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Abstract

Noise and vibration are major concerns in applications of compound planetary

gears, and dynamic analysis is essential to their reduction. This work conducts a

series of analytical investigations on several problems in compound planetary gear

dynamics.

A purely rotational model for compound planetary gear is developed, and the

unique modal properties for the natural frequency spectra and vibration modes are

presented and analytically proved. This model aims to simplify subsequent analyses

on compound planetary gear dynamics while keeping the main dynamic behavior

generated by tooth mesh forces.

A systematic study on general compound planetary gear eigensensitivities is per-

formed by utilizing the rotational-translational model in [53]. The eigensensitivities

are derived in compact, closed-form expressions for all parameter variations in both

tuned (each stage in the system retains cyclic symmetry) and mistuned systems. The

resultant formulae also suggest that modal strain and kinetic energy distribution plots

are effective and straightforward means to identify the system parameters that have

the greatest impact on adjusting the related natural frequency.
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Compound planetary gear natural frequency veering and crossing phenomena are

also systematically examined. By grouping all system parameters into tuned and mis-

tuned parameters, the veering/crossing patterns with respect to each system param-

eter are determined. These patterns provide critical information on dramatic mode

shape changes when tuning a compound planetary gear during the design stage.

Gear mesh phases that are critical for analytical or computational study on com-

pound planetary gear dynamics are defined and calculated analytically. All the mesh

phases are grouped into a hierarchical structure of system-level, stage-level, and train-

level mesh phases to simplify the subsequent analytical investigations. In addition to

providing a complete procedure to determine all the necessary relative phases, the spe-

cific relations between train-level relative phases are derived by applying the assembly

conditions of compound planetary gears. Such relations, together with the systemat-

ically defined mesh phases, provide the foundation for the general rules to suppress

selected dynamic responses of a general compound planetary gear through proper

mesh phasing. The resultant mesh phasing rules are crucial for the troubleshooting

of the vibration and noise problems in compound planetary gear applications.

Compound planetary gear parametric instabilities caused by mesh stiffness vari-

ations are analytically explored. Systems with single or multiple mesh frequencies

are investigated. The instability boundaries are derived for different cases depending

on the degeneracy of the natural frequencies. Application of the well-defined modal

properties yields simple, closed-form expressions for instability boundaries. Some

instability boundaries vanish under specific mesh phasing conditions.

The back-side mesh stiffness variation is inspected in this work to address the

needs for gear vibration models that consider the gear tooth contacts on the back
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side. The results reveal the inherent relationship between the back-side and drive-

side mesh stiffnesses. The impact of backlash on the back-side mesh stiffness variation

function is also quantified.
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Chapter 1: INTRODUCTION

1.1 Motivation and Objectives

Planetary gears are widely used in all kinds of transmission systems, such as wind

turbines, aircraft engines, automobiles, and machine tools, and they are classified

into two categories: simple and compound planetary gears [31–33, 35, 36, 38, 47, 53].

Simple planetary gears have one sun, one ring, one carrier, and one planet set (i.e.,

single-stage). There is only one planet in each planet train (i.e., simple) (Figure

1.1). Compound planetary gears involve one or more of the following three types

of structures: meshed-planet (as shown in Figure 1.2, there are at least two more

more planets in mesh with each other in each planet train), stepped-planet (as shown

in Figure 1.3, there exists a shaft connection between two planets in each planet

train), and multi-stage structures (as shown in Figure 1.4, the system contains two

or more planet sets) [53]. Compared to simple planetary gears, compound planetary

gears have the advantages of larger reduction ratio, higher torque-to-weight ratio, and

more flexible configurations.

In spite of these advantages, vibration remains a major concern in planetary gear

applications. Vibration creates undesirable noise, reduces fatigue life of the whole

system, and decreases durability and reliability. Vibration reduction, therefore, is a

key to the applications of compound planetary gears. This requires analytical study
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Figure 1.1: A typical simple planetary gear: OH-58D planetary gear.

on compound planetary gear dynamics to provide fundamental understanding of the

dynamics and guide vibration reduction.

Most research on gear dynamics focuses on single gear pairs [30, 40, 51, 52, 78]

or multi-mesh gear systems [24, 60, 62–64]. Recently, considerable progress has been

made in the modeling and analysis of simple planetary gears [6,9,34,43–46,48,56–59,

75, 77, 90, 97, 98]. Studies on compound planetary gears, however, are limited. Many

fundamental analyses that are proved to be essential in other systems and studies

have not been performed, including the purely rotational system modeling and the

associated modal properties [43,45,47,53,56,58,97], the impact of system parameter

changes on natural frequencies and vibration modes (eigensensitivity analysis) [57],

the natural frequency veering and crossing patterns [59], the clarification of mesh

phase relations [48, 77], the suppression of selected dynamic responses through mesh
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Figure 1.2: A typical meshed-planet structure.

phasing [5, 75], and the parametric instability caused by mesh stiffness variations

[61, 98], are not performed.

This study aims at these research gaps and the main objectives are

1. To develop a purely rotational model for general compound planetary gears

that can clarify the confusion in previous rotational planetary gear models and

analytically prove the associated modal properties,

2. To perform an eigensensitivity analysis based on Kiracofe and Parker’s rotational-

translational model [53] and derive the eigensensitivities in compact formulae,

3. To inspect the natural frequency veering/crossing phenomena and identify any

patterns or general rules,

4. To find a way to analytically describe and calculate all the relative mesh phases

in a compound planetary gear,
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Figure 1.3: A typical stepped-planet structure.

5. To investigate the existence of mesh phasing rules for different compound plan-

etary gear models that can suppress certain vibration,

6. To study the parametric instability caused by mesh stiffness variations and to

analytically determine the boundaries for instability regions,

7. To examine the back-side mesh stiffness and to quantify the impact of backlash

on the back-side mesh stiffness.
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Figure 1.4: A typical multi-stage structure. This picture is courtesy of Chris Cooley
using Calyx [96] to generate a 3D FEM example system at the Dynamics and Vibra-
tions Laboratory of The Ohio State University Mechanical and Aerospace Engineering
Department.

1.2 Literature Review

Planetary gear dynamics have been extensively studied since 1970. Most of the

studies, however, focus only on simple planetary gears. In the area of system mod-

eling and modal properties, Cunliffe et al. [22] developed a free vibration model for

an epicyclic gearbox and studied the eigenvalue problem of this specific system. Bot-

man [15] studied the natural frequencies and vibration modes of a simple planetary

gear with eighteen degrees of freedom and measured the responses of planetary gears
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in aircraft turbine engines [17]. Kahraman [43, 44] developed a simple single-stage

planetary gear model with time varying nonlinearity, and carried out a series of re-

searches. He also reduced his model to a purely rotational one, and investigated the

eigenvalue problem of the purely rotational model [45]. Lin and Parker used a two-

dimensional (2-D), lumped-parameter model for simple planetary gears to analytically

examine the vibration properties of equally-spaced [58] and unequally-spaced [56] sys-

tems. Wu and Parker inspected the modal properties of simple planetary gears when

ring gear deformations are included [79, 97]. Eritenel and Parker [25] extended the

investigation scope to helical planetary gears. They set up a three-dimensional (3-D)

model, and provided the mathematical proof of the modal properties that generalize

the previous findings on 2-D planetary gear models.

No research on the modeling and modal properties of compound planetary gears

was conducted until Kahraman [47] proposed a purely rotational model for compound

planetary gears. Purely rotational models greatly simplify the analytical study of

parametric instabilities and nonlinear dynamic responses while still capturing the

main dynamic behavior [5, 6, 9, 61]. Kahraman’s compound planetary gear model

addresses limited configurations of single-stage planetary gears, and the associated

modal properties are not analytically proved. In addition, there are inconsistencies

between this model and the purely rotational models for simple planetary gears used

by other researchers. In particular, the formulae for gear mesh deflections that are

important for the correctness of the model contain mismatches. It is necessary to

clarify the confusion in planetary gear modeling and to develop a purely rotational

model that it is suitable for general compound planetary gears. In addition, the free

vibration properties for this new model should be analytically proved. This model
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along with the associated modal properties are crucial for further analytical studies,

such as the study on parametric instabilities.

Recently Kiracofe and Parker [53] developed a rotational-translational lumped-

parameter model for general compound planetary gears and analytically proved that

tuned compound planetary gears (all planet trains within the same planet set are

identical in system parameters) have structured modal properties. This model pro-

vides a better mathematical description of the system than the purely rotational one.

This model is briefly introduced in this work due to the demands of a refined model

from some later investigations.

Sensitivity of natural frequencies and vibration modes to system parameters is

important for gear design because it shows crucial information on how to tune reso-

nances away from system operating speeds and how to identify the parameters that

have the greatest impact on a certain natural frequency. In addition, veering phenom-

ena occur and obstruct the tracing of eigenvalue loci when some system parameter

varies [59, 80]. It is desirable to understand the veering and crossing characters of

planetary gear natural frequencies in order to complete the understanding on the free

vibration properties for planetary gears. Few studies, however, address these topics.

The influence of design parameters on planetary gear natural frequencies was merely

touched in a few papers, such as Botman’s investigation on the change of natural

frequencies caused by planet support stiffness [15], Ma and his colleague’s study on

the impact of errors and misalignment on load sharing [66], the study on unequal

planet stiffness by Frater et al. [28], and Saada and Velex’s work on the impact of

ring gear support stiffness on natural frequencies. General conclusions, however, were

not presented. The first analytical inspection on eigensensitivity of planetary gears
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was performed by Lin and Parker [57]. They analyzed the eigensensitivities for both

tuned and mistuned simple planetary gears using a rotational-translational model.

Later, Lin and Parker [59] examined the natural frequency veering and crossing phe-

nomena and discovered the veering/crossing patterns for simple planetary gears. All

these studies are limited to simple planetary gears and no work is done for com-

pound planetary gears. To fill the research gap, it is essential to perform a thorough

eigensensitivity analysis of the natural frequencies and vibration modes to key com-

pound planetary gear parameters, especially the parameters associated with meshed-

planet, stepped-planet, and multi-stage structures. In addition, the examinations on

natural frequency veering/crossing phenomena in general compound planetary gears

is wanted to complete the understandings on compound planetary gear free vibration

problem.

Mesh phase refers to the phase lag between gear meshes and it is unique to multi-

mesh gear systems. Proper incorporation of mesh phases into analytical models is a

key for the correctness of planetary gear models. The importance of mesh phase to

planetary gear dynamics has been recognized in past researches. Hidaka et al. [41]

explored the influence of mesh phase on the dynamic behavior of simple planetary

gears. Lots of other studies [8,43,44,48,94] considered mesh phases in the planetary

gear dynamic models. But there are discrepancies between these studies on the un-

derstanding of mesh phases. Parker and Lin [77] clarified the confusions on simple

planetary gear mesh phases and provided an analytical description of mesh phase re-

lations in terms of fundamental gear parameters. The mesh phasing relations in [77],

however, are only for simple planetary gears and do not apply to compound plan-

etary gears, because the meshed-planet, stepped-planet, and multi-stage structures
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that are unique to compound planetary gears add the complexity of mesh phase rela-

tions, and make some key assumptions that are necessary for the derivation of mesh

phases relations in [77], such as the assumption of one mesh frequency, be invalid

for compound planetary gears. It is, hence, critical to have a clear understanding of

compound planetary gear mesh phases and to analytically determine the mesh phases

that are needed for any analytical studies on static or dynamic responses.

Previous investigations on gear dynamics show that proper mesh phasing can

suppress selected dynamic responses and help minimize noise and vibration in the

operating range of transmission systems. Schlegel and Mard [86], Palmer and Fuehrer

[74], Hidaka et al. [41], Platt and Leopold [83], Kahraman [48], and Kahraman and

Blankenship [48] experimentally or numerically illustrated the effectiveness of simple

planetary gear mesh phasing in reducing noise and vibration. Parker [75] analytically

explained the suppression of selected translational and rotational mode responses

through mesh phasing in simple planetary gears. As an extension to [75], Ambarisha

and Parker [5] derived the rules to suppress planet mode responses in a 2-D simple

planetary model through mesh phasing and proposed the mesh phasing rules for a

purely rotational simple planetary gear model. Eritenel and Parker [26] inspected

the elimination of the net force and moment fluctuations at certain harmonics on

the central components (sun, ring, and carrier) of a 3-D planetary gear model under

different mesh phasing conditions. In order to utilize mesh phasing to reduce noise and

vibration in real compound planetary gear applications, it is important to analytically

investigate and drive the mesh phasing rules which provide the guidance to suppress

selected responses by minor adjustments in fundamental system parameters.
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A number of studies suggest that gear mesh stiffness variation has a dramatic

impact on the static and dynamic behavior of gear systems and mesh stiffness varia-

tions combines with geometric errors and tooth micro-geometry modifications are the

main source of parametric instability for gear systems. The parametric instabilities

of single-pair gears are extensively examined in [3, 11, 13, 70]. For multi-mesh gears,

Tordion and Gauvin [92] and Benton and Seireg [11] analyzed the instabilities of two-

stage gear systems but gave contradictory conclusions. The confusion was clarified

by Lin and Parker [60]. Only a few studies explore the parametric instabilities for

planetary gears and most of them are computational investigations whose scopes are

limited to simple planetary gears. For example, August and Kasuba [8] numerically

calculated the dynamic responses of a simple planetary gear with three sequentially-

phased planets when the mesh stiffnesses are time-varying. Velex and Flamand [94]

did a similar work. The analytical inspection on planetary gear parametric instability

was not addressed until Lin and Parker [61] investigated the parametric instability

of simple planetary gears caused by mesh stiffness variation and analytically deter-

mined the instability boundaries. Wu and Parker [98] expanded the investigative

scope to simple planetary gears with elastic continuum ring gears. Similar analytical

studies on compound planetary gears are yet to be performed. Because meshed-

planet, stepped-planet, and multi-stage structures distinguish compound planetary

gears from simple planetary gears, the parametric instability that is related to these

three types of structures is the focus of this study, and the key problems that are

unique to compound planetary gears, such as how multiple mesh frequencies affect

the instability boundaries, are addressed in this work.
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Recent investigations on gear dynamics [34,39,54,84] indicates that tooth wedging

(or tight mesh), the simultaneous drive-side and back-side contacts in certain gear

meshes, is possible and such phenomena are observed in planetary gear applications

[34]. In order to fully understand the impact of back-side contact on compound

planetary gear failures, it is important to set up a model that includes the accurate

description of the back-side contact mesh stiffness. In addition, the study on anti-

backlash gear dynamics requires the analytical description of back-side mesh stiffness.

In spite of these needs, the analytical determination of the back-side mesh stiffness

is not addressed in any published literature. This work analytically determines back-

side mesh stiffnesses and clarifies the relation between drive-side and back-side mesh

stiffnesses.

1.3 Scope of Investigation

The scope of this project is to advance the modeling and understanding of com-

pound planetary gear dynamics and analytically examine certain critical factors affect-

ing noise and vibration of compound planetary gear. A purely rotational compound

planetary gear model and the associated modal properties are presented in Chapter 2.

These models provide the foundation for the subsequent analyses in this work. Sen-

sitivity of natural frequencies and vibration modes to system parameters and natural

frequency veering/crossing patterns of general compound planetary gears are inves-

tigated in Chapter 3 and 4. The systematical studies on the mesh phasing relations

of compound planetary gears present in Chapter 5, and the suppression of selected

compound planetary gear dynamic responses through mesh phasing are studied in

chapter 6. In Chapter 7, the parametric instability of general compound planetary
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gears caused by mesh stiffness variation is analytically investigated. Chapter 8 ex-

amines the time-varying back-side mesh stiffness and its relation with the drive-side

one. The detailed scope of each chapter is as follows.

Chapter 2 develops a purely rotational for general compound planetary gears that

involves any combination of meshed-planet, stepped-planet, and multi-stage configu-

rations. In addition to clarify the discrepancies in gear mesh deflection expressions

and correcting errors in previously published models, this chapter presents and ana-

lytically proves the structured modal properties that are associated with the purely

rotational model. The rotational-translational model by Kiracofe and Parker [53] and

the well-defined modal properties are also briefly introduced in this chapter.

In Chapter 3, the systematic investigation on general compound planetary gear

eigensensitivities are performed. The method to determine the eigensensitivities in

a general compound planetary gear is first introduced. By applying the well-defined

modal properties of general compound planetary gears, the eigensensitivity expres-

sions for both tuned and mistuned systems are simplified and expressed in compact

form. The relationships between eigensensitivities and modal strain/kinetic energies

are studied and the results indicate that the modal strain/kinetic energy distribution

plots are effective tools to identify which system parameters have the greatest impact

on tuning the related natural frequency.

Chapter 4 examines the natural frequency veering and crossing phenomena in

compound planetary gears. By calculating the coupling factors between two fre-

quency loci and applying the well-defined modal properties and eigensensitivies, the

veering/crossing patterns for general compound planetary gears are derived for rota-

tional, translational, and planet tuned parameters, as well as mistuned parameters.

12



Compound planetary gear mesh phase relationships that are critical for the cor-

rectness of models involving mesh stiffness variations are analytically investigated in

Chapter 5. This chapter defines and calculates all the mesh phases for general com-

pound planetary gears. In addition to derive a complete and simple procedure to

determine all the necessary relative phases, the specific relationships between train-

level relative phases are also derived by applying the assembly conditions of compound

planetary gears. The results are numerically verified by Calyx [96] that precisely

tracks gear tooth contacts without any predefined relations.

In Chapter 6, the rules to suppress selected dynamic responses and resonances

through mesh phasing are analytically investigated for both purely rotational and

rotational-translational models of general compound planetary gears.

Chapter 7 studies the parametric instability of general compound planetary gears

that are caused by mesh stiffness variations. Parametric instability boundaries are

analytically derived in closed-form expressions in terms of gear parameters for differ-

ent modal and phasing conditions. Both individual and mutual (unique to compound

planetary gears with multiple mesh frequencies) excitations are inspected in this chap-

ter.

As the expansion of the scope for this work, chapter 8 investigates the phenomenon

of back-side gear mesh contact, analytically derives the relationship between the

drive-side and back-side mesh stiffnesses, and quantitatively evaluates the impacts

of backlash on the phase lag of the back-side mesh stiffness. The resultant analytical

formulae are confirmed by the simulation results from Calyx [96].

13



Chapter 2: COMPOUND PLANETARY GEAR MODELS

AND ASSOCIATED MODAL PROPERTIES

The lumped parameter models of compound planetary gears are the bases for fur-

ther dynamic analysis, and the associated modal properties are critical to understand

the dynamic behavior of such systems. In this chapter, a purely rotational model for

general compound planetary gears that greatly simplifies further analytical work is

first developed. This model clarifies the conflicting gear mesh deflection expressions

in prior research. In addition, the structured vibration properties are analytically

proven.

A rotational-translational compound planetary model developed by Kiracofe and

Parker [53] is briefly introduced in the later part of this chapter. This model provides

more accurate description of compound planetary gears than the purely rotational

one. The well-defined modal properties are essential for further analysis on general

compound planetary gear dynamics in this work.

2.1 Purely Rotational Model and Vibration Modes of Com-

pound Planetary Gears

Compared to planetary gear models with three or more degrees of freedom per

component [22, 36, 43, 53, 56–59, 85, 94], purely rotational degree of freedom models

14



simplify the analytical investigation of gear vibration and nonlinear response while

keeping the main dynamic behavior generated by tooth mesh forces. Such models

have proven useful in studies of simple (no meshed or stepped planet structures),

single-stage planetary gears [6,8,9,61]. Kahraman [47] built purely rotational models

for single-stage compound planetary gears. He derived equations of motion for each

configuration and summarized the vibration properties from numerical results. The

results apply only to the specific configurations in [47].

The present work examines compound planetary gears that involve one or more

of stepped-planet, meshed-planet, and multi-stage configurations. The objectives are

to develop a purely rotational model that is suitable for compound planetary gears

with general configurations, to demonstrate the natural frequency and vibration mode

properties, and to analytically prove these structured vibration properties.

In addition, this study clarifies discrepancies in past planetary gear rotational

models that appear inconsistent in some places [6,9,45,47,61]. For example, the gear

mesh deflection expressions are different in compound [47] and simple planetary gear

rotational models [6,45,61]. Some of these models are incorrect in handling gear mesh

deflections. Others are correct but do not provide enough detail to expose the source

of differences with other models. This study clarifies the confusion.

2.1.1 Purely Rotational Model of Compound Planetary Gears

The purely rotational model of an example two-stage compound planetary gear

is shown in Figure 2.1 (no bearing/shaft stiffnesses are shown). Each carrier, central

gear (i.e., sun gear or ring gear), and planet has a single rotational degree of freedom.
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All external supports and shaft connections are modeled as linear torsional stiffnesses.

The gear meshes are represented by stiffness elements, which could be time-varying

or nonlinear depending on the research needs.

Figure 2.1 also illustrates the concepts of planet train and planet set. A planet

set is all the planets associated with a particular carrier. Each planet set is divided

into several planet trains. Two planets are considered to be in the same planet train

if they are in mesh with each other (meshed planets) or connected to each other by

a shaft (stepped planets) [53].

Choice of Coordinates

The absolute rotations of central gear j and carrier i are θ̂jg and θ̂ic. θ̄
j
g and θ̄ic are

the rotations incurred by the nominal constant rotation speeds of central gear j and

carrier i, respectively. The system coordinates for central gear j and carrier i are

θjg = θ̂jg − θ̄jg (2.1)

θic = θ̂ic − θ̄ic (2.2)

The coordinate for planet m in train l of planet set i (θilmp ) is the rotational

vibration of this planet relative to its associated carrier i, that is,

θilmp = (θ̂ilmp − θ̄ilmp ) − (θ̂ic − θ̄ic) (2.3)

where θ̂ilmp is the absolute rotation and θ̄ilmp is the rotation caused by the nominal

constant speed of this planet.

Researchers studying previous purely rotational planetary gear models [6,9,45,47,

61] have chosen other coordinates. In order to compare different models, in the rest
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Figure 2.1: The example system. All gear meshes are represented by the springs in
red color.
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of this study the coordinates and variables of previous studies are cast in the notation

defined in this study.

Clarification of Gear Mesh Deflections

The expression for deflection of a gear mesh depends on the gear mesh model,

coordinate definition, choice of positive rotation directions, and the components in-

volved in the gear mesh. In this study, gear mesh deflections are calculated along the

line of action tangent to the base circles of the meshing gears. Compressive deflection

along the line of action between two gears is chosen to be positive deflection. Fur-

thermore, counterclockwise rotation is the positive direction for all components. The

two types of gear meshes in compound planetary gears are planet-planet meshes and

central gear-planet meshes (i.e., sun-planet and ring-planet meshes).

Figure 2.2 shows the two possible cases of the planet-planet mesh between planet

m and planet q in train l of planet set i. For case (1), the points A and B are the

ends of the mesh spring that are hinged on planet m and planet q, respectively. The

gear mesh deflection is actually the change of the length of line AB that is caused

by the vibratory motions of points A and B. Considering the length of line AB is

independent of the choice of reference frames and the points A and B are moving

with carrier i, it is convenient to calculate the mesh deflection in the reference frame

rotating together with carrier i.

Figure 2.3 illustrates the deflection of the gear mesh spring in the moving reference

frame that is fixed to carrier i. The points A1 and B1 are the ends of the mesh spring

when planets m and q rotate θilmp and θilqp in the reference frame. Because θilmp and θilqp

are small, the length of A1B1 (the deformed mesh spring) is approximated by A2B2,
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Figure 2.2: The two cases of a planet-planet mesh: (1) along the line of action of the
solid line from A to B, and (2) along the line of action of the dashed line from A′ to
B′.

the projection of line A1B1 on line AB. Thus, the gear mesh deflection is approxi-

mately the difference in length between the two lines AB and A2B2. Let e1 be the pos-

itive unit vector along line AB.
−−→
AA2 = δAe1 and

−−→
BB2 = δBe1 (δB < 0 for positive

θilqp ) are the displacements of points A and B. Application of geometric and trigono-

metric relations in Figure 2.3 yields δA = rilmp tan θilmp −rilmp (1/ cos θilmp −1) sin θilmp ≈
θilmp rilmp and δB = rilqp tan θilqp − rilqp (1/ cos θilqp − 1) sin θilqp ≈ −θilqp rilqp , where rilmp and

rilqp are the base radii of planets m and q. The mesh deflection in this case is

δilmqpp = δA− δB = θilmp rilmp + θilqp r
ilq
p (2.4)

In case (2), the approximate displacements of points A′ and B′ in Figure 2.2 along

the line of action are δA′ = −θilmp rilmp and δB′ = θilqp r
ilq
p . The mesh deflection is

δilmqpp = δA′ − δB′ = −(θilmp rilmp + θilqp r
ilq
p ) (2.5)
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Figure 2.3: The calculation of the gear mesh deflection of Case 1 in Figure 2.

Equations (2.4) and (2.5) differ by a minus sign. They are merged as

δilmqpp = Silmqpp (θilmp rilmp + θilqp r
ilq
p )

Silmqpp =

{
1 case (1) in Figure 2.2
-1 case (2) in Figure 2.2

(2.6)

Similarly, Figure 2.4 shows the two cases of an external gear-planet (sun-planet)

mesh between central gear j and planet m in train l of planet set i. By the above

process, the sun-planet mesh deflection is

δjilmgp = Sjilmgp (θjgr
j
g − θicr

j
g + θilmp rilmp )

Sjilmgp =

{
1 case (1) in Figure 2.4
-1 case (2) in Figure 2.4

(2.7)

For an internal gear-planet mesh (ring-planet mesh, shown in Figure 2.5), the

same process yields the mesh deflection

δjilmgp = Sjilmgp (θjgr
j
g − θicr

j
g − θilmp rilmp ) (2.8)
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the solid line from E to F , and (2) along the line of action of the dashed line from
E ′ to F ′.

21



where Sjilmgp is +1 for case (1) of Figure 2.5, and -1 for case (2).

By introducing the variable σj that equals +1 for an external mesh and -1 for

an internal mesh, equations (2.7) and (2.8) are merged into a general expression for

central gear-planet mesh deflections as

δjilmgp = Sjilmgp

(
θjgr

j
g − σjθilmp rilmp − θicr

j
g

)
(2.9)

Equations (2.6) and (2.9) are the general formulae for any mesh deflection in

general compound planetary gears. Comparisons between these general formulae and

the gear mesh deflections in previous studies [6,9,45,47,61] show differences in some

cases. Some of these studies derived incorrect gear mesh deflection formulae, such

as [61]. Others [6,9,45,47] are correct only under certain circumstances because they

did not fully consider the sign of gear mesh deflections. The differences with prior

papers are discussed below.

The gear-planet mesh deflection formulae in [6, 9, 45] are the same. The mesh

deflection between central gear j and planet m in train l of planet set i from these

studies is called δA
∣∣jilm
gp here. In the notation of this study,

δA
∣∣jilm
gp = θjgr

j
g − σj(θilmp + θic)r

ilm
p − θicr

ilm
c cosαjilmgp

= θjgr
j
g − σjθilmp rilmp − θicr

j
g

(2.10)

where rilmc is the distance between the centers of carrier i and planet m, and αjilmgp

is the pressure angle of this gear-planet mesh. Equation (2.10) agrees with equation

(2.9) except that it lacks the sign variable Sjilmgp . It applies only to case (1) in Figure

2.4. Equation (2.9) is the general form for both cases in Figure 2.4.

The same gear-planet mesh deflection from [61] is called δB
∣∣jilm
gp here. In the

notation of this study, this is

δB
∣∣jilm
gp = ujg − σjuilmp − uic = θjgr

j
g − σjθilmp rilmp − θic(σ

jrilmp + rilmc ) (2.11)
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Comparing with (2.9), equation (2.11) is incorrect. In addition to missing Sjilmgp , the

last term in (2.11) does not equal the matching term in (2.9), that is, −θic(σjrilmp +

rilmc ) �= −θicrjg.
Because simple planetary gears have no planet-planet meshes, no comparisons of

planet-planet mesh deflection expressions can be made to previous simple planetary

gear models.

Comparisons of gear-planet and planet-planet mesh deflections with the compound

planetary gear models in [47] are possible. The gear-planet mesh deflection in [47] is

called δC
∣∣jilm
gp here. The planet-planet mesh deflection between planet m and planet

q in train l of planet set i from [47] is called δD
∣∣ilmq
pp . In the notation of this study,

these are

δC
∣∣jilm
gp = θ̂jg r̄

j
g − σj θ̂ilmp r̄ilmp − θ̂icr

ilm
c

= θjg r̄
j
g − σjθilmp r̄ilmp − θicr̄

j
g

(2.12)

δD
∣∣ilmq
pp = (θ̂ilmp − θ̂ic)r̄

ilm
p + (θ̂ilnp − θ̂ic)r̄

iln
p

= (θilmp + θ̄ilmp − θ̄ic)r̄
ilm
p + (θilnp + θ̄ilnp − θ̄ic)r̄

iln
p

= θilmp r̄ilmp + θilnp r̄ilnp

(2.13)

where r̄jg and r̄ilmp are the pitch radii. Equations (2.12) and (2.13) agree with the

general formulae (2.6) and (2.9) except that all the sign variables Sjilmgp and Silmqpp are

missing and all the base radii are replaced by their matching pitch radii. The presence

of pitch radii in equations (2.12) and (2.13) is as expected considering the use of pitch

radius gear mesh model in [47]. The missing sign variables, however, limit equations

(2.12) and (2.13) to case (1) in Figures 2.2, 2.4, and 2.5.
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Equations of Motion and Eigenvalue Problem

The general system has a carriers and b central gears. A certain stage i has ci

planet trains, and each planet train in stage i has di planets.

The Lagrangian of a general compound planetary gear is

L = 1
2

a∑
i=1

{{
I ic +

ci∑
l=1

di∑
m=1

[I ilmp +milm
p (rilmc )2]

}
(θ̇ic + ¯̇θic)

2+

2
ci∑
l=1

di∑
m=1

I ilmp (θ̇ilmp +
¯̇
θilmp − ¯̇

θic)(θ̇
i
c+

¯̇
θic)+

ci∑
l=1

di∑
m=1

I ilmp (θ̇ilmp +
¯̇
θilmp − ¯̇

θic)
2

}
+

1
2

b∑
j=1

Ijg(θ̇
j
g + ¯̇θjg)

2 − 1
2

b∑
j=1

a∑
i=1

ci∑
l=1

di∑
m=1

kjilmgp (δjilmgp )2−

1
2

a∑
i=1

ci∑
l=1

di∑
m=1

di∑
q=m+1

[
kilmqpp (δilmqpp )2 + kilmqp−p,θθ(θ

ilm
p − θilqp )2

]
−

1
2

a∑
i=1

kicb(θ
i
c)

2 − 1
2

b∑
j=1

kjgb(θ
j
g)

2 − 1
2

a∑
i=1

a∑
n=i+1

kincc,θθ(θ
i
c − θnc )

2−

1
2

a∑
i=1

b∑
j=i

kijcg,θθ(θ
i
c − θjg)

2 − 1
2

a∑
j=1

b∑
h=j+1

kjhgg,θθ(θ
j
g − θhg )

2

(2.14)

where θic and θjg are the rotational vibrations of carrier i and central gear j, θilmp is

the rotational vibration of planet m in train l of planet set i relative to its associated

carrier i, ¯̇θic and ¯̇θjg are the nominal constant rotation speeds of carrier i and central

gear j, ¯̇θilmp is the nominal constant rotation speed of planet m in train l of planet

set i, θ̇ic and θ̇jg are the rotational vibration speeds of carrier i and central gear j, and

θ̇ilmp is the rotational vibration speed of planet m in train l of planet set i relative to

its associated carrier i.
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Lagrange’s equation yields the a + b +
a∑
i=1

cidi equations of motion. For the a

carriers, these are

I iceθ̈
i
c +

ci∑
l=1

di∑
m=1

I ilmp θ̈ilmp + kicbθ
i
c+

b∑
j=1

ci∑
l=1

di∑
m=1

∂δjilm
gp

∂θi
c
kjilmgp δjilmgp +

a∑
n=i+1

kincc,θθ(θ
i
c − θnc ) +

b∑
j=1

kijcg,θθ(θ
i
c − θjg) = τ ic

I ice = I ic +
ci∑
l=1

di∑
m=1

I ilmp +
ci∑
l=1

di∑
m=1

milm
p (rilmc )2

i = 1, · · · , a (2.15)

where θ̈ic is the rotational acceleration of carrier i, and τ ic is the externally applied

torque on carrier i. The b equations of motion for the central gears are

Ijg θ̈
j
g + kjgbθ

j
g +

a∑
i=1

ci∑
l=1

di∑
m=1

∂δjilm
gp

∂θj
g
kjilmgp δjilmgp +

a∑
h=j+1

kjhgg,θθ(θ
j
g − θhg ) +

a∑
i=1

kijcg,θθ(θ
j
g − θic) = τ jg

j = 1, · · · , b (2.16)

where θ̈jg is the rotational acceleration of central gear j, and τ jg is the externally

applied torque on central gear j. The
a∑
i=1

cidi planet equations of motion are

I ilmp θ̈ilmp + I ilmp θ̈ic +
b∑
j=1

∂δjilm
gp

∂θilm
p
kjilmgp δjilmgp

+
di∑

q=1,q �=m

[
∂δilmq

pp

∂θilm
p

kilmqpp δilmqpp + kilmqp−p,,θθ(θ
ilm
p − θilqp )

]
= 0

i = 1, · · · , a; l = 1, · · · , ci; m = 1, · · · , di

(2.17)

where θ̈ilmp is the rotational acceleration of planet m in train l of planet set i relative

to its associated carrier i.

When all gear meshes are modeled as constant stiffnesses, the eigenvalue problem

is

ω2Mθ = Kivθ (2.18)

θ = [θ1
c · · · θac︸ ︷︷ ︸

Carriers

| θ1
g · · · θbg︸ ︷︷ ︸

Central gears

| θ1
ps · · ·θaps︸ ︷︷ ︸

Planet sets

]T (2.19)
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θips = [θi1pt · · · θic
i

pt ]T i = 1, · · · , a (2.20)

θilpt = [θil1p · · · θildi

p ]T i = 1, · · · , a; l = 1, · · · , ci (2.21)

M =

⎡
⎣ Ic 0 Ic,ps

Ig 0
symm. Ips

⎤
⎦ (2.22)

Kiv = Kb + Km (2.23)

Kb = diag(k1
cb, · · · , kacb, k1

gb, · · · , kbgb, 0, · · · , 0) (2.24)

Km =

⎡
⎣ Kc Kc,g Kc,ps

Kg Kg,ps

symm. Kps

⎤
⎦ (2.25)

Kiv is the time-invariant stiffness matrix. Details of the sub-matrices in M and Km

are given in Appendix A.

In contrast to previous simple planetary gear models [6,9,45,61], the mass matrix

here is non-diagonal. This is caused by choosing of the rotational planet vibrations

relative to their associated carriers as the planet coordinates. As a result of this

choice of planet coordinates, the left hand side of equation (2.15) contains the term
ci∑
l=1

di∑
m=1

I ilmp θ̈ilmp that causes the non-diagonal elements I ilmp in the mass matrix.

Equation (2.18) is expanded into three groups of equations for the carriers, central

gears, and planet sets, respectively,

(kicb − ω2I ic)θ
i
c − ω2

ci∑
l=1

di∑
m=1

I ilmp θilmp +
a∑

h=1

kihc θ
i
c+

b∑
j=1

kijc,gθ
j
g +

(
kic,ps

)T
θips = 0

i = 1, · · · , a (2.26)

(kjgb − ω2Ijg )θ
j
g +

b∑
n=1

kjng θ
j
g +

a∑
i=1

kijc,gθ
i
c +

a∑
i=1

(
kjig,ps

)T
θips = 0 j = 1, · · · , b (2.27)

(Ki
ps − ω2Iips)θ

i
ps − ω2θicI

i
c,ps + θick

i
c,ps +

b∑
j=1

θjgk
ji
g,ps = 0 i = 1, · · · , a (2.28)

where kic,ps, kjig,ps, Iic,ps, and θips are all cidi × 1 column vectors given in Appendix A.
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2.1.2 Characteristics of Natural Frequencies and Vibration
Modes

Numerical results from (2.18) show that the natural frequencies and vibration

modes have distinctive properties when all planet trains within the same planet set

are identical and equally spaced. All vibration modes can be classified into two types:

overall modes and planet modes.

In an overall mode, all planet trains in the same planet set have identical motions.

There are exactly a + b +
a∑
i=1

di overall modes. Each mode is associated with a

distinct natural frequency. Figure 2.6 shows a typical overall mode for the compound

planetary gear in Figure 2.1 with the system parameters in Table 2.1.

Planet modes exist when the system has a stage with two or more planet trains.

In planet modes, only the planets in one stage have motion, and all other components

have no motion. Stage i has di sets of degenerate (for ci � 3) planet modes, with

each having natural frequency multiplicity ci − 1. The total number of planet modes

of stage i is (ci − 1)di. In addition, any planet train’s motion in this stage is a scalar

multiple of an arbitrarily chosen planet train’s motion. Figure 2.7 shows a set of

planet modes of stage 1 for the system in Figure 2.1 and Table 2.1. The complete list

of natural frequencies is collected in Table 2.2.

The above properties differ from the summary of vibration properties in [47] in two

ways. Firstly, [47] separates a ”rigid body” mode from the above two types. Secondly,

the number of overall modes is a+ b+
a∑
i=1

di − 2 in [47], instead of a+ b+
a∑
i=1

di.

The rigid body mode that [47] separates from all other modes is actually an overall

mode. In the rigid body mode all planet trains in the same planet set have identical

motions, which is the characteristic of an overall mode. The rigid body modes exist
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Stage 1

Stage 2

Figure 2.6: The overall mode (associated with ω5=902 Hz) of the example system in
Figure 2.1 and Table 2.1. The deflections of carriers are not shown.
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Stage 1(a) Stage 1(b)

Stage 1(c)

Figure 2.7: The three planet modes (associated with ω14,15,16=3067 Hz) of the example
system in Figure 2.1 and Table 2.1. The mode shapes of stage 2 are not shown here,
because no component in stage 2 has motion.
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in [47] because all configurations discussed therein have unconstrained input and

output components. If one or both of the input/output components are constrained

or spring-mounted to ground, no rigid body mode exists.

The second difference with the summary of modal properties in [47] is because [47]

is based on a restricted set of configurations. All the configurations in [47] have a

fixed central gear or carrier, so the number of degrees of freedom are reduced by one

due to that fixed component.

In what follows, the above vibration mode properties are proved mathematically.

Proposed candidate modes for each type of mode based on the above properties

are shown to satisfy the eigenvalue problem. By showing that the total number of

eigenvalues obtained in this way equals the total number of degrees of freedom of the

system, the two mode types are proven to be an exhaustive list of the possible mode

types.

Overall Modes

A candidate overall mode from (2.19)-(2.21) is

θ = [θ1
c · · · θac |θ1

g · · · θbg|θ1
ps · · ·θaps]T

θips = [θi1pt · · ·θi1pt]T
θi1pt = [θi11p · · · θi1di

p ]T
i = 1, · · · , a (2.29)

Note that all di planet trains in planet set i have the same deflection. Insertion of

(2.29) into (2.26)-(2.28) yields

(kicb − ω2I ic)θ
i
c − ω2ci

di∑
m=1

I i1mp θi1mp +

a∑
h=1

kihc θ
i
c +

b∑
j=1

kijc,gθ
j
g + ci

(
ki1c,pt

)T
θi1pt = 0

i = 1, · · · , a (2.30)

(kjgb − ω2Ijg)θ
j
g +

b∑
n=1

kjng θ
j
g+

a∑
i=1

kijc,gθ
i
c + ci

a∑
i=1

(
kji1g,pt

)T
θi1pt = 0

j = 1, · · · , b (2.31)

30



⎧⎪⎨
⎪⎩
⎡
⎢⎣ ki111p . . . ki11d

i

p
...

. . .
...

ki1d
i1

p · · · ki1d
idi

p

⎤
⎥⎦− ω2

⎡
⎢⎣ I i11p 0

. . .

0 I i1d
i

p

⎤
⎥⎦
⎫⎪⎬
⎪⎭
⎡
⎢⎣ θi11p

...

θi1d
i

p

⎤
⎥⎦

−ω2θic

⎡
⎢⎣ I i11p

...

I i1d
i

p

⎤
⎥⎦+ θic

⎡
⎢⎣ ki11c,p

...

ki1d
i

c,p

⎤
⎥⎦+

b∑
j=1

θjg

⎡
⎢⎣ −σjkji11gp rjgr

i11
p

...

−σjkji1di

gp rjgr
i1di

p

⎤
⎥⎦ = 0

i = 1, · · · , a

(2.32)

Equations (2.30) and (2.31) give a and b independent equations, respectively. For

each i, the matrix equation (2.32) contains di independent component equations.

Thus, equations (2.30)-(2.32) yield a+ b+
a∑
i=1

di linear, homogeneous equations with

a + b +
a∑
i=1

di unknowns from equation (2.29) and the undetermined eigenvalue ω2.

This forms a reduced eigenvalue problem. From the a + b +
a∑
i=1

di solutions of this

reduced eigenvalue problem, overall modes for the whole system are constructed from

(2.29).

Planet Modes

A candidate planet mode associated with stage i is

θ = [0 · · ·0|0 · · ·0|0 · · · , θips, · · ·0]T

θips = [v1θi1pt, v
2θi1pt, · · · , vciθi1pt]T

θi1pt = [θi11p · · · θi1di

p ]T
(2.33)

where the vl (l = 1, · · · , ci) are as yet unknown scalars. All motion is confined to

the ith planet set. Substitution of (2.33) into (2.26)-(2.28) and use of the cyclical

symmetry of planet trains in stage i (kilc,pt = ki1c,pt, kjilg,pt = kji1g,pt, and Iilpt = Ii1pt) give

ci∑
l=1

vl
(
ki1c,pt

)T
θi1pt =

ci∑
l=1

vl
b∑

j=1

di∑
m=1

σjkji1mgp rjgr
i1m
p θi1mp = 0 (2.34)

ci∑
l=1

vl
(
kji1g,pt

)T
θi1pt =

ci∑
l=1

vl
di∑
m=1

(−σjkji1mgp rjgr
i1m
p θi1mp ) = 0 j = 1, · · · , b (2.35)

(Ki1
pt − ω2Ii1pt)θ

i1
pt = 0 (2.36)
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Equation (2.34) represents the moment exerted on carrier i by the planets. This

equation requires either
ci∑
l=1

vl = 0 or
b∑
j=1

di∑
m=1

σjkji1mgp rjgr
i1m
p θi1mp = 0. The quantity

b∑
j=1

di∑
m=1

σjkji1mgp rjgr
i1m
p θi1mp is nonzero, in general, because θi1mp (m = 1, · · · , di) are

independently determined by (2.36). Hence, equation (2.34) yields

ci∑
l=1

vl = 0 (2.37)

The same analysis applies to equation (2.35) and yields the same equation as

(2.37), which has ci − 1 independent, non-trivial solutions.

Equation (2.36) is a reduced eigenvalue problem with di eigensolutions. For each

such eigensolution of (2.36), ci − 1 independent planet modes, each having the same

natural frequency, can be constructed for the full system eigenvalue problem (2.18)

using (2.33) and the independent solutions of (2.37). Therefore, stage i has (ci− 1)di

planet modes. For the whole system, the total number of planet modes is
a∑
i=1

(ci − 1)di.

Completeness of the Modes

Summing the total number of overall and planet modes gives a+b+
a∑
i=1

cidi modes,

which equals the total system degrees of freedom. Therefore, the overall and planet

modes discussed above form a complete set of vibration modes of a general compound

planetary gear.

2.1.3 Summary for Purely Rotational Compound Planetary
Gear Model

A purely rotational degree of freedom model is constructed for general compound

planetary gears involving any combination of meshed-planet, stepped-planet, and

multi-stage configurations. By providing the modeling details and comparisons with
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previous planetary gear models, this study clarifies discrepancies in gear mesh de-

flection expressions and corrects errors in previously published models. All vibration

modes of the system fall into the categories of overall and planet modes. The prop-

erties of these mode types are presented and proved.

Table 2.1: Parameters of the compound planetary gear
in Figure 2.1.

Number of Carriers 2
Number of Central
Gears

4

Number of Planet
Trains

c1=4, c2=6

Number of Planets per
Train

d1=3, d2=1

Planet Location

ψ1l1 = 2π(l−1)
4

; l = 1, · · · , 4
ψ2l1 = 2π(l−1)

6
; l = 1, · · · , 6

ψ1l2 = ψ1l3 = ψ1l1 + 32◦

β1l12 = 70◦, β1l21 = 218◦

Mesh Stiffnesses (N/m)

kjilmgp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

500 × 106 If j = 1, i = 1, m = 1
j = 2, i = 1, m = 3
j = 3, i = 2, m = 1
j = 4, i = 2, m = 1

0 Otherwise

kilmqpp =

⎧⎨
⎩

500 × 106 If i = 1, m = 1, q = 2
i = 1, m = 2, q = 1

0 Otherwise

Torsional Bearing Stiff-
ness (N-m/rad)

kicb,θθ = 0, k1
gb,θθ = k3

gb,θθ = 0
k2
gb,θθ = k4

gb,θθ = 500 × 106

Torsional Shaft Stiff-
nesses (N-m/rad)

kjng,θθ = kihc,θθ = 0

kijcg,θθ =

{
200 × 106 If i = 1, j = 3
0 Otherwise

kilmqp−p,θθ =

⎧⎨
⎩

100 × 106 If i = 1, m = 2, q = 3
i = 1, m = 3, q = 2

0 Otherwise
Mass (kg) m1l1

p = m1l2
p = m1l3

p = 0.75, m2l1
p = 2.00

Continued on next page
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Table 2.1 – Continued from previous page

Moment of Inertia (kg-
m2)

I1
g = 0.05, I2

g = 0.5
I3
g = 0.05, I4

g = 0.5
I1
c = 1.00, I2

c = 1.20
I1l1
p = I1l2

p = 0.01, I1l3
p = 0.09 I2l1

p = 0.20

Radii (mm)

r1
g = 100.0, r2

g = 320.6
r3
g = 100.0, r4

g = 300.0
r1l1
c = 176.5, r1l2

c = r1l3
c = 270.0, r2l1

c = 220.7
r1l1
p = 60.0, r1l2

p = 77.7, r1l3
p = 55.8 r2l1

c = 100.0

Gear Type
σ1 = σ3 = −1 (sun gear)
σ2 = σ4 = 1 (ring gear)

Table 2.2: Natural frequencies for the example system of
Figure 2.1 with parameters listed in Table 2.1. O means
overall mode, P1 means planet mode of planet set 1, and
P2 means planet mode of planet set 2.

Natural
Frequency
Number

Natural
Frequency

(Hz)

Vibration
Mode
Type

1 0 O
2, 3, 4 860 P1

5 902 O
6, 7, 8, 9, 10 1125 P2

11 1241 O
12 1746 O
13 1899 O

14, 15, 16 3067 P1
17 4226 O
18 5926 O
19 6314 O
20 10945 O

21, 22, 23 16985 P1
24 16986 O
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2.2 Rotational-translational Model of Compound Planetary
Gears and the Associated Modal Properties

Compared to the purely rotational model in previous section, the rotational-

translational model for general compound planetary gears developed by Kiracofe and

Parker [53] provides a better mathematical description of compound planetary gear

systems. Because this model and the associated modal properties are extensively

used and cited in the subsequent investigations, this section briefly introduces this

model and the findings by Kiracofe and Parker to prevent redundancy in the following

chapters.

2.2.1 Rotational-translational Model of Compound Plane-
tary Gears

Similar to the rotational-translational model for simple planetary gear by Lin and

Parker [58], each carrier, planet, and central gear in Kiracofe and Parker’s model [53]

has three degrees of freedom: two translational and one rotational, bearings are

modeled as two translational springs, shaft connections are modeled as one torsional

and two translational springs, and gear meshes are modeled as springs.

Different from the simple planetary gear model in [58], a single fixed basis is used

for all central components coordinates(carriers and central gears)in order to be com-

patible with multi-stage structures, the meshed-planet orientation angle (e.g., βilmn

the orientation angle between planets m and n in train l of planet set i in Figure 2.8)

and the planet-planet mesh stiffnesses (e.g., κilmnpp the mesh stiffness between planets

m and n in train l of planet set i in Figure 2.8) are introduced to include meshed-

planet structures, and two translational shaft connection stiffnesses (e.g., kilmqp−p,ζζ and

kilmqp−p,ηη the translational shaft stiffnesses between planet m and q in planet train l of
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planet set i) and one torsional shaft connection stiffness (e.g., kilmqp−p,uu the torsional

shaft stiffnesses between planetm and q in planet train l of planet set i) are introduced

to incorporate stepped-planet structures.

Figure 2.8 illustrates the model of a planet-planet mesh between planets m and n

in train l of planet set i in [58], where kilmp and kilnp are the bearing stiffnesses of planets

m and n in train l of planet set i, ψilm and ψiln are the angular positions of these

two planets, (ζ ilmp , ηilmp ) and (ζ ilnp , ηilnp ) are their radial and tangential coordinates

which are fixed at each planet’s equilibrium position and do not translate with the

vibration of the associated carrier, uilmp = rilmp θilmp and uilnp = rilnp θilnp are the their

rotational coordinates, and (rilmp , θilmp ) and (rilnp , θilnp ) are the rotations and base radii

of these two planets, respectively. Figure 2.9 shows the model of an external central

gear-planet (i.e, sun-planet) mesh between central gear j and planet m in train l of

planet set i in [58], where κjilmgp is the mesh stiffness for this this central gear-planet

mesh, αjilmg is the associated pressure angle, (xjg, y
j
g) are the translational coordinates

for central gear j, rjg and θjg are the rotation and base radius of central gear j, and

kjg,xx and kjg,yy are the translational bearing stiffnesses central gear j.

The equations of motion for each component in a general compound planetary

gear system are given in [53]. Putting all equations of motion into matrix form yields

Mφ̈(t) + Kφ(t) = F(t) (2.38)

where K = Kb + Km(t), Kb is the diagonal bearing stiffness matrix, Km(t) is the

symmetric stiffness matrix from coupling between elements (both tooth meshes and

shaft couplings), and F(t) is the vector of applied forces and torques. For details of

M and K, please refer to the Appendix of [53].
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Figure 2.8: The planet-planet gear mesh between planet m and q in planet train l of
planet set i) is modeled by a spring with stiffness κilmnpp and the static transmission
error eilmnpp in [53].
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Figure 2.9: The sun-planet gear mesh between central gear j and planet m in train
l of planet set i is modeled by spring with stiffness κjilmgp and the static transmission
error ejilmgp in [53].
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2.2.2 Modal Properties of General Compound Planetary Gears

For eigenvalue analysis the linear time-invariant form of the above rotational-

translational model is considered, where the mesh stiffnesses are averages over a

mesh cycle. The imposed assumptions are that all planet trains are equally spaced

around their associated carrier, each planet set has three or more planet trains, and

all bearing and shaft stiffnesses are isotropic. Thus, the eigenvalue problem for a

general compound planetary gear is

(K − λM)φ = (Kb + Km − ω2M)φ = 0
φ = (φ1

c , · · · ,φa
c︸ ︷︷ ︸

carriers

,φ1
g, · · · ,φb

g︸ ︷︷ ︸
central gears

,φ1
ps, · · · ,φa

ps︸ ︷︷ ︸
planet sets

)T

Carrier i: φi
c = [xic, y

i
c, θ

i
c]
T

Central gear j: φj
g = [xjg, y

j
g, θ

j
g]
T

Planet set i: φi
ps = (φi1

pt, · · · ,φici

pt )
T

Planet train l of set i: φil
pt = (φil1

p , · · · ,φildi

p )T

Planet m in train l of set i : φilm
p = (ζ ilmp , ηilmp , uilmp )T

(2.39)

where throughout this study 1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ l ≤ ci, 1 ≤ m ≤ di, a is

the number of carriers, b is the number of central gears, ci is the number of planet

trains of planet set i, and di is the number of planets per train of planet set i. The

eigenvalue λ = ω2, where ω is the natural frequency. The translational coordinates

for carrier i are xic and yic, and the rotation of carrier i is θic. The total degrees of

freedom is Λ = 3

(
a+ b+

a∑
i=1

cidi
)

.

If all planet trains in a planet set are equally spaced and have identical model

parameters, the planet set is tuned. Otherwise, the planet set is mistuned. If all the

planet sets in a system are tuned, then the whole system is tuned, otherwise it is

mistuned. For tuned systems, all modes fall into one of the following classes [53]

(A) Rotational Modes

The natural frequencies of rotational modes are distinct. All central gears and
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carriers have rotational motion only. All planet trains within a planet set have

the same motion. Thus, a rotational mode has the form

φi
c = (0, 0, θic)

T , i = 1, 2,...,a (2.40)

φj
g = (0, 0, θjg)

T , j = 1, 2,..., b (2.41)

φi
ps = (φi1

pt,φ
i1
pt, · · · ,φi1

pt︸ ︷︷ ︸
ci trains

)T , i = 1, 2,...,a (2.42)

(B) Translational Modes

The natural frequencies of translational modes have multiplicity two when all

planet sets have three or more planet trains. All central gears and carriers have

translational motion only. The pair of degenerate translational modes (φ and φ̂

are chosen such that φ̂TMφ = 0) has the form

φ = (φ1
c , · · · ,φa

c ,φ
1
g, · · · ,φb

g,φ
1
ps, · · · ,φa

ps)
T (2.43)

φ̂ = (φ̂1
c , · · · , φ̂a

c , φ̂
1
g, · · · , φ̂b

g, φ̂
1
ps, · · · , φ̂a

ps)
T (2.44)

φi
c = (xic, y

i
c, 0)T φ̂i

c = (yic,−xic, 0)T (2.45)

φj
g = (xjg, y

j
g, 0)T φ̂j

g = (yjg,−xjg, 0)T (2.46)[
φilm
p

φ̂ilm
p

]
=

[
I cos ψ̂ilm I sin ψ̂ilm

−I sin ψ̂ilm I cos ψ̂ilm

] [
φil1
p

φ̂il1
p

]
(2.47)

where 1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ l ≤ ci, 1 ≤ m ≤ di, I is an identity matrix, and

ψ̂ilm = ψilm − ψi1m is the planet position angle difference between planet m of

train l and planet m of train l in planet set i.

(C) Planet Modes

In planet modes, only one planet set deflects. With planet set h being the planet
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set having motion in a certain planet mode, the planet mode associated with

planet set h has the form

φ = ( 0, · · · , 0︸ ︷︷ ︸
carriers

, 0, · · · , 0︸ ︷︷ ︸
central gears

, 0, · · · ,φh
ps, 0, · · ·0︸ ︷︷ ︸

planet sets

)T (2.48)

In addition, the motion of each planet train in planet set h is a scalar multiple

of any chosen planet train in this planet set, that is,

φh
ps = (w1φh1

pt , w
2φh1

pt , · · · , wc
h

φh1
pt )

T (2.49)

φh1
pt = (φh11

p ,φh12
p , · · · ,φh1dh

p )T (2.50)

φh1m
p = (ζh1m

p , ηh1m
p , uh1m

p )T , m = 1, · · · ,di (2.51)

where the scalar multipliers wl (l = 1, · · · ,ch) satisfy

ch∑
l=1

wl
dh∑
m=1

sinψhlm = 0
ch∑
l=1

wl
dh∑
m=1

cosψhlm = 0
ch∑
l=1

wl = 0 (2.52)

The planet mode frequencies for planet set h have multiplicity ch − 3.

2.3 Conclusion

A purely rotational model for general compound planetary gears is developed

in the first section of this Chapter’s study. This model clarifies discrepancies in

gear mesh deflection expressions and corrects errors in previously published models.

The distinct modal properties for this purely rotational model are presented and

analytically proved. This model aims to greatly simplify further analysis on compound

planetary gear dynamics, such as the parametric instability caused by mesh stiffness

variations, while keeping the main dynamic behavior generated by tooth mesh forces.
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The rotational-translational model by Kirocofe and Parker [53] is also briefly intro-

duced in this Chapter. This model, together with the associated well-defined modal

properties, are critical to the parametric analysis of compound planetary gears, such

as the sensitivity of natural frequencies and vibration modes to system parameters

and the natural frequency veering and crossing patterns, which require a refined

mathematical description of the system.
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Chapter 3: SENSITIVITY OF GENERAL COMPOUND

PLANETARY GEAR NATURAL FREQUENCIES AND

VIBRATION MODES TO MODEL PARAMETERS

3.1 Introduction

Simple planetary gears have only one stage and only one planet in each load

path. Compound planetary gears involve stepped-planet, meshed-planet or multi-

stage structures [53]. Compared to simple planetary gears, compound planetary gears

provide larger reduction ratios and more flexible configurations [53, 65], but they

create more noise and vibration problems [47]. Sensitivity of the natural frequencies

and vibration modes to system parameters, such as mesh stiffnesses and mases of

the components, provides important information for tuning resonances away from

operating speeds and minimizing dynamic response. The study in this chapter derives

the eigensensitivities of general compound planetary gears to system parameters with

the purpose of providing guidance for system design.

The variations of planetary gear natural frequencies to selected parameters have

been examined previously. Botman [16] plotted the natural frequencies versus planet

support stiffness and studied the effect of carrier rotation through a numerical exam-

ple. Saada and Velex [85] studied the influence of ring gear support stiffness on the

natural frequencies. These and similar works present only numerical results. Lin and
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Parker used a two-dimensional, lumped-parameter model to systematically analyze

planetary gear eigensensitivities [57,58]. All of these analyses are restricted to simple

planetary gears. No systematic analysis of general compound planetary gear eigensen-

sitivities exists. In addition, the eigensensitivities to the system parameters that are

unique to compound planetary gears (e.g., planet-planet mesh stiffness, planet-planet

shaft stiffness, and the coupling stiffness between stages) have not been considered

numerically or analytically.

One barrier for the eigensensivity analysis of compound planetary gears is to

choose the proper model for this analysis. Kahraman [47] developed a purely rota-

tional models for limited configurations of single-stage compound planetary gears.

The purely rotational model that is introduced in Chapter 2 of this work applies to

general compound planetary gears. These purely rotational models, however, are not

suitable for eigensensivity analysis because eigensensivity analysis requires the model

to have an accurate description of the real system such that the eigensensitivity re-

sults are accurate enough to predict the changes of natural frequencies and vibration

modes for real applications. For lumped-parameter models, a model with three or

more degrees of freedom for each component is preferred, because more degrees of

freedom indicate better description of the motions for each component, and the re-

sultant natural frequencies, vibration modes, and eigensensitivities are closer to real

systems. Purely rotational models ignores all translational motions of the compo-

nents and assign just one rotational degree of freedom to each component. The total

degrees of freedom for purely rotational models is much less than those rotational-

translational models which have three degrees of freedom for each component. Thus,
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it is preferred to choose the rotational-translational compound planetary gear model

for the eigensensivity analysis in this chapter.

In previous chapter a rotational-translational model by Kiracofe and Parker [53]

is briefly introduced. In that model each gear or carrier has one rotational and two

translational degrees of freedom. All bearings and shaft connections are modeled as

one torsional and two translational springs. All gear meshes are modeled as springs.

The results of [53] show that tuned (that is, axisymmetric) compound planetary gears

with three or more planet trains in each planet set have structured modal properties

that are similar to those of simple planetary gears [58]. The vibration modes of

such compound planetary gears are classified as rotational, translational and planet

modes, with each having well-defined properties. The investigation in this chapter

uses the model by Kiracofe and Parker [53] to analytically investigate the sensitivities

of natural frequencies and vibration modes to all stiffness and inertia parameters of

general compound planetary gears. Both tuned and mistuned compound planetary

gears are studied in this chapter.

3.2 Eigensensitivity Calculation

The eigensensitivities of interest in this study are the first and second eigen-

value derivatives and the first order eigenvector derivative with respect to a system

parameter: λ′u, λ
′′
u, and φ′

u. The analytical procedures to calculate these eigensensi-

tivities [21, 27, 57] are introduced briefly as follows.

When λu is a distinct eigenvalue of (2.39), the associated eigensensitivities are

found by differentiating (2.39) to obtain

λ′u = φT
u (K′ − λuM

′)φu (3.1)
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φ′
u = −1

2
(φT

uM
′φu)φu +

Λ∑
v=1,v �=u

φT
v (K

′ − λuM
′)φu

λu − λv
φv (3.2)

λ′′u = 2φT
u (K′ − λuM

′)φ′
u + φT

u (K′′ − λuM
′′ − λ′uM

′)φu (3.3)

The form of (3.2) results from series expansion of φ′
u in the basis of the eigenvectors

φv, v = 1, 2, · · · , u− 1, u+ 1, · · · , Λ.

For the case of a degenerate eigenvalue of (2.39), suppose the eigenvalue has multi-

plicity w such that λ1 = · · · = λw. N = [η1, · · ·ηw] is an arbitrary set of independent

eigenvectors normalized such that NTMN = I. The eigenvectors [η1, · · ·ηw] have

the translational or planet mode properties in (2.43)-(2.52). Let Φ = NB produce a

preferred set of eigenvectors Φ = [φ1, · · · ,φw], where the w × w matrix B is to be

determined, B = [β1, · · · , βw]w×w, and φf = Nβf (f = 1, · · · , w). Differentiation

of (2.39) gives

(K − λfM)φ′
f = (λ′fM + λfM

′ −K′)Nβf = f (3.4)

The w solvability conditions of (3.4) are ηT1 f = ηT2 f = · · · = ηTt f = 0, and these yield

the eigenvalue problem

Dβf = λ′fβf D = NT (K′ − λfM
′)N (3.5)

Thus, the first order eigenvalue derivatives of the w degenerate eigenvalues of (2.39)

are the eigenvalues of D in (3.5). For the case when all the eigenvalues of D are

distinct, βf is uniquely determined from (3.5) with normalization βT
f βf = 1. Thus,

φf = Nβf is also determined. Like ηf , the w eigenvectors φf also have the trans-

lational or planet mode properties in (2.43)-(2.52). The set Φ is the preferred set

compared to N, because Φ yields a diagonal form of D in (3.5) and leads to simpler

eigenvector derivative expressions.

45



The first order eigenvector derivative for a distinct λ′f in (16) is

φ′
f = jf + Φπf (3.6)

where Φπf is the general solution of the homogeneous form of (3.4), and jf is a

particular solution of (3.4) such that (K − λfM)jf = f. According to Nelson [73],

jf =
Λ∑

k=w+1

gkfφk, where gkf =
φT

k (λfM′−K′)φf

λk−λf
, and k = w + 1, · · · , Λ.

The πf in (17) are determined collectively by first forming the w×w matrix Π =

[π1, · · ·πw]. The diagonal and off-diagonal elements of Π are given as [29,57,67,73]

Πff = −1

2
φT
f M

′φf , f = 1, · · · , w (3.7)

Πef =
2φT

e (K
′ − λfM

′)jf
2(λ′f − λ′e)

− φT
e (2λ′fM

′ −K + λfM)φf

2(λ′f − λ′e)

e = 1, · · · , w f = 1, · · · , w e �= f

(3.8)

By taking the second order derivative of (2.39) [29,57,67,73], the second order eigen-

value derivatives λ′′f are calculated as

λ′′f = 2φT
f (K

′ − λfM
′)jf + φT

f (K − λfM− λ′fM
′)φf (3.9)

When the matrix D has degenerate eigenvalues, the eigenvectors of D that are

associated with these degenerate eigenvalues are not unique. Therefore, the associated

first order eigenvector derivatives of (2.39) can not be determined. Nevertheless, the

w second order eigenvalue derivatives are derived as the eigenvalues of [29, 57]

E = 2ΦT(K′ − λfM
′)J + ΦT (K− λfM − λ′fM

′)Φ (3.10)

where J = [j1, · · · , jw]consists of jf (f = 1, · · · , w), which is calculated during the

derivation of φf in (3.6).
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With these closed-form eigensensitivity expressions, the approximate uth eigen-

value λ̃u and its associated eigenvector φ̃u of the perturbed system are

λ̃u = λu +
∑
ρ

λ′u |ρ=ρ0 (ρ− ρ0) +
1

2

∑
ρ

λ′′u |ρ=ρ0 (ρ− ρ0)
2 (3.11)

φ̃u = φu +
∑
ρ

φ′
u |ρ=ρ0 (ρ− ρ0) (3.12)

3.3 Eigensensitivity of Tuned Systems

For the case when the perturbed system remains tuned, the structured modal

properties for compound planetary gears [53] are retained. The possible changing

stiffness parameters considered are the mesh stiffnesses between planets and central

gears/other planets (kji∗mgp , ki∗mqpp ), the translational support (bearing) stiffnesses of

carriers/central gears/planet (kicb, k
i
gb, k

i∗m
p ), the torsional support stiffnesses of car-

riers/central gears (kicb,θθ, k
i
gb,θθ), and the shaft stiffnesses connecting any two compo-

nents . The changing inertia parameters are the mass and moment of inertia of each

component (mi
c, I

i
c, m

j
g, I

j
g , m

ilm
p , I ilmp ). The nomenclature section states the mean-

ing of all variables, superscripts, and subscripts (the same nomenclature as in [53] is

used).

3.3.1 Calculation of Eigensensitivity of Tuned Systems

Because the eigensensitivity calculation procedures are similar for all parameters,

explanation of one calculation for a certain stiffness parameter is sufficient. The

eigensensitivities to kji∗mgp are a representative example. In order to use equations

(2.39)-(2.52) and (3.1)-(3.12) to calculate the eigensensitivities, the derivatives of the

mass and stiffness matrix with respect to the perturbed parameter are needed. These
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are

∂M

∂kji∗mgp

= 0 (3.13)

∂K

∂kji∗mgp

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

∂
ci∑

l=1

Kjilm
g1

∂kji∗m
gp

· · ·
∂

ci∑
l=1

Kjilm
gp

∂kji∗m
gp

...
...

∂
ci∑

l=1
(Kjilm

gp )
T

∂kji∗m
gp

· · ·
∂

ci∑
l=1

Kjilm
g3

∂kji∗m
gp

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.14)

where all sub-matrices of ∂K/∂kji∗mgp are zero except the four sub-matrices indicated

in (3.13), which are coupling terms between central gear j and planet m in any train

of stage i. These sub-matrices are linearly dependent on kji∗mgp as shown below.

Kjilm
g1 = kjilmgp

⎡
⎣ sin2 ψjilmg − cosψjilmg sinψjilmg −rjg sinψjilmg

cos2 ψjilmg rjg cosψjilmg

symmetric
(
rjg
)2

⎤
⎦ (3.15)

Kjilm
g3 = kjilmgp

⎡
⎣ sin2 αjilmg −σj cosαjilmg sinαjilmg − sinαjilmg

cos2 αjilmg σjg cosαjilmg

symmetric 1

⎤
⎦ (3.16)

Kjilm
gp = kjilmgp

⎡
⎣ −σj sinψjilmg sinαjilmg sinψjilmg cosαjilmg σj sinψjilmg

−σj cosψjilmg sinαjilmg − cosψjilmg cosαjilmg −σj cosψjilmg

rjgσ
j sinαjilmg −rjg cosαjilmg rjgσ

j

⎤
⎦ (3.17)

where αjilmg is the pressure angle of gear mesh kjilmgp , σj equals 1 (or -1) when central

gear j is a ring gear (or a sun gear), and ψjilmg = ψilm + σjαjilmg .

Because rotational, translational and planet modes have different multiplicity of

eigenvalues, one must consider their eigensensitivities separately.

For the case of rotational modes, one can apply (2.40)-(2.42) directly because all

rotational mode eigenvalues are distinct. The expressions for the eigensensitivities

simplify further by applying the relationships

φT
u

∂K

∂kji∗mgp

φv = δjilmg,u δjilmg,v (3.18)
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δjilmg,u = yjg,u cosψjilmg,u − xig,u sinψjilmg,u + rigθ
i
g,u + ξilmp,u σ

i sinαjilmg,u − ηilmp,u cosαjilmg,u − σjuilmp,u

(3.19)

where δjilmg,u is the mesh deflection between gear j and planet m in train l of planet set

i for vibration mode u. Rotational mode properties indicate δjilmg,u is the same for all

the trains in planet set i. Therefore, the mesh deflection between gear j and planet

m in any train of planet set i in a rotational mode u is expressed as δji∗mg,u , where *

implies any planet train.

The simplified eigensensitivities for a rotational mode are

∂λu

∂kji∗mgp

=
ci∑
l=1

(δjilmg,u )2 = ci(δji∗mg,u )2 (3.20)

∂φu

∂kji∗mgp

=
Λ∑

v=1,v �=u

ci∑
l=1

δji∗mg,u δjilmg,v

λu − λv
φv (3.21)

∂2λu

(∂kji∗mgp )2
=

Λ∑
v=1,v �=u

2

λu − λv
(
ci∑
l=1

δji∗mg,u δjilmg,v )2 (3.22)

Equation (3.20) expresses the eigenvector derivative ∂φu

∂kji∗m
gp

as a modal expansion

of all other eigenvectors. The eigenvector φv (v �= u) has dominant impact on ∂φu

∂kji∗m
gp

if its associated eigenvalue (λv) is close to λu, and if the sum of the mesh deflections

of gear j and planet m in all the trains of planet set i for vibration mode v (
ci∑
l=1

δjilmg,v )

is large compared to those for other modes. In addition, if
ci∑
l=1

δjilmg,v = 0 (e.g., when φv

is a planet mode of stages other than stage i), the eigenvector φv has no contribution

to φ′
u. While the first derivative in (3.20) depends only on φu (the mode associated

with λu), the second order derivative in (3.22) depends on all modes other than φu,

with the greatest contribution coming from modes with eigenvalues close to λu.
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If all planet sets have three or more planet trains, there are a+b+3
a∑
i=1

di different

translational eigenvalues, each with multiplicity two [53]. Suppose λ1 = λ2 is a degen-

erate translational eigenvalue, and φ1 and φ2 are the associated pair of orthonormal

(with respect to M) translational modes of the unperturbed system. The matrix D

is derived from equation (3.5) as

D = ΦT [
∂K

∂kji∗mgp

− λu
∂M

∂kji∗mgp

]Φ

= ΦT [
∂K

∂kji∗mgp

]Φ =

ci∑
l=1

[
(δjilmg,1 )2 δjilmg,1 δjilmg,2

δjilmg,1 δjilmg,2 (δjilmg,2 )2

] (3.23)

The properties of translational modes indicate the equalities
ci∑
l=1

(δjilmg,1 )2 =
ci∑
l=1

(δjilmg,2 )2

and
ci∑
l=1

δjilmg,1 δjilmg,2 = 0. Because D is diagonalized by [φ1, φ2], these two eigenvectors

form a preferred pair of translational modes. From the eigenvalues of D, the first

order eigenvalue derivatives are

∂λ1

∂kji∗mgp

=
∂λ2

∂kji∗mgp

=
ci∑
l=1

(δjilmg,1 )2 (3.24)

Because D has a degenerate eigenvalue, the first order eigenvector derivatives can

not be determined. The second order eigenvalue derivatives are calculated from the

eigenvalues of E in (3.10), where

E =

⎡
⎢⎢⎣

Λ∑
v=3

ci∑
l=1

2(δjilm
g,v )2

λ1−λv
δjilmg,1 δjilmg,1

Λ∑
v=3

ci∑
l=1

2(δjilm
g,v )2

λ2−λv
δjilmg,1 δjilmg,2

Λ∑
v=3

ci∑
l=1

2(δjilm
g,v )2

λ1−λv
δjilmg,1 δjilmg,2

Λ∑
v=3

ci∑
l=1

2(δjilm
g,v )2

λ2−λv
δjilmg,2 δjilmg,2

⎤
⎥⎥⎦ (3.25)

The translational mode properties give E11 = E22 and E12 = E21. Thus, E is also

diagonal and the second order eigenvalue derivatives are

∂2λ1

(∂kji∗m
gp )2

=
Λ∑
v=3

ci∑
l=1

2(δjilm
g,v δjilm

g,1 )2

λ1−λv

∂2λ2

(∂kji∗m
gp )2

=
Λ∑
v=3

ci∑
l=1

2(δjilm
g,v δjilm

g,2 )2

λ2−λv

(3.26)
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For a given planet set, planet modes of stage i exist only for ci ≥ 4, where ci is the

number of planet trains in stage i. For ci = 4, the planet mode natural frequencies

for planet set i are distinct, and the procedure to calculate the eigensensitivities is

the same as that for rotational modes. The results are as (3.20)-(3.22).

For ci > 4, the planet mode frequencies for planet set i are degenerate with

multiplicity w = ci− 3. Suppose this degenerate eigenvalue and its associated modes

are λ1, ··· , w = λu and φ1, · · · , φw. The eigenvectors φ1, · · · , φw are an arbitrary

set of planet modes, which forms the matrix Φ = [φ1, · · · , φw]. The elements in

D are calculated using (3.5), and the results are Def =
ci∑
l=1

δjilmg,e δjilmg,f , where e, f =

1, · · · , w. Application of the planet mode properties shows that D is diagonal for

any choice of independent planet modes φ1, · · · , φw. In addition, all the diagonal

elements of are equal. Thus, the first order eigenvalue derivatives are

∂λ1

∂kji∗mgp

= · · · =
∂λw

∂kji∗mgp

= D11 =

ci∑
l=1

(δjilmg,1 )2 (3.27)

Because D has a single degenerate eigenvalue, the first order eigenvector deriva-

tives of the set of planet modes can not be determined. The second order eigenvalue

derivatives are derived by calculating the eigenvalues of E in (3.10), and the results

are

∂2λf

(∂kji∗mgp )2
=

Λ∑
v=w+1

ci∑
l=1

2(δijlmg,v δijlmg,f )2

λf − λv
f = 1, · · · , w (3.28)

The expressions (3.20), (3.24), and (3.27) suggest that the eigenvalue derivatives

are proportional to modal strain energies in the associated stiffness elements. Simi-

lar expressions for changing inertia parameters relate these eigenvalue derivatives to

modal kinetic energies of the component with changing inertia. The relations between

eigenvalue sensitivities and modal strain/kinetic energies are below, where the modal

51



strain and kinetic energies are defined in Table 3.1 and Table 3.2, respectively. These

relations apply to all three types of vibration modes of compound planetary gears.

The expressions for φ′
i and λ′′ are collected in Appendix B.1. The following notation

is used: i, h = 1, · · · , a; j, n = 1, · · · , b; l = 1, · · · , ci; m, q = 1, · · · , di.
Table 3.1: The expressions of modal strain energies in vi-
bration mode φu. All other subscripts and superscripts
for modal strain energies have the same meanings as for
stiffness parameters. For example, U i

cb,u means the modal
strain energy in the translational bearing stiffness of car-
rier i.

U i
cb,u = 1

2
kicb[(x

i
c,u)

2 + (yic,u)
2]

U i
cb,,θθ,u = 1

2
kicb,θθ(θ

i
c,u)

2

U ij
cg,u = 1

2
kijcg[(x

i
c,u − xjg,u)

2 + (yic,u − yjg,u)
2]

U ij
cg,θθ,u = 1

2
kijcg,θθ(θ

i
c,u − θjg,u)

2

U ih
cc,u = 1

2
kipcc[(x

i
c,u − xhc,u)

2 + (yic,u − yhc,u)
2]

U ih
cc,θθ,u = 1

2
kihcc,θθ(θ

i
c,u − θhc,u)

2

U j
gb,u = 1

2
kjgb[(x

j
g,u)

2 + (yjg,u)
2]

U jn
gg,u = 1

2
kjngg [(x

j
g,u − xng,u)

2 + (yjg,u − yng,u)
2]

U jn
gg,θθ,u = 1

2
kjngg,θθ(θ

j
g,u − θng,u)

2

U jilm
gp,u = 1

2
kjilmgp (δjilmg,u )2U ji∗m

gp,u =
ci∑
l=1

U ji1m
gp,u

where δjilmg,u = yjg,u cosψjilmg,u − xig sinψjilmg,u + rig,uθ
i
g,u+

ξilmp,u σ
i sinαjilmg,u − ηilmp,u cosαjilmg,u − σjuilmp,u .

U ilmq
pp,u = 1

2
kilmqpp (δilmqp,u )2U i∗mq

pp,u =
ci∑
l=1

U ilmq
pp,u

where δilmqp,u = − sin(γilmqu )ζ ilmp,u − sin(γilqmu )ζ ilqp,u+
cos(γilmqu )ηilmp,u + cos(γilqmu )ηilqp,u + uilmp,u + uilqp,u.

U ilm
pb,u = 1

2
kilmp [(δilmζ,u )2 + (δilmη,u )2]U i∗m

pb,u =
ci∑
l=1

U ilm
pb,u

where δilmξ,u = xic,u cosψilmu + yic,u sinψilmu − ζ ilmp,u ,
δilmη,u = −xic,u sinψilmu + yic,u cosψilmu + rilmc θic,u − ηilmp,u .

U ilmq
p−p,u = 1

2
kilmqp−p [(ζ ilmp,u − ζ ilpp,u)

2 + (ηilmp,u − ηilpp,u)
2]

U i∗mq
p−p,u =

ci∑
l=1

U ilmq
p−p,u

U ilmq
p−p,θθ,u = 1

2
kilmqp−p,θθ(

uilm
p,u

rilm
p

− uilq
p,u

rilq
p

)2

U i∗mq
p−p,θθ,u =

ci∑
l=1

U ilmq
p−p,θθ,u
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Table 3.2: The expressions of modal kinetic energies in
vibration mode φu. The subscript θθ means the modal
kinetic energy is associated with a certain moment of in-
ertia. All other subscripts and superscripts for modal ki-
netic energies have the same meaning as for mass/inertia
parameters. For example, T ic,θθ,u is the modal kinetic en-
ergy associated with the moment of inertia of carrier i.

T ic,u = 1
2
λum

i
c[(x

i
c,u)

2 + (yic,u)
2]

T ic,θθ,u = 1
2
λuI

i
c(θ

i
c,u)

2

T jg,u = 1
2
λum

j
g[(x

j
g,u)

2 + (yjg,u)
2]

T jg,θθ,u = 1
2
λuI

j
g(θ

j
g,u)

2

T ilmp,u = 1
2
λum

ilm
p [(ξilmp,u )2 + (ηilmp,u )2]

T i∗mp,u =
ci∑
l=1

T ilmp,u

T ilmp,θθ,u = 1
2
λuI

ilm
p (uilmp )2/(rilmp )2

T i∗mp,θθ,u =
ci∑
l=1

T ilmp,θθ,u

(A) Eigenvalue sensitivities to support (bearing) stiffnesses:

∂λu
∂kicb

= (xic,u)
2 + (yic,u)

2 =
2

kicb
U i
cb,u (3.29)

∂λu
∂kicb,θθ

= (θic,u)
2 =

2

kicb,θθ
U i
cb,θθ,u (3.30)

∂λu

∂kjgb
= (xjg,u)

2 + (yjg,u)
2 =

2

kjgb
U j
gb,u (3.31)

∂λu

∂kjgb,θθ
= (θjg,u)

2 =
2

kjgb,θθ
U j
gb,θθ,u (3.32)

∂λu
∂ki∗mp

=

ci∑
l

[(δilmζ,u )2 + (δilmη,u )2] =
2

ki∗mp
U i∗m
pb,u (3.33)

(B) Eigenvalue sensitivities to shaft stiffnesses between carriers/central gears and be-

tween coaxial planets:

∂λu

∂kijcg
= (xic,u − xjg,u)

2 + (yic,u − yjg,u)
2 =

2

kijcg
U ij
cg,u (3.34)
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∂λu

∂kijcg,θθ
= (θic,u − θjg,u)

2 =
2

kijcg,θθ
U ij
cg,θθ,u (3.35)

∂λu
∂kihcc

= (xic,u − xhc,u)
2 + (yic,u − yhc,u)

2 =
2

kihcc
U ih
cc,u (3.36)

∂λu
∂kihcc,θθ

= (θic,u − θhc,u)
2 =

2

kihcc,θθ
U ih
cc,θθ,u (3.37)

∂λu

∂kjngg
= (xjg,u − xng,u)

2 + (yjg,u − yng,u)
2 =

2

kjngg
U jn
gg,u (3.38)

∂λu

∂kjngg,θθ
= (θjg,u − θng,u)

2 =
2

kjngg,θθ
U jn
gg,θθ,u (3.39)

∂λu

∂ki∗mqp−p
=

ci∑
l

[(ζ ilmp,u − ζ ilqp,u)
2 + (ηilmp,u − ηilqp,u)

2] =
2

ki∗mqp−p
U i∗mq
p−p,u (3.40)

∂λu

∂ki∗mqp−p,θθ
=

ci∑
l

(
uilmp,u
rilmp

− uilqp,u

rilqp
)2 =

2

ki∗mqp−p,θθ
U i∗mq
p−p,θθ,u (3.41)

(C) Eigenvalue sensitivities to mesh stiffnesses:

∂λu

∂kji∗mgp

=

ci∑
l

(δjilmgp,u )2 =
2

kji∗mgp

U ji∗m
gp,u (3.42)

∂λu

∂ki∗mqpp

=

ci∑
l

(δilmqp,u )2 =
2

ki∗mqpp

U i∗m,q
pp,u (3.43)

(D) Eigenvalue sensitivities to masses and moments of inertia:

∂λu
∂mi

c

= −λu[(xic,u)2 + (yic,u)
2] = − 2

mi
c

T ic,u (3.44)

∂λu
∂I ic,u

= −λu(θic,u)2 = − 2

I ic,u
T ic,θθ,u (3.45)

∂λu

∂mj
g

= −λu[(xjg,u)2 + (yjg,u)
2] = − 2

mj
g

T jg,u (3.46)

∂λu

∂Ijg,u
= −λu(θjg,u)2 = − 2

Ijg,u
T jg,θθ,u (3.47)
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∂λu
∂mi∗m

p

= −λu
ci∑
l=1

[(ξilmp,u )2 + (ηilmp,u )2] = − 2

mi∗m
p

T i∗mp,u (3.48)

∂λu
∂I i∗mp

= −λu
ci∑
l=1

(uilmp )2

(rilmp )2
= − 2

I i∗mp
T i∗mp,θθ,u (3.49)

Application of the well-defined modal properties (2.40)-(2.48) to the derived eigensen-

sitivities in (3.29)-(3.49) and (B.1)-(B.30) yields some immediate results. The rota-

tional mode property that central gears and carriers have no translational motion

leads to the independence of all rotational modes to the masses of all central gears

and carriers, and the translational support/shaft stiffnesses of these components. Due

to the translational mode property that all central gears and carriers have no rota-

tional motion, all translational modes are independent of the moments of inertia of

central gears and carriers, and the rotational support/shaft stiffnesses of these com-

ponents. Similarly, planet mode properties ensure that all planet modes for a given

planet set are independent of all inertia and stiffness parameters except for those

associated with this given planet set.

3.3.2 Application of the Modal Strain/Kinetic Energy Dis-
tribution Plots

The formulae (3.29)-(3.49) show that the modal strain/kinetic energies of com-

pound planetary gears determine the eigenvalue sensitivities to stiffness/inertia pa-

rameters. As a result, the modal strain/kinetic energy distribution plots of a certain

mode qualitatively and quantitatively give the sensitivity of the natural frequency

associated with this mode to all system parameters.

Consider the two-stage compound planetary gear system shown in Figure 3.1,

where for clarity only the mesh stiffnesses (no bearing and shaft stiffnesses) are shown
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as solid lines. The nominal system parameters are listed in Table 3.3, and the lowest

fourteen natural frequencies are listed in Table 3.4. Consider the case where practical

design or troubleshooting needs require the fourth natural frequency (ω4) to be greater

than 900 Hz, where it is ω4=871Hz with nominal parameters values. The mode

associated with ω4 is a rotational mode, and its mode shape is shown in Figure 3.2.

Table 3.3: Nominal parameters of the example system
shown in Figure 3.1.

Number of Carriers 2
Number of Central
Gears

4

Number of Planet
Trains

c1=4, c2=6

Number of Planets per
Train

d1=2, d2=1

Planet Location

ψ1l1(0) = 2π(l−1)
4

; l = 1, · · · , 4

ψ2l1(0) = 2π(l−1)
6

; l = 1, · · · , 6
ψ1l2(0) = ψ1l1(0) + 32◦

β1l12 = 70◦, β1l21 = 218◦

Mesh Stiffnesses (N/m)
kjilmgp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

500 × 106 If j = 1, i = 1, m = 1
or j = 2, i = 1, m = 2
or j = 3, i = 2, m = 1
or j = 4, i = 2, m = 1

0 Otherwise

kilmqpp =

{
500 × 106 If i = 1
0 Otherwise

Translational Support
Stiffness (N/m)

kicb,xx = kicb,yy = 1 × 109

kjgb,xx = kjgb,yy = 1 × 109

kilmp = 1 × 109

Torsional Support Stiff-
ness (N-m/rad)

kicb,θθ = 0, k1
gb,θθ = k3

gb,θθ = 0
k2
gb,θθ = k4

gb,θθ = 500 × 106

Torsional Shaft Stiff-
nesses (N-m/rad)

kjng,xx = kjng,yy = 0, kihc,xx = kihc,yy = 0

kijcg,xx = kijcg,yy =

{
800 × 106 If i = 1, j = 3
0 Otherwise

Torsional Shaft Stiff-
nesses (N-m/rad)

kjng,θθ = kihc,θθ = 0

kijcg,θθ =

{
200 × 106 If i = 1, j = 3
0 Otherwise

Continued on next page
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Table 3.3 – Continued from previous page

Mass (kg)
m1
g = 1, m2

g = 5, m3
g = 1, m4

g = 5
m1
c = 10, m2

c = 10
m1l1
p = m1l2

p = 0.75, m2l1
p = 2.00

Moment of Inertia (kg-
m2)

I1
g = 0.05, I2

g = 0.5
I3
g = 0.05, I4

g = 0.5
I1
c = 1.00, I2

c = 1.20
I1l1
p = I1l2

p = 0.01, I2l1
9 = 0.20

Radii (mm)

r1
g = 100.0, r2

g = 320.6
r3
g = 100.0, r4

g = 300.0
r1l1
c = 176.5, r1l2

c = 270.0, r2l1
c = 220.7

r1l1
p = 60.0, r1l2

p = 77.7, r2l1
c = 100.0

Gear Type
σ1 = σ3 = −1 (sun gear)
σ2 = σ4 = 1 (ring gear)

Table 3.4: The lowest fourteen natural frequencies for the
example system of Figure 3.1 with nominal parameters
listed in Table 3.3. R means Rotational mode, T means
Translational mode, P1 means Planet mode of planet set
1, and P2 means Planet mode of planet set 2.

Natural
Frequency
Number

Natural
Frequency

(Hz)

Vibration
Mode
Type

1 0 R
2, 3 657 T
4 871 R

5, 6, 7 1030 P2
8 1134 R

9, 10 1152 T
11 1535 R

12, 13 1554 T
14 1854 P1

15, 16 1946 T
17, 18 2421 T

19 2944 R
20, 21 3190 T
· · · · · · · · ·

55, 56 9083 T
57 9148 R

58, 59 9408 T
60 11073 R
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Figure 3.1: The example system for the eigensensitivity analysis in this chapter.
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Stage 1 Stage 2

Figure 3.2: Mode shape of vibration mode 4 (ω4 = 871Hz) for the example system
with nominal parameter values.

The modal strain and kinetic energy distribution plots for this mode are shown

in Figure 3.3. The strain energies in k32∗1
gp and k42∗1

gp (the mesh stiffnesses of the sun-

planet and ring-planet meshes in the second stage of the example system) are the

highest modal strain energies, and the modal kinetic energy associated with I2∗1
p (the

moment of inertia of the planets in stage 2) is the largest modal kinetic energy. Thus,

k32∗1
gp , k42∗1

gp and I2∗1
p are the most effective parameters in tuning ω4.

Figure 3.4 shows ω4 versus the variation of k32∗1
gp and k42∗1

gp , and the change of I2∗1
p .

When both k32∗1
gp and k42∗1

gp increase 16% from their nominal values, or I2∗1
p is reduced

by 8.2% from its nominal value, ω4 is tuned to be larger than 900 Hz, which achieves

the design goal.

3.4 Eigensensitivity of Mistuned Compound Planetary Gears

The candidate mistuned parameters are kjilmgp , kilmqpp , kilmp , kilmqp−p , kilmqp−p,θθ, m
ilm
p , and

I ilmp , because these perturbed parameters are the only ones that break the symmetry

of planet sets to create mistuning. This study focuses on the case of one mistuned

parameter because equations (3.11)-(3.13) show that the impact of multiple mistuned
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Figure 3.3: Modal (a) strain, and (b) kinetic energy distributions associated with
mode 4 (ω4 = 871Hz).
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Figure 3.4: (a) ω4 versus ε =
k32∗1

gp −k̄32∗1
gp

k̄32∗1
gp

=
k42∗1

gp −k̄42∗1
gp

k̄42∗1
gp

, and (b) ω4 versus τ =
I2∗1p −Ī2∗1p

Ī2∗1p
.

k̄32∗1
gp and k32∗1

gp are the nominal and perturbed values of the mesh stiffness between
the sun gear in stage 2 (central gear 3) and planet 1 in any planet train of planet set
2. k̄42∗1

gp and k42∗1
gp are the nominal and perturbed values of the mesh stiffness between

the ring gear in stage 2 (central gear 4) and planet 1 in any planet train of planet set
2. Ī2∗1

p and I2∗1
p are the nominal and perturbed values of moment of inertia of planet

1 in any planet train of planet set 2.
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parameters on natural frequencies and vibration modes is the superposition of the

impacts from each mistuned parameter.

As a representative example, the derivation of eigensensitivities to a mistuned

mesh stiffness parameter is illustrated. Consider the case that kji1mgp (the mesh stiffness

between central gear j and planet m in train 1 of planet set i) is the only varying

parameter, and its nominal value is k̄ji1mgp . In order to apply equations (3.1)-(3.10,

the derivatives of the mass and stiffness matrices are

∂M

∂kji1mgp

= 0
∂2M

(∂kji1mgp )2
= 0 (3.50)

∂K

∂kji1mgp

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
∂Kji1m

g1

∂kji1m
gp

· · · ∂Kji1m
gp

∂kji1m
gp

...
...

∂(Kji1m
gp )

T

∂kji1m
gp

· · · ∂Kji1m
g3

∂kji1m
gp

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∂2K

(∂kji1mgp )2
= 0 (3.51)

where all sub-matrices of ∂K/∂kji1mgp are zero except the four sub-matrices shown in

(3.51), which are coupling terms between central gear j and planet m in the first

train of stage i. Substitution of l = 1 (for the first train) into equations (3.15)-(3.17)

shows that these four sub-matrices depend linearly on kji1mgp .

By applying equations (3.1)-(3.3), the sensitivities of a rotational mode to kji1mgp

are

∂λu

∂kji1mgp

= (δji1mg,u )2 =
2

kji1mgp

U ji1m
gp,u (3.52)

∂φu

∂kji1mgp

=

Λ∑
v=1,v �=u

δji1mg,u δji1mg,v

λu − λv
φv (3.53)

∂2λu

(∂kji1mgp )2
=

Λ∑
v=1,v �=u

2

λu − λv
(δji1mg,u δji1mg,v )2 (3.54)
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where U ji1m
gp,u is the modal strain energy in the stiffness kji1mgp . The sensitivities of a

rotational mode or a distinct planet mode to all other possible mistuned parameters

are listed in Appendix B.2.

For a pair of translational modes, the eigensensitivities to kji1mgp are calculated by

following the procedure in (3.4)-(3.10). The degenerate translational eigenvalue is

λu = λu+1. Choosing the preferred pair of translational modes Φ = [φu,φu+1] that

diagonalizes D in (2.44) gives

D = ΦT ∂K

∂kji1mgp

Φ =

[
(δji1mg,u )2 0

0 0

]
(3.55)

where δji1mg,u is the mesh deflection between gear j and planet m in train 1 of planet

set i in vibration mode φu. The eigenvalue sensitivities from the eigenvalues of D are

∂λu

∂kji1mgp

= (δji1mg,u )2 =
2

kji1mgp

U ji1m
gp,u

∂λu+1

∂kji1mgp

= 0 (3.56)

where U ji1m
gp,u is the modal strain energy associated with kji1mgp in mode Φu.

By applying (3.6)-(3.10), the closed-form expressions for the first order eigenvector

and second order eigenvalue derivatives are

∂φu

∂kji1mgp

=

Λ∑
v=1,v �=u,u+1

δji1mg,v δji1mg,u

λu − λv
φv

∂φu+1

∂kji1mgp

= 0 (3.57)

∂2λu

(∂kji1mgp )2
=

Λ∑
v=1,v �=u,u+1

2(δji1mg,v δji1mg,u )

λu − λv

∂2λu+1

(∂kji1mgp )2
= 0 (3.58)

Equations (3.56)-(3.58) show that one of a pair of translational modes is not af-

fected by the mistuned mesh stiffness kji1mgp ; the translational mode properties are

retained in this mode, even though the system symmetry is broken by the mistuning.

The other translational mode, however, changes with kji1mgp and loses its well-defined

translational mode properties; the perturbed mode is contaminated by contributions

63



from all other modes in (3.57). The magnitude of a contaminating mode v is de-

termined by that mode’s mesh deflection δji1mg,v and the proximity of the associated

eigenvalue value λv to λu. The eigensensitivities of a pair of translational modes to

all other mistuned parameters are derived in the same way, and their expressions are

collected in Appendix B.2.

The eigensensitivities in (3.52)-(3.58) and (B.31)-(B.48) show that only a mis-

tuned planet bearing stiffness (ki1mp ), translational shaft stiffness between two coaxial

planets of a stepped-planet arrangement (ki1mqpp ), or planet mass (milm
p ) can affect

both modes of a pair of degenerate translational modes. In theses cases, the degener-

ate translational natural frequency of the unperturbed system splits into two distinct

natural frequencies, and both associated modes lose their translational mode prop-

erties. Any other mistuned parameter affects only one of the pair of translational

modes and has no impact on the other mode.

Using the example system of Figure 3.1, Table 3.3, and Table 3.4, Figure 3.5(a)

shows the impact of the perturbed mesh stiffness between central gear 3 and planet 1

in train 1 of planet set 2 (k3211
gp ) on a pair of degenerate translational frequencies (ω12

and ω13). ω12 is affected by k3211
gp dramatically, while ω13 remains unchanged. Figure

3.5(b) illustrates how the same pair of translational frequencies is changed by the

bearing stiffness of planet 1 in train 1 of planet set 2 (k211
p ). The mistuned parameter

k211
p splits the loci of ω12 and ω13 and changes both of them.

For a set of planet modes with a degenerate natural frequency, the procedure in

(3.4)-(3.10) is applied to calculate their eigensensitivities. This degenerate eigenvalue

with multiplicity w ≥ 2 is λu = λu+1 = · · · = λu+w−1. The associated eigenvectors

are chosen to be the preferred eigenvectors Φ = [φu, · · · ,φu+w−1] that diagonalize
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Figure 3.5: (a) ω12 and ω13 versus ε1 =
k3211

p −k̄3211
p

k̄3211
p

, and (b) ω12 and ω13 versus ε2 =

k211
p −k̄211

p

k̄211
p

. k̄3211
gp and k3211

gp are the nominal and perturbed values of the mesh stiffness

between the sun gear in stage 2 (central gear 3) and planet 1 in train 1 of planet set 2.
k̄211
p and k211

p are the nominal and perturbed values of the bearing stiffness of planet
1 in train 1 of planet set 2.
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the matrix D in (2.49). Thus, the diagonalized D and its eigenvalues yield

D = ΦT ∂K

∂kji1mgp

Φ =

⎡
⎢⎢⎢⎣

(δji1mg,u )2 0 · · · 0
0 · · · 0

. . .
...

symm. 0

⎤
⎥⎥⎥⎦
w×w

(3.59)

∂λu

∂kji1m
gp

= (δji1mg,u )2 = 2

kji1m
gp

U ji1m
gp,u

∂λu+1

∂kji1m
gp

= · · · = ∂λu+w−1

∂kji1m
gp

= 0
(3.60)

where δji1mg,u and U ji1m
gp,u are the mesh deflection and modal strain energy associated

with kji1mgp in mode φu.

When the multiplicity of a degenerate planet mode frequency is two, D in (3.59)

has distinct eigenvalues. The first order eigenvector derivative and the second order

eigenvalue derivative with respect to kji1mgp are exactly the same as those for trans-

lational modes in equations (3.57)-(3.58). Only one of the two natural frequencies

is affected. When the planet mode frequency multiplicity is greater than two, D in

(3.59) has a degenerate zero eigenvalue. Therefore, the eigenvector derivatives of these

planet modes with respect to the mistuned parameter kji1mgp can not be determined.

By calculating the eigenvalues of E in (3.10), the second order eigenvalue derivatives

are
∂2λu

(∂kji1m
gp )2

=
Λ∑

v=1,v �=u,··· ,u+w−1

2(δji1m
g,v δji1m

g,u )

λu−λv

∂2λu+1

(∂kji1m
gp )2

= · · · = ∂2λu+w−1

(∂kji1m
gp )2

= 0
(3.61)

The eigensensitivities of planet modes to all other mistuned parameters are col-

lected in Appendix B.2. Equations (3.60)-(3.61) and (88)-(99) reveal that only one of

a set of degenerate planet modes is affected by a single mistuned parameter and loses

it well-defined modal properties. All other planet modes of the set retain their dis-

tinctive modal properties; their natural frequency is unchanged, but its multiplicity

is reduced to w − 1.
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The above analytical results show that the eigenvalue sensitivity of all mode types

to a mistuned parameter is proportional to the modal strain/kinetic energy associated

with this mistuned parameter. Therefore, as for tuned systems, inspection of the

modal strain/kinetic energy distribution for mistuned systems remains an effective

way to quantitatively determine the parameters that have the largest impact on a

certain mode.

3.5 Conclusion

The major results for the eigensensitivities of general compound planetary gears

to all stiffness and inertia parameters are summarized as follows:

(1) All eigenvalue derivatives are proportional to the modal strain/kinetic energies

associated with the perturbed parameters. Application of the well-defined modal

properties of general compound planetary gears simplifies the eigensensitivity ex-

pressions to compact, closed-form formulae for all parameter variations. For both

tuned and mistuned systems, the modal strain/kinetic energy distribution plots

give effective and straightforward means to identify which system parameters

have the greatest impact on tuning the related natural frequency. This process

can be done qualitatively and quantitatively by inspection.

(2) For tuned systems, the eigenvector sensitivities of degenerate translational and

planet modes can not be determined, although the second order eigenvalue deriva-

tives can be. The first and second order eigenvalue derivatives of degenerate

eigenvalues of the original system are such that degenerate eigenvalues remain

degenerate for parameter perturbations that preserve the tuned symmetry. Rota-

tional modes are independent of translational support/shaft stiffnesses and masses
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of central gears/carriers. Translational modes are independent of torsional sup-

port/shaft stiffnesses and moments of inertia of central gears/carriers. Planet

modes of a certain planet set are independent of any system parameters associated

with other planet sets. They are also independent of the mass/moment of inertia

parameters and support/shaft stiffness parameters of all central gears/carriers.

(3) When a system is perturbed by a mistuned parameter, a degenerate transla-

tional mode natural frequency of the unperturbed system splits into two distinct

frequencies. A mistuned planet bearing stiffness, translational shaft stiffness be-

tween two planets in a stepped planet arrangement, or planet mass impacts both

modes associated with the two frequencies, while any other mistuned parameter

affects only one of the modes despite the apparent disruption of system sym-

metry. Parameter mistuning always splits degenerate planet mode frequencies

of the stage associated with the mistuned parameter into two frequencies. One

frequency keeps its original value and its associated modes retain the well-defined

planet mode properties; the other frequency is distinct and its associated mode

loses the planet mode properties.
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Chapter 4: NATURAL FREQUENCY VEERING AND

CROSSING PATTERNS FOR GENERAL COMPOUND

PLANETARY GEARS

4.1 Introduction

Natural frequency veering is the phenomenon that two eigenvalue loci approach

each other and then abruptly veer away when a certain parameter varies, and natu-

ral frequency crossing refers to the situation that two eigenvalue loci approach and

cross each other with the variation of a parameter. These phenomena are com-

monly observed in different mechanical systems and investigated in previous stud-

ies [42, 72, 80–82, 89]. All these previous studies suggest that the eigenvalue loci

veering and crossing patterns are important to the free vibration analysis and fur-

ther dynamics study of a mechanical system because the vibration modes retain their

characteristics in case of crossing and they change dramatically near the vicinity of

strongly-coupled veering natural frequencies.

Planetary gear natural frequency veering and crossing phenomena are observed

by lots of researchers, such as Cunliffe et al. [22], Botman [16], Saada and Velex [85],

Kahraman [43, 45], and Lin and Parker [57]. The systematical investigation on plan-

etary gear natural frequency veering and crossing phenomena, however, was not per-

formed until Lin and Parker’s investigation in [59]. By calculating the coupling factors
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that approximate the local curvatures of two close eigenvalue loci and applying the

structured vibration properties in [56], they derived the veering and crossing patterns

for simple planetary gears. The research scopes for all these previous studies are

limited to simple planetary gears. Due to the involving of stepped-planet, meshed-

planet, and multi-stage structures that are unique to compound planetary gears, the

eigensensitivities for compound planetary gears differ from those for simple plane-

tary gears [36], and the results for simple planetary gears in [59] can not be applied

to compound planetary gears. In addition, there is no published literature on the

veering and crossing patterns for compound planetary gears. It is, hence, necessary

to systematically investigate the natural frequency veering and crossing patterns for

general compound planetary gears.

4.2 Natural Frequency Veering and Crossing Phenomena in

Compound Planetary Gears

Natural frequency veering and crossing phenomena present in compound planetary

gears when certain parameter varies. For example, when k2
gb, the bearing stiffness of

the ring gear in the first stage of the example system that is shown in Figure 3.1

with the nominal parameters and natural frequencies listed in Tables 3.3 and 3.4,

varies, both natural frequency veering and crossing happen in Figure 4.1. The loci of

translational frequencies ω17 and ω18 cross the locus of a rotational frequency ω19 at

point O when k2
gb increases to roughly twice of its nominal value. The loci of ω17 and

ω18 veer away from the loci of another pair of translational frequencies ω20 and ω21

in the vicinity of point O′ when k2
gb is 2.75 times of its nominal value.

Points A and B are on the loci of ω17 and ω18 in the vicinity of the loci-crossing

point O. Figure 4.2 shows the translational mode shapes that associated with ω17 and
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Figure 4.1: Natural frequency crossing and veering phenomena in the example system
when k2

gb varies.

ω18 at points A (when k2
gb is 1.84 times of its nominal value) and B (when k2

gb is 2.24

times of its nominal value) in Figure 4.1. The mode shapes in Figure 4.2(a) are similar

to those in 4.2(b). That is, the translational modes ω17 and ω18 retain their modal

properties when k2
gb varies in the vicinity of point O. In addition, Figure 4.3 shows

the rotational mode shapes at points A′ and B′ in Figure 4.1. There is no difference

between these two mode shapes in Figure 4.3. This matches the eigensensitivity

results from previous chapter that k2
gb has no impact on any rotational mode. Hence,

both the rotational frequency ω17 and the translational frequencies ω17 and ω18 retain

their mode shapes and modal properties in the vicinity of the loci-crossing point O

when k2
gb varies.

Points C and D around the loci-veering point O′ are on the loci of ω17 and ω18.

Figure 4.4 demonstrates the translational mode shapes that associated with these two
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Figure 4.2: Mode shapes of the translational modes associated with ω17 and ω18 at
points A (sub-figure a) and B (sub-figure b) in Figure 4.1.
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Figure 4.3: Mode shapes of the rotational mode associated with ω19 at points A′

(sub-figure a) and B′ (sub-figure b) in Figure 4.1.
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frequencies at points C (when k2
gb is 1.5 times of its nominal value) and D in Figure

4.1 (when k2
gb is three times of its nominal value). The mode shapes in Figure 4.4(a)

are significantly different from those in 4.4(b). The components in Stage 1 have large

amplitudes and Stage 2 components barely moves in Figure 4.4(b). In Figure 4.4(b),

however, the components in Stage 2 have large amplitudes and the vibrations of Stage

1 components are insignificant. Hence, the pair of translational modes ω17 and ω18

experiences dramatic changes in mode shapes and modal properties in the vicinity

of loci-veering point O′ when k2
gb varies. Points C ′ and D′ in Figure 4.1 are on the

loci of another pair of translational modes ω20 and ω21. The mode shapes associated

with ω20 and ω21 at these two points are shown in Figure 4.5. The mode shapes

at point C ′ are significantly different from those at point D′. Therefore, both pairs

of translational frequencies [ω17, ω17] and [ω20, ω21] lose their original mode shape

and modal properties in the vicinity of the loci-crossing point when k2
gb varies. Such

dramatic change in vibration mode shapes in the vicinity of natural frequency veering

is called mode localization in several studies [42, 72, 81, 82] or high mode sensitivity

in some other studies [20, 69]. Taking another look at Figures 4.4 and 4.5, the mode

shapes at point C are similar to those in point D′, and the mode shapes at point

C ′ are very close to those in point D. That is, the two pair of translational modes

[ω17, ω17] and [ω20, ω21] interchange their mode shapes and modal properties during

the natural frequency veering caused by the variation of k2
gb.

This example indicates that natural frequency veering and crossing phenomena

present in compound planetary gears. Because slight variations in system parameters

may cause dramatic changes in the mode shapes and dynamic responses in vicinity

of natural frequency veering while mode shapes and dynamic responses have no such
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Stage 1

Stage 2

Stage 1

Stage 2

Stage 1

Stage 2

Stage 1

Stage 2

(a) (b)

Figure 4.4: Mode shapes of the translational modes associated with ω17 and ω18 at
points C (sub-figure a) and D (sub-figure b) in Figure 4.1.
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Stage 1

Stage 2

Stage 1

Stage 2

Stage 1

Stage 2

Stage 1

Stage 2

(a) (b)

Figure 4.5: Mode shapes of the translational modes associated with ω20 and ω21 at
points C ′ (sub-figure a) and D′ (sub-figure b) in Figure 4.1.
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changes in the vicinity of natural frequency crossing, to understand the natural fre-

quency veering and crossing patterns is critical for the design and troubleshooting of

compound planetary gears. In the following section, the method to detect eigenvalue

veering and crossing in dynamic systems is first introduced. Then all the system pa-

rameters for compound planetary gears are divided into two groups: tuned parameters

(the variation of this group of system parameters does not break the axisymmetry

of any planet set) and mistuned parameters (the axisymmetry of a certain stage is

broken by the variations of this group of system parameters). The natural frequency

veering and crossing patterns for each group of parameters are investigated and the

general rules of eigenvalue loci veering and crossing for general compound planetary

gears are derived.

4.3 Detection of Natural Frequency Veering and Crossing

There are many ways to detect eigenvalue veering/crossing in dynamic systems,

such as the methods in [55], [20], and [89]. This study adopts the method by Perkins

and Mote [80] because this method is proved to be effective in detecting the natural

frequency veering and crossing in lots of studies [72, 81, 82], especially in the natural

frequency veering detection for simple planetary gears [59]. The details of this method

and its application to compound planetary gears are introduced as follows.

λs |ρ=ρ0 and λt |ρ=ρ0 denote two nearly equal eigenvalues for the eigenvalue problem

of a general compound planetary gear in (2.39) when the perturbed parameter ρ

is equal to its nominal value ρo. ε is the perturbation of ρ such that ρ = ρo +

ε. Application of Taylor Series Expansion of ε around λs |ρ=ρ0 and λt |ρ=ρ0 yields

the approximation of λs and λt, the perturbed eigenvalues in the vicinities of the
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unperturbed ones, as

λs = λos + ε∂λs

∂ρ
|ρ=ρ0 + 1

2
ε2 ∂2λs

∂ρ2
|ρ=ρ0

λt = λot + ε∂λt

∂ρ
|ρ=ρ0 + 1

2
ε2 ∂2λt

∂ρ2
|ρ=ρ0

(4.1)

Both Perkins and Mote [80] and Lin and Parker [59] believe that there exist terms that

depends on 1
λs−λt

(i.e., the separation of λs and λt) in the second order eigenvalue

derivatives in equation (4.1). These terms are called the coupling factors in their

studies and the evaluation of these coupling factors for the unperturbed eigenvalue

problem provides key indications of the veering or crossing of the two eigenvalue loci

in the vicinities of λs |ρ=ρ0 and λt |ρ=ρ0 . It is because the coupling terms dominate ∂2λs

∂ρ2

and ∂2λt

∂ρ2
when λs and λt are nearly equal. The loci concavities that are determined

by the second order eigenvalue derivatives, therefore, strongly rely on these coupling

factors. One main task of this study is to locate the coupling factors in the second

order eigenvalue derivatives for compound planetary gears.

When λs is a distinct eigenvalue for the eigenvalue problem of a general compound

planetary gear in (2.39), insertion of (2.2) and (3.2) into (3.3) yields the second order

eigenvalue derivative for λs in terms of [λs, φs, λ
′
s, M′, K′] as

λ′′s =2φT
s (K′ − λsM

′)

[
−1

2
(φT

s M
′φs)φs +

Λ∑
v=1,v �=s

φT
v (K

′ − λsM
′)φs

λs − λv
φv

]
+

φT
s (K′′ − λsM

′′ − λ′sM
′)φs

= − λ′sφ
T
s M

′φs +

Λ∑
v=1,v �=s

2
[
φT
s (K

′ − λsM
′)φv

]2
λs − λv

+

φT
s (K′′ − λsM

′′ − λ′sM
′)φs

=
Λ∑

v=1,v �=s

2
[
φT
s (K

′ − λsM
′)φv

]2
λs − λv

+ φT
s (K′′ − λsM

′′ − 2λ′sM
′)φs

(4.2)
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When another distinct eigenvalue λt is close to λs, the only term in (4.2) that depends

on 1
λs−λt

is

χs,t =
2
[
φT
s (K

′ − λsM
′)φt

]2
λs − λt

(4.3)

where χs,t is the coupling factor between λs and λt and it is for the locus of λs.

Replacing the subscript s with t in equation (4.2) yields the second order eigenvalue

derivative for λt as

λ′′t =

Λ∑
v=1,v �=t

2
[
φT
t (K

′ − λtM
′)φv

]2
λt − λv

+ φT
t (K′′ − λtM

′′ − 2λ′tM
′)φt (4.4)

The term that depends on 1
λt−λs

in (4.4) is

χt,s =
2
[
φT
t (K

′ − λtM
′)φs

]2
λt − λs

(4.5)

where χt,s is the coupling factor for the locus of λt. Because λt ≈ λs and
[
φT
t (K

′ − λtM
′)φs

]
is a scalar, the fact that the transpose of a scalar is equal to itself gives[

φT
t (K

′ − λtM
′)φs

]
=
[
φT
t (K

′ − λtM
′)φs

]T
=
[
φT
s (K

′ − λtM
′)φt

] ≈ [
φT
s (K

′ − λsM
′)φt

] (4.6)

Application of (4.6) to (4.3) and (4.5) yields

χt,s ≈ −χs,t (4.7)

Equation (4.7) shows that the coupling factor for λt is approximately equal to that for

λs with the opposite sign. The evaluation of [χs,t, χt,s] for the unperturbed system

(i.e., ρ = ρ0) quantifies the strength of the veering between the loci of λs and λt as

follows [59,80]. Larger |χs,t| and |χt,s| (the absolute values for these coupling factors)

indicates sharper changes of the loci and stronger veering. If χs,t = χt,s = 0, the loci

of λs and λt cross each other instead of veering.
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Lin and Parker [59] extends the above quantified veering detection method to

degenerate eigenvalues of planetary gears. Let λs = λs+1 = · · · = λs+m−1 be a

degenerate eigenvalue with multiplicity m. The general form for the second order

derivatives of the degenerate eigenvalue is [29, 59]

λ′′i =

Λ∑
v=1,v �=s, ··· , s+m−1

2
[
φT
i (K

′ − λiM
′)φv

]2
λi − λv

+ φT
i (K′′ − λiM

′′ − 2λ′iM
′)φi (4.8)

where i = s, · · · , s + m − 1. If a distinct eigenvalue λt is nearly equal to this

degenerate eigenvalue when ρ = ρ0, collecting the terms in (4.8) that depend on 1
λi−λt

yields the coupling factor for the locus of λi as

χi,t =
2
[
φT
i (K

′ − λiM
′)φt

]2
λi − λt

, i = s, · · · , s+m− 1 (4.9)

Considering λs = λs+1 = · · · = λs+m−1 and collecting all the terms that depend on

1
λt−λs

in equation (4.4) give the coupling factor for λt as

χt,(s,··· ,s+m−1) =
s+m−1∑
k=s

2
[
φT
t (K

′ − λtM
′)φk

]2
λs − λt

(4.10)

If another degenerate eigenvalue λt = λt+1 = · · · = λt+n−1 with multiplicity n

is close to the degenerate eigenvalue λs = λs+1 = · · · = λs+m−1 when ρ = ρ0, the

coupling factor for the locus of λx (x = s, · · · , s+m−1) is the sum of all the terms

that depend on 1
λs−λt

in equation (4.8) and it is

χx,(t,··· ,t+n−1) =

t+n−1∑
k=t

2
[
φT
x (K

′ − λxM
′)φk

]2
λs − λt

, x = s, · · · , s+m− 1 (4.11)

Replacing x (x = s, · · · , s+m− 1) with y (y = t, · · · , t+n− 1) in equation (4.8)

and collecting all the terms that depend on 1
λt−λs

produce the coupling factor for the

locus of λy as

χy,(s,··· ,s+m−1) =

s+m−1∑
k=s

2
[
φT
y (K

′ − λyM
′)φk

]2
λs − λt

, y = t, · · · , t+ n− 1 (4.12)
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4.4 Natural Frequency Veering and Crossing Pattern for Tuned
Parameters

Tuned parameters refer to the group of system parameters whose variation does

not break the axisymmetry of any planet set in a general compound planetary gear.

Based on the eigensensitivity analysis results in previous chapter, tuned parameters

can be classified into three groups: rotational, translational, and planet tuned pa-

rameters. Because any rotational mode is independent of the change of translational

stiffness (bearing or shaft connection) and the change of masses in any component.

Hence, only the rotational bearing and shaft connection stiffnesses for carriers and

central gears (kicb,θθ, k
j
gb,θθ, k

jn
gg,θθ, k

ih
cc,θθ, k

ij
cg,θθ) and the moments of inertia of carriers

and central gears have impact on rotational frequency loci. These parameters are

rotational tuned parameters in this study. All translational bearing and shaft connec-

tion stiffnesses for carriers and central gears (kicb, k
j
gb, k

jn
gg , k

ih
cc , k

ij
cg) and the masses

of carriers and central gears are translational tuned parameters in this investigation,

because they only impact translational frequencies and their associated modes. kjilmgp ,

kilmqpp , kilmqp−p , kilmp , milm
p , and I ilmp are system parameters that associated with certain

planet in a specific planet train of stage i. The change of any of these parameters

will cause stage i to lose its axisymmetry. There is only one way to change these

parameters while keeping stage i tuned. It is to change these parameters in all the

trains of stage i instead of just in a specific planet train. Such parameter variations

are also considered to be tuned, and these parameters that impact all the trains in

the same stage (kji∗mgp , ki∗mqpp , ki∗mqp−p , ki∗mp , mi∗m
p , and I i∗mp ) are planet tuned parameters.

Because all compound planetary gear natural frequencies and their associated

vibration modes are classified into three different types: rotational, translational,
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and planet, the veering and crossing of the two approaching natural frequency loci

always fall into one of following six cases.

(A) Two rotational frequency loci:

Rotational tuned parameters impact rotational frequencies [36]. Taking kjgb,θθ

as a representative example for rotational tuned parameters, the veer/crossing

of two rotational natural frequency loci with respect to the change of kjgb,θθ is

explained as follows.

Let λs and λt be two rotational eigenvalues. Application of equations (4.3) and

(4.5) directly (or extracting the terms depending on 1
λs−λt

in equation (B.3))

gives the coupling factors of λs and λs with respect to kjgb,θθ as

χ
kj

gb,θθ

s,t =
2(θjg,tθ

j
g,s)

2

λs − λt
= −χk

j
gb,θθ

t,s (4.13)

where θjg,s and θjg,t are the rotations of central gear j in rotational modes s and

t, respectively. If θjg,s = 0 or θjg,t = 0, the coupling factors in equation (4.13)

are equal to zero, and the loci of λs and λt cross each other when kjgb,θθ varies.

The modal properties of rotational mode [53], however, show that the rotation

of central gear j is not zero in all rotational modes except the rigid body mode.

Therefore, two rotational loci always veer away when kjgb,θθ is changed. Following

the same process, the veering/crossing patterns of two rotational frequency loci

with respect to the change of other rotational tuned parameters are determined

and the results are the same as that for kjgb,θθ.

The eigensensitivity analysis results in previous chapter indicate that planet

tuned parameters have impact on rotational frequencies as well. Use kji∗mgp as

the example for planet tuned parameters. Insertion of (3.18) into equations (4.3)
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and (4.5) (or collecting the terms depending on 1
λs−λt

in equation (3.22)) and

application of the rotational mode properties give the coupling factors of λs and

λs with respect to kji∗mgp as

χ
kji∗m

gp

s,t =
2

λs − λt
(ciδji∗mg,s δji∗mg,t )2 = −χk

ji∗m
gp

t,s (4.14)

where δji∗mg,s and δji∗mg,t are the mesh deflections between central gear j and planet

m in all trains of stage i in modes s and t, respectively. Because the modal

properties of rotational mode indicate that δji∗mg,s and δji∗mg,t are not equal to

zero except in the rigid body mode, the two rotational loci veer away with the

variation of kji∗mgp . The same result applies to other planet tuned parameters.

(B) Two translational frequency loci:

Translational tuned parameters alter translational frequencies. Use kjgb as a rep-

resentative example for veering/crossing detection of two approaching transla-

tional frequency loci. λs = λs+1 and λt = λt+1 are two translational eigenvalue

loci. Application of equations (4.11) and (4.12) directly (or collecting the terms

depending on 1
λs−λt

in (B.4)) yields

χ
kj

gb,θθ

s,t = χ
kj

gb,θθ

s,t+1 =
2(xj

g,tx
j
g,s+y

j
g,ty

j
g,s)

2+2(xj
g,t+1x

j
g,s+y

j
g,t+1y

j
g,s)

2

λs−λt

χ
kj

gb,θθ

s+1,t = χ
kj

gb,θθ

s+1,t+1 =
2(xj

g,tx
j
g,s+1+y

j
g,ty

j
g,s+1)2+2(xj

g,t+1x
j
g,s+1+y

j
g,t+1y

j
g,s+1)2

λs+1−λt

χ
kj

gb,θθ

t,s = χ
kj

gb,θθ

t,s+1 =
2(xj

g,tx
j
g,s+y

j
g,ty

j
g,s)

2+2(xj
g,tx

j
g,s+1+y

j
g,ty

j
g,s+1)

2

λt−λs

χ
kj

gb,θθ

t+1,s = χ
kj

gb,θθ

t+1,s+1 =
2(xj

g,t+1x
j
g,s+y

j
g,t+1y

j
g,s)2+2(xj

g,t+1x
j
g,s+1+y

j
g,t+1y

j
g,s+1)2

λt+1−λs

(4.15)

where (xg,s,yg,s), (xg,s+1,yg,s+1), (xg,t,yg,t), and (xg,t+1, yg,t+1) are the translations

of central gear j in translational modes s, s + 1, t, and t + 1, respectively. Be-

cause the modal properties of translational modes ensure non-zero translations

of central gear j in all translational modes, the coupling factors in (4.15) are not
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equal to zero. As a result, the loci of two translational frequencies veer away

when kjgb varies. It is the same for other translational tuned parameters.

Eigensensitivity analysis in previous chapter shows that planet tuned parame-

ters have impact on translational frequencies. Let kji∗mgp be the representative

example. Insertion of (3.18) into equations (4.11) and (4.12) produces

χ
kji∗m

gp

s,t = χ
kji∗m

gp

s,t+1 =
2(

ci∑
l=1

δjilm
g,s δjilm

g,t )2+2(
ci∑

l=1
δjilm
g,s δjilm

g,t+1)
2

λs−λt

χ
kji∗m

gp

s+1,t = χ
kji∗m

gp

s+1,t+1 =
2(

ci∑
l=1

δjilm
g,s+1δ

jilm
g,t )2+2(

ci∑
l=1

δjilm
g,s+1δ

jilm
g,t+1)

2

λs+1−λt

χ
kji∗m

gp

t,s = χ
kji∗m

gp

t,s+1 =
2(

ci∑
l=1

δjilm
g,s+1δ

jilm
g,t )2+2(

ci∑
l=1

δjilm
g,s δjilm

g,t )2

λt−λs

χ
kji∗m

gp

t+1,s = χ
kji∗m

gp

t+1,s+1 =
2(

ci∑
l=1

δjilm
g,s+1δ

jilm
g,t+1)2+2(

ci∑
l=1

δjilm
g,s δjilm

g,t+1)
2

λt+1−λs

(4.16)

To vanish the coupling factors in (4.16), the gear mesh deflections should satisfy

δjilmg,s = δjilmg,s+1 = 0 or δjilmg,t = δjilmg,t+1 = 0, where δjilmg,w , w = s, s + 1, t, t + 1 is

the mesh deflection between central gear g and planet m in train l of stage i in

vibration mode w. It is, however, impossible according to the modal properties

for translational modes. As a result, the loci of translational frequencies always

veer away as kji∗mgp is altered and the same conclusion applies to other planet

tuned parameters.

(C) Two planet-mode frequency loci:

Because central gears and carriers have no rotational or translational motions in

any planet mode, the change of any rotational or translational tuned parameters

has no impact on any planet-mode natural frequencies. Planet tuned parameters,

hence, are the only parameters that impact planet mode. λs = · · · = λs+m−1 and

λt = · · · = λt+n−1 are two sets of planet-mode eigenvalues with multiplicity m
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and n, respectively. Use kji∗mgp as the example. Insertion of the related eigensen-

sitivities in (3.28) and planet mode properties into equations (4.11) and (4.12)

yields

χ
kji∗m

gp

x,(t,··· ,t+n−1) =
t+n−1∑
k=t

2(
ci∑

l=1
δjilm
g,x δjilm

g,k )2

λs−λt
, x = s, · · · , s+m− 1

χ
kji∗m

gp

y,(s,··· ,s+m−1) =
s+m−1∑
k=s

2(
ci∑

l=1
δjilm
g,y δjilm

g,k )2

λt−λs
, y = t, · · · , t+ n− 1

(4.17)

If the planet modes associated with λs = · · · = λs+m−1 and λt = · · · = λt+n−1

belong to different stages, the planet modes associated with λs = · · · = λs+m−1

are decoupled with those for λt = · · · = λt+n−1. Therefore, δjilmg,k = 0 in equation

(4.17) and the loci of the two planet-mode frequencies cross each other.

If the modes associated with λs = · · · = λs+m−1 and λt = · · · = λt+n−1 are

affiliated to the same stage (m has to equal n in this case), the coupling factors

in (4.17) are not equal to zero because the planet mode properties guarantee

that there are always mesh deflections for kji∗mgp .

The same result applies to other planet tuned parameters with the exception that

the planet-mode frequency loci of the same stage may cross each other when the

planet-mode frequencies are distinct, the associated modes are decoupled, and

the varying parameter is kilmp , milm
p , or I ilmp . The details of these exceptions are

covered in [59] and this study will not repeat it.

(D) One rotational frequency locus and one translational frequency locus:

λs is the rotational eigenvalue and λt = λt+1 is the translational natural fre-

quency. Because rotational tuned parameters have impact on λs but not on trans-

lational frequencies and translational tuned parameters can change λt = λt+1

while keeping rotational frequencies untouched, this case is separated into two
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situations: the change of a rotational tuned parameter and the variation of a

translational tuned parameter.

Consider kjgb,θθ as a representative rotational tuned parameters. Application of

equations (4.9) and 4.10 (or collecting the terms depending on 1
λs−λt

in equation

(B.3)) gives

χ
kj

gb,θθ

s,t = χ
kj

gb,θθ

s,t+1 =
2(θj

g,tθ
j
g,s)

2+2(θj
g,t+1θ

j
g,s)

2

λs−λt

χ
kj

gb,θθ

t,s =
2(θj

g,tθ
j
g,s)2

λt−λs

χ
kj

gb,θθ

t+1,s =
2(θj

g,t+1θ
j
g,s)2

λt+1−λs

(4.18)

Because the modal properties of translational mode ensure that θjg,t = θjg,t+1 = 0,

the coupling factors in (4.18) equal zero. The locus of the rotational frequency

λs, hence, crosses the locus of λt = λt+1 when kjgb,θθ is changed. It is the same

for other rotational tuned parameters.

When kjgb, is the perturbed parameter, application of equations (4.9) and 4.10

(or collecting the terms depending on 1
λs−λt

in equation (B.3)) yields

χ
kj

gb

s,t = χ
kj

gb,θθ

s,t+1 =
2(xj

g,tx
j
g,s+y

j
g,ty

j
g,s)

2+2(xj
g,t+1x

j
g,s+y

j
g,t+1y

j
g,s)

2

λs−λt

χ
kj

gb

t,s =
2(xj

g,tx
j
g,s+y

j
g,ty

j
g,s)2

λt−λs

χ
kj

gb

t+1,s =
2(xj

g,t+1x
j
g,s+y

j
g,t+1y

j
g,s)

2

λt−λs

(4.19)

According to the modal properties of rotational mode, xjg,s and yjg,s are all equal

to zero. The coupling factors in equation (4.19), hence, are zero and the locus of

λt = λt+1 crosses that of λs with the change of kjgb,. The same result applies to

other translational tuned parameter. Summarizing both situations in this case,

one rotational frequency locus always crosses the loci for translational frequen-

cies with the variation of any rotational or translational tuned parameter.

Different from rotational and translational tuned parameters, planet tuned pa-

rameters can change both rotational and translational frequencies. Let kji∗mgp be
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the perturbed parameter. Insertion of (3.28) into (4.9) and 4.10 produces

χ
kji∗m

gp

s,t = χ
kji∗m

gp

s,t+1 =
2(

ci∑
l=1

δjilm
g,s δjilm

g,t )2+2(
ci∑

l=1

δjilm
g,s δjilm

g,t+1)2

λs−λt

χ
kji∗m

gp

t,s =
2(

ci∑
l=1

δjilm
g,s δjilm

g,t )2

λt−λs

χ
kji∗m

gp

t+1,s =
2(

ci∑
l=1

δjilm
g,s δjilm

g,t+1)
2

λt+1−λs

(4.20)

The modal properties of rotational modes ensure

δjilmg,s = δji∗mg,s (4.21)

and the translational mode properties yield[
δjilmg,t

δjilmg,t+1

]
=

[
cos ψ̂ilm sin ψ̂ilm

− sin ψ̂ilm cos ψ̂ilm

] [
δji1mg,t

δji1mg,t+1

]
(4.22)

The coupling factors in equation (4.22) vanishes after the insertion of the identi-

ties in (4.21) and (4.22) into (4.22). The locus of a rotational frequency, hence,

are free to cross the loci of translational frequencies when kji∗mgp varies. The same

result applies to other planet tuned parameters.

(E) One rotational frequency locus and one planet-mode frequency locus:

Because translational tuned parameters have no impact to rotational or planet-

mode frequencies, rotational and planet tuned parameters are studied in this

case. Application of the same analytical process as that in Case D produces the

result that rotational natural frequency loci always cross the loci of planet-mode

frequencies when any rotational or planet tuned parameter is changed.

(F) One translational frequency locus and one planet-mode frequency locus:

Compound planetary gear modal properties ensure that rotational tuned param-

eters do not affect translational or planet-mode frequencies. Translational and
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planet tuned parameters, hence, are the only impacting parameters in this case.

Application of the same analytical process as that in Case D gives the result

that translational natural frequency loci are free to cross the loci of planet-mode

frequencies as any translational or planet tuned parameter varies.

Table 4.1: Veering (V ) and crossing(X) pattern of a
general compound planetary gears with respect to the
change of any rotational tuned parameter. R means Ro-
tational mode, T means Translational mode, P means
Planet mode. − indicates that no veering/crossing is
possible.

Mode Types R T P
R − X −
T X V X
P − X −

Table 4.2: Veering (V ) and crossing(X) pattern of a
general compound planetary gears with respect to the
change of any translational tuned parameter. R means
Rotational mode, T means Translational mode, P means
Planet mode. − indicates that no veering/crossing is
possible.

Mode Types R T P
R V X X
T X − −
P X − −
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Table 4.3: Veering (V ) and crossing(X) pattern of a
general compound planetary gears with respect to the
change of any planet tuned parameter. R means Ro-
tational mode, T means Translational mode, P means
Planet mode. V/X indicates that both veering and cross-
ing are possible.

Mode Types R T P
R V X X
T X V X
P X X V/X

The veering and crossing pattern of a general compound planetary gear with

respect to the change of any rotational, translational, and planet tuned parameter

are illustrated in Tables 4.1, 4.2, and 4.3, respectively. The natural frequency veer-

ing/crossing phenomena of the example system in Figures 4.1, 4.6, and 4.7 confirm

the patterns in these tables. In Figure 4.1, the loci of a pair of translational frequen-

cies (ω17, ω18) cross the locus of the rotational frequency (ω19) and veer away from

another pair of translational frequencies (ω20, ω21) when k2
gb, varies. Figure 4.6 shows

that the locus of a rotational frequency (ω57) crosses the loci of a pair of transla-

tional frequencies (ω58, ω59) and veers away from another rotational frequency (ω60)

when k2
gb,θθ is changed. Figure 4.7 illustrates that the loci of a pair of translational

frequencies (ω55, ω56) cross the locus of a rotational frequency (ω57) and veer away

from another pair of translational frequencies (ω58, ω59) when k11∗1
gp is altered.

4.5 Natural Frequency Veering and Crossing Pattern for Mis-
tuned Parameters

kjilmgp , kilmqpp , kilmqp−p , kilmp , milm
p , and I ilmp are the only parameters that can break the

axisymmetry of stage i and they are mistuned parameters. Similar to the previous
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Figure 4.6: Natural frequency crossing and veering phenomena in the example system
when k2

gb,θθ changes.
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Figure 4.7: Natural frequency crossing and veering phenomena in the example system
when k11∗1

gp changes.

section, six cases are discussed based on the structured modal properties of compound

planetary gears.

(A) Two rotational frequency loci:

λs and λt are two rotational eigenvalues. Take kji1mgp as the representative exam-

ple. Insertion of (3.18) into (4.3) yields

χ
kji1m

gp

s,t =
2

λs − λt
(δji1mg,s δji1mg,t )2 = −χk

ji1m
gp

t,s (4.23)

According to the rotational modal properties [53], δji1mg,s and δji1mg,t are not zero

if neither mode s nor mode t is a rigid body mode. Hence, λs and λt veer away

if kji1mgp varies and breaks the axisymmetry of stage i. It is the same for other

mistuned parameters.
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(B) Two translational frequency loci:

λs and λs+1 are a pair of translational frequencies. Let kji1mgp be the perturbed

parameter. Due to the break of system symmetry caused by mistuned parame-

ters, the loci of λs and λs+1 split as kji1mgp varies (Figure 3.5). That is, the locus of

λs crosses that of λs+1. Such crossing can not be explained by the coupling fac-

tors in equations (4.11)and (4.12), because 1
λs−λs+1

|ρ=ρ0 does not exist. Instead,

equation (4.1) provides the answer directly. Insertion of the eigensensitivities in

(3.56)-(3.58) into (4.1) gives

λs = λos + ε(δji1mg,s )2 |ρ=ρ0 + 1
2
ε2

Λ∑
v=1,v �=s,s+1

2(δji1m
g,v δji1m

g,s )

λs−λv
|ρ=ρ0

λs+1 = λos+1 = λos

(4.24)

Because (δji1mg,s )2 |ρ=ρ0 and
Λ∑

v=1,v �=s,s+1

2(δji1m
g,v δji1m

g,s )

λs−λv
|ρ=ρ0 are not equal to zero in

translational modes, the locus of λs changes as kji1mgp varies. λs+1, however, is

not impacted by kji1mgp . Hence, the locus of changing λs naturally crosses the

locus of unchanged λs+1. Now consider two pairs of nearly equal translational

frequencies λs = λs+1 and λt = λt+1. Insertion of equation (3.55) into equations

(4.11) and (4.12) produces

χ
kji1m

gp

s,t = χ
kji1m

gp

s,t+1 =
2(δji1m

g,s δji1m
g,t )2+2(δji1m

g,s δji1m
g,t+1)

2

λs−λt

χ
kji1m

gp

s+1,t = χ
kji1m

gp

s+1,t+1 =
2(δji1m

g,s+1δ
ji1m
g,t )2+2(δji1m

g,s+1δ
ji1m
g,t+1)

2

λs+1−λt

χ
kji1m

gp

t,s = χ
kji1m

gp

t,s+1 =
2(δji1m

g,s+1δ
ji1m
g,t )2+2(δji1m

g,s δji1m
g,t )2

λt−λs

χ
kji1m

gp

t+1,s = χ
kji1m

gp

t+1,s+1 =
2(δji1m

g,s+1δ
ji1m
g,t+1)2+2(δji1m

g,s δji1m
g,t+1)

2

λt+1−λs

(4.25)

Because δji1mg,s , δji1mg,s+1, δ
ji1m
g,t and δji1mg,t+1 are not equal to zero in a translational

mode, the coupling factors in equation (4.25) are non-zeros. As a result, the loci

of λs and λs+1 veer away from those for λt and λt+1 when kji1mgp is perturbed

and stage i becomes mistuned. Other mistuned parameters impact two pairs of

nearly-equal translational frequencies in the same way.
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(C) Two planet-mode frequency loci:

λs = · · · = λs+m−1 are planet-mode frequencies with multiplicity m and kji1mgp is

the perturbed parameter. Insertion of the eigensensitivities in (3.60)-(3.61) into

(4.1) yields

λs = λos + ε(δji1mg,s )2 |ρ=ρ0 + 1
2
ε2

Λ∑
v=1,v �=s,··· ,s+m−1

2(δji1m
g,v δji1m

g,s )

λs−λv
|ρ=ρ0

λs+1 = · · · = λs+m−1 = λos

(4.26)

Because planet mode properties ensure that (δji1mg,s ) is not zero, the locus of

changing λs naturally crosses the loci of λs+1, · · · , λs+m−1 which are straight

lines. For such frequency loci crossing, coupling factors do not exist. Similar

to Case B in this section, insertion of the eigensensitivities into equation (4.1)

provides the answer to such crossing phenomenon.

Consider another case that two sets of planet-mode eigenvalues, λs = · · · =

λs+m−1 and λt = · · · = λt+n−1, are close to each other when kji1mgp is at its nominal

value. If λs, · · · , λs+m−1 are completely decoupled with λt, · · · , λt+n−1 (i.e.,

they are planet-mode frequencies of different planet sets, or they are distinct

planet-mode frequencies and decoupled with the varying parameter being kilmp ,

milm
p , or I ilmp [59]), direct application of (4.11) and (4.12) gives zero coupling

factors. Thus, the loci are free to cross each other in this situation. If the

two sets of planet modes are not decoupled, both sets of planet modes have

to be for the same stage and their multiplicity should be equal. Insertion of

the related eigensensitivities in (3.60)-(3.61) and planet mode properties into

equations (4.11) and (4.12) yields

χ
kji1m

gp

x,(t,··· ,t+n−1) =
t+n−1∑
k=t

2(δji1m
g,x δji1m

g,k )2

λs−λt
, x = s, · · · , s+m− 1

χ
kji1m

gp

y,(s,··· ,s+m−1) =
s+m−1∑
k=s

2(δji1m
g,y δji1m

g,k )2

λt−λs
, y = t, · · · , t+ n− 1

(4.27)
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The fact that δji1mg is not zero in any planet mode leads to non-zero coupling

factors in (4.27). The loci of λs, · · · , λs+m−1, hence, always veer away from

the loci of λt, · · · , λt+n−1 in this case when kji1mgp is changed. The same results

apply to other mistuned parameters.

(D) One rotational frequency locus and one translational frequency locus:

When kji1mgp is the perturbed parameter, insertion of (3.55) into (4.9) and 4.10

produces

χ
kji1m

gp

s,t = χ
kji1m

gp

s,t+1 =
2(δji1m

g,s δji1m
g,t )2+2(δji1m

g,s δji1m
g,t+1)

2

λs−λt

χ
kji∗m

gp

t,s =
2(δjilm

g,s δjilm
g,t )2

λt−λs

χ
kji1m

gp

t+1,s =
2(δjilm

g,s δjilm
g,t+1)2

λt+1−λs

(4.28)

Different from Case D for tuned parameters, the identities in (4.21)-(4.22) can

not be applied to (4.28) because only the central gear-planet mesh spring in

train 1 deforms. The coupling factors in (4.28), hence, do not vanish and veering

occurs when δji1mg changes. It is the same for all other mistuned parameters.

(E) One rotational or translational frequency locus and one planet-mode frequency

locus:

Application of the same analytical process as that in Case D in this section yields

the result that rotational or translational natural frequency loci always veer away

from the loci of planet-mode frequencies as any mistuned parameter changes.

The above results for the veering/crossing patterns for mistuned parameters are

summarized Table 4.4. Compared to Tables 4.1-4.3, Table 4.4 shows more occurrences

of veering. The natural frequency veering/crossing phenomena of the example system

in Figure 4.8 confirm the results in Table 4.4. Figure 4.8 shows that one of the pair

of translational frequencies, ω55, crosses the locus of other translational frequency of
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the same pair, ω56 when k1111
gp changes, and similar crossing phenomenon happens to

another pair of translational frequencies, ω58 and ω59. Such split of translational fre-

quency loci are caused by the break of axisymmetry as analyzed previously. Different

from Figures 4.6 and 4.7, the rotational frequency locus (ω57) in Figure 4.8 veers away

from the translational frequency locus (ω56) as predicted in Table 4.4.

Table 4.4: Veering (V ) and crossing(X) pattern of a gen-
eral compound planetary gears with respect to the change
of any mistuned parameter. Rmeans Rotational mode, T
means Translational mode, P means Planet mode. V/X
indicates that both veering and crossing are possible.

Mode Types R T P
R V V V
T V V/X V
P V V V/X

4.6 Conclusion

This study thoroughly investigates the natural frequency veering and crossing

of general compound planetary gears. By checking whether the axisymmetry in all

stages are retained, all system parameters are divided into tuned and mistuned pa-

rameters. Tuned parameters are further classified as rotational, translational, and

planet tuned parameters based on the eigensensitivity analysis result of previous

chapter. Taking advantage of the coupling factors which are effective measurements

for the veering of natural frequency loci and utilizing the structured modal proper-

ties, the veering/crossing patterns with respect to each group of tuned parameters

are determined. The veering/crossing patterns for mistuned parameter are derived

in a similar way. Different from the veering/crossing patterns with respect to the
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Figure 4.8: Natural frequency crossing and veering phenomena in the example system
when k1111

gp changes.

change of tuned parameters, the veering/crossing patterns for mistuned parameters

have more occurrences of veering due to the break of axisymmetry.
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Chapter 5: ANALYTICAL DETERMINATION OF MESH

PHASE RELATIONS IN GENERAL COMPOUND

PLANETARY GEARS

5.1 Introduction

Previous research shows that for a simple planetary gear different mesh phases

between the multiple sun-planet and ring-planet meshes significantly influence the

dynamic response [5, 48, 56, 61, 75, 77, 86, 87, 94, 97]. From these studies, one would

expect that proper selection of mesh phases will also reduce the vibration and noise of

compound planetary gears. In order to properly optimize mesh phases in the design

stage, a complete understanding of all the mesh phase relations in general compound

planetary gears is needed. Any static or dynamic model must accurately represent

the mesh phases. This study presents these mesh phase relations.

A rotational-translational model for general compound planetary gears was de-

veloped by Kiracofe and Parker [53] to characterize modal properties. In this model,

each component has one rotational and two translational degrees of freedom. Bearings

and shaft connections are modeled by one torsional and two translational stiffnesses.

Gear meshes are modeled by linear stiffnesses. Because the number of teeth in contact

changes as the system rotates, the mesh stiffnesses vary, exciting the system vibra-

tion. To introduce time-varying mesh stiffness or static transmission error excitation
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to Kiracofe and Parker’s model or any similar one, it is crucial to know the relative

phases between all gear meshes in the system as the gears rotate. Such calculations

require the mesh phase relations in this study.

Parker and Lin [77] clarified the mesh phase relations for simple planetary gears.

The mesh phase relations of general compound planetary gears have not been studied

in the published literature except that Guo and Parker presented their preliminary

investigation on compound planetary gear mesh phasing in [54]. The difficulty is that

the variety of compound configurations and the large number of gear meshes make

description of the mesh phase relations difficult. In addition, the gear meshes in a

compound planetary gear may have different mesh periods. The purpose of this study

is to systematically define all the relative mesh phases in a general compound plan-

etary gear, to define the relative phase relations between the meshes with different

mesh periods, and to give a comprehensive approach to calculate these relative phases

and the relations between them.

The derived results are required for any simulation that does not track the ac-

tual tooth contact conditions of geometrically precise gears and teeth as the gears

rotate. Most commercial gear software does not track this contact; instead they use

lumped stiffness representations of the tooth mesh. The same is true for conventional

lumped-parameter gear models used in the literature. The results herein provide all

needed results to calculate the required phases.
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5.2 Relative Phases for Meshes with Different Mesh Periods

5.2.1 Definition of Relative Phases

The mesh phase relations in this study are described by the relative phases between

mesh tooth variation functions. Mesh tooth variation functions track the number of

teeth in contact at each gear mesh as the gears rotate. These functions take only

integer values. Actual mesh stiffness and static transmission error variations are

continuous functions whose mesh phase relations are identical to those of mesh tooth

variation functions [77], even though the shape of those periodic quantities are not the

rectangular functions studied here. The shapes of any of these quantities is immaterial

here. Our purpose is to examine only the phases between these quantities.

To accurately describe relative mesh phases in compound planetary gears, it is

necessary to define the following terms: referred mesh, referring mesh and reference

point. A referred mesh is the gear mesh that serves as the reference for other gear

meshes. A gear mesh that refers to the referred mesh in a certain relative phase is

called the referring mesh. For example, in Figure 5.1 gear meshes A and B are the

referred and referring mesh, respectively, for the relative phase γBA . Reference points

are the matching points in the mesh cycle of the referred and referring meshes. The

reference point in the referred mesh can be any point in the mesh cycle. The reference

point in the referring mesh must be the point that uniquely matches the reference

point in the associated referred mesh. In this study the pitch points of the referring

and referred meshes serve as the reference points for all relative phases. One could

also choose, for example, the highest point of single tooth contact. The choice of

reference point is arbitrary and does not affect the results that follow.

The definition of a relative phase between two meshes with different mesh periods
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is described in Figure 5.1. The mesh periods of meshes A and B are TA and TB,

respectively. Mesh A is the referred mesh, and mesh B is the referring mesh for the

relative phase γBA . The mesh tooth variation function of mesh A is kA(t) with the

pitch point in contact at t = t1. The mesh tooth variation function of mesh B is

kB(t). The pitch point of mesh B is in contact for the first time at t2 (t2 > t1). Then

the relative phase of kB(t) referring to kA(t) is γBA (t1) = t2−t1
TB , where t1 is called the

referring time of this relative phase. Therefore, the value of γBA (t1) is between 0 and

1, and γBA (t1)T
B is a portion of the referring mesh period TB. The referring time

of a relative phase is the time when the reference point (i.e., the pitch point) of the

referred mesh is in contact. The referring time between gear mesh A and B in Figure

5.1 can also be at t1 + nTA, where n is any integer.

According to the above definition of relative phases, when mesh A and mesh B

have the same mesh periods, the relative phase between gear mesh A and B remains

the same for any choice of reference point (or referring time). There is no need to

specify the referring time in this case, and γBA (t1) simplifies to γBA . Otherwise, the

referring time must be specified.

The above definition of relative phase provides a way to determine the relative

phase between any two gear meshes that have different mesh periods. For the example

shown in Figure 5.1, the mesh tooth variation function of mesh B is kB(t), and the

pitch point of mesh B is in contact at t = t2. κB(τ) is a time-shifted mesh tooth

variation function of mesh B. Its shape is identical to kB(t) but its origin (τ = 0) is

shifted to be mesh B’s reference or pitch point. The absolute time is t; τ is a relative

time coordinate with τ = 0 being when mesh B is at its reference point. Because

the pitch point of mesh B is in contact at t = t2 in Figure 5.1, the time-shifting
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relationships between kB(t) and κB(τ) are

κB(τ) = kB(t+ t2)

τ = t+ t2

(5.1)

Applying the definition of γBA (t1), t2 in term of γBA (t1) is

t2 = γBA (t1)T
B + t1 (5.2)

The mesh tooth variation functions κB(τ) for all the mating gear pairs are typically

generated by straightforward gear geometry analysis or gear design software, with

each mesh having its own τ = 0 corresponding to a particular reference point in that

mesh’s mesh period. These functions do not depend on the system configuration.

Changing back to t as the absolute time and applying the relationships in equations

(5.1) and (5.2), the mesh tooth variation of mesh B as a function of absolute time,

which is the crucial quantity, is

kB(t) = κB
(
t− γBA (t1)T

B − t1
)

(5.3)

Equation (5.3) shows the important role of relative phases in the correct repre-

sentations of mesh tooth, stiffness, or static transmission error variation functions.

Because the correctness of any static or dynamic compound planetary gear analysis

relies on the correct representations of these functions at each gear mesh, the relative

phases are critical.

5.2.2 Special Algorithm for Relative Phase Calculations

Figure 5.1 shows the relative phases among meshes kA(t), kB(t), and kC(t). Gear

meshes A and B are at their pitch points at t1 and t2, where t2 = t1 + γBA (t1)T
B.

Suppose γBA (t1) and γCB (t2) are known relative phases. Because meshes A, B, and C
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may have different mesh periods, the direct addition of γBA (t1) and γCB(t2) does not

yield γCA(t1). The following algorithm is needed to find γCA(t1).

According to the definition of γCB(t2), t3 = t2 + γCB(t2)T
C is the time when mesh

C is at its pitch point for the first time after t2. As shown in Figure 5.1, mesh C

experiences multiple mesh periods from t1 to t3. Therefore, t3−t1
TC might be greater

than 1 and can not be used directly as the value of γCA(t1). The operator dec( ) is

needed to force t3−t1
TC to be within the range of [0, 1]. When the argument of dec( ) is

positive, the operator drops the whole number part and keeps the decimal part, for

example, dec(1.2) = 0.2. When the argument is negative, its output is the decimal

part of the argument plus 1, for instance, dec(−1.2) = 0.8. Thus, γCA(t1) is calculated

as

γCA(t1) = dec

(
t3 − t1
TC

)

= dec

(
γCB(t2)T

C + t2 − t1
TC

)

= dec

(
γCB(t2)T

C + γBA (t1)T
B

TC

) (5.4)

When TA = TB = TC , no referring time is needed, and equation (5.4) simplifies to

γCA = dec
(
γBA + γCB

)
(5.5)

Likewise, when γBA (t1) and γCA(t1) are known, the relative phase of mesh B referring

to mesh C is determined as follows. The times t3 = t1+γ
C
A(t1)T

C+TC and t4 = t3+T
C

are the times when mesh C is at its pitch point. Each one of them can serve as the
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referring time for γBC . Choosing the referring time t4 as the example, γBC (t4) is

γBC (t4) = dec

(
t5 − t4
TB

)
= dec

(
t2 − t4
TB

)

= dec

(
γBA (t1)T

B + t1 − t4
TB

)

= dec

(
γBA (t1)T

B − γCA(t1)T
C − 2TC

TB

) (5.6)

where t5 is the time when the pitch point of mesh B is in contact for the first time

after t4, and t2 = t5 − 2TB. When TA = TB = TC , equation (5.6) simplifies to

γBC = dec(γBA − γCA) (5.7)

5.3 Mesh Phase Relations of General Compound Planetary

Gears

5.3.1 Numbering of the Components in Compound Plane-
tary Gears

Precise numbering of each component is necessary due to the complex structures

of compound planetary gears. Suppose there are a stages numbered as 1, 2, · · · , a.
It is convenient to sequentially number the stages from input stage to output stage.

The total number of central gears (i.e., sun and ring gears) of the system is b, and

these central gears are numbered as 1, 2, · · · , b. For typical compound planetary gears

(there is only one sun gear and one ring gear in each stage), si and ri represent the

central gear number of the sun gear and ring gear of stage i, respectively. For non-

typical compound planetary gears, si,x and ri,y represent the central gear number

of the xth sun gear and the yth ring gear of stage i. The discussion in the rest

of this investigation focuses on typical compound planetary gears because the only

difference in the derivation of the mesh phase relations between typical and non-

typical compound planetary gears is the numbering of the central gears.
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The concept of a planet train is illustrated in Figure 5.2. The number of planet

trains in planet set i is ci. Train 1 is chosen arbitrarily within the planet set. All

other planet trains in planet set i are numbered sequentially in the counter-clockwise

direction. Each planet train has di planets. The numbering of the planets in any

planet train is as follows: the planet in mesh with its associated sun gear is numbered

as planet 1 of the planet train; the planet next to it in the train is numbered as planet

2; the rule continues until planet di is numbered.

5.3.2 Definitions of Relative Phases in Compound Planetary

Gears

All gear meshes in a compound planetary gear are classified into meshes between

a central gear and a planet (gear-planet meshes) or meshes between two planets

(planet-planet meshes). kjilmgp (t) represents the mesh tooth variation functions of the

mesh between central gear j and planet m in train l of planet set i. kilmqpp (t) is the

mesh tooth variation between planet m and planet q in train l of planet set i. The

associated mesh periods are T jilmgp and T ilmqpp . With the previously defined numbering

convention, kjilmgp is either ks
iil1
gp or kr

iildi

gp , and kilmqpp is actually k
ilm(m+1)
pp .

The relative phase for kjilmgp and kilmqpp being the referred and referring meshes,

respectively, is denoted γilmq,ppjilm,gp(t1), where t1 is the referring time. All other relative

phases are written in the same way.

It is not practical or necessary to calculate all the relative phases between any

two gear meshes. Equations (5.4)-(5.7) indicate that if the relative phases of all

gear meshes referring to the same referred mesh with the same referring time are

calculated, the relative phase between any two gear meshes is known. Such a referred
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Figure 5.2: The example system. All gear meshes are represented by the springs in
red color.
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mesh is called the base referred mesh of the system.

A. System-level Relative Phases

All the relative phases having the base referred mesh as their referred mesh are

called system-level relative phases. As mentioned above, if all the system-level relative

phases are calculated, the relative phases between any two gear meshes are known.

Therefore, the main objective is to calculate the system-level relative phase of each

gear mesh in the system.

The mesh between the sun gear associated with stage 1 and planet 1 of train 1 in

planet set 1 (ks
1111
gp ) is chosen to be the base referred mesh in this study, although this

selection is arbitrary. γ̂jilm,gp(t1) and γ̂ilmq,pp(t1) represent the system-level relative

phases of kjilmgp and kilmqpp referring to the base referred mesh with referring time t1,

respectively. These are the important quantities, and they are needed for every mesh.

B. Stage-level Relative Phases

If a certain gear mesh in stage i serves as the referred mesh for all other gear meshes

in the same stage, such a referred mesh is called the stage i referred mesh. All relative

phases that use this gear mesh as their referred mesh are stage-level relative phases. In

this study, the gear mesh between the stage i sun gear and planet 1 of train 1 in planet

set i (ks
ii11
gp ) is always chosen as the stage i referred mesh. γ̃jilm,gp(ti1) and γ̃ilmq,pp(ti1)

are the stage-level relative phases of kjilmgp and kilmqpp , respectively, referring to the stage

i referred mesh with referring time ti1. The referring time ti1 = t1 + γ̂s
ii11,gp(t1)T

sii11
gp

is the time when the pitch point of mesh ks
ii11
gp is in contact for the first time after t1.

C. Train-level Relative Phases

The relative phases of the gear meshes in train l (kjilmgp and kilmqpp ) referring to

the matching gear meshes in train 1 (kji1mgp and ki1mqpp ) are also desired. Such relative
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phases are called train-level relative phases. Train 1 of stage i in each stage is called

the base train in stage i, and the gear meshes in train 1 of stage i are called the

base-train referred meshes in stage i. They serve as the referred meshes for train-

level relative phases. γ̄jilm,gp(tji1m,gp1 ) and γ̄ilmq,pp(ti1mq,pp1 ) are the train-level relative

phases of kjilmgp and ki1mqpp referring to their base-train referred meshes in stage i with

referring times tji1m,gp1 = t1 + γ̂s
ii11,gp(t1)T

sii11
gp + γ̃ji1m,gp(ti1)T

ji1m
gp and ti1mq,pp1 = t1 +

γ̂s
ii11,gp(t1)T

sii11
gp + γ̃i1mq,pp(ti1)T

i1mq
pp , respectively.

Dividing the problem into this structure of system-level, stage-level, and train-

level, relative phases is convenient. One can analyze the simpler stage and train-level

relative phases first. Then, by applying equation (5.4), the important system-level

relative phase of any gear mesh is one of

γ̂jilm,gp(t1) =γjilm,gp1111,gp(t1)

=dec
{[
γ̄jilm,gp(tji1m,gp1 )T jilmgp + γ̃ji1m,gp(ti1)T

ji1m
gp

+γ̂s
ii11,gp(t1)T

sii11
gp

]
/T jilmgp

} (5.8)

γ̂ilmq,pp(t1) = γilmq,pp1111,gp(t1)

=dec
{[
γ̄ilmq,pp(ti1mq,pp1 )T ilmqpp + γ̃i1mq,pp(ti1)T

i1mq
pp

+γ̂s
ii11,gp(t1)T

sii11
gp

]
/T ilmqpp

} (5.9)

where i = 1, · · · , a, j = 1, · · · , b, l = 1, · · · , ci, m, q = 1, · · · , di, and q �= m.

The definitions of system, stage, and train-level relative phases and equations

(5.8)-(5.9) apply to both spur and helical compound planetary gears with any gear

tooth shape, including profile and lead modifications. Neither of the helix angle or

the detailed gear tooth shape is used in the above definitions or derivations.
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5.3.3 Calculation of Relative Phases in Compound Planetary
Gears

Equations (5.8)-(5.9) show that γ̂s
ii11,gp, γ̃ji1m,gp, γ̃i1mq,pp(ti1), γ̄

jilm,gp(tji1m,gp1 ), and

γ̄ilmq,pp(ti1mq,pp1 ) are the only phases needed to determine any system-level relative

phases. We focus on the calculation of these relative phases.

A. Calculation of γ̂s
ii11,gp(t1)

γ̂s
ii11,gp(t1) is the system-level relative phase between ks

ii11
gp and the base referred

mesh with the referring time t1. Its appearance in equations (5.8) and (5.9) indicates

that it impacts all the system-level relative phases in stage i. It can not be derived

analytically because it depends on manufacturing, assembly, and configuration of the

compound planetary gear. The definition of relative phases shows how to determine

it by experiment or simulation. Suppose the base referred mesh ks
1111
gp is at its pitch

point at t = t1. By locating the time ti2 when ks
ii11
gp is at its pitch point, the relative

phase is

γ̂s
ii11,gp(t1) = dec

(
ti2 − t1
T sii11
gp

)
(5.10)

where T s
ii11

gp is the mesh period of ks
ii11
gp .

In practice one might choose γ̂s
ii11,gp(t1) to achieve certain behavior based on static

or dynamic simulations. One can then design the hardware (e.g., the relative clocking

angle between two central gears on a single shaft) to achieve the desired phase.

B. Calculation of stage-level relative phases

γ̃ji1m,gp(ti1) and γ̃i1mq,pp(ti1) are stage-level relative phases. Applying the numbering

convention, γ̃ji1m,gp(ti1) is either γ̃s
ii11,gp(ti1) or γ̃r

ii1di,gp(ti1), and γ̃i1mq,pp(ti1) is actually

γ̃i1m(m+1),pp(ti1), where 1 � m � di − 1. According to the definition of stage-level

relative phases, γ̃s
ii11,gp(ti1) is zero. γ̃r

ii1di,gp(ti1) and γ̃i1m(m+1),pp(ti1) are calculated
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below.

If there is no stepped-planet structure in planet set i, all the gear meshes in stage

i have the same mesh period. Hence, no referring time is needed for such stage-level

relative phases. By applying (5.5) and (5.7) in this case, γ̃r
ii1di,gp and γ̃i1m(m+1),pp are

γ̃r
ii1di,gp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γr
ii11,gp
sii11,gp di = 1

dec(γi112,ppsii11,gp + γr
ii12,gp
i112,pp ) di = 2

dec

(
γi112,ppsii11,gp +

di−2∑
u=1

γ
i1(u+1)(u+2),pp
i1u(u+1),pp + γr

ii1di,gp
i1(di−1)di,pp

)
di > 2

(5.11)

γ̃i1m(m+1),pp =

⎧⎪⎪⎨
⎪⎪⎩

Does not exist. di = 1

γi112,ppsii11,gp di = 2

dec

(
γi112,pp
sii11,gp

+
m−1∑
u=1

γ
i1(u+1)(u+2),pp
i1u(u+1),pp

)
di > 1

(5.12)

where all needed quantities in (5.11) and (5.12) are analytically determined in terms

of gear parameters by the procedure described in [77] based on gear geometry.

Now we introduce a stepped-planet structure between planet v − 1 and planet v

(1 < v � di and di � 2). The gear mesh conditions require that the mesh periods of

all the gear meshes before the stepped-planet structure are equal (ks
i111
gp and k

i1m(m+1)
pp ,

where 1 � m � v − 2), and all the mesh periods after the stepped-planet structure

are equal (kr
i11di

gp and k
i1m(m+1)
pp , where v − 1 � m � di − 1). The relative phases

whose referring and referred meshes have the same mesh period are independent of
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the referring time. γ̃r
ii1di,gp(ti1) and γ̃i1m(m+1),pp(ti1) are

γ̃r
ii1di,gp(ti1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γr
ii12,gp
sii11,gp

(ti1) di = 2

dec
(
γi123,pp
sii11,gp

(ti1)
T i123,pp

pp

T rii1di
gp

+ γr
ii1di,gp
i123,pp

)
di = 3, v = 2

dec
(
γi112,pp
sii11,gp

T i112,pp
pp

T rii1di
gp

+ γr
ii1di,gp
i112,pp (ti1)

)
di = 3, v = 3

dec

(
γi112,pp
sii11,gp

T i112,pp
pp

T rii1di
gp

+
v−3∑
u=1

γ
i1(u+1)(u+2),pp
i1u(u+1),pp

T i112,pp
pp

T rii1di
gp

+γ
i1v(v+1),pp
i1(v−2)(v−1),pp(t

i1(v−2)(v−1),pp
1 )+

di−2∑
w=v

γ
i1(w+1)(w+2),pp
i1w(w+1),pp +γr

ii1di,gp
i1(di−1)di,pp

)
di � 4

(5.13)

γ̃i1m(m+1),pp(ti1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Do not exist. di = 2
Eq.(5.12) di > 2, and 1 � m � v − 2

dec
(
γi112,pp
sii11,gp

T i112,pp
pp

T rii1di
gp

+
v−3∑
u=1

γ
i1(u+1)(u+2),pp
i1u(u+1),pp

T i112,pp
pp

T rii1di
gp

+

γ
i1v(v+1),pp
i1(v−2)(v−1),pp(t

i1(v−2)(v−1),pp
1 )+

m−1∑
w=v

γ
i1(w+1)(w+2),pp
i1w(w+1),pp

)
di > 2, and v − 2 � m � di − 1

(5.14)

where ti1 = t1 + γ̂s
ii11,gp(t1)T

sii11
gp and t

i1(v−2)(v−1),pp
1 is the time when the pitch point of

k
i1(v−2)(v−1)
pp is in contact for the first time after ti1. All quantities needed in (5.13) and

(5.14) except γ
i1v(v+1),pp
i1(v−2)(v−1),pp(t

i1(v−2)(v−1),pp
1 ) are derivable from gear geometry using the

procedure in [77]. γ
i1v(v+1),pp
i1(v−2)(v−1),pp(t

i1(v−2)(v−1),pp
1 ) can not be determined analytically be-

cause it relies on manufacturing and installation of the stepped-planet structure (i.e.,

the relative clocking angle between two planets on a single shaft). It is calculated

from experiment or simulation.

C. Calculation of train-level relative phases

γ̄jilm,gp(tjilm,gp1 ) and γ̄ilmq,pp(tilmq,pp1 ) are the train-level relative phases of kjilmgp and

kilmqp referring to their associated base-train referred meshes (kji1mgp and ki1mqp ) with

the referring times tji1m,gp1 and tilmq,pp1 , respectively. Because kjilmgp and kji1mgp have
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the same mesh period, γ̄jilm,gp(tjilm,gp1 ) and γ̄ilmq,pp(tilmq,pp1 ) simplify to γ̄jilm,gp and

γ̄ilmq,pp.

With the numbering convention in this study, γ̄jilm,gp is either γ̄s
iil1,gp or γ̄r

iildi,gp,

and γ̄ilmq,pp is γ̄ilm(m+1),pp. The expressions for γ̄s
iil1,gp, γ̄r

iildi,gp, and γ̄ilm(m+1),pp are

summarized in Table 5.1. These train-level relative phases are determined by the

tooth numbers of the sun, ring, or planet gears, the relative planet position angle

ψ̂il (refer to Nomenclature), the relative planet rotation angle θ̂ilmp (discussed later),

and the rotation direction of the sun, ring, or planet gears relative to the associated

carrier. The above definitions differ from the definitions of train-level relative phases

for simple planetary gears in [77] in two ways. First, the planet gear tooth numbers

and the relative planet rotation angle θ̂ilmp are present in Table 5.1. Second, the sign

of the argument inside the operator dec( ) is determined by the rotation directions

of the sun, ring, or planet gears relative to their associated carrier, instead of the

absolute rotation direction of the planets. The first difference is caused by the need

to determine the relative phases for planet-planet meshes that do not exist in simple

planetary gears. The second difference is because the sign determination method

in [77] only applies to a restricted set of simple planetary gear configurations. One

of the sun gear, ring gear, or carrier must be fixed for the method of using the

absolute planet rotation direction to determine the sign of the relative phases to

work. For other configurations, such as torque-split differential configurations or

compound planetary gears that contain multiple planet gears in the same train, the

method in [77] fails. The method in this study has no such configuration limitations.

The rotation directions of the sun, ring, or planet gears relative to their associated

carrier are determined by simple kinematic analysis. The sign of the argument inside
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the operator dec( ) for each train-level relative phase is uniquely determined.

In what follows, the derivation of the formulae and the sign determination method

in Table 5.1 are explained. For the sun-planet meshes in stage i, Zsi

g tooth meshes

are completed if the sun gear finishes a complete revolution relative to its associated

carrier (that is, θs
i

g -θic = 2π). Consider sun gear si starting from an arbitrary state.

When this sun gear rotates ψ̂il > 0 relative to its associated carrier (the rotation

direction is counter-clockwise due to the positive value of ψ̂il),
Zsi

g ψ̂il

2π
tooth meshes are

completed for the sun-planet mesh in train 1 of stage i. Let this sun gear’s mesh tooth

variation function be ks
i

ccw(t), where ccw in the subscript indicates counter-clockwise

rotation. The current gear teeth positions of train 1 are exactly the same as those

of train l before the sun gear rotated ψ̂il relative to its carrier. Therefore, dec(
Zsi

g ψ̂il

2π
)

yields the relative phase of the sun-planet mesh in train l referring to that in train 1

(first row of Table 5.1). When sun gear si rotates −2π+ ψ̂il relative to its associated

carrier (the rotation direction is clockwise due to the negative value of −2π + ψ̂il),

the completed tooth mesh number for the sun-planet mesh in train 1 of stage i is

−Zsi
g (−2π+ψ̂il)

2π
. The present gear teeth position for the sun-planet gear mesh of train 1

is the same as that for the sun-planet gear mesh of train l before the sun gear rotated.

Thus, the relative phase of the sun-planet mesh in train l referring to that in train 1 in

this case becomes dec(−Zsi
g (−2π+ψ̂il)

2π
), where the negative sign before the fraction in the

argument is caused by the clockwise rotation (when the sun gear rotates clockwise,

its mesh tooth variation function ks
i

cw(t) is equivalent to ks
i

ccw(−t)). Dropping the

integer part in the train-level relative phase yields γ̄s
iil1,gp = dec(−Zsi

g ψ̂il

2π
) (second row

of Table 5.1). The same analytical process applies to the derivation of the train-level

relative phases for ring-planet gear meshes (γ̄r
iildi,gp). The results are listed in Table
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5.1.

The analytical process to derive the train-level relative phases for planet-planet

gear meshes is as follows. For the case that there is no stepped-planet structure in

the planet trains of stage i, Z ilm
p tooth meshes are completed for the mesh between

planets m and m+ 1 when planet m finishes a complete revolution relative to carrier

i. The next step is to determine θ̂ilmp , the angle that planet m must rotate relative to

carrier i such that the gear teeth position for the gear mesh between planets m and

m+ 1 in train 1 after the rotation is equivalent to that in train l before the rotation.

Once θ̂ilmp is calculated as described below, dec(
Zilm

p θ̂ilm
p

2π
) and dec(−Zilm

p θ̂ilm
p

2π
) are the

relative phases of the mesh between planet m and m+1 in train l referring to that in

train 1 when planet m rotates counter-clockwise and clockwise, respectively, relative

to its associated carrier (γ̄ilm(m+1),pp in Table 5.1).

According to the previous derivation of the relative phases for sun-planet meshes,

the gear teeth positions in train 1 after the sun gear rotates ψ̂il counter-clockwise or

2π− ψ̂il clockwise relative to carrier i are exactly those in train l before the rotation.

Therefore, the problem to determine γ̄ilm(m+1),pp reduces to calculation of the angle

that planet m rotates relative to carrier i after the sun gear rotates ψ̂il counter-

clockwise or 2π − ψ̂il clockwise relative to carrier i.

Meshed-planet gear kinematics gives

θilmp − θic
θsi

g − θic
= (−1)m

Zsi

g

Z ilm
p

(5.15)

where θilmp , θs
i

g , and θic are the absolute rotations of planet m in train l of planet

set i, the sun gear in stage i, and carrier i, respectively. For counter-clockwise sun

gear rotation relative to its associated carrier, substitution of ψ̂il = θs
i

g − θic and

114



θ̂ilmp = θilmp − θic into equation (5.15) yields

θ̂ilmp = (−1)m
Zsi

g ψ̂
il

Z ilm
p

(5.16)

For clockwise sun gear rotation relative to its associated carrier, substitution of 2π−
ψ̂il = θs

i

g − θic and θ̂ilmp = θilmp − θic into equation (5.15) gives

θ̂ilmp = (−1)m
Zsi

g (2π − ψ̂il)

Z ilm
p

(5.17)

This study addresses the case where there is one stepped structure in a planet set

because it is rare to have two or more stepped-planet structures in the same stage.

When there is a stepped-planet structure between planets v− 1 and v in stage i, one

of dec(
Zilm

p θ̂ilm
p

2π
) or dec(−Zilm

p θ̂ilm
p

2π
), depending on whether planet m rotates counter-

clockwise or clockwise, still gives the relative phase of the mesh between planet m

and m + 1 in train l referring to that in train 1, once θ̂ilmp is known. This is the

same as above for meshed planets. The calculation of θ̂ilmp , however, needs to account

for the stepped-planet structure. If m ≤ v − 2 (the planet-planet mesh is before

the stepped-planet structure), the planet-planet mesh has the same mesh period as

the sun-planet mesh in the same stage. Thus, compound planetary gear kinematics

ensure that equations (5.15)-(5.17) still apply. If m ≥ v (the planet-planet mesh

is after the stepped-planet structure), the mesh period of the planet-planet mesh is

generally different from that of the sun-planet mesh in the same stage but the same

as for the ring-planet mesh in the same stage. Therefore, the calculation of θ̂ilmp in

this case should be based on (θr
i

g − θic), the rotation of the ring gear relative to its

associated carrier. Planetary gear kinematics gives

θilmp − θic
θri

g − θic
= (−1)d

i−m Zri

g

Z ilm
p

(5.18)
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Table 5.1: The expressions of train-level relative phases.
The counter-clockwise rotation is the positive direction
for all angles.

Relative
Phase

Rotation Direction
Relative to Carrier

Relative Phase Expression

γ̄s
iil1,gp θs

i

g -θic > 0 γ̄s
iil1,gp = dec

(
Zsi

g ψ̂il

2π

)

θs
i

g -θic < 0 γ̄s
iil1,gp = dec

(
−Zsi

g ψ̂il

2π

)

γ̄r
iildi,gp θr

i

g -θic > 0 γ̄r
iildi,gp = dec

(
Zri

g ψ̂il

2π

)

θr
i

g -θic < 0 γ̄r
iildi,gp = dec

(
−Zri

g ψ̂il

2π

)

γ̄ilm(m+1),pp

θ̂ilmp > 0 γ̄ilm(m+1),pp = dec
(
Zilm

p θ̂ilm
p

2π

)

θ̂ilmp < 0 γ̄ilm(m+1),pp =

dec
(
−Zilm

p θ̂ilm
p

2π

)

For counter-clockwise ring gear rotation relative to its associated carrier, substi-

tution of ψ̂il = θr
i

g − θic and θ̂ilmp = θilmp − θic into equation (5.18) yields (compare to

equation (5.16))

θ̂ilmp = (−1)d
i−mZ

ri

g ψ̂
il

Z ilm
p

(5.19)
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Similarly, for clockwise ring gear rotation relative to its associated carrier, θ̂ilmp is

calculated from equation (5.18) as (compare to equation (5.17))

θ̂ilmp = (−1)d
i−mZ

ri

g (2π − ψ̂il)

Z ilm
p

(5.20)

Kinematic analysis of the compound planetary gear system is required to deter-

mine the rotation direction of each component, and the relative planet rotation angle

θ̂ilmp . With such kinematic analysis, the formulae in Table 5.1 apply to any configura-

tion of compound planetary gear and agree with Parker and Lin’s results in [77] for

the twelve simple planetary gear configurations.

All the above derivations are independent of the gear tooth type (spur or helical

gears) and the detailed gear tooth shape. Therefore, the results apply to both spur

and helical gears with arbitrary gear tooth shape.

5.3.4 Relations between Train-level Relative Phases

Because gear tooth numbers and relative planet position angles of compound

planetary gears must satisfy system assembly conditions, there are specific relations

between the train-level relative phases (γ̄s
iil1,gp, γ̄r

iildi,gp and γ̄ilm(m+1),pp). These re-

lations are important for investigations on the suppression of planetary gear dynamic

response through mesh phasing [75].

Case A: No stepped-planet structure in planet set i

In this case, all the gear meshes in planet set i have the same mesh period. No

referring time is needed for any relative phase within this stage. Suppose central gear

si moves counter-clockwise relative to carrier i.

When di = 1 , the assembly condition of a simple planetary gear [68, 77] gives,

(Zri

g + Zsi

g )ψ̂il = 2πnil (5.21)
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where nil is an arbitrary integer. Insertion of equation (5.21) into the results in Table

5.1 and invoking compound planetary kinematics yield

γ̄s
iil1,gp = dec

(
Zsi

g ψ̂
il

2π

)

= dec

(
2πnil − Zri

g ψ̂
il

2π

)
= dec

(
−Z

ri

g ψ̂
il

2π

)
= γ̄r

iildi,gp

(5.22)

When di � 2, insertion of (5.16) into the train-level relative phase for planet-

planet meshes in Table 5.1 and application of meshed-planet gear kinematics for the

rotation direction of planet m relative to carrier i yield

γ̄ilm(m+1),pp = dec

(
(−1)m

Z ilm
p θ̂ilmp
2π

)

= dec

(
(−1)m(−1)m

Zsi

g ψ̂
il

2π

)
= γ̄s

iil1,gp

(5.23)

By applying meshed-planet kinematics for the rotation direction of the ring gear

relative to carrier i, γ̄r
iildi,gp in Table 5.1 is

γ̄r
iildi,gp = dec

(
(−1)d

iZri

g ψ̂
il

2π

)
(5.24)

The assembly condition of stage i [68] is

ψ̂il =
2πnil

Zri

g + (−1)di+1Zsi

g

(5.25)

where nil is an arbitrary integer. Insertion of (5.25) into (5.24) gives

γ̄r
iildi,gp = dec

(
(−1)d

i 2πnil − (−1)d
i+1Zsi

g ψ̂
il

2π

)

= dec

(
(−1)2diZsi

g ψ̂
il

2π

)
= γ̄s

iil1,gp

(5.26)

Equations (5.23) and (5.26) show that γ̄s
iil1,gp, γ̄ilm(m+1),pp, and γ̄r

iildi,gp are equal

when di � 2.
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Summarizing this case, if there is no stepped-planet structure in planet set i, the

train-level relative phases whose referring meshes are in the same planet train equal

each other.

Case B: Stepped-planet structure in planet set i

The stepped-planet structure is between planets v − 1 and v in stage i, where

2 � v � di. The relations between γ̄s
iil1,gp, γ̄r

iildi,gp, and γ̄ilm(m+1),pp are investigated

for the following two cases.

(I) When 1 � m � v−2, the relationship between γ̄ilm(m+1),pp and γ̄s
iil1,gp is the same

as equation (5.23) because the rotation direction of planet m relative to carrier i is

determined in the same way and the same train-level relative phase formula in Table

5.1 is applied. That is to say, the train-level relative phases whose referring meshes

are located between the sun gear and the stepped-planet structure are all equal.

(II) When v � m � di−1, insertion of (5.19) into the formulae of γ̄ilm(m+1),pp in Table

5.1 and use of kinematics to determine the rotation direction of planet m relative to

carrier i yields

γ̄ilm(m+1),pp = dec

(
(−1)m−1(−1)d

i−mZ
ri

g ψ̂
il

2π

)

= dec

(
(−1)d

i−1
Zri

g ψ̂
il

2π

) (5.27)

Applying stepped-planet kinematics for the rotation direction of the ring gear in stage

i relative to carrier i, the ring-planet relative phase in Table 5.1 becomes

γ̄r
iildi,gp = dec

(
(−1)d

i−1
Zri

g ψ̂
il

2π

)
(5.28)

Equations (5.27) and (5.28) show that the train-level relative phases whose referring

meshes are located between the ring gear and the stepped-planet structure are equal
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to each other, similar to (I) above.

The assembly condition of a stepped planetary gear requires that [68]

ψ̂il = nils δ
si

1 + nilr δ
ri

2

δs
i

1 =
2πZ ilv

p

Zsi

g Z
il(v−1)
p + (−1)diZsi

g Z
ilv
p

δr
i

2 =
2πZ

il(v−1)
p

Zri

g Z
il(v−1)
p + (−1)diZsi

g Z
ilv
p

(5.29)

where nils and nilr are integers, δs
i

1 is the angle that carrier i rotates when the ring

gear ri is fixed and the sun gear rotates one tooth counter-clockwise relative to the

fixed reference frame, and δr
i

2 is the angle that carrier i rotates when the sun gear

si is fixed and the ring gear rotates one tooth counter-clockwise relative to the fixed

reference frame. The above assembly condition indicates that when the sun and ring

gears rotate through nils and nilr tooth meshes (that is, the sun and ring gears rotate

2πnil
s

Zsi
g

and 2πnil
r

Zri
g

, respectively ), carrier i rotates ψ̂il. Thus, planet train 1 is brought to

the position of train l before the rotation. At the same time, because both the sun

and ring gears rotate integer numbers of teeth, a new planet train can be installed at

the position of train 1 before the rotation with exactly the same gear teeth positions

as train 1.

The above process not only illustrates the installation of a new planet train in

a stepped compound planetary gear but also indicates the numbers of tooth meshes

that the sun and ring gears complete when train 1 moves to the position of train l.

The angles that the sun and ring gears rotate relative to carrier i during the above

assembly process are (2πnil
s

Zsi
g

− ψ̂il) and (2πnil
r

Zri
g

− ψ̂il). Thus, the numbers of gear meshes

that the sun and ring gears complete are |nils − ψ̂ilZsi

g /2π| and |nilr − ψ̂ilZri

g /2π|, which

directly reflect how many mesh cycles that the sun-planet and ring-planet meshes in
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train l are ahead of or behind those in train 1. Application of the operator dec() to

these two numbers yields the train-level sun-planet and ring-planet relative phases

between train l and train 1 as

γ̄s
iil1,gp = dec(|nils − ψ̂ilZsi

g /2π|)

γ̄r
iildi,gp = dec(|nilr − ψ̂ilZri

g /2π|)
(5.30)

Because nils and nilr are integers and they have infinite combinations to satisfy (5.29),

the outcomes of γ̄s
iil1,gp and γ̄r

iildi,gp in (5.30) have only two possibilities: dec(±ψ̂ilZsi

g /2π)

and dec(±ψ̂ilZri

g /2π). For example, if ψ̂ilZsi

g /2π = 0.8, dec(|nils − 0.8|) = 0.2 =

dec(−0.8) when nils = 2 and dec(|nils − 0.8|) = 0.8 = dec(0.8) when nils = −1. Thus,

equation (5.30) simplifies to

γ̄s
iil1,gp = dec(±ψ̂ilZsi

g /2π)

γ̄r
iildi,gp = dec(±ψ̂ilZri

g /2π)

(5.31)

The ± sign is necessary because in the above process the rotation direction of each

component is not specified and only the assembly condition is used. The rotation di-

rections of the sun and ring gears relative to the associated carrier determine the signs

for the input arguments to dec( ) in (5.31). For example, if the sun gear si rotates

counter-clockwise relative to carrier i and the sun-planet mesh in train 1 completes

ψ̂ilZsi

g /2π tooth meshes, the gear teeth positions of train 1 are exactly the same as

those of train l before the sun gear rotation. Thus, the positive sign is used such

that γ̄s
iil1,gp = dec(ψ̂ilZsi

g /2π). If the sun gear si rotates clockwise relative to carrier i

and the sun-planet mesh in train 1 completes ψ̂ilZsi

g /2π tooth meshes, the gear teeth

positions of train 1 are exactly the same as those of train ci − l before the sun gear

rotates. In order to make the gear teeth positions of train 1 be the same as those

of train l, the sun-planet mesh in train 1 needs to complete Zsi

g − ψ̂ilZsi

g /2π tooth
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meshes. In this case, the negative sign is used in the input arguments to dec( ) such

that γ̄s
iil1,gp = dec(−ψ̂ilZsi

g /2π) = dec(Zsi

g − ψ̂ilZsi

g /2π). It is the same for γ̄r
iildi,gp.

These results match the formulae in Table 5.1.

Summarizing the above discussion, the train-level relative phases whose referring

meshes are located on the same side of the stepped-planet structure always share the

same value. Thus, some but not all train-level relative phases are equal when planet

set i has stepped-planet structure. In addition, the sun-planet and ring-planet train-

level relative phase definitions for stepped planetary gears in Table 5.1 are consistent

with the stepped planetary gear assembly condition.

5.4 Example Calculation of Relative Phases

The two-stage compound planetary gear shown in Figure 5.2 is used as an example.

The first stage has stepped-planet structure, and the second stage has meshed-planet

structure. All the gears are numbered according to the convention previously spec-

ified, as shown in Figure 5.2. The parameters are listed in Tables 5.2 and 5.3. The

following illustrates the analytical procedure to calculate all the system-level relative

phases with the base referred mesh ks
1111
gp as their referred mesh.
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Table 5.2: Parameters for the example system shown in
Figure 5.2.

Input component central gear 1
Connection between stage 1 and stage 2 carrier 1 connects to central gear 3
Fixed central gears or carriers central gear 2 and central gear 4
Output component carrier 2

Planet
position
angles

Stage
1

ψ̂11 = 0◦, ψ̂12 = 120◦,
ψ̂13 = 240◦

Stage
2

ψ̂21 = 0◦, ψ̂22 = 90◦,
ψ̂23 = 180◦, ψ̂24 = 270◦

Table 5.3: Parameters for the example system shown
in Figure 5.2. The unit for all diameters is millimeter.
Planet gear (ilm) means planet m in train l of stage i.

Stage 1 Stage 2
Central
Gear 1

Planet
gear
(1l1)

Planet
gear
(1l2)

Central
Gear 2

Central
Gear 3

Planet
gear
(2l1)

Planet
gear
(2l2)

Central
Gear 4

Tooth
Number

35 38 62 151 29 29 33 153

Diametral
Pitch

0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5

Pressure
Angle

25o 25o 24o 24o 25o 25o 25o 25o

Base
Diameter

79.25 86.11 113.28 275.84 52.58 52.58 59.69 277.37

Outer Di-
ameter

88.39 100.58 124.71 319.02 61.72 61.72 69.60 324.10

Root
Diameter

76.96 89.41 115.57 305.31 52.58 52.58 60.45 305.31

The numerical results throughout this example are from numerical simulation of

mesh tooth variation functions calculated by Planetary2D, a multibody finite element

program with precise tracking of numbers of teeth in contact at all gear meshes [95].
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The software calculates the tooth variation functions based on exact gear kinemat-

ics and precise tooth geometry with no preset or user-defined mesh phase relations.

Hence, the relative phases calculated from the numerical solution of mesh tooth vari-

ation functions are a reliable and independent benchmark to verify the analytical

results. The simulation results of mesh tooth variation functions with all the relative

phases marked are shown in Figure 5.3 and Figure 5.4.

Kinematic analysis yields all the mesh periods and the rotation directions of all

components. The analytically calculated mesh periods compare well to numerical

results in Table 5.4. As with all results that follow, the errors in the numerical results

depend on the number of steps analyzed in a mesh cycle.

Table 5.4: Mesh periods of all gear meshes in the example
system.

Stage
Num-
ber

Period Analytical Numerical Error range
of numerical
result

Stage
1

T 11l1
gp 0.6483 s 0.648 s ±0.002 s
T 21l2
gp 0.3974 s 0.397 s ±0.002 s

Stage
2

T 32l1
gp 1.6768 s 1.677 s ±0.008 s
T 2l12
pp 1.6768 s 1.677 s ±0.008 s
T 42l2
gp 1.6768 s 1.677 s ±0.008 s

To begin the process, the base referred mesh of the system and the referring time

of the base referred mesh are chosen. In this example, k1111
gp is selected as the base

referred mesh, and the referring time of the base referred mesh is t1 = 0 at the pitch

point. This defines the origin of the absolute time axis and simplifies the use of

equations (5.8) and (5.9) to calculate system-level relative phases.
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The key relative phases γ̂s
ii11,gp(t1), γ̃

rii1di,gp(ti1), and γ̃i1m(m+1),pp(ti1) are calculated

from equations (5.10)-(5.14) with the results given in Table 5.5. In this example, the

system-level relative phase between the stage 2 referred mesh and the base referred

mesh (γ̂3211,gp(t1)), which depends on assembly conditions, is specified as zero. In real

applications, equation (5.10) and simulation or experiments are needed to calculate

such relative phases. In addition, the stage 1 relative phase γ̃2112,gp(t11) depends not

only on the gear parameters of the stage 1 sun, planet, and ring gears but also on the

stepped-planet structure (the relative clocking angle between the two coaxial planets

in the same train); no analytical formula is available to calculate it. Its analytical

value in Table 5.5 takes the numerical result directly, which is found by recording

the time when the pitch points of the referring and referred meshes are in mesh and

applying equation (5.4). Whenever a system has multiple stages or stepped planets

there are relative angles that depend on manufacturing or assembly. In these cases,

experiments or simulation with precision contact tracking are needed as used above.

If that is impractical, one can do sensitivity studies to see if these relative angles

affect the response of interest in that specific system.

Kinematic analysis to find the rotation directions of each sun, ring, and planet

relative to its associated carrier and the formulae in Table 5.1 yield the analytical

results for γ̄jilm,gp and γ̄ilmq,pp that are listed in Table 5.6. The numerical results

confirm the analysis.
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Figure 5.3: Mesh tooth variation functions of all the gear meshes in stage 1 of the
example system with the related relative phases marked. The symbol × denotes the
time when the pitch point of the associated gear mesh is in contact.
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Table 5.5: Relative phases γ̂s
ii11,gp(t1), γ̃

rii1di,gp(ti1), and
γ̃i1m(m+1),pp. The * sign indicates the associated value in
the ’Analytical’ column is actually from numerical calcu-
lation.

Stage
Num-
ber

Referring
time

Relative
phase

Analytical Numerical Error range
of numerical
result

Stage
1

t1 = 0 γ̂1111,gp(t1) 0 0 0
t11 = 0 γ̃1111,gp(t11) 0 0 0
t11 = 0 γ̃2112,gp(t11) 0.277* 0.277 ±0.0031

Stage
2

t1 = 0 γ̂3211,gp(t1) 0 0 N/A
t21 = 0 γ̃3211,gp(t21) 0 0 ±0.0048
t21 = 0 γ̃4212,gp(t21) 0.0770 0.077 ±0.0048
t21 = 0 γ̃2112,pp(t21) 0.0689 0.069 ±0.0048

Table 5.6: Train-level relative phases γ̄jilm,gp and γ̄ilmq,pp.

Stage
Num-
ber

Relative
phase

Analytical Numerical Error
range of
numerical
result

Stage
1

γ̄11l1,gp

γ̄1111,gp = 0
γ̄1121,gp = 0.667
γ̄1131,gp = 0.333

γ̄1111,gp = 0
γ̄1121,gp = 0.663
γ̄1131,gp = 0.331

±0.0031

γ̄21l2,gp

γ̄2112,gp = 0
γ̄2122,gp = 0.667
γ̄2132,gp = 0.333

γ̄2112,gp = 0
γ̄2122,gp = 0.665
γ̄2132,gp = 0.335

±0.0031

Stage
2

γ̄32l1,gp

γ̄3211,gp = 0
γ̄3221,gp = 0.250
γ̄3231,gp = 0.500
γ̄3241,gp = 0.750

γ̄3211,gp = −0.001
γ̄3221,gp = 0.254
γ̄3231,gp = 0.503
γ̄3241,gp = 0.753

±0.0048

γ̄42l2,gp

γ̄4212,gp = 0
γ̄4222,gp = 0.250
γ̄4232,gp = 0.500
γ̄4242,gp = 0.750

γ̄4212,gp = 0.002
γ̄4222,gp = 0.253
γ̄4232,gp = 0.501
γ̄4242,gp = 0.752

±0.0048

γ̄2l12,pp

γ̄2112,gp = 0
γ̄2212,gp = 0.250
γ̄2312,gp = 0.500
γ̄2412,gp = 0.750

γ̄2112,gp = 0.003
γ̄2212,gp = 0.252
γ̄2312,gp = 0.500
γ̄2412,gp = 0.751

±0.0048
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Finally, all system-level relative phases γ̂jilm,gp(t1) and γ̂ilmq,pp(t1) are calculated

from equations (5.8) and (5.9). The results in Table 5.7 agree with the numerical

benchmark.

Thus, the relative phases of all the gear meshes referring to the base referred mesh

are determined and verified with an independent numerical benchmark that can be

considered exact within the given error limits resulting from discretization of the mesh

cycles.

Table 5.7: System-level relative phases γ̂jilm,gp(t1) and
γ̂ilmq,pp(t1).

Stage
Num-
ber

Relative
Phase

Analytical Numerical Error
range of
numerical
result

Stage
1

γ̂11l1,gp(t1)
γ̂1111,gp(0) = 0
γ̂1121,gp(0) = 0.667
γ̂1131,gp(0) = 0.333

γ̂1111,gp(0) = 0
γ̂1121,gp(0) = 0.663
γ̂1131,gp(0) = 0.331

±0.0031

γ̂21l2,gp(t1)
γ̂2112,gp(0) = 0.268
γ̂2122,gp(0) = 0.935
γ̂2132,gp(0) = 0.601

γ̂2112,gp(0) = 0.268
γ̂2122,gp(0) = 0.935
γ̂2132,gp(0) = 0.608

±0.0031

Stage
2

γ̂32l1,gp(t1)

γ̂3211,gp(0) = 0
γ̂3221,gp(0) = 0.250
γ̂3231,gp(0) = 0.500
γ̂3241,gp(0) = 0.750

γ̂3211,gp(0) = 0
γ̂3221,gp(0) = 0.250
γ̂3231,gp(0) = 0.502
γ̂3241,gp(0) = 0.751

±0.0048

γ̂42l2,gp(t1)

γ̂4212,gp(0) = 0.013
γ̂4222,gp(0) = 0.263
γ̂4232,gp(0) = 0.513
γ̂4242,gp(0) = 0.763

γ̂4212,gp(0) = 0.013
γ̂4222,gp(0) = 0.263
γ̂4232,gp(0) = 0.513
γ̂4242,gp(0) = 0.763

±0.0048

γ̂2l12,pp(t1)

γ̂2112,pp(0) = 0.069
γ̂2212,pp(0) = 0.319
γ̂2312,pp(0) = 0.569
γ̂2412,pp(0) = 0.819

γ̂2112,pp(0) = 0.070
γ̂2212,pp(0) = 0.318
γ̂2312,pp(0) = 0.570
γ̂2412,pp(0) = 0.819

±0.0048
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Figure 5.4: Mesh tooth variation functions of the gear meshes in stage 2 of the
example system with the related relative phases marked. The symbol × denotes the
time when the pitch point of the associated gear mesh is in contact.
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With all the system-level relative phases calculated, analytical expressions for

the mesh tooth (or mesh stiffness or static transmission error) variations of all gear

meshes in the system are determined by applying equation (5.3) after straightforward

calculation of κ(τ) for each gear pair based on basic gear geometry [77] or gear design

software.

For example, the Fourier series expansion of the mesh tooth variation function for

the gear mesh between the ring gear and planet 2 in train 2 of stage 2 is (the pitch

point is in contact when τ = 0)

κ4222
gp (τ) =

∞∑
u=0

[
eu sin uω4222

gp τ + fu cosuω4222
gp τ

]
=

∞∑
u=0

[eu sin u3.75τ + fu cosu3.75τ ]

(5.32)

Application of (5.3) with γ̂4222,gp(0) = 0.263 from Table 5.7 yields the analytical

expression of the mesh tooth variation function for k4222
gp as a function of absolute

time, which is

k4222
gp (t) =

∞∑
u=0

[eu sin u3.75(t− 0.441) + fu cos u3.75(t− 0.441)] (5.33)

The mesh tooth variation functions such as equation (5.33) are critical to study

any feature of the example system’s static or dynamic response that involves mesh

tooth, mesh stiffness, or static transmission error variations.

5.5 Conclusions

Knowledge of all mesh phase relationships is essential for analytical or multibody

computational study of compound planetary gear mechanics because the critically

important mesh tooth, mesh stiffness, or static transmission error variation functions

typically used in gear mechanics analysis rely on proper description of the relative
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phases between all of the gear meshes. This study defines and calculates all the mesh

phases for general compound planetary gears, including those with any combination of

multiple mesh frequencies, multiple stages, meshed planets, and stepped planets. In

addition to organizing these mesh phases into a hierarchical structure of system-level,

stage-level, and train-level mesh phases to simplify the analysis, this study derives a

complete and simple (other than the notation) procedure to determine all the nec-

essary relative phases. The specific relationships between train-level relative phases

that are critical for any analytical study on the suppression of compound planetary

gear dynamic response through mesh phasing are derived by applying the assembly

conditions of compound planetary gears. All derived results are verified through an

example, where the numerical benchmark is geometrically exact and the only error is

a quantifiable mesh cycle discretization error.
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Chapter 6: SUPPRESSION OF VARIOUS MODAL

RESPONSES IN GENERAL COMPOUND PLANETARY

GEARS THROUGH MESH PHASING

6.1 Introduction

Noise and vibration problems remain major concerns for compound planetary

gears [47, 53]. When planetary gears operate at speeds where the mesh frequency or

an integer multiple of it is near one of the system natural frequencies, large dynamic

tooth loads and loud noise are generated due to the resonant response, reducing the

life of the whole transmission system. Proper design of mesh phasing by adjusting

certain fundamental design parameters, such as the gear tooth number and number

of planets, is able to eliminate selected resonant responses in the operating range of

the system [5, 32, 75, 77].

Studies on the suppression of dynamic response through mesh phasing trace back

to Schlegel and Mard’s experimental measurements on the effectiveness of planet

phasing on noise reduction [86] and Seager’s detailed analysis using a static transmis-

sion error model [87]. Later, Palmer and Fuehrer [74], Hidaka et al. [41], Platt and

Leopold [83], Kahraman [43], and Kahraman and Blankenship [48] experimentally

or numerically illustrated the effectiveness of simple planetary gears mesh phasing

to reduce noise and vibrations in transmission systems. Parker and Lin developed
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a rotational-translational lumped-parameter model and discovered the unique vibra-

tion properties [56], identified the specific mesh phase relations [77], and analytically

explained the effectiveness of planet mesh phasing to suppress certain translational

and rotational mode responses [75]. The results in [75] show that the symmetry-based

rules even hold when nonlinear tooth contact occurs, provided the response retains

the symmetry of system geometry. Filling a gap in [75], Ambarisha and Parker [5]

provided the analytical explanation for the suppression of planet mode responses in

the rotational-translational model through mesh phasing and derived the rules to sup-

press degenerate mode responses in purely rotational planetary gear models. All these

studies, however, are restricted to simple planetary gears. No published literature has

examined the suppression of compound planetary gear vibration modes through mesh

phasing numerically or analytically. The questions of whether the mesh phasing rules

of simple planetary gears in [5, 75] can be applied to general compound planetary

gears and what are the impacts of meshed-planet, stepped-planet, and multi-stage

structures that are unique to compound planetary gears on the rules to suppress

dynamic responses through mesh phasing are addressed in this work.

Recent progresses on compound planetary gear dynamics provide bases for this

investigation. Kahraman [47] developed a purely rotational model for limited con-

figurations of single-stage planetary gears. Kiracofe and Parker [53] developed a

rotational-translational model for general compound planetary gears and proved that

all the vibration modes of compound planetary gears are classified as rotational, trans-

lational, and planet modes, each having distinct properties. Guo and Parker [35] set

up a purely rotational model for general compound planetary gears and analytically

proved its modal properties. Guo and Parker [32] systematically defines the relative
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phases in general compound planetary gears and analytically derives the mesh phase

relations for all the gear meshes in the system.

This chapter utilizes the above research results on compound planetary gears

to analytically examine the general rules to suppress certain dynamic responses and

resonances of general compound planetary gears through planet mesh phasing for both

purely rotational and rotational-translational models. Because the analytical process

to derive the rules is based on the symmetry of each planet set and the periodicity of

gear tooth meshes without explicit modeling of the dynamic mesh forces or system

responses, the results are independent of any choice of dynamic gear mesh force model.

6.2 Rules to Suppress Selected Dynamic Responses for Rotational-
translational Models

Resonance associated with a natural frequency ωn, in general, is potentially excited

when the µth harmonic of the fundamental frequency of an excitation source ω satisfies

µω = ωn in any mechanical system. For planetary gears, mesh stiffness variations

with fundamental frequency being their mesh frequencies are the excitation sources.

Previous studies on simple planetary gears [5, 75] show that resonances occur at

some of the mesh frequency harmonics and are absent at others, and such excitation

and suppression of responses at mesh frequency harmonics follow the rules that are

determined by mesh phases and modal properties. Because compound planetary

gears have similar modal properties as simple planetary gears and the mesh phases

are systematically defined in previous chapter, it is expected that there exist certain

mesh phasing rules in compound planetary gears. The main task of this investigation

is to analytically derive these rules.
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The structured modal properties for the rotational-translational model of general

compound planetary gears [53] suggest that any vibration mode can be classified as

rotational, translational, and planet modes. In rotational modes, all central gears and

carriers (i.e., central components) have rotational motions only. Therefore, in the case

of a rotational mode excitation, all central components only have rotational vibrations

that are caused by non-zero net torques acting on these components. These non-zero

net torques are the results of gear mesh forces or planet bearing forces. Once these net

excitation torques (i.e, net torques) vanish, central gears and carriers no longer have

rotational vibrations and this rotational mode response (i.e., rotational response) is

suppressed. The net torques, hence, become the direct measurements for the excita-

tion or suppression of rotational responses. In a similar manner, the net excitation

forces (i.e., net forces) acting on central components are the direct indications for

the suppression of translational mode responses (i.e., translational responses). Such

criteria to determine the suppression of potentially-excited translational or rotational

resonances by analyzing the net force or torque cancellation on central gears and

carriers are validated in the study by Parker [75].

Due to the unique modal properties for planet modes, the net forces/torques on

central components are zero in all planet modes [53]. The suppression/excitation

of planet mode responses (i.e., planet responses), hence, can not be determined by

evaluating the net forces or torques acting on central components. Ambarisha and

Parker [5] proposed a method to analytically determine the suppression/excitation of

planet responses for simple planetary gears by evaluating the modal forces for planet

modes (i.e., planet modal forces). This study extends their method to compound

planetary gears as follows. Let φv be a planet mode for planet set i and the associated
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planet frequency is ωv. Multiplying the equation of motion for general compound

planetary gear in (2.38) with φT
v on the left and insertion of φ(t) =

Λ∑
u=1

ςu(t)φu yield

ς̈v(t) + φT
vK

Λ∑
u=1

ςu(t)φu = ς̈v(t) + φT
v f(φ(t), t) = φT

vF(t) (6.1)

where ςu is the modal coordinate for mode u. Similar to [5], f(φ(t), t) is used to

denote K
Λ∑
u=1

ςu(t)φu in this study and it collects the forces caused by gear meshes,

shaft connections, and bearing supports in equation (2.38). The term φT
vF(t) is equal

to zero because of the modal property that all central components have no motion

in any planet mode. The suppression of planet mode v, hence, solely depends on the

vanishing of φT
v f(φ(t), t) which is denoted as

Qv(t) = φT
v f(φ(t), t) (6.2)

where Qv(t) is the planet modal force for planet mode v) in this study.

Table 6.1 summarizes the above general criteria to suppress different types of

responses in compound planetary gears.

Table 6.1: The general criteria to suppress different types
of responses in general compound planetary gears. Ξ, F ,
and Q represent net force, net torque, and planet modal
force, respectively.

Responses Types Suppression and Excitation Criteria
Rotational Response Excitation: Ξ �= 0, Suppression: Ξ = 0

Translational Response Excitation: F �= 0, Suppression: F = 0
Planet Response Excitation: Q �= 0, Suppression: Q = 0

For multi-stage compound planetary gear systems, the excitation forces in each

stage are transmitted throughout the system via the connections between stages.

The whole system is considered to be excited if any stage of the system is excited.
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The rules to suppress dynamic responses of a multi-stage system are actually the

sum up of the rules from each stage. Thus, breaking the multi-stage system down

into separate stages and analyzing the suppression/excitation criteria in each stage

is an effective way to investigate multi-stage systems. This study, hence, focuses

on a single compound planetary gear stage having one or both of meshed-planet

and stepped-planet structures [32, 53]. For a single compound planetary gear stage,

there are two possible cases: (a) a stage has meshed-planet structures only (i.e.,

meshed-planet stage), and (b) a stage has a stepped planet structure in each train

and may also involve meshed-planet structures (i.e., stepped stage). The following

study investigates the suppression or excitation of selected responses for both cases

using the criteria in Table 6.1.

6.2.1 Suppression of Selected Responses in a Meshed-planet
Stage through Mesh Phasing

An arbitrary planetary stage, numbered as stage 1, has c1 (c1 ≥ 3) equally-

spaced planet trains. Each planet train includes d1 planets. These d1 planets in

each planet train have only meshed-planet structures. All planet trains are numbered

from train 1 to train c1 in the counterclockwise direction. The planet in each train

that is in mesh with the sun gear is numbered as planet 1, and the planet in mesh

with planet 1 is numbered as planet 2. The numbering continuous until planet d1,

which is the planet in mesh with the ring gear in each train (Figure 6.1). Same as

simple planetary gears, meshed-planet stages have a single mesh frequency ω. The

key stipulation to use Table 6.1 to derive the rules to suppress the selected responses

through mesh phasing is that the net torques (Ξ), the net forces (F ), and the planet

modal forces (Q) are periodic functions with the fundamental frequency equal to the
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Meshed-planet Stage

            Stage 1

Sun Gear

Planet 1

Planet 2

Carrier

Train 1

Train 2

Train 3

Train 4

Figure 6.1: A meshed-planet stage has four planet trains. Each planet train has two
planets that are in mesh with each other.

mesh frequency ω = 1
T

(T is the mesh period). Such physically plausible stipulation

is consistent with the periodic mesh contact at mesh frequency and it was confirmed

to be necessary for the validation of mesh phasing rules in studies on the simple

planetary gear dynamics [5, 9, 34, 61, 75, 98]. This assumption implies that the rules

that are derived in this study are not valid in cases of transient responses, nonlinear

responses that contain sub/super-harmonic components, and vibrations driven by

parametric fluctuations that are locked at the natural period [23].

Cancellation of Net Force and Torque on Central Components

The net force acting on a central component is essentially the sum of the related

gear mesh forces. Taking the sun gear in a meshed-planet stage as the representative

example, the sun-planet gear mesh forces are the only excitation forces acting on the

sun gear. Due to cyclic symmetry, the sun-planet mesh forces in the same stage have
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Figure 6.2: Sun-planet mesh force fluctuation showing the mesh period T and the
relative phase γ̄ at two arbitrarily chosen planet trains.

the same shape but differ in phases [23, 37, 75] (as shown in Figure 6.2). According

to the definition of compound planetary gear mesh phases [37], the phases between

sun-planet gear meshes in the same stage are train-level relative phases which are

determined in Table 5.1. Without losing generality, the mesh force between the sun

gear (central gear s) and planet 1 in train l of this stage (stage 1) Fs1l1 is

Fs1l1 = F s1l1
ξ ξ1l1 + F s1l1

η η1l1 (6.3)

where ξ1l1 and η1l1 are unit vectors that define the radial and tangential coordinates

for planet 1 in train l of stage 1 and they retain the fixed angular separation ψ̂1l from

the carrier 1 fixed basis {i, j}. Transforming the coordinate basis in (6.3)to {i, j}
gives

Fs1l1 =
(
F s1l1
ξ cos ψ̂1l − F s1l1

η sin ψ̂1l
)

i +
(
F s1l1
ξ sin ψ̂1l + F s1l1

η cos ψ̂1l
)

j (6.4)

F s1l1
ξ and F s1l1

η are the periodic mesh forces between the sun gear and planet 1 in

train l in ξ and η directions and the relationship between them and the associated
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mesh forces in train 1 is

F s1l1
ξ (ωt) = F s111

ξ (ωt− 2πγ̄s1l1,gp)

F s1l1
η (ωt) = F s111

η (ωt− 2πγ̄s1l1,gp)
(6.5)

where γ̄s1l1,gp is the train-level sun-planet relative phase between train l and train 1

and it is (refer to Table 5.1)

γ̄s1l1,gp = ±dec
(
Zs
g ψ̂

1l

2π

)
(6.6)

where the sign is determined by the positiveness of (θsg-θ
1
c ). Let the Fourier series

expansion for F s111
ξ and F s111

η be

F s111
ξ (ωt) =

∞∑
µ=0

[
es111µ sin (µωt) + gs111µ cos (µωt)

]

F s111
η (ωt) =

∞∑
µ=0

[
hs111µ sin (µωt) + js111µ cos (µωt)

] (6.7)

Insertion of (6.6) and (6.7) into (6.5) yields

F s1l1
ξ (ωt) =

∞∑
µ=0

[
es111µ sinµ

(
ωt− 2πγ̄s1l1,gp

)
+ gs111µ cosµ

(
ωt− 2πγ̄s1l1,gp

)]
=

∞∑
µ=0

F s1l1
ξ,µ

F s1l1
η (ωt) =

∞∑
µ=0

[
hs111µ sinµ

(
ωt− 2πγ̄s1l1,gp

)
+ js111µ cosµ

(
ωt− 2πγ̄s1l1,gp

)]
=

∞∑
µ=0

F s1l1
η,µ

(6.8)

where F s1l1
ξ,µ = es111µ sinµ

(
ωt− 2πγ̄s1l1,gp

)
+ gs111µ cosµ

(
ωt− 2πγ̄s1l1,gp

)
and F s1l1

η,µ =

hs111µ sin µ
(
ωt− 2πγ̄s1l1,gp

)
+ js111µ cosµ

(
ωt− 2πγ̄s1l1,gp

)
are the mesh forces between

the sun gear and planet 1 in train l in ξ and η directions at the µth harmonic of mesh

frequency. Summing up the sun-planet mesh forces (equation (6.4)) in all the trains
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and insertion of (6.8) yield the net force acting on the sun gear (central gear s) as

Fs1∗1 =
c1∑
l=1

Fs1l1

=
c1∑
l=1

[(
F s1l1
ξ cos ψ̂1l − F s1l1

η sin ψ̂1l
)

i +
(
F s1l1
ξ sin ψ̂1l + F s1l1

η cos ψ̂1l
)

j
]

= i

∞∑
µ=0

c1∑
l=1

(
F s1l1
ξ,µ cos ψ̂1l − F s1l1

η,µ sin ψ̂1l
)

+ j

∞∑
µ=0

c1∑
l=1

(
F s1l1
ξ,µ sin ψ̂1l + F s1l1

η,µ cos ψ̂1l
)

=

∞∑
µ=0

Fs1∗1
µ

(6.9)

Once the four terms
c1∑
l=1

(
F s1l1
ξ,µ cos ψ̂1l

)
,

c1∑
l=1

(
F s1l1
ξ,µ sin ψ̂1l

)
,

c1∑
l=1

(
F s1l1
η,µ cos ψ̂1l

)
, and

c1∑
l=1

(
F s1l1
η,µ sin ψ̂1l

)
in (6.9) are all equal to zero, Fs1∗1

µ , the net force acting on the

sun gear at µth harmonic of mesh frequency, vanishes and the associated transla-

tional responses are suppressed. In the rest part of this section, the condition to

make these four terms be zero is first investigated.

When θsg-θ
1
c > 0, insertion of equation (6.6) into the first term

c1∑
l=1

(
F s1l1
ξ,µ cosψ1l1

)
and application of sin(dec(α)) = sinα, the property of the operator dec( ), yield

c1∑
l=1

(
F s1l1
ξ,µ cos ψ̂1l

)

=

c1∑
l=1

[
es111µ sinµ

(
ωt− 2πγ̄s1l1,gp

)
+ gs111µ cosµ

(
ωt− 2πγ̄s1l1,gp

)]
cos ψ̂1l

=

c1∑
l=1

[
es111µ sin µ

(
ωt− Zs

g ψ̂
1l
)

+ gs111µ cosµ
(
ωt− Zs

g ψ̂
1l
)]

cos ψ̂1l

(6.10)

Equally-spaced planet trains give

ψ̂1l =
2π(l − 1)

c1
(6.11)

141



Insertion of (6.11) into (6.10) and application of the trigonometric identities yield

c1∑
l=1

(
F s1l1
ξ,µ cos ψ̂1l

)

=
c1∑
l=1

[
es111µ sin

(
µωt− 2πµZs

g(l − 1)

c1

)
cos

2π(l − 1)

c1
+

gs111µ cos

(
µωt− 2πµZs

g(l − 1)

c1

)
cos

2π(l − 1)

c1

]

= es111µ sinµωt

c1∑
l=1

[
cos

2πµZs
g(l − 1)

c1
cos

2π(l − 1)

c1

]
−

es111µ cosµωt

c1∑
l=1

[
sin

2πµZs
g(l − 1)

c1
cos

2π(l − 1)

c1

]
+

gs111µ cosµωt
c1∑
l=1

[
cos

2πµZs
g(l − 1)

c1
cos

2π(l − 1)

c1

]
+

gs111µ sinµωt
c1∑
l=1

[
sin

2πµZs
g(l − 1)

c1
cos

2π(l − 1)

c1

]

(6.12)

Similar to [5, 75], the phasing quantity kµ is introduced as

kµ = mod

(
µZs

g

c1

)
(6.13)

where mod(a
b
) yields the integer reminder of the integer division between a and b when

a
b

is positive and outputs b plus the integer reminder of a
b

when the input argument

is negative (for instance, mod(−66
5

) = 5 + (−1) = 4). Insertion of (6.13) into the first
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two terms in (6.12) and use of the trigonometric identities give

es111µ sin µωt
c1∑
l=1

[
cos

2πµZs
g(l − 1)

c1
cos

2π(l − 1)

c1

]
−

es111µ cosµωt
c1∑
l=1

[
sin

2πµZs
g(l − 1)

c1
cos

2π(l − 1)

c1

]

=
es111µ sinµωt

2

c1∑
l=1

[
cos

2π(kµ − 1)(l − 1)

c1
+ cos

2π(kµ + 1)(l − 1)

c1

]
−

es111µ cosµωt

2

c1∑
l=1

[
sin

2π(kµ − 1)(l − 1)

c1
+ sin

2π(kµ + 1)(l − 1)

c1

]
(6.14)

For an arbitrary integer k, the trigonometric identities that are necessary to simplify

(6.14) are
c1∑
l=1

sin
[

2π(l−1)k
c1

]
= 0

c1∑
l=1

cos
[

2π(l−1)k
c1

]
=

{
0, k/c1 �= integer
c1, k/c1 = integer

(6.15)

Application of (6.15) to (6.14) gives that the first two terms in (6.12) becomes zero

when kµ �= 1, c1 − 1 and it is the same for other terms in (6.12).
c1∑
l=1

(
F s1l1
ξ,µ cos ψ̂1l

)
,

hence, is equal to zero when kµ �= 1, c1−1. Following the same procedure,
c1∑
l=1

(
F s1l1
ξ,µ sin ψ̂1l

)
,

c1∑
l=1

(
F s1l1
η,µ cos ψ̂1l

)
, and

c1∑
l=1

(
F s1l1
η,µ sin ψ̂1l

)
in (6.9) are found to be vanished when

kµ �= 1, c1 − 1. When θsg-θ
1
c < 0, replacing γ̄s1l1,gp with −dec

(
Zs

gψ̂
1l

2π

)
in the above

process yields the same result. Therefore, Fs1∗1
µ is canceled out when kµ �= 1, c1 − 1

and the associated translational responses of the sun gear at µth harmonic of mesh

frequency are suppressed.
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The net torque acting on the sun gear is the sum of torques that are caused by

the sun-planet mesh forces in the tangential direction η and it is

Ξs1∗1 = rsg

c1∑
l=1

F s1l1
η

= rsg

c1∑
l=1

∞∑
µ=0

F s1l1
η,µ

= rsg

∞∑
µ=0

c1∑
l=1

[
hs111µ sinµ

(
ωt− 2πγ̄s1l1,gp

)
+ js111µ cosµ

(
ωt− 2πγ̄s1l1,gp

)]

=

∞∑
µ=0

Ξs1∗1
µ

(6.16)

where Ξs1∗1
µ = rsg

c1∑
l=1

[
hs111µ sin µ

(
ωt− 2πγ̄s1l1,gp

)
+ js111µ cosµ

(
ωt− 2πγ̄s1l1,gp

)]
is the

net torque acting on the sun gear at µth mesh frequency. Insertion of (6.6), (6.11),

and (6.13) into the expression of Ξs1∗1
µ and application of the trigonometric identities

yield

Ξs1∗1
µ = rsgh

s111
µ

c1∑
l=1

sin
(
µωt± µψ̂1lZs

g

)
+ rsgj

s111
µ

c1∑
l=1

cos
(
µωt± µψ̂1lZs

g

)

= rsg sin µωt

[
hs111µ

c1∑
l=1

cos
2π(l − 1)kµ

c1
∓ js111µ

c1∑
l=1

sin
2π(l − 1)kµ

c1

]

+ rsg cosµωt

[
±hs111µ

c1∑
l=1

sin
2π(l − 1)kµ

c1
+ js111µ

c1∑
l=1

cos
2π(l − 1)kµ

c1

]
(6.17)

where the ± sign of µψ̂1lZs
g comes from γ̄s1l1,gp and it is determined by the positiveness

of θsg − θ1
c (Table 5.1).

Direct application of the trigonometric identities in (6.15) to (6.17) yields the

relationship between Ξs1∗1
µ and the phasing quantity kµ as

Ξs1∗1
µ �= 0, kµ = 0

Ξs1∗1
µ = 0, kµ �= 0

(6.18)
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Equation (6.18) reveals that the net torque acting on the sun gear at µth harmonic

of mesh frequency vanishes and the associated rotational response of the sun gear is

suppressed when the phasing quantity kµ �= 0.

The net force and torque acting on other central components, the ring and the

carrier, follow exactly the same rule as that for the sun gear to vanish at µth harmonic

of mesh frequency. One strong argument from [5] is that the absence of any net force

on the sun in the µth harmonic implies there is no sun translation and thus no

response in any translational modes at this harmonic. Because translational modes

are the only modes involving the translation motions of the ring or carrier, at the µth

harmonic of mesh frequency the translational motions for both ring and carrier are

suppressed. This implies that the µth harmonic of the net forces on these components

vanish. Similar arguments based on rotational modal properties hold for the net

torque cancellations of the ring and carrier.

Another way to determine the net force or torque cancellation rules for the ring

gear is to apply the above analytical process to the ring gear with the exception

that the sun-planet mesh phase γ̄s1l1,gp should be replaced by the ring-planet mesh

phase γ̄r1ld
1,gp. The train-level relative phase relations for meshed-planet stages in

(5.22) indicate that γ̄r1ld
1,gp is equal to γ̄s1l1,gp. The net force and torque cancellation

condition for the ring gear, hence, is the same as that for the sun gear.

Because the gear mesh forces do not act on the carrier directly, the excitation forces

for the carrier in a meshed-planet stage are different from those for the sun and ring

and the above analytical procedure cannot be applied to carrier directly. Free body

diagram analysis on the carrier indicates that the reaction forces of the planet bearing

forces for the entire planet set are the excitation sources for the carrier, and the same
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analysis on a single planet shows that the planet bearing force is associated with

not only sun-planet and ring-planet mesh forces but also planet-planet mesh forces.

Previous studies on planetary gears [5, 6, 34, 75, 90] indicate that it is reasonable to

assume that the bearing force for a planet is periodic and the harmonic contents of

the bearing forces are dominated by the mesh forces involving this planet. The net

force and torque acting on the carrier, hence, retain the harmonic structures (i.e.,

mesh periods and relative phases) of the sun-planet, ring-planet, and planet-planet

mesh forces. Replacing the harmonic structure associated with sun-planet mesh forces

in equations (6.3)-(6.14) with the harmonic structure that sum up sun-planet, ring-

planet, and planet-planet mesh forces and applying the mesh phase relations that all

the train-level mesh phases are equal to each other along the same train in a meshed-

planet stage (as show in equation (5.22)) produce the result that the µth harmonic

of net force and torque acting on the carrier vanish in the same way as that for the

sun gear.

Cancellation of Planet Modal Forces

Let mode φv be a planet mode for stage 1. As introduced in the beginning of

this section, the suppression of this planet mode at µth harmonic of mesh frequency

depends on the vanishing of the planet modal force Qv(t) = φT
v f(φ(t), t). fips(φ(t), t)

collects the elements of f(φ(t), t) in equation (6.1) that are associated with planet set

1 and it is

f1ps(φ(t), t) =
[
f11pt (φ(t), t), · · · , f1c

1

pt (φ(t), t)
]T

f1lpt(φ(t), t) =
[
f1l1p (φ(t), t), · · · , f1ld

1

p (φ(t), t)
]T

f1lmp (φ(t), t) =
[
f 1lm
ζ (φ(t), t), f 1lm

η (φ(t), t), f 1lm
θ (φ(t), t)

]T
(6.19)

where m = 1, · · · , d1.
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Insertion of the planet modal properties in (2.48)-(2.51) and equation (6.19) into

the expression of the modal force Qv give

Qv =

c1∑
l=1

wl
(
φ1l
pt,v

)T
f11pt

=

c1∑
l=1

d1∑
m=1

wlζ11m
p f 1lm

ζ︸ ︷︷ ︸
Qζ

+

c1∑
l=1

d1∑
m=1

wlη11m
p f 1lm

η︸ ︷︷ ︸
Qη

+

c1∑
l=1

d1∑
m=1

wlu11m
p f 1lm

θ︸ ︷︷ ︸
Qθ

(6.20)

where wl is the scalar multiplier that satisfies (2.52). Kiracofe and Parker [53] point

out the closed-form solution for wl is

w =

⎡
⎢⎢⎢⎣
w1

w2

...

wc
1

⎤
⎥⎥⎥⎦ =

∑
n

⎧⎪⎪⎪⎨
⎪⎪⎪⎩σn

⎡
⎢⎢⎢⎣

cos(n + 1)ψ̂11

cos(n + 1)ψ̂12

...

cos(n + 1)ψ̂1c1

⎤
⎥⎥⎥⎦+ υn

⎡
⎢⎢⎢⎣

sin(n+ 1)ψ̂11

sin(n+ 1)ψ̂12

...

sin(n+ 1)ψ̂1c1

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.21)

where σn and υn are arbitrary constants, and n satisfies

n =

{
1, 2, · · · , (c1 − 3)/2 when c1 is odd
1, 2, · · · , (c1 − 2)/2 when c1 is even

(6.22)

φ11
pt,v =

[
ζ1lm
v , η1lm

v , u1lm
v

]
is the motion of planet train 1 in stage 1 of planet

mode v, and the dynamic forces
[
f 1lm
ζ , f 1lm

η , f 1lm
θ

]T
are the resultant of all mesh,

shaft, and bearing forces and torques acting on planet m in train l of planet set 1 in

the [ζ1lm, η1lm, θ1lm
p ] directions (refer to Figure 2.8). Because these dynamic forces

are all determined by the same sun-planet, planet-planet, or ring-planet meshes, they

have similar structure (periodicity and relative phases between different trains) as the

associated mesh forces and the analysis on any one of them is sufficient to capture

the general behavior for others [5]. In the rest part of this section, hence, focus on

Qζ =
c1∑
l=1

d1∑
m=1

wl
[
ζ11m
p f 1lm

ζ

]
, the first term in (6.20). Depending on the position of

the planet in the train (the value of m), the Fourier series expansion of the dynamic
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force f 1lm
ζ varies. When m = 1, f 1l1

ζ is impacted by a sun-planet mesh force and a

planet-planet mesh force. Its Fourier series expansion, hence, is

f 1lm
ζ =

∞∑
µ=1

⎡
⎢⎣es1l1µ sin µ

(
ωt− 2πγ̄s1l1,gp

)
+ gs1l1µ cosµ

(
ωt− 2πγ̄s1l1,gp

)︸ ︷︷ ︸
sun−planet mesh

+

h1l12
µ sin µ

(
ωt− 2πγ̄1l12,pp

)
+ j1l12

µ cosµ
(
ωt− 2πγ̄1l12,pp

)︸ ︷︷ ︸
planet−planet mesh

⎤
⎥⎦

(6.23)

Because all the train-level mesh phases along the same train equal each other in a

meshed-planet stage (i.e., γ̄s
iil1,gp = γ̄r

iildi,gp = γ̄ilm(m+1),pp), replacing γ̄s1l1,gp and

γ̄1l12,pp with γ̄1l in equation (6.23) and combining the sine and cosine terms yield

f 1l1
ζ =

∞∑
µ=1

[
E1l1
µ sin µ

(
ωt− 2πγ̄1l

)
+G1l1

µ cosµ
(
ωt− 2πγ̄1l

)]
(6.24)

Application of the same procedure to planet m in other positions of train l (m �= 1)

yields the general form of f 1lm
ζ as

f 1lm
ζ =

∞∑
µ=1

[
E1lm
µ sin µ

(
ωt− 2πγ̄1l

)
+G1lm

µ cosµ
(
ωt− 2πγ̄1l

)]
(6.25)

Substitution of (6.25) into the expression of Qζ gives

Qζ =

c1∑
l=1

d1∑
m=1

wlζ11m
p

∞∑
µ=1

[
E1lm
µ sinµ

(
ωt− 2πγ̄1l

)
+G1lm

µ cosµ
(
ωt− 2πγ̄1l

)]

=
∞∑
µ=1

c1∑
l=1

d1∑
m=1

wlζ11m
p

[
E1lm
µ sin µ

(
ωt− 2πγ̄1l

)
+G1lm

µ cosµ
(
ωt− 2πγ̄1l

)]
︸ ︷︷ ︸

Qζ
µ

=

∞∑
µ=1

Qζ
µ

(6.26)

148



where Qζ
µ is the µth harmonic of Qζ . Insertion of (6.21) and (6.6) into the expression

of Qζ
µ gives

Qζ
µ =

c1∑
l=1

d1∑
m=1

∑
n

⎡
⎣σn cos(n + 1)ψ̂i1︸ ︷︷ ︸

I1

+ υn sin(n+ 1)ψ̂i1︸ ︷︷ ︸
I2

⎤
⎦×

ζ11m
p

⎡
⎢⎣E1lm

µ sin
(
µωt± µψ̂1lZs

g

)
︸ ︷︷ ︸

I3

+G1lm
µ cosµ

(
ωt± µψ̂1lZs

g

)
︸ ︷︷ ︸

I4

⎤
⎥⎦

=
c1∑
l=1

d1∑
m=1

∑
n

ζ11m
p (I1I3 + I1I4 + I2I3 + I2I4)

(6.27)

Substitution of equations (6.11) and (6.13) into the expression of
c1∑
l=1

d1∑
m=1

∑
n

ζ11m
p I1I3

yields

c1∑
l=1

d1∑
m=1

∑
n

ζ11m
p I1I3 =

c1∑
l=1

d1∑
m=1

∑
n

ζ11m
p E1lm

µ σn cos(n+ 1)ψ̂i1 sin
(
µωt± µψ̂1lZs

g

)

=
c1∑
l=1

d1∑
m=1

∑
n

ζ11m
p E1lm

µ σn

2

{
sin(µωt)

[
cos

2π(kµ + n + 1)(l − 1)

c1
+ cos

2π(kµ − n− 1)(l − 1)

c1

]

± cos(µωt)

[
sin

2π(kµ + n+ 1)(l − 1)

c1
+ sin

2π(kµ − n− 1)(l − 1)

c1

]}
(6.28)

Application of (6.15) to (6.28) yields
c1∑
l=1

d1∑
m=1

∑
n

ζ11m
p I1I3 = 0 if kµ + n + 1 �= c1

and kµ − n − 1 �= 0 for each n = 1, · · · , (c1 − 3)/2 when c1 is odd, or each n =

1, · · · , c1/2− 1 when c1 is even. Summarizing the conditions for both even and odd

c1 gives kµ �= 2, · · · , c1 − 1. Application of the same process to
c1∑
l=1

d1∑
m=1

∑
n

ζ11m
p I1I4,

c1∑
l=1

d1∑
m=1

∑
n

ζ11m
p I2I3, and

c1∑
l=1

d1∑
m=1

∑
n

ζ11m
p I2I4 shows that the same condition make these

terms be zero as well. Hence, when kµ = 0, 1, c1 − 1, Qζ
µ becomes zero. The same

result applies to Qη
µ and Qθ

µ, the µth harmonic of the planet modal force in η1lm and

θ1lm
p directions. The planet responses at µth harmonic of mesh frequency, hence, are

suppressed when kµ = 0, 1, c1 − 1.
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Table 6.2 summarizes the above results for the suppression of different responses

in a meshed-planet stage. Because the train-level relative phases along the same

train in a meshed-planet stage equal each other, the resultant mesh phasing rules are

the same as those for a simple planetary gear in [5, 75] and the planet-planet mesh

parameters, such as planet tooth numbers, has no impact on the mesh phasing rules.

Table 6.2: The conditions for the phasing quantity kµ to
suppress different responses in a meshed-planet stage.E
indicates the associated responses is excited, and S means
that the related responses is suppressed.

kµ Cancellations of
F , Ξ, and Q

Translational Rotational Planet

kµ = 0 F = 0, Ξ �= 0,
Q = 0

S E S

kµ = 1, c1 − 1 F �= 0, Ξ = 0,
Q = 0

E S S

kµ �= 0, 1, c1 − 1 F = 0, Ξ = 0,
Q �= 0

S S E

6.2.2 Suppression of Selected Responses in a Stepped Stage

through Mesh Phasing

Different from meshed-planet stages, stepped-planet stages (Figure 6.3) generally

have two different mesh frequencies exciting the stage, and the ratio of these two

frequencies is determined by the tooth numbers of the two stepped planets. Without

losing generality, an arbitrary stepped stage, numbered as stage 1, is studied. The

two stepped planets in each train are numbered as ν−1 and ν, where 2 ≤ ν ≤ di. The

tooth numbers for these two planets are Z
1l(ν−1)
p and Z1lν

p . Kinematics for stepped

stages show that all the gear meshes that involve planets 1 to ν − 1 in each train

have the mesh frequency of ω and all other gear meshes have the mesh frequency of

150



Ω. These two mesh frequencies have the relationship as follows:

Ω = ω
Z1lν
p

Z
1l(ν−1)
p

(6.29)

In the rest of this study, Ω is assumed to be different from ω. Resonances in a

stepped stage, hence, are potentially excited when µω = ωn or χΩ = ωn. The study

in previous chapter shows that the stiffness variations for the gear meshes with ω

mesh frequency along the same planet train have the same train-level relative phase,

and it is the same for gear meshes with Ω mesh frequency. For an arbitrary planet

train l, such mesh phase relation is expressed as

γ̄s1l1,gp︸ ︷︷ ︸
sun−planet 1 mesh

= γ̄1l12,pp︸ ︷︷ ︸
planet 1−planet 2 mesh

= · · · = γ̄1l(ν−2)(ν−1),pp︸ ︷︷ ︸
planet (ν−2)−planet (ν−1) mesh

= γ̄1l
ω (gear meshes with ω mesh frequency)

γ̄1lν(ν+1),pp︸ ︷︷ ︸
planet ν−planet (ν+1) mesh

= · · · = γ̄1l(d1−1)d1,pp︸ ︷︷ ︸
planet (d1−1)−planet di mesh

= γ̄r1ld
1,gp︸ ︷︷ ︸

ring−planet d1 mesh

= γ̄1l
Ω (gear meshes with Ω mesh frequency)

(6.30)

Different from meshed-planet stages (equation (6.5)), the gear mesh forces for the gear

meshes along train l in a stepped stage no longer contain just ω and its harmonics.

As long as Ω �= ω, Ω and its harmonics will participate into the harmonic structure of

all the gear mesh forces along train l. Because stepped stages retain cyclic symmetry,

if train l is brought to the position of a different planet train y, the mesh stiffness

variations, meshes forces, and the associated responses along train l should be exactly

the same as those for train y when train y is at the same position. The mesh forces

along train l, hence, are periodic and have phase relations with the mesh force in other

trains. Combination of equation (6.30) with the above properties for the mesh forces

in a stepped stage yields the assumption on the harmonic structure of any gear mesh

force in train l as follows. Any gear mesh force in train l contains ω and its harmonic
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Train 2

Train 4
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Planet 2

Figure 6.3: A stepped stage has six planet trains. Each planet train has two coaxial
planets.

152



terms that are subjection to the train-level relative phase γ̄1l
ω and Ω and its harmonic

terms that are subject to a different train-level relative γ̄1l
Ω . The terms that contain ω

and its harmonics are decoupled with those containing Ω and its harmonics. This is

the key stipulation in this section to derive the mesh phasing rules for stepped stages

and its validation is confirmed by the simulation results performed by Calyx [96].

The sun-planet mesh force in train l of a stepped stage is examined first. Equations

(6.3) and (6.4) are still valid for the sun-planet mesh force in lth train of a stepped

stage. Different from mesh planet stages, F s1l1
ξ and F s1l1

η in a stepped stage contain

additional terms that are functions of Ωt and are subject to γ̄1l
Ω as follows.

F s1l1
ξ = F s111

ξ,ω (ωt− 2πγ̄1l
ω ) + F s111

ξ,Ω (Ωt− 2πγ̄1l
Ω )

F s1l1
η = F s111

η,ω (ωt− 2πγ̄1l
ω ) + F s111

η,Ω (Ωt− 2πγ̄1l
Ω )

(6.31)

Expansion of F s111
ξ,ω (ωt− 2πγ̄1l

ω ), F s111
η,ω (ωt− 2πγ̄1l

ω ), F s111
ξ,Ω (Ωt− 2πγ̄1l

Ω ), and F s111
η,Ω (Ωt−

2πγ̄1l
Ω ) in (6.31) into Fourier series yields

F s1l1
ξ =

∞∑
µ=0

[
es111ω,µ sin (µωt) + gs111ω,µ cos (µωt)

]
+

∞∑
χ=0

[
es111Ω,χ sin (χΩt) + gs111Ω,χ cos (χΩt)

]

=
∞∑
µ=0

F s1l1
ξ,ω,µ +

∞∑
χ=0

F s1l1
ξ,Ω,χ

F s1l1
η =

∞∑
µ=0

[
hs111ω,µ sin (µωt) + js111ω,µ cos (µωt)

]
+

∞∑
χ=0

[
hs111Ω,χ sin (χΩt) + js111Ω,χ cos (χΩt)

]

=

∞∑
µ=0

F s1l1
η,ω,µ +

∞∑
χ=0

F s1l1
η,Ω,χ

(6.32)

where F s1l1
ξ,ω,µ and F s1l1

η,ω,µ are the mesh forces between the sun gear and planet 1 in train

l in ξ and η directions at the µth harmonic of the mesh frequency ω, and F s1l1
ξ,Ω,χ and

F s1l1
η,Ω,χ are the mesh forces of the same gear mesh in ξ and η directions at the χth

harmonic of the other mesh frequency Ω.
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The net force acting on the sun gear in a stepped stage, hence, becomes

Fs1∗1 =

c1∑
l=1

Fs1l1

=

∞∑
µ=0

[
i

c1∑
l=1

(
F s1l1
ξ,ω,µ cos ψ̂1l − F s1l1

η,ω,µ sin ψ̂1l
)

+ j

c1∑
l=1

(
F s1l1
ξ,ω,µ sin ψ̂1l + F s1l1

η,ω,µ cos ψ̂1l
)]

︸ ︷︷ ︸
Fs1∗1

ω,µ

+

∞∑
χ=0

[
i
c1∑
l=1

(
F s1l1
ξ,Ω,χ cos ψ̂1l − F s1l1

η,Ω,χ sin ψ̂1l
)

+ j
c1∑
l=1

(
F s1l1
ξ,Ω,χ sin ψ̂1l + F s1l1

η,Ω,χ cos ψ̂1l
)]

︸ ︷︷ ︸
Fs1∗1

Ω,χ

=
∞∑
µ=0

Fs1∗1
ω,µ +

∞∑
χ=0

Fs1∗1
Ω,χ

(6.33)

The cancellation of Fs1∗1
ω,µ and Fs1∗1

Ω,χ in (6.33) indicates that the translational responses

at µω = ωn and χΩ = ωn are suppressed, respectively. The derivation of the cancel-

lation condition for Fs1∗1
ω,µ is exactly the same as Fs1∗1

µ in a meshed-planet stage (from

(6.10) to (6.15)) and the result is

Fs1∗1
ω,µ = 0, when kµ �= 1, c1 − 1

Fs1∗1
ω,µ �= 0, when kµ = 1, c1 − 1

(6.34)

where kµ is defined in (6.13).

Similar to kµ, the phasing quantity that is associated with γ̄1l
Ω and χth harmonic

of Ω is defined as

k̄χ = mod

(
(−1)d

1−1χZ
r
g

c1

)
(6.35)

where Zr
g is the tooth number of the ring gear in the stepped stage. Replacing the rel-

ative phase in equation (6.10) with γ̄1l
Ω = dec

(
(−1)d

1−1 Zr
g ψ̂

il

2π

)
[37] and application of

the same process in equations (6.10)-(6.15) with the exception that (6.13) is replaced
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by (6.35) produce the cancellation condition for Fs1∗1
Ω,χ as

Fs1∗1
Ω,χ = 0, when k̄χ �= 1, c1 − 1

Fs1∗1
Ω,χ �= 0, when k̄χ = 1, c1 − 1

(6.36)

Similar to the net torque acting on the sun gear in a meshed-planet stage, the net

torque acting on the sun gear in a stepped stage is the sum of torques that are caused

by the sun-planet mesh forces in the tangential direction η. Insertion of (6.32) into

Ξs1∗1 = rsg
c1∑
l=1

F s1l1
η yields

Ξs1∗1 = rsg

c1∑
l=1

∞∑
µ=0

F s1l1
η,µ

=
∞∑
µ=0

rsg

c1∑
l=1

[
hs111ω,µ sinµ

(
ωt− 2πγ̄1l

ω

)
+ js111ω,µ cosµ

(
ωt− 2πγ̄1l

ω

)]
︸ ︷︷ ︸

Ξs1∗1
ω,µ

+

∞∑
χ=0

rsg

c1∑
l=1

[
hs111Ω,χ sinχ

(
Ωt− 2πγ̄1l

Ω

)
+ js111χ cosχ

(
Ωt− 2πγ̄1l

Ω

)]
︸ ︷︷ ︸

Ξs1∗1
Ω,χ

=
∞∑
µ=0

Ξs1∗1
ω,µ +

∞∑
χ=0

Ξs1∗1
Ω,χ

(6.37)

Ξs1∗1
ω,µ and Ξs1∗1

Ω,χ are direct indications of the suppression of rotational responses at

µω = ωn or χΩ = ωn in a stepped stage. Ξs1∗1
ω,µ has the same form as Ξs1∗1

µ in equation

(6.16), and its suppression follows the same rule as Ξs1∗1
µ in (6.18). Replacing the

phasing quantity kµ with k̄χ and application of the same process as that in (6.17)

give the rule to suppress Ξs1∗1
Ω,χ as

Ξs1∗1
Ω,χ �= 0, k̄χ = 0

Ξs1∗1
Ω,χ = 0, k̄χ �= 0

(6.38)

The net forces and torques acting on the ring gear and carrier have the same

harmonic structures as those for the sun gear in (6.33) and (6.37). Their cancellation
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conditions at µω = ωn or χΩ = ωn, hence, are the same as those for the sun gear in

(6.36) and (6.38).

The general planet modal force expression in (6.20) is valid for stepped stages as

well. Similar to the sun-planet mesh force in (6.31), Ω and its harmonics participate

in the planet modal forces for stepped stages and they are decoupled with ω terms.

Take the first term in (6.20), Qζ =
c1∑
l=1

d1∑
m=1

wl
[
ζ11m
p f 1lm

ζ

]
, as the example. In a stepped

stage with ω and Ω mesh frequencies, Qζ is

Qζ =
∞∑
µ=1

c1∑
l=1

d1∑
m=1

wlζ11m
p

[
E1lm
ω,µ sin µ

(
ωt− 2πγ̄1l

ω

)
+G1lm

ω,µ cosµ
(
ωt− 2πγ̄1l

ω

)]
︸ ︷︷ ︸

Qζ
ω,µ

+

∞∑
χ=1

c1∑
l=1

d1∑
m=1

wlζ11m
p

[
E1lm

Ω,χ sinχ
(
Ωt− 2πγ̄1l

Ω

)
+G1lm

Ω,χ cosχ
(
Ωt− 2πγ̄1l

Ω

)]
︸ ︷︷ ︸

Qζ
Ω,χ

=

∞∑
µ=1

Qζ
ω,µ +

∞∑
χ=1

Qζ
Ω,χ

(6.39)

The cancellation of Qζ
ω,µ suggests the suppression of Qζ at the µth harmonic of

ω. Because all the terms in (6.20) have the same harmonic structure as Qζ , the

modal force Qv, as well as the associated planet mode response, is suppressed at

µth harmonic of ω mesh frequency. Similarly, the cancellation of Qζ
Ω,χ indicates the

suppression of the planet mode response at χth harmonic of Ω.

Because Qζ
ω,µ has the same expression as Qζ

µ in (6.27), the condition to suppress

Qζ
ω,µ is the same as that for Qζ

µ. That is,

Qζ
ω,µ = 0, when kµ = 0, 1, c1 − 1

Qζ
ω,µ �= 0, when kµ �= 0, 1, c1 − 1

(6.40)
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Insertion of γ̄1l
Ω = dec

(
(−1)d

1−1 Zr
g ψ̂

il

2π

)
into the expression of Qζ

Ω,χ, introducing the

phasing quantity for Ω mesh frequency as k̄χ = mod
(
(−1)d

1−1 χZr
g

c1

)
, and application

of the same analytical process as that for Qζ
µ in previous section yield the cancellation

condition for Qζ
Ω,χ as

Qζ
Ω,χ = 0, when k̄χ = 0, 1, c1 − 1

Qζ
Ω,χ �= 0, when k̄χ �= 0, 1, c1 − 1

(6.41)

Table 6.3 sums up the above rules to suppress different responses in a stepped

stage. Due to the existence of two mesh frequencies, ω and Ω, in a stepped stage,

two different phasing quantities, kµ and k̄χ are needed to determine the suppression

of resonant responses at µω = ωn and χω = ωn, respectively.

Table 6.3: The conditions for the phasing quantities kµ
and k̄χ to suppress different responses in a stepped stage.
E indicates the associated responses is excited, and S
means that the related responses is suppressed.

kµ Cancellations of
F , Ξ, and Q at
µω = ωn

Translational Rotational Planet

kµ = 0 F = 0, Ξ �= 0,
Q = 0

S E S

kµ = 1, c1 − 1 F �= 0, Ξ = 0,
Q = 0

E S S

kµ �= 0, 1, c1 − 1 F = 0, Ξ = 0,
Q �= 0

S S E

k̄χ Cancellations of
F , Ξ, and Q at
χΩ = ωn

Translational Rotational Planet

k̄χ = 0 F = 0, Ξ �= 0,
Q = 0

S E S

k̄χ = 1, c1 − 1 F �= 0, Ξ = 0,
Q = 0

E S S

k̄χ �= 0, 1, c1 − 1 F = 0, Ξ = 0,
Q �= 0

S S E
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6.3 Rules to Suppress Selected Dynamic Responses for Purely
Rotational Models

All the vibration modes for purely rotational compound planetary model are clas-

sified into two types: overall modes and planet modes [35]. Similar to the rotational

modes for rotational-translational models, each overall mode is associated with a dis-

tinct natural frequency, all the planet trains within the same stage have identical

motions, and all the central components have rotational motions. The net torques

acting on the sun, ring, and carrier, hence, are the direct measurement of the excita-

tion/suppression of overall mode responses in a purely rotational model. Because the

excitation sources are still the mesh forces in purely rotational models, the harmonic

structures of these net torques are the same as those in a rotational-translational

model in (6.17) and (6.38). The cancellation rules for these net torques in a purely

rotational model, therefore, are the same as those in a rotational-translational model

in equations (6.18) (for meshed-planet stages) and (6.39) (for stepped stages).

Equation (6.1) is generic for both rotational-translational and purely rotational

models and it indicates that the excitation/suppression of planet responses can be

determined by the planet modal force Qv. Let an arbitrary meshed planet stage be

numbered as stage 1. φv is a planet mode for this stage. The associated planet

modal force Qv has the same form as that for a rotational-translational in equation

(6.20) with the exception that wl, the scalar multiplier for a rotational-translational

model, should be replaced by vl, the scalar multiplier for a purely rotational model

that satisfies (2.37). Ambarisha and Parker [5] gives the closed-form solution for vl
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as

v =

⎡
⎢⎢⎢⎣
v1

v2

...

vc
1

⎤
⎥⎥⎥⎦ =

c1−1∑
y=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ϑy

⎡
⎢⎢⎢⎣

sin yψ̂11

sin yψ̂12

...

sin yψ̂1c1

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.42)

Similar to rotational-translational models, insertion of equation (6.42) and the planet

modal properties in equation (2.33) into the expression of the modal force in (6.2)

gives the µth harmonic of Qθ as

Qθ
µ =

c1∑
l=1

d1∑
m=1

c1−1∑
y=1

⎡
⎣ϑy sin yψ̂i1︸ ︷︷ ︸

J1

⎤
⎦×

θ11m
p

⎡
⎢⎣E1lm

µ sin
(
µωt± µψ̂1lZs

g

)
︸ ︷︷ ︸

J2

+G1lm
µ cosµ

(
ωt± µψ̂1lZs

g

)
︸ ︷︷ ︸

J3

⎤
⎥⎦

=
c1∑
l=1

d1∑
m=1

c1−1∑
y=1

θ11m
p (J1J2 + J1J3)

(6.43)

Insertion of (6.11) and (6.13) into the expression of
c1∑
l=1

d1∑
m=1

c1−1∑
y=1

θ11m
p J1J2 gives

c1∑
l=1

d1∑
m=1

c1−1∑
y=1

θ11m
p J1J2 =

c1∑
l=1

d1∑
m=1

c1−1∑
y=1

θ11m
p E1lm

µ σc
1−1
y=1 sin yψ̂i1 sin

(
µωt± µψ̂1lZs

g

)

=

c1∑
l=1

d1∑
m=1

c1−1∑
y=1

θ11m
p E1lm

µ σc
1−1
y=1

2

{
sin(µωt)

[
sin

2π(kµ + y)(l − 1)

c1
+ sin

2π(kµ − y)(l− 1)

c1

]

± cos(µωt)

[
cos

2π(kµ − y)(l − 1)

c1
− cos

2π(kµ + y)(l − 1)

c1

]}
(6.44)

Application of the trigonometric identities in (6.15) to (6.44) yields that
c1∑
l=1

d1∑
m=1

c1−1∑
y=1

θ11m
p J1J2 =

0 when kµ ± y �= 0 for every y = 1, · · · , c1 − 1. This condition is equivalent to

kµ �= 1, · · · , c1−1 or kµ = 0. The other terms at the right hand side of (6.43) follow

the same cancellation condition. Qθ
µ, hence, cancels out when kµ = 0. That is, the
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planet response at µth harmonic of mesh frequency in a purely rotational model is

suppressed when kµ = 0.

Replacing ζ11m
p , Qζ , Qζ

ω,µ, and Qζ
Ω,µ in (6.40) with θ11m

p , Qθ, Qθ
ω,µ, and Qθ

Ω,µ yields

the planet modal force for a stepped stage in a rotational model as

Qθ =

∞∑
µ=1

c1∑
l=1

d1∑
m=1

wlθ11m
p

[
E1lm
ω,µ sinµ

(
ωt− 2πγ̄1l

ω

)
+G1lm

ω,µ cosµ
(
ωt− 2πγ̄1l

ω

)]
︸ ︷︷ ︸

Qζ
ω,µ

+

∞∑
χ=1

c1∑
l=1

d1∑
m=1

wlθ11m
p

[
E1lm

Ω,χ sinχ
(
Ωt− 2πγ̄1l

Ω

)
+G1lm

Ω,χ cosχ
(
Ωt− 2πγ̄1l

Ω

)]
︸ ︷︷ ︸

Qζ
Ω,χ

=
∞∑
µ=1

Qθ
ω,µ +

∞∑
χ=1

Qθ
Ω,χ

(6.45)

The cancellation of Qθ
ω,µ in (6.45) is exactly the same as Qθ

µ in (6.43). Substitution

of γ̄1l
Ω = dec

(
(−1)d

1−1 Zr
g ψ̂

il

2π

)
(the train-level relative phase expression in Table 5.1)

into the expression of Qζ
Ω,χ in (6.45), insertion of k̄χ = mod

(
(−1)d

1−1 χZr
g

c1

)
, and

application of the same analytical process as above produce the cancellation condition

for Qθ
Ω,χ as k̄χ = 0.

Table 6.4 summarizes the above results to suppress different responses in a purely

rotational model for compound planetary gears. Comparing with the results for

rotational-translational models in Tables 6.2 and 6.3, the condition to suppress the

overall mode responses in a purely rotational model is the same as that to suppress

the rotational responses in a rotational-translational model. In addition, the con-

dition to suppress the planet responses in a purely rotational model is identical to

the conditions to suppress planet and translational responses simultaneously in a

rotational-translational model.
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Table 6.4: The conditions for the phasing quantities kµ
and k̄χ to suppress different responses in a purely ro-
tational model. E indicates the associated responses is
excited, and S means that the related responses is sup-
pressed.

Meshed-planet stages or stepped stages when µω = ωn
kµ Cancellations of Ξ and Q Overall Planet

kµ = 0 Ξ �= 0, Q = 0 E S

kµ �= 0 Ξ = 0, Q �= 0 S E

Stepped stages when χΩ = ωn
k̄χ Cancellations of Ξ and Q Overall Planet

k̄χ = 0 Ξ �= 0, Q = 0 E S

k̄χ �= 0 Ξ = 0, Q �= 0 S E

6.4 Numerical Examples and Discussions

To numerically validate the analytical results on the phasing rules for compound

planetary stages in previous section, numerical simulations are performed for com-

pound planetary stages with different mesh phasing configurations using Plantary2D

[95], a finite element software that precisely calculates dynamic responses for plan-

etary gear systems without any preset or user-defined mesh phase relations and

is proved to be the benchmark for analytical studies on planetary gear dynam-

ics [6, 9, 75, 76].

For the meshed-planet compound stage shown in Figure 6.1, two different mesh

phasing cases that are listed in Table 6.5 are simulated. The input parameters to

Planetary2D are listed in Table 6.6. All gears are steel spur gears with Young’s

modulus equaling 207 × 109N/m2, density being 7595kg/m3, and Poisson’s ratio

equaling 0.3. In both cases, the four planet trains are equally-spaced, sun gear is the
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input component, ring gear is fixed, carrier is the output, and all teeth are unmodified.

The finite element models for both cases are shown in Figure 6.4.

Table 6.5: Two different mesh phasing cases for the
meshed-planet stage in Figure 6.1.

Gear Tooth Numbers kµ = mod(µZs
g/c

1)

for Sun, Ring, and Planets µ = 1 µ = 2 µ = 3 µ = 4

Case 1
Zs
g = 29, Zr

g = 153

Z1l1
p = 29, Z1l2

p = 33
1 2 3 0

Case 2
Zs
g = 30, Zr

g = 154

Z1l1
p = 29, Z1l2

p = 33
2 0 2 0

The changes in gear tooth numbers from Case 1 to Case 2 are minor and the

kinematic properties, such as gear ratios, remain almost the same for both cases.

Such little changes in gear numbers, however, have great impact on the dynamic

responses of the system. The phasing quantities in Table 6.5 suggest that in Case 1

translational responses are excited at all odd orders of mesh frequency harmonics, and

rotational responses are only excited every fourth harmonic of mesh frequency. For

Case 2, translational responses are suppressed at all the harmonics of mesh frequency,

and rotational responses are suppressed at odd orders of mesh frequency harmonics.

The complete suppression of translational responses and the suppression of rotational

responses at the first order of mesh frequency make Case 2 be the better design in the

view of noise and vibration reduction. These analytical results are confirmed by the

simulation results in Figures 6.5-6.6. Figure 6.5a shows the periodic sun translational

response, and its first four harmonic amplitudes are listed in Figure 6.5b. The fact

that the amplitudes of the first and third harmonics are much higher than those for

the second and fourth harmonics matches the analytical results for Case 1 in Table

6.5 that the even order of harmonics for the sun translational response are suppressed
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(b) Case 2

(a) Case 1

Figure 6.4: The finite element models for (a) Case 1 and (b) Case 2 in Table 6.5.
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because kµ �= 1, 3. To compare with Case 1, the periodic sun translational response

for Case 2 is shown in Figure 6.6a, and the associated first four harmonic amplitudes

are collected in Figure 6.6b. The sun translational response is completely suppressed

in Figure 6.6 and this result matches with the analytical results that is based on the

phasing quantity calculation in Table 6.5 (i.e., all the translational responses for Case

2 are suppressed because kµ �= 1, 3 for any µ).

Table 6.6: Input parameters to Planetary2D for the two
cases in Table 6.5. The unit for all diameters is millime-
ter. Planet gear (ilm) means planet m in train l of stage
i.

Case 1 Case 2

Sun
Gear

Planet
Gear
(1l1)

Planet
Gear
(1l2)

Ring
Gear

Sun
Gear

Planet
Gear
(1l1)

Planet
Gear
(1l2)

Ring
Gear

Diametral
Pitch

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Pressure
Angle

25o 25o 24o 24o 25o 25o 25o 25o

Base
Diameter

52.58 52.58 59.69 277.37 52.58 52.58 59.69 277.37

Outer Di-
ameter

61.72 61.72 69.60 324.10 61.72 61.72 69.60 324.10

Root
Diameter

52.58 52.58 60.45 305.31 52.58 52.58 60.45 305.31

The configuration (the number of planet trains and the arrangement of the two

stepped planets) of the example system shown in Figure 6.3 is the similar to the

practical planetary gear system in [19]. Two mesh phasing cases in Table 6.6 are

simulated (all the gear parameters in Table 6.6 are completely different from the gear

system in [19] with the exception of the gear tooth numbers for Case 1). All gears

164



0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
15

10

5

0

5

10

15

time (sec)

 
S

u
n

 T
ra

n
s
la

ti
o
n
a
l 
R

e
s
p
o
n
s
e

 
(µ

m
)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

Mesh Frequency Harmonics

H
a

rm
o

n
ic

 A
m

p
lit

u
d

e
s
 f
o

r 

S
u

n
 T

ra
n

s
la

ti
o

n
a

l 
R

e
s
p

o
n

s
e

 (
µ

m
) 

Figure 6.5: The simulated results for (a) sun translational response and (b) the asso-
ciated harmonic amplitudes of Case 1 in Table 6.5. Sun gear is the input component
and the input speed is 100 rpm.
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Figure 6.6: The simulated results for (a) sun translational response and (b) the asso-
ciated harmonic amplitudes of Case 2 in Table 6.5. Sun gear is the input component
and the input speed is 100 rpm. The input torque remains the same as that for Figure
6.5.
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are spur gears in the calculation and the finite element models for these two cases are

demonstrated in Figure 6.7.

Table 6.7: Two different mesh phasing cases for the
stepped stage in Figure 6.3.

Gear Tooth Numbers Phasing Quantities

Case 1
Zs
g = 24, Zr

g = 108

Z1l1
p = 66, Z1l2

p = 18

kµ = mod(µZs
g/c

1)

µ = 1 µ = 2 µ = 3 µ = 4

0 0 0 0

k̄χ = mod(χ(−1)d
1−1Zr

g/c
1)

χ = 1 χ = 2 χ = 3 χ = 4

0 0 0 0

Case 2
Zs
g = 26, Zr

g = 110

Z1l1
p = 67, Z1l2

p = 17

kµ = mod(µZs
g/c

1)

µ = 1 µ = 2 µ = 3 µ = 4

2 4 0 2

k̄χ = mod(χ(−1)d
1−1Zr

g/c
1)

χ = 1 χ = 2 χ = 3 χ = 4

4 2 0 4

Similar to the two case in Table 6.5, the differences in gear tooth numbers for the

two case in Table 6.7 are slight such that the gear ratios are the almost the same

for both cases. The dynamic responses for these two cases, however, differ dramati-

cally. The phasing quantities in Table 6.7 suggest that the translational responses are

suppressed at all the harmonics for both mesh frequencies (i.e, for any kµ or k̄χ) for

both cases. For Case 1, the rotational responses are excited at all the harmonics for

both mesh frequencies because both kµ and k̄χ equal zero. For Case 2, the rotational

responses are only excited at every third harmonic of both mesh frequencies. These

analytical results are verified by the simulation results in Figures 6.8-6.9. The simu-

lation results in Figure 6.8 confirms that the sun rotational response is excited at all

harmonics of ω and Ω. For Case 2, due to the adjustments in mesh phasing, the sun
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(a)

(b)

Figure 6.7: The finite element models for (a) Case 1 and (b) Case 2 in Table 6.7.
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rotational response in Figure 6.9 is only excited at every third harmonics for ω and

Ω. The phenomenon that the fundamental frequency of the sun rotational response

in Figure 6.9a is three times of that in Figure 6.8a further confirms the analytical

results that is based on the phasing quantity calculation in Table 6.7.

Making the translational bearing/shaft stiffnesses in the above cases be stiffer (at

least one hundred times of their original values) and conducting the simulations to

calculate the rotational responses for the sun, and planet gear for the same cases

in tables 6.5 and 6.7 yield the numerical results that agree with the rules in Table

6.4. The mesh phasing rules for purely rotational models, hence, is also numerically

verified.

6.5 Conclusion

The chapter analytically investigates the general rules to suppress certain dy-

namic responses and resonances of compound planetary gears through mesh phasing

for purely rotational and rotational-translational models. For meshed-planet stages,

the excitation or suppression of various modal responses at µth harmonic of mesh

frequency is solely determined by the phasing quantity kµ. The resultant rules are

the same as those for simple planetary gears and the planet-planet gear meshes have

no impact on the mesh phasing rules for meshed-planet stages due to the specific

train-level relative phase relations that are determined by the assembly conditions.

For stepped stages, due to the existence of two generally different mesh frequencies,

two different phasing quantities, kµ and k̄χ, are required to determine the excitation

or suppression of various modal responses at µth harmonic of one mesh frequency and

χth harmonic of the other one. For multi-stage systems, the mesh phasing rules are
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Figure 6.8: The simulated results for (a) sun translational response, (b) the ampli-
tudes of first sixth harmonics of sun-planet mesh frequency ω, and (c) the amplitudes
of first sixth harmonics of ring-planet mesh frequency Ω for Case 1 in Table 6.7. Sun
gear is the input component and the input speed is 100 rpm.
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Figure 6.9: The simulated results for (a) sun translational response, (b) the ampli-
tudes of first sixth harmonics of sun-planet mesh frequency ω, and (c) the amplitudes
of first sixth harmonics of ring-planet mesh frequency Ω for Case 1 in Table 6.7.
Sun gear is the input component and the input speed is 100 rpm. The input torque
remains the same as that for Figure 6.8.
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the sum of the rules from individual stage which is either a stage with meshed-planet

structure only or a stepped stage. The results of this study are critical to the design of

compound planetary gear systems and are effective in troubleshooting the vibration

and noise problems in real compound planetary gear applications.
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Chapter 7: PARAMETRIC INSTABILITIES OF

GENERAL COMPOUND PLANETARY GEAR CAUSED

BY MESH STIFFNESS VARIATIONS

7.1 Introduction

Mesh stiffness variation is a primary excitation of gear noise and vibrations [60,61,

98] and is typically represented by time-varying mesh stiffnesses that parametrically

excite gear systems in analytical studies [61]. When the operating speed of the system

meets certain conditions, instabilities that are caused by mesh stiffness parametric

excitations will occur such that noise and vibrations are created, the dynamic load on

each component of the system is dramatically increased, and the chance of hardware

failure, such as the damages in gear teeth and bearings, is greatly increased [61, 98].

In order to prevent gear systems from operating in the instability regions, it is crucial

to investigate the parametric instabilities caused by mesh stiffness variations and to

identify the instability boundaries at the design stage of the system.

Parametric instability for a single gear pair was investigated analytically and nu-

merically in several studies [4, 12, 14, 71]. The experimental work on the parametric

instabilities in a spur gear pair was performed by Kahraman and Blankenship [49].

Nonlinear phenomena such as gear tooth contact loss, period-doubling and chaos

were also observed in their study. As for the parametric instability of multi-mesh
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gear systems, very limited studies were performed. The studies on the instabilities of

two-stage gear systems by Tordion and Gauvin [93] and Benton and Seireg [10] gave

contradictory conclusions. This was clarified by Lin and Parker’s investigation [60]

which provided analytical formulae to allow designers to suppress particular insta-

bilities by changing gear mesh parameters, such as contact ratios and mesh phasing.

Liu and Parker [63] examined the nonlinear resonant vibrations of idler gears that are

parametrically excited by mesh stiffness variation. The study on the planetary gear

parametric instability was first performed by Lin and Parker [61] who analytically

investigated the parametric instability of simple planetary gear using a purely rota-

tional model. Bahk and Parker [9] used the same purely rotational model to study

the nonlinear resonant vibration of simple planetary gears parametrically excited by

mesh stiffness variations. Wu and Parker [98] extended the parametric instability

investigation scope to simple planetary gears having an elastic continuum ring gear.

Compound planetary gear parametric instability, however, is not investigated in

any previous studies mainly due to the complexity in modeling, the complex mesh

phasing relations caused by meshed-planet and stepped-planet structures, and multi-

frequency excitations incurred by stepped-planet and multi-stage structures. Studies

in previous chapters develop the lumped-parameter models for compound planetary

gears, define and clarify the complex mesh phasing relations, and derive the rules

that govern the suppression of selected dynamic responses through mesh phasing. All

these provide necessary foundations for the current problem of parametric instability

for compound planetary gears.

Compared to the rotational-translational compound planetary gear model in [53],

the purely rotational model developed in chapter 2 greatly simplifies the analytical
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work on gear dynamics while keeping the main dynamic behavior generated by mesh

stiffness variations. The work in [61] confirms the effectiveness of a purely rotational

model in capturing the parametric instability properties for simple planetary gears.

The study in this chapter, hence, uses the purely rotational model to investigate com-

pound planetary gear parametric instabilities. By applying the method of multiple

scale, the well-defined modal properties in chapter 2, and the mesh phase relations

in chapter 5, the instability boundaries are analytically obtained and the general

instability existence rules are derived.

7.2 Mesh Stiffnesses Variations in Compound Planetary Gears

Meshed-planet, stepped-planet, and multi-stage structures are unique to com-

pound planetary gears. Meshed planets introduce new planet-planet meshes to the

system. Stepped-planet and multi-stage structures allow the system to have multiple

mesh frequencies. ksilmgp (t) is the time varying mesh stiffness between central gear s

and planet m in train l of stage i and its mesh frequency is Ω1
i . If all other gear meshes

along train l in the same stage have the same mesh frequency, stage i is either a simple

stage (a stage that is equivalent to a simple planetary gear) or a meshed-planet stage.

Otherwise, there exists a stepped-planet structure along train l and there is always a

central gear-planet mesh having a mesh frequency different from Ω1
i . Without losing

generality, krilqgp (t) is the mesh stiffness between central gear r and planet q along train

l in stage i and its mesh frequency is Ω2
i . When Ω2

i = Ω1
i , stage i is a simple planet

gear, a meshed-planet stage, or a special stepped stage with single mesh frequency.

Otherwise, stage i is a stepped stage with two different mesh frequencies. With the

assumption that the mesh stiffnesses are independent of the load, the time-varying
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mesh stiffness ksilmgp (t) and krilqgp (t) are

ksilmgp (t) = ksi∗mgp + k̃silmgp (t)

krilqgp (t) = kri∗qgp + k̃rilqgp (t)
(7.1)

where ksi∗mgp and kri∗qgp are mean values for ksilmgp (t) and krilqgp (t), and k̃silmgp (t) and k̃rilqgp (t)

are zero-mean mesh stiffness variations. Similar to [98], trapezoidal waves are used

to approximate the mesh stiffness variations due to its advantage over rectangular

waves in case of corner contacts. Figure 7.1 shows the trapezoidal approximations for

k̃silmgp (t) and k̃rilqgp (t). γ̂gp,silm(0) and γ̂gp,rilq(0) are the system-level relative phases for

ksilmgp (t) and krilqgp (t) and the referring time 0 indicates that the pitch point of the base

referred mesh is in contact at t = 0. The contact ratios for these two mesh stiffnesses

are csi∗mgp and cri∗qgp and the mesh periods are T si∗mgp = 2π
Ω1

i
and T ri∗qgp = 2π

Ω2
i
. ρsi∗mgp and ρri∗qgp

are the slope coefficients for the non-parallel sides of the trapezoidal waves for k̃silmgp (t)

and k̃rilqgp (t) and they are in the range of [0, 1
4
] (0 and 1

4
correspond to rectangular

and triangle waves, respectively). 2ksl∗mvg and 2krl∗qvg are the peak-to-peak amplitudes

for k̃silmgp (t) and k̃rilqgp (t).

Fourier expansion of k̃silmgp (t) and (b) k̃rilqgp (t) yields

k̃silmgp (t) = 2ksl∗mvg

∞∑
µ=1

[Agp,silmµ sinµΩ1
i t+Bgp,silm

µ cosµΩi
it]

k̃rilqgp (t) = 2krl∗qvg

∞∑
µ=1

[Agp,rilqµ sinµΩ2
i t+Bgp,rilq

µ cosµΩ2
i t]

(7.2)
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Figure 7.1: The zero-mean mesh stiffness variations (a) k̃silmgp (t) and (b) k̃rilqgp (t).
γ̂gp,silm(0) and γ̂gp,rilq(0) are system-level mesh phases, csi∗mgp and cri∗qgp are contact
ratios, T si∗mgp and T ri∗qgp are mesh periods, and ρsi∗mgp and ρri∗qgp are trapezoid wave slope
coefficients.
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where the Fourier coefficients Agp,silmµ , Bgp,silm
µ , Agp,rilqµ , and Bgp,rilq

µ are

Agp,silmµ =
sin(2µπρsi∗mgp )

ρsi∗mgp µ2π2
sin

[
µπ(csi∗mgp + 2γ̂gp,silm(0))

]
sin(µπcsi∗mgp )

Bgp,silm
µ =

sin(2µπρsi∗mgp )

ρsi∗mgp µ2π2
cos

[
µπ(csi∗mgp + 2γ̂gp,silm(0))

]
sin(µπcsi∗mgp )

Agp,rilqµ =
sin(2µπρri∗qgp )

ρri∗qgp µ2π2
sin

[
µπ(cri∗qgp + 2γ̂gp,rilq(0))

]
sin(µπcri∗qgp )

Bgp,rilq
µ =

sin(2µπρri∗qgp )

ρri∗qgp µ2π2
cos

[
µπ(cri∗qgp + 2γ̂gp,rilq(0))

]
sin(µπcri∗qgp )

(7.3)

εsl∗mgp =
ksl∗m

vg

ksi∗m
gp

and εrl∗qgp =
krl∗q

vg

kri∗q
gp

are the relative amplitudes of mesh stiffness varia-

tions. Without losing generality, k1111
gp is the mesh stiffness for the base referred mesh,

and its relative mesh stiffness variation amplitude is ε1l∗1gp = ε. According to [61, 98],

it is reasonable to assume that εsl∗mgp and εrl∗qgp are of the same order as ε. That is,

εsl∗mgp = gsl∗mgp ε

εrl∗qgp = grl∗qgp ε
(7.4)

where gsl∗mgp , grl∗qgp = O(1) are relative variation coefficients. Application of the ana-

lytical process in equations (7.1)-(7.4) to all other gear meshes in the same compound

planetary gear yields the Fourier expansions for these gear meshes. Substitution of

the resultant Fourier expansions for all the gear meshes into the stiffness matrix for

the purely rotational model (2.23) gives

K(t) = Kb + Km = Kb + Ko + Kv(t)︸ ︷︷ ︸
Km

= Kiv + Kv(t)

= Kiv + 2ε
∞∑
µ=1

a∑
i=1

[(
Kµ
i11 sin µΩ1

i t+ Kµ
i12 cosµΩ1

i t
)

+

(
Kµ
i21 sin µΩ2

i t+ Kµ
i22 cosµΩ2

i t
)]

(7.5)

where Kiv = Kb + Ko is the time-invariant part of K(t), Kv(t is the time-varying

part of K(t), Ko has the same form as Km with all the mesh stiffness substituted by
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their mean values, and Kµ
i11, Kµ

i12, Kµ
i21, and Kµ

i22 are the Fourier coefficient matrices

for stage i gear meshes with Ω1
i and Ω2

i mesh frequencies, respectively. They have

the same form as Km with all the mesh stiffnesses that have the mesh frequency of

Ω1
i (for Kµ

i11 and Kµ
i12) or Ω2

i (for Kµ
i21 and Kµ

i22) being substituted by the production

of relative variation coefficients, their mean values, and the associated Fourier coef-

ficients (for example, ksilmgp (t) in Kµ
i11 is replaced by gsi∗mgp ksi∗mgp Agp,silmµ and ksilmgp (t) in

Ki12µ is replaced by gsi∗mgp ksi∗mgp Agp,silmµ ), and all other terms in these two matrices are

zeros.

7.3 Derivation of General Instability Boundaries for Com-
pound Planetary Gears

Parametric instabilities occur when harmonics of the mesh frequency are close to

particular combinations of the natural frequencies [60, 61, 98], that is,

µΩ ≈ ωe + ωf (7.6)

where Ω is an arbitrary mesh frequency, µ is an arbitrary integer, and ωe and ωf

are two natural frequencies of the system. Because the rigid-body mode (the mode

associated with zero natural frequency) is a special overall mode that does not impact

the instabilities of the system, the overall modes that were discussed in the rest of this

chapter exclude the rigid-body mode. According to equations of motion in (2.15)-

(2.17), the free vibration equation of a purely rotational compound planetary gear

is

Mθ̈ + K(t)θ = 0 =⇒ Mθ̈ + Kivθ + Kv(t)θ = 0 (7.7)

where the time-invariant mass and stiffness matrices, M and Kiv, are the same as

those in (2.18), and the time-varying stiffness matrix Kv(t) is the same as that in
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(7.5). Let Θ = [θ1, · · · , θΓ] (Γ = a + b +
a∑
i=1

cidi is the total degrees of freedom of

the system) be a set of normalized vibration modes (i.e., ΘTMΘ = I). Application

of the modal transformation θ = Θz to (7.7) and insertion of (7.5) into (7.7) yield

z̈n + ω2
nzn + 2ε

Γ∑
w=1

∞∑
µ=1

a∑
i=1

[(
Kµ
i11,nw sin µΩ1

i t+Kµ
i12,nw cosµΩ1

i t
)

+

(
Kµ
i21,nw sinµΩ2

i t+Kµ
i22,nw cosµΩ2

i t
)]
zw = 0

(7.8)

where n = 1, · · · , Γ (if the first mode is a rigid-body mode, n starts from 2. It

is the same for the rest of this chapter), and Kµ
i11,nw, Kµ

i12,nw, Kµ
i21,nw, and Kµ

i22,nw

are θTnK
µ
i11θw, θTnK

µ
i21θw, θTnK

µ
i12θw, and θTnKµ

i22θw, respectively. Application of the

method of multiple scales gives the form of the solution for (7.8) as

zn = zn0(t, τ) + εzn1(t, τ) + · · · (7.9)

where τ = εt and d/dt =⇒ ∂/∂t + ε∂/∂t. Insertion of 7.9 into 7.8 gives

∂2zn0

∂t2
+ ω2

nzn0 = 0 (7.10)

∂2zn1

∂t2
+ ω2

nzn1 = −2
∂2zn0

∂t∂τ
− 2

Γ∑
w=1

∞∑
µ=1

a∑
i=1

[(
Kµ
i11,nw sinµΩ1

i t+Kµ
i12,nw cosµΩ1

i t
)

+

(
Kµ
i21,nw sinµΩ2

i t+Kµ
i22,nw cosµΩ2

i t
)]
zw1

(7.11)

where n = 1, · · · , Γ. The solution for (7.10) is

zn0 = Cn(τ)e
jωnt + cc, n = 1, · · · , Γ (7.12)
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where j is the imaginary unit and cc means the complex conjugate of preceding terms.

Substitution of (7.12) into (7.11) gives

∂2zn1

∂t2
+ ω2

nzn1 = −2jωne
jωnt

∂Cn
∂τ

−
Γ∑

w=1

∞∑
µ=1

a∑
i=1

[(−jKµ
i11,nw +Kµ

i12,nw

)
ej(ωn+µΩ1

i )t +
(
jKµ

i11,nw +Kµ
i12,nw

)
ej(ωn−µΩ1

i )t

+
(−jKµ

i21,nw +Kµ
i22,nw

)
ej(ωn+µΩ2

i )t +
(
jKµ

i21,nw +Kµ
i22,nw

)
ej(ωn−µΩ2

i )t
]
Cw

+ cc n = 1, · · · , Γ

(7.13)

The equations matching with (7.13) in [60, 61, 98] are inconsistent and this study

confirms that the discrepancies are caused by the typos in [60, 61]. The resultant

equation (7.13) agrees with that in [98].

Without losing generality, when a harmonic of Ω1
i is close to the sum of two natural

frequencies ωe + ωf and the harmonics of other mesh frequencies do not approach

ωe + ωf , secular terms present in (7.13) and parametric instability happens. Such

parametric instability that is caused by a individual mesh frequency is classified as

individual-excitation type of instability in this study, and the condition is

µΩ1
i = ωe + ωf + εσ (7.14)

where σ is the detuning parameter to be determined.

Multiple mesh frequencies present in compound planetary gears involving stepped-

planet or multi-stage structures. It is, hence, possible that the harmonics of two or

more mesh frequencies is close to the sum of two natural frequencies ωe+ωf . For this

case, secular terms exist in 7.13 and parametric instability also occurs. This kind of

instability is caused by multiple mesh frequencies, and it is called mutual-excitation

type of instability in this chapter. In the rest of this section, the instability boundaries

for both types of instabilities are investigated.
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7.3.1 Parametric Instability Boundaries for Individual-excitation
Type of Instabilities

Depending on the degeneracy of ωe and ωf , the solvability conditions for 7.13 are

classified into three cases: (A) two distinct eigenvalues (distinct-distinct), (B) one

distinct eigenvalue and one degenerate eigenvalue (distinct-degenerate), and (C) two

degenerate eigenvalues (degenerate-degenerate). Similar to previous studies [61, 98],

to derive the boundaries for single mode and combination instabilities is focus for each

cases. The definition of the single mode instability for compound planetary gears is

different from that in [98]. In addition to the requirement of ωe = ωf , ωe and ωf have

to be the same type of natural frequencies. All other cases belong to combination

instabilities. That is, if ωe is an overall frequency and ωf is a planet frequency, the

instability at ωf + ωe is always a combination one regardless the equality of these

two frequencies. Such definition of single mode has no mathematical impact on the

following derivation of instabilities but prevents the confusions in terminology.

Case (A): distinct-distinct

When both ωe and ωf are distinct, elimination of the secular terms in (7.13)

requires [60]

2jωe
∂Ce
∂τ

+ C̄f(−jKµ
i11,ef +Kµ

i12,ef)e
µστ = 0

2jωf
∂Cf
∂τ

+ C̄e(−jKµ
i11,fe +Kµ

i12,fe)e
µστ = 0

(7.15)

According to [60], the form of the solutions for (7.15) are

Ce = (Re + jIe)e
−jςτ

Cf = (Rf + jIf )e
−j(ς+σ)τ

(7.16)

where Re, Ie, Rf , and If are real coefficients independent of τ . ς in (7.16) is the root

of the associated characteristic equation that is derived from the eigenvalue problem
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by insertion of (7.16) into (7.15) and it is

ς = −1

2
[σ ± (σ2 − Λµ

ef/(ωeωf))
1/2]

Λµ
ef = (Kµ

i11,ef)
2 + (Kµ

i12,ef )
2

(7.17)

Equations (7.15)-(7.17) suggest that Ce and Cf are unbounded if σ2 < Λµ
ef/(ωeωf).

Hence, σ = ±
√

Λµ
ef/(ωeωf) separates the stable and unstable regions. The parametric

instability boundaries for µΩ1
i ≈ ωe + ωf , hence, are

Ω1
i =

1

µ
[ωe + ωf ± ε

√
Λµ
ef/(ωeωf)] (7.18)

where Λµ
ef is the instability indicator of the width for the instability region. If

Λµ
e(f+x−1) vanishes, the width for the instability region is zero and the instability

at µΩ1
i = ωe+ωf vanishes. For single mode instability, equation (7.16) can be further

simplified as

Ω1
i =

1

µ
[2ωe ± ε

√
Λµ
ee/ωe] (7.19)

where Λµ
ee = (Kµ

i11,ee)
2 + (Kµ

i12,ee)
2 is the instability indicator.

Case (B): distinct-degenerate

When ωe is a distinct natural frequency and ωf = · · · = ωf+u−1 is a degenerate

one with multiplicity u (u ≥ 2), single mode instability is not possible because ωe

and ωf,··· ,f+u−1 are always different types of natural frequencies. The elimination of

the secular terms in (7.13) leads to u+ 1 equations as

2jωe
∂Ce
∂τ

+

u∑
x=1

C̄f+x−1(−jKµ
i11,e(f+x−1) +Kµ

i12,e(f+x−1))e
µστ = 0

2jωf+x−1
∂Cf+x−1

∂τ
+ C̄e(−jKµ

i11,(f+x−1)e +Kµ
i12,(f+x−1)e)e

µστ = 0, x = 1, · · · , u
(7.20)

The solutions for (7.20) have the same form as (7.16). With similar algebraic process

of the associated 2(u+ 1) × 2(u+ 1) eigenvalue problem as that in (7.17)-(7.19), the
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instability boundaries for this case are obtained in closed-form as

Ω1
i =

1

µ
[ωe + ωf ± ε

√√√√ u∑
x=1

Λµ
e(f+x−1)/(ωeωf)] (7.21)

where Λµ
e(f+x−1) = (Kµ

i11,e(f+x−1))
2 + (Kµ

i12,e(f+x−1))
2 and

u∑
x=1

Λµ
e(f+x−1) is the insta-

bility indicator. Single mode instabilities do not exist for this case because ωe and

ωf+x−1, x = 1, · · · , u are always different types of natural frequencies.

Case (C): degenerate-degenerate

When ωe = · · · = ωe+v−1 (v ≥ 2) and ωf = · · · = ωf+u−1 (u ≥ 2) are two

degenerate natural frequencies, the solvability conditions of (7.13) yield v+u equations

as

2jωe+y−1
∂Ce+y−1

∂τ
+

u∑
x=1

C̄f+x−1(−jKµ
i11,(e+y−1)(f+x−1) +Kµ

i12,(e+y−1)(f+x−1))e
µστ = 0

y = 1, · · · , v

2jωf+x−1
∂Cf+x−1

∂τ
+

n∑
y=1

C̄e+y−1(−jKµ
i11,(f+x−1)(e+y−1) +Kµ

i12,(f+x−1)(e+y−1))e
µστ = 0

x = 1, · · · , u
(7.22)

The solutions of (7.22) have the same form as (7.16), producing a 2(v+ u)× 2(v+ u)

eigenvalue problem. Previous studies on simple planetary gears indicate that it is

difficult to derive the instability boundaries from such a large size coefficient matrix

directly. Provided with modal and mesh phasing conditions, this type of instability

is possible to be determined analytically and such analysis is performed in the later

part of this study.

Single model instability is possible for this case in compound planetary gears

because any degenerate planet frequency belongs to this type. Let ωe = · · · = ωe+v−1.

Similar to the distinct-distinct case, the vanishing of the unbounded responses in
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(7.13) gives

2jωe+y−1
∂Ce+y−1

∂τ
+

v∑
x=1

C̄e+x−1(−jKµ
i11,(e+y−1)(e+x−1) +Kµ

i12,(e+y−1)(e+x−1))e
µστ = 0

y = 1, · · · , v
(7.23)

The associated coefficient matrix for (7.23) is a 2v × 2v one. Similar to the combi-

nation instability, analytical solution can not be derived directly from the coefficient

matrix unless Kµ
i11,(e+y−1)(e+x−1) and Kµ

i12,(e+y−1)(e+x−1) have specific features to fur-

ther simplified the coefficient matrix. Numerical evaluation can still determine the

instability boundaries.

7.3.2 Parametric Instability Boundaries for Mutual-excitation
Type of Instabilities

Mutual-excitation type of instabilities happen when the harmonics of two or more

mesh frequencies approach the sum of two natural frequencies. Take Ω1
i and Ω2

i

(Ω1
i �= Ω2

i ) as the representative example. Let µΩ1
i = χΩ2

i = ωe +ωf + εσ. Similar to

individual-excitation type of instabilities, three cases are studied here: (a) distinct-

distinct, (b)distinct-degenerate, and (c) degenerate-degenerate. Application of the

same process as that for individual-excitation type of instabilities yields the instability

boundaries for case (a) and case (b) as

Ω1
i =

χ

µ
Ω2
i =

1

µ
[ωe + ωf ± ε

√
Πµ
ef/(ωeωf)] case (a)

Ω1
i =

χ

µ
Ω2
i =

1

µ
[ωe + ωf ± ε

√√√√ u∑
x=1

Πµ
e(f+x−1)/(ωeωf)] case (b)

(7.24)

where Πµ
e(f+x−1) = (Kµ

i11,e(f+x−1) +K
χ
i21,e(f+x−1))

2+(Kµ
i12,e(f+x−1) +K

χ
i22,e(f+x−1))

2 (x =

1, · · · , u) and
u∑
x=1

Πµ
e(f+x−1) is the instability indicator. The forcing of ωe = ωf in

(7.24) gives the single mode instability boundaries for case (a).
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For case (c), the solvability conditions of (7.13) produce v + u equations for com-

bination instabilities as

2jωe+y−1
∂Ce+y−1

∂τ
+

u∑
x=1

C̄f+x−1

[
(−jKµ

i11,(e+y−1)(f+x−1) +Kµ
i12,(e+y−1)(f+x−1))

+ (−jKχ
i21,(e+y−1)(f+x−1) +Kχ

i22,(e+y−1)(f+x−1))
]
eµστ = 0, y = 1, · · · , v

2jωf+x−1
∂Cf+x−1

∂τ
+

n∑
y=1

C̄e+y−1

[
(−jKµ

i11,(f+x−1)(e+y−1) +Kµ
i12,(f+x−1)(e+y−1))

+ (−jKχ
i21,(f+x−1)(e+y−1) +Kχ

i22,(f+x−1)(e+y−1))
]
eµστ = 0, x = 1, · · · , u

(7.25)

For single mode instabilities, the associated solvability conditions are simplified as

2jωe+y−1
∂Ce+y−1

∂τ
+

v∑
x=1

C̄e+x−1

[
(−jKµ

i11,(e+y−1)(e+x−1) +Kµ
i12,(e+y−1)(e+x−1))

+ (−jKχ
i21,(e+y−1)(e+x−1) +Kχ

i22,(e+y−1)(e+x−1))
]
eµστ = 0, y = 1, · · · , v

(7.26)

Compared with (7.22) and (7.23), the additional terms in (7.25) and (7.26) are caused

by the excitation from χth harmonic of Ω2
i . Same as the individual-excitation type,

the instability boundaries cannot be analytically determined from the coefficient ma-

trix of (7.25) and (7.26).

The above analytical expressions for instability boundaries indicate that Kµ
i11,ef ,

Kµ
i12,ef , K

χ
i21,ef , and Kχ

i22,ef are critical for the determination of the instability bound-

aries and they are called key instability terms in this investigation. Algebraic manip-

ulation of equations (7.5), (7.7), and (7.8) yields the analytical expression for these
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key instability terms as

Kµ
i11,ef = θTe K

µ
i11θf =

∑
s,m

gsi∗mgp ksi∗mgp

ci∑
l

Agp,silmµ δsilmgp,e δ
silm
gp,f︸ ︷︷ ︸

central gear−planet meshes with Ω1
i mesh frequency

+
∑
m,q

gi∗mqpp ki∗mqpp

ci∑
l

App,ilmqµ δilmqpp,e δ
ilmq
pp,f︸ ︷︷ ︸

planet−planet meshes with Ω1
i mesh frequency

Kµ
i12,ef = θTe K

µ
i12θf =

∑
s,m

gsi∗mgp ksi∗mgp

ci∑
l

Bgp,silm
µ δsilmgp,e δ

silm
gp,f︸ ︷︷ ︸

central gear−planet meshes with Ω1
i mesh frequency

+
∑
m,q

gi∗mqpp ki∗mqpp

ci∑
l

Bpp,ilmq
µ δilmqpp,e δ

ilmq
pp,f︸ ︷︷ ︸

planet−planet meshes with Ω1
i mesh frequency

Kχ
i21,ef = θTe K

χ
i21θf =

∑
r,q

gri∗qgp kri∗qgp

ci∑
l

Agp,rilqχ δrilqgp,eδ
rilq
gp,f︸ ︷︷ ︸

central gear−planet meshes with Ω2
i mesh frequency

+
∑
t,w

gi∗twpp ki∗twpp

ci∑
l

App,iltwµ δiltwpp,eδ
iltw
pp,f︸ ︷︷ ︸

planet−planet meshes with Ω2
i mesh frequency

Kχ
i22,ef = θTe K

χ
i22θf =

∑
r,q

gri∗qgp kri∗qgp

ci∑
l

Bgp,rilq
χ δrilqgp,eδ

rilq
gp,f︸ ︷︷ ︸

central gear−planet meshes with Ω2
i mesh frequency

+
∑
t,w

gi∗twpp ki∗twpp

ci∑
l

Bpp,iltw
χ δiltwpp,eδ

iltw
pp,f︸ ︷︷ ︸

planet−planet meshes with Ω2
i mesh frequency

(7.27)

where δsilmgp,e (gear mesh deflection between central gear s and planet m in train l of

planet set i in vibration mode e) and δilmqpp,e (gear mesh deflection between planets

m and q in train l of planet set i in vibration mode e) are given in (2.6) and (2.9),

respectively. Equation (7.27) shows that key instability terms depend on modal gear

187



mesh deflections and the Fourier coefficients in terms of mesh parameters (contact

ratios, peak-to-peak amplitudes of mesh stiffness variation, and etc.). Insertion of

(7.3) and (7.27) into (7.18), (7.21), (7.22), (7.23), (7.24), (7.25), and (7.26) yields the

expressions for the instability boundaries or associated governing equations in terms

of mesh parameters, and the impacts of mesh parameters on the instability regions

can be predicted parametrically.

7.4 Impacts of Modal Properties and Mesh Phasing Condi-

tions on Compound Planetary Gear Instabilities

Studies in previous chapters show that compound planetary gears, similar to sim-

ple planetary gears, have well-defined modal properties and unique dynamic response

excitation/suppression patterns depending on different mesh phasing conditions. Be-

cause different modal properties and mesh phasing conditions impact modal gear

mesh deflections which determines the key instability terms in (7.27), it is important

to understand how compound planetary gear parametric instability boundaries are

affected by different modal properties and mesh phasing conditions. To simplify the

modal structure of the following discussions, the investigation scope is limited to the

systems with three or more planet trains in each stage (i.e., ci ≥ 3) such that any dis-

tinct frequency is associated a overall mode and any degenerate frequency is a planet

frequency. The results of chapters 5 and 6 show that there are two mesh phasing

conditions for stage i phasing quantities kµ (i.e., kµ = 0 and kµ �= 0) and k̄χ (i.e.,

k̄χ = 0 and k̄χ �= 0), respectively. Combining these mesh phasing conditions with

the parametric instabilities types for compound planetary gears, the following situa-

tions are studied: (i) individual excitation with zero phasing quantity (kµ = 0), (ii)

individual excitation with nonzero phasing quantity (kµ �= 0), (iii) mutual excitation
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with zero phasing quantities (kµ, k̄χ = 0), (iv) mutual excitation with nonzero phas-

ing quantities (kµ �== 0 and k̄χ �= 0), and (v) mutual excitation with mixed phasing

quantities (kµ = 0 and k̄χ �= 0, or vice versa).

7.4.1 Individual and Mutual Excitations with Zero Phasing

Quantities

Due to the high similarity, the investigations on situations (i) and (iii) are com-

bined in this section. The individual excitation with zero phasing quantity is first

investigated and the three cases of instabilities, (1) distinct-distinct, (2) distinct-

degenerate, and (3) degenerate-degenerate, are addressed as follows.

Case (1): distinct-distinct

The distinct natural frequencies in this study can only be overall frequencies. For

two arbitrary distinct natural frequencies, ωe and ωf , the overall mode properties lead

to

δsilmgp,e = δsi∗mgp,e

δsilmgp,f = δsi∗mgp,f

δilmqpp,e = δi∗mqpp,e

δilmqpp,f = δi∗mqpp,f

(7.28)

where l = 1, · · · , ci. The zero-phasing-quantity condition ensures that the Fourier

coefficients Agp,silmµ , Bgp,silm
µ , App,ilmqµ , and Bpp,ilmq

µ are independent of planet trains.

Replacing l with ∗ for these Fourier coefficients, moving them out of the summations
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in (7.27), and insertion of (7.28) into (7.27) give

Kµ
i11,ef = θTe K

µ
i11θf =

∑
s,m

cigsi∗mgp ksi∗mgp Agp,si∗mµ δsi∗mgp,e δ
si∗m
gp,f

+
∑
m,q

cigi∗mqpp ki∗mqpp App,i∗mqµ δi∗mqpp,e δ
i∗mq
pp,f

Kµ
i12,ef = θTe K

µ
i12θf =

∑
s,m

cigsi∗mgp ksi∗mgp Bgp,si∗m
µ δsi∗mgp,e δ

si∗m
gp,f

+
∑
m,q

cigi∗mqpp ki∗mqpp Bpp,i∗mq
µ δi∗mqpp,e δ

i∗mq
pp,f

(7.29)

Substitution of (7.29) into the expression of the associated instability indicator,

Λµ
ef , gives

Λµ
ef = (Kµ

i11,ef)
2 + (Kµ

i12,ef)
2

=

[∑
s,m

cigsi∗mgp ksi∗mgp Agp,si∗mµ δsi∗mgp,e δ
si∗m
gp,f +

∑
m,q

cigi∗mqpp ki∗mqpp App,i∗mqµ δi∗mqpp,e δ
i∗mq
pp,f

]2

+

[∑
s,m

cigsi∗mgp ksi∗mgp Bgp,si∗m
µ δsi∗mgp,e δ

si∗m
gp,f +

∑
m,q

cigi∗mqpp ki∗mqpp Bpp,i∗mq
µ δi∗mqpp,e δ

i∗mq
pp,f

]2

(7.30)

Because δsi∗mgp,e δ
si∗m
gp,f and δi∗mqpp,e δ

i∗mq
pp,f are not zero for any overall modes except the rigid-

body mode, Λµ
ef is not equal to zero in general. The instability boundary, hence,

does not vanish for most of the cases. Under certain circumstances, however, Λµ
ef

in (7.30) may be canceled out. For example, the condition that sin(µπcsi∗mgp ) = 0

for all central gear-planet meshes with Ω1
i mesh frequency and sin(µπci∗mqpp ) = 0 for

all planet-planet meshes with Ω1
i mesh frequency is sufficient to force all the Fourier

coefficients Agp,si∗mµ , Bgp,si∗m
µ , App,i∗mqµ , and Bpp,i∗mq

µ to be zero. For such a particular

case, the instability at µΩ1
i = ωe + ωf vanishes. The same conclusion applies to

distinct-distinct single mode instabilities.

Case (2): distinct-degenerate
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When ωe is a overall frequency and ωf = · · · = ωf+u−1 is a planet frequency with

multiplicity u, the modal properties for overall and planet modes yield

ci∑
l=1

δsilmgp,e δ
silm
gp,(f+x−1) = 0, x = 1, · · · , u (7.31)

Therefore, Kµ
i11,e(f+x−1) and Kµ

i12,e(f+x−1) (x = 1, · · · , u) are zero and the instability

indicator is canceled out. That is, the instability at µΩ1
i = ωe + ωf disappears if ωe

is a overall frequency, and ωf is a planet frequency with multiplicity u ≥ 2.

Case (3): degenerate-degenerate

If ωe = · · · = ωe+v−1 and ωf = · · · = ωf+u−1 are two degenerate natural frequencies

with multiplicities v (v ≥ 2) and u (u ≥ 2) and they are planet frequencies for different

stages, the planet mode properties (2.33) ensure that δsi∗mgp,e δ
si∗m
gp,f and δi∗mqpp,e δ

i∗mq
pp,f are

zero because only the components in one stage have motions in any planet mode.

Equation (7.25), hence, is simplified as

2jωe+y−1
∂Ce+y−1

∂τ
= 0, y = 1, · · · , v

2jωf+x−1
∂Cf+x−1

∂τ
= 0, x = 1, · · · , u

(7.32)

Ce+y−1 and Cf+x−1 are bounded in equation (7.32) and it suggests that the instability

at µΩ1
i = ωe+ωf vanishes when the two planet frequencies are for two different stages.

When the two planet frequencies are for the same stage, u has to equal to v for this

case. Let ωe = · · · = ωe+u−1, ωf = · · · = ωf+u−1 (u ≥ 2), and ωe �= ωf . Application of

the planet mode properties (2.33), insertion of the Fourier coefficients in (7.3) and the

closed-form solutions for vl in (6.42) into (2.6) and (2.9), and use of the trigonometric
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identities in (6.15) yield

ci∑
l=1

δsilmgp,e δ
silm
gp,f = 0

ci∑
l=1

δsilmgp,e δ
silm
gp,e = ∆si∗m

gp,e

ci∑
l=1

δilmqpp,e δ
ilmq
pp,f = 0

ci∑
l=1

δilmqpp,e δ
ilmq
pp,e = ∆i∗mq

pp,e

(7.33)

where ∆silm
gp,e and ∆ilmq

pp,e are not equal to zero. Insertion of (7.33) into (7.22) directly

gives the same equation as (7.32). The instability boundaries, hence, vanish for this

case. This result agrees with the mesh phasing rules in chapter 6 that planet mode

responses are suppressed when kµ �== 0.

For single mode instability, however, the instability may exist. Insertion of (7.33)

into (7.23) gives

2jωe+y−1
∂Ce+y−1

∂τ
+ C̄e+y−1

[
−j

(∑
s,m

Agp,si∗mµ Xsi∗m
gp,e+y−1 +

∑
m,q

App,i∗mqµ Y i∗mq
pp,e+y−1

)

+

(∑
s,m

Bgp,si∗m
µ Xsi∗m

gp,e+y−1 +
∑
m,q

Bpp,i∗mq
µ Y i∗mq

pp,e+y−1

)]
eµστ = 0

y = 1, · · · , v
(7.34)

where Xsi∗m
gp,e+y−1 = gsi∗mgp ksi∗mgp ∆si∗m

gp , and Y i∗mq
pp,e+y−1 = gi∗mqpp ki∗mqpp ∆i∗mq

pp . Equation (7.34)

indicates that all Ce+y−1 (y = 1, · · · , v) are decoupled. Application of the same

process as that in case (A) in section 7.3.1 yields the instability indicators for single
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mode instabilities of planet frequencies as

Λµ
(e+y−1)(e+y−1) =

(∑
s,m

Agp,si∗mµ Xsi∗m
gp,e+y−1 +

∑
m,q

App,i∗mqµ Y i∗mq
pp,e+y−1

)2

+

(∑
s,m

Bgp,si∗m
µ Xsi∗m

gp,e+y−1 +
∑
m,q

Bpp,i∗mq
µ Y i∗mq

pp,e+y−1

)2

, y = 1, · · · , v

Ω1
i =

1

µ
[2ωe ± ε

√
max

y=1, ··· , v
(Λµ

(e+y−1)(e+y−1))/ωe]

(7.35)

Because Λµ
(e+y−1)(e+y−1) in equation (7.35) is not equal to zero for any planet mode,

single mode instabilities always exist for planet frequencies as long as the Fourier

coefficients are not equal zero. In another word, the mesh phasing rules in chapter

6 that planet responses are suppressed when kµ = 0 is no longer hold in case of the

single mode instabilities for planet frequencies. This result agrees with the findings

in previous studies on simple planetary gears [61, 98].

For mutual excitations with zero phasing quantities(kµ, k̄χ = 0, and µΩ1
i = χΩ2

i =

ωe + ωf), the same analytical process as above applies and the results are the same

with the exception that Kχ
i21,ef and Kχ

i22,ef participate in all the instability expressions

and Πµ
e(f+x−1) replaces Λµ

e(f+x−1) ( x = 1, · · · , u).

7.4.2 Individual and Mutual Excitations with Nonzero Phas-
ing Quantities

When stage i phasing quantities (kµ, k̄χ) are not zero, application of the trigono-

metric identities in (6.15) to the Fourier coefficients Agp,silmµ , Bgp,silm
µ , App,ilmqµ , and

Bpp,ilmq
µ yields

Agp,silmµ = Bgp,silm
µ = App,ilmqµ = Bpp,ilmq

µ = 0 (7.36)

Equation (7.36) is valid for any individual or mutual excitations with nonzero phasing

quantities.
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Similar to previous section, individual excitation with nonzero phasing quantity

is investigated for three cases (I) distinct-distinct, (II) distinct-degenerate, and (III)

degenerate-degenerate. For case (I), insertion of (7.36) into (7.27) produces

Kµ
i11,ef = 0

Kµ
i12,ef = 0

(7.37)

The associated instability indicator Λµ
ef = (Kµ

i11,ef)
2 + (Kµ

i12,ef)
2, hence, is zero. That

is, the instability for case (I) vanishes for nonzero phasing quantity. It is the same for

single mode instabilities. Such result indicates that the mesh phasing rule that overall

mode responses are always suppressed when kµ �= 0 still holds for distinct-distinct

type of instabilities.

For cases (II) and (III), it is difficult to obtain simple expressions for the instability

boundaries and the instability conditions have to calculated from equations (7.20),

(7.22), and (7.23). As long as Kµ
i11,ef and Kµ

i12,ef in these equations equal zero (such

as two planet frequencies of different stages), the instability boundaries vanish.

The same analytical process applies to mutual excitation with nonzero phasing

quantity and the results are the same except that Kχ
i21,ef and Kχ

i22,ef participate in all

the instability expressions and equations (7.24), (7.25), and (7.26 are used for cases

(II) and (III).

7.4.3 Mutual Excitation with Mixed Phasing Quantities

The situation of mixed phasing quantities is only possible for mutual-excitation

type of instability. Without losing generality, kµ is zero and k̄χ is not equal to zero.

Three cases of instabilities, (α) distinct-distinct, (β) distinct-degenerate, and (γ)

degenerate-degenerate, are investigated. For case (α), the phasing condition of kµ =

0 ensures that the Fourier coefficients Agp,silmµ , Bgp,silm
µ , App,ilmqµ , and Bpp,ilmq

µ are
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independent of planet trains and Kµ
i11,ef and Kµ

i12,ef satisfies (7.29). The phasing

condition of k̄χ �= 0 leads to

Kχ
i21,ef = 0

Kχ
i22,ef = 0

(7.38)

Insertion of (7.29) and (7.38) into the expression of the associated instability indicator

in (7.24) gives

Πµ
ef = (Kµ

i11,ef)
2 + (Kµ

i12,ef)
2

=

[∑
s,m

cigsi∗mgp ksi∗mgp Agp,si∗mµ δsi∗mgp,e δ
si∗m
gp,f +

∑
m,q

cigi∗mqpp ki∗mqpp App,i∗mqµ δi∗mqpp,e δ
i∗mq
pp,f

]2

+

[∑
s,m

cigsi∗mgp ksi∗mgp Bgp,si∗m
µ δsi∗mgp,e δ

si∗m
gp,f +

∑
m,q

cigi∗mqpp ki∗mqpp Bpp,i∗mq
µ δi∗mqpp,e δ

i∗mq
pp,f

]2

(7.39)

The right-hand side of equation (7.39) is identical to that (7.30) and it is the result

of the mutual effects of the cancellation of Kχ
i21,ef and Kχ

i22,ef (caused by k̄χ �= 0) and

planet-train independent Fourier coefficients Agp,silmµ , Bgp,silm
µ , App,ilmqµ , and Bpp,ilmq

µ

(cased by kµ = 0). The instability boundaries for this case of mutual excitation with

mixed phasing quantities, hence, do not vanish in general and follow the same rule

as that for case (A) of individual excitation with zero phasing quantity.

For cases (β) and (γ), simple expressions cannot be derived and equations (7.24),

(7.25), and (7.26) have to used to determine the associated instability boundaries.

The vanishing of the instability boundaries is still possible for these cases, if Kµ
i11,ef ,

Kµ
i12,ef , K

χ
i21,ef , and Kχ

i22,ef are all zeros.

Table 7.1 summarizes the above analysis results on compound planetary gear

parametric instability boundaries with different modal and phasing conditions.
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Table 7.1: Compound planetary gear parametric insta-
bility boundaries for different modal and phasing condi-
tions.

Individual excitations: µΩ1
i = ωe + ωf

Distinct-
distinct
(combina-
tion)

Distinct-
distinct
(single
mode)

Distinct-
degenerate

Degenerate-
degenerate
(combina-
tion)

Degenerate-
degenerate
(single mode)

kµ = 0 exist in
general
(equation
(7.30))

exist in
general
(equation
(7.30))

always
vanish

always
vanish

exist in
general
(equations
(7.34) and
(7.35))

kµ �= 0 always vanish always
vanish

equation
(7.20)

equation
(7.22)

equation
(7.23)

Mutual excitations: µΩ1
i = χΩ2

i = ωe + ωf
Distinct-
distinct
(combina-
tion)

Distinct-
distinct
(single
mode)

Distinct-
degenerate

Degenerate-
degenerate
(combina-
tion)

Degenerate-
degenerate
(single mode)

kµ =
0, k̄χ = 0

exist in
general
(equation
(7.24))

exist in
general
(equation
(7.24))

always
vanish

always
vanish

exist in
general
(equation
(7.26))

kµ �= 0,
k̄χ �= 0

always vanish always
vanish

equation
(7.24)

equation
(7.25)

equation
(7.26))

kµ = 0,
k̄χ �= 0

exist in
general
(equation
(7.39))

equation
(7.24)

equation
(7.24)

equation
(7.25)

equations
(7.26)

7.5 Conclusions

This chapter analytically investigates the parametric instabilities caused by mesh

stiffness variations in compound planetary gears. The instability boundaries are an-

alytically derived for purely rotational systems. Both individual and mutual (unique

to compound planetary gears) types of excitations are investigated and the instability
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boundaries are analytically determined in terms of mesh parameters. Application of

the well-defined modal properties and specific mesh phasing conditions reduces the

instability boundary expressions to simple, closed-form formulae. Under particular

phasing conditions, some parametric instabilities vanish while other do not. Overall

frequency instabilities, regardless they are combination or single mode instabilities,

always vanish when the associated phasing quantities are not equal to zero. Planet

frequency instabilities, however, violate the mesh phasing rules when they are single

mode instabilities. For combination planet frequency instabilities, the mesh phas-

ing rules still hold. The conclusions from this study are consistent with all previous

studies on simple planetary gears.
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Chapter 8: BACK-SIDE CONTACT GEAR MESH

STIFFNESS

8.1 Introduction

Back-side contact in a gear mesh contact refers to the contact at the back side of

gear teeth. Recent studies on gear dynamics [34,39,54,84] show that it is possible for

tooth wedging (or tight mesh), the simultaneous drive-side and back-side contacts,

to happen in real applications, such as wind turbine gearboxes. Tooth wedging is

the combined effect of gravity and bearing clearance nonlinearity, and it is a major

source of gearbox failures, especially the bearing fails. For better understanding of

the impact of tooth wedging on gearbox failures, it is important to develop a model

that includes the accurate description of the back-side contact mesh stiffness.

Besides tooth wedging, the anti-backlash gear is another case for back-side contact

to occur. To minimize the undesirable characteristics which are caused by backlash,

anti-backlash gears typically eliminate the backlash by using certain preloaded springs

to force the fixed part of the driving gear to be in contact with the drive side of the

driven gear teeth and simultaneously the free part of the driving gear to be in contact

with the back side of the driven gear teeth [18]. Analytical studies on anti-backlash

gear dynamics are necessary to prevent excessive vibration and noise in anti-backlash
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gears and optimize the design for such systems. The accurate modeling of back-side

contact mesh stiffness is important to support such analytical studies.

Mesh stiffness variation and its impact on gear dynamics were extensively inves-

tigated in previous studies. Parametric excitation caused by mesh stiffness variation

along with clearance nonlinearity for a single mesh gear was studied in [49]. Lin and

Parker systematically analyzed the mesh stiffness variation instabilities in two-stage

gear systems [60], as well as in simple planetary gear systems [61]. Their studies

showed that the parametric excitation from the time-varying mesh stiffness causes

instability and severe vibration under certain operating conditions. They applied a

perturbation method to analytically determine the instability conditions. Wu and

Parker [98] extended the study on parametric instability to planetary gears with elas-

tic continuum ring Gears. Sun and Hu [90] investigated the mesh stiffness parametric

excitation and clearance nonlinearity for simple planetary gears. Bahk and Parker [9]

derived closed-form solutions for the dynamic response of planetary gears with time-

varying mesh stiffness and tooth separation nonlinearity based on a purely torsional

planetary gear model. Guo and Parker [34] modeled and analyzed a simple planetary

gear with time-varying mesh stiffness, tooth wedging, and bearing clearance nonlin-

earity. Although the back-side contact is included in their model, the average value

of the periodic mesh stiffness on the drive-side is used to approximate the back-side

mesh stiffness which is not an accurate description of the back-side mesh stiffness.

Despite the abundance of the literature on mesh stiffness variation and gear dy-

namics, no studies have tried to derive the back-side mesh stiffness in their analytical

model. One possible reason is that the symmetry of gear tooth ensures that the con-

tact ratios, mesh periods, and average mesh stiffnesses over the mesh period are the
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Driven Gear Driving Gear

Line of action

Back_side
line of action

Driving direction

Figure 8.1: Drive-side gear contact model (solid line) and back-side gear contact
model (dashed line)

same for both the drive- and back-side contacts. This may mislead some researchers

to assume that the back-side mesh stiffness is the same as the drive-side one. The

back-side mesh stiffness, however, is not equivalent to the drive-side one, because

the back-side contact is along the back-side line of action (the dashed line in Figure

8.1) and the number of gear teeth in contact along the back-side line of action is not

always equal to that along the line of action (the solid line in Figure 8.1). Figure

8.2 (the simulation results from Calyx [96], a multi-body finite element program with

precise gear mesh contact) illustrates one such case. There are two pairs of gear teeth

in contact along the back-side line of action, while only one pair of teeth in contact

along the line of action. Therefore, the back-side mesh stiffness differs from the drive-

side mesh stiffness at this moment. If the variation of the back-side mesh stiffness

is not modeled correctly, the results from the model is questionable. Therefore, it is

important to have a clear understanding of back-side mesh stiffness. In addition, how

the backlash impacts the phase lag of the back-side mesh stiffness is not studied in

previous literature and it is investigated in this work as well.
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Driven

Gear

Driving

Gear

Figure 8.2: Numerical simulation of Calyx on an ideal gear pair with both drive-side
and back-side gear contacts. One pair of teeth (marked by a circle) is in contact along
the drive-side line of action, and two pairs of teeth (marked by two rectangles) are in
contact along the back-side line of action.

8.2 Derivation of Back-side Mesh Stiffness

The drive-side mesh stiffness refers to the stiffness that reflects the compliance of

the nominally contacting teeth at a mesh. It varies as the number of teeth in contact

fluctuates during the rotation of the gear system. The stiffness acts along the line of

action and its variation function’s period is known for a given rotation speed. Mesh

stiffness variation functions are often approximated by Fourier series in analytically

studies and they can also be accurately calculated by Finite Element Method (FEM)

software. The drive-side mesh stiffness function is critical to the analytical studies on

gear dynamics [6, 7, 9, 76, 78].

Similar to the drive-side mesh stiffness, the back-side mesh stiffness in this study

is the stiffness that reflects the change of the in-contact gear tooth number along the
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back-side line of action. It is not straightforward to determine or calculate because the

back-side contact does not occur until tooth wedging happens due to the existence of

backlash. In order to get simultaneous drive-side and back-side contacts at all times,

in the following sections an ideal gear pair (a gear pair which operates at the nominal

center distance and has zero backlash tooth thickness) is first investigated. Then the

results of the ideal gear pair is extended to arbitrary gear pairs with backlash and

anti-backlash gears.

Back-side Mesh Stiffness for an Ideal Gear Pair

Figure 8.3 illustrates the drive-side and back-side contacts for an arbitrary ideal

gear pair. Zdr and Zdn are the tooth numbers of the driving and driven gears, respec-

tively. T is the mesh period of this gear pair. At t = 0, the pitch point at the drive

side of the driving gear is in mesh (Figure 8.3a). The dashed line in the middle of

each sub-figure is the center line between the two gears. After one mesh period T , the

driving gear tooth moves one driving gear circular pitch p
dr

= 2πrdr

Zdr
, and the driven

gear tooth moves pdn = 2πrdn

Zdn
(rdr and rdn are the pitch radii). After one fourth of the

mesh period (t = T
4
), the driving gear tooth moves one fourth of its circular pitch.

Because there is no backlash along the pitch circle, the circular tooth thickness of the

driving gear qdr is equal to

qdr =
1

2
pdr (8.1)

The movement of the driving gear is equivalent to half of its circular tooth thick-

ness 1
2
qdr. Thus, at t = T

4
the center line passes through the middle of the tooth tip

of the driving gear (Figure 8.3b). At this moment both gears are symmetric about

the center line and the number of gear teeth in contact along the drive-side line of
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(a) t =0, T (b) t =T/4

(c) t =T/2 (d) t =3T/4

Figure 8.3: The gear mesh contacts for an arbitrary external ideal gear pair. The
dashed line in the middle of each sub-figure is the center line. The driving gear is at
the right hand side of each subplot and the driving direction is counter-clockwise.

action equals that along the back-side line of action. The back-side and drive-side

mesh stiffnesses are equal at this moment.

At t = T
2
, the driving gear tooth moves qdr which is equal to its circular tooth

thickness, and the center line passes right through the pitch point at the back-side

of the driving gear tooth (Figure 8.3c). At t = 3T
4

, the driving gear moves 3
2
qdr and

the driven gear moves 3
2
qdn (qdn is the circular tooth thickness of the driven gear).

At this moment, the center line passes through the middle point of the tooth tip of

the driven gear, and both gears are symmetric about the center line. Therefore, the

back-side and drive-side mesh stiffnesses are equal at t = 3T
4

.
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The varying drive-side mesh stiffness is kI(t), and the matching back-side mesh

stiffness is kIb (t). Without losing generality, at t = 0 the pitch point at the drive

side of the driving gear is in mesh. gI(τ) = kI(t − T
4
) is a phase-shifted function of

kI(t), and at its origin τ = 0 or t = T
4

(as shown in Figure 8.3b), the back-side and

drive-side mesh stiffnesses are equal. hI(τ) is defined as the back-side mesh stiffness

function that matches with gI(τ). Due to the symmetry of the gear pair at τ = 0,

the driving-side mesh stiffness at the moment of τ is equivalent to the back-side mesh

stiffness at the moment of −τ . Thus, hI(τ) and gI(τ) have the relation

hI(τ) = gI(−τ) (8.2)

Insertion of gI(τ) = kI(t− T
4
) into (8.2) yields

hI(τ) = kI(−t+
T

4
) (8.3)

Similar to the relation between gI(τ) and the drive-side mesh stiffness kI(t), hI(τ) is

a phase-shifted function of the back-side mesh stiffness kIb (t), and it is

hI(τ) = kIb (t−
T

4
) (8.4)

Substitution of hI(τ) with kIb (t− T
4
) in (8.3) gives

kIb (t−
T

4
) = kI(−t+

T

4
)

⇒ kIb (t) = kI(−t+
T

2
) = kI(−t− T

2
)

(8.5)

Equation (8.5) reveals that kIb (t) is uniquely determined once the drive-side mesh

stiffness function kI(t) is known, and it is the symmetrical function of kI(t) with T
2

phase shift. According to equation (8.5), the number of gear teeth in contact at the

back side at t = 0 equals the number of gear teeth in contact at the drive side at
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t = T
2
. It is confirmed by the simulation results in Figure 8.3. There are two pairs

of teeth in contact at the back side in Figure 8.3a (t = 0), and there are exactly two

pairs of teeth in contact at the drive side in Figure 8.3c (t = T
2
).

Summarizing the above discussion, the back-side mesh stiffness varying function

for an ideal gear pair is the symmetrical function of the drive-side mesh stiffness

function with a phase shift of half of the mesh period.

8.2.1 Back-side Mesh Stiffness for a Gear Pair with Nominal
Backlash

Real gear applications, however, always include backlash to allow lubrication,

manufacturing errors, deflection under load, and thermal expansion. It is typically

created by slightly increasing the center distance of the gear pair or reducing the

circular tooth thickness.

Figure 8.4 illustrates the backlash for an external gear pair. The nominal backlash

for the gear pair is 2b (the backlash remains at 2b for this case), the circular pitch is p,

and the mesh period is T . The case that the center distance of the gear pair remains

unchanged and there is no relative radial motion between the gears is investigated first

(to simplify the results, the assumption that there is no relative tangential motions

between the gears is imposed throughout the rest of this study). The impacts of the

center distance change and relative radial motion are studied subsequently.

Once a gear pair is installed with an unchanged center distance (the nominal

center distance), the backlash remains at its nominal value 2b if there is no relative

radial motion between the gears. The thick dashed line in Figure 8.4 represents the

case of back-side contact. If the varying drive-side mesh stiffness is k(t), equation

(8.5) does not give the desired back-side mesh stiffness varying function. Instead, it
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Radial direction

Back-side line of action Line of action

 Base circle

α

 Pitch circle

Tooth of the driven gear

2b

Tooth of the driving gear

Matching ideal gear pair

Figure 8.4: The drive-side and back-side gear mesh contacts for a gear pair with 2b
backlash and its matching ideal gear pair.

gives kIb (t) the back-side mesh stiffness varying function for the matching ideal gear

pair (the thin dashed line in Figure 8.4) who have the same center distance and pitch

circle as the original gear pair in Figure 8.4 but different tooth thicknesses. To ensure

zero backlash, the tooth thickness of the matching ideal gear pair is equal to b plus

the thickness of the original gear pair in Figure 8.4.

If the matching ideal gear pair moves b along the pitch circle in the reverse driving

direction in Figure 8.4, the back-side contact of the ideal gear mesh in the thin dashed

line will coincide with the actual back-side contact in the thick dashed line. The phase

lag between the back-side mesh stiffness functions of the matching ideal gear pair and

the original gear pair for the above process is b
p
T . In other words, the actual back-

side mesh stiffness varying function kb(t) of a gear pair is the back-side mesh stiffness

varying function for the matching ideal gear kIb (t) with b
p
T phase lag, that is,

kb(t) = kIb (t−
b

p
T ) (8.6)
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Insertion of kIb (t) = kI(−t− T
2
) (from equation (8.5)) into equation (8.6) and applica-

tion of the condition that the drive-side mesh stiffness function of the matching ideal

gear pair is equivalent to that of the original gear pair (Figure 8.4) yields

kb(t) = k(−t− T

2
+
b

p
T ) (8.7)

8.2.2 Back-side Mesh Stiffness for an Arbitrary Gear Pair

with Changing Backlash

In real applications, the actual operating center distance of a gear pair always

differs from the nominal one due to manufacturing errors of the axes, axes deflections

under load, and axial misalignments during installation. In addition, vibration of the

gears in the relative radial direction changes the actual center distance [34]. Figure

8.5a shows the change of center distance ∆c (the positive sign of ∆c indicates the

reduction of center distance) causes the actual backlash to be reduced by the amount

of 2∆c tanα, where α is the pressure angle. Figures 8.5b and 8.5c explain this relation

geometrically. When the driving gear moves ∆c toward the driven gear (i.e., ∆c

change in center distance), the gaps between the two gears along drive- and back-side

of lines of action are to be reduced by ∆c sinα (Figure 8.5b), respectively. Because

the driving gear is pressed against the driven gear along the line of action and there is

no room for the driving gear to move toward the driven gear along the line of action,

the total gap reduction along the back-side line of action becomes 2∆c sinα. The gap

change along the pitch circle is approximated by the associated cord length shown in

Figure 8.5c. By applying the trigonometric relations in the triangle shown in Figure

8.5c, the length of the cord that approximates the gap change along the pitch circle is

calculated as: 2∆c sinα
cosα

= 2∆c tanα. When ∆c reaches b
tanα

such that 2∆c tanα = 2b
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∆
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∆
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(a)

(b)

Line of action Back-side line of action 

∆

∆ sinα

α
α

(c)
Back-side line of action 

α

2∆ sinα
 Pitch circle

2∆ tanα

Figure 8.5: Back-side tooth contact for the case of tooth wedging when 2∆c tanα =
2b. b is half of the backlash along the pitch circle, ∆c is the change of the central
distance, and α is the pressure angle.

(2b is the nominal backlash), the back side of the driving gear (the dashed line in

Figure 8.5a) is in contact with the back side of the driven gear and the tooth wedging

happens.

When ∆c <
b

tanα
, the actual backlash of the gear pair 2b′ is 2(b−∆c tanα). This

case is equivalent to the case in Figure 8.4 with the exception that the backlash is 2b′

instead of the nominal value 2b. Replacing b with b′ in (8.7) gives

kb(t) = k(−t− T

2
+
b′

p
T )

= k(−t− T

2
+
b− ∆c tanα

p
T )

(8.8)

208



Equation (8.8) is the back-side mesh stiffness for a general external gear pair with 2b

nominal backlash and ∆c center distance change.

In most applications, the backlash and the change of center distance of a gear pair

is much smaller than the circular pitch p. Therefore, the phase lag term b−∆c tanα
p

T in

equation (8.8) is small and equation (8.5) may be sufficient to estimate the back-side

mesh stiffness of a gear pair with small backlash and center distance change.

8.2.3 Back-side Tooth Number Variation Function for an
Anti-backlash Gear Pair with Changing Backlash

For an anti-backlash gear pair, the drive-side mesh stiffness is not only determined

by the number of teeth in contact, but also by other design parameters, such as the

face width in contact and the the modulus of elasticity. To exclude the impacts

from the parameters other than the in-contact number of teeth at the drive and

back sides, the in-contact tooth number variation functions of the drive (n(t)) and

back (nb(t)) sides are used to investigate the back-side mesh stiffness of anti-backlash

gears. Because the derivation of equations (8.5-8.8) relies only on the in-contact tooth

number variations and the phase relations between the drive and back sides, replacing

the mesh stiffness functions k(t) and kb(t) with the in-contact tooth number variation

functions n(t) and nb(t) and application of the same analytical process in the above

three sub-sections yield

nb(t) = n(−t− T

2
+
b− ∆c tanα

p
T ) (8.9)

Equation (8.9) is the back-side tooth number variation function for an arbitrary anti-

backlash gear or a general external gear pair with 2b nominal backlash and ∆c center

distance change.
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Figure 8.6: Calyx FEM model of the example ideal gear pair.

8.3 Numerical Verification of Back-side Mesh Stiffness

The drive-side and back-side mesh stiffness relation in (8.5) is the key to the

general back-side mesh stiffness in (8.8) or back-side tooth variation function in (8.9).

Therefore, equation (8.5) is verified first. The verification is achieved with a Calyx [96]

finite element model of an ideal external gear pair (Figure 8.6). Calyx has very precise

tracking of tooth contact for precise tooth geometry. In the simulations that follow

Calyx tracks the contact for specified gear kinematics under unloaded conditions.

The gear parameters are listed in Table 1.

Figure 8.7 shows the in-contact tooth number variations at the drive and back

sides by tracking the numbers of gear teeth along the drive- and back-side lines of

action using the above Calyx model. At t = 0, the pitch point at the drive side of the

driving gear is in contact. O and O′ are the points on the drive- (O) and back-side
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Figure 8.7: The drive- and back-side gear tooth number variation functions for the
example ideal gear pair in Figure 6. ’x’ indicates the time that the pitch point of
the drive side of the driving gear is in contact, ’A’ indicates the time that the middle
point of the drive gear tooth tip is aligned with the center line, ’+’ indicates the time
that the pitch point of a driven gear tooth is in contact, and ’*’ indicates the time
that the middle point of a driven gear tooth tip is aligned with the center line.

(O′) tooth number variation functions at t = 0. Figure 8.3a illustrates the drive-side

and back-side tooth contacts at t = 0.

At t = T
4
, the middle point of the driving gear tooth tip is aligned with the center

line (Figure 8.3b). A and A′ are the points on the drive- (A) and back-side (A′) tooth

number variation functions at t = T
4
. For better illustration, the drive-side tooth

number variation function before point A and the back-side tooth number variation

function after point A′ are shown in Figure 8.8. They are symmetrical about the

solid vertical line (that is, τ = 0, where τ = t − T
4
). This matches the expression

in equation (8.2). O′′ in Figure 8.7 and Figure 8.9 is the point on the drive-side
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Figure 8.8: The drive-side gear tooth number variation function before point A and
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tooth number variation function at t = T
2
. Figure 8.9 shows that the drive-side

tooth number variation function before point O′′ is symmetrical to the back-side gear

tooth number variation function after point O′. This provides numerical validation

of equation (8.5).

The next step is to verify the back-side mesh stiffness varying function for the gear

pairs with 2b nominal backlash in equation (8.7). To do so, the tooth thickness of the

gear pair in Figure 8.6 is reduced by 10% such that b
p

= 0.05. The tracking results of

the drive-side and back-side tooth number variations from Calyx are shown in Figure

8.10. Ō in Figure 8.10 is the point on the drive-side gear tooth number variation

function at t = −T
2

+ b
p
T . The drive-side gear tooth number variation function before
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Figure 8.9: The drive-side gear tooth number variation function before point O′′ and
the back-side gear tooth number variation function after point O′.

point Ō is symmetrical to the back-side gear tooth number variation function after

point O′. Thus, the results in Figure 8.10 agree with equation (8.7).

In order to verify the general back-side tooth variation function in equation (8.9),

the center distance between the two gears in Figure 8.6 is reduced such that ∆c tanα
p

=

0.025. The tracking results for the drive-side and back-side tooth number variation

functions are shown in Figure 8.11. Õ in Figure 8.11 is the point on the drive-side

gear tooth number variation function at t = −T
2

+ b−∆c tanα
p

T . The drive-side gear

tooth number variation function before point Õ is symmetrical to the back-side gear

tooth number variation function after point Õ. Comparing with Figure 8.10, the

phase lag of the back-side tooth number variation function in Figure 8.11 is reduced
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Figure 8.10: Back-side and drive-side gear tooth number variation functions the ex-
ample gear pairs with zero center distance change and 2b nominal backlash (b satisfies
b
q

= 0.05).

by 0.025T . This phase lag reduction is caused by the reduction of the center distance

and this result matches equation (8.9).

8.4 Conclusion

This study investigates the drive-side mesh stiffness for arbitrary gear pairs and

anti-backlash gear pairs. The results reveal the inherent relation between the back-

side and drive-side mesh stiffnesses or gear tooth variation functions. The impact

of backlash on the phase lag in the back-side mesh stiffness variation function is

also quantified in this study. The resultant formulae are important for the correct
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ample gear pairs with 2b nominal backlash (b satisfies b

q
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p

= 0.025).

modeling and further dynamic analysis on the gear systems that involve back-side

gear tooth contacts, such as anti-backlash gears.
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Table 8.1: Gear parameters for the example system shown in Figure 8.6.

Driving Gear Driven Gear

Number of Teeth 41 32

Diametral Pitch 10.34 10.34

Pressure Angle (deg) 25 25

Outer Diameter (in) 4.12 3.33

Root Diameter (in) 3.54 2.87

Mesh Period (sec) 0.293 0.293
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Chapter 9: CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

9.1.1 Compound Planetary Gear Models and Associated Modal
Properties

A purely rotational model for general compound planetary gears is developed.

This model clarifies discrepancies in gear mesh deflection expressions and corrects

errors in previously published models. The distinct modal properties for this purely

rotational model are presented and analytically proved. All the vibration modes for

the purely rotational model can be classified into two groups: overall and planet

modes. In an overall mode, all planet trains in the same planet set have identical

motions and each mode is associated with a distinct natural frequency. Planet modes

exist when the system has a stage with two or more planet trains. In any planet

mode, only the planets in one stage have motion and all other components have no

motion. This purely rotational model simplifies the subsequent analyses on paramet-

ric instability caused by mesh stiffness variations while keeping the main dynamic

behavior generated by mesh stiffness variations.
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9.1.2 Sensitivity of General Compound Planetary Gear Nat-
ural Frequencies and Vibration Modes to Model Pa-

rameters

The systematic study on general compound planetary gear eigensensitivities are

performed by using the rotational-translational compound planetary gear model. Ap-

plication of the well-defined modal properties of general compound planetary gears

simplifies the eigensensitivity expressions to simple, closed-form expressions. For both

tuned and mistuned systems, the modal strain/kinetic energy distribution plots pro-

vide effective and straightforward means to identify which system parameters have

the greatest impact on tuning the related natural frequency.

Rotational modes are independent of translational support/shaft stiffnesses and

masses of central gears/carriers. Translational modes are independent of torsional

support/shaft stiffnesses and moments of inertia of central gears/carriers. Planet

modes of a certain planet set are independent of any system parameters associated

with other planet sets. They are also independent of the mass/moment of inertia

parameters and support/shaft stiffness parameters of all central gears/carriers.

When a system is perturbed by a mistuned parameter, a degenerate translational

mode natural frequency of the unperturbed system splits into two distinct frequencies.

A mistuned planet bearing stiffness, translational shaft stiffness between two planets

in a stepped planet arrangement, or planet mass impacts both modes associated

with the two frequencies, while any other mistuned parameter affects only one of the

modes despite the apparent disruption of system symmetry. Parameter mistuning

always splits degenerate planet mode frequencies of the stage associated with the

mistuned parameter into two frequencies. One frequency keeps its original value
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and its associated modes retain the well-defined planet mode properties; the other

frequency is distinct and its associated mode loses the planet mode properties.

The results of this study provide important information for tuning resonances

away from operating speeds and minimizing dynamic response for general compound

planetary gears.

9.1.3 Natural Frequency Veering and Crossing Patterns for
General Compound Planetary Gears

Natural frequency veering and crossing phenomena are systematically investigated

for general compound planetary gears. By checking whether the axisymmetry in all

stages are retained, all system parameters are divided into tuned and mistuned pa-

rameters. Tuned parameters are further classified as rotational, translational, and

planet tuned parameters based on their eigensensitivities. The veering/crossing pat-

terns with respect to each group of tuned parameters are determined by examining

the analytical expressions of the associated coupling factors. The veering/crossing

patterns for mistuned parameters are determined in a similar way. Compared with

the patterns for tuned parameters, more occurrences of veering are found in the veer-

ing/crossing pattern for any mistuned parameter.

9.1.4 Mesh Phase Relations of General Compound Planetary

Gears

This investigation systematically defines and calculates all the mesh phases for

general compound planetary gears. Grouping compound planetary gear mesh phases

into a hierarchical structure of system-level, stage-level, and train-level mesh phases

to simplify the analysis, this study derives a complete procedure to determine all
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the necessary relative phases. The specific relationships between train-level relative

phases that are critical for any analytical study on the suppression of compound

planetary gear dynamic response through mesh phasing are derived by applying the

assembly conditions of compound planetary gears. All derived results are verified

through an example, where the numerical benchmark is geometrically exact and the

only error is a quantifiable mesh cycle discretization error.

9.1.5 Suppression of Various Modal Responses in General
Compound Planetary Gears through Mesh Phasing

This chapter analytically investigates the general rules to suppress certain dynamic

responses and resonances of general compound planetary gears through planet mesh

phasing for both the purely rotational and rotational-translational models.

For meshed-planet stages, the excitation or suppression of various modal responses

at µth harmonic of mesh frequency is solely determined by the phasing quantity

kµ. The resultant rules suggest that the planet-planet gear meshes have no impact

on the mesh phasing rules for meshed-planet stages due to the specific train-level

relative phase relations. For stepped stages, due to the existence of two generally

different mesh frequencies, two different phasing quantities, kµ and k̄χ, are required

to determine the excitation or suppression of various modal responses at µth harmonic

of one mesh frequency and χth harmonic of the other one. For multi-stage systems,

the mesh phasing rules are the sum of the rules from each of the individual stages,

where these may be meshed-planet or stepped-planet stages. The mesh phasing rules

are numerically verified.
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9.1.6 Parametric Instabilities of General Compound Plane-
tary Gear Caused by Mesh Stiffness Variations

Analytical investigation on compound planetary gear parametric instabilities caused

by mesh stiffness variations are performed in this chapter. The instability boundaries

are analytically derived for two different types of parametric excitations: individual

and mutual (unique to compound planetary gears) excitations.

Applying the structured modal properties for rotational models and using specific

phasing conditions, the analytical expressions of instability boundaries are simpli-

fied to compact, closed-form formulae. The results indicate that overall frequency

instabilities always vanish as long as the associated phasing quantities are not zero.

Combination planet frequency instabilities also obey the mesh phasing rules while

single mode planet frequency instabilities violate the mesh phasing rules. The resul-

tant parametric expressions of instability boundaries are essential for the tuning of

the instability regions away from the operating range at the design stage of compound

planetary gears.

9.1.7 Back-side Contact Gear Mesh Stiffness

Driven by the needs of advanced planetary gear modeling and anti-backlash gear

modeling, the contact at the back side of a gear mesh is examined and the inherent

relationships between the back-side and drive-side mesh stiffnesses or gear tooth vari-

ation functions are discovered. The impact of backlash on back-side mesh stiffness

variations is also quantified. The resultant formulae are important for planetary gear

vibration models that consider tooth wedging or anti-backlash gears.
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9.2 Future Work

This research addressed a series of key issues in compound planetary gear dynamic

and it builds solid foundations for further analyses. The future work is recommended

for the following areas.

9.2.1 Analytical Study on Anti-backlash Gear Dynamics

Backlash presents in most involute gear applications to allow lubrication, manu-

facturing errors, deflection under load, and thermal expansion. It is typically created

by slightly increasing the center distance of the gear pair or reducing the circular

tooth thickness. To minimize the undesirable characteristics which are caused by

backlash, anti-backlash gears (or scissors gears) are used. The most common way for

anti-backlash gears to eliminate backlash is to use certain preloaded springs to force

the driving gear to be in continuous contact with the driven gear (Figure 9.1). In spite

of the abundant studies on single-mesh, multi-mesh, and planetary gear dynamics,

the investigation on anti-backlash gear dynamics is very few and limited to the finite

element approach [18]. No literature ever analytically addressed the anti-backlash

gear dynamics. To understand the dynamic behavior of anti-backlash gears and to

optimize the design of such systems, it is necessary to conduct a series of analytical

investigations.

Figure 9.1 shows a lumped parameter model for anti-backlash gears. The anti-

backlash assembly consists of two parts: fixed and free parts. The fixed part is fixed

to the input shaft and its contact with the driven gear is the drive-side contact. The

free part can rotate freely relative to the input shaft and its contact with the driven

gear is on the back side. The fixed and free parts are connected by a preloaded
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Figure 9.1: A lumped parameter model for anti-backlash gears: (a) front view of the
whole system (b) side view of the anti-backlash assembly.

torsional spring. As a preliminary investigation, only rotational degrees of freedom is

considered for the model shown in Figure 9.1. The equations of motions are

I1θ̈1 + k0θ1 + kd(t)(θ1r1 + θ3r3) + kc(θ1 − θ2) = τ0

I2θ̈2 − kb(t)(θ2r2 + θ3r3) + kc(θ2 − θ1) = −τ0

I3θ̈3 + kd(t)(θ1r1 + θ3r3) − kb(t)(θ2 + θ3) = 0

(9.1)

where (I1, θ1, r1), (I2, θ2, r2), and (I3, θ3, r3) are the moments of inertia, rotations,

and base radii for the fixed part, free part, and the driven gear, respectively. k0 is

the torsional shaft stiffness of the input shaft. kc is the torsional coupling stiffness

between the fixed and free parts of the anti-backlash assembly and τ0 is the preload

torque for this coupling stiffness. kd(t) is the time-varying mesh stiffness between the

fixed part and the driven gear and the associated contact happens at the drive-side

of the driven gear tooth. kb(t) is the mesh stiffness between the free part and the
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driven gear and the contact is at the back-side of the driven gear. Let H be the mesh

stiffness per unit face width. If ι1 and ι2 are the effective face widthes for the drive-

and back-side meshes, kd(t) and kb(t) can be simplified as

k̄d(t) = Hι1nd(t)

k̄b(t) = Hι2nb(t)
(9.2)

where nd(t) and nb(t) are tooth number variation functions for the drive and back

sides, respectively. Insertion of (9.2) into (8.9) yield the relation between kd(t) and

kb(t) as

kb(t) =
ι2
ι1
kd(−t+ −T

2
+
b

p
T ) (9.3)

where p is the circular pitch of the mesh between the fixed part and the driven gear

and T is the mesh period.

With the model in Figure 9.1 and the specific relation between kd(t) and kb(t) in

(9.3), the recommended investigations are

1. to understand the free vibration problem of anti-backlash gears, such as the

modal properties,

2. to evaluate the eigensensitivities in order to understand the impacts of key

parameters on natural frequencies and vibration modes,

3. to investigate the parametric instabilities caused by the variations of kd(t) and

kb(t),

4. to inspect the nonlinear behaviors of anti-backlash gears.

9.2.2 Investigations on 3-D Helical Compound Planetary Gears

In real transmission applications, helical compound planetary gears are more pop-

ular than spur compound planetary gears due to the advantage of lower fluctuation
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in static transmission error ( [23]). In order to understand the effects of design pa-

rameters on dynamic behaviors of helical compound planetary gears and optimize

the system parameters during the design stage, it is desirable to extend the 2-D

rotational-translational model to a 3-D one. The elaborate investigations on com-

pound planetary gears in this study, together with Eritenel and Parker’s studies on

3-D simple helical planetary gear [25, 26], provide necessary foundations for the in-

spection on 3-D helical compound planetary gears. The suggested investigations are

1. to develop an lumped-parameter 3-D helical compound planetary gear model,

2. to examine the modal properties of 3-D helical compound planetary gears,

3. to evaluate the impacts of system parameters on natural frequencies and vibra-

tion modes,

4. to inspect the existence of mesh phasing rules for helical compound planetary

gears.

9.2.3 Extended Investigation on Parametric Instabilities of
Compound Planetary Gears

The analytical study in chapter 7 can be extended to the refined rotational-

translational model in [53]. The analytical process and the general formulae for

distinct-distinct, distinct-degenerate, and degenerate-degenerate instabilities in (7.15)-

(7.27) apply to the rotational-translational model if the free vibration equation of

compound planetary gear in (7.7) is replaced by the one associated with the rotational-

translational model in (2.38) and the stiffness matrix in (7.5) is replaced by the one

for the rotational-translational model in the appendix of [53].
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Because the rotational-translational model, compared with the purely rotational

model, has more sophiscated modal structures in (2.40)-(2.52) and more complex

mesh phasing rules in tables (6.2) and (6.3), the analytical results in Section 7.4

can not be applied to the rotational-translational model directly and thorough in-

vestigations on the impacts of rotational-translational modal properties and mesh

phasing conditions on instability boundaries are suggested. The instabilities that are

related to translational frequencies (unique to the rotational-translational model) is

expected to be the focus of this extended investigation. In addition, it is desirable to

compare the analytical results with the numerical solutions from Floquet theory or

finite element method.

9.2.4 Nonlinear Dynamics of Compound Planetary Gears

Nonlinearities in gear systems, mainly the gear mesh contact loss, have great im-

pacts on dynamic responses, load sharing among planets, bearing loads, tooth fatigue,

and gear noise [50, 88, 90]. The nonlinear dynamics for single-mesh [50, 78, 91] and

multi-mesh gears [1,2,63] are already extensively studied. The effects of nonlinearities

on simple planetary gears also receive some attention in recent years. Ambarisha and

Parker [6] calculated the nonlinear response of planetary gears by using both lumped-

parameter and finite element models. Mesh phasing rules are confirmed except for

chaotic and period-doubling regions. In addition, Bahk and Parker [9] studied the

nonlinear dynamics for a purely rotational simple planetary gear model. Perturba-

tion, harmonic balance/arclength continuation, and numerical integration methods

were used in their study and the frequency-response functions were presented in

closed-form expressions. Guo and Parker [34] investigates a simple planetary gear
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model with not only contact loss nonlinearity, but also tooth wedging and bearing

clearance nonlinearity. No studies, however, ever addressed the nonlinear dynamics

for compound planetary gears. To provide improved design guidance for compound

planetary gears based on dynamic responses with different nonlinearities considered,

the recommended studies on compound planetary gear nonlinear dynamics are

1. to improve the rotational-translational compound planetary gear model to make

it incorporate with different nonlinearities, such as contact loss and bearing

clearance,

2. to add the back-side gear mesh contacts to the model by applying the results

from chapter 8 in this work,

3. to investigate the nonlinear effects caused by these nonlinearities by using dif-

ferent methods to find the solutions for the nonlinear problems analytically or

numerically, such as the method of multiple scales, harmonic, balance method,

and arclength continuation method,

4. to evaluate the impacts of the nonlinearities on the validation of the mesh

phasing rules in chapter 6 of this study.
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Appendix A: APPENDIX FOR CHAPTER 2

The sub-matrices of M in (2.22) are

Ic = diag (I1
ce, · · · , Iace) ; Ig = diag

(
I1
g , · · · , Ibg

)
Ic,ps = diag

((
I1
c,ps

)T
, · · · , (Iac,ps)T)

Iic,ps =

[(
Ii1c,pt

)T
, · · · ,

(
Iic

i

c,pt

)T]T
; Iilc,pt =

[
I il1p , · · · , I ildi

p

]T
Ips = diag

(
I1
ps, · · · Iaps

)
; Iips = diag

(
Ii1pt, · · · Iic

i

pt

)
Iilpt = diag

(
I il1p , · · · I ildi

p

)
(A.1)

The sub-matrices of Km in (2.25) are

Kc =

⎡
⎢⎣ k11

c . . . k1a
c

...
. . .

...

ka1c · · · kaac

⎤
⎥⎦

kihc =

⎧⎪⎨
⎪⎩

b∑
j=1

ci∑
l=1

di∑
m=1

(
rjg
)2
kjilmgp +

a∑
n=1,n �=i

kincc,θθ +
b∑
j=1

kijcg,θθ i = h

−kihcc,θθ i �= h

(A.2)

Kc,g =

⎡
⎢⎣ k11

c,g . . . k1b
c,g

...
. . .

...

ka1c,g · · · kabc,g

⎤
⎥⎦ ; kijc,g = −

ci∑
l=1

di∑
m=1

(
rjg
)2
kjilmgp −kijcg,θθ (A.3)
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Kc,ps =

⎡
⎢⎣
(
k1
c,ps

)T
. . . 0

...
. . .

...

0 · · · (
kac,ps

)T
⎤
⎥⎦ ; kic,ps =

[
ki1c,pt, · · · kic

i

c,pt

]T

kilc,pt =
[
kil1c,p, · · · , kildi

c,pt

]T
; kilmc,p =

b∑
j=1

σjkjilmgp rjgr
ilm
p

Kg =

⎡
⎢⎣ k11

g . . . k1b
g

...
. . .

...

kb1g · · · kbbg

⎤
⎥⎦

kjng =

⎧⎪⎨
⎪⎩

a∑
i=1

ci∑
l=1

di∑
m=1

(
rjg
)2
kjilmgp +

b∑
h=1,h �=j

kjhgg,θθ +
a∑
i

kijcg,θθ j = n

−kjngg,θθ j �= n

(A.4)

Kg,ps =

⎡
⎢⎣
(
k11
g,ps

)T
. . .

(
k1a
g,ps

)T
...

. . .
...(

kb1g,ps
)T · · · (

kbag,ps
)T

⎤
⎥⎦ ; kjig,ps =

[
kji1g,pt, · · · ,kjic

i

g,pt

]T

kjilg,pt =
[
−σjkjil1gp r

j
gr
il1
p , · · · ,−σjkjildi

gp rjgr
ildi

p

]T

Kps =

⎡
⎢⎣ K1

ps . . . 0
...

. . .
...

0 · · · Ka
ps

⎤
⎥⎦ ; Ki

ps = diag
(
Ki1
pt, · · · ,Kici

pt

)

Kil
pt =

⎡
⎢⎣ kil11p . . . kil1d

i

p
...

. . .
...

kild
i1

p · · · kild
idi

p

⎤
⎥⎦

(A.5)

kilmnp =

⎧⎪⎨
⎪⎩

b∑
j=1

kjilmgp

(
rilmp

)2
+

di∑
q=1,q �=m

[
kilmqpp

(
rilmp

)2
+kilmqp−p,θθ

]
m = n

−kilmnp−p,θθ+k
ilmn
pp rilmp rilnp m �= n

(A.6)
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Appendix B: APPENDIX FOR CHAPTER 3

B.1 Expressions of Eigensensitivities for Tuned Compound
Planetary Gears

The following notation is applied in this appendix: i, h = 1, · · · , a; j, n =

1, · · · , b; l = 1, · · · , ci; m, q = 1, · · · , di. For a degenerate eigenvalue λu =

λu+1 = · · · = λu+w−1 with multiplicity w ≥ 2, the associated first order eigenvector

derivatives can not be determined. The expressions of φ′
u and λ′′ for a rotational

mode or a distinct planet mode are

∂φu

∂kicb,θθ
=

Λ∑
v=1,v �=u

θic,vθ
i
c,u

λu − λv
φv (B.1)

∂2λu
∂k2

cb

=

Λ∑
v=1,v �=u

2(xic,vx
i
c,u + yic,vy

i
c,u)

2

λu − λv
(B.2)

∂φu

∂kjgb,θθ
=

Λ∑
v=1,v �=u

θjg,vθ
j
g,u

λu − λv
φv (B.3)

∂2λu
∂k2

gb

=
Λ∑

v=1,v �=u

2(xjg,vx
j
g,u + yjg,vy

j
g,u)

2

λu − λv
(B.4)

∂φu

∂kijcg,θθ
=

Λ∑
v=1,v �=u

(θic,v − θjg,v)(θ
i
c,u − θjg,u)

λu − λv
φv (B.5)
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∂2λu

(∂kijcg,θθ)
2

=
Λ∑

v=1,v �=u

2[(θic,v − θjg,v)(θ
i
c,u − θjg,u)]

2

λu − λv
(B.6)

∂φu

∂kihcc,θθ
=

Λ∑
v=1,v �=u

(θic,v − θhc,v)(θ
i
c,u − θhc,u)

λu − λv
φv (B.7)

∂2λu
(∂kihcc,θθ)

2
=

Λ∑
v=1,v �=u

2[(θic,v − θhc,v)(θ
i
c,u − θhc,u)]

2

λu − λv
(B.8)

∂φu

∂kjngg,θθ
=

Λ∑
v=1,v �=u

(θjg,v − θng,v)(θ
j
g,u − θng,u)

λu − λv
φv (B.9)

∂2λu

(∂kjngg,θθ)
2

=
Λ∑

v=1,v �=u

2[(θjg,v − θng,v)(θ
j
g,u − θng,u)]

2

λu − λv
(B.10)

∂φu

∂ki∗mp
=

Λ∑
v=1,v �=u

ci∑
l=1

(δilmζ,v )(δilmζ,u ) + (δilmη,v )(δilmη,u )

λu − λv
φv (B.11)

∂2λu
(∂ki∗mp )2

=
Λ∑

v=1,v �=u

2

λu − λv

⎧⎨
⎩

ci∑
l

[(δilmζ,v )(δilmζ,u ) + (δilmη,v )(δilmη,u )]

⎫⎬
⎭

2

(B.12)

∂φu

∂ki∗mqpp

=

Λ∑
v=1,v �=u

ci∑
l=1

δilmqp,v δilmqp,u

λu − λv
φv (B.13)

∂2λu

(∂ki∗mqpp )2
=

Λ∑
v=1,v �=u

2

λu − λv

⎛
⎝ ci∑

l=1

δilmqp,v δilmqp,u

⎞
⎠2

(B.14)

∂φu

∂ki∗mqp−p
=

Λ∑
v=1,v �=u

ci∑
l=1

(ζ ilmp,v − ζ ilqp,v)(ζ
ilm
p,u − ζ ilqp,u) + (ηilmp,v − ηilqp,v)(η

ilm
p,u − ηilqp,u)

λu − λv
φv (B.15)

231



∂2λu

(∂ki∗mqp−p )2
=

Λ∑
v=1,v �=u

2

λu − λv

⎧⎨
⎩

ci∑
l=1

[(ζ ilmp,v − ζ ilqp,v)(ζ
ilm
p,u − ζ ilqp,u) + (ηilmp,v − ηilqp,v)(η

ilm
p,u − ηilqp,u)]

⎫⎬
⎭

2

(B.16)

∂φu

∂ki∗mqp−p,θθ
=

Λ∑
v=1,v �=u

ci∑
l=1

(uilmp,v /r
ilm
p − uilqp,v/r

ilq
p )(uilmp,u /r

ilm
p − uilqp,u/r

ilq
p )

λu − λv
φv (B.17)

∂2λu

(∂ki∗mqp−p,θθ)2
=

Λ∑
v=1,v �=u

2

λu − λv

⎡
⎣ ci∑
l=1

(uilmp,v /r
ilm
p − uilqp,v/r

ilq
p )(uilmp,u /r

ilm
p − uilqp,u/r

ilq
p )

⎤
⎦2

(B.18)

∂φu

∂mi
c

=
Λ∑

v=1,v �=u

−λu(xic,vxic,u + yic,vy
i
c,u)

λu − λv
φv − φu

2
[(xic,u)

2 + (yic,u)
2] (B.19)

∂2λu
(∂mi

c)
2

=
Λ∑

v=1,v �=u

2λ2
u(x

i
c,vx

i
c,u + yic,vy

i
c,u)

2

λu − λv
+ 2λu[(x

i
c,u)

2 + (yic,u)
2]2 (B.20)

∂φu

∂I ic
=

Λ∑
v=1,v �=u

−λuθic,vθic,u
λu − λv

φv − φu

2
(θic,u)

2 (B.21)

∂2λu
(∂I ic)

2
=

Λ∑
v=1,v �=u

2λ2
u(θ

i
c,vθ

i
c,u)

2

λu − λv
+ 2λu(θ

i
c,u)

4 (B.22)

∂φu

∂mj
g

=
Λ∑

v=1,v �=u

−λu(xjg,vxic,u + yjg,vy
j
g,u)

λu − λv
φv − φu

2
[(xjg,u)

2 + (yjg,u)
2] (B.23)
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∂2λu

(∂Ijg )2
=

Λ∑
v=1,v �=u

2λ2
u(θ

j
g,vθ

j
g,u)

2

λu − λv
+ 2λu(θ

j
g,u)

4 (B.24)

∂φu

∂Ijg
=

Λ∑
v=1,v �=u

−λuθjg,vθjg,u
λu − λv

φv − φu

2
(θjg,u)

2 (B.25)

∂2λu

(∂Ijg )2
=

Λ∑
v=1,v �=u

2λ2
u(θ

j
g,vθ

j
g,u)

2

λu − λv
+ 2λu(θ

j
g,u)

4 (B.26)

∂φu

∂mi∗m
p

=

Λ∑
v=1,v �=u

ci∑
l=1

−λu(ζ ilmp,v ζ ilmp,u + ηilmp,v η
ilm
p,u )

λu − λv
φv − φu

2

ci∑
l=1

[(ζ ilmp,u )2 + (ηilmp,u )2] (B.27)

∂2λu
(∂mi∗m

p )2
=

Λ∑
v=1,v �=u

2λ2
u

λu − λv
[

ci∑
l=1

(ζ ilmp,v ζ
ilm
p,u + ηilmp,v η

ilm
p,u )]2+2λu

⎧⎨
⎩

ci∑
l=1

[(ζ ilmp,u )2 + (ηilmp,u )2]

⎫⎬
⎭

2

(B.28)

∂φu

∂I i∗mp
=

Λ∑
v=1,v �=u

ci∑
l=1

−λuuilmp,v uilmp,u
(rilmp )2(λu − λv)

φv − φu

2

ci∑
l=1

(
uilmp,u
rilmp

)2 (B.29)

∂2λu
(∂I i∗mp )2

=

Λ∑
v=1,v �=u

2λ2
u

λu − λv
(

ci∑
l=1

uilmp,v u
ilm
p,u

(rilmp )2
)2 + 2λu

⎡
⎣ ci∑
l=1

(
uilmp,u
rilmp

)2
⎤
⎦2

(B.30)

Translational bearing/shaft stiffnesses of central gears and carriers (kicb, k
j
gb, k

ij
cg, k

in
cc ,

kjhgg) have no impact on any rotational mode or distinct planet mode.

B.2 Eigensensitivities of Mistuned Compound Planetary Gears

With a Single Mistuned Parameter

The following notation is used in this appendix:i, h = 1, · · · , a; j, n = 1, · · · , b;
l = 1, · · · , ci; m, q = 1, · · · , di. R means rotational mode, and T means transla-

tional mode. 1P, 2P, and 3P indicate planet modes with multiplicity one, two and
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three or more, respectively. The eigensensitivities for any natural frequency with

multiplicity w ≥ 1 (λu = · · · = λu+w−1) with its associated preferred set of planet

modes φu, · · · , φu+w−1 (a preferred set of planet modes diagonalizes D in (3.5) if

w ≥ 2) to a mistuned parameter are

∂λu

∂kilm
p

= 2
kilm

p
U ilm
pb,u (R/T/1P/2P/3P)

∂λu+1

∂kilm
p

=

{
2

kilm
p
U ilm
pb,u+1 (T)

0 (2P)
∂λu+t

∂kilm
p

= 0, t = 2, · · · , w − 1 (3P)

(B.31)

∂φu

∂kilm
p

=
Λ∑

v=1,v �=u,··· ,u+w−1

(δilm
ζ,v )(δilm

ζ,u )+(δilm
η,v )(δilm

η,u )

λu−λv

[
φv +

u+w−1∑
z=u+1

(δilm
ζ,z )(δilm

ζ,u )+(δilm
η,z )(δilm

η,u )

λ′u−λ′z φz

]
(R/T/1P/2P)

∂φu+1

∂kilm
p

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Λ∑
v=1,v �=u,··· ,u+w−1

(δilm
ζ,v )(δilm

ζ,u )+(δilm
η,v )(δilm

η,u )

λu−λv

[
φv +

u+w−1∑
z=u,z �=u+1

(δilm
ζ,z )(δilm

ζ,u )+(δilm
η,z )(δilm

η,u )

λ′u−λ′z φz

]
(T)

0 (2P)
∂φu+s

∂kilm
p

can not be determined, where s = 0, · · · , w − 1. (3P)

(B.32)

∂2λu

(∂kilm
p )2

=
Λ∑

v=1,v �=u
2

λu−λv
[(δilmζ,v )(δilmζ,u ) + (δilmη,v )(δilmη,u )]2 (R/T/1P/2P/3P)

∂2λu+1

(∂kilm
p )2

=

⎧⎨
⎩

Λ∑
v=1,v �=u+1

2
λu+1−λv

[(δilmζ,v )(δilmζ,u+1) + (δilmη,v )(δilmη,u+1)]
2 (T)

0 (2P)
∂2λu+t

(∂kilm
p )2

= 0, t = 2, · · · , w − 1 (3P)

(B.33)

∂λu

∂kilmq
pp

= 2

kilmq
pp

U ilm,q
pp,u (R/T/1P/2P/3P)

∂λu+t

∂kilmq
pp

= 0, where t = 1, · · · , w − 1. (T/2P/3P)
(B.34)
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∂φu

∂kilmq
pp

=
Λ∑

v=1,v �=u,··· ,u+w−1

δilmq
p,v δilmq

p,u

λu−λv
φv (R/T/1P/2P)

∂φu+1

∂kilmq
pp

= 0 (T/2P)
∂φu+s

∂kilmq
pp

can not be determined, where s = 0, · · · , w − 1. (3P)

(B.35)

∂2λu

(∂kilmq
pp )2

=
Λ∑

v=1,v �=u
2

λu−λv

(
δilmqp,v δilmqp,u

)2
(R/T/1P/2P/3P)

∂2λu+t

(∂kilmq
pp )2

= 0, where t = 1, · · · , w − 1. (T/2P/3P)
(B.36)

∂λu

∂kilmq
p−p

= 2

kilmq
pp

U ilmq
p−p,u (R/T/1P/2P/3P)

∂λu+1

∂kilmq
p−p

=

{
2

kilmq
pp

U ilmq
p−p,u+1 (T)

0 (2P)
∂λu+t

∂kilmq
p−p

= 0, where t = 2, · · · , w − 1. (3P)

(B.37)

∂φu

∂kilmq
p−p

=
Λ∑

v=1,v �=u,··· ,u+w−1

(ζilm
p,v −ζilq

p,v)(ζilm
p,u −ζilq

p,u)+(ηilm
p,v −ηilq

p,v)(ηilm
p,u −ηilq

p,u)

λu−λv
[φv+

u+w−1∑
z=u+1

(ζilm
p,z −ζilq

p,z)(ζilm
p,u −ζilq

p,u)+(ηilm
p,z −ηilq

p,z)(ηilm
p,u −ηilq

p,u)

λ′u−λ′z φz] (R/T/1P/2P)

∂φu+1

∂kilmq
p−p

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Λ∑
v=1,v �=u,··· ,u+w−1

(ζilm
p,v −ζilq

p,v)(ζilm
p,u −ζilq

p,u)+(ηilm
p,v −ηilq

p,v)(ηilm
p,u −ηilq

p,u)

λu−λv
[φv+

u+w−1∑
z=u,z �=u+1

(ζilm
p,z −ζilq

p,z)(ζilm
p,u −ζilq

p,u)+(ηilm
p,z −ηilq
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