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ABSTRACT

There is an established bijection between finite-index subgroups Γ of Γ(2) and

bipartite graphs on surfaces, or, equivalently, triples of permutations. We utilize this

relationship to study noncongruence subgroups in terms of the corresponding graphs.

In particular, we will produce infinite families of noncongruence subgroups of Γ(2)

of every even level by constructing their associated graphs. Also, given a graph on

a surface, we have a method to produce generators for the corresponding group Γ

in terms of the generators of Γ(2). Given generators for Γ(2n), we show how to

determine whether or not a graph of level 2n corresponds to a congruence subgroup.

Finally we give an algorithm to find permutations and generators for groups of the

form Γ(2p) for p prime.
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CHAPTER 1

INTRODUCTION

Graphs on surfaces have a wide range of applications in mathematics. In particular,

the notion of a bipartite graph in which we have a cyclic ordering at each vertex

proves surprisingly powerful. There is a well-known correspondence between these

graphs and finite-index subgroups Γ of Γ(2), which can be realized by considering

how such groups act on the upper half-plane. The graphs are easy to describe and

work with, even when the properties of the groups are not. One such property is

that of congruence. Noncongruence subgroups of the modular group are of interest

in number theory through the theory of modular forms and their connections with

Galois representations. See for example the papers of Atkin and Swinnerton-Dyer [1],

Li, Long, and Yang [6, 7] and Scholl [11]. While much is known about congruence

subgroups, since one can describe them in terms of congruences on the entries, non-

congruence subgroups are more mysterious. However, the correspondence between

groups and graphs does not discriminate between congruence and noncongruence,

so the graphs give a hands-on way to work with both. In this thesis we will try to

understand as much as we can about noncongruence subgroups of Γ(2) in terms of

the associated graphs.

There are several existing tests and criteria for a subgroup to be congruence, such

as those due to Hsu [5] and Larcher [9]. Using the correspondence between subgroups

and graphs we reinterpret these criteria in terms of graphs in Chapter 3. Exploiting
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these criteria, and the fact that the graphs are easier to work with than the subgroups

themselves, in Chapter 4 we construct examples of graphs corresponding to infinite

families of noncongruence subgroups. We construct infinite families for every even

level on a torus and we have families for (almost) every even level on a surface of

genus 2.

In order to realize the noncongruence subgroups Γ coming from graphs more

specifically as subgroups of Γ(2), in Chapter 5 we develop a method to produce

generators for Γ corresponding to a specific graph in terms of the standard generators

for Γ(2). To do so, we introduce the notion of a graph tiling for the associated surface.

The graph tiling also allows us to give a method by which to determine if one group

contains another, given the graph for the large group and generators for the smaller

one in terms of the generators for Γ(2), by determining if the corresponding graphs

cover one another. Thus, given generators for Γ(2n), we can determine if a graph

corresponds to a congruence subgroup of level 2n by determining if the graph for

Γ(2n) covers the graph for Γ.

For this to be effective, we then need generators for the principal congruence

subgroups Γ(2n) in terms of the generators for Γ(2). In Chapter 6 we give an algo-

rithm which produces both the permutations and generators for the Hecke congruence

groups Γ0(2p) ∩ Γ(2) and Γ1(2p) ∩ Γ(2) and the principal congruence group Γ(2p),

with p prime.

Many of the results were inspired by looking at countless examples, some of which

are recorded in the Appendices. These include some of the graphs for the Hecke

congruence groups.
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CHAPTER 2

THE CORRESPONDENCE

In this chapter we will introduce some notation and terminology, some of which is

standard in the literature, and others which are introduced for the purpose of this

thesis. Section 2.1 will study certain subgroups of PSL2(Z) and their action on the

upper half-plane. Section 2.2 will introduce equivalent ways to view the particular

type of graph we are interested in. Section 2.3 will explain the established relationship

between these objects.

2.1 Subgroups of PSL2(Z)

We are working within the group PSL2(Z) = SL2(Z)/ ± I. When we use a matrix,

it is always understood as an equivalence class in PSL2(Z).

Definition 2.1.1. The principal congruence subgroup of level n is the group

Γ(n) = {γ ∈ PSL2(Z) | γ ≡ ±I (mod n)} .

We can also define some groups which contain Γ(n):

Γ0(n) =

γ =

a b

c d

 ∈ PSL2(Z)

∣∣∣∣∣ c ≡ 0 (mod n)


Γ1(n) =

γ =

a b

c d

 ∈ Γ0(n)

∣∣∣∣∣ a ≡ d ≡ ±1 (mod n)


3



Similarly we can define Γ0(n) and Γ1(n) such that b ≡ 0 mod n, instead of c ≡ 0 mod

n. These are examples of congruence subgroups: a subgroup Γ ⊂ PSL2(Z) is called

congruence if it contains Γ(n) for some n. For a congruence subgroup Γ, we define

the level of Γ as the smallest n such that Γ(n) ⊂ Γ.

In fact we will be most concerned with finite-index subgroups of Γ(2). Γ(2) is

freely generated by the elements A =

(
1 2

0 1

)
and B =

(
1 0

2 1

)
. Throughout this thesis,

A and B will always stand for exactly those matrices.

We are working within PSL2(Z) instead of SL2(Z) because we are interested in

these groups acting on the upper half-plane as linear-fractional transformations. Our

preferred fundamental domain for Γ(2), D, is given in Figure 2.1. The dashed lines

indicate that the arc from 0 to 1 and the arc from −1 to ∞ are not included, though

in the future this won’t be made explicit.

0-1 1

D

Figure 2.1: Fundamental domain for Γ(2)

Given a group Γ ⊂ Γ(2) such that [Γ(2) : Γ] = n <∞, we can find a fundamental

domain for Γ consisting of n copies of the domain for Γ(2). When we give such a

domain we will usually show it as tiled by copies of D, and label each tile by an

4



element of Γ(2) in terms of its generators A and B. When we are referring to a region

in the upper half-plane instead of just a matrix, we will use the term tile. Thus, the

tile A is the region of the upper half-plane consisting of the image of D under the

matrix A. In general we can find the image of a matrix X by applying X to the

elements of D. Some sample tiles are labeled in Figure 2.2. Because we are now

labeling the tiles with coset representatives, we will use I instead of D for the original

domain of Γ(2).

B
2

BA
1

ABAB
1

AB
2

ABA
1A

1
BA

1

AB
2

A
1
B

2

B
2

B
1

BA
1
BA

1
B

1

I AA
1

A
1
B
2 B

1
A AB

1
AA

1
B

1
A

0 1
1

2

1

3

1

4

1

5

2

3

3

51

Figure 2.2: Images of D under some elements of Γ(2)

One of the challenges in viewing fundamental domains for groups of higher index is

that the cusps become increasingly close together. To overcome this difficulty we will

use the following approach: the x−values for the cusps will be shown equally spaced

on the axis. This results in significant distortion of the regions, but the smallest

regions are easier to see. Figure 2.3 shows the above tiles displayed in this manner.

The matrix A =

(
1 2

0 1

)
acts on D by translating to the right, which is equivalent

to rotating counterclockwise about the cusp ∞. The matrix B =

(
1 0

2 1

)
acts on D

by rotating clockwise about the cusp 0. In general if we rotate clockwise about an

image of 0, we find the adjacent tile by multiplying on the right by B. If we rotate

counterclockwise about an image of ∞, we find the adjacent tile by multiplying on
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A
1
B

1
A A

1
BA

1

A
1
BA

1
B

1

A
1
B
2

A
1
B

2
AB

2

AB
2AB

1
A ABA

1

ABAB
1

B
1 B

BA
1

B
1
A B

2
B
2

0 1
1

2

1

3

1

4

1

5

2

3

3

5

I AA
1

1

Figure 2.3: Images of D under some elements of Γ(2), rescaled

the right by A. For example, consider the cusp at −1
2
, which is the image of∞ under

the matrix B−1. Rotating counterclockwise about −1
2
, we pass from the tile B−1 to

the tile B−1A.

Example 2.1.2. Consider the group Γ = Γ0(6) ∩ Γ(2).

Because [Γ(2) : Γ] = 4, we can form a fundamental domain for Γ from four copies

of D. (See the index formula in Lemma 6.1.1.) The matrices B, B2 and BA−1

represent distinct cosets of Γ in Γ(2). The tiles B and B2 are found by rotating

clockwise about the cusp at 0. Rotating clockwise about the cusp at 1
2

we pass from

the tile B to the tile BA−1. This domain is pictured in Figure 2.4.

2.2 Graphs

We will be dealing with a special type of graph which can be described in several

equivalent ways. Because these objects have a large variety of applications, these or

their close relatives have been described (and named) in various ways in the literature.

A few examples: One of the most notable is Grothendieck’s term dessins d’enfants,

or “children’s drawings”, which he introduced in his Sketch of a Program, [4]. Birch,

in [2], referred to them as drawings. In Lando and Zvonkin’s text [8] they are called

maps (or hypermaps depending on the exact object used). Because these will be the
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Figure 2.4: Fundamental domain for Γ0(6) ∩ Γ(2)

only type of graphs we are interested in, here they will be referred to simply (albeit

imprecisely) as graphs. In this section we will examine these graphs and define other

related terms.

Definition 2.2.1. A graph G will mean a connected bipartite graph G together with

a cyclic ordering of the edges at each vertex.

Example 2.2.2. Let’s consider two very basic examples, pictured in Figure 2.5.

Notice that if we were considering these as graphs in the usual way they would be

equivalent: they each have five edges, one black vertex and three white vertices, all

connected in the same pairs. However, we are also concerned with the cyclic ordering

at each vertex. If we rotate counterclockwise about the black vertex and look down

each edge, in graph (a) we see the white vertices in the order W2, W2, W1, W1, W3;

while in graph (b) the order is W2, W1, W2, W1, W3. We will have a standard

convention when labeling the edges: from the viewpoint of a black vertex, the edge

label will always lie on the left of the edge.
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Figure 2.5: Two distinct graphs, each with five edges

Here is another way we can view the same objects. That these definitions are

equivalent is a consequence of Theorem 2.3.1.

Definition 2.2.3. By the term graph, we mean a pair G = {G,Σ}; where G is

a connected bipartite graph on a compact orientable surface Σ, and such that the

complement of the graph is a disjoint collection of 2-cells, called faces.

Thinking in these terms, we consider graph (a) to be on a sphere. Graph (b)

cannot be placed on a sphere without changing the ordering of the edges. Instead, it

can viewed on a torus; see Figure 2.6. While graph (b) can be embedded on a surface

of higher genus, in doing so we would not satisfy the condition that the complement

of the graph be a disjoint collection of 2-cells. At the end of this section we will

discuss a way to calculate the appropriate genus of the surface for a given graph.

We refer to the degree of a vertex as the number of edges attached to it. For the

faces we remember our convention of placing an edge label on the left side of an edge

(from the viewpoint of a black vertex). We say a face contains an edge if the label

for that edge is inside the face, and the degree of a face is the number of edges it

8



123

4
5

1

2

3

4

5

4

1

W
1

W
1

W
2

W
2

W
3

W
3

Figure 2.6: Graph (b) viewed on a torus

contains. We also have an ordering for each face: when standing at a face center, we

rotate counterclockwise and record the edges.

In our examples, graph (a) has a black vertex of degree 5, two white vertices of

degree 2, a white vertex of degree 1, two faces of degree 1, and a face of degree 3

with ordering 2, 5, 4. Compare this to graph (b): we see in Figure 2.6 that while the

vertices have the same degrees as graph (a), there is only one face, which has degree

5 with ordering 1, 2, 3, 5, 4.

We can use these degrees to define another useful term. The level of a graph is

twice the least common multiple of the degrees of all vertices and faces in the graph.

Graph (a) has level 2·lcm(1, 2, 3, 5) = 60, while graph (b) has level 2·lcm(1, 2, 5) = 20.

(This is related to the term level we defined in Section 2.1, as we will see in Section

3.2.)

For large graphs it isn’t always practical to draw the pictures. Instead, it is enough

to keep track of the vertices and the orderings of the edges at each. We can write

these orderings as cycles in Sn where n the number of edges in the graph. This leads

to another version of our definition, also equivalent because of Theorem 2.3.1.
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Definition 2.2.4. By the term graph, we mean a pair of permutations in Sn: σ, in

which each cycle corresponds to the cyclic ordering of the edges at a black vertex,

and α, in which each cycle corresponds to the ordering of the edges at a white vertex.

(Note that the trivial cycles of length 1 also correspond to vertices.) In order for the

graph to be connected, we require that the group generated by σ and α be transitive

on the n edges.

In graph (a), at the black vertex we see the permutation (1, 2, 3, 4, 5), while the

white vertices are represented by (1, 2)(3, 4)(5). In graph (b) we have the same permu-

tation for the black vertex, but the white vertices yield the permutation (1, 3)(2, 4)(5).

If we have been careful with our conventions of where to label the edges and

to rotate counterclockwise to read the cycles, we can notice this phenomenon: the

product of the cycles for the black vertices and the white vertices will tell us about

the faces of the graph. This is shown in Proposition 1.3.16 in [8]. For graph (a) we

have the calculation

(1, 2, 3, 4, 5) · (1, 2)(3, 4)(5) = (1)(2, 4, 5)(3); (2.2.1)

for graph (b) we see

(1, 2, 3, 4, 5) · (1, 3)(2, 4)(5) = (1, 4, 5, 3, 2). (2.2.2)

Notice that these relate to the faces we found for each graph when drawn on its

respective surface. If we choose a point in the center of each face, the inverse of each

cycle corresponds to the edges we see rotating counterclockwise in that face. Thus,

we can specify a graph by giving any two of the permutations for the black vertices,

white vertices and faces.

In Figure 2.6 we showed graph (b) on a torus. In general each graph will properly

embed on a surface of a particular genus. We can use the permutations associated

to the vertices to find the genus of the surface for a given graph: we multiply the
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permutations for the vertices as above to find the permutation for the faces, and

count the cycles to find the number of faces. Then we use the Euler characteristic to

find the genus g of the surface,

χ = V − E + F = 2− 2g.

As an example we can find the genus of the surfaces for graphs (a) and (b) using only

the calculations in 2.2.1 and 2.2.2. Graph (a) has four vertices, five edges and three

faces, so χ = 4 − 5 + 3 = 2, which agrees with our drawing on a sphere. Graph (b)

has four vertices, five edges and one face, so χ = 4 − 5 + 1 = 0, which justifies its

belonging on a torus.

2.3 The Correspondence

Having introduced both finite-index subgroups of Γ(2) and the graphs, we are now

ready to understand the correspondence between them. This is found in many places

in the literature; here we restate Theorem 1 from Birch [2].

Theorem 2.3.1 ([2]). For each positive integer n, the following families of objects

are in 1− 1 correspondence:

1. Triples (R, φ, O) where R is an n−sheeted Riemann surface, φ : R → C =

C∪ {∞} is a covering map branched at most above {∞, 0, 1}, and O is a point

of R above ∞.

2. Quadruples (β, σ, α; ?) where β, σ and α are permutations of Sn such that

βσα = id and such that the group generated by σ, α is transitive on the symbols

permuted by Sn, and ? is a marked cycle of β; all modulo equivalence corre-

sponding to simultaneous conjugation by an element of Sn.

3. Subgroups Γ ⊂ Γ(2) of index n, modulo conjugacy by translation.

11



4. Drawings with n edges.

Item 2 corresponds with our Definition 2.2.4: given σ and α, we use the relation

βσα = id to compute the permutation β−1 of the faces. Then we mark one cycle

(i.e., one face); marking a different face amounts to“simultaneous conjugation by an

element of Sn”. By “drawings” in item 4, he is referring to our Definition 2.2.1; thus

this theorem verifies that these definitions are equivalent. In this section we will

explore the relationship between these graphs and the groups in item 3. (Item 1 is of

considerable interest, but we will not be venturing in this direction here.)

2.3.1 From a group to a graph

To understand the relationship between the finite-index subgroups of Γ(2) and graphs

we will look first at the domain D for Γ(2) given in Figure 2.1. The arc from −1

to ∞ is identified with the arc from 1 to ∞ by the element A ∈ Γ(2), while the arc

from 0 to −1 is identified with the arc from 0 to 1 by the element B ∈ Γ(2). When

identified, we see a sphere with three points removed: the cusps at 1 = −1, 0, and

∞. Next we will “fill the holes”: at the cusp 0, we add a black vertex; we fill the cusp

at 1 with a white vertex, and replace the cusp at infinity with a ∗ to represent a face

center, so that we now have a sphere with three marked points. The arc from 0 to 1

will represent an edge; we use dashed lines between white vertices and corresponding

face centers. In this way we can identify the group Γ(2) with the graph on a sphere

consisting of one black vertex, one white vertex, one edge, and one face. See Figure

2.7.

Now consider Γ = Γ0(6) ∩ Γ(2), as in Example 2.1.2. We label 0 and its images

under B, B2, and BA−1 as black vertices; 1 and −1 and their images as white vertices,

and ∞ and its images as face centers with a ∗. The images of the arc from 0 to 1 are

now edges. We number the edges as shown in Figure 2.8.
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Figure 2.8: Domain for Γ0(6) ∩ Γ(2), labeled as a graph

Notice that by numbering the edges, we have also numbered the tiles: we can

associate edge 1 to the tile B, edge 2 to the tile B2, edge 3 to the tile I, and edge 4

to the tile BA−1.

At this point we have almost enough information to draw the corresponding graph.

We need to be able to read the edge numbers as we rotate counterclockwise about

each vertex. To do this we will need to find the side-pairing transformations that will

turn our domain into a compact surface.

First consider the black vertex at 0. If we were to rotate counterclockwise, we
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would end up in the tile B−1. We need to know which of our four tiles is equivalent to

B−1 under an element of Γ. This amounts to finding a tile X so that there is a g ∈ Γ

with gB−1 = X. Among our choices this works for the tile B2, because gB−1 = B2

implies g = B3, which is in Γ. As a result, we pair the edge from 0 to −1 with the

edge from 0 to 1
5
. Now we can read the cycle for this vertex: the black vertex at 0 is

associated with the cycle (3, 2, 1).

Now consider the black vertex at 2
3
. Notice there is only one choice: on the

boundary of our domain only one other arc represents an edge of the graph, so we

plan to pair the arc from 2
3

to 1 with the arc from 2
3

to 3
5
. Let’s verify that this is

valid for Γ. Rotating counterclockwise about 2
3

we find ourselves in the tile BA−1B−1.

Then gBA−1B−1 = BA−1 implies g = BA−1BAB−1 =

(
13 − 8

18 − 11

)
, which is indeed

in Γ. Thus the black vertex at 2
3

is associated to the cycle (4).

Next we consider the face centers. Rotating counterclockwise about ∞ lands us

in the tile A. This tile is equivalent to I under Γ, because gI ·A = I implies g = A−1,

which is in Γ. This tells us to pair the two “vertical” edges of our domain. In rotating

about ∞ we don’t actually pass through an edge, but we remember that the edges

are also labels for their corresponding tiles. Thus this face, of degree 1, is associated

to the cycle (3).

For the face center at 1
4
, rotating counterclockwise from B2 across the arc from

1
4

to 1
3

we arrive in the tile B2A. We can see that B2A is equivalent to BA−1 under

Γ, because gB2A = BA−1 implies g = BA−2B−2 =

(
17 − 4

30 − 7

)
, which is in Γ. Thus

we pair the arc from 1
4

to 1
3

with the arc from 1
2

to 3
5
. Continuing in this manner, we

pair the sides as shown in Figure 2.9. Because we have rotated through the tiles B2,

BA−1 and then B, the cycle associated to the resulting face is (2, 4, 1).

Given the permutations we have found for the black vertices, σ = (3, 2, 1)(4)

and for the faces, β = (1, 2, 4)(3), we can compute the permutation for the white
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vertices as a check. α = σ−1β−1 = (1)(2, 3, 4). The diagram verifies that rotating

counterclockwise about the white vertices according to the side-pairings, we see these

cycles.
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Figure 2.9: Domain for Γ0(6) ∩ Γ(2) with side pairings

Now that we have the side-pairing transformations we can find the graph. We

have two black vertices, two white vertices, two faces and four edges, so the Euler

characteristic tells us the genus for this graph is 0 and the graph belongs on a sphere.

Recall from Theorem 2.3.1 that we require a marked face ? for our graph; by con-

vention, we always mark the face which has its face center at the cusp ∞. (However,

as our examples become more complicated, we will cease to indicate the marked face

on the graph.) The graph is shown in Figure 2.10. In Section 6.2 we will find an

algorithm to find the graphs for all Γ0(2p) ∩ Γ(2).
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Figure 2.10: Graph associated to Γ0(6) ∩ Γ(2)

2.3.2 From a graph to a group

Next we will consider the other direction: given a graph, how do we find the corre-

sponding subgroup of Γ(2)? First we must find a fundamental domain which corre-

sponds to the graph, and then we find the side-pairing transformations, which gen-

erate the group. (See Ford [3], Theorem 19 in Section 28 or Theorem 10 in Section

32).

We first consider graph (b) of Example 2.2.2. It has five edges, so we need five

copies of D. This graph has only one face; we can choose ∞ to be its center. We

rotate around ∞ by applying the matrix A, so we can use the tiles I, A, A2, A3 and

A4 as our domain. Rotating counterclockwise the cycle for the face is (1, 2, 3, 5, 4);

we number the edges in that order and identify the arc from −1 to ∞ with the arc

from 9 to ∞. Now we proceed to use the cycle for the black vertex, (1, 2, 3, 4, 5) to

determine our edge pairings. For example, rotating counterclockwise about the cusp

at 0 we go from edge 1 to edge 2, so we pair the arc from 0 to −1 with the arc from

2 to 3. See Figure 2.11. We can verify that with these pairings the cusps at 0, 2, 4

and 8 are all identified to form the black vertex in graph (b). We can also verify that

rotating around the white vertices we see the cycles (1, 3)(2, 4)(5).

The side-pairing transformations give us generators of the corresponding group

Γb. We will have six generators: one for each edge, and also A5, which identifies
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Figure 2.11: Domain for graph (b) from Example 2.2.2

the vertical arcs. For example, for edge 3, we rotate counterclockwise about the

black vertex in A to arrive at A2, so the generator g3 satisfies g3AB
−1 = A2; thus

g3 = A2BA−1. Similarly we compute the others to get the group

Γb =
〈
A5, BA−3, AB, A2BA−1, A4BA−2, A3BA−4

〉
.

Let’s do the same process for graph (a). We can choose the degree 3 face, (2, 5, 4)

to have its face center at ∞; we need three copies of D at ∞, so we can choose I, A

and A2 and label them as edges 2, 5, and 4 respectively. We identify the vertical arcs

from −1 to ∞ and 5 to ∞, so the element A3 is in the group Γa.

Now rotate counterclockwise about the black vertex at 0. The cycle for the black

vertex is (1, 2, 3, 4, 5), so rotating counterclockwise through edge 2 we need edge 3.

Edge 3 doesn’t yet appear in our domain, so we add the tile B−1 and label its edge

as 3. After edge 3 we need edge 4, so we identify the arc from 0 to 1
3

with the arc

from 4 to 5, which appears in the tile A2. Thus, the generator for edge 3 satisfies

g3B
−1 · B−1 = A2, so g3 = A2B2. Next consider the cusp at 2: after edge 5 we need

edge 1, which causes us to add the tile AB−1. Finally we rotate through edge 1 to

edge 2, so we identify the arc from 2 to 5
3

with the arc from 0 to 2 to close the cycle.

Next consider the cusp at −1
2
. The face with edge 3 has degree 1, so we will pair
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the arc from −1
2

to −1 with the arc from −1
2

to −1
3
. The generator for this pairing

satisfies gx1B
−1A = B−1, so gx1 = B−1A−1B. We continue to pair edges and solve

for the corresponding generators to get the group

Γa =
〈
A3, B2A−1, A2B2, ABA−2, B−1A−1B, AB−1A−1BA−1

〉

∗ ∗
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Figure 2.12: Domain for graph (a) from Example 2.2.2

The correspondence inspires the following terminology:

Definition 2.3.2. By a (fundamental) domain of a graph, we mean a connected

fundamental domain of the corresponding group Γ ⊂ Γ(2), tiled by copies of D, and

with the images of the arc from 0 to 1 labeled according to the edges of the graph.

We label the images of 0 as black vertices, the images of 1 and −1 as white vertices,

and images of∞ as ∗ to represent a face center; when identified these form the black

vertices, white vertices and face centers of the given graph.

Using this terminology, Figure 2.12 is a domain for graph (a), and Figure 2.11 is

a domain for graph (b).
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CHAPTER 3

TESTING FOR CONGRUENCE

Recall from Section 2.1 that a group Γ ⊂ PSL2(Z) is congruence if it contains Γ(n)

for some n. There are many existing tests for whether a given finite-index subgroup

is congruence. In this section we want to explore ways to implement such tests for

subgroups of Γ(2) by looking at their graphs. For example, Tim Hsu in [5] has an

algorithm to determine whether a group Γ ⊂ PSL2(Z) is congruence by using graphs

similar to the ones we have developed; in Section 3.1 we will discuss how to convert

the graphs we are using into ones for which his algorithm applies. In Section 3.2 we

will look at a theorem of Wohlfahrt which will reconcile our definitions of the level

of a group, and interpret his theorem in terms of our graphs. In Section 3.3 we will

examine some criteria for congruence proven by Larcher [9], and discuss how they

can be applied to our graphs.

3.1 Drawings for subgroups of PSL2(Z)

The idea of looking at subgroups of PSL2(Z) in terms of drawings is not new. How-

ever, for the most part these versions of drawings differ from the graphs we have used.

This arises from the fact that others are looking at subgroups of Γ(1) = PSL2(Z)

which are not necessarily in Γ(2).
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In Figure 2.7 we showed how D, the fundamental domain of Γ(2), can be inter-

preted as a graph: the arc from 0 to 1 represents an edge, and the cusps at 0, 1 and∞

represent a black vertex, white vertex, and face center, respectively. For subgroups

of Γ(2), the domains consisting of n copies of D correspond to graphs with n edges.

The fundamental domain F for Γ(1) is pictured in Figure 3.1. The vertical arcs

are identified under the matrix

(
1 1

0 1

)
. The arc from i to ρ = 1

2
+
√
3
2
i is identified

with the arc from i to −ρ̄ by the matrix

(
0 − 1

1 0

)

1

2

1

2

i

F

Figure 3.1: Fundamental domain for PSL2(Z)

Unlike our domain for Γ(2), the domain F has only one cusp (at ∞). It also

has two marked points, that at i, which has an order 2 stabilizer in PSL2(Z), and ρ,

whose stabilizer in PSL2(Z) has order 3. The natural way to associate a graph to this

group is to mark the point ρ with a black vertex, i with a white vertex, and continue

to mark the cusp∞ with a ∗ to represent a face center. The graph associated to Γ(1)

itself is a single edge; see Figure 3.2.

Now consider the domain D we introduced for Γ(2). Since [Γ(1) : Γ(2)] = 6 we

can tile D with six copies of F (see Figure 3.3). In doing so we find a new way to draw

a graph for Γ(2): we lift the graph for Γ(1) to the tiling of the fundamental domain
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Figure 3.2: Fundamental domain for PSL2(Z) as a graph

for Γ(2) by copies of F , as shown in Figure 3.4. In general, for a group Γ ⊂ Γ(2) of

index n we have two distinct graphs: the type we obtained in Section 2.3 by tiling its

domain with n copies of D and lifting the graph for Γ(2) in Figure 2.7, and another

by tiling its domain with 6n copies of F and lifting the graph for Γ(1) in Figure

3.2. For this section we will distinguish these by referring to the Γ(1)-graph and the

Γ(2)-graph, respectively, associated to group Γ. Notice that in the Γ(1)-graph the

black vertices all have degree either 1 or 3, and the white vertices will have degree 1

or 2.

By computing a few examples one can begin to find the pattern in converting from

a Γ(2)-graph to a Γ(1)-graph. In the domains for the graphs for Γ(2) the vertices and

face centers are all labeled at cusps. When tiled by copies of F these cusps are all

images of ∞; thus when converting, every black vertex, white vertex and face center

will appear as the center of a face on the new graph. As a way to get started, we can

notice in Figure 3.4 that the original Γ(2) edge, i.e., the arc from 0 to 1, now has a

white vertex in its center which is connected to two black vertices; so for each edge

in our Γ(2)-graph we can add a white vertex on top of it and two black vertices to

the sides.
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Figure 3.4: Drawing for Γ(2) as a subgroup of PSL2(Z)

As an example we consider the 3-star, a black vertex connected to three white

vertices, considered as a Γ(2)-graph. In Figure 3.5 we see a domain for this graph

tiled first by copies of Γ(2) and then by copies of Γ(1). When we identify sides to find

the corresponding Γ(1)-graph, we discover the relationship in Figure 3.6. In Figure

3.7 we have another example of a Γ(2)-graph converted to its Γ(1) counterpart.

Recall that in Definition 2.2.4 we had another way to specify a Γ(2)-graph: we

could list a permutation σ in which the cycles correspond to the black vertices and a
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Figure 3.6: Converting the 3-star from a Γ(2)-graph to a Γ(1)-graph

permutation α in which the cycles correspond to the white vertices. The permutation

β = α−1σ−1 then gives a permutation in which the cycles correspond to the faces. We

can do the same for the Γ(1)-graphs. For example, for the 3-star, the permutations

as a Γ(2) graph are σ = (1, 2, 3), α = (1)(2)(3) and β = (1, 3, 2). As a Γ(1)-graph we

can refer to Figure 3.6 to obtain the following:

σ1 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)

α1 = (1, 18)(2, 5)(3, 4)(6, 7)(8, 11)(9, 10)(12, 13)(14, 17)(15, 16)

β1 = (1, 17, 13, 11, 7, 5)(3, 6, 9, 12, 15, 18)(2, 4)(8, 10)(14, 16)
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Figure 3.7: A fish in Γ(2) becomes a spaceship in Γ(1).

Notice that the order of σ1 is 3; in a Γ(1)-graph all black vertices will have order either

1 or 3. The order of α1 is 2, which agrees with the degrees of the white vertices. The

cycle structure of β1 tells us about the cycle structures of all of the vertices and

faces for the Γ(2)-graph. In the above example, the first cycle of β1 corresponds to

the outside face of the 3-star; the second cycle of β1 corresponds to the face of the

Γ(1)-graph which contains the black vertex of the 3-star, and the last three cycles

correspond to the faces of the Γ(1)-graph which contain the white vertices of the

3-star.

The advantage to converting our Γ(2)-graphs to their Γ(1) versions is that there

are many results available for subgroups of PSL2(Z). One example of such a result

is an algorithm developed by Hsu to determine whether a group Γ ⊂ PSL2(Z) is

congruence in terms of these permutations; see [5]. He specifies such a Γ by giving

permutations σ1 and α1 as above, and his algorithm amounts to checking a list of

relations. Thus, if we consider one of our Γ(2)-graphs, we can determine if the

corresponding subgroup of Γ(2) is congruence by first converting it to a Γ(1)-graph

and then applying Hsu’s algorithm. For example, in applying this algorithm it turns

out that the group Γ which corresponds to the 3-star is noncongruence. One of the

relations that fails amounts to checking that the cycle
(
β4
1(α1σ1)

−4β4
1

)4 6= 1.
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In summary, it is true that every finite-index subgroup of PSL2(Z) can be viewed

as a graph. In doing so, we only get restricted types of graphs due to the degree

restrictions for the black and white vertices in these Γ(1)-graphs, but we can then

apply known results for subgroups of Γ(1) to these graphs.

However, there are advantages to working with our versions of the graphs even

though they apply only to subgroups of Γ(2). Firstly, the Γ(2)-graphs have six times

fewer edges than their Γ(1) counterparts, which simplifies computing and allows us

to draw graphs for higher-index subgroups. Secondly, we are less restricted on which

graphs can occur; in fact by parts 3 and 4 of Birch’s Theorem 2.3.1 we can get any

graph as a Γ(2)-graph, with no restrictions on the black and white vertices. We will

see in Chapter 4 that this flexibility can allow us to find some interesting examples.

3.2 Wohlfahrt’s Theorem

On page 9 we defined the level of a graph as twice the least common multiple of the

degrees of all vertices and faces, while on page 4 we defined the level of a congruence

subgroup Γ ⊂ Γ(2) as the smallest n such that Γ(n) ⊂ Γ. In fact, due to a result of

Wohlfahrt, for a congruence subgroup these definitions agree.

In [12], Wohlfahrt defines the level of a finite-index subgroup Γ ⊂ Γ(1) as the least

common multiple of the cusp widths (or amplitudes) for Γ. For the group Γ(2) the

cusp width of∞ is 2, which is the width of its fundamental domain at∞; the degree

of the face in the graph for Γ(2) is 1. In the graph for a group Γ ⊂ Γ(2), a vertex or

face of degree d will touch d copies of the domain for Γ(2), and thus have cusp width

2d. The least common multiple of the cusp widths is the least common multiple of

twice each degree, and thus twice the least common multiple of the degrees.

Wohlfahrt then proves that for a group Γ of level n in his sense, Γ is congruence

if and only if Γ contains Γ(n), and so for congruence subgroups the two definitions
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agree. Thus, in order to check if a group of level n is congruence, we need check only

whether it contains Γ(n) for this particular value of n.

3.3 Interpreting some results of Larcher

In [9], Larcher proves some results about the cusp widths of congruence subgroups

Γ ⊂ PSL2(Z). In this section we will restate two of these results in terms of our

graphs for finite-index subgroups of Γ(2).

Theorem 3.3.1 ([9]). If Γ is a congruence subgroup of level m and d and e are the

respective widths of ∞ and 0 in Γ then de ≡ 0 (mod m).

Recall that in Section 3.2 we saw that a vertex or face of degree d has cusp width

2d. Thus, we can restate the theorem as follows:

Corollary 3.3.2 (Theorem 3.3.1, restated). Let Γ ⊂ Γ(2) be a congruence subgroup

of level 2n. In the corresponding graph, let d and e be the respective degrees of the

face corresponding to ∞ and the black vertex corresponding to 0. Then (2d)(2e) ≡ 0

(mod 2n), and thus 2de ≡ 0 (mod n).

In Section 5.1 we will use graph coverings to generalize the above theorem; in fact

the result holds for any face with any of its vertices.

Another powerful criteria for congruence:

Theorem 3.3.3 ([9]). If Γ is a congruence subgroup of level m then Γ contains a

cusp of width m.

When interpreted for graphs the statement reads as follows:

Corollary 3.3.4 (Theorem 3.3.3, restated). If Γ ⊂ Γ(2) is a congruence subgroup of

level 2n, then the graph corresponding to Γ has either a vertex or a face of degree n.
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These criteria provide necessary conditions for congruence. Consider the example

in Figure 3.7: The fish has vertices of degrees 1, 2, and 4 and faces of degree 1 and 3,

and thus the level of this graph is 2 · lcm(1, 2, 3, 4) = 24. Because the graph does not

contain a vertex or face of degree 12, we immediately conclude that the corresponding

group is noncongruence. By contrast, if we were to apply Hsu’s algorithm as in

the above section, we would need to work with the Γ(1) version of the graph (the

spaceship). This graph has permutations in S24 and the computations are lengthy by

comparison.

However, the conditions are not sufficient: notice that while Hsu’s algorithm

showed us that the 3-star corresponds to a noncongruence subgroup, the graph does

not violate Larcher’s criteria above. We will have a an algorithm to determine con-

gruence that depends only on graphs in Section 5.4.
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CHAPTER 4

NONCONGRUENCE EXAMPLES

In this chapter we will construct infinite families of examples of noncongruence sub-

groups of Γ(2) for every even level. Producing congruence subgroups of a given level

is generally more approachable, because a congruence subgroup Γ of level 2n corre-

sponds to a subgroup of Γ(2n)\Γ(2), which is a finite matrix group. For example, we

have Γ0(2n) and Γ1(2n), as defined in Section 2.1.

Noncongruence subgroups are more difficult to work with because they are defined

by what they are not: they do not contain Γ(n) for any n. However, the correspon-

dence between subgroups and graphs does not distinguish between congruence and

noncongruence; we can construct a group simply by drawing a bipartite graph on a

surface. The flexibility and concreteness of this approach will allow us to visually and

immediately determine noncongruence for the majority of the examples.

The main strategy in their construction involves applying the criteria stated in

Corollary 3.3.4: If Γ is a congruence subgroup of level 2n, the corresponding graph

has either a face or vertex of degree n. In other words, to produce a noncongruence

subgroup of level 2n it suffices to find a graph in which the least common multiple of

the degrees of the vertices and faces is n, but no particular vertex or face has degree

n.

In Section 5.3 we will have a method to find generators for the group corresponding
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to a given graph, so these groups can be realized as subgroups of Γ(2) specified by a

finite set of generators.

4.1 Examples on a torus

In this section we will find infinite families of subgroups of level 2pn1
1 p

n2
2 . . . pnk

k , for

the pi distinct primes.

Example 4.1.1. Level 2pn, p 6= 2: The Waving Onion.

Let p be an odd prime. We begin with one black vertex and one white vertex,

each of degree pn. We will connect them in such a way that each face has degree 1 or

degree pn, each vertex we add has degree 1, and that the complement of the graph

on the torus is a collection of 2-cells. An example of such a graph is shown in Figure

4.1. Notice that the right-most black vertex has degree pn: it has edges connecting it

..
. 

1

2
p
n
3( )

... 

1

2
p
n
3( )

... 

1

2
p
n
1( )

Figure 4.1: Noncongruence Subgroup of level 2pn, p 6= 2, n > 1

to 1
2
(pn − 3) white vertices of degree 1, and 2 + 1

2
(pn − 1) edges connecting it to the
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degree pn white vertex. The left-most white vertex has the same count. The outside

face has degree pn as well; it has 2 · 1
2
(pn − 3) edges connected to degree 1 vertices,

and three edges between the black and white vertices of degree pn. (Recall that we

label an edge on the left side from the viewpoint of a black vertex, and we declare an

edge to be “in a face” if its label is in that face.) All other vertices and faces have

degree 1, so the least common multiple of the degrees is pn, which confirms the graph

is level 2pn. In all the graph has pn− 1 vertices, 1
2
(pn− 1) faces, and 3

2
(pn− 1) edges;

this confirms the Euler characteristic is 0, so the graph lies on a torus. This graph

represents a noncongruence subgroup for n > 1; the proof of this is delayed until the

end of the section. For now we need this as a building block for the other examples.

Notice that this process does not work for the case p = 2; the number of degree 1

faces is 1
2
(pn − 1), which is not an integer if p = 2. We address this case in the next

example.

Example 4.1.2. Level 2n: The Tree Frog.

To handle this case we can form the graph in Figure 4.2. A count reveals that the

outside face has degree 2n−1, as do the left-most white vertex and right-most black

vertex. The “eyes” of the tree frog are vertices of degree 2, which do not change the

least common multiple of the degrees and thus do not change the level. This graph

has 2n−1 vertices, 3 · 2n−2 edges and 2n−2 faces, so the Euler characteristic confirms

that the graph belongs on a torus. This graph provides noncongruence subgroups for

n > 1; the proof is again delayed until the end of the section.

In fact the above cases are the only ones in this section not immediately proven

noncongruence by Corollary 3.3.4, but they will form the building blocks for what

follows.

Example 4.1.3. Level 2pnqm, for p 6= q and p, q 6= 2.
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Figure 4.2: Noncongruence “tree frog” of level 2n, n > 1

In Figure 4.3 we consider the case of level 2pnqm, for p and q distinct odd primes.

We can think of this as a tiling of two copies of Example 4.1.1. The middle strip

has the same count of vertices and faces as our example for level 2pn; the top (and

bottom) strip mimic the same example for level 2qm. Now the least common multiple

of the degrees is pnqm, so the level is 2pnqm. A count of vertices, edges and faces will

confirm this graph lies on a torus. In this case we can immediately conclude that the

corresponding subgroup is noncongruence using Corollary 3.3.4: the level is 2pnqm,

but there is no vertex or face with degree pnqm.

Example 4.1.4. Level 2pn1
1 p

n2
2 . . . pnk

k .

The previous example provides the structure for an arbitrary number of primes:

we can produce a graph of level 2pn1
1 p

n2
2 . . . pnk

k , with pi 6= 2, as in Figure 4.4. As in

the above example, they will be noncongruence because of Corollary 3.3.4.

Notice that we can also produce an infinite family of graphs for each level: we

can repeat the strips for any of the prime factors without changing the least common
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Figure 4.3: Noncongruence Subgroup of level 2pnqm

multiple of the degrees, and thus without changing the level. If one of the pi = 2, we

can use the alternate strip shown in Figure 4.5, which is based on the “tree frog” in

Example 4.1.2. This also allows us to produce noncongruence subgroups for level 2pn

with n = 1; we can repeat enough strips using the prime p so that the total number

of edges in the graph exceeds the index of Γ(2p) in Γ(2). (In Example 4.1, the case

n = 1 is the only case for which we are not guaranteed the corresponding group is

congruence.)

Now we return to our “building blocks” in Examples 4.1.1 and 4.1.2 to show that

they too represent noncongruence subgroups.

Proposition 4.1.5. The graph shown in Figure 4.1 represents a noncongruence sub-

group Γ of level 2pn for n > 1.

Proof. Suppose for contradiction that Γ represents a congruence subgroup. We have
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Figure 4.4: Noncongruence Subgroup of level 2pn1
1 p
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2 . . . pnk

k , pi 6= 2

shown the graph to have level 2pn, so Γ(2pn) ⊂ Γ, and we have

[Γ(2) : Γ(2pn)] = [Γ(2) : Γ] · [Γ : Γ(2pn)].

This graph has 3
2
(pn − 1) edges, so [Γ(2) : Γ] = 3

2
(pn − 1). We can apply the index

formula 6.1.1 to find that [Γ(2) : Γ(2pn)] = 1
2
p3n−2(p2 − 1). Division yields

[Γ : Γ(2pn)] =
p3n−2(p2 − 1)

3(pn − 1)
.

Case 1: Let n > 2. Notice that (pn − 1) is relatively prime to p, and so if this fraction
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Figure 4.5: Tree frog strip for the case pni = 2n

is an integer, we have (pn − 1) dividing (p2 − 1). But since n > 2, we have

pn − 1 > p2 − 1, which gives a contradiction.

Case 2: Let n = 2, and p 6= 3. The fraction becomes 1
3
p4, and since p 6= 3, it is not an

integer; again, we have a contradiction.

Case 3: Let n = 2 and p = 3. The resulting graph of level 18 can be checked using Tim

Hsu’s algorithm in [5]; it also represents a noncongruence subgroup.

Proposition 4.1.6. The graph shown in Figure 4.2 represents a noncongruence sub-

group Γ of level 2n for n > 1.

Proof. Assume for contradiction that Γ is congruence of level 2n. As above, we will

consider the indices. The graph has 3 · 2n−2 edges. The index formula 6.1.1 yields

[Γ(2) : Γ(2n)] = 23n−4. Thus division yields

[Γ : Γ(2n)] =
23n−4

3 · 2n−2
.

This fraction is not an integer, so we arrive at a contradiction.
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Notice that the argument for Proposition 4.1.5 does not apply for the case n = 1.

In fact for the case n = 1 and p = 3, the graph represents a congruence subgroup of

level 6. For n = 1 and p = 5, the graph as drawn corresponds to the (congruence)

subgroup Γ0(10)∩Γ(2). However, with only a small change we can produce a noncon-

gruence subgroup: see Figure 4.6. The graph on the left corresponds to Γ0(10)∩Γ(2),

5

4

3

2

1

6

3

1 5

4

3

3

2 2
1

6

(a) (b)

Figure 4.6: Two graphs of level 10

but the graph on the right represents a noncongruence subgroup of level 10. This

can be shown using Tim Hsu’s algorithm, or using the procedure described in Section

5.4. At first glance these graphs are remarkably similar; we see how delicate it can

be to determine whether or not a graph corresponds to a congruence subgroup. (The

fundamental domain for Γ0(10) ∩ Γ(2) appears in Figure B.3 on page 99.)

4.2 Examples on a Genus 2 Surface

In this section we will see graphs on a genus 2 surface of level 2n for n ≥ 4. (In

fact it is not possible to have a graph of level 4 or 6 on a genus 2 surface; this will
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be shown at the end of the section in Proposition 4.2.8.) The examples are not as

general: we have families of examples of every allowable even level, but they are not

infinite families.

The constructions follow a similar pattern to those on the torus: we look first at

“building blocks”: graphs of level 2pn and 2n. We then construct a graph of level

2pnqm which is noncongruence by Corollary 3.3.4; and then graphs for noncongruence

groups of arbitrary even level. All graphs are drawn on an octagon with opposite sides

identified to create a genus 2 surface.

Example 4.2.1. Level 2pn, with p an odd prime such that pn ≥ 5 .

We can construct a graph similar to that in Example 4.1.1. The graph in Figure
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Figure 4.7: Level 2pn, pn ≥ 5 and p 6= 2

4.7 has a black vertex of degree pn marked at the center, and a white vertex of degree
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pn which is marked at every corner of the octagon (when the sides of the octagon are

identified, this becomes a single point). We can check these degrees with a count: the

black vertex in the center has 1
2
(pn − 5) edges connected to degree 1 white vertices,

and 4 + 1
2
(pn − 3) edges to the degree pn white vertex. The graph is symmetric with

regard to the black and white vertices, so the white vertices have the same count. The

outside face has degree pn: it has 2 · 1
2
(pn − 5) edges connected to degree 1 vertices,

and 5 edges connected between the degree pn vertices. There are 1
2
(pn − 3)− 1 faces

of degree 1. The least common multiples of the degrees is pn, so the level is 2pn.

We can check that the graph belongs on a genus 2 surface; it is not quite so obvious

as the case for the torus, since we must be sure the complement of the graph is a

collection of 2-cells. In this case we have 2 + 2 · 1
2
(pn − 5) vertices, 1

2
(pn − 3) faces,

and 1
2
(3pn− 5) edges, which gives an Euler characteristic of −2 as desired. Note that

the pn ≥ 5 restriction arises from the 1
2
(pn − 5) black and white vertices of degree 1.

For these graphs we are able to show the corresponding groups are noncongruence

for n > 1; the proof is delayed until the end of the section (see Proposition 4.2.7).

Example 4.2.2. Level 2n, n ≥ 3.

We have the same difficulty as before for p = 2; the degrees as marked in the

above example are not integers. We can see in Figure 4.8 a version that works for

level 2n. As before, we can check the counts to see that all vertices and faces have

degree 1, 2, or 2n−1, so their least common multiple is 2n−1 and the graph is of level

2n. The graph has 2n − 2 vertices, 2n−2 − 1 faces, and 2n + 2n−2 − 1 edges, so the

Euler characteristic is −2, which confirms the graph lies on a genus 2 surface. We

check that the group Γ corresponding to such an example is noncongruence in the

same manner as in Proposition 4.1.6: [Γ(2) : Γ] = 2n + 2n−2 − 1 is odd, which does

not divide [Γ(2) : Γ(2n)] = 23n−4, and so Γ does not contain Γ(2n).

Example 4.2.3. Level 2pnqm, with p and q odd primes such that pn ≥ 7.
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Figure 4.8: Level 2n, n ≥ 3

We can see a graph of level 2pnqm in Figure 4.9. For this graph the outside face

has degree pn, the inside face has degree qm, and there are 1
2
(3qm + pn − 6) faces of

degree 1. For vertices, we see two of degree pn, four of degree qm, and pn + qm − 10

vertices of degree 1, so pn+ qm−4 vertices in all. (Note that we are no longer placing

a vertex at the corners of the octagon.) There are 1
2
(3pn + 5qm − 10) edges. This

yields an Euler characteristic of −2 as desired.

Note that the least common multiple of the degrees is pnqm but there is no vertex

or face with this degree. Thus, by Corollary 3.3.4, the graphs of this form represent

noncongruence subgroups of level 2pnqm.

Once again, we must consider separately the case where one of the primes is 2,

level 2mpn.
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Figure 4.9: Noncongruence example of level 2pnqm, with p, q odd primes and pn ≥ 7

Example 4.2.4. Level 2mpn, with p an odd prime.

We can construct these in several ways, each with their own limitations. In

each case, Corollary 3.3.4 allows us to immediately conclude that the corresponding

subgroups are noncongruence.

In the first method we make an adjustment to the inside face so that its degree is

2m−1. Here we have the same restriction on p that we did in the previous example,

that pn ≥ 7, and we require that m ≥ 3. In the second version we instead make an

adjustment to the outside face, so that its degree is 2m−1. This does not restrict p,

but does require that m ≥ 4. These are pictured in Figure 4.10
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Figure 4.10: Noncongruence examples of level 2mpn. Top version requires pn ≥ 7 and
m ≥ 3. Bottom version requires only that m ≥ 4

.
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Neither of these approaches produces a graph of level 4pn. To address this case

we can construct the graph in Figure 4.11, which requires pn ≥ 9. By adding a black

and white vertex “inside the onion” we create vertices and faces of degree 2.
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Figure 4.11: Noncongruence example of level 4pn, p an odd prime and pn ≥ 9

The example in Figure 4.11 inspires another class of examples of level 2mpn for

pn ≥ 9: we can in fact add several degree 2 vertices, enough that the two adjacent

faces each have degree 2m−1. See Figure 4.12.

We are now ready to consider the general case. This is complicated by the fact that

we can’t simply “add strips” as we did for the torus examples and expect to remain on

a genus 2 surface. Instead we take the approach of a construction similar to Example

4.2.3; we will have an “inside face” and an “outside face”, and the remaining faces
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Figure 4.12: Noncongruence example of level 2mpn, pn ≥ 9

will have degree 1. The degree of these faces are dependent on the number of prime

factors k; thus we must consider separately the cases for k odd and k even.

Example 4.2.5. Level 2pn1
1 p

n2
2 . . . pnk

k for k odd.

Consider the graph in Figure 4.13. This example is constructed so that the outside

face has degree pn1
1 and the inside face has degree pn2

2 . The polygon at the center

has a pair of vertices for each prime factor; in each “onion” the degree of the black

vertex and white vertex is pni
i . Notice that we are allowed to use pi = 2 as long as

i > 2. However, we have some restrictions: we require pn1
1 ≥ k + 4 and pn2

2 ≥ k.

In this construction we once again have no vertex or face of degree pn1
1 p

n2
2 . . . pnk

k , so

Corollary 3.3.4 guarantees the corresponding subgroup is noncongruence.

Example 4.2.6. Level 2pn1
1 p

n2
2 . . . pnk

k for k even.
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Figure 4.13: Noncongruence example of level 2pn1
1 p
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k , with k odd

The above example does not work if k is even because, for example, 1
2
(pn2

2 − k)

would not be an integer. We can overcome this by repeating one of the primes; we

add one “onion” to the polygon of the central face. In Figure 4.14 we see such a

graph; the repeated factor is pn1
1 . In this case the restrictions are pn1

1 ≥ k + 5 and

pn2
2 ≥ k + 1. Again, we are allowed to use pi = 2 as long as i > 2.

For the examples in Figures 4.13 and 4.14 it is possible to increase the index for

a given level. We can do so by repeating a prime factor in the manner we described

for pn1
1 in the example for k even we saw above. However, there is a limitation: if we

let k′ be the number of prime factors including repeated factors, the polygon inside

contributes k′ edges to each of the inside and outside faces. Thus we require k′ small
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enough that the restrictions listed for each case still hold for k′. So, in Example 4.13

we now have the restrictions pn1
1 ≥ k′ + 4 and pn2

2 ≥ k′ as upper bounds on k′.

Now we return to the first example, the case of level 2pn.

Proposition 4.2.7. The graph shown in Figure 4.7 represents a noncongruence sub-

group Γ of level 2pn for n > 1.

Proof. The number of edges in this graph is 1
2
(3pn − 5), so [Γ(2) : Γ] = 1

2
(3pn − 5).

Recall from Proposition 4.1.5 that [Γ(2) : Γ(2pn)] = 1
2
p3n−2(p2 − 1). Thus, if Γ were

congruence of level 2pn, the covering degree must be an integer:

[Γ : Γ(2pn)] =
p3n−2(p2 − 1)

3pn − 5
.
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Case 1: Suppose p 6= 5. In this case 3pn − 5 is relatively prime to p. Because n > 1 we

have 3pn− 5 > p2− 1. Thus the fraction above is not an integer, and so Γ(2pn)

is not contained in Γ.

Case 2: Let p = 5. In this case the fraction reduces to

53n−3(24)

3 · 5n−1 − 1
.

For n ≥ 3, we see that the denominator is relatively prime to 5, and 3·5n−1−1 >

24. For n = 2 the fraction reduces to 1500
7

. Thus the fraction is not an integer,

and so Γ(2pn) is not contained in Γ.

Finally, we find the minimum level required for a graph to belong on a genus 2

surface. Figure 4.8 provides a graph of level 8. The following proposition shows we

cannot have a graph of level 6; a similar argument shows the same for level 4.

Proposition 4.2.8. It is not possible to have a graph of level 6 on genus 2 surface.

Proof. Suppose for contradiction that we have such a graph. Because it is level 6,

every vertex and face has degree either 1 or 3. Let b1 and b3 be the number of black

vertices of degree 1 and 3 respectively, and let wi and fi be defined similarly. Each

edge is associated to exactly one black vertex, one white vertex and one face, so we

can count the number of edges, e, in three different ways:

e = b1 + 3b3 = w1 + 3w3 = f1 + 3f3.

Now consider the Euler characteristic; for a genus 2 surface we have v − e+ f = −2.

We know v = b1 + b3 + w1 + w3, and then using e = b1 + 3b3 and simplifying, the

Euler characteristic calculation becomes

w1 + w3 + f1 + f3 = 2b3 − 2. (4.2.1)
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We know there is at least one white vertex and at least one face, so the left-hand side

is at least 2. Then 2b3−2 ≥ 2 implies b3 ≥ 2. Redoing this with the other expressions

for e, we also conclude w3 ≥ 2 and f3 ≥ 2, so w3 + f3 ≥ 4. Now we look again at

Equation 4.2.1: we conclude b3 ≥ 3; which in turn implies w3 ≥ 3 and f3 ≥ 3, and

we can repeat the process again. Inductively, we must have b3 ≥ n for all n; this is

impossible, and so no such graph can exist.

4.3 Future Projects

For the genus 2 examples, we first note that the proof for Proposition 4.2.7 does not

address the case n = 1. We may be able to show these are noncongruence using

another approach, or may be able to construct similar examples which are clearly

noncongruence of level 2p. Otherwise, we are missing examples for levels 12, 20, 24,

28, 30 and 40. We should either be able to construct examples for each of these

particular levels, or perhaps find a new class of examples which includes graphs of

these levels.

The examples in the genus 2 case are more complicated as we add more prime

factors. There may be a way to construct examples that are more straightforward. In

doing so, we hope to be able to construct infinite families of noncongruence subgroups

of every even level on a genus 2 surface.

We would also like to find examples for every allowable even level on surfaces of

higher genus, and eventually arbitrary genus.

And finally, we think they should all include frogs.
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CHAPTER 5

USING GRAPHS TO DETERMINE CONGRUENCE

In this chapter we develop some tools that allow us to learn about a finite-index

subgroup Γ ⊂ Γ(2) by looking directly at its corresponding graph.

In the first section we generalize a result of Larcher which gives a property of

congruence subgroups, which will give us more power in determining whether a graph

corresponds to a congruence subgroup. The following sections develop an algorithm

for determining whether Γ is congruence from the graph. In Section 5.2 we define a

graph tiling; in Section 5.3 we use this to find generators for the group corresponding

to a given graph. In Section 5.4 we use a graph tiling to determine whether a group

Γ2 is contained in the group Γ1 associated to a given graph; as an application, letting

Γ2 = Γ(2n) for the appropriate value of n will determine whether Γ is congruence.

5.1 Generalizing a result of Larcher

In Section 3.3 we stated results of Larcher which give properties of congruence sub-

groups, and interpreted them in terms of graphs. Recall the following restatement of

one of Larcher’s results:

Corollary 3.3.2 Let Γ ⊂ Γ(2) be a congruence subgroup of level 2n. In the corre-

sponding graph, let d and e be the respective degrees of the face corresponding to ∞

and the black vertex corresponding to 0. Then 2de ≡ 0 (mod n).
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We can generalize this result as follows:

Theorem 5.1.1. Let Γ ⊂ Γ(2) be a congruence subgroup of level 2n. In the corre-

sponding graph, for any face, let d be the degree of that face and e be the degree of

any of its vertices. Then 2de ≡ 0 (mod n).

Proof. Because we assumed Γ is congruence of level 2n we know Γ(2n) ⊂ Γ, and thus

the graph associated to Γ(2n) is a cover for the graph associated to Γ.

Let F be a face of Γ of degree d, and v be one of its vertices of degree e. Find a

fundamental domain for the graph associated to Γ as described in Definition 2.3.2. We

will see how we can conjugate by an element of PSL2(Z) to move the cusp associated

to F to ∞, and then the cusp associated to v to zero. The resulting group, Γ′, is

congruence of level 2n if and only if Γ is congruence, since Γ(2n) C PSL2(Z).

Recall from Theorem 2.3.1 that the correspondence between Γ and its graph re-

quires a marked face, which we have chosen to be the face at ∞. The cusp that

corresponds to the face center of F is the image of ∞ under an element g ∈ Γ(2),

and so conjugation by g moves the center of F to ∞. This will not change the graph

itself, and will not change the degree of the face F ; the only change is that F is now

the marked face. Marking a different face will not change the fact that the graph for

Γ(2n) is a cover, so this face of degree d and the vertex at 0 must satisfy Larcher’s

congruence property above.

Now consider the vertex v, and let v′ be its image under the conjugation in the

previous step. Conjugation does not change the degree of a vertex, so the degree of v′

is e. Notice that because the face F is now centered at∞ it is tiled by translates of D

under A, and so the cusps corresponding to black vertices are found at even integers,

while the cusps corresponding to the white vertices are found at odd integers. First

suppose that the vertex v is a black vertex. Translation by the appropriate power of A

will fix ∞ and move v′ to 0. Recall from part 3 of Theorem 2.3.1 the correspondence
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between groups and graphs is modulo conjugacy by translation: applying powers of

A will not change the graph or the face which is marked, and so the graph is still

covered by Γ(2n). Hence, Larcher’s congruence property is still satisfied.

Suppose instead that v is a white vertex; in this case we can move v′ to 0 by

conjugating by an odd power of

(
1 1

0 1

)
. On the level of the graph this has the

effect of switching the colors of the black and white vertices. The resulting group

Γ′ is congruence if and only if Γ is congruence, because Γ(2n) C PSL2(Z), and so

Larcher’s congruence property holds.

5.2 Graph tilings

In Section 2.3.2 when we discussed a way to go from a graph to a group, we first found

a fundamental domain for the graph. The fundamental domain for a graph G with

n edges consists of n copies of D, our fundamental domain for Γ(2). In what follows

we will need to keep track of not only the edges of G, but the sides of the n tiles

themselves as they appear on the surface; we will call this the graph tiling of G. In

this section we will describe how to find this tiling without drawing the fundamental

domain as an intermediate step.

To do so, we start by reexamining our graph and fundamental domain D for Γ(2).

We will care about not just the arc from 0 to 1 and the arc from 0 to −1, but the

entire quadrilateral that composes D. We label the face center at ∞ as a ∗, and use

dotted lines to indicate the arc from 1 to ∞ and the arc from −1 to ∞. Notice that

crossing the arc from 1 to ∞ corresponds to applying the generator A to D, while

crossing the arc from 0 to 1 corresponds to applying B to D. It will prove helpful for

us to indicate these operations in the quadrilateral. See Figure 5.1.

Suppose we have a graph G drawn on a surface. In order to form our graph tiling

for G, we first label each face with a ∗ at its center. Next we draw dotted lines from

50



BB
1

A
1

AI

* *

*

*

A

B

A
1

B
1

0

0

1

1

1

1
I

Figure 5.1: Labeling a tile

the white vertices to the ∗; at each white vertex we now alternate between solid lines

(the edges to black vertices) and dotted lines (to the face center). This has the effect

of doubling the degree of each white vertex. Recall from part 2 of Theorem 2.3.1 that

specifying a graph involves marking one face with a ?; this marking will play a role

in what follows. We have several examples: In Figure 5.2 we see this process applied

to the graph corresponding to Γ(2) itself. Figure 5.3 shows the graph tiling of the

0-1 1

*

*
I

B
1

B

A
A

1

Figure 5.2: Graph tiling for Γ(2)

3-star. Notice that the 3-star has only one face (which is necessarily the marked face)

but three tiles. When we label the quadrilaterals the marking will be in one of them,
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which we can declare to be the tile associated to I. We can refer to the fundamental

domain for the 3-star (pictured in Figure 3.5 on page 23): we see that, beginning

in the marked face ?, crossing the dotted line labeled A in the graph will bring us

from the tile I to the tile A in the domain. Crossing the edge labeled B in the graph

amounts to crossing edge 1 in the domain; this edge is identified with the the edge

in tile A, and so the result is consistent. In other words, we can extend the notion of

applying the generators A and B to the graph itself, which justifies the labelings we

have added to the tiles on the graph.

*B
1

B

B
1

B

B
1

B

A

A
1

A

A
1

A

A
1

Figure 5.3: Graph tiling of 3-star

In Figure 5.4 we see an example of a tiling for a graph with five edges and two

faces, with the face of degree 3 chosen as the marked face. Figure 5.5 shows an

example of a graph tiling for a graph with four edges which lies on a torus.
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Figure 5.4: Graph tiling for a graph with 5 edges on the sphere
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Figure 5.5: Graph tiling for a graph with 4 edges on a torus

5.3 Generators from a graph

The correspondence theorem guarantees a bijection between our graphs and finite-

index subgroups of Γ(2), and we have seen in Section 5.1 that we can realize properties

of a group directly from the graph. In this section we will discuss how to use a graph

G to read generators for the corresponding group Γ ⊂ Γ(2) in terms of A and B.

We begin by finding the graph tiling for G as in Section 5.2. Next we will add

53



several loops, each using the ? of the marked face as a base point. For a graph on a

sphere, we must add loops around all but one of the vertices and face centers. For

a graph on a surface of higher genus we also add loops corresponding to generators

of the fundamental group of the surface. Next, we follow each loop; as we cross

each dotted or solid line, we read the label A, A−1, B or B−1 and form a word by

multiplying the labels on the left. In Proposition 5.3.1 we will see that this word

corresponds to a generator of the corresponding group Γ. The direction we choose to

follow each loop is irrelevant, because if g is in a generating set for Γ, we can replace

g with g−1 without changing Γ.

Figure 5.6 shows this process applied to the graph for Γ(2) itself. Notice that as

we follow the top loop in the counterclockwise direction we find the generator A, and

following the bottom loop in the clockwise direction produces the generator B. This

agrees with our knowledge that Γ(2) is generated by the elements A and B.

*

B

A

Figure 5.6: Reading generators for Γ(2) from its graph

Now consider the 3-star; we found the graph tiling in Figure 5.3. In Figure 5.7 we

see this graph with loops added. We can find the generators by following each loop
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counterclockwise: the top loop gives BA−1; the loop on the right gives A−1B, the

bottom loop gives B−1A−1B2, and the loop on the left gives B−3. Thus, the group

associated to the 3-star is Γ =
〈
BA−1, A−1B, B−1A−1B2, B−3

〉
.

*B
1

B

B

B

A
1

A
1

A
1

Figure 5.7: Finding generators for the group associated to the 3-star

Next we find loops for the graph in Figure 5.4. Notice that we have a choice

of which cusp to omit when forming loops; in this graph it is natural to avoid the

white vertex in the upper-right because it has the highest degree. We have six loops;

beginning with the top-most loop and working our way clockwise, we find the group

associated to this graph:

Γ =
〈
B−1A2B, B2, ABA−1, A3, A−1B2A, B−1AB−1A

〉
.

Finally we look at the graph on a torus from Figure 5.5. In Figure 5.9 we see

three loops around cusps, and two loops (vertical and horizontal) which generate the

fundamental group of a torus. Reading generators from the vertical loop, horizontal
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Figure 5.8: Finding generators for the graph in Figure 5.4

loop, and then the three loops around the cusps (top, middle, bottom), we find the

group:

Γ =
〈
B−1A2, AB−1A, B4, BAB−1, A3

〉
.

Having seen several examples, we now justify our prodcedure:

Proposition 5.3.1. Generators for a finite-index subgroup Γ ⊂ Γ(2) can be found

from the loops drawn as above for its associated graph.

Proof. We see this by understanding the group Γ associated to a graph G in two

different ways.

Refer to Section 2.3.1: given a group Γ, we find the associated graph by first

finding a fundamental domain for Γ, and then finding side-pairing transformations

to form a punctured surface Σ′. Notice that the punctures are at the vertices and
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Figure 5.9: Finding generators for the graph in Figure 5.5

face centers of the graph. The side-pairing transformations generate Γ, which is the

fundamental group of this punctured surface because Σ′ ' Γ\H+, with Γ acting freely

on the upper-half plane H+.

We can also compute the fundamental group of Σ′ using algebraic topology. Given

a surface Σ′ of genus g with r punctures, π1(Σ
′) is a free group on 2g+r−1 generators.

The generators are homotopy classes of loops; 2g for the genus of the surface, and

loops around all but one of the punctures. We can interpret these loops as words in

A, A−1, B and B−1 using the graph tiling we found in Section 5.2. We begin each

loop ` at ?; following the loop, each time we cross a side from one tile to another

it corresponds to applying one of the A±1 or B±1 to our tiling. Since these motions

correspond to applying these to images of D in H+, we build from right to left an

element γ` of Γ corresponding to the loop `. The fundamental group of the surface is
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then generated by the collection of γ` for our loops. Since we know this fundamental

group is in fact Γ, the γ` generate Γ. Thus, though the generators we have found might

not directly correspond to side-pairing transformations of a fundamental domain for

Γ, they still generate the fundamental group of the same punctured surface.

5.4 Using graphs to determine congruence

Suppose we have a graph G corresponding to a finite-index subgroup Γ1 of Γ(2).

Now suppose we have another finite-index subgroup Γ2 ⊂ Γ(2) for which we know

generators in terms of A and B. In this section we will show how to determine

whether Γ2 ⊂ Γ1. One useful application of this result is to determine whether a

group is congruence: if Γ1 has level 2n and we know generators for Γ(2n), we can

determine whether Γ(2n) ⊂ Γ1. We note in Remark 6.4.4 that the algorithms in

Chapter 6 to find permutations for Γ(2p) for p prime also produce such generators.

The procedure is as follows: Find the graph tiling for G as we did in Section 5.2.

Let γ be a generator for Γ2 expressed as a word in A±1 and B±1. We will form the

path in G beginning at ? which follows γ by reversing of the process in Proposition

5.3.1: reading from right to left, we apply A±1 or B±1 to cross the corresponding edge

of the tile. If the path ends in the same tile as ? we have formed a loop ` on Σ′, and

thus γ = γ` is an element of π1(Σ
′) = Γ1. If we do not return to the tile with ?, the

generator γ is not in Γ1. If every element of our generating set for Γ2 forms a loop,

we have Γ2 ⊂ Γ1.

As an example, consider the 3-star. As we discussed in Section 3.1, this graph does

not violate the necessary conditions in Larcher’s statements, but the algorithm of Tim

Hsu shows the corresponding group Γ is noncongruence. We will see how to apply the

test in this section to come to the same conclusion. This graph is level 6, so if Γ is to

be congruence it must contain Γ(6). We begin by finding a set of generators for Γ(6).
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In Appendix B, Figure B.1 shows a fundamental domain for Γ(6); the side-pairing

transformations yield the generators. For example, the generator corresponding to

x1 is ABA−2B−2. This corresponds to the path shown in Figure 5.10, which is not a

loop. Thus Γ(6) is not in Γ, so the 3-star does not represent a congruence subgroup.

*
B

1

A
1

A

B
1

B

A
1

Figure 5.10: The 3-star represents a noncongruence subgroup

5.5 Future Projects

The results of Larcher discussed in Section 5.1 are quite natural to interpret in terms

of graphs, though his proofs in [9] are based entirely in number theory. It may be

possible to reprove these using properties of the graphs, and in doing so we may

discover other necessary conditions for congruence.

Also, Section 5.4 provides a way to determine whether or not the group associated

to a given a graph is noncongruence. For a more complicated graph it would be useful

to work directly with the permutations which define the graph without having to draw

the picture. It would be of interest to reformulate the results of this Chapter in terms
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of the permutations (if possible). This might yield a test for congruence similar to

that of Hsu in [5].
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CHAPTER 6

ALGORITHMS

In this section we focus on finding the permutations associated to the group Γ(2p) and

two of its subgroups, the Hecke groups Γ0(2p)∩Γ(2) and Γ1(2p)∩Γ(2p), for p prime.

Our motivation is two-fold. First of all, knowing the permutations is equivalent to

knowing their graphs; in the case of Γ0(2p) ∩ Γ(2) we can immediately draw the

associated graph, and in the case of Γ1(2p) ∩ Γ(2p) there is a clear pattern we hope

to formalize in the future. Secondly, in the course of finding these permutations we

also find a fundamental domain and side-pairing transformations. The side-pairing

transformations generate the corresponding groups (see Ford [3]), so they provide

generators in terms of the generators of Γ(2). We saw in Chapter 5 that these are of

use in proving whether a group is congruence by looking directly at its graph.

The algorithms depend on finding first the permutations for Γ0(2p) ∩ Γ(2) and

then Γ1(2p) ∩ Γ(2). The calculations to implement the algorithms require only basic

mod p arithmetic. The group Γ0(2p)∩Γ(2) for the case p = 3 was discussed in Section

2.3. In this chapter we will use the example p = 7 throughout, which proved small

enough to be tractable but still large enough to illustrate the various cases we might

encounter. The appendices show all or part of the examples for p = 3, 5, 11 and 13.
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6.1 Index formulae

We will need to make use of a few elementary index formulae. These are found by

beginning with known index formulae for subgroups of PSL2(Z) (see, for example,

[10]) and modifying them to apply to subgroups of Γ(2).

Lemma 6.1.1.

[Γ(2) : Γ0(2n) ∩ Γ(2)] = n
∏
p|n
p 6=2

(1 + 1
p
)

Proof. Let Γ(1) denote PSL2(Z). We know

[Γ(1) : Γ0(N)] = N
∏
p|N

(1 + 1
p
).

Consider the following diagram:

1 −−−→ Γ(2) −−−→ Γ(1)
mod 2−−−−→ SL2(Z/2Z) −−−→ 1x x x

1 −−−→ Γ0(2n) ∩ Γ(2) −−−→ Γ0(2n)
mod 2−−−−→ B −−−→ 1

where B =

{(
a

0

b

d

)
∈ SL2(Z/2Z)

}
and the vertical arrows are the natural injec-

tions. Applying a standard index formula we find

[SL2(Z/2Z) : B] · [Γ(2) : Γ0(2n) ∩ Γ(2)] = [Γ(1) : Γ0(2n)].

By counting elements we find that [SL2(Z/2Z) : B] = 3. Thus,

[Γ(2) : Γ0(2n) ∩ Γ(2)] = 1
3
(2n)

∏
p|2n

(1 + 1
p
)

= 2
3
n(1 + 1

2
)
∏
p|n
p 6=2

(1 + 1
p
)

= n
∏
p|n
p 6=2

(1 + 1
p
)
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Lemma 6.1.2.

[Γ1(2n) ∩ Γ(2) : Γ(2n)] = n

Proof. We use a similar argument to the one above. We know that

[Γ1(N) : Γ(N)] = N.

Consider the diagram

1 −−−→ Γ1(2n) ∩ Γ(2) −−−→ Γ1(2n)
mod 2−−−−→ B −−−→ 1x x x

1 −−−→ Γ(2n) −−−→ Γ(2n)
mod 2−−−−→ 1 −−−→ 1

Because the order of B is 2, this yields

2[Γ1(2n) ∩ Γ(2) : Γ(2n)] = [Γ1(2n) : Γ(2n)]

and thus [Γ1(2n) ∩ Γ(2) : Γ(2n)] = 1
2
(2n) = n.

Lemma 6.1.3.

[Γ0(2n) ∩ Γ(2) : Γ1(2n) ∩ Γ(2)] = 1
2
ϕ(2n)

where ϕ is the Euler ϕ-function.

Proof. We know that

[Γ(1) : Γ(N)] =


N3

2

∏
p|N

(
1− 1

p2

)
if N > 2

6 if N = 2

Since [Γ(1) : Γ(2)] = 6 we have

[Γ(2) : Γ(2n)] = 1
6
· (2n)

3

2

∏
p|2n

(
1− 1

p2

)
= n3

2

∏
p|n
p6=2

(
1− 1

p2

)
. (6.1.1)

Recall

ϕ(2n) = n
∏
p|n
p 6=2

(
1− 1

p

)
.

Applying Lemmas 6.1.1 and 6.1.2, we divide to find the desired result.

63



6.2 Γ0(2p) ∩ Γ(2)

This section gives an algorithm to find the permutations for the graph associated to

Γ0 = Γ0(2p) ∩ Γ(2). Lemma 6.1.1 tells us that [Γ(2) : Γ0] = p + 1, so the graph

associated to Γ0 has p+ 1 edges.

Algorithm 6.2.1. Permutations for Γ0(2p) ∩ Γ(2).

Step 1 The permutation for the black vertices is given by σ = (p, p− 1, · · · , 2, 1)(p+ 1).

Step 2 The faces give a permutation of the form β = (ϕ1, ϕ2, · · · , ϕp)(p), where we can

define the ϕi recursively as follows:

(a) Let ϕ1 = 1.

(b) For the (unique) i such that 1+4ϕi is not invertible mod p, let ϕi+1 = p+1

and choose ϕi+2 ∈ {2, . . . , p− 1} so that ϕi+2 ≡ −ϕi (mod p).

(c) Otherwise, choose ϕi+1 ∈ {2, . . . , p− 1} so that ϕi+1 ≡ ϕi(1 + 4ϕi)
−1

(mod p).

Example 6.2.2. We compute the permutations associated to Γ0(14) ∩ Γ(2).

The black vertices give the permutation σ = (7, 6, 5, 4, 3, 2, 1)(8).

For the faces, let ϕ1 = 1. Then we have

ϕ2 ≡ 1(1 + 4)−1 (mod 7) = 3

ϕ3 ≡ 3(1 + 12)−1 (mod 7) = 4

ϕ4 ≡ 4(1 + 16)−1 (mod 7) = 6

ϕ5 ≡ 6(1 + 24)−1 (mod 7) = 5

Since (1+20) is not invertible mod 7, we let ϕ6 = 8 and ϕ7 ≡ −5 (mod 7) = 2. Then

ϕ8 would be 2(1 + 8)−1 (mod 7) = 1, so we have completed the cycle. The faces have

permutation β = (1, 3, 4, 6, 5, 8, 2)(7).
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The white vertices have permutation α = σ−1β−1 = (1, 8, 5, 4, 6, 7, 2)(3).

The graph is shown in Figure 6.1. We see an octagon with sides identified accord-

ing to the graph edges in such a way as to produce an orientable surface of genus 2.

The corresponding fundamental domain is shown in the appendix, Figure B.7.
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Figure 6.1: Graph for Γ0(14) ∩ Γ(2)

Theorem 6.2.3. The above steps compute the permutations for the graph associated

to Γ0(2p) ∩ Γ(2).

Proof. Let Γ0 = Γ0(2p) ∩ Γ(2). We will construct a fundamental domain for Γ0 from

I, B, B2, . . . , Bp−1 and X (to be determined below). Note that for i 6= j, 1 ≤ i, j < p,

Bi · (Bj)−1 = Bi−j is not in Γ0, so we know the Bi represent distinct cosets of Γ0 in

Γ(2). Label the tiles so that the graph edge in Bi is i and the graph edge in I is p
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(see Figure 6.2). In doing so we have associated the permutation α = (p, p−1, . . . , 1)

to the black vertex at 0.

... 

* ***
-1 0 1

B
p 1

B

I

p 1

p 1

p

p 2

1

1

2

1

3

Figure 6.2: Degree p black vertex for Γ0(2p) ∩ Γ(2)

In order to determine the permutation for the faces and discover an appropriate

choice for X, we will begin to find the side-pairing transformations for the fundamen-

tal domain. We can rotate counterclockwise about a face center from the tile Bm to

the tile Bk by finding g ∈ Γ0 so that gBmA ≡ Bk (mod 2p).

In this case we have

g = BkA−1B−m =

 1 + 4m −2

2k − 2m+ 8mk 1− 4k

 ,

and g is in Γ0 when 2k− 2m+ 8mk ≡ 0 (mod 2p). Thus, if 1 + 4m is invertible mod

p, then k ≡ m(1 + 4m)−1 (mod p). We now see Step 2(c) of the algorithm: when

1 + 4m is invertible mod p, the tile labeled m is glued to the tile labeled m(1 + 4m)−1

(mod p).
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In the case where 1 + 4m is not invertible mod p, the tile BmA is not equivalent

to one of the form Bk under Γ0. Thus we find our choice of X: let X = BmA, and

label its corresponding graph edge as p+ 1 (see Figure 6.3).

... * ***
-1 0

... 

..
. 

B
m

p +1

p +1

1

2m 1

1

2m+1

m

2

4m+1
3

6m+1
1

2m

B
m
A

Figure 6.3: Degree 1 black vertex for Γ0(2p) ∩ Γ(2)

To verify this is an appropriate choice we need to check that its edges will pair

with others in our domain. First, we will see that this tile contributes a degree 1

black vertex at 2
4m+1

. Rotating counterclockwise about this black vertex, we check

that there is g ∈ Γ0 with gBmAB−1 ≡ BmA (mod 2p). In this case we have

g = BmABA−1B−m =

 16m+ 5 −8

2(1 + 4m)2 −16m− 3

 . (6.2.1)

Since we have chosen m in the case that 1 + 4m is a multiple of p, this g is indeed in

Γ0.
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Now we look at the remaining side of the tileX. Rotating counterclockwise around

the face center 1
2m

we have passed from the tile Bm labeled m to the tile X = BmA

labeled p + 1. From there we seek a value k so that gBmA · A ≡ Bk (mod 2p). In

this case we have

g = BkA−2B−m =

 1 + 8m −4

2k − 2m+ 16mk 1− 8k

 (6.2.2)

which is in Γ0 when 2k− 2m+ 16mk ≡ 0 (mod 2p), i.e., k ≡ m(1 + 8m)−1 (mod p).

Because 1+4m is a multiple of p, we find that 1+8m ≡ −1 (mod p) (and is therefore

invertible mod p). This explains Step 2(b) of the algorithm: if ϕi = m with 1 + 4m

not invertible mod p, then ϕi+1 = p+ 1 and ϕi+2 ≡ m(1 + 8m)−1 ≡ −m (mod p)

Thus, we have produced a fundamental domain for Γ0(2p)∩Γ(2) from the p+1 tiles

I, B, . . . , Bp−1 and X = BmA with all sides identified by elements of Γ0(2p) ∩ Γ(2),

and assigned the labels in such a way as to produce the permutations given in the

algorithm.

6.3 Γ1(2p) ∩ Γ(2)

Having found permutations for Γ0 = Γ0(2p) ∩ Γ(2), we can use these to build the

permutations for Γ1 = Γ1(2p) ∩ Γ(2). Using the index formula in Lemma 6.1.3, let

n = [Γ0 : Γ1] = 1
2
(p− 1). The graph for Γ1 will have n(p+ 1) edges.
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Algorithm 6.3.1. Permutations for Γ1(2p) ∩ Γ(2).

Step 1 The black vertices give the following 2n cycles:

(p, p− 1, . . . , 2, 1)(p+ 1)

(2p+ 1, 2p, . . . , p+ 2)(2p+ 2)

(3p+ 2, 3p+ 1, . . . , 2p+ 3)(3p+ 3)

...

(np+ n− 1, np+ n− 2, . . . , np+ n− p)(np+ n)

Step 2 The n faces of degree 1 are given by the cycles (p)(2p+1)(3p+2) · · · (np+n−1).

Step 3 Each face of degree p gives a cycle of the form Ψi = (ψi1 , ψi2 , · · · , ψip), where

we can define the ψij as follows:

(a) Find the cycle for the degree p face of Γ0(2p)∩Γ(2), Φ = (ϕ1, ϕ2, · · · , ϕp),

with ϕ1 = 1.

(b) To each ϕi associate ui: For the (unique) i such that 1+4ϕi is not invertible

mod p, let ui = 1 and ui+1 = −1. Otherwise, let ui = (1+4ϕi)
−1 (mod p).

(c) We find the first p-cycle Ψ1 as follows: Set c1 = 1. For i ≥ 2, choose

ci ∈ {1, 3, 5, . . . , p− 1} such that

ci ≡ ±
i−1∏
j=1

uj (mod 2p). (6.3.1)

Let ψ1i = ϕi + 1
2
(ci − 1)(p + 1). The resulting Ψ1 = (ψ11 , ψ12 , · · · , ψ1p) is

the cycle for a face in the graph.

(d) Given p-cycles corresponding to degree p faces Ψ1, . . . ,Ψk, we can find

Ψk+1: Find a number e, 1 < e < np + n, that does not appear in any of

the cycles Ψ1, . . . ,Ψk. Cyclically permute the cycle Φ and relabel the ϕi

(and their corresponding ui from (b)) so that Φ = (ϕ1, ϕ2, · · · , ϕp) with
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ϕ1 ≡ e (mod p + 1). Now proceed exactly as in (c) to find Ψk+1. (Note

that we always begin this step by setting c1 = 1.)

Example 6.3.2. We compute the permutations associated to Γ1(14) ∩ Γ(2).

The permutation for the six black vertices is given by

σ = (7, 6, 5, 4, 3, 2, 1)(8)(15, 14, 13, 12, 11, 10, 9)(16)(23, 22, 21, 20, 19, 18, 17)(24)

The cycles for the faces of degree 1 are (7)(15)(23).

For the faces of degree 7, we first refer to Example 6.2.2 to find that the cycle for

the degree 7 face of Γ0(14) ∩ Γ(2) is Φ = (1, 3, 4, 6, 5, 8, 2).

Next we find the ui, calculating each mod 14:

ϕ1 = 1 u1 = (1 + 4)−1 = 3

ϕ2 = 3 u2 = (1 + 12)−1 = −1

ϕ3 = 4 u3 = (1 + 16)−1 = 5

ϕ4 = 6 u4 = (1 + 24)−1 = −5

ϕ5 = 5 u5 = 1

ϕ6 = 8 u6 = −1

ϕ7 = 2 u7 = (1 + 8)−1 = −3

Now we find each of the three 7-cycles.

The first 7-cycle, Ψ1:

ϕi 1 3 4 6 5 8 2

ui 3 −1 5 −5 1 −1 −3

ci 1 3 3 1 5 5 5

ψ1i 1 11 12 6 21 24 18
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The second 7-cycle, Ψ2:

ϕi 2 1 3 4 6 5 8

ui −3 3 −1 5 −5 1 −1

ci 1 3 5 5 3 1 1

ψ2i 2 9 19 20 14 5 8

The third 7-cycle, Ψ3:

ϕi 3 4 6 5 8 2 1

ui −1 5 −5 1 −1 −3 3

ci 1 1 5 3 3 3 3

ψ3i 3 4 22 13 16 10 17

Thus the faces give the permutation

β = (1, 11, 12, 6, 21, 24, 18)(2, 9, 19, 20, 14, 5, 8)(3, 4, 22, 13, 16, 10, 17)(7)(15)(23)

The white vertices are given by α = σ−1Ψ−1, which yields

α = (1, 8, 5, 12, 22, 23, 10)(2, 17, 24, 21, 4, 14, 15)(6, 7, 18, 9, 16, 13, 20)(3)(11)(19)

The graph is shown in Figure 6.4, with the faces shown in different colors. We

identify the 24 sides of the polygon according to the edge labels to form an orientable

surface of genus 4. The corresponding fundamental domain is shown in the appendix,

Figure B.8

An example for the case p = 11 is worked out in the Appendices, Section C.2.
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Figure 6.4: Graph for Γ1(14) ∩ Γ(2)
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Theorem 6.3.3. The above steps compute the permutations for the graph associated

to Γ1(2p) ∩ Γ(2).

Proof. Let F0 be the fundamental domain for Γ0 = Γ0(2p) ∩ Γ(2) we constructed in

Theorem 6.2.3, consisting of the tiles I, B, B2, . . . , Bp−1 and X = BmA (where

1 + 4m is not invertible mod p). We construct a fundamental domain F1 for Γ1 from

n = 1
2
(p − 1) copies of F0. To do so we will find matrices C(j) ∈ Γ0 \ Γ1 so that

the domain for Γ1 is F0, C(1)F0, . . . , C(n−1)F0. (For consistency in notation, define

C(0) = I.)

We desire our domain to be connected, so we will take each C(j) to be of the form

BkA−1B−m with 1 ≤ k,m < p. We know these matrices have the form 1 + 4m −2

2k − 2m+ 8mk 1− 4k

 .

For j odd, let m = 1
2
(j+p); for even j, let m = 1

2
j. Choose k so that k ≡ m(1+4m)−1

(mod 2p). This results in C(j) with

C(j) ≡

2j + 1 −2

0 (2j + 1)−1

 (mod 2p).

(Since 2j + 1 ≤ p − 2, we know 2j + 1 is invertible mod p.) Apply the C(j) to F0.

Label the edges in C(0)F0 as they were for Γ0. For each edge x in C(0)F0, label the

corresponding edge in C(j)F0 as x+ j(p+ 1).

The labels are assigned in a way to produce the cycles for the black vertices of

degree p given in Step 1. For the degree 1 black vertices, we need to check that

the black vertex contributed by the tile X and all of its images under the C(j)

are still of degree 1. In the proof for Theorem 6.2.3, we found that when rotating

counterclockwise about the black vertex in X there is g ∈ Γ0 with gBmAB−1 ≡ BmA

(mod 2p). Note the upper-left entry in the matrix (6.2.1). Because 1 + 4m = λp
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for some λ, we see that 16m + 5 ≡ 1 (mod 2p), so this matrix is also in Γ1. Thus,

the black vertex in the tile X is represented by the cycle (p + 1) for both Γ0 and

Γ1. For the images of X under the C(j), consider g such that gC(j)XB−1 ≡ C(j)X

(mod 2p). The matrix g = C(j)(XBX−1)C(j)−1 has upper-left entry (2j+1)(16m+

5)(2j + 1)−1 = 16m+ 5 ≡ 1 (mod 2p). Thus each of these matrices is in Γ1, so each

corresponding tile contributes a black vertex of degree 1.

Similarly, we consider the faces of degree 1. For Γ0, the tile I contributes the

degree 1 face (p): We checked that when rotating about the face center ∞, there is

a g ∈ Γ0 with gIA = I. The matrix g = A−1 is also in Γ1, so the cycle (p) represents

a degree 1 face for Γ1 as well. The images of I under the C(j) also contribute faces

of degree 1, because gC(j)A = C(j) implies g = C(j)A−1C(j)−1, which is in Γ1.

Finally, we consider the faces of degree p. We will find their permutations by

seeing how they cover the degree p face of Γ0.

Consider any φi = m and φi+1 = k such that 1 ≤ m, k < p with g = BkA−1B−m ∈

Γ0. Then in Φ, the permutation for the degree p face for Γ0, edge k follows edge m.

Now choose j with 0 ≤ j < n. Because the graph for Γ1 covers the graph for Γ0, the

edge m+ j(p+ 1) will be followed by an edge of the form k + j′(p+ 1). We seek a j′

for which there is a g ∈ Γ1 with gC(j)BmA = C(j′)Bk. In this case,

g = C(j′)BkA−1B−mC(j)−1

≡

c(j′)c(j)−1(1 + 4m) ∗

0 c(j′)−1c(j)(1− 4k)

 (mod 2p)
(6.3.2)

where c(j) = 2j + 1 and c(j′) = 2j′ + 1 are the upper-left entries of C(j) and C(j′),

and the value of ∗ is unimportant for now. That the lower-left entry is 0 follows

from the fact that BkA−1B−m is in Γ0. For g to be in Γ1 we require the diagonal

entries to be congruent to ±1 mod 2p; i.e., c(j′) ≡ ±c(j)(1+ 4m)−1 (mod 2p). Given
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C(j), m and k we have determined c(j′) and C(j′), and the corresponding edge is

k + 1
2
(c(j′)− 1)(p+ 1).

To continue, suppose that in Φ edge ` = φi+2 follows edge k = φi+1, with g =

B`A−1B−k ∈ Γ0 We want to find the j′′ so that the edge ` + 1
2
(c(j′′) − 1)(p + 1)

follows the edge k + 1
2
(c(j′) − 1)(p + 1). Thus we seek a j′′ so there is a g ∈ Γ1

with gC(j′)BkA = C(j′′)B`. Then g = C(j′′)B`A−1B−kC(j′)−1 has upper-left entry

c(j′′)c(j′)−1(1 + 4k), so we require c(j′′) ≡ c(j′)(1 + 4k)−1 (mod 2p). Since c(j′) ≡

c(j)(1 + 4m)−1 (mod 2p), we have c(j′′) ≡ c(j)(1 + 4m)−1(1 + 4k)−1 (mod 2p). If

we find the edge ψi in the tile C(ji)F0, we set Ci = C(ji) and let ci be its upper-left

entry. Thus, other than considering the case where 1 +ϕi is not invertible mod p, we

can see Step 2(c) of the algorithm as an induction: Ci+1 is found by multiplying the

previous ci by ui = (1 + 4ϕi)
−1.

Finally we look at what happens in the case where 1 + 4m = 1 + 4ϕi is not

invertible mod p. When rotating counterclockwise about the face center in Bm we

pass through X with the edge p+ 1 without changing the copy of C(j)F0. The value

of ci will be the same as before, so we set the corresponding ui = 1. Rotating further

we needed k so that there is a g in Γ0 with gXA = Bk. Recall the calculation in 6.2.2:

the upper-left entry of the matrix is 1 + 8m ≡ −1 (mod p), so we let ui+1 = −1.

This concludes the process: we have found a fundamental domain F1 for Γ1,

labeled the edges in such a way as to produce the cycles for the black vertices listed

in the algorithm, and identified the sides of the domain by elements of Γ1 in such a

way as to produce the cycles for the faces given in the algorithm.
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6.4 Γ(2p)

Next we use the permutations we found for Γ1 = Γ1(2p)∩Γ(2) to construct those for

Γ(2p). Let n = [Γ0(2p) ∩ Γ(2) : Γ1] = 1
2
(p − 1). Let ν = [Γ(2) : Γ1] = 1

2
(p2 − 1) be

the number of edges in the graph for Γ1. Let Φ, ϕi, ui, Ci and ci be defined as they

were for the Γ1 algorithm above.

Algorithm 6.4.1. Permutations for Γ(2p).

Step 1 Let (b1, b2, . . . , bp) be the p-cycle a degree p black vertex of Γ1. Then, for all

0 ≤ i < p, (b1 + iν, b2 + iν, . . . , bp + iν) is the cycle for a black vertex of Γ(2p).

Step 2 Let (x) be the cycle for a degree 1 black vertex of Γ1. Note that x = (p+ 1) +

j(p+ 1) for some 0 ≤ j < n. For 1 ≤ i < p, set ri ≡ 4(i− 1)(2j + 1)2 (mod p)

with 0 ≤ ri < p. Then (x + r1ν, . . . , x + rpν) is the cycle for a black vertex of

Γ(2p).

Step 3 Let (f) be the cycle for a degree 1 face of Γ1. Note that f = p+j(p+1) for some

0 ≤ j < n. For 1 ≤ i < p, set ri ≡ (i − 1)(2j + 1)2 (mod p) with 0 ≤ ri < p.

Then (f + r1ν, . . . , f + rpν) is the cycle for the corresponding face of Γ(2p).

Step 4 Let Ψ = (ψ1, ψ2, . . . , ψp) be the cycle for a degree p face of Γ1. Choose r1 with

0 ≤ r1 < p. (Each such choice will give a distinct face of Γ(2p).) Given ri, find

ri+1, 0 ≤ ri+1 < p as follows:

(a) If 1 + 4ϕi is not invertible mod p, let ri+1 = ri, and ri+2 ≡ ri+1 − 2(ci+1)
2

(mod p).

(b) Suppose 1 + 4ϕi is invertible mod p.

i. If ci 6= 1 and ci 6= 1, choose ri+1 ≡ ri − ci + uic
2
i + ci+1 (mod p).

ii. If ci = 1 and ci+1 6= 1, chose ri+1 ≡ ri + ui + ci+1 (mod p).
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iii. If ci 6= 1 and ci+1 = 1, choose ri+1 ≡ ri + u−1i − ci (mod p).

iv. If ci = ci+1 = 1, choose ri+1 ≡ ri (mod p).

Then (ψ1 + r1ν, . . . , ψp + rpν) is the cycle for the corresponding face of Γ(2p).

Example 6.4.2. We compute the permutations associated to Γ(14).

First, we compute the cycles arising from the degree 1 black vertices of Γ1. Note

that ν = 24.

The first cycle is (8), with j = 0, so ri ≡ 4(i− 1) (mod 7).

ri 0 4 1 5 2 6 3

riν 0 96 24 120 48 144 72

(8) 8 104 32 128 56 152 80

The next cycle, (16), has j = 1, so ri ≡ 4(i− 1) · 32 ≡ i− 1 (mod 7).

ri 0 1 2 3 4 5 6

riν 0 24 48 72 96 120 144

(16) 16 40 64 88 112 136 160

The cycle (24) has j = 2, so ri ≡ 4(i− 1) · 52 ≡ 2(i− 1) (mod 7).

ri 0 2 4 6 1 3 5

riν 0 48 96 144 24 72 120

(24) 24 72 120 168 48 96 144

Each degree 7 black vertex of Γ1(14)∩Γ(2) will contribute seven vertices to Γ(14).

For example, the cycle (7, 6, 5, 4, 3, 2, 1) contributes itself as well as (31, 30, . . . , 25),

(55, 54, . . . , 49), and so on.

Thus, the cycles associated to the black vertices of Γ(14) are

77



(7, 6, 5, 4, 3, 2, 1) (15, 14, 13, 12, 11, 10, 9) (23, 22, 21, 20, 19, 18, 17)

(31, 30, 29, 28, 27, 26, 25) (39, 38, 37, 36, 35, 34, 33) (47, 46, 45, 44, 43, 42, 41)

(55, 54, 53, 52, 51, 50, 49) (63, 62, 61, 60, 59, 58, 57) (71, 70, 69, 68, 67, 66, 65)

(79, 78, 77, 76, 75, 74, 73) (87, 86, 85, 84, 83, 82, 81) (95, 94, 93, 92, 91, 90, 89)

(103, 102, 101, 100, 99, 98, 97) (111, 110, 109, 108, 107, 106, 105) (119, 118, 117, 116, 115, 114, 113)

(127, 126, 126, 124, 123, 122, 121) (135, 134, 133, 132, 131, 130, 129) (143, 142, 141, 140, 139, 138, 137)

(151, 150, 149, 148, 147, 146, 145) (159, 158, 157, 156, 155, 154, 153) (167, 166, 165, 164, 163, 162, 161)

(8, 104, 32, 128, 56, 152, 80) (16, 40, 64, 88, 112, 136, 160) (24, 72, 120, 168, 48, 96, 144)

Next we compute the cycles arising from the degree 1 faces of Γ1.

The cycle (7) has j = 0, so ri = i− 1.

ri 0 1 2 3 4 5 6

riν 0 24 48 72 96 120 144

(7) 7 31 55 79 103 127 151

The cycle (15) has j = 1, so ri ≡ (i− 1) · 32 ≡ 9(i− 1) (mod 7).

ri 0 2 4 6 1 3 5

riν 0 48 96 144 24 72 120

(15) 15 63 111 159 39 87 135

The cycle (23) has j = 2, so ri ≡ 25(i− 1) (mod 7).

ri 0 4 1 5 2 6 3

riν 0 96 24 120 48 144 72

(23) 23 119 47 143 71 167 95
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Finally, we can compute the cycles for the faces of Γ(2p) which cover the degree

7 faces of Γ1(14). Here we will show two examples. For the first, begin with Ψ1 =

(1, 11, 12, 6, 21, 24, 18) and set r1 = 0. We get

ψ1i 1 11 12 6 21 24 18

ui 3 −1 5 −5 1 −1 −3

ci 1 3 3 1 5 5 5

ri 0 6 4 4 4 4 3

ψi + riν 1 155 108 102 117 120 90

so the cycle for the corresponding face of Γ(14) is (1, 155, 108, 102, 117, 120, 90). We

repeat this computation beginning with each choice of r1 to construct the cycles for

seven different faces of Γ(14).

Another example, this time using Ψ2 = (2, 9, 19, 20, 14, 5, 8) and setting r1 = 4.

ψ2i 2 9 19 20 14 5 8

ui −3 3 −1 5 −5 1 −1

ci 1 3 5 5 3 1 1

ri 4 4 5 1 5 6 6

ψi + riν 98 105 139 44 134 149 152

and thus the corresponding cycle is (98, 105, 139, 44, 134, 149, 152).

Theorem 6.4.3. The above steps compute the permutations for the graph associated

to Γ(2p).

Proof. The proof will follow a pattern similar to the proof for the Γ1(2p) ∩ Γ(2)

algorithm above: We will choose a fundamental domain for Γ(2p), label the edges

appropriately, and show that we can pair the edges by elements of Γ(2p).
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Let F1 be the fundamental domain we constructed for Γ1 = Γ1(2p) ∩ Γ(2), con-

sisting of n copies of the domain for Γ0. We can construct a domain F for Γ(2p) as p

copies of F1 by translating F1 by powers of A, so the domain for Γ(2p) will be A0F1,

. . . , Ap−1F1. We label the ν edges in A0F1 as they were for Γ1. For each edge x in

A0F1, label the corresponding edge in AiF1 as x + iν. This choice of labeling will

yield the cycles for the black vertices of Γ(2p) described in Step 1.

Moving on to Step 2, we will now construct the cycles for the black vertices of

Γ(2p) that cover the degree 1 cycles of Γ1. Consider first the cycle (p+ 1). This edge

is found in the tile X = BmA, where 1 + 4m is not invertible mod p. We showed

previously that this vertex has degree 1 for the graphs of both Γ0 and Γ1, because

gXB−1 = X implies g ∈ Γ1. However, this vertex will not have degree 1 in the graph

for Γ(2p). Recall the calculation in 6.2.1:

g = XBX−1 =

 16m+ 5 −8

2(1 + 4m)2 −16m− 3

 ≡
1 −8

0 1

 (mod 2p).

Instead, the vertex represented by (x) = (p+1) in Γ1 will be covered by a degree p

vertex for Γ(2p). The edge labeled x is in the tile Ar1X with r1 = 0; we will find r2 so

that this tile is glued to the tile Ar2X. More generally, given the edge labeled x+ riν

in the tile AriX, we will find ri+1 so that the next edge in the cycle is x+ ri+1ν. This

happens when there is a g ∈ Γ(2p) with gAriXB−1 = Ari+1X. In this case we have

g = Ari+1XBX−1A−ri

≡

1 2ri+1

0 1


1 −8

0 1


1 −2ri

0 1

 (mod 2p)

≡

1 −2ri − 8 + 2ri+1

0 1

 (mod 2p)

(6.4.1)

so we see that g ∈ Γ(2p) when ri+1 ≡ ri + 4 (mod p). Since we begin with r1 = 0,
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we see inductively that ri ≡ 4(i− 1) (mod 2). Thus, for these choices of ri, the cycle

(x+r1ν, x+r2ν, . . . , x+rpν) represents a black vertex of Γ(2p) which covers the cycle

(x) of Γ1.

Now we consider the black vertices of Γ(2p) that cover the other degree 1 black

vertices of Γ1. Consider the case of a black vertex in the tile C(j)X with 1 ≤ j < n,

which is represented by the cycle (x) = ((p + 1) + j(p + 1)). We found that these

vertices have degree 1 for Γ1 because, rotating counterclockwise about x, there is

a g ∈ Γ1 with gC(j)XB−1 = C(j)X. Suppose we have the corresponding vertex

in the tile AriC(j)X. Again, we must find ri+1 so that there is a g ∈ Γ(2p) with

gAriC(j)XB−1 = Ari+1C(j)X. In this case we have

g = Ari+1C(j)XBX−1C(j)−1A−ri

≡

1 2ri+1

0 1


1 −2c(j)2

0 1


1 −2ri

0 1

 (mod 2p)

≡

1 −2ri − 8c(j)2 + 2ri+1

0 1

 (mod 2p)

(6.4.2)

which is in Γ(2p) when ri+1 ≡ ri + 4c(j)2 (mod p). Again, beginning with r1 = 0, we

see inductively that ri ≡ 4(i− 1)c(j)2 (mod p).

Note that because we assigned C(0) = I, we have c(0) = 1, so we have a consistent

result with the previous case: in general, if we let (x) = ((p + 1) + j(p + 1)) with

0 ≤ j < n, we can construct the cycle for a black vertex of Γ(2p) which covers (x) as

(x+ r1ν, . . . , x+ rpν) where ri ≡ 4(i− 1)c(j)2 (mod p).

We now proceed to Step 3, where we consider the faces which cover the degree 1

faces of Γ1. We checked that when rotating about the face center∞ there is a g ∈ Γ1

with gIA = I. The matrix g = A−1 is not in Γ(2p), so this face will be covered

by a p cycle. If we start with the edge x in the tile Ari , we find ri+1 so that there
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is g ∈ Γ(2p) with gAri · A = Ari+1 . This yields g = Ari+1−ri−1, which is in Γ(2p)

when ri+1 ≡ ri + 1 (mod p). Beginning with r1 = 0, we find inductively that ri ≡ i

(mod p), which produces the cycle (p, p+ ν, . . . , p+ (p− 1)ν).

The other degree 1 faces of Γ1 are found in the tiles C(j) · I. Beginning with the

edge f in the tile AriC(j) above such a face, we seek ri+1 so there is a g ∈ Γ(2p) with

gAriC(j)A = Ari+1C(j). In this case we have

g = Ari+1C(j)A−1C(j)−1A−ri

≡

1 −2ri − 2c(j)2 + 2ri+1

0 1

 (mod 2p)

which is in Γ(2p) when ri+1 ≡ ri + c(j)2 (mod p). Starting with r1 = 0 we find

inductively that ri ≡ ic(j)2 (mod 2p). Again, because we have defined C(0) = I, this

is consistent with the previous result; if we let (f) = (p+j(p+1)) with 0 ≤ j < n, we

can construct the cycle for a face of Γ(2p) above (f) as (f + r1ν, . . . , f + rpν) where

ri ≡ (i− 1)c(j)2 (mod p).

Now we will consider the faces computed in Step 4. Let Φ = (ϕ1, . . . , ϕp) denote

the cycle for the degree p face of Γ0, and let Ψ = (ψ1, . . . , ψp) be the cycle for one of

the degree p faces of Γ1: We will construct a the cycle for a face of Γ(2p) of the form

(ψ1 + r1ν, . . . , ψp + rpν). Select a value of r1, with 0 ≤ ri < p. Given ri, our goal is

to find ri+1 so that there is a g ∈ Γ(2p) with gAriCiB
ϕiA = Ari+1Ci+1B

ϕi+1 .

First consider the general case in Step 4(b), where 1 + 4ϕi is invertible mod p,

and let ui = (1 + 4ϕi)
−1 as in the algorithm for the Γ1 permutations. Recall from

6.3.2 that in this case we have g ∈ Γ1 with gCiB
ϕiA = Ci+1B

ϕi+1 , so

g = Ci+1B
ϕi+1A−1B−ϕiC−1i

≡

ci+1c
−1
i u−1i ∗

0 (ci+1)
−1ciui

 (mod 2p)
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We know g ∈ Γ1, so ci+1c
−1
i u−1i = ±1 and ∗ is even. Let κ = ci+1c

−1
i u−1i = (ci+1)

−1ciui

and denote ∗ as −2κei+1; factoring out κ, the above matrix becomes

κ

1 −2ei+1

0 1

 (mod 2p) (6.4.3)

To consider edges in Γ(2p) which cover these edges, we want g ∈ Γ(2p) with

gAriCiB
ϕiA = Ari+1Ci+1B

ϕi+1 .

In this case

g = Ari+1Ci+1B
ϕi+1A−1B−ϕiC−1i A−ri

≡ κ

1 2ri+1

0 1


1 −2ei+1

0 1


1 −2ri

0 1

 (mod 2p)

≡ κ

1 −2ri − 2ei+1 + 2ri+1

0 1

 (mod 2p)

Thus, for g to be in Γ(2p), we require ri+1 ≡ ri + ei+1 (mod p).

Next we must determine the value of ei+1 in 6.4.3. This will depend on whether

one or both of the Ci are I.

Case 1. Suppose Ci, Ci+1 6= I. Then we have

Ci+1B
ϕi+1A−1B−ϕiC−1i ≡

ci+1 −2

0 (ci+1)
−1


u−1i −2

0 ui


c−1i 2

0 ci

 (mod 2p)

≡

κ −2(−ci+1u
−1
i + cici+1 + uici)

0 κ

 (mod 2p)

So ei+1 = 1
κ
(−ci+1u

−1
i + cici+1 + uici) = −ci + uic

2
i + ci+1.
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Case 2. Suppose Ci = I, but Ci+1 6= I. Then we have

Ci+1B
ϕi+1A−1B−ϕiC−1i ≡

ci+1 −2

0 (ci+1)
−1


u−1i −2

0 ui

 (mod 2p)

≡

ci+1u
−1
i −2(ci+1 + ui)

0 (ci+1)
−1ui

 (mod 2p)

≡

κ −2(ci+1 + ui)

0 κ

 (mod 2p)

where κ = ci+1u
−1
i = (ci+1)

−1ui. Then ei+1 = 1
κ
(ci+1 + ui) = ui + ci+1.

Case 3. Suppose Ci 6= I, but Ci+1 = I. Then we have

Ci+1B
ϕi+1A−1B−ϕiC−1i ≡

u−1i −2

0 ui


c−1i 2

0 ci

 (mod 2p)

≡

c−1i u−1i −2(−u−1i + ci)

0 uici

 (mod 2p)

≡

κ −2(−u−1i + ci)

0 κ

 (mod 2p)

where κ = c−1i u−1i = uici. Then ei+1 = 1
κ
(−u−1i + ci) = −ci + u−1i .

Case 4. Suppose Ci+1 = Ci = I. Then

Ci+1B
ϕi+1A−1B−ϕiC−1i ≡

u−1i −2

0 ui


Then κ = u−1i and ei+1 = 1

u−1
i

= ui.

The above cases constitute Step 4(b) of the algorithm.

Finally we consider Step 4(a), the case where 1 + 4ϕi is not invertible. Rotating

around the face center we encounter the edge of the fundamental domain in the tile
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CiX, and so ui = 1, Ci+1 = Ci, and ri+1 = ri. From there, we require g ∈ Γ(2p) so

that gAri+1Ci+1B
ϕiA2 = Ari+2Ci+2B

ϕi+2 , and thus

g = Ari+2Ci+2B
ϕi+1A−2B−ϕi(Ci+1)

−1A−ri+1 .

Recall also that in this case ui+1 = −1. Because ci+2 = ui+1ci+1, and the ci are

defined only up to sign, we have ci+2 = ci. Using these and referring to 6.2.2 and the

lines that follow, we have, for the case Ci 6= I,

Ci+2B
ϕi+1A−2B−ϕi(Ci+1)

−1 ≡

ci −2

0 c−1i


−1 −4

0 −1


c−1i 2

0 ci

 (mod 2p)

≡

−1 −4c2i

0 −1

 (mod 2p)

Thus κ = −1 and ei+1 = −2c2i .

In the case Ci = I, we have

Ci+2B
ϕi+1A−2B−ϕi(Ci+1)

−1 ≡

−1 −4

0 −1


and thus ei+1 = −2, which is consistent with the above result.

Thus, we have Step 4 of the algorithm: using these values for ei+1, and letting

ri+1 = ri + ei+1, we have the cycle for a face of Γ(2p) as (ψ1 + r1ν, . . . , ψp + rpν).

This concludes the process: we have found a fundamental domain F for Γ(2p),

labeled the edges in such a way as to produce the cycles for the black vertices listed

in the algorithm, and identified the sides of the domain by elements of Γ(2p) in such

a way as to produce the cycles for the faces given in the algorithm.

Remark 6.4.4. The algorithms in this chapter have produced the permutations

associated to Γ0(2p), Γ1(2p), and Γ(2p). Notice that in the course of the proofs we

have also found the side-pairing transformations for their fundamental domains; by
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Theorem 19 in Section 28 of Ford [3], these generate the groups. Thus, we have also

found generators for each of these groups in terms of A and B.

6.5 Future Projects

We have described permutations for the case of Γ(2p); it is hopeful that these methods

could be employed to work with Γ(2n) for general n. Cases currently being considered

are Γ(2k) and Γ(2pq). The difficulty in working with Γ(2n) with the above methods

arises because as we increase the number of prime factors in 2n, we increase both

the difficulty of the calculations and the complexity of the fundamental domain for

Γ0(2n) ∩ Γ(2).

Also, in Section 5.4 we made use of the generators for Γ(2n) in terms of A and B.

These are found for Γ(2p) as a consequence of the proofs in this section, but it would

be useful to have a more direct computation to find such generators.

Finally, we can see immediately a way to visually display a graph for Γ0(2p)∩Γ(2)

given the permutations. There is a clear pattern in the graphs for Γ1(2p)∩ Γ(2) that

can probably be formalized. Though it would be impractical for all but the smallest

values of p, there may be a way to sketch graphs for Γ(2p) as well.
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Appendix A

EXAMPLES OF GRAPHS OF HECKE GROUPS

In this section we provide the graphs corresponding to several of the Hecke congruence

groups, ordered by level. Refer to the “List of Figures” beginning on page x as a guide

for this section. For some of these examples, the corresponding fundamental domains

can be found in Appendix B. Some graphs for such groups have appeared as examples

in the body of the thesis; these include Γ0(6)∩Γ(2) on page 16, Γ0(10)∩Γ(2) on page

35, Γ0(14)∩Γ(2) on page 65, and Γ1(14)∩Γ(2) on page 72. Graphs for Γ0(22)∩Γ(2)

and Γ1(22) ∩ Γ(2) appear in Appendix C.2.

These examples were created primarily by first constructing a fundamental do-

main for the underlying group, finding side-pairing transformations to discover the

permutations, calculating the genus on which the graph lies, and then attempting to

arrange the vertices and edges into a recognizable pattern. The graphs and domains

for levels 10 and 26 can be constructed using the algorithms in Chapter 6. For the

other levels the construction is similar but is complicated by the additional number

of prime factors.
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Figure A.1: Graph for Γ(6); domain appears in Figure B.1
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Figure A.2: Graph for Γ0(8) ∩ Γ(2)
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Figure A.3: Graph for Γ1(8) ∩ Γ(2); domain appears in Figure B.2
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Figure A.5: Graph for Γ1(8) ∩ Γ(4)

89



6

5

1

2

3
4

3

10 10

11 11

7

7

8

9

12

Figure A.6: Graph for Γ1(10) ∩ Γ(2); domain appears in Figure B.4
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Figure A.8: Graph for Γ0(12) ∩ Γ(2); domain appears in Figure B.5
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Figure A.9: Graph for Γ1(12) ∩ Γ(2); domain appears in Figure B.6
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Figure A.10: Graph for Γ0(12) ∩ Γ(4)
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Figure A.13: Graph for Γ0(20) ∩ Γ(2)
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Figure A.14: Graph for Γ0(24) ∩ Γ(2)
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Appendix B

EXAMPLES OF FUNDAMENTAL DOMAINS

In this section we provide examples of fundamental domains for Hecke groups in the

manner described in Definition 2.3.2. The corresponding graphs are referred to in the

captions below each graph; for graphs shown in color the colors are consistent with

those in the corresponding domain. The edges of the graph are labeled in the domain

with the same numbering; for example, the edge labeled 1 in a graph will be labeled

as e1 in the corresponding domain. The other paired sides are labeled on the real

axis as xi. Most of the graphs shown in the thesis were created by first finding the

domains shown in this section. Several domains had to be omitted because of their

size; they would not be readable if displayed on a single page and would be more

confusing if spread over several pages.
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Figure B.1: Fundamental domain for Γ(6); graph in Figure A.1
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Figure B.8: Fundamental domain for Γ1(14) ∩ Γ(2); graph in Figure 6.4
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Appendix C

EXAMPLES OF PERMUTATIONS

C.1 Principal Congruence Subgroups

In this section we record permutations which correspond to the principal congruence

subgroups up to level 12. These were computed by hand, by first finding a fundamen-

tal domain for the group, finding the side-pairing transformations and then recording

the edges found by rotating counterclockwise about each vertex. For the most part

these were computed before the algorithms for level 2p were fully developed, and so

unfortunately the numbering is not consistent with the output of the algorithms in

these cases.

C.1.1 Γ(4)

Black vertices: (1, 2)(3, 4). White vertices: (1, 4)(2, 3). Faces: (1, 3)(2, 4).

C.1.2 Γ(6)

Black vertices: (3, 2, 1)(7, 6, 5)(11, 10, 9)(4, 8, 12);

White vertices: (1, 5, 9)(2, 11, 12)(3, 4, 6)(7, 8, 10);

Faces: (1, 10, 4)(2, 8, 5)(3, 7, 11)(6, 12, 9)
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C.1.3 Γ(8)

Black vertices: (1, 2, 3, 4)(5, 6, 7, 8) . . . (29, 30, 31, 32)

White vertices:

(1, 28, 15, 6) (2, 21, 16, 11) (3, 26, 13, 8) (4, 23, 14, 9)

(5, 32, 27, 18) (7, 30, 25, 20) (10, 29, 24, 19) (12, 31, 22, 17)

Faces:

(1, 5, 17, 21) (2, 10, 18, 26) (3, 7, 19, 23) (4, 12, 20, 28)

(6, 14, 22, 30) (8, 16, 24, 32) (9, 13, 25, 29) (11, 15, 27, 31)

C.1.4 Γ(10)

Black vertices: (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) . . . (56, 57, 58, 59, 60)

White vertices:

(1, 55, 60, 18, 27) (2, 9, 44, 59, 13) (3, 23, 33, 43, 53) (4, 29, 38, 32, 7)

(5, 15, 19, 37, 21) (6, 24, 39, 48, 42) (8, 54, 14, 28, 22) (10, 34, 49, 58, 52)

(11, 56, 46, 36, 26) (12, 51, 45, 50, 17) (16, 57, 41, 35, 40) (20, 47, 31, 25, 30)

Faces:

(1, 26, 40, 34, 9) (2, 12, 16, 39, 23) (3, 52, 57, 20, 29) (4, 6, 41, 56, 15)

(5, 25, 35, 45, 55) (7, 31, 46, 60, 54) (8, 21, 36, 50, 44) (10, 51, 11, 30, 24)

(13, 58, 48, 38, 28) (14, 53, 42, 47, 19) (17, 49, 33, 22, 27) (18, 59, 43, 32, 37).
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C.1.5 Γ(12)

Black vertices: (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12) . . . (91, 92, 93, 94, 95, 96).

White vertices:

(1, 90, 48, 81, 68, 37) (2, 58, 50, 82, 74, 10) (3, 23, 96, 83, 18, 28)

(4, 87, 45, 84, 71, 40) (5, 55, 53, 79, 77, 7) (6, 20, 93, 80, 15, 25)

(8, 17, 61, 54, 22, 33) (9, 92, 39, 49, 30, 44) (11, 14, 64, 51, 19, 36)

(12, 95, 42, 52, 27, 47) (13, 85, 78, 24, 69, 56) (16, 88, 75, 21, 72, 59)

(26, 70, 62, 94, 86, 34) (29, 67, 65, 91, 89, 31) (32, 41, 73, 66, 46, 57)

(35, 38, 76, 63, 43, 60)

Faces:

(1, 42, 94, 61, 16, 58) (2, 9, 43, 62, 69, 23) (3, 27, 51, 63, 75, 87)

(4, 39, 91, 64, 13, 55) (5, 12, 46, 65, 72, 20) (6, 30, 54, 66, 78, 90)

(7, 76, 37, 67, 28, 17) (8, 32, 56, 68, 80, 92) (10, 73, 40, 70, 25, 14)

(11, 35, 59, 71, 83, 95) (15, 79, 52, 41, 31, 88) (18, 82, 49, 38, 34, 85)

(19, 50, 57, 45, 86, 93) (21, 74, 81, 47, 26, 33) (22, 53, 60, 48, 89, 96)

(24, 77, 84, 44, 29, 36)

C.2 Level 22

In this section we work out an example of the algorithm for Γ1(2p) ∩ Γ(2) in Section

6.3 for the case p = 11.

The permutation for the ten black vertices is given by

(11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1)(12)

(23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13)(24)

(35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25)(36)

(47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37)(48)

(59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49)(60)
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The cycles for the faces of degree 1 are (11)(23)(35)(47)(59).

For the faces of degree 11, we first use the algorithm for the degree 11 face of

Γ0(22)∩Γ(2) to find Φ = (1, 9, 5, 6, 2, 10, 4, 8, 12, 3, 7). Next we find the ui, calculating

each mod 22:

u1 = (1 + 4)−1 = 9

u2 = (1 + 36)−1 = 3

u3 = (1 + 20)−1 = −1

u4 = (1 + 24)−1 = −7

u5 = (1 + 8)−1 = 5

u6 = (1 + 40)−1 = 7

u7 = (1 + 16)−1 = −9

u8 = 1

u9 = (1 + 65)−1 = −1

u10 = (1 + 12)−1 = −5

u11 = (1 + 28)−1 = −3

Now we find each of the five 11-cycles.

The first 11-cycle, Ψ1:

ϕi 1 9 5 6 2 10 4 8 12 3 7

ui 9 3 −1 −7 5 7 −9 1 −1 −5 −3

vi 1 9 5 5 9 1 7 3 3 3 7

ψ1i 1 21 29 30 14 10 52 44 48 39 55

The second 11-cycle, Ψ2:
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ϕi 2 10 4 8 12 3 7 1 9 5 6

ui 5 7 −9 1 −1 −5 −3 9 3 −1 −7

vi 1 5 3 9 9 9 3 5 1 7 7

ψ2i 2 34 16 56 60 51 19 25 9 41 42

Continuing as above, we find the cycles for all ten of the faces:

(1, 21, 29, 30, 14, 10, 52, 44, 48, 39, 55)(11)

(2, 34, 16, 56, 60, 51, 19, 25, 9, 41, 42)(23)

(3, 31, 49, 45, 17, 18, 38, 58, 28, 8, 12)(35)

(4, 20, 24, 15, 7, 37, 33, 53, 54, 26, 46)(47)

(5, 6, 50, 22, 40, 32, 36, 27, 43, 13, 57)(59)

The white vertices are given by α = σ−1Ψ−1, (where α is the permutation from

the black vertices and Ψ is the permutation for the faces), which yields

(1, 42, 27, 58, 59, 31, 40, 9, 14, 24, 20)(5)

(2, 12, 8, 25, 54, 39, 22, 23, 43, 52, 33)(17)

(3, 46, 47, 7, 28, 21, 50, 60, 56, 13, 30)(29)

(4, 57, 38, 48, 44, 49, 6, 15, 34, 35, 19)(41)

(10, 11, 55, 16, 45, 26, 36, 32, 37, 18, 51)(53)

The graphs for Γ0(22) ∩ Γ(2) and Γ1(22) ∩ Γ(2) are shown in Figures C.1 and

C.2. Γ0(22)∩ Γ(2) appears on a polygon with 16 sides, which when identified form a

surface of genus 4. The graph for Γ1(22) ∩ Γ(2) is drawn on a polygon with 80 sides

(shown as alternating black and gray so we can distinguish them). We identify the

sides to form an orientable surface of genus 16.
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