
Accelerating Component-Based Dataflow Middleware with

Adaptivity and Heterogeneity

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in the Graduate School of The Ohio State

University

By

Timothy D. R. Hartley, M.S.

Graduate Program in Electrical and Computer Engineering

The Ohio State University

2011

Dissertation Committee:

Professor Ümit V. Çatalyürek, Advisor

Professor Füsun Özgüner

Professor Charles A. Klein

Abstract

This dissertation presents research into the development of high performance da-

taflow middleware and applications on heterogeneous, distributed-memory supercom-

puters. We present coarse-grained state-of-the-art ad-hoc techniques for optimizing

the performance of real-world, data-intensive applications in biomedical image analy-

sis and radar signal analysis on clusters of computational nodes equipped with multi-

core microprocessors and accelerator processors, such as the Cell Broadband Engine

and graphics processing units. Studying the performance of these applications gives

valuable insights into the relevant parameters to tune for achieving efficiency, be-

cause being large-scale, data-intensive scientific applications, they are representative

of what researchers in these fields will need to conduct innovative science. Our ap-

proaches shows that multi-core processors and accelerators can be used cooperatively

to achieve application performance which may be many orders of magnitude above

näıve reference implementations. Additionally, a fine-grained programming frame-

work and runtime system for the development of dataflow applications for accelerator

processors such as the Cell is presented, along with an experimental study showing

our framework leverages all of the peak performance associated with such architec-

tures, at a fraction of the cognitive cost to developers. Then, we present an adaptive

technique for automating the coarse-grained ad-hoc optimizations we developed for

ii

tuning the decomposition of application data and tasks for parallel execution on dis-

tributed, heterogeneous processors. We show that our technique is able to achieve

high performance, while significantly reducing the burden placed on the developer to

manually tune the relevant parameters of distributed dataflow applications. We evalu-

ate the performance of our technique on three real-world applications, and show that

it performs favorably compared to three state-of-the-art distributed programming

frameworks. By bringing our adaptive dataflow middleware to bear on supporting

alternative programming paradigms, we show our technique is flexible and has wide

applicability.

iii

To Annie and Charlotte

iv

Acknowledgments

Graduate school is hardly a solo endeavor, and I am indebted to the following

people for their support.

I would like to thank the Dayton Area Graduate Studies Institute and Dr. Eliz-

abeth Downie for providing support for me to be able to focus on my research. The

flexibility a fellowship affords was deeply appreciated.

I am grateful to my collaborators Charles Berdanier, AFRL, and Ahmed Fasih

for their help drilling radar signal analysis into my head, what little it would hold.

I would like to thank Dr. George Teodoro and Professor Renato Ferreira for their

collaborations. I would like to thank Professor Manuel Ujaldón and Antonio Ruiz for

helping me get interested in GPUs.

I would like to thank Professor Füsun Özgüner for her invaluable support and

her committee membership. I am also grateful to Professor Charles Klein for his

committee membership, and I wish him well in his impending retirement!

I would especially like to thank Dr. Erik Saule for his constant advice, support,

on-point technical criticisms, and his friendship. I owe thanks also to all of the other

members of the HPC lab.

I will never be able to thank Professor Ümit Çatalyürek enough for his Herculean

support in getting me to this point. There were too many times to count where

v

an encouraging talk lifted me out of yet another motivation black hole. His advice,

support, kindness, and friendship will always be truly appreciated.

I’d like to thank my daughter, Charlotte Madeline Lindgren Hartley for her amaz-

ing attitude, intelligence, and sense of humor. She has changed my life.

Lastly I’d like to thank Dr. Annie Rose Lindgren for being the best partner anyone

could ever hope for. For her steadfast support, advice, patience, and good humor in

the face of a difficult situation (dealing with a graduate student husband while being

a talented research scientist and an incredible mother), I will forever be in her debt.

vi

Vita

January 16, 1980 . Born - High Wycombe, UK

2002 .B.S. Electrical and Computer
Engineering,
New Mexico State University

2005-2011 . Graduate Research Associate,
The Ohio State University.

2006 .M.S. Electrical and Computer
Engineering,
The Ohio State University

2009-2011 . Air Force Research Laboratory /
Dayton Area Graduate Studies Ohio
Student-Faculty Fellow

Publications

T. D. R. Hartley, U. V. Catalyurek, A. Ruiz, F. Igual, R. Mayo, and M. Ujaldon.
Biomedical image analysis on a cooperative cluster of gpus and multicores. In Pro-
ceedings of the 22nd Annual International Conference on Supercomputing, ICS 2008,
pages 15–25, 2008.

F. Igual, R. Mayo, T. D. R. Hartley, U. V. Catalyurek, A. Ruiz, and M. Ujaldón. Op-
timizing co-occurrence matrices on graphics processors using sparse representations.
In Proceedings of the 9th International Workshop on State-of-the-Art in Scientific and
Parallel Computing (PARA ’08), 2008.

H. G. Ozer, D. Bozdag, T. Camerlengo, J. Wu, Y.-W. Huang, T. Hartley, J. D. Parvin,
T. Huang, U. V. Catalyurek, and K. Huang. A comprehensive analysis workflow for
genome-wide screening data from chip-sequencing experiments. In Proceedings of 1st
International Conference on Bioinformatics and Computational Biology, volume 5462
of Lecture Notes in Computer Science, pages 320–330. Springer, April 2009.

vii

T. D. R. Hartley and U. V. Catalyurek. A component-based framework for the
cell broadband engine. In Proceedings of 23rd International Parallel and Distributed
Processing Symposium, The 18th Heterogeneous Computing Workshop (HCW 2009),
May 2009.

T. D. R. Hartley, A. R. Fasih, C. A. Berdanier, F. Özgüner, and U. V. Catalyurek.
Investigating the use of GPU-accelerated nodes for SAR image formation. In Pro-
ceedings of the IEEE International Conference on Cluster Computing, Workshop on
Parallel Programming on Accelerator Clusters (PPAC), 2009.

U.V. Catalyurek, T. Hartley, O. Sertel, M. Ujaldon, A. Ruiz, J. Saltz, and M. Gurcan.
Processing of large-scale biomedical images on a cluster of multi-core cpus and gpus.
In W. Gentzsch, L. Grandinetti, and G. Joubert, editors, High Performance and Large
Scale Computing, volume 18, pages 341–364. IOS Press, 2009.

F. Igual, R. Mayo, T. D. R. Hartley, U. Catalyurek, A. Ruiz, and M. Ujaldon. Explor-
ing the gpu for enhancing parallelism on color and texture analysis. In Proceedings
of the 2009 International Conference on Parallel Computing (ParCo 2009), 2009.

U. V. Catalyurek, R. Ferreira, T. D. R. Hartley, R. Sachetto, and G. Teodoro. Da-
taflow frameworks for emerging heterogeneous architectures and its application to
biomedicine. In Scientific Computing with Multicore and Accelerators. Chapman
and Hall / CRC Press, 2010.

T. D. R. Hartley, E. Saule, and U. V. Catalyurek. Automatic dataflow application
tuning for heterogeneous systems. In Proceedings of The 17th International Confer-
ence on High Performance Computing (HiPC 2010), 2010.

F. Igual, R. Mayo, T. D. R. Hartley, U. Catalyurek, A. Ruiz, and M. Ujaldon. Color
and texture analysis on emerging parallel architectures. International Journal of
High Performance Computing Applications, to appear.

G. Teodoro, T. D. R. Hartley, U. V. Catalyurek, and R. Ferreira. Run-time opti-
mizations for replicated dataflows on heterogeneous environments. In Proceedings of
the 19th ACM International Symposium on High Performance Distributed Computing
(HPDC), 2010.

G. Teodoro, T. D. R. Hartley, U. V. Catalyurek, and R. Ferreira. Optimizing dataflow
applications on heterogeneous environments. Cluster Computing, to appear.

viii

T. D. R. Hartley, E. Saule, and Ü. V. Çatalyürek. Evaluating support for heteroge-
neous computing in high-level distributed programming frameworks. In Proceedings
of The Twentieth International Conference on Parallel Architectures and Compilation
Techniques (PACT 2011), 2011, under review.

T. D. R. Hartley, E. Saule, and Ü. V. Çatalyürek. Improving performance of adaptive
component-based dataflow middleware. Parallel Computing, 2011, under review.

Fields of Study

Major Field: Electrical and Computer Engineering

ix

Table of Contents

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

Table of Contents . x

List of Tables . xiv

List of Figures . xv

1. Introduction . 1

1.1 Motivation . 1
1.2 State of the Art . 3

1.2.1 Component-Based Framework Overview 3
1.2.2 Autotuning . 6
1.2.3 Parallel and Distributed Programming Frameworks 8

1.3 Contributions . 14

I Ad-Hoc High-Performance Dataflow Application Programming
for Heterogeneous Systems 18

2. Biomedical Image Analysis on a Cooperative Cluster of GPUs and Multicores 19

2.1 Introduction . 19
2.2 Pathological Image Analysis . 22

x

2.2.1 The algorithm . 23
2.2.2 Major challenges . 25

2.3 GPU Cluster Testbed . 26
2.4 Tools and GPU implementation . 29

2.4.1 CUDA . 29
2.4.2 Implementation with DataCutter 40

2.5 Experimental Results . 42
2.6 Summary . 48

3. Investigating the Use of GPU-Accelerated Nodes for SAR Image Formation 50

3.1 Introduction . 50
3.2 Overview of Computed Tomography 51
3.3 Software Support . 55
3.4 Implementation Details . 56

3.4.1 Backprojection with DataCutter 57
3.4.2 Backprojection with GPU 59
3.4.3 Combining DataCutter and CUDA 60

3.5 Application Experiments . 61
3.6 Summary . 65

II High-Performance Dataflow Middleware for Heterogeneous Com-
puting 68

4. A Component-Based Framework for the Cell Broadband Engine 69

4.1 Introduction . 69
4.2 Filter-Stream Programming for Heterogeneous,

Hierarchical Clusters . 73
4.2.1 DataCutter-Lite Architecture and Programming

Model . 74
4.2.2 DataCutter for Distributed Multicore Programming 79

4.3 CBE Intercore Messaging Library 81
4.4 DataCutter-Lite for CBE Optimizations 84

4.4.1 High-Bandwidth SPE-SPE Two-Sided Communication . . . 84
4.4.2 Pure Pull-based PPE-SPE Communication 87
4.4.3 Buffer Prefetching . 89
4.4.4 Fine-grained Buffer Arrival Blocking 90

4.5 Application Experiments . 91
4.6 Summary . 98

5. Automatic Dataflow Application Tuning for Heterogeneous Systems . . . 99

xi

5.1 Introduction . 99
5.2 Related Work . 101
5.3 Application and System Model . 103
5.4 Adaptive Algorithm For Work Partitioning 104
5.5 Application Experiments . 109

5.5.1 Experimental setting . 109
5.5.2 Results and analysis . 113
5.5.3 Sum up of experimental results 120

5.6 Summary . 122

6. Improving Performance of Adaptive Component-Based Dataflow Middleware123

6.1 Introduction . 123
6.2 Related Work . 127
6.3 Distributed Programming Frameworks 129

6.3.1 DataCutter: Component-Based Dataflow 129
6.3.2 KAAPI: Asynchronous Task Execution 130
6.3.3 MR-MPI: MapReduce over MPI 132

6.4 APC+: Adaptive Component-based Dataflow 135
6.4.1 APC+ Algorithm . 136

6.5 Application Descriptions . 147
6.6 API and Optimizations . 150

6.6.1 DataCutter . 150
6.6.2 KAAPI . 151
6.6.3 MR-MPI . 153
6.6.4 APC+ . 154

6.7 Application Experiments . 155
6.7.1 Experimental Setting . 155
6.7.2 APC and APC+ Comparison 159
6.7.3 Synthetic Aperture Radar 160
6.7.4 Biomedical Image Analysis 164
6.7.5 Black-Scholes . 166
6.7.6 Tunable CCR . 170
6.7.7 Discussion of Experimental Results 172

6.8 Summary . 174

7. Efficiently Supporting Programming Models with Adaptive Dataflow . . 176

7.1 Introduction . 176
7.2 Parallel-For . 176

7.2.1 Standard Application Programming Interface 177
7.2.2 Interface Improvements and Runtime Optimizations 178

7.3 MapReduce . 180

xii

7.3.1 Application Programming Interface 182
7.3.2 Interface Improvements and Runtime Optimizations 184

7.4 Preliminary Experimental Results 190
7.5 Summary . 193

8. Conclusions and Future Work . 194

Bibliography . 197

xiii

List of Tables

Table Page

1.1 Parallel and Distributed Programming Frameworks 11

2.1 Hardware features of the CPU and GPU 27

2.2 Major hardware and software limitations with CUDA 32

2.3 Major CUDA optimizations in the image analysis application 35

2.4 Properties of the three slides used in our experiments. 42

2.5 Execution times for the image analysis application 42

4.1 High Performance Computing (HPC) techniques and DataCutter-Lite’s
approach . 70

4.2 CBE Intercore Messaging Library Application Programming Interface 83

5.1 Single tile execution times in milliseconds for four applications 111

5.2 Aggregate number of tiles computed by each processor type while vary-
ing the system configuration . 119

5.3 Aggregate work area computed by each processor type while varying
the system configuration . 120

6.1 Execution times (in milliseconds) for SAR, BIA, and Black-Scholes for
various tile sizes . 156

xiv

List of Figures

Figure Page

1.1 Example Filter-stream Application Layout and Placement 5

1.2 Taxonomy of Parallel and Distributed Programming Frameworks . . . 9

2.1 Flow chart for the stroma classification algorithm. 20

2.2 The computation of a co-occurrence matrix (right) from a 4x4 image
(left) where pixel intensities are shown. 24

2.3 The LBP operator on a 3x3 grid. 25

2.4 The BALE supercomputer at a glance. 28

2.5 The programming approaches and their effect on performance, both
single node and parallel. 30

2.6 The CUDA hardware interface. 31

2.7 Phase 2: Local co-occurrence matrices in CUDA 34

2.8 Phase 3: LBP operator in CUDA . 36

2.9 DataCutter layout of the image analysis application. 40

2.10 Execution time comparison of all implementations of the image analysis
codes running on a single node using SMALL image. 44

2.11 Execution time comparison of GPU and DataCutter implementations
running on a single node using all three input images. 45

xv

2.12 Parallel execution times of C++, Cg, and CUDA based DataCutter
implementations . 46

2.13 Parallel speedup results . 47

3.1 Schematic demonstrating operation of the tomographic principle . . . 52

3.2 Airborne sensor-gathered line projections 53

3.3 SAR Imaging Pipeline . 57

3.4 SAR Imaging Input Partitioning . 59

3.5 SAR Imaging Output Partitioning . 59

3.6 Execution times of C/MPI and DataCutter backprojection implemen-
tations with 1◦ of input data and varying image sizes. 62

3.7 Execution times of single GPU implementations with 1◦ of input data. 64

3.8 Execution times of CPU and GPU implementations 65

3.9 Execution times of DataCutter/GPU implementation 66

3.10 Execution times of DataCutter/GPU implementation running on 4
GPUs while varying the input data set size. 67

4.1 DataCutter-Lite Library Application Interface 75

4.2 Overall DataCutter-Lite System on the CBE 75

4.3 Sample DataCutter-Lite application and example mapping onto the Cell. 76

4.4 DataCutter-Lite Example PPE Code 78

4.5 DataCutter-Lite Example PPE Code 79

4.6 DataCutter-Lite Example SPE Code 80

4.7 Software and Hardware Granularities 81

4.8 SPE-SPE Communication Bandwidth Results 84

xvi

4.9 SPE-SPE Communication Latency Results 85

4.10 PPE-SPE Communication Bandwidth Results 86

4.11 SPE-PPE Communication Performance Results 86

4.12 SPE-PPE Communication Latency Results 87

4.13 SPE-SPE Communication Bandwidth Results 88

4.14 PPE-SPE Communication Bandwidth Results 89

4.15 SPE-PPE Communication Bandwidth Results 90

4.16 Execution times for Matrix Addition 94

4.17 Execution times and speedups for color transformation for 32 image tiles 94

4.18 Execution times and speedups for biomedical image analysis applica-
tion for 32 image tiles - overheads included 95

4.19 Execution times and speedups for biomedical image analysis applica-
tion for 32 image tiles - overheads excluded 96

4.20 DataCutter and DataCutter-Lite mixed implementation 97

4.21 Execution times and speedups for biomedical image analysis applica-
tion for 1024 image tiles . 98

5.1 Adaptive Partitioning Controller Pseudocode 107

5.2 Adaptive Dataflow Work Partitioner Pseudocode 108

5.3 Microbenchmark #1 with 5:1 GPU:CPU core speedup; 4 Nodes; 10
1K x 1K Images . 114

5.4 Microbenchmark #2 with 10:1 GPU:CPU core speedup; 4 Nodes; 10
1K x 1K Images . 115

5.5 BIA: Biomedical Image Analysis; 4 Nodes; 20 25K x 25K Images An-
alyzed . 117

xvii

5.6 SAR: Synthetic Aperture Radar Image Formation; 4 Nodes; 100 2K x
2K Images Formed . 118

5.7 Performance profile of APC and DD with a fixed tile size for all the
system configurations for the four applications 121

6.1 Example Asynchronous Task Forking and Shared Data Access 131

6.2 Example MapReduce Execution . 133

6.3 Example APC placement . 140

6.4 Example APC+ placement . 140

6.5 Adaptive Partitioning Controller (APC+) Setup Pseudocode 141

6.6 Adaptive Partitioning Controller (APC+) Main Loop Pseudocode . . 142

6.7 Adaptive Dataflow Work Partitioner 145

6.8 SAR: CPU-GPU, APC vs APC+ . 157

6.9 BIA: CPU-GPU, APC vs APC+ . 158

6.10 Black-Scholes: CPU-GPU, APC vs APC+ 158

6.11 SAR: CPU-only . 161

6.12 SAR: CPU-GPU . 161

6.13 Biomedical Image Analysis: CPU-only 166

6.14 Biomedical Image Analysis: CPU-GPU 167

6.15 Black-Scholes: CPU-only . 168

6.16 Black-Scholes: CPU-GPU . 168

6.17 Tunable CCR Application: 16 nodes, CPU-only 171

7.1 Simple OpenMP Parallel-For Example 177

7.2 Homogeneous Adaptive Component-Based Parallel-For 179

xviii

7.3 Heterogeneous Adaptive Component-Based Parallel-For 181

7.4 Black-Scholes MR-MPI main function 183

7.5 MapReduce Wordcount Application Layout 184

7.6 DataCutter MapReduce . 185

7.7 DataCutter MapReduce Application Programming Interface: Setup . 186

7.8 DataCutter MapReduce Application Programming Interface: Source . 187

7.9 DataCutter MapReduce Application Programming Interface: Count
Words . 188

7.10 DataCutter MapReduce Application Programming Interface: Reduce
Count . 189

7.11 DataCutter Parallel-For Vector Addition Single Node Performance . . 191

7.12 DataCutter MapReduce WordCount Single Node Performance 192

xix

Chapter 1: Introduction

1.1 Motivation

In recent years, a growing falloff of the performance of microprocessors compared

to Moore’s Law (which states that the number of transistors on a chip will double

roughly every eighteen months) has created a new opportunity for specialized, high-

performance accelerator architectures such as the Cell Broadband Engine (CBE) [50].

The same trend of microprocessor performance rolloff, predominantly caused by in-

creasing power consumption, has forced microprocessor manufacturers to increasingly

rely on on-die, CPU-level parallelism for increased performance [79]. Further, during

the same time period, Graphics Processing Unit (GPU) manufacturers have increased

programmability and computational throughput such that GPUs are an attractive

substitute for standard CPU architectures in certain extremely parallel and compu-

tationally demanding applications [81].

These new architectures have very high computational capability, but applica-

tions often need to be restructured to take advantage of the high performance on tap

when using emerging architectures. Traditional techniques - pipelining of instruction

execution, superscalar instruction execution, out-of-order instruction execution, as

well as the introduction of SIMD operations to commodity microprocessors - have

provided sequential programs enough performance [113] to make the added benefit of

1

parallel computation not worth the additional complexity in application development.

However, with the increasing parallelism inherent in new architectures, the available

performance for certain applications [81, 51, 53, 112, 118, 93, 92] makes the increased

development cost acceptable, since making full use of these high-performance archi-

tectures leads to cost-savings in other areas, such as lead time to market, reduced

latency in decision-making, or power savings due to reduced computation time. Ad-

ditionally, certain applications absolutely require extremely fast computation times

to even be feasible such as certain types of medical image analysis [20, 96] and radar

signal processing [56]. If sequential versions of certain computerized image analysis

applications were the only ones available, no clinical practice, research laboratory, or

military concern could use them, due to their excessively large execution times.

The modern supercomputers which can support these types of applications are

built by using fast networks to connect large clusters of commodity microprocessors

and emerging architecture-based nodes [8]. These systems are becoming more difficult

to program because of the increasing levels of hierarchy and heterogeneity present in

modern supercomputer designs due to the result of system upgrades, or more recently,

the result of explicit initial design decisions. Current practical software solutions

have not kept pace with these programming challenges, placing most of the burden

on the developer [4]. To address this issue, this dissertation shows that component-

based dataflow middleware allows developers of high-performance scientific applica-

tions to leverage all of the peak computational capability inherent in heterogeneous,

distributed supercomputers, without requiring heavy use of low-level programming

tools requiring expert knowledge. Further, efficient solutions to tune and schedule

component-based applications for these systems are few and far between, even in

2

state-of-the-art middleware runtime systems. Therefore, this dissertation presents an

adaptive framework and runtime system for developing and executing component-

based dataflow applications on heterogeneous, distributed supercomputers. We show

our framework is able to generalize our ad-hoc optimization approaches and achieve

comparable performance to manually tuned implementations in a number of large-

scale, real-world applications.

The rest of this introduction consists of an overview of the state-of-the-art of

component-based programming frameworks, followed by a presentation of autotuning

research, and of the programming models and runtime systems commonly used to

develop applications for supercomputers. Following these sections, we present our

contributions.

1.2 State of the Art

1.2.1 Component-Based Framework Overview

The central thesis of component-based programming is that there are many ad-

vantages to describing and implementing complex applications by way of components

- distinct tasks with well-defined interfaces. By describing these components and the

explicit data connections between them, many advantages are conferred. Applications

are decomposed along natural task boundaries, according to the application domain.

Therefore, component-based application design is an intuitive process, with explicit

demarcation of task responsibilities. Further, the communication patterns are also

explicit, as each component includes in its description its input data requirements

and outputs. Since many applications are comprised of a series of serial processing

3

or analysis steps, explicitly defining a task graph to represent these processing steps

is a natural method for breaking up and writing the program.

Beyond the implementation benefits, component-based programming also enables

some runtime benefits, which come at no additional cost to the developer. Appli-

cations composed of a number of individual tasks can be executed on parallel and

distributed computing resources and gain extra performance over those run on strictly

sequential machines. Additionally, provided the interfaces exposed by a task to the

rest of the application match, different implementations of tasks, possibly on differ-

ent processor architectures can co-exist in the same application deployment, allowing

developers to take full advantage of modern, heterogeneous supercomputers.

Filter-stream programming is an instance of component-based programming sup-

ported by DataCutter, a component-based middleware tool. The filter-stream pro-

gramming model [13] (a specific implementation of the dataflow programming mo-

del [33]) implements computations as a set of components, referred to as filters, that

exchange data through logical streams. A stream denotes a uni-directional data flow

from some filters (i.e., the producers) to others (i.e., the consumers). Data flows along

these streams in untyped databuffers so as to minimize various system overheads. A

layout is a filter ontology which describes the set of application tasks, streams, and

the connections required for the computation. A placement is one instance of a layout

with actual filter copy to physical processor mappings. A filter can be replicable, if it

is stateless; for instance, if a filter’s output for a given databuffer does not depend on

the ones it processed previously, it is stateless and replicable. Traditionally, the filter-

stream programming model is used through a middleware runtime system, which sits

on top of the operating system(s) of the involved computational nodes and provides

4

the dataflow interface abstraction to the application. Figure 1.1 shows an example

filter-stream layout and placement.

Figure 1.1: Example Filter-stream Application Layout and Placement

In the filter-stream programming model, filters perform all of the computation in

the application. Data flows through streams and into filters, and undergoes transfor-

mations inside the filters. Filter functions can transform data in a number of ways,

ranging from one-to-one databuffer functions, to data join functions (where one or

more databuffers are required from more than one stream), to data split functions

5

(where more than one databuffer is created based on a single input databuffer). In

the filter-stream model, application developers are only responsible for writing the

filter functions and determining the filter and stream layout. The filter-stream model

is ideal for programming for heterogeneous processor types, because the architecture-

specific details are hidden inside the filter function; provided the same data structure

interface is used by two implementations of the same filter function targeted at two

different architectures, they can be used interchangeably.

1.2.2 Autotuning

Autotuning (automatic performance testing and optimization) is a field where a

feedback loop is introduced in the software development process or when the applica-

tion is executed. This feedback loop is used to allow some adaptive process to occur,

such that execution times from test runs of a sequential or a parallel application

can be used to choose application parameters such as data partitioning, number of

concurrent processing threads, size of computational kernel, size of cache footprint,

extent of loop unrolling, amount of data prefetching. It is an active field, especially in

the realm of multicore computing, as traditionally compiled application performance

has begun to lag behind the architectures’ capabilities [4, 66].

Atune-IL [94] is a language-independent framework for instrumenting parallel ap-

plications for an automatic tuning process. The types of tuning include number of

threads, data chunk size, and algorithm choice. Developers introduce pragmas into

their code, and then build their executable with a special compiler. Then, by using a

search algorithm, the framework automatically adapts the instrumented parameters

for best performance.

6

Tiwari et al. present a method for efficiently searching for the highest-performing

compiler transformation for an arbitrary set of nested loop iterations [109]. By com-

bining an updated Parallel Rank Ordering algorithm [102] algorithm and a library for

generating complex, but correct loop transformations, CHiLL [25], the authors rival

the performance of other auto-tuned numerical libraries.

FIBER [68, 67] is a framework for automatically tuning - at install time, before

execution, and at runtime - numerical software, by testing which algorithms and loop

unrolling parameters achieve the highest performance.

Several researchers at UC Berkeley have conducted extensive analyses of opti-

mizations required to generate high-performance stencil kernels on several state-of-

the-art multicore architectures such as standard multi-core CPUs, highly-threaded

multi-core CPUs, the Cell Broadband Engine, and GPUs [29, 65]. By first devel-

oping architecture-agnostic, application-specific optimization techniques, as well as a

framework for automatic optimization, the authors are able to quickly search a large

space of optimizations, to find and present the important tradeoffs involved with the

area of regular numeric kernals.

POET [115] is a language for describing and applying complex loop optimiza-

tions to numerical kernels. It is intended to be used as a communication method

between successive optimization steps, and as a generator for different combinations

of parameters for optimized kernels.

SPRIAL, Signal Processing Implementation Research for Adaptable Libraries is

a framework for autotuning DSP software [90].

7

ATLAS [111] uses compile-time performance tests to tune its implementations

of linear algebra operations. FFTW [42] tunes data structures and algorithms at

runtime to efficiently perform FFT operations.

Networking techniques for congestion control and QOS, such as TCP Vegas [18]

have been well-known for some time as adaptive methods to improve performance in

a distributed setting.

1.2.3 Parallel and Distributed Programming Frameworks

Since our work targets hierarchical, heterogeneous, distributed supercomputers,

we will discuss programming models, middleware, and libraries to ease programming

for parallel systems, as well as systems with heterogeneous processors or networks.

The axes along which we will compare the frameworks are their overall programming

model, their supported level of parallelism, their explicit support for heterogeneity,

and their load balance capabilities. Figure 1.2 and Table 1.1 show the overall picture.

Our list of frameworks falls into three categories of parallelism, off-load, single-

node, and multi-node. The off-load frameworks focus on developing high-performance

kernels for graphics processors. While the development of kernels for accelerator de-

vices is outside the scope of this dissertation, GPUs are in and of themselves parallel

architectures, and their effective use requires many of the same steps as does more

traditional parallel programming: data and task decomposition, parallel algorithm

design, etc. Brook [19] was the first framework for developing general purpose com-

putation on GPUs, predating CUDA by several years. However, with the release of

the Nvidia CUDA SDK [26], the level of computational power in GPUs had increased

steadily, meaning that the commodity status and the increased programmability of

8

Figure 1.2: Taxonomy of Parallel and Distributed Programming Frameworks

GPUs made for very fertile research ground. Later, higher-level frameworks such as

GPUSs [6] were developed for writing applications to leverage multiple GPUs more

easily. Finally, the industry has standardized an approach to writing applications for

GPUs from all vendors, OpenCL [80].

Though our research focuses on parallel computing in the physically and logically

distributed-memory paradigm, the array of frameworks which target single nodes

can still be inspirational. These frameworks can be classified along many different

axes, but among the most important characteristics is the framework’s similarity to

sequential programming. Here we call sequential-like programming frameworks pro-

cedural, while the opposing style is called component-based. Component-based frame-

works encourage (or require) developers to create multiple, concurrent components

9

and an explicit plan for how these components will interact. Well-known procedu-

ral frameworks such as POSIX threads [61] and OpenMP [27] are mature technolo-

gies, which are mainstays of high-performance scientific computing. Cilk [16] uses

a similar procedural-style programming paradigm, although it adds a work-stealing

load-balancing framework, and some theoretical guarantees of asymptotically optimal

performance, in certain circumstances. TBB [105] is somewhat of a shared-memory

Swiss army knife, in that it provides a framework for exploiting loop iteration par-

allelism, task parallelism with work-stealing load-balancing, and pipeline parallelism.

Finally, frameworks like Qilin [75], Harmony [34], and Merge [74] leverage explicit

support for heterogeneous processor types to enable developers to write efficient ap-

plications.

High-level parallel and distributed programming frameworks for multi-node sys-

tems lower the bar to programming efficient applications for modern HPC systems.

As can be seen from Figure 1.2, while single-node frameworks can be found in both

the procedural and component-based categories in equal measure, multi-node frame-

works are more often component-based than not. Be that as it may, the vast ma-

jority of high-performance scientific application software is undoubtedly written in

MPI [77]. Before the message-passing standard was developed, there were many

competing vendor-specific frameworks, each tied to the manufacturer’s specific archi-

tecture. While programming efficient applications with an explicit message-passing

interface is challenging, developing a parallelizing compiler capable of producing an

10

T
ab

le
1.

1:
P
ar

al
le

la
n
d

D
is

tr
ib

u
te

d
P

ro
gr

am
m

in
g

F
ra

m
e-

w
or

ks

F
ra

m
ew

o
rk

P
ro

g
ra

m
m

in
g

M
o
d
el

P
a
ra

ll
el

is
m

C
P

U
/
G

P
U

L
o
a
d

B
a
la

n
ci

n
g

A
B

A
C

U
S

[1
]

C
om

p
on

en
t-

B
as

ed
M

u
lt

i-
n
od

e
H

om
og

en
eo

u
s

C
P

U
D

yn
am

ic
A

C
D

S
[6

2]
C

om
p
on

en
t-

B
as

ed
M

u
lt

i-
n
od

e
H

om
og

en
eo

u
s

C
P

U
D

yn
am

ic
A

nt
h
il
l
[4

0]
C

om
p
on

en
t-

B
as

ed
M

u
lt

i-
n
od

e
C

P
U

/G
P

U
D

yn
am

ic
B

ro
ok

[1
9]

P
ro

ce
d
u
ra

l
O

ff
-l
oa

d
G

P
U

N
o

C
U

D
A

[2
6]

P
ro

ce
d
u
ra

l
O

ff
-l
oa

d
G

P
U

N
o

C
ap

su
le

s
[7

6]
C

om
p
on

en
t-

B
as

ed
S
in

gl
e-

n
od

e
H

om
og

en
eo

u
s

C
P

U
D

yn
am

ic
C

h
ar

m
+

+
[6

4]
C

om
p
on

en
t-

B
as

ed
M

ix
ed

C
P

U
/A

cc
el

er
at

or
s

D
yn

am
ic

C
h
or

es
[3

6]
C

om
p
on

en
t-

B
as

ed
S
in

gl
e-

n
od

e
H

om
og

en
eo

u
s

C
P

U
D

yn
am

ic
C

il
k

[1
6]

P
ro

ce
d
u
ra

l
S
in

gl
e-

n
od

e
H

om
og

en
eo

u
s

C
P

U
D

yn
am

ic
C

oi
gn

[5
9]

C
om

p
on

en
t-

B
as

ed
M

u
lt

i-
n
od

e
H

om
og

en
eo

u
s

C
P

U
D

yn
am

ic
D

at
aC

u
tt

er
[1

3]
C

om
p
on

en
t-

B
as

ed
M

u
lt

i-
n
od

e
C

P
U

/G
P

U
D

yn
am

ic
G

P
U

S
s

[6
]

P
ro

ce
d
u
ra

l
O

ff
-l
oa

d
G

P
U

N
o

H
ar

m
on

y
[3

4]
P

ro
ce

d
u
ra

l
S
in

gl
e-

n
od

e
C

P
U

/G
P

U
D

yn
am

ic
K

A
A

P
I

[4
5]

P
ro

ce
d
u
ra

l
M

u
lt

i-
n
od

e
H

om
og

en
eo

u
s

C
P

U
D

yn
am

ic
C

on
ti

nu
ed

on
n
ex

t
p
ag

e

11

T
ab

le
1.

1
–

co
nt

in
u
ed

fr
om

p
re

vi
ou

s
p
ag

e

F
ra

m
ew

o
rk

M
o
d
el

P
a
ra

ll
el

is
m

H
et

er
o
g
en

ei
ty

L
o
a
d

B
a
la

n
ci

n
g

L
iq

u
id

M
et

al
[5

8]
C

om
p
on

en
t-

B
as

ed
S
in

gl
e-

n
od

e
C

P
U

/F
P

G
A

S
ta

ti
c

M
IT

’s
S
tr

ea
m

IT
[1

08
]

C
om

p
on

en
t-

B
as

ed
M

u
lt

i-
n
od

e
H

om
og

en
eo

u
s

C
P

U
S
ta

ti
c

M
P

I
[7

7]
P

ro
ce

d
u
ra

l
M

u
lt

i-
n
od

e
H

om
og

en
eo

u
s

C
P

U
N

o
M

R
-M

P
I

[8
8]

P
ro

ce
d
u
ra

l
M

u
lt

i-
n
od

e
H

om
og

en
eo

u
s

C
P

U
D

yn
am

ic
M

er
ge

[7
4]

P
ro

ce
d
u
ra

l
S
in

gl
e-

n
od

e
C

P
U

/G
P

U
D

yn
am

ic
O

p
en

C
L

[8
0]

P
ro

ce
d
u
ra

l
O

ff
-l
oa

d
G

P
U

N
o

O
p
en

M
P

[2
7]

P
ro

ce
d
u
ra

l
S
in

gl
e-

n
od

e
H

om
og

en
eo

u
s

C
P

U
D

yn
am

ic
P

O
S
IX

th
re

ad
s

[6
1]

P
ro

ce
d
u
ra

l
S
in

gl
e-

n
od

e
H

om
og

en
eo

u
s

C
P

U
N

o
P
ol

ar
is

[1
5]

P
ro

ce
d
u
ra

l
S
in

gl
e-

n
od

e
H

om
og

en
eo

u
s

C
P

U
N

o
Q

il
in

[7
5]

P
ro

ce
d
u
ra

l
S
in

gl
e-

n
od

e
C

P
U

/G
P

U
S
ta

ti
c

R
iv

er
[3

]
C

om
p
on

en
t-

B
as

ed
M

u
lt

i-
n
od

e
H

et
er

og
en

eo
u
s

C
P

U
D

yn
am

ic
S
eq

u
oi

a
[3

8]
C

om
p
on

en
t-

B
as

ed
S
in

gl
e-

n
od

e
H

om
og

en
eo

u
s

C
P

U
S
ta

ti
c

S
ta

rP
U

[5
]

C
om

p
on

en
t-

B
as

ed
S
in

gl
e-

n
od

e
H

om
og

en
eo

u
s

C
P

U
N

o
T

B
B

[1
05

]
M

ix
ed

S
in

gl
e-

n
od

e
H

om
og

en
eo

u
s

C
P

U
D

yn
am

ic
T
el

eg
ra

p
h
C

Q
[2

3]
C

om
p
on

en
t-

B
as

ed
M

u
lt

i-
n
od

e
H

om
og

en
eo

u
s

C
P

U
D

yn
am

ic

12

efficient parallel version of an arbitrary sequential program is essentially impossible.

Thus, the great variety of MPI-based parallel program. However, recently MapRe-

duce [32], another procedural parallel programming framework for multi-node sys-

tems, has made a significant impact on developers of parallel programs. By using a

simplified application task and data model, MapReduce allows users to write functions

which operate on portions of an implicitly-referenced distributed hashtable. Further,

MapReduce allows application-oblivious parallel communication. As such, developers

of MapReduce programs do not need to write any parallel-specific code.

Component-based distributed programming frameworks attempt to ease the devel-

oper’s task of managing the often conflicting concerns of processor utilization, network

efficiency, and load balance. MIT’s StreamIT project [108] provides a framework and

compiler to easily produce high-performance streaming dataflow applications. While

StreamIT performs heuristic dataflow graph operations which give a best-effort static

load balance, many multi-node distributed programming frameworks offer online, dy-

namic load balancing. This final group of frameworks is still further divided by their

explicit support for heterogeneity. The legacy frameworks ABACUS [1], ACDS [62],

Coign [59], and TelegraphCQ [23] all focus on homogeneous clusters of SMP systems.

KAAPI [45], a newer framework based on the Athapascan-1 language [43], also tar-

gets homogeneous clusters, although the authors are currently completely rewriting

the codebase from the ground up to explicitly support accelerators. Anthill [40],

Charm++ [64], and DataCutter [13] also support heterogeneous CPUs and GPUs

with encapsulation and abstraction. Finally, River [3] supports heterogeneous data

13

production and consumption rates, in that producer/consumer relationships are ef-

ficiently handled over the network by their flow rate. Thus, any node characteristic

that would alter the flow rate is explicitly handled.

1.3 Contributions

The dataflow programming paradigm [33] and in particular the filter-stream para-

digm are uniquely suited to designing large-scale, data-intensive scientific applications

for complex, heterogeneous, distributed computer systems. The simple abstraction

exposed by dataflow programming and supported by dataflow runtime middleware

systems, such as DataCutter [13] and Anthill [40], provides developers with an excel-

lent solution for dealing with the complexities of modern scientific application design

for distributed, heterogeneous supercomputers. Thus, this dissertation presents re-

search into developing high-performance, component-based dataflow applications for

distributed, heterogeneous supercomputers.

In Part I, we focus on tuning the performance of large-scale applications with

ad-hoc approaches. Although the values we select for the tunable parameters are

necessarily application-specific, the first part of this dissertation acts as a blueprint

for the development of high-performance dataflow applications in the presence of

heterogeneity. Chapter 2 presents a high-performance implementation of a real-world

biomedical image analysis application for a cluster of GPU-equipped nodes. This

application is very data-intensive, with single image sizes reaching nearly 40 GB in

the most demanding case. We use DataCutter and CUDA to leverage all of the

parallelism inherent in the architecture. DataCutter handles all of the inter-node

communication, and the intra-node CPU-GPU task parallelism, while our CUDA

14

kernel implementations leverage both SIMD and ILP with intelligent thread and

block layouts. By analyzing the application bottlenecks and tuning the data and task

granularity statically, we are able to ensure that the downstream image analysis tasks

are not starved for work when analyzing very large data sets.

Chapter 3 presents an investigation of the important parameters to consider for

radar signal analysis applications on distributed, heterogeneous platforms. The par-

ticular application used as a case-study is synthetic aperture radar (SAR) imaging,

which is a compute-intensive operation. In this chapter, we only make use of the

GPUs for the computation, since the GPU implementation is much more efficient

than the CPU implementation, and there is no task parallelism to speak of in the ap-

plication. However, we show that there can be drastic differences in the performance

of distributed applications due to different work-space partitioning decisions.

In Part II, we focus on middleware approaches to help developers leverage high-

performance supercomputers with accelerator architectures to their fullest extent.

Chapter 4 presents a design of light-weight dataflow middleware for accelerators,

called DataCutter-Lite, and an initial implementation for the Cell Broadband Engine.

Accelerator architectures, due to their design decisions to be higher-performing for

certain styles of computation than standard CPUs, are often much more difficult to

program to perform efficiently. Thus, we show that by using a fine-grained component-

based dataflow programming paradigm, we can efficiently leverage all of the power

inherent in accelerator devices, without forcing developers to be experts in parallel

algorithms, multithreaded programming, architectural-specific constraints (which can

be severe on accelerators), as well as their own research domain.

15

In Chapter 5, we present an adaptive technique for tuning the databuffer size for

large-scale dataflow applications and a load-balancing technique based on modeling

heterogeneous dataflow task processing rates and automatic workspace partitioning.

Most distributed programming paradigms leave to the developer the task of finding

the right data decomposition granularity for their application. Further, the same

application can have more than one optimal databuffer size, since the system con-

figuration (including processor types, network topology, system size) can affect the

choice. By using a simple programming interface, developers can write dataflow ap-

plications that are automatically tuned for the best performance, where the load is

nearly perfectly balanced across all of the available computational resources. We ex-

perimentally validate the effectiveness of our approach on two real applications and

two synthetic applications.

Chapter 6 presents a significant extension of our adaptive technique to improve

scalability to much larger system configurations. We introduce a new work-stealing

layer which handles all of the inter-node work distribution. Also, we present a new

storage layer which intelligently manages the application-specific input and output

data, which is important for making efficient use of the network, particularly in

data-intensive applications. We compare against three state-of-the-art distributed

programming frameworks, and our technique shows quite favorable performance.

Chapter 7 presents preliminary research into efficiently supporting alternative pro-

gramming models for applications or users which do not need the full breadth of

component-based dataflow programming. In particular, we look at supporting the

16

popular, simple programming framework MapReduce in our adaptive dataflow run-

time middleware. By leveraging the efficiency brought in by our middleware, we are

able to effectively use distributed resources, while reducing the programming effort.

17

Part I: Ad-Hoc High-Performance
Dataflow Application

Programming for Heterogeneous
Systems

18

Chapter 2: Biomedical Image Analysis on a Cooperative

Cluster of GPUs and Multicores

2.1 Introduction

Biomedical applications are becoming a major research focus due to the large pos-

sible benefit to the public welfare as well as to the scientific community. In particular,

imaging applications are emerging as a new opportunity for innovation at the meeting

point between medicine and computer science. These applications are challenging for

several reasons. The practical concerns of providing sufficient solution quality and

timeliness, and the performance-centric difficulties of using disruptive architectures

for maximum application throughput provide many opportunities for novel solutions

to complex problems.

The steady increase in the computational power of modern computational re-

sources has made a tremendous impact on medical imaging technology. The recent

availability of whole slide digital scanners has made research on pathological image

analysis possible, by enabling quantitative analysis tools to decrease the evaluation

time pathologists spend for each slide. The same research on biomedical image analy-

sis also attempts to reduce the variation in decision-making processes among different

pathologists or institutions.

19

B

G

R

B

A

L

IMAGE
INPUT

STATISTICAL
FEATURES

LBP

NORMALIZE

REDUCE BINS
&HISTOGRAM

DISTANCE

BHATTACH.

COLOR

CONVERSION

OPERATOR

Per−pixel operations (computationally demanding)

To classifier

Uniform LBP
1

12

unexpensive and therefore not parallelized)
Per−tile operations (computationally

Figure 2.1: Flow chart for the stroma classification algorithm.

The analysis of pathology images is particularly challenging due to the large size

of the data. Since uncompressed image sizes can be 30 gigabytes for one slice of

tissue, typical datasets for case studies can easily stretch to terabyte scale. Further,

the computation required to analyze these images can be extensive; analysis can often

take hours on a single CPU. Several research studies on different cancer types have

been conducted to develop computational methods within this field [37, 52, 69, 70, 86,

96, 103]. Most of these approaches only tested randomly selected image tiles, while

some [85] have recently extended their methods to processing whole-slide images, but

without discussing the computational burden. One of the most recent results [20]

involves a parallelization technique, but the focus of the study was not strictly one of

execution time performance, and processing a relatively small image took almost half

an hour on a 16-node configuration, which is still impractical for clinical application.

With respect to improving the processing time of scientific applications, the newest

versions of programmable Graphics Processing Units (GPU) provide an ideal plat-

form, since they allow extremely high floating point arithmetic throughput for appli-

cations which fit their architectural idiosyncrasies [81]. This fact has attracted many

20

researchers and encouraged the use of GPUs in many fields [49] including data min-

ing [51], image segmentation and clustering [53], numerical methods for finite element

computations used in 3D interactive simulations [112], and nuclear, gas dispersion and

heat shimmering simulations [118]. In an earlier work [93, 92], we have also lever-

aged GPU processing power and introduced techniques based on shaders and Cg to

accelerate the feature extraction by a factor of 321x versus a Matlab version and 45x

versus an equivalent C++ version running on a single CPU.

GPU manufacturers have responded to the wide acceptance and use of GPUs in

general-purpose computing with the introduction of CUDA (Compute Unified Device

Architecture) [26], a more general programming interface, and Tesla [107], a new

computational node with multiple GPUs, reaching near supercomputer performance

levels starting at $1500. Recent announcements from Nvidia (GeForce 9 Series) and

ATI (FireStream) [41] have also responded to the scientific computing community’s

widespread call for double-precision, floating-point arithmetic which does not incur a

large performance penalty compared to single-precision.

In this work, our goal is the efficient execution of large-scale biomedical image

analysis applications on a cooperative cluster of GPUs and multi-core CPUs. The

advent of multi-core CPUs means that more computation can occur on a single com-

puter than ever before. Traditional SMPs are now becoming hybridized, such that

multiple multi-core CPUs are resident in a single compute node. Furthermore, new

architectures can support more than one GPU card per node. Hence, our target

hardware architecture is a cluster of compute nodes with multiple multi-core CPUs

and multiple GPUs, and this work presents methods to make full use of all of the

computational power such a hardware system offers.

21

On the software side, our cooperative approach is enabled by software libraries

and middleware which ease both the GPU programming and the parallelization com-

putation at many granularities. Nvidia’s CUDA provides easier access to the high

computational performance available in modern era GPUs. Additionally, it provides

capabilities beyond that of other programming methods with respect to applications

which do not entirely fit into the more traditional graphics processing paradigm.

DataCutter [13] is a powerful middleware tool for data-parallel application decom-

position, transparent task replication, and task graph execution. Its use here allows

us to leverage all of the parallelism inherent in the hardware architecture. By an-

alyzing the application bottlenecks appropriately, we are able to hide much of the

latency incurred by the hardware when analyzing very large data sets. Additionally,

DataCutter enables the overlap of computation and communication, which are still

fundamental issues in the GPU and multi-core era.

The rest of the chapter is organized as follows. Section 2.2 presents the neuroblas-

toma image analysis application which provides the testbed for this new paradigm of

cooperation between multi-core CPUs and GPUs. The specifications and properties

of an example state-of-the-art, multi-socket, multi-core, multi-GPU cluster are pre-

sented in Section 2.3. Section 2.4 focuses on the specifics of the GPU programming

with CUDA and that of the parallelization strategies. The experimental results are

presented in section 2.5, and section 2.6 summarizes this chapter’s results.

2.2 Pathological Image Analysis

Neuroblastoma is a cancer of the sympathetic nervous system which mostly affects

children. The diagnosis of the disease is currently based on visual examination under

22

a microscope of tissue slides by expert pathologists. These tissue slides are classified

into different groups depending on the differentiation grade of the neuroblasts, among

other issues [98]. Manual examination by pathologists is an error-prone and very time

consuming process, and may lead to inter- and intra-reader variations. Therefore,

together with our collaborators, we are developing a computerized pathological image

analysis system [20, 52, 93, 92, 96] to assist in the determination of the classification

of the neuroblastoma tumor type by automatically characterizing stroma regions.

2.2.1 The algorithm

Figure 2.1 shows the flowchart of the image analysis algorithm for the classification

of stromal development in neuroblastoma images [93, 92]. The image analysis occurs

in four stages:

Phase 1: Color conversion. The RGB input image is converted into the LA*B*

color space, which provides color perceptual uniformity and enables the use of Eu-

clidean distance in feature calculation [84].

Phase 2: Statistical features. Four second-order statistical features are extracted

from each color channel: contrast, correlation, homogeneity and energy [110]. An

intermediate data structure used during the calculation of those twelve features is

the co-occurrence matrix [30], which represents how often a pixel with the intensity

value i occurs in a specific spatial relationship to a pixel with the intensity value

j (see Figure 2.2). The size of the co-occurrence matrix has a major impact on the

workload, but only a marginal influence on the algorithm’s classification accuracy [92].

Therefore we have selected a 4×4 co-occurrence matrix for our experiments, which

yields the fastest execution times.

23

2 2 3 3

2220

0

3 0 1 1

1 10

0 1 2 3

3

2

1

0

2

21

1

3

3

0

0

0

0

1 2 1 0

002

0

01 0 1

13

Figure 2.2: The computation of a co-occurrence matrix (right) from a 4x4 image (left)
where pixel intensities are shown.

Phase 3: LBP operator. The local binary pattern feature (LBP) is extracted

from the L (luminance) channel to become the thirteenth feature for texture analysis.

Widely used in many applications such as facial expression recognition and content

based image retrieval [104], LBP is a rotationally invariant operator defined within

a 3 × 3 neighborhood of each pixel, where the eight neighbors are examined to see

if their intensity is greater than that of center pixel p. The results form a binary

number b1b2b3b4b5b6b7b8 where bi = 0 if the intensity of the ith neighbor is less than

or equal to p and 1 otherwise (see Figure 2.3).

Phase 4: Histogram. Since LBP feature values are in the range 0 → 255, a his-

togram is constructed with 256 bins for the entire image, with each bin accumulating

the number of pixels which have that LBP feature value. These bins are then reduced

into ten canonical classes and normalized between 0 and 1 to become the components

of a ten-dimensional vector. The Bhattacharyya distance [91] is then measured be-

tween the LBP feature vector and a (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) vector to constitute the

uniform LBP feature value used for the stroma classification. The subsequent classi-

fier is a computationally inexpensive process, so we will not mention it further.

24

2
(11000101) = 197

0

1

1 1 0

0

01

1

51 42 27

26

36 30 19

1535

Figure 2.3: The LBP operator on a 3x3 grid.

2.2.2 Major challenges

Input tissue samples are digitized at 40x magnification and stored in TIFF files

using JPEG compression and the RGB color format. Each whole-slide image has a

resolution of 110K×80K pixels in the most demanding case, which poses two major

challenges:

• A single uncompressed image’s size is well over the memory capacity of a sin-

gle GPU. Additionally, providing balanced parallelization and effective use of

cluster resources like disk I/O requires a smaller data granularity. In order to re-

lieve memory usage and allow for an efficient parallelization of the computation

across nodes, we decompose the image into 1K x 1K tiles.

• The algorithm takes several hours to run on a single CPU (see Table 2.5).

This motivates us to study alternative platforms for its parallel execution. Our

selection of multi-socket and multi-core CPUs combined with high-end GPUs

will give us the opportunity for assessing scalability on both sides.

Tiling and parallelism are in fact tightly coupled, since the first strategy favors

the latter. On a multi-processor system, each processor may independently perform

the image analysis task on a subset of tiles and return a label indicating whether the

25

particular image tile is stroma rich or stroma poor. Finally, labels are gathered on a

central host and the classification map for the whole-slide image is constructed.

Apart from its implementation on a multi-processor system, our particular image

analysis application is of great interest for evaluating the memory hierarchy and

computational power of graphics architectures, because it meets a diverse number

of features. For example, color conversion is a typical streaming operation with

no data reuse. The LBP operator, on the other hand, exhibits a large degree of

data reuse and locality, which typically favors more traditional, cache-based systems.

Statistical features (through a co-occurrence matrix) and histogram construction both

use extensive indirect array accesses such as those characterizing irregular computing

and reduction operations often found in linear algebra. These two phases present

undesirable features for both the CPU and the GPU. In our earlier work, we have

investigated these in the context of Cg programming [92], while here we look at the

trade-offs in the context of CUDA and a parallel implementation using cooperative

cluster of multi-core, multi-socket CPUs and multiple GPUs.

2.3 GPU Cluster Testbed

In this section we will present the specifications and properties of a typical, state-

of-the-art, multi-socket, multi-core, multi-GPU cluster. For this purpose we picked

the Ohio Supercomputer Center’s BALE cluster [7]. The BALE cluster is comprised

of a total of 71 Linux nodes, but our main focus is the newly added 16 visualization

nodes, equipped with two dual-core AMD Opteron 2218 CPUs and two Nvidia Quadro

FX 5600 GPUs each. The interconnection network for the BALE cluster is Infiniband.

Figure 2.4 illustrates the architecture of the visualization nodes, and Table 2.1 shows

26

Table 2.1: Hardware features of the CPU and GPU used on each node of the testbed
cluster. The GFLOPS listed are for 32-bit, single-precision floating-point arithmetic.

Hardware feature CPU from AMD GPU from Nvidia
Board ASUS KFN32-D SLI Quadro FX 5600
Processor model Opteron X2 2218 G80
Processor speed 2.6 GHz 600/1350 MHz
Number of sockets 2 2
Number of cores 2 128
Peak processing 2 x 8.8 GFLOPS 2 x 330 GFLOPS
Memory size 8 GB 2 x 1.5 GB
Memory bus width 2 x 64 bits 2 x 384 bits
Memory speed 667 MHz 1600 MHz
Memory bandwidth 2 x 10.8 GB/s. 2 x 76.8 GB/s

the specifications of the CPU and GPU processors. Below we will go over some

important specifications and features of the CPUs and GPUs used in our system.

On the CPU side, each node consists of two Opteron X2 2218 chips, which are

dual-core processors running at 2.6 GHz. Each core in the system has a pair of 64 KB

2-way set associative L1 caches for holding data and instructions, and a 1 MB 4-way

set associative L2 cache which is not shared among cores but are cache coherent.

Each socket includes its own dual-channel DDR2-667 memory controller as well as

a single HyperTransport link to access the other socket’s cache and memory. Each

socket can thus deliver 10.6 GB/s for an aggregate memory bandwidth of 21.3 GB/s

to each node’s 8 GB of 667 MHz DDR2. The peak double-precision performance

is 4.4 GFLOPS per core, 8.8 GFLOPS per socket, 17.6 GFLOPS per node. The

peak single-precision performance per node is 35.2 GFLOPS, providing an aggregate

single-precision performance of 563.2 GFLOPS for the 16 visualization nodes.

On the GPU side, each node has two Nvidia Quadro FX 5600 GPUs based on

the G80 architecture. From a graphics viewpoint, the G80 can be seen as a 4-stage

27

Infiniband

L1

ALU FPU

L1

ALU FPU

DDR2
1 GHz

4 GB/s

L1 L1

H
y
p
er

T
ra

n
sp

o
rt

C
o
n
tr

o
ll

er

To Southbridge

1 GHz

4 GB/s

P
C

I−
ex

p
re

ss
co

n
tr

o
ll

er

1 MB. L2 1 MB. L2

10 GB/s

1 GHz

2 GB/s.

SATA−II

1
0
.6

 G
B

/s
.

1
0
.6

 G
B

/s
.

S
o
ck

et
 1

O
p
te

ro
n

S
o
ck

et
 2

O
p
te

ro
n

Controller Controller
DDR2

HyperTransp.

HyperTransp.

Disk
Local

1
.5

 G
B

.
3

8
4

G
D

D
R

3

384

4 GB/s.
Graphics card

G
ra

p
h
ic

s
ca

rd

4
 G

B
/s

.

3 GB/s

ALU FPU ALU FPU

cache cache

cache cache
1 MB. L2 1 MB. L2

Text. cache

F
X

 5
6
0
0

Q
u

a
d

ro

T
ex

t.
 c

ac
h
e

FX 5600
Quadro

L
o
ca

l
D

R
A

M
 m

em
o
ry

 m
o
d
u
le

s

D
D

R
2

D
D

R
2

Core 1 Core 2

(dual port)
HCA card

PCI−express x8

co
n
tr

o
ll

er
P

C
I−

ex
p
re

ss

controller
GigE

To Northbridge

co
n
tr

o
ll

er
S

A
T

A
−

II
Southbridge

Northbridge

nForce 4

nForce430

controller controller

controller

Infiniband

G
P

U

GPU

1
.6

 G
H

z

1.6 GHz

1.5 GB.

GDDR3

750 GB.

76 GB/s.

7
6
 G

B
/s

.

PCI−express

Core 1 Core 2

To
Internet

1 GB/s
GigE

To other nodes and PFS

10 GB/s

(16)

NODE 1 NODE 2 NODE 3 NODE 16

8 GB.

Figure 2.4: The BALE supercomputer at a glance [55].

28

graphics pipeline for shading, texturing, rasterizing and coloring. As a parallel archi-

tecture, however, the G80 becomes a SIMD processor endowed with 128 cores, and

CUDA is the programming interface to use it for general purpose computing. From

the CUDA perspective, cores are organized into 16 multi-processors, each having a

set of 32-bit registers, constants and texture caches, and a 16 KB memory shared by

the eight cores inside each multi-processor. In any given cycle, each core executes the

same instruction on different data, and communication between multi-processors is

performed through global memory (see Figure 2.6).

2.4 Tools and GPU implementation

In order to give an example of the cooperative relationship between GPUs and

multi-core CPUs, this section shows the details of the CUDA [26] implementation

of the image analysis algorithm as well as the multi-node, multi-core and multi-

GPU parallelization using DataCutter middleware [13]. We have used Matlab [20],

C++ and Cg implementations [92] as a baseline for our performance comparisons.

Programming tools and paradigms are summarized in Figure 2.5.

2.4.1 CUDA

The CUDA programming interface consists of a set of C language library functions,

and the CUDA-specific compiler generates the executable code for the GPU. Since

CUDA is designed for generic computing, it does not suffer from excessive constraints

when accessing memory (as Cg [21] does), but memory access times do vary for

different memory types.

29

single CPU socket
single CPU core

single graphics card
CUDA

Cg

no graphics card
dual CPU core / socket
dual CPU socket / node

C++

Without using the GPU Involving the GPU

Matlab

 DataCutter
 DataCutter + CUDA

dual CPU socket / node
dual CPU core / socket

single graphics card

dual graphics card

and programming effort
increasing performance

Single node

Multiprocessor
(up to 16

nodes)

Figure 2.5: The programming approaches and their effect on performance, both single
node and parallel.

Computation Paradigm

CUDA exposes a model to the developer consisting of a collection of threads run-

ning in parallel. There are several other elements involved in the execution which bear

mentioning, since they are unique to graphics processor programming with CUDA:

• A program is decomposed into blocks that run logically in parallel (physically

only if there are resources available). A block is a group of threads that is

mapped to a single multi-processor, where they can share 16 Kbytes of memory

(see Figure 2.6). All threads of concurrent blocks on a single multi-processor

divide the resources available equally amongst themselves. The data is also

divided amongst all of the threads in a SIMD fashion with a decomposition

explicitly managed by the developer.

• A warp is a collection of threads that can actually run concurrently (with no

time sharing) on all of the multi-processors. The size of the warp (32 threads

30

SIMD multiprocessor 16

SIMD multiprocessor 1

SIMD multiprocessor 2

Texture Cache

Regs RegsRegs

Shared Memory (16 KB)

Core 1 Core 8Core 2

Global Memory (GDDR − 1.5 GB)

Issue
Instr.

SIMD parallelism Kernels

es
ca

la
b

il
it

y
F

u
tu

re

Figure 2.6: The CUDA hardware interface.

on the G80) is less than the total number of available cores (128 on the G80)

due to memory access limitations. The developer has the freedom to determine

the number of threads to be executed (up to a limit intrinsic to CUDA), but if

there are more threads than the warp size, they are time-shared on the actual

hardware resources.

• A kernel is the actual code to be executed by each thread; the executable is

shared among all of the threads in the system. Conditional execution of different

operations on each multi-processor can be achieved based on a unique thread

ID.

The CUDA documentation states that a single block should contain 128-256

threads to maximize execution efficiency, with a CUDA-imposed maximum of 512.

Other hardware and software limitations are listed in Table 2.2, where we have ranked

them according to their impact on the developer’s implementation and overall per-

formance based on our own experience.

31

Table 2.2: Major hardware and software limitations with CUDA. Constraints are
listed for the G80 GPU and categorized according to their difficulty of optimization
and impact on the overall performance.

Parameter Limitation Impact
Multi-Processors per GPU 16 Low
Processors / Multi-Processor 8 Low
Threads / Warp 32 Low
Thread Blocks / Multi-Processor 8 Medium
Threads / Block 512 Medium
Threads / Multi-Processor 768 High
32-bit registers / Multi-Processor 8192 High
Shared Memory / Multi-Processor 16 Kbytes High

Memory and registers

In the CUDA model, all of the threads can access all of the GPU memory, but, as

expected, there is a performance boost when each thread reads data resident in the

shared memory area, particularly when the data resides in several different memory

banks (each bank can only support one memory access at a time, and therefore

simultaneous accesses are serialized, hurting parallelism). The use of up to 16 KB of

shared memory is explicit within a thread, which allows the developer to solve bank

conflicts wisely. However, this type of optimization is often very difficult, but can

also be very rewarding. Execution times may decrease by as much as 10x for vector

operations and latency hiding may increase by up to 2.5x [39].

When developing applications for GPUs with CUDA, the management of registers

becomes important as a limiting factor for the amount of parallelism we can exploit.

Each multi-processor contains 8,192 registers which will be split evenly among all

the threads of the blocks assigned to that multi-processor. Hence, the number of

registers needed in the computation will affect the number of threads able to be

32

executed simultaneously, given the constraints outlined in Table 2.2. For example,

if a kernel (and therefore a thread) consumes 16 registers, only 512 threads can be

assigned to a single multi-processor, and this can be achieved by using 1 block with

512 threads, 2 blocks of 256 threads, and so on.

Implementation of Image Analysis Code

We have used a typical CUDA development cycle, which we will describe briefly.

First, the code was compiled using the CUDA compiler and a special flag that outputs

the hardware resources (memory and registers) consumed by the kernel. Using these

values, we were able to analytically determine the number of threads and blocks

that were needed to use a multi-processor with maximum efficiency. If a satisfactory

efficiency could not be achieved, the code would need revision to reduce the memory

footprint.

Due to the high floating point computation performance of the GPU, memory

access becomes the bottleneck in many parts of our application. The input image tile

(1K×1K×3 bytes) is much larger than the size of the multi-processor shared memory

(16 KB), so we prioritize data structures like partial co-occurrence matrices (used in

phase 2) and partial histograms (phase 4). However, in phase 1, even though the

tile pixels are swept over without being reused, the execution time was lower when

using shared memory (2.32 ms versus 2.77 ms - see Table 2.3). Also, in phase 3,

the input pixels were moved to shared memory because the calculation of the LBP

feature shows high data reuse.

In order to illustrate the progression of a typical CUDA implementation, we will

discuss the specific optimizations applied to each phase of the image analysis appli-

cation below.

33

0 3 151 2 10 0 1 15 0 1 15

DATA (1 byte)

BANKS (4 bytes):

THREADS: 63 64 127 128 191 192 255

15001 255

0123

row 2

row 3

row 1

row 0

row 0
row 1
row 2
row 3

pixels
belonging
to thread

(0,0)

lo
ca

l
co

o
cc

u
rr

en
ce

 m
at

ri
ce

s
(s

er
ia

li
ze

d
)

16x16 threads (first kernel)

kernel)
(second
reduction

(w
it

h
 o

n
ly

 1
6
 t

h
re

ad
s

w
e

o
p
ti

m
iz

e
m

em
o
ry

 a
cc

es
s)

th
re

ad
 d

ep
lo

y
m

en
t

fo
r

se
co

n
d
 k

er
n
el

threads accessing

01234567...

0 15

MEMORY
BANKS

SHARED

thread deployment for first kernel

mem. on half warp

ThrID(6): 00000110

00011000

after
shuffling
bits

global memory

shared memory

local coocurrence
matrix for thread 150

bank: 1

bank: 6

6 7 1312111098 14 15

image pixels (serialized)

Figure 2.7: Phase 2: Local co-occurrence matrices in CUDA. Assigning banks in
shared memory to each thread to avoid conflicts when computing co-occurrence ma-
trices.

34

T
ab

le
2.

3:
M

a
jo

r
C

U
D

A
op

ti
m

iz
at

io
n
s

in
th

e
im

ag
e

an
al

ys
is

ap
p
li
ca

ti
on

.
E

xe
cu

ti
on

ti
m

es
co

rr
es

p
on

d
to

an
is

ol
at

ed
1K

x1
K

ti
le

on
a

si
n
gl

e
G

P
U

.
P

h
as

e
1

sh
ow

s
th

e
ti

m
es

fo
r

C
P

U
to

G
P

U
co

m
m

u
n
ic

at
io

n
an

d
ac

tu
al

G
P

U
co

m
p
u
ta

ti
on

.
P

h
as

es
2

an
d

3
sh

ow
on

ly
G

P
U

co
m

p
u
ta

ti
on

(n
o

co
m

m
u
n
ic

at
io

n
is

re
qu

ir
ed

).
P

h
as

e
4

sh
ow

s
th

e
ti

m
es

fo
r

G
P

U
to

C
P

U
co

m
m

u
n
ic

at
io

n
an

d
ac

tu
al

G
P

U
co

m
p
u
ta

ti
on

.
T

h
e

fi
ft

h
co

lu
m

n
in

th
e

ta
b
le

re
fe

rs
to

co
n
fl
ic

ts
ar

is
in

g
w

h
en

se
ve

ra
l
th

re
ad

s
si

m
u
lt

an
eo

u
sl

y
ac

ce
ss

th
e

sa
m

e
b
an

k
of

sh
ar

ed
m

em
or

y.

A
n
al

y
si

s
C

o
d
e

ta
g

D
es

cr
ip

ti
on

/
O

p
ti

m
iz

at
io

n
s

In
sh

ar
ed

C
on

fl
ic

ts
E

x
ec

u
ti

on
ti

m
e

(m
il
li
se

cs
.)

P
h
as

e
m

em
or

y
so

lv
ed

C
om

m
.

C
om

p
u
t.

T
ot

al

1:
1.

10
B

as
el

in
e

v
er

si
on

:
U

si
n
g

fl
oa

t3
p
er

co
lo

r
ch

an
n
el

A
ll

in
gl

ob
al

m
em

or
y

8.
49

3.
71

12
.2

0
R

G
B

to
1.

11
C

oa
le

sc
in

g
(A

lp
h
a

ch
an

n
el

in
se

rt
ed

)
on

fl
oa

t3
A

ll
in

gl
ob

al
m

em
or

y
10

.7
9

2.
44

13
.2

3
L
A

*B
*

1.
12

R
ep

la
ci

n
g

fl
oa

t3
b
y

u
ch

ar
(2

56
th

re
ad

s/
b
lo

ck
)

A
ll

in
gl

ob
al

m
em

or
y

2.
98

2.
77

5.
75

co
lo

r
1.

20
,
1.

30
U

s
in

g
s
h
a
r
e
d

m
e
m

o
r
y

(
2
5
6

t
h
r
e
a
d
s
/
b
lo

c
k
)

P
ix

e
ls

U
n
n
e
e
d
e
d

2
.9

8
2
.3

2
5
.3

0

co
n
ve

rs
io

n
1.

40
U

si
n
g

b
et

w
ee

n
16

9
an

d
19

2
th

re
ad

s/
b
lo

ck
P

ix
el

s
U

n
n
ee

d
ed

2.
98

2.
43

5.
41

2:
2.

10
B

as
el

in
e

v
er

si
on

:
U

si
n
g

gl
ob

al
m

em
or

y
A

ll
in

gl
ob

al
m

em
or

y
N

on
e

15
.4

0
15

.4
0

S
ta

ti
st

ic
al

2.
20

U
si

n
g

sh
ar

ed
m

em
or

y
fo

r
co

-o
cc

u
rr

en
ce

m
at

ri
ce

s
C

o-
o
c.

m
at

.
N

o
N

on
e

4.
48

4.
48

fe
at

u
re

s
2.

30
S
o
lv

in
g

c
o
n
fl
ic

t
s

o
n

s
h
a
r
e
d

m
e
m

o
r
y

b
a
n
k
s

C
o
-
o
c
.

m
a
t
.

Y
e
s

N
o
n
e

2
.5

8
2
.5

8

3:
3.

10
B

as
el

in
e

v
er

si
on

:
S
p
ec

ia
l
th

re
ad

s
on

gr
id

b
or

d
er

s
A

ll
in

gl
ob

al
m

em
or

y
N

on
e

2.
29

2.
29

L
B

P
3.

20
,
3.

30
B

lo
c
k
s

o
f
1
6
x
1
6

t
h
r
e
a
d
s
,
1
4
x
1
4

c
o
m

p
u
t
in

g
P

ix
e
ls

U
n
n
e
e
d
e
d

N
o
n
e

1
.8

2
1
.8

2

op
er

at
or

3.
40

B
lo

ck
s

of
8x

8
th

re
ad

s,
6x

6
of

th
em

co
m

p
u
ti

n
g

P
ix

el
s

U
n
n
ee

d
ed

N
on

e
2.

31
2.

31
4.

4.
10

B
as

el
in

e
v
er

si
on

:
U

si
n
g

gl
ob

al
m

em
or

y
A

ll
in

gl
ob

al
m

em
or

y
4.

02
2.

08
6.

10
H

is
to

gr
am

4.
20

U
si

n
g

sh
ar

ed
m

em
or

y
fo

r
lo

ca
l
h
is

to
gr

am
s

L
o
ca

l
h
is

t.
N

o
0.

31
0.

61
0.

92
4.

30
S
o
lv

in
g

in
t
e
r
-
w

a
r
p

c
o
n
fl
ic

t
s

in
m

e
m

.
b
a
n
k
s

L
o
c
a
l
h
is

t
.

I
n
t
e
r
-
w

a
r
p

0
.3

1
0
.5

9
0
.9

0

Σ
(*

.1
0)

B
as

el
in

e
v
er

si
on

A
ll

in
gl

ob
al

m
em

or
y

12
.5

1
23

.4
8

35
.9

9
T
ot

al
Σ

(*
.2

0)
In

vo
lv

in
g

sh
ar

ed
m

em
or

y
E

n
ab

le
d

N
o

3.
29

9.
23

12
.5

2
Σ

(*
.3

0)
O

p
t
im

a
l
v
e
r
s
io

n
E
n
a
b
le

d
M

o
s
t

3
.2

9
7
.3

1
1
0
.6

0

35

threads deployment

computing
threads

data required
to compute
LBP operator
on central pixel (3x3 pixels window)

Figure 2.8: Phase 3: LBP operator in CUDA. Each thread block operates on an
image tile which has a 1-pixel-wide border surrounding it, such that every pixel in
the entire image (except the extreme edges) have LBP values calculated for them.

36

Phase 1: Color conversion As a departure point, we started using 24-bit float3

data types for each color channel. However, extra performance can be obtained by

padding the RGB input to match the expected data width of 32-bits, which simplifies

all subsequent optimizations involving shared memory. This is called data coalescing,

and for this phase it saved 35% of the computation time at the expense of commu-

nication time (see code 1.11 in Table 2.3). Next, it was found that 8-bit uchar data

types were sufficient for the precision of the application. As expected, this reduces

the communication time by nearly a factor of 4.

We then used the special CUDA compilation flag to find that the color conversion

kernel requires 13 registers and 1064 bytes of shared memory, leading to a maximum

processor occupancy of 75% when allocating between 176 and 192 threads. However,

we chose to allocate 256 threads instead, trading processor occupancy (from 75% down

to 67%) for better load balance, since 256 is a multiple of 32 (maximum threads

per warp) and a divisor of 768 (maximum threads per multi-processor) and 1024

(maximum pixels per image). The result was that the execution times improved

slightly (see code 1.30 versus 1.40 in Table 2.3 - version 1.40 reports the minimum time

obtained for all threads/block cases between 169 and 192, which turns out to be 169

threads). Unfortunately, maximum performance here is limited because each thread

needs more than 10 registers (11 to be precise), which, as discussed earlier, prevents

us from reaching the maximum occupancy of 768 threads within a multiprocessor.

The optimal execution time for this phase was 2.98 ms for pixel transfer and 2.32 ms

for computing the color conversion, as reflected in Table 2.3.

37

Phase 2: Statistical features This kernel requires 9 registers and 4132 bytes

of shared memory, which allowed us to allocate 3 parallel blocks of 256 threads.

This perfect usage of all 768 threads filled all of the G80 hardware resources for

a 100% occupancy factor. Pixels are equally distributed among threads and local

co-occurrence matrices are simultaneously computed within them. Finally, partial

results are accumulated through a reduction operator.

It was found to be challenging to compute co-occurrence matrices in shared mem-

ory while avoiding conflicts accessing its 16 banks. With a grid of 256 threads arranged

in a 16x16 grid, the naive thread deployment would force the 32 threads in a warp to

access only 8 shared-memory banks, which would severely limit parallelism and per-

formance. We found that by intelligently shuffling the active threads combined into

a warp, the local matrix computation and the subsequent global matrix aggregation

operation can proceed without forcing threads to wait for bank access (see Figure 2.7).

This complex optimization solves all conflicts when accessing memory banks, reduc-

ing the execution time to 2.58 ms from 4.48 ms. Without using shared memory, a

straightforward implementation consumes 15.40 ms instead (see Table 2.3).

Phase 3: LBP operator The computation of the LBP feature entails a convolu-

tion with a 3x3 mask, followed by a binary to decimal conversion (see Figure 2.3).

Each thread requires 10 registers and each block of threads uses 296 bytes of shared

memory. Due to the memory usage characteristics, we were able to allocate 256

threads in a 16 x 16 grid to reach 100% occupancy on the G80. Each thread reads

a pixel from global memory and stores it in a shared memory data structure. Those

threads located on the border of the grid are unable to compute, since they do not

38

have access to their neighbor data (see Figure 2.8); they exit the kernel at this stage.

The LBP for the border regions will be computed by the next block of threads, since

we overlap the thread layout by two rows and two columns of pixels each time. By

using this strategy, we incur 23% idle cycles and the associated redundant mem-

ory accesses, but the computation is more homogeneous and the threads are more

lightweight. As compared to the heterogeneous version, where there are no idle cycles

and no memory redundancy, the homogeneous version is faster by 1.25x, leading to

the lowest execution time of 1.82 ms.

Since the LBP kernel is a very regular computation, we can select different sizes

of thread deployments, provided a square grid is used. Therefore, we investigated the

effect of different thread/block ratios. We gathered values for grids of threads of sizes

20x20 (2.02 ms), 18x18 (1.90 ms), 16x16 (1.82 ms - optimal), 14x14 (1.89 ms), 12x12

(2.00 ms), 10x10 (2.16 ms), and 8x8 (2.31 ms - reported in Table 2.3 as version 3.40).

A grid of 16x16 threads is a popular choice among expert programmers to maximize

performance in CUDA; that said, our intention was more to quantify the penalty we

may incur by making an inappropriate choice for thread allocation.

Phase 4: Histogram The implementation of this phase is based on a histogram

kernel included with the CUDA library [89], where the global reduction is delegated

to the CPU. We deemed this an appropriate solution, since the histogram is only

computed once per tile, and does not incur a large execution time cost. The execution

time for this last phase is 0.9 ms.

39

Figure 2.9: DataCutter layout of the image analysis application.

Table 2.3 summarizes all of the major optimizations performed within CUDA on

each phase along with the execution times obtained. Since the current CUDA pro-

gramming model does not allow the developer to assign different kernels to different

multi-processors, the four phases are sequentially executed and the whole GPU is

used during each phase independently. Overall, by using CUDA to implement the

image analysis, we were able to reduce the execution time by a factor of 3-5 over the

times obtained by Cg (see Table 2.5 for times on an entire image), by an additional

factor of 3 when enabling shared memory, and by an extra 20% when solving memory

conflicts as much as possible for an optimal execution.

2.4.2 Implementation with DataCutter

We employed DataCutter middleware for the parallelization of the testbed image

analysis computation, which is presented in Section 1.2.1 in detail.

Our image analysis application is easily divided into three stages, each of which is

implemented as a single DataCutter filter type. These are: a TIFF-Reader filter that

40

reads binary TIFF tiles, a TIFF-Decompressor filter that decompresses TIFF tiles

and produces RGB images, and a Tile-Analysis filter where the real image analysis

computation is carried out. A layout which includes one each of these three filter

types constitutes a complete image analysis task graph, while multiple copies of each

filter type allows for quick parallelization and efficient execution. Figure 2.9 shows the

general layout of the system. One or more reader nodes (with one TIFF-Reader filter

each) read the binary TIFF image tiles from the disk and write them to the stream

leading to the TIFF-Decompressor. One or more TIFF-Decompresser filters are able

to coexist on the same node and simply take the binary TIFF file and decompress

it into the appropriate RGBA tuples. This decompressed image data is then written

to the input stream to the Image-Analysis filter on the same node. When the Tile-

Analysis filter makes use of the GPU, the ability for multiple Tiff-Decompressor filters

to feed data to the GPU allows for full utilization of the GPU’s throughput. Placing

both the TIFF-Decompressor and the Image-Analysis filters on the same node has

the benefit of saving memory bandwidth by leaving the largest representation of each

TIFF tile in place and simply transferring the pointer.

The component-based programming model of DataCutter allows us to easily de-

velop and deploy image analysis applications that utilize GPUs as co-processors. By

simply replacing the C++ Tile-Analysis filters with filters using the GPU, we can

quickly develop a parallel code that efficiently executes on a multi-socket, multi-core,

multi-GPU cluster. The layout, the two TIFF-Reader and TIFF-Decompressor filters,

and the entire parallelization system are reusable.

41

Table 2.4: Properties of the three slides used in our experiments.

Name Resolution in pixels Number of 1Kx1K tiles
SMALL 32,980 x 66,426 33 x 65 = 2,145
MEDIUM 76,543 x 63,024 75 x 62 = 4,659
LARGE 109,110 x 80,828 107 x 79 = 8,453

Table 2.5: Execution times for the image analysis application
Execution times for the image analysis application for different programming methods
and hardware platforms. These times do not include disk I/O or decompression
overheads. The image tile size is 1Kx1K pixels. The co-occurrence matrix size is 4x4.
The values in the CUDA column represent running on one and two GPUs.

On the CPU On the GPU

Image size Matlab C++ Cg CUDA

SMALL 2h 57’ 29” 43’ 40” 1’ 02” 27’ 14”

MEDIUM 6h 25’ 45” 1h 34’ 51” 2’ 08” 0’ 58”

LARGE 11h 39’ 28” 2h 51’ 23” 3’ 54” 1’ 48”

2.5 Experimental Results

Our experiments were performed on the BALE cluster (see Section 2.3) using the

16 visualization nodes and an additional six compute nodes as reader nodes, in order

to provide enough disk bandwidth to avoid the disk I/O bottleneck. Further, these

reader nodes had their system file caches preloaded with several discarded experi-

ments to ensure extremely high I/O from the upstream, TIFF-READER filters. We

feel this is a suitable experimental setup to use; any production cluster designed to

analyze this kind of image data with very high performance with multiple GPUs and

42

a fast interconnect can reasonably be said to have parallel disks providing high I/O

bandwidth.

In our experiments, we have used three different digitized pathology images. Table

2.4 summarizes their features.

The first set of experiments shows the single node CPU and GPU performance for

the various implementations of the image analysis algorithm. Figure 2.10 shows the

execution time and overhead time of each implementation when analyzing the SMALL

image. The first four stacked bars represent CPU-only implementations, while the

last six stacked bars bring one or two GPUs into the fold. Those bars with labels

beginning with ‘DC’ are results from those implementations using DataCutter and

those without the ‘DC’ label are the basic, serial implementations.

The execution time in Figure 2.10 (shown by the lower, darker portion of each

bar) is due solely to the actual image analysis, while the overhead (shown by the

upper, lighter portion of each bar) is caused by disk I/O, TIFF decompression, remote

process invocation, and network latencies, where applicable. In this experiment, the

most important thing to note is the two to three orders of magnitude of performance

speedup when moving from the CPU-based solutions to the GPU-based solutions.

While a large amount of performance is gained by moving away from Matlab, the C++

implementations are still far slower than those which are GPU-based. Additionally,

the DataCutter versions of the GPU-based image analysis algorithms are able to

shorten the execution time for the entire image versus the non-DataCutter versions,

since the decoupled, multi-threaded nature of DataCutter allows the image analysis

to overlap with the TIFF tile decompression and the disk I/O. Unfortunately, the

CUDA implementation of the image analysis algorithm is fast enough to cause the

43

Figure 2.10: Execution time comparison of all implementations of the image analysis
codes running on a single node using SMALL image.

TIFF tile decompression stage to become a bottleneck when 2 GPUs are used. This

stalling, incurred by the GPUs waiting for tiles to analyze, prevents both GPUs from

being fully utilized. Since four C++ threads shows a clear advantage over running

a single thread, all future C++ results will be comprised of the DataCutter version

with four tile analysis threads per node.

Figure 2.11 shows the performance comparison of the GPU-based implementations

of the analysis routine for our three images. The main point to take from this chart

is that there is a linear relationship between the execution time and the overall size

44

Figure 2.11: Execution time comparison of GPU and DataCutter implementations
running on a single node using all three input images.

of the image under analysis in all of the implementations. Unfortunately, even when

analyzing large images, making full use of 2 GPUs is hindered by the associated

overheads; this being the case, we will not show 2 GPU results for the remainder of

the experiments.

Figure 2.12 shows the scalability of our solution with respect to the number of

nodes. The numbers of nodes involved in the image analysis are 1, 2, 4, 8, 12, 16,

and are represented by the bars in the figure from left to right, six in each color

group. As in Figure 2.11, the lower, darker-colored portion of each bar represents

the image analysis time, while the upper, lighter-colored portion of each bar shows

the aggregated overhead. This type of image analysis computation scales extremely

well, resulting in image analysis execution times which decrease nearly linearly with

45

Figure 2.12: Parallel execution times of C++, Cg, and CUDA based DataCutter
implementations using three input images while varying the number of nodes from 1
to 16.

the number of nodes. Further, the total analysis times for the DataCutter/CUDA

implementation are under four seconds for the SMALL image, under seven seconds for

the MEDIUM image, and just over eleven seconds for the LARGE image, when running

on sixteen nodes. Compared with the single node CPU Matlab computation time of

nearly three hours for the SMALL image and almost twelve hours for the LARGE image,

this represents a tangible benefit of increased productivity. In the interest of increased

chart legibility, we have cropped the single node C++ result. Its values are 629.42

seconds of image analysis time and 29.7 seconds of overhead. Additionally, since the

main focus of this chapter is the GPU results, and since the C++ result is shown to

scale well in the worst-case (because it incurs the lowest proportional overhead), we

46

Figure 2.13: Parallel speedup results. Within DataCutter (DC) versions, we compare
on the left a CPU-only case with two GPU-assisted ones for the SMALL image. On
the right, we contrast the two GPU versions for the MEDIUM and LARGE images.

have chosen to remove it from the figures showing results for the MEDIUM and LARGE

images.

Figure 2.13 shows the parallel speedup of the execution time versus the number

of nodes. As seen in the figures, there is nearly linear speedup since the tiles are able

to be decompressed and processed entirely independently of each other. However,

due to the small execution times in the GPU-based implementations, the various

overheads (comprised of remote process startup, network, and TIFF decompression

latencies) begin to become comparable in overall time to the total time spent per node

processing the image tiles. For instance, on sixteen nodes, the CUDA implementation

requires at most 1.80 seconds of computation to compute 2, 145 tiles. However, despite

concurrently running three TIFF-Decompressor filters, the decompression time alone

for each node’s allotment of 135 tiles could range from 0.3 seconds to 1.3 seconds.

47

Nearly linear speedup could be achieved in a production environment, however,

since it is reasonable to assume that remote process invocation would only occur once

for many images which are to be analyzed. Under these server-like circumstances,

only the I/O system and network latencies would comprise the system overheads.

2.6 Summary

In this chapter, we have presented design trade-offs and a performance evaluation

of a sample biomedical image analysis application running on a cooperative cluster

of CPUs and GPUs.

By implementing algorithms on GPUs using CUDA and using DataCutter to par-

allelize the computation within and across nodes, we establish a solid heterogeneous

and cooperative multi-processor platform where all the granularities of parallelism in-

herent in the architecture and in the application are fully exploited: multi-node (using

DataCutter for data partitioning across nodes), SMP and thread-level (using Data-

Cutter to fully utilize the available on-node and on-chip hardware resources), SIMD

(using CUDA to fully populate the 128 stream processors of the GPU with work),

and finally, ILP (Instruction Level Parallelism, by setting up blocks of computational

threads within the GPU execution).

Our experimental results show great success for our techniques, first by decreasing

the execution time on a single CPU/GPU node by using different intra-node opti-

mizations, and then extending those performance gains to inter-node parallelism for

a scalable multi-processor execution. When analyzing the largest test image and in-

cluding overheads, on the 16 node cluster configuration, the single GPU DataCutter-

CUDA implementation is 31.3 times faster than the serial CUDA implementation.

48

By using two GPUs per node, the single-node time to process the image is under one

minute, if you ignore the overheads associated with disk I/O and tile decompression,

proving that the CUDA method is extremely powerful. Additionally, the use of Data-

Cutter to overlap the computation with disk I/O and tile decompression helps the

GPU stay as busy as possible. This results in up to 12.94 speedup on 16 nodes using

GPU-based DataCutter implementations.

GPUs are highly scalable and are evolving towards general-purpose architec-

tures [49]; we envision biomedical image processing as one of the most exciting fields

able to benefit from the use of GPUs. Additionally, new tools like CUDA [26] may

assist non-computer scientists with a more friendly interface for adapting biomedi-

cal applications to GPUs. This computational power may then be combined with

DataCutter to parallelize the computation across clusters of GPUs as outlined in this

chapter to provide real-time response to clinicians of all types.

49

Chapter 3: Investigating the Use of GPU-Accelerated Nodes

for SAR Image Formation

3.1 Introduction

Due to the rapid growth of the computational capacity of Graphics Processing

Units (GPUs) over the past decade, researchers are increasingly using these emerg-

ing architectures to accelerate high performance applications. In fields such as data

mining [51], image segmentation and clustering [53], numerical methods for finite

element computations used in 3D interactive simulations [112], nuclear, gas disper-

sion and heat shimmering simulations [118], and biomedical imaging [55], GPUs have

been used to speed up operations which are time-consuming on standard processors,

dramatically affecting the overall execution times of the final applications.

Synthetic Aperture Radar (SAR) is a computationally intensive technique which

can be used for, among other things, creating 2-D and 3-D images from radar signals

gathered by a moving platform such as an aircraft. By combining signals gathered

from multiple points in space (multiple angles of azimuth and elevation), higher reso-

lution images can be constructed without needing a larger physical antenna or radar

array. The computational burden increases with the image size and the amount of

input, and so techniques for accelerating the processing of the input radar signals and

50

generating the output images are necessary to be able to process the large amount

of data in real time. Even if real time processing is not the goal, the sheer volume

of data which SAR platforms can gather necessitates fast processing to enable fast

decision making.

This chapter investigates the use of a cluster of GPU-equipped processing nodes

to perform SAR image formation by backprojection. We discuss the particulars of the

backprojection algorithm and briefly present an overview of computed tomography in

Section 3.2. We present the software technologies used to implement the algorithm

on the target system in Section 3.3, and the algorithm design space and paralleliza-

tion decisions in Section 3.4. We finish by presenting our experimental results in

Section 3.5, summarizing our findings, and discussing some future work.

3.2 Overview of Computed Tomography

In this section, we provide an introduction to tomographic imaging, the princi-

ple behind x-ray computer-aided tomography (CAT), magnetic resonance imaging

(MRI), and synthetic aperture radar (SAR) imaging. A tomographic system involves

a sensor capable of taking one-dimensional line projections through a two- or three-

dimensional scene, and then reconstructing this underlying scene from a collection of

line projections taken from different aspect angles.

The mathematics of line projections are given by the Radon transform. The

specific way that this transform enters each of these modalities is slightly different,

due to differences in their respective sensors, but the common element is this: the

two-dimensional scene is collapsed into a one-dimensional projection by means of a

dense set of line integrals penetrating the scene (in three dimensions, the projection

51

Figure 3.1: Schematic demonstrating operation of the tomographic principle
Schematic demonstrating operation of the tomographic principle. The scene consists
of the three targets of different amplitudes (circles), and produces the range profiles

shown in Figure 3.2. Note that the flightpath may be circular or straight.

is obtained by a set of slice integrals). This line integral is sampled and stored as

a one-dimensional data vector, and tagged with the location of the sensor when the

projection was taken.

Figure 3.1 presents a diagram of a SAR antenna, which is mounted on an aircraft

and pointed at a scene of interest on the ground. The antenna broadcasts a very

short radio pulse (lasting microseconds) at the scene and records any reflections. It

is assumed that there is negligible aircraft motion during this process; the aircraft

moves and the process is repeated at a pulse repetition frequency of several thou-

sands per second. With a single pulse, the scene cannot be reconstructed: although

the one-dimensional range profile gives good range resolution, cross-range resolution

52

Figure 3.2: Airborne sensor-gathered line projections
Line projections obtained by a sensor flying the large aperture of Figure 3.1. Each

range profile contains the linear contributions of all three scatterers. Note the
merging and crossing of the two left-most scatterers at pulse 6 due to them

possessing identical range displacement.

is non-existent because two reflectors equidistant from the sensor would be indis-

tinguishable. However, by combining many one-dimensional pulse returns collected

over a large azimuth extent, multi-dimensional reconstruction of the scene becomes

feasible. Azimuth functions as the second dimension, variation along which suffices

for a two-dimensional reconstruction. Height or elevation angle diversity, is required

for three-dimensional reconstruction. Complete details of SAR reconstruction are

provided in [63].

Mathematically, it can be shown that a multi-dimensional Fourier transform of

a continuous function is equivalent to the one-dimensional Fourier transform of that

function’s Radon transform (along each projection). The discrete version of this re-

lationship is used by a large class of tomographic reconstruction algorithms which

use a fast Fourier transform (FFT). Because most FFT implementations require

a rectangular grid, whereas projections are usually collected along a radial grid,

53

polar-to-rectangular interpolation is an important pre-processing step. Such polar-

formatting algorithms are attractive because the central step of multi-dimensional

FFT is O(Nn log N), where n is the dimensionality of the scene.

Another class of of popular algorithms is filtered backprojection (also known as

convolved backprojection) which, put simply, reverses the action of the Radon trans-

form. An image is initialized to zero; then for each projection (shown in Figure 3.2),

every pixel that may have contributed to an element of the sampled projection vec-

tor is incremented by that element. For any given sample of a projection vector,

the pixels that could have contributed to its value when the line integral was taken

correspond to those pixels that are equidistant from the radar at the given azimuth

and elevation angles. Because each pixel must query a single point along each pro-

jection, backprojection has O(Nn+1) complexity, where n again is the dimensionality

of the scene. It is called “filtered” backprojection because each projection is given

a frequency weighting to adjust for a larger number of pixels clustering around the

center of the image, due to a radial acquisition mode. This clustering is also visible

in Figure 3.1: whether the aircraft flies past a scene or circles it, the radially-sampled

range profiles obtained sample the center of the scene more finely than the edges.

In theory, both algorithms produce equivalent outputs, and frequently, commercial

tomographic reconstruction systems are locked into one or the other. Experts on both

sides have compiled lengthy lists of pros and cons, for various modalities, imaging

scenarios, and scene sizes over successive generations of computer capabilities, because

the image outputs of the two algorithms do differ. We sidestep the controversy by

noting that while both algorithms have been demonstrated to scale well to distributed

54

systems, backprojection very easily allows an image to be formed on a previously-

obtained digital elevation map (DEM). For this major reason, we have chosen to

implement backprojection for a GPU cluster processing environment.

SAR differs from CAT or MRI reconstruction in that the underlying scene being

Radon-transformed is a complex-valued electromagnetic reflectivity function, encod-

ing attenuation and absorption properties of the materials, rather than a real-valued

x-ray absorption function or hydrogen energy release map. What this practically

means is that with coherent SAR processing, which backprojection accomplishes, a

modern system can produce fully legible image with less than 5◦ of azimuth. (MRI

and CAT systems typically need 180◦ to reconstruct a two-dimensional slice.)

For mapping or surveillance applications, SAR is valuable because it has range-

independent resolution, operates day and night, and is to a large degree impervious to

weather conditions. Many deployments successfully deploy it with camera or LIDAR

sensors to accomplish many varied tasks, but perhaps the most common is forming

an image.

Having described the computational complexity of the backprojection algorithm,

we next describe our choice of software engineering frameworks to write parallel im-

plementations.

3.3 Software Support

This section describes the software tools and libraries used during the development

of our radar signal analysis application. To parallelize the computation across multi-

ple nodes, we have chosen DataCutter, a component-based programming framework

and runtime engine. With DataCutter, we are able to easily make use of multicore

55

processors and accelerators, decompose the input and output domains, and efficiently

execute the overall application in and end-to-end fashion. To program the GPU, we

have chosen to use Nvidia’s CUDA programming environment and hardware solution.

With CUDA, we are able to efficiently make use of the GPU’s vast computational

throughput as well as integrate seamlessly with DataCutter for parallelization across

a full GPU cluster. DataCutter is presented in Section 1.2.1 in detail, while CUDA

is presented in Section 2.4.1.

3.4 Implementation Details

Having given a high-level overview of tomographic reconstruction in Section 3.2

and having presented the software solutions we will leverage to accelerate image re-

construction, we delve into the backprojection algorithm in further detail.

We first present this caveat: before being used for imaging, each one-dimensional

projection vector must be pre-processed. This involves windowing (to adjust the

mainlobe-sidelobe tradeoff) and filtered for frequency deweighting. The former step

involves element-wise multiplication of each projection vector by the window of choice.

As SAR data is typically sampled and stored in the Fourier domain, filtering involves

multiplying each projection by a filter frequency response and inverse Fourier bringing

each projection to the spatial domain (via an inverse FFT with O(N log N) complex-

ity). As mentioned above, the filter in question adjusts for the fact that projections

have a coordinate origin, and are thus more densely sampled in some areas than oth-

ers, due to the radial nature of acquisition. The most common filter, the Ram-Lak

filter, is simply a ramp filter with a frequency response equal to |f |, for frequency f .

56

In medical imaging, the computational burden of pre-processing has to be ac-

counted for, and it can frequently be a critical factor (e.g., in the Cell Broadband

Engine implementation of [95]). Traditionally, too much data is sampled by a SAR

system to be either processed on board the aircraft or wirelessly broadcast to a ground

station, making imaging non-real-time. For this reason, we chose to not parallelize

the one-time pre-processing: we simply perform windowing and filtering on a cen-

tral CPU, and off-load the actual backprojection to the acceleration system. We will

discuss the advantages and trade offs of each acceleration method both here and in

Section 3.5 where we present our experimental results.

3.4.1 Backprojection with DataCutter

In backprojection, each one-dimensional projection has a contribution for each

given pixel. A number of algebraic operations have to be performed to obtain the

index for each projection; then, that element of the projection vector must be fetched

and incremented to the pixel. Therefore, one may assign subsets of projections to

cluster nodes and partition the input, or one may assign sub-image tiles of the output

image to cluster nodes, and partition the output.

Figure 3.3: SAR Imaging Pipeline

57

Figure 3.3 shows the basic processing pipeline. The major tasks are Read Input

Data, Form Partial Image, and Aggregate Partial Images. For processing pipelines

with no task parallelism, the second stage will consist of only one processing element,

and as such the partial image formed during this stage will in fact be the final image.

However, in more complex processing pipelines (specific instances of tasks mapped to

CPUs, GPUs or Cell processors) with task parallelism, the work to be performed is

partitioned amongst all of the Form Partial Image pipeline tasks.

With SAR image formation, the work to be performed is the calculation of each

input vector’s contribution to each pixel in the output image. As such, both the input

and the output can be partitioned amongst the imaging pipeline tasks. Figures 3.4

and 3.5 show small examples of partitioning the input and output of copied imaging

pipeline tasks, respectively. When partitioning the input, the amount of computation

which each imaging task performs is reduced to C/N where N is the number of

imaging tasks and C is the total amount of computation required to form the total

final image. When the input is partitioned, the output data size stays constant among

all of the imaging tasks.

When partitioning the output in SAR image formation, the input data set size

stays constant (it is broadcasted by the Read task to all of the downstream imaging

tasks). Then, each imaging task only computes the input data set’s contribution to

a subset of the pixels of the output image.

Although more complex hybrid solutions to the decomposition of the input and

output data can be developed [72], their performance is typically close to that of

the output-partitioned scheme when the output size is large. Also since the input-

partitioned and output-partitioned parallelization schemes represent the extremes of

58

Figure 3.4: SAR Imaging Input Partitioning

the SAR image formation pipeline design space and constitutes a good base cases

for comparisons, in this work we only develop and present these two parallelization

schemes.

Figure 3.5: SAR Imaging Output Partitioning

3.4.2 Backprojection with GPU

Our CUDA backprojection implementation partitions the output image subset

assigned to the kernel; this could be the whole range of output pixels or just a subset,

depending on the output partitioning conducted across the image formation tasks.

During the remainder of this section, we will assume the simple case where the pipeline

includes only one imaging task. CUDA blocks correspond to rectangular sub-images,

and CUDA threads correspond to individual pixels. This partitioning is appealing

59

because we can take advantage of texture caching if we store the projections as a

texture. Another advantage of using texture memory is the hardware for linear inter-

polation of textures [95]. This is beneficial because interpolation is required to choose

an intermediate value between two samples of a given projection during the image

formation, and the GPU hardware provides this for free.

As the cached-texture memory is read-only, it cannot be used for storing portions

of the output image. Therefore, individual CUDA blocks allocate small image tiles

in shared memory, and each member thread increments its assigned tile pixel by

independently computing the index of each projection. After all the projections have

been queried and the sub-image completed, it is copied back to global memory in a

fully-coalesced write operation.

3.4.3 Combining DataCutter and CUDA

Since DataCutter is a component-based programming framework, it is ideally

suited to leveraging other programming frameworks to ease implementation within

components. Further, DataCutter allows encapsulation all of the low-level details

of making use of accelerator architectures such as GPUs. Provided the interfaces

exposed to the other components stay consistent, the implementations of each of the

components are quite flexible.

Our combined DataCutter/CUDA backprojection algorithm used DataCutter’s

ability to return pointers to specific portions of data buffers which are the quantum of

data the runtime engine handles. These pointers are then simply passed to a function

which transfers data to the GPU and executes the CUDA kernel. By preallocating

60

outgoing data buffers, we are able to transfer the results of the GPU computation

directly to the outgoing data buffer, rather than requiring an extra copy operation.

3.5 Application Experiments

This section details the experiments we conducted to investigate the performance

of using GPU clusters for SAR image formation. Following the description of the

computer hardware, we discuss the dataset we used for our experiments. Then, a

presentation of our results and a discussion of the interesting points follows.

All of the CPU and GPU experiments were conducted on the Ohio Supercomputer

Center’s (OSC) BALE Visualization GPU cluster [7]. The BALE GPU nodes consist

of two dual-core 2.6 GHz AMD Opteron processors, 8 GB of main memory, Nvidia

Quadro 5600 graphics cards with 1.5 GB of memory, and Infiniband network cards.

For our experiments, we used four nodes, which provides 16 cores and four GPUs.

The CPUs have a peak performance of 17.6 GFLOPS in single-precision arithmetic,

while the GPUs have a peak performance of 330 GFLOPS. We restrict our discussion

of hardware specifications to single-precision floating-point arithmetic, because our

application’s implementations only make use of single-precision data types.

The Air Force Research Lab’s Sensor Data Management System (SDMS) web site

has released certain data sets to the public, one of which is the GOTCHA1 data set.

The GOTCHA data set consists of SAR phase history data collected with a 640 MHz

bandwidth. We use a single elevation angle and up to 11◦ of azimuth coverage. The

imaged area is that of a parking lot, and is populated with various cars and a few

construction vehicles.

1https://www.sdms.afrl.af.mil/datasets/gotcha/index.php

61

!"#$

#$

#!$

#!!$

#!!!$

!$ %$ #!$ #%$ &!$

!"
#$
%&

'(
)*
+,

#)
-.
#$
'(

/.
0)

12'$#..#.)

'()$*%#&+%#&,$

-./.01234$*%#&+%#&,$

'()$*&!56+&!56,$

-./.01234$*&!56+&!56,$

'()$*5!78+5!78,$

-./.01234$*5!78+5!78,$

Figure 3.6: Execution times of C/MPI and DataCutter backprojection implementa-
tions with 1◦ of input data and varying image sizes.

In our first set of experiments, we tested the scalability of our basic DataCutter-

based parallelization scheme, and compared it with an existing, simple C/MPI parallel

implementation of the backprojection algorithm [48]. Figure 3.6 shows the CPU-only

results, where we show the scalability of these two implementations while varying

the number of processes. As the figures show, our DataCutter implementation is

as efficient at using the parallel machines as the straight MPI version, and as such,

will introduce no unwanted overheads when transitioning to the parallel GPU imple-

mentation. Indeed, due to the streaming nature of DataCutter, and the staggered

start times of the processing nodes receiving messages from the initial Read filter, the

aggregation filter does not act as a bottleneck in the application, leading to better

scalability as the number of nodes increases.

Our next set of experiments present the performance gains that can be achieved

by GPU parallelization of backprojection code. Figure 3.7 shows the execution times

of a single GPU running the backprojection algorithm on 1◦ of azimuth data with

62

two different implementations. The figure shows that DataCutter introduces a slight

overhead to single GPU executions, which is to be expected for a pipelined parallel

code written under the assumption either input or output data will be partitioned.

Necessary additional steps (the aggregation of output sub-images for the output parti-

tioning case, for instance) need to be executed even when only one GPU will perform

the image formation. Also note the exponential growth in execution times when

the output image size is increased from 2048x2048 to 4096x4096. This calls for a

multi-node/multi-GPU parallelism, especially for larger image sizes.

The comparison between parallel CPU and GPU implementations is striking in

Figure 3.8; as expected, the GPU implementations are significantly faster than CPU

implementations. For example, running the same 1◦ of azimuth data using C/MPI

code takes about 4.7 seconds for 512x512 image size, whereas it only takes 0.15

seconds using the GPU, hence resulting in just over 31x speedup. The performance

gap increases with increasing image size; for 2048x2024 image size, the GPU’s speedup

over CPU is about 55x, while for 4096x4096 images, the speedup climbs to about 58x.

Figure 3.9 shows the largest-scale multi-GPU results. Here, we use 11◦ of data in

order to highlight the issues we can solve within the multi-GPU domain. The results

show that the use of additional GPUs can help to further reduce the execution time.

Using 4 GPUs, we achieved up 3.45 speedup with this particular combination of input

and output sizes. Also note that especially on the larger image size, the output-

partitioned parallelization scheme has slightly better performance. For example, on

4096x4096 image size we achieve 3.05 speedup using input partitioning and 3.45

speedup using output partitioning. This is undoubtedly due to the fact that when

the output image is partitioned, the GPU need only calculate a subset of the output

63

Figure 3.7: Execution times of single GPU implementations with 1◦ of input data.

image, and must only copy that subset from the GPU back to the host’s memory.

Whereas, when the input is partitioned, the whole image needs to be transfered

between host and GPU. This is known to be a slow operation, due to the relatively

anemic bandwidth of the PCI Express bus, to which GPUs are connected.

Our last set of experiments, depicted in Figure 3.10, shows the effect of varying

the number of degrees of input azimuth data while using 4 GPUs. Since the number

of projections in each azimuth degree is roughly the same, there is a linear increase

in processing time for each degree of input data added to the image formation. As

expected, the slopes of the lines are different for each output image size, because for

64

!"

!#"

!##"

!###"

#" !" $" %" &" '"

!"
#$
%&

'(
)*
+,

#)
-.
#$
'(

/.
0)

12'$#..#.3415.)

()*"

+,-,./012"

+.34)5")*"

+.34)5")6"

Figure 3.8: Execution times of CPU and GPU implementations with 1◦ of input data.
The data series suffices ‘PI’ and ‘PO’ denote those implementations where the input
or output is partitioned amongst the GPUs, respectively.

each input projection, the amount of computation is highly dependent on the number

of pixels in the output image.

3.6 Summary

In this chapter we have presented a method for performing 2-D image formation

from SAR on a cluster of GPUs. By using DataCutter for the internode parallelization

and CUDA for the GPU programming, we have shown that our solution is efficient

at making use of the computational resources. Further, by making use of 4 GPU-

equipped processing nodes to perform the 2-D backprojection computation, we can

get (versus a single CPU core executing a relatively simple backprojection implemen-

tation) 29.9x speedup on a 512x512 image, 92.1x speedup on a 2048x2048 image, and

109.9x speedup on a 4096x4096 image.

65

Figure 3.9: Execution times of DataCutter/GPU implementation running on up to
4 GPUs with 11◦ of input data. The data series suffices ‘PI’ and ‘PO’ denote those
implementations where the input or output is partitioned amongst the GPUs, respec-
tively.

66

!"

#"

$"

%"

&"

'!"

'#"

!" #" $" %" &" '!" '#"

!"
#$
%&

'(
)*
+,

#)
-.
#$
'(

/.
0)

1#23##.)'4)56+,%78)

('#)('#"

#!$&)#!$&"

$!*%)$!*%"

Figure 3.10: Execution times of DataCutter/GPU implementation running on 4 GPUs
while varying the input data set size.

67

Part II: High-Performance
Dataflow Middleware for

Heterogeneous Computing

68

Chapter 4: A Component-Based Framework for the Cell

Broadband Engine

4.1 Introduction

Designing parallel and distributed programs for efficient execution on large, com-

plex supercomputers is a challenging task. Experts in fields such as physics, image

and signal analysis, and biology are ill-equipped to design applications to take full ad-

vantage of the hierarchical, heterogeneous, distributed cluster supercomputers which

are quickly becoming the norm for high-performance computing resources. Micropro-

cessor architectures like the Cell Broadband Engine Architecture and Graphics Pro-

cessing Units have many unique characteristics constraining their use, not to mention

their own, difficult-to-learn and harder-to-master application programming interfaces.

This chapter presents DataCutter-Lite, a fine-grained filter-stream programming li-

brary and runtime system which enables the simple design of filter-stream applications

for modern multicore processors. We show that by using DataCutter-Lite, developers

can leverage modern, heterogeneous multicore processors with good efficiency and

productivity.

In order to fully use the computational power of modern multicore processors,

developers must be well-versed in:

69

Table 4.1: High Performance Computing (HPC) techniques and DataCutter-Lite’s
approach

HPC Technique DataCutter-Lite’s Method
General HPC techniques (data blocking, Non-blocking buffer writes
communication overlap) and appropriate buffer sizing
Parallel programming and distributed Application-specific task
address-space programming decomposition and componentization
Specific architectural idiosyncrasies Efficient lower-level libraries enabling
(messaging libraries, etc.) consistent higher-level interface

• Parallel programming techniques, such as data decomposition, master-slave and

pipelined computations.

• Parallel algorithms, if basic operations such as search and sort comprise a large

part of the computation the developer wishes to perform.

• A threading library, such as POSIX threads.

• Architecture-specific constraints, such as memory size, or the myriad of concerns

associated with the Cell Broadband Engine:

– The Memory Flow Controller, used to transfer data in the system.

– Techniques to deal with the small memories of the Synergistic Processor

Elements, such as double-buffering.

– Distributed memory programming models.

• The developer’s own domain of expertise.

Conversely, the filter-stream programming paradigm is simple to learn, since the

application implementation’s components match natural divisions in the application

70

task structure. Developers gain a large amount of flexibility and power by explicitly

describing these application tasks. By defining an application programming interface

and runtime engine for filter-stream programming on multicore processors, we can

bridge the gap between the developers who have need of their high computational

power and the breadth of knowledge and experience required to write efficient ap-

plications for them. Table 4.1 presents the high-performance computing techniques

necessary for efficient use of multicore processors and our approach to incorporating

them into the DataCutter-Lite runtime system and software library. Filter-stream

programming meets the needs of performance-seeking, non-computer-scientist pro-

grammers for a number of reasons:

• A filter-stream programming paradigm is appropriate for many diverse types of

applications, and at many data granularities. The use of this paradigm elimi-

nates the need to use multiple complex parallel and distributed programming

techniques. Further, since filter-stream programming inherently allows appli-

cations to run on parallel and distributed systems, it is appropriate for the

large-scale, complex requirements of many data-intensive applications.

• Filter-stream programming is inherently component-based, and as such, the

development of standard algorithms is a natural method to achieve high pro-

ductivity.

• No knowledge of threading or message-passing libraries is required for filter-

stream programming; all of the lower-level threading and message-passing func-

tions are handled by the runtime system.

71

• All architecture-specific constraints are abstracted away, leaving the application

developer with a clean interface and programming semantic. However, should

some later developer with good knowledge of the internal workings of the ar-

chitecture wish to make some modifications, the system is compatible with all

of the standard optimizations that High Performance Computing gurus make.

As a case study, we have implemented DataCutter-Lite on the Cell Broadband

Engine. The Cell Broadband Engine is an excellent example of modern multicore

processors, with its heterogeneous nature, its high performance communication bus,

and high throughput processing capabilities. Other examples of modern multicore

processors are the current top-end products from AMD and Intel with deep cache

hierarchies and the forthcoming Larrabee processor from Intel. Larrabee will have 16

- 32 vector processors and will initially be marketed strictly as a graphics processor.

These types of microprocessors are not considered in this chapter. The Cell Broad-

band Engine is an excellent microcosm of the future of multiprocessors, and as such is

an excellent test case for our techniques. As future work, we will extend these results

to more traditional architectures.

Due to the large potential benefit of modern multicore processors, many research

projects have developed techniques to ease the burden associated with writing appli-

cations for them. BlockLib [2], IBM’s Accelerated Library Framework (ALF) [60],

Charm++ [71], CellSs [9], and Sequoia [38] are examples of programming frameworks

for the Cell Broadband Engine which use various block-based methods for handling

the memory hierarchy of the Cell in order to get good application performance. The

Cell Messaging Layer [83] and MPI microtasks [78] are examples of frameworks de-

signed to provide an MPI-like set of semantics for SPE communication. We offer an

72

alternative here, the CBE Intercore Messaging Library, which provides the under-

lying basis for our streaming programming framework. GLIMPSES [99] provides a

method to improve the efficiency of SPE programs by providing profiling information

for code optimization. Some streaming frameworks even exist for the Cell Broad-

band Engine [116], although they offer an interface more appropriate for use with a

stream-language compiler and not for application development. Hence, while other

programming frameworks exist for the Cell Broadband Engine, DataCutter-Lite is

the only active research project which aims to develop a comprehensive, hierarchical

middleware system for the development of large-scale, efficient filter-stream programs.

The rest of this chapter is organized as follows. Section 4.2 discusses the overall

DataCutter-Lite architecture, while Section 4.3 discusses the Cell Broadband Engine

Intercore Messaging Library, which enables DataCutter-Lite to abstract some of the

specific architecture’s details. Section 4.4 presents some of the optimizations involved

with the design of a filter-stream runtime-engine for the CBE, and Section 4.5 presents

the results of some of the test-case applications. Section 4.6 summarizes this chapter

and presents some open research directions.

4.2 Filter-Stream Programming for Heterogeneous,
Hierarchical Clusters

Section 1.2.1 introduces the DataCutter middleware that is used as insipration for

DataCutter-Lite.

73

4.2.1 DataCutter-Lite Architecture and Programming
Model

While DataCutter is capable of handling all levels of granularity for an applica-

tion, from multiple, distributed-address space clusters to SMP nodes, the introduction

of heterogeneous and massively parallel microprocessor architectures necessitated a

new runtime engine. DataCutter-Lite (DCL) operates only within a single node, but

is optimized for modern multicore processors. By using DCL, application develop-

ers will able to efficiently make use of modern multicore processors without being

expert computer scientists fluent in the newest cutting-edge parallel programming

techniques. Additionally, since DCL is a component-based framework, developers

can realize a higher degree of productivity over programming the application directly

for the architecture in question.

DCL’s architecture has two separate pieces, the runtime engine and the application

programming interface (API). The API is comprised of a small number of easy-to-use

functions to support application set up and execution. Figure 4.1 gives an overview

of the functions in the main API. While the concepts of layout and placement are

distinct, since our work is still in the development stage, we have chosen to combine

them into a single initialization function.

The first implementation of DCL is designed for the Cell Broadband Engine

(CBE). The overall architecture is comprised of three software layers. Figure 4.2

shows the runtime system and its connections to the various system components.

The stepped connections to the various system components are meant to express the

notion that while applications can be designed solely to use the DCL API, there is

nothing stopping expert developers from mixing function calls from all levels of the

74

// Library Initialization Functions
void setup_app(Placement *)
void init_dcl ()
// Communication Functions
DCLBuffer * create_buffer(stream , size)
int stream_write(stream , DCLBuffer *)
int stream_close(stream)

Figure 4.1: DataCutter-Lite Library Application Interface

Figure 4.2: Overall DataCutter-Lite System on the CBE

software hierarchy if they so choose. The two portions of the system architecture

figure surrounded in bold lines, the DCL implementation and the CBE Intercore

Messaging Library represent our contributions.

The lowest layer of software is IBM’s SPE Runtime Management Library Version

2.2 (libspe2), which is part of IBM’s Software Development Kit (SDK) for Multicore

Acceleration. The libspe2 library is the interface the developer uses to gain access

75

Figure 4.3: Sample DataCutter-Lite application and example mapping onto the Cell.

to the Synergistic Processing Elements (SPE), which represent the majority of the

computing power of the CBE.

The next layer of software is the CBE Intercore Messaging Library (CIML). This

library is a two-sided communications library whose interface and communication

model mimic that of MPI, including blocking and non-blocking send and receive

primitives. CIML is detailed in Section 4.3.

The last layer of software is the DCL runtime system, which is initialized by a

function call from the user’s main PowerPC Processor Element (PPE) program, as

in Figure 4.1. The initialization function creates threads to manage the SPEs, begins

76

the execution of the SPE programs, and initializes the CIML, to allow two-sided

communication between the system processors. At this point, each of the PPE and

SPE processors enters a runtime daemon thread which listens for data buffers. Upon

receiving a buffer, the daemon consults the filter placement and calls the correct

filter’s processing function. This event-driven model is well-suited to the CBE, since

the SPEs are single-threaded processors and have no capability to switch thread

contexts like more traditional processors. All of the underlying details involved with

determining where to send the data, the actual transfer of the data and the function

call is all handled by the runtime system. Also, the developer need not concern

themselves with the cleanup of data buffers, since the runtime engine keeps track of

all of the buffers that are created, sent, and received. When a filter returns from

the processing function, the buffer passed as input is freed. Similarly, when a buffer

is written to a stream it is assumed that it is handed off to runtime system. All of

the buffers are created in a configurable heap area, so as to alleviate the burden of

explicit memory management.

Figure 4.3 shows a small example application composed of three pipelined filters,

A, B, and C and one possible filter placement. To help explain some of the details of

the runtime engine, we have decided to create a placement with one copy each of the A

and C filters and two copies of the B filter. Buffers written to the ‘A to B’ stream are

handed off to the DCL daemon on the PPE. The daemon then determines where to

send the buffer, either copy B1 or B2 of the B filter type. This determination is made

by a configurable stream sink protocol. Common protocols are round-robin, random,

or broadcast. Future versions of DCL will include a demand-driven protocol where

filters which sink data faster from a stream will receive more buffers. Buffers written

77

// PPE main()
// Set up Matrices A, B, pointers
// a_ptr , b_ptr , constants
int main(int argc , char ** argv) {
init_dcl ();

for (i = 0; i < NUM_ROWS; i++) {
DCLBuffer * buffer = create_buffer("raw_data", BUF_SIZE);

append_array(buffer , a_ptr , NUM_COLS * sizeof(float));
append_array(buffer , b_ptr , NUM_COLS * sizeof(float));

stream_write(buffer);
// increment pointers a_ptr , b_ptr

}
finish_dcl ();
return 0;

}

Figure 4.4: DataCutter-Lite Example PPE Code

to the ‘B to C’ stream are likewise handed off to the DCL daemon, but since in the

placement only one copy of the C Filter type exists, there is only one destination

for these buffers. While buffers written by B1 have to travel through DCL, CIML

and libspe2 libraries and through the Memory Flow Controller (MFC) and Element

Interconnect Bus (EIB) CBE processor elements, buffers written by B2 will be directly

handed off to filter C by DCL by simply passing the pointer of it.

Figures 4.4, 4.5 and 4.6 show some example code for an application which uses one

SPE to add together two matrices. The setup application() function in Figure 4.5

is defined by the developer to tell the runtime engine where to place filters and how to

connect the data streams. After the init dcl() initialization function in Figure 4.4

78

// PPE setup and filter code
// Called by init_dcl ()
void setup_application(Placement * p) {
Filter * console = get_console(p);
Filter * fadded = place_ppu_filter(p, "added_data");
Filter * fadder = place_filter(p, 0, "add_values");

Stream * sraw = add_stream(p, "raw_data");
add_source(p, sraw , console);
add_sink(p, sraw , fadder);

Stream * sadded = add_stream(p, "added_matrix");
add_source(p, sadded , fadder);
add_sink(p, sadded , fadded);

}

// When receving a buffer from SPE
void added_data(DCLBuffer * buffer) {

// Deal with added matrix data
}

Figure 4.5: DataCutter-Lite Example PPE Code

returns, the main() function can do work to begin the computation. Note how simple

the SPE code is (see Figure 4.6); it has none of the complicated operations normally

associated with programming the CBE. However, the code is fully multi-buffered, as

CIML (see Section 4.3) allows for the overlap of computation with communication.

4.2.2 DataCutter for Distributed Multicore Programming

DataCutter and DCL are parts of a burgeoning component-based middleware

framework designed to provide efficient dataflow execution on modern hierarchical,

heterogeneous cluster supercomputers. Our ultimate goal is to develop a comprehen-

sive, flexible API such that DataCutter will handle coarse-grain dataflow over the

79

// SPE code: Set up constants
void add_values(DCLBuffer * buffer) {
DCLBuffer * out_buffer =

create_buffer("added_matrix", BUF_SIZE);

float * a = (float *) get_extract_pointer(buffer);
float * b = (float *) get_extract_pointer(buffer);
float * c = (float *) get_data_pointer(out_buffer);

for (i = 0; i < NUM_COLS; i++)
c[i] = a[i] + b[i];

stream_write(out_buffer);
}

Figure 4.6: DataCutter-Lite Example SPE Code

LAN/WAN network and DCL will handle fine-grain dataflow within a single node.

While we draw a distinction between these two projects since DCL is presented in this

chapter, the end goal is for that distinction between DataCutter implementations to

disappear. DCL instances within a node will act like filters to DataCutter to achieve

seamless coarse-to-fine grain integration and interoperability.

Figure 4.7 shows what a mixed DataCutter and DCL application might look like.

At the largest application granularity, whole sets of data are considered. Raw datasets

from large-scale simulations, whole patient files, or whole experiments to be run might

be examples of this coarse-grained data. This data will be partitioned using Data-

Cutter to run on whole clusters. At the smallest granularity, DCL can be used to

leverage multicore processors to analyze the fine-grained data, such as individual sim-

ulation timesteps, single data point analysis, or single pixel operations. In Section 4.5

80

Figure 4.7: Software and Hardware Granularities

we discuss a real-world biomedical image analysis application implementation with a

mixed DataCutter and DCL paradigm.

4.3 CBE Intercore Messaging Library

We have designed and implemented a two-sided communication library for the

CBE processor: The CBE Intercore Messaging Library (CIML). CIML makes use of

the libspe2 interface, and begins to abstract away some of the architecture-specific

details of the communication channel. That is, a developer using function calls in

CIML will not need any knowledge of the MFC, which is the functional unit associated

with a Synergistic Processor Unit (SPU) enabling it to access main memory through

Direct Memory Access (DMA) commands. Each SPU has an associated MFC, and

each MFC can queue 16 DMA commands before blocking the SPU’s execution of

instructions. It is through this method the SPEs can overlap communication with

useful computation.

81

CIML mimics the spirit and usage patterns of MPI with both blocking and non-

blocking send and receive function calls. Additionally, CIML allows direct SPE-SPE

data transfers, without passing through the main memory cache hierarchy or involving

the PPE. IBM’s libspe2 allows the developer to map the SPEs’ local store space into

main memory. DMAs involving addresses in these memory-mapped locations do not

go through main memory, and are therefore not subject to the 25 GB/s main-memory

bandwidth limit. This being the case, multiple pairwise SPE-SPE communications

can occur simultaneously, and these transfers are only subject to SPEs’ end-point

throughput of 25 GB/s. (Each SPE has simultaneous send and receive bandwidths

of 25 GB/s.)

Table 4.2 shows the API for SPE-SPE communication in CIML. The B and NB

suffices on the function names are intended to convey the fact that the send and receive

calls deal with blocking and non-blocking communications, respectively. As such,

the function calls sendB and recB will block until the communication is complete.

The function calls suffixed with NB will return as quickly as possible to allow for

more computation to continue while the communication completes. The final PPE-

SPE communication API is similar - but not identical - to the SPE-SPE API. The

reasoning behind a slightly different API for PPE-SPE communication is discussed

in Section 4.4.

Figure 4.8 shows the communication bandwidth for CIML, while Figure 4.9 shows

the latencies involved in ping-pong communication. (Incidentally, Figure 4.8, Fig-

ure 4.9, Figure 4.10, Figure 4.11, and Figure 4.12 show the results of the final, opti-

mized version of CIML; discussions about optimizations and their effects are included

in Section 4.4.) In this experiment we have a single source SPE and we have varied

82

Table 4.2: CBE Intercore Messaging Library Application Programming Interface

Send Functions Receive Functions

sendB(dest, src ptr, size) recB(src, dest ptr)

sendNB(dest, src ptr, size) recNB(src, dest ptr)

send completeNB(dest, rec completeNB(src,

src ptr) dest ptr)

send complete allNB(dest) rec complete allNB(src)

int probeNB(src)

the number of destination SPEs. The results are an average over 100 iterations for

each message size from 1 byte to 16 KB; also, the results are aggregate and do not

use any hardware-based broadcast mechanism. Since CIML is a two-sided library,

there is some extra overhead associated with communications. However, at the larger

message sizes, a single SPE-SPE communication channel gets over 80% of the possible

bandwidth with 4 KB messages, and over 90% with 8 KB messages. By using more

than one SPE, maximum bandwidth can be achieved even with shorter messages.

Figures 4.10, 4.11 and 4.12 show the bandwidth and latency measurements for

PPE-SPE communication. Again, these results are an aggregate value, and averaged

over 100 iterations. The most striking thing about these charts is the large decrease in

communication bandwidth versus the SPE-SPE communication. In order to provide

a two-sided communication interface, some information must be transferred from the

main memory to the local store of the SPE, and the CBE is constrained in its PPE-

SPE communications by a number of architectural idiosyncrasies. These results are

actually the result of several rounds of optimizations, some of which are discussed in

the next section.

83

Figure 4.8: SPE-SPE Communication Bandwidth Results

4.4 DataCutter-Lite for CBE Optimizations

This section presents some of the optimizations made on the DCL for CBE runtime

engine and on CIML. The first two optimizations are applied due to constraints or

capabilities of the CBE, while the last two are made for more traditional reasons like

allowing communication and computation overlap, or avoiding deadlock.

4.4.1 High-Bandwidth SPE-SPE Two-Sided Communication

In any two-sided communication, some information must be transferred from the

sender to the receiver, and vice versa. Since SPEs in the CBE only have 256 KB of

local store memory with which to store the executable and all data, our communica-

tion protocol must take this into account. In order to allow high-bandwidth SPE-SPE

communication, we have chosen to implement a sender-initiated, pull-based protocol.

84

Figure 4.9: SPE-SPE Communication Latency Results

While the authors of [83] achieve good results with a receiver-initiated protocol, in

the streaming paradigm no write is ever blocking, meaning that the cost of having a

sender wait for the receiver to transfer destination data is too high.

Therefore, in our protocol, with a ‘put,’ the sender transfers to the receiver a

header packet containing the source address and size of the message. The receiver polls

its local header queue, waiting for a message header. When the header is received,

the message transfer can be initiated with a ‘get’, and the data can be used once the

transfer is complete. A ‘message-received’ header is also sent back to the sender. The

sender is not involved in the operation, except for sending the header to the receiver.

Since DMAs are non-blocking (as long as the DMA command queue is not full), the

sender can then proceed to other computation. Figure 4.13 shows the effect of using

85

Figure 4.10: PPE-SPE Communication Bandwidth Results

Figure 4.11: SPE-PPE Communication Performance Results

86

Figure 4.12: SPE-PPE Communication Latency Results

a sender-initiated, pull-based protocol versus a sender-initiated, push-based protocol.

The results were taken with a single sender and a single receiver.

4.4.2 Pure Pull-based PPE-SPE Communication

Unfortunately, while a sender-initiated, pull-based scheme works well on the SPEs,

when the sender of the message is the PPE, the smaller DMA command queue size

available to the PPE harms the communication bandwidth. The MFC in the SPE has

a DMA command queue of size 16 for DMA commands initiated by the SPU. The PPE

only has a queue of size 8 for DMA commands dealing with that SPE. This asymmetry

means that a carefully designed pull-based PPE-SPE communication library is more

appropriate than one in which the sender transfers the message header to a known

location in the receiver’s memory space. That is, when the SPE is attempting to

87

Figure 4.13: SPE-SPE Communication Bandwidth Results

read from the PPE, it must first transfer the message header from the PPE; the

PPE’s responsibility is simply to write to its own message header area. To increase

the bandwidth, we transfer the entire set of message headers. When the PPE is

writing multiple messages to the same SPE without expecting a response, the SPE

can successfully use this local cache of the message headers to initiate plenty of DMA

commands. As such, CIML implements this type of PPE-SPE communication, in

favor of mimicking the ‘more’ two-sided approach used in SPE-SPE communication.

Figures 4.14 and 4.15 show the results of changing the PPE-SPE communication

method from that mimicking the SPE-SPE method to a pure pull-based method. As

above, the figures show the results of a single sender and a single receiver. Therefore,

the final values match the single-threaded results from Section 4.3. The PPE-SPE

transfer from main memory is still hindered by architectural characteristics of the

88

Figure 4.14: PPE-SPE Communication Bandwidth Results

CBE, and as such suffers from a more anemic transfer rate than SPE-PPE data

transfers to main memory. Also, even DMAs reach only half of the maximum main

memory bandwidth of 25 GB/s during the SPE-PPE transfer.

4.4.3 Buffer Prefetching

A standard high-performance computing technique is to overlap communication

with computation. This is eminently possible with the CBE, since instructions to

place DMA commands into the SPE DMA command queue are issued quickly, and

are non-blocking when the DMA command queue is not full. Therefore, DCL uses

prefetches buffers when calling filters’ processing functions. In the simplest case, this

allows automatic double-buffering of data for use in streaming operations.

89

Figure 4.15: SPE-PPE Communication Bandwidth Results

4.4.4 Fine-grained Buffer Arrival Blocking

When DMA commands are issued for message transfers in the CBE, each com-

mand can be assigned a 5-bit tag id. While each SPE’s filters are intended to be

independent of one another, the buffer heap and the DMA command queue tags are

shared among all of the filters running on one SPE. By keeping track of which buffer

matches which DMA tag, CIML is able to provide fine-grained buffer receipt or send

completion blocking for each filter. The practical effect is that multiple filters running

on the same SPE do not step on each other’s toes when sending and receiving complex

patterns of messages. When a filter needs to create a buffer which is too large for the

total remaining heap, the runtime engine can wait for the oldest remaining message

transfer to complete. Once that message transfer is complete, the heap space can

90

be freed, giving room to the new buffer. If CIML did not keep track of these DMA

tag/buffer associations, the entire DMA command queue would have to be flushed

in order to create enough heap space for new buffers. This would cause unwanted

latency and bandwidth degradation.

4.5 Application Experiments

In order to evaluate the performance of the CBE DataCutter-Lite implementa-

tion and to evaluate the programming paradigm, we have developed three applica-

tions with a range of characteristics. The experiments were performed on the Ohio

Supercomputer Center’s Glenn e1350 Blade Center.

The first application we developed to evaluate the DCL implementation and

the programming API is a simple matrix addition application. Since the compu-

tation involved with this application is extremely small, this code shows a large

Communication-to-Computation-Ratio (CCR). We have used IBM’s Accelerated Li-

brary Framework (ALF) matrix addition example [60], in order to obtain a good

baseline comparison for our DCL-based implementation.

The second of our example applications is a simple color-space transformation to

be performed on an image. The application simply transforms each pixel in an image

from the RGB color space to the LAB color space. These types of computations, while

simple, are fairly time consuming. As such, this example application will feature a

small CCR value. As a baseline comparison, we have used a custom-implemented

color-space transformation application which uses only IBM’s SDK for the CBE.

The last of these applications is a real biomedical image analysis application [55].

The input to the overall application is a tissue slide image digitized at high resolution.

91

Each RGB pixel is converted to the LAB color space and some statistics are calculated

on a per-tile basis. (We reused the color-space transformation code presented earlier.)

The luminance channel is then taken from the LAB image and a local binary pattern

(LBP) feature is calculated. The four statistics per image channel and the LBP feature

comprise a feature vector which is used in a classification stage in order to determine

the properties of the image tile. To compare with our DCL-based implementation, we

have developed a custom CBE implementation of the image analysis application. This

implementation uses one main loop which reads the RGB image tiles from a socket and

performs the functions on each tile. The operations are slightly decoupled, meaning

that the RGB-to-LAB color space transformation and the LBP feature calculation

must be scheduled separately on the SPEs. The main loop in the application acts as

this task scheduler.

The first two applications, the matrix addition and the color-space transforma-

tion, are simple kernels that represent the widest range of CCR values which real

applications might exhibit. Most real applications are built from components like

these and hence their performance can be easily predicted by looking at how the

individual components behave.

The DCL versions of all three applications and their baseline counterparts are

inherently composed of the same independent tasks. As such, there is no algorithmic

method used to reduce the amount of work for one of the implementations versus the

other. All of the execution times shown in the charts for the baseline versions of the

applications are the best times obtained by hand-tuning the application performance.

Similarly, optimizations were made to the DCL runtime engine in order to allow the

92

DCL versions of the three applications to achieve the best performance results. Fur-

ther, optimizations were made to the DCL versions of the applications themselves.

On the PPE, the optimizations were mainly made to relieve the main memory band-

width requirements. For the SPE code, the most important optimization to be made

is choosing the size of the data buffers; incorrect choices limit the amount of com-

munication and computation overlap which is achievable. These optimizations were

made in an ad-hoc manner, and their in-depth discussion is beyond the scope of this

chapter. In our future work, we intend to develop automatic techniques such that

these performance optimizations are made without the developer’s intervention.

Figure 4.16 shows the execution times for the two matrix addition implementa-

tions. The input matrices are 1024 x 512 in size. DCL’s execution times are greater

than those of IBM’s ALF implementation, ranging from 8% higher on 6 SPEs to 91%

higher execution time on one SPE. The higher execution times are due to a couple of

reasons. First, the construction of serialized data buffers is an operation which the

ALF implementation does not need. Further, since the DCL matrix addition program

is very simple, the highest throughput DMA buffer size of 16 KB is not used (DCL

application simply transfers one row at a time), whereas the ALF implementation

uses this DMA buffer size. Both of these issues can be solved with some extra effort,

but the simple implementation is meant to serve as a baseline number, and is the

worst the DCL method is likely to give. Further, the ALF implementation uses many

cryptic function calls to set up the task graph. The DCL implementation merely

requires the use of a handful of functions.

Figure 4.17 shows the execution times and parallel speedups for the color-space

transformation performed on 32 image tiles. Since the overheads of reading the images

93

Figure 4.16: Execution times for Matrix Addition

Figure 4.17: Execution times and speedups for color transformation for 32 image tiles

94

Figure 4.18: Execution times and speedups for biomedical image analysis application
for 32 image tiles - overheads included

from the disk are disregarded here, the speed up is nearly linear, reaching a value of

7.9 for the baseline version and 7.7 for the DCL version. Without intimate knowledge

of how the IBM libspe2 library schedules the logical SPE contexts onto physical

SPE resources, it is hard to postulate a reason why a knee exists in the speedup

curves after 4 SPEs. However, we expect that up to 4 SPEs, a degree of regularity

is maintained in the placement on the physical resources - and of the communication

pattern, there being 4 independent message channels in the ring bus. From 4-7 SPEs,

this regularity is necessarily disturbed. When 8 SPEs are used, this regularity returns

to a reasonable degree, even though the communication bus is most highly loaded at

this configuration.

Figures 4.18, 4.19 and 4.21 show the results of the experiments on the full biomed-

ical image analysis application with various overheads included and excluded, respec-

tively. When end-to-end applications are considered, even the most efficient algorithm

95

implementation is subject to such concerns as disk latency, and upstream data over-

heads. In this case, the upstream data overhead is the decompression of the TIFF

images to be calculated. When excluding these overheads, we see a similar pattern

of near-linear speedup for the DCL implementation. Unfortunately, the baseline ver-

sion of the application actually begins to suffer when the number of SPEs used rises

above 5. This is likely due to the extra scheduling overhead and memory bandwidth

used in the baseline’s implementation, since it decouples the two major stages of the

operation and schedules them separately. The DCL implementation simply writes

one buffer as output from the first stage to the input of the second stage. Since this

buffer stays in the SPE, it saves main memory bandwidth, and since the second stage

is triggered by the runtime system resident on the SPE, the PPE is not involved in

the scheduling operation, saving time.

Figure 4.19: Execution times and speedups for biomedical image analysis application
for 32 image tiles - overheads excluded

When the TIFF decompression overheads are considered, the application perfor-

mance decreases, particularly when more SPEs are involved in the computation. The

96

Figure 4.20: DataCutter and DataCutter-Lite mixed implementation

best speedups achieved are 2.2 for the DCL version and 2.7 for the baseline version.

The DCL version does not read the decompressed TIFFs from an incoming socket,

since this operation would require the use of mutexes in order to share the socket,

and we have avoided this type of programming, since it is incompatible with our goal

of designing a runtime system devoid of these types of details. As such, each TIFF is

decompressed in the same thread which calls the DCL routines to analyze the image.

To solve the problem of insufficient TIFF decompression bandwidth, we have

implemented a mixed DataCutter+DCL version of the image analysis application.

Figure 4.20 shows the layout of the integration of DataCutter for internode commu-

nications and DCL for intranode executions. As such, Figure 4.21 shows the results

when DataCutter is used to distribute the TIFF tile decompression stage among sev-

eral computational nodes, and one CBE processor is used to analyze the tiles with its

8 SPEs. Unfortunately, OSC’s CBE blades are currently only configured to run with

Gigabit Ethernet, which limits the amount of help distributed nodes can give.

97

Figure 4.21: Execution times and speedups for biomedical image analysis application
for 1024 image tiles

4.6 Summary

This work presented DataCutter-Lite (DCL), a fine-grained, component-based,

filter-stream programming library and runtime engine. DCL is meant to allow ap-

plication developers access to the new high-performance, multicore microprocessors

available in the marketplace. We showed that the runtime engine is able to support

high-bandwidth communications among the processor’s cores without burdening the

developer with low-level, architecture-specific instruction syntax. We showed that for

applications with high communication to computation ratios, DCL does not incur an

additional overhead. For applications with low CCR values, we showed that DCL

scales as well as custom application implementations.

98

Chapter 5: Automatic Dataflow Application Tuning for

Heterogeneous Systems

5.1 Introduction

The high-performance computing world is in the midst of a major paradigm shift.

The increased on-die parallelism of multicore processors, and the increased program-

ming flexibility of current high-computational throughput accelerator devices such as

graphics processing units (GPUs) combine to make modern clustered supercomputers

into hierarchical, heterogeneous systems [82, 55, 28]. Designing applications for such

complex, heterogeneous systems is challenging, and few solutions are offered to these

challenges by traditional parallel and distributed programming technologies such as

pthreads and MPI. However, even with these challenges, recent research has shown

that using GPUs and CPUs in concert can yield better performance than by simply

using the accelerators [75, 106].

The dataflow programming paradigm [33] and in particular the filter-stream para-

digm are uniquely suited to designing large-scale, data-intensive scientific applications

for complex, heterogeneous, distributed computer systems. The simple abstraction

exposed by dataflow programming and supported by dataflow runtime middleware

99

systems, such as DataCutter [13] and Anthill [40], provides developers with an excel-

lent solution for dealing with the complexities of modern scientific application design

for distributed, heterogeneous supercomputers.

Most distributed programming paradigms (including filter-stream) leave to the

developer the task of finding the right data decomposition granularity for their ap-

plication. Since filter-stream programs operate on data in discrete chunks called

databuffers, and since static analysis of distributed applications is difficult, the size of

the databuffer must be tuned empirically, not only to find the “best” databuffer size

for each processor type, but also to balance the competing demands of cache locality,

network throughput, network latency, and overlap of communication with computa-

tion. Since different dataflow applications have distinct task layouts, communication

patterns, and amounts of computation, this tuning step must be performed for every

application. Further, the same application can have more than one optimal databuf-

fer size, since the system configuration (including processor types, network topology,

system size) can affect the choice. Using a sub-optimal databuffer size can signifi-

cantly increase the overall application’s execution time. Therefore, to help developers

extract the best performance from their filter-stream applications, we should allow

the middleware to tune the databuffer size automatically.

Traditional load-balancing techniques for dataflow applications include demand-

driven solutions [13, 40] and work-stealing solutions [16], where dataflow tasks with

higher processing rates request data more quickly, and process more of the databuffers

in the application. However, with heterogeneous processors and a static databuffer

size, the load can become unbalanced at the end of the application’s execution, due to

the longer execution times of slower processors. This situation is exacerbated when

100

certain processors, such as accelerators, are much faster than others, such as CPUs.

Worse, different system or application configurations can change the balance between

network usage, databuffer queue length, and communication overlap.

To solve these problems, we present an adaptive technique for tuning the data-

buffer size for large-scale dataflow applications and a load-balancing technique based

on modeling heterogeneous dataflow task processing rates and automatic workspace

partitioning. By using a simple programming interface, developers can write dataflow

applications that are automatically tuned for the best performance, where the load

is nearly perfectly balanced across all of the available computational resources.

This adaptive technique has been implemented in the DataCutter [13] middle-

ware, a runtime system supporting the dataflow programming abstraction. We ex-

perimentally validate the effectiveness of our approach on two real applications and

two synthetic applications.

The rest of the chapter is organized into five sections. Section 5.2 discusses the

differences between our intent and previous works. Section 5.3 presents the targeted

application model in more formal terms. In Section 5.4, we present our algorithms

for adaptive databuffer size tuning and automatic workspace partitioning and load

balancing. Section 5.5 shows the results of experiments conducted with two micro-

benchmark applications, and two real-world, large-scale dataflow applications. In

Section 5.6 we present our summary and discuss future work.

5.2 Related Work

There is a wealth of research related to our problem. ATLAS [111] uses compile-

time performance tests to tune its implementations of linear algebra operations.

101

FFTW [42] tunes data structures and algorithms at runtime to efficiently perform

FFT operations. Some researchers have discussed adaptive techniques for improving

the performance of MPI collective communication operations [87]. Thus, automatic

tuning for a variety of fine-grained kernels and for general communication patterns

is not new; however, our approach begins to develop a runtime framework which can

automatically tune and load balance general dataflow applications, provided they fit

the application model.

Research into mapping and scheduling of static or dynamic programs onto het-

erogeneous resources also informs this work [10]. However, our work differs from the

research in this field because the focus there is on the scheduling of tasks under various

constraints, such as heterogeneous execution times and hardware capabilities. These

algorithms do not attempt to subdivide tasks or data in any way; the applications

are considered immutable input.

The Divisible Load Scheduling (DLS) model [44] is the closest related theoretical

work. In DLS, a large amount of data has to be processed in parallel by multiple

processors. The main concerns are “what fraction of the data should a processor

process?” and “how to schedule the data communications?” Models in this area usu-

ally consider large time intervals so that any discrete effect in the computation can

be omitted. Therefore, the models often consider the platform to be static and the

buffer of the processors to be infinite. The beginning and ending of the computation

are also frequently neglected. However, newer work such as [46] introduces heuristic

solutions for scheduling communications and computation, including the collection of

the results of the computation. Our work differs from this work in two main respects.

DLS requires accurate knowledge of the system’s computation and communication

102

rates for scheduling. Our intent is to provide a real system for dataflow application

development, without requiring developers to perform any tedious parameter discov-

ery themselves. DLS also focuses on the steady-state, whereas real-world applications

can perform all of their work without reaching any steady-state condition.

5.3 Application and System Model

Section 1.2.1 introduces the DataCutter middleware we use to implement our

adaptive technique. In this chapter, we assume that the workload is finitely divisi-

ble, subject to minimum and maximum databuffer size constraints, which stem from

application-specific constraints and hardware constraints such as memory size. Since

the range of acceptable databuffer sizes can be large, and can dramatically affect the

overall execution time of the application, the databuffer size is an important param-

eter to choose carefully (this will be shown in Section 5.5). We also assume that

there is a monotonically increasing execution time for increasing databuffer sizes for

all processor types. The simplest workload is 1-dimensional, and represents a simple

reduction operation on a 1-d vector of input data. An image analysis operation which

operates on 2-d images and produces a feature vector represents a 3-d work area. The

work area definition simply needs to match the dataflow application’s requirements.

This work focuses on appropriately choosing the databuffer size. Therefore we

restrict our study to the following case. The application has a single input filter

and a single output filter, respectively called the source and the sink. We assume

that all the internal filters (i.e., all but the source and the sink) are replicable. The

machine executing the internal filters is composed of a set P of processors which can

be completely heterogeneous. The application is mapped to the processors so that

103

each processor executes one copy of all the internal filters and no communication

between the processors occur. Therefore, a databuffer will be processed exclusively

by one processor (we will use the terms “filter” and “processor” interchangeably).

This model is not that restrictive. First, all the filters of an application may not

be replicable, but the part of the layout which is replicable fits this model. Second, it

might be interesting to exchange databuffers between the processors that execute the

internal filters. But this is likely to saturate the communication network. Moreover,

this constraint is common in scheduling algorithms that decide the placement of repli-

cable filters (see [100]). Finally, this type of model fits a large number of applications

such as scientific image analysis, audio/video compression, and numerical solvers.

5.4 Adaptive Algorithm For Work Partitioning

In this section, we will describe our adaptive databuffer size tuning and load bal-

ancing algorithm. There are two parts to our method. The first part is a performance

model which tracks each databuffer’s execution time. By continually tracking the ex-

ecution time of databuffers in the system, we can choose the databuffer with the

fastest processing rate. The second part of the method is a dataflow work parti-

tioner. By using the performance model, the work partitioner streams databuffers to

the downstream processors with the aim of balancing the load.

The programming interface for the databuffer processing rate performance model

contains only three functions and does not use application-specific information, allow-

ing it to be used with any application. Calls to add data point() add new data to the

performance model. Meanwhile, get next buffer size() returns the next suggested

104

databuffer size and best processing rate() estimates the processing rate for a proces-

sor. We use a simple prediction technique. For a given databuffer size, only the latest

information is kept in the performance model. The fastest buffer size is the one that

maximizes the processing rate (buffer size divided by computation time). As a boot-

strap step, this prediction technique will initially suggest every possible buffer size

at least once. Therefore, the first calls to the get next buffer size() function sweep

the whole range of possible values for the buffer size. After this bootstrap period,

the performance model will return the buffer size which gives the highest expected

processing rate.

The range of possible databuffer sizes returned by get next buffer size() during

bootstrap is given by a databuffer sizing function. We have used a simple function,

which doubles the size of the dimensions of the previously returned tile, until the

maximum size is reached. Thus, the developer only needs to provide the minimum

and maximum databuffer sizes. These values are affected by the specific processing

requirements of the application, as well as the memory and network constraints of the

target hardware system. These values are not overly burdensome to request. Addi-

tionally, users can provide their own databuffer sizing function, if their application’s

work area partitioning requirements are not met by the default function.

We experimented with using a linear least-squares regression to provide a linear

model for databuffer processing rates, but found that in the face of varying system

load, the linear equation produced by the regression was unsuitable for use in this

context. In particular, during the bootstrap stage of the dynamic load balancing

algorithm, unstable estimated execution times could dramatically damage the overall

execution time of the application, by suggesting sub-optimal databuffer sizes.

105

Figure 5.1 shows the main Adaptive Partitioning Controller (APC) pseudocode.

APC relies on estimated processing rates for all of the processors in the system.

To bootstrap, APC starts by sending to every processor a single, minimum-sized

databuffer to initialize the performance model.

Then, using a simple round robin scheme, APC sends databuffers to each processor

having less than T time units of work queued. After bootstrap, the size of the

databuffer sent to a processor is the one with the fastest expected processing rate.

APC allocates work to each processor such that the system achieves perfect load

balance. When the remaining work is low, and the databuffer size suggested by

the performance model is too large, APC will send a smaller databuffer (even if the

databuffer sizing function is still in the bootstrap phase). By doing so, we prioritize

load balance over processing rate at the end of the application’s execution. Frequently

(exactly after receiving a reply from all the processors), the amount of work each

processor should be given is updated using PARTITION(); this allows APC to

react quickly to changing system conditions.

The initial workload is in queue. For our targeted application type, the queued

workload represents the amount of work to be performed by the application. Since

APC is oblivious to application specifics, it is up to the developer to choose a work

space which can be interpreted in the application domain. For instance, in a 2-d

image analysis application, the queued workload would consist of a set of (r, c) pairs

representing several images of a certain number of rows and columns. APC will

tile these (r, c) pairs into (r, c, x, y) tuples, which represent contiguous subtiles of a

certain number of rows and columns, and starting at a certain (x, y) point in the

original image. The analysis application will then process these image subtiles.

106

Currently, APC supports divisible workloads of the type discussed above. APC

automatically tiles these work areas by initially dividing the entire workarea into the

maximum allowed tile size; smaller subtiles are made out of larger tiles hierarchically.

For example, the applications discussed in Section 5.5 use tiles of size 32 x 32 up to

1024 x 1024, in powers of 2.

1: function APC(T, queue)
2: for all processor p ∈ P do
3: size = get next buffer size(p)
4: tile = queue.fetch(size)
5: send work(p, tile)

6: loop |P | times
7: receive (p, tile, timing, block = true)
8: add data point(p, size, timing)

9: replied = P

10: p = 0
11: while !queue.empty() do
12: if replied = P then
13: alloc work = PARTITION(queued work, queue)
14: replied = ∅

15: block = (∀p� ∈ P,
queued work[p�]

best processing rate(p�)
> T)

16: if receive (p�, tile, timing, block) then
17: add data point(p�,size, timing)
18: replied = replied ∪ {p�}

19: queued work[p�] -= size

20: if queued work[p]

best processing rate(p)
< T then

21: size = min (alloc work[p], get next buffer size(p))
22: tile = queue.fetch(size)
23: send work(p, tile)
24: queued work[p] += size

25: alloc work[p] -= size

26: p = (p + 1) mod |P |

Figure 5.1: Adaptive Partitioning Controller Pseudocode

107

Figure 5.2 shows pseudocode for the PARTITION() function which provides

the amount of work each processor should be allocated. The function calculates the

estimated amount of time each processor’s queued work will take to complete; it uses

this information to allocate to each processor enough work to last max time. It then

distributes the remaining work to the processors proportionally to their processing

rate. If PARTITION() runs out of work before all of the processors are given

sufficient work to match the longest running processor, then that longest running

processor will set the application end time anyway; by not actually queuing more than

T time units of work to any processor in Figure 6.3, we ensure the load imbalance is

no worse than T .

1: function Partition(queued work, work)
2: procrate =

�
p∈P best processing rate(p)

3: for all processor p ∈ P do
4: queue time[p] = queued work[p]

best processing rate(p)

5: max time = maxp∈P {queue time[p]}
6: for all processor p ∈ P do
7: alloc[p] = min{(max time− queue time[p])×

best processing rate(p), work}

8: work = work − alloc[p]

9: for all processor p ∈ P do

10: alloc[p]+ = work×best processing rate(p)
procrate

11: return alloc

Figure 5.2: Adaptive Dataflow Work Partitioner Pseudocode

108

5.5 Application Experiments

5.5.1 Experimental setting

To validate the performance of our adaptive databuffer tuning and load balanc-

ing algorithm, we used two microbenchmark applications and two real-world data-

intensive applications. All these applications match our application model (see Sec-

tion 5.3).

Our first real-world application is a biomedical image analysis (BIA) applica-

tion [97]. In this application, highly magnified digital images of specially prepared

biopsy tissue samples are processed using cooccurrence matrices and operators called

linear binary patterns to determine the texture of the tissue found in the biopsy

sample. The texture determination affects the prognosis for the patient. This is a

time-consuming, error-prone process for human slide readers to perform, and the goal

of this application is to reduce error and increase analysis throughput. The digitized

images can be over 100K x 100K pixels, and many slides are often analyzed as part

of a patient’s study. The processing requirements are a good match for the GPU’s

manycore architecture and high memory bandwidth; hence, speedups of up to 45x

as compared to a reference CPU implementation can be obtained. Our dataflow

implementation includes a set of storage nodes whose sole job is to store the full

decompressed image in memory and serve subtiles to requesting filters. We replicate

the stored image data over several “frontend” nodes to provide sufficient memory and

network bandwidth to serve the “backend” processing nodes.

Our second real-world application is a synthetic aperture radar (SAR) imaging

application [56]. By processing the input samples through a radar backprojection

step, we can create images from input radar return data. The simple backprojection

109

algorithm used here is a triple loop where each input vector of radar return data is

applied to each pixel of the output image. Because backprojection is a pleasingly

parallel application, and because the filter execution times are more dependent on

the number of output pixels created, we partition the output space into tiles. The

inputs to the application are small, and therefore we broadcast them at the beginning

of the application execution. The computation style is very well-suited to the GPU,

and so we see enormous speedups (up to 175x) when compared to a simple, single

CPU core implementation of the algorithm.

The two microbenchmark applications are intended to give our application-space

more coverage in terms of different processing rate ratios between the CPU cores and

the GPUs. Since some processing functions are better suited than others to specialized

acceleration processors like GPUs, there can a wide range of speedup values for GPU

code, as compared to a CPU core. Thus, we wanted to ensure that our techniques

work for a wide range of speedup values. Therefore, our microbenchmark codes fill

in the smaller end of the spectrum, where the GPU is only 5x and 10x faster than

one CPU core, respectively. These slower speedup values are found in applications

which require complex data structures, which have a large amount of conditional code

execution, or which have an irregular data access pattern. Examples of applications

with lower speedup ratios which fall within our application target area can be found

in [47] and [101]. These applications would get the most benefit from using both

CPUs and GPUs.

Both of the microbenchmark applications are based on the real-world SAR appli-

cation. To provide a realistic benchmark, we have kept the input data and output

data requirements the same as SAR. Further, the replacement GPU filter calculates

110

its processing time for each databuffer by using a constant 10 millisecond wait time

as well as a proportional processing time according to the work area described by the

databuffer. No code actually runs on the GPU, and the output data produced by

the replacement GPU filter is not intended to be correct, as compared to the SAR

application. Inside the busy wait “GPU” filter, we simply used a call to usleep().

Table 5.1 shows the single CPU core and single GPU execution times for each of

the four applications and for each of the databuffer sizes used in our testing.

Table 5.1: Single tile execution times in milliseconds for four applications
App. Tile size CPU core GPU Speedup
5:1 32 x 32 206 52 4.0

µbench- 64 x 64 840 174 4.8

mark #1 128 x 128 3 306 666 5.0

256 x 256 13 045 2 633 5.0

512 x 512 52 234 10 497 5.0

10:1 32 x 32 205 31 6.5

µbench- 64 x 64 831 92 8.9

mark #2 128 x 128 3 306 338 9.8

256 x 256 13 059 1 322 9.9

512 x 512 52 339 5 254 10.0

Bio- 32 x 32 0.37 1.58 0.2

medical 64 x 64 1.31 1.86 0.7

Image 128 x 128 5.23 2.07 2.5

Analysis 256 x 256 20.22 2.64 7.7

512 x 512 81.00 3.80 21.3

1024 x 1024 354.25 7.82 45.3

SAR 32 x 32 205 18 11.1

Imaging 64 x 64 820 19 42.1

128 x 128 3 256 36 88.7

256 x 256 13 023 91 142.5

512 x 512 52 449 324 161.6

111

Our experimental testbed was the Ohio Supercomputer Center’s Glenn cluster,

which has recently been upgraded with Tesla Quadroplex 2200 S4 rack-mounted

GPUs. Each node in our cluster has dual-socket quad-core AMD Opteron 2380 pro-

cessors running at 2.5 GHz, 24 GB of system memory, and two Quadro FX 5800

GPUs, each with 4 GB of memory. The nodes are connected with 20 Gps Infiniband.

The operating system kernel is Linux 2.6.18 with glibc 2.5. We used GCC 4.1.2 with

-O3 optimizations. The GPU programming framework is CUDA toolkit 2.3.

The Adaptive Partitioning Controller (APC) has been implemented in Data-

Cutter [13]. We compare APC against the Demand-Driven (DD) controller built

into DataCutter which uses a user-configurable static databuffer size and controls the

rate at which databuffers are sent to each processing filter by how quickly they are

processed there. The tile sizes chosen for the experiments are the ones reported in

Table 5.1. This table presents the computation time in milliseconds for both a single

CPU core and a single GPU as well as the speedup of the GPU over one CPU core.

The time shown in bold font is the tile size that achieve the highest processing pro-

cessing rate for each processor type in each application. It is worth noting that on the

microbenchmarks and the SAR imaging application, the choice of the tile size for the

CPU impacts the processing rate by less than 1%. The case of the BIA application

is different. Indeed, the CPU’s processing rates for tiles from 32x32 to 512x512 are

similar, whereas using 1024x1024 tiles is 10% slower. Meanwhile, the choice of the

tile size is always crucial when running filters on the GPU.

112

5.5.2 Results and analysis

The running time of the experiments are reported in Figures 5.3, 5.4, 5.5, and

5.6. Each figure corresponds to one application and presents execution times using

different distribution policies while varying the system configuration. Depending on

the figures, the execution times of policies which did not fit into the range of the

y-axis for the chart are omitted to improve the figure clarity. The execution times

shown in the figures are averages of 5 runs. The average standard deviation for the

two microbenchmarks is less than 1%, while the maximum is over 5% (usually due

to one or two experiment configurations with widely variable results). SAR has an

average standard deviation of 1.5% and a maximum value of 6.4%. For BIA, the

average standard deviation is 3.0% and the maximum value (except for one very

variable system configuration) is 6.4%. For the two microbenchmarks, we analyzed

10 1K x 1K images. For the BIA application, we analyzed 20 25K x 25K images,

while the backprojection application analyzed 100 2K x 2K images.

Figures 5.3 and 5.4 show the results of our two microbenchmarks, with a 5:1 and

10:1 GPU to CPU core processing rate ratio, respectively. The first thing to notice

is that the optimal databuffer size is different for different system configurations. For

both microbenchmark applications, the fastest execution times for the homogeneous

GPU-only configurations are found when using the largest tile size. When adding

CPU filters to the system configuration, we would expect the application execution

time to decrease. This is not the case for the 512 x 512 tile size, because the runtime of

a 512 x 512 tile on the CPU takes over 50 seconds (see Table 5.1). Therefore, we must

use a smaller tile size to improve the load balance. APC handles this automatically,

113

always coming very near the fastest DD configuration’s execution time. For a few

system configurations, APC even beats all of the DD results.

APC is competitive with all of the demand driven scheme’s different configura-

tions. A well-tuned demand driven scheduling policy is very effective at executing

dataflow applications in homogeneous cases. Therefore, the extra initial bootstrap

overhead and the work area fragmentation of APC makes it difficult to beat those

results. However, in all cases, APC comes very close to the best DD result. For both

of the microbenchmarks, 10 images do not represent a large amount of work for the

system; there are only 40 of the largest allowed 512 x 512 databuffers. While this

may be a reasonable amount of work in the application domain, this represents the

worst-case scenario for an adaptive system. There is not much time to perform the

load balancing before the entire application exits.

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

$"()*+""
!",)*"-./0+"

$"()*+""
'#",)*"-./0+"

$"()*+""
#&",)*"-./0+"

&"()*+""
!",)*"-./0+"

&"()*+""
&",)*"-./0+"

&"()*+""
#$",)*"-./0+"

!"
#$
%&

'(
)*
+,

#)
-.
#$
'(

/.
0)

1),"

22"34#5"

22"3%$5"

22"3'#&5"

22"3#6%5"

22"36'#5"

Figure 5.3: Microbenchmark #1 with 5:1 GPU:CPU core speedup; 4 Nodes; 10 1K x
1K Images

114

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

&",-./"
!"0-."1234/"

&",-./"
#$"0-."1234/"

&",-./"
$*"0-."1234/"

*",-./"
!"0-."1234/"

*",-./"
*"0-."1234/"

*",-./"
$&"0-."1234/"

!"
#$
%&

'(
)*
+,

#)
-.
#$
'(

/.
0)

5-0"

66"7%$8"

66"7(&8"

66"7#$*8"

66"7$'(8"

66"7'#$8"

Figure 5.4: Microbenchmark #2 with 10:1 GPU:CPU core speedup; 4 Nodes; 10 1K
x 1K Images

Figure 5.5 shows the results of running the BIA application on 4 nodes with various

system configurations. The system configurations listed are only the nodes devoted to

processing; as discussed previously, we use 4 nodes for decompressed image storage,

in order to provide sufficient memory and network bandwidth. For this experiment

we analyzed 20 25K x 25K images. Smaller tile sizes than 512 are possible, but

these configurations give extremely poor performance due to memory and network

bandwidth contention, and as such are not shown (even though the single-tile CPU

fastest processing rate is for the 256 x 256 tile size).

The values shown in Table 5.1 show that the CPU and GPU have different optimal

tile sizes; the CPU reaches its maximum processing rate at a tile size of 256 x 256,

while the GPU’s best performance is at 1024 x 1024. Therefore, a static choice of tile

sizes is insufficient. Certainly, using two tile sizes would be possible, and would give

each processor type its preferred tile size. However, using an incorrect tile size for the

115

GPU could increase the computation time by a significant amount, as can be seen

from Table 5.1. Further, statically partitioning the entire work area into different

groups, from which the two tile sizes could be partitioned would be insufficient if the

system configuration were to change. Our APC algorithm shows that by conducting

this databuffer tuning and load balancing at runtime, we can usually beat even the

optimal demand-driven scheme.

Also, in BIA, the demand-driven scheme is unable to beat the performance of

the homogeneous GPU-only case by adding CPU cores. However, while the extra

CPU cores do not improve the application performance much while using APC, APC

achieves better performance than demand-driven schemes for the 4 GPU 12 CPU core

and 8 GPU 8 CPU core configurations. Additionally, for those system configurations

where the optimal DD performance beats APC, it is usually by less than 1%. The

small improvement for APC when adding CPU cores is due to the high performance

for this application on the GPU; when the GPU is 40x faster than a single CPU core,

40 additional CPU cores are needed to double the application’s performance, even

while neglecting the additional input partitioning and output aggregation overhead.

As you can see from Figure 5.6 and from Table 5.1, the huge speedup of the GPU

as compared to a CPU core in the SAR image formation based on backprojection

means that extra CPU cores do not improve the execution time much. Even in the

face of this challenging situation, APC works well. The demand driven scheme shows

a poor load balance, due to the fact that it is oblivious to the amount of time each

databuffer takes to process in different processor types. While the overhead for adding

many CPU cores is high in APC as compared to the GPU-only homogeneous cases, its

performance degrades far more gracefully than the demand driven scheduling policy.

116

!"

#!"

$!"

%!"

&!"

'!"

(!"

&")*+,"
!"-*+"./01,"

&")*+,"
#$"-*+"./01,"

&")*+,"
$2"-*+"./01,"

2")*+,"
!"-*+"./01,"

2")*+,"
2"-*+"./01,"

2")*+,"
$&"-*+"./01,"

!"
#$
%&

'(
)*
+,

#)
-.
#$
'(

/.
0)

3*-"

44"5'#$6"

44"5#!$&6"

Figure 5.5: BIA: Biomedical Image Analysis; 4 Nodes; 20 25K x 25K Images Analyzed

Tables 5.2 and 5.3 respectively show the number of tiles processed of each size,

and the total work area processed by each tile of each size for APC on the SAR

application. Table 5.2 shows the number of tiles processed by each filter type (in

total across all 4 nodes); we can see the total number of tiles processed by the system

increase when we add CPU cores in each configuration. Meanwhile, Table 5.3 shows

the amount of work processed per tile size, also broken down by filter type. Here, we

can see than in all system configurations, the GPU processes more than 90% of the

total work area. However, we can see that even though our overall execution time

does not degrade significantly when adding CPU cores in a non-optimal fashion (see

Figure 5.6), we are actually scheduling work to the CPU cores in such a fashion as to

not damage the execution time badly. In fact, it is more likely the fragmentation of

the work area into smaller tile sizes that harms the overall execution time.

117

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

+!!"

&",-./"
!"0-."1234/"

&",-./"
#$"0-."1234/"

&",-./"
$*"0-."1234/"

*",-./"
!"0-."1234/"

*",-./"
*"0-."1234/"

*",-./"
$&"0-."1234/"

!"
#$
%&

'(
)*
+,

#)
-.
#$
'(

/.
0)

5-0"

66"7(&8"

66"7#$*8"

66"7$'(8"

66"7'#$8"

Figure 5.6: SAR: Synthetic Aperture Radar Image Formation; 4 Nodes; 100 2K x 2K
Images Formed

To efficiently compare the various demand-driven configurations and APC, we use

performance profiles [35], a visual tool for comparing various methods over a large set

of test cases with respect to some metric. The metric we use in the following profile

plots is the application execution time.

Each performance profile plot (in Figure 5.7) shows the probability that a specific

demand-driven configuration or APC gives results within some value τ multiple of the

best result reached by all of the load-balancing schemes. The higher the probability

of small τ values, the more preferable the method is. For example, the curve DD128

includes the point (2, 0.7) which means that on 70% of the tested cases, the execution

time of the DD128 scheme was no more than 2 times slower than the best (fastest)

obtained by any method.

The DD-dev line represents what a developer would likely choose as the static

databuffer size for use in a demand-driven scheme after examining Figures 5.3 - 5.6.

118

Table 5.2: Aggregate number of tiles computed by each processor type while varying
the system configuration

Proc. Type & Number of GPUs / Number of CPU cores

Tile size 4/0 4/12 4/28 8/0 8/8 8/24

GPU 32x32 12 8 9 24 21 30

GPU 64x64 13 5 17 26 19 9

GPU 128x128 12 10 13 8 25 24

GPU 256x256 4 15 16 24 14 140

GPU 512x512 1598 1564 1512 1593 1584 1527

CPU 32x32 0 12 39 0 27 62

CPU 64x64 0 22 99 0 25 60

CPU 128x128 0 182 307 0 73 265

CPU 256x256 0 19 92 0 22 74

CPU 512x512 0 15 39 0 0 0

Sum 1639 1852 2143 1675 1810 2191

Each application would get its own tile size, but the same tile size would be used

for all system configurations. For the two microbenchmark applications, we chose

128x128 as the tile size. BIA uses the 1024x1024 tile and SAR uses 512x512.

What the performance profile shows us, is that of all of the load-balancing schemes,

APC is the most likely to give desirable results. None of the other statically sized

demand-driven configurations gives reasonable results across all of the system con-

figurations and applications, bolstering our claim that tuning the databuffer size for

each application is necessary. However, APC can schedule application executions

within 1.1 times the fastest result more than 90% of the time and within 1.25 times

the fastest result found 100% of the time, meaning that developers can now leave the

tuning of their applications to the runtime system itself, and still be assured of good

performance.

119

Table 5.3: Aggregate work area computed by each processor type while varying the
system configuration

Number of GPUs / Number of CPU cores

4/0 4/12 4/28 8/0 8/8 8/24

GPU 100% 98% 94.8% 100% 99.3% 95%

CPU 0 2% 5.2% 0 0.7% 5%

5.5.3 Sum up of experimental results

This section highlights the important points from the experimental results.

Using CPU cores and GPUs cooperatively can be useful. For both of the micro-

benchmark applications, with their comparatively low speedup values, the addition of

CPU cores to help the GPU perform the computation lowered the overall application

execution time.

Static work partitioning leads to a poor load balance. Because of the wide variabil-

ity in the processing rates for GPUs and CPUs, a static work partitioning and tile

size will yield a load imbalance. For instance, on the microbenchmarks and SAR, the

load balance is terrible when the optimal GPU tile size is used.

Static work partitioning requires a difficult tuning phase. To determine the correct

tile size to use for a specific dataflow application, a specific amount of work, and

a specific system configuration, developers must conduct a search across all of the

possible tile sizes. Unfortunately, this tile size is not necessarily consistent across

system configurations, forcing developers to search again if the system configuration

changes (based on system availability, hardware upgrades, or code changes). Further,

120

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

Fr
ac

tio
n

of
 w

in
s

APC
DD32
DD64
DD128
DD256
DD512
DD1024
DD−Dev

Figure 5.7: Performance profile of APC and DD with a fixed tile size for all the system
configurations for the four applications

there are too many interactions at work to allow a static analysis of the dataflow

application to work well.

To address these issues, we propose APC which does not require tuning parameters.

Moreover, APC leads to an efficient execution. The performance profiles show that

APC will overall achieve better runtimes than demand-driven schemes manually tuned

by the application developer.

APC performs reasonably on the worst-case scenario. SAR is really a nightmare

application for cooperatively using CPUs and GPUs. The application performs so

well on the GPU so as to make any possible benefit from additional CPU cores be

canceled out by the extra overhead required to feed them with work. APC performs

121

up to 31% better than the fastest demand-driven scheme, and no more than 4% worse

across all of the system configurations.

APC conducts a more efficient execution than any static work partitioner. For

applications with difficult-to-predict tile speedup ratios, such as BIA, APC is able to

handle the extra complexity. Because APC is able to select a different tile size for the

each architecture, it is able give each processor tiles which maximize their processing

rates. This allows APC to give the best overall processing rate among the three 4

GPU configurations for APC.

5.6 Summary

In this chapter, we have presented our method for adaptively tuning the databuffer

size and dynamically balancing the load in dataflow applications. By conducting

the workspace partitioning in the dataflow runtime system itself, we can adaptively

tune the databuffer size and balance the load among heterogeneous processors with

drastically different processing rates. This algorithm solves two problems with the

dataflow programming paradigm, one of which was previously ignored or left to the

developer to accomplish with a tedious tuning process.

122

Chapter 6: Improving Performance of Adaptive

Component-Based Dataflow Middleware

6.1 Introduction

The high-performance computing world has undergone a major paradigm shift.

Supercomputers are now inherently hierarchical and heterogeneous [82, 55, 28] due

to the increasing degree of on-die parallelism in microprocessors, as well as the ever-

increasing programming flexibility afforded by current accelerator devices such as

graphics processing units (GPUs). Indeed, as of April, 2011, all of the five fastest

supercomputers in the world use multi-core processors2, while three of the five also

use Nvidia GPUs. However, while the raw performance of supercomputers has con-

tinued its steady increase, programmability of such systems is suffering; indeed, pro-

gramming such systems can be a very tedious task even for expert programmers. The

heterogeneity of the systems in terms of processing capability and network infrastruc-

ture make their efficient use a major technical challenge. However, even with these

challenges, recent research has shown that cooperatively using CPUs and GPUs is an

important goal [55, 75, 106].

2According to the Top 500 http://www.top500.org/

123

Traditionally, applications have been developed with various low-level software

tools for high-performance computing (HPC) systems. MPI provides a portable,

high-performance message passing semantic for distributed-memory HPC applica-

tions, with certain implementations providing support for high-bandwidth networks.

With the release of Nvidia’s Compute Unified Device Architecture (CUDA)3, and

later with the standardization of OpenCL4, GPUs were widely capable of perform-

ing general purpose computation, without requiring developers to learn to overload

graphics APIs such as OpenGL. Multi-core, multi-processor machines are commonly

used through POSIX threads, OpenMP, and more recently shared-memory frame-

works such as Intel’s Threading Building Blocks5. These tools are important and

useful to the expert programmer, but designing applications solely with these low-

level building blocks remains a complex task.

To lower the bar to programming efficient applications for modern HPC systems,

high-level programming frameworks must provide a simple but powerful program-

ming API, must easily support processor heterogeneity, and must provide automatic

load-balancing. Unfortunately, most distributed programming frameworks leave to

the developer the task of finding the right data and task granularity for their appli-

cation. Since distributed applications targeted to heterogeneous systems have many

variables (such as processor speeds, node configuration, and network topology) which

affect their runtime performance, the size of the data partitions must be tuned em-

pirically, not only to find the “best” size for each processor type, but also to balance

the competing demands of cache locality, network throughput, network latency, and

3http://developer.nvidia.com/object/cuda.html

4http://www.khronos.org/opencl/

5http://threadingbuildingblocks.org/

124

overlap of communication with computation. Using a sub-optimal partitioning can

significantly increase the overall application’s execution time. Therefore, to help de-

velopers extract the best performance from their applications, we should allow the

middleware to partition the data automatically.

The Adaptive Partitioner Controller (APC), presented in [57] and Chapter 5, si-

multaneously balanced the load and tuned the data partition size for applications

running on distributed, heterogeneous systems; it was implemented in the Data-

Cutter middleware [13]. However, APC has some shortcomings. Using a single APC

controller enables a global view of the system, but this centralized mechanism suffers

from scalability issues for large number of processors. Using multiple APC controllers

achieves higher scalability, but each APC performs its decision independently, leading

to potentially high load imbalance. Additionally, by design, APC solely focuses on

efficiently using the processors, neglecting the network. In this chapter, we address

the shortcomings of APC by shifting the focus of APC+ to take both processor and

network performance into account. One controller runs on each node and is only

responsible for scheduling tasks on the local, on-node processors. It still enables good

performance modeling and utilization of the local processing units, while global load

balance is achieved by a work-stealing mechanism. Finally, the data transfers are ex-

plicitly taken into account by the use of a dedicated storage layer, which enables high

network performance. These improvements allow APC+ to offer enhanced scalability

and utility.

In this paper, we will compare our technique with other state-of-the-art high-level

programming frameworks in terms of their programming API, their support of modern

multi-core and accelerator processors, their load-balancing technique, and the level to

125

which data partitioning impacts the performance of runtime applications. We have

chosen to use three general-purpose distributed programming frameworks as point

of reference by which to judge our technique: DataCutter [13] with Demand-Driven

load-balancing, a coarse-grain dataflow framework, KAAPI [45], an asynchronous task

execution framework based on the Athapascan-1 language [43], and MR-MPI [88], a

MapReduce framework using an MPI communication back-end.

We will focus on three applications, whose computation occurs in a finitely-

divisible workspace, namely Synthetic Aperture Radar [56], Biomedical Image Anal-

ysis [97], and Black-Scholes[14]. This model is common in real-world applications

and exposes the simplest model of parallelism. Each application has different char-

acteristics: they differ in initial data distribution, task execution time profiles, and

CPU/GPU speedups. To further understand the performance of the different mid-

dleware, we designed an application where we can tune the ratio between the size of

the input and the amount of computation.

The rest of this paper is organized as follows. First, we describe the three com-

parison programming frameworks and their specific instances in Section 6.3, while

Section 6.4 presents our proposed adaptive application programming framework. Sec-

tion 6.5 describes the three test applications used in the experiments. The program-

ming APIs of the frameworks and important application optimizations are discussed

in Section 6.6. Then we will present an experimental study in Section 6.7, and finally

conclude in Section 6.8.

126

6.2 Related Work

Software runtime systems which adapt the work partitioning between heteroge-

neous processors on a single node are closely related to our work. Qilin [75] conducts

a static work partitioning between a multicore CPU and a GPU by initially execut-

ing training runs with various work sizes for each processor type, while Harmony [34]

adaptively subdivides the application tasks to the CPU and a Field Programmable

Gate Array at runtime. Both of these systems use the CPU and an accelerator in

concert to achieve faster processing than by using either alone. GPUSs [6] is an

OpenMP-like programming framework which automatically creates parallel code for

multiple GPUs from annotated C code. By using knowledge about the data locations,

tasks can be scheduled to run on the correct GPU without excessive data movement.

StarPU [5] is a single-node dataflow programming framework and runtime engine

which uses work-stealing to balance the workload. All of these systems only target

single computational nodes, whereas our target is to handle distributed resources.

The field of middleware runtime systems has a long history of developing tech-

niques for balancing the load of distributed applications at runtime. River [3] uses

a distributed queue and a simple load balancing technique for producer-consumer

application task relationships. Anthill [106] features algorithms for scheduling data-

flow applications where the amount of work is not known prior to runtime. Coign [59]

focuses on partitioning the dataflow graph to perform a static runtime data decompo-

sition, whereas Cilk [16], Charm++ [64], ACDS [62], and TelegraphCQ [23] perform

automatic load balancing as well as application partitioning. Capsules [76] allows

developers to tune their application’s task and data granularity with a simple param-

eterization scheme. More recently, MapReduce frameworks for heterogeneous systems

127

such as Merge [74] have been designed. In these systems, a manual data-granularity

tuning step must be performed to achieve the best application performance. Our

technique automatically performs this tuning step at runtime. Thus, our work is com-

plementary to the research in this field, and indeed, could be directly implemented

in many of these dataflow runtime systems.

The family of Partitioned Global Address Space (PGAS) languages such as Ti-

tanium [114], X10 [24], and Chapel [22] are powerful languages for programming

high-performance distributed applications. However, all of these languages leave the

important load-balancing problem up to developers to solve, albeit with a concise

programming methodology.

There are many other instances of runtime engines we could have chosen to include

in our comparison. Cilk [16] is an obvious choice, due to its powerful work-stealing

runtime engine, and although a distributed version of Cilk, called Cilk-NOW [17]

(Network Of Workstations) is referenced in the literature, it is not available for use.

The most famous publicly available MapReduce implementation is Hadoop6, but its

focus is inapplicable for our work; Hadoop is an enterprise-grade framework designed

for out-of-core operation and fault-tolerance, and relies heavily on a parallel file sys-

tem which cannot be bypassed. Charm++ [64] is an object-oriented distributed

programming framework which associates computation to specific object instances,

and migrates these objects to balance the computational load. However, adding

Charm++ to our discussion would not increase our coverage of the distributed run-

time engine space significantly beyond what we already present. While Charm++

6http://hadoop.apache.org/

128

provides a number of load-balancing techniques, including a measurement-based tech-

nique, a manual tuning step to determine the optimal data domain decomposition is

required. Further, well-tuned demand-driven applications are already close to opti-

mally scheduled [57].

Additional related work in autotuning can be found in Chapter 5.

6.3 Distributed Programming Frameworks

6.3.1 DataCutter: Component-Based Dataflow

DataCutter is discussed in detail in Section 1.2.1, although we will restate impor-

tant points about the load-balancing mechanism and support for heterogeneity here,

for completeness.

Load-balancing mechanism

The default DataCutter load-balancing technique is Demand-Driven databuffer

distribution. It balances the load between a number of data consumers, according

to their processing rate. By only sending databuffers to each consumer when they

request more work, consumers which work faster will get more work to process.

The Demand-Driven mechanism is initialized by each producer sending one data-

buffer downstream to each data consumer. Data consumers will send a request for

more data to a producer when they remove a databuffer from their incoming queue.

Consumers will request data from the very upstream filter which produced the con-

sumed databuffer. One can initially send more than one databuffer in order to hide

the latency of the send-demand/reply-data handshake in cases where the processing

time of one databuffer is insufficient. To further allow intra-node load-balancing in

129

DataCutter, copies of a filter allocated on the same node use a shared queue, and

pop databuffers from this queue, instead of a private queue.

Support for heterogeneity

The filter-stream model is ideal for programming for heterogeneous processor

types, because the architecture-specific details are hidden inside the filter. Provided

the same data interface is used by two filters, they can be used interchangeably. Fil-

ter implementations can be specialized for dedicated architectures such as the Cell

processor [54], GPUs [55] or SMPs.

6.3.2 KAAPI: Asynchronous Task Execution

KAAPI [45] is a programming framework tightly integrating the Athapascan-

1 [43] language and a runtime system for the development of distributed applications.

The Athapascan-1 programming language, through the use of C++ templates, allows

users to describe the exact data dependencies between tasks in a dataflow graph. The

use of commands to asynchronously spawn tasks at runtime and the use of explicit

shared variables, which describe the data flow, allows the application’s task graph to

be created at runtime and to be unfolded in a dynamic, and data-dependent fashion.

In order to develop an efficient schedule of how to map this dynamically-created

dataflow task graph onto distributed resources, Asynchronous Task Execution frame-

works in general, and the KAAPI runtime system in particular, construct at runtime

a lexicographic ordering of the tasks to be completed, and use the data dependency

information from the user program to determine which tasks are ready to execute.

The middleware distributes the ready tasks onto the processors automatically using

a work-stealing strategy.

130

Figure 6.1: Example Asynchronous Task Forking and Shared Data Access

Figure 6.1 shows a general example of the power of KAAPI’s runtime execution of

asynchronously forked tasks, and the implicit ordering of task executions by shared

data access. Since developers explicitly define how all shared data objects are accessed

(in terms of read, write, or read/write semantics), the runtime engine can keep track

of which tasks are ready to execute.

Load-balancing mechanism

KAAPI’s load balancing is achieved through work-stealing [16]. Each processor

involved in the computation has its own thread which manages its stack of tasks to

complete. When a processor runs out of tasks to complete, it will attempt to steal

tasks from a random processor. The victim processor will then yield some portion of

its tasks to the thief processor. Provided that tasks and the processors’ processing

131

speeds are homogeneous, this will achieve excellent load balance. If processing speeds

are proportional (heterogeneous, but with a constant scaling factor), then this work-

stealing scheme still achieves theoretically optimal load balance [11].

Support for heterogeneity

KAAPI’s support of GPUs is essentially left to the developer. Because KAAPI

tasks can be stolen at any time before their execution, there is, by design, no affinity

between tasks and any particular computational unit. Therefore, developers must

turn to mechanisms to either control access to the GPU through a mutex, or create

some affinity between one particular KAAPI thread and the GPU device.

We would like to remark that KAAPI is currently being completely rewritten as

XKAAPI [12], which will include native support for GPUs. However, XKAAPI is still

in development and currently does not support distributed memory architectures.

6.3.3 MR-MPI: MapReduce over MPI

MapReduce [31] is a programming framework for distributed applications empha-

sizing simplicity and accessibility for non-parallel programmers. Developers define se-

quential primitives which operate on portions of an implicitly-referenced distributed

hash table which resides locally on nodes involved in the computation. All paral-

lel communication details are hidden from the user by API calls and occur simply

to reorganize the distribution of the hash table in the distributed environment. By

providing a simple interface, even novice parallel programmers can leverage parallel

computational resources and gain benefits in terms of speed of application execution

or scale of problem size.

132

MR-MPI [88] is a C++ MapReduce implementation using MPI as the distributed

communication library. The data in MR-MPI are stored in the internal hash table

either as Key-Value pairs or Key-MultiValues tuples and are processed by five main

functions. Key-Value pairs are produced by the map() function through a user-

defined callback function. The aggregate() function distributes Key-Value pairs to

processors and guarantees that pairs with the same key are on the same processor.

Key-Value pairs with identical keys are merged into a single Key-MultiValue tuple

by the convert() function. Each Key-MultiValue tuple is transformed into (zero, one,

or more) Key-Value pairs by the reduce() function based on a user-defined function.

Data are redistributed on less processors (typically a single one) using the gather()

function. MR-MPI’s API is easy to understand and its core API fits into a single

page.

Figure 6.2: Example MapReduce Execution

133

Figure 6.2 shows a simple example of a MapReduce application running on a

distributed cluster of machines. The simplest MapReduce applications only need to

define one Map stage, and one Reduce stage. Most MapReduce frameworks (including

MR-MPI) have some built-in support for managing file-based input data, to ease the

burden of partitioning and distributing multiple files, possibly of different lengths, and

possibly resident in a non-uniform manner across the set of computational nodes.

Map tasks, therefore, take as input some subset of the globally defined input data

space. The Map stage has two goals: to put the input data into the implicitly-held

hash map data structure, and to ensure that the size of the key-set is sufficiently large

so as a good hash-based load-balancing of the downstream reduce tasks. The number

of reduce tasks may not match the number of map tasks; the number can be higher or

lower (the latter is reflected in Figure 6.2). The Reduce stage’s goal is to operate on

the intermediate results in the distributed hash map and determine some final result,

or another intermediate result to be passed to a further MapReduce cycle, for more

complex applications.

Load-balancing mechanism

The user is not required to write any code related to partitioning, communicating,

sorting, or balancing the application data. Rather, users simply write sequential

functions which will operate on portions of their data, and use calls to the MR-

MPI runtime system to perform all of the parallel communication. Internally, the

load-balance is achieved by partitioning the key space into equal chunks. If the

internal hash table’s keys are complex structures, users should supply a custom hash

function, which ensures good key distribution over the processors. If applications have

unpredictable task execution times, MR-MPI also has a master/slave load balancing

134

mechanism, which can improve load balance, depending on the specific application

and system configuration.

Support for heterogeneity

MR-MPI’s support for GPUs is entirely up to the developer to manage. Because

MR-MPI is closely linked with its MPI back-end, we can simply use the MPI rank to

determine which processes should use the GPU and which should use CPU threads. If

cooperative CPU / GPU is desired, then a custom hash function needs to be supplied

which gives the GPU ranks a larger share of the intermediate data values. For the

best load balance, developers can profile their application kernels, and give the GPUs

the correct proportion of the total work, such that they finish at the same time as

the CPU threads.

6.4 APC+: Adaptive Component-based Dataflow

Because parallelism, hierarchy, and heterogeneity conspire to reduce the perfor-

mance of applications developed for modern supercomputers, high-level programming

frameworks must explicitly handle these concepts. Since parallelism implies data and

computation partitioning, and since a poor choice can adversely affect the overall

execution time, the partition size is an important parameter to choose carefully [57].

All of the previously discussed distributed programming frameworks require an ex-

plicit decision to be made as to the partition size. The range of acceptable partition

sizes can be large for complex parallel applications, and thus, the process to find the

optimal value for the partition size can be quite tedious. Thus, this section describes

135

our enhanced Adaptive Partitioner Controller, APC+, a technique for using a feed-

back loop to automatically tune the data and computation partition sizes for efficient

processor utilization, efficient network utilization, and good overall load balance.

6.4.1 APC+ Algorithm

Built on top of DataCutter, APC+ gains all of the benefits of a high-performance

dataflow runtime engine. APC+ automatically tunes the databuffer size and applica-

tion data partitioning, which helps schedule an efficient application execution. There

are four parts to our method:

• Performance Model [57]

The performance model tracks each databuffer’s execution time for each pro-

cessor in the system. By continually tracking the execution time of databuffers

in the system, we can dynamically find the databuffer size with the fastest

processing rate.

• Work Partitioner [57]

By using user-supplied knowledge of the application’s workspace, and the in-

formation about the system’s characteristics from the performance model, the

work partitioner streams databuffers to the processors with the aim of balancing

the load.

• Distributed Work-Stealing Layer

With APC+, each node of the system has a controller filter running, which only

provides work to the local processing units. It handles all of the performance

modeling of the local processors, and manages the partitioning of its own queue

136

of work. All work sharing between the nodes is conducted by a new work-

stealing layer, which tightly integrates with the performance modeler and the

work partitioner.

• Storage Layer

While the performance model focuses on keeping each processor in the system

operating at peak efficiency, and the work partitioner and work-stealing layer

ensure good load balance across all of the nodes, the storage layer’s goal is

to optimize the use of the network interface. By streaming work to remote

nodes, and by transferring data in large chunks, the storage layer ensures that

the network is used as efficiently as possible. It is important to note that the

work-stealing layer simply balances the assignment of work to nodes, while the

storage layer actually moves the application’s input data to the appropriate

node. So stealing large work assignment is actually a light-weight operation,

and the actual data is streamed only as fast as the network can handle.

In preliminary work [57], we proposed an adaptive databuffer tuning and work

partitioning technique, which featured the first two parts, the Performance Model

and the Work Partitioner. Here, we present improvements to the technique, the

Distributed Work-Stealing and Storage Layers, which make our framework more net-

work aware. Providing large-scale scalability with a single APC filter was impractical,

because APC is only indirectly network-aware. Indeed, APC does not make any dis-

tinction between communication time and computation time. The main reason is that

the network interface is difficult to model effectively within a high-performance data-

flow runtime system. Since distributed dataflow runtime systems are not inherently

137

synchronous, it is impossible to instantaneously determine the execution time of any

one data transfer, when there are multiple pending data transfers. Therefore, APC

cannot accurately predict the data transfer times in a dynamic system, preventing

good load balance among the downstream processors. Further, more than one APC

must be used when there are upstream data sources on multiple nodes (e.g., some

data is read from disk in blocks and sent into the system for processing). Each APC

must be able to send computation to all the processing filters to be able to utilize

the distributed system fully. However, each APC is oblivious to its peers, and each

of them will send too-small tiles to each processing filter, because they do not have

a global picture of the amount of work flowing into the system. This unfortunate

consequence induces high network overhead, sub-optimal processing filter efficiency,

and high load imbalance.

To solve these problems, APC+ features a work-stealing layer which handles all

distributed-memory work allocation and a storage layer which optimizes the use of

the network interface. This twofold approach has many benefits: 1) It allows APC+

filters to transfer input data in sizes which are efficient for the network interface, 2)

it decouples the transfer of data and the processing of the data, and 3) it simplifies

dataflow application executions which have distributed input data (data can first be

processed locally, without forcing a remote operation). Since work is shared at the

node level, instead of the filter level, work can be transferred in much larger partitions.

Further, the assignment of work to a thief APC+ filter is a light-weight operation,

and is separate from the transfer of the application data. This distinction allows the

storage layer to stream the data and avoid overloading the network interface, while

138

still allowing for rapid load-balancing among the nodes. To be sure, component-

based dataflow with demand-driven load balancing also simplifies distributed work

sharing, but the approach adopted by APC+ integrates knowledge about where work

is produced and where and how fast work is consumed.

APC+ targets applications whose work area is finitely divisible, subject to min-

imum and maximum databuffer size constraints stemming from application-specific

and hardware constraints such as memory size. We assume that there is a mono-

tonically increasing execution time for increasing databuffer sizes for all processor

types. APC+ can handle any type of computation that can be expressed as an n-

dimensional work area. For instance, the simplest workload is 1-dimensional, and

represents a simple reduction or transformation operation on a 1-d vector of input

data. Or, an image analysis operation which operates on 2-d images and produces a

feature vector represents a 3-d work area. The work area definition simply needs to

match the dataflow application’s requirements.

Figures 6.3 and 6.4 show simple example placements of APC and APC+. The

major difference is that APC is a centralized system, using only a single filter to

manage all of the processors in the entire distributed computational resource, whereas

APC+ is a decentralized system, using an APC+ filter copy on each node, which is

only responsible for driving the processors resident on that same node.

Load-balancing mechanism

As already discussed, APC+ contains four elements which integrate tightly to form

APC+’s automatic dataflow application tuning and work partitioning. APC+ oper-

ates on WorkTiles, which are n-dimensional work area abstractions and are generic

enough to allow APC+ to automatically partition the overall application’s work area

139

Figure 6.3: Example APC placement

Figure 6.4: Example APC+ placement

and submit work to downstream processors. Applications simply send a WorkTile to

an APC+ to alert it of work to be performed. Since APC+ is oblivious to application

specifics, it is up to the developer to choose a work area which can be interpreted in

the application domain. For instance, in a 2-d image analysis application, the work

area would consist of a set of WorkTiles pairs representing several images of a certain

140

number of rows and columns. APC+ will recursively break these WorkTiles down

into smaller WorkTiles, representing contiguous subtiles of a certain number of rows

and columns. The analysis application will then process these image subtiles.

1: function APC SETUP(min tile,max tile, threshold)

2: queue = get more work(steal = queue.empty())

3: exit bootstrap = false

4: while min tile < max tile and !exit bootstrap do
5: for all processor p ∈ P do
6: min tile = get next buffer size(p)

7: send work(queue, min tile, p)

8: exit bootstrap = true

9: loop |P | times

10: receive (p, tile, timing, block = true)
11: add data point(p, size, timing)

12: if timing < threshold/2 then
13: exit bootstrap = false

14: min tile = parallel reduce(min tile, MAX)

15: completed work = 0

16: replied = P
17: p = 0

18: global end time = 0

19: agg proc rate = 0

Figure 6.5: Adaptive Partitioning Controller (APC+) Setup Pseudocode

Figures 6.5 and 6.6 show the main APC+ pseudocode. APC SETUP (in Fig-

ure 6.5) runs first, once, then the APC LOOP (in Figure 6.6) is entered. One APC+

copy will run on each node in the application’s placement. Each APC+ relies on its

own performance model for estimated processing rate information for all of the pro-

cessors to which it is responsible. To bootstrap the performance model, APC+ looks

for the largest minimum tile size for which a minimum time threshold is reached.

141

1: function APC LOOP(min tile,max tile, threshold)

2: while !shutdown(queue) do
3: queue = get more work(steal = queue.empty(), work received, agg proc rate)
4: queue = receive steal requests(queue, agg proc rate)
5: if |replied| = |P | or work received then
6: alloc work = PARTITION(queued work, queue, agg proc rate)
7: replied = ∅

8: global end time = end time(work received, completed work, agg proc rate)

9: block = (∀p� ∈ P, queued work[p�]

best processing rate(p�)
> threshold)

10: if receive(p�, tile, timing, block) then
11: add data point(p�,size, timing)

12: replied = replied ∪ {p�}
13: queued work[p�] -= size
14: completed work += size

15: if queued work[p]

best processing rate(p)
< threshold then

16: size = min (alloc work[p],

get next buffer size(p, global end time, queued work[p]))

17: send work(queue, size, p)

18: queued work[p] += size
19: alloc work[p] -= size

20: p = (p + 1) mod |P |

Figure 6.6: Adaptive Partitioning Controller (APC+) Main Loop Pseudocode

This helps to alleviate the overhead of partitioning the work area into tiles which

are too small. Once this largest minimum tile size is found, the information is ex-

changed among all of the distributed APC+ copies. This introduces some synchro-

nization, unfortunately, but the cost is quite small as compared to the extra databuffer

packing/unpacking, network, and work area fragmentation overheads associated with

choosing a minimum tile size which is too small.

142

Following bootstrapping, APC+ enters its main processing loop, shown in Fig-

ure 6.6, and the overall execution of the application begins. WorkTile sizes are in-

creased exponentially until the maximum-sized WorkTile is reached, at which point

the WorkTile size which gives the fastest processing rate for a particular processor

will be preferred.

In the situation where an APC+ filter has an upstream data source, the main loop

will perform a non-blocking read on it each time through the loop, because having

accurate knowledge of the global amount of work in the system is key to ensuring a

good load balance. If there is no more work to be queued to downstream processors,

the APC+ filter will attempt to steal some work from a randomly selected peer. If,

when asked, a peer returns that it has no work, that peer is marked such that it is

not asked for work again. If all the peers are marked, then a shutdown process is

attempted. In shutdown, each peer is asked whether its upstream is closed, and if

all of the upstreams (including its own) are closed, then the filter will complete its

shutdown. Otherwise, all of the peers with active upstream ports will be marked as

eligible to steal from, and the shutdown attempt will be canceled.

Our stealing algorithm is quite simple, although we do leverage the aggregate

processing rate of all of the node’s processors to let APC+ filters steal only as much

data as they are likely to be able to process. Therefore, the APC+ filter (the thief)

making the steal request to a peer (the victim) includes its own aggregate processing

rate in the steal request. Then, the victim calculates the correct amount of work to

give to the thief. That is, the victim will give the thief work such that both APC+

filters will complete their work at the same time. The victim APC+ filter will send

143

the work to the thief APC+ in as large WorkTiles as possible, since this reduces the

network and processing overhead of sending many small WorkTiles.

Periodically, the APC+ filters will exchange the size of any additional work re-

ceived from an upstream data source, the amount of completed work, and the ag-

gregate fastest processing rate information for its processors. This enables the entire

system to have some global knowledge of the estimated end time. When WorkTiles

are queued to processors, this global estimated end time is used to provide another

opportunity for reducing the size of excessively long-running WorkTiles, to prevent

load imbalance.

Using a simple round robin scheme, APC+ sends WorkTiles to each processor

having less than T time units of work queued (T defaults to 100 ms). Once the entire

range of possible WorkTile sizes has been tried for a particular processor, APC+

switches to sending the WorkTiles which are of a size to gives the highest expected

processing rate. APC+ allocates work to each processor such that they finishing

executing their queue at the same time. When the remaining work is low, and the

WorkTile size suggested by the performance model is too large, APC+ will send

a smaller WorkTile (even if the WorkTile sizing function is still in the bootstrap

phase). By doing so, we prioritize load balance over processing rate at the end of

the application’s execution. Frequently (exactly after receiving a reply from all the

processors), the amount of work each processor should be given is updated using

PARTITION(); this allows APC+ to react quickly to changing system conditions.

The shutdown() function uses a master-slave method to reach global consensus

that there is no more work to be completed by anyone. Once all of the upstream data

144

sources are closed, and each APC+ has no more work to complete, rank 0 will send

a shutdown message to all of the peer APC+ filters, and the application will exit.

Figure 6.7 shows pseudocode for the PARTITION() function which provides

the amount of work each processor should be allocated. The function calculates the

estimated amount of time each processor’s queued work will take to complete; it uses

this information to allocate to each processor enough work to last max time. It then

distributes the remaining work to the processors proportionally to their processing

rate. If PARTITION() runs out of work before all of the processors are given

sufficient work to match the longest running processor, then that longest running

processor will set the application end time anyway; by not actually queuing more than

T time units of work to any processor in Figure 6.3, we ensure the load imbalance is

no worse than T .

1: function Partition(queued work, work)
2: procrate =

�
p∈P best processing rate(p)

3: for all processor p ∈ P do
4: queue time[p] = queued work[p]

best processing rate(p)

5: max time = maxp∈P {queue time[p]}
6: for all processor p ∈ P do
7: alloc[p] = min{(max time− queue time[p])×

best processing rate(p), work}

8: work = work − alloc[p]

9: for all processor p ∈ P do

10: alloc[p]+ = work×best processing rate(p)
procrate

11: return alloc

Figure 6.7: Adaptive Dataflow Work Partitioner

145

Storage Layer

The new storage layer in APC+ allows the work-stealing mechanism to work

efficiently and quickly to balance the application’s workload, even in situations where

a large input data source is only resident on one node of the system. Like APC+,

the storage layer is distributed over all of the nodes involved in the processing of

the application. The light-weight WorkTiles used by APC+ keep track of where the

application data is actually stored (in which node’s storage layer), so that remote

nodes can request the data directly from the source. The actual application input

data can be arbitrarily large (as it is application-specific), and the storage layer serves

WorkTiles which contain the data in a demand-driven fashion. When a thief APC+

steals some work from a victim, the victim alerts its local storage which WorkTiles

have been stolen. All of the WorkTiles which have been sent to the thief are put into a

transfer queue, and the first WorkTile is sent immediately to the thief’s storage filter.

Upon receipt of the first WorkTile by the thief’s storage filter, two things occur: 1)

an acknowledgement is sent back to the victim storage filter, and the next WorkTile

is sent; and 2) the thief’s storage filter alerts the thief APC+ that work has arrived

which can be queued to the processors.

Notice that an APC+ filter running on node 0 might steal work from node 1,

while the actual input data is is physically resident on node 2 (and is queued to

be transferred to node 1). Since the WorkTiles themselves keep track of where the

application-specific data is, the transfer queues can simply be canceled and rerouted

to node 0 by sending the appropriate messages to node 2. Since the APC+ work-

stealing mechanism prioritizes stealing large WorkTiles, and because the storage layer

146

only streams data as quickly as the network can transfer, APC+ exhibits improved

network performance, when compared to APC.

The storage layer places no limit on the number of times a WorkTile can be

transferred. However, since the work-stealing operation is very lightweight, in most

cases the storage layer will not have to transfer WorkTiles over the network more than

once. Compute-intensive applications may have more redundant WorkTile transfers

than data-intensive applications, because the data transfers will occur faster than the

computation. However, the work-stealing layer ameliorates this problem by stealing

WorkTiles according to the relative aggregate processing rates of the victim and the

thief, such that the correct amount of WorkTiles which balances the load is stolen,

and scheduled for transfer.

Support for heterogeneity

APC+’s support for heterogeneity inherits all of DataCutter’s built-in support

for heterogeneity, specifically the ability to abstract away architectural details from

the application decomposition point of view. However, unlike the other distributed

programming frameworks presented here, APC+ partitions the application’s work

area dynamically, allowing each processor type to work on WorkTile sizes for which

it is the most efficient, providing efficient performance, and good load balance.

6.5 Application Descriptions

To test the performance of the three distributed programming frameworks, we have

chosen three applications with different characteristics. Each application has a differ-

ent initial data distribution, task execution time profiles, and CPU/GPU speedups.

This helps to stress the runtime systems tested in our experiments.

147

Our first application is a Synthetic Aperture Radar (SAR) imaging applica-

tion [56]. Radar return signals from multiple viewing angles of the same scene are

combined together to create an image. The simple backprojection algorithm used

here is a triple loop where each input vector of radar return data is applied to each

pixel of the output image. The inputs to the application are small, so they are broad-

casted at the beginning of the application execution. Because the application tasks

are independent, and because the task execution times are more dependent on the

number of output pixels created than on the number of inputs, we partition the out-

put space into tiles. After processing, the final image is aggregated back on one node,

and written to disk. Our output image sizes range from 4K x 8K on one node up to

32K x 32K on 32 nodes. Our CPU implementation is only of reference quality, but

its further optimization is outside the scope of this paper. The computation style

is very well-suited to the GPU, and we see large speedups (see Section 6.7 for all

CPU and GPU execution time specifics for our platform). The lack of an efficient

CPU implementation in specific libraries is common with GPU implementations of

applications [73]. This is not a middleware issue and runtime systems should be able

to handle it.

Our second application is a Biomedical Image Analysis (BIA) application [97].

In this application, highly magnified digital images of specially prepared biopsy tissue

samples are processed using cooccurrence matrices and operators called linear binary

patterns to determine the texture of the tissue found in the biopsy sample. The tex-

ture determination affects the prognosis for the patient. This is a time-consuming,

error-prone process for human slide readers to perform, and the goal of this applica-

tion is to reduce error and increase analysis throughput. The digitized images can be

148

over 100K x 100K pixels, and many slides are often analyzed as part of a patient’s

study. In our experiments we have used image sizes ranging from 16K x 32K pixels

for a single node to 128K x 128K pixels for 32 nodes. For our experiments, the input

image begins already decompressed in the memory of a single node (or two nodes, if

it would not fit into a single node’s main memory). This input image is tiled and sent

to computational nodes for processing, and a feature vector for each tile of 13 single-

precision floats is returned. The processing requirements are a good match for the

GPU’s many-core architecture and high memory bandwidth; hence, high speedups

can also be seen, as compared to a single-threaded reference CPU implementation

can be obtained.

Our last application is Black-Scholes, from the Nvidia CUDA SDK. It is a stock

market option pricing application which is designed to model the way options are

sold on the market, and to predict when buying and selling these options would

be advantageous. Each option consists of three 32-bit floating point values, and

the output calculated by the application is two 32-bit floating point values, which

represent the “call” and “put” prices of the option. To make this simple calculation

data-intensive, our input dataset includes 227 options per node to calculate. On 32

nodes, this means that there are 4 billion options to process. Options are processed

in tiles. Because the computation is relatively simple, this application has a high

communication to computation ratio. This application is very I/O-bound. Therefore

to provide the maximum disk bandwidth, we partition the input data set over the

local disks of all the nodes involved in the experiment, as part of an untimed setup

phase. Thus, when using 2 or more computational nodes, the input data may be read

149

concurrently from one disk of each of these nodes. The output of the computation is

aggregated on a single node, although not written to disk.

6.6 API and Optimizations

This section briefly discusses the APIs for DataCutter, KAAPI, MR-MPI, and

APC+ and some specific optimizations which are required in each framework to

achieve good runtime application performance. While the basic application-specific

functions are the same, the glue code to establish the task graph, orchestrate the

application’s execution, and setup and tear down the frameworks is quite different.

6.6.1 DataCutter

The DataCutter main() function is the most verbose of the three programming

frameworks, because it is the most explicit. For the best performance, developers

should control where instances of filters are placed and executed, and the exact set of

interconnections of streams in between those filters. When filters are replicable, the

API provides syntactic shortcuts to create “transparent” copies of filters, and place

them on specific nodes.

The main() function instantiates a DCLayout object, adds all of the filters in the

application’s task graph, connects the filters’ endpoints, and executes the application.

DCFilter code, on the other hand, is about as verbose as comparable tasks in the

other frameworks. Filters often implement a while() loop internally, such that they

can process multiple databuffers from upstream filters.

DataCutter’s GPU support entails simply writing a specific DCFilter class imple-

mentation where the GPU kernel is called in place of the CPU function. Cooperative

150

CPU / GPU applications are simple to develop, also, since the setup stage can in-

stantiate GPU-based implementations of filters alongside CPU-based filters.

DataCutter has configurable memory limits, such that applications will not page

to disk. Additionally, DataCutter overlaps the communication of databuffers and

filter computation by using a daemon thread and non-blocking MPI calls. Further,

developers can use knowledge about their application to maximize performance. Com-

putationally intensive applications should only instantiate as many filters per node as

there are computational elements, while data intensive applications should ensure that

only one filter per disk controller is instantiated on one node, to avoid disk-thrashing.

6.6.2 KAAPI

In KAAPI, developers use Athapascan-1 to explicitly describe the shared data

dependencies between tasks. These shared variables can be given explicit read and/or

write access controls, which defines the task graph ordering which will be scheduled

by the KAAPI work-stealing runtime engine.

The main() function in KAAPI programs is quite simple; first it initializes the

runtime system, and calls a special ForkMain() function to tell KAAPI where to

start the first task. Once inside this main task, the real application processing begins,

typically by spawning more tasks. Child tasks are all placed in the same stack as the

thread which created them; other processors only can do useful work by stealing tasks

from a victim processor. When a task is stolen by a remote processor, its parameters

are copied across the network. Because the load balancing is done using point-to-

point stealing operations, one task may be copied multiple times from one machine

to another one. On non-data intensive applications such as state space expansions,

151

the data typically is small, leading to a small network overhead. However, a data

intensive application will see gigabytes of data being copied around without being

processed.

To avoid such wasting of network resources and induced network overhead, our

implementations make use of KAAPI’s remote iterators construct. Remote iterators

are a separate method for accessing remote data as opposed to using Athapascan-

1’s shared variable constructs. In addition to optimizing the network usage, remote

iterators are initialized in a known memory space, for instance the same node where

the application was started, which is convenient to aggregate the output data on a

single node. By using a special Fetch() command, tasks gain access to shared data,

even when running on remote nodes.

We use remote iterators because they cause less data copies, but unfortunately

this breaks Athapascan-1’s method of determining correct ordering of tasks (because

there are no explicit Shared dependencies left). We used SyncGuard constructs to

solve that problem. SyncGuards are a syntactic method for ensuring that all tasks

forked inside a frame of reference are completed before execution of the parent thread

can continue.

While the notion of remote iterators is not general to asynchronous task pro-

gramming paradigms, their use in KAAPI is extremely significant in its effect on the

application execution time. By only requiring data to be copied once a task has actu-

ally begun executing, users can dramatically speed up the section of their applications

which focus on forking tasks (thereby partitioning the data domain or search space),

and not require essentially useless copying of data during this phase.

152

Unlike DataCutter and MR-MPI (discussed in Section 6.6.3), Athapascan-1 and

KAAPI do not allow developers to “pin” a task to an arbitrary node. Therefore, it is

difficult to efficiently read from multiple disks in applications such as Black-Scholes,

since there is no way to know from which node a particular file will be read. Thus,

we can either copy all of the input data files to each of the nodes in the environment

ahead of time, very inefficiently, or use a parallel file-system of some type. In place of

a heavy-weight parallel global file-system, we have used simple sshfs remote directory

mounts.

KAAPI’s GPU support takes the form of a simple if/else statement inside the task.

Developers must determine which threads are allowed to use the GPU themselves,

but once chosen, it is simple to choose the correct path of execution for those threads.

6.6.3 MR-MPI

MR-MPI applications are by far the simplest of the three frameworks. They

are initialized simply by setting up the MPI environment and creating a MR-MPI

MapReduce object. Then the MapReduce primitives can be called. Finally, during

the map and reduce stages of the application’s processing, we simply pass function

pointers to the MR-MPI library’s function calls.

A defining feature of MapReduce frameworks is organizing intermediate data as

a distributed hash table. Therefore we need to define key and value structures which

the MR-MPI engine handles as byte arrays, but this is not especially onerous.

If MR-MPI’s internal Key-Value or Key-MultiValue hash tables ever exceed one

“page” of memory in one MPI process (as given by the memsize setting), then tem-

porary disk files are used, on a per-processor basis. When using more than one MPI

153

process per node (as in system configurations with multi-core processors), the local

disk can become a severe performance bottleneck. Therefore, for applications which

can support such a partitioning and global merge, it makes sense to divide the to-

tal application’s computation into working sets, such that the working set fits into

the memory of the machine. Thankfully, MR-MPI’s memsize setting can be set to

a different value for each MPI process, allowing working set merges to a single node

to take place in-memory also. This is an important optimization to give MR-MPI

applications efficient execution time performance.

Like KAAPI, MR-MPI’s GPU support takes the form of a simple if/else statement

inside the sequential map() or reduce() callback function. While determining which

rank should use the GPU is a task outside MR-MPI’s purview, once this is done,

users can simply use that flag to choose the correct path of execution.

6.6.4 APC+

As alluded to in Section 6.4, the user-level programming API for APC+ is quite

straightforward. Users simply write upstream data sources which produce WorkTiles

with application-specific data attached to them. Processing filters simply need to be

able to understand WorkTiles in the application-specific context, and parse the user

data. Finally, users must provide a function to split the application-specific data for

APC+ to use when it partitions WorkTiles in an abstract manner. Then, one APC+

and one storage filter, and as many processing filters as there are processing cores

need to be instantiated on each node in the DataCutter placement. All of the runtime

orchestration of task execution and data partitioning is handled automatically.

154

6.7 Application Experiments

6.7.1 Experimental Setting

Our experiments were run on Owens, the new GPU cluster in the Department of

Biomedical Informatics at The Ohio State University. For our experiments, we used 32

computational nodes, each with dual Intel Xeon E5520 Quad-core CPUs (with 2-way

Simultaneous Multithreading), 48 GB of memory, and 500 GB of scratch disks. The

nodes are equipped with Nvidia C2050 Fermi GPUs, each with 3 GB of memory, and

are interconnected with 20 Gbps InfiniBand. Our experiments were run on CentOS

with the 2.6.18-194.8.1.el5 Linux kernel, and compiled with GCC 4.1.2 using the -O3

optimization flag. Our GPU code was compiled with CUDA 3.1. While DataCutter

and MR-MPI can use an InfiniBand-aware MPI, such as MVAPICH, KAAPI is not

InfiniBand-aware. Therefore, to provide a meaningful comparison, we have run all of

our DataCutter and MR-MPI experiments using MVAPICH2 1.5 over TCP (TCPoIB)

as well as InfiniBand (IB). Our experimental results show the difference between the

IB and TCPoIB runtimes as an explicit overhead. As a point of reference, for our

cluster, using IB nets 800 MB/s point-to-point bandwidth vs 110 MB/s for TCPoIB.

In all our experiments, we performed a parameter sweep to select the tile size and

thread configuration that lead to the best performance separately for each runtime

system, except for APC+ (since it requires no developer tuning). We tuned each

application for the three remaining runtime systems by choosing the configuration

which gave the best performance for the majority of different numbers of nodes.

Detailed discussions of why a specific tile size and thread configuration are chosen

over a different configuration are out of the scope of this chapter; rather, we will

simply be satisfied that the configurations for each runtime system are as optimized

155

as they can be, and consider the application kernels to be black boxes, except for the

tunable parameters they expose.

Table 6.1 shows the execution times using only one CPU thread and using only

one GPU of all three applications for the tiles sizes which were found to give the

fastest performance, according to our parameter sweep.

Application Tile Size 1 CPU thread GPU Speedup
SAR 128 3,354.1 21.5 156.1

512 53,792.3 182.5 294.7

BIA 512 213.8 8.2 26.0

1024 857.6 22.3 38.4

2048 3,433.6 96.0 35.8

Black-Scholes 64K 19.6 0.8 24.4

128K 34.7 1.4 25.3

Table 6.1: Execution times (in milliseconds) for SAR, BIA, and Black-Scholes for
various tile sizes

The next sections present the results of the experiments for our three applications.

To best show the scalability of each system, our experiments are weak scalability

experiments: we increase the amount of work in commensurate amounts when we

increase the numbers of nodes. The volume of data per node for each application

is given in Section 6.5. To aid in the clarity of the charts, we have broken down

the execution times into several categories. There are five main categories which are

present in the charts of all three applications, PROC, L-IMB, OVER, BOOT, and

TCP. The PROC portion of each bar represents the minimum processing time of

all of the threads, while L-IMB is the load imbalance of the system (calculated by

subtracting the minimum processing time of all of the threads from the maximum).

156

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'" #" $" &" '%" (#" '" #" $" &" '%" (#"

)*+,-*")*+,-*."

!"
#$
%&

'(
)&
*
#)
+,
-)

/001"

0234"

5+67/"

-40*"

Figure 6.8: SAR: CPU-GPU, APC vs APC+

The OVER category is a catch-all category, and includes communication, and other

runtime engine overheads. Finally, BOOT represents the amount of time to boot-

strap the runtime engine itself, including remote process invocation, etc, and TCP

represents the difference in the total runtimes of the TCPoIB and IB experiments for

DataCutter and MR-MPI. Note, therefore, that the breakdown of the overall TCPoIB

execution time into the sub-categories may be different from that of IB. On each chart,

the y-axis gives the runtime of the configuration in seconds, while the x-axis gives the

runtime system used and the number of nodes it ran on.

157

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#" $" &" *" #(" %$" #" $" &" *" #(" %$"

,-./0-" ,-./0-1"

!"
#$
%&

'(
)&
*
#)
+,
-)

2334"

3567"

8.9:2"

073-"

Figure 6.9: BIA: CPU-GPU, APC vs APC+

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

#" $" &" *" #(" %$" #" $" &" *" #(" %$"

,-./0-" ,-./0-1"

!"
#$
%&

'(
)&
*
#)
+,
-)

2334"

3567"

384"

9.:;2"

073-"

:<:4"

Figure 6.10: Black-Scholes: CPU-GPU, APC vs APC+

158

6.7.2 APC and APC+ Comparison

This section briefly compares the performance of APC and APC+ while running

experiments on our three applications over the IB network. Figures 6.8, 6.9, and 6.10

show the CPU-GPU results for APC and APC+ for SAR, BIA, and Black-Scholes,

respectively. Recall that the experiments show weak scalability; linear scaling is

achieved when the execution times are flat, because extra work and extra computa-

tional nodes are provided in equal measure. We have chosen to restrict this compar-

ison to the CPU-GPU results, to avoid belaboring the point: scalability on system

configurations with higher numbers of nodes is poorly affected by using a centralized

work scheduler.

In SAR (Figure 6.8), there is a large initial work area (although with relatively

small input data), and the different processor types have drastically different process-

ing rates types. APC suffers in this instance because while it tries to balance the

load, even a single too-long tile being executed on a single CPU can cause serious

load imbalance. As one can see, APC+’s execution times are nearly flat, showing

near linear scalability up to 32 nodes. Interestingly, APC+ also shows some load

imbalance, although this is a direct side effect of the dramatic GPU speedup; APC+

keeps the CPUs slightly starved, in order to keep one too-long-running task from

setting the overall execution time.

In BIA (Figure 6.9), a large input image starts on one node (or two nodes for

the 32 node experiment), which causes a major bottleneck in the network endpoint,

which is an impediment to effectively distributing the input data to the whole cluster.

Worse, the smallest tile size used in our experiments (32 x 32 pixels) leads to a very

small 3 KB databuffer, which results in poor IB performance. This runtime effect of

159

the network contention is visible both in the overhead category and as a side-effect

in load imbalance. While executing with 16 nodes, a 64K x 128K image is 24 GB,

meaning that it takes over 28 seconds merely to transfer an equal 1/16 portion of the

image to each remote node.

Black-Scholes (Figure 6.10) has distributed input data streaming into the system

from every disk, which can lead to a situation where a centralized controller, respon-

sible for every node in the system, can never increase the databuffer size sufficiently

to reach high-performing tiles. In the case of Black-Scholes, all of the computation

time can be hidden by reading the input data off of the disk, but when the tile size

is too small, the network becomes a major bottleneck, especially for the aggregation

down to one node. As one can see from Figure 6.10, APC+ also has issues with the

one node aggregation on 32 nodes, but as we will see later in this section, this is

simply caused by endpoint contention on the aggregation node.

6.7.3 Synthetic Aperture Radar

Figures 6.11 and 6.12 present the experimental results for the SAR imaging ap-

plication for all four programming frameworks for, respectively, CPU-only and CPU-

GPU configurations. For the CPU-only experiments, APC+ uses CPU 15 threads per

node, because one thread is taken up by the APC+ functions. The remaining frame-

works all use 16 threads. Please note that, the results shown for DC-DD, KAAPI and

MR-MPI use tile size that have been manually tuned to obtain the best performance

at the most scales. DC-DD performs best with tiles of size 128 x 128, while KAAPI

and MR-MPI perform best with 512 x 512 tiles. For the CPU-GPU experiments,

160

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

#" $" &" *" #("%$" #" $" &" *" #("%$" #" $" &" *" #("%$" #" $" &" *" #("%$"

+,-./,0" +,-++" 1../2" 34-3/2"

!"
#$
%&

'(
)&
*
#)
+,
#$
'(

-,
.)

5,/"

6775"

7894"

:-236"

/47,"

Figure 6.11: SAR: CPU-only

!"

#!"

$!!"

$#!"

%!!"

%#!"

$" %" &" '" $(")%" $" %" &" '" $(")%" $" %" &" '" $(")%" $" %" &" '" $(")%"

*+,-.+/" *+,**" 0--.1" 23,2.1"

!"
#$
%&

'(
)&
*
#)
+,
-)

4+."

5664"

6783"

9,125"

.36+"

Figure 6.12: SAR: CPU-GPU

161

APC+ uses 14 CPU threads and the GPU, while the rest of the CPU-GPU configu-

rations for SAR use the GPU and no CPU threads, reflecting the large GPU speedup.

DC-DD, KAAPI and MR-MPI obtain the maximum performance when a tile size of

512 x 512 is selected.

This application is very computationally intensive, and the CPU kernel imple-

mentation is fairly inefficient, accounting for the excellent CPU scalability for APC+,

DC-DD, and KAAPI up to 32 nodes, and for MR-MPI when using pure IB visible on

Figure 6.11. The slowdown for MR-MPI is related to the relatively large image size

formed by the application on 32 nodes. A 32K x 32K complex-valued single precision

image is 8 GB, which takes some time to transfer over the inefficient TCPoIB pro-

tocol. Since this communication is not overlapped at all by MR-MPI, it is visible as

overhead in the TCP category. Each of the frameworks reports some degree of load

imbalance. However, it is always less than the execution time of a single tile.

Our GPU filter implementation for SAR, on the other hand, is quite efficient,

leading to much faster execution times, and regrettably, poor scalability for all of the

frameworks with TCPoIB (which can be seen on Figure 6.12). Notice that APC+

and DC-DD are able to keep up with the increasing computational demand and

scheduling complexity when using IB, however. The large image size on higher node

configurations causes large execution time penalties, in the TCP category for APC+

and DC-DD, and in the OVER category for KAAPI and MR-MPI.

KAAPI is the only framework which shows significant load imbalance in the GPU

case when using more than 4 nodes. This is caused by the requirement to gather the

output image onto a single node before exiting the application. (Recall that the image

is not written to disk, but simply gathered on one node.) The gathering of the output

162

is implemented using remote iterators initialized on the node where the data need to

be gathered. The data transfers involving remote iterators are not overlapped with

communication. Therefore, the node which owns the data executes significantly more

computations than the other ones, leading to a large load imbalance. Unfortunately,

this load imbalance also causes most of the time accounted for in OVER. When a

thread on the node that owns the data no longer has work in its queue, it tries to steal

work from a remote thread. However, the network stack and hardware are congested

by the remote iterator transfer, making the total time of each stealing operation

more than one second on 16 processors. This idles the node that owns the data for

a significant amount of time at each stealing operation. Further, it is important to

notice that KAAPI’s remote iterators can be read-only or read-write but not write-

only. Therefore, to write the output data for each tile, the uninitialized tile data must

be read first, doubling the total amount of data transfer and worsening the network

congestion in Figure 6.12.

Most of the time spent in MR-MPI is accounted for in OVER. This can be de-

composed into two parts, a constant part and a part proportional to the number of

processors. The constant overhead consists of the requirement to simply distribute

the small input data, and the requests to each node for what portion of the output

image they have to calculate. Indeed, these two steps take over 24 seconds to com-

plete. DC-DD and KAAPI allow asynchronous task execution and the processing

can start immediately. However, MR-MPI is synchronous and must wait for all the

data transfer to finish. The variable part comes from the aggregation of the data

163

to one node, which must occur for all three middleware systems. However, the syn-

chronized behavior of MR-MPI forces the communications to be serialized after the

computation, worsening the network contention.

6.7.4 Biomedical Image Analysis

Figures 6.13 and 6.14 present the experimental results for the biomedical image

analysis (BIA) application for, respectively, CPU-only and CPU-GPU configurations.

Again, APC+ uses 15 CPU threads during the CPU-only experiment, and 14 CPU

threads and the GPU during heterogeneous configurations. All the other three frame-

works’ CPU-only experiments are fastest when using 16 threads per node, when run-

ning without the GPU. DC-DD and KAAPI use a 1024 x 1024 tile size, while MR-MPI

use a 512 x 512 tile size. In the mixed CPU-GPU experiments, DC-DD and MR-MPI

are fastest when only using the GPU, while KAAPI is able to make use of 7 CPU

threads as well as the GPU, with a 512 x 512 tile size. DC-DD uses a 2048 x 2048

tile size, while KAAPI and MR-MPI use a 1024 x 1024 tile size.

Unfortunately, unlike the SAR application, none of the runtime systems scale

linearly beyond 4 nodes when using TCPoIB, even on the CPU implementations.

Further, APC+, DC-DD and KAAPI all suffer from an increasing degree of load

imbalance on high numbers of nodes. A bottleneck must account for the loss of

scalability. In this case, it is the network interface contention on the “storage” node

(or storage nodes in the case of 32 nodes), where the input data is resident. Since

there are 16 threads per CPU processing tiles, and 31 nodes in the system making

requests of the network endpoint, at 857 milliseconds per tile, this would require

1820 MB/s network endpoint bandwidth. The cluster has 20 Gbps InfiniBand, which

164

gives an effective bandwidth around 800 MB/s. MR-MPI does not show any load

imbalance: since the work is statically partitioned, all the processors performs the

same number of operations.

However, we see that DC-APC+ is able to scale near linearly using the IB interface

while running with CPU threads only. Unfortunately, the load imbalance gets the

better of it on high numbers of nodes when using a heterogeneous system. Since the

CPU runtimes for even large tiles are relatively small for BIA, a well-tuned Demand-

Driven execution will be hard to beat outright, but APC+ is able to reach nearly the

same performance level, without the laborious tuning step.

The major slowdown of KAAPI is again due to KAAPI’s inability to overlap

communication with computation. All of the latency is visible in the L-IMB execution

time category, and is visible in the OVER time category, while DC-DD does a good

job of overlapping communication with computation thanks to the dataflow paradigm.

The MR-MPI runtime system’s performance is not linearly scaling for a variety

of reasons. First, since MR-MPI cannot overlap communication with computation,

all of the data transfer time is seen directly in the OVER category. When using

32 nodes, our image size is 128K x 128K pixels, with three color channels, leading

to a 48 GB image. Second, to stay within the memory constraints of the node, we

need to use working sets which fit inside the memory of a single MPI process. We

can asymmetrically allocate memory to the MPI processes which share a node, such

that the process responsible for loading and distributing the input data can get the

lion’s share of the data, but MR-MPI allocates 7+ pages of memory (according to

the documentation) for parallel communications, requiring the working set of the

165

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

$" %" '" (" $)"&%" $" %" '" (" $)"&%" $" %" '" (" $)"&%" $" %" '" (" $)"&%"

*+,-.+/" *+,**" 0--.1" 23,2.1"

!"
#$
%&

'(
)&
*
#)
+,
-)

4+."

5664"

6783"

9,125"

.36+"

Figure 6.13: Biomedical Image Analysis: CPU-only

application to be artificially small. Thus any overheads to set up and tear down these

parallel communications are paid more than necessary.

6.7.5 Black-Scholes

Figures 6.15 and 6.16 show the CPU-only and the CPU-GPU results for the Black-

Scholes application, respectively. All of the CPU-only implementations use 8 CPU

threads, and all of the CPU-GPU implementations use 1 GPU thread only, except

for DC-APC+, which uses 7 CPU threads and the GPU. DC-DD’s CPU-only and

KAAPI’s GPU implementations are fastest at most scales with tiles of 128K options,

while the rest of the implementations are fastest at most scales with 64K option tiles.

166

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

$" %" '" (" $)"&%" $" %" '" (" $)"&%" $" %" '" (" $)"&%" $" %" '" (" $)"&%"

*+,-.+/" *+,**" 0--.1" 23,2.1"

!"
#$
%&

'(
)&
*
#)
+,
-)

4+."

5664"

6783"

9,125"

.36+"

Figure 6.14: Biomedical Image Analysis: CPU-GPU

Like many real-world applications, the Black-Scholes application is bound entirely

by disk read bandwidth, because the amount of computation per option is relatively

small. Thus, even though our implementation streams data in tiles to the processing

tasks from the scratch disk of the nodes, there will be some amount of disk access

time which is not overlapped with computation. The INIT time presents this value: it

represents the maximum of all of the time each read task takes to read the options from

disk and store them in memory minus the maximum processing time of a processing

thread. The OUT portion of each bar refers to the non-overlapped time to aggregate

the output data on one node (but not actually written to a file - the application is

already disk-bound, we do not need to belabor the point).

167

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

$" %" '" (" $)"&%" $" %" '" (" $)"&%" $" %" '" (" $)"&%" $" %" '" (" $)"&%"

*+,-.+/" *+,**" 0--.1" 23,2.1"

!"
#$
%&

'(
)&
*
#)
+,
-) 4+."

5664"

6783"

694"

:,125"

.36+"

1;14"

Figure 6.15: Black-Scholes: CPU-only

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

$" %" '" (" $)"&%" $" %" '" (" $)"&%" $" %" '" (" $)"&%" $" %" '" (" $)"&%"

*+,-.+/" *+,**" 0--.1" 23,2.1"

!"
#$
%&

'(
)&
*
#)
+,
-) 4+."

5664"

6783"

694"

:,125"

.36+"

1;14"

Figure 6.16: Black-Scholes: CPU-GPU

168

There are several notable trends in Figures 6.15 and 6.16, which we will discuss

in turn. The most obvious fact is that all of the runtime systems perform terribly

when using TCPoIB. The INIT time for DC-APC+, DC-DD and MR-MPI stays

constant when the number of nodes is increased, meaning that while the size of the

disk-based input data is increased, the disk read bandwidth is also increased, and the

INIT execution time component is not worsened. However, perfect scalability is not

achievable in Black-Scholes, since all the results are gathered on one node, and this

operation is limited by that node’s network bandwidth.

DC-APC+ using IB scales the best, followed by DC-DD. When using IB, DC-

APC+ slows down by a factor of 2.6 when increasing to 32 nodes. DC-DD slows

down by 2.7 times, KAAPI is 11.4 times slower on 32 nodes, and MR-MPI only slows

down by 4.9 times, although it is over twice as slow on one node as DC-APC+. When

using TCPoIB, however, KAAPI scales better, beating DC-DD’s performance on 8,

16, and 32 nodes. While not surprising, efficient use of a high bandwidth network

is important. DC-DD’s Demand-Driven policy induces communication from each

producing filter to each processing filter. Since the data are present on each node,

there are one producing filter per node and eight (in the CPU-only case) or one (in

the GPU-only case) processing filters on each node. Clearly, all to all communications

take place which overstress the network system when using TCPoIB.

The most noticeable difference between KAAPI and the other runtime systems is

the growing INIT time. Indeed, KAAPI is not able to place data input read tasks on

the same node where the data resides; we therefore incur a large latency and disk and

network contention penalty by reading the data across the network through a parallel

file system of any type. The decrease in non-overlapped INIT time beyond 2 nodes

169

is due to there being less disk contention and more aggregate disk bandwidth than

on 2 nodes. KAAPI’s load imbalance is once again due to the lack of communication

and computation overlapping.

MR-MPI’s poor scalability performance is caused by not overlapping communica-

tion and computation, and by MapReduce’s load-balancing technique. On 32 nodes,

while using IB, MR-MPI spends 57.8 seconds communicating input data to the pro-

cessing tasks, and 92.8 seconds gathering the output data to a single node. When

using TCPoIB, MR-MPI spends 302.3 seconds distributing the input data, and 607.0

seconds gathering the output data to a single node. INIT takes more time in MR-

MPI than in DC-DD because of the synchronization of MR-MPI that prevents the

overlapping of reading the files and of their processing. An overhead similar to the

one shown on BIA is present in Black-Scholes as well.

6.7.6 Tunable CCR

Finally, Figure 6.17 shows a strong scalability experiment where we choose a

static system configuration, and vary the relative amounts of communication and

computation. Our tunable CCR application is based on Black-Scholes: the amount

of computation is increased by executing several iterations of the Black-Scholes kernels

for each options. If the number of iterations is set to 1, the tunable CCR application

and Black-Scholes are exactly the same. The chart shows the 16-node CPU speedups

(calculated by dividing each framework’s 16-node time at each iteration point, by the

fastest 1-node execution time for that iteration point) as a function of the number

iterations on the Black-Scholes kernel per option. As such, for low values of number

170

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

!" (!" '!!" '(!" #!!" #(!")!!"

!"
#$
%&

'(
!(
)(
*+
,
-
(!
.!
-
/%
0"
$%
&'

(!
()
(*
+,

-
(1
!

23(45,&%6!7(4!895*:$;*<&9(6!&7,&%!

*+,-.+/"

*+,**"

0--.1"

23,2.1"

Figure 6.17: Tunable CCR Application: 16 nodes, CPU-only

of iterations, the application is heavily data-intensive, and as the number of iterations

increases, the application becomes compute-intensive.

While it appears that there is some super-linear speedup for DC-APC+ and DC-

DD for 75 iterations and above, this is merely a consequence of the additional disk

bandwidth provided the application when running on 16 nodes. The execution time on

16 nodes is never more than 3% faster than the numerically derived best-case execu-

tion time extrapolated from the single-node execution time for the fastest framework.

When the number of iterations is 1, DC-APC+, DC-DD and KAAPI have a low

speedup of 2 due to the long time spent aggregating the results on one node. When

the number of iterations increases, the time spent to aggregate becomes smaller (in

relative terms) and the speedup increases. DC-DD and DC-APC+ achieve linear

171

speedup when the number of iteration is greater than 75. KAAPI scalability does

not increase as well, since it achieves a speedup less than 14 for all of the numbers

of iterations less than 250. We believe KAAPI’s speedup would likely reach 16 if we

had run larger experiments.

MR-MPI does not show great speedup. Its speedup increases when the number

of iterations increases, although even when the kernel of Black-Scholes is executed

250 times per option, the speedup of MR-MPI stays less than 2. This is caused by

several factors. First, by examining Figure 6.15 we see that MR-MPI begins consid-

erably slower on 16 nodes than the fastest framework. When running on TCPoIB,

the MR-MPI 16-node execution time is 470.0 seconds, while DC-APC+ runs in 152.5

seconds. Thus, MR-MPI is at an immediate 3x deficit. Additionally, MR-MPI se-

rializes the reads from disk and the processing of the options. Thus, any increases

in the processing time of the options are immediately visible. The other frameworks

are able to hide the increase in processing time until it exceeds the disk read time, at

which point the overall execution time begins to increase.

6.7.7 Discussion of Experimental Results

Because DataCutter gives the developer great flexibility in the implementation

of the application, it can leverage all of the capabilities of HPC systems to achieve

excellent performance in homogeneous settings. However, the Demand-Driven pol-

icy shows some issues. First, all to all communications decrease network efficiency,

particularly at larger system scales. Further, it is oblivious to the heterogeneity of

the downstream filter which will cause a large load imbalance when accelerators have

particularly efficient filter implementations.

172

KAAPI/Athapascan-1 focuses more on the description of the computation than

on the data it manipulates. While this focus leads to close-to-ideal performance on

a shared memory machine, it also penalizes the performance of distributed data-

intensive applications. For instance, the lack of support for pinning tasks in KAAPI

made the implementation of reading distributed input data difficult on the Black-

Scholes application, leading to poor performance. KAAPI only transfers data during

work-stealing operations or when fetching remote iterators. However, neither of these

two communication modes enables the overlapping of communication and compu-

tation. It leads to poor scalability when the communication times are close to the

computation times such as on the BIA application. These issues could certainly be

solved by a simple modification of the API and middleware.

Writing applications using MR-MPI’s API is quite straightforward, but (by de-

sign) does not allow exact management of the communication. For instance, the

lack of communication and computation overlap induces unnecessary overhead that

leads to bad scalability. Notice that the MapReduce programming model does not

require synchronization for all operations, and specific calls could be implemented

to provide pipelined execution, overlapping communication and computation. These

improvements would certainly lead to much better scalability.

Meanwhile, APC+ provides performance which is close to the best-tuned Demand-

Driven implementation, without the tedious manual tuning step. It provides efficient

use of processors by tuning databuffer size for best processing rate, while still main-

taining good distributed load balance for heterogeneous systems. It provides enhanced

scalability and a simple programming semantic, for applications which fit the targeted

model.

173

To sum up, we find that the following properties must be included in a middle-

ware to perform well on data-intensive applications: Communication and computation

overlapping must be available for a middleware to perform gracefully on application

where the time to transfer the data over the network is close the time spent to pro-

cess them. Providing some method to express affinity between tasks and nodes is

necessary to perform I/O operations efficiently. Controlling the amount of compu-

tation performed by each processing element is crucial in obtain good load balance

on heterogeneous architectures. Finally, all to all communication must be avoided to

optimize the network efficiency.

6.8 Summary

Writing a distributed application for high performance computing systems such

as clusters and the grid is becoming more and more complex. The tremendous num-

ber of parameters involved in their design makes their programming and tuning a

tedious task. Numerous programming models and middleware frameworks have been

proposed to lower the programming complexity, while still achieving good parallel

performance. We compared three programming models and runtime frameworks by

their ease of programming and actual performance through the implementation of

three distributed applications within the simplest class of parallel applications: the

execution of independent, nearly identical tasks. We found that even a manually

tuned application cannot make use of all of the peak performance which is available

in the system, often due to the lack of communication and computation overlapping,

all-to-all communication, localization-oblivious data consumption, and the execution

of long and non-preemptable computations.

174

Dataflow programming frameworks, and DataCutter in particular, provide com-

munication and computation overlapping and enable a localized consumption of data.

We have developed APC+ to remove the a lengthy manual tuning process, by mon-

itoring processor performance and adaptively partitioning the application workarea.

It achieves good load balance through the use of a work-stealing engine, while still

providing efficient network usage by using a dedicated storage layer. We experimen-

tally showed that APC+ is able to meet or best the performance of the well-tuned

Demand-Driven configuration, without any manual tuning process. Further, we also

compare against well-tuned KAAPI and MR-MPI implementations, and show that

APC+ consistently has shorter execution times than those frameworks.

175

Chapter 7: Efficiently Supporting Programming Models with

Adaptive Dataflow

7.1 Introduction

The application model for our adaptive component-based dataflow middleware

presented in Chapters 5 and 6 is expressive and powerful. Unfortunately, this expres-

siveness comes at a cost of increased verbosity, particularly for simple tasks. Thus,

this chapter explores some methods for using our middleware to support alternative

programming models, while still leveraging our high performing adaptive techniques.

In particular, we focus on two specific programming paradigms which allow us to

encapsulate most of the verbosity of the full adaptive technique, and to present a

minimal API. These two programming paradigms are Parallel-For and MapReduce.

These two case studies merely scratch the surface for possibilities of supporting al-

ternative paradigms, but since they are widely used as a simple way to leverage

parallelism in user applications, they represent a logical first foray.

7.2 Parallel-For

OpenMP [27] and Intel’s Threading Building Blocks (TBB) [105] both make use of

the simple Parallel-For loop construct. Parallel-For is a simple semantic programmers

176

can use to denote for loops as eligible for parallelization, for improved execution time

performance on shared-memory systems. Through a procedural construct, parallel-

for is able to glean from the developer what the parallelization requirements are:

which variables should be shared, and which private; how to distribute the loop

iterations, in chunks, or one-by-one; and whether any synchronization is required

between iterations.

7.2.1 Standard Application Programming Interface

Figure 7.1 shows a simple parallel for loop implementation of a vector sum. The

#pragma omp preprocessor directive tells the preprocessor that some OpenMP code

is to follow. It is the use of the private() portion of the directive which partitions the

loop iterations, along with the #pragma omp for directive, since i is the loop index.

#pragma omp parallel default(none) shared(n,x,y,z) private(i)
{

#pragma omp for
for (i=0; i<n; i++)

z[i] = x[i] + y[i];
}

Figure 7.1: Simple OpenMP Parallel-For Example

Figure 7.1 shows the power of OpenMP for concisely representing a developer’s

wish to perform some data-parallel computation. However, there are some drawbacks

to OpenMP’s simple interface.

177

First, the chunking of loop iterations is still a best-effort exercise. Some researchers

have proposed an adaptive loop scheduler which optimizes the number of threads to

use on multi-core nodes with simultaneous multithreading enabled [117]. Unfortu-

nately, while this technique will choose the highest performing configuration, including

what number of threads to use and the which of the dynamic algorithms for choosing

loop iteration chunk sizes, it still does not complete the feedback loop with a focus

on using execution time behavior to intelligently scheduling loop iterations with an

exact load-balance. Thus, we use our dataflow middleware to model the performance

behavior to tune the chunk size and achieve a very small load imbalance.

Further, OpenMP leaves the task of supporting heterogeneity to the developer.

Certainly, developers can rely on the OpenMP thread id and if() statements to control

which thread uses the GPU, but GPUs may operate best with a completely different

scale of loop iterations than CPU cores, due to their different data communication and

kernel invocation overheads. Thus, we also rely on our dataflow middleware’s explicit

support for the heterogeneity GPUs bring to efficiently use modern computational

resources.

7.2.2 Interface Improvements and Runtime Optimizations

Figure 7.2 shows a preliminary API for an adaptive component-based parallel-for

engine. Undoubtedly better compiler tricks can be brought to bear on the API, and

the unfortunate requirement to use a callback function instead of an inline scope can

be improved. Still, the syntax is not overly cumbersome, and indeed, encapsulation of

this type for complex processing functions can be useful for good software engineering

practices.

178

void processing_callback(DCPF * dcpf)
{

int num_iters;
double x;
float y;
ComplexObject p;
dcpr ->unpack_args("idfz", &num_iters , &x, &y, &z);

// <snip application code >
}

int main(int argc , char ** argv)
{

// <snip application code >
// Initialize the parallel for engine
DCPF * dcpr = DCPF:: get_parallel_for_engine ();
// Using a simple function call and var_args , users can
// begin a parallel for loop

int num_iters;
double x;
float y;
ComplexObject p; // must extend DCSerializable
dcpr ->pack_args("idfz", num_iters , x, y, &z);
dcpr ->parallel_for (& procesing_callback);
// <snip application code >

}

Figure 7.2: Homogeneous Adaptive Component-Based Parallel-For

179

Additionally, heterogeneity can be utilized by simply alerting the parallel-for en-

gine that a GPU is available, and is to be used. Figure 7.3 shows a snippet of an

application where a single GPU is to be used, in addition to however many cores the

system exposes. It is important to note that often, GPUs will have dramatically dif-

ferent constant overheads (related to kernel invocation times and data transfer times)

as compared to CPU cores. This is important, because the best-effort systems used

by OpenMP are likely to fail at using GPUs effectively for scheduling parallel-for loop

iterations. Also note that the figure shows ellipses in the get parallel for engine() and

parallel for() calls, meant to show that heterogeneity is not limited to two processor

types.

7.3 MapReduce

Section 6.3.3 discusses the MapReduce programming paradigm in general, and

the MR-MPI middleware in particular. In Section 6.7.7 we discuss some of the short-

comings of MR-MPI. However, we will repeat a brief introduction to the MapReduce

paradigm and discuss its shortcomings here for completeness.

MapReduce is a programming framework which focuses on hiding the complex-

ity of parallel programming from developers. MapReduce runtime systems store all

application-specific data in a hash table which is distributed among the processors

by using application-agnostic primitives. Developers write sequential functions which

operate on portions of the hash table which are located locally. All parallel commu-

nication details are hidden from the user. Thus, by providing a simple interface, even

novice parallel programmers can leverage parallel computational resources.

180

void gpu_processing_callback(DCPF * dcpf)
{

int num_iters;
double x;
float y;
ComplexObject p;
dcpr ->unpack_args("idfz", &num_iters , &x, &y, &p);

// <snip application code >
}

void cpu_processing_callback(DCPF * dcpf)
{

// <snip application code >
}

int main(int argc , char ** argv)
{

// <snip application code >
// Initialize the parallel for engine
DCPF * dcpr = DCPF:: get_parallel_for_engine(int num_gpus ,

GpuType , ...);
// Using a simple function call and var_args , users can
// begin a parallel for loop

int num_iters;
double x;
float y;
ComplexObject p; // must extend DCSerializable
dcpr ->pack_args("idfz", num_iters , x, y, &p);
dcpr ->parallel_for (& cpu_procesing_callback ,

&gpu_processing_callback , ...);
// <snip application code >

}

Figure 7.3: Heterogeneous Adaptive Component-Based Parallel-For

181

7.3.1 Application Programming Interface

Figure 7.4 shows the MR-MPI main function implementing Black-Scholes (see

Chapter 6). The main API documentation fits onto a single page; it is quite simple

to understand and use, even for novice users. The MR-MPI code is exceedingly

simple for a powerful distributed programming framework. It initializes by setting

up the MPI environment and creating an MR-MPI MapReduce object. Then the

MapReduce primitives can be called. Finally, during the map and reduce stages of

the application’s processing, we simply pass function pointers to the MR-MPI library’s

function calls. The calls to aggregate(), clone(), and gather() are calls to manipulate

the hash table, both in terms of distribution over the processing nodes (aggregate()

and gather()), and in terms of simple hash table transformations (clone()) to give the

correct format to the correct function.

However, in Chapter 6 we identified that synchronization seriously damages the

performance of the MR-MPI middleware, particularly on data-intensive applications.

Synchronizing the parallel execution in between each call to map() or or reduce() is

unnecessary in many applications, since typically all of the synchronization can be

implicit in the reorganization of the implicitly held hash table of application-specific

data. Additionally, we find that implementations of MapReduce, such as MR-MPI

rely on static partitioning of work tasks, which is non-ideal in the face of the kind

of heterogeneity GPUs provide. Therefore, we have implemented a subset of the

MapReduce API as a case-study in using our adaptive dataflow middleware to show

that its high performance can be brought to bear on simple programming paradigms,

which hiding the full complexity of general component-based dataflow programming.

182

void init_black_scholes(int itask , MAPREDUCE_NS :: KeyValue *kv ,
void *ptr);

void run_black_scholes(char *key , int keybytes ,
char *multivalue , int nvalues , int *valuebytes ,
MAPREDUCE_NS :: KeyValue *kv , void *ptr)

{
// GPU support works with a simple if() statement: Need to
// put MPI rank , num_gpus per node and processes_per_node
// into global variables
if (rank % procsses_per_node < num_gpus) {

// run GPU code
} else {

// run CPU code
}

}

void output_black_scholes(char *key , int keybytes ,
char *multivalue , int nvalues , int *valuebytes ,
MAPREDUCE_NS :: KeyValue *kv , void *ptr);

int main(int argc , char ** argv)
{
int rank;
MPI_Init (&argc , &argv);
MPI_Comm_rank(MPI_COMM_WORLD , &rank);
MapReduce * mr = new MapReduce(MPI_COMM_WORLD);

mr->map(master_file , &init_black_scholes , &options_per_file);
mr->aggregate ();
mr->clone ();
mr->reduce (& run_black_scholes , NULL);
mr->gather (1);
mr->clone ();
mr->reduce (& output_black_scholes , argv [2]);

MPI_Finalize ();
return 0;

}

Figure 7.4: Black-Scholes MR-MPI main function

183

7.3.2 Interface Improvements and Runtime Optimizations

Consider the classic MapReduce “Hello World” example, Wordcount, shown in

Figure 7.5. Conceptually, the application is quite simple, and the MapReduce pro-

gramming API keeps the application simple.

Figure 7.5: MapReduce Wordcount Application Layout

Figure 7.6 shows our implementation of MapReduce using our adaptive dataflow

middleware, called DataCutter MapReduce (DCMR). At the highest level, a DCMR

control filter manages the execution of the overall application. DCMR acts as the

upstream data source for APC, and as such it has a great deal of control over when

work is available to be scheduled.

Because the DataCutter layout will always be the same (except for transparent

copies on multiple nodes, which is straightforward), the user of DCMR no longer

needs to provide a lengthy setup function, or indeed, to know anything about how

the DataCutter MapReduce, or dataflow programs work in general. With a simple

API, consisting of one callback function from the DCMR controller, users schedule

their tasks. By using a task queue instead of blocking task calls, DCMR can schedule

184

Figure 7.6: DataCutter MapReduce

185

the events in the queue with more freedom, allowing task and pipeline parallelism,

both important keys to attaining high performance on distributed architectures.

Figure 7.7 shows the DCMR API setup function. A handle to a DCMR object is

passed into the function, such that users can register MRCommands with a call to

add mr command(). MRComands are an encapsulation of a map-reduce task, com-

plete with the type of task Map or Reduce, the allowed parallelism Dist, OnePerNode,

or One, and the callback function, also provided by the user. Dist means that full

pipeline and task parallelism is allowed, while OnePerNode and One restrict the al-

lowed task parallelism to one task running per node (possibly for disk access), or one

total (for tasks such as writing to disk at the end of a full reduction of the results).

Figures 7.8, 7.9, and 7.10 show the map and reduce function callbacks which

together implement the WordCount application shown in Figure 7.5.

// Controller setup callback function
void setup_dcmr_controller(DCMR * dcmr)
{

dcmr ->add_mr_command(MRCommand(Map , OnePerNode , &source);
dcmr ->add_mr_command(MRCommand(Map , Dist , &count);
dcmr ->add_mr_command(MRCommand(Reduce , OnePerNode ,

&reduce_count));
dcmr ->add_mr_command(MRCommand(Reduce , One , &sink));

}

Figure 7.7: DataCutter MapReduce Application Programming Interface: Setup

186

// source function , to create lists of words from
// the files on disk
void source(DCMR * dcmr , WorkTile * tile);
{

const char * str = (const char *) tile ->user_data;
vector <string > files = dcmpi_file_lines_to_vector(str);

long num_tiles = 0;
ListOfWords l;
for (int fx = 0; fx < files.size (); fx++) {

ifstream in(files[fx].c_str(), ios::in);
while (in.good() && !in.eof()) {

string s;
in >> s;

l.add(s);
if (l.size() > THRESHOLD) {

WorkTile * out_tile = new WorkTile;
out_tile ->user_data = l;
dcmr ->add("count", l);
l.clear ();

}
}

}
if(l.size() > 0) {

WorkTile * out_tile = new WorkTile;
out_tile ->user_data = l;
dcmr ->add("count", l);
l.clear ();

}
}

Figure 7.8: DataCutter MapReduce Application Programming Interface: Source

187

// count function , to change a list of words to
// partial results of string , count pairs
void count(DCMR * dcmr , WorkTile * tile);
{

ListOfWords * l = (ListOfWords *) tile ->user_data;

CountedWords wordmap;
string s;
for (list <char *>:: iterator it = l.words.begin ();

it != l.words.end (); it++)
{

s.assign (*it);
if (wordmap.words.count(s) == 0)

wordmap.words[s] = 1;
else

wordmap.words[s]++;
}
WorkTile * out_tile = new WorkTile;
out_tile ->user_data = wordmap;

dcmr ->add("reduce_count", out_tile);
}

Figure 7.9: DataCutter MapReduce Application Programming Interface: Count
Words

188

// reduce_count function , to generate final <string , count >
// pairs
void reduce_count(DCMR * dcmr , WorkTile * tile)
{

// Get the num_maps out of the user_data in the WorkTile
// <snip >

for (int i = 0; i < num_maps; i++) {
CountedWords counted_words;
buffer ->unpack("z", &counted_words);

// Iterate over the local counted_words map , and insert
// into the final wordmap map
for (map <string , unsigned int >:: iterator it =

counted_words.words.begin ();
it != counted_words.words.end (); it++) {

string s = it ->first;
unsigned int num = it->second;

if (wordmap.words.count(s) == 0)
wordmap.words[s] = num;

else
wordmap.words[s] += num;

}
}
// Insert the final word -count map into a WorkTile , and
// add that to the DCMR object
WorkTile * out_tile = new WorkTile;
out_tile ->user_data = wordmap;
dcmr ->add("sink", out_tile);

}

Figure 7.10: DataCutter MapReduce Application Programming Interface: Reduce
Count

189

7.4 Preliminary Experimental Results

Our experiments were run on the Owens cluster at the Department of Biomedical

Informatics at The Ohio State University. For our experiments, we used one compu-

tational node with dual Intel Xeon E5520 Quad-core CPUs (with 2-way Simultaneous

Multithreading), 48 GB of memory, and 500 GB of scratch disk space. Our exper-

iments were run on CentOS with the 2.6.18-194.8.1.el5 Linux kernel, and compiled

with GCC 4.1.2 using the -O3 optimization flag.

To evaluate the performance of our adaptive parallel-for engine, we will use a

simple vector addition mini-application, which performs the vector addition �z = �x+�y

on single-precision floating-point numbers in a loop. This is a simple computation,

so we will perform the function on vectors of size 220 and greater. For comparison,

we have also implemented the mini-application in OpenMP (OMP-PF), as shown in

Figure 7.1.

Figure 7.11 shows the performance of the vector addition application. This ex-

periment shows the performance of our adaptive solution (DC-PF in the chart) and

of the OpenMP solution (OMP-PF in the chart), when increasing the size of the

vectors. Both axes are in logarithmic scale, since we increase the number of loop it-

erations by 2x for each new data point. The chart shows that the performance of our

adaptive solution is roughly 2x slower than OpenMP until about 512 million vector

additions. Beyond this point, a well-tuned OpenMP implementation is no faster than

our adaptive solution. Part of the slow-down is related to our adaptive technique’s

bootstrap initialization, where it models the application on the processors at runtime

to determine the best chunk size to use. In our experiments, we performed a manual

190

search to determine the best chunk size for OpenMP’s dynamic scheduler to be 220

loop iterations.

!"!#$

!"#!$

#"!!$

#!"!!$

#$ #!$ #!!$ #!!!$ #!!!!$

!"
#$
%&

'(
)&
*
#)
)+,
-)

./0#)'1)2#$3'4,)+5)6768-)

%&'()$

*+('()$,-./012#+3$

Figure 7.11: DataCutter Parallel-For Vector Addition Single Node Performance

To evaluate the performance of our adaptive MapReduce framework, we have

implemented the simple word count shown in Section 7.3.2. As a point of comparison,

we have implemented the same application in MR-MPI, a MapReduce implementation

on top of MPI, which is presented in Section 6.3.3. Figure 7.12 shows the strong

scalability results of our DCMR application when counting the words in 230 MB of

text. The chart only shows application results for a single node. However, this will

be the most challenging situation, since MR-MPI’s distributed performance has been

shown to suffer from synchronization overheads in section 6.7.

While it is clear from the chart that this application’s performance is limited by

the disk bandwidth available on one node (there is no speedup beyond 4 nodes), our

191

!"

#"

$"

%"

&"

'!"

'#"

'$"

'" #" $" %" &" '!" '#" '$" '%"

!"
#$
%&

'(
)&
*
#)
)+,
-)

.%*/#0)'1)234)560#78,)

()*+"

+,-."

Figure 7.12: DataCutter MapReduce WordCount Single Node Performance

adaptive solution (DCMR in the chart) is able to beat an optimized solution based

on MR-MPI. The average performance increase (for numbers of threads greater than

1) is 6.2%.

When using a single thread, the execution time of DCMR is worse than that

of MR-MPI by 1.5%. Because only one processing thread is active, DCMR is not

able to overlap any of the processing of the successive Map tasks. Further, there is

an overhead to DCMR in terms of bootstrapping the adaptive runtime engine. On

numbers of threads greater than two, data and task parallelism is leveraged, and the

runtime system overhead is able to be better amortized and hidden. MR-MPI has a

slight 1.1% increase in runtime when moving from one thread to two threads. This

is caused by MR-MPI’s synchronization, and its inability to overlap the shuffling of

the implicitly-held hashmap and useful computation. The level of data parallelism

available to the system when using two threads is insufficient to amortize this increase

192

in overhead. However, when using more threads, MR-MPI is able to beat its single

thread execution time.

7.5 Summary

This chapter shows the flexibility of our adaptive dataflow middleware in terms

of supporting alternative programming paradigms. We show that we are able to

support competitively simple application programming interfaces while maintaining

high performance.

The Parallel-For programming interface we develop for our adaptive application

tuning and load balancing technique is flexible and expressive, and includes support

for heterogeneity. We show its performance is competitive with a well-tuned OpenMP

implementation, even for kernels which have very little computation.

The MapReduce programming interface we develop with our adaptive technique

is able to beat the fastest MapReduce implementation we have found on a classic

MapReduce application, counting frequent words in a corpus of text, by 6%, on

average.

193

Chapter 8: Conclusions and Future Work

This dissertation presented research into high-performance component-based da-

taflow applications and middleware to support their development. Part I focused on

ad-hoc approaches to application development for heterogeneous computational re-

sources, using two real-world scientific applications as case-studies, biomedical image

analysis and synthetic aperture radar image formation. Part II focused on effectively

using emerging accelerator architectures in a component-based dataflow middleware

framework, both by implementing a fine-grained version of the middleware for hetero-

geneous supercomputer systems-on-a-chip such as the Cell Broadband Engine, and

by introducing the notion of autotuning runtime performance via feedback and inte-

grated load balance. We then presented techniques for efficiently supporting popular,

simple programming paradigms such as Parallel-For and MapReduce.

The overarching intent of this research has been to ease the developer’s task of

implementing high-performance scientific applications in the challenging domain of

hierarchical, heterogeneous, distributed supercomputers. In particular, domain ex-

pert scientists are unlikely to be well-versed in the myriad skills required to efficiently

leverage complex modern supercomputer architectures, although they are often the

very researchers for whom these massive systems are constructed. Modern 100,000+

194

core supercomputers are designed solely to run important, enormous simulations of

models of real-world phenomena.

Clearly there is promise to the idea of fine-grained filter-stream programming on

modern multicore processors. The work completed with DataCutter-Lite (DCL) rep-

resents a solid first step towards the future goals of programming libraries meant to

provide a robust component-based dataflow framework for programming large super-

computers comprised of duplicated nodes with multiple multicore processors. Future

work in this area will be in multiple directions. First, the CBE-specific implementa-

tion presented in this chapter will be used as a test-bed for further optimizations.

The next set of goals will be implementing DCL for more traditional multicore

microprocessors. This will involve work into minimizing the overheads involved at

every level of the software stack. However, by paying careful attention to these

overheads - as well as processor traits such as cache hierarchy behavior and size - we

intend to create a runtime engine and programming library competitive other options.

In parallel with both the CBE-specific DCL work and the more traditional mul-

ticore microprocessor version, work will continue to integrate DCL into DataCutter

proper. This will allow a seamless application development experience, from coarse-

grained dataflow at the grid or cluster level to fine-grained dataflow at the node level.

Further end-to-end application optimizations would then be possible, since the lay-

out of the entire application’s filters will be known a priori. The filter stages can be

appropriately sized and optimally placed for maximum application bandwidth at all

granularities of dataflow.

The most long-term goals associated with DCL involve the development of algo-

rithms to automate the creation of transparent filters for increased bandwidth, along

195

with the placement of the instantiated filters onto physical resources. These deci-

sions, along with the scheduling of the transmission of data buffers and the tasks to

compute can be automated, alleviate the stress placed on the developer to optimize

these application characteristics through trial and error.

In terms of future work on coarse-grained adaptive dataflow middleware, our al-

gorithms need to target more irregular applications, such as sparse matrix-vector

multiplication, string search, iterative solvers, data-mining, or applications where the

automatic partitioning step has less of a direct effect on databuffer processing times.

Additionally, the scalability of our algorithm needs to be increased by designing a

hierarchical load balancing system, which will improve scalability on systems with

tens or hundreds of thousands of processing cores. We envision this research as be-

ing the first step towards a dataflow runtime system capable of optimally mapping,

scheduling, and tuning general, complex dataflow applications for large heterogeneous

systems. We believe an adaptive tuning framework such as the one presented here

will be instrumental in designing such a system. Additionally, we believe our system

will be able to support myriad application programming interfaces, such that we can

provide middleware which meets the needs of a large variety of scientific application

developers.

The degree of performance being designed into modern HPC resources and the in-

creasing degree of complexity involved with programming them to perform efficiently

means that even expert developers are hard-pressed to make complex applications

run well on the wide variety of systems. Adaptive, dynamic solutions are of vital

importance to ensuring that research scientists in a number of important fields are

able to meet their application’s goals.

196

Bibliography

[1] The ABACUS project. http://www.cs.cmu.edu/∼amiri/abacus.html.

[2] M. Älind, M. V. Eriksson, and C. W. Kessler. BlockLib: a skeleton library
for cell broadband engine. In IWMSE ’08: Proceedings of the 1st international
workshop on Multicore software engineering, pages 7–14, New York, NY, USA,
2008. ACM.

[3] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler, J. M. Hellerstein,
D. Patterson, and K. Yelick. Cluster i/o with river: making the fast case
common. In IOPADS ’99: Proceedings of the sixth workshop on I/O in parallel
and distributed systems, pages 10–22, New York, NY, USA, 1999. ACM Press.

[4] K. Asanovic, R. Bodik, B. Christopher, C. Joseph, J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick. The Landscape of Parallel Computing Research: A View from
Berkeley. Technical report, University of California at Berkeley, 2006.

[5] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A Unified
Platform for Task Scheduling on Heterogeneous Multicore Architectures. In
Euro-Par ’09: Proceedings of the 15th International Euro-Par Conference on
Parallel Processing, pages 863–874, 2009.

[6] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S. Quintana-
Ort́ı. An Extension of the StarSs Programming Model for Platforms with Mul-
tiple GPUs. In Euro-Par ’09: Proceedings of the 15th International Euro-Par
Conference on Parallel Processing, pages 851–862, 2009.

[7] The BALE cluster at the ohio supercomputer center.
http://www.osc.edu/supercomputing/hardware.

[8] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and
J. C. Sancho. Entering the petaflop era: the architecture and performance
of roadrunner. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pages 1–11, Piscataway, NJ, USA, 2008. IEEE Press.

197

[9] P. Bellens, J. M. Pérez, R. M. Badia, and J. Labarta. CellSs: a program-
ming model for the Cell BE architecture. In Proceedings of the ACM/IEEE
Conference on Supercomputing (SC10), page 86, 2006.

[10] M. Bender and C. Phillips. Scheduling DAGs on Asynchronous Processors. In
Proceedings of the Symposium on Parallelism in Algorithms and Architectures
(SPAA 2007), 2007.

[11] M. A. Bender and M. O. Rabin. Scheduling cilk multithreaded parallel pro-
grams on processors of different speeds. In Proceedings of the Symposium on
Parallelism in Algorithms and Architectures (SPAA 2000), pages 13–21, 2000.

[12] X. Besseron, C. Laferriére, D. Traoré, and T. Gautier. X-kaapi : Une nouvelle
implémentation extrême du vol de travail pour des algorithmes à grain fin. In
19èmes Rencontres Francophones Du Parallélisme (RenPar’19), Sept. 2009.

[13] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and J. Saltz.
Distributed processing of very large datasets with DataCutter. Parallel Com-
puting, 27(11):1457–1478, Oct. 2001.

[14] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: char-
acterization and architectural implications. In Proceedings of the 17th interna-
tional conference on Parallel architectures and compilation techniques, PACT
’08, pages 72–81, New York, NY, USA, 2008. ACM.

[15] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, and T. Lawrence.
Parallel programming with polaris. Computer, 29(12):78–82, Dec 1996.

[16] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
and Y. Zhou. Cilk: an efficient multithreaded runtime system. SIGPLAN
Notices, 30(8):207–216, 1995.

[17] R. D. Blumofe and P. A. Lisiecki. Adaptive and reliable parallel computing on
networks of workstations. In Proceedings of the annual conference on USENIX
Annual Technical Conference, 1997.

[18] L. Brakmo and L. Peterson. Tcp vegas: end to end congestion avoidance
on a global internet. Selected Areas in Communications, IEEE Journal on,
13(8):1465 –1480, oct 1995.

[19] Brook+. http://ati.amd.com/technology/streamcomputing/AMD-
Brookplus.pdf.

[20] B. B. Cambazoglu, O. Sertel, J. Kong, J. Saltz, M. N. Gurcan, and U. V.
Catalyurek. Efficient processing of pathological images using the grid:

198

Computer-aided prognosis of neuroblastoma. In Proceedings of the Interna-
tional Workshop on Challenges of Large Applications in Distributed Environ-
ments (CLADE 07), 2007.

[21] The Cg language. Home page maintained by Nvidia.
http://developer.nvidia.com/page/cg main.html.

[22] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability and
the Chapel Language. International Journal of High Performance Computing
Applications, 21(3):291–312, 2007.

[23] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Heller-
stein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah.
TelegraphCQ: continuous dataflow processing. In Proceedings of the ACM In-
ternational conference on Management of data (SIGMOD ’03), pages 668–668,
2003.

[24] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar. X10: an object-oriented approach to non-
uniform cluster computing. In OOPSLA ’05: Proceedings of conference on
Object-oriented programming, systems, languages, and applications, pages 519–
538, 2005.

[25] C. Chen, J. Chame, and M. Hall. CHiLL: A Framework for Composing High-
Level Loop Transformations. Technical report, University of Southern Califor-
nia, 2008.

[26] CUDA. Home page maintained by Nvidia.
http://developer.nvidia.com/object/cuda.html.

[27] L. Dagum and R. Menon. Openmp: an industry standard api for shared-
memory programming. Computational Science and Engineering, IEEE, 5(1):46–
55, Jan-Mar 1998.

[28] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,
V. Tipparaju, and J. S. Vetter. The Scalable Heterogeneous Computing (SHOC)
benchmark suite. In GPGPU ’10: Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, pages 63–74, 2010.

[29] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures. In Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC ’08, pages 4:1–4:12, Piscataway, NJ, USA,
2008. IEEE Press.

199

[30] L. Davis, S. Johns, and J. Aggarwal. Texture analysis using using generalized
co-occurrence matrices. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 3:251–259, 1979.

[31] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large
clusters. In OSDI’04: Proceedings of the conference on Symposium on Operating
Systems Design & Implementation, 2004.

[32] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, January 2008.

[33] J. B. Dennis. Data flow supercomputers. Computer, 13(11):48–56, 1980.

[34] G. F. Diamos and S. Yalamanchili. Harmony: an execution model and runtime
for heterogeneous many core systems. In HPDC ’08: Proceedings of the 17th in-
ternational symposium on High performance distributed computing, pages 197–
200, 2008.

[35] E. D. Dolan and J. J. Moré. Benchmarking optimization software with perfor-
mance profiles. Math. Prog., 91(2):201–213, 2002.

[36] D. L. Eager and J. Jahorjan. Chores: enhanced run-time support for shared-
memory parallel computing. ACM Transactions on Computer Systems, 11:1–32,
February 1993.

[37] A. N. Esgiar, R. N. G. Naguib, B. S. Sharif, M. K. Bennet, and A. Murray. Mi-
croscopic image analysis for quantitative measurement and feature identification
of normal and cancerous colonic mucosa. IEEE Transactions on Information
Technology in Biomedicine, 2:197–203, 1998.

[38] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park,
M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia: program-
ming the memory hierarchy. In SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, page 83, New York, NY, USA, 2006. ACM.

[39] M. Fatica, D. Luebke, I. Buck, D. Owens, M. Harris, J. Stone, C. Phillips, and
D. B. CUDA tutorial at supercomputing 2007, November 2007.

[40] R. Ferreira, W. Meira Jr., D. Guedes, L. Drummond, B. Coutinho, G. Teodoro,
T. Tavares, R. Araujo, and G. Ferreira. Anthill:a scalable run-time environment
for data mining applications. In Symposium on Computer Architecture and
High-Performance Computing (SBAC-PAD), 2005.

[41] Amd stream computing. http://ati.amd.com/technology/streamcomputing/ in-
dex.html.

200

[42] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Pro-
ceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program Genera-
tion, Optimization, and Platform Adaptation”.

[43] F. Galilee, G. Cavalheiro, J.-L. Roch, and M. Doreille. Athapascan-1: On-
line building data flow graph in a parallel language. In Proceedings of Parallel
Architectures and Compilation Techniques, pages 88–95, Oct. 1998.

[44] M. Gallet, Y. Robert, and F. Vivien. Divisible Load Scheduling. In Y. Robert
and F. Vivien, editors, Introduction to Scheduling. CRC Press, 2009.

[45] T. Gautier, X. Besseron, and L. Pigeon. KAAPI: A thread scheduling runtime
system for data flow computations on cluster of multi-processors. In PASCO ’07:
Proceedings of the international workshop on Parallel symbolic computation,
pages 15–23, 2007.

[46] A. Ghatpande, H. Nakazato, H. Watanabe, and O. Beaumont. Divisible load
scheduling with result collection on heterogeneous systems. In IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2008), pages 1
–8, 14-18 2008.

[47] D. Göddeke and R. Strzodka. Cyclic reduction tridiagonal solvers on GPUs
applied to mixed precision multigrid. IEEE Transactions on Parallel and Dis-
tributed Systems, PP(99), Mar. 2010.

[48] L. A. Gorham, U. K. Majumder, P. Buxa, M. J. Backues, and A. C. Lindgren.
Implementation and analysis of a fast backprojection algorithm. In Society
of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume
6237 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, June 2006.

[49] GPGPU. General-purpose computation using graphics hardware.
http://www.gpgpu.org.

[50] M. Gschwind. Chip multiprocessing and the cell broadband engine. In CF ’06:
Proceedings of the 3rd conference on Computing frontiers, pages 1–8, New York,
NY, USA, 2006. ACM.

[51] S. Guha, S. Krisnan, and S. Venkatasubramanian. Data visualization and min-
ing using the gpu. In Data Visualization and Mining Using the GPU, Tutorial at
11th ACM International Conference on Knowledge Discovery and Data Mining
(KDD 2005), 2005.

[52] M. Gurcan, J. Kong, O. Sertel, B. Cambazoglu, J. Saltz, and U. Catalyurek.
Computerized pathological image analysis for neuroblastoma prognosis. In 2007
AMIA Annual Symposium, 2007.

201

[53] M. Hadwiger, C. Langer, H. Scharsach, and K. Buhler. State of the art re-
port on gpu-based segmentation. Technical Report TR-VRVIS-2004-17, VRVis
Research Center, Vienna, Austria, 2004.

[54] T. D. R. Hartley and U. V. Catalyurek. A component-based framework for
the cell broadband engine. In HCW ’09: Proceedings of the Heterogeneity in
Computing Workshop at IPDPS, 2009.

[55] T. D. R. Hartley, Ü. V. Çatalyürek, A. Ruiz, F. Igual, R. Mayo, and M. Ujaldon.
Biomedical image analysis on a cooperative cluster of GPUs and multicores. In
ICS’08, Proceedings of the 22nd Annual International Conference on Supercom-
puting, pages 15–25, 2008.

[56] T. D. R. Hartley, A. R. Fasih, C. A. Berdanier, F. Ozguner, and U. V.
Catalyurek. Investigating the use of GPU-accelerated nodes for SAR image
formation. In Proceedings of the International Conference on Cluster Com-
puting, Workshop on Parallel Programming on Accelerator Clusters (PPAC),
2009.

[57] T. D. R. Hartley, E. Saule, and U. V. Catalyurek. Automatic dataflow applica-
tion tuning for heterogeneous systems. In Proceedings of The 17th International
Conference on High Performance Computing (HiPC 2010), 2010.

[58] S. Huang, A. Hormati, D. Bacon, and R. Rabbah. Liquid metal: Object-
oriented programming across the hardware/software boundary. In J. Vitek,
editor, ECOOP 2008 Object-Oriented Programming, volume 5142 of Lecture
Notes in Computer Science, pages 76–103. Springer Berlin / Heidelberg, 2008.

[59] G. C. Hunt and M. L. Scott. The Coign Automatic distributed partitioning
system. In OSDI ’99: Proceedings of the symposium on Operating Systems
Design and Implementation, pages 187–200, 1999.

[60] IBM. Accelerated Library Framework. http://www-01.ibm.com/chips/techlib/
techlib.nsf/techdocs/41838EDB5A15CCCD002573530063D465.

[61] IEEE. Threads extension for portable operating systems (draft 6), february
1992. p1003.4a/d6.

[62] C. Isert and K. Schwan. ACDS: Adapting Computational Data Streams for
High Performance. In IEE International Parallel and Distributed Processing
Symposium (IPDPS 2000), pages 641–646, May 2000.

[63] C. Jakowatz, D. Wahl, P. Eichel, and D. Ghiglia. Spotlight-Mode Synthetic
Aperture Radar: A Signal Processing Approach. Springer, New York, 1996.

202

[64] L. V. Kale and S. Krishnan. CHARM++: a portable concurrent object oriented
system based on C++. In OOPSLA ’93: Proceedings of the eighth annual con-
ference on Object-oriented programming systems, languages, and applications,
pages 91–108, 1993.

[65] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning frame-
work for parallel multicore stencil computations. In Proceedings of the IEEE
International Parallel Distributed Processing Sypmosium (IPDPS 2010), pages
1 –12, april 2010.

[66] T. Karcher, C. Schaefer, and V. Pankratius. Auto-tuning support for many-
core applications: perspectives for operating systems and compilers. SIGOPS
Operating System Review, 43:96–97, April 2009.

[67] T. Katagiri, K. Kise, H. Honda, and T. Yuba. Fiber: A generalized frame-
work for auto-tuning software. In A. Veidenbaum, K. Joe, H. Amano, and
H. Aiso, editors, High Performance Computing, volume 2858 of Lecture Notes
in Computer Science, pages 146–159. Springer Berlin / Heidelberg, 2003.

[68] T. Katagiri, K. Kise, H. Honda, and T. Yuba. Effect of auto-tuning with user’s
knowledge for numerical software. In Proceedings of the 1st Conference on
Computing Frontiers, CF ’04, pages 12–25, New York, NY, USA, 2004. ACM.

[69] K. J. Khouzani and H. S. Zadeh. Multiwavelet grading of pathological images of
prostate. IEEE Transactions on Biomedical Engineering, 50(6):697–704, 2003.

[70] J. Kong, H. Shimada, K. Boyer, J. Saltz, and M. Gurcan. Image analysis for
automated assessment of grade of neuroblastic differentiation. In International
Symposium on Biomedical Imaging (IEEE ISBI07), 2007.

[71] D. M. Kunzman, G. Zheng, E. J. Bohm, J. C. Phillips, and L. V. Kalé. Poster
reception - Charm++ simplifies coding for the cell processor. In SC, 2006.

[72] T. Kurc, F. Lee, G. Agrawal, U. Catalyurek, R. Ferreira, and J. Saltz. Opti-
mizing reduction computations in a distributed environment. In ACM/IEEE
SC2003, Phoenix, AZ, November 2003.

[73] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. De-
bunking the 100X GPU vs. CPU myth: an evaluation of throughput computing
on CPU and GPU. In Proceedings of the 37th annual international symposium
on Computer architecture (ISCA), pages 451–460, 2010.

[74] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. Merge: a program-
ming model for heterogeneous multi-core systems. SIGPLAN Not., 43(3):287–
296, 2008.

203

[75] C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting parallelism on heteroge-
neous multiprocessors with adaptive mapping. In 42nd International Sym. on
Microarchitecture (MICRO), 2009.

[76] H. A. Mandviwala, U. Ramachandran, and K. Knobe. Capsules: Expressing
composable computations in a parallel programming model. In LCPC, pages
276–291, 2007.

[77] The Message Passing Interface (MPI).

[78] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani. MPI microtask
for programming the Cell Broadband Engine processor. IBM Syst. J., 45(1):85–
102, 2006.

[79] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case
for a single-chip multiprocessor. SIGOPS Oper. Syst. Rev., 30(5):2–11, 1996.

[80] OpenCL. http://www.khronos.org/opencl/.

[81] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn,
and T. J. Purcell. A survey of general-purpose computation on graphics hard-
ware. Journal of Computer Graphics Forum, 26:21–51, 2007.

[82] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn,
and T. J. Purcell. A survey of general-purpose computation on graphics hard-
ware. Journal of Computer Graphics Forum, 26:21–51, 2007.

[83] S. Pakin. Receiver-initiated message passing over RDMA networks. In IPDPS,
pages 1–12, 2008.

[84] G. Paschos. Perceptually uniform color spaces for color texture analysis: An em-
pirical evaluation. IEEE Transactions on Image Processing, 10:932–937, 2001.

[85] S. Petushi, F. U. Garcia, M. Habe, C. Katsinis, and A. Tozeren. Large-scale
computations on histology images reveal grade-differentiating parameters for
breast cancer. BMC Medical Imaging, 6(14), 2006.

[86] S. Petushi, C. Katsinis, C. Coward, F. Garcia, and A. Tozeren. Automated
identification of microstructures on histology slides. In IEEE International
Symposium on Biomedical Imaging (ISBI’04), 2004.

[87] J. Pjeivac-Grbovi, G. Bosilca, G. Fagg, T. Angskun, and J. Dongarra. Deci-
sion trees and mpi collective algorithm selection problem. In A.-M. Kermarrec,
L. Boug, and T. Priol, editors, Euro-Par 2007 Parallel Processing, volume 4641
of Lecture Notes in Computer Science, pages 107–117. Springer Berlin / Hei-
delberg, 2007.

204

[88] S. J. Plimpton and K. D. Devine. Mapreduce in MPI for large-scale graph
algorithms. (to appear in a special issue of) Parallel Computing, 2011.

[89] V. Podlozhnyuk. Histogram calculation in CUDA, 2007.

[90] M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. Johnson, and N. Rizzolo.
Spiral: Code generation for dsp transforms. Proceedings of the IEEE, 93(2):232
–275, Feb. 2005.

[91] S. Ray. On a theoretical property of the bhattacharyya coefficient as a feature
evaluation criterion. Pattern Recognition Letters, pages 315–319, 1989.

[92] A. Ruiz, O. Sertel, M. Ujaldón, U. Catalyurek, J. Saltz, and M. Gurcan.
Pathological image analysis using the gpu: Stroma classification for neuroblas-
toma. In IEEE International Conference on BioInformatics and BioMedicine
(BIBM’07), November, 2007.

[93] A. Ruiz, O. Sertel, M. Ujaldon, U. Catalyurek, J. Saltz, and M. N. Gurcan.
Stroma classification for neuroblastoma on graphics processors. Journal of In-
ternational Journal of Data Mining and Bioinformatics, 3:280–298, June 2009.

[94] C. Schaefer, V. Pankratius, and W. Tichy. Atune-il: An instrumentation lan-
guage for auto-tuning parallel applications. In H. Sips, D. Epema, and H.-X.
Lin, editors, Euro-Par 2009 Parallel Processing, volume 5704 of Lecture Notes
in Computer Science, pages 9–20. Springer Berlin / Heidelberg, 2009.

[95] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger. Fast GPU-based CT re-
construction using the Common Unified Device Architecture (CUDA). Nuclear
Science Symposium Conference Record, 2007. NSS ’07. IEEE, 6:4464–4466, 26
2007-Nov. 3 2007.

[96] O. Sertel, J. Kong, H. Shimada, U. Catalyurek, J. Saltz, and M. Gurcan.
Computer-aided prognosis of neuroblastoma: classification of stromal develop-
ment on whole-slide images. In SPIE Medical Imaging, San Diego, California,
2008.

[97] O. Sertel, J. Kong, H. Shimada, U. V. Catalyurek, J. H. Saltz, and M. N.
Gurcan. Computer-aided prognosis of neuroblastoma on whole-slide images:
Classification of stromal development. Pattern Recognition, 42(6):1093–1103,
2009.

[98] H. Shimada, I. M. Ambros, L. P. Dehner, J. Hata, V. V. Joshi, B. Roald, D. O.
Stram, R. B. Gerbing, J. N. Lukens, K. K. Matthay, and R. P. Gastlebery.
The international neuroblastoma pathology classification (the Shimada system).
Cancer, 86(2):364–372, 1999.

205

[99] J. Sreeram and S. Pande. GLIMPSES: A profiling tool for rapid spe code
prototyping. In Workshop on New Horizons in Compilers (Held in Conjunction
with IEEE International Conference on High Performance Computing (HiPC
2007)), 2007.

[100] J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data par-
allel pipelines. In SPAA ’96: Proceedings of the eighth annual ACM symposium
on Parallel algorithms and architectures, pages 62–71, 1996.

[101] L. G. Szafaryn, K. Skadron, and J. J. Saucerman. Experiences Accelerating
MATLAB Systems Biology Applications. In Proceedings of the Workshop on
Biomedicine in Computing: Systems, Architectures, and Circuits (BiC), 2009.

[102] V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth. Parallel parameter tun-
ing for applications with performance variability. In Proceedings of the 2005
ACM/IEEE conference on Supercomputing, SC ’05, pages 57–, Washington,
DC, USA, 2005. IEEE Computer Society.

[103] M. A. Tahir and A. Bouridane. Novel round-robin tabu search algorithm for
prostate cancer classification and diagnosis using multispectral imagery. IEEE
Transactions on Information Technology in Biomedicine, 20:782–791, 2006.

[104] V. Takala, T. Ahanen, and M. Pietikainen. Block-based methods for im-
age retrieval using local binary patterns. Lecture Notes in Computer Science,
3540:882–891, 2005.

[105] Intel Threading Building Blocks 2.0 for Open Source.
http://threadingbuildingblocks.org/.

[106] G. Teodoro, T. D. R. Hartley, U. Catalyurek, and R. Ferreira. Run-time op-
timizations for replicated dataflows on heterogeneous environments. In Pro-
ceedings of the 19th ACM International Symposium on High Performance Dis-
tributed Computing (HPDC), 2010.

[107] Nvidia Tesla GPU computing solutions for HPC.
http://www.nvidia.com/object/tesla computing solutions.html, 2008 (ac-
cessed, January, 1st).

[108] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language for
streaming applications. In R. Horspool, editor, Compiler Construction, volume
2304 of Lecture Notes in Computer Science, pages 49–84. Springer Berlin /
Heidelberg, 2002.

[109] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth. A scalable
auto-tuning framework for compiler optimization. In Proceedings of the IEEE
International Parallel Distributed Processing Symposium (IPDPS 2009), pages
1 –12, may 2009.

206

[110] M. Tuceryan and A. K. Jain. Texture Analysis, in The Handbook of Pattern
Recognition and Computer Vision (2nd Ed.). World Scientific Publishing Co,
1998.

[111] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software.
In Proceedings of the 1998 ACM/IEEE conference on Supercomputing, pages
1–27, 1998.

[112] W. Wu and P. Heng. A hybrid condensed finite element model with gpu ac-
celeration for interactive 3d soft tissue cutting: Research articles. Computer
Animation and Virtual Worlds, 15(3-4):219–227, 2004.

[113] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the
obvious. SIGARCH Computer Archit. News, 23(1):20–24, 1995.

[114] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,
P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A
high-performance java dialect. Concurrency - Practice and Experience, 10(11-
13):825–836, 1998.

[115] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. Poet: Parameter-
ized optimizations for empirical tuning. In Proceedings of the IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2007), pages 1
–8, March 2007.

[116] D. Zhang, Q. J. Li, R. Rabbah, and S. Amarasinghe. A lightweight streaming
layer for multicore execution. SIGARCH Computer Archit. News, 36(2):18–27,
2008.

[117] Y. Zhang, M. Burcea, V. Cheng, R. Ho, and M. Voss. An adaptive openmp
loop scheduler for hyperthreaded smps. In In Proceedings of the International
Conference on Parallel and Distributed Computing Systems (PDCS 2004), 2004.

[118] Y. Zhao, Y. Han, Z. Fan, F. Qiu, Y.-C. Kuo, A. Kaufman, and K. Mueller.
Visual simulation of heat shimmering and mirage. IEEE Transactions on Vi-
sualization and Computer Graphics, 13(1):179 –189, Jan.-Feb. 2007.

207

