Nonlinear techniques seek to find a lower dimensional manifold on which the data lie and

project the data into that space. While this is a nice technique in concept, solving for the

underlying manifold is quite complex. Kernel Fisher Discriminant (KFD) as discussed by

Mika et al. (1999) for two classes and Bavaud (2010) for multiple classes involves finding
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optimal separation in the projected high dimensions. KFD becomes a dimension reduction

technique after the data have been implicitly projected into a higher dimension in which

nonlinear boundaries become linear. These techniques convert nonlinear classifiers in the

data dimension into linear classifiers in much higher dimensions.

Projection Pursuit

Friedman and Tukey (1974) described a technique in which ‘interesting’ directions in

the data were sought to yield understanding of the data structure. This is a very loose defi-

nition since what is ‘interesting’ for one study may not be so for another. For their criteria,

they developed a function that examined overall spread of the data as well as the local den-

sity that they termed the P-index. The algorithm was akin to many clustering algorithms,

yet it focused on linear mappings that yield high local density clusters as well as high over-

all variability (measure of cluster separation) in the data. This trade-off was achieved by

using the product of trimmed standard deviation (spread) and a local concentration measure

(density) as the objective function. To maximize this objective function, a random search

algorithm based on simulated annealing is often used in which the current projection is

perturbed in a random amount to yield a new direction. This direction is maintained if the

objective function has increased. The annealing is applied to start with large random per-

turbations and slowly ‘cool’ the process such that the perturbations are smaller as the new

projections near the optima.

One benefit of the random search is that the algorithm can escape from local minima,

but it is more computationally expensive than other gradient methods (which are not appli-

cable here as the objective function is not smooth). Other benefits of the projection pursuit

paradigm are that the directions garnered are linear mappings of the original data space and

therefore simpler to interpret than many nonlinear functions. However, it is important to

24



note that the original projection pursuit (PP) algorithm was defined for unsupervised learn-

ing in which the interesting directions led to a clustering of data with the only goal being

maximal data concentration and clustering (no labels or objective clusters sought). While

this is useful for exploratory data analysis, many classification methods seek to maximize

separability of predetermined classes (supervised) or using some predetermined informa-

tion.

Posse (1992) introduced supervised methods in which projection pursuit density es-

timators were used for discriminant analysis for two classes. Polzehl (1995) extended

this approach using a measure theoretic perspective. These results stray from the LDA

paradigm but use kernel density estimators to yield classification rates. The end goal is

construction of a classifier based on data driven densities. This leads to a nonparametric

approach but is more of a black box outcome with little interpretability.

Torkkola (2001) brought some LDA techniques into document classification with ex-

tremely high-dimensional data defining a document (class). He used projection pursuit with

random projection search to reduce the extremely high dimensionality of the problem to a

feasible size on which LDA can be effectively performed. Gribonval (2005) merged some

of the ideas of projection pursuit with CART to form what is termed adaptive discriminant

analysis. In this technique, linear features are iteratively selected from a dictionary based

on some information criterion (mutual information, Kullback-Leibler divergence, etc.).

Lee et al. (2005) describe a similar projection pursuit method using a supervised objec-

tive function similar to Fisher’s LDA in which the interesting directions were determined

to be those which maximized between class scatter and minimized within class variation.

This technique also used a simulated annealing approach in updating the projection space
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from the principal axes which prevents the need for eigenvalue decomposition but intro-

duces a random search criterion that is not guaranteed to converge to the optimal direction

in an efficient manner. The major contributions of this paper involve bridging the gap be-

tween supervised projection pursuit and LDA. By using LDA driven objective functions,

the projection pursuit methodology is focused on finding directions that yield class sepa-

ration under the Gaussianity assumption. The technique proposed maintains many of the

pitfalls of LDA (i.e., Gaussianity, common class covariance matrices, centroid based, etc.),

but it focuses the search for optimal directions in the final projected space rather than the

whole space. A big issue with this method is the random search of directions which is

computationally very expensive (especially when matrix inversions/decompositions are in-

volved).

Fractional LDA

Fractional linear discriminant analysis (F-LDA) was first discussed in Lotlikar and

Kothari (2000). It was suggested as a technique that would allow a little more flexibil-

ity to standard LDA. Rather than dropping dimensions completely that did not appear to be

useful, the authors sought to slowly (fractionally) downweight the dimension so as to allow

any useful information from that dimension/direction to remain in the classifier. It provides

a nice compromise between the strict gold standard of Fisher LDA which selects directions

concurrent with the eigenvectors associated with the larger eigenvalues of S
− 1

2
W SBS

− 1
2

W and

a more flexible method. This new method can be likened to a slow “squeezing” or “con-

tracting” along the dimension/direction of least importance while allowing said dimension

to slow mold to the optimal compression direction as the dimension is collapsed. The di-

mensions which are downweighted are determined via the weighted between class scatter

matrix to emphasize directions of class confusion similar to the Laplacian methodology.
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In fact, the algorithm as explained in Lotlikar and Kothari (2000) is actually more

likened to a projection pursuit method in which the optimization criterion is (essentially)

modified to only focus on class separation in the final projected dimension. To optimize

in a rotated and lower dimensional space, Lothlikar and Kothari update the projection di-

rection that leads to discarding the lowest p− d dimensions (with regards to eigenvalue

size) by ‘shrinking’ the dimensions to be dropped by larger and larger amounts to give the

appearance of the lower dimensional space. By shrinking the dimension, the researcher is

able to ‘learn’ the class separation in the projected space rather than in the full space as the

lower dimensional space may induce confusion not seen in the full space.

The algorithm for the F-LDA procedure (preprocessing and dimension reduction pro-

cedure) is given below in Algorithm 1:

The primary purpose of the F-LDA algorithm was to take into account the difficult

to distinguish classes in a lower dimension when they are easily separable in a higher

dimension. The LDA framework focuses on an optimal projection for C classes into (C−1)

dimensions. An outlier class can cause significantly increased eigenvalues of the between

class covariance matrix which inflate the directions that separate the outlier class from

the others. With this discrepancy, the optimal projection often focuses on the dominating

factors in SB without considering its effect on the within separability (whitening) or more

importantly the resulting class separability in the reduced space. Weighted LDA has been

used to combat the outlier class problem, but because it is a one-pass problem, it does not

allow the least informative direction to change as it is fractionally downweighted.

F-LDA has the major advantage of slowly downweighting the least-informative dimen-

sion which has the effect of not allowing one class to dominate any aspect of the separa-

bility criterion. The fractional step-down approach allows an adaptive framework to adjust
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Algorithm 1 Fractional LDA
Require: (Xi,Y j)
Ensure: W FLDA projection matrix

X̃i← Xi− ¯̄X {Mean Centering}
ST ← X̃ ′X̃ {Total Scatter Matrix}
Remove the Null Space of ST from the data
SW [ j]← ∑

i:yi= j
(x̃i− ¯̃x[ j])(x̃i− ¯̃x[ j])T

S̃W ← εI +∑ j
n j
n SW [ j] {Regularized Within Class Covariance Matrix}

˜̃Xi← S̃
− 1

2
W X̃i {Whiten the Data}

M[ j]← 1
n j

∑i:yi= j
˜̃Xi {Whitened class means}

α = r
1

r−1 where r is the number of fractional steps
for q = p to d do

Initialization
W ← Iq

SFLDA =

[
Iq−1 0

0 α

]
for k = 0 to r−1 do

Rotate class means to current ‘optimal’ rotation and downweight
M(k)←W T M {This is an identity transformation when k=0}
Z← Sk

FLDAM(k) {This scales down the ‘least informative dimension’}

S̃B←
C
∑
j=1

∑
i6= j

nin j
n w(δ (i j))(zi− z j)(zi− z j)

T where w(δ i j) = ||zi− z j||2

S̃B = ΦΛΦT {Spectral Decomposition where the eigenvalues in Λ are in decreasing
order}
W ←WΦ {Updating the ‘optimal’ direction in the ‘fractionally lower dimension
space’}

end for
W ← First q columns of W {Discard the least informative dimension}

end for
The final W is a pxd dimensional matrix to project the p dimensional data into d dimen-
sional space
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the optimal projection dimension as the importance of the least-informative dimension is

lessened. It provides the option of modifying the projection dimension as the dimension

of least importance is incrementally reduced, which permits the projection space to rotate

to a direction in which better class mean separation is achieved for the training data. The

least informative direction in a high-dimensional space may correspond to the direction

of an outlier class (recall, the modified formulation of SB downweights the impact of the

outlier class on the between scatter). If that dimension were simply dropped, a great deal

of confusion could be inadvertently introduced as the dimension separating the aforemen-

tioned outlier class has been removed completely. F-LDA permits a slow contraction along

this dimension until the confusion increases (i.e., the distance between the outlier class

and the others becomes small enough to effect the between scatter matrix) and rotates the

projection space to maximize separation to improve upon the wLDA paradigm.

Of course, this stepwise procedure introduces a great deal of computational complexity

as each fractional step requires a new computation of the between scatter matrix, its spec-

tral decomposition, and projection matrix. Also, each of these fractional steps occurs many

times in a reduction of just one dimension! The computational cost of reducing the dimen-

sion of the data from image space, which at the absolute least is of dimension 256 (often

much larger), to a feasible realm for discrimination (i.e., 10-50) takes an enormous amount

of time as there are r fractional steps for each dimension reduced. This is a significant

disadvantage as the computational feasibility of the algorithm in the context of image clas-

sification (or more generally large p small n) is quite low. Recall, that this computational

cost is incurred in training only, so once the algorithm has been trained to find the optimal

projection, the cost is minimal, but if there was any hope to update the training set online
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or at any reasonable time interval, the standard F-LDA algorithm is not very practical in

real time.

While the early views of F-LDA have shown difficulty in training in an efficient time

frame, the classification results are often quite good (outperforming LDA and many other

techniques in most cases). F-LDA not only maintains the benefits of weighted LDA in

dealing with outlier classes, but also modifies the projection to allow for heretofore unseen

confusion upon the removal of dimensions of lower importance. LDA finds the direction of

least importance given a criterion and collapses over it with no regard to the class separation

in the resulting space. F-LDA allows the algorithm to mold to the projected space and the

separability within it rather than finding the least informative direction prior to projection

as LDA does.

1.1.4 Classification Techniques

The classification problem has taken on a variety of facades over the years. While new

techniques have arisen to attack the disadvantages encountered by certain methods, one

constant has consistently emerged – optimal methods are situation dependent. Neverthe-

less, new and more sophisticated techniques are being developed currently to provide more

options in lowering misclassification rate. In this section, an in-depth review of a multitude

of classification methods is conducted. This list is by no means exhaustive but provides an

examination of the most popular classification techniques.

In its simplest form, the problem revolves around developing a rule for assigning an

unlabelled datapoint to one of possible C classes based on a set of measured and/or derived

predictor variables. In the supervised learning case (which is the focus of the research),

a set of labelled datapoints is provided to form a training dataset. From the data labelled
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a priori, the decision rule is constructed to minimize a penalty functional (the definition

of which separates many of the classification methods) in terms of misclassification. The

possible set of classes to which a datapoint could be assigned is, therefore, defined before

the decision rule is constructed.

Linear Discriminant Analysis

Fisher’s linear discriminant analysis (LDA) is one of the most commonly used methods

to solve the classification problem. This procedure optimally separates two multivariate

classes with common covariance matrix by finding directions in which the variability within

a class is minimized while maximizing the variability of the class centroids. Once this

direction is determined, the data is projected into this direction and is assigned the class of

the centroid closest to it (in the projected space).

One of the major benefits of LDA is the flexibility to choose the dimension size of

the projection. While the optimal projection dimension is related to the problem and the

specific data provided, there is often a significant dropoff in the relative sizes of the eigen-

values. This indeed is a question for dimensionality reduction rather than classification, but

the dimension size that is chosen can affect classification results.

Under the primary assumptions that the individual classes follow a multivariate normal

distribution and with a common covariance matrix Σ, this method was extended to C class

problem. LDA has stood the test of time due to the simplicity of the algorithm and the

ability to work reasonably well in cases in which the assumptions are not satisfied. Even if

the data does not adhere to these underlying assumptions, LDA tends to produce reasonably

good classification results.
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Quadratic Discriminant Analysis

The Quadratic Discriminant Analysis (QDA) methodology (see, e.g., Hastie et al. (2001))

is quite similar to linear discriminant analysis except that the assumption of common co-

variance matrices (homoscedasicity) is removed. To estimate the class label of a test point,

the class means and within covariance matrices for each class are estimated from the train-

ing data. The Mahalanobis distance is computed from the test point to each class mean

using the respective class covariance matrix. The class yielding the smallest distance is

chosen as the label for this datapoint.

When the assumption of equal class covariance matrices is removed, every class covari-

ance matrix must be estimated individually, and the added cost is in estimating and storing

a great deal more parameters. Rather than estimating and storing p(p−1)
2 parameters in the

pooled within covariance matrix using all the data in the training set, QDA requires com-

puting as many parameters for each of the C classes using only points in the training data

set of a given class. More data is essential to approximately estimate the class covariance

matrices. In addition to the greater storage requirement and the added variance in estima-

tion, there is also more computational cost in classification as the distance from a test point

must be computed to each class centroid under a different Mahalanobis metric.

Support Vector Machines

Support vector machines (SVM) focus on determining class boundaries that maximize

the separation between classes (margins) (see, e.g., Hastie et al. (2001); Steinwart and

Christmann (2008)). In the simplest case when the classes are linearly separable, the mar-

gin is determined by the points nearest a potential boundary (called the support vectors).

The boundary is chosen to maximize the spacing between the support vectors (margin).
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Similarly to LDA, this method finds optimal separating hyperplanes in (p−1) dimensions,

but the criterion is different. SVM is a margin based approach in which points at the

boundaries of the respective classes determine the separating hyperplane, whereas LDA

is a centroid-based method (i.e., centroids and class covariance structure determine class

separation).

The separating hyperplane is defined as wT x− b = 0 and the two parallel planes that

determine the boundaries of the margin in the separable case are defined as wT x−b= 1 and

wT x−b =−1. This implies all points in class ‘1’ follow the rule wT xi−b≥ 1 and those in

class ‘−1’ follow wT xi−b≤−1 as there are no points within the margin (in the separable

case). To simplify matters, these constraints can be combined into one using ci ∈ {1,−1}

as the class label. The new constraint function is then ci(wT xi− b) ≥ 1. The width of the

margin is 2
||w|| so minimizing ||w|| is the objective under the individual constraints on the

points lying on the correct side of the margin.

Using LaGrange multipliers, the objective function is

argminw,b

{
1
2
||w||2 +

n

∑
i=0

αici
[
(wT xi−b)−1

]}
. (1.17)

Using standard quadratic programming techniques, the solution is of the form w =

n
∑

i=0
αixi. While the solution appears on the surface to be heavily dependent on the data as

well as the coefficients (αi where i = 1,2, . . . ,n), many of the αi’s are zero yielding a sparse

solution. In fact, only the points that lie on the boundary of the margin contribute to the

construction of the separating hyperplane (nonzero α).

The formulation of the problem (known as the primal problem) given above is fairly

difficult to solve in practice as the optimization is occurring over the vectors w and b.

Another approach (known as the dual form) provides more constraints but optimizes over

a smaller space. The primal problem seeks to optimize over a space corresponding to the

33



size of the dimension of x (which in many useful cases is extremely large), whereas the

dual problem seeks to maximize over the number of α’s (which is the sample size). This

may seem to make the problem more difficult, but in many cases related to image analysis

and face recognition, the number of training data points generally does not exceed the

dimension of the data (large p small n).

The dual formulation seeks to solve the following optimization problem:

argmaxα

{
n

∑
i=1

αi +
1
2 ∑

i, j
αiα jcic jxT

i x j

}
, (1.18)

with the constraints of αi ≥ 0 and
n
∑

i=1
αici = 0 for i = 1,2, . . . ,n. Again, the problem can be

solved using quadratic programming.

It is important to note that the above formulation is for two separable classes. The

practice of soft thresholding has been used to allow for mislabelled data points (points

that lie in the margin or on the incorrect side of the margin). To accomplish this goal,

the constraints in the primal problem are replaced by ci(wT xi− b) ≥ 1− ξi and the new

optimization problem is

argminw

{
1
2
||w||2 +C

n

∑
i=0

ξi

}
. (1.19)

The ξis are referred to as slack variables and measure the distance the misclassified

data point is from the margin. As before, this function is minimized to find the optimal

separating hyperplane because the goal is to create a smooth boundary that minimizes the

number of misclassified data points as well as making sure misclassified points are near the

boundary (small ξ s) to aid generalization.

While the introduction of slack variables accounts for non-separable classes, the formu-

lation (as it stands) only deals with the two-class problem. There have been new methods

designed to accomplish multi-class SVM involving a vector class label. Lee et al. (2004)
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developed multi-class SVM defining the class label vector y for each point in the training

set as follows:

yi =


yi1
yi2
...

yiC


yi j =

{
1 if ith point is in class j
− 1

k−1 otherwise.

This formulation extends the SVM paradigm to a multi-class problem, but it involves

the estimation of many more parameters (as each training point yields a multivariate re-

sponse). Standard SVM requires the estimation of n parameters, whereas MSVM requires

n∗C parameters as a separate function is estimated for each class. It is similar to the previ-

ously used one-vs-the rest approach but by estimating all class similarities simultaneously,

contradictions can be avoided. The MSVM technique has shown great benefits in the clas-

sification realm, but the issues of small sample size and large number of classes in most

face recognition databases are problematic in the MSVM implementation. Also, face im-

ages of different individuals have different feature based centroids whereas outlier images

overlap among different individuals. Of course, overlapping images from different subjects

increases classification error in LDA as well; however, the centroid-based approach of LDA

techniques is conjectured to be more robust than the boundary based approach of SVM as

the centroids are more stable than the edges of the point clouds.

k-Nearest Neighbor

Another classification method that is commonly used is the k-nearest neighbor (k-NN)

method (see, e.g., Hastie et al. (2001)). This is a non-parametric method that requires no

real assumptions. This framework takes in a set of labelled training data and an unlabelled

test point. The distance of the test point to all training points is calculated and the closest k
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training samples are selected. Within the set of k nearest neighbors, the class that is most

represented is chosen for the class label of the test point; i.e., each training point votes in

this neighborhood and a plurality wins.

This method is quite robust as it does not have any restrictive assumptions, however, a

high level of computational effort is needed for computing the distance from the test point

to every training point. It also has the disadvantage of tending to label the test point as

the class with more observations in the training dataset because they are more likely to

be a nearest neighbor. One solution to this problem is to weight the votes accounting for

the distance between the test point and the neighbor as well as the proportion of the class

labels in the training data. Often the weights are inversely proportional to the distance

from the training point as well as the proportion of a given class in the training data. This

increases the weights of points very close to the test point and downweights the importance

of the training points of classes more prevalent in the training data to account for the higher

likelihood of occurrence.

Large values of k tend to yield boundaries that discount noise but produce boundaries

that are generally too smooth, whereas small values of k yield classification boundaries that

overfit and model the noise more so than the signal. Cross-validation is commonly used to

find appropriate values of k for a given dataset.

Kernel Methods

All of the above methods involved searching for optimal separation in the data dimen-

sion or lower. Kernel methods seek to project the data (indirectly) into higher dimensional

spaces that may induce further class separation (see, i.e., Hastie et al. (2001)). Popular

kernels that often perform very well in many general cases are the polynomial kernel and

Gaussian kernel. The motivation of the kernel methods for classification is generally to
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increase the dimension (feature space) of the data by including other potentially nonlinear

functions of the predictors and then use linear projections. It is possible that some non-

linear features introduce better separation in the classes. Once the data has been projected

up into a larger (sometimes infinite dimensional in the Gaussian kernel case) feature space,

the methods described above (LDA, kNN, SVM, etc.) can be used to construct a separating

boundary that is useful for classification or simply provide a black box for classifying test

points.

Determining which nonlinear functions to use to project the data into an informative

space can be a tedious process that yields questionable results as there is no good way to

find features that produce interesting directions. Also, there are infinitely many transforma-

tions that can be applied, so ascertaining which transformations are likely to yield useful

results is difficult. The “kernel trick” allows for distance measures to be computed in a

higher dimensional space without actually specifying which transformations are used. It is

well known that the distances between points in the higher dimension is all that is needed

to construct the classifier as the distance provides a similarity measure from which to de-

termine class membership. By using the kernel trick to garner some similarity measure,

one can examine the relationships in a much higher dimension without finding interesting

projections to be used to separate classes.

While kernel selection is another added layer of complexity to the classification process,

the only assumption that is used is that the chosen kernel indeed induces a greater level of

class separation than just the collected features. More importantly, the kernel induces linear

separability of the classes in the vector space spanned by the kernel basis function whereas

a nonlinear boundary fits the raw data. Linear separability of classes is not guaranteed in

general for any kernel so the kernel must be chosen to fit the specific problem. In fact,
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LDA corresponds to a kernel method using a linear kernel. Kernel methods, as referred to

here, are more of a feature enhancing method rather than classification method, but using

the extra features in the general classification problem can yield much better classification

results.

Decision Trees and Random Forests

The decision tree approach (the simplest type is known as CART) to classification fo-

cuses on classifying observations by sorting based on individual feature values and deter-

mining a cut point that induces classification (Breiman, 1984). The approach is referred to

as a tree as an observation moves down a tree diagram and at each node (feature of inter-

est), the observation is split along a specific branch. These branches are then split again and

again until unique classification is achieved at the terminal nodes of the tree. The features

chosen for the nodes are selected as those that best divide the training data by minimizing

some loss function such as misclassification error, Gini index, etc. The tree classifier is

quite simple as each decision node corresponds to a simple split in one dimension, but the

optimal dimensions to choose for decision nodes must be learned.

As trees tend to overfit the training data, an important step in fitting the tree classifier

is “pruning” the tree. This involves collapsing a fully grown tree under internal nodes that

do not improve classification via some cost function. The growing and pruning steps are

generally terminated by applying a stopping criterion at which the gain in continuing is

not significant. Pruning seeks to remove unnecessary nodes as a tree with fewer nodes that

achieves comparable classification performance is desired. Tree growing and pruning is an

art since different cost functions applied can lead to very different decision trees. Learning

the decision rules in a tree can be a time comsuming process, but the simplistic nature of
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the classifier can be approached algorithmically. Furthermore, since final classification is

based on many simple classifiers, computational time is generally not an issue.

Breiman (2001) describes the concept of a random forest in which many decision trees

are formed on different bootstrapped training sets chosen at random from the actual train-

ing dataset. Each tree is individually formed as normal on the given training set but not

pruned (as that would introduce much more computational effort). A common technique

in the general random forest procedure is to randomly select a set of predictors on which

to perform the node split. This random feature selection seemed to produce the smallest

generalization error. After the ensemble of trees is formed (random forest), the test point

is individually classified by each tree. The class receiving the most ‘votes’ is chosen to

be the predicted class. The random forest concept has been shown to be quite simple and

yet very effective for many classification problems. The large dimensionality and spatial

relationships in image data may make this technique a bit poor for image classification as

the storage requirements quickly increase in large dimensional datasets (as they do for any

bootstrapping method). Also, the lack of a large number of training points per class in

the face recognition problem is a cause for concern from the generalizability view of this

procedure.

Naive Bayes classifier

Naive Bayes classifiers (see, i.e., Murphy (2006)) are simplistic Bayesian networks

that are based on the assumption of independence of the predictor variables. This is, of

course, not of much use in a face recognition framework as the features are highly cor-

related, but the naive Bayesian framework is a well-known method in classification that

deserves mention. The classifier essentially solves for a posterior probability of each class

given the data. With the assumption of independence of predictors, the calculations are
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quite simple (simple product of the class likelihoods for each predictor – sum of the log

likelihoods). This assumption of independence is often violated in practice, so naive Bayes

classifiers are often less accurate than more sophisticated techniques. However with cer-

tain datasets, even with strong dependencies among predictors, the naive Bayes classifier

performs comparably or even more favorably in terms of classification rate. Due to the

simplicity of the algorithm, the computational cost is small. Semi-naive Bayes classifiers

relax the independence condition slightly by only requiring conditional independence of

predictors if the points are in different classes.

Bickel and Levina (2004) showed that in some cases (especially situations in which the

dimension p is much larger than the sample size n, naive Bayes techniques can outper-

form techniques focused on the estimating covariance matrices. This is because covariance

estimation in a large dimensional framework is not very stable for a small number of dat-

apoints. We will use a regularized estimate to overcome the small sample size problem,

but Bickel and Levina showed the naive Bayes technique worked quite well in a two-class

problem of large dimension.

Bickel and Levina (2008) examined other methods of estimating the covariance matrix

via banding (either the matrix itself or its inverse). While regularization introduces some

inherent bias into the problem by artificially shrinking the estimate to make the matrix

invertible, banding only focuses on estimating covariances near the diagonal and assumes

zero covariance outside the band. With fewer parameters to learn, the small sample size

problem can be controlled although this technique imposes an additional assumption of

no covariance between certain features. This can be seen as a more relaxed naive Bayes

technique.
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1.2 Face Recognition Problem

The face recognition problem as well as other biometric techniques have been some

of the hottest topics of interest within classification literature. With the reemergence of

fighting terrorism as one of the highest priorities of United States law enforcement agen-

cies following the 9/11 attacks, face recognition has taken on a more prominent role in

the classification research community. Also, with high-tech security and the importance of

company secrets certainly taking center stage in the corporate world, biometrics (of which

face recognition is a part) have also burst onto the scene. Within the law enforcement

community, the emphasis is on fast, accurate identification with less than optimal pose,

lighting etc., whereas the biometric focus is on near-perfect classification in a controlled

environment. These two areas look to solve the problem of finding the optimal classifica-

tion under different sets of objectives. Mitra et al. (2006), Jain et al. (2006), and Hong

and Jain (1998) discuss general biometric techniques in fingerprint and face recognition.

The remainder of this section will focus on methodologies specifically geared to the face

recognition problem under differing conditions.

For the purpose of this research, the face recognition problem is broken down into

four distinct steps (this breakdown is motivated from a similar flowchart in Queirolo et al.

(2010)):

1. Image Acquisition (camera)

2. Localization and Alignment (find the face and align anchor points)

3. Dimension Reduction (eliminate information that detracts from classification)

4. Classification (Assign class labels to training set based on test set).
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Perhaps the simplest source of variation in face recognition is the localization problem

(Step 2). Any template-based face recognition approach relies on images being localized,

aligned, and standardized. The localization of the face in an image is very important when

using a template-based approach as the correlation structure in the pixels of the image is

completely dependent on all faces lying in the same area of the image. Many face local-

ization techniques are discussed in the literature (Lowe, 1999; Sivic et al., 2005; Sznitman

and Jedynak, 2010; Tu and Lien, 2010; Pamplona et al., 2010; Huang et al., 2011). The

task of localization itself can be separately studied in the face recognition realm as localiza-

tion is more of an engineering preprocessing issue. The most common “normalization” of

spatial variation is to detect various key points around the face (eyes, nose, chin, ears) and

transform all faces using an affine transformation to align those feature points. The most

common features involve fixing the height of the eyes, the distance between eyes, the chin

and the outer dimensions of the face. Many simple algorithms exist to align the faces to a

specified grid and will be assumed for the remainder of this section. Also, it is common to

normalize intensity as well as to focus the discriminator on features of the faces rather than

photographic imaging characteristics.

Huang et al. (2007) developed a database of “faces in the wild” to begin the more

complex face recognition task of locating, aligning, and standardizing facial images as

they are found in real-world applications. This is taking the science of face recognition

to a new level of complexity through the introduction of more intrapersonal variation due

to background, angle, clothing, etc. Edge detection, key point anchors (inside of the eyes,

nose midline, ear height, philtrum location, etc.), and warping techniques are applied to the

raw images to align them for classification.
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Our research will assume localized, aligned images and is focused on the statistical

considerations of discrimination rather than the engineering concerns of automatic detec-

tion of features and alignment. While the acquisition and alignment of images are difficult

problems (steps 1 and 2), especially when dealing with the newest challenge of classifying

‘faces in the wild’ (Huang et al., 2007), this is primarily an engineering problem. The tasks

of finding the best lower dimensional representation of the faces for classification is the

goal of this research. Our research is completely focused on steps 3 and 4.

1.2.1 What Aspects are Central to Human Cognition of Faces?

Before delving into the face recognition literature, it is important to note the aspects

of the problem that make it unique in the classification realm. Bruce and Young (1986)

provide an excellent overview of the background of the face recognition problem and what

separates it from other classification problems. They also discuss many of the elements

of human facial recognition prevalent in other fields such as psychology and behaviorol-

ogy. Human face recognition stems from a variety of pointers in the human brain that are

analyzed in depth by Bruce and Young. The primary problem when attempting to auto-

mate the face recognition system in the brain is that the images of faces show much more

than extrapersonal variation (between class). In fact, there are many cases in which the

intrapersonal variation (within class) actually exceeds the extrapersonal. This is due to

many exterior factors (such as background, lighting, angle/pose) as well as intrinsic fac-

tors (such as expression, accessories, occlusion, etc.). These create a variety of problems

for the face recognition problem in any classification framework. This is precisely what

makes the face recognition problem unoptimizable in the general case, because the many

potential sources of variation are simply too many to account for in a single algorithm. The
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biometric situation (using a face to confirm identity) is a much more reasonable goal as the

image collection can occur in a controlled setting (fixed lighting, pose, expression, etc.).

The following sections speak to methods that attempt to control some of the many possible

sources of variation and find optimal directions for class separation under the most general

conditions.

Brunelli and Poggio (1993) provide an excellent analysis of what they term feature vs.

template matching. This seminal paper divides the face recognition methods into a dichoto-

mous classification framework that speaks to the reasoning for the differing nomenclature

of feature selection and dimension reduction. Feature matching involves discovering fea-

tures in the face such as relative position of eyes, nose, mouth, etc. and matching those

features to a training set. Closest matches within the set of features yield the label. Tem-

plate matching is more akin to the “dimension reduction” phraseology as it attempts to

match the image as a whole vector of data values to a corresponding training vector. Of

course, dimension reduction is performed using eigenanalysis or LDA, but features are

chosen in a less concrete manner. The results suggest that the template matching scheme

is often the easier of the two as the user need not define the features a priori and the com-

putations are generally simpler (automatically locating specific features in a face image is

often quite difficult).

1.2.2 Dimension Reduction for Faces
Eigenfaces, Eigenphases, Laplacianfaces, and Fisherfaces

The first general approach to dimension reduction for faces in the literature comes

from Sirovich and Kirby (1987), where they begin to scratch the surface on using eigen-

projection techniques in both the spatial and frequency domain for use in face recognition.
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Turk and Pentland (1991) discuss the most simple template matching scheme termed eigen-

faces. The eigenfaces are the eigenvectors of the covariance matrix of the rasterized face

images. These eigenfaces represent directions learned from the training set to which all test

points can be projected and distance measures can be calculated to points in the training

dataset. Eigenfaces follow the PCA paradigm discussed in Section 1.1.3 and are, as such,

an unsupervised algorithm, yet produce good classification results in practice. Moghaddam

et al. (1998) discuss an eigenspace method in which the final classification is determined

by a probabilistic matching to the training points rather than a distance metric approach.

Savvides et al. (2004) discussed the comparisons of eigenfaces and eigenphases. In the

eigenphase paradigm, the images are transformed into the frequency domain via a Fourier

transform and the transformed data is spectrally decomposed in the same manner as the

original images. The optimal projection is realized in wave space rather than point space.

Results tended to be promising under variations in lighting and less so under occlusion

but not particularly impressive under other sources of variation. Chien and Wu (2002) also

examined the wavelet transform and how the transformed data effects various classification

rules such as nearest neighbor, nearest feature line (Li and Lu, 1999), nearest feature space,

and nearest feature plane. Etemad and Chellappa (1997) investigated the effect of LDA in

the wavelet domain as well as the spatial domain and found promising results in each.

Similar to the eigenface approach, there are many other template matching schemes,

the most prevalent of which is Fisherface. As eigenfaces parallel the PCA technique, Fish-

erfaces parallel the Fisher LDA approach discussed in Section 1.1.3. Belhumeur et al.

(1997) performed a comprehensive comparison of the techniques under varying expres-

sion and lighting and find that Fisherfaces tend to outperform the eigenface techniques

(not surprising due to the supervised nature of the Fisherface algorithm). Fisherfaces also
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tend to perform better over variation in lighting and expression. They also discuss a com-

mon technique in the eigenface image analysis which involves dropping the three largest

principal components as these directions are often believed to measure background and

lighting variation without examining between-class variation. Often this reduced eigenface

approach outperformed general eigenfaces, but still fell short of the Fisherface standard.

Belhumeur et al. (1997) finished the analysis by finding the technique that had the highest

classification rates when glasses were placed on the subjects for the test images (no glasses

incorporated in the training set). These results clearly favor the Fisherface method, as the

eigenface methodology showed an error rate of greater than 50%. While most published

results suggest the superiority of the LDA approach to the PCA approach, Beveridge et al.

(2001) exhibit an example for which PCA performs uniformly better than LDA. They do

not discuss why this is the case, but comment on the surprising nature of these results.

Laplacianfaces were explored in He et al. (2005) and Cai et al. (2006) in which the

Laplacian technique was used in face recognition to find the optimal projection direction in

which the local structure of the data is preserved as in Section 1.1.3. LDA and PCA can also

be couched into the Laplacian framework as specific cases as shown in He et al. (2005). The

Laplacianface eigenmap showed improvement over the standard LDA and PCA methods

and was more robust. Niu et al. (2008) used a two-dimensional Laplacianface approach to

utilize the spatial dependence of the figure. This suggests that the Laplacian methods are

very useful for the face recognition problem. In fact, our research is directly linked to a

Laplacian approach that is more tailored to class separation in the projected dimension.

Fisherface Extensions

The Fisherface approach has been extended in many ways in the face recognition liter-

ature along the lines of LDA extensions. Cevikalp et al. (2005) present an interesting take

46



on the direct-LDA framework for face recognition known as common vectors. The essen-

tial component of the algorithm includes finding the null space of SW and first projecting a

single point from each class into it. The vectors spanning the null space of SW are known

as the common vectors. There is significant computational savings by only projecting a

single point for each class as all points in a common class project to a singularity as the

points lie in the null space of SW (note: this of course assumes common within covariance

matrices among classes and deviations from this assumption will significantly degrade per-

formance). Once the classes have been identified in the null space of SW by the common

vectors, the class between scatter is maximized (J(Wopt) = argmaxW |W T ScomW |). These

vectors can be identified using eigenanalysis on the matrix of common vectors (Scom).

Zhou et al. (2006) discussed a method called Improved LDA (I-LDA). This method is

similar to the weighted-LDA approach discussed in Section 1.1.3, but Zhou et. al. modified

the approach to include local information as well as global information. The local nature of

the algorithm includes features focusing on landmarks; e.g., eyes, nose, and mouth specif-

ically and included this information in the holistic face image. This combination of global

and local information is quite robust to moderate changes in illumination, pose, and facial

expression. Rather than PCA, Zhou’s approach for I-LDA uses a discrete cosine transform

(DCT) for dimensionality reduction rather than PCA which allows for increased compu-

tational efficiency. Price and Gee (2005) provided a similar approach that combines the

weighted penalty in the between scatter matrix with a direct-LDA variation that projects

the data into the column space of SB. They also included a modular subspace approach

that combines three classifiers, one of the whole face, a second focused on the region con-

taining the eyes and nose, and a third containing the eye region only. This provides an
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approach that is generally more robust to different facial expressions, but localizing the

modular views is more complex under differing poses.

Lu et al. (2003b) were the first to propose a combination of the direct-LDA and fractional-

LDA approach for the face recognition problem and termed their technique DF-LDA. The

approach is very sensible as the current F-LDA paradigm is not geared toward finding

low-dimensional representation of very high-dimensional spaces due to the extreme com-

putational complexity of the algorithm. DF-LDA was developed to combat the small sam-

ple size problem (projection into the column space of SB which is of maximal dimension

(C− 1)) which allows for a lower dimensional framework in which to start to which the

F-LDA framework can be applied. Even though the results were quite promising in the

experiments performed, it suffers from the same issues of Direct LDA as proven by Gao

and Davis (2006). This provides a method of applying fractional LDA techniques to high-

dimensional data in real time, but there are no guarantees of reaching the best projected

space for classification. The methods explored in our research seek to apply a variation of

F-LDA methods to problems in the high-dimensional space without sacrificing information

through the direct-LDA procedure.

Chen et al. (2004) developed a methodology that sought to make F-LDA applicable to

the classification problem with one sample per class. Their approach was to partition the

single training image into non-overlapping regions and use each of these regions as training

datapoints. The testing images are partitioned similarly and classified using two different

techniques. The first classifies the vector of subimage projections via nearest neighbor

methods to the training data projected vector of subimages, while the second classifies

each subimage separately and employs a voting scheme to determine the class label. Dai

et al. (2007) examined extending the F-LDA framework into a kernel framework for face
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recognition. This provides the flexibility of F-LDA as well as finding non-linear boundaries

(linear boundaries in the kernel basis space may be nonlinear in the image space). Of

course, computational cost is intense at high dimensions, especially when using the F-LDA

framework so future methods need to be investigated to make this technique tractable in

a large face database case. Our approach can also be applied to a kernel framework but

simultaneous shrinkage of all dimensions leads to a tractable solution for high-dimensional

problems.

Other Cognitive Recognition Techniques

Departing from the LDA realm, other facial recognition methods have been discussed in

many different fields including psychological markers that are pertinent in human recogni-

tion (Mitra et al., 2007). One such measure is facial asymmetry. Liu et al. (2003) used facial

asymmetry as measured by the difference of an image and its reflection across the verti-

cal midline (D-face) and the measure which is formed by the cosine of the angle formed

between edges in the original image and edges in the reflected image at a given point (S-

face). Liu, et. al. found that such asymmetry is actually quite constant across varying

poses for a given individual and that this biometric produced excellent results across vari-

ous poses (both D-face, S-face, and a combination). Mitra et al. (2005) examined the facial

asymmetry measures in a frequency domain.

Martı́nez (2002) discussed a novel approach to dealing with imprecisely localized, oc-

cluded, or expression variant faces in a small sample framework. The localization problem

is attacked by attempting to model the subspace from which images of a given class come.

The subspace is often a feature space in which the class localization error is modelled using

Gaussian distributions. The primary mechanism employed to combat occlusion is breaking

the image into a variety of subimages for use in classification similar to Chen et al. (2004).
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If a region of the face is occluded, this region would clearly be useless for classification,

yet the others could still be used. Rather than a voting scheme usually employed, a prob-

abilistic scheme is developed that weights subimages invariant to pose more highly than

those that are highly variable under differing poses.

Tensor methods have also arisen in the face recognition framework. Vasilescu and Ter-

zopoulos (2002) approached the idea of “tensorfaces” by constructing high-dimensional

tensors of faces that contain different types of variation along different dimensions – one

each for illumination, expression, pose/angle, individual, etc. Once an enormous tensor

of training images is compiled, N-mode SVD (a multilinear SVD) is applied in which the

extremely large dimensional tensor is projected into a more manageable size that parsi-

moniously explains each of the constituent factors (illumination, expression, pose, etc.).

Obviously this incurs an incredibly large cost in constructing a training data set (images of

each person in each illumination, pose, expression variation). Perhaps there are extensions

in the tensor methodology that can find useful projection directions under a tensor model

that is not completely saturated (i.e., not every pose, illumination, etc. available for every

individual).

Other approaches have been discussed involving deformation measures of the face

(Leroy et al., 1996) using certain measures of the eyes, nose, and mouth on a standardized

image and the effects various expressions have on certain individuals. These deformation

measures often involve gradient calculations in the image space and seek to find individual

specific characteristics in these identified locales. Similarly, more advanced approaches

have been taken to match a 2.5D face image to a hypothetical 3D face model (Lu et al.,

2006). Lu et.al. referred to an image (or more precisely a collection of images) as a 2.5D

scan as using multiple angles of a common face to construct a 3D model. The 3D model is
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then compared to training 3D models for classification. Clearly, much more computational

complexity is involved in this methodology to construct the model of the face and store a

variety of training models for classification purposes.

As the imaging technology continues to improve and become more widespread, more

techniques are being developed to analyze 3D images. Queirolo et al. (2010) examined a

subimage simulated annealing approach to classifying 3D images. While this technique is

relatively new, the prevalence of more accessible cameras and computers for analysis has

made this a reality. Queirolo focused on segmented matching of the whole face, circular

nose region, long elliptical nose region, and upper head as the nose region is the least

affected by changes in facial expression. A conglomeration of classifying the four regions

separately yielded the most consistent results.

Another approach to the face recognition is examining it from locality preserving pro-

jections (Lu and Tan, 2010). Lu, et.al. attacked the small sample size (SSS) problem by

stating that PCA prior to discriminant techniques can lead to a significant loss of local

information that may be useful to classification. The parametric regularized locality pre-

serving projection (PRLPP) is an extension of other LPP methods rampant in the literature

of late (He et al., 2005; Yu et al., 2006; Zhu and Zhu, 2007). The LPP technique in general

incorporates some affinity measures (via kernels) when solving the generalized eigenvalue

problem. Most LPP techniques in the literature are inherently unsupervised methods that

seek to find an underlying nonlinear manifold in which points close in the full space remain

close in the reduced space.
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1.2.3 Unifying Aspects of Face Recognition

The methods discussed in this chapter seem as if they have been applied in an isolated

context. This could not be further from the truth since many of the aforementioned clas-

sification methods are often combined into hierarchical contexts. The most common of

these hybrid/hierarchical classifiers is projecting the high-dimensional images to a more

manageable size using PCA, then applying LDA to the already reduced data. Also, there

are methods in which various classifiers are constructed separately and the conclusions are

drawn from integrating the individual classifications into a single output (Lu et al., 2003c).

Another common technique utilized to integrate many simple learners is boosting which

was applied to the face recognition problem by Lu et al. (2003a). The boosting paradigm

focuses on improving overall classification by weighting misclassified observations more

heavily in future learners to provide a holistic integrated technique that can handle a wide

range of test samples. Other hybrid techniques are discussed in the literature to combat

specific areas of discrimination, such as gender classification (Xu et al., 2008).
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Chapter 2: Simultaneous Adaptive Fractional Discriminant Analysis

2.1 Motivation and Notation

Many traditional dimension reduction techniques for classification focus on maximiz-

ing the separation of the classes in the large dimensional space. Unfortunately, using stan-

dard techniques neglect to examine how the projection process itself may actually degrade

separation. It is known that Fisher’s LDA is optimal only when the data is projected into

(C−1) dimensions and (potentially) suboptimal when the desired dimension is much less

than (C− 1) (which is often the case in the face recognition paradigm when there are a

multitude of potential individuals).

Fractional Linear Discriminant Analysis (F-LDA), Lotlikar and Kothari (2000), showed

a great deal of promise in classification improvement over other linear techniques as it fo-

cuses on projections that maximize separation in the projected space rather than in the

full space in that a dimension is ‘fractionally’ removed iteratively across a multitude of

substeps. Therefore, the separation criterion is optimized in the lower dimensional space,

which lead to better separation. Of course, this is a useful method only when the weighted

between class scatter matrix is used, as the weighting function (kernel) yields changing ‘op-

timal directions for separation’ after downweighting the less informative dimensions. The

fractional modification involves extra computational costs which are generally considered

53



to be more than the benefits in classification accuracy. Since F-LDA only downweights

incrementally and finally removes the least informative dimension one at a time, it requires

repeating the eigenvalue decomposition process many times for reduction of one dimen-

sion. This is clearly not feasible to use for image classification or other large-dimensional

problems as the increased cost in computing time is further exacerbated by iterating this

process for each dimension to be removed.

F-LDA has shown success in classification accuracy (Lotlikar and Kothari, 2000; Lu

et al., 2003b), but the prohibitive computing time prevents exploration of its benefits in

large-dimensional problems. Also, the sequential nature of the dimension removal loses

interdependence between dimensions. In other words, removing k dimensions from a p

dimensional space sequentially may be ‘optimized’ by some criterion (LDA) at each step

but not optimized with regard to finding the best d dimensional space due to interrelatedness

of the dimensions removed. This is similar in spirit to the step-down method in regression

model selection.

The proposed algorithm seeks to merge the benefits of F-LDA (seeking optimal separa-

tion space in the projected space rather than the full space) with a computationally stream-

lined method. The new method, termed Simultaneous Adaptive Fractional Discriminant

Analysis (SAFDA), requires multiple steps of S̃B (as defined in Equation (1.13)) eigenvalue

decomposition to optimize class separation in the reduced space, but rather than shrinking

(downweighting) only one dimension at a time (the least informative), it simultaneously

shrinks all (p−d) dimensions ultimately to be dropped by varying degrees.

Three main downweighting schemes listed below are examined in Sections 2.3.1 and

3.5:

1. Downweight all dropped dimensions by the same amount.
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2. Downweight the dimensions by an amount based on the rank of the respective eigen-

value.

3. Downweight by an amount based on the relative size of its respective eigenvalue

according to some function.

The goal is to perform the fractional technique across many dimensions simultaneously

and remove a ‘chunk’ of dimensions at once in the last step. This allows the classification

benefits of F-LDA with computational feasibility, while also introducing the removal of all

dimensions at once which leads to a more global solution rather than one that is derived via

sequential optimization.

2.1.1 Notation

M denotes the p× c matrix containing the whitened centroids of the data:

Mp×c = (µ1,µ2, . . . ,µc) (2.1)

D denotes a C×
(C

2

)
differencing matrix that, via matrix multiplication with M, creates

a matrix containing all pairwise differences of means.

DC×(C
2)
=



1 1 . . . 0
−1 0 . . . 0
0 −1 . . . 0
...

... . . . ...
0 0 . . . 1
0 0 . . . −1


(2.2)

W denotes a diagonal matrix in which each diagonal element corresponds to the weight

function applied to the given pairwise mean difference in the construction of the weighted

between scatter matrix. This particular construction allows for any weighting function

(kernel) to be used as long as it is a similarity measure.
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W =


w1,2 0 . . . 0

0 w1,3 . . . 0
...

... . . . ...
0 0 . . . w(c−1),c

 , (2.3)

where wi j = K(µi,µ j)

Using the notation above, the weighted between class scatter matrix as defined in Equa-

tion (1.13) can be rewritten as:

S̃B = ∑∑wi j(x̄i− x̄ j)(x̄i− x̄ j)
′ = (MD)W (MD)′. (2.4)

Since the downweighting process is repeated many times, the savings garnered in ma-

trix computation over loops is amplified. Also, this matrix representation makes it much

easier to understand both the F-LDA methodology and the SAFDA modification while

streamlining the algorithm.

2.2 Why Weight?

The central motivation behind the SAFDA paradigm is the fact that the standard LDA

paradigms are not made to be optimized in a sub-(C− 1) dimensional space. This sub-

optimality stems from the criterion used to elicit separation residing in the large space rather

than the reduced space. While the criterion is indeed optimized in the complete space un-

der LDA conditions, the process of projection to a lower-dimensional space can introduce

confusion between classes that were simple to distinguish in the full (C− 1) space. Even

under the weighted LDA framework, in which classes that are more difficult to distinguish

drive the dimensions of importance, the focus is on separation in the full space. Classes that

are very separated in the full space may yield little information to the weighted between
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class scatter matrix used for feature selection. Therefore, they can become confused in the

reduced space unless they are also separated in the dimensions than have greater confusion

among other classes. It is also important to realize that these fractional techniques must

take place in a weighted framework. If there is no weighting of the between scatter matrix

based on class mean separation, the directions of optimal separations will never change

as the dimensions of lesser importance will cause no reordering of the eigenvalues of the

unweighted between scatter matrix. By adding a kernel-like weighting scheme, fractional

removal of dimensions can yield rotations of the original LDA orientation derived in the

full space that is more aligned to the weighted criterion in the reduced dimensional space.

The weighting function and successive fractional removal of dimensions lead to separation

tailored to the reduced space.

The selection of the optimal (or even appropriate) weighting function for a given prob-

lem is of paramount concern in practice. Since the best weighting function for a given

problem is data dependent, there is no weighting function or kernel that is always the ‘best’.

Therefore, Section 3.3 analyzes the costs and benefits of three weighting functions, listed

below, that are based on the Euclidean pairwise distance only:

1. Inverse Pairwise Weighting Function.

2. Bounded Inverse Pairwise Distance Weighting Function.

3. Gaussian Kernel.

While this is by no means a comprehensive list of weighting functions that may be used,

these three exhibit a range of characteristics that can be extended to other weighting func-

tions (unbounded, bounded, adaptive, etc.). Functions that are based on any criteria other

than Euclidean distance are not used because the weighting function is not useful in the
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construction of the weighted between class scatter matrix when other extraneous informa-

tion is included (i.e., vector length). This extra information can give larger weight to the

directions of lesser importance simply due to scaling.

The inverse pairwise distance weighting function was used in Lotlikar and Kothari

(2000) and is shown here:

K(x̄[i], x̄[ j]) = ||x̄[i]− x̄[ j]||−h, (2.5)

where the parameter h is chosen via cross validation (so long as h > 2).

A bounded variant of the same weighting function is also examined to prevent one pair

of classes from dominating the separation criterion.

K(x̄[i], x̄[ j]) =
1

(1+ ||x̄[i]− x̄[ j]||)h , (2.6)

where h is again learned via cross validation.

The Gaussian kernel,

K(x̄[i], x̄[ j]) = e−
||x̄[i]−x̄[ j]||

2

h , (2.7)

is, perhaps, the most attractive kernel as the bandwidth parameter h can be adapted to the

down-weighted data at each step. When referring to simultaneous adaptive fractional dis-

criminant analysis, this is the kernel of choice due to the ability of choosing the bandwidth

online. This leads to a tremendous time savings by avoiding CV on an already computa-

tionally intensive procedure.

2.3 Description and Algorithm

The SAFDA method focuses on shrinking multiple dimensions (rather than only one

dimension at a time in F-LDA) simultaneously and removing several of them at the end of

the process. The benefits of this modification are twofold:
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• Immense time savings as the computational cost to remove several dimensions is

about the same order of magnitude as removing one dimension in F-LDA.

• Best dimensions in the reduced space are found while accounting for the interdepen-

dence that may exist between dimensions (no sequential/conditional optimization).

The SAFDA algorithm is described below using the previous notation.

Simultaneous Adaptive Fractional Discriminant Analysis

1. Initialization–Set parameters

(a) Weighting function tuning parameters (may be determined via cross-validation

or adaptive scheme)

(b) Final dimension of projection (d)

(c) Number of iterations before removal (rmax) and determine downweighting fac-

tor for the most important dimension to be dropped (α = r
− 1

rmax−1
max ) which makes

the geometric downweighting scheme mimic an arithmetic downweighting paradigm

after rmax steps (αrmax−1 = 1
rmax

)

(d) Choose downweighting scheme

• Common downweight

• Downweight based on rank of eigenvalues

• Downweight based on a function of magnitudes of eigenvalues

(e) Scaling matrix, which has the following form:

S =


Id 0 0 . . . 0
0 fd+1(α) 0 . . . 0
0 0 fd+2(α) . . . 0
... . . . 0
0 0 0 . . . fp(α)

 .
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The functions within the scaling matrix are dependent on the downweight-

ing scheme, but fd+1(α) = α for all scaling matrices.

2. Preprocessing Step; Algorithm 2 described below

Algorithm 2 Preprocessing
Require: (Xi,Yi) (where X is the data and Y is its class label)
Ensure: M whitened class means

X̃i← Xi− X̄. {Mean Centering}
ST ← X̃ ′X̃ {Total Scatter Matrix}
Remove the Null Space of ST from the data
x̄[ j] =

1
n j

∑
i:yi= j

x̃i {Compute Class means}

SW [J]← ∑
i:yi= j

(x̃i− ¯̃x[ j])(x̃i− ¯̃x[ j])T

S̃W ← εI +∑ j
n j
n SW [ j] {Regularized Within Class Covariance Matrix}

˜̃Xi← S̃
− 1

2
W X̃i {Whiten the Data}

M j← ∑i:yi= j
˜̃Xi j {Whitened class means}

Remove the null space of M via eigendecomposition as it is not helpful in classification
{M is at most C× (C−1)}

3. Simultaneous Adaptive Fractional LDA; Algorithm 3 given below

4. Project whitened training/test points into reduced space using P

5. Classify using any classification algorithm (we use nearest mean in the projected

space)

The key differences between SAFDA and F-LDA (Algorithm 1 in Chapter 1) involve

the functions used to calculate distances in the weighted between class scatter matrix and

the construction of the scaling matrix (S). In F-LDA, S has the much more simplified form
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Algorithm 3 Simultaneous Adaptive Fractional LDA
Require: M whitened training means, r= max number of iterations
Ensure: P= SAFDA projection matrix

U ← Ip
W0← e1

α = r
1

rmax−1
max

B← Stopping criterion boundary for Hellinger distance between successive normalized
weights
for r = 0 to rmax−1 do

M(r) = SrU ′M
hr = mini, j(||SrU ′M(i)−SrU ′M(r)||2) for Gaussian kernel
Ŵr+1[i, j]← K(SrU ′M[i],SrU ′M[ j])
Wr+1 = rasterized vector of Ŵr+1

W̃r+1[i]← Wr+1[i]
||Wr+1||

S̃B = (SrU ′MD)diag(W̃r+1)(SrU ′MD) {Weighted Between Class Scatter Matrix}
S̃B = ΦΛΦ′ via eigendecomposition with λi’s in decreasing order
U ←UΦ

if k ≥ 1 then
H(r) =

√
2(1−∑i

√
W̃r−1[i]W̃r[i])

if H(r) < B∗H(1) then
break

end if
end if

end for
return P = first d columns of U
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in which only the least informative dimension is downweighted:

SFLDA =

[
Ip−1 0

0 α

]
.

By downweighting all dimensions to be removed simultaneously, the external loop, in

Algorithm 1 that peels the dimensions off one-at-a-time, is not needed. Clearly, this modi-

fication is a huge computational time saver, as F-LDA has the same basic structure except

the removal of one dimension at a time requires repeating step 3 in the above algorithm as

many times as the number of dimensions to be removed (p−d). Recall, each pass through

the loop in step 3 above (loop that shrinks the least informative dimensions and finds the

optimal rotation) has the same cost as a standard LDA algorithm (after whitening) with

costs incurred through the weighted between matrix eigenvalue decomposition. SAFDA

removes the need of peeling the dimensions off one at a time with expanded computational

cost for each dimension. By construction, the SAFDA algorithm will take longer than stan-

dard LDA as the matrix decomposition is performed rmax times to optimize spacing in the

projected space rather than the full space, but it prevents the expanded F-LDA cost of per-

forming this time-intensive procedure repeatedly, once for each dimension to be reduced.

The time savings alone is large when dealing with large C, large p problems (such as image

classification) as matrix decompositions are very costly for large p. Since the size of the M

matrix is dependent on the number of classes as seen in Algorithm 2, this modification is

particularly useful in cases of large C.

Another big computational savings for large p problems from the original F-LDA algo-

rithm is in the preprocessing step. We show that the whitened class means lie in at most a

(C− 1) dimensional manifold. As there is no new information that can be garnered from
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the null space of S̃B (as any element in the null space of S̃B projects all classes to a singu-

larity and therefore no separation), there is no penalty for removing its entire null space of

the whitened class means before the shrinking and optimization portion of the algorithm.

Proposition 1. The removal of the null space of S̃B after whitening but before shrinking,

incurs no loss in classification from running SAFDA on the full S̃B matrix.

Proof. For the first iteration in the inner loop, l=0 so S=I.

S̃B = M0DWD′M′0 = QQ′ where Q = M0DW
1
2

0 (2.8)

Using singular value decomposition of Q

Q = M0DW
1
2

0 =UΛ
1
2V ′, (2.9)

M0D = UΛ
1
2V ′W

− 1
2

0 (2.10)

For high-dimensional data, there are often zero eigenvalues (when the data space is not

full rank). Therefore, the matrices take on a block structure as shown:

M0D =
[
U1 U2

][
Λ

1
2
1 0

0 0

][
V1 V2

]′W− 1
2

0 (2.11)

The projection matrix is U and the data (means) are projected into the U space before

the shrinkage step of the inner loop in F-LDA. Let

M1 =U ′M0

The differenced means have a simplified structure by substituting from equation (2.10).
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M1D = U ′M0D

= U ′UΛ
1
2V ′W

1
2

0

= Λ
1
2V ′W

1
2

0

M1D =

[
Λ

1
2
1V ′1
0

]
W

1
2

0 (2.12)

When scaling is applied to the new data, there is no change as the scaling only affects

the last (or in the SAFDA case, last several) eigenvalue(s) which are all zero. Clearly,

scaling yields no effect until the dimensions in the column space of the data are impacted

via scaling, as shown below.

SM1D = SU ′M0D

=

[
Ip−1 0

0 α l

][
Λ

1
2
1V ′1
0

]
W

1
2

0

=

[
Λ

1
2
1V ′1
0

]
W

1
2

0

= U ′M0D

SM1D = M1D (2.13)

Because this process can be repeated for all of the inner shrinkage steps in F-LDA

for each dimension in the null space of S̃B, this result holds until the scaling impacts a

dimension with non-zero eigenvalue. The same holds true for SAFDA when directions of

zero eigenvalue are shrunken.

Removing the (potentially very large) null space of S̃B before the iterative downweight-

ing steps is a very large savings for large p problems as C is usually much smaller than p
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for most problems, and the matrix decomposition is much faster. Facial recognition is an

example of a problem with a large number of classes for which this modification of pro-

jecting the data into the space spanned by the class means is not enough, because the class

means span the potentially large C-dimensional space, in which the computational require-

ments are still too large in practice. Since C is large and calculations in the large space

((C− 1) dimensions) are costly, SAFDA ability to remove all dimensions simultaneously

rather than one-at-a-time like F-LDA is a significant boost to the speed of the process.

2.3.1 Downweighting Schemes

One of the primary elements in the algorithm is the downweighting scheme. We do

not believe that the final direction of projection would be greatly affected by the scheme

chosen, but perhaps convergence to the best space may be achieved more quickly using

more information (size and/or magnitude of the eigenvalues) in determining how far to

downweight the data. This section will examine three schemes:

• Scheme 1: Common downweight for all dropped dimensions.

• Scheme 2: Downweights based on the rank of the associated eigenvalue.

• Scheme 3: Downweights based on the relative size of the associated eigenvalue.

The SAFDA algorithm is designed to elicit optimal separability in the lower (d) dimen-

sional space under any downweighting scheme, but it is hypothesized that using more adap-

tive informative downweighting schemes may achieve convergence more quickly. This is

desirable in order to minimize the computational effort.
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Scheme 1: Common α

The simplest scheme involves a common downweighting factor for all dimensions. The

result of this scheme is to slowly reduce the importance of each dimension to be discarded

equally to examine the separability in the pseudo-lower dimensional space. The scaling

matrix for this scheme is a block diagonal matrix with unity for the retained dimensions

and the same downweighting factor α for the dropped dimensions.

fi(α) = α i = d +1,d +2, . . . , p (2.14)

Scheme 2: α based on eigenvalue rank

When using the order of the eigenvalues only, a recursive scheme was developed to

define the shrinkage matrix as follows.

fd+1(α) = α

fi(α) =
1
2 + fi−1(α)

2
, i = d +2,d +3, . . . , p. (2.15)

This recursive scheme was chosen as a geometric shrinking toward 1
2 . The least amount

of shrinkage was chosen to be the same α as in F-LDA to ensure the most informative

discarded dimension is shrunken to 1
rmax

after rmax iterations (prior to dropping). The others

are downweighted more heavily as they are less important (relatively). This method uses

a geometric progression of weights that begin at α as chosen by the number of shrinkage

steps (a priori) using a factor of 1
2 . An asymptote of 1

2 was chosen (arbitrarily) so that no

dimension was removed too quickly in the shrinkage steps. This guarantees that a single

dimension (no matter its import) cannot be shrunken by more than half in a single step. This

asymptote was put in place to ensure that a dimension that has little import in the full space

is not removed immediately as it may have some discriminative powers in the projected
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space. Standard LDA techniques (LDA, wLDA, etc.) remove these dimensions without

regard to their import in the projected space. This scheme ensures that this downweighting

method improves separation in the reduced space over standard LDA, but it is hypothesized

that scheme 2 may reach a more stable solution in fewer iterations than scheme 1.

Scheme 3: α based on relative magnitude of eigenvalues

Another downweighting scheme that was examined involves the magnitude of the eigen-

values. Ideally, this technique downweights dimensions with similar eigenvalues almost

identically whereas the scheme 2 places greater importance on the order regardless of how

close they are. This technique was expected to provide a better downweighting scheme

(quicker convergence to a stable solution) as more information is used in determining how

important a given dimension is for classification. This scheme involves weighting the di-

mensions based on the ratio of the associated eigenvalue to all those dropped. While the

ratio drives the amount of shrinkage, a lower bound on the shrinkage is desired to prevent

a dimension with little impact from being almost completely removed in one iteration.

The scheme we used in which the eigenvalue magnitude is used in the downweighting

calculations is given below in Equation (2.16).

fi(α) = (c+(1− c)
λi

∑
p
k=d+1 λk

)α, c ∈ (0,1) i = d +1,d +2, . . . , p (2.16)

The above scheme allows for two important facets not available in the rank based down-

weighting scheme (Scheme 2) described by Equation (2.15).

1. The parameter c can be chosen by the experimenter as the asymptote to which the

shrinkage factor decreases. In fact, the function is constrained to be between cα and

α .
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2. The scaling (shrinking) function is updated within each iteration.

The shrinkage factors used in schemes 1 and 2 are constant given the number of dimen-

sions to remove, but this technique allows dimensions that have similar eigenvalues to be

scaled by a like weight. However, in scheme 3, the downweighting factors are not directly

related from iteration to iteration; i.e., the amount of shrinkage in this scheme is not nec-

essarily monotonic. This can cause one dimension to be downweighted more in an earlier

iteration as the scaling matrix is raised to a power based on the iteration. To allow for these

changing scaling matrices, the previous scaling matrices will be retained and multiplied

together to produce the next iteration’s scaling matrix.

An issue to be addressed in schemes 2 and 3 is that the final iteration has the dropped

dimensions weighted differently (even though they have all approached near zero after rmax

iterations). As all p− d dimensions will be dropped after r iterations, it is hoped that all

dropped dimensions have been, eventually, reduced to more or less equally poor status in

discrimination. One final modification to the shrinkage scheme would be to base the shrink-

age factors on the differences of successive eigenvalues which may alleviate this effect of

varying scales as we approach the terminal shrinkage step, but we are not examining this

approach in this work.

2.4 Connections between SAFDA and Projection Pursuit

Simultaneous adaptive fractional discriminant analysis methodology is focused on find-

ing low-dimensional spaces that yield close to optimal separation of the classes in the re-

duced dimensional space. This focus on separation in the projected space differs from

most standard LDA practices in which informative directions are sought out in the full data

space without regard for the effect of projection on class separation into said space. Fisher’s
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LDA is only known to be optimal in (C− 1) dimensional space (under homoscedasticity

and Gaussian assumptions) but when the goal is to project to a lower dimensional subspace,

the optimal solution need not match up with the most informative few directions in LDA.

While there is indeed an ordering of importance among the directions discovered in LDA,

the entire (C−1) space is needed to ensure optimality.

Projection pursuit was initially proposed as a tool for clustering by seeking projections

in which an objective function involving local clustering behavior and overall spread was

optimized. The projection pursuit paradigm is essentially an optimization problem using a

simulated annealing algorithm to find the directions that optimize the given function (see

Section 1.1.3 for details). Laud et al. (1992) proposed a probing algorithm to improve stan-

dard simulated annealing. In this process, rather than generating one random perturbation

in search of an improvement, many randomly perturbed points are selected under some

prior distribution centering at the current point. Each of the randomly chosen points are

evaluated and the step is taken in the most optimal direction of all the probe points. The

procedure allows for fewer stationary steps as the optimal probe point from among many

is more likely to provide improvement over the current point (unless the optimum has been

reached). Using a probing procedure in this fashion would be computationally more ex-

pensive by generating and evaluating more test points, but the optimum would most likely

be found in fewer steps.

Recently, Lee et al. (2005) developed more directed objective functions for supervised

learning in which the objective function involves the class labels in some sense. While Lee

uses a Fisher-type criterion for class separation, the search algorithm used to find optimal

directions still relies on simulated annealing. This procedure has a (somewhat) undeter-

mined stopping criterion as the search for optimal directions is random and refines itself

69



based on the updated directions as the optima is approached. Another caveat in using this

LDA criteria is that the within class covariance matrix is often singular (large p small n

cases) which causes intractability of Lee’s optimization function. Lee and Cook (2010)

addressed issues by introducing a regularized measure for calculating the within or total

scatter matrices in the objective function. This is a simplistic fix to deal with singular

matrices, but a small regularization is considered acceptable under the small sample size

estimate of the covariance matrices.

The current literature about projection pursuit is focused on developing new objective

functions that determine ‘interesting’ directions with little focus on finding more useful

methods of optimizing the functions. SAFDA can be likened to a directed search under the

weighted between scatter matrix criterion. The shrinking steps are akin to examining the

data in a lower dimensional space but rather than examining the class separation in d << p

space and optimizing using standard simulated annealing techniques, the dimensions are

reduced fractionally (i.e., via shrinking) and the optimal dimensions are updated based on

the separation of the class means (under the functional criteria) in that space. A major gain

in efficiency is that a random search is avoided (along with the multitude of steps yielding

no improvement and somewhat nebulous stopping criterion). Viewing SAFDA in a directed

projection pursuit framework allows for:

• A search similar to a gradient search in that a random probe need not be generated,

but an updated rotation of the basis vectors improves upon the weighted class sep-

aration based on the shrunken space which is a pseudo-approximation of the final

low-dimensional space (at every step).

• A predetermined stopping criterion in which at most a fixed number of steps leads to

termination of the algorithm rather than forcing pure convergence.
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This connection has not been examined as yet because simulated annealing techniques

have become so streamlined that the objective function is generally the focus of improving

projection pursuit techniques. The SAFDA paradigm provides the researcher more control

concerning the time at which the optimum is achieved (the algorithm is halted after rmax

iterations of shrinking and rotating). Of course, a larger rmax leads to a longer calculation

time but also a more exhaustive search. The size of rmax can be likened to the inverse

step size in the annealing process. While it is not exactly parallel in nature, the larger the

rmax, the smaller the amount of difference in shrinkage which leads to more precise updates

whereas a small rmax might ‘jump’ across the global optimum in favor of a local optimum.

The directed nature of the algorithm also removes the need for the accept/reject nature

of the annealing algorithm in which the current point is updated to a random perturbation

only if the objective function is larger when evaluated at the random probe point. SAFDA

always updates the current space of interest via rotation to one that optimizes the separation

criterion for the ‘fractional’ data space (dimensions to be dropped have been fractionally

lessened in importance). Each probe direction in this case is optimizing the weighted LDA

objective function on the shrunken data which mirrors the effect of removing those dimen-

sions entirely.

2.4.1 Simple Example

A simple example of three normally distributed classes illustrating the power of SAFDA

in three-dimensional space centered at µ1 = (0,1,−50.5), µ2 = (0,−1,−49.5), and µ3 =

(0,0,100) and a common class covariance matrix equal to the I is examined to show the

pitfalls of LDA methodology in the full space. Optimizing the standard LDA criterion

with a one-dimensional projection would focus on the third dimension only due to the
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outlier class 3. While the third dimension clearly separates class 3 from the other two,

that single dimension is almost useless in separating classes 1 and 2. The SAFDA method

employs a directed projection pursuit approach in which the classes are shrunken along the

dimensions of lesser importance (by larger and larger degrees) and those dimensions of

least importance are updated as the shrinking occurs via maximizing the wLDA criterion.

The net outcome for this example would be that the third variable would remain the least

important for many steps, until the shrinking causes classes 1 and 2 to reach near class 3,

at which time the optimal space would be slightly rotated to allow for maximal separation.

This example was run under both the LDA and SAFDA paradigms. The training data set

was generated with 500 independently normally distributed samples per class and the test

set had 300 independently normally distributed samples per class. For a one-dimensional

projection, LDA had a test set correct classification rate (CCR) of 79.89% whereas SAFDA

improved the CCR (on the same training/test set) to 91.89%. The confusion matrices for the

one-dimensional projections in optimal LDA and SAFDA are given in Tables 2.1 and 2.2,

respectively.

Predicted Class
Truth 1 2 3

1 205 95 0
2 86 214 0
3 0 0 300

Table 2.1: LDA Confusion Matrix: Simulated Data
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Predicted Class
Truth 1 2 3

1 260 40 0
2 33 267 0
3 0 0 300

Table 2.2: SAFDA Confusion Matrix: Simulated Data

We can see that class 3 is easily separated from the other classes as expected, be-

cause class 3 is an outlier class. Optimal LDA with one-dimensional projection focuses

on the third dimension, which separates class 3 from classes 1 and 2, ignoring the second

dimension which separates classes 1 and 2. This is evident in the LDA confusion ma-

trix. The factor loadings for the optimal LDA are [0.0063,−0.0016,1.0000] which shows

that LDA substantially downweights the first two dimensions and basically classifies on

the third dimension. The slight loadings on the first and second dimensions and noise

in the data led to classification rates better than guessing. For SAFDA, the loadings are

[0.0240,0.9021,−0.4310]. SAFDA actually puts most of the weight on the second dimen-

sion as class 3 is easily separated in the third dimension without heavy loadings. More

discriminatory effort must be placed on the second dimension which serves to separate the

most confused classes 1 and 2. Neither case places much effort on the first dimension as

there is no difference between the classes in that dimension.
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Figure 2.1: One-Dimensional Projection of Test Data in Classes 1 and 2 under LDA vs.
SAFDA

Figure 2.1 shows a close-up view of the effect of the projection on classes 1 and 2 by

showing the actual distribution of the test points projected in the optimal LDA and SAFDA

directions. We see that while classes 1 and 2 still have some overlap under the SAFDA

projection due to their proximity in the full space, there is much less overlap than under

the LDA projection. Class 3 was easily separated under both paradigms and, therefore, not

shown.

Chapter 3 will examine the SAFDA procedure in more depth with regards to perfor-

mance, weighting function selection, computational time requirements, and potential algo-

rithmic improvements.
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Chapter 3: Case Studies, Performance, and Implementation Issues

3.1 Introduction

This chapter will explore the SAFDA algorithm’s performance as well as the issues

that arise in its implementation ranging from weighting function choice, scale parameter

selection, downweighting scheme and stopping criterion. A thorough investigation of these

issues allows for a better understanding of the separation of class means under the SAFDA

and the standard LDA paradigms to improve the SAFDA technique to the utmost extent.

The simultaneous shrinkage procedure of SAFDA attempts to maximize the correct clas-

sification rate while substantially reducing the computational time to make it feasible in

practical situations.

Section 3.2 describes the databases used for the case studies. The MNIST handwritten

database is used for a multi-class problem with a small number of classes and the AR face

database is used as an example of standard face databases with a large number of classes.

Issues of weight function selection and parameter estimation are examined in Sec-

tion 3.3. In terms of the Gaussian kernel weight function, the bandwidth parameter can be

determined via a function of pairwise mean distances and, therefore, an acceptable func-

tion for adaptive parameter formulation needs to be investigated. An adaptive kernel is used

for the Gaussian kernel (rather than using cross-validation) because the shrinking process
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changes the effective dimension of the data and, therefore, shrinks the pairwise distances

between means during dimension reduction steps. The shrinking distances imply that the

bandwidth of the Gaussian kernel needs to change throughout the process to prevent over-

compensation at the early stages or undercompensation at the later stages. An adaptive

parameter search is suggested via the percentiles of the pairwise distances at a given stage.

Section 3.4 examines the potential of terminating the SAFDA procedure earlier than the

fixed number of rmax shrinking iterations. The early stopping is used to prevent waste of

time once the best lower dimensional space has been learned reasonably well. With the ex-

pectation that using downweighting schemes that were more geared to the data (eigenvalue

order and/or magnitude) would lead to quicker convergence to a stable solution, Section 3.5

examines more informative downweighting schemes (rather than shrinking all dimensions

simultaneously by a constant factor of α).

The overarching goal of this research was to make the F-LDA procedure feasible for

large-dimensional data with a large number of classes (aka face recognition). While F-LDA

provides improvements over many of the other LDA paradigms by integrating projection

pursuit and Laplacian techniques into a linear discriminant analysis framework, its im-

plementation becomes intractable in the large dimension framework due to computational

complexity. SAFDA takes more time than the simplest, most pervasive standard LDA

technique, but the computational burden is significantly less than that of F-LDA. Also, the

positive results in higher correct classification rate achieved in F-LDA are also realized in

SAFDA (and in some cases surpassed). The procedure focuses on searching for optimal

projection directions while simultaneously reducing the import of all dimensions to be re-

moved, which allows the dependence among the dimensions to be exploited. While F-LDA

peels the dimensions off one at a time, SAFDA allows for a large number of dimensions
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to be shrunken simultaneously and removed in a single step at the end (rather than sequen-

tial dimension removal one at a time). Section 3.6 examines the comparisons between the

various algorithm’s performance and time requirements.

3.2 Case Study Databases

We consider two case studies in this investigation: one for a smaller number of classes

(MNIST) and another for a large number of classes (AR).

The MNIST database of handwritten digits (LeCun and Cortes, 1998) was developed

by Lecun (NYU) and Cortes (Google Labs) to study a large-dimensional multi-class (10

classes) problem in the image analysis space. Handwriting contains a great deal of variation

between individuals which makes this an ideal image discrimination problem. The database

contains 60,000 training images and 10,000 test images that have been size-normalized and

centered. To avoid cutting off part of the image in the localization process, all 20×20 im-

ages are centered in a 28×28 pixel bounding box using the center of mass. The grayscale

images are then rasterized to create 784-dimensional feature vectors, which contain some

0-padded pixels introduced via the localization. This database is used to examine the prop-

erties of SAFDA on an image analysis problem that has few classes and is oversampled,

thus allowing the within scatter matrix to be completely learned without need of regular-

ization to make it invertible (although regularization is still employed to aid estimation).

Figure 3.1 shows some example images of the MNIST data.

Clearly, the face recognition problem, whether in the biometric framework or faces in

the wild, never has an oversampling of each individual to allow for a complete understand-

ing of the within class (interpersonal) variation. To examine the SAFDA procedure on a

face recognition problem with a large number of classes, the AR face database (Martinez,
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Figure 3.1: MNIST examples

1998) was used. The AR face database was developed in 1998 at the Purdue Computer

Vision Center. Thirteen images per person of 116 people were taken under different char-

acteristic changes (glasses, illumination, expressions, scarves, etc.) at two different times

(2 weeks apart). While the images themselves were taken under strictly controlled condi-

tions, no constraints were enforced on clothing, make-up, hair, etc. For purposes of this

paper, the grayscale cropped face images of 100 people were used (the cropped data was

preprocessed by the makers of the database). The cropped images were 160×120 leading

to rasterized feature vectors of size 19,200. Training, validation (if needed), and testing sets

were randomly generated from the complete set of images to simulate a realistic, random

split of training and test data. The large number of classes (100) and undersampling that is

inherent in the face recognition problem make this database a great tool for exploring the
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Figure 3.2: AR Example Images

performance of the SAFDA procedure in a face recognition framework. Figure 3.2 shows

some example face images (accessories, expressions, illumination, etc.).

3.3 Choice of Weighting Function and Parameter Selection

As stated in Chapter 2, there is no weight function (similarity measure) that is optimal

for every problem. For the implementation of a simultaneous fractional methodology, we

now investigate three weight functions (given in Section 2.2) in the construction of S̃B.

One of the issues to be examined within both the F-LDA and SAFDA process is the

separation of the sets of eigenvalues that are retained and those that are discarded. While

this ratio of discarded to retained eigenvalue sums is not always linked to better classifica-

tion, the progression of the individual sums can yield information about how the algorithm

is affected by a single pair of classes that become arbitrarily close. The F-LDA process
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shrinks the lowest eigenvalue on each step so the least informative dimension clearly ap-

proaches zero (at a rate determined by α) while the retained dimensions grow relatively.

The shrinkage step only directly affects the least informative dimension, but its effect in

the rotated space of retained eigenvalues could be noticeably detrimental to classification

if the chosen shrinkage factor (α) was too large (thereby shrinking/removing information

important to classification). This is not of much interest in the standard F-LDA methodol-

ogy as shrinking a single eigenvalue has a limited effect on the retained data in the rotated

space. Within the SAFDA framework, the effects of shrinking multiple eigenvalues (per-

haps a large percentage of the trace of the weighted scatter matrix) can lead to a significant

degradation of class separation in the retained space. This degradation can lead to washing

out all discriminative information not only in the dimensions to remove, but also in those

retained for classification. If the dimensions shrunken in the initial stages of the algorithm

are important in the lower dimensional space, potentially important information can be lost

in the early stages (since the eigenvalue decomposition only examines the separation crite-

rion in the full space). This section is devoted to the understanding of the effects of various

weighting functions, changing parameters of the weight function, and of the final dimen-

sion of projection on the progression of the sum of retained eigenvalues and the sum of the

discarded eigenvalues as well as the ratio of those quantities.

We will examine the progression of the weights across the shrinkage steps to see how

the SAFDA procedure ‘molds’ itself to the data and learns the appropriate space as well

as seeing how the pairwise distances change in the rotating/shrinkage steps. The data will

also be projected into the spaces learned during the ‘intermediate’ shrinkage steps to see if

the algorithm provides a smooth, (mostly) monotone convergence to a lower dimensional

space with regard to classification of the testing data. This progression of classification rate
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across shrinkage steps can also yield insight into the potential for stopping the algorithm

early.

As well as choosing which weight function to use, parameters for the function must be

learned. In the standard machine learning problem, cross validation is traditionally used to

select appropriate regularization parameters.

1. Solve for the projection matrix from a set of training data given an assortment of

parameters.

2. Classify the projected data (using the various projection matrices) of a validation set

and choose which parameter maximizes performance.

3. Project the disparate test data using the best parameter’s projection matrix and clas-

sify.

Note that, cross-validation requires the entire procedure to be repeated many times (once

for each attempted parameter value). The SFDA (non-adaptive) methodology improves the

speed when compared to F-LDA, so cross validation (CV) can be performed (whereas the

time commitment of F-LDA prohibits reasonable CV time) even though it is more costly

than LDA.

The following sections will focus on the selection of the weighting function parameters

for each of the measures discussed in Section 2.2. We hope that there is some directed path

to parameter learning that may be discovered across a broad parameter grid, but given that

the data drives optimal weight function formulation, there will be no clear methodology for

choosing parameters other than a brute force search.

For each of these similarity measures in each case study, we will examine the following:

1. Effects of varying the parameter on correct classification rate (CCR),
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2. Progression of ratio of eigenvalues retained to the whole trace across shrinkage steps,

3. Progression of pairwise weights across shrinkage steps,

4. Progression of CCR across shrinkage steps (to investigate if an effective optima is

reached prior to the completion of rmax steps).

3.3.1 Inverse Pairwise Distance Similarity Measure

4

Lotlikar and Kothari (2000) used the weighting function given in Equation (2.5). One

aspect that was never addressed in the original paper was the use of an unbounded weight-

ing function when the parameter h was chosen via cross-validation. To make sure that

the weights in successive shrinkage steps are comparable (since pairwise distances are a

function of dimension), the weights are normalized to sum to 1. The shrinkage procedure

can lead to intermediate steps in which two (or more) means are extremely close together

and, therefore, dominate the criteria for determining the most informative dimensions. This

causes a major problem in the weighted between scatter matrix criterion used for discrim-

ination in that the impact of the dimension in which the means are incredibly close over-

rides all other conditions of separation, as was exhibited in the simple example at the end

of Chapter 2.

A plot of interest examines the progression of the sum of the d retained eigenvalues (re-

ferred to as trace of the retained) and the trace of S̃B (i.e., Figures 3.4, 3.7, and 3.11). When

utilizing the unbounded weighting function of inverse norm, the behavior of both these

plots is quite erratic, especially when the data is projected into low-dimensional spaces

(spaces in which two or more class means are far more likely to project very close to one an-

other) and the choice of tuning parameter h is large. Notice that in low-dimensional spaces,
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there are instances in which the retained eigenvalues ‘spike’ and lead to a convergence that

is not monotonic. Smooth monotone behavior is desired to prevent overcorrecting to a

single pair of classes.

Under this weighting function, the pairwise weights are relatively small for most pairs

of classes and dominated by a single pair of classes. The progression of weights plotted

with respect to r for the case studies that follow (i.e., Figures 3.5, 3.8, and 3.12) exhibit the

impact a single pair of classes has on the overall weighting between class scatter matrix.

Case Study 1: MNIST Database

It is important to note that the random splits of validation and test set led to different

plots; however, these plots had many characteristics in common. All exhibited a jagged pat-

tern in eigenvalue and weight progression, indicative of overcorrection to easily confused

classes. Also, the plots of CCR versus parameter choice showed much more local stabil-

ity in CCR for values of h less than 10. Finally, the progression of correct classification

always had the same increasing level of CCR across shrinkage steps. There is definitely a

concern over the generalizability of the parameter in this small number of classes problem,

especially due to the instability at larger choices of h.

First, to explore the effects of the parameter h on classification performance, we ran

the SFDA algorithm many times using different values of h ranging from 2 to 25 by 0.1

increments. The lower bound of 2 was based on the fact that Lotlikar and Kothari (2000)

stated that the weighting function must decrease faster than 1
||x̄i−x̄ j||2

. The upper bound of 25

was chosen arbitrarily to encompass a very broad range of parameters, yet be tractable in a

reasonable amount of time. In traditional cross validation, this particular grid of parameters

is more extensive than would be time/cost effective, however this section is focusing on
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Figure 3.3: Effects of Parameter h on CCR Inverse Pairwise Distance Measure for MNIST
d=4 (Training/Validation/Test Split)

discovering if any relationship between parameter and classification performance exists. If

a pattern emerges, a more insightful search may be possible.

There is no discernible pattern immediately apparent from the plot (Figure 3.3) of the

correct classification rate (CCR) over the grid of parameters (and this lack of pattern holds

across many different training/validation/test sets). One particular facet of this analysis is

that performance is much more erratic (higher variability) at the higher levels of h. This lo-

cal stability in CCR for lower values of h and instability at larger values h was consistently

seen across different training/validation/test splits. While the ‘best’ h on the validation set

occurs in the upper middle of this range of h (at 19.9), there is much more instability (gener-

alization error) in performance for small changes in h for values of h > 10. This instability

is intuitively explained by the space over-correcting to the training data (large values of h
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give relatively more weight to directions in which classes are very close together). This

suggests focusing our parameter search in the future on lower values of h (< 10). As a fine

grid spanning a large range of h is not feasible in most cases and the results are much more

stable for lower values of h, we will focus on a more coarse grid for h < 15. The stability

of CCR for low h values suggests that a coarse h grid will find an approximate maxima.

For the plots that follow, we use the ‘optimal’ h parameter learned via our cross valida-

tion. For these random splits of MNIST data, the optimal h was 19.9. While this is not in

the ‘stable range’ of h, it achieved the highest CCR on the validation set.

Next, to see how the SFDA procedure effects the relative sizes of the eigenvalues kept

(as compared to the trace of the weighted between class scatter matrix), we’ll examine the

separation of the eigenvalues retained and the total trace. This visually demonstrates that,

downweighting many dimensions at once does not remove all discriminative information

in the dimension reduction process. The plot in Figure 3.4 shows (on an absolute scale)

the progression of the traces of retained eigenvalues and trace of S̃B for the MNIST digit

recognition data across the shrinkage steps for various final projection dimensions.

The most important aspect of these plots (Figures 3.4) is the erratic progression of the

sum of the retained eigenvalues (the non-monotonic nature) as well as the total trace even

for a problem with a relatively small number of classes. The zig-zag pattern exhibited

by the sum of the retained eigenvalues is due to overcorrection that occurs in the early

stages of the algorithm when a pair of classes gets very close together. As the shrinkage

algorithm focuses on shrinking the least informative dimensions of the weighted between

class scatter matrix, the choice of similarity measure (weighting function) can have a major

impact on the rotation. The weighting function given by Equation (2.5) is not bounded

and purely based on the inverse squared norm (which grows enormous for arbitrarily close
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Figure 3.4: Eigenvalue Separation for MNIST data using Inverse Pairwise Distance Mea-
sure; h=19.9, d=4

classes). This concept leads a single direction (corresponding to the direction separating

two arbitrarily close classes) dominating the weighted between class scatter matrix because

the weight associated with that direction is incredibly large (demonstrated in Section 2.4.1).

The next rotation is selected (via the eigenvalues) to separate those confused classes with

little regard for directions that separate other classes. This, in effect, causes the class means

to ‘bounce’ away from each other in the next rotation as the directed projection pursuit

paradigm forces classes near each other to be easily separated in successive iterations. The

righthand plot in Figure 3.4 shows the progression of the ratio of retained eigenvalues to

the trace of the weighted between class scatter matrix across the shrinkage steps. This

weight function eventually leads to a stable solution, but this is due more to the fact that the

difference between the successive downweights gets smaller (αk−1−αk < αk−2−αk−1),
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than to the choice of similarity measure. Eventually, there is little effect due to the shrinking

as the values of the data in those dimensions have little variability.
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Figure 3.5: Progression of Weights using Inverse Pairwise Distance Measure for MNIST
data; h=19.9, d=4

Figure 3.5 exhibits the progression of the individual weights associated with the pair-

wise distances to examine how the distribution of weights, spread amongst the pairs of

classes, changes throughout the downweighting process. This plot also allows us to find

the effect of a few pairs of classes coming very close together. While there are many dis-

tances to track (45 in the MNIST 10 class case), the important factor is the oscillatory

nature of the weights. This shows conclusively that many of the shrinkage steps are driven

by just one pair of classes that dominate the weighted between class scatter matrix at each

intermediate step, even though this pair could be different at every step. The jagged rise and
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fall in the weights assigned to different pairs of means exhibit that, at every iteration, a sin-

gle pair of means dominates the eigenvalue determination (as those classes are very close

together) and the correction leads to confusion among other classes. Stability is achieved

only because the geometric progression of the downweighting shrinks the dimensions to be

dropped to near zero (1/rmax).
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Figure 3.6: CCR Progression Inverse Pairwise Distance Measure for MNIST data; h=19.9,
d=4

Figure 3.6 shows the progression of the CCR of the testing data as the shrinkage steps

progress. The classification was performed using a nearest mean classifier on a testing

dataset that was different from the training data set. While the improvement in classifica-

tion is not monotonically increasing in r, the SFDA algorithm shows that using this inverse

pairwise weight function leads to an improvement over standard LDA methodology, be-

cause the CCR of SFDA when r = 1 (first step of the procedure) is equivalent to weighted
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LDA CCR (under a given choice of h). The monotonicity of the CCR is never guaranteed

as the test and training sets are disparate. However, the erratic behavior that occurs in the

early steps of the algorithm is primarily an artifact of the overcorrections that occur in the

earlier stages, because larger downweighting (in the early stages) leads to pairs of class

means getting closer together. This, in turn, causes the directions separating those means

to have much more weight in S̃B. The effect is forcing the largest eigenvalue to be related

to the direction separating the two close means without considering the separation of all

the means in the lower dimensional space, as exhibited in Section 2.4.1.

When only values of h from 2 to 15 were examined (the more stable range of h), the

oscillatory nature was not as prevalent because lower values of the parameter do not ex-

acerbate small distances as severely, causing less overcorrection to the validation set. We

can see in Figures 3.7, 3.8, and 3.9 that the progressions of eigenvalues, weights, and CCR

across the shrinkage steps are much smoother at h = 7.1 than at h = 19.9 because smaller

values of h do not lead to as much overcorrection. There are still some remnants of the

jagged pattern present in the early progression of weights in Figure 3.8, and a CV still

needed to be run to find the best h for the dataset.

In this case, comparing Figures 3.6 and 3.9 shows that the lower value of h yields a

better CCR on the test set (CCR=78.82% for h = 19.9 and CCR=79.1% for h = 7.1). This

is because overcorrection in a situation with a small number of classes is detrimental to

general classification on a disparate test set. Also, different randomly selected validation

sets were used which also contributed to the discrepancy. In the MNIST case, all of the

calculations are in 9-dimensional space and distances between class centroids often get very

small during the downweighting process. If h is chosen relatively high, the performance on

a given validation set can be optimized, but generalized results will suffer on a test set. We
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Figure 3.7: Eigenvalue Separation for MNIST data using Inverse Pairwise Distance Mea-
sure; h=7.1, d=4

show in Case Study 2, that this overcorrection phenomenon is not as costly in a problem

with a large number of classes due to the curse of dimensionality. In either case, choosing

an appropriate h via CV is computationally costly.
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Figure 3.8: Progression of Weights using Inverse Pairwise Distance Measure for MNIST
data; h=7.1, d=4
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Figure 3.9: CCR Progression Inverse Pairwise Distance Measure for MNIST data; h=7.1,
d=4
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Case Study 2: AR Database

The same procedure was implemented in the AR face database (Martinez, 1998).

When choosing h via cross validation on the AR database, we see many of the same

phenomena present in the MNIST. The variability in performance seems to increase as h

increases leading to overcorrection which led us to focus on a more fine grid on the mid to

lower levels of h (7≤ h≤ 15). Figure 3.10 shows this phenomenon.
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Figure 3.10: Effects of Parameter h on CCR Inverse Pairwise Distance Measure for AR
Data d=10 (Single Training/Validation/Test Split)

While the middle values of h provide a more stable parameter for correct classification

rate, the best rates examined over 10 different splits (training/validation/test) of the AR

data yielded a wildly varying best h parameter (min=4.9, max=23.9, sd=6.9423). This

is not a surprise given the weight measure’s propensity for overcompensating when two
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classes become very close. Because there was no consistency across various data splits,

there is no reason to think the best parameter for this kernel can be achieved by any method

other than brute force trial and error. CV is a very costly procedure as the algorithm has

to be run many times under different parameters to find the best space. Weight functions

that require cross validation to learn the tuning parameters (non-adaptive) will probably not

be the best choice when compared to adaptive functions that only require one pass of the

SAFDA algorithm. An adaptive kernel will be examined in Section 3.3.3.

We can see in Figures 3.11, 3.12, and 3.13, the results are more or less the same with a

large number of classes (100 classes in AR database compared to 10 for MNIST). Clearly,

the inverse pairwise distance similarity measure overcorrects in both large and small C

problems thus leading to some questions of overfitting. This phenomenon is particularly

noticeable at r = 12 in the weight progression plot (Figure 3.12) as one pair of classes

overwhelmingly dominates the weighted between class structure. The inverse pairwise

distance weight function’s biggest issue in the large C problems (face recognition) is in

excessive time and not in performance.
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Figure 3.11: Eigenvalue Separation for the AR face database under Inverse Pairwise Dis-
tance Measure; h=23.9, d=10
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Figure 3.12: Progression of Weights using Inverse Pairwise Distance Measure for AR face
database; h=23.9, d=4

94



0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

r

C
C

R
 T

es
tin

g 
D

at
a

Progression of Correct Classification Rate (CCR) over Shrinkage Steps

Figure 3.13: CCR Progression Inverse Pairwise Distance Measure for the AR face
database; h=23.9, d=10
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When the grid for examining h was restricted to lower range of values (h< 15), the plots

were much smoother, once again, exhibiting that lower values of h may not lead to the ‘best’

performance on the validation set, they yield solutions that are more generalizable due to

the stability. The additional cost of CV, even on this restricted range of h is still prohibitive.

Figures 3.14, 3.15, and 3.16 show a smoother progression to a more stable solution using

a value of h (h = 3.1) that is suboptimal on the validation set, yet in a more stable region

and, therefore, more generalizable to a disparate test set.

Comparison of Figures 3.13 and 3.16 actually show that, in this particular case, the

larger value of h performs slightly better (CCR= 91.67% for h = 23.9 versus CCR=90% for

h= 3.1). This is most likely because the classes, being in a much higher dimensional space,

are, therefore, spread farther apart. In the case of many ‘outlier classes’, overcorrection to

those classes that are highly confused, may be beneficial. Classification results are quite

good for both values of h, however, it is important to remember the additional cost inherent

in the CV procedure. Section 3.3.3 will examine an adaptive procedure that can avoid the

costly CV.
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Figure 3.14: Eigenvalue Separation for the AR face database under Inverse Pairwise Dis-
tance Measure; h=3.1, d=10
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Figure 3.15: Progression of Weights using Inverse Pairwise Distance Measure for AR face
database; h=3.1, d=4
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Figure 3.16: CCR Progression Inverse Pairwise Distance Measure for the AR face
database; h=3.1, d=10
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3.3.2 Bounded Inverse Pairwise Distance Similarity Measure

It was hypothesized that a bounded measure based on the same criterion may somewhat

help the overcorrection problem as the values in the unnormalized weight matrix could not

grow infinitely large. If a single pair of class means get too close together, the weight

measure corresponding to the unbounded similarity measure can lead to machine infinity

for the weight and thereby, completely dominate the weighted between class scatter matrix.

For this analysis, the similarity measure described in Equation (2.6) is examined.

While this similarity measure is bounded between 0 and 1, the weights are still nor-

malized to sum to one in order to ease comparison. The only difference between this

measure and the inverse pairwise distance is that the quantity in the denominator is always

greater than one. In the (unbounded) inverse pairwise distance measure, small distances

are exacerbated (made even more important) by the parameter, h. Bounded measures don’t

overcorrect as severely as the unbounded version to classes that have a very small pairwise

distance.

While the bounded measure prevents some of the overcorrection, it is still quite fo-

cused on classes that are relatively close together which still yields overcorrection in the

intermediate steps. Quick examination of the plots showed that the bounded measure pro-

duces almost exactly the same results as the unbounded measure. In fact, the results are

equivalent for most practical problems. The only cases in which results may vary between

the two measures is when two (or more) classes are (or become via shrinkage) extremely

close together (||x̄i− x̄ j|| → 0). In a large class framework (since all work occurs in (C−1)

dimensional space), the curse of dimensionality generally prohibits class means from being

too close together in a large dimensional space. When the means are not close together, the

effect is minimal as the weights are normalized.
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Case Study 1: MNIST database

Compared to Section 3.3.1, the plots in Figures 3.17, 3.18, 3.19, and 3.20 are very

similar. The differences are due more to the randomly generated validation set than the

different choice of weight function.
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Figure 3.17: Effects of Parameter h on CCR Bounded Inverse Pairwise Distance Measure
for MNIST database

It is interesting to note that the best h is lower than that of the unbounded weighting

function. Similar local stability at the lower values of h is again observed until approx-

imately h = 10. For this particular validation/test split, the best h occurred in the more

stable region, but the performance was more akin to the large h’s in the unbounded case in

which the learned directions overcorrected to classes that were close (easily confused) in

the projected directions.
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Figure 3.18: Eigenvalue Separation for the MNIST database using Bounded Inverse Pair-
wise Distance Measure; h=8.4, d=4

No appreciable difference was noted when comparing these plots to those of Sec-

tion 3.3.1. Because the bounded weighting function is more suited to prevent very small

distances from dominating the structure of S̃B, the bounded weighting function is slightly

preferable to the standard inverse distance weighting function of Lotlikar and Kothari

(2000).
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Figure 3.19: Progression of Weights using Bounded Inverse Pairwise Distance Measure for
MNIST database; h=8.4, d=4
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Figure 3.20: CCR Progression Bounded Inverse Pairwise Distance Measure for the MNIST
database; h=8.4, d=4
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Case Study 2: AR database

For the AR database, the plots below in Figures 3.21, 3.22, 3.23, and 3.24 are essen-

tially identical to those in Section 3.3.1. While the weighting functions are indeed run on

different training/validation/test set splits, the results are not visibly different due to the

large-dimensional space. Recall, all work is done in (C−1)-dimensional space (99 in this

case), so the likelihood of two classes getting close enough together for the bounding factor

to make an appreciable difference is essentially zero.
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Figure 3.21: Effects of Parameter h on CCR Bounded Inverse Pairwise Distance Measure
for AR face database; h=23.9, d=10

As shown in the next section, both these inverse pairwise distance measures (bounded

and unbounded) suffer from a lack of stability, propensity to overcorrect to easily confused

classes, as well as additional computational time for cross-validation. Therefore, we will
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Figure 3.22: Eigenvalue Separation for the AR face database using Bounded Inverse Pair-
wise Distance Measure; h=23.9, d=10

focus on an adaptive weighting function. The Gaussian kernel provides a nice weight-

ing function that allows us to avoid cross-validation through an adaptive framework easily

learned via bandwidths.
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Figure 3.23: Progression of Weights using Bounded Inverse Pairwise Distance Measure for
AR face database; h=23.9, d=10
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Figure 3.24: CCR Progression Bounded Inverse Pairwise Distance Measure for the AR
face database; h=23.9, d=10
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3.3.3 Gaussian Kernel

Perhaps the most widely used kernel in the statistical learning literature is the Gaussian

kernel given in Equation (2.7).

The Gaussian kernel provides a smooth, bounded dissimilarity measure between two

points that is perfectly suited as a weight function in the SAFDA framework. One aspect

of the Gaussian kernel that differs from the similarity measures discussed in Sections 3.3.1

and 3.3.2 is that its bandwidth parameter is more tied to the scale of the data. For the

measures discussed in the previous two sections, the parameter was selected via cross vali-

dation which is a very time-consuming process (this will be more closely examined in Sec-

tion 3.6), as that parameter was not related to the scale of the data. The bandwidth in the

Gaussian kernel is integrally related to the scale of the data as it provides a measuring stick

for determining the importance of the surrounding points. If the bandwidth is chosen too

small, close interpoint distances overwhelm all other considerations and lead to the same

problems of the inverse distance similarity measures. If the bandwidth is chosen too large,

all pairwise distances are ‘washed out’ and a uniform weight is imposed thereby mirror-

ing LDA. More importantly, the bandwidth choices must change throughout the shrinking

steps to account for the shrinking of the pairwise distances simply due to downweighting

of the dimensions to be discarded. While the curse of dimensionality states that distances

between points increase as more dimensions are added, the opposite is also true in that the

downweighting of dimensions (via our fractional scheme) brings the means closer together.

This is why a weighting function with an adaptive parameter is introduced.

Using a percentile of the pairwise distances permits the bandwidth to automatically

adapt to the progression of the data through shrinkage iterations. We will examine the

percentiles of the pairwise mean differences to see if there is an optimal percentile to use in
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the adaptive scheme. As time considerations are of primary concern in the implementation

of the SAFDA algorithm, the adaptive algorithm is much more attractive as it only needs to

run just one time (one pass algorithm) assuming a percentile has been chosen a priori. Of

course, the best percentile could be chosen via cross-validation to fit a given problem, but

our adaptive procedure seeks a percentile that generalizes well to most situations, thereby

removing the need of CV. To determine the best percentile for the choice of the bandwidth

parameter, h, a range of percentiles was examined for the case studies. Intuitive reasoning

suggests that the minimum would be a good choice as we desire relatively large pairwise

distances to have little impact on the learned space. The larger choices of bandwidth lead

to giving measurable weight to larger pairwise distances.
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Case Study 1: MNIST database

Figure 3.25 shows the effects of using different percentiles of pairwise distances for the

Gaussian kernel bandwidth for MNIST data. The best choice of percentile for the given

training/test split is the 19th percentile. However, the minimum seems to perform about as

well as the 19th percentile (less than half a percent of CCR lower).
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Figure 3.25: Bandwidth selection using percentiles MNIST data; d=4

The minimum is actually a more generalizable choice for an adaptive parameter in

the case of a large number of classes when examining this phenomenon on a few large

datasets. Because the minimum gives one of the best adaptive parameter choices (as seen

by the upward path of CCR near the minimum), the bandwidth in the plots that follow is

the minimum pairwise distance of the shrunken data at each step.
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Figure 3.26: Eigenvalue Separation for MNIST data using Gaussian Kernel; d=4

Figure 3.26 clearly shows a much smoother progression of the sum of the sets of re-

tained eigenvalues and total trace than the inverse pairwise distance weighting functions

(Figures 3.4 and 3.18) due to the smoother bounded kernel.

As seen in Figure 3.5, the inverse pairwise distance measure allows for a single pair to

dominate the weighted between class scatter matrix. This is because the inverse pairwise

distance measure has a very small ‘region of influence’ (i.e., classes must be very close

together, compared to the closest pair of class centroids, to have any appreciable impact on

the weights, especially for large values of h). However, the upper bound of one and larger

region of influence in the Gaussian kernel weight measure makes it very difficult for a single

pair of classes to determine the best directions. Figure 3.27 shows smooth convergence of

the weights in which each step in the shrinkage process updates the best rotation by a small

amount without completely changing the projection matrix to account for a single pair of
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Figure 3.27: Progression of Weights using Gaussian Kernel for MNIST data; d=4

confused classes. Another detail of the plot in Figure 3.27 that differentiates the Gaussian

kernel from the other weight functions is the dispersal of weights to a broad range with

no overwhelmingly dominant direction. This shows that while some directions are more

important than others, all of the directions have some import in the best direction, whereas

the inverse pairwise distance measures put almost all the weight on very few directions and

more or less ignore the rest.

The progression of classification on the test set as the shrinkage occurs (Figure 3.28)

shows a slight degradation of performance over the first two shrinkage steps, followed by

a marked increase in performance until a plateau is reached about halfway through the

shrinkage steps. The early dropoff in classification is most likely due to tuning the best

rotation which is much more fluid in the early shrinkage steps (larger ‘chunks’ removed

within each step). The dropoff in the first steps is hypothesized to be caused by the tuning
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Figure 3.28: CCR Progression Gaussian Kernel for MNIST data; d=4

of the algorithm across shrinkage steps. The directed search a la projection pursuit seeks

to maximize the separation criterion of the training means, but the early stages overcorrect

to more closely match the training data.
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Case Study 2: AR database

Figure 3.29 shows that using the minimum pairwise distance for the bandwidth yields

the best result across a broad range of percentiles (0th to 50th) for the AR data. The min-

imum pairwise distance (0th percentile) is the best bandwidth choice because the smallest

distances are those that need the most focus. When the distances get much larger than the

minimum, they are not nearly as important in the construction of the weighted between

class scatter matrix. It should be noted that a finer grid of percentiles near the minimum

has been explored, as earlier results suggested the lower percentiles may yield better CCR

results.
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Figure 3.29: Bandwidth selection using percentiles AR face database; d=10

Figure 3.30 shows the performance in a small neighborhood of the minimum pair-

wise distance for the bandwidth to see if there would be any benefit to using a bandwidth
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slightly below or above the minimum pairwise distance. This plot shows the effects of us-

ing a varying fraction of the minimum (1
2 to 3

2 ) as the bandwidth parameter on 10 different

training/test splits. Results show that there is no consistent change by using a fraction of

the minimum pairwise distance for the bandwidth (i.e., different splits produce different

best choices of the best multiplicative coefficient of the minimum). Across the 10 different

splits, the optimal choice of minimum fraction ranged from 0.6 to 1.3 with no clear domi-

nant fraction. Therefore, for simplicity, the minimum will be used for the bandwidth of the

Gaussian kernel.
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Figure 3.30: Fraction of Minimum Pairwise Distance examined for Bandwidth; d=10

Many similar phenomena are discovered in the database with a large number of classes

under the Gaussian kernel as in the MNIST database. A much smoother convergence of
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Figure 3.31: Eigenvalue Separation for AR data using Gaussian Kernel; d=10

the trace of the retained and the trace of S̃B (Figure 3.31), a very smooth weight progres-

sion (Figure 3.32), and a slight degradation in performance followed by a large improve-

ment across shrinkage steps (Figure 3.33) are all once again present as seen in the MNIST

database.
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Figure 3.32: Progression of Weights using Gaussian Kernel for AR data; d=10

0 5 10 15 20 25 30
0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

r

C
C

R
 T

es
tin

g 
D

at
a

Progression of Correct Classification Rate (CCR) over Shrinkage Steps (projdim=10)

Figure 3.33: CCR Progression Gaussian Kernel for AR data; d=10
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Discussion

The Gaussian kernel lends itself perfectly to the SAFDA procedure because it is:

• Simple to understand,

• A smooth, bounded kernel that yields a smooth rotation/convergence, and

• Easily suited to an adaptive framework, thus removing the computationally costly

need of CV for parameter selection.

While the size of the database (number of classes) shows little connection to which

similarity measure is the best with respect to these convergence criterion, the weighting

functions chosen clearly lead to a differing progression of eigenvalues and weights as the

best projection is discovered. The Gaussian kernel’s smooth transition from one rotation

to the next is beneficial by not allowing the algorithm to overcorrect within intermediate

steps no matter the number of classes. Also, the adaptive nature is quite useful to remove

the time prohibitive need of cross validation in the large number of classes problem.

It is useful to compare Figures 3.31, 3.32, and 3.33 to their analogues in Section 3.3.1

(Figures 3.14, 3.15, and 3.16) and note many similar features. In fact, the CCR for the

inverse pairwise distance similarity measure is slightly higher than that of the Gaussian

(about a 1% difference). This can be explained by the inverse pairwise distance measure

using CV to find the best choice of parameter, or it may simply be due to the random train-

ing/validation/test splits chosen. While this case shows slightly better performance out of

the inverse pairwise distance measure, it is important to remember the additional compu-

tational cost incurred by that method through CV. The Gaussian achieved near identical

results to the inverse pairwise distance measure in this case (and will be shown in Section

3.6 to outperform the CV measure in most cases), yet the computational time requirement
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was much lower (only one-pass needed). Overall, the Gaussian kernel exhibits many prop-

erties that make it ideal for this framework of weighted LDA and, more specifically, make

the fractional LDA paradigm feasible in real time through SAFDA.

If the best projection was learned prior to completion of the rmax shrinkage steps, the

algorithm can be stopped early to save additional calculations that are redundant. Due to the

smooth behavior of the weight progression when using the Gaussian kernel, it is unlikely

that great changes in the learned projection space would arise in the later stages if a stable

point had been achieved. We will examine this issue in Section 3.4.

3.4 Stopping Criterion

The F-LDA (and by extension, yet to a much lesser extent, SAFDA) procedure in-

volves a great deal of computational effort by recomputing the weighted between class

scatter matrix at every shrinkage step and realigning the best projection direction with the

shrunken space. These computations contribute to the hefty time cost of the algorithm.

While SAFDA significantly reduces the number of steps by simultaneously shrinking all

dimensions to be dropped, there may be additional time savings by stopping the shrink-

age steps early if the ‘best’ rotation had been found prior to the completion of the rmax

prespecified shrinkage steps.

As the shrinkage steps apply a geometric scaling in the traditional downweighting

scheme, the earlier steps induce a larger impact between successive pairwise differences

than the later steps. A stopping criterion was examined that would allow the shrinking

portion of the algorithm to reach an early termination once some sense of convergence of

weight vectors had been achieved. To measure convergence of the pairwise distances, a
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divergence measure between the normalized weight vectors at successive steps was cal-

culated. When that measure decreased to a fixed value (or fixed percentage of the original

distance metric), the algorithm would terminate and the projection matrix at that step would

be used for classification.

Common divergence metrics used to compare successive weights are:

1. Kullback-Leibler divergence–KL(w(l),w(l+1)) =
C(C−1)/2

∑
i=1

ln
(

w(l+1)
i

w(l)
i

)
w(l+1)

i

2. Hellinger distance–H(w(l),w(l+1)) =

√√√√2

(
1−

C(C−1)/2
∑

i=1

√
w(l)

i w(l+1)
i

)

Both divergence measures are useful for measuring divergence between the weight vec-

tors. The primary benefit to using the Hellinger metric over the KL divergence is the

bounded nature of the Hellinger distance. Kullback-Leibler is sensitive to very small val-

ues (since the weight of the previous step is in the denominator) which leads to a more

volatile metric that is not on a consistent scale from one training set to the next.

To select an appropriate stopping criterion, we examine the progression of Hellinger

distances of successive weight vectors in conjunction with the corresponding classification

performance on the training data at each step. Empirical evidence based on many such

plots suggests that the near-maximum achievable CCR occurs by the time the Hellinger

distance between successive weight vectors has decreased to one third of the Hellinger dis-

tance between the initial two weights. This is heuristic, but it has shown promising results.

At times, waiting until the weight vectors have come that close together (Hellinger distance

decreased to one third of the initial distance) can be waiting too long (i.e., the plateau being

reached earlier). It was determined to set the threshold low enough to allow for some fluc-

tuations in the Hellinger distance at earlier iterations without stopping at a local minimum

and to ensure that further iterations would not significantly improve classification.
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3.4.1 Case Study 1: MNIST database

Figures 3.34 and 3.35 show progression of the weight vector divergence measures

across shrinkage steps for the MNIST data. Clearly, they look similar and converge to

0 (as the shrinkage steps have less and less affect in each step due to geometric progres-

sion), but the interesting feature is the scale of the respective measures. KL divergence

scale is dependent on the number of classes (length of the weight vectors), whereas the

Hellinger distance metric is in a consistent range regardless of the number of classes. This

can be seen by comparing Figures 3.34 and 3.35 with Figures 3.37 and 3.38.

A threshold for the Hellinger distance was chosen to be one third of the initial distance

between successive weights. This led to the SAFDA procedure terminating (for the MNIST

data) after 12 shrinkage steps. Figure 3.36 shows the threshold on the Hellinger plot, as

well as the associated CCR at the derived stopping step. There is very little additional

performance achieved after the 12th step (as seen in the lower plot), therefore, we conclude

that the threshold of one third initial weight distance is reasonable for a small number of

classes problem.
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Figure 3.34: Kullback-Leibler progression on MNIST; d=4
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Figure 3.35: Hellinger distance progression on MNIST; d=4
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Figure 3.36: Hellinger distance progression with CCR on MNIST; d=4
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3.4.2 Case Study 2: AR database

Figures 3.37 and 3.38 show the two metrics and their progression across shrinkage

steps on the AR database using the Gaussian kernel on ten different random splits of the

training/test datasets. They look similar to each other, but the scale is more consistent with

that of the MNIST data with fewer dimensions/classes under the Hellinger distance metric.
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Figure 3.37: Kullback-Leibler progression on AR; d=10
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Figure 3.38: Hellinger distance progression on AR; d=10

Figure 3.39 shows an example of Hellinger distances concurrent with the associated

CCR for a random test set. In this figure, the maximum classification accuracy was in-

deed reached at an earlier time, but that is not necessarily the case in general. Once the

Hellinger distance has decreased below the threshold line on the graph (one third of the

initial Hellinger distance), the correct classification rate shows little to no improvement.

This pattern was observed for many splits of the AR database.

The SAFDA procedure was carried out many times on different random splits of the

AR data, and the performance results are shown in Tables 3.6 and 3.7. The results show

the early stop actually yields a higher classification rate in some cases (although there is

a difference, it is minimal and not appreciable in practice). The average CCR using this

stopping criterion across 10 different random splits of the AR data to d=10 dimensions
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Figure 3.39: Hellinger distance progression with CCR on AR; d=10

was 88.7% (sd=0.93%), whereas carrying out the SAFDA procedure throughout all shrink-

age steps yielded an average CCR of 88.9% (sd=0.77%). Table 3.7 shows a mean time

differential of 3.19 seconds which seems rather insignificant. However, 3.19 seconds is a

savings of approximately 25% of the SAFDA portion of the algorithm. This savings would

be much more pronounced in a larger database (more classes). The preprocessing time is a

function of both number of dimensions and number of classes, whereas the SAFDA algo-

rithm is purely based on the number of classes (assuming C < p). The stopping criterion

for the AR database yields a 25% time savings over the full algorithm with no significant
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loss of classification performance (when examining SAFDA’s contribution separate from

preprocessing) .

The stopping criterion using Hellinger distance was also used under the bounded in-

verse distance kernel. Tables 3.4 and 3.5 (in Section 3.6) show similar results of SAFDA

(both early stopping and full runs) being more or less the same in CCR as F-LDA and still

dominating LDA and wLDA with little extra cost in time. Clearly, the time commitment of

the procedure is far larger when cross-validation is utilized (even with the stopping criterion

added). The non-adaptive kernel can be improved using a stopping criterion, but is still not

feasible in real time for large number of classes to search a reasonable grid of parameters

via CV.

3.5 Downweighting Schemes

The approach used in the previous sections was to equally downweight each dimension

to be dropped by a common value of α . This corresponds to scheme 1 mentioned in Section

2.3.1. This scheme is the most similar to the F-LDA paradigm, but other schemes may

provide a way to converge to the best solution more quickly.

Scheme 2 downweights the dimensions associated with the smallest eigenvalues of the

weighted between class scatter matrix more than those associated with larger eigenvalues.

This scheme downweights eigenvalues based solely on their order. The dimension to be

dropped associated with the largest eigenvalue is downweighted by the traditional α (based

on rmax) while successive dimensions are downweighted via a geometric progression of

weights to .5 (to ensure no dimension is completely removed in one step). This scheme

is implemented in a similar manner to scheme 1 with a modified scaling matrix (S) that

accounts for the larger downweighting factors as the eigenvalues become smaller.
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Scheme 3 departs from this theme because the scaling matrices are no longer constant

at different shrinkage steps (i.e., one dimension may be nearly ignored in one step and yet

become important in a later step due to the shrinking process introducing class confusion).

The magnitude of the eigenvalue at a given dimension (after downweighting but before the

weight measure is applied) is used to determine the size of the scaling (with a suitable lower

bound to prevent dimension removal too quickly).

Downweighting Scheme ccrSAFDA (stop) time SAFDA (stop)
Common α 0.8922 153.6 s
Order Based 0.8800 146.7 s

Magnitude Based 0.8889 1687.8 s
Downweighting Scheme ccrSAFDA (full) timeSAFDA (full)

Common α 0.8889 157.2 s
Order Based 0.8800 156.8 s

Magnitude Based 0.8822 6801.7 s

Table 3.1: CCR and Time for SAFDA Algorithms under Different Downweighting
Schemes: AR Database

Table 3.1 shows that the more sophisticated downweighting schemes (2 and 3) offer no

improvement in CCR when compared to scheme 1 (common α). In fact, there is a slight

degradation in classification but the CCR of SAFDA under any downweighting scheme is

still much better than LDA and wLDA with practical equivalence to F-LDA. It is interesting

to note that scheme 2 (order based) achieves ‘convergence’ much more quickly than scheme

1 for the same train/test sets. There is a slight drop in performance but it may be beneficial

in cases with a large number of classes (trade-off of correct classification for tractable time).
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Scheme 3 as it stands is clearly not feasible in a timely manner. Scheme 3 took even

longer than the F-LDA problem because the additional eigenvalue decomposition that is

performed at every intermediate step is always in the full dimension ((C− 1)× (C− 1)),

whereas the F-LDA decomposition is on a smaller matrix as each dimension is peeled off.

There may be a benefit to forming the scaling matrix based on the initial decomposition of

the between class scatter matrix and using a common matrix for scaling to remove the need

of recomputing at every step, but it is highly improbable that this scheme would be better

than the order based nature of scheme 2.

3.6 Performance and Computation Time Comparison for Different
Algorithms

3.6.1 Case Study 1: MNIST database with 10 classes

As discussed in Section 3.2, the MNIST data is pre-split into training and test data.

Table 3.2 shows the correct classification rates using the given training/test split for the va-

riety of LDA techniques (LDA, wLDA, F-LDA, and SAFDA) using the adaptive Gaussian

kernel. It is clear that the SAFDA techniques are slightly superior in terms of error rates to

the simpler LDA and wLDA methods while more or less matching the F-LDA procedure.

LDA wLDA F-LDA SAFDA (early stop) SAFDA (full)
70.260% 73.780% 78.900% 78.730% 79.210%

Table 3.2: CCR for MNIST database for Different Procedures using Gaussian Kernel
Weight Function
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Run LDA wLDA F-LDA SAFDA (early stop) SAFDA (full)
1 57.482 57.422 57.436 57.350 57.459
2 50.082 50.086 50.182 49.991 50.010
3 48.569 48.508 48.601 48.435 48.453
4 49.030 49.040 49.205 48.964 49.030
5 47.474 47.498 47.642 47.408 47.428

Table 3.3: Time (sec) for MNIST database for Different Procedures using Gaussian Kernel
Weight Function

Table 3.3 shows the amount of time (in seconds) that the various algorithms take. There

is very little difference in the times because of the small number of classes. F-LDA is

not too computationally expensive when the number of classes is small as most of the

work is performed in (C− 1) dimensional space, but we can see that the full SAFDA

procedure is slightly better than F-LDA (due to the interdependence of the dimensions).

These procedures were run multiple times on the same data (same training and test splits)

to compare the variability in time due to the computer. Since the data was identical for all

five runs, classification results were identical as expected. For the case of a small number

of classes, the differences in the algorithm times is actually smaller than the underlying

variability in computation time. In fact, some runs of this process had the time for wLDA

less than that for LDA (see, e.g., runs 1 and 3) and all runs showed both SAFDA (early

stop) and SAFDA (full) converging to a solution more quickly than LDA! This, of course,

is not possible if the processes occurred on a machine devoted to this task, as wLDA and

SAFDA are enhanced versions of LDA. The only explanation for multiple runs showing

wLDA as the quicker procedure is variability in the allocation of computer resources. For
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a small C problem, F-LDA and SAFDA are nearly indistinguishable. The advantages are

more clear in Section 3.6.2 for an example with a large number of classes.

3.6.2 Case Study 2: AR Database with 100 classes

For a problem involving a large number of classes (e.g., face recognition), the F-LDA

algorithm becomes computationally too expensive to be useful in practice, especially when

some of the parameters need to be determined via cross validation. For example, non-

adaptive weighting functions (i.e., inverse pairwise distance) have additional costs in terms

of cross validation. This is evident from the implementation on the AR database with non-

adaptive weighting functions in Tables 3.4 and 3.5. Because of the time intensive nature

of the F-LDA procedure, a very coarse grid of parameters was examined via cross valida-

tion (h = 4,6,8,10,12), chosen in the ‘stable’ region of h. When using these weighting

functions that require CV, the algorithm will be referred to as SFDA to distinguish the need

for cross validation and adaptive parameter searches. Parameter choices were examined in

Section 3.3. It is clear that the cross validation adds a great deal of time to the algorithm

(even when using a very coarse grid for the parameter choices) as seen in Table 3.5.
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Run LDA wLDA F-LDA SFDA (early stop) SFDA (full)
1 79.667% 83.667% 87.667% 87.167% 88.833%
2 85.333% 87.833% 89.000% 89.000% 90.333%
3 79.833% 83.833% 88.167% 88.167% 88.333%
4 83.333% 86.000% 89.500% 89.167% 88.667%
5 78.667% 84.667% 89.000% 87.167% 90.000%
6 81.000% 87.833% 87.167% 87.833% 88.833%
7 82.167% 84.667% 88.167% 86.167% 86.500%
8 81.333% 87.333% 87.167% 90.000% 90.000%
9 82.167% 86.500% 88.333% 89.833% 90.000%

10 79.500% 86.167% 87.500% 88.833% 89.167%
Mean 81.300% 85.850% 88.167% 88.333% 89.067%

StdDev 2.0273% 1.5722% 0.80890% 1.2522% 1.1364%

Table 3.4: CCR for 10 random splits of AR database for Different Procedures using
Bounded Inverse Pairwise Distance Weighting Function with coarse CV

Run LDA wLDA F-LDA SFDA (early stop) SFDA (full)
1 146.56 149.97 4165.2 177.79 203.24
2 145.91 149.19 4158.6 178.31 202.70
3 146.90 149.94 4153.0 177.24 203.36
4 146.41 149.73 4143.8 176.59 202.62
5 146.79 149.77 4151.6 177.90 203.59
6 145.15 148.32 4149.7 175.13 201.47
7 145.63 148.70 4167.4 176.85 202.37
8 148.87 151.55 4153.7 179.70 205.47
9 146.88 149.55 4145.7 178.38 203.56

10 146.54 149.47 4145.6 177.21 202.94
Mean 146.57 149.62 4153.4 177.51 203.13

StdDev 0.99411 0.86569 8.1033 1.2255 1.0405

Table 3.5: Time (sec) for 10 random splits of AR database for Different Procedures using
Bounded Inverse Pairwise Distance Weighting Function with coarse CV
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Table 3.6 shows the results of the SAFDA procedure compared to LDA and wLDA,

while Table 3.7 shows the massive savings in time over F-LDA when using the adaptive

Gaussian kernel. These tables show 10 separate random splits of AR data into training and

test data with final projection space of 10 dimensions for classification. The parameter,

h, for wLDA and F-LDA was chosen to be the minimum pairwise distance of means in

the initial configuration, and the parameter for the SAFDA was chosen adaptively at each

step to be the minimum of the pairwise mean differences (see discussion in Section 3.3.3).

Also, downweighting scheme 1 (common α) was used for these tables. The training/test

set split was 17 images per person for training and the remaining 9 for testing which yields

1700 training images and 900 test images. The full run of SAFDA and F-LDA involves 30

shrinkage steps (rmax = 30) and the early stop permits the algorithm to terminate when data

suggests the best rotation has been achieved. Details on the early stopping criteria were

given in Section 3.4.

Run LDA wLDA F-LDA SAFDA (early stop) SAFDA (full)
1 80.667% 85.556% 87.222% 89.222% 88.889%
2 84.667% 87.333% 88.444% 89.667% 89.889%
3 80.222% 85.111% 88.556% 88.111% 88.333%
4 82.889% 85.778% 88.111% 87.667% 88.667%
5 79.111% 86.000% 87.444% 87.889% 88.333%
6 81.111% 86.778% 86.556% 89.444% 89.556%
7 81.556% 86.000% 86.778% 88.000% 88.556%
8 81.889% 87.444% 87.333% 90.444% 90.556%
9 81.556% 85.667% 87.444% 88.111% 88.333%

10 80.333% 86.222% 86.333% 88.444% 88.556%
Mean 81.400% 86.189% 87.422% 88.700% 88.967%

StdDev 1.5478% 0.76811% 0.76048% 0.92970% 0.77167%

Table 3.6: CCR for 10 random splits of AR database for Different Procedures using Gaus-
sian Kernel
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Run LDA wLDA F-LDA SAFDA (early stop) SAFDA (full)
1 146.98 147.61 976.00 155.11 158.56
2 146.15 146.67 973.66 154.52 157.60
3 144.97 145.33 974.20 153.07 156.52
4 146.01 146.31 967.10 153.85 157.41
5 146.24 146.70 970.77 154.69 157.86
6 146.53 146.98 971.84 154.47 157.91
7 147.47 147.73 973.98 155.75 158.87
8 146.84 147.17 969.75 155.59 158.28
9 147.53 147.85 972.33 156.24 159.05
10 146.88 147.23 972.73 155.18 158.37

Mean 146.56 146.96 972.24 154.85 158.04
StdDev 0.76015 0.75615 2.5443 0.93761 0.75198

Table 3.7: Time (sec) for 10 random splits of AR database for Different Procedures using
Gaussian Kernel

Classification results are not substantially different between the two kernels as shown

in Tables 3.4 and 3.6, but the non-adaptive weighting function’s need of cross validation

takes an excessive amount of time when compared to the SAFDA’s adaptive procedure.

The real power of the SAFDA algorithm is shown in Table 3.7. The SAFDA procedure

is clearly much more computationally efficient than the F-LDA algorithm. While there

is a significant amount of time/effort in preprocessing (approximately 145 seconds), the

additional cost of F-LDA (sequential removal) is significant. Standard LDA is very quick as

is wLDA once the parameter is chosen for the Gaussian kernel. Since there are 100 classes

in the AR database, all post-preprocessing is performed on 99 dimensional matrices. The

SAFDA algorithm does indeed take longer than LDA and wLDA, but the additional cost is

minimal (especially considering the gain in CCR–8 seconds for approximately 7.5% bump

in correct classification rate over LDA). The time for F-LDA is well beyond that of the
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standard techniques. LDA only takes about 1 second beyond preprocessing whereas, F-

LDA, on average, takes about 827 seconds for this dataset. In contrast, SAFDA matches or

betters the F-LDA CCR but only takes approximately 8 seconds after preprocessing. This

difference is exacerbated significantly if cross-validation needs to be done for a different

kernel (i.e., inverse pairwise distance) as the entire process needs to be replicated many

times to find the optimal h as seen in Tables 3.4 and 3.5. In addition, if more classes

are in the database (realistic scenarios in face recognition would have much more than

100 subjects in the database), the extra costs for F-LDA are even larger. While larger

databases contribute to longer time for training for LDA, wLDA, and SAFDA, the extra

time is proportional to the algorithmic complexity (much smaller than that of F-LDA) rather

than the number of classes or the number of dimensions.

3.6.3 Configurations of Projected Centroids through the Fractional
Shrinking Iterations and Confusion Matrices

Case Study 1: MNIST data

First, the MNIST data was projected into d = 2 dimensional space to observe the effects

on the class means of the SAFDA procedure as the shrinkage steps occurred. Figure 3.40

gives the optimal projection via the wLDA procedure (r = 1 in the SAFDA procedure) and

Figure 3.41 shows the class centroids projected into the optimal space learned via SAFDA.

Clearly, the SAFDA algorithm has induced a much more separated space to improve clas-

sification. The labelling scheme for various classes is consistent in all plots so the legends

are only shown in these first two to save space.
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Figure 3.40: MNIST Class centroids projected into optimal wLDA space; d=2
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Figure 3.41: MNIST Class centroids projected into optimal SAFDA space; d=2
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Figure 3.42 shows snapshots of the ‘best’ projection direction across a range of r shrink-

age steps. An .avi movie of the progression of means is also presented on a DVD alongside

the dissertation. For a two-dimensional projection, the early stopping criterion ends at

r = 16. It is clear from Figure 3.42 that the mean separation does not improve substantially

after the 16th shrinkage step. More importantly, the wLDA solution given at r = 1 shows

significant overlap between classes 1 and 2 as well as 5 and 8.
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Figure 3.42: MNIST Class centroids progression across shrinkage steps; d=2

From these plots, we can see that the SAFDA procedure finds a much better two-

dimensional space in which the means are separated. The first subplot (upper left) shows
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the optimal wLDA two-dimensional projection which is achieved in the first step (no

shrinkage). The progression of the SAFDA clearly allows the learned space to adapt to

the data in such a way that the means are quite separated in the projected two-dimensional

space. This can be thought of as a space-filling design of the maximin variety (maximize

the minimum distance between class centroids).

Two-dimensional projections (d = 2) above were used only for a visual progression of

the means graphically. All of the previous sections focus on a four-dimensional projection

so the remainder of this subsection will focus on d = 4. The MNIST database yielded

the following confusion matrices (Tables 3.8 and 3.9) when the Optimal LDA and SAFDA

algorithms were used to reduce the dimension to d = 4 respectively.
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Predicted Class
Truth 1 2 3 4 5 6 7 8 9 0

1 91% 5% 2% 0% 0% 0% 0% 1% 0% 0%
2 30% 50% 8% 1% 1% 5% 1% 2% 1% 1%
3 5% 14% 43% 3% 5% 0% 2% 23% 3% 1%
4 0% 1% 6% 77% 4% 1% 0% 1% 10% 0%
5 1% 2% 6% 8% 68% 2% 1% 9% 3% 1%
6 0% 3% 0% 3% 5% 86% 0% 1% 0% 2%
7 3% 3% 2% 1% 0% 0% 78% 0% 13% 0%
8 3% 4% 17% 6% 23% 1% 1% 41% 3% 1%
9 0% 1% 5% 11% 1% 0% 9% 0% 73% 0%
0 0% 0% 1% 0% 2% 1% 0% 0% 0% 94%

Table 3.8: MNIST Confusion Matrix under Optimal LDA for d=4

Predicted Class
Truth 1 2 3 4 5 6 7 8 9 0

1 96% 1% 0% 0% 0% 0% 0% 2% 0% 0%
2 13% 67% 5% 1% 1% 3% 3% 3% 1% 3%
3 2% 10% 75% 2% 5% 0% 2% 2% 1% 1%
4 1% 0% 1% 78% 2% 1% 1% 2% 13% 0%
5 1% 2% 5% 7% 72% 2% 1% 7% 1% 3%
6 1% 1% 0% 3% 3% 81% 1% 5% 0% 6%
7 3% 3% 1% 2% 0% 0% 80% 0% 9% 0%
8 6% 1% 2% 3% 10% 2% 0% 71% 3% 0%
9 0% 0% 1% 10% 1% 1% 5% 1% 79% 0%
0 0% 1% 2% 0% 2% 3% 1% 0% 0% 91%

Table 3.9: MNIST Confusion Matrix under SAFDA for d=4

We can see common classification errors under the LDA projection confusing Classes

4 and 9 as well as Classes 3, 5, and 8. Class 2 points are also often misclassified as Class
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1 (30%) and Class 7 as class 9. All of these errors make sense intuitively because of the

similarity of the shapes of these numbers. Class 0 is the farthest outlier class in the original

data as shown in the optimal LDA projection in Figure 3.43. Class 1 most likely has a high

CCR (even though its class centroid is near many others) due to a low inherent variability

(difficult to draw the number one in many different fashions), whereas the class centroid for

Class 2 lies very nearby leading to a high percentage of Class 2 being misclassifed as Class

1. There is an interesting caveat to the SAFDA procedure that, while most classes yield

an improved classification rate, a few classes’ performances are degraded under SAFDA.

This can be seen in the MNIST data for Classes 0 and 6 (performance was slightly better

under LDA). This is because Classes 0 and 6 were outlier classes in the original space

and, therefore, easy to distinguish. While they drove the solution of the one-pass method,

SAFDA focused more on the confused classes and fit the data to better separate those

classes. This introduced some additional confusion in the outlier classes, but the trade-off

in overall performance was worth the slight loss in CCR in those two classes.

Comparing Figures 3.43 and 3.44 shows why the four-dimensional projection of SAFDA

outperforms the LDA projection. We can see that any classes that are near each other in

the first two dimensions of SAFDA are always reasonable separated in dimensions 3 and

4. In the LDA projection, Classes 1 and 2 as well as Classes 3 and 8 are near each other in

both plots. SAFDA enhances the LDA procedure by finding projections that separate those

easily confused classes.
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Figure 3.43: MNIST Class centroids Optimal LDA space; d=4
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Figure 3.44: MNIST Class centroids Optimal SAFDA space; d=4
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Figure 3.45 shows the first two dimensions of the space learned via the SAFDA pro-

cedure for the MNIST data. The stopping criterion was triggered slightly earlier (r = 12

for d = 4 versus r = 16 for d = 2), most likely due to the comparative ease in separating

classes in a larger dimension. It is important to remember that only the progression of the

first two SAFDA dimensions is shown in Figure 3.45. The centroids are closer after the

final step in SAFDA when compared to LDA only in the first two dimensions. Visualiz-

ing the centroid progression in four-dimensional space through a ‘G-Gobi’-type tool would

show the centroids to be much more clearly separated (space filling) as in Figure 3.42.

−5 0 5
−5

0

5

SAFDA 1

S
A

F
D

A
 2

r=1; wLDA Solution

−5 0 5
−5

0

5

SAFDA 1

S
A

F
D

A
 2

r=5

−5 0 5
−5

0

5

SAFDA 1

S
A

F
D

A
 2

r=12; SAFDA (early stop) Solution

−5 0 5
−5

0

5

SAFDA 1

S
A

F
D

A
 2

r=16

−5 0 5
−5

0

5

SAFDA 1

S
A

F
D

A
 2

r=24

−5 0 5
−5

0

5

SAFDA 1

S
A

F
D

A
 2

r=30; SAFDA (full) Solution

Figure 3.45: MNIST Class centroids progression (first two dimensions shown) across
shrinkage steps; d=4
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Case 2: AR database

For the AR data with 100 classes, the confusion matrix is displayed in the form of a

heat plot. Also, as the number of test points is low (7 per person), 10 separate training/test

set splits were run separately to simulate the confusion matrix for a larger test set. This was

done to get an idea of common misclassifications, if any do occur.

First, we present the ECDF’s of the CCRs for the 100 classes for LDA, wLDA, SAFDA

(full), and SAFDA (early stop) in Figure 3.46. Clearly, SAFDA outperforms the one-pass

methods (more CCRs near 1). Also, SAFDA (full) and SAFDA (early stop) exhibit almost

identical behavior.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percent Correct

F
(x

)

ECDF of CCR by Class

 

 

LDA
wLDA
SAFDA (early stop)
SAFDA (full)

Figure 3.46: ECDF of AR CCR by Class, d = 10

Figure 3.47 shows the results of Optimal LDA classification in 10 dimensions when

compared to SAFDA on the same data. Clearly, the SAFDA procedure outperforms the

LDA technique as seen by the fewer off diagonal errors in the SAFDA confusion matrix.

The additional lines drawn on the matrix were drawn to demarcate the males and females.
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The males were subjects 1-50 and the females were 51-100. Common misclassification

errors occur within the same gender because most incorrectly identified individuals are

predicted as the same gender (upper-left and lower-right).
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Figure 3.47: AR–LDA vs. SAFDA d=10

The same technique was used to compare the full SAFDA procedure to the SAFDA

procedure with early termination. Figure 3.48 shows that there is little appreciable differ-

ence between the two, suggesting the early stopping criterion could be used (at least on this

data) with little detriment to CCR.
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SAFDA (early stop) Confusion Matrix
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Figure 3.48: AR–SAFDA (full) vs. SAFDA (stop) d=10

3.6.4 Discussion

While the Gaussian kernel uses an adaptive parameter selection, the bounded pairwise

inverse distance kernel has to select the tuning parameter via cross validation. Results

shown in Tables 3.4 and 3.5 demonstrate SAFDA’s efficacy when classification rate is

compared to standard LDA techniques and the time savings when compared to F-LDA.

The SAFDA procedure dominates the LDA and wLDA procedures and, on average, even

defeats the much more computationally intensive F-LDA procedure. When the SAFDA

(early stop) procedure does not beat the F-LDA procedure in CCR (i.e., run 4), it is not

significantly different in performance. In fact, the full run always outperformed F-LDA for

all test runs in our research. On average, the SAFDA is a nice improvement over the other

techniques.
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As we can see, there is a huge savings in time when using the bounded inverse dis-

tance measure where cross-validation is used. There is also a moderate time savings (that

becomes more apparent as C increases) when using the adaptive Gaussian kernel. The

results of the different kernels show no appreciable difference under classification perfor-

mance across the different splits in the AR database but there is a sizable time savings of

SAFDA over F-LDA (more so under the non-adaptive CV kernel). The CCR of the LDA

procedure shows nearly equivalent results under both the adaptive and non-adaptive kernel

selection (81.4% with the Gaussian vs. 81.3% with the bounded inverse pairwise distance

kernel) as expected because there is no weighting in traditional LDA. This small differ-

ence in mean CCR is likely due to random train/test splits in LDA, while the choice of

weight function can affect classification results in the weighted LDA variants (i.e., wLDA,

F-LDA, SAFDA). Overall, the Gaussian kernel seems to be a better choice based on time

and performance.
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Chapter 4: Contributions and Future Work

4.1 Discussion and Conclusion

The SAFDA procedure was developed to incorporate projection pursuit ideas into a lin-

ear discriminant framework while yielding a directed search algorithm that seeks to maxi-

mize class separation in the reduced space for classification. This directed search is quite

useful as a time saver for large-dimensional problems, as the random search used in stan-

dard projection pursuit (PP) techniques can take a great deal of computational effort before

reaching a stable solution. While PP seeks interesting directions (in our case, directions

which maximize class separation) in the reduced space via a random search, shrinking di-

mensions of relatively low importance by larger and larger amounts allows the procedure

to adapt itself to the resulting data space, while seeking to maximize traditional (weighted)

LDA criteria. PP ideas are slowly being merged into supervised learning methods, and the

SAFDA procedure is a testament to its utility in this field.

SAFDA seeks to find a low-dimensional space in which the class centroids essen-

tially ‘fill the space’. The underlying motivation for the technique was to make the frac-

tional LDA (F-LDA) procedure (Lotlikar and Kothari, 2000) feasible in a large-dimensional

framework with a large number of classes. SAFDA not only substantially improves upon

the time requirements of F-LDA, but in some cases, also serves to slightly improve class

145



separation by simultaneously contracting/compressing dimensions, thereby exploiting the

interrelationships of the many features of the data (a major aspect of image data).

As well as introducing a directed search to maximize the LDA criterion, SAFDA im-

proves upon classification rates of many standard linear techniques through a weighted

framework that focuses the search for discriminative directions on classes that are the most

confused. While F-LDA suggests using a simple weight function of inverse pairwise dis-

tances, cross validation must be performed to find the best parameter for the given weight

function. SAFDA introduced the Gaussian kernel in which the best parameters can be

learned from the data with simple rules that seem to permit an adaptive scheme in which

the weight function (kernel) adapts to the scale of the data at any given step of the algorithm,

when the data lie in a ‘fractional dimension’ (somewhere between the full p dimensional

space and the final d dimensional space). While SAFDA can use any weighting func-

tion that is a monotone decreasing function of pairwise distances between class centroids,

the Gaussian Kernel based weight function seems to be the most promising in both speed

(adaptive parameter) and classification performance.

The number of shrinkage iterations within each dimension removal was fixed at rmax

(specified a priori) in F-LDA, which may lead to performing additional extraneous shrink-

age steps after a stable solution has already been reached. A heuristic threshold was intro-

duced on the Hellinger distances of successive weight vectors to determine whether conver-

gence had been achieved. When the Hellinger distance dropped below the given threshold,

the algorithm terminated (prior to completion of the prespecified rmax iterations) to pre-

vent using additional time that does not necessarily improve the algorithm’s performance

markedly. There is a chance that this stopping point may be a local minimum in the search
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process and force a premature stop to the directed search algorithm, but the threshold was

chosen low enough to prevent this in most situations.

Various downweighting schemes were also examined to see if a more data dependent

scheme (downweighting based on the eigenvalue magnitudes or sizes within a ‘fractional’

or ‘shrunken’ dimension) would yield a quicker convergence to the best class separation

in the reduced dimension, but the more complex schemes did not yield markedly better

results than shrinking each dimension by a constant rate. The constant α downweight-

ing function for all dropped dimensions is suggested as it was the simplest and easiest to

understand/relate to the F-LDA methodology.

The results on the MNIST and AR datasets suggest that the SAFDA procedure can suc-

cessfully be implemented in image analysis problems. The time requirement of SAFDA is

substantially lower than that of F-LDA and other LDA variants that require cross-validation

while still yielding similar classification results. As the dimension of the data grows (larger

or higher resolution images) and/or the number of classes becomes large (common occur-

rence in large face databases), the computational cost of SAFDA in terms of time is man-

ageable after the initial whitening step, which is also needed in F-LDA. The time required

for F-LDA was dependent on the number of iterations within each dimension reduction step

as well as the number of dimensions to remove, (p−d), because each dropped dimension

was determined sequentially.

While the focus of SAFDA in this work is centered on the face recognition/image clas-

sification problem, there are no specific aspects of the algorithm that limit its use to these

applications. The SAFDA procedure can be applied to any discrimination problem, but the

obvious time intensive nature of high-dimensional images makes this an ideal application

area for this methodology. Results on the MNIST digit recognition and AR face databases
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show that the SAFDA procedure yields comparable results to F-LDA while dramatically

reducing the time commitment. For these case studies, SAFDA dominates standard LDA as

well as wLDA with only slightly more computational effort, due to its goal of maximizing

class centroid separability in the reduced space.

The results of this work demonstrate that the SAFDA procedure shows great promise

in improving classification rates of high-dimensional data in a large multi-class framework,

while still allowing the dimension reduction to be performed in a relatively short amount

of time. By utilizing the sequential shrinkage of the dimensions to be dropped while si-

multaneously shrinking all dimensions that will eventually be removed from consideration,

the algorithm finds space filling projections of class centroids. This can be achieved much

more quickly than the sequential dimension reduction employed by F-LDA. The simulta-

neous shrinking also permits the interdependence of the features to be incorporated into the

search. F-LDA ignores such interdependence by removing dimensions one at a time.

Overall, the SAFDA procedure’s performance is quite promising for both situations

with a large and small number of classes. It provides an easy to use, tractable, and directed

projection pursuit procedure for dimension reduction that produces very good classification

results.

4.2 Future Work

Most of the additional work on the SAFDA algorithm lies in six directions:

1. Improving the directed search algorithm.

2. Removing dimensions in multiple ‘chunks’ (rather than dropping all dimensions at

once) based on the eigenvalues of the data
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3. Exploring SAFDA based dimension reduction as input vectors to SVM methodology.

4. Comparing SAFDA with boundary based techniques (time and accuracy) like SVM.

5. Extracting contextual information from the final space (especially important in the

analysis of face recognition).

6. Develop a theoretical framework for this procedure based on a minimax criterion for

pairwise distances.

Item 1 can possibly be approached by examining the effect of recomputing the within

class scatter matrix throughout the algorithm (no whitening) at every substep. Obviously,

the additional computation of the within class scatter matrix at every ‘fractional dimension’,

as well as inverting it, leads to a large increase in calculation time. The additional compu-

tation time would probably not be worth a potential increase in classification rate, however,

improvement in correct classification rate (CCR) may be possible in some situations.

Also involved with improving the algorithm could be the search for a more suitable

weighting function (kernel). It is well known that no weight function (kernel) is optimal

for the general classification problem. This particular procedure focuses on the Gaussian

kernel due to its pervasiveness in the literature, strong properties, adaptive parameter po-

tential, and pure dependence on pairwise distances. While this kernel is very suited to our

goals, there may be other similarity measures that can be used in certain databases that

could improve classification. Kernel selection is key in any classification problem, so this

is a very general topic for research, and it can be useful in the SAFDA framework as well.

The algorithm as stated only suggests a one-stage reduction from p dimensions to d, but

there is no restriction that the SAFDA procedure must remove all dimensions at once. A

data determined step size can be determined via the percent of variability measured by the
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eigenvalues to allow for a multistage process that removes multiple dimensions at each step.

For example, the user can choose a priori to drop dimensions that explain the lowest k%

of the total variability in the data at each stage. This procedure allows for the time savings

via SAFDA as multiple dimensions are removed at a time, but it prevents a dimension from

being shrunken too quickly.

Often, dimension reduction techniques are not applied singularly. A common technique

when dealing with large p small n problems and attempting to apply LDA-like methods is

to first reduce the very large dimension p to a dimension in which the SW and SB are both

full rank using another technique (i.e., PCA). However, combining SAFDA with PCA is

not conducive to better classification. PCA, when used in conjunction with LDA, is simply

an unsupervised learning procedure which can detract from the SAFDA mission that is built

to seek out dimensions of high class-separability in a time efficient manner. SAFDA can

also be used to first find a lower dimensional space in which the centroids are ‘optimally’

separated before applying a more sophisticated boundary based technique in the lower

dimensional space such as SVM (SAFDA+SVM).

This work focuses on comparing SAFDA with other LDA variants, more specifically,

mimicking the F-LDA results while speeding up the process. Boundary based kernel tech-

niques (e.g., SVM) are quite popular in classification literature but have some downsides in

interpretation when compared to linear techniques. However, SVM often produces better

classification results than linear methods because of its ‘black-box’ methods. Comparing

the performance of the SAFDA procedure to SVM on datasets with a small number of

classes could yield insights into whether the SAFDA procedure can improve linear tech-

niques to be on par (from a classification standpoint) with boundary based methods. While

the real benefits of SAFDA are apparent on classification problems with a large number of
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classes, SVM has not been examined in depth for these situations. Comparisons between

the techniques are restricted to a lower C problem until MSVM techniques are extended to

the large C problem.

Item 5 is focused on the interpretability of the features selected in the final step under

the SAFDA paradigm. This is of special importance in the face recognition problem when

one wants to learn facial features that are the most crucial for face identification. One

could use sparse SVD techniques to achieve a model that only selects a few features or

examine the projection matrix to determine which combination of features was indicated

as important via SAFDA. By understanding which features of the face itself are leading to

the highest levels of discrimination, we can more closely adapt this procedure (and others)

to fit under general conditions (nonaligned images, different camera, different resolution,

etc.). The features selected by SAFDA based on a given database are numerically tied to the

data collection system (i.e., orientation, lighting, background) unless these extrapersonal

variants are controlled for in preprocessing stages. The interpretability of linear systems

can be exploited to generalize which pixels, groups of pixels, or facial features are the most

discriminative when determining identity.

F-LDA (and SAFDA by extension) were based on some intuitive techniques that yielded

a directed search to a lower dimensional space in which the class centroids are separated.

A final goal for the future is to develop a theoretical framework in which this procedure

can be housed. Preliminary results suggest that SAFDA finds a projection that yields some

‘maximin’ space-filling configuration of the class centroids. Perhaps, a cost function based

on this maximin criterion can be used to further streamline the process, as well as explain

the improvement in separation via statistical theory. While SAFDA is based in an applied
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ideal, a better theoretical understanding can yield new insight into its inner workings and

lead to more sophisticated improvements to this procedure.
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