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Abstract 

 

Structural control technologies have been widely accepted as effective ways to 

protect structures against seismic and wind hazards. Sliding mode control (SMC) is 

among the popular approaches for control of systems, especially for unknown linear and 

nonlinear civil structures. Compared with other control approaches, sliding mode control 

is invariant to disturbance such as wind and earthquake, and to system parameters such as 

the mass, stiffness, and damping ratio matrices if the uncertainties can be represented the 

linear combination of the control input, which is generally satisfied for most civil 

structures.  

For known linear civil structures subjected to wind excitation, a filtered sliding 

mode control approach is presented in order to reduce the response of civil structures. 

Rather than using a Lyapunov-function based control design, an alternative way is 

provided to find the control force based on the equivalent control force. A low pass filter 

is properly selected to remove the high-frequency components of the control force while 

remaining the structural stability. Simulation results of a 76-story wind-excited high-

rising building show that this filtered sliding mode control method has better performance 

over Linear-quadratic-Gaussian (LQG), unfiltered SMC, and some other approaches with 

respect to maximum and root-mean-square (RMS) values of structural response. 

For unknown nonlinear civil structures, an adaptive and robust control algorithm 

for nonlinear vibration control of large structures subjected to dynamic loading is 

http://en.wikipedia.org/wiki/Linear-quadratic-Gaussian_control
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presented through integration of a self-constructing wavelet neural network with an 

adaptive fuzzy sliding mode control approach. It is particularly suitable when structural 

properties are unknown or change during the dynamic event which is the case for civil 

structures subjected to dynamic loading. In other words, the proposed control model has 

the advantages of not requiring accurate mathematical model of the controlled structure 

and good adaptive ability to the changes of structural parameters and external dynamic 

loading. The robustness of the proposed algorithm is achieved by deriving a set of 

adaptive laws for determining the unknown parameters of wavelet neural networks using 

two Lyapunov functions. Because of these advantages, the proposed adaptive control 

algorithm is especially effective and implementable for vibration control of large civil 

structures. 

The chattering in SMC is generally a problem that needs to be resolved for better 

control. To solve this issue, two tuning algorithms are developed for determining the 

sliding gain function in the SMC. The first algorithm is for systems with no noise and 

disturbance but with unmodeled dynamics.  The second algorithm is for systems with 

noise, disturbance, unmodeled dynamics, or their combination. Compared with the state-

dependent, equivalent-control-dependent, and hysteresis loop methods, the proposed 

algorithms are more straightforward and easy to implement. The performance of the 

algorithms is evaluated for six different cases. A 90% to 95% reduction of chattering is 

achieved for the first algorithm used for systems with sensor dynamics only. By using the 

second algorithm, the chattering is reduced by 70% to 90% for systems with noise and/or 

disturbance, and by nearly 25% to 50% for systems with combination of unmodeled 

dynamics, noise, and disturbance.  
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Chapter 1: Introduction 

1.1 Nature and Scope of Research 

Structural control technologies have been widely accepted as effective ways to 

protect structures against seismic and wind hazards. As one of the control strategies, 

active vibration control has been receiving considerable attention for structural design 

technique for seismically-excited buildings and bridges in the past decades. Compared 

with passive control, active control is generally able to reduce structural response more 

significantly. Current approaches for active control include linear-quadratic regulator 

(LQR) control, linear-quadratic-Gaussian (LQG) control,    control,   control, and 

sliding mode control (SMC), etc.  

LQR control an optimal control approach achieved by a trade-off between 

structural states and control forces. It is suitable for linear structures and linearized 

nonlinear system with all the system states available. When only part of the structural 

states is available, an observer is necessarily used to estimate the full states before the 

application of LQR control. This observer or estimator is generally a Kalman Filter. LQG 

is a combination of observer and LQR, and therefore is more applicable since the full 

states are not required to be measurable for this case. Nonlinear structures need to be 

linearized when LQR or LQG control are applied. This transformation from nonlinear to 

nonlinear structures usually causes an approximation error which may not be accepted for 

real implementations.    and   control have the similar optimal principle with LQR and 
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LQG control. The main difference is that optimization for    and    control are in    

and    norm sense, respectively. Their limitations are also similar to that of LQR and 

LQG control. 

For nonlinear structures especially those cannot be linearized duo to unacceptable 

approximation errors, LQR, LQG,    and   control approaches are not suitable for 

vibration reduction. In this case, SMC provides an appropriate way to control the 

structural response. The idea of SMC consists of two parts: (1) find a desired sliding 

surface (   ) which is generally a linear combination of system states, and (2) find the 

control force such that the sign of the derivative of   is always opposite to the sign of  , 

which ensures the convergence of the  , i.e., the system states will follow the desired 

trajectory as it is expected in some finite time. SMC is able to control unknown nonlinear 

systems if the unknown factors are bounded (which is always the case in practical 

situations), and this control method has at least two advantages: (1) the order of 

controlled structures is reduced and therefore the dimension of differential equations for 

the structures is reduced, and (2) this method is independent of control force and 

unknown disturbance (Utkin, 1992). Compared with other control approaches, sliding 

mode control is invariant to disturbance such as wind and earthquake, and to system 

parameters such as the mass, stiffness, and damping ratio matrices if the uncertainties can 

be represented the linear combination of the control input, which is generally satisfied for 

most civil structures. The designs of SMC for systems with and without disturbance are 

similar, and thus SMC is very convenient for systems with unknown disturbance. 

In fact, for linear system without any disturbance, the performance using SMC is 

similar with that of LQR/LQG control if the control gain (a constant or a function of time 
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or states for the control force) is properly selected, since in this case the control force 

using SMC can be expressed in a form that is same as the LQR/LQG control force.  

In the past 15 years, SMC has been studied in the area of civil engineering 

analytically (Yang, 1996; Ning et al., 2009) and experimentally (Wu and Yang, 2004). 

Those research deal with the control problem for both linear and nonlinear civil structures. 

Those approach treat controlled structures as either a known (without any system 

unknown factors, or say system uncertainties) linear structures, or single-input single-

output (SISO) known or unknown structures. However, it is not easy to find an improved 

control approaches based on current methods, especially for the control of multiple-inputs 

multiple-outputs (MIMO). In addition, it is necessary to note that the undesired chattering 

phenomenon caused by sapling time, high gain of the control force, sensor and actuator 

dynamics in SMC hinders the application in engineering areas, which remains to be 

resolved for control of civil structures.   

1.2 Objective of Research 

In this research work, first the control performance of SMC is studied for known 

linear civil structures, and then a self-constructing wavelet-neural-network (SCWNN) 

based control approach is developed for vibration control of unknown nonlinear 

structures, followed by the study of chattering reduction for SMC.  

In chapter 2, the basic idea of SMC is present, followed by unfiltered SMC and 

filtered SMC approaches used to reduce the response of civil structures subjected to wind 

excitation. A low pass filter is properly selected to remove the high-frequency 

components of the control force while remain the structural stability.  
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In chapter 3, an improved algorithm for vibration control of large structures 

considering nonlinear moment-curvature behavior through adroit integration of adaptive 

SMC and a self-constructing wavelet neural network model. Since the controlled 

structure is unknown, a function estimation of the unknown differential equations which 

represent the structural behaviors. SCWNN is then developed for on-line functional 

approximation of the nonlinear structure. The wavelet basis functions used in SCWNN 

provide a more compact and efficient system representation over earlier neural networks 

based on Gaussian radial basis functions. The growing/pruning criterion is applied to 

construct the hidden layer in the neural network automatically. A faster learning 

algorithm is achieved using the recently developed PI-type adaptive law instead of a 

traditional I-type adaptive law. The fuzzy compensation controller achieved by using 

fuzzy logic is applied to ensure the stability of this SCWNN based control model.  

In chapter 4, a time-varying method is proposed for determining the sliding gain 

function in order to solve the chattering phenomenon in SMC. Two tuning algorithms are 

proposed for reducing the sliding gain function for systems. The first algorithm is for 

systems with no noise and disturbance but with or without unmodeled dynamics (such as 

sensor and actuator dynamics).  The second algorithm is for systems with noise, 

disturbance, unmodeled dynamics, or any combination of them. The performance of the 

algorithms is evaluated for six different cases. 
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Chapter 2: A Filtered Sliding Mode Control for Vibration Control of Wind-Excited 

Highrising Building Structures 

2.1 Introduction 

Design of a robust controller with high performance for active, semi-active and 

hybrid control of large structures subjected to extreme dynamic loading such as 

earthquake or wind is a challenging research problem due to nonlinear structural behavior 

and many system uncertainties (unknown disturbance/excitation, sensor measurement 

noise, actuator dynamics, and modeling error between assumed system models and real 

systems). The idea of sliding mode control (SMC) consists of two parts: (1) find a sliding 

surface (defined as a desired linear combination of system states such as displacement, 

velocity, and acceleration) to stabilize the controlled system, and (2) find a control force 

to drive the response trajectory into the sliding surface with an exponential speed in time 

(Utkin, 1993). SMC is especially useful for variable structure systems (e.g., when 

stiffnesses vary during a dynamic event) because the sliding surface is independent of the 

control input and system uncertainties (Utkin, 1993). SMC has been used for control of 

civil structures by Yang et al. (1995) and Wu and Yang (2004). Wu (2003) presents 

experimental verification of SMC for vibration control of a regular 3-story building 

structure using a shaking table. 

The main advantage of the SMC is that it is invariant to external excitation such 

as wind and earthquake and the variation of system parameters (such as structural 
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stiffness and damping) during the dynamic event. The structural uncertainties can be 

represented by a linear combination of the control forces. Since high frequency 

components of the control input do not impact controlled civil structures significantly 

(their frequencies are substantially lower), a low pass filter can remove the high 

frequency part of the control input determined by SMC. Use of a low pass filter results in 

a reduction of maximum control input which is significant for the size of actuators and 

real implementation. In this article, a filtered sliding mode control approach is presented 

to reduce the response of civil structures subjected to wind excitation. It is applied to a 

76-story wind-excited benchmark highrise building structure.  

2.2 Problem formulation of Linear Wind Excited Civil Structures 

2.2.1 Reduced Order Model of Physical Wind Excited Structures 

The equation of the motion for a linear structure subjected to wind loading is  

                       (2.1) 

where      is the displacement vector,            are mass, damping, and 

stiffness matrices, respectively, p is the number of degrees of freedom of the structure,  

     is the vector of wind excitation,        is a matrix of excitation influence 

representing the variation of the wind over the height of the structure,         is the 

control force vector assuming the structure has   actuators, and                is the 

matrix related to positions of the control forces. For ease of controller design, Eq. (2.1) is 

rewritten as follows  

                 (2.2) 
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                 (2.2) 

where                 is the structural states.    
  

          
         

is the matrix representing the properties of structural mass, stiffness, and damping, 

   
 
  

      is the vector of control locations, and    
 

  
        is a matrix of 

wind excitation. It is common in the control field to reduce the number of degrees of 

freedom (DOF) for large systems in order a) to avoid ill-conditioning of large matrices 

and b) reduce the number of required actuators.  Consequently, the size of the model is 

reduced using a state order reduction technique by keeping the dominant eigenvalues of 

the matrix   (the smallest ones) while removing unimportant eigenvalues (the largest 

ones) (Davison, 1966). Equation (2.2) is reduced to 

                     (2.3) 

where        (the states that maintain the first   eigenvalues and eigenvectors of the 

matrix  ,     ),        ,      ,        . The measured states from sensors 

with noise are expressed as 

                         (2.4) 

     ,         ,         ,         . These matrices and vectors are 

obtained from the state order reduction technique.       is assumed to be uncorrelated 

Gaussian white noise which is not measurable.  The consideration of    is due to the 

existence of sensor noise in practical situations.  

Civil structures are generally assumed to be (1) stable: the structural response is 

reduced if the control force is properly calculated and applied, and (2) observable: if only 
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part of the reduced states    can be measured,    can be determined by designing an 

observer to estimate the remaining states.  

2.2.2 Observer Design 

Since the vector of states    in Eq. (2.3) is only partially available by 

measurement, an observer is necessary to estimate the system states as follows (Skelton, 

1988) 

                            (2.5) 

where                 and an observer gain matrix   is defined in the following 

form  

        
       

       (2.6) 

In Eq. (2.6),    is the solution of the Riccati equation        
    

     
   

       
         

    
    (Saleh and Adeli, 1996, 1997; Adeli and Saleh, 

1999) where          
   

    
 , and the weight matrices   ,    and    are given as 

follows  (Skelton and Ikeda, 1989)  

           
 ;             

 ;          
           

   (2.7) 

In Eq. (2.7)     and      
 are power spectral density matrices of   and   , 

respectively, which can be specified by the control algorithm designer.  A vector of state 

errors is defined as         . The derivative of this error  vector is found by 

subtracting  Eq. (2.5) from Eq. (2.3): 

                                (2.8) 

Since          are unknown terms, it is necessary to assume that     

           is small enough to have an insignificant influence on the convergence of 
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the error vector  . Matrix   defined by Eq. (2.6) results in all the eigenvalues of     

      to have a negative real part. This in turn provides system stability and ensures that 

error vector   will converge to zero asymptotically, i.e.,     will reach its desired value in 

a finite time.  

2.3 Filtered Sliding Mode Control  

2.3.1 Controller Design  

In SMC a sliding surface vector   is designed first to stabilize the controlled 

system followed by determination of control forces to drive the response trajectory into 

the discontinuous sliding surfaces with an exponential speed. Substituting Eq. (2.4) into 

(2.5) and noting that       (because the measured states   is not related to the control 

force) yields 

                      (2.9) 

where                 , and            . Wu and Yang (2004) use a modified 

SMC approach where they find the control force based on a Lyapunov function. In this 

article, an alternative method is provided to find the control force based on the equivalent 

control force principle (Utkin, 1993). Estimated states are divided into two parts, without 

actuators (control forces) (    ) and with actuators (control forces)        and Eq. (2.9) is 

transformed to the following two equations:  

                            (2.10) 

                               (2.11) 
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where      
   

   
 ,         ,       ,   is the number of actuators,     

 
      

      
 ,     

 
  

 ,     
   

   
 , and    ,    ,    ,     ,    ,    , and      are 

matrices of corresponding dimensions. It should be noted that          . The design 

of sliding mode control consists of two steps.  

First,     in Eq. (2.10) is treated similar to a control force and Eq. (2.10) is solved 

like an optimal control problem using a linear-quadratic method. Assume     can be 

related to      as 

                (2.12) 

where             is the Riccati matrix obtained by solution of a Riccati equation 

similar to the previous equation. Then, based on Eq. (2.12), the equation of the sliding 

surface is chosen as  

                    (2.13) 

where          for ease of notation. The goal in SMC is to achieve    .   

The second step is to find control forces such that the response trajectory will 

always remain along sliding surfaces    . Taking the derivative of   in Eq. (2.13) and 

using Eq. (2.9) yields  

                                          (2.14) 

Assuming the existing of      
  , the following discontinuous equivalent 

control force is chosen for   to converge to zero: 

       
                        (2.15) 
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where          is a time-varying gain chosen to be equal to          (  and   

are positive constants),          
        

 
        

 . In this research a non-constant M is 

chosen resulting in the inequality     which means the undesirable chattering in SMC 

is reduced. Substituting Eq. (2.15) into (2.14) yields 

                    (2.16) 

Since         ,           rather than      is the determining term in Eq. 

(2.16), which ensures that          is always opposite of        . As a result, the 

condition     for the sliding surfaces will be achieved in a finite time, which means the 

system states will decay with an exponential speed in accordance with Eq. (2.12).  

2.3.2 First Order Low Pass Filter for the Control Force 

The control force proposed in Eq. (2.15) generally contains high-frequency 

components due to fast and frequent switching of the sliding mode control force. The 

high-frequency components have an insignificant influence on the system response since 

most civil structures have a low frequency compared with that of control force and it is 

unlikely that a resonant phenomenon will happen (Adeli and Kim, 2004; Kim and Adeli, 

2004). Removing the high frequency components of the control force, however, results in 

a smaller force and actuator size without any loss of response reduction.  In this research, 

a first order low pass filter is properly selected to remove the high-frequency components 

of the control force in Eq. (2.15) while maintaining structural stability. A filtered control 

force    is selected to satisfy  

                (2.17) 
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where the time constant    ,      and    is the sampling time interval. It is 

necessary to choose a proper   that is not too large to cause an unstable situation for the 

controlled structure. After applying a Laplace transformation to Eq. (2.17) the filtered 

control force    can be rewritten as  

   
 

    
 

                         

    
     (2.18) 

where   is a variable in frequency domain. 

2.4 Example of A 76-story Wind Excited Building 

2.4.1 Physical Model of the 76-Story Wind Excited Building 

The filtered SMC method presented in this chapter is applied to a benchmark 

control problem developed based on a 76-story, 306-m office tower proposed for the city 

of Melbourne, Australia (Yang et al., 2004). This reinforced concrete building consists of 

a central concrete core and an external concrete frame. The 153,000-metric ton slender 

building is sensitive to wind since its height-to-width ratio is 7.3. It is modeled as a 

vertical cantilever structure with rigid floors and 76 degree-of-freedom (DOF) for the 

translational vibration as shown in Figure 2.1 (one DOF per floor). The plan view of this 

building is shown in Figure 2.2. The time histories of wind excitations for the 30
th

, 50
th

, 

70
th

, and 75
th

 floor are shown in Figure 2.3.  
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Figure 2.1 2D model of 76-story wind-excited high-rising building 
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Figure 2.2 Plan view of the high-rising building (Unit: meter) 
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Figure 2.3 Wind excitations for the benchmark building 

 

2.4.2 Coupling of the Building and An Active Tuned Mass Damper 

The building is equipped with an active tuned mass damper (ATMD) on the top 

floor.  The equation of motion of the ATMD is (Smith and Coull, 1992) 

                             (2.19) 

where                  ,               and         kN/m are the mass, 

damping coefficient, and stiffness value of the ATMD, respectively. For the coupled 

ATMD-structure system, Eqs. (2.1) and (2.19) are combined and an equation similar to 

Eq. (2.1) is found where          and   are replaced by the followings matrices: 

     
  
  

        where             ,       
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        ,     
  
  

        ,               , 

respectively. The displacement vector is also expanded to                     

where    is the displacement of the  th floor and    is the displacement of the ATMD 

relative to the top floor.  

A reduced order system is constructed as follows: The state vector is    

                                                          , the measured output vector 

is                    ,          ,        ,          ,          ,      

    ,          , and      . Yang et al. (2004) show that the peak and RMS 

values of the structural response of the reduced order system are very close to that of the 

full order system. Figure 2.4 shows the schematic architecture of the control approach for 

the 76-story building. For simplicity, the rotational DOF is removed by static 

condensation and hence not considered. 
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Figure 2.4 Schematic architecture for vibration control of the 76-story building 

 

2.4.3 Selection of Parameters 

The parameters used in this simulation are given as follows:  

                                                                                   ;    

   ,      
                     . For simplicity     is scaled as              

                       at               that achieves a peak value of       . The 

term         is the Fourier transform of the wind load     . The control output vector is 

                where                                              . 

Therefore, the weight matrix is       rather than    . The weight R is for the control 

ATMD

76th Floor
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Ground

Actuator

76-story Building 

Sensor 

                         

Observer: Eq. (2.5) 

       
                     

Controller: Eq. (2.15) 

          

Filter: Eq. (2.17) 
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force. For the purpose of practical implementation, the following hardware limitations are 

chosen for the actuator: the peak control input/force               RMS value of the 

control input (related to energy consumption)         , peak relative displacement of 

the ATMD             , and RMS value of the relative displacement of the ATMD 

        .   

The time constant in Eq. (2.17),      , is chosen by trial-and-error to avoid an 

unstable situation. A value of         is chosen by trial-and-error. The sampling time 

is          sec. Three different values are chosen for the constant  

                       : The first two are chosen for comparison with LQG 

presented in Yang et al. (2004) and the SMC approach presented by Wu and Yang (2004), 

respectively. The last value is chosen to show that the structural vibrations can be 

reduced significantly. For the sake of comparison, only one actuator is used on the top 

floor of the structure similar to Yang et al. (2004). 

2.4.4 Comparison of Simulation Results 

Yang et al. (2004) defined 16 criteria for the benchmark problem summarized in 

the Appendix. The lower the value of each criterion the more effective the control 

algorithm.  

Table 2.1 shows a comparison of 16 evaluation criteria for the proposed filtered 

SMC method with the LQG algorithm presented in Yang et al., (2004) as well as the 

unfiltered SMC using        . To test the robustness of the proposed method, a 

     stiffness uncertainty is applied in the simulation. It is found that criteria    to    

and    to     of unfiltered SMC are slightly smaller than those of the LQG control, but the 
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other 8 criteria are slightly higher for the unfiltered SMC. Therefore, in general the 

performance of the unfiltered SMC approach is similar to that of LQG control for 

vibration control of this building. Next, for the filtered SMC, it is found that most of the 

criteria are much or slightly smaller than that of both unfiltered SMC and LQG control, 

especially in maximum control force and actuator displacement which are significant due 

to the limitation of commercially available actuators. Also, the proposed filtered SMC 

with      stiffness uncertainty is less sensitive compared with the LQG algorithm.  

Table 2.2  shows a comparison of the same 16 evaluation criteria for the proposed 

filtered SMC method with the SMC technique presented in Wu and Yang (2004) as well 

as the unfiltered SMC using         This table shows that the performance of unfiltered 

SMC is similar to that of Wu and Yang (2004). Without stiffness uncertainty, 

performance of the proposed filtered SMC in 12 criteria is better compared with the 

unfiltered SMC and the SMC method of Wu and Yang (2004). For all three different 

stiffness values the maximum control force of filtered SMC is less than that for the SMC 

method of Wu and Yang (2004). For the      stiffness uncertainty cases, the 

performance of filtered SMC is better than the other two control approaches with the 

exception of the values of    and    for the      stiffness uncertainty case which are 

slightly higher than the corresponding values in Wu and Yang (2004).  

The time histories of the structural response of the 75
th

 floor and control force on 

the top of the structure are shown in Figure 2.5 and Figure 2.6 for filtered SMC with 

        and        , respectively. It is found that the response has been reduced by 

using the filtered SMC compared with the case without control.  
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Filter SMC (             ) Unfiltered SMC (       ) LQG 

Criteria 
  
   

  
     

  
      

Criteria 
  
   

  
     

  
      

Criteria 
  
   

  
     

  
      

   0.372 0.379 0.381    0.367 0.362 0.385    0.369 0.365 0.387 

   0.420 0.422 0.431    0.415 0.407 0.435    0.417 0.409 0.438 

   0.578 0.492 0.703    0.577 0.486 0.709    0.578 0.487 0.711 

   0.580 0.494 0.705    0.579 0.488 0.711    0.580 0.489 0.712 

   2.243 1.808 2.658    2.297 1.836 2.746    2.271 1.812 2.709 

   11.594 8.480 15.914    12.399 8.786 17.198    11.99 8.463 16.61 

  (kN) 34.15 28.49 44.25   (kN) 34.96 29.09 45.51   (kN) 34.07 28.29 44.32 

   
(cm) 22.74 18.32 26.95    

(cm) 23.29 18.61 27.83    
(cm) 23.03 18.37 27.46 

   0.382 0.434 0.482    0.379 0.407 0.485    0.381 0.411 0.488 

   0.431 0.457 0.534    0.432 0.442 0.537    0.432 0.443 0.539 

   0.710 0.617 0.781    0.716 0.608 0.766    0.717 0.607 0.770 

    0.718 0.624 0.791     0.724 0.615 0.775     0.725 0.614 0.779 

    2.244 1.875 2.846     2.320 1.870 2.865     2.300 1.852 2.836 

    66.690 53.326 117.713     73.920 54.241 121.864     71.96 52.68 118.33 

max    
(kN) 

118.44 107.15 167.09 
max    

(kN) 
122.38 109.15 168.74 

max    
(kN) 

118.24 105.58 164.33 

max     
(cm) 

72.48 60.55 91.93 
max     

(cm) 
74.94 60.39 92.53 

max     
(cm) 

74.29 59.83 91.60 

Table 2.1 A Comparison of Evaluation Criteria with LQG control  

2
1
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Filter SMC (             ) Unfiltered SMC (       ) MSMC (Wu & Yang‘s Method) 

Criteria 
  
   

  
     

  
      

Criteria 
  
   

  
     

  
      

Criteria 
  
   

  
     

  
      

   0.359 0.367 0.368    0.353 0.351 0.371    0.354 0.351 0.371 

   0.407 0.414 0.417    0.400 0.397 0.420    0.401 0.397 0.421 

   0.571 0.489 0.694    0.569 0.482 0.700    0.569 0.482 0.701 

   0.573 0.491 0.696    0.571 0.484 0.702    0.571 0.484 0.703 

   2.370 1.930 2.835    2.436 1.964 2.944    2.439 1.962 2.954 

   13.650 10.216 18.865    14.715 10.626 20.525    14.762 10.586 20.696 

  (kN) 39.00 32.86 50.52   (kN) 39.90 33.51 51.99   (kN) 40.07 33.55 52.34 

   
(cm) 24.03 19.565 28.74    

(cm) 24.70 19.91 29.84    
(cm) 24.73 19.89 29.95 

   0.364 0.420 0.464    0.368 0.387 0.466    0.369 0.387 0.469 

   0.424 0.455 0.524    0.428 0.437 0.527    0.428 0.437 0.527 

   0.703 0.624 0.767    0.710 0.614 0.745    0.711 0.613 0.744 

    0.711 0.631 0.776     0.718 0.621 0.754     0.719 0.620 0.753 

    2.338 1.963 3.011     2.431 1.958 3.017     2.436 1.958 3.021 

    75.664 61.346 137.350     85.011 62.509 141.061     85.644 62.453 141.606 

max    
(kN) 

140.55 129.47 189.61 
max    

(kN) 
145.63 129.19 192.39 

max    
(kN) 

145.98 129.00 193.61 

max     
(cm) 

75.50 63.41 97.24 
max     

(cm) 
78.52 63.25 97.45 

max     
(cm) 

78.68 63.24 97.57 

Table 2.2 A Comparison of Evaluation Criteria with MSMC control  

2
2 
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Figure 2.5 Time series of structural response and control force for filtered SMC with   
     : (a)    ; (b)     ; and (c) control force 

 

 

Figure 2.6 Time series of structural response and control force using filtered SMC 

with        : (a)    ; (b)     ; and (c) control force 
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2.5 Conclusion 

A filtered SMC approach is presented in the article for active vibration control of 

wind-excited highrise building structures and its performance is evaluated by application 

to a 76-story building benchmark problem equipped with an ATMD on the roof. 

Assuming rigid floors the 77-degree-of-fredom (DOF) structure is reduced to a 12-DOF 

model. An asymptotic observer is employed to estimate the system states since only 3 out 

of the 12 states are measured directly. Due to the elimination of high-frequency part of 

the control force, the structure, sensors, actuators, and dampers are all less excited, and 

consequently their response is reduced compared with the unfiltered SMC approach. In 

addition, the required control forces are reduced which means a reduction in the size of 

actuators making their implementation more practical. Compared with LQG and another 

implementation of SMC (Yang et al., 2004; Wu and Yang, 2004), the proposed filtered 

SMC has in general better performance, especially in reducing the maximum control 

force and control power. Furthermore, the proposed method is more robust to structural 

stiffness variations and uncertainties. A proper selection of the low pass filter is necessary 

to ensure the stability of the controlled structure. Further research includes the 

consideration of the actuator dynamics and actuator-structure interaction for practical 

implementation. 
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Chapter 3: Self-Constructing Wavelet Neural Network Algorithm for Nonlinear 

Adaptive Control of Civil Structures 

3.1 Introduction 

A large number of articles have been published on linear vibration control of civil 

structures over the past three decades (Yao, 1972; Soong, 1990; Saleh and Adeli, 1994; 

1996, 1998a&b; Yang et al., 1996; Yang et al., 2004) using a number of different 

algorithms developed in the vibration control community such as LQR (for example, 

Adeli and Saleh; 1997, 1998; Agrawal et al., 1997), LQG (Soong, 1990; Vasques, and 

Dias Rodrigues, 2006), and    (Chase and Smith, 1996). The great majority of these 

papers deal with small academic problems where the structure is modeled as a two-

dimensional (2D) structure with a few degrees-of-freedom or large structures assuming 

the controlled structure behaves linearly.   

Vibration control of large nonlinear structures remains a challenging problem 

because of a) unknown time-varying properties of structural systems and b) uncertainties 

existing in both structural system identification and external excitations such as those due 

to an earthquake.  Sliding mode control (SMC) has been used as a competitive control 

approach in civil structures (Yang et al., 1996; Singh et al., 1997; Kim and Yun, 2000; 

Wu, 2003; Wu and Yang, 2004; Lee et al., 2004; Lee et al., 2004; Wang and Lin, 2006; 

Ning et al., 2009).  
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Yang et al. (1996) applied the sliding mode control to a seismically-excited 3-

story building isolated by a frictional sliding-isolation system and reported its 

effectiveness based on experimental test results. Singh et al. (1997) applied the SMC 

approach to a seismically-excited 10-story two-dimensional (2D) frame. Sarbjeet and 

Datta (2000) apply the sliding mode control strategy to a 20-story 2D frame subjected to 

a narrow band ground excitation and report more reduction in displacements compared 

with conventional linear control strategies such as LQR. Kim and Yun (2000) proposed a 

fuzzy sliding mode control (FSMC)  for a three-story benchmark building considering 

actuator-structure interaction, sensor noise, actuator time delay, precision of the analog-

to-digital (A/D) and digital-to-analog (D/A) converters, control force saturation range, 

and order of the control model. They report improved performance for FSMC compared 

with other control algorithms such as      control, optimal polynomial control, neural 

networks-based control, and SMC. Using a distributed parameter system equipped with 

active tuned mass dampers (ATMDs), Wang and Lin (2006) indicate that FSMC is more 

economical and practical than a variable control algorithm such as SMC (a variable high-

frequently switching feedback control where the control gains in each feedback path 

switch between two values according to some rule) in terms of controlling force and 

control energy use when applied to a seismically excited three story reinforced-concrete 

building. Wu (2003) and Wu and Yang (2004) use a pre-filtered sliding mode control 

method  to reduce the response of a seismically-excited three-story building, and 

demonstrate its performance through shaking table experimental tests of a full-scale 

building equipped with active bracing systems. They also applied it to wind-induced 

vibrations of a 76-story high rising building. Lee et al. (2004) apply SMC to a 3-story 



30 
 

frame considering controller saturation. Ning et al., (2009) propose a FSMC control to 

the seismically excited nonlinear benchmark bridge in Yang et al. (2009), and show that 

the most of the performance including displacement, shear, and moment has been 

reduced, but with a slightly increase of the mid-span acceleration. 

SMC, however, has a shortcoming for application to large civil structures rarely 

discussed in the literature. Controlled responses from sliding mode control are highly 

sensitive to the bounds of structural system uncertainties and weighing matrices of the 

sliding surface. A small sliding bound may cause instability in vibration control of 

structures, while a large sliding bound will lead to the so-called chattering effect which 

means the sign of the control force changes rapidly and frequently within a short time 

period caused by a discontinuous switching function (usually a discontinuous sign 

function). This chattering effect can be reduced by using a continuous approximation of 

the discontinuous sliding mode controller, but it may cause system instability (Leu et al., 

2009). To overcome the chattering phenomena while maintaining system stability, a 

fuzzy compensation controller is sometimes designed to model system uncertainties and 

function approximation errors (Hsu et al., 2009).  

Neural networks (NNs) can be used for universal approximation of both linear 

and nonlinear functions (Hornik et al., 1989; Cybenko, 1989; Adeli and Hung, 1994; 

Hung and Adeli, 1994; Senouci and Adeli, 2001; Adeli and Jiang, 2003). Traditional NNs 

consist of multiple layers with a sufficient number of nodes in each hidden layer and 

adjustable weights. They suffer from some common drawbacks such as lack of an 

efficient constructive model resulting in an arbitrary selection of the number of hidden 
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nodes, slow convergence rate, and entrapment in a local minimum. Control algorithms 

based on this type of NN require extensive off-line training.  

To overcome the aforementioned drawbacks of classical NNs used for system 

control and/or identifications, radial basis function (RBF) neural networks have been 

used to simplify the network structure and reduce computational burden where Gaussian 

functions are generally used as the basis functions (Chen, 1990; Adeli and Karim, 2000; 

Karim and Adeli, 2002, 2003; Ghosh-Dastidar, 2008). These offline RBF-based NNs are 

further improved by using a resource allocating network (RAN) algorithm (Platt, 1991), 

which adds  new hidden neurons depending on the input characteristics and output errors,  

where the weights connecting hidden layer and output layer are updated based on a least 

mean square (LMS) criterion. Two modifications of RAN are: (1) the replacement of the 

LMS criterion with extended Kalman Filter (EKF) (Kadirkamanathan and Niranjan, 1993) 

which improves the network compactness, and (2) the pruning criterion which is able to 

remove hidden neurons that are less influential to the output in order to make the network 

more compact (Lu et al., 1997, 1998). A network based on these two improvements is 

generally referred to as minimal resource allocation network (MRAN). 

As an extension of MRAN, the extended MRAN (EMRAN) was introduced 

subsequently (Irwin et al., 1995; Li et al., 2000; Wang et al., 2002). Rather than updating 

the parameters of all hidden neurons in each time step in MRAN, EMRAN allocates new 

hidden nodes (called Gaussian nodes) using a growing/pruning criterion, which means 

the number of nodes is reduced if the network can accurately approximate the unknown 

system given an allowed error range, and is increased if the error is outside the range. 

Gaussian nodes are able to store characteristic information of the unknown system. Each 
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Gaussian node responds only to the local region of the input space. Only those 

parameters of a given node closest to the selected winner node are updated. As such, the 

learning patterns are not fully repeated as a result of the local updating process. The 

EMRAN algorithm reduces the computational time compared with MRAN (Li et al., 

2000) and therefore is more suitable for online adaptation of high order unknown 

nonlinear systems. However, the EMRAN algorithm cannot ensure the stability of control 

models. A learning algorithm based on the Lyapunov function may be used to guarantee 

system stability (Gao and Er, 2003; Hsu, 2007).   

Compared with the Gaussian radial basis functions, wavelet basis functions yield 

more compact and efficient system representations while preserving global closed-loop 

stability if a proper adaptive law is used to train the neural network (Cannon and Slotine, 

1995). A wavelet neural network (WNN) model was proposed by Zhang and Benveniste 

(1992) for signal processing. Hung et al. (2003) applied WNN to system identification of 

civil structures. Adeli and Jiang (2006) modified WNN using fuzzy logic to achieve a 

more efficient constructive model and higher identification accuracy. Their modified 

fuzzy WNN model is based on adroit integration of four different computing concepts: 

dynamic time delay neural network, wavelet as the basis function, fuzzy logic, and the 

state space reconstruction based on the chaos theory. They used a Mexican hat wavelet in 

their WNN model because a) its analytical expression makes it amenable for both 

differentiation of multiple dimensional time series, and b) it provides computational 

efficiency (Zhou et al, 2003; Jiang and Adeli, 2003; Jiang and Adeli, 2005). They employ 

chaos theory to model the complicated and unknown nonlinear dynamics of structure-

earthquake system which requires determining an appropriate embedding dimension for 
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which they use the false nearest neighbor method. The input dimension of a time series 

can be obtained using the embedding theorem (Takens, 1981) for structural identification 

(Adeli and Jiang, 2006). The number of wavelet neurons in the hidden layer of their 

WNN model is determined by a self-constructing method using the Akaike‘s final 

prediction error (AFPE) criterion. Their model works well when the time series for 

training data is available. 

The selection of the number of nodes in the hidden layer is crucial for obtaining 

consistently accurate approximations with a reasonable computational cost. A trial-and-

error method was generally used in earlier approaches to obtain the most suitable value 

for the number of nodes in the hidden layer using the NARMAX approach (Zhang 1997; 

Hung et al. 2003). That approach is time-consuming, does not provide a rational basis for 

the selection of the number of nodes in the hidden layer, and cannot guarantee accurate 

approximations. In order to determine the number of nodes in a neural network model for 

real-time control of nonlinear dynamic systems, a self-constructing method without a 

priori knowledge may be used. Researchers have introduced self-organizing/self-

constructing algorithms to dynamically adapt the Gaussian basis neurons in the hidden 

layer. So far, these methods have been used for control of simple problems such as 

control of first order circuit systems (Hsu, 2007). 

But the stability of self-constructing NN-based control algorithms should also be 

guaranteed. A number of learning algorithms have been proposed based on the Lyapunov 

function to guaranteed system stability. Hsu (2007) applied the self-constructing fuzzy 

neural controller for a simple first order chaotic circuit system. Further, to overcome the 

chattering effect noted in traditional SMC (Wu and Er, 2000; Wu et al., 2001; Gao and Er, 
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2003; Hsu, 2007), Hsu et al. (2009) apply a fuzzy compensation controller to replace the 

traditional signal-switched compensation controller in a wavelet-based adaptive control 

approach. They proved the stability for the same first order chaotic circuit problem and 

present a faster online learning algorithm using the more recently developed proportional 

integral (PI)-type adaptive law instead of a traditional integral (I)-type adaptive law 

(Golea et al., 2002). 

In this article, an improved control algorithm is presented for nonlinear vibration 

control of large structures subjected to dynamic loading such as earthquake or wind 

loading. It is based on integration of a self-constructing wavelet neural network (SCWNN) 

developed specifically for structural system identification with an adaptive fuzzy sliding 

mode control approach. The algorithm is particularly suitable when the physical 

properties such as the stiffnesses and damping ratios of the structural system are 

unknown or known only within an approximate range which is the case when a structure 

is subjected to an extreme dynamic event such as an earthquake or wind as the structural 

properties change during the event. Further, no off-line training of the neural network is 

required thus removing a major hurdle in application of the vibration control technology 

to real structures. Compared with traditional linear control algorithms such as LQR and 

LQG, SMC is more effective in handling system uncertainties such as model and 

approximation errors in system identification for adaptive control design. SCWNN is 

developed for functional approximation of the nonlinear behavior of large structures 

using neural networks and wavelets. Adeli and Jiang (2006) present a dynamic time-

delay fuzzy wavelet NN for nonparametric identification of structures using the nonlinear 

autoregressive moving average with exogenous inputs approach. In that work the 
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identification process is conducted by training data off-line. In this chapter, the 

identification and control are processed simultaneously which makes the resulting 

adaptive control more applicable to real life situations. A two-part growing and pruning 

criterion is developed to construct the hidden layer in the neural network automatically. 

The wavelet basis functions used in SCWNN provide a more compact and efficient 

system representations over earlier neural networks based on Gaussian radial basis 

functions. A fuzzy compensation controller is developed to overcome the chattering 

phenomenon. The model is applied to vibration control of a benchmark seismically 

excited highway bridge. 

3.2 Problem Formulation of Unknown Nonlinear Civil Structures 

The equations of dynamic equilibrium for a nonlinear multiple-degree-of-freedom 

(MDOF) structure with controllers excited by ground accelerations are expressed as: 

                                                        (3.1) 

where                      and              are the mass, damping, and 

stiffness matrices, respectively,           is the displacement vector, p is the number of 

degrees of freedom (DOF) of the structure,         is the ground acceleration due to an 

earthquake,         is the control force vector assuming the structure has q actuators, 

and                is the matrix related to positions of the control forces. In this 

research, matrices        ,         and          are considered to be unknown time-

variant nonlinear functions of displacements and velocities. Equation (3.1) is transformed 

to its canonical form as follows: 

                             (3.2) 
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where    
 
  
     (    ) is the state vector consisting of   system states 

(displacements and velocities) that are assumed to be measurable, 

                                       and                        

are unknown continuous functions,                  is the unknown ground 

disturbance with an upper bound  , that is,         . SCWNN is a model to estimate 

functions      and      approximately in real time or online.  

The difference between the measured displacement output   and desired 

displacement output    (generally     ) is defined as an error vector: 

                (3.3) 

A 2-D error space is defined with   and    as its two axes. The main idea behind 

SMC is to develop a controller to drive the output response to the desired trajectory by 

forcing the equations of the sliding surfaces in the error space into zero: 

             (3.4) 

within some given time and keep the point (    ) within the surface after that. That 

is to make      approach   after some finite time and then to ensure that      remains   

and stable within a small tolerance. A sufficient condition for stability of SMC is that a 

selected Lyapunov function   
 

 
    must satisfy the follow inequality (Slotine and Li, 

1991; Utkin, 1992; Khalil, 1996) 

                  (3.5) 

where over-dot indicates differentiation in time and the sliding surface is defined as  

                
 

 
       (3.6) 
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in which the coefficient    and    are positive constants. The right-hand side of 

equations of the sliding surfaces, Eq. (3.6), consists of three terms referred to as D part 

for the first derivative term, P part for the second proportional term, and I part for the last 

integral term.  A combination of two terms would be sufficient for an SMC algorithm. 

The corresponding control algorithms are dubbed as PD, PI, and PID algorithms. All 

three terms are included in this research to achieve a faster convergence. Differentiation 

of Eq. (3.6) with respect to time and using Eq. (3.2) yields: 

                                  

                                  (3.7) 

The goal of the control is          . To achieve this,   is made equal to 0. 

This is done by choosing a control force vector   such that Eq. (3.7) can be presented in a 

form similar to               where   is a positive scalar (different from the matrix 

  in Eq. 1). Such a form will make   decay exponentially to zero. Thus by assuming the 

existence of nonsingular matrix     , the control force vector   is selected to be 

                                    (3.8) 

where 

       

       
 

       
        (3.9) 

The coefficient                    is a positive constant representing the 

bounds on the amplitude of external excitation and chosen based on experience, and 

       is the sign function defined as  

        
        

         
       (3.10) 
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The vector    is generally called the compensator control input.  Substituting Eq. 

(3.9) into Eq. (3.8) yields  

                 (3.11) 

Since            ,    determinates the sign of   . That is, the sign of   will 

depend on the term    rather than     . Moreover, because the sign of    is always 

opposite of the sign of   based on Eq. (3.11),           as desired.  

Solution of Eq. (3.8) cannot be found directly because      and      are unknown. 

In this research a fuzzy WNN is developed to approximate them.  

                     (3.12) 

                    (3.13) 

where       and       are approximate values of the unknown dynamic functions      

and     , respectively, and       and       are the model error due to function 

approximation. Control force vector,   , can be found from Eq. (3.8) using the 

approximate values       and      .  

An unknown external disturbance due to earthquake or wind generally requires a 

relatively large upper bound ( ), and this generally causes a chattering phenomenon in 

the sliding mode control especially when the sampling time is large, for example,  in the 

order of 0.01 sec or larger. A possible solution for the chattering problem using the fuzzy 

logic approach will be presented in the following section. 

3.3 Self-Constructing Wavelet Neural Network Model 

In this section a self-constructing wavelet neural network is presented for 

estimation of the unknown dynamic functions      and      where the number of nodes 
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in the hidden layer and the corresponding wavelet basis functions are determined 

automatically without any prior knowledge of the structure or external excitation. 

SCWNN is an extension of the WNN model developed by (Adeli and Jiang, 2006). That 

model consists of two distinct phases of identification and control. In contrast, there is no 

separation of these two steps in the SCWNN control algorithm presented in this chapter 

and both are performed simultaneously. The WNN model consists of an input layer, a 

hidden layer, and an output layer. The hidden layer consists of wavelet nodes, used as 

activation functions and characterized by their localization since each unit responds only 

to a certain region of input space. The unknown function is approximated as the linear 

combination of the basis units.  

3.3.1 Selection of the Wavelet Function 

Following Adeli and Jiang (2006) wavelet functions                 used in 

this research are Mexican hat wavelets. A Mexican hat wavelet function is the 

negative normalized second derivative of Gaussian function defined by 

      
 

   
 
  

                             (3.14) 

where       
    

  
  and    denotes the Euclidean norm,                         is 

the center, and                        is the width of the  th wavelet node;   is the 

total number of wavelet nodes in the hidden layer in each time step (its value is changed 

automatically over the duration of excitation). An example Mexican hat wavelet is shown 

in Figure 3.1. This wavelet is chosen because it has a differentiable analytical expression.  

 

 

http://en.wikipedia.org/wiki/Normalizing_constant
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Figure 3.1 Maxican hat wavelet 

3.3.2 Wavelet Neural Network for Function Approximation  

A schematic architecture of SWCNN model for vibration control of structures is 

presented in Figure 3.2. Let        for ease of notation. The function    

             is approximated by the Mexican hat wavelet: 

                      (3.15) 

       
 
        

    

  
   ,            (3.16) 

where     is the  th element of   ,     is the  th element of the error function   ,    is the 

weight from the  th wavelet node to the output node. For ease of notation,      
    

  
    is 

rewritten as 
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Figure 3.2 Schematic architecture of SWCNN model for vibration control of structures 

 

      
    

  
                        (3.17) 

Therefore,    can be rewritten in matrix form as follows: 

                    (3.18) 

where        is the weight matrix for   ,                    ,   

                 ,                   . Similarly,  
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                         (3.19) 

where          is the weight matrix for function    , and                

 

    
 
 

  

  
 
 

    

       . In order to capture the linear characteristics of the nonlinear 

system, similar to Adeli and Jiang (2006) a linear term,     , is added to Eq. (3.18): 

                 . The   th element of    is written as  

      
            

  ,           (3.20) 

where   
     and   

     are the weights of the nonlinear and linear terms, 

respectively. 

The estimated values of the unknown parameters  ,  ,  , and   are denoted by   , 

  ,   , and   .  In each time step nodes are classified into active and inactive nodes to be 

described later in this section. The values of  ,   and   of active nodes are updated 

automatically in any given time step while those values for inactive nodes are discarded. 

After this classification the parameters are divided as follows  

    
   

    
 ,    

  

   
 ,   

  

   
  ,    

  

   
     (3.21) 

where    
       are the parameters of the active nodes, and     

         are the 

parameters of the inactive nodes.  

The j th element of    is  

        

        
        (3.22) 

where                 .  

The approximation error is computed using Eqs. (3.20) and (3.22): 
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        (3.23) 

where     
    

     
,                        . The detailed formulation can be 

found in Appendix B.1. 

Function   is a nonlinear function of            and           . In order 

to formulate a proper control law it is necessary to linearize it using Taylor‘s expansion 

as follows (Hsu, 2009):   

                        (3.24) 

where   
   

   
      

  
   

   
 
   

   
   

   

   
        

, 

  
   

   
       

  
   

   
 
   

   
   

   

   
        

,               and   represents the higher 

order terms of Taylor expansion which is ignored in this research. 

Substituting Eq. (3.24) into Eq. (3.23) yields 

        

        
      

    
      

     

       

        
       

      (3.25) 

where relations     
      

     

       and    
      

     

       are employed because 

they are scalars. A detailed formulation of Eq. (3.25) is available in Appendix B.2. 

In order to speed up the computation of weight parameters    and  , instead of 

using the traditional I-type adaptive algorithm, a PI-type algorithm is used in this 

nonlinear control model as follows (Lin, 2002):  

   
        

        
     (3.26) 

          
        

     (3.27) 
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where    ,    ,    ,     are positive constants,     
 and     

      

 

 
   are 

proportional and integral terms of     
 , respectively;     

 and     
      

 

 
   are 

proportional and integral terms of      respectively. 

Similarly,    and   are estimated as 

    
         

         
     (3.28) 

            
         

     (3.29) 

where      
 and      

       

 

 
   are proportional and integral terms of      

, 

respectively, and      
 and      

       

 

 
   are proportional and integral terms of     , 

respectively. 

Error matrices are obtained by subtracting Eq. (3.28) from Eq. (3.26), and Eq. 

(3.29) from (3.27):  

    
         

         
        

    (3.30) 

            
         

        
     (3.31) 

where       
     

      
,      

     
      

. 

Substituting Eqs. (3.30) and (3.31) into Eq. (3.25) yields 

            

             

             

           

      
      

    
      

    
 (3.32) 

where the term    
 

    
        

            

       

       

         

       (3.33) 

is unknown since     

 ,     

 ,  ,    ,     

 ,     are all unknown. The detailed formulation 

of Eq. (3.32) and Eq. (3.33) is in Appendix B.3. 
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3.3.3 Self-Constructing Criteria 

In this research a modification of the self-constructing criterion of EMRAN based 

on the principle of the growing and pruning criterion is developed. The growing part of 

the criterion is from the literature given in terms of two defined errors as follows (Er et al., 

2010) 

                       (3.34) 

          
      

 
   

                 (3.35) 

where    is the Euclidean distance (norm) between    and     ,    ,    are 

thresholds to be defined shortly. Equation (3.34) is to determine if the existing nodes are 

close to the observed center of  .  Equation (3.35) compares the accumulated error of the 

past   outputs within a given threshold value with the goal of preventing over-fitting of 

the hidden nodes caused by noise. Values of    and,     are selected in the following 

manner following other researchers (Lu et al. 1998; Li et al. 2000; Er et al., 2010):  

                             (3.36) 

                                         (3.37) 

where   is the time index,      and      are the largest and smallest output error, 

respectively;      and      are the largest and smallest error distance from input to the 

observed center, respectively;   and   are constants representing the scale of resolution. 

A new node is added to the hidden layer when Eqs. (3.34) to (3.35) are both 

satisfied. The number of hidden nodes will increase to  

                   (3.38) 

The parameters of the new node are chosen: 
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      ,      

      ,      
                   (3.39) 

where the    is a positive constant. 

The node pruning criterion developed in this research is based on the fact that a 

node far away from the input contributes little to the response because         will be 

large and the j th wavelet function     will be small per Eq. (3.14). The pruning strategy 

is defined as 

        

        
                 (3.40) 

where    is the threshold for the pruning criterion. When Eq. (3.40) is satisfied, then the 

node with minimum  j will be discarded in the following time step. 

3.4 Adaptive Law 

In order to find the weights of active nodes an adaptive law or learning rule is 

needed. An adaptive law is developed in this research by a) obtaining the second 

derivative of the error vector   , b) determining    , and c) selecting a Lyapunov function 

to ensure the stability of the control algorithm. The optimal control input is defined by 

  , and    is the compensator controller to compensate for the control input error. 

Substituting Eq. (3.12) and Eq. (3.13) into Eq. (3.2) yields 

                               (3.41) 

The complete formulation of Eq. (3.41) is available in Appendix B.4. The 

excitation vector is rewritten as        for ease of notation. Using Eqs. (3.41) and 

(3.32) and the definitions            ,           , the  th elements of the derivative 
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of the sliding surface in Eq. (3.6) can be rewritten as (see Appendix B.5. for detailed 

formulation): 

             

             

             

           

      
      

    
      

 

   
                

              

        
       

    
       

    
  

      
 

   
   

               (3.42) 

A Lyapunov function is defined as follows to ensure the stability of the SCWNN 

model: 

    
 

 
  

  
   

 
     

      
   

   

 
      

      

  
    

 

   
   

     
 

   
   

      

 

   
   

     
 

   
   

     
   

 
   

      (3.43) 

Equation (3.43) includes deliberately the error terms of all the WNN weights and 

parameters so that they all will converge to zero with no instability.  The purpose of 

including the first term in the Lyapunov function is to ensure sj converges to zero. 

Differentiating Eq. (3.43) and using Eq. (3.42) yields 

     

       
             

             

         
           

   
            

            
  

   
          

     
     

 
     

 

  
         

          
       

     

 
     

 

  
      

          

              
                

       
  

              
   (3.44) 

where       
       

   
  

      , and the detailed formulation of Eq. (3.44) is 

available in Appendix B.6. Based on (3.44), the adaptive law can be obtained as follows 

     
      ,        

        
          (3.45) 
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   ,         
         

      
      (3.46) 

     
    ,        

        
         (3.47) 

                      
     

     

  
     

      (3.48) 

                      
     

     

  
     

      (3.49) 

where        from    

      
 
 

    
  

 
 

      

        is a column vector with 

length   and this vector is in the   th row and the              th column of matrix 

 . The five Eqs (3.45) to (3.49) collectively define the adaptive law or learning rule 

developed in this research.  

The derivative of the Lyapunov function is expressed as 

    =           

              
                

      
  

              
 (3.50) 

In Eq. (3.50),    
 is divided into two parts:     

     
     

 where     
is 

chosen to cancel the first three terms (the known part) on the right hand side of Eq. (3.50): 

     
          

            
              

      
  

     (3.51) 

In that case the derivative of the Lyapunov function becomes                 
  

where    is unknown, and the inequity        still needs to be satisfied to ensure system 

stability. To achieve this, a compensation control term,     
, is obtained  using fuzzy 

logic in the in next section.  
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3.5 Fuzzy Compensation Controller 

Fuzzy logic (Zadeh, 1988) is used to develop a stable compensator controller or 

determine     
. In this research the sliding surface variable     is treated as a fuzzy 

variable. A triangular membership function with seven if-then rules are employed as 

shown in Figure 3.3 (this number of rules was observed to be sufficient). During the 

fuzzification these rules map    to the      vector of membership function   .  

 

s
j

1

1

u
j

-1/4-1/2 0-1 1/4 1/2 3/4-3/4

 

Figure 3.3 The membership function of    

 

During the subsequent defuzzification membership function    are mapped to the 

compensator control force     
. The defuzzification of the output     

 is obtained by the 

center-of-gravity method as follows: 

    
     

 
         

       (3.52) 

where                   
 , the   th membership function           

 
     ,      

is the coefficient of the   th membership function (i=1,7), and 
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 . For ease of notation, define      
      

 

 
    

 

 
    

 

 
    

 

 
       . Then, Eq. (3.52) can be rewritten as follows 

     
        

     (3.53) 

Note from Fig. 3 that    and      
 have the same sign, then        

 

          
  , and Eq. (3.50) can be rewritten as follows  

                  
                    

            
       

  

     

    (3.54) 

From Eq. (3.54) it is concluded that the stability condition        is guaranteed 

for any value of   that satisfies      
  

     

 . Thus, the value of   is chosen as  

     
  

     

        (3.55) 

where   is a positive constant. Since the value of    is unknown, Eq. (3.53) for 

compensator control force is written as   

     
         

     (3.56) 

where     is an estimated value of    and the estimation error is 

                (3.57) 

In order to find an adaptive law for estimation of    another Lyapunov function 

including the estimation error    is defined as  

        
 

   
   

      (3.58) 

where    is a positive constant. Differentiating (3.58) with respect to time yield  

                 
 

 

  
                        

  (3.59) 
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To cancel the two terms in the bracket on right hand side of Eq. (3.59), the 

adaptive law of    is chosen as 

                     
    (3.60) 

Substituting Eqs. (3.55) and (3.60) and the equation of        
           

  into 

Eq. (3.59) yields 

                 
  

    
              

              
      (3.61) 

Inequality (3.61) together with Eq. (3.50) show the bounded property of the 

function parameters of     ,   ,    ,    ,   , and the   satisfies  

             ,            (3.62) 

Equation (3.62) ensures the stability of the proposed SCWNN based control 

approach. So from (3.51) and (3.53), the compensator control input    
 is further written 

as 

   
     

     
          

             

              
      

  
            

 

(3.63) 

3.6 Example of An Unknown Nonlinear Highway Bridge 

3.6.1 Physical Model of Constructed 91/5 Overcrossing Bridge 

The proposed nonlinear control approach is studied through a benchmark control 

problem created by Agrawal et. al, (2009) for the newly constructed 91/5 overcrossing 

bridge located in Orange County in Southern California, a continuous cast-in-place 

prestressed concrete box-girder bridge as shown in Figure 3.4.  
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Figure 3.4 View of the 91/5 highway bridge 

 

The four-lane highway bridge has two spans, each 58.5m (192 ft) long, with two 

abutments skewed at    . The width of the deck is 12.95m (42.5 ft) along the east 

direction and 15m (49.2 ft) along the west direction. The cross section of the deck 

consists of three concrete box cells. The deck is supported by a 31.4m (103 ft) long and 

6.9m (22.5 ft) high prestressed outrigger, which rests on two pile groups, each consisting 

of 49 driven concrete friction piles. The columns are approximately 6.9m (22.5 ft) high. 

Eight bearings between bridge deck and abutments are used to isolate the bridge 

superstructure at both abutment-ends. 

3.6.2 3D Finite-Element Model  of the Bridge  

Agrawal et. al, (2009) developed a 3D finite-element model  of the full-scale 

highway over-crossing in MATLAB plotted in Figure 3.5. They model the soil–structure 

interaction by equivalent springs and dashpots. The bilinear hysteresis force–deformation 

relationship is considered by modeling the nonlinear behavior of center columns and the 
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eight isolators. Ground motions from six different earthquakes are applied in two 

directions simultaneously. 

 

Isolated

Bearing

Isolated

Bearing

West

 

Figure 3.5 3-D finite element model of the bridge 

 

The whole nonlinear model of the bridge has 430 DOF. A nonlinear structural 

analysis tool of MATLAB has been developed and made available for nonlinear dynamic 

analysis. Control devices are installed between the deck and the end abutments of the 

nonlinear bridge. Evaluation criteria and control constraints are specified for the design 

of controllers (Agrawal et. al, 2009).  

3.6.3 Placement of Sensors and Actuators 

In this example, 16 control devices  are placed at the two ends of the deck 

between the abutments and the bridge deck, 8 at each end (4 in the horizontal and 4 in the 
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vertical direction), the same as the sample control problem presented by Tan and Agrawal 

et al. (2008) and shown in Figure 3.6.  

Actuator and sensor

 

Figure 3.6 Distribution of actuators and sensors of the bridge 

3.6.4 Numerical Results 

Agrawal et al. (2009) define 21 criteria for the benchmark problem. Table 3.1 

shows a comparison of the evaluation criteria using the control algorithm presented in 

this chapter and the LQG algorithm provided by Agrawal et al. (2009) for six different 

earthquake records. The smaller the number the more effective the control algorithm. 

Parameters          ,           ,          ,           ,       , and 

       are selected following Er et al. (2010). The other parameters are chosen as 

follows: sampling time          sec, simulation period        sec, initial number of 

hidden nodes       ,    ,        ,      ,       ,       ,         , 

        ,         ,          ,         ,          ,         ,     

     ,         ,      . 
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Criteria 
Control 

Approach 
N. Palm Chi-Chi 

EI 

Centro 

North-

ridge 
Turkey Kobe 

   
LQG 0.9502 0.8776 0.7905 0.8965 0.9121 0.7888 

SCWNN 0.9659 0.6963 0.8716 0.8945 0.8816 0.8248 

   
LQG 0.7699 0.9666 0.7425 0.9782 0.9779 0.7040 

SCWNN 0.7382 0.9632 0.7981 0.9772 0.9737 0.6200 

   
LQG 0.8231 0.7993 0.7791 0.8669 0.746 0.7045 

SCWNN 0.8124 0.6531 0.8768 0.8652 0.704 0.6699 

   
LQG 0.7941 0.8753 0.8829 0.8435 0.7983 0.8986 

SCWNN 0.8783 0.9557 0.9828 0.9795 0.8988 0.9238 

   
LQG 0.9370 0.8027 0.6433 0.8826 0.7144 0.5862 

SCWNN 0.6015 0.6046 0.5112 0.8449 0.6601 0.3539 

   
LQG 0.7699 0.7433 0.7425 0.8516 0.4626 0.7040 

SCWNN 0.7382 0.5114 0.7981 0.8200 0.3192 0.6200 

   
LQG 0 0.5119 0 0.6244 0.3317 0 

SCWNN 0 0.1114 0 0.4981 0.1655 0 

   
LQG 0 0.6667 0 1 0.3333 0 

SCWNN 0 0.5000 0 1 0.3333 0 

   
LQG 0.7426 0.8856 0.6757 0.8673 0.8937 0.7389 

SCWNN 0.8440 0.6653 0.6039 0.7764 0.8171 0.6880 

    
LQG 0.6964 0.8329 0.6433 0.8780 0.5316 0.7127 

SCWNN 0.7229 0.6804 0.5782 0.7672 0.4737 0.6334 

    
LQG 0.7033 0.7833 0.6563 0.8047 0.6071 0.7293 

SCWNN 0.7770 0.5629 0.5958 0.7610 0.5569 0.6674 

    
LQG 0.7233 0.7910 0.6852 0.7956 0.7946 0.7976 

SCWNN 0.7535 0.7416 0.8617 0.8343 0.9189 0.9229 

Continued 

Table 3.1 A Comparison of SCWNN based control and sampled LQG control of 

the benchmark bridge  
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Table 3.1 continued 

Criteria Approach N. Palm Chi-Chi 
EI 

Centro 

North-

ridge 
Turkey Kobe 

    
LQG 0.4829 0.7821 0.4844 0.8211 0.5210 0.4720 

SCWNN 0.3653 0.5323 0.4148 0.7536 0.3748 0.2566 

    
LQG 0.6964 0.6270 0.6433 0.8274 0.2388 0.7127 

SCWNN 0.7229 0.6763 0.5782 0.9552 0.1652 0.6334 

    
LQG 0.0101 0.0238 0.0057 0.0230 0.0147 0.0079 

SCWNN 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 

    
LQG 0.9019 0.7686 0.5916 0.8039 0.7082 0.5779 

SCWNN 0.5790 0.5789 0.4701 0.7696 0.6544 0.3489 

    
LQG 0.0512 0.1092 0.0213 0.1105 0.0664 0.0356 

SCWNN 0.0506 0.1153 0.0440 0.1119 0.0770 0.0392 

    
LQG 0.0119 0.0150 0.0032 0.0150 0.0136 0.0064 

SCWNN 0.0118 0.0159 0.0066 0.0152 0.0158 0.0064 

    
LQG 16 16 16 16 16 16 

SCWNN 16 16 16 16 16 16 

    
LQG 12 12 12 12 12 12 

SCWNN 32 32 32 32 32 32 

    
LQG 28 28 28 28 28 28 

SCWNN N/A N/A N/A N/A N/A N/A 

 

It is observed that the maximum base shear    has been reduced in case Chi-Chi, 

Northridge and Turkey earthquake.  The performance of SCWNN based control shows a 

better performance in the aspect of   ,   ,   ,   ,    ,    ,    ,    ,    , and     in reducing 

structural displacement, moment, shear, and device stroke consistently in most of the five 

different earthquakes (see Appendix C for detail description of those criteria). Figure 3.7 

and Figure 3.8 show the displacement at the position of the second and seventh sensors 
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(in both x- and y- direction), respectively. It is found that the displacement has been 

reduced significantly compared with that without control or with LQG control. Maximum 

displacement, moment, and shear in the structure and maximum displacement and stroke 

of the device are substantially smaller than the corresponding values for the LQG 

controller. The acceleration in the middle of the span is slightly higher than that of the 

sample LGG control. Two explanations are provided. First, there is no control device in 

the middle span of the bridge in the benchmark problem. Second, given structural 

properties including mass, stiffness, and damping ratios are used  in the benchmark 

problem which are required in classical control algorithms such as LQG. The proposed 

model does not rely on known structural properties and does not use any of those 

properties. In addition, the time history of the wavelet node is shown in Figure 3.9. 

 

Figure 3.7 Bridge displacements at the position of the second sensor under Kobe 

Earthquake: (a) x-direction; and (b) y-direction. 
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Figure 3.8 Bridge displacements at the position of the seventh sensor under Kobe 

Earthquake: (a) x-direction; and (b) y-direction. 

 

 

Figure 3.9 Variance of wavelet node number h(t) 
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3.7 Conclusion 

An adaptive and robust control algorithm for nonlinear vibration control of large 

structures subjected to dynamic loading was presented through integration of a self-

constructing wavelet neural network with an adaptive fuzzy sliding mode control 

approach. It is particularly suitable when structural properties are unknown or change 

during the dynamic event which is the case for civil structures subjected to dynamic 

loading. In other words, the proposed control model has the advantages of not requiring 

accurate mathematical model of the controlled structure and good adaptive ability to the 

changes of structural parameters and external dynamic loading. The robustness of the 

proposed algorithm is achieved by deriving a set of adaptive laws for determining the 

unknown parameters of wavelet neural networks using two Lyapunov functions. No 

offline training of neural network is necessary for the system identification process. In 

addition, the earthquake signals are considered as unidentified. This is particularly 

important for on-line vibration control of large civil structures since the external dynamic 

loading due to earthquake is not available in advance. Because of these advantages, the 

proposed adaptive control algorithm is especially effective and implementable for 

vibration control of large civil structures. 
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Chapter 4: Tuning Algorithms for Chattering Reduction in System Control 

4.1 Introduction 

Sliding model control (SMC) has been used widely for control of both linear and 

nonlinear systems, especially when the system is unknown or partially known.  Consider 

a simple system defined by the differential equation                    where   

is the system state, m,  , and   are physical parameters of the system that are functions of 

the state variables,     is the disturbance, and u is control input which aims to drive the 

state to some desired trajectory (usually zero). The state variables are      ,       . 

Their derivatives make typical second order steady-space equations: 

               (4.1) 

                     (4.2) 

where function                           . Assume the sliding surface to be 

        =0 where the constant is required to be positive, i.e.,    . In that case, 

       . Substituting this value in Eq. (4.1) yields         , with solution        , 

which means           , and                     . Consequently, 

       
  

  
   . The larger the value of    the faster the convergence of the system 

response to zero.  

Taking the time derivative of the sliding surface yields 

                               (4.3) 
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In order to achieve a sliding surface defined by           = 0 , the control 

force,  , is chosen such that the sign of    is always the opposite of the sign of   : 

                      (4.4) 

where the sliding gain function M is chosen to satisfy                         , and 

        is a sign function of  . Substituting for u from Eq. (4.4) into Eq. (4.3) yields: 

                                  (4.5) 

Since                        , the term                 determines the 

sign of    and ultimately the value of  . Equation (4.5) guarantees the sign of    is always 

opposite of the sign of  , and           as it is desired, and the discontinuous Eq. (4.5) 

ensures the exponential decay of     . 

4.2 A Tuning Algorithm for the Sliding Gain Function 

Traditionally, a constant value has been selected for the sliding gain function 

         (Utkin, 1992; Khalil, 1996), usually the absolute value of the lower and upper 

boundaries of the unknown system factors including external disturbance, noise, and 

sensor and actuator dynamics. Such a constant   is normally large and will force the 

trajectory in the phase plane (x1, x2) into the desired sliding surface (   ). However, an 

unavoidable oscillation, called chattering, occurs after the trajectory reaches the sliding 

surface. This chattering in SMC is undesirable, for example, it may cause the loss of 

power in the control of DC-DC convertors (Lee et al., 2009). This chattering generally 

depends on the sampling time (  ), sliding gain function ( ), external disturbance, noise, 

and sensor or actuator dynamics (the last two are referred to as unmodeled dynamics). 
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Several approaches have been proposed in the literature in order to reduce the chattering. 

They are mentioned here briefly.   

1) Choose a small sampling time such as                 sec. However,    

cannot be too small due to hardware limitation and excessive computational time 

requirement.  

2) Reduce the effect of system uncertainty through system identification, noise 

estimation, and disturbance measurement, etc.  These methods help reduce the   

value and consequently the chattering since the boundary value of the system 

uncertainty is reduced. However, this method is indirect and requires data training 

in the identification process.  

3) Replace the discontinuous        function with a discontinuous saturation 

function          
                           

               
  (Slotine  and  Sastry, 1983) where   is a 

small positive constant.  However, this strategy may lead to unstable solutions 

(Utkin et al., 1999). Another replacement includes hysteresis loop which also 

improves system stability (Nguyen and Lee, 1995; Aroudi et al., 2005) but its use 

is more complicated than the saturation function. 

4) Replace the constant   with function          or     . Since          in Eq. 

(4.4) is a function of    and   , and   is a function of        ,          and      

are related and their tuning methods are similar. The idea of this method is to 

adjust the time-varying gain          or      such that it will respond to the 

varying boundary of unknown factors in the system properly. A tuning algorithm 
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based on this idea is especially useful when disturbance and unmodeled dynamics 

are included in the system. 

Using the idea of the last approach, Lee and Utkin (2007) proposed a ―state-

dependent‖ and ―equivalent-control-dependent gain‖ approach in the form        

         where    and   are positive constants, and the function          for 

state-dependent method and                  [the average value of the time series 

       achieved through a low pass filter] for equivalent-control-dependent gain 

approach. These two approaches usually work since   is much smaller than the boundary 

value of  , i.e., the sliding gain has been reduced to a smaller value which will always 

reduce chattering. 

In this article, a time-varying method is proposed for determining the sliding gain 

function inspired by the aforementioned state-varying approach. Since   is a function of 

time it is more straightforward to use a time-dependent rather than a state-dependent gain 

function. The idea is to adjust      rather that          or      such that      will 

respond to the varying boundary of the unknown factors in the system. Two alternative 

tuning algorithms are proposed for reducing      for systems with and without sensor 

dynamics, noise, and external disturbance. The first algorithm is for systems with no 

noise and disturbance but with or without unmodeled dynamics.  The second algorithm is 

for systems with noise, disturbance, unmodeled dynamics, or any combination of them. 

Compared with the state-dependent, equivalent-control-dependent, and hysteresis loop 

methods, the proposed algorithms are more straightforward and easy to implement. They 

will be introduced for five different cases. 
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4.3 Algorithm I for Systems with Unmodeled Dynamics Only 

For a system without any sensor dynamics, noise, and disturbance, the selected 

value of   in SMC will be too large after the sliding surface (   ) is reached. Hence, 

the value of   should be reduced after the sliding surface is reached in order to reduce 

the chattering and ensure that a sliding mode always exists along the sliding surface. To 

achieve this, the following tuning algorithm is proposed for     : 

1) If                        , then choose            ; else select 

     
      

    
; 

2) Select                        ; 

3) Go to the next time step and go to step 1. 

where the index   indicates the time      , and the coefficient        is a constant 

value. It should be noted that      will always decrease in time and therefore a large 

initial value should be selected for      to ensure the existence of a sliding surface.  

4.3.1 Case 1: For Systems Without Sensor Dynamics, Noise, and Disturbance  

The efficacy of the proposed algorithm is shown via an example using the values: 

   ,       ,         , and     . The following arbitrary non-zero initial states 

are selected:                   (the same values are used for all the examples 

presented in this chapter).    

For all examples, the sampling time is chosen as         sec which is small 

enough to keep the chattering within an acceptable range. For a constant  , it is chosen 

as       after several trials (a larger value creates a greater chattering problem and a 

smaller value cannot achieve a sliding mode).  For the case of the time-varying     , the 
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decreasing rate coefficient is chosen         , and the initial values of            and 

     are selected as               and          .  

Figure 4.1 represents the phase plane (     ) using a constant value of M = 100.  

A close-up of Figure 4.1 is presented in Figure 4.2 in order to show the chattering 

phenomenon clearly. Figure 4.3 and Figure 4.4 are time histories of state variable x1 and 

the control input u. The high-frequency switching of u leads to a condense plot in Figure 

4.4 which is undesirable for practical applications because of actuator response limitation 

A close up of Figure 4.4 is shown in Figure 4.5,  similar observations are made in Figure 

4.13, Figure 4.22, Figure 4.32, Figure 4.41, and Figure 4.50 for other cases to be 

discussed.  Figure 4.6 shows the phase plane (     ) using a time-varying M with an 

initial value 100, the same as for constant M. A close-up of Figure 4.6 is presented in 

Figure 4.7. Figure 4.8 and Figure 4.9 show time histories of the state variable x1 and the 

control input u for the case of time-varying M. A comparison of the results shown in 

Figure 4.2 and Figure 4.7 indicates that the proposed tuning algorithm reduces the 

chattering by about 95%. In addition, a comparison of Figure 4.4 and Figure 4.9 shows 

the frequent change of the control input is reduced significantly, and the norm value of 

the control input is reduced from      to     which means the energy required by 

actuators has been reduced substantially. The average value of         is 0.1032 for time-

varying M compared with 0.0027 for a constant M = 100. The increase for time-varying 

M means         does not change as frequently as in the case of constant  , which is 

why the chattering is reduced through the proposed tuning algorithm.  
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Figure 4.1 Phase plane using a constant M = 100 (Case 1) 

 

 

Figure 4.2 A close-up of the phase plane in Figure 4.1 (Case 1) 
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Figure 4.3 Time series of the state variable x1 using a constant M=100 (Case 1) 

 

 

Figure 4.4 Time series of the control input using a constant M=100 (Case 1) 
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Figure 4.5 A close-up of  Figure 4.4 (Case 1) 

 

 

Figure 4.6 Phase plane using a time-varying M (Case 1) 
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Figure 4.7 A close-up of the phase plane in Figure 4.6 (Case 1) 

 

 

Figure 4.8 Time series of the state x1 using a time-varying M (Case 1) 
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Figure 4.9 Time series of control input using a time-varying M (Case 1) 
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form of differential equations in frequency domain where       for variable   with 
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system performance than that of the sampling time. An explanation for this is that the 

sensor dynamics (or in general, the second order unmodeled dynamics) behaves as an 

undesirable filter and filters out the discontinuous control force   in Eq. (4), and 

transforms it into a continuous function. This will work against the key idea in SMC and 

against Eq. (4). The chattering in this case is reduced by nearly 90% using      as shown 

in Figure 4.15 compared with the case with a constant      . The frequent change of 

the control input is also reduced significantly as shown in Figure 4.17 compared with 

Figure 4.13 for the constant M case. The average value of         for time-varying case 

is 0.0745 significantly larger than 0.0075 for constant M case. The norm value of the 

control input is reduced from      to    .  

 

Figure 4.10 Phase plane using a constant M = 100  (Case 2) 
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Figure 4.11 A close-up of the phase plane in Figure 4.10 (Case 2) 

 

 

Figure 4.12 Time series of displacement using a constant M = 100 (Case 2) 
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Figure 4.13 Time series of control input using a constant M = 100 (Case 2) 

 

 

Figure 4.14 Phase plane using a time-varying M (Case 2) 
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Figure 4.15 A close-up of the phase plane in Figure 4.14 (Case 2) 

 

 

Figure 4.16 Time series of displacement using a time-varying M (Case 2) 

 

7 7.5 8 8.5 9 9.5 10
-10

-9.5

-9

-8.5

-8

-7.5

-7

x
1

x
2

0 5 10 15 20 25 30 35 40
-5

0

5

10

15

20

time (sec)

x
1



82 
 

 

Figure 4.17 Time series of control input using a time-varying M (Case 2) 
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2) If                         , then select                 while 

satisfying           ; else go to step 3); 

3) Select                        ; 

4) Go to next time step and repeat step 1. 

The parameters    and    are the positive lower and upper bounds of     , 

respectively. The coefficient   and the jump factor   for the adjustment of      should 

satisfy       .  

In all four cases 3 to 6 (to be presented shortly),       is used for constant M. 

For the case of time-varying     ,      and       , and the initial values of 

             and           are selected. 

4.4.1 Case 3 For Systems with Noise Only 

A Gaussian white noise with a standard normal distribution  (Figure 4.18) is used 

in the controlled system for illustration purpose. The values of      and       are 

selected for the coefficients of the algorithm in this case. Results using constant M and 

time-varying      are shown in Figure 4.19 to Figure 4.26. Although the sliding surface 

is achieved for the case of      , as shown Figure 4.19, there is considerable 

chattering (Figure 4.20) which  is reduced by about 95% by the proposed algorithm as 

shown in Figure 4.24. In addition, the norm value of the control force has been reduced to 

   , from       for the case of      .  



84 
 

 

Figure 4.18 Time series of noise 

 

 

Figure 4.19 Phase plane using a constant M = 300 (Case 3) 
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Figure 4.20 A close-up of the phase plane in Figure 4.19 (Case 3) 

 

 

Figure 4.21 Time series of state x1 using a constant M = 300 (Case 3) 
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Figure 4.22 Time series of control input using M = 300 (Case 3) 

 

 

Figure 4.23 Phase plane using a time-varying M (Case 3) 
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Figure 4.24 A close-up of the phase plane in Figure 4.23 (Case 3) 

 

 

Figure 4.25 Time series of state x1 using a time-varying M (Case 3) 
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Figure 4.26 Time series of control input u using a time-varying M (Case 3) 

 

 

Figure 4.27 Time series of time-varying M (Case 3) 
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4.4.2 Case 4: For System with External Excitation 

Mathematically, external excitations such as those from earthquake and wind can 

be treated as one kind of noise, since their average value tends to be very close to zero. 

For example, the average value of the North-South component of the 1940 EI Centro, 

California, Earthquake in (Figure 4.28) is          g (g is the acceleration due to 

gravity), very small compared with its peak value 0.215 g. Such excitations are especially 

important in the civil/structural engineering domain. For this reason, it is studied 

separately from the general noise studied in the previous section. The 1940 EI Centro 

accelerogram (Figure 27) is selected as an example excitation. The same values of 

     and       used in Case 3 are used in this case. Results using constant M and 

time-varying      are shown in Figure 4.29 to Figure 4.36. The chattering is reduced by 

more than 95% (Figure 4.34) by using the second algorithm. In addition, the norm value 

of the control force to     , from       for the case of      .  
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Figure 4.28 Time history of disturbance (1940 EI Centro earthquake, NS-direction) 

 

 

Figure 4.29 Phase plane using M = 300 (Case 4) 
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Figure 4.30 A close-up of the phase plane in Figure 4.29 (Case 4) 

 

 

Figure 4.31 Time series of displacement using a constant M = 300 (Case 4) 
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Figure 4.32 Time series of control input using M = 300 (Case 4) 

 

 

Figure 4.33 Phase plane using a time-varying M (Case 4) 
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Figure 4.34 A close-up of the phase plane in Figure 4.33 (Case 4) 

 

 

Figure 4.35 Time series of displacement using a time-varying M (Case 4) 
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Figure 4.36 Time series of control input using a time-varying M (Case 4) 

 

 

Figure 4.37 Time series of time-varying M (Case 4) 
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4.4.3 Case 5: For Systems with Disturbance 

General noise and the earthquake external excitation generally have zero average 

values (or close to zero). In order to evaluate the performance of the second tuning 

algorithm for systems with an external disturbance with a non-zero average value, a 

disturbance in the form               is considered. The values of      and       

are selected for the coefficients of the algorithm in this case. Results using constant M 

and time-varying      are shown in Figure 4.38 to Figure 4.45.  

The chattering is reduced by more than 70% (Figure 4.42 and Figure 4.43) by 

using the second algorithm. In addition, the norm vale of the control force has been 

reduced to     , from       for the case of      . Similar reductions of chattering 

in the order of 70% are obtained when noise, external excitation, and disturbance exist. 

The results are not shown here due to space limitations.  
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Figure 4.38 Phase plane using a constant M = 300 (Case 5) 

 

 

Figure 4.39 A close-up of the phase plane in Figure 4.38 (Case 5) 

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

x
1

x
2

7 7.5 8 8.5 9 9.5 10
-10

-9.5

-9

-8.5

-8

-7.5

-7

x
1

x
2



97 
 

 

Figure 4.40 Time series of displacement using a constant M = 300 (Case 5) 

 

 

Figure 4.41 Time series of control input using a constant M = 300 (Case 5) 
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Figure 4.42 Phase plane using a time-varying M (Case 5) 

 

 

Figure 4.43 A close-up of the phase plane in Figure 4.42 (Case 5) 
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Figure 4.44 Time series of displacement using a time-varying M (Case 5) 

 

 

Figure 4.45 Time series of control input using a time-varying M (Case 5) 
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Figure 4.46 Time series of time-varying M (Case 5) 

 

4.4.4 Case 6: For Systems with Sensor Dynamics, Noise, and Disturbance 

In this case the same sensor dynamics of Case 2, Gaussian white noise of Case 3, 

external excitation of Case 4 (El Centro record), and  non-zero disturbance of Case 5 are 

used. The values of      and       are selected for the coefficients of the algorithm 

in this case. Results using constant M and time-varying      are shown in Figure 4.47 to 

Figure 4.55. In this case the amount of reduction in chattering varies from about     in 

the range         to     in the range        in the phase plane (Figure 4.47, 
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     . Similar reductions of chattering in the order of 70% are obtained when noise, 

external excitation, and disturbance exist. 
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Figure 4.47 Phase plane using M = 300 (Case 6) 

 

 

Figure 4.48 A close-up of the phase plane in Figure 4.47 (Case 6) 
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Figure 4.49 Time series of displacement using M = 300 (Case 6) 

 

 

Figure 4.50 Time series of control input using M = 300 (Case 6) 
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Figure 4.51 Phase plane using M(t) (Case 6) 

 

 

Figure 4.52 A close-up of the phase plane using M(t) (Case 6) 
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Figure 4.53 Time series of displacement using M(t) (Case 6) 

 

 

Figure 4.54 Time series of control input using M(t) (Case 6) 
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Figure 4.55 Time series of displacement using M(t) (Case 6) 
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4.5 Conclusion 

SMC is among the popular approaches for control of systems, especially for 

unknown nonlinear systems. However, the chattering in SMC is generally a problem that 

needs to be resolved for better control. In this article, two tuning algorithms are proposed 

to reduce such chattering considering unknown sensor dynamics, general noise, external 

excitation, and disturbance.  

For systems with unknown sensor dynamics, the boundary of  sensor dynamics 

will not increase with time, and therefore it is not necessary to increase the gain     .  

Hence, the chattering and control force can be reduced significantly due to the decrease 

of       and the increase of the average value of         using the first tuning algorithm. 

For systems with noise and disturbance, the boundary of system unknowns is time-

varying and may increase or decrease with time. As a result, the first tuning algorithm 

does not work well for this situation. However, it is important to note that the first tuning 

algorithm is especially suitable for systems with unmodel dynamics only. For example, 

the DC motor with sensors in Samoylenko et al. (2008). 

A second tuning algorithm is proposed for system with general noise, external 

excitation, or disturbance. The results of Cases 3 to 5 show that the chattering and control 

input are both reduced significantly in the order of 70 to 95%. For systems with sensor 

dynamics, noise, and disturbance, the reduction of chattering is not as significant as any 

of the previous three separated cases, but the chattering is still reduced by     to 50%, 

and the frequent changes of control force and the required energy are also reduced 

considerably in the range 72% to 99%.  
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Chapter 5: Conclusion and Further Research 

5.1 Conclusion 

The main advantage of the SMC is that it is invariant to disturbance (such as wind 

and earthquake) and the variation of system parameters (such as the mass, stiffness, and 

damping ratio matrices) if the uncertainties can be represented the linear combination of 

the control input, which is generally satisfied for most civil structures.  

A filtered sliding mode control (SMC) approach is presented in Chapter 2 for 

vibration control of wind-excited highrise building structures. Rather than using a 

Lyapunov-function based control design, an alternative way is provided to find the 

control force based on the equivalent control force principle to obtain the control force. A 

low pass filter is properly selected to remove the high-frequency components of the 

control force while retaining the structural stability. The performance of the proposed 

filtered SMC is evaluated by application to a wind-excited 76-story building benchmark 

problem equipped with an active tuned mass damper (ATMD) on the roof. Due to the 

elimination of high-frequency part of the control force, the structure, sensors, actuators, 

and dampers are all less excited, and consequently their response is reduced compared 

with the unfiltered SMC approach. In addition, the required control forces are reduced 

which means a reduction in the size of actuators making their implementation more 

practical. It is shown the proposed method is more robust to structural stiffness 
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uncertainties compared with the linear quadratic Gaussian (LQG) algorithm and another 

implementation of SMC.  

An adaptive and robust control algorithm for nonlinear vibration control of large 

structures subjected to dynamic loading was presented in Chapter 3 through integration of 

a self-constructing wavelet neural network with an adaptive fuzzy sliding mode control 

approach. It is particularly suitable when structural properties are unknown or change 

during the dynamic event which is the case for civil structures subjected to dynamic 

loading. In other words, the proposed control model has the advantages of not requiring 

accurate mathematical model of the controlled structure and good adaptive ability to the 

changes of structural parameters and external dynamic loading. The robustness of the 

proposed algorithm is achieved by deriving a set of adaptive laws for determining the 

unknown parameters of wavelet neural networks using two Lyapunov functions. No 

offline training of neural network is necessary for the system identification process. In 

addition, the earthquake signals are considered as unidentified. This is particularly 

important for on-line vibration control of large civil structures since the external dynamic 

loading due to earthquake is not available in advance. Because of these advantages, the 

proposed adaptive control algorithm is especially effective and implementable for 

vibration control of large civil structures. 

The chattering in SMC is generally a problem that needs to be resolved for better 

control. A time-varying method is proposed for determining the sliding gain function in 

the SMC in Chapter 4. The first algorithm is for systems with no noise and disturbance 

but with or without unmodeled dynamics.  The second algorithm is for systems with 

noise, disturbance, unmodeled dynamics, or any combination of them. Compared with 
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the state-dependent, equivalent-control-dependent, and hysteresis loop methods, the 

proposed algorithms are more straightforward and easy to implement. The performance 

of the algorithms is evaluated for six different cases. A 90% to 95% reduction of 

chattering is achieved for the first algorithm used for systems with sensor dynamics only. 

By using the second algorithm, the chattering is reduced by 70% to 90% for systems with 

noise and/or disturbance, and by 25% to 50% for systems with combination of 

unmodeled dynamics, noise, and disturbance. 

5.2 Further Research 

Further research includes but not limit to: (1) SCWNN based observer and control 

design for unknown or partially known nonlinear civil structures; (2) Control of civil 

structural with actuator-structure and sensor-structure interactions; and (3) Chattering 

reduction of vibration control for real and large structures. 

A central purpose of this study is to design accurate controllers to reduce 

structural vibration. However, the time-varying properties of structural stiffness and/or 

damping during dynamic events such as earthquake and wind excitations cause an 

adaptive control problem rather than a pure control problem for the control of time-

varying civil structures. SCWNN model is employed to ―identify‖ the controlled 

structures in the adaptive process. In fact, not all the structural states (such as 

displacement, velocity, and acceleration) are available for measurement due to structural 

or sensor limitations, which necessarily introduces the estimation of structural states by 

designing observers, for example, the asymptotic observer and sliding model observer. 

Therefore, one of the further researches includes both observer and control design based 
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on SCWNN for unknown or partially known nonlinear civil structures. Moreover, it is 

clear that the performance of adaptive control depends heavily on the initial conditions of 

the control structures. For most civil structures, the initial conditions of structural states 

are known (even for those with time varying properties). For this reason, those conditions 

should be used to improve the performance of the adaptive control. 

Another issue in vibration control of civil structures is to consider the actuator-

structures interactions, and unmodeled dynamics (actuator and sensor dynamics) coupled 

in structural models. The influence without considering the coupling unmodeled 

dynamics and the pure structures will impair the performance of control approaches, 

especially when unmodeled dynamics are with high orders (for example, second- or 

third-order). Hence further research for such interaction and coupling are important for 

building a more precise model, and ultimately, for a more accurate control.  

Traditional SMC generally involve an undesired chattering, which is reduced by 

developing a proper time varying sliding gain function. The effectiveness of approach for 

chattering reduction has been proved by a simple first-order system with 6 different cases. 

Further work is strongly suggested to include application of this approach to large civil 

structures.  
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Appendix  

Appendix A: Performance Criteria for the 76-story Benchmark Problem 

The evaluation criteria fall into three categories: peak responses, normalized 

responses, and control requirements. A total of 16 criteria are provided for evaluation of 

the performance of a control algorithm (Yang et al., 2004). They are summarized in this 

Appendix. 

The maximum root mean squared (RMS) value of acceleration: 

                 
      

      
      

      
      

      
        

 

where     
 is the RMS value of acceleration of the   th floor,       

             is the 

RMS value of acceleration of the    th floor without control. 

The average acceleration of 6 selected floors above the 49
th

 floor:  

   
 

 
 

    

      

 

where                        ,  and      
 is the RMS value of acceleration of the  th

  

floor without control. 

The ratio of the displacements of top floor with and without control: 

   
    

     

 

where     
 and       

are the RMS values of the displacement of the 76
th

 floor with and 

without control, respectively (     
         ). 
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The average ratio of the displacements of 7 selected floors with and without 

control: 

   
 

 
 

   

     

 

where                       , and    
 and      

is the RMS value of the 

displacement of the  th
 floor with and without control, respectively. 

The nondimensionalized actuator stroke (displacement) and average power  

   
   

     

 

       
 

 
                

 

 

 

where    
  RMS of the actuator stroke,         actuator velocity,    total time of 

integration (chosen as 900 seconds), and     RMS of the control power.  

Criteria    to      are defined in terms of maximum structural response as follows: 
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for                    , 76, where     and      are the peak displacements of the  th
 

floor with and without control, respectively;      and       are the peak accelerations of the 
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 th
 floor with and without control, respectively;               and        

          . 

The following criteria are proposed for evaluation of the required actuators: 

    
   

     
 

                         

where      peak actuator stroke, and       peak control power.  

The remaining four (unnumbered) are the RMS value of the control force (  ), 

the RMS value of the actuator stroke (   
), the absolute maximum value of the control 

force (max   ), and the  absolute maximum value of the actuator stroke (max    ). 

Appendix B: Equation Formulations 

B.1: Derivation of Eq. (3.23) 

The approximation error function     is computed using Eqs. (3.20) and (3.22): 

               
     

         

        
    

    

        

       
        

        
    

    

        

        
       

     

    

        

        

        

        
       

     

     

        

        
       

     

     

               

        
       

     

     

         

         

        
       

     

where     
    

     
,                        . 
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B.2: Derivation of Eq. (3.25) 

Substituting Eq. (3.24) into Eq. (3.23) yields 

        

                      

         

        
       

     

      

        
      

    
      

     

       

        
       

     

where relations     
      

     

       and    
      

     

       are employed because 

they are scalars.   

B.3: Derivation of Eq. (3.32) 

Substituting Eqs. (3.30) and (3.31) into Eq. (3.25) yields 

        

        
      

    
      

     

       

        
       

     

           
         

        
 

 

       
      

    
      

     

       

    

          
         

        
 

 

      

     

         

             

            

        
      

    
      

     

       

     

         

           

          

       

     

         

             

             

           

      
      

    
      

    
  

where the unknown term    
 

    
        

            

       

       

         

       

B.4: Derivation of Eq. (3.41) 

Substituting Eq. (3.12) and Eq. (3.13) into Eq. (3.2) yields 
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B.5: Derivation of Eq. (3.42) 

The   th elements of the derivative of the sliding surface in Eq. (3.6) can be 

rewritten as: 

                                 
    

          

             

             

           

      
      

    
      

 

   
                

              

        
       

    
       

    
  

      
 

   
   

             (A6) 

B.6: Derivation of the first Lyapunov function: Eq. (3.44) 

Differentiating Eq. (3.43) and using Eq. (3.42) yields 
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where       
       

   
  

      .  

B.7: Derivation of the second Lyapunov function: Eq. (3.59) 

Differentiating (3.58) with respect to time yield  
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Appendix C: Evaluation Criteria for the Benchmark Control Problem 

The evaluation criteria fall into three categories: peak responses, normalized 

responses, and control requirements. A total of 21 criteria are used to evaluate the 

performance of various control devices and algorithms (Agrawal et al., 2009). The first 

eight evaluation criteria measure the reduction in peak response of the bridge.  

1) Peak base shear force in the controlled structure divided by the corresponding 

base shear without control 

       
            

   
      

2) Peak overturning moment in the controlled structure divided by the 

corresponding overturning moment of the structure without control 

       
            

   
      

3) Peak displacement at the mid-span of the  controlled structure divided by the 

corresponding peak mid-span displacement of the uncontrolled structure 

            
      

   
       

4) Peak acceleration at the mid-span of the  controlled structure divided by the 

corresponding peak mid-span acceleration of the uncontrolled structure 
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5) Peak deformation of bearings in the controlled structure divided by the 

corresponding peak deformation of bearings in the uncontrolled structure 

            
      

   
       

6) Peak curvature at the bent column in  the controlled structure divided by the 

corresponding curvature in the uncontrolled structure 

       
           

    
   

7) Peak dissipated energy of curvature at the bent column in the controlled 

structure divided by the corresponding dissipated energy in the uncontrolled 

structure 

       
        

    
   

8) The number of plastic connections with control divided by the corresponding 

number of plastic connections without control 

        
  

 

  
  

The second set of six criteria are based on normal responses over the entire time 

duration of an earthquake, which are described as follows 

9) Normal base shear force in the controlled structure divided by the 

corresponding normal shear in the uncontrolled structure 

       
            

    
    

   

10) Normal overturning moment in the controlled structure divided by the 

corresponding overturning in the uncontrolled structure 
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11) Normal displacement at the mid-span in the controlled structure divided by 

the corresponding normal displacement at the mid-span in the uncontrolled 

structure 

            
        

    
    

  

12) Normal acceleration at the mid-span in the controlled structure divided by the 

corresponding normal acceleration at the mid-span in the uncontrolled 

structure 

            
         

     
    

   

13) Normal deformation of bearings in the controlled structure divided by the 

corresponding normal displacement of bearings in the uncontrolled structure 

            
        

    
    

  

14) Normal curvature at the bent column in the controlled structure divided by the 

corresponding normal curvature at the bent column in the uncontrolled 

structure 

           
        

      
   

The requirement of control resource from the controller are evaluated by the 

following seven criteria  
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15) Peak control force generated by the control device(s) devided by the seismic 

weight of the bridge based on the mass of superstructure (excluding the 

foundation) 

            
     

 
   

16) Peak stroke of the control device(s) divided by the maximum deformation of 

bearings in the uncontrolled structure 

            
     

   
   

 where           
  

17) Peak instantaneous power required by the control device(s) divided by the 

product of the weight and the maximum velocity of bearing in the 

uncontrolled structure 

         
         

  

  

    
     

  

18) Peak total power required for the control of the bridge divided by the product 

of weight and maximum deformation of bearings in the uncontrolled structure 

            
       

    
     

19) Number of control devices (   ) 

20) Number of sensors (   ) 

21) Dimension of the discrete state vector required for the control algorithm 

           
   



133 
 

where     and     denote the absolute and norm operation, respectively; i = 1 and 2 

represent x and y direction, respectively;  j = 1, …,    , is the number of plastic hinges,  

and   is the number of control devices. 


