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Abstract

Ultracold atomic gases provide an ideal system with which to study fundamental many-body

physics. Exhibiting universal interactions in clean and controllable environments, long-used

simple models as well as more exotic models can now be realized. The interplay between

theory and experiment is therefore very active, and, in this thesis, I will detail several works,

both exact analytic results and numerical calculations, which have impacts on current exper-

iments. I begin with an introduction to the field including a brief discussion of experiments,

the microscopic model of two species of interacting fermions, the BCS-BEC crossover and

an overview of the various phases of atomic Fermi gases. I then describe the various results

of my theoretical investigations, which are divided into five chapters. First, I describe radio

frequency (RF) spectroscopy experiments and how they probe the single-particle spectral

function. This leads to my results on an exact feature of the spectral lineshape, a universal

large-momentum structure which exists for all states of interacting Fermi systems and has

been verified in recent angle-resolved RF experiments. Second, I focus on gases which have

a normal Fermi liquid ground state and show that their lineshape exhibits a characteristic

jump discontinuity. I illustrate this Fermi surface singularity and the previously mentioned

universal large momentum tail with explicit calculations. Third, I turn to the low energy

structure of the single-particle spectral function in the superfluid state. I argue that sharp

low energy quasiparticle excitations exist across the BCS-BEC crossover using a general

argument that includes the interaction of fermions with the low-energy collective mode.

This is illustrated with an explicit calculation within an approximation scheme. Fourth,

I address the trap-induced inhomogeneity and use a Bogoliubov-deGennes analysis to test

if a simple local density approximation (LDA) can provide an adequate description of a

spin imbalanced Fermi system. Finally, I discuss dynamics of atomic gases motivated by a

recent experiment in which two spin-polarized clouds are allowed to collide with each other.

Despite the underlying attractive interactions, the clouds are seen to bounce off of each

other. Using a hydrodynamic description, I argue that the short and intermediate time

dynamics reflects a metastable state in which the effective interaction is repulsive. It is my

hope that the work presented in this thesis can be used to gain key insights which inspire

future endeavors.
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Chapter 1

Introduction

Ultracold atomic gases are very remarkable physical systems. With both bosonic and

fermionic species available for cooling well below degeneracy, simple interactomic interac-

tions, and precise control of their environment available, one can realize many fundamental

hamiltonians which occur in condensed matter. This allows one to study a wide variety of

many body physics. In this introductory chapter, we will begin this thesis with an intro-

duction to the field and the parameters of the experimental system. We will then give the

current understanding of the phases of matter that fermions exhibit which we will study.

Finally, we give an outline of the results in this thesis.

The 1980’s and early 1990’s saw a tremendous advancement in the cooling of alkali

atoms, earning S. Chu, C. Cohen-Tannoudji and W. Phillips the 1997 Nobel prize in physics.

This allowed physicists to study quantum behavior of a macroscopic number of atoms. In

1995 these techniques proved sufficient enough to achieve Bose-Einstein condensation (BEC)

in 85Rb, earning W. Ketterle, C. Weiman and E. Cornell the 2001 Nobel Prize in physics

and verifying the prediction made by Bose and Einstein 70 years prior. The gases obtained

were shown to have particle densities of the order of 1013 - 1015 cm−3 at temperatures less

than the degeneracy temperature of ∼ 10−5 K. For comparison, air at standard temperature

and pressure is about 1022 cm−3 and for nuclear matter 1038 cm−3. The Fermi temperature

for electrons is of order 104 - 105K while for helium degeneracy is achieved below 1 K.

Many phenomena were studied in boson systems, including condensate interference, vortex

creation and collective mode behavior. Soon fermions enjoyed degenerate temperatures for

the first time at JILA [7], starting an intense study of cold fermions.

There are several advantages to studying quantum phenomena in cold atomic gases.

Firstly, the gases are dilute in the sense that the interatomic interaction has a range r0

of the order of 50 Åwhile the interatomic spacing is of the order of 1000 Å, and therefore

many quantities are insensitive to those microscopic details. There is therefore a kind of

“universality” in the system, meaning 6Li has the same behavior as 40K, save for mass dif-

ferences. However, interactions play a fundamental role despite this diluteness, as exhibited

1



by the many phenomena that occur. Practically, these are attractive systems since their

manipulation and observation [1] can be done using lasers and magnetic fields, providing a

clean and controllable environment. Numbers of particles, spin imbalance, and interparticle

interactions are easily tuned, all in contrast with condensed matter.

Theoretically, the advantages come from the simple definition of the physical system,

namely, the small range of the interactions Vint(r) providing a description in terms of the low

energy scattering length as between atoms and a known background potential Vtrap(r). For

single-spin bosons, which exhibit BEC, in which all bosons occupy the same single particle

state, may be described in terms of the Gross-Pitaevskii equations, a weakly interacting the-

ory [8]. Fermions under ambient magnetic field also behave weakly – even noninteracting if

there is only one spin component. However, with two spins of fermions the scattering length

can actually be tuned using a simple magnetic field to yield arbitrarily strong interactions,

called a “Feshbach” resonance. This provides a way of probing strong correlations in Fermi

gases, where analytical theories cease to provide a complete description, but nevertheless

can still give deep insights.

In this introductory chapter we will first discuss some of the atomic physics and the

formalism we will use to describe it, and then turn to the main physical regime of this

thesis, the BEC-Bardeen-Cooper-Schrieffer (BCS) crossover. We end with an outline of the

results in the thesis.

1.1 Ultracold Atoms

The remarkable control of atomic gases in the experiments comes from the use of lasers

and magnetic fields, and in this section we briefly describe the manipulation relevant for

the experiments which we will reference in this thesis. The first traps included both optical

and magnetic trapping, although here we will be concerned only with optical traps since we

want to save the magnetic field for the tuning of Feshbach resonances. Laser light with an

energy of order the optical range interacts with cold atoms via the AC Stark shift, the laser

creating a spatially varying but time-averaged electric field E(r) due to the fact that the

time scale for the motion of the atoms is much slower than the inverse frequency ω−1
L of the

light. The coupling is therefore −d̂ ·E(r). At frequencies in the vicinity of the transition ω0

from the atom’s ground state 2S1/2 to the excited state 2P1/2, but far from the linewidth

Γ of the transition (Γ ≪ |ωL − ω0| ≪ ω0), the energy shift can be calculated using second

order perturbation theory and has the form

Vtrap(r) =
1

2
α(ωL)|E(r)|2, (1.1)

2



Figure 1.1: Hyperfine energies for 6Li (right) and 40K (left) measured from the ground state
energy without the hyperfine coupling. The splittings at zero field νrf are 228 MHz and
-1.286 GHz for 6Li and 40K, respectively (Note: hνhf = (i + 1/2)A where i = 1, 4 for 6Li
and 40K, respectively). Figure obtained from ref. [1].

where α(ωL) is the polarizability of the atom, given by

α(ωL) ≃ |〈e|d̂|g〉|2
h̄(ω0 − ωL)

, (1.2)

ignoring transitions to other states. Using a focussed laser beam along the z-direction, the

intensity |E(r)|2 has a maximum, and the trap potential becomes approximately harmonic:

Vtrap(r) ≃ −V0 +
1

2
mω2

rr
2 +

1

2
mω2

zz
2, (1.3)

where ωr and ωz are the trap frequencies and the trap depth V0 ranges from 1-1000 kHz. The

width of the trap has the scale of millimeters. We note that one can control the asymmetry of

trap as well as its depth independently. Furthermore, one can use two counter-propagating

laser beams to produce a standing wave potential, providing a lattice for the atoms of several

geometries [8].

The application of a homogeneous magnetic field B = Bẑ produces the hyperfine hamil-

tonian for an atom with l = 0, j = s = 1/2 and nuclear spin i = 1

Ĥhf = Aŝ · î + γeh̄ŝzB + γnh̄îzB, (1.4)

where A is the hyperfine coupling and γe,n are the gyromagnetic ratios of the electron and

nuclear spins, respectively. The hamiltonian can be diagonalized with the states |f,mf 〉
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with energies Ef,mf
. We refer to Fig. 1.1 for 6Li and 40K. Note that in the high field

“Paschen-Back” regime the lowest hyperfine states are used in experiments. We will denote

the populated states by σ and any unpopulated states being excited by e.

Let us now briefly discuss the interparticle interactions involved in ultracold atoms,

since they are crucial for tuning [2, 9]. We restrict ourselves to a three-dimensional, two-

component, single-species Fermi gas with dominant s-wave interactions. The interparticle

potential Vα,β(r) depends on the relative distance r between the atoms, the relative angular

momentum, and is a matrix in the pair of hyperfine spins of the two atoms collectively called

a “channel” and denoted by α ≡ {f1,mf1 , f2,mf2 , l,ml}. For large distances, the potential

behaves as −C6/r
6 independent of the hyperfine state, where the C6 coefficient serves as

an experimentally-determined parameter. The corresponding “true” range of the potential

can be defined by r0 ≡ (mC6/h̄
2)1/4, and is again on the order of 10 Å as mentioned above.

At shorter distances, however, the electron clouds of the atoms start to overlap, causing

a strong repulsion. The spin states of the two atoms and the coupling of every channel

must be taken into account in principle to solve the scattering problem. We will, however,

see that we don’t need to know every matrix element for an adequate description. In fact,

due to the low temperature of the gas, we can solve the Schrödinger equation for the two

atoms at low momentum, and, using standard scattering theory, one obtains the scattering

amplitude

f(k) =
1

−1/as + 1
2r

∗k2 + ik
, (1.5)

where r∗ is the effective range of the potential, and as the scattering length. In most cases

r∗ is of the same order as the true range r0, and can be neglected if the diluteness condition,

kF r
∗ ≪ 1, is satisfied. In this case, we see the merit that any short-range model can be

used for the same Fermi gas, as long as it produces the same scattering length. We will

therefore not write down explicit formulas for the full potential curves.

To illustrate how this coupling between different channels produces a resonance, we

first note that the Schrödinger matrix contains a relatively decoupled subset of the original

populated channel and another unpopulated one for certain choices of magnetic field ranges.

We therefore restrict ourselves to these two channels. Plotted qualitatively in Fig. 1.2, the

“open” or “background”channel potential Vbg(r) is the appropriate diagonal part of Vα,β(r)

which would occur in the absence of the resonance. The “closed” channel Vc(r) is so called

since it approaches a finite constant for large r. We will furthermore assume that only a

single bound state λcl(r) in one other channel is the dominant term, owing to the small

difference in energy between the initial scattering energy and the bound state energy. The

appropriate off-diagonal coupling term will be denoted W (r). We subsequently rewrite the
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Figure 1.2: Illustration of open and closed channel Born-Oppenheimer potentials. Incoming
particles interact in the background channel Vbg(R) at energy E in the vicinity of a bound
state Ec of the closed potential Vc(R). The zero is chosen as the asymptotic large-R energy
of Vbg(R). Figure obtained from Ref. [2].

Schrödinger equation as a two-channel model

(
Hbg(r) W (r)

W (r) Hcl(B, r)

)(
λα(r)

λcl(r)

)
= E

(
λα(r)

λcl(r)

)
, (1.6)

where Hbg(r) is the single channel hamiltonian for the entrance channel in the absence

of any coupling, and Hcl(B, r) is the closed channel hamiltonian with the magnetic field

shift included. The off-diagonal coupling W (r), is real and short-ranged. Solving for the

corresponding scattering amplitude we obtain the generic form Eq. (1.5), where the effective

range r∗ depends on the strength of W . The scattering length obtains the form

as = abg

(
1− ∆B

B −B0

)
, (1.7)

where ∆B, which depends on r∗ and the magnetic moment µ of the closed channel, is the

width of the resonance and abg the background scattering potential which occurs in the

absence of the Feshbach resonance. We then find that the diverging of the scattering length

is a product of the crossing of a bound level in a different channel with the scattering energy

of the original populated channel. This is similar to shape resonances, in which bound or

quasi-bound states occur in the original scattering potential.
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1.2 The Many-Body Problem

In this section we show how we model the short-distance behavior in the many body problem.

By using the Bethe-Peierls condition

lim
r→0

[
1

rφ(r)

d

dr
(rφ(r))

]
=

1

as
, (1.8)

which amounts to enforcing the limit

φ(r) ∼ 1

r
− 1

as
as r→ 0, (1.9)

where the proportionality constant depends on the normalization, we only need the scatter-

ing length to describe the interactions described in the previous section. The corresponding

condition on the many-body wavefunction Ψ({ri}) is [10, 11]

Ψ(r1, . . . , ri, . . . , rj , . . . , rN ) =
∑

Pk

(−1)Pk

[(
1

|ri − rj |
− 1

as

)
χi,jΨ

′({rl})
]
, (1.10)

where |ri − rj| → 0, χ is the spin wavefunction, and Ψ′ does not depend on ri, rj. It

is understood that the other N − 2 particles are kept fixed. We can build this into our

hamiltonian by considering a pseudopotential of the form −gΛδ(ri − rj), where Λ ∼ 1/r∗

is a momentum cutoff which must be “regularized” in momentum-space expressions, since

any physical potential decreases for sufficiently large momentum. Analogously to Eq. (1.9),

we use the vacuum Lippman-Schwinger equation [9]

Tk′,k(E) = Vk′,k +
∑

k′′

Vk′,k′′G0(k′′, E)Tk′′,k(E), (1.11)

where G0(k, E) = 1/(E + i0+ − 2ǫk) is the Green’s function for the free propagation of the

pair, to determine the T matrix which is related to the scattering amplitude by

f(k) = − m

4πh̄2Tk,k

(
E =

h̄2k2

m

)
. (1.12)

Using our pseudopotential and taking the limit k → 0, we obtain

m

4πas
= − 1

gΛ
+
∑

|k|<Λ

1

2ǫk
, (1.13)

where we’ve explicitly restricted the momentum integral because it diverges as Λ. We

therefore keep gΛ finite and restrict all momentum integrals until the final expressions
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where we then allow Λ→∞. Our many-body hamiltonian, then, becomes

Ĥ =
∑

σ

∫
d3xψ†

σ(x)

(
−∇

2

2m
− µσ

)
ψσ(x)− gΛ

∫
d3xψ†

↑(x)ψ†
↓(x)ψ↓(x)ψ↓(x). (1.14)

In momentum space, it becomes

Ĥ =
∑

k,σ

ξk,σc
†
k,σck,σ −

gΛ
V

∑

k,k′,Q

c†k+Q,↑c
†
−k,↓c−k′,↓ck′+Q,↑, (1.15)

where ξk,σ ≡ ǫk−µσ and V is the total volume. We note that, following normal conventions

for lack of better notation, V is used here for volume. We will in this thesis usually set the

volume to be unity, using context to determine when it appears.

The restriction of momentum sums to momenta with magnitude less than Λ is only

necessary for certain quantities which are then “sensitive” to the details of the interatomic

potential. For example, the hamiltonian above does not need the restriction due to a can-

cellation of the kinetic and potential energies which are separately sensitive. Consequently,

the free energy per particle F (T, V,N)/N = ǫF F̃ (T/TF , 1/kF as), where F̃ is a dimension-

less function which is independent of the microscopic details to order (kF r
∗)2. Any Fermi

atom should then be described by the same function when properly scaled. For any dy-

namic quantities, such as the spectral function or the radio frequency (RF) spectrum to

be introduced later, we are restricted to momenta and energies less than the corresponding

quantity related to Λ.

1.3 BEC-BCS crossover

The BEC-BCS crossover is the physical regime of interactions of two-spin fermions in which

the scattering length of the fermions, as, is tuned to arbitrary values. We compare the

scattering length with the Fermi wavevector kF of the fermions, defined by k3
F /3π

2 = n,

where n is the particle density. This then defines the interaction parameter kFas which can

take all values, (−∞,∞). Since the unitary regime occurs when the scattering length di-

verges, we also use 1/kF as as an interaction parameter. Weak coupling then corresponds to

1/kF |as| ≫ 1 and negative, while strong coupling corresponds to 1/kF as ≫ 1 and positive.

The term “strong interactions” corresponds to the unitary regime where 1/kF |as| ≪ 1.

1.3.1 BCS-Leggett Mean Field Theory

To begin understanding the physics of fermions in the BEC-BCS crossover, we will review

BCS-Legget theory [12], which gives a good qualitative understanding of the ground state.

The basic idea comes from the Cooper problem: that a pair of fermions in states (k, ↑) and

(−k, ↓), where |k| ≃ kF , can bind in 3D under infinitesimally weak attractive interactions
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Figure 1.3: The mean field solutions for µ (black) and ∆ (red) in the BEC-BCS crossover.

with an energy lower than the noninteracting Fermi gas. In metals, this attraction is given by

a phonon-mediated process between electrons. In atoms, this attraction is given naturally

as explained in the previous section. It is natural, then, to write down the N -particle

wavefunction

ΨMF({rl} , N) =
∑

Pk

(−1)Pk



∏

i<j

φ(ri − rj)χi,j


 (1.16)

as a product of N/2 pair wavefunctions φ(r)χi,j (appropriately antisymmetrized under all

permutations Pk), where φ and χ = (| ↑↓〉 − | ↓↑〉)/
√

2 are the (symmetric) orbital and

(antisymmetric) spin parts, respectively. The noninteracting limit corresponds to the limit

as φ turns into a pair of plane wave states. To show the lowering of the ground state

energy with respect to pairing we calculate the ground state energy by considering the

BCS interaction hamiltonian, which is a restriction of Eq. (1.15) to exclude all |Q| > 0,

anticipating that zero-momentum pairs constitute the main portion of the pairing. We have

V̂MF = −gΛ
V

∑

k,k′

c†
k,↑c

†
−k,↓c−k′,↓ck′,↑. (1.17)

This can be solved as a variational minimization by considering the grandcanonical version

of Eq. (1.16), in second quantized form,

|ΨMF〉 =
∏

k

(
uk + vkc

†
k,↑c

†
−k,↓

)
|vac〉. (1.18)
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Minimizing 〈ΨMF|ĤMF|ΨMF〉 with respect to uk, vk such that u2
k+v2

k = 1 (the normalization

condition), we find that the thermodynamic potential

Ω0(µ, T = 0) = −|∆0|2
m

4πh̄2as
−
∑

k

(
Ek − ξk −

|∆0|2
2ǫk

)
, (1.19)

where ∆0 satisfies the “gap equation”

m

4πas
=
∑

k

(
1

2ǫk
− 1

2Ek

)
, (1.20)

and Ek =
√

(ǫk − µ)2 + ∆2
0. One can show that the thermodynamic potential here is

less than that for a noninteracting Fermi gas throughout the entire coupling range, and is

therefore a better ground state. The quantity ∆0, which depends on uk, vk, serves as an

order parameter for the gas, being zero in the normal state and becoming nonzero as one

decreases the temperature. In terms of the Fermi operators, ∆0 = −gΛ
∑

k〈ck,↑c−k,↓〉 =

gΛ
∑

k ukvk, and therefore is an amplitude for removing a pair of particles from the system

with opposite momenta. Together with the number equation, n = −∂Ω0/∂µ = 2
∑

k v
2
k,

the solutions for ∆0 and µ are plotted in Fig. 1.3.

In order to get a feeling for the nature of the gas, let us focus on limiting cases. The

weak coupling regime defined by kFas < 0 and kF |as| ≪ 1 is called the BCS regime,

since it gives similar results as for the original problem in typical superconductors. The

order parameter ∆0 = 8ǫF exp(π/2kF as)/e
2 is an exponentially different scale than the

Fermi energy, and therefore not a perturbative result. The ground state energy becomes

EBCS = EFG− 3N∆2
0/8ǫF . We see that, from Fig. 1.4, that the energy Ek is different from

the noninteracting excitation energy only in a small region of momentum, and, similarly,

that the momentum distribution is different from the noninteracting one in the same region.

To illustrate the spatial structure of the pairs, we can calculate their size rpair =
√
〈r̂2〉.

We find that rpair = kF /m∆0, which is exponentially large. This gives the picture that the

gas is composed of Fermi pairs near the Fermi energy with an exponentially small binding

energy. We note that what we have not included are fluctuations in the pairing states, which

give rise to Fermi liquid corrections [13]. We also note that scattering due to polarization

of the medium [14] reduces the gap by a numerical factor.

In the strong coupling limit, the fermions bind together, such that, in Eq. (1.16), each

φ is a bound state of two fermions, and has the form φ ∼ e−r/as/r. From our crossover

theory, the chemical potential is simply µ = −Eb/2 + πh̄2asn/m, which is half the binding

energy of a dimer with the mean field contribution between dimers and can be obtained

through a bosonic theory of N/2 dimers. The pair size is shown in Fig. 1.5 by the dashed

lines. There is a smooth evolution from the BCS limit, where the size is much bigger than

the interparticle spacing, kF rpair ≫ 1, to the strong coupling limit where rpair = as ≪ k−1
F ,
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Figure 1.4: The single particle energy Ek and momentum distribution nk in weak coupling
BCS theory. The grey dashed lines indicate momenta such that |ǫk − ǫF | = kBTc.

characteristic of strong bound pairs. We note that what this crossover theory does not

included are fluctuations in the pairing, which gives rise to collective modes in the system.

In the BEC limit, these modes correspond to a further interaction between pairs and give

rise to a Bogoliubov Bose gas with scattering length add ≈ 0.55as [13] between dimers. By

solving exactly the four-particle Schrödinger equation, add = 0.6as [15].

The intermediate region when kF |as| ≫ 1 defines the “unitary” region, and is character-

ized by the absence of a small parameter. The only length scale in the problem is then k−1
F ,

and therefore the free energy per particle is a universal function ǫF F̃ (T/TF , 0) of T/TF .

This region then has a second kind of universality in which even the scattering length does

not determine its properties. We finally note that there is no phase transition for any value

of the coupling kFas – it is simply a crossover. In the crossover theory above, the quasi-

particle weights, u2
k and v2

k, are indeed finite throughout the crossover and all experiments

to date have not seen evidence of singularities characteristic of quantum phase transitions.

We will address this question later in Chapter 4.

1.3.2 Finite Temperature

We can further illustrate the BEC-BCS crossover by increasing the temperature, shown in

the phase diagram in Fig. 1.5. Generalizing the previous discussion, we obtain corrections

the thermodynamic potential (1.19), gap equation (1.20), and number equation. In the weak

coupling BCS limit the situation is clear: a second order transition at Tc = ǫF exp(π/kF as)

separates the superfluid state from a normal Fermi liquid, and the form of Tc indicates

that the transition is due simply to pair breaking via thermal fluctuations. On the strong

coupling side the mean field physics we have included is only due to pairing, and therefore
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Figure 1.5: Qualitative phase diagram for spin-balanced Fermi gases in the BEC-BCS
crossover with interaction parameter 1/kF as. At zero temperature the average pair size
is illustrated by red and blue dots joined by dashed lines. The yellow superfluid region
is bounded above by the normal Fermi liquid, pseudogap, and normal Bose liquid in the
BCS, unitary, and BEC regions, respectively. The dashed line increasing from left to right
indicates the pairing temperature T ∗. Figure obtained from Ref. [3].
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the transition is predicted to occur at T ∗ ∼ Eb ln(Eb/ǫF )3/2/2 involving the binding energy.

We, however, can intuitively find an inconsistency with this, by considering that if we have

composite bosons we should expect a transition temperature proportional to the density, so

that Tc = h̄2[nB/ζ(3/2)]
2/3/mB . This is because we expect that the bosons are condensed,

and the transition occurs not because of pair breaking, but of thermal fluctuations kicking

whole pairs to higher momentum states. The gas can then be considered a thermal Bose

gas. If we include in our theory these collective modes of the bosons [16, 17], we would

indeed obtain this result but mB = 2m and nB = n/2.

At unitarity, again, the critical temperature is of the order of the Fermi temperature,

Tc ∼ TF , and Quantum Monte Carlo (QMC) calculations [18–20] point to a prefactor

of 0.15 - 0.20. We point out that this ratio Tc/TF is the highest of any other phase of

matter, and is a novel aspect of ultracold fermions. The nature of the gas above Tc is,

however, only recently understood. Since the natures of the gas above Tc in both the weak

and strong coupling sides are very different, we can guess that this region at unitarity is

quite complicated. The transition is certainly still associated with the loss of off-diagonal

long-rage order (ODLRO), but, as we’ve seen in the two limits, the existence of a pairing

gap does not have to coincide with the transition. In fact, one finds that there is still strong

pairing at unitarity causing a gap in the spectrum. The existence of this gap was found [21]

to exist in the single particle spectrum.

1.3.3 Polarized Fermi gases

A novel aspect of ultracold atomic systems is the tuning of spin imbalance in the system.

Since the ground state for a spin-balanced system is a superfluid of pairs, polarization in-

herently breaks up the Cooper pairs in the system and competes with superfluidity. The

spin imbalance [22, 23] is described by an effective magnetic field h ≡ (µ↑−µ↓)/2, resulting

in two different Fermi surfaces. Once Cooper pairs are broken, superfluidity is lost and

a normal Fermi liquid develops, upon a critical field hc = ∆/
√

2 at a first order transi-

tion. Experimental hints at coexistence of superfluidity and the normal phase [24–26] were

observed through discontinuities in the spatial profile of trapped gases, with a superfluid

core and normal edges. By inducing vortices in the superfluid core, it was shown [24] that,

indeed, there is a transition. A phase diagram [4, 27] at unitarity also found the critical

polarization P = 0.40 at zero temperature, as shown in Fig. 1.6. From QMC calculations

[5], it has been determined at unitarity that the ground state is indeed a Fermi liquid for

a polarization P > 0.40 by comparing the Fermi liquid energy with that of the balanced

superfluid.

One useful way of thinking about the phase diagram is to consider the limit of full

polarization. The BEC limit is perhaps the most accessible, since the pairing is so strong

that extra fermions simply immerse themselves in the bosonic sea, interacting with an atom-
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Figure 1.6: Experimental measurement [4] of the phase diagram for polarized Fermi gases
for temperature T and polarization P = (n↑ − n↓)/(n↑ + n↓) at unitarity (1/kF as = 0).
The filled symbols indicate experimental measurements of the density distributions of the
atoms. Open symbols indicate theoretical calculations. Particularly, the open square at
P ≈ 0.40 is the calculation of Lobo et al. [5].
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dimer scattering length aad ≃ 1.1as [28]. In the limit of full polarization, we have a single

bound boson in a sea of Fermi atoms. Indeed, by considering the fully polarized case, it was

shown [29, 30] that a single down spin in a sea of up spins can be described by a variational

wavefunction of the form

|Ψpolaron〉 = ϕ0c
†
0,↓|Ψ0〉+

∑

p,q

ϕp,qc
†
q−p,↓c

†
p,↑cq,↑|Ψ0〉, (1.21)

where ϕ0 and ϕp,q are the amplitudes of the minority spin to be in the respective momentum

states and, since |Ψ0〉 is a noninteracting state, the momentum sum is restricted to |p| > kF ,

|q| < kF . The state has an energy above the noninteracting energy EFG of |Ψ0〉 that evolves

from the mean field energy −4h̄2πn↑as/m in the BCS limit to a large binding energy −Eb
in the BEC limit. At unitarity the value is still strong, −0.6ǫF↑. More exact calculations

[31, 32] confirm this result and find a transition between the Fermi polaron and molecule

at a value of 1/kF as ≃ 0.90.

1.4 Metastable Ferromagnetic State

Up to this point we have described the paired superfluid and normal Fermi liquid ground

states of interacting Fermi gases. An interesting question is whether - in the presence

of strong repulsive interactions - one can find a ferromagnetic state of fermions. From

theoretical work dating back to the 1930s (see Ref. [33] and Sec. 11.7 in Ref. [34]) it was

argued that itinerant fermions with short range repulsion might undergo a ferromagnetic

Stoner instability. This instability should cause the fermions to separate into spin-polarized

domains in which the potential energy is zero, energetically more favorable than the initial

interaction energy.

A recent experiment from the Ketterle group at MIT [35] claimed to have seen such an

instability in ultracold gases. However, the effective repulsion in this system comes from

being on the upper branch of the Feshbach resonance, an excited state with scattering

length as > 0 for which the ground state is the BEC side of the BEC-BCS crossover. Thus,

the question of how long this metastable excited state can live before decaying to the lower

branch is crucial. If a quasi-equilibrium state could be maintained in the upper branch,

then QMC calculations [36, 37] showed that, for many observables, the upper branch physics

would look very much like a repulsive Fermi system. However, it appears that the timescales

for remaining on the upper branch in the original MIT experiment are very short [38] and

no clear evidence for a ferromagnetic state is observed.

In the last part of this thesis, we turn to a remarkable new dynamical experiment from

the Zwierlein group at MIT, which we show is related to a metastable ferromagnetic state

in a very interesting way. An important feature of ultracold atom experiments is that

one can prepare dynamical experiments arbitrarily far from equilibrium. In the Zwierlein
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experiment [6], two spin-polarized clouds were prepared in a spatially separated manner and

then allowed to collide under the effect of the trapping potential. For weak interactions,

the clouds pass through each other, as one might expect. The relative center of mass of the

two clouds oscillates around the center of the trap. The most unexpected result is that, for

strong interactions, the clouds repel each other at short times, bouncing off of each other.

We show in Chapter 6 that the reason why the clouds bounce off of each other, despite

the underlying attraction, is related to the effective repulsion on the upper branch of the

Feshbach resonance. The unusual short and intermediate time bounce dynamics is argued

to be related to a metastable ferromagnetic state in the system.

1.5 Outline of the Thesis

We will now give an outline of this thesis in order to summarize the findings. In chapter 2 we

discuss the universal structure of the single particle spectral function for large momentum,

namely, that for hole-like excitations at momentum k ≫ kF the dominant weight occurs

at ω ≈ −h̄2k2/2m, a feature which is immediately familiar only with superfluid phases of

matter. We show here that this feature is, in fact, not associated with pairing or even

attraction, occurring in repulsive Fermi gases as well as attractive ones. We understand

this feature is a result of phase space restrictions on two-particle propagation, and verify

that its integral corresponds with general considerations on the momentum distribution

nk. Our prediction of this large-k universal feature has been verified by angle-resolved RF

experiments [39].

In chapter 3, we derive general features for the RF spectrum. First, at low energies in

normal Fermi liquids there is a jump discontinuity usually associated with the momentum

distribution nk. We next derive the form for a high-energy tail connected with the large-k

behavior of the spectral function A in the previous chapter and again find another relation

involving Tan’s constant C. We then illustrate our general results by approximate calcula-

tions which show the merits and disadvantages of two approximation schemes used in the

literature to calculate the full lineshape of the RF spectrum with these general features in

mind.

In chapter 4, we turn to the low energy part of the superfluid spectral function and

address a fundamental question: whether there are sharp quasiparticles in the system, i.e.,

singular peaks inA(k, ω). There have been conflicting works on this point. We give a general

argument considering the coupling of the fermions to the low energy collective mode in the

system. We show that there are indeed sharp quasiparticles across the entire BEC-BCS

crossover. We use the gaussian approximation to the partition function to illustrate this

general result and analyze how fluctuations in the order parameter shift the dispersion.

In chapter 5, we address the inhomogeneity of the atomic clouds by an explicit cal-
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culation of the densities nσ(x) and order parameter ∆(x) of the system. We use the

Bogoliubov-deGennes (BdG) equations, an inhomogeneous mean field theory which is the

simplest theory beyond the local density approximation (LDA). We analyze the regions

inside the cloud in order to interpret the results of two conflicting experiments. We find

that order parameter oscillations must be interpreted with care, as a finite numerical cutoff

can lead to misleading conclusions. We find that the LDA may fail for sufficiently small

numbers of particles and strong asymmetry.

Finally, in chapter 6, as in Sec. 1.4 above, we consider the collision of two clouds of atomic

Fermi gases prepared in different spin states close to a Feshbach resonance, motivated by the

recent experiment of Sommer et al. [6]. We argue that, upon coming into contact with each

other, the fermions in the strongly interacting regime are well described by hydrodynamics.

Solving Euler’s equations, we show that the clouds bounce off each other, with a damped

oscillatory motion of the two centers of mass at short time, followed by phase separation of

the two species at intermediate times. These dynamics, which are in excellent agreement

with the experiment, reflect a metastable many-body state on the “upper branch” of the

resonance where the effective interaction is repulsive, despite the underlying attraction.
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Chapter 2

Spectral Functions: Universal

Large Momentum Behavior

The spectral function A(k, ω) = −ImG(k, ω + i0+)/π of the single-particle Green’s func-

tion G is of fundamental interest in many-body physics [40]. In addition to information

about the spectrum and dynamics of single-particle excitations, it is also directly related to

thermodynamic functions of a many-particle system. Very recently there has been experi-

mental progress in measuring (the occupied part of) A(k, ω) in strongly interacting Fermi

gases [8, 41], using a momentum-resolved version [42] of radio frequency (RF) spectroscopy

[43–45]. These measurements [42] of A(k, ω) for ultracold atomic gases are the analog of

angle-resolved photoemission, which has given deep new insights into novel materials.

In this chapter1 we describe remarkable universal large-k structure of A(k, ω) for dilute

gases with observable effects in RF experiments. Our investigation was motivated by the

elucidation of the universal ultraviolet structure of equal-time correlations by Tan [10, 11,

47–50]. One of his central results is the universal k ≫ kF behavior of the momentum

distribution nσ(k) ≃ C/k4, where C is the “contact” [10, 11, 47–50]. Using the T = 0

sum rule
∫ 0
−∞ dωA(k, ω) = n(k), this necessarily implies that A(k, ω) has weight below the

chemical potential (ω < 0) for k ≫ kF . This is “incoherent” spectral weight, not associated

with the coherent Landau quasiparticle. We will show that

• The incoherent part of the ω vs. k dispersion when k ≫ kF goes like −ǫ(k) = −k2/2m,

“bending back” away from the chemical potential at large k.

• While this back-bending is expected in BCS theory and its generalizations for a paired

superfluid, we argue that this unusual dispersion is a universal feature of all dilute

Fermi gases, even those with a normal (non-superfluid) ground state.

• We find that the spectral weight of C/k4 in A(k, ω) is centered about ω ≃ −ǫ(k) in

a range of energies of order vF k for normal Fermi gases. Most of the spectral weight

(1−C/k4) is, of course, centered about ω ≈ +ǫ(k), but these states are not occupied

1This work was done in collaboration with M. Randeria and published in Physical Review A [46].

17



and do not contribute to n(k).

This bending back is clearly visible in the data of Ref. [42] for attractive fermions near

unitarity and near or above Tc. However, it is hard to separate the effects of the finite

temperature pairing pseudogap [51] and normal state interaction effects. In particular, a

bending back of the dispersion above Tc cannot by itself be used as evidence for a pairing

pseudogap in view of the normal state results described below.

We will first introduce radio frequency spectroscopy in general and then focus on two

systems where the ground state is a normal Fermi liquid: (a) the hard-sphere dilute Fermi

gas, and (b) the highly imbalanced attractive Fermi gas. We then turn to the superfluid

ground state, where we will argue that, in the BCS limit, the unusual dispersion is dominated

by interaction effects rather than the effect of pairing. We conclude with implications for

RF spectroscopy experiments.

2.1 Radio Frequency Spectroscopy

One major tool of manipulating the atoms between different hyperfine states is RF spec-

troscopy, in which in addition to the optical trap the atoms are subject to a RF pulse in the

x direction which transfers one of the hyperfine spins σ in the system to a third unoccupied

state e. The RF field couples to the electrons in the form Ĥrf = −γeh̄
∑

i Ŝi,xBrfe
iωLt, where

we neglect the nuclear coupling since γn ≪ γe. Furthermore, since we are interested only

in the transition between σ and e, we will ignore all other transitions. Further details are

in [52]. We can therefore incorporate the probe as a perturbation of the form

Ĥrf(t) = γ

∫
d3x

(
e−iωLtψ†

e(x)ψσ(x) + eiωLtψ†
σ(x)ψe(x)

)
, (2.1)

valid for laser frequencies ωL near the transition of interest, ωσ,e. The coupling constant γ

contains the dipole matrix element and the power of the laser, and ωL is the laser frequency.

To measure the response, we measure the rate of production of e atoms, Îrf ≡ dN̂e/dt =

i[Ĥrf(t), N̂e]. In the event that γ is small, we can use linear response theory to determine the

spectrum. The RF response is then proportional to the imaginary part of the corresponding

correlation function

ΠR(x− x′, t− t′) = −iθ(t− t′)〈
[
ψ†
σ(x, t)ψe(x, t), ψ

†
e(x

′, t′)ψσ(x
′, t′)

]
〉. (2.2)

After a Fourier transform, we obtain

Irf(ω) = −2γ2Im ΠR(q = 0, ω), (2.3)

where we redefine our frequency ω ≡ ωL − ∆Eσ where ∆Eσ is the difference in energy

between the e level and the bottom of the σ band. The long-wavelength character is
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σ
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e e

Figure 2.1: Calculation of the correlation function Π. The upper diagram is the full cal-
culation with all vertex corrections in the shaded box, while in the lower diagram these
vertex corrections are neglected. Furthermore, the excited e state can be taken to be the
free-particle Green’s function, indicated by a thin line.

due to the negligible momentum transfer of the incoming photon. We note that, due to

the linear response of the system, Irf obeys several sum rules [10, 53, 54]. For example,∫∞
−∞ dωIrf = 2πγ2nσ. We will discuss the sum rules in detail in Chapter 3.

We will, in this thesis, ignore interactions of the final state e with the other spin state

in the system. This is because we are interested in the macroscopic physics of the initial

system, and not with the probe we use to measure them. If these interactions are strong

one must take into account vertex corrections [55] to accurately model the experimental

lineshapes. We can then factorize Eq. (2.2) to obtain

Irf(ω) = 2πγ2
∑

k

Aσ(k, ξk,σ − ω) (f(ξk,σ − ω)− f(ξk,e)) , (2.4)

represented diagrammatically in Fig. 2.1. The function Aσ(k, ω) is the single particle spec-

tral function, defined as −Im G(k, ω)/π, where G is the Green’s function

G(k, t) = −
〈
T
(
ck,σ(t)c

†
k,σ(0)

)〉
. (2.5)

The Green’s function contains all the single particle dynamics and provides crucial infor-

mation about the nature of the excitations in a many body system [40], and the spectral

function A can be interpreted as the probability that a certain excitation with momentum

k and energy ω can be made. In a normal phase, we only need to calculate Eq. (2.5). From

general considerations in a Fermi liquid, the spectral function has the form

AFL(k, ω) = Zδ(ω − ξk,σ) +Ainc(k, ω), (2.6)

where the quasiparticle weight Z < 1 indicates the gapless excitations in the system. For

a superfluid phase, the ODLRO means we also have the “anomalous” Green’s function
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for the operator ck,↑c−k,↓. We will defer the discussion of F 0 to Chapter 4. Now, within

BCS-Leggett theory, we have

G0(k, ω) =
u2
k

ω + i0+ − Ek

+
v2
k

ω + i0+ + Ek

, (2.7)

and the spectral function

A0(k, ω) = u2
kδ(ω − Ek) + v2

kδ(ω + Ek) (2.8)

is then sharply peaked resulting in very large (in fact, infinite) lifetimes for the excited states

with energy Ek. This, then, gives the picture that the gas is composed of infinitely long

lived quasiparticles. In fact, the limit as ∆0 → 0 gives precisely the truly noninteracting

Green’s function. At the bottom of the dispersion, the quasiparticle weights, u2
k, v2

k, are

each 1/2. One can view the superfluid state as having split the noninteracting excitation

with weight 1 into two gapped excitations for particles and holes.

We now have a simple physical interpretation of RF spectroscopy – a momentum sum

over all probabilities A of energetically allowed transitions weighted by the occupation

of levels with energy ξk,σ − ω. We can then use our calculations of A and perform the

necessary convolution to obtain Irf . We also note that, since the e state is unoccupied in

the experiments, f(ξk,e) ≡ 0.

In order to illustrate the RF spectrum we first note that the noninteracting limit when

A(k, ω) = δ(ω− ξk,σ) gives a δ-function: Irf = 2πγ2nσδ(ω), where ω = ωL− ǫF,σ. For weak

interactions such that one can use mean field physics, we get the same expression, only the

frequency is shifted from the noninteracting value by −2πh̄2nσ(as − a′s)/m. Including the

Galitskii-Lee-Yang corrections [56, 57] results in a broadened lineshape, and we will address

this for normal gases in this chapter. Finally, the crossover theory in the superfluid from

the Introduction results in a lineshape with a threshold occurring at E0 − µσ.
Experimentally, absorption images of the σ or e states reveal the total number of

fermions transferred. Early experiments in 6Li [43, 58] attempted to measure the pair-

ing gap, however, inhomogeneity and final state interactions obscured the results. By

choosing a different set of initial hyperfine states in 6Li or by using 40K, it was shown that

final state interactions can be minimized. Moreover, a tomographic technique allows one

to get better spatial resolution [59]. It was furthermore shown in Ref. [42] that, if one

resolves the momentum profile of the resulting gas one instead measures the integrand in

Eq. (2.4), A(k, E)f(E), which is the occupied part of the spectral function with energy

E = ǫk−µσ−ω. This is in analogy to angle-resolved photoemission spectroscopy where the

chemical potentials play the role of the work function. The momentum k can be measured

precisely, but, unfortunately, the chemical potential cannot be measured, so one instead

measures the spectral function with respect to the energy of the free Fermi gas, since it is
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Σσ = Γ

Γ = Γ+

−σ

−σ

σ

Figure 2.2: Feynman diagrams contributing to the effective interaction Γ and the evaluation
of the self energy Σσ. The interaction V is the wavy line and −σ refers to the opposite spin.

only an overall shift.

2.2 Dilute Repulsive Fermi Gas

We begin with the simplest example of a normal Fermi liquid: 3 dimensional hard sphere

Fermi gas with mass m and scattering length a > 0 with na3
s ≪ 1. Of course, here as = r0,

the range, and the “large” k regime where n(k) ∼ k−4 is kF ≪ k ≪ 1/r0. Thus, unlike

Ref. [11], where |as| ≫ r0, we cannot set r0 = 0. However, we can still use the short range

regularization we introduced in the Introduction. The Fermi liquid thermodynamic and

Fermi-liquid properties were studied by Galitskii and Lee, Yang and Huang; see Sec. 5 of

[40]. The high-k tail was also calculated [60] and is

n(k) ≃ (kFa)
2

(
2

3π

)2(kF
k

)4

. (2.9)

To calculate the self energy, we note that in the low density limit na3
s ≪ 1, the most

important physical process is repeated scattering in the particle-particle channel. Diagram-

matically, we obtain the corresponding sum of ladder diagrams Γ illustrated by Fig. 2.2.

Analytically, we obtain for Γ,

Γ−1(Q) =
1

g
− L(Q) L(Q) =

∑

k

1

2ǫk
+ T

∑

k,n

G0(k +Q)G0(−k) (2.10)

where Q = (Q, iQℓ) with iQℓ = i2ℓπT and k = (k, ikn) with ikn = i(2n + 1)πT . The bare

Green’s function G0(k) = 1/[ikn − ξ(k)] and we have replaced the bare interaction gΛ with

the scattering length via Eq. (1.13). Note that one can obtain an analytically closed form

expression [61] for L(Q,Ω+i0+), which we state for reference at the end of this chapter. For

the hard sphere Fermi gas we can use the approximation Γ ≈ g+ g2L, where g ≡ 4πah̄2/m,
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Figure 2.3: Left: Logarithmic intensity plot of A(k, ω)ǫF /(kFas)
2 for the repulsive Fermi

gas (kFa = 0.1; na3
s = 3.4×10−5). The most intense (red) line at ω ≈ ξk is the quasiparticle.

We focus on the unusual dispersion centered about ω = −ǫ(k) (black dashed line) in the
range ω = −ǫ(k)−3ǫF±2vF k (white dashed lines); see text. Right: Momentum distribution
tail for the same gas.

which amounts to second order perturbation theory. The Matsubara self-energy is

Σσ(k, ikn) =
1

β

∑

q,l

Γ(q, iql)G(q− k, iql − ikn) (2.11)

and, after performing the Matsubara sum and analytically continuing, Σ(k, ikn → ω+i0+) =

ReΣ + iImΣ, where

ImΣ(k, ω) =
∑

q

ImΓ(k + q, ω + ξ(q)) [Θ (−ξ(q))−Θ(−ω − ξ(q))] (2.12)

at T = 0. ReΣ is obtained numerically by a Kramers-Kronig transformon ImΣ by

Re Σ(k, ω) = − 1

π
P

∫ ∞

−∞
dz

Im Σ(k, z)

ω − z (2.13)

due to the analytic properties of the self energy. We note that, in the case of the simplifica-

tion Γ ≈ g+ g2L for the hard sphere gas, this expression for the self energy is valid only for

ω ≪ 1/ma2
s. ImΣ grows indefinitely for larger ω. We subtract out this singular behavior

S(z) = −i(2
√

2/3π)(kF a)
2√ǫF z and then Kramers-Kronig transform ImΣ̃ = ImΣ − ImS.

The real self-energy is then ReΣ = ReΣ̃ + ReS.

The spectral function is plotted in Fig. 2.3 on a logarithmic scale. We see the most

intense feature, corresponding to the Landau quasiparticle near kF , tracks ω ≈ +ξ(k), up

to many-body renormalizations. We have checked our numerics against known results [40]

for chemical potential µ, quasiparticle residue Z, effective mass m∗, and the scattering rate

near the Fermi surface. However our main interest is in the much less intense, incoherent
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Ω
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(Q)

q, ξq↑k, ω

Q, Ω

Figure 2.4: Top: Kinematics of the processes that contribute to imaginary self-energy in
Eq. (2.12). ImΣ is non-zero when the shaded rectangle (allowed by kinematics and thermal
factors) overlaps with the region Ω > Ω0(Q) (in which ImΓ is non-zero). This leads to the
condition Qmin ≤ Q0. Bottom: Diagram contributing to ImΣ.

spectral feature that follows an ω = −ǫ(k) dispersion and dominates n(k) at large k.

To understand this “bending back”, we need to determine when ImΣ(k, ω) is non-zero

for k ≫ kF and ω < 0. To understand our result qualitatively, consider the diagram in

Fig. 2.4. The dominant contribution comes from small values of both |Q| and Ω of the

effective interaction Γ. (For large values of these variables there is no spectral weight ImΓ

for two-particle scattering.) Thus q ≃ −k and ω ≃ −ξ(q) ≃ −ǫ(k) for k ≫ kF . This shows

that A 6= 0 for ω around negative ǫ(k).

To make this more quantitative, we use Eq. (2.12). From the structure of L(Q,Ω), it

follows that ImΓ(Q,Ω) 6= 0 when Ω ≥ Ω0(Q) ≡ minp{ξ(p+Q/2)+ξ(−p+Q/2)} = ǫ(Q)/2−
2µ; see Fig. 2.4. From the difference of Θ-functions, kF ≤ q ≤ qmax(ω) ≡ kF [1 + |ω|/ǫF ]1/2.

This implies that −|ω| ≤ Ω ≤ 0. Together with the kinematical constraint |k − q| ≤ Q ≤
k+ q, this leads to Qmin = |k− qmax(ω)|. For non-zero ImΣ we thus need the kinematically

allowed region (shaded rectangle in Fig. 2.4) to overlap with Ω ≥ Ω0(Q). This leads to the

simple condition Qmin ≤ Q0, where the definition Ω(Q0) = 0 leads to Q0 = 2kF . (We have

also found, but do not discuss here, the ω > 0 threshold for A 6= 0.)

Solving |k − qmax(ω)| = 2kF , we find A(k, ω < 0) 6= 0 in the range of energies ω =

−ǫ(k)−3ǫF ±2vF k; see Fig. 2.3. For k ≫ kF , this simplifies to |ω+ǫ(k)| ≤ 2vF k. Although

the width of this range grows linearly with k, it becomes small relative to the central energy

which grows like −k2 for large k. We plot in Fig. 2.3 the n(k)-tail using
∫ 0
−∞ dωA(k, ω)

and find that it agrees with the analytical result [60]. The incoherent spectral weight in

A(k ≫ kF , ω) in the interval |ω + ǫ(k)| ≤ 2vF k is thus precisely (2kFa/3π)2(kF /k)
4.
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2.3 Highly Imbalanced Normal Fermi Gas

We next turn to a two-component attractive Fermi gas with scattering length a tuned

through a broad Feshbach resonance. Here we can indeed consider |as| ≫ r0 and we set the

range r0 = 0. While the ground state for equal spin populations is a superfluid exhibiting

the BCS-BEC crossover, we consider the different regime of large spin imbalance n↑/n↓.

There is by now considerable theoretical [5, 29, 62–64] and experimental evidence [44, 45]

that, for sufficiently large imbalance, superfluidity is destroyed for a large range of values

of as, including unitarity |as| = ∞, and the ground state is a (partially polarized) normal

Landau Fermi liquid.

For large |as|, we use the number of fermion species 2N with a Sp(2N )-invariant inter-

action as an artificial parameter to control the calculation in a large-N expansion [61–63].

Beginning with the hamiltonian of the N fermions,

ĤN =

N∑

i=1

∑

σ

∫
d3xψ†

i,σ(x)

(
−∇

2

2m
− µi,σ

)
ψi,σ(x)−

− gΛ
N

N∑

i,j=1

∫
d3xψ†

i,↑(x)ψ†
i,↓(x)ψj,↓(x)ψj,↑(x), (2.14)

we write down the Green’s function of the σ fermions of interest

Gσ(k, τ) = −
〈
T
(
ψσ(k, τ)ψ

†
σ(k, 0)

)〉
, (2.15)

and note that the relevant diagrams are again those in Fig. 2.2, since the vertices bring

factors of 1/N and the particle-particle propagation brings a factor of N , yielding an overall

factor of 1/N . To first order in 1/N , then, the resulting expression is

ImΣ(k, ω) =
∑

q

ImΓ(k + q, ω + ξ↑(q)) [Θ (−ξ↑(q))−Θ(−ω − ξ↑(q))] , (2.16)

after setting N = 1. This is equal to Eq. (2.12) with ξ replaced by ξ↑ both in the Θ-function

and in the definition of Ω.

We can again analytically determine the energy range for which ImΣ, and hence A, are

non-zero. In Fig. 2.4 we must now use Ω0(Q) ≡ ǫ(Q)/2 − 2µ with 2µ = µ↑ + µ↓. The final

result is that, for k ≫ kF and ω < 0, A(k, ω) can be non-zero only in the range of energies

|ω+ ǫ(k)| ≤ αvF↑k where α =
√

2(1 + ǫF↓/ǫF↑). One can obtain more stringent bounds for

the imbalanced case using the detailed structure of ImΓ, but the simpler analysis described

here suffices to establish a range linear in k centered about −ǫ(k).

For concreteness, we focus here on unitarity |a| =∞. A(k, ω) for the highly imbalanced

(n↓/n↑ = 0.01) unitary gas is shown in Fig. 2.5. We have also verified that we get a 1/k4
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Figure 2.5: Logarithm intensity plot of Ak(ω)ǫF↑ for minority particles in the unitary Fermi
gas with imbalance n↓/n↑ = 0.01. The white dashed lines ω = −ǫ(k) ± αvF↑k are derived
in the text; the black dashed line is ω = −ǫ(k).

tail for n(k) in this system. Our calculation of A(k, ω) is controlled only within the 1/N -

expansion. Note, however, that the singularity structure in the large k limit is determined

only by short distance properties of the two-body problem in vacuum, while the strength

of the singularity C depends on the many-body state. Since the ladder approximation is

exact for the two-body problem, we expect the bending back in the spectral function to be

robust beyond the 1/N -expansion.

2.4 Superfluid State

We now turn to a discussion of the superfluid ground state for a system with equal densities

of up and down spins and an interaction described by a scattering length a. Unlike the

normal Fermi liquids described above, a branch of the dispersion that tracks −ǫk at large k

is very natural for the fermionic excitations in a superfluid [65]. Nevertheless, even in this

case, our analysis gives important quantitative insights.

In BCS mean field theory the spectral function AMF(k, ω) = v2
kδ(ω + E(k)) + u2

kδ(ω −
E(k)) where v2

k = 1−u2
k = [1− ξ(k)/E(k)]/2. The excitation energy E(k) =

√
ξ2(k) + ∆2

with ∆ the energy gap. For k ≫ kF , E(k) ≈ ǫ(k) and v2
k ≈ ∆2/2ǫ2(k), so that AMF(k ≫

kF , ω < 0) ≈ [∆2/2ǫ2(k)]δ(ω+ǫ(k)). Thus we see that particle-hole mixing in the superfluid

ground state naturally leads to a bending back of the dispersion.

However, there is a (large) quantitative problem with this result even in the BCS limit

(1/kF a ≪ −1), where one might have expected it to be the most accurate. Using n(k) =∫ 0
−∞ dωA(k, ω), or directly from BCS theory, one finds that the momentum distribution

nMF(k) = v2
k ≈ ∆2/2ǫ2(k) = CMF/k

4 for k ≫ kF . The problem is that the contact
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estimated from BCS theory CMF ∼ ∆2 ∼ exp(−1/kF |a|) is exponentially small in |a|.
However, the exact answer [10, 11, 47–50] in the BCS limit is C = 4π2n2a2 as a→ 0−. To

understand why BCS theory gets the wrong answer for C we use the adiabatic relation [11]

dE/da = h̄2C/(4πma2). As shown in [13], interaction effects lead to power-law corrections

in |a| in the ground state energy density E , which are numerically much more important

than the essentially singular corrections coming from pairing. In the extreme BCS limit,

the contact is dominated by the Hartree term in E with calculable corrections [13].

Thus the actual A(k ≫ kF , ω < 0), even in the BCS limit, is dominated by interaction

effects beyond BCS mean field theory. This results in a spectral weight C ∼ |a|2 arising

from interaction effects which exist even in the normal state, rather than resulting from

pairing, which only makes an exponentially small contribution. We make a final note on a

work by Combescot et al. [66], where the approximation ImΣ(k ≫ kF , ω < 0) ∝ δ(ω+ ǫ(k))

is used which leads to a sharp feature in A(k, ω). While this may be sufficient for computing

“integrated” quantities like n(k), it does not capture the incoherent structure in A(k, ω)

described here.

2.5 Technical Details of Effective Interaction

Here we derive the explicit expression for the effective interaction Eq. (2.10), also reported

in Ref. [61]. We denote the chemical potentials inside the particle-particle vertex ImΓ as

µσ. When performing the integrals in Eq. (2.10) we need to define the following functions:

F (Ω) ≡
√
|Ω− Ω0(Q)|, Ω0(Q) ≡ ǫQ/2− 2µ and

Ω±
σ (Q) = ǫQ ±

QkFσ
m

+ 2σh (2.17)

We write L(Q,Ω) ≡ L0 + L↑ + L↓, where L0(Q,Ω) is the nonanalytic piece given by

(m3/2F (Ω)/4π) [Θ(Ω0(Q)− Ω)− iΘ(Ω −Ω0(Q))], and give separately the formulas for the

real and imaginary parts of Lσ. The imaginary part is

L′′
σ(Q,Ω) =

m3/2

8π
F (Ω)Θ(Ω − Ω0)





2Θ(2kFσ −Q) Ω ≤ Ω−
σ (Q)

1− xσ(Q,Ω) Ω−
σ (Q) < Ω < Ω+

σ (Q)

0 Ω ≥ Ω+
σ (Q)

(2.18)

where xσ(Q,Ω) = (Ω− 2σh)
√
m/QF (Ω). The real part of Lσ is written like

L′
σ(Q,Ω) =

m3/2

8π2
Hσ(Q,Ω)Θ(µσ) (2.19)
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Figure 2.6: False color plots of ImΓ(Q,Ω). Black dashed lines correspond to the lines
Ω0 and Ω±

σ . Blue to red indicates negative to positive values, and yellow corresponds to
ImΓ = 0. Top: Galitskii gas for kFas = 0.1. Bottom: Unitary Fermi Liquid for 1/as = 0
and n↓/n↑ = 0.01. The dotted line indicates the pole.

where Hσ is

Hσ(Q,Ω) =
2kFσ√
m
−
√
m

Q
(Ω− 2σh) ln

∣∣∣∣
Ω− Ω+

σ

Ω− Ω−
σ

∣∣∣∣−

− 2F (Ω)Θ(Ω0 − Ω)

[
tan−1 F (Ω+

σ )

F (Ω)
+ η tan−1 F (Ω−

σ )

F (Ω)

]

+ F (Ω)Θ(Ω− Ω0) ln

∣∣∣∣
F (Ω+

σ )− F (Ω)

F (Ω+
σ ) + F (Ω)

∣∣∣∣
∣∣∣∣
F (Ω−

σ )− F (Ω)

F (Ω−
σ ) + F (Ω)

∣∣∣∣
η

(2.20)

where η ≡ sgn (2kFσ − Q). In the first “self-consistent” calculation the formulas simplify

because µ↓ < 0 and µ↑ = ǫF↑, and therefore L↓ ≡ 0. In the 1/N calculation we keep every

term since the µσ = ǫF,σ > 0. In the Galitskii gas, µ↑ = µ↓ = ǫF and therefore Ω±
↑ = Ω±

↓ .

To illustrate the vertex in both the types of normal gases we present a contour plot for

the Galitskii Fermi gas and the unitary Fermi liquid for n↓/n↑ = 0.01 in Fig. 2.6. We see

that, indeed, for Ω < 0 the region when ImΓ is finite is restricted to wavevectors and energies
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of order the Fermi energy. We also see that when performing the integral in Eq. (2.12), the

numerical integrations necessary to calculate Σ′′ and Σ′ can be quite time-consuming unless

one studies the discontinuities of the equations above, namely, Ω0 and Ω±
σ . Furthermore, the

pole of Γ has a dispersion which enters the incoherent weight of Γ producing an integrable

divergence.
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Chapter 3

Radio Frequency Spectroscopy:

Singular Features and Sum Rules

There has been intense experimental activity on characterizing various states of matter in

ultracold atomic gases [8, 41]. This will become ever more important with the possibility of

new and exotic states being realized in these systems. An important tool in these studies

is radio frequency (RF) spectroscopy where an RF pulse is used to transfer atoms from one

hyperfine level to another. The RF signal [43, 67] has turned out to be much harder to

interpret than initially thought because of complications of strong final state interactions

and the inhomogeneity of trapped gases. Recently it has become possible to eliminate these

problems by choice of suitable hyperfine levels (in 6Li) and by tomographic techniques that

focus on specific regions of the gas. The most detailed experimental results are available

for polarized Fermi gases [44, 45].

Motivated by these experiments, we2 first describe two exact results for the singular

features in RF spectra Iσ(ω), Eq. (2.4), of a two-component Fermi gas with arbitrary

interactions. Our results complement the exact results on sum rules [53, 54]. We work in

the limit where final state interaction effects are negligible, so that we can focus on the

nontrivial effects of interactions in the many-body state.

• The RF spectrum Irf(ω) has a universal Cω−3/2 tail at high frequencies, where C

is Tan’s contact coefficient [11, 47–49], which is independent of spin. This form is

valid for all phases of Fermi gases: superfluid [8, 41], highly imbalanced normal Fermi

liquid [5, 24, 25, 29, 45, 64, 69] or even a balanced Galitskii Fermi Liquid [40].

• In any normal Fermi liquid state, the RF spectrum I(ω) at T = 0 has a jump dis-

continuity. Its location depends on the chemical potential µ and its magnitude is

determined by the combination of Fermi liquid parameters Z/(1 −m/m∗), where Z

is the quasiparticle weight and m∗ the effective mass.

These exact results are important not only in interpreting experiments, but also in

2This work was done in collaboration with V. Shenoy and M. Randeria and is posted on arxiv.org [68].
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understanding various approximation schemes [54, 55, 63], which are necessarily re-

quired to calculate the RF lineshape I(ω) for a strongly interacting gas. In the second

part of our paper we critically analyze diagrammatic approximations for the highly

imbalanced normal Fermi liquid.

• We show that a simple self-consistent approximation, motivated by the fact that it

is essentially exact in the n↓ = 0 limit [29, 69], has serious qualitative problems for

non-zero n↓: The minority spins do not exhibit the universal tail leading to sum rule

violations and majority spins are completely unaffected.

• A simple ladder approximation, on the other hand, correctly exhibits all of the quali-

tative features expected on general grounds for n↓ > 0, however there are quantitative

inaccuracies and the approximation breaks down for n↓/n↑ larger than ∼ 0.02.

3.1 Analytic Results

3.1.1 Sum Rules and High Frequency Tail

The RF spectrum, introduced in Sec. 2.1, obeys exact sum rules [53, 54] for the zeroth

(l = 0) and first (ℓ = 1) moments of the RF intensity
∫
dωωℓIσ(ω) which are valid for all

values of a and ae,σ. In our units they take the form

∫ ∞

−∞
dωIσ(ω) = nσ, (3.1)

∫ ∞

−∞
dωωIσ(ω) =

(
1

a
− 1

ae,σ

)
C

4πm
, (3.2)

where we’ve set 2πγ2 ≡ 1 above and in Eq. (2.4) to make the formulas simpler. It might

seem that the first moment sum rule (clock shift), which diverges as ae,σ → 0−, can be of

no use when final state interactions are negligible. However, we find that this divergence is

actually related to a universal high frequency tail in Iσ(ω), and that this is a general feature

of the response. To see this, we rewrite Eq. (2.4) as

Iσ(ω) =
∑

k

∫ ∞

−∞
dΩAσ(k,Ω)nF (Ω)δ(Ω − ǫk + µσ + ω). (3.3)

This immediately leads to the zeroth moment sum rule, using
∫
dΩAσ(k,Ω)nF (Ω) = nσ(k)

and
∑

k nσ(k) = nσ.

We next analyze the large frequency behavior of Iσ(ω). The δ-function then contributes

in one of three ways: either (a) Ω is large and negative with ǫk small, (b) Ω small but ǫk

large, or (c) both |Ω| and ǫk large such that they are comparable in magnitude. We can

eliminate case (a) by noting that the spectral function Aσ generally vanishes as Ω → −∞
in order to satisfy the sum rule

∫∞
−∞ dωAσ(ω) = 1. By considering only particle-particle
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Figure 3.1: Zero temperature radio frequency spectroscopy spectra calculated in mean field
for couplings 1/kFas = −1.0,−0.5, 0.0, 0.3 in black, red, blue, and green, respectively.

scattering for large momentum in the previous chapter [46] that, in many cases of interest

for dilute Fermi gases, it is case (c) that is the dominant contribution. We therefore find

Iσ(ω →∞) ≃∑k nσ(k)δ(2ǫk −ω). Using Tan’s result [47] for the momentum distribution,

nσ(k) ≃ C/k4 for k ≫ kFσ, we thus find that

Iσ(ω →∞) ≈ 1

4π2
√
m

C

ω3/2
, (3.4)

where C is the contact. We emphasize that the form of this result is independent of the

phase (normal or superfluid) of the Fermi gas, though the value of C does depend on the

phase. (This tail is absent only for the noninteracting gas for which C ≡ 0.) Note that this

high frequency tail arises from short-distance physics in any Fermi gas, and is crucial for

enforcing the divergent clock shift for ae,σ = 0.

We finally note that, in the event that ae,σ 6= 0 but small, we do expect a crossover from

the above result to one in which the frequency dependence is ω−5/2, and that this crossover

occurs at an energy ω ≃ 1/ma2
e,σ. Such a crossover is consistent with, for example, the

exact solution in the Bose limit by Chin and Julienne [70]. In fact, using the operator

product expansion it has been shown [71] that this crossover does, indeed, exist. In this

case, we restrict our result to ǫF,σ ≪ ω ≪ 1/ma2
e,σ ≪ 1/mr20 , where r0 is the range of the

interatomic potential.

3.1.2 BCS mean field theory

In the study of many-body systems, various phases are often directly identified by charac-

teristic low-energy singularities in measurable quantities, such as the discontinuity at kF in
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the momentum distribution of a Fermi liquid, or the square root singularity in the density

of states of a s-wave superconductor at T = 0. Here we ask if any such singularity exists in

the RF signal. We will first investigate the result from mean field theory. Using Eq. (2.4)

with the BCS spectral function Eq. (2.8), we obtain, at zero temperature,

IMF(ω) =
∑

k

v2
kδ(ξk − ω + Ek)θ(ω − ξk). (3.5)

Physically, we interpret the RF spectrum as pair breaking of atoms by creating holes at

energy ξk − ω. Since the single particle spectral function is sharply peaked at −Ek, only

one momentum k0 contributes to the integral. After manipulating the δ-function we obtain

IMF(ω) =
mk0(ω)

4π2

v2
k0

u2
k0

, (3.6)

where k0(ω) is defined by ξk0(ω)−ω+Ek0(ω) ≡ 0. We find that the threshold of the spectrum

occurs when k = 0: ω = E0 + ξ0 =
√
µ2 + ∆2

0 − µ. We also find that there are no other

singularities in the spectrum, other than the large-frequency tail

IMF(ω)→ 1

4π2
√
m

CMF

ω3/2
(3.7)

where CMF = m2∆2
0. As shown in the last chapter, this is a small correction to the true

leading term of the contact coming from Fermi liquid corrections of short-range correlations.

3.1.3 Fermi Liquid Singularity

In the remainder of this chapter we focus on the normal (i.e., non-superfluid) ground state

of the highly polarized Fermi gas. Thus our results are relevant, e.g., to the unitary gas

which has been predicted to be a normal Fermi liquid for x = n↓/n↑ < 0.4, based on

QMC simulations [64]. (Our general results apply equally well to the dilute repulsive gas

of Galitskii [40], which is yet to be realized in the laboratory.)

For a Landau Fermi liquid the spectral function is of the form

A(k, ω) ≃ Zδ
(
ω − kF

m∗
(k − kF )

)
+Ainc(k, ω) (3.8)

close to the Fermi surface (k ≃ kF , ω ≃ 0). The subscript σ is dropped for simplic-

ity. The first “coherent” term gives the quasiparticle pole in the Green’s function with

quasiparticle weight Z and effective mass m∗, which are calculated in the usual way,

by Z = 1/ [1− ∂Σ′/∂ω] and m/m∗ = Z [1 + ∂Σ′/∂ǫk] evaluated at the Fermi surface:

(k = kF , ω = 0). kF is unshifted from its bare value as required by Luttinger’s theorem

[40]. The second non-singular term is the “incoherent” part of the spectral function.

The singular contribution to I(ω) is obtained by substituting the coherent term in
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Eq. (3.8) into Eq. (2.4) and using f(ǫ) = Θ(−ǫ) at T = 0. We convert the k-sum to an

integral over ǫk and write the quasiparticle dispersion as kF (k− kF )/m∗ ≃ (k2− k2
F )2m∗ =

(ǫk − ǫF )m/m∗. Considering m∗ > m, we find a peak which grows like a square root in ω,

with a width equal to (1 −m/m∗)ǫF , and then a discontinuous drop. This is then added

to the smooth contribution from the incoherent piece. This is illustrated later in the thesis

with dashed lines. The location of the discontinuity ω∗ and the size of the jump ∆I are

thus given by

ω∗
σ = ǫFσ − µσ; ∆Iσ =

ZσN(ǫFσ)

1−m/m∗
σ

, (3.9)

where N(ǫFσ) is the density of states at the Fermi energy. We note here that the noninter-

acting limit, corresponding to m∗ ≃ m and Z → 1, results in a singular contribution to I(ω)

at ω∗ → 0 in such a way that the total weight is N(ǫFσ), while the incoherent contribution

vanishes.

3.2 Diagrammatic Approaches in Spin-Imbalanced Phase

The form of the Fermi surface singularity and the high energy tail in the RF intensity

have been elucidated above on general grounds. Calculating the detailed lineshape Irf(ω),

however, necessarily requires approximations to be made for a strongly interacting Fermi

system. Here we describe diagrammatic calculations for the highly imbalanced normal

gas at unitarity as → ∞, highlighting the successes and limitations of two approximation

schemes. All such calculations of the self energy on the Matsubara axis use the diagrammatic

formulation we derived in the previous chapter, and so we will not repeat the formulas.

3.2.1 Self-consistent method

Let us first discuss a simple self-consistent approximation [54], motivated by an analysis

that reproduces the essentially exact result [29] of a single ↓ spin (n↓ = 0 limit) interacting

with a Fermi sea of ↑ fermions [64]. We will show that this scheme has serious qualitative

problems for n↓ > 0 and analyze why this is the case. In this approximation, the internal

Green’s function lines used to calculate Γ and Σ are the free-particle Green’s functions

in form, but with a renormalized chemical potential. A self-consistency condition is then

imposed so that µ↓ = ǫF↓ + Σ′
↓(kF↓, 0;µ↓), where Σ′

↓ itself depends on µ↓ [29, 69], thus

ensuring that there is a pole in G at the Fermi surface. For the single minority spin limit

(kF↓ → 0), this reproduces the result µ↓(n↓ = 0) = −Eb ≃ −0.6ǫF↑.

This approximation for n↓ > 0 implies the use of a negative µ↓ in the bare Green’s

function used in Γ and Σ. As a result, one misses all effects of finite n↓ occupancy “inside”

the calculation. We can then analytically see that ImΓ(Q,Ω < 0) ≡ 0. Let us rewrite
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Figure 3.2: Momentum distribution nk (left) and RF spectrum Irf(ω) (right) of a unitary
Fermi gas with n↓/n↑ = 0.01 calculated within the self consistent approximation. The
majority nk↑ is the free Fermi spectrum, while nk↓ has an interaction-suppressed value, but
is zero for k > kF↓. The majority spectrum I↑ (left, red) is a delta function with weight n↑.
The minority (right, blue) spectrum has a discontinuity and a shift due to interactions, but
no high frequency tail. The dashed line indicates the jump.

Γ−1(Q,Ω) ≡ 1/g − L(Q,Ω), where L is given by

L(Q,Ω) =
∑

p

[
1

2ǫp
+

1− nF (ξp,↑)− nF (ξp−Q,↓)

Ω− ξp−Q,↓ − ξp,↑

]
. (3.10)

The second term describes two-particle scattering in the medium of the unitary gas. As

long as µ↓ < 0, however, the second Fermi function is zero. Furthermore, the resulting

δ-function δ(Ω − ξp−Q,↓ − ξp,↑) requires ξp,↑ < 0, and therefore the occupation factor is

1 − nF (ξp,↑) = Θ(ξp,↑) = 0 at T = 0. The imaginary part of L (and therefore Γ) is then

zero for all Ω < 0, and therefore the minority scattering is never incorporated.

Looking to the imaginary part of the self energy, Eq. (2.12), we see that the integration

for ω < 0 requires negative energy values of ImΓ, which means that Ainc
↓ (k, ω < 0) ≡ 0 and

A↓(k, ω < 0) has only a pole for each k with a weight Zk,↓ < 1. Thus, n↓(k) = Zk↓Θ(kF↓−k)
and consequently both the sum rules

∑
k n↓(k) = ZN↓ < N↓ and

∫
dωI↓(ω) are violated in

a qualitative way. In addition, in the absence of any incoherent spectral weight for ω < 0,

one also misses both the universal k−4 tail in n↓(k) and the ω−3/2 tail in the RF spectrum

(see Fig. 3.2). The first moment of I↓(ω) is then finite, instead of diverging as it should due

to Eq. (3.2).

Finally, for the majority self energy Σ↑, the occupation factors in Eq. (2.12) are iden-

tically zero, meaning the majority spins are completely unaffected by interactions, which

is clearly unphysical for finite minority density. The majority (↑) RF spectrum is thus a
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δ-function, a result that is at odds with all available experiments. Clearly, this approxi-

mation fails to provide a reasonable description of RF spectra of highly imbalanced gases,

despite its success in obtaining reasonable numerical estimates for µ↓. All of the problems

here arise from the fact that propagators with renormalized µ↓ < 0 are used without taking

into the shifts in the ↓ particle dispersion.

3.2.2 Large-N Calculation

This suggests that it may be physically more sensible to do the simplest calculation with-

out any attempts at partial self-consistency, i.e., evaluate all diagrams with free-particle

propagators with µσ = ǫFσ for the self energy, Eq. (2.12). This leads to equations which

are identical with the first order term in the 1/N approximation [63] with N = 1 at the

end. Now, in contrast to the previous approximation, the vertex ImΓ has structure even for

Ω < 0, as illustrated in Fig. 2.6. This leads to n(k) and I(ω) with universal tails for both

spins, as we describe below.

The finite weight in ImΓ for Ω < 0 appears precisely due to the Fermi function for

minority atoms in L′′ becoming nonzero, in contrast to the previous section. The physical

meaning of this is that once a finite density of minority spins is allowed in the calculation,

there is phase space available for two-particle (hole) scattering, but only at low energies

determined by energetics, due to being at T = 0. The threshold for nonzero weight then

becomes Ω0(Q) = ǫQ/2− ǫF↑− ǫF↓, which can be negative. We note that finite temperature

would result in finite, but exponentially suppressed, weight below this threshold due to the

occupation factors in Eq. (3.10). This therefore doesn’t change our results qualitatively.

This therefore leads to a nonzero ImΣ, since, from the previous section, negative energy

values of ImΓ are required for its evaluation. The spectral function is therefore qualitatively

different from the previous section (which is only a δ-function for ω < 0), but captures

generally correct features. As noted in the previous chapter, it contains an incoherent

branch at large k whose peak increases asymptotically to −ǫk as k increases [46]. We also

note the quasiparticle pole at kF↓ due to the Fermi liquid nature of the gas.

Our numerical results for the momentum distributions and RF spectra for the unitary

Fermi gas with polarization x = 0.01 are shown in Fig. 3.3. Both majority and minority

spectra show jump discontinuities and high momentum and high frequency tails. The spin-

independent k−4 and ω−3/2 behavior tails are also observed. In comparing with the results

of the previous section in Fig. 3.2 and the current approximation in Fig. 3.3, there is no

doubt that the latter provides a far better qualitative description.

Despite these qualitative successes, however, it must be emphasized that the simple

ladder approximation is not quantitatively accurate insofar as the calculated chemical po-

tentials (e.g., µ↓ = ǫF↓ + Σ′
↓(kF↓, 0; ǫF↓)) and RF sum rules are concerned. In particular,

we find that in the single spin limit µ↓(n↓ = 0) ≃ −0.9ǫF↑, as compared with the exact
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Figure 3.3: Momentum distribution nk (left) and RF spectrum Irf(ω) (right) of a unitary
Fermi gas with n↓/n↑ = 0.01 calculated within the 1/N approximation. Both momentum
distributions and RF spectra have tails and dashed lines indicate the jump discontinuities.
The RF plot has a break in the frequency axis for clarity, and the minority spectrum has
been enhanced by a factor of 15.

result of −0.6ǫF↑. Moreover, we have found that the simple ladder approximation leads to

a negative compressibility a density ratio above x ∼ 0.02 clearly signaling the limitations

of the approximation.

3.3 Comparison With Experiment

In order to compare with experiments, it is necessary to note that they are performed at

finite (but low) temperature, final-state scattering length ae,σ, and in an inhomogeneous

trap. Our exact results, however, still allow us to analyze RF spectra. Tomographically

reconstructed data is now available which minimizes trap effects and allows us to focus on

specific regions of the cloud, namely, the balanced superfluid on the inside and the polarized

normal region on the outside.

Let us begin with the universal high frequency tail. Finite temperature results in ex-

ponential corrections in the particle-particle vertex, and therefore in the spectral function,

and in the tail of the RF spectrum. So, provided the temperature is low enough we can still

proceed. The high frequency tail is certainly seen in experiments in 6Li [44, 45]3 and re-

cently, a direct test of the high frequency and momentum tails [39] confirms the predictions

explicitly in 40K.

The jump discontinuity in the T = 0 RF signal for a normal Fermi liquid will of course

be broadened by finite temperature and experimental resolution. The best we can expect

3Final state interactions are minimized by choosing good hyperfine states that are occupied initially in
the trap; (1/ma2

e,σ)/ǫF,↑ = 1/(kF↑ae,σ)2 ≃ 40, and therefore as noted in the previous section this gives a
window of energy for a fit.
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then is to see a peak at, or very close to, the location of the discontinuity. The equation of

state from QMC calculations [64] is

E =
3

5
N↑ǫF↑

(
1−A0x+

m

m∗
0

x5/3 + Fx2

)
(3.11)

where x = n↓/n↑, Eb = 3A0ǫF↑/5 is the binding energy and m∗
0 the effective mass of a single

↓ spin, and F a Fermi-liquid correction. We use m∗
0 here since m∗ is in general x-dependent.

After finding µ↓, eq. (3.9) predicts the position of the Fermi liquid discontinuity to be

ω∗
↓

ǫF↑
=

3

5
A0 −

(
1− m

m∗
0

)
x2/3 − 6

5
Fx. (3.12)

This is exactly the expression used for the peak position by Schirotzek et al. [45]. For the

majority spins, with m∗ ≃ m, the peak will be at ω∗
↑/ǫF↑ = 2A0x/5 + Fx2/5, which is

slightly shifted from zero.
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Chapter 4

Spectral Function in the

Superfluid State

As mentioned in chapter 2, the measurement of the single particle spectral function, via

angle-resolved RF spectroscopy is a particularly exciting prospect [42], as one can gain

information about the spectrum and dynamics of single-particle excitations. Recent ex-

periments [21, 72] have been able to study with detail the lineshape of A(k, ω) at finite

temperature in order to study the low energy spectrum. Motivated by this capability, we

turn the superfluid state at zero temperature, in order to address the question of whether

sharp quasiparticles exist here across the BEC-BCS crossover and what their dispersion

looks like.

Quite generally, quasiparticles are very important concepts in condensed matter physics,

allowing one to describe the low energy excitations as a set of weakly interacting ones, even

though the “bare” particles in the system may be subject to arbitrarily strong interactions.

For normal Fermi liquids, the Landau quasiparticles are sharp (i.e., well-defined in energy)

fermionic excitations. These gapless excitations live on the Fermi surface, with a Fermi

wavevector kF that is unrenormalized by interactions (Luttinger’s theorem [73]).

For a paired superfluid, the BCS theory predicts the existence of sharp Bogoliubov

quasiparticles, which are gapped fermionic excitations. Since weak coupling BCS theory is

essentially a Hartree-Fock theory, the Bogoliubov excitations are sharp, and, in fact, the

lowest energy excitations correspond to k = kF . However, there is no Luttinger’s theorem

for a state with superfluid long range order [74, 75], thus there is no reason for the minimum

gap to correspond to k = kF , determined by the density and independent of interactions.

In fact, we will see a clear example of this general result below.

An even more important question, on which there has been some debate in the recent

literature, is the following. Are there sharp, well-defined Bogoliubov quasiparticles across

the entire BEC-BCS crossover or do the effects of strong interactions destroy the sharp

excitations outside the weak-coupling BCS limit?
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The dispersion of the gapped fermionic excitations in the superfluid state has been in-

ferred from (angle-integrated) RF spectroscopy [44], and been determined from T = 0 QMC

[76] calculations that compute energies of excited states. However, neither of these tech-

niques directly addresses the question of whether these excitations are sharp. Unfortunately,

angle-resolved RF experiments, which can in principle address this question, have at the

present too poor an energy resolution (approximately 0.25 times the Fermi energy) to shed

light on the issue. Diagrammatic calculations [65, 77] are also not conclusive on this ques-

tion. In part, the problem arises because many calculations, such as the Luttinger-Ward

approach of Ref. [65], work in Matsubara frequencies and then use approximate methods

to continue to real frequencies using, e.g., the maximum entropy method. Sharp features in

spectral functions cannot be resolved in such analytic continuation schemes. Using a par-

ticular approximation, the authors of Ref. [78] concluded unequivocally that the inclusion

of fluctuations destroys sharp quasiparticles in the strongly interacting regime.

We will use here a real frequency T = 0 approach that does not suffer from the above

limitations and can see sharp quasiparticles, if they exist. We will conclude that they do

exist across the entire BEC-BCS crossover, understanding in detail why the approximation

of Ref. [78] failed to see them.

We summarize our main results as follows:

• We present a general argument for sharp Bogoliuobv quasiparticles using phase space

considerations for the interaction of low energy fermionic excitations with the low

energy collective modes (phonons) which dominates their decay near the bottom of

the dispersion.

• We find that sharp quasiparticle peaks do exist in the system from weak coupling

through unitarity and into the BEC limit.

• We present the simplest calculation of the low-energy spectral function which illus-

trates these features, namely, the Gaussian fluctuation approximation. This theory

has been used extensively [13, 16, 79] to calculate the equation of state in the crossover.

It has been shown to have good agreement with QMC at unitarity as well as in the

BEC limit and is asymptotically exact in the weak coupling limit. We also discuss

a closely related large-N approximation scheme using a Sp(2N ) symmetric theory of

N species of two-component fermions [61, 62].

• We show that the fluctuation corrections, in addition to lowering the single particle gap

as expected, also lead to an interesting renormalization of the dispersion so that the

location of the minimum of the Bogoliubov spectrum is shifted away from kµ =
√

2mµ,

as predicted by mean field theory, to a much larger kmin.

To make contact with earlier work, we use the following parameterization of the single
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particle dispersion, inspired by mean field theory [12],

Ẽk =

√(
k2

2m∗
− µ+ U

)2

+ ∆2, (4.1)

Here ∆ is the gap, the self-energy U provides a shift from the minimum wavevector kmin

from the chemical potential, and m∗ is an effective mass. The minimum of the dispersion is

found by setting k2
min/2m

∗ − µ+ U = 0. In mean field theory, U = 0 and m∗ = m and the

minimum is at kµ =
√

2mµ when µ > 0. It turns out that U is large and negative, leading

to a strong renormalization of kmin. Although the U value calculated at unitarity from

the gaussian approximation theory is not in quantitative agreement with the QMC (see

Tbl. 4.1 below), we nevertheless get a qualitative understanding of its sign and magnitude.

Finally, we note that calling U a “Hartree shift”, as is often done in the literature, is

quite misleading. It is not proportional to the interaction times the density even in weak

coupling and at unitarity the interaction is infinitely strong! Thus U is best thought of as

a non-trivial self energy correction in the dispersion.

4.1 Green’s Function Formalism

We start our discussion by writing down the single particle Green’s function, a matrix in

the field operators ψσ(x, t). Using the row spinor Ψ†(x, t) ≡
(
ψ†
↑(x, t), ψ↓(x, t)

)
we can

write the Green’s function in a translationally invariant system in equilibrium as

Ĝ(x− x′, t− t′) = −〈T
(
ψ↑(x, t)ψ

†
↑(x

′, t′) ψ↑(x, t)ψ↓(x
′, t′)

ψ†
↓(x, t)ψ

†
↑(x

′, t′) ψ†
↓(x, t)ψ↓(x

′, t′)

)
. (4.2)

In momentum and Matsubara frequency, the Green’s function is

Ĝ(k, ikn) =

(
G(k, ikn) F (k, ikn)

F (k, ikn) −G(−k,−ikn)

)
, (4.3)

where ikn = i(2n + 1)π/β are the Matsubara frequencies and we’ve exploited the spin

symmetry. Dyson’s equation defines the self energy

Ĝ−1(k, ikn) = (Ĝ0)−1(k, ikn)− Σ̂(k, ikn), (4.4)

where the “free” Green’s function here is the mean field solution,

Ĝ0(k, ikn) =
1

(ikn)2 −E2
k

(
ikn + ξk −∆0

−∆0 ikn − ξk

)
. (4.5)

We use the time reversal invariance of the system, which sets to zero the component of the

self energy matrix which depends on the Pauli matrix σ̂y (See argument by D. Scalapino,
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p.491 of Ref. [80]). The self energy then takes the form

Σ̂(k, ikn) =

(
Σ(k, ikn) S(k, ikn)

S(k, ikn) −Σ(−k,−ikn)

)
. (4.6)

Note that a direct consequence of this argument is that the anomalous Green’s functions

are equal, F = F , and symmetric in the arguments, F (k, ikn) = F (−k,−ikn), which leads

to F (k,−ω) = F ∗(k, ω) on the real frequency axis. The spectral functions are then taken

from the first and second elements of Ĝ after analytic continuation

A(k, ω) = − 1

π
Im G(k, ω + i0+), B(k, ω) = − 1

π
Im F (k, ω + i0+), (4.7)

where we intentionally neglect the carets to signify that they are scalars. To allow for the

possibility of sharp δ-functions in the spectrum at energy Eg(k), we note that the Green’s

function

G(k, ω) =
ω + ξk + Σ∗(ω)

det Ĝ−1(k, ω)
(4.8)

must have a pole at ω = Eg(k), or det Ĝ−1(k,Eg(k)) ≡ 0. Note that, in this case, the

self energy is real, and we see that det Ĝ−1(k,Eg(k)) symmetric in the sign of Eg(k), and

so we define Eg(k) > 0 and not explicitly show solutions for −Eg(k). Writing the general

forms for A and B in the vicinity of the quasiparticle dispersion (namely, k ≈ kmin and

ω ≈ Eg(k)), which include both the coherent weight associated with the quasiparticles and

the incoherent parts of the decay, we have

A(k, ω) = Z+
k δ(ω − Eg(k)) + Z−

k δ(ω + Eg(k)) +Ainc(k, ω) (4.9)

and

B(k, ω) = −Ykδ(ω − Eg(k)) + Ykδ(ω + Eg(k)) +Binc(k, ω) (4.10)

where the quasiparticle weight for ω > 0 is given by

1

Z+
k

=
∂G−1(k, ω)

∂ω

∣∣∣∣
ω=Eg(k)

(4.11)

and the weights Z−
k and Yk are related to Z+

k by

Z−
k =

Eg(k)− ξk − Σ(k, Eg(k))

Eg(k) + ξk + Σ(k,−Eg(k))
Z+

k , Yk =
∆0 − Sk(Eg(k))

Eg(k) + ξk + Σ(k,−Eg(k))
Z+

k . (4.12)
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Note that in the gauge we have considered, Yk > 0. Finally, the minimum of the dispersion

is determined by setting the velocity

vk =
∂Eg(k)

∂k
(4.13)

to zero. This is as far as an exact analysis can take us. In the mean field theory, the self

energy is zero, meaning the incoherent weights vanish, and

Z+
k

= u2
k, Z−

k
= v2

k, Yk = ukvk. (4.14)

Using this general formalism, we now turn to a discussion of the low energy form of the

interaction.

4.2 Low Energy Effective Theory

We will now focus on the low energy physics of the spectral function, and provide a general

self consistent argument in favor of low energy quasiparticles with dispersion Eg(k) by

determining the leading order behavior of the Green’s function. If we restrict ourselves to

the bottom of the fermionic dispersion, the only decay processes available to excitations

which are infinitesimally above the gap are the emission of long-wavelength phonons. To

construct the diagrams, then, we use double arrow notation to draw the full Green’s function

[40]

Ĝ(k, ikn) =





 , (4.15)

which is equivalent to Eq. (4.3). Here, the arrows going right indicate k, ikn, ↑, and those

to the left indicate −k,−ikn, ↓. The effective interaction has the same notation, only with

wavy lines and no spins. In arbitrary diagrams, one uses the vertex rules to determine the

arrow directions. Two Green’s function arrows come to a vertex and a fluctuation arrow

flows out (or vice-versa by reversing all arrows, k, ikn, and spins). The decay, then, from

the imaginary part of the self energy, is given by a single vertex as shown in the diagram

of Fig. 4.1. The first two elements of the full Green’s function are written as

G(k, ω) =
Z+

k

ω+ − Eg(k)
+

Z−
k

ω+ + Eg(k)
+Ginc(k, ω) (4.16)

F (k, ω) = − Yk

ω+ − Eg(k)
+

Yk

ω+ + Eg(k)
+ F inc(k, ω) (4.17)

where ω+ ≡ ω + i0+ and the imaginary parts are given by Eqs. (4.9) and (4.10). The

effective interaction, which also serves as the phonon propagator, has the general form for
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k, ω

−q,−Eq

k + q, ω − Eq

Figure 4.1: Feynman diagram for the low energy part of the imaginary part of the self
energy Σ̂. Figure contains one vertex consisting of the renormalized effective interaction
Γ̂11 as double wavy line and Green’s function Ĝ22 as double straight line.

low energies (See Sec. 24.3 of Ref. [40])

Γ̂11(q) ≡ −
ζ

(ω+)2 − c2sq2
+ Γ̂inc

11 (q), Γ̂12(q) ≡
ζ

(ω+)2 − c2sq2
+ Γ̂inc

12 (q), (4.18)

where ζ is a positive constant. We make a brief note that Γ̂ is actually the negative of the

phonon propagator, as one can verify by expanding the partition function. The speed of

sound is cs. We point out that the values of ζ and cs depend on the use of approximations,

but the form of the phonon propagator here is a general property of neutral superfluid

systems, and in principal one can obtain the exact propagator which contains the real

values. We take advantage of this generality by using ζ and cs as parameters.

The imaginary part of Fig. 4.1 is obtained by standard diagrammatic theory, keeping

only the most singular parts of Ĝ and Γ̂, since all other pieces will be subleading. We obtain

Im Σ(k, ω) = −π
∑

q

[
Z−

Γ (q)Z+δ(ω +Eg(q− k) + Ω0(q))

−Z+
Γ (q)Z−δ(ω − Eg(q− k)− Ω0(q))

]
(4.19)

and

Im S(k, ω) = −π
∑

q

YΓ(q)Y δ(ω − Eg(q− k)−Ω0(q)), (4.20)

where Ω0(q) ≃ csq is the collective mode energy and Z±
Γ = ∓ζ/q, YΓ = ζ/q are its residues.

The physics of the above expressions comes from considering a positive (negative) frequency

excitation which emits a phonon to decay to a quasiparticle state with energy Eg and weight

Z− (Z+). The reason that the weights involved are of the opposite sign is due to the matrix

structure - a ↑ spin interacts with a ↓ hole, and vice-versa.

Now, by making an expansion in small values of ω−∆, we can expand the real and imag-
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inary parts of Σ̂ and eventually find the behavior of G. As shown in Sec. 4.7, each element of

the imaginary part of the self energy is linear in frequency according to Σ̂ij(k, ω) ∼ (ω−∆).

Of course, the real parts of the self energy are not calculable with Fig. 4.1, however, we

can still determine the leading order behavior using the Kramers-Kronig relations for each

element by

Re Σ̂(k, ω) = − 1

π
P

∫ ∞

−∞
dz

Im Σ̂(k, ω)

ω − z . (4.21)

We subsequently find that each element acquires a dependence of the form (ω−∆) ln(ω−∆)

with a subleading linear dependence. Even though one might conclude, as in Ref. [78], that

Z+ must vanish, we point out that, for the inverse Green’s function G−1, these logarithmic

dependences actually cancel out in Eq. (4.11), as shown in Sec. 4.7. Furthermore, the

spectral function

A(k, ω) =
1

π

Im G−1(k, ω)

[Re G−1(k, ω)]2 + [Im G−1(k, ω)]2
(4.22)

has the leading order dependence on energy (ω − ∆) ln(ω − ∆) → 0 as ω → ∆+. We

therefore do in fact obtain sharp δ-functions in the fermionic spectra. This then provides

a self-consistent argument that quasiparticles exist in the system, and we next turn to the

results of the gaussian approximation which is the simplest calculation that exhibits all the

above general features.

We make a final note that this analysis applies only to the bottom of the dispersion

when Z+
k

is well-defined. As noted in Ref. [65], however, one can make an argument for

the width of the sharp region in the spectral function by considering the group velocity,

Eq. (4.13), of the spectrum, and comparing it to the speed of sound cs. In the weak coupling

limit, for example, cs = vF /
√

3 and |∂kEg(k)| < cs only in an exponentially small region.

4.3 Gaussian Approximation

To perform the gaussian approximation, we start with the functional integral representation

of the partition function Z. Expressed as a coherent state path integral over the Grassmann

fields ψσ and ψσ, the partition function and action S take the form

Z =

∫
DψDψe−S[ψ,ψ], S

[
ψ,ψ

]
=

∫
d4x

(
ψσ∂τψσ −H

[
ψ,ψ

])
. (4.23)

We will use the Hubbard-Stratonovich transformation to decompose the quartic interaction

term in the pairing channel, giving the new representation of the partition function

Z =

∫
DψDψD∆∗D∆e−S[ψ,ψ,∆∗,∆], (4.24)
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where the new action is

S[ψ,ψ,∆∗,∆] =

∫
d4x

[ |∆(x)|2
gΛ

−
∫

d4x′Ψα(x)Ĝ
−1
α,β(x, x

′)Ψβ(x
′)

]
(4.25)

and we’ve defined the Nambu spinor Ψ ≡
(
ψ↑, ψ↓

)
and identified the inverse Nambu-Gorkov

Green’s function

Ĝ−1 = δ(x− x′)
(
−∂τ + ∇2

2m + µ↑ ∆(x)

∆∗(x) −∂τ − ∇2

2m − µ↓

)
. (4.26)

We can now integrate out the fermions to obtain the effective action

Z =

∫
D∆∗D∆e−Seff [∆∗,∆], Seff [∆∗,∆] =

∫
d4x
|∆(x)|2
gΛ

− Tr ln Ĝ−1, (4.27)

where the trace above (with a capital “T”) includes both the Nambu trace and a trace over

either space-time or momentum-frequency. This is as far as exact manipulations can take

us, and we must now use approximations. For example, the BCS-Leggett mean field theory

is obtained from a saddle point approximation, where the mean field partition function

becomes Z0 = exp(−Seff [∆∗
0,∆0]), where ∆0 is obtained from the gap equation, δSeff/δ∆ ≡

0, or, equivalently, Eq. (1.20) with ǫF replaced with µ. Again, the number equation is

obtained from the thermodynamic potential, Ω0 = −T lnZ0.

To obtain the propagator of the Goldstone excitations of the system, we expand in

gaussian fluctuations [13, 16, 79] of the order parameter around the mean field solution,

defining ∆(x) ≡ ∆0 + η(x). We then obtain the fluctuation propagator from the action in

the form

S ≃ S0 +
1

2

∑

q

(
η∗q η−q

)
Γ̂−1(q)

(
ηq

η∗−q

)
, (4.28)

where

Γ̂−1(q) =

(
M(q) L(q)

L(q) M(−q)

)
(4.29)

with elements

M(Q) = − m

4πa
+
∑

p

[
1

2ǫp
+

u2
pu

2
p+Q

iQl − Ep − Ep+Q

−
v2
pv

2
p+Q

iQl + Ep + Ep+Q

]
, (4.30)

L(Q) =
∑

p

upvpup+Qvp+Q

[
1

iQl + Ep +Ep+Q

− 1

iQl − Ep − Ep+Q

]
(4.31)
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q

k ←k →

k + q

q

k + q

k → k → Σ̂12(k) =Σ̂11(k) =

= +

=

+

+

Γ̂12(q) =

Γ̂11(q) =

Figure 4.2: Feynman diagrams in the gaussian approximation contributing to the self energy.
Top: the diagonal and off-diagonal self energy Σ̂11 and Σ̂12. Bottom: the diagonal and off-
diagonal effective interaction Γ̂11 and Γ̂11. The single wavy line is the bare propagator for
the interaction gΛ (actually, the negative of the propagator). The arrow conventions for Γ̂
are the same as for Ĝ. See the discussion surrounding Eq. 4.15 for the momentum labeling
rules.
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and

u2
q =

1

2

(
1 +

ξq
Eq

)
, v2

q =
1

2

(
1− ξq

Eq

)
(4.32)

are the Bogoliubov functions from the mean field solution. The class of diagrams we are

considering is illustrated by Fig. 4.2, where the solid lines represent mean field quasiparticles,

which now scatter off one another. The effective interaction diagrams look like the random

phase approximation [13], where all possible vertices are used. One can verify that the small

Q, iQl → ω + i0+ limit of Γ̂ we have here indeed has the general form in Eq. (4.18). The

self energy becomes, again using standard diagrammatic theory,

Σ(k, ikn) = − 1

β

∑

q,l

Γ̂11(q)G
0(q − k), (4.33)

S(k, ikn) =
1

β

∑

q,l

Γ̂12(q)F
0(q − k). (4.34)

We comment briefly on the signs of the above expressions. Note that the sign of Σ can be

confirmed by forcing A > 0, but the sign of S cannot, since Σ always dominates over S

when forcing A > 0 and there is no corresponding inequality for B. However, by explicitly

expanding the partition function, Eqs. (4.24) and (4.25), in small fluctuations of ∆(x), one

can see that the sign is, in fact, correct. After performing the Matsubara sums and the zero

temperature limit, the imaginary parts of the self energy become

Im Σ(k, ω) = −ε
∑

q

1

2

(
1− ε ξq

Eq

)
Θ(|ω| − Eq)Im Γ̂11(q + k, ω − εEq), (4.35)

Im S(k, ω) =
∑

q

uqvqΘ(|ω| − Eq)Im Γ̂12(k + q, ω − εEq), (4.36)

where we’ve defined a shorthand ε ≡ sgn(ω) to compact the notation. Note that these are

of the same form as the general expressions (4.19) and (4.20) with the fermionic weights

replaced by the mean field uk, vk and Γ̂ with that of the gaussian theory. There are also

occupation factors which are important for arbitrary (k, ω). The real parts of the self energy

are calculated numerically using the Kramers-Kronig relation, Eq. (4.21).

We can expect that including fluctuations around the mean field solution brings about a

broad continuum of scattering weight Ainc, reducing the weights Z±, Y of the sharp peaks.

This weight is constrained by the general sum rules (which, in the calculation, are satisfied

to within a maximum of 0.001)

∫ ∞

−∞
dωA(k, ω) = 1,

∫ ∞

−∞
dωB(k, ω) = 0,

∫ ∞

−∞
dωωB(k, ω) = −∆0. (4.37)

However, it is appropriate to mention that the scattering weight, while important for the
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renormalization of the quasiparticle dispersion Eg(k) and for calculating these sum rules,

does not interest us otherwise. Since this is a nonselfconsistent calculation, there is no reason

to believe that the dispersion we calculate will match the threshold to scattering and, in

fact, does not. The scattering threshold in the gaussian calculation occurs at the mean

field level, for example, at unitarity in Fig. 4.3 the threshold occurs when k = kµ ≃ 0.63kF

and ω = ∆0 ≃ 0.58ǫF . One must then check that the pole occurs outside the scattering

continuum in order for the quasiparticle weight Z+ to be well-defined. We therefore focus

only on the form of the dispersion for low energies.

4.4 Analytical Limits and Numerical Results

We now turn to the results of the calculation, detailing the analytical limits in the BCS and

BEC sides as well as unitarity. To investigate the limiting form of the Green’s function, we

will invert G in Eq. (4.8) and simplify the notation by writing G−1(k, ω) as

G−1(k, ω) ≡W (k, ω) +
K2(k, ω)

W ∗(k,−ω)
, (4.38)

defining

W (k, ω) = ω − ξk − Σ(k, ω), K(k, ω) ≡ ∆0 − S(k, ω). (4.39)

When W (k,−ω) is real, we denote it by W (k, ω).

4.4.1 Weak Coupling

We expand the Green’s function on the weak coupling side by performing an expansion in

kFas. We can immediately note that the off diagonal self energy S ∼ ∆3
0 → 0 compared to

∆0, seen by the fact that, in Eq. (4.36), uqvq ∼ ∆0 and Im Γ̂12 ∼ ∆2
0 for the same reason

(L, Eq. (4.31), has two factors of upvp). Furthermore, the diagonal self energy becomes

largely independent of k and ω due to the appearance of the Hartree term. The second

order term in kFas leads to the corresponding term in the normal Fermi liquid, Eq. (2.11),

for a repulsive Galitskii gas or the attractive Fermi gas above Tc. We note, however, that

there is still a gap in the imaginary part of the self energy which must be taken into account

in evaluating the imaginary part of M . Denoting this term by δΣ(k, ω), we have

Σ(k, ω) =
4

3π
kFasǫF + δΣ(k, ω), (4.40)

where δΣ(k, ω) ∼ (kF as)
2. Using Eq. (4.13) we then find a simple relation for kmin correct

to second order in kFa,

ǫkmin
≃ µ−Σkmin

(0), (4.41)
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|as| =∞ µ/ǫF U/ǫF ∆/ǫF

MFT 0.59 0 0.68
MFT + GF 0.40 -0.28 0.49

LW [65] 0.36 -0.50 0.46
QMC [76] 0.42 -0.52 0.50
Expt [44] N/A -0.43 0.44

Table 4.1: Comparison of dispersion parameters with other theories. Note that the experi-
ment value was obtained using the µ/ǫF calculated from the QMC paper.

where we set ∆ = 0 inside the self energy to polynomial orders. Using the expression for

the chemical potential, which, in this limit, is exactly that for the Galitskii-Lee-Yang hard-

core Fermi gas with a negative as [13], we see that the first and second order terms on the

right hand side cancel, so that kmin ≃ kF . We then find that the minimum wavevector is

not determined by Hartree physics, or even by the normal state interactions. We do note,

however, that the gap ∆ is reduced from ∆0 by a correction which, by nonanalticity, must

be exponential in order. This is the Gorkov-Melik-Barkhudarov [14] correction which arises

from particle hole excitations of the medium, and is not included in the gaussian calculation.

Finally, the quasiparticle weight in this limit becomes (again ignoring S)

1

Z+
≃ 1− W

W
− ∂Σ

∂ω
− W

W

∂Σ

∂ω
, (4.42)

and, using Eq. (4.41), we find that W ≃ −W and we can approximate ∂ωΣ(−ω) ≃ −∂ωΣ(ω)

since we are setting ∆0 → 0 here. The weight then becomes again the result from the hard-

core Fermi gas: 1/2 with a subleading term proportional to (kF as)
2 which decreases the

weight.

4.4.2 Crossover Region

At unitarity (1/kF a = 0), we find that there are still sharp peaks in the spectrum with

large weights of Z+ = 0.44 and Z− = 0.42, supporting strong low-energy quasiparticles.

The minimum wavevector has decreased to kmin ≃ 0.83kF which is larger than the mean field

value of 0.77kF . We note a more significant difference here, however. The chemical potential

is strongly renormalized with a value of µ = 0.40ǫF . If we compared the minimum with

kµ ≡
√

2mµ we would find a large difference, kmin ≃ 1.3kµ. In terms of the parameterization

in Eq. (4.1), we compare the value of U with other theories in Tbl. 4.1 and illustrate in

Fig. 4.3. While the gap ∆ is in good quantitative agreement with QMC results, kmin
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Figure 4.3: Results of the calculation and comparison with other theories at unitarity. Black
solid line: gaussian fluctuations. Red dashed line: Mean field theory. Blue dashed line:
QMC. Brown dotted line: Luttinger-Ward theory. Black dashed-dotted line: Experiment.

is in qualitative agreement. However, we see that the renormalization U here is a quite

complicated combination of Σ and S and not related to Hartree physics.

In Fig. 4.4 we compare the single particle gap ∆ and quasiparticle weights Z+, Z− and

Y with the mean field theory results. In mean field theory, the excitations at the gap have

an energy equal to the order parameter for coupling values less than 1/kF as ∼ 0.6 when

µ > 0. This is due to the fact that
√

2mµ always determines the wavevector at the bottom,

and Ek =
√

(ǫk − µ)2 + ∆2
0 is the exact energy. Furthermore, the quasiparticle weights at

the minimum are all equal: u2
kµ

= v2
kµ

= ukµ
vkµ

= 1/2. Beyond the point when µ = 0, µ

becomes negative and kmin = 0, meaning the gap is increased, ∆ = E0 =
√
µ2 + ∆2

0 > ∆0,

and the weights are now different:

u2
0 =

1

2

(
1 +

|µ|√
µ2 + ∆2

0

)
, u2

0 = 1− u2
0, u2

0 =
∆0

2
√
µ2 + ∆2

0

. (4.43)

In the gaussian approximation, the values for the gap, ∆0, and the weights are lowered,

and follow a similar trend as in the mean field. However, the equality of ∆ and ∆0 as well

as the weights Z+, Z− and Y is split with increasing magnitude. Fluctuations increase the

minimum wavevector kmin systematically beyond the mean field solution as the coupling

increases, becoming zero at a value of about 0.7, beyond the point when the chemical

potential µ vanishes. This is a nontrivial result of the gaussian calculation.
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Figure 4.4: Comparison between mean field theory (dashed lines) and the gaussian cal-
culation (crosses). Left: Single particle gap ∆ (upper black curve and crosses) and order
parameter (lower brown curve and crosses). Right: Quasiparticle weights Z+ (upper black
curve and crosses), Z− (lower blue curve and crosses) and Y (middle red curve and crosses).

4.4.3 BEC Limit

Once the wavevector kmin = 0, we see that the velocity past this point, Eq. (4.13), is trivially

zero, since the derivatives of the self energy vanish due to the isotropic nature of the gas. To

find the gap, we expand Γ̂ in small ∆0/µ. This has been done in Ref. [77], and we find that

it is only Σ(0, ω) that is important when ∆ ≃ |µ| ≫ ǫF ; only the collective mode contributes

to the self energy and the residues can be expanded to give the Bogoliubov functions in the

Bose case [77]. We then find that setting G−1(0,∆) ≡ 0 gives

∆ = |µ|+ ∆2
0

2|µ| + Σ(0, |µ|), (4.44)

where ∆2
0/|µ| = 16(kF as)/3π and Σ(0, |µ|) = −2∆2

0/3|µ| < 0 showing that ∆ is decreased

from the mean field result. For the quasiparticle weight, we again ignore S and Σ(−∆) as

well as the derivatives (since they cancel at this order) to obtain

Z+ =
∆− µ

2∆− Σ(0,∆)
. (4.45)

Since µ < 0, |µ| ≫ ǫF , ∆ ≃ |µ| and Σ(0,∆) ≪ ǫF , we see that the quasiparticle weight

actually approaches unity for positive frequencies and similarly the negative weight Z−

vanishes. This can be understood physically by noting that for particle excitations, the

atom-dimer interaction aad scales with the atom-atom scattering length with a positive

constant, such that aad ≃ 1.2as [28], and those excitations therefore have finite weight.

Hole excitations require breaking a bond in a pair which is costly in this limit.
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4.5 Large-N approximation

The method we use here is closely related to the 1/N approximation [62], and also should

have the same general features as above. After including the N species of fermions in the

action using the hamiltonian Eq. (2.14), we perform an expansion of the partition function,

or, equivalently, the Green’s function, at unitarity. One finds [62] that the self energy is of

the same form as derived in the gaussian approximation, Eqs. (4.33) and (4.34), but with

an overall factor of 1/N , due to the same vertex factors discussed in Sec. 2.3. Moreover,

the values for the order parameter ∆0 and µ are obtained from the mean field expression

which is 0th order in 1/N . We can then derive the expressions for the dispersion minimum

and gap. The gap in terms of the self energies is [62]

∆ ≃ ∆0 +
1

2N [Σ(∆0)− Σ(−∆0)− 2S(∆0)] , (4.46)

where the self energy is calculated at the mean field minimum, kµ. At unitarity its evaluation

yields

∆

ǫF
≃ 0.6864 − 0.196

N +O(N−2), (4.47)

where 0.6864 is the mean field order. Indeed, the inequality ∆ < ∆0 holds, and the threshold

in the spectral function would occur at the value of ∆0. Therefore, one does obtain a sharp

δ-function peak in the single particle spectrum to this order. In setting the velocity to zero

we obtain the correction to the mean field value for the minimum, kmin ≃ kµ + δkmin/N .

We find

δkmin =
1

2
kµ
µ1/N

µ0
− 1

4m

Σ(∆0) + Σ(−∆0)

µ0
− m∆0

4µ0

[
∂kΣ− ∂kΣ− 2∂kS

]
(4.48)

and by numerical evaluation we obtain δkmin ≃ 0.11kF , pushed outward from the mean

field value. The quasiparticle weight in 1/N is

Z+ ≃ 1

2

[
1 +

∆1/N

∆0
+ 2

δkmin

kµ
− µ1/N

µ0
+

+
1

2

Σ(∆0) + Σ(−∆0)

∆0
+

1

2

(
∂ωΣ− ∂ωΣ− 2∂ωS

)]
(4.49)

and we obtain a reduced value Z+ ≃ (1 − 0.072/N )/2 for this as well. We find that the

1/N approximation in fact also supports quasiparticles.
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4.6 Conclusions

We have shown that, using general considerations of neutral fermions, coupled to gap-

less phonon modes, with a gapped excitation spectrum, one can derive a selfconsistent

argument which supports well-defined quasiparticles in ultracold Fermi gases at zero tem-

perature. Using the gaussian approximation throughout the BEC-BCS crossover and the

large-N approximation at unitarity we have illustrated the dispersion by calculating the

single particle gap, quasiparticle weights, and the shift in the wavevector of the dispersion

kmin, finding qualitative agreement with other theories and experiments. We find that sharp

quasiparticles do exist in the system throughout the BEC-BCS crossover, even at unitarity,

with strong weights. We find that kmin is systematically shifted from the expression for the

mean field value,
√

2mµ, a nontrivial result.

4.7 Technical Details of the General Argument

In this appendix we make explicit the discussion in Sec. 4.2 by expanding the integrals. We

first perform the integral Eq. (4.19) and (4.20) for the imaginary parts of the self energy to

lowest order in ω̃ ≡ ω −∆ for ω > 0 to yield

Im Σ(ω) ≃ −αΣ(ω −∆), (4.50)

Im Σ(−ω) ≃ −αΣ(ω −∆), (4.51)

Im S(ω) ≃ −αS(ω −∆), (4.52)

where we’ve defined the coefficients

αΣ ≡
ζ

4π
Z−, αΣ ≡

ζ

4π
Z+, αS ≡

ζ

4π
Y. (4.53)

The linear behavior of the imaginary parts of the self energy lead directly to the following

forms for the real parts of the self energy

Re Σ(ω) ≃ ΣL(ω) +
αΣ

π
(ω −∆) ln(ω −∆), (4.54)

Re Σ(−ω) ≃ ΣL(ω)− αΣ

π
(ω −∆) ln(ω −∆), (4.55)

Re S(ω) ≃ SL(ω) +
αS
π

(ω −∆) ln(ω −∆), (4.56)

where we’ve taken out explicitly the leading logarithmic dependence, the subscript L de-

noting that those quantities have corrections to leading order in ω̃ ≡ ω − ∆. Before we

investigate the consequences for the Green’s function, we note here that this behavior has

been pointed out before [78], and it was claimed that the quasiparticle weight would there-

fore necessarily be zero. This is due to the relation between the quasiparticle weight and
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the self energy in the normal state

ZN =
1

1− ∂Σ
∂ω

∣∣
ω=0

, (4.57)

which, with the behavior in the superfluid state, would be zero when evaluated at ω = ∆.

We point out that it is Eqs. (4.11) and (4.12) which determine the weights, and we will

show that this is finite in the current expansion. By expanding the real and imaginary parts

of G−1 in Eq. (4.38) we obtain

Im G−1(ω) = − ω̃

W (∆)

[
J1 + J2 + 2J1

(
∂ωKL

K(∆)
− ∂ωWL

W (∆)

)
ω̃−

− 2

π

(
J1

K(∆)

)2

ω̃ ln ω̃ +O
(
ω̃2 ln ω̃

)
]

(4.58)

and

Re G−1(ω) =
1

W (∆)

[
Rω̃ +

J1 + J2

π
ω̃ ln ω̃ +O

(
ω̃2 ln ω̃

)]
, (4.59)

where we’ve defined the shorthand

J1 ≡ αΣW (∆)− αSK(∆), J2 ≡ −αΣW (∆)− αSK(∆), (4.60)

and the derivatives are evaluated at ∆, W (ω) ≡ W (−ω), and the subscript L indicates we

differentiate the corresponding part of the self energies. The number R is

R ≡W∂ωWL + 2K∂ωKL +W∂ωWL (4.61)

We now make the crucial observation that J1 = J2 = 0, using the general relations

Eqs. (4.12). We can therefore verify that the spectral function vanishes as ω̃ → 0 at most

like ω̃ ln ω̃. We note that the prefactor (and the next leading order corrections) will depend

on secondary corrections to the approximations made in this appendix to the effective

interaction, the Green’s function itself, and the additional diagrams we have neglected, all

of which are complicated but not required for the current argument. The quasiparticle

weight is given by

Z+ =
R(∆)

WL(−∆)
(4.62)

and is related to Z− and Y again by Eqs. (4.12). We now have no more information about

these quantities in general, except to say there’s no reason to believe they vanish unless one

encounters a quantum phase transition.
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Chapter 5

Bogoliubov-deGennes Analysis of

Inhomogeneous Atomic Gases

An important aspect of cold atom experiments is the presence of a harmonic trap, which we

have ignored in this thesis until now. A “local density” or Thomas-Fermi Approximation

(TFA) [9] has usually been adequate to take this into account. The TFA asserts that the

properties at point r in a ‘slowly varying’ potential Vtrap(r) are the same as those of the

uniform gas at a chemical potential µσ(r) = µσ − Vtrap(r) with σ =↑, ↓. This leads to the

simple result that the spatial dependence of any observable must follow contours of constant

trapping potential, which is directly testable for the densities nσ(r). Two experiments on

polarized, unitary Fermi gases find rather different results with respect to the TFA. The

MIT group [24, 26, 27], with a large number of atoms N = 107 and a small trap anisotropy

1/α = ωr/ωz ≃ 5, finds that the densities follow contours of Vtrap(r). On the other hand,

the Rice group [81], with smaller N = 105 and larger anisotropy 1/α ≃ 50 observes gross

violations of the equipotential contour condition for the densities [82].

Motivated by this, we4 have investigated the validity of the TFA using the zero tempera-

ture BdG equations [87, 88] and derived scaling arguments for the unitary gas in anisotropic,

three dimensional traps with polarization up to 40%. Our main results are:

• The numerical calculation exhibits order parameter oscillations which might be inter-

preted as the signature of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, however,

they must be interpreted with care. We find that, in the symmetric trap, the oscilla-

tions are a numerical artifact and disappear as the calculation is done more accurately.

• We find that the size of the region between the unpolarized superfluid and the polar-

ized normal states can be described as an interface between the two in the symmetric

4This work was done in collaboration with R. Sensarma, R. Diener and M. Randeria. Ref. [83] contains
our preliminary work, which are superseded by the results described in this chapter. For other recent
theoretical developments, see Parish and Huse [84] and Baksmaty et al. [85]. The most recent experiments
of the Rice group [86] seem to give evidence for the non-equilibrium effects proposed in [84]. Nevertheless,
we describe here our own work which focuses on equilibrium physics in anisotropic traps.
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trap, and does not survive in a thermodynamic limit.

• The violation of the equipotential contour criterion for the magnetization m(r) =

n↑(r)− n↓(r) increases with increasing anisotropy 1/α, but decreases with increasing

total number of particles N = N↑ +N↓.

• We derive a simple condition for the consistency of the TFA: h/ωr = (Nα)1/3f(P )≫
1, where f is a function of the polarization P = (N↑ −N↓) /N and h = (µ↑−µ↓)/2 is

half the difference in the chemical potentials. We use this (Nα)1/3 scaling of h/ωr to

get a better understanding of the N and α dependences of our BdG results.

• At a qualitative level, we are able to account for the differences between the MIT and

Rice experiments with respect to the question of when the magnetization should or

should not follow contours of constant potential at T = 0.

5.1 Bogoliubov deGennes Equations

Our approach to the problem of strongly interacting, polarized Fermi gases in anisotropic

traps is to solve the BdG equations [89]. This is the simplest approach which goes beyond

the TFA and is a generalization of the BCS-Leggett mean field theory for a spatially in-

homogeneous gas. This method has been applied to the study of vortices in the strongly

interacting regime [90], as well as the study of polarized gases in isotropic traps [87, 88].

For a single-channel description valid for the experimentally-relevant wide resonance, the

Hamiltonian density for the polarized gas is (1.14) where we now add the trapping potential

Vtrap(r) =
1

2
mω2

0

(
r2 + α2z2

)
(5.1)

and we use cylindrical coordinates r = (r, θ, z). The asymmetry of the trap is defined as

α−1 so that larger asymmetry in the z-direction corresponds to larger values of α−1. We

define the average chemical potential and the difference as

µ =
µ↑ + µ↓

2
, h =

µ↑ − µ↓
2

, (5.2)

respectively. The mean field state is found through the solution of the BdG equations

(which are derived in Sec. 5.4)

(
H0(r)− µ ∆(r)

∆∗(r) −H0(r) + µ

)(
ui(r)

vi(r)

)
= Ei

(
ui(r)

vi(r)

)
, (5.3)

where H0(r) = −∇2/2m+ V (r), together with the gap equation

∆(r) = g(kc)
∑

Ei>h

ui(r)v
∗
i (r), (5.4)
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polarization

m(r) =
∑

0≤Ei<h

(
|ui(r)|2 + |vi(r)|2

)
, (5.5)

and density

n(r) = m(r) +
∑

Ei>h

2|vi(r)|2 (5.6)

at zero temperature. We use the notation kc to denote the cutoff energy due to the contact

interaction, preferring to use Λ for a different definition (see Eq. (5.13)) later on in this

chapter. These equations are solved self-consistently for ∆(r), µ and h using the constraints

that the total number of particles N and polarization P are

N =

∫
d3rn(r), P = N−1

∫
d3rm(r). (5.7)

The solution of these equations is simplified if we expand the wavefunctions ui, vi in

terms of the eigenfunctions of the diagonal piece H0(r) − µ. Measuring lengths in units

of the radial harmonic oscillator length a0 =
√
h̄/mω0 and energies in units of ω0, these

functions are

φnpℓ = fpℓ(r) exp(iℓθ)gn(z)/
√

2π, (5.8)

where the radial and axial functions are related to associated Laguerre and Hermite poly-

nomials,

fpℓ(r) =
√
p!/(p+ ℓ)!e−r

2/2r|ℓ|Lℓp(r
2), (5.9)

gn(z) =

√√
α/(2n

√
πn!)e−αz

2/2Hn(
√
αz), (5.10)

respectively. The corresponding eigenvalue is ǫnpℓ = (2p+ ℓ+1)+α(n+1/2)−µ. The BdG

Hamiltonian is block-diagonal in ℓ due to azimuthal symmetry, so for a given ℓ we need to

diagonalize

H(ℓ) =

(
T (ℓ) ∆(ℓ)

∆(ℓ) −T (ℓ)

)
, (5.11)

where T
(ℓ)
nn′pp′ = ǫnℓpδnn′δpp′ and ∆

(ℓ)
nn′pp′ =

∫∞
0 rdr

∫∞
−∞ dzfpℓ(r)fp′ℓ(r)gn(z)gn′(z)∆(r, z)

Since ∆(r, z) = ∆(r,−z), the only non-zero matrix elements of ∆nn′pp′ correspond to even

n+ n′.

Normally, the bare coupling g(kc) in Eqs. (5.3), (5.4) is replaced with the scattering

length using Eq. (1.13), however, here we numerically introduce an energy cutoff on ǫnpℓ to
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Figure 5.1: The chemical potentials µ (upper blue curve) and h (lower red curve) for
P = 0.30 and N↑ = 700 in the symmetric trap (α = 1) for a range of cutoff values Λ = 6−20.
The dashed lines indicate the fit to the form aΛ−1/2 + b, where b is the extrapolated value.

limit the number of the basis functions used, with a maximum energy of Ec. We therefore

choose the basis cutoff

Ec ≡ h̄2k2
c/2m (5.12)

to coincide with the cutoff for the regularization. In doing so, we must study the self

consistent solutions as Ec increases. Furthermore, in order to have a consistent set of

comparisons differing by the number of particles, we choose Ec to be a multiple of the

Fermi energy ǫF , so

Ec ≡ ΛǫF , (5.13)

where ǫF = (6Nα)1/3ω0. To study the solutions as a function of Λ, we use an extrapolation

procedure for the chemical potentials and subsequent analyses of the density profiles. The

scaling of the BdG solutions can be seen by noting that the bare coupling g(kc) ∼ 1/
√
Ec

in Eq. (5.4), and, in order to obtain a finite result, the sum in Eq. (5.4) must increase to

compensate. All quantities therefore behave as Λ−1/2 tending to a constant. For illustration

purposes, we plot the chemical potentials µ and h against the cutoff Λ for N↑ = 700 and

P = 0.30. We note that this is analogous to performing the calculation on a lattice and

taking the wavevector cutoff (the natural choice of the Bravais lattice vector in the first

Brillouin zone) very large to obtain the continuous limit.
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Figure 5.2: (A) Majority (black) and minority (gray) density profiles and (B) order param-
eter ∆ (black) and magnetization (grey) profiles along the axis of the trap. The solid lines
are BdG results and the dashed lines are TFA results. The calculations are for a trap with
α = 1/4 containing N = 865 particles and a polarization of 30%.

5.2 Numerical Results

We now discuss the self-consistent solution of the BdG equations as a function of total N =

N↑ + N↓, polarization P = (N↑ −N↓) /N and trap anisotropy 1/α at unitarity (as = ∞).

We have extensively studied the problem for N up to 2500 particles, 0 ≤ P ≤ 0.4 and

α = 1, 1/2, 1/4. In Fig. 5.2(A) we plot the majority (n↑) and minority (n↓) densities along

the z axis for a representative data set (α = 1/4, N = 865 and polarization P = 30%). In

Fig. 5.2(B) we plot the corresponding magnetization m(r) = n↑(r) − n↓(r) together with

the local order parameter ∆(r). In both panels the solid lines are BdG results, while dashed

lines are TFA predictions (using the bulk phase diagram [91–93] as input).

Both the BdG and TFA results show an unpolarized superfluid at the center of the trap

and a fully polarized normal gas at the edge. There is a marked decrease in the BdG central

density relative to TFA, with a redistribution of minority atoms to an intermediate region.

The main difference between BdG and TFA is precisely in this intermediate region. Within

the TFA there is a discontinuous jump in the order parameter which is smoothed out in

the BdG solution since this lowers the gradient energy. Furthermore, the order parameter

exhibits oscillations that might be interpreted as evidence for a FFLO phase [94], but as

we will discuss in detail below, these oscillations are, in fact, numerical artifacts and not

indicative of a FFLO region.
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Figure 5.3: Density profiles for N = 865 and P = 30% and α = 1, 1/2, 1/4 from left
to right. Top row: Contour plots of constant magnetization m. Bottom row: Column
integrated magnetization mcol(0, z) along the axis.

5.2.1 Density Profiles

We begin our test of the TFA by increasing the trap anisotropy 1/α. In the top panel of

Fig. 5.3 we plot the magnetization m(r, z) for N = 865 particles with P = 30% polarization

and α = 1, 1/2, 1/4. In the lower panel we show the corresponding plots of the column-

integrated magnetization, which is simpler to measure in experiments, and is given by

mcol(y, z) =
∫∞
−∞ dxm(

√
x2 + y2, z). For the spherical case (α = 1) the equipotential

contour condition must be satisfied by symmetry. As the anisotropy α−1 increases we see

that the magnetization gets more concentrated along the wings. Moreover, the boundary

between the magnetized and unmagnetized regions near the z = 0 plane becomes straighter,

yielding a magnetization “hole” that becomes more rectangular. This is very similar to the

observed profiles in the Rice experiments [81].

To understand why the MIT results look so different, we must study the dependence

on the total number of particles, for a fixed trap anisotropy and polarization. In Fig. 5.4

we plot the results for (from top to bottom) N = 865, 1538, and 2307 particles in a trap

with α = 1/2 and P = 30%. For the smallest N the magnetization is localized along the

axis, and is seen to spread out toward the radial direction with increasing N . The largest

N results show a rather elliptical magnetization density indicating that the magnetization

begins to follow the equipotential contours as N increases.

5.2.2 Interface region

The existence of a magnetized superfluid region implies the breakdown of the TFA, since

there is no such phase for a uniform gas in the thermodynamic limit at unitarity and

this region could be stabilized only by the presence of a trap. Earlier BdG studies in
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Figure 5.4: Magnetization profiles as a function of total N (from left to right: 865, 1538
and 2307) at a fixed trap anisotropy (α = 1/2) and P = 30%.

isotropic traps [87, 88] have found such a FFLO-like region but, as we discuss next, one

must be very careful to interpret numerical results to address this question. To illustrate

the absence of these oscillations we first restrict ourselves to the symmetric trap where

α = 1 in which the cutoff Λ can be increased to a large value. Fig. 5.5 shows a clear trend

of the decreasing oscillation amplitude, and indeed it is completely quenched by a value of

Λ = 30. This decreasing trend is found for every particle number N studied, however, as

N increases one must increase the cutoff to higher values to see the oscillation completely

quenched, due to the steepness of the slope of ∆ approaching this region. We therefore

attribute the oscillations to a numerical artifact arising from the finite cutoff analogous to

the Gibbs phenomena in Fourier series. For anisotropic traps, even though we have seen

the amplitude decrease in our data, we do not have the extensive cutoff calculation as at

α = 1. The calculation time for anisotropic traps scales with the cutoff Λ, asymmetry α−1

and majority particle number N↑ as Λ6N2
↑α

−1, which can be shown by considering the cube

of the dimension of the largest ℓ matrix which is determined by the quantum numbers of

Ec.

Since we have ruled out FFLO behavior in the intermediate region, it is important to

ask whether the region can be described as an interface with a surface energy [82]. To

investigate this, let us now study the fraction of the majority species nint in this region

as a function of N↑, as well as its size ∆Rint, defined by the existence of both the local
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Figure 5.5: Order parameter profiles for N↑ = 300, P = 0.30, α = 1. From the lower to
higher curve Λ = 6, 8, 10, 20, 30. Inset zooms in on the oscillating region.

polarization p(r) = m(r)/n(r) and density of minority particles n↓(r)/n(r) scaled by the

local total density. The fraction of majority particles, then, is defined by

nint = N−1
↑

∫

∆Rint

d3r n↑(r). (5.14)

For simplicity, we again work in a symmetric trap. We can make a simple argument to

explain the behavior of nint and ∆Rint with N↑ by modeling the region as a shell and using

the Thomas-Fermi scaling for the radius of the cloud RTF . The radius scales as the Fermi

energy like

RTF,↑ =

√
2ǫ0F,↑
mω2

=
√

2 (6N↑)
1/6 a0, (5.15)

where we have used the definition of the Fermi energy and the oscillator length a0. The

average density in the cloud is n ∼ N↑/R
3
TF,↑. Multiplying by the shell volume, ∆RintR

2
TF,↑

we obtain the number of particles in the shell. Dividing by the total number of majority

particles we obtain

nint ∼
n↑∆RintR

2
TF,↑

N↑
∼ ∆Rint

RTF,↑
. (5.16)

For an interface description, ∆Rint ∼ k−1
F ∼ N

−1/6
↑ and therefore nint ∼ N

−1/3
↑ . We find

in Fig. 5.6 that, indeed, nint and ∆Rint scale with N↑ and tend to vanish as N↑ increases.

We also note that if one were not to use the extrapolation procedure we use here, one
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Figure 5.6: Left: Fraction of majority particles nint, defined in Eq. (5.16) in the intermediate
region as a function of N↑ in a symmetric trap (α = 1) and P = 30%. The top curve uses a
cutoff of Λ = 8 and tends to a finite value, while the lower curve is extrapolated to Λ→∞,
and tends to zero. Right: Size of the intermediate region, extrapolated to Λ →∞, for the
same parameters. In both graphs, N ranges from 462 to 1077.

would incorrectly conclude that the intermediate region exists in the thermodynamic limit,

tending to a value of nint ≃ 0.20.

5.2.3 Scaling with N and α

We now derive a criterion for the consistency of the TFA and compare our results for the

chemical potentials plotted in Fig. 5.7. We start with the Thomas-Fermi theory (dashed

lines in Fig. 5.2) using the densities from the bulk phase diagram [91–93]

n↑[µ(x)] =





1
6π2

[
2mµ(x)

β

]3/2
µ(x) > 1.28h0

1
6π2 {2m[µ(x) + h0]}3/2 1.28h0 > µ(x) > −h0

0 −h0 > µ(x)

(5.17)

n↓ [µ(x)] =





1
6π2

[
2mµ(x)

β

]3/2
µ(x) > 1.28h0

1
6π2 {2m [µ(x)− h0]}3/2 1.28h0 > µ(x) > h0

0 h0 > µ(x)

(5.18)

where µσ = µσ,0 − V (x), so that µ(x) = (µ↑(x) + µ↓(x)) /2 ≡ µ0 − V (x) and h =

(µ↑(x)− µ↓(x)) /2 ≡ h0 is independent of x. Our goal is to integrate these expressions

to obtain the numbers of particles in each region. After scaling the resulting integrals we
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obtain

NSF
σ =

16

3πα

1

β3/2

(
h0

ω0

)3

I1

(
µ0

h0

)
(5.19)

NN
↑ =

16

3πα

(
h0

ω0

)3

I2

(
µ0

h0

)
(5.20)

NN
↓ =

16

3πα

(
h0

ω0

)3

I3

(
µ0

h0

)
(5.21)

where In are integrals that only depend on the ratio µ0/h0 of the chemical potential sum

and difference. We can then write down the expression for the polarization as a function

of µ0/h0, and in principle can be inverted to obtain the ratio as a function of P . Finally,

we obtain h0/ω0 = (Nα)1/3f(P ), where f(P ) is a numerically determined monotonically

increasing function of P which goes like P 2/5 for P ≪ 1 and is of order unity for the P

values of interest here. We note that a similar criterion (without an explicit P -dependence)

for the violation of the equipotential-contour condition was derived in Ref. [82] using a

different approach.

We have checked that the BdG results for h0/ω0 are consistent with (Nα)1/3 scaling

even though the values are smaller than the TFA estimates. If the condition h0/ω0 ≫ 1

is violated the TFA will breakdown, and how this breakdown manifests itself in various

quantities turns out to be strongly dependent on the anisotropy 1/α both in the BdG

results and in the experiments. For the symmetric trap we have good agreement for h in

the entire range of N studied, as shown in Fig. 5.7. The violation of the equipotential

contour criterion is also absent, as seen in Fig. 5.4, however, it grows progressively with

1/α as seen from our BdG results. The size of the intermediate region also grows with 1/α

as discussed above. We then understand why the MIT experiments, with (Nα)1/3 ≃ 100

and a small anisotropy, show that the equipotential contour criterion is obeyed, while the

Rice experiments (Nα)1/3 ≃ 10 and a large anisotropy shows significant violation of this

criterion.

5.3 Conclusions

In this chapter we have shown that one must be careful to interpret the occurrence of

oscillations of the order parameter in numerical BdG calculations due to a finite cutoff in the

calculation, and provided a method of studying as a function of the cutoff. Furthermore, we

have shown that the intermediate region behaves like an interface for an isotropic trap, and

that its shape does not follow contours of constant trap potential as the asymmetry increases.

Finally, we have derived a consistency criterion for the agreement of the calculation with

the LDA and shown it to have good agreement with the difference between the chemical

potentials in the isotropic trap. Further study would include all the above questions for
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Figure 5.7: The chemical potentials µ (blue) and h (red) for P = 0.30 in the symmetric
trap (α = 1) for a range of numbers of particles with N = 1400− 15000. The brown dotted
line indicates the Thomas-Fermi prediction for h.

stronger polarization and asymmetry, however, due to the high scaling of the calculation

with the basis cutoff and asymmetry, studying the equipotential contour criterion and cutoff

scaling would be very expensive.

5.4 Derivation of BdG Equations

Here we develop the BdG equations from the action of Eq. (4.27). We return to the effective

action of the bosonic field ∆(x, τ)

Seff [∆∗,∆] =

∫
d4x
|∆(x)|2
gΛ

− Tr ln Ĝ−1, (5.22)

where the Trace is over both Nambu and basis function indices (either coordinate or mo-

mentum space) Consider now a static, but spatially varying, saddle point approximation

for the field ∆(r, τ) = ∆(r). The saddle point equation is again given by δSeff/δ∆
∗(r) = 0,

or

∆(r)

gΛ
= −

∫
d4x tr Ĝ(x, τ)

(
0 0

1 0

)
. (5.23)
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The goal here is to change the trace from the Nambu index to that which diagonalizes Ĝ.

To do that, consider Ĝ−1(r, iωn) in Matsubara frequency. We have

Ĝ−1(r, iωn) =

(
iωn −H0(r) + (µ+ h) ∆(r)

∆∗(r) iωn +H0(r)− (µ− h)

)
(5.24)

and define a (time independent) basis transformation U(r) which diagonalizes Ĝ−1(r, iωn),

Ûn =

(
un(r) −v∗n(r)
vn(r) u∗n(r)

)
, (5.25)

where the two columns give the eigenvalues En + h and −En − h, respectively.

Now Ĝ−1(r, iωn) = (iωn+h)σ̂0 +Ĥbdg(r) where Ĥbdg is the BdG matrix for equal popu-

lation with chemical potential µ, and is the matrix in Eq. (5.3). We define its eigenfunctions

and eigenvalues by φn = [un(r), vn(r)] and En. Due to particle-hole symmetry there are

also eigenfunctions φ−n = [−v∗n(r), u∗n(r)] with energy −En. It is evident that φn and φ−n

are the eigenfunctions of Ĝ−1(r) with eigenvalues En↑ = En − h and −En↓ = −En − h,
respectively. We then write

ÛnĜ
−1Û †

n =

(
iωn − En↑ 0

0 iωn + En↓

)
(5.26)

and invert the equation to insert into the saddle point equation. We obtain

∆(x)

gΛ
=
∑

mn

tr

(
(iωm − En↑)−1 0

0 (iωm + En↓)
−1

)
Û †
naÛn, (5.27)

where

Û †
naÛn =

(
v∗n(x)un(x) −|vn(x)|2
|un(x)|2 −v∗n(x)un(x)

)
(5.28)

and, on doing the Nambu Trace and the Matsubara sums, the saddle point equation reduces

to

∆(x) = gΛ
∑

n

[1− f(En↓)− f(En↑)]un(x)v∗n(x), (5.29)

where f(z) is the Fermi function. Note that it reduces to Eq. (5.4) in the limit of zero

temperature.

The number densities of the two species fixes the two chemical potentials through the
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equations nσ = −∂Ω/∂µσ with Ω = Seff/β. These reduce to the following equations

n↑ = Tr Ĝ

(
1 0

0 0

)
, n↓ = −TrĜ

(
0 0

0 1

)
. (5.30)

Now, using the same transformation above and computing

Û †
n

(
1 0

0 0

)
Ûn =

(
|un(x)|2 −u∗n(x)v∗n(x)

−un(x)vn(x) |v∗n(x)|2

)
(5.31)

and

Û †
n

(
0 0

0 1

)
Ûn =

(
|vn(x)|2 u∗n(x)v∗n(x)

un(x)vn(x) |u∗n(x)|2

)
, (5.32)

we get the following equations after the Matsubara sums

n↑ =

∫
d3r

∑

n

|vn(r)|2[1− f(En↓)] + f(En↑)|un(r)|2 (5.33)

and

n↓ =

∫
d3r

∑

n

|vn(r)|2[1− f(En↑)] + f(En↓)|un(r)|2, (5.34)

where, in obtaining the last equation one has to take ωn ⇒ −ωn before before doing the

Matsubara sums. By constructing the total density n = n↑ + n↓ and magnetization m =

n↑ − n↓ and taking the zero temperature limit, we obtain Eqs. (5.5) and (5.6).
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Chapter 6

Hydrodynamic Analysis of

Colliding Atomic Gases

Advances in the ability to manipulate dilute, ultra-cold gases have opened up new fron-

tiers in the study of non-equilibrium dynamics of strongly interacting quantum systems. In

contrast to electronic systems, the Fermi energy in typical trapped alkali atom gas experi-

ments is of the order of a few kHz, meaning that dynamics can be observed in real time, on

the order of milliseconds and questions about metastability and equilibration in quantum

systems can now be explored in the laboratory.

A striking example of such non-equilibrium dynamics was reported recently by Sommer

et al. [6], who studied the collision of two clouds of ultra-cold fermions prepared in different

spin states. In the strongly interacting regime, they observed the remarkable phenomenon

of the two clouds bouncing off each other for several periods, before the motion is damped

out leaving the two clouds sitting side-by-side on intermediate time scales. At long times,

the two clouds slowly merge together, and the long-time dynamics was analyzed in detail

in Ref. [6] in terms of spin diffusion.

We focus here5 on the remarkable behavior at short and intermediate time scales. Here

we address:

• The reason that the strongly interacting clouds bounce off each other and then settle

down next to each other for time scales up to several hundred milliseconds.

• Concentrating on the strongly interacting regime near unitarity, where the s-wave

scattering length as is infinite, we comment on how the dynamics changes with de-

creasing kFas > 0.

5This work was done in collaboration with E. Taylor, S. Zhang, and M. Randeria [95]. The author was
mostly responsible for some preparatory numerical work which was not part of the publication, and also
helped with the numerical work in solving the lowest order constraint variational (LOCV) and hydrodynamic
equations.
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Harmonic Trap

spin up cloud spin down cloud

Figure 6.1: Schematic picture of the experiment of Sommer et al. [6]. Two spin-polarized
clouds are separated on top of harmonic trap.

6.1 Theoretical Treatment

6.1.1 Hydrodynamics

We consider here the collision of two spin-polarized clouds, each made up entirely of atoms

with different spin, σ = ↑ or ↓, that are initially separated spatially in the z-direction,

illustrated in Fig. 6.1. Our main hypothesis is that the collisions between atoms in the

two clouds are sufficiently rapid to establish local thermodynamic equilibrium when the

clouds overlap. Thus the clouds behave hydrodynamically in the overlap region and their

dynamics reflect the equation of state of the gas. At unitarity, the two-body collision rate

1/τ2 ∼ ǫF [96, 97], where we set h̄ = kB = 1, for a range of temperatures 0.1 < T/ǫF < 0.3.

With a Fermi energy ǫF ∼ 104Hz and an axial trap frequency ωz ∼ 10Hz [6], the gas in the

overlap region of the clouds will reach local thermodynamic equilibrium within ∼ 10−3 trap

periods of the start of the collision. We note that hydrodynamics also describes well the

very different behavior observed in colliding clouds of spin-balanced gases [98] at unitarity.

The spin ↑ and ↓ atoms are initially in scattering states, and the formation of two-body

bound states requires three-body collisions in order to satisfy kinematic constraints. The

time scale τ3 for such processes close to unitarity has not been studied extensively, however,

there are indications that 1/τ3 is suppressed close to unitarity [99]. In addition, the τ3

relevant to the experiment of Ref. [6] is further enhanced relative to the microscopic three-

body collision time, since such processes are limited here to a small overlap region for a

fraction of the oscillation period ω−1
z . All of our analysis below is valid for times t≪ τ3.

Thus for the time scales τ2 ≪ t ≪ τ3, we model the collisional dynamics of the two

spin-polarized clouds using Euler’s equation

∂vσ
∂t

+
∇v2

σ

2
= −∇

m

(
∂E
∂nσ

+ Vtrap

)
− γvσ (6.1)
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and the continuity equation

∂nσ
∂t

+ ∇ · (nσvσ) = 0. (6.2)

Here vσ and nσ are the velocity and density of the σ fermions, Vtrap = m(ω2
⊥ρ

2 + ω2
zz

2)/2

is the trap potential. The energy density functional E [nσ(r)] will be discussed in detail

below. We include a phenomenological γ to account for strong spin-current damping in

the hydrodynamic regime [100, 101]. Viscous damping, which describes the damping of

in-phase current (v↑ = v↓), is ignored since the viscosity is small at unitarity [96, 97, 102],

and the motion of the colliding clouds is primarily out-of-phase.

The most relevant dynamical variables to the problem of two colliding clouds are the

centers-of-mass of the two clouds and their widths. Using the notation

〈· · · 〉σ ≡ 1/Nσ

∫
d3rnσ(· · · ), (6.3)

we define the the center-of-mass position of the σ component as z̄σ ≡ 〈z〉σ and its width as

δzσ ≡
√

8〈(z − z̄σ)2〉σ so that δzσ coincides with the axial Thomas-Fermi (TF) radius Rz in

equilibrium. The hydrodynamic equations (6.1) and (6.2) then lead to the exact equations

of motion:

¨̄zσ + ω2
z z̄σ = − 1

m
〈∂z(∂E/∂nσ)〉σ − 〈γvσz〉σ +

〈
vσ ·∇vσz − ∂zv2

σ/2
〉
σ

(6.4)

and

¨δzσ + ω2
zδzσ = 8

〈v2
σz〉σ
δzσ

− ( ˙δzσ)
2

δzσ
− 8

( ˙̄zσ)
2

δzσ

− 8

mδzσ
〈(z − z̄σ)∂z(∂E/∂nσ)〉σ −

8

δzσ
〈(z − z̄σ)γvσz〉σ

+
8

δzσ

〈
(z − z̄σ)[vσ ·∇vσz − ∂zv2

σ/2]
〉
σ
. (6.5)

We solve these equations using a TF ansatz

nσ(r, t) =
Rz(2mǫ

0
F )3/2

6π2δzσ(t)

[
1−
( ρ

R⊥

)2
−
(z − z̄σ(t)

δzσ(t)

)2]3/2
, (6.6)

where Rα ≡
√

2ǫ0F /mω
2
α is the TF radius along the α-axis and ǫ0F = (ω2

⊥ωz)
1/3(3N)1/3 is

the chemical potential of an ideal two-component Fermi gas (N↑ = N↓ = N/2). This ansatz

allows for a time-dependent center-of-mass z̄σ and for possible axial compression when the

clouds collide. The continuity equation (6.2) leads to the velocity field vσ = vσ ẑ with

vσ(z, t) = ˙̄zσ − z̄σ ˙δzσ/δzσ + z ˙δzσ/δzσ . Axial and radial symmetry lets us set z̄↑ ≡ z̄ = −z̄↓
and δz↑ = δz↓ ≡ δz. Using Eq. (6.6) in (6.4) and (6.5) gives the coupled nonlinear integro-
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Figure 6.2: Time dependence of the center-of-mass positions z̄σ of the two spin clouds at
unitarity for an initial separation z̄↑(t = 0) = Rz, z̄↓(t = 0) = −Rz using the upper branch
energy functional and damping γ̃ = 1. Red (upper) and blue (lower) curves denote the
different spin species.

differential equations

(
d2

dt2
+ ω2

z

)
z̄(t) = − 1

mN↑

∫
d3r

∂E
∂n↑

∂n↑
∂z̄
− 〈γv↑〉↑, (6.7)

and
(
d2

dt2
+ ω2

z

)
δz(t) = − 8

mN↑

∫
d3r

∂E
∂n↑

∂n↑
∂δz
− 8

δz
〈(z − z̄(t))γv↑〉↑. (6.8)

As a simple approximation to the counterflow damping [100, 101] at unitarity, we choose

γ = γ̃
√
ǫF↑ǫF↓, (6.9)

where the dimensionless γ̃ is of order unity and ǫFσ(r) = (6π2nσ(r, t))
2/3/2m is the local

Fermi energy of the σ-component. This form of γ ensures that counterflow damping only

occurs where the two spin species overlap.

6.1.2 Energy Functional

To solve these equations, we now need to specify the energy functional E [nσ] relevant for

dynamics on the time scale τ2 ≪ t≪ τ3. The ground state (“lower branch” of the Feshbach

resonance) for as > 0 must necessarily involve bound pairs, but since t≪ τ3, the three-body

processes required for the system to relax to this state have not yet occurred. However,

for τ2 ≪ t, the system develops short-range, two-body correlations characteristic of the

metastable “upper branch” state, which was studied theoretically in Refs. [36, 37, 103],

motivated by an earlier experiment [35]. The notion of the upper branch comes from the
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two-body problem (either in a finite box or in a harmonic potential), where it is completely

well-defined for all values of as, positive or negative. The two-body wavefunction in the

upper branch is a scattering state with a single node that makes it orthogonal to the ground

state (lower branch) wavefunction. Generalizing to the many-body case [36, 37], we assume

that the total energy is most sensitive to these short-range correlations. The conditions

that must be satisfied are [36]:

(1) The many-body wavefunction includes, apart from the nodes introduced by the Pauli

principle, one additional node for any pair of fermions with opposite spin.

(2) The wavefunction should reduce, in the limit of the two-body problem, to that of the

scattering states with one node in the relative wavefunction.

(3) The energy of the system must be larger than that of the non-interacting Fermi gas, and

it should reduce to the perturbative result in the weakly interacting regime 0 < kFas ≪ 1.

We emphasize that orthogonality with the many-body ground state (of the BEC-BCS

crossover) is not sufficient to enforce the upper branch.

We take the many-body wavefunction in the upper branch to be of the Jastrow-Slater

form

Ψ =
[∏

i,j

f(|ri↑ − rj↓|)
]
ΦS({ri↑})ΦS({rj↓}), (6.10)

where ΦS({riσ})’s are Slater determinants for spin σ fermions and the Jastrow factor f(r)

describes the short-range correlations between fermions. The effective repulsion between

between up and down spins in the upper branch is crucially related to the node in f(r), in

contrast to the node-less Jastrow factor for the lower branch. For small as > 0, the node

occurs at as, with f(r) ∼ (1 − as/r) similar to the two-body problem. For larger as, the

position of the node saturates [36] to ∼ 1/kF , the only length scale at unitarity. The main

result of the QMC studies [36, 37] of the upper-branch wavefunction, Eq. (6.10) is that the

system undergoes phase separation when interactions are sufficiently strong, kFas > 1. We

prefer to call this phase separation, rather than ferromagnetism, since both N↑ and N↓ are

conserved and there is neither broken spin-rotational nor broken time-reversal symmetry.

We need E [nσ] for arbitrary polarization, which has not been studied by QMC. We use

a simple approximation, the LOCV method [104, 105], which has been used for the upper

branch thermodynamics [106] and is in close agreement with QMC [36, 37]. Hydrodynamics

requires T > 0.1ǫF [96, 97] however, for simplicity, we use the zero temperature LOCV

energy functional to study the dynamics. We expect that it will qualitatively describe the

physics at low temperatures. The energy, then, of the Jastrow-Slater state is given by

E =
3

5
ǫFn+

n2

4

∫
d3rf∗(r)

[
−∇

2

m
+ v(r)

]
f(r), (6.11)
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where v(r) is the short-range two-body potential, n = n↑ + n↓ is the total density, and

ǫF = (3π2n)/2m is the Fermi energy. The effect of a zero-range contact potential may be

written in terms of the Bethe-Peierls boundary condition limr→0(rf(r))′/(rf(r)) = −1/as.

In addition, within LOCV, the Jastrow function f(r) satisfies the following conditions:

f(r ≥ d) = 1 and f ′(d) = 0. The “healing length” d in turn is defined so that

2πn

∫ d

0
drr2f2(r) = 1. (6.12)

Variation of the energy (6.11) with respect to f(r), while taking into account the constraint

(6.12) by a Lagrange multiplier λ, gives us the “Schrödinger” equation

[
−∇

2

m
+ v(r)

]
f(r) = λf(r). (6.13)

Retaining only the s-wave part of this equation, we find the general solution with one node

is given by

f(r) =
d

r

sin(κ(r − b))
sin(κ(d − b)) , (6.14)

where κ =
√
mλ. We find that f(d) = 1 and f ′(d) = 0 lead to κd = tan(κ(d − b)) and

the Bethe-Peierls boundary condition gives κas = tan κb. With the normalization condition

(6.12), we can solve for κ, d and b for each value of scattering length as. The energy of the

system is given simply by

E =
3

5
ǫFn+

1

2
nλ. (6.15)

In the case of our interest, however, the system is not necessarily balanced, so that

x ≡ n↓/n↑ need not be unity. We have to extend the LOCV calculation to the spin-

imbalanced case in which the Slater determinants will have different sizes. We find the

energy of the system is given by

E =
3

5
ǫF↑n↑

(
1 + x

5

3

)
+ n↑n↓

∫
d3rf∗(r)

[
−∇

2

m
+ v(r)

]
f(r). (6.16)

Now, in general, there is no unique way to enforce the normalization conditions as in (6.12).

A natural extension is to use both normalizations

4π(n − nσ)
∫ dσ

0
drr2f2

σ(r) = 1, (6.17)

which introduces two healing lengths, d↑ and d↓. Accordingly, we shall introduce two
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Figure 6.3: The upper branch energy functional obtained from lowest order constraint
variational method. (a), energy as a function of the polarization P for various values of
kFas as indicated in the figure. (b), energy as a function of the interaction parameter kFas
for various values of polarization P as indicated in the figure. (c), phase diagram of the
interacting two-component Fermi gases. The two vertical red dashed lines indicates the
separation between three phases. For 1/(kF as) > 1.124, the system is in the Fermi liquid
(FL) phase. For 1.124 > 1/(kF as) > 0.91, the system is in the partially polarized phase
(PP) and for 1/(kF as) < 0.91, the system is fully polarized.

Lagrange multipliers λ↑ and λ↓ and the energy of the system can then be written as

E =
3

5
ǫF↑n↑ +

3

5
ǫF↓n↓ +

1

2
(n↑λ↓ + n↓λ↑). (6.18)

In Fig. 6.3 (a), we show the upper branch energy as a function of polarization P ≡
(1 − x)/(1 + x) for various values of kFas. For small kFas (in fact, kFas < 0.91), the

minimum energy is attained at P = 0. For larger values, kFas ≥ 1.124, the minimum value

is attained at P = 1. For intermediate values of kFas, the minimum value occurs at a value

of 0 < Pc < 1. In Fig. 6.3 (b), we show the upper branch energy as a function of 1/kF as

for various values of the polarization P . Note that for P = 1, i.e., completely polarized,

the energy is completely flat, since there is no interaction between the polarized fermions.

In Fig. 6.3 (c), we show the phase diagram of the system as obtained from LOCV. For

1/(kF as) > 1.124, the system is a homogeneous mixture of the two hyperfine-Zeeman states.

We call this a Fermi liquid (FL) state. For 1.124 > 1/(kF as) > 0.91, the system is in the

partially polarized phase (PP). Here the transition as predicted by the LOCV method is

second order and accompanied by a divergent spin susceptibility [106]. Note that the value

of 1/(kF as) at the transition is very close to that predicted by QMC calculations [36, 37]

and compares favorably with the calculation in Ref. [107]. Lastly, for 1/(kF as) < 0.91, the

system is a fully polarized, non-interacting Fermi gas.
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Figure 6.4: (Color online) Time dependence of the center-of-mass positions z̄σ of the two
spin clouds for kF (0)as = 2.

6.2 Dynamics at unitarity

We solve Eq. (6.7) and Eq. (6.8), using (6.18) with densities nσ(r, t) given by Eq. (6.6). For

the damping, we use Eq. (6.9) with γ̃ = 1 and an ǫF corresponding to N = 7.5× 105 atoms

and a trap anisotropy ω⊥ = 10ωz. As our initial conditions, we take the two clouds to be

displaced from the trap center by the axial TF radius, z̄↑(t = 0) = Rz, z̄↓(t = 0) = −Rz
with initial axial width δz(0) = Rz equal to its equilibrium value.

The results at unitarity are shown in Fig. 6.2. The two clouds bounce off each other

for several oscillations due to the repulsive nature of the upper branch functional. The

period of the initial bounce is roughly 0.56(2π/ωz), slightly less than the experimental

value 0.61(2π/ωz) [6]. We attribute this difference to the simple TF ansatz (6.6) used

to model the dynamics. The bounce persists for several cycles in spite of the very large

damping (ǫ0F /ωz ≫ 1), because the overlap between the two clouds is quite small. Once

the oscillation is damped out, the two clouds remain segregated, with a final (z̄↑ − z̄↓)

approximately 0.4 times the initial separation. This intermediate time behavior reflects the

tendency to phase segregate in the upper branch at unitarity. The long time behavior, not

described here, will be dominated by spin diffusion and three-body processes.

While the gas behaves hydrodynamically in the overlap region, most of the atoms in the

opposing clouds never come into contact with each other (as a result of the bounce) and are

essentially non-interacting. Nonetheless, the crucial physics that produces the bounce arises

in the overlap region where hydrodynamics is valid. Moreover, due to Pauli repulsion, the

motion of the gas in the non-overlap regions is essentially a rigid-body dipole oscillation,

insensitive to the choice of a collisional (hydrodynamic) or collisionless theory.
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Figure 6.5: (Color online) Time dependence of the center-of-mass positions z̄σ of the two
spin clouds for kF (0)as = 0.5.

6.3 Collisional dynamics away from unitarity

Away from unitarity, it may be harder to reach the hydrodynamic regime. If ωz is suffi-

ciently small, however, it will always be the case that the dynamics in this direction are

hydrodynamic. The greater challenge at finite as > 0 is that τ3 may not be much greater

than τ2. As as decreases from unitarity, one expects that τ3 reaches a minimum for kFas ∼ 1

and then becomes large again [28], with τ3 ∼ (na3
s)

−2ǫ−1
F for kFas ≪ 1. In contrast, the

cross-section a2
s determines τ2 ∼ (na3

s)
−2/3ǫ−1

F . Hence, for small kFas, again τ3 ≫ τ2.

However, when kFas ∼ 1, it is conceivable that τ3 ∼ τ2.
With these caveats in mind, we solve our hydrodynamic equations away from unitarity

to better understand the relationship between the intermediate-time dynamics, after the

bounce is damped out, and the upper branch equation of state: Fermi liquid (kFas < 1)

versus phase separated (kFas > 1). The solutions of (6.7) and (6.8) at kF (0)as = 2 and 0.5

(using the same initial conditions and ǫ0F as in Fig. 6.2), are shown in Figs. 6.4 and 6.5. Here

kF (0) =
√

2mǫF is the Fermi wavevector of an ideal gas at the trap center. To simplify the

numerical work, we use the mean-field energy functional E = 4πasn↑n↓/m in place of the

LOCV result. In addition, we use a microscopic expression for the damping, obtained from

a relaxation-time approximation to kinetic theory (see Eq. (20) in Ref. [100]). Symmetrizing

in the spin components, as in (6.9), we write γ = (4/9π)(
√
kF↑kF↓as)

2√ǫF↑ǫF↓.

Even at small kF (0)as, the clouds exhibit a weak bounce due to compressional recoil,

which damps out very quickly. We see, however, a clear difference between Fig. 6.4 (kFas >

1), where the clouds remain separated, and Fig. 6.5 (kFas < 1), where they merge. The

details of the short-time collision dynamics at small kFas may well be better modeled by

a kinetic theory, rather than hydrodynamics. The longer time behavior – with a separated

or mixed equilibrium state – is a robust conclusion of our theory, however, as long as the
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atoms are predominantly in the upper branch. This behavior is qualitatively similar to the

experimental results shown in Supplementary Fig. 1 of Ref. [6]; see below.

6.4 Discussion

We now compare our results with the experiments. As seen from Fig. 6.2, our results at

unitarity – the short-time bounce, the damping of the oscillations and the separation of the

clouds at intermediate times – are all in very good agreement with Ref. [6].

Away from unitarity, at finite values of kFas > 0, our results are qualitatively similar to

the experimental data shown in Supplementary Fig. 1 of Ref. [6]. For time scales τ2, ω
−1
z ≪

t ≪ τ3, say, t = 200 ms, the system remains phase segregated for large kFas [Figs. 1(f,g)],

while completely mixed for small kFas [Figs. 1(c,d,e)]. In fact, a very rough estimate for

the critical kFas can be read off from the experimental data: It is between 0.26 [Fig. 1(e)]

and 1.2 [Fig. 1(f)]. Our theory is not applicable to the long-time merging of clouds that are

segregated at intermediate times. This could involve three-body collisions that relax the

system to the lower branch and spin diffusion, which is always present at finite temperatures.

Finally, we comment on the experiment of Jo et al. [35] in which a spin-balanced

mixture, initially at a small positive as, is swept close to resonance, thereby generating

strong interactions in the upper branch. It appears, however, that rapid three-body losses

render it unstable to the lower branch within a very short time interval (∼ 5ms) [38, 99]

and phase separated ferromagnetic domains are not observed.

In contrast, the specific initial configuration in the colliding cloud experiment [6] proves

to be crucial for the (meta)stability of the upper branch. In this case, three-body loss is

limited spatially within the overlap region between up and down spins at the trap center,

and temporally to a fraction of the oscillation period. As such, the effective τ3 is greatly

enhanced and one can study the metastable upper branch.

The experimental observation of the bounce followed by the two clouds sitting side-by-

side for as long as ∼ 100ms validates our assumption of a long τ3. If τ3 had been very

short, the system would have rapidly relaxed into the lower branch. We cannot see how

a lower-branch energy functional, with attractive interactions forming bound pairs, could

lead to the observed dynamics.

6.5 Conclusions

We conclude by summarizing our physical picture for the colliding spin-polarized clouds.

Our main hypothesis is that fast two-body collisions (τ2) establish local thermal equilibrium

in the overlap region of the clouds, while three-body processes (τ3) have not driven the

system to the lower branch yet. The hydrodynamic time evolution for τ2 ≪ t ≪ τ3 is

then governed by a repulsive energy functional corresponding to the upper branch of the
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Feshbach resonance. The effective repulsion on the upper branch leads to the bounce, and

also to the qualitative difference between the segregation of the clouds for kFas > 1 and

their merging for kFas < 1, which reflects the phase transition in the upper branch equation

of state [36, 37].
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