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Abstract

Noise and vibration are major concerns in applications of compound planetary
gears, and dynamic analysis is essential to their reduction. This work conducts a
series of analytical investigations on several problems in compound planetary gear
dynamics.

A purely rotational model for compound planetary gear is developed, and the
unique modal properties for the natural frequency spectra and vibration modes are
presented and analytically proved. This model aims to simplify subsequent analyses
on compound planetary gear dynamics while keeping the main dynamic behavior
generated by tooth mesh forces.

A systematic study on general compound planetary gear eigensensitivities is per-
formed by utilizing the rotational-translational model in [53]. The eigensensitivities
are derived in compact, closed-form expressions for all parameter variations in both
tuned (each stage in the system retains cyclic symmetry) and mistuned systems. The
resultant formulae also suggest that modal strain and kinetic energy distribution plots
are effective and straightforward means to identify the system parameters that have

the greatest impact on adjusting the related natural frequency.
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Compound planetary gear natural frequency veering and crossing phenomena are
also systematically examined. By grouping all system parameters into tuned and mis-
tuned parameters, the veering/crossing patterns with respect to each system param-
eter are determined. These patterns provide critical information on dramatic mode
shape changes when tuning a compound planetary gear during the design stage.

Gear mesh phases that are critical for analytical or computational study on com-
pound planetary gear dynamics are defined and calculated analytically. All the mesh
phases are grouped into a hierarchical structure of system-level, stage-level, and train-
level mesh phases to simplify the subsequent analytical investigations. In addition to
providing a complete procedure to determine all the necessary relative phases, the spe-
cific relations between train-level relative phases are derived by applying the assembly
conditions of compound planetary gears. Such relations, together with the systemat-
ically defined mesh phases, provide the foundation for the general rules to suppress
selected dynamic responses of a general compound planetary gear through proper
mesh phasing. The resultant mesh phasing rules are crucial for the troubleshooting
of the vibration and noise problems in compound planetary gear applications.

Compound planetary gear parametric instabilities caused by mesh stiffness vari-
ations are analytically explored. Systems with single or multiple mesh frequencies
are investigated. The instability boundaries are derived for different cases depending
on the degeneracy of the natural frequencies. Application of the well-defined modal
properties yields simple, closed-form expressions for instability boundaries. Some
instability boundaries vanish under specific mesh phasing conditions.

The back-side mesh stiffness variation is inspected in this work to address the

needs for gear vibration models that consider the gear tooth contacts on the back
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side. The results reveal the inherent relationship between the back-side and drive-
side mesh stiffnesses. The impact of backlash on the back-side mesh stiffness variation

function is also quantified.
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Chapter 1: INTRODUCTION

1.1 Motivation and Objectives

Planetary gears are widely used in all kinds of transmission systems, such as wind
turbines, aircraft engines, automobiles, and machine tools, and they are classified
into two categories: simple and compound planetary gears [31-33, 35, 36, 38,47, 53].
Simple planetary gears have one sun, one ring, one carrier, and one planet set (i.e.,
single-stage). There is only one planet in each planet train (i.e., simple) (Figure
1.1). Compound planetary gears involve one or more of the following three types
of structures: meshed-planet (as shown in Figure 1.2, there are at least two more
more planets in mesh with each other in each planet train), stepped-planet (as shown
in Figure 1.3, there exists a shaft connection between two planets in each planet
train), and multi-stage structures (as shown in Figure 1.4, the system contains two
or more planet sets) [53]. Compared to simple planetary gears, compound planetary
gears have the advantages of larger reduction ratio, higher torque-to-weight ratio, and
more flexible configurations.

In spite of these advantages, vibration remains a major concern in planetary gear
applications. Vibration creates undesirable noise, reduces fatigue life of the whole
system, and decreases durability and reliability. Vibration reduction, therefore, is a
key to the applications of compound planetary gears. This requires analytical study

1



Figure 1.1: A typical simple planetary gear: OH-58D planetary gear.

on compound planetary gear dynamics to provide fundamental understanding of the
dynamics and guide vibration reduction.

Most research on gear dynamics focuses on single gear pairs [30,40, 51, 52, 78]
or multi-mesh gear systems [24,60,62-64]. Recently, considerable progress has been
made in the modeling and analysis of simple planetary gears [6,9,34,43-46,48,56-59,
75,77,90,97,98]. Studies on compound planetary gears, however, are limited. Many
fundamental analyses that are proved to be essential in other systems and studies
have not been performed, including the purely rotational system modeling and the
associated modal properties [43,45,47,53,56,58,97], the impact of system parameter
changes on natural frequencies and vibration modes (eigensensitivity analysis) [57],
the natural frequency veering and crossing patterns [59], the clarification of mesh

phase relations [48,77], the suppression of selected dynamic responses through mesh
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Figure 1.2: A typical meshed-planet structure.

phasing [5, 75], and the parametric instability caused by mesh stiffness variations
[61,98], are not performed.

This study aims at these research gaps and the main objectives are

1. To develop a purely rotational model for general compound planetary gears
that can clarify the confusion in previous rotational planetary gear models and

analytically prove the associated modal properties,

2. To perform an eigensensitivity analysis based on Kiracofe and Parker’s rotational-

translational model [53] and derive the eigensensitivities in compact formulae,

3. To inspect the natural frequency veering/crossing phenomena and identify any

patterns or general rules,

4. To find a way to analytically describe and calculate all the relative mesh phases

in a compound planetary gear,
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Figure 1.3: A typical stepped-planet structure.

. To investigate the existence of mesh phasing rules for different compound plan-

etary gear models that can suppress certain vibration,

. To study the parametric instability caused by mesh stiffness variations and to

analytically determine the boundaries for instability regions,

. To examine the back-side mesh stiffness and to quantify the impact of backlash

on the back-side mesh stiffness.



Stage 2 (Planet Set 2)
Stage 1 (Planet Set 1)

Figure 1.4: A typical multi-stage structure. This picture is courtesy of Chris Cooley
using Calyx [96] to generate a 3D FEM example system at the Dynamics and Vibra-
tions Laboratory of The Ohio State University Mechanical and Aerospace Engineering
Department.

1.2 Literature Review

Planetary gear dynamics have been extensively studied since 1970. Most of the
studies, however, focus only on simple planetary gears. In the area of system mod-
eling and modal properties, Cunliffe et al. [22] developed a free vibration model for
an epicyclic gearbox and studied the eigenvalue problem of this specific system. Bot-
man [15] studied the natural frequencies and vibration modes of a simple planetary

gear with eighteen degrees of freedom and measured the responses of planetary gears



in aircraft turbine engines [17]. Kahraman [43,44] developed a simple single-stage
planetary gear model with time varying nonlinearity, and carried out a series of re-
searches. He also reduced his model to a purely rotational one, and investigated the
eigenvalue problem of the purely rotational model [45]. Lin and Parker used a two-
dimensional (2-D), lumped-parameter model for simple planetary gears to analytically
examine the vibration properties of equally-spaced [58] and unequally-spaced [56] sys-
tems. Wu and Parker inspected the modal properties of simple planetary gears when
ring gear deformations are included [79,97]. Eritenel and Parker [25] extended the
investigation scope to helical planetary gears. They set up a three-dimensional (3-D)
model, and provided the mathematical proof of the modal properties that generalize
the previous findings on 2-D planetary gear models.

No research on the modeling and modal properties of compound planetary gears
was conducted until Kahraman [47] proposed a purely rotational model for compound
planetary gears. Purely rotational models greatly simplify the analytical study of
parametric instabilities and nonlinear dynamic responses while still capturing the
main dynamic behavior [5,6,9,61]. Kahraman’s compound planetary gear model
addresses limited configurations of single-stage planetary gears, and the associated
modal properties are not analytically proved. In addition, there are inconsistencies
between this model and the purely rotational models for simple planetary gears used
by other researchers. In particular, the formulae for gear mesh deflections that are
important for the correctness of the model contain mismatches. It is necessary to
clarify the confusion in planetary gear modeling and to develop a purely rotational
model that it is suitable for general compound planetary gears. In addition, the free

vibration properties for this new model should be analytically proved. This model



along with the associated modal properties are crucial for further analytical studies,
such as the study on parametric instabilities.

Recently Kiracofe and Parker [53] developed a rotational-translational lumped-
parameter model for general compound planetary gears and analytically proved that
tuned compound planetary gears (all planet trains within the same planet set are
identical in system parameters) have structured modal properties. This model pro-
vides a better mathematical description of the system than the purely rotational one.
This model is briefly introduced in this work due to the demands of a refined model
from some later investigations.

Sensitivity of natural frequencies and vibration modes to system parameters is
important for gear design because it shows crucial information on how to tune reso-
nances away from system operating speeds and how to identify the parameters that
have the greatest impact on a certain natural frequency. In addition, veering phenom-
ena occur and obstruct the tracing of eigenvalue loci when some system parameter
varies [59,80]. It is desirable to understand the veering and crossing characters of
planetary gear natural frequencies in order to complete the understanding on the free
vibration properties for planetary gears. Few studies, however, address these topics.
The influence of design parameters on planetary gear natural frequencies was merely
touched in a few papers, such as Botman’s investigation on the change of natural
frequencies caused by planet support stiffness [15], Ma and his colleague’s study on
the impact of errors and misalignment on load sharing [66], the study on unequal
planet stiffness by Frater et al. [28], and Saada and Velex’s work on the impact of
ring gear support stiffness on natural frequencies. General conclusions, however, were

not presented. The first analytical inspection on eigensensitivity of planetary gears



was performed by Lin and Parker [57]. They analyzed the eigensensitivities for both
tuned and mistuned simple planetary gears using a rotational-translational model.
Later, Lin and Parker [59] examined the natural frequency veering and crossing phe-
nomena and discovered the veering/crossing patterns for simple planetary gears. All
these studies are limited to simple planetary gears and no work is done for com-
pound planetary gears. To fill the research gap, it is essential to perform a thorough
eigensensitivity analysis of the natural frequencies and vibration modes to key com-
pound planetary gear parameters, especially the parameters associated with meshed-
planet, stepped-planet, and multi-stage structures. In addition, the examinations on
natural frequency veering/crossing phenomena in general compound planetary gears
is wanted to complete the understandings on compound planetary gear free vibration
problem.

Mesh phase refers to the phase lag between gear meshes and it is unique to multi-
mesh gear systems. Proper incorporation of mesh phases into analytical models is a
key for the correctness of planetary gear models. The importance of mesh phase to
planetary gear dynamics has been recognized in past researches. Hidaka et al. [41]
explored the influence of mesh phase on the dynamic behavior of simple planetary
gears. Lots of other studies [8,43,44,48,94] considered mesh phases in the planetary
gear dynamic models. But there are discrepancies between these studies on the un-
derstanding of mesh phases. Parker and Lin [77] clarified the confusions on simple
planetary gear mesh phases and provided an analytical description of mesh phase re-
lations in terms of fundamental gear parameters. The mesh phasing relations in [77],
however, are only for simple planetary gears and do not apply to compound plan-

etary gears, because the meshed-planet, stepped-planet, and multi-stage structures



that are unique to compound planetary gears add the complexity of mesh phase rela-
tions, and make some key assumptions that are necessary for the derivation of mesh
phases relations in [77], such as the assumption of one mesh frequency, be invalid
for compound planetary gears. It is, hence, critical to have a clear understanding of
compound planetary gear mesh phases and to analytically determine the mesh phases
that are needed for any analytical studies on static or dynamic responses.

Previous investigations on gear dynamics show that proper mesh phasing can
suppress selected dynamic responses and help minimize noise and vibration in the
operating range of transmission systems. Schlegel and Mard [86], Palmer and Fuehrer
[74], Hidaka et al. [41], Platt and Leopold [83], Kahraman [48], and Kahraman and
Blankenship [48] experimentally or numerically illustrated the effectiveness of simple
planetary gear mesh phasing in reducing noise and vibration. Parker [75] analytically
explained the suppression of selected translational and rotational mode responses
through mesh phasing in simple planetary gears. As an extension to [75], Ambarisha
and Parker [5] derived the rules to suppress planet mode responses in a 2-D simple
planetary model through mesh phasing and proposed the mesh phasing rules for a
purely rotational simple planetary gear model. Eritenel and Parker [26] inspected
the elimination of the net force and moment fluctuations at certain harmonics on
the central components (sun, ring, and carrier) of a 3-D planetary gear model under
different mesh phasing conditions. In order to utilize mesh phasing to reduce noise and
vibration in real compound planetary gear applications, it is important to analytically
investigate and drive the mesh phasing rules which provide the guidance to suppress

selected responses by minor adjustments in fundamental system parameters.



A number of studies suggest that gear mesh stiffness variation has a dramatic
impact on the static and dynamic behavior of gear systems and mesh stiffness varia-
tions combines with geometric errors and tooth micro-geometry modifications are the
main source of parametric instability for gear systems. The parametric instabilities
of single-pair gears are extensively examined in [3,11,13,70]. For multi-mesh gears,
Tordion and Gauvin [92] and Benton and Seireg [11] analyzed the instabilities of two-
stage gear systems but gave contradictory conclusions. The confusion was clarified
by Lin and Parker [60]. Only a few studies explore the parametric instabilities for
planetary gears and most of them are computational investigations whose scopes are
limited to simple planetary gears. For example, August and Kasuba [8] numerically
calculated the dynamic responses of a simple planetary gear with three sequentially-
phased planets when the mesh stiffnesses are time-varying. Velex and Flamand [94]
did a similar work. The analytical inspection on planetary gear parametric instability
was not addressed until Lin and Parker [61] investigated the parametric instability
of simple planetary gears caused by mesh stiffness variation and analytically deter-
mined the instability boundaries. Wu and Parker [98] expanded the investigative
scope to simple planetary gears with elastic continuum ring gears. Similar analytical
studies on compound planetary gears are yet to be performed. Because meshed-
planet, stepped-planet, and multi-stage structures distinguish compound planetary
gears from simple planetary gears, the parametric instability that is related to these
three types of structures is the focus of this study, and the key problems that are
unique to compound planetary gears, such as how multiple mesh frequencies affect

the instability boundaries, are addressed in this work.
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Recent investigations on gear dynamics [34,39,54,84] indicates that tooth wedging
(or tight mesh), the simultaneous drive-side and back-side contacts in certain gear
meshes, is possible and such phenomena are observed in planetary gear applications
[34]. In order to fully understand the impact of back-side contact on compound
planetary gear failures, it is important to set up a model that includes the accurate
description of the back-side contact mesh stiffness. In addition, the study on anti-
backlash gear dynamics requires the analytical description of back-side mesh stiffness.
In spite of these needs, the analytical determination of the back-side mesh stiffness
is not addressed in any published literature. This work analytically determines back-
side mesh stiffnesses and clarifies the relation between drive-side and back-side mesh

stiffnesses.

1.3 Scope of Investigation

The scope of this project is to advance the modeling and understanding of com-
pound planetary gear dynamics and analytically examine certain critical factors affect-
ing noise and vibration of compound planetary gear. A purely rotational compound
planetary gear model and the associated modal properties are presented in Chapter 2.
These models provide the foundation for the subsequent analyses in this work. Sen-
sitivity of natural frequencies and vibration modes to system parameters and natural
frequency veering/crossing patterns of general compound planetary gears are inves-
tigated in Chapter 3 and 4. The systematical studies on the mesh phasing relations
of compound planetary gears present in Chapter 5, and the suppression of selected
compound planetary gear dynamic responses through mesh phasing are studied in

chapter 6. In Chapter 7, the parametric instability of general compound planetary
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gears caused by mesh stiffness variation is analytically investigated. Chapter 8 ex-
amines the time-varying back-side mesh stiffness and its relation with the drive-side
one. The detailed scope of each chapter is as follows.

Chapter 2 develops a purely rotational for general compound planetary gears that
involves any combination of meshed-planet, stepped-planet, and multi-stage configu-
rations. In addition to clarify the discrepancies in gear mesh deflection expressions
and correcting errors in previously published models, this chapter presents and ana-
lytically proves the structured modal properties that are associated with the purely
rotational model. The rotational-translational model by Kiracofe and Parker [53] and
the well-defined modal properties are also briefly introduced in this chapter.

In Chapter 3, the systematic investigation on general compound planetary gear
eigensensitivities are performed. The method to determine the eigensensitivities in
a general compound planetary gear is first introduced. By applying the well-defined
modal properties of general compound planetary gears, the eigensensitivity expres-
sions for both tuned and mistuned systems are simplified and expressed in compact
form. The relationships between eigensensitivities and modal strain/kinetic energies
are studied and the results indicate that the modal strain/kinetic energy distribution
plots are effective tools to identify which system parameters have the greatest impact
on tuning the related natural frequency.

Chapter 4 examines the natural frequency veering and crossing phenomena in
compound planetary gears. By calculating the coupling factors between two fre-
quency loci and applying the well-defined modal properties and eigensensitivies, the
veering/crossing patterns for general compound planetary gears are derived for rota-

tional, translational, and planet tuned parameters, as well as mistuned parameters.
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Compound planetary gear mesh phase relationships that are critical for the cor-
rectness of models involving mesh stiffness variations are analytically investigated in
Chapter 5. This chapter defines and calculates all the mesh phases for general com-
pound planetary gears. In addition to derive a complete and simple procedure to
determine all the necessary relative phases, the specific relationships between train-
level relative phases are also derived by applying the assembly conditions of compound
planetary gears. The results are numerically verified by Calyx [96] that precisely
tracks gear tooth contacts without any predefined relations.

In Chapter 6, the rules to suppress selected dynamic responses and resonances
through mesh phasing are analytically investigated for both purely rotational and
rotational-translational models of general compound planetary gears.

Chapter 7 studies the parametric instability of general compound planetary gears
that are caused by mesh stiffness variations. Parametric instability boundaries are
analytically derived in closed-form expressions in terms of gear parameters for differ-
ent modal and phasing conditions. Both individual and mutual (unique to compound
planetary gears with multiple mesh frequencies) excitations are inspected in this chap-
ter.

As the expansion of the scope for this work, chapter 8 investigates the phenomenon
of back-side gear mesh contact, analytically derives the relationship between the
drive-side and back-side mesh stiffnesses, and quantitatively evaluates the impacts
of backlash on the phase lag of the back-side mesh stiffness. The resultant analytical

formulae are confirmed by the simulation results from Calyx [96].
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Chapter 2: COMPOUND PLANETARY GEAR MODELS
AND ASSOCIATED MODAL PROPERTIES

The lumped parameter models of compound planetary gears are the bases for fur-
ther dynamic analysis, and the associated modal properties are critical to understand
the dynamic behavior of such systems. In this chapter, a purely rotational model for
general compound planetary gears that greatly simplifies further analytical work is
first developed. This model clarifies the conflicting gear mesh deflection expressions
in prior research. In addition, the structured vibration properties are analytically
proven.

A rotational-translational compound planetary model developed by Kiracofe and
Parker [53] is briefly introduced in the later part of this chapter. This model provides
more accurate description of compound planetary gears than the purely rotational
one. The well-defined modal properties are essential for further analysis on general

compound planetary gear dynamics in this work.

2.1 Purely Rotational Model and Vibration Modes of Com-
pound Planetary Gears

Compared to planetary gear models with three or more degrees of freedom per

component [22,36,43,53,56-59, 85,94], purely rotational degree of freedom models
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simplify the analytical investigation of gear vibration and nonlinear response while
keeping the main dynamic behavior generated by tooth mesh forces. Such models
have proven useful in studies of simple (no meshed or stepped planet structures),
single-stage planetary gears [6,8,9,61]. Kahraman [47] built purely rotational models
for single-stage compound planetary gears. He derived equations of motion for each
configuration and summarized the vibration properties from numerical results. The
results apply only to the specific configurations in [47].

The present work examines compound planetary gears that involve one or more
of stepped-planet, meshed-planet, and multi-stage configurations. The objectives are
to develop a purely rotational model that is suitable for compound planetary gears
with general configurations, to demonstrate the natural frequency and vibration mode
properties, and to analytically prove these structured vibration properties.

In addition, this study clarifies discrepancies in past planetary gear rotational
models that appear inconsistent in some places [6,9,45,47,61]. For example, the gear
mesh deflection expressions are different in compound [47] and simple planetary gear
rotational models [6,45,61]. Some of these models are incorrect in handling gear mesh
deflections. Others are correct but do not provide enough detail to expose the source

of differences with other models. This study clarifies the confusion.

2.1.1 Purely Rotational Model of Compound Planetary Gears

The purely rotational model of an example two-stage compound planetary gear
is shown in Figure 2.1 (no bearing/shaft stiffnesses are shown). Each carrier, central

gear (i.e., sun gear or ring gear), and planet has a single rotational degree of freedom.
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All external supports and shaft connections are modeled as linear torsional stiffnesses.
The gear meshes are represented by stiffness elements, which could be time-varying
or nonlinear depending on the research needs.

Figure 2.1 also illustrates the concepts of planet train and planet set. A planet
set is all the planets associated with a particular carrier. Each planet set is divided
into several planet trains. Two planets are considered to be in the same planet train
if they are in mesh with each other (meshed planets) or connected to each other by

a shaft (stepped planets) [53].

Choice of Coordinates

The absolute rotations of central gear j and carrier i are éé and 6. 07 and 0. are
the rotations incurred by the nominal constant rotation speeds of central gear j and

carrier 7, respectively. The system coordinates for central gear j and carrier ¢ are

6 =61 — (2.1)

i
g
0. =0, -0 (2.2)

The coordinate for planet m in train [ of planet set i (ng) is the rotational

vibration of this planet relative to its associated carrier ¢, that is,
ilm __ (pilm nilm ni i
ep - (ep - ep ) - (ec - ec) (23)

where é;fm is the absolute rotation and #2™ is the rotation caused by the nominal
constant speed of this planet.

Researchers studying previous purely rotational planetary gear models [6,9,45,47,
61] have chosen other coordinates. In order to compare different models, in the rest
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of this study the coordinates and variables of previous studies are cast in the notation

defined in this study.

Clarification of Gear Mesh Deflections

The expression for deflection of a gear mesh depends on the gear mesh model,
coordinate definition, choice of positive rotation directions, and the components in-
volved in the gear mesh. In this study, gear mesh deflections are calculated along the
line of action tangent to the base circles of the meshing gears. Compressive deflection
along the line of action between two gears is chosen to be positive deflection. Fur-
thermore, counterclockwise rotation is the positive direction for all components. The
two types of gear meshes in compound planetary gears are planet-planet meshes and
central gear-planet meshes (i.e., sun-planet and ring-planet meshes).

Figure 2.2 shows the two possible cases of the planet-planet mesh between planet
m and planet ¢ in train [ of planet set i. For case (1), the points A and B are the
ends of the mesh spring that are hinged on planet m and planet ¢, respectively. The
gear mesh deflection is actually the change of the length of line AB that is caused
by the vibratory motions of points A and B. Considering the length of line AB is
independent of the choice of reference frames and the points A and B are moving
with carrier 7, it is convenient to calculate the mesh deflection in the reference frame
rotating together with carrier 1.

Figure 2.3 illustrates the deflection of the gear mesh spring in the moving reference
frame that is fixed to carrier 7. The points A; and B; are the ends of the mesh spring
when planets m and ¢ rotate 0™ and 619 in the reference frame. Because 07/ and 6/
are small, the length of A;B; (the deformed mesh spring) is approximated by A, B,
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Figure 2.2: The two cases of a planet-planet mesh: (1) along the line of action of the
solid line from A to B, and (2) along the line of action of the dashed line from A’ to
B

the projection of line A;B; on line AB. Thus, the gear mesh deflection is approxi-
mately the difference in length between the two lines AB and AsBy. Let e be the pos-
. . . . —> H . .

itive unit vector along line AB. AA; = 0Ae; and BBy = §Bey (0B < 0 for positive
0;1‘1) are the displacements of points A and B. Application of geometric and trigono-
metric relations in Figure 2.3 yields 0A = ri™ tan 6™ — /"™ (1/ cos 0™ — 1) sin 6™ ~

ilm,.ilm _ il il il il - ilg ~ _ pilg,.il ilm
0,"r,™ and 0B = r9tan 0,7 — r9(1/ cos 0, — 1) sin 0,7 ~ —0,%r,?, where 7™ and

T;lq are the base radii of planets m and ¢. The mesh deflection in this case is
ilmq _ _ pilm il ilg, il
Opp 8 =0A—=0B=0,"r," + 6,1 (2.4)

In case (2), the approximate displacements of points A" and B’ in Figure 2.2 along

the line of action are dA’ = —Hﬁmrﬁm and 0B’ = G;lqr;lq . The mesh deflection is
ilmqg __ _ ilm . ilm ilg il
§ilma — 54— 6B = —(gimyim 4 gilay i) (2.5)
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Reference frame is
attached to Carrier i

Planet m P

Figure 2.3: The calculation of the gear mesh deflection of Case 1 in Figure 2.

Equations (2.4) and (2.5) differ by a minus sign. They are merged as

ilmg __ qilm ilm . ilm ilg, il

5191? 1= Spp q(ep Tp + qurpq)

gilma _ 1 case (1) in Figure 2.2 (2.6)
pp -1 case (2) in Figure 2.2

Similarly, Figure 2.4 shows the two cases of an external gear-planet (sun-planet)
mesh between central gear j and planet m in train [ of planet set i. By the above
process, the sun-planet mesh deflection is

G = ST (09r) — Oir] 4 0™

D
jilm __
Sgp o

1 case (1) in Figure 2.4 (2.7)
-1 case (2) in Figure 2.4

For an internal gear-planet mesh (ring-planet mesh, shown in Figure 2.5), the

same process yields the mesh deflection

jilm jilm (nj g i..7 ilm . ilm
6;12 - S;p (0577“; B 007“; B ep Tp ) (2‘8)
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Locus of the center
of planet gear m

0g c

/.

Figure 2.4: The two cases of a sun gear-planet mesh: (1) along the line of action of
the solid line from C to D, and (2) along the line of action of the dashed line from
C'to D'.

Central gear j

AN

N

N
Locus of the center » ™
of planet gear m

Lines of action

Figure 2.5: The two cases of a ring gear-planet mesh: (1) along the line of action of
the solid line from F to F, and (2) along the line of action of the dashed line from
E' to F'.
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where S is 41 for case (1) of Figure 2.5, and -1 for case (2).
By introducing the variable o; that equals +1 for an external mesh and -1 for
an internal mesh, equations (2.7) and (2.8) are merged into a general expression for

central gear-planet mesh deflections as

jilm __ qjilm (ping _ ~jgilm,im i g
(5gp —Sgp (ngg 09p T, Hcrg) (2.9)

Equations (2.6) and (2.9) are the general formulae for any mesh deflection in
general compound planetary gears. Comparisons between these general formulae and
the gear mesh deflections in previous studies [6,9,45,47,61] show differences in some
cases. Some of these studies derived incorrect gear mesh deflection formulae, such
as [61]. Others [6,9,45,47] are correct only under certain circumstances because they
did not fully consider the sign of gear mesh deflections. The differences with prior
papers are discussed below.

The gear-planet mesh deflection formulae in [6,9,45] are the same. The mesh
deflection between central gear j and planet m in train [ of planet set ¢ from these
studies is called § 4 }gﬁm here. In the notation of this study,

Jjilm __ pj,.g _ ~J(pim i\,im _ piilm jilm
oa " =00l — ol (0" + 0,)r, Oure ™ cosal,

(2.10)
piad  ipgim_ilm i ]
—Qgrg 06’p Ty 067’9
ilm

where 7

is the distance between the centers of carrier i and planet m, and agﬁm
is the pressure angle of this gear-planet mesh. Equation (2.10) agrees with equation
(2.9) except that it lacks the sign variable Sg;lm. It applies only to case (1) in Figure
2.4. Equation (2.9) is the general form for both cases in Figure 2.4.

The same gear-planet mesh deflection from [61] is called dp ’gﬁm here. In the

notation of this study, this is

jilm __ 3 g ilm i _ pnj.g _ jpidm im _ pif g ilm ilm
o 25" = ul — oluy u, = 0)r) — ol 0", Ou(o?r,™ +1e™) (2.11)
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Comparing with (2.9), equation (2.11) is incorrect. In addition to missing S7!'™, the
last term in (2.11) does not equal the matching term in (2.9), that is, —6.(o7ri™ +
ritm) £ —6’27“5.

Because simple planetary gears have no planet-planet meshes, no comparisons of
planet-planet mesh deflection expressions can be made to previous simple planetary
gear models.

Comparisons of gear-planet and planet-planet mesh deflections with the compound
planetary gear models in [47] are possible. The gear-planet mesh deflection in [47] is
called é¢ éﬁm here. The planet-planet mesh deflection between planet m and planet

¢ in train [ of planet set i from [47] is called p |, In the notation of this study,

these are
6o |Im = it — gigimpm _ Gy
(2.12)
= ng; — o’ ngfgm — Qf:ff}
ilm. nilm Ni\ —ilm niln NiN\ —iln
op o 1 = (Hp — Oc)rp + (Hp — Oc)rp
= (0" + 0 — G+ (00 + O — L) (2.13)

— gitmilm y gitnitn
where 77 and 7™ are the pitch radii. Equations (2.12) and (2.13) agree with the
general formulae (2.6) and (2.9) except that all the sign variables S and S//"¢ are
missing and all the base radii are replaced by their matching pitch radii. The presence
of pitch radii in equations (2.12) and (2.13) is as expected considering the use of pitch

radius gear mesh model in [47]. The missing sign variables, however, limit equations

(2.12) and (2.13) to case (1) in Figures 2.2, 2.4, and 2.5.
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Equations of Motion and Eigenvalue Problem

The general system has a carriers and b central gears. A certain stage i has ¢
planet trains, and each planet train in stage 7 has d’ planets.

The Lagrangian of a general compound planetary gear is

a . Ci dl . . . ., W
L=33 {{Ié +20 2 [+ m;}m(rzlm)Q]} (0 + 00)*+

=1 I=1m=1
257 S B+ O — G )+
I=1m=1

i

Q

<\.
,_.

dt <.
Z Izz)lm(gzlm + ezlm 92)2} +
m=1

1 b Jr0i L pi2 1 boa & & jilm( sjilm\2_ (2.14)
a1 55 g
j= j=li=1li=1
1 a & & & ilmgq ( Silmg ilm ilm ilq\2
Ly S [kitma(ana)? 4 ki, (00m — 69)2]
i=11=1m=1g=m+1
a b a a
% Z kcb(ez) - % Z ( ) % Zl Z ce, 00( 9?)2_
a b a b .
EDIDIN G N e DD kéz,ee(%—@f})?
i=1j=1i j=1h=j+1

where 6 and 92 are the rotational vibrations of carrier ¢ and central gear j, Ogm is
the rotational vibration of planet m in train [ of planet set ¢ relative to its associated
carrier 1, 6’_2 and 6’_5 are the nominal constant rotation speeds of carrier ¢ and central
gear 7, é;lm is the nominal constant rotation speed of planet m in train [ of planet
set i, 6% and 6.’;' are the rotational vibration speeds of carrier ¢ and central gear j, and

Q.I?m is the rotational vibration speed of planet m in train [ of planet set i relative to

its associated carrier 7.
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Lagrange’s equation yields the a + b + Z ctd" equations of motion. For the a
=1

carriers, these are

CZ

dz . A . .
IL00+ 3 5 [itmgim 4 ki gi

I=1m=1
b ¢ d 951
Z Z Z agepz k]zlmé‘]zlm+
Jmhi=tm=l , i=1,,a (2.15)
kcc 09(62 - 0?) Z cg, 06(9 — 0, ) = 7-cZ

n=i+1 j=1

¢t d ¢t d

— Iz+ Z Z Izlm Z Z zlm( zlm)
=1m=1 l=1m=1

where 92 is the rotational acceleration of carrier 4, and 7! is the externally applied

torque on carrier i. The b equations of motion for the central gears are

1363 + k3,07 + 5 Z Z 865’59 gimgsitm

i=ii=im=1 T = (2a6)
Z kgg 96(9] - 9h) + Z kcg 06(95 - 02) = Tg

h=j+1

where 957 is the rotational acceleration of central gear j, and Tg is the externally

applied torque on central gear j. The > c'd’ planet equations of motion are
i=1

b jilm
ilm film ilm [ji 65p™" 1 5ilm sjilm
[p ep + [p 0. + Z a0dm kgp 5917

(2.17)

di .
4 Z %‘Sezzzlvm kzlmq(szlmq 4 k]z)l”;q Ge(ezlm glzjlq) =0
q=1,g#m .
i=1,---,a;l=1--,c;m=1---,d
where égm is the rotational acceleration of planet m in train [ of planet set ¢ relative

to its associated carrier i.

When all gear meshes are modeled as constant stiffnesses, the eigenvalue problem

is
w*M0 = K;, 0 (2.18)
O=10,---0| 6,---60 |6, --05]" (2.19)

Carriers Central gears Planet sets
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0, =001 i=1,-,a (2.20)

o =" g =1, a l=1, (2.21)
I. 0 I,
M = I, 0 (2.22)
symm. L,
K, =K, +K, (2.23)
K, = diag(kl, -+ k&, kb, -+ kb, 0, -+ ,0) (2.24)
Kc Kc,g Kc,ps
K, = K, K, (2.25)
symm. K,

K, is the time-invariant stiffness matrix. Details of the sub-matrices in M and K,,
are given in Appendix A.

In contrast to previous simple planetary gear models [6,9,45,61], the mass matrix
here is non-diagonal. This is caused by choosing of the rotational planet vibrations
relative to their associated carriers as the planet coordinates. As a result of this
choice of planet coordinates, the left hand side of equation (2.15) contains the term
i i [iImgim that causes the non-diagonal elements ™ in the mass matrix.
I=1m=1

Equation (2.18) is expanded into three groups of equations for the carriers, central

gears, and planet sets, respectively,

(kéb o wQIé)é’é _ 2 Z Z Izlmezlm + Z kzhez

b —hm= i=1,--,a (2.26)
Z kf:]g% + ( CPS) 0;?8 =0
b a
(KD, — W*I)0I + > k0 +> kY 0+ Z K6 =0 j=1,---,b (2.27)
n=1 i=1

cre,ps creps 99,ps

(K, — L )0), — WL+ 0k + Z@Jkﬂ =0 i=1,---,a  (2.28)
where k! k’" I’  and 0;;5 are all ¢'d’ x 1 column vectors given in Appendix A.

c,ps? “rg,ps’ “c,ps?
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2.1.2 Characteristics of Natural Frequencies and Vibration
Modes
Numerical results from (2.18) show that the natural frequencies and vibration
modes have distinctive properties when all planet trains within the same planet set
are identical and equally spaced. All vibration modes can be classified into two types:
overall modes and planet modes.
In an overall mode, all planet trains in the same planet set have identical motions.

There are exactly a + b + >_ d* overall modes. Each mode is associated with a

i=1
distinct natural frequency. Figure 2.6 shows a typical overall mode for the compound
planetary gear in Figure 2.1 with the system parameters in Table 2.1.

Planet modes exist when the system has a stage with two or more planet trains.
In planet modes, only the planets in one stage have motion, and all other components
have no motion. Stage i has d’ sets of degenerate (for ¢! > 3) planet modes, with
each having natural frequency multiplicity ¢’ — 1. The total number of planet modes
of stage 7 is (¢! — 1)d’. In addition, any planet train’s motion in this stage is a scalar
multiple of an arbitrarily chosen planet train’s motion. Figure 2.7 shows a set of
planet modes of stage 1 for the system in Figure 2.1 and Table 2.1. The complete list
of natural frequencies is collected in Table 2.2.

The above properties differ from the summary of vibration properties in [47] in two
ways. Firstly, [47] separates a "rigid body” mode from the above two types. Secondly,
the number of overall modes is a + b + idi — 2 in [47], instead of a + b+ il d'.

The rigid body mode that [47] separa;es from all other modes is actually E;Il overall

mode. In the rigid body mode all planet trains in the same planet set have identical

motions, which is the characteristic of an overall mode. The rigid body modes exist
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Stagel

AR~

Figure 2.6: The overall mode (associated with w;=902 Hz) of the example system in
Figure 2.1 and Table 2.1. The deflections of carriers are not shown.
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Figure 2.7: The three planet modes (associated with wi4,1516=3067 Hz) of the example
system in Figure 2.1 and Table 2.1. The mode shapes of stage 2 are not shown here,
because no component in stage 2 has motion.
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in [47] because all configurations discussed therein have unconstrained input and
output components. If one or both of the input/output components are constrained
or spring-mounted to ground, no rigid body mode exists.

The second difference with the summary of modal properties in [47] is because [47]
is based on a restricted set of configurations. All the configurations in [47] have a
fixed central gear or carrier, so the number of degrees of freedom are reduced by one
due to that fixed component.

In what follows, the above vibration mode properties are proved mathematically.
Proposed candidate modes for each type of mode based on the above properties
are shown to satisfy the eigenvalue problem. By showing that the total number of
eigenvalues obtained in this way equals the total number of degrees of freedom of the

system, the two mode types are proven to be an exhaustive list of the possible mode
types.
Overall Modes

A candidate overall mode from (2.19)-(2.21) is
0 =10 ---6°061---0216L, ---02)"

05 = (0}, ---6,,]" i=1,.a (2.29)
0;% — [0;11 . ezz)ld ]T

Note that all d* planet trains in planet set 7 have the same deflection. Insertion of

(2.29) into (2.26)-(2.28) yields

di
i 27iN\gi _ 2. ilm gilm
(kg — w20 — w?ct > [Imem+
m=1

a ih i b L . 1 \T i1 Z.:L‘”’a (230)
>0 kO + 30 k05 + ' (ki) 04 =0
h=1 j=1
(KJ, — w2I3)09 + S ki"0i+
. , =l j=1,---,b (2.31)

S KO+ S (k) 6 =0

i=1 i=1
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i111 i11d? i11 i11
[ I 0 0;

P
: e — w? .. :
k}i)ldil L k;ldidi O ]Iz')wi Q;Idi
i1l i1l _ ipgillgodll
I ke, , ol kg, oy (2.32)
20i . i . j .
—wl | +0.] + 3607 =0
c . c . , g .
ild: ild’ J=1 __jrgilde, g, ild
I kc,p o kgp rir '
1=1,---,a

Equations (2.30) and (2.31) give a and b independent equations, respectively. For
each i, the matrix equation (2.32) contains d' independent component equations.

Thus, equations (2.30)-(2.32) yield a + b+ >_ d’ linear, homogeneous equations with
i=1
a+ b+ > d" unknowns from equation (2.29) and the undetermined eigenvalue w?.
i=1
This forms a reduced eigenvalue problem. From the a + b+ > d’ solutions of this
i=1

reduced eigenvalue problem, overall modes for the whole system are constructed from

(2.29).

Planet Modes

A candidate planet mode associated with stage i is

0:[0 | O|O ) psv"'O]T
O = [0 11?;%, v v )" (2.33)
o = [0t T

where the v! (I =1, ---,¢) are as yet unknown scalars. All motion is confined to

the ith planet set. Substitution of (2.33) into (2.26)-(2.28) and use of the cyclical

symmetry of planet trains in stage ¢ (kzclpt = k’clpt, kgfﬁ,t = kéf;t, and Igt = I;lt) give
Ci
Z kfjlpt Ozl Z Z Z Ojkjllmrj zlmezlm -0 (234)
1=1 I=1  j=1m=1

ct ct d?
S ool (i) 6 =S ST (mod kI mg Ty = 0 =1, b (2.35)

=1

(K, —w’L)05 =0 (2.36)
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Equation (2.34) represents the moment exerted on carrier ¢ by the planets. This

c b d
: : : 1 jgilm,.jilmgilm _ :
equation requires either > v" = 0 or 37 > o’kJ;"rjr,™0,"™ = 0. The quantity
i=1 j=1m=1
b dz . .. . . . . .
> >0 okl s nonzero, in general, because 6/ (m =1, ---,d') are
j=1m=1

independently determined by (2.36). Hence, equation (2.34) yields

d vh=0 (2.37)
=1

The same analysis applies to equation (2.35) and yields the same equation as
(2.37), which has ¢ — 1 independent, non-trivial solutions.

Equation (2.36) is a reduced eigenvalue problem with d’ eigensolutions. For each
such eigensolution of (2.36), ¢ — 1 independent planet modes, each having the same
natural frequency, can be constructed for the full system eigenvalue problem (2.18)
using (2.33) and the independent solutions of (2.37). Therefore, stage i has (¢ — 1)d"

planet modes. For the whole system, the total number of planet modesis > (¢' — 1)d".
i=1

Completeness of the Modes

Summing the total number of overall and planet modes gives a+b+ > ¢‘d’ modes,
i=1
which equals the total system degrees of freedom. Therefore, the overall and planet

modes discussed above form a complete set of vibration modes of a general compound

planetary gear.

2.1.3 Summary for Purely Rotational Compound Planetary
Gear Model

A purely rotational degree of freedom model is constructed for general compound
planetary gears involving any combination of meshed-planet, stepped-planet, and

multi-stage configurations. By providing the modeling details and comparisons with
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previous planetary gear models, this study clarifies discrepancies in gear mesh de-
flection expressions and corrects errors in previously published models. All vibration
modes of the system fall into the categories of overall and planet modes. The prop-

erties of these mode types are presented and proved.

Table 2.1: Parameters of the compound planetary gear
in Figure 2.1.

Number of Carriers 2

Number of Central | 4

Gears

Number of  Planet | ¢'=4, c?=6
Trains

Number of Planets per | d'=3, d*=1
Train

77Z)lll _ QW(Z—U; l=1,---,4
77Z)2l1 _ 27?(5;1); l=1,---,6
PYU2 = LS = lil 4 390
ﬁlllQ — 700751121 = 218°
500x10° Ifj=1,i=1,m=1
j=2i=1m=3

Planet Location

kjim = j=3i=2m=1
Mesh Stiffnesses (N/m) J=di=2m=1
0 Otherwise
500 x 10 Ifi=1,m=1,¢=2
kima — i=1lm=2¢=1
0 Otherwise

kéb,ee = 074 k;b,ee = kgb,ee 6: 0
kgb,GG — kgb,GG — 500 X ]_0
%790 = ki}fee =0
200 x 10° Ife=1,7=3

Torsional Bearing Stiff-
ness (N-m/rad)

kij 060 — :
Torsional Shaft Stiff- ” 0 g)therw1se
nesses (N-m/rad) . 100 x 10° Ifi=1,m=2,4qg=3
0 Otherwise
Mass (kg) myt =m)? =m"” =0.75 m2 = 2.00

Continued on next page
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Table 2.1 — Continued from previous page

Moment of Inertia (kg-
m?)

II=005 12=05
[} =005 [}=05
I =1.00, I7 =120

D =12 =0.01, 1) =0.09 12" =0.20

FL=100.0, rZ = 320.6
rs =100.0, r; = 300.0
;s g » Ty
Radi (mm) rill = 176.5, r12 = ¢l = 270.0, r2' = 220.7
ralt =60.0, ri? = 77.7, rlP = 55.8 r2!' =100.0
o' =0%=—1 (sun gear)
Gear Type 0> =0'=1 (ring gear)

Table 2.2: Natural frequencies for the example system of
Figure 2.1 with parameters listed in Table 2.1. O means
overall mode, P1 means planet mode of planet set 1, and

P2 means planet mode of planet set 2.

Natural Natural Vibration
Frequency Frequency Mode
Number (Hz) Type
1 0 O
2,3, 4 860 P1
5 902 O
6,7,8,9, 10 1125 P2
11 1241 O
12 1746 O
13 1899 O
14, 15, 16 3067 P1
17 4226 O
18 5926 O
19 6314 O
20 10945 O
21, 22, 23 16985 P1
24 16986 O
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2.2 Rotational-translational Model of Compound Planetary
Gears and the Associated Modal Properties

Compared to the purely rotational model in previous section, the rotational-
translational model for general compound planetary gears developed by Kiracofe and
Parker [53] provides a better mathematical description of compound planetary gear
systems. Because this model and the associated modal properties are extensively
used and cited in the subsequent investigations, this section briefly introduces this
model and the findings by Kiracofe and Parker to prevent redundancy in the following
chapters.

2.2.1 Rotational-translational Model of Compound Plane-
tary Gears

Similar to the rotational-translational model for simple planetary gear by Lin and
Parker [58], each carrier, planet, and central gear in Kiracofe and Parker’s model [53]
has three degrees of freedom: two translational and one rotational, bearings are
modeled as two translational springs, shaft connections are modeled as one torsional
and two translational springs, and gear meshes are modeled as springs.

Different from the simple planetary gear model in [58], a single fixed basis is used
for all central components coordinates(carriers and central gears)in order to be com-
patible with multi-stage structures, the meshed-planet orientation angle (e.g., 3™

the orientation angle between planets m and n in train [ of planet set ¢ in Figure 2.8)

ilmn

oy the mesh stiffness between planets

and the planet-planet mesh stiffnesses (e.g., k

m and n in train [ of planet set ¢ in Figure 2.8) are introduced to include meshed-

planet structures, and two translational shaft connection stiffnesses (e.g., k;li”p‘{« and
kﬁﬁnn the translational shaft stiffnesses between planet m and ¢ in planet train [ of
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kilmq

p—puu Uhe torsional

planet set ¢) and one torsional shaft connection stiffness (e.g.,
shaft stiffnesses between planet m and ¢ in planet train [ of planet set ) are introduced
to incorporate stepped-planet structures.

Figure 2.8 illustrates the model of a planet-planet mesh between planets m and n
in train [ of planet set ¢ in [58], where k/"™ and K}/ are the bearing stiffnesses of planets
m and n in train [ of planet set 4, ™ and %" are the angular positions of these
two planets, (¢J™, n™) and (¢!, /") are their radial and tangential coordinates
which are fixed at each planet’s equilibrium position and do not translate with the
vibration of the associated carrier, wl™ = ril™g'™ and wl" = r"0i" are the their
rotational coordinates, and (ri™, §i™) and (ri/", §il") are the rotations and base radii
of these two planets, respectively. Figure 2.9 shows the model of an external central
gear-planet (i.e, sun-planet) mesh between central gear j and planet m in train [ of
planet set ¢ in [58], where /ﬁéﬁm is the mesh stiffness for this this central gear-planet
mesh, o™ is the associated pressure angle, (7, yJ) are the translational coordinates
for central gear j, rg and 95 are the rotation and base radius of central gear j, and
k) . and kJ . are the translational bearing stiffnesses central gear j.

The equations of motion for each component in a general compound planetary

gear system are given in [53]. Putting all equations of motion into matrix form yields

Mé(t) + Kp(t) = F(t) (2.38)

where K = K, + K,,(t), K, is the diagonal bearing stiffness matrix, K,, () is the
symmetric stiffness matrix from coupling between elements (both tooth meshes and
shaft couplings), and F(t) is the vector of applied forces and torques. For details of

M and K, please refer to the Appendix of [53].
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Figure 2.8: The planet-planet gear mesh between planet m and ¢ in planet train [ of
planet set i) is modeled by a spring with stiffness /{g}z’””" and the static transmission
error el in [53].

Figure 2.9: The sun-planet gear mesh between central gear j and planet m in train
[ of planet set ¢ is modeled by spring with stiffness lié;lm and the static transmission
error /i in [53].
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2.2.2 Modal Properties of General Compound Planetary Gears

For eigenvalue analysis the linear time-invariant form of the above rotational-
translational model is considered, where the mesh stiffnesses are averages over a
mesh cycle. The imposed assumptions are that all planet trains are equally spaced
around their associated carrier, each planet set has three or more planet trains, and
all bearing and shaft stiffnesses are isotropic. Thus, the eigenvalue problem for a

general compound planetary gear is

(K — AM)¢ = (K} + K,,, —w*M)¢p = 0

¢:( i, ,¢g’\§ ’¢§,Jl)s’ 7¢25)T

carriers centr;;lr gears plan;t, sets
Carrier i: ¢’ = [JU’C, YL, Qé]T o (2.39)
Central gear j: @) = [2),y), %]T, .
Planet set i: ;s =( ;lt, Ty ;%Z)T ,
Planet train [ of set i: ¢% = (¢!, .. ¢id)T

Planet m in train [ of set i : ¢¥™ = ('™, ™, wil™)T
where throughout this study 1 < i <a, 1 <j<b 1 <1<, 1<m<d, ais
the number of carriers, b is the number of central gears, ¢’ is the number of planet
trains of planet set i, and d' is the number of planets per train of planet set i. The
eigenvalue A = w?, where w is the natural frequency. The translational coordinates

for carrier ¢ are z’ and y’, and the rotation of carrier 7 is 62. The total degrees of

a
freedom is A = 3 (a +b+ > c”d’).
i=1
If all planet trains in a planet set are equally spaced and have identical model
parameters, the planet set is tuned. Otherwise, the planet set is mistuned. If all the

planet sets in a system are tuned, then the whole system is tuned, otherwise it is

mistuned. For tuned systems, all modes fall into one of the following classes [53]

(A) Rotational Modes
The natural frequencies of rotational modes are distinct. All central gears and
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carriers have rotational motion only. All planet trains within a planet set have

the same motion. Thus, a rotational mode has the form

¢ =(0,0,0)" , i=12..a (2.40)

¢, =(0,0,6))" , j=1,2..b (2.41)

;s = (\ gta gta ) ;E)T ES 1:27'-':@ (2-42)
¢ trains

(B) Translational Modes
The natural frequencies of translational modes have multiplicity two when all
planet sets have three or more planet trains. All central gears and carriers have

translational motion only. The pair of degenerate translational modes (¢ and q?)

are chosen such that @”Me = 0) has the form

¢:( ca"'7¢ga é:"'a(bga ;sa"'a()bgs)T (243)
é = (é(lﬁ T Agu éi]? T Afp ézlysu ) AZS)T (244)
. = (w0, 0) P = (v, —;,0)" (2.45)
@) = (z1,y2,0)" @ = (y), —2,0)" (2.46)
im Tilm s o fyilm ill
(éflm _ Icqs Y ’ Ism%l 9?1;“ (2.47)
@, —Isiny"™ Tcosy™™ ?,

where 1 <i<a,1<j<b 1<1<c,1<m<d, Iis an identity matrix, and
ilm = qpilm _ qilm g the planet position angle difference between planet m of

train [ and planet m of train [ in planet set 1.

(C) Planet Modes

In planet modes, only one planet set deflects. With planet set h being the planet
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set having motion in a certain planet mode, the planet mode associated with

planet set h has the form

¢=(0---,0, 0,---,0 0, ZS,()’...Q)T (2.48)
—— —— N — _
carriers central gears planet  sets

In addition, the motion of each planet train in planet set A is a scalar multiple

of any chosen planet train in this planet set, that is,

Ch’
Zs: (wl Ztlva Ztla , W Ztl)T (249)
h
G N (2.50)
¢Zlm — (g}l)zlm’ 77;)117717 UZIm)T7 m = 17 . ,di (251)
where the scalar multipliers w' (I =1, - - - ,c"*) satisfy

ch ch

dh dh
Zwl Z sin "™ = () Z w Z cosPMm =0 Z wh =0 (2.52)
1 m=1 1 m=1

= =

The planet mode frequencies for planet set h have multiplicity ¢ — 3.

2.3 Conclusion

A purely rotational model for general compound planetary gears is developed

in the first section of this Chapter’s study. This model clarifies discrepancies in

gear mesh deflection expressions and corrects errors in previously published models.

The distinct modal properties for this purely rotational model are presented and

analytically proved. This model aims to greatly simplify further analysis on compound

planetary gear dynamics, such as the parametric instability caused by mesh stiffness

variations, while keeping the main dynamic behavior generated by tooth mesh forces.
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The rotational-translational model by Kirocofe and Parker [53] is also briefly intro-
duced in this Chapter. This model, together with the associated well-defined modal
properties, are critical to the parametric analysis of compound planetary gears, such
as the sensitivity of natural frequencies and vibration modes to system parameters
and the natural frequency veering and crossing patterns, which require a refined

mathematical description of the system.
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Chapter 3: SENSITIVITY OF GENERAL COMPOUND
PLANETARY GEAR NATURAL FREQUENCIES AND
VIBRATION MODES TO MODEL PARAMETERS

3.1 Introduction

Simple planetary gears have only one stage and only one planet in each load
path. Compound planetary gears involve stepped-planet, meshed-planet or multi-
stage structures [53]. Compared to simple planetary gears, compound planetary gears
provide larger reduction ratios and more flexible configurations [53,65], but they
create more noise and vibration problems [47]. Sensitivity of the natural frequencies
and vibration modes to system parameters, such as mesh stiffnesses and mases of
the components, provides important information for tuning resonances away from
operating speeds and minimizing dynamic response. The study in this chapter derives
the eigensensitivities of general compound planetary gears to system parameters with
the purpose of providing guidance for system design.

The variations of planetary gear natural frequencies to selected parameters have
been examined previously. Botman [16] plotted the natural frequencies versus planet
support stiffness and studied the effect of carrier rotation through a numerical exam-
ple. Saada and Velex [85] studied the influence of ring gear support stiffness on the
natural frequencies. These and similar works present only numerical results. Lin and
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Parker used a two-dimensional, lumped-parameter model to systematically analyze
planetary gear eigensensitivities [57,58]. All of these analyses are restricted to simple
planetary gears. No systematic analysis of general compound planetary gear eigensen-
sitivities exists. In addition, the eigensensitivities to the system parameters that are
unique to compound planetary gears (e.g., planet-planet mesh stiffness, planet-planet
shaft stiffness, and the coupling stiffness between stages) have not been considered
numerically or analytically.

One barrier for the eigensensivity analysis of compound planetary gears is to
choose the proper model for this analysis. Kahraman [47] developed a purely rota-
tional models for limited configurations of single-stage compound planetary gears.
The purely rotational model that is introduced in Chapter 2 of this work applies to
general compound planetary gears. These purely rotational models, however, are not
suitable for eigensensivity analysis because eigensensivity analysis requires the model
to have an accurate description of the real system such that the eigensensitivity re-
sults are accurate enough to predict the changes of natural frequencies and vibration
modes for real applications. For lumped-parameter models, a model with three or
more degrees of freedom for each component is preferred, because more degrees of
freedom indicate better description of the motions for each component, and the re-
sultant natural frequencies, vibration modes, and eigensensitivities are closer to real
systems. Purely rotational models ignores all translational motions of the compo-
nents and assign just one rotational degree of freedom to each component. The total
degrees of freedom for purely rotational models is much less than those rotational-

translational models which have three degrees of freedom for each component. Thus,
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it is preferred to choose the rotational-translational compound planetary gear model
for the eigensensivity analysis in this chapter.

In previous chapter a rotational-translational model by Kiracofe and Parker [53]
is briefly introduced. In that model each gear or carrier has one rotational and two
translational degrees of freedom. All bearings and shaft connections are modeled as
one torsional and two translational springs. All gear meshes are modeled as springs.
The results of [53] show that tuned (that is, axisymmetric) compound planetary gears
with three or more planet trains in each planet set have structured modal properties
that are similar to those of simple planetary gears [58]. The vibration modes of
such compound planetary gears are classified as rotational, translational and planet
modes, with each having well-defined properties. The investigation in this chapter
uses the model by Kiracofe and Parker [53] to analytically investigate the sensitivities
of natural frequencies and vibration modes to all stiffness and inertia parameters of
general compound planetary gears. Both tuned and mistuned compound planetary

gears are studied in this chapter.

3.2 Eigensensitivity Calculation

The eigensensitivities of interest in this study are the first and second eigen-

value derivatives and the first order eigenvector derivative with respect to a system

"
u?

parameter: A/, A\’ and ¢/. The analytical procedures to calculate these eigensensi-
tivities [21,27,57] are introduced briefly as follows.

When A, is a distinct eigenvalue of (2.39), the associated eigensensitivities are

found by differentiating (2.39) to obtain

X, = ¢T(K' — \M), (3.1)
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T K/ _ )\uM, u
8, = 5 (BIMB)b, + > 2 b, (3.2
v=1v#u v v
X, =2¢L (K' = AM)¢, + ¢} (K" — AM" — \,M)¢, (3:3)

The form of (3.2) results from series expansion of ¢/, in the basis of the eigenvectors
¢, v=1 2, u—1, u+1,---, A

For the case of a degenerate eigenvalue of (2.39), suppose the eigenvalue has multi-
plicity w such that Ay = --- = A,,. N =[my, ---m,]is an arbitrary set of independent
eigenvectors normalized such that N”MN = I. The eigenvectors [n;, ---m,] have
the translational or planet mode properties in (2.43)-(2.52). Let & = NB produce a
preferred set of eigenvectors ® = [¢1, -+, ¢y ], where the w x w matrix B is to be
determined, B = [B1, -, Buwlwxw, and ¢y = NGB (f =1, ---, w). Differentiation
of (2.39) gives

(K — AfM)¢; = (\;M + A\;M — K')Ng; = f (3.4)

The w solvability conditions of (3.4) are i f=nlf = ... = nl'f=0, and these yield

the eigenvalue problem
DBy = \;B; D = N"(K' - \;M')N (3.5)

Thus, the first order eigenvalue derivatives of the w degenerate eigenvalues of (2.39)
are the eigenvalues of D in (3.5). For the case when all the eigenvalues of D are
distinct, B is uniquely determined from (3.5) with normalization ﬁ?ﬂf = 1. Thus,
¢y = NGy is also determined. Like m¢, the w eigenvectors ¢y also have the trans-
lational or planet mode properties in (2.43)-(2.52). The set ® is the preferred set
compared to N, because ® yields a diagonal form of D in (3.5) and leads to simpler

eigenvector derivative expressions.
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The first order eigenvector derivative for a distinct A’ in (16) is

where ®7r; is the general solution of the homogeneous form of (3.4), and j; is a

particular solution of (3.4) such that (K — A\;M)j,; = f. According to Nelson [73],

A T AR 7/
ir= > Grsdw, where gpy = —‘b’“()‘&l:{)\:{ )¢f, and k=w+1, ---, A.
k=w+1

The 7 in (17) are determined collectively by first forming the w x w matrix IT =

[y, ---my,]. The diagonal and off-diagonal elements of IT are given as [29,57,67,73]

1
Hjp=—5¢M¢y, f=1, - w (3.7)
L 200K - AMYj, GINM - K 4 A M)
“f 2N, — AL 2N, — \L) (3.8)

621,"',11} lea"'vw €7£f
By taking the second order derivative of (2.39) [29,57,67,73|, the second order eigen-

value derivatives )\} are calculated as
7 =201 (K — A\M)j; + ¢ (K =AM — \;M') ¢, (3.9)

When the matrix D has degenerate eigenvalues, the eigenvectors of D that are
associated with these degenerate eigenvalues are not unique. Therefore, the associated
first order eigenvector derivatives of (2.39) can not be determined. Nevertheless, the

w second order eigenvalue derivatives are derived as the eigenvalues of [29, 57
E=28"(K' - A\M)J +&"(K - \M - \;M')® (3.10)

where J = [j;, ---, j,]consists of j, (f =1, -, w), which is calculated during the

derivation of ¢ in (3.6).
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With these closed-form eigensensitivity expressions, the approximate uth eigen-

value \, and its associated eigenvector g‘z")u of the perturbed system are

\ / 1 "
Au= Ay + Z Aulo=po (P = po) + 9 Z Au lp=p0 (P = po)? (3.11)
p p
Pu=but D Polpmp (0= o) (3.12)
P

3.3 Eigensensitivity of Tuned Systems

For the case when the perturbed system remains tuned, the structured modal
properties for compound planetary gears [53] are retained. The possible changing
stiffness parameters considered are the mesh stiffnesses between planets and central
gears/other planets (kJi*™, ki*™), the translational support (bearing) stiffnesses of

i

carriers/central gears/planet (k% b

k;*m), the torsional support stiffnesses of car-
riers/central gears (kibﬂ@, k;b,ee): and the shaft stiffnesses connecting any two compo-
nents . The changing inertia parameters are the mass and moment of inertia of each

component (my, I3, m}, I7, milm

o Ili)lm). The nomenclature section states the mean-

ing of all variables, superscripts, and subscripts (the same nomenclature as in [53] is

used).
3.3.1 Calculation of Eigensensitivity of Tuned Systems

Because the eigensensitivity calculation procedures are similar for all parameters,
explanation of one calculation for a certain stiffness parameter is sufficient. The
eigensensitivities to kg;*m are a representative example. In order to use equations

(2.39)-(2.52) and (3.1)-(3.12) to calculate the eigensensitivities, the derivatives of the

mass and stiffness matrix with respect to the perturbed parameter are needed. These
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are

oM
T 0 (3.13)
Ci .. Ci ..
R
5K oy oy
= : : (3.14)
]z*m . .
okjp g i
Bl ok
Ohgp ™ Ohgp ™

where all sub-matrices of JK/OkJ7™ are zero except the four sub-matrices indicated
n (3.13), which are coupling terms between central gear j and planet m in any train

of stage i. These sub-matrices are linearly dependent on kg;*m as shown below.

sin? qﬁg”m — cos 1/)5”’” sin qﬁg”m —Tg sin 1/)5”’”
jzlm jilm 2 ,/,jilm j jilm
K™ = |7 cos® 97 7J cos ¢2q (3.15)
symmetric (rg)
sin? aé’lm —07 cos ozé“m sin aé’lm —sin ozé“m
K7y™ = fjim cos” o™ o7 cos ™ (3.16)
symmetric 1
—o7 sin QW jilm gin oﬂ ilm— gin ng”m cos ag”m o7 sin 1[)3 jilm
KJIm = |7 | —gd cos qﬁf]”m sin ozé”m — cos "™ cos ad™  —a7 cos 1/)5”’” (3.17)
7’] o7 sin oﬂ ibm —7“3 cos a?q’lm 7’;0]

where a“lm is the pressure angle of gear mesh kﬂlm o7 equals 1 (or -1) when central
gear j is a ring gear (or a sun gear), and 7" = "™ 4 gJadi™

Because rotational, translational and planet modes have different multiplicity of
eigenvalues, one must consider their eigensensitivities separately.

For the case of rotational modes, one can apply (2.40)-(2.42) directly because all
rotational mode eigenvalues are distinct. The expressions for the eigensensitivities
simplify further by applying the relationships

K
d)T 0 ¢ 6jzlm63zlm (318)

akgz*m g,u “g,v
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”lm = yg ., COS w”lm —x;,sin w“lm + rgH; u ’lm o' sin oﬂ”m 77;“17 Cos oﬂdm — aju;f;f

(3.19)
where 077" is the mesh deflection between gear j and planet m in train [ of planet set
i for vibration mode u. Rotational mode properties indicate 67" is the same for all
the trains in planet set . Therefore, the mesh deflection between gear j and planet
m in any train of planet set ¢ in a rotational mode u is expressed as 53’*m, where *

implies any planet train.

The simplified eigensensitivities for a rotational mode are

i

O, C jilm i sjikm
m = 2 ) = ) (3.20)
gp =1
ad)u Z Z 5]z*m5jzlm
akép v=1v#u =1 /\ _)\
ﬂ _ i 2 (CZZ 5]z*m5]zlm) (322)
(ak‘{];*m)2 v=1,v#u Au = A = ’
Equation (3.20) expresses the eigenvector derivative aiﬁfm as a modal expansion
gp
of all other eigenvectors. The eigenvector ¢, (v # u) has dominant impact on aiﬁ;‘m
gp

if its associated eigenvalue ()\,) is close to \,, and if the sum of the mesh deflections

of gear j and planet m in all the trains of planet set ¢ for vibration mode v (Z (5““”)

is large compared to those for other modes. In addition, if Z 671 = 0 (e.g., when ¢,
=1

is a planet mode of stages other than stage i), the eigenvector ¢, has no contribution

to ¢/, While the first derivative in (3.20) depends only on ¢, (the mode associated

with \,), the second order derivative in (3.22) depends on all modes other than ¢,

with the greatest contribution coming from modes with eigenvalues close to A,.
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a
If all planet sets have three or more planet trains, there are a+b+3 > d* different
i=1

translational eigenvalues, each with multiplicity two [53]. Suppose A\; = A5 is a degen-
erate translational eigenvalue, and ¢ and ¢, are the associated pair of orthonormal
(with respect to M) translational modes of the unperturbed system. The matrix D

is derived from equation (3.5) as

pD_o B\ M4

jikm u Jikxm

OK ¢ (5]zlm) 5]zlm5]zlm
T —
@ [akvﬁ,}*m]‘i - Z |: 5]zl€n6ﬂlm (5]zlm)

(3.23)

S é o
The properties of translational modes indicate the equalities > (5;??”)2 =Y (6;?3”)2
=1 =1

and Z 54 ilm ”lm = 0. Because D is diagonalized by [¢1, ¢2], these two eigenvectors
form a preferred pair of translational modes. From the eigenvalues of D, the first

order eigenvalue derivatives are
i

Jixm Jixm 9,1
akgp akgp =1

Because D has a degenerate eigenvalue, the first order eigenvector derivatives can
not be determined. The second order eigenvalue derivatives are calculated from the

eigenvalues of E in (3.10), where

i

Q

A
2065702 cjilm cjilm v ]zlm ]zlm
> W%JS Zzgv 5
E = vXSljil v= 3l 1 (325)
Z Z 1) 2(85")? 6jzlm63zlm Z Z gv ]zlm(sjzlm
- ’U g7

The translational mode properties give Fy; = Ey and E19 = Ey;. Thus, E is also

diagonal and the second order eigenvalue derivatives are

82)\1 B A 2(5]zlm5]zlm)
(akﬂ*m) - Z Z A —Ao
N (3.26)
A ¢t o(sdilm giilmya
P = Y 2009,0799,5")"
(akgz*m) - )\2_)\1)

v=3 =1
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For a given planet set, planet modes of stage i exist only for ¢ > 4, where ¢ is the
number of planet trains in stage i. For ¢! = 4, the planet mode natural frequencies
for planet set ¢ are distinct, and the procedure to calculate the eigensensitivities is
the same as that for rotational modes. The results are as (3.20)-(3.22).

For ¢ > 4, the planet mode frequencies for planet set i are degenerate with
multiplicity w = ¢ — 3. Suppose this degenerate eigenvalue and its associated modes
are A\i, ... o = Ay and @y, -+, @,. The eigenvectors ¢y, ---, ¢, are an arbitrary
set of planet modes, which forms the matrix ® = [¢1, - -, ¢y]. The elements in
D are calculated using (3.5), and the results are Dy = lz (Wlm(%zjfm, where e, f =
1, -+, w. Application of the planet mode properties shows that D is diagonal for

any choice of independent planet modes ¢, ---, ¢,. In addition, all the diagonal

elements of are equal. Thus, the first order eigenvalue derivatives are

i

(9)\ a)\ . jilm
= o= e = Du = Y () (3.27)

Jixm Jixm

Because D has a single degenerate eigenvalue, the first order eigenvector deriva-
tives of the set of planet modes can not be determined. The second order eigenvalue
derivatives are derived by calculating the eigenvalues of E in (3.10), and the results

are
62]lm5”lm)

5
kﬂij; Z Z Y, F=1 - w (3.28)

v=w+1 [=1

The expressions (3.20), (3.24), and (3.27) suggest that the eigenvalue derivatives
are proportional to modal strain energies in the associated stiffness elements. Simi-
lar expressions for changing inertia parameters relate these eigenvalue derivatives to
modal kinetic energies of the component with changing inertia. The relations between

eigenvalue sensitivities and modal strain/kinetic energies are below, where the modal
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strain and kinetic energies are defined in Table 3.1 and Table 3.2, respectively. These
relations apply to all three types of vibration modes of compound planetary gears.
The expressions for ¢; and A" are collected in Appendix B.1. The following notation
isused: i,h=1, ---, a;j,n=1, ---, b;l=1, ---, csm,q=1, ---, d

Table 3.1: The expressions of modal strain energies in vi-
bration mode ¢,. All other subscripts and superscripts
for modal strain energies have the same meanings as for
stiffness parameters. For example, U ’b , means the modal
strain energy in the translational bearlng stiffness of car-
rier 4.

T

qbu - %kf:b[(xzc u)2 + (yé,u)2]
b 00 = 2 chO(QZ )

Uy = %kf;%[(l"f;u — 2 )*+ W — Y5.)°
Uzh —

cc,00,u cc ee(ei — eg,u)2

997

U 7,00.u T kcq 99(02,11, B Qg,u)Z
ceu §
Ugb,u - %kqb[('x] ) + (yg],u)Q]
1p
2 i 5
U g.00u — qu Gﬂ(eé,u - 09,1)

UCGG
sau = gkoal(@hu — 25.)° + Yo — You)?]
qq g,u g,u q,u
g

gp,u 2°7gp gp,u gp,u

U]zlm — lk,]zlm((;]zlm) U]z*m — Z U]zlm
=

jilm Jilm __ ]zlm 7
where 67" = yguclosqb T, sm¢ + 78 Wt
wm

zlm ]zlm _ jilm __ ~-j l
O' SlIlOé npuCOSOéqu O'U

z

Uzlmq 1 kzlmq (6zlmq) Uz*mq Z Uzlmq
=

pp,u 2pp pp,u pp,u

where gm0 — —sin(4m0)Cim — sin (4o +

COS( Zlmq)??;lT—FCOS( qum)nzlq +uzlm+uzlq

Uzlbn; — 1kzlm[(5zlm) (5ilm)2] kM __ Z Iz)lbn;

P pbu T

1 il il 1
where g3 = xcucoswzm—l—ycusmwzm — ¢

DU

zlm _ ilm ilm ilm i ilm
6 l - ‘rculSHl@Z) +y0u005¢ +Tc Qc ~ My -

Z mq __ 1p.umgq zlm ilp ilm ilp
Up—pu = Qkp p [( C ) (ﬁp, - u) ]

*mq ilmgq
Up —pu lz: Up —p,u

= , -

ilmg  _ 1pilmg Ul uphiy2
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ixmaq o ilmq
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Table 3.2: The expressions of modal kinetic energies in
vibration mode ¢,. The subscript 80 means the modal
kinetic energy is associated with a certain moment of in-
ertia. All other subscripts and superscripts for modal ki-
netic energies have the same meaning as for mass/inertia
parameters. For example, T 00 18 the modal kinetic en-
ergy associated with the moment of inertia of carrier .

TCZ 00.u — 5 )\U[é(eé,u)2
T} = Durl(e,) + )"

ct ) 7
T = T
Tgl% Y= 1/\ Izlm( Izolm)Q/(T;lmV

ikm ilm
p,00,u — lz Tp 60,u

(A) Eigenvalue sensitivities to support (bearing) stiffnesses:

a)\u i 2 7 2 %
akéb ( c u) + (yc,u) - kéb cb,
Oy ; 2
akl = ( c,u)2 = kz cb,00,u
cb,00 cb,00
O\ , . 2
- = (2! )P+ ()= U
aki]b ( g,u) (yg,u) k;b gbu
)W . 2
BYY, = (%7”)2 = X U;b 00,u
gb,00 gb,00

CZ

a)\u ilm ilm 2 kM
ak;*m - Z [(51 ) (577{“ )2] = k}z;km Upb,u
l

tween coaxial planets:

N D e 2
akg] - ('rc,u - ‘ri],u)2 + (yc,u - yg],u)2 = k_chZ],u
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(3.29)

(3.30)
(3.31)

(3.32)

(3.33)

(B) Eigenvalue sensitivities to shaft stiffnesses between carriers/central gears and be-

(3.34)



oA, | 2
8k‘ij = (Q(Z:u - Qg]z,u)2 = ij Ucé 00,u
cg,00 kcg 00
a/\u % 7 2 )
aké]cl = ( cu x?u)Q + (yc,u - y2u>2 k_é}é c?u
Oy 4 2 .
akcﬁ,@@ ’ ’ kc}cL,OG ’
oA , 2
‘u J o 2 4 i am \2 __ = pjin
8kj” = ( gju - Qg,u)2 = ]{Jjn U;gﬁ@ u
99,00 gg,00
a)\u & zlm il ilm ilg \2 2
akz*mq = Z [( g q) (np u np,%) ] = kz*mq Up p,u
p—p l p—p
C ilm il
8)\ _ Z (upvu _ Up%)Q _ 2 Ui*mq
ixm - ilm il ixm, —p,00,u
akp pqeg l pil qu kp pq496 p—p

(C) Eigenvalue sensitivities to mesh stiffnesses:

akji*m - gp u - ]z*m gp,u
gp gp

a)\u Z 5zlmq 2 Uz*mq
o~ 2 O

(D) Eigenvalue sensitivities to masses and moments of inertia:

oA . , 2
7{ — _/\u 1 \2 to\2] B
amzc [(xc,u) + (yc,u) ] mzc c,u
O\ ‘ 2
L= N\ (0, = ——T!
aléu ( c,u) Iéu c,00,u
oA , : 2
’U,. = —A x] 2 + J 2 — __‘T]
o = Al ) =~
O, L, 2
a]gu = _)\u(%,u) = _[guTgJ,GO,u

o4

kMg

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)
(3.45)
(3.46)
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O\ c . A 9 A
i:m =~ (&) + ()] = ——=T7" (3.48)
8mp lzl P P mé P,
a)\ ct (uilm)Q 9 .
o = A Y e = e (3.49)
8[; m ; (r}l)lm)Q [}z) m = Pp,0Y,

Application of the well-defined modal properties (2.40)-(2.48) to the derived eigensen-
sitivities in (3.29)-(3.49) and (B.1)-(B.30) yields some immediate results. The rota-
tional mode property that central gears and carriers have no translational motion
leads to the independence of all rotational modes to the masses of all central gears
and carriers, and the translational support/shaft stiffnesses of these components. Due
to the translational mode property that all central gears and carriers have no rota-
tional motion, all translational modes are independent of the moments of inertia of
central gears and carriers, and the rotational support/shaft stiffnesses of these com-
ponents. Similarly, planet mode properties ensure that all planet modes for a given
planet set are independent of all inertia and stiffness parameters except for those
associated with this given planet set.

3.3.2 Application of the Modal Strain/Kinetic Energy Dis-
tribution Plots

The formulae (3.29)-(3.49) show that the modal strain/kinetic energies of com-
pound planetary gears determine the eigenvalue sensitivities to stiffness/inertia pa-
rameters. As a result, the modal strain/kinetic energy distribution plots of a certain
mode qualitatively and quantitatively give the sensitivity of the natural frequency
associated with this mode to all system parameters.

Consider the two-stage compound planetary gear system shown in Figure 3.1,

where for clarity only the mesh stiffnesses (no bearing and shaft stiffnesses) are shown
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as solid lines. The nominal system parameters are listed in Table 3.3, and the lowest
fourteen natural frequencies are listed in Table 3.4. Consider the case where practical
design or troubleshooting needs require the fourth natural frequency (w4) to be greater
than 900 Hz, where it is ws=871H 2 with nominal parameters values. The mode

associated with wy is a rotational mode, and its mode shape is shown in Figure 3.2.

Table 3.3: Nominal parameters of the example system
shown in Figure 3.1.

Number of Carriers 2

Number of Central | 4

Gears

Number of  Planet | ¢'=4, c?=6

Trains

Number of Planets per | d'=2,d*=1

Train
77/)1“(0) 27T(l 1) =1, -, 4

Planet Location Y21(0) = Qﬂ(l = L, -y 6
B12(0 ¢111( ) 1390

ﬁlllQ = 70° 51121 218°
500 x 10° Tfj=1,i=1,m=1
orj=21=1m=2

kjim = orj=3i=2m=1

Mesh Stiffnesses (N/m) orj=4,1=2m=1
0 Otherwise
MW_{5mxuﬁ1mz1
pp 0 Otherwise

kéb,xx = kéb vy =1x 109
Translational ~Support | A, .. = k;b gy = 1% 10
Stiffness (N/m) kim =1 x 107

kéb,é@ 04 kgb,@@ = ka,ee 6: 0

ke = kg/rzb/y =0, Kty = ki, =0
Torsional Shaft Stiff- Wi i 800 x 105 Ifi=1,5=3
nesses (N-m/rad) cgrr— Tegyy ) 0 Otherwise
Torsional Shaft Stiff- Wi 200 x 106 Ifi= 1,7=3

nesses (N-m/rad) .00 1 0 Otherwise

Continued on next page

Torsional Support Stiff-
ness (N-m/rad)
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Table 3.3 — Continued from previous page

Mass (kg)

my =1, m>=>5 m) =1, m; =5
ml =10, m? =10
m)t = ml? = 0.75, m2" = 2.00

Moment of Inertia (kg-

II'=0.05 I2=05
I3 =005, I'=05
I' =100, I? =120

m?) ! ! !
r, =100.0, 77 = 320.6
) r3 =100.0, r? = 300.0
Radii (mm) 7“51” —176.5 “1112 = 9270.0. r2* =92920.7
it = 60.0, 7 = 77.7. 120~ 1000
ol =0%=—1 (sun gear)
Gear Type 02 =0%=1 (ring gear)

Table 3.4: The lowest fourteen natural frequencies for the
example system of Figure 3.1 with nominal parameters
listed in Table 3.3. R means Rotational mode, 7" means
Translational mode, P1 means Planet mode of planet set

1, and P2 means Planet mode of planet set 2.

Natural Natural Vibration
Frequency Frequency Mode
Number (Hz) Type

1 0 R
2,3 657 T
4 871 R
5,6, 7 1030 P2
8 1134 R
9, 10 1152 T
11 1535 R
12, 13 1554 T
14 1854 P1
15, 16 1946 T
17, 18 2421 T
19 2944 R
20, 21 3190 T
55, 56 9083 T
o7 9148 R
28, 59 9408 T
60 11073 R
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One planet train One planet train

(a) in planet set 1 in planet set 2
[Central Gear 2 i Central Gear 4
F——m————=- L
1 ! !

1 ! !
| Planet 2 T ! 1
| ! X Planet 1 | !
I | ! |
: Planet 1 ; 1o S — _ |-
I
- T - Output
Central Central Shef
I '”:Pm Shaft Gear 1 Gear 3 1
Shaft
connection
bet l
Carrier 1
and Central
Gear 3
Carrier 1 Carrier 2
| | %
Stage 1 Stage 2
(b) Stage 1 (c) Stage 2

Central Gear 2

Train 2 Central Gear 4

Train 1

X

‘ Carrier 2
Central
( Gear 3

Figure 3.1: The example system for the eigensensitivity analysis in this chapter.

Planet 1
in Train 1
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Figure 3.2: Mode shape of vibration mode 4 (w, = 871Hz) for the example system
with nominal parameter values.

The modal strain and kinetic energy distribution plots for this mode are shown
in Figure 3.3. The strain energies in k3>*' and k>*! (the mesh stiffnesses of the sun-
planet and ring-planet meshes in the second stage of the example system) are the
highest modal strain energies, and the modal kinetic energy associated with I>*! (the
moment of inertia of the planets in stage 2) is the largest modal kinetic energy. Thus,
k32 kgt and 12 are the most effective parameters in tuning wy.

Figure 3.4 shows w, versus the variation of k22*' and k,>*!, and the change of I*!.
When both k32! and k> increase 16% from their nominal values, or I>*! is reduced
by 8.2% from its nominal value, w, is tuned to be larger than 900 Hz, which achieves

the design goal.

3.4 Eigensensitivity of Mistuned Compound Planetary Gears

il il ;
Eima gt omim - and

: : jilm  Lilmqg  1ilm
The candidate mistuned parameters are kJ,"™, k)", k™, k, 20 k, " o9, My,

Ililm, because these perturbed parameters are the only ones that break the symmetry
of planet sets to create mistuning. This study focuses on the case of one mistuned

parameter because equations (3.11)-(3.13) show that the impact of multiple mistuned
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Figure 3.4: (a) wy versus € = ~2 e and (b) wy versus 7 = R

l_c%*l and k}> are the nominal and perturbed values of the mesh stiffness between
the sun gear in stage 2 (central gear 3) and planet 1 in any planet train of planet set
2. k22! and kj2*! are the nominal and perturbed values of the mesh stiffness between
the ring gear in stage 2 (central gear 4) and planet 1 in any planet train of planet set
2. IZ*! and I2*! are the nominal and perturbed values of moment of inertia of planet

1 in any planet train of planet set 2.
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parameters on natural frequencies and vibration modes is the superposition of the
impacts from each mistuned parameter.

As a representative example, the derivation of eigensensitivities to a mistuned
mesh stiffness parameter is illustrated. Consider the case that kJ!'™ (the mesh stiffness
between central gear j and planet m in train 1 of planet set i) is the only varying
parameter, and its nominal value is l_fgélm. In order to apply equations (3.1)-(3.10,

the derivatives of the mass and stiffness matrices are

oM *M
akgp (akgp )
oK' K
3kji1m akjilm
0K " " K
gy o(xg™)" oK™ (k™)
D) g
e T

where all sub-matrices of JK/0kJ!'™ are zero except the four sub-matrices shown in
(3.51), which are coupling terms between central gear j and planet m in the first
train of stage 7. Substitution of [ = 1 (for the first train) into equations (3.15)-(3.17)
shows that these four sub-matrices depend linearly on kJ/'™.

By applying equations (3.1)-(3.3), the sensitivities of a rotational mode to kJ/'™

are
O\, i1 2 1
gp gp
N
aké%lm U%;éu )\u - )‘v d) ( )
462)\u - 2 jilm sjilm
gp v=lpu ¥ v
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where Ul is the modal strain energy in the stiffness k7/'™. The sensitivities of a

rotational mode or a distinct planet mode to all other possible mistuned parameters
are listed in Appendix B.2.

jilm

2o are calculated by

For a pair of translational modes, the eigensensitivities to &
following the procedure in (3.4)-(3.10). The degenerate translational eigenvalue is

Au = Aur1. Choosing the preferred pair of translational modes ® = [¢@,, ¢, 1] that

diagonalizes D in (2.44) gives

oK jilm\2
D=¢"——&= (65™)" 0 (3.55)
okl ™ 0 0

where 6™ is the mesh deflection between gear j and planet m in train 1 of planet

set ¢ in vibration mode ¢,. The eigenvalue sensitivities from the eigenvalues of D are

O\,

jilm

_ ( jilm)2 _ 2 jilm a/\u+1 o
- \Vgu T g.jilm T gp,u jilm
kgp Okgp

(3.56)

jilm

o N mode ®,,.

where UJ!L™ is the modal strain energy associated with &

By applying (3.6)-(3.10), the closed-form expressions for the first order eigenvector

and second order eigenvalue derivatives are

A ‘.1 .Al
a¢u 6jzvm5]1um a¢u
o Z 3\77_9)7\ o 8kji;r"11 = (3.57)
9p v=1v#u,u+1 u v gp

W S A YA I W
Tajilmng N — 0\ Jilmyg :
o 2 o) (3:5%)

9p u T Av ap

v=1,v#u,u+1

Equations (3.56)-(3.58) show that one of a pair of translational modes is not af-
fected by the mistuned mesh stiffness £)'"; the translational mode properties are
retained in this mode, even though the system symmetry is broken by the mistuning.
The other translational mode, however, changes with &' and loses its well-defined
translational mode properties; the perturbed mode is contaminated by contributions
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from all other modes in (3.57). The magnitude of a contaminating mode v is de-
termined by that mode’s mesh deflection 07} and the proximity of the associated
eigenvalue value A\, to \,. The eigensensitivities of a pair of translational modes to
all other mistuned parameters are derived in the same way, and their expressions are
collected in Appendix B.2.

The eigensensitivities in (3.52)-(3.58) and (B.31)-(B.48) show that only a mis-
tuned planet bearing stiffness (k;'), translational shaft stiffness between two coaxial

planets of a stepped-planet arrangement (k2™7), or planet mass (mi™) can affect

p
both modes of a pair of degenerate translational modes. In theses cases, the degener-
ate translational natural frequency of the unperturbed system splits into two distinct
natural frequencies, and both associated modes lose their translational mode prop-
erties. Any other mistuned parameter affects only one of the pair of translational
modes and has no impact on the other mode.

Using the example system of Figure 3.1, Table 3.3, and Table 3.4, Figure 3.5(a)

shows the impact of the perturbed mesh stiffness between central gear 3 and planet 1

in train 1 of planet set 2 (k}>'") on a pair of degenerate translational frequencies (w12

3211

and wi3). wie is affected by k.

dramatically, while w3 remains unchanged. Figure
3.5(b) illustrates how the same pair of translational frequencies is changed by the
bearing stiffness of planet 1 in train 1 of planet set 2 (k7). The mistuned parameter
kg“ splits the loci of wis and w3 and changes both of them.

For a set of planet modes with a degenerate natural frequency, the procedure in
(3.4)-(3.10) is applied to calculate their eigensensitivities. This degenerate eigenvalue

with multiplicity w > 2 is Ay = A\y11 = --- = Ayyw—1- The associated eigenvectors

are chosen to be the preferred eigenvectors ® = [¢y, -, Purw_1] that diagonalize
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Figure 3.5: (a) w1z and wyz versus € = ~—zrf—, and (b) wip and w3 versus 3 =
—_ p
kptt k3" 73011 3211 . .
L.k, and ki, are the nominal and perturbed values of the mesh stiffness
p

between the sun gear in stage 2 (central gear 3) and planet 1 in train 1 of planet set 2.
k2! and k2M are the nominal and perturbed values of the bearing stiffness of planet
1 in train 1 of planet set 2.
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the matrix D in (2.49). Thus, the diagonalized D and its eigenvalues yield

(a2 0 - 0
D=0¢"—"—&= o (3.59)
Okl o
symm. 0 s
O _ (6ji1m)2 — _2 pyjilm
Jilm g,u Jilm ap,u
%]i\gfﬂ L — 8>\u+wk,g1p _ O (360)
g T ek T

where ¢\ and U’ are the mesh deflection and modal strain energy associated

with kvg;lm in mode ¢,.
When the multiplicity of a degenerate planet mode frequency is two, D in (3.59)

has distinct eigenvalues. The first order eigenvector derivative and the second order

jilm

2 are exactly the same as those for trans-

eigenvalue derivative with respect to k
lational modes in equations (3.57)-(3.58). Only one of the two natural frequencies
is affected. When the planet mode frequency multiplicity is greater than two, D in
(3.59) has a degenerate zero eigenvalue. Therefore, the eigenvector derivatives of these

jilm

75 can not be determined.

planet modes with respect to the mistuned parameter k

By calculating the eigenvalues of E in (3.10), the second order eigenvalue derivatives

are
8?)1\1‘ _ D 20555 65™)
Jrlmyg )\u*)\v
e (3.61)
Prupr ., Pt g
(Okgp™)? (Okgp ™)?

The eigensensitivities of planet modes to all other mistuned parameters are col-
lected in Appendix B.2. Equations (3.60)-(3.61) and (88)-(99) reveal that only one of
a set of degenerate planet modes is affected by a single mistuned parameter and loses
it well-defined modal properties. All other planet modes of the set retain their dis-
tinctive modal properties; their natural frequency is unchanged, but its multiplicity

is reduced to w — 1.
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The above analytical results show that the eigenvalue sensitivity of all mode types
to a mistuned parameter is proportional to the modal strain /kinetic energy associated
with this mistuned parameter. Therefore, as for tuned systems, inspection of the
modal strain/kinetic energy distribution for mistuned systems remains an effective
way to quantitatively determine the parameters that have the largest impact on a

certain mode.

3.5 Conclusion

The major results for the eigensensitivities of general compound planetary gears

to all stiffness and inertia parameters are summarized as follows:

(1) All eigenvalue derivatives are proportional to the modal strain/kinetic energies
associated with the perturbed parameters. Application of the well-defined modal
properties of general compound planetary gears simplifies the eigensensitivity ex-
pressions to compact, closed-form formulae for all parameter variations. For both
tuned and mistuned systems, the modal strain/kinetic energy distribution plots
give effective and straightforward means to identify which system parameters
have the greatest impact on tuning the related natural frequency. This process

can be done qualitatively and quantitatively by inspection.

(2) For tuned systems, the eigenvector sensitivities of degenerate translational and
planet modes can not be determined, although the second order eigenvalue deriva-
tives can be. The first and second order eigenvalue derivatives of degenerate
eigenvalues of the original system are such that degenerate eigenvalues remain
degenerate for parameter perturbations that preserve the tuned symmetry. Rota-
tional modes are independent of translational support /shaft stiffnesses and masses
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of central gears/carriers. Translational modes are independent of torsional sup-
port/shaft stiffnesses and moments of inertia of central gears/carriers. Planet
modes of a certain planet set are independent of any system parameters associated
with other planet sets. They are also independent of the mass/moment of inertia

parameters and support/shaft stiffness parameters of all central gears/carriers.

When a system is perturbed by a mistuned parameter, a degenerate transla-
tional mode natural frequency of the unperturbed system splits into two distinct
frequencies. A mistuned planet bearing stiffness, translational shaft stiffness be-
tween two planets in a stepped planet arrangement, or planet mass impacts both
modes associated with the two frequencies, while any other mistuned parameter
affects only one of the modes despite the apparent disruption of system sym-
metry. Parameter mistuning always splits degenerate planet mode frequencies
of the stage associated with the mistuned parameter into two frequencies. One
frequency keeps its original value and its associated modes retain the well-defined
planet mode properties; the other frequency is distinct and its associated mode

loses the planet mode properties.
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Chapter 4: NATURAL FREQUENCY VEERING AND
CROSSING PATTERNS FOR GENERAL COMPOUND
PLANETARY GEARS

4.1 Introduction

Natural frequency veering is the phenomenon that two eigenvalue loci approach
each other and then abruptly veer away when a certain parameter varies, and natu-
ral frequency crossing refers to the situation that two eigenvalue loci approach and
cross each other with the variation of a parameter. These phenomena are com-
monly observed in different mechanical systems and investigated in previous stud-
ies [42,72,80-82,89]. All these previous studies suggest that the eigenvalue loci
veering and crossing patterns are important to the free vibration analysis and fur-
ther dynamics study of a mechanical system because the vibration modes retain their
characteristics in case of crossing and they change dramatically near the vicinity of
strongly-coupled veering natural frequencies.

Planetary gear natural frequency veering and crossing phenomena are observed
by lots of researchers, such as Cunliffe et al. [22], Botman [16], Saada and Velex [85],
Kahraman [43,45], and Lin and Parker [57]. The systematical investigation on plan-
etary gear natural frequency veering and crossing phenomena, however, was not per-
formed until Lin and Parker’s investigation in [59]. By calculating the coupling factors
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that approximate the local curvatures of two close eigenvalue loci and applying the
structured vibration properties in [56], they derived the veering and crossing patterns
for simple planetary gears. The research scopes for all these previous studies are
limited to simple planetary gears. Due to the involving of stepped-planet, meshed-
planet, and multi-stage structures that are unique to compound planetary gears, the
eigensensitivities for compound planetary gears differ from those for simple plane-
tary gears [36], and the results for simple planetary gears in [59] can not be applied
to compound planetary gears. In addition, there is no published literature on the
veering and crossing patterns for compound planetary gears. It is, hence, necessary
to systematically investigate the natural frequency veering and crossing patterns for
general compound planetary gears.

4.2 Natural Frequency Veering and Crossing Phenomena in
Compound Planetary Gears

Natural frequency veering and crossing phenomena present in compound planetary

2

b the bearing stiffness of

gears when certain parameter varies. For example, when k
the ring gear in the first stage of the example system that is shown in Figure 3.1
with the nominal parameters and natural frequencies listed in Tables 3.3 and 3.4,
varies, both natural frequency veering and crossing happen in Figure 4.1. The loci of
translational frequencies w7 and wig cross the locus of a rotational frequency wqg at
point O when k;b increases to roughly twice of its nominal value. The loci of w7 and
wig veer away from the loci of another pair of translational frequencies wsgy and wo;
in the vicinity of point O" when &2, is 2.75 times of its nominal value.

Points A and B are on the loci of w7 and wig in the vicinity of the loci-crossing

point O. Figure 4.2 shows the translational mode shapes that associated with w7 and
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Figure 4.1: Natural frequency crossing and veering phenomena in the example system
when &7, varies.

wig at points A (when k% is 1.84 times of its nominal value) and B (when k7, is 2.24
times of its nominal value) in Figure 4.1. The mode shapes in Figure 4.2(a) are similar
to those in 4.2(b). That is, the translational modes w7 and wg retain their modal
properties when k;b varies in the vicinity of point O. In addition, Figure 4.3 shows
the rotational mode shapes at points A" and B’ in Figure 4.1. There is no difference
between these two mode shapes in Figure 4.3. This matches the eigensensitivity
results from previous chapter that k;b has no impact on any rotational mode. Hence,
both the rotational frequency wi7 and the translational frequencies w7 and wig retain
their mode shapes and modal properties in the vicinity of the loci-crossing point O
when k7, varies.

Points C and D around the loci-veering point O’ are on the loci of w7 and wis.

Figure 4.4 demonstrates the translational mode shapes that associated with these two
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Stage1

Figure 4.2: Mode shapes of the translational modes associated with w7 and wg at
points A (sub-figure a) and B (sub-figure b) in Figure 4.1.
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Figure 4.3: Mode shapes of the rotational mode associated with w9 at points A’
(sub-figure a) and B’ (sub-figure b) in Figure 4.1.
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frequencies at points C' (when k;b is 1.5 times of its nominal value) and D in Figure
4.1 (when k2, is three times of its nominal value). The mode shapes in Figure 4.4(a)
are significantly different from those in 4.4(b). The components in Stage 1 have large
amplitudes and Stage 2 components barely moves in Figure 4.4(b). In Figure 4.4(b),
however, the components in Stage 2 have large amplitudes and the vibrations of Stage
1 components are insignificant. Hence, the pair of translational modes w7 and wig
experiences dramatic changes in mode shapes and modal properties in the vicinity
of loci-veering point O’ when k;b varies. Points ¢’ and D’ in Figure 4.1 are on the
loci of another pair of translational modes wyg and wo;. The mode shapes associated
with woy and wey at these two points are shown in Figure 4.5. The mode shapes
at point C' are significantly different from those at point D’. Therefore, both pairs
of translational frequencies [wy7, wir] and [wsy, wai] lose their original mode shape
and modal properties in the vicinity of the loci-crossing point when k;b varies. Such
dramatic change in vibration mode shapes in the vicinity of natural frequency veering
is called mode localization in several studies [42,72,81,82] or high mode sensitivity
in some other studies [20,69]. Taking another look at Figures 4.4 and 4.5, the mode
shapes at point C' are similar to those in point D’, and the mode shapes at point
C" are very close to those in point D. That is, the two pair of translational modes
[wi7, wir] and [wag, way| interchange their mode shapes and modal properties during
the natural frequency veering caused by the variation of k;b.

This example indicates that natural frequency veering and crossing phenomena
present in compound planetary gears. Because slight variations in system parameters
may cause dramatic changes in the mode shapes and dynamic responses in vicinity

of natural frequency veering while mode shapes and dynamic responses have no such
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Figure 4.4: Mode shapes of the translational modes associated with wy; and w;g at
points C' (sub-figure a) and D (sub-figure b) in Figure 4.1.

75



(
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Stage1

Figure 4.5: Mode shapes of the translational modes associated with wyg and ws; at
points C” (sub-figure a) and D’ (sub-figure b) in Figure 4.1.
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changes in the vicinity of natural frequency crossing, to understand the natural fre-
quency veering and crossing patterns is critical for the design and troubleshooting of
compound planetary gears. In the following section, the method to detect eigenvalue
veering and crossing in dynamic systems is first introduced. Then all the system pa-
rameters for compound planetary gears are divided into two groups: tuned parameters
(the variation of this group of system parameters does not break the axisymmetry
of any planet set) and mistuned parameters (the axisymmetry of a certain stage is
broken by the variations of this group of system parameters). The natural frequency
veering and crossing patterns for each group of parameters are investigated and the
general rules of eigenvalue loci veering and crossing for general compound planetary

gears are derived.

4.3 Detection of Natural Frequency Veering and Crossing

There are many ways to detect eigenvalue veering/crossing in dynamic systems,
such as the methods in [55], [20], and [89]. This study adopts the method by Perkins
and Mote [80] because this method is proved to be effective in detecting the natural
frequency veering and crossing in lots of studies [72,81,82], especially in the natural
frequency veering detection for simple planetary gears [59]. The details of this method
and its application to compound planetary gears are introduced as follows.

A |pepo and X,

| )=p0 denote two nearly equal eigenvalues for the eigenvalue problem

of a general compound planetary gear in (2.39) when the perturbed parameter p
is equal to its nominal value p°. ¢ is the perturbation of p such that p = p° +
o yields

. Application of Taylor Series Expansion of ¢ around A, |,—,0 and X |,—,

the approximation of Ay and )\;, the perturbed eigenvalues in the vicinities of the
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unperturbed ones, as

o Os 1.29%)
/\_)‘+56 p=p® T 3€ aps|pp

A AO+€8>\t|pp +1 28)\75

(4.1)

lp=p0

Both Perkins and Mote [80] and Lin and Parker [59] believe that there exist terms that

depends on /\Si " (i.e., the separation of Ay and )\;) in the second order eigenvalue

derivatives in equation (4.1). These terms are called the coupling factors in their
studies and the evaluation of these coupling factors for the unperturbed eigenvalue

problem provides key indications of the veering or crossing of the two eigenvalue loci

8)\5

in the vicinities of A, |,—,0 and A; [,—,0 . It is because the coupling terms dominate

and %)‘; when A\, and \; are nearly equal. The loci concavities that are determined

by the second order eigenvalue derivatives, therefore, strongly rely on these coupling
factors. One main task of this study is to locate the coupling factors in the second
order eigenvalue derivatives for compound planetary gears.

When \; is a distinct eigenvalue for the eigenvalue problem of a general compound
planetary gear in (2.39), insertion of (2.2) and (3.2) into (3.3) yields the second order

eigenvalue derivative for A, in terms of [\s, @5, N,, M, K| as

T(K' _ /
Z ¢, (K /\SM)d)sd)v n

1
"no__ T r_ ! TNrx!
As _2¢s (K )\SM ) 2(¢ M ¢S ¢S AS - AU

v=1,v#s

¢ (K" = AM" = X M),

A / 2
2 [pT(K' — A\M')9,]
- )\/ T ! s S .
D M, + v}l . I, + (4.2)

¢’£(K1/ o )\ M// - )\/ Ml)¢s

A
¢T(K B /\ M )¢U:|
Z As — Ay

+ ¢l (K" — AM" — 2\ M) b,

v=1,v#s

78



When another distinct eigenvalue ), is close to Ay, the only term in (4.2) that depends

1 .
on oo 1S

2[¢T (K~ AM)e,]”
Xs,t - )\s — )\t

(4.3)

where x,: is the coupling factor between \; and A, and it is for the locus of A;.
Replacing the subscript s with ¢ in equation (4.2) yields the second order eigenvalue

derivative for A; as

A T (1! / 2
2 K — \M)o,
= 3 2O CAMIG] g o axMg (1)
v=1,v#t /\t B /\U

The term that depends on ﬁ in (4.4) is

C2[pf (K~ AM) g,
- A — s

Xt,s (45)

where x; s is the coupling factor for the locus of ;. Because A\; = A\; and [qth(K’ — )\tM’)q_’)S]

is a scalar, the fact that the transpose of a scalar is equal to itself gives

(7 (K' = AM)ob,] =[] (K' = AM)p,] "

(4.6)
= (¢ (K' = AM)¢y] ~ [¢] (K' = A\,M') ]
Application of (4.6) to (4.3) and (4.5) yields
Xt,s ~ —Xs,t (47)

Equation (4.7) shows that the coupling factor for \; is approximately equal to that for
As with the opposite sign. The evaluation of [xs:, Xs) for the unperturbed system
(i.e., p = p°) quantifies the strength of the veering between the loci of A\, and \; as
follows [59,80]. Larger |xs:| and |x¢s| (the absolute values for these coupling factors)
indicates sharper changes of the loci and stronger veering. If x,: = x¢s = 0, the loci

of A\ and )\; cross each other instead of veering.
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Lin and Parker [59] extends the above quantified veering detection method to
degenerate eigenvalues of planetary gears. Let Ay = A;11 = --- = Agypy_1 be a
degenerate eigenvalue with multiplicity m. The general form for the second order

derivatives of the degenerate eigenvalue is [29,59]

2 2 [¢T (K — \M) ¢, ]
Z /\z - )‘v

N = + ¢! (K" — \MM" —2XM')¢p;  (4.8)

v=1v#s, -, stm—1

where ¢ = s, ---, s+ m — 1. If a distinct eigenvalue \; is nearly equal to this

degenerate eigenvalue when p = p°, collecting the terms in (4.8) that depend on /\i 5

yields the coupling factor for the locus of \; as

_2[¢f (K — MMy’
Xz,t - )\Z _ )\t 9

i=s, -, s+m—1 (4.9)

Considering Ay = Agy1 = --- = Ag1m—1 and collecting all the terms that depend on

1
At—As

in equation (4.4) give the coupling factor for \; as

T2 [ (K = M)’

Xto(ssstm=1) = 3 " (4.10)
k=s s

If another degenerate eigenvalue \; = A\y1 = -+ = A1 with multiplicity n
is close to the degenerate eigenvalue Ay = A1 = -+ = A\gpm_1 When p = p°, the

coupling factor for the locus of A\, (x =s, -+, s+m—1) is the sum of all the terms

1
As—At

t+n—1 T / / 2
2|, (K — M)y
Xz, (t, t+n—1) = Z [ Y ] , x=8, -+, 85+m-—1 (4.11)
k=t s

that depend on in equation (4.8) and it is

Replacing z (x=s, -+, s+m—1)withy (y=t¢, - -, t+n—1) in equation (4.8)

1
At—As

and collecting all the terms that depend on produce the coupling factor for the

locus of A\, as

s+m—1 2 [d)g(K/ o )\yM/)d)k]2

Xo(srstm—1) = ) " Jy=t, -, t+n—1  (412)
k=s s
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4.4 Natural Frequency Veering and Crossing Pattern for Tuned
Parameters

Tuned parameters refer to the group of system parameters whose variation does
not break the axisymmetry of any planet set in a general compound planetary gear.
Based on the eigensensitivity analysis results in previous chapter, tuned parameters
can be classified into three groups: rotational, translational, and planet tuned pa-
rameters. Because any rotational mode is independent of the change of translational
stiffness (bearing or shaft connection) and the change of masses in any component.
Hence, only the rotational bearing and shaft connection stiffnesses for carriers and

i J jn ih ij ; : ;
central gears (kg g, K7y 095 K ke op> Ky o) and the moments of inertia of carriers

99,001
and central gears have impact on rotational frequency loci. These parameters are

rotational tuned parameters in this study. All translational bearing and shaft connec-

tion stiffnesses for carriers and central gears (k%,, k?,, k" ki

oy K, ki, k#) and the masses

of carriers and central gears are translational tuned parameters in this investigation,
because they only impact translational frequencies and their associated modes. kg;,lm,
kilma, k;,lf;q, kim mim and I'™ are system parameters that associated with certain
planet in a specific planet train of stage i. The change of any of these parameters
will cause stage ¢ to lose its axisymmetry. There is only one way to change these
parameters while keeping stage ¢ tuned. It is to change these parameters in all the
trains of stage ¢ instead of just in a specific planet train. Such parameter variations
are also considered to be tuned, and these parameters that impact all the trains in
the same stage (kg;*m, k;’;mq, k;trzq, k;*m, m;*m, and ]I’;*m) are planet tuned parameters.

Because all compound planetary gear natural frequencies and their associated

vibration modes are classified into three different types: rotational, translational,
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and planet, the veering and crossing of the two approaching natural frequency loci

always fall into one of following six cases.

(A) Two rotational frequency loci:
Rotational tuned parameters impact rotational frequencies [36]. Taking k;b’%
as a representative example for rotational tuned parameters, the veer/crossing
of two rotational natural frequency loci with respect to the change of k;b’% is
explained as follows.

Let Ay and \; be two rotational eigenvalues. Application of equations (4.3) and

1
As—At

(4.5) directly (or extracting the terms depending on in equation (B.3))

gives the coupling factors of \; and A\ with respect to k;b 00 38

J 2(67 .67 )2 J
i = T - (4.13)

where (9;'78 and Q;t are the rotations of central gear j in rotational modes s and
t, respectively. If 0578 =0 or Ogvt = 0, the coupling factors in equation (4.13)
are equal to zero, and the loci of A; and \; cross each other when k;b,% varies.
The modal properties of rotational mode [53], however, show that the rotation
of central gear j is not zero in all rotational modes except the rigid body mode.
Therefore, two rotational loci always veer away when k;bﬁ@ is changed. Following
the same process, the veering/crossing patterns of two rotational frequency loci
with respect to the change of other rotational tuned parameters are determined
and the results are the same as that for kzb,ee-

The eigensensitivity analysis results in previous chapter indicate that planet
tuned parameters have impact on rotational frequencies as well. Use kg;*m as

the example for planet tuned parameters. Insertion of (3.18) into equations (4.3)
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and (4.5) (or collecting the terms depending on &% in equation (3.22)) and

At

application of the rotational mode properties give the coupling factors of A; and

As with respect to k2" as

B 2

Xs,t - )\5 . At

Jixm
kgP
t,s

i Sjixm SJURMN2
(C 6g,s 5g,t ) - X

(4.14)

where 5;?;”‘ and (5;? " are the mesh deflections between central gear j and planet
m in all trains of stage ¢ in modes s and ¢, respectively. Because the modal
properties of rotational mode indicate that 5;?;”‘ and 5;? " are not equal to
zero except in the rigid body mode, the two rotational loci veer away with the

variation of kg;*m. The same result applies to other planet tuned parameters.

Two translational frequency loci:

Translational tuned parameters alter translational frequencies. Use k;b as a rep-
resentative example for veering/crossing detection of two approaching transla-
tional frequency loci. Ay = A\¢41 and \; = A;y1 are two translational eigenvalue

loci. Application of equations (4.11) and (4.12) directly (or collecting the terms

depending on —+ in (B.4)) yields

>\S_>\t
; ; o o ) ) ) ,
kovoo  Kaveo 20} wystyy )22 1 xg s VY, 1 190,8)°
Xsip = Xs41 = o YN , , . .
J J J J J J 2 J J J J 2
ngbﬁe _ ngbﬁe _ 2(xg,txg,s+l+yg,tyg,s+l) +2($g,t+lxg,s+1+yg,t+1yg,s+l)
s+1,t s+1,t+1 >\s+1_>\t 4 15
] ] o o Aso o .
kivoo  Kgneo 20 srystyy 1yg,s) 2@y ) oty Yl oi1)? ( )
t,s — Ats+l T ) ] A=A ] ] ) )
J J J J J J 2 J J J J 2
Kb.00 _ ngbﬁ@ 2105 Yg 0 11Y9,9) 2T g e 1 Ty s g 1 Ygs11)
trl,s — Xt1l,s+1 — Ar1—As

where (Zg.5,Yg.s), (€g,5+1,Yg.54+1)s (Zg1,Ygt), and (Tg 441, Ygu41) are the translations
of central gear j in translational modes s, s + 1, ¢, and ¢ + 1, respectively. Be-
cause the modal properties of translational modes ensure non-zero translations

of central gear j in all translational modes, the coupling factors in (4.15) are not
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equal to zero. As a result, the loci of two translational frequencies veer away
when k;b varies. It is the same for other translational tuned parameters.

Eigensensitivity analysis in previous chapter shows that planet tuned parame-
ters have impact on translational frequencies. Let kg;*m be the representative

example. Insertion of (3.18) into equations (4.11) and (4.12) produces

ct ct
Jilm cjilmyg jilm ¢cjilm 2
Jikxm Jixm 2(2 69,3 4 t ) +2(z 5973 g t+1)
k k 9, 9,
gp gp =1 =1

Xs,t - Xs,tJrl - As— At
¢ jil jil < jil jil
wm wm wm wm
kjixm giixm 202 5g Y100 )2”(2 AN A
gp — gp _ =1 =1
X1t = Xstl+1 = As+1—At (4 16)
C iil il C il il
i g XS RIS gl
Xt,s - Xt,s+1 - . At —Ns .
ct ct
- - i il
I ixm I ixm 2(X 55)?S$1557?t1n1)2+2(z %Tsmazftrl)g
gp _ gp — =1 =1
Xt+1,s = Xt+l,s+1 = N1

To vanish the coupling factors in (4.16), the gear mesh deflections should satisfy
o7itm — (53?2:1 =0 or (%me = (5;'?;;”1 = 0, where 670w =5, s+1,t, t+11is
the mesh deflection between central gear g and planet m in train [ of stage i in
vibration mode w. It is, however, impossible according to the modal properties
for translational modes. As a result, the loci of translational frequencies always
veer away as kZ&™ is altered and the same conclusion applies to other planet

gp

tuned parameters.

Two planet-mode frequency loci:

Because central gears and carriers have no rotational or translational motions in
any planet mode, the change of any rotational or translational tuned parameters
has no impact on any planet-mode natural frequencies. Planet tuned parameters,
hence, are the only parameters that impact planet mode. Ay = --- = A;4,,—1 and

At = -+ = M1 are two sets of planet-mode eigenvalues with multiplicity m
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and n, respectively. Use kg;*m as the example. Insertion of the related eigensen-

sitivities in (3.28) and planet mode properties into equations (4.11) and (4.12)

yields
Jixm t4+n—1 Q(Zi 5§fémagf2m)2
gp I =1 J—
Xa, (b, t4n—1) — kzt — o 0 E=8 o, stm—l ( )
- i 4.17
pdiem s+m—1 Q(Zi 5gfém6;f§cm)2
— =1 —
vag(’;...,erm_l) = kZ — oL Y=t e ttn— 1
=s
If the planet modes associated with A\; = --- = A\gy o q and Ay = -+ = ANy
belong to different stages, the planet modes associated with A\; = --- = A\s 1
are decoupled with those for A, = --- = \;;,,_1. Therefore, 5;i,im = 0 in equation

(4.17) and the loci of the two planet-mode frequencies cross each other.

If the modes associated with A\; = -+ = A;,,-1 and Ay = -+ = A4, 1 are
affiliated to the same stage (m has to equal n in this case), the coupling factors
in (4.17) are not equal to zero because the planet mode properties guarantee

Jikm

that there are always mesh deflections for £}

The same result applies to other planet tuned parameters with the exception that
the planet-mode frequency loci of the same stage may cross each other when the
planet-mode frequencies are distinct, the associated modes are decoupled, and
the varying parameter is k;lm, m;lm, or I;lm. The details of these exceptions are

covered in [59] and this study will not repeat it.

One rotational frequency locus and one translational frequency locus:

As is the rotational eigenvalue and A\; = M;y; is the translational natural fre-
quency. Because rotational tuned parameters have impact on A; but not on trans-
lational frequencies and translational tuned parameters can change \; = A\i11
while keeping rotational frequencies untouched, this case is separated into two
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situations: the change of a rotational tuned parameter and the variation of a
translational tuned parameter.

Consider k;b’% as a representative rotational tuned parameters. Application of

equations (4.9) and 4.10 (or collecting the terms depending on = 5, in equation
(B.3)) gives

kovoo  Kopeo 2007 ,65.5)2+2(0) ., 1605)°

st,t - Xs,t.—I—l. - As—A¢

k4 00 _ 2(6] ,64,5)° (4.18)

£,s At—=As

knoo 200 ,4109,5)

t+1,s At+1—As

Because the modal properties of translational mode ensure that Q;t = ngt 41 =0,
the coupling factors in (4.18) equal zero. The locus of the rotational frequency
As, hence, crosses the locus of \; = A1 when k;b,% is changed. It is the same
for other rotational tuned parameters.

When k;b’ is the perturbed parameter, application of equations (4.9) and 4.10

1

(or collecting the terms depending on in equation (B.3)) yields

As—At
j j o o ) ) ) )
kgtb o kgb,ele o Q(IZ;,tx]g,s*yg];,tszLs)2+2($§,t+1x§,s+yi],t+1yzj),s)2
5,1 - s,t+1 T As— At
J Jj .. Jo.J 2
ngb — 2($g,tx973+yg,ty9,3) (419)
ks A= As .
2
ngb _ 2(x;,t+1$57,5+yi],t+1y57!5)
t+1l,s = At—As

According to the modal properties of rotational mode, 27 , and yJ , are all equal
to zero. The coupling factors in equation (4.19), hence, are zero and the locus of
A+ = A\q1 crosses that of Ay with the change of k;by. The same result applies to
other translational tuned parameter. Summarizing both situations in this case,
one rotational frequency locus always crosses the loci for translational frequen-
cies with the variation of any rotational or translational tuned parameter.

Different from rotational and translational tuned parameters, planet tuned pa-

rameters can change both rotational and translational frequencies. Let kg;*m be
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the perturbed parameter. Insertion of (3.28) into (4.9) and 4.10 produces

Ci Ci
jil jilm 2 jil jil 2
k;;*m 2(121 (%TSM sztm) +2(l¥1 éggm azftrl)

k]’i*m
gp P —
Xsit = Xs+1 = Xs—Ae
CZ .. .
l )
piiem 200 85T 6g™)? (4.20)
ap _ =1 :
Xts = "X
2
w2 0 )’
Xt+1l,s = Net1—Xs

The modal properties of rotational modes ensure

6jilm — 6ji*m (421)

9,8 9,8

and the translational mode properties yield

jilm Tilm s Tilm jilm
{ (%%m ] = { CO-S#)%zm Sm#ﬁz‘zm ] [ %flm ] (4.22)

0y 141 —siny cos Y 00
The coupling factors in equation (4.22) vanishes after the insertion of the identi-
ties in (4.21) and (4.22) into (4.22). The locus of a rotational frequency, hence,

are free to cross the loci of translational frequencies when kg;*m varies. The same

result applies to other planet tuned parameters.

(E) One rotational frequency locus and one planet-mode frequency locus:
Because translational tuned parameters have no impact to rotational or planet-
mode frequencies, rotational and planet tuned parameters are studied in this
case. Application of the same analytical process as that in Case D produces the
result that rotational natural frequency loci always cross the loci of planet-mode

frequencies when any rotational or planet tuned parameter is changed.

(F) One translational frequency locus and one planet-mode frequency locus:
Compound planetary gear modal properties ensure that rotational tuned param-
eters do not affect translational or planet-mode frequencies. Translational and
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planet tuned parameters, hence, are the only impacting parameters in this case.
Application of the same analytical process as that in Case D gives the result
that translational natural frequency loci are free to cross the loci of planet-mode
frequencies as any translational or planet tuned parameter varies.

Table 4.1: Veering (V) and crossing(X) pattern of a

general compound planetary gears with respect to the

change of any rotational tuned parameter. R means Ro-
tational mode, T" means Translational mode, P means

Planet mode. — indicates that no veering/crossing is
possible.
Mode Types | R | T | P
R - X | -
T X|V]X
P -1 X | -

Table 4.2: Veering (V) and crossing(X) pattern of a
general compound planetary gears with respect to the
change of any translational tuned parameter. R means
Rotational mode, T" means Translational mode, P means

Planet mode. — indicates that no veering/crossing is
possible.
Mode Types | R | T | P
R VIX|X
T X|—-|-
P X|—-|-
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Table 4.3: Veering (V) and crossing(X) pattern of a
general compound planetary gears with respect to the
change of any planet tuned parameter. R means Ro-
tational mode, T means Translational mode, P means
Planet mode. V/X indicates that both veering and cross-
ing are possible.

Mode Types | R | T | P
R VIiX| X
T X|V] X
P X | X |V/X

The veering and crossing pattern of a general compound planetary gear with
respect to the change of any rotational, translational, and planet tuned parameter
are illustrated in Tables 4.1, 4.2, and 4.3, respectively. The natural frequency veer-
ing/crossing phenomena of the example system in Figures 4.1, 4.6, and 4.7 confirm
the patterns in these tables. In Figure 4.1, the loci of a pair of translational frequen-
cies (wy7, wig) cross the locus of the rotational frequency (wig) and veer away from
another pair of translational frequencies (wsg, wo1) when k;b’ varies. Figure 4.6 shows
that the locus of a rotational frequency (ws7) crosses the loci of a pair of transla-
tional frequencies (wsg, wsg) and veers away from another rotational frequency (wgp)
when k2, 55 is changed. Figure 4.7 illustrates that the loci of a pair of translational
frequencies (wss, wsg) cross the locus of a rotational frequency (ws7) and veer away
from another pair of translational frequencies (wss, wsg) When k,*! is altered.

4.5 Natural Frequency Veering and Crossing Pattern for Mis-
tuned Parameters

.. . ‘l . . .
kJam glma BT kD™ mil™ and I are the only parameters that can break the

axisymmetry of stage ¢ and they are mistuned parameters. Similar to the previous
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Figure 4.6: Natural frequency crossing and veering phenomena in the example system
when k7, 5, changes.
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Figure 4.7: Natural frequency crossing and veering phenomena in the example system
when k;2*! changes.

section, six cases are discussed based on the structured modal properties of compound

planetary gears.

(A) Two rotational frequency loci:

As and ), are two rotational eigenvalues. Take kJ!'™ as the representative exam-

ple. Insertion of (3.18) into (4.3) yields

Eiilm 2 m ciilm dilm
Xsi = m(fw,; ST = =, (4.23)

According to the rotational modal properties [53], 67'1™ and 47" are not zero

g5t
if neither mode s nor mode t is a rigid body mode. Hence, A; and \; veer away
if k)7 varies and breaks the axisymmetry of stage i. It is the same for other

mistuned parameters.
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(B) Two translational frequency loci:
As and Agyp are a pair of translational frequencies. Let kJ!'™ be the perturbed
parameter. Due to the break of system symmetry caused by mistuned parame-
ters, the loci of A, and A,y split as kJ}'"™ varies (Figure 3.5). That is, the locus of
As crosses that of A\g1q. Such crossing can not be explained by the coupling fac-

tors in equations (4.11)and (4.12), because —,0 does not exist. Instead,

N S |
)\5*)\5+1 p
equation (4.1) provides the answer directly. Insertion of the eigensensitivities in
(3.56)-(3.58) into (4.1) gives

11 A jilm cjilm
Ao = A4 e(87m)2| Lo 4+ 1e2 3 200000

9,8 Ao —\ |p:p°
v=1,v#3s,5+1 s (424)
N o P o
)‘S+1 - )‘s—f—l - )\s
g A o(57km s7ilm)
jilm 9.0 Og.s :
Because (67',™)° |,=p0 and > el |p=p0 are not equal to zero in
v=1,v#s,5+1

translational modes, the locus of A, changes as kJI'™ varies. Ayi1, however, is
not impacted by EJI'™. Hence, the locus of changing A, naturally crosses the
locus of unchanged A;,;. Now consider two pairs of nearly equal translational

frequencies Ay = Ay 1 and A\, = \yq. Insertion of equation (3.55) into equations

(4.11) and (4.12) produces

T T 2 P
s,t — Asit+1l T As—A

A A o Lt A

Xttt = Xotdtdl = 70 50 X0y (4.25)

AN L (. Vg L |

Xt’fum B Xt’fjri B o(giilm 5]'1')1‘%7)‘25 o(siilm giilm \2

X, = i = MRt

) ’ —As

Because 671lm, 67" §7%"™ and 67'/7} are not equal to zero in a translational
mode, the coupling factors in equation (4.25) are non-zeros. As a result, the loci
of A and Agyy veer away from those for A, and A1 when kJIM™ is perturbed
and stage ¢ becomes mistuned. Other mistuned parameters impact two pairs of
nearly-equal translational frequencies in the same way.
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(C) Two planet-mode frequency loci:
As = -+ = As1m—1 are planet-mode frequencies with multiplicity m and k‘g;}m is
the perturbed parameter. Insertion of the eigensensitivities in (3.60)-(3.61) into

(4.1) yields

. A jilm cjilm
.= \° + 6(53@1771)2’ _ o0+ 162 Z 2(dg,v _69,5 ) ‘ _ 0
s s g,s pP=p 2 o=l stm1 As— Ay p=p (426)

Ast1 =" = Asym—1 = A§

Because planet mode properties ensure that (5;{1”‘) is not zero, the locus of
changing A\, naturally crosses the loci of Agy1, -+, Asipm_1 which are straight
lines. For such frequency loci crossing, coupling factors do not exist. Similar
to Case B in this section, insertion of the eigensensitivities into equation (4.1)
provides the answer to such crossing phenomenon.

Consider another case that two sets of planet-mode eigenvalues, Ay = --- =
Asgm—1 and Ay = - - = Ay, 1, are close to each other when kJ/'™ is at its nominal
value. If Ay, -+, A1 are completely decoupled with A;, -+ Aypq (e,
they are planet-mode frequencies of different planet sets, or they are distinct
planet-mode frequencies and decoupled with the varying parameter being k;lm,
mi™, or '™ [59]), direct application of (4.11) and (4.12) gives zero coupling
factors. Thus, the loci are free to cross each other in this situation. If the
two sets of planet modes are not decoupled, both sets of planet modes have
to be for the same stage and their multiplicity should be equal. Insertion of

the related eigensensitivities in (3.60)-(3.61) and planet mode properties into

equations (4.11) and (4.12) yields

jilm t+n—1 jilm cjilmno
KI5 B 2065, 60°,™) B
X;c,(t,---,t+n_1) - kzt S YOS VR r=s, -+, s+m-—1
pIitm s+m—1 2(agilllm6ji]1€m)2 (427)
gp _ . .
Xysrstm—1) = 20— aoa o Y= hoos b 1
=s
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The fact that 6" is not zero in any planet mode leads to non-zero coupling
factors in (4.27). The loci of Ay, -+, Asym_1, hence, always veer away from
the loci of Ay, -+, Apyn1 in this case when kJM™ is changed. The same results

apply to other mistuned parameters.

One rotational frequency locus and one translational frequency locus:

When k771 is the perturbed parameter, insertion of (3.55) into (4.9) and 4.10

produces
Ko™ kg 2008 0P A28 8 )
s,t - Xs,]tjlrnll j;m , s —N¢
kgp™ _ 2(8g,s g ) 4,98
Xts = M, ( 28)
. ANt As
Ky _ 200" 8)?
Xt+1,s At41—As

Different from Case D for tuned parameters, the identities in (4.21)-(4.22) can
not be applied to (4.28) because only the central gear-planet mesh spring in
train 1 deforms. The coupling factors in (4.28), hence, do not vanish and veering

occurs when 67" changes. It is the same for all other mistuned parameters.

One rotational or translational frequency locus and one planet-mode frequency
locus:

Application of the same analytical process as that in Case D in this section yields
the result that rotational or translational natural frequency loci always veer away

from the loci of planet-mode frequencies as any mistuned parameter changes.

The above results for the veering/crossing patterns for mistuned parameters are

summarized Table 4.4. Compared to Tables 4.1-4.3, Table 4.4 shows more occurrences

of veering. The natural frequency veering/crossing phenomena of the example system

in Figure 4.8 confirm the results in Table 4.4. Figure 4.8 shows that one of the pair

of translational frequencies, wss, crosses the locus of other translational frequency of
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the same pair, wss when k,)'* changes, and similar crossing phenomenon happens to
another pair of translational frequencies, wsg and wsg. Such split of translational fre-
quency loci are caused by the break of axisymmetry as analyzed previously. Different
from Figures 4.6 and 4.7, the rotational frequency locus (ws7) in Figure 4.8 veers away
from the translational frequency locus (wsg) as predicted in Table 4.4,

Table 4.4: Veering (V') and crossing(X) pattern of a gen-
eral compound planetary gears with respect to the change
of any mistuned parameter. R means Rotational mode, T’
means Translational mode, P means Planet mode. V/X
indicates that both veering and crossing are possible.

Mode Types | R | T P
R ViV Vv
T VIiV/X| V
P Vi Vv |V/X

4.6 Conclusion

This study thoroughly investigates the natural frequency veering and crossing
of general compound planetary gears. By checking whether the axisymmetry in all
stages are retained, all system parameters are divided into tuned and mistuned pa-
rameters. Tuned parameters are further classified as rotational, translational, and
planet tuned parameters based on the eigensensitivity analysis result of previous
chapter. Taking advantage of the coupling factors which are effective measurements
for the veering of natural frequency loci and utilizing the structured modal proper-
ties, the veering/crossing patterns with respect to each group of tuned parameters
are determined. The veering/crossing patterns for mistuned parameter are derived

in a similar way. Different from the veering/crossing patterns with respect to the
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Figure 4.8: Natural frequency crossing and veering phenomena in the example system
when kM changes.

change of tuned parameters, the veering/crossing patterns for mistuned parameters

have more occurrences of veering due to the break of axisymmetry.
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Chapter 5: ANALYTICAL DETERMINATION OF MESH
PHASE RELATIONS IN GENERAL COMPOUND
PLANETARY GEARS

5.1 Introduction

Previous research shows that for a simple planetary gear different mesh phases
between the multiple sun-planet and ring-planet meshes significantly influence the
dynamic response [5,48,56,61,75,77,86,87,94,97]. From these studies, one would
expect that proper selection of mesh phases will also reduce the vibration and noise of
compound planetary gears. In order to properly optimize mesh phases in the design
stage, a complete understanding of all the mesh phase relations in general compound
planetary gears is needed. Any static or dynamic model must accurately represent
the mesh phases. This study presents these mesh phase relations.

A rotational-translational model for general compound planetary gears was de-
veloped by Kiracofe and Parker [53] to characterize modal properties. In this model,
each component has one rotational and two translational degrees of freedom. Bearings
and shaft connections are modeled by one torsional and two translational stiffnesses.
Gear meshes are modeled by linear stiffnesses. Because the number of teeth in contact
changes as the system rotates, the mesh stiffnesses vary, exciting the system vibra-
tion. To introduce time-varying mesh stiffness or static transmission error excitation
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to Kiracofe and Parker’s model or any similar one, it is crucial to know the relative
phases between all gear meshes in the system as the gears rotate. Such calculations
require the mesh phase relations in this study.

Parker and Lin [77] clarified the mesh phase relations for simple planetary gears.
The mesh phase relations of general compound planetary gears have not been studied
in the published literature except that Guo and Parker presented their preliminary
investigation on compound planetary gear mesh phasing in [54]. The difficulty is that
the variety of compound configurations and the large number of gear meshes make
description of the mesh phase relations difficult. In addition, the gear meshes in a
compound planetary gear may have different mesh periods. The purpose of this study
is to systematically define all the relative mesh phases in a general compound plan-
etary gear, to define the relative phase relations between the meshes with different
mesh periods, and to give a comprehensive approach to calculate these relative phases
and the relations between them.

The derived results are required for any simulation that does not track the ac-
tual tooth contact conditions of geometrically precise gears and teeth as the gears
rotate. Most commercial gear software does not track this contact; instead they use
lumped stiffness representations of the tooth mesh. The same is true for conventional
lumped-parameter gear models used in the literature. The results herein provide all

needed results to calculate the required phases.
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5.2 Relative Phases for Meshes with Different Mesh Periods

5.2.1 Definition of Relative Phases

The mesh phase relations in this study are described by the relative phases between
mesh tooth variation functions. Mesh tooth variation functions track the number of
teeth in contact at each gear mesh as the gears rotate. These functions take only
integer values. Actual mesh stiffness and static transmission error variations are
continuous functions whose mesh phase relations are identical to those of mesh tooth
variation functions [77], even though the shape of those periodic quantities are not the
rectangular functions studied here. The shapes of any of these quantities is immaterial
here. Our purpose is to examine only the phases between these quantities.

To accurately describe relative mesh phases in compound planetary gears, it is
necessary to define the following terms: referred mesh, referring mesh and reference
point. A referred mesh is the gear mesh that serves as the reference for other gear
meshes. A gear mesh that refers to the referred mesh in a certain relative phase is
called the referring mesh. For example, in Figure 5.1 gear meshes A and B are the
referred and referring mesh, respectively, for the relative phase v%. Reference points
are the matching points in the mesh cycle of the referred and referring meshes. The
reference point in the referred mesh can be any point in the mesh cycle. The reference
point in the referring mesh must be the point that uniquely matches the reference
point in the associated referred mesh. In this study the pitch points of the referring
and referred meshes serve as the reference points for all relative phases. One could
also choose, for example, the highest point of single tooth contact. The choice of
reference point is arbitrary and does not affect the results that follow.

The definition of a relative phase between two meshes with different mesh periods
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Figure 5.1: Mesh tooth variation functions for k%(¢), k2(t), and k¢ (t). The relative
phases among these meshes are marked. The symbol x denotes the time when the
pitch point of the associated gear mesh is in contact.
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is described in Figure 5.1. The mesh periods of meshes A and B are T# and TZ,
respectively. Mesh A is the referred mesh, and mesh B is the referring mesh for the
relative phase 7%. The mesh tooth variation function of mesh A is k4 (¢) with the
pitch point in contact at ¢ = t;. The mesh tooth variation function of mesh B is

kB(t). The pitch point of mesh B is in contact for the first time at ¢, (t; > ¢1). Then

the relative phase of k”(t) referring to k*(t) is 75 (t1) = 255, where t is called the
referring time of this relative phase. Therefore, the value of v%(#;) is between 0 and
1, and v5(t1)T? is a portion of the referring mesh period T?. The referring time
of a relative phase is the time when the reference point (i.e., the pitch point) of the
referred mesh is in contact. The referring time between gear mesh A and B in Figure
5.1 can also be at t; + nT“, where n is any integer.

According to the above definition of relative phases, when mesh A and mesh B
have the same mesh periods, the relative phase between gear mesh A and B remains
the same for any choice of reference point (or referring time). There is no need to
specify the referring time in this case, and 7% (t;) simplifies to v5. Otherwise, the
referring time must be specified.

The above definition of relative phase provides a way to determine the relative
phase between any two gear meshes that have different mesh periods. For the example
shown in Figure 5.1, the mesh tooth variation function of mesh B is kZ(t), and the
pitch point of mesh B is in contact at t = t,. kP(7) is a time-shifted mesh tooth
variation function of mesh B. Tts shape is identical to kP (t) but its origin (7 = 0) is
shifted to be mesh B’s reference or pitch point. The absolute time is ¢; 7 is a relative

time coordinate with 7 = 0 being when mesh B is at its reference point. Because

the pitch point of mesh B is in contact at ¢ = ¢5 in Figure 5.1, the time-shifting

101



relationships between kZ(¢) and P (7) are

KB (1) = kP (t + t)

(5.1)
T=1+4+1
Applying the definition of v§(#1), 5 in term of v (¢,) is

The mesh tooth variation functions x?(7) for all the mating gear pairs are typically
generated by straightforward gear geometry analysis or gear design software, with
each mesh having its own 7 = 0 corresponding to a particular reference point in that
mesh’s mesh period. These functions do not depend on the system configuration.
Changing back to t as the absolute time and applying the relationships in equations
(5.1) and (5.2), the mesh tooth variation of mesh B as a function of absolute time,

which is the crucial quantity, is
kP (t) = kP (t =75 (t) TP — 1) (5.3)

Equation (5.3) shows the important role of relative phases in the correct repre-
sentations of mesh tooth, stiffness, or static transmission error variation functions.
Because the correctness of any static or dynamic compound planetary gear analysis
relies on the correct representations of these functions at each gear mesh, the relative

phases are critical.
5.2.2 Special Algorithm for Relative Phase Calculations

Figure 5.1 shows the relative phases among meshes k4 (t), kZ(t), and k¢ (¢). Gear
meshes A and B are at their pitch points at ¢; and t,, where t, = t; + 7% (¢;)T5.
Suppose 75 (t1) and 7§ (t,) are known relative phases. Because meshes A, B, and C
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may have different mesh periods, the direct addition of 4% (¢;) and v%(t,) does not
yield 79 (t1). The following algorithm is needed to find 7§ ().
According to the definition of v§(ty), t3 = to + 75 (t2)TC is the time when mesh

C is at its pitch point for the first time after 5. As shown in Figure 5.1, mesh C'

t3—t1

experiences multiple mesh periods from #; to ¢3. Therefore, <=

might be greater
than 1 and can not be used directly as the value of v§(¢;). The operator dec( ) is
needed to force B to be within the range of [0,1]. When the argument of dec( ) is
positive, the operator drops the whole number part and keeps the decimal part, for

example, dec(1.2) = 0.2. When the argument is negative, its output is the decimal

part of the argument plus 1, for instance, dec(—1.2) = 0.8. Thus, 7§ (t;) is calculated

ts3 — 1
/yg(tl) = dec( 3TC 1)

as

C TC _

— dec (73@2) TCJF L tl) (5.4)
C t TC Bt TB

— dec (VB( 2) ;CVA( 1) )

When T4 = TP = T no referring time is needed, and equation (5.4) simplifies to

v§ = dec (V5 +15) (5.5)

Likewise, when ~% (t,) and 7§ (¢,) are known, the relative phase of mesh B referring
to mesh C'is determined as follows. The times t3 = t;+79 (t;)T¢+T¢ and t, = t3+T°¢

are the times when mesh C' is at its pitch point. Each one of them can serve as the
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referring time for 75. Choosing the referring time ¢, as the example, 75 (t4) is

ts — 1 to —t
8 (ty) :dec( 5TB 4) = dec( QTB 4)

— dec (Vf(tl)TB ke t‘*) (5.6)

TB

e (ny(tl)TB - fégB(tl)Tc - 2TC)

where t5 is the time when the pitch point of mesh B is in contact for the first time

after t4, and to = t5 — 2T'%. When T4 = T8 = T, equation (5.6) simplifies to

V& = dec(v —9) (5.7)

5.3 Mesh Phase Relations of General Compound Planetary
Gears

5.3.1 Numbering of the Components in Compound Plane-
tary Gears

Precise numbering of each component is necessary due to the complex structures
of compound planetary gears. Suppose there are a stages numbered as 1,2,--- a.
It is convenient to sequentially number the stages from input stage to output stage.
The total number of central gears (i.e., sun and ring gears) of the system is b, and
these central gears are numbered as 1,2, ---,b. For typical compound planetary gears
(there is only one sun gear and one ring gear in each stage), s and r' represent the
central gear number of the sun gear and ring gear of stage i, respectively. For non-
typical compound planetary gears, s** and r“Y represent the central gear number
of the xth sun gear and the yth ring gear of stage i. The discussion in the rest
of this investigation focuses on typical compound planetary gears because the only
difference in the derivation of the mesh phase relations between typical and non-
typical compound planetary gears is the numbering of the central gears.
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The concept of a planet train is illustrated in Figure 5.2. The number of planet
trains in planet set i is ¢*. Train 1 is chosen arbitrarily within the planet set. All
other planet trains in planet set ¢ are numbered sequentially in the counter-clockwise
direction. Each planet train has d° planets. The numbering of the planets in any
planet train is as follows: the planet in mesh with its associated sun gear is numbered
as planet 1 of the planet train; the planet next to it in the train is numbered as planet

2; the rule continues until planet d’ is numbered.

5.3.2 Definitions of Relative Phases in Compound Planetary
Gears

All gear meshes in a compound planetary gear are classified into meshes between
a central gear and a planet (gear-planet meshes) or meshes between two planets
(planet-planet meshes). k7I™(t) represents the mesh tooth variation functions of the
mesh between central gear j and planet m in train [ of planet set i. kﬁ;”q (t) is the
mesh tooth variation between planet m and planet ¢ in train [ of planet set 7. The
associated mesh periods are ng}ilm and Tzfémq . With the previously defined numbering
convention, kJ™ is either k;;”l or k;;“di, and k™ is actually Jolm(met1)
The relative phase for kggm and k;lpmq being the referred and referring meshes,

respectively, is denoted //747P

Gilm. gp (t1), where t; is the referring time. All other relative

phases are written in the same way.

It is not practical or necessary to calculate all the relative phases between any
two gear meshes. Equations (5.4)-(5.7) indicate that if the relative phases of all
gear meshes referring to the same referred mesh with the same referring time are

calculated, the relative phase between any two gear meshes is known. Such a referred
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mesh is called the base referred mesh of the system.
A. System-level Relative Phases

All the relative phases having the base referred mesh as their referred mesh are
called system-level relative phases. As mentioned above, if all the system-level relative
phases are calculated, the relative phases between any two gear meshes are known.
Therefore, the main objective is to calculate the system-level relative phase of each
gear mesh in the system.

The mesh between the sun gear associated with stage 1 and planet 1 of train 1 in
planet set 1 (k;;m) is chosen to be the base referred mesh in this study, although this
selection is arbitrary. 47%m9P(t;) and AUm4PP(t)) represent the system-level relative
phases of kggm and k;lpmq referring to the base referred mesh with referring time ¢4,
respectively. These are the important quantities, and they are needed for every mesh.
B. Stage-level Relative Phases

If a certain gear mesh in stage i serves as the referred mesh for all other gear meshes
in the same stage, such a referred mesh is called the stage i referred mesh. All relative
phases that use this gear mesh as their referred mesh are stage-level relative phases. In
this study, the gear mesh between the stage i sun gear and planet 1 of train 1 in planet
set ¢ (k21) is always chosen as the stage i referred mesh. 37197 (¢1) and Fmarp(t})
are the stage-level relative phases of kg;lm and k;l;”q , respectively, referring to the stage
i referred mesh with referring time ¢i. The referring time ¢ = t; + 4 1192 (tl)T;;m

s4i11

op  1s in contact for the first time after ¢;.

is the time when the pitch point of mesh k&
C. Train-level Relative Phases

The relative phases of the gear meshes in train [ (kgﬁm and kﬁ;"q) referring to

the matching gear meshes in train 1 (k7' and k)™7) are also desired. Such relative
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phases are called train-level relative phases. Train 1 of stage i in each stage is called
the base train in stage i, and the gear meshes in train 1 of stage i are called the
base-train referred meshes in stage i. They serve as the referred meshes for train-
level relative phases. F71m9p (™92 and ~itmarp(§1MIPP) are the train-level relative
phases of k7! and k!"™ referring to their base-train referred meshes in stage i with
referring times ¢} = t; ++ 45 1L9P ()T AL 4 Fimgp () TIIm and ¢ = ¢, +
AL ()T L 4 Ailmawp (¢ )Tilma  respectively.

Dividing the problem into this structure of system-level, stage-level, and train-
level, relative phases is convenient. One can analyze the simpler stage and train-level
relative phases first. Then, by applying equation (5.4), the important system-level
relative phase of any gear mesh is one of

() i)
—dec {[ jzlm,gp(tjzlm,gp)T]Zlm + :yjz‘lm,gp(tzOTg;‘lm (5.8)

+"A)/Sii11’gp(t1)T;;ini| /T;;lm}

AAmare (ty) = AT (¢)
—dec { [ zlmq,pp( ilmg, Pp)Tzlmq + ,Vlmq pp(tz )T;;mq (5'9)
R Vgl
where i =1,---,a,j=1,---,b,l=1,---, ¢, m,gq=1,---,d*, and ¢ # m.
The definitions of system, stage, and train-level relative phases and equations
(5.8)-(5.9) apply to both spur and helical compound planetary gears with any gear
tooth shape, including profile and lead modifications. Neither of the helix angle or

the detailed gear tooth shape is used in the above definitions or derivations.
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5.3.3 Calculation of Relative Phases in Compound Planetary
Gears
Equations (5.8)-(5.9) show that 451119p Adilm.gp  3ilmapp (i) ~jilm.gp (790 - apd
ilmapp (¢MEPPY are the only phases needed to determine any system-level relative
phases. We focus on the calculation of these relative phases.

A. Calculation of 451197 (¢))

5411
gp

~

45'i1L9p(t,) is the system-level relative phase between k2! and the base referred
mesh with the referring time ¢;. Its appearance in equations (5.8) and (5.9) indicates
that it impacts all the system-level relative phases in stage ¢. It can not be derived

analytically because it depends on manufacturing, assembly, and configuration of the

compound planetary gear. The definition of relative phases shows how to determine

st111

op 1S at its pitch

it by experiment or simulation. Suppose the base referred mesh k
point at t = ;. By locating the time t) when k;;“l is at its pitch point, the relative

phase is

th —t
A° ’11’9]’(151) = dec ( 2 1) (5.10)

sti1l
Tgp

s%i11

where T is the mesh period of £,

In practice one might choose 4° 1:92(¢,) to achieve certain behavior based on static
or dynamic simulations. One can then design the hardware (e.g., the relative clocking
angle between two central gears on a single shaft) to achieve the desired phase.

B. Calculation of stage-level relative phases

AIAmIP (1) and 1M9PP(t) are stage-level relative phases. Applying the numbering
convention, 371792 (¢1) is either 451197 (¢1) or 37492 (1) and A1MPP(t) is actually
Fmm+D.pe (1) where 1 < m < d — 1. According to the definition of stage-level

relative phases, 7% 1192 (¢1) is zero. A7 149p(¢1) and MM DE () are calculated
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below.
If there is no stepped-planet structure in planet set i, all the gear meshes in stage

1 have the same mesh period. Hence, no referring time is needed for such stage-level

riild

relative phases. By applying (5.5) and (5.7) in this case, " "'497 and 7™M+ are
r%i11,gp P
s%ill,g9p ) d' =
1112,pp r*i12,g9p P
/?riildi,gp — dec( Vsiitn 9P + Pyi112 0P ) d' =2 (5 11)
i112,pp il(u41) (u+2),pp riildt gp i
dec </Ysii11,gp + Z zlu(u+1 ,PD + ’yil(di—l)di,pp> d*>2
Does not exist. d =1
1112,pp P
;yilm(mﬂ),pp _ Vsii11,gp d* =2 (5.12)
112, il(u+1)(u+2),pp i
dec (7; zllp;)p + Z zlu (u+1),pp ) d>1

where all needed quantities in (5.11) and (5.12) are analytically determined in terms
of gear parameters by the procedure described in [77] based on gear geometry.
Now we introduce a stepped-planet structure between planet v — 1 and planet v

(1 <wv < d and d' > 2). The gear mesh conditions require that the mesh periods of
)

all the gear meshes before the stepped-planet structure are equal (k;;“l and koot

where 1 < m < v — 2), and all the mesh periods after the stepped-planet structure

ri1ld ilm(m+1)
k and kpp

are equal (] , where v — 1 < m < d — 1). The relative phases

whose referring and referred meshes have the same mesh period are independent of
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the referring time. :y’”i“di’gp(til) and F1mmEDPP(11) are

¢ ri12,9p /4 i
’Ysiin 9P (tl) 1o d — 2
i123,pp (i Top 7P riild®,gp i _ _
dec (73 i1 gp(t ) Ty + Vi123,pp =3, v=2

T1112 pp

112
dec (721. PP _pp

s%i1l,gp Triildi

riilde, : 7
+7@112ppgp(t )) d = 37 v =

) ;
,.)/r ild ,gp(tz1> — le?,pp T1112 pp

dec s 1§11,9p Tr 141d?

+ Z i1 (ut1) (u+2),pp T 2PP
zlu (u+1),pp T 131d?

ilv(v+1), zvavl,
_'_711(15 JQr)()pp) (tl( )( )pp)+

dt—2 o
il(w+1)(w+2),pp | _riildi,gp i
> Yitw(w+1).pp +7i1(di—1)di,pp> d'=4

\ =

(5.13)
( Do not exist. dh =2
Eq.(5.12) d>2 and 1 <m<v—2
i12,pp TEE2PP X il (ut1) (ut2),pp ToL 2 PP
/?ilm(m—i—l),pp(til) — dec (75 1311,9p Tr%w g Z zlu(qul ,Pp TW‘Zle +

tlv(v+1), il(v— 2)(1} 1),
%11(1;—2)(1;]1])1),;; G )+

> Viruusn, p?f””’) d>2 andv—2<m<d -1
\  w=v ’
(5.14)

where t| = t; +4° ’11’9p(t1)T;;“1 and 7DD 46 the time when the pitch point of

k207 is in contact for the first time after £1. All quantities needed in (5.13) and
(5.14) except vfllzifﬁ;)l()fi ) oo (DD PPY e derivable from gear geometry using the

procedure in [77]. 7“”(““)4’?’ (t’ll(” 2)(v—1),pp)

1(0—2)(0—1),pp can not be determined analytically be-

cause it relies on manufacturing and installation of the stepped-planet structure (i.e.,
the relative clocking angle between two planets on a single shaft). It is calculated

from experiment or simulation.

C. Calculation of train-level relative phases
FIimogp (1190 and ilmarp(¢{M9PP) are the train-level relative phases of k7™ and
k™4 referring to their associated base-train referred meshes (k22" and k') with

ilmgq,pp

. _ y y
the referring times ¢ and t" , respectively. Because k;ﬁm and kJ''™ have
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the same mesh period, 59799 (H479P) and ~imaee({ImarPy gmplify to 5719 and

~ilmgq,
~ilma.pp,
. . . . . — 4 . . ol P % = (1
With the numbering convention in this study, 7749 is either 4*'#19P or 47"idd"9p
—J . —7 . — ol P 2y 5 11 i
and F4marp i Fimm+1).pp - The expressions for 4 #hop  Fr'id gp and Fimm+Der are

summarized in Table 5.1. These train-level relative phases are determined by the
tooth numbers of the sun, ring, or planet gears, the relative planet position angle
" (vefer to Nomenclature), the relative planet rotation angle 6™ (discussed later),
and the rotation direction of the sun, ring, or planet gears relative to the associated
carrier. The above definitions differ from the definitions of train-level relative phases
for simple planetary gears in [77] in two ways. First, the planet gear tooth numbers
and the relative planet rotation angle é;lm are present in Table 5.1. Second, the sign
of the argument inside the operator dec( ) is determined by the rotation directions
of the sun, ring, or planet gears relative to their associated carrier, instead of the
absolute rotation direction of the planets. The first difference is caused by the need
to determine the relative phases for planet-planet meshes that do not exist in simple
planetary gears. The second difference is because the sign determination method
in [77] only applies to a restricted set of simple planetary gear configurations. One
of the sun gear, ring gear, or carrier must be fixed for the method of using the
absolute planet rotation direction to determine the sign of the relative phases to
work. For other configurations, such as torque-split differential configurations or
compound planetary gears that contain multiple planet gears in the same train, the
method in [77] fails. The method in this study has no such configuration limitations.
The rotation directions of the sun, ring, or planet gears relative to their associated

carrier are determined by simple kinematic analysis. The sign of the argument inside
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the operator dec( ) for each train-level relative phase is uniquely determined.

In what follows, the derivation of the formulae and the sign determination method
in Table 5.1 are explained. For the sun-planet meshes in stage i, Z j tooth meshes
are completed if the sun gear finishes a complete revolution relative to its associated
carrier (that is, 05—02 = 27). Consider sun gear s’ starting from an arbitrary state.
When this sun gear rotates 1&” > 0 relative to its associated carrier (the rotation

Z;iqﬁil

o tooth meshes are

direction is counter-clockwise due to the positive value of @/A)” ),
completed for the sun-planet mesh in train 1 of stage 7. Let this sun gear’s mesh tooth
variation function be k¢ (t), where ccw in the subscript indicates counter-clockwise

ccw

rotation. The current gear teeth positions of train 1 are exactly the same as those

Z;i’L[J“ )

of train [ before the sun gear rotated 1&“ relative to its carrier. Therefore, dec(=%-

yields the relative phase of the sun-planet mesh in train [ referring to that in train 1
(first row of Table 5.1). When sun gear s rotates —2m + ¢! relative to its associated
carrier (the rotation direction is clockwise due to the negative value of —2m + 1&“),

the completed tooth mesh number for the sun-planet mesh in train 1 of stage 7 is

5t _ 7l
—w. The present gear teeth position for the sun-planet gear mesh of train 1
™
is the same as that for the sun-planet gear mesh of train [ before the sun gear rotated.

Thus, the relative phase of the sun-planet mesh in train / referring to that in train 1 in

73" (—2m+4)

o ), where the negative sign before the fraction in the

this case becomes dec(—
argument is caused by the clockwise rotation (when the sun gear rotates clockwise,

its mesh tooth variation function k. (¢) is equivalent to k. (—t)). Dropping the

L2l

integer part in the train-level relative phase yields ﬁsi’“’g” = dec(— Z;Q:f

) (second row
of Table 5.1). The same analytical process applies to the derivation of the train-level

relative phases for ring-planet gear meshes ("yri“di’gl’). The results are listed in Table
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5.1.

The analytical process to derive the train-level relative phases for planet-planet
gear meshes is as follows. For the case that there is no stepped-planet structure in
the planet trains of stage 1, Z;lm tooth meshes are completed for the mesh between
planets m and m + 1 when planet m finishes a complete revolution relative to carrier
1. The next step is to determine éfolm, the angle that planet m must rotate relative to
carrier ¢ such that the gear teeth position for the gear mesh between planets m and
m 4+ 1 in train 1 after the rotation is equivalent to that in train [ before the rotation.
Once égm is calculated as described below, dec(@) and dec(—@) are the
relative phases of the mesh between planet m and m + 1 in train [ referring to that in
train 1 when planet m rotates counter-clockwise and clockwise, respectively, relative
to its associated carrier (% +1D-PP in Table 5.1).

According to the previous derivation of the relative phases for sun-planet meshes,
the gear teeth positions in train 1 after the sun gear rotates 1&“ counter-clockwise or
2 — &” clockwise relative to carrier ¢ are exactly those in train [ before the rotation.

dm(m+1).pp reduces to calculation of the angle

Therefore, the problem to determine %
that planet m rotates relative to carrier ¢ after the sun gear rotates @/A)” counter-

clockwise or 2m — 9 clockwise relative to carrier i.

Meshed-planet gear kinematics gives

i

gilm _ 01 s
Ry O\ N (5.15)
05 — 0. Zim

where ng, 05, and ¢ are the absolute rotations of planet m in train [ of planet
set 7, the sun gear in stage ¢, and carrier i, respectively. For counter-clockwise sun

gear rotation relative to its associated carrier, substitution of &” = 95 — 6 and
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gilm _ pilm i : :
0, = 0,™ — 0, into equation (5.15) yields

s, 7l
Zg Y

ilm
Zp

oim = (—1)m (5.16)

For clockwise sun gear rotation relative to its associated carrier, substitution of 27 —
~ l 74 . ~ l l . . . .
Y* =05 — 0, and 0, = 0,;™ — 0, into equation (5.15) gives

Z;Z (2m — ')

p Z;}lm

(5.17)

This study addresses the case where there is one stepped structure in a planet set
because it is rare to have two or more stepped-planet structures in the same stage.

When there is a stepped-planet structure between planets v — 1 and v in stage 7, one

Zilméilm Zilméilm

of dec(=252—) or dec(—=25"—), depending on whether planet m rotates counter-

clockwise or clockwise, still gives the relative phase of the mesh between planet m
and m + 1 in train [ referring to that in train 1, once é;lm is known. This is the
same as above for meshed planets. The calculation of égm, however, needs to account
for the stepped-planet structure. If m < v —2 (the planet-planet mesh is before
the stepped-planet structure), the planet-planet mesh has the same mesh period as
the sun-planet mesh in the same stage. Thus, compound planetary gear kinematics
ensure that equations (5.15)-(5.17) still apply. If m > v (the planet-planet mesh
is after the stepped-planet structure), the mesh period of the planet-planet mesh is
generally different from that of the sun-planet mesh in the same stage but the same
as for the ring-planet mesh in the same stage. Therefore, the calculation of é;lm in
this case should be based on (67" — 67), the rotation of the ring gear relative to its

g

associated carrier. Planetary gear kinematics gives

i
m Zg

ilm %
gim — 9.
o ilm
Zp

or — 01

[

(—1)%- (5.18)
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Table 5.1: The expressions of train-level relative phases.
The counter-clockwise rotation is the positive direction
for all angles.

Relative Rotation Direction Relative Phase Expression
Phase Relative to Carrier
As'ill.gp 05—0@ >0 S5LIP — (e (ﬁ;ﬁ“)
6:'-0% < 0 Loy — e (_ ZZ;W)
Srtild,gp 6r'-07 > 0 P9 _ e (ZZ;W)
6r'-0i < 0 St — o <_ 22;#)
é;lm >0 FitmmA1).pp — dec <%)
f—yilm(m+1),pp
é;lm <0 ,.—yilm(m-f-l),pp _

Zilm,éilm,
dec (—73’ 5
T

For counter-clockwise ring gear rotation relative to its associated carrier, substi-

tution of ¢ = Qgi — 6 and é;lm = 0™ — 6. into equation (5.18) yields (compare to

equation (5.16))

H;lm — (_1)dZ

116

—m

i 5 il
Zr
ilm
Zp
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Similarly, for clockwise ring gear rotation relative to its associated carrier, 91’;”” is

calculated from equation (5.18) as (compare to equation (5.17))

Zy (2m — ")

éilm _ (_1)difm A
p Z;lm

(5.20)

Kinematic analysis of the compound planetary gear system is required to deter-
mine the rotation direction of each component, and the relative planet rotation angle
é;lm. With such kinematic analysis, the formulae in Table 5.1 apply to any configura-
tion of compound planetary gear and agree with Parker and Lin’s results in [77] for
the twelve simple planetary gear configurations.

All the above derivations are independent of the gear tooth type (spur or helical
gears) and the detailed gear tooth shape. Therefore, the results apply to both spur

and helical gears with arbitrary gear tooth shape.
5.3.4 Relations between Train-level Relative Phases

Because gear tooth numbers and relative planet position angles of compound
planetary gears must satisfy system assembly conditions, there are specific relations
between the train-level relative phases (3°'#1:97 F7ild".9p and Fim(m+1).0p)  These re-
lations are important for investigations on the suppression of planetary gear dynamic
response through mesh phasing [75].

Case A: No stepped-planet structure in planet set ¢

In this case, all the gear meshes in planet set i have the same mesh period. No
referring time is needed for any relative phase within this stage. Suppose central gear
s* moves counter-clockwise relative to carrier i.

When d’ = 1, the assembly condition of a simple planetary gear [68,77] gives,

(Z0" + Z: )t = 2mn (5.21)
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l

where n' is an arbitrary integer. Insertion of equation (5.21) into the results in Table

5.1 and invoking compound planetary kinematics yield

N Zsi,&il
~s"ill,gp _ d g
Y €C< o )

2mnil — Zr' )il il o
= dec —M =dec | — 9 w — ,.—)/T‘ ild®,gp
2T A

When d* > 2, insertion of (5.16) into the train-level relative phase for planet-

(5.22)

planet meshes in Table 5.1 and application of meshed-planet gear kinematics for the

rotation direction of planet m relative to carrier ¢ yield

A Zilméilm
~im(m+1),pp _ d —1)™ p p
gl ec (( ) )

Zsi Tl N
= deC ((—1)m(—1)m%> — ,.—ys ill,gp

By applying meshed-planet kinematics for the rotation direction of the ring gear

(5.23)

relative to carrier 4, 4" 497 in Table 5.1 is

o ini 7yl
FdLIP — dec ((—1)d %) (5.24)
The assembly condition of stage i [68] is
N 2 il
Pt = ™ (5.25)

Zr 4+ (~1)d+zs

l

where n' is an arbitrary integer. Insertion of (5.25) into (5.24) gives

. izﬂ_nil — (=1 di+1ZSi 7l
/77’ idt,gp _ dec (_1)d ( ) g ¢
2T

s, 7l
— dec ((_1)2dZ Zg ¢ > — ﬁsiill,gp

(5.26)
2T

Equations (5.23) and (5.26) show that 45'#hop, FimmtD.pp - and 474490 are equal

when d* > 2.
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Summarizing this case, if there is no stepped-planet structure in planet set ¢, the
train-level relative phases whose referring meshes are in the same planet train equal
each other.

Case B: Stepped-planet structure in planet set i

The stepped-planet structure is between planets v — 1 and v in stage ¢, where
2 < v < d*. The relations between isii“’gp, Vi”di’gp, and 4 (mHDPP gre investigated
for the following two cases.

(I) When 1 < m < v—2, the relationship between 7" +10#P and 55'#1.97 i the same
as equation (5.23) because the rotation direction of planet m relative to carrier ¢ is
determined in the same way and the same train-level relative phase formula in Table
5.1 is applied. That is to say, the train-level relative phases whose referring meshes
are located between the sun gear and the stepped-planet structure are all equal.

(IT) When v < m < d* — 1, insertion of (5.19) into the formulae of 7m(m+1):Pp in Table
5.1 and use of kinematics to determine the rotation direction of planet m relative to

carrier ¢ yields

‘ . Zri Tl
ﬁzlm(m—i—l),pp — dec <(_1)m—1(_1)d -m~g 77Z) )

2T
. Zri Tl
= dec <(—1)d _1i>

27

(5.27)

Applying stepped-planet kinematics for the rotation direction of the ring gear in stage

1 relative to carrier ¢, the ring-planet relative phase in Table 5.1 becomes

o ! Zri 7l
AP — dec ((—l)d 1927:?) (5.28)

Equations (5.27) and (5.28) show that the train-level relative phases whose referring

meshes are located between the ring gear and the stepped-planet structure are equal
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to each other, similar to (I) above.

The assembly condition of a stepped planetary gear requires that [68]

Ml il st il ¢rt
Y" =ngd] +mn.o,

o QWZ;“’
1= i il (v— i i 7

25 2y 4 (1) zs i (5.29)
i QWZ;l(vfl)

0

N Zr 2y 4 (1) zs i

where 7’ and ni' are integers, 67 is the angle that carrier i rotates when the ring
gear r' is fixed and the sun gear rotates one tooth counter-clockwise relative to the
fixed reference frame, and 65 is the angle that carrier 7 rotates when the sun gear
st is fixed and the ring gear rotates one tooth counter-clockwise relative to the fixed
reference frame. The above assembly condition indicates that when the sun and ring

gears rotate through n and ni tooth meshes (that is, the sun and ring gears rotate

il il
2mnY d 2mnl

et , respectively ), carrier i rotates 1&” . Thus, planet train 1 is brought to
g

Zrt

g

the position of train [ before the rotation. At the same time, because both the sun
and ring gears rotate integer numbers of teeth, a new planet train can be installed at
the position of train 1 before the rotation with exactly the same gear teeth positions
as train 1.

The above process not only illustrates the installation of a new planet train in
a stepped compound planetary gear but also indicates the numbers of tooth meshes
that the sun and ring gears complete when train 1 moves to the position of train (.
The angles that the sun and ring gears rotate relative to carrier ¢ during the above
assembly process are (2;—:2 — ) and (2;—;:} — ). Thus, the numbers of gear meshes
that the sun and ring gears complete are |ni — )i Z s /2n| and |ni! —Q@ilZgi /27|, which

directly reflect how many mesh cycles that the sun-planet and ring-planet meshes in
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train [ are ahead of or behind those in train 1. Application of the operator dec() to
these two numbers yields the train-level sun-planet and ring-planet relative phases
between train [ and train 1 as
P = dec(|ni — " Z; [2])
o . (5.30)
3 = dec(|nil ~ 25 2r])

Because n? and ni! are integers and they have infinite combinations to satisfy (5.29),
the outcomes of 7197 and 77" in (5.30) have only two possibilities: dec(iqﬁ”Z‘;i/Qw)
and dec(ii}”Z;/Qw). For example, if 1[)”25/27? = 0.8, dec(|n? — 0.8]) = 0.2 =
dec(—0.8) when n' = 2 and dec(|n? — 0.8]) = 0.8 = dec(0.8) when n = —1. Thus,
equation (5.30) simplifies to

"ysiill’gp = dec(iqﬁ”Zi/Qﬂ)

o o (5.31)

Friildiop — dec(i@ZJ”Z;/Qﬁ)
The =+ sign is necessary because in the above process the rotation direction of each
component is not specified and only the assembly condition is used. The rotation di-
rections of the sun and ring gears relative to the associated carrier determine the signs
for the input arguments to dec( ) in (5.31). For example, if the sun gear s’ rotates
counter-clockwise relative to carrier ¢ and the sun-planet mesh in train 1 completes
&ilZ;i/ 27 tooth meshes, the gear teeth positions of train 1 are exactly the same as
those of train [ before the sun gear rotation. Thus, the positive sign is used such
that 35197 = dec(¢Z s /2m). If the sun gear s’ rotates clockwise relative to carrier 4
and the sun-planet mesh in train 1 completes Q@ilZ‘g"’i /27 tooth meshes, the gear teeth
positions of train 1 are exactly the same as those of train ¢! — [ before the sun gear
rotates. In order to make the gear teeth positions of train 1 be the same as those

of train [, the sun-planet mesh in train 1 needs to complete Z;i — Q@ilZ;i/QW tooth
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meshes. In this case, the negative sign is used in the input arguments to dec( ) such
that 75197 — dec(—q@”Zf/Qﬁ) = dec(Zgi - Qﬂ”Z;i/Qw). It is the same for 5"'id"9»,
These results match the formulae in Table 5.1.

Summarizing the above discussion, the train-level relative phases whose referring
meshes are located on the same side of the stepped-planet structure always share the
same value. Thus, some but not all train-level relative phases are equal when planet
set ¢ has stepped-planet structure. In addition, the sun-planet and ring-planet train-
level relative phase definitions for stepped planetary gears in Table 5.1 are consistent

with the stepped planetary gear assembly condition.

5.4 Example Calculation of Relative Phases

The two-stage compound planetary gear shown in Figure 5.2 is used as an example.
The first stage has stepped-planet structure, and the second stage has meshed-planet
structure. All the gears are numbered according to the convention previously spec-
ified, as shown in Figure 5.2. The parameters are listed in Tables 5.2 and 5.3. The

following illustrates the analytical procedure to calculate all the system-level relative

st111

op . as their referred mesh.

phases with the base referred mesh &
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Table 5.2: Parameters for the example system shown in

Figure 5.2.
Input component central gear 1
Connection between stage 1 and stage 2 | carrier 1 connects to central gear 3
Fixed central gears or carriers central gear 2 and central gear 4
Output component carrier 2
1 _ (o 12 — 190°
Planet | Stage %)13 B 24700¢ = 120°,
position| 1 P =
ancles 21 — o 22 — o(°
© Stage 1423 ; ’ow 724 o o
9 Y= = 180°, = = 270

Table 5.3: Parameters for the example system shown
in Figure 5.2. The unit for all diameters is millimeter.
Planet gear (ilm) means planet m in train [ of stage i.

Stage 1 Stage 2
Central | Planet| Planet| Central || Central | Planet| Planet| Central
Gear 1 | gear | gear | Gear 2 || Gear 3 | gear | gear | Gear 4

(L1) | (112) (21) | (212)
Tooth 35 38 62 151 29 29 33 153
Number
Diametral | 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5
Pitch
Pressure 25° 25° 24° 24° 25° 25° 25° 25°
Angle
Base 79.25 86.11 | 113.28] 275.84 | 52.58 52.58 | 59.69 | 277.37
Diameter

Outer Di- || 88.39 100.58| 124.71| 319.02 || 61.72 61.72 | 69.60 | 324.10
ameter
Root 76.96 89.41 | 115.57] 305.31 || 52.58 52.58 | 60.45 | 305.31
Diameter

The numerical results throughout this example are from numerical simulation of
mesh tooth variation functions calculated by Planetary2D, a multibody finite element

program with precise tracking of numbers of teeth in contact at all gear meshes [95].
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The software calculates the tooth variation functions based on exact gear kinemat-
ics and precise tooth geometry with no preset or user-defined mesh phase relations.
Hence, the relative phases calculated from the numerical solution of mesh tooth vari-
ation functions are a reliable and independent benchmark to verify the analytical
results. The simulation results of mesh tooth variation functions with all the relative
phases marked are shown in Figure 5.3 and Figure 5.4.

Kinematic analysis yields all the mesh periods and the rotation directions of all
components. The analytically calculated mesh periods compare well to numerical
results in Table 5.4. As with all results that follow, the errors in the numerical results

depend on the number of steps analyzed in a mesh cycle.

Table 5.4: Mesh periods of all gear meshes in the example
system.

Stage | Period| Analytical | Numerical | Error range

Num- of numerical
ber result

Stage | T,)'" ]0.6483s |0.648s +0.002 s

1 Tq2p”2 0.3974 s 0.397 s +0.002 s

T2 T1.6768s | 1.677s | £0.008 5
T:77 [1.6768s | 1.677s | £0.008 5
T2 T16768s | 1.677s | £0.008 5

Stage
2

To begin the process, the base referred mesh of the system and the referring time
of the base referred mesh are chosen. In this example, kj;'' is selected as the base
referred mesh, and the referring time of the base referred mesh is t; = 0 at the pitch
point. This defines the origin of the absolute time axis and simplifies the use of

equations (5.8) and (5.9) to calculate system-level relative phases.
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The key relative phases 4° 197 (t,), 371497 (1) and 3/7+D#P (1) are calculated
from equations (5.10)-(5.14) with the results given in Table 5.5. In this example, the
system-level relative phase between the stage 2 referred mesh and the base referred
mesh (42211:97(,)), which depends on assembly conditions, is specified as zero. In real
applications, equation (5.10) and simulation or experiments are needed to calculate
such relative phases. In addition, the stage 1 relative phase 521%97(¢]) depends not
only on the gear parameters of the stage 1 sun, planet, and ring gears but also on the
stepped-planet structure (the relative clocking angle between the two coaxial planets
in the same train); no analytical formula is available to calculate it. Its analytical
value in Table 5.5 takes the numerical result directly, which is found by recording
the time when the pitch points of the referring and referred meshes are in mesh and
applying equation (5.4). Whenever a system has multiple stages or stepped planets
there are relative angles that depend on manufacturing or assembly. In these cases,
experiments or simulation with precision contact tracking are needed as used above.
If that is impractical, one can do sensitivity studies to see if these relative angles
affect the response of interest in that specific system.

Kinematic analysis to find the rotation directions of each sun, ring, and planet
relative to its associated carrier and the formulae in Table 5.1 yield the analytical
results for 474m9 and 4%m%PP that are listed in Table 5.6. The numerical results

confirm the analysis.
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Figure 5.3: Mesh tooth variation functions of all the gear meshes in stage 1 of the
example system with the related relative phases marked. The symbol x denotes the
time when the pitch point of the associated gear mesh is in contact.
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Table 5.5: Relative phases ‘ysim’gp(tl), ’y““di’gp(ti), and

Fmm+1).pp - The * sign indicates the associated value in
the "Analytical’ column is actually from numerical calcu-
lation.

Stage | Referring| Relative Analytical | Numerical | Error range
Num- | time phase of numerical
ber result

t1 =20 AHLap (1) 10 0 0

t1 =0 2P (1) | 0.277% 0.277 +0.0031

tl =0 ’?3211"(”7(151) 0 0 N/A
Stage t2=0 3L (2) 10 0 +0.0048
5 t2=0 F122.9P(12) 1 0.0770 0.077 +0.0048
t2=0 2HZPp(13) 1 0.0689 0.069 +0.0048

Table 5.6: Train-level relative phases 49%™9P and 4/ma-rp,

Stage | Relativel Analytical Numerical Error

Num- | phase range  of

ber numerical

result
,.—Yllll,gp — O ,—}/llll,gp — O
pUgp |\ AU2Lap — (0667 | AP = (0.663 | +0.0031
Stage FH3Lar — (0.333 | AM3Lor = (.331
1 /72112,910 — O ,72112,gp — O
F2H29p | AH2290 = ().667 | 212297 = 0.665 | +0.0031
F2A329P = (0.333 | 21329 = (.335
,.—Y3211,gp — O ,—}/3211,gp — _0001
F322L.9p = (0.250 y322L9P = ().254
~ 3211, Y Y
VU gmsie — 0500 | 4ster = 0503 | TO-0048
3L = 0.750 | A324L9P = (0.753
/74212,910 =0 ,74212,gp = 0.002
§A222:9P = ().250 yA222.9P = (0.253
~4212,9p | 7V v
Stage |’ 20 — 0500 | A2 = 0501 | D004
2 FA2429P = (0.750 | A42429P = 0.752
,72112,gp — O ,72112,91) — 0003
~2212,9p _ ~2212,gp _
~2112, Y = 0.250 Y = 0.252
VU ymze — 500 | 22er — o500 | TO0048
290 = (0.750 | 229 = (.751
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Finally, all system-level relative phases 4749 (t,) and 4"™%PP(¢;) are calculated
from equations (5.8) and (5.9). The results in Table 5.7 agree with the numerical
benchmark.

Thus, the relative phases of all the gear meshes referring to the base referred mesh
are determined and verified with an independent numerical benchmark that can be

considered exact within the given error limits resulting from discretization of the mesh

cycles.
Table 5.7: System-level relative phases 49°™9(¢,) and
imasn(t,),

Stage | Relative | Analytical Numerical Error
Num- | Phase range  of
ber numerical

result
Aap(0) = 0 FHLP(0) = 0
AL () AM2Lop(0) = 0.667 | 4M2M92(0) = 0.663 | +0.0031
Stage yU3Lor(0) = 0.333 | 41319 (0) = 0.331
1 APT290(0) = 0.268 | A?T297(0) = 0.268
AAZap () 4212297(0) = 0.935 | 42'2297(0) = 0.935 | £0.0031
423297 (0) = 0.601 | 42'3%97(0) = 0.608
321, 9(0) = 0 ,}32117917(0) =0
23221, gp _ 23221,g9p —
sty | AP29(0) = 0.250 | 4 (0) = 0.250
VIR G, (0) = 0500 | 5°21ar(0) = 0.502 | 0
/3/ 3241, gp(o) = 0.750 ,3/32417919(0) =0.751
FR29P(0) = 0.013 | 3229 (0) = 0.013
y422200((0) = 0.263 | 4*2?297(0) = 0.263
24212, gp v ( v
Stage | 1) saman) — 0513 | 4422e(0) = 0513 | TO0048
2 §i22a(0) = 0.763 | 4%1207(0) = 0.763
/3/2 12, pp(o) = 0.069 ,3/2112,pp(0) = 0.070
§22120(0) = 0.319 | 42'2PP(0) = 0.318
conzgp(, | V22PP(0) v
V) Sasoan) = 0.560 | 422mm(0) = 0570 | 00048
424120 () = 0.819 | A2412#2(0) = 0.819
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Figure 5.4: Mesh tooth variation functions of the gear meshes in stage 2 of the
example system with the related relative phases marked. The symbol x denotes the
time when the pitch point of the associated gear mesh is in contact.
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With all the system-level relative phases calculated, analytical expressions for
the mesh tooth (or mesh stiffness or static transmission error) variations of all gear
meshes in the system are determined by applying equation (5.3) after straightforward
calculation of x(7) for each gear pair based on basic gear geometry [77] or gear design
software.

For example, the Fourier series expansion of the mesh tooth variation function for
the gear mesh between the ring gear and planet 2 in train 2 of stage 2 is (the pitch

point is in contact when 7 = 0)

NE

/4,4222 (T) —

4222 :|
gp

[eu sin uw42227 + fu cosuw,,

i
o

(5.32)

[
NE

ley sinu3.757 + f, cosu3.757]

I
o

U

Application of (5.3) with 4122297(0) = 0.263 from Table 5.7 yields the analytical
expression of the mesh tooth variation function for k32** as a function of absolute

time, which is

[e.o]

]4;3]2)22 Z eusinud.75(t — 0.441) + f, cos ud.75(t — 0.441)] (5.33)

u=0

The mesh tooth variation functions such as equation (5.33) are critical to study
any feature of the example system’s static or dynamic response that involves mesh

tooth, mesh stiffness, or static transmission error variations.

5.5 Conclusions

Knowledge of all mesh phase relationships is essential for analytical or multibody
computational study of compound planetary gear mechanics because the critically
important mesh tooth, mesh stiffness, or static transmission error variation functions
typically used in gear mechanics analysis rely on proper description of the relative
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phases between all of the gear meshes. This study defines and calculates all the mesh
phases for general compound planetary gears, including those with any combination of
multiple mesh frequencies, multiple stages, meshed planets, and stepped planets. In
addition to organizing these mesh phases into a hierarchical structure of system-level,
stage-level, and train-level mesh phases to simplify the analysis, this study derives a
complete and simple (other than the notation) procedure to determine all the nec-
essary relative phases. The specific relationships between train-level relative phases
that are critical for any analytical study on the suppression of compound planetary
gear dynamic response through mesh phasing are derived by applying the assembly
conditions of compound planetary gears. All derived results are verified through an
example, where the numerical benchmark is geometrically exact and the only error is

a quantifiable mesh cycle discretization error.
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Chapter 6: SUPPRESSION OF VARIOUS MODAL
RESPONSES IN GENERAL COMPOUND PLANETARY
GEARS THROUGH MESH PHASING

6.1 Introduction

Noise and vibration problems remain major concerns for compound planetary
gears [47,53]. When planetary gears operate at speeds where the mesh frequency or
an integer multiple of it is near one of the system natural frequencies, large dynamic
tooth loads and loud noise are generated due to the resonant response, reducing the
life of the whole transmission system. Proper design of mesh phasing by adjusting
certain fundamental design parameters, such as the gear tooth number and number
of planets, is able to eliminate selected resonant responses in the operating range of
the system [5,32,75,77].

Studies on the suppression of dynamic response through mesh phasing trace back
to Schlegel and Mard’s experimental measurements on the effectiveness of planet
phasing on noise reduction [86] and Seager’s detailed analysis using a static transmis-
sion error model [87]. Later, Palmer and Fuehrer [74], Hidaka et al. [41], Platt and
Leopold [83], Kahraman [43], and Kahraman and Blankenship [48] experimentally
or numerically illustrated the effectiveness of simple planetary gears mesh phasing
to reduce noise and vibrations in transmission systems. Parker and Lin developed
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a rotational-translational lumped-parameter model and discovered the unique vibra-
tion properties [56], identified the specific mesh phase relations [77], and analytically
explained the effectiveness of planet mesh phasing to suppress certain translational
and rotational mode responses [75]. The results in [75] show that the symmetry-based
rules even hold when nonlinear tooth contact occurs, provided the response retains
the symmetry of system geometry. Filling a gap in [75], Ambarisha and Parker [5]
provided the analytical explanation for the suppression of planet mode responses in
the rotational-translational model through mesh phasing and derived the rules to sup-
press degenerate mode responses in purely rotational planetary gear models. All these
studies, however, are restricted to simple planetary gears. No published literature has
examined the suppression of compound planetary gear vibration modes through mesh
phasing numerically or analytically. The questions of whether the mesh phasing rules
of simple planetary gears in [5,75] can be applied to general compound planetary
gears and what are the impacts of meshed-planet, stepped-planet, and multi-stage
structures that are unique to compound planetary gears on the rules to suppress
dynamic responses through mesh phasing are addressed in this work.

Recent progresses on compound planetary gear dynamics provide bases for this
investigation. Kahraman [47] developed a purely rotational model for limited con-
figurations of single-stage planetary gears. Kiracofe and Parker [53] developed a
rotational-translational model for general compound planetary gears and proved that
all the vibration modes of compound planetary gears are classified as rotational, trans-
lational, and planet modes, each having distinct properties. Guo and Parker [35] set
up a purely rotational model for general compound planetary gears and analytically

proved its modal properties. Guo and Parker [32] systematically defines the relative
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phases in general compound planetary gears and analytically derives the mesh phase
relations for all the gear meshes in the system.

This chapter utilizes the above research results on compound planetary gears
to analytically examine the general rules to suppress certain dynamic responses and
resonances of general compound planetary gears through planet mesh phasing for both
purely rotational and rotational-translational models. Because the analytical process
to derive the rules is based on the symmetry of each planet set and the periodicity of
gear tooth meshes without explicit modeling of the dynamic mesh forces or system

responses, the results are independent of any choice of dynamic gear mesh force model.

6.2 Rules to Suppress Selected Dynamic Responses for Rotational-
translational Models

Resonance associated with a natural frequency w,, in general, is potentially excited
when the pth harmonic of the fundamental frequency of an excitation source w satisfies
Jw = w, in any mechanical system. For planetary gears, mesh stiffness variations
with fundamental frequency being their mesh frequencies are the excitation sources.
Previous studies on simple planetary gears [5, 75] show that resonances occur at
some of the mesh frequency harmonics and are absent at others, and such excitation
and suppression of responses at mesh frequency harmonics follow the rules that are
determined by mesh phases and modal properties. Because compound planetary
gears have similar modal properties as simple planetary gears and the mesh phases
are systematically defined in previous chapter, it is expected that there exist certain
mesh phasing rules in compound planetary gears. The main task of this investigation

is to analytically derive these rules.

134



The structured modal properties for the rotational-translational model of general
compound planetary gears [53] suggest that any vibration mode can be classified as
rotational, translational, and planet modes. In rotational modes, all central gears and
carriers (i.e., central components) have rotational motions only. Therefore, in the case
of a rotational mode excitation, all central components only have rotational vibrations
that are caused by non-zero net torques acting on these components. These non-zero
net torques are the results of gear mesh forces or planet bearing forces. Once these net
excitation torques (i.e, net torques) vanish, central gears and carriers no longer have
rotational vibrations and this rotational mode response (i.e., rotational response) is
suppressed. The net torques, hence, become the direct measurements for the excita-
tion or suppression of rotational responses. In a similar manner, the net excitation
forces (i.e., net forces) acting on central components are the direct indications for
the suppression of translational mode responses (i.e., translational responses). Such
criteria to determine the suppression of potentially-excited translational or rotational
resonances by analyzing the net force or torque cancellation on central gears and
carriers are validated in the study by Parker [75].

Due to the unique modal properties for planet modes, the net forces/torques on
central components are zero in all planet modes [53]. The suppression/excitation
of planet mode responses (i.e., planet responses), hence, can not be determined by
evaluating the net forces or torques acting on central components. Ambarisha and
Parker [5] proposed a method to analytically determine the suppression/excitation of
planet responses for simple planetary gears by evaluating the modal forces for planet
modes (i.e., planet modal forces). This study extends their method to compound

planetary gears as follows. Let ¢, be a planet mode for planet set ¢ and the associated
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planet frequency is w,. Multiplying the equation of motion for general compound

A
planetary gear in (2.38) with ¢ on the left and insertion of ¢(t) = > ¢, (t)¢, yield
u=1

() + dLK D qult)pu = &u(t) + PLE(9(t), 1) = ¢LF (1) (6.1)

where ¢, is the modal coordinate for mode w. Similar to [5], f(¢p(¢),t) is used to

denote K f: Gu(t), in this study and it collects the forces caused by gear meshes,
u=1

shaft connections, and bearing supports in equation (2.38). The term @I F(t) is equal

to zero because of the modal property that all central components have no motion

in any planet mode. The suppression of planet mode v, hence, solely depends on the

vanishing of ¢Xf(¢(t),t) which is denoted as

Qu(t) = L f(#(1). 1) (6.2)

where (),(t) is the planet modal force for planet mode v) in this study.
Table 6.1 summarizes the above general criteria to suppress different types of

responses in compound planetary gears.

Table 6.1: The general criteria to suppress different types
of responses in general compound planetary gears. =, F,
and () represent net force, net torque, and planet modal
force, respectively.

Responses Types Suppression and Excitation Criteria
Rotational Response | Excitation: = # 0, Suppression: = =
Translational Response | Excitation: F' # 0, Suppression: F' =0

Planet Response Excitation: @) # 0, Suppression: ) =0

For multi-stage compound planetary gear systems, the excitation forces in each
stage are transmitted throughout the system via the connections between stages.

The whole system is considered to be excited if any stage of the system is excited.
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The rules to suppress dynamic responses of a multi-stage system are actually the
sum up of the rules from each stage. Thus, breaking the multi-stage system down
into separate stages and analyzing the suppression/excitation criteria in each stage
is an effective way to investigate multi-stage systems. This study, hence, focuses
on a single compound planetary gear stage having one or both of meshed-planet
and stepped-planet structures [32,53]. For a single compound planetary gear stage,
there are two possible cases: (a) a stage has meshed-planet structures only (i.e.,
meshed-planet stage), and (b) a stage has a stepped planet structure in each train
and may also involve meshed-planet structures (i.e., stepped stage). The following
study investigates the suppression or excitation of selected responses for both cases
using the criteria in Table 6.1.
6.2.1 Suppression of Selected Responses in a Meshed-planet
Stage through Mesh Phasing

An arbitrary planetary stage, numbered as stage 1, has ¢! (¢! > 3) equally-
spaced planet trains. Each planet train includes d' planets. These d' planets in
each planet train have only meshed-planet structures. All planet trains are numbered
from train 1 to train ¢! in the counterclockwise direction. The planet in each train
that is in mesh with the sun gear is numbered as planet 1, and the planet in mesh
with planet 1 is numbered as planet 2. The numbering continuous until planet d!,
which is the planet in mesh with the ring gear in each train (Figure 6.1). Same as
simple planetary gears, meshed-planet stages have a single mesh frequency w. The
key stipulation to use Table 6.1 to derive the rules to suppress the selected responses
through mesh phasing is that the net torques (Z), the net forces (F), and the planet

modal forces (Q) are periodic functions with the fundamental frequency equal to the
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Meshed-planet Stage
Stage 1

Train 2
Train 1

Train 3

Planet 2
Planet 1

Carrier

Ring Gear a

Train 4

Figure 6.1: A meshed-planet stage has four planet trains. Each planet train has two
planets that are in mesh with each other.

mesh frequency w = % (T is the mesh period). Such physically plausible stipulation
is consistent with the periodic mesh contact at mesh frequency and it was confirmed
to be necessary for the validation of mesh phasing rules in studies on the simple
planetary gear dynamics [5,9,34,61,75,98]. This assumption implies that the rules
that are derived in this study are not valid in cases of transient responses, nonlinear
responses that contain sub/super-harmonic components, and vibrations driven by

parametric fluctuations that are locked at the natural period [23].

Cancellation of Net Force and Torque on Central Components
The net force acting on a central component is essentially the sum of the related
gear mesh forces. Taking the sun gear in a meshed-planet stage as the representative

example, the sun-planet gear mesh forces are the only excitation forces acting on the

sun gear. Due to cyclic symmetry, the sun-planet mesh forces in the same stage have
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1

Plant train ¢’ -

-

| Mesh Period T .

Sun-planet Mesh Forces

Plant train 1 < >

time

Figure 6.2: Sun-planet mesh force fluctuation showing the mesh period 7" and the
relative phase 4 at two arbitrarily chosen planet trains.

the same shape but differ in phases [23,37,75] (as shown in Figure 6.2). According
to the definition of compound planetary gear mesh phases [37], the phases between
sun-planet gear meshes in the same stage are train-level relative phases which are
determined in Table 5.1. Without losing generality, the mesh force between the sun

gear (central gear s) and planet 1 in train [ of this stage (stage 1) F¥! is
Fslll — F;lllglll + Fnslll,r]lll (63)

where €' and n'"! are unit vectors that define the radial and tangential coordinates
for planet 1 in train [ of stage 1 and they retain the fixed angular separation 1/3” from
the carrier 1 fixed basis {i, j}. Transforming the coordinate basis in (6.3)to {i, j}

gives
sl — (ngm cos Pt — F5111 simﬁ”) i (ngm sin ! + Fnsm cos&”)j (6.4)

Fgand F3M' are the periodic mesh forces between the sun gear and planet 1 in
train [ in & and 7 directions and the relationship between them and the associated
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mesh forces in train 1 is

Fslll( ) Fslll( . 27T,751l1,gp)
(6.5)
sll1 _ s111 —slll1,
Fot (wt) = F(wt — 2my™097)

where 451197 is the train-level sun-planet relative phase between train [ and train 1

and it is (refer to Table 5.1)

Zs At
Fotp = :I:dec( ;Z) > (6.6)

where the sign is determined by the positiveness of (65-6}). Let the Fourier series

expansion for F§111 and F;Hl be

Fe (wt) = Z [es! ! sin (pwt) + g3 cos (uwt)]
o (6.7)
E wt) = Z [hst sin (pwt) 4§53 cos (pwt) |
n=0
Insertion of (6.6) and (6.7) into (6.5) yields
Féslll(wt) _ Z [62111 sin ( +_ 27T,yslll,gp) + gslll COS 1 ( 9 slll,gp Z Fslll
n=0
F,fl“(wt) _ Z [hzlll sin (wt . 27T,.—ysll1,gp) + Jim CoS Ju (wt . slll,gp Z F;’hll
n=0
(6.8)
where F&lt = e sin g (wt — 27y5119P)  go1 cos pu (wt — 27y°1197) and F3M' =

hat'sin pu (wt — 27y 1Hb9P) 4 o1 cos p (wt — 279°1197) are the mesh forces between
the sun gear and planet 1 in train [ in £ and 1 directions at the puth harmonic of mesh

frequency. Summing up the sun-planet mesh forces (equation (6.4)) in all the trains
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and insertion of (6.8) yield the net force acting on the sun gear (central gear s) as

cl

Fsl*l _ Z Fslll

=1
1

o

[(ngm COS#}U _ F;m sinq@”) it (Fgul qu@u i F;m cosz@”) j]
!

=1
o0
>

cl

o0 Cl
~ . 1 . 1. 1l l 71l
(F;L“ cos it — Fﬁl SHMDl) +J E , E : (ng}f sin !’ + Fﬁl cos 1! )

pn=0 [=1 pn=0 [=1
[o¢]
_ slx1
- Z Fu
n=0
(6.9)
ct . cl R ol X
Once the four terms > <F§}f1 cosw”>, 3 (ng” simﬁ”), 3 (F;’L” Cosw”>, and
=1 =1 =1

ct .
3 (F;’L“ sin w”> in (6.9) are all equal to zero, F;l*l, the net force acting on the
=1
sun gear at pth harmonic of mesh frequency, vanishes and the associated transla-
tional responses are suppressed. In the rest part of this section, the condition to
make these four terms be zero is first investigated.
C1
When 62-6; > 0, insertion of equation (6.6) into the first term 1—221 (Fgit cos ™)
and application of sin(dec(«)) = sin «, the property of the operator dec( ), yield
Cl
S (ret cosi)
=1
C

Z [ef}n sin p (wt — 27@51”’97’) + gznl COS [1 (wt — 27@5”1’9”)} cos @ZA)” (6.10)
=1

[

(¢}
[

w

[65111 sin (wt _ Z;&”) + g cos pu <wt — Z;&”)] cos !
=1

Equally-spaced planet trains give

N ) (6.11)

cl
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Insertion of (6.11) into (6.10) and application of the trigonometric identities yield

<F5111 oS 1;11)
Cl 2rpZi(l—1) o2r(l —1
7r — _
— [ef}” sin (,uwt il - ) cos ult - )+
— c c
2rpZs(l—1 2w(l — 1
c c
a1 2npZy(l —1) 2m(l — 1
= eum sin pwt Z |:COS =) Cos (Cl )] — (6.12)
2npZy(l—1 2m(l —1
5111 cos uwtz {sm a ) oS m{ T )} +
c
. 2 Zs(l — 1 -1
gt Cos,uwtz [cos 12 ) cos ( - )}
c c

c 2rpZi(l—1)  27(l—1)
5111 : g
9 sin pwt E {sm = CoS o }

Similar to [5,75], the phasing quantity k, is introduced as

ZS
k,, = mod (M lg) (6.13)

C

where mod($) yields the integer reminder of the integer division between a and b when
a

7 is positive and outputs b plus the integer reminder of § when the input argument

is negative (for instance, mod(=2%) = 5+ (—1) = 4). Insertion of (6.13) into the first
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two terms in (6.12) and use of the trigonometric identities give

1

° 2ruZs(l — 1 or(l — 1
eim sin Nwtz [COS 12y ) cos ult )] —
=1

cl cl

1
- 2rpZ(l — 1 ol — 1
st cosuwtz {sin 1z )cos ult )]

p 2 ol i
W sin ot & (b, —D(-1) (b + 1) —1) .
e’ sin pw 2wk, — 1)l —1 2wk, + 1) —1
= % ;:1 |:COS K I + cos L 4 }—
s cos puwt & o2m(k, — 1)1 —1 27k, + 1)1 — 1
p - K Z [Sin m(k, 61)( ) 1 sin 7( u+01)( )}

For an arbitrary integer k, the trigonometric identities that are necessary to simplify

(6.14) are

(6.15)

1

a 27r(lfl)ki| [0, k/c'+# integer
| ', k/c' = integer

Application of (6.15) to (6.14) gives that the first two terms in (6.12) becomes zero

ct .
when k, # 1, ¢! — 1 and it is the same for other terms in (6.12). > <Fg’}fl oS 1/)”),
=1
ct .
hence, is equal to zero when k,, # 1, ¢'—1. Following the same procedure, > <F§L“ sin 1[)”) ,
=1

cl

Cl
51l Hu SUL i 1AL :
> (Fnilcosqﬁl ), and l:zl (Fnil smqﬂ) in (6.9) are found to be vanished when

=1
s, 711
k. # 1, ¢! —1. When 65-6; < 0, replacing 7*"""9” with —dec (Z“’d) ) in the above

2w

process yields the same result. Therefore, Fil*l is canceled out when k, # 1, ¢! — 1
and the associated translational responses of the sun gear at uth harmonic of mesh

frequency are suppressed.
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The net torque acting on the sun gear is the sum of torques that are caused by

the sun-planet mesh forces in the tangential direction n and it is

el
=slxl s s1l1
= Ty E F,
— T’ E E slll

=1 p=0 (6.16)

oo C1

— s Z Z hslll sm,u Qﬂﬁyslll,gp) + ]lel oS Ju (wt _ 27T,—}/sll1,gp):|
pn=0 [=1

S

[hf}“ sin p1 (wt — 2myHhor) 4 gt cos (wt — 2wy°19P)] is the

net torque acting on the sun gear at pth mesh frequency. Insertion of (6.6), (6.11),

,_,51*1

and (6.13) into the expression of 2 and application of the trigonometric identities

yield

cl

1
Ef}*l = r;hf}n Z sin (,uwt + u@DllZ;) + T;]lel Z cos (,uwt + u@DllZ;)

=1 =1

< ol (L= Lk,
= 1, sin pwt [hf}“ E COSL $]Zm g sm ] (6.17)
ct
=1
Cl

— 1 — 1
ihf}n Z sin ————>~+ (l £y jZHl Z cos m(l )k ]

+ 1, cos pwt

slll,gp

where the + sign of uw”Z * comes from 7 and it is determined by the positiveness

of 65 — 6} (Table 5.1).

Direct application of the trigonometric identities in (6.15) to (6.17) yields the

=slxl

relationship between = and the phasing quantity £, as

240, k=0
(6.18)
B =0, k,#0
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Equation (6.18) reveals that the net torque acting on the sun gear at uth harmonic
of mesh frequency vanishes and the associated rotational response of the sun gear is
suppressed when the phasing quantity k,, # 0.

The net force and torque acting on other central components, the ring and the
carrier, follow exactly the same rule as that for the sun gear to vanish at uth harmonic
of mesh frequency. One strong argument from [5] is that the absence of any net force
on the sun in the puth harmonic implies there is no sun translation and thus no
response in any translational modes at this harmonic. Because translational modes
are the only modes involving the translation motions of the ring or carrier, at the uth
harmonic of mesh frequency the translational motions for both ring and carrier are
suppressed. This implies that the puth harmonic of the net forces on these components
vanish. Similar arguments based on rotational modal properties hold for the net
torque cancellations of the ring and carrier.

Another way to determine the net force or torque cancellation rules for the ring
gear is to apply the above analytical process to the ring gear with the exception
that the sun-planet mesh phase 7*''9" should be replaced by the ring-planet mesh

ridgp - The train-level relative phase relations for meshed-planet stages in

phase 7
(5.22) indicate that 7749 is equal to 71197, The net force and torque cancellation
condition for the ring gear, hence, is the same as that for the sun gear.

Because the gear mesh forces do not act on the carrier directly, the excitation forces
for the carrier in a meshed-planet stage are different from those for the sun and ring
and the above analytical procedure cannot be applied to carrier directly. Free body

diagram analysis on the carrier indicates that the reaction forces of the planet bearing

forces for the entire planet set are the excitation sources for the carrier, and the same
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analysis on a single planet shows that the planet bearing force is associated with
not only sun-planet and ring-planet mesh forces but also planet-planet mesh forces.
Previous studies on planetary gears [5,6,34,75,90] indicate that it is reasonable to
assume that the bearing force for a planet is periodic and the harmonic contents of
the bearing forces are dominated by the mesh forces involving this planet. The net
force and torque acting on the carrier, hence, retain the harmonic structures (i.e.,
mesh periods and relative phases) of the sun-planet, ring-planet, and planet-planet
mesh forces. Replacing the harmonic structure associated with sun-planet mesh forces
in equations (6.3)-(6.14) with the harmonic structure that sum up sun-planet, ring-
planet, and planet-planet mesh forces and applying the mesh phase relations that all
the train-level mesh phases are equal to each other along the same train in a meshed-
planet stage (as show in equation (5.22)) produce the result that the pth harmonic
of net force and torque acting on the carrier vanish in the same way as that for the

sun gear.

Cancellation of Planet Modal Forces

Let mode ¢, be a planet mode for stage 1. As introduced in the beginning of
this section, the suppression of this planet mode at puth harmonic of mesh frequency
depends on the vanishing of the planet modal force Q,(t) = ¢LE(P(t),t). £, (H(t),t)
collects the elements of f(¢(t),t) in equation (6.1) that are associated with planet set
1 and it is

£.(6(0).0) = [B16(1).0). - £ (0(0).1)]
B((0).1) = [B1((0).0), . £ (p(0).0)] (6.19)
B7((0),1) = [ (@(0). ). £, ($(0).0), £ (@(0).1)]"

where m=1, ---, d'.
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Insertion of the planet modal properties in (2.48)-(2.51) and equation (6.19) into

the expression of the modal force @), give

11
g w! ptv f

! ! ! (6.20)
— 2 E wlg}}lm 1im + E 2 wlnllmfllm + E 2 wlullm 1im
\l:l m=1 l 1 m=1 l 1 m=1 B
Q¢ Qn Q°

where w! is the scalar multiplier that satisfies (2.52). Kiracofe and Parker [53] point

out the closed-form solution for w' is

w! cos(n + 1)t sin(n 4 1)1
w? cos(n 4 1)1 sin(n 4 1)¢'2

W= : - Z On . ( )¢ + vy . ( )¢ (6.21)
w cos(n + 1)’ sin(n 4 1)

where o, and v,, are arbitrary constants, and n satisfies

TR 1— 1 1
n:{i,g, ,(c1 3)/2  when ¢! is odd (6.22)

;oo (c'=2)/2  when ¢! is even

Y

[gllm 1m ilm}

, m, is the motion of planet train 1 in stage 1 of planet

ptv =
mode v, and the dynamic forces [ fglm, f;lm, feum}T are the resultant of all mesh,
shaft, and bearing forces and torques acting on planet m in train [ of planet set 1 in
the [¢!™, p'™, @)™ directions (refer to Figure 2.8). Because these dynamic forces
are all determined by the same sun-planet, planet-planet, or ring-planet meshes, they
have similar structure (periodicity and relative phases between different trains) as the
associated mesh forces and the analysis on any one of them is sufficient to capture
the general behavior for others [5]. In the rest part of this section, hence, focus on
Q¢ = i > wh [ fE], the first term in (6.20). Depending on the position of

=1m=1

the planet in the train (the value of m), the Fourier series expansion of the dynamic
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force fi'™ varies. When m = 1, f! is impacted by a sun-planet mesh force and a

planet-planet mesh force. Its Fourier series expansion, hence, is

fglm — i eslll Sin/,b (wt o 277"781“"(”7) + gzlll oS fu (wt . 271_/75111,91)) +
1|~ -~

o
-

sun—planet mesh (623)
h}fu sin (wt — 27?71“2’”) + jim COS [ (wt — 27?”71“2’1”1”)

planet—planet mesh

Because all the train-level mesh phases along the same train equal each other in a
meshed-planet stage (i.e., 7¥1bop = yrid.gp — Fimm+1)pp) yeplacing 759 and
F2Pp with 4 in equation (6.23) and combining the sine and cosine terms yield

fgu1 = Z [Ellfl sin j (wt — 27@”) + Gllfl CoS [t (wt — 27?7”)] (6.24)

pn=1
Application of the same procedure to planet m in other positions of train [ (m # 1)

1m

yields the general form of f-" as

fcllm _ Z [Eilm sin m (wt — 27'("—}/”) —+ G/ljm CoS 4 (a}t — 27T"_)/1l>:| (625)

pn=1
Substitution of (6.25) into the expression of Q¢ gives

cl

d! 9]
Q" = Z Z wlgg””z [Ellfm sin g (wt — 27@”) + Gllfm COS 11 (wt — 27@”)}
pn=1

=1 m=1

el

0o dt
=D > > WG B sinp (wt —277") + G cos p (wt — 217)] (6.26)

p=1 I=1 m=1

J/

—
Q5

=29
pn=1
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where Q5 is the pth harmonic of Q¢. Insertion of (6.21) and (6.6) into the expression

of Q5 gives

ct dt
QC = Z Z Z On cos(n + 1)1&Zl + Un sm(n + 1)1&Zl X
=1 m=1 n Il 12
11m Um 71 r7s 1m 1 r7s
G E,™sin (,uwt + Zg> + G, cos (wt + pp Zg> (6.27)
13 14

c
= Z Z Z C;lm (L1 + Ly + Iy + 1)

=1 m=1 n

ct dt
Substitution of equations (6.11) and (6.13) into the expression of Y7 37 > ('™ I113

I=1m=1 n

yields
e dt PRI A A
S Y = 303 Y G cos(n-+ 1) sin (juot £ 7 )
=1 m=1 n =1 m=1 n
c! 11m lim
Ey 27 (k (-1 9k —m—1)(1 —1
:Zzzgi{sin(,uwt){cos 7T(u+n—1|— I )—i-cos (K n1 )( )}
=1 m=1 n 2 C c

2k, +n+1)(1—-1)

N + sin

+ cos(uwt) {sin

ok, — n - (1l — 1)} }

(6.28)

ct dt
Application of (6.15) to (6.28) yields > > > ("™l = 0 if k, +n+ 1 # ¢!

I=1m=1 n

and k, —n—1# 0 foreachn =1, -+, (¢! —3)/2 when ¢! is odd, or each n =

1, -+, c'/2—1 when ¢! is even. Summarizing the conditions for both even and odd
ctdt

' gives k, #2, ---, ¢' — 1. Application of the same process to Y > > '™ 114,

g 4o I=1m=1 n

> > > G LI, and Z > > ¢,y 1, shows that the same condition make these

I=1m=1 n =1lm=1 n

terms be zero as well. Hence7 when k, =0, 1, ¢! — 1, Qi becomes zero. The same

result applies to ()]} and QY the pth harmonic of the planet modal force in n'*™ and

I
%lm directions. The planet responses at pth harmonic of mesh frequency, hence, are

suppressed when k, =0, 1, ¢! — 1.
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Table 6.2 summarizes the above results for the suppression of different responses
in a meshed-planet stage. Because the train-level relative phases along the same
train in a meshed-planet stage equal each other, the resultant mesh phasing rules are
the same as those for a simple planetary gear in [5,75] and the planet-planet mesh

parameters, such as planet tooth numbers, has no impact on the mesh phasing rules.

Table 6.2: The conditions for the phasing quantity &, to
suppress different responses in a meshed-planet stage.E
indicates the associated responses is excited, and S means
that the related responses is suppressed.

k, Cancellations of | Translational | Rotational | Planet
F, =, and @)
k, =0 F =0 =z #0, S E S
Q=0
k,=1,c—-1 |F #0, E =0, E S S
Q=0
k,#0,1, ¢t =1|F =0, E = 0, S S E
QF#0

6.2.2 Suppression of Selected Responses in a Stepped Stage
through Mesh Phasing

Different from meshed-planet stages, stepped-planet stages (Figure 6.3) generally
have two different mesh frequencies exciting the stage, and the ratio of these two
frequencies is determined by the tooth numbers of the two stepped planets. Without
losing generality, an arbitrary stepped stage, numbered as stage 1, is studied. The
two stepped planets in each train are numbered as v —1 and v, where 2 < v < d*. The
tooth numbers for these two planets are Z;l(y_l) and Z;l”. Kinematics for stepped
stages show that all the gear meshes that involve planets 1 to v — 1 in each train

have the mesh frequency of w and all other gear meshes have the mesh frequency of
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Q). These two mesh frequencies have the relationship as follows:

v
Zp

Z;l(u—l)

Q=w (6.29)

In the rest of this study, 2 is assumed to be different from w. Resonances in a
stepped stage, hence, are potentially excited when uw = w, or x{2 = w,. The study
in previous chapter shows that the stiffness variations for the gear meshes with w
mesh frequency along the same planet train have the same train-level relative phase,
and it is the same for gear meshes with (2 mesh frequency. For an arbitrary planet

train [, such mesh phase relation is expressed as

~slil,gp _ ~1112,pp _ _ ~1(v—2)(v—1),pp

0 = 0 == J

~—— —— —_————
sun—planet 1 mesh planet 1—planet 2 mesh planet (v—2)—planet (v—1) mesh

=4 (gear meshes with w mesh frequency)

(6.30)
—1lv(v+1),pp _ _ ~1(d'—1)d*,pp _ ~rlld',gp
U == U = U
—_—— —_— ——
planet v—planet (v+1) mesh planet (d!—1)—planet di mesh ring—planet d! mesh

=74 (gear meshes with € mesh frequency)

Different from meshed-planet stages (equation (6.5)), the gear mesh forces for the gear
meshes along train [ in a stepped stage no longer contain just w and its harmonics.
As long as 2 # w, € and its harmonics will participate into the harmonic structure of
all the gear mesh forces along train [. Because stepped stages retain cyclic symmetry,
if train [ is brought to the position of a different planet train y, the mesh stiffness
variations, meshes forces, and the associated responses along train [ should be exactly
the same as those for train y when train y is at the same position. The mesh forces
along train [, hence, are periodic and have phase relations with the mesh force in other
trains. Combination of equation (6.30) with the above properties for the mesh forces
in a stepped stage yields the assumption on the harmonic structure of any gear mesh
force in train [ as follows. Any gear mesh force in train [ contains w and its harmonic
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Stepped Stage

(@) Stage 1
Carrier
Planet 2
Planet 1
Input Shaft Output Shaft
Sun Gear
I Train 2

(b) Ring Gear

Train 3 Train 1

Train 4

Train 5

Figure 6.3: A stepped stage has six planet trains. Each planet train has two coaxial
planets.
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terms that are subjection to the train-level relative phase !! and Q and its harmonic
terms that are subject to a different train-level relative 4. The terms that contain w
and its harmonics are decoupled with those containing €2 and its harmonics. This is
the key stipulation in this section to derive the mesh phasing rules for stepped stages
and its validation is confirmed by the simulation results performed by Calyx [96].
The sun-planet mesh force in train [ of a stepped stage is examined first. Equations
(6.3) and (6.4) are still valid for the sun-planet mesh force in /th train of a stepped
stage. Different from mesh planet stages, F£'"' and F;'"!' in a stepped stage contain
additional terms that are functions of Qt and are subject to 74 as follows.
Fslll Fs,i}l(wt —omylh) + FSIH(Qt )
(6.31)
FM = Feit(wt — 2my)) + FPg (Qt — 277g)
Expansion of F¢! (wt — 2173, Frt(wt —277Y), FEg'(Qt — 2773)), and Fra' (1 —

2774) in (6.31) into Fourier series yields

FS”1 Z 3t sin (pwt) + g3l cos (pwt)| + Z €8y sin (xQut) + g5\ cos (xt)]
u*O x=0
sl st
Ewu EQX
Foit = Z [hzlil sin (pwt) + jo't cos (pwt)] + Z el sin (xQt) + joy! cos (xt)]
u:O x=0

— Z F;g,lu Z Fs’lll
"~ (6.32)

where Fg}flu and F;'! are the mesh forces between the sun gear and planet 1 in train

[ in & and 1 directions at the pth harmonic of the mesh frequency w, and Fg’glx and
F;;”lglzlx are the mesh forces of the same gear mesh in & and 7 directions at the yth

harmonic of the other mesh frequency (2.
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The net force acting on the sun gear in a stepped stage, hence, becomes

cl

Fsl*l _ Z Fslll

=1

o0 C
! 11 ! l l 1 l 11
- [ > (Feltcos ! = Byl sin ) +JZ< FEl sin g+ F3l cos V)

=0 =1

+

-

J/

Fsl*l

Cl
i i psi Y i JU g prslil Y
[1 ( Fegcosp™ — Frg  sing )+J E < Fegsing™ + FP g cost )]
1

=1

Mg

Il
o

X

/

v~
slx1
Fg L

[
Mg

Fsl*l + Z Fsl*l

=
I
o

(6.33)

The cancellation of Ff};l and Fg;l in (6.33) indicates that the translational responses

at pw = w, and x§) = w, are suppressed, respectively. The derivation of the cancel-

1x1 1x1

lation condition for F;, " is exactly the same as F,

in a meshed-planet stage (from

(6.10) to (6.15)) and the result is

F3l =0, when k, # 1, ¢' — 1
(6.34)
Fol £ 0, when k, =1, ¢! — 1

W,
where k,, is defined in (6.13).
Similar to k,, the phasing quantity that is associated with 4¢/ and xth harmonic

of € is defined as

ky, = mod ((—1)‘”‘“—?) (6.35)

Cc

where Z7 is the tooth number of the ring gear in the stepped stage. Replacing the rel-
r,hil
ative phase in equation (6.10) with & = dec <(—1)dl_1 %) [37] and application of

the same process in equations (6.10)-(6.15) with the exception that (6.13) is replaced
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by (6.35) produce the cancellation condition for Fg" as

F&r =0, when by #1, ¢' —1
(6.36)
51*1750 when k, =1, ¢! — 1

Similar to the net torque acting on the sun gear in a meshed-planet stage, the net
torque acting on the sun gear in a stepped stage is the sum of torques that are caused

by the sun-planet mesh forces in the tangential direction 7. Insertion of (6.32) into

1
C
=slkl __ ..s sl _:
BV =1y l§ 1 F7 yields

—\sl*l _ 74 E E slll

=1 p=0

o0 C1
= Zr Z hs111 smu 27@3}) + ]Zlﬁl cos it (w ( 27@3})] +

lLZO =1 B

Ef}!*l
. g g (6.37)
r Z 51;1 sin X Ot — 27?79) + j;m CoS X (Qt — 27?’751{)}

x:0 =1 B

Esl*l

0 0
— E :!51*1 + E :!51*1

n=0 x=0
B and BT are direct indications of the suppression of rotational responses at

w = wy or X2 = wy, in a stepped stage. 3! has the same form as 25! in equation
—w,u

6.16), and its suppression follows the same rule as Z**! in (6.18). Replacing the
o

phasing quantity %, with ]_CX and application of the same process as that in (6.17)
give the rule to suppress 2§ as
Eox #0, k=0
B (6.38)
Ele;l =0, ky#0
The net forces and torques acting on the ring gear and carrier have the same

harmonic structures as those for the sun gear in (6.33) and (6.37). Their cancellation
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conditions at pw = w, or x{) = w,, hence, are the same as those for the sun gear in
(6.36) and (6.38).

The general planet modal force expression in (6.20) is valid for stepped stages as
well. Similar to the sun-planet mesh force in (6.31), Q2 and its harmonics participate
in the planet modal forces for stepped stages and they are decoupled with w terms.
Take the first term in (6.20), Q° = CZ Z [Cnmf”m} as the example. In a stepped

=1m=1

stage with w and €2 mesh frequen(nes, Q¢ is

oo b dt
Q= Z Z Z W' (B sin p (wt — 273))) + G cos p (wt — 275 ) |+

p=1 I=1 m=1

J/

%
o Cl
Z Z Z wlCHm Eglzl’;z sin (Qt — 27T_”) + G%{”; Cos X (Qt — 27@3{)}
x=1 :1 = P
%

o o0
— ¢ ¢
=D Qhut Y@
pn=1 x=1
(6.39)
The cancellation of wa suggests the suppression of Q¢ at the pth harmonic of
w. Because all the terms in (6.20) have the same harmonic structure as Q°, the
modal force (),, as well as the associated planet mode response, is suppressed at
pth harmonic of w mesh frequency. Similarly, the cancellation of Qs%,x indicates the
suppression of the planet mode response at yth harmonic of €.
Because Qfa,u has the same expression as Qi in (6.27), the condition to suppress

Qfa,u is the same as that for Qi. That is,

wa =0, when k, =0, 1, -1
(6.40)
Q5, #0, when k, #0, 1, ¢! —1
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7l
dt—1 Zg*

Insertion of ¥ = dec <(—1) o

) into the expression of le,x’ introducing the
phasing quantity for 2 mesh frequency as Ex = mod <(—1)d1_1xc—zlg), and application

of the same analytical process as that for Qi in previous section yield the cancellation

condition for Qé,x as

Qé,x =0, when /%X =0,1, ¢! =1
i (6.41)
Qo # 0, when ky #0, 1, ¢' — 1

Table 6.3 sums up the above rules to suppress different responses in a stepped
stage. Due to the existence of two mesh frequencies, w and €2, in a stepped stage,
two different phasing quantities, k, and /;;X are needed to determine the suppression
of resonant responses at uw = w,, and yw = w,, respectively.

Table 6.3: The conditions for the phasing quantities £,
and Ex to suppress different responses in a stepped stage.
E indicates the associated responses is excited, and S
means that the related responses is suppressed.

k, Cancellations of | Translational | Rotational | Planet
F, Z and @Q at
fiw = wn
k,=0 F =0z #0, S E S
Q=0
k,=1,c -1 |F # 0, E =0, E S S
Q=0
k,#0,1, ¢t =1 |F =0, E =0, S S E
Q#0
l%x Cancellations of | Translational | Rotational | Planet
F, =, and @ at
X§2 = w,
k,=0 F =0 = #0, S E S
Q=0
ky=1,c' -1 |F #0, E =0, E S S
Q=0
ky#0, 1, ' —1|F =0, 2 = 0, S S E
Q#0
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6.3 Rules to Suppress Selected Dynamic Responses for Purely
Rotational Models

All the vibration modes for purely rotational compound planetary model are clas-
sified into two types: overall modes and planet modes [35]. Similar to the rotational
modes for rotational-translational models, each overall mode is associated with a dis-
tinct natural frequency, all the planet trains within the same stage have identical
motions, and all the central components have rotational motions. The net torques
acting on the sun, ring, and carrier, hence, are the direct measurement of the excita-
tion /suppression of overall mode responses in a purely rotational model. Because the
excitation sources are still the mesh forces in purely rotational models, the harmonic
structures of these net torques are the same as those in a rotational-translational
model in (6.17) and (6.38). The cancellation rules for these net torques in a purely
rotational model, therefore, are the same as those in a rotational-translational model
in equations (6.18) (for meshed-planet stages) and (6.39) (for stepped stages).

Equation (6.1) is generic for both rotational-translational and purely rotational
models and it indicates that the excitation/suppression of planet responses can be
determined by the planet modal force @),. Let an arbitrary meshed planet stage be
numbered as stage 1. ¢, is a planet mode for this stage. The associated planet
modal force (), has the same form as that for a rotational-translational in equation
(6.20) with the exception that w!, the scalar multiplier for a rotational-translational
model, should be replaced by v!, the scalar multiplier for a purely rotational model

that satisfies (2.37). Ambarisha and Parker [5] gives the closed-form solution for v'
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as

vl sin y@/A)“
2 cl-1 : 712
v sin
v=|" | = 9, | vy (6.42)
: — : A
Ve sin y@blcl

Similar to rotational-translational models, insertion of equation (6.42) and the planet
modal properties in equation (2.33) into the expression of the modal force in (6.2)
gives the pth harmonic of QY as

cl—1

Q= Z Z > |V SmW“
=1 m=1 y=1
o)1 | B, sin <uwt + /mﬂ”Z;) + G cos p <wt + /uﬁ”Z;) (6.43)
72 73

Cl 1

c—1
_ZZZ%W (J1Ja+ J1.J3)
=1 m=1 y=1

¢t dbol-1

Insertion of (6.11) and (6.13) into the expression of > > Z 0, J1.Jy gives

I=1m=1 y=

ct -1 cl cl-1
Z Z Z 011WJ1J2 Z Z Z GnmE}le ¢~ 1 gin yb"! sin <,uwt + p@bllZS)
I=1 m=1 y=1 =1 m=1 y=1

ol cl—1 ellmEllm c —1 27T(/€ + y)(l — 1) 27r(k — y)([ — 1)
= Z 2. {Sin(uwt) [sin — + sin Tt }

I=1 m=1 y=1 c c

2m(k, —y)(l -1 2 (k [—1
+ cos(uwt) [cos m (K ?IJ)(Z ) _ COS m(ky + ZIJ)( )] }
¢ c

(6.44)

¢t db -1

Application of the trigonometric identities in (6.15) to (6.44) yields that Y >~ >° 02'™Jy.Jy =

I=1m=1 y=1
0 when k, =y # 0 for every y = 1, ---, ¢ — 1. This condition is equivalent to
k,#1, ---, ¢ =1ork, =0. The other terms at the right hand side of (6.43) follow

the same cancellation condition. Qz, hence, cancels out when k, = 0. That is, the
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planet response at pth harmonic of mesh frequency in a purely rotational model is
suppressed when k, = 0.

Replacing (1™, Q°, QS ., and @, , in (6.40) with 1™, Q°, QP . and @Y, , yields

W,
the planet modal force for a stepped stage in a rotational model as

[

[e'e) gt
Q=20 D> wo B sinp (wt — 2m3) + G cos p (wt — 2m3) |+

p=1 =1 m=1

J/

-
QS

oo b dt

wl%lm [Eglzl’g? sin y (Qt — 27?”7%{) + G’g"; CoS Y (Qt — 271”7%{)]
x=1 I=1 m=1

N J/
-~

¢
Qﬂ,x

- Z wa + Z Q%,x
pn=1 x=1
(6.45)

The cancellation of @, , in (6.45) is exactly the same as QY in (6.43). Substitution

W,
of 74 = dec <(—1)d171 %) (the train-level relative phase expression in Table 5.1)
into the expression of lex in (6.45), insertion of k, = mod <(—1)d171xc—zlg>, and
application of the same analytical process as above produce the cancellation condition
for Q?l,x as k, = 0.

Table 6.4 summarizes the above results to suppress different responses in a purely
rotational model for compound planetary gears. Comparing with the results for
rotational-translational models in Tables 6.2 and 6.3, the condition to suppress the
overall mode responses in a purely rotational model is the same as that to suppress
the rotational responses in a rotational-translational model. In addition, the con-
dition to suppress the planet responses in a purely rotational model is identical to

the conditions to suppress planet and translational responses simultaneously in a

rotational-translational model.
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Table 6.4: The conditions for the phasing quantities k,
and l%x to suppress different responses in a purely ro-
tational model. E indicates the associated responses is
excited, and S means that the related responses is sup-

pressed.
Meshed-planet stages or stepped stages when puw = w,
k, Cancellations of = and ) | Overall | Planet
k,=0 Z#0,Q=0 E S
k,#0 ==0,Q#0 S E
Stepped stages when Q2 = w,
l%x Cancellations of = and ) | Overall | Planet
k, =0 =4£0,Q=0 E S
ky, #0 ==0,Q#0 S E

6.4 Numerical Examples and Discussions

To numerically validate the analytical results on the phasing rules for compound
planetary stages in previous section, numerical simulations are performed for com-
pound planetary stages with different mesh phasing configurations using Plantary2D
[95], a finite element software that precisely calculates dynamic responses for plan-
etary gear systems without any preset or user-defined mesh phase relations and
is proved to be the benchmark for analytical studies on planetary gear dynam-
ics [6,9,75,76].

For the meshed-planet compound stage shown in Figure 6.1, two different mesh
phasing cases that are listed in Table 6.5 are simulated. The input parameters to
Planetary2D are listed in Table 6.6. All gears are steel spur gears with Young’s
modulus equaling 207 x 10°N/m?, density being 7595kg/m?, and Poisson’s ratio

equaling 0.3. In both cases, the four planet trains are equally-spaced, sun gear is the
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input component, ring gear is fixed, carrier is the output, and all teeth are unmodified.
The finite element models for both cases are shown in Figure 6.4.

Table 6.5: Two different mesh phasing cases for the
meshed-planet stage in Figure 6.1.

Gear Tooth Numbers ky = mod(uZ;/c')
for Sun, Ring, and Planets | p =1 ‘ =2 ‘ w=3 ‘ =4
745 =129, ZI =153
Case 1 g S 1 2 3 0
7 =29, 712 — 33
7% =30, ZI =154
Case 2 g S 2 0 2 0
7 =29, 712 — 33

The changes in gear tooth numbers from Case 1 to Case 2 are minor and the
kinematic properties, such as gear ratios, remain almost the same for both cases.
Such little changes in gear numbers, however, have great impact on the dynamic
responses of the system. The phasing quantities in Table 6.5 suggest that in Case 1
translational responses are excited at all odd orders of mesh frequency harmonics, and
rotational responses are only excited every fourth harmonic of mesh frequency. For
Case 2, translational responses are suppressed at all the harmonics of mesh frequency,
and rotational responses are suppressed at odd orders of mesh frequency harmonics.
The complete suppression of translational responses and the suppression of rotational
responses at the first order of mesh frequency make Case 2 be the better design in the
view of noise and vibration reduction. These analytical results are confirmed by the
simulation results in Figures 6.5-6.6. Figure 6.5a shows the periodic sun translational
response, and its first four harmonic amplitudes are listed in Figure 6.5b. The fact
that the amplitudes of the first and third harmonics are much higher than those for
the second and fourth harmonics matches the analytical results for Case 1 in Table

6.5 that the even order of harmonics for the sun translational response are suppressed
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(a) Case 1

(b) Case 2

Figure 6.4: The finite element models for (a) Case 1 and (b) Case 2 in Table 6.5.
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because k, # 1, 3. To compare with Case 1, the periodic sun translational response
for Case 2 is shown in Figure 6.6a, and the associated first four harmonic amplitudes
are collected in Figure 6.6b. The sun translational response is completely suppressed
in Figure 6.6 and this result matches with the analytical results that is based on the
phasing quantity calculation in Table 6.5 (i.e., all the translational responses for Case
2 are suppressed because k, # 1, 3 for any pu).

Table 6.6: Input parameters to Planetary2D for the two
cases in Table 6.5. The unit for all diameters is millime-
ter. Planet gear (ilm) means planet m in train [ of stage
1.

Case 1 Case 2
Sun Planet| Planet| Ring Sun Planet| Planet| Ring
Gear Gear | Gear | Gear Gear Gear | Gear | Gear
(1) | (112) (11) | (112)
Diametral | 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Pitch
Pressure 25° 25° 24° 24° 25° 25° 25° 25°
Angle
Base 52.58 52.58 | 59.69 | 277.37 | 52.58 52.58 | 59.69 | 277.37
Diameter
Outer Di- || 61.72 61.72 | 69.60 | 324.10 | 61.72 61.72 | 69.60 | 324.10
ameter
Root 52.58 52.58 | 60.45 | 305.31 | 52.58 52.58 | 60.45 | 305.31
Diameter

The configuration (the number of planet trains and the arrangement of the two
stepped planets) of the example system shown in Figure 6.3 is the similar to the
practical planetary gear system in [19]. Two mesh phasing cases in Table 6.6 are
simulated (all the gear parameters in Table 6.6 are completely different from the gear

system in [19] with the exception of the gear tooth numbers for Case 1). All gears
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(a)

Sun Translational Response (um)

| | | | | | | | |
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(b)
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[ T P

2 3
Mesh Frequency Harmonics

Figure 6.5: The simulated results for (a) sun translational response and (b) the asso-
ciated harmonic amplitudes of Case 1 in Table 6.5. Sun gear is the input component
and the input speed is 100 rpm.
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Sun Translational Response (um)
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Figure 6.6: The simulated results for (a) sun translational response and (b) the asso-
ciated harmonic amplitudes of Case 2 in Table 6.5. Sun gear is the input component
and the input speed is 100 rpm. The input torque remains the same as that for Figure
6.5.
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are spur gears in the calculation and the finite element models for these two cases are

demonstrated in Figure 6.7.

Table 6.7: Two different mesh phasing cases for the
stepped stage in Figure 6.3.

‘ H Gear Tooth Numbers H Phasing Quantities ‘
ky = mod(uZ; /c')
p=1p=2 p=3p=4
Case 1 Z, =24, Z; =108 0 0 0 0
ZWM =66, Z)? =18 || k, = mod(x(-1)* 12! /c")
x=1x=2|x=3|x=
0 0 0 0
ky = mod(uZ; /c')
p=lp=2|p=3|p=>4
75 =26, ZI =110 2 4 0 2
Case 2 g I — I
Z" =67, Z)? =17 |k, =mod(x(=1)"'Z7 /")
x=1x=2|x=3|x=
4 2 0 4

Similar to the two case in Table 6.5, the differences in gear tooth numbers for the
two case in Table 6.7 are slight such that the gear ratios are the almost the same
for both cases. The dynamic responses for these two cases, however, differ dramati-
cally. The phasing quantities in Table 6.7 suggest that the translational responses are
suppressed at all the harmonics for both mesh frequencies (i.e, for any &, or l%x) for
both cases. For Case 1, the rotational responses are excited at all the harmonics for
both mesh frequencies because both £, and /;;X equal zero. For Case 2, the rotational
responses are only excited at every third harmonic of both mesh frequencies. These
analytical results are verified by the simulation results in Figures 6.8-6.9. The simu-
lation results in Figure 6.8 confirms that the sun rotational response is excited at all

harmonics of w and 2. For Case 2, due to the adjustments in mesh phasing, the sun
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(b)

Figure 6.7: The finite element models for (a) Case 1 and (b) Case 2 in Table 6.7.
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rotational response in Figure 6.9 is only excited at every third harmonics for w and
). The phenomenon that the fundamental frequency of the sun rotational response
in Figure 6.9a is three times of that in Figure 6.8a further confirms the analytical
results that is based on the phasing quantity calculation in Table 6.7.

Making the translational bearing/shaft stiffnesses in the above cases be stiffer (at
least one hundred times of their original values) and conducting the simulations to
calculate the rotational responses for the sun, and planet gear for the same cases
in tables 6.5 and 6.7 yield the numerical results that agree with the rules in Table
6.4. The mesh phasing rules for purely rotational models, hence, is also numerically

verified.

6.5 Conclusion

The chapter analytically investigates the general rules to suppress certain dy-
namic responses and resonances of compound planetary gears through mesh phasing
for purely rotational and rotational-translational models. For meshed-planet stages,
the excitation or suppression of various modal responses at pth harmonic of mesh
frequency is solely determined by the phasing quantity k,. The resultant rules are
the same as those for simple planetary gears and the planet-planet gear meshes have
no impact on the mesh phasing rules for meshed-planet stages due to the specific
train-level relative phase relations that are determined by the assembly conditions.
For stepped stages, due to the existence of two generally different mesh frequencies,
two different phasing quantities, k, and /_gx, are required to determine the excitation
or suppression of various modal responses at puth harmonic of one mesh frequency and

xth harmonic of the other one. For multi-stage systems, the mesh phasing rules are
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Figure 6.8: The simulated results for (a) sun translational response, (b) the ampli-
tudes of first sixth harmonics of sun-planet mesh frequency w, and (c) the amplitudes
of first sixth harmonics of ring-planet mesh frequency €2 for Case 1 in Table 6.7. Sun
gear is the input component and the input speed is 100 rpm.
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Figure 6.9: The simulated results for (a) sun translational response, (b) the ampli-
tudes of first sixth harmonics of sun-planet mesh frequency w, and (c) the amplitudes
of first sixth harmonics of ring-planet mesh frequency €2 for Case 1 in Table 6.7.
Sun gear is the input component and the input speed is 100 rpm. The input torque
remains the same as that for Figure 6.8.
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the sum of the rules from individual stage which is either a stage with meshed-planet
structure only or a stepped stage. The results of this study are critical to the design of
compound planetary gear systems and are effective in troubleshooting the vibration

and noise problems in real compound planetary gear applications.
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Chapter 7: PARAMETRIC INSTABILITIES OF
GENERAL COMPOUND PLANETARY GEAR CAUSED
BY MESH STIFFNESS VARIATIONS

7.1 Introduction

Mesh stiffness variation is a primary excitation of gear noise and vibrations [60,61,
98] and is typically represented by time-varying mesh stiffnesses that parametrically
excite gear systems in analytical studies [61]. When the operating speed of the system
meets certain conditions, instabilities that are caused by mesh stiffness parametric
excitations will occur such that noise and vibrations are created, the dynamic load on
each component of the system is dramatically increased, and the chance of hardware
failure, such as the damages in gear teeth and bearings, is greatly increased [61,98].
In order to prevent gear systems from operating in the instability regions, it is crucial
to investigate the parametric instabilities caused by mesh stiffness variations and to
identify the instability boundaries at the design stage of the system.

Parametric instability for a single gear pair was investigated analytically and nu-
merically in several studies [4,12,14,71]. The experimental work on the parametric
instabilities in a spur gear pair was performed by Kahraman and Blankenship [49].
Nonlinear phenomena such as gear tooth contact loss, period-doubling and chaos
were also observed in their study. As for the parametric instability of multi-mesh
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gear systems, very limited studies were performed. The studies on the instabilities of
two-stage gear systems by Tordion and Gauvin [93] and Benton and Seireg [10] gave
contradictory conclusions. This was clarified by Lin and Parker’s investigation [60]
which provided analytical formulae to allow designers to suppress particular insta-
bilities by changing gear mesh parameters, such as contact ratios and mesh phasing.
Liu and Parker [63] examined the nonlinear resonant vibrations of idler gears that are
parametrically excited by mesh stiffness variation. The study on the planetary gear
parametric instability was first performed by Lin and Parker [61] who analytically
investigated the parametric instability of simple planetary gear using a purely rota-
tional model. Bahk and Parker [9] used the same purely rotational model to study
the nonlinear resonant vibration of simple planetary gears parametrically excited by
mesh stiffness variations. Wu and Parker [98] extended the parametric instability
investigation scope to simple planetary gears having an elastic continuum ring gear.

Compound planetary gear parametric instability, however, is not investigated in
any previous studies mainly due to the complexity in modeling, the complex mesh
phasing relations caused by meshed-planet and stepped-planet structures, and multi-
frequency excitations incurred by stepped-planet and multi-stage structures. Studies
in previous chapters develop the lumped-parameter models for compound planetary
gears, define and clarify the complex mesh phasing relations, and derive the rules
that govern the suppression of selected dynamic responses through mesh phasing. All
these provide necessary foundations for the current problem of parametric instability
for compound planetary gears.

Compared to the rotational-translational compound planetary gear model in [53],

the purely rotational model developed in chapter 2 greatly simplifies the analytical
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work on gear dynamics while keeping the main dynamic behavior generated by mesh
stiffness variations. The work in [61] confirms the effectiveness of a purely rotational
model in capturing the parametric instability properties for simple planetary gears.
The study in this chapter, hence, uses the purely rotational model to investigate com-
pound planetary gear parametric instabilities. By applying the method of multiple
scale, the well-defined modal properties in chapter 2, and the mesh phase relations
in chapter 5, the instability boundaries are analytically obtained and the general

instability existence rules are derived.

7.2 Mesh Stiffnesses Variations in Compound Planetary Gears

Meshed-planet, stepped-planet, and multi-stage structures are unique to com-
pound planetary gears. Meshed planets introduce new planet-planet meshes to the
system. Stepped-planet and multi-stage structures allow the system to have multiple
mesh frequencies. k;ﬁm(t) is the time varying mesh stiffness between central gear s
and planet m in train [ of stage ¢ and its mesh frequency is Q}. If all other gear meshes
along train [ in the same stage have the same mesh frequency, stage i is either a simple
stage (a stage that is equivalent to a simple planetary gear) or a meshed-planet stage.
Otherwise, there exists a stepped-planet structure along train [ and there is always a
central gear-planet mesh having a mesh frequency different from ). Without losing
generality, kggq (t) is the mesh stiffness between central gear r and planet ¢ along train
[ in stage 7 and its mesh frequency is Q7. When Q? = Q! stage 7 is a simple planet
gear, a meshed-planet stage, or a special stepped stage with single mesh frequency.
Otherwise, stage ¢ is a stepped stage with two different mesh frequencies. With the

assumption that the mesh stiffnesses are independent of the load, the time-varying
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mesh stiffness k5™ (t) and k1(t) are

ki (e) = kg B
} (7.1)

k() = Ky + (o)
where k35 and k7" are mean values for k3™ (¢) and k%9(t), and k5™ () and &7l4(¢)
are zero-mean mesh stiffness variations. Similar to [98], trapezoidal waves are used
to approximate the mesh stiffness variations due to its advantage over rectangular
waves in case of corner contacts. Figure 7.1 shows the trapezoidal approximations for
l%;;,lm(t) and l;;;fq(t). A9Psitm () and 49P74(0) are the system-level relative phases for
kst (t) and k7114(t) and the referring time 0 indicates that the pitch point of the base
referred mesh is in contact at ¢t = 0. The contact ratios for these two mesh stiffnesses

sixm

rikq : sixm __ 21 rivq _ 27 Stxm rikq
are ¢, and g7 and the mesh periods are 7] ol and 777 o Poy and pg

are the slope coefficients for the non-parallel sides of the trapezoidal waves for l%;;,lm(t)
and l%ggq (t) and they are in the range of [0, 1] (0 and § correspond to rectangular
and triangle waves, respectively). 2k5*™ and 2k}*¢ are the peak-to-peak amplitudes

for l%;gm(t) and l;;;gq(t).

Fourier expansion of l%;folm(t) and (b) l;;;lq(t) yields

];;;;lm(t) = Qkié*m [Aip,silm sin :U’Qzlt 4 sz,silm COS Mta]
= 72
/;/‘ggq(t) = 2]652*(1 Z [Azp,rilq sin ,U«Qz?t + sz,rilq COS ,U«Q?t]
pn=1
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Figure 7.1: The zero-mean mesh stiffness variations (a) l%;folm(t) and (b) l%;;lq(t).
Aopsitm () and 49P79(0) are system-level mesh phases, ;™ and ¢/ are contact
ratios, T;2*™ and T;7*9 are mesh periods, and p5>™™ and p ¢ are trapezoid wave slope
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where the Fourier coefficients AJPs"m  Bpsim - A9prild and BIPT™4 are

A sin(2um psrm A
Agp,szlm _ piz*/fnupﬂg ) sin [,u,ﬂ'( sikm + Qﬁgp,szlm(o))] SlH(/ﬂTCSZ*m)
gp
gp,silm SIH(Q'LHTpSZ*m) SikM 2 gp,silm Sikm
B = W cos [pm (5™ + 24 (0))] sin(pes™)
b (7.3)
. sin(2umpl e
Agrris = —pszfq‘ufﬂ ) sin (e + 2319(0))] sin( el
. sin(2pumpg, . .
BIprila p(mT%ﬂ) coS [/”T( rixq + Q’VQP’TZlq(O))] sm(,mrc” q)
slxm rlx
e = Zﬁf*m and ;14 = Zfi’*z are the relative amplitudes of mesh stiffness varia-
gp gp

tions. Without losing generality, k1111

is the mesh stiffness for the base referred mesh,
and its relative mesh stiffness variation amplitude is e;" = €. According to [61,98],

it is reasonable to assume that eSZ*m and egé*q are of the same order as e. That is,

slxm l*m
Cop = ggp
(7.4)
rl*q grl*q €
where g5h, g'1*0 = O(1) are relative variation coefficients. Application of the ana-

lytical process in equations (7.1)-(7.4) to all other gear meshes in the same compound
planetary gear yields the Fourier expansions for these gear meshes. Substitution of
the resultant Fourier expansions for all the gear meshes into the stiffness matrix for

the purely rotational model (2.23) gives

Kit) =Ky, +K,, =K, + K, + K,(t)
K

=K,, + 2¢ Z Z [(K, sin p€t + KU, cos pQ}t) +

p=1 i=1
(K%, sin pQ7t + Kly, cos p€t) |
where K;, = K; + K, is the time-invariant part of K(t), K, (¢ is the time-varying

part of K(t), K, has the same form as K,, with all the mesh stiffness substituted by
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their mean values, and K|, K¢}, K, and K%, are the Fourier coefficient matrices
for stage ¢ gear meshes with Q! and Q? mesh frequencies, respectively. They have
the same form as K,, with all the mesh stiffnesses that have the mesh frequency of
Q! (for K, and K!},) or Q? (for K!;, and K%,,) being substituted by the production
of relative variation coefficients, their mean values, and the associated Fourier coef-

ficients (for example, k5™ (t) in K}, is replaced by gstmksm A9Psm and k$il™(t) in

stxm

K124 is replaced by g7

k‘;;*mAﬁp’s”m), and all other terms in these two matrices are

Z€eros.

7.3 Derivation of General Instability Boundaries for Com-
pound Planetary Gears

Parametric instabilities occur when harmonics of the mesh frequency are close to

particular combinations of the natural frequencies [60,61, 98], that is,
Pl = we + wy (7.6)

where (2 is an arbitrary mesh frequency, p is an arbitrary integer, and w. and wy
are two natural frequencies of the system. Because the rigid-body mode (the mode
associated with zero natural frequency) is a special overall mode that does not impact
the instabilities of the system, the overall modes that were discussed in the rest of this
chapter exclude the rigid-body mode. According to equations of motion in (2.15)-
(2.17), the free vibration equation of a purely rotational compound planetary gear
is

M6 + K(t)0 = 0 = M6 + K;,0 + K, (t)0 =0 (7.7)
where the time-invariant mass and stiffness matrices, M and Kj,, are the same as
those in (2.18), and the time-varying stiffness matrix K, (t) is the same as that in
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(7.5). Let @ = [0y, -+, O] ([ =a+b+ Y, d" is the total degrees of freedom of
i=1
the system) be a set of normalized vibration modes (i.e., @M@ = I). Application

of the modal transformation 6 = @z to (7.7) and insertion of (7.5) into (7.7) yield

I' oo a
B+ wiz, + 2 Z Z Z [(KH o sin €t + KB\, cos p€2t) +

w=1 p=1 =1 (78)

(Kl o Sin €Ut + KLy | cOs p€2t) ] 2y = 0
where n = 1, ---, T' (if the first mode is a rigid-body mode, n starts from 2. It
is the same for the rest of this chapter), and Kf; ., Kiionwr Kiorpw, and K o,

are OTK!|,0,,, 0TK%, 0, 01 K" ,0,,, and 8TK",,0,, respectively. Application of the

method of multiple scales gives the form of the solution for (7.8) as
Zn = Zno(t, T) + €2p1 (E,7) + - - - (7.9)

where 7 = et and d/dt = 0/0t + €0/0t. Insertion of 7.9 into 7.8 gives

82 Zn0

ot?

+ w220 =0 (7.10)

2 2 I' oo a
88?1 + wiznl = —22%? -2 Z Z Z [(Kﬁl,nw sin uQ%t + Kfmvnw cos uQ%t) +

w=1 p=1 i=1

(KzHQl,nw sin IU/QZQt + KZHQQ,nw cos /J/th)} Zwl
(7.11)
where n =1, -+ I'. The solution for (7.10) is
Zno = Cp(1)e? +-cc, n=1, ---, T (7.12)
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where j is the imaginary unit and cc means the complex conjugate of preceding terms.

Substitution of (7.12) into (7.11) gives

+ Wiz = —2jw,elnt —=
g i = T or
I' ©o a
- Z Z Z [(_]Kz”ll,nw + KﬁQ,nw) €J(Wn+uﬂzl)t + (szHll,nw + Kz“l2,nw> BJ(WH_NQ%)t
w=1 pu=1 =1
+ (_jKilél,nw + KiHQQ,nw) ej(wnJrMQ?)t + (jKiuﬂ,nw + Kilé2,nw) ej(wniuﬂg)t} Cw
+c n=1, ---, T

(7.13)
The equations matching with (7.13) in [60, 61, 98] are inconsistent and this study

confirms that the discrepancies are caused by the typos in [60,61]. The resultant
equation (7.13) agrees with that in [98].

Without losing generality, when a harmonic of Q} is close to the sum of two natural
frequencies w, + wy and the harmonics of other mesh frequencies do not approach
we + wy, secular terms present in (7.13) and parametric instability happens. Such
parametric instability that is caused by a individual mesh frequency is classified as

individual-excitation type of instability in this study, and the condition is
pQ = w, + wy + €0 (7.14)

where o is the detuning parameter to be determined.

Multiple mesh frequencies present in compound planetary gears involving stepped-
planet or multi-stage structures. It is, hence, possible that the harmonics of two or
more mesh frequencies is close to the sum of two natural frequencies w, +wy. For this
case, secular terms exist in 7.13 and parametric instability also occurs. This kind of
instability is caused by multiple mesh frequencies, and it is called mutual-excitation
type of instability in this chapter. In the rest of this section, the instability boundaries
for both types of instabilities are investigated.
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7.3.1 Parametric Instability Boundaries for Individual-excitation
Type of Instabilities

Depending on the degeneracy of w. and wy, the solvability conditions for 7.13 are
classified into three cases: (A) two distinct eigenvalues (distinct-distinct), (B) one
distinct eigenvalue and one degenerate eigenvalue (distinct-degenerate), and (C) two
degenerate eigenvalues (degenerate-degenerate). Similar to previous studies [61, 98],
to derive the boundaries for single mode and combination instabilities is focus for each
cases. The definition of the single mode instability for compound planetary gears is
different from that in [98]. In addition to the requirement of w, = wy, w,. and wy have
to be the same type of natural frequencies. All other cases belong to combination
instabilities. That is, if w, is an overall frequency and wy is a planet frequency, the
instability at wy + w, is always a combination one regardless the equality of these
two frequencies. Such definition of single mode has no mathematical impact on the
following derivation of instabilities but prevents the confusions in terminology.
Case (A): distinct-distinct

When both w, and wy are distinct, elimination of the secular terms in (7.13)
requires [60]

e

- aC A - oT
2jwe =+ Cr(=J Ky ep + Kfpep)e”m =0
i (7.15)
2y 0L Cul Kl g+ Kl g )7 = 0
According to [60], the form of the solutions for (7.15) are

Ce = (Re + jl.)e 7
' (7.16)
Cp = (Ry + jlp)e 9o
where R., I., Ry, and I; are real coefficients independent of 7. ¢ in (7.16) is the root

of the associated characteristic equation that is derived from the eigenvalue problem
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by insertion of (7.16) into (7.15) and it is

1
¢ =—5lo £ (0 = Aly/ (wewy))'?]
2 (7.17)

Agf = (Kiull,ef)Q + (Kium,ef)Q
Equations (7.15)-(7.17) suggest that C, and Cy are unbounded if 6 < AZ; /(wewy).
Hence, o = &, /Al;/(wewy) separates the stable and unstable regions. The parametric

instability boundaries for )} ~ w, + wy, hence, are
O = L + e /A 7.18
P = ;[we +wyp e /A (wewy)] (7.18)

where Agf is the instability indicator of the width for the instability region. If
Ag( fra—1) vanishes, the width for the instability region is zero and the instability
at u€); = w,+wy vanishes. For single mode instability, equation (7.16) can be further
simplified as

Q! = %[2% + ey/AL ) (7.19)

where A* = (K}

i1l,ee

)? 4+ (Kliy..)? is the instability indicator.
Case (B): distinct-degenerate

When w, is a distinct natural frequency and wy = -+ = wyi,—1 is a degenerate
one with multiplicity v (u > 2), single mode instability is not possible because w,
and wy.... r1q—1 are always different types of natural frequencies. The elimination of

the secular terms in (7.13) leads to u + 1 equations as

' 30@ ols ] oT
2‘7('06? + Z Cf”*l(_JKfn,e(erxfl) + KﬁQ,e(erx—l))eu =0
=1

3Cf+171 = .
a7 + Ce(_]Kﬁl,(erx—l)e + K}

Zl2,(f+$*1)€)eﬂa7- = 0, Tr = 1’ ety u

(7.20)

2jWiiz—1

The solutions for (7.20) have the same form as (7.16). With similar algebraic process
of the associated 2(u + 1) x 2(u + 1) eigenvalue problem as that in (7.17)-(7.19), the
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instability boundaries for this case are obtained in closed-form as

1 u
Qzl = p[we + wr te Z Ag(f_i_x_l)/(wewf)] (721)

r=1

where AL ) = (Kl pre1)” T (Kaeipie_1))” and xéAg(f”‘” is the insta-
bility indicator. Single mode instabilities do not exist for this case because w,. and
Wiig—1, T =1, ---, u are always different types of natural frequencies.
Case (C): degenerate-degenerate

When we = -+ = Wegp1 (v > 2) and wy = -+ = wypy—1 (u > 2) are two
degenerate natural frequencies, the solvability conditions of (7.13) yield v+u equations

as

. 806-1— -1 — . oT
2jwery-1—pg— + > Craat (I ey e + Kliaerynpee )€ =0
=1

y:17 o, U

. aof—i—x—l . . oT
2‘7wf+x717 + Z Ceer*l(_jKiMll,(er:tfl)(eerfl) + KﬁQ,(erx—l)(eer—l))eu =0
y=1

r=1, -+, u
(7.22)

The solutions of (7.22) have the same form as (7.16), producing a 2(v +u) X 2(v + u)
eigenvalue problem. Previous studies on simple planetary gears indicate that it is
difficult to derive the instability boundaries from such a large size coefficient matrix
directly. Provided with modal and mesh phasing conditions, this type of instability
is possible to be determined analytically and such analysis is performed in the later
part of this study.

Single model instability is possible for this case in compound planetary gears
because any degenerate planet frequency belongs to this type. Let we = -+ = wWeyp—_1.
Similar to the distinct-distinct case, the vanishing of the unbounded responses in
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(7.13) gives

. aC@Jr -1 —~ . o
2We+y—lTy + Z Ce+:c—1(—JKﬁ1,(e+y—1)(e+x—1) + Kﬁ?,(e—l—y—l)(e-i-x—l))el =0

r=1
Yy = 17 e, v
(7.23)

The associated coefficient matrix for (7.23) is a 2v X 2v one. Similar to the combi-
nation instability, analytical solution can not be derived directly from the coefficient

and K*

- i
matrix unless K 12, (e+y—1)(e+o—1)

i1 (ety—1)(eta1) have specific features to fur-

ther simplified the coefficient matrix. Numerical evaluation can still determine the
instability boundaries.
7.3.2 Parametric Instability Boundaries for Mutual-excitation
Type of Instabilities

Mutual-excitation type of instabilities happen when the harmonics of two or more
mesh frequencies approach the sum of two natural frequencies. Take Q) and ?
(Q # Q2 ) as the representative example. Let uf)} = xQ7 = w, +wy + eo. Similar to
individual-excitation type of instabilities, three cases are studied here: (a) distinct-
distinct, (b)distinct-degenerate, and (c) degenerate-degenerate. Application of the
same process as that for individual-excitation type of instabilities yields the instability

boundaries for case (a) and case (b) as

1
Q! = %Qf = ;[we +wyp £ ey /110 /(wewy)]  case (a)

(7.24)

1 u
Qb = %QZQ = ;[we +wrte an(f—f—x—l)/(wewf)] case (b)

r=1

where HZ(erxfl) = (Kzﬂll,e(erxfl)+Ki);1,e(f+xfl))2+(KiHIQ,e(erxfl) +Ki);2,e(f+x71))2 (x =
1, -+, u) and ;HZ(H%” is the instability indicator. The forcing of w. = wy in

(7.24) gives the single mode instability boundaries for case (a).
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For case (c), the solvability conditions of (7.13) produce v + u equations for com-

bination instabilities as

. 80(3—}— —1 - =, .
2eeryr—p — + > Criea [(_9 K (ety-1(fra-1) T Kz (ery-1)(pra1)
r=1

+ (—jKX

X
21, (cty-1)(f+a—1) T IS

Z22,(e+y—1)(f+$—1))i| 6”0'7' — 07 y = ]_7 s v

. aCerxfl . .
2@ > Ceryr [(_J Ko (rra-ery-1 T Kz (rra-1)ety-1)
y=1

+ (—jKX

X
i21,(f+x—1)(e+y—1) + K

122’(f+171)(6+y71)):| 6#0’7’ — 07 r = ]_7 S u

(7.25)
For single mode instabilities, the associated solvability conditions are simplified as

. 80(3—}— —1 ’ =, .
2‘7%*3/*1 @Ty + Z Ceta [(_jKiMll,(eerfl)(eerfl) + Kiul2,(e+y71)(e+x71)> (7 26)
r=1 .

+ (K ey era1) T Ko ety 1eran) | €7 =0, y=1, -+, v
Compared with (7.22) and (7.23), the additional terms in (7.25) and (7.26) are caused
by the excitation from yth harmonic of QZ. Same as the individual-excitation type,
the instability boundaries cannot be analytically determined from the coefficient ma-
trix of (7.25) and (7.26).

The above analytical expressions for instability boundaries indicate that Ki”n,ef,
Ki”mef, K;;l,ef, and K;;Q,ef are critical for the determination of the instability bound-

aries and they are called key instability terms in this investigation. Algebraic manip-

ulation of equations (7.5), (7.7), and (7.8) yields the analytical expression for these
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key instability terms as

Tyt _ sz*m sixm gp,silm ¢silm gsilm
Kzn ef — Oe Kmef - E : k E :A 59176 5gp,f

s,m
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T rilg srilg sril
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where 5;;”; (gear mesh deflection between central gear s and planet m in train [ of

.. . . l .
planet set i in vibration mode e) and 6,7 (gear mesh deflection between planets
m and ¢ in train [ of planet set i in vibration mode e) are given in (2.6) and (2.9),

respectively. Equation (7.27) shows that key instability terms depend on modal gear
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mesh deflections and the Fourier coefficients in terms of mesh parameters (contact
ratios, peak-to-peak amplitudes of mesh stiffness variation, and etc.). Insertion of
(7.3) and (7.27) into (7.18), (7.21), (7.22), (7.23), (7.24), (7.25), and (7.26) yields the
expressions for the instability boundaries or associated governing equations in terms
of mesh parameters, and the impacts of mesh parameters on the instability regions
can be predicted parametrically.

7.4 Impacts of Modal Properties and Mesh Phasing Condi-
tions on Compound Planetary Gear Instabilities

Studies in previous chapters show that compound planetary gears, similar to sim-
ple planetary gears, have well-defined modal properties and unique dynamic response
excitation /suppression patterns depending on different mesh phasing conditions. Be-
cause different modal properties and mesh phasing conditions impact modal gear
mesh deflections which determines the key instability terms in (7.27), it is important
to understand how compound planetary gear parametric instability boundaries are
affected by different modal properties and mesh phasing conditions. To simplify the
modal structure of the following discussions, the investigation scope is limited to the
systems with three or more planet trains in each stage (i.e., ¢ > 3) such that any dis-
tinct frequency is associated a overall mode and any degenerate frequency is a planet
frequency. The results of chapters 5 and 6 show that there are two mesh phasing
conditions for stage i phasing quantities k, (i.e., k, = 0 and k, # 0) and k, (i.e.,
]_CX = 0 and ]_CX # 0), respectively. Combining these mesh phasing conditions with
the parametric instabilities types for compound planetary gears, the following situa-
tions are studied: (i) individual excitation with zero phasing quantity (k, = 0), (ii)
individual excitation with nonzero phasing quantity (k, # 0), (iil) mutual excitation
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with zero phasing quantities (k,, k, = 0), (iv) mutual excitation with nonzero phas-
ing quantities (k, #= 0 and k, # 0), and (v) mutual excitation with mixed phasing
quantities (k, = 0 and k, # 0, or vice versa).
7.4.1 Individual and Mutual Excitations with Zero Phasing
Quantities

Due to the high similarity, the investigations on situations (i) and (iii) are com-
bined in this section. The individual excitation with zero phasing quantity is first
investigated and the three cases of instabilities, (1) distinct-distinct, (2) distinct-
degenerate, and (3) degenerate-degenerate, are addressed as follows.
Case (1): distinct-distinct

The distinct natural frequencies in this study can only be overall frequencies. For

two arbitrary distinct natural frequencies, w, and wy, the overall mode properties lead

to
silm __ ¢sixm
5917,6 - 5gp,e
silm __ ¢sixm
0 I = Ygp.f
(7.28)
ilmq __ Sixmgq
51719,6 - 5ppve
ilmq __ ¢ixmgq
5pp,f - 5pp7f
where [ = 1, ---, ¢’. The zero-phasing-quantity condition ensures that the Fourier

coefficients Azp’Silm, sz’Silm, Aﬁp’”mq , and Bﬁp’”mq are independent of planet trains.

Replacing [ with * for these Fourier coefficients, moving them out of the summations
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n (7.27), and insertion of (7.28) into (7.27) give

KHH ; — OTKHHOf — Czgsz*mksz*mAgp,sz*mész*m Stxm
ill,e e E :

gp.e “gp,f

4 E ngz*mqkz*qupp,z*mqu*mq(sz*mq

pp pp.e “pp,f

(7.29)

gp.e “gp,f

KHlQ ;= 0 K 120f E ngsz*mksz*mng,sz*m&sz*m sikm
i12,e 7

+ § ngz*mqkz*mq Bpp,z*mqéz*mqal*mq

pp,e “pp,f

Substitution of (7.29) into the expression of the associated instability indicator,

A7y, gives

Ay = (Kfn,ef)Q + (K£L12,ef)2
92

gp,e pp.e ~pp,f

— [E : ngsz*mksz*mAgp,sz*m(ssz*m(ssz*}n 4 E ngz*mqkz*qupp,z*mq(sz*mq(sz*mq

12

1 STKM 1,ST¥ M R GP,STkM STRM $ST*M i 1¥mq z*mq DP,ixmq Sixmq $1¥mg
Zngp k B 5gp659pf +ZCgpp k B 5pp65ppf

(7.30)

Because 05770577 and 5;;72‘16;;"}‘1 are not zero for any overall modes except the rigid-
body mode, Agf is not equal to zero in general. The instability boundary, hence,
does not vanish for most of the cases. Under certain circumstances, however, Agf
in (7.30) may be canceled out. For example, the condition that sin(umciy™) = 0
for all central gear-planet meshes with Q} mesh frequency and sm(/mcz*mq ) =0 for
all planet-planet meshes with ! mesh frequency is sufficient to force all the Fourier
coefficients AgPsm  BIp-sem - APPHMA and BP9 to be zero. For such a particular
case, the instability at uf)} = w, + wy vanishes. The same conclusion applies to

distinct-distinct single mode instabilities.

Case (2): distinct-degenerate
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When w, is a overall frequency and wy = --- = wyy,—1 is a planet frequency with
multiplicity u, the modal properties for overall and planet modes yield

CZ

silm gsilm
Z 6gp76 69p7(f+x*1) = 07 €r = 17 Tty u (731)
=1
Therefore, K3, ;4o 1) 80d Kjjy (71, 1) (@ =1, -+, u) are zero and the instability

indicator is canceled out. That is, the instability at uf2} = w,. + w; disappears if w,
is a overall frequency, and wy is a planet frequency with multiplicity u > 2.
Case (3): degenerate-degenerate

fwe="+"=wWetyp—1 andwy = - - - = wsy,—1 are two degenerate natural frequencies
with multiplicities v (v > 2) and u (u > 2) and they are planet frequencies for different

STkM SST*
osmm g

ixmgq ST¥Mg
gp,e ~gp, 5 6

stages, the planet mode properties (2.33) ensure that ope Opp ¢ L€

¥ and
zero because only the components in one stage have motions in any planet mode.

Equation (7.25), hence, is simplified as

OCiy—
2jw€+y71%:07 yzla T, v
7.32
24 780/[”_1 -0 -1 ... ( )
JWftz—1 or =U, =1, , U

Cety—1 and Cpy,_q are bounded in equation (7.32) and it suggests that the instability
at Q) = w.+w; vanishes when the two planet frequencies are for two different stages.

When the two planet frequencies are for the same stage, u has to equal to v for this
case. Let we =+ = Weyy—1, Wy =+ = Wriy1 (0> 2), and w, # wy. Application of
the planet mode properties (2.33), insertion of the Fourier coefficients in (7.3) and the

closed-form solutions for v! in (6.42) into (2.6) and (2.9), and use of the trigonometric
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identities in (6.15) yield

ct

silm ¢silm
Z 5919,6 5gp,f =0

=1

gp,e ~gp,e gp,e

Z 6silm65ilm _ Asz‘*m
= (7.33)

ct

ilmg gilmg __
Z 6pp,e 5pp,f =0
=1

CZ

E 5ilmq5ilmq — Ai*mq

pp,e “pp,e pp,e
=1

where AS7" and A4 are not equal to zero. Insertion of (7.33) into (7.22) directly
gives the same equation as (7.32). The instability boundaries, hence, vanish for this
case. This result agrees with the mesh phasing rules in chapter 6 that planet mode
responses are suppressed when &, #= 0.

For single mode instability, however, the instability may exist. Insertion of (7.33)

into (7.23) gives

. OCery1 = , , : 4 .
2]we+y71% 4+ Copyr | —J ZAZpM*mX;;TZryfl + ZAzp’z*mqY;;Zzy*l
s,m m,q
+ (Z BTG Y Bmym) @~ 0
s,m m,q

Y= 17 e, U
(7.34)
where X0m | = gstmpsismAsim and Y | = gimagima Ama - Equation (7.34)
indicates that all C.y,—1 (y = 1, ---, v) are decoupled. Application of the same

+y

process as that in case (A) in section 7.3.1 yields the instability indicators for single
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mode instabilities of planet frequencies as

2
o gp,sixm y~sikm Pp,ixmqy/i*mq
A(6+y 1)(e+y—1) — (ZA X p,e+y—1 + ZA Ypp e+y— 1)

2
+ (Z ng,sz*mez :Jlry . 4 ZBPP,Z*mqYZ;TS_Ey 1) , Y= 1, cee LW
1
1
Q’i = ;[QCL)@ + 6\/?!:%{18"%(7 v(All(Le+y—1)(e+y—l)>/we]

(7.35)

Because A“ in equation (7.35) is not equal to zero for any planet mode,

(e+y—1)(efy—1)
single mode instabilities always exist for planet frequencies as long as the Fourier
coefficients are not equal zero. In another word, the mesh phasing rules in chapter
6 that planet responses are suppressed when k, = 0 is no longer hold in case of the
single mode instabilities for planet frequencies. This result agrees with the findings
in previous studies on simple planetary gears [61,98].

For mutual excitations with zero phasing quantities(k,,, /_cx =0, and puf)} = xQ? =
we + wy), the same analytical process as above applies and the results are the same
with the exception that K5, oy and KX, o barticipate in all the instability expressions
and IT” L(f+ao1) Teplaces A L(fr1) (z=1, -+, .

7.4.2 Individual and Mutual Excitations with Nonzero Phas-
ing Quantities

When stage i phasing quantities (k,, k,) are not zero, application of the trigono-
metric identities in (6.15) to the Fourier coefficients A%-sim = Bgpsibm = Appitma - and
Brpima yields

Aﬁp,szlm — ng,szlm — Aﬁp,zlmq — Bﬁp,zlmq =0 (736)

Equation (7.36) is valid for any individual or mutual excitations with nonzero phasing

quantities.
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Similar to previous section, individual excitation with nonzero phasing quantity
is investigated for three cases (I) distinct-distinct, (II) distinct-degenerate, and (IIT)
degenerate-degenerate. For case (I), insertion of (7.36) into (7.27) produces

K'Mll,ef =0

7

(7.37)
Kz“l2,ef =0

The associated instability indicator A, = (K}, .;)* + (Kjjy.)? hence, is zero. That
is, the instability for case (I) vanishes for nonzero phasing quantity. It is the same for
single mode instabilities. Such result indicates that the mesh phasing rule that overall
mode responses are always suppressed when k, # 0 still holds for distinct-distinct
type of instabilities.

For cases (II) and (III), it is difficult to obtain simple expressions for the instability
boundaries and the instability conditions have to calculated from equations (7.20),
(7.22), and (7.23). As long as K}}, ., and Kjj, , in these equations equal zero (such
as two planet frequencies of different stages), the instability boundaries vanish.

The same analytical process applies to mutual excitation with nonzero phasing
quantity and the results are the same except that K7, ;and K, 52 ; barticipate in all
the instability expressions and equations (7.24), (7.25), and (7.26 are used for cases

(IT) and (III).
7.4.3 Mutual Excitation with Mixed Phasing Quantities

The situation of mixed phasing quantities is only possible for mutual-excitation
type of instability. Without losing generality, £, is zero and ]_CX is not equal to zero.
Three cases of instabilities, («) distinct-distinet, (3) distinct-degenerate, and ()
degenerate-degenerate, are investigated. For case (), the phasing condition of k,, =
0 ensures that the Fourier coefficients AgP*#m = Bgpsitm = Arpilma - and BPPima: are
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independent of planet trains and Kj, ., and Kjj, , satisfies (7.29). The phasing
condition of k, # 0 leads to

Ki)gl,ef =0
(7.38)
Kz)§2 ef =0

Insertion of (7.29) and (7.38) into the expression of the associated instability indicator
n (7.24) gives

Hgf = (Kiull,ef)Q + (Kium,ef)Q

gp,e “gp pp pp.e “pp,f

92
_ [2 : c g;;*mksz*mAgp sz*mész*mész*;n + E : ngz*mqk,z*qupp z*mqéz*mq(sz*mq

s,m

12

+ E c gsz*mksz*mng sz*ma;zp*gmasz*?m + E ngz*mqkz*mqBpp,z*mq(sz*mqaz*mq

pp,e “pp,f

s,m

(7.39)
The right-hand side of equation (7.39) is identical to that (7.30) and it is the result
of the mutual effects of the cancellation of K3, . and K3, ¢ (caused by k, # 0) and
planet-train independent Fourier coefficients A% = BIp-sitm = Abp:ima - and Brpitma
(cased by k, = 0). The instability boundaries for this case of mutual excitation with
mixed phasing quantities, hence, do not vanish in general and follow the same rule
as that for case (A) of individual excitation with zero phasing quantity.

For cases () and (7), simple expressions cannot be derived and equations (7.24),
(7.25), and (7.26) have to used to determine the associated instability boundaries.
The vanishing of the instability boundaries is still possible for these cases, if K Z.“H’ef,
Kfigops K515 and K3y, are all zeros.

Table 7.1 summarizes the above analysis results on compound planetary gear

parametric instability boundaries with different modal and phasing conditions.
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Table 7.1: Compound planetary gear parametric insta-
bility boundaries for different modal and phasing condi-

tions.
Individual excitations: €} = w, + wy

Distinct- Distinct- Distinct- Degenerate{ Degenerate-
distinct distinct degenerate | degenerate | degenerate
(combina- (single (combina- | (single mode)
tion) mode) tion)

k, =0 exist in | exist in | always always exist in
general general vanish vanish general
(equation (equation (equations
(7.30)) (7.30)) (7.34)  and

(7.35))
k,#0 always vanish | always equation equation equation
vanish (7.20) (7.22) (7.23)
Mutual excitations: uf)} = xQ? = w, + wy

Distinct- Distinct- Distinct- Degenerate{ Degenerate-
distinct distinct degenerate | degenerate | degenerate
(combina- (single (combina- | (single mode)
tion) mode) tion)

k, = || exist in | exist in | always always exist in

0, /;;X =0 general general vanish vanish general
(equation (equation (equation
(7.24)) (7.24)) (7.26))

k, # 0, | always vanish | always equation equation equation

ky #0 vanish (7.24) (7.25) (7.26))

k, = 0, | exist in | equation equation equation equations

ky #0 general (7.24) (7.24) (7.25) (7.26)
(equation
(7.39))

7.5 Conclusions

This chapter analytically investigates the parametric instabilities caused by mesh

stiffness variations in compound planetary gears. The instability boundaries are an-

alytically derived for purely rotational systems. Both individual and mutual (unique

to compound planetary gears) types of excitations are investigated and the instability
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boundaries are analytically determined in terms of mesh parameters. Application of
the well-defined modal properties and specific mesh phasing conditions reduces the
instability boundary expressions to simple, closed-form formulae. Under particular
phasing conditions, some parametric instabilities vanish while other do not. Overall
frequency instabilities, regardless they are combination or single mode instabilities,
always vanish when the associated phasing quantities are not equal to zero. Planet
frequency instabilities, however, violate the mesh phasing rules when they are single
mode instabilities. For combination planet frequency instabilities, the mesh phas-
ing rules still hold. The conclusions from this study are consistent with all previous

studies on simple planetary gears.
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Chapter 8: BACK-SIDE CONTACT GEAR MESH
STIFFNESS

8.1 Introduction

Back-side contact in a gear mesh contact refers to the contact at the back side of
gear teeth. Recent studies on gear dynamics [34,39,54,84] show that it is possible for
tooth wedging (or tight mesh), the simultaneous drive-side and back-side contacts,
to happen in real applications, such as wind turbine gearboxes. Tooth wedging is
the combined effect of gravity and bearing clearance nonlinearity, and it is a major
source of gearbox failures, especially the bearing fails. For better understanding of
the impact of tooth wedging on gearbox failures, it is important to develop a model
that includes the accurate description of the back-side contact mesh stiffness.

Besides tooth wedging, the anti-backlash gear is another case for back-side contact
to occur. To minimize the undesirable characteristics which are caused by backlash,
anti-backlash gears typically eliminate the backlash by using certain preloaded springs
to force the fixed part of the driving gear to be in contact with the drive side of the
driven gear teeth and simultaneously the free part of the driving gear to be in contact
with the back side of the driven gear teeth [18]. Analytical studies on anti-backlash

gear dynamics are necessary to prevent excessive vibration and noise in anti-backlash

198



gears and optimize the design for such systems. The accurate modeling of back-side
contact mesh stiffness is important to support such analytical studies.

Mesh stiffness variation and its impact on gear dynamics were extensively inves-
tigated in previous studies. Parametric excitation caused by mesh stiffness variation
along with clearance nonlinearity for a single mesh gear was studied in [49]. Lin and
Parker systematically analyzed the mesh stiffness variation instabilities in two-stage
gear systems [60], as well as in simple planetary gear systems [61]. Their studies
showed that the parametric excitation from the time-varying mesh stiffness causes
instability and severe vibration under certain operating conditions. They applied a
perturbation method to analytically determine the instability conditions. Wu and
Parker [98] extended the study on parametric instability to planetary gears with elas-
tic continuum ring Gears. Sun and Hu [90] investigated the mesh stiffness parametric
excitation and clearance nonlinearity for simple planetary gears. Bahk and Parker [9]
derived closed-form solutions for the dynamic response of planetary gears with time-
varying mesh stiffness and tooth separation nonlinearity based on a purely torsional
planetary gear model. Guo and Parker [34] modeled and analyzed a simple planetary
gear with time-varying mesh stiffness, tooth wedging, and bearing clearance nonlin-
earity. Although the back-side contact is included in their model, the average value
of the periodic mesh stiffness on the drive-side is used to approximate the back-side
mesh stiffness which is not an accurate description of the back-side mesh stiffness.

Despite the abundance of the literature on mesh stiffness variation and gear dy-
namics, no studies have tried to derive the back-side mesh stiffness in their analytical
model. One possible reason is that the symmetry of gear tooth ensures that the con-

tact ratios, mesh periods, and average mesh stiffnesses over the mesh period are the
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Driving Gear

Driven Gear

Line of action

Figure 8.1: Drive-side gear contact model (solid line) and back-side gear contact
model (dashed line)

same for both the drive- and back-side contacts. This may mislead some researchers
to assume that the back-side mesh stiffness is the same as the drive-side one. The
back-side mesh stiffness, however, is not equivalent to the drive-side one, because
the back-side contact is along the back-side line of action (the dashed line in Figure
8.1) and the number of gear teeth in contact along the back-side line of action is not
always equal to that along the line of action (the solid line in Figure 8.1). Figure
8.2 (the simulation results from Calyx [96], a multi-body finite element program with
precise gear mesh contact) illustrates one such case. There are two pairs of gear teeth
in contact along the back-side line of action, while only one pair of teeth in contact
along the line of action. Therefore, the back-side mesh stiffness differs from the drive-
side mesh stiffness at this moment. If the variation of the back-side mesh stiffness
is not modeled correctly, the results from the model is questionable. Therefore, it is
important to have a clear understanding of back-side mesh stiffness. In addition, how
the backlash impacts the phase lag of the back-side mesh stiffness is not studied in

previous literature and it is investigated in this work as well.
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Figure 8.2: Numerical simulation of Calyx on an ideal gear pair with both drive-side
and back-side gear contacts. One pair of teeth (marked by a circle) is in contact along
the drive-side line of action, and two pairs of teeth (marked by two rectangles) are in
contact along the back-side line of action.

8.2 Derivation of Back-side Mesh Stiffness

The drive-side mesh stiffness refers to the stiffness that reflects the compliance of
the nominally contacting teeth at a mesh. It varies as the number of teeth in contact
fluctuates during the rotation of the gear system. The stiffness acts along the line of
action and its variation function’s period is known for a given rotation speed. Mesh
stiffness variation functions are often approximated by Fourier series in analytically
studies and they can also be accurately calculated by Finite Element Method (FEM)
software. The drive-side mesh stiffness function is critical to the analytical studies on
gear dynamics [6,7,9,76,78].

Similar to the drive-side mesh stiffness, the back-side mesh stiffness in this study

is the stiffness that reflects the change of the in-contact gear tooth number along the
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back-side line of action. It is not straightforward to determine or calculate because the
back-side contact does not occur until tooth wedging happens due to the existence of
backlash. In order to get simultaneous drive-side and back-side contacts at all times,
in the following sections an ideal gear pair (a gear pair which operates at the nominal
center distance and has zero backlash tooth thickness) is first investigated. Then the
results of the ideal gear pair is extended to arbitrary gear pairs with backlash and

anti-backlash gears.
Back-side Mesh Stiffness for an Ideal Gear Pair

Figure 8.3 illustrates the drive-side and back-side contacts for an arbitrary ideal
gear pair. Zg. and Zg, are the tooth numbers of the driving and driven gears, respec-
tively. T is the mesh period of this gear pair. At ¢t = 0, the pitch point at the drive
side of the driving gear is in mesh (Figure 8.3a). The dashed line in the middle of

each sub-figure is the center line between the two gears. After one mesh period T', the

driving gear tooth moves one driving gear circular pitch p, = 2}—2;“, and the driven
gear tooth moves pg, = QZ"“‘ (rqr and rg, are the pitch radii). After one fourth of the

mesh period (¢ = %), the driving gear tooth moves one fourth of its circular pitch.
Because there is no backlash along the pitch circle, the circular tooth thickness of the

driving gear ¢g, is equal to

1

A Mdr 81
2pd ( )

qQdr =
The movement of the driving gear is equivalent to half of its circular tooth thick-
ness %qdr. Thus, at t = % the center line passes through the middle of the tooth tip

of the driving gear (Figure 8.3b). At this moment both gears are symmetric about

the center line and the number of gear teeth in contact along the drive-side line of
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(@t=0,T (b) t=T/4

(©)t=T/2 ‘ (d) t=3T/4

Figure 8.3: The gear mesh contacts for an arbitrary external ideal gear pair. The
dashed line in the middle of each sub-figure is the center line. The driving gear is at
the right hand side of each subplot and the driving direction is counter-clockwise.

action equals that along the back-side line of action. The back-side and drive-side
mesh stiffnesses are equal at this moment.

At t = %, the driving gear tooth moves g4 which is equal to its circular tooth
thickness, and the center line passes right through the pitch point at the back-side
of the driving gear tooth (Figure 8.3c). At ¢t = %, the driving gear moves %qdr and
the driven gear moves %qdn (Gan is the circular tooth thickness of the driven gear).
At this moment, the center line passes through the middle point of the tooth tip of
the driven gear, and both gears are symmetric about the center line. Therefore, the

3T

back-side and drive-side mesh stiffnesses are equal at ¢ = 2.
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The varying drive-side mesh stiffness is k’(t), and the matching back-side mesh
stiffness is kf(t). Without losing generality, at ¢ = 0 the pitch point at the drive
side of the driving gear is in mesh. ¢’(7) = k’(t — %) is a phase-shifted function of
k!(t), and at its origin 7 = 0 or ¢ = £ (as shown in Figure 8.3b), the back-side and
drive-side mesh stiffnesses are equal. h!(7) is defined as the back-side mesh stiffness
function that matches with ¢g(7). Due to the symmetry of the gear pair at 7 = 0,

the driving-side mesh stiffness at the moment of 7 is equivalent to the back-side mesh

stiffness at the moment of —7. Thus, h/(7) and g’(7) have the relation
() =g'(-7) (8.2)

Insertion of ¢’(7) = k'(t — L) into (8.2) yields

(1) = k' (—t + %) (8.3)

Similar to the relation between g’(7) and the drive-side mesh stiffness k’(t), h'(7) is

a phase-shifted function of the back-side mesh stiffness k{ (t), and it is

) (8.4)

Substitution of A!(7) with k{(t — L) in (8.3) gives

ki (t — %) =k'(—t+ %)
T T (8.5)
= ky(t) = K (=t + 5) = k' (=t = 3)

Equation (8.5) reveals that k{ () is uniquely determined once the drive-side mesh
stiffness function k’(t) is known, and it is the symmetrical function of k’(t) with £
phase shift. According to equation (8.5), the number of gear teeth in contact at the

back side at ¢ = 0 equals the number of gear teeth in contact at the drive side at
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t = % It is confirmed by the simulation results in Figure 8.3. There are two pairs
of teeth in contact at the back side in Figure 8.3a (¢t = 0), and there are exactly two
pairs of teeth in contact at the drive side in Figure 8.3c (t = ).

Summarizing the above discussion, the back-side mesh stiffness varying function
for an ideal gear pair is the symmetrical function of the drive-side mesh stiffness
function with a phase shift of half of the mesh period.

8.2.1 Back-side Mesh Stiffness for a Gear Pair with Nominal
Backlash

Real gear applications, however, always include backlash to allow lubrication,
manufacturing errors, deflection under load, and thermal expansion. It is typically
created by slightly increasing the center distance of the gear pair or reducing the
circular tooth thickness.

Figure 8.4 illustrates the backlash for an external gear pair. The nominal backlash
for the gear pair is 2b (the backlash remains at 2b for this case), the circular pitch is p,
and the mesh period is T'. The case that the center distance of the gear pair remains
unchanged and there is no relative radial motion between the gears is investigated first
(to simplify the results, the assumption that there is no relative tangential motions
between the gears is imposed throughout the rest of this study). The impacts of the
center distance change and relative radial motion are studied subsequently.

Once a gear pair is installed with an unchanged center distance (the nominal
center distance), the backlash remains at its nominal value 2b if there is no relative
radial motion between the gears. The thick dashed line in Figure 8.4 represents the
case of back-side contact. If the varying drive-side mesh stiffness is k(¢), equation

(8.5) does not give the desired back-side mesh stiffness varying function. Instead, it
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Tooth of the driven gear
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Tooth of the driving gear Base circle

Figure 8.4: The drive-side and back-side gear mesh contacts for a gear pair with 2
backlash and its matching ideal gear pair.

gives ki(t) the back-side mesh stiffness varying function for the matching ideal gear
pair (the thin dashed line in Figure 8.4) who have the same center distance and pitch
circle as the original gear pair in Figure 8.4 but different tooth thicknesses. To ensure
zero backlash, the tooth thickness of the matching ideal gear pair is equal to b plus
the thickness of the original gear pair in Figure 8.4.

If the matching ideal gear pair moves b along the pitch circle in the reverse driving
direction in Figure 8.4, the back-side contact of the ideal gear mesh in the thin dashed
line will coincide with the actual back-side contact in the thick dashed line. The phase
lag between the back-side mesh stiffness functions of the matching ideal gear pair and
the original gear pair for the above process is %T. In other words, the actual back-
side mesh stiffness varying function k,(t) of a gear pair is the back-side mesh stiffness

varying function for the matching ideal gear k{(t) with ]%T phase lag, that is,

1y b
klt) = Kt = T) (8.6)
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Insertion of kf (t) = k'(—t — ) (from equation (8.5)) into equation (8.6) and applica-
tion of the condition that the drive-side mesh stiffness function of the matching ideal

gear pair is equivalent to that of the original gear pair (Figure 8.4) yields

ko(t) = k(—t — g + gT) (8.7)

8.2.2 Back-side Mesh Stiffness for an Arbitrary Gear Pair
with Changing Backlash

In real applications, the actual operating center distance of a gear pair always
differs from the nominal one due to manufacturing errors of the axes, axes deflections
under load, and axial misalignments during installation. In addition, vibration of the
gears in the relative radial direction changes the actual center distance [34]. Figure
8.5a shows the change of center distance A, (the positive sign of A, indicates the
reduction of center distance) causes the actual backlash to be reduced by the amount
of 2A. tan o, where « is the pressure angle. Figures 8.5b and 8.5¢ explain this relation
geometrically. When the driving gear moves A. toward the driven gear (i.e., A,
change in center distance), the gaps between the two gears along drive- and back-side
of lines of action are to be reduced by A.sin« (Figure 8.5b), respectively. Because
the driving gear is pressed against the driven gear along the line of action and there is
no room for the driving gear to move toward the driven gear along the line of action,
the total gap reduction along the back-side line of action becomes 2A.sin a. The gap
change along the pitch circle is approximated by the associated cord length shown in
Figure 8.5c. By applying the trigonometric relations in the triangle shown in Figure
8.5¢, the length of the cord that approximates the gap change along the pitch circle is

calculated as: 22<8ne — 9A tana. When A, reaches —2— such that 2A.tana = 2b

Ccos & tan «
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Figure 8.5: Back-side tooth contact for the case of tooth wedging when 2A,tan o =
2b. b is half of the backlash along the pitch circle, A, is the change of the central
distance, and « is the pressure angle.

(2b is the nominal backlash), the back side of the driving gear (the dashed line in

Figure 8.5a) is in contact with the back side of the driven gear and the tooth wedging

happens.

When A, < =2, the actual backlash of the gear pair 28’ is 2(b — A.tan ). This

tan a’

case is equivalent to the case in Figure 8.4 with the exception that the backlash is 20/

instead of the nominal value 2b. Replacing b with 0" in (8.7) gives

T v

—k(—t—z—i—b_ActanaT) (8.8)
= 5 —p
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Equation (8.8) is the back-side mesh stiffness for a general external gear pair with 2b
nominal backlash and A, center distance change.

In most applications, the backlash and the change of center distance of a gear pair
is much smaller than the circular pitch p. Therefore, the phase lag term “AC%T in
equation (8.8) is small and equation (8.5) may be sufficient to estimate the back-side

mesh stiffness of a gear pair with small backlash and center distance change.

8.2.3 Back-side Tooth Number Variation Function for an
Anti-backlash Gear Pair with Changing Backlash

For an anti-backlash gear pair, the drive-side mesh stiffness is not only determined
by the number of teeth in contact, but also by other design parameters, such as the
face width in contact and the the modulus of elasticity. To exclude the impacts
from the parameters other than the in-contact number of teeth at the drive and
back sides, the in-contact tooth number variation functions of the drive (n(t¢)) and
back (ny(t)) sides are used to investigate the back-side mesh stiffness of anti-backlash
gears. Because the derivation of equations (8.5-8.8) relies only on the in-contact tooth
number variations and the phase relations between the drive and back sides, replacing
the mesh stiffness functions k(t) and k,(¢) with the in-contact tooth number variation
functions n(t) and n,(t) and application of the same analytical process in the above

three sub-sections yield

T b—A.t
molt) = n(—t = 5 + %T) (8.9)

Equation (8.9) is the back-side tooth number variation function for an arbitrary anti-
backlash gear or a general external gear pair with 2b nominal backlash and A, center

distance change.
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Figure 8.6: Calyx FEM model of the example ideal gear pair.

8.3 Numerical Verification of Back-side Mesh Stiffness

The drive-side and back-side mesh stiffness relation in (8.5) is the key to the
general back-side mesh stiffness in (8.8) or back-side tooth variation function in (8.9).
Therefore, equation (8.5) is verified first. The verification is achieved with a Calyx [96]
finite element model of an ideal external gear pair (Figure 8.6). Calyx has very precise
tracking of tooth contact for precise tooth geometry. In the simulations that follow
Calyx tracks the contact for specified gear kinematics under unloaded conditions.
The gear parameters are listed in Table 1.

Figure 8.7 shows the in-contact tooth number variations at the drive and back
sides by tracking the numbers of gear teeth along the drive- and back-side lines of
action using the above Calyx model. At ¢ = 0, the pitch point at the drive side of the

driving gear is in contact. O and O’ are the points on the drive- (O) and back-side
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Figure 8.7: The drive- and back-side gear tooth number variation functions for the
example ideal gear pair in Figure 6. 'x’ indicates the time that the pitch point of
the drive side of the driving gear is in contact, A’ indicates the time that the middle
point of the drive gear tooth tip is aligned with the center line, '+’ indicates the time
that the pitch point of a driven gear tooth is in contact, and "* indicates the time
that the middle point of a driven gear tooth tip is aligned with the center line.

(O') tooth number variation functions at ¢ = 0. Figure 8.3a illustrates the drive-side
and back-side tooth contacts at ¢ = 0.

At t = %, the middle point of the driving gear tooth tip is aligned with the center

line (Figure 8.3b). A and A’ are the points on the drive- (A) and back-side (A’) tooth

number variation functions at ¢t = %. For better illustration, the drive-side tooth

number variation function before point A and the back-side tooth number variation

function after point A’ are shown in Figure 8.8. They are symmetrical about the

solid vertical line (that is, 7 = 0, where 7 =t — %) This matches the expression

in equation (8.2). O” in Figure 8.7 and Figure 8.9 is the point on the drive-side
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Figure 8.8: The drive-side gear tooth number variation function before point A and
the back-side gear tooth number variation function after point A’.

tooth number variation function at ¢ = % Figure 8.9 shows that the drive-side
tooth number variation function before point O” is symmetrical to the back-side gear
tooth number variation function after point O’. This provides numerical validation
of equation (8.5).

The next step is to verify the back-side mesh stiffness varying function for the gear
pairs with 2b nominal backlash in equation (8.7). To do so, the tooth thickness of the
gear pair in Figure 8.6 is reduced by 10% such that g = (0.05. The tracking results of
the drive-side and back-side tooth number variations from Calyx are shown in Figure

8.10. O in Figure 8.10 is the point on the drive-side gear tooth number variation

function at t = —% + ;’jT. The drive-side gear tooth number variation function before
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Figure 8.9: The drive-side gear tooth number variation function before point O” and
the back-side gear tooth number variation function after point O'.

point O is symmetrical to the back-side gear tooth number variation function after
point O". Thus, the results in Figure 8.10 agree with equation (8.7).

In order to verify the general back-side tooth variation function in equation (8.9),
the center distance between the two gears in Figure 8.6 is reduced such that % =
0.025. The tracking results for the drive-side and back-side tooth number variation
functions are shown in Figure 8.11. O in Figure 8.11 is the point on the drive-side
gear tooth number variation function at t = —% + IFAC%T. The drive-side gear
tooth number variation function before point O is symmetrical to the back-side gear
tooth number variation function after point O. Comparing with Figure 8.10, the

phase lag of the back-side tooth number variation function in Figure 8.11 is reduced
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Figure 8.10: Back-side and drive-side gear tooth number variation functions the ex-
ample gear pairs with zero center distance change and 2b nominal backlash (b satisfies
b

2 =0.05).

q

by 0.0257. This phase lag reduction is caused by the reduction of the center distance

and this result matches equation (8.9).

8.4 Conclusion

This study investigates the drive-side mesh stiffness for arbitrary gear pairs and
anti-backlash gear pairs. The results reveal the inherent relation between the back-
side and drive-side mesh stiffnesses or gear tooth variation functions. The impact
of backlash on the phase lag in the back-side mesh stiffness variation function is

also quantified in this study. The resultant formulae are important for the correct
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Figure 8.11: Back-side and drive-side gear tooth number variation functions the ex-

ample gear pairs with 2b nominal backlash (b satisfies
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b
q

= 0.025).

Actan o
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the center distance (

modeling and further dynamic analysis on the gear systems that involve back-side

gear tooth contacts, such as anti-backlash gears.
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Table 8.1: Gear parameters for the example system shown in Figure 8.6.

Driving Gear Driven Gear

Number of Teeth 41 32

Diametral Pitch 10.34 10.34
Pressure Angle (deg) 25 25
Outer Diameter (in) 4.12 3.33
Root Diameter (in) 3.54 2.87

Mesh Period (sec) 0.293 0.293
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Chapter 9: CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

9.1.1 Compound Planetary Gear Models and Associated Modal
Properties

A purely rotational model for general compound planetary gears is developed.
This model clarifies discrepancies in gear mesh deflection expressions and corrects
errors in previously published models. The distinct modal properties for this purely
rotational model are presented and analytically proved. All the vibration modes for
the purely rotational model can be classified into two groups: overall and planet
modes. In an overall mode, all planet trains in the same planet set have identical
motions and each mode is associated with a distinct natural frequency. Planet modes
exist when the system has a stage with two or more planet trains. In any planet
mode, only the planets in one stage have motion and all other components have no
motion. This purely rotational model simplifies the subsequent analyses on paramet-
ric instability caused by mesh stiffness variations while keeping the main dynamic

behavior generated by mesh stiffness variations.
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9.1.2 Sensitivity of General Compound Planetary Gear Nat-
ural Frequencies and Vibration Modes to Model Pa-
rameters

The systematic study on general compound planetary gear eigensensitivities are
performed by using the rotational-translational compound planetary gear model. Ap-
plication of the well-defined modal properties of general compound planetary gears
simplifies the eigensensitivity expressions to simple, closed-form expressions. For both
tuned and mistuned systems, the modal strain/kinetic energy distribution plots pro-
vide effective and straightforward means to identify which system parameters have
the greatest impact on tuning the related natural frequency.

Rotational modes are independent of translational support/shaft stiffnesses and
masses of central gears/carriers. Translational modes are independent of torsional
support /shaft stiffnesses and moments of inertia of central gears/carriers. Planet
modes of a certain planet set are independent of any system parameters associated
with other planet sets. They are also independent of the mass/moment of inertia
parameters and support/shaft stiffness parameters of all central gears/carriers.

When a system is perturbed by a mistuned parameter, a degenerate translational
mode natural frequency of the unperturbed system splits into two distinct frequencies.
A mistuned planet bearing stiffness, translational shaft stiffness between two planets
in a stepped planet arrangement, or planet mass impacts both modes associated
with the two frequencies, while any other mistuned parameter affects only one of the
modes despite the apparent disruption of system symmetry. Parameter mistuning
always splits degenerate planet mode frequencies of the stage associated with the

mistuned parameter into two frequencies. One frequency keeps its original value
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and its associated modes retain the well-defined planet mode properties; the other
frequency is distinct and its associated mode loses the planet mode properties.

The results of this study provide important information for tuning resonances
away from operating speeds and minimizing dynamic response for general compound
planetary gears.

9.1.3 Natural Frequency Veering and Crossing Patterns for
General Compound Planetary Gears

Natural frequency veering and crossing phenomena are systematically investigated
for general compound planetary gears. By checking whether the axisymmetry in all
stages are retained, all system parameters are divided into tuned and mistuned pa-
rameters. Tuned parameters are further classified as rotational, translational, and
planet tuned parameters based on their eigensensitivities. The veering/crossing pat-
terns with respect to each group of tuned parameters are determined by examining
the analytical expressions of the associated coupling factors. The veering/crossing
patterns for mistuned parameters are determined in a similar way. Compared with
the patterns for tuned parameters, more occurrences of veering are found in the veer-
ing/crossing pattern for any mistuned parameter.

9.1.4 Mesh Phase Relations of General Compound Planetary
Gears

This investigation systematically defines and calculates all the mesh phases for
general compound planetary gears. Grouping compound planetary gear mesh phases
into a hierarchical structure of system-level, stage-level, and train-level mesh phases

to simplify the analysis, this study derives a complete procedure to determine all
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the necessary relative phases. The specific relationships between train-level relative
phases that are critical for any analytical study on the suppression of compound
planetary gear dynamic response through mesh phasing are derived by applying the
assembly conditions of compound planetary gears. All derived results are verified
through an example, where the numerical benchmark is geometrically exact and the
only error is a quantifiable mesh cycle discretization error.

9.1.5 Suppression of Various Modal Responses in General

Compound Planetary Gears through Mesh Phasing

This chapter analytically investigates the general rules to suppress certain dynamic
responses and resonances of general compound planetary gears through planet mesh
phasing for both the purely rotational and rotational-translational models.

For meshed-planet stages, the excitation or suppression of various modal responses
at pth harmonic of mesh frequency is solely determined by the phasing quantity
k,. The resultant rules suggest that the planet-planet gear meshes have no impact
on the mesh phasing rules for meshed-planet stages due to the specific train-level
relative phase relations. For stepped stages, due to the existence of two generally

different mesh frequencies, two different phasing quantities, k, and k,, are required

X
to determine the excitation or suppression of various modal responses at pth harmonic
of one mesh frequency and yth harmonic of the other one. For multi-stage systems,
the mesh phasing rules are the sum of the rules from each of the individual stages,

where these may be meshed-planet or stepped-planet stages. The mesh phasing rules

are numerically verified.
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9.1.6 Parametric Instabilities of General Compound Plane-
tary Gear Caused by Mesh Stiffness Variations

Analytical investigation on compound planetary gear parametric instabilities caused
by mesh stiffness variations are performed in this chapter. The instability boundaries
are analytically derived for two different types of parametric excitations: individual
and mutual (unique to compound planetary gears) excitations.

Applying the structured modal properties for rotational models and using specific
phasing conditions, the analytical expressions of instability boundaries are simpli-
fied to compact, closed-form formulae. The results indicate that overall frequency
instabilities always vanish as long as the associated phasing quantities are not zero.
Combination planet frequency instabilities also obey the mesh phasing rules while
single mode planet frequency instabilities violate the mesh phasing rules. The resul-
tant parametric expressions of instability boundaries are essential for the tuning of
the instability regions away from the operating range at the design stage of compound

planetary gears.
9.1.7 Back-side Contact Gear Mesh Stiffness

Driven by the needs of advanced planetary gear modeling and anti-backlash gear
modeling, the contact at the back side of a gear mesh is examined and the inherent
relationships between the back-side and drive-side mesh stiffnesses or gear tooth vari-
ation functions are discovered. The impact of backlash on back-side mesh stiffness
variations is also quantified. The resultant formulae are important for planetary gear

vibration models that consider tooth wedging or anti-backlash gears.
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9.2 Future Work

This research addressed a series of key issues in compound planetary gear dynamic
and it builds solid foundations for further analyses. The future work is recommended

for the following areas.
9.2.1 Analytical Study on Anti-backlash Gear Dynamics

Backlash presents in most involute gear applications to allow lubrication, manu-
facturing errors, deflection under load, and thermal expansion. It is typically created
by slightly increasing the center distance of the gear pair or reducing the circular
tooth thickness. To minimize the undesirable characteristics which are caused by
backlash, anti-backlash gears (or scissors gears) are used. The most common way for
anti-backlash gears to eliminate backlash is to use certain preloaded springs to force
the driving gear to be in continuous contact with the driven gear (Figure 9.1). In spite
of the abundant studies on single-mesh, multi-mesh, and planetary gear dynamics,
the investigation on anti-backlash gear dynamics is very few and limited to the finite
element approach [18]. No literature ever analytically addressed the anti-backlash
gear dynamics. To understand the dynamic behavior of anti-backlash gears and to
optimize the design of such systems, it is necessary to conduct a series of analytical
investigations.

Figure 9.1 shows a lumped parameter model for anti-backlash gears. The anti-
backlash assembly consists of two parts: fixed and free parts. The fixed part is fixed
to the input shaft and its contact with the driven gear is the drive-side contact. The
free part can rotate freely relative to the input shaft and its contact with the driven

gear is on the back side. The fixed and free parts are connected by a preloaded
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Figure 9.1: A lumped parameter model for anti-backlash gears: (a) front view of the
whole system (b) side view of the anti-backlash assembly.

torsional spring. As a preliminary investigation, only rotational degrees of freedom is
considered for the model shown in Figure 9.1. The equations of motions are
101 + koby + ka(t) (0171 + O573) + ko(61 — 02) = 79
L0y — ky(t)(Bars + O373) + ke(0 — 61) = —7 (9.1)

1305 4 ka(t) (0171 + Os73) — Ky (t) (02 + 03) = 0
where (I3, 01, 1), (I2, 02, 72), and (I3, 03, 73) are the moments of inertia, rotations,
and base radii for the fixed part, free part, and the driven gear, respectively. kg is
the torsional shaft stiffness of the input shaft. k. is the torsional coupling stiffness
between the fixed and free parts of the anti-backlash assembly and 7y is the preload
torque for this coupling stiffness. k4(¢) is the time-varying mesh stiffness between the
fixed part and the driven gear and the associated contact happens at the drive-side

of the driven gear tooth. k,(t) is the mesh stiffness between the free part and the
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driven gear and the contact is at the back-side of the driven gear. Let H be the mesh
stiffness per unit face width. If +; and 15 are the effective face widthes for the drive-

and back-side meshes, k4(t) and ky(t) can be simplified as

l_ﬂd(t) = Hblnd(t)
B (9.2)
k’b(t) = Hbgnb(t)

where n4(t) and ny(t) are tooth number variation functions for the drive and back
sides, respectively. Insertion of (9.2) into (8.9) yield the relation between k,(t) and
ky(t) as

b

T
ko (t) = i—jkd(—t tog T (9.3)

where p is the circular pitch of the mesh between the fixed part and the driven gear
and T is the mesh period.

With the model in Figure 9.1 and the specific relation between k,(t) and k,(t) in

(9.3), the recommended investigations are

1. to understand the free vibration problem of anti-backlash gears, such as the

modal properties,

2. to evaluate the eigensensitivities in order to understand the impacts of key

parameters on natural frequencies and vibration modes,

3. to investigate the parametric instabilities caused by the variations of k,4(t) and

ko (t),
4. to inspect the nonlinear behaviors of anti-backlash gears.
9.2.2 Investigations on 3-D Helical Compound Planetary Gears

In real transmission applications, helical compound planetary gears are more pop-
ular than spur compound planetary gears due to the advantage of lower fluctuation
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in static transmission error ( [23]). In order to understand the effects of design pa-
rameters on dynamic behaviors of helical compound planetary gears and optimize
the system parameters during the design stage, it is desirable to extend the 2-D
rotational-translational model to a 3-D one. The elaborate investigations on com-
pound planetary gears in this study, together with Eritenel and Parker’s studies on
3-D simple helical planetary gear [25,26], provide necessary foundations for the in-

spection on 3-D helical compound planetary gears. The suggested investigations are
1. to develop an lumped-parameter 3-D helical compound planetary gear model,
2. to examine the modal properties of 3-D helical compound planetary gears,

3. to evaluate the impacts of system parameters on natural frequencies and vibra-

tion modes,

4. to inspect the existence of mesh phasing rules for helical compound planetary
gears.
9.2.3 Extended Investigation on Parametric Instabilities of
Compound Planetary Gears
The analytical study in chapter 7 can be extended to the refined rotational-
translational model in [53]. The analytical process and the general formulae for
distinct-distinct, distinct-degenerate, and degenerate-degenerate instabilities in (7.15)-
(7.27) apply to the rotational-translational model if the free vibration equation of
compound planetary gear in (7.7) is replaced by the one associated with the rotational-
translational model in (2.38) and the stiffness matrix in (7.5) is replaced by the one

for the rotational-translational model in the appendix of [53].
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Because the rotational-translational model, compared with the purely rotational
model, has more sophiscated modal structures in (2.40)-(2.52) and more complex
mesh phasing rules in tables (6.2) and (6.3), the analytical results in Section 7.4
can not be applied to the rotational-translational model directly and thorough in-
vestigations on the impacts of rotational-translational modal properties and mesh
phasing conditions on instability boundaries are suggested. The instabilities that are
related to translational frequencies (unique to the rotational-translational model) is
expected to be the focus of this extended investigation. In addition, it is desirable to
compare the analytical results with the numerical solutions from Floquet theory or

finite element method.
9.2.4 Nonlinear Dynamics of Compound Planetary Gears

Nonlinearities in gear systems, mainly the gear mesh contact loss, have great im-
pacts on dynamic responses, load sharing among planets, bearing loads, tooth fatigue,
and gear noise [50,88,90]. The nonlinear dynamics for single-mesh [50,78,91] and
multi-mesh gears [1,2,63] are already extensively studied. The effects of nonlinearities
on simple planetary gears also receive some attention in recent years. Ambarisha and
Parker [6] calculated the nonlinear response of planetary gears by using both lumped-
parameter and finite element models. Mesh phasing rules are confirmed except for
chaotic and period-doubling regions. In addition, Bahk and Parker [9] studied the
nonlinear dynamics for a purely rotational simple planetary gear model. Perturba-
tion, harmonic balance/arclength continuation, and numerical integration methods
were used in their study and the frequency-response functions were presented in

closed-form expressions. Guo and Parker [34] investigates a simple planetary gear
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model with not only contact loss nonlinearity, but also tooth wedging and bearing
clearance nonlinearity. No studies, however, ever addressed the nonlinear dynamics
for compound planetary gears. To provide improved design guidance for compound
planetary gears based on dynamic responses with different nonlinearities considered,

the recommended studies on compound planetary gear nonlinear dynamics are

1. to improve the rotational-translational compound planetary gear model to make
it incorporate with different nonlinearities, such as contact loss and bearing

clearance,

2. to add the back-side gear mesh contacts to the model by applying the results

from chapter 8 in this work,

3. to investigate the nonlinear effects caused by these nonlinearities by using dif-
ferent methods to find the solutions for the nonlinear problems analytically or
numerically, such as the method of multiple scales, harmonic, balance method,

and arclength continuation method,

4. to evaluate the impacts of the nonlinearities on the validation of the mesh

phasing rules in chapter 6 of this study.

227



Appendix A: APPENDIX FOR CHAPTER 2

The sub-matrices of M in (2.22) are
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The sub-matrices of K, in (2.25) are
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Appendix B: APPENDIX FOR CHAPTER 3

B.1 Expressions of Eigensensitivities for Tuned Compound
Planetary Gears

The following notation is applied in this appendix: i,h = 1, -+, a; j,n =
L, -, byl=1 -, c:m,qg=1, ---, d°. For a degenerate eigenvalue \, =
Al =+ = Ayrw—1 with multiplicity w > 2, the associated first order eigenvector

derivatives can not be determined. The expressions of ¢! and \” for a rotational

mode or a distinct planet mode are

A . .
¢, 0.0
- = ——— ¢, (B'l)
akcb,@@ v:l,zv;éu )\u o )\v
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Translational bearing/shaft stiffnesses of central gears and carriers (k?;, k;b, ki, ki,

kg;‘) have no impact on any rotational mode or distinct planet mode.

B.2 Eigensensitivities of Mistuned Compound Planetary Gears
With a Single Mistuned Parameter

The following notation is used in this appendix:i,h =1, ---, a; j,n=1, -, b;
=1, ---, ¢&;m,q=1, ---, d*. R means rotational mode, and T means transla-
tional mode. 1P, 2P, and 3P indicate planet modes with multiplicity one, two and
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three or more, respectively. The eigensensitivities for any natural frequency with
multiplicity w > 1 (A, = -+ = Aysw_1) With its associated preferred set of planet
modes ¢, -+, Gurw_1 (a preferred set of planet modes diagonalizes D in (3.5) if

w > 2) to a mistuned parameter are

s = i Uptl (R/T/1P/2P/3P)
2 ilm
Out1 k;lm Upb,u+1 (T) (B 31)
Okilm T .
4 0 (2P)
g;zl;; =0, t=2,---,w—1 (3P)
Db A (Sl ) (31l )+(830m ) (5107 Ut (gitm) (it )4 (5ilm) (i)
okim — 2 Xo—o o+ 2. N, =N b-
v=1,v#u, - ut+w—1 z=u+1
(R/T/1P/2P)
3 CEEED @ | MR EDEI e |
8¢yl+1 _ v=1,v#u, - utw—1 Au=Av z=u,z4u+1 A=A
ak;m (T)
0 (2P)
% can not be determined, where s =0, ---, w— 1. (3P)
P
(B.32)
A
2 . . . .
ot = 2 A + G e (R/T/1P/2P/3P)
7 A . . . .
st _ > e O8N + () () (T)
(OkiIm)2 — v=1v#u+1
0 (2P)
(B.33)
N 2 ilm,
St — 0, where t=1, .-, w—1.  (T/2P/3P) ‘

234



A ) )
5zz)l71‘;1,q67,lmq

0 u 5 ,U
8]92%”[1 - v=1 v#uz u+w—1 ﬁd)v (R/T/lp/zp)
2t =0 (T/2P) (B.35)
% can not be determined, where s =0, ---, w—1. (3P)
prp
A
2Ny 2 ilmg Silmaq\ 2
(ﬁkf)lpmq)Q - _12;& Au—Ay (6p,v qép,u q) (R/T/1P/2P/3P) (B 36)
(gk% =0, where t=1, ---, w—1.  (T/2P/3P)
ilm
5ot = i Upepa (R/T/1P/2P/3P)
2 ilmg
=—U T
LS A R (T) (B.37)
Ok ") 0 (2P)
g’i\i;ﬂ; =0, where t =2, --- w—1. (3P)
09, _ A (Gl ~GCGlE ~ G+~ ) gy
8kp*pq v=1v#u, - ,ut+w—1 AumAv
utw—1 ilm ilq ilm ilq ilm ilq ilm ilq
(< \Z 7< ,Z)(C K 7< ,u)+( 2 ,Z)( U ,U)
z:zu:H s . 2 (R/T/1P/2P)
( A (Gl =) (¢ihm — i) + (ke =) (mim =i, (bt
v=1v#u, - ,utw—1 Au=Av
u+w—1 ilm __ ~il itm __ il ilm il ilm _, il
glfﬁ‘;;(l] —_ Z (Cp,z p,g)(gp,u P,(TIAL;)L—E&TZ),Z np,qz)(np,u p,?f, ¢Z] (T)
P—p z=u,z#u+1
L 0 (2P)
SZQ}‘TZ; can not be determined, where t =0, ---, w— 1. (3P)
p—p
(B.38)
P _ i 2 [( ilm_Cilp)( ilm_gilp)_}_( ilm ilp)( ilm ilp)]2
(8k;lpm_p)2 v=T o Au—Ay D,V ,U DU D,U 77p,v 77p,v 77p,u 77p,u
(R/T/1P/2P/3P)
A
ilm i ilm il
> s (G- GG — G+
PAus1 v=1,v#u+1 )
ilm— - ilm i ilm il
@GR T = iy ity — )| (D)
0 (2P)
82)\u+t
W:O, Where t:2, HRN w—l (3P>
(B.39)

235



arj\*pﬁ@ p—p,00 (B40)
sptmi— =0, where t=1, ---, w—1. (T/2P/3P)
p—p,00
Ou A (it —alf /il (il /i — i, i)
ak;linpq,ee - ve1 U#u = tw—1 >\u_>\v (¢U+
utw—1 (uilm/rilm_uilq ril‘I)(uilm/rilm_uilq /ril‘I)
Z 1 B = = I;\&_)\Z’u = Pt ¢Z) (R/T/1P/2P) (B,41)
z=u+
b1 _ (T/2P)
8kp_p,98
e can not be determined, where s =0, ---, w—1. (3P)
p—p,00
Pru f: 2 [(uilm/rilm _yilp /T.ilp>(uilm/7nilm il /T.ilp>:|2
(akilmq 2 o Au—Avy pv/ ' p pv/ " p pul ' p pul ' p
P—p,00 v=1,v#u
(R/T/1P/2P/3P)
@iﬁﬁ =0, where t=1, ---, w—1. (T/2P/3P)
p—p,
(B.42)
e = — 2Tl (R/T/1P/2P/3P)
__2 Tilm (T)
2% _ mim = p,u+l
D = { 0 (2p) (B.43)
3212;;:” =0, where t=2, --- w—1. (3P)
A ilm pilm_y_ ilm pilm utwW—1 o ilm rilm_  ilm, ilm
a?n(igﬂn — Z Cp,v Cp,)\uut")?\z;,v ﬁp,u l_Au¢v + Z )\u(Cp,z C)z\)/,u_‘i\?p,z ﬁp,u ) ¢z:|
v=1,v#u, ,u+w—1 z=u+1 v
— Le[(Cilm)? + (i) (R/T/1P/2P)
N drdredn [_ Mot T g @]
8(,‘[)@?_1 _ v=1,v#u, - utw—1 z=u,z#u+1 woE
Omilm w ilm ilm
P - %[( pl,u )2 + (npl,u )2] (T)
0 (2P)
g:’:;lt;j can not be determined, where s =10, ---, w—1. (3P)
P
(B.44)

236



A i i ilm ilm ilm\2 ilm\212
(8?121?#&)2 = Z )jii)\v (C]Z)l,:)n ;l’;n + npl,v npl,u )2 + 2)\11[( P, ) + (np,u ) ]
P v=1,v#u
(R/T/1P/2P/3P)
A

. . . . i il 212
> ,\jﬁ:v( oo Cpraet T T M)+ 221 [(Gl)® + (m041)?]
9% \ut1 v=1,v£u+1

(@mim)z = (T)
0 (2P)
G =0, where t=2, -+, w1 (3P) s,
e B.
D = — =T, (R/T/1P/2P/3P) (B.46)
Qust =0, where t=1, ---, w— 1. (T/2P/3P)
A —Aguilmyilm Bu (Ui \2 1P /2P
B L TR B~ 3 ) (R/T/1P/2P) .
b _g (T/2P) '
8a[(§in can not be determined, where s =10, ---, w— 1. (3P)
A ilm, ilm 72 ilm \ 2
203 | Up Upu Upu 1P /2P /3P
(361235)2 - ﬂzi Xu—Ao [ (ry™)? } T2 <7“§7“”> (R/T/1P/2P/3P) (B.48)
g;%:o, where t=1, -+, w—1. (T/2P/3P)

237



1]

[5]

[6]

Bibliography

A. Al-shyyab and A. Kahraman. Non-linear dynamic analysis of a multi-mesh
gear train using multi-term harmonic balance method: period-one motions. Jour-
nal of Sound and Vibration, 284(1-2):151-172, June 2005.

A. Al-shyyab and A. Kahraman. Non-linear dynamic analysis of a multi-mesh
gear train using multi-term harmonic balance method: subharmonic motions.
Journal of Sound and Vibration, 279(1-2):417-451, January 2005.

M. Amabili and A. Rivola. Dynamic analysis of spur gear pairs: Steady-state
response and stability of the sdof model with time-varying meshing damping.
Mechanical Systems and Signal Processing, 11:375-390, 1997.

M. Amabili and A. Rivola. Dynamic analysis of spur gear pairs: Steady-state
response and stability of the sdof model with time-varying meshing damping.
Mechanical Systems and Signal Processing, 11:375-390, 1997.

V. K. Ambarisha and R. G. Parker. Suppression of planet mode response in plan-

etary gear dynamics through mesh phasing. Journal of Vibration and Acoustics,
128(2):133-142, 2006.

V. K. Ambarisha and R. G. Parker. Nonlinear dynamics of planetary gears using
analytical and finite element models. Journal of Sound and Vibration, 203:577—
595, 2007.

R. August. Dynamics of Planetary Gear Trains. PhD thesis, Cleveland State
University, 1983.

R. August and R. Kasuba. Torsional vibrations and dynamic loads in a basic
planetary gear system. Journal of Vibration, Acoustics, Stress, and Reliability
in Design, 108(3):348-353, July 1986.

C. J. Bahk and R. G. Parker. Analytical solution for the nonlinear dynamics of
planetary gears. ASMFE Journal of Computational and Nonlinear Dynamics, 6,
April 2011.

238



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Benton and A. Seireg. Normal mode uncoupling of systems with time varying
stiffness. Journal of Mechanical Design, 102:379-383, 1980.

M. Benton and A. Seireg. Factors influencing instability and resonances in geared
systems. Journal of Mechanical Design, 103(2):372-378, April 1981.

M. Benton and A. Seireg. Factors influencing instability and resonances in geared
systems. Journal of Mechanical Design, 103:372-378, 1981.

J. G. Bollinger and R. J. Harker. Instability potential of high speed gearing.
Journal of the Industrial Mathematics, 17:39-55, 1967.

J.G. Bollinger and R.J. Harker. Instability potential of high speed gearing. Jour-
nal of the Industrial Mathematics,, 17:39-55, 1967.

M. Botman. Dynamic tooth loads in epicyclic gears. Journal of Engineering for
Industry, pages 811-815, August 1976.

M. Botman. Epicyclic gear vibations. Journal of Engineering for Industry,
97:811-815, 1976.

M. Botman. Vibration measurement on planetary gears of aircraft turbine en-
gines. J. Aircraft, (5), May 1980.

J. Brauer. Investigation of Transmission Error, Friction, and Wear in Anti-
backlash Gear Transmissions: A Finite Element Approach. PhD thesis, Royal
Institute of Technology, Sweden, 2003.

F. Brown, M. Robuck, and M. Kozachyn. Design, fabrication, assembly and test
of a double helical planetary gear system for helicopter applications. Technical
report, The Boeing Company, 2008.

P. Chen and J. H. Ginsberg. On the relationship between veering of eigenvalue
loci and parameter sensitivity of eigenfunctions. Journal of Vibration and Acous-
tics, 114:141-148, 1992.

R. Courant and D. Hilbert. Methods of Mathematical Physics, volume 1. Inter-
science Publishers, six edition, May 1966.

F. Cunliffe, J. D. Smith, and D. B. Welbourn. Dynamic tooth loads in epicyclic
gears. Journal of Engineering for Industry, 5(95):578-584, May 1974.

T. Eritenel. Three-Dimensional Nonlinear Dynamics and Vibration Reduction of
Gear Pairs and Planetary Gears. PhD thesis, The Ohio State University, 2011.

239



[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

T. Eritenel and R. G. Parker. A static and dynamic model for three-dimensional
multi-mesh gear systems. In International Design Engineering Technical Con-
ferences, Long Beach, CA, Sep. 2005. Proceedings of ASME.

T. Eritenel and R. G. Parker. Modal properties of three-dimensional helical
planetary gears. Journal of Sound and Vibration, 325:397-420, 2009.

T. Eritenel and R. G. Parker. Vibration suppression rules for 3-d helical planetary
gears using mesh phasing. In preparation, 2011.

R. L. Fox and M. P. Kapoor. Rates of change of eigenvalues and eigenvectors.
ATAA Journal, 6:2426-2429, 1968.

J. Frater, R. August, and F. Oswald. Vibation in planetary gear systems with
unequal planet stiffness. NASA, (TM-83428), 1983.

M. I. Friswell. The derivatives of repeated eigenvalues and their associated eigen-
vectors. Journal of Vibration and Acoustics, 188:390-397, 1996.

R. W. Greogory, S. L. Harris, and R. G. Munro. Dynamic behavior of spur gears.
Proceedings of the institution of mechanical engineers, 178:261-266, 1963.

Y. Guo and R. G. Parker. Sensitivity of tuned general compound planetary
gears natural frequencies and vibration modes to model parameters. In Pro-
ceedings of 2006 International Mechanical Engineering Congress and Ezxposition
(IMECFE2006-14978), Chicago, 1L, 2006.

Y. Guo and R. G. Parker. Mesh phase relations of general compound plane-
tary gears. In Proceedings of 10th International ASME Power Transmission and
Gearing Conference (IDETC2007-35799), Las Vegas, NV, 2007.

Y. Guo and R. G. Parker. Sensitivity of general compound planetary gears natu-
ral frequencies and vibration modes to model parameters. In Proceedings of 10th
International ASME Power Transmission and Gearing Conference (IDETC2007-
35802), Las Vegas, NV, 2007.

Y. Guo and R. G. Parker. Dynamic modeling and analysis of a spur planetary
gear involving tooth wedging and bearing clearance nonlinearity. In Furopean
Journal of Mechanics A/Solids [68], pages 1022-1033.

Y. Guo and R. G. Parker. Purely rotational model and vibration modes of
compound planetary gears. Mechanism and Machine Theory, 45:365-377, 2010.

Y. Guo and R. G. Parker. Sensitivity of general compound planetary gears nat-
ural frequencies and vibration modes to model parameters. Journal of Vibration
and Acoustics, 132(1):1-13, 2010.

240



[37]

[38]

[39]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Y. Guo and R. G. Parker. Analytical determiantion of mesh phase relations
in general compound planetary gears. Mechanism and Machine Theory, 2011.
accepted.

Y. Guo and R. G. Parker. Back-side contact gear mesh stiffness. In Proceed-
ings of 12th International ASME Power Transmission and Gearing Conference

(IDETC2011-48055), 2011.

A.M. Hansen, F. Rasmussen, and T.J. Larsen. Gearbox loads caused by dou-
ble contact simulated with hawc2. In European Wind Energy Conference and
Ezhibition, Poland, 2010.

S. L. Harris. Dynamic loads on the teeth of spur gears. Inst. Mech. Eng., 172:87—
100, 1958.

T. Hidaka, Y. Terauchi, and K. Nagamura. Dynamic behavior of planetary gear
(6th report, influence of meshing-phase). Bulletin of JSME, 22(169):1026-1033,
July 1979.

K. Jeong. Mode localization and veering of natural frequency loci in two circular
plates coupled with a fluid. Structural Engineering and Mechanics, 22:719-740,
2006.

A. Kahraman. Planetary gear train dynamics. Journal of Mechanical Design,
116(3):713-720, September 1993.

A. Kahraman. Load sharing characteristics of planetary transmissions. Mecha-
nism and Machine Theory, 29(8):1151-1165, November 1994.

A. Kahraman. Natural modes of planetary gear trains. Journal of Sound and
Vibration, 173(1):125-130, 1994.

A. Kahraman. Natural modes of planetary gear trains (letters to the editor).
Journal of Sound and Vibration, 173(1):125-130, 1994.

A. Kahraman. Free torsional vibration characteristics of compound planetary
gear sets. Mechanism and Machine Theory, 36:953-971, 2001.

A. Kahraman and G. W. Blankenship. Planet mesh phasing in epicyclic gear
sets. In International Gearing Conference, pages 99-104, Newcastle, UK, 1994.

A. Kahraman and G. W. Blankenship. Experiments on nonlinear dynamic be-
havior of an oscillator with clearance and periodically time-varying parameters.
Journal of Applied Mechanics, 64(1):217-226, March 1997.

241



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[59]

[60]

[61]

[62]

A. Kahraman and R. Singh. Non-linear dynamics of a spur gear pair. Journal
of Sound and Vibration, 142(1):49-75, October 1990.

A. Kahraman and R. Singh. Interactions between time-varying mesh stiffness

and clearance non-linearities in a geared system. Journal of Sound and Vibration,
146(1):135-156, April 1991.

M. Kim, J. Moon, and J. A. Wickert. Spatial modulation of repeated vibration
modes in rotationally periodic structures. Journal of Vibration and Acoustics,
122(1):62-68, January 2000.

D. R. Kiracofe and R. G. Parker. Structured vibration modes of general com-
pound planetary gear systems. Journal of Vibration and Acoustics, 129(1):1-16,
February 2007.

T.J. Larsen, K. Thomsen, and F. Rasmussen. Dynamics of a wind turbine plan-
etary gear stage. Technical report risoe-i-2112 (en), Risoe National Laboratory,
Denmark, 2003.

A. W. Leissa. On a curve veering aberration. J. Appl. Math. Phys., 25:98-111,
1974.

J. Lin and R. G. Parker. Analytical characterization of the unique properties of
planetary gear free vibration. Journal of Vibration and Acoustics, 121(3):319-
321, July 1999.

J. Lin and R. G. Parker. Sensitivity of planetary gear natural frequencies and vi-
bration modes to model parameters. Journal of Sound and Vibration, 228(1):109—
128, November 1999.

J. Lin and R. G. Parker. Structured vibration characteristics of planetary gears
with unequally spaced planets. Journal of Sound and Vibration, 233(5):921-928,
June 2000.

J. Lin and R. G. Parker. Natural frequency veering in planetary gears. Mechanics
of Structures and Machines, 29(4):411-429, 2001.

J. Lin and R. G. Parker. Mesh stiffness variation instabilities in two-stage gear
systems. Journal of Vibration and Acoustics, 124(1):68-76, January 2002.

J. Lin and R. G. Parker. Planetary gear parametric instability caused by mesh
stiffness variation. Journal of Sound and Vibration, 249(3):1, January 2002.

G. Liu and R. G. Parker. Dynamic modeling and analysis of tooth profile modi-
fication of multi-mesh gears. ASMFE Journal of Mechanical Design, 130:121402—
1-13, 2008.

242



[63]

[64]

[65]

[66]

[67]

[68]

[71]

[72]

G. Liu and R. G. Parker. Nonlinear dynamics of idler gearsets. Nonlinear
Dynamics, 53:345-367, 2008.

G. Liu and R. G. Parker. Impact of tooth friction and its bending effect on gear
dynamics. Journal of Sound and Vibration, 320:1039-1063, 2009.

P. Lynwander. Gear Drive Systems: Design and Applications. CRC Press,
Florida, 1983.

P. Ma and M. Botman. Load sharing in a planetary gear stage in the presence
of errors and misalignment. ASME Journal of Mechanisms, Transmissions and
Automation in Design, 107, March 1985.

W. C. Mills-Curran. Calculation of eigenvector derivatives for structures with
repeated eigenvalues. AIAA Journal, 26:867-871, 1988.

H. W. Muller. FEpicyclic Drive Trains: Analysis, Synthesis, and Applications.
Wayne State University Press, Detroit, 1982.

P. S. Nair and S. Durvasula. On quasi-degeneracies in plate vibration problems.
Int. J. Mech. Sci., 15:975-986, 1973.

C. Nataraj and A. M. Whitman. Parameter excitation effects in gear dynam-
ics. In American Society for Mechanical Engineers Design Engineering Technical
Conferences, Sacramento, CA, 1997.

C. Nataraj and A.M. Whitman. Parameter excitation effects in gear dynam-
ics. In ASMFE Design Engineering Technical Conferences, Las Vegas, NV, 1997.
DETC99/VIB-8110.

S. Natsiavas. Mode localization and frequency veering in a non-conservative
mechanical system with dissimilar components. Journal of Sound and Vibration,
165:137-147, 1993.

R. B. Nelson. Simplified calculation of eigenvector derivatives. AIAA Journal,
4:1201-1205, 1976.

W. E. Palmer and R.R. Fuehrer. Noise control in planetary transmissions. In
Earth Moving Industry Conference, SAE, Peoria, 1977.

R. G. Parker. A physical explanation for the effectiveness of planet phasing to
suppress planetary gear vibration. Journal of Sound and Vibration, 236(4):561—
573, 2000.

R. G. Parker, V. Agashe, and S. M. Vijayakar. Dynamic response of a plan-
etary gear system using a finite element/contact mechanics model. Journal of
Mechanical Design, 122(3):304-310, September 2000.

243



[77]

[78]

[79]

[80]

[81]

[82]

[83]

[36]

[87]

R. G. Parker and J. Lin. Mesh phasing relationships in planetary and epicyclic
gears. Journal of Mechanical Design, 126:365-370, 2004.

R. G. Parker, S. M. Vijayakar, and T. Imajo. Non-linear dynamic response of a
spur gear pair: Modelling and experimental comparisons. Journal of Sound and
Vibration, 237(3):435-455, October 2000.

R. G. Parker and X. Wu. Vibration modes of planetary gears with unequally
spaced planets and an elastic ring gear. Journal of Sound and Vibration,
329:2265-2275, 2010.

N. C. Perkins and Jr. Mote, C. D. Comments on curve veering in eigenvalue
problems. Journal of Sound Vibration, 106:451-463, 1986.

C. Pierre. Mode localization and eigenvalue loci veering phenomena in disordered
structures. Journal of Sound and Vibration, 126:485-502, 1988.

C. Pierre and R. H. Plaut. Curve veering and mode localization in a buckling
problem. Journal of Applied Mathematics and Physics, 40:758-761, 1989.

R. L. Platt and R. D. Leoplod. A study on helical gear planetary phasing effects
on transmission noise. VDI-Ber, pages 793-807, 1996.

F. Rasmussen, K. Thomsen, and T.J. Larsen. The gearbox problem revisited.
Risoe fact sheet aed-rb-17 (en), Risoe National Laboratory, Denmark.

A. Saada and P. Velex. An extended model for the analysis of the dynamic
behavior of planetary trains. Journal of Mechanical Design, 117(2):241-247,
June 1995.

R. G. Schlegel and K. C. Mard. Transmission noise control approaches in heli-
copter design. In ASME Design Engineering Conference (67-DE-58), New York,
US, 1967.

D. L. Seager. Conditions for the neutralization of excitation by the teeth in
epicyclic gearing. Journal of Mechanical Engineering Science, 17(5):293-298,
1975.

R. Singh, D. R. Houser, and A. Kahraman. Non-linear dynamic analysis of
geared systems. NASA Technical Report, Final Report, Part II, February 1990.

N. G. Stephen. On veering of eigenvalue loci. Journal of Vibration and Acoustics,
131:054501-054505, 2009.

T. Sun and H. Hu. Nonlinear dynamics of a planetary gear system with multiple
clearances. Mechanism and Machine Theory, 38(12):1371-1390, December 2003.

244



[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

S. Theodossiades and S. Natsiavas. Non-linear dynamics of gear-pair systems
with periodic stiffness and backlash. Journal of Sound and Vibration, 229(2):287—
310, January 2000.

G. V. Tordion and R. Gauvin. Dynamic stability of a two-stage gear train under
the influence of variable meshing stiffnesses. Journal of Engineering for Industry,

99:785-791, 1977.

G.V. Tordion and R. Gauvin. Dynamic stability of a two-stage gear train under
the influence of variable meshing stiffnesses. Journal of Engineering for Industry,
99:785-791, 1977.

P. Velex and L. Flamand. Dynamic response of planetary trains to mesh para-
metric excitations. Journal of Mechanical Design, 118(1):7-14, March 1996.

S. M. Vijayakar. Planetary2D User’s Manual. Advanced Numerical Solutions,
www.ansol.us, 2006.

S.M. Vijayakar. Calyz Programmers Manual. Advanced Numerical Solutions,
www.ansol.us, 2006.

X. Wu and R. G. Parker. Modal properties of planetary gears with an elastic
continuum ring gear. Journal of Applied Mechanics, 75(3):1-12, 2008,

X. Wu and R. G. Parker. Parametric instability of planetary gears with elastic
continuum ring gears. ASME Journal of Vibration and Acoustics, page submit-
ted, 2010.

245



	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	Introduction
	Motivation and Objectives
	Literature Review
	Scope of Investigation

	Compound Planetary Gear Models and Associated Modal Properties
	Purely Rotational Model and Vibration Modes of Compound Planetary Gears
	Purely Rotational Model of Compound Planetary Gears
	Characteristics of Natural Frequencies and Vibration Modes
	Summary for Purely Rotational Compound Planetary Gear Model

	Rotational-translational Model of Compound Planetary Gears and the Associated Modal Properties
	Rotational-translational Model of Compound Planetary Gears
	Modal Properties of General Compound Planetary Gears

	Conclusion

	Sensitivity of General Compound Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters
	Introduction
	Eigensensitivity Calculation
	Eigensensitivity of Tuned Systems
	Calculation of Eigensensitivity of Tuned Systems
	Application of the Modal Strain/Kinetic Energy Distribution Plots

	Eigensensitivity of Mistuned Compound Planetary Gears
	Conclusion

	Natural Frequency Veering and Crossing Patterns for General Compound Planetary Gears
	Introduction
	Natural Frequency Veering and Crossing Phenomena in Compound Planetary Gears
	Detection of Natural Frequency Veering and Crossing
	Natural Frequency Veering and Crossing Pattern for Tuned Parameters
	Natural Frequency Veering and Crossing Pattern for Mistuned Parameters
	Conclusion

	Analytical Determination of Mesh Phase Relations in General Compound Planetary Gears
	Introduction
	Relative Phases for Meshes with Different Mesh Periods
	Definition of Relative Phases
	Special Algorithm for Relative Phase Calculations

	Mesh Phase Relations of General Compound Planetary Gears
	Numbering of the Components in Compound Planetary Gears
	Definitions of Relative Phases in Compound Planetary Gears
	Calculation of Relative Phases in Compound Planetary Gears
	Relations between Train-level Relative Phases

	Example Calculation of Relative Phases
	Conclusions

	Suppression of Various Modal Responses in General Compound Planetary Gears through Mesh Phasing
	Introduction
	Rules to Suppress Selected Dynamic Responses for Rotational-translational Models
	Suppression of Selected Responses in a Meshed-planet Stage through Mesh Phasing
	Suppression of Selected Responses in a Stepped Stage through Mesh Phasing

	Rules to Suppress Selected Dynamic Responses for Purely Rotational Models
	Numerical Examples and Discussions
	Conclusion

	Parametric Instabilities of General Compound Planetary Gear Caused by Mesh Stiffness Variations
	Introduction
	Mesh Stiffnesses Variations in Compound Planetary Gears
	Derivation of General Instability Boundaries for Compound Planetary Gears
	Parametric Instability Boundaries for Individual-excitation Type of Instabilities
	Parametric Instability Boundaries for Mutual-excitation Type of Instabilities

	Impacts of Modal Properties and Mesh Phasing Conditions on Compound Planetary Gear Instabilities
	Individual and Mutual Excitations with Zero Phasing Quantities
	Individual and Mutual Excitations with Nonzero Phasing Quantities
	Mutual Excitation with Mixed Phasing Quantities

	Conclusions

	Back-side Contact Gear Mesh Stiffness
	Introduction
	Derivation of Back-side Mesh Stiffness
	Back-side Mesh Stiffness for a Gear Pair with Nominal Backlash
	Back-side Mesh Stiffness for an Arbitrary Gear Pair with Changing Backlash
	Back-side Tooth Number Variation Function for an Anti-backlash Gear Pair with Changing Backlash

	Numerical Verification of Back-side Mesh Stiffness
	Conclusion

	Conclusions and Future Work
	Conclusions
	Compound Planetary Gear Models and Associated Modal Properties
	Sensitivity of General Compound Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters
	Natural Frequency Veering and Crossing Patterns for General Compound Planetary Gears
	Mesh Phase Relations of General Compound Planetary Gears
	Suppression of Various Modal Responses in General Compound Planetary Gears through Mesh Phasing
	Parametric Instabilities of General Compound Planetary Gear Caused by Mesh Stiffness Variations
	Back-side Contact Gear Mesh Stiffness

	Future Work
	Analytical Study on Anti-backlash Gear Dynamics
	Investigations on 3-D Helical Compound Planetary Gears
	Extended Investigation on Parametric Instabilities of Compound Planetary Gears
	Nonlinear Dynamics of Compound Planetary Gears


	Appendices
	Appendix for Chapter 2
	Appendix for Chapter 3
	Expressions of Eigensensitivities for Tuned Compound Planetary Gears
	Eigensensitivities of Mistuned Compound Planetary Gears With a Single Mistuned Parameter

	Bibliography


