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Abstract 
 

Political redistricting is the redrawing of political boundaries based on a set of criteria 

such as population equality, minority representation, contiguity, and compactness.  

Redistricting is a necessary process because population often changes over time and 

across space. From population shifts between states, each state may gain or lose seats. 

Also, population growth is different within a state. Based on census data, redistricting is 

normally taking place every 10 years. Also, the congressional district should be redrawn 

to make populations strictly equal. In the 2000 round of redistricting, 25 states require a 

redistricting plan with strict population equality, that is, a perfect plan with population 

deviation of 0.  

 

These problems are difficult because the number of feasible redistricting plans is 

exponentially increased with the problem size. Also, several redistricting criteria must be 

satisfied at the same time, and it is difficult to formulate essential contiguity requirement 

in a mixed integer programming. A strict equal populated redistricting plan is intractable 

to solve. 

 

The main purpose of this dissertation is to develop optimization approaches to political 
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redistricting focusing on a strict equal population and contiguity and is to compare them 

with the existing researches. This dissertation develops two types of exact optimization 

models to political redistricting based on recent advances in solving land acquisition 

problems. The new exact models successfully formulate contiguity requirement and 

satisfy a strict equal population. They are compared with the existing exact model. 

Computational experiments show that the exact models face computational challenges for 

large data even though contiguity and a strict equal population are successfully 

formulated in a mixed integer program. Then, this dissertation moves to implement two 

different heuristic optimization models, which efficiently finds high-quality solutions. 

They are evaluated using existing data sets for comparisons. Throughout computational 

experiments, it is clearly known that all of the heuristics efficiently find near-optimal 

solutions, and among them the Give-And-Take greedy algorithm shows such efficiency 

even for the large size problems. Also, all of the heuristics show higher population 

equality than the existing plan of Iowa in 2000 and Give-And-Take greedy algorithm 

finds a plan with the highest population equality. 

 

Furthermore, this dissertation focuses on finding various redistricting plans which are 

different from the given plan but have similar or better population. These can be solved 

applying the Give-And-Take greedy algorithm, which starts from the given plan as an 

initial solution. Computational results have shown that for the given plan, the application 

of Give-And-Take greedy algorithm discovers lots of different spatial shapes but similar 

(better) or same population of the given plan.  
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Chapter 1 Introduction 
  

This chapter introduces issues of political redistricting problems. The first section 

includes research background of political redistricting problems are and discusses the 

research question of this dissertation. The second section describes research purpose and 

the third section explains research organization.  

 

1.1 Research background 

 

In the United States, representatives are elected at several levels of government (Morrill 

1981). U.S. senators are elected at large from states and House representatives are elected 

from congressional districts of about equal population sizes. Within states, senators and 

representatives are elected to legislatures from a structure of districts unrelated to the 

congressional districts. Each state tries to redraw district boundaries based on the 

enacting plan created by a commission or a court. Redrawing of congressional district 

boundaries within the states normally takes place every 10 years on the basis of the 

population census (Mehrotra et al. 1998). In the 2000 elections, the U.S. House of 

Representatives are apportioned 435 seats, which were decided by the Reapportionment 
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Act of 1929, among the 50 states with an average population of 646,9521. The 

apportionment population includes resident population, U.S. Armed Forces personnel and 

federal civilian employees stationed outside the United States and their dependents2. 

 

Redistricting is necessary because of population shifts. Population changes between 

states and even within a state. From population shifts between states, each state may gain 

or lose seats. Also, population growth is different within a state. Therefore, the 

congressional district should be often redrawn (Wattson 2010). However, redistricting can 

be highly partisan because the drafters can be involved in the decision making where to 

draw political boundaries. If they have political interest, the redistricting outcome can be 

highly biased and unfair (Altman and McDonald 2010). 

 

In order to redraw political districts, while the process and guidance vary from state to 

state, political redistricting plans must satisfy a set of demographic, geographic, and 

political criteria. Demographic criteria include equal population and minority 

representation and geographic criteria include contiguity and compactness. Political 

criteria include the respect of existing plans and avoidance of partisan gerrymandering. 

There are other criteria such as the respect of natural or administrative boundaries. These 

criteria are exhibited in law and identified in literature on political redistricting problems 

                                            
1 United States Code, Title 2, Chapter1, §2a and §2b, and Title 13, Chapter 5, Subchapter II, § 141. 
2 Washington D.C., the capital city, does not have a representative based on the U.S. Constitution since it is 
not a state but a district called the District of Columbia. The population of the District of Columbia is not 
included in the apportionment population. Instead, Washington D.C. elects one delegate, who has no voting 
right, to House of Representative. 
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(Williams 1995). 

 

Political redistricting problems can be treated as combinatorial optimization problems 

because the number of feasible solutions is exponentially increased with the problem size 

(Altman 1998). These problems may be difficult to solve because of challenges in 

formulating their requirements in mathematical forms (Altman 1997; Altman 1998; 

Eagles et al. 2000), simultaneously satisfying several redistricting criteria (Williams 

1995; Wei and Chai 2004), and the size of the solution space (Bação et al. 2005). A 

solution method for political redistricting problems should have both efficiency in terms 

of the computational time and effectiveness in terms of the ability to find high quality 

solutions. 

 

The developments of computer technologies since 1960s have enabled computers to be 

used in political redistricting processes to manage large amounts of data, to draw political 

boundaries, and to analyze redistricting outcomes (Altman et al. 2005, Altman and 

McDonald 2010). Especially, in 1990s, GIS emergence in a computer technology had a 

tremendous effect on redistricting. Also, in 2000s, mapping in redistricting become more 

user friendly (Altman et al. 2005). The use of computers in political redistricting can 

remove several factors such as intentions of the decision makers or the majority in 

political views or race from the redistricting process, which tend to drive a highly biased 

and unfair outcome of redistricting. So, the redistricting process can eliminate human 

judgments replaced by a set of neutral criteria such as equal population, contiguity and 
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compactness throughout computer technologies. 

 

Existing optimization techniques for solving political redistricting problems may be 

divided into exact and heuristic methods. An exact approach (e.g., linear programming) 

can guarantee to find a global optimal solution by systematically examining all possible 

solutions. However, it may show high computational complexity and therefore may be 

impossible to solve large size problems. In order to overcome this issue, a heuristic 

approach can be designed to efficiently search for solutions to large size problems. A 

heuristic approach, however, cannot guarantee to achieve global optimality. Results from 

a heuristic algorithm are often near-optimal or optimal (Cooper 1964; Reeves 1993). 

 

There are a few exact methods in the political redistricting. At first, an exact method for 

political redistricting was developed by Garfinkel and Nemhauser (1970). This method 

consists of two stages. The first stage was to exhaustively search for all possible districts 

with respect to equal population, contiguity and compactness. The second stage was to 

minimize the maximum deviation from the mean district population among all possible 

districts. However, this method may encounter computational difficulty when generating 

all possible districts. Another exact method for political redistricting has been developed 

by Shirabe (2009). The method formulates contiguity criterion based on recent advances 

in land acquisition problems. However, contiguity is not fully satisfied because it is still 

shown between different districts even though it should be really prevented. Furthermore, 

this method may not yields results with strict population equality. 
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Contiguity should be another challenge in political redistricting problems because of its 

difficulty to formulate. Garfinkel and Nemhauser (1970) enforce contiguity by the 

process of exhaustively searching for all possible districts. Though the requirement of 

contiguous districts has been traditionally difficult to formulate, some recent progress in 

solution approaches to land acquisition problems has showed success in addressing 

contiguity issues. To solve a land acquisition problem, a contiguous set of land parcels 

must be selected for a particular land use. Cova and Church (2000) developed contiguity 

constraints based on finding shortest path between a land parcel and a pre-selected root 

land parcel. Williams (2002) developed a contiguity model based on the constructing of a 

minimum spanning tree. More recently, Shirabe (2005) developed contiguity constraints 

based on finding network flows. These contiguity formulations in land acquisition 

problems can be applied to develop exact models to political redistricting.  

 

Because of the computational challenge to exact methods, most approaches to political 

redistricting have been developed as heuristics (see chapter 2 section 2.4 for a more 

detailed review). However, most of the existing heuristics may show difficulty in finding 

a redistricting plan with strict population equality while most states require a strict 

population equality plan for congressional plans.  

 

Existing literature does not provide comparative information of methods. Existing 

approaches have been developed for particular redistricting plans. There is no literature of 

evaluating approaches in order to get relative information such as the main idea of each 
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method, how to efficiently find a high quality solution, and criteria used.   

 

In the reality, most states have perfect plans where their population deviation is less than 

1 person. There can be many plans with various spatial configurations that are perfect in 

the sense that it has either 0 or 1 person in population deviation. In addition, for the given 

plan, which is perfect or not, there can be different spatial shapes but similar or same 

population of the given plan. 

 

1.2 Research purpose 

 

The main purpose of the dissertation is to develop new optimization approaches to 

political redistricting problems. The dissertation develops two different exact 

optimization models to political redistricting based on recent advances in solving land 

acquisition problems. The first exact model is called a spanning tree model by 

constructing several districts with broken edges of a spanning tree to political 

redistricting. The second exact model is called a network flow model by making several 

sub-networks in political redistricting. The dissertation also implements two different 

heuristic optimization models to political redistricting. The first heuristic model is called 

a multi-scale simulated annealing heuristic which uses multiple cooling rates and the 

second heuristic model is called Give-And-Take greedy algorithm which exchanges 

population units between a district with the larger population than the ideal population 

and a district with the smaller population than the ideal population.  
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This dissertation has the second research objective, which is to evaluate with existing 

representative models in order to understand their relative performance. Two exact 

models will be compared with the exiting enumeration method of Garfinkel and 

Namhauser (1970). Two heuristic models will be compared from computational 

experiments with the existing heuristic of Xiao (2008).  

 

Finally, the Give-And-Take greedy heuristic is expanded to address the third research 

objective, that is, to implement a heuristic to find different shapes but similar (better) or 

same population of the given plan.  

 

1.3 Research organization 

 

The dissertation is organized as follows. Chapter 2 reviews literature relevant to later 

chapters. The first section introduces political redistricting problems including several 

redistricting criteria. The second section discusses computational issues in political 

redistricting problems and the third section reviews how to consider contiguity in land 

acquisition problems, which can guide to develop new exact models. The fourth section 

reviews optimization approaches to political redistricting problems for exact models and 

heuristic models, and the fifth section discuss approaches to manipulate spatial 

configurations. The sixth section is political redistricting approaches under GIS 

environment. 
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Chapter 3 incorporates two exact optimization models for political redistricting. The first 

section introduces a spanning tree model and the second section discusses a network flow 

model. The third section explains the existing research of Garfinkel and Nemhauser 

(1970), and the fourth section compares the performance of these two new models, along 

with a third model of Garfinkel and Nemhauser (1970). 

 

Chapter 4 implements two heuristic optimization models for political redistricting. The 

first section is a multi-scale simulated annealing, which is based on simulated annealing 

and the second section is Give-And-Take greedy algorithm, which include the main idea 

and the general process of the heuristic. The third section is experiments on the Give-

And-Take greedy heuristic to find various spatial shapes similar to the given plan and the 

sensitivity analysis of the heuristic. The fourth section introduces computational 

experiments of the heuristic models. Computational experiments discuss comparisons of 

two new models along with the heuristic of Xiao (2008), and results of the application of 

Give-And-Take greedy heuristic and the sensitivity analysis. 

 

Chapter 5 summarizes dissertation work, concludes and discusses computational results 

and contributions of the dissertation. Further, potential future work is also discussed. 
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Chapter 2 Literature review 
 

This chapter provides a review of literature related to studies of political redistricting 

problems. The first section includes the political redistricting criteria. The second section 

discusses computational issues of political redistricting problems and the third section 

investigates contiguity requirement in land acquisition problems, which can be applied to 

solve political redistricting problems. The fourth section includes existing optimization 

approaches that can be employed to solve political redistricting problems and the fifth 

section reviews approaches to manipulate spatial configurations. The sixth section 

discusses political redistricting approaches relevant to GIS (Geographic Information 

System). 

 

2.1 Political redistricting problems 

 

A variety of redistricting criteria must be considered in order to evaluate political 

redistricting plans. Demographic criteria include equal population and minority 

representation. Geographic criteria include contiguity and compactness. Political criteria 

include partisan gerrymandering and the respect of existing plans. 

 



10 

2.1.1 Demographic criteria 

 

The most common demographic criteria used in political redistricting are equal 

population and minority representation. The equal population criterion was an outcome of 

the “reapportionment revolution” of the 1960s. The Voting Right Act of 1965 and its 

amendments led to the minority representation criterion (Williams 1995). 

 

2.1.1.1 Equal population 
 

In political redistricting plans, all districts should have approximately the same number of 

voters in order to overcome malapportionment3and respect the “one-man, one-vote” 

principle which means that each district must have equal number of electors. With 

historical background, the Fourteenth Amendments to the United States Constitution 

includes Equal Protection Clauses, "no state shall… deny to any person within its 

jurisdiction the equal protection of the laws." In Baker v. Carr4, the U.S. Supreme Court 

ruled that the federal courts should have jurisdiction to redistricting plans. In Baker, 

discrepancy from redistricting failed to have the equal protection by the Fourteenth 

Amendment. In Wesberry v. Sanders5, congressional districts have to be approximately 

equal in population and “one-man, one-vote" was first applied. In Reynolds v. Sims6, 

state legislature districts had to be roughly equal in population based on the principle of 

                                            
3 Refers to inequality in the population size of districts. 
4 Baker v. Carr, 369 U.S. 186 (1962). 
5 Wesberry v. Sanders, 376 U.S.1 (1964). 
6 Reynolds v. Sims, 377 U.S. 533 (1964) 
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“one-man, one vote”. 

 

2.1.1.2 Minority representation 
 

The Congress enacted the Voting Rights Act of 1965 in order to remedy the inequality of 

opportunity caused due to racial and ethnic minorities. It is possible to increase minority 

political participation such as African American, especially in the South due to the Voting 

Rights Act of 1965 and its amendments and extensions of 1970, 1975 and 1982 (Williams 

1995). An outcome of the Voting Right Act is the creation of majority-minority districts. 

A majority-minority district refers to a district in which the majority of the population is 

either African American, Hispanic, Asian or Native American. Majority-minority districts 

can be formed proportionate to minority populations (Parker 1989; Williams 1995). Many 

of these majority-minority districts, however, were struck down as unconstitutional by 

court decisions in the 1990s because they can lead to racial gerrymandering with bizarre 

shapes (Eagles et al. 2000). 

 

2.1.2 Geographic criteria 

 

In addition to the demographic criteria, there are geographic criteria. Geographic criteria 

include contiguity and compactness. Contiguity is a legal requirement for political 

redistricting plans while compactness is not a legally required (Nagel 1972; Williams 

1995). 
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2.1.2.1 Contiguity 
 

District contiguity is a compelling criterion, not only because it is consistent with 

territorial political representation, but also because a contiguous district usually seems 

more rational or intuitive than a district formed from many disconnected pieces (Grofman 

1985). A district is contiguous if one can go from any point in the district to any other 

point without leaving the district (Mills 1967; Nagel 1972; Grofman 1985). In political 

redistricting problems, contiguity has been maintained by exhaustively generating all 

possible districts (Garfinkel and Nemhauser 1970), by searching for a shortest path 

between a population unit and a pre-selected root population unit (Mehrotra et al. 1998), 

by swapping between adjacent population units (Nagel 1965; Kaiser 1966), or by adding 

adjacent population units to the seed population unit (Vickrey 1961; Harris 1964; 

Gearhart and Liittschwager 1969; Liittschwager 1973). 

 

2.1.2.2 Compactness 
 

A district is geographically compact if it has a circular or square shape (Garfinkel and 

Nemhauser 1970; Yong 1988; Niemi et al. 1990). Though a circular shape is an ideal as 

compactness measure for an individual district, it is impossible to have circular shapes for 

multiple districts. A square or a hexagonal shape can be an alternative for multiple 

districts (Niemi et al. 1990). District compactness is not a federal legal requirement for 

congressional (or state legislative) districts, although some states require that districts 

should be compact. Compactness have been supported as a neutral standard because 
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compactness is used as to defend against gerrymandering in terms of the manipulation of 

the district boundary for a particular party, show internal cohesion in terms of making 

population units close together, and prohibit boundary irregularity (Morrill 1973; Morrill 

1981; Grofman 1985; Baker 1990; Polsby and Popper 1991; Williams 1995; Mehrotra et 

al. 1998). Also, compactness standards will result in increased minority representation 

(Polsby and Popper 1993). However, there is little evidence that compactness can protect 

gerrymandering in the literature (Hacker 1964; Musgrove 1977; Young 1987; Altman 

1998). Furthermore, compactness criteria have been controversial because it is measured 

in several different ways. 

 

There are several compactness measures in the literature. Compactness can be broadly 

measured either relatively (relative measure) or absolutely (absolute measure) (Table 2.1). 

Relative measures decide district compactness by only shape regardless of area. When 

they are same shapes, a small area cannot be said to be more compact than a large area, 

and vice versa (Gibbs 1961; Reock 1961; Boyce and Clark 1964; Harris 1964; Kaiser 

1966; Schwartzberg 1966; Yong 1988). The ratio of relative measures close to one 

indicates more compact. On the other hand, absolute measures determine district 

compactness based on area as well as on shape (Mills 1967). A small area is more 

compact than a large area even though two are same shapes (Weaver and Hess 1963; 

Hess et al. 1965; Adams 1977). 
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Relative Measure 

1.District area compared with area of compact figure 
- RDA1: Ratio of the district area to the area of the minimum circumscribing circle (Roeck 1961). 
- RDA2: Ratio of district area to area of circle with diameter equal to district’s longest axis (Gibbs 1961). 
- RDA3: Ratio of the district area to the area of the minimum circumscribing regular hexagon (Geisler 1985). 
- RDA4: Ratio of the district area to the area of the minimum convex shape that completely contains the 
district (Niemi, et al. 1991). 
 
2.Length-Width test 
- RLW1: Ratio of the length (L) to the width (W), where length (L) and width (W) are those of the 
rectangle enclosing the district and touching it on all four sides for which the ratio of length to 
width is a maximum (Young 1988).  
- RLW2: Ratio of the length (L) to the width (W), where L is longest diameter and W is the 
maximum diameter perpendicular to L (Harris 1964). 
- RLW3: Ratio of the length (L) to the width (W), where W and L are that of the circumscribing 
rectangle with minimum perimeter (Niemi, et al. 1991). 
- RLW4: Ratio of the length (L) to the width (W), where L is longest axis and W and L are that of a 
rectangle enclosing the district and touching it on all four sides (Niemi, et al. 1991). 
- RLW5: Length (L) minus Width (W),where length (L) is the maximum length of any district and 
width (W) is the maximum width perpendicular to the length (Harris 1964).  
 

3. The Perimeter Test 
- RPT1: Ratio of the district’s perimeter length to the circumstance of a circle of equal area 
(Schwartzberg 1966). 
 

4. The Perimeter-Area Comparisons 
- RPA1: Ratio of the district area to the area of a circle with the same perimeter (Cox 1927). 
- RPA2: 1- (Ratio of the district area to the area of a circle with the same perimeter)1/2, PA2 = (PA1) 1/2 
(Niemi, et al. 1991). 
- RPA3: Ratio of the perimeter of the district to the perimeter of a circle with an equal area (Horton 1932; 
Schwartzberg 1966). 
- RPA4: Perimeter of a district as a percentage of the minimum perimeter enclosing that area, PA4 = 100 (PA3)
 
5. The Relative moment of inertia 
-RMI1: The relative moment of inertia – the variance of distances from all points in the district to 
the district’s areal center of gravity which is normalized. Adjusted to range from 0 to 1 (Boyce and 
Clark 1964, Kaiser 1966).  

Absolute Measure 
1. Moment of inertia 
- AMI1: The population moment of inertia (Weaver and Hess 1963, Hess et al. 1965). 
 
2.The perimeter Test 
- APT1: Sum of perimeter (Dixon 1968, Tyler and Wells 1971, Adams 1977, Wells 1982). 
 
Table 2.1. Comparisons of compactness measures7 
                                            
7 Compactness measures are summarized based on the work of Young (1988), Niemi et al. (1990), Horn 
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2.1.3 Political criteria 

  

Political redistricting problem also include political criteria. Political criteria include 

partisan gerrymandering and the respect of existing plans. Normally, political 

redistricting plans tend to minimize partisan gerrymandering and difference with the 

existing plans. 

 

2.1.3.1 Partisan gerrymandering 
 

Partisan gerrymandering is to draw district borders in a way that discriminates against a 

political party or a particular group. A partisan gerrymandered district can be formed by 

methods such as cracking or packing. Cracking is the process of diluting the power of 

voters for a particular party in a way that divides its supporters into many districts. 

Packing is the process of confining voters into one or a few district (Morrill 1981; 

Williams 1995). It is desirable that districts should have balances between political 

parties or particular groups. 

 

2.1.3.2 The respect of existing plans 
 

A new districting plan similar to the existing plan may have more social and political 

acceptance than the new districting plan totally different from the existing plan (Nagel 

1965; Williams 1995). In the substantially changed new districting plan, it is necessary to 

                                                                                                                                  
(1993) and Altman (1998).  
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reestablish a new set of interests by politicians and parties. From the point of view of 

politicians or parties, they may avoid running in the new district. Furthermore, a new 

districting plan minimally modifies the existing plan when a state’s seat allocation has not 

been changed. 

 

2.2 Computational issues in political redistricting problems 

 

Political redistricting problem are difficult to solve because of the size of solution space. 

The lower bound of the number of partitions (S1) occurs when a population unit is 

connected to only two neighbors except that both ends have only one neighbor and can be 

calculated as (Keane 1975; Bação et al. 2005): 
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=  

where n is the number of population units, and r is the number of districts.  

The upper bound of the number of partitions (S2) occurs when each population unit is 

adjacent to every other population unit and can be calculated as the Stirling number of the 

second kind (Altman 1998; Bação et al. 2005): 
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The total number of possible partitions depends on the number of population units, the 

number of districts, and the connectivity among spatial units. A small problem may have 

a large number of possible ways. An example of S1 (25, 4) would have 2024 ways and S2 
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(25, 4) would have 1310677.4 × ways. Political redistricting problems are characterized 

as NP-complete8 problems, which are computationally intractable. 

 

2.3 Contiguity in land acquisition problems 

 

Land acquisition problems search for continuous land parcels depending on the problem 

purpose. A cluster of acquired land parcels is contiguous if one can move from an 

acquired parcel to another without leaving the cluster. Spatial contiguity is one of the 

most frequently used criteria in land acquisition problems. Recent research has showed 

that spatial contiguity can be formulated in a mixed integer programming framework 

(Cova and Church 2000; Williams 2002, Shirabe 2005). Cova and Church (2000) 

formulated contiguity constraints with the concept of finding shortest path between a land 

parcel and a pre-selected root land parcel. The spatial contiguity is achieved by selecting 

a land parcel from a pre-selected root land parcel so that remaining land parcels are also 

connected. Williams (2002) developed a contiguity model based on the construction of a 

minimum spanning tree. Contiguity is satisfied by finding a minimum spanning tree with 

the number of edges equal to one less than the number of parcels needed in land parcels.  

More recently, Shirabe (2005) developed contiguity constraints based on finding network 

flows theory. Contiguity is designed as a connected sub-network, which represents fluid 

                                            
8 In computational complexity theory, the P problems are the problems solved in a polynomial time. The 
NP problems (non-deterministic polynomial time) are problems, which have no information whether or not 
problem is solved in polynomial time. NP-complete problem are the most difficult problems in NP problem 
and every problem in NP is reducible to it. NP-hard problems are the problems which are NP-complete and 
do not solved in a polynomial time. 
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movement from multiple sources to a single sink. 

 

2.4 Optimization approaches to political redistricting problems 

 

A variety of optimization solution approaches to political redistricting problems have 

been developed in the literature. They are into mainly two types of models; exact models 

and heuristic models. 

 

2.4.1 Exact models 

 

There are a few approaches based on exact optimization models. Garfinkel and 

Nemhauser (1970) propose an exact method for political redistricting with respect to 

three criteria such as population equality, contiguity and compactness. They first 

exhaustively generate all feasible districts and find a solution in a way that minimizes the 

maximum deviation from the mean district population in any chosen district. This method 

is an enumerative method, which considers all possible cases, however, becomes 

prohibitive in time. More recently, Shirabe (2009) develops an exact political redistricting 

model based on recent advances in land acquisition problems. The author formulates a 

contiguity requirement. However, contiguity is not fully satisfied because there still 

maintains unnecessary contiguity between different districts, which should be controlled. 

 



19 

2.4.2 Heuristic models 

 

The first type of heuristic models is proposed by Weaver and Hess (1963) and Hess et al. 

(1965). They implement a heuristic optimization model by solving iterative transportation 

problems that allocates population units to legislative district centers with respect to 

compactness and population equality. They start with an arbitrary set of centers of 

districts and solve the transportation problem (the warehouse location problem) in a way 

that minimizes squared Euclidean distances between population units and districts in 

order to enforce compactness. They reunite any split population units to the center with 

the largest share of the population, calculate the center of gravity of each derived district 

and solve the transportation problem with these centers until there is no more change. 

Mills (1967) applies the recombining method of Hess et al. (1965) into districting 

problem with results that it can take a little time to reach the local optimum and take into 

account natural boundaries so that population units cannot be split in natural boundaries. 

Morrill (1973; 1976) redistricts the legislative seats on a basis of the method of Weaver 

and Hess (1963). Helbig et al. (1972) shows non-partisan empirical political redistricting 

results in Missouri using Hess et al. (1965). Plane (1982) reformulate the transportation 

model of Hess et al.(1965) into a quadratic integer program for considering inter- and 

intrazonal commuting of spatial interaction model for political redistricting problems. 

Robertson (1982) applies their approach to redistricting problems by taking into account 

currently existing features such as the social and topographic boundaries. The results 

show successful applicability of the location-allocation model to political redistricting 
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problems, especially in urban areas. Hojati (1996) use Lagrangian relaxation to assign the 

district centers and capacitated transportation problems to resolve the split area problem. 

George et al. (1997) show flexibility to solve a large-scale problem based on a network-

based optimization problem of transportation problem. More recently, Barkan et al. 

(2006) operate a location-allocation algorithm and propose a computational districting 

model known as a spatial decision support system (SDSS) that can be used to represent 

the problem, implement the model, and solve the problem and map solution based on 

location-allocation problem. These approaches have a disadvantage that initial selection 

of district centers may control the results because district centers are arbitrary chosen. 

 

The second type of heuristic models is developed by Vickrey (1961). Vickrey (1961) 

develops a heuristic method based on a growth algorithm where a reference population 

unit is started, and a seed population unit far from a reference unit is selected for each 

district and the districts are growing by adding contiguous population units to the seed 

until all population units have been assigned. The results make it possible to have 

enclaves. Thoreson and Liittschwager (1967) expand the method of Vickrey (1961) in a 

way that uses different references units are explored for new solutions and try on a 

regular lattice with empirical results. Gearhart and Liittschwager (1969) and 

Liittschwager (1973) refine the method of Vickrey (1961) by adding the process of 

population equality and reducing the possibility of enclave formation. Harris (1964) 

develops a two-stage heuristic approach to districting. The first stage finds rectangular 

districts on a basis of growth algorithms that start with a seed and select adjacent 
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population units to be contiguous, compact and equal populated districts. The second 

stage modifies districts so that district lines coincide with community or political 

boundaries. The growth algorithms satisfy population equality, however, also produce 

awkward shape if it overcomes the possibility of enclave. 

 

The third type of heuristic models includes local search based methods by Nagel (1965) 

and Kaiser (1966). Nagel (1965) and Kaiser (1966) start with an existing districting plan 

and improve an existing districting plan by swapping population units from one district to 

another district. The obtained solution is dependent upon the initial assignment of 

population units to districts. Only improving solution will be accepted which means that 

it is possible to trap into local optimal solution. As a result, the solution is controlled by 

the original plan, which may produce minimum change. 

 

The fourth type of heuristic models is spatial interaction modeling. Openshaw (1977a) 

designs zoning systems with four different spatial interaction models. The author 

recognizes the importance of zone design using aggregated data and shows the 

considerable role of the spatial interaction model in zone designs. Openshaw and Rao 

(1995) acknowledge the availability of GIS technology in zoning problem and provide 

three algorithms (tabu search, simulated annealing, parallel algorithms) with the objective 

based on spatial interaction using aggregated census data. Alvanides et al. (2000) upgrade 

previous approaches from originally Openshaw (1977a), Openshaw and Rao (1995) to 

Alvanides and Openshaw (1999) to solve zoning problem based on spatial interaction. 
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Alvanides et al. (2000) describe a zone design algorithm based on optimizing an 

objective function with constraints. A penalty function is added to the objective function 

to represent the 'cost' of violating the constraints. 

 

The fifth type of heuristic models is set covering modeling or set partitioning model. 

Marsten (1974) presents an algorithm for the special linear program known as the set-

partitioning problem so that such an algorithm can be applied to political redistricting 

problem. Nygreen (1988) considers the political districting problem for Wales to have as 

equal electorates as possible. These methods such as integer programming, set 

partitioning and implicit enumeration are used and compared. Mehrotra et al. (1998) 

propose a constrained graph partitioning heuristic with pre and post-processing steps 

building on the earlier work of Garfinkel and Nemhauser (1970). They consider many 

more districts by linear relaxation with respect to contiguity and population equality, and 

implemented a branch-and-price based heuristic method in order to yield the compact, 

contiguous, and equally populated districts. 

 

The sixth type of heuristic models is based on metaheuristic approaches which can be 

applied to different optimizations. Metaheuristic approaches include simulated annealing, 

tabu search, and evolutionary algorithms. Browdy (1990) at first suggests the method of 

simulated annealing to the problem of drawing optimal districts with respect to 

population equality and contiguity, compactness. Macmillan and Pierce (1994) use 

simulated annealing for political redistricting problems called ANNEAL which provides 
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the method of checking contiguity called the switching point method. The method 

considers topological relationships among population units and proves to be efficient 

because of focusing on the candidate area. Horn (1995) uses a hill-climbing technique for 

a large-scale electoral district configuration problem with the aim of getting compact, 

contiguous and equally populated districts. Alvanides (2000) employs a simulated 

annealing as an optimization technique to solve zoning problems. Macmillan (2001) also 

implements a model based on simulated annealing with respect to population equality and 

contiguity base on a contiguity checking procedure called the switching point method and 

show empirical evidence on the performance of the method. Bozkaya et al. (2003) apply 

tabu search and adaptive memory procedure to the political redistricting problem. They 

represent a multi-criteria approach including socio-economic homogeneity, similarity to 

the existing plan and integrity of communities in addition to criteria such population 

equality, contiguity and compactness that existing studies consider. Wei and Chai (2004) 

develop a multiobjective hybrid metaheuristic approach using tabu search and scatter 

search methods which approximate good non-dominated sets and explore solutions with 

respect to equal population and contiguity. Bação et al. (2005) propose a genetic 

algorithm to the political districting problem with respect to population equality, 

contiguity and compactness. More recently, Xiao (2008) implements an evolutionary 

algorithm to the political redistricting problem to have equally populated districts. 
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2.4.3 The limitation of existing optimization approaches 

 

First, existing literature has shown that there are not various exact models. Garfinkel and 

Nemhauser (1970), and Shirabe (2009) produce exact optimization approaches to 

political redistricting. Garfinkel and Nemhauser (1970) show the difficulty to formulate 

contiguity and enforce it by the process of exhaustively searching for all possible districts, 

which is computationally very extensive. Shirabe (2009) formulates contiguity, but 

produces insufficient results and is still maintained between different districts even 

though it should be prohibited. 

 

Second, existing approaches do not provide comparative information of these methods. 

Most of the existing research have been developed for a particular redistricting plan. 

There is no literature of evaluating approaches in order to get relative information. It is 

necessary to introduce comparative research in terms of efficiency in computing time and 

effectiveness in getting high-quality solutions, and main idea of each model as well as 

criteria used. Comparative research makes it possible to have objective judgments. 

 

Third, most existing heuristics are still difficult in efficiently finding high quality 

solutions in population deviation. In reality, most states have perfect plans in terms that 

population deviation is less than one person. Most of the existing heuristics apply various 

heuristic methods such as simulated annealing, tabu search, and evolutionary algorithm to 

solving political redistrict. However, they still have the difficulty of finding a redistricting 
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plan with strict population equality.  

 

2.5 Approaches to manipulate spatial configurations 

 

Manipulation of spatial configurations is mostly related with the compact shapes, one of 

redistricting principle, in political redistricting. The major objective finding compact 

spatial shapes in redistricting is to prevent gerrymandering, which is from the surname of 

Massachusetts Governor Elbridge Gerry and manipulate districts as the salamander shape 

of the district for political purpose (Stern 1974; Well 1982). However, manipulating 

districts as a more compact shape is important to prevent racial gerrymandering (Polsby 

and Popper 1993). There are several researches to show how affect the most compact 

shapes on redrawing of the district to diminish bias of the plan (Paddison 1976; Yong 

1988; Niemi et al. 1990; Altman 1998; Johnston et al 1999; Johnston and Pattie 2000). 

Compact shapes can be manipulated by several methods such as the ratio of the district 

width to the district length, distance between population units and the district center and 

etc. 

 

Another manipulation of spatial shapes is the foundation of different shapes. The reality 

is that most states require a perfect plan for a congressional plan, which represents a strict 

population equality plan with population deviation of 0. There will be many plans that are 

perfect in the sense that it has either 0 or 1 person deviation. Also, for the given plan 

which is perfect or not, there can be various redistricting plans with similar (better) or 
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same population of the given plan. The given plan can be the official plan acknowledged 

by states in reality. The various redistricting plans can be proposed for a possible 

redistricting plan and the best redistricting plan can be selected among different 

redistricting plans.  

 

Nagel (1965) and Kaiser (1966) manipulate spatial configurations by starting with an 

existing districting plan and improving an existing districting plan by swapping 

population units from one district to another district. Robertson (1982) takes the initial 

solution where locations of polling booths were fixed and electors were allocated to their 

nearest station, and illustrates gradually enhanced spatial configurations of districting by 

considering population equality, topographic and social boundaries, and adjustment. 

Trinidad and Smith (2000) show two different boundary configurations; the first takes 

into account only equality in population size and the second achieves both population 

equality and compactness. 

 

2.6 Redistricting in the spatial analysis modeling with GIS 

environment 

 

There are many definitions of GIS (Geographic Information System). Commonly, GIS 

refers to the integration system of hardware, and software for storage, mapping, 

management and analysis of geographic data which has topographic information 

(Macmillan and Pierce 1991, Folger, 2009). Furthermore, GIS makes it possible to 
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understand, query, and visualize data as the form of maps, statistical reports and charts 

(Salling, 2010). GIS can be designed to support spatial decision making (Maguire 1991), 

thought GIS shows several shortcomings in that analytical modeling techniques or the 

decision maker’s interaction with the solution process may not successfully be performed 

(Densham, 1991). 

 

SDSS (Spatial Decision Support System) has been developed as the combined form of 

GIS and DSS (Decision Support System) since the late 1980s (Armstrong and P.J. 

Densham 1990, Densham 1991). DSS refers to interactive computer-based system which 

supports data managements and analytical model operations for decision makers in ill-

structured problems (Gorry and Morton, 1971). The emergence of DSS makes it possible 

to support a variety of decision-makings (Geoffrion, 1983). Because spatial problems, for 

example facility location problems, have more complex natures, SDSS more easily can 

manage spatial data (the input and the output) as well as non-spatial data, represent 

complex spatial relations and include analytical modeling for spatial geographical 

analysis. (Densham, 1991). Under the environment of SDSS, decision makers iteratively 

generate a set of alternative solutions, participate in defining and analyzing the model 

problem, and evaluating the outcomes, and finally integrate the final outcomes with the 

quantitative data and the qualitative information of the model. 

 

As applied political redistricting problems, GIS should be considered with SDSS. GIS 

aims to support people in making decision about redistricting (Altman and McDonald, 
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2010). GIS as SDSS sufficiently views and analyses demographic data such as census 

data, socio-information voting related as well as topographical information (Salling, 

2010). Thus, GIS is an important redistricting tool to efficiently draw boundaries, build 

district plans, and evaluate alternative plans based on a set of criteria. GIS as SDSS 

provides redrawing of district boundaries and interaction with the mapping (or 

displaying) of district results which if necessary integrated with statistical measures of the 

redistricting criteria. Above all, GIS in political redistricting has an advantage to produce 

non-biased redrawing of political boundaries which shows fairness of redistricting results 

considering multiple criteria. However, in reality, commercial GIS software show limits 

to redraw political boundaries while user-requested modules or extension are added to 

GIS software easy to use. Other software such as optimization tools, programming tools 

or statistical tools can be used for political districting in an alternative way. 

 

In the redistricting literature with optimization modeling approaches, GIS also can 

analyze a wide range of geographical systems, but also operationalize the problem 

associated with such systems. Macmillan and Pierce (1994) introduce the political 

redistricting optimization model which can be used in a GIS environment using 

TransCAD procedures. Macmillan (2001) proposes simulated annealing heuristic using 

the switching point method which can be employed into GIS framework by recognizing 

the arc-node topology. 

 

There are several redistricting literatures to associate with GIS in political redistricting. 
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Openshaw and Rao (1995) acknowledge the availability of GIS technology in zoning 

problem that can use as a visualization tool. Openshaw (1996) gives the importance of 

GIS-based spatial analysis method in the zoning system. George et al. (1997) mention 

that the results are being incorporated into GIS which can be used as a practical tool to 

assist the decision-maker. Barkan et al. (2006) incorporate GIS into SDSS (spatial 

decision support system)–based electoral system which explores the spatial and the 

attribute characteristics of the solution. 

 

More recently, according to the development in computer technologies, there is a web-

based redistricting which enables the public to participate in the map drawing process by 

online (Altman and McDonald, 2010). In 2007, Chris Swain of the USC Game 

Innovation Lab released a “redistricting game”9 so that many people can redraw political 

boundaries. The redistricting game is relatively a user-friendly game that novices can 

have an easier access in redistricting. Also, in 2009, throughout the support of GIS 

technologies, there is the Ohio Redistricting Competition10 which is the project of Ohio’s 

Secretary of State (SOS) to provide the public with an opportunity to participate fair and 

transparent redistricting process. This is an open competition that persons could build a 

new districting plan satisfying listed redistricting criteria by accessing software and data 

throughout the access to server via Internet. The winning plans show higher qualities than 

the current congressional district plan. 

                                            
9 http://thecaucus.blogs.nytimes.com/2007/06/14/a-gamers-guide-to-redistricting/,             
http://redistrictinggame.org/ 
10 http://www.sos.state.oh.us/sos/redistricting.aspx 



30 

The web-based redistricting shows how GIS technologies proceed for next rounds. First 

step that GIS technologies have for next rounds is user-interface which non-expert can 

utilize in more easy ways. The use of GIS software sometimes gives novices troubles 

with the access because GIS has its own concept such as layers, spatial topology and 

mapping. There were trainings and consulting regarding GIS software in redistricting 

problems in Ohio competition, though non-experts still needs long time to acquire the 

knowledge of GIS and apply it to redistricting problems. 

 

Second step that GIS has as a new direction is web-base GIS technologies. In Ohio 

competition, Web-based GIS technologies can make an important role in giving a 

possible direction in redistricting problems which the public can easily not only 

participate the redistricting process but also share or discuss the redistricting. Web-based 

GIS technologies in political redistricting show major steps so that public participation 

can be possible to produce the non-biased redistricting outcomes. 

 

The last step that GIS should have is to build environment possible to manage or evaluate 

redistricting districting data. GIS software provides table forms which connect to spatial 

entities and include information such as coordinates, population and etc so that simple 

computations can be possible. However, it has still limitations that the results of the entire 

final plan have been a trouble with the displaying according to districting criteria, and 

there are no standard measures provided of redistricting criteria such as compactness.  

 



31 

 

 

 

Chapter 3 Exact approaches to political redistricting 
problems 

 

Contiguity in political redistricting is complicated to represent as the formulation. 

However, recently contiguity has been successfully addressed as a mixed integer 

programming in land acquisition problems, which finds contiguous parcels for a 

particular purpose. So, the use of contiguity in land acquisition modeling can be designed 

to apply to political redistricting problems.  

 

This chapter introduces two exact optimization models to political redistricting on a basis 

of recent development in land acquisition problems and also evaluates them with the 

existing approach. The first section introduces a spanning tree model and the second 

section produces a network flow model. The third section is a simple explanation of the 

existing research of Garfinkel and Nemhauser (1970) and the fourth section is 

computational experiments of the existing enumeration approach and two developed 

exact approaches.  

 

New developed models can be developed using a graph representation of the problem. In 

this graph, there are n vertices, which can be exchangeably used with n nodes, each 

representing a spatial unit with a certain population, and edges meaning connections 
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among vertices. Formally, a graph is a pair G = (V, E) where V is a set of vertices and E is 

a set of all edges meaning connections among vertices. 

 

The following is a list of variables that will be used in all the tree models.  

N     the total number of vertices in the graph; 

i, j, I  the indices and set of vertices in the graph, where Nji ≤≤ ,1  ; 

Di     the set of vertices adjacent to vertex i; 

Pi     the population of the i-th spatial unit; 

R      the total number of districts to be divided; 

r       the indices of districts, r = 1, 2, …, R; 

P     ideal population 
R

Pi∑  

 

3.1 A Spanning tree model 

 

A planar graph is constructed in the Cartesian plane or on the surface of a sphere where 

edges only intersect at vertices. A spanning tree of the graph is a tree that connects all the 

n vertices of the graph with n-1 edges (Figure 3.1b). A subtree of the spanning tree 

consists of a subset of the vertices in the spanning tree and the land parcels represented 

by the vertices on a subtree from a contiguous set (see Figure 3.1c and 3.1d). Planar 

graphs have dual graphs, which is also a planar graph and can be created by placing a 

new vertex in each region enclosed by edges of the original graph (so-called the primal 
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graph) and connecting these new vertices by new edges across every original edge. Note 

that the edges on the primal graph are intersecting with the edges in the dual graph 

(Figure 3.2a). 

 

Contiguity can be enforced by searching for a spanning tree on a planar graph that no two 

edges intersect, except at vertices. In this way, cycling can be prevented and the valid 

spanning trees can be subsequently ensured because the complementarity between the 

primal graph and the dual graph can prevent a cycle in any of the two trees (Figure 3.2b). 

Williams (2002) utilized this feature to develop a contiguity model for land acquisition 

problems (see below constraints (2), (3) and (4) in the model). 

 

 

(a)(a) (b) (c) (d)
 

Figure 3.1. A graph representation of land parcels. (a) Each vertex is used to represent a 
regular land parcel and the edges (dashed lines) represent the connectivity between 
adjacent parcels. (b) A spanning tree where the solid lines represent edges on the 
spanning tree. (c) (d) A subtree of the spanning tree. Dark dots represent the vertices in 
the subtree and dark solid lines represent the edges on the subtree. 



34 

 

Figure 3.2. Primal and dual planar graphs (a), and complementary spanning trees (b).  
Here, circles represent vertices in the primal graph and vertex 5 is specified as the 
terminal vertex; squares represent vertices in the dual graph and vertex A is assigned to 
be the terminal vertex. Thick lines in (b) represent the arcs used to construct 
complementary spanning trees. 
 

The same mechanism of ensuring contiguity which finds a complementary spanning tree 

both in the primal and dual graph can be applied to enforce contiguity in political 

redistricting. In political redistricting, contiguity is also ensured by searching for the 

complementarity of two spanning trees on the (primal and dual) graphs such that none of 

the edges in the primal tree intersects any edge of the dual tree. The construction of a 

(primal) spanning tree can keep contiguity in political redistricting problems (Figure 

3.3a). In order to construct R districts, the total number of edges in the primal spanning 

tree is N - R. Similarly, 1−R arcs are broken in the primal spanning tree (referred as 

“broken arc”) (Figure 3.3b).  

(a) 

1 

2 3 

4 5 

A 

B 

C 

(b) 

1 

2 3 

4 5 

A 

B 

C 



35 

 

Figure 3.3. The method to model political redistricting problems in the spanning tree 
based approach. Circles represent vertices on the subtree and lines include edges on the 
subtree in the graph. Thick lines refer to edges on the spanning tree and red dot lines are 
broken arcs. Red dot lines should be prohibited edges in order to construct different 
districts. 
 

Indices and parameters 

M  = the number of vertices in the dual graph; 

k, l, K = the indices and set of dual vertices, where k, l = 1, …, M; 

Dk = the set of dual vertices that are adjacent to dual vertex k;  

 

Decision variables  
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The objective (1) is for equal population and is to minimize maximum deviation from 

ideal population.  Constraints11 (2), (3) and (4) are formulated by Williams (2001; 2002) 

specifying basic constructions of a complementary spanning tree in both primal and dual 

graph. Constraints (5) ensure that one vertex only belongs to one district. Constraints (6) 

and (7) satisfy district contiguity. Constraints (6) specify that Aijr = 1 if and only if units i 

and j are in the same particular district r. Constraints (7) make sure that the subtree which 

contains units i and j belongs to the same district. ∑
=

R

r
ijrA

1
is 1 if and only if units i and j 

are in the same district (or the subgraph). Constraints (8) are developed in Williams 

(2002) to specify the number of districts. For given R districts, the total number of edges 

in the subtree is N - R. Instead of constraints (8), the summation of Yij (the total number 

of broken edges) equals to R-1 can be used (∑∑
∈ ∈

−=
Ii Dj

ij RY
i

1). Constraints (9) require Xij, 

Yij, Zkl, Aijr, and Vir, to be non-negative binary decision variables.  

 

3.2 A network flow model  

 

Shirabe (2005) developed contiguity constraints for land acquisition problems. The 

contiguity can be ensured by controlling flows in the network in a way that moves from 

multiple sources to a sink. There is one and only one sink for a contiguous set of spatial 

                                            
11 Constraints (2) specify that exactly one primal arc must be selected except for the terminal vertex in the 
primal graph. Constraints (3) indicate that exactly one dual arc must be selected except for the terminal 
vertex in the dual graph. Constraints (4) require the complementary relationship by ensuring that an arc in 
the primal graph does not intersect an arc in the dual graph. 



38 

units, and at least one flow is coming out from each spatial unit until to reach the 

arbitrary chosen sink (Figure 3.4).  

 

 

Figure 3.4. A network representation of contiguous spatial units. Circles represent nodes 
and the thick circle represents a sink in the network. An arrow represents non-negative 
flows in the network. At least one flow is coming out from each node. 
 

The mechanism of enforcing contiguity which runs flows from sources to only one sink 

can be applied to ensure contiguity in districts in political redistricting. For political 

redistricting, contiguity will be enforced in such a way that at least one flow is coming 

out from each spatial unit in order to reach the arbitrary chosen sink within the district. 

Then, the supply sent from every source unit must arrive at the sink unit within the 

district (Figure 3.5a). In order to maintain contiguity within a district, it is also necessary 

to prevent the inflows from other districts (Figure 3.5b). If there are flows between 

different districts, real contiguity within the district is not fulfilled because one direction 

flow from a node can move from a district to another district. As a consequence, 
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modeling contiguity within the district will be designed by not only finding the flow 

conversing to the sink node, but also controlling the inflows from different districts. 

 

For the construction of several districts, several sub-networks are constructed (Figure 

3.5b). The number of sub-networks to be required should be designed as equal number of 

districts to be needed. Furthermore, each sub-network contains one and only one sink, 

which means political redistricting problems have multiple sinks instead of a single sink. 

The number of multiples sinks is also as same as the number of sub-networks. In 

summary, several n districts are designed in a way that specifies several n sub-networks 

and requires several n sinks. 

 

 
 
Figure 3.5. The method to model redistricting in the network flow-based approach. 
Circles represent nodes and lines refer to edges in the network. Thick arrow lines include 
the flow from a node to another node and red dot arrows are flows between the different 
districts. Red dot arrow lines should be controlled in the model. 
 

(a) Modeling contiguity (b) Constructing districts 

District 2 

District 1 
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Recently, Shirabe (2009) provides three kinds of models for political redistricting based 

on previous research of Shriabe (2005). The third model shows the most similarity with 

network flow model because the model only considers contiguity and population equality, 

and hubs (sinks) are not known. However, the model specifies the same number of 

population units in each district which cannot be possible in the reality for population 

equality. This condition disturbs the strict population equality. Furthermore, Shirabe 

(2009) introduces insufficient contiguity constraints. There are unnecessary flows 

between different districts when strict population equality is considered. 

 

Indices and parameters  

Q  the maximum number of nodes to be chosen in a district ( 1+− RN )  

 

Decision variables 

                  otherwise
districtin  is nodeif

0
1 riX ir
⎩
⎨
⎧=   

                           otherwise
district in sink a as selected isnodeif

0
1 riWir
⎩
⎨
⎧=  

ijrY  = the non-negative flow from node i to node j in a district r 

 

Model formulation 

                  Minimize 
P

PXP
i

iri

R

r

100max
11 ∑
=

=
−                         (10) 

Subject to:  
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ri,∀  (17)

{ }1,0, ∈irir WX , 0≥ijrY  rji ,,∀  (18)

 

Objective (10) is for equal population and is to minimize maximum deviation from ideal 

population. Constraints (11) specify the net outflow from each node. Left term 

respectively indicates the total outflow and total inflow of node i in district r. If node i is 

included but is not a sink in district r, we have xir = 1, wir = 0, and node i in district r must 

have a supply ≥ 1. If node i is included in district r and is a sink, we have xir = 1, wir = 1 

and node i in district r can have a demand (negative net outflow) 1−≤ Q . If node i is not 

included in district r and is not a sink, we have xir = 0, wir = 0 and node i in district r must 

have a supply ≥ 0. Finally, if node i is not included in district r but a sink (xir = 0, wir = 1), 

the rest of node i are forced to be 0, and no node i are selected for district r. Constraints 

(12) ensure that each node only belongs to one of districts. Constraints (13) specify the 

number of nodes that can be used as sinks. Constraints (14) ensure that each district must 
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have only one sink. Constraints (15) ensure that there is no flow into any node i from the 

outside of district r (where xir = 0), and that the total inflow of any node in district r 

(where xir = 1) does not exceed 1−Q . Constraints (16) make sure unless a node i is 

included in district r, the node i cannot be a sink in district r. Constraints (17) ensure that 

there is no flows (inflows and outflows) between different districts to ensure eligible 

contiguity. Constraints (18) require xir and wir to be a non-negative binary decision 

variable and yijr to be a non-negative decision variable. 

 

How to se the maximum allowable number of units to constitute (Q) in a district is a big 

issue because depending on Q, the model adjusts the flows in the network, and 

diminishes redundant flows. Eventually, Q also can make contiguity constraints right 

working. In the net flow model, Q is set as 1+− RN , where N is the total number of 

population units, R is the total number of districts to be divided. So, different data size 

data has different Q.  

 

3.3 Garfinkel and Nemhauser (1970) 

 

Garfinkel and Nemhauser (1970) develop the exact method of political redistricting 

problems by an implicit enumeration. The authors address three criteria such as 

population, contiguity and compactness. For equally populated districts, a district is 

feasible only if its population falls within a specified range centered on the mean district 

population. For contiguous districts, a district is contiguous if population units are 
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connected within a district. In this paper, compactness is defined as geographical 

compactness with distance compactness and shape compactness. For distance 

compactness, a district is feasible only if the distance between population units must be 

less than a specified upper bound (an absolute measure). For shape compactness, a 

district is feasible only if the square of the distance’s maximum diameter divided by the 

district’s area must be less than another upper bound (a relative measure). 

 

They developed an exact method in redistricting plans with two phases. Phase I 

exhaustively generates all feasible districts which satisfy equal population, contiguity and 

compactness based on tree search algorithm. First, a seed unit is randomly selected. Then 

adjacent units are combined until population range is the satisfied. In this process adding 

adjacent units, compactness and population are considered. The algorithm backtracks on 

the tree when populations are out of the upper bound of population range to check other 

units. The algorithm also has a checking process if the generation results in the form of 

enclave which cannot be feasible. In the below optimization equations, variable { isa }is 

determined in the phase I of the model of feasible districts.  

 

All enumerated feasible districts can be used for the optimization phase (Phase II). Phase 

II finds an optimal solution in a way that minimizes the maximum deviation from the 

mean district population in any chosen district. Phase II is mathematically expressed in a 

mixed integer programming as following; 
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Variables and indices  

s, S = indices and set of feasible districts generated by Phase I of the model 

⎭
⎬
⎫

⎩
⎨
⎧=

otherwise0
district  feasiblein  is unit spatialIf1 siais , which will be determined in the phase I 

of the model. 

'
SP  = ∑

=

n

i
iis Pa

1

is the total population of district s 

Sc  =
PPS −

'

 is the population deviation of district s from the ideal population 

 

Decision variables 

Otherwise
planin the selected is district if

0
1 sTs
⎩
⎨
⎧=  

 

Model formulation 

Minimize 
P

Tc ss

S

s

100max
1=

                            (19) 

Subject to:  

∑
=

=
S

s
sisTa

1

1 i∀  (20)

RT
S

s
s =∑

=1

 
 (21)

}1,0{∈sT  s∀  (22)

 

The objective (19) is about equal population and is to minimize the maximum deviation 
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of any district population from ideal population. Constraints (20) ensure that each spatial 

unit is assigned to one and only one feasible district for the plan. Constraints (21) specify 

that R feasible districts will be selected. Constraints (22) require the binary decision 

variable. 

 

3.4 Computational experiments 

 

The experiments of the exact methods were conducted on a quad-core Xeon 2.8 GHz 

computer with 8 GB memory. A solver called CPLEX (version 11) is used to the problem; 

this is a parallel version with the deterministic mode and the opportunistic mode with 

threads in order to enhance CPU time. For the computational intensity of the exact 

models, the program is terminated if it cannot return an optimal solution within a day (1 

day = 86400 seconds). 

 

3.4.1 Test data description 

 

Two types of data sets are used to test the models. The first type is a regular grid (5x5, 

10x10, 10x5 and 25x40 data) in Figure 3.6. Each cell represents artificial population units 

and populations are randomly generated. The second type is an irregular grid which is 

real data, the 99 counties of Iowa where the counties will not be split by Iowa 

Constitution. For year 2000, five congressional districts are to be determined. 
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(a) 5x5 data         (b) 10x5 data                       (c) 10x10 data 

continued 
Figure 3.6. Test data of a regular grid   
 

 

 

34 38 21 45 19

49 17 12 45 41

22 35 24 10 19

30 39 50 31 30

15 45 20 36 37

34 15 30 19 42

15 23 46 14 30

26 50 30 29 24

47 49 14 10 43

24 15 23 23 47

34 38 21 45 19 40 28 41 32 47

49 17 12 45 41 26 23 26 20 39

22 35 24 10 19 28 46 25 28 20

30 39 50 31 30 49 29 48 18 20

15 45 20 36 37 36 26 22 31 33

34 15 30 19 42 47 17 18 15 48

15 23 46 14 30 41 12 27 20 25

26 50 30 29 24 25 28 18 35 13

47 49 14 10 43 32 14 32 26 31

24 15 23 23 47 49 41 16 34 21

19 13 19 20 14 

12 18 16 15 18 

16 16 12 10 13 

18 16 11 12 13 

15 19 13 19 17 
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3.4.2 Test results 

 

Phase I of the existing exact method is coded with short integer of C++ in order to 

consider computer memory. It has several factors to generate possible feasible districts 

(Table 3.1). The algorithm has e as 0 at first and increases or decreases it with an 

increment of 1 during the algorithm process. When e equals EN, the algorithm starts to 

check if there is an enclave. The program generates all feasible districts with respect to 

1% population deviation and least compactness. In the exclusion matrix of the method, 

all units are candidates for generation (all units = 1) so that the algorithm can take care of 

all units (Figure 3.7).  

 

Parameters Setting Value 

EN 5 

ALPA (α ) 0.01 
BETA ( β ) 10000 

 

EN: The constant to say how often the an enclave check is performed 
α : The constant to decide the range of population deviation ( 10 ≤≤α ),α close to 0 

refers to strict population deviation. 
β : The constant to refer to the compactness range ( ∞≤≤ β0 ), β close to 0 is the most 

compact shape 
 
Table 3.1. The parameter setting in Phase I of Garfinkel and Nemhauser (1970) 
 

 

jiaZ ij ,11 ∀=⇒=  

Figure 3.7. Exclusion Matrix 
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All exact methods find optimal solutions using the sequential optimizer, and the parallel 

optimizer (the deterministic mode and the opportunistic mode); the sequential optimizer 

runs on a single central processing unit (CPU) and the parallel optimizer simultaneously 

uses multiple CPUs to save CPU time, and provide concurrency. For the parallel 

optimizer, the opportunistic mode with eight threads and the deterministic mode with 

eight threads are used. The deterministic mode repeatedly finds the solution of the model 

with the same parameter settings on the same computing platform producing the same 

level of performance. The opportunistic mode differently finds the solution, however, 

yielding better performance. 

 

Table 3.2 lists results of all models using parallel optimizer using opportunistic mode 

with eight threads for the three exact methods, which shows efficiency in performance. 

All methods find optimal solutions for 5x5 data. However, it is clearly known that the 

exact models show computational difficulty to find optimal solutions for many problems 

(10x5, 10x10 and 25x40 data); for 10x10 data with 4 districts, only deterministic mode 

finds the optimal solution while opportunistic mode cannot. For Iowa data, all exact 

methods do not solve the problem. As a consequence, all exact methods are inefficient to 

find optimal solutions. Figure 3.8 to Figure 3.10 show spatial configuration results of all 

three models. All results from the use of the sequential optimizer and the parallel 

optimizer (two modes) are reported. New approaches produce more different spatial 

shapes than the existing research.  
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The existing method takes less time to generate all feasible districts for large districts (e.g. 

4 districts in 5x5 data) and much time to do for small districts problem (e.g. 2 districts in 

5x5 data) and also computing time of optimization phases has same tendencies; In the 

phase of feasible district generations, CPU time of 4districts in 5x5 data is 5.85 seconds 

and CPU time of 2districts in 5x5 data is 184.39 seconds. It is because the existing 

method is based on feasible district generations and the generation complexity for small 

districts is much more than that for the large districts (Table 3.3). However, newly 

proposed models (spanning tree based methods and network flow based method) show 

the opposite tendencies which it needs less time to solve small districts problem (e.g. 2 

districts in 5x5 data) and much time for large districts problem (e.g. 4 districts in 5x5 

data). 

 

In summary, two exact models to political redistricting are developed on a basis of using 

the solution approach of land acquisition problems, especially for focus on contiguity 

formulation. It is meaningful that the formulation of the redistricting problem as an 

optimization model contributes to our understanding of spatial organization and 

represents a fruitful GIScience research area. In our experiments, two exact methods are 

compared with the existing method of Garfinkel and Nemhauser (1970). Though all 

methods may find optimal solutions for small data, all exact models are complicated to 

find the redistricting plans for real cases. To overcome computing issue to exact methods, 

it is natural that a significant amount of efforts should have been conducted to develop 

heuristic methods which can be used to efficiently search for high-quality solution. 
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Chapter 4 Heuristic optimization models to political 
redistricting problems 

 

From previous computational experiments using exact methods in Chapter 3, it is clearly 

known that exact methods show computational challenges and it is necessary to 

incorporate a heuristic optimization technique. Heuristic approaches cannot guarantee 

that solutions can reach the global optimum. Nevertheless, recent approaches have 

demonstrated that heuristics can be used to find near-optimal or optimal solution (Cooper, 

1964). There are many meta-heuristics based on simulated annealing (Kirkpatrick et al. 

1983), evolutionary algorithms (Back et al., 1997) and tabu search (Glover, 1977). The 

new heuristic should be both efficient in computing time and effective in finding high-

quality solution.  

 

This chapter implements two heuristic optimization approaches and compares them with 

the existing approach using evolutionary algorithms by Xiao (2008). The first section 

introduces a multi-scale simulated annealing heuristic approach and the second section 

discusses the development of a greedy algorithm called Give-And-Take greedy algorithm. 

The third section describes the applications of the Give-And-Take greedy algorithm to 

find various spatial shapes similar to the given plan, and explains the sensitivity analysis 
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of the Give-And-Take greedy algorithm. The fourth section shows experiments of both 

heuristic models and the applications of Give-And-Take greedy algorithm. 

 

4.1 Multi-scale simulated annealing (MSA algorithm) 

 

Simulated annealing is known as not only a search technique that can be useful for 

combinatorial optimization problems, but also a popular tool where mathematical 

programming formulations are intractable to solve. Simulated annealing algorithms are 

search procedures based upon the thermodynamic process12 of annealing metals 

(Kirkpatrick et al. 1983; Cerny 1985; Laarhoven and Aarts 1987). These algorithms may 

accept non-improving solutions in order to escape local optimal solutions (Ulungu et al. 

1999).  

 

4.1.1 A simulated annealing  

 

Simulated annealing (SA) is one of metaheuristic methods (Kirkpatrick et al. 1983), 

which can be used to find optimal or near-optimal solutions to complex optimization 

problems (see David et al. 1989). In general, the algorithm maintains a current solution 

and, based on that, generates a neighborhood of the current solution from which a new 

                                            
12 This process heats the metal to a high temperature so that atoms can move relatively freely. The 
temperature of the metal is slowly lowered so that at each temperature the atoms can move enough to begin 
adopting the most stable orientation. If the metal is cooled slowly enough, the atoms are able to relax into 
the most stable orientation. This slow cooling process is known as annealing, and so their method is known 
as Simulated Annealing. 
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solution is selected. To improve the solutions found, any better solutions from the 

neighbourhood will be accepted. However, the algorithm also accepts a worse solution 

with a probability, which is diminishing during the process, in order to escape the local 

optimal solution. The algorithm stops when no solutions can be accepted (Figure 4.1).  

 

Algorithm SA {General procedure} 
1. Initialize a solution x 
2. T0 = T, where T is temperature 
3. repeat until a stop condition is satisfied 
4.  Construct a new solution y∈V(x), V(x) is the neighborhood of x 
5.  Evaluate solutions x and y 
5.1.    If y is better than x, then x:= y 
5.2.    Else x: = y with probability P(x, y, T) 
6.  Decrease T 
 
Figure 4.1. The general process of simulated annealing 
 

This dissertation develops simulated annealing heuristic using a multi-scale decreasing 

method to political redistricting. The algorithm is called a multi-scale simulated 

annealing. The multi-scale simulated annealing for political redistricting (Algorithm 

MSA) is described in Figure 4.2. For the initial solution, the algorithm generates a 

solution by the process of randomly selecting a seed unit (step 1.3) and adding adjacent 

units to the seed unit until no more units are added (step 1.4 and step 1.5). A new solution 

can be founded by selecting population units from eligible candidate adjacent units, 

which can be possibly moved from a district to any other district without breaking 

contiguity (step 3.4 and step 3.5), rechecking contiguity among the selected population 

units (step 3.6), and moving the selected population units from a district to another 
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district (step 3.7). For evaluations, improved new solutions will be accepted. However, 

the algorithm also accepts non-improved solutions with an acceptance probability in 

order to escape local optimal solutions (step 3.10). When the algorithm decreases 

temperature, a multi-scale decreasing method is used in this dissertation and the detailed 

explanations are described in section 4.1.2.3 (step 3.11).The algorithm stops when 

terminal conditions can be accepted. 

 

Algorithm MSA {Multi-scale simulated annealing to political redistricting} 
Input: Adjacent matrix, population, T (temperature) 
Output: y (new solution) 
1. Initial solution x 

1.1. i = 0 
1.2. repeat until i = r - 1 
1.3.   Randomly select a seed unit 

  1.4.   Find adjacent units from the seed unit 
  1.5.   Add adjacent units to the seed unit until there are no units to be added 

1.6.   Calculate objective function value of x 
1.7.    i := i + 1 

2. T0 := T 
3. repeat until a user specified stop condition is fulfilled 

3.1. Construct the new solution y  
3.2. i = 0 
3.3.   repeat until i = r - 1 
3.4.     Find eligible candidate adjacent units to a district [r] (ECA units) using Algorithm PI 
3.5.     Randomly select the number of population units to be specified from ECA units 
3.6.     Recheck contiguity among the selected population units using Algorithm P2 
3.7.     Moved the selected population units to the district [r] 
3.8.     i = i +1 
3.9. Calculate objective function value of the new solution y 
3.10. Evaluate the current solution x and the new solution y  
3.10.1.    If y is better than x, then x := y (accept y) 
3.10.2    Else x := y (accept y) with probability P (x, y, T) 
3.11. Decrease T using multiple cooling rates 

 
Figure 4.2. The process of multi-scale simulated annealing 
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4.1.2 Cooling schedule in the MSA algorithm 

 

There are four essential factors to constitute an annealing cooling schedule;  

(1) the initial temperature 

(2) the number of iterations to be performed at each temperature called Markrov 

chain length  

(3) temperature change called the decreasing rate, and  

(4) the stopping conditions such as final temperature or maximum number of 

iterations without improvement (Ulungu et al. 1999; Eglese 1990).  

 

The initial temperature is desirable at sufficiently high temperature so that all transitions 

are accepted, and the typical value regarding decreasing rate is less than 1 and between 

0.95 and 0.99. The number of iterations is related with the theory of Markrov chains and 

is determined by a sufficient number of transitions so that all neighbors of the current 

solutions can be investigated at each value of temperature. Other simple schemes keep 

the number of iterations constant or take a multiple of the average size of a neighborhood. 

Lastly, it is important to have the stopping condition so that the algorithm may not be 

stopped too early (Pirlot 1996; Eglese 1990). 

 

4.1.2.1 Initial temperature 
 

In the political redistricting problem, the initial temperature is first decided by the method 

of White (1984) who proposed that the initial temperature is just within one standard 
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deviation of the mean cost. The cost is usually an objective function value and the mean 

cost is the mean value of the objective function values. Initial temperature is decided by 

randomly generating 10000 feasible solutions, calculating the mean objective function 

value and standard deviation from solutions for the use of the initial temperature (Table 

4.1). 

 

na rb Meanc SDd Mean-SD Mean+SD Initial 
Temperature

2 7.53 8.28 -0.75 15.81 15.81
3 15.31 10.74 4.57 26.05 26.055by5 
4 20.09 11.47 8.62 31.56 31.56
3 12.27 10.33 1.94 22.60 1.94
4 16.50 10.86 5.64 27.37 5.6410by10 
5 19.11 11.03 8.08 30.14 8.08
5 16.25 10.26 5.99 16.51 5.99

10 22.47 9.98 12.50 32.45 32.4525by40 
20 25.28 8.65 16.63 33.94 16.63

Iowa 5 43.12 12.19 30.93 55.31 55.31
a: data type                                   b: the number of districts        
c: the mean value of the objective function value     d: standard deviation 

 
Table 4.1. Initial temperature in the MSA algorithm 
 

4.1.2.2 Markrov chain length 
 

The number of iterations to be performed at each temperature is related with the theory of 

Markrov chain and called Markrov chain length. For simplicity in the dissertation, a 

constant Markrov chain length of 1 is used in Algorithm MSA.  
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4.1.2.3 Multiple cooling rates 
 

A great variety of cooling schedules have been used in the literature. Especially, 

Abramson et al. (1999) use six different cooling schedules of simulated annealing for 

solving the school time tabling problem; the basic geometric cooling rate (single cooling 

rate), multiple cooling rates, geometric reheating, enhanced geometric reheating, non-

monotonic cooling, and reheating as a function of cost. Experimental results show that 

the use of multiple cooling rates gives better quality solutions in less time than that of a 

single cooling rate.  

 

The single cooling rate is described by a proportional temperature function such as Tt+1 = 

α Tt, where α  is a constant less than 1. Therefore, at high temperature all exchanged 

solutions are accepted even though most of them are not valuable. This simple cooling 

scheme may not search the solution space in an effective way depending on the problem 

difficulty. The use of different cooling rates may take less time at high temperature by 

fast cooling, and take more time to explore solution at low temperature by slow cooling.  

 

In order to use different rates, it is necessary to decide the phase transition (or 

temperature transition) by calculating the specific heat of the substance. Specific heat is 

described by Laarhoven and Aarts (1988) and Abramson et al. (1999). When the specific 

heat is maximal, this starts to reorder the state. In order to compute the specific heat 

temperature, we observe 
T

c
2σ

 by calculating the variance of the objective function ( 2
cσ ) 
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over the number of trials at a particular temperature, T (Figure 4.3).   

 

Figure 4.3. Specific heat over temperature 
 

The method of multiple cooling rates can be described below. 

Tk+1 = α Tk  if Tk > Tmsp 

Tk+1 = β Tk  if Tk≤Tmsp 

Where Tmsp is the temperature at the maximum specific heat occurs, and α  and β  are 

constants less than 1 ( βα < ). Temperatures are also decreased in the algorithm process 

using two different cooling rates. Two different cooling rates α  can be 0.5 for fast 

cooling and β  can be between 0.95 and 0.99 for slow cooling.  

 

The specific heat in this dissertation is decided by calculating the variances of the 

objective function with the number of trials equal to 3 at each temperature T. After 

getting the specific heat, the decreasing rate of α  is set as 0.5 for fast cooling and the 

Temperature

T
c
2σ

Temperature

T
c
2σ
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decreasing rates of β  is applied from 0.95 to 0.985 with the increment of 0.05 in a 

various way for slower cooling. Thought several trials using differentβ s, the most 

appropriateβ to reach high quality solutions are decided (Please see Table 4.2).  

  

4.1.2.4 The stopping condition 
 

Stopping temperature is used for stopping condition in this dissertation. It is decided by 

an empirical analysis, which solves many trials to find appropriate cooling schedules 

(Table 4.2). Stopping temperature of political redistricting problems is set from 1.E-07 to 

0.1 with the increment of 0.1 for 5 by 5, and 10 by 10 data, and very low values such as 

1.E-21 for Iowa data, and 1.83E-50 for 25 by 40 data in order to find high quality 

solutions. 

 

4.1.3 Ensuring contiguity in the MSA algorithm 

 

The basic idea of ensuring contiguity in the MSA algorithm heuristic is to find movable 

units among adjacent units. Normally, adjacent units to each district include both non-

movable units and movable units. Non-movable units refer to units, which break 

contiguity when they are chosen for the new solution. Movable units include units, which 

still maintain contiguity at all districts after adding from a district to any other districts. 

 

During each iteration in an algorithm, two procedures are used to find movable units. The 
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first procedure is to find eligible candidate adjacent units from adjacent units, which can 

be possibly moved from a district to any other districts. The second procedure is called 

contiguity rechecking procedure, which examines if the selected population units are 

really movable. So, MSA algorithm finds eligible candidate units using Algorithm P1 and 

selected a certain number of population units can be selected from eligible candidate 

adjacent units. Then MSA algorithm rechecks if the selected population units are really 

movable using Algorithm P2. 

 

4.1.3.1 Finding eligible candidate adjacent units  
 

The first procedure finds eligible candidate adjacent units using Algorithm P1 (Figure 

4.4). Eligible candidate adjacent units refer to units which can be possible selected from 

adjacent units for a new solution. First, the algorithm finds adjacent units that have a 

common border to a district from adjacency matrix (step 3). Second, the algorithm selects 

non-movable units and excludes them from adjacent units (step 5). Thereby the algorithm 

finds eligible candidate adjacent units, which can be possibly selected for a new solution, 

by remove non-movable units from adjacent units (step 6). 

 

In the algorithm process, non-movable units can be found from sub-adjacent matrix, 

which is consisting of population units in a district, extracted from adjacent matrix. In the 

sub-adjacent matrix, the algorithm finds the unit that has only one and one adjacent unit 

in the certain district (denoted as “the referenced unit”). The unit right adjacent to the 
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referenced unit is a non-movable unit. Non-movable units can be founded while there is 

referenced unit and the number of unit except the referenced unit >2 (step 5). For 

example, there is a 3 by 3 regular grid with 2 districts (Figure 4.5a) Adjacent units to 

District 1 are unit 2, 3, 4, and 7. In order to know non-movable units and eligible 

candidate adjacent units among these adjacent units, in the sub-matrix of District 2, 

reference units are unit 3 and 7. Non-movable units are unit 2 and 4 right next to the 

reference units since they break contiguity of District 2 when they are moved (Figure 

4.5b). Amongst these adjacent units, eligible candidate units are unit 3 and 7 that can be 

taken into account for the new solution (Figure 4.4 and Figure 4.5).  

 

Algorithm P1 {Finding eligible candidate adjacent units} 
Input: Adjacent matrix 
Output: Array of eligible candidate adjacent units 
1. i := 0, j = 0 
2. Repeat until i = r-1 
3.   Find adjacent units to district [i] 
4.   Repeat until j = l, where l is not equal to i  
5      If (the number of adjacent units > 2)  

         While(# of the referenced unit >0) and (# of units except the referenced unit > 2) 
              Find non-movable unit  

6.   Remove non-movable units from adjacent units. 
7. i = i + 1  

 
Figure 4.4. The procedure of PI to find eligible candidate adjacent units 
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(a) two district example               (b) sub-adjacent matrix of District2 

 

 

 (c) adjacent matrix of all units 

Figure 4.5. A hypothetical example of a two-district case.  
(a) Two district case, (b) sub-adjacency matrix consisting of units in District 2 and (c) 
adjacent matrix of all units; adjacent units to District 1 is unit 2, 3, 4, and 7 and non-
movable units are unit 2 and unit 4. Movable units are unit 3 and unit 7. Sub-adjacent 
matrix of units in District 2 (b) is from adjacent matrix for all units (c). 
 

When eligible candidate units are decided, the algorithm selects the number of population 

units to be specified among eligible candidate units from Algorithm P1. If the number of 

population units is specified as 3, then the algorithm randomly selects population units 

between 1, 2, and 3. The selected population units among eligible candidate units can be 

considered for the second procedure of ensuring contiguity. 

unit 1 2 3 4 7 SumOfRow
1 0 1 0 1 0 2 
2 1 0 1 0 0 2 
3 0 1 0 0 0 1 
4 1 0 0 0 1 2 
7 0 0 0 1 0 1 

unit 1 2 3 4 5 6 7 8 9

1 0 1 0 1 0 0 0 0 0

2 1 0 1 0 1 0 0 0 0

3 0 1 0 0 0 1 0 0 0

4 1 0 0 0 1 0 1 0 0

5 0 1 0 1 0 1 0 1 0

6 0 0 1 0 1 0 0 0 1

7 0 0 0 1 0 0 0 1 0

8 0 0 0 0 1 0 1 0 1

9 0 0 0 0 0 1 0 1 0

District 1 
District 2 

4 

1 2 3 

7

5 6 

8 9 
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4.1.3.2 Contiguity rechecking procedure 
 

The second procedure is a contiguity checking procedure using Algorithm P2, which 

rechecks if the selected population units among eligible candidate adjacent units are 

really “movable” (Figure 4.6). The method of checking contiguity is performed by four 

steps:  

(1) The first step randomly selects a seed unit amongst the selected population units 

from eligible candidate adjacent units (step 3),   

(2) The second step finds adjacent units to the seed unit, and randomly choosing only 

one and one unit among them (denoted as “the fruit unit”) (step 4.and step 5),  

(3) The third step adds adjacent units to the fruit unit except the seed unit until there 

is no unit to be appended (step 6 and step 7),  

(4) The fourth step calculates the total number of units to be added except the seed 

unit (step 8). If the total number of units is equal to one less than the total number 

of units in the district (the total number of units in the district – 1), the seed unit 

can be “movable”. Otherwise the seed unit is “non-movable” which can be 

removed from eligible candidate adjacent units (step 9). 
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Algorithm P2 {Contiguity rechecking procedure}  
Input: n (the number of the selected units), the set of selected units 
Output: true or false  
1. i = 0 
2. Repeat until i = n 
3.    Randomly select a seed unit from selected units 
4.    Find adjacent units to the seed unit       
5.    Randomly select a fruit unit among adjacent units  
6.    Repeat until there is no unit to be selected except the seed unit  
7.       Add adjacent units to the fruit unit except the seed unit 
8.    Calculating the total number of units to be added except the seed unit 
9.    If the total number of units = the number of units in the district – 1, 
        Then the seed unit is “movable unit” and is maintained. 
    Else the seed unit is “non-movable unit” and is subtracted.  

10. i = i + 1 
 
Figure 4.6. Contiguity rechecking procedure 
 

For example, there is a 5 by 5 data with 3 districts (Figure 4.7). Unit 13 is decided as 

“eligible candidate adjacent units” from the above first step of Algorithm P1. So, unit 13 

can possibly be moved from District 2 to District 1 and possibly be selected for a new 

solution. Unit 13 can be judged throughout the second procedure of rechecking the 

contiguity using Algorithm P2. From the first procedure, eligible candidate adjacent units 

to District 1 are unit 11, 12, 13, 14, and 15 which are judged as eligible candidate 

adjacent units for possibly being moved. Amongst them, the algorithm checks if unit 13 

are really “movable”. The algorithm (1) randomly selects unit 13 as a seed unit, (2) finds 

adjacent units (unit 12 and 14) to the seed unit, and randomly selects unit 12 as the fruit 

unit. Except the seed unit (unit 13), the algorithm (3) adds adjacent units (unit 11 and 17) 

to the fruit unit (unit 12), and continuously selects adjacent units (unit 16) until there is 

no unit to be selected. The total number of units to be added to the fruit unit except the 
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seed unit is 4 (unit 12, 11, 17 and 16). The seed unit 13 is “non-movable” because the 

total number of units (4; unit 12, 11, 17 and 16) is not equal to one less than the total 

number of units in District 2 (the total number of units in District 2 – 1 which is 8 (unit 

11, 12, 14, 15, 16, 17, 19 and 20). The checking procedure proceeds with another seed 

unit among the selected units from eligible candidate adjacent units to District 1. 

 

Figure 4.7. The exceptional case 
Unit 13 is considered as an eligible candidate adjacent unit in the first procedure of 

ensuring contiguity in section 4.1.3.1 (Algorithm P1). However, it can be realized as a 
non-movable unit from rechecking contiguity procedure in section 4.1.3.2 (Algorithm P2). 
 

4.2 Give-And-Take greedy algorithm (GAT algorithm) 

 

This dissertation develops another heuristic to political redistricting problems called 

Give-And-Take greedy algorithm (GAT algorithm). Greedy algorithms are a local search 

algorithm to find better solutions throughout several iterations with the hope of reaching 

the global optimal (Cormen et al. 2001). Greedy algorithms do not guarantee to reach 

optimal solutions, but is quite powerful and works well for a wide range of problems. The 

1 2 3 4 5

6 7 8 9 10 

11 12 13 14 15 

16 17 18 19 20 

21 22 23 24 25 

District 1 

District 2 

District 3 
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idea of greedy algorithms is to keep only best solution at a time. From an initial solution, 

greedy algorithm explores neighborhoods and creates candidate solutions in 

neighborhoods, and then selects the best candidate solutions among candidate solutions. 

The algorithm determines if a candidate solution improves the objective function, thereby 

indicates the best solution. 

 

Figure 4.8 shows the central idea of the Give-And-Take greedy algorithm (GAT 

algorithm). The algorithm finds population units in a district with a larger population 

district than the ideal population and then population units in an adjacent district with a 

smaller population than the ideal population (Figure 4.8b). By giving population units 

and taking them between these districts, the algorithm tries to minimize the population 

difference (Figure 4.8c and Figure 4.8d).  

 

 

  Continued 

  

Figure 4.8. The main idea of Give-And-Take greedy algorithm 

District 1 
Pop: 100  

District 3 
Pop: 90  

District 4 
Pop: 110  

District 2 
Pop: 100 

Pop: 100 

District k 
Pop: 90  

District h 
Pop: 110  

Pop: 100  

(b) Find District k and District h (a) A possible original districting plan 
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Figure 4.8 continued 

 

 

4.2.1 The general process of the heuristic 

 

The Give-And-Take greedy algorithm is outlined in Figure 4.9 (Algorithm GAT). The 

initial solution is obtained from the same process of the multi-scale simulated annealing, 

which randomly selects r seed units, finds adjacent units from each seed unit, and adds 

adjacent units to the seed unit until there are no units to be added. For a new solution, the 

Give-And-Take greedy algorithm finds a solution using two algorithms: Algorithm APS 

and Algorithm ACA. Algorithm APS is to find all possible solutions by searching for 

diverse configurations which is evolved from the initial plan. Algorithm ACA is to check 

all candidate adjacent units by finding similar configurations to the initial plan, which 

possibly visits all of adjacent units to the initial plan. The Give-And-Take algorithm finds 

a solution using algorithm ACA and also find a solution using algorithm APS. By 

comparing two solutions, the Give-And-Take algorithm reports a better solution. 

100  100 

District k 
130  

40  District h 
70  

100 100  

District k 
105  

District h 
95  

25
(d) Take pop 25 District k to District h (c) Give pop 40 from District h to District k 
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Algorithm APS and Algorithm ACA have broadly a same mechanism called Algorithm 

GAT-kernal in Figure 4.9. The algorithm first finds the district, which has a smaller 

population than the ideal population (District k). If the district exists, the algorithm finds 

candidate districts, which have larger population than the ideal population, and randomly 

selects one from the candidate adjacent districts (District h). The algorithm finds adjacent 

units in the selected larger population district, which have common border to the district 

with a smaller population the ideal population (Uh). Then the algorithm randomly selects 

the maximum number of population units to be swapped (Uh1), and gives them to the 

smaller population district k. The algorithm also finds adjacent units in the smaller 

population district which can be moved to the larger population district (Uk). It randomly 

keeps selecting a population unit and adding (or taking) it to the larger population district 

under the condition (Please see the next paragraph). In the above described way, the 

algorithm swaps population units between these. And then the algorithm checks if the 

swapped population units are movable. If it is true, the algorithm creates a new solution 

and calculates the objective function (return 0). Finally, the new solution, which is the 

better than or equal to the current solution, is always accepted, thereby the objective 

function value finally can be minimized. The algorithm can stop when the algorithm 

continually fails to exchange population units between these districts at specified number 

of times (nf = NF). 
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For the swapping (or giving and taking) condition, two differences (Difference 1 and 

Difference 2) used in the algorithm as below.  

 
 

 

where h is the district which has a larger population than the ideal population in the 

original plan, k is the district which has a smaller population than the ideal population in 

the original plan, Uh1 is the maximum number of population units moved from district h 

to district k and Uk1 is the number of reassigned population units from district k and 

district h. Difference 1 is the difference between the population in the district which has 

larger population than ideal population in the original plan and the population in the 

district which has a smaller population district than ideal population in the original plan. 

Difference 2 is the difference of really moved population units between two districts. The 

population units can be swapped while Difference 1≥  Difference 2. Among them, 

population units can also be swapped while Difference 2≥ 0. Under the evaluation 

condition, the algorithm can minimize population deviation between districts. For 

example, in Figure 4.8a and Figure 4.9b, Difference 1 is 20, which is the population in 

District h in the original plan – the population in District k in the original plan (110 – 90 = 

20) (Figure 4.8b). Difference 2 is 15, which is the real number of swapped units (40 – 25 

= 15) (Figure 4.8c and Figure 4.8d). 

Uk1inpopulationtotaltheUh1inpopulationtotalthe2Difference
)(districtofpopulationthe)(populationthe1Difference

−=
−= kh



75 

Note: each district is represented as an array and there are a total of r arrays for a specific problem. 
 
Notation 
 
A solution is denoted as s, which contains r arrays referred to as s[0], s[1], s[2], ..., s[r]. Each of the r 
arrays in s contains a set of unique identification numbers of the units that are assigned to that array. For 
example, if s[0] includes elements {0, 1, 13, 60}, it means that spatial units 0, 1, 13, and 60 are assigned 
to district 0.  
 
Algorithm GAT {Give-And-Take greedy algorithm to political redistricting}  
Input: Adjacent matrix, population of each population unit  
Output: y 
 
Generating a random initial solution 
Algorithm APS 
Algorithm ACA  
Evaluation APS and ACA 
 
Generating a random initial solution 
s := ø 
U := a set of all unassigned units 
Randomly select r seed units from U 
Add each of the seed units to one of the r arrays in s 
Remove the r seeds from U 
Repeat until |U| = 0  
 For each district i 
  u := random unassigned unit that is adjacent to the district 
  add u to district s[i] 
  remove u from U 
Return s 
 
Algorithm APS 
Input: s, NF (number of failed trials) 
s0 := s 
nf := 0 
Repeat until nf = NF 
 For each district k in s0 
  p := GAT-kernel(k, s0) 
  if (p > 0) 
   nf := nf + p 
  if (p = 0) 
   s := s0 
return s 

 
Continued 

Figure 4.9. The process of Give-And-Take greedy algorithm 
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Figure 4.9 continued 

 

Algorithm ACA 
Input: s, NF (number of failed trials) 
s0 := s 
nf := 0 
Repeat until nf = NF 
 s0 := s 
 For each district k in s0 
  p := GAT-kernel(k, s0) 
  if (p > 0) 
   nf := nf + p 
  if (p = 0) 
   report s0 
 
Algorithm GAT-kernel(k, s) 
 
If the population of district k in s is greater than the ideal population, Then return -1 
h := a random district with a population greater than the ideal population 
d1 := population(h) - population(k) 
Uh := a set of units in h and are adjacent to district k 
Uh1 := nn units randomly selected from Uh (nn = rand_range(1, NN) 
Add units in Uh1 to district k 
Uk := a set of border units in district k adjacent to h 
Uk1 := empty 
For each unit j in Uk 
 D2 := population(Uh) – population(j)      
 if (Difference 1 >= D2) 
  assign j to district h 
  add j to Uk1 
 Difference 2 := total population in Uh1 – total population of units in Uk1 
 if (Difference 2 >= 0) 
  if districts k and h are contiguous using CONTIGUITY_P2 
   return 0 
  else 
   return 1 
 else 
  return 1 
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4.2.2 Ensuring contiguity in the GAT algorithm 

 

The GAT algorithm uses contiguity rechecking procedure in a more simple way in above 

section 4.1.3.2 because the only usage of contiguity rechecking procedure not only keeps 

sufficiently checking contiguity among units, but also saves computing time. After 

exchanging population units between districts, the algorithm checks if exchanged units 

are really movable for the choice of next solution with three procedures (Figure 4.10).  

(1) The first procedure selects a seed unit among the exchanged units (step 1), 

(2) The second procedure adds adjacent units to the seed unit until there is no unit to 

be appended (step 2 and step 3.1),  

(3) The third procedure calculates the total number of units to be added to the seed 

unit (step 3.2). If the total number of units is equal to the total number of units in 

each district, the seed unit can be movable. Otherwise the seed unit is non-

movable (step 4). 

 

Algorithm CONTIGUITY_P2 {Contiguity rechecking procedure of the GAT algorithm} 
Input: n (the number of the exchanged units), the set of selected units 
Output: true or false  
1. Select a seed unit from exchanged units 
2. Find adjacent units to the seed unit       
3. Repeat until there is no unit to be selected  
3.1.    Add adjacent units to the seed unit 
3.2.    Calculate the total number of units to be added 
4. If the total number of units = the total number of units in the district, 
     Then the seed unit is “movable unit” and is maintained 
Else the seed unit is “non-movable unit” and is subtracted 

Figure 4.10. Contiguity procedure of the Give-And-Take algorithm 
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4.3 Experiments on the Give-And-Take greedy algorithm 

 

There are two kinds of experiments for the Give-And-Take greedy algorithm. The first 

experiment extends the algorithm in order to find various spatial configurations with 

similar (or better) population of the given plan. The second experiment is a sensitivity 

analysis to see how the algorithm performs under different parameters. 

 

4.3.1 Finding various spatial configurations similar to the given plan 

 

For the given redistricting plan, is it possible to find different spatial shapes with similar 

population to the given plan? The question can be solved using Give-And-Take greedy 

algorithm, which starts from the given plan as the initial solution. The algorithm also 

gives and takes population units between a district with the larger population with the 

ideal population and a district with the smaller population with the ideal population. The 

algorithm would allow population units to be switched between districts if doing so does 

not increase population deviation. 

 

4.3.2 Sensitivity analysis of the heuristic 

 

There are two parameters to be explored for sensitivity analysis of the Give-And-Take 

greedy algorithm: the maximum number of units to be swapped (step 2.1.4.5 in Figure 
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4.9), and the specified number of failures (step 2.1.2 and step 2.2.1 in Figure 4.9). The 

maximum number of units to be swapped units is the number of units that are randomly 

selected for adding to the smaller population district. For example, when the maximum 

number of units to be swapped is set to 3, the algorithm randomly decides 1, 2 or 3 units 

to be selected for swapping. The specified number of failures is about the terminal 

condition of the algorithm and the total number of degraded trials where the population 

units between the larger population district and the smaller population district continually 

fail to be exchanged. The algorithm exchanges the population units between the smaller 

population district and the larger population district until the algorithm continually fails 

to exchange them specified number of times, for example, 100. 

 

4.4 Computational experiments of the heuristic models 

 

Heuristic tests for political redistricting problems are performed on a computer system of 

Intel(R) Core™ 2 CPU E7400, 2.80GHz, 4 GB RAM. All algorithms utilize the same 

objective function and test data set which can be comparable. The objective function is to 

minimize the population deviation of each district from the ideal population. So, we have 

a following objective function. 

Min ∑
=

−××
r

j
j Pp

P 1

*1100  

Where P is the total population, r is the number of districts, P* is the ideal population 

computed as the rounded integer value of P/r, and pj is the population of the j district. 
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The same types of data sets used in the previous Chapter 3 here are used here for 

performance test and comparisons of two heuristics: regular data (5 by 5, 10 by 10 and 25 

by 40 type of data), and the Iowa data. For the experiments on the Give-And-Take greedy 

algorithm, above the 10 by 10 data and Iowa congressional redistrict data are used. 

(Figure 4.11a and Figure 4.11b). 

 

The dissertation also applied the Give-And-Take greedy algorithm on another data set, 

which is the large size of 8374 VTDs (Voting Tabulation District) data for Texas. VTD 

refers to election units that State and local governments create for elections. VTD is a 

term adopted by the Bureau of the Census in order to relate election data to census data. 

VTDs and their demographic data are obtained from the American Fact Finder in Census 

Bureau13. The given plan of Texas is 107th Congressional Districts (Jan. 2001 - Jan. 

2003), which shows a good match to the shape file of VTDs data. 107th congressional 

district has 30 districts with an objective function value of 9.341 (Figure 4.11c). 

 

 
 

 

 

 

 

 
 

                                            
13 http://factfinder2.census.gov 
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(a) “Official” plan of 10 by 10 data: 1.29          (b) Iowa official plan: 0.0080 

                          (39 persons)                        (235 persons) 

          

 

 (c) Official plan of Texas 107th congressional district: 9.341 

                                                  (1947759 persons) 
Figure 4.11. Test data with the given plan  
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4.4.1 Test results of heuristic models 

 

The multi-scale simulated annealing heuristic and the Give-And-Take greedy heuristic 

find a solution at every iteration and are executed 500 times. So, the total number of 

solutions generated is as same as 500 for both heuristics. Parameter settings for the best 

solution founded by both algorithms are listed in Table 4.2 and Table 4.3, respectively. 

For the Give-And-Take greedy algorithm, the maximum number of units to be swapped is 

not the real number to be swapped. When the maximum number of units to be swapped is 

decided, for example 4, the heuristic randomly decides 1, 2, 3 and 4 units to be selected 

for swapping, for example 3.  

 

na rb Ini_Temp.c Alpa-rated Beta-ratee MSPf Stop_Temp.g 

2 15.81 0.5 0.95 2.91 0.01 

3 26.05 0.5 0.965 6.49 0.001 5 by 5 

4 31.56 0.5 0.96 3.34 0.00001 
3 1.94 0.5 0.965 0.93 0.00001 
4 5.64 0.5 0.96 2.10 0.000001 10 by 10 

5 8.08 0.5 0.96 1.97 0.0001 

5 5.99 0.5 0.96 6.76E-13 1.0E-22 

10 32.45 0.5 0.98 1.70E-64 1.1E-65 25 by 40 

20 16.63 0.5 0.98 3.46E-49 1.8E-50 

Iowa 5 55.31 0.5 0.95 16.15 1.0E-22 
a: data type                     
b: the number of districts              
c: Initial temperature         
d: Alpa for multiple decreasing rates                      
e: Beta for multiple decreasing rates 
f: the temperature at the maximum specific heat occurs       
g: Stop temperature 
Table 4.2. Parameter settings of the multi-scale simulated annealing 



83 

na rb The certain number of units  
to be swapped The specified number of failures

2 5 100 

3 8 10000 5 by 5 

4 2 1000 
3 2 1000 
4 8 1000 10 by 10 

5 3 10000 

5 5 1000 

10 7 1000 25 by 40 

20 8 1000 

Iowa 5 5 10000 
 
Table 4.3. Parameter settings of the Give-And-Take greedy algorithm 
 

Table 4.4 includes computational results of two heuristics. For comparison, the 

computational results of Xiao (2008) are utilized. The first column is data set from 5 by 5, 

10 by 10, and 25 by 40 data to Iowa data. The second column is the number of districts, 

and the third column is theoretical optimal solution. The global optimal solution is not 

known in heuristic models, but for many cases of test data (5 by 5 data, 10 by 10 data) the 

global optimal solution can be used from the test results of exact models in Chapter 3 

(Table 3.2). For other cases not known from exact models, theoretical optimal solution is 

calculated with the assumption that all population units are connected to any other 

population units. If the total population can be evenly divided by the number of districts, 

the theoretical optimal solution has 0 as the objective function value. The minimum, 

median, maximum objective function values and CPU time for each heuristic including 

the result of Xiao (2008) are reported. 



84
 

   a:
 D

at
a 

ty
pe

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
 

b:
 T

he
 n

um
be

r o
f d

is
tri

ct
s 

  
  

  
  

  
  

  
  

  
 

c:
 T

he
or

et
ic

al
 o

pt
im

al
 so

lu
tio

n 
 

d:
 a

ve
ra

ge
 ti

m
e 

in
 se

co
nd

s a
fte

r 1
0 

tim
es

 tr
ia

ls
 w

ith
 th

e 
co

m
pu

te
r s

ys
te

m
 o

f I
nt

el
(R

) C
or

e™
 2

 C
PU

 E
74

00
, 2

.8
0G

H
z,

 4
 G

B
 R

A
M

 
*:

 T
he

 o
ffi

ci
al

 p
la

n 
of

 Io
w

a 
in

 2
00

0:
 0

.0
08

0 
 

 
Ta

bl
e 

4.
4.

 R
es

ul
ts

 o
f a

ll 
he

ur
is

tic
 m

od
el

s 

M
ul

ti-
sc

al
e 

si
m

ul
at

ed
 a

nn
ea

lin
g 

G
iv

e-
A

nd
-T

ak
e 

al
go

rit
hm

 
X

ia
o 

(2
00

8)
 

na  
rb  

Th
eo

re
tic

al
 

O
pt

im
al

 
So

lu
tio

nc  
M

in
 

M
ed

ia
n

M
ax

 
Ti

m
ed  

(s
ec

.)
M

in
M

ed
ia

n
M

ax
 

Ti
m

ed  
(s

ec
.) 

M
in

 
M

ed
ia

n
M

ax
Ti

m
e 

(s
ec

.)

2 
0.

00
 

0.
00

 
0.

00
 

2.
60

 
0.

06
 

0.
00

0.
00

 
16

.1
5 

0.
01

 
0.

00
 

0.
00

 
0.

00
7.

00
 

3 
0.

00
 

0.
00

 
0.

52
 

3.
65

 
0.

17
 

0.
00

2.
08

 
23

.4
4 

0.
17

 
0.

00
 

0.
00

 
1.

56
6.

00
 

5b
y5

 

4 
0.

00
 

0.
00

 
1.

56
 

6.
25

 
0.

31
 

0.
00

10
.9

4 
33

.8
5 

0.
03

 
0.

00
 

0.
52

 
1.

56
6.

00
 

3 
0.

00
 

0.
00

 
0.

14
 

0.
54

 
1.

22
 

0.
00

0.
00

 
39

.1
6 

0.
16

 
0.

00
 

0.
00

 
0.

00
73

.0
0 

4 
0.

00
 

0.
00

 
0.

34
 

1.
02

 
1.

72
 

0.
00

0.
47

 
31

.1
0 

0.
16

 
0.

00
 

0.
00

 
0.

07
66

.0
0 

10
by

10
 

5 
0.

07
 

0.
07

 
0.

75
 

1.
76

 
1.

53
 

0.
07

3.
18

 
29

.4
0 

0.
47

 
0.

07
 

0.
11

 
0.

14
64

.0
0 

5 
0.

00
27

 
0.

00
4

0.
07

6
19

.3
26

16
1.

50
0.

00
4

0.
00

7 
13

.1
22

 
2.

31
2 

0.
00

27
 

0.
00

43
0.

01
13

19
49

6 

10
 

0.
00

4 
0.

11
1

4.
15

9
22

.3
1

32
1.

56
0.

00
4

4.
39

7 
27

.1
63

 
26

.4
17

 
0.

01
74

 
0.

03
08

0.
00

4
18

90
1 

25
by

40
 

20
 

0.
00

4 
0.

67
4

8.
31

3
25

.6
69

22
3.

59
0.

09
0

11
.3

78
29

.8
13

 
22

.9
86

 
0.

07
10

 
0.

09
78

0.
24

04
19

83
2 

Io
w

a*
 

5 
0.

00
03

 
0.

00
66

 (1
92

 p
er

so
ns

) 
0.

00
07

5 
(2

2 
pe

rs
on

s)
 

0.
00

45
 (1

31
 p

er
so

ns
) 

84 

*
1

10
0

P
r

P
P

×
−

×
×



85 

From comparisons between two new heuristics, the Give-And-Take greedy algorithm is 

more efficient than the multi-scale simulated annealing heuristic, and even the large data 

such as 25 by 40 data show such efficiency in CPU time. This is because the algorithm 

uses a simple contiguity checking process to evaluate if the swapped population units are 

really “movable” and accepts only a better solution unlike a multi-scale simulated 

annealing to often accept worse solutions. The Give-And-Take greedy algorithm can 

reach theoretical optimal solution for small data set such as 5 by 5 and 10 by 10 data as 

well as for large data set such as 25 by 40 data (r = 4). For other data set, the Give-And-

Take algorithm reaches near-optimal solutions. However, in terms of the ranges of 

solutions such as minimum, median and maximum objective values, multi-scale 

simulated annealing shows higher quality solutions because the results of Give-And-Take 

greedy algorithm absolutely depends on random initial solutions. Multi-scale simulated 

annealing may not reach theoretical optimal solutions for 25 by 40 data but reach near-

optimal solutions. 

 

From the comparison with Xiao (2008), two new heuristics (the Give-And-Take 

algorithm and the multi-scale simulated annealing) are more efficient than the existing 

heuristic of Xiao (2008). The Give-And-Take greedy algorithm shows excellent 

efficiency to find solutions while Xiao (2008) and the multi-scale simulated annealing 

show higher effectiveness. For the large size data such as 25 by 40 data, all of the 

heuristic can reach near-optimal solutions. Especially, the Give-And-Take greedy 

algorithm and the evolutionary algorithm of Xiao (2008) arrive at theoretical optimal 
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solutions in one case, r = 10 and r = 5 respectively. The maps of the best solution founded 

in Figure 4.12 to Figure 4.14 when they are represented with a strict population equality 

and contiguity. New heuristics finds various kinds of optimal solutions in the same 

objective function value for each problem. Furthermore, two new heuristics find different 

redistricting plans in the same strict equal population.  

 

Each algorithm finds different spatial configurations in the strict equality redistricting 

plan (Table 4.5). For 5 by 5 data, the multi-scale simulated annealing finds 100 different 

kinds of results for r = 2, 18 different kinds of spatial configuration for r = 3, and 1 

solution for r = 4. The Give-And-Take greedy algorithm finds 254 various spatial shapes 

for r = 2, 61 various kinds of shapes for r = 3 and 41 shapes for r = 4. For 10 by 10 data, 

the multi-scale simulated annealing finds 51 distinctive spatial configurations for r = 3, 2 

different kinds of spatial configuration for r = 4, and 2 solutions for r = 5. The Give-And-

Take greedy algorithm finds 254 various spatial shapes for r = 3, 61 various kinds of 

shapes for r = 4 and 41 shapes for r = 5. For 25 by 40 data, the Give-And-Take greedy 

algorithm finds 2 different shapes for r = 10. The Give-And-Take greedy algorithm shows 

advantages finding different spatial configurations in the same population when the data 

sizes are larger because the algorithm not only visits all adjacent units to the initial 

solution (Algorithm ACA) but also checks all units as possible evolved from the initial 

solution (Algorithm APS). 
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Figure 4.12. Redistricting results of 25 units in 5 by 5 data with 2, 3 and 4 districts for 
each heuristic.  
Thick lines represent the district boundaries. Multi-scale simulated annealing finds 100 
different kinds of results for r = 2, 18 different kinds of spatial configuration for r = 3, 
and 1 solution for r = 4. Give-And-Take greedy algorithm finds 254 various spatial 
shapes for r = 2, 61 various kinds of shapes for r = 3 and 41 shapes for r = 4. 
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Figure 4.13. Redistricting results of 100 units in 10 by 10 data with 3, 4, and 5 districts.
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Figure 4.14. Redistricting results of 1000 units in 25 by 40 data with r = 10 for Give-
And-Take greedy algorithm 
 

For the Iowa redistricting example, the total population of year 2000 is 2,926,324, and the 

theoretical global optimal solution is 0.0003. The official plan adopted by Iowa in 2000 

has an objective function value of 0.0080, and the total absolute deviation from the ideal 

population is 235 persons (Figure 4.11b). The best solution by Give-And-Take greedy 

algorithm shows higher population equality than that by the multi-scale simulated 

annealing heuristic. The multi-scale simulated annealing heuristic has the best solution 

with an objective function value of 0.0066, and 192 persons as the total absolute 

deviation from the ideal population (Figure 4.15a), the Give-And-Take greedy algorithm 

has as an objective value of 0.00075, which is 22 persons as the total absolute deviation 

from the ideal population (Figure 4.15b). Guo and Jin (2011) report 33 persons as the 
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total absolute deviation from the ideal population14. The best plan by the Give-And-Take 

algorithm using Iowa 2010 census data is also tested. The total population of year 2010 is 

3,046,355 and the Give-And-Take greedy algorithm has an objective value of 0.00023, 

which is 7 persons as the total absolute deviation from the ideal population (Figure 4.16). 

It can be concluded that the all of the heuristics find redistricting plans with higher 

population equality than the official plan. Among them the Give-And-Take greedy 

algorithm has the most strict population equality redistricting plan. 
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(a) The best solution by the multi-scale simulated annealing: 0.0066 (192 persons) 

continued 

Figure 4.15. Redistricting for Iowa where 99 counties with 5 congressional districts 
(2000) 
 

 

                                            
14 http://www.spatialdatamining.org/iRedistrict 
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Figure 4.15. continued 
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(b) The best solution by the Give-And-Take algorithm: 0.00075 (22 persons) 

 

15543

93158

9243

24986
18129

33704

36842

102172

20880
7310

17767

49116

38013

2607617096

9670

9336

7682

9421

14928

21056

51316317 8457

14330

6403

19848

7441 8753

93653

7570

211226

11581

10954

9566

12167 66135

10511

1635518914

10680

18499

13229 14867

11341

20260

17764
10350

12072

15673

20638

4415114398

22381

8954226306

20958

40648

16667

46225 21704

20816

33309

17534

13956

6119

15679

9815

8898 7970

7089

9286

35862
15932

4029

130882

12887

12439

7598

12453

16303

6462

430640

131090

10776

42745

15059

24276

16843 2014535625
40325

1253410740

11387

16667 10302 10866

165224

 

The best solution by the Give-And-Take algorithm: 0.00023 (7 persons) 

Figure 4.16. Redistricting for Iowa where 99 counties with 4 congressional districts 
(2010) 
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na rb Multi-scale simulated annealing Give-And-Take algorithm 
2 100 75 
3 18 8 5 by 5 
4 1 1 
3 51 254 
4 2 61 10 by 10 
5 2 41 
5 - - 
10 - 2 25 by 40 
20 - - 

a: Data type                                   
b: The number of districts 
 
Table 4.5. The number of different shapes in the same objective function values 
representing the strict population equality 
 

4.4.2 Results from the experiments of the Give-And-Take greedy algorithm 

 

According to the above tests, the Give-And-Take greedy algorithm can be applied to find 

different spatial configurations but similar or better population of the given plan because 

the algorithm can not only reach high quality solutions in efficient amount of time even 

for the large data, but also find lots of different spatial configurations. Algorithm APS is 

to find all possible solutions by searching for diverse configurations which is evolved 

from the initial plan. The algorithm finds different kinds of spatial configurations starting 

from the given plan (Figure 4.9 and section 4.3.1). Parameters for the application of the 

algorithm are decided in Table 4.6.  
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Data type na rb Gc Sd   The specified number of failure 
10by10 100 3 1.29 3 100 

Iowa 99 5 0.0080 3 100 

Texas 8374 30 9.34 3 100 
a: The number of population units              
c: Given initial solutions 
b: The number of districts                     
d: The certain number of units to be swapped 
 
Table 4.6. Parameter setting of the Give-And-Take greedy algorithm for finding various 
shapes 
 

Algorithm ACA 

{All candidate adjacent units check}

Algorithm APS 

{All possible solution units check}  n r G 

Min Median Max CPU Time Min Median Max CPU Time

10by10 3 1.29 1.016 1.016 1.220 0.005 0.000 0.271 1.220 0.027 

Iowa 5 0.008 0.0053 0.0059 0.0073 0.009 0.0053 0.0059 0.0073 0.004 

Texas 30 9.341 9.014 9.256 9.340 405.301 0.433 2.430 9.339 1280.92

 
Table 4.7. Computational results of finding different redistricting plan of the Give-And-
Take greedy algorithm 
 

Table 4.7 shows computational results of finding various redistricting plans similar to the 

given plan. Min, Median and Max are the objective function values starting from the 

given plan. Solutions are divided into all possible solution units check using algorithm 

APS and all candidate adjacent unit checks using algorithm ACA (Please see Figure 4.9). 

Computational experiments show that CPU Times are very short, even the large data such 

as Texas with 8374 VTDs show such efficiency in CPU time because the algorithm only 

uses a simple contiguity procedure. Figure 4.17 to Figure 4.19 show different spatial 

results of 10 by 10 data, Iowa and Texas. Computational results show that the Give-And-
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Take greedy algorithm find lots of different redistricting plans but similar (better) or same 

population of the given plan because the algorithm not only visits all of adjacent units to 

the given plan, but also searches for diverse spatial configurations evolved from the given 

plan. 
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(a) The minimum objective function value of 0 
 

                    
          
          
          
          
          
          
          
           

                    
          
          
          
          
          
          
          
           

                    
          
          
          
          
          
          
          
           

 

    

(b) The maximum objective function value of 1.219 

 
Figure 4.17. Various spatial configurations results of 10 by 10 data 
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(a) the objective function value: 0.0053 

(b) obj-value: 0.0054 (c) obj-value: 0.0059 (d) obj-value: 0.0062 

 
Figure 4.18. Various spatial configurations in Iowa 
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(a) Minimum objective function value: 0.60 

 

 
(b) Maximum objective function value: 9.31 

 
Figure 4.19. Various spatial configurations in Texas 
 

 

 



98 

4.4.3 Test results for sensitivity analysis of the Give-And-Take greedy 

algorithm 

 

Parameter settings for sensitivity analysis are listed in the second column of Table 4.8 and 

Table 4.9. The maximum number of units to be swapped is set from 1 to 10 with an 

increment of 1. The number of failures for terminating the program is set from 10, 50…to 

10000. The algorithm is executed 100 times for 10 by 10 data and Iowa data, and is 

executed 10 times for Texas data due to the relatively long CPU Time. There are two 

types of experiments. The first experiment is to explore the effect of the certain number 

of units to be swapped under the fixed number of failures (100 for all data). The second 

experiment is to observe results when the algorithm changes the number of failures 

within the fixed number of units to be swapped (3 for all data). 

 

Table 4.8 and Table 4.9 include computational results of the algorithm. Min, Median and 

Max are the objective function values from the algorithm starting from the given plan. 

Solutions are divided into all possible solution units check using algorithm APS and all 

candidate adjacent unit checks using algorithm ACA (Please see Figure 4.9). Algorithm 

APS finding all possible solutions finds redistricting plans with higher population 

equality because the algorithm searches for diverse spatial configurations evolved from 

the given plan. Computational results show that different parameters have not a strong 

influence on reaching good solutions for 10 by 10 data and Iowa data. The Give-And-

Take greedy algorithm often fails to find solutions in some cases of Iowa data because the 
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given plan of Iowa shows higher population equality. Texas data have shown that the 

solution qualities become worse when the number of failures is so small (e.g. 10) or when 

the number of units to be swapped is so small (e.g.1). Texas data also have that the 

solution qualities, especially minimum solution qualities, are better in case of the higher 

number of trials (≥ 500). Several computational experiments can generally be concluded 

that parameters in the algorithm are not especially sensitive and CPU time gets long in 

the large number of failures. 

 

Algorithm ACA 

{All candidate adjacent units check}

Algorithm APS 

{All possible solution units check} Given initial 
Solutions 

The certain number 
of units 

The number 
of failure 

Min Median Max CPU Time Min Median Max CPU Time

1 100 1.016 1.016 1.220 0.013 0.000 0.407 1.220 0.018 

2 100 1.016 1.016 1.220 0.019 0.000 0.339 1.220 0.026 

3 100 1.016 1.016 1.220 0.019 0.000 0.407 1.220 0.021 

4 100 1.016 1.016 1.220 0.018 0.000 0.271 1.220 0.017 

5 100 1.016 1.016 1.220 0.019 0.000 0.237 1.220 0.016 

6 100 1.016 1.016 1.220 0.019 0.000 0.474 1.220 0.018 

7 100 1.016 1.016 1.220 0.017 0.000 0.203 1.220 0.012 

8 100 1.016 1.016 1.220 0.016 0.000 0.474 1.220 0.011 

9 100 1.016 1.016 1.220 0.015 0.000 0.813 1.220 0.007 

1.29 

10 100 1.016 1.016 1.220 0.015 0.000 0.474 1.152 0.010 

(a)10 by 10 data 
continued 

 
Table 4.8. Computational results depending on the different numbers of units to be 
swapped 
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Table 4.8 continued 
 

Algorithm ACA 

{All candidate adjacent units check} 

Algorithm APS 

{All possible solution units check} Given initial 
Solutions 

The certain number 
of units 

The number
of failure 

Min Median Max CPU Time Min Median Max CPU Time

1 100         

2 100 0.006 0.006 0.006 0.003 0.005 0.006 0.006 0.051 

3 100 0.005 0.006 0.006 0.002 0.005 0.006 0.006 0.029 

4 100 0.006 0.006 0.006 0.003 0.005 0.005 0.006 0.024 

5 100 0.006 0.006 0.006 0.002 0.005 0.006 0.006 0.018 

6 100 0.005 0.006 0.006 0.003 0.005 0.005 0.006 0.010 

7 100 0.005 0.006 0.006 0.002 0.005 0.006 0.006 0.006 

8 100         

9 100     0.005 0.006 0.006 0.016 

0.008 

10 100     0.005 0.006 0.006 0.007 

(b) Iowa data; gray columns fail to find the objective function values and solutions 
 

 
Algorithm ACA 

{All candidate adjacent units check}

Algorithm APS 

{All possible solution units check} Given initial 
Solutions 

The certain 
number of units 

The number
of failure 

Min Median Max CPU Time Min Median Max CPU Time

1 100 9.001 9.240 9.308 49.460 1.122 3.279 9.308 1962.660 

2 100 8.854 9.225 9.308 51.515 0.450 2.320 9.306 1332.920 

3 100 8.866 9.206 9.308 49.874 0.449 2.118 9.283 1164.160 

4 100 8.697 9.176 9.307 45.960 0.148 1.693 9.308 1405.290 

5 100 8.806 9.161 9.305 44.236 0.130 1.690 9.308 1262.330 

6 100 8.789 9.135 9.306 44.416 0.449 2.000 9.288 1308.020 

7 100 8.633 9.182 9.308 43.043 0.131 2.032 9.306 1375.380 

8 100 8.760 9.193 9.303 42.375 0.130 1.934 9.301 1391.050 

9 100 8.555 9.196 9.307 42.909 0.483 2.332 9.308 1012.420 

9.308 

10 100 8.776 9.184 9.307 42.901 0.467 2.526 9.308 1083.470 

(c) Texas data 
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Algorithm ACA 

{All candidate adjacent units check} 

Algorithm APS 

{All possible solution units check} 
Given 
initial 

Solutions 

The certain  
number of units 

The number
of failure 

Min Median Max CPU Time Min Median Max CPU Time

3 10 1.016 1.016 1.220 0.021 0.000 0.610 1.220 0.009 

3 50 1.016 1.016 1.220 0.018 0.000 0.474 1.220 0.019 

3 100 1.016 1.016 1.220 0.019 0.000 0.407 1.220 0.021 

3 200 1.016 1.016 1.220 0.018 0.000 0.339 1.220 0.032 

3 500 1.016 1.016 1.220 0.015 0.000 0.339 1.287 0.017 

3 1000 1.016 1.016 1.220 0.014 0.000 0.271 1.220 0.045 

3 5000 1.016 1.016 1.287 0.017 0.000 0.203 1.287 0.072 

1.29 

3 10000 1.016 1.016 1.287 0.016 0.000 0.339 1.220 0.246 

(a) 10by10 data 
 

Algorithm ACA 

{All candidate adjacent units check} 

Algorithm APS 

{All possible solution units check} Given initial 
Solutions 

The certain  
number of units 

The number
of failure 

Min Median Max CPU 
Time Min Median Max CPU Time

3 10 0.006 0.006 0.006 0.187 0.005 0.005 0.006 0.221 

3 50 0.005 0.006 0.006 0.207 0.006 0.006 0.006 0.194 

3 100 0.006 0.006 0.006 0.172 0.005 0.006 0.006 0.432 

3 500 0.006 0.006 0.006 0.177 0.005 0.005 0.006 1.445 

3 1000 0.006 0.006 0.006 0.174 0.005 0.005 0.006 2.800 

3 5000 0.005 0.006 0.006 0.197 0.005 0.005 0.006 11.581 

0.008 

3 10000 0.006 0.006 0.006 0.184 0.005 0.006 0.006 15.040 

(b) Iowa data 
 

Algorithm ACA 

{All candidate adjacent units check} 

Algorithm APS 

{All possible solution units check} Given initial 
Solutions 

The certain 
number of units 

The number
of failure 

Min Median Max
CPU 
Time Min Median Max CPU Time

10 3 8.923  9.194 9.308 49.121 4.351  7.584  9.304 106.725 
50 3 8.895  9.194 9.307 51.641 0.449  2.420  9.303 887.861 

100 3 8.866  9.206 9.308 49.874 0.449  2.118  9.283 1164.160 
500 3 8.783  9.193 9.306 50.972 0.130  1.818  9.308 1728.880 
1000 3 8.936  9.191 9.308 42.606 0.148 1.641 9.303 1719.870
5000 3 8.787  9.180 9.307 42.562 0.130 1.874 9.307 2134.840

9.308 

10000 3 8.778  9.190 9.307 42.442 0.136  1.858  9.308 3007.210 
(c) Texas data 

 
Table 4.9. Computational results depending on the different numbers of failures 
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Chapter 5 Discussion and conclusion 
 

This chapter summarizes the dissertation and discusses possible future work. The first 

section presents the objectives of the dissertation and summarizes computational results. 

The second section provides several variations or extensions for future work. 

 

5.1 Research summary 

 

The main objective of this dissertation is the development of new optimization 

approaches to political redistricting problems with respect to essential political 

redistricting criteria of a strict equal population and contiguity for the use of 

congressional plans. The second objective is the evaluation with other representative 

research to get relative performance. The third objective is the foundation of various 

redistricting plans similar to or the same as the given plan in population, for the given 

plan.   

 

This dissertation develops two exact models by formulating contiguity requirement based 

on the recent developments of land acquisition problems. The first model is called a 

spanning tree model and the second model is called a network flow model. Two models 
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can successfully address contiguity formulation and a strict equal population in a mixed 

integer program while the existing approach of Garfinkel and Nemhauser (1970) ensures 

contiguity by the process of generating all feasible districts. Computational results show 

that all exact methods can find optimal solutions for small data. However, the method of 

Garfinkel and Nemhauser (1970) shows computational challenges in generating all 

feasible districts. All exact models are inefficient to find the redistricting plans for real 

cases. So, it can be concluded that it is necessary to develop efficient and effective 

heuristics. 

 

This dissertation also implements two heuristic models in order to efficiently find high 

quality solutions. The first model is called a multi-scale simulated annealing and the 

second model is called Give-And-Take greedy algorithm. The multi-scale simulated 

annealing allows non-improving solutions in order to escape the local optimal solution. 

Give-And-Take greedy algorithm exchanges population units between a district with 

smaller population than the ideal population and a district with larger population than the 

ideal population by using a more simple contiguity procedure. Computational 

experiments show that Give-And-Take greedy algorithm is much more efficient for most 

of regular cases (5by5, 10by10, and 25by40 data). Even for the large data such as 25by40, 

Give-And-Take greedy algorithm shows such efficiency and also finds more various 

spatial shapes in the same population deviation because the algorithm visits all adjacent 

units and checks all possible candidate population units. For the large size of data set 

such as 25by 40 data, all of the heuristics can reach near-optimal solutions, and especially 
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The Give-And-Take greedy algorithm and the evolutionary algorithm of Xiao (2008) 

finds theoretical optimal solutions in r = 10 and r = 5, respectively. For Iowa 

congressional redistricting, all of the heuristics find redistricting plans with higher 

population equality than the official plan of 0.0080, which is 235 persons as the total 

absolute deviation from the ideal population. Among all of the heuristics, the best 

redistricting plan by Give-And-Take greedy algorithm shows the highest population 

equality with the objective function value of 0.00075, which is 22 persons as the total 

absolute deviation from the ideal population. The best solution by the multi-scale 

simulated annealing 0.0066, which is192 persons as the total absolute deviation from the 

ideal population and the best solution by the existing heuristic of Xiao (2008) is 0.0045, 

which is 131 persons as the total absolute deviation from the ideal population. 

 

The Give-And-Take greedy algorithm can be applied to find different redistricting plans, 

which have same or similar population of the given plan because the algorithm efficiently 

finds a high quality solution even for the large size problem. Starting from the given plan 

as an initial solution, Give-And-Take greedy algorithm exchanges population units 

between a district with a larger population than the ideal population and a district with a 

smaller population than the ideal population, and accepts better or same plans to the 

given plan. Results from the application of the Give-And-Take greedy algorithm are great 

varieties of spatial configurations similar to or same as the given plan in population 

deviation.  
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5.2 Future work 

 

Several variations or extensions are necessary to investigate for future work. The first 

extension is the addition of other political redistricting criteria to the current models. In 

the reality, political redistricting is a complex and time consuming task because there are 

many criteria considered such as population equality, minority population, contiguity, 

compactness, communities of interest, competitiveness and etc. These criteria can be 

dealt with either constraints or another objective function value in the current developed 

optimization research.  

 

The second extension is the development of a multiobjective heuristic to political 

redistricting. Really, political redistricting is a multiobjective problem because several 

conflicting objectives should be considered at the same time. The purpose of solving a 

multiobjective problem is to generate compromised (non-dominated) solutions (Cohon 

1978; Steuer 1986). However, most of the existing researches have been developed as a 

single objective problem. So, it is necessary to develop a multiobjective optimization 

approaches to political redistricting in order to find lots of compromised solutions. 

Among them, the best compromised redistricting plan can be selected. In the context of 

political redistricting, an effective and efficient multiobjective algorithm should be 

developed. 

 

The third extension is the study of how optimization algorithms to political redistricting 
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have been integrated into GIS. Interactive type of GUI (Graphic User Interface) 

composes button-click options including several heuristics so that planners can use these 

heuristics for redistricting problems without being an expert in operations research. Web-

based GIS system with optimization algorithms can also be considered. Throughout the 

easy access to data and software by online, the public can have the possibility for greater 

participation in redistricting processes.  

 

The fourth extension is the implementation of more effective and efficient heuristic. The 

Give-And-Take heuristic shows that maximum values of objective function values are 

worse and the ranges of solutions such as minimum values, median values and maximum 

values are large. More robust heuristic should be considered in have good solution ranges.  

A new heuristic can be implemented by using another metaheuristic or the different 

method to generate an initial solution. For example, a spanning tree based heuristic 

algorithm can be implemented. 

 

The last extension is the focus on other district problems. There are sales districting (Hess 

and Samuels 1971; Zoltners and Sinha 1983; Fleischmann and Paraschis 1988), school 

districting (Schoepfle and Church, 1989; Ferland and Gu´enette 1990) and emergency 

service territories (Baker et al. 1989; D’Amico et al. 2002) and electrical power 

districting (Bergey et al. 2003). Different district problems have their own specific 

characteristics and consider their corresponding criteria. For example, sales districting 

much resemble political redistricting in that geographical criteria such as contiguity, 
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compactness are major criteria. However, there are other criteria considered such as the 

number of territories, locations of sales representatives, balance, and maximizing profit. 

Based on the particular characteristics and criteria of each districting problem, creative 

models can be developed.  
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