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Abstract

This dissertation is comprised of an introductory chapter and three stand-alone chap-

ters, tied together by a unifying theme: the statistical analysis of very large spatial and

spatio-temporal datasets. These datasets now arise in many fields, but our focus here is

on environmental remote-sensing data. Due to sparseness of daily datasets, there is a need

to fill spatial gaps and to borrow strength from adjacent days. Nonetheless, many satellite

instruments are capable of conducting on the order of 100,000 retrievals per day, which

makes it computationally challenging to apply traditional spatial and spatio-temporal sta-

tistical methods, even in supercomputing environments. In addition, the datasets are often

observed on the entire globe. For such large domains, spatial stationarity assumptions are

typically unrealistic.

We address these challenges using dimension-reduction techniques based on a flexible

spatial random effects (SRE) model, where dimension reduction is achieved by projecting

the process onto a basis-function space of low dimension. The spatio-temporal random

effects (STRE) model extends the SRE model to the spatio-temporal case by modeling the

temporal evolution, on the reduced space, using a dynamical autoregressive model in time.

Another focus of this work is the modeling of fine-scale variation. Such variability is

typically not part of the reduced space spanned by the basis functions, and one needs to

account for a component of variability at a fine scale. We address this issue throughout the
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dissertation with increasingly complex and realistic models for a component of fine-scale

variation.

After a general introductory chapter, the subsequent two chapters focus on estimation

of the reduced-dimensional parameters in the STRE model from both an empirical-Bayes

and a fully Bayesian perspective, respectively. In Chapter 2, we develop maximum like-

lihood estimation via an expectation-maximization (EM) algorithm, which offers stable

computation of valid estimators and makes efficient use of spatial and temporal depen-

dence in the data, assuming a multivariate Gaussian model. In Chapter 3, we develop a

multiresolutional prior for the propagator matrix on the reduced-dimensional space that al-

lows for unknown (random) sparsity and shrinkage, and we describe how sampling from

the posterior distribution can be achieved in a feasible way, even if this matrix is very large.

Finally, in Chapter 4, we return to the spatial-only case. We generalize the standard

SRE model and provide informative prior distributions for the parameters of the generalized

SRE model based on a nonstationary covariance model in physical space. We propose a

comprehensive model that takes account of all scales of variation, in particular by allowing

for the fine-scale-variation component to exhibit spatial dependence. We make inference

on the number, locations, and shapes of the basis functions. Computational feasibility

is maintained by assuming that the fine-spatial-scale covariance is compactly supported,

resulting in a very sparse covariance matrix for the fine-scale-variation component.

All methodological results are illustrated and compared using simulation studies and

a dataset of global satellite measurements of CO2, which came from the Atmospheric In-

fraRed Sounder (AIRS) instrument on NASA’s Aqua satellite.

iii



Acknowledgments

First and foremost, I would like to thank my advisor, Dr. Noel Cressie, for his generous

support, guidance, and mentorship.

I would also like to thank: Mike Turmon for originally suggesting that EM estimation

might work in the context of the spatial random effects model; Kevin Sahr for providing the

DGGRID software and for advice on how to shift the basis-function centers for Chapters

2 and 3; the AIRS Project CO2 team, particularly Dr. Moustafa T. Chahine, Dr. Edward

T. Olsen, and Mr. Luke L. Chen for their helpful input on the analysis of the AIRS data;

Amy Braverman, Dorit Hammerling, Anna Michalak, and Hai Nguyen for their comments

on various aspects of the research in Chapters 2 and 3; Scott Holan, an anonymous referee,

and especially Chris Wikle for their excellent suggestions regarding a manuscript version
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Chapter 1: Introduction

As the title of this dissertation suggests, I am concerned with the intersection of three

broad statistical topics: hierarchical modeling, spatial and spatio-temporal statistics, and

the analysis of very-large-to-massive datasets. In this chapter, I shall attempt to give a short

overview of each, before giving the specifics associated with the intersection of the three.

Hierarchical modeling has become increasingly prevalent in the statistics literature. In

this framework, model specification is comparatively easy, since it is done conditionally

for each component of the model. In addition, the advent of simulation-based Bayesian in-

ference over the past two decades is particularly well suited to fitting hierarchical models:

the Gibbs sampler exploits very naturally the (often) simple conditional model structure.

Berliner (1996) formulated an attractive general hierarchical model for time series, which

consists of three conditionally specificied “stages”: the data model ([data|process, parameters]),

the process model ([process|parameters]), and the parameter (or prior) model ([parameters]).

The product of the three results in the generic joint distribution:

[data, process, parameters] = [data|process, parameters] [process|parameters] [parameters].

This type of modeling is especially relevant to environmental statistics, where measure-

ments of a process of interest are virtually always incomplete and noisy.
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Spatial statistics deals with modeling data that are spatially referenced. It follows the

principle that observations that are close in space are typically more closely related than

observations that are far apart. For an overview of the field of spatial statistics, see Cressie

(1993). Depending on whether the spatial domain of interest is fixed and continuous, or

fixed and countable, or random, spatial processes are often referred to as geostatistical

processes, or lattice processes, or spatial point processes, respectively. This dissertation

deals with geostatistical processes observed on continuous, fixed domains (such as the

globe). Spatio-temporal statistics is, depending on one’s perspective, a generalization of a

spatial process to a spatial process evolving in time, or a generalization of a time series to

multiple, spatially referenced observations at each time point. Here, I view spatio-temporal

data as a realization of a spatial process evolving in discrete time. A recent overview of

spatio-temporal statistics, with an emphasis on hierarchical-modeling approaches, is given

by Cressie and Wikle (2011).

Automation of measurement procedures, and an increasing desire to measure the status

and monitor the performance of systems, has led to an explosion in the amount of data being

collected in all fields of science and in all aspects of society. This phenomenon has had, and

continues to have, a profound impact on the field of statistics. Statistical techniques of the

last century were not designed to deal with the large number of variables and/or the massive

amount of observations prevalent in most modern datasets. Thus, new approaches and

models have been developed to deal with datasets containing many variables and/or many

observations. I focus here on one variable (or process), and my particular concern is with

computational feasibility of the statistical methodology when the number of observations

is very large.
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At the intersection of these three topics has arisen a very active field of research dealing

with statistical analysis of very large spatial and spatio-temporal datasets. The analysis of

massive datasets is of concern in spatial statistics, which is particularly prone to the curse

of dimensionality. Traditional geostatistics requires the evaluation and inversion of the

covariance matrix of the data. If there are nmeasurements available, this is an n×nmatrix,

and its inversion requires on the order of n3 computations. Thus, direct inversion is clearly

not feasible for very-large-to-massive n, and dimension-reduced models, computational

speed-ups, and/or approximations are required.

The research in this dissertation focuses on one such dimension-reduction technique, in

which the process is projected onto a low-dimensional space spanned by the linear com-

bination of a set of basis functions. The resulting model is called a spatial random effects

(SRE) model. The SRE model is extended to a spatio-temporal random effects (STRE)

model by modeling the temporal evolution of the low-dimensional process using a dynami-

cal autoregressive model in time. An important research topic is the treatment of the part of

the process that is not part of the reduced-dimensional space of basis functions, here called

the fine-scale variation.

In Chapter 2, I present an empirical-Bayes approach to estimating the reduced-dimensional

parameters in an STRE model. An expectation-maximization (EM) algorithm is presented,

which can be used to find maximum likelihood estimators of the parameters. Properties

and extensions of the EM algorithm are given. I also compare the estimators to the pre-

viously used binned-method-of-moments estimators, in a simulation study and on a real-

world dataset of global CO2 measurements.

Chapter 3 presents a fully Bayesian approach to the same problem (inference on the

STRE parameters). I develop a prior distribution for the propagator matrix on the reduced
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space, which allows for random sparsity and shrinkage of the elements as a function of

distance of the corresponding pairs of basis functions. I also generalize the second-moment

assumptions on the fine-scale variation to allow for spatial heterogeneity, and I compare the

fully Bayesian approach to the EM-estimation approach of Chapter 2 in a similar simulation

study and on the same CO2 dataset as in Chapter 2. Some of the more technical aspects of

the posterior inference via Markov chain Monte Carlo (MCMC) can be found in Appendix

A.

In Chapter 4, I return to the spatial-only case, where I generalize the SRE model by

allowing the set of basis functions to be random. I make inference on the number, locations,

and shapes of the basis functions. I develop priors that are motivated by the predictive

process (Banerjee et al., 2008), and I generalize further the distribution of the fine-scale

variation by allowing for (local) spatial dependence. This allows modeling of both long-

range dependence (through the SRE component) and short-range dependence (through the

fine-scale variation), while still allowing for feasible computation times for large datasets.

The research in Chapters 2 and 3 was carried out jointly with Dr. Noel Cressie. He

gave me general ideas to work on, and I was responsible for the technical derivations, the

computer code, and writing the initial drafts. Dr. Cressie contributed general comments

and discussed with me the results presented in Chapter 4.
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Chapter 2: Spatio-Temporal Smoothing and EM Estimation for

Massive Remote-Sensing Datasets

This chapter is published as: Katzfuss, M., and Cressie, N. 2011. Spatio-temporal

smoothing and EM estimation for massive remote-sensing data sets. Journal of Time Series

Analysis, 32, 43–446.

2.1 Introduction

Many datasets have spatial and temporal information attached to the attribute informa-

tion, and nearer observations in space or time generally result in higher statistical corre-

lation. This dependence can be described through specification of a spatio-temporal co-

variance function, or it can be explained through a dynamical model that gives either a

probabilistic or a statistical-physical mechanism for the evolution of the “present” from the

“past.” It is the dynamical-modeling approach that we take in this chapter.

The spatial domain is discretized, and so it can be thought of as a (generally) large

m-dimensional vector, where m denotes the number of pixels in the discretization. Should

the spatial domain evolve also, there might be mt pixels at time t. We define Yt to be the

mt-dimensional vector of the true spatial process at time t. In this chapter, time is discrete

and, hence, the true spatio-temporal process is a vector-valued time series,

Y1,Y2, . . . ,Yt,Yt+1, . . . .
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Observations on Yt result in its degradation; here we are concerned with “missingness”

and “noise” (measurement error). That is, Zt is an nt-dimensional vector (nt < mt) of

observations at time t given by,

Zt = OtYt + εt ; t = 1, 2, . . . , (2.1)

where {εt} are independent Nnt(0, σ
2
ε,tVε,t), respectively, and Ot is an nt × mt incidence

matrix of mostly 0s and a 1 in each row. In (2.1), Ot captures the missingness and εt

captures the measurement error (assumed to be independent in both space and time); we

call (2.1) the data model, following Berliner (1996). Modeling the temporal evolution of

{Yt : t = 1, 2, . . .} is discussed at length in Cressie and Wikle (2011); in this chapter, we

choose a vector-autoregressive process.

This chapter is concerned with applications of spatio-temporal statistics to global re-

mote sensing. Here, nt and mt can be very large, on the order of tens or hundreds of

thousands, and the tendency is towards massive (gigabytes and beyond). Therefore, while

the model above can in principal lead to inference using the Kalman filter (Kalman, 1960),

there are severe computational problems that require some form of dimension reduction.

Furthermore, the Kalman filter requires parameters like the propagator matrix and the in-

novation covariance matrix (see (2.4) below) to be specified, which in practice usually

means they must be estimated (or a prior could be put on them). It is at the confluence of

dimension reduction and parameter estimation that this chapter takes its place.

Denote as Yt(s) the element of Yt that corresponds to spatial location s. In this chapter,

we assume a spatio-temporal mixed effects (STME) model,

Yt(s) = xt(s)′βt + νt(s) ; s ∈ Ds, t = 1, 2, . . . , (2.2)
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where Ds is the discretized spatial domain, xt(·) is a known p-dimensional vector of co-

variates, βt is a vector of fixed but unknown trend coefficients, and νt(·) (and its vector

νt) captures the spatio-temporal dependence. We impose dimension reduction on {νt} by

modeling it as a spatio-temporal random effects (STRE) process,

νt(s) = bt(s)′ηt + δt(s) ; s ∈ Ds, t = 1, 2, . . . , (2.3)

where bt(·) := [b1,t(·), . . . , br,t(·)]′ is a vector of r (known) spatial basis functions. The

coefficient vectors {ηt} are assumed to follow a vector-autoregressive process of order

one,

ηt|ηt−1, . . . ,η1 ∼ Nr(Htηt−1, Ut), t = 1, 2, . . . , (2.4)

with initial state η0 ∼ Nr(0, K0). The r × r matrices Ht and Ut are often referred to

as propagator and innovation matrices, respectively. The fine-scale-variation component

δt(·) in (2.3) is assumed to be uncorrelated across time and space and independent of {ηt},

with δt(s) ∼ N(0, σ2
δ,tvδ,t(s)). Here, vδ,t(·) is typically considered known, although this

assumption can be weakened considerably (see Section 2.3.4). The component δt(·) is an

important part of the model, as it is an attempt to account for the error that is introduced by

the dimension reduction in replacing νt(·) by bt(·)′ηt.

There are numerous examples of dimension-reduction models similar to (2.3) in the lit-

erature on spatial-only modeling (e.g., Wikle, 2010). Outside of the massive-data setting,

so-called spatial linear mixed models have received a great deal of attention (e.g., Chris-

tensen and Waagepetersen, 2002; Zhang, 2002). Nychka et al. (2002) consider a wavelet

basis and enforce sparsity on the covariance matrix K := var(η), via thresholding in the

wavelet-transformed space; Stein (2008) parameterizes K with only a handful of param-

eters by assuming axial symmetry for total column ozone on the globe, but he allows the
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fine-scale variation to exhibit spatial dependence; Jun and Stein (2008) apply the discrete

Fourier transform to data on a regular grid to achieve fast computation times. Banerjee

et al. (2008) take a Bayesian approach, replacing the data locations with a smaller set of

space-filling locations and approximating the original process with a predictive process de-

pending on a fixed number of knots. Furrer et al. (2007) and Lopes et al. (2008) also take

a Bayesian perspective, but they assume K to be diagonal. There has also been work on

such models for Markov random fields (see Zhu et al., 2007, and references therein).

Equations (2.1)–(2.4) above describe what is referred to as a standard state-space model

in the time-series literature (see, e.g., Hamilton, 1994, Chap. 13; Shumway and Stoffer,

2006, Chap. 6). The idea of extending the state-space model to the spatio-temporal case

by using spatial basis functions in the vector bt(·) goes back at least as far as Smith et al.

(1996) and Kaplan et al. (1998).

A key feature of our model is the dimension reduction that makes it possible to deal with

a very large number of observations at each time point. The use of a vector-autoregressive

(VAR) model of order one allows for sequential processing of subsequent time points via

the Kalman filter and smoother (Kalman, 1960; Shumway and Stoffer, 2006). Examples

of the use of Kalman filters for reduced-dimension spatio-temporal models can be found

in Mardia et al. (1998), Wikle and Cressie (1999), Farrell and Ioannou (2001), Cressie

and Wikle (2002), Wikle and Hooten (2006), and Voutilainen et al. (2007). A component

similar to our fine-scale-variation term δt(·) has been included in Wikle and Cressie (1999),

Berliner et al. (2000), Wikle et al. (2001), and Cressie et al. (2010).

A different approach to the analysis of very large (spatio-)temporal datasets is to assume

a multi-resolutional tree structure to describe the spatial-dependence structure (Cressie and

Wikle, 2002; Johannesson and Cressie, 2004; Tzeng et al., 2005; Johannesson et al., 2007).

8



These models also offer rapid computation via Kalman-filter-type algorithms. Apart from

Tzeng et al. (2005), this approach results in covariance functions and predictions that tend

to be “blocky,” and the models have some arbitrariness in specifying which pixels are

“close” at smaller scales.

In this chapter, we assume a fixed-rank STME model (2.2), which was proposed by

Cressie et al. (2010) and Kang et al. (2010), motivated by the spatial-only fixed-rank model

of Cressie and Johannesson (2008). In this fixed-rank framework, the spatial basis func-

tions, b1(·), . . . , br(·), are not necessarily orthogonal. Shi and Cressie (2007) also consid-

ered a spatial-only version of the model, and they proposed the use of W-wavelet basis

functions instead of the bisquare functions employed by Cressie and Johannesson (2008).

In fixed-rank models, because r is typically much smaller than the number of observations,

optimal predictors can be calculated exactly, even in large-data settings (see the end of

Section 2.2.2).

In many of these articles on the fixed-rank approach, covariance parameters are es-

timated using a binned-method-of-moments (MM) technique that was first described in

Cressie and Johannesson (2008). Katzfuss and Cressie (2009) proposed maximum likeli-

hood (ML) estimation via an expectation-maximization (EM) algorithm for the spatial-only

case, and they showed this approach to be more unsupervised and, in some aspects, more

efficient.

The EM algorithm is very well suited for ML estimation of parameters in STRE models.

This idea is usually attributed to Shumway and Stoffer (1982). Mardia et al. (1998) take

this EM-estimation approach while reducing dimensionality by projecting the state-process

on a set of spectral basis functions. Xu and Wikle (2007) consider different parameteriza-

tions for the matrix parameters. They show how an advection-diffusion equation can be
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used to derive a parameterization of the propagator matrix H , and they allow for spatial

dependence in the error component. For some of these parameterizations, generalizations

or modifications of the ordinary EM algorithm have to be employed.

A very similar approach to ours is taken by Fassò and Cameletti (2009a,b). They also

make use of the EM algorithm to estimate parameters in their state-space model. In addi-

tion, they quantify estimation uncertainty by performing a parametric bootstrap procedure.

However, their model is not feasible for the remote-sensing data considered here. They as-

sume that measurement locations are identical at each time point. Additionally, their dense

fine-scale-variation covariance matrices result in a computational complexity of O(Tn3)

for their procedure, where n is their number of measurement locations (identical for each

time point); this prohibits the analysis of very large datasets.

With continuing increases in computing power, it has become feasible to fit fully Bayesian

STRE models. Often, assumptions are made to reduce the number of parameters in the co-

variance matrices and the propagator matrix. Zhao et al. (2006) assume K to be diagonal.

Stroud et al. (2001) introduce a STRE model with weighting kernels on linear basis func-

tions in a Bayesian framework with simple random-walk dynamics. The Bayesian spatial

dynamic factor-analysis model of Lopes et al. (2008) assumes K to be diagonal. There has

also been some work on incorporating physical or biological models directly into the pa-

rameterization (e.g., Wikle, 2003; Wikle and Hooten, 2006). In the spatial-only fixed-rank

setting, Kang and Cressie (2011) describe a fully Bayesian approach, and they develop a

multi-resolution prior for the (non-diagonal) covariance matrix K.

In light of this extensive body of literature on parameter estimation for reduced-dimension

state-space models, the main contributions of this chapter are the following: We have a

strong focus on very large datasets as obtained by remote-sensing platforms, which take
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measurements at arbitrary, non-gridded locations (or even areal footprints) that can differ

over time and can be sparse with respect to the spatial domain of interest. In addition to the

standard EM algorithm for state-space models, we incorporate the estimation of trend coef-

ficients and fine-scale-variation parameters into the algorithm. We also give some possible

extensions of our EM algorithm (Section 2.3.4). Finally, we see this chapter as a valuable

resource for practitioners who analyze data using the fixed-rank models described in earlier

papers by Cressie and coauthors, referred to above. We show that the previously used MM

estimation can be improved upon by the EM approach described here, and we give further

practical insights on the analysis of global remote-sensing data with areal footprints.

The rest of this chapter is organized as follows. Section 2.2 introduces Fixed Rank

Smoothing (FRS) for the STME model, where the parameters are assumed known. Section

2.3 describes how the STME-model parameters can be estimated using the EM algorithm.

A simulation study comparing FRS based on the EM estimators and FRS based on the MM

estimators is given in Section 2.4. Section 2.5 contains an application of our methodology

to global retrievals of mid-tropospheric CO2 from NASA’s AIRS instrument, and discus-

sion and conclusions are given in Section 2.6.

2.2 Fixed Rank Smoothing in the Spatio-Temporal Mixed-Effects Model

2.2.1 The Spatio-Temporal Mixed-Effects Model

As established in Section 2.1, our interest is in a spatio-temporal process {Yt(s) : s ∈

Ds, t = 1, 2, . . .}, which is modeled as a STME process as in (2.2)–(2.3).

For the purpose of this chapter, we shall take a smoothing perspective. That is, we

are interested in predicting Yt(s0) at locations s0 ∈ Ds for any t ∈ {1, . . . , T}, from a
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number of measurements taken at spatial locations {si,t} and time points t = 1, . . . , T . As

described in (2.1), we assume that the measurements Zt(si,t) of the process are degraded

by additive measurement error:

Zt(si,t) = Yt(si,t) + εt(si,t); i = 1, . . . , nt, t = 1, . . . , T, (2.5)

where εt(si,t) ∼ N(0, σ2
ε,tvε,t(si,t)) is assumed to be independent across time and space

and independent of Yt(·). Throughout this chapter, we assume both σ2
ε,t and the variance-

modification function vε,t(·) to be known. If there is no independent information on σ2
ε,t

(e.g., from prior experiments), this variance term can be estimated from the data via an

estimation technique based on extrapolating the variogram to the origin (for more informa-

tion, see Kang et al., 2009). Unless further information is available, vε,t(·) ≡ 1 is a default

choice for the variance-modification function.

The main application of the STME model (2.2) is to massive spatial or spatio-temporal

datasets, for which traditional statistical approaches are infeasible due to the large number

of observations. The key to this approach is the dimension reduction that is achieved be-

cause r, the dimension of ηt, is typically much smaller than nt, the number of observations

at time t. This point will be further elaborated upon at the end of Section 2.2.2 below.

Let SOt := {s1,t, . . . , snt,t} be the set of locations at which there are observations at

time t. Evaluating all model components at these sets of locations, stacking the resulting

scalars into column vectors, and stacking row vectors into matrices, we can write Zt :=

[Zt(s1,t), . . . , Zt(snt,t)]
′, the vector of measurements at time t, as,

Zt = Xtβt +Btηt + δt + εt; t = 1, 2, . . . . (2.6)

Here, Bt is an nt × r matrix with i-th row given by bt(si,t)
′, δt := [δt(s1,t), . . . , δt(snt,t)]

′,

and the other matrices and vectors are defined analogously. Corresponding covariance
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matrices are Kt := var(ηt), and

Dt := var(δt + εt) = σ2
δ,tVδ,t + σ2

ε,tVε,t , (2.7)

which is diagonal with Vδ,t := diag(vδ,t(s1,t), . . . , vδ,t(snt,t)) and

Vε,t := diag(vε,t(s1,t), . . . , vε,t(snt,t)).

The model, in its most general form as described above, depends on several parameters,

many of them matrix-valued. The vector of the unknown parameters, denoted by θ, consists

of the trend coefficients {βt : t = 1, . . . , T}, the fine-scale-variation variances {σ2
δ,t :

t = 1, . . . , T}, and the elements defining the matrices that describe the VAR process, K0,

{Ht : t = 1, . . . , T}, and {Ut : t = 1, . . . , T}.

2.2.2 Fixed Rank Smoothing

As mentioned above, our main focus in this chapter is on smoothing. That is, after

having observed Z1 = z1, . . . ,ZT = zT , we are interested in inference on the hidden

process {Yt(s0)} at any spatial location s0 ∈ Ds and for any time t = 1, . . . , T . Let the

set SPt consist of all mt (observed or not observed) spatial locations at which we want to

predict the hidden process Yt(·) at time t. Often, SPt is a grid over the spatial domain of

interest that does not depend on t.

To make clear the distinction between observed quantities and predicted quantities, for

the remainder of this chapter we shall use a superscript P for vectors and matrices that were

derived by evaluation of model components at the set of prediction locations. The process

vector of interest is therefore,

YP
t := XP

t βt +BP
t ηt + δPt ; t = 1, . . . , T, (2.8)

where now evaluation is at the set of mt prediction locations, SPt . The diagonal variance

matrix, var(δPt ) := σ2
δ,tV

P
δ,t, is defined correspondingly.
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From (2.8), we see that inference on YP
t essentially consists of predicting ηt and δPt

(and estimating the trend coefficients, βt). For now we assume that βt is known, along with

all other parameters in θ. Parameter estimation will be addressed separately in Section 2.3.

Let z1:t̃ := [z′1, . . . , z
′
t̃
]′, for any time point t̃ > 0. For the conditional expectations of ηt

and δt based on data z1:t̃, we will use the notation ηt|t̃ := E(ηt|z1:t̃) and δP
t|t̃ := E(δPt |z1:t̃).

The conditional covariance matrix of ηt will be denoted as Pt|t̃ := var(ηt|z1:t̃), and RP
t|t̃ :=

var(δPt |z1:t̃) is the conditional covariance matrix of δPt .

To obtain the smoothing distributions of {ηt} and {δPt }, we make use of a technique

called Fixed Rank Smoothing (FRS), which is an extension of the Kalman smoother (see

Cressie et al., 2010, for more details). Similar to the original Kalman smoother, this tech-

nique consists of two parts: forward-filtering and backward-smoothing.

The filtering algorithm is initialized by setting η0|0 = 0 and P0|0 = K0. Then, for

t = 1, . . . , T , the filtering quantities are calculated sequentially as,

ηt|t = ηt|t−1 + Pt|t−1B
′
t[BtPt|t−1B

′
t +Dt]

−1(zt −Xtβt −Btηt|t−1)

δPt|t = σ2
δ,tV

P
δ,tO

′
t[BtPt|t−1B

′
t +Dt]

−1(zt −Xtβt −Btηt|t−1)

Pt|t = Pt|t−1 − Pt|t−1B′t[BtPt|t−1B
′
t +Dt]

−1BtPt|t−1

RP
t|t = σ2

δ,tV
P
δ,t − σ2

δ,tV
P
δ,tO

′
t[BtPt|t−1B

′
t +Dt]

−1OtV
P
δ,tσ

2
δ,t,

(2.9)

where Ot is defined in (2.1), Bt and Xt are defined in (2.6), Dt is defined in (2.7), and the

one-step-ahead forecasts are,

ηt|t−1 = Htηt−1|t−1

Pt|t−1 = HtPt−1|t−1H
′
t + Ut.

The smoothing quantities are then obtained by updating “backwards” in time. The

smoothing expectations and covariances for the last time point t = T are already calculated
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as the last step in (2.9). For t = T − 1, T − 2, . . . , 1, we calculate,

ηt|T = ηt|t + Jt(ηt+1|T − ηt+1|t)

δPt|T = δPt|t −Mt(ηt+1|T − ηt+1|t)

Pt|T = Pt|t + Jt(Pt+1|T − Pt+1|t)J
′
t

RP
t|T = RP

t|t +Mt(Pt+1|T − Pt+1|t)M
′
t ,

(2.10)

where

Jt := Pt|tH
′
t+1P

−1
t+1|t

Mt := σ2
δ,tV

P
δ,tO

′
tPt|t−1B

′
t[BtPt|t−1B

′
t +Dt]

−1H ′t+1P
−1
t+1|t.

For the EM algorithm in Section 2.3, we also need the smoothing distribution of the

initial state η0, specified by

η0|T = η0|0 + J0(η1|T − η1|t)

P0|T = P0|0 + J0(P1|T − P1|t)J
′
0 .

(2.11)

The cross-covariance term, Pt,t−1|T := cov(ηt,ηt−1|z1:T ), is given in Shumway and Stoffer

(2006, pp. 337-338):

PT,T−1|T = (Ir − PT |T−1B′T [BTPT |T−1B
′
T +DT ]−1BT )HTPT−1|T−1

Pt,t−1|T = Pt|tJ
′
t−1 + Jt(Pt+1,t|T −Ht+1Pt|t)J

′
t−1; t = T − 1, T − 2, . . . , 1.

(2.12)

Clearly, all the filtering and smoothing distributions of ηt and δPt are normal distri-

butions, because they are linear combinations of z1:T , which we defined to be normal in

Section 2.2.1. The filtering and smoothing distributions are therefore fully determined by

their first two moments given in (2.9) and (2.10).

Finally, we obtain the FRS prediction vectors as,

YP
t|T := E(YP

t |z1:T ) = XP
t βt +BP

t ηt|T + δPt|T ; t = 1, . . . , T. (2.13)

An important advantage of statistical approaches to prediction problems, over ad hoc engi-

neering solutions, is the possibility of uncertainty evaluation. For t = 1, . . . , T , the vectors
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of mean squared prediction errors (MSPEs) corresponding to YP
t|T can be calculated as,

σ2
t|T := diag{E([YP

t −YP
t|T ][YP

t −YP
t|T ]′)}

= diag{BP
t Pt|TB

P
t
′ +RP

t|T − 2σ2
δ,tB

P
t Pt|t−1B

′
t[BtPt|t−1B

′
t +Dt]

−1OtV
P
δ,t},

(2.14)

where here diag{A} denotes the vector of diagonal elements of a matrix A.

The great strength of the STME model (2.2) is in reducing the computational cost of

deriving these distributions. The Kalman filtering/smoothing technique employs sequen-

tial updating, and so we need only consider the nt observations taken at a particular time

point t at each step (instead of all
∑T

t=1 nt observations simultaneously). The inversion

of the nt × nt matrix required at each “naive” Kalman filter update can still prove to be

prohibitively expensive in some massive-data situations, such as for remote-sensing appli-

cations. However, due to the dimension reduction achieved by the basis functions in the

vector b(·) in (2.3), direct inversion of var(zt|z1:t−1) = [BtPt|t−1B
′
t + Dt] in (2.9) can be

averted by making use of a Sherman-Morrison-Woodbury formula (Sherman and Morrison,

1950; Woodbury, 1950; Henderson and Searle, 1981),

[BtPt|t−1B
′
t +Dt]

−1 = D−1t −D−1t Bt[P
−1
t|t−1 +B′tD

−1
t Bt]

−1B′tD
−1
t . (2.15)

From (2.15), we only have to invert r × r matrices and diagonal nt × nt matrices. The

number of basis functions, r, is typically chosen to be much smaller than nt. At each

filtering step, the computational complexity is therefore reduced from O(n3
t ) to O(r3nt);

that is, the required number of operations now increases linearly in nt (instead of cubic in

nt). This ensures computational feasibility, even for very large or massive datasets.

2.3 Maximum Likelihood Estimation Via an EM Algorithm

The inference described in Section 2.2.2 assumes that the entire vector of parameters,

θ, is known. Of course, this will typically not be the case in practice. Here we describe how
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to obtain maximum likelihood estimates (MLEs) of the parameters of our spatio-temporal

model via an expectation-maximization (EM) algorithm. These estimates can then be sub-

stituted into the filtering or smoothing equations to obtain empirical spatio-temporal pre-

dictions.

MLEs of variance terms in mixed models are known to be biased downward, since

the estimation does not take into account the uncertainty in estimating the fixed effects

(McLachlan and Krishnan, 2008, p. 187). Restricted-maximum-likelihood (REML) ap-

proaches can remedy this problem. However, here we are interested in data-rich applica-

tions. From large datasets, a small number of fixed effects can usually be estimated with

extremely high precision, and hence the difference between REML and ML estimates will

be negligible. We therefore focus our attention on maximizing the likelihood function.

2.3.1 The Likelihood Function

The likelihood is the probability density function of the data as a function of the un-

known parameter vector θ. An MLE of θ is a value of the vector that maximizes the

likelihood. For the STME model (2.2), this likelihood is rather complicated; see the end of

Section 2.2.1 where all the components of θ are given. To derive the likelihood functions,

it is helpful to define so-called innovations, αt := zt−Xtβt−Btηt|t−1, t = 1, . . . , T , as in

Shumway and Stoffer (2006, p. 312-313). These innovations are independent normal ran-

dom vectors with mean zero and covariance matrix, Σαt := BtPt|t−1B
′
t+Dt, t = 1, . . . , T ,

respectively. Then,

−2 logL(θ) := −2f(α1, . . . ,αT |θ) =
T∑
t=1

log |Σαt(θ)|+
T∑
t=1

αt(θ)′Σαt(θ)−1αt(θ)+const.,

(2.16)
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where henceforth “const.” denotes a constant that does not depend on θ, and we have

emphasized that both the innovations and their covariance matrices are functions of the

parameter vector.

Clearly, analytical optimization of this function with respect to the parameters is highly

problematic. Indeed, Katzfuss and Cressie (2009) gave a simple example in the spatial-only

case (T = 1) that indicates the impossibility of finding MLEs analytically.

Note also that this function depends on Ht and Ut only through ηt|t−1 := Htηt−1|t−1

and Pt|t−1 := HtPt−1|t−1H
′
t + Ut. Since we place no constraints on Ht and Ut (other than

Ut being a valid covariance matrix), it is clear that there cannot be a unique MLE if Ht and

Ut are both allowed to vary freely with t. To achieve identifiability of these parameters, we

set H := H1 = . . . = HT and U := U1 = . . . = UT for the remainder of this chapter.

2.3.2 EM Estimation

The EM algorithm (Dempster et al., 1977) has traditionally been employed for ML

estimation in STRE models (see, e.g., Shumway and Stoffer, 1982, 2006; Xu and Wikle,

2007). We shall extend this approach here to an STME model of the form given by (2.2).

This allows estimation of K0, H and U , along with {σ2
δ,t} and {βt}, where the index

t = 1, . . . , T , all in a single algorithm. A related EM-estimation approach of both random

and fixed effects has been considered in Shumway and Stoffer (2006) in a time series

context.

We begin with a short review of the EM algorithm. It is an iterative computational

technique that can be used to find MLEs in situations where knowledge of some unobserved

random variable (called the “missing data”), in addition to the observed data, would make

the complete-data likelihood (i.e., the joint distribution function of the observed and the
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missing data) much easier to evaluate and maximize than the observed likelihood. At each

iteration, the algorithm consists of an expectation step and a maximization step. In our case,

if we were able to observe ηt and δt for all t directly, then the corresponding terms in the

resulting log-likelihood become additive, and we can treat the terms containing ηt and δt

separately when maximizing the function with respect to the parameters. Thus, in the EM

context, we define the missing data to be η1:T := [η′1, . . . ,η
′
t]
′ and δ1:T := [δ′1, . . . , δ

′
T ]′.

Then, the so-called complete-data log-likelihood is given by,

−2 logLc(θ) := −2 log f(z1:T ,η1:T , δ1:T |θ)

=
∑T

t=1 tr(V
−1
ε,t [zt −Xtβt −Btηt − δt][zt −Xtβt −Btηt − δt]

′)/σ2
ε,t

+
∑T

t=1 nt log σ2
δ,t +

∑T
t=1 tr(V

−1
δ,t δtδ

′
t)/σ

2
δ,t + log |K0|+ tr(K−10 η0η

′
0)

+ T log |U |+
∑T

t=1 tr(U
−1[ηt −Hηt−1][ηt −Hηt−1]

′) + const.
(2.17)

Assume we are at iteration l+ 1 of the EM algorithm. The expectation step of the algo-

rithm consists of finding Q(θ;θ[l]) := Eθ[l]{−2 logLc(θ)|z1:T}, essentially the conditional

expectation of the complete-data log-likelihood for θ = θ[l] (given the observed data) with

respect to the missing data. From a smoothing perspective, the observed data vector is

z1:T . Using the current value of the parameter vector, θ = θ[l], we apply the FRS equations

(2.9)–(2.12) to obtain the conditional expectations and covariance matrices of the “missing

data,” η
[l]
t|T := Eθ[l](ηt|z1:T ), δ[l]

t|T := Eθ[l](δt|z1:T ), along with P [l]
t|T := varθ[l](ηt|z1:T ),

R
[l]
t|T := varθ[l](δt|z1:T ), and P [l]

t,t−1|T := covθ[l](ηt,ηt−1|z1:T ), for all t. For the FRS pro-

cedure applied inside of the EM algorithm, the set of prediction locations is temporarily

equal to the observed locations, SPt = SOt , for all t = 1, . . . , T . (After EM estimates

are obtained, the actual prediction locations SPt are used in the FRS equations to obtain

smoothing predictions and MSPEs.)
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Defining the quantities K [l+1]
t := P

[l]
t|T + η

[l]
t|Tη

[l]
t|T
′ and L[l+1]

t := P
[l]
t,t−1|T + η

[l]
t|Tη

[l]
t−1|T

′,

the expectation step is given by,

Q(θ;θ[l]) := Eθ[l]{−2 logLc(θ)|z1:T}

=
∑T

t=1
1
σ2
ε,t
tr(V −1ε,t [zt −Xtβt −Btη

[l]
t|T − δ

[l]
t|T ][zt −Xtβt −Btη

[l]
t|T − δ

[l]
t|T ]′)

+
∑T

t=1 nt log σ2
δ,t +

∑T
t=1 tr(V

−1
δ,t [R

[l]
t|T + δ

[l]
t|Tδ

[l]
t|T
′
])/σ2

δ,t + log |K0|+ tr(K−10 K
[l+1]
0 )

+ T log |U |+
∑T

t=1 tr(U
−1[K

[l+1]
t −HL[l+1]

t

′
− L[l+1]

t H ′ +HK
[l+1]
t−1 H

′]) + const.
(2.18)

In the maximization step, because we are considering the negative log-likelihood, we

minimize (2.18) with respect to each of the parameters. This is fairly easy to do, in that

(with the exception of H and U ) each term of the summation in (2.18) only contains one

of the parameters, so most other terms can be disregarded when taking the derivative with

respect to that parameter. The minima of (2.18) then define the new value of the parameter

vector, θ[l+1]. The updates are,

β
[l+1]
t = (X ′tV

−1
ε,t Xt)

−1X ′tV
−1
ε,t [zt −Btη

[l]
t|T − δ

[l]
t|T ]

σ2
δ,t

[l+1]
= tr(V −1δ,t [R

[l]
t|T + δ

[l]
t|Tδ

[l]
t|T
′])/nt

K
[l+1]
0 = P

[l]
0|T + η

[l]
0|Tη

[l]
0|T
′

H [l+1] = (
∑T

t=1 L
[l+1]
t )(

∑T−1
t=0 K

[l+1]
t )−1

U [l+1] = (
∑T

t=1K
[l+1]
t −H [l+1]

∑T
t=1 L

[l+1]
t

′)/T.

(2.19)

Summary of the EM Algorithm for the STME Model

1. Choose initial values θ[0] in the parameter space Θ for the parameters.

2. For l = 0, 1, 2, . . . (until convergence):

(a) Carry out FRS (with SPt = SOt ) using θ = θ[l] to obtain the smoothing
quantities as described in (2.9)–(2.12).

(b) Obtain θ[l+1] by calculating the updates given in (2.19).
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Due to the large number of parameters, we have found it most convenient to monitor the

convergence of the algorithm on the basis of the sequence of likelihood values, obtained

by evaluating the (observed negative log-) likelihood (2.16) at the current value of the

parameter vector at each iteration of the EM algorithm. Note that to evaluate the log-

likelihood, we must find the determinants and the inverses of the nt × nt covariance matri-

ces, Σαt = BtPt|t−1B
′
t +Dt, for t = 1, . . . , T . The inversions can be obtained as described

in (2.15). A computationally convenient formula (e.g., Cressie and Johannesson, 2008) for

determinants yields,

|Σαt | = |Dt||Pt|t−1||P−1t|t−1 +B′tD
−1
t Bt| . (2.20)

Calculating these determinants directly leads to serious numerical instabilities for massive

datasets. Fortunately, for the purpose of monitoring convergence using the log-likelihood,

we are really interested in the sum of the logarithm of these quantities. All three quantities

on the right-hand side of (2.20) can be calculated by making use of the fact that the log-

determinant of a generic N ×N matrix A is given by log |A| =
∑N

i=1 log λi, where λi are

the eigenvalues of A.

2.3.3 Properties of the EM Estimator

Let the EM estimator be θ̂EM , the value of the parameter vector (or one of them, if there

are multiple) that is obtained from the EM algorithm when the sequence of likelihood val-

ues has converged. BecauseQ(θ;θ[l]) given by (2.18) is continuous in both arguments (i.e.,

θ,θ[l] ∈ Θ), this convergence is guaranteed for our algorithm by a theorem in Wu (1983).

According to the same theorem, θ̂EM must be a solution to the likelihood equations (the set

of equations obtained by setting the partial derivatives of (2.16) equal to zero). This does
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not mean that θ̂EM is, in fact, the unique MLE, as there could be several (or even infinitely

many) solutions to the likelihood equations. Nevertheless, under some general conditions,

θ̂EM is both consistent and asymptotically normal (see Hannan and Deistler, 1988, Ch. 4,

for more details). Unfortunately, asymptotic results are often of little use when the number

of unknown parameters is large relative to the number of time points T . For time series

of short-to-moderate length, Shumway (2006) discusses a bootstrapping approach to as-

sess the uncertainty in the parameter estimates. Our emphasis in this chapter is instead on

smoothing the unknown process, for which parameter estimates of θ are needed.

If the algorithm is initialized with parameters in the parameter space (i.e., θ[0] ∈ Θ),

then we can see from (2.19) that θ[l] ∈ Θ, l = 1, 2, . . .. Specifically, this means that if

the initial values for the covariance-matrix parameters K0 and U are proper covariance

matrices, then the EM updates, K [l+1]
0 = P

[l]
0|T + η

[l]
0|Tη

[l]
0|T
′ and U [l+1] =

∑T
t=1Eθ[l]([ηt −

Hηt−1][ηt−Hηt−1]
′|z1:T )/T , and hence the EM estimators of these matrix parameters, are

also symmetric and at least nonnegative-definite. Similarly, if we choose σ2
δ,t

[0]
> 0, then

it is guaranteed that σ̂2
δ,t;EM ≥ 0. This is a very desirable property, as the constraints on a

positive-definite matrix can be very hard to handle when optimizing a function with respect

to that matrix (see, e.g., Katzfuss and Cressie, 2009). Here, these constraints are satisfied

automatically.

Since the research in this chapter is geared toward computational efficiency for massive

datasets, the computational cost of the algorithm is highly relevant. As we have described at

the end of Section 2.2.2, the computational complexity of the FRS that needs to be carried

out at each iteration of the EM algorithm is linear in each nt. The fact that this smoothing

procedure has to be carried out several times for the EM algorithm (until convergence is

reached) does not change its theoretical computational complexity as a function of the
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number of observations, and so the algorithm as a whole is scalable. It should be noted

though that the stability and other desirable features of the EM algorithm come at the cost

of a rather slow convergence (McLachlan and Krishnan, 2008), so if a high precision in

estimating the parameters is required, the number of iterations needed until convergence

might be quite large.

2.3.4 Possible Extensions

The EM algorithm described above can be easily modified to the spatial-only case. If

all measurements are regarded to be from the same time point (say time t = 1), interest is

in estimating the unknown parameters β1, σ2
δ,1, andK1 = HK0H

′+U , from data z1. Thus,

if we put T = 1, the EM algorithm becomes much simpler. The FRS algorithm reduces to

a spatial-only Fixed Rank Kriging procedure (Cressie and Johannesson, 2008). For details

of the EM algorithm in the spatial-only case, see Katzfuss and Cressie (2009).

Note that we might also want to force the trend coefficients, {βt}, and/or the fine-

scale-variation variances, {σ2
δ,t}, to be constant for a certain number of time steps, in order

to achieve greater stability for estimation of these parameters when the data are sparse. In

addition, if the total number of time steps T is large, we might not want the propagator

matrices {Ht} and the innovation matrices {Ut} to be constant for all time steps, but they

might be allowed to change every few time steps. The EM algorithm can be easily modified

to accommodate such modeling assumptions. All that one needs to change is the form of

the updates in (2.19), by summing (or not summing) quantities on the right-hand side of

(2.18) over appropriate time steps. For example, if we assume that H1 = . . . = HT1 6=

HT1+1 = . . . = HT and U1 = . . . = UT1 6= UT1+1 = . . . = UT , the EM updates for H1 and
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U1 become,

H
[l+1]
1 = (

∑T1
t=1 L

[l+1]
t )(

∑T1−1
t=0 K

[l+1]
t )−1

U
[l+1]
1 = (

∑T1
t=1K

[l+1]
t −H [l+1]

1

∑T1
t=1 L

[l+1]
t

′)/T1.

Similarly, if we assume σ2
δ,t to be constant for all t = 1, . . . , T , then the EM update for this

parameter becomes,

σ2
δ
[l+1]

=
∑T

t=1 tr(V
−1
δ,t [R

[l]
t|T + δ

[l]
t|Tδ

[l]
t|T
′])/
∑T

t=1 nt. (2.21)

As we briefly mentioned in Section 2.1, one might want to avoid having to make the

assumption that the function vδ,t(·), which describes the variance heterogeneity of the fine-

scale variation, is known. While one could, for simplicity, always set vδ,t(·) ≡ 1, this might

not be appropriate in some situations where the true process exhibits different variability

and/or smoothness in different parts of the spatial domain. If no expert knowledge about

the form of this variance function is available, the function could be modeled as vδ,t(·) =

exp{bδ(·)′ηδ}, where bδ(·) is a vector of rδ basis functions, with typically rδ < r. The

vector ηδ is not identifiable if both σ2
δ and ηδ are allowed to vary freely, and so we assume

ηδ ∼ Nrδ(0, σ
2
ηδ
Irδ), for some fixed σ2

ηδ
. This parameter can be chosen according to prior

beliefs via a calibration exercise. For example, if one chooses 1/2 and 2 as the lower and

upper endpoints of a 95% credible interval for the ratio of two fine-scale-variation variances

at two distant locations in the spatial domain Ds, we obtain σ2
ηδ
≈ 0.252 (for more details,

see Chapter 3). We can find the posterior mode as an estimate of ηδ by augmenting the EM

updates (2.19) by one Newton-Raphson step,

η
[l+1]
δ = η

[l]
δ −

(
∂Q(θ;θ[l])

∂η′δ∂ηδ

∣∣∣
ηδ=η

[l]
δ

)−1(
∂Q(θ;θ[l])

∂ηδ

∣∣∣
ηδ=η

[l]
δ

)
,
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where

∂Q(θ;θ[l])

∂ηδ
=

T∑
t=1

B′δ,t(Int − Λt/σ
2
δ,t)1nt + 2ηδ/σ

2
ηδ

∂Q(θ;θ[l])

∂η′δ∂ηδ
=

T∑
t=1

B′δ,tΛtBδ,t/σ
2
δ,t + 2Irδ/σ

2
ηδ
,

and Λt := diag({E(δ(si,t)
2|z1:T ) exp(−bδ(si,t)

′ηδ) : i = 1, . . . , nt}). The resulting

algorithm is now a Generalized EM algorithm (see McLachlan and Krishnan, 2008, for

details).

The algorithm can also be modified to take a filtering perspective. In this context, for

the conditional expectations in (2.18), the conditioning would be on z1:t (instead of z1:T ).

The FRS component of the EM algorithm can be easily modified to a Fixed Rank Filtering

(FRF) approach, by carrying out only (2.9) and (2.12), and leaving out (2.10) and (2.11).

The smoothing quantities in (2.19) would be replaced by the corresponding FRF quantities.

At each time point t, we obtain a new set of data, zt, and a new EM algorithm can be run

to estimate the time-dependent quantities βt and σ2
δ,t. Unfortunately, it is not so clear how

Ht and Ut would be handled. As mentioned above, it is not sensible to allow them to vary

freely for each time point. On the other hand, making them constant for all time points

requires running the EM algorithm again for all measurements z1:t observed so far, every

time a new set of data zt is obtained. This would quickly become infeasible as t increases.

More practically, one could holdHt and Ut constant only for a certain number of time units

(eight, say), as described in the previous paragraph. This way, one has to “go back” only

eight time units when estimating the current Ht and Ut.
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2.4 Simulation Study: Comparison of EM Estimation to Binned Method-
of-Moments Estimation

Previously, frequentist estimation of the STME model (2.2) was carried out using a

binned method-of-moments (MM) technique (Cressie and Johannesson, 2008; Kang et al.,

2010). As such, the MM estimation is the natural candidate for a comparison to our pro-

posed EM estimation.

2.4.1 Simulation Setup

Our simulated data are meant to resemble a very simplistic version of satellite data in

only one spatial dimension. The spatial domain consists of the locations SP = {1, . . . , 256},

and there are T = 16 time points. The “satellite” here has a repeat cycle of two time units.

The two tracks of the satellite have a width of 64: For odd time points, the tracks are

{1, . . . , 64} and {129, . . . , 192}; for even time points, the tracks are {65, . . . , 128} and

{193, . . . , 256}. Within each track at each time point, 50% of the values are declared

missing at random. This is meant to simulate non-retrieval due to cloud cover and other

problems. This setup leaves us with 64 observations at each time point.

As basis functions, we use bisquare functions,

gbi(s) := {1− (‖s− c‖/w)2}2I(‖s− c‖ < w), (2.22)

where c is the center point, w is the range, and I(·) is an indicator function. In this simula-

tion study, we have r = 5 bisquare basis functions, all with a range of w = 96, and centered

at 0.5, 64.5, 128.5, 192.5, and 256.5, respectively. An example of the data simulated from

the STME model (2.2)–(2.5) is shown in Figure 2.1. (We only show the first four time

points; the setup for the rest of the time points is analogous.)
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Figure 2.1: Example of the data observed at the first four time points in our simulation
study for SNR=2. Also shown are the FRS predictions using the true parameter values,
the EM parameter estimates, and the MM parameter estimates, respectively, as solid lines;
dotted lines are the respective 95% confidence intervals. These should be compared to the
true-process values in black.
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The true parameters are calibrated in a manner similar to that of the simulation study

described in Cressie et al. (2010). The covariance matrix of ηt, namely Kt, is taken to be

stationary. The matrix parameters K0, H , and U are chosen to match (as measured by the

Frobenius norm) an exponential-covariance matrix with (i, j)-th entry, exp(−|i − j|/25),

and a lag-1 temporal correlation of 0.8. Choosing a fine-scale-variation proportion of 0.05

results in σ2
δ = 0.0321, which is held constant over time. The measurement-error variance

is assumed known and also held constant over time. It is determined by the signal-to-noise

ratio (SNR), for which we chose two levels: SNR=2, resulting in σ2
ε = 0.3206, and SNR=5,

resulting in σ2
ε = 0.1282. Finally, we chose a constant mean of µ = 5 (i.e., xt(·) ≡ 1 and

βt ≡ 5 for all t).

The EM estimation is described in Section 2.3, but due to the constant fine-scale vari-

ance σ2
δ , the update for this term in the algorithm will be of the form (2.21). As there is

some sensitivity to the initial values in the algorithm (which is evidence for multiple local

maxima of the likelihood, at least for some of the simulated datasets), we initialized the

algorithm at the true parameter values in this simulation study.

The MM estimation is largely as described in Kang et al. (2010). We begin by obtaining

an ordinary-least-squares estimate of the trend at each time point, which in this case is

simply the data mean for each t. We also obtain a pooled estimate of σ2
δ by using the

variogram-extrapolation technique from Kang et al. (2009), but accounting for the fact that

σ2
ε is already known, and using all pairs of adjacent data points from all times t. To estimate

the matrix parameters, we divided the spatial domain into 16 bins of size 16 each. Due to

the missing data, many bins at each time point will have very few or even no observations.

To avoid unnecessary instability in the estimates, we discard all bins containing less than

five observations. Kang et al. (2010) let both H and U vary with time. To allow for
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estimation of a constant propagator matrix and innovation matrix, we have to modify the

MM approach slightly. After having obtained MM estimates {K̂MM,1, . . . , K̂MM,T} and

{L̂MM,2, . . . , L̂MM,T} as described in Kang et al. (2010), we combine these estimates in a

similar fashion as in the EM algorithm (2.19), which results in:

ĤMM = (
∑T

t=2 L̂MM,t)(
∑T−1

t=1 K̂MM,t)
−1

ÛMM = (
∑T

t=2 K̂MM,t − ĤMM

∑T
t=2 L̂

′
MM,t)/(T − 1).

Finally, we substitute both sets of parameters into the FRS equations, to obtain the

smoothed predictions at all 256 spatial locations at all T=16 time points. As a reference,

we also obtain predictions using the true parameters θ.

For the MM procedure, there is no estimate of K0, since there are no data at t = 0. To

obtain predictions using the MM estimates, we modify the filtering updates (2.9) for time

point t = 1 as follows. The conditional expectations and variance-covariance matrices of

η1 and δP1 are,

η1|1 = K1B
′
1[B1K1B

′
1 +D1]

−1(z1 −X1β1)

δP1|1 = σ2
δ,1V

P
δ,1O

′
1[B1K1B

′
1 +D1]

−1(z1 −X1β1)

P1|1 = K1 −K1B
′
1Σ
−1
1 B1K1

RP
1|1 = σ2

δ,1V
P
δ,1 − σ2

δ,1V
P
δ,1O

′
1[B1K1B

′
1 +D1]

−1O1V
P
δ,1σ

2
δ,1.

(2.23)

Then the filtering steps for t = 2, . . . , T are the same as before. So is the smoothing

procedure, but now P1|0 = K1, and we stop the backward smoothing at t = 1 (instead of

t = 0).

2.4.2 Simulation Results

Using the setup described in Section 2.4.1, we generated 2,000 datasets for both levels

of the SNR. For each dataset, we carried out both EM and MM estimation, and we obtained
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Figure 2.2: Medians (elementwise) of the parameter estimates for SNR=2 in the simulation
study. The left, middle, and right columns contain the true parameters, the EM estimates,
and the MM estimates, respectively. Note that the scale for the MM estimates is not always
the same as for the true parameters.
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Figure 2.3: Proportion of times the 95% prediction interval covered the true Y at each
spatial and temporal location (for SNR=2) in the simulation study, for the predictions using
the true parameters (left), the EM estimates (middle), and the MM estimates (right). The
rows in each panel correspond to the 16 time units, and the x-axis corresponds to the (one-
dimensional) space.

predictions and standard errors via FRS using (i) the known true parameters θ, (ii) the

EM parameter estimates, and (iii) the MM parameter estimates. One such spatio-temporal

dataset, along with the true process, predictions, and prediction intervals (PIs) is shown in

Figure 2.1.

Due to the large amount of missing data, and the medium-to-small SNR, this is a fairly

hard problem to handle. In many cases, it was not possible to preserve the total variability

when lifting eigenvalues in the MM procedure (Kang et al., 2010). In addition, even in

cases where Kt and Lt were estimated successfully, the MM estimate of U was not always

positive-definite. Sometimes the EM algorithm did not converge in (the aribitrarily set

maximum number of) 200 iterations. The proportion of successful estimations for both

procedures are summarized in the first line of Table 2.1. All results in this section are based

on only the datasets for which both estimation procedures produced valid estimates.

Elementwise medians of the valid EM and MM matrix-parameter estimates, along with

the true parameters, are shown in Figure 2.2 for the SNR=2 scenario. Even in this relatively
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Table 2.1: Results of the simulation experiment, with the following acronyms: MSPE =
(Empirical) Mean Squared Prediction Error, PIC = (Empirical) Prediction Interval Cover-
age (95%), MSEE = (Empirical) Mean Squared Estimation Error

SNR=2 SNR=5
True θ EM MM MM/EM True θ EM MM MM/EM

Success rate — 0.9775 0.2615 — — 0.9495 0.5965 —
MSPE 0.1151 0.2028 0.4440 2.1899 0.0920 0.1589 0.2358 1.4840
MSPE - on track 0.0503 0.0556 0.0577 1.0376 0.0375 0.0394 0.0402 1.0215
MSPE - off track 0.1798 0.3499 0.8303 2.3732 0.1464 0.2785 0.4314 1.5493
PIC (t=8, s=96) 0.9511 0.9159 0.8317 — 0.9615 0.9453 0.9444 —
PIC (t=7, s=96) 0.9511 0.8102 0.8650 — 0.9552 0.8737 0.9194 —
PIC (t=2, s=32) 0.9550 0.4442 0.8924 — 0.9489 0.4633 0.9203 —
MSEE (σ2δ ) ×100 — 0.0058 0.0614 10.501 — 0.0026 0.0121 4.6345
MSEE (µt) — 0.2345 0.2379 1.0145 — 0.2333 0.2403 1.0297

high-noise situation, the EM parameter estimates are acceptable. Due to the small sample

sizes at each time unit, the typical negative bias of maximum likelihood estimation (here,

EM estimation) of variance terms is apparent, which leads to an overfitting of the elements

of H . The MM estimation is heavily affected by the presence or absence of data. The

MM estimates of variances that correspond to basis functions in off-track regions are much

bigger than the true values.

From Table 2.1, spatio-temporal prediction using the EM estimates is much more ac-

curate than the prediction using MM estimates; this effect is especially strong at off-track

locations, which are locations in a swath where no data were observed (at every other time

point). For SNR=2, the empirical mean squared prediction error (MSPE) is almost 2.5

times as big for MM than for EM at these off-track locations.

Table 2.1 also shows some other summaries of the experiment. It is clear that parameter

estimation is more efficient using the EM algorithm, and the difference between the results
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based on EM and MM is more pronounced when the SNR is lower (i.e., when the estimation

is more challenging). The estimation of the mean is fairly easy, and so the difference

between EM and MM in terms of the (empirical) mean squared estimation error (MSEE)

is relatively small there. When estimating the fine-scale variance, σ2
δ , EM estimation is far

superior to MM estimation.

We also examined the validity of 95% prediction intervals (PIs) produced by FRS based

on the true parameters and both parameter-estimation methods. Figure 2.3 shows the pro-

portion of times (out of the 2000 simulated datasets) that these prediction intervals cov-

ered the true process value Yt(i) at each location i = 1, . . . , 256 and at each time point

t = 1, . . . , 16. Reassuringly, using the true parameters in the FRS procedure leads to very

precise assessment of the variability associated with the FRS predictions; the PI coverage

(PIC) shown in the left panel is very close to 95% for all s and all t. The empirical-Bayes

approach (i.e., “plugging in” of parameter estimates) taken in this chapter does not account

for uncertainty in the estimation of parameters. This becomes plainly apparent in the mid-

dle and right panels of Figure 2.3. The PIs produced with the MM estimates are generally

too liberal, but the coverage is never too bad, due to the severe overestimation of variance

terms corresponding to off-track locations, especially at the edges of the spatial domain

(see again Figure 2.2). The EM estimates of the covariance matrices, {Kt}, were closer to

the truth, and so not accounting for the uncertainty in parameter estimation results in severe

undercoverage of the PIs in off-track regions at the edge of the spatial domain (s ≤ 32 for

t even, s ≥ 193 for t odd), despite the higher prediction accuracy. This edge effect is likely

to be much less problematic for an analysis of real data on the globe, which does not have

edges.
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2.5 Application: Analysis of Global Satellite CO2 Data

In this section, we shall demonstrate an application of the proposed FRS prediction

and EM parameter estimation to real data. Despite a high-dimensional parameter space,

smoothing a very large, spatio-temporal dataset of global CO2 measurements is fast and

produces reasonable results.

2.5.1 Mid-tropospheric CO2 Measurements by AIRS

We consider a spatio-temporal dataset consisting of 16 days of measurements of global

mid-tropospheric CO2, available from http://airs.jpl.nasa.gov/AIRS_CO2_

Data/. The data were recorded by the Atmospheric InfraRed Sounder (AIRS) (Chahine

et al., 2006) on board the Aqua satellite, which is part of the “A-train” of Earth-observing

satellites. Remote sensing via satellites provides information on the Earth’s land, atmo-

sphere, and ocean that would otherwise be too costly or too dangerous to obtain. Mea-

surements from these platforms can be actual images, but spectra are more useful for many

purposes (for an introduction to remote sensing, see, e.g., Landgrebe, 2003). Satellite mea-

surements of CO2 are based on the latter approach: Using an elaborate retrieval algorithm,

the spectral radiances obtained by the AIRS instrument are converted to CO2 concentra-

tions (Chahine et al., 2006) in the mid-troposphere (roughly, between 2km and 8km in

altitude).

The data represent measurements of mid-tropospheric CO2 between −60◦ and 90◦ lati-

tude at roughly 1:30pm local time on May 1 through May 16, 2003, from now on referred

to as days 1 through 16, respectively; data at latitudes south of−60◦ have not been released

yet. The unit of measurement is parts per million (ppm).
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Figure 2.4: Mid-tropospheric CO2 as measured by AIRS on May 1, 2003, with correspond-
ing FRS predictions and standard errors, both obtained using EM parameter estimates.
Units are ppm.
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While our methodology does not require gridded data, higher-level data products de-

rived from remote-sensing measurements are often provided in more or less aggregated

and gridded form, and hence we moved the original data to a regular grid. The gridding

is purely for illustration, as concepts such as the proportion of missing data are clearer in

a gridded setting, and we want to emphasize that our methodology can deal with arbitrary

and changing (over time) measurement locations. Treating the grid locations as the true

measurement locations results in a slight location error, but this error tends to have a very

small effect on the prediction error (Cressie and Kornak, 2003). For the remainder of this

section, we regard the process evaluated at the grid to be the quantity of interest.

Using DGGRID software (Sahr, 2003), we generated a hexagonal grid across the globe,

with the goal of matching the area of the roughly circular AIRS footprint of about 45km

radius as closely as possible (ISEA Aperture 3 Hexagons at resolution 8). Discarding all

grid cells with centers south of −60◦ latitude, we obtain m = 61, 236 grid cells at which

the process is to be predicted. If a particular grid cell contains several of the original mea-

surements on a particular day, the data value at that grid cell was taken to be the average of

those measurements and the measurement-error covariance matrix, Vε,t, was appropriately

modified (e.g., Cressie and Johannesson, 2008). The resulting gridded data for the first day

is shown in the top panel of Figure 2.4. The number of observed grid cells per day, {nt},

was fairly stable over time, between 11,862 and 12,971. This puts the proportion of grid

cells with missing data at each time point at around 80%.

As mentioned before in Section (2.2.1), our EM-estimation scheme assumes that the

measurement-error variances, σ2
ε,t, are known for all time points t = 1, . . . , T . For this

analysis of AIRS data, we obtained estimates of these variances using the variogram-

extrapolation technique described in Kang et al. (2009), accounting for the number of

36



measurements that went into each grid cell average. As σ̂2
ε,t was fairly constant over time

(ranging roughly between 5.2 and 6), we used a pooled estimate, σ̂2
ε = 5.6062. To account

for the averaging that occurred in obtaining the gridded data from the original measure-

ments, we set vε,t(Si,t) = 1/Nt(Si,t), where Nt(Si,t) is the number of measurements going

into grid cell Si,t at time t; see equation (2.7).

For simplicity, we assumed that the variance of the fine-scale variation term is constant

over both time and space: σ2
δ := σ2

δ,1 = . . . = σ2
δ,16 and vδ,t(Si,t) ≡ 1 for all i and t.

Based on exploratory data analysis and consultation with carbon-cycle experts, the large-

scale spatial trend in CO2 was modeled by an intercept and a latitudinal gradient; that is,

we set xt(·) = [1 lat(·)]′, independent of t. However, the vector of trend coefficients βt is

assumed to vary with time index t.

The model (2.2) assumes that observations were made at the point level. Here, our

gridded data has areal support in the shape of a hexagon. Denoting the set of prediction

grid cells by SP = {S1, . . . , Sm} (i.e., they are the same for all t), we modify the process

model to be,

Yt(Si) = xt(Si)
′βt + bt(Si)

′ηt + δt(Si); i = 1, . . . ,m, t = 1, 2, . . . ,

where g(S) :=
∫
S
g(s)ds/|S| for a generic function g(·), and |S| is the area of S. The

integrated fine-scale variation has the same distributional assumptions as it had at the point

level, and the variance parameters are described in the previous paragraph. The integration

over the trend xt(·) and the basis-function vector bt(·) is practically more challenging. For

the purpose of this data analysis, we approximated the terms xt(Si) and bt(Si) by a Monte

Carlo integration, namely by drawing a uniform random sample of 40 points within each

grid hexagon, evaluating the functions at each point, and then averaging over the results.

Then one can simply replace xt(si) and bt(si) in the FRS equations (2.9)–(2.12) by xt(Si)
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and bt(Si), respectively, to model observations (and obtain predictions) at the hexagonal

grid support (instead of at the point level).

2.5.2 Bisquare Basis Functions on the Globe

It is a somewhat open problem how many and what type of basis functions to choose

for the STRE component (2.3) of the STME model (2.2). In this application, the spatial

domain of interest is the globe, which we assume to be a perfect sphere. W-wavelets,

which have been successfully used in the STRE context (see, e.g., Kang et al., 2010),

cannot be evaluated on the sphere. Instead, we follow Cressie and Johannesson (2008)

in using bisquare basis functions of the form (2.22). This choice is only for illustration;

our methodology is purposely left very general to allow for any choice of basis functions

(for a review of some common choices, see Wikle, 2010). However, bisquare functions do

have a number of desirable properties, in that they have a clear center and range, they can

be defined on any spatial domain for which a measure of distance is available, they can

be evaluated at any point in space (without interpolation), and they can be interpreted as

convolution kernels.

It is generally recommended to employ several resolutions of basis functions, to capture

different scales of spatial variation in the underlying process. Using the same settings as

for the prediction grid above (ISEA Aperture 3 Hexagons), the DGGRID software provides

us with a suitable set of basis-function centers at the first three resolutions. Some previous

simulation experiments, similar to the one described in Section 2.4, have provided us with

strong evidence that prediction results using our model are best when basis functions of

different resolutions do not share the same centers. When using the DGGRID program with

the default orientation, centers of coarser resolutions will always coalesce with centers of
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Figure 2.5: Locations of the basis function centers of all three resolutions on the globe.

finer resolutions. To off-set the centers from different resolutions, we shifted the orientation

point for the second and third resolution.

Due to the lack of data south of−60◦ latitude, some of the basis functions near the south

pole are not included in the model; we deleted two centers of the second resolution and 14

centers of the third resolution. Following the recommendation of Cressie and Johannesson

(2008) to set the range w of the bisquare functions equal to 1.5 times the distance of two

adjacent centers at the same resolution, we finally obtained 32 bisquare functions with

range w = 6241km in spherical distance, 90 bisquare functions with range w = 3491km,

and 258 bisquare functions with range w = 2048km, for the three resolutions, respectively.

The resulting r = 380 basis function centers are shown in Figure 2.5.
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2.5.3 Parameter Estimates and FRS Results

For the AIRS dataset, the EM algorithm is sensitive to the choice of initial values. Ini-

tializingK0 based on no data is problematic, and hence we used the modification described

around (2.23) at the end of Section 2.4.1. This allowed us instead to specify an initial value

for the covariance matrix K1. Then the spatial-only EM algorithm of Katzfuss and Cressie

(2009), which is based on the FRK procedure (2.23), yielded estimates of K1 and σ2
δ,1. We

used these estimates as the initial values of K1 and σ2
δ , respectively, in the spatio-temporal

EM algorithm.

The resulting EM algorithm took 23 iterations until convergence was obtained. Each

iteration took about 2.5min to complete on an eight-core server, resulting in a total time

for estimation of about 58min. The estimates of the matrix parameters are shown in Figure

2.6. Clearly, there is some overfitting with regard to H again, causing the estimate of U to

be damped somewhat. The EM estimate for σ2
δ is 3.5650. The estimates of the intercept

and the slope of the latitudinal gradient are very stable over time, being around 375.3 and

0.05, respectively.

We obtain predictions and corresponding standard errors at all m = 61, 236 hexagons

for all 16 days, by substituting the EM estimates into the FRS equations (2.9)–(2.12), with

the modification given by (2.23). The FRS predictions and standard errors for day 1 are

shown in the middle and lower panel of Figure 2.4, respectively. We can see that the

standard-error map is dominated by the fine-scale variance. At hexagons without data,

the standard error is much higher than at hexagons with data. If the number of original

retrievals that went into a particular hexagon is two or more, the standard error for that cell

is even lower. Figure 2.7 shows the FRS predictions based on EM estimates of parameters,

for all even-numbered days (on a scale different to that of Figure 2.4); accompanying plots
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Figure 2.6: EM estimates of matrix parameters from 16 days of AIRS data. The black lines
divide the matrices into parts corresponding to the three resolutions of basis functions. For
example, for the plot on the bottom left, the top-right region in the plot corresponds to the
elements in the estimated propagator matrix H that describe how the basis-function coeffi-
cients of the first resolution on day t+ 1 are generated by the basis-function coefficients of
the third resolution on day t.
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of FRS standard errors, like that shown in Figure 2.4, are not included here but could

be. From the predictions, the AIRS measurements clearly indicate that mid-tropospheric

CO2 concentrations were much higher in the Northern Hemisphere than in the Southern

Hemisphere during the time period under consideration (May 1–16, 2003). Accordingly,

most of the temporal evolution takes place in the Northern part of the globe.

2.6 Discussion and Conclusions

This chapter develops maximum likelihood estimation via an EM algorithm for the

STME model. Once parameters are estimated, FRS can be used for spatio-temporal smooth-

ing of the data. Due to the scalability of FRS with regard to the number of observations

at each time point, this methodology is suitable even for massive data sets. An important

application of the methodology is to remote sensing, where the number of observations is

typically large, big gaps between satellite tracks make exploitation of spatial and temporal

correlations in the underlying process imperative, and the nonstationarity of any process

over the globe requires a flexible spatial covariance model that does not rely on stationarity

assumptions.

One issue with our STME model is the simple structure imposed on the fine-scale vari-

ation. Its covariance matrix, Vδ,t, is diagonal and, in our AIRS example, its diagonal ele-

ments are constant for each time point. This can lead to a map of FRS standard errors that

does not account for fine-scale heterogeneity (see bottom panel of Figure 2.4). To remedy

this problem, we can estimate or model the diagonal elements of Vδ,t. For example, in Sec-

tion 2.3.4, we show how spatial structure in δt(·) could be accounted for by modeling the

variance heterogeneity through vδ,t(·).
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Figure 2.7: FRS predictions using EM parameter estimates of mid-tropospheric CO2 (in
ppm) from AIRS data, for eight days (here, the even days) in the study period. Units are
ppm.
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Currently, we make no assumptions on the structure of the matrix parameters K0, H ,

and U (other than K0 and U being positive-definite). This results in a large number of

parameters that have to be estimated, which in turn can favor overfitting of the temporal

evolution (as observed in Sections 2.4.2 and 2.5.3, where the assessment of uncertainty in

the smoothing predictions was very liberal). This stems from both an underestimation of

the variances in the covariance matrix U and from our empirical-Bayes approach, which

does not account for uncertainty in the parameter estimation. The number of unknown

parameters could be reduced in some cases if the temporal evolution of the process can be

described through partial differential equations, in the spirit of Xu and Wikle (2007). The

use of prior distributions in a fully Bayesian approach results in both regularization of the

many parameters and a more correct assessment of the parameter-estimation uncertainty

(see Chapter 3).

In conclusion, we have presented a coherent approach to spatio-temporal smoothing

and parameter estimation for potentially massive datasets. The methodology is well suited

to the analysis of remote-sensing data, crucially allowing for very fast computation.

44



Chapter 3: Bayesian Hierarchical Spatio-Temporal Smoothing for

Very Large Datasets

3.1 Introduction

This chapter is concerned with spatio-temporal smoothing of very-large-to-massive

datasets. The increase in the amount of data being collected has provided statisticians in all

disciplines with the challenge of how to cope with the new wealth of data, but it is particu-

larly challenging for spatial and spatio-temporal statistics. Spatial statistical analyses, such

as kriging and maximum likelihood estimation, typically require solving systems of linear

equations involving the covariance matrix of the data vector, which quickly becomes infea-

sible as the size of the dataset increases. For simplicity, we refer to solving these equations

as “inversion” of the data vector’s covariance matrix, since the computational complexity

of the two operations is the same. Computational infeasibility becomes more of a problem

when data are also collected over time, which makes for even larger datasets. Due to these

special computational challenges for spatial and spatio-temporal statistical analyses, in this

chapter we take the term “very large dataset” to mean a dataset size that is on the order of

104 to 107 observations. Massive datasets are orders of magnitude beyond this.

Here, we develop statistical inference that does not break down as the size of the (spatio-

temporal) dataset increases, by working on a reduced-dimensional space. We model the
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process as a random linear combination of spatial basis functions plus a spatially hetero-

geneous fine-scale-variation term. Instead of describing the dependence in the data using

a spatio-temporal covariance function, we make use of a vector-autoregressive dynamical

model for the coefficients of the basis functions. Thus, the temporal dependence in the data

is explained by specifying the temporal evolution of a reduced-dimensional spatial process

given its past state. This so-called spatio-temporal random effects (STRE) model contains

unknown parameters.

We operate in a fully Bayesian (FB) framework, and thus we specify prior distribu-

tions for all parameters, where some are calibrated according to the variability in the data.

Bayesian inference has a number of advantages: Not only does it allow for correct as-

sessment of prediction variability, it also results in a phenomenon called shrinkage, which

can be very helpful in situations with high-dimensional parameter spaces, where individ-

ual parameters are often unidentifiable without prior information. However, computational

feasibility is crucial in FB inference, as inferences often rely on computationally inten-

sive Markov chain Monte Carlo (MCMC) simulations from the posterior distribution. In

this chapter, we propose a prior that induces sparsity and shrinkage on the autoregressive

parameters describing the temporal evolution of the basis-function coefficients, and we

describe how MCMC sampling can be achieved in a computationally feasible way.

Examples of large spatio-temporal datasets are readily available from measurements

made by Earth-observing satellites. These datasets provide a distinct set of statistical chal-

lenges: Despite the large size of daily datasets, the observations can still be sparse relative

to the spatial domain of interest (often the entire globe). This requires the statistical analyst

to take full advantage of spatial and temporal correlations in the true process, in order to

fill spatial gaps. However, no process on the globe will satisfy the stationarity assumptions
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that are typically made in traditional spatial statistics. The STRE model proposed in this

chapter accounts for these issues, and it can also easily handle the measurements at areal

footprints and the change-of-support issues that are typical for remotely sensed data. We

apply the STRE model to a dataset of global satellite CO2 measurements; from a fixed win-

dow of daily measurements obtained from the Atmospheric InfraRed Sounder (AIRS) on

the Aqua satellite, we give a sequence of complete daily maps of global CO2 fields during

this window, together with maps of their associated prediction standard errors.

An extensive review of the literature on dynamical spatio-temporal models in a hier-

archical statistical framework can be found in Cressie and Wikle (2011, Chap. 7). We

highlight and extend portions of the literature that are especially relevant to our work.

First, the large literature on state-space modeling can be seen as a part of the hierarchical-

statistical-modeling literature by noting that the measurement equation can be viewed as

the data model, and the state equation can be viewed as the process model. Consequently,

the STRE model referred to earlier is the state equation in a state-space model for time

series (Hamilton, 1994, Chap. 13). Shumway and Stoffer (2006, Chap. 6) give an overview

of various types of state-space implementations from a general time-series perspective.

An integral part of any state-space model is the observation matrix (Shumway and Stof-

fer, 2006, p. 325), which maps the state variables on the reduced dimension to the process

or observations at the original or physical dimension. If a state-space model is applied in

a spatio-temporal context, the observation matrix typically consists of known spatial basis

functions (Smith et al., 1996; Kaplan et al., 1998). Here we propose methodology that al-

lows for the use of any type of (orthogonal or non-orthogonal) spatial basis functions, and

we choose bisquare functions for illustration in Sections 3.3 and 3.4. Other possible choices

for the basis functions include empirical orthogonal functions (e.g., Aubry et al., 1993) and
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wavelets (e.g., Nychka et al., 2002), but both of these basis-function types are most use-

ful for gridded data. Overviews of possible sets of basis functions in spatial and spatio-

temporal applications are given in Antoulas (2005) and Wikle (2010). Alternatively, the

observation matrix can be obtained by discretizing a process-convolution model (Higdon,

1998). For the basis-function approach using positive integrable functions (e.g., bisquare

functions found in Cressie and Johannesson, 2008), the two approaches are similar, since

the basis functions can be interpreted as smoothing kernels. Instead of assuming a known

observation matrix, Lopes et al. (2008) place a (strong) prior on it.

Another important component of a state-space model is the form of the temporal evolu-

tion of the state variables, for which many parameterizations are possible. We assume here

that the evolution is linear and first-order Markov, and therefore the evolution is determined

by a single propagator matrix. (For a more general science-based approach to the specifi-

cation of the temporal evolution, see Wikle and Hooten, 2010.) This allows for Kalman-

filter-type inference on the state variables (Kalman, 1960). Sparse parameterizations can

be achieved by assuming that the propagator matrix is the identity (which corresponds to

a random walk; see, e.g., Stroud et al., 2001) or diagonal (which corresponds to separa-

ble autoregressive models; see, e.g., Lopes et al., 2008). Less restrictive parameterizations

that still depend on only a small number of parameters can be achieved by deriving the

propagator matrix from a discretization of partial differential equations (e.g., Wikle, 2003;

Cangelosi and Hooten, 2009; Stroud et al., 2010) or integro-difference equations (e.g., Kot

et al., 1996; Wikle and Cressie, 1999; Xu et al., 2005; Dewar et al., 2009). If the dimension

of the state space is sufficiently low, it is also possible to include more general lagged-

nearest-neighbor models (Wikle et al., 1998), or it might even be possible to leave the

propagator matrix completely general. In this chapter, we take the latter approach, albeit
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on the reduced-dimensional space. Our formulation is based on Kalman smoothing, not

filtering, and it is feasible even if the number of basis functions is moderately large. This

is achieved by inducing strong shrinkage and sparsity through a multiresolutional prior

(which results in a “soft” lagged-nearest-neighbor approach) inspired by the Minnesota

prior in the time-series literature (Litterman, 1986; George et al., 2008). The Minnesota

prior shrinks the autoregressive coefficients toward a random-walk model, a feature that is

also present in our prior model. We also develop a fast posterior-sampling scheme based

on conditional simulation, which is most commonly used in spatial statistics (e.g., Cressie,

1993, Sec. 3.6.2).

The methodology proposed in this chapter is specifically designed to scale up to very

large or massive datasets. Early examples of dimension reduction using basis functions in

state-space models applied to large spatio-temporal datasets can be found in Mardia et al.

(1998), Wikle and Cressie (1999), and Wikle et al. (2001). Other approaches to statistical

analysis of very large spatio-temporal datasets include multi-resolutional tree-structured

models (Johannesson et al., 2007) and predictive-process models (discussed briefly in the

spatio-temporal setting by Banerjee et al., 2008); in the latter case, the kriging equations

are approximated by replacing the data locations with a smaller number of knots. In

the process-convolution framework, the temporal evolution can either be modeled using

a spatio-temporal smoothing kernel (e.g., Higdon, 2002) or a dynamical model for the state

variables (e.g., Calder et al., 2002).

The specific dynamical spatio-temporal state-space model used in this chapter is a

reduced-rank model called the STRE model (referred to earlier). This approach was pro-

posed by Cressie et al. (2010), who were motivated by the spatial-only fixed-rank model of
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Cressie and Johannesson (2006, 2008). Aside from a strong focus on computational scal-

ability and no requirement for orthogonality of the basis functions, this framework has the

added feature of incorporating a fine-scale-variation component (Wikle and Cressie, 1999;

Cressie and Johannesson, 2008; Jun and Stein, 2008; Kang et al., 2009; Cressie and Kang,

2010). In this chapter, we generalize the distributional assumptions on this component to

allow for spatially heterogeneous variances using a suggestion made in Section 2.3.4. In

recent papers, estimation of the STRE-model parameters has relied on method-of-moments

estimation (Kang et al., 2010) and expectation-maximization (EM) estimation (Chapter 2),

which are not Bayesian. In the spatial-only setting, Kang and Cressie (2011) give FB infer-

ence for the spatial-random-effects model and its parameters. In the spatio-temporal setting

of this chapter, we propose a multiresolutional sparsity- and shrinkage-inducing prior for

the propagator matrix of the basis-function coefficients. Together with priors on the other

model parameters, this allows us to carry out FB inference for the STRE model, and its

parameters, in the context of spatio-temporal smoothing.

The rest of this chapter is organized as follows. Section 3.2 describes the methodology:

We introduce the STRE model, explain the prior distributions assumed for the parameters,

and give an overview on how to sample from the posterior distribution in a computationally

efficient way. We then compare our methodology to an empirical-Bayesian, STRE-model

approach that uses the EM algorithm for estimating parameters. We make the comparison

in a simulation study (Section 3.3) and in an application to a dataset of global CO2 mea-

surements (Section 3.4). Discussion and conclusions are given in Section 3.5. Appendix A

(p. 134ff) contains many details on the posterior inference and the MCMC algorithm upon

which it is based.
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3.2 Bayesian Spatio-Temporal Smoothing

3.2.1 The Spatio-Temporal Random-Effects Model

We are interested in a spatio-temporal process {Yt(s) : s ∈ Ds, t ∈ 1, 2, . . .} on a

continuous spatial domain Ds and at discrete time points {1, 2, . . .}. As is often done in

spatial statistics, we assume that the process Yt(·) can be decomposed as follows,

Yt(s) = µt(s) + νt(s), s ∈ Ds, t = 1, 2, . . . , (3.1)

where µt(·) is large-scale trend, and νt(·) accounts for spatial (and here, temporal) correla-

tion. In what follows, we assume that µt(·) := xt(·)′βt, which is a linear combination of p

known covariates, xt,1(·), . . . , xt,p(·).

While our interest is in inference on Yt(·), we cannot observe it perfectly. Our mea-

surements are affected by additive measurement error and cannot be taken at every (s, t) ∈

Ds × {1, 2, . . .}. Our focus in this chapter is on smoothing, namely after collecting the

n1 + . . .+ nT measurements,

Zt(si,t) = Yt(si,t) + εt(si,t), i = 1, . . . , nt, t = 1, . . . , T,

we are interested in predicting the unknown quantity Yt(s) at every s ∈ Ds for all time

points t = 1, . . . , T .

We assume that the measurement-error process, εt(·), is distributed as,

εt(·) ∼ N(0, σ2
ε,tvε,t(·)), t = 1, 2, . . . ,

independent of Yt(·), and independent in time and space. For identifiability reasons, both

the measurement-error variance σ2
ε,t and the function vε,t(·) > 0 will be assumed known

for the remainder of this chapter. While it is common that vε,t(·) is known, there may be
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no information on σ2
ε,t; in this case, σ2

ε,t can be estimated from the data via an estimation

technique based on extrapolating the variogram (Kang et al., 2009). If prior instrument-

calibration experiments have been done, σ2
ε,t may in fact be known as well.

To exploit the spatio-temporal correlation in Yt(·), we now specify a covariance func-

tion for the measurements and use this to form the covariance matrix, Σ, of the vector

of all measurements, Z1:T := [Z′1, . . . ,Z
′
T ]′, where Zt := [Zt(s1,t), . . . , Zt(snt,t)]

′. Let

n+ :=
∑T

t=1 nt denote the total number of observations taken at all time points combined.

Now, statistical inference typically requires inversion of the n+ × n+ matrix Σ, possibly

repeatedly so at successive iterations of an estimation procedure. Since the inversion of a

general n+ × n+ matrix requires on the order of n3
+ computations, this is infeasible for the

very large spatio-temporal datasets of interest here, where {nt} (and possibly also T ) are

very large.

To achieve both computational feasibility and a flexible nonstationary model, we as-

sume a spatio-temporal random effects (STRE) model (Cressie et al., 2010) for the compo-

nent νt(·) in (3.1):

νt(s) = bt(s)′ηt + δt(s), s ∈ Ds, t = 1, 2, . . . , (3.2)

where bt(·) := [bt,1(·), . . . , bt,rt(·)]′ is an rt-dimensional vector of known spatial basis

functions; ηt is a random coefficient vector of length rt; and the fine-scale variation,

δt(·) ∼ N(0, σ2
δ,tvδ,t(·)), (3.3)

is a priori independent of {ηt} and independent in time and space. The basis functions in

bt(·) do not have to be orthogonal. However, it is recommended that they be of different

spatial resolutions 1, . . . , C (Cressie and Johannesson, 2008), which can capture different

scales of spatial variation. The fine-scale variation, {δt(·) : t = 1, 2, . . .}, can be viewed
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as an attempt to account for the error introduced by the dimension reduction. The temporal

evolution of {Yt(·)} is determined by a vector-autoregressive (VAR) model for {ηt : t =

0, 1, . . . , T}:

ηt|ηt−1 ∼ Nrt(Htηt−1, Ut), t = 1, . . . , T, (3.4)

with initial state η0 ∼ Nr0(0, K0). The rt × rt−1 matrix Ht and the rt × rt matrix Ut will

be referred to as the propagator matrix and the innovation covariance matrix, respectively.

While models (3.2) and (3.4) have been introduced with a lot of generality, in this

chapter we assume henceforth that bt(·) ≡ b(·), rt ≡ r, σ2
δ,t ≡ σ2

δ , vδ,t(·) ≡ vδ(·), Ht ≡ H ,

and Ut ≡ U , during the period {0, . . . , T}. Strictly speaking, this is not needed in a FB

framework; however, assumptions of this sort allow practical identifiability and result in

well mixed MCMC samples from the posterior distribution.

As the number of basis functions, r, is much smaller than the sample sizes {nt}, as-

sumption (3.2) results in dimension reduction, since the computational complexity for pro-

cessing the measurements taken at time point t is reduced to O(ntr
3) from O(n3

t ); see

Cressie et al. (2010). Additionally, the VAR model (3.4) is a state-space model that allows

for sequential (in time) processing of data observed at subsequent time points via Kalman-

filter- and Kalman-smoother-type algorithms. This ensures that the computational cost of

inference on the process components {ηt} and {δt(s)} (given the unknown parameters) for

all observed time points t = 1, . . . , T is linear in n+; that is, inference for our model can

scale up to very-large-to-massive datasets.

In summary, we have introduced the data model,

Zt = Yt + εt, t = 1, . . . , T, (3.5)
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where, based on the STRE model, we can write,

Yt = Xtβt +Btηt + δt, t = 1, . . . , T. (3.6)

Together, (3.4) and (3.6) specify a process model for {Yt}. In (3.5) and (3.6), we have

stacked scalars into vectors and row vectors into matrices such that, for example, the i-th

row of the nt× r matrix Bt is given by b(si,t)
′. The corresponding covariance matrices are

Kt := var(ηt), t = 1, . . . , T , and

Dt := var(δt + εt) = σ2
δVδ,t + σ2

ε,tVε,t, t = 1, . . . , T,

which is a diagonal matrix with Vδ,t := diag(vδ(s1,t), . . . , vδ(snt,t)) and

Vε,t := diag(vε(s1,t), . . . , vε(snt,t)).

The process model is not fully specified yet. We often want to predict Yt(s) at a set

of spatial locations that is different from the measurement locations. Here we assume

(without loss of generality) that the set of prediction locations at time t is a superset of the

measurement locations observed at time t, so that we can write Yt = MtY
P
t , t = 1, . . . , T ,

where YP
t is the process vector of allmt prediction locations for time t. This is achieved by

allowing the observation locations to be included in the set of all prediction locations. We

assume that there are no duplicate measurements, and hence Mt is an nt × mt incidence

matrix of mostly 0s and a 1 in each row. In practice, the set of prediction locations has

often been a fine grid over the spatial domain of interest, resulting in mt ≡ m, where the

data locations are moved to their nearest respective grid cells.

We use a superscript P (as in “prediction”) when a vector or matrix has been obtained

by evaluating appropriate processes at all prediction locations, so that the process model is,

YP
t = XP

t βt +BP
t ηt + δPt , t = 1, . . . , T, (3.7)
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where {ηt} satisfies (3.4). This implies that Xt = MtX
P
t , Bt = MtB

P
t , and δt = Mtδ

P
t .

The diagonal matrix var(δPt ) =: σ2
δV

P
δ,t is an mt ×mt matrix, where V P

δ,t will be modeled

below.

3.2.2 Prior Distributions

Until now, we have implicitly assumed a known vector of process-model parameters

θP , which contains the trend coefficients {βt : t = 1, . . . , T}, the fine-scale-variation

variance σ2
δ , the function vδ(·), and the elements defining the matrices that describe the

VAR process, K0, H , and U . Of course, θP will rarely be known in practice. We could

take an empirical-Bayesian approach to inference, in which we estimate the parameters

either via a method-of-moments technique (Wikle and Cressie, 1999; Kang et al., 2010)

or via the EM algorithm (Xu and Wikle, 2007; Fassò and Cameletti, 2009b; Chapter 2).

Instead, in this chapter, we take a Bayesian approach and specify prior distributions for all

unknown parameters (e.g., Wikle et al., 1998). This results in a parameter model (usually

called a prior), which, together with the data model (3.5) and the process model (3.7) given

earlier, leads to posterior inference via Bayes’ Theorem. Recall that our goal is smoothing;

inference is implemented using Markov chain Monte Carlo (MCMC) simulations described

in Section 3.2.4 and Appendix A.

All parameters in θP are assumed to be a priori independent, unless specifically stated

otherwise. For the parameters {βt} and σ2
δ , we assume (almost) noninformative priors (see

Appendix A for details). The prior distributions for the covariance matrices K0 and U

are each taken to be a multiresolutional Givens-angle prior (Kang and Cressie, 2011). As

this prior distribution has been considered in detail in previous work, we only give a brief

review in Appendix A.
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The function vδ(·) determines the form of the heterogeneity of the fine-scale-variation

variance in (3.3), namely var(δ(·)|σ2
δ , vδ(·)) = σ2

δvδ(·) . Following a suggestion made in

Chapter 2, we assume a stochastic volatility model of the form,

vδ(·) := exp{bδ(·)′ηδ}, (3.8)

where bδ(·) is a known vector of rδ basis functions and, for example, could be a sub-

vector of b(·). The prior distribution on vδ(·) is induced by ηδ ∼ Nrδ(0, σ
2
ηδ
Irδ), where

σ2
ηδ

is a known hyperparameter. This model allows for flexible estimation of the hetero-

geneity (in space), in that vδ(s) can multiplicatively modify the overall fine-scale-variation

variance, σ2
δ , at any location s ∈ Ds. The exponential function in (3.8) ensures that the

resulting variance of δ(·) is positive, and the prior mean, E(ηδ) = 0, approximately in-

duces shrinkage of the resulting variance of δ(·) toward the overall variance parameter,

σ2
δ , at any point in space. By modeling the function (on the log-scale) as a linear com-

bination of basis functions, we ensure fast computation even when the function has to

be evaluated at a large number of observed or prediction locations. The hyperparam-

eter σ2
ηδ

can be chosen in accordance with prior beliefs on how different the fine-scale

variation is expected to be in different parts of the spatial domain of interest. Consider

the variance ratio R := var(δ(s1))/var(δ(s2)) = vδ(s1)/vδ(s2), where s1 and s2 are

chosen to be locations at the centers of two distant (normalized) basis functions, so that

(bδ(s1) − bδ(s2))
′(bδ(s1) − bδ(s2)) ≈ 2. This implies that, approximately, exp{R} ∼

N(0, 2σ2
ηδ

). When 1/2 and 2 are chosen as the lower and upper endpoints, respectively, of

a 95% credible interval for R, this results in a value of σ2
ηδ
≈ 0.252 for the hyperparameter.
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3.2.3 The Prior on the Propagator Matrix H

Let us now turn to the prior assumptions for the propagator matrix H . We first develop

a two-stage prior that ensures that the full-conditional distribution of h := vec(H ′) is avail-

able in closed form (see Appendix A), and then we give some insight into the ramifications

of this prior specification. To motivate our prior on H , note that the impact of H on the

temporal evolution of the process is plainly obvious from,

E(ηt,i|hi,ηt−1) = h′iηt−1 =
∑r

j=1 hijηt−1,j, t = 1, 2, . . . ,

where h′i denotes the i-th row of H . Thus, hij describes the autoregressive effect of ηt−1,j

on ηt,i; intuitively, we want this effect to diminish as the (physical) distance between the

j-th basis function and the i-th basis function increases. This intuition is complicated by

the fact that we want the basis functions in b(·) to be made up of C (say) resolutions. We

can write H (after appropriate ordering) as a block matrix,

H =:

 H11 · · · H1C

... . . . ...
HC1 · · · HCC

 , (3.9)

where the block Hkl contains the elements of H that describe how the basis-function co-

efficients of resolution k at time point t are affected by the basis-function coefficients of

resolution l at the previous time point t− 1.

In light of this role that the elements ofH play on the temporal evolution of the process,

we assume that the (i, j)-th element of H has the (conditional) prior distribution,

hij|θH
ind.∼ N(µciI(i = j), τ 2ci,cjg(dij;αci,cj , γci,cj)

2), i = 1, . . . , r, j = 1, . . . , r, (3.10)

where ci denotes the resolution to which the i-th basis function belongs; the quantity dij ∈

[0, 1], with max{dij} = 1, is the normalized distance between the centers of the i-th and
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Figure 3.1: Left panel: The g( · ;α, γ) function for α = 0.8 and γ = 0 (solid line), γ = −1
(dashed), and γ = 1 (dotted). Right Panel: The function

√
E(g( · ;αkl, γkl)2) describes the shrink-

age (on the standard-deviation scale) induced by the prior on H as a function of the basis-function
distance; see (3.14).

the j-th basis functions; θH is a vector of parameters describing the prior distribution of H

that consists of {µk : k = 1, . . . , C}, {τ 2kl : k, l = 1, . . . , C}, {αkl : k, l = 1, . . . , C}, and

{γkl : k, l = 1, . . . , C}; and

g(d;α, γ) :=

{
1− (d/α)exp(γ), d ≤ α

0, d > α
(3.11)

is a function of normalized distance with (random) range parameter α ∈ [0, 1] and (random)

shape parameter γ ∈ R (see the left panel of Figure 3.1; more details are given below in

this subsection). Note that, to include the case α = 0, we define 0/0 = 0 in (3.11).
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At the second level of the prior distribution on H , we assume that all parameters in θH

are independently distributed according to,

µk
ind∼ N(1, σ2

µ,k), k = 1, . . . , C,

τ 2kl
ind∼ IG(aτ,kl, bτ,kl), k, l = 1, . . . , C,

αkl
iid∼ U(0, 1), k, l = 1, . . . , C,

γkl
iid∼ N(µγ, σ

2
γ), k, l = 1, . . . , C,

(3.12)

where are all parameters specifying these distributions are fixed, as follows: First, the

choice of E(µk) = 1 is based on our desire to center the noninformative prior of H at the

identity matrix, which is a random-walk model. Second, the parameters {γkl} determine

the shape of (3.11) on the interval (0, α). A natural centering for these parameters is µγ = 0,

as g( · ;α, γ = 0) is a straight line from the point (0, 1) to (α, 0). To find a good value for

σ2
γ , consider that square-root distances, absolute distances, and squared distances are often

used in practice. To ensure that these values are contained in an a priori 95% credible

interval for the exponent of the distance d in the function (3.11), we set σ2
γ = 0.52, so that

the endpoints of the credible interval are approximately given by 1/e = 0.37 and e = 2.72

(see the dashed and dotted lines in the left panel of Figure 3.1). Finally, the remaining

parameters {σ2
µ,k}, {aτ,kl}, and {bτ,kl} are calibrated to the data through an initial point

estimate of H , such as the EM estimate (see Appendix A for details).

We shall now interpret the prior assumptions on H made above, and discuss their ram-

ifications. As noted earlier, the prior distribution for H implies that the temporal evolution

of {ηt} is a priori centered on the random walk, E(H) = E(E(H|{µk})) = Ir, due to

the assumption E(µk) = 1, k = 1, . . . , C, in (3.12). In light of this, it should be noted

that our prior for H is a noninformative prior. It only uses information on where the basis

functions are located in the spatial domain,Ds, and to which resolutions the basis functions
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belong. The prior is ideally suited for applications in which no prior information about the

temporal evolution of the process is available, or in situations where it is the goal to vali-

date or check existing scientific models about the temporal evolution of the process based

on a complete map of predictions based on data. Our prior mean meets the constant-mean

and mass-balance requirements for propagator matrices formulated in Gelpke and Künsch

(2001).

Integrating over the parameter {τkl}, we have,

hij|µci , αci,cj , γci,cj ∼ t2aτ,cicj

(
µciI(i = j),

bτ,cicj
aτ,cicj − 1

g(dij;αci,cj , γci,cj)
2

)
, (3.13)

where tν(µ, σ2) denotes a generalized t-distribution with ν degrees of freedom, location

parameter µ, and scale parameter σ (Bishop, 2006, Sec. 2.3.7).

The off-diagonal elements of H are shrunk towards zero (or even set equal to zero),

depending on the distance and the resolutions of the corresponding basis functions. The

marginal variance of hij is,

var(hij) = varE(hij|θH)+E var(hij|θH) = σ2
µ,ci
I(i = j)+

bτ,cicj
aτ,cicj − 1

E
(
g(dij;αci,cj , γci,cj)

2
)
,

(3.14)

where the square root of the expectation on the right-hand side (i.e., on the standard-

deviation scale) is shown in the right panel of Figure 3.1. Thus, the prior variance of

hij is monotone decreasing as a function of dij .

The prior distributions on the parameters, {αkl} and {γkl}, can be interpreted as control-

ling the sparsity and the shrinkage on the elements ofH , respectively. The range parameters

{αkl} induce sparsity in H in that, assuming a uniform prior on αci,cj ,

P (hij = 0) = P (g(dij;αci,cj , γci,cj) = 0) = P (αci,cj ≤ dij) = dij.
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Hence, it becomes more and more likely that hij is zero with increasing distance between

the centers of basis functions i and j. That is, we are essentially specifying the (ran-

dom) dimension of the parameter space by generating {αkl}. Other choices than a uniform

distribution for the priors of {αkl} are possible and can result in interesting dynamical

structure for the model. For example, if the priors on {αkl} are all point masses at zero,

then g(d; 0, γ) = I(d = 0), which results in a diagonal H with parameter µk down the

diagonal of Hkk, k = 1, . . . , C. Even this simple multiresolutional H induces complex

spatio-temporal dependence, since cov(ηt+1,ηt) = HKt has non-trivial, nonstationary

cross-dependence.

Given {τkl} and {αkl}, the parameters {γkl} control the amount of shrinkage of the

nonzero elements of H as a function of the basis-function distances. If the parameter γkl is

nonnegative then, conditional on αkl, the function gkl(·) is concave on the interval (0, γkl);

for nonpositive γkl, the function is convex on the interval (see the left panel of Figure 3.1).

Therefore, very large values for {γkl} make for little shrinkage (up to distances smaller

than {αkl}).

Lastly, the marginal covariance between two elements, hi1,j1 and hi2,j2 , of H , after

integrating out the prior distributions on θH given by (3.12), is,
cov(hi1,j1 , hi2,j2) = {var(hi1,j1 + hi2,j2)− var(hi1,j1)− var(hi2,j2)}/2

= σ2
µ,kI(i1 = j1)I(i2 = j2)I(ci1 = ci2 = k).

This means that the only a priori nonzero correlations between elements of H are those

where both are a diagonal element within the same resolution. However, as mentioned

above, all elements within each block Hkl are a priori statistically dependent, for k, l =

1, . . . , C.

Note that our prior forH makes use of distances between basis functions. This distance

is quite intuitive if the basis functions have a clear “center” (e.g., bisquare functions). For
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other basis functions, one could use the “center of energy” (e.g., Wickerhauser, 1994, p.

164), defined as
∫

s b(s)2ds/
∫
b(s)2ds for a continuous basis function b(·). However, this

center of energy might not be easily interpretable for basis functions with non-compact

support (e.g., Fourier functions or empirical orthogonal functions), and so our prior for H

might not be generally applicable for those functions (unless αkl ≡ 0 for all k, l = 1, . . . , C,

in which case recall that 0/0 = 0 in (3.11)).

Since H refers to a reduced-dimensional space, it might seem unnecessary to look for

sparsity in the r×r matrixH . However, the number of basis functions, r, can be moderately

large, and it is usually larger than T (e.g., in Section 3.4, we have r = 380 and T = 16).

This may result in practical nonidentifiability, for which regularization (here, sparsity and

shrinkage) would be needed (see Appendix A for more details).

3.2.4 MCMC Inference

For a set of generic vectors {xt}, define xt1:t2 := [x′t1 , . . . ,x
′
t2

]′. Recall that our goal in

this spatio-temporal context is smoothing, not filtering. After having observed data Z1:T =

z1:T , FB inference is based on the posterior distribution of YP
1:T (i.e., that of η1:T and δP1:T )

and the unknown parameters, given the data. Unfortunately, this posterior distribution

is not available in closed form. Instead, we sample from the posterior distribution via

Markov chain Monte Carlo (MCMC) simulation. As the methodology developed in this

chapter is intended to be used on very large (or even massive) datasets, computational

feasibility and speed are of great concern. We employ a Gibbs sampler (Geman and Geman,

1984) with some Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) updates

where necessary. In this section, we give an overview of the techniques used to sample the

unknowns in the MCMC; details are given in Appendix A.
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First, consider the basis-function coefficients η0:T . Due to their strong temporal de-

pendence, it is not advised to update each ηt individually, which would result in slow

convergence of the MCMC. Instead, we update the entire vector η0:T at once, using a tech-

nique called the forward-filtering, backward-sampling algorithm (Carter and Kohn, 1994;

Frühwirth-Schnatter, 1994). The number of operations required for this is linear in each

nt for each iteration of the MCMC, which is essential to scalability of the algorithm as a

whole.

Updating the propagator matrix H (or, equivalently, h := vec(H ′)) and its random hy-

perparameters poses its own challenges. As h is an r2-dimensional vector, direct sampling

becomes impossible when r, the number of basis functions, is moderately large. To get

around this, we employ a technique similar to conditional simulation used in geostatistics

(for details on spatial conditional simulation, see, e.g., Cressie, 1993, Sec. 3.6.2). Con-

sidering the hyperparameters {αkl}, which control the sparsity of H , we notice that there

is actually a change of dimension in the parameter space of h. Depending on the value

of {αkl} sampled in the MCMC algorithm, a number of elements of h will have a vari-

ance of zero, and their full conditional distributions will be point masses at zero. If we

marginalize over h when updating {αkl} and use the conditional-simulation technique for

sampling h mentioned earlier, we avoid having to use an explicit reversible-jump MCMC;

see Appendix A.

We recommend updating all parameters with analytically intractable conditional distri-

butions (ηδ, {αkl}, and the parameters inK0 andU ) using the adaptive Metropolis-Hastings

algorithm of Haario et al. (2001); see Appendix A for details. The full conditional distri-

butions of {βt} and σ2
δ are also given in Appendix A.

63



Let θ be a vector containing all unknowns, η0:T , δP1:T , θP , and θH . Samples from the

posterior distribution of θ given the data are obtained as follows: We begin the MCMC

sampler with some starting value θ[0], and then we obtain θ[l], l = 1, 2, . . ., by updating

each component of θ given the most recent value of all other components as described in

Appendix A. After Lb iterations, the algorithm should be sampling from the target (joint

posterior) distribution. From a total number of La iterations, the first Lb are discarded, and

we consider the set {θ[Lb+1], . . . ,θ[La]} to be a sample from the joint posterior distribution

of all unknowns given the data.

To return to the issue of scalability of the algorithm for very large datasets, we note that

the number of computations required at each iteration of the MCMC is linear in each nt.

However, each update of H requires inversion of a sparse rT × rT matrix with at most

rT (r + T − 1) nonzero elements (see Appendix A). This implies that if the number of

basis functions, r, and the number of time points, T , are both very large, the algorithm can

become fairly slow.

3.3 Simulation Study: FB-FRS vs. EM-FRS

Instead of specifying prior distributions for all parameters in the model described in

Section 3.2.1, we could pursue empirical-Bayesian inference via Fixed Rank Smoothing

(FRS), as described in Cressie et al. (2010). To do this, we must first estimate the parame-

ters, and then we obtain the posterior distribution of YP
1:T given the data, by assuming that

all parameters are known and fixed at their estimated values. We can estimate the parame-

ters in the STRE model using maximum-likelihood estimation via the EM algorithm, which

is shown in Chapter 2 to be preferable to the binned method of moments when the data are

Gaussian. This EM-FRS procedure is therefore a natural candidate for comparison to the
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fully Bayesian inference (FB-FRS) proposed in Section 3.2. In this section, we carry out a

simulation study to assess parameter estimation, accuracy of predictions, and the accuracy

of inferred prediction uncertainties.

3.3.1 Simulation Setup

The simulated data are meant to be a simplistic version of satellite data. The spatial

domain is one-dimensional, Ds := {1, . . . , 256}, and there are T = 16 time points. The

“satellite” has a repeat cycle of two time units. The two tracks of the satellite have a width

of 64: For t odd, the tracks are {1, . . . , 64} and {129, . . . , 192}; for t even, the tracks are

{65, . . . , 128} and {193, . . . , 256}. To simulate non-retrievals due to cloud cover and other

problems, 50% of the values within each track at each time point are declared missing at

random. This results in nt = 64 observations at each time point.

The basis functions we use are bisquare functions,

fbi(s) := {1− (‖s− c‖/w)2}2I(‖s− c‖ < w), (3.15)

where c is the center point, w > 0 is the specified range, and I(·) is an indicator function.

In this simulation study, we have r = 5 bisquare basis functions from C = 2 resolutions, as

depicted in Figure 3.2. The one basis function of the first resolution has a range of w = 144

and is centered at 128. The four basis functions of the second resolution have a range of

w = 38 and are centered at 32.5, 96.5, 160.5, and 224.5, respectively.

With the exception of the ranges and center points of the basis functions, this setup

with C = 2 resolutions is exactly the same as the one used in the simulation study given in

Section 2.4. The parameters used in the simulation are also calibrated in the same way as in

that chapter. The true matrix parameters are calibrated to match as closely as possible (as

measured by the Frobenius norm) a stationary exponential spatial covariance of the form
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Figure 3.2: The five basis functions (r = 5) of two resolutions (C = 2) used in the simulation
study.

cov(νt(i), νt(j)) = exp(−|i − j|/25) and a lag-1 temporal correlation of 0.8 (see Cressie

et al., 2010, Sect. 3, for more details). The fine-scale-variation proportion is set to 0.05,

which results in σ2
δ = 0.0297, held constant over time. The function vδ(·) = exp{bδ(·)′ηδ}

is determined by two bisquare functions of range w = 96, centered at 64 and 192, and

the true ηδ is simulated at each simulation iteration from a N2(0, 0.252I2) distribution (as

suggested in Section 3.2.2). For the EM algorithm, the parameter vector ηδ was “estimated”

by finding the mode of its posterior distribution. Finding a maximum a posteriori estimator

for one set of parameters and maximum likelihood estimators (MLEs) for all others could

be considered inappropriate; alternatively, one could consider ηδ as a fixed parameter in

the EM-FRS procedure and estimate it in the EM algorithm.

The measurement-error variance is also constant over time. It is determined by the

signal-to-noise ratio (SNR; defined as in Section 3.1 of Cressie et al., 2010, but here we

temporarily assume that ηδ ≡ 0), for which we have chosen two levels: SNR=2, resulting

in σ2
ε = 0.2968, and SNR=5, resulting in σ2

ε = 0.1187. The variance σ2
ε is assumed known

for both the FB and the EM-FRS procedures. Finally, a constant mean of µ = 5 is chosen

(i.e., xt(s) ≡ 1 and βt ≡ µ). An example of the data simulated from the STRE model
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(Section 3.2.1) is shown in Figure 3.3. (We only show the first four time points; the setup

for the remaining time points is analogous.)

3.3.2 Simulation Results

Using this setup, we generate 1000 data sets for both levels of the SNR. For each

dataset, we obtain posterior samples from our MCMC algorithm, and we calculate the pos-

terior means and the posterior 2.5- and 97.5-percentiles (based on the prior distributions

given in Sections 3.2.2, 3.2.3, and Appendix A). In addition, we obtain FRS predictions

and standard errors based on EM parameter estimation and, as a reference, we also obtain

FRS predictions and prediction standard errors using the true parameters θ. We use the

true parameter values to initialize the EM algorithm and to calibrate the priors for the FB

procedure. We save both Bayesian posterior samples of all parameters and EM parameter

estimates for each dataset. Figure 3.3 shows the predictions and credible/prediction in-

tervals for all three procedures for (the first four time points of) one simulated dataset, to

illustrate inference on the process {Yt(·) : t = 1, . . . , T}.

We summarize the results in Table 3.1. Generally, all summaries of the results are com-

puted over all 1000 simulated datasets. However, the EM algorithm failed to converge for

12 of the datasets for SNR=2 (see “Success rate”), and so the results from these datasets

were excluded from the analysis. The first mean squared prediction error (MSPE) is taken

over all 256 spatial locations at all T=16 time points. The summaries denoted “on track”

and “off track” are only taken over the spatial locations for each time point that were con-

sidered on or off track, respectively, as described in the previous subsection. The interval

score (IS) is defined as (Gneiting and Raftery, 2007, Sect. 6.2),

ISα(l, u; y) = (u− l) + 2{(l − y)+ + (y − u)+}/α,
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Figure 3.3: One realization of the data (blue crosses) observed at the first four time points in
the simulation study for SNR=2. Also shown are FRS predictions using the true parameter values
(light blue), FRS predictions using the EM parameter estimates (red), and Bayesian posterior means
(green); dashed lines are the respective 95% credible/prediction intervals. The true process values
are shown in black.
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Table 3.1: Results for {Ŷt(·)} compared to {Yt(·)}, obtained from the simulation experiment,
with the following acronyms: MSPE = (Empirical) Mean Squared Prediction Error, IS = Interval
Score (see text), CIW = Credible/Prediction Interval Width (nominal 95% intervals), CIC = Credi-
ble/Prediction Interval Coverage (target is 95%)

SNR = 5 SNR = 2
True θ EM FB EM/FB True θ EM FB EM/FB

Success rate — 1.000 1.000 — — 0.988 1.000 —
MSPE 0.118 0.196 0.148 1.325 0.142 0.243 0.197 1.232
MSPE - on track 0.034 0.046 0.037 1.244 0.044 0.063 0.049 1.281
MSPE - off track 0.201 0.347 0.260 1.337 0.240 0.422 0.344 1.226
IS - on track 0.863 1.247 0.916 1.362 0.978 1.658 1.097 1.512
IS - off track 2.026 3.636 2.384 1.525 2.217 4.698 2.761 1.702
CIW - on track 0.718 1.086 0.736 1.476 0.819 1.367 0.858 1.592
CIW - off track 1.700 1.587 1.917 0.828 1.859 1.744 2.230 0.782
CIC - on track (t=8, s=96) 0.946 0.985 0.947 — 0.942 0.974 0.925 —
CIC - off track (t=2,s=32) 0.949 0.761 0.921 — 0.958 0.715 0.937 —

where l and u are, respectively, the lower and upper endpoints of a (1 − α) confidence

interval (we use α = 0.05), y is the true value, and (x)+ := xI(x > 0). This scoring rule

combines the width of the confidence interval with a penalty for not containing the true

value.

We can see from Table 3.1 that the posterior mean from our FB-FRS procedure is a

considerably better predictor than the FRS predictions based on EM estimates, both on and

off track. At least for SNR=5, the MSPE of the posterior mean is fairly close to the MSPE

of the FRS procedure using the true parameter values (i.e., for “perfect” parameter estima-

tion). The difference between FB-FRS and EM-FRS is even greater when we consider the

prediction-uncertainty assessment. Possibly due to an overestimation of σ2
δ , the confidence

intervals for EM-FRS are too wide on track, but too narrow off track (see also Figure 3.3).

The IS for FB-FRS is much closer to the IS for FRS using the true parameters than it is to
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Table 3.2: Mean squared estimation errors for the scalar parameters (Bayes estimates are posterior
means).

SNR = 5 SNR = 2
EM FB EM/FB EM FB EM/FB

Success rate 1.000 1.000 — 0.988 1.000 —
µt 0.230 0.067 3.443 0.213 0.116 1.836
σ2δ (×100) 0.486 0.009 55.166 1.577 0.031 51.466
ηδ,1 0.059 0.058 1.002 0.074 0.065 1.140
ηδ,2 0.057 0.055 1.036 0.077 0.071 1.081
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Figure 3.4: Propagator matrices. The left-hand panel shows the true H . All values in the other
panels are elementwise medians over the 1000 simulations from the simulation study (SNR=5).
Shown are the EM estimates, the posterior means, the posterior standard deviations, and the poste-
rior probabilities of the elements being zero. The black lines divide H as in (3.9).

the IS for EM-FRS. From Table 3.2, the FB posterior means of the parameters also result

in smaller mean squared estimation errors (MSEEs) than the EM estimates.

Finally, we show the inference on the propagator matrix H in Figure 3.4 by taking

elementwise medians of the estimates and posterior summaries based on each of the 1000

simulated datasets for SNR=5. Clearly, the lack of regularization in the EM estimates leads

to a complete mis-estimation of the first row of the matrixH . Since the parameter estimates

are simply plugged into the FRS equations, this mis-estimation is not accounted for in the

FRS-prediction uncertainties. While it seems from the FB posterior mean of H that the

shrinkage induced by the prior might be too strong, we can see that the estimated posterior
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Figure 3.5: Top row: true H = 0.8Ir. Bottom row: true H = PKdiag(.05, .08, .10, .94, .97)PK .
Shown are the true H (first column), and the element-wise medians over the 1000 simulations from
the two additional simulation studies (SNR=5): posterior means (middle column) and posterior
standard deviations (right column). The black lines divide H as in (3.9).

standard deviations actually reflect the magnitude of the true off-diagonal elements (left

panel) quite well. The estimated probability of each element being equal to zero is also in

agreement with how close to zero the true values are.

To see how well a sparse H and a full H can be recovered by our model, we carried out

two more simulations. The setup was kept the same as before (with SNR=5), except that

now we specified the true H to be H = 0.8Ir and H = PKdiag(.05, .08, .10, .94, .97)PK ,

respectively, where PK is the eigenvector matrix of the true K (which was again calibrated

against an exponential covariance model). The results, shown in Figure 3.5, indicate that

our model adapts well to very sparse or full propagator matrices.

3.4 Analysis of Global CO2 Data

This section contains an application of our proposed fully Bayesian STRE methodology

to a very large real-world dataset of global CO2 measurements. We obtain the posterior
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distribution of all parameters and the spatio-temporal process of interest, and we compare

results to those from empirical-Bayesian STRE methodology based on the EM algorithm.

3.4.1 Spatio-Temporal Data: Mid-Tropospheric CO2 Measurements
from AIRS

The spatio-temporal dataset under consideration consists of 16 days of measurements of

global mid-tropospheric CO2, which were recorded by the Atmospheric InfraRed Sounder

(AIRS) on board NASA’s Aqua satellite (Chahine et al., 2006). The dataset is available

from http://airs.jpl.nasa.gov/AIRS_CO2_Data/, and it is the same as that

analyzed in Katzfuss and Cressie (2011b). Only CO2 measurements between −60◦ and

90◦ latitude are available, since corresponding data at latitudes south of −60◦ have not

been released by AIRS yet. The unit of measurement is parts per million (ppm). The

measurements are taken at roughly 1:30pm local time, and we considered here those for

May 1 through May 16, 2003, which from now on are referred to as days 1 through 16,

respectively.

We have gridded the data onto a very fine grid, as in Section 2.5.1, which allows us to

compare the results described in that paper. However, we would like to emphasize that nei-

ther methodology requires gridded data. The hexagonal grid (ISEA Aperture 3 Hexagons

at resolution 8) of size mt ≡ 61, 236 was obtained using DGGRID software (Sahr, 2003).

On each day, roughly 12,000, or 20%, of the grid cells contained data; orbit geometry,

cloud cover, and retrieval convergence criteria caused the remaining grid cells to contain

no data. If a particular grid cell contained more than one of the original measurements on a

particular day, the data value at that grid cell was taken to be the average of those measure-

ments and the measurement-error covariance matrix was modified correspondingly, so that

vε,t(Si,t) = 1/Nt(Si,t), where Nt(Si,t) is the number of measurements contained in grid
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cell Si,t at time t. For illustration, the gridded data of day 16 are shown in the top panel of

Figure 3.6.

The measurement-error variances, {σ2
ε,t}, are assumed known in our model (Section

3.2.1); in reality, these variances were estimated prior to the actual analysis using the

variogram-extrapolation technique described in Kang et al. (2009) and adapted here in

Chapter 2. There we obtained a pooled estimate, σ̂2
ε = 5.6062 ppm2, for all days t =

1, . . . , 16.

The large-scale spatial trend was assumed to be determined by an intercept and a lati-

tudinal gradient; that is, we set xt(·) = [1 lat(·)]′, independent of t.

Our model in Section 3.2.1 is described for measurements made at a point level, but our

gridded data has areal (hexagonal) support. This change-of-support problem can be han-

dled quite easily in the STRE model, by replacing the quantities in (3.5)–(3.7) by averages

over the respective grid cells; more details can be found in Section 2.5.1.

For the basis functions, we used r = 380 bisquare functions defined by (3.15), from

three resolutions. The set of functions was identical to that used in Section 2.5.2, where the

reader can also find a brief discussion of how basis functions can be chosen.

We need to ensure that the distance measure d in (3.11) is normalized so that max{dij} =

1. Here, for our basis functions located on the globe, we normalized the spherical dis-

tances between each pair of basis-function centers by dividing them by π · earth’s radius ≈

π · 6371km, which is the maximum great-arc distance that two points on the globe can be

apart.

The as-of-yet unspecified values of the hyperparameters in the priors on {βt}, σ2
δ , θH ,

K0, and U were calibrated using the EM estimates of the respective parameters as described

in Appendix A.
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Figure 3.6: Gridded AIRS measurements of mid-tropospheric CO2 on May 16, 2003 (top), and
posterior means (middle) and posterior standard deviations (bottom) of {Y16(s) : s ∈ Ds}. Units
are ppm.
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3.4.2 Posterior Results

We ran an MCMC for 8000 iterations using Matlab, where one iteration of the MCMC

took about 30 seconds to compute on an eight-core machine (Intel Xeon X5560, with 94.5

GB RAM). Thus, the 16 days worth of data can be processed in less than three days.

Trace plots show that convergence to stationarity had been reached after roughly 1500

iterations, so that we considered the first 2000 iterations as burn-in. We computed the

posterior distribution of {Yt(·)} at all t = 1, . . . , 16 time points and all m = 61, 236

hexagons. The posterior means and standard deviations for t = 16 are shown in Figure 3.6.

The posterior standard deviations are lowest around the equator, where the process seems

to be the smoothest. Notice the higher standard deviations over Southeast Asia, which

reflect a lack of data in that region. In the northern part of the globe, many unusually high

values in the data resulted in a large estimate of the fine-scale variation in that area. The

uncertainty is also relatively large around −60◦ latitude, which is likely caused by the lack

of data south of that latitude.

To evaluate the prediction performance of our FB-FRS procedure and of the EM-FRS

approach, 500 grid cells containing observations at time point t=10 were randomly selected

into a test set Stest. These data were unavailable for the model fitting and were used to

measure out-of-sample-prediction accuracy. As the true process {Yt(·)} was not available

in this example, we used the measurements {Zt(S) : S ∈ Stest} directly as a reference,

and we evaluated our predictions using an average-squared-distance criterion, ASD :=∑
S∈Stest

(Ŷ10(S) − Z10(S))2/500. For the EM-FRS procedure, we obtained ASDEM =

9.1011, and for the FB-FRS we obtained ASDFB = 8.7879 when using posterior means

as predictors. Thus, the FB-FRS approach had a small advantage. As a baseline predictor,
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Figure 3.7: EM estimate, and mean and standard deviation of the posterior distribution of H from
the AIRS data. The black lines divide H as in (3.9).

we simply calculated, for a 1◦ × 1◦ grid, the binned means of the data from all 16 days,

resulting in ASDBM = 12.0924.

Figure 3.7 shows the EM estimate and summaries of the posterior distribution of the

propagator matrix H . The EM estimate exhibits very little structure, other than a strong

(positive) diagonal and two lines of negative elements, where each element corresponds to

two basis functions of two different resolutions that are close in space. The FB posterior

is much more structured, and we can see the sparsity induced by the prior distribution

by examining the elements with zero standard deviation in the panel on the right. The

eigenvalues of the posterior mean are all smaller than one, indicating a non-explosiveness

of the process.

In Figure 3.8, we tie the inference on the parameters on the reduced-dimensional space

back to the covariance structure of the data. For a reference point on the globe (0◦ lon-

gitude, 30◦ latitude, on day t = 1), we show the directional root-semivariograms for four

spatio-temporal directions: for increasing longitude, increasing latitude, increasing time

(days), and increasing longitude and time. For each of the four directions, the empirical

root-semivariogram is compared to the theoretical quantities using plug-in EM estimates
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Figure 3.8: Directional root-semivariograms for the AIRS data at reference point 0◦ longitude, 30◦
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time in days (bottom left), and longitude and time (bottom right). Shown are the empirical root-
semivariograms (circles), together with the theoretical quantities using the EM estimates (dotted
line) and FB inference (solid line), as estimated from the data.
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and FB inference (posterior medians of root-semivariograms), respectively. The fit of the

theoretical to the empirical quantities is not exact, likely due to the fact that K0, H , and

U were held constant over time and hence had to account for the spatial and temporal

covariance structure on all days (i.e., not only for the reference time point t = 1 shown

here).

3.5 Discussion and Conclusions

In this chapter, we have presented a fully Bayesian, hierarchical approach to spatio-

temporal smoothing of very large datasets. By projecting the spatio-temporal process of

interest onto a low-dimensional space spanned by basis functions, the STRE model makes

Bayesian model fitting feasible, even when the number of observations is large. The tempo-

ral evolution of the process on the lower-dimensional space is governed by two covariance

matrices and a propagator matrix. Apart from positive-definiteness of the covariance ma-

trices, we do not require any restrictions (e.g., diagonal matrices) on these potentially large

matrix parameters, but instead we specify prior distributions to achieve regularization and

identifiability. In Appendix A, we give detailed instructions for posterior inference, and we

provide computational speed-ups to achieve feasible computation times.

Another key ingredient of our approach is that we do not ignore the error introduced

by the dimension reduction. Instead, we attempt to separate the discrepancy between ob-

servations and the reduced-dimension process into two types of error, one due to the mea-

surement process, and one due to the dimension reduction. Both types of error are allowed

to vary with space (and we could in principle let both vary with time also). Estimating

the spatial heterogeneity of the variance of the fine-scale variation is important, as can be

seen from the example using AIRS mid-tropospheric CO2 in Section 3.4. From Figure 3.6,
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there is an indication that there are different degrees of smoothness in different parts of the

globe; see, in particular, the heterogeneity of variances at different latitudes in the bottom

panel. As the basis-function space is limited in the amount of roughness it can exhibit, the

variation in the excess roughness should be reflected in spatially heterogeneous fine-scale

variation over the globe.

In the two comparisons of the FB framework to the empirical-Bayes EM-FRS proce-

dure presented in Sections 3.3 and 3.4, the FB approach results in better predictions than

the EM-FRS approach, particularly in the simulation experiment where the true process

was available for comparison. The true worth of the FB inference is apparent from its more

accurate assessment of prediction uncertainty in the simulation. Here, FB outperforms EM-

FRS by up to 70% (in terms of the interval score; see Table 3.1). In Section 3.4, we expect

that the relative prediction accuracy of the FB procedure would be even larger if the test set

consisted of a contiguous region of the globe so that there would be no data nearby.

Our current prior on H (Section 3.2.3) allows for sparsity and shrinkage on each ele-

ment hij as a function of the distance of the two basis functions i and j, but it assumes prior

independence conditional on the parameters in θH . While inference as described in Ap-

pendix A should work even when the prior on H specifies conditional dependence (within

rows of H), we encountered difficulties with our MCMC in that case.

It would be of interest to generalize further the joint-distributional assumptions on the

fine-scale variation. In this chapter, we have assumed spatial independence and allowed the

variance to vary spatially, but we could also allow for short-range spatial dependence. One

would need to balance the requirement of rapid inversion of the data’s covariance matrix

(e.g., by using a strong taper) with a realistic covariance structure. Assuming spatial inde-

pendence, the maps of predictions and standard errors look “spiky” in locations where data
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were observed; short-range dependence would mitigate against this. Chapter 4 explores

some of these suggestions.

Future work could also include further optimization of the computer code. The current

code already exploits some computational speed-ups (as described in Appendix A), and

parallelization is employed where possible to allow for efficient use of a multi-core com-

puter. However, faster computation could be achieved by implementing the MCMC in a

compiled language like C++, instead of Matlab.

Finally, an elegant solution to spatio-temporal filtering would be of interest; we have

presented spatio-temporal smoothing here. If parameters are fixed across time (as they are

in this chapter), their posterior distributions need to be updated when a new set of data

becomes available. This can quickly become infeasible as one goes forward in time. Using

sequential Monte Carlo methods (e.g., Doucet et al., 2001) and/or letting parameters such

as Ht and Ut vary with t might provide a solution.
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Chapter 4: Bayesian Nonstationary Spatial Modeling for Very Large

Datasets

4.1 Introduction

With the proliferation of satellite measurements of environmental variables on a global

scale, a need has arisen for statistical methods suitable for the analysis of large spatial

datasets observed on large spatial domains. Statistical analyses of such datasets provide

two main challenges: First, traditional spatial-statistical techniques are often unable to han-

dle large numbers of observations (more than 10,000 or so) in a computationally feasible

way. This is especially true for Bayesian models, for which posterior inference often re-

quires computations to be carried out at each of many iterations in an MCMC sampler. The

second challenge is that for large spatial domains (such as the entire globe), it is often not

appropriate to assume that a process of interest is stationary over the entire domain. Pro-

cesses often exhibit different scales of dependence, and while stationary correlation models

(e.g., the widely used Matérn model; see Stein, 1999, p. 12) are often adequate approxima-

tions to the local behavior of a process, the long-range dependence often does not follow

any simple parametric form. For example, the Matérn model does not allow negative de-

pendence, and due to its exponential decay it is generally unable to describe long-range

dependence (Stein, 2005). Appropriate characterization of long-range dependence is of

concern, because even massive datasets are often sparse with respect to the large domains
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of interest here, and so one often has to resort to observations that are relatively far away

when predicting the process at certain data-poor areas of the domain.

The first problem of computational feasibility has been addressed (for nongridded data)

mainly from two angles: An approach termed covariance tapering (Furrer et al., 2006;

Kaufman et al., 2008; Shaby and Ruppert, 2011) relies on compactly supported correla-

tion functions (e.g., Gneiting, 2002) to produce sparse covariance matrices, in which only

a small number of elements are nonzero. While the number of computations required for

finding the Cholesky decomposition of an n×nmatrix and solving a system of linear equa-

tions involving that matrix is generally of order n3, the number of computations required

for these tasks may be as low as order n if the matrix is sparse (see Furrer et al., 2006,

and Section 4.4.5). This may allow scalability of a covariance-tapering approach, even for

very large datasets with 100,000 or more observations. However, by definition, covariance

tapering does not allow long-range dependence to be modeled. In addition, Furrer et al.

(2006), Kaufman et al. (2008), and Shaby and Ruppert (2011) do not use correlation mod-

els that are flexible enough to deal with the anticipated nonstationarity of processes viewed

on a global scale. A recent overview of covariance tapering and other geostatistical models

for large datasets can be found in Sun et al. (2011).

A second approach to achieving computational feasibility for large spatial datasets is

through low-rank models. These models include a component that can be written as a linear

combination of spatial basis functions (hereafter referred to as an SBF component),

ν(·) =
r∑
j=1

bj(·)ηj = b(·)′η, (4.1)

where η|K ∼ Nr(0,K), and the number of basis functions, r, is much smaller than the

number of observations, n. Many models that include an SBF component have been
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proposed (for a recent overview, see Wikle, 2010). The models differ in how the func-

tions in b(·) and the covariance matrix K are parameterized and estimated; for Bayesian

approaches, different prior distributions for K are possible. For discretized convolution

models (i.e., convolution models whose integrals are discretized; see, e.g., Higdon, 1998;

Calder, 2007; Lemos and Sansó, 2009), b(·) contains the convolution kernels, and K is

often assumed to be a multiple of the identity. Other authors view b(·) as a vector of fixed

basis functions. Examples of such functions include empirical orthogonal functions (e.g.

Mardia et al., 1998; Wikle and Cressie, 1999), equatorial normal modes (e.g., Wikle et al.,

2001), Fourier basis functions (e.g., Xu et al., 2005), W-wavelets (e.g., Shi and Cressie,

2007; Cressie et al., 2010; Kang and Cressie, 2011), and bisquare functions (e.g., Cressie

and Johannesson, 2008; Chapters 2 and 3). If the basis functions used are not orthogo-

nal, there is no obvious reason why the covariance matrix K should be assumed diagonal

(Cressie and Johannesson, 2008). Kang and Cressie (2011) propose a prior distribution for

non-orthogonal basis functions and nondiagonal K. The prior takes into account that their

wavelet basis functions are grouped into different spatial resolutions. Another way of spec-

ifying b(·) and K is through the so-called predictive process (Banerjee et al., 2008; Finley

et al., 2009; Banerjee et al., 2010). Here, both b(·) and K are chosen to approximate a true

“parent process,” for which a parametric correlation model is chosen. To our knowledge,

the effects of this approximation have not been fully investigated.

SBF models (4.1) allow for fast computation via the Sherman-Morrison-Woodbury for-

mula (Sherman and Morrison, 1950; Woodbury, 1950; Henderson and Searle, 1981), as is

made clear in Cressie and Johannesson (2006) and Shi and Cressie (2007). For general K,

they are also very flexible in that the covariance of an SBF component, namely b(·)′Kb(·),
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is not of traditional parametric form (such as, e.g., the Matérn covariance). The SBF covari-

ance structure can, for example, easily adapt to processes with negative correlations. This

flexibility, together with the fast computability, makes SBF components very well suited to

modeling medium-range to long-range spatial dependence.

By itself, (4.1) is typically too smooth to capture fine spatial scales of variability. A fine-

scale-variation (FSV) component, δ(·), added to ν(·) in (4.1), results in a model that Cressie

and Johannesson (2008) call the spatial random effects (SRE) model, namely b(·)′η+ δ(·).

In this chapter, our focus is on predicting the true process at observed and unobserved

spatial locations from a large number of incomplete observations made with measurement

error. A secondary interest is in a correct characterization of the covariance structure of the

process of interest (but not necessarily in estimation of individual parameters in the model).

We address the two challenges mentioned in the first paragraph (fast computation, together

with flexible, nonstationary modeling of covariance structure) with a fully Bayesian model

that combines the SBF component (4.1) (that allows for flexible modeling of medium-to-

long-range dependence via a set of spatial basis functions) with an FSV component (that

allows for modeling of short-range dependence). The resulting process that combines these

two components is a more general SRE model than hitherto presented, and it can capture

highly nonstationary spatial dependence at all scales.

One contribution of this chapter is the inclusion of a more general FSV component that

is spatially dependent. Due to the dimension reduction inherent in (4.1), SBF components

are typically not able to model “rough” (i.e., non-smooth) short-range dependence by them-

selves (see, e.g., Stein, 2008; Finley et al., 2009). Some efforts have been made to address

this problem (going back to Wikle and Cressie, 1999), but many of them only attempt to

remedy the underestimation of the variance (i.e., they do not correct for oversmoothing
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of short-range covariance structure) by including a spatially uncorrelated component FSV

component in the model (e.g., Cressie and Johannesson, 2008; Kang et al., 2009; Finley

et al., 2009). The combination of an SBF component and a spatially dependent FSV com-

ponent has been considered previously by Wikle and Cressie (1999), Berliner et al. (2000),

Wikle et al. (2001), Stein (2008), and Kang et al. (2010), in specific circumstances.

In this chapter, we propose to use a tapered covariance for the FSV component be-

cause of its computational advantages, and we generalize existing tapering approaches (see

above) by allowing the underlying covariance function to be nonstationary. To facilitate

modeling on the entire globe, we extend a general class of nonstationary covariance func-

tions for Rd (Stein, 2005; Paciorek and Schervish, 2006) to the sphere (see Section 4.3.2

for more details).

For the SBF component, we make inference on unknowns b(·), η, and K in (4.1).

This Bayesian source separation task (see, e.g., Knuth, 2005), where both the “source sig-

nal” η and the mixing coefficients b(·) have to be estimated from a set of observations,

can be achieved by putting a strong prior on both components. This has been attempted

in the context of discretized-convolution models by Lemos and Sansó (2009), who infer

(spatially varying) parameters determining the shapes of their kernels. Lopes et al. (2008)

also consider a model of the form (4.1) where both b(·) and η are random, but as each

basis function is itself a Gaussian process, their approach offers no computational advan-

tage for large spatial datasets. Our prior model for the SBF component is motivated by

the predictive-process approach given by Banerjee et al. (2008), where the true (“parent”)

process is approximated with what is essentially a model of the form (4.1). This provides a

natural way of inferring the shapes of the basis functions in a Bayesian framework, where
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the parameters determining the correlation structure of the parent process are assumed to

be random.

Then, conditional on the correlation structure of the parent process, Banerjee et al.

(2008) consider the matrix K to be fixed. Here, we don’t consider the parent process to be

the truth, and we assume K to be random and distributed a priori according to an inverse-

Wishart distribution whose mean is determined by the correlation structure of the parent

process. This results in more flexible modeling of long-range dependence that can include

negative correlations for the SBF component (induced by the random elements of K), even

if the covariance function of the parent process is nonnegative (see Section 4.2.3 for more

details). In addition to allowing the shapes of the basis functions to be estimated, our model

also allows for their number and locations to be random.

Posterior inference for our model is extremely fast, even for very large datasets. We

take advantage of sparse-matrix operations to ensure fast computation, and we employ the

marginalization strategies described in van Dyk and Park (2008) to achieve satisfactory

mixing of the Markov chain. To estimate the number of basis functions, we make use of a

reversible-jump Markov chain Monte Carlo (RJMCMC) algorithm (Green, 1995).

This chapter is organized as follows: In Section 4.2, we introduce our spatial model

that combines a low-dimensional SBF component and a tapered FSV component. In Sec-

tion 4.3, we give details on the covariance functions used in Section 4.2. We describe

how a process can be modeled on a sphere (such as the globe), and we give prior distribu-

tions for the spatially varying parameters that determine the covariance functions. Section

4.4 deals with posterior inference on the unknown quantities in the model via reversible

jump Markov chain Monte Carlo (RJMCMC) sampling. We discuss prediction of the true

process at observed and unobserved locations, and we also discuss computational issues
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related to the analysis of very large datasets. We then conduct a simulation study in Sec-

tion 4.5, where our model is compared to several other models conceived for very large

spatial datasets, plus a stationary “baseline” model. In Section 4.6, the model is applied

to a real-world dataset of global CO2 measurements obtained by a satellite remote-sensing

instrument. Conclusions and avenues of further research are given in Section 4.7.

4.2 The Model

4.2.1 Model Overview

Let {Y (s) : s ∈ D}, or Y (·), denote the process of interest on a spatial domain D.

Suppose we have n observations on Y (·), namely Z(s1), . . . , Z(sn), where n is very large,

and we assume additive measurement error:

Z(si) := Y (si) + ε(si), i = 1, . . . , n, (4.2)

where ε(·)|vε(·) ∼ N(0, vε(·)) independent of Y (·) and independent across space (given

vε(·)). The function vε(·) is assumed to be a known function up to a (possibly random)

parameter vector θε. For simplicity and to ensure identifiability, throughout this chapter

we will assume vε(·) ≡ σ2
ε (i.e., θε only consists of one parameter, σ2

ε ). It should be

noted that our approach is easily generalized to vε(·) = σ2
ε v(·), for v(·) a known function.

The standard deviation, σε, of the measurement error can either be assumed known (from

instrument experiments, or estimated from the data by extrapolating the variogram to the

origin as described in Kang et al., 2009), or it can be assumed to have a prior distribution,

such as σε ∼ logN(µσε , σ
2
σε), where µσε and σ2

σε are fixed hyperparameters.

We model Y (·) as the sum of three components,

Y (·) := µ(·) + ν(·) + δ(·), (4.3)
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where µ(·) is the large-scale trend, ν(·) describes the medium-range to long-range spatial

dependence, and the fine-scale variation δ(·) accounts for local (or short-range) depen-

dence.

The trend component will be assumed to be a linear combination of p known spatial

trend terms (including an intercept),

µ(·) := x(·)′β. (4.4)

In (4.4), x(·) is a p-dimensional vector of covariates, and the prior on β is assumed uni-

form on Rp (i.e., distributed according to an improper multivariate normal distribution with

infinite variances).

4.2.2 The Fine-Scale-Variation (FSV) Component

The fine-scale-variation component, δ(·), in (4.3) will be assumed to be a Gaussian

process with mean zero and a compactly supported covariance function (see, e.g., Gneiting,

2002), so that its covariance matrix (when evaluated at a large number of locations) is sparse

and hence quickly invertible. Given two vectors of parameters, θσ and θδ, the fine-scale

covariance function is assumed to be of the form,

Cδ(s1, s2) := cov(δ(s1), δ(s2)|θσ,θδ) = σδ(s1)σδ(s2)ρδ(s1, s2), s1, s2 ∈ D, (4.5)

where the function σδ : D → R+
0 is determined by θσ, and ρδ(·, ·) is a compactly supported,

nonstationary correlation function determined by θδ. More details and specific choices for

the correlation function and its parameters are given in Section 4.3.

As discussed in Section 4.1, an FSV term is an important component in a reduced-

dimensional spatial model. It can “correct” for underestimation of the variance and the non-

smooth short-range correlation structure of the true process Y (·). Computational issues
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related to posterior inference on the FSV component for very large datasets are discussed

in Sections 4.4.4 and 4.4.5.

4.2.3 The Spatial-Basis-Function (SBF) Component

The component describing the medium-range to long-range spatial dependence is as-

sumed to be of the form (4.1), conditional on a set of parameters described later.

To motivate the prior distribution of b(·) and K, consider a non-dimension-reduced,

mean-zero Gaussian process ν̃(·), referred to as the “parent process” by Banerjee et al.

(2008). In contrast to Banerjee et al. (2008), we do not assume ν̃(·) to be the true process,

nor do we assume our SBF component to be its approximation; we merely use the parent

process to motivate a prior distribution for our (more flexible) SBF component. Assume

that, given vectors of parameters θσ and θν̃ , the parent process ν̃(·) has covariance,

Cν̃(s1, s2) := cov(ν̃(s1), ν̃(s2)|θσ,θν̃) = σν̃(s1)σν̃(s2)ρν̃(s1, s2), s1, s2 ∈ D, (4.6)

where the function σν̃(·) : D → R+
0 is determined by parameters θσ, and ρν(·, ·) is a com-

pactly supported, nonstationary correlation function that is relatively smooth (i.e., making

it suitable to describe mainly medium-range to long-range dependence) and determined by

parameters θν̃ . The choice of the covariance function and its parameters is discussed in

Section 4.3.

Given a covariance function as in (4.6), the predictive-process (PP) approach of Baner-

jee et al. (2008) is a natural reduced-dimensional approximation to ν̃(·). The PP is obtained

by conditioning on the parent process at a number of reference locations or “centers,”

C := {c1, . . . , cr}, (4.7)

such that νPP(·) := E(ν̃(·)|ν̃(C),θσ,θν̃), where ν̃(C) := [ν̃(c1), . . . , ν̃(cr)]
′. Conditional

on θσ, θν̃ , and C, the PP can be written as a linear combination of basis functions in the
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form (4.1), as follows:

νPP(s) := E(ν̃(s)|ν̃(C),θσ,θν̃)

= cov(ν̃(s), ν̃(C)|θσ,θν̃)
(
var(ν̃(C)|θσ,θν̃)

)−1
ν̃(C)

= σν̃(s)
(
ρν̃(s, c1), . . . , ρν̃(s, cr)

)
Dν̃

(
Dν̃Rν̃Dν̃

)−1
ν̃(C)

=: bPP(s)′ηPP,

(4.8)

where

Dν̃ := diag(σν̃(c1), . . . , σν̃(cr))

Rν̃ := (ρν̃(ci, cj))i,j=1,...,r

bPP(·) := σν̃(·)
(
ρν̃(·, c1), . . . , ρν̃(·, cr)

)′
ηPP := R−1ν̃ D−1ν̃ ν̃(C).

(4.9)

Since var(ν̃(C)|θσ,θν̃) = Dν̃Rν̃Dν̃ , then var(ηPP|θν̃) = R−1ν̃ . That is, ηPP|θν̃ ∼ Nr(0,KPP),

where KPP := R−1ν̃ .

Thus, once we have specified a covariance structure of the form (4.6) for a parent pro-

cess ν̃(·), the PP approach provides us with a relatively simple and intuitive way of obtain-

ing a low-dimensional (specifically, r-dimensional) SBF approximation. In what follows,

we shall use this idea to motivate a prior distribution for the SBF component.

In this research, we are interested in processes on very large domains, such as the globe,

where stationary parametric models (e.g., the Matérn model) for the correlation function

in (4.6) are not flexible enough to describe properly the medium-range to long-range de-

pendence of the process, even if the correlation model is allowed to exhibit nonstationarity

through spatially varying parameters, as described later in Section 4.3.1. Therefore, we

generalize the PP approach as follows.

Conditional on parameters θσ, θν̃ , and the centers C, we assume

ν(·) = b(·)′η, (4.10)
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where η|K ∼ Nr(0,K), and K and b(·) depend on θσ, θν̃ , and C. In our model, we would

like the basis functions to be normalized to have a maximum of one; we define them to be,

b(·) :=
(
ρν̃(·, c1), . . . , ρν̃(·, cr)

)′
. (4.11)

Instead of fixing K = R−1ν̃ given θν̃ (as in the PP approach), we assume that the co-

variance function of the parent process, Cν(·, ·), determines the prior mean of K, namely

E(K|θσ,θν̃ , C) = Dν̃R
−1
ν̃ Dν̃ , where Dν̃ is defined in (4.9).

When comparing our model for b(·) and K to the PP assumptions in (4.9), we have

replaced bPP(·) in (4.9) by,

(
σν̃(c1)ρν̃(·, c1), . . . , σν̃(cr)ρν̃(·, cr)

)′
= Dν̃

(
ρν̃(·, c1), . . . , ρν̃(·, cr)

)′
.

and then we “moved” the standard deviation σν̃(·), in form of the diagonal matrix Dν̃ , from

the basis functions to (the conditional mean of) K. The effect of this change should be

small, as long as the basis functions have compact support and σν̃(·) is assumed to vary

relatively smoothly over space. And since the form of bPP(·) in (4.9) is used only for mo-

tivation, there is no loss and much to be gained: First, in our model the spatially varying

parameter σν̃(·) is not able to modify the basis functions arbitrarily at each point in space.

Second, standardized basis functions allow for easier calibration of prior distributions, and

they tie in well with previous work in this area (e.g., Cressie and Johannesson, 2008; Chap-

ters 2 and 3) and with the literature on discretized kernel convolutions (e.g. Lemos and

Sansó, 2009). Third, “pulling” Dν̃ into K makes K a covariance matrix (instead of an

inverse correlation matrix), which provides us with the following conjugate prior for K:

We assume the complete (conditional) prior distribution of K to be,

K|θσ,θν̃ , C ∼ IWr(M, u), (4.12)
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where IWr(M, u) denotes an inverse Wishart distribution; the first parameter, M :=

(u − 1)Dν̃R
−1
ν̃ Dν̃ , depends implicitly on θσ, θν̃ and C; and u is a (fixed) hyperparam-

eter greater than 1 that determines the variability of the prior distribution of K around its

mean, E(K|θσ,θν̃ , C) = Dν̃R
−1
ν̃ Dν̃ . Now, u can be interpreted as a gauge of our prior

belief in how close Cν(·, ·), the true process’ covariance function, is to Cν̃(·, ·) in (4.6).

If we think that Cν̃(·, ·) is indeed correct, we can set u to a very large value, so that the

distribution of K is very “tight” around DνR
−1Dν . If we have rather little faith in Cν̃(·, ·),

we can set u = 2, which essentially weights the data (through η) and the covariance model

Cν̃(·, ·) equally in the full conditional distribution of K (see (4.23) below).

For any r × r positive-definite matrix K, the probability density function (PDF) of K

obtained from (4.12) is denoted as IWr(K|M, u) and given by,

IWr(K|M, u) =
2−r(r+u)/2

Γr((r + u)/2)

|M|(r+u)/2

|K|(2r+u+1)/2
exp

{
−1

2
trace(MK−1)

}
,

with mean M/(u − 1), and Γr(·) is the multivariate gamma function (e.g., James, 1964).

We will need this formula when constructing the full conditional distributions in Section

4.4.

The general SBF component (as described, e.g., by Cressie and Johannesson, 2008) can

be used with any arbitrarily chosen basis functions. However, our specific SBF model here

is motivated by a “parent process” that must have a valid covariance function. Thus, the

choice of basis functions for our model here is obtained directly from a valid correlation

function on D (see (4.9)), and so it should be noted that in (4.10) we cannot just choose

any basis functions (e.g., bisquare functions are not positive-definite, and would be used in

(4.10)). On the other hand, the motivation above provides us with a natural center for the

prior distribution of K, as in (4.12). An informative prior of this kind can be quite helpful
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in spatial-only analyses where no repeated measurements are available and estimation of a

general r × r covariance matrix K might be problematic.

4.2.4 The Prior Distribution of the Basis-Function Centers, C

In what follows, we avoid requiring the basis-function centers C in (4.7) to be fixed

and pre-specified (as in Banerjee et al., 2008), by putting a prior distribution on both the

number, r, and the locations of the centers. This approach is inspired by Holmes and

Mallick (2001), who propose a piecewise linear spline regression model, for which both

the number and the locations of the splines are random.

As discussed later at the end of Section 4.4.3, it is not necessary to strongly penalize

large r through the prior on C, and so we assume that the prior for C has “density,”

[C] ∝ ζψξ(C).

which is similar to a Strauss process (e.g., Møller and Waagepetersen, 2004, p. 85). The

locations of the centers are penalized for being too close to each other through the term,

ψξ(C) =
∑
i 6=j

I(‖ci − cj‖ ≤ ξ), (4.13)

where ζ ∈ [0, 1] determines the severity of the penalization, and ξ is the distance up to

which penalization occurs. Because of the FSV component in the SRE model, two centers

in the SBF component that are very close to each other are likely not of much more use than

one center at that location. Moreover, two close centers can result in numerical instability

when inverting R, because the correlation between the two centers will be very close to

one. Therefore, we set to zero the probability of two centers being very close in space, by

setting the penalization parameter ζ = 0 and defining 00 = 1 and 0x = 0 for x > 0.

Our prior for the set of centers, C, therefore follows an inhibitory point process that is

more regular than a homogeneous Poisson process, because no pair of centers is allowed to
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have a distance of less than or equal to ξ. In our experience, a good value for the distance

ξ is 10% of the the support of the covariance function of ν̃(·) in (4.6).

4.3 Covariance Functions for the SBF and FSV Components

In this section, we describe the covariance functions that will be used in our model for

the functions Cδ(·, ·) in (4.5) and Cν̃(·, ·) in (4.6). In subsection 4.3.1, we will recapitulate a

class of nonstationary covariance functions valid in Rd, d = 1, 2, . . ., proposed by Paciorek

and Schervish (2006) and extended in an unpublished technical report by Stein (2005). We

then combine them with a tapering function (as suggested by Gneiting, 2002) to obtain a

class of covariance functions with compact support . In subsection 4.3.2, we discuss how

this class of models can be adapted for use in Cδ(·, ·) and Cν̃(·, ·) when the domain, D, is a

sphere (the globe). Finally, in subsection 4.3.3, we describe our prior distributions for the

parameters in the covariance models.

4.3.1 A Class of Compactly Supported, Nonstationary Covariance Func-
tions

For domain, D = Rd, d = 1, 2, . . ., many valid isotropic correlation functions are

available. In this chapter, we need the Matérn correlation function (Stein, 1999, p. 12),

given by,

Mυ(h) = (2h
√
υ)υKυ(2h

√
υ)21−υ/Γ(υ), h ≥ 0, (4.14)

where Kυ(·) is the modified Bessel function of order υ > 0. The smoothness parameter υ

determines the differentiability of (4.14) at the origin (and therefore the smoothness of the

corresponding process).

If h(s1, s2) is defined as the Euclidean distance between two locations s1, s2 ∈ Rd, then

Mυ(h(s1, s2)) is a valid, stationary, and isotropic correlation function. A nonstationary
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generalization of this function (Paciorek and Schervish, 2006) can be obtained by defining

a new, spatially varying Mahalanobis-like distance,

q(s1, s2) = {2(s1 − s2)
′(Σ(s1) + Σ(s2))

−1(s1 − s2)}1/2, (4.15)

where Σ(s) is a d × d positive-definite matrix describing the (local) geometric anisotropy

at location s. Specific parameterizations of this matrix are discussed in the next subsection.

Using this spatially varying distance (4.15), a nonstationary Matérn covariance function is

given by,

M̃(s1, s2) = c(s1, s2)M(υ(s1)+υ(s2))/2(q(s1, s2)). (4.16)

If the normalization term is chosen as,

c(s1, s2) := |Σ(s1)|1/4|Σ(s2)|1/4|(Σ(s1) + Σ(s2))/2|−1/2, (4.17)

then M̃(s, s) = 1 and (4.16) is a valid correlation function (Paciorek and Schervish, 2006;

Stein, 2005). This nonstationary Matérn class is very flexible, in that it allows for a spatially

varying range and geometric anisotropy through the matrix Σ(·), and the smoothness of the

corresponding process at location s is determined by υ(s), where υ : D → R+.

Unfortunately, (4.16) does not satisfy our requirement of compact support for Cδ(·, ·)

and Cν̃(·, ·), stated below (4.5) and (4.6), respectively. However, compact support can

easily be achieved by multiplying (4.16) with a valid correlation model that does exhibit

compact support (Gneiting, 2002). Specifically, we will use Kanter’s function (Kanter,

1997) defined on [0,∞):

T (x) = (1− x)
sin(2πx)

2πx
+

1− cos(2πx)

2π2x
, for x ∈ (0, 1);

T (x) = 0, for x ≥ 1; and we set T (0) = 1. The function T (‖h‖) is positive-definite for

h ∈ R3, it is twice differentiable at the origin, and it minimizes the curvature at 0 within
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Figure 4.1: Kanter’s function (in red) and the correlation model ρ(0, h) in (4.18) for L = 1
(in blue). Here, both υ(·) in (4.18) and Σ(·) in (4.15) are held constant, and Σ is a 1 × 1
matrix (i.e., a scalar), denoted Σ. Left panel: υ = 0.5 and Σ = 0.1, 0.6, 2, 10 (from left to
right). Right panel: Σ = 2, and υ = 0.3, 0.5, 1, 2 (from left to right).

the class of all compactly supported, valid (in R3) correlation functions (Gneiting, 2002).

Kanter’s function is shown in Figure 4.1 (in red).

In summary, conditional on a set of hyperparameters (discussed in Section 4.3.3 below),

we have defined a nonstationary, compactly supported correlation function in R3 of the

form,

ρ(s1, s2) = c(s1, s2)M(υ(s1)+υ(s2))/2(q(s1, s2)) T (‖s1 − s2‖/L), s1, s2 ∈ R3, (4.18)

where T (x) = 0 for x ≥ 1, and so L is the tapering length (i.e., ρ(s1, s2) is zero if the

distance between s1 and s2 is greater than L). The correlation function (4.18) will be used

in both (4.5) and (4.6)
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4.3.2 Extending the Class of Nonstationary Covariance Functions to
the Sphere

Let S2 denote the unit 2-sphere (in R3). Due to the curvature of S2, finding a valid cor-

relation function for a process observed on the globe is not trivial (e.g., Jones, 1963). Das

(2000) obtains several such functions in closed form, but these covariance functions pro-

duce realizations that are unrealistically smooth for most applications (Stein, 1999). Here,

we follow instead the idea of Yaglom (1987), by restricting a valid covariance function in

R3 to S2 and using chordal distance as a measure of distance (e.g., Banerjee, 2005). Of

course, great-arc distance is the more relevant distance for processes that reside on the sur-

face of the globe, but the approach nonetheless works well here, because the covariance

functions Cδ(·, ·) and Cν̃(·, ·) in (4.5) and (4.6), respectively, are constructed to be com-

pactly supported, and so they only describe dependence for relatively short distances, for

which the difference between chordal distance and great-arc distance is small. Specifically,

the relationship between great-arc distance and chordal distance on S2 is given by,

ch = 2 sin(ga/2),

where ch is the chordal distance between two points on S2, and ga is the corresponding

great-arc distance. Because sin(x) ≈ x for x ∈ [0, 0.5], two points on the sphere that are

less than the sphere’s radius (here, 1) apart have approximately equal chordal distance and

great-arc distance. We will respect this when choosing the compact supports of Cδ(·, ·) in

(4.5) and Cν̃(·, ·) in (4.6).

Now, to apply the nonstationary correlation model in (4.18) to points on S2, we first

need to convert the longitude-latitude coordinates to (x, y, z)-coordinates of a three-dimensional

Cartesian coordinate system. Without loss of generality, assume that S2 is centered at the

origin, (0, 0, 0), and that the intersection of the prime meridian and the equator, c := (0, 0)
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Figure 4.2: The part of a unit sphere centered at the origin that lies in the first octant of the
Cartesian coordinate system, where all coefficients are positive. The origin and the point c
referred to in the text are shown in blue.

(0◦ longitude, 0◦ latitude), is located on the x-axis (i.e., it has Euclidean coordinates c̃ :=

(1, 0, 0)). The part of such a sphere that lies in the first (positive) octant of a Cartesian

coordinate system is shown for illustration in Figure 4.2. The (x, y, z)-coordinates of any

point s = (s1, s2) with longitude s1 and latitude s2 on S2 are then given by,

x = cos(s2) cos(s1)

y = cos(s2) sin(s1)

z = sin(s2).

The more challenging task in generalizing (4.18) to the sphere is finding a sensible

parameterization for the anisotropy matrix Σ(·). For d-dimensional Euclidean space, we

can parameterize this matrix using d scaling parameters and d− 1 rotation parameters (see,

e.g., Banerjee et al., 2008). But while S2 “lives” in R3, the surface of S2 is really (locally)
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an approximately two-dimensional space at any point s ∈ S2. This means that we would

really only want to use two local scaling parameters and one local rotation parameter.

To parameterize Σ(·) using these three parameters, consider again the (Euclidean) ref-

erence point c̃ := (1, 0, 0) with spherical coordinates c = (0, 0). When we only con-

sider a small area centered at c, the sphere in this area is essentially flat and can be de-

scribed by its y- and z-coordinates (see Figure 4.2). We therefore introduce two scaling

parameters, γ1(c) > 0 and γ2(c) > 0, that describe the correlation length in the y- and

z-directions, respectively. Defining a diagonal scaling matrix, D(γ) := diag{1, γ1, γ2},

the local scaling matrix at the reference point c̃ (spherical coordinates c) with parameters

γ(c) := (γ1(c), γ2(c))′ is given by,

D(γ(c)) := diag{1, γ1(c), γ2(c)}.

We introduce a rotation parameter, κ(c) ∈ [0, π/2), which rotates the (y, z)-coordinate

system at c̃ about the x-axis through the rotation matrix Rx(κ(c)). This rotation matrix is

defined for a general rotation parameter κ, as

Rx(κ) :=

 1 0 0
0 cosκ − sinκ
0 sinκ cosκ

 ,

The local anisotropy matrix at the reference point c̃ (spherical coordinates c) is then given

by,

Σ̃(c) := Rx(κ(c))D(γ(c))Rx(κ(c))′. (4.19)

Now let s be an arbitrary location on S2, with longitude s1 and latitude s2, and corre-

sponding scaling parameters γ1(s) and γ2(s) and rotation parameter κ(s). The functions

γj : S2 → R+, j = 1, 2, and κ : S2 → [0, π/2) are described further in Subsection 4.3.3

below. Let c̃ and s̃ be two vectors of the Euclidean coordinates corresponding to the spher-

ical locations c = (0, 0) and s = (s1, s2), respectively. Let Ry(θ) and Rz(θ) be matrices
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that rotate a vector in R3 by angle θ about the y-axis and the z-axis, respectively. The two

rotation matrices are given by,

Ry(θ) :=

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 and Rz(θ) :=

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

To extend the anisotropy matrix in (4.19) from our reference point, c, to an arbitrary point,

s ∈ S2, we can simply rotate s̃ about the y-axis and z-axis to the point c̃ by writing

c̃ = Ry(−s2)Rz(−s1)s̃. We then combine these rotation matrices with the anisotropy

matrix for c in (4.19) to obtain a quadratic form as in (4.15). Specifically,

c̃′Σ̃(s)−1c̃ =
(
Ry(−s2)Rz(−s1) s̃

)′
Σ̃(s)−1

(
Ry(−s2)Rz(−s1) s̃

)
=: s̃′Σ(s)−1s̃,

where Σ̃(s) := Rx(κ(s))D(γ(s))Rx(κ(s))′, and

Σ(s) := Rz(s1)Ry(s2)Σ̃(s)Ry(s2)
′Rz(s1)

′

is the anisotropy matrix that will be used in (4.15) and (4.17) for spherical domains (i.e.,

when D ⊆ S2).

4.3.3 The Prior Distributions of the Parameters in the Covariance
Models

In the previous two subsections, we have introduced a number of spatially varying

parameters for the nonstationary correlation function (4.18) that will be used for the FSV

component, δ(·), in (4.5) and the parent process, ν̃(·), of the SBF component in (4.6).

Specifically, we have to specify a model for the smoothness parameter, υ(·), the scaling

parameter(s), γj(·) (hereafter referred to generically as γ(·)), and the rotation parameter,

κ(·), for each of the two components. In addition, we have to specify the standard deviation

parameter, σ(·), used in (4.5) and (4.6), and a tapering length, L, used in (4.18), for each of

the two components.
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Both tapering lengths will be assumed fixed. The tapering length for the FSV com-

ponent, Lδ, is mainly determined by computational feasibility (see Section 4.4.5 for more

details). For the SBF component, we would still like to choose a finite tapering length,

Lν . For the sphere, this is due to our use of chordal distance as a measure of distance (see

previous subsection). However, even in Euclidean space, where such considerations play

no role, it is known from the wavelet literature (e.g., Daubechies, 1992) that compact sup-

port of the basis functions (which is determined by Lν) is crucial for local adaptability to a

highly variable function (or process).

For the remaining parameters, we first introduce a general prior model, and then give

specifics for the covariance parameters of the two components, δ(·) and ν(·), in our model.

Let θ(·) be a generic notation for one of the spatially varying parameters used in the

covariance functions, as listed in the first two columns of Table 4.1. We assume that all

covariance parameters are of the form,

θ(·) = gθ(θ̃ + bθ(·)′ηθ), (4.20)

where θ̃ ∼ N(µθ, σ
2
θ), ηθ ∼ Nrθ(0, τ

2
θ Irθ), and bθ(·) is an rθ-dimensional vector of fixed

basis functions, each normalized to [0, 1]. The functions gθ(·) are transformations from R

to the range of the function θ(·). Our specific choices are given in Table 4.1. Note that

the smoothness parameter υ(·) can theoretically take on any positive value, but we restrict

it to the interval [0, 2], as “the data can rarely inform about smoothness of higher orders”

(Banerjee et al., 2008).

In the rest of this chapter, the basis functions, bθ(·), that describe the parameters in

(4.20), are taken to be the same for all parameters. Any choice of basis functions is possible

but, assuming that the covariance parameters vary smoothly over space, we recommend

choosing a relatively small number of bisquare functions with a relatively large (fixed)

101



Table 4.1: Spatially varying covariance parameters (generically denoted by θ(·)), together
with their ranges, and the corresponding transformations, gθ : R → range(θ); see the text
for details.

Parameter Symbol θ(·) Range of θ Transformation gθ(·)
Standard deviation σ(·) R+ exp(·)
Smoothness υ(·) [0, 2] 2Φ(·)
Scale γ(·) R+ exp(·)
Rotation angle κ(·) [0, π/2] (π/2)Φ(·)

radius. Specific choices depend on the domain D and are given in Sections 4.5 and 4.6.

To achieve identifiability, we also set τ 2θ in the prior distribution of ηθ, given below (4.20),

to be a fairly small value; in this chapter, we use the value τ 2θ = (0.25)2 for all spatially

varying covariance parameters. In Chapter 3, we show that this value roughly results in

1/2 and 2 as the lower and upper endpoints, respectively, of a 95% credible interval for the

ratio θ(s1)/θ(s2), if s1 and s2 are two distance locations in the spatial domain D.

This completes the general description of our models for spatially varying covariance

parameters for the nonstationary Matérn covariance function given by (4.18). Recall that

there are two covariance models in our model, Cν̃(·, ·) in (4.6), and Cδ(·, ·) in (4.5), each

with its own set of standard-deviation, smoothness, scale, and rotation parameters. The

parameter models for the SBF component and the FSV component are both given by (4.20)

except that, for the former all quantities will have a subscript ν̃, and for the latter all quan-

tities will have a subscript δ. All that remains is a specification of the hyperparameters

determining the prior distributions below (4.20) for each set of parameters. Some parame-

ters will be fixed at sensible values to improve mixing and identifiability.

The SBF component, ν(·), only models smooth variation, and so we fix the smoothness

parameter υν̃(·) ≡ 2 (i.e., we fix υ̃ν̃ = ∞ and set τ 2υν̃ = 0 in the prior distributions below
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(4.20)) for the correlation function, ρν̃(·, ·), of its parent process. For the rotation angle,

κν̃(·), we choose an approximate uniform distribution on [0, π/2], which is attained by set-

ting the hyperparameters, µκν̃ = 0 and σ2
κν̃

= 1 (if τ 2κν̃ were zero, the prior would be exactly

uniform). The hyperparameters of γν̃(·) should reflect prior beliefs about the correlation

lengths for the process of interest, which will depend on the application and the size of the

domainD; we discuss specific choices in Sections 4.5 and 4.6. Ignoring the parameters that

have been fixed, the parameters determining the spatially varying correlation parameters of

the parent process of the SBF component through the model (4.20), will be collected in a

vector denoted by θν̃ := (γ̃ν̃ ,η
′
γν̃
, κ̃ν̃ ,η

′
κν̃

)′.

For the correlation function, ρδ(·, ·), of the FSV component, we fix γδ(·) ≡ 2Lδ (to

avoid having to make inference on too many parameters), but we let the smoothness pa-

rameter, νδ(·), follow an approximate uniform distribution on [0, 2], which is attained for

our model of the form (4.20) by specifying the hyperparameters as µυδ = 0 and σ2
υδ

= 1

(again, the prior would be exactly uniform if τ 2υδ were zero). The resulting correlation func-

tion is illustrated for different smoothness parameters in the right panel of Figure 4.1. If the

domain D is in two- or three-dimensional space, there will be multiple scale parameters,

γδ(·), and one or more rotation parameters, κδ(·). However, since the scale parameters for

δ(·) are all fixed at 2, the rotation does not matter, and we simply set the rotation parameters

equal to zero; that is, κδ(·) ≡ 0. The parameters determining the correlation function of

δ(·) through (4.20) are therefore θδ := (υ̃δ,η
′
υδ

)′.

Now for the standard deviation parameters, σν̃(·) and σδ(·), we make use of an insight

by Finley et al. (2009). The FSV component’s role is in part to correct for the underes-

timation of the variability in the process that results from the dimension reduction in the

SBF component. The FSV component is important (i.e., its variance should be large) in
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areas where the SBF component only picks up a small part of the overall variance of the

process (around its mean, µ(·)), and the FSV variance should be small at locations close

to a basis-function center of the SBF component. We let σν̃(·) vary as described in (4.20)

and in Table 4.1 (specific choices for its hyperparameters are discussed in Sections 4.5 and

4.6). Given σν̃(·), the variance of the predictive process (4.8) at location s (conditional on

θν̃ and C) is given by,

(σνPP(·))2 := var(νPP(·)|σν̃(·),θν̃ , C) = (σν̃(·))2b(·)′R−1ν̃ b(·).

It makes sense to let the standard deviation of the FSV component, σδ(·), be determined by

the difference between the variance of the parent process, (σν̃(·))2, and the variance of the

predictive process, (σνPP(·))2, such that,

σδ(·) =
√

(σν̃(·))2 − (σνPP(·))2 = σν̃(·)
√

1− b(·)′R−1b(·). (4.21)

From the law of total variance and the definition of the predictive process in Section 4.2.3,

we have,

(σν(·))2 − (σνPP(·))2 = var(ν̃(·))− var(E(ν̃(·)|ν̃(C))) = E(var(ν̃(·)|ν̃(C))) ≥ 0,

and so our model for σδ(·) is valid. Of course, our model for ν is different from the pre-

dictive process, and so it seems natural to replace (σνPP(·))2 = var(νPP(·)|σν̃(·),θν̃ , C) in

(4.21) by var(ν(·)|σν̃(·),θν̃ , C), where ν(·) is given by (4.10)–(4.12). However, the law of

total variance cannot be applied as above, and this choice can result in an invalid σδ(·).

In summary, the spatially varying parameters σδ(·) and σν̃(·) are both determined by

θσ := (σ̃ν̃ ,η
′
σν̃

)′ through (4.20) and (4.21).
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4.4 Posterior Inference

4.4.1 Summary of the Hierarchical Model

We begin by writing the model developed in Sections 4.2 and 4.3 in vector notation.

The data model is given by,

Z|Y,θε ∼ Nn(Y,Vε),

where Z := (Z(s1), . . . , Z(sn))′, Y := (Y (s1), . . . , Y (sn))′, and Vε := diag(vε(s1), . . . , vε(sn))′.

The process model is given by,

Y|β,η, C,θσ,θν̃ ,θδ ∼ Nn(Xβ + Bη,Vδ),

and η|K ∼ Nr(0,K), where the i-th row of matrix X is given by x(si); the n × r

matrix B has (i, j)-th element (ρν(si, cj)) and is determined by θν̃ and C; and Vδ :=

(Cδ(si, sj))i,j=1,...,n is the sparse n×n covariance matrix of the FSV vector δ := (δ(s1), . . . , δ(sn))′.

We further define V := Vδ + Vε.

The parameter model consists of the prior distributions of the parameters θε and β (see

Section 4.2.1), K (see (4.12)), C (Section 4.2.4), and θσ, θν̃ , and θδ (Section 4.3.3). All

parameters are assumed to be a priori independent, unless explicitly stated otherwise.

4.4.2 Overview of the MCMC Sampler

For posterior inference, we will employ a reversible jump Markov chain Monte Carlo

(RJMCMC) algorithm (Green, 1995) based on a Gibbs sampler (Geman and Geman, 1984)

with some Metropolis-Hastings (MH) steps (Metropolis et al., 1953; Hastings, 1970). In

what is to follow, [A] will denote the distribution of a random variable A, [A|B] will denote

the conditional distribution of A given B, and [A| · ] will denote the full conditional distri-

bution of A, which is defined as the conditional distribution of A given the data and given
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all other unknowns in the model. Sometimes we will emphasize dependence of a matrix

on a set of parameters by placing the parameters in parentheses; for example, the matrix of

basis functions depends on θν̃ , and so we sometimes write, B(θν̃), for clarity.

Let Ω := {β,η,K, C,θσ,θν̃ ,θδ,θε} be the set of the unknown, random quantities

in the model (except for δ(·); see below). The joint distribution of the data, Z, and the

unknowns, Ω, is given by,

[Z,Ω] = [Z|Ω][Ω] = [Z|Ω][β][η|K][K|θσ,θν̃ , C][C][θσ][θν̃ ][θδ][θε], (4.22)

and all distributions on the right-hand side are described or referenced in the previous

subsection. The full conditional distributions needed for the updates in the Gibbs sampler

are proportional to the joint distribution in (4.22).

Due to the large number of variables in Ω, it is imperative to ensure good mixing of

the MCMC. We will “integrate out” (equivalently, “marginalize over”) quantities where

possible and where it is computationally feasible, according to the general recipe provided

by van Dyk and Park (2008). Simply speaking, if we have two (generic) random vari-

ables A and B, and data Z, mixing of the MCMC can often be improved if we replace the

standard Gibbs update of A from [A|B,Z], by instead sampling from [A|Z] (i.e., we have

integrated out B here). Convergence of the resulting MCMC to the joint posterior distri-

bution, [A,B|Z], is still guaranteed as long as we do not condition on B in any subsequent

update during the same MCMC iteration before we have updated B from [B|A,Z].

In our case, notice that δ(·) is not included in Ω. Hence, we will integrate δ(·) out

of all updates in the main MCMC sampler, which improves mixing. Inference on δ(·) is

described separately in Section 4.4.4. For certain updates, we will also integrate out other

variables (e.g., η), as indicated below.

The MCMC sampler consists of the following steps:
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1. Sample β from its full conditional distribution,

[β| · ] = Np((X
′V−1X+σ−2β Ip)

−1(X′V−1(Z−Bη)+σ−2β µβ), (X′V−1X+σ−2β Ip)
−1)

2. Sample θσ using an MH step from,

[θσ|{Z,Ω}\{θσ,η}] ∝ [θσ] IWr(K|M(θσ), u)Nn(Z|Xβ,BKB′ + V(θσ))

3. Sample θν̃ using an MH step from,

[θν̃ |{Z,Ω}\{θν̃ ,η}] ∝ [θν̃ ] IWr(K|M(θν̃), u)Nn(Z|Xβ,B(θν̃)KB(θν̃)
′+V(θν̃)).

4. Sample θδ using an MH step from,

[θδ|{Z,Ω}\{θδ,η}] ∝ [θδ]Nn(Z|Xβ,BKB′ + V(θδ)).

5. Sometimes θε is known from measurement calibrations. If it is assumed random,

sample θε using an MH step from,

[θε|{Z,Ω}\{θε,η}] ∝ [θε]Nn(Z|Xβ,BKB′ + V(θε)).

6. Sample C and η jointly from [C,η|{Z,Ω}\{C,η,K}], as described below in Section

4.4.3.

7. Sample K from its full conditional distribution,

[K| · ] = IWr(M + ηη′, u+ 1), (4.23)

with mean (M+ηη′)/u. For example, for u = 2, we have E(K| · ) = (DνR
−1Dν +

ηη′)/2.
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8. Sample η from its full conditional distribution,

[η| · ] = Nr((B
′V−1B + K−1)−1B′V−1(z−Xβ), (B′V−1B + K−1)−1). (4.24)

If the elements of Ω are updated in this order, convergence of the MCMC to the joint

posterior distribution, [Ω|Z], is guaranteed (see van Dyk and Park, 2008, for more details).

4.4.3 Details on Sampling the Basis-Function Centers

The update for C is complicated due to the possible change of r, the reduced dimension;

the dimensions of η and K depend on r. We can integrate out one of the two, but not both.

Some experimenting has shown that higher acceptance rates can be achieved by integrating

out the higher-dimensional parameter of the two (i.e., K), and so we will produce a joint

reversible jump proposal for C and η.

We begin by proposing a change to the set C, which indexes all basis functions currently

in the model by their centers. We propose to do one of three possible actions, each with

probability 1/3: add a basis function, delete one of the basis functions, or move one of the

basis functions.

• To add a basis function, we draw a new center, cr+1, from a uniform distribution on

D, and let C∗ := C ∪{cr+1} be the proposed set of basis-function centers, which now

has size r∗ = r + 1.

• If we want instead to delete a basis function, we will select one uniformly at random

from the existing ones; that is, we draw J ∼ U(1, 2, . . . , r), and then we set C∗ :=

C\{cJ} to be the proposed set of centers, with size r∗ = r − 1.

• Moving a basis function is essentially a combination of a deletion and an addition:

We first select a basis function uniformly at random to be deleted (moved), and then
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we select a location uniformly on D at which to add a new one (i.e., move the old

one). This also results in a new set of basis-function centers, C∗, of size r∗ = r.

If the domain D is a unit sphere, a new center location can be drawn uniformly on the

sphere by setting longitude = X1 and latitude = cos−1(X2)− π/2, where X1 ∼ U(−π, π)

and X2 ∼ U(−1, 1). Due to the prior distribution of C (see (4.13) in Section 4.2.4), the

acceptance probability will always be zero if the proposal is to add or move a basis function,

and the new location is within distance ξ of one of the locations of one of the current basis-

function centers. In this case, we reject the proposal immediately and continue on with step

7 of the MCMC sampler of Section 4.4.2.

We now have to find a good proposal η∗ conditional on the new set of centers C∗.

We denote the proposal distribution for a generic set of centers, C, by Qη(C) and its PDF

evaluated at η byQη(η|C). We would like to use [η|{Z,Ω}\{η,K}] forQη(η|C) (see dis-

cussion at the end of this subsection), but we cannot sample from this distribution directly.

Instead, we draw the proposal, η∗, from,

Qη(C∗) := Nr∗(A(C∗)−1B(C∗)′V(C∗)−1(Z−Xβ),A(C∗)−1), (4.25)

where A(C∗) = B(C∗)′V(C∗)−1B(C∗) + K−1C∗ . The distributionQη(C∗) in (4.25) is similar

to the full conditional distribution of η given by (4.24), but where K is replaced with a

value motivated by the mean of (4.23),

KC∗ := E(K|M(C∗),η=ηC∗) = (M(C∗) + ηC∗η
′
C∗)/u,

and

ηC∗ := E(η|Z,B(C∗),V(C∗),K=M(C∗))

= (B(C∗)′V(C∗)−1B(C∗) + M(C∗)−1)−1B(C∗)′V−1(Z−Xβ).
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The acceptance probability for the proposed pair (C∗,η∗) is determined by the product of

the likelihood ratio, the prior ratio, the proposal ratio, and a Jacobian that is equal to one

here and can hence be ignored (for details, see Green, 1995). Specifically, the acceptance

probability is given by, min{1, α}, where

α :=
Nn(Z|Xβ,B(C∗)η∗,V(C∗))
Nn(Z|Xβ,B(C)η,V(C))

[η∗|C∗,θσ,θν̃ ]
[η|C,θσ,θν̃ ]

[C∗]
[C]
Q({C∗,η∗}, {C,η})
Q({C,η}, {C∗,η∗})

. (4.26)

Since we have already rejected a proposed set of centers, C∗ if any pair of centers in the set

has a distance of less than or equal to ξ (due to (4.13)), the ratio of the PDFs of the prior

distributions of C∗ and C is equal to one, and so [C∗]/[C] can be ignored in (4.26). The prior

distribution of η given C (and θσ,θν̃) in (4.26) is given generically by,

[η|C,θσ,θν̃ ] =

∫
Nr(η|0,K)IWr(K|M(C), u)dK

=
1

πr/2
|M(C)|(r+u)/2

|M(C) + ηη′|(r+u+1)/2

Γr((r + u+ 1)/2)

Γr((r + u)/2)
,

where M(C) is introduced below (4.12). The function Q({C,η}, {C∗,η∗}) describes the

probability of proposing a move from {C,η} to {C∗,η∗}. It can be decomposed as,

Q({C∗,η∗}, {C,η})
Q({C,η}, {C∗,η∗})

=
QC(C∗, C)
QC(C, C∗)

Qη(η|C)
Qη(η∗|C∗)

,

where Qη(η∗|C∗) is the PDF corresponding to the distribution in (4.25) evaluated at η∗,

and Qη(η|C) is defined analogously. A proposed addition of a basis function results in,

QC(C∗, C)/QC(C, C∗) = 1/(r+1), a proposed deletion results inQC(C∗, C)/QC(C, C∗) = r,

and a proposed move results in, QC(C∗, C)/QC(C, C∗) = 1.

Note that for r = 0, deleting or moving a basis function is impossible, and so in this

case we always propose to add a basis function (i.e., r∗ = 1 with probability one). As a

result, we have to adjust α in (4.26) slightly by dividing it by 3 when r = 0.
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Finally, there might be a concern that for very large datasets, the data might always

favor a very large set of centers if there is no strong penalization for large r through the

prior distribution on C. If the values of r in the MCMC sampler were frequently close to

n, we would, of course, lose all computational advantages over traditional spatial models.

However, this concern is unnecessary. To see this, we will assume, temporarily for the

rest of this subsection, that the spatial trend, µ(·), and the covariance functions of the FSV

component (Cδ(·, ·) in (4.5)) and the parent process (Cν̃(·, ·) in (4.6)) are fixed, and so all

derivations are implicitely assumed to be conditional on β, θσ, θν̃ and θδ. Following the

derivations in Holmes and Mallick (2000, App. I), we note that Bayes’ Theorem gives,

[η|Z, C] = [Z|η, C][η|C]/[Z|C],

and so we can write α in (4.26) as,

α =
[Z|C∗,η∗]
[Z|C,η]

[η∗|C∗]
[η|C]

[C∗]
[C]
QC(C∗, C)
QC(C, C∗)

Qη(η|C)
Qη(η∗|C∗)

[η|Z, C]
[η∗|Z, C∗]

[η∗|Z, C∗]
[η|Z, C]

=
[Z|C∗]
[Z|C]

[C∗]
[C]
QC(C∗, C)
QC(C, C∗)

(
[η∗|Z, C∗]
[η|Z, C]

Qη(η|C)
Qη(η∗|C∗)

)
,

where the last term in the parentheses can be viewed as the acceptance probability of a

Metropolis-Hastings proposal η∗ when the proposal distribution has PDF Qη(η∗|C∗) and

the target PDF is [η∗|Z, C∗]. This term would therefore be equal to one if Qη(η∗|C∗) =

[η∗|Z, C∗], but this distribution is not available in closed form (as discussed above (4.25)).

Regardless, we see that the acceptance probability for a proposed set of centers, C, can be

written as the product of the Bayes factor of C∗ versus C, the ratio of prior probabilities of

C∗ and C, and terms depending on the proposal distributions chosen for C∗ and η∗. This is

reassuring, as “the Bayes factor functions as a fully automatic Occam’s razor” (Kass and

Raftery, 1995, p. 790), and so there is intuition that strong penalization through the prior

on C is not necessary to keep r from becoming too large.
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4.4.4 Spatial Prediction

In spatial statistics, the main interest is often in predicting the process Y (·) at a set of

prediction locations, {sP1 , . . . , sPnP }, which might or might not include the set of observed

locations. Often the set of prediction locations is a fine grid over the domain of interest, D.

Let YP := [Y (sP1 ), . . . , Y (sPnP )]′ denote a vector containing the true process evaluated at

all locations of interest. This vector can be written as,

YP = XPβ + BPη + δP , (4.27)

where the superscript P generically denotes evaluation of a process at the set of prediction

locations. In the previous section, we have described how to obtain MCMC samples from

the posterior distributions of β, η, C, θσ, and θν̃ , from which it is straightforward to obtain

samples of XPβ + BP(C,θν̃)η, the first two terms of (4.27). Therefore, posterior samples

of δP are all we need to make inference on YP . Sampling the potentially very large vector,

δP , is computationally expensive, and so we do so only for thinned samples after conver-

gence of the main MCMC of Section 4.4.2. It is possible to do this without jeopardizing

the convergence of the MCMC to the correct joint posterior distribution, because we have

integrated out δ(·) from all MCMC updates in Section 4.4.2, and so none of the updates

there depend on δ(·). Specifically, we are interested in,

[Ω, δP |Z] = [Ω|Z] [δP |Ω,Z],

where samples of the first term on the right-hand side were obtained in Section 4.4.2, and

samples of the second term are obtained here, but only for the thinned Markov chain.

Assume now that, after appropriate reordering, we can write δP = [δ′, δU ′]′, where

δ is obtained by evaluating δ(·) at all observed locations, and δU represents δ(·) at all
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unobserved locations at which predictions are of interest. If we define VP
δ := var(δP ) and

VP,O
δ := cov(δP , δ), the full conditional distribution of δP is given by,

[δP | · ] = NnP (VP,O
δ V−1(z−Xβ −Bη),VP

δ −VP,O
δ V−1VP,O

δ
′), (4.28)

where recall that V = Vδ + Vε (as defined in Section 4.4.1). To avoid having to obtain

VP,O
δ V−1VP,O

δ
′ explicitly, we calculate instead the quantity,

δ̃P + VP,O
δ V−1(z−Xβ −Bη − δ̃ − ε̃),

which has the distribution given by (4.28) if we set δ̃P := (δ̃′, δ̃U ′)′ = (VP
δ )1/2W1 and

ε̃ := V
1/2
ε W2, where W1 ∼ NnP (0, InP ) and W2 ∼ Nn(0, In), independently. This sam-

pling technique is essentially what is known as conditional simulation in spatial statistics

(e.g., Cressie, 1993, Sect. 3.6.2).

4.4.5 Computational Issues

Let ΣZ := var(Z|β,K, C,θσ,θν̃ ,θδ,θε) = BKB′ + V, which is a dense (i.e., non-

sparse) n× n matrix. Many of the MCMC updates described above require Σ−1Z , but naive

calculation of this inverse is impossible or at least computationally infeasible for large n.

Due to the dimension reduction inherent in our model, we can write the inverse as (Sherman

and Morrison, 1950; Woodbury, 1950; Henderson and Searle, 1981),

Σ−1Z = V−1 −V−1B(K−1 + B′V−1B)−1B′V−1,

and a similar formula (e.g., Cressie and Johannesson, 2008) gives,

|ΣZ | = |V||Ir + KB′V−1B|.

Calculating the inverse and determinant of the dense n × n matrix ΣZ can therefore be

reduced to calculating the inverse and determinants of r × r matrices and of the sparse
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n × n matrix V. This idea was proposed in an empirical-Bayes setting by Cressie and

Johannesson (2006). Close examination of the MCMC updating steps in Section 4.4.2

reveals that the only calculations involving the inverse of V are V−1/2X, V−1/2B, and

V−1/2z, where V1/2 is the (lower-triangular) Cholesky factor of V (see Stein, 2008). For

this reason, when V is sparse (which it is when defined via a tapered covariance function),

the MCMC updates can be carried out quite rapidly, as follows.

Finding the Cholesky decomposition of this sparse matrix and solving the systems of

linear equations must be done at each iteration of the MCMC sampler. Fortunately, these

tasks can be carried out significantly faster if V is ordered in a way that results in a sparse

Cholesky factor (e.g., Furrer et al., 2006). Also, since our tapering range is fixed, the

sparsity structure (i.e., the position of the nonzero elements) of V is the same for all MCMC

iterations. Hence, we can find an efficient ordering (e.g., the minimum-degree ordering)

once, at the beginning of the algorithm, and then we can use that ordering when computing

the Cholesky decompositions at each MCMC iteration. To sample the vector δP for thinned

iterations of the main MCMC, we can again find an efficient ordering, this time for the set

of all locations (observed and unobserved).

Cressie and Johannesson (2008) considered a model that is similar to ours, but in their

model the matrix V is diagonal. The required number of computations for inference using

their model is linear in the number of observations, n. Here, because we assume V to be

sparse, not diagonal, we cannot achieve this same theoretical computational complexity. In

general, the number of computations required for operations involving a sparse matrix is

proportional to the number of nonzero elements of that matrix (Gilbert et al., 1992). It is

difficult to make general statements about the computational complexity of the Cholesky

decomposition of a sparse matrix, because it depends on the bandwidth of the matrix (i.e.,
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the largest distance of a nonzero element to the diagonal) and the locations of the nonzero

elements. However, Furrer et al. (2006) have provided some numerical results on a fixed

domain, with fixed tapering length, and using a regular sampling grid; the results indicate

that the time required to compute the Cholesky decomposition of a tapered n×n covariance

matrix increases roughly linearly with n, which in turn indicates that the computational

complexity of our algorithm is approximately of order n. In fact, we have considerable

control over the speed of the MCMC algorithm through selection of the tapering range, Lδ,

of the FSV component. For extremely massive datasets, we can set Lδ to a very small value

(maybe even zero), to achieve computational feasibility.

Theoretical-computational-complexity issues aside, in our experience the majority of

computation time at each of our MCMC iterations was actually not spent on Cholesky de-

compositions, but on simply creating the matrices Vδ and B. For the nonzero elements

of these two matrices (more precisely, for Vδ we only need the nonzero upper-triangular

elements), we have to evaluate a Matérn function (4.14). This involves evaluation of the

modified Bessel function, which is rather slow, because no closed-form solution is avail-

able. But again, in situations in which rapid computation is crucial, we can achieve faster

computation by setting Lδ and Lν to small values.

4.5 Simulation Study in One Spatial Dimension

In this Section, we compare our model to a “baseline” model and to two other models

conceived for very large spatial datasets, in three simulation studies. The models are:

SRE: Our SRE model described in the previous subsections, a combination of an SBF

component with random basis functions and an FSV component with tapered spatial

dependence.
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SMC: A stationary Matérn covariance model (4.14), which is infeasible for large datasets

due to its computational complexity of order n3.

CTO: A covariance-tapering-only model, which is essentially the same model as the SRE

model, except that the SBF term is not part of the model (i.e., ν(·) ≡ 0).

KCG: The Kang and Cressie (2011) SRE model with a multi-resolutional Givens-angle

prior for K. The FSV component is modeled to be spatially independent conditional

on a constant variance.

The results presented here are preliminary, since a full study would involve identifying

the important factors, their levels, and performing a (partial) factorial experiment.

The true process is is taken to be one-dimensional with domain D = {1, 2, . . . , 256}.

In Simulation Study 1, it has a nonstandard and nonstationary correlation function. The co-

variance function is the product of a wave correlation function and a nonstationary Matérn

covariance of the form introduced in Section 4.3. Defining the wave correlation function

as,

W(h) = sin(h)/h, h > 0,

andW(0) = 1, the true covariance function for Simulation Study 1 is given by,

C(s1, s2) = σ(s1)σ(s2)
γ(s1)

1/4γ(s2)
1/4

γ(s1, s2)1/2
Mυ(s1,s2)

(
|s1 − s2|
γ(s1, s2)1/2

)
W
(
|s1 − s2|

10

)
,

(4.29)

for s1, s2 ∈ {1, 2, . . . , 256}, and where γ(s1, s2) := (γ(s1) + γ(s2))/2 and υ(s1, s2) :=

(υ(s1) + υ(s2))/2. The three parameters of the Matérn covariance in the first simulation
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Figure 4.3: The true covariance structure (left panel) and correlation structure (right panel)
given by (4.29) and assumed in Simulation Study 1.

vary spatially as follows:

σ(s) = 3 exp
(

sin(s 2π/256)/1.5
)

γ(s) = 9000 exp
(
− 2 sin(s 2π/256)

)
υ(s) = 0.5Φ

(
− 0.8 sin(s 2π/256)

)
.

(4.30)

The resulting covariance and correlation structure are shown in the left and the right panel,

respectively, of Figure 4.5. The corresponding true process has high variance and quickly

decaying dependence around s = 70, and so it will be very “rough” in that area. On the

other hand, around s = 180, the variance is much smaller, and the process should be rather

smooth. One sample of Y (·) with covariance function (4.29) is shown in Figure 4.4 (in

blue). Part of our more complete simulation experiment will be to explore the combinations

of low variance and quickly decaying dependence, and large variance and long correlation

ranges, as part of the factor space.

For the SRE and TCO models, the tapering lengths were chosen such that their size

relative to the size of the domain D was similar to the relative size of these parameters

in the analysis of global data in Section 4.6 below. In Section 4.6, we chose Lδ = 0.08,
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which corresponded to 0.08/π ≈ 2.55% as a ratio of the maximum distance on the globe

(assuming unit radius). Here, the maximum distance on the domain is given by 255, and so

we set Lδ = 6.5 ≈ (2.55%)(255). To find a good value for Lν , note that on a unit sphere,

the ratio of the radius (determined to be the maximum value for Lν in Section 4.3.2) to the

maximum distance two points can have, is 1/π, and so we set Lν = 80 ≈ (1/π)255.

For the SRE and CTO models, we took bθ(·) to be made up of two bisquare functions

with radius 64, centered at locations 64 and 196, respectively. We chose u = 4 for the SRE

model. To determine a comparable number of basis functions for the KCG model, we did

a pilot study using the SRE model that showed that the posterior probability of r > 11 was

negligible, and so we used eleven bisquare basis functions of two resolutions for the KCG

model: two functions had radius 192 and were centered at locations 64 and 192, and nine

bisquare functions had radius 48 and were centered at 0, 32, 64, 96, 128, 160, 192, 224, and

256. Part of a more complete simulation experiment will be to assess the effect of adding

more basis functions to the KCG model, to see how flexible it can be, at the price of higher

model complexity and longer computation times.

In general, all prior distributions for the remaining parameters in all four models were

chosen to be fairly vague but centered at values that resulted in model covariances that were

as close as possible to the true covariance. Notation for the hyperparameters specified here

was introduced in Section 4.3.3. The hyperparameters for σ(·) were chosen as µσ = log(3)

and σ2
σ = log(62) for both the SRE model and the CTO model. The hyperparameters for

the scaling parameter of the SBF component of the SRE model were µγδ = log(10Lν) and

σ2
γδ

= log((Lν − Lδ)2). The scaling parameter of the FSV component in the CTO model

was allowed to vary. We centered it at the same value at which the parameter was fixed for

the CBF model, µγδ = log(2Lδ), and the variance was taken to be, σ2
γδ

= log((2Lδ)
2). The
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SMC model had the same hyperparameters for σ, and for the scaling parameter we chose

µγ = log(640) and σ2
γ = log(6402). The hyperparameters for the eigenvalues and Givens

angles of K for the KCG model were calibrated as described in Kang and Cressie (2011)

from KF. They used binned-method-of-moments parameter estimates for calibration, but

here we chose KF to be the value of K that miminized ‖BP
KCGKBP

KCG
′ − ΣY ‖F , where

BP
KCG was a matrix obtained by evaluating the eleven bisquare functions chosen for the

KCG model at all 256 locations in the domain, ΣY was the true covariance matrix shown

in the left panel of Figure 4.5, and ‖ · ‖F is the Frobenius norm. The prior distribution of

the FSV variance of the KCG model was assumed to be of the form of the FSV variance of

our SRE model as described in Section 4.3.3 (i.e., it was different than in Kang and Cressie,

2011), with µσ = log
√
σ2

F and σ2
σ = µ2

σ, where σ2
F = avg{|diag(BP

KCGKFB
P
KCG

′ −ΣY )|}.

The simulation study consisted of 100 iterations. This number will be increased in a

future simulation experiment, to ensure that the simulation error in the results is negligi-

ble. For each iteration, we simulated the true process from the covariance model described

above. We then simulated data by adding a measurement-error term with variance 0.9,

which corresponded to a signal-to-noise ratio of 10 (when taking (σ(0))2 from (4.30) to

be the “signal”). To ensure comparability of the results, we took the measurement-error

variance to be known for all four models. To mimic the nonretrieval encountered with

satellite data, we assumed that two intervals of length 25 each were not observed (i.e., the

imaginary satellite did not cover these regions): The first non-randomly missing region,

MNR1 = {61, 62, . . . , 85}, was in the “rough” portion of the domain, and the second miss-

ing region, MNR2 = {201, 202, . . . , 225}, was in the “smooth” portion of the domain. In

addition, one third of the remaining locations were selected at random at each iteration of
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Figure 4.4: For Simulation Study 1, one example of a simulated true process Y (·) (in blue)
and a set of simulated data (black crosses), together with the posterior mean of Y (·) and
the posterior 2.5- and 97.5-percentiles (i.e., the endpoints of a 95% credible interval) as
estimated from the data using our SRE model.

the simulation study as unobserved (e.g., due to heavy cloud cover or other retrieval prob-

lems for the imaginary satellite). These missing locations that were scattered among the

observed locations will be denoted MAR (missing at random). The remaining, observed

locations will be denoted OBS. The true process and the data for one iteration of the sim-

ulation study are shown in Figure 4.4. Each of the four models was then run for 2000

MCMC iterations (thinned by a factor of 5), the first 1000 of which were taken as burn-in.

In a more complete study, this number will be increased.

The comparison of the four models was based on the mean squared prediction error

(MSPE), the squared difference between the posterior means for each of the four models

and the true process itself, averaged over locations (where the locations were stratified into

the four groups: OBS, MAR, MNR1, and MNR2) and the 100 iterations. To quantify the

accuracy of the uncertainty estimation, we used the interval score (IS). The IS combines
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the width of a credible interval with a penalty for not containing the true value, and it is

defined as (Gneiting and Raftery, 2007, Sect. 6.2),

ISα(l, u; y) = (u− l) + 2{(l − y)+ + (y − u)+}/α, (4.31)

where l and u are, respectively, the lower and upper endpoints of a (1−α) credible interval

(we use α = 0.05), y is the true value, and (x)+ := xI(x > 0). The goal is for small IS.

Table 4.2: Summary of the results of Simulation Study 1.
SRE SMC SMC/SRE CTO CTO/SRE KCG KCG/SRE

Time (sec) 23.88 72.68 3.04 4.26 0.18 86.66 3.63
MSPE (OBS) 0.56 0.62 1.10 0.62 1.11 0.74 1.31
MSPE (MAR) 2.55 2.52 0.99 3.25 1.28 4.01 1.57
MSPE (MNR1) 29.36 22.97 0.78 31.26 1.06 29.25 1.00
MSPE (MNR2) 1.23 0.92 0.75 2.47 2.00 2.33 1.89
IS (OBS) 3.61 3.83 1.06 3.70 1.03 3.89 1.08
IS (MAR) 8.19 8.78 1.07 8.56 1.05 12.35 1.51
IS (MNR1) 31.19 32.43 1.04 32.55 1.04 56.16 1.80
IS (MNR2) 6.77 7.97 1.18 6.99 1.03 7.02 1.04

A summary of the results of the simulation study is shown in Table 4.2. We see that

the CTO model produced the fastest computation time (on average, only slightly more than

4 seconds for 2,000 MCMC iterations). The SMC actually outperformed all other models

in terms of the MSPE, except at locations where data were available. This is likely due to

the the fact that the true covariance model in (4.29) was actually rather close to a Matérn

model for small spatial lags, except that its variance varied significantly over space (which

the SMC model was unable to capture, of course). The SRE model did the best in terms of

uncertainty quantification as measured by IS. As expected, the CTO model performed much

worse than the SRE model in terms of the MSPE in regions where the process is smooth but
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Figure 4.5: The true covariance (left column) and correlation (right column) over space
for reference location 50 (first row) and reference location 213 (second row), together with
the point-wise posterior means of the same quantities estimated using our SRE model, the
SMC model, the CTO model, and the KCG model, for one sample from Simulation Study
1. The vertical dotted blue lines indicate the regions of missing data, MNR1 and MNR2.

no data were available (MNR2). The KCG model’s predictions were worse at locations that

were close to observed locations (MAR), likely due to its spatially uncorrelated FSV term.

In a more complete simulation study, we shall examine the effect of spatial dependence in

the FSV component and whether a larger number of basis functions would result in better

predictions.
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Figure 4.6: The posterior distribution of r, the number of basis functions for our SRE model
for one sample from Simulation Study 1.

For one simulated dataset, we show the posterior means and credible intervals for the

SRE model in Figure 4.4, the pointwise posterior means of the covariances over space for

two reference locations for all four models in Figure 4.5, and the posterior distribution of

r, the number of basis functions in Figure 4.6. For this realization, the KCG model has

trouble estimating the covariance structure and the correlation structure; with only 11 basis

functions and the considerable heterogeneity in the true model, its performance is likely to

improve when a larger number of basis functions is chosen. The CTO model produced es-

timates of the correlation that vanish much too quickly for increasing distance (it is limited

by Lδ = 6.5, of course), and the SMC model overestimated the scaling parameter for this

specific simulated dataset.

In Simulation Study 2, the true covariance function was assumed to be stationary. We

chose an exponential covariance (i.e., a Matérn covariance with smoothness υ(·) ≡ 0.5)

with standard deviation σ(·) ≡ 3 and scaling parameter γ(·) ≡ 640. The scaling parame-

ter, γ, is much smaller than in (4.30), because the Matérn covariance function here is not
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multiplied by the wave function as in (4.29). All hyperparameters for the four models were

exactly the same as before. The results are shown in Table 4.3. The overall pattern of

relative results is somewhat similar to the pattern of relative results of Simulation Study 1

in Table 4.2. But now, the SMC model, which is the correct model here, is doing com-

paratively better than the SRE model, whereas the CTO model and KCG model are doing

comparatively worse than the SRE model overall. This indicates that our SRE model can

adjust to simple covariance structures rather easily.

Table 4.3: Summary of the results of Simulation Study 2.
SRE SMC SMC/SRE CTO CTO/SRE KCG KCG/SRE

Time (sec) 25.44 72.24 2.84 4.28 0.17 85.61 3.36
MSPE (OBS) 0.50 0.46 0.92 0.56 1.12 0.72 1.43
MSPE (MAR) 1.33 0.97 0.73 1.82 1.36 2.72 2.04
MSPE (MNR1) 5.73 4.74 0.83 7.80 1.36 7.03 1.23
MSPE (MNR2) 5.52 4.38 0.79 7.61 1.38 6.53 1.18
IS (OBS) 3.49 3.41 0.98 3.55 1.02 3.88 1.11
IS (MAR) 6.37 5.61 0.88 6.39 1.00 8.73 1.37
IS (MNR1) 11.69 11.07 0.95 13.58 1.16 22.38 1.92
IS (MNR2) 11.99 11.10 0.93 13.69 1.14 21.46 1.79

In Simulation Study 3, the true covariance function was assumed to be of SRE form,

with the same basis functions used in the KCG model and spatially independent and homo-

geneous FSV; these are the assumptions underlying the KCG model. The true K, say K0,

was obtained as, K0 = argmin
K
‖BP

KCGKBP
KCG

′ − ΣY ‖F , where now ΣY denotes the true

covariance matrix at all locations from Simulation Study 2 (i.e., stationary Matérn). The

true FSV variance was taken to be σ2
δ,0 = avg{|diag(BP

KCGK0B
P
KCG

′ −ΣY )|}. The hyper-

parameters for the four models were again the same as before, except that the KCG-model
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hyperparameters were now calibrated against the EM estimates of K and σ2
δ (see Katzfuss

and Cressie, 2009, on how to obtain these estimates). The results are shown in Table 4.4.

Clearly, the KCG model now makes the best predictions, especially in the areas MNR1 and

MNR2. This model can find good values for the coefficients of the basis functions in areas

where data are available, and once the basis-function coefficients are estimated, good pre-

dictions in the missing regions are given automatically. Due to the fact that there are only

eleven basis functions, the true variance, bKCG(·)′K0bKCG(·) + σ2
δ,0, now varies consider-

ably over space, in that it is high close to the basis function centers and low in areas far

from any basis function centers. This variance heterogeneity cannot be captured correctly

by the SRE, SMC, or CTO models. The SMC model assumes constant variance, and in the

SRE and CTO models, there are only two basis functions available to estimate the spatial

variation in the variance. However, the SRE model is very close to the CTO model in terms

of the IS.

Table 4.4: Summary of the results of Simulation Study 3.
SRE SMC SMC/SRE CTO CTO/SRE KCG KCG/SRE

Time (sec) 22.75 69.56 3.06 4.41 0.19 87.32 3.84
MSPE (OBS) 0.75 0.70 0.92 0.75 1.00 0.72 0.96
MSPE (MAR) 4.54 3.20 0.70 4.72 1.04 2.88 0.63
MSPE (MNR1) 8.24 4.54 0.55 10.02 1.22 3.82 0.46
MSPE (MNR2) 7.78 4.84 0.62 8.93 1.15 3.65 0.47
IS (OBS) 4.19 4.09 0.98 4.18 1.00 4.18 1.00
IS (MAR) 10.56 9.47 0.90 10.58 1.00 11.13 1.05
IS (MNR1) 14.75 12.86 0.87 14.98 1.02 14.12 0.96
IS (MNR2) 13.26 11.80 0.89 14.54 1.10 12.41 0.94
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4.6 Analysis of Global CO2 Data from the AIRS Instrument

In this section, we illustrate the use of our SRE model on a large real-world spatial

dataset. The dataset (available from http://airs.jpl.nasa.gov/AIRS_CO2_

Data/) consists of 13,911 measurements of global mid-tropospheric CO2, which were

recorded at roughly 1:30pm local time on May 1, 2003 by the Atmospheric InfraRed

Sounder (AIRS) on board NASA’s Aqua satellite (e.g., Chahine et al., 2006). The unit of

measurement is parts per million (ppm). Data at latitudes south of −60◦ latitude have not

been released yet by the AIRS team, and so all available measurements are north of −60◦

latitude. The dataset is shown in the top panel of Figure 4.7. While the measurements are

really averages over the “footprint” of the AIRS instrument, we assume for simplicity that

they are made at point locations at the centers of the footprints.

We again compared our SRE model to the covariance-tapering-only (TCO) model and

the Kang and Cressie (2011) Givens-angle SRE model (referred to in this chapter as the

KCG model), both described in Section 4.5. To estimate prediction accuracy, we left out

both a large area (to assess long-range prediction) and a random sample (to assess short-

range prediction) of observations. We created two test sets, one consisting of the 77 non-

randomly selected observations (hereafter referred to as MNR) in the region 30◦ to 47◦

longitude and 34◦ to 46◦ latitude, and the other one consisting of a random sample of

200 of the remaining measurements (hereafter MAR). The test data were only used for

model evaluation, and they were not available for model fitting. Therefore, the number of

observations was given by, n = 13, 911 − 77 − 200 = 13, 634. We also wanted to assess

the accuracy of the uncertainty estimation via the interval score (IS) given by (4.31). From

the models, we obtained samples from, [{Y (sj) : sj ∈ MNR ∪ MAR}|Z], the posterior

distribution of the process at the test set locations, given the observations Z that were not
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in either of the test sets. By adding an independent measurement-error component, ε(si) ∼

N(0, σ2
ε ), to these samples, we obtained samples from, [{Z(sj) : sj ∈ MNR ∪MAR}|Z],

which in turn could be used for assessment of the uncertainty-estimation accuracy when

compared to the test data, {Z(si)}, using the IS (for more details on this idea, see, e.g.,

Cressie and Wikle, 2011, Sect. 2.2.2).

Because we could only compare our posterior distributions to the measurements (which

include measurement error) and not the corresponding true-process values {Y (si)}, we ob-

tained samples from the posterior distribution ofZ(si) by adding an independent measurement-

error component, ε(si) ∼ N(0, σ2
ε ), to the samples from the posterior distributions of Y (si),

where si ∈MNR and si ∈MAR We used the samples from the posterior distribution of the

Z(si).

To ensure comparability between the three models we were comparing here, we as-

sumed the measurement-error variance to be known for all three models; in reality, we

estimated the variance using a variogram-extrapolation technique (Kang et al., 2009) to be

σ2
ε = 5.4221ppm2. For the mean term, x(·)′β, we used only an intercept, resulting in the

one-dimensional covariate vector x(·) ≡ 1.

For our SRE model, the tapering lengths were set to Lν = 1 (as recommended in

Section 4.3.2) and Lδ = 0.08. Further, we chose u = 4, µσ = log(
√
σ̂2
Z), and σ2

σ = 2µσ,

where σ̂2
Z is the empirical variance of the data. For both of the two scale parameters of

the SBF component, we chose the hyperparameters, µγν = log(2Lν) and σ2
γν = 2µγν . The

basis functions, bθ(·), for the spatially-varying covariance parameters were taken to be 32

bisquare functions with radius 6241.11 km of great-arc distance, centered at ISEA Aperture

3 Hexagon centers at resolution 1 obtained using DGGRID software (Sahr, 2003).
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For the CTO model, we chose the same Lδ, bθ(·), and the same prior distribution for

θσ as for the SRE model. However, we allowed for random rotation and two random scale

parameters of the FSV component, with µγδ = log(2Lδ) and σ2
γδ

= 2µγδ for both scale

parameters.

For the KCG model, we chose 124 bisquare basis functions of two resolutions. This

number was determined to be comparable to the SRE model, because the estimated pos-

terior probability of r > 95 was zero for our SRE model. The set of basis functions for

the KCG model was identical to the first two resolutions chosen in Section 2.5.2. The

hyperparameters for K and σ2
δ were calibrated as described in Kang and Cressie (2011),

but using the parameters’ EM estimates (see Katzfuss and Cressie, 2009, on how to obtain

these estimates).

We ran an MCMC for each of the three models for 12,000 iterations, of which 2,000

were considered burn-in, and we only used every 20th of the remaining iterations for in-

ference. We also obtained the posterior distribution of Y (·) at a grid of 20,422 locations

on the globe, given by ISEA Aperture 3 Hexagon centers at resolution 7 north of −60◦

latitude; see the DGGRID software (Sahr, 2003). Summaries of the posterior distribution

of Y (·) obtained from our SRE model at the 20,422 grid centers are shown in the mid-

dle and bottom panels of Figure 4.7. In Figure 4.8, we also show posterior means of the

spatially varying parameters determining Cν̃(·, ·) in (4.6) and Cδ(·, ·) in (4.5). The images

of the posterior mean of σν̃(·) and υδ(·), together with the posterior standard deviation of

Y (·) shown in Figure 4.7, indicate that midtropospheric CO2 is rather smooth around the

equator, in that σν̃(·) is relatively small there, and the smoothness parameter of the FSV

component is relatively large. In higher latitudes the variance (σν̃(·))2 increases and the

smoothness parameter υδ(·) decreases.
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Figure 4.7: AIRS data and posterior summaries of Y (·) obtained from our SRE model. The
pink box indicates the MNR region. Units are ppm.
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Figure 4.8: Posterior means of the spatially varying covariance parameters of the SRE
model in Cν̃(·, ·) in (4.6) and Cδ(·, ·) in (4.5): standard deviation σν̃(·) (top left), smooth-
ness υδ(·) (top right), the scale parameters γν̃,1(·) and γν̃,1(·) (middle row), the rotation
parameter κν̃(·) (bottom left), and the posterior distribution of the number of basis func-
tions r (bottom right), as estimated from the AIRS data in Section 4.6.
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The average squared distance (ASD) of the posterior means of Y (si) at the test locations

and the corresponding measurements, {Z(si)}, in the two test sets are shown in Table 4.5

for all three models. We also show the IS for 95% credible intervals for the measurements

{Z(si)} in the test sets. The SRE model performs best according to all but two criteria:

It takes the longest to fit, and its ASD for MAR is worse than the ASD for the CTO. This

provides some indication that fixing the scale and rotation parameters for the FSV results

in worse short-range prediction performance in this real-world dataset. These parameters

can, of course, be allowed to be random, but we do need to make sure that the acceptance

rate for the MH step for θδ (Step 4 in Section 4.4.2) stays at a reasonable level. The

KCG model performs relatively better here (especially in terms of the ASD in the MNR

set) than in Simulation Study 1, likely due to the fact that the true covariance structure of

mid-tropospheric CO2 is very different from parametric covariance functions (even if the

parameters vary spatially as in Simulation Study 1).

Table 4.5: Summary of the results of the AIRS data analysis.
SRE CTO CTO/SRE KCG KCG/SRE

Time (hrs) 18.57 11.38 0.61 13.82 0.74
ASD (MAR) 18.34 17.81 0.97 19.53 1.06
ASD (MNR) 19.12 20.81 1.09 19.20 1.00
IS (MAR) 24.47 25.02 1.02 30.07 1.23
IS (MNR) 31.92 33.93 1.06 34.08 1.07

4.7 Conclusions

In this chapter, we have presented an SRE model that combines an SBF component

with a spatially dependent FSV component. For the SBF component, we make inference
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on the number, locations, and shapes of the basis functions. The FSV component is al-

lowed to exhibit nonstationarity, and compact support of its covariance function ensures

fast computation, even for very large datasets.

The results of a preliminary simulation study (Section 4.5) and a validation exercise on

global CO2 (Section 4.6) indicate that our SRE model may provide considerable improve-

ments when compared with two other spatial statistical models used for the analysis of

large spatial datasets. Compared with a model containing only a tapered covariance com-

ponent, we improve long-range prediction. Compared with the Givens-angle-based model

of Kang and Cressie (2011) that has a spatially independent FSV component, we obtain

better predictions at locations that are close to observed locations. There is also some qual-

itative (from visual inspection of estimated covariance structure) and quantitative (from IS)

indication that we improve the estimation of the covariance structure and the prediction

uncertainty. Of interest would also be a comparison of the performance of our model to

that of the predictive-process model of Banerjee et al. (2008) and Finley et al. (2009).

Up to Section 4.4, we allowed for the measurement-error variance to be random; how-

ever, we have fixed the parameter in both the Simulation Study and the AIRS data analysis.

This ensured comparability between the different models considered there. But while es-

timating the measurement-error variance is easy in theory, there might be considerable

identifiability problems between the variance of the FSV component and the variance of

the measurement error, if the fine-scale correlation structure of the true process is not suf-

ficiently smooth. Further investigation of this issue is warranted.

We have also claimed that our model allows for feasible computation times. In prin-

ciple, the model should scale well for increasing sample size, and its computational speed
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can be controlled via the choice of the tapering lengths Lδ and Lν . Since most of the com-

putation time is spent on evaluating the Matérn covariance functions in B and Vδ, further

significant speed-ups could be achieved in two ways: Assuming a double exponential cor-

relation function for the SBF component (i.e., setting υν(·) ≡ ∞) would let us avoid having

to evaluate the modified Bessel function in the general expression of the Matérn covariance

functions when calculating the non-zero elements of B. Second, if we assumed a discrete

distribution for υδ(·) ≡ υδ, Vδ and its Cholesky decomposition could be precomputed for

every possible value of υδ, and so we would not have to do so at each iteration of the

MCMC.

Finally, while this chapter includes an attempt to unify some of the many related models

for large spatial datasets, we do not give much discussion of multiresolutional structure of

the basis functions. Multiresolutional structure is a common theme in much of the wavelet

literature, and the use of basis functions of different resolutions has also been advocated

by Cressie and Johannesson (2008), for example. In our model, we do not allow several

resolutions of basis functions, and instead we allow for spatially varying (random) shape

of the basis functions. One issue that should be further investigated is whether it is possible

to induce a multiresolutional structure for our basis functions through the parent process.

133



Appendix A: Details of Posterior Inference for the Model of Chapter 3

For generic (sets of) random variables X and Y , let [X] denote the (marginal) distri-

bution of X , [X|Y ] denote the conditional distribution of X given Y , and [X| · ] denote

the full conditional distribution of X , which is defined as the conditional distribution of

X given all other variables (including the data). We sample from the posterior distribu-

tion, the distribution of the unknowns given the data, using a Markov chain Monte Carlo

(MCMC) algorithm in form of a Gibbs sampler (Geman and Geman, 1984) with some

Metropolis-Hastings (MH) updates (Metropolis et al., 1953; Hastings, 1970) where nec-

essary. In a Gibbs sampler, each unknown variable is updated from its full conditional

distribution. These full conditional distributions are proportional to the joint distribution of

all variables. Due to (conditional) independencies, the joint distribution can be written as

the product of the data model, the process model, and the parameter (prior) model:

[Z1:T ,η0:T , δ
P
1:T ,θP ,θH ] = [Z1:T |η0:T , δ

P
1:T ,β1:T ][η0:T , δ

P
1:T |θP ][θP ,θH ], (A.1)

where most of the terms on the right-hand side are given in Section 3.2. We recommend

using the adaptive MH algorithm of Haario et al. (2001) for all blocks of parameters for

which the full conditional distribution is not available in closed form, as this allows the

complicated covariance structure of the parameters in each block to be more fully exploited

by the algorithm. Chapter 3 does not give a complete specification of the prior distributions;
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we shall do so at the beginning of the relevant subsections below. At each step of the

MCMC, each unknown is updated as described below, given the most recently sampled

values of the other unknowns.

Posterior Inference on the Process Variables and the Trend

We begin by making the prior assumptions for the trend terms more explicit:

βt
iid∼ Np(µβ, σ

2
βIp), t = 1, . . . , T,

where µβ and σ2
β are known hyperparameters. The prior mean, µβ , can be set equal to

a point estimate of the trend-coefficient vector. The variance σ2
β is set to some very large

value (e.g., 1015), to make the prior distribution essentially noninformative.

The prior distribution on {δPt } is also normal and is described in Section 3.2.1. Making

use of standard normal-normal conjugacy, we see from (A.1) that the full conditional distri-

butions of {βt} and {δPt } are multivariate normal distributions of the form N(A−1k, A−1),

where (using obvious notation),

Aβt := X ′t(σ
2
ε,tVε,t)

−1Xt + σ−2β Ip

kβt := X ′t(σ
2
ε,tVε,t)

−1(zt −Mtδ
P
t −Btηt) + σ−2β µβ,

and

AδPt
:= M ′

t(σ
2
ε,tVε,t)

−1Mt + (σ2
δV

P
δ,t)
−1

kδPt
:= M ′

t(σ
2
ε,tVε,t)

−1(zt −Xtβt −Btηt),

respectively.

As mentioned in Section 3.2.4, the basis-function-coefficient vectors {ηt} can be sam-

pled using a forward-filtering, backward-sampling algorithm (Carter and Kohn, 1994; Frühwirth-

Schnatter, 1994). Telescoping the full conditional distribution and exploiting the Markov
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structure of the random-effects vectors, we have,

[η0:T | · ] = [ηT |z1:T ,θ]
T−1∏
t=0

[ηt|ηt+1, z1:t,θ].

At iteration l + 1 of the Gibbs sampler, we wish to update η0:T given all other vari-

ables, namely z1:T , δPt
[l], and θ[l]. To do this, we first run the Kalman filter as described

in Shumway and Stoffer (2006, Chap. 6), with the transformed measurements {z̃t :=

zt − Xtβ
[l]
t − Mtδ

P
t
[l]

: t = 1, . . . , T} as the data, to obtain the filtering quantities,

η
[l]
t|t := E(ηt|z1:t,θ

[l]), η[l]
t|t−1 := E(ηt|z1:(t−1),θ

[l]), P [l]
t|t := var(ηt|z1:t,θ

[l]), and P [l]
t|t−1 :=

var(ηt|z1:(t−1),θ
[l]), t = 1, . . . , T , where P [l]

0|0 = K
[l]
0 . Then, we sample η[l+1]

T ∼ Nr(η
[l]
T |T , P

[l]
T |T ),

and for t = T − 1, T − 2, . . . , 0, we sample,

η
[l+1]
t ∼ Nr(η

[l]
t|t + J

[l]
t [η

[l+1]
t+1 − η

[l]
t+1|t], P

[l]
t|t − J

[l]
t P

[l]
t+1|tJ

[l]
t

′
),

where J [l]
t := P

[l]
t|tH

[l]′(P
[l]
t+1|t)

−1.

Posterior Inference on the Fine-Scale-Variation Variance

For the standard deviation, σδ, of the fine-scale variation {δt(·)} given in Section 2.1 of

the main document, we assume a flat prior of the form,

σδ ∼ U(0, κδ),

where κ2δ := 5σ̂2
δ (e.g., Kang and Cressie, 2011). Here, σ̂2

δ is a point estimate of σ2
δ (e.g.,

the EM estimate). This prior results in a full conditional distribution of closed form,

σ2
δ | · ∼ InvGamma

(
n+/2− 1/2,

∑T
t=1 δ

P
t
′M ′

tV
−1
δ,t Mtδ

P
t /2;κ2δ

)
,

which we define to be an inverse-gamma distribution truncated above at κ2δ (and renormal-

ized).
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For the basis-function coefficients ηδ in the function vδ(·) = exp{bδ(·)′ηδ)}, the full

conditional distribution is not available in closed form. Hence, the vector ηδ is updated as

a block using a MH step from,

[ηδ| · ] ∝ [ηδ] [δ1:T |σ2
δ ,ηδ] = Nrδ(ηδ|0, σ2

ηδ
Irδ)

T∏
t=1

N(δt|σ2
δVδ,t),

where N(x|µ,Σ) generically denotes the density function of a normal distribution with

mean µ and covariance matrix Σ evaluated at x.

Posterior Inference on the Covariance Matrices K0 and U

The prior distributions for the covariance matrices K0 and U are taken to be multireso-

lutional Givens-angle priors. We follow Kang and Cressie (2011) and decompose each of

the two matrices into the r×r diagonal matrix of eigenvalues and the Givens angle matrices

with r(r+1)/2 parameters. The eigenvalues and Givens angles ofK0 and U corresponding

to different resolutions will be treated differently. Let the rc eigenvalues corresponding to

resolution c for the two matrices be denoted by {λK0
c,1 , . . . , λ

K0
c,rc} and {λUc,1, . . . , λUc,rc}, c =

1, . . . , C, respectively. The r(r + 1)/2 Givens angles for the two matrices will be denoted

as {ρK0
ij : i = 1, . . . , r−1; j = i+1, . . . , r} and {ρUij : i = 1, . . . , r−1; j = i+1, . . . , r},

respectively. We transform both sets of parameters to avoid having a restricted domain.

The log-eigenvalues, λ̃c,j := log λc,j , and the transformed Givens angles,

ρ̃ij := log
π/2 + ρij
π/2− ρij

, i = 1, . . . , r − 1, j = i+ 1, . . . , r,

both have support on the entire real line. Then, for c = 1, . . . , C, the log-eigenvalues

corresponding to resolution c for K0 and U are a priori distributed as the order statistics of

an iid sample from the normal distribution,

{λ̃K0
c,1 , . . . , λ̃

K0
c,qc} ∼ OSN(µK0

c , wK0
c )

{λ̃Uc,1, . . . , λ̃Uc,qc} ∼ OSN(µUc , w
U
c ),

(A.2)
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for c = 1, . . . , C, where {µK0
c }, {wK0

c }, {µUc }, and {wUc } are fixed hyperparameters (see

below). We also impose the constraint that no eigenvalue of the (c + 1)-th resolution can

be larger than any eigenvalue of the c-th resolution, so that all eigenvalues are ordered

even across resolutions. Letting Rk := {(i, j) : ci = cj = k}, for k = 1, . . . , C, and

R0 := {(i, j) : ci 6= cj} (ci is defined below (10) in the main document), we have the prior

distributions,

ρ̃K0
i,j

iid∼ N(mK0
c , (τK0

c )2), (i, j) ∈ Rc,

ρ̃Ui,j
iid∼ N(mU

c , (τ
U
c )2), (i, j) ∈ Rc,

(A.3)

for c = 0, 1, . . . , C.

To determine the (fixed) hyperparameters for the prior distributions of the parameters

in K0 and U , we consider point estimates K̂0 for K0 and Û for U (e.g., the EM estimates).

Using these estimates, we follow the hyperparameter-estimation approach of Kang and

Cressie (2011). We calculate the empirical eigenvalues and empirical Givens angles of

K̂0 and Û , and we calibrate the means and the (inflated) variances of the hyperparameters

in (A.2) and (A.3) from the log empirical eigenvalues and transformed empirical Givens

angles.

The full conditional distributions of the parameters in K0 and U cannot be obtained

analytically. Instead, we update them using random-walk MH steps. We update the log-

eigenvalues blocked by resolutions with normal proposals. For the transformed Givens

angles, all angles within a particular resolution, and the between-resolution angles, are

updated as blocks, independently for K0 and U , and again with normal proposals.

Posterior Inference on the Propagator Matrix H

From (3.10), the joint (conditional) prior for the vector h := vec(H ′) is given by,

h|θH ∼ Nr2(µH ,ΣH),
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where the mean vector µH is stacked in the same manner as h and its elements are given

in (3.10). The covariance matrix is given by, ΣH := diag(σ2
11, . . . , σ

2
1r, . . . , σ

2
r1, . . . , σ

2
rr),

where σij := τci,cjg(dij;αci,cj , γci,cj) is the standard deviation of hij (conditional on θH)

given by (3.10).

We must complete the prior specification on H by describing the calibration of the

hyperparameters {σ2
µ,k}, {aτ,kl}, and {bτ,kl}. We begin by calibrating the latter two (sets

of) parameters: We choose ν to be the desired degrees of freedom in the (conditional) t-

distribution for hij (see Section 2.3 of the main document; we use ν = 10 in Section 3; in

Section 4, we set ν = 1000 to give more weight to the prior means of {τkl} in light of the

large number of basis functions used, namely r = 380), which implies aτ,kl = ν/2. Then,

{bτ,kl} are chosen so that the estimated variance of the off-diagonal elements of a point

estimate Ĥkl (e.g., the EM estimate) matches the theoretical value derived in (3.14). This

leads to bτ,kl = (aτ,kl − 1)wkl, where

wkl := avg{ĥ2ij : i 6= j, ci = k, cj = l}/avg{E(g(dij;αkl, γkl)
2) : i 6= j, ci = k, cj = l}.

Finally, values for {σ2
µ,k} are chosen so that σ2

µ,k = avg{(ĥii−1)2 : ci = k}−bτ,kk/(aτ,kk−

1), which is derived by setting i = j in the expression for the marginal variance of hij given

in (3.14).

To update the elements of h := vec(H ′) and the parameters θH , we begin by updating

θH . The full conditional distributions of {µk : k = 1, . . . , C} are given by,

µk| · ∼ N([1/σ2
µ+
∑
i: ci=k

1/τ 2kk]
−1[1/σ2

µ+
∑
i: ci=k

hii/τ
2
kk], [1/σ

2
µ+
∑
i: ci=k

1/τ 2kk]
−1), k = 1, . . . , C.

The elements of {τ 2kl} are sampled from their full conditional distributions,

τ 2kl| · ∼ InvGamma(aτ,kl +
∑

(i,j)∈Ikl

1/2, bτ,kl + (hkl − µH,kl)
′Σ−1h,kl(hkl − µH,kl)/2),

139



where Ikl := {(i, j) : ci = k, cj = l, αkl > dij}, hkl := vec(H ′kl), µH,kl := E(hkl|θH),

and Σh,kl := var(hkl|θH)/τ 2kl. For the shape parameters {γkl}, the full conditional distri-

butions,

[γkl| · ] ∝ [hkl|µH,kl, τ
2
kl, αkl] [γkl], k, l = 1, . . . , C,

are not available in closed form. Therefore, we update {γkl} using MH steps with normal

proposals: For k, l = 1, . . . , C, we draw a proposal γ∗kl fromN(γkl, σ
2
γ,prop), where γkl is the

value from the previous MCMC iteration and σ2
γ,prop is the proposal variance. The proposal

is then accepted with probability,

min

{
1,
N(hkl|µH,kl, τ

2
klΣ
∗
h,kl)

N(hkl|µH,kl, τ 2klΣh,kl)

N(γ∗kl|µγ, σ2
γ)

N(γkl|µγ, σ2
γ)

}
,

where Σ∗h,kl is the same as Σh,kl above, but with γ∗kl instead of γkl, and recall thatN(x|µ,Σ)

denotes the density function of a normal distribution with mean µ and covariance matrix Σ

evaluated at x.

The only parameters that remain are {αkl : k, l = 1, . . . , C} and h. We will update

them as a block by decomposing their joint full conditional distribution in the form,

[{αkl},h|θ̃] = [{αkl}|θ̃] [h|{αkl}, θ̃], (A.4)

where θ̃ is a vector containing all unknowns except for h and {αkl : k, l = 1, . . . , C},

as well as the data. To sample {αkl} efficiently, we sample their transformations, α̃kl :=

Φ−1(αkl), k, l = 1, . . . , C, as a block from,

[{α̃kl}|θ̃] ∝ [{α̃kl}]
∫

[η1:T ,h|η0,µH ,ΣH , U ]dh = [{α̃kl}] [η1:T ,h|η0,µH ,ΣH , U ],

where [{α̃kl}] =
∏

k,lN(α̃kl|0, 1), and then we transform {α̃kl} back to {αkl}. To calculate

the acceptance probability, we need to find [η1:T ,h|η0,µH ,ΣH , U ]; that is, we need to
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marginalize over h:

[η1:T ,h|η0,µH ,ΣH , U ] =
∫

[η1:T |η0,h, U ] [h|µH ,ΣH ] dh = NrT (vec((η1:T )′)|Υ′µH ,Υ
′ΣHΥ+Ũ),

(A.5)

where Ũ := U ⊗ IT , Υ := Ir ⊗ η0:(T−1), and ηt1:t2 is a matrix with the columns ηt1 , . . . ,ηt2 .

We sample {α̃kl} as a block using adaptive normal MH proposals; then we accept the pro-

posed set of {α̃kl} with a probability that is the ratio of the distribution (A.5) evaluated at

the proposed set, divided by (A.5) evaluated at the current set of {α̃kl}.

Finally, we would like to sample h as implied by the second term on the right-hand

side of (A.4), which is its full conditional distribution. This distribution is of the form,

N(A−1h kh, A
−1
h ), where

Ah :=
∑T

t=1(Ir ⊗ ηt−1)U
−1(Ir ⊗ η′t−1) + Σ−1H = ΥŨ−1Υ′ + Σ−1H

kh :=
∑T

t=1(Ir ⊗ ηt−1)U
−1ηt + Σ−1H µh = ΥŨ−1vec(η1:T ′) + Σ−1H µh.

(A.6)

Note that we need to invert the r2×r2 matrix Ah, which, depending on the number of basis

functions used in an application, can be a very large matrix. We make use of a Sherman-

Morrison-Woodbury formula (Sherman and Morrison, 1950; Woodbury, 1950; Henderson

and Searle, 1981) to replace the (direct) inversion of Ah with that of an rT × rT matrix:

A−1h = ΣH − ΣHΥ(Ũ + Υ′ΣHΥ)−1Υ′ΣH . (A.7)

However, this matrix can often be too large to hold in memory and to sample from directly.

To avoid this, we employ a technique similar to conditional simulation used in spatial

statistics (for details on spatial conditional simulation, see Cressie, 1993, Sec. 3.6.2). We

first sample h̃ ∼ Nr2(µH ,ΣH) and ξ̃t ∼ Nr(0, U), t = 1, . . . , T . If we set the new vector,

h∗ say, to be,

h∗ = h̃ + ΣHΥ(Ũ + Υ′ΣHΥ)−1(vec((η1:T )′)−Υ′h̃− ξ̃1:T ), (A.8)
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then h∗| · ∼ Nr2(A
−1
h kh, A

−1
h ), which is the correct full conditional distribution (A.6). As

can be easily seen from the definitions below equation (A.6), the matrix (Ũ + Υ′ΣHΥ) is

a sparse matrix of dimension rT × rT with at most r2T + rT 2 − rT = rT (r + T − 1)

nonzero elements. This allows for fast sampling of h.

Note that there is actually a change of dimension in the parameter space, induced by

sampling {αkl}. We have not made this explicit in the formulas relating to the updating

of h and {αkl}, and no explicit reversible-jump MCMC is needed. Additionally, neither

calculating (A.5) nor (A.8) requires taking the inverse of ΣH (which will have some rows

and columns that are exactly zero) directly; all terms containing Σ−1H in (A.5) cancel out

after simplifying.

We conclude this section with a short discussion of why regularization of H is impor-

tant. Assuming that all quantities other thanH in the model are fixed, we are essentially try-

ing to make inference on the r2 elements of H from T + 1 replications of an r-dimensional

vector, {ηt : t = 0, . . . , T}. If we put ΣH = ωIr2 , where ω → ∞ (i.e., no regularization),

we can see from (A.6) that E(h| · ) = (ΥŨ−1Υ′)−1ΥŨ−1vec((η1:T )′), which is equivalent

to the generalized-least-squares estimator in a regression model with data vec((η1:T )′), ma-

trix of covariates Υ, and covariance matrix Ũ . That is, we are trying to infer the r2 elements

of h from the rT -dimensional vector, vec((η1:T )′), a problem that almost demands regu-

larization, especially if T < r. By assuming finite prior variances in ΣH (and even some

variances equal to zero, for sparsity), we essentially obtain a ridge-regression estimator for

the mean of the full conditional distribution of h.
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Gelpke, V. and Künsch, H. R. (2001), “Estimation of motion from sequences of images:

Daily variability of Total Ozone Mapping Spectrometer ozone data,” Journal of Geo-

physical Research, 106, 11825–11834.

Geman, S. and Geman, D. (1984), “Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6, 721–741.

George, E. I., Sun, D., and Ni, S. (2008), “Bayesian stochastic search for VAR model

restrictions,” Journal of Econometrics, 142, 553–580.

Gilbert, J. R., Moler, C., and Schreiber, R. (1992), “Sparse Matrices in MATLAB: Design

and Implementation,” SIAM Journal on Matrix Analysis and Applications, 13, 333–356.

Gneiting, T. (2002), “Compactly Supported Correlation Functions,” Journal of Multivariate

Analysis, 83, 493–508.

Gneiting, T. and Raftery, A. E. (2007), “Strictly proper scoring rules, prediction, and esti-

mation,” Journal of the American Statistical Association, 102, 359–378.

Green, P. J. (1995), “Reversible jump Markov chain Monte Carlo computation Bayesian

model determination,” Biometrika, 82, 711.

Haario, H., Saksman, E., and Tamminen, J. (2001), “An adaptive Metropolis algorithm,”

Bernoulli, 7, 223–242.

147



Hamilton, J. (1994), Time Series Analysis, Princeton, NJ: Princeton University Press.

Hannan, E. and Deistler, M. (1988), The Statistical Theory of Linear Systems, New York,

NY: Wiley.

Hastings, W. (1970), “Monte Carlo sampling methods using Markov chains and their ap-

plications,” Biometrika, 57, 97–109.

Heaton, M. J., Katzfuss, M., Ramachandar, S., Pedings, K., Gilleland, E., Mannshardt-

Shamseldin, E., and Smith, R. L. (2011), “Spatio-temporal models for large-scale indi-

cators of extreme weather,” Environmetrics, 22, 294–303.

Henderson, H. and Searle, S. (1981), “On deriving the inverse of a sum of matrices,” SIAM

Review, 23, 53–60.

Higdon, D. (1998), “A process-convolution approach to modelling temperatures in the

North Atlantic Ocean,” Environmental and Ecological Statistics, 5, 173–190.

— (2002), “Space and space-time modeling using process convolutions,” in Quantitative

Methods for Current Environmental Issues, eds. Anderson, C., Barnett, V., Chatwin, P.,

and El-Shaarawi, A., London: Springer, pp. 37–56.

Holmes, C. and Mallick, B. (2001), “Bayesian regression with multivariate linear splines,”

Journal of the Royal Statistical Society: Series B, 63, 3–17.

Holmes, C. and Mallick, B. K. (2000), “Bayesian wavelet networks for nonparametric

regression,” IEEE Transactions on Neural Networks, 11, 27–35.

James, A. (1964), “Distributions of matrix variates and latent roots derived from normal

samples,” Annals of Mathematical Statistics, 35, 475–501.

148



Johannesson, G. and Cressie, N. (2004), “Variance-covariance modeling and estimation

for multi-resolution spatial models,” in GeoENV IV - Geostatistics for Environmental

Applications, eds. Sanchez-Vila, X., Carrera, J., and Gomez-Hernandez, J., Kluwer, Dor-

drecht, pp. 319–330.

Johannesson, G., Cressie, N., and Huang, H.-C. (2007), “Dynamic multi-resolution spatial

models,” Environmental and Ecological Statistics, 14, 5–25.

Jones, R. (1963), “Stochastic processes on a sphere,” Annals of Mathematical Statistics,

34, 213–218.

Jun, M. and Stein, M. L. (2008), “Nonstationary covariance models for global data,” Annals

of Applied Statistics, 2, 1271–1289.

Kalman, R. (1960), “A new approach to linear filtering and prediction problems,” Journal

of Basic Engineering, 82, 35–45.

Kang, E. L. and Cressie, N. (2011), “Bayesian inference for the spatial random effects

model,” Journal of the American Statistical Association, 106, in press.

Kang, E. L., Cressie, N., and Shi, T. (2010), “Using temporal variability to improve spatial

mapping with application to satellite data,” Canadian Journal of Statistics, 38, 271–289.

Kang, E. L., Liu, D., and Cressie, N. (2009), “Statistical analysis of small-area data based

on independence, spatial, non-hierarchical, and hierarchical models,” Computational

Statistics & Data Analysis, 53, 3016–3032.

Kanter, M. (1997), “Unimodal spectral windows,” Statistics & Probability Letters, 34, 403–

411.

149



Kaplan, A., Cane, M., Kushnir, Y., Clement, A., Blumenthal, M., and Rajagopalan, B.

(1998), “Analyses of global sea surface temperature 1856-1991,” Journal of Geophysical

Research, 103, 18567–18589.

Kass, R. and Raftery, A. (1995), “Bayes factors,” Journal of the American Statistical Asso-

ciation, 90, 773–795.

Katzfuss, M. and Cressie, N. (2009), “Maximum likelihood estimation of covariance pa-

rameters in the spatial-random-effects model,” in Proceedings of the Joint Statistical

Meetings, Alexandria, VA: American Statistical Association, pp. 3378–3390.

— (2011a), “Bayesian hierarchical spatio-temporal smoothing for massive datasets,” Tech-

nical Report No. 853, Department of Statistics, The Ohio State University, Columbus,

OH.

— (2011b), “Spatio-temporal smoothing and EM estimation for massive remote-sensing

data sets,” Journal of Time Series Analysis, 32, 430–446.

Kaufman, C., Schervish, M., and Nychka, D. W. (2008), “Covariance tapering for

likelihood-based estimation in large spatial data sets,” Journal of the American Statis-

tical Association, 103, 1545–1555.

Knuth, K. (2005), “Informed source separation: A Bayesian tutorial,” in European Signal

Processing Conference, eds. Sanjur, B., Cetin, E., Tekalp, E., and Kuruoglu, E., Antalya,

Turkey.

Kot, M., Lewis, M., and van Den Driessche, P. (1996), “Dispersal data and the spread of

invading organisms,” Ecology, 77, 2027–2042.

150



Landgrebe, D. A. (2003), Signal Theory Methods in Multispectral Remote Sensing, Hobo-

ken, NJ: Wiley.
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