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ABSTRACT

Multi-user settings present new challenges to the problems of characterizing the

fundamental limits and design of explicit schemes for a network. In the first direction

of the dissertation we consider the problem of explicit scheme design for digital finger-

printing, which is a multi-user extension of watermarking. First, minimum distance

decoding is studied and an explicit scheme based on graph codes under Belief Propa-

gation decoding is proposed which achieves vanishing misidentification probability for

rates as high as 0.11. This is a marked improvement over the best available designs

in the literature. A specific coalition attack nicknamed “zero capacity attack” is also

identified for which the minimum distance decoder fails to extend to larger coalition

sizes than 2.

Next, we study the application of tree codes and sequential decoding to the prob-

lem and establish the existence of a good code which can achieve vanishing error prob-

ability with finite average complexity for rates below a cut-off rate. Using random

Convolutional codes we provide numerical results indicating vanishing error proba-

bility for rates as high as 0.16. Our numerical results are extended to coalition size

of 3 under the zero capacity collusion attack using a novel family of non-linear tree

codes based on concatenation of random Convolutional codes and tree codes under

bidirectional sequential decoding. We achieve vanishing error probability for rates as

high as 0.05.

ii



In the second direction of the thesis, we study the fundamental limits of multi-user

communications. We begin by considering the X channel which contains most of the

well studied multi-terminal networks (e.g., multiple-access, broadcast and interference

channels). We propose a signaling scheme and derive the achievable rate region.

The achievable region includes the best known rate regions for the special cases and

outperforms the best available one in the literature. We conclude this direction of

the thesis by studying cognitive cooperation in downlink communication for cellular

systems. A singling scheme based on joint interference alignment and dirty paper

coding is proposed and the achievable sum degrees of freedom region is characterized.

Moreover, an outer bound on this region is derived and it is established that our

proposed scheme is optimal for some special cases.
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CHAPTER 1

INTRODUCTION

Shannon laid down the mathematical foundation of communications also known

as information theory in his seminal work [1]. Among fundamental ideas of [1] are:

Typical sequences, random coding argument and typical set decoding. Because the

main objective in information theory is to characterize the fundamental limits of infor-

mation transmission, apart from fundamental constraints (e.g., transmission power

limit) no practical limitation (e.g., decoding complexity) is assumed for either the

transmitter(s) or receiver(s). Achieving the reliable rates promised by the informa-

tion theoretic results using real-world systems poses many interesting problems which

arise from shortcomings of practical systems. For example, the encoder-decoder pair

used in Shannon’s work are based on typical sequences. This means that the encoder

needs to maintain a look up table for messages the size of which grows exponentially

with the code length (i.e., the number of channel uses). Also, the decoder needs to

search the entire codebook for a typical pair which again means exponential decoding

complexity.

Achieving near capacity results, with tolerable and not the prohibitive exponen-

tial complexity fueled a lot of research effort over the past decades. An interesting

problem posed after derivation of capacity bounds, is the design of schemes that can
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achieve or approach those bounds with a tolerable complexity and will be loosely

referred to as explicit schemes. In general, information theoretic results not only

characterize the limits but also shed light on the structure of optimal codes and in-

spire design of explicit schemes. The main focus of the original work of [1] is point to

point (i.e, single user) communication. Multi user scenarios present new dimensions

to the problem both in terms of characterizing capacity bounds and designing efficient

coding schemes as well.

In the first direction of the thesis we study the problem of explicit design for digital

fingerprinting. With the development of file sharing applications and accessibility of

high speed Internet, the protection of copy righted data such as image, music, video

and software has become increasingly important. Watermarking is a powerful tool

employed for the protection of copyrighted data from illegal distribution. Loosely

speaking, under a watermarking strategy a short redundant data is inserted in the

copyrighted data before distribution to the users. In other words, before the distribu-

tor distribute its copy righted data among a set of licensed users, it embeds a unique

watermark in each licensed copy.

Fingerprinting can be thought of as amulti-user extension of watermarking schemes.

The goal of the users that copy the data in an illegal manner is to minimize the prob-

ability of being traced back by the distributer. In a multi-user scenario, when the

user can collaborate to produce a forgery of their copy-righted files, identifying the

guilty users becomes significantly more challenging for the distributer. This difficulty

can be compounded by the fact that usually the distributer is ignorant about the

strategy with which the forged copy is produced. The fundamental limits of a finger-

printing system in terms of the length of the inserted mark, the number of colluding
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users (coalition size) and a reliability measure is studied in [2–4]. As it is typical in

information theoretic analysis the aforementioned contributions are not constrained

in terms of encoding/decoding complexity.

The first direction of this thesis aims at designing explicit schemes for fingerprint-

ing. Two different approaches based on graph codes and tree codes are devised. We

achieve vanishing error probability with tolerable complexity of encoding and decod-

ing using the proposed schemes. Our contribution in this direction of the thesis is

summarized below:

First, an achievable rate for binary linear codes in a fingerprinting system under

minimum distance decoding is derived. Random graph codes and belief propagation

decoding emerge as a natural fit to approximate the minimum distance decoding.

Next, we provide simulation results for a recently proposed class of low rate graph

codes under coalition attack with belief propagation decoding. A specific attack for

coalition sizes t > 2 is identified for which the minimum distance decoding fails.

In the second part of this direction of the thesis, we consider the application of tree

codes and tree search decoding to digital fingerprinting. It is a well known fact that

the complexity of tree search decoding is a random variable. Unlike other powerful

available decoding algorithms i.e., belief propagation and Viterbi decoding for which

the complexity of both is constant in the code-length. The complexity of tree search

decoding under the considered fingerprinting system is studied in Chapter 3 and the

existence a good tree code with finite complexity under the proposed tree search de-

coding is established when the coalition size is equal to 2. This result improves over

the achievable rate under the minimum distance decoding. For the coalition attack
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under which the minimum distance decoder fails, we propose a novel non-linear con-

struction for tree codes and study its performance numerically. Numerical results

indicate vanishing error probability with finite complexity of decoding for this attack.

Our results in the first direction of the thesis is reported in [5–7]

In the second direction of the thesis we consider the fundamental limits of multi-

user networks. Shannon’s original work on point to point channels have been extended

to multi-user cases in many different directions. The following significant examples

are worth mentioning:

• The many to one communication or multiple access channel for which the ca-

pacity region is fully known and can be achieved by typical set encoding and

decoding [8]

• One to many communication or broadcast channel. The capacity region is known

for the special case of degraded broadcast channel using superposition encoding

and typical set decoding [9].

• Interference channel: which is a communication scenario with two transmitters

and two receivers. Each receiver, receives an intended signal from its corre-

sponding transmitter and an unintended one which is interference from the

other transmitter.

In the first part we consider a general model of two user communication which will

be referred to as the “X” channel. The X channel represents a communication model

with two transmitters and two receivers. Unlike the conventional interference channel,

in the X channel each transmitter has a message for each receiver. The X channel was
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first considered in [10] and the achievable rate region and degrees of freedom region

was studied using dirty paper coding and interference alignment. Our contribution

in this part is that by borrowing ideas from Marton’s binning scheme for broadcast

channel [11] , Han and Kobayashi’s message splitting technique [12] and superposi-

tion codebook [9] we propose a new achievable rate region which improves over and

contains the previously proposed scheme of [10] and it is the best available rate region

in literature. Our result in this part is reported in [13].

In the second part of this direction of the thesis we consider the recently proposed

idea of cognitive cooperation. Cognitive cooperation has been recently proposed to

improve the performance of the existing (single frequency, single protocol) wireless

systems [14, 15]. In this work we consider the idea of cognitive cooperation in a cel-

lular network. More specifically we assume a primary base station and a secondary

one. The secondary base station is assumed to know the messages of the primary

base station non-causally and thus is referred to as cognitive. The validity of this

assumption hinges on the fact that in many cellular applications the bases stations

can be assumed to be connected by high capacity links.

One of the improvements offered by the cognitive technology is better efficiency in

exploiting the available resources. Traditionally it is assumed that a cognitive device

is capable of sensing if a dimension (e.g., a frequency band, a time sharing slot) is idle

and in that case transfer its transmission to the unused band allowing for an increase

in the overall efficiency of the system. In our work, we do not confine the cognitive

node to only transmitting in the unused parts of the spectrum domain. We consider

the general case where the bases stations can transmit over the same dimension at

the same time.
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Transmission over the same dimension could cause interference on unintended

receivers. An important component in our contribution is the manner in which the

interference is handled and/or mitigated. In our work we apply the following ap-

proaches to manage different types of interference :

• Dirty paper coding: When the channel interference is non-causally known at

the transmitter, its capacity is derived by Gelfand and Pinsker [16]. The coding

scheme proposed by [16] involves a binning structure and the obtained formula

contains the channel’s probability distribution, a distribution on its input al-

phabet as well as an auxiliary random variable.

For the special case of an additive Gaussian channel the capacity of the cor-

responding interference channel serves as an outer bound for the channel that

experiences interference. When the known interference at the transmitter is

distributed according to a Gaussian distribution, Costa [17] determined the

optimal distribution of the auxiliary random variable in the Gelfand Pinsker

scheme which achieves the outer bound. The scheme with the given distribu-

tion is coined as dirty paper coding.

In our proposed scheme interference mitigation in the secondary cell is achieved

by dirty paper coding in conjunction with the common zero forcing beam-

forming approach in a multiple input multiple output (MIMO) broadcast chan-

nel.

• Interference alignment: In general, determining the exact capacity region is of-

ten an intractable problem for a multi-user network. To mover forward, the

notion of “degrees of freedom” has been proposed.
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The degrees of freedom (or the multiplexing gain) can be thought of as the scal-

ing rate of the network’s capacity with log(SNR) as SNR → ∞ where SNR

denotes the signal to noise ratio. Basically, in the high SNR region the degrees

of freedom is an approximation of the capacity within a constant independent

of the SNR.

Broadly speaking, we can generate degrees of freedom by expansions in time

(e.g., through multiple fading blocks), in frequency (e.g., by using multiple

carriers) and in space if the communication nodes are equipped with multiple

antennas. Several approaches have been proposed to efficiently exploit the mul-

tiplexing gains offered by spatial dimensions [18,19]. One of the significant ideas

in this arena is interference alignment which was first proposed to achieve the

full multiplexing gains of a K user interference channel [20].

Intuitively speaking, by a certain design of beam-forming vectors the signals

at the unindented receivers are aligned to some dimensions using the proposed

scheme of [20].

By doing so, we can zero force them together which means by discarding the

dimensions dedicated to interference, we will be able to remove the interference

completely. Next, the intended data can be recovered on the rest of dimensions

available at each receiver. Interference alignment is a fundamental component

along with zero forcing in achieving the full degrees of freedom region for a two

user multiple input multiple output X channel [21] too.

The idea of zero forcing the unintended data altogether, by aligning them can also be

extended to different types of interference as well. In [22], a cellular system is con-

sidered and at each mobile user the inter-cell and intra-cell interferences are aligned
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to the same linear space and thus can be mitigated together.

Upper and lower bounds on the capacity region of an interference channel with a

cognitive transmitter has been studied in [23,24]. The achievable degrees of freedom

region under cognition for interference and X channels is considered in [20,21,25]. The

cognitive paradigm has been studied for a cellular setting (for example see [26–28])

however many fundamental problems regarding a cognitive cellular network remains

open.

Our contribution in this part of the thesis is summarized in the following. We

propose a general model for the downlink communication in a cognitive cellular net-

work. Next borrowing ideas from dirty paper coding, interference alignment and zero

forcing we propose a signaling scheme and study the achievable sum degrees of free-

dom region in the cognitive and non-cognitive cells.

We also present an outer bound on the performance of a cognitive system in the

downlink and determine some special cases for which our proposed signaling scheme

is optimal.

In addition, as mentioned earlier achieving the gains promised by interference

alignment hinges on the careful design of beam-forming vectors. To determine the

correct directions all of the transmitters are required to perfectly know the channel

state information (CSI) of each other. In our work, we consider the case when full

CSI is not available at the non-cognitive base station. The results of this part of the

thesis are reported in [29, 30].
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CHAPTER 2

FINGERPRINTING WITH MINIMUM DISTANCE
DECODING

In this and the next chapter the problem of designing explicit schemes for digital

fingerprinting is considered. We adopt an information theoretic framework for the

design of collusion-resistant coding/decoding schemes for digital fingerprinting. More

specifically, in this chapter the minimum distance decision rule is used to identify one

of the colluding users. Achievable rates, under this detection rule, are characterized

under any collusion attack that satisfies the marking assumption. For t = 2 pirates,

we show that rate 1 − H(0.25) ≈ 0.188 is achievable using an ensemble of random

linear codes. Inspired by our theoretical analysis, we then construct coding/decoding

schemes for fingerprinting based on the celebrated Belief-Propagation framework.

Using an explicit accumulate repeat accumulate code we obtain a vanishingly small

probability of misidentification at rate 1/9 with t = 2. These results represent a

marked improvement over the best available designs in the literature.
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2.1 Introduction

Digital fingerprinting is a paradigm for protecting copyrighted data against illegal

distribution [31] and have lately received a lot of attention particularly from the in-

formation theory community. In a nutshell, a distributor wishes to distribute its data

D among a number of licensed users. To identify each user, a set of redundant digits

referred to as a marks or fingerprints are embedded inside the copyrighted data. The

locations of the marks are kept hidden from the users and are only known to the

distributor. Their positions, however, remain the same for all users.

If any user inadvertently re-distributes its assigned copy, it will be caught by its

fingerprint. However, several users may collude to form a coalition enabling them to

produce an unauthorized copy (also referred to as forged copy or forgery) which is

difficult to trace back. In the literature, the colluding members are typically referred

to as pirates or colluders. Hence, the need arises for the design of collusion-resistant

digital fingerprinting techniques. The focus of the first direction of the thesis is to

develop an information theoretic framework for the design of low complexity pirate-

identification schemes which are loosely referred to as explicit schemes. To this end,

in this chapter we consider graph codes and minimum distance decoding and the next

chapter is dedicated to tree codes and tree search decoding.

Based on the constraints faced by the coalition to devise a collusion attack, differ-

ent settings have been considered for the fingerprinting problem. There are two main

settings in the literature:

• The distortion setting, in which the ”difference” between forged copy and each

of the licensed copies cannot exceed a certain threshold
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• The marking assumption setting which is a popular model for software finger-

printing and roughly states that the pirates can only change the coordinates

where they see a difference in their assigned fingerprint.

In this thesis, we consider the marking assumption setting first proposed in [31]. In

this framework, the pirates attempt to identify the positions occupied by the fin-

gerprinting digits by comparing their copies. Afterwards, they can only modify the

identified coordinates, in any desired way, to minimize the probability of traceability.

The validity of the marking assumption hinges on the assumption that any modifi-

cation to the data content D could damage it permanently. This prevents the users

from modifying any location in which they do not identify as a fingerprinting digit

since it may be a data symbol. For more on fingerprinting, the validity of the marking

assumption and motivations behind it we refer the readers to [2,31,32] and references

therein.

Boneh and Shaw [31] were the first to construct fingerprinting codes that are

resistant to attacks that satisfy the marking assumption. This approach was later

extended in [32] using the idea of separating codes [33]. To the best of our knowledge,

the best available explicit binary fingerprinting codes are the low rate codes presented

in [32]. For example, for t = 2, the best available code has a rate≈ 0.0092.

Upper and lower bounds on fingerprinting capacity under the marking assump-

tion was first considered in [2]. In a recent publication [3] Moulin unified the different

settings and formulations of fingerprinting and derived upper and lower bounds on

capacity under various settings. The decoders presented in [2,3], however, is based on

exhaustive search, and hence, would suffer from an exponentially growing complexity

in the code-length. This prohibitive complexity motivates our proposed approaches.
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In this chapter, we show that using linear fingerprinting codes and minimum dis-

tance (MD) decoding, one can achieve rates less than 0.188 when the coalition size is

t = 2.

Since the complexity of the exact MD decoder can be prohibitive when the code-

length is long, we develop a low complexity belief-propagation identification ap-

proach [34]. This detector only requires a linear complexity in the code-length n, and

offers remarkable performance gain over the best known explicit construction [34].

For the marking assumption set-up, we achieve a vanishingly small misidentification

probability for rates up to 1/9 using the a recently proposed class of low rate accu-

mulate repeat accumulate (ARA) codes [35]. It is worth noting that these results

represent a marked improvement over the state of the art in the literature. Fur-

thermore, one would expect additional performance enhancement by optimizing the

degree sequences of the codes (which is beyond the scope of this work).

The rest of this chapter is organized as follows: In Section 2.2, we introduce the

mathematical notations and formally define our problem setup. Then we explore

the theoretical limits of fingerprinting using the MD decoder in Section 2.3. The

simulation results based on the BP framework are presented in Section 2.4. Finally,

Section 2.5 offers some concluding remarks.

2.2 Notations and Problem statement

Throughout the thesis the entropy function is denoted by H(·), with the argument

being the probability mass function as in [8]. For simplicity, we denote H(p, 1− p) as

H(p), where 0 ≤ p ≤ 1.
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Moreover, for two functions of n, we write a(n)
.
= b(n) if:

lim
n→∞

1

n

a(n)

b(n)
= 0, (2.1)

for example,
(
n
d

) .
= 2nH( d

n
).

Also random variables are denoted by capital letters and their realization with

smaller case letter. Vectors of length n are denoted by bold-face letters. For exam-

ple, x denotes the vector {x1, x2, . . . , xn}. dH(x1,x2) denotes the Hamming distance

between x1,x2.

Assume there are M users denoted by {1, 2, . . . ,M} in the fingerprinting system.

In general, a coalition of size t is a subset U of {1, 2, . . . ,M} where |U | = t. We will

concentrate on case t = 2, i.e. U = {u1, u2}.

In general we can not confine the coalition to employ a specific type of attack. We

consider a formulation that can capture all attacks under the marking assumption.

It should be noted that, we use a similar mathematical formulation presented in [2],

for completeness however, we repeat it here. As mentioned in [31], deterministic fin-

gerprinting under the marking assumption is not possible in general. Therefore, the

distributor needs to employ some kind of randomization.

A collection of binary codes (F,G) is composed of K pairs of encoding and de-

coding functions as:

fk : {1, 2, . . . ,M} → {0, 1}n

gk : {0, 1}n → {1, 2, . . . ,M}

k = 1, 2, . . . , K.
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The code rate R is equal to log2 M
n

The secret key, k is a random variable employed to randomize the codebook fam-

ily. By applying randomization, the very codebook utilized for fingerprinting is also

kept hidden from the users. It should be noted that, adhering to the common conven-

tions in cryptography, the encoding and decoding functions as well as the probability

distribution of the secret key, p(k), are known to all users.

The fingerprints corresponding to the coalition of users (also referred to as pi-

rates or colluders), u1, u2 are denoted by fk(u1, u2) = {x1,x2}. A position i, in the

coalition’s fingerprints is called undetectable [31] if x1i = x2i, otherwise it is called

detectable. Define E(U) the set of feasible forged copies for a coalition U by:

E(U) = {y ∈ {0, 1}n | yi = x1i, ∀i undetectable}. (2.2)

In general, coalition U utilizes a random strategy that satisfies the marking assump-

tion to produce y. That is, let V (y | x1,x2) be the probability that y is created,

given coalition is x1,x2, then we will have:

V (y | x1,x2) = 0 for all y 	∈ E(U). (2.3)

Denote the set of all strategies that satisfies (2.3) by V. The probability of misiden-

tification for a given coalition U , in the codebook family (F,G) which utilizes the

collusion strategy V , is defined by:

Pm(U, F,G, V ) := EK

( ∑
y∈E(U),gk(y)/∈U

V (y | fK(U))
)

(2.4)

Maximum probability of misidentification under any attack that satisfies the mark-

ing assumption, averaged over all possible coalitions is considered. The maximum
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probability of misidentification is more convenient to analyze and is defined as:

Pm(F,G) :=
1(
M
t

)∑
U

max
V ∈V

Pm(U, F,G, V ). (2.5)

2.3 General Collusion Attack with MD Decoder

In this section we study the performance of minimum distance decoder when the

coalition employs any strategy as long as the marking assumption is satisfied. The

problem is studied from an information theoretic perspective.

First achievable rates are derived using random coding arguments, next we present

our numerical results to show that the minimum distance decoder can be well approx-

imated by belief propagation.

Before proceeding with our main results, the concept of close pairs of binary vec-

tors is defined and a lemma is proved about the probability of two randomly picked

vectors from a random coding ensemble being close.

For a small ε, two binary vectors x1 and x2 of length n are said to be close if:

dH(x1,x2) ≤ n(
1

2
+ ε).

A closed pair (x1,x2) is denoted by:

x1
C↔ x2.

The pair (x1,x2) that is not close is referred to as non-close. A non-close pair is

denoted by:

x1
N↔ x2

The following lemma establishes the probability of a randomly picked pair from an

ensemble of random binary and linear random binary codes being close.
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Lemma 2.1. For both ensembles of codes the probability of a randomly selected pair

of codes being non-close is vanishingly small.

Proof. An ensemble of binary random codes is composed of random binary codewords

each coordinate of the codeword drawn identically and independently with the same

probability of being 0 and 1. An ensemble of linear random binary code is defined as

a linear code whose parity check matrix is a random matrix all elements of which are

drawn identically and independently with the same probability of being 0 and 1.

Let us consider the i.i.d random ensemble first. For a code C in the i.i.d ensemble

and 1 ≤ d ≤ n define:

Sc(d) =
M∑
i=1

i−1∑
j=1

Φ{dH(xi,xj) = d}. (2.6)

where Φ(·) is the indicator function. In [36], it is established that with probability

going to one as n → ∞ :

Sc(d) =

{
2n(2R+H( d

n
)−1) nδGV (2R) < d < n(1− δGV (2R))

0 otherwise
(2.7)

where δGV (·) is the Gilbert-Varshamov distance. The Gilbert-Varshamov distance is

defined as

δGV (R) =

{
δ H(δ) = 1−R such that, δ < 0.5 and R < 1
0 R ≥ 1

(2.8)

Using (2.7), The probability that a randomly picked pair from an i.i.d random code-

book being non-close can be written as:∑n(1−δGV (2R))
d>n(1/2+ε) 2n(2R+H(d/n)−1)

22nR
<

n2n(2R−1+H( 1
2
+ε))

22nR
, (2.9)

which goes exponentially to zero as n → ∞.

Now let us turn to the random linear ensemble. For a code C in the linear ensemble
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and 1 ≤ d ≤ n by the symmetry of the linear ensemble and considering the hamming

distance of the code, it can be stated that

Sc(d) =

M∑
i=1

i−1∑
j=1

Φ{dH(xi,xj) = d} =
1

2

M∑
i=1

∑
j �=i

Φ{dH(xi,xj) = d} =
M

2
Nc(d)

.
= 2nRNc(d),

(2.10)

where Nc(d) �
∑

j �=iΦ{dH(xi,xj) = d}.

In [36], it is shown that with probability going to one as n → ∞

Nc(d)
.
= { 2n(R+H(d/n)−1), nδGV (R) < d < n(1 − δGV (R))

0, otherwise.
(2.11)

Therefore, the average probability of a pair being non-close can be written as∑n(1−δGV (R))
d>n(1/2+ε) 2n(2R+H(d/n)−1)

22nR
<

n2n(2R−1+H( 1
2
+ε))

22nR
, (2.12)

which again goes exponentially to zero as n → ∞.

The first part of our contribution is presented in the following theorems:

Theorem 2.1. For all rates less than 1 − H(0.25) there is a fingerprinting code

for which the probability of misidentification goes to zero as the code-length goes to

infinity, when t = 2.

Proof. We use a random coding argument to establish the above theorem. Consider

the ensemble of binary random codes as the following: A binary random vectors

(fingerprints) of length n is assigned to the M = 2nR users where each coordinate is

chosen independently at random with equal probability of being 0, 1.

We can upper bound the misidentification probability by considering two events:

First, if the assigned fingerprints to users u1 and u2 compose a non-close, an error is

declared. Even if the minimum distance decoder can catch a pirate we consider the
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aforementioned event as an error. Next, we try to upper bound the misidentification

probability given the forged copy is produced by a close pair.

That is, given a forged fingerprint y, the probability of misidentification can be

upper bounded by:

Pm ≤ Pm(y|x1
C↔ x2) + P (x1

N↔ x2),

where Pm(y|x1
C↔ x2) is the misidentification probability when y is produced by

a close pair (x1,x2) and P (x1
N↔ x2) is the probability that the pirates did not

constitute a close pair.

Through the following argument, we show that the average of those probabilities

over the random coding ensemble goes exponentially to zero as n goes to infinity

hence the proof.

In Lemma 2.1 have proved that P (x1
N↔ x2) over the ensemble goes to zero as n

goes to infinity.

Now we turn to Pm(y|x1
C↔ x2). Since dH(x1,x2) < n(1

2
+ ε), the Hamming

distance of the forged copy y with at least one of the pirates must be less than

h(n) = n(
1

4
+

ε

2
),

due to the marking assumption. Without loss of generality we assume that pirate to

be x1.

Using minimum distance decoding, misidentification occurs if there is another binary

vector z of length n in the codebook such that dH(y, z) ≤ dH(y,x1). Let the hamming

distance between y and z be equal to l i.e, dH(y, z) = l. Because, there are a total(
n
l

)
number of positions that z and y can disagree, given any y the probability of
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such z be in the codebook is equal to: (
n
l

)
2n

(2.13)

Therefore, the total misidentification probability given the original fingerprints are

close can be written as:

Pm(y|x1
C↔ x2) =

∑h(n)
i=1

(
n
i

)
2n

.
= 2−n(1−H(0.25))

Using the union bound the total probability of misidentification in a random code of

size M is at most:

Pe ≤ M2−n(1−H(0.25)) = 2−n(1−H(0.25)−R)

The above probability goes exponentially to zero as n → ∞ for all rates R < 1 −

H(0.25)

We observed that with the probability going to one the forged copy will be pro-

duced by a close pair, and due to the marking assumption the pirate with the closer

distance, x1 to y is approximately n/4. The key observation is that, we can treat the

“channel” between y and x1 with a BSC with crossover probability 1/4.

The above theorem establishes the existence of a good fingerprinting code. How-

ever, Theorem 2.1 does not provide any information about the structure of the code.

In order for any code to be encoded and decoded with tolerable complexity, it needs

to have certain algebraic structures which will help reduce the complexity of encod-

ing/decoding.

The next theorem establishes the existence of a good linear fingerprinting code.

Linearity of the code helps reduce its encoding complexity from exponential (the com-

plexity of the look up table required for the random codes) to polynomial. Our result

is extended to binary linear codes in the following theorem:
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Theorem 2.2. For all rates less than 1−H(0.25), there exists a linear MD achievable

fingerprinting code, when t = 2.

Proof. Consider the ensemble of binary linear codes with binary parity check matrix

H where elements of H are chosen equally and independently from {0, 1}. Here

we only consider linear codes with full rank parity check matrices and discard the

exponentially small number of codes which violate this assumption.

The size of matrix H is l × n, with rate R = 1− l/n and the codeword length n.

It should also be noted that in the following all matrix multiplications and additions

are done in module-2 unless otherwise is stated. Similar to the proof of Theorem 2.1,

we can re-write the probability of misidentification given a forged copy as

Pm ≤ Pm(y|x1
C↔ x2) + P (x1

N↔ x2). (2.14)

In Lemma 2.1 we have established that over the ensemble of linear random codes

described above, P (x1
N↔ x2) also goes to zero as the code length goes to infinity.

Now let us consider Pm(y|x1
C↔ x2). In order to randomize the codebook, the dis-

tributor employs the following strategy:

The secret keys, k’s are independent binary random vectors of length n, whose

coordinates are chosen to be 0, 1 independently with the same probability. After en-

coding, the secret key is added in the binary domain to the codeword i.e. x1 ⊕ k,

x2 ⊕ k and the resulting vectors are assigned to the users.

As we mentioned earlier, the secret key is unknown to the users and is only known

to the distributor. Upon receiving y, the decoder removes k, and performs the min-

imum distance decoding. Similar to the proof of Theorem 2.1, again due to the

marking assumption at least one of the fingerprints will have a hamming distance less
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than or equal to h(n) = n(1
4
+ ε

2
) with one of the fingerprints which without loss of

generality will be assumed to be x1. That is:

dH(y,x1) < h(n) (2.15)

To prove the theorem we need the following properties of the considered linear en-

semble which is proved in [37]:

• For any binary vector z the probability of z being in a code C of the ensemble

is equal to 2−n

• For binary vectors z, z′ such that z⊕ z′ 	= 0 then:

Pr(z, z′) ∈ C = 2−2n,

that is the event that z and z′ be in the same codebook C, are independent.

Now in the proof of Theorem 2.1 we only user pairwise independence. Basically,

the probability of any z with the Hamming distance of l from y being in the linear

codebook is still equal to: (
n
l

)
2n

Therefore, the probability of misidentification for the random linear ensemble can still

be upper bounded by:

M2−n(1−H(0.25)) = 2−n(1−H(0.25)−R),

which goes exponentially to zero as n → ∞ for all rates R < 1−H(0.25).
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2.4 Belief Propagation for Fingerprinting

The application of an explicit linear code defined over a random graph with Be-

lief Propagation (BP) decoding is studied in this section. As mentioned earlier BP

iterative decoding can be employed as an approximation to the exact minimum dis-

tance decoding. The complexity of full MD decoding is still exponential whereas BP

decoding has linear complexity in the code-length.

2.4.1 Accumulate Repeat Accumulate codes for Fingerprint-

ing

The performance of accumulate repeat accumulate codes with different rates under

the 2-pirate memoryless attack is studied by computer simulation. In this attack,

when the pirates encounter a detectable position, they choose 0, 1 independently and

with equal probability to form the forged copy.

We use rates 1/8, 1/9 and 1/10 ARA codes based on the low rate protographs

presented in [35]. The protographs of the codes are depicted in Fig 2.1. For a formal

description on ARA codes, we refer the interested readers to [35,38,39], and references

therein.

The decoding is done iteratively using the sum product algorithm with maximum

number of iterations equal to 60. The decoder treats the forged fingerprint as the

output of a binary symmetric channel with crossover probability equal to 0.25. In

Fig 2.2, the probability of misidentification Pm is depicted versus different code lengths

for different rates.

22



Fig. 2.1: Protographs of rate 1/8, 1/9, 1/10 ARA codes
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2.5 Conclusion

In this chapter we studied the code design and performance of the MD decoder

for digital fingerprinting. We established that for rates up to 1 − H(0.25) ≈ 0.188,

there is a linear fingerprinting code whose probability of misidentification goes to zero

exponentially fast in the code length under the minimum distance decoding for any

general collusion attack.

It is worth mentioning that the fingerprinting capacity in the considered setting is

derived [3] to be 0.25. However, the decoder employed in [3] is far more complex than a

belief propagation decoder. We also provided numerical results using an explicit ARA

code with iterative decoding to validate our theory. To the best of our knowledge,

the best proposed code [32] has a rate approximately equal to 0.0092 for the similar

case of t = 2 and is decoded with polynomial complexity in the code-length whereas

the iterative decoder has linear complexity in n. It should be noted that when the

coalition size, t is larger than 2 the minimum distance decoding will fail due to the

following argument:

Let t = 3, and assume the forged copy is produced by setting

yi = (x1i ⊕ x2i ⊕ x3i) (2.16)

For all detectable positions i. For t > 3 the coalition can consider only three of the

pirates, ignore the rest and apply the strategy. We will refer to this strategy as the

zero capacity attack.

It is straightforward to see for the studied random coding ensemble, when the

pirates apply the aforementioned simple strategy the mutual information between

the forged copy and each of the pirates will be zero, and thus decoding for only one
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pirate is impossible. Therefore we will need to perform some type of joint decoding.

Joint decoding is also a favorable candidate for closing the gap between 0.188 and the

capacity 0.25. We will treat a joint decoder and the zero capacity attack in Chapter 3.
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CHAPTER 3

TREE CODES FOR DIGITAL FINGERPRINTING

In this chapter we propose the use of tree codes and sequential decoding for de-

signing low complexity fingerprinting schemes. We constrict our focus to fair and

memoryless coalition attacks both of which will be motivated and explained in the

following. The attack can then be characterized by a probability law governing the

input alphabets (which belong to the pirates) and the output alphabet (belonging to

the forged copy). It should be noted that the concept of fair attacks have also been

considered in [3], but for memoryless attacks our definition is more general than the

one proposed in [3].

Sequential decoding is a decoding algorithm for tree codes, originally proposed for

point to point channels. It can be extended to any code with a tree structure as well.

The main issue with sequential decoding is its search effort which is characterized by

the number of nodes visited by the decoder also referred to as complexity. Using a

random coding argument, we show all rates below a cut-off rate are achievable for fair

memoryless fingerprinting attacks with finite average complexity. Inspired by this re-

sult, we study the performance of random Convolutional codes and a special random

tree code for fingerprinting. Our numerical results show that for rates as high as

1/6 and vanishing misidentification error is achieved with finite average complexity.
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Using a novel non-linear construction based on concatenation of random tree and

Convolutional codes rates as high as 1/20 ≈ 0.05 are achievable when t = 3 under

the zero capacity attack.

3.1 Introduction

In Chapter 2, we studied the applications of minimum distance decoding to digital

fingerprinting. In this chapter we look at the problem of from another perspective

and study tree search decoding in designing collusion attack-resistant digital finger-

printing schemes.

Our setting is the same Boneh-Shaw’s marking assumption introduced in the pre-

vious chapter. We studied minimum distance decoding for the problem and proposed

a low complexity scheme capable of catching one pirate for a coalition size equal to 2.

A coalition attack named the zero capacity attack was identified for larger coalition

sizes for which the MD decoder fails.

A main ingredient of our work in this chapter is the concept of fair attacks. The

intuition behind the assumption of fair attack is that all pirates would want to un-

dergo the same risk of getting caught by the distributor. In order to understand the

concept of fair attacks better, consider the following non-fair strategy as an example:

In a coalition the colluders ignore one pirate and produce the unauthorized copy based

on the t − 1 remaining ones. In this case it will be impossible for the distributor to

catch the ignored pirate (since it did not have any effect on the forged copy) and the

ignored pirate will escape being traced. However, because the attack is mounted by

less number of pirates than t it will be easier for the distributer to catch one of the

guilty colluders. Then the other members of the coalition will be at a higher risk of
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being caught.

Moreover, to facilitate the mathematical analysis we assume that the attack is

also memoryless which is a common assumption in communication theory.

Our development in this chapter is based on tree codes and tree search decoding.

Tree codes constitute a set of powerful coding schemes. Convolutional codes can be

both represented by their trellis and tree structure. Considering Convolutional codes

as a special case of tree codes and its application to forward error correcting have been

vastly studied for point to point channels. Arikan in [40] and Balakirsky in [41] have

also considered the application of tree codes to the multiple access channel which is

a multi user setting.

In this chapter, we propose another explicit fingerprinting scheme based on tree

codes. We show the existence of a tree code that satisfies the following properties

when the code rate is below a cut-off rate:

• It can be decoded sequentially with finite average complexity per decoded sym-

bol.

• Achieves vanishingly small probability of error.

Sequential decoding (SD) which is a procedure for decoding codes on trees was intro-

duced by Wozencraft [42] and further extended and studied in [43–45].

Intuitively SD can be thought of as searching over the code’s tree to minimize

a cost function in which the search is guided by a metric. It was first proposed for

decoding of Convolutional codes but it can be applied to any code with tree structure.

The Viterbi decoder achieves ML performance for Convolutional codes but its com-

plexity grows exponentially in the constraint length.
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Thus, when the constraint length of the code is long, the Viterbi algorithm’s

complexity becomes prohibitive. The complexity of sequential decoding, however, is

almost independent of the code’s constraint length. Along with Belief Propagation

decoding and Viterbi decoding, sequential decoding constitute the most powerful de-

coding methods available today.

Unlike Viterbi and BP decoding the complexities of which grow linearly in the

code-length and thus when the code-length is constant their complexities will always

be constant, SD has variable complexity of decoding. That is, the complexity of SD is

a random variable depending on the channel probability distribution, the code, and

the information sequence. Studying the complexity issues of various sequential de-

coding procedures, and problems surrounding them has fueled a considerable amount

of research since it was proposed. For an additive noise Gaussian channel, this phe-

nomenon can be intuitively explained as follows:

If the channel noise is high the decoder will need to backtrack too many times to

decode an information bit. The sequential decoder succeeds in decoding a block if

the code rate is relatively low enough for the channel noise.

Characterizing the complexity is not mathematically tractable for a specific code,

but it can be analyzed for an ensemble of codes using random coding arguments.

It can be shown that the average complexity (i.e., the expectation of this random

variable, where the expectation is also taken over the ensemble) per node is bounded

if the code rate is lower than the channel’s computational complexity cut-off rate [45].

In our work the decoding is carried out by searching for a coalition which satisfies

the marking assumption sequentially on the Cartesian product of the tree code with

its replicas.
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Using a random coding argument, the decoder’s cut-off rate is characterized for

a coalition size of t = 2. Average error probability for the random ensemble is also

proved to be vanishing for rates less than the cut-off rate. Finally, using an ex-

purgation argument we establish the existence of a tree code with vanishing error

probability and finite complexity. The derived cutoff rate improves on the achievable

rate under the minimum distance decoding.

Numerical results are also provided to support our mathematical analysis. First

using random Convolutional codes we obtain vanishing error probability -which can

be caused by either complexity overflow or misidentification- at rate 1/6 when t = 2.

This corresponds to almost 30% improvement under the same attack considered in

Chapter 2.

Second, we propose a novel explicit construction using concatenation of random

tree codes and Convolutional codes and obtain vanishing probabilities of misidenti-

fication with linear complexity at 1/20 with t = 3 under the zero capacity attack .

It should be noted again that the MD decoder fails under this attack. Bidirectional

tree search decoding is also studied which provides a trade-off between the decoding

complexity and misidentification error probability.

The rest of the chapter is organized as follows. In Section 3.2 we present the

system model and mathematical notations. Section 3.3 contains our main results and

we present the numerical results in Section 3.4.

3.2 Notations and Problem Statement

The same model of a fingerprinting system under the marking assumption and

notations of Chapter 2 is applied in this chapter. As denoted before the probability

30



law V (y | x1, · · · ,xt) under which the forged copy y is created determines the fin-

gerprinting strategy.

A fingerprinting strategy V is memoryless if at all coordinates the distribution of the

forged copy depends only on the corresponding coordinates of the coalition marks

and is independent of the other coordinates.

That is, for a memoryless attack we will have:

V (y | x1, · · · ,xt) =
n∏

i=1

V (yi | x1i, · · · ,xti) (3.1)

Obviously a strategy satisfies the marking assumption if:

V (Y = 1 | X1 = 1, · · · , Xt = 1) = V (Y = 0 | X1 = 0, · · · , Xt = 0) = 1 (3.2)

The memoryless fingerprinting strategy V is said to be fair if:

Pr(Yi = X1i) = Pr(Yi = X2i) = · · · = Pr(Yi = Xti), 1 ≤ i ≤ n. (3.3)

Heuristically speaking, the fair assumption ensures some uniformity over the forged

copy with respect to the pirates.

Denote the set of all fair memoryless strategies i.e., those that satisfy (3.2 ) ,(3.3) by V̂.

We reiterate the fact that deterministic fingerprinting under the marking assumption

is not possible and we use a randomized family of codes. The probability of error

for a given coalition U , in the codebook family (E,G) which utilizes the collusion

strategy V , is defined as:

Pm(U, F,G, V ) = EK

( ∑
y∈E(U),gk(y)�=U

V (y | fK(U))
)

(3.4)

Similar to Chapter 2, we consider the maximum probability of error but the average

is taken over all possible coalitions under the memoryless and fair attacks:

Pm(E,G) :=
1(
M
t

)∑
U

max
V ∈V̂

Pm(U,E,G, V ). (3.5)
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The rest of the section is dedicated to binary tree codes.

Consider a general binary information sequence u. The first i digits of u will be

denoted by u(· · · i), i.e. u(· · · i) = [u(1),u(2), · · · ,u(i)].

Also, for r-tuples a = (a1, a2, · · · , ar),b = (b1, b2, · · · , br), · · · , c = (c1, c2, · · · , cr), we

define a× b× · · · × c as:(
(a1, b1, · · · , c1), · · · , (ar, br, · · · , cr)

)
The encoder is denoted by e and its function is to generate a binary block of length

N with respect to each letter of sequence u. The ith block will be denoted by eu(i)

and the first i blocks by eu(· · · i). The code rate will be equal to 1
N
.

A code for which eu(i) only depends on u(· · · i) will be referred to as a tree code.

We will also refer to u(· · · i) as a node and the block eu(i) which connects node

u(· · · i − 1) to u(· · · i) as a branch. Clearly a tree code can be represented by a tree

diagram using the above notions of node and branch.

For a tree code the decoding can be performed sequentially. Define the t-tuple tree

for a tree code e, as the function which assigns
(
eu1×eu2×· · ·×eut

)
to the t-tuple of

information sequences
(
u1,u2, · · · ,ut

)
. The t-tuple tree is essentially the Cartesian

product of the code with its replicas. Similar to a tree’s node and branch we will refer

to (u1(· · · i)×u2(· · · i) · · · ×ut(· · · i)) as a node and to eu1(i)× eu2(i) · · · × eut(i) as

a branch.

A node (u1,u2, · · · ,ut) at depth i is called the right node of (u′
1,u

′
2, · · · ,u′

t)

if: u1(· · · i − 1) = u′
1,u2(· · · i − 1) = u′

2, · · · ,ut(· · · i − 1) = u′
t(· · · i − 1). Also

(u1(· · · i − 1) × u2(· · · i − 1) · · · × ut(· · · i − 1)) is called the left node of (u1(· · · i) ×

u2(· · · i) · · · × ut(· · · i)).

For vectors a,b · · · ,y of the same length r, we say (a × · · · × b,y) satisfies the
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marking assumption, if for all 1 ≤ i ≤ r for which a(i) = · · · = b(i), we have:

y(i) = a(i)

We say a node in the t-tuple tree satisfies the marking assumption if (eu1(· · · i) ×

eu2(· · · i) · · · × eut(· · · i),y(· · · iN)) does.

3.3 Main Results

Having rigorously defined the basic concepts and the tree codes, we are prepared

to study the proposed decoding scheme. The idea is to search over the t-tuple tree

for a combination that satisfies the marking assumption by hypothesizing different

nodes on it. Each step of the search consists of updating a node on the t-tuple tree

that satisfies the marking assumption with the forged copy and will be referred to as

the active node. In each step we move from one node to a neighboring one. Only two

different types of moves are allowed in the tree search:

1. Forward move : for which we replace the active node with one of its right nodes

that satisfies the marking assumption. There could be more than one right node

with that property, in which case we do the replacement according to some arbitrary

ordering. If it is the first time that a node is hypothesized as the active node, we

choose the first right node. Otherwise we choose the next right node that has not

been hypothesized yet.

If we can not make any forward move i.e., all of the right nodes that satisfy the

marking assumption have already been visited, the next move will be a backward

move (explained below).

A backward move means that all the descending nodes from the active node on
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the tree contradict the marking assumption and therefore the node will be discarded

from further consideration. Also note that by this procedure every node will be the

destination of a forward move at most once. Decoding is finished when we reach the

end of the tree.

2. Backward move : for which we replace the active node with its left node. A

backward move is only made when it is not possible to make a forward move. After

making a backward move, if it is possible to make a forward move on the new active

node the next move will be a forward move otherwise the next move will again be a

backward move. If we are at the origin and the next move is a backward move we

declare failure.

The number of nodes visited on the t-tuple tree to decode for the forged fingerprint

is a random variable depending on the code, the coalition and the forged copy. Let the

correct path be the path corresponding to the fingerprints belonging to the coalition.

It is helpful to look at the tree as the correct path and the rest which are incorrect

paths originated from a node in the correct path.

DefineWn as the number of forward move on the incorrect tree originated from the

n-th node on the correct path. To study the complexity we only count the number of

forward moves made on the incorrect paths. The reason for only considering forward

moves on the incorrect paths are:

• For each backward move on a node, there is a forward move to its descendant

node from which the backward move were made. Thus, the total number of

backward moves at depth l−1 is at most equal to the number of forward moves

at depth l and if the average number of forward moves are bounded the total

number of backward moves will also be bounded.
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• Because all of the nodes on the correct path satisfy the marking assumption,

no backward move will be made on the correct path.

Thus, all the moves on the correct path are forward and each node is visited at

most once on the correct path. Therefore the number of moves on the correct

path is always bounded and to bound the average complexity it suffices to only

consider the forward moves on the incorrect paths.

The average complexity per node as is defined as:

C = lim
n→∞

1

n

∞∑
n=0

Wn (3.6)

Analyzing the distribution of the above random variable for a particular code

is intractable in general. Instead we adopt the common approach in the sequential

decoding literature and treat it for an ensemble of codes. The framework is similar

to that of [45] which was later extended to multiple access channels in [40].

Our goal is to find an upper bound on C̄, the average complexity over the coalition,

the forged copy and the ensemble and show that if the code rate is less than a threshold

it is a finite constant independent of the code length. If this property is satisfied for

the ensemble then there should exist at least one good code with finite complexity of

decoding.

To this aim, we first argue that W̄0 i.e., the average of number of incorrect forward

moves on the wrong subtree originated from the origin over the random ensemble is

finite. Next we note that since the strategy is memoryless and all codewords are

chosen independently the statistical description of W0,W1, ...,Wn, ... will be the same

and therefore C̄ will be finite.
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Theorem 3.1. Under fair and memoryless fingerprinting attacks, all rates below 0.2

are achievable under the decoder explained above, when t = 2.

Proof. The proof consists of three parts: First we establish that the average com-

plexity of tree search over the random ensemble on the 2-tuple tree is finite for all

rates less than 0.2. Next we establish the error probability is vanishing and finally

by employing an expurgation argument we show the existence of a code satisfying

both properties.

Assign a binary information sequence of length log2(M) to all users in the sys-

tem. Consider the following ensemble of tree codes: For any information sequence u,

eu(i) is a random binary sequence of length N where 0, 1 are chosen independently

and randomly with distribution B(0.5), where B(p) denotes the Bernoulli distribu-

tion with argument p. It should be noted that that for this random ensemble of tree

codes if two different information sequences are the same up to depth h and different

after that i.e., u1(· · ·h) = u2(· · ·h) and u1(h + 1) 	= u2(h + 1) their corresponding

codewords will be the same for the first h blocks and and statistically independent

beyond it.

Let k(l) be the k-th node at depth l according to the same ordering with which

the 2-tuple tree is searched. Define the binary random variable w[k(l)] as:

w[k(l)] =

⎧⎨
⎩

1 if a forward move arrives
in the k-th node of depth l

0 otherwise

As we mentioned earlier every node can be at most once the destination of one forward

move so the total number of forward moves on the incorrect tree can be upper bounded

by:

W0 ≤
∞∑
l=0

∑
k(l)

w[k(l)] (3.7)
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We are interested in the expectation of W0 over the random ensemble. Because the

expectation of the sum is equal to the sum of expectation we have:

W0 ≤
∞∑
l=0

∑
k(l)

w[k(l)] (3.8)

The k-th node of depth l in the wrong tree can be destination of a forward move only

if it satisfies the marking assumption with y(· · · lN).

There are two kinds of branches on the wrong 2-tuple tree:

• Type 0: for which none of the components are equal to either of the original

fingerprints.

• Type 1: for which one the components is equal to one of the of the original

fingerprints.

To distinguish those two we re-write (3.8) with indicator functions φ0, φ1 correspond-

ing to errors of type 0,1 respectively as:

W0 ≤
∞∑
l=0

∑
m(l)

φ0[m(l)] +
∞∑
l=0

∑
n(l)

φ1[n(l)] (3.9)

Let us study φ1[n(l)] first:

The wrong branch consists of an original fingerprint to depth l, x1(· · · lN) and a

wrong codeword z1(· · · lN) of the same length. Assume they are equal for the first

h blocks where 0 ≤ h ≤ l. As mentioned earlier, x1(· · · lN) , z1(· · · lN) will be the

same for the first h blocks and independent in the next l − h ones.

φ1[n(l)] can then be broken into:

φ1[n(l)] = φ1[· · ·hN ]× φ1[hN + 1 · · · lN ]
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Over the random ensemble φ1[· · ·hN ] is equal to the probability that (x1(· · ·hN) ×

x1(· · ·hN),y(· · ·hN)) satisfies the marking assumption.

The possibility of this event to hold is when x1(· · ·hN) = y(· · ·hN)). In Lemma 3.1

we will show that for equiprobable inputs and fair memoryless attack the following

holds:

Pr(X1 = 0, Y = 0) =
(1 + w)

4

Pr(X1 = 1, Y = 1) =
(2− w)

4
,

for some w with 0 ≤ w ≤ 1 and thus Pr(X1 = Y ) = (1+w)
4

+ (2−w)
4

= 3
4
.

Then, due to memoryless property of the attack we have:

Pr
(
x1(· · ·hN) = y(· · ·hN)

)
=
(3
4

)hN
(3.10)

For the second part, φ1[hN + 1 · · · lN ] is equal to the probability that in the

random ensemble

(
x1(hN + 1 · · · lN)× z1(hN + 1 · · · lN),y(hN + 1 · · · lN)

)

satisfies the marking assumption which as will be proved in Lemma 3.1 is equal to

(7
8
)(l−h)N .

Thus,

φ1[n(l)] = (
3

4
)(hN) × (

7

8
)(l−h)N < (

7

8
)lN (3.11)

Because at depth l, the total number of branches with a component equal to one of

the pirates is at most 2l,
∑∞

l=0

∑
n(l) φ1[n(l)] can be upper bounded by:

∞∑
l=0

2l(7/8)lN (3.12)
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which converges if 2(7/8)N < 1, that is 2R(7/8) < 1 which holds for:

R < log2(
8

7
) ≈ 0.2 (3.13)

Let us consider φ0[m(l)] now. This is the probability that two codewords z1(· · · lN),

z2(· · · lN) different from the original fingerprints and belonging to the pirates, satisfy

the marking assumption with the forged copy. If those are equal to depth h́ and

different after it, we can similarly break down φ0[m(l)] to

φ0[· · · h́N ]× φ0[h́N + 1 · · · lN ]

For all the positions i, 1 ≤ i ≤ h́N , out of two options of being 0 or 1 z1(i) can

only be equal to y(i) for the marking assumption to be satisfied. Thus, φ0[· · · h́N ]

can be upper-bounded by (1
2
)(h́N).

For positions i, h́N+1 ≤ i ≤ lN , out of the four different combinations z1(i), z2(i)

can be all the 3 options except for being simultaneously equal to y(i)⊕1 and we have:

φ0[h́N + 1 · · · lN ] ≤ (
3

4
)(l−h́)N

Thus, φ0[m(l)] ≤ (3
4
)lN .

Noting that the total number of branches of the wrong tree for which none of the

components are equal to the original fingerprints at depth l is at most 22l, we arrive

at:
∞∑
l=0

∑
m(l)

φ0[m(l)] ≤
∞∑
l=0

22l(3/4)lN (3.14)

which converges for R < 0.2.

As mentioned earlier the statistical description for all Wn’s are the same as that of

W0, therefore the average complexity of decoding per node over the random ensemble

is bounded for rates less than 0.2.
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Now let us consider the average error probability: Decoding error occurs if one of

the paths on the wrong trees reaches the end. Let the probability of the wrong tree

from node i reaches the end of tree be Pi, the average error probability can be upper

bounded by:

Pe ≤ P0 + P1 + · · ·+ Pi + · · ·

In the above proof for complexity, the probabilities of being on the wrong paths over

the random ensemble of tree codes were upper bounded by:

Pi≤̇22R(n−i)(3/4)n−i + 2R(n−i)(7/8)n−i

which goes exponentially to zero as n goes to infinity for R < 0.2. And finally

consider the following expurgation argument to complete the proof: Let L be the

number of codes in the ensemble of binary tree codes explained above. Since we

are assigning 0, 1 with the same probability of 1/2 each of the codes will have the

same equal probability of 1/L. Let us sort the codes in the descending order of error

probability. Since the probability of error is positive, none of the codes in the upper

half - denoted by family Q- can have an error probability larger than the average

error probability in the whole ensemble. Thus, the error probability for all the codes

in this family is vanishing in n. Now, we are going to prove the average complexity

over this family is also finite.

Assume the ensemble to be split in two sets with the same number of codes in

each one. Showing that the average complexity in either of the sets cannot exceed

2W will complete the proof. Let us sort the codes in the ensemble in ascending order

of complexity. Denote the family of the first half (with larger complexity) by A and

the other half by B. Obviously the average complexity of Q cannot be larger than A.

40



Now, the average complexity in A can be written as:

2

L
(WA1 +WA2 + ...+WA(L/2)) ≤

2

L
{(WA1 +WB1) + (WA2 +WB2) + ...+ (WA(L/2) +WB(L/2))} = 2W

where W is the average complexity over the ensemble and was proved to be finite.

Thus, the average complexity in the family Q is bounded by 2W which is still finite

and therefore there must be at least one code in the family with a complexity less than

2W . Because all codes in Q have vanishingly small error probabilities we established

the existence of a code with vanishing error probability that can be decoded with

finite complexity.

Lemma 3.1. For randomly chosen codewords of length m under a fair memoryless

fingerprinting attack, the average error probabilities of type 0 and 1 can be upper

bounded by (3/4)m and (7/8)m respectively.

Proof. Let y be the forged fingerprint and x1 and x2 be random codewords with length

m the coordinates of which are chosen i.i.d with distribution B(0.5) that correspond

to the pirates. The considered error of type 0 happens when two random codewords

z1 and z2 constructed in the same way as x1 and x2 but different from them satisfy

the marking assumption with y.

At each position 1 ≤ i ≤ m, for the incorrect codewords z1(i) and z2(i) can be

any of the 4 possible combinations except for being simultaneously equal to y1(i)⊕ 1

and therefor there are 3 choices. Thus, the total probability in the random ensemble

can be upper bounded by:

(
3

4
)m (3.15)
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Now let us focus on type 1 errors that are more complicated to analyze. Without

loss of generality we can assume the codeword x1 and another codeword z1 satisfy

the marking assumption with y1. We can write the probability of error averaged over

the random ensemble as:

∑
(x1,x2,z1)

Pr(x1,x2, z1) Pr(err | (x1,x2)) = (3.16)

∑
(x1,x2,z1)

Pr(x1,x2, z1)
∑
y

V m
(
y | x1,x2

)
ΦM(y,x1, z1),

where ΦM(y,x1, z1), is 1 when its arguments satisfy the marking assumption and is

0 otherwise and V m denotes m use of the fair, memoryless fingerprinting “channel”.

Noting that the codewords are chosen independently, equation (3.16) can be writ-

ten as: ∑
y

∑
x1,x2

V n(y | x1,x2) Pr(x1) Pr(x2)
∑
z1

Pr(z1)ΦM(y,x1, z1) (3.17)

In all the positions that y, and x1 are the same, z1 can be either 0 or 1. But in the

positions where y, and x1 disagree for the marking assumption to be satisfied z1(i)

has only one choice which is equal to y(i). Thus, equation (3.17) can be written as:

∑
y,x1

V n(y,x1)2
−dH(y,x1) (3.18)

Because the fingerprinting strategy is assumed to be memoryless, equation (3.17) can

be written as:
n∏

i=1

∑
yi,x1i

V (yi,x1i)2
−dH (yi,x1i). (3.19)

It is straightforward to verify that under equi-probable input alphabets the memory-

less attack is fair if:

V (Y = 0 | X1 = 0, X2 = 1) = V (Y = 0 | X1 = 1, X2 = 0)
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Let us assume V (Y = 0 | X1 = 0, X2 = 1) = w. Under equiprobable inputs with

which the random coding ensemble is constructed we will have:

V (Y = 0, X1 = 0) =

1

4

(
V (Y = 0 | X1 = 0, X2 = 0) + V (Y = 0 | X1 = 0, X2 = 1)

)
=

(1 + w)

4
.

Similarly we can calculate:

V (Y = 0, X1 = 1) =
w

4

V (Y = 1, X1 = 0) =
(1− w)

4

V (Y = 1, X1 = 1) =
(2− w)

4

Then, we arrive at:

∑
yi,x1i

V (yi,x1i)2
−dH(yi,x1i) =

1 + w

4
+

(2− w)

4
+

(1− w)

8
+

w

8
=

7

8
, (3.20)

and equation (3.18) can be written as:

(7
8

)m
(3.21)

Which completes the proof of the lemma.

3.4 Numerical results

3.4.1 The coalition size t = 2

the following numerical experiments were performed to validate our theoretical

results. For t = 2 we used a binary Convolutional code with a random encoder with

the same constraint length of 30 for the two different rates of 1/6,1/8 to perform the

simulation. The encoding matrix is composed of binary numbers picked independently

and randomly with distribution B(0.5). The collusion attack is the same explained
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Fig. 3.1: Probability of decoding failure for t = 2

in Section 2.4.1.

We declare decoding failure if either the decoded t-tuple is not the same as the

original coalition or the number of visited nodes exceeds a threshold. The latter

event will be referred to as complexity overflow. It should be noted that to make a

fair comparison for different code lengths, the threshold is scaled such that the ratio

of threshold over the length of information sequence is kept constant. The results are

depicted in Figs 3.1 and 3.2.
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Fig. 3.2: Average decoding complexity per node for t = 2

3.4.2 The zero capacity attack with coalition size t = 3

The proof presented for the main theorem does not extend to a coalition size

more than 2. However, we tried the proposed decoder under the zero capacity. This

heuristic approach only relies on numerical results.

Consider three fingerprints x1,x2,x3 and the attack where the forged copy y is

produced by setting

y = x1 ⊕ x2 ⊕ x3.

It is straightforward to verify that the zero capacity attack is fair, memoryless and

satisfies the marking assumption. As it was explained in Chapter 2, the minimum

distance decoder will fail for this type of coalition attack. In addition, for a linear

code, the forged copy y will be in the codebook and for any fingerprint xi and the
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Fig. 3.3: Error probability under zero capacity attack, t = 3

triplet composed of (x1,xi,y⊕ x1 ⊕ xi) all of which in the codebook will satisfy the

marking assumption with y and it is not possible to user linear codes.

To overcome this problem, we devised a construction of non linear tree codes

using the concatenation of an inner random Convolutional code with a long constraint

length with an outer binary random tree code (which is non-linear). The encoding

for the random tree code is performed by a look up table the constraint length of

which in our experiment is 17. The results in terms of average complexity per node

and decoding failure probability for rates 1/20, 1/28 is depicted in Figs. 3.3, 3.4.

Bidirectional search: As it can be observed from Fig. 3.3 the proposed scheme

suffers from an error floor. To reduce the error floor of our proposed scheme, we

adopt bidirectional search i.e., the tree is searched from both its end and beginning.
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Fig. 3.4: Average decoding complexity per node under zero capacity attack, t = 3

Once we reach the other end the decoding is terminated. For example if decoding

starts from the end of tree, we stop once we reach its beginning.

Most of the complexity overflows in our experiment are due to the following catas-

trophic pattern:

Let us denote the information sequences by u1,u2,u3 if two of those vectors (without

loss of generality u1,u2 ) agree in the first p bits the corresponding codewords will

also agree in the first p blocks i.e., the first pN bits.

In that case it is straightforward to verify that all the nodes composed of an ar-

bitrary binary vector of length pN and the codewords of u1(...p),u2(...p) will satisfy

the marking assumption. Even for a small p this event will be catastrophic as the

decoder will have to visit 2p i.e., an exponential number in p of nodes before finally
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finding the correct path.

Using the bidirectional search the probability of complexity overflow due to this

catastrophic bit pattern will be almost squared compared with the forward search

alone.
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CHAPTER 4

AN ACHIEVABLE RATE REGION FOR X CHANNEL

This chapter is the first part in the second direction of the thesis where funda-

mental limits of a multi-user networks are studied. The considered channel model in

this chapter is the discrete memoryless X channel, the most general 2 by 2 channel

model in which for the two transmitters and two receivers every transmitter has a

message for every receiver. An achievable scheme based on message splitting and

binning codebooks is proposed. The achievable rate region under joint decoding is

derived and it is established that the region contains the best known rate region for

the special cases of interference channel, broadcast channel and multiple-access chan-

nel. To the best of our knowledge, the proposed scheme is the best inner bound on

the capacity region of the X channel available in the literature.

4.1 Introduction

The X channel refers to a communication scenario in which each transmitter has

a message for every receiver. This model involves most of the multi-user channels

studied in information theory; such as multiple access channel, broadcast channel

and interference channel.
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The degrees of freedom region for the MIMO X channel is studied in [10, 21, 46].

It is established that for the MIMO X channel with M > 1 number of antennas at all

nodes and with non-degenerate channel matrices, the degrees of freedom is equal to

4
3
M . The MIMO X channel is the first known example that has non-integer degrees

of freedom and has received much attention lately. In this chapter, we propose a

signaling scheme for the X channel using message splitting and binning. The proposed

scheme uses the message splitting technique to split messages in two parts (common

and private) and utilizes the common messages in the construction of the cloud centers

( [9, 11, 47]), which are used to design superposition codes. A binning technique is

used for the private messages at the transmitters to allow coding in the sense of [16]

(see also [48]). In the special case of broadcast channel, our proposed rate region

reduces to the best known achievable region for the two user broadcast channel [11],

in the case of interference channel it reduces to that of [12] (a simpler description of

this region is recently given in [49], see also [50]) and in the case of multiple access

channel it achieves the capacity region (see, e.g,. [8]).

The proposed region outperforms that of [10], which to the best of our knowledge

was the best proposed achievable region for the X channel before our contribution.

For example, in the special case of degraded broadcast channel the proposed scheme

is capacity achieving whereas [10] is not. In addition, in the case of interference

channel [10] reduces to the scheme of considering interference as noise, whereas the

proposed region allows for interference cancellation and achieves the Han and Koba-

hayashi region ( [12]).
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The remaining sections of this chapter are organized as follows. In Section 4.2,

we provide the system model. Section 4.3 is devoted to the main result of the paper

and some special cases are discussed in Section 4.4.

4.2 System Model

We consider a two-user discrete memoryless X channel (XC), composed of two

transmitter-receiver pairs (see Fig. 4.1), and is denoted by

(X1 × X2, p(y1, y2|x1, x2),Y1 ×Y2),

for some finite sets X1,X2,Y1,Y2. Here the symbols (x1, x2) ∈ X1×X2 are the channel

inputs and the symbols (y1, y2) ∈ Y1 × Y2 are the channel outputs observed at the

decoder 1 and decoder 2, respectively. The channel is memoryless and time-invariant:

p(y1(t), y2(t)|xt
1,x

t
2,y

t−1
1 ,yt−1

2 ) = p(y1(t), y2(t)|x1(t), x2(t)).

We assume that each transmitter k ∈ {1, 2} has messages Wk1 and Wk2 which

is to be transmitted to receiver 1 and receiver 2, respectively, in n channel uses. In

this setting, we define (n,M11,M12,M21,M22, P
(n)
e,1 , P

(n)
e,2 ) codebook with the following

components:

• The message sets Wk1 = {1, ...,Mk1} and Wk2 = {1, ...,Mk2} for transmitter

k = 1, 2.

• An encoding function fk(.) at transmitter k which maps the messages to the

transmitted symbols, fk : (wk1, wk2) → Xk for each (wk1, wk2) ∈ Wk1 ×Wk2 for

k = 1, 2.
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• Decoding function φk(.) at receiver k which maps the received symbols to an

estimate of the message: φk(Yk) = (ŵ1k, ŵ2k) for k = 1, 2.

• Reliability of the transmission for receiver k is measured by P
(n)
e,k , where

lP
(n)
e,k =

1

M1kM2k

∑
(w1k ,w2k)∈W1k×W2k

Pr
{
φk(Yk) 	= (w1k, w2k)

|(w11, w12, w21, w22) is sent
}
,

for k = 1, 2.

The rate tuple (R11, R12, R21, R22) is said to be achievable for the X channel, if, for

any given ε > 0, there exists an (n,M11,M12,M21,M22, P
(n)
e,1 , P

(n)
e,2 ) codebook such

that,

1

n
log(M11) = R11,

1

n
log(M12) = R12,

1

n
log(M21) = R21,

1

n
log(M22) = R22,

max{P (n)
e,1 , P

(n)
e,2 } ≤ ε,

for sufficiently large n. The capacity region is the closure of the set of all achievable

rate pairs (R1, R2) and is denoted by CXC.

4.3 Main Result

The proposed scheme is based on message splitting and binning. First we split

the message of transmitter i to receiver j, Wij , into the following: 1) A common

message Wijc, and 2) A private message Wijp. The receivers are required to decode

all common messages of the transmitters and the intended private messages.
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Fig. 4.1: The two user discrete memoryless X channel.

The encoding procedure is explained in the following: The common messages are

used for superposition coding, and the codeword serves as “cloud centers” [9] (see

also [8, 47]) for the rest of random variables, however, a general binning codebook

is considered (see, e.g., [11]). The common message allows for partial interference

cancellation in the sense of [12] as we require joint decoding at the transmitters.

Finally, we use the binning technique of [48] to jointly encode the private messages.

This allows to design the private messages, part of which can be considered as non-

causally known interference in the sense of [16]. The general inner bound to the

capacity region of an “X” channel is given below.

Theorem 4.1. Let P be the set of probability distributions p(.) that factor as

lp(q, v1c, v11p, v12p, v2c, v21p, v22p, x1, x2)

= p(q)p(v1c, v11p, v12p|q)p(v2c, v21p, v22p|q)

p(x1|v1c, v11p, v12p, q)p(x2|v2c, v21p, v22p, q). (4.1)

For any p ∈ P, RI(p) is the set of non-negative rate tuples (R11c, R11p, R12c, R12p,

R21c, R21p, R22c, R22p) satisfying
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R1c +R11p∗ < I(V1c, V11p; Y1|V2c, V21p, Q)

R11p∗ < I(V11p; Y1|V1c, V2c, V21p, Q)

R21p∗ < I(V21p; Y1|V1c, V2c, V11p, Q)

R2c +R21p∗ < I(V2c, V21p; Y1|V1c, V11p, Q)

R1c +R11p∗ +R21p∗ < I(V1c, V11p, V21p; Y1|V2c, Q)

R11p∗ +R21p∗ < I(V11p, V21p; Y1|V1c, V2c, Q)

R1c +R2c +R11p∗ +R21p∗ < I(V1c, V2c, V11p, V21p; Y1|Q)

R2c +R11p∗ +R21p∗ < I(V2c, V11p, V21p; Y1|V1c, Q)

R11p +R12p < R11p∗ +R12p∗−I(V11p;V12p|V1c, Q)

R21p +R22p < R21p∗ +R22p∗−I(V21p;V22p|V2c, Q)

R1c = R11c +R12c

R2c = R21c +R22c,

and

R11p ≤ R11p∗ , R12p ≤ R12p∗ ,

R21p ≤ R21p∗ , R22p ≤ R22p∗ . (4.2)

Similarly we define RII(p), which is the set of non-negative tuples (R11c, R11p,

R12c, R12p, R21c, R21p, R22c, R22p) satisfying equations (4.2) with the indices swapped

everywhere. For a set S of tuples (R11c, R11p, R12c, R12p, R21c, R21p, R22c, R22p), we

define
∏
(S) as the set of tuples (R11, R12, R21, R22) such that R11 = R11c + R11p,

R12 = R12c +R12p, R21 = R21c +R21p, and R22 = R22c +R22p.
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p(xk|vkc, vk1p, vk2p)

wk1
wk1s

wk1c

wk1p

wk2

wk2p

wk2c

wk2s

xk

uk(wk1s, wk2s)

(vk1p(wk1p),vk2p(wk2p))

vkc(wk1c, wk2c)

Fig. 4.2: The proposed encoder structure for transmitter k.

The set

R =
∏(⋃

p∈P
RI(p) ∩RII(p)

)
(4.3)

is an achievable region for the discrete memoryless X channel.

Proof. First we fix p(q), p(v1c, v11p, v12p|q), p(v2c, v21p, v22p|q), p(x1|v1c, v11p, v12p, q),

p(x2|v2c, v21p, v22p, q), and the channel is given by p(y1, y2|x1, x2).

We then generate a random typical sequence q, where p(q) =
n∏

i=1

p(q(i)) and each

entry is chosen i.i.d. according to p(q). Every node knows the sequence qn. Below we

describe the codebook generation and encoding for transmitter 1. We follow a similar

procedure at transmitter 2. Please refer to Fig. 2 for a depiction of the encoder

structure.

Codebook Generation:

Each codebook in the ensemble is constructed as follows. We first split the message

W11, which is to be decoded at the receiver 1, as W11 = {W11c,W11p}, where W11c

and W11p are the common and the private messages of transmitter 1 destined to

receiver 1, and split message W12, which is to be decoded at the receiver 2, as W12 =

{W12c,W12p}, where W12c and W12p are the common and the private messages of
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transmitter 1 intended for receiver 2.

W11c = [1, 2, · · · , 2nR11c ]

W11p = [1, 2, · · · , 2nR11p ]

W12c = [1, 2, · · · , 2nR12c ]

W12p = [1, 2, · · · , 2nR12p ]

Similarly we have W21c, W21p, W22c, and W22p for transmitter 2. We generate 2nR1c

i.i.d. sequences v1c(w11c, w12c), where

R1c = R11c +R12c, (4.4)

according to the distribution
n∏

t=1

p(v1c(t)|q(t)), where the tuple (w11c, w12c) gives the

codeword index denoted by w1c ∈ {1, · · · , 2n(R11c+R12c)}. In the sequel, we also denote

these codewords with v1c(w1c). For each v1(w1c), we generate 2nR11p∗ i.i.d. sequences

v11p(w1c, w11p, w11p′) according to the distribution
n∏

t=1

p(v11p(t)|v1c(t), q(t)) and ran-

domly throw them into 2nR11p bins, where we choose

R11p ≤ R11p∗ (4.5)

Here, w11p ∈ {1, 2, · · · , 2nR11p} denotes the bin index and w11p′ denotes the codeword

index within a particular bin. Combining these two we also enumerate the codewords

with v11p(w1c, w
∗
11p), where w∗

11p ∈ {1, 2, · · · , 2nR11p∗}. Similarly, we generate 2nR12p∗
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i.i.d. sequences v12p(w1c, w12p, w12p′) according to the distribution
n∏

t=1

p(v12p(t)|v1c(t), q(t)),

and randomly throw them into 2nR12p bins, where we choose

R12p ≤ R12p∗ (4.6)

Here, w12p ∈ {1, 2, · · · , 2nR12p} denotes the bin index and w12p′ denotes the codeword

index of a particular bin. Combining these two we also enumerate the codewords with

v12p(w1c, w
∗
12p), where w∗

12p ∈ {1, 2, · · · , 2nR12p∗}. Second transmitter uses a similar

strategy to generate the following sequences: v2c(w21c, w22c), v21p(w2c, w21p, w21p′),

and v22p(w2c, w22p, w22p′), where we require

R21p ≤ R21p∗

R22p ≤ R22p∗ (4.7)

R2c = R21c +R22c.

Encoding: To transmit message tuple (w11, w12), transmitter 1 first splits them

into (w11c, w11p, w12c, w12p). Then, it looks for codewords v11p in the bin w11p and

codewords v12p in the bin w12p, respectively, satisfying

(q,v1c(w1c),v11p(w1c, w11p, j),v12p(w1c, w12p, k))

∈ A(n)
ε (Q, V1c, V11p, V12p). (4.8)

Here indices j and k denote codeword indices within the given bins. If there is no such

pair of codewords, then an encoding error will be declared. If there is more than one

pair, then one is randomly chosen. After finding such a tuple, the encoder generates

the channel input x1 according to p(x1) =
n∏

t=1

p(x1(t)|v1c(t), v11p(t), v12p(t), q(t)).

Similarly, transmitter 2 generates its channel input x2.
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Decoding:

In the following we describe the decoding strategy for receiver 1. Similar steps are

taken at receiver 2. Receiver 1 tries to obtain the estimates (ŵ11c, ŵ11p, ŵ21c, ŵ21p) to

construct the message estimates (ŵ11, ŵ21). Accordingly, it looks for tuples (w1c, w11p∗, w2c, w21p∗)

satisfying (q,v1c(w1c),v2c(w2c),v11p(w1c, w11p∗),v21p(w2c, w21p∗),y1)

l ∈ A(n)
ε (Q, V1c, V2c, V11p, V21p, Y1) (4.9)

If such tuple exists with unique indices, it will first obtain w11c from w1c, w21c from

w2c, w11p from w11p∗ , and w21p from w21p∗ , then it will set ŵ11c = w11c, ŵ21c = w21c,

ŵ11p = w11p and ŵ21p = w21p; otherwise it will declare an error. After estimating

(ŵ11c, ŵ21c, ŵ11p, ŵ21p) the receiver will obtain the corresponding message estimates

ŵ11 and ŵ21.

Error Probability Analysis:

We first focus on error probability P
(n)
e,1 . Without loss of generality and by the

symmetrical property of the ensemble it suffices to consider w11 = w12 = w21 =

w22 = 1 is transmitted. We also assume that, if there is no encoding error, the first

codewords in the bins are chosen at the encoders (for example, j = k = 1 in (4.8).
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We consider the following events.

lE1 : There is no pair (v11p,v12p) such that

(q,v1c(1),v11p(1, 1, k1),v12p(1, 1, j1))

∈ A(n)
ε (Q, V1c, V11p, V12p)

E2 : There is no pair (v21p,v22p) such that

(q,v2c(1),v21p(1, 1, j2),v22p(1, 1, k2))

∈ A(n)
ε (Q, V2c, V21p, V22p)

E3 : (q,v1c(1),v2c(1),v11p(1, 1, 1),v21p(1, 1, 1),y1)

does not satisfy (4.9)

E4 : (q,v1c(i1),v2c(i2),v11p(i1, k
∗
1),v21p(i2, k

∗
2),y1)

satisfies (4.9) with (i1, i2, k
∗
1, k

∗
2) 	= (1, 1, 1, 1)

From the analysis of encoding error probability in [47,48], Pr{E1} ≤ ε as n → ∞,

if

R11p +R12p < R11p∗ +R12p∗ − I(V11p;V12p|V1c, Q). (4.10)

Similarly Pr{E2} ≤ ε as n → ∞, if

R21p +R22p < R21p∗ +R22p∗ − I(V21p;V22p|V2c, Q). (4.11)

Asymptotic equipartition property (see, e.g., [8]) assures that Pr{E3} ≤ ε for

sufficiently large n.

It remains to show the conditions for which Pr{E4|Ec
3} ≤ ε for sufficiently large

n, as P
(n)
e,1 ≤ Pr{E1}+Pr{E2}+Pr{E3}+Pr{E4|Ec

3}. We first define the following
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event

E4(i) =
{
(q,v1c(i1),v2c(i2),v11p(i1, k

∗
1),v21p(i2, k

∗
2),y1)

∈ A(n)
ε (Q, V1c, V2c, V11p, V21p, Y1)

∣∣Ec
3

}
where the index vector is given by i = {i1, i2, k∗

1, k
∗
2}. Then, using the Boole’s in-

equality (a.k.a, the union bound), we write

Pr{E4|Ec
3} = Pr

⎧⎨
⎩ ⋃

(i1,i2,k∗1 ,k
∗
2)�=(1,1,1,1)

E4(i)

⎫⎬
⎭

≤
∑

i1 �=1,i2=1

k∗
1
=1,k∗

2
=1

Pr{E4(i)}

+
∑

i1 �=1,i2 �=1

k∗1=1,k∗2=1

Pr{E4(i)} +
∑

i1=1,i2 �=1

k∗1=1,k∗2=1

Pr{E4(i)}

+
∑

i1 �=1,i2=1

k∗
1
�=1,k∗

2
=1

Pr{E4(i)} +
∑

i1=1,i2=1

k∗1 �=1,k∗2=1

Pr{E4(i)}

+
∑

i1 �=1,i2 �=1

k∗
1
�=1,k∗

2
=1

Pr{E4(i)} +
∑

i1=1,i2 �=1

k∗
1
�=1,k∗

2
=1

Pr{E4(i)}

+
∑

i1 �=1,i2=1

k∗1=1,k∗2 �=1

Pr{E4(i)} +
∑

i1=1,i2=1

k∗
1
=1,k∗

2
�=1

Pr{E4(i)}

+
∑

i1 �=1,i2 �=1

k∗
1
=1,k∗

2
�=1

Pr{E4(i)} +
∑

i1=1,i2 �=1

k∗
1
=1,k∗

2
�=1

Pr{E4(i)}

+
∑

i1 �=1,i2=1

k∗1 �=1,k∗2 �=1

Pr{E4(i)} +
∑

i1=1,i2=1

k∗
1
�=1,k∗

2
�=1

Pr{E4(i)}

+
∑

i1 �=1,i2 �=1

k∗
1
�=1,k∗

2
�=1

Pr{E4(i)} +
∑

i1=1,i2 �=1

k∗
1
�=1,k∗

2
�=1

Pr{E4(i)}

From joint typicality results (see, e.g., [8]), we can show that Pr{E4|Ec
3} vanishes

for sufficiently large n, once the rates satisfy the following equations.
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R1c < I(V1c, V11p; Y1|V2c, V21p, Q) (4.12)

R1c +R2c < I(V1c, V11p, V2c, V21p; Y1|Q) (4.13)

R2c < I(V2c, V21p; Y1|V1c, V11p, Q) (4.14)

R1c +R11p∗ < I(V1c, V11p; Y1|V2c, V21p, Q) (4.15)

R11p∗ < I(V11p; Y1|V1c, V2c, V21p, Q) (4.16)

R1c +R11p∗+R2c < I(V1c, V11p, V2c, V21p; Y1|Q) (4.17)

R11p∗ +R2c < I(V11p, V2c, V21p; Y1|V1c, Q) (4.18)

R1c +R21p∗ < I(V1c, V11p, V21p; Y1|V2c, Q) (4.19)

R21p∗ < I(V21p; Y1|V1c, V2c, V21p, Q) (4.20)

R1c +R2c+R21p∗ < I(V1c, V11p, V2c, V21p; Y1|Q) (4.21)

R2c +R21p∗ < I(V2c, V21p; Y1|V1c, V11p, Q) (4.22)

R1c +R11p∗+R21p∗ < I(V1c, V11p, V21p; Y1|V2c, Q) (4.23)

R11p∗ +R21p∗ < I(V11p, V21p; Y1|V1c, V2c, Q) (4.24)

R1c +R2c+R11p∗ +R21p∗ < I(V1c, V2c, V11p, V21p; Y1|Q) (4.25)

R2c +R11p∗+R21p∗ < I(V2c, V11p, V21p; Y1|V1c, Q) (4.26)

Noting that (4.12), (4.13), (4.14), (4.17), (4.18), (4.19), and (4.21) are redundant,

we obtain that P
(n)
e,1 vanishes as n increases if (4.4), (4.5), (4.6), (4.7), (4.10), (4.11),

(4.15), (4.16), (4.20), (4.22), (4.23), (4.24), (4.25), (4.26) are satisfied, which gives the

rate region defined by RI(p).
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Similarly P
(n)
e,2 vanishes for sufficiently large n, if the rates belong to the region

RII(p). Finally, it can be readily observed that, for a given p, any rate tuple inside the

region RI(p)
⋂
RII(p) is achievable, which concludes the proof of the theorem.

4.4 Special Cases

In the following subsections we discuss the special cases of the rate region given

above.

4.4.1 The Broadcast Channel

For a given X channel specified by p(y1, y2|x1, x2) = p(y1, y2|x1), if the second

transmitter is silenced (that is x2 is removed) the setting is reduced to a broadcast

channel with p(y1, y2|x1). For this special case, the region RI(p) ∩ RII(p) reduces to

the following

R1c +R11p∗ < I(V1c, V11p; Y1|Q) (4.27)

R11p∗ < I(V11p; Y1|V1c, Q) (4.28)

R1c +R12p∗ < I(V1c, V12p; Y2|Q) (4.29)

R12p∗ < I(V12p; Y2|V1c, Q) (4.30)

R11p +R12p < R11p∗ +R12p∗−I(V11p;V12p|V1c, Q) (4.31)

R1c = R11c +R12c (4.32)

R11p ≤ R11p∗ (4.33)

R12p ≤ R12p∗ (4.34)

for a given p ∈ P, where we set V2c, V21p, V22p to be deterministic (as channel input of

transmitter 2 does not affect the received signals, this does not reduce the achievable

62



rate region). We further set Q to be deterministic. Let R11 = R11c + R11p, R12 =

R12c +R12p, by applying the Fourier-Motzkin elimination we obtain the following.

Any non-negative rate pair (R11, R12) satisfying

R11 < I(V1c, V11p; Y1) (4.35)

R12 < I(V1c, V12p; Y2) (4.36)

R11 +R12 < min{I(V1c; Y1), I(V1c; Y2)}+I(V11p; Y1|V1c) + I(V12p; Y2|V2c)

− I(V11p, V12p|V1c) (4.37)

for some p(v1c, v11p, v12p)p(x1|v1c, v11p, v12p) is achievable for the broadcast channel

given by p(y1, y2|x1). This is the Marton’s rate region [11] which is the best known

inner bound to the capacity region of the two-user broadcast channels.

4.4.2 The Interference Channel

For the interference channel, the cross messages do not exist and hence we set

random variables V12p, V21p to be deterministic. We also choose the common and

private auxiliary random variables in the region RI(p) ∩ RII(p), to be independent.

Next, we set R11 = R11c+R11p, R22 = R22c+R22p, R12c = R12p = R21c = R21p = 0, and

apply Fourier-Motzkin elimination to the obtained region and choose p(x1|v1c, v11p, q),

p(x2|v2c, v22p, q) to be deterministic functions. We obtain the following region.
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Any non-negative rate pair (R11, R22) satisfying

R11 < I(X1; Y1|V2c, Q)

R11 < I(X1; Y1|V1c, V2c, Q) + I(V1c; Y2|X2, Q)

R22 < I(X2; Y2|V1c, Q)

R22 < I(X2; Y2|V1c, V2c, Q) + I(V2c; Y1|X1, Q)

R11 +R22 < I(X2; Y2|V1c, V2c, Q) + I(X1, V2c; Y1|Q)

R11 +R22 < I(X1; Y1|V1c, V2c, Q) + I(X2, V1c; Y2|Q)

R11 +R22 < I(X1, V2c; Y1|V1c, Q)+I(X2, V1c; Y2|V2c, Q)

2R11 +R22 < I(X1; Y1|V1c, V2c, Q) + I(X1, V2c; Y1|Q)+I(X2, V1c; Y2|V2c, Q)

R11 + 2R22 < I(X2; Y2|V1c, V2c, Q) + I(X2, V1c; Y2|Q)+I(X1, V2c; Y1|V1c, Q)

for some p(q)p(v1c|q)p(v11p|q)p(x1|v1c, v11p, q)p(v2c|q) p(v22p|q)p(x2|v2c, v22p, q), is achiev-

able for the interference channel given by p(y1, y2|x1, x2).

This region is the region given in Lemma 1 of [50], which is shown to be equal

to the compact form of Han and Kobahayashi rate region (see also [49]) by utilizing

Lemma 2 of [50].

It should be noted that the scheme of [50] does not consider the event of not

correctly decoding unintended common messages at the receivers as an error event.

However, in deriving our rate region for the X channel, we consider that event as a

decoding error.

Interestingly, applying the Fourier-Motzkin elimination to the proposed rate re-

gion, for the special case of interference channel, results in the compact form of the
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Han and Kobayashi rate region. Therefore, the exclusion of the aforementioned error

event does not affect the result obtained in [50].
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CHAPTER 5

DOWNLINK COMMUNICATION IN A COGNITIVE
CELLULAR NETWORK

Cognitive broadcast channel, where two multi-antenna transmitters communicate

with their respective receivers, is considered. One of the transmitters is said to be

cognitive (secondary) as it is assumed to know the messages of the other (primary)

transmitter prior to their transmission. The goal is to design cooperative schemes

between the two transmitters, which impose only minimal changes to the primary

broadcast channel (compared to the non-cognitive scenario). Towards this end, an

achievable scheme is provided under which both intra cell and inter cell interferences

at the primary receivers are aligned. The interference at the secondary receivers,

on the other hand, is canceled by dirty paper coding. The corresponding achievable

region and an outer bound region are provided in terms of the degrees of freedom

(DoF) metric. Special cases shows the optimality of the proposed scheme in the high

SNR regime for those cases. We also illustrate the advantage of cognitive cooperation,

over the non-cognitive system by proving that the achieved sum DoF is strictly larger

than the non-cognitive case.
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5.1 Introduction

A significant factor in limiting the performance of cellular systems is the interfer-

ence from other cells also known as inter cell interference. Interference from other

users also degrades the achievable throughput in aK-user MIMO interference channel.

An important technique proposed to mitigate these effects is interference alignment

(IA) [20], [10]. Roughly speaking, IA aligns all the unwanted (interfering) signals

to certain dimensions allowing the intended messages to be communicated over the

remaining interference free ones.

To achieve the gains promised by IA, the users need to have perfect and global

knowledge of each others channel state information (CSI). That is, all the transmit-

ters need to know all the channel realizations before forming their signals. Because

the CSI needs to be obtained through training sequences and feedback, this intro-

duces a serious overhead to the system. In [51], [52] the authors have considered the

DoF region of MIMO networks in the absence of CSI at the transmitters. They have

established the negative result that in most cases the degrees of freedom region can

be achieved by simple time sharing which means nothing can be gained beyond the

simple time division access.

In this chapter, we consider the problem of interference management for a cellular

system in the downlink when the CSI is not fully available at all of the transmitters.

Specifically, the secondary BS (to be defined below) is assumed to have full channel

CSI, while the primary BS is assumed to only have CSI knowledge of its own cell as

well the inter-cell CSI.

One of the base stations is also assumed to be cognitive. The cognitive message
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sharing means that the messages of one cell’s (henceforth the non-cognitive or pri-

mary cell) are made available non-causally to the other one (henceforth the cognitive

or secondary cell). In developing achievable strategies for a cognitive system, we want

to make sure that few changes are made to the communication scheme of the primary

cell. However, the cognitive cell can adapt its signaling strategy to handle different

cases.

One factor that makes it challenging to apply the idea of IA in a cellular system is

the fact that if we align the interference signals on one of the users they may not be

aligned at the rest of the users in the same cell. In a cellular system, each mobile user

experiences two kinds of interference: 1) The interference caused by the other cell or

the inter-cell interference, 2) The interference caused by the message intended for the

other users within its own cell or the intra-cell interference. Given this interference

setting we can align the intra-cell interference in the primary cell for each user to

the linear space spanned by the inter-cell interference caused by the secondary BS.

By doing so, they can be canceled at the same time. As the cognitive BS has full

CSI knowledge and knows the the primary messages, the inter-cell interference from

the primary BS to cognitive users are canceled using dirty paper coding (DPC) [17].

Finally, using the techniques proposed in [53] and [25], we derive an outer bound on

the sum DoF region and show that our proposed schemes under some special cases

to be optimal.

The rest of the chapter is organized as follows: Section 5.2 introduces the system

model and problem formulation. In Section 5.3, we explain our proposed signaling

scheme in detail. The outer bounds and special cases are studied in Section 5.4.
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5.2 System model

A cellular system with one primary and one secondary base stations (denoted by

P and S respectively) is considered. The primary and secondary base stations serve

KP (denoted by P1,P2, · · · ,PKP
) and KS (denoted by S1,S2, · · · ,SKS

) mobile users

in their cells respectively.

Let us denote the messages intended for primary users by WP1 ,WP2 , · · · ,WPKP
,

and for the secondary users by WS1 ,WS2, · · · ,WSKS
. The total power available at the

base stations is denoted by ρ. Rates of RPi
(ρ), RSj

(ρ) are said to be achievable with

power ρ, if there exists a coding scheme to reliably communicate messages of sizes

|WPi(ρ)| = 2nRPi
(ρ) and |WSj

(ρ)| = 2nRSj
(ρ) to mobile users Pi and Sj, where n is the

number of channel uses. The set of all achievable rate tuples at power ρ is denoted

by C(ρ). Following the notation introduced in [21], the sum DoF in the secondary

and primary cells dS and dP are respectively defined by:

dS = lim sup
ρ→∞

[
sup

R(ρ)∈C(ρ)

[ KS∑
j=1

RSj
(ρ)
] 1

log(ρ)

]
(5.1)

and

dP = lim sup
ρ→∞

[
sup

R(ρ)∈C(ρ)

[ KP∑
i=1

RPi
(ρ)
] 1

log(ρ)

]
(5.2)

The set of all achievable pairs of (dS, dP ) is denoted by Dsum, and is referred to as

sum DoF region. We also refer to dS + dP as the total sum DoF.

Throughout the chapter, it is assumed that the secondary base station non-

causally knows the messages intended for the primary users i.e., at S, the messages

{WPi
(ρ)}KP

i=1 are known prior to transmission. The users are also assumed to be

equipped with multiple antennas. Let mP and mS denote the number of antennas
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at the primary and secondary base stations and nP and nS be the number of an-

tennas at the primary and secondary users. The explained model is referred to as a

{mP , mS, nP , nS, KP , KS} cognitive system.

In general, using time and/or frequency expansions (by multiple fading blocks

and/or multiple OFDM subcarriers) we can generate L extra dimensions on each

user. In that case, the number of available dimensions on each node are equal to:

MP = L×mP , MS = L×mS, NP = L× nP and NS = L× nS respectively.

The received signal at user Pi is equal to:

yPi
= HPi

xP +H′
Pi
xS + zPi

, (5.3)

where H’s represents the extended MIMO channel coefficients to the users and H′’s

are the extended MIMO channel from the cognitive base station. For both, H and

H′ the subscript denotes the receiver.

For example, HPi
which is a matrix of size NP ×MP and H′

Pi
which is NP ×MS

are the channels from the primary and secondary base stations to the i-th primary

user respectively. (xP )MP×1 and (xS)MS×1 denote the signals transmitted from the

primary and secondary base stations and z’s are the zero mean unit variance i.i.d

additive white Gaussian noise.

Similarly, the signal received at the j-th secondary mobile user will be:

ySj
= HSj

xS +H′
Sj
xP + zSj

(5.4)

In this chapter, it is assumed that the channel coefficients are drawn independently

from a continuous distribution and thus the channel matrices are full rank almost

surely. Also, we assume the cognitive base station to have full CSI knowledge. The
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primary base station is assumed to know its own cell’s CSI as well as the inter cell

CSI. That is, all HPi
’s and H′

Pi
’s are known at the primary BS.

5.3 Main Result

In this section, we present an achievable region for the sum DoF in the primary

and secondary cells under the explained system model.

Theorem 5.1. For a {mP , mS, nP , nS, KP , KS} cognitive system, denote the set of

all pairs (dS, dP ) for which{
0 ≤ dS ≤ min

{
KSnS, mS

}
0 ≤ dP ≤ min

{
KP (nP − dS)

+, (mP +mS − dS)
}
,

by Din
sum. Then, Din

sum ⊆ Dsum

Proof. First let us assume dS to be a rational number and denote its irreducible form

by:

dS =
S

L

L ∈ Z+ extra dimensions in time or frequency (through multiple fading blocks or

OFDM subcarriers) are generated. The achievable sum DoF in the secondary cell

cannot exceed mS, and we always have: S ≤ MS.

Because the cognitive BS has full CSI knowledge including the CSI from itself to

the primary users and also knows all the primary messages it can lend (MS − S)+

of its available dimensions which are not used for data transmission of the secondary

users to the primary BS. More specifically, for each primary user Pi we ”append”

the channels from the first (MS − S) dimensions of the cognitive BS (corresponding

to the first (MS − S) columns of H′
Pi
) to HPi

to form a new matrix H̄Pi
of size

NP × (MP +MS − S). Those columns are deleted from H′
Pi

and the NP × S matrix
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H̄′Pi
is formed.

Similarly, by allocating first (MS − S) dimensions of the secondary BS to data

transmission of the primary users, the data transmitted from those can be thought

of as inter-cell interference on each secondary user. In other words, we can form the

matrices H̄Sj
and H̄′Sj

of sizes NS×S and NS×(MP +MS−S) capturing the matrices

which carry intra-cell and inter-cell data to user Sj.

Let us specify the transmission scheme to the primary users first. For each

(H̄′
Pi
)[NP×S], the primary base station calculates r linearly independent normalized

basis vectors of its null space denoted by u1
Pi
, ...,ur

Pi
where r = (NP − S)+. The goal

of P, is to find zero forcing beam forming vectors such that on each primary user

the intra-cell interference is aligned to the same linear space spanned by the inter-cell

interference.

To this end, the following matrix is formed:

(ŪP)[
KP (NP−S)+×

(
MP+MS−S

)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(u1
P1
)T H̄P1

(u2
P1
)T H̄P1

· · ·
(ur

P1
)T H̄P1

(u1
P2
)T H̄P2

(u2
P2
)T H̄P2

· · ·
(ur

P2
)T H̄P2

· · ·
(u1

PKP
)T H̄PKP

(u2
PKP

)T H̄PKP

· · ·
(ur

PKP
)T H̄PKP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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To achieve dP ≤ 1
L
min{MP +MS − S,KP (NP − S)+} sum DoF in the primary cell,

without loss of generality pick the first P = L× dP rows of ŪP as:

ŪP =

⎛
⎜⎜⎝

(ū1)
T

(ū2)
T

· · ·
(ūP )

T

⎞
⎟⎟⎠

Denote the right pseudo-inverse of matrix ŪP by V̄P :

V̄P =
[
v̄p1 v̄p2 · · · v̄pP

]
which means ŪP V̄P = (I)P×P .

For each v̄pi denote its first MP elements by vpi and the next (MS − S) ones by

v′
pi
. The signal transmitted from the primary BS is formed as:

xP = xp1vp1 + xp2vp2 + · · ·+ xpPvpP ,

where P streams of data, xp1,xp2 · · · ,xpP are encoded Using a Gaussian codebook.

It remains to specify the transmission scheme from the cognitive BS. Let us define:

(H̄S)[KSNS×S] =

⎛
⎜⎜⎝

H̄S1

H̄S2

· · ·
H̄SKS

⎞
⎟⎟⎠

In order to achieve a sum DoF of dS in the secondary cell, S streams of data are

required to be reliably transmitted to the secondary users. To this end, let us denote

the S rows of H̄S by

[(h̄s1)
T ; ...; (h̄sS)

T ],

and form the zero forcing beam-forming vectors to the secondary users similar to

a MIMO broadcast channel. That is, the beamforming vector v′
si

is picked as the

orthonormal basis of the null space of the vector space spanned by:

[(h̄s1)
T ; ...; (h̄si−1

)T ; (h̄si+1
)T ; ...; (h̄sS)

T ]
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This is possible for S ≤ KS × NS. Next, the data stream xsi is encoded using dirty

paper coding in x̂si considering (h̄′
si
)T x̄P to be the known interference where (h̄′

si
)T

is the i-th row of (H̄′
S) and x̄P is defined as:

x̄P = xp1v̄p1 + xp2v̄p2 + · · ·+ xpP v̄pP ,

It should be again noted that because we assumed the secondary BS to be cognitive

and have full CSI knowledge thus, (h̄′
si
)T x̄P is fully known at S and the secondary BS

can employ dirty paper coding to cancel the interference caused by the data intended

for primary mobiles on its user.

Define ṽpi and vsj as:

ṽpi =
[
(v′

pi
)T | 0, · · · , 0︸ ︷︷ ︸

(S)

]T
vsj =

[
0, · · · , 0︸ ︷︷ ︸
(MS−S)

|(v′
sj
)T
]T
.

Then, the signal transmitted by the secondary BS is equal to:

xS =
P∑
i=1

ṽpixpi +
S∑

j=1

vsj x̂sj

Decoding: Without loss of generality, we explain the decoding of the first data

streams intended for the first primary and secondary users i.e., xs1 and xp1. Because

we are concerned with degrees of freedom which is studied asymptotically as SNR

goes to infinity, following [21] for simplicity the noise vectors are ignored. In that

case, the signal received at user S1 is equal to:

yS1 = H′
S1
xP +HS1xS = H̄′

S1
x̄P + H̄S1(x̂s1v

′
s1
+ · · · x̂sSv

′
sS
)

Due to the choice of zero-forcing vectors, the signal received on the first dimension

(first antenna on the first OFDM carrier) of user S1 which carries xs1 is equal to:

x̂s1 + (h̄′
s1
)T x̄P ,

74



and xs1 is recovered by dirty paper decoding considering (h̄′
s1)

T x̄P as the known

interference.

The signal received at P1 is equal to:

yP1 = HP1xP +H′
P1
xS =

H̄P1

(
xp1v̄p1 + · · ·+ xpP v̄pP

)
+

H̄′
P1

(
x̂s1v

′
s1 + · · ·+ x̂sSv

′
sS

)
Next, to decode xp1, user P1 multiplies its received signal in u1

P1
, i.e.,

(u1)
TyP1

Because u1
P1

is in the null space of H̄′
P1
, the inter-cell interference is canceled. By

construction of v̄pi’s we have:

(u1
P1
)T H̄P1v̄p1 = 1,

(u1
P1
)T H̄P1v̄p2 = · · · = (u1

P1
)T H̄P1v̄pP = 0

Thus by multiplying (u1
P1
)T in the received signal at P1, the inter-cell interference

carried by H̄′
P1

and the intra-cell interference caused by v̄p2, · · · , v̄pP are both zero

forced at the same time through the utilized interference alignment technique and xp1

is decoded at P1.

Therefore, the proposed joint interference alignment and dirty paper coding (IA+DPC)

achieves the sum DoF of dP ≤ min
{
KP (nP − dS)

+, (mP +mS − dS)
}
in the primary

cell with a secondary sum DoF of dS ≤ min
{
KSnS, mS

}
.

Now for an irrational dS there is a sequence of rational numbers converging to it. For

each one the claimed dP is achievable which means in the limit it will go to the same

dP which completes the proof of the theorem.
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5.4 Special cases and discussion

We begin the study of special cases by presenting an outer bound on the achievable

sum DoF. Next, using the derived outer bounds we establish, for a special case,

that the corner points of the optimal sum DoF region are achieved by the proposed

signaling scheme. The benefit of the cognitive cooperation is also established for the

considered special case using the outer bound.

Theorem 5.2. Let dPi
and dSj

be an achievable DoF for mobile users Pi and Sj.

Then the DoF region of a cognitive cellular system satisfies the following bounds:

L1 : dPi
≤ nP , for 1 ≤ i ≤ KP , dP + dS ≤ (mP +mS)

L2 : dS ≤ min{mS, KSnS}.

L3 : dPi
+ dS ≤ max{mS, nP}, 1 ≤ i ≤ KP .

Proof. The bound L1 follows from the outer bounds on the point to point MIMO

channel and the fact the degrees of freedom cannot exceed the number of receive or

transmit antennas.

L2 follows by assuming full cooperation between the mobile users of the secondary

base station and assuming they perfectly know the interference caused by the primary

base station. This cannot reduce the DoF region and L2 follows from the outer-bounds

on the DoF of the point to point MIMO channel as well.

To establish L3, we first let dPl
= 0 for l 	= i to get a bound on dPi

and assume full

cooperation at the secondary users. This reduces the problem to a MIMO interference

channel (IC) with a cognitive transmitter. After the problem is reduced to a cognitive

MIMO IC, we apply the sum DoF outer bound of [25] which is based on the genie

aided method of [53]. It should be noted [25] assumes full and global CSI at all
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nodes which is not the case in our problem. However, we can assume that the extra

CSI information is also provided to all nodes which does not reduce the DoF region.

Using [25] we can directly show that:

dPi
+ dS ≤ max{mS, nP}

For completeness however we also present a full proof in the Appendix.

5.4.1 Special Case I

Let us consider the system with mP = mS = nP = K + 1,nS = 1 and KP =

K + 2, KS = K for an integer K > 1. That is a {K + 1, K + 1, K + 1, 1, K + 2, K}

cognitive system. Henceforth, we refer to this system as example channel of type K.

Using the achievable strategy, and applying Theorem 5.1 the achievable region is the

line connecting the following points:

(
dS = K; dP = K + 2

)
(
dS = 0; dP = 2(K + 1)

)

Noting that the total sum DoF of the system cannot exceed the number of transmit

antennas, and the fact that dS = 0 and dS = K corresponds to the corner point of the

sum DoF region we can conclude that for {K+1, K+1, K+1, 1, K+2, K} cognitive

system the proposed signaling scheme is optimal in terms of DoF (i.e., in the high

SNR regime). Now, let us consider the case when cognitive message sharing is not

possible. If we assume all the users in the primary and secondary cell fully cooperate

with all the users in their own cells, in the absence of cognition this system reduces
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to a

{M1 = K + 1,M2 = K + 1, N1 = (K + 2)(K + 1), N2 = K}

MIMO interference channel where M1,M2 denote the number of antennas on the first

and second transmitter and N1, N2 are the number of antennas on the first and second

receiver respectively.

This full cooperation cannot reduce the DoF region of the cellular system without

cognition. Using the bound derived in [53], the maximum total sum DoF of this

MIMO interference channel is equal to K + 1 whereas our proposed scheme with

cognition achieves dP + dS = 2(K + 1) which shows cognitive cooperation under our

proposed scheme strictly outperforms the case when cognitive message sharing of the

primary messages is not available to the secondary base station.

The achievable sum DoF region for the example channels of type 2 and 3 are depicted

in Fig. 5.1.

Corollary 5.1. For a {K + 1, K + 1, K + 1, 1, κ,K} cognitive system with K > 1

achieves the optimal corner points of the sum DoF region for 1 ≤ κ ≤ K + 1.

Proof. Applying Theorem 5.1 at dS = K, the following point is achieved by the

proposed scheme:

(dS = K; dP = κ)

In other words using the proposed scheme the DoF of dPi
= dSj

= 1 per mobile user

is achievable for this system. Note that for this system the maximum sum DoF of the

cognitive cell is equal to K, which is also achieved by the proposed signaling scheme.

If we assume the cognitive cell does not loose any of its DoF by helping the primary

cell i.e., transmitting at dS = K, and applying the bound L3, we arrive at dPi
≤ 1.
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Fig. 5.1: Achievable sum DoF for the example channels of type 2 and 3

By the proposed method, dPi
= 1 is attainable. Basically, (dS = K; dP = κ) is a

corner point of the sum DoF region, Dsum .

On the other extreme at dS = 0, and applying Theorem 5.1 sum DoF in the

primary cell is equal to dP = 2(K + 1) (see also Theorem 5.2 for the converse) , i.e.,

Din
sum in this case includes all the corner points of Dsum.

5.4.2 Special Case II: One antenna at all nodes

In this subsection, we apply the result obtained in Theorem 5.1 to a system with

mP = mS = nP = nS = 1 and equal number of users in each cell i.e., KP = KS =

K ≥ 2. This system without a cognitive base station is considered in [22] and the

normalized DoF of 1
K+1

per mobile user which translates to normalized sum DoF of
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K
K+1

per cell is achieved. That is, the point

(dS =
K

K + 1
, dP =

K

K + 1
), (5.5)

is achieved by [22]. Our goal in this subsection is to show that point (5.5) is included

in the sum DoF region achieved by our proposed scheme. Moreover, in [22] both of

the base stations need to adapt their signaling scheme to handle their interference on

the users of the other cell. However, in our proposed scheme the primary BS does

not modify its transmission scheme to handle its interference on the secondary users

and those are canceled by DPC.

Applying the Theorem 1 the following sum DoF region is achievable

0 ≤ dS ≤ 1

0 ≤ dP ≤ min{(2− dS), K(1− dS)}

Using the above, at dS = K
K+1

the sum DoF in primary cell is dP = K
K+1

which

means the point (5.5) is included in our region. Fig. 5.2 compares the achievable sum

DoF region of our proposed scheme for the cognitive system and that of [22] for the

non-cognitive counterpart.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary

In the first part of the thesis we focused on the design of explicit schemes for

digital fingerprinting. First, we established that for all rates less than 0.18 there is a

good linear code under MD decoder. Our numerical results using ARA codes under

BP decoder established it to be a close approximation of the exponentially complex

MD decoder. Zero capacity coalition attack for t = 3 was identified and it was shown

that the MD decoder fails under this attack.

In Chapter 3 We considered the application of tree codes and sequential decoding

for designing low complexity fingerprinting schemes against collusion attacks that are

fair and memoryless. A cut-off rate was derived for t = 2, and the existence of a

good code that can be efficiently decoded by sequential decoding was established. To

validate our proposed method we presented numerical results using random Convo-

lutional codes for t = 2.

A heuristic approach for t = 3 and the zero capacity attack was presented using

a novel non-linear construction. Bidirectional sequential decoding was also presented

to reach a small error probability and overcome the error floor.
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In chapter 4 a new achievable rate region for the two-user X channel was estab-

lished. The proposed scheme is based on a combination of the binning technique

for broadcast channels and the message splitting for interference channels with joint

decoding. The proposed method generalizes the scheme in [10] which was the best

available rate region priori to our contribution and, to the best of our knowledge,

achieves the largest region for the two user discrete memoryless X channel.

In Chapter 5 downlink communication for a cognitive cellular system was stud-

ied and a novel signaling scheme based on interference alignment, zero forcing and

dirty paper coding was proposed. We also presented an outer bound and showed that

our proposed scheme is optimal for some special cases. The benefits of the cognitive

paradigm was also illustrated using the outer bound by proving the total sum DoF

of the system is strictly larger than the case where cognitive message sharing is not

available.

6.2 Future Directions

A natural extension of our work in designing low complexity collusion resistant

fingerprinting schemes, would be to extend our results to coalition sizes of t > 3 under

general coalition attacks. Extending our work on sequential decoding and tree codes

using more sophisticated metrics to guide the search could be a promising approach in

this direction. Moreover, coming up with new methods for analyzing the complexity

of the sequential decoder instead of the common approach of dividing the tree into

one correct path and considering the rest as incorrect paths is worth attention.
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Our work on the X channel can be extended in several ways, including simplifi-

cation of the achievable rate region, as well as considering networks involving more

than 2 users. In addition, finding outer bounds on the capacity region and identifying

special cases where the capacity region is achieved are of research interest as well.

Finally studying different cases of CSI availability at the base stations as well as

extending the work to more than 2 cells with different scenarios of cognitive cooper-

ation are possible extensions for our contribution in cognitive cellular networks.
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APPENDIX A

PROOFS OF THE OUTER BOUND IN CHAPTER 5

In order to derive the bound L3, first we assume that the secondary users fully

cooperate. In this case we can ”lump” the users Sj ’s into one user S with KSnS

antennas. Second, we also let the primary messages be given to S by a genie. The

above assumptions cannot reduce the achievable DoF region. Consider the system

with transmitter P,S and receivers P1, S. The signals received at P1 ans S are:

yP1 = HP1xP +H′
P1
xS + zP1 ,

yS = HSxS +H′
SxP + zS, (A.1)

To establish the bound we follow the steps of [53]:

1) The noise at P1 is reduced by changing its covariance matrix to:

K′ = InP
−H′

P1
(H′

P1

T
H′

P1
)−1H′

P1

T
+ αH′

P1
H′

P1

T
(A.2)

where α = min( 1
σ2(H′

P1
)
, 1
σ2(HS)

) in which σ2(.) denotes the maximum singular value of

a matrix.

2) A genie provides S with xP , and since H′
S
is known at S, it can subtract H′

S
xP1

from its signal and arrive at y′
S
= HSxS + zS.

3) P1 is assumed to be able to decode its message reliably thus it can also subtract
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HP1xP and arrive at y′
P1

= H′
P1
xS + z′P1

.

4) Having reached the following equations:

y′
P1

= H′
P1
xS + z′P1

y′
S = HSxS + zS (A.3)

our aim is to show that if S can decode xS; P1 will be able to decode it as well

and thus the sum DoF will be less than nP . To see this consider the singular value

decomposition HS = USΛSVS, by multiplying y′
S
in VT

S
Λ−1

S
UT

S
we obtain a channel

with input xS and a noise vector with variances 1
σ2(HS)

.

5) y′
P1

is multiplied in T = (HT
P1
HP1)

−1HP1 . The noise variance matrix with this

operation will be TK′TT , which is straightforward to check is equal to a diagonal

matrix with diagonal elements equal to α. Thus, the receiver P1 can be made less

noisy than S and if xS is decode-able at S it must be decode-able, at P1 as well.

6) Using the bound on the degrees of freedom on the MIMO channels, we can conclude

that still dP1 + dS ≤ nP .

7) For the case where nP < mS and the matrix H′
P1

TH′
P1

is not invertible, similar

to the argument given in [53] we can add more antennas at P1 without reducing the

DoF region and follow the steps above. In that case the sum DoF will be less than

mS.

8) Following the steps 1-7 we arrive at:

dS + dP1 ≤ max(mS, nP )
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