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Abstract 

 

Social networking and scientific computing workloads access networked storage 

much more frequently than traditional static-content workloads. These workloads 

improve their speed by issuing requests parallel, which offers a lot speedup if its slowest 

parallelly access is fast but will also suffers some unexpected slowdowns if the former 

assumption cannot be guaranteed. In this paper, we study replication for predictability, 

which speeds up the slow storage accesses by running the same workload on duplicate 

nodes and using the fastest response, different from traditional replication for throughput. 

Based on the mechanism of replication for predictability, we proposed Zoolander, an 

analytical model predicting the percentage of quickly completed access, i.e. SLA. 

Zoolander combines factors of the replication strategies, the distribution of heavy tail 

access and the queuing delay, to output the most efficient solution. Then we created an 

enhanced Zookeeper like coordination service supporting replication for predictability. 

Zoolander was precise which could achieve SLA of 0.002 absolute errors over diverse 

workloads. Using Zoolander, we achieved speedups of 375% and reduced the cloud 

servers needed by 50%. 
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Chapter 1:  Introduction 

 

1.1 SLA Agreement (SLA) and Data Intensive Workload 

Service level agreement (SLA) usually describes a boundary of the latency for a 

certain type of requests or storage accesses at different percentile level; it provides a 

quantification measurement of the performance for a workload. For example, a SLA says 

“99% of the read requests can be responded within 200ms”[1][2][3], this SLA can be 

seen in a lots of traditional static content workload which allows us to expect the majority 

of its requests to be finished fast. Data intensive workloads like those social networking 

applications or large scale simulation programs which always contain several TBs 

(Terabyte) or even PBs (petabyte) of data, and have to respond millions of requests in one 

second, are very different from the traditional static content workloads.  

This type of workloads usually uses the replication or partition strategy with parallel 

accesses to help speed up its response time.  Take the MapReduce [4] framework as an 

example, which is a widely used framework in data-intensive workload proposed by 

Google. MapReduce usually finishes one taskes in several phases, each of which divide 

jobs and “map” every piece into different nodes for processing then combine and “reduce” 

to finish the task. In such workload as described above, even one of its parallel accesses 

in a certain phase gets an unexpected long finished time; the whole task will be delayed. 

So the response time for data-intensive workload depends on its slowest parallel access 
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rather than the mean, which calls for a more enhancement storage system with higher 

SLA (e.g., 99.99% of all accesses), to maintain the low latency response for the whole 

system. 

 

1.2 Solutions to Improving SLA  

Replication and partition are widely used strategies to improve the SLA in 

traditional workloads, and workloads with parallel accesses demand for more enhanced 

SLA storage system. There are many studies in this field for the purpose of improving the 

whole SLA and former researcher mostly focused reigning in performance anomalies 

which reduce the percentile of expected long latency (e.g., make the whole distribution of 

response follow the normal distribution with low variance). They solved this problem by 

either finding the root cause of the anomaly then fix it [22] or avoiding the anomaly in 

real-time by using some online management systems [2, 26, 29].  

Specifically, there is also a different solution to improve the SLA by masking the 

long latency responses, which is proposed by SCADS director [29], called replication for 

predictability. SCADS director deploys two copies of exactly same storage replicas, then 

forces every client to send its requests to both of the two copies and use the first reply as 

its result. The first reply is always not an anomaly so the SCADS manager can mask 

some of the non-deterministic performance anomalies in this way. This replication for 

predictability is quite different from the traditional replication for throughput, because it 

does not actually improve the throughput although it does reduce the variance. However, 

prior work [29] as SCADS director merely used replication for predictability for the ad-
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hot goal; their replication number is limited only up to two and neither of them can gain 

the expected performance goals demanded for the date-intensive workloads. We discuss 

replication for predictability with more detail in 1) modeling its benefit with and 2) using 

it to improve SLA for both write and read requests. 

 

1.3 The Zoolander  

Zoolander is an analytical model based on replication for predictability; it predicts 

SLA in the form like: how many percentiles of the requests can be finish within certain 

latency. The input of Zoolander contains four parts:  

(1) target latency bound 

(2) service time distribution 

(3) storage access pattern  

(4) the network latency distribution 

And the online management system of Zoolander enhances it with the scalability under 

different platforms and inputs, e.g., if the arrival rate doubles of the target bound 

increases. We then created the RP Zookeeper to validate the Zoolander, which is an 

enhancement storage system based on the Zookeeper Coordination Service by adding 

replication for predictability. RP Zookeeper can achieve improvement by 2 orders of 

magnitude compared to traditional replication for throughput system, in its SLA of 15ms 

( 99.995% v.s. 99%). Moreover, it can reduce the execution time of a scientific 

computing workload by 373% in the guide of Zoolander. And the validation shows that 
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the SLA predicted by Zoolander can achieve less than 0.002 errors across different 

workload, Zookeeper configuration, and hardware platform. 

 

1.4 Organization of this Thesis 

This thesis is organized as follows: Chapter 2 describes the data-intensive we target 

and explains the reason of their demand for the high SLAs. Chapter 3 shows the 

difference of our work compared with prior performance models and storage systems. 

Chapter 4 analyzes the principles of replication for predictability and presents the 

Zoolander‟s prediction model. Chapter 5 shows the implementation of RP Zookeeper and 

its system validation based on Zoolander. Chapter 6 proves the usage of Zoolander in the 

online management on two data-intensive benchmarks. Chapter 7 gives the conclusion. 
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Chapter 2: Background 
 

Cloud computing allows people to combine the computing power of low cost 

machines together to replace the traditional expensive custom super servers in some 

certain usage like network storage and parallel computing. This provides a possible way 

to achieve the same computing power but with lower cost, benefitting end users with 

faster and real-time operations in network application and scientific users with lower cost 

computing power.  

 

2.1 Storage System based on Cloud based Architecture  

Storage systems in the cloud computing environment are usually designed to be in-

memory for the purpose of best performance. It is supported by the thousands of low cost 

machines comprised in the datacenter. Compared to the traditional custom super server, 

which always consists of many computing units on a shared memory, machines in the 

large datacenter share only the power delivery and the network resource, which is called 

share nothing design. The advantage of this design is obvious: hardware failures can be 

cover simply by a simple fail-over redundancy strategy since each of the nodes is 

independent; and one typical storage access (usually containing a network round-trip, 

some light computation and one memory access) can be finish fast as long as the node 

accessed are working correctly. But once the application has some consistency demand 

that forces nodes to communicate, the latency of access can increase sharply and it also 
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limits the scalability of the whole performance. One possible solution is to use key-value 

based storage structure with proper partition or replication strategy; the problem here is 

when and how to apply the replication or partition to achieve the best performance. 

Zoolander provide some hints on this question to help managers find a most ideal 

solution. 

 

2.2 Date-intensive Workloads 

Traditional workloads like e-commerce workloads based on static content also use 

the partition and replication to improve their SLA but the SLA they need is not as high as 

the data-intensive workloads: 99% of fast storage accesses can sufficiently meet their 

requirement for performance because there is only a few storage accesses in these 

workloads need to be finish in extremely short latency. Hence one can often expected 99% 

SLA on the webpage response time from the 99% SLA on the storage access in this type 

of workloads.  

On the other hand, the SLA demand of data-intensive workload is much higher, 

because they need much more fast storage accesses and even a few long latency storage 

accesses can cause performance decrease of the whole system. We describe two of such 

typical workloads below. 

 

2.2.1 Inner-Join Olio 

Unstructured data storage systems become popular today because their advantage 

in scalability allows people easily scale one hash-table into several partitions to maintain 
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the same performance when data size increased. The inner-join olio presents a typical 

workload which is used in the social networking service based on the unstructured data 

storage system. We created it from changing the SQL based social networking service 

Olio into hash-table data storage. The inner-join olio is totally unstructured without any 

index. Specifically, here is a typical request in the inner-join olio: To find all the 

attendees of a given event with id 100 whose first name begins with character “A”; 

The SQL query, if it uses the SQL based storage system, will be: 

SELECT username  

From Person INNER JOIN eventandperson  

ON eventandperson.eventid = 100 and  

person.firstname = „A%” ; 

Since inner-join olio is based on the unstructured data storage with the key-value 

structure, this request will be process in two phases: First, all the username of attendees 

of event with id 100 must be retrieved; Then, the username in the result set returned by 

the phase 1 whose first name begin with character “A” can be achieved and returned. 

Since social networking service usually contains a large amount of data, each of the two 

phase described will contain a large number of storage accesses. We can reduce the 

whole request‟s response time by parting the storage access in each of the phases into 

batches and executed parallel in different nodes. However, the phase two cannot be 

started until all the storage accesses in the phase 1 finish and get the dataset returned, and 

the whole request cannot be responded until all the accesses in the phased 2 are done. 

Different from the traditional workload, even one access get unexpected delayed here, the 
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whole request will be delayed even though other may be finished quickly, because the 

barrier like phase mechanism here. This means that in this workload, the slowest parallel 

access can actually determine the lower bound of the response time of a whole request. 

Hence, to guarantee a similarly good performance like static-content workloads, inner-

join olio needs more accesses in it to be quickly executed, which means that it demand a 

higher SLA storage system. 

 

2.2.2 Gridlab-D 

Gridlab-D is a more complex event-driven smart-grid simulation application running 

on a share-nothing cloud, to model the distribution of energy in many devices, from the 

power plants to air conditioners. The working process of Gridlab-D is like a chain of 

event trigger mechanism: one event cannot be simulated and trigger the succeed one until 

the former ones being finished and trigger it. 

 

Figure 1: The execution process of a simulation in Gridlab-D, the arrows indicate the data 

dependence and the trigger order.  
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For example, a track of the energy usage for a household, a water heater and also 

with some personal choices in it may be simulated as the process shown in the Figure 1: 

all the events will be started only after the storage accesses which are some High-SLA 

parallel reads to be finished; then some of the simulation can be parallel distributed into 

different nodes to be executed and the other having some data dependence must wait to 

be trigger from its former event; finally, after all the simulations get finished, the result 

can be wrote back to the storage system through some High-SLA parallel writes.  The 

storage accesses here actually consists two phase which are a bunch of parallel reads then 

writes but parallel writes cannot be executed until all the parallel  reads finish. Hence, the 

slow storage accesses in this workload can affect a large number of simulation executions 

which depend on them, inflating the total response time.  

 

Figure 2: The slowdown result of the Gridlab-D workload with random delay injected 

into 2% of its storage accesses. The dotted line shows the expected slowdown and the 

solid line shows the actual slowdown observed. 
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To prove this, we implemented the Gridlab-D workload for a 5 minutes simulation 

then injected a random delay into 2% of its all storage accesses. Unlike the traditional 

static content workloads, whose slowdown is probably proportional to the delay injected, 

we actually get a result with 53-133% larger delay as shown in Figure 2. This means that 

a few slow accesses can cause an unexpected long slow down. 

In sum, in a data-intensive workload, to guarantee all of its response time to be with 

a high SLA, its storage accesses must be completed quickly within a tight time 

constraints because the response time will get more affect from a small number of slow 

accesses. This outsized effect calls for a scalable solution which could easily be applied 

to existing cloud storage system that improves the SLA by several orders of magnitudes 

while maintaining the same low latency. 
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Chapter 3: Related Work 

 

As been pointed in the last Chapter that data-intensive services require a storage 

system that guarantees much high SLA because of the devise and damaging workload it 

may produce. Towards this problem, much prior work has been proposed. In this chapter, 

we show the difference in our work which is strictly based on mechanism of replication 

for predictability and then prove the usage of replication for predictability with a wider 

range in real online system management. 

Of all of prior works, the SCADS director is the most related system [29]. SCADS 

points out even small partitions under light workload can incur serious performance 

anomalies violating SLAs.  It improves the SLAs by dynamically scaling the data into 

partitions as the load gets heavier and creates a duplicated copy for each of the partitions.  

We use the word duplicate to denote the server with exactly same data used in replication 

for predictability to distinguish from the word replica used in replication for throughput. 

By using the mechanism above, the SCADS director achieves 99.5% SLA for the 

EBate.com workload. However, we found the SCADS director had its constrains in two 

aspects: 

(1) The target workload used in the SCADS director does not require an extremely high 

SLA (i.e. 99.99%), so only one duplicate is used in SCADS director. And they do not 
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provide detailed analysis on replication for predictability like whether the SLA can be 

further improved by adding more duplicates.  

(2) The implementation of SCADS director is based on a relaxed-consistency guarantee 

which ensures them to get the read accesses being processed efficiently. But it also 

limits them to support only the read storage accesses. While there are some workloads 

requiring their write accesses to be reliable too as the workload Gridlab-D described 

in the Chapter 2.   

Hence, SCADS cannot answer the question like “How can achieve a 99.99% SLA for the 

workload Gridlab-D by adding duplicates using replication for predictability?” Other 

system based on replication for predictability like Mantri [2] which uses replication for 

predictability to improve the reliability of Map-Reduce tasks also has the similar 

constrains as SCADS that only validates replication for prediction on add merely one 

duplicates.  

Zoolander covers the constrain of prior works; it is able to precisely reason the 

improvement of SLA by adding many duplicates (up to 16) and its implementation (the 

RP Zookeeper) supports replication for predictability for a wider range of use (for both 

read and write storage accesses). Our model refers many prior models from queuing 

models [12, 25, 30] to machine-learned models [3, 8] to control theory [7, 19, 23]. These 

are all theories that are widely used in many successful productions.  

Finally, our work focus on non-deterministic anomalies, which are more difficult to 

be found and reduced compared to deterministic anomalies, which have been well studied 

by other related work like EntomoModel [26] and IronModel[28]. 
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Chapter 4: Zoolander 

 

Zoolander is an analytical model based on replication to prediction, to predict SLA 

for a given replication strategy. Replication for predictability, which has been briefly 

discussed above, is a useful strategy to improve the SLA. In detail, replication for 

predictability uses duplicated servers to run the same access and chooses the first 

response as its result. As a result, by applying replication for predictability, N duplicates 

can mask up to N-1 anomalies and help reduce the response time of the system when the 

root causes of the SLA are anomalies other than workload access patterns.  

Alternatively, it is also possible to use the N duplicates to run different access (by 

using a load-balance to forward requests into different servers), which can improve the 

throughput by N times compared to the throughput by applying replication for 

predictability. This strategy of replication that forces each request to be processed in just 

one cloud server for the purpose of adding number of requests that can be handled in a fix 

period of time is famously used in traditional static content workloads, called replication 

for throughput. However, when performance anomaly occurs, i.e. some storage accesses 

take much longer time to be processed than expected; replication for throughput may 

produce a worse performance then replication for predictability. Worse still, in networked 

storage system, which needs replication to improve its SLA, there can be many factors 

that cause performance anomalies, e.g. the OS scheduler, buffer sharing, or even a simple 
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misconfiguration. Hence, replication for throughput cannot necessarily improve the 

system‟s performance as expected. 

 

 
Figure 3: An example that only replication for predictability speeds up the inn-join olio 

workload when performance anomalies occur. Horizontal lines indicate the local time 

line of a node in cloud. a. The whole request is completed in the star mark. 

 

Figure 3 depicts a comparison between replication for throughput and replication for 

predictability by running Inner-Join olio workload in a situation caused by a performance 

anomaly when replication for predictability improves the performance more than 

replication for throughput. Because of the trade-off between replication for throughput 

and replication predictability, and the large amount of existing research on the former one, 

we also need a method to quantify replication for predictability in order to guide 
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manager‟s choice when planning to use replication to improve SLA of the system. This is 

also an important reason for us to propose Zoolander. 

 

4.1 Basic principle 

Zoolander is designed to improve the system‟s SLA based on the strategy of 

replication predictability, so it also inherits the requirement of this strategy. Here are two 

basic principles of replication for predictability which must be sufficed, to ensure that 

Zoolander works correctly as expected:  

(1) Duplicates must operate independently. This means duplicates mush have their own 

resource or virtual resource and storage accesses should not have any dependencies 

between any of the duplicates. So anytime one anomaly occurs in some duplicate, 

others duplicates won‟t be affected.  

(2)  The storage system must guarantee that every storage access is processed 

independently. Zoolander can only mask non-deterministic performance anomalies, 

which requires the storage system to guarantee that every of its storage accesses has 

the same possibility to be finished quickly. This is important because in some storage 

systems, their storage accesses will probably get delay after processing a fixed 

number of accesses or when processing a access on a fixed access pattern. This delay 

cannot be masked by Zoolander because all of the duplicates will necessarily get 

delay in the same time so none of them can return fast to mask the delay, and this is 

just a typical type of deterministic anomaly. 
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We will study these two principles latter. Here we will prove the consistency of our setup 

of Zoolander first to guarantee the correctness. 

 

4.2 Consistency, Availability and Partition tolerance 

According to the CAP Conjecture, network system can gain only two characters in 

data consistency, partition tolerance or availability by the cost of sacrificing the other. 

Traditional systems based on replication for throughput always sacrifice their availability 

to scale their data into several nodes without any overlap so each of these nodes can 

always keep the most up-to-date data which guarantees its consistency and it can reduce 

the slowdown from the increase of network in each nodes by scaling data into more 

servers, but once one node gets interrupted, the whole system cannot work which means 

that the availability is sacrificed. Some other systems [1, 4, 10, 29] may use partition 

tolerance to scale their throughput and some alternative replication to keep its availability 

but the consistency are always sacrificed.   

In our Zoolander, since that every duplicates in Zoolander keeps exactly the same 

data, so that system is able to work properly as long as one of its duplicate is alive which 

guarantees a high availability. And we force all the clients to send their requests through 

a high-throughput broadcaster which keeps a FIFO (first in first out order) order queue 

and is connected to each of the duplicates. Then, we coerce a duplicate to be killed if it 

misses any access broadcasted from the broadcaster or fails to finish a storage access 

issued. By using this mechanism, none of the out dated nor conflict data can be returned 

in Zoolander, which guarantees the consistency. However, Zoolander cannot keep its 
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performance when network overhead increase, because it is designed for the 

predictability response both in SLA and data value instead of throughput, but this 

approach can sometime even exceed the performance of traditional replication for 

throughput in system with much non-deterministic performance anomalies, as shown in 

Figure 3. In sum, according to the CAP Conjecture, Zoolander has no guarantee on its 

throughput but ensures both high availability and solid consistency. We will further 

discuss the implementation of this design in detail in Chapter 5. 

 

4.3 Studies on the Service Time 

After discussing the tradeoff among availability, network tolerance and consistency 

in Zoolander, to prove that replication for predictability can help existing storage systems 

to improve their SLA, we did experiments on service time (i.e., processing time for a 

storage access) in some famously used systems to achieve a detailed study on the two 

principles described in Section 4.1. We did this study in our private cloud so that we 

could get more precious control and also repeat our experiment, to get a more accurate 

result.  

 

4.3.1 System environment 

Our private cloud is based on a 16-processor, 32-core Dell cluster operating at 2.66 

GHz with 3MB L2 cache. Each of the virtual nodes is run in one core exclusively in order 

to get rid of L2 cache sharing which may cause some deterministic performance 

slowdown when the number of virtual nodes increased. Here we use User-Mode-
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Linux(UML) [11] which is a port of Linux operating system running in user space of any 

X86 Linux system. The RedHat Linux with kernel level 2.6.18 is used as the operating 

system interface in each of the virtual machines. Then we constructed a serious of PERL 

scripts to help manage the virtual nodes in the cloud. The PERL scripts are based on the 

concept of Usher [18] which allows 4 operations including: 

(1) Start predefined virtual machines on allocated server hardware 

(2) Create and config the virtual network on the nodes running in the cloud; 

(3) Expose public IP addresses and virtual names of all virtual machines; 

(4) Stop a selected virtual machine; 

Our design of the private cloud guarantees its infrastructure to be compatible with any 

other public clouds using X86 Linux instances, e.g., Amazon EC2.  

At the beginning we chose Zookeeper as our storage substrate [15], which is a hash-

table like key-value storage system retrieving its data by given keys. There are three 

reasons that motivate us to choses it: 

(1) Zookeeper is used in production of Yahoo underling the Yahoo Message Broker and 

PNUTS. Hence studying on Zookeeper can provide us with more meaningful results 

that are able to help improve systems that are used in real world. 

(2) Zookeeper uses the wait-free coordination, which eliminates the effect on the latency 

of storage accesses from the user workload computation. This guarantees the latency 

of storage accesses to reveal the actual processing of Zookeeper servers, reducing the 

variance of service time.  
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(3) Although Zookeeper uses the design of wait-free which is a relaxed consistency 

strategy compared to traditional lock based strategies, its enforcement of write-order 

consistency still helps it to maintain stronger consistency than many published key-

value systems [9, 10]. 

(4) Zookeeper‟s key-value storage infrastructure provides fast access and loose structure 

that can help data-intensive services grow. 

To simplify the notation, we use following terms to describe a Zookeeper setup in our 

thesis:  

(1) A Zookeeper group denotes a group of cloud servers hosting the same version of data; 

(2) A Zookeeper node denotes one server in a certain Zookeeper Group. 

Zookeeper allows inconsistent read and read accesses are sent to only one Zookeeper 

node, which improves Zookeeper‟s throughput on read by N times where N is the number 

of Zookeeper nodes. On the other hand, write accesses must contact a majority of 

Zookeeper nodes within a group so the group may become unavailable if the 

communication among most of nodes broke. 

  

4.3.2 Distribution of the Processing Time 

To test the processing time of Zookeeper, we created an initialization script that took 

the IP addresses of all Zookeepers nodes within one group and automatically set up their 

configuration files.  Then we did the experiment based on this focusing on all-read or all-

write storage accesses each of which operated on data with size 2KB. And we set the 

number of keys to be limited to 1000 so that all the data can be fitted within the L2 cache. 
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For simplify, we sent storage accesses seriously with no concurrency according to a 

preset rate. Note that duplication in paper is performed at the group level. 

 

 
Figure 4: CDF of access latencies in Zookeeper for read and write access. The number of 

ZK depicts the number of nodes in a Zookeeper group. 

 

And since read accesses are only processed through one node in Zookeeper, we did test 

on multiple nodes only for write. The result is shown in the Figure 4 above, as 4 

cumulative distribution functions (CDF) for the latencies of write and read accesses in 

Zookeeper Group with 1 node and also the write accesses in Zookeeper Group with 3 

nodes. As can be seen in the CDF, the processing time of fast responses follow in normal 

distribution with very low variance in all the experiments. But variances are much higher 

for the whole CDFs, with coefficients ranging from 1.5-8.  To make it clear, we added an 

additional CDF which followed strictly in normal distribution with standard deviation 
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into Figure 4. The mean of the normal distribution CDF is 25% larger than the write 

latency in ZK = 1 (group with 1 node). Comparing the tail of all CDFs in Figure 4, we 

can see that the tails of all experiments overtake the normal distribution, although their 

means are smaller. And we found that their tails increased further as requests accessed 

more system resources: read accesses were much faster than write access and latencies of 

write to groups with one node were shorter than latencies of write to groups with three 

nodes. This is because write accesses to a Zookeeper group with one single node leads to 

local disk access that will not happen under processing of read accesses and the local 

resource management, i.e. handling I/O interrupt, may cause some anomalies. Moreover, 

write accesses to groups with more than one nodes cost some more latency to send 

messages among nodes in it for the guarantee of consistency. Finally, we can see the 

evidence that Zookeeper could only gain the SLA of 98.8%, 95.7%, 91.5% for read and 

write accesses to one node group and write accesses to three node group even when the 

bounder of latency were set to two times of the mean. Otherwise, we had to raise the 

latency bounder to 16X, 26X and 99X for the three types of accesses to achieve 99.99% 

SLAs, which is unacceptable. Besides Zookeeper, we did the similar experiment in 

MemcacheD too, which is a widely used key-value storage system based on key-value 

data structure similar to Zookeeper but is simpler and inconsistency.  We got a CDF with 

a coefficient of variation of 1.9 and a SLA of 98.3% with 2X mean bounder. This 

suggests that local resource management may be a general cause of anomalies which 

happens in a lot of key-value storage system, not just Zookeeper.  
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4.3.3 Deterministic Anomalies vs. Nondeterministic Anomalies 

We also explored the SLA for browsing requests, which output a CDF with much 

smaller efficiency of variant of 1.2, but its mean response time increased dramatically 

when workloads got heavier and its performance anomalies increased as well. Hence, we 

can conclude that for those complicated storage system, their performance anomalies are 

more workload-independent, which means that they could not get much benefit from 

replication for predictability according to the principle #2 described in Section 4.1.   

On the other hand, we set an experiment that run the same workload in two 

duplicates in the same time, collected percentile of each storage access and plotted them 

into one graph, as shown in the Figure 5. If anomalies of Zookeeper are dependent, either 

the plot‟s upper left part or the bottom right will be empty.  But the result shows that 

anomalies in Zookeeper are independent because every quartile of the plot is touched 

evenly. This proves that Zookeeper is a workload independent system and its anomalies 

are nondeterministic, which indicates that the SLA of Zookeeper satisfies the principle #2, 

which allows its SLA to be improved by applying replication for predictability. 
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Figure 5: The proof of nondeterministic of anomaly in Zookeeper. Anomalies in one 

duplicates does not increase the possibilities of anomaly in the other 

 

4.3.4 Queuing delay  

In practical situation, queuing delay also slows down the response of storage 

systems, which also has to be taken into consideration. Here we set an experiment to test 

the queuing lengths of two running duplicates over time. In this experiment, the arrival 

rate of requests were set to be 500req/s with exponential distribution, so significant peak 

can still be caused although the peak throughput of each node was much larger 

(~2000req/s).  
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Figure 6: Waiting time of requests over time 

 

The result is revealed in Figure 6. Spikes in this plot show that at some point of time 

when a performance anomaly happens, the subsequent request must have to wait until its 

former one to be finished. Even worse, if the queue grows long enough when anomalies 

keeps to happen for several times, one duplicate can totally be unable to mask the 

anomaly any more.  

 

4.4 Model for SLA Prediction 

Based on the analysis above in the Chapter 4, we propose the SLA prediction model 

of Zoolander. The model helps to characterize the effect from the nondeterministic 

performance anomalies for multiple duplicates running the same workloads. Notations 

used are shown in the Table 1, where the only output is ŝ which is a percentile depicting 

the expected SLA and others are the inputs.  
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Table of notation 

Notation Meaning 

ŝ  Expected SLA 

N Number of duplicates 
  Target latency bound 

( )n k  Percentile of service time in a duplicate n 

within latency below k 

λ Mean of the storage access rate 

μnet Mean of the network latency ( between 

duplicates and clients) 

μn Mean service time latency of duplicate n 

Table 1: Notation of inputs and outputs of Zoolander 

 

4.4.1 Basic Model 

First we present the basic prediction model of SLA neglecting the network and 

queuing delay. Based on the two principles described above, since every duplicate runs 

the same workload with consistency guarantee, the duplicate that replies first can 

guarantee to return the correct data. So the possibility that all duplicates satisfy the SLA 

is just the possibility that the fastest duplicates return its response within the time 

constrain of the SLA. The probability can be computed by the follow formula: 

1 1

0 0

ˆ [ ( )* (1 ( ))]
N n

n i

n i

s  
 

 

     

Here, we denote duplicates from the number 0, so the tab of duplicates will be 0, 1, 2, 

3 … When the number of duplicate is one, denoted as duplicate #0, the ŝ will be 0( ) , 

which means the probability of getting service time latency below  is just the 

probability of that only duplicate responds the accessed within the latency below  .  
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Then, increasing the number of duplicate to be two, SLA violations happen when 

performance anomalies occur. Besides the situation that duplicate #0 responds fast within 

the latency below , accesses can also be responded fast by the whole system if the 

duplicate #1 masks the slow accesses in duplicate #0. Since in most cases resource 

maintained in each of the nodes in the cloud is the same, the percentiles of service time of 

all of the duplicates to finish processing a request within the latency below  are also the 

same, meaning that their ( )n   are the same too. Hence, we can get the ŝ  in this case to 

be ( )n   plus (1 - ( )n  ) * ( )n   where n can be 0 or 1 and (1 - ( )n  ) is just the 

probability of duplicate #0‟s performance anomalies to be masked by duplicate #1. We 

can achieve the same result by exchanging the tab of the two duplicates, so the order of 

duplicates will not actually affect the result.  

Based on the analysis and condition above, recursively, we can conclude that every 

time adding a new duplicate, the ŝ will be added by (1- ( )n  )
N-1

 * ( )n  . So the 

formula above can be derived to a simpler form given that processing time distribution in 

each of the duplicates are the same, as shown below:  

1 1

0

ˆ ( )*(1 ( )) 1 (1 ( ))n N

n n n

n

s    



       

 

4.4.2 Queuing Delay & Network Delay 

In real situation, to be practical, packets in the cloud cannot reaches their destination 

immediately because the bandwidth in the cloud is always finite. So the network latency 

should not be eliminated when designing the SLA model. More important, in real case, 
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since workload running in each of the duplicate is the same which decides their access 

patterns to also be the same, and the processing rate of each of the duplicates is finite, 

queuing delay will probably be caused when access rate increases. We can see the effect 

of queuing delay and the performance anomalies it causes in the Figure 6. Therefore, we 

must take these two kinds of latency into our model too, to make the SLA prediction 

reflect the real client‟s perceived latency, which consists of processing time, queuing 

delay and network latency. 

We found the best way to fairly add the network latency and queuing delay is to 

deduct them from the targeted latency bound ( ), which requires all duplicates to reduce 

the expected SLA in proportion to the expected queuing delay and network latency as 

well. So can get the  of each of the duplicates as formula below: 

n net queue       

Then the problem here is how to get the value of net  and 
queue . We can simply get  net  

by collecting the distribution of the network latency cost by sending a packet from one 

node to another in the cloud. But to get the
queue , it is more complicated. 

We studied prior theories of queuing delay to evaluate the effect of queuing delay in 

order to add it into our SLA prediction model. To help illustrate, we take Zookeeper as an 

example whose processing time has been well analyzed above. M/G/1 queuing model can 

be used here to help analysis which requires the inter arrival rate to be exponential 

distributed and the processing time to be general distributed. We then get the equation of 

computing 
queue  by the applying M/G/1 model, as shown in the formula below: 
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* *

2 1

v
queue n

C 
 







 

The  denotes the function of system utilization and its distribution variance is denotes as

2

vC . We can use the mean processing time to divide the mean arrival rate to get the 

utilization. And the here is different in each of the Zookeeper duplicate (group).So, the 

SLA prediction model can finally be got as the equation below: 

1 1

0 0

ˆ [ ( )* (1 ( ))]
N n

n n i i

n i

s  
 

 

     

The model can be simplified by using M/M/1 model, which can eliminate the coefficient 

variance (denoted as 2

vC  above) for some storage system whose processing time is 

exponential distributed. And the model can also become more general by applying the 

G/G/1 model because it does not have the constraint of the M/G/1 model that needs the 

inter-arrival rate to be exponential distributed. But some constraint is necessary for the 

G/G/1 model to be applied. We leave the further analysis of the queuing delay as our 

future work. 

 

4.5 Model-Driven Analysis   

Based on the SLA prediction model, we can produce a more comprehensive tradeoff 

analysis on replication for prediction and replication for throughput. First we computed 

the mean of  processing time from the CDF of the latency of write access to a single node 

Zookeeper duplicate shown in Figure 4 as “write, ZK=1”. The targeted bounded latency 

here was set to be 5ms, which was around two times larger than the mean service time 
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latency. Then we varied the utilization of the system into 3 different number as 1%, 5%, 

15% by changing its arrival rate of the storage accesses for the configurations using 

replication for predictability. The similar work was done to configurations using 

replication for throughput too by changing the storage accesses arrival rate to each of the 

replication and allowing inconsistent write. After that, we put all of the data above as 

input into Zoolander and plotted its output.  

The result is shown in the Figure 7, as the percentiles of service time latency below 

5ms in configuration using replication for predictability or replication for throughput with 

different number of duplicates. 

 

Figure 7: The SLA predicted by Zoolander for different configuration based on 

replication for predictability and replication for throughput 

As can be seen in the Figure 7, when the utilization is heavy (15%), the 

configuration using replication for predictability produces really bad SLA (only 2%) and 

the SLA is improved little by adding the number of duplicates. This is caused by the 
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queuing delay: once a performance anomaly occurs in some duplicate, one or more 

accesses will be delayed and the queuing delay will be produced. Even worse, this 

queuing delay will probably keep increasing infinitely since the arrival rate is very high, 

which means that one duplicate may not be able to mask any performance anomalies of 

the other duplicates once a performance anomaly happens in it. This is also why the SLA 

still does not increase when adding duplicates. However, the situation above can be well 

avoided by using replication for throughput, which distributes accesses into different 

replicas so one storage access can be issued to another replica when some replica gets 

performance anomalies. The queuing delay is mitigated by using replication for 

throughput and the SLA grows to 90
th

 percentile when the number of replicas is increased 

to 32. 

Then, in the situation that the utilization is smaller as 5%, the SLA of replication for 

throughput still exceeds that of replication for predictability when the number of 

duplicates (or replicas) is small. But then the SLA of replication for predictability 

overtakes since the point when the number of duplicates (or replicas) grows to 4. This is 

because that the queuing delay in every duplicate in this situation is finite this time 

because the processing rate is much larger than the arrival rate, so one duplicate can 

evenly finish all of its delayed access caused by the performance anomalies and masks 

the anomalies happening in the other duplicates, which improves the SLA. More 

anomalies can be masked by adding duplicates in this situation so the SLA can keep 

increasing to near 100
th

 percentile (99.99%). In the other hand, although the queuing 

delay can be mitigated, each of the replicas has its own maximum SLA, i.e., if the SLA of 
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one replica is 90%, the replica cannot finish 90% of its storage accesses shorter than 5ms; 

anomalies happens when processing the rest of the accesses. So actually the SLA of 

every replica becomes the bottleneck, and the SLA cannot be increased larger than 90% 

in this situation. 

Afterwards, when system utilization reduces to 1%, approximately no queuing delay 

will be produced in this situation. So the SLA of configuration using replication for 

predictability exceeds that of configuration using replication for throughput at the very 

beginning. This is also because the bottleneck of the SLA of each of the replicas.  

Based on the Zoolander, we provide a comprehensive comparison in the tradeoff 

between replication for prediction and replication for throughput. We can see that 

replication for throughput is more suitable for those systems with high utilization while 

replication for prediction can improve the system‟s SLA to an extremely high level in 

systems where queuing delay is not significant. Based on the specific environment of the 

system, managers can use Zoolander‟s prediction model to help them find the proper 

strategy of applying replication, to achieve the best performance. 
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Chapter 5: RP Zookeeper 

 

As be pointed by the prior work as SCADS director [29], replication for prediction 

can be built on top of the existing systems while the SCADS director only supports the 

read accesses. We implemented our RP Zookeeper to validate our Zoolander SLA 

prediction model. RP Zookeeper is an extension of Zookeeper which implements the 

group level replication for prediction, with its guarantee of consistency and high SLA for 

both read and write accesses.  

In the RP Zookeeper, write accesses are sent through the message repeater which 

maintains the FIFO order; while read accesses are directly sent to Zookeeper groups for 

the purpose of best performance. In every leader node of Zookeeper groups, there is a 

Zookeeper proxy that cooperates with the message repeater to ensure the consistency 

across all the groups. The results of the storage accesses are responded by the Zookeeper 

proxies directly to clients, which can save a network trip.  
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Figure 8: The components of RP Zookeeper. Replication for predictability occurs at the 

group level, and each of the groups consists of 3 nodes. Here the write accesses are sent 

to the multicast switch to be broadcast and the read accesses are sent directly to the 

Zookeeper groups. 

 

In this chapter, we will first present the reason of choosing Zookeeper as the base to 

work on, and then will describe each components of RP Zookeeper in detail including the 

client, the Zookeeper proxy and the message repeater. We believe that the solution of RP 

Zookeeper can be borrowed to help improve the SLA in other storage systems which also 

suffer from performance anomalies such like the MemcacheD as analyzed in Chapter 4.  

 

5.1 The reason of choosing Zookeeper 
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We choose Zookeeper as our storage system because of two typical implementation 

decision of Zookeeper. The first sound advantage of using Zookeeper is its enforcement 

of the FIFO order for its write accesses which forces all the write accesses to the leader 

node to be ordered and then to be broadcasted to slave nodes. One write access in 

Zookeeper cannot be committed until the majority of nodes updating their snapshot, 

which is on the Zookeeper‟s Zab Atomic Broadcast protocol [16, 20]. This 

implementation of Zookeeper allows to further improve the availability of Zoolander by 

just adding nodes to each of the Zookeeper groups without any concerning of the 

consistency; only thing we should do is just maintaining the consistency among all of the 

groups. Or if we choose other storage systems like MemcacheD without this enforcement, 

we must do extra work to maintain the consistency inside every group when adding nodes. 

The other important reason motivates us to choose Zookeeper is its wait-free 

synchronization primitive based on the lock free implementation supported by its 

centralize FIFO order maintenance described above. In pure lock-based strong consistent 

systems, once a lock-hogging caused by some duplicate, the other duplicates will have to 

interact to maintain the consistency, which actually produces a deterministic anomaly 

violating the Zoolander‟s first principle discussed in Chapter 4. Some work has been 

proposed recently to avoid the serious effect due to the lock-hogging like using lease to 

thwart lock hoggers which is applied by Chubby and Farsite[11]. But even the leases can 

only bound the amount of time that one client delaying others. While the lock free design 

used in Zookeeper completely neglects this kind of resource sharing among nodes (i.e. 
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the locks) and avoids the slowdown caused by waiting for the lock release which actually 

eliminates the performance anomalies caused by locks. 

 

5.2 Implementation 

5.2.1 Message Repeater 

The message repeater is the middle component of RP Zookeeper which sits between 

the clients and Zookeeper proxies. All of the write accesses will be broadcasted through it, 

to the Zookeeper proxies running in the leader node in each of the groups. We implement 

this message repeater in C programming language and set it to run in a separate server to 

achieve the maximum performance. The message repeater maintains one FIFO queue for 

all accesses which are sent through it and forwards them to Zookeeper proxies in the 

same order. But the accesses from different clients are not interleaved. This operation 

above guarantees that the write accesses to be linearized and the FIFO order in client 

level similar to Zookeeper. Specially, every time when the message repeater forwards a 

storage access, it attach it with a logical timestamp reflecting the global order of that 

access, then increases the timestamp by one after broadcasting the access. 

 

5.2.2 Zookeeper Proxy 

Zookeeper proxy is running in the leader node of each group and is also written in C 

programming language. It takes responsibility of storage access processing and 

timestamp validating. The proxy uses its main thread to listen on all the packets which 

may be from clients for read accesses or from the message repeater for write accesses. 
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Here the packets are defined by a struct including 4 fields as the type of access (read or 

write), address of client to respond, a key-value pare (denoting the key to read or to write 

with the written value), and a timestamp which is attached by the message repeater only 

for write access.  

Besides, the Zookeeper proxy also contains a second thread that unpacks the packets 

and validates their timestamp by comparing with the most current timestamp. One 

timestamp is valid if it is one digit larger than the most current one and its attaching 

storage access in the packet will be processed. Otherwise, if the validation of the 

timestamp fails, the proxy will kill the duplicate for the potential failure that may have 

happened when transferring data in the network. A duplicate may also be killed by the 

Zookeeper proxy if local failure (e.g. disk error or the processing time exceed a timeout 

defined by the manager) happens when processing the storage access, which will be 

found by examining the output of the local Zookeeper group.  

To make our implementation of RP Zookeeper more general, we also added an extra 

operation called write-all-duplicate which is similar to the synchronize request in 

Zookeeper. Write-all-duplicate will not be completed until all the duplicates finish the 

write access successfully. This operate can be issued by clients to guarantee their 

subsequent read to any of the duplicates to return an up-to-date data.  

 

 

5.2.3 Client 
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The Client in RP Zookeeper just uses the library of RP Zookeeper. It packs all the 

storage accesses to duplicates into the packets with the format described above and sends 

them to Zookeeper proxies (for read) or the message repeater (for write). It also uses a 

second thread to listen to packets returned by Zookeeper proxies and detect 

inconsistencies if responses ever differ. 

 

5.3 System overhead  

 

Figure 9: CDF of the network latency and whole system overhead of RP Zookeeper 

 

To ensure the correctness of RP Zookeeper, its system overhead, which includes two 

parts as network latency and the extra processing time introduced by the system of RP 

Zookeeper must be light and reliable. We set two experiments to verify this requirement 

as shown in Figure 9: it turns out that our system fits the requirement well because the 

mean system overhead is very small (< 0.001ms) and its latency is less than 0.5ms (which 



38 

 

is much less than the Zookeeper processing time) even in the worst cast when network 

outlier occurs, which proves the reliability of RP Zookeeper. 

 

5.4 Validation of Zoolander using on RP Zookeeper 

We deployed our RP Zookeeper in our private cloud which is described above in the 

Chapter 4, to validate our Zoolander SLA prediction model. First we used a single node 

Zookeeper duplicate, sent it with 10,000 write accesses and collected its latency 

distribution as the input of Zoolander. The targeted latency bound was set to 5ms here 

which was the 90
th

 percentile value of the service time latency distribution (also be used 

as a Zoolander input). 

We began this experiment by issuing write accesses to the system initially with one 

duplicate then added the number of duplicates by double each time with same write 

accesses issued, to see the SLA achieve. The result is plotted as shown the in the Figure 

10. We can see that the SLA increase when the number of duplicates increases as 

predicted by the Zoolander. The SLA can reach 99.99% when the number of duplicates 

added to 16. Also we can see that the absolute error (i.e. differ between the observed SLA 

and the predicted one) is very low (even below 0.002 in all cases). This reveals that the 

prediction of the Zoolander is very actuate.  
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Figure 10: Result of the SLA observed by in the RP Zookeeper and predicted by 

Zoolander‟s prediction model. 

  

Then we set the second experiment to see if the prediction of Zoolander that each 

percentiles of the SLA can be improved by adding the number of duplicate. In the 

experiment, we started with a RP Zookeeper configuration with 8 duplicates in it, and 

changed the targeted latency bound to vary from 75
th

 to 99.5
th 

then we compared the 

differ between actual SLAs we observed and those predicted by the Zoolander. As can be 

seen in the result shown in the Figure 11, the absolute error is still very low no matter 

which percentile is chosen. Figure 11 also depicts a strong gain for latency bound after 

96
th

 percentile which means the RP Zookeeper can still further improve the SLA as 

predicted by Zoolander by adding duplicates when start latency bound is set to an 

extreme high level. For example, if setting the targeted latency to 99% of the CDF of the 
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single node duplication, the SLA can be improved to a higher level (99.991%, which is 2 

magnitude larger than 99%) by using 4 duplicates.  

 

 

Figure 11: The absolutely errors of the prediction of Zoolander in different SLA 

 

We also did the similar experiment to diverse workloads. Here we plot our result of 

two experiment as the form of numbers of nines achieved under read accesses and under 

larger Zookeeper group size (meaning that each of the groups contains more than one 

nodes), as shown in Figure 12and Figure 13. We focus the number of nines to be 

achieved because it is always the practical metric for SLA. The Zoolander‟s prediction is 

still very accurate and the error is less than 0.001.  
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Figure 12:  SLA achieved for only read accesses. 

 

 
Figure 13: SLA achieved by using 3-node Zookeeper duplicate 

 

Specially, Figure 12 shows that the read can be finished in our private cloud 

extremely fast (less than one microsecond). So it may happen that sometime read 

accesses get responded before they get broadcasted by the message repeater to all the 
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duplicates. And the Figure 13 shows that the SLA decreases when the group size 

increased. This is because the atomic broadcasting mechanism of Zookeeper that forces 

the nodes to communicate which produces performance anomalies. But not matter how 

we changed the workload, Zoolander continued to be able to produce a reliable and 

accurate prediction. 

Finally, to make our validation more solid, we did the similar test in heterogeneous 

platforms. Recall that all of the experiments we did were run in our private cloud, so we 

were able to change the virtual environment in it. For example, we have done the 

experiment that changed to allow the L2 cache sharing in our virtual machines and 

created a new CDF for the single node duplicate. As a result Zoolander still predicted 

SLA accurately with less than 0.0002 errors. Then we changed the networking substrate 

in our cloud to be based on a user-level SLIRP device. This time the prediction of 

Zoolander were even more accurate with number of errors smaller than 0.0001. 
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Chapter 6 Zoolander in System Management 

 

In this chapter, we present how the Zoolander can be used in the real system 

management, which means to get a highest SLA by using minimum resource. The 

challenge of improve the SLA in system management by using Replication can be 

concluded into the two questions below: 

(1) Given fixed number of nodes, how to apply replication strategies to achieve the 

highest SLA for a certain workload? 

(2) Given an expected SLA, how to achieve that target by using the minimum number of 

nodes? 

We did our experiment here based on the two workload described in the Chapter 2, which 

are Inner-Join Olio and Gridlab-D.  

The first experiment is based on the workload Inner-Join Olio. First we created the 

data of Inner-Join Olio in our RP Zookeeper by creating two tables as described below: 

(1) A table stores users‟ information, which takes the username as the key and other 

information about the user (e.g. First name, Last name ..) as the value; 

(2) An events‟ detail table that list all the detail of every event. This table takes the 

eventid as its key and other detail as its value.  

We assume that each one Olio request:  

SELECT username  
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From Person INNER JOIN eventandperson  

ON eventandperson.eventid = 100 and  

person.firstname = „A%” ; 

 is related to 30 events and 20 users in our storage system. Hence every time when 

issuing an inner join olio request, 50 parallel storage accesses (i.e. 30 reads to the event 

table first then 20 reads to the user table with a barrier between them) will be sent to our 

storage system with exponential distributed inter-arrival rate. Then, we allocated 4 nodes 

in our private cloud to config them with different replication strategy and see the final 

SLA them can achieve. Here we based on these 4 nodes, we can have 3 replication 

choices: first, all of the 4 nodes can use traditional replication for throughput; second, all 

of the 4 nodes can use replication for predictability; third, 2 of the nodes can use 

replication for throughput while the others can use replication for predictability (i.e. 2 

replicas and 2 duplicates). The system utilization in this experiment is set to 8%. 

 
Figure 14: The SLA of the Inner-Join Olio workload achieved by using different 

replication strategy. 
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The result of the experiment is plotted in Figure14, where we can see that the mix of 

replication for predictability and replication for throughput achieves the best SLA 

because it is able to use the minimum latency bound in the majority of the 4 levels of 

percentile (3/4) compared to the other two replication configurations, but the peak 

throughput can be double by using this mixed replication configuration.  

Then in the second experiment, we replayed the capture of the Gridlab-D workload 

by issuing 4 reads then 3 write for each of the simulation. We let these accesses to arrive 

in batches to reflect its intensive workload at the beginning and end of a simulation event. 

So here the G/G/1 model can be more suitable, as discussed in the Chapter 4. Then we 

did the similar experiment as the one did base on Inner-Join Olio workload, to see the 

highest SLA that can be achieved by using different replication strategies.  

 
Figure 15: The SLA of the Gridlab-D workload achieved by using different replication 

strategy. 
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We can see the result as shown in the Figure 15. Here because of the heavy write 

workload, more duplicates are needed to a high SLA. So it is better to apply replication 

for predictability to all of the nodes.  

Those two experiments above show examples about the way to find the answer of 

the question 1. Moreover, we did another experiment toward the second question that to 

find the minimum number of duplicates to achieve the expected SLA. To simplify, here 

we only did the comparison between the configuration that applied replication for 

throughput to all the nodes and the configuration that used a mix of replication for 

throughput and replication for predictability. We set the targeted SLA to be: 99% of all 

the accesses must finish within the latency below 10ms, and added 2 nodes per time to 

see the maximum throughput that can be support by that system.  

 
Figure 16: Maximum throughput that can be supported by using different replication 

strategy with different number of nodes 
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Figure 16 depicts the result of this experiment: we can see that using a mixed replication 

configuration can support larger throughput than only using replication for throughput. 

This is because although replication for predictability does not improve the throughput, it 

improves the “goodput” which is the number of accesses that can be processed with very 

reliable performance guarantee. And it can also be seen in this figure that with different 

number of access rate, the number of duplicates needed to achieve a target SLA is 

different, we can use Zoolander to get the best mixed strategy to achieve the best tradeoff.  
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Chapter 7 Conclusion 

 

We studied comprehensively on replication for predictability here in this thesis, 

which is a mechanism that reduces the non-deterministic anomalies to help improve the 

SLA of networked systems. This meets the demand of new data-intensive workload that 

calls for storage systems with high SLAs to achieve the same performance as traditional 

static-content workloads. We analyzed in depth of the reason of this demand by studying 

two typical data-intensive workloads which are Inner-Join Olio and Gridlab-D. Then we 

proposed the Zoolander, which is a SLA prediction model that takes all the factors may 

affect the client‟s perceived latency including the network delay, the processing latency 

and the queuing delay into consideration and produces an accurate prediction of the SLA. 

Besides the core contribution of Zoolander, we implemented the RP Zookeeper on top of 

the Apache Zookeeper, which is a storage system supporting replication for predictability 

for a wider range of use (both the read and write are supported) compared to the SCADS 

director.  Based on the Zoolander and RP Zookeeper we showed examples of using the 

Zoolander‟s prediction model to pick the best strategy of replication that achieves that 

highest SLA by using the minimum resource. Our results have two significant impacts. 

First, we proved that replication for predictability can scale SLA by increasing the 

number of duplicates, but this improvement must be based on the situation that both of 

the queuing delay and network latency are small. Second, by the prediction model of 
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Zoolander, we provided a general way to system managers to decide between replication 

for predictability and replication for throughput across different workload and system 

environment. 
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