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Abstract

One common method of representing images is to reduce an image to a collec-

tion of features. Many simple features have been proposed, such as pixel intensities

and wavelet responses, but these choices are fundamentally unsuitable for capturing

the configural relations of objects and object parts, as spatial information associ-

ated with each feature is lost. Another recent strategy, known as “feature-hierarchy”

modeling, involves the use of overlapping, redundant features. These features are

obtained by processing an image across a hierarchy of units tuned to progressively

more complex properties. An open question is whether such approaches produce

data structures rich enough for implicitly capturing configural relations. We imple-

mented three experiments and several computer simulations to address this issue.

Our method involved the use of four classes of objects, each derived from the simple

spatial relationships present in classic Vernier and bisection acuity tasks. All human

observers achieved near perfect categorization performance after relatively few expo-

sures to each stimulus class. This ability also transferred across several dimensions,

including orientation and background context. By contrast, simulations on a feature-

hierarchy model revealed poor performance for this class of models. Furthermore, the

moderate categorization accuracy achieved did not transfer across even the simplest

of dimensions. These results indicate that this approach to image representation lacks

a fundamental property necessary for encoding the spatial configurations of object

parts.
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CHAPTER 1

Introduction

With advances in computing over the last several decades, computers have begun to

surpass humans on many tasks. Despite the overwhelming number of computations

that can be completed per second, a human child is capable of vastly outperforming

even the best computer at visual object recognition tasks. Because of this, many

models of object recognition have begun to look to the human visual system for

inspiration (e.g., Fukushima, 1980; Perret & Oram, 1993; Amit & Mascaro, 2003;

Wersing & Koerner, 2003). Computationally, the difficultly in deriving an algorithm

of object detection and recognition lies in the tradeoff between object selectivity and

invariance. This means that for a model to be successful in a variety of applications,

it must be able to reliably detect differences between object classes while remaining

largely indifferent to individual differences in objects within the same class (for an

exception, see DiCarlo & Cox, 2007). This includes variations due to position, scale,

orientation, occlusion, illumination, within-class heterogeneity, and more.

Early approaches to object recognition relied on template matching. Under this

strategy, every possible object is represented in memory by one or more exemplar

templates. Potential objects in an input image are compared to templates in memory

and successful matches trigger a response from the model. This approach remained

unsuitable for practical applications, as template-matching is brittle with respect to

the variability contained in most typical images.
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At a basic level, it became clear that a successful model of vision would require the

use of basic image properties that are invariant to the types of object variety found

in the world. One common strategy for image analysis is to reduce an image to a

histogram of “features.” The types of features that have been used include individual

pixel intensities (Swain & Ballard, 1991), receptive fields (Schiele & Crowley, 1996),

local scale invariant features (Lowe, 1999), three-dimensional textons (Leung & Malik,

2001), oriented gradients (Dalal & Triggs, 2005), and more. The basic methodology

of these approaches is to pass an image through a bank of filters, effectively stripping

the image down to a collection of individual elements. The features are then ana-

lyzed and discriminated by the use of a secondary classifier. Such approaches have

led to successes on very specialized tasks. However, in the best cases these modeling

approaches retain minimalistic local spatial information nearby to extracted features,

and in the worst cases, all spatial information is lost. In these extreme cases, images

are reduced to a bag of free-floating features. From the perspective of these models,

a given feature could have originated from any possible location in the image. In

contrived situations this is not a problem, as a large enough collection of disparate

features will constrain the problem space enough to allow for accurate classification.

Not surprisingly, however, when the spatial arrangement of image features becomes

critical to solving a task, these data structures do not provide the necessary informa-

tion. Such bag-of-feature approaches shift the responsibility of extracting relational

information from early visual areas to later visual areas, implying that our aware-

ness of the arrangement of objects or object-parts in a scene is due to higher-level

reasoning, rather than a direct perception.

However, there is growing evidence that people do directly perceive spatial con-

figurations in images (e.g., Biederman, 1981, 1987; Logan, 1994; Pylyshyn, 2007;

J. Kim & Biederman, 2010). These relations are not just passively encoded either,
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but appear to be fundamental to many perceptions. For example, Green & Hummel,

2004 found that when neighboring objects are arranged in a functionally meaningful

way (such as a hammer turned toward the head of a nail), object identification is

facilitated. However, when objects share similar contextual and spatial relations, but

are not functionally arranged (such as a teapot pouring away from a cup), no facil-

itation occurs. Green & Hummel, 2006 took this idea further, demonstrating that

by changing the stimulus onset asynchrony (SOA) between the two objects from 100

msec to 250 msec, facilitation once again is lost. If grouping of objects and object

parts occurs downstream during higher-level reasoning, then we would expect the

subtle change in SOA to have no effect on identification. The fact that a larger SOA

produces this effect suggests that near-simultaneously presented features are bound

together into a single cohesive item early in the visual system.

Structural description theories (Humphreys, 1987; Biederman, 1987; Hummel &

Biederman, 1992) address this issue by explicitly encoding the spatial information

of object parts. Thus, both the individual features and their relative positions are

encoded separately. Importantly, both forms of information are bound together,

preserving both configural relations and individual features. This approach requires

a neural mechanism (von der Malsburg, 1999) capable of simultaneously binding

features from the same object into a group, while maintaining inter-object segregation.

While the exact mechanism capable of achieving this task remains unknown, recent

fMRI data at least indirectly suggests that such binding may be occurring (Bar et al.,

2001). In general, the lateral occipital complex has been implicated in the perception

of the final representational form of visual objects (J. G. Kim, Biederman, Lescroart,

& Hayworth, 2009).

Work by Hayworth, Lescroart, & Biederman, 2010 found evidence that the pos-

terior fusiform (pFs), the most anterior region of the LOC, is actively involved in the
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representation of configural relations. A series of fMRI adaptation studies revealed

that changes in the relative positions of objects, as opposed to changes in absolute

positions of the objects, led to increased BOLD responses. The results are in ac-

cord with one possible account that relies on “object files” (Kahneman, Treisman, &

Gibbs, 1992). Such approaches, such as the FINST theory of Pylyshyn, 2007, 2009,

posit that individual objects (or object parts) are loaded into neural “slots” that

collectively capture and manage the relational properties of multiple elements.

While bag-of-feature models may not explicitly encode for configural relations, a

particularly popular and successful variation on this class of models may implicitly

capture the necessary spatial information. This class of models, known as “feature

hierarchy” models, uses dense, overlapping receptive fields to translate an image into

an internal representation (Figure 1.1). By doing so, features are redundantly encoded

Figure 1.1: Feature hierarchy model schematic. Each level processes increasingly
more complex features, possibly allowing for the binding of features and
spatial relationships (O’Reilly & Munakata, 2000).
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for, giving rise to higher-order complex feature templates which enable an object to

be reconstructed downstream. Whereas simple histograms of features throw away all

spatial information, one hypothesis is that this redundant coding scheme provides

sufficient information for a classification task wherein the configuration of features

becomes critical to success. There is an open question as to whether a hierarchical

bag-of-features approach to image analysis is sufficient in this way. This was the

motivating question for the present study.

To answer this question, we endeavored to create a set of object classes that both

minimized feature complexity and relied on spatial configurations of the parts for

identification. One reasonable simplification involved two very well understood visual

tasks: Vernier and bisection acuity tasks. For Vernier stimuli, an observer is typically

asked to resolve progressively smaller displacements in the relative spatial position of

disjoint dot patterns or line segments (i.e., whether or not the segments or dots are

collinear). Depending on the specific stimuli, observers exhibit thresholds as low as 5

arcsec (Westheimer, 1981; Klein & Levi, 1985). The diameter of the photoreceptors

in the retina are around 30–60 arcsec, which means that human observers readily

demonstrate hyperacuity at levels less than 1/5 the size of a single photoreceptor.

The presence of hyperacuity implies that the spatial relations are being extracted

beyond the retinal level (Waugh & Levi, 1995). Similar results have been found for a

variety of bisection tasks (Westheimer, Crist, Gorski, & Gilbert, 2001), wherein the

goal is to detect if a flanked visual element is equidistant from the two end points, or

if it is shifted closer to one end.

Important to the discussion here is not the level of hyperacuity possible, but rather

the consistent and strong finding that human observers are able to very accurately

perceive the relative spatial positions of separate elements in the visual field. Because

hyperacuity on these tasks is such a robust phenomenon, we should expect that any
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sufficient model of object recognition should have a mechanism capable of encod-

ing such spatial information. If feature hierarchy-based models are able to capture

spatial configurations, then the simple and reliable relations found in visual acuity

stimuli should be a given. One reasonable sanity check could involve creating an

object classification task that relies on such configurations. With this idea in mind,

we implemented several behavioral experiments featuring four object classes built

upon these principles. The results of our human performers are then compared to

performance from a successful feature hierarchy model known as the “standard,” or

HMAX model (Riesenhuber & Poggio, 1999).
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CHAPTER 2

Experiments

2.1 Experiment 1

2.1.1 Participants

Twelve individuals from The Ohio State University participated for course credit.

All subjects were verified to have normal or corrected-to-normal vision by means of

a Snellen eye chart.

2.1.2 Stimuli and Procedure

Stimuli consisted of four novel object categories, each derived from classic Vernier and

bisection tasks (e.g., Seitz et al., 2005; Fahle & Morgan, 1996; Poggio, Fahle, & Edel-

man, 1992). All four categories were composed of three circular white dots embedded

within one of two background contexts (Figure 2.1). Two independent binary factors

jointly determined class membership: (1) collinearity of the dots (Vernier), and (2)

spacing between dots (bisection). Class 1 objects had collinear dots with equidistant

spacing. Class 2 objects featured collinear, but unevenly-spaced dots. Class 3 objects

had non-collinear, equally-spaced dots. Class 4 objects had non-collinear, unequally-

spaced dots. For categories 2–4, the direction of shift in the center dot relative to the

outer dots (i.e., the “bisection” and “Vernier” displacements) could occur in either

of two directions. This means, for example, that in the case of stimuli from class 4,
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Figure 2.1: Example training stimuli from each of four categories. Subjects trained on
stimuli oriented with an implicit angle (here +40◦ from vertical). Reading
across rows: categories 1–4. Actual stimuli varied with respect to the
overal scale and position of the dots within the image.

the center dot could be in one of four positions relative to the outer two dots. The

scale of the dots varied (as a group) from image to image, and the dots were free to

translate within the background context.

Stimuli were generated using Matlab (The MathWorks, 2009) and the Psychophysics

Toolbox (Brainard, 1997; Pelli, 1997), and were presented at 96 Hz on a gamma-

corrected 21” NEC AccuSync 120 color CRT. The experiment was conducted in a

dark room, and gaze distance was held constant at 93 cm by means of a chin rest.

The procedure consisted of a 6-block training period followed by a 10-block test

period. All blocks contained eight randomly generated exemplars from each class,

for a total of 32 total trials per block. During training blocks, the three dots fell

along an implicit major axis that was held at a fixed angle across all trials. Half of

the subjects trained on an angle −50◦ from vertical, and half trained on +40◦. No

8



Figure 2.2: Example stimuli from each of the four test conditions. Rows depict cat-
egory membership. Columns show example stimuli from each of the four
test conditions. Condition 1 is identical to the training condition. Actual
stimuli varied with respect to the overal scale and position of the dots
within the image. For categories 2 & 4, the orientation of the implicit
major axis of the dots varied from trial to trial.
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differences between training angles were found, and all results are collapsed across this

dimension. The beginning of each trial was signaled by the word “Ready!” onscreen.

Subjects were shown the current stimulus after a key press, and were free to mouse

click their response on one of four colored squares, each of which signified the “name”

of each category. Assignment of color names to each category was randomized between

subjects. Feedback was given for correct and incorrect decisions during training, and

took on several forms. After making a choice, the correct answer was shown in

color and distractors were grayed out. Correct decisions were confirmed by a smiley

face displayed over the chosen answer, along with an increase in accumulated bonus

points (visible onscreen at all times). Incorrect responses elicited a beep from the

computer, along with a frowning face displayed over the chosen answer. Prior to

training, subjects were only informed that there would be stimuli from four different

categories. No information about class membership was revealed, and so participants

were forced to learn to categorize our stimuli through feedback alone.

During the test period, participants were no longer given feedback of any form.

All answers were confirmed by a neutral face, and bonus points were displayed as

“XXXXX” onscreen. All other procedures remained the same as the training period.

Within each test block, subjects were tested on an equal number of four conditions

in random order (Figure 2.2). Condition 1 was identical to the training condition:

white dots on a black background at an angle identical to training. For condition

2, the implicit major axis of the dot arrangements rotated freely from trial to trial,

taking on any integer value between 1− 180◦, except for those values within ±45◦ of

the participant’s original training angle. In condition 3, dot patterns were embedded

in a black circular context against a white background and the angle was fixed at the

training direction. Condition 4 featured white dots within a black circular context and

10
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Figure 2.3: Mean accuracy across training and test for n=12 subjects. Open symbols
represent training. Filled symbols show test results for conditions 1–4.

the same rotation possibilities as condition 2. When a circular context was present

(conditions 3 & 4), the position of the dot arrangements varied within the circle.

2.1.3 Results

Mean accuracy across training and test blocks is shown in Figure 2.3 for all subjects

(n=12). Performance quickly reached near-perfect asymptotic levels during training,

and remained consistently high across all forms of test variability. The test phase

consisted of four conditions, each designed to impose a contextual or rotational ma-

nipulation on the stimulus. Serving as a control, condition 1 was identical to the

training condition. Condition 2 tested participants’ resilience to stimulus rotation.
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Condition 3 featured a simple change in background context, with no change in the

relevant stimulus characteristics (i.e., the dots). Combining both rotation and context

changes, condition 4 represented the most difficult challenge. Despite these modifica-

tions, classification accuracy remained robust across all test conditions for all of our

subjects (mean accuracy of 99%± 0.02).

These results held for all of our subjects. Figure 2.4 shows mean accuracies for

all twelve subjects across training and testing blocks. Despite initial näıvety, all

participants demonstrated quick learning of categorical membership. In all cases,

performance reached near-perfect asymptotic levels before the beginning of the test

phase. For several subjects, these accuracy levels were reached by the second block

of training (≤ 8 exposures to exemplars from each category).

Our participants demonstrated that the addition of extraneous information in the

form of orientation and context variability are trivial to ignore. Presumably this is

because observers are able to extract out the configural “rules” that govern class

membership, and then apply these rules to new stimuli despite novel variability. By

doing so, generalization across these two dimensions is obtained for free. To follow

up on these results, we implemented a second study to determine if deformations in

the diagnostic components (i.e., the dot arrangements) would degrade classification

performance.

2.2 Experiment 2

2.2.1 Participants

Eleven individuals from The Ohio State University participated for course credit. All

subjects were verified to have normal or corrected-to-normal vision by means of a

Snellen eye chart.

12
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frequent performance levels of 87.5% are due to a single miss for that
condition. Chance performance was at 25%
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Figure 2.5: Example stimuli from Experiment 2. Stimulus variability increased across
training, including the addition of a circular context, mounting irregular-
ity in contours, and more diverse orientations.

2.2.2 Stimuli and Procedure

Stimuli consisted of four categories with defining properties identical to those de-

scribed in Experiment 1. The task, apparatus, and experimental method also mim-

icked that of Experiment 1, with the following exceptions. Experiment 2 spanned

two sessions on two separate days, and consisted of 20 blocks of 20 trials each per

session. During session 1, subjects were trained to learn the classification task in

the face of increasing stimulus variability. To begin, observers completed six training

blocks composed of stimuli identical to the training stimuli in Experiment 1. This

was followed by one block of stimuli featuring a black circular context. Over the

next six blocks, an increasing amount of variability in the form of jagged edges was

gradually introduced to the contours of dots and the circular context (see Figure 2.5).

By adding irregular contours, the precise distances and positions between displaced

dots were obfuscated by inconsistent deviations in the edges. This added increased

complexity to the stimulus set, and made judgments regarding the absolute positions

of dots difficult. Finally, variability in orientation was gradually increased across the
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Figure 2.6: Example masks used during Experiments 2 & 3.

remaining seven blocks. In total, subjects were exposed to a subset of 150◦ of the

total 180◦ of possible orientations during training. A 30◦ wedge of angles located in

the middle of the training space was left for an interpolation test on session 2. During

session 1 all stimuli were presented for 3000 msec followed by a mask. Example masks

are illustrated in Figure 2.6.

Session 2 featured two components: a speed-up period, followed by a test phase.

Stimuli contained the full complexity (i.e., jagged contours and orientation variability)

for the entire session. Speed-up occurred during the first ten blocks, during which

the stimulus presentation time was gradually reduced across blocks from 3000 msec

to 250 msec. The remaining ten blocks were reserved for testing. The test procedure

was similar to Experiment 1, and consisted of two conditions. In condition 1, stimuli

orientations were drawn from the distribution of possible angles that subjects were

exposed to during training. For condition 2, subjects were tested on orientations

drawn from the 30◦ wedge of untrained angles.

2.2.3 Results

Group averaged data are shown in Figure 2.7. As in Experiment 1, our subjects were

able to easily learn to identify and categorize the four classes of stimuli. Once again,

the addition of a circular context, this time very early in training, had no impact
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Figure 2.7: Group averaged data (n=11) from Experiment 2. Open symbols represent
the training and speed-up components of the study. Filled symbols show
performance during the test phase on trained orientations (squares) and
novel orientations (diamonds).

on performance. Likewise, all subjects once again demonstrated robustness in the

face of changes in stimulus orientation. This included performance on orientations

explicitly trained on, and on a subset of interpolated angles introduced during testing.

Furthermore, despite adding a large amount of irregularity to the image, the jagged

contours had no effect on our participants’ accuracy.

Because our subjects were able to quickly learn this task on both Experiments

1 & 2, it is likely that category boundaries were learned before the introduction of

contour and orientation variability. As we have already demonstrated, observers are

quite adept at ignoring extraneous details once the task has been learned. Although
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the data show that people are also able to ignore contour variability, it is unclear

from these results if they would be able to learn the initial categorization task with

this variability present from the first trial. For our third experiment, we tested this

question directly.

2.3 Experiment 3

2.3.1 Participants

Seven individuals from The Ohio State University participated for course credit. All

subjects were verified to have normal or corrected-to-normal vision by means of a

Snellen eye chart.

2.3.2 Stimuli and Procedure

The stimuli and procedure for Experiment 3 were identical to Experiment 2, with

the following exceptions. First, all forms of complexity (maximally-jagged contours

and 150◦ of possible orientations) were fully present from the first trial onward. It

is important to note that the presence of orientation variability during training in-

troduces far greater diversity in the apparent positioning of the dot arrangements,

making the task far more difficult. Furthermore, the jagged contours add an element

of unpredictability to the stimuli that makes the category boundaries less distinct.

Because stimulus variability was present from the beginning, session 1 was used for

the speed-up component of the study. Like Experiment 2, stimulus presentation time

was gradually decreased from 3000 msec to a minimum of 250 msec. Stimulus presen-

tation was followed by a mask similar to those shown in Figure 2.6. For the first half

of session 2, subjects reacquainted with the task (at 250 msec presentation times).
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For the remaining half, subjects were tested without feedback on the training orien-

tations (condition 1) and on orientations drawn from the 30◦ wedge of interpolation

angles (condition 2). Both session were composed of ten blocks of 40 trials each.

Subjects were asked to learn to classify the four stimulus categories in the face

of severe deformations in the individual stimuli. That is, subjects were required to

not only perceive the relationships of the dots above the noise of the jagged edges,

but were forced to learn to identify what features and/or relations were diagnostic

to the task. A pilot study revealed this task to be very difficult when no a priori

information was given to the participants. A debriefing of our pilot subjects revealed

that they were often led astray by various strategies that they employed to discover

what delineates category membership. For example, several subjects reported paying

too much attention to the orientation of the dot arrangements, which reveals nothing

about class identity. In general, subjects reported employing a hypothesis, testing

it against subsequent stimuli, and then verifying the approach via feedback. If one

(or several) hypotheses failed to succeed before the correct strategy was discovered,

subjects were stuck at chance performance. To help prevent such mistakes from

occurring in Experiment 3, we divulged limited information to our subjects before

beginning the experiment. Briefly, our participants were told that the dots were

the component of the image that determined class membership. The exact verbal

protocol used during instruction is given in Appendix C.

2.3.3 Results

The results of this experiment are summarized in Figure 2.8. Despite the hints given

before training, two subjects out of seven were unable to learn the task. Debriefing

revealed these subjects were once again utilizing hypothesis testing strategies for

solving this problem, including such misguided strategies as counting the number of
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Figure 2.8: Mean accuracy for individual subject data (n=7) on Experiment 3. Open
squares represent training blocks. Filled squares represent testing on the
training orientations. Filled diamonds show performance on an interpo-
lated set of orientations during testing.

spikes on the center dot in each image. This explains the poor performance of our two

subjects, and the additional time-to-learning shown by our remaining five subjects

relative to our previous experiments. It seems unlikely that these failures are due

to an inability to encode the spatial relationships in the stimuli, but rather reflect

the difficulty inherent in extracting the alignment “rules” in the face of misleading

information generated by orientation and contour variability. For those subjects that

were able to discover the necessary rules, an immediate “eureka” effect appears, with

accuracy increasing dramatically shortly after discovery. Once again, this accuracy

remained robust across testing regardless of test condition.
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Taken with the results from Experiments 1 & 2, it is clear that these tasks are

trivial for human observers. Additionally, our subjects demonstrated that knowledge

obtained on a training corpus transfers freely across changes in orientation, back-

ground context, and contour irregularity. Furthermore, the task can be completed

when stimuli are masked after fast presentation times (250 msec). Collectively, we

believe that these results suggest that the configural relations of the dot arrange-

ments are being used to complete this task. Because of this, our stimulus set could

be used as a benchmark test set to determine if a particular representational struc-

ture is able to encode spatial relations. For the following computer simulations, we

applied our stimulus set to a successful feature-hierarchy model of object recognition

(Mutch & Lowe, 2008). If this class of models implicitly encodes spatial information

as hypothesized, we would expect good performance on such an easy task.
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CHAPTER 3

Computer Simulations

3.1 The HMAX Model

For model simulations, we used a version of the HMAX model (Riesenhuber & Pog-

gio, 1999). The standard model consists of a hierarchical arrangement of five layers:

an image layer of grayscale pixels, followed by four layers of alternating simple and

complex cell-like units (S1, C1, S2, C2). The S1 layer is composed of predefined two-

dimensional Gabor filters centered at all locations and multiple orientations. S2 pro-

totypes are sampled randomly from C1 units during a preliminary feature-extraction

stage. Template matching occurs at each S-layer, and activations are pooled through

a MAX operation at each C-layer. The resulting output is a vector of C2 features

that are invariant with respect to scale and position. These features are classified

using an all-pairs linear support vector machine (SVM). For our work, we used the

Statistical Pattern Recognition Toolbox for Matlab (Franc & Hlavac, 2004).

At the level of C2 features, where classification occurs, the standard model ignores

position and scale information, reducing images to a “bag of features.” To retain as

much geometrical information as possible, we utilized a version of the HMAX model

similar to that formulated in Mutch & Lowe, 2008 (see also, Serre, Wolf, & Poggio,

2005). The model code was made available for download at
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http://www.mit.edu/ jmutch/fhlib/. Figure 3.1 illustrates the model architecture in

schematic form.

Images were presented in a pyramidal fashion at ten progressively smaller scales,

with a maximum size of 140x140 pixels. Grayscale images were converted by applying

Gabor filters at 12 orientations to all scales and positions in each image. To reduce

local clutter produced by irregular contours, we enforced sparse inputs to the S2 layer

by setting within-layer inhibition levels to 50% for layers S1 and C1 (the weakest half

of responses were set to zero). Together these steps suppress the activation of less

dominate orientations in favor of more diagnostic ones. A limit was also imposed on

the position and scale invariance of the C2 features. Conceptually, this step prevents

all spatial information from being lost in the final feature vector. Algorithmically,

this means that when an S2 template is being compared to a test image, the model

only checks for locations in the image nearby to where the template in the original

training image was originally found, where nearby means ±5% of the image size, and

±1 scale in the image pyramid.

3.2 Simulation 1

3.2.1 Description

Human observers are quite adept at identifying the spatial relationships associated

with Vernier and bisection tasks, even under conditions requiring far more acuity

than our stimuli. Because of this, and the remarkable levels of classification accuracy

achieved in our experiments, it would seem that any sufficient model of vision should

be able to similarly make use of such information. Our first question then was whether

or not the HMAX model would be capable of achieving comparable performance on

our stimuli. To determine this, we implemented a simulation that mimicked the
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design of Experiment 1. First, a model was trained on a corpus of images with

properties identical to those used in the training component of Experiment 1. The

training corpus included 60 images from each object class (240 images total). After

training, the model was tested on each of the four test conditions. For all but test

condition 1 (which was identical to the training condition) the model would be forced

to generalize with respect to background context and/or orientation, just as our

human participants had. All results shown are the average of 10 such runs.

3.2.2 Results

We tested the HMAX model of object recognition on the same four conditions used

in the human experiment. Figure 3.2 compares model performance to our human

observers. For condition 1 (the training condition, and left-most bar), the model

achieves quite remarkable performance (95% ± 0.85). However, success on this con-

dition requires resilience to changes in scale and position—two factors that this class

of models is designed to cope with. Accuracy on conditions 2–4, shown in the middle

grouping of bars in Figure 3.2 was markedly worse (32%±6, 43%±6, and 26%±7 re-

spectively), with near-chance performance on conditions 3 and 4 when novel rotations

were introduced. In fairness, the model admits to weak invariance with respect to

rotation. It should be noted, though, that our human observers were able to transfer

learning to new orientations with no cost, demonstrating that a significant component

of representational structure is absent from this class of models.

Of particular interest are the results from test condition 2 (the shaded blue bar in

the middle grouping of Figure 3.2). Stimuli for this test condition differed from the

training corpus only with respect to the background context. That is, the stimulus

components relevant to the task (the three dots) remained fixed at the same orien-

tation, and varied on the dimensions of scale and position only. The only difference
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was the addition of the circular black context. We believe that such a striking drop

in performance is due to the addition of novel features generated by the circular con-

text. If the information contained in the spatial relations of the dots was being used

to drive classification, we would not expect such a drop in accuracy.

3.3 Simulation 2

3.3.1 Description

For our second simulation, we wanted to know whether this model is capable of

accurately classifying these stimuli under the best conditions. To address this issue,

we trained four separate instantiations of the model on each of the four test conditions

from Experiment 1. That is, for each test condition, a model was first trained and then

tested on stimuli drawn from the same distribution of properties. This strategy helped

to remove any performance deficiencies due solely to generalization weaknesses. We

also tested each trained model on the other combinations of context and orientation.

Note that these additional tests do require generalizations in some cases. They are

included here for completeness. Stimuli were constructed identically to those used

in Experiment 1. Training datasets consisted of 60 randomly generated examples

from each class (240 images total). For each test condition, the model was shown

200× 4 = 800 images. All results shown are the average of 10 such runs.

3.3.2 Results

The left-most grouping of bars in Figure 3.2 summarize the main results of Simulation

2. Again, we see that in the simplest case, the training condition from Experiment

1 (the left-most bar), the model achieves human-like performance. However, the

mere addition of a circular context to the training images results in a decrease of

26



Test

Train

95 ± 1 32 ± 642 ± 7 25 ± 7

56 ± 4 59 ± 225 ± 11 25 ± 11

59 ± 6 28 ± 475 ± 2 30 ± 4

33 ± 8 33 ± 738 ± 3 38 ± 2

Context

Orientation

Fixed

Variable

Table 3.1: Model performance from Simulation 2. Each row represents a model that
was trained on a particular combination of background context and ori-
entation(s). Columns show mean accuracy when tested on each of the
possible combinations of context and orientation.

≈ 20 percentage points. We see a sightly larger drop when orientation variability is

added (≈ 30 percentage points), and strikingly low performance with both orientation

variability and circular context added to the stimuli. A possible explanation for these

results will be discussed later, but it would appear that the model’s limited success

is due to a select few diagnostic features, not to any rule-like patterns derived from

spatial configurations per se.

Table 3.1 shows the results of the entire simulation for the test conditions (along

the diagonal) and all other possible generalization tests. In general, two trends can

be identified from the data. First, as stimulus complexity increases in the train-

ing corpus, model classification performance decreases. Second, decreased stimulus

complexity in the training corpus leads to poorer generalization performance. The
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latter effect is likely due in part to overfitting. Unfortunately, avoiding this problem

requires increasing the number of training items to at least the number of items in

the feature vectors used for classification (4075), which is currently an intractable

problem. Nonetheless, even under a sufficient training corpus we should not expect

generalization performance to surpass accuracy levels on the test corpus. This re-

stricts theoretical performance to at least the levels shown along the diagonal of

Table 3.1.

3.4 Simulation 3

3.4.1 Description

Simulations 1 and 2 revealed that our classification task becomes increasingly more

difficult for the model as stimulus complexity increases. Subjects in Experiment 2

made it clear that adding such complexity, in the form of jagged contours, rotation,

and faster presentation times, does little to degrade classification in human perform-

ers.

There is no obvious analogous method for training the model on incremental com-

plexity as in Experiment 2. To address this, we devised a method of approximating

such a training paradigm. We began by first creating eight steps, each defined by

the complexity of stimuli contained within. Step 1 was composed of stimuli featuring

circular dots against a uniform black background. A circular context was introduced

at step 2. Steps 3–5 introduced increasing jaggedness to dot and circular context

contours. Finally, steps 6–8 gradually introduced orientation variability, up to a full

range of 180◦ at step 8.

Next, we trained eight individual models on each of the eight steps, such that at

each step, the training corpus featured a mixture of stimuli from that step and all
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Step # 1 2 3 4 5 6 7 8

Step 1 60

Step 2 30 30

Step 3 10 20 30

Step 4 5 10 15 30

Step 5 5 5 10 10 30

Step 6 5 5 5 5 10 30

Step 7 5 5 5 5 5 5 30

Step 8 5 5 5 5 5 5 10 20

Table 3.2: Training corpus breakdown for the eight steps in Simulation 3. For each
step, the training image set contained a mixture of images from the current
step and all previous steps. For example, the Step 3 training set contained
10 stimuli that fit the Step 1 description, 20 from Step 2, and 30 from step
3.

previous steps (for a total of 60 images per class). For example, the model trained at

step 2 had a training corpus of 30 stimuli with no background context and 30 stimuli

with a circular context (from each class). Table 3.2 shows the exact training stimuli

mixture for each step.

After training, each model was then tested on stimuli from each of the eight steps.

Importantly, test corpora contained only images from each individual step. That is,

for step 2 test images, all images contained stimuli with a circular background context,

smooth contours, and a fixed orientation. For each test step there were 200 images

per class, and all reported results are the average of ten repetitions.

3.4.2 Results

The results of the step simulation are summarized in Figure 3.3. For models trained
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on any step except for step 1 (in which stimuli had uniform black backgrounds),

increases in contour spikiness (points 1–5 on the x-axis) present little trouble. This

success could be a result of the sparsification method we employed in the model, or

due to blurring occurring in the early layers of the model, which would smooth over

irregularities in dot contours (see discussion). With the introduction of rotation, we

see a significant drop in performance (points 6–8). There is, however, a substantial

improvement in training the model in this fashion over training solely on stimuli with

full complexity only. For instance, the model trained on step 8 (blue triangles) saw

comparable images to the model in the final row of Table 3.1. However, the step

8 training corpus also had images featuring less variability (drawn from steps 1–7).

This mixture raises the performance of the model from 38% to 55%. Importantly,

these performance increases are not due entirely to the training mixture. For both the

training and test stimuli in this simulation, the position of the stimulus was restricted

to the lower-left quadrant of the image. This reduced the possible problem space,

simplifying the task considerably. Regardless, even with the beneficial mixture of

training images, peak performance remained remarkably low, reflecting once again a

deficiency in the coding scheme used by the model.
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CHAPTER 4

Discussion

All things considered, we see two very different strategies emerging from our human

and model results. The pattern of learning we see in the individual subject data

reveals a point of “eureka-like” learning, wherein performance increases radically

over a very short time period. Unlike incremental learning, this trend suggests the

discovery and adoption of category rules that, once obtained, can be applied with

consistent accuracy across a range of conditions. Furthermore, the ability of our

observers to continue to successfully categorize our stimuli under various forms of

transformations strengthens the hypothesis that they are using the arrangement rules

to complete the task, rather than one or more individual features in isolation. In

fact, when asked, our subjects invariably described the four categories in terms of the

relative spatial positions of the three dots.

By contrast, the model only manages to achieve acceptable performance under

a limited range of conditions. Whatever representation the model is using is clearly

different than what human observers use. This raises the interesting question of what

information the model is taking advantage of, and how it is able to achieve such good

performance on condition 1 in Simulation 1. Remember that under this condition,

the dot arrangements always fell along a fixed orientation. By varying the position

and scale of the stimuli from trial to trial, we prevented the model from solving the

task by simply noting the presence or absence of dots in specific locations. One likely
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answer is that the model was using a lowpass-filtered “feature” that encompassed the

entire dot arrangement as a single entity. By doing so, the blurred dot patterns could

be reduced to straight, or one of several curvilinear segments. In fact, to achieve

the level of performance listed in our results, we first had to perform a parameter

search to find optimized settings for the model (see Appendix B). The one value that

produced the best performance boosts was the receptive field (RF) size of the S1

layer Gabors. This search led us to increase the RF size of each filter from 11x11

pixels to 27x27 pixels. At the smaller scales in the image pyramid, this results in

Gabor filters that encompass the entire image. In a previous version of the HMAX

model (Serre et al., 2005), images were convolved with a battery of Gabors set at

varying receptive field sizes ranging from 7x7 (0.19◦ visual angle) to 39x39 (1.07◦

visual angle) in steps of 2 pixels. These values were chosen in Serre & Riesenhuber,

2004 to be consistent with properties of parafoveal simple cells (Schiller, Finlay, &

Volman, 1976). The version of our model by Mutch & Lowe, 2008 uses a different

method for approximating these receptive fields. Rather than using multiple filter

sizes, the same size filter is applied to the images at different scales. By increasing

the RF size in the way we have (to give the model the best chance possible), we have

likely added a biologically unrealistic component of blurring which has helped the

model significantly.

In another experiment not listed above we find more evidence that supports our

hypothesis. To push the limits of our observers, we trained several subjects to classify

our stimuli under extremely difficult conditions. From the first trial, stimuli contained

maximum contour irregularities, full orientation variability, and stimuli were masked

after 250 msec presentation times. In addition to this, the Vernier and bisection

displacements were reduced, making their relative positions very difficult to identify

when combined with the jagged contours. Subjects were given no a priori information
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beyond the number of categories. The experiment and data are not presented in

full because the task proved to be too difficult for half of our subjects. For those

subjects that failed, all once again reported failing due to the hypothesis testing

strategy (i.e., time was wasted focusing on irrelevant features such as contour spikes,

orientations, etc.). Several highly motivated graduate students were able to succeed

at the task. We found that their accuracy remained at chance until the rule was

learned, whereupon their performance immediately increased to near-ceiling levels.

Despite initial difficulties, it appeared again that our subjects were using rule-like

templates based on the configural relations of individual features.
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Figure 4.1: Model performance on stimuli with reduced Vernier and bisection dis-
placements. With smaller dot displacements and jagged contours, blurred
stimuli from the four classes become more homogenous in appearance.
Tremendously poor performance, even when the number of training im-
ages per class is increased to 300, suggests that the model relies on blurred
“global” features to achieve limited success.
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We then trained and tested the model on the same stimuli. If the model is using

blurring to treat the entire dot arrangements as single features, then we would expect

the coupling of finer Vernier/bisection displacements with the jagged contours to

produce less diagnostic global features, and thus worse performance. This seems

to be the case, as Figure 4.1 illustrates. Despite increasing the number of training

images from 25 up to 300 per class, performance remained near chance. By reducing

the displacement of the central dot, the blurred dot arrangements begin to appear

more collinear, regardless of class. The decrease in model accuracy suggests that this

is in fact what the model is using to achieve its limited success.

Taken together, these results once again suggest that this class of models use a

particular, limited strategy for solving recognition problems. That is, a collection of

free-floating features are being used to identify each image’s content. It seems un-

likely that these features have implicitly encoded the relevant spatial configurations

of object parts via overlapping redundancy. In most applications, such as multi-

class recognition tasks on the Caltech 101 image database (Fei-Fei, Fergus, & Perona,

2004), this approach is sufficient for success. With the more complex objects con-

tained within these databases, a mere mixture of unlocalized features can reliably

differentiate tigers from motorcycles or elephants from zebras. However, while this

strategy works in some scenarios, it is not necessarily reflective of what information

human observers use to complete the same tasks. We have created a simple stimulus

set based on spatial relations fundamental to human vision. Our results suggest that

while humans can readily discriminate between these categories, feature-hierarchy ap-

proaches to object recognition lack a critical component necessary for utilizing spatial

configurations of objects and object parts.

We cannot stop at the failure of these models alone. The specific deficiencies

found in this class of models should push us toward efforts for improvement. One
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natural step is to look to modeling research on Vernier stimuli. Poggio et al., 1992

demonstrated that a simple hyper basis function (hyperBF) network could quickly

learn to perform the Vernier task at hyperacuity levels using units with overlapping

receptive fields. In this approach, a hidden layer containing orientation-tuned V1-like

units with elongated receptive fields processes a layer of overlapping inputs. Given

training, a decision unit downstream integrates over the hidden layer to determine

the offset direction of the Vernier stimulus. However, the model used hand-coded

photoreceptor cell-like units and was meant to be little more than a proof of concept.

Later variations (Weiss, Fahle, & Edelman, 1993; Sotiropoulos, Seitz, & Seriès, 2011)

would extend this approach by adding an initial layer of oriented Gabor filters capable

of processing raw images, along with more sophisticated learning mechanisms. As

the focus of these models is typically on learning to improve on hyperacuity tasks,

these models lack the broader applicability of more general-purpose feature hierarchy

models. Furthermore, the low-level V1-like assumptions driving these models are not

unlike those used in early levels of the HMAX model. This means that they will

capture simple, oriented features with little-to-no regard for spatial position, once

again creating a data structure unsuitable for differentiating stimuli such as ours.

Along with the hyperBF class of models, an emerging list of models of spatial

vision have emerged capable of completing simple Vernier and bisection acuity tasks

(e.g., Geisler & Super, 2000; Zhaoping, 2003; Thielscher & Neumann, 2003). Once

again, we find a reliance on a similar foundation of low-level, oriented feature detectors

devoid of spatial information. Another approach, known as Wilson-Cowan Type

Models (WCTM), has emerged in parallel, and has also demonstrated proficiency on

Vernier stimuli. These models (Hermens, Luksys, Gerstner, & Herzog, 2008; Rüter,

Francis, Frehe, & Herzog, 2011), built upon the work of Wilson & Cowan, 1973,
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function as irregularity detectors. WCTM approaches typically involve a simple two-

layer network wherein redundant features are suppressed through lateral inhibition,

while irregularities are enhanced. Although this class of models has been successful

at Vernier tasks under a variety of conditions, they are merely simple mathematical

demonstrations targeting a very limited scope of phenomena. It is not clear if or how

this approach could scale up to include orientation, size, and position variability.

Other approaches are also being used to model Vernier phenomena. Some very

promising models are coming out of research on figure-ground segmentation, and

perceptual grouping research. The 3D LAMINART model (Cao & Grossberg, 2005;

Francis, 2009) is a powerful and general model of vision and has been applied to

many diverse visual tasks including, but not limited to Vernier hyperacuity. Other

similar approaches, such as the work of Craft, Schütze, Niebur, & von der Heydt,

2007, present other exciting possibilities relying upon similar modeling assumptions.

The details of these models are beyond the scope of this work, and it is currently

unclear whether such modeling strategies will offer sufficient solutions to the current

problem posed in this work, but they will certainly bring new insights that may shed

additional light on what is necessary for encoding relational information.

37



References

Amit, Y., & Mascaro, M. (2003). An integrated network for invariant visual detection

and recognition. Vision Research, 43 (19), 2073–2088.

Bar, M., Tootell, R. B., Schacter, D. L., Greve, D. N., Fischl, B., Mendola, J. D., et

al. (2001). Cortical mechanisms specific to explicit visual object recognition.

Neuron, 29 (2), 529–535.

Biederman, I. (1981). On the semantics of a glance at a scene. In M. Kubovy

& R. Pomerantz (Eds.), Perceptual organization (pp. 213–263). Hillsdale, NJ:

Erlbaum.

Biederman, I. (1987). Recognition-by-components; a theory of human image under-

standing. Psychological Review , 94 (2), 115–147.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10 , 433–436.

Cao, Y., & Grossberg, S. (2005). A laminar cortical model of stereopsis and 3D surface

perception: Closure and da vinci stereopsis. Spatial Vision, 18 , 515–578.

Craft, E., Schütze, H., Niebur, E., & von der Heydt, R. (2007). A neural model of

figure-ground organization. Journal of Neurophysiology , 97 , 4310–4326.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection.

Computer Vision and Pattern Recognition, 886–893.

DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends

in Cognitive Sciences , 11 (8), 333–341.

Fahle, M., & Morgan, M. (1996). No transfer of perceptual learning between similar

38



stimuli in the same retinal position. Current Biology , 6 (3), 292–297.

Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from

few training examples: an incremental Bayesian approach tested on 101 object

categories. CVPR workshop on generative-model based vision.

Franc, V., & Hlavac, V. (2004). Statistical pattern recognition toolbox for Matlab.

Francis, G. (2009). Cortical dynamics of figure-ground segmentation: Shine-through.

Vision Research, 49 , 140–163.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position. Biological

Cybernetics , 36 , 193–202.

Geisler, W. S., & Super, B. J. (2000). Perceptual organization of two-dimensional

patterns. Psychological Review , 107 (4), 677–708.

Green, C., & Hummel, J. E. (2004). Functional interactions affect object detection in

non-scene displays. In K. Forbus, D. Gentner, & T. Reiger (Eds.), Proceedings

of the 26th annual conference of the cognitive science society (pp. 488–493).

Mahwah, NJ: Erlbaum.

Green, C., & Hummel, J. E. (2006). Familiar interacting object pairs are perceptually

grouped. Journal of Experimental Psychology , 32 , 1107–1119.

Hayworth, K. J., Lescroart, M. D., & Biederman, I. (2010). Visual relation encoding

in anterior LOC. Journal of Experimental Psychology: Human Perception and

Performance, (Epub ahead of print).

Hermens, F., Luksys, G., Gerstner, W., & Herzog, M. H. (2008). Modeling spatial and

temporal aspects of visual backward masking. Psychological Review , 115 (1),

83–100.

Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural network for

shape perception. Psychological Review , 99 (3), 480–517.

39



Humphreys, G. W. (1987). Visual object processing: A cognitive neuropsychological

approach. Hove, United Kingdom: Lawrence Erlbaum Associates.

Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files:

Object-specific integration of information. Cognitive Psychology , 24 (2), 175–

219.

Kim, J., & Biederman, I. (2010). Where do objects become scenes? Cerebral Cortex ,

(Epub ahead of print).

Kim, J. G., Biederman, I., Lescroart, M. D., & Hayworth, K. J. (2009). Apaptation

to objects in the lateral occipital complex (LOC): Shape or semantics? Vision

Research, 49 , 2297–2305.

Klein, S. A., & Levi, D. M. (1985). Hyperacuity thresholds of 1 sec: Theoretical

predictions and empirical validation. Journal of the Optical Society of America,

A2 , 1170–1190.

Leung, T. K., & Malik, J. (2001). Representing and recognizing the visual appear-

ance of materials using three-dimensional textons. International Conference on

Computer Vision, 43 (1), 29–44.

Logan, G. D. (1994). Spatial attention and the apprehension of spatial relations.

Journal of Experimental Psychology , 20 (5), 1015–1036.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. Interna-

tional Conference on Computer Vision, 1150–1157.

The MathWorks. (2009). MATLAB user’s guide [Computer software manual]. Natick,

MA: The MathWorks, Inc.

Mutch, J., & Lowe, D. G. (2008). Object class recognition and localization using

sparse features with limited receptive fields. International Journal of Computer

Vision, 80 (1), 45–57.

O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive

40



neuroscience: Understanding the mind by simulating the brain. Cambridge,

MA: MIT Press.

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transform-

ing numbers into movies. Spatial Vision, 10 , 437–442.

Perret, D. I., & Oram, M. (1993). Neurophysiology of shape processing. Image and

Vision Computing , 11 , 317–333.

Poggio, T., Fahle, M., & Edelman, S. (1992). Fast perceptual learning in visual

hyperacuity. Science, 256 , 1018–1021.

Pylyshyn, Z. W. (2007). Things and places: How the mind connects with the world.

Cambridge, MA: MIT Press.

Pylyshyn, Z. W. (2009). Perception, representation, and the world: The FINST that

binds. In D. Dedrick & L. Trick (Eds.), Computation, cognition, and Pylyshyn

(pp. 3–48). Cambridge, MA: Bradford.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in

cortex. Nature Neuroscience, 2 (11), 1019–1025.
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Appendix A: Unix Cluster Environment

All of the above model simulations were carried out on the IBM Unix cluster “Glenn”

at the Ohio Supercomputer Center. The cluster consists of 1629 compute nodes

consisting of 2.5 and 2.6 GHz AMD Opteron quad core processors running with 8 to

64 GB of RAM per node. The entire cluster is fully connected by a 10 Gbps Infiniband

ConnectX host channel adapter (HCA), providing performance levels greater than 22

trillion floating point operations per second.

Model simulations described below were run using a combination of Matlab and

optimized C scripts. Batch jobs were carried out on the cluster by use of the TORQUE

resource manager and the Moab Scheduler. Despite using sequential, single-CPU

scripting, the cluster allowed for execution of simulations in parallel, with work spread

out over multiple nodes, utilizing the combined strength of multiple processors and

large amounts of RAM. This powerful setup allowed for computationally heavy opera-

tions, such as parameter searches, to be reduced from months of processing time down

to several days. Batch processing significantly reduced even the simplest of simula-

tions. For example, for a relatively small job, such as training our object recognition

model on relatively few images (50–60 images per category), typical processing times

lasted approximately 2–3 hours. To obtain stable estimates of performance, all of our

simulations were replicated 10 times per test condition. This amounts to 20–30 hours

of sequential processing time per data point. For most simulations, there were 4+ test

conditions, bringing total processing time to 80–120 hours even in this simple case.
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With parallel batch processing, total simulation times are restricted to the minimum

time associated with a given parameterization of the model. In this example, the

entire 80–120 hours of processing time can be completed in just 2–3 hours. For com-

putationally heavy operations, such as parameter searches, that require far more, and

far longer simulations to be carried out, the benefits of clustered processing become

more apparent.

In addition to the hardware described above, the “Glenn” cluster provides re-

searchers access to 18 Quadro Plex S4’s, each consisting of 4 Quadro FX 5800 GPU’s

with 4 GB of memory per card. This arrangement provides 72 CUDA-enabled graph-

ics devices fully connected by a 20 Gbps Infiniband ConnectX HCA, allowing for

over 75 trillion floating point operations per second. Although we did not utilize this

hardware for the simulations described above, our future efforts will likely involve

these options, as GPU-based processing enables significant speed-ups over traditional

CPU-driven processing.
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Appendix B: Parameter Search

Because our stimuli are atypical relative to those images used to optimize previous

instantiations of the HMAX model, we also elected to run an optimized parameteri-

zation search.

We began by running a simulation wherein we doubled the number of features

from 4075 to 8150. This slowed the simulation down tremendously and provided no

substantive improvements in accuracy. The original number of features (4075) was

used for the remainder of the simulations (a number commonly used in the literature

(e.g., Serre et al., 2005; Mutch & Lowe, 2008)).

Next, we ran a large number of simulations, adjusting (in order): (1) receptive

field size (17 values spanning from 7x7 pixels to 39x39 pixels, in steps of 2), (2) within-

layer inhibition (9 equally spaced values from 0 to 1), (3) xy tolerance (7 values from

2.5% to 100%), and (4) scale tolerance (from 0 to 8 scales). Inhibition refers to what

percentage of S1 and C1 unit responses are set to zero (described as sparsification

above). Scale and xy tolerance levels determined what amount of position and scale

invariance the model allowed in the final C2 features. Smaller numbers attempt to

retain more geometrical information, while larger values boost the model’s level of

invariance at the cost of sacrificing spatial information contained in the image. Our

method was to use cumulative tuning as in (Mutch & Lowe, 2008). That is, we first

found the optimum receptive field size. We then fixed that value and it became our

starting point for a search of inhibition, and so on. We averaged performance across
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10 repetitions for each value of every parameter, for a total of 420 simulations. Use

of the Unix cluster made such an endeavor possible.

The only parameter that appreciably affected performance was the receptive field

size of the simple cell layer (S1) gabors. Setting the receptive field size to 27x27 pixels

increased performance by ≈ 60% over the value originally used (11x11 pixels). The

remaining optimized parameters were found to be equivalent to Mutch & Lowe, 2008,

so we elected to leave them as is. Table B.1 lists the final parameter values that were

chosen.

Parameter Mutch & Lowe 2008 Our Model

# Features 4075 4075

RF Size 11 27

Inhibition 0.5 0.5

xy Tolerance 0.05 0.05

Scale Tolerance 1 1

Table B.1: Parameter values used by Mutch & Lowe, 2008, along with those adopted
in our simulations as a result of our parameter search.
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Appendix C: Experimental Instructions

Experiment 1 Instructions

The following is to be read aloud to each participant after giving informed consent:

• You must have normal, or corrected-to-normal vision (20/20). (Utilize the

Snellen chart and note the participants level of visual acuity.)

• There are no known risks in this experiment.

• This experiment will take 1 session to complete.

• You will be shown simple images on a computer screen and be asked to classify

them into four categories by clicking on the screen with the left mouse button.

• There are four categories: “Red,” “Blue,” “Green,” and “Yellow.” One image is

presented on each trial and you classify it by left-clicking the appropriate color

square. The colors reveal nothing about the categories themselves. We are

treating the colors only as names, much in the way you call a table a “table,”

or a chair a “chair.”

• The computer follows certain predefined procedures to generate the images from

each category. Your job is to figure out what kinds of images belong to which

category. The feedback given on each trial will assist you in this.

48



• Each trial begins with the appearance of the word “Ready!”. When this appears

onscreen, and you are ready to begin, press the spacebar to have this trial’s

stimulus presented onscreen. The stimulus then appears and stays on the screen

until you enter your response. Once the stimulus has appeared, a mouse cursor

will become active near the response color grid. You are free to click on the

color of your choice once you are ready. The computer will continue to wait

until you have done so.

• After responding, several things will occur: 1) The incorrect color squares will

be grayed out, leaving only the correct answer in color, and 2) the original

stimulus will reappear onscreen for a set period of time so that you can look

at it once again. Additionally, if your response is correct, the bonus points will

increase by one, and a smiley face will appear over the correct answer that you

have chosen.

• If your answer is incorrect: You will hear a “bad” beep, and a frowning face

will appear over your chosen square.

• Use this feedback as a guide in figuring out how to separate the four categories.

The computer will not be playing tricks on you. It follows a consistent pattern

that does not change throughout the experiment. It is possible to achieve very

high accuracy.

• Accuracy is more important than speed, but your response times are recorded

also. Try to respond as quickly as possible without making too many errors.

• Each session is organized in 16 blocks of 32 trials each. An equal number of

“Red,” “Blue,” “Green,” and “Yellow” images occur in every block, in random
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order. The image on any particular trial is generated independently of that on

any other trial.

• Todays session will be broken down into two separate periods: Blocks 1-6: Trials

will proceed as described above. Blocks 7-16: You will no longer be given any

feedback (neither positive or negative feedback). Your bonus points will appear

as X’s (XXXX) onscreen, and every response, whether correct or incorrect will

be confirmed by an “indifferent” face. You will still receive bonus points, so

continue to try diligently despite the lack of feedback. Some aspects of the

images and the background color of the computer monitor may change from

time to time, but the categories will remain the same as before.

• Two things I should let you know about the experimental room: we’re going

to have you place your chin on a chin rest during the experiment. This is just

to make sure that your position relative to the screen remains the same. Also,

the experimental room isn’t very large, just to give you a heads up in case you

might feel uncomfortable in a small room.

• Again, there are no known risks associated with this experiment, and all data

is stripped of any identifying characteristics.

• Do you have any questions about participation?

Experiment 2 Instructions

The following is to be read aloud to each participant after giving informed consent:

• You must have normal, or corrected-to-normal vision (20/20). (Please utilize

the Snellen chart and note the participants level of visual acuity.)

• There are no known risks in this experiment.
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• This experiment will take up to 2 separate days to complete.

• You will be shown simple images on a computer screen and be asked to classify

them into four categories by clicking on the screen with the left mouse button.

• There are four categories: “Red,” “Blue,” “Green,” and “Yellow.” One image is

presented on each trial and you classify it by left-clicking the appropriate color

square. The colors reveal nothing about the categories themselves. We are

treating the colors only as names, much in the way you call a table a “table,”

or a chair a “chair.”

• The computer follows certain predefined procedures to generate the images from

each category. Your job is to figure out what kinds of images belong to which

category. The feedback given on each trial will assist you in this.

• Each trial begins with the appearance of a fixation dot. When the dot has

appeared onscreen, and you are ready to begin, press the spacebar to have this

trial’s stimulus presented onscreen. The stimulus then appears near the point

of the original fixation dot and stays on the screen for a period of time. Once

the stimulus has appeared, a mouse cursor will become active near the response

color grid. You are free to click on the color of your choice once you are ready. If

you have not responded after the set period of time, the image will be replaced

by a “mask” image. The purpose of this mask is to prevent you from seeing the

stimulus any longer. You should otherwise ignore the content of the mask. You

do not have to wait for the mask to appear to input your response. If you have

still not responded, the computer will continue to wait until you have done so.

• After responding, several things will occur: 1) The incorrect color squares will

be grayed out, leaving only the correct answer in color, and 2) the original
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stimulus will reappear onscreen for a set period of time so that you can look

at it once again. Additionally, if your response is correct, the bonus points will

increase by one, and a smiley face will appear over the correct answer that you

have chosen.

• If your answer is incorrect: You will hear a “bad” beep, and a frowning face

will appear over your chosen square.

• Use this feedback as a guide in figuring out how to separate the four categories.

The computer will not be playing tricks on you. It follows a consistent pattern

that does not change throughout the experiment. It is possible to achieve very

high accuracy.

• Accuracy is more important than speed, but your response times are recorded

also. Try to respond as quickly as possible without making too many errors.

• Each session is organized in 20 blocks of 20 trials each. An equal number of

“Red,” “Blue,” “Green,” and “Yellow” images occur in every block, in random

order. The image on any particular trial is generated independently of that on

any other trial.

• Session 2 specific details include (wait until session 2 to read these):

• At the beginning of Session 2, both the duration of the stimulus presentation

and feedback presentation will be several seconds, just as in session 1. Over the

course of the second session, both presentation times will gradually reduce to

shorter intervals. The task remains the same regardless.

• For the second half of session 2, you will no longer be given any feedback (neither

positive or negative feedback). Your bonus points will appear as X’s (XXXX)

onscreen, and every response, whether correct or incorrect will be confirmed
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by an “indifferent” face. You will still receive bonus points, so continue to try

diligently despite the lack of feedback.

• Two things I should let you know about the experimental room: we’re going

to have you place your chin on a chin rest during the experiment. This is just

to make sure that your position relative to the screen remains the same. Also,

the experimental room isnt very large, just to give you a heads up in case you

might feel uncomfortable in a small room.

• Again, there are no known risks associated with this experiment, and all data

is stripped of any identifying characteristics.

• Do you have any questions about participation?

Experiment 3 Instructions

The following is to be read aloud to each participant after giving informed consent:

• You must have normal, or corrected-to-normal vision (20/20). (Please utilize

the Snellen chart and note the participants level of visual acuity.)

• There are no known risks in this experiment.

• This experiment will take up to 2 separate days to complete.

• You will be shown simple images on a computer screen and be asked to classify

them into four categories by clicking on the screen with the left mouse button.

• There are four categories: “Red,” “Blue,” “Green,” and “Yellow.” One image

is presented on each trial and you classify it by left-clicking the appropriate

color square.
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• The computer follows certain predefined procedures to generate the images from

each category. Your job is to figure out what kinds of images belong to which

category. The feedback given on each trial will assist you in this.

• Each trial begins with the appearance of a fixation dot. When the dot has

appeared onscreen, and you are ready to begin, press the spacebar to have this

trials stimulus presented onscreen. The stimulus then appears near the point

of the original fixation dot and stays on the screen for a period of time. Once

the stimulus has appeared, a mouse cursor will become active near the response

color grid. You are free to click on the color of your choice once you are ready. If

you have not responded after the set period of time, the image will be replaced

by a “mask” image. The purpose of this mask is to prevent you from seeing the

stimulus any longer. You should otherwise ignore the content of the mask. You

do not have to wait for the mask to appear to input your response. If you have

still not responded, the computer will continue to wait until you have done so.

After responding, the incorrect color squares will be grayed out and the original

stimulus will reappear onscreen for a set period of time. Additionally, if your

response is correct, the bonus points will increase by one, and a smiley face

will appear over the correct answer that you have chosen. If your answer is

incorrect, you will hear a “bad” beep, and a frowning face will appear over your

chosen square. Use this feedback as a guide in figuring out how to separate

the four categories. The computer will not be playing tricks on you. It follows

a consistent pattern that does not change throughout the experiment. It is

possible to achieve very high accuracy.

• Accuracy is more important than speed, but your response times are recorded

also. Try to respond as quickly as possible without making too many errors.
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• Each session is organized in 10 blocks of 40 trials each. An equal number of

“Red,” “Blue,” “Green,” and “Yellow” images occur in every block, in random

order. The image on any particular trial is generated independently of that on

any other trial.

• At the beginning of Day 1, both the duration of the stimulus presentation

and feedback presentation will be several seconds. Over the course of the first

session, both presentation times will gradually reduce to shorter intervals. The

task remains the same regardless.

• On Day 2, presentations times will be fixed for all trials at the most rapid

duration from session 1. For the first half of session 2, each trial will progress

identically to session 1. For the second half of session 2, you will no longer be

given any feedback (neither positive or negative feedback). Your bonus points

will appear as X’s (XXXX) onscreen, and every response, whether correct or

incorrect will be confirmed by an “indifferent” face. You will still receive bonus

points, so continue to try diligently despite the lack of feedback.

• Although each of the four categories looks very similar, I can tell you several

important properties that distinguish them from one another. First, all images

are composed of a jagged-edged black circle with three spots inside. The spots

are the critical component that determines what category an image belongs to.

In particular, the middle spot is very important.

• Two things I should let you know about the experimental room: we’re going

to have you place your chin on a chin rest during the experiment. This is just

to make sure that your position relative to the screen remains the same. Also,

the experimental room isnt very large, just to give you a heads up in case you

might feel uncomfortable in a small room.
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• Again, there are no known risks associated with this experiment, and all data

is stripped of any identifying characteristics.

• Do you have any questions about participation?
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