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Abstract 

 

    Dielectric rod antenna has been shown to provide wideband, dual-polarization, and 

symmetric pattern. A two layer dielectric rod antenna (DRA) was shown to achieve more 

than 4:1 bandwidth of stable gain and with more than 55 degree HPBW. Although, it was 

predicted that a 3-layered DRA design should be able to achieve 8:1 bandwidth and a 4-

layer DRA design could reach 16:1 bandwidth, such design has never been realized due 

to its design and fabrication complexity. 

     The key challenge in designing a multi-layer DRA is to choose proper thickness and 

dielectric constant of each layer to meet desired VSWR, pattern, and phase center 

requirements. This becomes even more difficult when the when the number of layers 

increases for achieving a greater bandwidth.  

    This paper discusses about how we overcome these challenges via the utilization of 

genetic-algorithm (GA) for design optimization procedure, and polymer-ceramic 

fabrication method. 
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CHAPTER 1 

 

Introduction 

 

Ultra wideband (UWB) technology has been widely studied and extensively applied 

in both commercial and military areas in recent decades [1] because UWB system can 

receive more information by using wide bandwidth signal than narrow bandwidth signal. 

An important application of UWB antennas is feed antennas inside an anechoic 

chamber which is a facility for antenna and RCS measurement. For the measurement in 

an anechoic chamber, a parabolic reflector is responsible to convert the spherical wave 

fronts which are radiated from a feed antenna into plane wave. A good feed antenna 

should provide constant beamwidth over the operation bandwidth, a stationary phase 

center to be located at the focal point of the parabolic antenna, minima size to avoid 

blockage, and low sidelobe level to reduce leakage. It’s very difficult to design a single 

antenna that provides a wide bandwidth, stationary phase center, constant gain, dual 

polarization, and desired beamwidth. Moreover, an antenna designed only with 

conducting material usually has undesired trade-off between above design goals. 

For instance, horn antennas are commonly used as feed antennas in a chamber 

because of wide bandwidth. But horn antennas are well-known for asymmetric E- and H- 
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plane patterns, frequency-dependent patterns, and single polarization [2].  A square 

coaxial feed structure method solves the pattern asymmetric problem of TEM horn 

antennas, but the feed technique constraint its bandwidth [3]. Dual-polarization is hard to 

achieve because of the interactions between two planes. Using coaxial to quadruple-

ridged method [4] obtains wider bandwidth and dual polarization, but the patterns are still 

frequency-dependent. The phase center of most horn antenna designs varies with 

frequencies.     

Plane spiral antennas are also well-known as broadband, symmetric patterns, and 

predictable phase center [5]. Dual-linear polarization can also be achieved by sinuous 

spiral antennas. But the disadvantages of these antennas are fixed radiation patterns and 

not flexible for all applications.                                                                                                            

Using dielectric material as main radiator can be able to conquer the undesired 

trade-off discussed above. For example, a dielectric horn antenna (DHA), which can 

achieve wideband, fixed phase center, and stationary desired patterns, has been presented 

[6]. By properly designing DHA shapes, it can also achieve different beamwidth 

requirements. But, since the DHA is always formed by single low dielectric constant 

material to reduce the reflection at the radiation end, the size of a DHA can’t be 

miniaturized easily. 

Another example that uses dielectric material as main radiator is dielectric rod 

antenna (DRA). DRA was first invented in 40’s [7] and DRA is also refereed as a 

polyrod antenna. A traditional DRA can be decomposed a solid dielectric material into 

excitation, waveguide and radiation sections. Normally, electromagnetic waves are 

excited by a metallic waveguide into dielectric waveguide section and guided to radiation 
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section. By properly tapering radiation section, electromagnetic field can be gradually 

excited. Several different DRA designs have been discussed in [8][9]. However, the 

drawback of these designs is the bandwidth is limited since single layer dielectric can 

avoid the excitation of undesired high order modes which cause pattern variation and 

bandwidth reduction. 

The design of concentric two-layer DRA with improved bandwidth, phase center, 

and pattern performances has been presented [10]. By properly choosing dielectric 

constant and thickness for each layer, it can achieve 4:1 bandwidth, stable phase center 

and stationary patterns. The exiting two-layer DRA has elevated cross-polarization 

performance above 8GHz because only two layer dielectric materials can not provide 

enough boundary to avoid the excitation of high order modes when the operation 

frequency excesses 4:1 bandwidth. Hence, in order to design a multi-layer DRA to 

achieve 8:1 bandwidth, it’s necessary to use at least 3 or more layers.     

However, the key challenge in designing a multi-layer DRA is to choose proper 

thickness and dielectric constant of each layer to meet desired VSWR, pattern, and phase 

center requirements. This becomes even more difficult when the when the number of 

layers increases for achieving a greater bandwidth.  

In order to solve this problem, a new approach that uses genetic algorithm to 

optimize the multi-layer DRA will be demonstrated in this thesis. Although most of the 

new commercial EM simulation codes such as FEKO and HFSS have built-in parameter 

optimization functions, this approach consumes too much computer resources and is not 

easy to implement complex design goal that involves many parameters and different 

frequencies. This thesis will demonstrate an alternative antenna design optimization 
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method that employs an external GA program which interacts with commercial EM 

simulation software such as HFSS, to automatically choose optimized thicknesses and 

dielectric constants of a 3-layer DRA for operating from 2 to 18 GHz with constant gain, 

beamwidth, and phase center performance objectives. 

In the chapter 2, the operation principles of UWB multi-layer dielectric rod antenna 

will be discussed. The chapter 3 will presents the automatic optimization method for 

UWB DRA design. Chapter 4 will present the optimized three-layer DRA design that 

achieves constant gain, pattern, impedance, and phase center. Chapter 5 will provide the 

brief conclusion and future development. 
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CHAPTER 2 

 

Operation Principles of UWB Multi-layer Dielectric Rod Antenna (DRA) 

 

 

         

Figure 2.1 Geometry of multi-layer DRA 

 

Figure 2.1 shows the basic concept of a wideband multi-layer DRA. Similar to 

previous single-layer and double-layer DRAs [10]-[12], it contains three sections: a 

wideband feed, a multi-layer UWB dielectric waveguide, and a radiation tip. The 

wideband feed launches wideband transverse electromagnetic (TEM) waves into the 

waveguide section. These TEM waves are then converted into hybrid HE11 modes [10] 

which are then guided along the multi-layer dielectric waveguide without producing 

Launcher Section 

Waveguide  
Section 

Radiation 
Section 
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high-order modes. The guided waves then reach the radiation tip where most guided 

energy is converted into radiation. The radiation tip needs to be designed properly to 

produce radiated fields with desired gain level, pattern, and polarization over the 

frequency range of interest 

 

2-1 Feed Section 

The feeding section is responsible for exciting wideband linearly-polarized TEM 

waves into the waveguide section. Chung and Chen [10] proposed a resistively 

terminated TEM horn as illustrated in Figure 2.2 for the feed section. The feed section is 

formed by machining the end of a multi-layer DRA into pyramid shape with isosceles 

triangular metal arms attached to the center of each face. By properly choosing the angles 

of the pyramid and triangular plates, the input impedance can achieve 100 ohms for 

matching to a balanced pair of 50 ohm cables whose outer ends are connected to the 

output ports of a 0-180 degree hybrid. It’s important to note that all the outer conductors 

of coaxial cables should be connected to each other to cancel any unbalance current. The 

far end each triangle plate is attached to a resistive strip for minimizing undesired end 

reflection and diffraction. Each pair of arms located at opposite sides of the pyramid is 

responsible for exciting linearly polarized TEM waves. Additional pair of launcher arms 

can be added to the other two sides to support dual-linear polarization operations as has 

been demonstrated in [10,13]. Figure 2.2(b) illustrates the TEM fields launched by a pair 

of the arms. The length of feed section is important to provide a smooth transition 

between feed and waveguide section without exciting high-order modes. 
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 (a) Geometry of practical feed for multi-layer DRA 

 

(b) Field distribution between launcher and waveguide section 

Figure 2.2 Geometry and field distribution of a practical feed for multi-layer DRA 

 

2.2 Multi-Layer Dielectric Waveguide Section 

The multi-layer dielectric waveguide section is responsible for guiding a HE11 mode 

[14] over a wide range of frequency without producing high-order modes.  The TEM 

fields excited in the feed section naturally convert into desired HE11 mode in the 

Symmetric Plane 
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waveguide section.  The HE11 mode is chosen because it does have a cutoff and is 

linearly polarized within waveguide. 

In order to achieve a wide bandwidth with single HE11 mode propagating inside the 

waveguide, it requires multiple layers of dielectric materials. The amount of energy 

guided within a dielectric waveguide is determined by the electrical dimension of its 

cross section [15]. The electrical size of the waveguide needs to be greater than half 

guided wavelength in order to effectively guide the EM fields. On the other hand, if the 

size is too large, undesired high-order mode could be excited inside the waveguide. Such 

high-order modes cause undesired pattern variation, elevated cross polarization 

compounds and bandwidth reduction.  

To avoid exciting high-order modes, one can insert a dielectric core with a much 

higher dielectric constant to keep high frequency energy within a small dimension. This 

also helps miniaturizing the overall size as well. Chung and Chen [10] have proposed a 

relationship between the operation frequency of a multi-layer waveguide and effective 

dielectric constants and radii. Figure 2.3 shows the top and side view of an exemplary 

three-layer waveguide three layer waveguide. The dielectric constant of each layer 

increased as it gets closer to the center. Figure 2.4 shows the field distribution in the 

waveguide, and illustrates the phenomena that high frequency energy is guided inside the 

inner layer and vise verse. The optimal combination of layer thicknesses and dielectric 

constants will be optimized in the next chapter to meet all performance requirements.  
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                                              (a)Side view                     (b) Cross section view 

Figure 2.3 Example of a three-layer dielectric waveguide configuration 

 

 

 

Figure 2.4 Field distributions in a three-layer waveguide section 

 

Symmetric Plane 

12GHz 8GHz 3GHz 
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2.3 Radiation Tip 

The radiation tip section is responsible for producing stable patterns and stationary 

phase over the entire frequency range. Figure 2.5 illustrates the elliptical shape of 

radiation tip of a three layer DRA. The envelope of each layer takes the shape of a half 

ellipsoid. The axial ratio controls patterns, phase center, as well as any undesired 

reflection during transition from waveguide to radiation section.  

The design of the radiation section is the most challenging part of a multi-layer DRA 

and need to rely on proper optimization procedure that involves full-wave simulations. 

This will be discussed in chapter 4.  

 

 

 

                              (a)Side view                                                        (b)Prospective view 

 
Figure 2.5 Example of a three layer radiation section 
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2.4 An Initial Design Example 

Figure 2.6 and 2.7 present a preliminary design and HFSS simulation results of a 

three layer DRA design with hemispheric radiation tip. By using waveport that excites 

the waveguide with its eigenmode one can understand the pure radiation from the 

waveguide and radiation sections without influence of the feeding structure at this 

moment.  

The S11 and realized gain results over an 8:1 bandwidth with fairly stable gain 

(Figure 2.7(b)) and S11 (Figure 2.7(a)). Furthermore, the radiation patterns in Figure 

2.7(a)-(d) shows that E and H plane are symmetric from 2GHz to 14GHz. Figure 2.8(e) 

also shows desirable stable phase center with respect of the tip of the antenna. Ant the 

phase center is calculated based on the least square fit method by [16] as 

1

( ) min ( , , ) ( , )

n

i simulation i H L
d

i

PhaseCenter f d f f f f f 


 
     

 
 
     (2.1) 

2
( , , ) cosd f d


 


       (2.2) 

which compares the phase results from the simulation with phase distribution of ideal 

spherical wave and approximates the phase center position. 

Because the current design is not optimized, the pattern beamwidth varies as 

frequency increases. The preliminary design has presented the potential to achieve the 

desired performance. In the next chapter, we will demonstrate that further design 

optimization using GA can lead to a multi-layer DRA with stable patterns, stationary 

phase center and more than 8:1 bandwidth. 
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Figure 2.6 Geometry of design example 

 

 

 

        (a) S11                                                              (b) Zenith Gain 

Figure 2.7 Simulation results 
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                                     (a) f=2GHz                                                 (b) f=6GHz 

 

                                     (c) f=10GHz                                               (d) f=14GHz 

 

(e) Phase Center 

Figure 2.8 Normalized Gain pattern and phase center plot
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CHAPTER 3 

 

Automatic Optimization Method for UWB DRA Design 

 

In the design of a multi-layer DRA, the dielectric constant and thickness of each 

layer need to be chosen properly to meet the VSWR, pattern, and phase center 

requirement for wide bandwidth. It becomes increasingly difficult to achieve this goal as 

the number of layers increases. Moreover, these performance requirements are often 

dependent, and determining the optimized design that reaches the best trade-off among 

all the requirements is even harder. Therefore, in order to design a UWB DRA effectively 

and optimally, we proposed to use a global optimization algorithm to reach the optimal 

design.  

Even though most of the current commercial EM software have build-in parametric 

optimization, the flexibility of those optimizers are limited. In other words, these 

optimizations can only deal with simple objective functions. For example, the phase 

center requires an additional computation from pattern data, most simulation software, 

such as FEKO and HFSS, can not perform optimization associated with phase center. In 

addition, in the case of multiple performance objectives such as VSWR, pattern, phase 
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center, gain, etc. using built-in optimization become very inconvenient and very limited 

in terms of cost combination and weighting.   

Moreover, though the superior goal of any optimization procedure is focused on the 

optimal results, it’s also important to keep the performances of other designs during the 

optimization procedure. However, in order to save the data in the commercial software, it 

needs to store all the mesh date in the memory and wastes large computational resource 

especially for wideband optimization.  

Therefore, our optimization approach was to use genetic algorithm optimization 

master program to control the simulation of commercial codes. This approach has greater 

flexibilities and better computation efficiency. The GA optimization approach has been 

shown to be effective in obtaining global optimum [17] without subject to the choice of 

initial cases. This chapter discusses the optimization procedure employed for obtaining 

optimum design of a three-layer DRA with 9:1 bandwidth. 

 

3.1 Optimization Flowchart 

Figure 3.1 shows the flowchart of the proposed automatic optimization procedure. It 

begins with a group (generation) of random generated DRA designs (population). Each 

design is defined by a set of design parameters such as a dielectric constant and radius of 

each layer. These antenna performances such as S11, phase center, beamwidth and gain 

are then used to compute the fitness value according to fitness function which is defined 

according to target performance. The new generation with improved radiation 

performances is created from combining superior antenna designs with better fitness 

among the first generation. This process continues until the fitness value converges.   
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The whole optimization procedure can be subdivided into four different sections: (1) 

geometries controller, (2) GA operation, (3) HFSS simulation, and (4) fitness calculation. 

The geometries controller assigns values to the design parameters of HFSS model and 

creates new antenna geometries for performances analysis. The GA operation performs 

mating and mutation to generate new design parameters from designs with fitness values 

of current generation. The HFSS employs EM analysis core and exports radiation 

performances. The fitness calculation computes the fitness value of each design based on 

the radiation performance and pro-defined fitness function. 

 

 

Figure 3.1 Flowchart of automatic GA optimization procedure for multi-layer UWB DRA 

design 

 

 

Multi-layer UWB DRA 

design parameters

Generate population

Full wave simulation 

(HFSS)

Calculate fitness value
Fitness value 

converge?

Crossover/Mutation of 

superior genes

Design optimized

No

Yes

GA Procedure 
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3.2 Genetic Algorithm Description 

Genetic algorithm [18] is employed in the master program to optimize the antenna 

geometry and material arrangement. GA can be specified into binary coding, selection, 

crossover and mutation four sections. The binary coding section coverts the decimal 

value into binary and vise verse. However, even though more bits stands for better 

resolution, the convergence efficiency decreases significantly if the number of bits 

become too large. In this program, each design parameter is presented by 2-4 bits. All the 

bits for antenna design are assembled together to form a chromosome with predetermined 

lower and upper bounds. 

 

3.2.1 Selection Method 

The selection method in the selection section determines the convergence rate of the 

optimization procedure. Many different selection methods, such as roulette, tournament, 

top percent, best, and random method, have been proposed [19]. Each method has each 

own advantages and disadvantages. Since the multi-layer DRA design is an UWB 

antenna and it requires significant computational time to analyze each design. Therefore, 

smaller population helps reducing computation time in each generation. Moreover, it’s 

important to ensure that the members (genes) in the initial population span the solution to 

grantee convergence to global optimum. The tournament selection was adopted for out 

optimization. As shown in Figure 3.2, tournament selection method randomly selects N 

competitors form the population and the competitor with highest fitness value is chosen 

and put into mating pool to produce new population via bit crossover process. By 
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changing the tournament size N, the convergence rate can also be adjusted. In the 

program, the tournament size N is set to 4. 

 

All population in a 

generation

Randomly pick N 

population

Select the 

population with 

best fitness value

Two 

population 

been selected

Generate two 

population for next 

generation

No

Yes

 

Figure 3.2 Tournament selection method 

 

3.2.2 Crossover Method 

Crossover and mutation procedures are genetic operators which are used to generate 

new offspring from selected parents in the mating pool. The main concept of crossover is 

that the offspring could be better than the parent if it combines the better characteristic 

from both parents. In our algorithm adopts the one-point crossover method [19] 

illustrated in the Figure 3.3. A crossover point is randomly selected for a pair of parents. 

The offspring are then generated by exchanging the genes after the crossover point. 
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Figure 3.3 One point crossover method 

 

3.2.3 Mutation Method 

Mutation is also a genetic operator that randomly alters one or more gene in the 

chromosomes in the new generations from its original bit state. The mutation process can 

add new gene into the gene pool, which allows the genetic algorithm to achieve a better 

optimization results and avoid converging to a local optimum. The mutation method 

adopted in our GA procedure is the flip bit method [19] as illustrated in the Figure 3.4. 

This mutation method flips a randomly selected bit in the offspring with a probability Pm. 

The probability is predetermined to 0.1 in the program.  

 

 

Figure 3.4 Flip bit mutation method 
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3.2.4 Fitness Function 

Fitness function is the objective function for genetic algorithm to determine the 

optimization direction for maximizing the fitness value such that the user defined 

performance goal can be reached. Several different methods such as weight sum, weight 

product and utopia method which are commonly used in GA multi-objective optimization 

have been discussed in [20] and each method is suitable for different scenario. For our 

multi-layer DRA optimization, the fitness function is defined to equally emphasis on the 

return loss, pattern, gain, and phase center. The fitness function U is defined as the 

product of individual fitness function ( )iF x . That is, 

1

[ ( )]

k

i

i

U F x



       (3.1) 

Each individual fitness function is defined as a function of specific performance 

parameters such as S11, VSWR, gain, patter, etc. and can be defined differently according 

to the problem and use. In general, when the performance is close to performance goal, a 

fitness function produces a larger value.  The optimization procedure will be determined 

as converge when variation of the maxima fitness values in constructive three generations 

is less than 5%.   

 

3.3 External GA Optimization Program 

Figure 3.5 shows the connection between the master GA and the slave HFSS. In the 

beginning, all variables are set up in a HFSS model and external GA program. Then, the 

external program can generate suitable VBScript file which can be executed by HFSS 
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and send to HFSS to perform EM analysis. After simulation, HFSS automatically export 

all the desired reports to justify the fitness value. 

Figure 3.5 also illustrates the external program that is composed of GA and 

simulation control parts. The GA part performs the procedures of chromosome generating, 

mutation and crossover. The simulation control part generates the VBScript files for the 

HFSS models, reads in the simulation results, and calculates fitness values of the 

performance. The flexibility for the design optimization can be applied to all kinds of 

antennas optimization problems by slightly changing the coding in HFSS control section.    

Genetic algorithm

(generating 

population)

Simulation control

(fitness calculation 

and VBScript 

generation)

EM simulation 

(HFSS)

VBScript

Simulation 

Results

Antenna design 

parameters
Fitness 

value

 

Figure 3.5 Flowchart of external GA program 

 

3.4 Optimization Example 

This section provides a design optimization example which optimizes the thickness 

and dielectric constant of a four-layer DRA with hemi-spherical radiation tip to achieve 
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(1) 8:1 impedance bandwidth and (2) constant gain performance. The cross section of this 

DRA geometry is shown in Figure 3.6. This antenna is fed by a waveport at the bottom of 

the waveguide section. There are 8 design parameters (4 dielectric constants and 4 

thicknesses). The each dielectric constant is digitized into 3 bits and each thickness is 

digitized into 4 bits. The upper and lower bounds for each parameter are presented in the 

Table 3.1. The crossover probability is 0.9 and the mutation probability is 0.1. The fitness 

function for the optimization is described as 

11 11

1
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f

H L f

S S f
f f



     (3.2) 

11
1 11

2

11 11

( )

1
( )

( )

H

L

f

H L f f

S
F S

S f S
f f





 
  

    (3.3) 

1
( )

H

L

f

Zenith
H L f

D Dir f
f f



     (3.4) 

2

2

( )

1
( )

( )

H

L

f

Zenith
H L f f

D
F Dir

Dir f D
f f





 
  

       (3.5) 

1 11 2( ) ( )U F S F Dir      (3.4) 

, which targets at flat zenith directivity with good S11 performance. 

 

 Bits Max(in) Min(in)  Bits Max(in) Min(in) 

ε1 3 9 2 t1 4 0.5 0.05 

ε2 3 9 2 t2 4 0.5 0.05 

ε3 3 9 2 t3 4 0.5 0.05 

ε4 3 9 2 t4 4 0.5 0.05 

Table 3.1 Parameter bounds for the optimization design example 
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Figure 3.6 Convergence plot of optimization design example 

 

Figure 3.6 shows the convergence curve of the optimization procedure and presents 

a good convergence rate. Figure 3.7 demonstrates the side view of optimum design and 

the optima parameters. Figure 3.8 shows the optimized results of this optimization 

procedure. It is observed that the S11 remains -10dB and the zenith gain remains fairly 

stable from 2 to 16GHz. Figure 3.9 plots the Normalized Gain patterns which indicate 

similar E- and H-plane patterns at all frequencies. However, the current optimization 

design is not able control the pattern beamwidth because the fitness function doesn’t 

include pattern shape parameter. This will be added in the next chapter. 
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Figure 3.7 Geometry and design variables of optimization example 

 

 

 

       (a) S11                                                                 (b) Zenith Gain 

Figure 3.8 Simulation results of optimization example  

t1 ε1 

t2 ε2 

t3 ε3 

t4 ε4 

2 3 4 8 

εr4 εr3 εr2 εr1 

0.447” 0.47” 0.34” 0.127” 

t4 t3 t2 t1 



 25 

 

(a) f = 2GHz                                                             (b) f= 5GH 

 

(c) f = 8GHz                                                             (d) f= 11GHz 

 

(e) f = 14GHz                                                             (f) f= 16GHz 

Figure 3.9 E and H-plane Normalized Gain patterns



 26 

 

 

 

CHAPTER 4 

 

Application of Optimization Method for Designing UWB Multi-Layer 

DRA with Constant Gain, Pattern, Impedance, and Phase Center  

 

In the previous chapters, we have discussed the design concept of a multi-layer DRA, 

and the design optimization procedure using GA and full-wave simulations. The chapter 

focuses on the two different design optimizations of multi-layer DRA which provide 

constant gain, stationary phase center, symmetric E- and H-plane pattern, more than 50 

degrees HPBW and 100 degrees -10dB beamwidth with 2 to 18GHz and 1 to 18GHz 

bandwidth respectively. 

Because the optimized results depend strongly on the fitness function, defining 

proper functions is the most important. We will present the pattern matching fitness 

function used in the optimization in the first section. An optimized three-layer DRA with 

2 to 18GHz bandwidth and an optimized four-layer DRA with 1 to 18GHz bandwidth 

performance will also be presented respectively. Also, a practical feeding structure will 

be introduced in the launcher section to complete the antenna design.  
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4.1 Fitness Function with Pattern Matching Method 

The fitness value of the optimization is defined by the performances of S11, realized 

gain, and pattern matching.  

S PC TPMF F F F       (4.1) 

4.1.1 SF  

The fitness value for S11  performance is defined by 

S
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      (4.2) 
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    (4.5) 

Figure 4.1 shows t between Fs and S11(f) performance and demonstrates that Fs aims to 

reach 11( ) 10S f dB  stably.  

 

Figure 4.1 Relationship between Fs and S11(f) performance 
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4.1.2 PCF   

FPC aims to fix phase center location over operation frequency, and is defined as 
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      (4.6) 
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     (4.8) 

Figure 4.2 shows the relationship between FPC and standard deviation of phase 

center StdPC. FPC value drops rapidly when StdPC increases, and enforces GA to search for 

stable phase center results.  

 

Figure 4.2 Relationship between FPC with standard deviation of phase center StdPC 

 

4.1.3 TPMF  

FTPM  is design such that the normalized patterns conform to a user-defined target 

pattern as illustrated in Figure 4.3. This is achieved by adopting 
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The choice of target pattern needs to be realistic and achievable since it controls the 

convergence of the optimization procedure. Hence, to ensure the realistic of the target 

pattern, the target pattern is obtained from the average of E- and H-plane pattern of 2GHz 

shown in the Figure3.9 (a). The pattern beamwidth reaches 60 degrees HPBW and 110 

degrees -10dB beamwidth which fits to the design goals. 

 

 

Figure 4.3 Target pattern for optimization 
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4.2 Three-Layer UWB DRA Optimization  

The optimization starts with a three-layer DRA and figure 4.4 shows the initial 

geometry. Table 4.1 presents the upper bound, lower bound, and digitalization of all 

design parameter. The dielectric constant of the first layer (εr3) is set to 2 to reduce 

number of variables. The dielectric constant for other layers are determined by  

2 3 2 1 2 1           (4.13) 

The elliptical radiation tip has included three axial ratios (P1,P2,P3) for controlling 

patterns. The relation tip lengthy of each layer (h1,h2,h3) is  

n

n i n

i

h t P
 

  
 
 
       (4.14) 

The mutation rate is 0.1, the crossover rate is 0.9 and each generation contains 20 

populations. And the target pattern has shown in the Figure 4.3. 
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Figure 4.4 Initial geometry of three-layer DRA design 
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 Bits Max Min  Bits Max(in) Min(in) 

Δ1 2 4 1 t1 4 0.6 0.1 

Δ2 2 4 1 t2 4 0.6 0.1 

P1 3 2.5 0.5 t3 4 0.6 0.1 

P2 3 2 0.5  

P3 3 2 0.5 

Table 4.1 Parameter bounds for the three-layer DRA design 

 

Figure 4.5 shows the optimized three-layer DRA geometry and design parameters 

and it’s worthy to note that the ratio between the dielectric constants of adjacent layers 

low. In fact, it shows that the ratio is always less than 2. This indicates that the ratio of 

dielectric constant between adjacent layer needs to be lower than 2 to maintain low 

internal reflections and field distortions. Figure 4.6 shows that the GA optimization 

procedure converges after 8 iterations.  

The antenna performances of the optimized three-layer DRA design are shown in 

Figure 4.7. Figure 4.7 (b) shows the maxima directivity is located between 9.5 to 10.5dB 

within 2-18GHz. The phase center remains stable from 4GHz. Note from (4.9) that FPC 

only considers frequency above 3GHz to provide more miniaturization since the EM 

energy is only loosely guided along the rod at 2-3GHz. This also explains the S11 results 

in 2-3GHz region. And the problem can simply be solved the exemption from the fitness 

function, and allow for larger maximum rod diameter. Figure 4.7 (d) shows the HPPW of 

E- and H-plane. This result is much improved compared to the design example in 

previous chapter due to the new fitness FTPM based on pattern matching. 

The normalized gain patterns shown in Figure 4.8-4.10 demonstrate all patterns 

conform to target pattern very well, all E- and H-plane patterns are similar. These 

patterns achieve more than 50 degrees HPBW and 100 degrees -10dB beamwidth. The E-
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field plots have been presented in Figure 4.11, and it’ obviously that the fields are 

naturally expending from 2:18GHz. Moreover, it’s clear that the field is well-guided 

inside the waveguide section and properly radiated at the radiation section. 

 

 

Figure 4.5 Geometry and design parameters of optimized three-layer DRA 

 

 

 

Figure 4.6 GA convergence plot 
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                               (a) S11                                                            (b) Maxima Directivity 

 

                      (c) Phase Center                                                       (d) HPBW 

 

(e) -10dB Beamwidth 

Figure 4.7 Simulation results of optimized three-layer DRA 
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                           (a) f = 2GHz                                                 (b) f = 3GHz 

 

                             (c) f = 4GHz                                                 (d) f = 5GHz 

 

                         (e) f = 6GHz                                                  (f) f = 7GHz 

Figure 4.8 Normalized Gain patterns of optimized three-layer DRA(1) 
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                            (g) f = 8GHz                                                (h) f = 9GHz 

 

                           (i) f = 10GHz                                                 (j) f = 11GHz 

 

                           (k) f = 12GHz                                                (l) f = 13GHz 

Figure 4.9 Normalized Gain patterns of optimized three-layer DRA (2) 
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                           (m) f = 14GHz                                               (n) f = 15GHz 

 

                         (o) f = 16GHz                                                     (p) f = 17GHz 

 

(q) f = 18GHz 

Figure 4.10 Normalized Gain patterns of optimized three-layer DRA (3) 
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       (a) f = 2GHz              (b) f = 3GHz              (c) f = 4GHz                  (d) f = 5GHz 

 

       (e) f = 6GHz             (f) f = 7GHz                (g) f = 8GHz                (h) f = 9GHz 

 

       (i) f = 10GHz             (j) f = 11GHz               (k) f = 12GHz           (l) f=13GHz 

 

       (m) f = 14GHz          (n) f = 15GHz           (o) f = 16GHz                (p) f = 17GHz 

 

(q) f = 18GHz 

Figure 4.11 E-filed plot at E- and H-plane of the optimized three-layer DRA 
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4.3 Four-Layer UWB DRA Optimization  

4.3.1 Optimizing with Existing Fitness Function 

The GA optimization procedure has proven the compatibility of optimizing a three-

layer UWB DRA which achieves 2 to 18GHz bandwidth, flat gain, stable pattern, and 

stationary phase center. In order to further verify the ability of the automatic optimization 

procedure, this section will employ the optimization program to optimize a four-layer 

DRA which reaches flat gian, stable pattern, stationary phase center and 1 to 18GHz 

bandwidth. 

The initial geometry of four-layer DRA has been show in Figure 4.12. Table 4.2 

presents the upper bound, lower bound, and digitalization of all design parameter. The 

dielectric constant of the first layer (εr4) is set to 2.2 here because it’s easier to find the 

material with dielectric constant 2.2. The dielectric constant for other layers are 

determined by  

3 4 3 2 3 2 1 2 10.2                (4.17) 

The elliptical radiation tip also includes four axial ratios (P1,P2,P3,P4) for controlling 

patterns. The mutation rate is 0.1, the crossover rate is 0.9 and each generation contains 

20 populations. And the target pattern is same as Figure 4.3 

 Bits Max Min  Bits Max(in) Min(in) 

Δ1 2 4 1 t1 4 0.2 0.05 

Δ2 2 4 1 t2 4 0.3 0.1 

Δ3 2 4 1 t3  0.6 0.1 

P1 3 6 2 t4 4 0.6 0.1 

P2 3 2.5 0.5  

P3 3 2 0.5 

P4 3 2 0.5 

Table 4.2 Parameter bounds for the four-layer DRA design 
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Figure 4.12 Initial geometry of four-layer DRA design 

 

 

 

Figure 4.13 Geometry and design parameters of optimized four layer DRA 
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Figure 4.13 shows the optimized three-layer DRA geometry and design parameters 

and he ratio between the dielectric constants of adjacent layers is also lower than 2. 

Figure 4.14 shows the convergence plot of the GA optimization procedure. Though the 

design parameters are more than the three-layer design, the optimization program still 

performs a good convergence rate and converges in ten generations.   

 

 

Figure 4.14 Convergence plot of four-layer DRA optimization 

 

The antenna performances of the optimized four-layer DRA design are shown in 

Figure 4.15. Figure 4.15 (b) shows the maxima realized is lower 11dB within 1-18GHz. 

Since the fitness function (4.9) doesn’t take the phase center at lowest frequency in to 
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calculation for more miniaturization, it’s expected that the phase center (Figure 4.7 (c)) 

becomes stable after 3GHz. It also results in the S11 performance from 1-2GHz region 

because the fields are loosely guided in this frequency range. And, as mentioned in 

previous section, this issue can be solved the exemption from the fitness function, and 

allow for larger maximum rod diameter. The HPBW result shown in the Figure 4.15(d) 

presents a stable HPBW pattern and reaches at least 50 degrees HPBW at most of the 

frequencies. 

The Normalized Gain patterns shown in Figure 4.16-4.18 also demonstrate that all 

patterns conform to target pattern, and all E- and H-plane patterns are similar as well. 

Most patterns achieve more than 50 degrees HPBW and 100 degrees -10dB beamwidth. 

The E-field plots have been presented in Figure 4.19, and it clearly states that the fields 

are naturally expending from 1:18GHz. It also demonstrates the fields are loosely guided 

from 1to 2GHz. 
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                                (a) S11                                                       (b) RealizedGain 

 

                      (c) Phase Center                                              (d) HPBW 

Figure 4.15 Simulation results of optimized four-layer DRA 
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     (a) f = 1GHz                                                 (b) f = 2GHz 

 

                             (c) f = 3GHz                                                 (d) f = 4GHz 

 

     (e) f = 5GHz                                                 (f) f = 6GHz 

Figure 4.16 Normalized gain pattern of the optimized four-layer DRA (1) 
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                            (g) f = 7GHz                                                 (h) f = 8GHz 

 

                           (i) f = 9GHz                                                 (j) f = 10GHz 

        

(k) f = 11GHz                                                 (l) f = 12GHz 

Figure 4.17 Normalized gain pattern of the optimized four-layer DRA (2) 
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                          (m) f = 14GHz                                                 (n) f = 13GHz 

 

                           (o) f = 15GHz                                                 (p) f = 16GHz 

 

                           (q) f = 17GHz                                                 (r) f = 18GHz 

Figure 4.18 Normalized gain pattern of the optimized four-layer DRA (3) 
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         (a) 1GHz                      (b) 2GHz                   (c) 3GHz                         (d) 4GHz 

 

         (e) 9GHz                      (f) 10GHz                   (g) 11GHz                  (h) 12GHz 

 

         (i) 15GHz                  (j) 16GHz                      (k) 17GHz                     (l) 18GHz 

Figure 4.19 E-field at E- and H-plane of the optimized four-layer DRA  
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4.3.2 Optimizing without the Exemption in Phase Center Fitness Calculation 

As mentioned above, both the optimized three- and four-layer designs have less 

stable phase center and slightly poor S11 performances at the very low frequencies due to 

the fact that the energies are loosely guided along the waveguide section. In order to 

mitigate this issue, we purpose to remove the exemption criteria in the fitness function Fpc 

(4.6)-(4.8) into 

( )
e PCStd

PCF


      (4.16) 

1
( )

H

L

f

PC

fH L

M PhaseCenter f
f f




     (4.17) 

 
2

( )

1

f
H

PC

fL
PC

H L

PhaseCenter f M

Std
f f




 


     (4.18) 

, and optimized another 4-layer DRA with the modified fitness function. 

        The design geometry of a 4-layer design has been shown in the Figure 4.10, and the 

parameter setting remains the same as discussed above. Table 4.3 shows the ranges of 

each parameter. Most of the upper and lower bounds remain the same as the previous 4-

layer optimization to clearly compare the difference between two fitness function. 

 

 Bits Max Min  Bits Max(in) Min(in) 

Δ1 2 4 1 t1 4 0.25 0.05 

Δ2 2 4 1 t2 4 0.4 0.1 

Δ3 2 4 1 t3 4 0.6 0.1 

P1 3 6 1 t4 4 0.6 0.1 

P2 3 4 0.75  

P3 3 2 0.5 

P4 3 2 0.5 

Table 4.3 Parameter bounds for the four-layer DRA design with modified Fpc 
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        Figure 4.20 shows the optimized design parameters and geometry as well. Figure 

4.21 presents the convergence rate of this optimization and it also shows a good 

convergence after 8 generations.  

 

 

Figure 4.20 Geometry and parameters of optimized four-layer DRA with modified Fpc 
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Figure 4.21 Convergence plot of 4-layer DRA optimization with modified Fpc 

 

Figure 4.22 – 4.25 present the simulation results of the optimized 4-layer DRA 

design with modified Fpc. As one can tell, the S11 (Figure 4.22(a)), realized gain (Figure 

4.22(b)), and HPBW (Figure 4.22(d)) performances are still similar to the previous 

optimized results and achieve the requirements. The normalized gain patterns (Figure 

4.23-4.25) also conform to the target patter well. But the phase center performances 

(Figure 4.22(c)) only improve slightly compared to the previous results. The minor 

improvement demonstrates that the modified Fpc didn’t strongly enforce the guidance at 

low frequency effectively because the fitness function is aimed for statically stable over 

the operation band. Moreover, because the phase center performances at higher 

frequencies are most likely to be stable, the fitness function is biased when it searches for 

statically stable over the whole band. In order to effectively improve the low frequency 



 50 

performance, it might need to separate the whole operation frequency range into several 

bands and enforce the performance at lower frequencies more.  

 

 

 

                               (a) S11                                                       (b) RealizedGain 

 

                            (c) Phase Center                                              (d) HPBW 

Figure 4.22 Simulation Results of optimized four-layer DRA with modified Fpc 
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(a) 1GHz                                                           (b) 2GHz 

 

(c) 3GHz                                                           (d) 4GHz 

 

(e) 5GHz                                                           (f) 6GHz 

Figure 4.23 Normalized patterns for new optimized four-layer DRA with modified Fpc (1) 
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(g) 7GHz                                                           (h) 8GHz 

 

(i) 9GHz                                                             (j) 10GHz 

 

(k) 11GHz                                                          (l) 12GHz 

Figure 4.24 Normalized patterns for new optimized four-layer DRA with modified Fpc (2) 
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(m) 13GHz                                                    (n)14GHz 

 

(o) 15GHz                                                         (p) 16GHz 

 

(q) 17GHz                                                       (r) 18GHz 

Figure 4.25 Normalized patterns for new optimized four-layer DRA with modified Fpc (3) 
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4.4 Optimized Three-Layer DRA Design with Practical Feed Structure 

In the previous optimizations, in order to obtain the true radiation from the dielectric 

body and ignore any undesired influence from the feed structure, all the designs are 

excited waveport. But waveort doesn’t practically exist, and the reliability of the 

optimized three-layer DRA performances needs further verification. The reliability can 

be verified by feeding the optimized three-layer DRA with a practical feeding structure 

mentioned in the chapter 2 and comparing the performances. 

 

4.4.1 Feeding by 30 Degrees Pyramid and 10 Degrees Metal Triangles 

The geometry of the optimized three-layer DRA with a practical launcher section 

has shown in the figure 4.26 and it is formed by 30 degrees pyramid with 10 degrees 

metal isosceles triangles and matched to 100 ohms port. The pyramid angle is small to 

achieve a longer taper launcher section that can provide a better energy transition form 

the feed to the waveguide. The angle of isosceles triangle metals is also small to insure 

the impedance matching. Taper resistive strips are connected to the end of metals to 

reduce reflection from the end of the feeding to reduce undesired reflection from the end 

of the metals.  

 

 

Figure 4.26 Geometry of the optimized three-layer DRA with a practical feed  

30 Degrees Pyramid 

10 Degrees Isosceles Triangles 

Resistive Taper  

http://www.nciku.com.tw/search/en/isosceles+triangle
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The simulation results of three-layer DRA with the practical feed structure are 

shown in the Figure 4.27 to 4.32. The S11 (Figure 4.27(a)) performances are below -7.5dB 

from 2 to 16GHz. The realized gain (Figure 4.27(b)) is flat and not losing significantly at 

lower frequency caused by resistive taper. All patterns (Figure 4.28-4.30) properly match 

to the results with waveport excitation and reaches 50 degrees HPBW (Figure 4.27(d)) 

from 3 to 16GHz. Though the phase center performances show some oscillations, the 

results are still fairly stable and close to the results with ideal feeding. 

However, there are some differences occurred in pattern and gain results above 

16GHz because the launcher section is not long enough to ensure most of the high 

frequency energy is guided inside the inner layer. As shown in the Figure 4.32, the field 

plots illustrate that the high frequency energy doesn’t constraint tightly from the feed to 

the in the inner layer and affect the pattern performances. Moreover, because the field at 

2GHz extends to the end of feeding structure, the discontinuity at the end of metal creates 

strong diffraction and affects the patterns. As shown in the field plot (Figure 4.31(a)), one 

can clearly point out the strong field distribution at the end of the metal. The issues can 

be solve by prolong the launcher section by choosing smaller angle of pyramid structure 

and extending the length of the metal triangles.  
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                               (a)  S11                                          (b) Maxima Directivity and Gain  

 

                         (c) Phase Center                                                   (d) HPBW 

Figure 4.27 Simulation results the optimized three-layer DRA with a practical feed 
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                           (a) f = 2GHz                                                    (b) f = 3GHz 

 

                           (c) f = 4GHz                                                   (d) f = 5GHz 

 

                            (e) f = 6GHz                                                   (f) f = 7GHz 

Figure 4.28 Normalized Patterns of optimized 3-layer DRA design with practical feed (1) 
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                           (g) f = 8GHz                                                   (h) f = 9GHz 

 

                           (i) f = 10GHz                                                  (j) f = 11GHz 

 

                          (k) f = 12GHz                                                 (l) f = 13GHz 

Figure 4.29 Normalized Patterns of optimized 3-layer DRA design with practical feed (2) 
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                             (m) f = 14GHz                                                           (n) f = 15GHz 

 

                             (o) f = 16GHz                                                           (p) f = 17GHz 

 

(q) f = 18GHz 

Figure 4.30 Normalized Patterns of optimized 3-layer DRA design with practical feed (3) 
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             (a) f = 2GHz                               (b) f = 4GHz                       (c) f = 6GHz 

 

 

(d) f = 8GHz                           (e) f = 10GHz 

Figure 4.31 E-filed plot on E and H plane of the realistic feed with optimized 3-layer  

DRA design (1) 

E-Plane H-Plane E-Plane H-Plane E-Plane H-Plane 

E-Plane H-Plane E-Plane H-Plane 
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            (f) f = 13GHz                             (g) f = 14GHz                     (h) f = 15GHz 

 

           (i) f = 16GHz                             (j) f = 17GHz                         (k) f = 18GHz 

Figure 4.32 E-filed plot on E and H plane of the realistic feed with optimized 3-layer 

DRA design (2) 

 

 

E-Plane H-Plane E-Plane H-Plane E-Plane H-Plane 

E-Plane H-Plane E-Plane H-Plane E-Plane H-Plane 
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4.4.2 Feeding by 10 Degrees Pyramid and 10 Degrees Metal Triangles 

As demonstrated, because the energy at higher frequency didn’t convert well form 

the launcher section into the waveguide section, higher order modes are excited in the 

waveguide section. And the radiation patterns are strongly affected by the excitation of 

high order modes. In order to convert the energy better from the launcher section to the 

waveguide section, one can be achieved by prolonging the launcher section.  

Figure 4.33 shows the geometry of the optimized three-layer DRA with prolonged 

launcher section. The prolonged launcher section is formed by a 10 degrees pyramid 

structure and 10 degrees isosceles triangles and the total length of the launcher section is 

5in.   

 

 

Figure 4.33 Geometry of optimized three-layer DRA with prolonged launcher section 

 

The simulation results of three-layer DRA with the prolonged feed structure are 

shown in the Figure 4.34. The S11 (Figure 4.34(a)) performances have more oscillations 

because the impedance is varied when the angle of pyramid structure changes. But, 

10 Degrees Pyramid 

10 Degrees Isosceles Triangles 

Resistive Taper  
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overall, the S11 are lower than -7.5dB from 2 to 18GHz and the impedance can be tuned 

by changing the angle of the triangle metals. The realized gain (Figure 4.34(b)) is still flat 

and not losing significantly at lower frequency caused by resistive taper. Compared to the 

shorter launcher feeding structure, the phase center (Figure 4.34(c)) is more stable at 

higher frequency, and the pattern beamwidth (Figure 4.34(d)) have less oscillation over 

the operation frequency band. 

Figure 4.35 to 4.37 show the normalized patterns of this design, and it demonstrates 

broad, consistent, and similar to that waveport excitation from 3 to 17GHz. The pattern at 

18GHz becomes more frequency dependent and narrow beamwidth because the field is 

still not perfectly guided as the waveport excitation. Figure 4.38 shows the E-field 

distributions at 18GHz of three different feed, and it demonstrates that the fields are 

guided better with a longer launcher. Even though it still has stronger undesired field 

existing in the waveguide section, the field distribution of longer launcher is more similar 

to the waveport excitation. Hence, by properly choosing the length of launcher section, it 

can achieve a better mode transition from launcher to waveguide section and avoid the 

excitation of higher order modes.  

But the radiation patterns at lower frequencies (Figure 4.35(a)-(d)) are still affected 

by the scattering field from the end of the launcher structure. In order to further mitigate 

the undesired influence from the end of the launcher section, the discontinuity point for 

the triangle metals would need to be adjusted. 
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                               (a)S11                                           (b) RealizedGain and directivity 

 

                           (c)Phase Center                                               (d) HPBW 

Figure 4.34 Simulation results of optimized three-layer DRA with prolonged feed 
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(a)2GHz                                                          (b)3GHz 

 

(c)4GHz                                                            (d)5GHz 

 

(e)6GHz                                                            (f)7GHz 

Figure 4.35 Normalized patterns of optimized three-layer DRA with prolonged feed (1) 
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(g) 8GHz                                                          (h) 9GHz 

 

(i) 10GHz                                                          (j)11GHz 

 

(k) 12GHz                                                             (l) 13GHz 

Figure 4.36 Normalized patterns of optimized three-layer DRA with prolonged feed (2) 
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(m) 14GHz                                                          (n) 15GHz 

 

(o) 16GHz                                                            (p) 17GHz 

 

(q) 18GHz  

Figure 4.37 Normalized patterns of optimized three-layer DRA with prolonged feed (3) 
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          (a) Waveport                                (b)Shorter launcher                (c) Longer launcher 

Figure 4.38 E-field plot at 18GHz 

 

4.4.3 Extending the Length of Triangle Metals 

As shown before, there are strong scattering fields at the discontinuity between 

metal and the resistive taper, and the strong diffractions would results in pattern variation 

at lower frequencies. In order to resolve this issue, we can reduce the scattering field at 

the connection by extending the length of the metals.  

Figure 4.39 shows the geometry of the optimized three-layer DRA with a practical 

feed structure, and the feed structure is formed by a 10 degrees pyramid structure and 10 

degrees isosceles triangles. Moreover, the metals length is 0.25in longer than the previous 

design. 
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Figure 4.39 Optimized three-layer DRA with adjusted launcher 

 

The simulation results of three-layer DRA with the extended metal length are shown 

in the Figure 4.40. The S11 (Figure 4.40(a)) performances are similar to the previous 

design, and demonstrate that the additional length of the metal wouldn’t significantly 

change the input impedance. The realized gain (Figure 4.40(b)) is still flat. Compared to 

the feeding structure without extending the metal length, the phase center (Figure 4.40(c)) 

is more stable at lower frequency, and the pattern beamwidth(Figure 4.40(d)) are more 

consistent from 2 to 18GHz. 

Figure 4.41 to 4.43 show the normalized patterns of this design, and it demonstrates 

broad and stationary patterns from 3 to 18GHz. By comparing the normalized gain 

patterns to the goal pattern, one can point out that the patterns are conformed to the target 

patterns well from 3 to 18GHz. Moreover, by comparing the patterns between longer 

metals design to the shorter design, it’s clear that the sidelobe level at lower frequencies 

are lower. Figure 4.44 – 4.45 show the E-filed distributions between two different metal 

10 Degrees Pyramid 

10 Degrees Isosceles Triangles 

Resistive Taper  

Extending Additional 0.25in 
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length at 2 and 3GHz, and it’s demonstrates that the diffractions the discontinuity are 

weaker with longer metal length. By further adjusting the  length of the triangle metals, 

the sidelobe levels can be reduced more. 

Because the feeding structure is not optimized yet, some performance differences 

between the practical feed structure and the waveport excitation are expected. After all, 

the results are fairly similar on the performances of S11, phase center, gain, and patterns 

respectively between two different feeding structures. Hence, the reliability of the 

optimized design from GA optimization procedure has been proven, and the optimized 

performances can be achieved by properly optimizing the angle of pyramid launcher, the 

angle of isosceles triangles, and the starting point of resistive taper strips, the difference 

can be resolved.  
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                                   (a) S11                                           (b) Realizedgain and directivity 

 

(c) Phase center                                                   (d)HPBW 

Figure 4.40 Simulation results of optimized three-layer DRA with adjusted launcher 
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(a) 2GHz                                                          (b) 3GHz 

 

(c) 4GHz                                                          (d) 5GHz 

 

(e) 6GHz                                                          (f) 7GHz 

Figure 4.41 Normalized patterns of optimized three-layer DRA with adjusted launcher (1) 
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(g) 8GHz                                                          (h) 9GHz 

 

(i) 10GHz                                                          (j) 11GHz 

 

(k) 12GHz                                                          (l) 13GHz 

Figure 4.42 Normalized patterns of optimized three-layer DRA with adjusted launcher (2) 
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(m)14GHz                                                          (n)15GHz 

 

(o) 16GHz                                                          (p) 17GHz 

 

(q)18GHz 

Figure 4.43 Normalized patterns of optimized three-layer DRA with adjusted launcher (3) 
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                         (a) Shorter metal length             (b) Longer metal length                                 

Figure 4.44 E-field plot at 2GHz 

 

 

                         (a) Shorter metal length             (b) Longer metal length                                 

Figure 4.45 E-field plot at 3GHz 
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CHAPTER 5 

 

Conclusion 

 

In this thesis, the design of multi-layer DRA has been presented. The operation 

principles of the automatic design method have been presented. The optimization 

program has been developed and it can effectively optimize a multi-layer DRA that 

reaches the design requirement. Furhermore, the reliability of the automatic optimization 

method has been proven.  

 By combining the commercial code HFSS with an external GA optimization 

program, the automatic design optimization method for UWB multi-layer DRA has been 

developed and presented in the thesis. With the assistance of the automatic optimization 

method, a three-layer DRA with 2 to 18GHz bandwidth and a four-layer DRA with 1 to 

18GHz bandwidth have been optimized. Both optimized designs reach the performance 

requirements on gain, phase center, pattern, and beamwidth over the operation frequency 

band. Moreover, by observing the convergence plots of all the optimization designs, all 

the optimizations achieve the optimized design in 10 generations. Therefore, it’s proven 

that the automatic optimization method can effectively optimize multi-layer DRA with 

different performance requirements.  
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Besides, by comparing the optimized design parameters of both three-layer and four-

layer DRA optimizations, it shows that the dielectric constant difference between 

adjacent layers is always small to reduce undesired reflection from waveguide section to 

radiation section. Moreover, the axial ratios for the inner layers prefer to be larger to 

postpone the radiation point for high frequency, and it can ensure the stable phase center 

over operation band. In addition, by comparing the dimension between three-layer and 

four-layer design, it shows that the diameter of the four-layer design is 0.4in wider than 

the three-layer design because the four-layer design needs larger electrical dimension to 

enhance the performance at 1GHz. And, as expected, the four-layer design achieves 

better S11 and phase center performance than the three-layer case below 3GHz. As a 

result, all the design parameters optimized by the automatic design method are reasonable, 

and the optimization method developed in the thesis is trustable.  

The fitness function used in the thesis is aimed for statically stable over the 

operation band. Moreover, because the phase center and S11 performances of a multi-

layer at higher frequencies are most likely to be stable, the fitness function might be 

biased when it searches for statically stable over the whole band. In order to improve the 

low frequency performance, the fitness might need to separate the whole operation 

frequency range into several bands and enforce the performance at lower frequencies 

more. 

Though the launcher section is not included in the optimization procedure, three 

important design parameters have been discussed. First, it’s very important to properly 

choose the angle of the pyramid structure because the angle controls the mode transition 

between launcher to waveguide section. Normally, a smaller angle can achieve better 
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transition, avoid the excitation of higher order modes, and reduce the pattern variation, 

but it also increase the size of the antenna and change the input impedance. Therefore, 

it’s important to choose an angle that meets the balance between antenna size and mode 

transition. Second, because the combination of the pyramid structure and triangle metals 

determines the input impedance, it’s crucial to select a good combination that can match 

to 100 ohms well over the operation frequency band. Third, since the scattering field at 

the discontinuity between metals and resistive tapers increase the sidelobe level at lower 

frequencies. Hence, the discontinuity point also needs to be well selected to minimize the 

undesired influences.  

The reliability of the optimized results has been verified by exciting the optimized 

three-layer design with a practical feed structure and comparing the results between 

waveport and a practical feed structure. Even though there are still some minor 

performance losses because the practical launcher section is not optimized, the overall 

performance between two different feed are fairly similar. By further optimizing the 

launcher section, the optimized multi-layer DRA design can be completed. 

 

 

 

 

 

 

 



 79 

 

 

 

Chapter 6 

 

Future Work 

 

An effective optimization procedure that automatically designs a UWB multi-layer 

DRA has been presented by combining external GA program with EM analysis software. 

Optimizations for different antennas are also achievable by properly changing fitness 

function. Hence, for the future application of GA optimization program, it’s important to 

extend the GA optimization procedure to be compatible for different kinds of commercial 

codes. And the optimization efficiency can be further enhanced by properly combining 

optimizing antenna with suitable EM software. 

For the current multi-layer DRA design optimization, it’s clear that the fitness 

function doesn’t enforce the performance to reach the requirement at lower frequencies 

because the fitness function tries to find the statistically stable performance over the 

whole operation band and .neglects the minor defects at lower frequencies. Hence, the 

fitness function should add addition enforcements at lower frequency to achieve better 

optimized performances. 

For the future design of multi-layer DRA, the most important issue is to complete 

the launcher section design since a perfect launcher structure is the only part that is not 



 80 

optimized so far. By further optimizing the angle of pyramid structure and the shape of 

isosceles triangle metals, it should able to complete the desired feeding structure. Besides, 

a new feed design is also important since the current pyramid shape feeding structure is 

difficult to fabricate especially when the number of layers increases for wider bandwidth. 

Several planer wide-band structures, such as bowtie antenna and log-periodic antenna, 

have the potential to be a feeding structure for a UWB multi-layer DRA but these design 

haven’t been studied yet. If new planer feeding structure can be discovered, the 

complexity of the fabrication procedure will be greatly reduced. 
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Appendix A 

 

BCB Code of Genetic Algorithm 

 

#include <vcl.h> 

#include <stdio.h> 

#include <math.h> 

#include <time.h> 

#pragma hdrstop 

#include "Unit1.h" 

//--------------------------------------------------------------------------- 

#pragma package(smart_init) 

#pragma resource "*.dfm" 

TGA *GA; 

time_t t; 

//--------------------------------------------------------------------------- 

__fastcall TGA::TGA(TComponent* Owner) 

        : TForm(Owner) 

{ 

} 

//--------------------------------------------------------------------------- 

AnsiString Setup = "C:\\Optima\\temp\\Setup.txt";    // Store Basic setting 

AnsiString MAXDATA = "C:\\Optima\\temp\\Max.txt";    // Store maximum of each Parameters 

AnsiString MINDATA = "C:\\Optima\\temp\\Min.txt";    //   ;   min           ; 

AnsiString BITDATA = "C:\\Optima\\temp\\Bit.txt";    //  Bit of each parameters ( for binary ) 

AnsiString GENDATA = "C:\\Optima\\temp\\Gen.txt";    //Generation counting! 

AnsiString READY = "C:\\Optima\\temp\\READY.txt";    //Generation counting! 

 

AnsiString BinaryT = "C:\\Optima\\temp\\BT.tmp"; 

AnsiString DecimalT = "C:\\Optima\\temp\\MT.tmp"; 

AnsiString poplistB = "C:\\Optima\\temp\\pop\\Binary\\p";   // temp data 

AnsiString poplistD = "C:\\Optima\\temp\\pop\\Decimal\\p"; 

AnsiString poplistR = "C:\\Optima\\temp\\pop\\RealNum\\p"; 

AnsiString FITNESS = "C:\\Optima\\temp\\FITNESS\\FIT.txt"; 

 

AnsiString poplistBG = "C:\\Optima\\temp\\pop\\Binary\\BGen\\Gen"; 

AnsiString poplistRG = "C:\\Optima\\temp\\pop\\realnum\\RGen\\Gen"; 

AnsiString poplistDG = "C:\\Optima\\temp\\pop\\Decimal\\DGen\\Gen"; 
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int parameters, pop, gen;       //GA Parameters 

float mu, cro;                  //GA Parameters 

int format;  // format=2 for Binary , 10 for deciaml format 

 

int wait=0; 

void __fastcall TGA::BinaryCClick(TObject *Sender) 

{ 

    parameters = StrToInt(Parameters->Text); 

    pop = StrToInt(Population->Text); 

    Label1->Visible = true; 

    Label2->Visible = true; 

    Label3->Visible = true; 

    DecimalC->Enabled = false; 

    Max->Enabled = true; 

    Min->Enabled = true; 

    Bits->Enabled = true; 

    format = 2; 

    Save->Enabled = true; 

    MemoAdd->Click(); 

} 

//--------------------------------------------------------------------------- 

void __fastcall TGA::Timer1Timer(TObject *Sender) 

{ 

    //Check if all the required blocks are filled 

    if( Parameters->Text == "" || Generation->Text == "" || Population->Text == "" || Crossover->Text == "" 

|| Mutation->Text =="" ) 

    { 

        BinaryC->Enabled = false; 

        DecimalC->Enabled = false; 

    } 

    else 

    { 

        BinaryC->Enabled = true; 

        DecimalC->Enabled = true; 

        Timer1->Enabled = false; 

    } 

} 

//--------------------------------------------------------------------------- 

void __fastcall TGA::MemoAddClick(TObject *Sender) 

{ 

    for ( int i = 1; i <= parameters ; i++ ) 

    { 

        Max->Lines->Add("M"+IntToStr(i)+":"); 

        Max->Lines->Add(" "); 

        Min->Lines->Add("m"+IntToStr(i)+":"); 

        Min->Lines->Add(" "); 

        if( format == 2 ) 

        { 

            Bits->Lines->Add("B"+IntToStr(i)+":"); 

            Bits->Lines->Add(" "); 

        } 

    } 

} 
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//--------------------------------------------------------------------------- 

void __fastcall TGA::SaveClick(TObject *Sender) 

{ 

    Max->Lines->SaveToFile(MAXDATA); 

    Min->Lines->SaveToFile(MINDATA); 

    Bits->Lines->SaveToFile(BITDATA); 

    BackProcess->Lines->Add("Format:"); 

    BackProcess->Lines->Add(IntToStr(format)); 

    BackProcess->Lines->Add("Parameter Num:"); 

    BackProcess->Lines->Add(Parameters->Text); 

    BackProcess->Lines->Add("Generations:"); 

    BackProcess->Lines->Add(Generation->Text); 

    BackProcess->Lines->Add("Populations:"); 

    BackProcess->Lines->Add(Population->Text); 

    BackProcess->Lines->Add("Crossover:"); 

    BackProcess->Lines->Add(Crossover->Text); 

    BackProcess->Lines->Add("Mutation:"); 

    BackProcess->Lines->Add(Mutation->Text); 

    BackProcess->Lines->SaveToFile(Setup); 

 

    Max->Enabled = false; 

    Min->Enabled = false; 

    Bits->Enabled = false; 

    Start->Enabled = true; 

    Save->Enabled = false; 

} 

//--------------------------------------------------------------------------- 

void __fastcall TGA::Timer2Timer(TObject *Sender) 

{ 

   //Random number generator #1 

 

   int randN = 10000; 

   if( BackProcess2->Lines->Capacity < randN ) 

   { 

       srand((unsigned) time(&t)); 

       for( int i = 1 ; i <= 3 ; i++) 

       { 

           int div; 

           float ddiv; 

           div = pow(10,i); 

           ddiv = div/(2*1.47); 

           if( (rand()*rand()+rand()) % div > ddiv ) 

           { 

               BackProcess2->Lines->Add(IntToStr(1)); 

           } 

           else 

           { 

               BackProcess2->Lines->Add(IntToStr(0)); 

           } 

       } 

   } 

   if( BackProcess10->Lines->Capacity < randN ) 

   { 

       srand((unsigned) time(&t)); 
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       BackProcess10->Lines->Add( rand()%1000 ); 

       BackProcess10->Lines->Add( (rand()+1)%1000 ); 

       BackProcess10->Lines->Add( (rand()+2)%1000 ); 

       BackProcess10->Lines->Add( (rand()+3)%1000 ); 

       BackProcess10->Lines->Add( (rand()+4)%1000 ); 

   } 

} 

//--------------------------------------------------------------------------- 

void __fastcall TGA::Timer3Timer(TObject *Sender) 

{ 

   //Random number generator #2 

 

   int randN = 10000; 

   if( BackProcess2->Lines->Capacity < randN ) 

   { 

       srand((unsigned) time(&t)); 

       for( int i = 1 ; i <= 2 ; i++) 

       { 

           int div; 

           float ddiv; 

           div = pow(10,i); 

           ddiv = div/(2*1.47); 

           if( (rand()*rand()*rand()+rand()) % div > ddiv ) 

           { 

               BackProcess2->Lines->Add(IntToStr(1)); 

           } 

           else 

           { 

               BackProcess2->Lines->Add(IntToStr(0)); 

           } 

       } 

   } 

   if( BackProcess10->Lines->Capacity < randN ) 

   { 

       srand((unsigned) time(&t)); 

       BackProcess10->Lines->Add( (rand()-1)%1000 ); 

       BackProcess10->Lines->Add( (rand()-2)%1000 ); 

       BackProcess10->Lines->Add( (rand()-3)%1000 ); 

       BackProcess10->Lines->Add( (rand()-4)%1000 ); 

       BackProcess10->Lines->Add( (rand()-5)%1000 ); 

   } 

} 

//--------------------------------------------------------------------------- 

void __fastcall TGA::StartClick(TObject *Sender) 

{ 

    // this subroutine is used to generate the population! (first generation) 

    AnsiString *temp; 

    BackProcess->Clear();   // clear the MEMO; memo provides a place for data processing 

    temp = new AnsiString[parameters]; 

    if( format == 2 )     // binary set 

    { 

        for( int p = 1 ; p <= pop ; p++ )    // generate enough population 

        { 

            for( int i = 0 ; i < parameters ; i++ )  // generate enough parameters in each population 
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            { 

                temp = new AnsiString[parameters];    // binary set '100001'..... whatever :) 

                for( int k = 0 ; k < StrToInt(Trim(Bits->Lines->operator [](2*i+1))) ; k++ ) 

                { 

                    if( BackProcess2->Lines->operator [](0) != "" ) 

                    { 

                        *(temp+i) = *(temp+i) + BackProcess2->Lines->operator [](0); 

                        BackProcess2->Lines->Delete(0); 

                    } 

                    else if ( BackProcess2->Lines->operator [](0) == "" && BackProcess10->Lines->operator 

[](0) != ""  ) 

                    { 

                        if( (StrToInt(BackProcess10->Lines->operator [](0)) + rand())%1000 > 500 ) 

                        { 

                            *(temp+i) = *(temp+i) + "1"; 

                        } 

                        else 

                        { 

                            *(temp+i) = *(temp+i) + "0"; 

                        } 

                        BackProcess10->Lines->Delete(0); 

                    } 

                    else 

                    { 

                        srand((unsigned) time(&t)); 

                        if( rand()*rand() % 1000 > 500 ) 

                        { 

                            *(temp+i) = *(temp+i) + "1"; 

                        } 

                        else 

                        { 

                            *(temp+i) = *(temp+i) + "0"; 

                        } 

                        Sleep(500); 

                    } 

                } 

             BackProcess->Lines->Add(*(temp+i)); 

             *(temp+i) = ""; 

            } 

         BackProcess->Lines->SaveToFile(poplistB+IntToStr(p)+".txt");   // Save each population to file for 

futher use 

         BackProcess->Clear();    // Memo clear! 

        } 

    } 

    TransToR->Click(); 

    delete[] temp; 

    BackProcess->Clear(); 

    BackProcess->Lines->SaveToFile(READY); 

} 

//--------------------------------------------------------------------------- 

void __fastcall TGA::TransToRClick(TObject *Sender) 

{ 

    // Reset the basic parameters 

    float *max, *min; 
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    BackProcess->Clear(); 

    BackProcess->Lines->LoadFromFile(Setup); 

    format = StrToInt(BackProcess->Lines->operator [](1)); 

    parameters = StrToInt(BackProcess->Lines->operator [](3)); 

    pop = StrToInt(BackProcess->Lines->operator [](7)); 

    max = new float[parameters]; 

    min = new float[parameters]; 

    BackProcess->Lines->LoadFromFile(MAXDATA); 

    for( int i = 0 ; i < parameters ; i++ ) 

    { 

        *(max+i) = StrToFloat(Trim(BackProcess->Lines->operator [](2*i+1))); 

    } 

    BackProcess->Lines->LoadFromFile(MINDATA); 

    for( int i = 0 ; i < parameters ; i++ ) 

    { 

        *(min+i) = StrToFloat(Trim(BackProcess->Lines->operator [](2*i+1))); 

    } 

 

    // this subroutine is used to transfer the Pop to the real number 

    AnsiString temp; 

    float count; 

    if( format == 2 )  // binary set 

    { 

        for( int p = 1 ; p <= pop ; p++ ) 

        { 

            BackProcess->Lines->LoadFromFile(poplistB+IntToStr(p)+".txt"); 

            for( int pa = 1 ; pa <= parameters ; pa++ ) 

            { 

                temp = BackProcess->Lines->operator [](0); 

                count = 0; 

                for( int l = 0 ; l < temp.Length() ; l++ ) 

                { 

                    if( temp.SubString(l+1,1) == "1" )           // transfer the '1001' -> '9' (binary to Decimal) 

                    { 

                        count = count + pow(2,temp.Length()-l-1); 

                    } 

                } 

                BackProcess->Lines->Delete(0); 

                count = count / (pow(2,temp.Length())-1);              

// Normalize the parameter 

                count = count * (*(max+pa-1)-*(min+pa-1)) + (*(min+pa-1));      

// Set to the region of required 

                BackProcess->Lines->Add(FloatToStr(count)); 

            } 

            BackProcess->Lines->SaveToFile(poplistR+IntToStr(p)+".txt");       

//Save it! 

        } 

    } 

    Timer4->Enabled = true; 

    delete[] max, min; 

} 

//--------------------------------------------------------------------------- 

void __fastcall TGA::Timer4Timer(TObject *Sender) 

{ 
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    // This timer is used to check if the FITNESS file is Created !! 

    // During the Waiting period, the GA program will be stupor! 

    if(!FileExists(FITNESS)) 

    { 

        GA->Enabled = false; 

        Label4->Caption = "Waiting for calculating fitness number"; 

    } 

    else 

    { 

         GA->Enabled = True; 

         Timer4->Enabled = false; 

         Algorithm->Click(); //GA 

    } 

} 

//--------------------------------------------------------------------------- 

int tournament = 4; 

void __fastcall TGA::AlgorithmClick(TObject *Sender) 

{ 

    BackProcess->Clear();            

// Back up the population of the last generation and DO GENETIC ALGORITHM 

    BackProcess->Lines->LoadFromFile(Setup);           //Reload data 

    format = StrToInt(BackProcess->Lines->operator [](1)); 

    parameters = StrToInt(BackProcess->Lines->operator [](3)); 

    pop = StrToInt(BackProcess->Lines->operator [](7)); 

 

    cro = StrToFloat(BackProcess->Lines->operator [](9)); 

    mu = StrToFloat(BackProcess->Lines->operator [](11)); 

 

    if(FileExists(GENDATA)) 

    { 

        BackProcess->Lines->LoadFromFile(GENDATA); 

        gen = StrToInt(BackProcess->Lines->operator [](0));             //genertation 

    } 

    else 

    { 

        gen = 1; 

        BackProcess->Clear(); 

    } 

    BackProcess->Clear();                        // change generation data 

    BackProcess->Lines->Add(IntToStr(gen+1)); 

    BackProcess->Lines->SaveToFile(GENDATA); 

    BackProcess->Clear(); 

 

    int *sel, *sel1, posM, prob;                 // parasmeters for selection method 

    float *sel2, probf;                     // used for identify the crossover and mutation paarameter 

    AnsiString *sel3, *sel4;         // string processing parameter 

 

    sel = new int[2]; 

    sel1 = new int[tournament]; 

    sel2 = new float[tournament]; 

    sel3 = new AnsiString[4]; 

    sel4 = new AnsiString[2]; 

 

    if( format == 2 ) 
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    { 

        int *bit;                                                      

 // Backup the old data ! 

        bit = new int[parameters];                                      

// how many parameters in a population 

        BackProcess->Lines->LoadFromFile(BITDATA); 

 

        for( int i = 0 ; i < parameters ; i++ ) 

        { 

            *(bit+i) = StrToFloat(Trim(BackProcess->Lines->operator [](2*i+1)));       

// reload the BITS information 

        }                                                                              

// how many bits contain in a parameter ! 

 

        BackProcess->Lines->Clear(); 

        for( int p = 1 ; p<= pop ; p++ )              // back up the binary data for each generation 

        { 

            BackProcess1->Lines->LoadFromFile(poplistB+IntToStr(p)+".txt");             

// Store the old generation 

            BackProcess->Lines->Add("-----Population : " + IntToStr(p) + " -----"); 

            for( int pa = 1 ; pa <= parameters ; pa++ ) 

            { 

                BackProcess->Lines->Add(BackProcess1->Lines->operator [](pa-1)); 

            } 

        } 

        BackProcess->Lines->SaveToFile(poplistBG+IntToStr(gen)+".txt"); 

        BackProcess->Clear(); 

        BackProcess1->Clear(); 

 

        for( int p = 1 ; p<= pop ; p++ )            

//back up the real number data for each generation 

        { 

            BackProcess1->Lines->LoadFromFile(poplistR+IntToStr(p)+".txt");             

// Store the old generation 

            BackProcess->Lines->Add("-----Population : " + IntToStr(p) + " -----"); 

            for( int pa = 1 ; pa <= parameters ; pa++ ) 

            { 

                BackProcess->Lines->Add(BackProcess1->Lines->operator [](pa-1)); 

            } 

        } 

        BackProcess->Lines->SaveToFile(poplistRG+IntToStr(gen)+".txt"); 

        BackProcess->Clear(); 

        BackProcess1->Clear(); 

 

        // doing selection! 

        for( int p = 1 ; p <= pop/2 ; p++ )                                

 // Population should be even! 

        {                                                                   

// Select two population and find the better one (twice); Select the better one 

            for( int j = 0 ; j < 2 ; j++ )                                  

// in these two; Do the procedure twice and find the both parents 

            {                                                              

 // Choose 1 from 2 Selection; do it twice to generate the parents. 

                for( int i = 0 ; i < tournament ; i++ ) 
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                { 

                    if( BackProcess10->Lines->Capacity < 100 )            

// if run out of the random sequence ! generate it! 

                    { 

                        for( int r = 0 ; r< 10 ; r++ ) 

                        { 

                            srand((unsigned) time(&t)); 

                            BackProcess10->Lines->Add( (rand()+rand()) % 1000); 

                            BackProcess10->Lines->Add( (rand()*rand()) % 1000); 

                            BackProcess10->Lines->Add( (rand()*rand()+rand()) % 1000); 

                            BackProcess10->Lines->Add( (rand()+rand()+rand()) % 1000); 

                            BackProcess10->Lines->Add( (rand()) % 1000); 

                            Sleep(750); 

                        } 

                    } 

 

                    (*(sel1+i)) = StrToInt(BackProcess10->Lines->operator [](0)); 

                    (*(sel1+i)) = ((*(sel1+i))%pop)+1;                             // Select #1 

 

                    BackProcess10->Lines->Delete(0); 

 

                    if( i != 0 ) 

                    { 

                        for ( int k = 0 ; k<= i-1 ; k++ ) 

                        { 

                            if(  (*(sel1+i)) ==  (*(sel1+k)) ) 

                            { 

                                i--; 

                                k = i; 

                            } 

                        } 

                    } 

                } 

                BackProcess->Lines->LoadFromFile(FITNESS);       // load the fitness file 

                posM = 0; 

                for( int i = 0 ; i < tournament; i++ ) 

                { 

                    *(sel2+i) =  StrToFloat(BackProcess->Lines->operator []((*(sel1+i))-1));    

 // load the fitness value of the selection 

                    if( i!=0 ) 

                    { 

                        if( (*(sel2+posM)) > (*(sel2+i)) ) 

                        { 

                            posM = posM; 

                        } 

                        else 

                        { 

                            posM = i; 

                        } 

                    } 

                } 

                (*(sel+j)) = (*(sel1+posM)) ; 

            } 
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            BackProcess->Lines->LoadFromFile(poplistB+IntToStr( (*(sel+0)) ) +".txt");      // load file 

contained the gene of the selection 

            BackProcess1->Lines->LoadFromFile(poplistB+IntToStr( (*(sel+1)) ) +".txt");     // Same  ; 

 

            int tran; 

 

            for( int i = 0 ; i < parameters ; i++ ) 

            { 

                if( BackProcess10->Lines->Capacity < 100 )            

// if run out of the random sequence ! generate it! 

                { 

                    for( int r = 0 ; r< 10 ; r++ ) 

                    { 

                        srand((unsigned) time(&t)); 

                        BackProcess10->Lines->Add( (rand()+rand()) % 1000); 

                        BackProcess10->Lines->Add( (rand()*rand()) % 1000); 

                        BackProcess10->Lines->Add( (rand()*rand()+rand()) % 1000); 

                        BackProcess10->Lines->Add( (rand()+rand()+rand()) % 1000); 

                        BackProcess10->Lines->Add( (rand()) % 1000); 

                        Sleep(750); 

                    } 

                } 

                prob = StrToInt( BackProcess10->Lines->operator [](0) ); 

                probf = prob; 

                probf = probf/1000; 

                BackProcess10->Lines->Delete(0);  // delete used random number 

 

                if( (StrToFloat(BackProcess10->Lines->operator [](0))/1000) < cro )     

 // do crossover       ( if crossover ) 

                { 

                    BackProcess10->Lines->Delete(0);   

// delete used random number 

                    *(sel3+0) = BackProcess->Lines->operator [](0);     

 // load the gene information 

                    *(sel3+1) = BackProcess1->Lines->operator [](0); 

 

                    BackProcess->Lines->Delete(0); 

                    BackProcess1->Lines->Delete(0); 

 

                    tran = (StrToInt(BackProcess10->Lines->operator [](0))%((*(bit+i))+1));    // create the part of 

crossover 

                    BackProcess10->Lines->Delete(0);  // delete used random number 

 

                    *(sel4+0) =  (*(sel3+0)).SubString(1,tran) ;         

 // Create new gene   #CROSSOVER #1 

                    *(sel4+1) =  (*(sel3+1)).SubString(tran+1,(*(bit+i))-tran); 

                    (*(sel3+2)) = (*(sel4+0)) + (*(sel4+1)); 

 

                    *(sel4+0) =  (*(sel3+1)).SubString(1,tran) ;         

// Create new gene    #CORSSOVER #2 

                    *(sel4+1) =  (*(sel3+0)).SubString(tran+1,(*(bit+i))-tran); 

                    (*(sel3+3)) = (*(sel4+0)) + (*(sel4+1)); 

 

                } 
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                else 

                { 

                    BackProcess10->Lines->Delete(0); 

                    (*(sel3+2)) = BackProcess->Lines->operator [](0); 

                    (*(sel3+3)) = BackProcess1->Lines->operator [](0); 

                    BackProcess->Lines->Delete(0); 

                    BackProcess1->Lines->Delete(0); 

                } 

 

                if( (StrToFloat(BackProcess10->Lines->operator [](0))/1000) < mu )         

// mutation   #1 

                { 

                    BackProcess10->Lines->Delete(0); 

                    tran = (StrToInt(BackProcess10->Lines->operator [](0))%(*(bit+i))); 

                    tran = tran+1; 

                    if( (*(sel3+2)).SubString(tran,1) == "1" ) 

                    { 

                        (*(sel3+2)).Delete(tran,1); 

                        (*(sel3+2)).Insert("0",tran); 

                    } 

                    else 

                    { 

                        (*(sel3+2)).Delete(tran,1); 

                        (*(sel3+2)).Insert("1",tran); 

                    } 

                } 

 

                if( (StrToFloat(BackProcess10->Lines->operator [](0))/1000) < mu )         

// mutation   #2 

                { 

                    BackProcess10->Lines->Delete(0); 

                    tran = (StrToInt(BackProcess10->Lines->operator [](0))%(*(bit+i))); 

                    tran = tran+1;  // tran should between 1-genes  

                    if( (*(sel3+3)).SubString(tran,1) == "1" ) 

                    { 

                        (*(sel3+3)).Delete(tran,1); 

                        (*(sel3+3)).Insert("0",tran); 

                    } 

                    else 

                    { 

                        (*(sel3+3)).Delete(tran,1); 

                        (*(sel3+3)).Insert("1",tran); 

                    } 

                } 

                BackProcess->Lines->Add( (*(sel3+2)) ); 

                BackProcess1->Lines->Add( (*(sel3+3)) ); 

            } 

 

 

            BackProcess->Lines->SaveToFile(poplistBG+IntToStr(2*p-1)+".dll"); 

            BackProcess->Clear(); 

 

            BackProcess1->Lines->SaveToFile(poplistBG+IntToStr(2*p)+".dll"); 

            BackProcess1->Clear(); 
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        } 

        delete[] bit; 

 

        for( int p = 1 ; p <= pop ; p++ ) 

        { 

            BackProcess->Lines->LoadFromFile(poplistBG+IntToStr(p)+".dll"); 

            BackProcess->Lines->SaveToFile(poplistB+IntToStr(p) +".txt"); 

            DeleteFile(poplistBG+IntToStr(p)+".dll"); 

            BackProcess->Clear(); 

        } 

    } 

//------------------------------- 

    if(FileExists(FITNESS)) 

    { 

        BackProcess->Lines->LoadFromFile(FITNESS); 

        BackProcess->Lines->SaveToFile("C:\\Optima\\temp\\FITNESS\\FIT"+IntToStr(gen)+".txt"); 

        DeleteFile(FITNESS); 

    } 

    TransToR->Click(); 

    delete[] sel, sel1, sel2, sel3, sel4; 

    BackProcess->Lines->SaveToFile(READY); 

} 

//--------------------------------------------------------------------------- 
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Appendix B 

 

BCB Code of Master Program 

 

#include <vcl.h> 

#include <iostream> 

#include <cmath> 

#pragma hdrstop 

#include "Unit1.h" 

#include "math.h" 

//--------------------------------------------------------------------------- 

#pragma package(smart_init) 

#pragma resource "*.dfm" 

TForm1 *Form1; 

 

//--------------------------------------------------------------------------- 

__fastcall TForm1::TForm1(TComponent* Owner) 

        : TForm(Owner) 

{ 

} 

//--------------------------------------------------------------------------- 

AnsiString Setup = "C:\\Optima\\temp\\Setup.txt";    // Store Basic setting 

AnsiString poplistR = "C:\\Optima\\temp\\pop\\RealNum\\p"; 

AnsiString poplistB = "C:\\Optima\\temp\\pop\\Binary\\p"; 

AnsiString FITNESS = "C:\\Optima\\temp\\FITNESS\\FIT.txt"; 

AnsiString FITNESS1 = "C:\\Optima\\temp\\FITNESS\\FIT"; 

AnsiString READY= "C:\\Optima\\temp\\ready.txt"; 

AnsiString Result = "C:\\Optima\\temp\\Result\\temp.csv"; 

AnsiString Result_1 = "C:\\Optima\\temp\\Result\\temp1.csv"; 

AnsiString Result_2 = "C:\\Optima\\temp\\Result\\temp2.csv"; 

AnsiString Result_3 = "C:\\Optima\\temp\\Result\\temp3.csv"; 

AnsiString Result_a = "C:\\Optima\\temp\\Result\\tempa.csv"; 

AnsiString Result_1a = "C:\\Optima\\temp\\Result\\temp1a.csv"; 

AnsiString Result_2a= "C:\\Optima\\temp\\Result\\temp2a.csv"; 

AnsiString Result_3a = "C:\\Optima\\temp\\Result\\temp3a.csv"; 

AnsiString ResultS = "C:\\Optima\\temp\\Result\\temp"; 

AnsiString ResultS_1 = "C:\\Optima\\temp\\Result\\temp1"; 

AnsiString ResultS_2 = "C:\\Optima\\temp\\Result\\temp2"; 
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AnsiString ResultS_3 = "C:\\Optima\\temp\\Result\\temp3"; 

AnsiString ResultS_a = "C:\\Optima\\temp\\Result\\tempa"; 

AnsiString ResultS_1a = "C:\\Optima\\temp\\Result\\temp1a"; 

AnsiString ResultS_2a = "C:\\Optima\\temp\\Result\\temp2a"; 

AnsiString ResultS_3a = "C:\\Optima\\temp\\Result\\temp3a"; 

AnsiString VBS = "C:\\Optima\\temp\\VBS\\"; 

int pop, parameterN; 

AnsiString *name; 

int Gen = 1, PopC = 1, reportN = 4;   //Report Number!! 

float fitness_pattern =0 ;  // commute the data 

int layer = 6; 

float  Er_i, Er_r, Lambda_r, H_r;  // number of layers ( need to be optimaized later on ) 

float  fitness_height, Height_limit = 5; 

 

void __fastcall TForm1::B1Click(TObject *Sender)     // Initial Setting (Asking the parameter name! 

{ 

    VBSMemo->Lines->LoadFromFile(Setup);     // loading the setup from file 

    pop = StrToInt(VBSMemo->Lines->operator [](7));  //population 

    parameterN = StrToInt(VBSMemo->Lines->operator [](3));   //Number of parameter 

    name = new AnsiString[parameterN];     // Array that store name of parameter 

    VBSMemo->Lines->Clear(); 

} 

//--------------------------------------------------------------------------- 

void __fastcall TForm1::B2Click(TObject *Sender)     //VBS Creating 

{                // pop=1; 

 

    int datap = 6; 

    int layers = 4; 

    float datapf; 

    AnsiString datap2, datap3; 

    for ( int vbsC = 1; vbsC <= 2; vbsC++ ) 

    { 

    for ( int i = 1 ; i <= pop ; i++ )     // generate n-VBscript 

    { 

        VBSMemo->Lines->Clear(); 

        VariName->Lines->Clear(); 

        VariName->Lines->LoadFromFile(poplistR+IntToStr(i)+".txt");  

 //load the parameter 

        fitness_H->Lines->LoadFromFile(poplistB+IntToStr(i)+".txt"); 

        // how many globe and local 

        // say i need r value, h value, er value 

        // this three should be calculated by the radnom unmber i have.! 

        // globe variable $Er 

        float *Er, *radius, *h, *ra, *height, *rax; 

        Er = new float[layers]; 

        radius = new float[layers]; 

        ra = new float[layers]; 

        rax = new float[layers]; 

        h = new float[1]; 

        height = new float[1]; 

 

        *(Er+layers-1) = 2.2;  //fixed er! 

 

        for( int j = 1 ; j  < layers ; j++ ) 
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        { 

            if( j == 1) 

            { 

                *(Er+layers-1-j) = (*(Er+layers-1-j+1)) + StrToFloat(VariName->Lines->operator [](j-1))-0.2;        

// load the parameter! 

            } 

            else 

            { 

                *(Er+layers-1-j) = (*(Er+layers-1-j+1)) + StrToFloat(VariName->Lines->operator [](j-1)); 

            } 

            VBSMemo->Lines->Add(fitness_H->Lines->operator [](j)); 

        } 

 

        for( int j = 0; j<layers ; j++ ) 

        { 

             *(radius+j) = StrToFloat(VariName->Lines->operator [](layers-1+j)); 

        } 

        for( int j = 0; j<layers ; j++ ) 

        { 

             *(ra+j) = StrToFloat(VariName->Lines->operator [](2*layers-1+j)); 

        } 

        for( int j = 0; j<layers ; j++ ) 

        { 

             *(rax+j) = StrToFloat(VariName->Lines->operator [](3*layers-1+j)); 

        } 

        *(h+0) = 2.5; 

        VariName->Lines->Clear(); 

        fitness_H->Lines->Clear(); 

        VBSMemo->Lines->Clear(); 

 

        //VBS Generator ! (XD) 

 

        for ( int j =0; j<= InitialMemo->Lines->Capacity ; j++ )         //Initial VBS 

        { 

            if( j!= 10 || vbsC == 1) 

            { 

                VBSMemo->Lines->Add(InitialMemo->Lines->operator [](j)); 

            } 

            else 

            { 

           // ShowMessage("a"); 

                datap2 = InitialMemo->Lines->operator [](j); 

                datap3 = datap2.Delete(datap2.Length()-2,1); 

                datap2 = datap3.Insert("2",datap3.Length()-1); 

                VBSMemo->Lines->Add(datap2); 

                      //      ShowMessage(datap2); 

            } 

        } 

 

        for ( int l = 0 ; l < (layers)*4+1 ; l++ )                         // Variable VBS 

        { 

            if ( l < layers )                            //globe variable 

            { 

                for ( int j =0; j< VariableMemoG->Lines->Capacity ; j++ ) 
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                { 

                    if( j < VariableMemoG->Lines->Capacity-1 ) 

                    { 

                        VBSMemo->Lines->Add(VariableMemoG->Lines->operator [](j)); 

                    } 

                    else 

                    { 

                        AnsiString t1 = VariableMemoG->Lines->operator [](j);    

 // until the last line 

                        int j1 = t1.Pos("$"); 

                        AnsiString t3 = t1.Delete(j1,1); 

                        AnsiString t2 = t3.Insert("$Er"+IntToStr(l+1),j1);     

// put the parameter name 

                        j1 = t2.Pos("Variable"); 

                        t1 = t2.Delete(j1,8); 

 

                        datap = 6; 

                        datap2 = FloatToStr( (*(Er+l) )).SubString(datap,1); 

                        for( int k = 6 ; k>0; k-- ) 

                        { 

                            if( datap2.SubString(k,1)== "0" ) 

                            { 

                                  datap--; 

                            } 

                            else 

                            { 

                                k =0; 

                            } 

                        } 

                        t2 = t1.Insert(FloatToStr( (*(Er+l) )).SubString(1,datap),j1);    // insert the value 

                        VBSMemo->Lines->Add(t2); 

                        VariName->Lines->Add(FloatToStr( (*(Er+l) )).SubString(1,datap)); 

                    } 

                } 

            } 

 

            if ( l>=layers )                                 // local variable 

            { 

                for ( int j =0; j< VariableMemo->Lines->Capacity ; j++ ) 

                { 

                    if( j < VariableMemo->Lines->Capacity-1 ) 

                    { 

                        VBSMemo->Lines->Add(VariableMemo->Lines->operator [](j)); 

                    } 

                    else 

                    { 

                        AnsiString t1 = VariableMemo->Lines->operator [](j); 

                        int j1 = t1.Pos("$"); 

                        AnsiString t3 = t1.Delete(j1,1); 

                        AnsiString t2 ; 

                        if( l < 2*layers ) 

                        { 

                            t2 = t3.Insert("r"+IntToStr(l-(layers-1)),j1); 

                        } 
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                        else if( l < 3*layers && l > 2*layers-1) 

                        { 

                            t2 = t3.Insert("ra"+IntToStr(l-(2*layers-1)),j1); 

                        } 

                        else if( l < 4*layers && l > 3*layers-1) 

                        { 

                            t2 = t3.Insert("rx"+IntToStr(l-(3*layers-1)),j1); 

                        } 

                        else 

                        { 

                             t2 = t3.Insert("height",j1); 

                        } 

                        j1 = t2.Pos("Variable"); 

                        t1 = t2.Delete(j1,8); 

                        if( l != layers*4 ) 

                        { 

                            datap = 6; 

                            if( l< 2*layers) 

                            { 

                               datap3 = FloatToStr( (*(radius+l-layers) )); 

                            } 

                            if( l<3*layers && l > 2*layers-1) 

                            { 

                               datap3 = FloatToStr( (*(ra+l-layers*2) )); 

                            } 

                            if( l<4*layers && l > 3*layers-1) 

                            { 

                               datap3 = FloatToStr( (*(rax+l-3*layers) )); 

                            } 

                            for( int k = 6 ; k>0; k-- ) 

                            { 

                                if( datap3.SubString(k,1) == "0" ) 

                                { 

                                      datap--; 

                                } 

                                else 

                                { 

                                    k =0; 

                                } 

                            } 

                            if( l < 2*layers ) 

                            { 

                                t2 = t1.Insert( datap3.SubString(1,datap)+" in",j1); 

                            } 

                            else 

                            { 

                                t2 = t1.Insert( datap3.SubString(1,datap),j1); 

                            } 

                            VariName->Lines->Add(datap3.SubString(1,datap)); 

                        } 

                        else 

                        { 

                            datapf = 0; 

                            for( int m = 0 ; m < layers ; m++ ) 
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                            { 

                                datapf = datapf + StrToFloat(VariName->Lines->operator [](layers+m)); 

                                *(height+0) = datapf * StrToFloat(VariName->Lines->operator [](layers*2+m)); 

                                if ( m==0 ) 

                                { 

                                    *(h+0) = datapf * StrToFloat(VariName->Lines->operator [](layers*2+m)); 

                                } 

                                else 

                                { 

                                    if ( *(h+0) <  *(height+0) ) 

                                    { 

                                        *(h+0)  =  *(height+0); 

                                    } 

                                } 

                                //ShowMessage(FloatToStr(*(h+0))); 

                            } 

                            datap = 6; 

                            for( int k = 6 ; k>0; k-- ) 

                            { 

                                if( FloatToStr( (*(h+0)) ).SubString(k,1) == "0" ) 

                                { 

                                      datap--; 

                                } 

                                else 

                                { 

                                    k =0; 

                                } 

                            } 

                            t2 = t1.Insert( FloatToStr( (*(h+0)) ).SubString(1,datap)+" in",j1); 

                            VariName->Lines->Add( FloatToStr( (*(h+0))).SubString(1,datap)); 

                        } 

                        VBSMemo->Lines->Add(t2); 

                    } 

                } 

            } 

 

        } 

        delete[] Er, radius, h ; 

 

        for ( int j =0; j< SaveAndRunMemo->Lines->Capacity ; j++ )         //Initial VBS (save and run 

commend) 

        { 

            if( j< SaveAndRunMemo->Lines->Capacity-1 ) 

            { 

                if(vbsC==1) 

                { 

                    VBSMemo->Lines->Add(SaveAndRunMemo->Lines->operator [](j)); 

                } 

                else 

                { 

                    if( j== SaveAndRunMemo->Lines->Capacity-3 || j== SaveAndRunMemo->Lines->Capacity-6) 

                    { 

                        datap2 = SaveAndRunMemo->Lines->operator [](j); 

                        datap3 = datap2.Delete(datap2.Length()-2,1); 
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                        datap2 = datap3.Insert("2",datap3.Length()-1); 

                        VBSMemo->Lines->Add(datap2); 

                    } 

                    else 

                    { 

                        VBSMemo->Lines->Add(SaveAndRunMemo->Lines->operator [](j)); 

                    } 

                } 

            } 

            else 

            { 

                    AnsiString t1; 

                    AnsiString t2; 

                    int j1; 

                    for ( int rep = 1; rep <= reportN; rep++ ) 

                    { 

                        t1 = SaveAndRunMemo->Lines->operator [](j); 

                        j1 = t1.Pos(".csv");                     // report export (XY plot) ! 

 

                        if ( vbsC == 1 ) 

                        { 

                        if(rep == 1) 

                        { 

                            t2 = t1.Insert(ResultS,j1);         // direction of file to save 

                        } 

                        else if (rep ==2) 

                        { 

                            t2 = t1.Insert(ResultS_1,j1); 

                        } 

                        else if (rep ==3) 

                        { 

                            t2 = t1.Insert(ResultS_2,j1); 

                        } 

                        else if (rep ==4) 

                        { 

                            t2 = t1.Insert(ResultS_3,j1); 

                        } 

                        } 

 

                        else 

                        { 

                        if(rep == 1) 

                        { 

                            t2 = t1.Insert(ResultS_a,j1);         // direction of file to save 

                        } 

                        else if (rep ==2) 

                        { 

                            t2 = t1.Insert(ResultS_1a,j1); 

                        } 

                        else if (rep ==3) 

                        { 

                            t2 = t1.Insert(ResultS_2a,j1); 

                        } 

                        else if (rep ==4) 
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                        { 

                            t2 = t1.Insert(ResultS_3a,j1); 

                        } 

                        } 

                        j1 = t2.Pos("*"); 

                        t1 = t2.Delete(j1,1); 

                        t2 = t1.Insert(IntToStr(rep),j1); 

                        VBSMemo->Lines->Add(t1); 

                    } 

            } 

        } 

        for ( int j =0; j< DeleteMeshMemo->Lines->Capacity ; j++ )         //Initial VBS (clear result) 

        { 

            AnsiString t1; 

            AnsiString t2; 

            int j1; 

 

            if( j == 0 ) 

            { 

                VBSMemo->Lines->Add(DeleteMeshMemo->Lines->operator [](j)); 

            } 

            else 

            { 

                if( j>=1 && j<=layers )  //layers !! 

                { 

                    t1 = DeleteMeshMemo->Lines->operator [](j); 

                    j1 = t1.Pos("?"); 

                    t2 = t1.Delete(j1,1); 

                    if( j == layers ) 

                    { 

                        t1 = t2.Insert(VariName->Lines->operator [](j-1).SubString(0,3),j1); 

                    } 

                    else 

                    { 

                        t1 = t2.Insert(VariName->Lines->operator [](j-1),j1); 

                    } 

                    VBSMemo->Lines->Add(t1); 

                } 

                else if ( j == layers+1 ) 

                { 

                    t1 = DeleteMeshMemo->Lines->operator [](j); 

                    j1 = t1.Pos("?"); 

                    t2 = t1.Delete(j1,1); 

                    t1 = t2.Insert(VariName->Lines->operator [](4*4),j1); 

                    VBSMemo->Lines->Add(t1); 

                } 

                else 

                { 

                    t1 = DeleteMeshMemo->Lines->operator [](j); 

                    j1 = t1.Pos("?"); 

                    t2 = t1.Delete(j1,1); 

                    t1 = t2.Insert(VariName->Lines->operator [](j-2),j1); 

                    VBSMemo->Lines->Add(t1); 

                } 
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            } 

        } 

        if( vbsC == 1 ) 

        { 

            VBSMemo->Lines->SaveToFile(VBS+"G"+IntToStr(Gen)+"P"+IntToStr(i)+".vbs"); 

            VBSMemo->Lines->Clear(); 

        } 

        else 

        { 

            VBSMemo->Lines->SaveToFile(VBS+"G"+IntToStr(Gen)+"P"+IntToStr(i)+"a.vbs"); 

        } 

 

    } 

    } 

    if(FileExists(Result)) 

    { 

        DeleteFile(Result); 

    } 

    if(FileExists(Result_1)) 

    { 

        DeleteFile(Result_1); 

    } 

    if(FileExists(Result_2)) 

    { 

        DeleteFile(Result_2); 

    } 

    if(FileExists(Result_3)) 

    { 

        DeleteFile(Result_3); 

    } 

    if(FileExists(Result_a)) 

    { 

        DeleteFile(Result_a); 

    } 

    if(FileExists(Result_1a)) 

    { 

        DeleteFile(Result_1a); 

    } 

    if(FileExists(Result_2a)) 

    { 

        DeleteFile(Result_2a); 

    } 

    if(FileExists(Result_3a)) 

    { 

        DeleteFile(Result_3a); 

    } 

    Timer1->Enabled = true; 

} 

//--------------------------------------------------------------------------- 

void __fastcall TForm1::Timer1Timer(TObject *Sender)        //run script 

{                                                                                                   // run script 

    WinExec(("Wscript.exe 

"+VBS+"G"+IntToStr(Gen)+"P"+IntToStr(PopC)+".vbs").c_str(),SW_SHOWMINIMIZED); 
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    Timer2->Enabled = true; 

    Timer1->Enabled = false; 

} 

//--------------------------------------------------------------------------- 

void __fastcall TForm1::Timer2Timer(TObject *Sender) 

{ 

    if(FileExists(Result_3))        //waiting for results! 

    { 

 

        WinExec(("Wscript.exe 

"+VBS+"G"+IntToStr(Gen)+"P"+IntToStr(PopC)+"a.vbs").c_str(),SW_SHOWMINIMIZED); 

            //check result 

        Timer4->Enabled = true; 

        Timer2->Enabled = false; 

    } 

    else 

    { 

        Label1->Caption = "Running"; 

    } 

} 

//----------------------------------------------------- 

void __fastcall TForm1::Timer4Timer(TObject *Sender) 

{ 

    if(FileExists(Result_3a))        //waiting for results! 

    {                                                                        //check result 

        B3->Click(); 

        Timer4->Enabled = false; 

    } 

    else 

    { 

        Label1->Caption = "Running"; 

    } 

} 

//--------------------------------------------------------------------------- 

void __fastcall TForm1::B3Click(TObject *Sender) 

{ 

    VBSMemo->Lines->Clear();         // pre-assign the parameters 

    Memo1->Lines->Clear(); 

    double *freq, *value; 

    int cap, pos; 

    AnsiString temp, temp1; 

    double sdv, avg, avg1; 

    float S11 = -12;  // hard limit -> all s11(f) < -8 

    float dir_l = 10; 

 

    VBSMemo->Lines->LoadFromFile(Result);  //loading the s11 results 

    Memo1->Lines->LoadFromFile(Result_a); 

    for( int i = 1 ; i < Memo1->Lines->Capacity; i++ ) 

    { 

        VBSMemo->Lines->Add(Memo1->Lines->operator [](i)); 

    } 

    VBSMemo->Lines->Delete(0);             //Delete the declare line 

    cap = VBSMemo->Lines->Capacity;      //calculate how many datas 

    freq = new double[cap]; 
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    value = new double[cap]; 

    double *sum;                           //sum is the fitness value 

    sum = new double[1];                   // pre-assume that fitness value is 0 

    *(sum) = 0; 

    sdv =0, avg=0, avg1=0; 

    //s11 

    for( int i = 0; i< cap; i++ ) 

    { 

        temp = VBSMemo->Lines->operator [](i);  //Data Process of excel freq, value 

        pos = temp.Pos(","); 

        *(freq+i) = StrToFloat(temp.SubString(1,pos-1));  // Get freq 

        *(value+i) = StrToFloat(temp.SubString(pos+1,temp.Length()-pos));  //Get value 

 

        if(  *(value+i) < S11 ) 

        { 

            sdv = sdv+S11; 

        } 

        else 

        { 

            sdv = sdv + (*(value+i)) ; 

        } 

    } 

    avg = sdv/cap;  //mean 

    for( int i = 0; i<cap; i++ ) 

    { 

        if( *(value+i) < S11 ) 

        { 

             avg1 = avg1+ pow((S11-avg),2); 

        } 

        else 

        { 

              avg1 = avg1+ pow((*(value+i)-avg),2); 

        } 

    } 

    sdv = sqrt( (avg1/(cap-1)) ); 

    *(sum) = -1*avg/(sdv+1); 

    VBSMemo->Lines->SaveToFile(ResultS+"G"+IntToStr(Gen)+"P"+IntToStr(PopC)+"_s11.csv"); 

 

    // Phase Center Calculating 

    B4->Click(); 

    *(sum) = *(sum) * fitness_pattern; 

    B5->Click(); 

    *(sum) = *(sum) * fitness_pattern; 

    Fitness->Lines->Add(FloatToStr((*(sum))));        // output the final fitness value! (ori) 

    Fitness->Lines->SaveToFile("c:\\optima\\b_fit.txt"); 

    delete[] freq,value, sum; 

    DeleteFile(Result); 

    DeleteFile(Result_1); 

    DeleteFile(Result_2); 

    DeleteFile(Result_3); 

    DeleteFile(Result_a); 

    DeleteFile(Result_1a); 

    DeleteFile(Result_2a); 

    DeleteFile(Result_3a); 
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    PopC++; 

 

    if(PopC>pop) 

    { 

        PopC = 1; 

        Gen++; 

        if(FileExists(READY)) 

        { 

            DeleteFile(READY); 

        } 

        Timer3->Enabled = true; 

        Fitness->Lines->SaveToFile(FITNESS); 

 // throw out the signal for GA to do the generation caculation 

        Fitness->Lines->Clear(); 

        fitness_H->Lines->Clear(); 

    } 

    else 

    { 

        Timer1->Enabled = true; 

    } 

 

} 

//--------------------------------------------------------------------------- 

void __fastcall TForm1::Timer3Timer(TObject *Sender) 

{ 

    if(FileExists(READY))            // waiting for creating new script! 

    { 

        B2->Click(); 

        Timer3->Enabled = false; 

    } 

    else 

    { 

        Label1->Caption = "Waiting GA"; 

    } 

} 

//--------------------------------------------------------------------------- 

void __fastcall TForm1::B4Click(TObject *Sender) 

{ 

    Memo1->Lines->Clear(); 

    float f_max, f_min;  //frequency range 

    float f_max_a1=5, f_min_a1=1;  //frequency range 

    float f_max_a2=18, f_min_a2=6;  //frequency range 

    float theta = 1,  f_step = 1; 

    float theta_s = 0, theta_e = 60; 

    float temp, temp1, temp2, temp3, temp4, avg=0, avg1=0,sdv=0; 

    float lambda, wavenumber, center_p, center_s; 

    fitness_pattern = 0; 

    Variant XL,v0,v1,vcell; 

 

    AnsiString tmp; 

    for( float h = 1; h <=2 ; h++ ) 

    { 

        for( int count = 1; count <= 2; count++ ) 

        { 
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            if( count == 1 ) 

            { 

                XL=Variant::CreateObject("excel.application"); 

                XL.OlePropertySet("Visible",false); 

                XL.OlePropertyGet("Workbooks").OleProcedure("Open", Result_2.c_str() ); 

                v0=XL.OlePropertyGet("Sheets","temp2");      // sheet name : temp2 

                v1=v0.OlePropertyGet("Cells"); 

                f_min = f_min_a1; 

                f_max = f_max_a1; 

            } 

            else 

            { 

                XL=Variant::CreateObject("excel.application"); 

                XL.OlePropertySet("Visible",false); 

                XL.OlePropertyGet("Workbooks").OleProcedure("Open", Result_2a.c_str() ); 

                v0=XL.OlePropertyGet("Sheets","temp2a");      // sheet name : temp2 

                v1=v0.OlePropertyGet("Cells"); 

                f_min = f_min_a2; 

                f_max = f_max_a2; 

            } 

            for( float i = f_min; i<= f_max; i = i+ f_step ) 

            { 

                lambda = 12/i; 

                wavenumber = 2*M_PI/lambda; 

                center_s = 0, temp4 = 0; 

                for( center_p = 0; center_p<=4; center_p = center_p+0.1 ) 

                { 

                    temp =0, temp1 = 0, temp2 = 0, temp3 = 0; 

                    for( float j = theta_s; j<=theta_e ; j=j+theta ) 

                    { 

                        //Get the content of the Cell located at row 2 and column 2 

                        vcell=v1.OlePropertyGet("Item", 2 + (j-theta_s)/theta, 2+(h-1)*((f_max-

f_min)/(f_step)+1)+(i-f_min)/f_step);                          tmp=vcell.OlePropertyGet("Value");  //store that 

content to ansistring “tmp” 

 

                        if( j == 0 ) 

                        { 

                            temp = StrToFloat(tmp); 

                        } 

 

                        temp1 = StrToFloat(tmp) - temp; 

                        temp2 =  wavenumber*center_p*(  1 - cos( j*M_PI/180)   ) - temp1; 

                        temp3 = temp3 + temp2*temp2; 

                    } 

                    if( center_p == 0 ) 

                    { 

                        temp4 = temp3; 

                        center_s = center_p; 

                    } 

                    else 

                    { 

                        if( temp4 < temp3 ) 

                        { 

                            temp4 = temp4; 
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                            center_s = center_s; 

                        } 

                        else 

                        { 

                            temp4 = temp3; 

                            center_s = center_p; 

                           // ShowMessage("a"); 

                        } 

                    } 

                } 

                Memo1->Lines->Add(FloatToStr( center_s )); 

            } 

            XL.OleProcedure("Quit");    

            XL=Unassigned; 

        } 

    } 

    Memo1->Lines->SaveToFile(ResultS+"G"+IntToStr(Gen)+"P"+IntToStr(PopC)+"_PhaseCenter.csv");      

    for( int i = f_min-f_min ; i<= 1+2*(f_max_a2-f_min_a1)/f_step ; i=i+f_step ) 

    { 

        if( (i != 0) && (i != 1+(f_max_a2-f_min_a1)/f_step) ) 

        { 

            avg = avg + StrToFloat(Memo1->Lines->operator [](i)); 

        } 

    } 

    avg = avg/((2*(f_max_a2-f_min_a1)/f_step)); 

    for( int i = f_min-f_min ; i<= 1+2*(f_max_a2-f_min_a1)/f_step ; i=i+f_step ) 

    { 

        if( (i != 0) && (i != 1+(f_max_a2-f_min_a1)/f_step) ) 

        { 

            avg1 = avg1+ pow(( StrToFloat(Memo1->Lines->operator [](i)) -avg),2); 

        } 

    } 

    sdv = sqrt( avg1/((2*(f_max_a2-f_min_a1)/f_step))); 

    fitness_pattern = exp(-1*sdv); 

 

    Memo1->Lines->Clear(); 

} 

//--------------------------------------------------------------------------- 

void __fastcall TForm1::B5Click(TObject *Sender) 

{ 

    Memo1->Lines->Clear(); 

    float f_max=18, f_min=1;  //frequency range 

    float f_max_a1=5, f_min_a1=1;  //frequency range 

    float f_max_a2=18, f_min_a2=6;  //frequency range 

    float theta = 1,  f_step = 1; 

    float theta_s = 0, theta_e = 50; 

    float temp, avg=0, avg1=0, sdv=0; 

    float HPBW; 

    fitness_pattern = 0; 

 

    Variant XL,v0,v1,vcell; 

    AnsiString tmp; 

    for( int count = 1; count <=2 ;count++ ) 

    { 
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        for( float h = 1; h<=2; h++ ) 

        { 

            if(count ==1) 

            { 

                XL=Variant::CreateObject("excel.application"); 

                XL.OlePropertySet("Visible",false); 

                XL.OlePropertyGet("Workbooks").OleProcedure("Open", Result_3.c_str() ); 

                v0=XL.OlePropertyGet("Sheets","temp3");                     v1=v0.OlePropertyGet("Cells"); 

                f_min = f_min_a1; 

                f_max = f_max_a1; 

            } 

            if(count ==2) 

            { 

                XL=Variant::CreateObject("excel.application"); 

                XL.OlePropertySet("Visible",false); 

                XL.OlePropertyGet("Workbooks").OleProcedure("Open", Result_3a.c_str() ); 

                v0=XL.OlePropertyGet("Sheets","temp3a");                      v1=v0.OlePropertyGet("Cells"); 

                f_min = f_min_a2; 

                f_max = f_max_a2; 

            } 

            for( float i = f_min; i<= f_max; i = i+ f_step ) 

            { 

                HPBW = 0; 

                temp =0, avg=0, avg1=0, sdv=0; 

                for( float j = theta_s; j<=theta_e ; j=j+theta ) 

                { 

                    //Get the content of the Cell located at row 2 and column 2 

                    vcell=v1.OlePropertyGet("Item", 2 + (j-theta_s)/theta, 2+(h-1)*((f_max-f_min)/(f_step)+1)+(i-

f_min)/f_step);    

                    tmp=vcell.OlePropertyGet("Value");   

                    temp = StrToFloat(tmp); 

                    avg = StrToFloat(Trim(Pattern_C->Lines->operator [](j))); 

                    avg1 = temp-avg; 

                    if( abs(avg1) > 0.2) 

                    { 

                        if( abs(avg1) > HPBW ) 

                        { 

                            HPBW = abs(avg1); 

                        } 

                        else 

                        { 

                            HPBW = HPBW; 

                        } 

                    } 

                } 

                Memo1->Lines->Add(FloatToStr( HPBW )); 

            } 

            XL.OleProcedure("Quit");    

            XL=Unassigned; 

           //e ShowMessage(FloatToStr(HPBW)); 

        } 

    } 

 

    Memo1->Lines->SaveToFile(ResultS+"G"+IntToStr(Gen)+"P"+IntToStr(PopC)+"_HPBW.csv");    
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    avg = 0; 

    avg1 = 0; 

    temp = 0; 

    for( int i = f_min-f_min ; i< 2*((f_max_a2-f_min_a1)/f_step+1) ; i=i+f_step ) 

    { 

        avg = avg + StrToFloat(Memo1->Lines->operator [](i)); 

    } 

    avg = avg/(2*(1+(f_max_a2-f_min_a1)/f_step)); 

  //   ShowMessage(FloatToStr(avg)); 

    for( int i = f_min-f_min ; i<= 1+2*(f_max_a2-f_min_a1)/f_step ; i=i+f_step ) 

    { 

        avg1 = avg1+ pow(( StrToFloat(Memo1->Lines->operator [](i)) -avg),2); 

    } 

    sdv = sqrt( (avg1/((2*(1+(f_max_a2-f_min_a1)/f_step)))) ); 

    Memo1->Lines->Clear(); 

} 

//--------------------------------------------------------------------------- 


