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ABSTRACT

Each chemical reaction network taken with mass action kinetics gives rise to a system

of polynomial differential equations that govern the species concentrations, and in those

equations many parameters (rate constants) appear. Even for a moderately sized network

with several species and several reactions the resulting equations can be highly intricate.

This thesis addresses the problem of determining whether a given chemical reaction net-

work, taken with mass action kinetics, has the capacity to admit multiple positive steady

states – that is, whether for the network there are rate constant values such that the resulting

polynomial differential equations admit two distinct stoichiometrically-compatible steady

states in which all species concentrations are positive. The theory developed extends earlier

work by Ellison and Feinberg and is implemented in a Windows-based computer program

that has been made internet-available.
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Chapter 1

INTRODUCTION

1.1 Questions of Interest

We will consider a special kind of ordinary differential equations, those derived from chem-

ical reaction networks. In particular, we will consider the question of how reaction network

constructure influences the capacity of the corresponding differential equations to admit

more than one equilibrium. (More precisely, we will be interested in the possibility of two

"stoichiometrically compatible" equilibria in which all species concentrations are positive.)

To see how these ordinary differential equations are derived, let us consider the simple

example shown below as (1.1.1).

Suppose A, B, C, and D are chemical species, and suppose that a molecule of A can

react with a molecule of B to form a molecule of C, a molecule of C can decompose into

two molecules of D, and two molecules of D can form a molecule of C. The chemical

reactions occurring among all species are then A+ B → C, C → 2D, and 2D → C. The

set of objects {A + B,C, 2D} that lie on either side of the reaction arrow are called the

complexes of the reaction network.

We write down the standard reaction diagram for this reaction network, in which each

complex appears just once:

A+B → C 
 2D. (1.1.1)

Next, imagine that we put a certain amount of species A, B, C and D into a pot. We
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will refer the pot as a reactor. We suppose the pot is stirred constantly so its contents remain

spatially homogeneous over time. We also suppose the contents in the pot are maintained

at a fixed temperature and total volume. We will consider the instantaneous molar con-

centrations of the species, denoted by cA(t), cB(t), cC(t) and cD(t). We define a vector,

containing these instantaneous concentrations as its components, as a composition vector

c(t), where c(t) = [cA(t), cB(t), cC(t), cD(t)]. We can then write the differential equations

describing the evolution of these molar concentrations. Note that the chemical reactions are

the causes by which the concentrations change, so the rate of change of the concentrations

depends on how fast the reactions are going. In general, we suppose that the instantaneous

occurence rate of each reaction depends on the instantaneous composition vector c. For

example, we define a continuous nonnegative real-valued function KA+B→C(·) such that

KA+B→C(c) is the instantaneous occurrence rate of reaction A+B → C (per unit volume

of mixture) when the instantaneous composition vector is c. We can similarly define func-

tions KC→2D(·) and K2D→C(·) for the reactions C → 2D and 2D → C, respectively. We

then define a kinetics for a reaction network as an assignment of a rate function to each

reaction in the network.

Assuming the reaction network (1.1.1) is equipped with a kinetics, we can write down

the system of differential equations that govern the reactor. Supposing the reactor has

some instantaneous composition c, we can consider the instantaneous rates of change for

all entries in c, cA, cB, cC and cD. For example, let us consider the instantaneous rate of

change of cA. Note that every time the reaction A+B → C occurs, we lose a molecule of

A at the occurrence rate KA+B→C(c). For the other two reactions C → 2D and 2D → C,

when they occur, there is no gain or loss of molecules of A. Therefore, we can express the

instantaneous rate of change of concentration of species A as follows:

ċA = −KA+B→C(c)

As for species D, every time the reaction C → 2D occurs, two molecules of D are

2



gained at the rate KC→2D(c) , every time the reaction 2D → C occurs, two molecules

of D are lost at the rate K2D→C(c), and the occurence of reaction A + B → C does not

affect the number of molecules of D. Therefore, we can write down the instantaneous rate

change of concentration of species A, B, C and D, in a similar fashion.

ċA = −KA+B→C(c) (1.1.2)

ċB = −KA+B→C(c)

ċC = KA+B→C(c)−KC→2D(c) + K2D→C(c)

ċD = 2KC→2D(c)− 2K2D→C(c)

In this thesis, we assume that the kinetics are mass action, which we will now describe.

We assume that the instantaneous occurrence rate of A+B → C is proportional to the

current value of cAcB. This is based on the assumption that the probability of a molecule of

A encountering a molecule ofB, which is required to make the reactionA+B → C occur,

is proportional to cAcB. Thus we write KA+B→C(c) = kA+B→CcAcB, where kA+B→C is a

positive rate constant for the reaction A+B → C.

We assume the instantaneous occurrence rate of C → 2D is proportional to the current

concentration of species C. This is based on the assumption that the higher the concentra-

tion of C, the higher will be the number of occurrences per time of the reaction C → 2D.

So we can write KC→2D(c) = kC→2DcD, where kC→2D is a positive rate constant for the

reaction C → 2D.

We assume that the instantaneous occurence rate of 2D → C is proportional to the

current value of c2
D. This is based on the assumption that the probability of a molecule of

D encountering another molecule of D, which is required to make the reaction 2D → C

occur, is proportional to c2
D. Thus we write K2D→C(c) = k2D→Cc

2
D, where k2D→C is a

positive rate constant for the reaction 2D → C.

3



Therefore, from our mass action kinetics assumption, we have that

KA+B→C(c) = kA+B→CcAcB

KC→2D(c) = kC→2DcC

K2D→C(c) = k2D→Cc
2
D

where kA+B→C , kC→2D, k2D→C are the rate constants for the corresponding reactions. We

can rewrite (1.1.2) as follows:

ċA = −kA+B→CcAcB (1.1.3)

ċB = −kA+B→CcAcB

ċC = kA+B→CcAcB − kC→2DcC + k2D→Cc
2
D

ċD = 2kC→2DcC − 2k2D→Cc
2
D

We now are at the point that the differential equations are written for the mass action

governed reaction network (1.1.1).

Remark 1.1.1. Besides reactions derived from true chemistry, there are sometimes so-

called pseudo-reactions (see [13]). For example, we can add pseudo-reactions A 
 0,

B 
 0, C 
 0, D → 0, where 0 is called the zero complex, to reaction network (1.1.1).

We then have the following reaction network:

A+B → C 
 2D (1.1.4)

l

A 
 0 
 B

↑

D

We will explain why the pseudo-reactions might be added to reaction network (1.1.1) to

form reaction network (1.1.4). Suppose we change the reactor for reaction network (1.1.1)

4



so that it has an inflow and outflow stream. We suppose that as the reactions are occurring

inside the reactor, a mixture of species A, B, and C is continuously supplied to the reactor

at a constant volumetric flow rate r (volume/time), and species A, B, C and D are contin-

uously removed from the reactor in a stream having the same volumetric flow rate r. Let us

denote by cfA, cfB, and cfC the instantaneous molar concentrations (moles/volume) of species

A, B, and C in the inflow stream. cA, cB, cC , and cD will still represent the instantaneous

molar concentrations of species A, B, C and D, respectively, within the reactor. Therefore

cA, cB, cC and cD are also the instantaneous molar concentrations of species A, B, C and

D, respectively, in the outflow stream. Let V be the total volume of the mixture within the

reactor.

If we consider the reaction network (1.1.4), the inflow and outflow streams are also

causes for changes in concentrations, besides the reactions occurring inside the reactor.

So the corresponding mass action differential equations are :

ċA = (r/V )cfA − (r/V )cA − kA+B→CcAcB (1.1.5)

ċB = (r/V )cfB − (r/V )cB − kA+B→CcAcB

ċC = (r/V )cfC − (r/V )cC + kA+B→CcAcB − kC→2DcC + k2D→Cc
2
D

ċD = −(r/V )cD + 2kC→2DcC − 2k2D→Cc
2
D

Let k0→A = (r/V )cfA, k0→B = (r/V )cfB, k0→C = (r/V )cfC , kA→0 = r/V , kB→0 =

r/V , kC→0 = r/V , and kD→0 = r/V . With these definitions we can rewrite (1.1.5) as

follows:

ċA = k0→A − kA→0cA − kA+B→CcAcB (1.1.6)

ċB = k0→B − kB→0cB − kA+B→CcAcB

ċC = k0→C − kC→0cC + kA+B→CcAcB − kC→2DcC + k2D→Cc
2
D

ċD = −kD→0cD + 2kC→2DcC − 2k2D→Cc
2
D

5



We can then call k0→A, k0→B, k0→C , kA→0, kB→0, kC→0 and kD→0 the rate constants for

the pseudo reactions 0 → A, 0 → B, 0 → C, A → 0, B → 0, C → 0 and D → 0,

respectively. By convention, with mass action kinetics, a reaction of the form 0 → A is

taken to have constant rate, the rate being k0→A, i.e., the rate constant for the reaction

0→ A. In this way, the mass action differential equations (1.1.6) derive from the network

(1.1.4).

For any given reaction network, the construction of the mass action differential equa-

tions proceeds in the same way, as in the example. The resulting system of mass action

differential equations will usually be far more complicated than (1.1.3). We will give an

example of a more complex reaction network below:

E1 + S1 
 E1S1 → E1 + S2 
 E1S2 → E1 + S3 
 E1S3 → E1 + S4 (1.1.7)

E2 + S4 
 E2S4 → E2 + S3 
 E2S3 → E2 + S2 
 E2S2 → E2 + S1

E3 + S1 
 E3S1 → E3 + S2 
 E3S2 → E3 + S3

E4 + S4 
 E4S4 → E4 + S3 
 E4S3 → E4 + S2

with its corresponding mass action differential equations (1.1.8), where ċs is the instanta-

neous rate of change of concentration of species s, cs is the instantaneous concentration of

species s and ky→y′ is the rate constant for the reaction y → y′:

6



ċE1 = −kE1+S1→E1S1cE1cS1 + kE1S1→E1+S1cE1S1 + kE1S1→E1+S2cE1S1 (1.1.8)

−kE1+S2→E1S2cE1cS2 + kE1S2→E1+S2cE1S2 + kE1S2→E1+S3cE1S2

−kE1+S3→E1S3cE1cS3 + kE1S3→E1+S3cE1S3 + kE1S3→E1+S4cE1S3

ċE2 = −kE2+S4→E2S4cE2cS4 + kE2S4→E2+S4cE2S4 + kE2S4→E2+S3cE2S4

−kE2+S3→E2S3cE2cS3 + kE2S3→E2+S3cE2S3 + kE2S3→E2+S2cE2S3

−kE2+S2→E2S2cE2cS2 + kE2S2→E2+S2cE2S2 + kE2S2→E2+S1cE2S2

ċE3 = −kE3+S1→E3S1cE3cS1 + kE3S1→E3+S1cE3S1 + kE3S1→E3+S2cE3S1

−kE3+S2→E3S2cE3cS2 + kE3S2→E3+S2cE3S2 + kE3S2→E3+S3cE3S2

ċE4 = −kE4+S4→E4S4cE4cS4 + kE4S4→E4+S4cE4S4 + kE4S4→E4+S3cE4S4

−kE4+S3→E4S3cE4cS3 + kE4S3→E4+S3cE4S3 + kE4S3→E4+S2cE4S3

ċS1 = −kE1+S1→E1S1cE1cS1 + kE1S1→E1+S1cE1S1 + kE2S2→E2+S1cE2S2

−kE3+S1→E3S1cE3cS1 + kE3S1→E3+S1cE3S1

ċS2 = kE1S1→E1+S2cE1S1 − kE1+S2→E1S2cE1cS2 + kE1S2→E1+S2cE1S2

+kE2S3→E2+S2cE2S3 − kE2+S2→E2S2cE2cS2 + kE2S2→E2+S2cE2S2

+kE3S1→E3+S2cE3S1 − kE3+S2→E3S2cE3cS2 + kE3S2→E3+S2cE3S2

+kE4S3→E4+S2cE4S3

ċS3 = kE1S2→E1+S3cE1S2 − kE1+S3→E1S3cE1cS3 + kE1S3→E1+S3cE1S3

+kE2S4→E2+S3cE2S4 − kE2+S3→E2S3cE2cS3 + kE2S3→E2+S3cE2S3

+kE3S2→E3+S3cE3S2 + kE4S4→E4+S3cE4S4 − kE4+S3→E4S3cE4cS3

+kE4S3→E4+S3cE4S3

ċS4 = kE1S3→E1+S4cE1S3 − kE2+S4→E2S4cE2cS4 + kE2S4→E2+S4cE2S4

−kE4+S4→E4S4cE4cS4 + kE4S4→E4+S4cE4S4
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ċE1S1 = kE1+S1→E1S1cE1cS1 − kE1S1→E1+S1cE1S1 − kE1S1→E1+S2cE1S1

ċE1S2 = kE1+S2→E1S2cE1cS2 − kE1S2→E1+S2cE1S2 − kE1S2→E1+S3cE1S2

ċE1S3 = kE1+S3→E1S3cE1cS3 − kE1S3→E1+S3cE1S3 − kE1S3→E1+S4cE1S3

ċE2S4 = kE2+S4→E2S4cE2cS4 − kE2S4→E2+S4cE2S4 − kE2S4→E2+S3cE2S4

ċE2S3 = kE2+S3→E2S3cE2cS3 − kE2S3→E2+S3cE2S3 − kE2S3→E2+S2cE2S3

ċE2S2 = kE2+S2→E2S2cE2cS2 − kE2S2→E2+S2cE2S2 − kE2S2→E2+S1cE2S2

ċE3S1 = kE3+S1→E3S1cE3cS1 − kE3S1→E3+S1cE3S1 − kE3S1→E3+S2cE3S1

ċE4S4 = kE4+S4→E4S4cE4cS4 − kE4S4→E4+S4cE4S4 − kE4S4→E4+S3cE4S4

ċE4S3 = kE4+S3→E4S3cE4cS3 − kE4S3→E4+S3cE4S3 − kE4S3→E4+S2cE4S3

We propose our questions for this thesis: For a given reaction network, how can we

determine if the corresponding mass action differential equations have the capacity to admit

multiple positive equilibria (in a sense to be defined more precisely later)? (By a positive

equilibrium, we mean one in which all species concentrations are positive.) That is, are

there rate constant values for which multiple positive equilibria will be obtained? And how

does the answer depend on the reaction network structure? This thesis is about answering

these questions.

Remark 1.1.2. There are certain physical assumptions underlying the work. All reactions

are assumed to be governed by mass action kinetics. All mixtures are assumed to have

a constant density, independent of composition. All mixtures are assumed to be spatially

homogeneous ("well-stirred") so the concentrations in the reactor are uniform. The reac-

tors are assumed to operate isothermally. These assumptions are made to focus solely on

changes in the concentrations due to the reactions in the given reaction network.
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1.2 Overview

The main objective is to construct the Higher Deficiency Theory, a theory which is pro-

posed to study the equilibrium states of chemical reaction networks. We will try to provide

a systematic way to answer the question of whether a given reaction network has the capac-

ity to admit multiple steady states. The Higher Deficiency Theory translates the question

of multiple steady states into questions about solving systems of linear inequalities and

equalities. An algorithm, called the Higher Deficiency Algorithm, is designed and imple-

mented in a user-friendly Windows-based program called the Chemical Reaction Network

Toolbox [16], according to the theory. The Higher Deficiency Theory and Algorithm are

reformulations and extensions of earlier work by Feinberg (see [1], [2], [3], [4], [5], and

[6]) and Ellison (see [7], [8], [9], [10] and [11]).

The other components of this thesis are the Mass Action Injectivity Test and the Concor-

dance Test. Both serve as supportive tools for the Higher Deficiency Theory and Algorithm

in answering the question of multiple steady states. The Mass Action Injectivity Test and

the Concordance Test can only conclude that a given reaction network cannot support mul-

tiple steady states; they can never conclude that a reaction network can support multiple

steady states. The Concordance Test also gives information about networks with kinetics

that are not mass action.

If a network passes the Mass Action Injectivity Test or the Concordance Test, then (in

the mass action case) the given reaction network cannot support multiple steady states, no

matter what positive values the rate constants (of the reactions in the network) take. In

the case that the computational algorithm for the Higher Deficiency Theory needs to take a

somewhat longer time to answer or cannot answer the question, the Mass Action Injectivity

Test and the Concordance Test might nevertheless give information, and perhaps quickly.
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1.3 Terms and Definitions

In this section, the terms and definitions for understanding chemical reaction network the-

ory are introduced.

Let I be a finite set. We denote by #(I) or |I| the number of elements in I . We denote

RI as the vector space of real-valued functions with domain I . Let x ∈ RI , and i ∈ I , then

x(i) will usually be denoted xi. In particular, RI
+ means the vector space of positive-valued

functions with domain I and R̄I
+ means the vector space of nonnegative-valued functions

with domain I . We define the standard basis {ωi}i∈I of RI as follows:

ωi(j) =


1, if j = i

0, otherwise.

Addition, subtraction, and scalar multiplication in RI are defined in the usual way. We then

define the vector multiplication, exponential, natural logarithmic functions and standard

scalar product in RI as follows:

Let x, z ∈ RI , then xz ∈ RI is defined via (xz)i = xizi, ex ∈ RI is defined via

(ex)i = exi , ln x ∈ RI is defined via (ln x)i = ln xi, xz ∈ R is defined via xz =
∏
i∈I
xzii , and

x · z ∈ R is defined via x · z =
∑
i∈I

xizi.

We also define the support of x ∈ RI , denoted by supp x, as follows:

supp x := {i ∈ I : xi 6= 0}.

We define the support of a set A = {x1, x2, ..., xn} ⊂ RI as follows:

supp A := {i ∈ I : there exists xj ∈ A such that xji 6= 0}.

In general, a reaction network consists of three sets S , C , and R, where S is the set

of all species in the reaction network, C is the set of all complexes in the reaction network,

and R is the set of all reactions in the reaction network. In reaction network (1.1.1),

S = {A,B,C,D}, C = {A+B,C, 2D}, and R = {A+B → C,C → 2D, 2D → C}.

In a reaction network, each complex is associated with a complex vector in RS . The
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complex vector y for the complex is defined as
∑
s∈S

ysωs, where ys is the stoichiometric

coefficient of the species s for the complex.

In the reaction network theory, we will often find it convenient to identify the name

of a complex with its complex vector. For example, the complex A + B is regarded as a

symbol for ωA + ωB ∈ RS . Thus, C is regarded as a subset of R̄S
+ . A reaction, then, will

typically be denoted by a symbol such as y → y′, where y and y′ are members of C ⊂ R̄S
+

(e.g. y = A + B, y′ = C). In reaction network (1.1.1), the complexes are A + B, C, and

2D, and the corresponding complex vectors are ωA + ωB, ωC , and 2ωD. Thus A + B is

regarded as a symbol for ωA + ωB ∈ RS , C is regarded as a symbol for ωC ∈ RS , and D

is regarded as a symbol for ωD ∈ RS .

For a reaction in a reaction network with an arrow→, the complex lying in front of the

tail of the arrow is called a reactant complex for the reaction, and the one lying next to the

head of the arrow is called a product complex. In other words, if, in a reaction network,

there exists a reaction y → y′, then y is the reactant complex of this reaction, and y′ is the

product complex of this reaction.

The reaction vector for the reaction y → y′ is defined as y′ − y ∈ RS , and (y′ −

y)s represents the net change in the number of molecules for species s ∈ S from one

occurrence of reaction y → y′. In reaction network (1.1.1), the reaction vectors are ωC −

ωA − ωB, 2ωD − ωC , and ωC − 2ωD, which are associated with the reactions A + B →

C,C → 2D, and 2D → C, respectively. We then define the stoichiometric subspace S

as the linear subspace of RS spanned by all reaction vectors in the reaction network, i.e.,

S = span {y′ − y : y → y′ ∈ R}. In reaction network (1.1.1), the stoichiometric subspace

is the linear space spanned by the set {ωC − ωA − ωB, 2ωD − ωC , ωC − 2ωD}. Therefore,

a basis of the stoichiometric subspace is {ωC −ωA−ωB, 2ωD−ωC} and the dimension of

the stoichiometric subspace is 2.

Recall that {ωs : s ∈ S } is the standard basis for RS . In a mixture in which the
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molar concentration of species s ∈ S is cs, the composition vector c ∈ RS is defined by

c :=
∑
s∈S

csωs. In mass action kinetics, the rate of the reaction y → y′ at a composition

c is equal to ky→y′cy, where ky→y′ is the rate constant for the reaction y → y′. Here cy is

defined as follows:

cy =
∏
s∈S

cyss , (1.3.1)

where ys is the stoichiometric coefficient of the species s for the complex y.

The rate of change of composition ċ for a given composition c can then be described by

the following equation (see [1]):

ċ =
∑

y→y′∈R

ky→y′c
y(y′ − y). (1.3.2)

From here we can see that the rate of change of composition ċ for a given composition c

lies in the stoichiometric subspace S.

Two composition vectors in R̄S
+ , c∗ and c∗∗, are called stoichiometrically compatible if

c∗ − c∗∗ ∈ S.

As usual, we say that R is an equivalence relation on a set X , if for any x, x1, x2, x3 ∈

X , the following are satisfied:

(i) Reflexivity: xRx.

(ii) Symmetry: If x1Rx2 then x2Rx1.

(iii) Transitivity: If x1Rx2 and x2Rx3, then x1Rx3.

We can see that stoichiometric compatibility defines an equivalence relation. There-

fore, it can be used to partition compositions in R̄S
+ into stoichiometric compatibility

classes. If we consider instead two composition vectors in RS
+ , we can similarly claim

that the stoichiometric compatibility can partition RS
+ into positive stoichiometric compat-

iblity classes. In other words, we define a positive stoichiometric compatibility class as

the subset of a stoichiometric compatibility class that contains all of the strictly positive
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compositions of that stoichiometric compatibility class. In particular, the positive stoichio-

metric compatibility class containing c∗ ∈ RS
+ is (c∗ + S) ∩ RS

+ .

A reaction network is said to support multiple positive steady states if there exist pos-

itive rate constants such that the corresponding differential equation (1.3.2) admits two

distinct steady states in the same positive stoichiometric compatibility class.

We have defined basic terms that describe a reaction network and the quantitative terms

associated with a reaction network. Next we will introduce some terms that describe the

general structure of a reaction network.

A reaction y → y′ in a reaction network R is called reversible if y′ → y also lies in the

reaction network; otherwise that reaction is called irreversible.

A reaction network is called reversible if every reaction in the network is reversible. A

reaction network is called weakly reversible if for every reaction y → y′ ∈ R, there exist

complexes y1, y2, ... such that y′ → y1 → y2 → ...→ y lie in R. Note that each reversible

network is also a weakly reversible network.

Two complexes, y and y′ in a reaction network are called directly linked if the reaction

network contains either the reaction y → y′ or the reaction y′ → y or both reactions. If

y and y′ are directly linked, then we denote it as y ↔ y′. Two complexes, y and y′ in a

reaction network are called linked if they are the same complex or if there exist y1, y2, ...

such that y ↔ y1 ↔ y2 ↔ ...↔ y′.

We can claim that linkage defines an equivalence relation:

(i) Reflexivity: y ↔ y.

(ii) Symmetry: If y ↔ y′, then y′ ↔ y.

(iii) Transitivity: If y1 ↔ y2 and y2 ↔ y3, then y1 ↔ y3.

The linkage relation can be used to partition complexes in C into linkage classes. In

reaction network (1.1.1), there is only one linkage class.

A complex y is said to react to complex y′ if y → y′ lies in the reaction network. A
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complex y is said to ultimately react to complex y′ if they are the same complex or if there

exist y1, y2, ... such that y → y1 → y2 → ...→ y′ lie in the reaction network.

Two complexes, y and y′, are called to be strongly linked if both y ultimately reacts to

y′ and y′ ultimately reacts to y.

We can claim that strong linkage defines an equivalence relation:

(i) Reflexivity: y is strongly linked to y.

(ii) Symmetry: If y is strongly linked to y′, then y′ is strongly linked to y.

(iii) Transitivity: Suppose that y is strongly linked to ỹ and ỹ is strongly linked to ŷ.

Then there exists paths from y to ỹ, from ỹ to y, from ỹ to ŷ and from ŷ to ỹ. Therefore,

there exist a path from y to ŷ and a path from ŷ to y, i.e., y is strongly linked to ŷ.

The strong linkage relation can be used to partition complexes in C into strong linkage

classes. A strong linkage class is called terminal if no complex in the strong linkage class

reacts to a complex that does not lie in the strong linkage class; otherwise it is called a

nonterminal strong linkage class. A strong linkage class is called trivial if it contains

only one complex in the strong linkage class; otherwise it is called nontrivial. In reaction

network (1.1.1), the strong linkage classes are {A + B} and {C, 2D}. {A + B} is trivial

and nonterminal, and {C, 2D} is nontrivial and terminal in reaction network (1.1.1).

We will give another example of reaction network:

A+B + 2C → D + E 
 3F (1.3.3)

C + E ← 2F 
 2A+ 2B

↓ ↗

2A+ C

2B + 2C 
 D + F

There are three linkage classes in the reaction network (1.3.3). The strong linkage classes

are {A+B+ 2C}, {D+E, 3F}, {C +E}, {2F, 2A+C, 2A+ 2B}, and {2B+ 2C,D+
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F}. {A + B + 2C} is nonterminal and trivial, {D + E, 3F} is terminal and nontrivial,

{C+E} is terminal and trivial, {2F, 2A+C, 2A+ 2B} is nonterminal and nontrivial, and

{2B + 2C,D + F} is terminal and nontrivial.

Remark 1.3.1. It is easy to see that in a finite reaction network (with a finite number of

complexes), every linkage class contains at least one terminal strong linkage class.

Let #(C ) be the number of complexes in the reaction network, let dim S be the di-

mension of the stoichiometric space S spanned by all reaction vectors in the reaction

network, and let #(linkage classes) be the number of linkage classes in the reaction net-

work. The deficiency of a reaction network, denoted by δ, is defined as δ = #(C ) −

#(linkage classes)−dim S. For reaction network (1.1.1), the deficiency of the network is

equal to 3− 1− 2 = 0. For reaction network (1.3.3), the deficiency of the network is equal

to 9− 3− 5 = 1.

Note that the stoichiometric subspace S is a subspace of RS . A vector, v ∈ RS is

called sign-compatible with the stoichiometric subspace S, if there exists a vector σ ∈ S

and a set of positive numbers {ps : s ∈ S }, such that vs = psσs, for all s ∈ S .

In Sections 1.4 to 1.7.2, we will review older work by Feinberg and Ellison.

1.4 Deficiency Zero Theorem

The Deficiency Zero Theorem (see [1] and [2]) provides decisive results on reaction net-

works with deficiency zero. We will in this section state the Deficiency Zero Theorem

and give an example to see the theorem in application. To see more information on the

Deficiency Zero Theorem, see [1] and [2].

Before stating the Deficiency Zero Theorem, we restrict "arbitrary kinetics" in the theo-

rem statement to be such that the value of the rate function assigned to a reaction is strictly

positive at a given composition if and only if all species in the support of its reactant
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complex vector have strictly positive concentrations. In other words, given any reaction

network {S ,C ,R}, for any y → y′ ∈ R, we assume that the rate function Ky→y′(·) has

the following property: Ky→y′(c) > 0 if and only if for all s ∈ supp y, cs > 0. We also

require the rate functions to be continuous.

Theorem 1.4.1. (The Deficiency Zero Theorem): For any reaction network of deficiency

zero, the following statements hold true:

(i) If the network is not weakly reversible, then for arbitrary kinetics (not necessarily

mass action), the differential equations for the corresponding reaction system cannot admit

a positive steady state (i.e. a steady state in RS
+ ).

(ii) If the network is not weakly reversible, then for arbitrary kinetics (not necessarily

mass action), the differential equations for the corresponding reaction system cannot admit

a cyclic composition trajectory along which all species concentrations are positive.

(iii) If the network is weakly reversible, then for mass action kinetics (but regardless

of the positive values the rate constants take), the resulting differential equations have the

following properties:

There exists within each positive stoichiometric compatibility class precisely one steady

state; that steady state is asymptotically stable; there is no nontrivial cyclic composition

trajectory along which all species concentrations are positive.

Let us consider the following reaction network.

A+ C 
 F (1.4.1)

E + C 
 H

H 
 B + F

B +D 
 G

G 
 2A+D
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The reaction network (1.4.1) is a reversible deficiency zero network. Therefore the

Deficiency Zero Theorem implies that for any assignment of positive rate constants to the

individual reactions, the corresponding mass action differential equations admit precisely

one steady state (in each positive stoichiometric compatibility class), that steady state is

asymptotically stable, and there are no cyclic composition trajectories.

1.5 Deficiency One Theorem

The Deficiency One Theorem (see [1], [2] and [4]) provides results similar to the De-

ficiency Zero Theorem. The Deficiency Zero Theorem gives more powerful results and

can apply to reaction networks governed by arbitrary kinetics (see the note about "arbi-

trary kinetics" before the statement of the Deficiency Zero Theorem). The Deficiency One

Theorem can only provide results for reaction networks governed by mass action kinet-

ics. However, the Deficiency One Theorem applies to a larger set of reaction networks in

terms of the deficiency. On the other hand, the Deficiency One Theorem gives no stability

information. To get a full description of the Deficiency One Theorem, see [1], [2] and [4].

To state the Deficiency One Theorem, we need to first introduce a term called the

deficiency of a linkage class. Each linkage class, together with the reactions that connect

all the complexes in the linkage class, can be treated as a subnetwork of the original reaction

network. By the deficiency of a linkage class, we mean the deficiency of the subnetwork

associated with that linkage class in the obvious way.

Let us consider the following reaction network.

2A 
 B 
 2C (1.5.1)

↑ ↙

A+ C

2B 
 B +D 
 3C
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For network (1.5.1), C = {2A,B, 2C,A + C, 2B,B + D, 3C}, S =span {2ωA −

ωB, ωA−ωC , ωB−ωD, ωB+ωD−3ωC}, and there are two linkage classes. It is a deficiency

one network as #(C )−#(linkage classes)−dim S = 7− 2− 4 = 1. For the first linkage

class {2A,B, 2C,A+C}, the deficiency is 4− 1− 2 = 1, and for the second linkage class

{2B,B +D, 3C}, the deficiency is 3− 1− 2 = 0.

Next we will state the Deficiency One Theorem.

Theorem 1.5.1. (The Deficiency One Theorem): Consider a mass action system for which

the underlying reaction network has l linkage classes. Let δ be the deficiency of the network

and let δθ be the deficiency of the θth individual linkage class. Suppose that the following

conditions hold:

(i) δθ ≤ 1, θ = 1, 2, ..., l

(ii)
l∑

θ=1
δθ = δ

(iii) Each linkage class contains only one terminal strong linkage class.

Then, no matter what (positive) values the rate constants take, the corresponding differ-

ential equations can admit no more than one steady state within a positive stoichiometric

compatibility class. If the network is weakly reversible, the differential equations admit

precisely one steady state in each positive stoichiometric compatibility class.

Consider the following reaction network that satisfies the conditions in the Deficiency

One Theorem,

2A← A+B 
 2B (1.5.2)

The reaction network (1.5.2) is not weakly reversible, has deficiency one and only one

linkage class with one terminal strong linkage class in it. From the Deficiency One Theo-

rem, we can claim that no matter what (positive) values the rate constants take, the corre-

sponding differential equations can admit no more than one steady state within a positive

stoichiometric compatibility class.
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Reaction network (1.5.1) also satisfies the conditions in the Deficiency One Theorem.

It is weakly reversible, so the corresponding mass action differential equations admit pre-

cisely one steady state in each positive stoichiometric compatibility class.

There are reaction networks with deficiency one that do not satisfy the conditions in the

Deficiency One Theorem. Consider the following reaction network:

2A← A+B → 2B (1.5.3)

Reaction network (1.5.3) violates the third condition that each linkage class can only con-

tain one terminal strong linkage class.

The following example is another reaction network that does not satisfy the conditions

of the Deficiency One Theorem:

A+ 2B 
 3A (1.5.4)

A 
 0 
 B

Note that in reaction network (1.5.4), the deficiency of the entire network is 1, the defi-

ciency of the first linkage class is 0 and the deficiency of the second linkage class is 0. So

it does not satisfy the second condition of the Deficiency One Theorem.

For the reaction networks that do not satisfy the conditions of the Deficiency One The-

orem, the theorem stays silent. For a deficiency one reaction network that does not satisfy

the conditions of the Deficiency One Theorem, the Deficiency One Algorithm (see [3], [5]

and [6] for more information) was created to solve that case.

1.6 Deficiency One Algorithm

The Deficiency One Algorithm analyzes a regular deficiency one reaction network’s ca-

pacity for multiple steady states by generating and solving systems of linear equalities and

inequalities (A network is "regular" if it satisfies weak conditions to be discussed shortly).
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The systems of linear equalities and inequalities are corresponding to "shelving" partitions

of the reactant complexes (The "shelving" partitions are about assigning reactant complexes

to three different subsets called "shelves," which are also to be discussed shortly.). All lin-

ear systems generated are in terms of an unknown vector µ ∈ RS . The equalities of the

linear systems all have the form y · µ = y′ · µ and the inequalities of the linear systems all

have the form y · µ > y′ · µ, where y and y′ are complexes. The Deficiency One Algorithm

indicates how these inequality systems are to be formed. To see more about the Deficiency

One Algorithm, please see [3], [5] and [6].

In the Deficiency One Algorithm, we say that such a linear system of equalities and

inequalities has a solution if there exists a nonzero µ ∈ RS that is sign-compatible with

the stoichiometric subspace S and satisfies all the equalities and inequalities in the linear

system. We call the linear system a signature for the reaction network if it has such a

solution. If in the algorithm we find a signature for the reaction network, then the network

has the capacity to support multiple steady states. If no signature exists for the network,

then the network cannot admit multiple steady states, no matter what positive values the

rate constants take.

The Deficiency One Algorithm is implemented in the Chemical Reaction Network

Toolbox [6].

Before we state the steps of the Deficiency One Algorithm, we first define a few terms

(see [3], [5] and [6] for more information).

A pair of complexes y, y′ in a reaction network is a cut pair, if the following conditions

hold:

(i) y and y′ are directly linked.

(ii) By removing the reaction(s) between y and y′, the linkage class containing y and y′

will break into two linkage classes (of the new network without the reaction(s) between y

and y′), W (y) and W (y′), where y ∈ W (y) and y′ ∈ W (y′).
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For reaction network (1.5.4), by the removal of reactions between A+ 2B and 3A, we

have that W (A + 2B) = {A + 2B} and W (3A) = {3A}; by the removal of reactions

between A and 0, we have that W (A) = {A} and W (0) = {0, B}; by the removal of the

reactions between 0 and B, we have that W (0) = {A, 0} and W (B) = {B}. There are

three cut pairs in reaction network (1.5.4), {A+ 2B, 3A}, {A, 0} and {0, B}.

For reaction network (1.5.1), there are three cut pairs, {2A,B}, {2B,B + D} and

{B + D, 3C}. Note that {B, 2C}, {B,A + C} and {2C,A + C} are not cut pairs as the

removal of the reaction(s) between each pair does not disconnect the linkage class.

A network is regular if it satisfies three conditions:

(i) The reaction vectors of the network are positively dependent, i.e., there exists α ∈

RR
+ such that

∑
y→y′∈R

αy→y′(y′ − y) = 0. (1.6.1)

(ii) Each linkage class contains only one terminal strong linkage class.

(iii) Each pair of directly linked complexes in a terminal strong linkage class is a cut

pair.

Remark 1.6.1. The reaction networks we consider in the Deficiency One Algorithm are

regular deficiency one reaction networks.

Reaction network (1.5.4) satisfies all three conditions for being a regular network. Let

α ∈ RR
+ be such that αA+2B→3A = −α3A→A+2B = αA→0 = −α0→A = α0→B = −αB→0 =

1, then
∑

y→y′∈R

αy→y′(y′ − y) = 0. Each linkage class is a strong linkage class, so it

contains only one terminal strong linkage class. All adjacent complexes in the terminal

strong linkage class, {A+ 2B, 3A}, {A, 0} and {0, B} are cut pairs.

Given a reaction network {S ,C ,R}, a vector g ∈ RC is a confluence vector if the

following conditions hold:

(I)
∑
y∈C

gyy = 0.
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(II) For each linkage class L ,
∑
y∈L

gy = 0.

(III) For each terminal strong linkage class Λ that is not a linkage class,
∑
y∈Λ

gy > 0.

For reaction network (1.5.4), a confluence vector is g such that gA+2B = 1, g3A = −1,

gA = 2, g0 = 0, gB = −2. To see that, note that

(I) gA+2B(ωA + 2ωB) + g3A(3ωA) + gA(ωA) + g0(0) + gB(ωB)= (1)(ωA + 2ωB) +

(−1)(3ωA) + (2)(ωA) + (0)(0) + (−2)(ωB) = 0.

(II) gA+2B + g3A = 1 + (−1) = 0, gA + g0 + gB = 2 + 0 + (−2) = 0.

(III) is satisfied trivially as each terminal strong linkage class is a entire linkage class.

Let g ∈ RC be a confluence vector. If y and y′ is a cut pair, we define [g, y → y′, y] =∑
p∈W (y)

gp, where the removal of the reaction(s) between y and y′ break the linkage class

L into two linkage classes (of the new network without the reaction(s) between y and y′),

W (y) and W (y′), where y ∈ W (y) and y′ ∈ W (y′). We claim that [g, y → y′, y] =

−[g, y′ → y, y′], as 0 =
∑
p∈L

gp =
∑

p∈W (y)
gp +

∑
p∈W (y′)

gp = [g, y → y′, y] + [g, y′ → y, y′].

For reaction network (1.5.4), from the choice of confluence vector g above, [g, A +

2B → 3A,A+ 2B] = −[g, 3A→ A+ 2B, 3A] = gA+2B = 1, [g, A→ 0, A] = −[g, 0→

A, 0] = gA = 2, and [g, 0→ B, 0] = −[g,B → 0, B] = −gB = 2.

Recall that for a given reaction network R, a complex y is a reactant complex if there is

another complex y′ such that y → y′ ∈ R. An upper-middle-lower partition is a partition

of its reactant complexes into three sets ("shelves"), U , M , and L , called the upper,

middle and lower shelves, such that

(i) All non-terminal complexes are put in the middle shelf M .

(ii) All complexes in the same nontrivial terminal strong linkage class are put in the

same shelf.

(iii) If there are no trivial terminal strong linkage classes, then neither the upper shelf

nor the lower shelf can be empty.
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(iv) If there is exactly one trivial terminal strong linkage class, then the upper shelf and

the lower shelf cannot both be empty.

We will use reaction network (1.5.4) to illustrate the steps listed in the Deficiency One

Algorithm. Recall that the Deficiency One Algorithm applies to regular deficiency one

reaction networks. For more information on the algorithm, please see [3], [5] and [6].

Step 1: Find a Confluence Vector

The first step is to find a confluence vector g for the reaction network. For a regular

deficiency one reaction network, all confluence vectors are colinear to each other. If in

addition the reaction network is not weakly reversible, then all the confluence vectors will

point to the same direction. If it is weakly reversible, then there are two possible directions

for the confluence vector g. For more information or proof, see [3], [5] and [6].

For the reaction network (1.5.4), it is weakly reversible and therefore there are two

directions for the confluence vector. At this step, we choose g ∈ RC such that gA+2B = 1,

g3A = −1, gA = 2, g0 = 0, and gB = −2.

Step 2: Choose a "shelf" Partition for the Reactant Complexes

Choose a partition for all the reactant complexes in the reaction network according to

the definition of the upper-middle-lower partition.

For reaction network (1.5.4), there is no trivial terminal strong linkage class, so the

only possible partitions are: U = {A + 2B, 3A}, M = {}, L = {A, 0, B}, or U =

{A, 0, B}, M = {}, L = {A + 2B, 3A}. Let us choose U = {A + 2B, 3A}, M = {},

L = {A, 0, B} for this step.

Step 3: Add Shelving Inequalities

All the inequalities comparing y · µ’s between complexes on different shelves are gen-

erated for the linear system.
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We say y is on a higher shelf than y′, if y is put on the upper shelf and y′ is put on the

middle or lower shelf, or y is put on the middle shelf and y′ is put on the lower shelf. For

all reactant complexes, if y is on a higher shelf than y′, then y · µ > y′ · µ is added to the

linear system.

For reaction network (1.5.4), the inequalities that arise from Step 3 according to the

partition in Step 2 are: µA + 2µB > µA, µA + 2µB > 0, µA + 2µB > µB, 3µA > µA,

3µA > 0, and 3µA > µB.

Step 4: Add Shelving Equalities

Equalities comparing y · µ’s between complexes that are put on the middle shelf are

added to the linear system. If y and y′ are both put on the middle shelf, then y · µ = y′ · µ

is added to the linear system.

For reaction network (1.5.4), since there are no complexes in the middle shelf for the

partition in Step 2, there are no equalities added to the linear system in Step 4 for the

partition chosen in Step 2.

Step 5: Add Upper and Lower Shelf Equalities and Inequalities

Equalities and Inequalities comparing y · µ’s between complexes of a cut pair on the

upper and lower shelves are added to the linear system.

If y and y′ is a cut pair on the upper shelf, then an equality or inequality is added to the

linear system based on the sign of [g, y ↔ y′, y]:

If [g, y ↔ y′, y] > 0, then y · µ > y′ · µ is added to the linear system.

If [g, y ↔ y′, y] < 0, then y · µ < y′ · µ is added to the linear system.

If [g, y ↔ y′, y] = 0, then y · µ = y′ · µ is added to the linear system.

If y and y′ is a cut pair on the lower shelf, then an equality or inequality is added to the

linear system based on the sign of [g, y ↔ y′, y]:

If [g, y ↔ y′, y] > 0, then y · µ < y′ · µ is added to the linear system.
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If [g, y ↔ y′, y] < 0, then y · µ > y′ · µ is added to the linear system.

If [g, y ↔ y′, y] = 0, then y · µ = y′ · µ is added to the linear system.

The inequalities and equalities generated from Step 3 through Step 5 form a complete

linear system. By complete we mean no other inequality or equality needs to be added to

the linear system before we check if it is a signature or not.

We will then check if the complete linear system has a solution of a nonzero µ ∈ RS

that is sign-compatible with S. If yes, we claim that taken with mass action kinetics, the

reaction network has the capacity to admit multiple steady states and exit the algorithm. If

not, we will move to the next step.

Remark 1.6.2. Note that in this step only the sign of [g, y → y′, y] matters, and the sign

of [g, y → y′] depends only on the direction of the confluence vector g but not on the

particular choice of g.

Note that for a cut pair y and y′, if the reactions between y and y′ are reversible,

then there is no difference using [g, y → y′, y] or [g, y′ → y, y′]. To see that, note that

[g, y → y′, y] = −[g, y′ → y, y′]. Let y and y′ be a cut pair on the upper shelf, and suppose

[g, y ↔ y′, y] > 0. Therefore y · µ > y′ · µ is added to the linear system. Note that

[g, y′ → y, y′] < 0, so y′ · µ < y · µ is added to the linear system, which is the same as

y · µ > y′ · µ. There is no difference using y → y′ or y′ → y in this case. We can show this

for all cases of shelves (upper or lower) and signs of [g, y → y′]. Therefore, for a cut pair

with reversible reactions between them, we can pick any one direction of the two reactions

and use it to generate an equality or inequality for the linear system in this step.

For reaction network (1.5.4), note that gA+2B = 1, g3A = −1, gA = 2, g0 = 0, and

gB = −2. Therefore,we have

(i) [g, A+ 2B → 3A,A+ 2B] = −[g, 3A→ A+ 2B, 3A] = gA+2B = 1,

(ii) [g, A→ 0, A] = −[g, 0→ A, 0] = gA = 2, and

(iii) [g, 0→ B, 0] = −[g,B → 0, B] = −gB = 2.
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Note that in Step 2, the partition is chosen that U = {A + 2B, 3A}, M = {}, L =

{A, 0, B}. Therefore µA+2µB > 3µA, µA < 0 and 0 < µB are added to the linear system.

Therefore, the inequality system corresponding to the confluence vector g such that

gA+2B = 1, g3A = −1, gA = 2, g0 = 0, and gB = −2, and the "shelf" partition with

U = {A+ 2B, 3A}, M = {}, and L = {A, 0, B}, is as follows:

µA + 2µB > µA

µA + 2µB > 0

µA + 2µB > µB

3µA > µA

3µA > 0

3µA > µB

µA + 2µB > 3µA

µA < 0

0 < µB

If we simplify the linear system above, it becomes µA + 2µB > 3µA > µB > 0 > µA.

Note that S = span {ωA, ωB} = RS , so any solution of µ ∈ RS from the linear system

shall be sign-compatible with S. We simply need to solve the linear system for a solution

of a nonzero µ ∈ RS . From the simplified inequality system, we have µA > 0 > µA. Then

there is no solution to the linear system. We will move to the next step.

Step 6: Repeat Steps 2 to 5

In Step 2 a "shelf" partition is chosen, and from Steps 3 to 5, the linear system are

constructed. We will do this for all possible partitions in Step 2.

However, for the cases that the two partitions are only different by exactly exchanging
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the upper and lower shelves, the inequality system of the one is just an inversion of the

other. We only need to consider one of them.

We will check the linear systems corresponding to all possible "shelf" partitions in Step

2. If there exists a nonzero µ that is sign-compatible with S satisfying a linear system,

then we claim that taken with mass action kinetics, the reaction network has the capacity

to admit multiple steady states and exit the algorithm. Otherwise, after we test all linear

systems generated from Steps 3 to 5 corresponding to all possible "shelf" partitions, we

move to the next step.

For reaction network (1.5.4), the two possible partitions are different by exactly ex-

changing the upper and lower shelf. In this case, we only need to consider the partition we

chose in Step 2. We move to the next step.

Step 7: Repeat Steps 1 to 6

Note that as pointed out in Step 5, only the sign of [g, y → y′, y] (depending on the di-

rection of g) matters. As mentioned earlier about a regular deficiency one reaction network,

the confluence vectors are all colinear and if the reaction network is not weakly reversible,

then all confluence vectors point in the same direction. Therefore, nothing needs to be

done for a non-weakly reversible regular deficiency one reaction network. However, if the

regular deficiency one reaction network is weakly reversible, then there are two possible

directions. In this case, Steps 1 to 6 are repeated for the other orientation of the conflu-

ence vector for the weakly reversible regular deficiency one reaction network. Note that

the inequalities/equalities from Steps 3 and 4 are based on the choice of partition for reac-

tant complexes, and those from Step 5 are based on the direction of the confluence vector.

Therefore, to construct a linear system for this new direction of the confluence vector with

some choice of partition for reactant complexes, we only need to change the linear system

for the old direction with the same partition choice, in the following way: the inequalities

27



from Step 5 need to be reversed, and inequalities and equalities from Steps 3 and 4 are kept

unchanged.

We will check the linear systems corresponding to all possible directions of confluence

vectors (for weakly reversible regular networks there are two directions in total) in Step

1 and all "shelf" partitions in Step 2. If there exists a nonzero µ ∈ RS that is sign-

compatible with S satisfying a linear system, then we claim that the reaction network has

the capacity to admit multiple steady states and exit the algorithm. Otherwise, after we

test all linear systems generated in Steps 3 to 5 corresponding to all possible directions of

confluence vectors and all "shelf" partitions, we claim that taken with mass action kinetics,

the reaction network does not have the capacity to admit multiple steady states, no matter

what (positive) values the rate constants might take.

For reaction network (1.5.4), we will repeat Steps 1 to 6 by choosing another confluence

vector with opposite orientation as g such that gA+2B = −1, g3A = 1, gA = −2, g0 = 0,

and gB = 2. In Step 2, we choose the partition of the reactant complexes as:

U = {A+ 2B, 3A},M = {},L = {A, 0, B}.

In Step 3, with the partition chose in Step 2, we have

µA + 2µB > µA, µA + 2µB > 0, µA + 2µB > µB, 3µA > µA, 3µA > 0, and 3µA > µB.

In Step 4, there are no equalities arose from it.

In Step 5, note that gA+2B = 1, g3A = −1, gA = 2, g0 = 0, gB = −2. It is known that

(i) [g, A+ 2B → 3A,A+ 2B] = −[g, 3A→ A+ 2B, 3A] = gA+2B = −1,

(ii) [g, A→ 0, A] = −[g, 0→ A, 0] = gA = −2, and

(iii) [g, 0→ B, 0] = −[g,B → 0, B] = −gB = −2.

Note that the partition is chosen such that U = {A + 2B, 3A},M = {},L =

{A, 0, B}, so µA + 2µB < 3µA, µA > 0 and 0 > µB are added to the linear system in

Step 5. Note that no other partitions of the reactant complexes from Step 2 need to be

considered.
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We summarized and simplified the linear system corresponding to the confluence vector

g such that gA+2B = −1, g3A = 1, gA = −2, g0 = 0, and gB = 2, and "shelf" partitions

U = {A+ 2B, 3A},M = {},L = {A, 0, B} to get the following inequality system:

3µA > µA + 2µB > µA > 0 > µB.

Recall that we argued that we simply need to solve the linear system for a solution of

a nonzero µ ∈ RS . From the inequality system we have µB > 0 > µB, so there is no

solution to the linear system. Therefore, we can claim that taken with mass action kinetics,

the reaction network (1.5.4) cannot admit multiple positive steady states, no matter what

(positive) values the rate constants might take.

Remark 1.6.3. We have another example which is similar in structure to reaction network

(1.5.4) but gives a different answer in terms of the question of multiple steady states.

2A+B 
 3A (1.6.2)

A 
 0 
 B

For reaction network (1.6.2), the (simplified) linear systems according to different con-

fluence vectors and "shelf" partitions are

(i) 3µA > 2µA + µB > µA > 0 > µB,

(ii) 2µA + µB > 3µA > µB > 0 > µA.

Note that S = RS , so any solution from (i) or (ii) will be sign-compatible with S.

Linear system (i) is equivalent to µA > −µB > 0 > µB, so we can pick µA = 2 and

µB = −1. Therefore, reaction network (1.6.2), taken with mass action kinetics, does have

the capacity for multiple steady states. Of course, according to the algorithm, we could

just stop here. However, we still provide here a complete list of the linear systems. Note

that linear system (ii) does not have a solution.
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1.7 Advanced Deficiency Theory and Algorithm

1.7.1 Terms and Definitions

The Advanced Deficiency Theory (and Algorithm) is developed on top of the Deficiency

One Algorithm. It also invokes the ideas of the inequality systems, the direction of con-

fluence vector and shelving, and generalizes these ideas to reaction networks with defi-

ciencies higher than one. In particular, it introduces the ideas of colinearity classes and

coplanar sets, which are to be discussed shortly. The Advanced Deficiency Algorithm is

implemented in the Chemical Reaction Network Toolbox [8]. To get more information

about Advanced Deficiency Theory and Algorithm, please see [7] and [8].

Let us introduce some terms and definitions that are used in the Advanced Deficiency

Theory and Advanced Deficiency Algorithm, developed in the Ph.D. thesis of Phillipp

Ellison ([7] and [8]).

An orientation O is defined as a subset of the set of all reactions in a reaction network

{S ,C ,R} such that for every reaction y → y′ ∈ R, either y → y′ ∈ O or y′ → y ∈ O ,

but not both.

Let the map LO : RO → RS be defined via LOα =
∑

y→y′∈O

αy→y′(y′ − y).

Let d := dim Ker LO and let v1, ..., vd be a basis for Ker LO . Let y → y′ ∈ R, we

define a w-vector (based on the basis), wy→y′ ∈ Rd as follows:

(i) If y → y′ ∈ O , wy→y′(i) = viy→y′ , ∀1 ≤ i ≤ d.

(ii) If y → y′ ∈ R\O , then y′ → y ∈ O . We define wy→y′ = wy′→y.

The colinearity classes of a reaction network are defined using w-vectors. We say two

reactions, y → y′ and ỹ → ỹ′ are in the same colinearity class if there exists a nonzero

number α such that wy→y′ = αwỹ→ỹ′ . Therefore, it follows that a reversible pair must be

in the same colinearity class.

Remark 1.7.1. It can be shown that the colinearity classes do not depend on the choice
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of the orientation O , or the basis for Ker LO used to define the w-vectors. For more

information and proof, see [7] and [8].

We define the zero colinearity class as the colinearity class in which the w-vectors of

all reactions are zero vectors.

For a reaction network, suppose there exist a zero colinearity class and n nonzero col-

inearity classes. We denote them as CC0, CC1, ..., CCn, where CC0 is the zero colinearity

class.

We define a colinearity class as a reversible colinearity class if all the reactions in the

colinearity class are reversible, otherwise we call it a nonreversible colinearity class. An

empty colinearity class is considered reversible by definition.

Remark 1.7.2. Note that for a reaction network to have the capacity to admit multiple

steady states, the zero colinearity class needs to be reversible. See [7] and [8] for more

information.

Remark 1.7.3. If a reaction network contains two irreversible reactions, y → y′ and

ỹ → ỹ′ in the same colinearity class such that wy→y′ = αwỹ→ỹ′ for some α < 0, then we

claim that multiple steady states for the reaction network are not possible. The proof is in

[7] and [8].

Once the colinearity classes are found, we can divide the reaction network into subnet-

works where each subnetwork contains exactly all the reactions in one colinearity class.

We can then define a colinkage set as a linkage class in a subnetwork. We can also define

strong colinkage sets and terminal strong colinkage sets in a similar way.

We define a colinearity class vector by choosing a representative from all w-vectors

within a colinearity class in the following way:

For a nonreversible colinearity class CCi, we can pick any positive multiple of wy→y′
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for some irreversible reaction y → y′ ∈ CCi. For a reversible colinearity class CCi, we

can pick any nonzero multiple of wy→y′ for some y → y′ ∈ CCi.

We can see that the colinearity class vector for a zero colinearity class is the zero vector.

A coplanar set, T , is defined as a set of nonzero colinearity classes satisfying the

following properties:

(i) The set T has three or more colinearity classes in it.

(ii) The colinearity class vectors for all colinearity classes in T lie in the same two-

dimensional linear subspace, and all such colinearity classes whose colinearity vectors lie

in the two-dimensional linear subspace are in T .

Remark 1.7.4. The coplanar sets do not partition the colinearity classes. Some colinearity

class may not belong to any of the coplanar sets and some may belong to more than one

coplanar set. See [7] and [8] for more information.

After finding all the coplanar sets, we say that two nonzero colinearity classes CCi and

CCj are directly linked, if there exits a coplanar set T containing both colinearity classes,

denoted by CCi ∼ CCj . We then say that two nonzero colinearity classes CCi and CCj

are connected if at least one of the following conditions is satisfied:

(i) They are the same colinearity class.

(ii) CCi ∼ CCj .

(iii) There exist colinearity classesCC1, ...CCm such thatCCi ∼ CC1 ∼ ... ∼ CCm ∼

CCj .

The connected property does partition the nonzero colinearity classes. We call each

partitioned set a connected class, i.e., all the colinearity classes in a connected class are

linked to each other and all linked colinearity classes are in the same connected class.

After finding all the connected classes, we can construct a connecting graph where

all the vertices are coplanar sets Ti’s and nonzero colinearity classes CCj’s, edges are
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only possible between coplanar sets and nonzero colinearity classes, and there is an edge

between Ti and CCj if CCj ∈ Ti.

We can define the Independence Linearity Condition as follows:

A network satisfies the Independence Linearity Condition if the number of coplanar

sets plus the number of connected classes is equal to d, which is the dimension of the Ker

LO .

The Triplet Linearity Condition is defined as follows:

A network satisfies the Triplet Linearity Condition if each coplanar set contains exactly

three colinearity classes.

1.7.2 The Algorithm

Roughly speaking, in the Advanced Deficiency Algorithm, first the Deficiency One Algo-

rithm is carried out in each colinearity class. Then the coplanar sets are used to connect the

colinearity classes and introduce additional inequalities and equalities. The inequality sys-

tems produced by applying the Deficiency One Algorithm in each colinearity class, and all

the additional inequalities and equalities produced from the coplanar sets, are combined to

form the complete inequality systems. The inequality systems generated in the Deficiency

One Algorithm are always linear, but this is not always true in the Advance Deficiency Al-

gorithm. The Independence Linearity Condition and Triplet Linearity Condition are used

to assess the linearity of the Advanced Deficiency Algorithm; that is, when a linear sys-

tem will result. For more information on the Advanced Deficiency Theory and Advanced

Deficiency Algorithm, please see [7] and [8].

Next we will list the procedures of the Advanced Deficiency Algorithm. We will use the

following reaction network to illustrate the steps. To get more information about Advanced
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Deficiency Theory and Algorithm, please see [7] and [8].

A+ S 
 AS (1.7.1)

B + S 
 BS

A 
 0 
 B

↑

C

AS +BS → C + 2S

A+BS → C + S

Step 1: Choose an initial Orientation

Choose an initial orientation O for the reaction network.

For the reaction (1.7.1), we choose an initial orientation {A + S → AS,B + S →

BS,A→ 0, B → 0, C → 0, AS +BS → C + 2S,A+BS → C + S}.

Step 2: Find the Colinearity Classes

Find the colinearity classes by definition. We will check if there is a zero colinearity

class CC0. If there exists an irreversible reaction in CC0, then we claim that the reaction

network does not have the capacity to admit multiple steady states (as in Remark 1.7.2).

We will exit the algorithm and skip the remaining steps.

For the reaction network, if a colinearity class contains two irreversible reactions, y →

y′ and ỹ → ỹ′ such that wy→y′ = αwỹ→ỹ′ for some α < 0, then we claim that the reaction

network does not have the capacity to admit multiple steady states (as in Remark 1.7.3).

We will exit the algorithm and skip the remaining steps.

34



For the reaction network (1.7.1), a basis {v1, v2} for Ker LO is



v1 v2

A+ S → AS 1 0

B + S → BS 1 1

A→ 0 −1 −1

B → 0 −1 −1

C → 0 1 1

AS +BS → C + 2S 1 0

A+BS → C + S 0 1


Therefore, from this basis, we find all the w-vectors for the reactions in it. Note that

wA+S→AS = wAS→A+S = wAS+BS→C+2S = [1, 0], wB+S→BS = wBS→B+S = wC→0 =

[1, 1], wA→0 = w0→A = wB→0 = w0→B = [−1,−1], and wA+BS→C+S = [0, 1]. We find

the following colinearity classes:

CC1 = {A+ S → AS,AS → A+ S,AS +BS → C + 2S},

CC2 = {B + S → BS,BS → B + S,A→ 0, 0→ A,B → 0, 0→ B,C → 0} and

CC3 = {A+BS → C + S}.

There is no zero colinearity class. Each of the nonreversible colinearity classes CC1,

CC2 and CC3 only contains one irreversible reaction. We will move to next step.

Step 3: Find the Colinkage Sets

First, we find the subnetwork for each colinearity class. Then, we find the correspond-

ing colinkage sets and strong colinkage sets in each subnetwork.

For the reaction network (1.7.1), the subnetworks for the corresponding colinearity

classes are:

Subnetwork for CC1 is N1 : A+ S 
 AS

AS +BS → C + 2S
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Subnetwork for CC2 is N2 : B + S 
 BS

A 
 0 
 B

↑

C

Subnetwork for CC3 is N3 : A+BS → C + S

The colinkage sets of reaction network (1.7.1) are: {A+ S,AS} and {AS +BS,C + 2S}

in N1, {B + S,BS} and {A, 0, B, C} in N2, and {A+BS,C + S} in N3.

The strong colinkage sets of reaction network (1.7.1) are: {A + S,AS}, {AS + BS}

and {C+2S} in N1, {B+S,BS}, {A, 0, B} and {C} in N2, and {A+BS} and {C+S}

in N3.

Step 4: Choose Colinearity Class Vectors

We choose the colinearity class vector for each colinearity class according to the rules

defined. For a nonreversible colinearity class CCi, we can pick any positive multiple of

wy→y′ for some irreversible reaction y → y′ ∈ CCi. For a reversible colinearity class CCi,

we can pick any nonzero multiple of wy→y′ for some y → y′ ∈ CCi.

For reaction network (1.7.1), the colinearity class vectors are: w1 = [1, 0] for CC1,

w2 = [1, 1] for CC2, and w3 = [0, 1] for CC3.

Step 5: Realign the Orientation

In this step the orientation O is realigned so that under the realigned orientation, the

w-vectors for the reactions in each colinearity class are positive multiples of the colinearity

class vector. For a reversible reaction, we will replace y → y′ by y′ → y in O if wy→y′

is not a positive multiple of the colinearity class vector. Note that we will be able to do

this also for the irreversible reactions, as we have made sure that their w-vectors are some
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positive multiples of the colinearity class vector, an assumption for moving to Step 3 from

Step 2.

For reaction network (1.7.1), we replaced A → 0 with 0 → A, B → 0 with 0 → B

to make sure that under the realigned orientation, the w-vectors for the reactions in each

colinearity class are all positive multiples of the colinearity class vector. The realigned

orientation is O = {A + S → AS,B + S → BS, 0 → A, 0 → B,C → 0, AS + BS →

C + 2S,A+BS → C + S}.

Step 6: Find Coplanar Sets and Connected Classes

In this step, find all the coplanar sets and connected classes by definition.

For reaction network (1.7.1), the coplanar sets are T1 = {CC1, CC2, CC3}, as w1 +

w3 = w2. The connecting graph is as follows:

CC1− T1 −CC2

|

CC3

Step 7: Determine Linearity

Note that in Advanced Deficiency Theory and Algorithm, we answer the question of

multiple steady states by solving systems of inequalities and equalities. We will determine

whether these inequality systems are completely linear in terms of µ ∈ RR , a vector which

we have introduced in Deficiency One Algorithm, and some other parameters, which we

will introduce in later steps. We will check the linearity of the systems by checking two

conditions: the Independence Linearity Condition and the Triplet Linearity Condition.

If both the Independence Linearity Condition and the Triplet Linearity Condition are

satisfied, then the systems of inequalities and equalities generated to answer the questions

of multiple steady states are completely linear.
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Remark 1.7.5. In Advanced Deficiency Theory and Algorithm, there are the so-called

pseudo-colinearity classes. Roughly speaking, pseudo-colinearity classes are colinearity

classes which have their colinearity class vectors but have no reactions in them. They could

be helpful in the Advanced Deficiency Theory and Algorithm. If the Independence Linearity

Condition is not satisfied, then pseudo-colinearity classes can sometimes be added to the

reaction network to increase the number of coplanar sets and reduce the number of con-

nected classes, so as to make the adjusted connecting graph satisfy the Independence Lin-

earity Condition. However, the pseudo-colinearity class approach does not always work to

make the Independence Linearity Condition satisfied. In the Advanced Deficiency Theory

and Algorithm, there is no systematic procedure to check if one can know ahead whether

adding pseudo-colinearity classes will help make the Independence Linearity Condition

satisfied and how to find these pseudo-colinearity classes. In the Higher Deficiency Theory

and Algorithm, we do not need the help of pseudo-colinearity classes to determine linear-

ity. As a result, we will not mention too much details about the pseudo-colinearity class. We

say here that if the Independence Linearity Condition fails and adding pseudo-colinearity

classes seems not helpful, then nonlinear equalities may need to be added to the inequality

system.

If the Triplet Linearity Condition is not satisfied, then the complete inequality system

(for answering the question of multiple steady states) will most likely not be linear as we

need to add some nonlinear equalities into the system.

However, sometimes it is still possible to get a definitive answer, for the question of

multiple steady states, by looking at the partial (linear) inequality systems. To get more

information, see [7] and [8].

For reaction network (1.7.1), there is one coplanar set and one connected classes, which

adds up to two, which is equal to the dimension of Ker LO . Therefore the Independence

Linearity Condition is satisfied. The Triplet Linearity Condition is also satisfied as the only
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coplanar set contains exactly three colinearity classes. We then know that the complete

inequality systems we will build to answer the question of multiple steady states are linear.

In the next step, we will start to produce the inequality systems.

Step 8: Choose Signs for Colinearity Classes

Each colinearity class is assigned a sign (positive, negative or zero) following the rules

below:

(i) The zero colinearity class is assigned a zero sign.

(ii) A nonreversible colinearity class is assigned a positive sign.

(iii) A nonzero reversible colinearity class can be assigned a positive, negative or zero

sign as long as the following conditions are satisfied:

(a) If more than one colinearity class in a coplanar set is assigned a zero sign, then

every colinearity class in the coplanar set is assigned a zero sign.

(b) Let CCi, CCj and CCk be three colinearity classes from the same coplanar

set. If each of these three colinearity classes has a nonzero sign, then there do not

exist ci, cj and ck agreeing in sign with their respective colinearity classes such that

ciwi + cjwj + ckwk = 0. If only one of the three colinearity classes, say CCi has

a zero sign, then there do not exist cj and ck agreeing in sign with their respective

colinearity classes such that cjwj + ckwk is a multiple of wi.

If no choice of signs for colinearity classes can satisfy the conditions listed above, then

we claim that the reaction network cannot support multiple steady states; in fact, there are

no positive steady states. In this case, we will exit the algorithm and the remaining steps

are skipped.

For reaction network (1.7.1), since all the colinearity classes are nonreversible, all three

colinearity classes are assigned positive signs.
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Step 9: Choose Shelving for Reactions

In this step all reactions are partitioned into sets called shelves. There will be upper,

middle and lower shelves for each colinearity class with a nonzero sign.

Given a colinearity class with a nonzero sign, the reactions in this colinearity class are

partitioned according to the following conditions:

(i) A reaction whose reactant complex lies in a non-terminal strong colinkage set (rel-

ative to the subnetwork of the colinearity class) is placed on the middle shelf of the colin-

earity class.

(ii) An irreversible reaction is placed on the middle shelf of the colinearity class.

(ii) A reversible reaction network whose reactant complex lies in a terminal strong

colinkage set (relative to the subnetwork of the colinearity class) can be placed on upper,

middle, or lower shelf of the colinearity class as long as reactions in the same colinkage

set (relative to the subnetwork of the colinearity class) are placed in the same shelf of the

colinearity class.

In reaction network (1.7.1), we have colinearity classes CC1, CC2 and CC3 all with

nonzero signs. For CC1 = {A + S → AS,AS → A + S,AS + BS → C + 2S},

A + S → AS and AS → A + S can be put on the same upper, middle or lower shelf of

CC1, andAS+BS → C+2S is put on the middle shelf. ForCC2 = {B+S → BS,BS →

B + S,A → 0, 0 → A,B → 0, 0 → B,C → 0}, B + S → BS and BS → B + S can

be put on the same upper, middle, or lower shelf of CC2, A → 0, 0 → A, B → 0 and

0→ B can be put on the same upper, middle, or lower shelf of CC2, and C → 0 is put on

the middle shelf of CC2. For CC3 = {A + BS → C + S}, A + BS → C + S is put on

the middle shelf of CC3.

40



We will pick one shelving choice here, say

U1 = {A+ S → AS,AS → A+ S},M1 = {AS +BS → C + 2S},L1 = {}.

U2 = {B + S → BS,BS → B + S,A→ 0, 0→ A,B → 0, 0→ B},

M2 = {C → 0},L2 = {}.

U3 = {},M3 = {A+BS → C + S},L3 = {}.

In Step 10 through Step 13, the inequality systems are produced. We introduce Mi’s as

a value associated with the middle shelf of the colinearity class CCi with a nonzero sign.

Step 10: Add Shelving Inequalities

If the reaction y → y′ is placed on the upper shelf of CCi, then y · µ > Mi is added

to the inequality system. If the reaction y → y′ is placed on the middle shelf of CCi, then

y · µ = Mi is added to the inequality system. If the reaction y → y′ is placed on the lower

shelf of CCi, then y · µ < Mi is added to the inequality system.
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For reaction network (1.7.1), given the shelving condition chosen in Step 9, the inequal-

ities and equalities added to the inequality system are:

µA + µS > M1

µAS > M1

µAS + µBS = M1

µB + µS > M2

µBS > M2

µA > M2

0 > M2

µB > M2

µC = M2

µA + µBS = M3

µC + µS = M3

Step 11: Add Upper and Lower Shelf Inequalities

For each colinearity class with a nonzero sign, inequalities are added to the inequality

system for the reactions in the orientation that are on the upper and lower shelves of their

colinearity classes.

Suppose that the colinearity class CCi has a positive sign. If the reaction y → y′ ∈ O

is on the upper shelf of CCi, then y′ · µ > y · µ is added to the inequality system. If it is on

the lower shelf of CCi, then y · µ > y′ · µ is added to the inequality system.

Suppose that the colinearity class CCi has a negative sign. If the reaction y → y′ ∈ O

is on the upper shelf of CCi, then y′ · µ < y · µ is added to the inequality system. If it is on

the lower shelf of CCi, then y · µ < y′ · µ is added to the inequality system.

For reaction network (1.7.1), note that all three colinearity classes have positive signs.
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From the shelving conditions chosen in Step 9, we add µAS > µA + µS , µBS > µB + µS ,

µA > 0 and µB > 0 to the inequality system.

Step 12: Add Equalities for Colinearity Classes with Zero Signs

We add equalities to the inequality system for all colinearity classes with zero signs.

Suppose that the colinearity classCCi has a zero sign. For each y → y′ ∈ CCi, y ·µ = y′ ·µ

is added to the inequality system.

For reaction network (1.7.1), all the colinearity classes have nonzero signs, so no equal-

ity is added for this step.

Step 13: Add M Inequalities and Equalities

We will add inequalities and/or equalities amongMi’s for the colinearity classesCCi’s.

Let CCi, CCj and CCk be three colinearity classes in the same coplanar set.

If all colinearity classes in the coplanar set have zero signs, then no inequalities or

equalities are added.

If only one of the colinearity class, say CCi, has a zero sign, then Mj = Mk is added to

the inequality system. In other words, if among all colinearity classes in the same coplanar

set, only one colinearity class has a zero sign, then all the Ml’s corresponding to the rest of

the colinearity classes in this coplanar set are equal.

If all three colinearity classes have nonzero signs, then we will add inequalities/equalities

according to the following conditions: given ci, cj and ck agreeing in sign with their

respective colinearity classes such that ckwk = ciwi + cjwj , either Mi > Mk > Mj ,

Mi = Mk = Mj , or Mi < Mk < Mj is added to the inequality system. Note that from the

conditions one has to follow to choose signs for colinearity classes in Step 8, we can see

that such a choice of ci, cj and ck exists. Note that all colinearity class vectors in the same

coplanar set lie in the same two-dimensional linear subspace, so the choice of ci, cj and ck

is unique up to a positive multiple.
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Remark 1.7.6. Suppose a coplanar set contains more than three colinearity classes all with

nonzero signs. Although it seems that the inequalities or equalities found by considering

a triplet at a time, will have many possibilities. However, in the end, there will only be

three possibilities: there exists an enumeration of all CCi’s in this coplanar set, say CCn1 ,

CCn2 , ..., CCnk such that either Mn1 > Mn2 > ... > Mnk , Mn1 = Mn2 = ... = Mnk ,

or Mn1 < Mn2 < ... < Mnk is added to the inequality system. For more information and

proof, see [7] and [8].

For reaction network (1.7.1), there is only one coplanar set with exactly three colinear-

ity classes all with positive signs. Note that w1 = [1, 0], w2 = [1, 1] and w3 = [0, 1], so we

can pick c1 = c2 = c3 = 1 > 0 such that c2w2 = c1w1 + c3w3. Therefore we have three

possible choices to add into the inequality system: M1 > M2 > M3, M1 = M2 = M3, or

M1 < M2 < M3. For this step, let us choose M1 > M2 > M3.

Step 14: Check for Solutions to the Inequality System

In Step 7 we have determined whether the inequality systems are completely linear or

not by looking at the Independence Linearity Condition and the Triplet Linearity Condition.

We will in this step check whether the inequality system has a solution with a nonzero µ

which is sign-compatible with the stoichiometric subspace S. In other words, we will look

to see if there exists a set of Mi’s and a nonzero µ ∈ RS which is sign-compatible with S,

such that the inequality system is satisfied.

Note that if the inequality systems are determined to be linear, then the inequality sys-

tem built from Step 10 through Step 13 is a complete system, which means that no other

inequalities/equalities need to be included in the system to answer the question of multiple

steady states; if some inequality system has such a solution, it will be called a signature.

If we find a signature, then we claim that taken with mass action kinetics, the reaction net-

work does have the capacity for multiple steady states and exit the algorithm. Otherwise,
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if after we find no solution in any of the inequality systems, we claim that taken with mass

action kinetics, the reaction network does not have the capacity for multiple steady states.

If the inequality systems are nonlinear, then we will later need to add some nonlinear

equality to the inequality system we have so far, to make it a complete system. In the

nonlinear case, if some (linear) inequality system we built from Step 10 through Step 13

has such a solution, it will be called a pre-signature. There is an approach for working

on the solution from a pre-signature of a nonzero µ ∈ RS which is sign-compatible with

S, to help decide if the reaction network has the capacity to admit multiple steady states.

However, the method is not completely decisive. In other words, it can only possibly lead to

the conclusion that the reaction network has the capacity to admit multiple steady states (in

this case we can exit the algorithm) but not otherwise (in this case the answer to the question

of multiple steady states is inconclusive at the moment). We will not introduce the details

here. However, if none of the (linear) inequality systems has such a solution, i.e., there

are no pre-signatures, then there is no need to consider the additional nonlinear equality,

and we claim that the reaction network does not have the capacity to admit multiple steady

states.

For reaction network (1.7.1), we have determined that the complete systems are lin-

ear. The complete inequality system based on our choice of signs for colinearity classes,
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shelving conditions and M comparisons are:

µA + µS > M1

µAS > M1

µAS + µBS = M1

µB + µS > M2

µBS > M2

µA > M2

0 > M2

µB > M2

µC = M2

µA + µBS = M3

µC + µS = M3

µAS > µA + µS

µBS > µB + µS

µA > 0

µB > 0

M1 > M2 > M3

For this inequality system, there do not exist a set of Mi’s and a nonzero µ ∈ RS which is

sign-compatible with S. Therefore this inequality system is not a signature. We will move

to next step.

Step 15: Repeat Steps 13 to 14

In this step, Steps 13 and 14 are repeated for every choice of M inequalities and/or

equalities.
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Supposet that the systems are linear. Once we find a signature in Step 14, we claim

that taken with mass action kinetics, the reaction network does have the capacity for mul-

tiple steady states and exit the algorithm. Otherwise, after we repeat all the choices of M

inequalities and/or equalities and find no signatures, we move to the next step.

Suppose that the systems are nonlinear. Unless we find a pre-signature in Step 14 that

will lead to a conclusion that the reaction network does have the capacity for multiple

steady states and exit the algorithm, we will repeat all choices of M inequalities and/or

equalities and then move to the next step.
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For reaction network (1.7.1), there are two more choices ofM inequalities and/or equal-

ities, and their corresponding inequality systems are listed in two columns as follows:

µA + µS > M1 µA + µS > M1

µAS > M1 µAS > M1

µAS + µBS = M1 µAS + µBS = M1

µB + µS > M2 µB + µS > M2

µBS > M2 µBS > M2

µA > M2 µA > M2

0 > M2 0 > M2

µB > M2 µB > M2

µC = M2 µC = M2

µA + µBS = M3 µA + µBS = M3

µC + µS = M3 µC + µS = M3

µAS > µA + µS µAS > µA + µS

µBS > µB + µS µBS > µB + µS

µA > 0 µA > 0

µB > 0 µB > 0

M1 = M2 = M3 M1 < M2 < M3

Neither of the two inequality systems listed above has a solution of a set of Mi’s and a

nonzero µ ∈ RS that is sign-compatible with S. They are not signatures. We will move to

next step.

Step 16: Repeat Steps 9 to 15

In this step all possible shelving condition choices in Step 9 are repeated. Similar to
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that of the Deficiency One Algorithm, we can save some time by trying only half of the

shelving choices and skipping all the choices which are total inversions of the first half.

By an inversion of a shelving assignment we mean a new shelving assignment created by

switching all of the upper and lower shelves of the original one. This is true because an

inversed system has such a solution if and only if the original system has one.

Suppose that the systems are linear. Once we find a signature in Step 14, we claim

that taken with mass action kinetics, the reaction network does have the capacity for mul-

tiple steady states and exit the algorithm. Otherwise, after we repeat all the choices of

M inequalities and/or equalities and all possible shelving condition choices but find no

signatures, we move to the next step.

Suppose that the systems are nonlinear. Unless we find a pre-signature in Step 14 that

will lead to a conclusion that the reaction network does have the capacity for multiple

steady states and exit the algorithm, we will repeat all choices of M inequalities and/or

equalities and all possible shelving condition choices, and then move to the next step.

For reaction network (1.7.1), the flexibility of shelves assignment comes from the re-

actions {A + S 
 AS}, {B + S 
 BS} and {A 
 0 
 B}. Therefore, we have

3 × 3 × 3 = 27 choices for the shelving assignment. Excluding the inversions, we have

14 choices. We are done with one choice of shelving assignment so far. We will test the

remaining 13 choices of shelving assignments.

First, we choose the shelving such that:

U1 = {},M1 = {AS +BS → C + 2S},L1 = {A+ S → AS,AS → A+ S}.

U2 = {B + S → BS,BS → B + S,A→ 0, 0→ A,B → 0, 0→ B},

M2 = {C → 0},L2 = {}.

U3 = {},M3 = {A+BS → C + S},L3 = {}.

The three systems produced from repeating Step 10 through Step 15, corresponding to the
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shelving conditions above and three different M comparisons, are listed in three columns

as follows:

µA + µS < M1 µA + µS < M1 µA + µS < M1

µAS < M1 µAS < M1 µAS < M1

µAS + µBS = M1 µAS + µBS = M1 µAS + µBS = M1

µB + µS > M2 µB + µS > M2 µB + µS > M2

µBS > M2 µBS > M2 µBS > M2

µA > M2 µA > M2 µA > M2

0 > M2 0 > M2 0 > M2

µB > M2 µB > M2 µB > M2

µC = M2 µC = M2 µC = M2

µA + µBS = M3 µA + µBS = M3 µA + µBS = M3

µC + µS = M3 µC + µS = M3 µC + µS = M3

µAS > µA + µS µAS > µA + µS µAS > µA + µS

µBS > µB + µS µBS > µB + µS µBS > µB + µS

µA > 0 µA > 0 µA > 0

µB > 0 µB > 0 µB > 0

M1 > M2 > M3 M1 = M2 = M3 M1 < M2 < M3

The first two (from left to right) of the three inequality systems are not signatures and the

third one is a signature. The third inequality system has a solution of a nonzero µ ∈ RS

that is sign-compatible with S: µA = 1, µS = −4, µAS = −4, µB = 4, µBS = 2 and

µC = −1. We will not provide the detailed solution of Mi’s here. Since we have found

a signature, we claim that taken with mass action kinetics, the reaction network does have

the capacity for multiple steady states and exit the algorithm.
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Step 17: Repeat Steps 8 to 16

In this step we will repeat all sign choices for the colinearity classes. Note that changing

the signs for the colinearity classes may affect the shelving assignments as only colinearity

classes with nonzero signs are considered, and the inequality systems built from Step 10

through Step 13 will be affected too. We will check all inequality systems produced by

these changes.

Suppose that the systems are linear. Once we find a signature in Step 14, we claim that

taken with mass action kinetics, the reaction network does have the capacity for multiple

steady states and exit the algorithm. Otherwise, we repeat all the choices of M inequali-

ties and/or equalities, all possible shelving condition choices and all sign choices for the

colinearity classes.

Suppose that the systems are nonlinear. Unless we find a pre-signature in Step 14 that

will lead to a conclusion that the reaction network does have the capacity for multiple

steady states and exit the algorithm, we will repeat all choices of M inequalities and/or

equalities, all possible shelving condition choices and all sign choices for the colinearity

classes.

If after this step, no signature or pre-signature (for the nonlinear case) has been found,

then we can claim that the reaction network cannot support multiple steady states, no matter

what positive values the rate constants are. In the nonlinear case, if there are pre-signatures

but one cannot conclude that the reaction network can support multiple steady states from

any of the pre-signatures, then the answer to the question of multiple steady states is incon-

clusive. If the answer is inconclusive, then we need to add additional nonlinear equalities

and consider the complete (nonlinear) inequality system in order to answer the question of

multiple steady states. As for ways of finding the additional nonlinear equalities, we will

not present the details here. See [7] for more information.

For reaction network (1.7.1), we already exited the algorithm in Step 16. However, if
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we did carry out Step 17, we would find that there is no other choice for the signs of the

colinearity classes.

1.8 Higher Deficiency Theory and Algorithm Overview

The Higher Deficiency Theory gives answers very similar to the Advanced Deficiency

Theory, both giving a method to study whether the reaction network can support multiple

steady states. As a matter of fact, the Higher Deficiency Theory is a reformation and

significant extension of the Advanced Deficiency Theory.

For example, let us consider the following reaction network.

E1 + S1 
 E1S1 → E1 + S2 
 E1S2 →E1 + S3 
 E1S3 → E1 + S4 (1.8.1)

E2 + S4 
 E2S4 → E2 + S3 
 E2S3 →E2 + S2 
 E2S2

↘E2 + S1

E3 + S1 
 E3S1 → E3 + S2 
 E3S2 →E3 + S3

E4 + S4 
 E4S4 → E4 + S3 
 E4S3 →E4 + S2

For reaction network (1.8.1), the Advanced Deficiency Theory and Algorithm (see [8])

cannot give a definitive answer, but the Higher Deficiency Theory and Algorithm (see [16])

concludes that taken with mass action kinetics, the reaction network does indeed have the

capacity to admit multiple positive steady states. The mass action differential equations for

reaction network (1.8.1) are highly complex; they are similar to the system (1.1.8).

We turn next to the Higher Deficiency Theory.
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Chapter 2

THE HIGHER DEFICIENCY THEORY

2.1 Main Question

Given a reaction network governed by mass action kinetics, does there exist a set of pos-

itive rate constants such that the governing differential equations admit a pair of distinct

positive steady states that are stoichiometrically compatible? We will attempt to answer

this question algorithmically in this chapter. The algorithm itself has been implemented in

a user-friendly Windows-based program available at [16].

Mathematically, the question can be stated as:

Question 1. Given a reaction network {S ,C ,R}, do there exist a set of positive rate con-

stants {ky→y′ : y → y′ ∈ R}, and two positive, distinct and stoichiometrically compatible

compositions c∗ and c∗∗, such that

∑
y→y′∈R

ky→y′(c∗)y(y′ − y) = 0 (2.1.1)

and ∑
y→y′∈R

ky→y′(c∗∗)y(y′ − y) = 0 (2.1.2)

are satisfied?

We will in this chapter rephrase Question 1 into a sequence of equivalent questions.
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2.2 Rephrase the variables

In this section, we will construct new terms κ ∈ RR and µ ∈ RS from {ky→y′ : y →

y′ ∈ R}, and c∗, c∗∗ ∈ R̄S
+ so we can convert equations (2.1.1) and (2.1.2) into equations

involving κ and µ instead of {ky→y′ : y → y′ ∈ R}, c∗ and c∗∗. With the new variables,

Question 1 can be rephrased.

Next we will define κ ∈ RR and µ ∈ RS , and explore their relationship to {ky→y′ :

y → y′ ∈ R}, and c∗, c∗∗ ∈ R̄S
+ .

On one hand, given a set of positive rate constants {ky→y′ : y → y′ ∈ R}, and two

positive, distinct, and stoichiometrically compatible compositions c∗ and c∗∗, we define

µ ∈ RS and κ ∈ RR
+ via

µs = ln( c
∗
s

c∗∗s
), ∀s ∈ S , (2.2.1)

and

κy→y′ = ky→y′c
∗∗y, ∀y → y′ ∈ R. (2.2.2)

We claim that µ is a nonzero vector in RS that is sign-compatible with the stoichiomet-

ric subspace S.

In fact, since c∗ 6= c∗∗, there exists some s ∈ S such that µs 6= 0. Therefore, µ 6= 0.

From the monotonicity of the ln function, we know that, for any s ∈ S , c∗s − c∗∗s will

have the same sign as ln(c∗s) − ln(c∗∗s ). Since µs = ln( c
∗
s

c∗∗s
) = ln(c∗s) − ln(c∗∗s ), c∗ − c∗∗

will be sign-compatible with µ. Note that c∗ and c∗∗ are presumed to be stoichiometrically

compatible, which requires that c∗ − c∗∗ ∈ S. Therefore, c∗ − c∗∗ being sign-compatible

with µ implies that there exists a vector c∗− c∗∗ in S that is sign-compatible with µ, i.e., µ

is sign-compatible with S.

On the other hand, assume κ is a member of RR
+ and that µ ∈ RS is a nonzero vector
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which is sign-compatible with S. Then there exists a nonzero vector, say σ ∈ S, that is

sign-compatible with µ. We can define c∗ and c∗∗ in R̄S via:

If µs and σs are not equal to zero, then

c∗s = σse
µs

eµs − 1 , s ∈ S (2.2.3)

c∗∗s = σs
eµs − 1 , s ∈ S (2.2.4)

If µs and σs are equal to 0, then

c∗s = c∗∗s = p, for some p > 0 (2.2.5)

Then we can define ky→y′ via:

ky→y′ = κy→y′/((c∗∗)y) (2.2.6)

We claim that {ky→y′ : y → y′ ∈ R} is a set of positive numbers, and, c∗ and c∗∗ are

two positive, distinct compositions that are stoichiometrically compatible, i.e. c∗−c∗∗ ∈ S.

To see this, note that µ being nonzero implies that there exists some s ∈ S such that

µs 6= 0, so
c∗s
c∗∗s

= eµs 6= 1. Therefore, c∗ 6= c∗∗. Note that in the case of µs 6= 0, eµs − 1

has the same (nonzero) sign as µs and σs, so c∗s and c∗∗s are both positive. Therefore it is

true that c∗s and c∗∗s are both positive, whether µs is equal to 0 or not. Also note that in both

cases, ln( c
∗
s

c∗∗s
) is equal to µs, so equations (2.2.3), (2.2.4) and (2.2.5), are consistent with

equation (2.2.1). Finally, note that c∗ − c∗∗ is equal to σ in both cases, so c∗ and c∗∗ are

stoichiometrically compatible.

Therefore we have the following lemma.

Lemma 2.2.1. Suppose that we are given a reaction network {S ,C ,R}. Suppose that

a set of positive rate constants {ky→y′ : y → y′ ∈ R } and two distinct, positive, stoi-

chiometrically compatible compositions c∗ and c∗∗ ∈ R̄S
+ are given. Then κ ∈ RR

+ can

be constructed from equation (2.2.2), and µ ∈ RS , constructed from equation (2.2.1), will

be nonzero and sign-compatible with the stoichiometric subspace S. Conversely, suppose
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that a nonzero µ ∈ RS which is sign-compatible with the stoichiometric subspace S, and

κ ∈ RR
+ are given. Then a set of positive rate constants {ky→y′ : y → y′ ∈ R } and

two distinct, positive, stoichiometrically compatible compositions c∗ and c∗∗ ∈ R̄S
+ can be

constructed from equations (2.2.3), (2.2.4), (2.2.5) and (2.2.6).

From equations (2.2.1) and (2.2.2), it can be shown that ky→y′c∗∗y = κy→y′ and ky→y′c∗y =

κy→y′e
y·µ. Then equations (2.1.1) and (2.1.2) can be transformed into the following equa-

tions:

∑
y→y′∈R

κy→y′e
y·µ(y′ − y) = 0 (2.2.7)

∑
y→y′∈R

κy→y′(y′ − y) = 0 (2.2.8)

As a result, we can claim the following lemma.

Lemma 2.2.2. Question 1 can be rewritten in terms of κ and µ as follows:

Question 2. Given a reaction network {S ,C ,R}, do there exist κ ∈ RR
+ and a nonzero

µ ∈ RS which is sign-compatible with the stoichiometric subspace S such that equations

(2.2.7) and (2.2.8) are satisfied?

2.3 Rephrasing the summations

Recall that the summations in Question 1 and 2 are taken over all {y → y′ ∈ R}. Here,

some new concepts are introduced to rephrase Question 2 so that the summations are taken

over a subset of R.

Define an orientation O as a subset of the set of all reactions in the reaction network

R such that for every reaction y → y′ ∈ R, either y → y′ or y′ → y belongs to O , but not

both.

For a given orientation O , define the linear map LO : RO → S by:

LOα =
∑

y→y′∈O

αy→y′(y′ − y). (2.3.1)
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For given κ ∈ RR
+ and nonzero µ ∈ RS , we define g, h ∈ RO as follows:

gy→y′ =


κy→y′ − κy′→y, if y → y′ ∈ O is reversible

κy→y′ , if y → y′ ∈ O is irreversible.
(2.3.2)

and

hy→y′ =


κy→y′e

y·µ − κy′→yey
′·µ, if y → y′ ∈ O is reversible

κy→y′e
y·µ, if y → y′ ∈ O is irreversible.

(2.3.3)

Then equations (2.2.8) and (2.2.7) can be rewritten as

LOg =
∑

y→y′∈O

gy→y′(y′ − y) = 0 (2.3.4)

LOh =
∑

y→y′∈O

hy→y′(y′ − y) = 0 (2.3.5)

Therefore, if equations (2.2.7) and (2.2.8) are satisfied for some κ ∈ RR
+ and nonzero

µ ∈ RS , then g, h as defined in (2.3.2) and (2.3.3) both lie in Ker LO , for any given

orientation O of R .

Remark 2.3.1. Let us denote the number of reactions in O by #(O). For LO : RO → S,

we have dim Ker LO = dim (RO)− dim (Im LO) = #(O)− dim S, as it is easy to see

that Im LO = S. Since #(O) is the same for any orientation O of R, so is dim Ker LO .

Note that for any orientation O of R, if dim Ker LO = 0, then g = 0 and h = 0 are

the only solutions in (2.3.2) and (2.3.3). In that case, each reaction must be reversible and

for each y → y′ ∈ O , we have κy→y′ = κy′→y and κy→y′ey·µ − κy′→yey
′·µ = 0. Therefore,

for all y → y′ ∈ R, ey·µ = ey
′·µ, or (y − y′) · µ = 0. This implies that µ ∈ S⊥, for

which it follows that µ cannot be sign-compatible with S if µ 6= 0. Therefore the answer to

Question 2, and hence Question 1 is no and we are done with our question here.

Therefore, in order to find two distinct positive stoichiometrically compatible steady

states c∗ and c∗∗, we need to assume that dim Ker LO ≥ 1. Moreover, we cannot pick g, h

to be both zero vectors. Therefore, without loss of generality, let us assume dim Ker LO

≥ 1 (for any orientation O) and g, h ∈ Ker LO are not both zero vectors from now on.
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Let κ and µ satisfy the conditions in Question 2, we want to see if we can derive

a question equivalent to Question 2 in terms of µ and g, h ∈ Ker LO , where O is an

orientation of R.

First, to simplify our notation, let us introduce a new term. Consider a given orientation

O and a given pair g, h ∈ Ker LO . For y → y′ ∈ O such that gy→y′ 6= 0, we will define

ρy→y′ as follows:

ρy→y′ = hy→y′

gy→y′
. (2.3.6)

Lemma 2.3.2. For a reaction network {S ,C ,R} and a given orientation O , κ ∈ RR
+ and

µ ∈ RS are given. Let g, h be defined as in (2.3.2) and (2.3.3), and let ρy→y′ (gy→y′ 6= 0)

be defined as in (2.3.6). Then the following conditions hold:

(I) If y → y′ ∈ O is irreversible, then gy→y′ > 0, hy→y′ > 0, and ρy→y′ = ey·µ.

(II) If y → y′ ∈ O is reversible, then

(i) If gy→y′ > 0, then either ρy→y′ > ey·µ > ey
′·µ, ρy→y′ < ey·µ < ey

′·µ, or ρy→y′ =

ey·µ = ey
′·µ.

(ii) If gy→y′ < 0, then either ρy→y′ > ey
′·µ > ey·µ, ρy→y′ < ey

′·µ < ey·µ, or

ρy→y′ = ey·µ = ey
′·µ.

(iii) If gy→y′ = 0 and hy→y′ > 0, then ey·µ > ey
′·µ.

(iv) If gy→y′ = 0 and hy→y′ < 0, then ey·µ < ey
′·µ.

(v) If gy→y′ = 0 and hy→y′ = 0, then ey·µ = ey
′·µ.

PROOF: We want to show the conditions listed in the lemma hold and we will show it case

by case.

If y → y′ ∈ O is irreversible, then equations (2.3.2) and (2.3.3) imply that gy→y′ =

κy→y′ > 0, hy→y′ = κy→y′e
y·µ > 0, and ρy→y′ = hy→y′

gy→y′
= ey·µ > 0.

If y → y′ ∈ O is reversible, then there are the following cases:
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(a): Assume gy→y′ 6= 0. Then we will discuss two different situations, according to

whether y · µ equals to y′ · µ.

If y · µ 6= y′ · µ, then from equations (2.3.2), (2.3.3) and (2.3.6), κy→y′ and κy′→y can

be solved for as follows:

κy→y′ = ρy→y′ − ey
′·µ

ey·µ − ey′·µ
gy→y′ (2.3.7)

κy′→y = ρy→y′ − ey·µ

ey′·µ − ey·µ
gy→y′ . (2.3.8)

From κy→y′ > 0 and κy′→y > 0, we then have:

If gy→y′ > 0, then either ρy→y′ > ey·µ > ey
′·µ or ρy→y′ < ey·µ < ey

′·µ.

If gy→y′ < 0, then either ρy→y′ > ey
′·µ > ey·µ or ρy→y′ < ey

′·µ < ey·µ.

If y · µ = y′ · µ, then equations (2.3.2) and (2.3.3) can be simplified to

gy→y′ = κy→y′ − κy′→y (2.3.9)

hy→y′ = (κy→y′ − κy′→y)ey·µ. (2.3.10)

Therefore, if gy→y′ 6= 0, then ρy→y′ = hy→y′

gy→y′
= ey·µ = ey

′·µ.

(b): Assume gy→y′ = 0. In this case, equations (2.3.2) and (2.3.3) imply that κy→y′ =

κy′→y and hy→y′ = κy→y′(ey·µ−ey
′·µ). Since κy→y′ > 0, we have the following three cases:

If hy→y′ > 0, then ey·µ > ey
′·µ.

If hy→y′ < 0, then ey·µ < ey
′·µ.

If hy→y′ = 0, then ey·µ = ey
′·µ.

We have shown that the conditions listed in the lemma hold.

Lemma 2.3.3. For a reaction network {S ,C ,R} and a given orientation O , suppose that

µ ∈ RS , a pair g, h ∈ Ker LO , and ρy→y′ (gy→y′ 6= 0) defined as in (2.3.6) satisfy the

conditions in Lemma 2.3.2. Then there exists κ ∈ RR
+ satisfying (2.3.2) and (2.3.3).

PROOF: Assume that conditions listed in Lemma 2.3.2 hold. Then we want to show that

we can solve for κ ∈ RR
+ from (2.3.2) and (2.3.3).

59



(a) Assume that y → y′ is irreversible. By the definition of g and h in (2.3.2) and

(2.3.3), we have that gy→y′ = κy→y′ and hy→y′ = κy→y′e
y·µ. From the conditions in

case (I) in Lemma 2.3.2, we have gy→y′ > 0, hy→y′ > 0 and ρy→y′ = ey·µ. Note that

ρy→y′ = hy→y′/gy→y′ , so hy→y′ = ρy→y′gy→y′ = ey·µgy→y′ . Since hy→y′ = κy→y′e
y·µ in

(2.3.3), we have from (2.3.3) that gy→y′ = κy→y′ . Therefore two equations (2.3.2) and

(2.3.3) become equivalent to each other, and we can easily solve κy→y′ = gy→y′ > 0.

(b) Assume that y → y′ is reversible. Then we will discuss three different situations

according to the sign of gy→y′ .

First, if gy→y′ > 0, then we have from condition (i) that either ρy→y′ > ey·µ > ey
′·µ,

ρy→y′ < ey·µ < ey
′·µ, or ρy→y′ = ey·µ = ey

′·µ holds.

If ρy→y′ > ey·µ > ey
′·µ or ρy→y′ < ey·µ < ey

′·µ holds, then (2.3.2) and (2.3.3) can be

rewritten as (2.3.7) and (2.3.8) to solve for κy→y′ and κy′→y, from which we can conclude

that κy→y′ > 0 and κy′→y > 0.

If ρy→y′ = ey·µ = ey
′·µ holds, then since hy→y′ = ρy→y′gy→y′ , we can see that (2.3.2)

and (2.3.3) both convert to (2.3.9). So any κy→y′ and κy′→y as long as κy→y′ > κy′→y > 0

will satisfy (2.3.2) and (2.3.3).

Secondly, if gy→y′ < 0, then we have from condition (ii) that either ρy→y′ > ey
′·µ >

ey·µ, ρy→y′ < ey
′·µ < ey·µ, or ρy→y′ = ey

′·µ = ey·µ holds.

If ρy→y′ > ey
′·µ > ey·µ or ρy→y′ < ey

′·µ < ey·µ holds, then (2.3.2) and (2.3.3) can be

rewritten as (2.3.7) and (2.3.8) to solve for κy→y′ and κy′→y , from which we can conclude

that κy→y′ > 0 and κy′→y > 0.

If ρy→y′ = ey
′·µ = ey·µ holds, then since hy→y′ = ρy→y′gy→y′ , we can see that (2.3.2)

and (2.3.3) both convert to (2.3.9). So any κy→y′ and κy′→y as long as κy′→y > κy→y′ > 0

will satisfy (2.3.2) and (2.3.3).
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Thirdly, if gy→y′ = 0, then (2.3.2) and (2.3.3) become

κy→y′ = κy′→y

and

hy→y′ = κy→y′(ey·µ − ey
′·µ).

If hy→y′ > 0, then from condition (iii) we have ey·µ > ey
′·µ, and therefore κy→y′ =

κy′→y = hy→y′/(ey·µ − ey
′·µ) > 0.

If hy→y′ < 0, then from condition (iv) we have ey
′·µ > ey·µ, and therefore κy→y′ =

κy′→y = hy→y′/(ey·µ − ey
′·µ) > 0.

If hy→y′ = 0, then from condition (v) we have ey·µ = ey
′·µ, and therefore κy→y′ = κy′→y

can be any positive number.

We have shown that if the conditions listed in Lemma 2.3.2 hold, we can always find

κ ∈ RR
+ satisfying (2.3.2) and (2.3.3).

Recall that Question 2 asked: Given a reaction network {S ,C ,R}, do there exist a

set of positive {κy→y′ : y → y′ ∈ R } and a nonzero µ which is sign-compatible with the

stoichiometric subspace S such that equations (2.2.7) and (2.2.8) are satisfied?

From Lemmas 2.3.2 and 2.3.3, we can see that, in order to answer Question 2, we may

instead ask the following question:

Question 3. Given a reaction network {S ,C ,R}, do there exist an orientation O of R,

a nonzero µ ∈ RS which is sign-compatible with the stoichiometric subspace S, a pair g,

h ∈ Ker LO which are not both zero vectors, and a set {ρy→y′ = hy→y′

gy→y′
: gy→y′ 6= 0, y →

y′ ∈ O} such that the conditions in Lemma 2.3.2 are satisfied?

However, do we have to test against all possible orientations of R? In other words,

does the answer to Question 3 depend on the choice of O? The answer is no. We will show

next that the choice of orientation O does not matter here.

To show this, first let us prove the following lemma.
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Lemma 2.3.4. Given a reaction network {S ,C ,R}, for any orientations O1 and O2 of

R, Ker LO1 and Ker LO2 are isomorphic, i.e., Ker LO1
∼= Ker LO2 .

PROOF: Recall that an orientation O ⊆ R is such that for every y → y′ ∈ R, either

y → y′ or y′ → y belongs to O , but not both. It is obvious that #(O1) = #(O2). Note that

LOx =
∑

y→y′∈O

xy→y′(y′ − y). Let xO1 ∈ Ker LO1 , we define xO2 ∈ RO2 as follows:

xO2
y→y′ =


xO1
y→y′ , if y → y′ ∈ O1

−xO1
y′→y, if y′ → y ∈ O1.

We can see that

LO2x
O2 =

∑
y→y′∈O2

xO2
y→y′(y′ − y)

=
∑

y→y′∈O2:y→y′∈O1

xO2
y→y′(y′ − y) +

∑
y→y′∈O2:y′→y∈O1

xO2
y→y′(y′ − y)

=
∑

y→y′∈O2:y→y′∈O1

xO1
y→y′(y′ − y) +

∑
y→y′∈O2:y′→y∈O1

(−xO1
y′→y)(y′ − y)

=
∑

y→y′∈O1:y→y′∈O2

xO1
y→y′(y′ − y) +

∑
y′→y∈O1:y→y′∈O2

xO1
y′→y(y − y′)

=
∑

y→y′∈O1

xO1
y→y′(y′ − y)

= 0.

So xO2 ∈ Ker LO2 . Thus the function F : Ker LO1 → Ker LO2 via F (xO1) = xO2 is well

defined.

On the other hand, let x̃O2 ∈ Ker LO2 , we define x̃O1 ∈ RO1 as follows:

x̃O1
y→y′ =


x̃O2
y→y′ , if y → y′ ∈ O2

−x̃O2
y′→y, if y′ → y ∈ O2.

Then similarly we can show that x̃O1 ∈ Ker LO1 . Then the function G: Ker LO1 → Ker

LO2 via G(x̃O2) = x̃O1 is also well defined. We can verify that, for any xO1 ∈ Ker LO1

G ◦ F (xO1) = xO1 , and for any xO2 ∈ Ker LO2 , F ◦G(xO2) = xO2 . Therefore, F = G−1

and G = F−1. We can claim that Ker LO1
∼= Ker LO2 .
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Lemma 2.3.5. Question 3 can be rewritten in terms of g, h, µ, and ρyi→y′i’s as follows:

Question 4. Given a reaction network {S ,C ,R}, and any orientation O , do there exist

a nonzero µ ∈ RS which is sign-compatible with the stoichiometric subspace S, a pair g,

h ∈ Ker LO which are not both zero vectors, and a set {ρy→y′ = hy→y′

gy→y′
: gy→y′ 6= 0, y →

y′ ∈ O} such that conditions in Lemma 2.3.2 are satisfied?

PROOF: It is obvious that if the answer to Question 4 is yes, then the answer to Question 3

is also yes. Thus we want to show the reverse.

Let O1, O2 be two orientations of R, and let µ ∈ RS be nonzero and sign-compatible

with S. We will show the following:

Suppose that there exist a pair gO1 , hO1 ∈ Ker LO1 which are not both zero vectors,

and a set {ρO1
y→y′ =

hO1
y→y′

gO1
y→y′

: gO1
y→y′ 6= 0}, satisfying all the conditions listed in Lemma

2.3.2. Then there exist a pair gO2 , hO2 ∈ Ker LO2 which are not both zero vectors, and a

set {ρO2
y→y′ =

hO2
y→y′

gO2
y→y′

: gO2
y→y′ 6= 0}, satisfying all the conditions listed in Lemma 2.3.2.

Note that gO1 , hO1 ∈ Ker LO1 . We let gO2 = F (gO1) and hO2 = F (hO1), where F is

defined in Lemma 2.3.4. Then gO2 , hO2 ∈ Ker LO2 and they are not both zero vectors. Let

y → y′ ∈ O2, then we have two cases depending on whether y → y′ ∈ O1 or y′ → y ∈ O1.

Case one: If y → y′ ∈ O1, then gO2
y→y′ = gO1

y→y′ and hO2
y→y′ = hO1

y→y′ . If gO2
y→y′ 6= 0,

ρO2
y→y′ = ρO1

y→y′ . This case is trivial.

Case two: If y′ → y ∈ O1, then y → y′ must be reversible. We have gO2
y→y′ = −gO1

y′→y

and hO2
y→y′ = −hO1

y′→y. If gO2
y→y′ 6= 0, ρO2

y→y′ = ρO1
y′→y. We will verify each of the conditions

listed in Lemma 2.3.2 for reversible y → y′ ∈ O2.

Recall that the conditions in Lemma 2.3.2 are

(I) If y → y′ ∈ O is irreversible, then gy→y′ > 0, hy→y′ > 0, and ρy→y′ = ey·µ.

(II) If y → y′ ∈ O is reversible, then

(i) If gy→y′ > 0, then either ρy→y′ > ey·µ > ey
′·µ, ρy→y′ < ey·µ < ey

′·µ, or ρy→y′ =

ey·µ = ey
′·µ.
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(ii) If gy→y′ < 0, then either ρy→y′ > ey
′·µ > ey·µ, ρy→y′ < ey

′·µ < ey·µ, or

ρy→y′ = ey·µ = ey
′·µ.

(iii) If gy→y′ = 0 and hy→y′ > 0, then ey·µ > ey
′·µ.

(iv) If gy→y′ = 0 and hy→y′ < 0, then ey·µ < ey
′·µ.

(v) If gy→y′ = 0 and hy→y′ = 0, then ey·µ = ey
′·µ.

Since y → y′ is reversible, (I) is trivially true for O2.

Next we will show that (II) is true for O2.

If gO2
y→y′ > 0, then gO1

y′→y < 0. (II) is true for y′ → y ∈ O1, so in particular (ii) is true

for y′ → y ∈ O1. Therefore we have either ρO1
y′→y > ey·µ > ey

′·µ, ρO1
y′→y < ey·µ < ey

′·µ,

or ρO1
y′→y = ey

′·µ = ey·µ. Since ρO1
y→y′ = ρO2

y′→y, we have either ρO2
y→y′ > ey·µ > ey

′·µ,

ρO2
y→y′ < ey·µ < ey

′·µ, or ρO2
y→y′ = ey

′·µ = ey·µ. We have shown that (i) is true for reversible

y → y′ ∈ O2.

If gO2
y→y′ < 0, then gO1

y′→y > 0. (II) is true for y′ → y ∈ O1, so in particular (i) is true

for y′ → y ∈ O1. Therefore we have either ρO1
y′→y > ey

′·µ > ey·µ, ρO1
y′→y < ey

′·µ < ey·µ,

or ρO1
y′→y = ey

′·µ = ey·µ. Since ρO1
y→y′ = ρO2

y′→y, we have either ρO2
y→y′ > ey

′·µ > ey·µ,

ρO2
y→y′ < ey

′·µ < ey·µ, or ρO2
y→y′ = ey

′·µ = ey·µ. We have shown that (ii) is true for reversible

y → y′ ∈ O2.

If gO2
y→y′ = 0 and hO2

y→y′ > 0, then gO1
y′→y = 0 and hO1

y′→y < 0. (II) is true for y′ → y ∈ O1,

so in particular (iv) is true for y′ → y ∈ O1. Therefore we have ey
′·µ < ey·µ. We have

shown that (iii) is true for reversible y → y′ ∈ O2.

If gO2
y→y′ = 0 and hO2

y→y′ < 0, then gO1
y′→y = 0 and hO1

y′→y > 0. (II) is true for y′ → y ∈ O1,

so in particular (iii) is true for y′ → y ∈ O1. Therefore we have ey
′·µ > ey·µ. We have

shown that (iv) is true for reversible y → y′ ∈ O2.

If gO2
y→y′ = 0 and hO2

y→y′ = 0, then gO1
y′→y = 0 and hO1

y′→y = 0. (II) is true for y′ → y ∈ O1,

64



so in particular (v) is true for y′ → y ∈ O1. Therefore we have ey
′·µ = ey·µ. We have shown

that (v) is true for reversible y → y′ ∈ O2.

2.4 Partitions on O and R

Note that in Question 4, we have many parameters: {gy→y′ : y → y′ ∈ O}, {hy→y′ :

y → y′ ∈ O such that gy→y′ = 0}, {ρy→y′ : y → y′ ∈ O such that gy→y′ 6= 0} and

{µs : s ∈ S }. There are 2#(O) + #(S ) parameters together, where #(O) is the number

of reactions in O and #(S ) is the number of species in S . We will try to reduce the

number of parameters by defining partitions on O in a way that will reduce the number of

ρy→y′’s needed. Since g, h ∈ Ker LO and ρy→y′ = hy→y′

gy→y′
where gy→y′ 6= 0, we need to

examine Ker LO and Ker⊥ LO in order to derive the partition on O .

Recall that {ωy→y′ : y → y′ ∈ RO} is the standard basis for RO . Let α 6= 0. For

y → y′, ỹ → ỹ′ ∈ O , note that the following statements are equivalent:

(i) xy→y′ = αxỹ→ỹ′ , for any x ∈ Ker LO .

(ii) x · (ωy→y′ − αωỹ→ỹ′) = 0, for any x ∈ Ker LO .

(iii) ωy→y′ − αωỹ→ỹ′ ∈ Ker⊥ LO .

Now we will introduce a relation ” ∼ ” in O as follows:

For y → y′ and ỹ → ỹ′ ∈ O , we write y → y′ ∼ ỹ → ỹ′ if there exists α 6= 0 such that

ωy→y′ − αωỹ→ỹ′ ∈ Ker⊥ LO . The ’∼’ defined is an equivalence relation. To see that, note

that:

(i) Reflexivity: ωy→y′ − ωy→y′ ∈ Ker⊥ LO , so y → y′ ∼ y → y′.

(ii) Symmetry: If y → y′ ∼ ỹ → ỹ′, there exists α 6= 0 such that ωy→y′ − αωỹ→ỹ′ ∈

Ker⊥ LO . Therefore, − 1
α

(ωy→y′ − αωỹ→ỹ′) ∈ Ker⊥ LO , i.e., ωỹ→ỹ′ −
1
α
ωy→y′ ∈ Ker⊥

LO . Hence ỹ → ỹ′ ∼ y → y′.

(iii) Transitivity: If y → y′ ∼ ỹ → ỹ′, and ỹ → ỹ′ ∼ ŷ → ŷ′, then there exist

α1, α2 6= 0, such that ωy→y′ − α1ωỹ→ỹ′ ∈ Ker⊥ LO and ωỹ→ỹ′ − α2ωŷ→ŷ′ ∈ Ker⊥ LO .
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Therefore, ωy→y′ −α1ωỹ→ỹ′ + α1(ωỹ→ỹ′ −α2ωŷ→ŷ′) ∈ Ker⊥ LO , i.e., ωy→y′ −α1α2ωŷ→ŷ′

∈ Ker⊥ LO where α1α2 6= 0. Hence y → y′ ∼ ŷ → ŷ′.

We can define the equivalence class of y → y′ under ’∼’ as

[y → y′] = {ỹ → ỹ′ ∈ O : ỹ → ỹ′ ∼ y → y′}. (2.4.1)

Clearly, the following statements are equivalent:

(i) y → y′ ∼ ỹ → ỹ′.

(ii) [y → y′] = [ỹ → ỹ′].

(iii) y → y′ and ỹ → ỹ′ belong to the same equivalence class under ’∼’.

If an equivalence class only has one reaction in it, then we call it a trivial equivalence

class; otherwise, it is called a nontrivial equivalence class.

Suppose there is a reaction y → y′ ∈ O such that ωy→y′ ∈ Ker⊥ LO . Now consider a

reaction ỹ → ỹ′ which lies in the same equivalence class with y → y′. Since there exists

α 6= 0 such that ωỹ→ỹ′ − αωy→y′ ∈ Ker⊥ LO , it must be the case that ωỹ→ỹ′ ∈ Ker⊥

LO . Conversely, if there exist y → y′, ỹ → ỹ′ ∈ O , such that ωy→y′ , ωỹ→ỹ′ ∈ Ker⊥ LO ,

then ωy→y′ − ωỹ→ỹ′ ∈ Ker⊥ LO . Hence y → y′∼ ỹ → ỹ′, and the two reactions must

belong to the same equivalence class. As a result, if there is a reaction y → y′ such that

ωy→y′ ∈ Ker⊥ LO , we will name the equivalence class in which y → y′ lies, as P0. If no

such equivalence class exists, we just set P0 = ∅.

Remark 2.4.1. Note that the following statements are equivalent:

(i) y → y′ ∈ P0.

(ii) ωy→y′ ∈ Ker⊥ LO .

(iii) For any x ∈ Ker LO , x · ωy→y′ = 0.

(iv) For any x ∈ Ker LO , xy→y′ = 0.

Suppose that besides P0 (if it is not empty), there are additionallyw equivalence classes,

with w1 nontrivial equivalence classes and w2 trivial equivalence classes. Hence w = w1 +
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w2. Let us name these nontrivial equivalence classes P1, P2, ...Pw1 , and trivial equivalence

classes Pw1+1, ..., Pw1+w2 . The set of all equivalence classes {Pi}wi=0 of O defines a partition

of O . Let Õ = O\P0. Then {Pi}wi=1 defines a partition of Õ .

Remark 2.4.2. Given a reaction network {S ,C ,R} and an orientation O , the following

statements are equivalent:

(i) y → y′ and ỹ → ỹ′ lie in the same equivalence class.

(ii) There exists α 6= 0, such that ωy→y′ − αωỹ→ỹ′ ∈ Ker⊥ LO .

Let α 6= 0. The following statements are equivalent:

(i) ωy→y′ − αωỹ→ỹ′ ∈ Ker⊥ LO .

(ii) For any x ∈ Ker LO , x · (ωy→y′ − αωỹ→ỹ′) = 0.

(iii) For any x ∈ Ker LO , xy→y′ = αxỹ→ỹ′ .

Remark 2.4.3. Two reactions y → y′ and ỹ′ → ỹ′ both lie in Pi (1 ≤ i ≤ w) if and

only if there is a unique α 6= 0 such that ωy→y′ − αωỹ→ỹ′ ∈ Ker⊥ LO . The uniqueness

of α can be shown by supposing the contrary, i.e. assume there exists α̃ 6= α such that

ωy→y′ − α̃ωỹ→ỹ′ ∈ Ker⊥ LO . Then we can show that (α̃ − α)ωỹ→ỹ′ ∈ Ker⊥ LO . Hence

ωỹ→ỹ′ ∈ Ker⊥ LO . Then ỹ → ỹ′ ∈ P0, which is a contradiction.

2.5 Digression 1

Before we go on, let us make a few observations about the equivalence classes Pi’s (i ≥ 0)

defined under the orientation O .

For Pi (i ≥ 0), let us define ˜Ni to be the subnetwork generated by reactions in Pi. Note

that since Pi ⊂ O , all the reactions in ˜Ni are irreversible (with respect to the orientation

O).

If we look at the subnetwork as if it is an independent reaction network, then similarly

67



we can define for this reaction network its linkage classes and deficiency. For example, a

linkage class of one of these subnetworks is called a colinkage set for the reaction network.

We have defined the reaction vector for a reaction y → y′ as y′ − y, then the reaction

vectors for a reaction network ˜Ni are {y′ − y : y → y′ ∈ ˜Ni}.

Remark 2.5.1. Note that it is trivial that the single reaction vector in each trivial equiv-

alence class is independent. Therefore, the reaction vector in each ˜Ni (w1 + 1 ≤ i ≤

w1 + w2) is independent.

Remark 2.5.2. We claim that reaction vector(s) for ˜N0 is (are) independent.

If P0 is trivial, then the claim is trivial. If P0 is nontrivial, then to see the independence,

let us suppose the contrary, i.e., there exists a set {γy→y′ : y → y′ ∈ P0} whose elements

are not all zero, such that,
∑

y→y′∈P0

γy→y′(y′ − y) = 0. Let β ∈ RO be defined as follows:

βy→y′ =


γy→y′ , if y → y′ ∈ P0

0, otherwise.

Then β 6= 0 and β ∈ Ker LO . Since for all y → y′ ∈ P0, ωy→y′ ∈ Ker⊥ LO , we have

ωy→y′ · β = βy→y′ = γy→y′ = 0, for all y → y′ ∈ P0. This is a contradiction.

Therefore, the reaction vector(s) in ˜N0 is (are) independent. Consequently, there will

be no (undirected) cycle in ˜N0, i.e., ˜N0 forms a forest.

Remark 2.5.3. Consider the subnetwork ˜Ni (1 ≤ i ≤ w1). If the reaction vectors for ˜Ni

are dependent, then we can claim that for any proper subset Q ⊂ Pi, the reaction vectors

for the subnetwork generated by reactions in Q are independent, i.e., the reaction vectors

for ˜Ni are minimally dependent if not independent.

To show this, let us suppose the contrary, i.e., the reaction vectors for the subnetwork

generated by reactions in Q are dependent. Then there is a set {γy→y′ : y → y′ ∈ Q}
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whose elements are not all zero, such that
∑

y→y′∈Q
γy→y′(y′ − y) = 0. Let β ∈ RO be

defined as follows:

βy→y′ =


γy→y′ , if y → y′ ∈ Q

0, otherwise.

Then β 6= 0 and β ∈ Ker LO . Take ỹ → ỹ′ ∈ Pi\Q, and ŷ → ŷ′ ∈ Q such that

γŷ→ŷ′ 6= 0. Because ỹ → ỹ′ and ŷ → ŷ′ are both members of Pi, there exists αỹ→ỹ′ 6= 0,

such that ωŷ→ŷ′−αỹ→ỹ′ωỹ→ỹ′ ∈ Ker⊥ LO . Thus we have that β · (ωŷ→ŷ′−αỹ→ỹ′ωỹ→ỹ′) =

βŷ→ŷ′ − αỹ→ỹ′βỹ→ỹ′ = γŷ→ŷ′ − αỹ→ỹ′(0) = γŷ→ŷ′ = 0. This is a contradiction since

γŷ→ŷ′ 6= 0.

We have shown that the reaction vectors for each ˜Ni (1 ≤ i ≤ w1) are either indepen-

dent or minimally dependent.

From Remarks 2.5.1, 2.5.2 and 2.5.3, we know that the following holds:

(i) The reaction vector(s) for ˜N0 is (are) independent.

(ii) The single reaction vector for each ˜Ni (w1 + 1 ≤ i ≤ w1 + w2) is independent

trivially.

(iii) Reaction vectors for ˜Ni (1 ≤ i ≤ w1) are either independent or minimally depen-

dent.

Proposition 2.5.4. Given a reaction network {S ,C ,R}, an orientation O , and the ˜Ni

(0 ≤ i ≤ w) defined as the subnetwork generated by all reactions in Pi, one of the follow-

ing will hold:

(i) The reaction vectors for ˜Ni are independent, and the subnetwork ˜Ni based on Pi

forms a forest with deficiency 0.

(ii) The reaction vectors are minimally dependent, and the subnetwork ˜Ni based on Pi

forms a forest with deficiency 1.

(iii) The reaction vectors are minimally dependent, and the subnetwork ˜Ni based on Pi

forms a big cycle (a cycle with at least three vertices) with deficiency 0.
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PROOF: To see that, let s̃i (0 ≤ i ≤ w) be the dimension of the linear space spanned

by all the reaction vectors in the subnetwork ˜Ni. The deficiency of the subnetwork ˜Ni

generated by reactions in Pi (0 ≤ i ≤ w) is δÑi
= #(complexes in ˜Ni) − #(linkage

classes in ˜Ni)− s̃i.

As for i in the range w1 + 1 ≤ i ≤ w1 + w2, note that there is a single reaction in Pi.

The reaction vector for each ˜Ni is independent. ˜Ni forms a forest, with #(complexes in

˜Ni) = 2, #(linkage classes in ˜Ni) = 1, and s̃i = 1. Therefore, δÑi
= #(complexes in

˜Ni)−#(linkage classes in ˜Ni)− s̃i = 2− 1− 1 = 0.

Note that in each Pi (0 ≤ i ≤ w1), if y → y′ ∈ Pi, then y′ → y /∈ Pi. Therefore, the

subnetwork generated by reactions in Pi either forms a forest or contains a big (undirected)

cycle.

If there is a big (undirected) cycle in ˜Ni(1 ≤ i ≤ w1), then the reaction vectors in

the cycle are dependent. Note that if the reactions vectors in ˜Ni are dependent, then they

must be minimally dependent. Therefore, there can be no other reaction other than those

in the cycle. In this case, ˜Ni just forms a big (undirected) cycle. Moreover, #(complexes

in ˜Ni) = #(Pi), #(linkage classes in ˜Ni) = 1, and s̃i = #(Pi) − 1. Thus δÑi
=

#(Pi)− 1− (#(Pi)− 1) = 0.

If there is no big (undirected) cycle in ˜Ni (1 ≤ i ≤ w1), i.e., ˜Ni forms a forest,

then the reaction vectors are either independent or minimally dependent. Note that since

it is a forest, #(complexes in ˜Ni) = #(Pi) + #(linkage classes in ˜Ni). If the reactions

vectors on ˜Ni are independent, s̃i = #(Pi). Then δÑi
= (#(Pi) + #(linkage classes in

˜Ni))−#(linkage classes in ˜Ni)−#(Pi) = 0. If the reaction vectors on ˜Ni are minimally

dependent, s̃i = #(Pi)− 1. Then δÑi
= (#(Pi) + #(linkage classes in ˜Ni))−#(linkage

classes in ˜Ni)− (#(Pi)− 1) = 1.

We will continue with another proposition for the ˜Ni’s.

Proposition 2.5.5. Given a reaction network {S ,C ,R}, an orientation O and the ˜Ni
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(0 ≤ i ≤ w) defined as the subnetwork generated by all reactions in Pi, the following are

true:

i) If dim Ker LO ≥ 1, the reaction vectors in ∪wi=1
˜Ni are dependent.

ii) If we take ỹ → ỹ′ from ˜N0, then ỹ′ − ỹ does not lie in the span {y′ − y : y → y′ ∈

O\{ỹ → ỹ′}}.

iii) If we take ỹ → ỹ′ and ŷ → ŷ′ from the same ˜Ni (1 ≤ i ≤ w1), then neither ỹ′ − ỹ

nor ŷ′ − ŷ lies in the span {y′ − y : y → y′ ∈ O\{ỹ → ỹ′, ŷ → ŷ′}}.

PROOF: i) They are dependent because, when dim Ker LO ≥ 1, there exists a nonzero

x ∈ Ker LO :

0 =
∑

y→y′∈O

xy→y′(y′ − y)

=
∑

y→y′∈∪wi=1Ñi

xy→y′(y′ − y)

This last equality holds because from Remark 2.4.1, xy→y′ = 0, for any y → y′ ∈ P0.

ii) Suppose not. Then there exist γy→y′’s not all zero such that

ỹ′ − ỹ =
∑

y→y′∈O\{ỹ→ỹ′}
γy→y′(y′ − y).

We can define x ∈ RO via

xy→y′ =


γy→y′ , if y → y′ ∈ O\{ỹ → ỹ′}

−1, otherwise.

Then x ∈ Ker LO and xỹ→ỹ′ 6= 0 while ỹ → ỹ′ ∈ P0. This is a contradiction to the

statement in Remark 2.4.1.

iii) To see this, suppose it is not true for ỹ′ − ỹ. Then there exist γy→y′’s not all zero

such that

ỹ′ − ỹ =
∑

y→y′∈O\{ỹ→ỹ′,ŷ→ŷ′}
γy→y′(y′ − y).
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We can define x ∈ RO via

xy→y′ =


γy→y′ , if y → y′ ∈ O\{ỹ → ỹ′, ŷ → ŷ′}

−1, ỹ → ỹ′

0, ŷ → ŷ′.

Then x ∈ Ker LO . However, since ỹ → ỹ′, ŷ → ŷ′ ∈ Pi, from Remark 2.4.2, there

exists αŷ→ŷ′ 6= 0 such that xỹ→ỹ′ − αŷ→ŷ′xŷ→ŷ′ = 0. From the definition of x, we have

−1 − αŷ→ŷ′(0) = 0, or −1 = 0, which gives a contradiction. The proof for ŷ′ − ŷ is

similar.

2.6 Digression 2

In this section, we will explore another way to define the equivalence classes Pi (i ≥ 0)

on O , through the properties of the subspaces of S, inspired by statements (ii) and (iii) in

Proposition 2.5.5. Recall the definition of equivalence classes defined through Ker⊥ LO

is that y → y′ and ỹ → ỹ′ belong to the same equivalence class if there exists α 6= 0 such

that ωy→y′ −αωỹ→ỹ′ ∈ Ker⊥ LO . To find the definition of equivalence classes through the

properties of the subspaces of S, we can use the following approach.

First note that LO : RO → S, where Im LO = S. Therefore, the transpose of map LO ,

LTO : S → RO , can be defined as follows: for x ∈ S, LTOx =
∑

p→p′∈O

((p′ − p) · x)ωp→p′ .

Note that Ker⊥ LO = Im LTO . We have the following two lemmas:

Lemma 2.6.1. For a reaction network {S ,C ,R} and a given orientation O , suppose y →

y′ and ỹ → ỹ′ are two distinct reactions in the orientation O . Denote SO\{y→y′,ỹ→ỹ′} =

span {p′ − p : p→ p′ ∈ O\{y → y′, ỹ → ỹ′}}. The following statements are equivalent:

(i) There exists α 6= 0 such that ωy→y′ − αωỹ→ỹ′ ∈ Ker⊥ LO .

(ii) There exists α 6= 0 such that ωy→y′ − αωỹ→ỹ′ ∈ Im LTO .
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(iii) There exists x ∈ S\{0} and α 6= 0 such that LTOx =
∑

p→p′∈O

((p′ − p) · x)ωp→p′ =

ωy→y′ − αωỹ→ỹ′ ∈ Im LTO .

(iv) There exists x ∈ S\{0} such that for each p→ p′ ∈ O , x · (p′− p) = 0 if and only

if p→ p′ ∈ O\{y → y′, ỹ → ỹ′}.

(v) y′ − y /∈ SO\{y→y′,ỹ→ỹ′} and ỹ′ − ỹ /∈ SO\{y→y′,ỹ→ỹ′}.

PROOF: Note that since y → y′ and ỹ → ỹ′ are two distinct equations in O , ωy→y′ and

ωỹ→ỹ′ are independent.

The equivalence of (i) and (ii) are trivial as Ker⊥ LO = Im LTO .

(ii)⇒ (iii): Suppose that there exists α 6= 0, such that ωy→y′ − αωỹ→ỹ′ ∈ Im LTO . Then

by the definition of Im LTO , there exists x ∈ S such that LTOx =
∑

p→p′∈O

((p′−p) ·x)ωp→p′ =

ωy→y′ − αωỹ→ỹ′ ∈ Im LTO . Note that ωy→y′ − αωỹ→ỹ′ 6= 0 and LTO(0) = 0, therefore, we

claim x ∈ S\{0}.

The other direction (iii)⇒ (ii) is trivial.

(iii)⇒ (iv): Suppose (iii) holds, then there exists x ∈ S\{0} and α 6= 0, such that∑
p→p′∈O

((p′ − p) · x)ωp→p′ = ωy→y′ − αωỹ→ỹ′ . Then we can see that x · (y′ − y) = 1 6= 0,

x · (ỹ′ − ỹ) = −α 6= 0 and for each p→ p′ ∈ O\{y → y′, ỹ → ỹ′}, x · (p′ − p) = 0.

(iv)⇒ (iii): Suppose that (iv) holds. Let a = x · (y′ − y)) 6= 0, b = x · (ỹ′ − ỹ) 6= 0.

Note that for each p → p′ ∈ O\{y → y′, ỹ → ỹ′}, x · (p′ − p) = 0. Therefore, LTO(x) =∑
p→p′∈O

((p′ − p) · x)ωp→p′ = aωy→y′ − bωỹ→ỹ′ ∈ Im LTO . Since a, b 6= 0, there exists

α = b/a 6= 0, such that ωy→y′ − αωỹ→ỹ′ ∈ Im LTO .

The equivalence of (iv) and (v) is slightly complicated. We will show the proof in both

directions.

(iv)⇒(v): Suppose (iv) holds, i.e., there exists x ∈ S\{0}, such that x · (y′ − y) 6= 0,

x · (ỹ′ − ỹ) 6= 0 and x · (p′ − p) = 0 for any p → p′ ∈ O\{y → y′, ỹ → ỹ′}. Therefore

x⊥SO\{y→y′,ỹ→ỹ′}, y′ − y /∈ SO\{y→y′,ỹ→ỹ′} and ỹ′ − ỹ /∈ SO\{y→y′,ỹ→ỹ′}.

(v)⇒(iv): Suppose (v) holds. Then SO\{y→y′,ỹ→ỹ′} is a proper subset of S. Note that
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dim S − 2 ≤ dim SO\{y→y′,ỹ→ỹ′} ≤ dim S. Therefore dim S − 2 ≤ dim SO\{y→y′,ỹ→ỹ′} ≤

dim S − 1.

Denote the subspace SO\{y→y′,ỹ→ỹ′} by X . Denote the subspace S⊥O\{y→y′,ỹ→ỹ′} ∩ S by

Y . Then X⊥Y , and S = X ⊕ Y , where ⊕ denotes a direct sum. Therefore, dim Y = dim

S− dim X . Since dim S − 2 ≤ dim X ≤ dim S − 1, we have 1 ≤ dim Y ≤ 2.

Note that S = X ⊕ Y . For any u ∈ S, there exists a unique pair uX ∈ X and uY ∈ Y

such that u = uX + uY . Denote y′ − y as v and ỹ′ − ỹ as ṽ. Note that y′ − y, ỹ → ỹ /∈ X .

Therefore, we can write y′ − y = v = vX + vY , where vX ∈ X and vY ∈ Y \{0}. We can

write ỹ′ − ỹ = ṽ = ṽX + ṽY , where ṽX ∈ X and ṽY ∈ Y \{0}.

Take x̃ ∈ Y \{0} ⊆ S\{0}, then x̃⊥X . For any p → p′ ∈ O\{y → y′, ỹ → ỹ′}, we

have p′ − p ∈ X , therefore x̃ · (p′ − p) = 0. Moreover, x̃ · vX = 0 and x̃ · ṽX = 0, as

vX , ṽX ∈ X .

Therefore, x̃ · (y′ − y) = x̃ · v = x̃ · (vX + vY ) = x̃ · vX + x̃ · vY = x̃ · vY . Thus

x̃ · (y′ − y) = x̃ · vY . Similarly, x̃ · (ỹ′ − ỹ) = x̃ · ṽY . Note that x̃, vY , ṽY 6= 0. We will

proceed in two situations based on whether vY · ṽY is equal to zero or not.

Suppose that vY⊥ṽY (which is possible when dim Y = 2), i.e., vY · ṽY = 0. Then we

pick x = vY + ṽY ∈ Y \{0} so that x · (y′ − y) = x · vY = (vY + ṽY ) · vY = |vY |2 6= 0,

and x · (ỹ′ − ỹ) = x · ṽY = (vY + ṽY ) · ṽY = |ṽY |2 6= 0. Note that x = vY + ṽY ∈ Y \{0},

then x · (p′ − p) = 0, for any p→ p′ ∈ O\{y → y′, ỹ → ỹ′}.

Suppose that vY is not perpendicular to ṽY , i.e., vY · ṽY 6= 0. Then we pick x = vY ∈

Y \{0} so that x · (y′ − y) = x · vY = |vY |2 6= 0, and x · (ỹ′ − ỹ) = x · ṽY = vY · ṽY 6= 0.

Note that x = vY ∈ Y \{0}, then x · (p′ − p) = 0, for any p→ p′ ∈ O\{y → y′, ỹ → ỹ′}.

Therefore, we can always find x ∈ Y \{0} ⊆ S\{0} such that x · (y′ − y) 6= 0 and

x · (ỹ′ − ỹ) 6= 0, and for each p→ p′ ∈ O\{y → y′, ỹ → ỹ′}, x · (p′ − p) = 0. Therefore

we have shown that there exists x ∈ Y \{0} ⊆ S\{0}, such that for each p → p′ ∈ O ,

x · (p′ − p) = 0 if and only if p→ p′ ∈ O\{y → y′, ỹ → ỹ′}.
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Lemma 2.6.2. For a reaction network {S ,C ,R}, and a given orientation O , suppose

y → y′ and ỹ → ỹ′ are two distinct reactions in the orientation O . Denote SO\{y→y′} =

span {p′ − p : p → p′ ∈ O\{y → y′}}. Then ωy→y′ ∈ Ker⊥ LO if and only if y′ − y /∈

SO\{y→y′}.

PROOF: ⇒): Suppose that ωy→y′ ∈ Ker⊥ LO . Then ωy→y′ ∈ Im LTO . There exists

x ∈ S\{0}, such that LTOx =
∑

p→p′∈O

((p′ − p) · x)ωp→p′ = ωy→y′ . Then for p → p′ ∈ O ,

x · (p′ − p) = 0 if and only if p → p′ ∈ O\{y → y′}. Then x⊥SO\{y→y′} and y′ − y /∈

SO\{y→y′}.

⇐): Suppose that y′ − y /∈ SO\{y→y′}, then dim SO\{y→y′} = dim S − 1. Let X =

SO\{y→y′}, and Y = S⊥O\{y→y′} ∩ S. Then S = X ⊕ Y , and dim Y = 1. Let x ∈ Y \{0}.

For any p→ p′ ∈ O\{y → y′}, p′ − p ∈ SO\{y→y′} = X , then x · (p′ − p) = 0.

For any u ∈ S, there exists a unique pair uX ∈ X and uY ∈ Y such that u = uX + uY .

Since y′ − y /∈ X , there exists a unique pair vX ∈ X and vY ∈ Y \{0} such that y′ − y =

vX + vY . Then x · (y′ − y) = x · (vX + vY ) = x · vX + x · vY = x · vY . Note that dim

Y = 1, and x, vY ∈ Y \{0}, therefore x · vY 6= 0, i.e., x · (y′ − y) 6= 0.

We have found that for any x ∈ Y \{0} ⊆ S\{0}, for p → p′ ∈ O , x · (p′ − p) = 0 if

and only if p→ p′ ∈ O\{y → y′}. Therefore, LTOx =
∑

p→p′∈O

((p′−p) ·x)ωp→p′ = αxωy→y′

for some αx 6= 0. Then ωy→y′ ∈ Im LTO = Ker⊥ LO .

Recall our definition for an equivalence class: y → y′ and ỹ → ỹ′ to lie in the same

equivalence class of O if and only if there exists α 6= 0, such that ωy→y′ −αωỹ→ỹ′ ∈ Ker⊥

LO . In addition, y → y′ lies in the zeroth equivalence class P0 if and only if ωy→y′ ∈ Ker⊥

LO .

Therefore, from Lemmas 2.6.1 and 2.6.2, we can equivalently define y → y′ and ỹ → ỹ′

lie in the same equivalence class of O , if and only if one of the following holds:

(i) They are the same reaction.
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(ii) They are distinct reactions and we have y′ − y /∈ SO\{y→y′,ỹ→ỹ′} and ỹ′ − ỹ /∈

SO\{y→y′,ỹ→ỹ′}.

In addition, y → y′ lies in the zeroth equivalence class P0 if and only if y′ − y /∈

SO\{y→y′}.

2.7 Fundamental Classes

Next, we will look into the conditions in terms of the partitions on O in Question 4 so we

can rewrite Question 4 in terms of fewer parameters.

Let us define fundamental classes on R. We say that y → y′ and ỹ → ỹ′ are in the

same fundamental class if one of the following holds:

(i) They are the same reaction.

(ii) They are reactions of a reversible pair.

(iii) Either y → y′ or y′ → y and either ỹ → ỹ′ or ỹ′ → ỹ are in the same "∼"

equivalence class on O .

R can then be partitioned into fundamental classes. Obviously each equivalence class

Pi (i ≥ 0) on O will be contained in precisely one fundamental class. Each fundamental

class will contain an equivalence class on O . We name the fundamental class containing

Pi as Ci.

We then define fundamental subnetwork Ni as the subnetwork formed by reactions

from each Ci, i = 0, ..., w. This amounts to a partition of the original reaction network into

subnetworks; each reaction of R lies in precisely one such subnetwork.

Let us define a fundamental class as a reversible fundamental class if the reactions in

the fundamental class are all reversible. Otherwise, we say it is a nonreversible funda-

mental class.

If we look at the subnetwork as if it is an independent reaction network, we can define

for this reaction network its linkage classes, strong linkage classes, terminal strong linkage
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classes, nonterminal strong linkage classes, and deficiency, etc. A linkage class of one of

these subnetworks is a called a colinkage set for the reaction network. A strong colinkage

set and a terminal strong colinkage set can be defined in a similar way.

It seems that equivalence classes Pi’s depend on the orientation O , and fundamental

classes Ci’s depend on Pi’s and therefore O . However, the fundamental classes does not

rely on the orientation, i.e., Ci’s are always the same no matter how the orientation is

picked.

In other words, we have the following proposition.

Proposition 2.7.1. For a reaction network {S ,C ,R}, an orientation O is given and fun-

damental classes Ci (0 ≤ i ≤ w) are defined. If y → y′ belongs to the zeroth fundamental

class C0 under an orientation O , then it will belong to C0 under any orientation. If y → y′

and ỹ → ỹ′ belong to the same fundamental class under an orientation O , then they will

belong to the same fundamental class under any orientation.

PROOF: For the given reaction network {S ,C ,R}, and two orientations O1 and O2, we

want to consider several cases:

(I) We want to show that if y → y′ ∈ PO1
0 , then y → y′ (or its reverse if it exists) lies

in PO2
0 and vice versa. So if y → y′ belongs to the zeroth fundamental class C0 under an

orientation O , then it will belong to C0 under any orientation.

First let us show that if y → y′ ∈ PO1
0 , then y → y′ (or its reverse if it exists) lies in

PO2
0 .

To see that, first note that

y → y′ ∈ PO1
0 if and only if ωy→y′ ∈ Ker⊥ LO

if and only if for any xO1 ∈ Ker LO1 , x
O1
y→y′ = 0.

Let xO2 ∈ Ker LO2 , we can find xO1 = G(xO2) ∈ Ker LO1 , where G is defined in Lemma

2.3.4. We have the following two possibilities: y → y′ ∈ O2 or y′ → y ∈ O2.
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(i) y → y′ ∈ O2. In this case, xO2
y→y′ = xO1

y→y′ and we have that

xO2
y→y′ = xO1

y→y′ = 0. (2.7.1)

From the arbitrary choice of xO2 , we have ωy→y′ ∈ Ker⊥ LO2 .

(ii) y′ → y ∈ O2. In this case, xO2
y′→y = −xO1

y→y′ and we have that

xO2
y′→y = −xO1

y→y′ = 0. (2.7.2)

From the arbitrary choice of xO2 , we have ωy′→y ∈ Ker⊥ LO2 .

For the other direction, we only need to switch the position of O1 and O2, and apply

function F (defined also in Lemma 2.3.4) instead of G. The proof is parallel.

Therefore, we can see that if y → y′ lies in the zeroth equivalence class under one ori-

entation, then y → y′ (or its reverse, depending on which one lies in the given orientation)

lies in the zeroth equivalence class under any orientation.

(II) We want to show that if y → y′, ỹ → ỹ′ lie in the same equivalence class under

orientation O1, then y → y′ (or its reverse y′ → y if it exists) and ỹ → ỹ′ (or its reverse

ỹ′ → ỹ if it exists) lie in the same equivalence class under O2 and vice versa. Therefore,

if y → y′ and ỹ → ỹ′ belong to the same fundamental class under an orientation O , these

two reactions will belong to the same fundamental class under any orientation.

First we will show that if y → y′, ỹ → ỹ′ lie in the same equivalence class under

orientation O1, y → y′ (or its reverse y′ → y if it exists) and ỹ → ỹ′ (or its reverse ỹ′ → ỹ

if it exists) lie in the same equivalence class under O2.

Note that y → y′, ỹ → ỹ′ lie in the same equivalence class under O1 implies that there

exists αO1
ỹ→ỹ′ 6= 0 such that ωy→y′ − αO1

ỹ→ỹ′ωỹ→ỹ′ ∈ Ker⊥ LO1 . To proceed, let xO2 ∈ Ker

LO2 . Let F and G be maps defined as in Lemma 2.3.4. We can find xO1 = G(xO2) ∈ Ker

LO1 . We then have the following four possibilities.

(i) Suppose y → y′, ỹ → ỹ′ ∈ O1 ∩ O2.

Claim 1. There exists αO2
ỹ→ỹ′ = αO1

ỹ→ỹ′ 6= 0 such that ωy→y′ − αO2
ỹ→ỹ′ωỹ→ỹ′ ∈ Ker⊥ LO2 .
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Note that in this case xO2
y→y′ = xO1

y→y′ and xO2
ỹ→ỹ′ = xO1

ỹ→ỹ′ . Since ωy→y′ − αO1
ỹ→ỹ′ωỹ→ỹ′ ∈

Ker⊥ LO1 , we can see that xO1
y→y′ − αO1

ỹ→ỹ′x
O1
ỹ→ỹ′ = 0. In terms of O2, we have xO2

y→y′ −

αO2
ỹ→ỹ′x

O2
ỹ→ỹ′ = 0.

Since the choice of xO2 is arbitrary, we have ωy→y′ − αO2
ỹ→ỹ′ωỹ→ỹ′ ∈ Ker⊥ LO2 , where

αO2
ỹ→ỹ′ = αO1

ỹ→ỹ′ .

(ii) y → y′ ∈ O1 ∩ O2, ỹ → ỹ′ ∈ O1 and ỹ′ → ỹ ∈ O2.

Claim 2. There exists αO2
ỹ′→ỹ = −αO1

ỹ→ỹ′ 6= 0 such that ωy→y′ − αO2
ỹ′→ỹωỹ′→ỹ ∈ Ker⊥ LO2 .

Note that in this case xO2
y→y′ = xO1

y→y′ and xO2
ỹ′→ỹ = −xO1

ỹ→ỹ′ . Since ωy→y′−αO1
ỹ→ỹ′ωỹ→ỹ′ ∈

Ker⊥ LO1 , we can see that xO1
y→y′ − αO1

ỹ→ỹ′x
O1
ỹ→ỹ′ = 0. In terms of O2, we have xO2

y→y′ −

αO2
ỹ′→ỹx

O2
ỹ′→ỹ = 0.

Since the choice of xO2 is arbitrary, we have ωy→y′ − αO2
ỹ′→ỹωỹ′→ỹ ∈ Ker⊥ LO2 , where

αO2
ỹ′→ỹ = −αO1

ỹ→ỹ′ .

(iii) y → y′ ∈ O1 and y′ → y ∈ O2, ỹ → ỹ′ ∈ O1 ∩ O2.

Claim 3. There exists αO2
ỹ→ỹ′ = −αO1

ỹ→ỹ′ 6= 0 such that ωy→y′ − αO2
ỹ→ỹ′ωỹ→ỹ′ ∈ Ker⊥ LO2 .

Note that in this case xO2
y→y′ = −xO1

y′→y and xO2
ỹ→ỹ′ = xO1

ỹ→ỹ′ . Since ωy→y′−αO1
ỹ→ỹ′ωỹ→ỹ′ ∈

Ker⊥ LO1 , we can see that xO1
y→y′ − α

O1
ỹ→ỹ′x

O1
ỹ→ỹ′ = 0. In terms of O2, we have −xO2

y′→y +

αO2
ỹ→ỹ′x

O2
ỹ→ỹ′ = 0.

Since the choice of xO2 is arbitrary, we have ωy′→y − αO2
ỹ→ỹ′ωỹ→ỹ′ ∈ Ker⊥ LO2 , where

αO2
ỹ→ỹ′ = −αO1

ỹ→ỹ′ .

(iv) y → y′ ∈ O1, y′ → y ∈ O2, ỹ → ỹ′ ∈ O1, ỹ′ → ỹ ∈ O2.

Claim 4. There exists αO2
ỹ′→ỹ = αO1

ỹ→ỹ′ 6= 0 such that ωy′→y − αO2
ỹ′→ỹωỹ′→ỹ ∈ Ker⊥ LO2 .

Note that in this case xO2
y′→y = −xO1

y→y′ and xO2
ỹ′→ỹ = −xO1

ỹ→ỹ′ . Since ωy→y′−αO1
ỹ→ỹ′ωỹ→ỹ′ ∈

Ker⊥ LO1 , we can see that xO1
y→y′ − α

O1
ỹ→ỹ′x

O1
ỹ→ỹ′ = 0. In terms of O2, we have −xO2

y′→y +

αO2
ỹ′→ỹx

O2
ỹ′→ỹ = 0.
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Since the choice of xO2 is arbitrary, we have ωy′→y − αO2
ỹ′→ỹωỹ′→ỹ ∈ Ker⊥ LO2 , where

αO2
ỹ′→ỹ = αO1

ỹ→ỹ′ .

Next, for the other direction, we only need to switch the position of O1 and O2, and

apply function F instead of G. The proof is parallel.

Now we can see that if y → y′ and ỹ → ỹ′ lie in the same equivalence class under one

orientation, then y → y′ (or its reverse, depending on which one lies in the given orienta-

tion) and ỹ → ỹ′ (or its reverse, depending on which one lies in the given orientation) lie

in the same equivalence class under any orientation.

Remark 2.7.2. We claim that given O , all reactions in P0 must be reversible for the answer

to Question 4 to be yes.

Note for a given orientation O , if there is an irreversible reaction y → y′ ∈ P0, then

xy→y′ = 0, for all x ∈ Ker LO (see Remark 2.4.1). But if y → y′ is irreversible, then for

the answer to Question 4 to be yes, we must have gy→y′ > 0. However, if g ∈ Ker LO and

y → y′ ∈ P0 then gy→y′ = 0. Then no such g ∈ Ker LO satisfying (2.3.2) can exist. We

know that if there is an irreversible reaction in P0 under orientation O , there will be an

irreversible reaction in P0 under any orientation. We conclude that the answer to Question

4 and therefore Question 3, 2 and 1 are no and we are done.

From now on let us assume that for any orientation, if P0 is not empty, then each

reaction in P0 is reversible (by definition if P0 is empty, it is reversible).

Remark 2.7.3. Note if there are two distinct irreversible reactions y → y′ and ỹ → ỹ′ in

the same equivalence class Pi (1 ≤ i ≤ w1), then there exists a unique αO
ỹ→ỹ′ 6= 0, such

that ωy→y′ − αO
ỹ→ỹ′ωỹ→ỹ′ ∈ Ker⊥ LO . Since y → y′ and ỹ → ỹ′ are irreversible, we have

that there exists αỹ→ỹ′ 6= 0, such that ωy→y′−αỹ→ỹ′ωỹ→ỹ′ ∈ Ker⊥ LO , for any orientation

O . Then for any orientation O and any x ∈ Ker LO , xy→y′ − αỹ→ỹ′xỹ→ỹ′ = 0.

Since y → y′ and ỹ → ỹ′ are irreversible, then for the answer to Question 4 to be yes,
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we have g ∈ Ker LO with gy→y′ > 0 and gỹ→ỹ′ > 0. Then gy→y′−αỹ→ỹ′gỹ→ỹ′ = 0 implies

αỹ→ỹ′ > 0.

Therefore, if for any given orientation O the αỹ→ỹ′ such that ωy→y′ − αỹ→ỹ′ωỹ→ỹ′ ∈

Ker⊥ LO is negative, then the answer to Question 4 and therefore Question 3, 2 and 1 are

no and we are done.

From now on, let us assume for any given orientation O , if two reactions y → y′,ỹ → ỹ′

∈ Õ (= O\P0) are irreversible and belong to the same equivalence class, then there exists

a unique αỹ→ỹ′ > 0, such that ωy→y′ − αỹ→ỹ′ωỹ→ỹ′ ∈ Ker⊥ LO .

Let us define an equivalence class as a reversible equivalence class if the correspond-

ing fundamental class is reversible; otherwise we say it is a nonreversible equivalence

class. We know this reversibility of an equivalence class is independent of the choice of

orientation.

We will next try to reduce the number of parameters used in Question 4. Let us pick

one representative from each equivalence class as follows:

If an equivalence class Pi is nonreversible, pick an irreversible (with respect to R)

reaction from Pi as the representative for this equivalence class. Otherwise, we pick any

one of the reversible (with respect to R) reactions from Pi as the representative. Note for

trivial equivalence classes, the representative is the only reaction that lies in the equivalence

class.

Let us assume we have picked the representative, say, yi → y′i for each equivalence

class Pi (0 ≤ i ≤ w). Define W = {yi → y′i : i = 1, ..., w}, then W ⊆ Õ = O\P0. Recall

that from Remark 2.4.3, for y → y′, ỹ → ỹ′ ∈ Pi (1 ≤ i ≤ w1), since ωy→y′ , ωỹ→ỹ′ /∈

Ker⊥ LO , there exists a unique αỹ→ỹ′ 6= 0 such that ωy→y′ − αỹ→ỹ′ωỹ→ỹ′ ∈ Ker⊥ LO .

The next step is to readjust the orientation (if applicable) such that for i = 1, ..., w, for

any y → y′ ∈ Pi, there exists αy→y′ > 0, such that ωyi→y′i−αy→y′ωy→y′ ∈ Ker
⊥ LO . Note
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for trivial equivalence classes Pi (w1 + 1 ≤ i ≤ w1 + w2), this is trivial. We just need to

make sure it can be done for the nontrivial equivalence classes Pi (1 ≤ i ≤ w1).

Note that if y → y′ ∈ Pi (1 ≤ i ≤ w1) is irreversible, then the representative yi → y′i

must be irreversible too. Then by Remark 2.7.3, there exists αy→y′ > 0 such that ωyi→y′i −

αy→y′ωy→y′ ∈ Ker⊥ LO .

The only remaining unhandled case is if y → y′ ∈ Pi (1 ≤ i ≤ w1) (under the

orientation O) is reversible, and there exists αy→y′ < 0 such that ωyi→y′i − αy→y′ωy→y′ ∈

Ker⊥ LO .

To deal with this case, we only need to realign the orientation O so that for all y →

y′ ∈ O such that there exists αy→y′ < 0 and ωyi→y′i − αy→y′ωy→y′ ∈ Ker
⊥ LO , we replace

y → y′ with y′ → y in the orientation. Therefore, in the new orientation O , there exists

αy′→y = −αy→y′ > 0 such that ωyi→y′i − αy′→yωy′→y ∈ Ker
⊥ LO .

From now on we can assume that the orientation, say O , is such that for i = 1, ..., w,

and for any y → y′ ∈ Pi, there exists αy→y′ > 0, such that ωyi→y′i − αy→y′ωy→y′ ∈ Ker
⊥

LO . Suppose that g, h ∈ Ker LO , then for all y → y′ ∈ Pi (1 ≤ i ≤ w1) we have

g · (ωyi→y′i − αy→y′ωy→y′) = 0, or gyi→y′i − αy→y′gy→y′ = 0. Similarly, for all y → y′ ∈ Pi

(1 ≤ i ≤ w1), we have hyi→y′i − αy→y′hy→y′ = 0. In particular, gy→y′ (hy→y′) will share

the same sign (positive/negative/zero) with gyi→y′i (hyi→y′i). Also if, in addition, we assume

that gy→y′ 6= 0, ρy→y′ is well defined. In this case, for all y → y′ ∈ Pi (i ≥ 1), we have

ρy→y′ =
hy→y′

gy→y′
= αy→y′hy→y′

αy→y′gy→y′
=
hyi→y′i
gyi→y′i

= ρyi→y′i .

Therefore, in the conditions of Lemma 2.3.2 which were mentioned in Question 4, if

y → y′ ∈ Pi, we could replace ρy→y′ with ρyi→y′i . Thus, in Lemma 2.3.2 and Question 4,

instead of considering {ρy→y′ : gy→y′ 6= 0, y → y′ ∈ O} for all reactions in the orientation,

we only need to consider {ρyi→y′i : gyi→y′i 6= 0, 1 ≤ i ≤ w} for the nonzeroth equivalence

class representatives.
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We will rewrite Lemmas 2.3.2 and 2.3.3 in terms of {ρyi→y′i : gyi→y′i 6= 0, 1 ≤ i ≤ w}

shortly.

Recall that an equivalence class Pi is nonreversible if there exists an irreversible reac-

tion (with respect to R) in Pi, and is otherwise reversible. Recall that we have assumed P0

is reversible. For all y → y′ ∈ Pi, we can now assume that gy→y′ and hy→y′ are sign com-

patible with gyi→y′i and hyi→y′i , respectively; also, we have ρy→y′ = ρyi→y′i if gyi→y′i 6= 0. If

Pi is nonreversible, then yi → y′i is irreversible, gyi→y′i > 0, and hyi→y′i > 0. Therefore for

every y → y′ ∈ Pi that is irreversible, we have gy→y′ > 0 and hy→y′ > 0.

As a result, Lemmas 2.3.2 and 2.3.3 can be rewritten as the following two lemmas,

respectively.

Lemma 2.7.4. Suppose that, for a reaction network {S ,C ,R} and a given orientation

O , κ ∈ RR
+ and µ ∈ RS are given. Let g, h be defined as in (2.3.2) and (2.3.3), let Pi

(0 ≤ i ≤ w) be the equivalence class defined with representative yi → y′i, and define the

set {ρyi→y′i =
hyi→y′i
gyi→y′i

: gyi→y′i 6= 0, i = 1, ..., w}. Then the following conditions hold:

I) If y → y′ ∈ Pi (0 ≤ i ≤ w) is irreversible, then gy→y′ > 0, hy→y′ > 0, and

ρyi→y′i = ey·µ.

II) If y → y′ ∈ Pi (0 ≤ i ≤ w) is reversible, then the following holds:

i) If gyi→y′i > 0, then either ρyi→y′i > ey·µ > ey
′·µ, ρyi→y′i < ey·µ < ey

′·µ, or

ρyi→y′i = ey·µ = ey
′·µ.

ii) If gyi→y′i < 0, then either ρyi→y′i > ey
′·µ > ey·µ, ρyi→y′i < ey

′·µ < ey·µ, or

ρyi→y′i = ey·µ = ey
′·µ.

iii) If gyi→y′i = 0 and hyi→y′i > 0, then ey·µ > ey
′·µ.

iv) If gyi→y′i = 0 and hyi→y′i < 0, then ey·µ < ey
′·µ.

v) If gyi→y′i = 0 and hyi→y′i = 0, then ey·µ = ey
′·µ.
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Lemma 2.7.5. For a reaction network {S ,C ,R} and a given orientation O , suppose that

(i) µ ∈ RS , (ii) a pair g, h ∈ Ker LO , (iii) Pi (0 ≤ i ≤ w) which is an equivalence class

with representative yi → y′i, and (iv) a set {ρyi→y′i =
hyi→y′i
gyi→y′i

: gyi→y′i 6= 0, i = 1, ..., w},

together satisfy the conditions in Lemma 2.7.4. Then there exists κ ∈ RR
+ satisfying (2.3.2)

and (2.3.3).

As a result, we will have the following lemma, where given an orientation O , yi → y′i

is the representative for each Pi (i = 0, .., w), and W = {yi → y′i}wi=1.

Lemma 2.7.6. Given a reaction network {S ,C ,R}, the orientation O and the Pi (0 ≤

i ≤ w) representatives {yi → y′i : i = 0, ..., w} we have chosen, Question 4 can be

rewritten in terms of g, h, µ, and ρyi→y′i’s as follows:

Question 5. For the given reaction network {S ,C ,R} and the given orientation O , do

there exist

(i) a nonzero µ ∈ RS which is sign compatible with the stoichiometric subspace S,

(ii) a pair g, h ∈ Ker LO which are not both zero vectors, and

(iii) a set {ρyi→y′i =
hyi→y′i
gyi→y′i

: gyi→y′i 6= 0, 1 ≤ i ≤ w} where yi → y′i is the represen-

tative for Pi,

which together satisfy the conditions in Lemma 2.7.4?

2.8 Sign of Equivalence Class and Shelf Assignments

Note that the conditions in Lemma 2.7.4 are in the format of comparisons among ey·µ,

ey
′·µ and ρyi→y′i (gyi→y′i 6= 0). We will later introduce a helpful analogy stated in terms of

w (or fewer) "bookcases", each with upper, middle, and lower shelves, to translate these

comparisons among ey·µ, ee
y′·µ

and ρyi→y′i into assignments of the reactions in the same

fundamental class into three shelves in a "bookcase."
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Suppose that µ ∈ RS , a pair g, h ∈ Ker LO , Pi (0 ≤ i ≤ w) which is an equivalence

class with a representative yi → y′i, and a set {ρyi→y′i =
hyi→y′i
gyi→y′i

: gyi→y′i 6= 0, i = 1, ..., w}

satisfy the conditions in Lemma 2.7.4.

Let us define a fundamental class Ci (0 ≤ i ≤ w) as degenerate if gyi→y′i = 0. We

define a fundamental class Ci (1 ≤ i ≤ w) as nondegenerate if gyi→y′i 6= 0.

For each nondegenerate fundamental classCi (i ≥ 1), we assume that we have a 3-shelf

bookcase for Ci to store all reactions in Ci. Let us define the shelving of a reaction in this

bookcase. Given y → y′ in a nondegenerate fundamental class Ci (i ≥ 1), we assign the

reactions to shelves as follows:

i) y → y′ is on the upper shelf if ey·µ > ρyi→y′i .

ii) y → y′ is on the lower shelf if ey·µ < ρyi→y′i .

iii) y → y′ is on the middle shelf if ey·µ = ρyi→y′i .

Proposition 2.8.1. We are given a reaction network {S ,C ,R} with an orientation O .

Suppose that µ ∈ RS , a pair g, h ∈ Ker LO , Pi (0 ≤ i ≤ w) which is an equivalence

class with representative yi → y′i, and a set {ρyi→y′i =
hyi→y′i
gyi→y′i

: gyi→y′i 6= 0, i = 1, ..., w}

satisfy the conditions in Lemma 2.7.4. Every shelving of reactions in a nondegenerate

fundamental class Ci satisfies the following conditions:

(i) For any irreversible reaction y → y′ ∈ Ci (i ≥ 1), y → y′ must be on the middle

shelf.

(ii) If ρyi→y′i ≤ 0, then y → y′ ∈ Ci must be on the upper shelf.

(iii) Both reactions of a reversible pair have to be on the same shelf.

(iv) Any two reactions in the same fundamental class Ci sharing the same reactant

complex must lie on the same shelf.

(v) All reactions whose reactant complex lies in a non-terminal strong linkage class

must be placed on the middle shelf.
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(vi) All reactions whose reactant complex lies in a terminal strong linkage class of the

fundamental subnetwork must be put on the same shelf.

(vii) If for a nondegenerate fundamental class Ci (i ≥ 1), Ni forms a big (undirected)

cycle (a cycle with at least three vertices), then its reactions are all in a terminal strong

linkage class (after the successful realignment of the orientation) and on the middle shelf.

PROOF: (i) If the fundamental class Ci (i ≥ 1) is nonreversible, then ρyi→y′i > 0 since

ρyi→y′i = eyi·µ. For any irreversible reaction y → y′ ∈ Ci (i ≥ 1), y → y′ must be put on

the middle shelf since ρyi→y′i = eyi·µ = ey·µ.

(ii) If in a nondegenerate fundamental class, ρyi→y′i ≤ 0, then any y → y′ ∈ Ci can

only be put on the upper shelf as ey·µ > 0 ≥ ρyi→y′i , i.e. ey·µ > ρyi→y′i .

(iii) For two reversible reactions y → y′ and y′ → y, note that among the conditions in

Lemma 2.7.4, for reversible reactions we have

(a) ey·µ > ρyi→y′i if and only if ey
′·µ > ρyi→y′i ,

(b) ey·µ < ρyi→y′i if and only if ey
′·µ < ρyi→y′i , and

(c) ey·µ = ρyi→y′i if and only if ey
′·µ = ρyi→y′i .

Therefore, both reactions of a reversible pair have to be on the same shelf of the funda-

mental class’s bookcase.

(iv) Note that if two reactions in the same fundamental class Ci share the same re-

actant complex, then the reactions must lie on the same shelf. Because only one of the

relationships ey·µ > ρyi→y′i , e
y·µ = ρyi→y′i , e

y·µ < ρyi→y′i can be true at a time.

To prove (v) and (vi), let us first prove the following:

All reactions whose reactant complex lies in a strong linkage class of a fundamental

subnetwork must be placed on the same shelf.

We will prove the statement above from two cases.

Case one: All the reactions for which the reactant complex lies in the strong linkage

class of the fundamental subnetwork are reversible.
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In this case, take any two reactions whose reactant complex lies in the strong linkage

class, y → y′ and ỹ → ỹ′. If these two reactions are the same reaction or a reversible pair,

then they must be put on the same shelf of the fundamental class.

Suppose they are not the same reaction or a reversible pair. Then since y and ỹ both lie

in the strong linkage class, there exists a path from y to ỹ, say y → y1 → y2 → ...yny → ỹ.

Since y → y′ and y → y1 (could be the same reaction) share the same reactant complex,

they must be put on the same shelf of the fundamental class. Similarly, since y1 → y

and y1 → y2 share the same reactant complex, they must be put on the same shelf of the

fundamental class. Therefore, y → y′ and y1 → y2 must be put on the same shelf of the

fundamental class’s bookcase.

Similarly, we can show that y → y′ and yny → ỹ must be put on the same shelf of the

fundamental class. However, since ỹ → yny and ỹ → ỹ′ (could be the same reaction) share

the same reactant complex, they must be put on the same shelf of the fundamental class.

Hence y → y′ and ỹ → ỹ′ must be put on the same shelf of the fundamental class.

Since y → y′ and ỹ → ỹ′ are randomly selected, we claim that all reactions whose

reactant complex lies in the strong linkage class of the fundamental class must be put on

the same shelf of the fundamental class.

Case two: There exists an irreversible reaction ỹ → ỹ′ whose reactant complex lies in

the strong linkage class of the fundamental subnetwork.

In this case, take ỹ → ỹ′ and pick another reaction y → y′ whose reactant complex

lies in the strong linkage class. Then there exists a path from y to ỹ, say y → y1 → y2 →

...yny → ỹ. Note that ỹ → ỹ′ must be put on the middle shelf. If yny → ỹ is irreversible,

yny → ỹ must be put on the middle shelf. If yny → ỹ is not irreversible, ỹ → yny and

ỹ → ỹ′ share the same reactant complex which lies in the strong linkage class. Thus

ỹ → yny and ỹ → ỹ′ must be put on the same shelf, i.e., the middle shelf. Either way

yny → ỹ must be put on the middle shelf of the fundamental class’s bookcase.
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Similarly, we can show that if yny−1 → yny is irreversible, then it must be put on the

middle shelf; otherwise, yny → yny−1 and yn−y → ỹ must be put on the same middle shelf.

Therefore, in either way yny−1 → yny must be put on the middle shelf. Thus following

this approach, we can show that y → y1 must be put on the middle shelf. Since y → y′

and y → y1 share the same reactant complex, they must be put on the same shelf of the

fundamental class’s bookcase. Therefore, y → y′ must be put on the same middle shelf as

ỹ → ỹ′.

Since y → y′ is arbitrarily selected, we can claim that if there exists an irreversible

reaction whose reactant complex lies in the strong linkage class of the fundamental sub-

network, then all reactions whose reactant complex lies in the strong linkage class of the

fundamental subnetwork must be put on the same middle shelf of the fundamental class’s

bookcase.

(v) To show this, note that in a non-terminal strong linkage class, there exists a complex

which reacts to some other complex not in the non-terminal strong linkage class. We

know the reaction between these two complex is irreversible. Suppose not, then these two

complexes will be in the same strong linkage class, which is a contradiction. Therefore,

there exists an irreversible reaction whose reactant complex lies in the strong linkage class

but the product complex does not. We can claim from case two that all reactions whose

reactant complex lies in a non-terminal strong linkage class of the fundamental subnetwork

must be put on the middle shelf of the fundamental class’s bookcase.

(vi) As for a terminal strong linkage class, since both case one and case two are possible,

we claim that all reactions whose reactant complex lies in terminal strong linkage class of

the fundamental subnetwork must be put on the same shelf of the fundamental class’s

bookcase.

(vii) We suppose that the fundamental class Ci (i ≥ 1) is nondegenerate and Ni forms
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a big (undirected) cycle (with at least three vertices). We will show that ˜Ni forms a direct

cycle for the orientation we chose (after successful realignment of the orientation).

Note that ˜Ni forms a big (undirected) cycle, then from Remark 2.5.3 and Proposition

2.5.4, the reaction vectors for ˜Ni are minimally dependent. In fact, the vector space formed

from the projection of Ker LO on Pi has dimension one, and the components of each

vector from this space on Pi all have the same absolute value. After successful realignment

of the orientation, we assumed that there exists αy→y′ > 0 for all y → y′ ∈ Pi such that

ωyi→y′i − αy→y′ωy→y′ ∈ Ker
⊥ LO . Let x ∈ Ker LO , then for all y → y′ ∈ Pi, we have

xyi→y′i = αy→y′xy→y′ . Therefore, for all y → y′ ∈ Pi, all xy→y′’s have the same sign and

same absolute value, i.e. all values of xy→y′’s are equal. We then conclude that given the

orientation, ˜Ni forms a directed cycle.

Therefore, we claim that if Ni (i ≥ 1) forms a big cycle, then under our assumptions

about the orientation, the subnetwork is a terminal strong linkage class.

Now we want to show that for such Ni, all reactions in the terminal strong linkage class

must be put on the same middle shelf of the fundamental class Ci. To see that, suppose that

reactions are put all on the lower shelf or all on the upper shelf.

Note that for every y → y′ ∈ ˜Ni, there is a cycle y → y′ → ... → y in ˜Ni. Recall

the conditions listed in Lemma 2.7.4. Suppose that gyi→y′i > 0 and all reactions are put

on the upper shelf, then we have for all y → y′ ∈ Pi, ρy→y′ < ey·µ < ey
′·µ, in particular

y · µ < y′ · µ. Therefore, working through all reactions in the reaction cycle y → y′ →

... → y, we will have y · µ < y′ · µ < ... < y · µ, which is a contradiction. In general,

we have two signs of gyi→y′i (gyi→y′i > 0 or gyi→y′i < 0), and two shelving assignments (the

lower or upper shelf). We can show that in either the lower or upper shelf case, we will get

y · µ < y′ · µ < ... < y · µ or y · µ > y′ · µ > ... > y · µ depending on the sign of gyi→y′i ,

which is a contradiction in either case. Therefore, all reactions in a terminal strong linkage

class are on the middle shelf of the nondegenerate fundamental class Ci.
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We can rewrite Lemmas 2.7.4 and 2.7.5 in terms of the shelving conditions for the

fundamental class Ci.

Lemma 2.8.2. Suppose that, for a reaction network {S ,C ,R} with the given orientation

O , κ ∈ RR
+ and µ ∈ RS are given. Let g, h be defined as in (2.3.2) and (2.3.3), let Pi

(0 ≤ i ≤ w) be the equivalence class defined earlier with the representative yi → y′i,

and let ρyi→y′i =
hyi→y′i
gyi→y′i

be defined for nondegenerate fundamental classes Ci. Then the

following conditions hold:

I) If y → y′ ∈ Pi (i ≥ 1) is irreversible, then gy→y′ > 0, hy→y′ > 0, and ρyi→y′i = ey·µ.

II) If y → y′ ∈ Pi (i ≥ 1) is reversible and Ci is nondegenerate, then

i) If gyi→y′i > 0, and y → y′ is on the upper shelf, then ρyi→y′i < ey·µ < ey
′·µ.

ii) If gyi→y′i > 0, and y → y′ is on the lower shelf, then ρyi→y′i > ey·µ > ey
′·µ.

iii) If gyi→y′i > 0, and y → y′ is on the middle shelf, then ρyi→y′i = ey·µ = ey
′·µ.

iv) If gyi→y′i < 0, and y → y′ is on the upper shelf, then ρyi→y′i < ey
′·µ < ey·µ.

v) If gyi→y′i > 0, and y → y′ is on the lower shelf, then ρyi→y′i > ey
′·µ > ey·µ.

vi) If gyi→y′i > 0, and y → y′ is on the middle shelf, then ρyi→y′i = ey·µ = ey
′·µ.

III) If y → y′ ∈ Pi (i ≥ 1) is reversible and Ci is degenerate, then

i) If hyi→y′i > 0, then ey·µ > ey
′·µ.

ii) If hyi→y′i < 0, then ey·µ < ey
′·µ.

iii) If hyi→y′i = 0, then ey·µ = ey
′·µ.

IV) If y → y′ ∈ P0 (is reversible), then ey·µ = ey
′·µ.

Lemma 2.8.3. For a reaction network {S ,C ,R} and a given orientation O , suppose that

(i) µ ∈ RS , (ii) a pair g, h ∈ Ker LO , (iii) Pi (0 ≤ i ≤ w) which is an equivalence class
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with representative yi → y′i, and (iv) a set {ρyi→y′i =
hyi→y′i
gyi→y′i

: gyi→y′i 6= 0, i = 1, ..., w}

defined for nondegenerate fundamental classes, together satisfy the conditions in Lemma

2.8.2. Then there exists κ ∈ RR
+ satisfying (2.3.2) and (2.3.3).

As a result, we will have the following lemma:

Lemma 2.8.4. Given a reaction network {S ,C ,R} with the orientation O and the Pi

(0 ≤ i ≤ w) representatives {yi → y′i : i = 0, ..., w} we have chosen, Question 5 can be

rewritten in terms of g, h, µ, and ρyi→y′i’s as follows:

Question 6. For the given reaction network {S ,C ,R} with the given orientation O , do

there exist

(i) a nonzero µ ∈ RS which is sign compatible with the stoichiometric subspace S,

(ii) a pair g, h ∈ Ker LO which are not both zero vectors,

(iii) a set {ρyi→y′i =
hyi→y′i
gyi→y′i

: gyi→y′i 6= 0}, and

(iv) a choice of shelving assignments for each nondegenerate fundamental class that

satisfies the conditions in Proposition 2.8.1,

which together satisfy the conditions in Lemma 2.8.2?

Remark 2.8.5. Note that from equations (2.2.2), (2.3.2) and (2.3.3), we have that

gy→y′ =


ky→y′(c∗∗)y − ky′→y(c∗∗)y

′
, if y → y′ ∈ O is reversible

ky→y′(c∗∗)y, if y → y′ ∈ O is irreversible.
(2.8.1)

and

hy→y′ =


ky→y′(c∗)y − ky′→y(c∗)y

′
, if y → y′ ∈ O is reversible

ky→y′(c∗)y, if y → y′ ∈ O is irreversible.
(2.8.2)

Note also that the definitions of g, h depend on c∗ and c∗∗. There is no specific order be-

tween c∗ and c∗∗, so if we switch these two concentrations, g and h switch. Therefore g and
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h are symmetric regarding the choice of orders of two multiple steady states. In particular,

if g, h leads us to the two distinct, positive, stoichiometrically compatible steady states c∗∗

and c∗, then h, g leads us to the two distinct, positive, stoichiometrically compatible steady

states c∗ and c∗∗, which are basically identical.

We consider that g, h ∈ Ker LO which are not both the zero vector. Without loss of

generality, we can assume that g 6= 0, as if g = 0 and h 6= 0, we can switch the g and h to

make g 6= 0.

Remark 2.8.6. We will find the inequality systems for Question 6 with g, h ∈ Ker LO for

the special case g 6= 0 and h = 0.

Suppose that g 6= 0 and h = 0. Therefore, as long as dim Ker LO ≥ 1, for any sign

pattern that is nonzero and sign compatible with Ker LO , we have a solution of nonzero

g ∈ Ker LO with such sign patterns. In this case, all fundamental classes are reversible,

as if Ci is nonreversible, then hyi→y′i > 0, which is a contradiction to our assumption that

h = 0. For each gyi→y′i 6= 0, ρyi→y′i = 0. Therefore only the upper shelf is possible for

reactions in the nondegenerate fundamental classes. Let y → y′ ∈ Pi. We have:

(i) If gyi→y′i > 0 and y → y′ is on the upper shelf, 0 < ey·µ < ey
′·µ.

(ii) If gyi→y′i < 0 and y → y′ is on the upper shelf, 0 < ey
′·µ < ey·µ.

(iii) If gyi→y′i = hyi→y′i = 0 , ey·µ = ey
′·µ.

In other words, if h = 0, then sgn gyi→y′i = sgn ey
′·µ − ey·µ.

Note that the conditions in Lemma 2.8.2 are linear in terms of ρyi→y′i , e
y·µ and ey

′·µ,

and are nonlinear in terms of µ. We will make a transformation for ρyi→y′i to make the

conditions linear in terms of µ.

Suppose that µ ∈ RS , g, h ∈ Ker LO , Pi (0 ≤ i ≤ w) which is an equivalence class

with representative yi → y′i, and {ρyi→y′i =
hyi→y′i
gyi→y′i

: gyi→y′i 6= 0, i = 1, ..., w} satisfy the

conditions in Lemma 2.8.2.
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If ρyi→y′i > 0, we define Myi→y′i = ln ρyi→y′i . In this case, we can rewrite the shelving

condition as follows: for every y → y′ in the nondegenerate fundamental class Ci, y → y′

is on the upper shelf if y · µ > Myi→y′i; y → y′ is on the lower shelf if y · µ < Myi→y′i;

y → y′ is on the middle shelf if y · µ = Myi→y′i .

If ρyi→y′i ≤ 0, we will take Myi→y′i to be an arbitrary large, negative number (to be

found later). Note that for any finite value of y · µ, there always exists Myi→y′i such that

y · µ > Myi→y′i . In this case, every y → y′ ∈ Ci must be on the upper shelf with y · µ >

Myi→y′i for some Myi→y′i to be found later (see Lemma 2.8.2).

We can rewrite Lemmas 2.8.2 and 2.8.3 with the shelving conditions (in terms of

Myi→y′i’s, not ρyi→y′i’s) for the nondegenerate fundamental class Ci.

Lemma 2.8.7. Suppose that, for a reaction network {S ,C ,R} with the given orientation

O , κ ∈ RR
+ and µ ∈ RS are given. Let g, h be defined as in (2.3.2) and (2.3.3), let Pi

(0 ≤ i ≤ w) be the equivalence class defined earlier with the representative yi → y′i,

and let Myi→y′i’s be defined as indicated for nondegenerate fundamental classes. Then the

following conditions hold:

I) If y → y′ ∈ Pi (i ≥ 1) is irreversible, then gy→y′ > 0, hy→y′ > 0, andMyi→y′i = y ·µ.

II) If y → y′ ∈ Pi (i ≥ 1) is reversible and Ci is nondegenerate, then

i) If gyi→y′i > 0, and y → y′ is on the upper shelf, then Myi→y′i < y · µ < y′ · µ.

ii) If gyi→y′i > 0, and y → y′ is on the lower shelf, then Myi→y′i > y · µ > y′ · µ.

iii) If gyi→y′i > 0, and y → y′ is on the middle shelf, then Myi→y′i = y · µ = y′ · µ.

iv) If gyi→y′i < 0, and y → y′ is on the upper shelf, then Myi→y′i < y′ · µ < y · µ.

v) If gyi→y′i > 0, and y → y′ is on the lower shelf, then Myi→y′i > y′ · µ > y · µ.

vi) If gyi→y′i > 0, and y → y′ is on the middle shelf, then Myi→y′i = y · µ = y′ · µ.

III) If y → y′ ∈ Pi (i ≥ 1) is reversible and Ci is degenerate, then
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i) If hyi→y′i > 0, then y · µ > y′ · µ.

ii) If hyi→y′i < 0, then y · µ < y′ · µ.

iii) If hyi→y′i = 0, then y · µ = y′ · µ.

IV) If y → y′ ∈ P0 (is reversible), then y · µ = y′ · µ.

Lemma 2.8.8. For a reaction network {S ,C ,R} and a given orientation O , suppose that

(i) µ ∈ RS , (ii) a pair g, h ∈ Ker LO , (iii) Pi (0 ≤ i ≤ w) which is an equivalence class

with representative yi → y′i, and (iv) {Myi→y′i : gyi→y′i 6= 0, i = 1, ..., w} as indicated for

nondegenerate fundamental classes, together satisfy the conditions in Lemma 2.8.7. Then

there exists κ ∈ RR
+ satisfying (2.3.2) and (2.3.3).

As a result, we will have the following lemma where the conditions in Lemma 2.8.7 are

linear in terms of µ and Myi→y′i’s:

Lemma 2.8.9. Given a reaction network {S ,C ,R} with the orientation O and the Pi

(0 ≤ i ≤ w) representatives {yi → y′i : i = 0, ..., w} we have chosen, Question 6 can be

rewritten in terms of g, h, µ, and Myi→y′i’s as follows:

Question 7. For the given reaction network {S ,C ,R} with the given orientation O , do

there exist

(i) a nonzero µ ∈ RS which is sign compatible with the stoichiometric subspace S,

(ii) a pair g, h ∈ Ker LO which are not both zero vectors,

(iii) a set {Myi→y′i : gyi→y′i 6= 0} as indicated for nondegenerate fundamental classes,

and

(iv) a choice of shelving assignments for each nondegenerate fundamental class that

satisfies the conditions in Proposition 2.8.1,

which together satisfy the conditions in Lemma 2.8.7?
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Remark 2.8.10. We introduced Myi→y′i’s (which we will later denote as Mi’s in the algo-

rithm) here to provide some sense about the linearity of the resulting inequality system. In

next section we will rephrase the requirement in Question 3-7 that g, h be members of Ker

LO into explicit conditions in terms of a system of equations. Note that ρyi→y′i is defined

as a ratio of hyi→y′i and gyi→y′i , for gyi→y′i 6= 0, 1 ≤ i ≤ w. It will be more convenient to

use ρyi→y′i’s instead of Myi→y′i’s. More importantly, in the case that ρyi→y′i ≤ 0, Myi→y′i is

taken as some large and negative number, which is not related to ρyi→y′i in a precise way,

therefore cannot relate to gyi→y′i and hyi→y′i in a precise way. Therefore, we will continue

using ρyi→y′i to explain our theory. We will develop arguments based on Question 6 instead

of Question 7.

2.9 More about Ker⊥ LO

In this section, we want to rephrase the requirement that g, h be members of Ker LO into

explicit conditions in terms of a system of equations.

Note that LO : RO → S and Im LO = S, so dim Ker LO = dim RO− dim S =

#(O)− dim S. Then d := dim Ker LO = #(O)− dim S. Therefore dim Ker⊥ LO =

dim RO− dim Ker LO = #(O)− d = dim S.

Note that for x ∈ RO , x ∈ Ker LO if and only if x satisfies the set of equations

zj ·x = 0, where {zj}dimS
j=1 is a basis for Ker⊥ LO . Thus g, h ∈ Ker LO is equivalent to the

fact that g and h satisfy the equations zj · g = 0 and zj · h = 0, j = 1, ..., dim S. However,

we need to find a basis for Ker⊥ LO first.

Recall that the following two statements are equivalent.

(i) y → y′ ∈ P0.

(ii) ωy→y′ ∈ Ker⊥ LO .

The following two statements are equivalent.

(i) y → y′ ∈ Pi\{yi → y′i} (1 ≤ i ≤ w1).
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(ii) There exists a unique αy→y′ > 0, such that ωyi→y′i − αy→y′ωy→y′ ∈ Ker
⊥ LO .

We denote

B0 := {ωy→y′ : y → y′ ∈ P0}, (2.9.1)

and

B1 := {ωyi→y′i − αy→y′ωy→y′ : y → y′ ∈ Pi\{yi → y′i}, i = 1, ..., w1}. (2.9.2)

It is quite obvious that the vectors in B0 ∪B1 are independent. Note that

#(B0) + #(B1) = #(P0) +
w1∑
i=1

(#(Pi)− 1) =
w1∑
i=0

#(Pi)− w1

= #(O)− w2 − w1 = #(O)− w.

So we have found #(O)−w independent vectors in Ker⊥ LO and our goal is to find dimS

(= #(O)− d) independent vectors. If it is true that w = d, then we have found a complete

set of basis vectors for Ker⊥ LO , each with support on one or two reactions from O . In

particular, it is not difficult to show that if d = 1, then w = 1. Otherwise, if we assume that

w > d, then we will continue to look for more vectors to complete a basis for Ker⊥ LO .

Recall that for a given reaction network {S ,C ,R} with the orientation O , W =

{yi → y′i : i = 1, ..., w} are the set of representatives for all nonzeroth equivalence classes.

Let us define ΓW = {x ∈ RO : x has support in W}. Then we have the following proposi-

tion.

Proposition 2.9.1. dim (Ker⊥ LO ∩ ΓW ) = w − d.
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PROOF: First note that

dim (Ker⊥ LO ∩ ΓW ) = dim (RO)− dim ((Ker⊥ LO ∩ ΓW )⊥)

= #(O)− dim (Ker LO + Γ⊥W )

= #(O)− (d+ dim Γ⊥W − dim (Ker LO ∩ Γ⊥W ))

= #(O)− d− dim Γ⊥W + dim (Ker LO ∩ Γ⊥W )

= #(O)− d− (#(O)− w) + dim (Ker LO ∩ Γ⊥W )

= w − d+ dim(Ker LO ∩ Γ⊥W )

To show that dim (Ker⊥ LO ∩ ΓW ) = w − d, we only need to show that dim (Ker

LO ∩ Γ⊥W ) = 0.

To see this, let W ′ = O\W , and W̃ = W ′\P0. So Γ⊥W = ΓW ′ and O = W ∪ P0 ∪ W̃ .

Notice that for any vector x ∈ Ker LO ∩ ΓW ′ , and any vector z ∈ B0 ∪ B1, z · x = 0.

Take x ∈ Ker LO ∩ ΓW ′ . For each z ∈ B0, z = ωy→y′ for some y → y′ ∈ P0. Since

ωy→y′ ∈ Ker⊥ LO , it implies that ωy→y′ · x = 0, i.e. xy→y′ = 0, for all y → y′ ∈ P0.

For each z ∈ B1, z = ωyi→y′i − αy→y′ωy→y′ , for some y → y′ ∈ Pi\{yi → y′i}, 1 ≤

i ≤ w1 and some αy→y′ > 0. Since ωyi→y′i − αy→y′ωy→y′ ∈ Ker⊥ LO , it implies that

(ωyi→y′i − αy→y′ωy→y′) · x = 0, or xyi→y′i = αy→y′xy→y′ . Since x ∈ Ker LO ∩ ΓW ′ ,

we know that xyi→y′i = 0 for i = 1, ..., w. As a result, xy→y′ = 0, for all y → y′ ∈ Pi

(1 ≤ i ≤ w). Now by the definition of W̃ , we have xy→y′ = 0, for all y → y′ ∈ W̃ .

So far we have shown that for all y → y′ ∈ O , xy→y′ = 0, i.e. x = 0. So dim (Ker⊥

LO ∩ ΓW ) = w − d.

We can define

q := dim (Ker⊥ LO ∩ ΓW ). (2.9.3)

Then we have

q = w − d, (2.9.4)
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where w is the number of nonzeroth equivalence classes and d = dim Ker LO .

Remark 2.9.2. We argue that any vector z ∈ Ker⊥ LO ∩ ΓW must have support on at

least three reactions from W = {yi → y′i}wi=1. If not, then we have two situations. (i) If

z has support on two reactions yi → y′i and yj → y′j , then these two reactions belong to

the same equivalence class, which contradicts with the fact that all reactions in W come

from different equivalence classes. (ii) If z has support on one reaction, say yi → y′i, it

implies that yi → y′i lies in P0, which contradicts the fact that all reactions in W come

from nonzeroth equivalence classes.

Proposition 2.9.3. For a reaction network {S ,C ,R} with the given orientation O , if

B2 = {bj}qj=1 is a basis for Ker⊥ LO ∩ ΓW , then B0 ∪B1 ∪B2 is a basis for Ker⊥ LO .

PROOF: Note that each of the basis vectors from B0 has support on some reaction in P0.

Each of the basis vectors from B1 has support on two reactions from the same equivalence

class Pi, for some 1 ≤ i ≤ w1, with one of them being the representative of Pi. From

Remark 2.9.2, each of the basis vectors from B2 has support on at least three reactions

from W . Therefore basis vectors in B2 for Ker⊥ LO ∩ ΓW are independent of those in B0

and B1.

Recall that #(B0)+#(B1) = #(O)−w. Note that dim Ker⊥ LO = #(O)−d as dim

Ker LO = d. Note that (#(O)−w) + (w − d) = #(O)− d. So the vectors in B2, which

is a basis of Ker⊥ LO ∩ ΓW , will be what are needed to complete the basis for Ker⊥ LO .

Therefore B0 ∪B1 ∪B2 is a basis for Ker⊥ LO .

Now we are ready to write down the explicit conditions necessary and sufficient to

ensure that g and h are members of Ker LO .

Suppose that a basis {bj}qj=1 of Ker⊥ LO ∩ ΓW is given. Recall that x ∈ Ker LO if

and only if x satisfies the following conditions:
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(i) For each y → y′ ∈ P0, ωy→y′ ∈ B0. Therefore, ωy→y′ · x = 0, or xy→y′ = 0.

(ii) For each y → y′ ∈ Pi\{yi → y′i} (1 ≤ i ≤ w1), there exists a unique αy→y′ > 0,

such that ωyi→y′i − αy→y′ωy→y′ ∈ B1. Therefore, (ωyi→y′i − αy→y′ωy→y′) · x = 0, or

xyi→y′i − αy→y′xy→y′ = 0.

(iii) bj · x = 0, j = 1, ..., q, where bj ∈ B2.

So g, h ∈ Ker LO if and only if g and h satisfy the following equations:

gy→y′ = 0,∀y → y′ ∈ P0 (2.9.5)

hy→y′ = 0,∀y → y′ ∈ P0 (2.9.6)

gyi→y′i − αy→y′gy→y′ = 0,∀y → y′ ∈ Pi\{yi → y′i}, 1 ≤ i ≤ w1 (2.9.7)

hyi→y′i − αy→y′hy→y′ = 0,∀y → y′ ∈ Pi\{yi → y′i}, 1 ≤ i ≤ w1 (2.9.8)

bj · g = 0, j = 1, ..., q (2.9.9)

bj · h = 0, j = 1, ..., q. (2.9.10)

Because {bj : j = 1, ..., q} is a basis for Ker⊥ LO ∩ΓW , equations (2.9.9) and (2.9.10)

in terms of g and h can be rewritten in terms of gyi→y′i’s and hyi→y′i’s as follows:

∑
yi→y′i∈W

gyi→y′ib
j
yi→y′i

= 0, j = 1, ..., q (2.9.11)

∑
yi→y′i∈W

hyi→y′ib
j
yi→y′i

= 0, j = 1, ..., q. (2.9.12)

It is obvious that if we have solved for g, h ∈ Ker LO , then gyi→y′i and hyi→y′i , for all

i ∈ {1, ..., w}, satisfy equations (2.9.11) and (2.9.12).

On the other hand, suppose that we have solved for gyi→y′i and hyi→y′i for all i ∈

{1, ..., w}, from equations (2.9.11) and (2.9.12). For 1 ≤ i ≤ w1, we can then solve

for gy→y′ and hy→y′ from equations (2.9.7) and (2.9.8), for all y → y′ ∈ Pi\{yi → y′i}. We

also have solved trivially for gy→y′ and hy→y′ for y → y′ ∈ P0. Therefore, we will have

solved for g, h ∈ Ker LO (but of course not uniquely).

99



Recall thatW = {yi → y′i : i = 1, ..., w} is the set of representatives from all nonzeroth

equivalence classes. For g, h ∈ Ker LO and X ⊆ O , we denote g|X and h|X as the

projections of g and h on ΓX , respectively, where ΓX = {z ∈ RO : supp z ⊆ X}. Note

that if g, h ∈ Ker LO , g|W = h|W = 0 if and only if g = h = 0.

Therefore, the following statements hold:

(i) If there exists a pair g, h ∈ Ker LO which are not both zero vectors, then the vectors

gW := g|W , hW := h|W which are not both zero, satisfy equations (2.9.11) and (2.9.12).

(ii) If there exist gW , hW ∈ RO ∩ ΓW which are not both zero vectors satisfying equa-

tions (2.9.11) and (2.9.12), then we can solve for g, h ∈ Ker LO which are not both zero

vectors from g|W = gW , h|W = hW , and equations (2.9.5)-(2.9.8).

For a given g ∈ Ker LO , we set D = {yi → y′i ∈ W : gyi→y′i = 0} and ND = W\D.

Then g|D, g|ND, h|D and h|ND are the projections of g on ΓD and ΓND, and h on ΓD and

ΓND, respectively. Note that g|D = 0.

Recall that in Question 6 (see Remark 2.8.10), we need to test against all choices of

g, h ∈ Ker LO that are not both zero vectors. Note that any choice of shelving for each

nondegenerate fundamental class needs to satisfy the conditions of Proposition 2.8.1, and

condition (ii) of the proposition is related to the sign of ρyi→y′i , i.e., the sign of the ratio of

hyi→y′i and gyi→y′i for gyi→y′i 6= 0. Therefore the choice of shelving for each nondegenerate

fundamental class depends on the sign pattern of g|ND and h|ND, where ND is defined

by the sign pattern of g|W . Another point to note in Question 6 is that the inequalities

and equalities from Lemma 2.8.2 are based on the choice of shelving assignments for each

nondegenerate fundamental class and sign patterns of g|ND and h|D, where D and ND are

defined by the sign pattern of g|W .Then given g, h ∈ Ker LO , we only use sign patterns

of g|W and h|W to set up each of the inequality systems that will lead us to the answer to

Question 6. In other words, we only need to find gW , hW ∈ RO ∩ ΓW satisfying equations
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(2.9.11) and (2.9.12) to set up the inequality systems that will lead us to the answer of

Question 6.

From now on then, we will focus on finding gW , hW ∈ RO ∩ ΓW satisfying equations

(2.9.11) and (2.9.12).

Recall that given the orientation O , Pi (0 ≤ i ≤ w) is an equivalence class with a

representative yi → y′i, and W = {yi → y′i : i = 1, ..., w}.

We have the following lemma:

Lemma 2.9.4. Given the reaction network {S ,C ,R} with the orientation O , Pi (0 ≤

i ≤ w) which is the equivalence class defined with the representative yi → y′i, and W =

{yi → y′i : i = 1, ..., w} ⊆ O , Question 6 can be rewritten in terms of gW , hW , µ, and

ρW (yi → y′i)’s as follows:

Question 8. For the reaction network {S ,C ,R} and the given orientation O , do there

exist

(i) a nonzero µ ∈ RS which is sign compatible with the stoichiometric subspace S,

(ii) a pair gW , hW ∈ RO ∩ ΓW which are not both zero vectors satisfying equations

(2.9.11) and (2.9.12),

(iii) a set {ρW (yi → y′i) = hW (yi → y′i)
gW (yi → y′i)

: gW (yi → y′i) 6= 0, 1 ≤ i ≤ w}, and

(iv) a choice of shelving assignments for each nondegenerate fundamental class that

satisfies the conditions in Proposition 2.8.1 (in terms of ρW (yi → y′i) for condition (ii)

in the proposition),

which together satisfy the conditions in Lemma 2.8.2 (in terms of gW (y → y′i), hW (yi →

y′i) and ρW (yi → y′i))?

Next we will try to answer Question 8.
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The first attempt may be that we make assumptions about the sign patterns of gW , hW ∈

RO ∩ΓW , where the pair of sign patterns has to follow some rules. We will state those rules

shortly. For now, we will say that if the pair of sign patterns satisfies the rules, we recognize

them as a "valid" pair of sign patterns for gW and hW .

We then try to solve for all solutions of gW and hW with such a pair of sign patterns from

equations (2.9.11) and (2.9.12). Suppose that we find gW and hW with the pre-selected pair

of sign patterns, and we then calculate to find {ρW (yi → y′i) : gW (yi → y′i) 6= 0}. Then,

for the gW , hW and the set {ρW (yi → y′i) : gW (yi → y′i) 6= 0} we find, we will check if

the answer to the following Question (a) is "Yes":

Question (a): Do there exist a nonzero µ ∈ RS that is sign-compatible with S and a

choice of shelving for each nondegenerate fundamental class satisfying the conditions in

Proposition 2.8.1 (in terms of ρW (yi → y′i) for condition (ii) in the proposition), such that

the conditions in Lemma 2.8.2 are satisfied?

We will repeat the process for all "valid" pairs of sign patterns for gW and hW , if

necessary. (For reasons to be stated, we may finish before trying all such pairs.)

If for some "valid" pair of sign patterns for gW and hW , there exists a solution of gW

and hW satisfying equations (2.9.11) and (2.9.12), such that the answer to Question (a)

is "Yes", then we can claim that the reaction network has the capacity to admit multiple

positive steady states and we are done. If there is no "Yes" answer to Question (a) for any

"valid" pair of sign patterns for gW and hW , then we claim that the reaction network does

not have the capacity to admit multiple steady states, no matter what (positive) values the

rate constants take.

This procedure would work in general if, given any "valid" pair of sign patterns for

gW and hW , we can find ALL solutions of gW and hW with such sign patterns satisfying

equations (2.9.11) and (2.9.12). However, this is impractical. Therefore, we must look for

an alternative approach. After assigning sign patterns to gW and hW , we will not try to
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first solve for gW , hW with such sign patterns from equations (2.9.11) and (2.9.12), and

then find ρW (yi → y′i) for gW (yi → y′i) 6= 0. Instead, we wish to find the necessary

conditions (and in some cases it will also be sufficient) for equations (2.9.11) and (2.9.12)

to have a solution of gW and hW with such sign patterns. As we will see later, these

conditions (let us refer them as conditions (∗) for now) will be inequalities and/or equalities

in terms of ρW (yi → y′i)’s. For the pre-selected "valid" pair of sign patterns of gW and hW ,

we determine the sign of ρW (yi → y′i) (yi → y′i ∈ ND) by the ratio of the signs of

hW (yi → y′i) and gW (yi → y′i); we say the set {ρW (yi → y′i) : yi → y′i ∈ ND} with

such a sign pattern, is consistent in sign with the pre-selected sign patterns of gW and hW .

Then for the chosen sign patterns for gW , hW ∈ RO ∩ ΓW , we check if the answer to the

following Question (b) is "Yes":

Question (b): Given the reaction network {S ,C ,R} and the orientation O , do there

exist

(i) a nonzero µ ∈ RS that is sign compatible with S,

(ii) a set {ρW (yi → y′i) : yi → y′i ∈ ND} which is consistent in sign with the

pre-selected sign patterns of gW and hW and satisfies these new conditions (∗), and

(iii) a choice of shelving assignments for each nondegenerate fundamental class

satisfying the conditions in Proposition 2.8.1 (in terms of ρW (yi → y′i) for condition

(ii)),

which together satisfy the conditions in Lemma 2.8.2?

We will repeat the process for all "valid" pairs of sign patterns for gW , hW ∈ RO ∩ΓW ,

if necessary. (For reasons to be stated, we may finish before trying all such pairs.)

We have two situations, depending on whether the necessary conditions (*) are suffi-

cient or not to find from equations (2.9.11) and (2.9.12) a solution of gW and hW with the

preselected sign patterns.
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Suppose the conditions (∗) we find are both necessary and sufficient for equations

(2.9.11) and (2.9.12) to have a solution of gW and hW with the preselected sign patterns. If

for a "valid" pair of sign patterns for gW and hW , the answer to Question (b) is "Yes", then

we can claim that the reaction network has the capacity to admit multiple positive steady

states and we are done. If there is no "Yes" answer to Question (b) for any "valid" pair of

sign patterns for gW and hW , then we claim that the reaction network does not have the

capacity to admit multiple steady states, no matter what (positive) values the rate constants

take.

If the conditions (∗) we find are necessary but not sufficient, then we can only conclude,

in the case that there is no "Yes" answer to Question (b) for any "valid" pair of sign patterns

for gW and hW , the reaction network does not have the capacity to admit multiple steady

states. However, if there exists a "valid" pair of sign patterns for gW and hW such that the

answer to Question (b) is "Yes", and in addition, the solution of µ ∈ RS from the answer

will lead to a solution of κ ∈ RR
+ from solving equations (2.2.7) and (2.2.8), then we can

still conclude the reaction network has the capacity to admit multiple positive steady states

and we are done.

We will proceed following this alternative approach.

First of all, let us describe the conditions of being a "valid" pair of sign patterns for gW ,

hW ∈ RO ∩ ΓW .

Consider the equivalence of solving g, h ∈ Ker LO and solving gW , hW ∈ RO ∩ ΓW

from equations (2.9.11) and (2.9.12). We know that the "valid" pair of sign patterns of gW

and hW should include all possible sign patterns for g|W and h|W , given g, h ∈ Ker LO .

We will add two additional constraints that gW and hW are not both zero vectors and that

for a nonreversible fundamental class Ci, the signs of gW (yi → y′i) and hW (yi → y′i) are

both positive.
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A pair of sign patterns for gW , hW ∈ RO ∩ ΓW is said to be sign-compatible with Ker

LO |W if the following two statements hold:

(i) If the fundamental class Ci (1 ≤ i ≤ w) is nonreversible, then the signs of gW (yi →

y′i) and hW (yi → y′i) are both positive.

(ii) There exists x1, x2 ∈ Ker LO , such that for every yi → y′i ∈ W , x1
yi→y′i

has the

same sign as gW (yi → y′i) and x2
yi→y′i

has the same sign as hW (yi → y′i).

We say a pair of sign patterns for gW , hW ∈ RO is zero if we assign that gW = hW = 0.

Note that for g, h ∈ Ker LO , g|W = h|W = 0 if and only if g = h = 0. Note that we

want to find g, h ∈ Ker LO which are not both zero vectors. Therefore, we want to find

solutions gW , hW ∈ RO ∩ΓW which are not both zero vectors satisfying equations (2.9.11)

and (2.9.12).

With this as background, we say a pair of sign patterns for gW and hW is "valid" if it is

nonzero and sign-compatible with Ker LO |W .

Now suppose we pick a "valid" pair of sign patterns for gW and hW . Then D = {yi →

y′i ∈ W : gW (yi → y′i) = 0} and ND = W\D are defined. Note that for yi → y′i ∈

ND, ρW (yi → y′i) = hW (yi → y′i)
gW (yi → y′i)

. Therefore, for each yi → y′i ∈ ND, the sign of

ρW (yi → y′i) is also determined by the ratio of the signs of hW (yi → y′i) and gW (yi → y′i).

Suppose we have a set of parameters {ρW (yi → y′i) : yi → y′i ∈ ND} with such a sign

pattern. Then equations (2.9.11) and (2.9.12) in terms of gyi→y′i and hyi→y′i (1 ≤ i ≤ w),

can be rewritten in terms of gW (yi → y′i), hW (yi → y′i) (1 ≤ i ≤ w) and ρW (yi → y′i)

(yi → y′i ∈ ND) as follows:

∑
yi→y′i∈ND

bjyi→y′i
gW (yi → y′i) = 0, j = 1, ..., q (2.9.13)

∑
yi→y′i∈D

bjyi→y′i
hW (yi → y′i) +

∑
yi→y′i∈ND

ρW (yi → y′i)b
j
yi→y′i

gW (yi → y′i) = 0,

j = 1, ..., q (2.9.14)

hW (yi → y′i) = ρW (yi → y′i)gW (yi → y′i), yi → y′i ∈ ND. (2.9.15)
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To guarantee the existence of a pair of solutions gW , hW ∈ RO ∩ ΓW with the pre-

selected sign patterns satisfying equations (2.9.13), (2.9.14) and (2.9.15), it is necessary

that the set of equations (2.9.13) and (2.9.14) can have nonzero solutions. To find the

necessary condition, we will rewrite the set of equations (2.9.13) and (2.9.14) in terms of

the format ADz = 0 where AD and z are defined as follows.

Recall that once a pair of sign patterns of gW and hW is chosen, D = {yi → y′i ∈

W : gW (yi → y′i) = 0} and ND = W\D are defined. Let us define a vector z ∈ RW as

follows:

zyi→y′i =


gW (yi → y′i), if yi → y′i ∈ ND

hW (yi → y′i), if yi → y′i ∈ D.
(2.9.16)

Note that equations (2.9.13) and (2.9.14) can be rewritten in terms of z ∈ RW as

follows:

∑
yi→y′i∈ND

bjyi→y′i
zyi→y′i = 0, j = 1, ..., q (2.9.17)

∑
yi→y′i∈D

bjyi→y′i
zyi→y′i +

∑
yi→y′i∈ND

ρW (yi → y′i)b
j
yi→y′i

zyi→y′i = 0, j = 1, ..., q. (2.9.18)

Recall that |W | = w. We define a (2q × w) matrix AD = (aki) as follows:

aki =



bkyi→y′i , if 1 ≤ k ≤ q and yi → y′i ∈ ND

0, if 1 ≤ k ≤ q and yi → y′i ∈ D

ρW (yi → y′i)b
k−q
yi→y′i

, if q + 1 ≤ k ≤ 2q and yi → y′i ∈ ND

bk−qyi→y′i
, if q + 1 ≤ k ≤ 2q and yi → y′i ∈ D.

(2.9.19)

Remark 2.9.5. Note that with the basis {bj}qj=1 of Ker⊥ LO ∩ ΓW given, the definition of

AD is based on the set D, which is decided by the given sign patterns of gW and hW and

the given parameter set {ρW (yi → y′i) : yi → y′i ∈ ND = W\D}.

From Remark 2.8.6 we can see that the cases of assuming gW = 0 and hW 6= 0 or

gW 6= 0 and hW = 0 satisfying equations (2.9.13), (2.9.14) and (2.9.15) (corresponding
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to g = 0 and h 6= 0 or g 6= 0 and h = 0, where g, h ∈ Ker LO) are special but simple

cases, compared to cases where gW 6= 0 and hW 6= 0 satisfying equations (2.9.13), (2.9.14)

and (2.9.15) (corresponding to g 6= 0 and h 6= 0 where g, h ∈ Ker LO). Here we assume

that neither gW nor hW is assigned to equal zero. Therefore we are looking for a nonzero

solution z with a sign pattern determined by pre-selected sign patterns of gW and hW ,

satisfying ADz = 0. Recall that AD is a 2q × w matrix. We know there exists a nonzero

solution z of ADz = 0 if and only if rank (AD) < w. In fact, if rank (AD) < w then there

exists an infinite number of nonzero solutions of ADz = 0.

Therefore, to guarantee the existence of a pair of solutions gW , hW ∈ (RO ∩ ΓW )\{0}

with the pre-selected sign patterns satisfying equations (2.9.13), (2.9.14) and (2.9.15), it is

necessary that rank (AD) < w where AD is defined as in (2.9.19). Note that if 2q < w,

then rank (AD) < w holds trivially.

Remark 2.9.6. Note that if 2q < w, then it is guaranteed there will be a nonzero solution

for z of ADz = 0. This is independent of the values that the ρW (yi → y′i)’s take.

If 2q ≥ w, then d ≤ w. To have rank (AD) < w, we need to require that any w × w

submatrix of AD has a determinant of 0. There are Cw
2q (the number of w-combinations

from a given set of 2q elements) such submatrices. Note that q < w holds as we have

assumed that d = Ker LO = w − q ≥ 1. In fact, we may assume that d ≥ 2 as if d = 1

then w = 1 and q = 0. Then any w×w submatrix ofAD will include at least two rows from

rows q+1 to 2q inAD. LetK = #(ND), thenK is the number of ρW (yi → y′i)’s shown in

AD. We have assumed that gW 6= 0, therefore K ≥ 1. Note that K = #(ND) ≥ 1, since

the sign patterns of gW , hW ∈ RO ∩ ΓW are "valid", the rank of the submatrix formed by

the first q rows is less than K, therefore the rank of AD is less than K + q. If K + q ≤ w,

then rank AD < w holds.

Note that we assume that q+ 2 ≤ w ≤ 2q, so q ≥ 2. In general, each w×w submatrix

of AD is formed by choosing k rows from rows 1 to q and w − k rows from rows q + 1 to
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2q. Note that k ≤ q and w − k ≤ q, thus d = w − q ≤ k ≤ q < w. If k ≥ K, then the

submatrix has a rank less than K + (w − k) ≤ K + (w − K) = w. If k < K, then the

determinant of such submatrix is a multivariate polynomial in terms of ρW (yi → y′i)’s of

degree max {K − k, 0}.

Note that there exists a "valid" sign pattern such that K = w. Then for any submatrix

formed with K = #(ND) = w and some k such that d = w − q ≤ k ≤ q < w, its

determinant is a multivariate polynomial in terms of ρW (yi → y′i)’s of degree w − k. In

particular, if w− k = q or k = w− q, we will have that in this case the determinant of the

corresponding submatrix is a multivariate polynomial in terms of ρW (yi → y′i)’s of degree

q ≥ 2. By requiring the determinants equal to zero, we will have nonlinear equalities in

terms of ρW (yi → y′i)’s (or Myi→y′i’s) adding to the necessary conditions for the existence

of a pair of solutions gW , hW ∈ RO ∩ ΓW with the pre-selected sign patterns satisfying

equations (2.9.13), (2.9.14) and (2.9.15). We will not consider these nonlinear equalities

here.

In the next section, we will look at other necessary conditions on the existence of a pair

of solutions gW , hW ∈ RO ∩ ΓW with the pre-selected sign patterns satisfying equations

(2.9.13), (2.9.14) and (2.9.15).

Remark 2.9.7. We will assume the following on the reaction network {S ,C ,R} for the

following sessions.

For a reaction network {S ,C ,R} and the given orientation O , suppose that (i) Pi

(0 ≤ i ≤ w) which is the equivalence class defined with the representative yi → y′i, (ii)

W = {yi → y′i : i = 1, ..., w} ⊆ O , (iii) a basis {bj}qj=1 of Ker⊥ LO ∩ ΓW , and (iv) a

"valid" pair of sign patterns for gW , hW , and a set of parameters {ρW (yi → y′i) : gW (yi →

y′i) 6= 0, 1 ≤ i ≤ w} whose sign pattern is such that the sign of ρW (yi → y′i) is the same

as the ratio of the signs of hW (yi → y′i) and gW (yi → y′i), are given.
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2.10 Conditions on ρ’s

In this section, we will continue looking for necessary conditions on the existence of a pair

of solutions gW , hW ∈ RO ∩ ΓW with the pre-selected sign patterns satisfying equations

(2.9.13), (2.9.14) and (2.9.15).

Recall that a basis {bj}qj=1 of Ker⊥ LO ∩ ΓW is given. Note that after the pair of sign

patterns for gW and hW are chosen, D and ND are also given. We will define a few sets

upon this.

For 1 ≤ j ≤ q, let Rj
+ = {yi → y′i ∈ ND : bjyi→y′igW (yi → y′i) > 0}, and Rj

− = {yi →

y′i ∈ ND : bjyi→y′igW (yi → y′i) < 0}.

For 1 ≤ j ≤ q, let Qj
+ = {yi → y′i ∈ D : bjyi→y′ihW (yi → y′i) > 0}, and Qj

− = {yi →

y′i ∈ D : bjyi→y′ihW (yi → y′i) < 0}.

Let I1 = {yi → y′i ∈ W : bjyi→y′i = 0,∀1 ≤ j ≤ q}, I2 = {yi → y′i ∈ W\I1 : gW (yi →

y′i) = hW (yi → y′i) = 0}. Then we can see thatW = I1∪I2∪(∪qj=1(Rj
+∪Rj

−∪Qj
+∪Qj

−)).

Note that for any 1 ≤ j ≤ q, Rj
+, Rj

−, Qj
+, Qj

−, I1 and I2 are disjointed.

Suppose that yi → y′i ∈ I1. Note that bjyi→y′ = 0, for all j = 1, ..., q. We have two

situations. Suppose yi → y′i ∈ I1 ∩ ND. gW (yi → y′i) and ρW (yi → y′i) do not really

appear in equations (2.9.13) and (2.9.14). Then gW (yi → y′i) can be any number that

is sign-compatible with the pre-selected sign of gW (yi → y′i), and hW (yi → y′i) can be

any number that is sign-compatible with the pre-selected sign of hW (yi → y′i). Suppose

yi → y′i ∈ I1 ∩ D. Then gW (yi → y′i) = 0. Note that hW (yi → y′i) does not really

appear in equations (2.9.14) and (2.9.15). Then hW (yi → y′i) can be any number that is

sign-compatible with the pre-selected sign of hW (yi → y′i).

Suppose yi → y′i ∈ I2. Then gW (yi → y′i) = hW (yi → y′i) = 0.

Remark 2.10.1. Consider Ij1 = {yi → y′i ∈ W : bjyi→y′i = 0} and Ij2 = {yi → y′i ∈

W\I1 : gW (yi → y′i) = hW (yi → y′i) = 0}. Then W = Ij1 ∪ I
j
2 ∪ R

j
+ ∪ Rj

− ∪ Qj
+ ∪ Qj

−,
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for 1 ≤ j ≤ q. Suppose we want to solve for gjW and hjW sign compatible with the pre-

selected sign patterns of gW and hW , satisfying the jth case of equations (2.9.13) and

(2.9.14), and equations (2.9.15). Then for yi → y′i ∈ Ij1 ∪ I
j
2 , we can let gjW (yi → y′i)

and hjW (yi → y′i) be any numbers that are sign compatible with their pre-selected sign

patterns, respectively. We then only focus on solving for gjW (yi → y′i) and hjW (yi → y′i) for

yi → y′i ∈ R
j
+ ∪Rj

− ∪Qj
+ ∪Qj

− satisfying jth case of equations (2.9.13) and (2.9.14), and

equations (2.9.15).

Therefore, we need to solve for gW (yi → y′i) and hW (yi → y′i) for yi → y′i ∈

∪qj=1(Rj
+ ∪Rj

− ∪Qj
+ ∪Qj

−) satisfying equations (2.9.13), (2.9.14) and (2.9.15).

Recall that we are given {ρW (yi → y′i) : yi → y′i ∈ ND}, a set of parameters in which

the sign of ρW (yi → y′i) is the same as the ratio of the pre-selected signs of hW (yi → y′i)

and gW (yi → y′i). Let ρu
j

min = min {ρW (yi → y′i) : yi → y′i ∈ Rj
+}, ρu

j

max = max

{ρW (yi → y′i) : yi → y′i ∈ R
j
+}, ρv

j

min = min {ρW (yi → y′i) : yi → y′i ∈ Q
j
−}, and ρv

j

max =

max {ρW (yi → y′i) : yi → y′i ∈ Q
j
−}.

For yi → y′i ∈ R
j
+ ∪Rj

−, define

ujyi→y′i
= bjyi→y′i

gW (yi → y′i) > 0, for yi → y′i ∈ R
j
+ (2.10.1)

vjyi→y′i
= −bjyi→y′igW (yi → y′i) > 0, for yi → y′i ∈ R

j
−. (2.10.2)

For yi → y′i ∈ Q
j
+ ∪Qj

−, define

sjyi→y′i
= bjyi→y′i

hW (yi → y′i) > 0, for yi → y′i ∈ Q
j
+ (2.10.3)

tjyi→y′i
= −bjyi→y′ihW (yi → y′i) > 0, for yi → y′i ∈ Q

j
−. (2.10.4)

110



From equation (2.9.13), we have

∑
yi→y′i∈ND

bjyi→y′i
gW (yi → y′i) = 0

iff
∑

yi→y′i∈R
j
+

bjyi→y′i
gW (yi → y′i) +

∑
yi→y′i∈R

j
−

bjyi→y′i
gW (yi → y′i) = 0

iff
∑

yi→y′i∈R
j
+

bjyi→y′i
gW (yi → y′i) =

∑
yi→y′i∈R

j
−

−bjyi→y′igW (yi → y′i) (2.10.5)

iff
∑

yi→y′i∈R
j
+

ujyi→y′i
=

∑
yi→y′i∈R

j
−

vjyi→y′i
. (2.10.6)

From equation (2.9.14), we have

∑
yi→y′i∈D

bjyi→y′i
hW (yi → y′i) +

∑
yi→y′i∈ND

ρW (yi → y′i)b
j
yi→y′i

gW (yi → y′i) = 0

iff
∑

yi→y′i∈Q
j
+

bjyi→y′i
hW (yi → y′i) +

∑
yi→y′i∈Q

j
−

bjyi→y′i
hW (yi → y′i) +

∑
yi→y′i∈R

j
+

ρW (yi → y′i)b
j
yi→y′i

gW (yi → y′i) +
∑

yi→y′i∈R
j
−

ρW (yi → y′i)b
j
yi→y′i

gW (yi → y′i) = 0

iff
∑

yi→y′i∈Q
j
+

bjyi→y′i
hW (yi → y′i) +

∑
yi→y′i∈R

j
+

ρW (yi → y′i)b
j
yi→y′i

gW (yi → y′i)

=
∑

yi→y′i∈Q
j
−

−bjyi→y′ig
new
yi→y′i

+
∑

yi→y′i∈R
j
−

−ρW (yi → y′i)b
j
yi→y′i

gW (yi → y′i) (2.10.7)

iff
∑

yi→y′i∈Q
j
+

sjyi→y′i
+

∑
yi→y′i∈R

j
+

ρyi→y′iu
j
yi→y′i

=
∑

yi→y′i∈Q
j
−

tjyi→y′i
+

∑
yi→y′i∈R

j
−

ρyi→y′iv
j
yi→y′i

. (2.10.8)

Note that here we are following the convention that if a set A = ∅, then the sum based

on the set A is always 0.

Therefore, we can claim the following lemma.

Lemma 2.10.2. Suppose the reaction network {S ,C ,R} satisfies the conditions in Re-

mark 2.9.7. Suppose there exists gW , hW ∈ RO ∩ΓW with the given sign pattern satisfying

equations (2.9.13), (2.9.14) and (2.9.15). Then for each 1 ≤ j ≤ q, there exist positive

ujyi→y′i
, vjyi→y′i , s

j
yi→y′i

and tjyi→y′i defined onRj
+,Rj

−,Qj
+ andQj

− respectively from (2.10.1),

(2.10.2), (2.10.3) and (2.10.4), satisfying (2.10.6) and (2.10.8).
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We will now introduce a few terms. They will help us find the necessary conditions on

ρW (yi → y′i), for the existence of gW and hW with pre-selected sign patterns that satisfy

the equations (2.9.13), (2.9.14) and (2.9.15).

Let Q1 and Q2 be two finite multisets of real numbers. For i = 1, 2, let min Qi be the

minimum of elements in Qi, and max Qi be the maximum of elements in Qi.

Let us consider the following conditions:

(a) min Q1 ≤ max Q2, min Q2 ≤ max Q1, and min Q1 = max Q2 if and only if min Q2

= max Q1.

(b) min Q1 < max Q2 and min Q2 < max Q1, or min Q1 = max Q2 = min Q2 = max

Q2.

(c) max Q1 ≤ min Q2 and min Q1 < max Q2, or max Q2 ≤ min Q1 and min Q2 < max

Q1.

(d) min Q1 ≤ max Q1 ≤ min Q2 ≤ max Q2 and the three equalities do not hold simul-

taneously, or min Q2 ≤ max Q2 ≤ min Q1 ≤ max Q1 and the three equalities do not hold

simultaneously.

We can easily verify that, (a) and (b) are equivalent, (c) and (d) are equivalent, and, (a)

(or (b)) and (c) (or (d)) are complementary of each other.

We define Q1 and Q2 as nonsegregated if (a) (or (b)) holds. We define Q1 and Q2 as

segregated if (c) (or (d)) holds.

Remark 2.10.3. Note there is another equivalent way to define nonsegregated multisets.

As an alternative definition, we define Q1 and Q2 as nonsegregated if one of the following

holds:

(i) One of the elements in one multiset lies between two non-identical elements of the

other multiset, i.e. there exists a from one multiset and b < c from the other multiset such

that b < a < c.
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(ii) The underlying sets of elements of the two multisets sets are identical with set car-

dinality both equal to one or two.

We will show next how these two definitions are equivalent.

On one hand, note that (a) min Q1 ≤ max Q2, min Q2 ≤ max Q1, and min Q1 = max

Q2 iff min Q2= max Q1, is equivalent to one of the following holds:

(I) min Q1 < max Q2, and min Q2 < max Q1.

(II) min Q1 = max Q2, and min Q2 = max Q1.

(I) implies that min Q1< min Q2< max Q1, min Q2 < min Q1< max Q2, min Q2 < max

Q1 < max Q2, min Q1 < max Q2 < max Q1, or min Q1 = min Q2 < max Q1 = max Q2.

Note that the first four inequalities imply that one element in one multiset lies between

two distinct elements in the other multiset. As for the last inequality, for it to hold, both

Q1 and Q2 must have at least two distinct elements. Therefore, if both Q1 and Q2 have

exactly two distinct elements, then min Q1 = min Q2 < max Q1 = max Q2 implies that

the underlying sets of elements of the two multisets are identical with set cardinality equal

to two. Otherwise, if one of the multisets has at least 3 distinct elements, then the one

which is neither minimum nor maximum of this multiset must lie between the minimum and

maximum of the other multiset.

(II) implies that all the elements in Q1 and Q2 are equal, so the underlying sets of

elements of the two multisets are identical with set cardinality equal to one.

On the other hand, note that in (i), without loss of generality, let us assume there exist

a ∈ Q1 and b < c ∈ Q2 such that b < a < c. Then (i) implies that min Q1 ≤ a < c ≤ max

Q2 and min Q2 ≤ b < a ≤ max Q1. Thus min Q1 < max Q2 and min Q2 < max Q1.

In (ii), if the underlying sets of elements of the two multisets sets are identical with set

cardinality both equal to one, then all the elements in both multisets are equal. Otherwise,

if the underlying sets of elements of the two multisets sets are identical with set cardinality

both equal to two, then we have min Q1 = min Q2 < max Q1 = max Q2.
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Remark 2.10.4. The reason why we introduced the alternative definition of nonsegregated

multisets is because it is utilized in the program [16]. In addition, in the algorithm, instead

of checking condition (ii) in Remark 2.10.3 for the case of cardinality equal to two, we

check instead "if there exists a < b ∈ Q1 and c < d ∈ Q2 with a = c and b = d". In

other words, for the alternative definition of nonsegregated multisets introduced in Remark

2.10.3, we check instead of (ii) that:

(ii’) If all elements in Q1 and Q2 are equal or if there exist a, b ∈ Q1, c, d ∈ Q2 such

that a < b, a = c and b = d.

To see why replacement of (ii) with (ii’) in conditions (i) and (ii) of Remark 2.10.3 is

valid, first suppose (ii) is true. Then it is easy to see that (ii’) is also true. Next suppose

(ii’) is true. Note that if (ii) is true, then we are done. Otherwise, suppose (ii) is not true,

i.e., not all others are either equal to one or the other. Then, without loss of generality, we

assume in Q1 (Q2 is just similar) there exists x such that either x < a < b or a < x < b

or a < b < x. Then in each case we can see that either x < c < b, or c < x < d, or

a < d < x, respectively. All of these cases imply that (i) is true. So (i) + (ii) is equivalent

to (i) + (ii’).

Remark 2.10.5. We claim that if Q1 and Q2 are segregated, then one element from one

multiset is strictly greater than one element from the other multiset.

To see this, note that from previous definition, Q1 and Q2 are segregated if

(a) max Q1 ≤ min Q2 and min Q1< max Q2, or max Q2 ≤ min Q1 and min Q2< max

Q1, or equivalently,

(b) min Q1 ≤ max Q1 ≤ min Q2 ≤ max Q2 and the three equalities do not hold simul-

taneously, or min Q2 ≤ max Q2 ≤ min Q1 ≤ max Q1 and the three equalities do not hold

simultaneously.

Therefore, in any case, one element from one multiset is strictly greater than one ele-

ment from the other multiset.
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Note that the reverse of the claim is not true. In a nonsegregated set, we can easily

have a case that one element from one multiset is strictly greater than one element from the

other multiset.

We mentioned this since we are going to use this property of segregation later in this

section and in the algorithm.

Now we will try to find necessary conditions on ρW (yi → y′i)’s for the existence of

positive ujyi→y′i , v
j
yi→y′i

, sjyi→y′i and tjyi→y′i defined on Rj
+, Rj

−, Qj
+ and Qj

−, respectively,

satisfying (2.10.6) and (2.10.8), for a given 1 ≤ j ≤ q. We have the following cases

depending on the sign of
∑

yi→y′i∈Q
j
+

sjyi→y′i
−

∑
yi→y′i∈Q

j
−

tjyi→y′i
:

Case (I): Let us assume that

∑
yi→y′i∈Q

j
+

sjyi→y′i
=

∑
yi→y′i∈Q

j
−

tjyi→y′i
. (2.10.9)

Then equation (2.10.6) and (2.10.8) become

∑
yi→y′i∈R

j
+

ujyi→y′i
=

∑
yi→y′i∈R

j
−

vjyi→y′i∑
yi→y′i∈R

j
+

ρW (yi → y′i)u
j
yi→y′i

=
∑

yi→y′i∈R
j
−

ρW (yi → y′i)v
j
yi→y′i

. (2.10.10)

Lemma 2.10.6. Suppose the reaction network {S ,C ,R} satisfies the conditions in Re-

mark 2.9.7. Then the following statements are equivalent:

(i) There exist positive ujyi→y′i and vjyi→y′i , defined onRj
+ andRj

− respectively, satisfying

(2.10.6) and (2.10.10).

(ii) The multisets Qj
1={ρW (yi → y′i) : yi → y′i ∈ R

j
+} and Qj

2= {ρW (yi → y′i) : yi →

y′i ∈ R
j
−} are nonsegregated.

PROOF: (i)⇒ (ii): Suppose not, then we have two situations: either ρu
j

min ≤ ρu
j

max ≤ ρv
j

min

≤ ρvjmax in which the three equalities do not hold simultaneously, or ρv
j

min ≤ ρv
j

max ≤ ρu
j

min ≤

ρu
j

max in which the three equalities do not hold simultaneously.
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Without loss of generality, we may assume ρu
j

min ≤ ρu
j

max ≤ ρv
j

min ≤ ρv
j

max, and these

three equalities do not hold simultaneously.

Note that for any positive ujyi→y′i and vjyi→y′i defined on Rj
+ and Rj

− respectively, satis-

fying (2.10.6), we have

∑
yi→y′i∈R

j
+

ρW (yi → y′i)u
j
yi→y′i

≤
∑

yi→y′i∈R
j
+

ρu
j

maxu
j
yi→y′i

≤
∑

yi→y′i∈R
j
−

ρv
j

minv
j
yi→y′i

≤
∑

yi→y′i∈R
j
−

ρW (yi → y′i)v
j
yi→y′i

. (2.10.11)

Note that in (2.10.11) from left to right, the first equality holds iff ρu
j

min = ρu
j

max, the

second equality holds iff ρu
j

max = ρv
j

min, and the third equality holds iff ρv
j

min = ρv
j

max. Since

these three equalities do not hold simultaneously, so do the three equalities in (2.10.11).

Therefore, we will have

∑
yi→y′i∈R

j
+

ρW (yi → y′i)u
j
yi→y′i

<
∑

yi→y′i∈R
j
−

ρW (yi → y′i)v
j
yi→y′i

.

which is a contradiction to equation (2.10.10).

(ii)⇒ (i): We assume that, given 1 ≤ j ≤ q, there exists a multiset {ρW (yi → y′i)}wi=1

such that, for the two disjointed proper (nonempty) subsets ofW ,Rj
+ andRj

−, the multisets

Qj
1 = {ρW (yi → y′i) : yi → y′i ∈ Rj

+} and Qj
2 = {ρW (yi → y′i) : yi → y′i ∈ Rj

−} are

nonsegregated. We want to show that there exist ujyi→y′i > 0 for yi → y′i ∈ Rj
+ and

vjyi→y′i
> 0 for yi → y′i ∈ R

j
− satisfying both (2.10.6) and (2.10.10).

To show this, suppose the claim is not true, i.e., given 1 ≤ j ≤ q, for any ujyi→y′i > 0

and vjyi→y′i > 0 satisfying (2.10.6), (2.10.10) is not satisfied. Equivalently, we assume that

for all ujyi→y′i , v
j
yi→y′i

> 0 satisfying (2.10.6) (it is obvious that such u, v exist), we have

∑
yi→y′i∈R

j
+

ujyi→y′i
=

∑
yi→y′i∈R

j
−

vjyi→y′i

and

∑
yi→y′i∈R

j
+

ρW (yi → y′i)u
j
yi→y′i

6=
∑

yi→y′i∈R
j
−

ρW (yi → y′i)v
j
yi→y′i

.
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Without loss of generality, we may assume for any ujyi→y′i , v
j
yi→y′i

> 0 satisfying (2.10.6),

we have

∑
yi→y′i∈R

j
+

ujyi→y′i
=

∑
yi→y′i∈R

j
−

vjyi→y′i

and

∑
yi→y′i∈R

j
+

ρW (yi → y′i)u
j
yi→y′i

<
∑

yi→y′i∈R
j
−

ρW (yi → y′i)v
j
yi→y′i

. (2.10.12)

Since (2.10.12) is true for any ujyi→y′i , v
j
yi→y′i

> 0 satisfying (2.10.6), we can take the

limit on both sides of (2.10.12) over ujyi→y′i where yi → y′i ∈ R
j
+, and vjyi→y′i where yi →

y′i ∈ Rj
−, respectively. Let N =

∑
yi→y′i∈R

j
+

ujyi→y′i
=

∑
yi→y′i∈R

j
−

vjyi→y′i
. Denote kju = min

{k : yk → y′k ∈ Rj
+ and ρW (yk → y′k) = ρu

j

max}. Denote kjv = min {k : yk → y′k ∈

Rj
+ and ρW (yk → y′k) = ρv

j

min}. Note that 0 < ujyi→y′i
, vjyi→y′i

< N . We can let ujy
k
j
u
→y′

k
j
u

and vjy
k
j
v
→y′

k
j
v

go to N , and let ujyi→y′i (if i 6= kju) and vjyi→y′i (if i 6= kjv) go to 0. Then after

taking the limit on both sides, we have Nρu
j

max ≤ Nρv
j

min, i.e., ρu
j

max ≤ ρv
j

min. Therefore,

∑
yi→y′i∈R

j
+

ρu
j

maxu
j
yi→y′i

≤
∑

yi→y′i∈R
j
−

ρv
j

minv
j
yi→y′i

. (2.10.13)

Combined with (2.10.12), we can see that (2.10.11) holds except the three equalities do

not hold simultaneously. Then recall that in (2.10.11), from left to right, the first equality

holds iff ρu
j

min = ρu
j

max, the second equality holds iff ρu
j

max = ρv
j

min, and the third equality

holds iff ρv
j

min = ρv
j

max. Therefore, ρu
j

min ≤ ρu
j

max ≤ ρv
j

min ≤ ρv
j

max and these three equal-

ities do not hold simultaneously. This means that {ρW (yi → y′i) : yi → y′i ∈ Rj
+} and

{ρW (yi → y′i) : yi → y′i ∈ R
j
−} are segregated. This is a contradiction to our nonsegrega-

tion assumption.

Lemma 2.10.7. Suppose the reaction network {S ,C ,R} satisfies the conditions in Re-

mark 2.9.7. Then the following statements are equivalent:
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(i) There exist positive ujyi→y′i , v
j
yi→y′i

, sjyi→y′i and tjyi→y′i , defined on Rj
+, Rj

−, Qj
+ and

Qj
− respectively, satisfying (2.10.6), (2.10.8) and (2.10.9).

(ii) The multisets Qj
1={ρW (yi → y′i) : yi → y′i ∈ R

j
+} and Qj

2= {ρW (yi → y′i) : yi →

y′i ∈ R
j
−} are nonsegregated.

PROOF: (i)⇒ (ii): Note that (2.10.8) and (2.10.9) imply that (2.10.10). Hence this direction

is done from Lemma 2.10.6.

(ii)⇒ (i): From Lemma 2.10.6, there exist positive ujyi→y′i and vjyi→y′i , defined on Rj
+

and Rj
− respectively, satisfying (2.10.6) and (2.10.10). Since sjyi→y′i and tjyi→y′i are defined

on Qj
+ and Qj

− respectively, we can choose positive sjyi→y′i and tjyi→y′i for yi → y′i ∈ Qj
+

and yi → y′i ∈ Q
j
− respectively, satisfying (2.10.9). Note that (2.10.9) and (2.10.10) imply

(2.10.8), so there exist positive ujyi→y′i , v
j
yi→y′i

, sjyi→y′i and tjyi→y′i , defined on Rj
+, Rj

−, Qj
+

and Qj
− respectively, satisfying (2.10.6), (2.10.8) and (2.10.9).

Case (II): Let us assume that

∑
yi→y′i∈Q

j
+

sjyi→y′i
>

∑
yi→y′i∈Q

j
−

tjyi→y′i
. (2.10.14)

Then from equation (2.10.6) and (2.10.8) we have

∑
yi→y′i∈R

j
+

ujyi→y′i
=

∑
yi→y′i∈R

j
−

vjyi→y′i∑
yi→y′i∈R

j
+

ρW (yi → y′i)u
j
yi→y′i

<
∑

yi→y′i∈R
j
−

ρW (yi → y′i)v
j
yi→y′i

. (2.10.15)

Lemma 2.10.8. Suppose the reaction network {S ,C ,R} satisfies the conditions in Re-

mark 2.9.7. Then the following statements are equivalent:

(i) There exist positive ujyi→y′i and vjyi→y′i , defined onRj
+ andRj

− respectively, satisfying

(2.10.6) and (2.10.15).

(ii) One element in Qj
2 = {ρW (yi → y′i) : yi → y′i ∈ R

j
−} is strictly greater than one

element in Qj
1 = {ρW (yi → y′i) : yi → y′i ∈ R

j
+}.
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PROOF: (i) ⇒ (ii): Suppose not, i.e. we assume that for any yl → y′l ∈ Rj
+ and any

yr → y′r ∈ Rj
+, we always have ρW (yl → y′l) ≥ ρW (yr → y′r). Then it implies that

ρu
j

min ≥ ρv
j

max. Therefore, for any ujyi→y′i > 0 and vjyi→y′i > 0 satisfying (2.10.6), we have

∑
yi→y′i∈R

j
+

ρW (yi → y′i)u
j
yi→y′i

≥ ρu
j

min

∑
yi→y′i∈R

j
+

ujyi→y′i

≥ ρv
j

max

∑
yi→y′i∈R

j
−

vjyi→y′i

≥
∑

yi→y′i∈R
j
−

ρW (yi → y′i)v
j
yi→y′i

which is a contradiction to (2.10.15).

(ii) ⇒ (i): Let us assume one element in Qj
2 = {ρW (yi → y′i) : yi → y′i ∈ Rj

−} is

strictly greater than one element in Qj
1 = {ρW (yi → y′i) : yi → y′i ∈ R

j
+}. In other words,

we assume there exists yl → y′l ∈ Rj
+ and yr → y′r ∈ Rj

− such that ρW (yr → y′r) >

ρW (yl → y′l). We can pick ujyl→y′l = vjyr→y′r quite large and positive, and the other ujy→y′’s

and vjy→y′’s quite small and positive, such that (2.10.6) and (2.10.15) are both satisfied.

Lemma 2.10.9. Suppose the reaction network {S ,C ,R} satisfies the conditions in Re-

mark 2.9.7. Then the following statements are equivalent:

(i) There exist positive ujyi→y′i , v
j
yi→y′i

, sjyi→y′i and tjyi→y′i , defined on Rj
+, Rj

−, Qj
+ and

Qj
−, respectively, satisfying (2.10.6), (2.10.8) and (2.10.14).

(ii) One element in Qj
2 = {ρW (yi → y′i) : yi → y′i ∈ R

j
−} is strictly greater than one

element in Qj
1 = {ρW (yi → y′i) : yi → y′i ∈ R

j
+}.

PROOF: (i)⇒ (ii): Note that (2.10.8) and (2.10.14) imply (2.10.15). Hence this direction

is done from Lemma 2.10.8.

(ii)⇒ (i): From Lemma 2.10.6, there exist positive ujyi→y′i and vjyi→y′i , defined on Rj
+

and Rj
−, respectively, satisfying (2.10.6) and (2.10.15). Note that sjyi→y′i and tjyi→y′i

are
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defined on Qj
+ and Qj

−, respectively. Therefore, we can choose positive sjyi→y′i and tjyi→y′i
for yi → y′i ∈ Q

j
+ and yi → y′i ∈ Q

j
− respectively, satisfying

∑
yi→y′i∈Q

j
+

sjyi→y′i
−

∑
yi→y′i∈Q

j
−

tjyi→y′i

= −
∑

yi→y′i∈R
j
+

ρW (yi → y′i)u
j
yi→y′i

+
∑

yi→y′i∈R
j
−

ρW (yi → y′i)v
j
yi→y′i

. (2.10.16)

Note that (2.10.16) and (2.10.15) imply (2.10.8) and (2.10.14). There exist positive ujyi→y′i ,

vjyi→y′i
, sjyi→y′i and tjyi→y′i , defined on Rj

+, Rj
−, Qj

+ and Qj
−, respectively, satisfying (2.10.6),

(2.10.8) and (2.10.14).

Case (III): Let us assume that

∑
yi→y′i∈Q

j
+

sjyi→y′i
<

∑
yi→y′i∈Q

j
−

tjyi→y′i
. (2.10.17)

Then from equation (2.10.6) and (2.10.8) we have

∑
yi→y′i∈R

j
+

ujyi→y′i
=

∑
yi→y′i∈R

j
−

vjyi→y′i∑
yi→y′i∈R

j
+

ρW (yi → y′i)u
j
yi→y′i

>
∑

yi→y′i∈R
j
−

ρW (yi → y′i)v
j
yi→y′i

. (2.10.18)

Lemma 2.10.10. Suppose the reaction network {S ,C ,R} satisfies the conditions in Re-

mark 2.9.7. Then the following statements are equivalent:

(i) There exist positive ujyi→y′i and vjyi→y′i defined on Rj
+ and Rj

− respectively satisfying

(2.10.6) and (2.10.18).

(ii) One element in {ρW (yi → y′i) : yi → y′i ∈ R
j
+} is strictly greater than one element

in {ρW (yi → y′i) : yi → y′i ∈ R
j
−}.

PROOF: It is quite similar to the proof for Lemma 2.10.8 and we will skip it here.

Lemma 2.10.11. Suppose the reaction network {S ,C ,R} satisfies the conditions in Re-

mark 2.9.7. Then the following statements are equivalent:
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(i) There exist positive ujyi→y′i , v
j
yi→y′i

, sjyi→y′i and tjyi→y′i , defined on Rj
+, Rj

−, Qj
+ and

Qj
− respectively ,satisfying (2.10.6), (2.10.8) and (2.10.17).

(ii) One element in {ρW (yi → y′i) : yi → y′i ∈ R
j
+} is strictly greater than one element

in {ρW (yi → y′i) : yi → y′i ∈ R
j
−}.

PROOF: It is quite similar to the proof for Lemma 2.10.9 and we will skip it here.

Note that given any two multisets, they are either nonsegregated or segregated. Recall

that for two segregated sets, one element from one multiset is strictly greater than on ele-

ment from the other multiset. Therefore, for 1 ≤ j ≤ q, Qj
1 = {ρW (yi → y′i) : yi → y′i ∈

Rj
+} and Qj

2 = {ρW (yi → y′i) : yi → y′i ∈ R
j
−} will satisfy at least one of the following

three conditions:

i) The multisets Qj
1 = {ρW (yi → y′i) : yi → y′i ∈ R

j
+} and Qj

2 = {ρW (yi → y′i) : yi →

y′i ∈ R
j
−} are nonsegregated.

ii) One element in Qj
2 = {ρW (yi → y′i) : yi → y′i ∈ R

j
−} is strictly greater than one

element in Qj
1 = {ρW (yi → y′i) : yi → y′i ∈ R

j
+}.

iii) One element in Qj
1 = {ρW (yi → y′i) : yi → y′i ∈ R

j
+} is strictly greater than one

element in Qj
2 = {ρW (yi → y′i) : yi → y′i ∈ R

j
−}.

Proposition 2.10.12. Suppose the reaction network {S ,C ,R} satisfies the conditions in

Remark 2.9.7. Suppose that there exist gW , hW ∈ RO ∩ ΓW with the given sign patterns

satisfying equations (2.9.13), (2.9.14) and (2.9.15). Then for each 1 ≤ j ≤ q, there exist

positive ujyi→y′i , v
j
yi→y′i

, sjyi→y′i and tjyi→y′i defined on Rj
+, Rj

−, Qj
+ and Qj

− respectively from

(2.10.1), (2.10.2), (2.10.3) and (2.10.4), satisfying (2.10.6) and (2.10.8), and the following

holds:

i) If
∑

yi→y′i∈Q
j
+

sjyi→y′i
=

∑
yi→y′i∈Q

j
−

tjyi→y′i
, then the multisets Qj

1 = {ρW (yi → y′i) : yi →

y′i ∈ R
j
+} and Qj

2 = {ρW (yi → y′i) : yi → y′i ∈ R
j
−} are nonsegregated.
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ii) If
∑

yi→y′i∈Q
j
+

sjyi→y′i
>

∑
yi→y′i∈Q

j
−

tjyi→y′i
, then one element inQj

2 = {ρW (yi → y′i) : yi →

y′i ∈ R
j
−} is strictly greater than one element in Qj

1 = {ρW (yi → y′i) : yi → y′i ∈ R
j
+}.

iii) If
∑

yi→y′i∈Q
j
+

sjyi→y′i
<

∑
yi→y′i∈Q

j
−

tjyi→y′i
, then one element in Qj

1 = {ρW (yi → y′i) :

yi → y′i ∈ R
j
+} is strictly greater than one element in Qj

2 = {ρW (yi → y′i) : yi → y′i ∈

Rj
−}.

Proposition 2.10.13. Suppose the reaction network {S ,C ,R} satisfies the conditions in

Remark 2.9.7. Then for each 1 ≤ j ≤ q, Rj
+, Rj

−, Qj
+ and Qj

− are defined. If the conditions

in Proposition 2.10.12 are satisfied, then for each 1 ≤ j ≤ q, there exist positive ujyi→y′i ,

vjyi→y′i
, sjyi→y′i and tjyi→y′i defined on Rj

+, Rj
−, Qj

+ and Qj
− respectively satisfying (2.10.6)

and (2.10.8).

Note that for any 1 ≤ j ≤ q, positive ujyi→y′i , v
j
yi→y′i

, sjyi→y′i and tjyi→y′i are defined on

Rj
+,Rj

−,Qj
+ andQj

−, respectively from (2.10.1), (2.10.2), (2.10.3) and (2.10.4). Therefore,

for any 1 ≤ j ≤ q, the sign of
∑

yi→y′i∈Q
j
+

sjyi→y′i
−

∑
yi→y′i∈Q

j
−

tjyi→y′i
is same as the sign of

∑
yi→y′i∈D

bjyi→y′i
hW (yi → y′i).

Proposition 2.10.14. Suppose the reaction network {S ,C ,R} satisfies the conditions in

Remark 2.9.7. If there exist gW , hW ∈ RO ∩ ΓW with the given sign patterns satisfying

equations (2.9.13), (2.9.14) and (2.9.15), then the following has to be held for 1 ≤ j ≤ q:

i) If
∑

yi→y′i∈D
bjyi→y′i

hW (yi → y′i) = 0, then the multisets Qj
1 = {ρW (yi → y′i) : yi →

y′i ∈ R
j
+} and Qj

2 = {ρW (yi → y′i) : yi → y′i ∈ R
j
−} are nonsegregated.

ii) If
∑

yi→y′i∈D
bjyi→y′i

hW (yi → y′i) > 0, then one element in Qj
2 = {ρW (yi → y′i) : yi →

y′i ∈ R
j
−} is strictly greater than one element in Qj

1 = {ρW (yi → y′i) : yi → y′i ∈ R
j
+}.

iii) If
∑

yi→y′i∈D
bjyi→y′i

hW (yi → y′i) < 0, then one element in Qj
1 = {ρW (yi → y′i) : yi →

y′i ∈ R
j
+} is strictly greater than one element in Qj

2 = {ρW (yi → y′i) : yi → y′i ∈ R
j
−}.

Next we will form a proposition in terms of gW and hW similar to Proposition 2.10.13.
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Suppose that the ρW (yi → y′i)’s satisfy the conditions in Proposition 2.10.14, then

equivalently, ρW (yi → y′i)’s satisfy the conditions in Proposition 2.10.12. Then for each

1 ≤ j ≤ q, there exist positive ujyi→y′i , v
j
yi→y′i

, sjyi→y′i
, tjyi→y′i

on Rj
+, Rj

−, Qj
+ and Qj

−,

respectively satisfying (2.10.6) and (2.10.8).

We define gjW , h
j
W ∈ RO ∩ ΓW as follows:

gjW (yi → y′i) =
ujyi→y′i
bjyi→y′i

, for yi → y′i ∈ R
j
+

gjW (yi → y′i) = −
vjyi→y′i
bjyi→y′i

, for yi → y′i ∈ R
j
−

gjW (yi → y′i) =
sjyi→y′i
bjyi→y′i

, for yi → y′i ∈ Q
j
+

gjW (yi → y′i) = −
tjyi→y′i
bjyi→y′i

, for yi → y′i ∈ Q
j
−.

and for yi → y′i ∈ I
j
1 ∪ I

j
2 , we can let gjW (yi → y′i) and hjW (yi → y′i) be any numbers that

are sign compatible with their pre-selected sign patterns, respectively.

Then gjW , h
j
W ∈ RO∩ΓW are sign-compatible with the given sign patterns of gW , hW ∈

RO ∩ ΓW , respectively, and satisfy:

∑
yi→y′i∈ND

bjyi→y′i
gjW (yi → y′i) = 0 (2.10.19)

∑
yi→y′i∈D

bjyi→y′i
hjW (yi → y′i) +

∑
yi→y′i∈ND

ρW (yi → y′i)b
j
yi→y′i

gjW (yi → y′i) = 0 (2.10.20)

hjW (yi → y′i) = ρW (yi → y′i)g
j
W (yi → y′i), yi → y′i ∈ ND. (2.10.21)

Proposition 2.10.15. Suppose the reaction network {S ,C ,R} satisfies the conditions in

Remark 2.9.7. Then for each 1 ≤ j ≤ q, Rj
+, Rj

−, Qj
+ and Qj

− are defined. If the conditions

in Proposition 2.10.14 are satisfied, then there exist gjW , hjW ∈ RO ∩ ΓW with the pre-

selected sign patterns satisfying equations (2.10.19), (2.10.20) and (2.10.21).

If we can find a common gW = gjW and hW = hjW for all 1 ≤ j ≤ q in Proposition

2.10.15, then gW and hW satisfy equations (2.9.13), (2.9.14) and (2.9.15), i.e. we find
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a solution of gW , hW ∈ RO ∩ ΓW with the pre-selected ("valid") pair of sign patterns.

But in general, if the assumption is that ρW (yi → y′i)’s satisfy conditions in Proposition

2.10.14, it is not always the case that we can find a common gW = gjW and hW = hjW

for all 1 ≤ j ≤ q. In the next section, we will consider the case that the basis vectors

{bj}qj=1 of Ker⊥ LO ∩ΓW satisfy some special property (to be described later). Under this

assumption on the basis vectors and the assumption that ρW (yi → y′i)’s satisfy conditions

in Proposition 2.10.14, we can find a common gW = gjW and hW = hjW (1 ≤ j ≤ q) so as

to find a solution of gW , hW ∈ RO∩ΓW with the pre-selected ("valid") pair of sign patterns

satisfy equations (2.9.13), (2.9.14) and (2.9.15).

2.11 What is nice about a forest basis?

As mentioned earlier, our goal in this section is to discuss the existence of bases (called

"forest bases") for Ker⊥ LO ∩ ΓW having especially attractive properties. If such bases

exist, then the three conditions in Proposition 2.10.14 on ρW (yi → y′i)’s are also sufficient

for the existence of gW , hW ∈ RO ∩ΓW with the pre-selected ("valid") pair of sign patterns

satisfy equations (2.9.13), (2.9.14) and (2.9.15).

To continue, first let us introduce some basic terms in graph theory.

In [12], an acyclic graph, one that does not contain any cycles, is called a forest. A

connected forest is called a tree. Thus, a forest is a graph whose components are trees. The

vertices of degree 1 in a tree are its leaves.

Lemma 2.11.1. [12] The vertices of a tree G can always be enumerated, say as v1, .., vn,

so that every vi with i ≥ 2 has a unique neighbour in {v1, .., vi−1}.

PROOF: If G has only one leaf, then the statement is true trivially.

Assume C is a nontrivial tree, i.e., it has at least two leaves.
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Pick v1 as any vertex in C. Let G1 = {v1}. Assume inductively that v1, .., vi have been

chosen for some i < |G| such that vk+1 has a unique neighbour in Gk (k < i).

We can claim that Gi is connected by induction i. To see that, note that G1 is trivially

connected. For i = 1, v2 is chosen so v2 has a unique neighbour in G1 = {v1}, then G2 is

connected. For all 1 ≤ k < i, if we assume Gk is connected, then since vk+1 is connected

to Gk via vk, Gk+1 is also connected.

Now pick a vertex v ∈ G−Gi, where Gi = G[v1..vi] is a subgraph of G by removing

all vertices not in {v1, ..., vi}. As G is a tree, there exists a unique v−v1 path P . Choose as

vi+1 the last vertex of P inG−Gi, then we conclude that vi+1 has a unique neighbour inGi.

Suppose not, i.e., we assume that vi+1 has another neighbour in Gi. Since Gi is connected,

there is a path between the two neighbours of vi+1 in Gi. Since vi+1 /∈ Gi, then we would

have a cycle containing the two neighbours and vi+1, which is a contradiction to the tree

assumption for G. Therefore it has been proved that vertices of G can be enumerated as

{v1, .., v|V (G)|} such that vk+1 has a unique neighbour in Gk (1 ≤ k < |V (G)|).

We will define a graph based on a set of basis vectors. Given a set of basis vectors

{bj}qj=1 ofKer⊥ LO∩ΓW , we define a bipartite graphGwith vertices V = A∪B and edges

E, where A = {yi → y′i}wi=1, B = {bj}qj=1 and E = ∪qj=1{{yi → y′i, b
j} : bjyi→y′i 6= 0}.

Given a basis {bj : j = 1..q} for Ker⊥ LO ∩ ΓW , G is the basis graph for that basis. For

1 ≤ j ≤ q, we define a bipartite graph Hj with edges Vj = Aj ∪ Bj and edges Ej , where

Aj = {yi → y′i ∈ W : bjyi→y′i 6= 0}, Bj = {bj} and Ej = {{yi → y′i, b
j} : yi → y′i ∈ Aj}.

Hj is a star-shaped subgraph of G. For 1 ≤ j ≤ q, denote NG(bj) the neighours of bj in G.

Then NG(bj) = {yi → y′i : bjyi→y′i 6= 0} = Hj ∩W . Define a new graph Gb based on G,

with vertices V (Gb) and edges E(Gb)), where V (Gb) = {bj}qj=1 and (bj, bk) ∈ E(Gb) iff

NG(bj) ∩NG(bk) 6= ∅ or equivalently, Hj ∩Hk 6= ∅.

Note we have shown in Remark 2.9.2 that any vector in Ker⊥ LO ∩ ΓW shall have

support on at least three yi → y′i’s, otherwise it will contradict the fact that yi → y′i’s
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are from different and all non-zeroth equivalence classes. Therefore, for any basis vectors

{bj : j = 1, ..., q} of Ker⊥ LO ∩ ΓW , |{i ∈ {1, ..., w} : bjyi→y′i 6= 0}| ≥ 3, or degree of bj

in G deg(bj) ≥ 3. In particular, if a component of the basis graph is trivial with one leaf,

then it must be from set A = {yi → y′i}wi=1.

We say that Ker⊥ LO ∩ ΓW has a forest basis if there exists a basis of Ker⊥ LO ∩ ΓW

such that the graph based on the basis vectors is a forest.

Remark 2.11.2. Note that if for the given orientation O and W ⊆ O , Ker⊥ LO ∩ ΓW

has a forest basis, then we claim that for any orientation Õ and W̃ ⊆ Õ chosen, Ker⊥

LÕ ∩ ΓW̃ has a forest basis.

To see this, first we make a few observations.

Recall that Ker LO and Ker LÕ are isomorphic through linear maps F : Ker LO →

Ker LÕ and G : Ker LÕ → Ker LO , defined as in Lemma 2.3.4. We define linear maps

F1 : Ker⊥ LO → Ker⊥ LÕ and G1 : Ker⊥ LÕ → Ker⊥ LO through the following

approach.

Let zO ∈ Ker⊥ LO , we define zÕ ∈ RÕ as follows:

zÕ
y→y′ =


zO
y→y′ , if y → y′ ∈ O

−zO
y′→y, if y′ → y ∈ O.

Let xÕ ∈ Ker LÕ , then xO = G(xÕ) ∈ Ker LO . We have zO · xO = 0. We also have that

zÕ · xÕ =
∑

y→y′∈Õ

zÕ
y→y′x

Õ
y→y′

=
∑

y→y′∈Õ:y→y′∈O

zÕ
y→y′x

Õ
y→y′ +

∑
y→y′∈Õ:y′→y∈O

zÕ
y→y′x

Õ
y→y′

=
∑

y→y′∈Õ:y→y′∈O

zO
y→y′x

O
y→y′ +

∑
y→y′∈Õ:y′→y∈O

(−zO
y′→y)(−xO

y′→y)

=
∑

y→y′∈O:y→y′∈Õ

zO
y→y′x

O
y→y′ +

∑
y′→y∈O:y→y′∈Õ

zO
y′→yx

O
y′→y

=
∑

y→y′∈O

zO
y→y′x

O
y→y′ = 0.
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Note the choice of xÕ is aribrary. So we have zÕ ∈ Ker⊥ LÕ . Thus the function F1: Ker⊥

LO → Ker⊥ LÕ via F1(zO) = zÕ is well defined.

Similarly, let z̃Õ ∈ Ker LÕ , then we define z̃O ∈ RO as follows:

z̃O
y→y′ =


z̃Õ
y→y′ , if y → y′ ∈ Õ

−z̃Õ
y′→y, if y′ → y ∈ Õ.

Then we can similarly show that the functionG1: Ker⊥ LÕ → Ker⊥ LO viaG1(zÕ) = zO

is well defined. We can verify that, for any zO ∈ Ker⊥ LO , G1 ◦F1(zO) = zO , and for any

zÕ ∈ Ker⊥ LÕ , F1 ◦ G1(zÕ) = zÕ . Therefore, F1 = G−1
1 and G1 = F−1

1 . We can claim

that Ker⊥ LO
∼= Ker⊥ LÕ .

For a given orientaion O , the set W is based on the choice of representatives for the

nonzeroth equivalence classes. Suppose that for two different orientations O and Õ , if we

have picked WO = {yi → y′i : 1 ≤ i ≤ w} from O , we will pick W Õ from Õ as follows:

If yi → y′i ∈ Õ , then pick yi → y′i as the representative for equivalence class P Õ
i in Õ;

otherwise, pick y′i → yi.

Let zÕ ∈ Ker⊥ LÕ ∩ ΓW Õ , then we can verify that zO = G1(zÕ) ∈ Ker⊥ LO ∩ ΓWO .

Similarly, if zO ∈ Ker⊥ LO ∩ ΓWO , then zÕ = F1(zO) ∈ Ker⊥ LÕ ∩ ΓW Õ .

Suppose for a given oriention Õ , we have two different choices of representatives to

form two different sets, say W 1 = {pi → p′i}wi=1 and W 2 = {yi → y′i}wi=1, where pi → p′i

and yi → y′i are two choices (they maybe the same equation) of representatives for equiva-

lence class P Õ
i in Õ . Note that there exists αpi→p′i 6= 0 such that ωyi→y′i − αpi→p′iωpi→p′i ∈

Ker⊥ LÕ .

Suppose z1 ∈ Ker⊥ LÕ ∩ ΓW 1 . Let z2 ∈ RÕ ∩ ΓW 2 be defined as follows, for yi →

y′i ∈ W :

z2
yi→y′i

= 1
αpi→p′i

z1
pi→p′i

, 1 ≤ i ≤ w.

Then we can show that z2 ∈ Ker⊥ LÕ ∩ ΓW 2 . To see that, let xÕ ∈ Ker LÕ , then
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z1 · xO = 0. Note also that for any 1 ≤ i ≤ w, xÕ · (ωyi→y′i − αpi→p′iωpi→p′i) = 0, or

xÕ
yi→y′i

= αpi→p′ix
Õ
pi→p′i

. We have that

z2 · xÕ =
∑

yi→y′i∈W 2

z2
yi→y′i

xÕ
yi→y′i

=
∑

pi→p′i∈W 1

1
αpi→p′i

z1
pi→p′i

αpi→p′ix
Õ
pi→p′i

=
∑

pi→p′i∈W 1

z1
pi→p′i

xÕ
pi→p′i

= 0

Then the linear map F2 : Ker⊥ LÕ ∩ ΓW 1 → Ker⊥ LÕ ∩ ΓW 2 via F2(z1) = z2 is well

defined. Similarly we can construct G2 : Ker⊥ LÕ ∩ ΓW 2 → Ker⊥ LÕ ∩ ΓW 1 such that

G2 = F−1
2 and F2 = G−1

2 . Details will be skipped here as it is parallel to the case of F2.

Now we are ready to show the claim made at the beginning of the remark.

Let WO = {yi → y′i : 1 ≤ i ≤ w} from O , we define W 1 from Õ as follows:

If yi → y′i ∈ Õ , then pick yi → y′i as the representative for equivalence class P Õ
i in Õ;

otherwise, pick y′i → yi.

Therefore, we could first map the forest basis vectors for Ker⊥ LO ∩ ΓW into Ker⊥

LÕ∩ΓW 1 , through the linear map F1 (in terms of O withW and Õ withW 1). Then we map

the corresponding image basis vectors for Ker⊥ LÕ ∩ ΓW 1 into Ker⊥ LÕ ∩ ΓW̃ , through

the linear map F2 (in terms of W 1 and W̃ ).

Note that the fundamental classesCi’s stay the same under all orientation. Note thatW

is the set of representatives for all nonzeroth equivalence classes, so it can be regarded as

the set of representatives for all zeroth fundamental classes, except that the representative

always comes from its corresponding equivalence class. We can then see that the support

of each of the resulting basis vectors in Ker⊥ LÕ ∩ ΓW̃ and that of the corresponding

original basis vector in Ker⊥ LO ∩ ΓW are representatives from the same fundamental

classes. Therefore the original forest basis in Ker⊥ LO ∩ ΓW and the resulting basis in

Ker⊥ LÕ ∩ ΓW̃ share the same basis graph structure if we replace each representative by
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its corresponding fundamental class in the graph. Therefore Ker⊥ LÕ ∩ ΓW̃ also has a

forest basis.

From Remark 2.11.2, we say that the reaction network {S ,C ,R} has the forestal

property, if for the given O and W ⊆ O , Ker⊥ LO ∩ ΓW has a forest basis.

Remark 2.11.3. Note that we have assumed q = dim Ker⊥ LO ∩ ΓW > 1. However, if

q = 0, then by definition the reaction network has the forestal property.

Suppose the reaction network {S ,C ,R} satisfies the conditions in Remark 2.9.7. We

want to claim that if Ker⊥ LO ∩ ΓW has a forest basis, then the ρW (yi → y′i)’s satisfying

the conditions in Proposition 2.10.14 is also sufficient for the existence of gW , hW with

the pre-selected ("valid") pair of sign patterns satisfying equations (2.9.13), (2.9.14) and

(2.9.15).

Lemma 2.11.4. If one of the basis graphs for Ker⊥ LO ∩ ΓW is a forest, then w > 2q.

PROOF: Note that for any basis {ãj}qj=1 in Ker⊥ LO ∩ ΓW , each ãj has at least 3-reaction

support. Therefore, in the basis graph of {ãj}qj=1 each ãj has a degree of 3 or more, i.e.,

deg(ãj) ≥ 3. Suppose that q > 0. If the basis graph of {ãj}qj=1 is a forest, then since the

edge is always between some ãj with some yi → y′i, we have

q + w = #(vertices) = #(components) + #(edges)

= #(components) +
q∑
j=1

(deg(ãj)) ≥ #(components) + 3q.

Therefore, #(components)≤ w − 2q. Since #(components)≥ 1, we have w > 2q. In

particular, in the case that w = 2q + 1, if G is a forest, there is only one component, i.e. G

is a tree.

Remark 2.11.5. We see that in the case that there exists a forest basis for Ker⊥ LO ∩ΓW ,

we have 2q < w. Therefore, from Remark 2.9.6, the necessary condition we found (in
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section 2.10) for the existence of a pair gW , hW ∈ RO ∩ ΓW with the pre-selected sign

patterns satisfying equations (2.9.13), (2.9.14) and (2.9.15) is trivially satisfied.

Proposition 2.11.6. Suppose the reaction network {S ,C ,R} satisfies the conditions in

Remark 2.9.7. Suppose that there exists a basis {bj}qj=1 in Ker LO ∩ ΓW such that its

basis graph G is a forest. Then there exist gW , hW ∈ RO ∩ ΓW with the pre-selected

("valid") pair of sign patterns satisfying equations (2.9.13), (2.9.14) and (2.9.15), if and

only if ρW (yi → y′i)’s satisfy the conditions in Proposition 2.10.14.

PROOF: ⇒) We have shown this in Proposition 2.10.14 (from section 2.10) without any

constraint on the basis graphs of Ker LO ∩ ΓW .

⇐) We want to show if ρW (yi → y′i)’s satisfy the conditions in Proposition 2.10.14,

then there exists a pair gW , hW ∈ RO ∩ ΓW with the pre-selected ("valid") pair of sign

patterns satisfying equations (2.9.13), (2.9.14) and (2.9.15). Note that D and ND are

defined by the given sign patterns of gW and hW .

Let us consider the component(s) of G. Let gW = 0 and hW = 0 to start. We will

update gW and hW step by step until gW and hW have the pre-selected sign patterns and

satisfy equations (2.9.13), (2.9.14) and (2.9.15).

Let C be a component of G, then we have two cases.

I) Assume C is a nontrivial tree, i.e., it has at least two leaves. Note the edges in G

are between vertices in A and B. Therefore, there exists bj from B and since deg(bj) ≥ 3,

|C| ≥ 4. Let AC = {yi → y′i : yi → y′i ∈ C} and BC := {bj : bj ∈ C}.

Pick any j with bj ∈ BC . Note that the ρW (yi → y′i)’s satisfy the conditions in Propo-

sition 2.10.14. There exists a nonzero pair gjW , h
j
W ∈ RO ∩ ΓW sign compatible with the

given sign patterns, respectively, satisfying equations (2.10.19), (2.10.20) and (2.10.21).

We know that vertices of C can be enumerated as {v1, .., v|V (C)|} such that vk+1 has a

unique neighbour in {v1, .., vk} (1 ≤ k < |V (C)|). Choice of v1 is arbitrary, so we can

pick v1 from B, say bl1 .
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We define a new graph Cb based on C, with vertices V (Cb) and edges E(Cb)), where

V (Cb) = BC = {bj : bj ∈ C} and (bj, bk) ∈ E(Cb) iff NC(bj) ∩ NC(bk) 6= ∅, or

equivalently, Hj ∩Hk 6= ∅.

Let |V (Cb)| = Nb. We enumerate the vertices in Cb (or elements in BC) in the same

(relative) order as they are in the C enumeration: {v1, ..., v|V (C)|}, as {bl1 , ..., blNb}.

We will use induction on 1 ≤ n ≤ Nb in Cb.

For n = 1, for yi → y′i ∈ Hl1 , let gW (yi → y′i) = gl1W (yi → y′i), and hW (yi → y′i) =

hl1W (yi → y′i). Then gW and hW satisfies (2.10.19), (2.10.20) and (2.10.21) for j = l1, and,

gW and hW are sign compatible with the pre-selected sign patterns of gW and hW projected

on ΓW∩Hl1 , respectively.

Assuming that for n = k (1 ≤ k < Nb), we have found gW , hW ∈ RO ∩ ΓW such

that (i) gW and hW satisfy (2.10.19), (2.10.20) and (2.10.21) for j = l1, ..., lk, and (ii) gW

and hW are sign compatible with the pre-selected sign patterns of gW and hW projected on

ΓW∩(∪j∈{l1,...,lk}Hj)
, respectively. We want to show next that we will update gW and hW such

that (i) gW and hW satisfy (2.10.19), (2.10.20) and (2.10.21) for j = l1, ..., lk+1, and (ii) gW

and hW are sign compatible with the pre-selected sign patterns of gW and hW projected on

ΓW∩(∪j∈{l1,...,lk+1}Hj)
, respectively.

Note that blk+1 is also in the enumeration {v1, ..., v|V (C)|} in C and the enumeration in C

is such that vi+1 has a unique neighbor in {v1, ..., vi}. Therefore, if we assume vnk = blk+1 ,

then blk+1 has a unique neighbor in {v1, ..., vnk−1}, say vmk . We know that vmk is from AC

and mk > 1, since we pick v1 = bl1 ∈ BC . Let us assume that vmk = yimk → y′imk
. The

vertex vmk has a unique neighbor in {v1, ..., vmk−1}, say vpk . Note that vpk is from BC , so

it is also in the enumeration {bl1 , ..., blNb}. Note that the order of the elements in BC in the

enumeration {bl1 , ..., blNb} is consistent with their relative orders in {v1, ..., v|V (C)|}. If we

say vpk = blr , then r < k + 1. Note that we have found gW and hW satisfying (2.10.19),

(2.10.20) and (2.10.21) for j = l1, ..., lk. We also have there exists 1 ≤ r ≤ k, such that
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Hlk+1 and Hlr have a common vertex vmk = yimk → y′imk
. For yi → y′i ∈ Hlk+1 , we can let

gW (yi → y′i) =
gW (yimk → y′imk

)
g
lk+1
W (yimk → y′imk )

g
lk+1
W (yi → y′i), yi → y′i ∈ ND

hW (yi → y′i) =
gW (yimk → y′imk

)
g
lk+1
W (yimk → y′imk )

g
lk+1
W (yi → y′i), yi → y′i ∈ D

hW (yi → y′i) = ρW (yi → y′i)gW (yi → y′i), yi → y′i ∈ D.

Note that glk+1
W and hlk+1

W satisfy (2.10.19), (2.10.20) and (2.10.21) for j = lk+1, with

the pre-selected sign patterns of gW and hW . Therefore, the sign of gW (yimk → y′imk
) and

g
lk+1
W (yimk → y′imk

) are the same as they both are the same as the pre-selected sign for

gW (yimk → y′imk
). Similarly, the sign of hW (yimk → y′imk

) and hlk+1
W (yimk → y′imk

) are the

same. The updated gW and hW then satisfy (2.10.19), (2.10.20) and (2.10.21) for j = lk+1,

and gW |W∩Hlk+1
and hW |W∩Hlk+1

are sign compatible with the pre-selected sign patterns

of gW and hW projected on ΓW∩Hlk+1
, respectively.

Note that the updated gW (yimk → y′imk
) and hW (yimk → y′imk

) at the j + k+ 1 step are

the same as their values before this step. We need to argue that gW and hW we just updated

still satisfy (2.10.19), (2.10.20) and (2.10.21) for j = l1, ..., lk, and, gW |W∩(∪j∈{l1,...,lk}Hj)

and hW |W∩(∪j∈{l1,...,lk}Hj)
are sign compatible with the pre-selected sign patterns of gW and

hW projected on ΓW∩(∪j∈{l1,...,lk}Hj)
. We will show that nothing changes for the element

values that have been assigned to gW and hW before this (j = k + 1) step, i.e., we want

to show (∪j∈{l1,...,lk}Hlj) ∩ Hlk+1 = {vmk}. To see that, suppose not. We assume there

exists yi → y′i ∈ ((∪j∈{l1,...,lk}Hlj) ∩ Hlk+1)\{vmk}, i.e., there exists 1 ≤ t ≤ k such

that yi → y′i ∈ Hlt ∩ Hlk+1 . Since blk+1 = vnk has a unique neighbor vmk = yimk →

y′imk
in {v1, ..., vnk−1}, we have Hlk+1 ∩ {vi : 1 ≤ i ≤ nk − 1} = {vmk}. Therefore,

if yi → y′i = vp, then p > nk. Recall again that the order of the elements in BC in

the enumeration {bl1 , ..., blNb} is consistent with their relative orders in {v1, ..., v|V (C)|}.

Therefore blt , blk+1 ∈ {v1, ..., vnk}. Then vp has at least two neighbors blt and blk+1 in

{v1, ..., vp−1}, which is a contradiction to the assumption of the enumeration in C.
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We have shown that we have found gW , hW ∈ RO ∩ΓW such that (i) gW and hW satisfy

(2.10.19), (2.10.20) and (2.10.21) for j = l1, ..., lk+1, and (ii) gW and hW are sign compat-

ible with the pre-selected sign patterns of gW and hW projected on ΓW∩(∪j∈{l1,...,lk+1}Hj)
.

Therefore, by induction, we find gW , hW ∈ RO ∩ ΓW such that (i) gW and hW satisfy

(2.10.19), (2.10.20) and (2.10.21) for j = l1, ..., lNb , and (ii) gW and hW are sign compatible

with the pre-selected sign patterns of gW and hW projected on ΓW∩(∪j∈{l1,...,lNb}
Hj). In

other words, we find gW and hW such that (i) gW and hW satisfy (2.10.19), (2.10.20) and

(2.10.21) for j = l1, ..., lNb , and (ii) gW and hW are sign compatible with the pre-selected

sign patterns of gW and hW projected on ΓW∩C .

II) Assume that the component C is a trivial tree, i.e., it only has one leaf, say yi → y′i.

In other words, C is an isolated vertex {yi → y′i} with degree 0. Then for all 1 ≤ j ≤ q,

bjyi→y′i
= 0. Thus yi → y′i ∈ I1. We can let gW (yi → y′i) and hW (yi → y′i) be any numbers

that are sign compatible with their pre-selected sign patterns.

Since each component of G is disjointed, then after working on all nontrivial compo-

nents and then all trivial components, we find gW , hW ∈ RO ∩ ΓW such that (i) gW and

hW satisfy (2.10.19), (2.10.20) and (2.10.21) for j = 1, ..., q, and (ii) gW and hW are sign

compatible with the pre-selected sign patterns of gW and hW .

Remark 2.11.7. Recall the comments made in Remark 2.11.3; we can assume that dim

Ker⊥ LO ∩ ΓW = q ≥ 0 instead of q > 0.

Remark 2.11.8. Recall that we have introduced the following definitions and assumptions.

For a given reaction network {S ,C ,R}, and a given orientation O , we define Pi

(0 ≤ i ≤ w) as the ith equivalence class of O . Each equivalence class Pi (0 ≤ i ≤ w)

has a representative yi → y′i. Ci (0 ≤ i ≤ w) is the fundamental class containing Pi.

W = {yi → y′i}wi=1 is the set of all representatives for the nonzeroth equivalence classes.

In Theorem 2.11.9 and Proposition 2.11.11 below we suppose that for the given orien-

tation O of R, the following conditions hold:
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(i) dim Ker LO ≥ 1 and P0 (and C0) is reversible (although these have nothing to do

with a particular choice of the orientation).

(ii) For any y → y′ ∈ Pi (1 ≤ i ≤ w), there exists αy→y′ > 0 such that ωyi→y′i −

αy→y′ωy→y′ ∈ Ker⊥ LO .

Also recall that a "valid" pair of sign patterns for gW , hW ∈ RO ∩ ΓW is nonzero and

sign-compatible with Ker LO |W , as in Section 2.9.

Theorem 2.11.9. Suppose the reaction network {S ,C ,R} has a forestal property. Then

reaction network {S ,C ,R} has the capacity to admit multiple steady states if and only if

the following is true: There exist

(i) a nonzero vector µ ∈ RS which is sign-compatible with the stoichiometric sub-

space S,

(ii) a "valid" pair of sign patterns for gW , hW ∈ RO ∩ ΓW ,

(iii) a set of parameters {ρW (yi → y′i) : gW (yi → y′i) 6= 0} whose sign pattern is such

that the sign of ρW (yi → y′i) is the same as the ratio of the signs of hW (yi → y′i) and

gW (yi → y′i), satisfying the conditions in Proposition 2.10.14, and

(iv) a choice of shelving assignments for each nondegenerate (defined upon the sign

patterns of gW ) fundamental class satisfying the conditions in Proposition 2.8.1 (in

terms of ρW (yi → y′i) for condition (ii) in the proposition),

which together satisfy the conditions in Lemma 2.8.2 (in terms of gW (y → y′i), hW (yi →

y′i) and ρW (yi → y′i)).

Remark 2.11.10. Note that we have introduced Mi = Myi→y′i = ln(ρW (yi → y′i)) when

ρW (yi → y′i) > 0, and we let Mi be some large and negative number when ρW (yi → y′i) ≤

0. So we can rewrite conditions in Proposition 2.10.14 and Lemma 2.8.2 in terms of Mi’s

instead of ρW (yi → y′i)’s. We can see that all the constraints are linear in terms of µs
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(s ∈ S ) and Mi’s (i = 1, .., q). Therefore, under the assumption of Theorem 2.11.9, the

equality system we will construct later in the algorithm will be completely linear in terms

of µ and Mi’s.

Therefore, we can be certain about the linearity of the resulting systems to answer the

question of multiple steady states if the reaction network has such a forestal property.

Proposition 2.11.11. Suppose that the reaction network {S ,C ,R} has a forestal prop-

erty. A few definitions and assumptions are given as in Remark 2.11.8 for the reaction

network. Then, the question of whether the reaction network {S ,C ,R} can admit mul-

tiple steady states can be converted into finding whether there exists a nonzero µ ∈ RS

that is sign-compatible with the stoichiometric subspace S, satisfying any of the linear

systems of inequalities and/or equalities (generated from the conditions in Lemma 2.8.2

and Proposition 2.10.14 under different "valid" sign patterns of gW , hW ∈ RO ∩ ΓW and

different shelf assignments satisfying Proposition 2.8.1) in terms of µ and Mi’s.

2.12 Find a Forest Basis

In this section, we will find a systematic way to check whether the reaction network has

the forestal property. Note that the forestal property does not rely on the choice of the

orientation O or the set W of all representatives for the nonzeroth equivalence classes. In

other words, given the orientation O and W , we want to see that if there exists a basis

{bj}qj=1 of Ker⊥ LO ∩ ΓW which has a forest graph. If we find such a basis with a forest

basis graph, then we will call the basis a forest basis and conclude that Ker⊥ LO ∩ΓW has

a forest basis. To do this, let us start with a given basis {aj}qj=1. If {aj}qj=1 has a forest

graph, then we are done. From now on, we will follow the steps until either we find a forest

basis or we conclude that there is no forest basis for KerL⊥ LO ∩ ΓW .
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Let us find some necessary (and sufficient) conditions for the existence of a forest basis

for KerL⊥ LO ∩ ΓW .

Note that for a basis {aj}qj=1 of Ker⊥ LO ∩ΓW , each aj has at least 3-reaction support

from W . Therefore, the component of the graph under {aj}qj=1 containing aj will not be

trivial. The possible trivial component of the graph G under {aj}qj=1 is of the form yi → y′i

where yi → y′i ∈ W .

Lemma 2.12.1. Given the orientation O and W = {yi → y′i}wi=1 where yi → y′i is the rep-

resentative for the nonzeroth equivalence class Pi, the following statements are equivalent:

(i) y → y′ is a trivial component of the forest basis graph under {bj}qj=1, which is a

basis of Ker⊥ LO ∩ ΓW .

(ii) y → y′ is a trivial component of any basis graph of Ker⊥ LO ∩ ΓW .

(iii) For any given basis {aj}qj=1 of Ker⊥ LO ∩ ΓW , ajy→y′ = 0 for all 1 ≤ j ≤ q.

PROOF: If y → y′ is a trivial component of the basis graph under {aj}qj=1, then ajy→y′ = 0

for all 1 ≤ j ≤ q. For any basis {ãj}qj=1, ãjy→y′ = 0, for all 1 ≤ j ≤ q. Therefore, if there

is a forest basis {bj}qj=1, then bjy→y′ = 0 for all 1 ≤ j ≤ q. Hence, in the forest graph,

y → y′ is a trivial component of the basis graph.

On the other hand, if y → y′ is a trivial component of a forest basis graph of {bj}qj=1,

then bjy→y′ = 0 for all 1 ≤ j ≤ q. For any basis graph under {ãj}qj=1, ãjy→y′ = 0 for all

1 ≤ j ≤ q. Therefore y → y′ is a trivial component of any basis graph, in particular, of the

basis graph under {aj}qj=1.

Note that we are given a basis {aj}qj=1 of Ker⊥ LO ∩ ΓW . Let us find U0 ⊂ W of

maximum size, such that aj|U0 = 0, for all 1 ≤ j ≤ q. Each yi → y′i ∈ U0 is a trivial

component in the basis graph under {aj}qj=1. In particular, if there is a forest basis graph

under {bj}qj=1, then each yi → y′i ∈ U0 is a trivial component in the forest basis graph.

Note that U0 can be empty. We define W1 = W\U0.
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Next, let us consider the nontrivial components of a forest basis for q ≥ 1. In particular,

we consider q ≥ 2, as for q = 1, the basis graph is trivially a forest.

Note that from graph theory, we know if a component of a forest is a trivial tree, then

there is a single leaf. In other words, each trivial component of a forest has exactly one

leaf. Note that both ends of the longest path in a nontrivial tree are leaves. If not, then we

can show that there is a longer path, which is a contradiction. Therefore, there exists at

least two leaves in each nontrivial component of a forest.

Recall that when we define the basis graphG of {bj}qj=1, we also defineHj (1 ≤ j ≤ q)

based on bj , a bipartite graph with edges Vj = Aj ∪ Bj and edges Ej , where Aj = {yi →

y′i ∈ W : bjyi→y′i 6= 0}, Bj = {bj} and Ej = {{yi → y′i, b
j} : yi → y′i ∈ Aj}. If we assume

that the basis graph G of {bj}qj=1 is a forest, then each of its components is a tree. Let C

be a nontrivial component of G; we then find the longest path in C. We know that the ends

of the longest path of a nontrivial tree must be leaves of the nontrivial tree. Therefore, we

have the two possibilities for the location of the two leaves in the component C.

(i) Suppose that the ends of the longest path in C come from the same Hj in C, say Hl.

Then this component C is equal to Hl and we call this component C a nontrivial star.

(ii) Suppose that the ends of the longest path in C come from different Hj’s in C, say

Hl1 and Hl2 . Then the component C is not a star, and Hl1 , Hl2 must connect to C\Hl1 ,

C\Hl2 , via only yn1 → y′n1 , yn2 → y′n2 , respectively. If not, then there exists a longer path

in C, which is a contradiction.

Therefore, if there exists a forest basis {bj}qj=1 with a forest graphG, then for a nontriv-

ial component C of G, we have two situations: either (i) C is a nontrivial star and C = Hl

for some 1 ≤ l ≤ q, or (ii) C is not a star and there exist two distinct Hl1 and Hl2 in C such

that Hli connects to C\Hli via only yni → y′ni , for i = 1, 2.

Now if we assume thatKer⊥ LO∩ΓW has a forest basis, say {bj}qj=1 with a forest graph
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G, then there is a nontrivial component C in G. We will proceed through the following two

cases depending on whether the nontrivial component C is a star or not.

Case I: C is a nontrivial star.

Suppose that the forest basis graph G under {bj}qj=1 has a nontrivial star component,

then it is in the form of Hl for some 1 ≤ l ≤ q. Note that for all y → y′ ∈ Hl, we have

bjy→y′ = 0 if and only if j 6= l. Note also that for all y → y′ /∈ Hl, we have bly→y′ = 0. Let

U = {y → y′ ∈ W1 : y → y′ ∈ Hl} = {y → y′ : y → y′ ∈ Hl}. Then we have

i) |U | ≥ 3.

ii) bl|W1\U = 0.

iii) bj|U = 0 if and only if j 6= l.

iv) Every y → y′ ∈ U is a leaf of the forest graph in Hl. Reactions in U together with

bl make up Hl.

Therefore, supp bl = U , and the supp {bj : j = 1, ..., q and j 6= l} = W1\U . The

vectors {bj|W1\U}
q
j=1 are dependent as bl|W1\U = 0. We can also see that {bj|U}qj=1 are

colinear, as bj|U = 0 if and only if j 6= l. However, {bj|U ′}qj=1 are not colinear for any

subset U ′ of W1 that properly contains U . To show that, suppose not, i.e., assume there

exists U ⊂ U ′ ⊆ W1 such that {bj|U ′}qj=1 are colinear. Then there exists y → y′ ∈ U ′\U

such that {bj|U∪{y→y′}}qj=1 are colinear. Note that bl|U 6= 0 and bj|U = 0 for j 6= l, so

from colinearity we have bjy→y′ = 0 for j 6= l, no matter what value bly→y′ takes. Note that

bl|W1\U = 0; in particular, bly→y′ = 0. Thus, bjy→y′ = 0 for all 1 ≤ j ≤ q. Therefore, we

have y → y′ ∈ U0, which is a contradiction as we have assumed that y → y′ ∈ W1. We

say {bj|U}qj=1 are maximally colinear over W1 in the case that {bj|U}qj=1 (U ⊆ W1) are

colinear, and {bj|U ′}qj=1 are not colinear for any subset U ′ of W1 that properly contains U .

Let {aj}qj=1(q ≥ 1) be the given basis ofKer⊥ LO∩ΓW . Note that {aj}qj=1 and {bj}qj=1

are both bases of Ker⊥ LO ∩ ΓW . It is easy to see that for any set Ũ ⊆ W ,

(i) {bj|Ũ}
q
j=1 are dependent if and only if {aj|Ũ}

q
j=1 are dependent, and
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(ii) {bj|Ũ}
q
j=1 are colinear if and only if {aj|Ũ}

q
j=1 are colinear.

Therefore, we have

(i) {bj|W1\U}
q
j=1 are dependent if and only if {aj|W1\U}

q
j=1 are dependent, and

(ii) {bj|U}qj=1 are maximally colinear over W1 if and only if {aj|U}qj=1 are maximally

colinear over W1.

Lemma 2.12.2. We are given the orientation O and W = {yi → y′i}wi=1 where yi → y′i

is the representative for the nonzeroth equivalence class Pi. Suppose that there is a forest

basis {bj}qj=1 of Ker⊥ LO ∩ ΓW and the forest graph G under the basis {bj}qj=1 has a

nontrivial star component C. Then the following statements hold:

There exists U ⊆ W1 with |U | ≥ 3, such that

(i) There exists 1 ≤ l ≤ q, such that the support of bl ∈ C is U , and the support of

{bj : j = 1, ..., q and j 6= l} is W1\U .

(ii) For any given basis {aj}qj=1 of Ker⊥ LO ∩ ΓW , we have {aj|U}qj=1 are maximally

colinear over W1 and {aj|W1\U}
q
j=1 are dependent.

Lemma 2.12.3. We are given the orientation O and W = {yi → y′i}wi=1 where yi → y′i

is the representative for the nonzeroth equivalence class Pi. Suppose that there is a forest

basis {bj}qj=1 of Ker⊥ LO ∩ ΓW , and for the given basis {aj}qj=1 of Ker⊥ LO ∩ ΓW , there

exists U ⊂ W1 with |U | ≥ 3, such that {aj|U}qj=1 are maximally colinear over W1 and

{aj|W1\U}
q
j=1 are dependent. Then there exist a forest basis {b̃j}qj=1 of Ker⊥ LO ∩ΓW and

1 ≤ l ≤ q, such that the support of {b̃j : 1 ≤ j ≤ q, and j 6= l} is W1\U and the support

of b̃l is U .

PROOF: If q = 1, it is trivial. Let us assume that q ≥ 2.

Suppose there is a forest basis {bj}qj=1 and for a given basis {aj}qj=1, there exists U ⊆

W1 and |U | ≥ 3 such that {aj|U}qj=1 are maximally colinear over W1, and {aj|W1\U}
q
j=1

are dependent. Thus, {bj|U}qj=1 are maximally colinear over W1 and {bj|W1\U}
q
j=1 are

dependent.
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For any basis vectors {ãj}qj=1 of Ker⊥ LO ∩ ΓW , {ãj|U}qj=1 are maximally colinear

over W1. We assume that there are k (1 ≤ k ≤ q) nonzero vectors, say ãn1|U , ..., ãnk |U ,

and q − k zero vectors ãj|U for j 6= n1, ..., nk. Here k ≥ 1 is because U ⊆ W1 = W\U0.

Note that the support of each ãn1|U , ..., ãnk |U is U , as U ⊆ W1 = W\U0. In the basis graph

G of {ãj}qj=1, for all y → y′ ∈ U , {y → y′, ãj} ∈ E(G) if and only if j ∈ {n1, ..., nk}.

Note that k can be any integer between 1 and q, depending on the basis. Note that

|U | ≥ 3. If k ≥ 2, then there exists a cycle in the basis graph. Thus, if there is a forest

basis of Ker⊥ LO ∩ ΓW , k must be 1 for this forest basis. Therefore, for the forest basis

{bj}qj=1, there exists 1 ≤ l ≤ q such that for all j 6= l, bj|U = 0 and the support of bl|U is U .

Therefore, the support of bj (for any j 6= l) is contained in W1\U . In fact, the support of

{bj : j = 1, ..., q and j 6= l} is W1\U . Suppose not; then there exists y → y′ ∈ W1\U such

that bjy→y′ = 0 for all j 6= l. Since W1 = W\U0, bly→y′ 6= 0. Therefore, {bj|U∪{y→y′}}qj=1

are colinear, which contradicts with the fact that {bj|U}qj=1 are maximally colinear over

W1.

We have that the support of {bj : j = 1, ..., q and j 6= l} is W1\U . Is the support of

bl equal to U? We will not try to answer this directly. Instead, we will show that we can

find a forest basis {b̃j}qj=1 in which the support of {b̃j}qj=1 is W1\U and the support of b̃l

is U . To show this, consider the forest basis {bj}qj=1. If the support of bl is U , then we are

done. Otherwise, since {bj|W1\U}
q
j=1 are dependent, bl|W1\U can be expressed as a linear

combination of {bj|W1\U : 1 ≤ j ≤ q, and j 6= l}. We could use this fact to zeroize the

entries on bl|W1\U (while keeping other entries the same) to get a new set of basis {b̃j}qj=1

such that the support of {b̃j : j = 1, ..., q and j 6= l} is W1\U and the support of b̃l is U .

Note that {bj}qj=1 is a forest basis, and the basis graph of {b̃j}qj=1 is a subgraph of the forest

basis graph of {bj}qj=1, so {b̃j}qj=1 is also a forest basis.

Case II: C is a nontrivial component and not a star.

Suppose that the forest basis graph G under {bj}qj=1 has a nontrivial component which
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is not a star. It contains Hl1 and Hl2 satisfying the following conditions: for i = 1, 2,

Hli contains bli and at least 3 reactions, and Hli connects to the rest of the component via

yni → y′ni . If there is a forest basis {bj}qj=1 and the forest graph has a nontrivial component

which is not a star, then there exists for i = 1, 2, 1 ≤ li ≤ q, such that

i) For all y → y′ ∈ Hli\{yni → y′ni} and 1 ≤ j ≤ q, bjy→y′ 6= 0 if and only if j 6= li.

ii) bliyni→y′ni 6= 0 and there exists 1 ≤ j ≤ q with j 6= li such that bjyni→y′ni 6= 0.

iii) For all y → y′ /∈ Hli , b
li
y→y′ = 0.

For i = 1, 2, let U i = {y → y′ ∈ W1 : y → y′ ∈ Hli\{yni → y′ni}}, then |U i| ≥ 2.

Note that a leaf in a nontrivial component has only degree 1. For i = 1, 2, Hli connects to

the rest of the component via yni → y′ni . Therefore, U1 and U2 are disjoint. For i = 1, 2,

let V i = {y → y′ ∈ W1 : y → y′ ∈ Hli} = {y → y′ : y → y′ ∈ Hli}. Then for i = 1, 2,

V i = U i ∪ {yni → y′ni}. Note that for i = 1, 2, we have

i) |V i| ≥ 3.

ii) bli |W1\V i = 0.

iii) For 1 ≤ j ≤ q, bj|U i = 0 if and only if j 6= li.

iv) bliyni→y′ni 6= 0 and there exists 1 ≤ j ≤ q with j 6= li such that bjyni→y′ni 6= 0.

v) For every y → y′ ∈ U i, y → y′ is a leaf of the forest graph in Hli . Reactions of V i

together with bli make up Hli , and Hli connects to the rest of the nontrivial and non-star

like component through yni → y′ni .

Therefore, the support of bli is V i and the support of {bj : j = 1, ..., q and j 6= li} is

contained in W1\U i. Moreover, note that {bj : j = 1, ..., q and j 6= li} has support on

yni → y′ni . Then similarly as in the case I, we can show that the support of {bj : j =

1, ..., q and j 6= li} is W1\U i. The support of {bj : j = 1, ..., q and j 6= l1, l2} is contained

in (W1\U1) ∪ (W1\U2) = W1\(U1 ∪ U2). Note that each ak|U i (1 ≤ k ≤ q) can be

represented as a linear combination of bj|U i , j = 1, ..., q and each bj|U i (1 ≤ j ≤ q) can
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be represented as a linear combination of ak|U i , k = 1, ..., q. Note also that {bj|U i}qj=1 are

maximally colinear over W1, so {aj|U i}qj=1 are maximally colinear over W1.

Note that {bj|W1\V i}
q
j=1 are dependent, and we can claim that in case II, for i = 1, 2,

{bj|W1\U i}
q
j=1 are not dependent. To see that, just suppose the opposite, i.e. {bj|W1\U i}

q
j=1

are dependent. Note that bli |W1\U i can be expressed as a linear combination of {bj|W1\U i :

1 ≤ j ≤ q, and j 6= li}. We could use this fact to zeroize the entries on bli |W1\U i (while

keeping other entries the same), in particular, bliyni→y′ni , to get a new set of basis {b̃j}qj=1

where the support of b̃li is U i and the support of {b̃j : 1 ≤ j ≤ q, and j 6= li} is W1\U i.

Note that we have {b̃j|U i}qj=1 being maximally colinear over W1 and {b̃j|W1\U i} are de-

pendent. Note that since each b̃j has to have at least 3-reaction support, |U i| ≥ 3. Thus,

there is a forest basis {b̃j}qj=1 and there exists U = U i with |U | = |U i| ≥ 3 such that

{b̃j|U}qj=1 are maximally colinear over W1 and {b̃j|W1\U} are dependent; it then goes back

to the case I, which we have discussed. Therefore in case II, we assume that {bj|W1\V i}
q
j=1

are dependent, but {bj|W1\U i}
q
j=1 are not dependent.

Note that each bj|W1\V i (1 ≤ j ≤ q) can be represented as a linear combination of

ak|W1\V i , k = 1, ..., q. Thus {aj|W1\V i}
q
j=1 are dependent. Note that each ak|W1\U i (1 ≤

k ≤ q) can be represented as a linear combination of bj|W1\U i , j = 1, ..., q. Therefore,

{aj|W1\U i}
q
j=1 are not dependent.

Lemma 2.12.4. We are given the orientation O and W = {yi → y′i}wi=1 where yi → y′i is

the representative for the nonzeroth equivalence class Pi. Suppose there is a forest basis

{bj}qj=1 of Ker⊥ LO ∩ ΓW and the forest graph G has a nontrivial component C which is

not a star. Then the following statements hold:

There exist two disjoint subsets of W1, U1 and U2, where for i = 1, 2, |U i| ≥ 2, and

V i = U i ∪ {yni → y′ni} for some yni → y′ni ∈ W1\(U1 ∪ U2), such that

(i) There exists 1 ≤ li ≤ q, such that the support of bli is V i, and the support of bj
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(j 6= li) is contained in W1\U i. Furthermore, the support of bj (j 6= l1, l2) is contained in

W1\(U1 ∪ U2).

(ii) For any given basis {aj}qj=1 of Ker⊥ LO ∩ ΓW , we have {aj|U i}qj=1 are maximally

colinear over W1, {aj|W1\V i}
q
j=1 are dependent but {aj|W1\U i}

q
j=1 are not.

Lemma 2.12.5. We are given the orientation O and W = {yi → y′i}wi=1 where yi → y′i is

the representative for the nonzeroth equivalence class Pi. Suppose that

(i) There is a forest basis {bj}qj=1 of Ker⊥ LO ∩ ΓW .

(ii) For a given basis {aj}qj=1 of Ker⊥ LO ∩ ΓW , there exist two disjoint subsets of

W1, U1 and U2, where |U1|, |U2| ≥ 2, and two sets V1 and V2, where for i = 1, 2, V i =

U i∪{yni → y′ni} for some yni → y′ni ∈ W1\(U1∪U2), such that {aj|U i}qj=1 are maximally

colinear over W1, {aj|W1\V i}
q
j=1 are dependent but {aj|W1\U i}

q
j=1 are not.

Then for i = 1, 2, there exists a forest basis {b̃j,i}qj=1, and 1 ≤ li ≤ q such that the

support of {b̃j,i : 1 ≤ j ≤ q, and j 6= li} is W1\U i and the support of b̃li,i is V i.

PROOF: Suppose that the conditions (i) and (ii) hold. Therefore, for i = 1, 2, {bj|U i}qj=1

are maximally colinear over W1, {bj|W1\V i}
q
j=1 are dependent but {bj|W1\U i}

q
j=1 are not.

For i = 1, 2 and for any basis vectors {ãj}qj=1 of Ker⊥ LO ∩ ΓW , {ãj|U i}qj=1 are max-

imally colinear over W1. We assume that there are ki (1 ≤ ki ≤ q) nonzero vectors,

say ãn
i
1|U i , ..., ã

niki |U i and q − ki zero vectors. The support of each ãn
i
1|U i , ..., ã

niki |U i is

U i, as U i ⊆ W1 = W\U0. In the basis graph G of {ãj}qj=1, for each y → y′ ∈ U i,

{y → y′, aj} ∈ E(G) if and only if j ∈ {ni1, ..., niki}. Note that ki can be any inte-

ger between 1 and q, depending on the basis. Note that if ki ≥ 2, there exists a cy-

cle in the basis graph. Thus if there is a forest basis, then ki = 1 for this forest basis.

Therefore for the forest basis {bj}qj=1, there exists 1 ≤ li ≤ q such that the support

of {bj : 1 ≤ j ≤ q, and j 6= li} is contained in W1\U i. Furthermore, the support of

{bj : 1 ≤ j ≤ q, and j 6= li} is W1\U i. Suppose not, then there exists y → y′ ∈ W1\U i

such that bjy→y′ = 0, for all j 6= li. By the definition of W1, bliy→y′ 6= 0. Therefore,
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{bj|U i∪{y→y′}}qj=1 are colinear, which contradicts with the fact that {bj|U}qj=1 are maxi-

mally colinear over W1.

We have that the support of {bj : 1 ≤ j ≤ q, and j 6= li} is W1\U i. Is the support

of bli equal to V i? We will not try to answer this directly. Instead, we will show that,

for each i = 1, 2, we can find a forest basis {b̃j,i}qj=1 in which the support of {b̃j,i : j =

1, ..., q and j 6= li} is W1\U i and the support of b̃li,i is V i.

To show this, consider the forest basis {bj}qj=1. We will do it for each i = 1 and 2. If

the support of bli is V i, then we are done for the case i. Otherwise, since {bj|W1\V i}
q
j=1

are dependent, bli |W1\V i can be expressed as a linear combination of {bj|W1\V i : 1 ≤

j ≤ q, and j 6= li}. We could use this fact to zeroize the entries on bli |W1\V i (while

keeping other entries the same) to get a new set of basis {b̃j,i}qj=1, such that the support of

{b̃j,i : j = 1, ..., q and j 6= li} is W1\U i and the support of b̃li,i is either U i or V i. Note

that since we assume {bj|W1\V i} are dependent and {bj|W1\U i} are not dependent, then

{b̃j,i|W1\V i} are dependent and {b̃j,i|W1\U i} are not dependent. Thus b̃li,iyni→y′ni 6= 0, from the

formation of {b̃j,i}qj=1 from {bj}qj=1. Therefore, the support of b̃li,i is V i. Next we want to

show that {b̃j,i}qj=1 is a forest basis. We have two cases depending on whether bliyni→y′ni is

zero or not.

(i) Note that if bliyni→y′ni 6= 0, then the basis graph of {b̃j,i}qj=1 is a subgraph of the forest

basis graph of {bj}qj=1. In this case, since {bj}qj=1 is a forest basis {b̃j,i}qj=1 is also a forest

basis.

(ii) Note that if bliyni→y′ni = 0, then we can still show that {b̃j,i}qj=1 is also a forest basis.

To show it, note that the basis graph of {b̃j,i}qj=1 is not a subgraph of the forest basis graph of

{bj}qj=1. However, in the basis graph of {b̃j,i}qj=1, if we remove the edge between yni → y′ni

and b̃li,i, then the new graph is a subgraph of the forest basis graph of {bj}qj=1. Thus, the

new graph is a forest. However, note that in the new graph the component containing b̃li,i

is a star and disconnected with the components containing b̃j,i for j 6= li. In the new graph,
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if we add back the edge between yni → y′ni and b̃1,i to get back the basis graph of {b̃j,i}qj=1,

we reduce the component by 1, increase the number of edges by 1 and keep the number of

vertices. Then #(components)+#(edges)= #(vertices) holds for the new graph as well as

for the basis graph of {b̃j,i}qj=1. Therefore, {b̃j,i}qj=1 is also a forest basis.

Remark 2.12.6. We have proved the following statement.

We are given the orientation O and W = {yi → y′i}wi=1 where yi → y′i is the represen-

tative for the nonzeroth equivalence class Pi. Given a basis {aj}qj=1 of Ker⊥ LO ∩ ΓW , if

there exists a forest basis {bj}qj=1, then the forest basis graph has a nontrivial component,

which is either a star or not a star. Therefore, one of the following must be true:

(a) There exist U ⊂ W1 with |U | ≥ 3, and 1 ≤ l ≤ q, such that the support of

bl is U and the support of bj (j 6= l) is contained in W1\U . Moreover, the support of

{bj : j =, ..., q and j 6= l} is W1\U . We have {aj|U}qj=1 are maximally colinear over

W1and {aj|W1\U} are dependent.

(b) There exists two disjoint subsets of W1, U1 and U2, where for |U1|, |U2| ≥ 2, and

two sets V1 and V2, where for i = 1, 2, V i = U i ∪ {yni → y′ni} for some yni → y′ni ∈

W1\(U1 ∪ U2), such that

(i) There exists 1 ≤ li ≤ q such that the support of bli is V i and the support of {bj : j =

1, ..., q and j 6= li} is W1\U i.

(ii) The support of {bj : j = 1, ..., q and j 6= l1, l2} is contained in W1\(U1 ∪ U2).

(iii) {aj|U i}qj=1 are maximally colinear over W1, {aj|W1\V i}
q
j=1 are dependent but

{aj|W1\U i}
q
j=1 are not.

Remark 2.12.7. We have the following statement.

Suppose that there is a forest basis {bj}qj=1 ofKer⊥ LO∩ΓW . The following statements

are equivalent.

(i) Given a basis {aj}qj=1 of Ker⊥ LO , and a set U ⊂ W1 with |U | ≥ 3, {aj|U}qj=1 are

maximally colinear over W1 and {aj|W1\U}
q
j=1 are dependent.
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(ii) There exists a forest basis {b̃j}qj=1 and 1 ≤ l ≤ q, such that the support of {b̃j : 1 ≤

j ≤ q, and j 6= l} is W1\U and the support of b̃l is U .

Remark 2.12.8. We have the following statement.

Suppose that there is a forest basis {bj}qj=1 ofKer⊥ LO∩ΓW . The following statements

are equivalent.

(i) Given a basis {aj}qj=1 of Ker⊥ LO , two disjoint subsets of W1, U1 and U2, where

|U1|, |U2| ≥ 2, and two sets V1 and V2, where for i = 1, 2, V i = U i ∪ {yni → y′ni}

for some yni→y′ni ∈ W1\(U1 ∪ U2), we have {aj|U i}qj=1 are maximally colinear over W1,

{aj|W1\V i}
q
j=1 are dependent but {aj|W1\U i}

q
j=1 are not dependent.

(ii) For i = 1, 2, there exists a forest basis {b̃j,i}qj=1 and 1 ≤ li ≤ q, such that the

support of {b̃j,i : 1 ≤ j ≤ q, and j 6= li} is W1\U i and the support of b̃li,i is V i.

From Remarks 2.12.6, 2.12.7 and 2.12.8, we will design an algorithm to check whether

Ker⊥ LO ∩ ΓW has a forest basis or not. If yes, the algorithm will find such a basis.

In the algorithm, we carry out the following steps to check whether there is a forest

basis in Ker⊥ LO ∩ ΓW , given a basis {aj}qj=1. We start with p = q.

Step 1:

We first check if one of conditions (a) or (b) in Remark 2.12.6 is true. If not, then we

claim Ker⊥ LO ∩ ΓW does not have a forest basis and we are done. Otherwise, go to Step

2.

Step 2:

First we discuss it in two situations in Remark 2.12.6.

Case (i): If (a) is true, then we let U1 = V1 = U . Let W2 = W1\U1, and W ′
2 = W1\V1.

Therefore, there exists U1 ⊆ W1 with |U1| ≥ 3, such that {aj|U1}
p
j=1 are maximally

colinear over W1 and {aj|W ′2} are dependent. There exist a forest basis {bj}pj=1 and 1 ≤

l ≤ p such that supp bl = V1, and supp {bj : j = 1, ..., p and j 6= l} = W2.
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Case (ii): If (b) is true, then we let U1 = U1, V 1 = U1 ∪ {yn1 → y′n1}, and l = l1. Let

W2 = W1\U1, and W ′
2 = W1\V1.

Therefore, there exists U1 ⊆ W1 with |U1| ≥ 2, such that {aj|U1}
p
j=1 are maximally

colinear over W1, {aj|W ′2} are dependent but {aj|W2} are not. There exist a forest basis

{bj}pj=1 and 1 ≤ l ≤ p such that supp bl = V1, and supp {bj : j = 1, ..., p and j 6= l} =

W2.

Then, we deal with both cases in one situation.

Without loss of generality, let us assume that l = p; let us assume the basis vectors

{aj}pj=1 are reordered so that if ak|U1 = 0, then aj|U1 = 0 for all 1 ≤ j ≤ k. Note that

{aj|U1}
p
j=1 are maximally colinear over W1. There exists βj for each 1 ≤ j ≤ p− 1, such

that aj|U1 = βja
p|U1 . We then may replace aj 1 ≤ j ≤ p − 1 with aj − βjap in the basis.

In the new basis, aj|U1 = 0 for all 1 ≤ j ≤ p − 1. Because of the maximally colinearity

over W1, we can show that the support of {aj : 1 ≤ j ≤ p − 1} is W2. Note that apU1

will be unique up to a multiple. Since {ajW ′2}
p
j=1 are dependent, ap|W ′2 lies in the span

of {aj|W ′2 : 1 ≤ j ≤ p − 1}. Therefore, there exists αj for each 1 ≤ j ≤ p − 1, such

that apW ′2 =
∑

1≤j≤p−1
αja

j|W ′2 . In the new basis we may replace ap with ap −
∑

1≤j≤p−1
αja

j .

We will rename the most updated basis vectors as {aj,1}pj=1. Now we have that for all

y → y′ ∈ W1\W ′
2, ap,1y→y′ 6= 0 from the definition of W1, and ap,1|W ′2 = 0. Therefore, the

support of ap,1 is V1 and the support of {aj,1 : 1 ≤ j ≤ p − 1} is W2. Note that if (a) is

true, then ap,1 is unique up to a multiple. If (b) is true, then it is still true that ap,1 is unique

up to a multiple. Suppose not. Note that ap,1|U1 is unique up to a multiple, and we assume

ap,1|V1 is not unique up to a multiple, then we can generate a new vector whose support is

V1\U1. This contradicts with the fact that the support of every vector in Ker⊥ LO ∩ ΓW

must contain at least 3 reactions. Note that the support of bp (we assume l = p) is V1, and

the support of {bj : j = 1, ..., p and j 6= p} is W2. In both cases of (a) and (b) we take

bp = ap,1.
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Let us consider the basis {aj,1 : 1 ≤ j ≤ p− 1}. We can claim that the subspace span

{aj,1 : 1 ≤ j ≤ p−1} has a forest basis if and only if the subspace span {aj,1 : 1 ≤ j ≤ p}

has a forest basis. In particular, the subspace span {aj,1 : 1 ≤ j ≤ q− 1} has a forest basis

if and only if Ker⊥ LO ∩ ΓW has a forest basis. We will only need to prove for the case

that p = q and the proof will be given shortly in Lemma 2.12.10. We rename the basis

{aj,1 : 1 ≤ j ≤ p− 1} as {aj}p
new

j=1 , where pnew = p− 1. If pnew equals 1, we are done and

claim that Ker⊥ LO ∩ ΓW has a forest basis. Otherwise, we update p to be pnew and go to

Step 1.

In the end, we will have two situations: one is that we conclude that Ker⊥ LO ∩ ΓW

does not have a forest basis; the other is that when pnew = 1, we find {bj}qj=1, which is a

forest basis of Ker⊥ LO ∩ΓW (we know {bj}qj=1 is a forest basis by its formation process).

Remark 2.12.9. Note that if case (b) in Remark 2.12.6 holds, we have two sets U1 and U2

and we only use U1 = U1 in Step 2. To save some time, we may do step two for U1 = U1

and then do it for U1 = U2 (update V 1, W2, and W ′
2 accordingly) before going back to

Step 1.

Lemma 2.12.10. We are given the orientation O and W = {yi → y′i}wi=1 where yi → y′i is

the representative for the nonzeroth equivalence class Pi. The subspace span {aj,1 : 1 ≤

j ≤ q − 1} (where p = q in Step 2 of the algorithm) has a forest basis if and only if Ker⊥

LO ∩ ΓW has a forest basis.

PROOF: If Ker⊥ LO ∩ ΓW has a forest basis {bj}qj=1 as we assumed, then the subspace

span {aj,1 : 1 ≤ j ≤ q − 1} also has a forest basis. To see this, note that the graph

of {bj}q−1
j=1 can be obtained from removing bq from the graph of {bj}qj=1. In case (a),

W2 = W ′
2, removing bq reduces the number of the vertices by 1, reduces the number of

edges by |U1|, and increases the number of components by |U1| − 1. Therefore, the change

of #(vertices)−(#(components)+#(edges)) is −1− (−|U1|+ |U1| − 1) = 0. In case (b),
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W2 6= W ′
2. Removing bq reduces the number of the vertices by 1, reduces the number of

edges by |U1|+ 1, and increases the number of components by |U1|. Therefore, the change

of #(vertices)−(#(components)+#(edges)) is −1− (−(|U1|+ 1) + |U1|) = 0.

On the other hand, we assume the subspace span {aj,1 : 1 ≤ j ≤ q − 1} has a forest

basis. We will show Ker⊥ LO ∩ ΓW has a forest basis. To see this, note that supp bq = V1

and supp {bj : 1 ≤ j ≤ q−1} = W2. In case (a), V1∩W2 = ∅. If {bj}q−1
j=1 has a forest graph,

then to get the graph of {bj}qj=1, we add an independent component to the graph. Therefore,

the new graph (of {bj}qj=1) is still a forest graph. In case (b), V1 ∩W2 = {yn1 → y′n1}. If

{bj}q−1
j=1 has a forest graph, then to get the graph of {bj}qj=1, we just attach an independent

component to a component in the old graph of {bj}q−1
j=1 through an edge. Therefore, the

new graph (of {bj}qj=1) is still a forest graph.
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Chapter 3

THE HIGHER DEFICIENCY ALGORITHM

3.1 Overview

The Higher Deficiency Algorithm, implemented in [16], gives results which are similar

to those of the Advanced Deficiency Algorithm (see [7] and [8]). It is a reformation and

extension of the Advanced Deficiency Algorithm. The Higher Deficiency Algorithm al-

ways provides a result when the Advanced Deficiency Algorithm gives one and sometimes

provides results when the Advanced Deficiency Algorithm stays silent. In terms of the ap-

proach to answer the question of whether a given reaction network has the capacity to admit

multiple steady states, the Higher Deficiency Algorithm also produces systems of equal-

ities and inequalities in terms of µ ∈ RS and Mi’s, in the same way that the Advanced

Deficiency Algorithm does.

In this chapter, we will present the steps for finding the inequality/equality systems,

based on the theory in Chapter 2.
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3.2 Constructing Inequality/Equality Systems

We will list the steps for finding the inequality/equality systems, and apply the algorithm

on reaction network (3.2.1) given below to help illustrate the steps in the algorithm.

E1 + S1 
 E1S1 
 E1 + S2 
 E1S2 → E1 + S3

E2 + S3 
 E2S3 → E2 + S2 
 E2S2 → E2 + S1

E3 + S1 
 E3S1 → E3 + S3 
 E3S3 → E3 + S2

Step 1: Choose an initial Orientation

We choose an orientation O for the reaction network.

For reaction network (3.2.1), we can choose O = {E1 + S1 → E1S1, E1S1 → E1 +

S2, E1 + S2 → E1S2, E1S2 → E1 + S3, E2 + S3 → E2S3, E2S3 → E2 + S2, E2 + S2 →

E2S2, E2S2 → E2 + S1, E3 + S1 → E3S1, E3S1 → E3 + S3, E3 + S3 → E3S3, E3S3 →

E3 + S2}.

Remark 3.2.1. Let {vl}dl=1 be a basis forKer LO . Let y → y′ ∈ O . Consider the following

two statements.

(i) ωy→y′ ∈ Ker⊥ LO .

(ii) For all 1 ≤ l ≤ d, vly→y′ = 0.

It is easy to see that (i) and (ii) are equivalent. Therefore, if for all 1 ≤ l ≤ d, vly→y′ = 0,

then y → y′ lies in the zeroth equivalence class P0.

Let y → y′, ỹ → ỹ′ ∈ O\P0. We consider the following two statements.

(iii) There exists α 6= 0 such that ωy→y′ − αωỹ→ỹ′ ∈ Ker⊥ LO .

(iv) There exists α 6= 0 such that vly→y′ = αvlỹ→ỹ′ , for all 1 ≤ l ≤ d.

We will show that (iii) and (iv) are equivalent. We can then use (iv) to find nonzeroth

equivalence classes and therefore fundamental classes. To see that, note that if there exists

α 6= 0 such that ωy→y′ − αωỹ→ỹ′ ∈ Ker⊥ LO , then vly→y′ = αvlỹ→ỹ′ for all 1 ≤ l ≤ d. On
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the other hand, suppose that for all 1 ≤ l ≤ d, vly→y′ = αvlỹ→ỹ′ . Since any v ∈ Ker LO

is a linear combination of v1, ..., vd, we can easily show that vy→y′ = αvỹ→ỹ′ . Therefore

ωy→y′ − αωỹ→ỹ′ ∈ Ker⊥ LO .

In the algorithm, we will use the alternative statements (ii) and (iv) to find the equiva-

lence classes and therefore fundamental classes.

Step 2: Find the Equivalence Classes and Fundamental Classes

First, we find a basis for Ker LO , say v1, ...., vd, where d = dim Ker LO .

Then based on Remark 3.2.1, we find the equivalence classes by the following rules:

(i) For y → y′ ∈ O , if for all 1 ≤ l ≤ d, vly→y′ = 0, then y → y′ ∈ P0, which is the

zeroth equivalence class.

(ii) For y → y′, ỹ → ỹ′ ∈ O\P0, if there exists α 6= 0 such that vly→y′ = αvlỹ→ỹ′ for all

1 ≤ l ≤ d, then y → y′ and ỹ → ỹ′ belong to the same equivalence class.

We then name each equivalence class from (ii) as Pi, i = 1, .., w. Recall that each fun-

damental class Ci consists of all reactions in the same equivalence class and their reverses

if there are any. Also recall the comments in Remarks 2.7.2 and 2.7.3. Next, we will check

if the following statements hold:

(a) All reactions in the zeroth equivalence class P0 are reversible (with respect to R).

In other words, P0 and C0 are reversible.

(b) For two irreversible (with respect to R) reactions y → y′ and ỹ → ỹ′ in the same

equivalence class Pi (1 ≤ i ≤ w), there exists α > 0 such that vly→y′ = αvlỹ→ỹ′ for all

1 ≤ l ≤ d.

If one of the statements above does not hold, then we claim the reaction network cannot

have the capacity to admit multiple steady states and exit the algorithm.
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For reaction network (3.2.1), d = dim Ker LO = 4. A basis {v1, v2, v3, v4} for the

linear space Ker LO , is given as follows:



v1 v2 v3 v4

E1 + S1 → E1S1 1 0 0 0

E1S1 → E1 + S2 1 0 0 0

E1 + S2 → E1S2 0 1 1 0

E1S2 → E1 + S3 0 1 1 0

E2 + S3 → E2S3 0 1 0 1

E2S3 → E2 + S2 0 1 0 1

E2 + S2 → E2S2 1 0 0 1

E2S2 → E2 + S1 1 0 0 1

E3 + S1 → E3S1 0 0 0 1

E3S1 → E3 + S3 0 0 0 1

E3 + S3 → E3S3 0 0 1 0

E3S3 → E3 + S2 0 0 1 0


Therefore reaction network (3.2.1) has the following w = 6 equivalence classes:

P0 = {}

P1 = {E1 + S1 → E1S1, E1S1 → E1 + S2}

P2 = {E1 + S2 → E1S2, E1S2 → E1 + S3}

P3 = {E2 + S3 → E2S3, E2S3 → E2 + S2}

P4 = {E2 + S2 → E2S2, E2S2 → E2 + S1}

P5 = {E3 + S1 → E3S1, E3S1 → E3 + S3}

P6 = {E3 + S3 → E3S3, E3S3 → E3 + S2}
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Reaction network (3.2.1) has the following fundamental classes:

C0 = {}

C1 = {E1 + S1 → E1S1, E1S1 → E1 + S1, E1S1 → E1 + S2, E1 + S2 → E1S1}

C2 = {E1 + S2 → E1S2, E1S2 → E1 + S2, E1S2 → E1 + S3}

C3 = {E2 + S3 → E2S3, E2S3 → E2 + S3, E2S3 → E2 + S2}

C4 = {E2 + S2 → E2S2, E2S2 → E2 + S2, E2S2 → E2 + S1}

C5 = {E3 + S1 → E3S1, E3S1 → E3 + S1, E3S1 → E3 + S3}

C6 = {E3 + S3 → E3S3, E3S3 → E3 + S3, E3S3 → E3 + S2}

We can verify that statements (a) and (b) (in Step 2) both hold for reaction network

(3.2.1), as P0 is empty and each Pi (1 ≤ i ≤ 6) has at most one irreversible reaction. We

can move on to the next step.

Step 3: Find the Colinkage Sets

Divide the reaction network into subnetworks within which the reactions are from the

same fundamental class and all reactions from the same fundamental class are in the same

subnetwork.

For reaction network (3.2.1), the subnetworks are:

Fundamental Class C1 subnetwork: E1 + S1 
 E1S1 
 E1 + S2

Fundamental Class C2 subnetwork: E1 + S2 
 E1S2 → E1 + S3

Fundamental Class C3 subnetwork: E2 + S3 
 E2S3 → E2 + S2

Fundamental Class C4 subnetwork: E2 + S2 
 E2S2 → E2 + S1

Fundamental Class C5 subnetwork: E3 + S1 
 E3S1 → E3 + S3

Fundamental Class C6 subnetwork: E3 + S3 
 E3S3 → E3 + S2

Then the colinkage sets of reaction network (3.2.1) are {E1 + S1, E1S1, E1 + S2},

154



{E1 + S2, E1S2, E1 + S3}, {E2 + S3, E2S3, E2 + S2}, {E2 + S2, E2S2, E2 + S1}, {E3 +

S1, E3S1, E3+S3}, and {E3+S3, E3S3, E3+S2}. The strong colinkage sets are: withinC1,

{E1+S1, E1S1, E1+S2} (terminal); withinC2, {E1+S2, E1S2} (non-terminal), {E1+S3}

(terminal); within C3, {E2 + S3, E2S3} (non-terminal), {E2 + S2} (terminal); within C4,

{E2 + S2, E2S2} (non-terminal), {E2 + S1} (terminal); within C5, {E3 + S1, E3S1} (non-

terminal), {E3 + S3} (terminal); within C6, {E3 + S3, E3S3} (non-terminal), {E3 + S2}

(terminal).

Step 4: Pick W ⊆ O

Recall that if all reactions in an equivalence class are reversible (with respect to R, not

O), then it is called a reversible equivalence class; otherwise, it is called a nonreversible

equivalence class.

Pick a representative yi → y′i ∈ Pi for each equivalence class Pi (0 ≤ i ≤ w) by the

following rules:

If the equivalence class is nonreversible, then pick an irreversible reaction as its repre-

sentative; otherwise, pick any reversible reaction.

Let W = {yi → y′i : i = 1, .., w}.

For network (3.2.1), we choose W = {E1S1 → E1 + S2, E1S2 → E1 + S3, E2S3 →

E2 + S2, E2S2 → E2 + S1, E3S1 → E3 + S3, E3S3 → E3 + S2}. Note that |W | = w = 6.

We also name the ith reaction listed in the set W as yi → y′i, for 1 ≤ i ≤ 6. For example,

y1 → y′1 = E1S1 → E1 + S2, and y5 → y′5 = E3S1 → E3 + S3.

Step 5: Realign the Orientation (if necessary)

We will realign the orientation (if necessary) so that the following is true:

In each nonzeroth equivalence class Pi (1 ≤ i ≤ w), for any y → y′ ∈ Pi, there exists

αy→y′ > 0 such that ωyi→y′i − αy→y′ωy→y′ ∈ Ker
⊥ LO ; or equivalently, for a basis {vl}dl=1

of Ker LO , there exists αy→y′ > 0 such that vlyi→y′i = αy→y′v
l
y→y′ for all 1 ≤ l ≤ d.
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If the statement above holds for the current orientation O , then nothing needs to be

done and we move to the next step. Otherwise, suppose that for y → y′ ∈ Pi\{yi →

y′i} there exists αy→y′ < 0 such that ωyi→y′i − αy→y′ωy→y′ ∈ Ker⊥ LO ; or equivalently,

for a basis {vl}dl=1 of Ker LO , there exists αy→y′ < 0 such that vlyi→y′i = αy→y′v
l
y→y′ ,

for all 1 ≤ l ≤ d. Since the statement (b) in Step 2 is satisfied, Pi must be reversible

and so is y → y′. We can realign the orientation O to Õ by replacing y → y′ with

y′ → y. Therefore, in the new orientation Õ , for 1 ≤ i ≤ w, there exists αy′→y > 0

such that ωyi→y′i − αy′→yωy′→y ∈ Ker⊥ LÕ ; or equivalently, for a basis {ṽl}dl=1 of Ker

LÕ , there exists αy′→y > 0 such that ṽlyi→y′i = αy′→yṽ
l
y′→y for all 1 ≤ l ≤ d. We will

repeat this replacement process to update the orientation until the condition mentioned at

the beginning of Step 5 is satisfied. Without loss of generality, we will still call the new

orientation O .

Note that since we do not replace the representative in the realignment, W = {yi →

y′i : i = 1, .., w} is unchanged.

For reaction network (3.2.1), there is no change made to the orientation.

Step 6: Find a basis for Ker⊥ LO ∩ ΓW

In this step , we find a basis for Ker⊥ LO ∩ ΓW , say a1, ..., aq, where q = dim Ker⊥

LO ∩ ΓW = w − d.
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For reaction network (3.2.1), q = w − d = 6 − 4 = 2. A basis {a1, a2} for Ker⊥

LO ∩ ΓW , is given as follows:



a1 a2

E1S1 → E1 + S2 0 1

E1S2 → E1 + S3 1 0

E2S3 → E2 + S2 −1 0

E2S2 → E2 + S1 0 −1

E3S1 → E3 + S3 1 1

E3S3 → E3 + S2 −1 0



Step 7: Determine linearity by whether there exists a forest basis in Ker⊥ LO ∩ ΓW

We will follow the procedure for finding out whether there exists a forest basis inKer⊥

LO ∩ ΓW as listed in Section 2.12.

Suppose there exists a forest basis in Ker⊥ LO ∩ ΓW . By trying to solve for a nonzero

µ ∈ RS that is sign compatible with S from the linear inequality/equality systems (in

terms of µ and Mi’s), we can answer the question of whether the given reaction network

has the capacity to admit multiple steady states. In this case, we say the resulting inequality

systems are linear.

Suppose there does not exist any forest basis in Ker⊥ LO ∩ΓW ; then besides the linear

inequalities and equalities in the system, we may need additional nonlinear constraints

(equalities) on the Mi’s (which we will not mention in detail in this thesis) to determine the

answer to the question of multiple steady states. In this case, we say the resulting inequality

systems are nonlinear.

For reaction network (3.2.1), we find out there exists a forest basis {b1, b2} of Ker⊥

LO ∩ ΓW , where b1 = a1 = [0, 1,−1, 0, 1,−1] and b2 = a2 = [1, 0, 0,−1, 1, 0]. Therefore,
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the inequality systems we will construct in later steps to answer the question of multiple

steady states are linear.

Step 8 : Pick Sign Patterns for gW , hW ∈ RO ∩ ΓW

We pick two sign patterns for RO satisfying the following conditions:

(i) The two sign patterns are not both zero (meaning the zero vector in RO).

(ii) The two sign patterns are both sign-compatible with Ker LO .

(iii) For each sign pattern and each nonreversible equivalence class Pi (1 ≤ i ≤ w), the

corresponding sign projected on the representative of Pi (and all reactions in Pi) is positive.

We then choose the sign patterns for gW , hW ∈ RO ∩ ΓW as projections of these two

sign patterns on W .

If no such sign patterns exist, we will claim that the reaction network does not have the

capacity to admit multiple steady states and exit the algorithm.

In reaction network (3.2.1), all Pi’s (2 ≤ i ≤ 6) are nonreversible. Thus for each

yi → y′i ∈ W (2 ≤ i ≤ 6), the signs of gW (yi → y′i) and hW (yi → y′i) both have to

be positive. Note that P1 is reversible. We can verify that any pair of sign assignment

((positive, positive), (positive, negative), or (negative, zero), etc.) to gW (y1 → y′1) and

hW (y1 → y′1) will make the sign patterns of gW and hW satisfy the three conditions (i),

(ii) and (iii). For this step, let us pick the signs of gW (y1 → y′1) and hW (y1 → y′1) both to

be positive. Therefore, the sign of each gW (yi → y′i) (or hW (yi → y′i)) for 1 ≤ i ≤ 6 is

positive.

Step 9: Choose Shelvings for reactions in nondegenerate fundamental classes

Note that the shelvings assignments are applicable for reactions in nondegenerate fun-

damental classes Ci’s. We assign a shelf to each reaction in a nondegenerate fundamental

class following the conditions in Proposition 2.8.1.

For reaction network (3.2.1), note that from Step 8 all signs for gW (yi → y′i)’s (1 ≤
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i ≤ 6) are positive. Note also that from Step 3, the nontrivial strong colinkage set in

fundamental class C1 is terminal and every nontrivial strong colinkage set in fundamental

class Ci (2 ≤ i ≤ 6) is non-terminal. Therefore, reactions in C1 can be all on the upper,

middle or lower shelf and reactions in Ci (2 ≤ i ≤ 6) must be all on the middle shelf. One

of the shelving assignments is given as follows, where we put reactions in C1 on the upper

shelf:

U1 = {E1 + S1 → E1S1, E1S1 → E1 + S1, E1S1 → E1 + S2},M1 = {},L1 = {}

U2 = {},M2 = {E1 + S2 → E1S2, E1S2 → E1 + S2, E1S2 → E1 + S3},L2 = {}

U3 = {},M3 = {E2 + S3 → E2S3, E2S3 → E2 + S3, E2S3 → E2 + S2},L3 = {}

U4 = {},M4 = {E2 + S2 → E2S2, E2S2 → E2 + S2, E2S2 → E2 + S1},L4 = {}

U5 = {},M5 = {E3 + S1 → E3S1, E3S1 → E3 + S1, E3S1 → E3 + S3},L5 = {}

U6 = {},M6 = {E3 + S3 → E3S3, E3S3 → E3 + S3, E3S3 → E3 + S2},L6 = {}

where Ui, Mi and Li are the upper, middle and lower shelves, respectively, for the nonde-

generate fundamental class Ci (1 ≤ i ≤ 6).

In Steps 10 to 13, we will construct the inequality system according to the sign patterns

for gW , hW ∈ RO ∩ ΓW chosen in Step 8 and the shelving assignments for nondegenerate

fundamental classes chosen in Step 9.

Step 10: Add Shelving Equalities and Inequalities for nondegenerate fundamental classes

Recall that for each nondegenerate fundamental class Ci (1 ≤ i ≤ w), we let Mi =

ln(ρW (yi → y′i)) if ρW (yi → y′i) > 0; otherwise, we let Mi be an arbitrary (large and

negative) number which is to be solved later.

Suppose thatCi (1 ≤ i ≤ w) is a nondegenerate fundamental class. Let y → y′ ∈ Ci. If

the reaction y → y′ is on the middle shelf of the bookcase corresponding to the fundamental

class Ci, then y · µ = Mi is added to the inequality system. If y → y′ is on the upper shelf,
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then y · µ > Mi is added to the inequality system. If y → y′ is on the lower shelf, then

y · µ < Mi is added to the inequality system.

For reaction network (3.2.1), recall the shelving assignment given in Step 9. Recall also

thatW = {E1S1 → E1+S2, E1S2 → E1+S3, E2S3 → E2+S2, E2S2 → E2+S1, E3S1 →

E3 + S3, E3S3 → E3 + S2} and we named the ith reaction listed in the set W as yi → y′i.

The inequalities and (simplified) equalities generated in Step 10 according to the shelving

assignment given in Step 9 are as follows:

µE1 + µS1 > M1

µE1S1 > M1

µE1 + µS2 > M1

µE1 + µS2 = M2 = µE1S2

µE2 + µS3 = M3 = µE2S3

µE2 + µS2 = M4 = µE2S2

µE3 + µS1 = M5 = µE3S1

µE3 + µS3 = M6 = µE3S3

Step 11: Add Upper and Lower Shelves Inequalities for Pi’s with nondegenerate Ci’s

Suppose Ci (1 ≤ i ≤ w) is a nondegenerate fundamental class. Let y → y′ ∈ Pi. If

gW (yi → y′i) > 0 and y → y′ is on the upper shelf or if gW (yi → y′i) < 0 and y → y′ is on

the lower shelf, then y · µ < y′ · µ is added to the inequality system. If gW (yi → y′i) > 0

and y → y′ is on the lower shelf or if gW (yi → y′i) < 0 and y → y′ is on the upper shelf,

then y · µ > y′ · µ is added to the inequality system.

For reaction network (3.2.1), note that the sign of gW (y1 → y′1) is chosen to be posi-

tive in Step 8. Note also that from the shelving assignment given in Step 9, all reactions
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in nondegenerate fundamental class C1 are on the upper shelf. Therefore the following

inequalities are added to the system:

µE1 + µS1 < µE1S1 (3.2.1)

µE1S1 < µE1 + µS2

Step 12: Add Equalities and Inequalities for Pi’s with degenerate Ci’s

Suppose Ci (1 ≤ i ≤ w) is a degenerate fundamental class. Let y → y′ ∈ Pi; if

hW (yi → y′i) > 0, then y ·µ > y′ ·µ is added to the inequality system; if hW (yi → y′i) < 0,

then y · µ < y′ · µ is added to the system; if hW (yi → y′i) = 0, then y · µ = y′ · µ is added

to the inequality system.

For reaction network (3.2.1), this step is not applicable as there is no degenerate funda-

mental class.

Step 13: Add M Equalities and Inequalities

Note the conditions in Proposition 2.10.14 are comparisons among ρW (yi → y′i); we

can directly convert them to comparisons among Mi’s.

Recall that two multisetsQ1 andQ2 are nonsegregated if one of the following two cases

holds:

(I) min Q1 < max Q2, and min Q2 < max Q1.

(II) min Q1 = max Q2, and min Q2 = max Q1.

Recall that in Remark 2.10.3, we define two multisets Q1 and Q2 as nonsegregated if

one of the following two cases holds:

(i) There exist a from one of two multisets and b < c from the other multiset such that

b < a < c.

(ii) All elements in both multisets are equal or there exists a 6= b such that in each

multiset, a portion of elements are equal to a and the rest (both not empty) are equal to b.
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Recall that in Remark 2.10.4, we define that two multisetsQ1 andQ2 are nonsegregated

if at least one of the following two cases holds:

(i) There exist a from one of two multisets and b < c from the other multiset such that

b < a < c.

(ii’) All elements in Q1 and Q2 are equal, or there exist a, b ∈ Q1 and c, d ∈ Q2 such

that c = a < b = d.

We will use the definition in Remark 2.10.4 here in the algorithm.

Recall that given a sign pattern of gW ∈ RO ∩ ΓW , we define D = {yi → y′i ∈ W :

gW (yi → y′i) 6= 0}. For 1 ≤ j ≤ q, we have Hj = {yi → y′i : bjyi→y′i 6= 0} ∪ {bj}.

Also recall that for 1 ≤ j ≤ q, we define Rj
+ = {yi → y′i : bjyi→y′gW (yi → y′i) > 0},

Rj
− = {yi → y′i : bjyi→y′gW (yi → y′i) < 0}, Qj

1 = {ρW (yi → y′i) : yi → y′i ∈ R
j
+}, and

Qj
2 = {ρW (yi → y′i) : yi → y′i ∈ R

j
−}.

Note that
∑

yi→y′i∈D
bjyi→y′i

hW (yi → y′i) =
∑

yi→y′i∈D∩Hj

bjyi→y′i
hW (yi → y′i). Depending on

the sign patterns of bj (1 ≤ j ≤ q) and hW ∈ RO ∩ ΓW , the conditions in Proposition

2.10.14 can be rewritten as follows:

(a) If
∑

yi→y′i∈D∩Hj

bjyi→y′i
hW (yi → y′i) > 0, then one element in Qj

2 are strictly greater

than one element in Qj
1.

(b) If
∑

yi→y′i∈D∩Hj

bjyi→y′i
hW (yi → y′i) < 0, then one element in Qj

1 are strictly greater

than one element in Qj
2.

(c) If
∑

yi→y′i∈D∩Hj

bjyi→y′i
hW (yi → y′i) = 0, then Qj

1 and Qj
2 are nonsegregated. In other

words, at least one of the following two cases holds:

(i) There exist a from one of two multisets (Qj
1 and Qj

2) and b < c from the other

multiset such that b < a < c.

(ii’) All elements in Qj
1 and Qj

2 are equal or there exist a, b ∈ Qj
1 and c, d ∈ Qj

2 such

that c = a < b = d.

162



Note that for each case (a), (b), and (c), we can derive more subcases with detailed

inequalities and/or equalities in terms of the elements ρW (yi → y′i)’s in Qj
1 and Qj

2. For

example, suppose that for a given j ∈ {1, ..., q} such that Cj is nondegenerate, Qj
1 =

{ρW (yi → y′i)}3
i=1 and Qj

2 = {ρW (yi → y′i)}5
i=4. Suppose the sign patterns of bj and

hW ∈ RO ∩ ΓW make it possible for
∑

yi→y′i∈D∩Hj

bjyi→y′i
hW (yi → y′i) to be positive, then

the assumption in case (a) is satisfied. To satisfy case (a), we could have ρW (y1 → y′1) <

ρW (y4 → y′4) or ρW (y1 → y′1) < ρW (y5 → y′5) or ρW (y2 → y′2) < ρW (y4 → y′4)

or ρW (y2 → y′2) < ρW (y5 → y′5) or ρW (y3 → y′3) < ρW (y4 → y′4) or ρW (y3 →

y′3) < ρW (y5 → y′5). Note that since we have the signs of ρW (yi → y′i)’s assigned,

we will remove (if applicable) the subcases which cannot hold for the reasons such as a

nonnegative ρW (yi → y′i) cannot be larger than or equal to a positive ρW (yk → y′k). Note

that no subcases will be removed if all ρW (yi → y′i)’s are positive. After we find subcases

for (a), we can similarly derive more subcases for (b) and (c) if their respective assumptions

are satisfied.

In general, for this step, we pick one subcase (in terms of inequalities and/or equalities

in terms of ρW (yi → y′i)’s in Qj
1 and Qj

2) for each nondegenerate fundamental class Ci

(1 ≤ i ≤ w). We then rephrase all such subcases in terms of Mi’s (instead of ρW (yi →

y′i)’s) and add these inequalities and equalities of Mi’s into the inequality system.

Remark 3.2.2. Suppose we have a subset of basis vectors ofKer⊥ LO∩ΓW with dimension

q, {bj}nj=1 (n ≤ q) such that each bj (1 ≤ j ≤ n) has support on three reactions, and supp

{bj}nj=1 = {yi → y′i}n+2
i=1 . For any three reactions from {yi → y′i}n+2

i=1 , either there exists

bk (1 ≤ k ≤ n) with support on these reactions or we can find a vector as a linear

combination of the bj’s (1 ≤ j ≤ n) such that its support is these three reactions. Suppose

there exists bj (1 ≤ j ≤ n) with support on three reactions yi1 → y′i1 , yi2 → y′i2 and

yi3 → y′i3 . Note that if Ci1 and Ci2 are both degenerate fundamental classes, then Ci3 must
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also be degenerate. Therefore, for fundamental classes Ci’s (1 ≤ i ≤ n+ 2) we have three

possible cases:

(i) All fundamental classes Ci’s (1 ≤ i ≤ n+ 2) are nondegenerate.

(ii) All but one Ck are nondegenerate.

(iii) All fundamental classes Ci’s (1 ≤ i ≤ n+ 2) are degenerate.

Therefore, for deriving the ρW (yi → y′i)’s (therefore Mi’s) comparisons, we only need

to consider the cases (i) and (ii).

Suppose the sign patterns for gW , hW ∈ RO ∩ ΓW are given. Based on Remark 1.7.6

of the Advanced Deficiency Theory (see [7] for more information), we claim that the con-

ditions in Proposition 2.10.14 can be rewritten by considering j = 1, ..., n at once:

(I) ForCi’s (1 ≤ i ≤ n+2), if all but one fundamental class, sayC1, are nondegenerate,

then we have two subcases:

(i) If hW (y1 → y′1) = 0, then all ρW (yi → y′i)’s (i 6= 1) are equal.

(ii) Suppose that hW (y1 → y′1) 6= 0. There exists an enumeration of {ρW (yi →

y′i)}n+2
i=2 , say {ρW (yk1 → y′k1), ..., ρW (ykn+1 → y′kn+1)}, such that either ρW (yk1 →

y′k1) < ... < ρW (ykn+1 → y′kn+1), ρW (yk1 → y′k1) = ... = ρW (ykn+1 → y′kn+1), or

ρW (yk1 → y′k1) > ... > ρW (ykn+1 → y′kn+1) is true.

(II) If all Ci’s (1 ≤ i ≤ n + 2) are nondegenerate, then there are only three possible

cases of ρW (yi → y′i)’s comparison. There exists an enumeration of {ρW (yi → y′i)}n+2
i=1 ,

say {ρW (yk1 → y′k1), ..., ρW (ykn+2 → y′kn+2)}, such that either ρW (yk1 → y′k1) < ... <

ρW (ykn+2 → y′kn+2), ρW (yk1 → y′k1) = ... = ρW (ykn+2 → y′kn+2), or ρW (yk1 → y′k1) >

... > ρW (ykn+2 → y′kn+2) is true.

In the Higher Deficiency Algorithm, we will adjust Step 13 accordingly to make use

of these properties. For the case (ii) of (I) and case (II), we may remove some subcases

following the given signs of ρW (yi → y′i)’s (especially when they are not having the same

signs). Then we can rephrase the subcases into comparisons of Mi’s.
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Next we will show that both cases (I) and (II) hold.

We will show that case (I) holds. Suppose that {bj}nj=1 is a subset of basis for Ker⊥

LO ∩ΓW where each bj has support on three reactions, and supp {bj}nj=1 = {yi → y′i}n+2
i=1 .

Also, suppose that a sign pattern of gW ∈ RO ∩ ΓW with D∩ supp {bj}nj=1 = {y1 → y′1}

is given. Without loss of generality, let us assume that bj (1 ≤ j ≤ n) has support on

y1 → y′1, y2 → y′2 and yj+2 → y′j+2. From equations (2.9.13) and (2.9.14) we have

bjy2→y′2
gW (y2 → y′2) + bjyj+2→y′j+2

gW (yj+2 → y′j+2) = 0, j = 1, ..., n (3.2.2)

bjy1→y′1
hW (y1 → y′1) + ρW (y2 → y′2)bjy2→y′2

gW (y2 → y′2)

+ρW (yj+2 → y′j+2)bjyj+2→y′j+2
gW (yj+2 → y′j+2) = 0, j = 1, ..., n. (3.2.3)

From the jth (1 ≤ j ≤ n) case of equations (3.2.2), we have that bjy2→y′2
gW (y2 →

y′2) = −bjyj+2→y′j+2
gW (yj+2 → y′j+2) = 0. We then plug it into the jth case of equations

(3.2.3) to get the following:

bjy1→y′1
hW (y1 → y′1) + (ρW (y2 → y′2)− ρW (yj+2 → y′j+2))bjy2→y′2

gW (y2 → y′2) = 0,

j = 1, ..., q. (3.2.4)

If hW (y1 → y′1) = 0 as in case (i) of (I), then we have ρW (y2 → y′2) = ρW (yj+2 → y′j+2)

for 1 ≤ j ≤ n. Then all ρW (yi → y′i)’s (2 ≤ i ≤ n+ 2) are equal.

Next let us assume that hW (y1 → y′1) 6= 0. We could rescale bj’s by letting b̃j =

bj/bjy1→y′1
for all 1 ≤ j ≤ n, making b̃jy1→y′1

= 1 for all 1 ≤ j ≤ n. From equations (3.2.4)

in terms of b̃j’s (1 ≤ j ≤ n) and the assumption that gW (y2 → y′2) 6= 0, we have that for

any pair 1 ≤ j 6= k ≤ n (trivial if j = k):

(ρW (y2 → y′2)− ρW (yj+2 → y′j+2))b̃jy2→y′2
(3.2.5)

= (ρW (y2 → y′2)− ρW (yk+2 → y′k+2))b̃ky2→y′2

Since we have b̃jy1→y′1
= 1 for all 1 ≤ j ≤ n, the b̃jy2→y′2

’s are different (nonzero of course)

for all 1 ≤ j ≤ n. Suppose not, then we will have a vector in Ker⊥ LO ∩ΓW with support
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on two reactions yj+2 → y′j+2 and yk+2 → y′k+2 for some 1 ≤ j 6= k ≤ n, which is a

contradiction to the fact that all vectors in Ker⊥ LO ∩ ΓW have support on at least three

reactions.

Therefore, from equation (3.2.5) we have the following cases:

If b̃jy2→y′2
> b̃ky2→y′2

> 0 or b̃jy2→y′2
< b̃ky2→y′2

< 0, then we have either ρW (y2 → y′2) <

ρW (yj+2 → y′j+2) < ρW (yk+2 → y′k+2), ρW (y2 → y′2) > ρW (yj+2 → y′j+2) > ρW (yk+2 →

y′k+2), or ρW (y2 → y′2) = ρW (yj+2 → y′j+2) = ρW (yk+2 → y′k+2).

If b̃jy2→y′2
> 0 > b̃ky2→y′2

or b̃ky2→y′2
> 0 > b̃jy2→y′2

, then we have either ρW (yj+2 →

y′j+2) < ρW (y2 → y′2) < ρW (yk+2 → y′k+2), ρW (yj+2 → y′j+2) > ρW (y2 → y′2) >

ρW (yk+2 → y′k+2), or ρW (yj+2 → y′j+2) = ρW (y2 → y′2) = ρW (yk+2 → y′k+2).

Let b̂jy2→y′2
= 1/b̃jy2→y′2

, for 1 ≤ j ≤ n. Then we have that

If b̂jy2→y′2
> b̂ky2→y′2

> 0 > b̂ly2→y′2
> b̂my2→y′2

, then we have either ρW (yj+2 → y′j+2) <

ρW (yk+2 → y′k+2) < ρW (y2 → y′2) < ρW (yl+2 → y′l+2) < ρW (ym+2 → y′m+2),

ρW (yj+2 → y′j+2) > ρW (yk+2 → y′k+2) > ρW (y2 → y′2) > ρW (yl+2 → y′l+2) >

ρW (ym+2 → y′m+2), or ρW (yj+2 → y′j+2) = ρW (yk+2 → y′k+2) = ρW (y2 → y′2) =

ρW (yl+2 → y′l+2) = ρW (ym+2 → y′m+2).

Note that if all fundamental classes are nondegenerate, then in the Advanced Deficiency

Theory all colinearity classes have nonzero signs (but not vice versa). Therefore, for the

proof of case (II), please refer to the proof in [7]. We will, in the algorithm, provide an

approach to find the enumeration of the Mi’s in case (II). We will give a simple example in

the next paragraph to illustrate this.

Suppose that {bj}nj=1 is a subset of a basis forKer⊥ LO∩ΓW where each bj has support

on three reactions and supp {bj}nj=1 = {yi → y′i}n+2
i=1 . Let us assume that n = 5. We also

suppose that a sign pattern of gW ∈ RO ∩ ΓW with D∩ supp {bj}5
j=1 = ∅ is given. We

will use Mi’s instead of ρW (yi → y′i)’s here and we will assume the most general case that

the signs of ρW (yi → y′i)’s allow all three subcases in the case (II) to be possible. First,
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we start with a bj vector in Ker⊥ LO ∩ ΓW with support on three reactions, say b1 with

support on y1 → y′1, y2 → y′2 and y3 → y′3. Since D∩ supp {bj}5
j=1 = ∅, we only need to

consider case (c), the nonsegregation condition. According to the sign patterns of b1 and

gW ∈ RO ∩ ΓW , we will order M1, M2 and M3 to satisfy the nonsegregation condition.

Without loss of generality, we suppose either M1 < M2 < M3, M1 > M2 > M3, or

M1 = M2 = M3. We then have a partial enumeration {M1,M2,M3} (or equivalently its

complete reverse {M3,M2,M1}). We then will see if there is a bj vector in Ker⊥ LO ∩ΓW

with support on y1 → y′1, y2 → y′2, and y4 → y′4. If such a bj vector is not given, then

we should be able to produce it by finding an appropriate linear combination of the given

bj’s. Without loss of generality, let us suppose b2 has support on y1 → y′1, y2 → y′2, and

y4 → y′4. According to the sign patterns of b2 and gW ∈ RO ∩ ΓW , we will order M1, M2

and M4 to satisfy the nonsegregation condition. We then have several situations in terms

of the ordering.

(i) If it is either M1 < M4 < M2, M1 > M4 > M2, or M1 = M4 = M2, then combined

with the subcases from b1, we have either M1 < M4 < M2 < M3, M1 > M4 > M2 > M3,

or M1 = M4 = M2 = M3.

(ii) If it is either M4 < M1 < M2, M4 > M1 > M2 or M4 = M1 = M2, then combined

with the subcases from b1, we have either M4 < M1 < M2 < M3, M4 > M1 > M2 > M3

or M4 = M1 = M2 = M3.

(iii) If it is either M1 < M2 < M4, M1 > M2 > M4 or M1 = M2 = M4, then

combined with the subcases from b1, we cannot get a complete ordering for M1, M2, M3

and M4. In this case, we will find a bj vector in Ker⊥ LO ∩ ΓW (if it is not given, then

produce it from the given ones) with support on y2 → y′2, y3 → y′3, and y4 → y′4, say b3.

According to the sign patterns of b3 and gW ∈ RO , we will order M2, M3 and M4. We then

have several cases to consider for b3.

sub (i): If it is either M2 < M4 < M3, M2 > M4 > M3, or M2 = M4 = M3, then
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combined with the subcases from b1, we have either M1 < M2 < M4 < M3, M1 > M2 >

M4 > M3, or M1 = M2 = M4 = M3.

sub (ii): If it is either M2 < M3 < M4, M2 > M3 > M4, or M2 = M3 = M4, then

combined with the subcases from b1, we have either M1 < M2 < M3 < M4, M1 > M2 >

M3 > M4, or M1 = M2 = M3 = M4.

Note that it cannot be the case that we have either M4 < M2 < M3, M4 > M2 > M3,

or M4 = M2 = M3 (which will conflict with the assumptions that M2 is between M1

and M3 and M2 is between M1 and M4). We will show that by assuming the contrary,

i.e., suppose the case that M2 is between M4 and M3 exists. Then from b3 we see that

b3
y4→y′4

gW (y4 → y′4) and b3
y3→y′3

gW (y3 → y′3) have the same (nonzero) sign which is the op-

posite sign of b3
y2→y′2

gW (y2 → y′2). Note that from b1 we see that b1
y1→y′1

gW (y1 → y′1)

and b1
y3→y′3

gW (y3 → y′3) have the same (nonzero) sign which is the opposite sign of

b1
y2→y′2

gW (y2 → y′2). From b2 we see that b2
y1→y′1

gW (y1 → y′1) and b2
y4→y′4

gW (y4 → y′4)

have the same (nonzero) sign which is the opposite sign of b2
y2→y′2

gW (y2 → y′2). Therefore,

b1
y2→y′2

and b2
y2→y′2

have the same (nonzero) sign if and only if b1
y1→y′1

and b2
y1→y′1

have the

same (nonzero) sign. Without loss of generality, let us suppose that b1
y2→y′2

and b2
y2→y′2

have

the same (nonzero) sign, therefore b1
y1→y′1

and b2
y1→y′1

have the same (nonzero) sign. Then

b1
y2→y′2

gW (y2 → y′2) and b2
y2→y′2

gW (y2 → y′2) have the same (nonzero) sign. Therefore,

b1
y3→y′3

gW (y3 → y′3) and b2
y4→y′4

gW (y4 → y′4) have the same (nonzero) sign.

On the other hand, note that we can derive b3 (up to a scalar multiple) from b1 and

b2. Let b̃3 = (b2
y1→y′1

)b1 − (b1
y1→y′1

)b2, then b̃3 has support on y2 → y′2, y3 → y′3,

and y4 → y′4 with b̃3
y2→y′2

= b2
y1→y′1

b1
y2→y′2

− b1
y1→y′1

b2
y2→y′2

, b̃3
y3→y′3

= b2
y1→y′1

b1
y3→y′3

, and

b̃3
y4→y′4

= −b1
y1→y′1

b2
y4→y′4

. b̃3 is colinear with b3, and we see that from the ordering of M2,

M3 and M4 that b̃3
y4→y′4

gW (y4 → y′4) and b̃3
y3→y′3

gW (y3 → y′3) have the same (nonzero)

sign which is the opposite sign of b̃3
y2→y′2

gW (y2 → y′2). Written in terms of bj’s, we can see

that −b1
y1→y′1

b2
y4→y′4

gW (y4 → y′4) and b2
y1→y′1

b1
y3→y′3

gW (y3 → y′3) have the same (nonzero)
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sign. Note that we have assumed b1
y1→y′1

and b2
y1→y′1

have the same (nonzero) sign, so

−b2
y4→y′4

gW (y4 → y′4) and b1
y3→y′3

gW (y3 → y′3) have the same (nonzero) sign. This is a

contradiction, as in the previous paragraph we have shown that b1
y3→y′3

gW (y3 → y′3) and

b2
y4→y′4

gW (y4 → y′4) have the same (nonzero) sign.

For now we have a complete ordering of M1, M2, M3 and M4. Without loss of gen-

erality, let us assume it is either M1 < M2 < M3 < M4, M1 > M2 > M3 > M4,

or M1 = M2 = M3 = M4. In other words, we assume the partial enumeration is

{M1,M2,M3,M4}. We then will find a place for M5 in the enumeration. We will first

consider a bj vector in Ker⊥ LO ∩ ΓW with support on y1 → y′1, y2 → y′2 and y5 → y′5.

Without loss of generality, let us suppose it is b4. According to the sign patterns of b4 and

gW ∈ RO , we will order M1, M2 and M5 to satisfy the nonsegregation condition. We have

the following cases.

(1) If the ordering is such thatM1 is betweenM2 andM5 orM5 is betweenM1 andM2,

then we will have a complete enumeration {M5,M1,M2,M3,M4} or {M1,M5,M2,M3,M4}.

(2) If in the ordering M2 is in the middle, i.e. M1 < M2 < M5 or M1 > M2 > M5

or M1 = M2 = M5, then we need to consider a b vector in Ker⊥ LO ∩ ΓW with support

on y2 → y′2, y3 → y′3, and y5 → y′5. If the ordering is such that M5 is between M2 and

M3, then we have a complete enumeration {M1,M2,M5,M3,M4}. The other possibility

is that M3 is between M2 and M5 (note that M2 cannot be between M3 and M5, for a

similar reason that we have shown above), i.e., M2 < M3 < M5, M2 > M3 > M5, or

M2 = M3 = M5. We need to consider a bj vector in Ker⊥ LO ∩ ΓW with support on

y3 → y′1, y4 → y′3, and y5 → y′5. If the ordering this time is such that M5 is between

M3 and M4, then we have a complete enumeration {M1,M2,M3,M5,M4}. Otherwise

M4 is between M3 and M5 (again M3 cannot be in the middle), then we have a complete

enumeration {M1,M2,M3,M4,M5}. So we can always find an enumeration for M1, M2,

M3, M4, and M5, after considering several bj’s.
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For reaction network (3.2.1), note that b1 = [0, 1,−1, 0, 1,−1] and b2 = [1, 0, 0,−1, 1, 0].

We have the following:

R1
+ = {E1S2 → E1 + S3, E3S1 → E3 + S3} = {y2 → y′2, y5 → y′5},

R1
− = {E2S3 → E2 + S2, E3S3 → E3 + S2} = {y3 → y′3, y6 → y′6},

Q1
+ = {},

Q1
− = {},

R2
+ = {E1S1 → E1 + S2, E3S1 → E3 + S3} = {y1 → y′1, y5 → y′5},

R2
− = {E2S2 → E2 + S1} = {y4 → y′4},

Q2
+ = {},

Q2
− = {}.

Therefore, we have

Q1
1 = {ρW (y2 → y′2), ρW (y5 → y′5)},

Q1
2 = {ρW (y3 → y′3), ρW (y6 → y′6)},

Q2
1 = {ρW (y1 → y′1), ρW (y5 → y′5)},

Q2
2 = {ρW (y4 → y′4)}.

Since D = ∅, we only need to consider case (c) where Qj
1 and Qj

2 are nonsegregated.

Here all ρW (yi → y′i)’s are positive, so we can directly convert the comparisons among

ρW (yi → y′i)’s to comparisons among Mi’s, without first removing any subcases from (i),

(ii) and (iii) of case (c). We will set up inequalities and/or equalities directly in terms of

Mi’s.

From b1, we have that from (i) of case (c), either M2 < M3 < M5, M2 < M6 < M5,

M5 < M2 < M3, or M5 < M6 < M2, M3 < M2 < M6, M3 < M5 < M6, M6 < M2 <

M3, M6 < M5 < M3, from (ii’), M2 = M3 = M5 = M6, M2 = M3 < M5 = M6,

M2 = M6 < M5 = M3, M5 = M6 < M2 = M3, or M5 = M3 < M2 = M6.
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From b2, we have that from (i) of (c), either M1 < M4 < M5, M1 > M4 > M5, or

from (ii’), M1 = M4 = M5.

For this step, let us pick M3 < M2 < M6 from b1 and M1 > M4 > M5 from b2.

Step 14: Check for Solutions to the Inequality System

In Step 7 we have determined whether the inequality systems are completely linear or

may include nonlinear equalities by considering if Ker⊥ LO ∩ ΓW has a forest basis. We

will in this step check whether the inequality system has a solution with a nonzero µ ∈ RS

which is sign compatible with the stoichiometric subspace S. In other words, we will look

to see if there exist a set of Mi’s and a nonzero µ ∈ RS which is sign compatible with S

such that the inequality system is satisfied.

If the inequality systems are determined to be linear, then the inequality system built

from Step 10 through Step 13 is a complete system. If an inequality system has such a

solution, it will be called a signature.

If the inequality systems are nonlinear, then we will need to add some nonlinear con-

straints (equalities) to the inequality system to make it a complete system. If a partial

(linear) inequality system we built from Step 10 through Step 13 has such a solution, it

will be called a pre-signature. If none of such inequality systems has such a solution, then

there is no need to consider the additional nonlinear constraints (equalities), and we claim

that the reaction network does not have the capacity to admit multiple steady states.

Suppose the inequality systems are linear. If the inequality system generated from Steps

10 to 13 is a signature, then we claim that the reaction network has the capacity to admit

multiple steady states and exit the algorithm. Otherwise, move to next step.

Suppose that the inequality systems are nonlinear. If the partial (linear) system gener-

ated from Steps 10 to 13 is not a pre-signature, move to next step. If the partial (linear)

system generated from Steps 10 to 13 is a pre-signature, then we will plug the solution of
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µ ∈ RS from the pre-signature into equations (2.2.7) and (2.2.8). After that, we will see if

we can solve for κ ∈ RR
+ from equations (2.2.7) and (2.2.8). If we find a κ ∈ RR

+ satisfying

equations (2.2.7) and (2.2.8), we claim that the reaction network has the capacity to admit

multiple steady states and exit the algorithm. Otherwise, move to next step.

For reaction network (3.2.1), from the inequalities and equalities added in Steps 10 to

13, we have the following inequality system:

µE1 + µS1 > M1 (3.2.6)

µE1S1 > M1

µE1 + µS2 > M1

µE1 + µS2 = M2 = µE1S2

µE2 + µS3 = M3 = µE2S3

µE2 + µS2 = M4 = µE2S2

µE3 + µS1 = M5 = µE3S1

µE3 + µS3 = M6 = µE3S3

µE1 + µS1 < µE1S1

µE1S1 < µE1 + µS2

M3 < M2 < M6

M1 > M4 > M5

The inequality system (3.2.6) has a nonzero solution µ ∈ RS that is sign compatible

with S: µE1 = 3, µE2 = −5, µE3 = 0, µS1 = −5, µS2 = 1, µS3 = 8, µE1S1 = −1,

µE1S2 = 4, µE2S2 = −4, µE2S3 = 3, µE3S1 = −5, µE3S3 = 8. Therefore this inequality

system is a signature. We can claim that reaction network (3.2.1) has the capacity to admit

multiple steady states and exit the algorithm.

Remark 3.2.3. To see that the solution of µ above is sign compatible with S. Note that in
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network (3.2.1), S = {E1, E2, E3, S1, S2, S3, E1S1, E1S2, E2S2, E2S3, E3S1, E3S3}, and

dim S = 8.

A basis for S is



x1 x2 x3 x4 x5 x6 x7 x8

E1 −1 1 −1 1 0 0 0 0

E2 0 0 0 0 −1 −1 0 0

E3 0 0 0 0 0 0 −1 −1

S1 −1 0 0 0 0 0 −1 0

S2 0 1 −1 0 0 −1 0 0

S3 0 0 0 1 −1 0 0 −1

E1S1 1 −1 0 0 0 0 0 0

E1S2 0 0 1 −1 0 0 0 0

E2S2 0 0 0 0 0 1 0 0

E2S3 0 0 0 0 1 0 0 0

E3S1 0 0 0 0 0 0 1 0

E3S3 0 0 0 0 0 0 0 1


We let

σ = 2x1 + 5x2 + 5x3 + 4x4 + 2x5 − x6 − x7 + x8

= [2,−1, 0,−1, 1, 1,−3, 1,−1, 2,−1, 1]

Then µ = [3,−5, 0,−5, 1, 8,−1, 4,−4, 3,−5, 8] is sign compatible with σ ∈ S.

Step 15: Repeat Steps 13 to Step 14

In this step, Steps 13 and 14 are repeated for every choice of M inequalities and/or

equalities. Recall a choice of M inequalities and/or equalities are picking one subcase for

each 1 ≤ j ≤ q in Step 13.

For reaction network (3.2.1), we have exited the algorithm in Step 14.
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Step 16: Repeat Steps 9 through Step 15

In this step all possible shelving assignments in Step 9 are repeated. Similar to that

of the Deficiency One Algorithm (and the Advanced Deficiency Algorithm), we can save

some time by trying only half of the choices and leaving out the rest which are just total

inversions of the first half (by switching all of the upper and lower shelves). This is true

because the inverted system has such a solution if and only if the original system has one.

For reaction network (3.2.1), we have exited the algorithm in Step 14.

Step 17: Repeat Steps 8 through Step 16

In this step we will repeat all sign pattern choices for gW , hW ∈ RO ∩ ΓW in Step 8.

Note that changing the sign patterns for gW , hW may affect the shelving assignments

as only nondegenerate fundamental classes are considered, and the inequality systems built

from Step 10 through Step 13 will be affected too. We will check all the inequality systems

produced by these changes.

If after this step no signature or pre-signature has been found, then we can claim that

the reaction network cannot support multiple steady states, no matter what (positive) values

the rate constants take.

If all pre-signatures have been tested and no κ ∈ RR
+ can be solved for from equations

(2.2.7) and (2.2.8) with µ ∈ RS from the pre-signature, then we claim that the reaction

network may still have the capacity to admit multiple steady states; the result is inconclu-

sive. In this case, in order to answer the question of multiple steady states, we need to add

additional nonlinear equalities and consider the complete (nonlinear) inequality system. As

for finding the additional nonlinear equalities, we will not present the details here.

For reaction network (3.2.1), we have exited the algorithm in Step 14.

Remark 3.2.4. Recall that in Step 17, we will repeat the construction of inequality systems

for each "valid" pair of sign patterns for gW , hW ∈ RO ∩ ΓW chosen in Step 8. What we
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can do to improve the efficiency of the algorithm is to revise Step 8 to combine some of the

sign patterns for gW , hW ∈ RO ∩ΓW together in one step so there will fewer repetitions in

Step 17.

Recall that the conditions (*) (first mentioned in Section 2.9) on ρW (yi → y′i)’s are the

conditions (we later find) in Proposition 2.10.14.

Recall in Section 2.9, for a "valid" pair of sign patterns for gW , hW ∈ RO ∩ ΓW , we

check if the answer to the following Question (b) is "Yes":

Question (b): Given the reaction network {S ,C ,R} and the orientation O , do there

exist

(i) a nonzero µ ∈ RS that is sign compatible with S,

(ii) a set {ρW (yi → y′i) : yi → y′i ∈ ND} which is consistent in sign with the

pre-selected sign patterns of gW and hW and satisfies these new conditions (∗) (i.e.

conditions in Proposition 2.10.14), and

(iii) a choice of shelving assignments for each nondegenerate fundamental class

satisfying the conditions in Proposition 2.8.1 (in terms of ρW (yi → y′i) for condition

(ii)),

which together satisfy the conditions in Lemma 2.8.2?

In the algorithm that implemented in [16], we actually use the following approach.

As we can see that although we define a "valid" pair of sign patterns for gW and hW , the

definition works for a single gW or hW as long as they are not both picked zero at the same

time. Thus here we will apply a "valid" sign pattern on gW and hW separately. For the

chosen "valid" sign pattern for gW ∈ RO ∩ ΓW , we have D = {yi → y′i ∈ W : gW (yi →

y′i) 6= 0}. We then choose a partial sign pattern for hW |D ∈ RO ∩ΓW such that there exists

a "valid" sign pattern for hW ∈ RO ∩ ΓW . Therefore, we have a pair of sign patterns for
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gW and hW |D that is "valid". In this case, the signs of ρW (yi → y′i)’s (yi → y′i ∈ W\D)

are not specified. We then check if the answer to the following Question (c) is "Yes":

Question (c): Given the reaction network {S ,C ,R} and the orientation O , do there

exist

(i) a nonzero µ ∈ RS that is sign compatible with S,

(ii) a set {ρW (yi → y′i) : yi → y′i ∈ ND} which satisfies these new conditions (∗)

(i.e. conditions in Proposition 2.10.14), and

(iii) a choice of shelving assignments for each nondegenerate fundamental class

satisfying the conditions in Proposition 2.8.1,

which together satisfy the conditions in Lemma 2.8.2?

Note in this case we cannot specify whether Mi = ln(ρW (yi → y′i)) or Mi is some

large and negative number. Thus we do not consider if we need to remove subcases from

conditions (a), (b) and (c) in Step 13, thus there might be more subcases where not all

ρW (yi → y′i)’s are assigned the same signs. However, there will be fewer repetitions in

Step 17 in this case, therefore the approach is still more efficient than what has been stated

in the algorithm.

Remark 3.2.5. The following is a comment made on finding a set of rate constants and

two positive, distinct and stoichiometrically compatible compositions corresponding to two

steady states, if they exist.

In the linear case, after finding a solution of µ ∈ RS from a signature, we can find

κ ∈ RR
+ from equations (2.2.7) and (2.2.8). We pick a σ ∈ S that is sign compatible with µ,

then find c∗, c∗∗ ∈ RS
+ from equations (2.2.3) and (2.2.4) or equations (2.2.5), depending

on whether µs is zero or not. For each y → y′ ∈ R, we find ky→y′ by equation (2.2.6).

Therefore, we find a set of rate constants for the reaction network to admit two steady states

with the corresponding compositions c∗ and c∗∗.
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In the nonlinear case, suppose from a solution of µ ∈ RS from a pre-signature, we

have solved for κ ∈ RR
+ from equations (2.2.7) and (2.2.8). Then we are ready to find a set

of rate constants and the compositions corresponding to two steady states. The process is

same as in the linear case.

In the nonlinear case, if all pre-signatures have been tested and no κ ∈ RR
+ can be

found, then we claim that the reaction network may still have the capacity to admit multi-

ple steady states. We need to rely on finding nonlinear equalities to complete the resulting

(nonlinear) system to answer the question of multiple steady states. After that, if we con-

clude that the reaction network has the capacity to admit multiple steady states, then we

can find a set of rate constants and the compositions corresponding to two steady states

following the same approach as above.
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Chapter 4

MASS ACTION INJECTIVITY TEST

4.1 Introduction

The Mass Action Injectivity Test is a test of whether a given reaction network is mass action

injective (to be defined shortly). In this chapter, the main focus is on finding an algorithm

for the Mass Action Injectivity Test. The algorithm has been implemented in the Chemical

Reaction Network Toolbox [16]. To see more information about mass action injectivity,

see [13].

We recall a few terms defined in Chapter 1 and introduce a few new terms from [13].

For a given reaction network {S ,C ,R}, the reaction vector corresponding to the re-

action y → y′ is y′− y ∈ RS . The stoichiometric subspace for the network, denoted by S,

is defined via

S := span{y′ − y ∈ RS : y → y′ ∈ R}. (4.1.1)

For a given reaction network {S ,C ,R}, a mass action kinetics is an assignment of a

reaction rate function to each reaction: for each reaction y → y′ ∈ R, there is a positive

rate constant ky→y′ such that the molar occurrence rate per unit volume of y → y′ is given

by ky→y′cy. Here

cy =
∏
s∈S

cyss , (4.1.2)

where ys is the stoichiometric coefficient of species s for complex y.
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Recall that the reaction network {S ,C ,R} we consider in this thesis will be governed

by mass action kinetics (except the next chapter). The species-formation-rate function r:

R̄S
+ → RS is given by

r(c) =
∑

y→y′∈R

ky→y′c
y(y′ − y). (4.1.3)

For a given reaction network {S ,C ,R}, the mass action differential equations are ċ =

r(c), where the dot over c indicates the time differentiation and r(·) is the corresponding

species-formation-rate function.

For a given reaction network {S ,C ,R}, a composition a ∈ R̄S
+ is an equilibrium of

the mass action differential equations if r(a) = 0. An equilibrium a is a positive equilib-

rium of the mass action differential equations if a ∈ RS
+ .

Recall that our reactor may have an inflow (feed) stream and an outflow stream. Besides

the species that are put into the reactor initially, we can provide several species to the

reactor through a continuous inflow stream containing a liquid mixture of these species,

and we can remove several species from the reactor through a continuous outflow stream

containing these species. For generality, we might allow only certain species to be in the

inflow or outflow.

We call the species in the inflow (feed) stream as inflow species and denote the set of

inflow species by Sf . We call the species in the outflow stream as outflow species and

denote the set of outflow species by So. Note that the reaction corresponding to species s

in the inflow stream is 0 → s, and the reaction corresponding to species s in the outflow

stream is s → 0. We can then define Rf = {s ∈ S : 0 → s ∈ R} as the set of inflow

reactions, Ro = {s ∈ S : s→ 0} as the set of outflow reactions, and Rt = R\(Rf ∪Ro)

as the set of true reactions.

Recall that two compositions c and c′ are stoichiometrically compatible if c′ − c ∈ S.

For a given reaction network {S ,C ,R}, the network has the capacity to admit multi-

ple positive equilibria if there exists a set of positive rate constants {ky→y′ : y → y′ ∈ R}
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such that the mass action differential equations admit (at least) two distinct positive equilib-

ria that are stoichiometrically compatible. In other words, a reaction network {S , C , R}

has the capacity for multiple positive equilibria if there exist a set of positive rate constants

{ky→y′ : y → y′ ∈ R}, and two stoichiometrically compatible compositions a ∈ RS
+ and

b ∈ RS
+ with a 6= b such that r(a) = r(b) = 0.

For a given reaction network {S ,C ,R}, let a ∈ RS
+ be a positive equilibrium, then

the derivative of the species-formation-rate function evaluated at a, Dr(a) can be viewed

as a linear transformation from S to S.

Recall that r(c) =
∑

y→y′∈R

ky→y′c
y(y′ − y). Then we have, for each σ ∈ S,

Dr(a)σ =
∑

y→y′∈R

ky→y′(ay)
y · σ
a

(y′ − y) (4.1.4)

=
∑

y→y′∈R

κy→y′
y · σ
a

(y′ − y),

where κy→y′ = ky→y′a
y. Define "∗a-scalar product" in RS via u ∗a v =

∑
s∈S

usvs
as

. Then

Dr(a)σ =
∑

y→y′∈R

κy→y′(y ∗a σ)(y′ − y) (4.1.5)

For a given reaction network {S ,C ,R}, a positive equilibrium a ∈ RS
+ is degenerate

if Dr(a) is singular, i.e., there exists a nonzero σ ∈ S such that Dr(a)σ = 0.

For a given reaction network {S ,C ,R} with stoichiometric subspace S, we say that

the reaction network is mass action injective if for any η ∈ RR
+ and any ∗a-scalar product

for a ∈ RS
+ , the map T∗a,η: S → S defined by

T∗a,η(σ) =
∑

y→y′∈R

ηy→y′(y ∗a σ)(y′ − y). (4.1.6)

is nonsingular.

In the next lemma we show that the seemingly linear notion of mass action injective

actually has implications for injectivity of the nonlinear function r(·).
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Lemma 4.1.1. [Feinberg] Let {S ,C ,R} be a reaction network with stoichiometric sub-

space S. The reaction network {S ,C ,R} is not mass action injective if and only if there

exist a set of positive rate constants {ky→y′ : y → y′ ∈ R} and distinct compositions

c∗, c∗∗ ∈ RS
+ , with c∗ − c∗∗ ∈ S such that

∑
y→y′∈R

ky→y′(c∗)y(y′ − y) =
∑

y→y′∈R

ky→y′(c∗∗)y(y′ − y). (4.1.7)

PROOF: ⇐): Suppose there exist a set of positive rate constants {ky→y′ : y → y′ ∈ R}

and distinct c∗, c∗∗ ∈ RS
+ , with c∗ − c∗∗ ∈ S such that

∑
y→y′∈R

ky→y′(c∗)y(y′ − y) =
∑

y→y′∈R

ky→y′(c∗∗)y(y′ − y).

Then we have

0 =
∑

y→y′∈R

ky→y′(c∗∗)y(y′ − y)−
∑

y→y′∈R

ky→y′(c∗)y(y′ − y) (4.1.8)

=
∑

y→y′∈R

ky→y′((c∗∗)y − (c∗)y)(y′ − y)

=
∑

y→y′∈R

ky→y′(c∗)y((c∗∗)y/(c∗)y − 1)(y′ − y)

Let σ = c∗∗ − c∗ and γ = ln c∗∗ − ln c∗, then σ ∈ S and (c∗∗)y/(c∗)y = ey·γ . Note that

for all s ∈ S , γs and σs have the same sign, as ln c∗s − ln c∗∗s and c∗s − c∗∗s have the same

sign. We claim that γ is sign-compatible with S, therefore there exists a ∈ RS
+ such that

γ = 1
a
σ. Note that by the definition of ∗a-scalar product, y · γ = y ∗a σ. We have that

0 =
∑

y→y′∈R

ky→y′(c∗)y(ey·γ − 1)(y′ − y) (4.1.9)

=
∑

y→y′∈R

ky→y′(c∗)y(ey∗aσ − 1)(y′ − y)

Note that ey∗aσ−1 and y∗aσ have the same sign, so there exists py > 0 such that ey∗aσ−1 =

py(y ∗a σ). Given y → y′ ∈ R, we let ηy→y′ = ky→y′(c∗)ypy, then we claim that there

exists a ∗a-scalar product with a ∈ RS
+ , an η ∈ RR

+ , and a nonzero σ ∈ S such that

0 =
∑

y→y′∈R

ηy→y′(y ∗a σ)(y′ − y),
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which leads to the conclusion that the reaction network is not mass action injective.

⇒): Suppose that there exists a ∗a-scalar product where a ∈ RS
+ , an η ∈ RR

+ , and a

nonzero σ ∈ S such that

0 =
∑

y→y′∈R

ηy→y′(y ∗a σ)(y′ − y).

We can find γ defined by γ = 1
a
σ such that y ∗a σ = y · γ. If we let η̃y→y′ = ηy→y′(y ∗a

σ)/(ey∗aσ − 1) = ηy→y′(y ∗a σ)/(ey·γ − 1), we will have

0 =
∑

y→y′∈R

η̃y→y′(ey·γ − 1)(y′ − y).

Note that a ∈ RS
+ , so γ and σ have the same sign. In particular, σ 6= 0 implies γ 6= 0.

Since γ and eγ − 1 have the same sign, there exists c∗ ∈ RS
+ such that σ = c∗(eγ − 1). Let

c∗∗ = c∗eγ , then c∗∗ 6= c∗, γ = ln c∗∗ − ln c∗, and c∗∗ − c∗ = c∗(eγ − 1) = σ ∈ S. Given

that y → y′ ∈ R, we let ky→y′ = η̃y→y′/(c∗)y, then we claim there exist a set of positive

rate constants {ky→y′ : y → y′ ∈ R} and distinct c∗, c∗∗ ∈ RS
+ with c∗ − c∗∗ ∈ S such that

0 =
∑

y→y′∈R

ky→y′(c∗)y(y′ − y)−
∑

y→y′∈R

ky→y′(c∗∗)y(y′ − y)

or equivalently,

∑
y→y′∈R

ky→y′(c∗)y(y′ − y) =
∑

y→y′∈R

ky→y′(c∗∗)y(y′ − y).

Later in the chapter, we will develop an algorithm to test if the reaction network is mass

action injective, which we will call the Mass Action Injectivity Test. But first of all, we

want to explain why this is relevant to our question of multiple steady states.

4.2 Why the Mass Action Injectivity Test?

Recall our main question is stated as: Given a reaction network governed by mass action

kinetics, does there exist a set of positive rate constants such that the governing differen-

tial equations admit a pair of distinct positive steady states which are stoichiometrically

compatible?
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Mathematically, the question can be stated as:

Question 1: Given a reaction network {S ,C ,R}, do there exist a set of positive rate con-

stants {ky→y′ : y → y′ ∈ R}, and two positive, distinct and stoichiometrically compatible

compositions c∗ and c∗∗, such that

∑
y→y′∈R

ky→y′c
∗y(y′ − y) = 0 (4.2.1)

∑
y→y′∈R

ky→y′c
∗∗y(y′ − y) = 0 (4.2.2)

are satisfied?

It easily follows that, for the answer to Question 1 to be "Yes", we will have the neces-

sary condition that

∑
y→y′∈R

ky→y′c
∗y(y′ − y) =

∑
y→y′∈R

ky→y′c
∗∗y(y′ − y) (4.2.3)

where {ky→y′ : y → y′ ∈ R} is some set of positive constants, and c∗ and c∗∗ are some

pair of positive, distinct and stoichiometrically compatible compositions.

Therefore, from Lemma 4.1.1, we can convert the necessary condition above into the

following question which will be tested in the Mass Action Injectivity Test:

Question a: Given a reaction network {S ,C ,R}, do there exist an η ∈ RR
+ , a ∗a-scalar

product where a ∈ RS
+ , and a nonzero σ ∈ S which is sign-compatible with the stoichio-

metric space S such that

∑
y→y′∈R

ηy→y′(y ∗a σ)(y′ − y) = 0 (4.2.4)

is satisfied?

Letting γ = 1
a
σ makes γ nonzero and sign-compatible with the stoichiometric subspace

S. And we can equivalently ask

Question b: Given a reaction network {S ,C ,R}, do there exist an η ∈ RR
+ and a nonzero

γ ∈ RS sign-compatible with the stoichiometric space S such that

∑
y→y′∈R

ηy→y′(y · γ)(y′ − y) = 0 (4.2.5)
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is satisfied?

We designed the Higher Deficiency Algorithm to solve the question of multiple steady

states in terms of Question 1. An alternative approach to solve the question of the multiple

steady states will be the Mass Action Injectivity Test. If the Mass Action Injectivity Test

passes, i.e., the reaction network is mass action injective, then we immediately know the

answer to Question 1 is no. If the Mass Action Injectivity Test fails, i.e., the reaction

network is not mass action injective, we can then try the Higher Deficiency Algorithm. In

practice, when the Higher Deficiency Algorithm is not quite efficient (in terms of running

time) or accurate (in terms of giving definite answers), the Mass Action Injectivity Test

may give a definitive answer and may be faster. Next, an algorithm is designed to carry out

the Mass Action Injectivity Test.

4.3 Algorithm

Recall that we want to test the following question:

Given a reaction network {S ,C ,R}, do there exist a nonzero γ ∈ RS that is sign-

compatible with S and an η ∈ RR
+ satisfying (4.2.5)?

If there exists such a γ ∈ RS , then we claim that the reaction network is not mass

action injective. If there does not exist such a γ, then we claim that the reaction network

is mass action injective and therefore the reaction network does not have the capacity to

admit multiple steady states, no matter what (positive) values the rate constants take.

To conclude that there does not exist such a γ, we need to run through all valid (nonzero

and sign-compatible with S) sign patterns of γ to verify that. In this case, the implemen-

tation could be impractical for a large number of species. To improve the efficiency of the

algorithm, a so-called "tree" idea is introduced. It first appeared in Feinberg’s codes for the

Deficiency One Algorithm (see [6]), then in Ellision’s codes for the Advanced Deficiency

Algorithm (see [8]), and now in the codes for the Higher Deficiency Algorithm (see [16]).
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The "tree" idea is used to expedite the process of finding if there exists a nonzero µ ∈ RS

sign-compatible with S, such that a system of linear inequalities and/or equalities in terms

of µ is satisfied. We will apply the idea in the Mass Action Injectivity Test.

We will define a few terms related to the "tree" idea.

Given a reaction network {S ,C ,R}, assume N = #(S ) is the number of species

and n is the number of reactant complexes. We will order the species from s1 to sN and

the reactant complexes from y1 to yn.

We can generate a tree representing the signs of γs’s (s ∈ S ), called a γ tree. There

is a root node for the tree representing no signs have been assigned to any σs (s ∈ S ).

Starting from the root as the zeroth layer of the tree, the root has three children which form

the first layer of the tree, which represent the positive, negative, and zero sign assignment,

respectively, to species s1. Each of the nodes in the first layer has three children, which

represent the positive, negative, and zero sign assignment, respectively, to species s2. These

nine children form the second layer. We continue this and stop at the N th layer, containing

3N nodes. All edges are between a mother node and its children nodes. Conversely, each

mother node and each of its three children nodes are connected by edge. Note that except

for the root node and the nodes in the final layer, all other nodes are both mother nodes and

children nodes at the same time. Note that a direct (shortest) path from the root node to

some node in the ith layer contains one node from each layer between the zeroth and the ith

layer. Also note that nodes in jth layer represent some sign assignment for γsj . Therefore,

the direct (shortest) path from the root node to some node in the ith layer represents sign

assignments for γs’s where s is the among the first i species.

Similary we can generate a tree representing the signs of y · γ’s where y is a reactant

complex in R, called the y · γ tree. Note that the y · γ tree has 3n leaf nodes. We then

claim that the (shortest) path from the root to some node in the ith layer represents sign

assignments for y · γ’s where y is the among the first i reactant complexes.
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In order to develop the algorithm for the Mass Action Injectivity Test, we make some

observations below.

Remember our goal is to find if there exists a positive set of {ηy→y′ : y → y′ ∈ R} and

a nonzero γ ∈ RS sign-compatible with S satisfying equation (4.2.5).

Remark 4.3.1. Note that we only have to check half the sign patterns of γ which are sign-

compatible with S, as if there exist an η ∈ RR
+ and a nonzero γ ∈ RS sign-compatible

with S satisfying equation (4.2.5), then η ∈ RR
+ and −γ ∈ RS which is sign-compatible

with S also satisfy equation (4.2.5). We will take this into account in the algorithm.

We define a linear map T : RR → S as follows:

Tα =
∑

y→y′∈R

αy→y′(y′ − y), for α ∈ RR . (4.3.1)

Given γ ∈ RS , let us define L̃(γ) ∈ RR by

L̃y→y′(γ) = y · γ, for all y → y′ ∈ R. (4.3.2)

Then we can claim that the following statements are equivalent:

(A) There exist a positive set {ηy→y′ : y → y′ ∈ R} and a nonzero γ ∈ RS sign-

compatible with S satisfying equation (4.2.5).

(B) There exists a nonzero γ sign-compatible with S such that L̃(γ) ∈ RR is sign-

compatible with Ker T .

We define SY =span{y : y → y′ ∈ R}.

Note that if there exists a nonzero γ ∈ RS which is sign-compatible with S such that

L̃(γ) = 0, i.e., there exists a nonzero γ ∈ RS which is sign-compatible with S and also

lies in S⊥Y , then statement (B) (therefore (A)) above is satisfied trivially.

Therefore, we have the following lemma.

Lemma 4.3.2. The following statements are equivalent:
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(A) There exist an η ∈ RR
+ and a nonzero γ ∈ RS that is sign-compatible with S,

satisfying equation (4.2.5).

(B) There exists a nonzero γ ∈ RS that is sign-compatible with S such that L̃(γ) ∈ RR

is sign-compatible with Ker T .

(C) One of the two conditions holds:

(a): There exists a nonzero γ ∈ RS that is sign-compatible with S and lies in S⊥Y .

(b): There exists a nonzero γ ∈ RS that is sign-compatible with S such that L̃(γ) ∈

RR is nonzero and sign-compatible with Ker T .

In the algorithm for the Mass Action Injectivity Test ([16]), we check if (B) holds.

Note that (C) is merely a reformation of (B) by separating the case L̃(γ) = 0 from the case

L̃(γ) 6= 0. To better explain the "tree" idea, we will first check if condition (a) in (C) holds

(a simpler case in terms of the "tree" idea) and then if condition (b) in (C) holds (a more

complex one).

First we check if condition (a) holds, i.e., if there exists a nonzero γ ∈ RS which is

sign-compatible with S and lies in S⊥Y . If the answer is yes, then we claim that the reaction

network is not mass action injective. Note that if S⊥Y ⊆ S⊥, or equivalently S ⊆ SY ,

then no such nonzero γ will exist, and the answer to the check of whether condition (a)

holds is no. Without loss of generality, let us assume that S ⊆ SY does not hold. If the

answer to the check of whether condition (a) holds is no, then we will move to check if

condition (b) holds, i.e., if there exists a nonzero γ ∈ RS which is sign-compatible with

S such that L̃(γ) ∈ RR is nonzero and sign-compatible with Ker T . We explain first the

check of whether condition (a) holds to provide some background on describing the check

of whether condition (b) holds.

We will explain the algorithm in terms of the tree idea for checking if condition (a)

holds first. We need to introduce a few tree related terms.
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Starting from one node and moving through the edges in the tree to reach another node

is called a walk in the γ tree.

Starting from the root node and walking in the γ tree to reach another node a, the direct

(shortest) path from the root node to the node a, is called a walk trace at the node a (with

respect to the root node).

We say a sign pattern is assigned to γ ∈ RS if all components of γ have been assigned

signs. We say a partial sign pattern is assigned to γ ∈ RS , if some (not necessarily all) of

its components have been assigned signs.

Recall that each node in the γ tree corresponds to a sign assignment to γs for some

species s. A walk trace at some node at the ith layer of the γ tree is a direct (shortest) path

from the root to this current node, which includes one node from each of the first i layers.

Therefore, a walk trace at a node in the ith layer provides a partial sign pattern of γ, in

particular, a sign assignment to each γsj for 1 ≤ j ≤ i.

Before we walk in the γ tree, we want to check if we can fix the sign of some γs

(s ∈ S ) so we can set up some rules for the walk.

Note that we want to find a nonzero γ ∈ RS that is sign-compatible with S = span

{y′− y : y → y′ ∈ R}. Therefore, if a species s does not lie in the support of any reaction

vector y′ − y, we assign γs to be zero. We say such a species is a species with a fixed sign,

or a sign-fixed species. We require that for the walk in the γ tree, if we move past the nodes

corresponding to these species with fixed signs, we will only walk through the zero sign

node.

Suppose that we start from the root node, walk in the γ tree, and we are currently at

node a in the ith layer. We say the sign of γs is known at node a, if (at least) one of the

following holds:

(i) Species s is sign-fixed as indicated earlier (where γs is set to be 0).

(ii) Species s is among the first i (1 ≤ i ≤ N) species, i.e. s ∈ {s1, ..., si}.
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(iii) The sign of γs can be determined (to be explained in the next remark) by the signs

of γs′’s which are known from (i) and (ii).

Remark 4.3.3. By saying that γs can be determined based on the known signs of γs′’s from

(i) and (ii), we mean that γs is a linear combination of the γs′’s from (i) and (ii) in such

a way that for the γs′’s with a nonzero coefficient, the signs of coefficients of positive γs′’s

are all the same, and are the opposite to the signs of coefficients of negative γs′’s.

Since we only know that to be sign-compatible with S, γ /∈ S⊥, it is not very clear what

the dependences of γs’s are. Therefore, (iii) is set false by default in the definition of the

known sign of γs, in the process of checking whether condition (a) is satisfied. We include

(iii) in the definition because it will be generalized in the process of checking whether

condition (b) is satisfied.

Note that from finding at each node of the γ tree, all the signs of γs’s that are known,

we can get a partial sign pattern for γ at this node.

Next, let us describe two ways of walking in the γ tree: move forward and move back-

ward.

The rule for moving forward is simple. We start from the current node assumed not

to be a leaf node (in the N th layer). Walk toward higher layers (for example, from the ith

layer to (i+ 1)th layer) in the tree until we either reach a positive leaf node or arrive at the

positive node of the next earliest species whose sign is not fixed. Note that whenever we

walk past the nodes of a sign-fixed species, we will walk through the fixed (zero in this

case) sign node.

The rule for moving backward is slightly complicated. Here we will take into account

the fact that only half (leaving out the inversions) of the sign patterns of γ which are sign-

compatible with S need to be considered. We start from the current node which is not the

root node, then follow these rules:

(I) If the current node is a fixed sign node (zero sign in this case), move back along its
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walk trace until a node, whose corresponding species is not a sign-fixed species, is reached.

If we reach the root node, we exit the moving backward process. Otherwise, go to (II).

(II) If the current node is a zero node, skip the rest and go to (III). If the current node is

a positive or negative node, then move to another child of its mother node in the following

way:

(i) Suppose current node is a positive node. If the fixed signs all have a sign of zero

(true in this case), then check if the partial sign pattern from the walk trace at the

mother node of this node contains all zero signs. If the answer is yes, move to the

zero sign node (first walk toward lower layer to current node’s mother node then

walk toward higher layer to the zero sign node that is another child of the mother

node). Otherwise, move to the negative sign node.

(ii) If the current node is a negative node, move to the zero node.

(III) If the current node is a zero node, then move back in the tree (along its walk

trace) to its mother node. If we reach the root node, we exit the moving backward process.

Otherwise, go back to (I).

Now we are ready to describe the algorithm of checking if condition (a) holds. We will

proceed according to the following steps.

Step 1:

We have two situations.

(i) If it is the first time walking in the γ tree, we start at the root of the γ tree. We move

forward in the γ tree. Skip (ii).

(ii) If it is not the first time walking in the γ tree, then we are currently at some node

in the γ tree. Note that if we previously moved backward and arrive at the root of the γ

tree, then we terminate the process and claim condition (a) does not hold; therefore the test

regarding whether the reaction network is mass action injective is inconclusive by checking

condition (a).
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Step 2:

If dim S = #(S ), go to Step 3 and skip the rest of Step 2. Otherwise, check if there

exists γ with the partial sign pattern, generated from all γs’s that are known at the current

node, that is sign-compatible with S. If yes, go to Step 3. Otherwise we move backward in

the γ tree and go back to Step 1.

Step 3:

Check if there exists a nonzero γ in S⊥Y with the partial sign pattern generated from the

signs of all γs’s that are known at the current node. If the answer is no, move backward in

the γ tree and go back to Step 1. Otherwise, we record the value and sign of each γs, for

s ∈ S .

Step 4:

Now that all signs of γs’s (s ∈ S ) are known, we will check if γ is sign-compatible

with S if dim S < #(S ), since if dim S = #(S ) then it is trivially true. If the answer

to the check is no, then we move forward in the γ tree (unless we are already at the node

of the last species with a non-fixed sign, in which case we move backward in the γ tree)

and go back to Step 1. If the answer is yes, then we can let ηy→y′ = 1 for all y → y′ ∈ R.

Note that γ ∈ S⊥Y \{0}. Then γ ∈ RS which is nonzero and sign-compatible with S, and

η ∈ RR
+ satisfy equation (4.2.5). We will terminate the process and claim that the network

is not mass action injective.

Therefore, from the result of checking whether condition (a) holds, we can either claim

that the network is not mass action injective or we must also check if condition (b) holds in

order to answer our mass action injectivity question.

Let us move to check if condition (b) holds. Recall that for each y → y′ ∈ R, we define

L̃y→y′(γ) = y · γ. Recall that for condition (a), we check if there exists a nonzero γ ∈ RS

sign-compatible with S which also lies in S⊥Y (i.e. L̃(γ) = 0). For condition (b), we check
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if there exists a nonzero γ ∈ RS that is sign-compatible with S such that L̃(γ) ∈ RR is

nonzero and sign-compatible with Ker T .

The algorithm that checks if condition (b) holds contains two kinds of trees: the γ tree

and y · γ tree. Its procedure is similar to the one for checking whether condition (a) holds,

but with more complicated rules.

Similarly, we can define terms like walk in the γ tree, walk in the y · γ tree, the walk

trace at some node (respect to the root node of the γ tree) in the γ tree or y · γ tree, a sign

pattern for γ, a sign pattern for [y1 · γ, ..., yn · γ], a partial sign pattern for γ, a partial sign

pattern for [y1 · γ, ..., yn · γ], etc.

Our algorithm contains a γ tree and at each node (except the root node) of γ tree, a y ·γ

tree is formed using the node as its root node.

Recall that we enumerate the species as s1,..., sN where N = #(S ). We also enu-

merate the reactant complexes as y1, ..., yn where n is the number of reactant complexes in

R.

Let a be a node (not a root node) in the ith (i ≥ 1) layer of the γ tree, then a represents

a sign node for γsi . The walk trace at node a is the direct (shortest) path from the root of

the γ tree to node a, which provides a partial sign pattern for γ (sign assignments to all

γsk’s for 1 ≤ k ≤ i). Let b be a node in the jth (j ≥ 0 and if j = 0 then b = a) layer

of the y · γ tree formed using node a as its root, then b represents a sign node for yj · γ (if

j = 0 then it means no sign is assigned to any y · γ’s). The walk trace at node b is defined

as the direct (shortest) path from the root node of the γ tree to node a in the γ tree, plus

the direct (shortest) path from the node a to node b in the y · γ tree. The walk trace at node

b in the y · γ tree not only provides a partial sign pattern for y · γ (sign assignments to all

yl · γ’s for 1 ≤ l ≤ j), but also a partial sign pattern for γ (sign assignments to all γsk’s

for 1 ≤ k ≤ i). If a = b, i.e., node b is a root of some y · γ tree, then we say we have two

partial sign patterns for γ and y · γ, respectively, except the latter one is empty (i.e. from

192



the walk trace no sign is assigned to any y · γ where y is a reactant complex). Thus we can

always consider the general case that node b is in some y · γ tree (which includes the case

that node a is in the γ tree).

Before we walk in the γ tree or y · γ tree, we want to check if we can fix the sign of

some γs (s ∈ S ) or y · γ (y is a reactant complex) to set up some rules for walking on γ

tree or y · γ tree.

(i) Note that we want to find a nonzero γ that is sign-compatible with S = span {y′−y :

y → y′ ∈ R}. Therefore, we can find each of the species swhich does not lie in the support

of any reaction vector y′ − y, and assign the corresponding γs a sign zero. We call such a

species a species with a fixed sign, or a sign-fixed species. We require that for the walk in

the γ tree, if we move past the nodes corresponding to these species, we only walk through

the zero sign node.

(ii) If there exists any feed (inflow) reaction, i.e., Rf 6= ∅, then the zero complex will

appear in the list of reactant complexes. In this case, note that for y = 0, y · γ = 0 for any

γ ∈ RS . We then fix the sign for y ·γ = 0 to be zero, where y is the zero reactant complex.

If we walk past the nodes corresponding to the zero reactant complex in the y · γ tree, then

we only walk through the zero sign node.

Suppose that we start from the root node of the γ tree, walk in the γ tree, and enter the

y · γ tree formed by node a at the ith layer of the γ tree. We are currently at some node b at

the jth layer of the y · γ tree generated by node a.

We say the sign of γs is known at this node b if (at least) one of the following holds:

(i) Species s is sign-fixed as indicated earlier (where γs is set to be 0).

(ii) The species s is among the first i (1 ≤ i ≤ N) species {s1, ..., si}.

(iii) The sign of γs can be determined (to be defined shortly) by the signs of γs′’s that

are known from (i) and (ii), and the signs of yl · γ’s for 1 ≤ l ≤ j.

Remark 4.3.4. By saying that the sign of γs can be determined by the signs of γs′’s that
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are known from (i) and (ii) and the signs of yl · γ’s for 1 ≤ l ≤ j, we mean that γs can be

written as a linear combination of these γs′’s and yl · γ’s such that for those γs′’s or yl · γ’s

with nonzero coefficients, the signs of coefficients of positive γs′’s and yl · γ’s are all the

same, and are the opposite to the signs of coefficients of negative γs′’s and yl · γ’s.

We say the sign of y · γ is known at this node b if (at least) one of the following holds:

(i) The reactant complex y is the zero complex, where the sign of y · γ is fixed to be

zero.

(ii) The reactant complex y is among the first j (1 ≤ j ≤ n) reactant complexes

{y1, ..., yj}.

(iii) The sign of y · γ can be determined (to be defined shortly) based on the signs of

γs’s that are known from (i) and (ii) in the definition of the known signs of γs at this node b,

and yl · γ’s for 1 ≤ l ≤ j. In particular, if the sign of y · γ can be determined (to be defined

shortly) based on the signs of γs’s that are known from (i) and (ii) in the definition of the

known signs of γs at this node b, we say the sign of such y · γ can be temporarily fixed (for

the current y · γ tree generated by node a).

Remark 4.3.5. By saying that y · γ can be determined based on the known signs of γs’s

or yl · γ’s (1 ≤ l ≤ j), we mean that y · γ can be written as a linear combination of these

γs’s and yl · γ’s such that for those γs’s or yl · γ’s with nonzero coefficients, the signs of

coefficients of positive γs’s and yl · γ’s are all the same, and are the opposite to the signs

of coefficients of negative γs’s and yl · γ’s.

From finding at each node of a y · γ tree, all the signs of γs’s and y · γ’s that are known,

we can get a partial sign pattern for γ and a partial sign pattern for [y1 · γ, ..., yn · γ] at this

node.

Now when we stop at a node in the γ tree, we will use all the known signs of γs’s

to generate a system of linear equalities/inequalities in terms of γs’s. When we stop at a
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node at the y · γ tree, we will use all the known signs of γs’s and y · γ’s to update the

partial sign patterns for γ and [y1 ·γ, ..., yn ·γ], respectively, and update the system of linear

equalities/inequalities in terms of γs’s.

Next, let us describe two ways of walking on the γ and y · γ tree: move forward and

move backward.

The rule for moving forward in the γ tree is simple. We start from the current node

which is not a leaf node (N th layer) in the γ tree. Walk toward higher layers (for example,

from the ith layer to (i+ 1)th layer) in the γ tree until we either reach a leaf node of positive

sign or arrive at the positive node of the next earliest species whose sign is not fixed. Note

that whenever we walk past a sign-fixed species (in the γ tree), we will walk through the

fixed (zero in this case) sign node.

The rule for moving forward in the y · γ tree is similar but slightly complicated. We

start from the current node which is not a leaf node (nth layer) in the y ·γ tree. Walk toward

higher layers (for example, from the ith layer to (i+ 1)th layer) in the y · γ tree until we

either reach a leaf node of positive sign or arrive at the earliest reactant complex whose

corresponding y · γ sign is not fixed or temporarily fixed. Note that whenever we walk

past a reactant complex whose y · γ sign is fixed (i.e. the zero complex in the y · γ tree)

or temporarily fixed on the way, we will walk through the fixed or temporarily fixed sign

node.

The rule for moving backward in the γ tree is slightly complicated. Here we will take

into account the fact that only about half (without the inversions) of the sign patterns of γ

which are sign-compatible with S need to be considered. We start from the current node

which is not the root node of γ tree. Then we follow these rules:

(I) If the current node is a fixed sign node, we walk toward lower layers along the node’s

walk trace until a node, whose species is not a sign-fixed species, is reached. If we reach

the root node, we exit the moving backward process. Otherwise, go to (II).
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(II) If the current node is a zero node, skip the rest and go to (III). If the current node is

a positive or negative node, then move to another child of its mother node in the following

way:

(i) Suppose that the currently stayed node is a positive node. If the fixed signs all

have a sign of zero (true in this case), then check if the partial sign pattern from the

walk trace at the mother node of this node contains all zero signs. If the answer is

yes, move to the zero sign node. Otherwise, move to the negative sign node.

(ii) If the current node is a negative node, move to the zero node.

(III) If the current node is a zero node, then walk toward lower layers in the tree along

the node’s walk trace to its mother node. Go back to (I).

The rule for moving backward in the y ·γ tree is similar. We start from the current node

which is not the root node in the y · γ tree. Then we follow these rules:

(I) If the currently stayed node is a fixed or temporarily fixed sign node, we walk toward

lower layers along the node’s walk trace until a node, whose reactant complex with y · γ

sign is not fixed or not temporarily fixed, is reached. Otherwise, go to (II).

(II) If the currently stayed node is a zero node, skip the rest and go to (III). If the current

node is a positive or negative node, then move to another child of its mother node in the

following way:

(i) If the current node is a positive node, move to the negative sign node.

(ii) If the current node is a negative node, move to the zero sign node.

(III) If the current node is a zero node, then walk toward lower layers in the tree along

the node’s walk trace to its mother node. Go back to (I).

Now we are ready to talk about the algorithm for checking whether (b) holds. We

introduce a boolean variable called EverFoundSolution. We will proceed according to the

following steps:
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Step 0:

EverFoundSolution is set to be False.

Step 1:

We are currently at some node in the γ tree.

(i) If it is the first time walking in the γ tree, i.e., we start at the root of the γ tree, then

we will move forward in the γ tree. Skip (ii).

(ii) If it is not the first time walking in the γ tree, then we have already arrived at some

node in the γ tree. We will move forward on the γ tree (unless it is already at the last non-

fixed species node, then move backward in γ tree) if EverFoundSolution is True, and we

will move backward on the γ tree if EverFoundSolution is False. Thus we arrive at some

other node in the γ tree. Note that if after moving backward, we arrive at the root of the

γ tree, then we will terminate the process and conclude that condition (b) does not hold.

Otherwise we will go to Step 2 and move into the y · γ tree generated by the current node

as its root.

Step 2:

Set EverFoundSolution to be False. We are currently at some node in the y · γ tree. We

find the known signs of γs’s and y · γ’s at the current node and then we have a partial sign

pattern for γ and for [y1 · γ, ..., yn · γ].

(i) If it is the first time walking in the y · γ tree from the γ tree, then we start at the root

of the y ·γ tree. Recall that the known signs of y ·γ’s based on the known signs of γs’s (s is

sign-fixed species or among the first i species where i is the number of the layer the root of

the y · γ tree lies in the γ tree) are said to be temporarily fixed for the current y · γ tree. We

will find all the reactant complexes with their corresponding y · γ signs temporarily fixed

at the root of the y · γ tree. We then move forward in the y · γ tree. Skip (ii).

(ii) If it is not the first time walking in the y · γ tree, then we have already arrived at
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some node in the y · γ tree. Note that if we previously moved backward and arrive at the

root of the y · γ tree, then we will go to Step 1 and return to the γ tree.

Step 3:

At the current node of the y · γ tree, we update the knowns signs of γs’s and y · γ’s and

update the corresponding sign patterns of γ and [y1 · γ, ..., yn · γ], respectively.

Step 4:

Check if there exist outflow reactions, i.e., Ro 6= ∅. If the answer is no, then we skip

the following and go to Step 5. Otherwise, we have Ro 6= ∅. Note that R = Rt∪Ro∪Rf ,

then equation (4.2.5) can be rewritten as follows:

∑
y→y′∈Rt

ηy→y′(y · γ)(y′ − y) +
∑

s→0∈Ro

ηs→0(γs)(−s) +
∑

0→s∈Rf

ηs→0(0)(s) = 0

which is equivalent to:

∑
s→0∈Ro

ηs→0(γs)(s) =
∑

y→y′∈Rt

ηy→y′(y · γ)(y′ − y) (4.3.3)

Given γ ∈ RS , we define γnew ∈ RS as follows:

γnew
s =


γs, if s→ 0 ∈ Ro

0, otherwise.

From the partial sign pattern for γ at the current node and the definition of γnew, γnew has a

partial sign pattern at the current node in the y · γ tree. Let Strue = {y′− y : y → y′ ∈ Rt}.

From equation (4.3.3), we can see that γnew must be sign-compatible with Strue. Therefore

we will check if there exists γ̃ ∈ Strue with the same partial sign pattern as γnew. If the

answer is yes, we move to Step 5; otherwise, we move backward in the y · γ tree and go

back to Step 2.

Step 5:

If dim S = #(S ), go to Step 6 and skip the rest of Step 5. Otherwise, we check if

there exists a nonzero β ∈ S with the same partial sign pattern as γ. If the answer is yes,

we go to Step 6; otherwise, we move backward in the y · γ tree and go back to Step 2.
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Step 6:

Recall that L̃(γ) ∈ RR is defined via L̃y→y′(γ) = y · γ. From the partial sign pattern

for [y1 · γ, ..., yn · γ], L̃(γ) has a partial sign pattern at the current node in the y · γ tree. We

check if there exists a nonzero α ∈ Ker T with the same partial sign pattern as L̃(γ). If

the answer is yes, then we move to Step 7; otherwise, we move backward in the y · γ tree

and go back to Step 2.

Step 7:

Check if there exists a nonzero γ ∈ RS satisfying the inequality system generated by

the known signs of γs’s and y · γ’s. If the answer is no, then we move backward in y · γ

tree and go back to Step 2. If the answer is yes, then record the value and sign of each γs

and calculate the value and sign of each y · γ. We will set EverFoundSolution to be true.

Step 8:

Now that all signs of γs’s and y · γ’s are known, we have (full) sign patterns for γ and

[y1 · γ, ..., yn · γ]. We then check if all of the sign-compatible conditions in Step 4 on Strue

(if applicable), Step 5 on S (if applicable) and Step 6 on Ker T are satisfied.

If the answer is no, then we move forward in the y · γ tree (unless it is already at the

node corresponding to the last reactant complex whose y ·γ sign is not fixed or temporarily

fixed, then we move backward in y ·γ tree) and go back to Step 2. If the answer is yes, then

we can find a solution of η ∈ RR
+ from equation (4.2.5). We will terminate the process and

claim that the network is not mass action injective.

Therefore, after we run the two checks for whether (a) or (b) holds, we can have the

following situations:

(i) Neither condition (a) nor (b) holds. We then claim that the reaction network is mass

action injective and therefore does not have the capacity to admit more than one steady

state.

(ii) Condition (a) or (b) holds. We then claim that the reaction network is not mass
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action injective and therefore the answer to whether the network has the capacity to admit

multiple steady states is inconclusive. In this case, we need to refer to the Higher Deficiency

Algorithm for more information.

Remark 4.3.6. Recall that in Lemma 4.3.2, we state that the following statements are

equivalent:

(A) There exist an η ∈ RR
+ and a nonzero γ ∈ RS that is sign-compatible with S,

satisfying equation (4.2.5).

(B) There exists a nonzero γ ∈ RS that is sign-compatible with S such that L̃(γ) ∈ RR

is sign-compatible with Ker T .

(C) One of the two conditions holds:

(a): There exists a nonzero γ ∈ RS that is sign-compatible with S and lies in S⊥Y .

(b): There exists a nonzero γ ∈ RS that is sign-compatible with S such that L̃(γ) ∈

RR is nonzero and sign-compatible with Ker T .

Note that in Lemma 4.3.2, (B) is a trivial generalization (by allowing L̃(γ) = 0) of

condition (b) of (C), therefore the algorithms of checking whether condition (b) holds or

(B) holds are very similar. The algorithm for the Mass Action Injectivity Test implemented

in [16], which tests if (B) holds, is different from that of checking whether condition (b)

holds in the following places:

In (ii) of Step 1, we replace the original sentence "Note that if after moving backward,

we arrive at the root of the γ tree, then we will terminate the process and conclude that

condition (b) does not hold." by "Note that if after moving backward, we arrive at the root

of the γ tree, then we will terminate the process and conclude that the reaction network is

mass action injective."

In Step 6, we replace the original sentence "We check if there exists a nonzero α ∈ Ker
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T with the partial sign pattern of L̃(γ)." with "We check if there exists a α ∈ Ker T with

the partial sign pattern of L̃(γ)."

4.4 Applications

Having explained how the algorithm worked, we will give an example of reaction network

(4.4.1). Note that we will write in terms of reactions, not a standard network diagram.

S1 + E1 
 E1S1 (4.4.1)

S2 + E1S1 
 E1S1S2 → P1 + E1

S2 + E2 
 E2S2

S3 + E2S2 
 E2S2S3 → P2 + E2

S3 + E3 
 E3S3

S4 + E3S3 
 E3S3S4 → P3 + E3

S4 + E4 
 E4S4 → 2S1 + E4

S1 
 0 
 S2

S3 
 0 
 S4

P1→ 0← P2

↑

P3

The Mass Action Injectivity Test, implemented in [16], concludes that the reaction

network (4.4.1) is mass action injective. Therefore, the network (4.4.1) does not have the

capacity to admit more than one steady state.
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Chapter 5

CONCORDANCE TEST

5.1 Background

The Concordance Test is a test of whether a given reaction network is concordant (to be

defined shortly). The idea of a concordant network comes from a private communication

([17]). As we shall see, one can say much about systems in which the underlying network

is concordant, even when the kinetics is not mass action (provided that certain weak condi-

tions on the kinetics are satisfied). In this chapter we mainly focus on finding an algorithm

to determine whether a network is concordant. The algorithm has been implemented in the

Chemical Reaction Network Toolbox [16].

We will present a few terms and a proposition from [17].

The map L : RR → RS is defined as follows: for given α ∈ RR ,

Lα =
∑

y→y′∈R

αy→y′(y′ − y).

A reaction network {S ,C ,R} is concordant if there does not exist an α ∈ Ker L

and a nonzero σ ∈ S satisfying the following conditions:

(i) For each y → y′ ∈ R such that αy→y′ 6= 0, supp y contains a species s for which

sgn(σs) = sgn(αy→y′).

(ii) For each y → y′ ∈ R such that αy→y′ = 0, σs = 0 for all s ∈ supp y or else supp y

contains species s and s′ for which sgn(σs) = −sgn(σs′), both not zero.
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Recall that a kinetics K for a reaction network {S ,C ,R} is an assignment of a (con-

tinuous nonnegative real-valued) rate function Ky→y′(·) to each reaction y → y′ in the

network.

A reaction network {S ,C ,R} governed by some kinetics K is injective if, for each

of distinct stoichiometrically compatible compositions c∗, c∗∗ ∈ R̄S
+ , at least one of which

is strictly positive,

∑
y→y′∈R

Ky→y′(c∗∗)(y′ − y) 6=
∑

y→y′∈R

Ky→y′(c∗)(y′ − y) (5.1.1)

A kinetics K for reaction network {S ,C ,R} is weakly monotonic if, for each pair of

compositions c∗, c∗∗ ∈ R̄S
+ , the following implications hold for each reaction y → y′ ∈ R

such that supp y ⊆ supp c∗ and supp y ⊆ supp c∗∗:

(i) If K (c∗∗) > K (c∗), then there exists a species s ∈ supp y with c∗∗s > c∗s.

(ii) If K (c∗∗) = K (c∗), then either c∗∗ = c∗ or there exist species s, s′ ∈ supp y with

c∗∗s > c∗s and c∗∗s′ < c∗s′ .

Proposition 5.1.1. [17] A reaction network {S ,C ,R} governed by weakly monotonic

kinetics is injective whenever its underlying reaction network {S ,C ,R} is concordant.

In particular, if the underlying reaction network is concordant, then the reaction network

governed by weakly monotonic kinetics cannot admit two distinct stoichiometrically com-

patible equilibria, at least one of which is positive.

Concordant networks have many pleasant properties when taken with any weakly mono-

tonic kinetics. For more information on those other properties, see [17].

5.2 Algorithm

We will describe an algorithm to test if a given reaction network is concordant. From a

given nonzero sign pattern for σ ∈ S, the definition of concordance restricts the signs that
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components of α ∈ Ker L might take. Suppose that σ ∈ S is nonzero and let y be a

reactant complex. Then we have the following cases:

(i) If for all s ∈ supp y, sgn(σs) = 0, then αy→y′ = 0; or else if for all s ∈ supp y,

sgn(σs)≥ 0, then αy→y′ > 0; or else if for all s ∈ supp y, sgn(σs)≤ 0, then αy→y′ < 0.

(ii) If there exist s, s′ ∈ supp y such that sgn(σs) = −sgn(σs′), both nonzero, then the

sign of αy→y′ can be free (by free we mean that there is no constraint on the sign, and it

could be positive, negative or zero).

Note that αy→y′ having a free sign actually means we do not assign a sign to αy→y′ .

Thus we have a partial sign pattern for α ∈ RR . We then check if such a partial sign

pattern is sign compatible with Ker L. If so, then there exists α ∈ Ker L with such a

partial sign pattern; thus we claim that the reaction network is not concordant. If for any

nonzero σ ∈ S, there does not exist α ∈ Ker Lwith the partial sign pattern generated from

cases (i) and (ii) above, then we claim the reaction network is concordant and the reaction

network does not have the capacity to admit multiple steady states (with weakly monotonic

kinetics).

Note that since we only care about the sign pattern of σ ∈ S, not the value of its

component, we may relax the condition of a nonzero σ ∈ S to study any nonzero σ ∈ RS

that is sign-compatible with S. In other words, we check if the following condition (**)

holds:

(**): There exists a nonzero σ ∈ RS that is sign-compatible with S such that there

exists α ∈ Ker L with a partial sign pattern generated from cases (i) and (ii) above.

Note that if σ ∈ RS and α ∈ Ker L satisfy the condition (**), then −σ and −α also

satisfy the condition (**). Recall that in Section 4.3 of Chapter 4, for the check of whether

condition (a) holds, we check if there exists a nonzero γ ∈ RS that is sign-compatible with

S and lies in S⊥Y . When checking whether condition (**) holds or whether condition (a)

holds (in Section 4.3 of Chapter 4), we only need to consider almost half (leaving out the
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inversions) of the sign patterns of γ or σ. Therefore, we can set up a σ tree as we did for a

γ tree in the check of whether condition (a) holds for the Mass Action Injectivity Test. We

can similarly define the walk in the tree, the known signs of σs’s at some node, a partial

sign pattern for σ, a sign pattern for σ, move forward and move backward in the σ tree, etc.

We will also first check if there exists any species s that does not lie in the support of any

reaction vectors y′ − y. Because σ ∈ RS is required to be sign-compatible with S, we set

the sign of σs to be zero for any such species s, and call it a sign-fixed species. As for the

sign-fixed species, when we walk past the nodes corresponding such species, we only walk

through the one corresponding to the given fixed (zero) sign node.

Recall that in Section 4.3 of Chapter 4, when we checked whether condition (a) holds,

we defined two ways of walking in the γ tree: move forward and move backward. Here

we apply the same rules on the σ tree.

The rule for moving forward is simple. We start from the current node which is not

a leaf node (in the N th layer, where N = #(S )). We walk toward higher layers (for

example, from ith layer to (i+ 1)th layer) in the σ tree until we either reach a positive leaf

node or arrive at the positive node of the next earliest species whose sign is not fixed. Note

that whenever we walk past a sign-fixed species, we will walk through the fixed (zero in

this case) sign node.

The rule for moving backward is slightly complicated. Here we will take into account

the fact that only almost half (leaving out the inversions) of the sign patterns of σ which

are sign-compatible with S need to be considered. We start from the current node which is

not the root node. Then follow these rules:

(I) If the current node is a fixed sign node (zero sign in this case), walk toward lower

layers along its walk trace until a node, whose species is not a sign-fixed species, is reached.

If we reach the root node, we exit the moving backward process. Otherwise, go to (II).

(II) If the current node is a zero node, skip the rest and go to (III). If the current node is
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a positive or negative node, then move to another child of its mother node in the following

way:

(i) Suppose that the current node is a positive node. If the fixed signs all have a sign

of zero (true in this case), then check if the partial sign pattern, generated from the

known signs of σs’s at the mother node of this node, contains all zero signs. If the

answer is yes, move to the zero sign node. Otherwise, move to the negative sign

node.

(ii) If the current node is a negative node, move to the zero node.

(III) If the current node is a zero node, then move back in the tree (along its walk

trace) to its mother node. If we reach the root node, we exit the moving backward process.

Otherwise, go back to (I).

We will proceed with the Concordance Test according to the following steps.

Step 0:

Start at the root node of the σ tree and move forward.

Step 1:

We are currently at some node. We have a partial sign pattern for σ from the σs’s that

are known at the current node. We then check if there exists a nonzero β ∈ S with such a

partial sign pattern.

Step 2:

If the answer is no in Step 1, move backward on the σ tree and go to Step 1. If the

answer is yes, then check if we are currently at a leaf node of the σ tree. If the answer is

no, move forward and go to Step 1. If the answer is yes, then go to Step 3.

Step 3:

If the sign pattern of σ is such that σs = 0 for all s ∈ S , then we claim that the reaction

network is concordant and exit the algorithm. Otherwise, for the given nonzero sign pattern
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of σ, we may restrict the signs of αy→y′’s where y is a reactant complex, according to the

following rules:

(i) If for all s ∈ supp y, sgn(σs) = 0, then αy→y′ = 0; or else if for all s ∈ supp y,

sgn(σs)≥ 0, then αy→y′ > 0; or else if for all s ∈ supp y, sgn(σs)≤ 0, then αy→y′ < 0.

(ii) If there exist s, s′ ∈ supp y, such that sgn(σs) = −sgn(σs′), both nonzero, then the

sign of αy→y′ is set to be free (by free we mean that any sign is possible and we do not put

any constraint on the sign).

We then obtain a partial sign pattern for α ∈ RR . We check if there exists an α ∈ Ker

L with such a partial sign pattern. If the answer is yes, then we claim that the reaction

network is not concordant and exit the algorithm. If the answer is no, we move backward

in the σ tree and go to Step 1.

Therefore, after we run the Concordance Test, we can either claim that the reaction

network is concordant and therefore does not have the capacity to admit more than one

positive steady state, or the reaction network is not concordant. In the latter case, the test

is inconclusive in answering the question of multiple steady states and we may refer to the

Higher Deficiency Algorithm or the Mass Action Injectivity Test for more information.

5.3 Applications

We will use the same example of reaction network (4.4.1) as in Chapter 4.

The Concordance Test, implemented in [16], concludes that the reaction network is

concordant. Therefore, the network (4.4.1) does not have the capacity to admit more than

one positive steady state, so long as the kinetics is weakly monotonic: It does not have to

be mass action. From [17], we have that:

Concordant networks have many pleasant properties when taken with any weakly mono-

tonic kinetics, not necessarily mass action. For example, a positive equilibrium is invariably
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unique in the following sense: There can be no other equilibrium that is stoichiometrically

compatible with it, not even one in which certain species are absent.

For still other properties of concordant networks, see [17] for more information.
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Chapter 6

FUTURE RESEARCH

6.1 Overview

In this chapter we will raise a few questions about improving the efficiency (in terms of

getting a definite answer) of the Higher Deficiency Algorithm.

Recall that for a reaction network {S ,C ,R} with orientation O , we define "∼" equiv-

alence classes Pi (0 ≤ i ≤ w) and the corresponding fundamental classes Ci (0 ≤ i ≤ w),

where P0 is the zeroth equivalence class. We pick yi → y′i as the representative for Pi

(0 ≤ i ≤ w). We then define W = {yi → y′i}wi=1. Recall that q is the dimension of

Ker⊥ LO ∩ ΓW . Suppose we pick a "valid" sign pattern for gW , hW ∈ RO ∩ ΓW and a

parameter set {ρW (yi → y′i) : gW (yi → y′i) 6= 0} is also given, consistent in sign with

the sign patterns of gW and hW . Let {bj}qj=1 be a basis for Ker⊥ LO ∩ ΓW . Given the

sign patterns for gW and hW , for each 1 ≤ j ≤ q, we define Qj
+ = {ρW (yi → y′i) :

yi → y′i ∈ W and bjyi→y′igW (yi → y′i) > 0} and Qj
− = {ρW (yi → y′i) : yi → y′i ∈

W and bjyi→y′igW (yi → y′i) < 0}.

6.2 Nonlinear Conditions on ρ’s

From Remark 2.9.6, we know that if 2q ≥ w, then in order for there to exist gW , hW

satisfying equations (2.9.13), (2.9.14) and (2.9.15), we need to add additional (nonlinear)

equalities in terms of ρW (yi → y′i)’s (from satisfying rank AD < w, where AD is defined
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as in equation (2.9.19)). However, we did not implement this in the algorithm as these

are nonlinear equalities in terms of ρW (yi → y′i)’s. Note that these nonlinear equalities

in terms of ρW (yi → y′i)’s will be nonlinear equalities in terms of eMi’s. Therefore, the

resulting systems are nonlinear in terms of Mi’s. (Or we could rephrase a pre-signature

in terms of Mi’s to be in terms of ρW (yi → y′i)’s and get a nonlinear system in terms of

ρW (yi → y′i)’s.) In the future, we could implement this as an expanded version of [16]. We

will need a package to calculate the determinants (of all (w × w) submatrices of AD) and

a reliable and freely available nonlinear solver that can be called from [16].

If 2q < w and Ker⊥ LO ∩ ΓW does not have a forest basis, then the conditions (*)

(first mentioned in Section 2.9) on the ρW (yi → y′i)’s, which we later denote as condi-

tions in Proposition 2.10.14, are necessary but not necessarily sufficient for the existence

of gW , hW ∈ RO ∩ ΓW with the given "valid" pair of sign patterns satisfying equations

(2.9.13), (2.9.14), and (2.9.15). Therefore, we may require additional equalities in terms

of ρW (yi → y′i)’s besides those arose from zero determinants (of all (w × w) submatrices

of AD) in the last paragraph to guarantee the existence of such gW and hW . We have not

built a systematic way to set up these additional nonlinear equalities. For our future study,

we could work on finding these equalities.

6.3 More Efficient b-Bases

Note that in the conditions of Proposition 2.10.14 we did not put any assumptions on the

size of the support of each bj (1 ≤ j ≤ q). However, we know if we could find a basis

{bj}qj=1 where each bj has a relatively small support (meaning the basis vector matrix is

quite sparse), then the multisets Qj
1 and Qj

2 in Proposition 2.10.14 are smaller. Therefore,

the number of subcases generated in each case of the conditions in Proposition 2.10.14 will

be smaller, and the efficiency of the algorithm will be improved. In the linear case, we can
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try to find a forest basis {bj}qj=1 where each bj (1 ≤ j ≤ q) has a relatively small support,

following the algorithm in Section 2.12.

In the case that there does not exist a forest basis for Ker⊥ LO ∩ ΓW , we would work

to find a systematic way to find a basis for Ker⊥ LO ∩ ΓW such that each basis vector has

a relatively smaller support. We could exhaustively search basis vectors with 3-support,

4-support, 5-support, etc., to construct a basis. For a basis vector with n-support, we try

to find a vector in Ker⊥ LO ∩ ΓW with support on some n reactions. We will test all 3

combinations of the w reactions to find an independent set of vectors in Ker⊥ LO ∩ ΓW

with 3-support. If the number of independent vectors we found is less than q, then we need

to continue looking for vectors with bigger size support. For the 4-support, we will test all

4 combinations of the w reactions to find an independent set of vectors in Ker⊥ LO ∩ ΓW

with 4-support, which if adding the vectors we find in the 3-support step, will still be an

independent set. Of course, we can skip the combinations of four reactions where a basis

vector with three of the four reactions has been found in the 3-support step. The process of

finding such a basis for Ker⊥ LO ∩ΓW could be time consuming, especially when the size

of the support becomes high and we are still looking for more vectors to complete a basis

for Ker⊥ LO ∩ ΓW . Thus currently in [16], when Ker⊥ LO ∩ ΓW does not have a forest

basis, we only find the basis vectors with 3-support to build a subset of a basis for Ker⊥

LO ∩ ΓW . If we can find a smart way of finding a complete basis where each basis vector

has a relatively small support, the efficiency of the algorithm could be improved.

6.4 Shelving conditions

If we can find more necessary conditions as listed in Proposition 2.8.1, we could possibly

improve the efficiency of the algorithm.

Recall that in the Deficiency One Algorithm the "shelves" are assigned following the

conditions below:
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(i) All non-terminal complexes are put in the middle shelf M .

(ii) All complexes in the same nontrivial terminal strong linkage class are put in the

same shelf.

(iii) If there are no trivial terminal strong linkage classes, then neither the upper shelf

nor the lower shelf can be empty.

(iv) If there is exactly one trivial terminal strong linkage class, then the upper shelf and

the lower shelf cannot both be empty.

Recall that we did not generalize conditions (iii) and (iv) above in the Higher Deficiency

Algorithm. These generalizations may still exist.

6.5 Merger of Theories

There are three approaches to answer the question of multiple steady states in this thesis

as well as in its computer implementation [16]: the Deficiency Theories and Algorithm,

the Mass Action Injectivity Test, and the Concordance Test. The Deficiency Zero Theorem

and the Deficiency One Theorem are very simple and powerful, without involving too many

calculations. However, the Deficiency One Algorithm and the Higher Deficiency Theory

may need to produce many inequality systems to solve the question of multiple steady

states. The Mass Action Injectivity Test and the Concordance Test are relatively simple

in terms of the calculations involved. We have known that there are cases when the Mass

Action Injectivity Test and/or the Concordance Test conclude that the reaction network

does not have the capacity to admit multiple steady states and yet the High Deficiency

Theory stays silent. We in the future could work on merging all of these approaches into

some "big" theory that incorporates all of these developed theories.
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