

Development of Automatic Design Optimization Method for Ultrawide

Bandwidth (UWB) Multi-Layer Dielectric Rod Antenna

THESIS

Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in

the Graduate School of The Ohio State University

By

Chia-Wei Liu

Graduate Program in Electrical and Computer Science

The Ohio State University

2011

Master's Examination Committee:

Dr. Chi-Chih Chen, Adviser

Prof. John Volakis

© Copyright by

Chia-Wei Liu

2011

 ii

Abstract

 Dielectric rod antenna has been shown to provide wideband, dual-polarization, and

symmetric pattern. A two layer dielectric rod antenna (DRA) was shown to achieve more

than 4:1 bandwidth of stable gain and with more than 55 degree HPBW. Although, it was

predicted that a 3-layered DRA design should be able to achieve 8:1 bandwidth and a 4-

layer DRA design could reach 16:1 bandwidth, such design has never been realized due

to its design and fabrication complexity.

 The key challenge in designing a multi-layer DRA is to choose proper thickness and

dielectric constant of each layer to meet desired VSWR, pattern, and phase center

requirements. This becomes even more difficult when the when the number of layers

increases for achieving a greater bandwidth.

 This paper discusses about how we overcome these challenges via the utilization of

genetic-algorithm (GA) for design optimization procedure, and polymer-ceramic

fabrication method.

 iii

For my family

 iv

Acknowledgments

I would like to give my deep gratitude to Dr. Chi-Chih Chen, my advisor, for his

patience and all of the technical advise throughout my graduate work and research at the

ElectroScience Laboratory, the Ohio State University. All his technical suggestion and

encouragement provide me invaluable experience in both theoretical and practical aspects

and give me improvement in this work.

I’d also like to thank my colleagues. Their opinions give me valuable idea to solve

some technical problems.

Finally, I would like to express my special appreciation to my mom Kuang-Hou Han

for her endless support of all my decisions.

 v

Vita

November 26, 1983 ..Born – Taoyuan, Taiwan

June, 2006 ..B.S. Communication Engineering, Yuan-Ze

 University, Taoyuan, Taiwan

July, 2006 – Aug 2007Communication Sergeant, Taiwan Army,

 Kinmen, Taiwan

November 2007 – May 2008Research associate, Communication

 Research Center, Yuan-Ze University,

 Taoyuan, Taiwan

January, 2009 - Present Graduate Research Associate,

 The ElectroScience Laboratory,

 The Ohio State University

Publications

Refereed Journal Articles

1. T. Chou, C. -W. Liu, W. -J. Liao, “Optimum Horn Antenna Design based on an Integration of

 HFSS Commercial Code and Genetic Algorithms for the Feed Application of Reflector

 Antennas,” ACES Journal, Volume 25, Number 2, 2010

Fields of Study

Major Field: Electrical Engineering

 vi

TABLE OF CONTENT

Page

Abstract..ii

Dedication...iii

Acknowledgement..vi

Vita...v

List of Tables..viii

List of Figures...ix

Chapters

1. Introduction...1

2. Operation Principles of UWB Multi-layer Dielectric Rod Antenna (DRA) …….…..5

 2.1 Feed Section ..6

2.2 Multi-Layer Dielectric Waveguide Section...7

2.3 Radiation Tip ..10

2.4 An Initial Design Example ..11

3. Automatic Optimization Method for UWB DRA Design ...14

 3.1 Optimization Flowchart.. 15

3.2 Genetic Algorithm Description ...17

3.2.1 Selection Method ...17

3.2.2 Crossover Method ..18

3.2.3 Mutation Method ...19

3.2.4 Fitness function...19

3.3 External GA Optimization Program ...20

 vii

3.4 Optimization Example ..21

4. Application of Optimization Method for Designing UWB26

Multi-Layer DRA with Constant Gain, Pattern, Impedance, and Phase Center

 4.1 Fitness Function with Pattern Matching Method…...27

 4.1.1 SF ...27

 4.1.2 PCF ..28

 4.1.3 TPMF ..28

 4.2 Three-Layer UWB DRA Optimization ...30

 4.3 Four-Layer UWB DRA Optimization...38

 4.3.1 Optimizing with Existing Fitness Function……………..........………..38

 4.3.2 Optimizing without the Modified Fpc….......………...............…………47

 4.4 Optimized Three-Layer DRA Design with Practical Feed Structure................54

 4.4.1 Feeding by 30 Degrees Pyramid and 10 Degrees Metal Triangles.........54

 4.4.2 Feeding by 10 Degrees Pyramid and 10 Degrees Metal Triangles.........62

 4.4.3 Extending the Length of Triangle Metals...68

5. Conclusion...76

6. Future work ..79

Reference ..81

Appendix..83

 viii

LIST OF TABLES

Table Page

3.1 Parameter ranges for the optimization design example ……………………22

4.1 Parameter ranges for the three-layer DRA design ………………………….31

4.2 Parameter ranges for the four-layer DRA design …………………………..38

4.3 Parameter ranges for new four-layer DRA design …………………………..47

 ix

LIST OF FIGURES

Table Page

2.1 Geometry of multi-layer DRA.. 5

2.2 Geometry and field distribution of a practical feed for multi-layer DRA.................7

2.3 Example of a three-layer dielectric waveguide configuration...................................9

2.4 Field distributions in a three-layer waveguide section..9

2.5 Example of a three layer radiation section...10

2.6 Design geometry and simulation results..12

2.7 Simulation Results...12

2.8 Normalized Gain pattern and phase center plot...13

3.1 Flowchart of automatic GA optimization procedure for multi-layer UWB DRA .

3.1 Design..16

3.2 Tournament selection method..18

3.3 One point crossover method..19

3.4 Flip bit mutation method..19

3.5 Flowchart of external GA program..21

3.6 Convergence plot of optimization design example..23

3.7 Geometry and design variables of optimization example..24

 x

3.8 Simulation results of optimization example..24

3.9 E- and H-plane Normalized Gain patterns...25

4.1 Relationship between Fs and S11(f) performance...27

4.2 Relationship between FPC with standard deviation of phase center StdPC...............28

4.3 Target pattern for optimization..29

4.4 Initial geometry of three-layer DRA design..30

4.5 Geometry and design parameters of optimized three-layer DRA............................32

4.6 GA convergence plot...32

4.7 Simulation results of optimized three-layer DRA...33

4.8 Normalized Gain patterns of optimized three-layer DRA (1).................................34

4.9 Normalized Gain patterns of optimized three-layer DRA (2).................................35

4.10 Normalized Gain patterns of optimized three-layer DRA (3).................................36

4.11 E-filed plot at E and H plane of the optimized three-layer DRA............................37

4.12 Initial geometry of four-layer DRA design...39

4.13 Geometry and design parameters of optimized four layer DRA............................39

4.14 Convergence plot of four-layer DRA optimization..40

4.15 Simulation results of optimized four-layer DRA..42

4.16 Normalized gain pattern of the optimized four-layer DRA (1)..............................43

4.17 Normalized gain pattern of the optimized four-layer DRA (2)..............................44

4.18 Normalized gain pattern of the optimized four-layer DRA (3)..............................45

4.19 E-field plot at E- and H-plane of the optimized four-layer DRA...........................46

4.20 Geometry and design parameters of fuour-layer DRA with modified Fpc..............48

4.21 Convergence plot of four-layer DRA optimization with modified Fpc.................. 49

 xi

4.22 Simulation results of optimized four-layer DRA with modified Fpc...................... 50

4.23 Normalized patters of the optimized four-layer DRA with modified Fpc (1)......... 51

4.24 Normalized patters of the optimized four-layer DRA with modified Fpc (2)......... 52

4.25 Normalized patters of the optimized four-layer DRA with modified Fpc (3)......... 53

4.26 Geometry of the optimized three-layer DRA with a practical feed....................... 54

4.27 Simulation results of the optimized three-layer DRA with a practical feed...........56

4.28 Normalized patterns of the optimized three-layer DRA with a practical

 feed (1)..57

4.29 Normalized patterns of the optimized three-layer DRA with a practical

 feed (2)..58

4.30 Normalized patterns of the optimized three-layer DRA with a practical

 feed (3)..59

4.31 E-filed plot on E and H plane of the realistic feed with optimized 3-layer DRA

 design (1)...60

4.32 E-filed plot on E and H plane of the realistic feed with optimized 3-layer DRA

 design (2)...61

4.33 Geometry of the optimized three-layer DRA with a prolonged launcher...................

 section...62

4.34 Simulation results of the optimized three-layer DRA with prolonged feed...........64

4.35 Normalized patterns of the optimized three-layer DRA with prolonged....................

 feed (1)..65

4.36 Normalized patterns of the optimized three-layer DRA with prolonged....................

 feed (2)..66

4.37 Normalized patterns of the optimized three-layer DRA with prolonged....................

 feed (3)...67

4.38 E-field plot at 18GHz..68

4.39 Optimized three-layer DRA with adjusted launcher...69

 xii

4.40 Simulation results of the optimized three-layer DRA with adjusted launcher.......71

4.41 Normalized patterns of the optimized three-layer DRA with adjusted.......................

 launcher (1)...72

4.42 Normalized patterns of the optimized three-layer DRA with adjusted.......................

 launcher (2)..73

4.43 Normalized patterns of the optimized three-layer DRA with adjusted.......................

 launcher (3)..74

4.44 E-field plot at 2GHz..75

4.45 E-field plot at 3GHz..75

 1

CHAPTER 1

Introduction

Ultra wideband (UWB) technology has been widely studied and extensively applied

in both commercial and military areas in recent decades [1] because UWB system can

receive more information by using wide bandwidth signal than narrow bandwidth signal.

An important application of UWB antennas is feed antennas inside an anechoic

chamber which is a facility for antenna and RCS measurement. For the measurement in

an anechoic chamber, a parabolic reflector is responsible to convert the spherical wave

fronts which are radiated from a feed antenna into plane wave. A good feed antenna

should provide constant beamwidth over the operation bandwidth, a stationary phase

center to be located at the focal point of the parabolic antenna, minima size to avoid

blockage, and low sidelobe level to reduce leakage. It’s very difficult to design a single

antenna that provides a wide bandwidth, stationary phase center, constant gain, dual

polarization, and desired beamwidth. Moreover, an antenna designed only with

conducting material usually has undesired trade-off between above design goals.

For instance, horn antennas are commonly used as feed antennas in a chamber

because of wide bandwidth. But horn antennas are well-known for asymmetric E- and H-

 2

plane patterns, frequency-dependent patterns, and single polarization [2]. A square

coaxial feed structure method solves the pattern asymmetric problem of TEM horn

antennas, but the feed technique constraint its bandwidth [3]. Dual-polarization is hard to

achieve because of the interactions between two planes. Using coaxial to quadruple-

ridged method [4] obtains wider bandwidth and dual polarization, but the patterns are still

frequency-dependent. The phase center of most horn antenna designs varies with

frequencies.

Plane spiral antennas are also well-known as broadband, symmetric patterns, and

predictable phase center [5]. Dual-linear polarization can also be achieved by sinuous

spiral antennas. But the disadvantages of these antennas are fixed radiation patterns and

not flexible for all applications.

Using dielectric material as main radiator can be able to conquer the undesired

trade-off discussed above. For example, a dielectric horn antenna (DHA), which can

achieve wideband, fixed phase center, and stationary desired patterns, has been presented

[6]. By properly designing DHA shapes, it can also achieve different beamwidth

requirements. But, since the DHA is always formed by single low dielectric constant

material to reduce the reflection at the radiation end, the size of a DHA can’t be

miniaturized easily.

Another example that uses dielectric material as main radiator is dielectric rod

antenna (DRA). DRA was first invented in 40’s [7] and DRA is also refereed as a

polyrod antenna. A traditional DRA can be decomposed a solid dielectric material into

excitation, waveguide and radiation sections. Normally, electromagnetic waves are

excited by a metallic waveguide into dielectric waveguide section and guided to radiation

 3

section. By properly tapering radiation section, electromagnetic field can be gradually

excited. Several different DRA designs have been discussed in [8][9]. However, the

drawback of these designs is the bandwidth is limited since single layer dielectric can

avoid the excitation of undesired high order modes which cause pattern variation and

bandwidth reduction.

The design of concentric two-layer DRA with improved bandwidth, phase center,

and pattern performances has been presented [10]. By properly choosing dielectric

constant and thickness for each layer, it can achieve 4:1 bandwidth, stable phase center

and stationary patterns. The exiting two-layer DRA has elevated cross-polarization

performance above 8GHz because only two layer dielectric materials can not provide

enough boundary to avoid the excitation of high order modes when the operation

frequency excesses 4:1 bandwidth. Hence, in order to design a multi-layer DRA to

achieve 8:1 bandwidth, it’s necessary to use at least 3 or more layers.

However, the key challenge in designing a multi-layer DRA is to choose proper

thickness and dielectric constant of each layer to meet desired VSWR, pattern, and phase

center requirements. This becomes even more difficult when the when the number of

layers increases for achieving a greater bandwidth.

In order to solve this problem, a new approach that uses genetic algorithm to

optimize the multi-layer DRA will be demonstrated in this thesis. Although most of the

new commercial EM simulation codes such as FEKO and HFSS have built-in parameter

optimization functions, this approach consumes too much computer resources and is not

easy to implement complex design goal that involves many parameters and different

frequencies. This thesis will demonstrate an alternative antenna design optimization

 4

method that employs an external GA program which interacts with commercial EM

simulation software such as HFSS, to automatically choose optimized thicknesses and

dielectric constants of a 3-layer DRA for operating from 2 to 18 GHz with constant gain,

beamwidth, and phase center performance objectives.

In the chapter 2, the operation principles of UWB multi-layer dielectric rod antenna

will be discussed. The chapter 3 will presents the automatic optimization method for

UWB DRA design. Chapter 4 will present the optimized three-layer DRA design that

achieves constant gain, pattern, impedance, and phase center. Chapter 5 will provide the

brief conclusion and future development.

 5

CHAPTER 2

Operation Principles of UWB Multi-layer Dielectric Rod Antenna (DRA)

Figure 2.1 Geometry of multi-layer DRA

Figure 2.1 shows the basic concept of a wideband multi-layer DRA. Similar to

previous single-layer and double-layer DRAs [10]-[12], it contains three sections: a

wideband feed, a multi-layer UWB dielectric waveguide, and a radiation tip. The

wideband feed launches wideband transverse electromagnetic (TEM) waves into the

waveguide section. These TEM waves are then converted into hybrid HE11 modes [10]

which are then guided along the multi-layer dielectric waveguide without producing

Launcher Section

Waveguide
Section

Radiation
Section

 6

high-order modes. The guided waves then reach the radiation tip where most guided

energy is converted into radiation. The radiation tip needs to be designed properly to

produce radiated fields with desired gain level, pattern, and polarization over the

frequency range of interest

2-1 Feed Section

The feeding section is responsible for exciting wideband linearly-polarized TEM

waves into the waveguide section. Chung and Chen [10] proposed a resistively

terminated TEM horn as illustrated in Figure 2.2 for the feed section. The feed section is

formed by machining the end of a multi-layer DRA into pyramid shape with isosceles

triangular metal arms attached to the center of each face. By properly choosing the angles

of the pyramid and triangular plates, the input impedance can achieve 100 ohms for

matching to a balanced pair of 50 ohm cables whose outer ends are connected to the

output ports of a 0-180 degree hybrid. It’s important to note that all the outer conductors

of coaxial cables should be connected to each other to cancel any unbalance current. The

far end each triangle plate is attached to a resistive strip for minimizing undesired end

reflection and diffraction. Each pair of arms located at opposite sides of the pyramid is

responsible for exciting linearly polarized TEM waves. Additional pair of launcher arms

can be added to the other two sides to support dual-linear polarization operations as has

been demonstrated in [10,13]. Figure 2.2(b) illustrates the TEM fields launched by a pair

of the arms. The length of feed section is important to provide a smooth transition

between feed and waveguide section without exciting high-order modes.

 7

 (a) Geometry of practical feed for multi-layer DRA

(b) Field distribution between launcher and waveguide section

Figure 2.2 Geometry and field distribution of a practical feed for multi-layer DRA

2.2 Multi-Layer Dielectric Waveguide Section

The multi-layer dielectric waveguide section is responsible for guiding a HE11 mode

[14] over a wide range of frequency without producing high-order modes. The TEM

fields excited in the feed section naturally convert into desired HE11 mode in the

Symmetric Plane

 8

waveguide section. The HE11 mode is chosen because it does have a cutoff and is

linearly polarized within waveguide.

In order to achieve a wide bandwidth with single HE11 mode propagating inside the

waveguide, it requires multiple layers of dielectric materials. The amount of energy

guided within a dielectric waveguide is determined by the electrical dimension of its

cross section [15]. The electrical size of the waveguide needs to be greater than half

guided wavelength in order to effectively guide the EM fields. On the other hand, if the

size is too large, undesired high-order mode could be excited inside the waveguide. Such

high-order modes cause undesired pattern variation, elevated cross polarization

compounds and bandwidth reduction.

To avoid exciting high-order modes, one can insert a dielectric core with a much

higher dielectric constant to keep high frequency energy within a small dimension. This

also helps miniaturizing the overall size as well. Chung and Chen [10] have proposed a

relationship between the operation frequency of a multi-layer waveguide and effective

dielectric constants and radii. Figure 2.3 shows the top and side view of an exemplary

three-layer waveguide three layer waveguide. The dielectric constant of each layer

increased as it gets closer to the center. Figure 2.4 shows the field distribution in the

waveguide, and illustrates the phenomena that high frequency energy is guided inside the

inner layer and vise verse. The optimal combination of layer thicknesses and dielectric

constants will be optimized in the next chapter to meet all performance requirements.

 9

 (a)Side view (b) Cross section view

Figure 2.3 Example of a three-layer dielectric waveguide configuration

Figure 2.4 Field distributions in a three-layer waveguide section

Symmetric Plane

12GHz 8GHz 3GHz

 10

2.3 Radiation Tip

The radiation tip section is responsible for producing stable patterns and stationary

phase over the entire frequency range. Figure 2.5 illustrates the elliptical shape of

radiation tip of a three layer DRA. The envelope of each layer takes the shape of a half

ellipsoid. The axial ratio controls patterns, phase center, as well as any undesired

reflection during transition from waveguide to radiation section.

The design of the radiation section is the most challenging part of a multi-layer DRA

and need to rely on proper optimization procedure that involves full-wave simulations.

This will be discussed in chapter 4.

 (a)Side view (b)Prospective view

Figure 2.5 Example of a three layer radiation section

 11

2.4 An Initial Design Example

Figure 2.6 and 2.7 present a preliminary design and HFSS simulation results of a

three layer DRA design with hemispheric radiation tip. By using waveport that excites

the waveguide with its eigenmode one can understand the pure radiation from the

waveguide and radiation sections without influence of the feeding structure at this

moment.

The S11 and realized gain results over an 8:1 bandwidth with fairly stable gain

(Figure 2.7(b)) and S11 (Figure 2.7(a)). Furthermore, the radiation patterns in Figure

2.7(a)-(d) shows that E and H plane are symmetric from 2GHz to 14GHz. Figure 2.8(e)

also shows desirable stable phase center with respect of the tip of the antenna. Ant the

phase center is calculated based on the least square fit method by [16] as

1

() min (, ,) (,)

n

i simulation i H L
d

i

PhaseCenter f d f f f f f 


 
     

 
 
 (2.1)

2
(, ,) cosd f d


 


   (2.2)

which compares the phase results from the simulation with phase distribution of ideal

spherical wave and approximates the phase center position.

Because the current design is not optimized, the pattern beamwidth varies as

frequency increases. The preliminary design has presented the potential to achieve the

desired performance. In the next chapter, we will demonstrate that further design

optimization using GA can lead to a multi-layer DRA with stable patterns, stationary

phase center and more than 8:1 bandwidth.

 12

Figure 2.6 Geometry of design example

 (a) S11 (b) Zenith Gain

Figure 2.7 Simulation results

 13

 (a) f=2GHz (b) f=6GHz

 (c) f=10GHz (d) f=14GHz

(e) Phase Center

Figure 2.8 Normalized Gain pattern and phase center plot

 14

CHAPTER 3

Automatic Optimization Method for UWB DRA Design

In the design of a multi-layer DRA, the dielectric constant and thickness of each

layer need to be chosen properly to meet the VSWR, pattern, and phase center

requirement for wide bandwidth. It becomes increasingly difficult to achieve this goal as

the number of layers increases. Moreover, these performance requirements are often

dependent, and determining the optimized design that reaches the best trade-off among

all the requirements is even harder. Therefore, in order to design a UWB DRA effectively

and optimally, we proposed to use a global optimization algorithm to reach the optimal

design.

Even though most of the current commercial EM software have build-in parametric

optimization, the flexibility of those optimizers are limited. In other words, these

optimizations can only deal with simple objective functions. For example, the phase

center requires an additional computation from pattern data, most simulation software,

such as FEKO and HFSS, can not perform optimization associated with phase center. In

addition, in the case of multiple performance objectives such as VSWR, pattern, phase

 15

center, gain, etc. using built-in optimization become very inconvenient and very limited

in terms of cost combination and weighting.

Moreover, though the superior goal of any optimization procedure is focused on the

optimal results, it’s also important to keep the performances of other designs during the

optimization procedure. However, in order to save the data in the commercial software, it

needs to store all the mesh date in the memory and wastes large computational resource

especially for wideband optimization.

Therefore, our optimization approach was to use genetic algorithm optimization

master program to control the simulation of commercial codes. This approach has greater

flexibilities and better computation efficiency. The GA optimization approach has been

shown to be effective in obtaining global optimum [17] without subject to the choice of

initial cases. This chapter discusses the optimization procedure employed for obtaining

optimum design of a three-layer DRA with 9:1 bandwidth.

3.1 Optimization Flowchart

Figure 3.1 shows the flowchart of the proposed automatic optimization procedure. It

begins with a group (generation) of random generated DRA designs (population). Each

design is defined by a set of design parameters such as a dielectric constant and radius of

each layer. These antenna performances such as S11, phase center, beamwidth and gain

are then used to compute the fitness value according to fitness function which is defined

according to target performance. The new generation with improved radiation

performances is created from combining superior antenna designs with better fitness

among the first generation. This process continues until the fitness value converges.

 16

The whole optimization procedure can be subdivided into four different sections: (1)

geometries controller, (2) GA operation, (3) HFSS simulation, and (4) fitness calculation.

The geometries controller assigns values to the design parameters of HFSS model and

creates new antenna geometries for performances analysis. The GA operation performs

mating and mutation to generate new design parameters from designs with fitness values

of current generation. The HFSS employs EM analysis core and exports radiation

performances. The fitness calculation computes the fitness value of each design based on

the radiation performance and pro-defined fitness function.

Figure 3.1 Flowchart of automatic GA optimization procedure for multi-layer UWB DRA

design

Multi-layer UWB DRA

design parameters

Generate population

Full wave simulation

(HFSS)

Calculate fitness value
Fitness value

converge?

Crossover/Mutation of

superior genes

Design optimized

No

Yes

GA Procedure

 17

3.2 Genetic Algorithm Description

Genetic algorithm [18] is employed in the master program to optimize the antenna

geometry and material arrangement. GA can be specified into binary coding, selection,

crossover and mutation four sections. The binary coding section coverts the decimal

value into binary and vise verse. However, even though more bits stands for better

resolution, the convergence efficiency decreases significantly if the number of bits

become too large. In this program, each design parameter is presented by 2-4 bits. All the

bits for antenna design are assembled together to form a chromosome with predetermined

lower and upper bounds.

3.2.1 Selection Method

The selection method in the selection section determines the convergence rate of the

optimization procedure. Many different selection methods, such as roulette, tournament,

top percent, best, and random method, have been proposed [19]. Each method has each

own advantages and disadvantages. Since the multi-layer DRA design is an UWB

antenna and it requires significant computational time to analyze each design. Therefore,

smaller population helps reducing computation time in each generation. Moreover, it’s

important to ensure that the members (genes) in the initial population span the solution to

grantee convergence to global optimum. The tournament selection was adopted for out

optimization. As shown in Figure 3.2, tournament selection method randomly selects N

competitors form the population and the competitor with highest fitness value is chosen

and put into mating pool to produce new population via bit crossover process. By

 18

changing the tournament size N, the convergence rate can also be adjusted. In the

program, the tournament size N is set to 4.

All population in a

generation

Randomly pick N

population

Select the

population with

best fitness value

Two

population

been selected

Generate two

population for next

generation

No

Yes

Figure 3.2 Tournament selection method

3.2.2 Crossover Method

Crossover and mutation procedures are genetic operators which are used to generate

new offspring from selected parents in the mating pool. The main concept of crossover is

that the offspring could be better than the parent if it combines the better characteristic

from both parents. In our algorithm adopts the one-point crossover method [19]

illustrated in the Figure 3.3. A crossover point is randomly selected for a pair of parents.

The offspring are then generated by exchanging the genes after the crossover point.

 19

Figure 3.3 One point crossover method

3.2.3 Mutation Method

Mutation is also a genetic operator that randomly alters one or more gene in the

chromosomes in the new generations from its original bit state. The mutation process can

add new gene into the gene pool, which allows the genetic algorithm to achieve a better

optimization results and avoid converging to a local optimum. The mutation method

adopted in our GA procedure is the flip bit method [19] as illustrated in the Figure 3.4.

This mutation method flips a randomly selected bit in the offspring with a probability Pm.

The probability is predetermined to 0.1 in the program.

Figure 3.4 Flip bit mutation method

 20

3.2.4 Fitness Function

Fitness function is the objective function for genetic algorithm to determine the

optimization direction for maximizing the fitness value such that the user defined

performance goal can be reached. Several different methods such as weight sum, weight

product and utopia method which are commonly used in GA multi-objective optimization

have been discussed in [20] and each method is suitable for different scenario. For our

multi-layer DRA optimization, the fitness function is defined to equally emphasis on the

return loss, pattern, gain, and phase center. The fitness function U is defined as the

product of individual fitness function ()iF x . That is,

1

[()]

k

i

i

U F x



 (3.1)

Each individual fitness function is defined as a function of specific performance

parameters such as S11, VSWR, gain, patter, etc. and can be defined differently according

to the problem and use. In general, when the performance is close to performance goal, a

fitness function produces a larger value. The optimization procedure will be determined

as converge when variation of the maxima fitness values in constructive three generations

is less than 5%.

3.3 External GA Optimization Program

Figure 3.5 shows the connection between the master GA and the slave HFSS. In the

beginning, all variables are set up in a HFSS model and external GA program. Then, the

external program can generate suitable VBScript file which can be executed by HFSS

 21

and send to HFSS to perform EM analysis. After simulation, HFSS automatically export

all the desired reports to justify the fitness value.

Figure 3.5 also illustrates the external program that is composed of GA and

simulation control parts. The GA part performs the procedures of chromosome generating,

mutation and crossover. The simulation control part generates the VBScript files for the

HFSS models, reads in the simulation results, and calculates fitness values of the

performance. The flexibility for the design optimization can be applied to all kinds of

antennas optimization problems by slightly changing the coding in HFSS control section.

Genetic algorithm

(generating

population)

Simulation control

(fitness calculation

and VBScript

generation)

EM simulation

(HFSS)

VBScript

Simulation

Results

Antenna design

parameters
Fitness

value

Figure 3.5 Flowchart of external GA program

3.4 Optimization Example

This section provides a design optimization example which optimizes the thickness

and dielectric constant of a four-layer DRA with hemi-spherical radiation tip to achieve

 22

(1) 8:1 impedance bandwidth and (2) constant gain performance. The cross section of this

DRA geometry is shown in Figure 3.6. This antenna is fed by a waveport at the bottom of

the waveguide section. There are 8 design parameters (4 dielectric constants and 4

thicknesses). The each dielectric constant is digitized into 3 bits and each thickness is

digitized into 4 bits. The upper and lower bounds for each parameter are presented in the

Table 3.1. The crossover probability is 0.9 and the mutation probability is 0.1. The fitness

function for the optimization is described as

11 11

1
()

H

L

f

H L f

S S f
f f



 (3.2)

11
1 11

2

11 11

()

1
()

()

H

L

f

H L f f

S
F S

S f S
f f





 
  

 (3.3)

1
()

H

L

f

Zenith
H L f

D Dir f
f f



 (3.4)

2

2

()

1
()

()

H

L

f

Zenith
H L f f

D
F Dir

Dir f D
f f





 
  

 (3.5)

1 11 2() ()U F S F Dir  (3.4)

, which targets at flat zenith directivity with good S11 performance.

 Bits Max(in) Min(in) Bits Max(in) Min(in)

ε1 3 9 2 t1 4 0.5 0.05

ε2 3 9 2 t2 4 0.5 0.05

ε3 3 9 2 t3 4 0.5 0.05

ε4 3 9 2 t4 4 0.5 0.05

Table 3.1 Parameter bounds for the optimization design example

 23

Figure 3.6 Convergence plot of optimization design example

Figure 3.6 shows the convergence curve of the optimization procedure and presents

a good convergence rate. Figure 3.7 demonstrates the side view of optimum design and

the optima parameters. Figure 3.8 shows the optimized results of this optimization

procedure. It is observed that the S11 remains -10dB and the zenith gain remains fairly

stable from 2 to 16GHz. Figure 3.9 plots the Normalized Gain patterns which indicate

similar E- and H-plane patterns at all frequencies. However, the current optimization

design is not able control the pattern beamwidth because the fitness function doesn’t

include pattern shape parameter. This will be added in the next chapter.

 24

Figure 3.7 Geometry and design variables of optimization example

 (a) S11 (b) Zenith Gain

Figure 3.8 Simulation results of optimization example

t1 ε1

t2 ε2

t3 ε3

t4 ε4

2 3 4 8

εr4 εr3 εr2 εr1

0.447” 0.47” 0.34” 0.127”

t4 t3 t2 t1

 25

(a) f = 2GHz (b) f= 5GH

(c) f = 8GHz (d) f= 11GHz

(e) f = 14GHz (f) f= 16GHz

Figure 3.9 E and H-plane Normalized Gain patterns

 26

CHAPTER 4

Application of Optimization Method for Designing UWB Multi-Layer

DRA with Constant Gain, Pattern, Impedance, and Phase Center

In the previous chapters, we have discussed the design concept of a multi-layer DRA,

and the design optimization procedure using GA and full-wave simulations. The chapter

focuses on the two different design optimizations of multi-layer DRA which provide

constant gain, stationary phase center, symmetric E- and H-plane pattern, more than 50

degrees HPBW and 100 degrees -10dB beamwidth with 2 to 18GHz and 1 to 18GHz

bandwidth respectively.

Because the optimized results depend strongly on the fitness function, defining

proper functions is the most important. We will present the pattern matching fitness

function used in the optimization in the first section. An optimized three-layer DRA with

2 to 18GHz bandwidth and an optimized four-layer DRA with 1 to 18GHz bandwidth

performance will also be presented respectively. Also, a practical feeding structure will

be introduced in the launcher section to complete the antenna design.

 27

4.1 Fitness Function with Pattern Matching Method

The fitness value of the optimization is defined by the performances of S11, realized

gain, and pattern matching.

S PC TPMF F F F   (4.1)

4.1.1 SF

The fitness value for S11 performance is defined by

S

S

S

F
M

Std
 (4.2)

1
()

H

L

f

S

fH L

M S f
f f




 (4.3)

 
2

11 ()

fH

S

fL

H L

S f M

S f f
Std






 (4.4)

11

11

() 10 () 10

() ()

S f if S f

S f S f else

   







 (4.5)

Figure 4.1 shows t between Fs and S11(f) performance and demonstrates that Fs aims to

reach 11() 10S f dB  stably.

Figure 4.1 Relationship between Fs and S11(f) performance

 28

4.1.2 PCF

FPC aims to fix phase center location over operation frequency, and is defined as

()
e PCStd

PCF


 (4.6)

1

1
()

1

H

L

f

PC

fH L

M PhaseCenter f
f f 


 

 (4.7)

 
2

1

()

1

f
H

PC

fL
PC

H L

PhaseCenter f M

Std
f f






 


 (4.8)

Figure 4.2 shows the relationship between FPC and standard deviation of phase

center StdPC. FPC value drops rapidly when StdPC increases, and enforces GA to search for

stable phase center results.

Figure 4.2 Relationship between FPC with standard deviation of phase center StdPC

4.1.3 TPMF

FTPM is design such that the normalized patterns conform to a user-defined target

pattern as illustrated in Figure 4.3. This is achieved by adopting

 29

1

(1) (1)
TPM

P P

F
M Std 


   (4.9)

arg() ()simulation t etP f Max Pattern f P


  
 (4.10)

1
()

H

L

f

P

fH L

M P f
f f

  


 (4.11)

 ()
H

L

f

P

f

P

H L

P f M

Std
f f





 





 (4.12)

The choice of target pattern needs to be realistic and achievable since it controls the

convergence of the optimization procedure. Hence, to ensure the realistic of the target

pattern, the target pattern is obtained from the average of E- and H-plane pattern of 2GHz

shown in the Figure3.9 (a). The pattern beamwidth reaches 60 degrees HPBW and 110

degrees -10dB beamwidth which fits to the design goals.

Figure 4.3 Target pattern for optimization

 30

4.2 Three-Layer UWB DRA Optimization

The optimization starts with a three-layer DRA and figure 4.4 shows the initial

geometry. Table 4.1 presents the upper bound, lower bound, and digitalization of all

design parameter. The dielectric constant of the first layer (εr3) is set to 2 to reduce

number of variables. The dielectric constant for other layers are determined by

2 3 2 1 2 1       (4.13)

The elliptical radiation tip has included three axial ratios (P1,P2,P3) for controlling

patterns. The relation tip lengthy of each layer (h1,h2,h3) is

n

n i n

i

h t P
 

  
 
 
 (4.14)

The mutation rate is 0.1, the crossover rate is 0.9 and each generation contains 20

populations. And the target pattern has shown in the Figure 4.3.

t1 ε1

t2 ε2

t3 ε3

h3

h2

h1

Side view

Prospective

view

t1 ε1

t2 ε2

t3 ε3

h3

h2

h1

t1 ε1

t2 ε2

t3 ε3

h3

h2

h1

Side view

Prospective

view

Figure 4.4 Initial geometry of three-layer DRA design

 31

 Bits Max Min Bits Max(in) Min(in)

Δ1 2 4 1 t1 4 0.6 0.1

Δ2 2 4 1 t2 4 0.6 0.1

P1 3 2.5 0.5 t3 4 0.6 0.1

P2 3 2 0.5

P3 3 2 0.5

Table 4.1 Parameter bounds for the three-layer DRA design

Figure 4.5 shows the optimized three-layer DRA geometry and design parameters

and it’s worthy to note that the ratio between the dielectric constants of adjacent layers

low. In fact, it shows that the ratio is always less than 2. This indicates that the ratio of

dielectric constant between adjacent layer needs to be lower than 2 to maintain low

internal reflections and field distortions. Figure 4.6 shows that the GA optimization

procedure converges after 8 iterations.

The antenna performances of the optimized three-layer DRA design are shown in

Figure 4.7. Figure 4.7 (b) shows the maxima directivity is located between 9.5 to 10.5dB

within 2-18GHz. The phase center remains stable from 4GHz. Note from (4.9) that FPC

only considers frequency above 3GHz to provide more miniaturization since the EM

energy is only loosely guided along the rod at 2-3GHz. This also explains the S11 results

in 2-3GHz region. And the problem can simply be solved the exemption from the fitness

function, and allow for larger maximum rod diameter. Figure 4.7 (d) shows the HPPW of

E- and H-plane. This result is much improved compared to the design example in

previous chapter due to the new fitness FTPM based on pattern matching.

The normalized gain patterns shown in Figure 4.8-4.10 demonstrate all patterns

conform to target pattern very well, all E- and H-plane patterns are similar. These

patterns achieve more than 50 degrees HPBW and 100 degrees -10dB beamwidth. The E-

 32

field plots have been presented in Figure 4.11, and it’ obviously that the fields are

naturally expending from 2:18GHz. Moreover, it’s clear that the field is well-guided

inside the waveguide section and properly radiated at the radiation section.

Figure 4.5 Geometry and design parameters of optimized three-layer DRA

Figure 4.6 GA convergence plot

t1 ε1

t2 ε2

t3 ε3

h3 =1.08in

h2 =0.61in

h1=0.39in

Parameters of Optimized Result

 0.19

2 3 6

є3 є2 є1

0.3 0.49

t3(in) t2(in) t1(in)

1.1 0.9 2.1

P3 P2 P1

 33

 (a) S11 (b) Maxima Directivity

 (c) Phase Center (d) HPBW

(e) -10dB Beamwidth

Figure 4.7 Simulation results of optimized three-layer DRA

 34

 (a) f = 2GHz (b) f = 3GHz

 (c) f = 4GHz (d) f = 5GHz

 (e) f = 6GHz (f) f = 7GHz

Figure 4.8 Normalized Gain patterns of optimized three-layer DRA(1)

 35

 (g) f = 8GHz (h) f = 9GHz

 (i) f = 10GHz (j) f = 11GHz

 (k) f = 12GHz (l) f = 13GHz

Figure 4.9 Normalized Gain patterns of optimized three-layer DRA (2)

 36

 (m) f = 14GHz (n) f = 15GHz

 (o) f = 16GHz (p) f = 17GHz

(q) f = 18GHz

Figure 4.10 Normalized Gain patterns of optimized three-layer DRA (3)

 37

 (a) f = 2GHz (b) f = 3GHz (c) f = 4GHz (d) f = 5GHz

 (e) f = 6GHz (f) f = 7GHz (g) f = 8GHz (h) f = 9GHz

 (i) f = 10GHz (j) f = 11GHz (k) f = 12GHz (l) f=13GHz

 (m) f = 14GHz (n) f = 15GHz (o) f = 16GHz (p) f = 17GHz

(q) f = 18GHz

Figure 4.11 E-filed plot at E- and H-plane of the optimized three-layer DRA

 38

4.3 Four-Layer UWB DRA Optimization

4.3.1 Optimizing with Existing Fitness Function

The GA optimization procedure has proven the compatibility of optimizing a three-

layer UWB DRA which achieves 2 to 18GHz bandwidth, flat gain, stable pattern, and

stationary phase center. In order to further verify the ability of the automatic optimization

procedure, this section will employ the optimization program to optimize a four-layer

DRA which reaches flat gian, stable pattern, stationary phase center and 1 to 18GHz

bandwidth.

The initial geometry of four-layer DRA has been show in Figure 4.12. Table 4.2

presents the upper bound, lower bound, and digitalization of all design parameter. The

dielectric constant of the first layer (εr4) is set to 2.2 here because it’s easier to find the

material with dielectric constant 2.2. The dielectric constant for other layers are

determined by

3 4 3 2 3 2 1 2 10.2            (4.17)

The elliptical radiation tip also includes four axial ratios (P1,P2,P3,P4) for controlling

patterns. The mutation rate is 0.1, the crossover rate is 0.9 and each generation contains

20 populations. And the target pattern is same as Figure 4.3

 Bits Max Min Bits Max(in) Min(in)

Δ1 2 4 1 t1 4 0.2 0.05

Δ2 2 4 1 t2 4 0.3 0.1

Δ3 2 4 1 t3 0.6 0.1

P1 3 6 2 t4 4 0.6 0.1

P2 3 2.5 0.5

P3 3 2 0.5

P4 3 2 0.5

Table 4.2 Parameter bounds for the four-layer DRA design

 39

Figure 4.12 Initial geometry of four-layer DRA design

Figure 4.13 Geometry and design parameters of optimized four layer DRA

Parameters of Optimized Result

2.2 3 5 6

ε4 ε3 ε2 ε1

0.485” 0.257” 0.157” 0.135”

t4 t3 t2 t1

1.14 1.35 2 3

P4 P3 P2 P1

t1 ε1

t2 ε2

t3 ε3
t4 ε4

h4=1.18”

h3=0.74”
h2=0.58”

h1=0.4”

t1 ε1

t2 ε2

t3 ε3

h4

h3

h2

t4 ε4

h1

Side view

Prospective view

 40

Figure 4.13 shows the optimized three-layer DRA geometry and design parameters

and he ratio between the dielectric constants of adjacent layers is also lower than 2.

Figure 4.14 shows the convergence plot of the GA optimization procedure. Though the

design parameters are more than the three-layer design, the optimization program still

performs a good convergence rate and converges in ten generations.

Figure 4.14 Convergence plot of four-layer DRA optimization

The antenna performances of the optimized four-layer DRA design are shown in

Figure 4.15. Figure 4.15 (b) shows the maxima realized is lower 11dB within 1-18GHz.

Since the fitness function (4.9) doesn’t take the phase center at lowest frequency in to

 41

calculation for more miniaturization, it’s expected that the phase center (Figure 4.7 (c))

becomes stable after 3GHz. It also results in the S11 performance from 1-2GHz region

because the fields are loosely guided in this frequency range. And, as mentioned in

previous section, this issue can be solved the exemption from the fitness function, and

allow for larger maximum rod diameter. The HPBW result shown in the Figure 4.15(d)

presents a stable HPBW pattern and reaches at least 50 degrees HPBW at most of the

frequencies.

The Normalized Gain patterns shown in Figure 4.16-4.18 also demonstrate that all

patterns conform to target pattern, and all E- and H-plane patterns are similar as well.

Most patterns achieve more than 50 degrees HPBW and 100 degrees -10dB beamwidth.

The E-field plots have been presented in Figure 4.19, and it clearly states that the fields

are naturally expending from 1:18GHz. It also demonstrates the fields are loosely guided

from 1to 2GHz.

 42

 (a) S11 (b) RealizedGain

 (c) Phase Center (d) HPBW

Figure 4.15 Simulation results of optimized four-layer DRA

 43

 (a) f = 1GHz (b) f = 2GHz

 (c) f = 3GHz (d) f = 4GHz

 (e) f = 5GHz (f) f = 6GHz

Figure 4.16 Normalized gain pattern of the optimized four-layer DRA (1)

 44

 (g) f = 7GHz (h) f = 8GHz

 (i) f = 9GHz (j) f = 10GHz

(k) f = 11GHz (l) f = 12GHz

Figure 4.17 Normalized gain pattern of the optimized four-layer DRA (2)

 45

 (m) f = 14GHz (n) f = 13GHz

 (o) f = 15GHz (p) f = 16GHz

 (q) f = 17GHz (r) f = 18GHz

Figure 4.18 Normalized gain pattern of the optimized four-layer DRA (3)

 46

 (a) 1GHz (b) 2GHz (c) 3GHz (d) 4GHz

 (e) 9GHz (f) 10GHz (g) 11GHz (h) 12GHz

 (i) 15GHz (j) 16GHz (k) 17GHz (l) 18GHz

Figure 4.19 E-field at E- and H-plane of the optimized four-layer DRA

 47

4.3.2 Optimizing without the Exemption in Phase Center Fitness Calculation

As mentioned above, both the optimized three- and four-layer designs have less

stable phase center and slightly poor S11 performances at the very low frequencies due to

the fact that the energies are loosely guided along the waveguide section. In order to

mitigate this issue, we purpose to remove the exemption criteria in the fitness function Fpc

(4.6)-(4.8) into

()
e PCStd

PCF


 (4.16)

1
()

H

L

f

PC

fH L

M PhaseCenter f
f f




 (4.17)

 
2

()

1

f
H

PC

fL
PC

H L

PhaseCenter f M

Std
f f




 


 (4.18)

, and optimized another 4-layer DRA with the modified fitness function.

 The design geometry of a 4-layer design has been shown in the Figure 4.10, and the

parameter setting remains the same as discussed above. Table 4.3 shows the ranges of

each parameter. Most of the upper and lower bounds remain the same as the previous 4-

layer optimization to clearly compare the difference between two fitness function.

 Bits Max Min Bits Max(in) Min(in)

Δ1 2 4 1 t1 4 0.25 0.05

Δ2 2 4 1 t2 4 0.4 0.1

Δ3 2 4 1 t3 4 0.6 0.1

P1 3 6 1 t4 4 0.6 0.1

P2 3 4 0.75

P3 3 2 0.5

P4 3 2 0.5

Table 4.3 Parameter bounds for the four-layer DRA design with modified Fpc

 48

 Figure 4.20 shows the optimized design parameters and geometry as well. Figure

4.21 presents the convergence rate of this optimization and it also shows a good

convergence after 8 generations.

Figure 4.20 Geometry and parameters of optimized four-layer DRA with modified Fpc

Parameters of Optimized Result

2.2 3 7 10

ε4 ε3 ε2 ε1

0.174” 0.53” 0.1” 0.078”

t4 t3 t2 t1

1.35 1.14 4 5

P4 P3 P2 P1

t1 ε1

t2 ε2

t3 ε3

t4 ε4

h4=1.2”

h3=0.8”
h2=0.71”

h1=0.39”

 49

Figure 4.21 Convergence plot of 4-layer DRA optimization with modified Fpc

Figure 4.22 – 4.25 present the simulation results of the optimized 4-layer DRA

design with modified Fpc. As one can tell, the S11 (Figure 4.22(a)), realized gain (Figure

4.22(b)), and HPBW (Figure 4.22(d)) performances are still similar to the previous

optimized results and achieve the requirements. The normalized gain patterns (Figure

4.23-4.25) also conform to the target patter well. But the phase center performances

(Figure 4.22(c)) only improve slightly compared to the previous results. The minor

improvement demonstrates that the modified Fpc didn’t strongly enforce the guidance at

low frequency effectively because the fitness function is aimed for statically stable over

the operation band. Moreover, because the phase center performances at higher

frequencies are most likely to be stable, the fitness function is biased when it searches for

statically stable over the whole band. In order to effectively improve the low frequency

 50

performance, it might need to separate the whole operation frequency range into several

bands and enforce the performance at lower frequencies more.

 (a) S11 (b) RealizedGain

 (c) Phase Center (d) HPBW

Figure 4.22 Simulation Results of optimized four-layer DRA with modified Fpc

 51

(a) 1GHz (b) 2GHz

(c) 3GHz (d) 4GHz

(e) 5GHz (f) 6GHz

Figure 4.23 Normalized patterns for new optimized four-layer DRA with modified Fpc (1)

 52

(g) 7GHz (h) 8GHz

(i) 9GHz (j) 10GHz

(k) 11GHz (l) 12GHz

Figure 4.24 Normalized patterns for new optimized four-layer DRA with modified Fpc (2)

 53

(m) 13GHz (n)14GHz

(o) 15GHz (p) 16GHz

(q) 17GHz (r) 18GHz

Figure 4.25 Normalized patterns for new optimized four-layer DRA with modified Fpc (3)

 54

4.4 Optimized Three-Layer DRA Design with Practical Feed Structure

In the previous optimizations, in order to obtain the true radiation from the dielectric

body and ignore any undesired influence from the feed structure, all the designs are

excited waveport. But waveort doesn’t practically exist, and the reliability of the

optimized three-layer DRA performances needs further verification. The reliability can

be verified by feeding the optimized three-layer DRA with a practical feeding structure

mentioned in the chapter 2 and comparing the performances.

4.4.1 Feeding by 30 Degrees Pyramid and 10 Degrees Metal Triangles

The geometry of the optimized three-layer DRA with a practical launcher section

has shown in the figure 4.26 and it is formed by 30 degrees pyramid with 10 degrees

metal isosceles triangles and matched to 100 ohms port. The pyramid angle is small to

achieve a longer taper launcher section that can provide a better energy transition form

the feed to the waveguide. The angle of isosceles triangle metals is also small to insure

the impedance matching. Taper resistive strips are connected to the end of metals to

reduce reflection from the end of the feeding to reduce undesired reflection from the end

of the metals.

Figure 4.26 Geometry of the optimized three-layer DRA with a practical feed

30 Degrees Pyramid

10 Degrees Isosceles Triangles

Resistive Taper

http://www.nciku.com.tw/search/en/isosceles+triangle

 55

The simulation results of three-layer DRA with the practical feed structure are

shown in the Figure 4.27 to 4.32. The S11 (Figure 4.27(a)) performances are below -7.5dB

from 2 to 16GHz. The realized gain (Figure 4.27(b)) is flat and not losing significantly at

lower frequency caused by resistive taper. All patterns (Figure 4.28-4.30) properly match

to the results with waveport excitation and reaches 50 degrees HPBW (Figure 4.27(d))

from 3 to 16GHz. Though the phase center performances show some oscillations, the

results are still fairly stable and close to the results with ideal feeding.

However, there are some differences occurred in pattern and gain results above

16GHz because the launcher section is not long enough to ensure most of the high

frequency energy is guided inside the inner layer. As shown in the Figure 4.32, the field

plots illustrate that the high frequency energy doesn’t constraint tightly from the feed to

the in the inner layer and affect the pattern performances. Moreover, because the field at

2GHz extends to the end of feeding structure, the discontinuity at the end of metal creates

strong diffraction and affects the patterns. As shown in the field plot (Figure 4.31(a)), one

can clearly point out the strong field distribution at the end of the metal. The issues can

be solve by prolong the launcher section by choosing smaller angle of pyramid structure

and extending the length of the metal triangles.

 56

 (a) S11 (b) Maxima Directivity and Gain

 (c) Phase Center (d) HPBW

Figure 4.27 Simulation results the optimized three-layer DRA with a practical feed

 57

 (a) f = 2GHz (b) f = 3GHz

 (c) f = 4GHz (d) f = 5GHz

 (e) f = 6GHz (f) f = 7GHz

Figure 4.28 Normalized Patterns of optimized 3-layer DRA design with practical feed (1)

 58

 (g) f = 8GHz (h) f = 9GHz

 (i) f = 10GHz (j) f = 11GHz

 (k) f = 12GHz (l) f = 13GHz

Figure 4.29 Normalized Patterns of optimized 3-layer DRA design with practical feed (2)

 59

 (m) f = 14GHz (n) f = 15GHz

 (o) f = 16GHz (p) f = 17GHz

(q) f = 18GHz

Figure 4.30 Normalized Patterns of optimized 3-layer DRA design with practical feed (3)

 60

 (a) f = 2GHz (b) f = 4GHz (c) f = 6GHz

(d) f = 8GHz (e) f = 10GHz

Figure 4.31 E-filed plot on E and H plane of the realistic feed with optimized 3-layer

DRA design (1)

E-Plane H-Plane E-Plane H-Plane E-Plane H-Plane

E-Plane H-Plane E-Plane H-Plane

 61

 (f) f = 13GHz (g) f = 14GHz (h) f = 15GHz

 (i) f = 16GHz (j) f = 17GHz (k) f = 18GHz

Figure 4.32 E-filed plot on E and H plane of the realistic feed with optimized 3-layer

DRA design (2)

E-Plane H-Plane E-Plane H-Plane E-Plane H-Plane

E-Plane H-Plane E-Plane H-Plane E-Plane H-Plane

 62

4.4.2 Feeding by 10 Degrees Pyramid and 10 Degrees Metal Triangles

As demonstrated, because the energy at higher frequency didn’t convert well form

the launcher section into the waveguide section, higher order modes are excited in the

waveguide section. And the radiation patterns are strongly affected by the excitation of

high order modes. In order to convert the energy better from the launcher section to the

waveguide section, one can be achieved by prolonging the launcher section.

Figure 4.33 shows the geometry of the optimized three-layer DRA with prolonged

launcher section. The prolonged launcher section is formed by a 10 degrees pyramid

structure and 10 degrees isosceles triangles and the total length of the launcher section is

5in.

Figure 4.33 Geometry of optimized three-layer DRA with prolonged launcher section

The simulation results of three-layer DRA with the prolonged feed structure are

shown in the Figure 4.34. The S11 (Figure 4.34(a)) performances have more oscillations

because the impedance is varied when the angle of pyramid structure changes. But,

10 Degrees Pyramid

10 Degrees Isosceles Triangles

Resistive Taper

 63

overall, the S11 are lower than -7.5dB from 2 to 18GHz and the impedance can be tuned

by changing the angle of the triangle metals. The realized gain (Figure 4.34(b)) is still flat

and not losing significantly at lower frequency caused by resistive taper. Compared to the

shorter launcher feeding structure, the phase center (Figure 4.34(c)) is more stable at

higher frequency, and the pattern beamwidth (Figure 4.34(d)) have less oscillation over

the operation frequency band.

Figure 4.35 to 4.37 show the normalized patterns of this design, and it demonstrates

broad, consistent, and similar to that waveport excitation from 3 to 17GHz. The pattern at

18GHz becomes more frequency dependent and narrow beamwidth because the field is

still not perfectly guided as the waveport excitation. Figure 4.38 shows the E-field

distributions at 18GHz of three different feed, and it demonstrates that the fields are

guided better with a longer launcher. Even though it still has stronger undesired field

existing in the waveguide section, the field distribution of longer launcher is more similar

to the waveport excitation. Hence, by properly choosing the length of launcher section, it

can achieve a better mode transition from launcher to waveguide section and avoid the

excitation of higher order modes.

But the radiation patterns at lower frequencies (Figure 4.35(a)-(d)) are still affected

by the scattering field from the end of the launcher structure. In order to further mitigate

the undesired influence from the end of the launcher section, the discontinuity point for

the triangle metals would need to be adjusted.

 64

 (a)S11 (b) RealizedGain and directivity

 (c)Phase Center (d) HPBW

Figure 4.34 Simulation results of optimized three-layer DRA with prolonged feed

 65

(a)2GHz (b)3GHz

(c)4GHz (d)5GHz

(e)6GHz (f)7GHz

Figure 4.35 Normalized patterns of optimized three-layer DRA with prolonged feed (1)

 66

(g) 8GHz (h) 9GHz

(i) 10GHz (j)11GHz

(k) 12GHz (l) 13GHz

Figure 4.36 Normalized patterns of optimized three-layer DRA with prolonged feed (2)

 67

(m) 14GHz (n) 15GHz

(o) 16GHz (p) 17GHz

(q) 18GHz

Figure 4.37 Normalized patterns of optimized three-layer DRA with prolonged feed (3)

 68

 (a) Waveport (b)Shorter launcher (c) Longer launcher

Figure 4.38 E-field plot at 18GHz

4.4.3 Extending the Length of Triangle Metals

As shown before, there are strong scattering fields at the discontinuity between

metal and the resistive taper, and the strong diffractions would results in pattern variation

at lower frequencies. In order to resolve this issue, we can reduce the scattering field at

the connection by extending the length of the metals.

Figure 4.39 shows the geometry of the optimized three-layer DRA with a practical

feed structure, and the feed structure is formed by a 10 degrees pyramid structure and 10

degrees isosceles triangles. Moreover, the metals length is 0.25in longer than the previous

design.

 69

Figure 4.39 Optimized three-layer DRA with adjusted launcher

The simulation results of three-layer DRA with the extended metal length are shown

in the Figure 4.40. The S11 (Figure 4.40(a)) performances are similar to the previous

design, and demonstrate that the additional length of the metal wouldn’t significantly

change the input impedance. The realized gain (Figure 4.40(b)) is still flat. Compared to

the feeding structure without extending the metal length, the phase center (Figure 4.40(c))

is more stable at lower frequency, and the pattern beamwidth(Figure 4.40(d)) are more

consistent from 2 to 18GHz.

Figure 4.41 to 4.43 show the normalized patterns of this design, and it demonstrates

broad and stationary patterns from 3 to 18GHz. By comparing the normalized gain

patterns to the goal pattern, one can point out that the patterns are conformed to the target

patterns well from 3 to 18GHz. Moreover, by comparing the patterns between longer

metals design to the shorter design, it’s clear that the sidelobe level at lower frequencies

are lower. Figure 4.44 – 4.45 show the E-filed distributions between two different metal

10 Degrees Pyramid

10 Degrees Isosceles Triangles

Resistive Taper

Extending Additional 0.25in

 70

length at 2 and 3GHz, and it’s demonstrates that the diffractions the discontinuity are

weaker with longer metal length. By further adjusting the length of the triangle metals,

the sidelobe levels can be reduced more.

Because the feeding structure is not optimized yet, some performance differences

between the practical feed structure and the waveport excitation are expected. After all,

the results are fairly similar on the performances of S11, phase center, gain, and patterns

respectively between two different feeding structures. Hence, the reliability of the

optimized design from GA optimization procedure has been proven, and the optimized

performances can be achieved by properly optimizing the angle of pyramid launcher, the

angle of isosceles triangles, and the starting point of resistive taper strips, the difference

can be resolved.

 71

 (a) S11 (b) Realizedgain and directivity

(c) Phase center (d)HPBW

Figure 4.40 Simulation results of optimized three-layer DRA with adjusted launcher

 72

(a) 2GHz (b) 3GHz

(c) 4GHz (d) 5GHz

(e) 6GHz (f) 7GHz

Figure 4.41 Normalized patterns of optimized three-layer DRA with adjusted launcher (1)

 73

(g) 8GHz (h) 9GHz

(i) 10GHz (j) 11GHz

(k) 12GHz (l) 13GHz

Figure 4.42 Normalized patterns of optimized three-layer DRA with adjusted launcher (2)

 74

(m)14GHz (n)15GHz

(o) 16GHz (p) 17GHz

(q)18GHz

Figure 4.43 Normalized patterns of optimized three-layer DRA with adjusted launcher (3)

 75

 (a) Shorter metal length (b) Longer metal length

Figure 4.44 E-field plot at 2GHz

 (a) Shorter metal length (b) Longer metal length

Figure 4.45 E-field plot at 3GHz

 76

CHAPTER 5

Conclusion

In this thesis, the design of multi-layer DRA has been presented. The operation

principles of the automatic design method have been presented. The optimization

program has been developed and it can effectively optimize a multi-layer DRA that

reaches the design requirement. Furhermore, the reliability of the automatic optimization

method has been proven.

 By combining the commercial code HFSS with an external GA optimization

program, the automatic design optimization method for UWB multi-layer DRA has been

developed and presented in the thesis. With the assistance of the automatic optimization

method, a three-layer DRA with 2 to 18GHz bandwidth and a four-layer DRA with 1 to

18GHz bandwidth have been optimized. Both optimized designs reach the performance

requirements on gain, phase center, pattern, and beamwidth over the operation frequency

band. Moreover, by observing the convergence plots of all the optimization designs, all

the optimizations achieve the optimized design in 10 generations. Therefore, it’s proven

that the automatic optimization method can effectively optimize multi-layer DRA with

different performance requirements.

 77

Besides, by comparing the optimized design parameters of both three-layer and four-

layer DRA optimizations, it shows that the dielectric constant difference between

adjacent layers is always small to reduce undesired reflection from waveguide section to

radiation section. Moreover, the axial ratios for the inner layers prefer to be larger to

postpone the radiation point for high frequency, and it can ensure the stable phase center

over operation band. In addition, by comparing the dimension between three-layer and

four-layer design, it shows that the diameter of the four-layer design is 0.4in wider than

the three-layer design because the four-layer design needs larger electrical dimension to

enhance the performance at 1GHz. And, as expected, the four-layer design achieves

better S11 and phase center performance than the three-layer case below 3GHz. As a

result, all the design parameters optimized by the automatic design method are reasonable,

and the optimization method developed in the thesis is trustable.

The fitness function used in the thesis is aimed for statically stable over the

operation band. Moreover, because the phase center and S11 performances of a multi-

layer at higher frequencies are most likely to be stable, the fitness function might be

biased when it searches for statically stable over the whole band. In order to improve the

low frequency performance, the fitness might need to separate the whole operation

frequency range into several bands and enforce the performance at lower frequencies

more.

Though the launcher section is not included in the optimization procedure, three

important design parameters have been discussed. First, it’s very important to properly

choose the angle of the pyramid structure because the angle controls the mode transition

between launcher to waveguide section. Normally, a smaller angle can achieve better

 78

transition, avoid the excitation of higher order modes, and reduce the pattern variation,

but it also increase the size of the antenna and change the input impedance. Therefore,

it’s important to choose an angle that meets the balance between antenna size and mode

transition. Second, because the combination of the pyramid structure and triangle metals

determines the input impedance, it’s crucial to select a good combination that can match

to 100 ohms well over the operation frequency band. Third, since the scattering field at

the discontinuity between metals and resistive tapers increase the sidelobe level at lower

frequencies. Hence, the discontinuity point also needs to be well selected to minimize the

undesired influences.

The reliability of the optimized results has been verified by exciting the optimized

three-layer design with a practical feed structure and comparing the results between

waveport and a practical feed structure. Even though there are still some minor

performance losses because the practical launcher section is not optimized, the overall

performance between two different feed are fairly similar. By further optimizing the

launcher section, the optimized multi-layer DRA design can be completed.

 79

Chapter 6

Future Work

An effective optimization procedure that automatically designs a UWB multi-layer

DRA has been presented by combining external GA program with EM analysis software.

Optimizations for different antennas are also achievable by properly changing fitness

function. Hence, for the future application of GA optimization program, it’s important to

extend the GA optimization procedure to be compatible for different kinds of commercial

codes. And the optimization efficiency can be further enhanced by properly combining

optimizing antenna with suitable EM software.

For the current multi-layer DRA design optimization, it’s clear that the fitness

function doesn’t enforce the performance to reach the requirement at lower frequencies

because the fitness function tries to find the statistically stable performance over the

whole operation band and .neglects the minor defects at lower frequencies. Hence, the

fitness function should add addition enforcements at lower frequency to achieve better

optimized performances.

For the future design of multi-layer DRA, the most important issue is to complete

the launcher section design since a perfect launcher structure is the only part that is not

 80

optimized so far. By further optimizing the angle of pyramid structure and the shape of

isosceles triangle metals, it should able to complete the desired feeding structure. Besides,

a new feed design is also important since the current pyramid shape feeding structure is

difficult to fabricate especially when the number of layers increases for wider bandwidth.

Several planer wide-band structures, such as bowtie antenna and log-periodic antenna,

have the potential to be a feeding structure for a UWB multi-layer DRA but these design

haven’t been studied yet. If new planer feeding structure can be discovered, the

complexity of the fabrication procedure will be greatly reduced.

 81

Reference

[1] K. Siwiak, “Ultra-wideband radio: Introducing a new technology,” in Proc. 2001

 Spring Vehicular Technology Conf., 2001, pp. 1088–1093

[2] T. Milligan, “A Design Study for the Basic TEM Horn Antenna,” IEEE Antennas and

 Propagation Magazine, vol.46, no.1, pp. 86-92, Feb. 2004.

[3] Kaczmarski, K.J.; Laxpati, S.R.; , "Design and development of a square coaxial

 waveguide-fed horn antenna with equal E - and H - plane beamwidth," Antennas and

 Propagation Society International Symposium, 2007 IEEE , vol., no., pp.5672-5675,

 9-15 June 2007

[4] Zhongxiang Shen; Chao Feng; , "A new dual-polarized broadband horn antenna,"

 Antennas and Wireless Propagation Letters, IEEE , vol.4, no., pp. 270- 273, 2005

[5] Barbano, N., "Phase center distributions of spiral antennas," WESCON/60 Conference

 Record , vol.4, no., pp. 123- 130, Aug 1960

[6] Kwan-Ho Lee; Chi-Chih Chen; Lee, R.; , "Development of UWB, dual-polarized

 dielectric horn antenna (DHA) for UWB applications," Antennas and Propagation

 Society International Symposium, 2004. IEEE , vol.3, no., pp. 2931- 2934 Vol.3, 20-

 25 June 2004

[7] R.B. Watson and C.W. Horton, “The radiation Pattern of Dielectric Rod – Experiment

 and Theory,” J. of Applied Physics, vol 19, pp.661-670, 1948

[8] Ando, T.; Yamauchi, J.; Nakano, H.; , "Demonstration of the discontinuity-radiation

 concept for a dielectric rod antenna," Antennas and Propagation Society International

 Symposium, 2000. IEEE , vol.2

[9] Qiu Jing-hui; Wang Nan-nan; , "Optimized dielectric rod antenna for millimeter wave

 FPA imaging system," Imaging Systems and Techniques, 2009. IST '09. IEEE

 International Workshop on , vol., no., pp.147-150, 11-12 May 2009

 82

[10] Jae-Young Chung; Chi-Chih Chen; , "Two-Layer Dielectric Rod Antenna,"

 Antennas and Propagation, IEEE Transactions on , vol.56, no.6, pp.1541-1547, June

 2008

[11] Chi-Chih Chen; Kishore Rama Rao; Lee, R.; , "A new ultrawide-bandwidth

 dielectric-rod antenna for ground-penetrating radar applications," Antennas and

 Propagation, IEEE Transactions on , vol.51, no.3, pp. 371- 377, March 2003

[12] Ala, R.; Sadeghzadeh, R.; Kazemi, R.; , "Two-layer dielectric rod antenna for far

 distance," Antennas and Propagation Conference (LAPC), 2010 Loughborough ,

 vol., no., pp.149-152, 8-9 Nov. 2010

[13] K.-H. Lee, C.-C. Chen, and R. Lee, “UWB dual-linear polarization dielectric horn

 antennas as reflector feeds,” IEEE Trans. Antennas Propag., vol. 55, pp. 798–804,

 2007.

[14] Yeh, C., and Fred I.; “The essence of dielectric waveguides”, New York: Springer

 Verlag, 2008.

[15] Salema, Carlos, Carlos Fernandes, and Rama Kant. “Solid dielectric horn antennas”.

Artech House, 1998.

[16] Richter, J.; Muller, M.; Schmidt, L.-P.; , "Measurement of phase centers of

 rectangular dielectric rod antennas," Antennas and Propagation Society

 International, Symposium, 2004. IEEE , vol.1, no., pp. 743- 746 Vol.1, 20-25

 June 2004

[17] H. -T. Chou, C. -W. Liu, W. -J. Liao, “Optimum Horn Antenna Design based on an

 Integration of HFSS Commercial Code and Genetic Algorithms for the Feed

 Application of Reflector Antennas,” ACES Journal, Volume 25, Number 2 , 2010

[18] Frenzel, J.F.; , "Genetic algorithms," Potentials, IEEE , vol.12, no.3, pp.21-24, Oct

 1993

[19] Johnson, J.M.; Rahmat-Samii, V.; "Genetic algorithms in engineering

electromagnetics," Antennas and Propagation Magazine, IEEE , vol.39, no.4, pp.7-

 21, Aug 1997

[20] R.T. Marler and J.S. Arora; “Survey of multi-objective optimization methods for

 engineering”, Structural and Multidisciplinary Optimization, Springer Berlin /

 Heidlberg, vol.26, issue 6, pp. 3690395, 2004

 83

Appendix A

BCB Code of Genetic Algorithm

#include <vcl.h>

#include <stdio.h>

#include <math.h>

#include <time.h>

#pragma hdrstop

#include "Unit1.h"

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

TGA *GA;

time_t t;

//---

__fastcall TGA::TGA(TComponent* Owner)

 : TForm(Owner)

{

}

//---

AnsiString Setup = "C:\\Optima\\temp\\Setup.txt"; // Store Basic setting

AnsiString MAXDATA = "C:\\Optima\\temp\\Max.txt"; // Store maximum of each Parameters

AnsiString MINDATA = "C:\\Optima\\temp\\Min.txt"; // ; min ;

AnsiString BITDATA = "C:\\Optima\\temp\\Bit.txt"; // Bit of each parameters (for binary)

AnsiString GENDATA = "C:\\Optima\\temp\\Gen.txt"; //Generation counting!

AnsiString READY = "C:\\Optima\\temp\\READY.txt"; //Generation counting!

AnsiString BinaryT = "C:\\Optima\\temp\\BT.tmp";

AnsiString DecimalT = "C:\\Optima\\temp\\MT.tmp";

AnsiString poplistB = "C:\\Optima\\temp\\pop\\Binary\\p"; // temp data

AnsiString poplistD = "C:\\Optima\\temp\\pop\\Decimal\\p";

AnsiString poplistR = "C:\\Optima\\temp\\pop\\RealNum\\p";

AnsiString FITNESS = "C:\\Optima\\temp\\FITNESS\\FIT.txt";

AnsiString poplistBG = "C:\\Optima\\temp\\pop\\Binary\\BGen\\Gen";

AnsiString poplistRG = "C:\\Optima\\temp\\pop\\realnum\\RGen\\Gen";

AnsiString poplistDG = "C:\\Optima\\temp\\pop\\Decimal\\DGen\\Gen";

 84

int parameters, pop, gen; //GA Parameters

float mu, cro; //GA Parameters

int format; // format=2 for Binary , 10 for deciaml format

int wait=0;

void __fastcall TGA::BinaryCClick(TObject *Sender)

{

 parameters = StrToInt(Parameters->Text);

 pop = StrToInt(Population->Text);

 Label1->Visible = true;

 Label2->Visible = true;

 Label3->Visible = true;

 DecimalC->Enabled = false;

 Max->Enabled = true;

 Min->Enabled = true;

 Bits->Enabled = true;

 format = 2;

 Save->Enabled = true;

 MemoAdd->Click();

}

//---

void __fastcall TGA::Timer1Timer(TObject *Sender)

{

 //Check if all the required blocks are filled

 if(Parameters->Text == "" || Generation->Text == "" || Population->Text == "" || Crossover->Text == ""

|| Mutation->Text =="")

 {

 BinaryC->Enabled = false;

 DecimalC->Enabled = false;

 }

 else

 {

 BinaryC->Enabled = true;

 DecimalC->Enabled = true;

 Timer1->Enabled = false;

 }

}

//---

void __fastcall TGA::MemoAddClick(TObject *Sender)

{

 for (int i = 1; i <= parameters ; i++)

 {

 Max->Lines->Add("M"+IntToStr(i)+":");

 Max->Lines->Add(" ");

 Min->Lines->Add("m"+IntToStr(i)+":");

 Min->Lines->Add(" ");

 if(format == 2)

 {

 Bits->Lines->Add("B"+IntToStr(i)+":");

 Bits->Lines->Add(" ");

 }

 }

}

 85

//---

void __fastcall TGA::SaveClick(TObject *Sender)

{

 Max->Lines->SaveToFile(MAXDATA);

 Min->Lines->SaveToFile(MINDATA);

 Bits->Lines->SaveToFile(BITDATA);

 BackProcess->Lines->Add("Format:");

 BackProcess->Lines->Add(IntToStr(format));

 BackProcess->Lines->Add("Parameter Num:");

 BackProcess->Lines->Add(Parameters->Text);

 BackProcess->Lines->Add("Generations:");

 BackProcess->Lines->Add(Generation->Text);

 BackProcess->Lines->Add("Populations:");

 BackProcess->Lines->Add(Population->Text);

 BackProcess->Lines->Add("Crossover:");

 BackProcess->Lines->Add(Crossover->Text);

 BackProcess->Lines->Add("Mutation:");

 BackProcess->Lines->Add(Mutation->Text);

 BackProcess->Lines->SaveToFile(Setup);

 Max->Enabled = false;

 Min->Enabled = false;

 Bits->Enabled = false;

 Start->Enabled = true;

 Save->Enabled = false;

}

//---

void __fastcall TGA::Timer2Timer(TObject *Sender)

{

 //Random number generator #1

 int randN = 10000;

 if(BackProcess2->Lines->Capacity < randN)

 {

 srand((unsigned) time(&t));

 for(int i = 1 ; i <= 3 ; i++)

 {

 int div;

 float ddiv;

 div = pow(10,i);

 ddiv = div/(2*1.47);

 if((rand()*rand()+rand()) % div > ddiv)

 {

 BackProcess2->Lines->Add(IntToStr(1));

 }

 else

 {

 BackProcess2->Lines->Add(IntToStr(0));

 }

 }

 }

 if(BackProcess10->Lines->Capacity < randN)

 {

 srand((unsigned) time(&t));

 86

 BackProcess10->Lines->Add(rand()%1000);

 BackProcess10->Lines->Add((rand()+1)%1000);

 BackProcess10->Lines->Add((rand()+2)%1000);

 BackProcess10->Lines->Add((rand()+3)%1000);

 BackProcess10->Lines->Add((rand()+4)%1000);

 }

}

//---

void __fastcall TGA::Timer3Timer(TObject *Sender)

{

 //Random number generator #2

 int randN = 10000;

 if(BackProcess2->Lines->Capacity < randN)

 {

 srand((unsigned) time(&t));

 for(int i = 1 ; i <= 2 ; i++)

 {

 int div;

 float ddiv;

 div = pow(10,i);

 ddiv = div/(2*1.47);

 if((rand()*rand()*rand()+rand()) % div > ddiv)

 {

 BackProcess2->Lines->Add(IntToStr(1));

 }

 else

 {

 BackProcess2->Lines->Add(IntToStr(0));

 }

 }

 }

 if(BackProcess10->Lines->Capacity < randN)

 {

 srand((unsigned) time(&t));

 BackProcess10->Lines->Add((rand()-1)%1000);

 BackProcess10->Lines->Add((rand()-2)%1000);

 BackProcess10->Lines->Add((rand()-3)%1000);

 BackProcess10->Lines->Add((rand()-4)%1000);

 BackProcess10->Lines->Add((rand()-5)%1000);

 }

}

//---

void __fastcall TGA::StartClick(TObject *Sender)

{

 // this subroutine is used to generate the population! (first generation)

 AnsiString *temp;

 BackProcess->Clear(); // clear the MEMO; memo provides a place for data processing

 temp = new AnsiString[parameters];

 if(format == 2) // binary set

 {

 for(int p = 1 ; p <= pop ; p++) // generate enough population

 {

 for(int i = 0 ; i < parameters ; i++) // generate enough parameters in each population

 87

 {

 temp = new AnsiString[parameters]; // binary set '100001'..... whatever :)

 for(int k = 0 ; k < StrToInt(Trim(Bits->Lines->operator [](2*i+1))) ; k++)

 {

 if(BackProcess2->Lines->operator [](0) != "")

 {

 *(temp+i) = *(temp+i) + BackProcess2->Lines->operator [](0);

 BackProcess2->Lines->Delete(0);

 }

 else if (BackProcess2->Lines->operator [](0) == "" && BackProcess10->Lines->operator

[](0) != "")

 {

 if((StrToInt(BackProcess10->Lines->operator [](0)) + rand())%1000 > 500)

 {

 *(temp+i) = *(temp+i) + "1";

 }

 else

 {

 *(temp+i) = *(temp+i) + "0";

 }

 BackProcess10->Lines->Delete(0);

 }

 else

 {

 srand((unsigned) time(&t));

 if(rand()*rand() % 1000 > 500)

 {

 *(temp+i) = *(temp+i) + "1";

 }

 else

 {

 *(temp+i) = *(temp+i) + "0";

 }

 Sleep(500);

 }

 }

 BackProcess->Lines->Add(*(temp+i));

 *(temp+i) = "";

 }

 BackProcess->Lines->SaveToFile(poplistB+IntToStr(p)+".txt"); // Save each population to file for

futher use

 BackProcess->Clear(); // Memo clear!

 }

 }

 TransToR->Click();

 delete[] temp;

 BackProcess->Clear();

 BackProcess->Lines->SaveToFile(READY);

}

//---

void __fastcall TGA::TransToRClick(TObject *Sender)

{

 // Reset the basic parameters

 float *max, *min;

 88

 BackProcess->Clear();

 BackProcess->Lines->LoadFromFile(Setup);

 format = StrToInt(BackProcess->Lines->operator [](1));

 parameters = StrToInt(BackProcess->Lines->operator [](3));

 pop = StrToInt(BackProcess->Lines->operator [](7));

 max = new float[parameters];

 min = new float[parameters];

 BackProcess->Lines->LoadFromFile(MAXDATA);

 for(int i = 0 ; i < parameters ; i++)

 {

 *(max+i) = StrToFloat(Trim(BackProcess->Lines->operator [](2*i+1)));

 }

 BackProcess->Lines->LoadFromFile(MINDATA);

 for(int i = 0 ; i < parameters ; i++)

 {

 *(min+i) = StrToFloat(Trim(BackProcess->Lines->operator [](2*i+1)));

 }

 // this subroutine is used to transfer the Pop to the real number

 AnsiString temp;

 float count;

 if(format == 2) // binary set

 {

 for(int p = 1 ; p <= pop ; p++)

 {

 BackProcess->Lines->LoadFromFile(poplistB+IntToStr(p)+".txt");

 for(int pa = 1 ; pa <= parameters ; pa++)

 {

 temp = BackProcess->Lines->operator [](0);

 count = 0;

 for(int l = 0 ; l < temp.Length() ; l++)

 {

 if(temp.SubString(l+1,1) == "1") // transfer the '1001' -> '9' (binary to Decimal)

 {

 count = count + pow(2,temp.Length()-l-1);

 }

 }

 BackProcess->Lines->Delete(0);

 count = count / (pow(2,temp.Length())-1);

// Normalize the parameter

 count = count * (*(max+pa-1)-*(min+pa-1)) + (*(min+pa-1));

// Set to the region of required

 BackProcess->Lines->Add(FloatToStr(count));

 }

 BackProcess->Lines->SaveToFile(poplistR+IntToStr(p)+".txt");

//Save it!

 }

 }

 Timer4->Enabled = true;

 delete[] max, min;

}

//---

void __fastcall TGA::Timer4Timer(TObject *Sender)

{

 89

 // This timer is used to check if the FITNESS file is Created !!

 // During the Waiting period, the GA program will be stupor!

 if(!FileExists(FITNESS))

 {

 GA->Enabled = false;

 Label4->Caption = "Waiting for calculating fitness number";

 }

 else

 {

 GA->Enabled = True;

 Timer4->Enabled = false;

 Algorithm->Click(); //GA

 }

}

//---

int tournament = 4;

void __fastcall TGA::AlgorithmClick(TObject *Sender)

{

 BackProcess->Clear();

// Back up the population of the last generation and DO GENETIC ALGORITHM

 BackProcess->Lines->LoadFromFile(Setup); //Reload data

 format = StrToInt(BackProcess->Lines->operator [](1));

 parameters = StrToInt(BackProcess->Lines->operator [](3));

 pop = StrToInt(BackProcess->Lines->operator [](7));

 cro = StrToFloat(BackProcess->Lines->operator [](9));

 mu = StrToFloat(BackProcess->Lines->operator [](11));

 if(FileExists(GENDATA))

 {

 BackProcess->Lines->LoadFromFile(GENDATA);

 gen = StrToInt(BackProcess->Lines->operator [](0)); //genertation

 }

 else

 {

 gen = 1;

 BackProcess->Clear();

 }

 BackProcess->Clear(); // change generation data

 BackProcess->Lines->Add(IntToStr(gen+1));

 BackProcess->Lines->SaveToFile(GENDATA);

 BackProcess->Clear();

 int *sel, *sel1, posM, prob; // parasmeters for selection method

 float *sel2, probf; // used for identify the crossover and mutation paarameter

 AnsiString *sel3, *sel4; // string processing parameter

 sel = new int[2];

 sel1 = new int[tournament];

 sel2 = new float[tournament];

 sel3 = new AnsiString[4];

 sel4 = new AnsiString[2];

 if(format == 2)

 90

 {

 int *bit;

 // Backup the old data !

 bit = new int[parameters];

// how many parameters in a population

 BackProcess->Lines->LoadFromFile(BITDATA);

 for(int i = 0 ; i < parameters ; i++)

 {

 *(bit+i) = StrToFloat(Trim(BackProcess->Lines->operator [](2*i+1)));

// reload the BITS information

 }

// how many bits contain in a parameter !

 BackProcess->Lines->Clear();

 for(int p = 1 ; p<= pop ; p++) // back up the binary data for each generation

 {

 BackProcess1->Lines->LoadFromFile(poplistB+IntToStr(p)+".txt");

// Store the old generation

 BackProcess->Lines->Add("-----Population : " + IntToStr(p) + " -----");

 for(int pa = 1 ; pa <= parameters ; pa++)

 {

 BackProcess->Lines->Add(BackProcess1->Lines->operator [](pa-1));

 }

 }

 BackProcess->Lines->SaveToFile(poplistBG+IntToStr(gen)+".txt");

 BackProcess->Clear();

 BackProcess1->Clear();

 for(int p = 1 ; p<= pop ; p++)

//back up the real number data for each generation

 {

 BackProcess1->Lines->LoadFromFile(poplistR+IntToStr(p)+".txt");

// Store the old generation

 BackProcess->Lines->Add("-----Population : " + IntToStr(p) + " -----");

 for(int pa = 1 ; pa <= parameters ; pa++)

 {

 BackProcess->Lines->Add(BackProcess1->Lines->operator [](pa-1));

 }

 }

 BackProcess->Lines->SaveToFile(poplistRG+IntToStr(gen)+".txt");

 BackProcess->Clear();

 BackProcess1->Clear();

 // doing selection!

 for(int p = 1 ; p <= pop/2 ; p++)

 // Population should be even!

 {

// Select two population and find the better one (twice); Select the better one

 for(int j = 0 ; j < 2 ; j++)

// in these two; Do the procedure twice and find the both parents

 {

 // Choose 1 from 2 Selection; do it twice to generate the parents.

 for(int i = 0 ; i < tournament ; i++)

 91

 {

 if(BackProcess10->Lines->Capacity < 100)

// if run out of the random sequence ! generate it!

 {

 for(int r = 0 ; r< 10 ; r++)

 {

 srand((unsigned) time(&t));

 BackProcess10->Lines->Add((rand()+rand()) % 1000);

 BackProcess10->Lines->Add((rand()*rand()) % 1000);

 BackProcess10->Lines->Add((rand()*rand()+rand()) % 1000);

 BackProcess10->Lines->Add((rand()+rand()+rand()) % 1000);

 BackProcess10->Lines->Add((rand()) % 1000);

 Sleep(750);

 }

 }

 (*(sel1+i)) = StrToInt(BackProcess10->Lines->operator [](0));

 (*(sel1+i)) = ((*(sel1+i))%pop)+1; // Select #1

 BackProcess10->Lines->Delete(0);

 if(i != 0)

 {

 for (int k = 0 ; k<= i-1 ; k++)

 {

 if((*(sel1+i)) == (*(sel1+k)))

 {

 i--;

 k = i;

 }

 }

 }

 }

 BackProcess->Lines->LoadFromFile(FITNESS); // load the fitness file

 posM = 0;

 for(int i = 0 ; i < tournament; i++)

 {

 (sel2+i) = StrToFloat(BackProcess->Lines->operator [](((sel1+i))-1));

 // load the fitness value of the selection

 if(i!=0)

 {

 if((*(sel2+posM)) > (*(sel2+i)))

 {

 posM = posM;

 }

 else

 {

 posM = i;

 }

 }

 }

 (*(sel+j)) = (*(sel1+posM)) ;

 }

 92

 BackProcess->Lines->LoadFromFile(poplistB+IntToStr((*(sel+0))) +".txt"); // load file

contained the gene of the selection

 BackProcess1->Lines->LoadFromFile(poplistB+IntToStr((*(sel+1))) +".txt"); // Same ;

 int tran;

 for(int i = 0 ; i < parameters ; i++)

 {

 if(BackProcess10->Lines->Capacity < 100)

// if run out of the random sequence ! generate it!

 {

 for(int r = 0 ; r< 10 ; r++)

 {

 srand((unsigned) time(&t));

 BackProcess10->Lines->Add((rand()+rand()) % 1000);

 BackProcess10->Lines->Add((rand()*rand()) % 1000);

 BackProcess10->Lines->Add((rand()*rand()+rand()) % 1000);

 BackProcess10->Lines->Add((rand()+rand()+rand()) % 1000);

 BackProcess10->Lines->Add((rand()) % 1000);

 Sleep(750);

 }

 }

 prob = StrToInt(BackProcess10->Lines->operator [](0));

 probf = prob;

 probf = probf/1000;

 BackProcess10->Lines->Delete(0); // delete used random number

 if((StrToFloat(BackProcess10->Lines->operator [](0))/1000) < cro)

 // do crossover (if crossover)

 {

 BackProcess10->Lines->Delete(0);

// delete used random number

 *(sel3+0) = BackProcess->Lines->operator [](0);

 // load the gene information

 *(sel3+1) = BackProcess1->Lines->operator [](0);

 BackProcess->Lines->Delete(0);

 BackProcess1->Lines->Delete(0);

 tran = (StrToInt(BackProcess10->Lines->operator [](0))%((*(bit+i))+1)); // create the part of

crossover

 BackProcess10->Lines->Delete(0); // delete used random number

 (sel4+0) = ((sel3+0)).SubString(1,tran) ;

 // Create new gene #CROSSOVER #1

 (sel4+1) = ((sel3+1)).SubString(tran+1,(*(bit+i))-tran);

 (*(sel3+2)) = (*(sel4+0)) + (*(sel4+1));

 (sel4+0) = ((sel3+1)).SubString(1,tran) ;

// Create new gene #CORSSOVER #2

 (sel4+1) = ((sel3+0)).SubString(tran+1,(*(bit+i))-tran);

 (*(sel3+3)) = (*(sel4+0)) + (*(sel4+1));

 }

 93

 else

 {

 BackProcess10->Lines->Delete(0);

 (*(sel3+2)) = BackProcess->Lines->operator [](0);

 (*(sel3+3)) = BackProcess1->Lines->operator [](0);

 BackProcess->Lines->Delete(0);

 BackProcess1->Lines->Delete(0);

 }

 if((StrToFloat(BackProcess10->Lines->operator [](0))/1000) < mu)

// mutation #1

 {

 BackProcess10->Lines->Delete(0);

 tran = (StrToInt(BackProcess10->Lines->operator [](0))%(*(bit+i)));

 tran = tran+1;

 if((*(sel3+2)).SubString(tran,1) == "1")

 {

 (*(sel3+2)).Delete(tran,1);

 (*(sel3+2)).Insert("0",tran);

 }

 else

 {

 (*(sel3+2)).Delete(tran,1);

 (*(sel3+2)).Insert("1",tran);

 }

 }

 if((StrToFloat(BackProcess10->Lines->operator [](0))/1000) < mu)

// mutation #2

 {

 BackProcess10->Lines->Delete(0);

 tran = (StrToInt(BackProcess10->Lines->operator [](0))%(*(bit+i)));

 tran = tran+1; // tran should between 1-genes

 if((*(sel3+3)).SubString(tran,1) == "1")

 {

 (*(sel3+3)).Delete(tran,1);

 (*(sel3+3)).Insert("0",tran);

 }

 else

 {

 (*(sel3+3)).Delete(tran,1);

 (*(sel3+3)).Insert("1",tran);

 }

 }

 BackProcess->Lines->Add((*(sel3+2)));

 BackProcess1->Lines->Add((*(sel3+3)));

 }

 BackProcess->Lines->SaveToFile(poplistBG+IntToStr(2*p-1)+".dll");

 BackProcess->Clear();

 BackProcess1->Lines->SaveToFile(poplistBG+IntToStr(2*p)+".dll");

 BackProcess1->Clear();

 94

 }

 delete[] bit;

 for(int p = 1 ; p <= pop ; p++)

 {

 BackProcess->Lines->LoadFromFile(poplistBG+IntToStr(p)+".dll");

 BackProcess->Lines->SaveToFile(poplistB+IntToStr(p) +".txt");

 DeleteFile(poplistBG+IntToStr(p)+".dll");

 BackProcess->Clear();

 }

 }

//-------------------------------

 if(FileExists(FITNESS))

 {

 BackProcess->Lines->LoadFromFile(FITNESS);

 BackProcess->Lines->SaveToFile("C:\\Optima\\temp\\FITNESS\\FIT"+IntToStr(gen)+".txt");

 DeleteFile(FITNESS);

 }

 TransToR->Click();

 delete[] sel, sel1, sel2, sel3, sel4;

 BackProcess->Lines->SaveToFile(READY);

}

//---

 95

Appendix B

BCB Code of Master Program

#include <vcl.h>

#include <iostream>

#include <cmath>

#pragma hdrstop

#include "Unit1.h"

#include "math.h"

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

//---

__fastcall TForm1::TForm1(TComponent* Owner)

 : TForm(Owner)

{

}

//---

AnsiString Setup = "C:\\Optima\\temp\\Setup.txt"; // Store Basic setting

AnsiString poplistR = "C:\\Optima\\temp\\pop\\RealNum\\p";

AnsiString poplistB = "C:\\Optima\\temp\\pop\\Binary\\p";

AnsiString FITNESS = "C:\\Optima\\temp\\FITNESS\\FIT.txt";

AnsiString FITNESS1 = "C:\\Optima\\temp\\FITNESS\\FIT";

AnsiString READY= "C:\\Optima\\temp\\ready.txt";

AnsiString Result = "C:\\Optima\\temp\\Result\\temp.csv";

AnsiString Result_1 = "C:\\Optima\\temp\\Result\\temp1.csv";

AnsiString Result_2 = "C:\\Optima\\temp\\Result\\temp2.csv";

AnsiString Result_3 = "C:\\Optima\\temp\\Result\\temp3.csv";

AnsiString Result_a = "C:\\Optima\\temp\\Result\\tempa.csv";

AnsiString Result_1a = "C:\\Optima\\temp\\Result\\temp1a.csv";

AnsiString Result_2a= "C:\\Optima\\temp\\Result\\temp2a.csv";

AnsiString Result_3a = "C:\\Optima\\temp\\Result\\temp3a.csv";

AnsiString ResultS = "C:\\Optima\\temp\\Result\\temp";

AnsiString ResultS_1 = "C:\\Optima\\temp\\Result\\temp1";

AnsiString ResultS_2 = "C:\\Optima\\temp\\Result\\temp2";

 96

AnsiString ResultS_3 = "C:\\Optima\\temp\\Result\\temp3";

AnsiString ResultS_a = "C:\\Optima\\temp\\Result\\tempa";

AnsiString ResultS_1a = "C:\\Optima\\temp\\Result\\temp1a";

AnsiString ResultS_2a = "C:\\Optima\\temp\\Result\\temp2a";

AnsiString ResultS_3a = "C:\\Optima\\temp\\Result\\temp3a";

AnsiString VBS = "C:\\Optima\\temp\\VBS\\";

int pop, parameterN;

AnsiString *name;

int Gen = 1, PopC = 1, reportN = 4; //Report Number!!

float fitness_pattern =0 ; // commute the data

int layer = 6;

float Er_i, Er_r, Lambda_r, H_r; // number of layers (need to be optimaized later on)

float fitness_height, Height_limit = 5;

void __fastcall TForm1::B1Click(TObject *Sender) // Initial Setting (Asking the parameter name!

{

 VBSMemo->Lines->LoadFromFile(Setup); // loading the setup from file

 pop = StrToInt(VBSMemo->Lines->operator [](7)); //population

 parameterN = StrToInt(VBSMemo->Lines->operator [](3)); //Number of parameter

 name = new AnsiString[parameterN]; // Array that store name of parameter

 VBSMemo->Lines->Clear();

}

//---

void __fastcall TForm1::B2Click(TObject *Sender) //VBS Creating

{ // pop=1;

 int datap = 6;

 int layers = 4;

 float datapf;

 AnsiString datap2, datap3;

 for (int vbsC = 1; vbsC <= 2; vbsC++)

 {

 for (int i = 1 ; i <= pop ; i++) // generate n-VBscript

 {

 VBSMemo->Lines->Clear();

 VariName->Lines->Clear();

 VariName->Lines->LoadFromFile(poplistR+IntToStr(i)+".txt");

 //load the parameter

 fitness_H->Lines->LoadFromFile(poplistB+IntToStr(i)+".txt");

 // how many globe and local

 // say i need r value, h value, er value

 // this three should be calculated by the radnom unmber i have.!

 // globe variable $Er

 float *Er, *radius, *h, *ra, *height, *rax;

 Er = new float[layers];

 radius = new float[layers];

 ra = new float[layers];

 rax = new float[layers];

 h = new float[1];

 height = new float[1];

 *(Er+layers-1) = 2.2; //fixed er!

 for(int j = 1 ; j < layers ; j++)

 97

 {

 if(j == 1)

 {

 (Er+layers-1-j) = ((Er+layers-1-j+1)) + StrToFloat(VariName->Lines->operator [](j-1))-0.2;

// load the parameter!

 }

 else

 {

 (Er+layers-1-j) = ((Er+layers-1-j+1)) + StrToFloat(VariName->Lines->operator [](j-1));

 }

 VBSMemo->Lines->Add(fitness_H->Lines->operator [](j));

 }

 for(int j = 0; j<layers ; j++)

 {

 *(radius+j) = StrToFloat(VariName->Lines->operator [](layers-1+j));

 }

 for(int j = 0; j<layers ; j++)

 {

 *(ra+j) = StrToFloat(VariName->Lines->operator [](2*layers-1+j));

 }

 for(int j = 0; j<layers ; j++)

 {

 *(rax+j) = StrToFloat(VariName->Lines->operator [](3*layers-1+j));

 }

 *(h+0) = 2.5;

 VariName->Lines->Clear();

 fitness_H->Lines->Clear();

 VBSMemo->Lines->Clear();

 //VBS Generator ! (XD)

 for (int j =0; j<= InitialMemo->Lines->Capacity ; j++) //Initial VBS

 {

 if(j!= 10 || vbsC == 1)

 {

 VBSMemo->Lines->Add(InitialMemo->Lines->operator [](j));

 }

 else

 {

 // ShowMessage("a");

 datap2 = InitialMemo->Lines->operator [](j);

 datap3 = datap2.Delete(datap2.Length()-2,1);

 datap2 = datap3.Insert("2",datap3.Length()-1);

 VBSMemo->Lines->Add(datap2);

 // ShowMessage(datap2);

 }

 }

 for (int l = 0 ; l < (layers)*4+1 ; l++) // Variable VBS

 {

 if (l < layers) //globe variable

 {

 for (int j =0; j< VariableMemoG->Lines->Capacity ; j++)

 98

 {

 if(j < VariableMemoG->Lines->Capacity-1)

 {

 VBSMemo->Lines->Add(VariableMemoG->Lines->operator [](j));

 }

 else

 {

 AnsiString t1 = VariableMemoG->Lines->operator [](j);

 // until the last line

 int j1 = t1.Pos("$");

 AnsiString t3 = t1.Delete(j1,1);

 AnsiString t2 = t3.Insert("$Er"+IntToStr(l+1),j1);

// put the parameter name

 j1 = t2.Pos("Variable");

 t1 = t2.Delete(j1,8);

 datap = 6;

 datap2 = FloatToStr((*(Er+l))).SubString(datap,1);

 for(int k = 6 ; k>0; k--)

 {

 if(datap2.SubString(k,1)== "0")

 {

 datap--;

 }

 else

 {

 k =0;

 }

 }

 t2 = t1.Insert(FloatToStr((*(Er+l))).SubString(1,datap),j1); // insert the value

 VBSMemo->Lines->Add(t2);

 VariName->Lines->Add(FloatToStr((*(Er+l))).SubString(1,datap));

 }

 }

 }

 if (l>=layers) // local variable

 {

 for (int j =0; j< VariableMemo->Lines->Capacity ; j++)

 {

 if(j < VariableMemo->Lines->Capacity-1)

 {

 VBSMemo->Lines->Add(VariableMemo->Lines->operator [](j));

 }

 else

 {

 AnsiString t1 = VariableMemo->Lines->operator [](j);

 int j1 = t1.Pos("$");

 AnsiString t3 = t1.Delete(j1,1);

 AnsiString t2 ;

 if(l < 2*layers)

 {

 t2 = t3.Insert("r"+IntToStr(l-(layers-1)),j1);

 }

 99

 else if(l < 3*layers && l > 2*layers-1)

 {

 t2 = t3.Insert("ra"+IntToStr(l-(2*layers-1)),j1);

 }

 else if(l < 4*layers && l > 3*layers-1)

 {

 t2 = t3.Insert("rx"+IntToStr(l-(3*layers-1)),j1);

 }

 else

 {

 t2 = t3.Insert("height",j1);

 }

 j1 = t2.Pos("Variable");

 t1 = t2.Delete(j1,8);

 if(l != layers*4)

 {

 datap = 6;

 if(l< 2*layers)

 {

 datap3 = FloatToStr((*(radius+l-layers)));

 }

 if(l<3*layers && l > 2*layers-1)

 {

 datap3 = FloatToStr((*(ra+l-layers*2)));

 }

 if(l<4*layers && l > 3*layers-1)

 {

 datap3 = FloatToStr((*(rax+l-3*layers)));

 }

 for(int k = 6 ; k>0; k--)

 {

 if(datap3.SubString(k,1) == "0")

 {

 datap--;

 }

 else

 {

 k =0;

 }

 }

 if(l < 2*layers)

 {

 t2 = t1.Insert(datap3.SubString(1,datap)+" in",j1);

 }

 else

 {

 t2 = t1.Insert(datap3.SubString(1,datap),j1);

 }

 VariName->Lines->Add(datap3.SubString(1,datap));

 }

 else

 {

 datapf = 0;

 for(int m = 0 ; m < layers ; m++)

 100

 {

 datapf = datapf + StrToFloat(VariName->Lines->operator [](layers+m));

 *(height+0) = datapf * StrToFloat(VariName->Lines->operator [](layers*2+m));

 if (m==0)

 {

 *(h+0) = datapf * StrToFloat(VariName->Lines->operator [](layers*2+m));

 }

 else

 {

 if (*(h+0) < *(height+0))

 {

 *(h+0) = *(height+0);

 }

 }

 //ShowMessage(FloatToStr(*(h+0)));

 }

 datap = 6;

 for(int k = 6 ; k>0; k--)

 {

 if(FloatToStr((*(h+0))).SubString(k,1) == "0")

 {

 datap--;

 }

 else

 {

 k =0;

 }

 }

 t2 = t1.Insert(FloatToStr((*(h+0))).SubString(1,datap)+" in",j1);

 VariName->Lines->Add(FloatToStr((*(h+0))).SubString(1,datap));

 }

 VBSMemo->Lines->Add(t2);

 }

 }

 }

 }

 delete[] Er, radius, h ;

 for (int j =0; j< SaveAndRunMemo->Lines->Capacity ; j++) //Initial VBS (save and run

commend)

 {

 if(j< SaveAndRunMemo->Lines->Capacity-1)

 {

 if(vbsC==1)

 {

 VBSMemo->Lines->Add(SaveAndRunMemo->Lines->operator [](j));

 }

 else

 {

 if(j== SaveAndRunMemo->Lines->Capacity-3 || j== SaveAndRunMemo->Lines->Capacity-6)

 {

 datap2 = SaveAndRunMemo->Lines->operator [](j);

 datap3 = datap2.Delete(datap2.Length()-2,1);

 101

 datap2 = datap3.Insert("2",datap3.Length()-1);

 VBSMemo->Lines->Add(datap2);

 }

 else

 {

 VBSMemo->Lines->Add(SaveAndRunMemo->Lines->operator [](j));

 }

 }

 }

 else

 {

 AnsiString t1;

 AnsiString t2;

 int j1;

 for (int rep = 1; rep <= reportN; rep++)

 {

 t1 = SaveAndRunMemo->Lines->operator [](j);

 j1 = t1.Pos(".csv"); // report export (XY plot) !

 if (vbsC == 1)

 {

 if(rep == 1)

 {

 t2 = t1.Insert(ResultS,j1); // direction of file to save

 }

 else if (rep ==2)

 {

 t2 = t1.Insert(ResultS_1,j1);

 }

 else if (rep ==3)

 {

 t2 = t1.Insert(ResultS_2,j1);

 }

 else if (rep ==4)

 {

 t2 = t1.Insert(ResultS_3,j1);

 }

 }

 else

 {

 if(rep == 1)

 {

 t2 = t1.Insert(ResultS_a,j1); // direction of file to save

 }

 else if (rep ==2)

 {

 t2 = t1.Insert(ResultS_1a,j1);

 }

 else if (rep ==3)

 {

 t2 = t1.Insert(ResultS_2a,j1);

 }

 else if (rep ==4)

 102

 {

 t2 = t1.Insert(ResultS_3a,j1);

 }

 }

 j1 = t2.Pos("*");

 t1 = t2.Delete(j1,1);

 t2 = t1.Insert(IntToStr(rep),j1);

 VBSMemo->Lines->Add(t1);

 }

 }

 }

 for (int j =0; j< DeleteMeshMemo->Lines->Capacity ; j++) //Initial VBS (clear result)

 {

 AnsiString t1;

 AnsiString t2;

 int j1;

 if(j == 0)

 {

 VBSMemo->Lines->Add(DeleteMeshMemo->Lines->operator [](j));

 }

 else

 {

 if(j>=1 && j<=layers) //layers !!

 {

 t1 = DeleteMeshMemo->Lines->operator [](j);

 j1 = t1.Pos("?");

 t2 = t1.Delete(j1,1);

 if(j == layers)

 {

 t1 = t2.Insert(VariName->Lines->operator [](j-1).SubString(0,3),j1);

 }

 else

 {

 t1 = t2.Insert(VariName->Lines->operator [](j-1),j1);

 }

 VBSMemo->Lines->Add(t1);

 }

 else if (j == layers+1)

 {

 t1 = DeleteMeshMemo->Lines->operator [](j);

 j1 = t1.Pos("?");

 t2 = t1.Delete(j1,1);

 t1 = t2.Insert(VariName->Lines->operator [](4*4),j1);

 VBSMemo->Lines->Add(t1);

 }

 else

 {

 t1 = DeleteMeshMemo->Lines->operator [](j);

 j1 = t1.Pos("?");

 t2 = t1.Delete(j1,1);

 t1 = t2.Insert(VariName->Lines->operator [](j-2),j1);

 VBSMemo->Lines->Add(t1);

 }

 103

 }

 }

 if(vbsC == 1)

 {

 VBSMemo->Lines->SaveToFile(VBS+"G"+IntToStr(Gen)+"P"+IntToStr(i)+".vbs");

 VBSMemo->Lines->Clear();

 }

 else

 {

 VBSMemo->Lines->SaveToFile(VBS+"G"+IntToStr(Gen)+"P"+IntToStr(i)+"a.vbs");

 }

 }

 }

 if(FileExists(Result))

 {

 DeleteFile(Result);

 }

 if(FileExists(Result_1))

 {

 DeleteFile(Result_1);

 }

 if(FileExists(Result_2))

 {

 DeleteFile(Result_2);

 }

 if(FileExists(Result_3))

 {

 DeleteFile(Result_3);

 }

 if(FileExists(Result_a))

 {

 DeleteFile(Result_a);

 }

 if(FileExists(Result_1a))

 {

 DeleteFile(Result_1a);

 }

 if(FileExists(Result_2a))

 {

 DeleteFile(Result_2a);

 }

 if(FileExists(Result_3a))

 {

 DeleteFile(Result_3a);

 }

 Timer1->Enabled = true;

}

//---

void __fastcall TForm1::Timer1Timer(TObject *Sender) //run script

{ // run script

 WinExec(("Wscript.exe

"+VBS+"G"+IntToStr(Gen)+"P"+IntToStr(PopC)+".vbs").c_str(),SW_SHOWMINIMIZED);

 104

 Timer2->Enabled = true;

 Timer1->Enabled = false;

}

//---

void __fastcall TForm1::Timer2Timer(TObject *Sender)

{

 if(FileExists(Result_3)) //waiting for results!

 {

 WinExec(("Wscript.exe

"+VBS+"G"+IntToStr(Gen)+"P"+IntToStr(PopC)+"a.vbs").c_str(),SW_SHOWMINIMIZED);

 //check result

 Timer4->Enabled = true;

 Timer2->Enabled = false;

 }

 else

 {

 Label1->Caption = "Running";

 }

}

//---

void __fastcall TForm1::Timer4Timer(TObject *Sender)

{

 if(FileExists(Result_3a)) //waiting for results!

 { //check result

 B3->Click();

 Timer4->Enabled = false;

 }

 else

 {

 Label1->Caption = "Running";

 }

}

//---

void __fastcall TForm1::B3Click(TObject *Sender)

{

 VBSMemo->Lines->Clear(); // pre-assign the parameters

 Memo1->Lines->Clear();

 double *freq, *value;

 int cap, pos;

 AnsiString temp, temp1;

 double sdv, avg, avg1;

 float S11 = -12; // hard limit -> all s11(f) < -8

 float dir_l = 10;

 VBSMemo->Lines->LoadFromFile(Result); //loading the s11 results

 Memo1->Lines->LoadFromFile(Result_a);

 for(int i = 1 ; i < Memo1->Lines->Capacity; i++)

 {

 VBSMemo->Lines->Add(Memo1->Lines->operator [](i));

 }

 VBSMemo->Lines->Delete(0); //Delete the declare line

 cap = VBSMemo->Lines->Capacity; //calculate how many datas

 freq = new double[cap];

 105

 value = new double[cap];

 double *sum; //sum is the fitness value

 sum = new double[1]; // pre-assume that fitness value is 0

 *(sum) = 0;

 sdv =0, avg=0, avg1=0;

 //s11

 for(int i = 0; i< cap; i++)

 {

 temp = VBSMemo->Lines->operator [](i); //Data Process of excel freq, value

 pos = temp.Pos(",");

 *(freq+i) = StrToFloat(temp.SubString(1,pos-1)); // Get freq

 *(value+i) = StrToFloat(temp.SubString(pos+1,temp.Length()-pos)); //Get value

 if(*(value+i) < S11)

 {

 sdv = sdv+S11;

 }

 else

 {

 sdv = sdv + (*(value+i)) ;

 }

 }

 avg = sdv/cap; //mean

 for(int i = 0; i<cap; i++)

 {

 if(*(value+i) < S11)

 {

 avg1 = avg1+ pow((S11-avg),2);

 }

 else

 {

 avg1 = avg1+ pow((*(value+i)-avg),2);

 }

 }

 sdv = sqrt((avg1/(cap-1)));

 *(sum) = -1*avg/(sdv+1);

 VBSMemo->Lines->SaveToFile(ResultS+"G"+IntToStr(Gen)+"P"+IntToStr(PopC)+"_s11.csv");

 // Phase Center Calculating

 B4->Click();

 *(sum) = *(sum) * fitness_pattern;

 B5->Click();

 *(sum) = *(sum) * fitness_pattern;

 Fitness->Lines->Add(FloatToStr((*(sum)))); // output the final fitness value! (ori)

 Fitness->Lines->SaveToFile("c:\\optima\\b_fit.txt");

 delete[] freq,value, sum;

 DeleteFile(Result);

 DeleteFile(Result_1);

 DeleteFile(Result_2);

 DeleteFile(Result_3);

 DeleteFile(Result_a);

 DeleteFile(Result_1a);

 DeleteFile(Result_2a);

 DeleteFile(Result_3a);

 106

 PopC++;

 if(PopC>pop)

 {

 PopC = 1;

 Gen++;

 if(FileExists(READY))

 {

 DeleteFile(READY);

 }

 Timer3->Enabled = true;

 Fitness->Lines->SaveToFile(FITNESS);

 // throw out the signal for GA to do the generation caculation

 Fitness->Lines->Clear();

 fitness_H->Lines->Clear();

 }

 else

 {

 Timer1->Enabled = true;

 }

}

//---

void __fastcall TForm1::Timer3Timer(TObject *Sender)

{

 if(FileExists(READY)) // waiting for creating new script!

 {

 B2->Click();

 Timer3->Enabled = false;

 }

 else

 {

 Label1->Caption = "Waiting GA";

 }

}

//---

void __fastcall TForm1::B4Click(TObject *Sender)

{

 Memo1->Lines->Clear();

 float f_max, f_min; //frequency range

 float f_max_a1=5, f_min_a1=1; //frequency range

 float f_max_a2=18, f_min_a2=6; //frequency range

 float theta = 1, f_step = 1;

 float theta_s = 0, theta_e = 60;

 float temp, temp1, temp2, temp3, temp4, avg=0, avg1=0,sdv=0;

 float lambda, wavenumber, center_p, center_s;

 fitness_pattern = 0;

 Variant XL,v0,v1,vcell;

 AnsiString tmp;

 for(float h = 1; h <=2 ; h++)

 {

 for(int count = 1; count <= 2; count++)

 {

 107

 if(count == 1)

 {

 XL=Variant::CreateObject("excel.application");

 XL.OlePropertySet("Visible",false);

 XL.OlePropertyGet("Workbooks").OleProcedure("Open", Result_2.c_str());

 v0=XL.OlePropertyGet("Sheets","temp2"); // sheet name : temp2

 v1=v0.OlePropertyGet("Cells");

 f_min = f_min_a1;

 f_max = f_max_a1;

 }

 else

 {

 XL=Variant::CreateObject("excel.application");

 XL.OlePropertySet("Visible",false);

 XL.OlePropertyGet("Workbooks").OleProcedure("Open", Result_2a.c_str());

 v0=XL.OlePropertyGet("Sheets","temp2a"); // sheet name : temp2

 v1=v0.OlePropertyGet("Cells");

 f_min = f_min_a2;

 f_max = f_max_a2;

 }

 for(float i = f_min; i<= f_max; i = i+ f_step)

 {

 lambda = 12/i;

 wavenumber = 2*M_PI/lambda;

 center_s = 0, temp4 = 0;

 for(center_p = 0; center_p<=4; center_p = center_p+0.1)

 {

 temp =0, temp1 = 0, temp2 = 0, temp3 = 0;

 for(float j = theta_s; j<=theta_e ; j=j+theta)

 {

 //Get the content of the Cell located at row 2 and column 2

 vcell=v1.OlePropertyGet("Item", 2 + (j-theta_s)/theta, 2+(h-1)*((f_max-

f_min)/(f_step)+1)+(i-f_min)/f_step); tmp=vcell.OlePropertyGet("Value"); //store that

content to ansistring “tmp”

 if(j == 0)

 {

 temp = StrToFloat(tmp);

 }

 temp1 = StrToFloat(tmp) - temp;

 temp2 = wavenumber*center_p*(1 - cos(j*M_PI/180)) - temp1;

 temp3 = temp3 + temp2*temp2;

 }

 if(center_p == 0)

 {

 temp4 = temp3;

 center_s = center_p;

 }

 else

 {

 if(temp4 < temp3)

 {

 temp4 = temp4;

 108

 center_s = center_s;

 }

 else

 {

 temp4 = temp3;

 center_s = center_p;

 // ShowMessage("a");

 }

 }

 }

 Memo1->Lines->Add(FloatToStr(center_s));

 }

 XL.OleProcedure("Quit");

 XL=Unassigned;

 }

 }

 Memo1->Lines->SaveToFile(ResultS+"G"+IntToStr(Gen)+"P"+IntToStr(PopC)+"_PhaseCenter.csv");

 for(int i = f_min-f_min ; i<= 1+2*(f_max_a2-f_min_a1)/f_step ; i=i+f_step)

 {

 if((i != 0) && (i != 1+(f_max_a2-f_min_a1)/f_step))

 {

 avg = avg + StrToFloat(Memo1->Lines->operator [](i));

 }

 }

 avg = avg/((2*(f_max_a2-f_min_a1)/f_step));

 for(int i = f_min-f_min ; i<= 1+2*(f_max_a2-f_min_a1)/f_step ; i=i+f_step)

 {

 if((i != 0) && (i != 1+(f_max_a2-f_min_a1)/f_step))

 {

 avg1 = avg1+ pow((StrToFloat(Memo1->Lines->operator [](i)) -avg),2);

 }

 }

 sdv = sqrt(avg1/((2*(f_max_a2-f_min_a1)/f_step)));

 fitness_pattern = exp(-1*sdv);

 Memo1->Lines->Clear();

}

//---

void __fastcall TForm1::B5Click(TObject *Sender)

{

 Memo1->Lines->Clear();

 float f_max=18, f_min=1; //frequency range

 float f_max_a1=5, f_min_a1=1; //frequency range

 float f_max_a2=18, f_min_a2=6; //frequency range

 float theta = 1, f_step = 1;

 float theta_s = 0, theta_e = 50;

 float temp, avg=0, avg1=0, sdv=0;

 float HPBW;

 fitness_pattern = 0;

 Variant XL,v0,v1,vcell;

 AnsiString tmp;

 for(int count = 1; count <=2 ;count++)

 {

 109

 for(float h = 1; h<=2; h++)

 {

 if(count ==1)

 {

 XL=Variant::CreateObject("excel.application");

 XL.OlePropertySet("Visible",false);

 XL.OlePropertyGet("Workbooks").OleProcedure("Open", Result_3.c_str());

 v0=XL.OlePropertyGet("Sheets","temp3"); v1=v0.OlePropertyGet("Cells");

 f_min = f_min_a1;

 f_max = f_max_a1;

 }

 if(count ==2)

 {

 XL=Variant::CreateObject("excel.application");

 XL.OlePropertySet("Visible",false);

 XL.OlePropertyGet("Workbooks").OleProcedure("Open", Result_3a.c_str());

 v0=XL.OlePropertyGet("Sheets","temp3a"); v1=v0.OlePropertyGet("Cells");

 f_min = f_min_a2;

 f_max = f_max_a2;

 }

 for(float i = f_min; i<= f_max; i = i+ f_step)

 {

 HPBW = 0;

 temp =0, avg=0, avg1=0, sdv=0;

 for(float j = theta_s; j<=theta_e ; j=j+theta)

 {

 //Get the content of the Cell located at row 2 and column 2

 vcell=v1.OlePropertyGet("Item", 2 + (j-theta_s)/theta, 2+(h-1)*((f_max-f_min)/(f_step)+1)+(i-

f_min)/f_step);

 tmp=vcell.OlePropertyGet("Value");

 temp = StrToFloat(tmp);

 avg = StrToFloat(Trim(Pattern_C->Lines->operator [](j)));

 avg1 = temp-avg;

 if(abs(avg1) > 0.2)

 {

 if(abs(avg1) > HPBW)

 {

 HPBW = abs(avg1);

 }

 else

 {

 HPBW = HPBW;

 }

 }

 }

 Memo1->Lines->Add(FloatToStr(HPBW));

 }

 XL.OleProcedure("Quit");

 XL=Unassigned;

 //e ShowMessage(FloatToStr(HPBW));

 }

 }

 Memo1->Lines->SaveToFile(ResultS+"G"+IntToStr(Gen)+"P"+IntToStr(PopC)+"_HPBW.csv");

 110

 avg = 0;

 avg1 = 0;

 temp = 0;

 for(int i = f_min-f_min ; i< 2*((f_max_a2-f_min_a1)/f_step+1) ; i=i+f_step)

 {

 avg = avg + StrToFloat(Memo1->Lines->operator [](i));

 }

 avg = avg/(2*(1+(f_max_a2-f_min_a1)/f_step));

 // ShowMessage(FloatToStr(avg));

 for(int i = f_min-f_min ; i<= 1+2*(f_max_a2-f_min_a1)/f_step ; i=i+f_step)

 {

 avg1 = avg1+ pow((StrToFloat(Memo1->Lines->operator [](i)) -avg),2);

 }

 sdv = sqrt((avg1/((2*(1+(f_max_a2-f_min_a1)/f_step)))));

 Memo1->Lines->Clear();

}

//---

