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Abstract

As InfiniBand (IB) clusters grow in size and scale, predicting the behavior of the

IB network in terms of link usage and performance becomes an increasingly challeng-

ing task. The IB specification provides a detailed subnet management infrastructure

to handle various aspects of the network. Open Subnet Manager (OpenSM) is an

implementation of this specification and is available as a part of the Open Fabrics

software package. Although many studies have identified the various subnet man-

agement phases, there exist no standard benchmarks that quantitatively identify the

time spent in these phases and analyze the functional intricacies of OpenSM. There

currently exists no open source tool that allows users to dynamically analyze and

visualize the communication pattern and link usage on the IB network.

In this thesis , we design a set of micro-benchmarks using OpenSM to study the

various phases of subnet management at a finer granularity. We design and develop a

scalable InfiniBand Network Analysis and Monitoring tool - INAM. INAM monitors

IB clusters in real time by querying various subnet management entities in the net-

work. It is also capable of capturing the pattern of traffic on a subset of links in the

network. This allows users to visualize and analyze the network communication char-

acteristics of a job in a high performance computing environment. We demonstrate

the effectiveness of INAM using a wide set of micro benchmarks and applications.
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Chapter 1: INTRODUCTION

Across various enterprise and scientific domains, users are constantly looking to

push the envelope of achievable performance. The need to achieve high resolution

results with smaller turn around times has been driving the evolution of enterprise

and supercomputing systems over the last decade. Interconnection networks have also

rapidly evolved to offer low latencies and high bandwidths to meet the communication

requirements of distributed computing applications. InfiniBand has emerged as a

popular high performance network interconnect and is being increasingly used to

deploy some of the top supercomputing installations around the world. According to

the Top500 [25] ratings of supercomputers done in June’11, 41.20% of the top 500

most powerful supercomputers in the world are based on the InfiniBand interconnects.

Recently, InfiniBand has also started to make in-roads into the world of enterprise

computing.

1.1 InfiniBand - An Overview

InfiniBand Architecture (IBA) [12] defines a switched network fabric for inter-

connecting processing nodes and I/O nodes, using a queue-based model. The I/O

devices and compute nodes are connected to the switch fabric using one or more

channel adapters (CA). Every fabric may consist of one or more subnets which are
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interconnected by routers. Each subnet is managed in an autonomous way. Infini-

Band specifications do not enforce the usage of any specific network topology or

routing algorithm. IB has multiple transport services including Reliable Connection

(RC) and Unreliable Datagram (UD), and supports two types of communication

semantics: Channel Semantics (Send-Receive communication) over RC and UD, and

Memory Semantics (Remote Direct Memory Access - RDMA communication) over

RC. Both semantics can perform zero-copy data transfers, i.e, the data can directly

be transferred from the application source buffers to the destination buffers without

additional host level memory copies. IB also proposes link layer Virtual Lanes (VL)

that allows the physical link to be split into several virtual links, each with their

specific buffers and flow control mechanisms. This possibility allows the creation of

virtual networks over the physical topology. However, current generation InfiniBand

interfaces do not offer performance counters for different virtual lanes.

1.2 OFED

OFED, short for OpenFabrics Enterprise Distribution, is an open source software

for RDMA and kernel bypass applications. It is needed by the HPC community

for applications which need low latency and high efficiency and fast I/O. A detailed

overview of OFED can be found in [21]. OFED provides performance monitoring

utilities which present the port counters and subnet management attributes for all

the device ports within the subnet. Some of the attributes which can be obtained

from these utilities are shown in Table 1.1.

IBA Architecture specifications define how the various network management ac-

tivities should be undertaken and describe the structure of the control packets to be

2



Utility Attribute Description

perfquery XmtData The number of 32 bit data words
sent out through that port since last reset

perfquery RcvData The number of 32 bit data words
received through that port since last reset

perfquery XmtWait The number of units of time a
packet waits to be transmitted from a port

smpquery LinkActiveSpeed The current speed of a link
smpquery NeighborMTU Active maximum transmission

unit enabled on this port for transmit

Table 1.1: Sample of attributes provided by utilities inside OFED

used to exchange information among the entities to maintain compatibility between

the various vendor implementations. It specifies a few management classes which

coordinate to create a subnet management scheme which monitors the subnet and

takes measures to conform to any changes in the topology. OFED includes such an

InfiniBand subnet manager called OpenSM which configures an InfiniBand fabric. It

comprises of the subnet manager (SM) which scans the fabric, initiates the subnet

and then monitors it. The subnet management agents (SMA), which are similar to

daemons, are deployed on every device port of the subnet to monitor their respective

hosts. All management traffic including the communication between the SMAs and

the SM is done using subnet management packets (SMP). They use UD queue pairs

for their communication.The subnet management traffic uses the Virtual Lane (VL)

15 rather then cluttering the normal links [20]. IB specifications enforce the usage of

VL 15 for subnet management traffic. The remaining VLs from 1 to 14 are available

for general purpose traffic and the functionality of VL 15 is independent of the general

subnet traffic. A detailed account of the functionalities and working of OpenSM is

described in chapter 2.
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1.3 Network Topologies and Routing Schemes

The classic Ethernet architectures use hierarchical switched network, whereas In-

finiBand uses a switched fabric topology. The prominent network topologies used in

contemporary scenarios include, but are not limited to, Fat-Tree topology [2], Mesh

Topology and 3D-Torus topology [28]. All communications within these networks

either begin or end at a Channel Adapter (CA). Even after the topology is set up

and every device on the subnet is connected, at this stage there are no routing or

forwarding tables set up on these devices. Thus any communication among the var-

ious subnet devices is not possible since the subnet is not initiated. InfiniBand also

supports static routing. Thus, any changes to the topology have to be reflected in the

forwarding tables which warrants the need for a subnet manager. The functionality

of an SM is to discover the network, configure the devices with the forwarding tables

and then monitor the subnet for any changes.

OpenSM supports several routing engines for the purpose of configuring these

networks to enable the communication among various components of the subnet. A

few prominent ones are explained below [15]. The user has the option of specifying

which routing algorithm to use.

1.3.1 Min Hop Algorithm

In the default case, where the user fails to provide the routing algorithm to be

used by OpenSM for the purpose of network configuration, MinHop routing scheme is

invoked. In the initial phase, a MinHop matrix is created and populated with values

which signify the number of hops required by each port to get to each Local Identifier

(LID). After the MinHop matrix table is populated, the whole subnet is traversed
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switch after switch. At every switch, the decision regarding which outgoing port to

be used for each of the neighboring LIDs of that switch is taken. Since, there is a

chance of multiple outgoing ports having the same number of hops to a LID, each port

keeps track of the number of LIDs reachable from it using a counter. This approach

tries to balance the link subscription which defines the number of routes per link at

a switch level [10].

1.3.2 UPDN Unicast Routing Algorithm

Since the approach followed by MinHop routing scheme for the purpose of equal-

izing the link subscription at the switch level causes circular dependencies among

the switch buffers which might in turn lead to a deadlock in the subnet, the UPDN

algorithm restricts the paths which can be taken to reach a particular LID and thus

avoids the chances of a deadlock occurring within the subnet. Initially the algorithm

tries to detect the root nodes automatically by conducting a statistical analysis of

the number of hops from a particular CA to a switch. Here zero or more root nodes

may be found. If no root nodes are found, OpenSM falls back to MinHop. All the

root nodes are ranked zero and a then a Binary First Search (BFS) is applied to

rank the consequently traversed switches incrementally. At the culmination of the

ranking phase, another BFS is started from each device on the subnet to configure

the forwarding tables on the subsequently traversed switches.

1.3.3 LASH Unicast Routing Algorithm

LASH stands for Layered Shortest Path Routing. A data structure consisting the

shortest paths among all the source and destination pairs is created. Using a channel

dependency graph to avoid the occurrence of deadlocks, LASH assigns the routes to
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various virtual lanes (VL). If adding a route can cause a potential deadlock, then

the route is added to the next VL. Finally the number of routes per virtual lane are

arranged and balanced such that the number of routes per lane average out. LASH is

a topology independent scheme and performs well in irregular topologies and is very

flexible. The number of VLs used quantifies the optimality of the implementation of

LASH. The distribution of traffic is even and is spread out through the entire network.

[23] provides more details about LASH.

1.3.4 DOR Unicast Routing Algorithm

Dimension order routing algorithm is optimal for a k-ary n-cube topology. Each

port within the subnet must be cabled to represent a dimension of the k-ary n-cube

subnet. It is based on the MinHop routing scheme and thus uses shortest paths from

source to destination. To take advantage of the symmetry in a mesh or hypercube

topology, DOR routes packets using the shortest path in the order of lowest dimension

first. [16] describes DOR at a greater detail and provides a fix to the problem of

circular buffer dependency with a new approach.

1.3.5 Modular Routing Engine

In order to facilitate the use of novel routing practices and schemes, OpenSM

provides the Modular routing engine structure. By converting the routing scheme

into a static routing file whose format is dictated by OpenSM, this structure allows

OpenSM to use the new routing module. This support is not available for multicast

call backs yet. This functionality loads the (LID forwarding tables) LFTs or the

MinHop matrices as in case of MinHop routing scheme as per the routing file provided

by the user.
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Apart from the above mentioned routing schemes, OpenSM also introduced DnUp

routing scheme which is a minor variation of UpDn scheme but is more adapted to the

subnets in which up links and CA nodes are connected to the same switch nodes. An-

other scheme introduced recently is the Torus-2QoS Unicast routing scheme. OpenSM

documentation [15] describes the above mentioned routing schemes at a finer detail.

1.4 Motivation

The goal of this work is to analyze and monitor an InfiniBand Subnet. A major

part of this depends on tracking the performance counters and subnet management

attributes such as the number of packets sent, number of packets receives and the

number of packets dropped etc. The best way to obtain these values is to query

the subnet manager for them as its the job of the subnet manager to keep track of

the performance counters and subnet management attributes of all the devices in the

subnet. This process requires some level of interaction with the InfiniBand subnet

manager (OpenSM) and an understanding of how OpenSM monitors and obtains this

data. Since there exist no detailed studies regarding this scheme, we needed to do

an in depth analysis of the working and functionalities of OpenSM. The benchmarks

designed in this work can be used to validate the performance of OpenSM using

various routing schemes. This could aid in decisions such as choosing the optimal

routing scheme for a particular cluster.

The main motivation behind developing a scalable InfiniBand Network Analysis

and Monitoring Tool (INAM) was to provide the user with a seamless and real time

view of the subnet as a whole. As INAM shows real time statistics of all the counters

on a subnet device, the user can determine the cause of a link, node or port failure

7



using information such as the amount of traffic flowing through the device at the time

of failure, the utilization of a link etc. Since INAM monitors and reports the status of

the subnet at every moment, it can be configured to notify the system administrator

regarding any changes in the subnet such as a node, link or port going down, topology

changes etc. such that an appropriate action can be taken without delay. While

designing topology aware algorithms, the visualization of the communication pattern

provided by INAM could help in verifying the correctness of the algorithms. The

utility of INAM includes but is not limited to the above mentioned functionalities

and thus would be of formidable help in various real world scenarios.

1.5 Problem Statement

1.5.1 Analysis and Evaluation of OpenSM

There have been several attempts to evaluate the InfiniBand subnet management

mechanism in the past [5] [6]. But these studies were based on simulations and

the networks used were based on irregular topologies. [27] models the subnet man-

agement mechanism for Fat Tree InfiniBand networks using OpenSM. In the above

mentioned study, Vishnu et al. also present the time taken by OpenSM in various

subnet management phases at a broad level on a small scale InfiniBand Cluster. As

the contemporary InfiniBand clusters have grown in size and scale, there exist no

current studies which quantify the performance of OpenSM at a larger scale. Further

more, the behavior of OpenSM with various configuration options, using different

routing schemes, under a varied set of scenarios, at a finer granularity, is unclear.

Thus the main objective is to understand the functionality, working and behavior of

OpenSM in the current InfiniBand cluster scenario.
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Approach Followed

In this thesis, we take up the challenge of designing a set of micro benchmarks

which can measure the time taken by OpenSM in the various phases of configuring

the fabric. We compare the amount of time taken by OpenSM in each phase when

the system size is varied (number of nodes in the cluster). We compare this for

the five algorithms supported by OpenSM (MinHop, UPDN, FTREE, LASH and

DOR). We also compare the total time taken by OpenSM to configure the subnet

by varying the system size and the routing algorithm. Experiments were conducted

on the behavior of OpenSM when multiple cards were active on the nodes. We also

conduct experiments on whether the number of nodes attached to a leaf switch affect

the performance of OpenSM. We discuss how the minimum number of hops between

any two nodes varies with the routing algorithm and the topology of the network.

Furthermore, we see how OpenSM behaves in terms of reconfiguration time when a

failure occurs in the subnet. We compare the reconfiguration time in various scenarios

by varying the system size, the routing algorithm used and the number of HCAs active

per node. We also discuss the experiments we conducted to understand the impact

of the measures taken by OpenSM, when failures occur, in the subnet on any ongoing

parallel application.

1.5.2 Network Monitoring and Analysis of an IB Network

Different factors can affect the performance of applications utilizing IB clusters.

One of these factors is the routing of packets / messages. Due to static routing, it

is important to ensure that the routing table is correctly programmed. Hoefler et al.

showed, in [9], the possible degradation in performance if multiple messages traverse
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the same link at the same time. Unfortunately, there do not exist any open-source

tools that can provide information such as the communication matrix of a given target

application or the link usage in the various links in the network, in a user friendly

way.

Most of the contemporary network monitoring tools for IB clusters have an over-

head attached to them which is caused by the execution of their respective daemons

which need to run on every monitored device on the subnet. The purpose of these

daemons is to gather relevant data from their respective hosts and transmit it to a

central daemon manager which renders this information to the user. Furthermore,

the task of profiling an application at the IB level is difficult considering the issue

that most of the network monitoring tools are not highly responsive to the events

occurring on the network. For example, to reduce the overhead caused by constant

gathering of information at the node by the daemons, a common solution is to gather

the information at some time intervals which could be anywhere between 30 seconds

to 5 minutes. The interval at which the information is gathered is refereed to as the

sampling frequency. The sampling frequency is directly proportional to the amount of

data transferred between the daemons and the daemon manager and thus is directly

proportional to the overhead created by the daemons. This also increases the amount

of processing done by the daemons at their respective nodes which also leads to an

overhead. All these factors cause a trade off with the responsiveness of the network

monitoring tool. This method has an additional disadvantage in that, it does not

allow us to monitor network devices such as switches and routers where we will not

be able to launch user specified daemon processes.
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As IB clusters grow in size and scale, it becomes critical to understand the be-

havior of the InfiniBand network fabric at scale. While the Ethernet ecosystem has

a wide variety of matured tools to monitor, analyze and visualize various elements

of the Ethernet network, the InfiniBand network management tools are still in their

infancy. To the best of our knowledge, none of the available open source IB network

management tools allow users to visualize and analyze the communication pattern

and link usage in an IB network.

These lead us to the following broad challenge - Can a low overhead network mon-

itoring tool be designed for IB clusters that is capable of depicting the communication

matrix of target applications and the link usage of various links in the InfiniBand

network?

Approach Followed

In this thesis, we address this challenge by designing a scalable InfiniBand Network

Analysis and Monitoring tool - INAM. INAM monitors IB clusters in real time and

queries the various subnet management entities in the IB network to gather the various

performance counters specified by the IB standard. We provide an easy to use web

interface to visualize the performance counters and subnet management attributes

of the entire cluster or a subset of it on the fly. It is also capable of capturing the

communication characteristics of a subset of links in the network, thereby allowing

users to visualize and analyze the network communication characteristics of a job

in a high performance computing environment. Our experimental results show that

INAM is able to accurately visualize the link usage within a network as well as the

communication pattern of target applications.

11



1.6 Organization of Thesis

The remainder of this thesis is organized as follows. In chapter 2, we describe

the functionality of OpenSM and dig deeper into its working and the various phases

it follows in the course of configuring the fabric. It gives a brief overview of the

InfiniBand subnet management infrastructure and provides a detailed account of the

components and the intricate functionalities of OpenSM. Chapter 3 focuses on how the

set of micro benchmarks, which are designed to quantify the performance of OpenSM,

are designed and how they measure the time spent by OpenSM in the various subnet

management phases. We discuss how we go about measuring the reconfiguration time

taken by OpenSM in case of failures. In Chapter 4 we present the design of INAM.

We evaluate and analyze the working of INAM in various scenarios and describe

the related tools which exist and discuss their advantages and disadvantages when

compared to INAM. Finally we summarize our conclusions and possible future work

in chapter 5.
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Chapter 2: BACKGROUND

2.1 Introduction to OpenSM

OpenSM is an implementation of the InfiniBand Subnet Manager and Administra-

tion. OpenSM implements an InfiniBand compliant Subnet Manager (SM) according

to the InfiniBand Architecture Specification chapters: Management Model (13), Sub-

net Management (14), and Subnet Administration (15) [12]. It runs on top of Open

Fabrics verbs layer and performs the tasks required by the InfiniBand specification

for bringing InfiniBand network to operational state. At least one OpenSM entity

is required per InfiniBand subnet to initialize the InfiniBand hardware. OpenSM

can by default attach itself to the first available port or it can display the available

ports and ask the user to choose among those ports or can take the port specified

by the user. It then configures the IB fabric connected to that port only and ignores

all the other fabrics connected to other ports. The Subnet Manager (SM), the Sub-

net Management Agent (SMA), the Subnet Management Database (SMDB) and the

Subnet Administration (SA) are the main components involved in InfiniBand subnet

management. Section 2.2 gives a detailed overview of each of the above mentioned

components.
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OpenSM uses management datagrams (MAD) which are also known as subnet

management packets to interact with the various components involved in the subnet

management phase. These SMPs comprise a critical component in the functionality

of OpenSM as they play a part in every aspect of the network as listed below [1].

1. network discovery monitoring

2. configuration of ports and I/O devices

3. responding to queries posed to the SA by other subnet management components

4. performance and baseboard management

OpenSM passes through certain phases as a part of its functionality of configuring

the subnet fabric. The default phases comprise of scanning the IB fabric, initializing

it and then sweeping the fabric occasionally for any changes in the topology. There

are certain parameters associated with these phases that can be tweaked (for example

the time between the sweep operations) as per the requirement of the situation. Since

the default installation of OpenSM performs well for a system size of up to a couple

of hundred nodes, the configuration file has various options which can be varied to

tune OpenSM as per the requirements of the user. A few relevant options which we

use as a part of our experiments are mentioned here. A complete list of these options

can be found at [15].

1. -c, –create-config file name – A template is created by OpenSM by dumping all

its configuration options into this file.

2. -r, –reassign lids – All end node LIDs are reassigned. If not specified, the

previously existing LID assignments are preserved.
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3. -R, –routing engine Routing engine names – The default routing engine used is

Min Hop algorithm. There are other routing engines which are supported by

OpenSM. They are MinHop, UPDN, file, FTREE, LASH and DOR.

4. -A, –ucast cache – Routing recalculation is avoided by activating the unicast

routing cache when no topology change is detected or in cases where the change

does not need the recalculation of the routes (for example if a node reboots

we need not compute the routes when the node goes down and when the node

reboots again).

5. -o, –once – This option causes OpenSM to configure the subnet once, then exit.

6. -s, –sweep interval value – The number of seconds between subnet sweeps. 0

disables sweeping. The default interval is 10 seconds.

7. -t, –timeout value – Specifies milliseconds used for transaction timeouts. Default

timeout is 200 milliseconds.

8. -i, -ignore-guids equalize-ignore-guids-file – This is the option where the men-

tioned guids are ignored for link load equalization algorithm.

OpenSM also provides a test program called osmtest for validating the InfiniBand

Subnet Manager and Subnet Administrator. The osmtest suite can create an inven-

tory file of all available nodes, ports, and Path Records, including all their fields

and then compare it to the previously saved records to check if there have been any

changes to the fabric [22]. It has the following test flows.

1. Multicast Compliance test
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2. Event Forwarding test

3. Service Record registration test

4. RMPP stress test

5. Small SA Queries stress test

2.2 Components and Working of OpenSM

OpenSM delegates its functionalities in a hierarchical manner. The important

components are the SM, SMA, SMP and Subnet Management Interface (SMI). Their

hierarchy is mentioned in Figure 2.1. The SM plays a key role in the network discovery

process and it is involved in the monitoring phase of the subnet where the subnet is

monitored for any changes in topology. The SM has all the data related to the fabric

configuration in the SMDB. The SA is responsible for responding to the queries on

SMDB.

The SM is typically a software entity running on a compute node within the

subnet, though it is capable of residing within any device on the subnet. On a switch

the SM can reside on the management port which is known as the port 0 of the

switch. The SM follows the following phases in the process of configuring the subnet.

Initially it focuses on discovering and maintaining the subnet it manages. In the next

phase, it assigns the Subnet IDs and LIDs to all the ports in the subnet. Finally

it calibrates the route to be taken between any two nodes in conjunction with the

routing algorithm being used and then periodically checks the subnet for any changes.

An SMA resides on every device populating the subnet irrespective of whether it

is a CA, a router or a switch. It monitors the status of the device it resides on and

16



Figure 2.1: SM, SMA and SMI
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reports any and all changes to the SM by using SMPs. SMPs are control packets

and they use the unreliable datagram service. All communications between the SM

and the SMAs are in the form of these SMPs which use the management virtual lane

(VL15) so as not to interfere with the ongoing cluster traffic [6]. The SMI is a UD

Queue Pair. As shown in Figure 2.1, an SMI is associated with each port on a CA.

On the other hand, if the device is a switch, the SMI only exists on the port 0 of the

switch which is the management port. Its sole purpose is to assist the SM and the

SMAs within CAs, routers, and switches to send and receive SMPs [12].

OpenSM attaches to a specific IB port on the local machine and configures only

the fabric connected to it. Initially when OpenSM is started, none of the devices

know their LIDs and none of the switches have their forwarding tables set up. The

SM then probes for network devices populating that subnet. It exchanges control

packets with the SMAs present in every subnet device. The SMPs can be either

LID routed (LSMP) or Direct routed (DSMP). LSMPs are routed by switches by

using the forwarding table by doing a look up. DSMPs have to be processed at each

intermediate subnet manager interface (SMI) as they have the information about the

output port they need to be forwarded to at each hop. These are used during subnet

discovery before the forwarding tables at the switches. No processing at the SMI is

required for an LSMP. The data packets take the route taken by the LSMPs after the

DSMPs are used for discovering the topology and updating the switch routing tables.

The header of the SMP states the operation the packet needs to do. The operations

involved in subnet management are as follows.

1. Get: The Get operation is used to get the information about the CA, Switch

or a Router port
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2. Set: The Set operation is used by the subnet manager to set the attributes of

a port at the end of the subnet discovery

3. GetResp: The GetResp operation is the response to the Get SMP of a subnet

manager

4. Trap: A trap message is sent if a change is detected in the topology during the

sweep phase by the SMA. The SMA sends a trap message if its local node’s

state has changed

5. TrapRepress: SMA sends trap messages to the SM until it receives a TrapRe-

press from the SM [27]

There may be many instances of SMs running on the same subnet. Out of these

one of them is the master SM and the others are standby SMs or slave SMs. The

standby SMs periodically poll on the master SM and wait for a successful response.

In case of failure of the Master SM, one of the standby SMs becomes the master SM.

The Master SM keeps a counter which is updated every time the SM is involved in a

subnet management event. The slave SMs keep polling this counter periodically and

if they detect that the counter has not changed in a particular time interval, then the

next slave SM with the highest priority takes over.

2.3 Phases in OpenSM

The initial phase for OpenSM while configuring the fabric is the topology discov-

ery phase where the SM sends direct routed SMPs to every port and processes the

responses. A heavy sweep is done initially to discover all the nodes and switches in

the subnet. Alternatively a new heavy sweep can also be triggered when the OpenSM
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process receives a HUP signal, which is sent out if a trap was received or a topology

change was found.

In SM and subnet LID configuration phase, LIDs are assigned to all the ports in

the subnet by the SM. In the path computation phase, valid paths between each pair

of end nodes are computed as per the routing algorithm being invoked. In the path

distribution phase, configuring the forwarding table at each switch is done. After the

configuration is done, a light sweep is done to check if there have been any changes

to the subnet. Each of these phases is discussed in detail in the following sections.

2.3.1 Subnet Discovery

OpenSM sends a Get SMP with NodeInfo attribute to get the kind of end node

(Switch, CA or Router) and a Get SMP with PortInfo to get the port attributes. It

sends a Set SMP to set the LIDs and other port attributes. OpenSM provides an

option of Trap based subnet discovery. In order to allow a switch to notify the subnet

manager about any topology changes which may have occurred, SM initializes every

port on the switch, even though it may not have any active connection with a CA.

The algorithm is as follows [5].
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if AttributeID = SwitchInfo then
if SwitchInfo.PortStateChange then

delete the topology database
send a Get(NodeInfo)

endif
elseif AttributeID = NodeInfo then

if sender not visited then
add this node to the topology DB
for each port in sender do

Send a Get(PortInfo)
endfor

endif
elseif AttributeID = PortInfo then

if management port then
send a Set(PortInfo)

endif
if PortInfo.PortState is not DOWN then

add this port to the sender ports list
send a Get(NodeInfo)

endif
endif

A DSMP is used for the subnet discovery process and it’s significant compo-

nents are shown in Figure 2.2. The DSMP also mentions the subnet operation to

be executed. The DrSLID and the DrDLID fields signify the directional source and

destination lids. The Initial and return path array fields keep track of the lids and

ports traversed as the forwarding tables are not yet set at each switch. A special LID

called Permissive LID (PLID) which has the value FFFFh is used for the discovery

process. The hop pointer and hop counter keep track of the current position and

the maximum number of hops allowed, respectively. An example of subnet discovery

process can be drawn from Figure 2.1.

Initially, when the SM starts it is not aware of its current status. The SM on CA-X

queries the host channel adapter (HCA) to obtain ports on that device and then sets

it’s SM bit to 1. An option to select the port to which the SM binds is given to the
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user, otherwise it selects the best available port. Initially, an SMP (SUBN-GET) is

sent out by the SM through the SMA to the port to which it is bound on that device

(ex: Port 1) using the SMI, with the DrSLID and DrDLID set to PLID, the initial

path array set to 0h,1h, the return path array set to 0h,0h and the hop count set to 1

and the hop pointer set to 0. At port1 of CA-X, the return path array is modified as

1h,0h (as the PLID in the DrDLID field indicates that the particular SMP is being

used for discovery process) and is forwarded to the next port connected (In this case,

Port 4 of switch 1).

As, the DrDLID is set to PLID, this packet is internally forwarded to the man-

agement port (port 0) after the return path array is modified as 1h, 3h and the hop

pointer is incremented to 1. The SMI at port 0 of switch1 processes the SMP and

then forwards it to the switch’s SMA. The SMA prepares a response SMP after exe-

cuting a SUBN-GET and includes the attributes of all the 4 ports on that switch in

the response SMP and uses the return path array to send this information to the SM

after verifying if the hop pointer and hop counter are equal. If yes, the SMP cannot

proceed to the next switch in the fabric and has to return to the SM.

The SM stores this information and similarly traverses the rest of the fabric by

incrementing the hop counter. This completes the subnet discovery process. If the

packet is not a DSMP then there is no processing involved at the SMI. IBA spec-

ifies the actions needed to taken by the SM in all possible scenarios which may be

encountered during the discovery phase.
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Figure 2.2: DLID SMP Outline

2.3.2 SM and Subnet LID Configuration

After the fabric is scanned, the SM configures the LIDs on each port traversed

using the SUBN-SET operation. Unique LIDs are assigned to all the ports in the

subnet. This phase is referred to as the SM and subnet LID configuration phase.

All the LIDs are reconfigured every time a heavy sweep occurs as a result of some

changes which were detected in the topology. Since, this process consumes a lot of

time, there is an option which enables us to refrain OpenSM from reconfiguring all

the LIDs every time a heavy sweep is done. For example, if certain number of nodes

are restarted in a subnet and we know in all certainty that the nodes are going to get

back to their previous stable working state, then we can avoid the overhead caused

by reconfiguring all the Subnet LIDs by refraining OpenSM from doing so.

2.3.3 Path Computation

Paths between all pairs of source and destination nodes are calculated. As Infini-

Band specification does not impose any particular routing algorithm or path compu-

tation methodology, OpenSM selects the one with the least number of hops by default

or uses the option provided by the user. In case of a tie in the default case, one of the
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available paths is chosen randomly. Section 1.3 talks about the routing algorithms

supported by OpenSM in detail.

2.3.4 Path Distribution

The forwarding tables on each switch are configured in this phase. The LSMPs

and the data packets then refer to these forwarding tables for traversing the subnet.

OpenSM performs the forwarding table configuration phase once the path computa-

tion phase is complete. This policy is optimal, because during the subnet discovery

phase, nodes are not ready for communication, unless the whole subnet is in ACTIVE

state. When the forwarding tables are being updated, the network is in an unstable

state and thus there is a possibility of a deadlock occurring among the data packets

being transmitted. Hence, typically no data packets are allowed during this phase [4].

After the successful completion of this stage, the subnet is set to ACTIVE state.

After the path distribution phase, the subnet is in ACTIVE state. The SM then

periodically monitors the subnet for any changes. This is called a light sweep. The

interval at which the light sweep is done can be modified as per the user’s requirement.

The default time interval is 10 seconds. If the light sweep detects a change in the

topology, a heavy sweep is triggered. A heavy sweep is essentially the discovery phase.

2.4 Failures

2.4.1 Failure Detection

Failures in a huge subnet constitute of a node, switch or port failures. After a

subnet is configured or after the subnet enters ACTIVE state, periodical light sweeps

are initiated to check for any changes in the topology. On a different note, the

SMAs keep monitoring their respective devices for any change of state. When an
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unexpected event is detected by the SMA, it notifies the particulars of this event to

the SM through a SubnTrap message which is a management datagram (MAD). The

prominent fields in a Trap message are the type of device from which the trap message

originated (Switch, Node etc), the device LID, the trap number and the notice field.

Typical trap messages generated by the SMA have the trap num element in the trap

message set to 128 or 144. These two traps signify two different events in the subnet.

Trap 128 is generated when an SMA detects a change in the link state of at

least one of its ports. This message has the elements of prod type, type, issuer lid

and trap num in its notice attribute. The type field is set to 1 which indicates that

this is a subnet management trap message. The prod type identifies the type of

device generating the trap (switch/CA). The issuer lid specifies the LID of the device

generating the trap message. Trap 144 is generated when a change is detected in

the device/port on which the SM is running. This message has similar attributes as

the Trap 128 message. It is triggered by events such as change in the priority of the

master SM or failure of master SM. When the SMA is not in a position to send out

trap messages, it can optionally store any unconventional events which might be sent

to the SM at a later point of time. Figure 2.3 shows an instance of how failures are

detected by OpenSM.

In Figure 2.3, when a port fails in the leaf node, the switch attached to that node

(Switch 1) detects a change in the link state of one of its ports. The SMA on switch

1 then prepares a trap 128 message to propagate this issue to the SM residing on the

SM node. If one of the ports on switch 1 fail, then switch 2 detects the change in the

link state of one of its ports and generates a trap 128 message. OpenSM does not

differentiate between node, switch or port failures. They are all treated in terms of
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Figure 2.3: Failure Detection

the trap messages as link failures. The location of the failure in the subnet does not

carry any weightage.

2.4.2 Failure Handling

When the SubnTrap (Notice) is received by the SM, it checks to see if the trap

numbers in the notice attribute are 128 or 144. Both the trap messages (128 and 144)

trigger a heavy sweep within the subnet by setting the force heavy sweep flag. This

triggers the function trap rcv process request which forces a heavy sweep. In some

cases, the SMA may send repetitive trap messages to the SM. The SM can reply by

sending a SubnTrapRepress (Notice) message to convey to the SMA in question that

it has received the trap message from that SMA and is acting on it, thus refraining

it form sending more duplicate trap messages. The frequency at which the trap
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messages are generated can also be limited by varying the SubnetTimeout attribute.

This can be useful to avoid the VL15 packet drops because of excessive generation

of trap messages. A heavy sweep initiates the reconfiguration of subnet. The various

phases it passes through are as follows.

1. Initiate heavy sweep

2. Configure SM LID

3. Subnet LID Configuration

4. Configure switches for Unicast and Multicast

5. Subnet Up
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Chapter 3: ANALYSIS AND EVALUATION OF OPENSM

We designed a set of benchmarks to quantify the performance of OpenSM based on

the time spent by OpenSM in the various phases of configuring the fabric. The phases

monitored by the benchmarks at the highest granular level are the discovery phase,

the SM LID configuration and subnet LID configuration phase and the routing phase.

Initial prerequisite is that the cluster or subnet should not have any other instance

of OpenSM running. The benchmarks are described as follows.

3.1 Designing Benchmarks to Quantify the Performance of
OpenSM

The benchmarks are designed to run OpenSM with the option -o which means that

the SM will do the topology discovery, route computation and the configuration of

the switches only once and then exit. We use the option -v to moderate the amount

of verbosity with which the log is written. Another option -R is used to facilitate

the option of the user choosing which routing algorithm to use. The user can also

mention the number of iterations these benchmarks have to run. The benchmarks

will average out the time taken by OpenSM in each phase based on the number of

iterations. We parse through the log file and obtain the time stamps of events which

mark the beginning and ending of the phases. Using the time stamps of these events
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the time taken by OpenSM in various phases is obtained. The benchmarks and their

functionalities are explained in the following sections.

3.1.1 Subnet Discovery Time

This benchmark calculates the time taken by OpenSM in the subnet discovery

phase. The discovery phase consists of the time taken by OpenSM to bind the Subnet

Manager to a port and to complete the heavy sweep. The benchmark takes the name

of the routing algorithm and the number of iterations the benchmark has to run as

parameters. The five routing algorithms (MinHop, DOR, UPDN, LASH and fat tree)

which are supported by OpenSM can be used in the benchmark. A sample output

for a 1,000 iterations while using MinHop routing algorithm is shown in Figure 3.1.

Figure 3.1: Sample Output of Subnet Discovery Time Benchmark

3.1.2 Subnet LID-Configuration Time

This benchmark calculates the time taken by OpenSM once the SM enters the

MASTER phase. The significance of the MASTER phase is that this is the first
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and only instance of SM running on that subnet. If any other instances of SM are

started while this instance is running, then they fall back to STANDBY phase. The

MASTER phase consists of the time taken by OpenSM to set up the QOS and in the

phase of SM and Subnet LID configuration. The parameters taken by this benchmark

are the number of iterations the benchmark has to run and the routing algorithm.

A sample output for a 1,000 iterations while using DOR routing scheme is shown in

Figure 3.2.

Figure 3.2: Sample Output of Subnet LID-Configuration Time Benchmark

3.1.3 Subnet Routing Time

This benchmark calculates the time taken by OpenSM in the Routing Phase.

The routing phase consists of the time taken by OpenSM in calculating the routes,

updating the switch tables and configuring the links and ports. The parameters taken

by this benchmark are the number of iterations the benchmark has to run and the

30



routing algorithm. A sample output for a 1,000 iterations while using LASH routing

scheme is shown in Figure 3.3.

Figure 3.3: Sample Output of Subnet Routing Time Benchmark

3.1.4 Subnet Total Time

This Benchmark sums up the total time taken by OpenSM to configure the subnet.

The parameters taken by this benchmark are the same as the other benchmarks. This

benchmark also displays the time taken by OpenSM in all its sub phases as well. A

sample output for a 1,000 iterations while using FTREE routing algorithm is shown

in Figure 3.4.

3.2 Design - Quantifying the reconfiguration time of OpenSM

We designed a benchmark to calculate the time taken by OpenSM to reconfigure

the subnet in case of a failure. When an HUP signal is sent to OpenSM, a heavy

sweep is triggered just like the trap messages. Since OpenSM does not differentiate
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Figure 3.4: Sample Output of Subnet Total Time Benchmark

between a switch, node or port failures, we could mimic these failures using the HUP

signal. We designed a second benchmark to understand the impact of the measures

taken by OpenSM to handle the failures, on any ongoing computation. A detailed

description of these benchmarks is provided in the following sections

3.2.1 Subnet Reconfigure Time

This benchmark measures the time taken by OpenSM to reconfigure the subnet

when a failure occurs. The parameters taken by the benchmark as input are the

routing algorithm to be used, the path to the location where the log files are saved

32



and the path where OpenSM is installed. The benchmark starts OpenSM in verbose

mode and logs the results. It obtains the process ID (pid) of OpenSM and then sends

out an HUP signal to that pid to mimic a failure. Then we query the log to find

the time taken by OpenSM to reconfigure the subnet. A sample output is shown in

Figure 3.5.

Figure 3.5: Sample Output of Subnet Reconfigure Time Benchmark

3.2.2 Impact perf

This benchmark runs an IMB alltoall benchmark and introduces failures periodi-

cally. The parameters taken as input by this benchmark are the number of failures to

be introduced, the path to the build of MVAPICH2 [17], the path to an IMB build,

the path to hostfile and the path to the message length file. It runs an IMB alltoall

benchmark once without introducing any failures and distributes the failures evenly

in the second run by taking the output of the first IMB alltoall run. The aim of

this benchmark is to reflect the impact of the reconfiguration process undertaken by
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OpenSM on any ongoing computation. The failures are introduced by using the HUP

signal methodology used previously. The output is an IMB alltoall output.

3.3 Evaluation and Experiments

3.3.1 Experimental setup

The experimental setup is a cluster of 71 nodes which are all dual Intel Xeons

E5345 connected to an InfiniBand Switch which has an internal topology of a Fat Tree.

The number of nodes were varied by unloading the OpenIB service. The topology

was moderated by using a custom made tool which depicts a human readable format

of the subnet topology using the ibnetdiscover functionality provided by OpenSM.

The nodes were made undetectable to OpenSM by removing the InfiniBand drivers

on the entire line card on a step by step basis for every leaf node.

In the first set of experiments, we compared the amount of time taken by OpenSM

in each phase when the system size is varied (number of nodes in the cluster). We

conducted this experiment for all the five routing algorithms supported by OpenSM

(MinHop, UPDN, FTREE, LASH and DOR). In the second experiment, we compared

the performance of the various routing algorithms supported by OpenSM to find the

routing scheme which provides optimal performance and is best suited for our cluster.

In the first set of experiments, we see that the total time taken by OpenSM to

configure the subnet increases as the system size increases. We can also see that

SM/Subnet LID configuration phase takes the least time when compared to all the

other phases. The subnet discovery phase takes up a major 75% of the total time

taken by OpenSM to configure the fabric. As we already know the number of device

ports in the subnet from the discovery phase, the subnet discovery phase just has to
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assign LIDs to these ports. This explains the amount of time taken in the second

phase. In the second experiment we found that OpenSM configures the experimental

subnet the fastest when FTREE routing algorithm is used. This can vary from cluster

to cluster as it depends on the internal topology of the InfiniBand switch used in the

cluster. For example, if a cluster with a hypercube or mesh topology is used, we could

see the optimal performance with other routing algorithms such as DOR or LASH.

Thus the following experimental results are cluster dependent.

3.3.2 Performance of OpenSM for Various Routing Schemes

DOR

In Figure 3.6, we use the set of benchmarks discussed previously to obtain the

time taken by OpenSM in its various phases while OpenSM is configured to run

with direction oriented routing algorithm. The time taken by OpenSM in the subnet

discovery increases by 15% when the system size varies from 8 nodes to 16 nodes

where as the variation is not as prominent and is not uniform when the system size is

varied from 16 nodes to 64 nodes as there is a minor drop when the system size varies

from 16 to 32 nodes. The SM and Subnet LID configuration phase shows a steady

increase as the system size increases. The time taken in the routing phase decreases

by 22% as the system size increases from 8 to 16 nodes and then steadily increases

as the system size increases from 16 to 64 nodes. This is because of a functionality

of DOR where it uniformly distributes the load on each link. We see a similar spike

in the LASH algorithm which is also optimized for 3D mesh and 3D torus topologies

and LASH too equilizes the number of paths assigned to each VL to distribute the

load uniformly. Finally, the total time taken by OpenSM increases as the system size

increases from 8 to 64 nodes. The variation when the system size increases from 8 to
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16 nodes and 32 to 64 nodes is much larger then the variation when the system size

increases from 16 to 32 nodes.
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Figure 3.6: Performance of OpenSM with DOR Routing

FTREE

In Figure 3.7, we plot the time taken by OpenSM in its various phases by using

the set of benchmarks discussed previously in the design section. Here OpenSM is

configured to run using the Fat Tree routing algorithm. The time spent in the subnet

discovery phase increases by 11% when the system size increases from 8 to 16 nodes.

It varies steadily with minor increments after that. The behavior of SM and subnet

LID configuration phase is consistent with the behavior seen previously when DOR

scheme is used. Finally, the total time taken to configure the subnet in this case

increases steadily as the system size is varied from 8 to 64 nodes.
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Figure 3.7: Performance of OpenSM with FTREE Routing

LASH

Figure 3.8 is obtained by using the set of benchmarks, mentioned in the previous

section, while OpenSM is configured with layered shortest path routing algorithm.

The time taken in the subnet discovery phase increases while the system size increases

from 8 to 64 nodes. The time taken in the SM and subnet LID configuration phase

increases steadily with the system size. But, we see an interesting behavior in the

routing phase. The time taken drops by 27% when the system size increases from 8

nodes to 16 nodes. It then increases steadily after that. We see a similar behavior in

the DOR routing scheme which is also optimized for 3D-torus and mesh topologies.

The time taken in the routing phase is the same for both when the system size is

8 and 64 nodes. The total time taken by OpenSM to configure the fabric increases

when the system size varies from 8 to 64 nodes.
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Figure 3.8: Performance of OpenSM with LASH Routing

MINHOP

In the case of Figure 3.9, OpenSM is configured using MinHop routing algorithm

which is the default routing algorithm to which OpenSM falls back to when the option

-R is not mentioned. We see an interesting behavior for the time taken in the routing

phase as it stays almost uniform as the system size is varied. This behavior is because

of the calculation of the MinHop matrix which does not incur much overhead with

an increase in system size. The time taken in the SM and subnet LID configuration

phase and the total time taken by OpenSM to configure the subnet show a steady

increase with the system size.

UPDN

Here, in Figure 3.10, OpenSM is configured to use UPDN routing algorithm which

is also a unicast routing algorithm. The total time taken by OpenSM to configure the

subnet is similar to that of the pattern seen with all the FTREE and MinHop routing

schemes. We see a spike of 27% in the routing phase when the system size varies
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Figure 3.9: Performance of OpenSM with MINHOP Routing
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Figure 3.10: Performance of OpenSM with UPDN Routing
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from 8 to 16 nodes. It then drops by 25% when the system size varies from 16 to 32

nodes. This behavior can be traced back to the Binary First Search (BFS) scheme

used by UpDn. An initial BFS is done to rank the devices in the subnets according

to hierarchy and then a second BFS is done to distribute the paths. The behavior of

the time taken in the SM and subnet LID configuration phase is consistent with all

the other routing algorithms.

3.4 Analysis and Observation

Our experiments show that route calculation and updating the switch forwarding

tables with that information contributes to a major portion of the total time taken by

OpenSM to configure the subnet. Another major aspect which affects the performance

of OpenSM is the way in which OpenSM does the Subnet LID configuration as we

expect the time taken in this phase to increase steadily as the system size increases.

Since we already have path traversed from initial path array and return path array SM

and Subnet LID config phase does not take as long as Discovery phase even though

the process is the same as we already know the path traversed. In the following

sections, we analyze the time taken by OpenSM in each of its phases for the various

system sizes, for all routing algorithms. This is to determine which routing algorithm

provides the optimal performance with OpenSM for a particular subnet.

3.4.1 Comparison of Routing Algorithms

In this section we analyze the time taken by each routing algorithm for a specific

phase of OpenSM and then compare the different routing algorithms for that specific

phase. The time taken in the subnet discovery phase is independent of the routing

algorithm with which OpenSM is configured. The same is the case with time taken in
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the SM and subnet LID configuration phase because it always increases steadily when

the system size is varied from 8 to 64 nodes irrespective of which routing algorithm

is used.

In Figure 3.11, we can see that FTREE routing algorithm performs considerably

better in the routing phase when compared to other routing algorithms as the system

size is varied from 8 to 64 nodes. As expected, the time taken is maximum when the

system size is 64 nodes. In Figure 3.12, we can see that the cumulative time taken

by OpenSM to configure the subnet is the least when FTREE routing algorithm is

used for all systems sizes under consideration. We also see that the total time taken

increases linearly as the system size increases. From the following graphs we can

conclude that, for this particular experimental setup, FTREE is the optimal routing

scheme.
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Figure 3.11: Time Taken by OpenSM in Routing Phase for Various Routing Algo-
rithms
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Figure 3.12: Cumulative Time Taken by OpenSM for Various Routing Algorithms

3.4.2 Analysis of FTREE routing scheme

After the LID assignment and configuration phase is complete, OpenSM starts

configuring the switch tables. The final phase where the switch tables are configured

takes up 55% of the total time spent in the routing phase. In this phase, the following

functions are called to configure the subnet with FTREE routing scheme.

• ucast mgr route - starts building the routes with the specified routing algorithm.

It falls back to MinHop routing algorithm if no routing algorithm is specified

• construct fabric - called to starting the FatTree fabric construction. This func-

tion performs the following tasks

– Populating the FatTree Switch and CA tables.

– Reading GUID files provided by user (skip if not provided)

– Ranking FatTree

– Populating CA & switch ports
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• fabric rank - determines the maximum rank of a switch present in that partic-

ular subnet

• fabric mark leaf switches - determines and marks the leaf switches in the fabric

• fabric make indexing - starts the indexing process for the FatTree

• fabric dump general info - provides general fabric topology information which

includes the FatTree rank (root to leaf switches), enumerating the number of

switches at a particular rank all the way until the maximum switch rank, number

of CAs, CA ports, switches

• fabric validate topology - makes sure that the topology of the given switch is

FatTree indeed. If not, the fabric is configured with MinHop

• osm ucast mgr process - FTREE tables are configured for all switches

3.4.3 Analysis of UPDN routing scheme

In case of UPDN routing scheme, a major part of the time spent in the routing

phase is spent to configure the switch tables. This takes up 47% of the total time

taken in the routing phase. The sequence of functions called is as follows.

• ucast mgr route - starts building the routes with the routing algorithm specified

• osm ucast mgr build lid matrices - starts the switch’s Min Hop table assign-

ments as UpDn is dependent on the MinHop algorithm. It then finds the num-

ber of CAs and stores them in the cl map.

• updn build lid matrices - Ranking all port guids in the list
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• updn subn rank - Ranking the subnet

• updn subn rank - Sets all switches to MinHop tables

• updn set min hop table - Initiates Min Hop Table of all switches and conducts

a BFS through all port guids in the subnet

• osm ucast mgr process - UPDN tables are configured on all switches

3.4.4 Analysis of LASH routing scheme

When LASH routing scheme is used, the major fraction (48%) of the total time

taken in the routing phase is spent in the part where the switch tables are configured

for unicast and multicast. The flow of function calls is as follows.

• ucast mgr route - starts building the routes with the routing algorithm specified

• osm ucast mgr build lid matrices - Starting switches’ Min Hop Table Assign-

ment

• discover network properties - determines the minimum and maximum opera-

tional virtual lanes

• connect switches - tries to connect to all switches in the subnet in pairs by

determining the shortest path

• osm lash process switch - determines whether the connection which was being

established in the previous section was a success or failure

• lash core - determines the required number of lanes and the available number

of lanes and evaluates whether LASH can be used or not
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• ucast mgr route - builds the forwarding tables for LASH

3.4.5 Impact of the Number of Nodes on a Leaf Switch on
Performance of OpenSM
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Figure 3.13: Impact of Number of Nodes per Leaf Switch on the Performance of
OpenSM

The performance is also affected based on the number of nodes active on a partic-

ular leaf switch. As expected, the total time taken by OpenSM increases every time a

new node is added to the subnet or to a leaf switch. But, the unanswered question is

whether the node placement on the leaf switches affect the performance of OpenSM

or not. Our experimental set up consisted of 11 leaf switches and 71 nodes. In the

first case we just used 8 nodes and all of them were connected to a single leaf switch

and all other leaf switches did not have any nodes connected to them. In the second

case we had 8 leaf switches and we had one node connected to each of these switches.

Then we measured the time taken by OpenSM in each phase while configuring these

subnets using the benchmarks mentioned previously. As expected, the time taken by
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OpenSM increased by 30% in the second case as compared to the first case. This be-

havior was consistent across all the routing algorithms. Figure 3.13 shows the above

described behavior.

3.4.6 Variation in Minimum Number of Hops

Figure 3.14 shows the distribution of the minimum number of hops between all

possible pairs of nodes in the subnet. The minimum number of hops between any pair

of nodes is always the same irrespective of the routing algorithm used by OpenSM.

The actual route taken by the packets may be different from the minimalistic route.

This behavior can be attributed to the contention among the links and traffic hot spots

in the subnet. In Figure 3.14, shown below, we can see that in a FAT Tree topology

setting, the minimum number of hops between any two nodes can be divided into two

categories based on whether the two nodes are located on the same leaf switch or are

located on different leaf switches.

Figure 3.14: Minimum Number of Hops Between any Two Nodes in a Subnet

46



3.4.7 Reconfiguration Time of Various Routing Algorithms

Figure 3.15 depicts the time taken by OpenSM to reconfigure the subnet because

of the occurrence of a failure. We used the Subnet Reconfigure Time benchmark

mentioned in the previous section to quantify this value. We calculated the reconfig-

uration time by varying the factors listed below. It can be seen that FTREE routing

algorithm takes the least amount of time to reconfigure the subnet in all of the fol-

lowing cases. We can see that the number of channel adapters per node is directly

proportional to the time taken by OpenSM in configuring the subnet.

1. Routing Algorithm

2. System Size

3. Number of HCAs per node

3.4.8 Impact of Reconfiguration on Ongoing Computation

Figure 3.16 shows the time taken to complete an IMB alltoall as the number

of failures are increased and when caching the unicast routes is toggled. We used

the benchmark Impact perf mentioned in section 3.2.2 to obtain these values. The

message size used for the IMB alltoall is 512K and the system size used is 512 cores.

We observed that OpenSM sweeps impact performance of parallel applications and

Unicast route caching helps reduce performance impact. We initially calculated the

time taken for an IMB alltoall (512 KB message size & 512 cores system size )

operation to complete when there are no failures in the network. Then we used

this to distribute the number of failures evenly while conducting this experiment.

Thus, this shows that when a job is running on x nodes on a cluster of size y nodes,
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Figure 3.15: Time Taken by OpenSM to Reconfigure the Subnet for Various Routing
Algorithms

48



this job would be impacted because of the heavy sweeps done by OpenSM if a node

from the other ”y-x” nodes fails.

Figure 3.16: Impact of Reconfiguration on Ongoing Computation With and Without
Caching Unicast Routing

3.5 Related Work

Earlier studies have evaluated OpenSM and its performance on certain networks

but have not focused on bottlenecks of OpenSM and its performance at scale. [5]

and [6] present a simulation based study to evaluate the subnet management mech-

anism. In [27], the authors focus on evaluating the subnet discovery time and the

49



various management phases within the discovery phase of OpenSM by varying the

number of ports per switch, number of switches and the number of nodes. But these

evaluations have been performed on a very small scale InfiniBand cluster. This analy-

sis may not be consistent with the performance of OpenSM on a large scale InfiniBand

cluster. There has not been much study on the potential bottlenecks of OpenSM and

to study this we need to evaluate the performance of OpenSM the at a higher granu-

larity. This work focuses exactly on those three aspects, bottlenecks, granularity and

scalability.
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Chapter 4: SCALABLE INFINIBAND NETWORK

ANALYSIS AND MONITORING

4.1 Design And Implementation of INAM

We describe the design and implementation details of our InfiniBand Network

Analysis and Monitoring tool (INAM) in this section. Figure 4.1 presents the over-

all framework for INAM. For modularity and ease of portability, we separate the

functionality of INAM into two distinct modules - the InfiniBand Network Querying

Service (INQS) and the Web-based Visualization Interface (WVI). INQS acts as a

network data acquisition service. It retrieves the requested information regarding

ports on all the devices of the subnet to obtain the performance counters and subnet

management attributes. This information is then stored in a database using MySQL

methods [18]. The WVI module then communicates with the database to obtain the

data pertaining to any user requested port(s) in an on-demand basis. The WVI is de-

signed as a standard web application which can be accessed using any contemporary

web browser. The two modes of operation of the WVI include the live observation of

the individual port counters of a particular device and the long term storage of all the

port counters of a subnet. This information can be queried by the user in the future.

INQS can be ported to any platform, independent of the cluster size and the Linux
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distribution being used. INAM is initiated by the administrator and there exists a

connection thread pool through which individual users are served. As soon as a user

exits the application, the connection is returned to the pool. If all the connections

are taken up, then the user has to wait. Currently the size of this connection pool is

50 and can be increased based on the requirement of the user.

Figure 4.1: The INAM Framework

As we saw in chapter 1, a major challenge for contemporary IB network monitoring

tools is the necessity to deploy daemon processes on every monitored device on the

subnet. The overhead in terms of CPU utilization and network bandwidth caused by

these daemons often cause considerable perturbations in the performance of real user

applications that use these clusters. INAM overcomes this by utilizing the Subnet

Management Agents (SMA) which are required to be present on each IB enabled
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device on the subnet. The primary role of an SMA is to monitor and regulate all

IB network related activities on their respective host nodes. The INQS queries these

SMAs to obtain the performance counters and subnet management attributes of the

IB device(s) on a particular host. The INQS uses Management Datagram (MAD)

packets to query the SMAs. As MAD packets use a separate Virtual Lane (VL 15),

they will not compete with application traffic for network bandwidth. Thus, compared

to the contemporary InfiniBand network management tools, INAM is more responsive

and and causes less overhead.

INAM is also capable of monitoring and visualizing the utilization of a link within

a subnet. To obtain the link utilization, the XmtWait attribute alone or XmtData

/ RcvData and LinkActiveSpeed attributes in combination are used. The XmtWait

attribute corresponds to the period of time a packet was waiting to be sent, but could

not be sent due to lack of network resources. In short it is an indication of how

congested a link is. The LinkActiveSpeed attribute indicates the speed of the link.

This can be used in combination with the change in XmtData or RcvData attribute

to see whether the link is being over utilized or not. In either case, we update a

variable called the link utilization factor to depict the amount of traffic in the link.

There is also an option to use just the INQS as a stand alone system to save the

device port information and the link usage information over a period of time (time

can be varied depending on the memory available) to analyze the traffic patterns over

an InfiniBand subnet. INQS initially creates a dynamic MySQL database of all the

available LID-Port combinations, along with the physical links interconnecting these

ports. The LID-Port combination signifies all combinations of the device LIDs in the

subnet and their respective ports. This information is updated periodically and thus
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adapts to any changes in the network topology. The frequency at which the data is

collected from the subnet and the frequency at which the data is displayed on the WVI

can both be modied as per the requirement of the user. The overhead here would be

associated with the WVI module. The display frequency can be reduced to 1 second

and this would serve the users for all practical purposes. If this display frequency is

less then 1 second, then we see a drop in the responsiveness of the dynamic graphs

generated.

The WVI interacts with the database and displays the information requested by

the user in the form of a graphical chart. Dynamic graphs are generated by using

HighCharts Js [8]. We use a push model instead of a pull model to update the data

in the WVI. The connection between the MySQL database and the WVI is kept open

and hosting server pushes data to the browser as soon as the database is updated

by INQS. This technique removes the overhead on the web server caused by the

browser constantly polling the database for new data. This is implemented using

a methodology called Comet [7]. This makes the web server stable and provides

high availability even when deployed on large InfiniBand clusters with heavy data

flow. The rest of the functionalities of the web server are implemented using Java 2

Platform Enterprise Edition (J2EE) [13]. The communication pattern of an MPI job

is created by WVI by querying the database and then by using the canvas element

of HTML5 [11] to chart out the physical topology and connections between the ports

on a subnet.
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4.1.1 Features of INAM

INAM can monitor an InfiniBand cluster in real time by using the functionali-

ties provided by Open Fabrics Enterprise Distribution (OFED) stack. It can also

monitor the link utilization on the fly and provide a post mortem analysis of the

communication pattern of any job running on the IB cluster.

The user can select the device he wants to monitor through a dynamically updated

list of all the currently active devices on the subnet. An option to provide a list of

all the port counters which need to be compared in real time, is given to the user.

A detailed overview of all the subnet management attributes of a particular port in

a subnet can also be obtained. The attributes are divided into four main categories

which are Link Attributes, Virtual Lane Attributes, MTU Attributes and Errors and

Violations. INAM also provides dynamic updates regarding the status of the master

Subnet Manager(SM) instance to the user. If there is a change in the priority of SM

or if the Master SM instance fails or if a new slave SM takes over as a Master SM

instance, the status is updated and the user is notified. This can help to understand

the fail-over properties of OpenSM. Further more, a user can ask INAM to monitor

the network for the time period of an MPI job and then it helps the user understand

the communication pattern of that job using a color coded link utilization diagram.

4.2 Experimental Results

In this section, we describe the experimental setup, provide the results of our

experiments, and give an in-depth analysis of these results.
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4.2.1 Experimental Setup

The experimental setup is a cluster of 71 nodes (8 cores per node with a total of

568 cores) which are all dual Intel Xeons E5345 connected to an InfiniBand Switch

which has an internal topology of a Fat Tree. We used a part of this cluster to

show the functionality of INAM. This set up comprises of 6 leaf switches and 6 spine

switches with 24 ports each and a total of 35 leaf nodes equipped with ConnectX

cards. The functioning of INAM is presented using a series of benchmarks in varied

scenarios. The first set of results are obtained using a bandwidth sharing benchmark

to create traffic patterns which are verified by visualizing the link usage using INAM.

The second set of benchmarks shows similar network communication patterns with

MPI Bcast configured for diverse scenarios. The third set of experiments verifies the

usage of INAM using the LU benchmark from the SpecMPI suite.

4.2.2 Visualizing Port Counters

The user can select the device they want to monitor through a dynamically up-

dated list of all the currently active devices on the subnet. The user can also provide

a list of all the port counters they want to compare in real time. Figure 4.2 depicts

how INAM allows users to visually compare multiple attributes of a single port. In

this example, we show how two attributes - transmitted packets and received pack-

ets, of user selected port can be compared. Figure 4.3 shows a subset of the subnet

management attributes which can be monitored by INAM. The list is dynamic and

is updated as soon as a change is detected. Details regarding the physical link state

are shown in the leftmost image and information regarding the SM is depicted in the

image at the centre. The right most image shows the VL attributes of a port. The
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device list at the top is dynamic and is updated if a new device is added or if an

existing device is removed.

Figure 4.2: Monitoring the XmtData and RcvData of a port

4.2.3 Point to Point Visualization: Synthetic Communica-
tion Pattern

We create custom communication patterns using the bandwidth sharing bench-

mark mentioned in [26] to verify the functioning of INAM. The benchmark in question

enables us to mention the number of processes transmitting messages and the number

of processes receiving messages at leaf switch level and thus creating a blocking point

to point communication pattern. We created various test patterns, each incremen-

tally more communication intensive then the previous pattern, to help us notice a
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Figure 4.3: Monitoring the Subnet Management Attributes of a port

Figure 4.4: INAM depiction of network
traffic pattern for 16 processes

Figure 4.5: INAM depiction of network
traffic pattern for 64 processes

difference in the pattern using INAM. Two of those patterns are mentioned in detail

in the consequent sections.

Test Pattern 1

The first test pattern is visualized in Figure 4.4. The process arrangement in this

pattern is such that 8 processes, one per each of the 8 leaf nodes connected to leaf

switch 84, communicate with one process, on each of the four leaf nodes connected to
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the each of the two switches 78 and 66. The thick green line indicates that multiple

processes are using that link. In this case, it can be observed that the thick green

line originating from switch 84 splits into 2 at switch 110. The normal green links

symbolize that the links are not being over utilized, for this specific case.

Test Pattern 2

Figure 4.5 presents the network communication for test pattern 2. The process

arrangement in this pattern is such that 32 processes, four per each of the 8 leaf nodes

connected to leaf switch 84, communicate with two processes, on each of the eight

leaf nodes connected to the each of the two switches 78 and 66. 32 processes send out

messages from switch 84 and 16 processes on each of the switches 78 and 66 receive

these messages. This increase in the number of processes per leaf node explains the

exorbitant increase in the number of links being overly utilized. Figure 4.5 also shows

that all of the inter switch links are marked in thick lines, thus showing that each

link is being used by more then one process. The links depicted in red indicate that

the link is over utilized. Since each leaf node on switch 84 has four processes and

each leaf node on the other switches have two processes, the links connecting the leaf

nodes to the switch are depicted as thick red lines.

4.2.4 Link Utilization of Collective Operations: Case Study
with MPI Bcast Operation

In this set of experiments, we evaluate the visualization of the One-to-All broad-

cast algorithms typically used in MPI libraries, using INAM. MVAPICH2 [17] uses the

tree-based algorithms for small and medium sized messages, and the scatter-allgather

algorithm for larger messages. The tree-based algorithms are designed to achieve
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lower latency by minimizing the number of communication steps. However, due to

the costs associated with the intermediate copy operations, the tree-based algorithms

are not suitable for larger messages and the scatter-allgather algorithm is used for

such cases. The scatter-allgather algorithm comprises of two steps. In the first step,

the root of the broadcast operation divides the data buffer and scatters it across all

the processes using the binomial algorithm. In the next step, all the processes partic-

ipate in an allgather operation which can either be implemented using the recursive

doubling or the ring algorithms.

We designed a simple benchmark to study the link utilization pattern of the

MPI Bcast operation with different message lengths. For brevity, we compare the

link utilization pattern with the binomial algorithm with 16KB message length and

we study the scatter-allgather (ring) algorithm with a data buffer of size 1MB. We

used six processes for these experiments, such that we have one process on each of

the leaf switches, as shown in Figure 4.6. In our controlled experiments, we assign

the process on switch 84 to be the root (rank 0) of the MPI Bcast operation, switch

126 be rank 1 and so on until the process on switch 66 is rank 5. Figure 4.6 shows a

binomial traffic pattern for a broadcast communication on 6 processes using a 16KB

message size. The binomial communication pattern with 6 processes is as follows:

• Step1: Rank0 → Rank3

• Step2: Rank0 → Rank1 and Rank3 → Rank4

• Step3: Rank1 → Rank2 and Rank4 → Rank5

In Figure 4.6, a darker color is used to represent a link that has been used more

than once during the broadcast operation. We can see that processes with ranks
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Figure 4.6: Link utilization of binomial al-
gorithm

Figure 4.7: Link utilization of scatter-
allgather algorithm

0 through 4, the link connecting the compute nodes to their immediate leaf-level

switches are used more than once, because these processes participate in more than

one send/recv operation. However, process P5 receives only one message and INAM

demonstrates this by choosing a lighter shade. We can also understand the routing

algorithm used between the leaf and the spine switches by observing the link utiliza-

tion pattern generated by INAM. We also observe that the process with rank4, uses

the same link between switches 90 and 110 for both its send and receive operations.

Such a routing scheme is probably more prone to contention, particularly at scale

when multiple data streams are competing for the same network link.

Figure 4.7 presents the link utilization pattern for the scatter-allgather (ring) algo-

rithm with 6 processes. We can see that the effective link utilization for this algorithm

is considerably higher when compared to the binomial exchange. This is because the

scatter-allgather (ring) algorithm involves a higher number of communication steps

than the binomial exchange algorithm. With 6 processes, the ring algorithm comprises

of 6 communication steps. In each step, process Pi communicates with its immediate
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logical neighbors processes P (i−1) and P (i+1). This implies that each link between

the neighboring processes are utilized exactly 6 times during the allgather phase.

4.2.5 Application Visualization: SpecMPI - LU

Figure 4.8: INAM depicting the communication pattern using LU benchmark

In this experiment, we ran the LU benchmark (137.lu medium size - mref) from the

SpecMPI suite [19] on a system size of 128 processes using 16 leaf nodes with 8 nodes

on each of the two leaf switches. The prominent communication used by LU comprise

of MPI Send and MPI Recv. The communication pattern is such that each process

communicates with its nearest neighbors in either directions (p2 communicates with

p1 and p3). In the next step, p0 communicates with p15, p1 communicates with p16

and so on. This pattern is visualized by INAM and is shown in Figure 4.8. It can be

seen that a majority of the communication is occurring on an intra-switch level.
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4.2.6 Overhead of Running INAM

Since we use the subnet management agent (SMA), which acts like daemons mon-

itoring all the devices of a subnet, we do not need to use any additional daemons

installed on every device to obtain this data. This is a major advantage as it avoids

the overhead in the contemporary approach caused by the daemons which are in-

stalled on every device. The user just needs to have the service opensmd started on

the subnet. Since the queries used communication through Virtual Lane 15 for the

purpose of data acquisition, there is no interference with the generic cluster traffic.

For verifying this, we compared the performance of an IMB alltoall benchmark while

toggling the data collection service on and off by using messages of 512 KB and 16 KB

for various system sizes and then plot the percentage overhead. The results obtained

are shown in Figure 4.9 which shows that the overhead is minimal even though the

service is on. There is not much increase in the overhead when the message size is

increased from 16 KB to 512 KB. Thus using the daemons already existing on each

of the nodes boosts the responsiveness of the tool.

4.3 Related Tools

There is a plethora of free or commercial network monitoring tools that provide

different kinds of information to the system administrators or the users. But only

a few of them provide specific information related to IB network. We focus here on

three popular network monitoring tools: Ganglia [14], Nagios [3] and FabricIT [24].

Ganglia is a widely used open-source scalable distributed monitoring system for

high-performance computing systems developed by the University of California inside

the Berkeley Millennium Project. One of the best features of Ganglia is to offer an
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Figure 4.9: Overhead caused by running INAM

overview of certain characteristics within all the nodes of a cluster, like memory,

CPU, disk and network utilization. At the IB level, Ganglia can provide information

through perfquery and smpquery. Nevertheless, Ganglia can’t show any information

related to the network topology or link usage. Furthermore, to get all the data,

Ganglia need to run a daemon, called gmond, on each node, adding an additional

overhead.

Nagios is another common open-source network monitoring tool. Nagios offers

almost the same information as Ganglia through a plug-in called ”InfiniBand Per-

formance Counters Check”. But, as Ganglia, Nagios can’t provide any information

related to the topology.

FabricIT is a proprietary network monitoring tool developed by Mellanox. Like

INAM, FabricIT is able to provide more information than Ganglia or Nagios, but the
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free version of the tool does not give a graphical representation of the link usage or

the congestion.

INAM is different from the other existing tools by the richness of the given infor-

mation and also its unique link usage information, giving all the required elements to

users to understand the performance of applications at the IB level.
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Chapter 5: CONCLUSION AND FUTURE WORK

In this thesis, We focused on three aspects of OpenSM which are: bottlenecks,

performance evaluation at higher granularity and performance evaluation at a finer

scale. We design a set of micro benchmarks which can measure the time taken by

OpenSM in the various phases of configuring the fabric. The results have been ob-

tained by tweaking various aspects of OpenSM. We analyze these performances in

various scenarios. We compare the amount of time taken by OpenSM in each phase

when the system size is varied (number of nodes in the cluster). We conduct this ex-

periment for all the five routing algorithms supported by OpenSM (MinHop, UPDN,

FTREE, LASH and DOR).

We also compared the total time taken by OpenSM to configure the subnet by

varying the system size for all the routing algorithms. We see that, for our experi-

mental set up, OpenSM has a better performance when it’s configured with FTREE

routing scheme. We also see that OpenSM reconfigures the network in the least

amount of time when FTREE routing scheme is mentioned. Another result worthy of

mentioning is that, the process of reconfiguration undertaken by OpenSM in case of a

failure effects an ongoing parallel application running on that subnet. We developed

a web application which renders a global view of the subnet.
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We have presented INAM - a scalable network monitoring and visualization tool

for InfiniBand networks which renders a global view of the subnet through a web-based

interface (WVI) to the user. INAM depends on many services provided by the open-

source OFED stack to retrieve necessary information from the IB network. INAM also

has an on line data collection module (INQS) which runs in the background while a

job is in progress. After the completion of the job, INAM presents the communication

pattern of the job in a graphical format. The overhead caused by this tool is very

minimal and it does not require the user to launch any special processes on the target

nodes. Instead, it queries on the IB devices directly through the network and to

gather data.

In future, we would like to extend this work to do an on line analysis of the

traffic patterns on a cluster. If next generation InfiniBand devices offer performance

counters for each virtual lane, we could leverage it to study link utilization and

network contention patterns in a more scalable fashion. Another dimension would

be to create a time line graphical pattern to depict the exact amount of data being

communicated in the subnet during a particular interval. We also plan to look into

reducing the failure recovery time and the associated overhead. Another issue is to

experiment with the osm event plugin provided by OpenSM and design an efficient

way to log important events so as to obtain a better understanding of OpenSM. We

would also like to extend the functionality of INAM such that the user can monitor

and compare various counters from different ports. We would also like to show if

the links are used multiple times simultaneously when the communication matrix is

generated.
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