
LOAD-BALANCING SPATIALLY LOCATED
COMPUTATIONS USING RECTANGULAR PARTITIONS

THESIS

Presented in Partial Fulfillment of the Requirements for the Degree Master of

Science in the Graduate School of the Ohio State University

By

Erdeniz Ö. Baş,

Graduate Program in Computer Science and Engineering

The Ohio State University

2011

Master’s Examination Committee:

Ümit V. Çatalyürek, Advisor

Radu Teodorescu

c© Copyright by

Erdeniz Ö. Baş

2011

ABSTRACT

Distributing spatially located heterogeneous workloads is an important problem

in parallel scientific computing. Particle-in-cell simulators, ray tracing and partial

differential equations are some of the applications with spatially located workload.

We investigate the problem of partitioning such workloads (represented as a matrix of

non-negative integers) into rectangles, such that the load of the most loaded rectangle

(processor) is minimized. Since finding the optimal arbitrary rectangle-based parti-

tion is an NP-hard problem, we investigate particular classes of solutions: rectilinear,

jagged and hierarchical. We present a new class of solutions called m-way jagged par-

titions, propose new optimal algorithms for m-way jagged partitions and hierarchical

partitions, propose new heuristic algorithms, and provide worst case performance

analyses for some existing and new heuristics. Balancing the load does not guaran-

tee to minimize the total runtime of an application. In order to achieve that, one

must also take into account the communication cost. Rectangle shaped partitioning

inherently keeps communications small, yet one should proactively minimize them.

The algorithms we propose are tested in simulation on a wide set of instances and

compared to state of the art algorithm. Results show that m-way jagged partitions

are low in total communication cost and practical to use.

ii

To my mother...

iii

ACKNOWLEDGMENTS

I would like to express my appreciation to my parents Demet and Mehmet for

their continuous support. Without their devotions, I wouldn’t be able to complete

my education.

During my MS studies, I had the opportunity to work with Prof. Umit Catalyurek,

one of the best advisors a grad student can have. He created a welcoming environment

that allowed me to focus on my research without distractions. With his helpfulness

and knowledge, I was able to put more value on my thesis. I would like to thank him

for all his efforts.

Lastly, I would like to thank Erik Saule who answered all my questions promptly

and explained complex concepts tirelessly. He was not only a teacher but also a friend

who kept my morale high. I learned quite a lot from him and this thesis is shaped

by his valuable thoughts.

iv

VITA

1986 . Born in Kirsehir, Turkey

2009 . B.E. in Computer Engineering, Ege Uni-
versity, Turkey

2010-Present . Graduate Research Associate, The Ohio
State University

PUBLICATIONS

E. Saule, E. Ö. Baş, and Ümit V. Çatalyürek. Partitioning spatially located computa-
tions using rectangles. In Proc. of 25th IEEE International Parallel and Distributed
Processing Symposium, 2011.

E. Saule, E. Ö. Baş, and Ümit V. Çatalyürek. Load-balancing spatially located com-
putations using rectangular partitions. Technical Report arXiv:1104.2566v1, ArXiv,
Apr 2011.

FIELDS OF STUDY

Major Field: Computer Science

Specialization: High Performance Computing

v

TABLE OF CONTENTS

Abstract . ii

Dedication . ii

Acknowledgments . iv

Vita . v

List of Figures . viii

List of Tables . x

List of Codes . xi

CHAPTER PAGE

1 Introduction . 1

1.1 Motivation . 1
1.2 Focus . 2

2 Load Balancing Algorithms . 7

2.1 Model and Preliminaries . 7
2.1.1 Problem Definition . 7
2.1.2 The One Dimensional Variant 8

2.2 Algorithms . 11
2.3 Rectilinear Partitions . 13

2.3.1 Jagged Partitions . 14
2.3.2 Hierarchical Bipartition . 23
2.3.3 More General Partitioning Schemes 25

2.4 Experimental Evaluation . 26
2.4.1 Experimental Setting . 26
2.4.2 Jagged algorithms . 29
2.4.3 Hierarchical Bipartition . 33
2.4.4 Execution time . 35
2.4.5 Which algorithm to choose? 38

vi

2.5 Hybrid partitioning scheme . 41

3 Inter-processor Communication and Rebalancing 50

3.1 Communication Cost . 50
3.2 Problem Definitions . 51
3.3 Communication Metrics . 53
3.4 Performance of 2D Algorithms . 55

3.4.1 Uniform Partitioning (RECT-UNIFORM) 55
3.4.2 Recursive Bisection (HIER-RB) 55
3.4.3 Hierarchical Relaxed Bisection (HIER-RELAXED) 55
3.4.4 Recursive Bisection with Middle Cut (HIER-RB-MIDDLE) . 56
3.4.5 Nicol’s 2D Algorithm (RECT-NICOL) 56
3.4.6 P×Q-way Jagged (JAG-PQ-HEUR) 56
3.4.7 m-way Jagged algorithms JAG-M-HEUR and JAG-M-PROBE . 57

3.5 Results . 57

4 Software . 67

4.1 Overview . 67
4.2 Using the Library . 68
4.3 One Dimensional Partitioning Implementation Details 70

4.3.1 DirectCut . 71
4.3.2 NicolPlus . 72
4.3.3 Recursive Bisection . 74
4.3.4 Calculating Lower and Upper Bounds 75

4.4 Two Dimensional Partitioning Implementation Details 78
4.4.1 Reducing a Matrix into an array 78
4.4.2 PartBase class . 79
4.4.3 RECT-UNIFORM . 79
4.4.4 RECT-NICOL . 82
4.4.5 HIER-RB . 82
4.4.6 HIER-RELAXED . 82
4.4.7 JAG-PQ-HEUR,JAG-M-HEUR and JAG-M-PROBE 83
4.4.8 JAG-PQ-OPT and JAG-M-OPT 83

4.5 Extending the Library . 85

5 Conclusion . 88

Bibliography . 90

vii

LIST OF FIGURES

2.1 Different structures of partitions. 11

2.2 Examples of real and synthetic instances. 28

2.3 Jagged methods on PIC-MAG iter=30,000. 30

2.4 Jagged methods on PIC-MAG with m = 6400. 31

2.5 Impact of the number of stripes on Uniform Instance 33

2.6 HIER-RELAXED on 512x512 Multi-peak. 34

2.7 HIER-RELAXED on 4096x4096 Diagonal. 35

2.8 Hierarchical methods on PIC-MAG with m = 400. 36

2.9 Runtime on 512x512 Uniform with ∆ = 1.2. 37

2.10 Main heuristics on PIC-MAG with m = 9216. 39

2.11 Main heuristics on PIC-MAG iter=20,000. 40

2.12 Main heuristics on SLAC. 40

2.13 Runtime of HYBRID methods on PIC-MAG iter=5000 with m = 512. . 43

2.14 Using JAG-M-OPT at phase 2 on PIC-MAG iter=5000 with m = 512 . 44

2.15 Correlation between expected and obtained LI on PIC-MAG 45

2.16 HYBRID algorithm on PIC-MAG iter=10000 47

2.17 HYBRID algorithm on PIC-MAG on 7744 processors 48

2.18 HYBRID algorithm on PIC-MAG on 6400 processors 49

2.19 Runtime of HYBRID methods on PIC-MAG iter=10000 49

3.1 A migration example. 52

viii

3.2 Average neighbor performance profile in PICMAC dataset 59

3.3 Maximum neighbor performance profile in PICMAC dataset 60

3.4 Average border length performance profile in PICMAC dataset . . . 61

3.5 Maximum border length performance profile in PICMAC dataset . . 62

3.6 Degradation in PICMAC Bottleneck - repartitioned in every 2 iterations 63

3.7 Degradation in PICMAC Bottleneck - repartitioned in every 5 iterations 63

3.8 Degradation in PICMAC Bottleneck - repartitioned in every 10 iterations 64

3.9 JAG-M-HEUR-PROBE total rebalancing cost 64

3.10 JAG-M-HEUR-PROBE maximum send/receive cost 65

3.11 RECT-NICOL total rebalancing cost 65

3.12 RECT-NICOL maximum send/receive cost 66

ix

LIST OF TABLES

2.1 Summary of the presented algorithms 12

x

LIST OF CODES

4.1 Initializing prefix sum array . 69
4.2 Running the algorithm . 69
4.3 Rectangle structure members . 70
4.4 Writing result to standard output . 70
4.5 General one dimensional partitioning interface 72
4.6 Direct cut algorithm . 73
4.7 Direct cut with refined bottleneck . 74
4.8 Nicol’s 1D partitioning algorithm . 74
4.9 Testing Bottleneck feasibility with RProbe 75
4.10 Recursive Bisection . 76
4.11 Normalized load calculation . 76
4.12 Finding even cut point . 77
4.13 TransposePrefix2D class . 79
4.14 Aggreg2Dto1D class . 80
4.15 AggregMax2Dto1D class . 81
4.16 HIER-RB options to set cut orientation 82
4.17 Bound refinement in bi-monotonic binary search 83
4.18 JAG-PQ-HEUR class variations . 84
4.19 Lower and upper bound calculation in dynamic programming 86
4.20 Plugging another algorithm in the 1st dimension 87

xi

CHAPTER 1

INTRODUCTION

1.1 Motivation

To achieve good efficiency when using a parallel platform, one must distribute the

computations and the required data to the processors of the parallel machine. If the

computation tasks are independent, their parallel processing falls in the category of

pleasantly parallel tasks. Even in such cases, when computation time of the tasks

are not equal, obtaining the optimal load balance to achieve optimum execution time

becomes computationally hard and heuristic solutions are used [26]. Furthermore,

most of the time some dependencies exist between the tasks and some data must be

shared or exchanged frequently, making the problem even more complicated.

A large class of application see its computations take place in a geometrical space

of typically two or three dimensions. Different types of applications fall into that

class. Particle-in-cell (PIC) simulation [19, 37] is an implementation of the classical

mean-field approximation of the many-body problem in physics. Typically, thousands

to millions of particles are located in cells, which are a discretization of a field. The

application iteratively updates the value of the field in a cell, based on the state of the

particles it contains and the value of the neighboring cells, and then the state of the

particles, based on its own state and the state of the cell it belongs to. Direct volume

rendering [24] is an application that use rendering algorithm similar to raycasting in

1

a scene of semi-transparent objects without reflection. For each pixel of the screen,

a ray orthogonal to the screen is cast from the pixel and color information will be

accumulated over the different objects the ray encounters. Each pixel therefore re-

quires an amount of computation linear to the number of objects crossed by the ray

and neighboring pixels are likely to cross the same objects. Partial Differential Equa-

tion can be computed using mesh-based computation. For instance [18] solves heat

equation on a surface by building a regular mesh out of it. The state of each node

of the mesh is iteratively updated depending on the state of neighboring nodes. For

load balancing purpose, [31] maps the mesh to a discretized two dimensional space.

Another application can be found in 3D engines where the state of the world is itera-

tively updated and where the updates on each object depends on neighboring objects

(for instance, for collision purpose) [1]. Linear algebra operations can potentially also

benefit from such techniques [34, 40, 41].

1.2 Focus

In this work, our goal is to balance the load of such applications while keeping com-

munication low. In the literature, load balancing techniques can be broadly divided

into two categories: geometric and connectivity-based. Geometric methods (such

as [5, 33]) leverages the fact that computations which are close by in the space are

more likely to share data than computations that are far in the space, by dividing

the load using geometric properties of the workload. Methods from that class often

rely on a recursive decomposition of the domain such as octrees [10] or they rely on

space filling curves and surfaces [2, 3]. Connectivity-based methods usually model

the load balancing problem through a graph or an hypergraph weighted with com-

putation volumes on the nodes and communication volumes on the edges or hyper

edges (see for instance [9, 39]). Connectivity-based techniques lead to good partitions

2

but are usually computationally expensive and require to build an accurate graph (or

hypergraph) model of the computation. They are particularly well-suited when the

interactions between tasks are irregular. Graphs are useful when modeling interac-

tions that are exactly between two tasks, and hypergraph are useful when modeling

more complex interactions that could involve more than two tasks [7, 17].

When the interactions are regular (structured) one can use methods that takes

the structure into account. For example, when coordinate information for tasks are

available, one can use geometric methods which leads to “fast” and effective parti-

tioning techniques. In geometric partitioning, one prefers to partition the problem

into connex and compact parts so as to minimize communication volumes. Rectan-

gles (and rectangular volumes) are the most preferred shape because they implicitly

minimize communication, do not restrict the set of possible allocations drastically,

are easily expressed and allow to quickly find which rectangle a coordinate belongs

to using simple data structures. Hence, in this work, we will only focus partitioning

into rectangles.

In more concrete terms, this thesis primarily addresses the problem of partitioning

a two-dimensional load matrix composed of non-negative numbers into a given number

of rectangles (processors) so as to minimize the load of the most loaded rectangle; the

most loaded rectangle is the one whose sum of the element it contains is maximal. The

problem is formulated so that each element of the array represents a task and each

rectangle represents a processor. Computing the optimal solution for this problem

has been shown to be NP-Hard [15]. Therefore, we focus on algorithms with low

polynomial complexity that lead to good solutions.

To obtain good performance one also needs to take into account communications.

A good algorithm has to achieve a low communication cost within a given commu-

nication model. A small sacrifice from load imbalance is acceptable if that will gain

3

significant reduce in communication. Ultimately, one has to reduce execution time

which is a complex function of both communication and computation pattern. One of

the functions that model the total runtime is given in [9], which builds on the hyper-

graph model presented in [7]. (A similar formulation that leverages graph model also

exist [38].) The hypergraph model presented in [7] reduces minimizing total volume

in sparse matrix-vector multiplication into K-way graph partitioning problem. Even

though there are tools for graph [20] and hypergraph [8, 21] partitioning algorithms,

the algorithms used in those tools are inherently computationally expensive.

Similar to [9, 38], we consider two types of communication. The first one is occurs

during normal execution of the application. The second one is for rebalancing of the

load after it changes due to dynamic nature of the application. The other objective

of this thesis is to give communication cost comparison of those algorithms based on

six metrics that represent communication cost best.

Several previous work tackles a similar problem but they usually presents only

algorithms from one class with no experimental validation or a very simple one.

These works are referenced in the text when describing the algorithm they introduce.

Kutluca et al. [24] is the closest related work. They are tackling the parallelization

of a Direct Volume Rendering application whose load balancing is done using a very

similar model. They survey rectangle based partition but also more general partition

generated from hypergraph modeling and space filling curves. The experimental

validation they propose is based on the actual runtime of the Direct Volume Rendering

application.

The approach we are pursuing in this work is to consider different classes of

rectangular partitioning. Simpler structures are expected to yield bad load balance

but to be computed quickly while more complex structures are expected to give good

load balance but lead to higher computation time. For each class, we look for optimal

4

algorithms and heuristics. Several algorithms to deal with this particular problem

which have been proposed in the literature are described and analyzed. One original

class of solution is proposed and original algorithms are presented and analyzed.

The theoretical analysis of the algorithms is accompanied by an extensive ex-

perimentation evaluation of the algorithms to decide which one should be used in

practice. The experimentation is composed of various randomly generated datasets

and two datasets extracted from two applications, one following the particle-in-cell

paradigm and one following the mesh-based computation paradigm.

The contributions of this work are as follows:

• A classical P×Q-way jagged heuristic is theoretically analyzed by bounding the

load imbalance it generates in the worst case.

• We propose a new class of solutions, namely, m-way jagged partitions, for which

we propose a fast heuristic as well as an exact polynomial dynamic programming

formulation. This heuristic is also theoretically analyzed and shown to perform

better than the P×Q-way jagged heuristic.

• For an existing class of solutions, namely, hierarchical bipartitions, we propose

both an optimal polynomial dynamic programming algorithm as well as a new

heuristic.

• The presented and proposed algorithms are practically assessed in simulations

performed on synthetic load matrices and on real load matrices extracted from

both a particle-in-cell simulator and a geometric mesh. Simulations show that

two of the proposed heuristics outperform all the tested existing algorithms.

• Algorithmic engineering techniques are used to create hybrid partitioning scheme

that provides slower algorithms but with higher quality.

5

• Important two-dimensional algorithms are analyzed in terms of communication

cost in a given partition (application cost)

• Important two-dimensional algorithms are analyzed in terms of rebalancing

communication cost (migration cost)

• Implementation details of are provided

Similar classes of solutions are used in the problem of partitioning an equally

loaded tasks onto heterogeneous processors (see [25] for a survey). This is a very

different problem which often assumes the task space is continuous (therefore infinitely

divisible). Since the load balance is trivial to optimize in such a context, most work

in this area focus on optimizing communication patterns. The rest of the thesis is

organized as follows. Chapter 2 presents new and known load balancing algorithms.

The algorithms are evaluated in on synthetic dataset as well as on dataset extracted

from two real simulation codes. Chapter 3 analyzes two-dimensional partitioning

algorithms in terms of communication cost. Chapter 4 discusses implementation

details and interesting design decisions. Conclusive remarks are given in Chapter 5.

6

CHAPTER 2

LOAD BALANCING ALGORITHMS

2.1 Model and Preliminaries

2.1.1 Problem Definition

Let A be a two dimensional array of n1 × n2 non-negative integers representing the

spatially located load. This load matrix needs to be distributed on m processors.

Each element of the array must be allocated to exactly one processor. The load of a

processor is the sum of the elements of the array it has been allocated. The cost of a

solution is the load of the most loaded processor. The problem is to find a solution

that minimizes the cost.

In this thesis we are only interested in rectangular allocations, and we will use

’rectangle’ and ’processor’ interchangeably. That is to say, a solution is a set R of

m rectangles ri = (x1, x2, y1, y2) which form a partition of the elements of the array.

Two properties have to be ensured for a solution to be valid:
⋂

r∈R

= ∅ and
⋃

r∈R

= A.

The first one can be checked by verifying that no rectangle collides with another one,

it can be done using line to line tests and inclusion test. The second one can be

checked by verifying that all the rectangles are inside A and that the sum of their

area is equal to the area of A. This testing method runs in O(m2). The load of a

processor is L(ri) =
∑

x1≤x≤x2

∑

y1≤y≤y2

A[x][y]. The load of the most loaded processor in

solution R is Lmax = max
ri

L(ri). We will denote by L∗
max the minimal cost achievable.

7

Notice that L∗
max ≥

∑

x,y A[x][y]

m
and L∗

max ≥ max
x,y

A[x][y] are lower bounds of the

optimal maximum load. In term of distributed computing, it is important to remark

that this model is only concerned by computation times and not by communication

times.

Algorithms that tackle this problem rarely consider the load of a single element

of the matrix. Instead, they usually consider the load of a rectangle. Therefore,

we assume that matrix A is given as a 2D prefix sum array Γ so that Γ[x][y] =
∑

x′≤x,y′≤y

A[x′][y′]. That way, the load of a rectangle r = (x1, x2, y1, y2) can be com-

puted in O(1) (instead of O((x2 − x1)(y2 − y1))), as L(r) = Γ[x2][y2]−Γ[x1 − 1][y2]−

Γ[x2][y1 − 1] + Γ[x1 − 1][y1 − 1].

An algorithm H is said to be a ρ-approximation algorithm, if for all instances

of the problem, it returns a solution which maximum load is no more than ρ times

the optimal maximum load, i.e., Lmax(H) ≤ ρL∗
max. In simulations, the metric used

for qualifying the solution is the load imbalance which is computed as
Lmax

Lavg

− 1

where Lavg =

∑

x,y A[x][y]

m
. A solution which is perfectly balanced achieves a load

imbalance of 0. Notice that the optimal solution for the maximum load might not

be perfectly balanced and usually has a strictly positive load imbalance. The ratio

of most approximation algorithm are proved using Lavg as the only lower bound on

the optimal maximum load. Therefore, it usually means that a ρ-approximation

algorithm leads to a solution whose load imbalance is less than ρ− 1.

2.1.2 The One Dimensional Variant

Solving the 2D partitioning problem is obviously harder than solving the 1D parti-

tioning problem. Most of the algorithms for the 2D partitioning problems are inspired

8

by 1D partitioning algorithms. An extensive theoretical and experimental compar-

ison of those 1D algorithms has been given in [35]. In [35], the fastest optimal 1D

partitioning algorithm is NicolPlus; it is an algorithmically engineered modification

of [31], which uses a subroutine proposed in [16]. A slower optimal algorithm using

dynamic programming was proposed in [27]. Different heuristics have also been de-

veloped [29, 35]. Frederickson [12] proposed an O(n) optimal algorithm which is only

arguably better than O((m log
n

m
)2) obtained by NicolPlus. Moreover, Frederick-

son’s algorithm requires complicated data structures which are difficult to implement

and are likely to run slowly in practice. Therefore, in the remainder of the thesis

NicolPlus is the algorithm used for solving one dimensional partitioning problems.

In the one dimensional case, the problem is to partition the array A composed of

n positive integers into m intervals.

DirectCut (DC) (called ”Heuristic 1” in [29]) is the fastest reasonable heuristic.

It greedily allocates to each processor the smallest interval I = {0, . . . , i} which

load is more than

∑

i A[i]

m
. This can be done in O(m log

n

m
) using binary search

on the prefix sum array and the slicing technique of [16]. By construction, DC is

a 2-approximation algorithm but more precisely, Lmax(DC) ≤
∑

i A[i]

m
+ max

i
A[i].

This result is particularly important since it provides an upper bound on the optimal

maximum load: L∗
max ≤

∑

i A[i]

m
+max

i
A[i].

A widely known heuristic is Recursive Bisection (RB) which recursively splits

the array into two parts of similar load and allocates half the processors to each

part. This algorithm leads to a solution such that Lmax(RB) ≤
∑

i A[i]

m
+ max

i
A[i]

and therefore is a 2-approximation algorithm [35]. It has a runtime complexity of

O(m log n).

The optimal solution can be computed using dynamic programming [27]. The

formulation comes from the property of the problem that one interval must finish at

9

index n. Then, the maximum load is either given by this interval or by the maximum

load of the previous intervals. In other words, L∗
max(n,m) = min

0≤k<n
max{L∗

max(k,m−

1), L({k + 1, . . . , n})}. A detailed analysis shows that this formulation leads to an

algorithm of complexity O(m(n−m)).

The optimal algorithm in [31] relies on the parametric search algorithm proposed

in [16]. A function called Probe is given a targeted maximum load and either returns

a partition that reaches this maximum load or declares it unreachable. The algorithm

greedily allocates to each processor the tasks and stops when the load of the processor

will exceed the targeted value. The last task allocated to a processor can be found

in O(log n) using a binary search on the prefix sum array, leading to an algorithm of

complexity O(m log n). [16] remarked that there are m binary searches which look for

increasing values in the array. Therefore, by slicing the array in m parts, one binary

search can be performed in O(log
n

m
). It remains to decide in which part to search

for. Since there are m parts and the searched values are increasing, it can be done in

an amortized O(1). This leads to a Probe function of complexity O(m log
n

m
).

The algorithm proposed by [31] exploits the property that if the maximum load

is given by the first interval then its load is given by the smallest interval so that

Probe(L({0, . . . , i})) is true. Otherwise, the largest interval so that Probe(L({0, . . . , i}))

is false can safely be allocated to the first interval. Such an interval can be efficiently

found using a binary search, and the array slicing technique of [16] can be used to

reach a complexity of O((m log
n

m
)2). Recent work [35] showed that clever bounding

techniques can be applied to reduce the range of the various binary searches inside

Probe and inside the main function leading to a runtime improvement of several orders

of magnitude.

10

(a) A (5 × 4) rectilinear parti-
tion

(b) A P×Q-way (5× 3) jagged
partition

(c) A m-way (15) jagged parti-
tion

(d) A hierarchical bipartition (e) A spiral partition (f) Another partition

Figure 2.1: Different structures of partitions.

2.2 Algorithms

This section describes algorithms that can be used to solve the 2D partitioning prob-

lem. These algorithms focus on generating a partition with a given structure. Sam-

ples of the considered structures are presented in Figure 2.1. Each structure is a

generalization of the previous one.

Table 2.1 summarizes the different algorithms discussed in this thesis. Their

worst-case complexity and theoretical guarantees are given.

11

N
am

e
P
ar
am

et
er
s

W
or
st

C
as
e
C
om

p
le
x
it
y

T
h
eo
re
ti
ca
l
G
u
ar
an

te
e

R
E
C
T
-
U
N
I
F
O
R
M

P
,Q

O
(P

Q
)

-

R
E
C
T
-
N
I
C
O
L
[3
1]

P
,Q

O
(n

1
n
2
(Q

(P
lo
g
n
1 P
)2
+
P
(Q

lo
g
n
2 Q
)2
))

B
et
te
r
th
an

R
E
C
T
-
U
N
I
F
O
R
M
.

J
A
G
-
P
Q
-
H
E
U
R
[4
0,

34
]

P
,Q

O
((
P
lo
g
n
1 P
)2
+
P
(Q

lo
g
n
2 Q
)2
)

[⋆
]L
I
≤

(1
+
∆

P n
1

)(
1
+
∆

Q n
2

)
−

1

J
A
G
-
P
Q
-
O
P
T
[2
8,

34
]

P
,Q

O
((
P
Q
lo
g
n
1 P
lo
g
n
2 Q
)2
)

O
p
ti
m
al

fo
r
P
×
Q
-w

ay
ja
gg
ed

p
ar
ti
ti
on

in
g.

or
O
(n

1
lo
g
n
1
(P

+
(Q

lo
g
n
2 Q
)2
))

B
et
te
r
th
an

al
l
of

th
e
ab

ov
e.

J
A
G
-
M
-
H
E
U
R
[⋆
]

P
O
((
P
lo
g
n
1 P
)2
+
(m

lo
g
n
2

m
)2
)

L
I
≤

(
m

m
−

P
+

m
∆

P
n
2

+
∆

2
m

n
1
n
2

)
−

1

J
A
G
-
M
-
P
R
O
B
E
[⋆
]

P
d
iv
id
er
s

O
((
m

lo
g
n
2
P

m
)2
)

O
p
ti
m
al

fo
r
th
e
p
ar
am

et
er
s.

J
A
G
-
M
-
A
L
L
O
C
[⋆
]

P
,
Q

s
O
((
P
lo
g
n
1 P
m
ax S

Q
S
lo
g
n
2

Q
S

)2
)

O
p
ti
m
al

fo
r
th
e
p
ar
am

et
er
s.

J
A
G
-
M
-
H
E
U
R
-
P
R
O
B
E
[⋆
]

P
O
((
P
lo
g
n
1 P
)2
+
(m

lo
g
n
2
P

m
)2
)

B
et
te
r
th
an

J
A
G
-
M
-
H
E
U
R
.

J
A
G
-
M
-
O
P
T
[⋆
]

-
O
(n

2 1
m

3
(l
og

n
2

m
)2
)

O
p
ti
m
al

fo
r
m
-w

ay
ja
gg
ed

p
ar
ti
ti
on

in
g.

B
et
te
r
th
an

al
l
of

th
e
ab

ov
e.

H
I
E
R
-
R
B
[5
]

-
O
(m

lo
g
m
ax

(n
1
,n

2
))

-

H
I
E
R
-
R
E
L
A
X
E
D
[⋆
]

-
O
(m

2
lo
g
m
ax

(n
1
,n

2
))

-

H
I
E
R
-
O
P
T
[⋆
]

-
O
(n

2 1
n
2 2
m

2
lo
g
m
ax

(n
1
,n

2
))

O
p
ti
m
al

fo
r
h
ie
ra
rc
h
ic
al

b
is
ec
ti
on

.

B
et
te
r
th
an

al
l
of

th
e
ab

ov
e.

T
ab

le
2.
1:

S
u
m
m
ar
y
of

th
e
p
re
se
n
te
d
al
go
ri
th
m
s.

A
lg
or
it
h
m
s
an

d
re
su
lt
s
in
tr
o
d
u
ce
d
in

th
is
th
es
is
ar
e
d
en
ot
ed

b
y
a
[⋆
].
L
I

st
an

d
s
fo
r
L
oa
d
Im

b
al
an

ce
.
∆

=
m
ax

i,
j
A
[i
][
j]

m
in

i,
j
A
[i
][
j]
,
if
∀i
,j
,A

[i
][
j]

>
0.

12

2.3 Rectilinear Partitions

Rectilinear partitions (also called General Block Distribution in [4, 28]) organize the

space according to a P×Q grid as shown in Figure 2.1(a). This type of partitions is

often used to optimize communication and indexing and has been integrated in the

High Performance Fortran standard [11]. It is the kind of partition constructed by the

MPI function MPI Cart. This function is often implemented using the RECT-UNIFORM

algorithm which divides the first dimension and the second dimension into P and Q

intervals with size
n1

P
and

n2

Q
respectively. Notice that RECT-UNIFORM returns a näıve

partition that balances the area and not the load.

[15] implies that computing the optimal rectilinear partition is an NP-Hard prob-

lem. [4] points out that the NP-completeness proof in [15] also implies that there is

no (2− ǫ)-approximation algorithm unless P=NP. We can also remark that the proof

is valid for given values of P and Q, but the complexity of the problem is unclear if

the only constraint is that PQ ≤ m. Notice that, the load matrix is often assumed

to be a square.

[31] (and [28] independently) proposed an iterative refinement heuristic algorithm

that we call RECT-NICOL in the remaining of this thesis. Provided the partition in one

dimension, called the fixed dimension, RECT-NICOL computes the optimal partition

in the other dimension using an optimal one dimension partitioning algorithm. The

one dimension partitioning problem is built by setting the load of an interval of the

problem as the maximum of the load of the interval inside each stripe of the fixed

dimension. At each iteration, the partition of one dimension is refined. The algorithm

runs until the last 2 iterations return the same partitions. Each iteration runs in

O(Q(P log
n1

P
)2) or O(P (Q log

n2

Q
)2) depending on the refined dimension. According

to the analysis in [31] the number of iterations is O(n1n2) in the worst case; however,

13

in practice the convergence is faster (about 3-10 iterations for a 514x514 matrix up

to 10,000 processors). [4] shows it is a θ(
√
m)-approximation when P = Q =

√
m.

The first constant approximation algorithm for rectilinear partitions has been

proposed by [23] but neither the constant nor the actual complexity is given. [4] claims

it is a 120-approximation that runs in O(n1n2).

[4] presents two different modifications of RECT-NICOL which are both a θ(
√
p)-

approximation algorithm for the rectilinear partitioning problem of a n1 × n1 matrix

in p× p blocks which therefore is a θ(m1/4)-approximation algorithm. They run in a

constant number of iterations (2 and 3) and have a complexity of O(m1.5(log n)2) and

O(n(
√
m log n)2). [4] claims that despite the approximation ratio is not constant, it

is better in practice than the algorithm proposed in [23].

[13] provides a 2-approximation algorithm for the rectangle stabbing problems

which translates into a 4-approximation algorithm for the rectilinear partitioning

problem. This method is of high complexity O(log(
∑

i,j

A[i][j])n10

1 n10

2) and heavily

relies on linear programming to derive the result.

[30] considers resource augmentation and proposes a 2-approximation algorithm

with slightly more processors than allowed. It can be tuned to obtain a (4 + ǫ)-

approximation algorithm which runs in O((n1 + n2 + PQ)P log(n1n2)).

2.3.1 Jagged Partitions

Jagged partitions (also called Semi Generalized Block Distribution in [28]) distinguish

between the main dimension and the auxiliary dimension. The main dimension will

be split in P intervals. Each rectangle of the solution must have its main dimension

matching one of these intervals. The auxiliary dimension of each rectangle is arbitrary.

Examples of jagged partitions are depicted in Figures 2.1(b) and 2.1(c). The layout

14

of jagged partitions also allows to easily locate which rectangle contains a given

element [40].

Without loss of generality, all the formulas in this section assume that the main

dimension is the first dimension.

P×Q-way Jagged Partitions

Traditionally, jagged partition algorithms are used to generate what we call P×Q-way

jagged partitions in which each interval of the main dimension will be partitioned in

Q rectangles. Such a partition is presented in Figure 2.1(b).

An intuitive heuristic to generate P×Q-way jagged partitions, we call JAG-PQ-HEUR,

is to use a 1D partitioning algorithm to partition the main dimension and then par-

tition each interval independently. First, we project the array on the main dimension

by summing all the elements along the auxiliary dimension. An optimal 1D par-

titioning algorithm generates the intervals of the main dimension. Then, for each

interval, the elements are projected on the auxiliary dimension by summing the el-

ements along the main dimension. An optimal 1D partitioning algorithm is used to

partition each interval. This heuristic have been proposed several times before, for

instance in [40, 34].

The algorithm runs in O((P log
n1

P
)2 + P (Q log

n2

Q
)2). Prefix sum arrays avoid

redundant projections: the load of interval (i, j) in the main dimension can be simply

computed as L(i, j, 1, n2).

We now provide an original analysis of the performance of this heuristic under

the hypothesis that all the elements of the load matrix are strictly positive. First,

we provide a refinement on the upper bound of the optimal maximum load in the 1D

partitioning problem by refining the performance bound of DC (and RB) under this

hypothesis.

15

Lemma 1. If there is no zero in the array, applying DirectCut on a one dimensional

array A using m processors leads to a maximum load having the following property:

Lmax(DC) ≤
∑

A[i]

m
(1 + ∆

m

n
) where ∆ =

maxi A[i]

mini A[i]
.

Proof. The proof is a simple rewriting of the performance bound of DirectCut:

Lmax(DC) ≤
∑

i A[i]

m
+max

i
A[i] ≤

∑

i A[i]

m
(1 + ∆

m

n
).

JAG-PQ-HEUR is composed of two calls to an optimal one dimensional algorithm.

One can use the performance guarantee of DC to bound the load imbalance at both

steps. This is formally expressed in the following theorem.

Theorem 1. If there is no zero in the array, JAG-PQ-HEUR is a (1+∆
P

n1

)(1+∆
Q

n2

)-

approximation algorithm where ∆ =
maxi,j A[i][j]

mini,j A[i][j]
, P < n1, Q < n2.

Proof. Let us first give a bound on the load of the most loaded interval along the

main dimension, i.e., the imbalance after the cut in the first dimension. Let C

denote the array of the projection of A among one dimension: C[i] =
∑

j

A[i][j].

We have: L∗
max(C) ≤

∑

i C[i]

P
(1 + ∆

P

n1

). Noticing that
∑

i

C[i] =
∑

i,j

A[i][j], we

obtain: L∗
max(C) ≤

∑

i,j A[i][j]

P
(1 + ∆

P

n1

)

Let S be the array of the projection of A among the second dimension inside a

given interval c of processors: S[j] =
∑

i∈c

A[i][j]. The optimal partition of S respects:

L∗
max(S) ≤

∑

j S[j]

Q
(1 + ∆

Q

n2

). Since S is given by the partition of C, we have

∑

j

S[j] ≤ L∗
max(C) which leads to L∗

max(S) ≤ (1 + ∆
P

n1

)(1 + ∆
Q

n2

)

∑

i,j A[i][j]

PQ

It remains the question of the choice of P and Q which is solved by the following

theorem.

Theorem 2. The approximation ratio of JAG-PQ-HEUR is minimized by P =

√

m
n1

n2

.

16

Proof. The approximation ratio of JAG-PQ-HEUR can be written as f(x) = (1+ax)(1+

b/x) with a, b, x > 0 by setting a =
∆

n1

, b =
∆m

n2

and x = P . The minimum of f is now

computed by studying its derivative: f ′(x) = a − b/x2. f ′(x) < 0 ⇐⇒ x <
√

b/a

and f ′(x) > 0 ⇐⇒ x >
√

b/a. It implies that f has one minimum given by

f ′(x) = 0 ⇐⇒ x =
√

b/a.

Notice that when n1 = n2, the approximation ratio is minimized by P = Q =
√
m.

Two algorithms exist to find an optimal P×Q-way jagged partition in polynomial

time. The first one, we call JAG-PQ-OPT-NICOL, has been proposed first by [34]

and is constructed by using the 1D algorithm presented in [31]. This algorithm is

of complexity O((PQ log
n1

P
log

n2

Q
)2). The second one, we call JAG-PQ-OPT-DP is a

dynamic programming algorithm proposed by [28]. Both algorithms partition the

main dimension using a 1D partitioning algorithm using an optimal partition of the

auxiliary dimension for the evaluation of the load of an interval. The complexity of

JAG-PQ-OPT-DP is O(n1 log n1(P + (Q log
n2

Q
)2)).

m-way Jagged Partitions

We introduce the notion of m-way jagged partitions which allows jagged partitions

with different numbers of processors in each interval of the main dimension. Indeed,

even the optimal partition in the main dimension may have a high load imbalance

and allocating more processor to one interval might lead to a better load balance.

Such a partition is presented in Figure 2.1(c). We propose four algorithms to gen-

erate m-way jagged partitions. The first one is JAG-M-HEUR, a heuristic extending

the P ×Q-way jagged partitioning heuristic. The second algorithm generates the

optimal m-way jagged partition for given intervals in the main dimension, leading

to JAG-M-HEUR-PROBE. Then, the third algorithm, called JAG-M-ALLOC, generates the

optimal m-way jagged partition for a given number of interval provided the number of

17

processor inside each interval is known. Finally, we present JAG-M-OPT, a polynomial

optimal dynamic programming algorithm.

We propose JAG-M-HEUR which is a heuristic similar to JAG-PQ-HEUR. The main

dimension is first partitioned in P intervals using an optimal 1D partitioning algo-

rithm which define P stripes. Then each stripe S is allocated a number of processors

QS which is proportional to the load of the interval. Finally, each interval is parti-

tioned on the auxiliary dimension using QS processors by an optimal 1D partitioning

algorithm.

Choosing QS is a non trivial matter since distributing the processors proportion-

ally to the load may lead to non integral values which might be difficult to round.

Therefore, we only distribute proportionally (m−P) processors which allows to round

the allocation up: QS =

⌈

(m− P)

∑

i,j∈S A[i][j]
∑

i,j A[i][j]

⌉

. Notice that between 0 and P pro-

cessors remain unallocated. They are allocated, one after the other, to the interval

that maximizes

∑

i,j∈S A[i][j]

QS

.

An analysis of the performance of JAG-M-HEUR similar to the one proposed for

JAG-PQ-HEUR that takes the distribution of the processors into account is now pro-

vided.

Theorem 3. If there is no zero in A, JAG-M-HEUR is a (
m

m− P
+

m∆

Pn2

+
∆2m

n1n2

)-

approximation algorithm where ∆ =
maxi,j A[i][j]

mini,j A[i][j]
, P < n1.

Proof. Let C denote the array of the projection of A among one dimension: C[i] =
∑

j

A[i][j]. Similarly to the proof of Theorem 1, we have: L∗
max(C) ≤

∑

A[i][j]

P
(1 +

∆
P

n1

)

Let S denote the array of the projection of A among the second dimension inside

a given interval c of an optimal partition of C. S[j] =
∑

i∈c

A[i][j]. We have
∑

j

S[j] ≤

L∗
max(C). Then, the number of processors allocated to the stripe is bounded by:

18

(m− P)
∑

j S[j]
∑

i,j A[i][j]
≤ QS ≤

(m− P)
∑

j S[j]
∑

i,j A[i][j]
+ 1. The bound on

∑

j

S[j] leads to

QS ≤ m− P

P
(1 +

∆P

n1

) + 1.

We now can compute bounds on the optimal partition of stripe S. The bound

from Lemma 1 states: L∗
max(S) ≤

∑

j S[j]

QS

(1 +
∆QS

n2

). The bounds on
∑

j

S[j] and

QS imply L∗
max(S) ≤

∑

A[i][j]

m
(

m

m− P
+

m

P

∆

n2

+
∆2m

n1n2

).

The load imbalance (and therefore the approximation ratio) is less than (
m

m− P
+

m

P

∆

n2

+
∆2m

n1n2

).

This approximation ratio should be compared to the one obtained by JAG-PQ-HEUR

which can be rewritten as ((1+∆
P

n1

)+
∆m

Pn2

+
∆2m

n1n2

). Basically, usingm-way partitions

trades a factor of (1 +
P∆

n1

) to the profit of a factor
m

m− P
.

We can also compute the number of stripes P which optimizes the approximation

ratio of JAG-M-HEUR.

Theorem 4. The approximation ratio of JAG-M-HEUR is minimized by

P =

√

∆2(m2 − 1)− n2 −∆m

n2 −∆
.

Proof. We analyze the function of the approximation ratio in function of the number

of stripes: f(P) = (
m

m− P
+

m

P

∆

n2

+
∆2m

n1n2

). Its derivative is: f ′(P) =
m

(m− P)2
−

m∆

n2P 2
. The derivative is negative when P tends to 0+, positive when P tends to +∞

and null when (n2 −∆)P 2 +2m∆P −∆m2 = 0. This equation has a unique positive

solution: P =

√

∆2(m2 − 1)− n2 −∆m

n2 −∆
.

This result is fairly interesting. The optimal number of stripes depends of ∆ and

depends of n2 but not of n1. The dependency of ∆ makes the determination of P

difficult in practice since a few extremal values may have a large impact on the com-

puted P without improving the load balance in practice. Therefore, JAG-M-HEUR will

19

use
√
m stripes. The complexity of JAG-M-HEUR is O((P log

n1

P
)2 +

∑

S

(QS log
n2

QS

)2)

which in the worst case is O((P log
n1

P
)2 + (m log

n2

m
)2)

We now explain how one can build the optimal jagged partition provided the

partition in the main dimension is given. This problem reduces to partitioning P one

dimensional arrays using m processors in total to minimize Lmax. [16] states that the

proposed algorithms apply in the presence of multiple chains but does not provide

much detail. We explain how to extend NicolPlus [35] to the case of multiple one

dimensional arrays.

We now first explain the algorithm PROBE-M for partitioning multiple arrays that

test the feasibility of a given maximum load Lmax.

The main idea behind PROBE-M is to compute for each one dimensional array how

many processors are required to achieve a maximum load of Lmax. For one array,

the number of processors require to achieve a load of Lmax is obtained by greedily

allocating intervals maximal by inclusion of load less than Lmax. The boundary of

these intervals can be found in O(log n) by a binary search. Across all the arrays,

there is no need to compute the boundaries of more than m intervals, leading to an

algorithm of complexity O(m log n).

[16] reduces the complexity of the one dimensional partitioning problem toO(m log
n

m
)

by slicing the array in m chunks. That way, one has first to determine in which chunk

the borders of the intervals are, and then perform a binary search in the chunk. Pro-

vided there are m intervals to generate, the cost of selecting the right chunk is amor-

tized. But it does not directly apply to the multiple array partitioning problem. In-

deed, slicing the array in such a manner will lead to a complexity of O(m log
n

m
+Pm).

However, slicing the arrays in chunk of size
nP

m
leads to having at most m+P chunks.

Therefore, PROBE-M has a complexity of O(m log
nP

m
+m+ P) = O(m log

nP

m
).

Notice that the engineering presented in [35] for the single array case that use an

20

upper bound and a lower bound on the position of each boundary can still be used

when there are multiple arrays with PROBE-M. When the values of Lmax decreases,

the ith cut inside one array is only going to move toward the beginning of the array.

Conversely, when Lmax increase, the ith cut inside one array is only going to move

toward the end of the array. One should notice that the number of processors allocated

to one array might vary when Lmax varies.

With PROBE-M, one can solve the multiple array partitioning problem in multiple

way. An immediate one is to perform a binary search on the values of Lmax. It is

also possible to reuse the idea of NicolPlus which rely on the principle that the

first interval is either maximal such that the load is an infeasible maximum load or

minimal such that the load is a feasible maximum load. The same idea applies by

taking the intervals of each array in the same order PROBE-M considers them. The

windowing trick still applies and leads to an algorithm of complexity O((m log
nP

m
)2).

Given the stripes in the main dimension, JAG-M-PROBE is the algorithm that applies

the modified version of NicolPlus to generate an m-way partition.

Other previous algorithms apply to this problem. For instance, [6] solves the mul-

tiple chains problem on host-satellite systems. One could certainly use this algorithm

but the runtime complexity is O(n3m log n). Another way to solve the problem can

certainly be derived from the work of Frederickson [12].

JAG-M-HEUR-PROBE is the algorithm that uses the stripes obtained by JAG-M-HEUR

and then applies JAG-M-PROBE.

Given a number of stripes P and the number of processors QS inside each stripe,

one can compute the optimal m-way jagged partition. The technique is similar to

the optimal P×Q-way jagged partitioning technique shown in [34]. NicolPlus gives

an optimal partition not only on one dimensional array but on any one dimension

structure where the load of intervals are monotonically increasing by inclusion. When

21

NicolPlus needs the load of an interval, one can return the load of the optimal QS-

way partition of the auxiliary dimension, computed in O((QS log
n2

QS

)2).

To generate the m-way partition, one needs to modify NicolPlus to keep track

of which stripe an interval represents to return the load of the optimal partition of

the auxiliary dimension with the proper number of processors. This modification is

similar to using NicolPlus to solve the heterogeneous array partitioning problem [36].

Let us call this algorithm JAG-M-ALLOC. The overall algorithm has a complexity of

O((P log
n1

P
max

S
QS log

n2

QS

)2).

We provide another algorithm, JAG-M-OPT which builds an optimal m-way jagged

partition in polynomial time using dynamic programming. An optimal solution can

be represented by k, the beginning of the last interval on the main dimension, and x,

the number of processors allocated to that interval. What remains is a (m− x)-way

partitioning problem of a matrix of size (k − 1) × n2. It is obvious that the interval

{(k − 1), . . . , n1} can be partitioned independently from the remaining array. The

dynamic programming formulation is:

Lmax(n1,m) = min
1≤k≤n1,1≤x≤m

max{Lmax(k − 1,m− x), 1D(k, n1, x)}

where 1D(i, j, k) denotes the value of the optimal 1D partition among the auxiliary

dimension of the [i, j] interval on k processors.

There are at most n1m calls to Lmax to evaluate, and at most n2

1m calls to 1D to

evaluate. Evaluating one function call of Lmax can be done in O(n1m) and evaluating

1D can be done in O((x log
n2

x
)2) using the algorithm from [31]. The algorithm can

trivially be implemented in O((n1m)2 +n2

1m
3(log

n2

m
)2) = O(n2

1m
3(log

n2

m
)2) which is

polynomial.

However, this complexity is an upper bound and several improvements can be

made, allowing to gain up to two orders of magnitude in practice. First of all, the

different values of both functions Lmax and 1D can only be computed if needed.

22

Then the parameters k and x can be found using binary search. For a given x,

Lmax(k − 1,m − x) is an increasing function of k, and 1D(k, n1, x) is a decreasing

function of k. Therefore, their maximum is a bi-monotonic, decreasing first, then

increasing function of k, and hence its minimum can be found using a binary search.

Moreover, the function 1D is the value of an optimal 1D partition, and we know

lower bounds and an upper bound for this function. Therefore, if Lmax(k−1,m−x) >

UB(1D(k, n1, x)), there is no need to evaluate function 1D accurately since it does not

give the maximum. Similar arguments on lower and upper bound of Lmax(k−1,m−x)

can be used.

Finally, we are interested in building an optimal m-way jagged partition and we

use branch-and-bound techniques to speed up the computation. If we already know a

solution to that problem (Initially given by a heuristic such as JAG-M-HEUR or found

during the exploration of the search space), we can use its maximum load l to decide

not to explore some of those functions, if the values (or their lower bounds) Lmax or

1D are larger than l.

2.3.2 Hierarchical Bipartition

Hierarchical bipartitioning techniques consist of obtaining partitions that can be re-

cursively generated by splitting one of the dimensions in two intervals. An example

of such a partition is depicted in Figure 2.1(d). Notice that such partitions can be

represented by a binary tree for easy indexing. We present first HIER-RB, a known

algorithm to generate hierarchical bipartitions. Then we propose HIER-OPT, an orig-

inal optimal dynamic programming algorithm. Finally, a heuristic algorithm, called

HIER-RELAXED is derived from the dynamic programming algorithm.

A classical algorithm to generate hierarchical bipartition is Recursive Bisection

which has originally been proposed in [5] and that we call in the following HIER-RB.

23

It cuts the matrix into two parts of (approximately) equal load and allocates half

the processors to each sub-matrix which are partitioned recursively. The dimension

being cut in two intervals alternates at each level of the algorithm. This algorithm

can be implemented in O(m logmax(n1, n2)) since finding the position of the cut can

be done using a binary search.

The algorithm was originally designed for a number of processors which is a power

of 2 so that the number of processors at each step is even. However, if at a step the

number of processors is odd, one part will be allocated
⌊m

2

⌋

processors and the other

part
⌊m

2

⌋

+1 processors. In such a case, the cutting point is selected so that the load

per processor is minimized.

Variants of the algorithm exist based on the decision of the dimension to partition.

One variant does not alternate the partitioned dimension at each step but virtually

tries both dimensions and selects the one that lead to the best expected load bal-

ance [41]. Another variant decides which direction to cut by selecting the direction

with longer length.

We now propose HIER-OPT, a polynomial algorithm for generating the optimal

hierarchical partition. It uses dynamic programming and relies on the tree repre-

sentation of a solution of the problem. An optimal hierarchical partition can be

represented by the orientation of the cut, the position of the cut (denoted x or y,

depending on the orientation), and the number of processors j in the first part.

The algorithm consists in evaluating the function Lmax(x1, x2, y1, y2,m) that par-

titions rectangle (x1, x2, y1, y2) using m processors.

Lmax(x1, x2, y1, y2,m) = min
j

min
{

(2.3.1)

min
x

max{Lmax(x1, x, y1, y2, j), Lmax(x+ 1, x2, y1, y2,m− j)}, (2.3.2)

min
y

max{Lmax(x1, x2, y1, y, j), Lmax(x1, x2, y + 1, y2,m− j)}
}

(2.3.3)

24

Equation 2.3.2 considers the partition in the first dimension and Equation 2.3.3

considers it in the second dimension. The dynamic programming provides the position

x (or y) to cut and the number of processors (j and m− j) to allocate to each part.

This algorithm is polynomial since there are O(n2

1n
2

2m) functions Lmax to evaluate

and each function can näıvely be evaluated in O((x2 − x1 + y2 − y1)m). Notice that

optimization techniques similar to the one used in Section 2.3.1 can be applied. In

particular x and y can be computed using a binary search reducing the complexity

of the algorithm to O(n2

1n
2

2m
2 log(max(n1, n2)))).

Despite the dynamic programming formulation is polynomial, its complexity is

too high to be useful in practice for real sized systems. We extract a heuristic called

HIER-RELAXED. To partition a rectangle (x1, x2, y1, y2) onm processors, HIER-RELAXED

computes the x (or y) and j that optimize the dynamic programming equation, but

substitutes the recursive calls to Lmax() by a heuristic based on the average load:

That is to say, instead of making recursive Lmax(x, x
′, y, y′, j) calls,

L(x, x′, y, y′)

j
will

be calculated. The values of x (or y) and j provide the position of the cut and the

number of processors to allocate to each part respectively. Each part is recursively

partitioned. The complexity of this algorithm is O(m2 log(max(n1, n2)))).

2.3.3 More General Partitioning Schemes

The considerations on Hierarchical Bipartition can be extended to any kind of re-

cursively defined pattern such as the ones presented in Figures 2.1(e) and 2.1(f). As

long as there are a polynomial number of possibilities at each level of the recursion,

the optimal partition following this rule can be generated in polynomial time using

a dynamic programming technique. The number of functions to evaluate will keep

being in O(n2

1n
2

2m); one function for each sub rectangle and number of processors..

25

The only difference will be in the cost of evaluating the function calls. In most cases if

the pattern is composed of k sections, the evaluation will take O((max(n1, n2)m)k−1).

This complexity is too high to be of practical use but it proves that an optimal par-

tition in these classes can be generated in polynomial time. Moreover, those dynamic

programming can serve as a basis to derive heuristics similarly to HIER-RELAXED.

A natural question is “given a maximum load, is it possible to compute an ar-

bitrary rectangular partition?” [22] shows that such a problem is NP-Complete and

that there is no approximation algorithm of ratio better than
5

4
unless P=NP. Re-

cent work [32] provides a 2-approximation algorithm which heavily relies on linear

programming.

2.4 Experimental Evaluation

2.4.1 Experimental Setting

This section presents an experimental study of the main algorithms. For rectilinear

partitions, both the uniform partitioning algorithm RECT-UNIFORM and RECT-NICOL

algorithm have been implemented. For P×Q-way and m-way jagged partitions, the

following heuristics and optimal algorithms have been implemented: JAG-PQ-HEUR,

JAG-PQ-OPT-NICOL, JAG-PQ-OPT-DP, JAG-M-HEUR, JAG-M-HEUR-PROBE and JAG-M-OPT.

Each jagged partitioning algorithm exists in three variants, namely -HOR which con-

siders the first dimension as the main dimension, -VER which considers the second

dimension as the main dimension, and -BEST which tries both and selects the one that

leads to the best load balance. For hierarchical partitions, both recursive bisection

HIER-RB and the heuristic HIER-RELAXED derived from the dynamic programming

have been implemented. Each hierarchical bipartition algorithm exists in four vari-

ants -LOAD which selects the dimension to partition according to get the best load,

26

-DIST which partitions the longest dimension, and -HOR and -VER which alternate

the dimension to partition at each level of the recursion and starting with the first or

the second dimension.

The algorithms were tested on the BMI department cluster called Bucki. Each

node of the cluster has two 2.4 GHz AMD Opteron(tm) quad-core processors and

32GB of main memory. The nodes run on Linux 2.6.18. The sequential algorithms

are implemented in C++ (see Chapter 4 for details). The compiler is g++ 4.1.2 and

-O2 optimization was used.

The algorithms are tested on different classes of instances. Some are synthetic

and some are extracted from real applications. The first set of instances is called

PIC-MAG. These instances are extracted from the execution of a particle-in-cell code

which simulates the interaction of the solar wind on the Earth’s magnetosphere [19].

In those applications, the computational load of the system is mainly carried by

particles. We extracted the distribution of the particles every 500 iterations of the

simulations for the first 33,500 iterations. These data are extracted from a 3D simu-

lation. Since the algorithms are written for the 2D case, in the PIC-MAG instances,

the number of particles are accumulated among one dimension to get a 2D instance.

A PIC-MAG instance at iteration 20,000 can be seen in Figure 2.2(a). The intensity

of a pixel is linearly related to computation load for that pixel (the whiter the more

computation). During the course of the simulation, the particles move inside the

space leading to values of ∆ varying between 1.21 and 1.51.

The SLAC dataset (depicted in Figure 2.2(b)) is generated from the mesh of a

3D object. Each vertex of the 3D object carries one unit of computation. Different

instances can be generated by projecting the mesh on a 2D plane and by changing the

granularity of the discretization. This setting match the experimental setting of [31].

27

(a) PIC-MAG (b) SLAC (c) Diagonal

(d) Peak (e) Multi-peak (f) Uniform

Figure 2.2: Examples of real and synthetic instances.

28

In the experiments, we generated instances of size 512x512. Notice that the matrix

contains zeroes, therefore ∆ is undefined.

Different classes of synthetic squared matrices are also used, these classes are

called diagonal, peak, multi-peak and uniform. Uniform matrices (Figure 2.2(f)) are

generated to obtain a given value of ∆: the computation load of each cell is generated

uniformly between 1000 and 1000 ∗ ∆. In the other three classes, the computation

load of a cell is given by generating a number uniformly between 0 and the number

of cells in the matrix which is divided by the Euclidean distance to a reference point

(a 0.1 constant is added to avoid dividing by zero). The choice of the reference

point is what makes the difference between the three classes of instances. In diagonal

(Figure 2.2(c)), the reference point is the closest point on the diagonal of the matrix.

In peak (Figure 2.2(d)), the reference point is one point chosen randomly at the

beginning of the execution. In multi-peak (Figure 2.2(e)), several points (here 3) are

randomly generated and the closest one will be the reference point. Those classes are

inspired from the synthetic data from [28].

The performance of the algorithms is given using the load imbalance metric defined

in Section 2.1. For synthetic dataset, the load imbalance is computed over 10 instances

as follows:

∑

I Lmax(I)
∑

I Lavg(I)
− 1. The experiments are run on most square number of

processors between 16 and 10,000. Using only square numbers allows us to fix the

parameter P =
√
m for all rectilinear and jagged algorithms.

2.4.2 Jagged algorithms

The jagged algorithms have three variants, two depending on whether the main di-

mension is the first one or the second one and the third tries both of them and takes

the best solution. On all the fairly homogeneous instances (i.e., all but the mesh

SLAC), the load imbalance of the three variants are quite close and the orientation

29

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

lo
a
d
 i
m

b
a
la

n
c
e

number of processors

JAG-PQ-HEUR
JAG-PQ-OPT
JAG-M-HEUR

JAG-M-HEUR-PROBE
JAG-M-OPT

Figure 2.3: Jagged methods on PIC-MAG iter=30,000.

of the jagged partitions does not seem to really matter. However this is not the same

in m-way jagged algorithms where the selection of the main dimension can make

significant differences on overall load imbalance. Since the m-way jagged partition-

ing heuristics are as fast as heuristic jagged partitioning, trying both dimensions and

taking the one with best load imbalance is a good option. From now on, if the variant

of a jagged partitioning algorithm is unspecified, we will refer to their BEST variant.

We proposed in Section 2.3.1 a new type of jagged partitioning scheme, namely,

m-way jagged, which does not require all the slices of the main dimension to have the

same number of processors. This constraint is artificial in most cases and we show

that it significantly harms the load balance of an application.

Figure 2.3 presents the load balance obtained on PIC-MAG at iteration 30,000

with heuristic and optimal P×Q-way jagged algorithms andm-way jagged algorithms.

30

 0.001

 0.01

 0.1

 1

 0 5000 10000 15000 20000 25000 30000 35000

lo
a
d
 i
m

b
a
la

n
c
e

iteration

JAG-PQ-HEUR
JAG-PQ-OPT
JAG-M-HEUR

JAG-M-HEUR-PROBE

Figure 2.4: Jagged methods on PIC-MAG with m = 6400.

On less than one thousand processors, JAG-M-HEUR, JAG-PQ-HEUR, JAG-PQ-OPT and

JAG-M-HEUR-PROBE produce almost the same results (hence the points on the chart

are super imposed). Note that, JAG-PQ-HEUR and JAG-PQ-OPT obtain the same load

imbalance most of the time even on more than one thousand processors. This indi-

cates that there is almost no room for improvement for the P×Q-way jagged heuristic.

JAG-M-HEUR-PROBE usually obtains the same load imbalance that JAG-M-HEUR or does

slightly better. But on some cases, it leads to dramatic improvement. One can re-

mark that the m-way jagged heuristics always reaches a better load balance than the

P×Q-way jagged partitions.

Figure 2.4 presents the load imbalance of the algorithms with 6,400 processors

for the different iterations of the PIC-MAG application. P×Q-way jagged partitions

have a load imbalance of 18% while the imbalance of the partitions generated by

31

JAG-M-HEUR varies between 2.5% (at iteration 5,000) and 16% (at iteration 18,000).

JAG-M-HEUR-PROBE achieves the best load imbalance of the heuristics between 2%

and 3% on all the instances.

In Figure 2.3, the optimal m-way partition have been computed up to 1,000

processors (on more than 1,000 processors, the runtime of the algorithm becomes

prohibitive). It shows an imbalance of about 1% at iteration 30,000 of the PIC-MAG

application on 1,000 processors. This value is much smaller than the 6% imbalance of

JAG-M-HEUR and JAG-M-HEUR-PROBE. It indicates that there is room for improvement

for m-way jagged heuristics. Indeed, the current heuristic uses
√
m parts in the

first dimension, while the optimal is not bounded to that constraint. Notice that

an optimal m-way partition with a given number of columns could be computed

optimally using dynamic programming. Figure 2.5 presents the impact of the number

of stripes on the load imbalance of JAG-M-HEUR on a uniform instance as well as the

worst case imbalance of the m-way jagged heuristic guaranteed by Theorem 3. It

appears clearly that the actual performance follows the same trend as the worst

case performance of JAG-M-HEUR. Therefore, ideally, the number of stripes should be

chosen according to the guarantee of JAG-M-HEUR. However, the parameters of the

formula in Theorem 4 are difficult to estimate accurately and the variation of the

load imbalance around that value can not be predicted accurately.

The load imbalance of JAG-PQ-HEUR, JAG-PQ-OPT, JAG-M-HEUR and JAG-M-HEUR-PROBE

make some waves on Figure 2.3 when the number of processors varies. Those waves

are caused by the imbalance of the partitioning in the main dimension of the jagged

partition. Even more, these waves synchronized with the integral value of
n1√
m
. This

behavior is linked to the almost uniformity of the PIC-MAG dataset. The same

phenomena induces the steps in Figure 2.5.

32

 0.01

 0.1

 1

 0 50 100 150 200 250 300

lo
a
d
 i
m

b
a
la

n
c
e

P

JAG-M-HEUR variable P
m-way jagged guarantee

Figure 2.5: Impact of the number of stripes in JAG-M-HEUR on a 514x514 Uniform
instance with ∆ = 1.2 and m = 800.

2.4.3 Hierarchical Bipartition

There are four variants of HIER-RB depending on the dimension that will be parti-

tioned in two. In general the load imbalance increases with the number of proces-

sors. The HIER-RB-LOAD variant achieves a slightly smaller load balance than the

HIER-RB-HOR, HIER-RB-VER and HIER-RB-DIST variants. The results are similar on

all the classes of instances and are omitted.

There are also four variants to the HIER-RELAXED algorithm. Figure 2.6 shows

the load imbalance of the four variants when the number of processors varies on

the multi-peak instances of size 512. In general the load imbalance increases with

the number of processors for HIER-RELAXED-LOAD and HIER-RELAXED-DIST. The

HIER-RELAXED-LOAD variant achieves overall the best load balance. The load im-

balance of the HIER-RELAXED-VER (and HIER-RELAXED-HOR) variant improves past

33

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000

lo
a
d
 i
m

b
a
la

n
c
e

number of processors

HIER-RELAXED-DIST
HIER-RELAXED-HOR
HIER-RELAXED-VER

HIER-RELAXED-LOAD
HIER-RB-LOAD

Figure 2.6: HIER-RELAXED on 512x512 Multi-peak.

2,000 processors and seems to converge to the performance of HIER-RELAXED-LOAD.

The number of processors where these variants start improving depends on the size

of the load matrix. Before convergence, the obtained load balance is comparable to

the one obtained by HIER-RELAXED-DIST. The diagonal instances with a size of 4,096

presented in Figure 2.7 shows this behavior.

Since the load variant of both algorithm leads to the best load imbalance, we will

refer to them as HIER-RB and HIER-RELAXED.

We proposed in Section 2.3.2, HIER-OPT, a dynamic programming algorithm to

compute the optimal hierarchical bipartition. We did not implement HIER-OPT

since we expect it to run in hours even on small instances. However, we derived

HIER-RELAXED, from the dynamic programming formulation. Figure 2.6 and 2.7 in-

clude the performance of HIER-RB and allow to compare it to HIER-RELAXED. It is

34

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000

lo
a
d
 i
m

b
a
la

n
c
e

number of processors

HIER-RELAXED-DIST
HIER-RELAXED-HOR
HIER-RELAXED-VER

HIER-RELAXED-LOAD
HIER-RB-LOAD

Figure 2.7: HIER-RELAXED on 4096x4096 Diagonal.

clear that HIER-RELAXED leads to a better load balance than HIER-RB in these two

cases. However, the performance of HIER-RELAXED might be very erratic when the in-

stance changes slightly. For instance, on Figure 2.8 the performance of HIER-RELAXED

during the execution of the PIC-MAG application is highly unstable.

2.4.4 Execution time

In all optimization problems, the trade-off between the quality of a solution and the

time spent computing it appears. We present in Figure 2.9 the execution time of the

different algorithms on 512x512 Uniform instances with ∆ = 1.2 when the number of

processors varies. The execution times of the algorithms increase with the number of

processors.

All the heuristics complete in less than one second even on 10,000 processors. The

35

Figure 2.8: Hierarchical methods on PIC-MAG with m = 400.

fastest algorithm is obviously RECT-UNIFORM since it outputs trivial partitions. The

second fastest algorithm is HIER-RB which computes a partition in 10,000 processors

in 18 milliseconds. Then comes the JAG-PQ-HEUR and JAG-M-HEUR heuristics which

take about 106 milliseconds to compute a solution of the same number of proces-

sors. Notice that the execution of JAG-M-HEUR-PROBE takes about twice longer than

JAG-M-HEUR. The running time of RECT-NICOL algorithm is more erratic (probably

due to the iterative refinement approach) and it took 448 milliseconds to compute a

partition in 10,000 rectangles. The slowest heuristic is HIER-RELAXED which requires

0.95 seconds of computation to compute a solution for 10,000 processors.

Two algorithms are available to compute the optimal P×Q-way jagged partition.

Despite the various optimizations implemented in the dynamic programming algo-

rithm, JAG-PQ-OPT-DP is about one order of magnitude slower than JAG-PQ-OPT-NICOL.

36

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000

ti
m

e
 (

s
)

number of processors

JAG-PQ-OPT-DP
JAG-PQ-OPT-NICOL

HIER-RELAXED
RECT-NICOL

JAG-M-HEUR-PROBE
JAG-M-HEUR

JAG-PQ-HEUR
HIER-RB

RECT-UNIFORM

Figure 2.9: Runtime on 512x512 Uniform with ∆ = 1.2.

JAG-PQ-OPT-DP takes 63 seconds to compute the solution on 10,000 processors whereas

JAG-PQ-OPT-NICOL only needs 9.6 seconds. Notice that using heuristic algorithm

JAG-PQ-HEUR is two order of magnitude faster than JAG-PQ-OPT-NICOL, the fastest

known optimal P×Q-way jagged algorithm.

The computation time of JAG-M-OPT is not reported on the chart. We never run

this algorithm on a large number of processors since it already took 31 minutes to

compute a solution for 961 processors. The results on different classes of instances

are not reported, but show the same trends. Experiments with larger load matrices

show an increase in the execution time of the algorithm. Running the algorithms

on matrices of size 8,192x8,192 basically increases the running times by an order of

magnitude.

Loading the data and computing the prefix sum array is required by all two

37

dimensional algorithms. Hence, the time taken by these operations is not included in

the presented timing results. For reference, it is about 40 milliseconds on a 512x512

matrix.

2.4.5 Which algorithm to choose?

The main question remains. Which algorithm should be chosen to optimize an ap-

plication’s performance?

From the algorithm we presented, we showed that m-way jagged partitioning

techniques provide better solutions than an optimal P×Q-way jagged partition. It

is therefore better than rectilinear partitions as well. The computation of an optimal

m-way jagged partition is too slow to be used in a real system. It remains to decide

between JAG-M-HEUR-PROBE, HIER-RB and HIER-RELAXED. As a point of reference,

the results presented in this section also include the result of algorithm generating

rectilinear partitioning, namely, RECT-UNIFORM and RECT-NICOL.

Figure 2.10 shows the performance of the PIC-MAG application on 9,216 proces-

sors. The RECT-UNIFORM partitioning algorithm is given as a reference. It achieves

a load imbalance that grows from 30% to 45%. RECT-NICOL reaches a constant 28%

imbalance over time. HIER-RB is usually slightly better and achieves a load imbal-

ance that varies between 20% and 30%. HIER-RELAXED achieves most of the time

a much better load imbalance, rarely over 10% and typically between 8% and 9%.

JAG-M-HEUR-PROBE outperforms all the other algorithms by providing a constant 5%

load imbalance.

Figure 2.11 shows the performance of the algorithms while varying the number

of processors at iteration 20,000. The conclusions on RECT-UNIFORM, RECT-NICOL

and HIER-RB stand. Depending on the number of processors, the performance of

38

 0.001

 0.01

 0.1

 1

 0 5000 10000 15000 20000 25000 30000 35000

lo
a
d
 i
m

b
a
la

n
c
e

iteration

RECT-UNIFORM
RECT-NICOL

HIER-RB
HIER-RELAXED

JAG-M-HEUR-PROBE

Figure 2.10: Main heuristics on PIC-MAG with m = 9216.

JAG-M-HEUR-PROBE varies and in general HIER-RELAXED leads to the best perfor-

mance, in this test.

Figure 2.12 presents the performance of the algorithms on the mesh based instance

SLAC. Due to the sparsity of the instance, most algorithms get a high load imbalance.

Only the hierarchical partitioning algorithms manage to keep the imbalance low and

HIER-RELAXED gets a lower imbalance than HIER-RB.

The results indicate that as it stands, the algorithms HIER-RELAXED and

JAG-M-HEUR-PROBE, we proposed, are the one to choose to get a good load balance.

However, we believe a developer should be cautious when using HIER-RELAXED be-

cause of the erratic behavior it showed in some experiments (see Figure 2.8) and

because of its not-that-low running time (up to one second on 10,000 processors

according to Figure 2.9). JAG-M-HEUR-PROBE seems much a more stable heuristic.

39

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

lo
a
d
 i
m

b
a
la

n
c
e

number of processors

RECT-UNIFORM
RECT-NICOL

HIER-RB
JAG-M-HEUR-PROBE

HIER-RELAXED

Figure 2.11: Main heuristics on PIC-MAG iter=20,000.

 0.001

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000

lo
a
d
 i
m

b
a
la

n
c
e

number of processors

RECT-UNIFORM
RECT-NICOL

JAG-M-HEUR-PROBE
HIER-RB

HIER-RELAXED

Figure 2.12: Main heuristics on SLAC.

40

The bad load balance it presents on Figure 2.11 is due to a badly chosen number of

partitions in the first dimension.

2.5 Hybrid partitioning scheme

The previous sections show that we have on one hand, heuristics that are good and

fast, and on the other hand, optimal algorithms which are even better but to slow to

be used in most practical cases. This section presents some engineering techniques

one can use to obtain better results than using only the heuristics while keeping the

runtime of the algorithms reasonable.

Provided, in general the maximum load of a partition is given by the most loaded

rectangle and not by the general structure of the partition, one idea is to use the

optimal algorithm to be locally efficient and leave the general structure to a faster

algorithm. We introduce the class of HYBRID algorithms which construct a solution

in two phases. A first algorithm will be used to partition the matrix A in P parts.

Then the parts will be independently partitioned with a second algorithm to obtain a

solution in m parts. This section investigates the hybrid algorithms and try to answer

the following questions: Which algorithms should be used at phase 1 and phase 2? In

how many parts the matrix should be divided in the first phase (i.e., what should P

be)? How to allocate the m processors between the P parts? And most importantly,

is there any advantage in using hybrid algorithms?

Between the two phases, it is difficult to know how to allocate the m processors

to the P parts without doing a deep search. We choose to allocate the parts pro-

portionally according to the rule used in JAG-M-HEUR, i.e., each rectangle r will first

be allocated Qr = ⌈ L(r)
L(A)

(m − P)⌉ parts. The remaining processors are distributed

greedily.

We conducted experiments using different PIC-MAG instances. All the values of

41

P were tried between 2 and
m

2
. We will denote the HYBRID algorithm using ALGO1

for phase 1 and ALGO2 for phase 2 as HYBRID(ALGO1/ALGO2).

The first round of experiments mainly showed three observations. (No results are

shown since similar results will be presented later.) First, HYBRID is too slow to use

JAG-M-OPT at the second phase for studying the performance (e.g., partitioning PIC-

MAG at iteration 5000 on 1024 processors using P = 17 takes 78 seconds). Second,

the performance shows ”waves” when P varies which are correlated with the values

of ⌈m− P

P
⌉. Finally HYBRID can obtain load imbalances better than JAG-M-HEUR and

HIER-RELAXED on some configuration confirming that HYBRID might be useful.

To make the algorithm faster, we introduce the notion of fast and slow algorithms

at phase 2. The fast algorithm is first run on each part and the parts are sorted

according to their maximum load. The slow algorithm is run on the part of higher

maximum load. If the solution returned by the slow algorithm improves the maximum

load of that part, the solution is kept and the parts are sorted again. Otherwise, the

algorithm terminates. This modification increased the speed of the algorithm up to an

order of magnitude. (Using JAG-M-HEUR-PROBE as the fast algorithm in phase 2 allows

to run PIC-MAG at iteration 5000 on 1024 processors using P = 17 in 38 seconds,

halving the computation time.) Detailed timing on PIC-MAG at iteration 5000 using

1024 processors can be found in Figure 2.13. The HYBRID(JAG-M-HEUR/JAG-M-OPT)

curve is the original implementation of HYBRID using JAG-M-HEUR at phase 1 and

JAG-M-OPT at phase 2. The HYBRID-F(JAG-M-HEUR/JAG-M-OPT) curve presents the

timing obtained with the use of fast and slow algorithm. The HYBRID algorithm using

JAG-M-OPT at both phase is given as a point of reference. All the implementation

used JAG-M-HEUR-PROBE as the fast algorithm. Figure 2.13 shows that using fast and

slow algorithms makes the computation about one order of magnitude faster. Using

42

JAG-M-OPT at phase 1 is typically orders of magnitude slower than using another

algorithm.

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

T
im

e
(s

)

P

Timing

HYBRID(JAG-M-HEUR/JAG-M-OPT)
HYBRID-F(JAG-M-HEUR/JAG-M-OPT)

HYBRID-F(JAG-M-OPT/JAG-M-OPT)

Figure 2.13: Runtime of HYBRID methods on PIC-MAG iter=5000 with m = 512.

This improvement allows to run more complete and detailed experiments. In

particular, using JAG-M-OPT at phase 2 runs quickly. This allow us to study the per-

formance of HYBRID using an algorithm that get good load balance at phase 2. The

load imbalance obtained on PIC-MAG 5000 on 512 are shown in Figure 2.14. Two

HYBRID variants that use JAG-M-OPT or HIER-RELAXED at phase 1 are presented. For

reference, three horizontal lines present the performance obtained by JAG-M-HEUR,

HIER-RELAXED and JAG-M-OPT on that instance. A first remark is that a large num-

ber of configurations lead to load imbalances better than JAG-M-HEUR. A significant

43

number of them get load imbalances better than HIER-RELAXED and sometimes com-

parable to the performance of JAG-M-OPT. Then, the load imbalance significantly

varies with P : it is decreasing by interval which happen to be synchronized with the

values of ⌈m− P

P
⌉. Finally, the load imbalance is better when the values of P are low.

This behavior was predictable since the lower P is the more global the optimization

is. However, one should notice that some low load imbalances are found with high

values of P .

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300

L
o

a
d

 I
m

b
a

la
n

c
e

P

Performance

HYBRID(JAG-M-OPT/JAG-M-OPT)
HYBRID(HIER-RELAXED/JAG-M-OPT)

JAG-M-HEUR
HIER-RELAXED

JAG-M-OPT

Figure 2.14: Using JAG-M-OPT at phase 2 on PIC-MAG iter=5000 with m = 512

Good load imbalance could obviously be obtained by trying every single value of

P . However, such a procedure is likely to take a lot of time. Provided the phase

2 algorithm takes a large part of the computation time, it will be interesting to

predict the performance of the second phase without having to run it. We define the

44

expected load imbalance as the load imbalance that would be obtained provided the

second phase balances the load optimally, i.e., eLI = max
r

L(r)

Qr

. Figure 2.15 presents

for each solution its expected load imbalance and the load imbalance obtained once

the second phase is run for different values of P . The solutions are presented for two

hybrid variants, one using JAG-M-HEUR at phase 2 and the other one using JAG-M-OPT.

For similar expected load imbalance, the load imbalance obtained using JAG-M-HEUR

are spread over an order of magnitude. However, the load imbalance obtained by

JAG-M-OPT are much more focused. The expected load imbalance and obtained load

imbalance are well correlated when JAG-M-OPT is used at phase 2.

 0.001

 0.01

 0.1

 1

 1e-05 0.0001 0.001 0.01 0.1 1

O
b
ta

in
e
d
 L

o
a
d
 I
m

b
a
la

n
c
e

Expected Load Imbalance

Correlation

HYBRID(HIER-RELAXED/JAG-M-OPT)
HYBRID(HIER-RELAXED/JAG-M-HEUR)

Figure 2.15: Correlation between expected load imbalance at the end of phase 1 and
the obtained load imbalance on PIC-MAG iter=5000 with m = 512

The previous experiments show two things. The actual performance are correlated

with expected performance at the end of phase 1 if JAG-M-OPT is used in phase 2. The

45

load imbalance decreases in an interval of values of P synchronized with the values

of ⌈m− P

P
⌉. Therefore, we propose to enumerate the values of P at the end of such

intervals. For each of these value, the phase 1 algorithm is used and the expected

load imbalance is computed. The phase 2 is only applied on the value of P leading

to the best expected load imbalance. Obviously the best expected load imbalance

will be given by the non-hybrid case P = 1, but it will lead to a high runtime. The

tradeoff between the runtime of the algorithm and the quality of the solution should

be left to the user by specifying a minimal P .

Figure 2.16 presents the load imbalance obtained on the PIC-MAG datasets at it-

eration 10000 using
√
m as minimal P . The HYBRID algorithm obtains a load balance

usually better than JAG-M-HEUR-PROBE and often better than HIER-RELAXED. The

algorithm leading to the best load imbalance seems to depend on the number of pro-

cessors. For instance, Figure 2.17 shows the load imbalance of the algorithms on 7744

processors. JAG-M-HEUR-PROBE leads constantly to better results than HIER-RELAXED.

And HYBRID typically improve both by a few percents.

However, on 6400 processors (Figure 2.18), HYBRID almost constantly improves

the result of HIER-RELAXED by a few percents but does not achieve better load im-

balance than JAG-M-HEUR-PROBE. Figure 2.4 showed that JAG-M-HEUR is significantly

outperformed by JAG-M-HEUR-PROBE in that configuration. Recall that the main dif-

ference between these heuristics is that the former distributes the processors among

the stripes only based on the load of each stripe while the latter use the minimum

number of processors per stripe to obtain the minimum load balance. The same idea

could be applied to HYBRID algorithms looking for the minimum number of processors

to allocate to each part without degrading the load imbalance and use these proces-

sors on the parts that lead to the maximum load. This modification will improve the

load imbalance but will also increase the running time significantly.

46

Figure 2.16: HYBRID algorithm on PIC-MAG iter=10000

The runtime of the algorithm is presented in Figure 2.19. It shows that the HYBRID

algorithm is two or three orders of magnitude slower than the heuristics but one to

two orders of magnitude faster than JAG-M-OPT. However, HYBRID algorithms are

likely to parallelize pleasantly.

Some more engineering techniques could be applied to HYBRID. Different time/qual-

ity tradeoff could be obtained by stopping the use of the slow algorithm in phase 2

when the improvement become smaller than a given threshold. Using a 3-phase

HYBRID mechanism could be another way of obtaining different trade-offs.

HYBRID is not the only option for algorithm engineering. One idea that might lead

to interesting time/quality tradeoff would be to avoid running dynamic programming

algorithms all the way through. Early termination can be decided based on a time

allocation or a targeted maximum load.

47

Figure 2.17: HYBRID algorithm on PIC-MAG on 7744 processors

Finally, different kind of iterative improvement algorithms could be designed. For

instance, on m-way jagged partition, JAG-M-PROBE provides the optimal number of

processors to use in each stripe provided the partition in the main dimension, and

JAG-M-ALLOC provides the optimal partition in the main dimension provided the num-

ber of processors allocated to each stripe. Applying JAG-M-PROBE and JAG-M-ALLOC

the one after the other as long as the solution improves would be one interesting

iterative algorithm.

48

Figure 2.18: HYBRID algorithm on PIC-MAG on 6400 processors

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

ti
m

e
 (

s
)

number of processors

JAG-M-OPT
HYBRID(JAG-M-HEUR-PROBE/JAG-M-OPT)

HIER-RELAXED
JAG-M-HEUR-PROBE

Figure 2.19: Runtime of HYBRID methods on PIC-MAG iter=10000

49

CHAPTER 3

INTER-PROCESSOR COMMUNICATION AND

REBALANCING

3.1 Communication Cost

The two dimensional partitioning algorithms that we consider are optimized to min-

imize the total load of the most loaded processor. However, they may not minimize

communication cost. If network latency is much higher than computation time, over-

all processing will be quite slower until next repartitioning iteration. Both commu-

nication and load volume play an important role on overall runtime of stencil oper-

ations. Particle-in-cell simulations require tremendous amount of arithmetic stencil

operations over matrices. The problem matrix can be partitioned and distributed

to reduce total runtime. In this chapter, we will analyze the existing load balancing

algorithms in the perspective of communication cost and compare their performance.

There are two types of inter-processor communication costs. The first type, called

application cost, occurs in given partitions. Processors exchange data that is required

to obtain the solution of the application. Tasks stay in their assigned processors.

In order to minimize application cost, we use static load balancing techniques. The

second type, called migration cost, does not interfere with application itself. The

distribution of the load might vary with time and introduce load imbalance. This

type of communication cost occurs in re-balancing currently imbalanced partitions.

50

Re-balancing operation aims to reduce most loaded processor’s load by applying a

different partition. Tasks are reassigned to different processors if necessary. The

technique to minimize this cost is called dynamic load balancing.

In any parallel application we would like to minimize overall runtime function.

One of the functions given in [9] is as follows.

ttot = α(tcomp + tcomm) + tmig + trepart (3.1.1)

where, tcomp is computation time, tcomm is communication time,

tmig is migration time, and trepart is repartitioning time.

3.2 Problem Definitions

Static load balancing problem is defined as follows: Given an n1 × n2 matrix we

would like to distribute it to m processors such that total communication cost is

minimized. Total communication cost depends on several metrics. The metrics will

be discussed in the following sections. The bandwidth assumed to be homogeneous

and processors are identical. A processor can only communicate with its neighbors

i.e. in a uniform partitioning Pi,j can communicate with Pi−1,j, Pi+1,j, Pi,j−1, Pi,j+1.

The cells that lie in the border of two adjacent processors are called connected cells.

The cost of communication depends on the size of the message and startup cost of

the message. The message transfer occurs in every iteration on borders because of

stencil-like operations. Total communication cost CPi
=

P
∑

j=0

(BPi,Pj
α + β) where β is

the startup cost for a single message, Bpi,pj is the border length between processor Pi

and Pj. P is the neighbor processor count of Pi.

Dynamic load balancing problem is defined as follows: Given an n1 × n2 matrix

and a partition Pi1, find a new partition Pi2 that minimizes both Lmax and the

total load exchange value. Total load exchange of a processor is the sum of load

51

Figure 3.1: A migration example.

exchange to all other processors in Pi2. Total data exchange between pi and Pj is

MPi
=

P
∑

j=0

(Lx
Pi,Pj

α + β) where Lx
Pi,Pj

is the data exchange between processor Pi and

Pj. The assumptions on static load balancing applies except that now a processor is

allowed to communicate with any other one. For example consider Figure 3.1. In this

figure, the color coding indicate partitioning into 4 processors. The top-left processor

sends 55+4+10 = 69 units of data to the top-right processor while the bottom-right

processor sends 37 + 6 = 43 units of data to the bottom-left processor. Then total

migration cost of moving from partition S1 to S2 is Lx = 69+43 = 112 units. Notice

that in Figure 3.1 S2 partition is arbitrarily selected to demonstrate how migration

cost is calculated. Neither Lmax nor LX is a concern.

We do not consider other topologies such as fat trees, star networks or hypercubes

due to complexity of their analysis. In our analysis a processor may have arbitrary

number of direct connections. However, a processor can communicate with its im-

mediate neighbors in the 2D partitioning assignment. For instance, all rectilinear

partitions correspond to a 2D mesh topology where each processor has 2, 3 or 4 im-

mediate neighbors (assuming m ≥ 4). In contrast, jagged partitions and hierarchical

partitions can have arbitrary number of neighbors.

In our experiments bipartite matching is done greedily. Source and target proces-

sors are selected based on the total overlap. Formally, processor Pi sends data to Pj

52

if the load of Pi ∩ Pj is larger than for all Pi ∩ Px for all x ∈ S2 where S2 is set of

processors in the next iteration’s partition.

3.3 Communication Metrics

There are many metrics proposed in the literature [14]. All communication metrics

depend on the network topology. We believe that 6 metrics best explain the quality

of partitions. Average neighbor measures the message volume of the networks with

high startup costs. Maximum neighbor measures startup cost if network contention is

on one component of the network (such as backbone router). Average border length

measures the data exchange within borders. This is a necessary measure in PIC

applications. A cell on the border will exchange its status information with another

neighbor processor. Just like maximum neighbor, Maximum border length is suitable

when we want to measure message volume, and network contention depends on one

component of the network. Notice the load of the border line is another metric that

we do not calculate in this work.

Generally speaking, if startup costs dominate communication costs, then it makes

more sense to use “maximum” metrics. Otherwise, if latency is higher, “average”

metrics should be considered.

Average neighbor

This metric measures the average startup cost of messages that are sent from a

processor in an iteration. Vavg =
m
∑

i=1

Vi

m
where Vp is the neighbor count of processor

p.

53

Maximum neighbor

This metric measures the maximum startup cost in the partition. Vmax = max
1≤p≤P

Vp.

This metric plays an important role if a component of the network is under too much

traffic and becomes a bottleneck.

Average Border Length

This metric measures the average data size in a message. Since connected cells need

to exchange messages, the data section of the message will be proportional to the

border length of a part. Bavg =
m
∑

i=1

Bi

m
where Bi is the border length of processor i.

The outermost borders of the main matrix are not counted. The borders must reside

between two adjacent parts to be counted. Some algorithms such as JAG-M-HEUR

may not use all m processors. This would affect Bavg mentioned earlier. In our

experiments, we did not decrease m due to possibly unused processors. The instances

that result in some unused processors are very rare and the unused processor number

is typically very low.

Maximum Border Length

This metric measures the maximum message length. This metric plays an important

role if one component is bottleneck of the network. Bmax = max
1≤p≤P

Bp

Average Migration Cost

This metric measures the data exchange made by each processor to move from one

partition to another. Notice that globally, total send data is equal to total received

data. When calculating this metric we will consider only one of them. Lx
avg =

Lx

m

54

Maximum Migration Cost

This metric measures the maximum data exchange over all processor to move from

one partition to another. Assuming Lx
p is the data sent or received by processor p.

Then Lx
max = max

1≤p≤P
Lx
p

3.4 Performance of 2D Algorithms

3.4.1 Uniform Partitioning (RECT-UNIFORM)

Uniform partitioning is a very straightforward algorithm. It ensures that the max-

imum neighbor number is 4 and average neighbor number is very close to but less

than 4 (corner processors have 2 neighbors, edge processors have 3). It has very low

average border length and maximum border length is optimum. In return to all those

good communication values, uniform algorithm leads to high load imbalance as seen

in Figure 2.10, 2.11 and 2.12.

3.4.2 Recursive Bisection (HIER-RB)

Recursive bisection is a very fast algorithm that works very good on sparse matrix

load balancing. On the other hand, the number of neighbors can be quite high as seen

in Figure 3.2. It can be reduced by setting up boundaries (with small rectangles).

Average and maximum border lengths are higher than rectilinear algorithms and

jagged algorithms due to irregularity of partitions in recursive bisection.

3.4.3 Hierarchical Relaxed Bisection (HIER-RELAXED)

The relaxed version of hierarchical relaxed bisection leads to distinct one dimensional

partitioning. The regularity of one dimensional partitioning results in lower average

neighbor values than recursive bisection. Although the load imbalance and average

55

neighbor are acceptable, hierarchical relaxed bisection is rather bad at all other met-

rics thus, it should be avoided when communication cost is more important than load

imbalance.

3.4.4 Recursive Bisection with Middle Cut (HIER-RB-MIDDLE)

This algorithm is optimized for communication purpose only. It works like recursive

bisection with one difference. It geometrically places the cut point in the middle of the

sub-rectangles, assigns processors proportional to the load on each side, and finally

recurses on each side. This algorithm tries to approximate by changing processor

counts rather than cut points.

3.4.5 Nicol’s 2D Algorithm (RECT-NICOL)

Nicol’s two dimensional algorithm, like uniform partitioning algorithm, limits the

number of neighbor processors. Uniform and rectilinear partitioning get exact same

values for all communication metrics except for maximum border length. However,

Nicol’s algorithm beats uniform in load imbalance. Thus Nicol’s algorithm should be

preferred over uniform. Nicol’s algorithm can result in slightly high maximum border

length. However, the experiments show that this is a very rare case in uniform

matrices.

3.4.6 P×Q-way Jagged (JAG-PQ-HEUR)

According to average and maximum neighbor metric, P×Q-way Jagged algorithm is

in a place between m-way jagged and rectilinear partitioning algorithms. This is due

to restricted number of processors per row. Therefore P×Q jagged is slightly better

than m-way jagged algorithms. Average and maximum border length is same as the

other rectilinear algorithms.

56

3.4.7 m-way Jagged algorithms JAG-M-HEUR and JAG-M-PROBE

Even though low average and maximum neighbor value, m-way jagged algorithms fail

to achieve a low average neighbor value, they are competitive to rectilinear algorithms

in all other metrics. In fact, JAG-M-PROBE got the worst results in terms of average

neighbor. However, m-way algorithms are still reasonable since maximum neighbor

value is lower than hierarchical partitioning algorithms.

3.5 Results

The following 4 charts (Figure 3.2,3.3,3.4,3.5) are performance profiles. It is used

when comparing too many test cases with respect to a metric. A performance profile

shows the probability that a specific algorithm gives results within some value τ

multiple of the best result reached ever all algorithms. Higher τ indicates a better

algorithm value. For example HIER-RB-MIDDLE has a point on τ = 1.1 and fraction

of 0.7. This means on 70% of the test cases, HIER-RB-MIDDLE did no worse than 1.1

of the best result found by any algorithm in the test. We have tested algorithms on

all squared processor numbers between 1 and 10000 (e.g 1, 4, 9, ..., 10000)

The next three charts show degradation of bottleneck. The horizontal axis is

snapshots in a time step. The vertical axis shows the load imbalance if we refresh (re-

run the algorithm) the partition in every 2, 5 and 10(Figure 3.6, 3.7, 3.8 respectively)

iterations. The number of processors is fixed to 1024 which is a reasonable processor

count in today’s middle sized clusters.

The last four charts concern about the cost of migration. JAG-M-PROBE-HEUR was

chosen for migration cost evaluation. Because it is the fastest heuristic algorithm that

minimizes the load. Horizontal variant is used in this experiment. As an opponent to

this algorithm, RECT-NICOL is selected due to low application communication cost.

57

The results show that HIER-RB-LOAD is the best algorithm in terms of degradation.

In figure 3.6, there are even points that using the same partition makes HIER-RB-LOAD

better.

On the other hand JAG-M-HEUR-PROBE-BEST easily jumps to the top values. This

is more obvious in longer repartitioning periods shown in Figure 3.6.

JAG-M-HEUR-PROBE-BEST is better than RECT-NICOL in total migration cost (Fig-

ures 3.9 and 3.11).

But RECT-NICOL is less chaotic in maximum migration cost. Therefore we can

conclude JAG-M-HEUR-PROBE-BEST is acceptable when network component contention

is not an issue.

58

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

F
r
a

c
ti

o
n

 o
f

w
in

s

HIER−RB−DIST

HIER−RB−MIDDLE

JAG−M−HEUR−BEST

RECT−UNIFORM

HIER−RB−LOAD

HIER−RELAXED−LOAD

JAG−M−HEUR−PROBE−BEST

JAG−PQ−HEUR−BEST

RECT−NICOL

Figure 3.2: Average neighbor performance profile in PICMAC dataset

59

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

F
r
a

c
ti

o
n

 o
f

w
in

s

HIER−RB−DIST

HIER−RB−MIDDLE

JAG−M−HEUR−BEST

RECT−UNIFORM

HIER−RB−LOAD

HIER−RELAXED−LOAD

JAG−M−HEUR−PROBE−BEST

JAG−PQ−HEUR−BEST

RECT−NICOL

Figure 3.3: Maximum neighbor performance profile in PICMAC dataset

60

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

F
r
a

c
ti

o
n

 o
f

w
in

s

HIER−RB−DIST

HIER−RB−MIDDLE

JAG−M−HEUR−BEST

RECT−UNIFORM

HIER−RB−LOAD

HIER−RELAXED−LOAD

JAG−M−HEUR−PROBE−BEST

JAG−PQ−HEUR−BEST

RECT−NICOL

Figure 3.4: Average border length performance profile in PICMAC dataset

61

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

F
r
a

c
ti

o
n

 o
f

w
in

s

HIER−RB−DIST

HIER−RB−MIDDLE

JAG−M−HEUR−BEST

RECT−UNIFORM

HIER−RB−LOAD

HIER−RELAXED−LOAD

JAG−M−HEUR−PROBE−BEST

JAG−PQ−HEUR−BEST

RECT−NICOL

Figure 3.5: Maximum border length performance profile in PICMAC dataset

62

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 0 10 20 30 40 50 60 70

P
v
_
n
e
w

/P
v
_
o
ld

iteration

1024 procs

HIER-RB-LOAD
JAG-PQ-HEUR-BEST

JAG-M-HEUR-PROBE-BEST
RECT-NICOL

Figure 3.6: Degradation in PICMAC Bottleneck - repartitioned in every 2 iterations

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 0 10 20 30 40 50 60 70

P
v
_
n
e
w

/P
v
_
o
ld

iteration

1024 procs

HIER-RB-LOAD
JAG-PQ-HEUR-BEST

JAG-M-HEUR-PROBE-BEST
RECT-NICOL

Figure 3.7: Degradation in PICMAC Bottleneck - repartitioned in every 5 iterations

63

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 0 10 20 30 40 50 60 70

P
v
_
n
e
w

/P
v
_
o
ld

iteration

1024 procs

HIER-RB-LOAD
JAG-PQ-HEUR-BEST

JAG-M-HEUR-PROBE-BEST
RECT-NICOL

Figure 3.8: Degradation in PICMAC Bottleneck - repartitioned in every 10 iterations

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 10 20 30 40 50 60 70

(t
o
t_

s
e
n
t_

e
l)
/(

to
t_

in
s
t_

e
l)

iteration

1024 procs JAG-M-HEUR-PROBE

per1
per2
per5

per10

Figure 3.9: JAG-M-HEUR-PROBE total rebalancing cost normalized to instance
load

64

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

(m
a
x
_
s
e
n
t_

e
l)
/(

m
a
x
_
p
ro

c
_
e
l)

iteration

1024 procs JAG-M-HEUR-PROBE

per1
per2
per5

per10

Figure 3.10: JAG-M-HEUR-PROBE maximum send/receive cost normalized to max-
imum load

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 10 20 30 40 50 60 70

(t
o
t_

s
e
n
t_

e
l)
/(

to
t_

in
s
t_

e
l)

iteration

1024 procs RECT-NICOL

per1
per2
per5

per10

Figure 3.11: RECT-NICOL total rebalancing cost normalized to instance load

65

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

(m
a
x
_
s
e
n
t_

e
l)
/(

m
a
x
_
p
ro

c
_
e
l)

iteration

1024 procs RECT-NICOL

per1
per2
per5

per10

Figure 3.12: RECT-NICOL maximum send/receive cost normalized to maximum
load

66

CHAPTER 4

SOFTWARE

4.1 Overview

The project is written in C++. The project repository has 2 folders. The data folder

contains example 2D matrix data and source code for matrix synthesizers. The src

folder contains three important sub-folders: oned, twod and util. The oned folder

has all the one dimensional partitioning algorithms. Any 1D algorithm can be easily

integrated into 2D algorithms. twod contains all the 2D algorithm implementations.

util contains various auxiliary code for both one and two dimensional partitioning

such as rectangle data structure to hold partition information and prefix sum matrix

builders. In this chapter, we will explain of the important design features that allow

the programmer to easily:

1. Change underlying 1D algorithms of the 2D algorithms

2. Develop 1D/2D algorithms using common functions in the utilities library

3. Change input data types

4. Direct translate to native code on changes above, allowing reduced delay in

runtime

5. Catch possible bugs immediately if changes are faulty

67

For testing purposes, we have assembled all 1D and 2D algorithms in 1d algo set main.cpp

and 2d algo set main.cpp respectively. In one dimensional algorithms, the input

consists of a file with array length in the 1st row. Matrices are represented with row

length in the 1st line and column length in the 2nd line. The rest of the lines are

values of the matrices that is obtained by scanning matrix from left to right, row by

row.

To make this library to compile without linking, no explicit routines implemented.

All methods and utilities are in header files.

4.2 Using the Library

All 2D partitioning classes take following template parameters:

• T: Type of data.

• Pr: A matrix data structure that will hold prefix sum data.

Pr can be defined by developer but it needs to overload [] operator and imple-

ments sizeX and sizeY methods. sizeX and sizeY must return 1 more than original

matrix size because 1st row and first column values are all zero. Therefore Pr[0][y]

Pr[x][0] must return 0 where x<sizeX and x<sizeY. For example a data structure

that uses integer arrays can be defined as in Code 4.1.

It is important to note that even though Pr is used to represent 1D arrays too,

it has nothing to do with matrix Pr. One dimensional Pr, which can be seen in

1D partitioning algorithms, do not have to implement sizeX or sizeY methods. []

overload is sufficient.

A user can run Nicol’s algorithm by using lines in Code 4.2.

68

Code 4.1: Initializing prefix sum array

#include "util/Compact.hpp"

#include "util/Prefix2D.hpp"

typedef int T;

typedef Prefix2D <T> Pr;

Compact2D <T> data(sizeX , sizeY); // creates a matrix

readFromFile(data) //puts file contents into matrix

Pr pr(sizeX , sizeY , data); // converts matrix into prefix sum matrix

Code 4.2: Running the algorithm

#include "twod/part_base.hpp"

#include "util/rect_list.hpp"

#include "twod/parse.hpp"

// Create an instance of part. alg. object

twod::PartBase <T, Pr >* pb = twod::parseName <T,Pr >("RECT -NICOL");

// Create a rectangle list to hold the results

Rect_list <T, Pr > rl(pr);

// Bottleneck value goes to b variable and rl

// contains partition rectangles

T b = pb ->part(procCount , pr, rl);

delete pb;

69

Code 4.3: Rectangle structure members

struct rectangle

{

/// coordinate x - rectangle top left

int x_top_l;

/// coordinate y - rectangle top left

int y_top_l;

/// coordinate x - rectangle bottom right

int x_bot_r;

/// coordinate y - rectangle bottom right

int y_bot_r;

}

Code 4.4: Writing result to standard output

util::Rect_list <T, Pr >:: container :: const_iterator list_iter1 = rl.

rectangles.begin ();// define iteratior

//show reult one rectangle per line format

for(; list_iter1 != rl.rectangles.end(); list_iter1 ++)

{

const rectangle &r = *list_iter1;

std::cout << r.x_top_l << " " << r.y_top_l << " ";

std::cout << r.x_bot_r << " " << r.y_bot_r << std::endl;

}

The algorithm type can be easily changed by using proper class name. string Now

rl contains a list of rectangles. rectangle structure is defined in util/rect list.hpp.

The members of rectangle structure are given in Code 4.3.

To get the rectangles that represent the partition, one can obtain an iterator and

iterate through rectangles member of Rect list class as seen in Code 4.4.

4.3 One Dimensional Partitioning Implementation Details

Even though 1D partitioning algorithms are mainly used in 2D partitioning algo-

rithms, it is also possible to use them independently. In the testing code, a function

pointer is assigned the proper function based on the command line argument. The

70

total number of processors and file name are also passed as a command line argument

by the user. Using those information, the desired 1D partitioning function is called

on a load array which is created by input file. The function returns the maximum

loaded processor’s load and another pointer (which is passed as a parameter) retains

the cut points.

Each cut point maps to an index of load array. There are m − 1 cut points.

Given a set of processors {p1, p2, . . . pm} and cut points {c1, c2, . . . cm−1} The load in

the index of ci belongs to pi. For instance array an with values 3, 2, 3, 1, 5 would

have a prefix sum array 0, 2, 5, 8, 9, 14. A cut point positioned in index 3 would

divide array into 2 processors. The processors would have load of 8 and 6 respec-

tively. The following sections discuss one dimensional algorithms’ implementations.

Even though the function bodies seem different, each function is wrapped by a single

function(Code 4.5) to let programmers easily plug different algorithms as needed. For

example JAG-M-HEUR uses Nicol’s 1D partitioning algorithm. One can easily exchange

underlying algorithm by changing a few lines (feature 1). Binary search is used by all

algorithms to search cut points given a bottleneck value. This is kept in a common

library (Feature 2).

4.3.1 DirectCut

Code 4.6 is the simplest one dimensional partitioning algorithm. This implementation

assumes that the input array consists of nonzero values. val variable keeps track of

maximum sum of bottleneck values until processor p (including p). avg variable

holds the best bottleneck value possible. (p+1) * val must give us the maximum

load between array index 0 to pth cut. To limit binary search region, binary search

made between step and step - inc. The length of inc which is step length is

arbitrary. Too small step length will cause too many, but short binary search bursts.

71

Code 4.5: General one dimensional partitioning interface

/**

* General 1d partitioning header

*

* @param procCount Total number of processors

* @param prefixSumArray Prefix sum array that always starts with

value 0 in the 0th index

* @param length length of prefixSumArray

* @param cutIndexes Cut index points. A cut index point p is

inclusive to processor p-1 exclusive to processor p

* @param max Maximum element in the actual array (this value is

considered only by Nicol ’s 1D partitioning algorithm use -1 if

you don’t know what it is)

*

* @return

*/

static T part(int procCount , const Pr& prefixSumArray ,

int length , int *cutIndexes , T max);

On the other hand, longer step lengths will cause fewer but longer binary searches.

The step length can vary but in order to preserve runtime complexity in [29] length

/ procCount is chosen.

DirectCut with refined bottleneck

This is another variance of DirectCut that recalculates avg value every time a cut

placed. The rest of the operations are the same as DirectCut (Code 4.7).

4.3.2 NicolPlus

NicolPlus is the fastest optimum 1D partitioning algorithm. Bottleneck lower bound

is used to restrict search space of NicolPlus, to speedup calculations. Bottleneck

lower bound is initialized to average load. The most important feature of this algo-

rithm is that it keeps track of index lower and upper bounds in two separate array

for each processor. This property significantly decreases binary search times in each

step. Just like bottleneck lower and upper bounds, index lower and upper bounds

72

Code 4.6: Direct cut algorithm

/**

* Applies direct cut algorithm to a given prefixSumArray

* @param procCount is the total number of processors

* @param prefixSumArray always begins with 0 as first element.

* @param length is the exact size of prefixSumArray

* @param cutIndexes array of cuts

* @param T data type of 1d array

*

* @return *cutIndexes (must be allocated before calling !)

*/

static T direct_cut(int procCount , const Pr& prefixSumArray , int

length , int *cutIndexes , T)

{

T avg = prefixSumArray[length - 1] / procCount;

int inc = length / procCount , p, lastcut = 0;

int currentcut;

int step = inc;

T bottleneck = -1, val;

for(p = 0; p < procCount - 1; p++)

{

val = (p + 1) * avg;

while(prefixSumArray[step] <= val)

{

step+=inc;

if(step > length -1)

step = length -1;

}

currentcut = binarySearchLeft(prefixSumArray , step - inc ,

step , val);

if (cutIndexes != NULL)

cutIndexes[p] = currentcut;

if((prefixSumArray[currentcut] - prefixSumArray[lastcut]) >

bottleneck)

bottleneck = prefixSumArray[currentcut] - prefixSumArray[

lastcut] ;

lastcut = currentcut;

}

if(prefixSumArray[length - 1] - prefixSumArray[lastcut] >

bottleneck)

return prefixSumArray[length - 1] - prefixSumArray[lastcut];

else

return bottleneck;

}

73

Code 4.7: Direct cut with refined bottleneck

for(p = 0; p < procCount - 1; p++)

{

avg = (prefixSumArray[length -1] - prefixSumArray[lastcut])/ (

procCount - p);

// Followed by the same operations as DirectCut

}

Code 4.8: Nicol’s 1D partitioning algorithm

/**

* @param procCount number of processors

* @param prefixSumArray Prefix sum array that always starts with

value 0 in the 0th index

* @param length is the length of w

* @param cutIndexes cut index points

* @param max maximum load of a given array. If unknown , use -1.

* @param *sl holds lower index bounds of each processor

* @param *sh holds higher index bounds of each processor

* @return bottleneck value and *cutIndexes

*/

static T nicol_plus(int procCount , const Pr & prefixSumArray ,

int length , int *cutIndexes , T max , int *sl ,

int *sh)

are updated in every iteration. Basically, NicolPlus applies a binary search over

bottleneck value and returns the least feasible bottleneck.

RProbe

RProbe (Code 4.9) simply goes through every processor and greedily maps tasks to

processors. It applies binary search in code to find such an index.

4.3.3 Recursive Bisection

Recursive bisection decides the cut point by minimizing load difference between left

and right sides of the cut point. Pure recursive bisection may not be efficient when

74

Code 4.9: Testing Bottleneck feasibility with RProbe

// returns 1 if it is possible to partition an array with a given

// bottleneck value B else 0. b is the base index

static int rprobe(const Pr& wpre , int length , const T& bottleneck ,

int numproc , int *s, int *sl , int *sh)

{

T bsum = bottleneck;

int p;

for(p = 0; p < numproc - 1; p++)

{

s[p] = binarySearch(wpre , sl[p], sh[p], bsum);

bsum = wpre[s[p]] + bottleneck;

}

if(bsum >= wpre[length - 1])

return 1;

else

return 0;

}

processor count is odd. To overcome this issue, the load of each side is normalized to

the processors number assigned. Code 4.11 shows how this calculation is done.

Code 4.12 finds the minimum cut point by checking the load. When deciding in

the middle cut point, it tries the both middle and middle+1 index and selects the

minimum one. The reason to do that is avoid misplaced cuts due to integer division.

4.3.4 Calculating Lower and Upper Bounds

Limiting the bottleneck search space can lead to faster result acquisition. This is

especially obvious in Nicol’s 1D partitioning algorithm. In all 1D partitioning algo-

rithms those bounds are used. The upper bound corresponds to DirectCut proof in

section 2.1.2 and the lower bound corresponds to Lavg.

75

Code 4.10: Recursive Bisection

/**

* Performs 1D recursive bisection algorithm

*

* @param procCount total number of processors

* @param prefixSumArray prefixSumArray

* @param length length of prefixSumArray

* @param cutIndexes cut point results

*

* @return *cutIndexes and bottleneck

*/

static T rec_bisection(int procCount , const Pr& prefixSumArray ,

int length , int *cutIndexes , T)

Code 4.11: Normalized load calculation

/**

* Calculates the normalized maximum load given a cut point and

processors for each side

* @param prefixSum prefix sum array

* @param low subPrfixSumArray ’s leftmost cut point

* @param high subPrfixSumArray ’s rightmost cut point

* @param leftProc processor count to be assigned to candidate ’s cut

point ’s left

* @param rightProc processor count to be assigned to candidate ’s

cut point’s right

* @param candidate a cut point (low <=candidate <=high)

*

* @return maximum load given cutpoint and subarray

*/

double calculateDiff(const Pr& prefixSum , int low , int high , int

leftProc , int rightProc , int candidate)

{

double leftLoad = (prefixSum[candidate] - prefixSum[low - 1]) /

leftProc;

double rightLoad = (prefixSum[high] - prefixSum[candidate])/

rightProc;

return max(leftLoad ,rightLoad);

}

76

Code 4.12: Finding even cut point

/**

* Finds the best cut point of a given array by calculating

* Wtot*(leftProc)/(leftProc+rightProc) and then decides

* whether to cut from left or right.

* Left and low index values are included to

* calculation. prefixsum [0] = 0.

*

* @param prefixSum 1D prefixsum array

* @param low lower bound

* @param high upper bound

* @param leftProc number of processor on left side

* @param rightProc number of processor on right side

*

* @return even cut index

*/

static int findEvenCut(const Pr& prefixSum , int low , int high ,

int leftProc , int rightProc)

{

T cutWeight = (T) ((prefixSum[high] - prefixSum[low - 1]) * (

double)leftProc / ((double)leftProc + (double)rightProc));

int cutPoint = binarySearch(prefixSum , low , high , cutWeight+

prefixSum[low -1]);

if (cutPoint == -1)

return low;

double d1 = calculateDiff (prefixSum , low , high , leftProc ,

rightProc , cutPoint);

double d2 = calculateDiff (prefixSum , low , high , leftProc ,

rightProc , cutPoint +1);

return d1 < d2 ? cutPoint : cutPoint +1;

}

77

4.4 Two Dimensional Partitioning Implementation Details

The library aimed to give immediate feedback to false manipulations. Just like 1D

partitioning algorithms, both inline assertions, test cases and regression tests are

provided for developers so that they can improve the code without fear of causing

errors (Feature 5). 2D algorithms can be more complex due to special data structures

they use such as sub-matrices. Those data structures are no exception to inline

assertions so a developer can focus on algorithm itself rather than worrying about

data structures. All two dimensional algorithms share common properties. Those

are:

• Using a prefix sum array as input

• Using a rectangle list as output (not necessarily ordered)

• Having nonzero elements

Matrix transpose is a common operation in all 2D partitioning algorithms. This

is due to the fact that cut orientations (horizontal or vertical) may change the quality

of partitioning. To reduce code duplication, TransposePrefix2D is used. This class

simply reverses the coordinates and returns the value. This can be accomplished

by overloading [] operator. The important parts of TransposePrefix2D is given

in Code 4.13. The purpose of Intermediate inner-class is to save the first index

number.

4.4.1 Reducing a Matrix into an array

The most challenging part of developing 2D algorithms is dynamically building set

of 1D arrays and modifying the 1D algorithm to consider set of arrays every time a

bottleneck query made. Those sets are determined by previous’ dimensions cut points.

78

Code 4.13: TransposePrefix2D class

template <typename T, typename Pr>

class TransposePrefix2D

{

public:

Intermediate operator [] (int x) const

{

return Intermediate (*this ,x);

}

class Intermediate

{

public:

const TransposePrefix2D& a;

int x;

Intermediate(const TransposePrefix2D& ar , int xval)

:a(ar),x(xval){}

T operator [] (int y) const

{

return a.originalMatrix[y][x];

}

};

}

To represent those sets of arrays, we must first find a way to build chunks of arrays

given cut points in the previous dimension. AggregMax2Dto1D class (Code 4.14)

is used for this purpose. A similar class, Aggreg2Dto1D, is used by the other 2D

algorithms. (see section 4.4.7). Therefore it resides in util namespace (Feature 2).

4.4.2 PartBase class

All 2D partitioning classes derive from this abstract class so as to provide single

interface to all 2D partitioning algorithms. This will allow us to use polymorphism

as needed.

4.4.3 RECT-UNIFORM

Divides geometric space regardless of load. It is the fastest, yet the simplest algorithm

in load imbalance.

79

Code 4.14: Aggreg2Dto1D class

/**

* Generates 1D representation of a subsection of a prefix sum array

*

* This is a 1d prefix sum array with both [] notation and interval

* notation.

*

* @param T data type of the array

* @param Pr type of the container array

* @param row select the orientation of the summation

* If row is true and the rectangle is of size 10x20 , then there

* equivalent 1darray is of size 10.

*/

template <typename T, typename Pr, bool row >

class Aggreg2Dto1D;

/**

* Reduces the 2D matrix into 1D array \f$[xl:xh]\times[yl:yh]\f$

in the

* original array \f$[1:n]\times [1:m]\f$ (where n and m are last

elements

* not sizes).

*

* If row is true , there are (xh-xl) elements in the array.

*

* @param p prefixSumArray

* @param xl xlow of submatrix

* @param xh xhigh of submatrix

* @param yl ylow of submatrix

* @param yh yhigh of submatrix

*/

Aggreg2Dto1D(const Pr& p, int xl , int xh , int yl , int yh);

80

Code 4.15: AggregMax2Dto1D class

/**

* Goes through all the 1st Dimension fixed rows and returns the

most

* loaded row interval over all rows

*

* @param left lower interval bound index

* @param right upper interval bound index

*

* @return

*/

T interval(int left , int right) const

{

T maxVal;

int i = 0;

while (lineSet[i] == NULL)

{

assert (i < lineCount);

i++;

}

maxVal = lineSet[i]->interval(left ,right);

for(; i < lineCount; i++)

{

if (lineSet[i] != NULL)

maxVal = std::max(lineSet[i]->interval(left ,right), maxVal);

}

return maxVal;

}

81

Code 4.16: HIER-RB options to set cut orientation

///Cut to minimize load

const static int LOAD =0;

///Cut to minimize side -to -side distance

const static int DIST =1;

///start vertically and alternate between horizontal

const static int VERT_ALT =2;

///start horizontally and alternate between vertical

const static int HOR_ALT =3;

template <typename T, typename Pr , int type=0>

class Rec_bisect_2d : public PartBase <T,Pr>

4.4.4 RECT-NICOL

The main idea of this algorithm is to iteratively refine one dimension by fixing the

other dimension. This allows us to use any 1D algorithm. The Algorithm, just

like others, allows replacing underlying one dimensional algorithm with another one

(Feature 1) It uses AggregMax2Dto1D class for row reduction.

4.4.5 HIER-RB

Recursive bisection is implemented with different variations based on initial cut ori-

entation as described in section 2.4.3. Code 4.16 shows the options.

4.4.6 HIER-RELAXED

HIER-RELAXED has a modification in the function that finds the even cut. Relaxed

version tries all possible cut points within the given sub-rectangle and selects the

best one. As described in section 2.3.2, the bottleneck/cut point function is bi-

monotonic. To speedup search in this function, a bi-monotonic binary search method

is implemented. The important aspect of this binary search is that it decides bounds

by checking the slope. Code 4.17 shows how bounds refined.

82

Code 4.17: Bound refinement in bi-monotonic binary search

if(slopeAt(prefixSum , low , high , leftProc , rightProc , mid) == -1)

lowlimit = mid+1;

else

highlimit = mid;

/**

* @param prefixSum 1D prefix sum array

* @param low Lowest index limit of prefix sub -array

* @param high Highest index limit of prefix sub -array

* @param leftProc number of procs to be assigned to the left

* @param rightProc number of procs to be assigned to the right

* @param point The index of cut point that we want to retrieve

Bottleneck/Cut point sign

*

* @return

* Returns a signature

* -1 means we are in decreasing side of the function

* +1 means we are in increasing side of the function

*/

static int slopeAt(const Pr prefixSum , int low , int high , int

leftProc , int rightProc , int point);

4.4.7 JAG-PQ-HEUR,JAG-M-HEUR and JAG-M-PROBE

All jagged algorithms use Aggreg2dto1D class to represent row chunks. This class

implements row chunk notation for 1D array. The data comes from a 2D prefix sum

array. The size of the exposed 1D array is given by the first dimension of the 2D

prefix sum array. When ask for the value of an interval (in the first dimension), the

stripe defined by the interval is returned. JAG-PQ-HEUR algorithm has variances

that depends on first dimension choice. Load-based variance tries both dimensions

as first dimension and returns the best one.

4.4.8 JAG-PQ-OPT and JAG-M-OPT

Both JAG-PQ-OPT and JAG-M-OPT are dynamic programming algorithms. In our ex-

periments, we have seen that both algorithms use vast amount of memory so we

83

Code 4.18: JAG-PQ-HEUR class with variations horizontal-first, vertical-first, and
best-load variances

/**

* @brief implements a PxQ jagged partitioning heuristic using the

* first dimension as main dimension.

*

* @param T data type of instance matrix

* @param Pr data type of 2D matrix

* @param *onedalgoY algorithm to be used to fix columns

* @param *onedalgoX algorithm to be used to fix rows

*/

template <typename T, typename Pr,

T (* onedalgoY) (int procCount , const util:: Aggreg2Dto1D <

T, Pr , false >& prefixSumArray , int length , int *

cutIndexes , T) = oned::NicolPlus <T, util::

Aggreg2Dto1D <T, Pr , false > >::nicol_plus ,

T (* onedalgoX) (int procCount , const util:: Aggreg2Dto1D <

T, Pr , true >& prefixSumArray , int length , int *

cutIndexes , T) = oned::NicolPlus <T, util::

Aggreg2Dto1D <T, Pr , true > >:: nicol_plus >

class Her_jag_2d_horf : public PartBase <T,Pr>

class Her_jag_2d_verf : public PartBase <T,Pr>

class Her_jag_2d_best : public PartBase <T,Pr>

focused on maximizing cache locality and minimizing memory access. There are 3

parameters to memorize those are 1D array length, thickness and number of pro-

cessors in this array. As you can see, this needs a 3D data structure to hold. To

achieve locality with 3D array, (which is required to save the result of a 1D parti-

tioning). Compact3D class is implemented. This class saves the result in 1D array.

The advantage of this approach comes from allocating single array instead of multi-

ple arrays and avoiding pointer array traverses.Another optimization aims to reduce

calls to 1D algorithm. We do that by calculating upper and lower bounds. Code 4.19

show bounding methods. Line 9 checks whether a calculation is occurred in the past

(non-negative value). If calculation was made, it is fetched and returned. Otherwise,

a chunk of rows are created in 11. This chunk n rows. Obviously the best load is

84

the total load of the chunk divided by m. Upper bound calculation is carried on the

same way except the total load of the chunk returned this time.

4.5 Extending the Library

In this section, we will focus on tips to extending and modifying 2D partitioning

library. As explained earlier, all 2D partitioning algorithms use a 1D partitioning

algorithm. A developer may choose one of 1D partitioning algorithms in the library,

or develop his/her own. After that, 1D algorithm can be plugged in one of the existing

2D algorithms. If a new 2D algorithm is desired, then it must inherit from PartBase

class. We will go through a simple toy example to modify a 2D algorithm.

Let us try uniform 1D algorithm in the 1st dimension to speedup partitioning

process. Uniform 1D simply divides array into P equal intervals. It is completely

insensitive to load so that it runs very fast. Since uniform class is already in the

library, we plug it (oned/uniform.hpp should be included in Code 4.20).

If 2D algorithm modification is required rather than 1D, developer has to

1. Inherit from PartBase class thus override part() method. part() returns

bottleneck value.

2. Save results in Rect list class which take rectangle as element.

It is important to test validity of resulting partition. Developers may use bool

Rect list::valid part() method whenever needed. Aggreg2dto1D class is another

very useful data structure that reduces any 2D sub-rectangle into 1D array by sum-

ming elements up in desired order. We set sum order by changing template parameter

row. If row is set to true, the sub-rectangle is reduced to first dimension by summing

elements. Otherwise, the it is reduced to 2nd dimension.

85

Code 4.19: Lower and upper bound calculation in dynamic programming

1 /**

2 * @brief return a lower bound on the best partitioning of [1:n]

3 * on m processors using m-way jagged partitioning

4 */

5 T algo_2d_lb(int n, int m)

6 {

7 if (n == 0) return 0;

8 if (m == 0) return infinite ();

9 if (dp_array[n][m] < 0)

10 {

11 util:: Aggreg2Dto1D <T, Pr , false > ps1dx_row(psa , 1, n, 1, psa.

prefixsizeY () - 1);

12 return ps1dx_row[psa.prefixsizeY () -1]/m;

13 }

14 else

15 return dp_array[n][m];

16 }

17
18 /**

19 * @brief return an upper bound bound on the best partitioning of

20 * [1:n] on m processors

21 */

22 T algo_2d_ub(int n, int m)

23 {

24 if (n == 0) return 0;

25 if (m == 0) return infinite ();

26 if (dp_array[n][m] < 0)

27 {

28 util:: Aggreg2Dto1D <T, Pr , false > ps1dx_row(psa , 1, n, 1, psa.

prefixsizeY () - 1);

29 return ps1dx_row[psa.prefixsizeY () -1];

30 }

31 else

32 return dp_array[n][m];

33 }

86

Code 4.20: Plugging another algorithm in the 1st dimension

1 typedef long int T;

2 typedef Prefix2D <T> Pr;

3 Compact2D <T> data(sizeX , sizeY);

4 readFromFile(data)//Load data to matrix

5 Pr pr(sizeX , sizeY , data);// Convert matrix to prefix sum array

6 Rect_list <T, Pr > rl(pr);// Prepare rectangle list to save results

7 twod::PartBase <T, Pr >* pb = new twod:: M_way_probe_horf <T, Pr , false

,

8 oned::Uniform <T, util:: Aggreg2Dto1D <long int , Pr , false > >::uni_cut ,

9 oned::NicolPlus <T, util:: Aggreg2Dto1D <long int , Pr , false > >::

nicol_plus > ();// Create algorithm instance

10 T d = pb ->part(procCount , pr, rl);//run Algoritm

It is recommended to check out existing helper utilities before writing a new one.

For instance, dividing an array into two equal parts is commonly used operation in

bisection algorithms. If a developer comes up with an idea that requires to do so,

he/she can use oned::RecursiveBisection::findEvenCut().

Zero loaded tasks can create special cases. Developers should be aware of those

conditions and write test cases accordingly. For example zero tasks can leave one or

more processors empty. In this case it is not a good idea to assume output rectangle

count will be the same as input processor number.

87

CHAPTER 5

CONCLUSION

Partitioning spatially localized computations evenly among processors is a key step

in obtaining good performance in a large class of parallel applications. In this work,

we focused on partitioning a matrix of non-negative integers using rectangular parti-

tions to obtain a good load balance. We introduced the new class of solutions called

m-way jagged partitions, designed polynomial optimal algorithms and heuristics for

m-way partitions. Using theoretical worst case performance analyses and simula-

tions based on logs of two real applications and synthetic data, we showed that the

JAG-M-HEUR-PROBE and HIER-RELAXED heuristics we proposed get significantly bet-

ter load balances than existing algorithms while running in less than a second. We

showed how HYBRID algorithms can be engineered to achieve better load balance but

use significantly more computing time. Finally, if computing time is not really a

limitation, one can use more complex algorithm such that JAG-M-OPT.

Showing that the optimal solution for m-way jagged partitions, hierarchical bipar-

titions and hierarchical k-partitions with constant k can be computed in polynomial

time is a strong theoretical result. However, the runtime complexity of the proposed

dynamic programming algorithm remains high. Reducing the polynomial order of

these algorithms will certainly be of practical interest.

We also showed that JAG-M-HEUR-PROBE is better than rectilinear algorithms in

terms of total communication cost but rectilinear algorithms are more acceptable

88

when network contention is on one node. Dynamic application will require rebal-

ancing and the partitioning algorithm should take into account data migration cost.

Hierarchical algorithms degrade slower than other classes of solutions therefore they

can be used if the task relocation is chaotic.

We only considered computations located in a two dimensional field but some

applications, such as PIC-MAG and SLAC, might expose three or more dimensions.

A simple way of dealing with higher dimension would be to project the space in two

dimensions and using a two dimensional partitioning algorithm, as we have done in

some of the applications. But this choice is likely to be suboptimal since it drastically

restrict the set of possible allocations. An alternative would be to extend the classes

of partitions and algorithm to higher dimension. For instance, a jagged partitioning

algorithm would partition the space along one dimension and perform a projection to

obtain planes which will be partitioned in stripes and projected to one dimensional

arrays partitioned in intervals. All the presented algorithms extend in more than two

dimensions, therefore the problems will stay in the same complexity class. However,

the guaranteed approximation is likely to worsen, the time complexity is likely to

increase (especially for dynamic programming based algorithms). Memory occupation

is also likely to become an issue and providing cache efficient algorithm should be

investigated. However, the increase of the size of the solution space will provide better

load balance than partitioning the two dimensional projection.

We are also planning to integrate the proposed algorithms in a distributed particle

in cell simulation code. To optimize the application performance, we will need to

take into account communication into account while partitioning the task. Finally,

to keep the rebalancing time as low as possible, it might useful not to gather the load

information on one machine but to perform the repartitioning using a distributed

algorithm.

89

BIBLIOGRAPHY

[1] A. Abdelkhalek and A. Bilas. Parallelization and performance of interactive
multiplayer game servers. In Proc. of IPDPS, 2004.

[2] M. Aftosmis, M. Berger, and S. Murman. Applications of space filling curves
to cartesian methods for CFD. In Proc. of the 42nd AIAA Aerospace Sciences

Meeting, 2004.

[3] S. Aluru and F. E. Sevilgen. Parallel domain decomposition and load balanc-
ing using space-filling curves. In Proc. of the 4th IEEE Conference on High

Performance Computing, pages 230–235, 1997.

[4] B. Aspvall, M. M. Halldórsson, and F. Manne. Approximations for the general
block distribution of a matrix. Theoretical Computer Science, 262(1-2):145–160,
2001.

[5] M. Berger and S. Bokhari. A partitioning strategy for nonuniform problems on
multiprocessors. IEEE Transactions on Computers, C36(5):570–580, 1987.

[6] S. H. Bokhari. Partitioning problems in parallel, pipeline, and distributed com-
puting. IEEE Transactions on Computers, 37(1):48–57, 1988.

[7] U. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning based decompo-
sition for parallel sparse-matrix vector multiplication. IEEE Transactions on

Parallel and Distributed Systems, 10(7):673–693, 1999.

[8] U. V. Çatalyürek and C. Aykanat. PaToH: A Multilevel Hypergraph Partition-

ing Tool, Version 3.0. Bilkent University, Department of Computer Engineer-
ing, Ankara, 06533 Turkey. PaToH is available at http://bmi.osu.edu/~umit/
software.htm, 1999.

[9] U. V. Çatalyürek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, and L. Fisk. A
repartitioning hypergraph model for dynamic load balancing. Journal of Parallel
and Distributed Computing, 69(8):711–724, 2009.

[10] J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D. Teresco,
and L. H. Ziantz. Adaptive local refinement with octree load-balancing for the
parallel solution of three-dimensional conservation laws. Journal of Parallel and

Distributed Computing, 47:139–152, 1997.

90

http://bmi.osu.edu/~umit/software.htm
http://bmi.osu.edu/~umit/software.htm

[11] H. P. F. Forum. High performance FORTRAN language specification, version
2.0. Technical Report CRPC-TR92225, CRPC, Jan. 1997.

[12] G. N. Frederickson. Optimal algorithms for partitioning trees and locating
p-centers in trees. Technical Report CSD-TR-1029, Purdue University, 1990,
revised 1992.

[13] D. R. Gaur, T. Ibaraki, and R. Krishnamurti. Constant ratio approximation
algorithms for the rectangle stabbing problem and the rectilinear partitioning
problem. Journal of Algorithms, 43(1):138–152, 2002.

[14] A. Grama, G. Karypis, V. Kumar, and A. Gupta. In Introduction to parallel

computing, chapter 2. Addison-Wesley, 2nd edition, 2003.

[15] M. Grigni and F. Manne. On the complexity of the generalized block distribu-
tion. In Proc. of IRREGULAR ’96, pages 319–326, 1996.

[16] Y. Han, B. Narahari, and H.-A. Choi. Mapping a chain task to chained proces-
sors. Information Processing Letter, 44:141–148, 1992.

[17] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel com-
puting. Parallel Computing, 26:1519–1534, 2000.

[18] V. Horak and P. Gruber. Parallel numerical solution of 2D heat equation. In
Parallel Numerics ’05, pages 47–56, 2005.

[19] H. Karimabadi, H. X. Vu, D. Krauss-Varban, and Y. Omelchenko. Global hybrid
simulations of the earth’s magnetosphere. Numerical Modeling of Space Plasma

Flows, Dec. 2006.

[20] G. Karypis and V. Kumar. MeTiS A Software Package for Partitioning Un-

structured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings

of Sparse Matrices Version 4.0. University of Minnesota, Department of Comp.
Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[21] G. Karypis, V. Kumar, R. Aggarwal, and S. Shekhar. hMeTiS A Hypergraph

Partitioning Package Version 1.0.1. University of Minnesota, Department of
Comp. Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[22] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rectangle
tiling and packaging. In Proc. of the 19th SODA, pages 384–393, 1998.

[23] S. Khanna, S. Muthukrishnan, and S. Skiena. Efficient array partitioning. In
Proc. of ICALP ’97, pages 616–626, 1997.

[24] H. Kutluca, T. Kurc, and C. Aykanat. Image-space decomposition algorithms
for sort-first parallel volume rendering of unstructured grids. Journal of Super-

computing, 15:51–93, 2000.

91

[25] A. L. Lastovetsky and J. J. Dongarra. Distribution of computations with con-
stant performance models of heterogeneous processors. In High Performance

Heterogeneous Computing, chapter 3. John Wiley & Sons, 2009.

[26] J. Y.-T. Leung. Some basic scheduling algorithms. In J. Y.-T. Leung, editor,
Handbook of Scheduling, chapter 3. CRC Press, 2004.

[27] F. Manne and B. Olstad. Efficient partitioning of sequences. IEEE Transactions

on Computers, 44(11):1322–1326, 1995.

[28] F. Manne and T. Sørevik. Partitioning an array onto a mesh of processors. In
Proc of PARA ’96, pages 467–477, 1996.

[29] S. Miguet and J.-M. Pierson. Heuristics for 1d rectilinear partitioning as a low
cost and high quality answer to dynamic load balancing. In Proc. of HPCN

Europe ’97, pages 550–564, 1997.

[30] S. Muthukrishnan and T. Suel. Approximation algorithms for array partitioning
problems. Journal of Algorithms, 54:85–104, 2005.

[31] D. Nicol. Rectilinear partitioning of irregular data parallel computations. Jour-

nal of Parallel and Distributed Computing, 23:119–134, 1994.

[32] K. Paluch. A new approximation algorithm for multidimensional rectangle tiling.
In Proc. of ISAAC, 2006.

[33] J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform struc-
tured workloads with spacefilling curves. IEEE Transactions on Parallel and

Distributed Systems, 7(3):288–300, 1996.

[34] A. Pınar and C. Aykanat. Sparse matrix decomposition with optimal load
balancing. In Proc. of HiPC 1997, 1997.

[35] A. Pınar and C. Aykanat. Fast optimal load balancing algorithms for 1D parti-
tioning. Journal of Parallel and Distributed Computing, 64:974–996, 2004.

[36] A. Pınar, E. Tabak, and C. Aykanat. One-dimensional partitioning for het-
erogeneous systems: Theory and practice. Journal of Parallel and Distributed

Computing, 68:1473–1486, 2008.

[37] S. J. Plimpton, D. B. Seidel, M. F. Pasik, R. S. Coats, and G. R. Montry.
A load-balancing algorithm for a parallel electromagnetic particle-in-cell code.
Computer Physics Communications, 152(3):227 – 241, 2003.

[38] K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel algorithms for
multi-constraint graph partitioning. In Euro-Par, pages 296–310, 2000.

92

[39] K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm for load-balancing
adaptive scientific simulations. In Proc. of SuperComputing ’00, November 2000.

[40] M. Ujaldon, S. Sharma, E. Zapata, and J. Saltz. Experimental evaluation of
efficient sparse matrix distributions. In Proc. of SuperComputing’96, 1996.

[41] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method
for parallel sparse matrix-vector multiplication. SIAM Review, 47(1):67–95,
2005.

93

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Figures
	List of Tables
	List of Codes
	Introduction
	Motivation
	Focus

	Load Balancing Algorithms
	Model and Preliminaries
	Problem Definition
	The One Dimensional Variant

	Algorithms
	Rectilinear Partitions
	Jagged Partitions
	Hierarchical Bipartition
	More General Partitioning Schemes

	Experimental Evaluation
	Experimental Setting
	Jagged algorithms
	Hierarchical Bipartition
	Execution time
	Which algorithm to choose?

	Hybrid partitioning scheme

	Inter-processor Communication and Rebalancing
	Communication Cost
	Problem Definitions
	Communication Metrics
	Performance of 2D Algorithms
	Uniform Partitioning (RECT-UNIFORM)
	Recursive Bisection (HIER-RB)
	Hierarchical Relaxed Bisection (HIER-RELAXED)
	Recursive Bisection with Middle Cut (HIER-RB-MIDDLE)
	Nicol's 2D Algorithm (RECT-NICOL)
	PQ-way Jagged (JAG-PQ-HEUR)
	m-way Jagged algorithms JAG-M-HEUR and JAG-M-PROBE

	Results

	Software
	Overview
	Using the Library
	One Dimensional Partitioning Implementation Details
	DirectCut
	NicolPlus
	Recursive Bisection
	Calculating Lower and Upper Bounds

	Two Dimensional Partitioning Implementation Details
	Reducing a Matrix into an array
	PartBase class
	RECT-UNIFORM
	RECT-NICOL
	HIER-RB
	HIER-RELAXED
	JAG-PQ-HEUR,JAG-M-HEUR and JAG-M-PROBE
	JAG-PQ-OPT and JAG-M-OPT

	Extending the Library

	Conclusion
	Bibliography

