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Abstract

With the many questions raised by the discovery, about a decade ago, that the universe is in

an accelerating phase of expansion, it is clear that cosmological N-body simulations will continue

to play a key role in unravelling this mysterious phenomenon. Historically, the first generation

of cosmological N-body codes were tested and verified using self-similar models for dark matter

clustering that have special “scale-free” properties. These models, in addition to allowing novel

tests of numerical accuracy, are also interesting as fundamental problems and have been insightful in

illuminating the non-linear physics of cosmological structure formation. In this thesis I return to this

theme, in the first part investigating in considerable detail a new class of self-similar dark matter

clustering models with a large-scale clustering feature that closely resembles baryonic acoustic

oscillations (BAO) – a key distance indicator for dark energy studies. The non-linear physics

of this simplified model was investigated using cosmological N-body simulations and the results

compared both to perturbation theory and a phenomenological model. In these comparisons the

phenomenological model and one of the two perturbation theory models discussed generally matched

the simulation data quite well – more specifically the “SimpleRG” perturbation theory scheme of

McDonald (2007) was remarkably accurate. I also carried out (for the first time) a suite of numerical

tests with this new self-similar model, concluding that with modest numerical requirements, current

N -body simulations will accurately model the non-linear evolution of a BAO-like feature even for

a wide range of broadband spectral power. Importantly, this statement is true of the shift of the

BAO clustering feature – a crucial systematic for dark energy studies. In the second half of this

thesis, again making use of self-similar numerical tests, I evaluate an alternative method for setting

up and running ensembles of cosmological N-body simulations developed by Sirko (2005) based on

the ideas of Pen (1997). This method maintains correspondence between the actual and simulated

real-space (rather than fourier space) properties of the cosmological model and accordingly allows

the average density in each box to vary slightly from one realization to another. Extensive tests

show that this approach gives indistinguishable results, compared to the standard method, for the

mean dark matter and halo clustering properties but that the box-to-box variance of these statistics

in the new method is much higher than expected, making the scheme substantially sub-optimal for

most uses. I discuss the assumptions in the method which cause this and comment on a regime

where the Sirko (2005) approach may be very useful.
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Chapter 1

Introduction

Self-similarity is symmetry across scale. It implies recursion, pattern inside of pattern.
– James Gleick

The work presented in this thesis springs ultimately from a very simple but powerful idea:

physical systems that exhibit a great deal of symmetry will in certain cases evolve such that the

dynamics at a given time is a scaled version of the state of the system at earlier (or later) times.

This kind of behavior is referred to as “self-similar” evolution or self-similar scaling, and, famously,

fractals are a well-known example of objects which have a self-similar appearance. In nature, there

is no lack of systems that have this fractal-like property to some extent and as I write the tree in

my front yard sheds its intricately-patterned leaves and we anxiously await the arrival of the first

crystalline snowflakes of the season. The concept, in theoretical physics, is widely appreciated as

the foundation of the theory of phase transitions and the renormalization group. But to a physicist

the novelty of self-similarity lies in the property that the equations governing the system become

fully independent of the physical size of the system. Often these equations are difficult to solve and

this simplification can lead to penetrating insights into phenomena like phase transitions. In the

case of cosmological structure formation, self-similar models are interesting both as fundamental

challenges to theory and as powerful tests of the simulation methods designed to numerically treat

this problem.

This is not the first study in cosmology to investigate self-similar models. A rich literature exists

on the topic, and in arguably the most significant contribution to the field from these studies,

the demonstration by Efstathiou et al. (1988) of self-similar evolution in the first generation of

cosmological N-body simulations decisively confirmed the accuracy of those algorithms in certain

regimes. This bolstered confidence in the simulation methods and enabled studies of more realistic

cosmological models. (And eventually, by the 1990s, the predictions from cosmological N-body

codes would become important pieces of evidence in the case for dark energy.)

In this work I show the results for self-similar tests – both from powerlaw cosmologies as in

Efstathiou et al. (1988), as well as a new test to be discussed shortly – in order to likewise test

the accuracy of the latest generation of codes at higher precision, and over a wider range of scales.
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I also use self-similarity to test a novel method developed by Sirko (2005) for generating initial

conditions and running ensembles of simulations. But I also take interest in these models as a

fundamental challenge to theory and I make detailed comparisons between the simulation results

and the ab initio predictions from perturbation theory (PT).

It is often said, in commenting on the advances in theory and observation in the last decade, that

the field has entered the “era of precision cosmology,” and, overarchingly, this investigation is moti-

vated by the need to produce high-precision predictions for the growth of structure as observations,

at a variety of wavelengths, become increasingly sensitive. As emphasized by Annis et al. (2005)

and Wu et al. (2010), to fully realize the potential of the coming generation of astronomical surveys

to constrain dark energy and other parameters of interest, an order of magnitude improvement in

precision from theory is required. Although self-similar models bear only a qualitative resemblance,

as discussed in the next section, to the to the currently-favored ΛCDM model of cold dark matter

and a cosmological constant, the non-linear dynamics of these models are important as tests of

perturbation theory and as fundamental problems. To use an analogy from quantum mechanics,

self-similar models are, in a certain sense, the hydrogen atom of structure formation and should

be understood before moving on to more complex problems. Additionally, numerical tests with

self-similar models contribute to the larger effort by corroborating the accuracy of cosmological

N-body codes for a wide variety of dark matter clustering models.

1.1 Powerlaw Cosmologies

Whereas fractals are exact copies of themselves, the cosmological models investigated here are

only statistically self-similar. I illustrate this in Fig. 1.1 by showing snapshots from an N-body

simulation in the three left-hand panels and comparing a zoomed-in view of the previous output

alongside and to the right of those results. In each plot the particles come from a slice of the lower

1/8th of the simulation volume and, for visual comparison, the simulations are downsampled in

the left hand panels so that each plot shows the same total number of particles. In each plot the

non-linear scale, Rnl, is shown, here defined as the scale where the rms overdensity in randomly

placed spheres reaches the value of one. Importantly the zoomed-in plots on the right have the

same value of Rnl, relative to the axes shown, as the simulation outputs immediately to the left.

Qualitatively, in terms of the distribution of voids and overdense regions, the zoomed-in slices bear

a remarkable resemblance to the simulation outputs shown adjacent to it. If unconvinced of this,

look at the zoomed-in density fields on the right and try to tell if this density distribution is a

flipped or mirrored version of the plot immediately to the left. If it is hard to tell on first glance

this is evidence that the two images are statistically similar. More rigorously, one can quantify the

differences between the two images in a statistical way and in the limit of many realizations of this

cosmological model the scaled-forward density field should be statistically equivalent to the density

field at the later output. To the extent that these results do not match this is a sign of unwanted

2
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Figure 1.1: Left panels Slices from an N-body simulation showing particles in the lower 1/8th of
the simulation volume. The axes extend out to the box scale and the plots appear in chronological
order – the earliest output at the top and the last output at the bottom. The nonlinear scale, Rnl, is
shown in each plot. Right panels Slices from the lower-right quadrant of the preceding output. The
non-linear scale is shown on each plot, indicating that the slices have the same level of clustering
as the outputs shown to the left.
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numerical effects.1

In Fourier space, Fig. 1.1 shows the evolution of the density field of an initially P (k) = A k−1

spectrum where δ3(~k − ~k′)P (k) = 〈δ(~k)δ∗(~k′)〉 and δ(~x) = (ρ(~x) − ρ̄)/ρ̄, using ρ(~x) to represent

the real-space density field and ρ̄ is the average density in the box. In this study I will frequently

show dark matter clustering results in terms of ξ(r), which is the Fourier transform pair of P (k).

In general, since powerlaw power spectra have no special scales or features and since gravity, if we

simulate without dark energy (i.e. Ωm = 1), has no preferred lengths the evolution of structure

should be self-similar.2 In this thesis I focus on P (k) = Akn where n = −0.5,−1,−1.5,& − 2.

This range of slopes roughly brackets the effective slopes of the ΛCDM power spectrum on scales

accessible to current galaxy-redshift surveys.

1.2 Self-similar Bumps and Wiggles

This study introduces a new class of self-similar cosmological models. These models are close

relatives of the “pure” powerlaw models discussed in the previous section. In real space, these

pure powerlaw models are also powerlaws in real space and the Fourier transform of a P (k) = Akn

spectrum works out to be ξ(r) = (r0/r)
n+3, as long as −3 < n < 0 (Peebles 1980). In the new class

of models this real-space powerlaw is multiplied by a gaussian with a width and height inspired

by the baryon acoustic oscillations (BAO) feature in ΛCDM. More explicitly, the linear theory

correlation function is

ξ IC(r) =
(r0

r

)n+3
(1 + Abump e−(r−rbao)2/2σ2

bao). (1.1)

Fig. 1.2 shows a comparison of the ΛCDM model and three different “powerlaw times a bump”

models (corresponding to n = −0.5,−1, and−1.5 slopes in Fourier space). All of the models are

normalized such that ξ(r) = 1 at the same scale, r = r0.

Since Eq. 3.22 contains another scale besides r0, which fixes the amplitude of the powerlaw, this

implies that the self-similar test illustrated in Fig. 1.1 does not apply to this new class of models.

(For example “zooming-in” on one of the snapshots would enlarge both the BAO scale as well as the

non-linear scale so that the two density fields would not be statistical copies of each other.) Instead,

the evolution should be self-similar when two different sets of simulations, each with different values

for rbao and r0, are compared at the same r0/rbao. This ratio becomes the time variable for this class

of models and any significant discrepancies in the statistics of the density field, at fixed r0/rbao, can

be interpreted as evidence of numerical inaccuracies (e.g., from interference from the artificially-

introduced scale of the box or the scale of the initial mean inter-particle spacing). I show results

from running a suite of these tests in the next chapter.

1These statements also apply to scaling outputs from later to earlier times and in practice statistics from all the
outputs are compared together.

2Atomic physics does introduce new scales into the problem, however, we neglect this and run dark-matter-only
simulations with large box sizes where these effects are small.
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Figure 1.2: Left panel A comparison of the linear theory matter auto correlation function for ΛCDM
(black and when ξL < 0 black-dashed) and the linear theory matter auto correlation functions for
three examples from a new class of self-similar cosmological models (red, green, blue). Right panel

The linear theory power spectra of the models shown in the left panel with the same normalization.

These simulations are also quite interesting as insightful probes of the non-linear physics at

work on the large scales where the BAO feature appears. Measuring the BAO clustering feature

in future surveys will be extremely valuable for constraining dark energy, as discussed in the next

section, however this regime is difficult to model at high precision and ambitious surveys like

BigBoss (Schlegel et al. 2009b), WFIRST (Blanford et al. 2010), and Euclid (Laureijs et al. 2009)

will eventually reach the level where these inaccuracies would be an important source of systematic

error. With this in mind, in Chapter 2, I model the non-linear dynamics phenomenologically,

and, in Chapter 3, I show and discuss the predictions of two different ab initio PT models and

compare those results to measurements from N-body simulations. Previously, PT schemes have

only been rigorously tested with the ΛCDM and the “extreme” cCDM (σ8 = 1,Ωm = 1,Ωb = 0.4)

cosmological models (Carlson et al. 2009).

1.3 The Importance of BAO as a Cosmological Probe

From the beginning, the primary science driver for this thesis has been to sharpen (or at least test)

the theoretical tools involved in predicting the evolution of the Baryon Acoustic Oscillations (BAO)

clustering feature. Future measurements of this feature in astronomical surveys are anticipated to

place strong constraints on the dark energy equation of state and in this section I sketch out a

brief argument for why such optimism is well-founded. In this discussion, I consider only the

BAO feature in the galaxy distribution – a slight preference for galaxies to be located at a fixed

comoving scale (∼ 150 Mpc) away from each other – and in particular I only examine this feature

in the angular clustering of galaxies where it has already been detected (Eisenstein et al. 2005;
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Percival et al. 2010). Since, fundamentally, the clustering feature comes from a feature in the dark

matter distribution which is imprinted on the things we observe, there are a variety of other ways in

which future surveys may detect BAO (e.g. the Lyα forest, line of sight clustering of galaxies, 21cm

emission). These observations hold great promise as well and I focus on the angular clustering of

galaxies simply for brevity and to keep the discussion close to current observations.

BAO measurements are “geometrical” probes of dark energy, constraining, in some way, the

relationship between cosmic distance and redshift. This places it in the same category as Type

Ia supernovae but with the important difference that supernovae constrain distances as standard

candles whereas the BAO feature is a “standard ruler”. As a feature at fixed comoving distance,

detecting the angular scale of the BAO at a given redshift is, conceptually, like knowing the length

and angle subtended by one side of a triangle. In Euclidean, non-expanding, geometry the inference

of the distance to this “ruler” is a trivial application of trigonometry. In an expanding universe,

however, light rays are bent slightly en route, which changes the apparent angular size of the object

at the observer. This effect can be parameterized in such a way as to retain much of our euclidean

intuition. Defining an “angular diameter” distance, dA, the observed angular size, ∆θ, of an object

at fixed length ∆r at redshift z is simply,

∆θ =
∆r

dA(z)
(1.2)

where dA captures the effects of the expansion (here assuming flatness),

dA(z) = a(z)

∫ 1

a(z)

c da

a2H(a)
(1.3)

and H(a) is given by

H(a) = H0

√

Ωm,0a−3 + Ωde,0a−3(1+w). (1.4)

As usual, a = 1/(1+ z), Ωm,0 and Ωde,0 are the current densities of matter and dark energy relative

to the critical density and w is the equation of state of the dark energy. In practice, detecting the

BAO peak at a certain angular separation, θbao, in galaxy clustering data yields a measurement of

dA since the comoving scale of the BAO (i.e. the sound horizon at decoupling) is well constrained

by the cosmic microwave background,

sbao =
1

√

Ωm,0H
2
0

2c
√

3zeqReq

log

√
1 + Rrec +

√

Rrec + Req

1 +
√

Req

(1.5)

where R = 3ρb/4ργ , ρb and ργ being baryon and radiation densities respectively, and the “eq”

subscripts refer to the epoch of matter-radiation equality while the “rec” subscripts refer to the

epoch of recombination, zrec ≈ 1100 (Eisenstein & White 2004). Measurements of the CMB place

tight constraints on all of the parameters (or parameter combinations) in Eq. 1.5, and in the near

future the Planck mission will be able to determine sbao to an extremely high level of accuracy.
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Therefore dA(z) is straightforwardly measured with

dA(z) =
sbao

θbao(z)
. (1.6)

Note that since the scale, sbao, is set in the early universe when dark energy is subdominant, sbao

will be independent of all but the most extreme dark energy models. This attractive feature implies

that this distance indicator is “anchored” to the CMB, regardless of the dark energy model, whereas

other distance measures are anchored to the distances to nearby galaxies and the inference of the

absolute distance to a given bin in redshift is not nearly as model-independent.

We can assess the sensitivity of BAO measurements to the dark energy equation of state with a

few well-motivated approximations. Let us assume throughout that w is a constant, independent of

redshift, and that w = −1 + ∆w, so that ∆w = 0 corresponds to a cosmological constant. Placing

this in Eq. 3.3 and taylor expanding yields

∆ log H(a) ≈ −∆w
3

2
log(a)(1 − Ωm(a)) (1.7)

where

Ωm(a) =
Ωm,0a

−3

Ωm,0a−3 + Ωde,0a−3(1+w)
. (1.8)

We can use this expression with Eq. 1.3 to calculate the deviation of the angular diameter distance,

∆dA, from the w = −1 model as a function of ∆w and z, assuming all parameters in H(a) except

w are perfectly known (after the Planck mission this will be a remarkably good approximation,

especially at high redshift!). For ease in what follows I will integrate over da instead of dz,

d(dA)

dw
= a

∫

c da

a2

−1

H2(a)

dH(a)

dw
= a

∫

c da

a2H(a)

d log H(a)

dw
= −a

∫

c da

a2H(a)

3

2
log(a)(1 − Ωm(a)).

(1.9)

For redshifts smaller than z ∼ 0.33 (i.e. during the dark energy-dominated era) we can treat the

integral analytically with the rough approximation that H(a) = H0 and 1 − Ωm(a) ≈ 1 − Ωm,0. It

is possible to show that in this redshift range

∆w ≈ ∆dA

dA

2

3

(

1 − a

− log(a) + a − 1

)[

1

1 − Ωm,0

]

. (1.10)

This expression implies that at a certain redshift if one can constrain the deviation of angular

diameter distance, ∆dA from the w = −1 model to a certain level then this can be used as an inde-

pendent measurement of ∆w. According to Eq. 1.6 ∆dA/dA is just −∆θbao/θbao and the constraint

on ∆w is therefore straightforwardly related to the ability of a given survey to precisely identify the

angular scale of the BAO. The most precise BAO measurement to date comes from Percival et al.

(2010) who locate this angular scale to 2.7% from well over one hundred thousand galaxies with a

mean redshift z = 0.275. They report that their best fit w is close to a cosmological constant with

a 1σ (marginalized) error on w of 0.17. Using ∆dA/dA = 0.027 with their best-fit values for Ωm,0
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Figure 1.3: Measurement precision on ∆w for constraining the angular scale of the BAO feature to
∆θbao(z)/θbao(z) = 0.027 using Eqs. 1.10 & 1.11. For comparison the 1σ (marginalized) precision
on w from Percival et al. (2010) is shown at z = 0.275, the mean redshift of the galaxy sample
used to measure the BAO. An estimate of the bias on w from the neglecting the non-linear shift
of the BAO peak, using expectations for the shift reported in Seo et al. (2010), is shown with a
green-dashed line.

and Ωde,0 in Eq. 1.10 gives ∆w = 0.20. Although some relatively daring approximations were made

to obtain the expression in Eq. 1.10, and the comparison to rigorous multi-dimensional parameter

constraints is admittedly crude, this result is quite reasonable.3 Applying the same approach at

higher redshift, during the epoch where the density is dark-matter dominated, we can approximate

H(a) ≈ H0Ω
1/2
m,0a

−3/2, and Ωm(a) ≈ Ωm,0a
−3/Ωde,0 and again treat the integrals analytically. In

this case,

∆w ≈ ∆dA

dA

2

3

(

2

Ωm,0
(
√

aeq −
√

a) + a−1
eq + 1

)

/

(

− log(aeq)+aeq−1
aeq

(1 − Ωm,0) +
2Ωde,0

49Ω
3/2
m,0

(

2(a
7/2
eq − a7/2) + 7(a7/2 log a − a

7/2
eq log aeq)

)

)

(1.11)

where aeq = (Ωm,0/Ωde,0)
1/3 is the scale factor at the transition from matter domination to dark

energy dominated expansion. Eq. 1.11 should be a reasonable approximation for BAO measure-

ments at redshifts beyond zeq ∼ 0.33. Fig. 1.3 shows the expected constraining power of BAO

measurements for a wide range of redshifts using Eqs. 1.10 & 1.11 and assuming the same level of

∆dA/dA precision as Percival et al. (2010). For z < zeq, ∆w is poorly constrained merely because

3 The Percival et al. (2010) result for ∆w also includes weak constraints on dark energy from the CMB. This
explains why their ∆w is smaller than my estimate, which assumes that the only constraint on w comes from BAO.
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the Hubble expansion rate is only weakly dependent on w in that range. At larger redshifts this is

not the case and a measurement of the angular scale of the BAO always translates into interesting

constraints on the dark energy equation of state. Note that Fig. 1.10 still assumes a constant w.

Therefore in this picture the BAO measurement at each redshift provides an independent estimate

of w, assuming no evolution in the equation of state over time.

The caveat to this approach, which motivates this work, is that although the CMB constrains

sbao to high accuracy at zrec ≈ 1100, at lower redshift this scale can potentially shift due to the non-

linear dynamics of structure formation. This effect has been characterized in N-body simulations,

which predict a shrinking the BAO scale by ∼ 0.3% by z = 0. In Fig. 1.3, using the ∆w expressions

in Eqs. 1.10 & 1.11 with the reported non-linear shift from ΛCDM simulations in Seo et al. (2010),

I overplot an estimate of the bias on the inferred value of w from neglecting this effect. Since the

shift grows steadily time this bias is most severe at low redshift, and, compared to the current state

of the art (i.e. Percival et al. 2010) this is a relatively minor detail. However, as future surveys

constrain the BAO feature more finely than the 2.7% assumed in the figure (which corresponds to

lowering the vertical scale for the ∆w estimate shown) the BAO shift will become an important

systematic. This shift still needs to be characterized for a wide range of dark energy models and

at higher precision likely using some combination of rigorously-tested perturbation theory models

and fits to N-body results.

1.4 Revisiting a Novel Approach to Running Cosmological N-body
Simulations

In the latter half of this work I revisit a very clever but seldom used method developed by Sirko

(2005) for generating initial conditions and running ensembles of cosmological N-body simulations.

This investigation is also motivated by the need for high precision predictions of the evolution of

the BAO clustering feature. For this problem one typically runs ensembles of simulations (rather

than simulating a single giant volume) in order to achieve the necessary precision by statistically

combining the results for the large scale clustering while maintaining high spatial resolution. In

the standard approach, each simulation box is given the same size and dark matter density –

each realization varies only to the extent that it is a different sampling of the initial linear power

spectrum. By contrast, in Sirko (2005), the assumptions of fixed box size and dark matter density

are lifted4,so that the cosmological parameters and box size are slightly different in each realization.

The amplitude of these box-to-box fluctuations is related to the clustering power on the scale of

the box, P (kbox), where kbox = 2π/Lbox.

In testing this method, Sirko (2005) compared results from ensembles of simulations performed

4To be more precise, the box size is fixed in Mpc units but the hubble parameter varies from box to box so that
in h−1Mpc units the box size does vary. Likewise the dark matter density is fixed in M⊙/Mpc3 units whereas the
critical density is defined in h2M⊙/Mpc3 units, so that the ratio of the dark matter density to the critical density,
Ωm, also varies from box to box.
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with the standard method to results from ensembles of simulations in the new framework. These

comparisons were made exclusively using ΛCDM initial conditions, which do not allow any kind

of self-similar cross-checks. In Chapter 3, I show self-similar test with this method both from pure

powerlaw initial conditions as well as with the powerlaw times-a-bump models, comparing these

results to ensembles of simulations performed in the standard way. Since the Sirko (2005) method

was engineered to be a more faithful rendering of real space statistics, this chapter pays close

attention to the results from the matter autocorrelation function, halo mass function and halo bias.

1.5 Conclusions and Appendices

Finally, in the concluding section of this work I summarize my results and sketch out a few pos-

sibilities for future work. This thesis also features two appendices, the first showing results for

non-linear fitting functions for n = −0.5,−1 and −1.5 pure powerlaw initial conditions, which is

useful for phenomenology and for tests of PT. Secondly, in Appendix B, I describe a remedy for

the bias introduced by the integral constraint, that, if uncorrected, is artificially imposed in the

measurement of ξ(r). This issue becomes important for separations, r, approaching the scale of the

box and in models with steeper power spectra. For n = −0.5 the correction is negligible, while for

n . −1.5 this effect can be quite large. Appendix C discusses the ramifications of this correction

for measuring the halo clustering bias.
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Chapter 2

Self-Similar Bumps and Wiggles

2.1 Introduction

The detection of the baryon acoustic oscillation (BAO) signature from observations of galaxy clus-

tering (Eisenstein et al. 2005; Cole et al. 2005) represents a triumph of large-scale-structure theory

and of state-of-the-art cosmological surveys. The BAO feature, imprinted by sound waves that

propagate in the pre-recombination universe (Peebles & Yu 1970), provides a “standard ruler”

that can be used to measure the distance-redshift relation and the evolution of the Hubble pa-

rameter H(z) (Eisenstein et al. 1998; Blake & Glazebrook 2003; Seo & Eisenstein 2003). BAO

measurements in the Sloan Digital Sky Survey (SDSS) yield a 2.7% measurement of the comoving

distance to z = 0.275 (Percival et al. (2010); Kazin et al. (2010); improved from the 4% precision of

Eisenstein et al. (2005)). Several ongoing experiments – WiggleZ (Drinkwater et al. 2010), HET-

DEX (Hill et al. 2008), and the BOSS survey of SDSS-III (Schlegel et al. 2009a) – seek to extend

these measurements to higher redshift and improve their precision, using spectroscopic surveys of

galaxies and (in the case of BOSS) the Lyα forest. Pan-STARRS (Kaiser et al. 2002) and the

Dark Energy Survey (The Dark Energy Survey Collaboration 2005) seek to measure the distance-

redshift relation using the BAO feature in angular galaxy clustering, and the Large Synoptic Survey

Telescope (LSST Science Collaboration 2009) will eventually reach much higher precision measure-

ments. Other ambitious experiments – the ground-based BigBOSS survey (Schlegel et al. 2009b)

and the space-based WFIRST (Blanford et al. 2010) and Euclid (Laureijs et al. 2009) missions –

plan spectroscopic surveys of & 108 galaxies that in principle allow BAO measurements at the 0.1%

level.

The high anticipated precision of these experiments places stringent demands on theory. To

fully exploit these measurements as probes of cosmic acceleration, one must understand the ef-

fects of non-linear gravitational evolution and non-linear bias of mass tracers (e.g. galaxies or

the Lyα forest) on the location of the BAO feature, calculating any shifts to an accuracy below

the statistical measurement errors. This challenge has inspired many analytic and numerical in-

vestigations of BAO evolution (Carlson et al. 2009; Padmanabhan & White 2009; Eisenstein et al.
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2007; Seo et al. 2008, 2010; Blake & Glazebrook 2003; Smith et al. 2008; Takahashi et al. 2009;

Crocce & Scoccimarro 2008; Montesano et al. 2010; Sánchez et al. 2008), most of them focused on

a ΛCDM cosmological model (inflation and cold dark matter with a cosmological constant) with

parameters close to those favored by recent observations. In this paper, I pursue a complementary

approach, inspired by N-body studies of self-similar cosmological models with a scale-free initial

power spectrum P (k) = Akn (e.g. Efstathiou et al. 1988; Bertschinger & Gelb 1991; Makino et al.

1992; Lacey & Cole 1994; Colombi et al. 1996; Jain et al. 1995; Smith et al. 2003; Widrow et al.

2009). Specifically, I investigate models in which the correlation function of the initial density field

(the Fourier transform of its power spectrum) is

ξ IC(r) =
(r0

r

)n+3 [

1 + Abump e−(r−rbao)
2/2σ2

bao

]

, (2.1)

a power-law modulated by a Gaussian bump centered at a “BAO” scale rbao.
5 For specified values

of n and the bump height and width (Abao and σbao), the non-linear evolution of these initial

conditions should depend only on the ratio r0/rbao of the correlation length to the BAO scale,

and not (except for the overall change of scale) on the individual values of r0 and rbao. Strictly

speaking, this statement holds only for a particular cosmological model (e.g. Ωm = 1, ΩΛ = 0) in

which the expansion factor a(t) is a powerlaw of time, but I will show that the bump evolution is

nearly identical for an Ωm = 0.3,ΩΛ = 0.7 cosmology when evaluated as a function of the linear

growth factor.

There are several valuable aspects of this approach. First, by varying n, σbao and r0/rbao, I can

investigate the interplay among power spectrum slope, bump width and non-linearity in determining

the shape and location of the BAO feature. Second, I can test analytic (e.g. perturbation theory)

descriptions of BAO evolution over a much wider range of conditions than they have been tested to

date, to see how well they capture the underlying physics of BAO evolution as opposed to working

in a specific case. Among other things, I evolve simulations to values of r0/rbao much larger than

those of conventional ΛCDM, so that I can clearly see where perturbative approaches break down

and how far they can be pushed. In this regard, my approach is similar to that of Carlson et al.

(2009) and Padmanabhan & White (2009) who use a “crazy” CDM (cCDM) model with parameters

(Ωm = 1,Ωb = 0.4, σ8 = 1) designed to produce larger BAO wiggles and stronger non-linear effects.

Third, the self-similarity of these models allow for numerical tests where, as a consistency check,

the evolution of the bump from simulations with the BAO bump with different numerical choices

(e.g., box size relative to BAO scale, mean interparticle spacing, time steps) should all agree when

compared at the same r0/rbao.

Qualitatively, one expects the non-linear evolution of the BAO feature to involve a broadening

and attenuation of the bump in configuration space, as discussed by Eisenstein et al. (2007), who

describe matter scattering out of the BAO “shell”. In Fourier space this phenomenon is seen as a

5Note that a pure power-law spectrum P (k) = Akn corresponds to a correlation function ξ(r) ∝ r−(n+3) Peebles
(1980)
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Figure 2.1: A comparison of the linear theory matter autocorrelation function for ΛCDM (black,
becoming dashed when ξL < 0) and the linear theory matter autocorrelation functions investigated
in this study. The ΛCDM correlation function shown was generated using the fiducial WMAP7
cosmology (assuming flatness), and the amplitude shown corresponds to z = 0. For comparison
these different clustering distributions are normalized to have the same non-linear scale, r0, as the
ΛCDM case, where ξL(r0) ≡ 1.

damping of oscillations at high-k. In many perturbative approaches, this damping is exponential

and given by

Σ2 =
1

3π2

∫ ∞

0
PL(q) dq. (2.2)

For pure powerlaw cosmologies one can easily see that this expression will be problematic. Phys-

ically, Eq. 2.2 is the rms displacement of particles – which includes the contribution from bulk

motions that shift all particles in a large volume coherently – whereas the damping of the BAO

feature is more fundamentally related to the rms relative displacement of pairs of particles. For

the models investigated in this paper this subtlety becomes very important, and I argue that the

broadening of the bump in these simulations scales according to the rms pairwise displacement

equation (Eq. 2.11 below).

I describe the initial conditions and simulation setup in § 2.2, show and characterize the results

for the bump evolution in § 2.3, and establish the numerical reliability of these results with self-

similarity tests in § 2.4. In § 3.4 I show the power spectra in these simulations and compare both

phenomenological and ab initio quasi-linear models to the simulation results. I compare my results

with this setup to canonical ΛCDM in § 2.6 and comment on the broader relevance of these findings.

Finally in § 2.7 I summarize the main conclusions and mention future directions for investigating

this model.
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Figure 2.2: The linear theory power spectra of the models shown in Fig. 2.1 with the same normal-
ization.

2.2 Simulations

2.2.1 Initial Conditions

I generate the initial conditions for the simulations by fourier transforming Eq. 3.22 to a power

spectrum, PIC(k), and using the publicly-available code 2LPT (Crocce et al. 2006), which computes

particle displacements with second-order Lagrangian perturbation theory, to generate particle initial

conditions files. 2LPT has been shown to minimize transients compared to the first order Zeldovich

(1970) approximation.

In Fig. 2.1 I compare the three different ξ IC(r) models explored in this paper (blue, green,

and red) to a standard ΛCDM correlation function (black). I show the fourier transform of these

correlation functions – the resultant PIC(k) – in Fig. 2.2 compared to a flat ΛCDM power spectrum

generated from CAMB (Lewis et al. 2000) assuming fiducial WMAP7 parameters (Komatsu et al.

2010). In keeping with convention, I refer to the powerlaw in fourier space (n = −0.5,−1.0,−1.5)

rather than in configuration space. These choices for the powerlaw slope are inspired by the

resemblance to the ΛCDM correlation function on different scales. Similarly, unless otherwise

noted, I choose σbao = 0.075 rbao as the ΛCDM-inspired gaussian width and Abump = 2.75 as the

gaussian amplitude of the BAO feature.

In this study my time variable is r0/rbao, where ξL(r0) ≡ 1. This quantity grows as the

amplitude of ξL(r) becomes larger and the correlation length r0 increases. For convenience I show

conversions between this convention for the non-linear scale and other choices in Table 2.1. Other

popular conventions define the non-linear scale as σ(R∗) ≡ 1 or σ(R∗) ≡ δc, i.e. the scale where

the rms density in spheres reaches one or reaches the threshold for spherical collapse, δc = 1.69.

I show R∗/rbao for σ(R∗) ≡ 1 in the second column in Table 2.1; to convert from σ(R∗) ≡ 1
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to σ(R∗) ≡ δc, multiply this column by δ
2/(n+3)
c . A fourier-space convention for the non-linear

wavenumber, ∆2(kNL) ≡ 1 where ∆2(k) = k3P (k)/(2π)3, is also shown in the third column. kNL is

shown divided by kbao = 2π/rbao so as to be independent of a specific choice of rbao and to reflect

the self-similar nature of the setup. Finally, the fourth column shows the effective value of σ8,

computed assuming rbao = 100h−1Mpc. More generally this column can be interpreted to be the

rms density contrast in spheres of radius 8% of the BAO scale.

I begin the simulations at the earliest epoch listed for each of the three models shown in

Table 2.1, and I obtain outputs at each of the epochs listed.

2.2.2 Approximate Solution for PIC(k)

Starting from the fourier transform relation,

PIC(k) = 4π

∫ ∞

0
ξ IC(r)

sin(kr)

kr
r2 dr, (2.3)

and breaking up ξIC(r) in Eq. 3.22 into two terms, I expect

PIC(k) = Ppow(k) + Pwig(k). (2.4)

An exact analytic solution exists for the powerlaw term (Peebles 1980): the fourier transform of

Ppow = Aa2kn is ξ(r) = (r0/r)
n+3 with amplitudes related by

Aa2 =
2π2 (2 + n)

Γ(3 + n) sin((2 + n)π/2)
rn+3
0 ≡ Anrn+3

0 . (2.5)

The remaining Pwig(k) term in Eq. 2.4 is given by

Pwig(k) =
4πAbumprγ

0

k
×

∫ ∞

0
r−(n+2)e−(r−rbao)2/2σ2

bao sin(kr) dr .
(2.6)

Up to a normalization, the integral is simply the expectation value of r−(n+2) sin kr over a gaussian

probability distribution p(r) centered on rbao with width σbao (but truncated at r > 0):

∫ ∞

0
r−(n+2) sin(kr) p(r) dr ≈ (2πσ2

bao)
1/2〈 r−(n+2) sin(kr) 〉. (2.7)
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Table 2.1: Normalization/Conversion Table

r0/rbao R∗/rbao kNL/kbao σ8

0.00039 0.0073 34.1 0.05
0.024 0.046 5.40 0.5
0.043 0.080 3.10 1.0
0.059 0.111 2.24 1.5

n = -0.5 0.074 0.139 1.78 2.0
0.102 0.193 1.02 3.0
0.129 0.243 0.856 4.0
0.178 0.335 0.740 6.0
0.311 0.584 0.588 12.0

0.0027 0.0040 41.2 0.05
0.027 0.040 4.12 0.5
0.043 0.064 2.58 0.8
0.053 0.080 2.06 1.0
0.073 0.110 1.51 1.37

n = -1 0.080 0.120 1.37 1.5
0.107 0.160 1.03 2.0
0.160 0.240 0.687 3.0
0.213 0.320 0.515 4.0
0.267 0.400 0.412 5.0
0.320 0.480 0.258 6.0

0.0011 0.0015 56.6 0.05
0.024 0.032 2.63 0.5
0.061 0.080 1.04 1.0

n = -1.5 0.104 0.137 0.608 1.5
0.153 0.202 0.414 2.0
0.263 0.346 0.241 3.0
0.386 0.508 0.164 4.0
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Since p(r) is strongly peaked at r = rbao, and since sin(kr) is generally much more sensitive than

r−(n+2) to the value of r,6 I have, to good approximation,

〈r−(n+2) sin(kr)〉 ≈ 〈r−(n+2)〉〈sin(kr)〉 ≈ r
−(n+2)
bao 〈sin(kr)〉, (2.8)

leaving only the expectation value of sin(kr) to be determined. This expression is given by

〈 sin(kr) 〉 = (2πσ2
bao)

−1/2

∫ ∞

0
e−(r−rbao)2/2σ2

bao sin(kr) dr

≈ sin(krbao) exp(−(k σbao)
2/2). (2.9)

This line of approximation ultimately leads to

PIC(k) ≈ Anr3
0 (kr0)

n + (2.10)

25/2π3/2Abumpσbaor
2
bao

(

r0

rbao

)n+3 sin(krbao)

krbao
e−k2σ2

bao/2.

With the ΛCDM-inspired choices for the constants in this expression (discussed in § 3.2), the

approximation for PIC(k) agrees with the numerical integration to better than a percent (relative

to the underlying powerlaw) over the entire range of k-values.

2.2.3 Integration of Particle Trajectories

I used the publicly-available Gadget2 code (Springel 2005) to integrate particle trajectories from

the initial conditions. Gadget2 is a hybrid, Tree-PM code in which the long-range gravitational

forces are computed by solving the Poisson equation in fourier space while the short range forces

are computed using a Tree algorithm (Barnes & Hut 1986). Gadget2 is parallelized using standard

MPI and allocates processors/cores with the space-filling Peano-Hilbert curve. This allows the code

to perform well on massively-parallel machines.

Throughout, unless otherwise noted, I simulate the powerlaw times a gaussian model using

a flat Ωm = 1.0 cosmology with no dark energy, much like in self-similar pure powerlaw in-

vestigations (e.g. Efstathiou et al. 1988; Widrow et al. 2009) or in cCDM (Carlson et al. 2009;

Padmanabhan & White 2009). This choice allows structure to grow indefinitely, avoiding the freeze-

out limit when the dark energy component comes to dominate. However, in § 2.4.2, I present some

simulations that include a cosmological constant and conclude that the evolution of the bump still

only depends on the ratio of the non-linear scale to the BAO scale, even when dark energy is

present.

Most of the simulations presented here, unless otherwise noted, were run with 5123 particles

6sin(kr) goes as r1 when k is small, and clearly varies rapidly with r when k is large. By contrast r−(n+2) varies
as r−0.5 for n = −1.5 and r−1.5 for n = −0.5. Most of the inaccuracy in the final result for PIC(k) comes from
Eq. 2.8. The approximations in Eqs. 2.7 & 2.9 are more accurate because they only depend on the assumption that
R

∞

rbao

exp(−r2/2 σ2
bao) dr ≈ 0.
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using a 7683 PM grid for the large scale forces and a comoving force softening (relevant to the tree

part of the code) of 1/4th the initial mean interparticle spacing. The box size was chosen to be

∼20× larger than the BAO scale, making the force softening ∼1/2000th the scale of the box. I ran

seven realizations of each model in order to obtain better statistics on large scales. I also performed

pure powerlaw simulations (i.e. no wiggles) with the three cases (n = −0.5, n = −1, n = −1.5)

to compare with the cases that include a BAO feature (Appendix A). Also note that I apply a

correction to ξmeas(r) to account for the artificial enforcement of the integral constraint on ξmeas(r)

(Appendix B). This correction is important on large scales for n ≤ −1.

The simulations were evolved to the point where the non-linear scale reached approximately

30% of the initial BAO scale. As in pure powerlaw simulations, there is a concern that for steep

power spectra the missing power on scales larger than the box will invalidate the results. However,

even in the last output of the n = −1.5 case, which has the most large scale power, the simulations

fall well within the guidelines recommended by Smith et al. (2003), and the self-similarity of the

pure powerlaw results in Appendix A seem also to confirm the validity of the simulation results.

All of the simulations presented here were performed using the Glenn cluster at the Ohio

Supercomputer Center7. In total, the results in this paper are based on 28 5123-particle simulations

of powerlaw+bump initial conditions, 21 2563-particle simulations and 28 5123-particle simulations

used in the tests of 2.4, and 20 5123-particle simulations of pure powerlaw models presented in

Appendix A.

2.3 Evolution of the BAO Bump

2.3.1 ξ(r) results for fiducial case

Fig. 2.3 presents the main results for the configuration-space evolution of the BAO feature. Re-

markably, when divided by the pure powerlaw correlation function as in the plots on the right hand

column, the BAO feature maintains a gaussian shape throughout the non-linear broadening and

damping that occurs in structure formation.8 In linear theory the bump would maintain the initial

shape as indicated with the black dashed lines on the right hand column.

I overplot the best fit gaussians on the right hand column with dot-dashed lines of various

colors corresponding to different epochs to emphasize and better illustrate this gaussian behavior.

Quantitative measures of the evolution in bump amplitude and width are considereed in § 2.3.3.

When comparing the three models, one should bear in mind that at fixed r0/rbao the bump

in the n = −0.5 case is at a much lower clustering amplitude than in the n = −1.5 case simply

because an n = −1.5 powerlaw has much more large scale power, and I defined the initial bump

feature to be a gaussian times (rather than added to) a powerlaw. The simulation data for the

n = −0.5 case are noisier, especially at early epochs, because is a measurement of a weaker signal.

7http://www.osc.edu/supercomputing/hardware/
8The exception, discussed below, is at late times (high clustering amplitudes) in the n = −1.5 model.
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Figure 2.3: Matter 2-point correlation function results for a powerlaw times
a gaussian model for dark matter clustering. The upper two panels show
results for the n = −0.5 background powerlaw, while the middle two panels
show n = −1 and the lower two n = −1.5. The left panels show the
measured matter autocorrelation function from the simulations at various
epochs as colored points and, in dashed lines with the same color scheme,
the corresponding linear theory correlation function at each epoch. The
right panels show the matter autocorrelation function divided by the pure
powerlaw correlation function, ξpow(r). Black dashed lines show the linear
theory prediction, which is independent of epoch. Typical errors on the
mean for ξmeas(r)/ξpow(r) are shown off to the right for various epochs,
but note that errors are strongly correlated across the full range of the
bump. On the right hand panels we also overplot with dot-dashed lines the
best fit gaussians with the same color scheme as the measurements from
simulations. ξ(r) has been corrected for the integral constraint as described
in Appendix B.
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Figure 2.3:
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Figure 2.4: Results for a setup where the initial gaussian width of the bump is half of its fiducial
value and the background powerlaw is set to n = −1. As in Fig. 2.3 different outputs are shown in
different colors, with the typical errors on the mean offset to the right. ξ(r) has been corrected for
the integral constraint as described in Appendix B.

The other striking feature of Fig. 2.3 is that the location of the bump maximum stays nearly

fixed in the n = −0.5 and n = −1 cases, even when they are evolved to high values of r0/rbao

(corresponding to σ8 = 6 − 12), while the location of the maximum for the n = −1.5 case shifts

substantially at late times. The shifts for n = −1.5 are 6, 14, and 29 % at r0/rbao = 0.153, 0.263,

0.386 (corresponding to σ8 = 2, 3, 4). By contrast, in ΛCDM one typically sees shifts of ∼ 0.5%

by z = 0 (σ8 ≈ 0.8) and extrapolating the fitting formula of Seo et al. (2010) to an extreme value

of σ8 = D(z)/D(0) ≈ 4 predicts a shift of only ∼ 5%. Qualitatively, I can understand the different

behavior of n = −1.5 as a consequence of the much higher clustering amplitude at r ≈ rbao (see

Fig. 2.1). I will discuss the non-linear shift of the BAO peak in further detail in following sections.

As one last qualitative note on the n = −1.5 results in Fig. 2.3, at the two latest epochs one

can see that the correlation function at r ∼ 0.5rbao is showing significant non-linear evolution away

from the initial power-law, in contrast to the other two cases. I avoid this region in determining

the best fit gaussians to the simulation data.

2.3.2 Evolution of a “Skinny” Bump

I also investigated a case where the initial gaussian width of the bump was half of the value in the

fiducial case, i.e. σbao = 0.0375 rbao instead of ΛCDM-inspired value of σbao = 0.075 rbao. Keeping

Abump fixed at 2.75, I performed simulations only for the n = −1 background powerlaw. These
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results are shown in Fig. 2.4. The bump clearly maintains a gaussian shape as it is damped out,

and, as in the fiducial n = −1 case, there does not seem to be any shift in the BAO peak by the

end of the simulation.

2.3.3 Quantitative Characterization of the Bump Evolution

In Figs. 2.5-2.6 I show plots comparing the amplitude, width, and measured shift from gaussian

fits to the simulation results. These gaussian functions were determined by first making a rough

determination of the BAO peak and bump amplitude from ξ(r)/ξpow(r), then varying rbao, Abump

and σbao in a 3-dimensional χ2 to find the best fit. I avoided correlation function data more

than ∆r ∼ 0.3rbao below the peak in finding the best fit gaussian, to avoid effects of non-linear

evolution of the underlying powerlaw correlation function. Error bars in Figs. 2.5 & 2.6 were

determined via jackknife error estimation by sequentially omitting the correlation function results

for one of the seven realizations and determining the best fit gaussians in each case. The errors

on Abump × σbao/rbao, a dimensionless proxy for the area of the bump, are from propagated errors

in the values of Abump and σbao. The n = −1.5 case suffers from a slight degeneracy between the

amplitude of the bump and the magnitude of the non-linear shift, so the jackknife error bars are

slightly larger in this case.

Fig. 2.5 shows the main results for the quantitative evolution of the dimensionless bump width,

σbao/rbao, bump amplitude, Abump, and area Abump×σbao/rbao. In the top panel, in all cases there

is significant broadening of the bump, while in the middle panel, even apart from the dot-dashed

models which will be discussed in a moment, the amplitude of the n = −0.5 case appears to decrease

more slowly than that of the other setups.

The lower panel of Fig. 2.5 shows that the area under the bump stays remarkably constant,

closely following the black horizontal dashed and dot-dashed lines as the bump broadens and

attenuates. I speculate that the non-linear dynamics of the growth of structure is just diffusively

moving apart the pairs at separation r ∼ rbao so that σ2
bao ≈ σ2

IC + σ2
diff , while the area under

the bump stays constant and the gaussian shape is maintained. These assumptions underlie the

models plotted in the top two panels of Fig. 2.5. The broadening is modeled using the linear theory

equation for the mean-squared relative displacement between pairs (Eq. 9 from Eisenstein et al.

2007),

Σ2
pair = r2

12

∫ ∞

0

k2dk

2π2
P (k)f||(kr12), (2.11)

where r12 is the separation and

f||(x) =
2

x2

(

1

3
− sin(x)

x
− 2 cos(x)

x2
+

2 sin(x)

x3

)

. (2.12)

In the limit r12 → ∞, Eq. 2.11 reduces to Eq. 2.2, i.e., the rms pairwise displacement Σpair

asymptotes to the Zel’dovich displacement. However, modes with kr12 ≪ 1 move pairs of particles
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Figure 2.5: Results for the dimensionless width (top), amplitude (middle), and a proxy of the
dimensionless area under the bump (lower panel). Overplotted in the top two panels is a diffusion
model in which the broadening of the width scales as suggested by the rms pairwise displacement
equation (Eq. 2.11) while the area of the gaussian bump is held constant. Error bars are from
jackknife error estimation.
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separated by r12 coherently, and while these modes may dominate the “bulk flow” they cannot

affect clustering on scales < r12. Notably, Eq. 2.2 is infrared divergent for n ≤ −1, while Eq. 2.11 is

convergent for n > −3, failing only when the density contrast (not peculiar velocity) has a divergent

large scale contribution.

If, as an approximation, I consider a pure powerlaw power spectrum, P (k) ≈ Aa2kn, Eq. 2.11

can be re-written as

Σ2
pair =

Aa2

rn+1
12

1

2π2

∫ ∞

0
x2+nf||(x)dx, (2.13)

where x = kr12. Selecting r12 = rbao, and since Aa2 ∼ rn+3
0 (Eq. 3.14), this implies a scaling of the

form

Σ2
pair ∼ r2

bao

(

r0

rbao

)n+3

. (2.14)

In Fig. 2.5 I therefore model the evolution of σbao by assuming this scaling and empirically fitting

the constant of proportionality for each background powerlaw, i.e.,

σ2
bao = σ2

IC + 2κn r2
bao

(

r0

rbao

)n+3

. (2.15)

I use the symbol κn and include a factor of 2 to emphasize the characterization of the bump

evolution as a diffusion process.

The curves in the upper panel of Fig. 2.5 show predictions of Eq. 2.15 with values of κn =

{4.5, 1.3, 0.5} for n = −0.5,−1 and −1.5, respectively, chosen by visual fit to the simulation points.

The model provides a good match to the data for r0/rbao < 0.1. Most significantly, the same κn

fits both the fiducial and skinny n = −1 cases, supporting the conjecture that the bump width

is effectively set by a quadrature sum of the linear theory “intrinsic” width and the rms pairwise

displacement. The scaling with rms displacement holds fairly accurately out to large r0/rbao. The

constant-area approximation holds well for n = −1 and n = −1.5, but it breaks down for n = −0.5

when r0/rbao & 0.1, explaining the divergence of points and model curve in the middle panel of

Fig. 2.5.

2.3.4 Movement of the BAO peak

Fig. 2.6 shows the change in position of the bump maximum, determined as described in § 2.3.3 by

fitting a gaussian to the ratio of the non-linear correlation function to the linear-theory powerlaw.

As already noted in the discussion of Figs. 2.3 and 2.4, there is no significant shift of the peak

location in simulations for either the n = −0.5 or n = −1 cases (fiducial or “skinny” bump). Error

bars on the n = −0.5 peak location become large at late times because the bump itself flattens and

the large scale correlation is weak. For n = −1, the skinny bump errors are initially lower than

those of the fiducial model because the sharper peak can be centroided more precisely, but they

are higher at late times because the skinny bump gets depressed to a lower amplitude. In contrast
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Figure 2.7: Residuals showing the non-linear shift from subtracting the gaussian fits centered on
the un-shifted BAO scale from the matter correlation function results from the first two outputs
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Crocce & Scoccimarro (2008) ansatz in this case using Amc = 34/21 for both outputs. The thin
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to the other cases, the n = −1.5 model shows significant and strong peak shifts, evident already

for r0/rbao = 0.024 (σ8 = 0.5). Indeed, I have truncated the plot before the final n = −1.5 output,

with r0/rbao = 0.386 and rpeak/rbao = 0.71.

I compare these results to an elegant model for the shift from Smith et al. (2008) that uses

linear theory velocities and the pair-conservation constraint on ξ(r) to track the average motion of

pairs separated by rbao. Their equation (32) can be written

D2(z)

D2
ic

− 1 =

∫ rbao

rpeak

3

ξ̄ic(r)

dr

r
, (2.16)

where D(z) is the linear growth factor, the subscript ic refers to initial conditions when fluctua-

tions are fully in the linear regime, rbao is the linear theory BAO position, rpeak is the non-linear

position of the peak, and ξ̄(r) is the volume-averaged correlation function interior to radius r. For

D(z)/Dic ≫ 1 and the initial conditions investigated here, this equation leads to the approximate

result

rpeak

rbao
≈
[

1 +
n + 3

n
Cn

(

r0

rbao

)n+3
]1/(n+3)

, (2.17)

where Cn would be 1.0 for a pure powerlaw spectrum and incorporating the bump gives Cn ≈
{1.13, 1.26, 1.38} for n = {−0.5,−1,−1.5}. For n < 0 this formula predicts that the peak shifts to

smaller scales. In the limit of small r0/rbao, a binomial expansion yields

rpeak

rbao
≈ 1 +

Cn

n

(

r0

rbao

)n+3

. (2.18)

Since rn+3
0 ∝ D2(z), the non-linear shift grows as the square of the linear growth function as

expected from PT (e.g. Padmanabhan & White 2009; Seo et al. 2010), and the displacement is

larger for more negative n.

The seemingly quite different argument of Crocce & Scoccimarro (2008) leads to a similar ex-

pression for the peak shift. They propose modeling the non-linear correlation function in the

neighborhood of the bump by

ξNL(r) ≈ ξ(r) + Amc
dξ(r)

dr

r ξ̄(r)

3
, (2.19)

where the mode-coupling factor Amc can be treated as a fitting parameter but the value 34/21

obtained from PT is in fact close to the best-fit numerical value (see Crocce et al. (2010), Appendix

A). With judicious use of Taylor expansions in the limit of small shift and minimal non-linear

broadening, one can derive
rpeak

rbao
≈ 1 +

34

21

Cn

n

(

r0

rbao

)n+3

, (2.20)

hence a shift about 50% larger than Eq. (2.18) but with the same dependence on r0 and n.

Dashed lines in Figure 2.6 show the prediction of Eq. (2.18). The model correctly predicts that
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the shift is much larger for n = −1.5 than for n = −1 or n = −0.5. For n = −1.5, it tracks the

numerically measured shift remarkably well. For the other n values, it predicts too large a shift for

r0 > 0.1rbao; at smaller r0, the model is consistent with the numerical results within the error bars,

but the numerical results are also consistent with zero shift. Note that this treatment does not

include the 1-loop PT extension of Smith et al. (2008)’s model, which could improve agreement at

later epochs.

Figure 2.7 compares Eq. (2.20) to the first two outputs of the n = −1.5 simulations. For

r0/rbao = 0.024, this model predicts the distortion in the neighborhood of the peak remarkably

well, with no free parameters. Note that there is a clear non-linear shift of the peak at this output,

despite the low value of σ8 = 0.5. For r0/rbao = 0.061, the model predicts too large a distortion.

However, if I insert the broadened and lower amplitude bump (taking σbao and Abump from the

model discussed in the previous section) into the calculation of Eq. (2.20), an approach that seems

reasonable but is not rigorously justified, then I get the dashed green lines in Figure 2.7, which

agrees much better (though not perfectly) with the numerical results.

I conclude that these analytic approaches can explain why the shift in the bump location is

much larger for n = −1.5 and can capture at least some of the quantitative behavior of the peak

shift. However, they do not work accurately over a wide range of r0/rbao and n. I will return to

the comparison of PT predictions and the numerical results in §3.4, in the context of the power

spectrum.

2.4 Self-Similar Tests

In an Ωm = 1 pure powerlaw model, i.e. P (k) = Akn, since the only scale germane to the problem

is the amplitude, A, the evolution of clustering statistics should depend only on the value of A

or some derived variable such as kNL = (2π2/A)1/(n+3). The evolution may be different for each

powerlaw but with n fixed there should be a unique function (e.g. of k/kNL, or r/RNL, or M/MNL,

...) that fully describes any given clustering statistic, even well into the non-linear regime. In the

early days of cosmological N-body investigations, demonstrations of self-similar evolution with pure

powerlaw cosmologies, in addition to providing physical insight, also gave decisive confirmations of

the accuracy of simulations (e.g. Efstathiou et al. 1988; Bertschinger & Gelb 1991; Lacey & Cole

1994; Jain et al. 1995; Colombi et al. 1996). I take advantage of the simplicity of the powerlaw

times a gaussian setup to perform self-similar tests that can be used in an analogous way to test

the accuracy of the simulations on the scale of the bump.

The powerlaw times a bump setup clearly has two scales at play instead of one, so in this case,

for a given powerlaw and a given initial bump width, the non-linear dynamics should evolve only

as a function of the ratio of the non-linear scale to the BAO scale. The dynamics are self-similar in

the sense that any property of the system, such as the broadening of the bump or the shift in the

peak for a particular powerlaw, is determined by how close the non-linear scale, r0, has come to the
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Figure 2.8: Tests of robustness to numerical parameters. (Top ) Comparison of the bump region of ξ(r) in simulations with
rbao/Lbox = 1/10 (points) to the gaussian fits (lines) from the fiducial simulations in Fig. 2.3, which have rbao/Lbox = 1/20.

(Bottom) Comparison of simulations with rbao/Lbox = 1/20 but 2563 particles, hence rbao/n
−1/3
p = 12.5, to the fiducial simulations

with 5123 particles and rbao/n
−1/3
p = 25.
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BAO scale. Unlike a ΛCDM simulation the result should not, in principle, depend on whether the

bump is initially set at, e.g., 100 h−1 Mpc or 130 h−1 Mpc; only the ratio of the non-linear scale to

the BAO scale matters in determining the evolution. If the N-body results do depend, separately,

on the BAO scale or the non-linear scale, this can be interpreted as a sign of numerical artifacts.

2.4.1 Robustness to Varying Box Size and Mean Interparticle Spacing

Cosmological N-body simulations unavoidably introduce two artificial scales into the problem –

the box size, Lbox, and the initial mean interparticle spacing, lp = n
−1/3
p = Lbox/N

1/3. Both of

these scales can potentially interfere with the evolution of the BAO feature and bias one’s results.

In the upper panels of Fig. 2.8 I show results from tests where the BAO scale has been doubled

(or equivalently the box-size halved), such that rbao/Lbox ≈ 1/10 instead of the fiducial value of

rbao/Lbox ≈ 1/20 in the simulations shown elsewhere in the paper. The number of particles in

this test is kept fixed at 5123, so that the ratio of the BAO scale to the mean interparticle spacing

increases from rbao/n
−1/3
p = 25 (as in the fiducial simulations) to 50. I also show tests (lower three

panels) where the box size is kept fixed while the number of particles is decreased to 2563, arguably

more akin to a conventional convergence test. In each panel I plot the best-fit gaussians from

the fiducial set of simulations. Note that for the “double-the-bump” tests in the upper panels of

Fig. 2.8, these simulations had to be run for much longer than in the fiducial case in order for the

non-linear scale to approach the BAO scale, which had been placed at twice the fiducial separation.

To the extent that the simulations in Fig. 2.8 match the fit from the fiducial set of simulations,

the evolution can be said to be self-similar and unaffected by the artificially-introduced numerical

scales. For the double-the-bump tests, the results seem to match the fiducial simulations well. In

this case, especially for n = −1.5, the integral-constraint correction to ξ(r) discussed in Appendix B

is critical. I interpret this agreement as an indication that rbao/Lbox . 1/10 is acceptable if one

includes integral-constraint corrections. Note that the measured errors on the mean are larger for

these tests, which measure the correlation function on scales closer the box scale than in the fiducial

simulations. These larger errors are consistent with expectations from Gaussian statistics in a finite

volume Cohn (2006).

The 2563 test was not quite as successful. The accelerated attenuation of the bump in the

n = −1.5 case is severe enough to be of particular concern, especially since this setup is the

one which actually sees an appreciable change in the BAO peak. The n = −1 simulations agree

much better but still slightly underpredict the bump height. This also seems to be the case with

the n = −0.5 results, which are more noisy. Though not quite a failure, I interpret this test to

recommend keeping rbao/n
−1/3
p & 25, as in the fiducial set of simulations.

The tests in Fig. 2.8 show that the evolution of the bump – its flattening, its movement in the

n = −1.5 case, the lack of movement in the n = −0.5 and −1 cases, and the unexplained behavior

of the bump area in the n = −0.5 case – is robustly predicted even when numerical parameters

are changed substantially. For the wider importance of using BAO to constrain cosmology, this
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Figure 2.9: Results for a model including a cosmological constant (Ωm = 0.3, ΩΛ = 0.7) and
with an n = −1 background powerlaw. The first and third outputs (blue and red) are directly
comparable to the first and second outputs of the fiducial n = −1 simulations; thus the gaussian
fits to those outputs in the fiducial case are overplotted. The second and last outputs (green and
cyan) are compared to extrapolations from the fiducial n = −1 case assuming no non-linear shift
and a model for the bump evolution as described in § 2.3.3.

is an encouraging sign that modest N-body simulations can accurately render the non-linear shift

of the BAO peak with very different models for the broad-band clustering. For power spectra

that span a much wider range than ΛCDM models, numerical parameters rbao/Lbox . 1/10 and

rbao/n
−1/3
p & 25 appear to be adequate.

2.4.2 A Test with Dark Energy

In this section, simulations including a cosmological constant (Ωm = 0.3,ΩΛ = 0.7) are presented

and connected to the conclusions in previous sections. The evolution of the bump, if evolving self-

similarly, should only depend on the ratio of r0/rbao, so that the effect of dark energy would only

be to change how quickly the non-linear scale grows and reaches a certain value. The introduction

of dark energy in principle breaks self-similarity by defining a characteristic time (when Ωm and

ΩΛ are equal), but in linear perturbation theory and the quasi-linear Zel’dovich and adhesion

(Gurbatov et al. 1989; Weinberg & Gunn 1990) approximations, evolution is determined only by

the linear growth factor, with no direct dependence on ρm(a) or ρDE(a). Zheng et al. (2002)

and Nusser & Colberg (1998) demonstrate that this dependence on the linear growth factor alone

remains a very good approximation in fully non-linear N-body simulations, the latter also showing

explicitly that the full equations of motion for cosmological perturbations are weakly dependent

on the individual values of Ωm and ΩΛ when those equations are expressed using the linear growth

factor as the time variable.

Fig. 2.9 compares these expectations to the N-body simulation results by presenting the evolved
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bump in a set of simulations (n = −1) that include a cosmological constant in comparison to the

gaussian fits to the fiducial simulations. For some outputs, I have interpolated between outputs

of the fiducial simulations assuming the model for the bump evolution discussed in § 2.3.3. A

substantive difference between Ωm = 1 and dark energy models is that the growth of structure

“freezes out” as dark energy becomes the dominant component of the universe. The last output in

Fig. 2.9 is very close to this “freeze-out” limit in the linear theory growth function, which prevents

r0/rbao from growing beyond 0.073 in this case.

The gaussian fits to the fiducial simulations agree well with the simulation results in Fig. 2.9,

even for the last output which, with considerable computational expense, was evolved very close to

the freeze-out limit. This confirms the expectations of self-similar evolution for this setup even in

cosmologies with dark energy.

2.5 Evolution of the BAO feature in Fourier Space

2.5.1 Power Spectrum Estimation

Power spectra were determined for the n = −0.5,−1 and −1.5 models by mapping the particles

onto a 10243 grid using the cloud in cell (CIC) assignment scheme. Performing a discrete fast fourier

transform on this grid yields δ̂(~k) and fourier amplitudes P (~k) = |δ̂(~k)|2. The artificial smoothing

introduced by the gridding scheme is corrected for by dividing P (~k) by the appropriate assignment

function for CIC (Hockney & Eastwood 1981), and the corrected P (~k) is binned in k to yield P (k).

Following Heitmann et al. (2010) I do not include any kind of shot noise correction (e.g Jing 2005;

Colombi et al. 2009), and I follow their advice in trusting the computed power spectra only up

to half the particle nyquist wavenumber, as indicated with black dotted vertical lines in Fig. 2.10,

which presents the primary power spectrum results. The power spectrum up to this k-value should

be negligibly affected by the aliasing of the 10243 grid. Notwithstanding the conservative decisions

in measuring P (k), I will argue in the next section that a simple phenomenological model that draws

on results from pure powerlaw simulations (Appendix A) allows these predictions to be extended

to much higher k for the early outputs.

I report power spectra throughout, normalizing the wavenumbers by kbao = 2π/rbao, and giving

the power spectrum amplitudes in terms of P (k)/r3
bao. This reflects the self-similar nature of the

problem and allows more straightforward identification of the k-values of various nodes and anti-

nodes. For technical reasons I throw out the measurements of the spectral power for k ≈ 2π/Lbox,

which should be computed separately from measurements at higher k because of the different

statistics of mode-counting near the scale of the box. The power on these scales is also inevitably

noisy because of the small number of modes.
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Figure 2.10: Left column: Measured power spectra for the fiducial n = −0.5
(top), n = −1 (middle) and n = −1.5 (bottom) simulations. The x-axis
is shown normalized to the scale of the BAO feature, kbao = 2π/rbao and
the y-axis is likewise shown as a dimensionless quantity, P (k)/r3

bao. There
is no correction for shot noise; the shot noise level is indicated with dot-
dashed lines. Right column: Results from dividing by the linear theory
pure powerlaw. In both columns a phenomenological model (Eq. 2.21, solid
colored lines) is compared to the simulation results. The scale corresponding
to half the particle nyquist wavenumber is indicated with a vertical black
dotted line.
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Figure 2.10:
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2.5.2 Interpretation

Ignoring the wiggles in Fig. 2.10 for a moment and focusing on the evolution of the overall shape of

the power spectrum, the results are bracketed by the n = −0.5 spectrum, which trails behind the lin-

ear theory powerlaw at high k, and the n = −1.5 spectrum, which clearly outpaces the linear theory

clustering prediction. This behavior is expected from perturbation theory (Scoccimarro & Frieman

1996; Scoccimarro 1997), and the trend is more clearly shown in the pure powerlaw plots in Ap-

pendix A. Physically, the behavior of the n = −0.5 powerlaw is sometimes described as “pre-

virialization” (Davis & Peebles 1977), where on small scales the clustering power is so high that as

halos form they pull away from the expansion of the universe and the non-linear power spectrum

falls behind the linear theory prediction. For much steeper powerlaws, like n = −1.5 or the high k

spectrum of ΛCDM, the trend is the opposite; clustering power is “transferred” from large scales

to smaller scales. The n = −1 spectrum lies between these two extremes, and its spectrum is above

and below the linear theory prediction in different ranges (Appendix A).

With this in mind I modeled the power spectrum results with a phenomenological approach,

treating separately the non-linear evolution of the pure powerlaw spectrum and modeling the wiggles

by coupling the analytic solution in Eq. 2.10 with the diffusion model introduced in § 2.3.3. Thus,

the model is

Pphen(k) = Anr3
0(kr0)

nfn(k/kNL) + (2.21)

25/2π3/2A′
bumpσ′

baor
2
bao

(

r0

rbao

)n+3 sin(k r′bao)

kr′bao

e−k2σ′2
bao/2,

where σ′
bao is from Eq. 2.15, and, as in § 2.3.3, the area under the bump is assumed to be constant,

A′
bump σ′

bao = Abump σIC. For the n = −0.5 and n = −1 cases I assume no shift of the BAO scale,

r′bao = rbao, while for n = −1.5 I set the BAO scale using r′bao/rbao = 1 − 1.08(r0/rbao)
1.5, which

is a good description of the motion of the peak in Fig. 2.6. For the pure powerlaw evolution I

use non-linear fitting functions to pure powerlaw simulations, fn(k/kNL), which are described in

Appendix A. In Fig. 2.10 I show the predictions of the phenomenological model with solid lines up

to the k-values where the fitting function is well determined by the pure powerlaw simulations.

This model works surprisingly well in the n = −0.5 case, given that the constant area approx-

imation seems to break down in the later outputs (Fig. 2.5). The first few outputs of the n = −1

and n = −1.5 cases are also well matched by Eq. 2.21. For these first few outputs the phenomeno-

logical models may actually be more trustworthy than the simulation measurements: at high k the

pure powerlaw spectrum dominates, and the non-linear fitting functions in this regime are defined

preferentially from later outputs in the pure powerlaw simulations, which should be unaffected by

transients from initial conditions or shot noise.

If the phenomenological model can be trusted at high k, the results for the first output shown in

Fig. 2.10 can be extended to k/kbao ∼ 30 for n = −0.5, k/kbao ∼ 600 for n = −1, and k/kbao ∼ 50
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for n = −1.5. Assuming again that simulations can be trusted up to half the particle nyquist

wavenumber, this is analogous to running simulations for this setup with ∼ 24003, ∼ 480003 and

∼ 40003 particles respectively9, assuming the same box size as the 5123 simulations presented here.

At small k and late times there are significant deviations, however, between the phenomenolog-

ical model and the n = −1 and n = −1.5 results. Those outputs have features, especially around

k ∼ kbao, that seem to be unaccounted for in Eq. 2.21. In the next section I compare the simulation

results to expectations from perturbation theory.

2.5.3 Comparison with PT predictions

Because of the IR divergence of
∫

P (q) dq for steep power spectra, perturbation theory schemes that

use this term anywhere to renormalize the higher order expansions will necessarily be problematic

for these setups. However, standard 1-loop PT (a.k.a. SPT) is still well defined for n > −3

(Vishniac 1983; Makino et al. 1992) and so, like Widrow et al. (2009) who explored pure powerlaw

spectra, I show predictions for this approach and for the closely related SimpleRG scheme from

McDonald (2007).

Although, the n = −0.5 and n = −1 cases are IR convergent for
∫

P (q) dq, they are still UV

divergent. Through separating the powerlaw and wiggle terms I can avoid some of the cutoff de-

pendence of the SPT predictions; the predictions shown for the n = −1.5 case should be completely

cutoff independent, while n = −0.5 and n = −1 results are sensitive to the UV cutoff. In what

follows I choose kmax/kbao ≈ 160, but my qualitative conclusions would be unchanged even if this

high-k cutoff were increased by a factor of two. I calculate PT predictions by modifying the publicly-

available copter code from Carlson et al. (2009) to better accommodate powerlaw cosmologies and

this setup.

The primary PT results are presented in Fig. 2.11. At each output predictions are shown up to

kNL, roughly the scales where these schemes are expected to break down. Generally, SimpleRG and

SPT/SPT+ give fair-to-good predictions for the non-linear damping of the wiggles (as discussed

below SPT+ uses the non-linear fitting functions in Appendix A for the powerlaw evolution). The

good comparison with the simulations for the n = −1.5 case suggests that the non-linear shift

can be adequately captured by PT. An exception to this is clearly the SPT+ predictions for the

n = −0.5 case, which seem to significantly overpredict the damping of the BAO feature. I discuss

the SPT/SPT+ predictions in more detail in the next section, breaking up the calculation into

different “interaction” terms in an effort to gain insight into the non-linear physics. Predictions

from the SimpleRG scheme in Fig. 2.11 were not calculated by breaking up PIC(k) in this way since

SimpleRG does a much better job than SPT in predicting the evolution of pure powerlaw spectra

(Widrow et al. 2009).

9The extraordinary value for the n = −1 case comes from the high k fitting function from Widrow et al. (2009).
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Figure 2.11: A comparison of power spectrum results from Fig. 2.10 with quasi-linear predictions from standard perturbation theory
(SPT/SPT+, dashed lines) and the SimpleRG scheme (dot-dashed lines) from McDonald (2007). SPT+ treats the pure powerlaw
evolution differently than SPT, using a fit to pure powerlaw simulation results (Appendix A) instead of the SPT prediction for the
pure powerlaw evolution (Scoccimarro & Frieman 1996). In each plot the x-axis limits are set to include the low k measurements
from simulations up to half the particle nyquist wavenumber, approximately the regime where the N-body results should be accurate.
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2.5.4 SPT and SPT+

The 1-loop correction to the linear theory power spectrum is given by Makino et al. (1992)

P (k) = PL(k) + P22(k) + P13(k) (2.22)

where

P22(k) =
k3

98 (2π)2

∫ ∞

0
drPL (kr)

∫ 1

−1
dx×

PL

[

k
(

1 + r2 − 2rx
)1/2

]

(

3r + 7x − 10rx2
)2

(1 + r2 − 2rx)2

(2.23)

and

P13(k) =
k3PL(k)

252 (2π)2

∫ ∞

0
drPL(kr)

[12

r2
− 158 + 100r2

−42r4 +
3

r3

(

r2 − 1
)3

(7r2 + 2) ln

∣

∣

∣

∣

1 + r

1 − r

∣

∣

∣

∣

]

.

(2.24)

Notice that in P22(k) and P13(k) the linear power spectrum appears twice, and as a result these

terms increase in amplitude as the linear growth function to the fourth power.

For pure powerlaw spectra, by including UV & IR cutoffs and using sufficient care to avoid the

singularity in the denominator of the kernel in P22(k), these integrals can be computed analytically

(Scoccimarro & Frieman 1996; Makino et al. 1992). In principle, it may also be possible to obtain

an exact solution for 1-loop corrections to the analytic expression for PIC(k) in Eq. 2.10, but the

complexity of the P22(k) kernel is difficult to overcome or approximate.

To organize the calculation and for the most clarity in physical interpretation, I calculate

the 1-loop corrections by treating separately the “interaction”10 terms that arise from inserting

PL(k) = Ppow(k) + Pwig(k) (Eq. 2.4) in P22(k) and P13(k),

P22(k) =
k3

98(2π)2

[
∫

drPpow(kr)

∫

dxPpow

[

k(1 + r2 − 2rx)1/2
]

f22(r, x)

+ 2

∫

drPpow(kr)

∫

dxPwig

[

k(1 + r2 − 2rx)1/2
]

f22(r, x)

+

∫

drPwig(kr)

∫

dxPwig

[

k(1 + r2 − 2rx)1/2
]

f22(r, x)

]

, (2.25)

and likewise

P13(k) =
k3

252(2π)2

[

Ppow(kr)

∫

drPpow(kr)f13(r) + Ppow(kr)

∫

drPwig(kr)f13(r)

+ Pwig(kr)

∫

drPpow(kr)f13(r) + Pwig(kr)

∫

drPwig(kr)f13(r)

]

, (2.26)

where f22(r, x) and f13(r) are short hand for the fully expressed kernels in Eqs. 2.23 & 2.24. For the

10Alluding to the resemblance between SPT and Feynman integrals in particle physics
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terms where Ppow(k) appears twice – a.k.a. the powerlaw-powerlaw interactions – this result can

be looked up in Scoccimarro & Frieman (1996) or computed using their approach. But since those

results are often cutoff dependent and/or in poor agreement with simulations, I can potentially

replace the powerlaw-powerlaw interactions and the linear theory powerlaw with a fitting function

from pure powerlaw simulations, while still treating the remaining terms in P22(k) and P13(k)

without any approximation. In Fig. 2.11 this approach is dubbed “SPT+” while “SPT” refers to

treating the powerlaw-powerlaw interactions as in Scoccimarro & Frieman (1996). I discuss the

remaining interaction terms in the next two sections.

2.5.5 Powerlaw-Wiggle Interactions

Eqs. 2.25 & 2.26 contain three terms that include both Ppow(k) and Pwig(k). Since these terms

include dimensionless factors of (r0/rbao)
n+3, whereas in the remaining “wiggle-wiggle” interaction

terms there appear factors of (r0/rbao)
2(n+3), at fixed r0/rbao these powerlaw-wiggle interaction

terms will generally give larger corrections to PL(k) than the “wiggle-wiggle” interactions, which

are discussed in the next section. The powerlaw-wiggle terms were evaluated numerically to obtain

the SPT & SPT+ results in Fig. 2.11. The P13(k) powerlaw-wiggle interactions are given by

P13,pow-wig(k) =

k3

252(2π)2

[

Pwig(kr)

∫

drPpow(kr)f13(r)

+ Ppow(kr)

∫

drPwig(kr)f13(r)

]

.

(2.27)

For the second term in Eq. 2.27, since Pwig(k) is exponentially damped at high k and Pwig(k) →
constant for k → 0, the result is cutoff independent. By using an approximation to the P13(k)

kernel one can obtain a remarkably accurate approximate solution for this expression, which will

be explained in the section on “wiggle-wiggle” interactions where this integral also appears.

The integral in the first term in Eq. 2.27 also appears in the calculations of

Scoccimarro & Frieman (1996) for a variety of powerlaws. In this case IR divergences might be

expected to be problematic, but, as explained by Makino et al. (1992), for steep powerlaws the IR

divergence cancels with a corresponding term in P22(k) (in the present context the powerlaw-wiggle

term in Eq. 2.25) yielding finite results for n > −3. Unfortunately, there are still UV divergences

for the n = −0.5 and −1.0 cases. I integrate up to kmax/kbao ≈ 160 in the results presented here.

The last powerlaw-wiggle interaction term, as just mentioned, is the second term in Eq. 2.25.

This term has a factor of two in front of it because a symmetry in the P22(k) kernel implies that if

Ppow(k) and Pwig(k) are interchanged the result of the integral remains the same. I use this property

to cross check the numerical integration of this term. Although I was unable to find an approximate

analytic solution for this term, note that the dx integral can be computed analytically using the

approximation Pwig(k) ∼ sin(krbao)/k and with a substitution of variables. This approximation is
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Figure 2.12: Results for the powerlaw-wiggle interactions (cyan) and the wiggle-wiggle interactions
(orange) for the three different powerlaw setups. Expectations from the diffusion model coupled
with an analytic approximation for PIC(k) in the r0/rbao ≪ 1 limit are shown for comparison in
red. Positive corrections are shown in solid lines, negative corrections are shown in dashed lines.
Note that for clarity the n = −1.5 plot is shown at the first output; the n = −0.5 and −1 plots are
shown at the second output, which allows easier visual comparison with the linear theory power
spectrum.

37



valid for k ≪ σ−1
bao, still a relatively wide and interesting range of k.

The results for the powerlaw-wiggle interactions are shown in cyan lines alongside the linear

theory spectrum (gray solid lines) in Fig. 2.12. Also shown (in orange) are the wiggle-wiggle

interactions discussed in the next section. A negative correction in this plot is shown with dashed

lines, while positive corrections are shown with solid lines. Qualitatively, the results indicate that

the powerlaw-wiggle interactions are approximately out of phase with linear theory and push and

pull the wiggles in the right places to dampen out the BAO feature. A possible exception to this

is the low k correction for n = −1.5, but, in fact, the wide positive correction around k/kbao ∼ 0.5

seems to explain the extra power seen on those scales in the simulation results (Fig. 2.10), which

was not captured by the phenomenological model in Eq. 2.21.

For a more quantitative comparison to the powerlaw-wiggle results, Fig. 2.12 shows a model

inspired by the diffusion behavior seen in the correlation function. If I suppose that the bump

broadens out as in Eq. 2.15 and place this ansatz for σ2
bao(r0) in the phenomenological model in

Eq. 2.21, then in the limit where r0/rbao is small I expect the wiggles to evolve as

Pwig(k, r0)/r
n+3
0 ∼ e−k2σ2

bao(r0)/2 sin(krbao)

k

≈ e−k2σ2
IC/2 sin(krbao)

k

−k2r2
baoκn

(

r0

rbao

)n+3

e−k2σ2
IC/2 sin(krbao)

k
.

(2.28)

Notice that since the linear theory wiggles grow in amplitude as the linear growth function squared

(i.e. rn+3
0 ∼ Aa2 in Eq. 3.14), the extra factor of rn+3

0 in Eq. 2.28 makes this correction grow as the

linear growth function to the fourth power. This is the same dependence on the growth function as

in SPT. I plot this expectation from the diffusion model – essentially −k2 times the linear theory

wiggles – alongside the powerlaw-wiggle results in Fig. 2.12. There are no free parameters to this

comparison; κn takes the same value as in § 2.3.3, which gave a good fit to the correlation function

results.

For the n = −1 and −1.5 cases the agreement with the diffusion model is quite good except for

the caveat already mentioned with n = −1.5 for k/kbao ∼ 0.5. For the n = −0.5 case, the shape of

P13+33,pow-wig(k) agrees well with the diffusion model but the amplitude is about a factor of four

larger. Fig. 2.12 suggests that the problem lies in the SPT+ prediction, which predicts too much

damping of the BAO feature. (Increasing the high-k cutoff would predict more damping.)

Comparing the diffusion model, which oscillates as − sin(krbao) in Fig. 2.12, to the powerlaw-

wiggle interactions also reveals a slight phase difference between P13+22,pow-wig(k) and the diffusion

model expectations. This is most easily visible for n = −1.5 in Fig. 2.12, which seems to oscillate

as − sin(krbao +ϕ) where ϕ ≈ 0.2, while this phase is closer to ϕ ≈ 0.1 for n = −1 and is consistent

with zero for n = −0.5. This result implies that, in addition to damping the BAO feature, the
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Figure 2.13: Highlighting the wiggle-wiggle interactions and showing, individually, P13,wig-wig(k)
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more details.

powerlaw-wiggle interactions provide a shift, since a Taylor expansion of sin(krbao/αshift) yields

sin(krbao/αshift) ≈ sin(krbao) − (αshift − 1) cos(krbao) (2.29)

and, without any approximation,

− sin(krbao − ϕ) = − cos ϕ sin(krbao) − sin ϕ cos(krbao). (2.30)

The last term on the right in Eq. 2.30 should provide the “push” to move the BAO feature to

smaller scales, since sin ϕ ≥ 0 for the ϕ-values that match the numerical results.

2.5.6 Wiggle-Wiggle Interactions

Though suppressed by a factor of (r0/rbao)
n+3 relative to the powerlaw-wiggle interactions, in

Fig. 2.12 the wiggle-wiggle interactions are not completely negligible (at least for the n = −1.5

case), and by eye they appear about a half-period out of phase with the linear theory wiggles, just

the kind of feature that gives rise to a shift of the BAO scale. I discuss these calculations in this

section, with the convenience that because the functional form of Pwig(k) is independent of n, the

wiggle-wiggle interactions are also independent of n apart from the (r0/rbao)
2(n+3) term out front.

Since Pwig(k) → constant at low k and Pwig(k) decays rapidly to zero at high k, the integrals should

be cutoff independent.

The task, then, is to evaluate the two remaining terms in Eqs. 2.25 & 2.26. I treat both terms

numerically, but, fortuitously, a remarkably accurate solution can be obtained for P13,wig-wig(k).
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Using Pwig(k) ∼ exp(−k2σ2
bao/2) sin(krbao)/k, and by approximating the P13(k) kernel with

f13(r) ≈ −(352/5) exp(−29r2/11) − 488/5 one can show that

∫ ∞

0
drPwig(kr)f13(r) ≈ (2.31)

−176π

5 k
Erf





√
11k rbao

√

116 + 22k2σ2

bao



− 244π

5 k
Erf

(

rbao√
2σbao

)

,

which is accurate to better than 8% for all k and better than 1% for k/kbao & 0.6. The minus signs

in this result imply that, when multiplied by Pwig(k) to obtain P13,wig-wig(k) as in Eq. 2.26, the

result will oscillate like − sin(krbao).

In Fig. 2.13, which shows the results for numerical integration of the wiggle-wiggle interactions,

the y-axis has been normalized to be a dimensionless quantity that is independent of the powerlaw

and epoch of interest, i.e.,

Pwig,n(k) ≡ Pwig(k)

r3
bao

(

rbao

r0

)n+3

Pwig-wig,n(k) ≡ Pwig-wig(k)

r3
bao

(

rbao

r0

)2(n+3)

.

Clearly there is a great deal of destructive interference between P13,wig-wig(k) and P22,wig-wig(k) in

Fig. 2.13. The sum of these terms, P13+22,wig-wig(k), which is of course much lower in amplitude

than either P13,wig-wig(k) or P22,wig-wig(k), seems to oscillate at about a half-period out of phase

with Pwig(k) as mentioned earlier. To highlight this I overplot with a green-dashed line a function

proportional to − cos(krbao), which qualitatively follows the oscillations in P13+22,wig-wig(k) rather

well. Since the P22,wig-wig(k) term seems to oscillate as sin(krbao − ϕ) where ϕ is small and positive,

when added to P13,wig-wig(k), which oscillates as − sin(krbao) and with a similar envelope, these

waves interfere as

− sin(krbao) + sin(krbao − ϕ)

= sin(krbao)(−1 + cos ϕ) − sin ϕ cos(krbao)

≈ − sin ϕ cos(krbao).

(2.32)

The green-dashed line, more specifically, shows this − cos(krbao) term multiplied by the analytically-

derived envelope for P13,wig-wig(k) (i.e. Eq. 2.31 with appropriate constants and factors of k and

including a factor of exp(−k2σ2
bao/2) from Ppow(k)) and divided by a factor of four (i.e. sinϕ ≈ 1/4)

to approximately match the amplitude of P13+22,wig-wig(k). This model is only approximate –

for example, there seems to be some weak k-dependence of the phase ϕ in P22,wig-wig(k) – but,

qualitatively, something like this phenomenological description must be going on.

This raises the question of whether, in SPT, the shift in the BAO scale comes primarily from
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the phase lag in the powerlaw-wiggle interactions or from P13+22,wig-wig(k). The answer, at least for

n = −1.5 where the BAO scale moves significantly, is that the shift is similar in magnitude from

both terms, and that both “push” the BAO scale in the same direction. Qualitatively, the same

can be said for the n = −1 case, but the phase lag in the powerlaw-wiggle interactions is smaller

and the (r0/rbao)
(n+3)-suppressed amplitude of wiggle-wiggle interactions is smaller still, so much

less of a shift is expected. And in the n = −0.5 case there does not seem to be a phase lag in the

powerlaw-wiggle interactions, while the wiggle-wiggle interactions are even more attenuated.

2.5.7 PT Results in Real Space

Returning to the SimpleRG scheme, which is closely related to SPT, I show the results from

integrating the PSimpleRG(k) predictions shown in Fig. 2.11 into two-point correlation functions

in Fig. 2.14. Note that some of the outputs for the n = −0.5 case are omitted for clarity. At

each output I apply a minimal damping to PSimpleRG(k) to suppress noise and the influence of

PSimpleRG(k) for k ≫ kNL in the final result. Some PT schemes naturally include exponential

damping in the predicted PQL(k) (e.g. Matsubara 2008), which is advantageous for computing ξ(r)

from PT. SimpleRG (and SPT) do not naturally include these factors, so the results for ξ(r) may

not be as clean-looking as other schemes, even though the P (k) predictions may be quite reasonable.

In SPT, for example, the P (k) predictions for k & kNL with the powerlaw-times-a-bump setup are

often large and inaccurate or predict P (k) < 0 at some k. Therefore I do not show ξ(r) predictions

from SPT, which offer little insight in judging the accuracy of the scheme or in confirming the

picture of how the BAO feature evolves as sketched out in the previous two sections.

With that disclaimer, the SimpleRG predictions do a good job of rendering the evolution of the

BAO feature in configuration space (Fig. 2.14). In all cases the broadening and attenuation of the

bump are qualitatively accounted for, including the n = −0.5 case that was problematic in SPT; the

success of SimpleRG in this case may even help explain why the area of the bump is not as precisely

conserved as in the other setups (Fig. 2.5). And in the n = −1.5 case, although noisy, SimpleRG

does seem to accurately predict the shift in the BAO peak. With the close correspondence between

SimpleRG and SPT, broadly speaking I interpret the success of SimpleRG in Figs. 2.11 & 2.14

and the typically sensible results for SPT discussed in the previous two sections to imply that

perturbation theory can accurately capture the non-linear evolution of the BAO feature with this

class of initial conditions.

2.6 Discussion and comparison with ΛCDM

2.6.1 ΛCDM-like Simulations

Having described and explained the non-linear evolution of the BAO-feature with the powerlaw

setup in some detail, it is worth discussing the relevance of these results to the canonical ΛCDM

cosmology. I approach this task first by simply assessing the resemblance of these results to ΛCDM.
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Figure 2.14: The results from fourier transforming the power spectrum predictions of SimpleRG
(Fig. 2.11) into correlation functions (dot dashed lines), compared with the results from simulations
(points). The fourier transform was performed with a small amount of damping in order to suppress
noise and the influence of the power spectrum for k ≫ kNL, well beyond the regime where SimpleRG
is expected to be reliable.
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result of subtracting ξnw(r) from the ξ(r) measurements.
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To aid in this comparison I performed a set of four simulations with an initial ΛCDM spectrum

(Ωm = 0.226, ΩΛ = 0.774) as in Fig. 2.2 but evolved with Ωm = 1, ΩΛ = 0 so that σ8 and r0/rbao

in this case can avoid the freeze out limit and reach values comparable to the powerlaw setup. The

ΛCDM-like simulations presented here were performed with essentially identical parameters as the

earlier fiducial simulations in terms of box size, force resolution and number of particles. I show

the primary ξ(r) results in Fig. 2.15; the r0/rbao values for each output is shown in Table 2.2.

Table 2.2: ΛCDM outputs

r0/rbao σ8

0.003 0.25
0.019 0.5
0.040 0.75
0.062 1.0
0.106 1.5
0.218 3.0

Fig. 2.15 is fairly unremarkable except that it shows the non-linear evolution of the correlation

function in ΛCDM well past z = 0 and beyond the freeze out limit (σ8 ∼ 1.3). As in Fig. 2.1,

the overall amplitude of the BAO feature at fixed r0/rbao is more similar to the n = −0.5 case

than to the cases with more large scale power. The models for the non-linear shift from Seo et al.

(2010), shown with vertical dotted lines in the center and right panels of Fig. 2.1, predict shifts of

3 − 4 % when extrapolated to the final output11. The center panel also shows the smooth ξnw(r)

correlation function, computed from a fourier transform of Pnw(k) from Eisenstein & Hu (1998),

and in the right panel ξnw(r) is subtracted from the simulation data. In the center panel the

combination of strong damping of the BAO feature and noise in the ξ(r) measurement make any

shift non-discernible. In the right panel the result of subtracting out ξnw(r) does visually resemble

an attenuating gaussian (much more than ξ(r)/ξnw(r), which is not shown), but it is unclear whether

the apparent drift of the BAO peak towards smaller scales, especially by the last output, is truly

from the non-linear shift or whether the effect is simply from the changing broadband shape of

ξ(r). A plot of (ξ(r) − ξpow(r))/D2(z) versus r from any of the fiducial simulations presented here

would show a similar trend.

11The prediction depends on whether one assumes their αshift − 1 ∝ D(z)2 formula, as expected from SPT, or
instead uses their empirical fit where αshift − 1 ∝ D(z)1.74. Fig. 2.15 shows the predictions of the D(z)2 model. The
empirical model is similar.
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2.6.2 Perturbation Theory and Modeling

In§ 2.5.2 I showed that a phenomenological approach matched the results from the fiducial simula-

tions rather well. Eq. 2.21 bears a close resemblance to the damped-exponential models often used

in the literature (e.g. Eisenstein et al. 2007; Seo et al. 2010), and I emphasize the conclusion that

the broadening (damping) of the bump (wiggles) depends on the pairwise dispersion, Σ2
pair, rather

than the rms displacement, Σ2, which is sensitive to bulk motions. In Fig. 2.16, I compare Σ2
pair/Σ

2

on a wide range of scales for a ΛCDM spectrum (Fig. 2.2). Although I expect the two formulae

to converge to the same result as r → ∞, it is nevertheless surprising that Σ2
pair(rbao) differs by

less than 2% from the Σ2 displacement. In the literature there is no widespread agreement on

how best to use Eq. 2.2 to predict the damping, and in practice Σ2 is often a free parameter while

other groups argue that an upper limit of k = 4kNL in Eq. 2.2 is a better match to simulations

(Crocce & Scoccimarro 2008). In this view, like that of Eisenstein et al. (2007), it is Σ2
pair(rbao)

that matters physically, and the success of models based on Σ2 is a lucky coincidence that holds in

ΛCDM-like models but can fail, by an infinite factor, for powerlaw models.

Another widely-used phenomenological approach assumes a model for PNL(k) motivated by

Renormalized Perturbation Theory (RPT; Crocce & Scoccimarro 2006). In these models the non-

linear shift comes directly from including P22(k) in the phenomenological form, or, in real space,

from modeling the shift with the closely-related ξmc(r) ansatz and calibrating the amplitude of this

term to N-body results (e.g. Sánchez et al. (2008); Montesano et al. (2010); Crocce et al. (2010)).

Using this approach and a natural value for the amplitude of this term, in § 2.3.4 I showed that this

approach adequately captures the shift in real space for the first output of the n = −1.5 case (when

σ8 = 0.5). By the second output (corresponding to σ8 = 1), however, it fails, and although not
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rigorously justified by the derivation of the term, I argue that the formula would more accurately

predict the shift if the broadening of the bump could be incorporated into ξmc(r). This may have

been previously unnoticed because the shift in ΛCDM when σ8 ∼ 1 is smaller than the shift in the

n = −1.5 case, and the amplitude of the bump, i.e., ξ(rbao), is significantly smaller in ΛCDM than

in the n = −1.5 setup.

Finally, the success of the SimpleRG method (McDonald 2007) in matching the simulation

results, both in fourier space and in real space, may certainly be informative to ongoing efforts

to model the BAO evolution with ab initio predictions from PT. Carlson et al. (2009) show that

this scheme also does a reasonable job in predicting the non-linear power spectra of ΛCDM and

cCDM cosmologies. I ignored most other PT schemes (except SPT Makino et al. (1992)), which

give divergent predictions for powerlaw cosmologies.

2.7 Summary

Motivated by the importance of accurate modeling of the BAO feature in large scale structure

for interpreting the results of future dark energy experiments, I have used N-body simulations to

investigate the evolution of a BAO-like feature in a simpler, alternative setting, where it modulates

an underlying powerlaw initial power spectrum in an Ωm = 1 universe. Specifically, the initial

conditions have a correlation function defined by Eq. 3.22, with a Gaussian multiplicative bump

centered at scale rbao and the amplitude Abump and width σbao chosen in approximate agreement

with ΛCDM expecations. The corresponding initial power spectrum follows Eq. 2.10 to an excellent

approximation. For given values of Abump, σbao, and the powerlaw spectral index n, non-linear

matter clustering statistics (including the correlation function and power spectrum) should depend

only on the ratio r0/rbao, where r0 is the correlation length defined by ξ(r0) = 1. I evolve the

simulations to values of r0/rbao much higher than traditional ΛCDM models, with final outputs

corresponding to σ8 = 4.0 (n = −1.5), 6.0 (n = −1), and 12.0 (n = −0.5) if I define a physical scale

by setting rbao = 100h−1Mpc. The standard simulations have box side Lbox/rbao = 20 and 5123

particles. I use the simulations to develop physical intuition for BAO evolution and to test analytic

descriptions in a regime far from that where they have been tested previously. In this respect,

the spirit of my exercise is similar to the “crazy” CDM investigation of Carlson et al. (2009) and

Padmanabhan & White (2009).

Consistent with ΛCDM studies, I find that the strongest effect of non-linear evolution on the

BAO feature in ξ(r) is to flatten and broaden the bump, with Abump decreasing and σbao increasing.

To a good approximation, failing only at late times in the n = −0.5 model, the area of the Gaussian

bump, proportional to Abump×σbao, remains constant, which suggests that pairs are “diffusing” out

of the shell corresponding to the initial BAO feature (see the physical description of Eisenstein et al.

(2007)). The evolution of the bump width is well described by a model in which the non-linear

σbao is the quadrature sum of the initial width and a length proportional to Σpair, the rms relative
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displacement (computed from linear theory) of pairs separated by r = rbao. The constant of

proportionality varies with n, but the same constant that describes the standard n = −1 model

also describes the faster evolution of an n = −1 model with a “skinny” initial bump, supporting

the validity of the diffusion interpretation. I emphasize that it is Σpair rather than the rms absolute

displacement Σ that is relevant to analytic descriptions of these models. The latter quantity has

an infrared divergence for n ≤ −1, but this divergence corresponds to bulk translations induced by

very large scale modes, which cannot affect the BAO peak itself. I think that the appearance of Σ

rather than Σpair in many analytic models of BAO evolution is at best an approximation restricted

to CDM-like models with a turnover in P (k); by coincidence, Σ ≈ Σpair(rbao) for ΛCDM.

The location of the BAO peak, defined by the scale rpeak of a Gaussian fit to the non-linear

ξ(r) divided by the linear theory powerlaw, stays constant within the statistical precision of the

measurements for the n = −0.5 and n = −1 models, even when these are evolved to a highly

non-linear stage where the bump amplitude has dropped by a factor of ∼ 4 − 10 from its initial

value. For n = −1.5, on the other hand, the peak location shifts to smaller r, an effect that is

already noticeable at the first output (r0/rbao = 0.024, equivalent to σ8 = 0.5) and that grows

to a 30% drop by r0/rbao = 0.386 (equivalent to σ8 = 4.0). The analytic models of Smith et al.

(2008) and Crocce & Scoccimarro (2008) accurately predict that shifts should be much larger for

n = −1.5 than for n = −0.5 and n = −1, and the Smith et al. (2008) model accurately describes

the evolution of the peak location for n = −1.5. However, both models predict non-linear shifts in

the n = −0.5 and n = −1 cases that are inconsistent with the simulation results at late times.

I carried out a number of additional numerical tests varying either numerical parameters or

the physical model. The fiducial simulations have Lbox/rbao = 20 and an initial mean interparticle

spacing smaller than rbao by a factor of rbao/n
−1/3
p = 25. I found consistent results in simulations

with Lbox/rbao = 10 and rbao/n
−1/3
p = 50, indicating that a box size ten times the BAO scale is

acceptable. I found marginal discrepancies for 2563 simulations with rbao/n
−1/3
p = 12.5. Success of

the box size test and other internal consistency tests is achieved only because I include the integral

constraint corrections described in Appendix B, which make a noticeable difference for n = −1 and

an important difference for n = −1.5. In other tests, I show that BAO evolution is nearly identical

in an Ωm = 1 model and a model with Ωm = 0.3, ΩΛ = 0.7 (and the same initial conditions)

provided they are evaluated at the same value of r0/rbao (or, equivalently, the same value of the

linear growth function).

For more thorough tests of analytic models, I turned to a Fourier space description using the

non-linear matter power spectrum. A “phenomenological” model in which I combine numerical

results for the non-linear power spectrum of a pure powerlaw model (Appendix A and references

therein) with the gaussian fits to the evolution of the BAO bump in ξ(r) gives a remarkably accurate

description of the full non-linear outputs of the n = −1 and n = −1.5 models. This model assumes

no shift of the ξ(r) peak location for n = −0.5 and n = −1 and rpeak/rbao = 1−1.08(r0/rbao)
1.5 for

n = −1.5. The success of this model suggests that the BAO bump has little effect on the non-linear
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evolution of the underlying “smooth” power spectrum. At least for r0/rbao < 0.2, I expect that

this model is a more accurate description than the numerical P (k) measurements themselves, since

it draws on self-similar scaling results from pure powerlaw spectra that have wider dynamic range

than my simulations.

I compared my simulation results to predictions of two ab initio analytic approaches, “standard”

1-loop perturbation theory (SPT; e.g. Vishniac (1983); Makino et al. (1992)) and the “simple renor-

malization group” (SimpleRG) scheme of McDonald (2007). SimpleRG provides a quite accurate

description of the low-k evolution in all cases, including n = −1.5 where the peak location shifts

significantly, and it produces good but not perfect agreement with the evolution of the ξ(r) bump

in configuration space. For SPT, I break up the terms into distinct “interactions” between the

powerlaw and “wiggle” components of the linear power spectrum, both to obtain physical insight

and in order to define a more accurate “SPT+” scheme that uses numerical results for pure power-

law evolution and perturbation theory to describe the interaction terms that involve the “wiggle”

spectrum. SPT alone gives a reasonable description of the early P (k) outputs for n = −1.5, but

on the whole SimpleRG is substantially more accurate and has a wider range of validity.

The high statistical precision achievable with future BAO surveys — with cosmic variance

distance scale errors for z > 1 and redshift bins ∆z = 0.2 (Seo & Eisenstein 2007) — puts stringent

demands on theoretical models. Exploiting the power of these surveys will require large numerical

simulations supplemented by the physical insight and modeling flexibility afforded by analytic

methods. The simulation results presented here offer valuable “stress tests” of numerical and

analytic approaches in regimes beyond those where they are usually applied, and they allow isolation

of distinct physical effects. Two natural directions that I plan to explore in future work are the

clustering of biased tracers — in particular the massive halos expected to host luminous galaxies

— and the impact of redshift-space distortions on BAO measurement from galaxy clustering. I will

also investigate the impact of the initial conditions algorithms, comparing the scheme advocated by

Sirko (2005) for simulation ensembles to the traditional scheme of mean density boxes used here.

The combination of future BAO surveys and improved theoretical models will lead, ultimately, to

new insights on the energy and matter contents of the cosmos.
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Chapter 3

Revisiting a Novel Method for

Running Cosmological N-body

Simulations

3.1 Introduction

Next generation astronomical surveys will demand increasingly precise predictions from theory in

order to properly interpret observations and constrain the nature of dark energy. As emphasized by

Annis et al. (2005), this will be a challenging task: inaccuracies in the predictions of halo abundance

and halo bias, for example, can affect cosmological inferences (Wu et al. 2010), and measurements of

the baryon acoustic oscillations (BAO) clustering feature will eventually reach the stage where the-

oretical estimates of the shift of this feature from non-linear dynamics become important (Seo et al.

2010). Although current state-of-the-art cosmological N-body simulations, given a specific set of

cosmological parameters, are in many ways well-equipped to deliver highly precise predictions of the

dark matter two-point correlation function and power spectrum for a relatively wide range of scales

(Heitmann et al. 2010), the difficult-to-estimate covariances of these statistics are also crucial for

placing constraints on cosmological parameters (Habib et al. 2007; Takahashi et al. 2009). To stay

ahead of the observational demands, any methodological improvement to the current framework of

setting up and running cosmological N-body simulations is therefore welcome, even if only relevant

to certain applications and in certain regimes.

In this paper I explore the predictions of a novel method for running ensembles of simulations

that, unlike the conventional method, is designed to maintain correspondence between simulated

real-space clustering statistics (e.g. σ8, ξ(r)) and the real-space properties of the assumed cosmo-

logical model. Originally proposed by Pen (1997) and implemented by Sirko (2005)12, this method

allows the DC mode of each simulation (in an ensemble of simulations) to vary according to the

clustering power on the scale of the box in much the same way that the density within randomly

placed boxes in the real universe will fluctuate around the mean density. Although it is now com-

12Once publicly available, the code can still be obtained through http://web.archive.org
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mon practice, using the conventional method, to set the DC mode in each simulation to zero, in

the early days of fully cosmological N-body simulations this was not always done (e.g. Frenk et al.

1988). This issue has also been discussed in the context of artificially changing the DC mode of an

existing simulation as a way of scaling a simulation completed with a certain set of cosmological

parameters to a slightly different model (Tormen & Bertschinger 1996; Cole 1997; Angulo & White

2010).

In the Sirko (2005) framework the initial power spectrum used with the Zeldovich (1970) (and by

extension 2LPT, Bouchet et al. 1995; Scoccimarro 1998) approximation is convolved such that the

matter correlation function matches exactly the linear theory correlation function for r < Lbox/2,

while for r > Lbox/2 the correlation function is set to zero. With this in mind Sirko refers to

this approach as “ξ-sampled” initial conditions (ICs), while the standard method is referred to

as “P -sampled”, since by using an unconvolved linear theory power spectrum with the Zeldovich

approximation the initial conditions are instead matched to the fourier space clustering statistics.

The ξ-sampled strategy, by matching the correlation function out to r = Lbox/2, should avoid

biases on all real space statistics, since the rms overdensity in spheres, σ(R), is simply related to

the correlation function, and the halo mass function to good approximation is only a function of

σ(R). Without this convolution these real space statistics become biased (i.e. from P (k) = 0 for

k . 2π/Lbox), as discussed by Pen (1997) and Bagla & Prasad (2006).

Although a number of groups have published results using the initial conditions code developed

by Sirko, which was the among the first include the 2nd order Lagrangian corrections (Bouchet et al.

1995; Scoccimarro 1998) to the Zeldovich (1970) displacements, the code is very seldom used to

generate ξ-sampled ICs. To my knowledge, only Reid et al. (2009) have utilized the code in this

mode, citing the success of convergence tests in Reid (2008). In that study they create mock

catalogues from a suite of 42 simulations with Lbox = 558h−1 Mpc, and N = 5123 for comparison

with SDSS LRG data (Tegmark et al. 2006). They chose the ξ-sampled method for this task, citing

the attractive feature of allowing the DC mode of the box to vary, thereby modeling the power

spectrum covarariance of real surveys more realistically. Reid (2008) and Appendix A of Reid et al.

(2009) present a wide variety of convergence tests that explore the effects of increasing the resolution

with either fixed initial conditions (i.e. with a particular randomly sampled value for the DC mode)

or for a set of a few initial conditions realizations. Though these tests met with much success, there

may, nevertheless, be differences between ensembles of ξ-sampled and P -sampled simulations.

This study systematically explores the ensemble-averaged predictions using the two different

methods. Where the results disagree it may be ambiguous which approach is more accurate,

therefore I focus on pure powerlaw models which should evolve self-similarly. This allows pow-

erful self-consistency checks of the simulation results, since each output should, in a statistical

sense, resemble scaled versions of earlier and later outputs. These kinds of “self-similar” tests

were decisive in confirming the accuracy of the first generation of fully cosmological N-body codes

(Efstathiou et al. 1988). I also show a few tests where, instead of a pure powerlaw, I simulate initial
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conditions consistent with a configuration space powerlaw times a gaussian bump. Investigated in

Chapter 2 in great depth as a simplified model of BAO, this test is self-similar in a different sense

– namely that the evolution of the dark matter clustering should only depend on the ratio of the

scale of non-linearity to the scale of the BAO.

I test these models extensively, focusing on pure powerlaw models with spectral slopes of n = −1,

−1.5, and −2, and on the three models explored in Chapter 2 which resemble n = −0.5, −1, and

−1.5 powerlaws in fourier space. I compare predictions from the two methods, showing results for

the matter correlation function in § 3.3, the power spectrum in § 3.4, and statistics of the halo

population in § 3.5. In § 3.7 I discuss my results and in § 3.8 I summarize my main conclusions.

3.2 Initial Conditions

3.2.1 Overview of the ξ-sampled Method

In the ξ-sampled method implemented by Sirko (2005), the (real space) matter correlation function

for a given cosmological model is the fourier transform of the power spectrum

ξ(r) =

∫

d3k

(2π)3
P (k) ei~k·~r =

∫ ∞

0
P (k)

sin kr

kr
k2 dk. (3.1)

To convolve P (k) such that the simulated ξ(r) is an exact match to Eq. 3.1 for r < Lbox/2, but

is zero for larger separations, one simply fourier transforms ξ(r) while cutting off the integral at

Lbox/2 since ξ(r) = 0 for r > Lbox/2,

Preal(k) = 4π

∫ Lbox/2

0
ξ(r)

sin kr

kr
r2 dr. (3.2)

I will refer to this result as Preal(k) to emphasize that this power spectrum is designed to maintain

correspondence with the real space properties of the cosmological density field. Importantly, Preal(0)

is non-zero even if P (0) = 0; this term sets the fluctuations in the DC mode. In Appendix A of

Sirko (2005), using the subscript “uni” to denote variables in the model of interest and “box” to

identify the parameters of the simulated volume, these fluctuations are mapped self-consistently

onto fluctuations in cosmological parameters,

H0,box = H0,uni
1

1 + φ
, (3.3)

Ωm,box = Ωm,uni(1 + φ)2, (3.4)

ΩΛ,box = ΩΛ,uni(1 + φ)2, (3.5)

φ =
5

6

Ωm

D(1)
∆0, (3.6)

where ∆0 is a gaussian variable with mean zero and variance Preal(0)/L
3
box and D(1) is the value

of the linear growth function at the present epoch. Note that Eq. 3.3 implies that in h−1 length

51



units the box size of each simulation varies with the value of φ, whereas in standard length units

(e.g. Mpc) the box size remains fixed. Similarly the box integrated mass, Mbox = ρmL3
box, varies

from box-to-box in h−1M⊙ units, but is fixed in M⊙ units.

Of crucial importance in deriving Eqs. 3.3-3.6 is the relationship between the scale factor of

interest, auni, and the corresponding scale factor in a particular realization, abox. In Sirko (2005)

this relationship is set by an approximate formula which determines abox as the epoch where the

age of the universe in the box is the same as the age of the unperturbed universe during the epoch

of interest,13

abox ≈ auni

(

1 − 1

3

D(a)

D(1)
∆0

)

. (3.7)

Sirko (2005) justified this formula by arguing that the ratio of the average density of the universe

to the average density of a given box, ρ̄uni/ρ̄box = a3
box/a

3
uni, is simply related to the overdensity of

the box, which grows according to the linear theory growth function. Eq. 3.7 can also be obtained

by Taylor expanding the perturbed H(abox) for small φ and equating the age of the universe in the

box to the age of the universe at the epoch of interest.

3.2.2 Integration of Particle Trajectories

Having set up the initial conditions, determined the perturbed cosmological parameters of a given

realization and computed the relevant scale factors, abox, for the epochs of interest, the initial

conditions can be evolved using any cosmological N-body code. I use the publicly-available Gadget2

code with no modifications (Springel 2005). As a hybrid Tree-based code with PM grid for large

scale forces, Gadget2 is a highly scalable N-body code which compares well to other codes used in

the literature (e.g. Heitmann et al. 2010). Unless otherwise noted I show results from simulations

with 2563 particles and a 5123 PM grid. Initial redshifts were set using ∆2(kNy) . 0.001 as a rule of

thumb (Lukić et al. 2007), and the force softening was set to 1/20th the initial mean interparticle

spacing.

3.2.3 Statistics of the Cosmological Density Field

With ensembles of simulations in the conventional method, the measurements of dark matter clus-

tering at a given output, auni, can typically be combined, and the statistical precision improved,

with a simple average. In ξ-sampled simulations this procedure involves the extra step of weight-

ing the measurements in each realization by factors of a3
box. Measuring ξ(r) (in any context) is

equivalent to calculating Gabrielli et al. (2005)

ξ(r) =
Γ(r)

n̄
− 1 (3.8)

13Cole (1997) was the first to appreciate that abox 6= auni but instead proposed to set abox by matching the
amplitude of the linear growth function in the perturbed cosmology. I return to this issue in 3.7
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where n̄ is the average number density of particles in the volume and Γ(r) is the number density

of particles separated by length r. For an output from given realization using ξ-sampled ICs I am

interested in ξuni(r) = Γ(r)/n̄uni − 1, and since n̄uni = n̄box(abox/auni)
3 this scaling is simply

ξuni(r) =

(

auni

abox

)3 Γbox(r)

n̄box
− 1 =

(

auni

abox

)3

(ξbox(r) + 1) − 1 (3.9)

Note that in Eq. 3.9 I have omitted an extra factor of −2(auni/abox)
3 that appears in Sirko (2005).

I am unable to reproduce the results in Sirko (2005) including this term, which could arise from

using optimal estimators like Landy & Szalay (1993) or Davis & Peebles (1977). I use the “natural”

estimator, ξ(r) = ΣiDDi/RRi − 1, without any kind of cross correlation between data and random

pairs. Sirko (2005) does not state which estimator is used.

The box-to-uni correction factor for the power spectrum is determined straightforwardly from

the fourier transform of Eq. 3.9,

Puni(k) =

(

auni

abox

)3

〈δ(~k)δ∗(~k)〉 . (3.10)

If computed using h Mpc−1 units in k-space, the measurement of the bracketed term in Eq. 3.10,

and the book keeping required to count of the number of modes contributing to each k for error

estimation can be a fairly complicated exercise since the size of the simulation box varies in h−1

length units. In practice, it is much simpler (bearing in mind that box size is fixed in Mpc units)

to convert the particle positions to Mpc units before applying the standard methods of mapping

the particles onto a gridded density field (Hockney & Eastwood 1981, I use CIC) and computing

its fourier transform. Similarly, measuring the halo mass function is considerably simplified by

converting the particle positions to Mpc units and the particle masses to M⊙ units (from h−1M⊙

units) before using standard halo finding methods. I use the FOF halo finder (Einasto et al. 1984;

Davis et al. 1985) with a linking length of 0.2 times the mean interparticle spacing.

3.2.4 The Integral Constraint on ξ(r) in P -sampled Simulations

An important but sometimes neglected subtlety in measuring the correlation function in standard,

P -sampled simulations is the artificial imposition of an integral constraint on the measured ξ(r)

on the scale of the simulation volume. This effect is entirely orthogonal to the question of which

estimator (Davis & Peebles 1977; Landy & Szalay 1993, etc.) converges most rapidly to the true

ξ(r) in the presence of Poisson noise. The problem stems from using a finite volume with a fixed

number density of particles n̄ to estimate ξ(r). Since, in a simulation box, the integral of Γ(r) over

the volume yields the number density of particles,

∫

Vbox

r2Γ(r)dr = n̄, (3.11)
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Figure 3.1: Matter correlation function results from a ΛCDM ensemble of simulations (Lbox =
100h−1 Mpc, N = 643, 100 realizations) using standard (P -sampled) ICs. The left panel shows the
ξ(r) results from this simulation set without applying the integral constraint correction described
in the text. The right panel shows the results from including the corrections in Eq. 3.13. Error
bars show the error on the mean. Note that the earliest output (a = 0.1, shown in blue) is severely
affected by transients from the initial conditions.

with ξ(r) in its original form in Eq. 3.8, this implies

∫

Vbox

r2ξmeas(r)dr = 0 (3.12)

regardless of whether this is the case with the true ξ(r). In finite volumes in the real universe n̄ will

vary from box-to-box and, importantly, the average of n̄−1 (which appears in Eq. 3.8) will deviate

from the inverse of the true (i.e. asymptotically large volume) number density. In surveys a similar

problem is encountered from uncertainties and biases in the average number density of objects –

in both cases the problem lies with the n̄ term in Eq. 3.8 rather than the Γ(r) term.

For ΛCDM simulations using large boxes (Lbox ≫ 1Gpc) the integral constraint is a minor

issue, but for simulations with smaller boxes this is an important concern. Notably, Sirko (2005)

presented simulations with Lbox = 50− 100h−1 Mpc without any kind of corrections for this effect.

Consistent with the more sophisticated treatments of Bernardeau et al. (2002) and Landy & Szalay

(1993), I argue in Appendix B that the correction should take the form

ξ(r) = ξmeas(r) + ξ̄L(RS) (3.13)

where ξmeas(r) is as in Eq. 3.8 and ξ̄L(RS) = 3/R3
S

∫ RS

0 r2ξL(r)dr where ξL(r) is the linear theory

correlation function and RS ≈ Lbox/1.61.

Fig. 3.1 shows the importance of this correction with a set of P -sampled results from ΛCDM

simulations (Ωm = 0.27,ΩΛ = 0.73, h = 0.71, σ8 = 0.84) that closely mimics the fiducial simulation
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Figure 3.2: A comparison of P -sampled and ξ-sampled pure powerlaw models. ξ-sampled power
spectra are computed from Eq. 3.2 and used to generate initial conditions for that method.
r0/Lbox = 1/16 is chosen to set the overall amplitude of each model.

set in Sirko (2005) (N = 643 particles, Lbox = 100h−1 Mpc, 100 realizations with zi = 39). Fig. 3.1

can be directly compared to Fig. 9 of Sirko (2005). Although the first output is severely affected

by transients from the initial conditions I include it for comparison with Sirko (2005).

The integral-constraint correction increases the correlation function at 1/4th scale of the box

scale by almost a factor of two, considerably improving the agreement with linear theory. Without

including this correction it is tempting to conclude that the standard P -sampled method dramat-

ically fails in modeling the correlation function unless box sizes much larger than the scales of

interest are used. I apply this correction to all of the P -sampled results shown in this paper. ξ-

sampled results do not require this correction, and Eq. 3.9 naturally takes this effect into account.

In fact, the correction to ξ(r) in Eq. 3.13 bears a close resemblance to the form of 3.9, as I will

discuss in the next section using pure powerlaw initial conditions.

3.2.5 ξ-sampled ICs with Powerlaw Models

For powerlaw models, where P (k) = Aa2kn, the task of computing Eq. 3.2 is made substantially

easier because an exact analytic solution for ξ(r) is known in this case,

ξ(r) =
(r0

r

)n+3
, A a2 =

2π2 rn+3
0 (2 + n)

Γ(3 + n) sin((2 + n)π/2)
, (3.14)

(Peebles 1980). Eq. 3.2 therefore becomes

Preal(k) = 4πrn+3
0

∫ Lbox/2

0
r−(n+1) sin kr

kr
dr (3.15)
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and the DC power can be straightforwardly expressed as

Preal(0) = 4πrn+3
0

∫ Lbox/2

0
r−(n+1) dr (3.16)

=
2n+2π

−n

(

r0

Lbox

)n+3

L3
box. (3.17)

Analytic and special-function solutions to Eq. 3.15 exist for certain powerlaws. In this study I am

interested in n = −1, −1.5 and −2 which can be expressed by

Preal,n=−1(k) = 4πr2
0 Si(kLbox/2) k−1, (3.18)

Preal,n=−1.5(k) = 25/2π3/2r
3/2
0 S(

√
kLbox/

√
π)k−1.5, (3.19)

Preal,n=−2(k) = 8πr0 sin2(kLbox/4) k−2, (3.20)

where Si(x) is the sine integral and S(x) is a Fresnel integral. These formulae can be very useful

for generating accurate initial conditions, especially for steep power spectra. I show these power

spectra in Fig. 3.2, fixing r0/Lbox = 1/16 to set the relative amplitudes. Notice that steeper

powerlaws have larger DC power, easily seen on the plot as the asymptotic value of Preal(k)/L3
box

for small k. Noticing that P (k) does not go to zero at small k for the P -sampled powerlaws, one

might be concerned that these models are unphysical. However, despite the high levels of large

scale clustering power the rms overdensity in spheres and other statistics remain finite for n > −3.

3.2.6 Scale free?

Although pure powerlaw models are often referred to in the literature as “scale free,” since P (k) =

Akn is featureless, the ξ-sampled initial power spectra shown in Fig. 3.2 clearly depend on the

choice of Lbox. In practice, these oscillatory features die away in simulations and the effect of Lbox

is merely to change the variance of the DC mode (which is set by Preal(0)/L
3
box).

Since dark energy does introduce a new scale into the problem (e.g. the age of the universe

when ρm = ρΛ), I consider only Ωm,uni = 1.0,ΩΛ,uni = 0,Ωk,uni = 0 so as to keep the simulations

as “scale free” as possible and allow the self-similar tests discussed in the next section. In the

Zeldovich (1970) and adhesion (Gurbatov et al. 1989; Weinberg & Gunn 1990) approximations (as

in linear theory), the effect of dark energy on structure formation is entirely captured by changing

the linear theory growth function. Nusser & Colberg (1998) and Zheng et al. (2002) convincingly

argue that this approximation is remarkably accurate even in the non-linear regime – the second

order effect of dark energy is relatively small (see also Chapter 2). Therefore the results of my

Ωm = 1 tests should still be quite relevant to studies that include a dark energy component.

As one final comment on the scale-free nature of my simulations, throughout I adopt, as a time

variable,

a

a∗
=

(

kbox

kNL

)(n+3)/2

, (3.21)
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where kbox = 2π/Lbox and kNL is defined by the dimensionless linear theory power spectrum,

∆2(kNL) ≡ 1. This choice is simply related to the σmiss formula of Smith et al. (2003), which

quantifies the missing power on the scale of the box in P -sampled simulations. I adopt Eq. 3.21 for

ease of comparison with Widrow et al. (2009) and because the σmiss formula in Smith et al. (2003)

would be inappropriately applied to ξ-sampled simulations, which have a turnoff in PL(k) near the

box scale (Fig. 3.2).

3.3 ξ(r) results

3.3.1 Powerlaw Models

Fig. 3.3 shows my primary results for the self-similar scaling of the matter correlation function.

The x-axis is shown in r/r0 units where ξL(r0) = 1. Insofar as the dark matter clustering is

negligibly affected by numerical limitations such as the finite scale of the box or the scale of the

force softening, with this scaling the correlation function results from different outputs should all lie

upon the same line. To the extent that this is achieved the correlation function can be said to evolve

with self-similarity and it is clear from Fig. 3.3 that over a wide range of scales the results from

these relatively modest, N = 2563, simulations do fall upon the the same locus as expected. This

locus is different for each powerlaw; for steeper power spectra (e.g. n = −2) power is transferred

from large scales to small scales and the non-linear growth of ξ(r) outpaces linear theory whereas

for shallower power spectra (e.g. n & −1) there is so much small scale power that the process of

halo formation and collapse causes the non-linear growth to fall behind linear theory in a process

sometimes called “pre-virialization” (Davis & Peebles 1977). In the language of the halo model

(Cooray & Sheth 2002) this implies that the predicted linear theory clustering on small scales is so

high that the amplitude of the 1-halo term is below the linear theory clustering amplitude on those

scales. The n = −1 case falls between these two extremes and the amplitude of the correlation

function is both above and below linear theory, depending on the regime. (For a bracketing case

of an even shallower power spectrum see, e.g., the n = −0.5 results in Appendix A.)

In Fig. 3.3, the ξ-sampled and P -sampled methods generally agree on the shape of the self-

similar solution. This is significant for the ξ-sampled results, on some level verifying the method.

Alongside the measurements in each case the results from higher resolution simulations are shown.

For n = −1 and n = −2 this comparison is made by numerically fourier transforming the non-

linear power spectrum fitting functions published in Widrow et al. (2009); note in the n = −1 case

I include subtle but important corrections to their fit at small k/knl as determined in Appendix A.

For n = −1.5 I compare with ξ(r) measurements from 10 P -sampled simulations with N = 5123

(Appendix A). These high-resolution results are used more quantitatively in Fig. 3.4.

Important to point out in Fig. 3.3 is that the error on the mean ξ(r) for the ξ-sampled method is

much larger than the P -sampled simulations, despite running 2.5× as many ξ-sampled simulations

in the n = −1 and n = −2 cases to improve the statistics, and 7.5× as many simulations in the
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Figure 3.3: Measured matter autocorrelation functions from conventional P -sampled (upper panels) and ξ-sampled (lower panels)
ensembles of simulations. The left-most panels show results from an initially n = −1 power spectrum, middle panels show results
from n = −1.5, and the right hand panels show n = −2. In each plot the x-axis is scaled by the non-linear scale, r0, where ξL(r0) ≡ 1
so that, if evolving with the expected self-similar behavior, the outputs should lie upon the same locus of points. The y-axis is scaled
by ξL(r) = (r0/r)

n+3. Black lines show high resolution results from P -sampled simulations for comparison (see text). Error bars
show measured error on the mean.

58



10
−4

10
−3

10
−2

10
−1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

r / L
box

ξ(
r)

 / 
ξ ss

(r
)

P−sampled ICs (n = −1; N=2563; 20 simulations)

 

 

a / a
*
 = 

P
M

 G
rid

 S
ca

le

In
iti

al
 M

ea
n 

In
te

rp
ar

tic
le

 S
pa

ci
ng

F
or

ce
 S

of
te

ni
ng

0.524
0.262
0.196
0.131
0.092
0.039

10
−4

10
−3

10
−2

10
−1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

r / L
box

ξ(
r)

 / 
ξ se

lf−
si

m
(r

)

P−sampled ICs (n = −1.5; N = 2563; 20 simulations)

 

 

P
M

 G
rid

 S
ca

le

In
iti

al
 M

ea
n 

In
te

rp
ar

tic
le

 S
pa

ci
ng

F
or

ce
 S

of
te

ni
ng

a / a
*
 = 
0.510
0.255
0.191
0.128
0.089
0.038

10
−4

10
−3

10
−2

10
−1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

r / L
box

ξ(
r)

 / 
ξ ss

(r
)

P−sampled ICs (n = −2; N = 2563; 20 simulations)

 

 

P
M

 G
rid

 S
ca

le

In
iti

al
 M

ea
n 

In
te

rp
ar

tic
le

 S
pa

ci
ng

F
or

ce
 S

of
te

ni
ng a / a

*
 = 
0.456
0.342
0.228
0.171
0.114
0.080
0.034

10
−4

10
−3

10
−2

10
−1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

r / L
box

ξ(
r)

 / 
ξ ss

(r
)

P
M

 G
rid

 S
ca

le

In
iti

al
 M

ea
n 

In
te

rp
ar

tic
le

 S
pa

ci
ng

F
or

ce
 S

of
te

ni
ng

ξ−sampled ICs (n = −1; N=2563; 50 simulations)

 

 

a / a
*
 = 
0.524

0.262

0.196

0.131

0.092

0.039

r / L
box

ξ(
r)

 / 
ξ ss

(r
)

ξ−sampled ICs (n = −1.5; N=2563; 150 simulations)

 

 

a / a
*
 = 

P
M

 G
rid

 S
ca

le

In
iti

al
 M

ea
n 

In
te

rp
ar

tic
le

 S
pa

ci
ng

F
or

ce
 S

of
te

ni
ng

10
−4

10
−3

10
−2

10
−1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.510
0.255
0.191
0.128
0.089
0.038

10
−4

10
−3

10
−2

10
−1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

r / L
box

ξ(
r)

 / 
ξ ss

(r
)

ξ−sampled ICs (n = −2; N = 2563; 50 simulations)

 

 

a / a
*
 = 

P
M

 G
rid

 S
ca

le

In
iti

al
 M

ea
n 

In
te

rp
ar

tic
le

 S
pa

ci
ng

F
or

ce
 S

of
te

ni
ng

0.456
0.342
0.228
0.171
0.114
0.080
0.034

Figure 3.4: Measured correlation functions from simulations relative to high-resolution results for the self-similar scaling (ξss(r);
black lines in Fig. 3.3). Points show the mean ξ(r). Panels are organized as in Fig. 3.3 (top panels: P -sampled results, bottom
panels: ξ-sampled results, n = −1,−1.5 and −2 from left to right). Vertical lines show relevant numerical scales: the initial mean
interparticle spacing (dotted black), the Particle-Mesh Grid (dot-dashed black), and the force softening (dashed black).
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n = −1.5 case to further ensure that the mean of the distribution of DC modes in the simulation

set was very close to zero. For the ξ-sampled n = −1 case there are not enough realizations (50)

to ensure that the mean of the distribution of DC modes agree with zero at the necessary level

of accuracy (a criterion which will be discussed in § 3.6), and as a result, although difficult to see

from the large error bars on the mean, there are strong deviations between the measurements of the

mean ξ(r) and the self-similar fit at large r for each output. The effect is more clearly illustrated in

Fig. 3.4, which shows the agreement between the ξ(r) measurements from my simulation set and

the high-resolution self-similar solutions more quantitatively. Near r/Lbox ∼ 10−1 and independent

of output, the ξ-sampled n = −1 results systematically fall well below the self-similar solution.

With this well-understood caveat, the agreement with the high-resolution self-similar results

is fairly good and excluding the final outputs in each case my simulation set tends to match the

self-similar evolution to better than about 5% in most outputs and on most scales. The last output

is excluded from this conclusion since the linear theory clustering level is so high that one expects

departures from the true non-linear clustering from the suppression of power on the scale of the

box. Also, the correction for the integral constraint, which assumes a linear theory correlation

function in ξ̄(Rbox), likely becomes inaccurate in this regime as well.

On scales much smaller than the box size, Fig. 3.4 shows that as structure evolves in the simu-

lations the self-similar behavior extends below the scale of the initial mean inter-particle spacing,

in some cases approaching the force softening. Since at best the initial conditions of the simula-

tions only match the self-similar correlation function down to the initial mean interparticle spacing

this result is non-trivial and difficult to anticipate from first principles. Little et al. (1991), using

n = −1 simulations, show that Fourier modes in the non-linear regime are largely determined by

the collapse of large-scale modes rather than by evolution of power initially on those scales. How-

ever, Joyce et al. (2009) and collaborators have argued that the common practice of setting the

force softening significantly smaller than the initial mean interparticle spacing introduces errors

which arise from the possibility that with this choice the equations of motion for the particles are

no longer true to the Vlasov-Poisson fluid equations. My results argue against this, although my

∼5% correspondence with the self-similar correlation function from high resolution simulations may

still be within the anticipated errors on P (k) discussed in Joyce et al. (2009). At any rate I point

out that powerlaw models may be a valuable tool for checking the accuracy of simulations in this

regime, as previously argued by Efstathiou et al. (1988). For example, self-similar scaling could be

used to determine when force softening becomes too aggressive – a matter of considerable import

for studies of halo substructure or larger-box cosmological simulations with a wide dynamic range.

The small scale results in Fig. 3.4 imply that the force softening used here (1/20th of the initial

mean interparticle spacing) does substantially and accurately extend the dynamic range of my

simulations. Importantly, this appears to be true for different powerlaws; it does not significantly

depend on whether power is being rapidly “transferred” to smaller scales as for n = −1.5 and

n = −2 or whether the non-linear growth proceeds less quickly than the linear theory prediction
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on small scales (i.e. r < r0), as for n = −1.

3.3.2 Powerlaw Times a Bump Results

As discussed in Chapter 2, a real-space powerlaw times a bump can be used as a self-similar

numerical test in addition to providing insight into the non-linear physics of the evolution of the

BAO feature. In this case,

ξ IC(r) =
(r0

r

)n+3
(1 + Abump e−(r−rbao)2/2σ2

bao), (3.22)

and for resemblance to the ΛCDM correlation function I chose Abump = 2.75, σbao/rbao = 0.075,

and powerlaws of n = −0.5, −1, and −1.5. Unlike ΛCDM, this setup can be evolved much further

than σ8 ∼ 1 to investigate the non-linear physics of the problem. I compare results in Fig. 3.5

from ξ-sampled ensembles of simulations with N = 2563, rbao/Lbox = 1/20 to gaussian fits to

the results of the P -sampled, N = 5123, rbao/Lbao = 1/20 sets of simulations in Chapter 2. At

least qualitatively the two simulation sets agree well. The slight small-scale discrepancy with the

gaussian fit in the last output shown for the n = −1 case is a problem with the fit itself, as apparent

in the P -sampled n = −1 results shown in Fig 2.3 while the discrepancies with the fit on scales

larger than the bump stem from the mean of the fifty, randomly-sampled DC modes being slightly

above zero, much like the pure powerlaw case for n = −1, a problem easily fixed by running more

realizations. The slight mismatch in the amplitude of the bump in the n = −1.5 case is mirrored

in the P -sampled, N = 2563, rbao/Lbox = 1/20 results in Fig. 2.8, and the discrepancy, at large

r/rbao, for the n = −0.5 case is in a regime where the amplitude of the correlation function is

very weak and difficult to measure. Overall, the evolution of the bump is remarkably similar to

previous results and, importantly, the non-linear shift of the bump in the n = −1.5 case and lack

of a shift in the n = −0.5 and −1 cases agree with P -sampled simulations. Insofar as these two

methods are equally valid approaches to setting up and running cosmological N-body simulations,

this conclusion should be reassuring to the wider effort to characterize the non-linear shift of the

BAO peak using standard, P -sampled simulations.

As with the powerlaw results in the previous section, despite running a few times more sim-

ulations than the P -sampled ensembles, the measured error on the mean ξ(r) is still quite large.

(In Chapter 2, I typically ran only seven realizations in each case.) This seems to be the case for

a variety of powerlaws and in simulations with and without a bump. A close inspection of the

original ξ(r) results in Sirko (2005) likewise show in ΛCDM simulations that the error on the mean

ξ(r) is significantly larger in ξ-sampled simulations. Sirko (2005) does not not comment on this

interesting result. I return to this issue in §.
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Figure 3.5: Correlation function results from ensembles of 50 ξ-sampled simulations using initial
conditions consistent with a powerlaw times a gaussian bump as a simplified model of baryon acous-
tic oscillations. Dot-dashed lines show gaussian fits to the high-resolution simulations presented in
Fig. 2.3. Typical errors on the mean are shown offset to the right.
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Figure 3.6: Comparison of non-linear power spectrum results from ξ-sampled (top panels) and P -sampled (lower panels) ensembles
of simulations for initially n = −1 (left), n = −1.5 (middle) and n = −2 (right) powerlaws. The x-axis is scaled by the non-linear
wavenumber knl, defined by ∆2(knl) ≡ 1. Solid black lines show results from high-resolution simulations (see text).
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Figure 3.7: Non-linear power spectrum results relative to fitting functions to results from high-resolution simulations (∆2
ss(k); black

lines in Fig. 3.6). Panels are organized as in Fig. 3.6. The x-axis is shown relative to kbox = 2π/Lbox and dashed vertical lines
show the particle nyquist wavenumber and half the particle nyquist wavenumber. The n = −1.5 results extend to smaller k because
non-linear fitting functions from very high-resolution (N ≫ 5123) simulations are unavailable in this case.
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3.4 P(k) results

Although ξ-sampled simulations are designed to match the real-space properties of the cosmological

density field, it is nevertheless interesting to measure the power spectra in these simulations as

another self-similar numerical test. These results are presented in Fig. 3.6. As seen in the ΛCDM

simulations in Sirko (2005), the oscillations in the initial ξ-sampled power spectrum largely die

away. These features are essentially absent in the n = −1 case while in the n = −1.5 and n = −2

cases the oscillations about linear theory for k/kNL ≪ 1 seem to persist for longer. This is likely

explained by the fact that there are more factors of expansion between the epoch of the initial

conditions and an output at a given a/a∗ in the n = −1 case than the n = −1.5 or n = −2 cases.

(As a result, the n = −1 case requires much longer execution times to reach a/a∗ ∼ 0.5 than

n = −1.5 or n = −2.)

I compare the power spectrum results in Fig. 3.6 to fitting functions from higher resolution

simulations. For n = −1 I compare with an improved version (Appendix A) of the fitting function

from the high-resolution simulations by Widrow et al. (2009). The n = −2 fitting function comes

directly from Widrow et al. (2009) and the n = −1.5 fitting function (which was not investigated

in Widrow et al. 2009) comes from 10 P -sampled, N = 5123 simulations presented in Appendix A.

Generally, the agreement with the higher resolution non-linear fits is quite good and, intriguingly,

the final outputs of the ξ-sampled results in each case seem to agree more closely with the non-

linear fitting function than the P -sampled case. One might expect the ξ-sampled simulations to

more accurately handle situations with large amounts of clustering power on the scale of the box,

since the fluctuating DC mode is more true to the large scale clustering in the real universe. With

the correlation function, it is difficult to see which scheme performs better in this regime, since a

discrepancy between the P -sampled correlation function results from different outputs – a violation

of self-similarity – or with some higher-resolution result can potentially be explained as a failure of

the integral constraint correction, which assumes a linear theory model for ξ(r) in ξ̄(Rbox).

The self-similarity of the power spectrum exhibited in ξ-sampled simulations when the cluster-

ing levels become very high on the scale of the box appears to be one of the principal improvements

offered by this approach in the tests shown here. Ironically, a method designed to match the real-

space properties of the density field appears to more accurately render the fourier-space statistics in

this regime. It is tempting to speculate that the difficulties, historically, with realizing self-similar

evolution in n = −2 simulations with small numbers of particles could have been alleviated by this

method (Efstathiou et al. 1988; Bertschinger & Gelb 1991). However, note that the errors on the

mean in Fig. 3.6 are considerably larger in ξ-sampled simulations with even 2.5× the number of

realizations than in P -sampled simulations. This penalty is severe – at least doubling the compu-

tational expense to obtain the same errors on the mean power spectrum and correlation function.

I return to this issue in § 3.6, discussing whether “paying” this penalty is more advantageous than

increasing the numbers of particles in the box in simulating the non-linear evolution of very steep
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(n . −2) power spectra as would be relevant to studying the evolution of the very large k power

spectrum in ΛCDM (Elahi et al. 2009).

As a more quantitative comparison in Fig. 3.7 I show the ratios of the non-linear power spec-

trum results to the high-resolution self-similar fits. Bearing in mind, again, that the initial power

spectrum has oscillatory features from the cutoff in Eq. 3.2, the ξ-sampled simulations typically

match the self-similar solution on scales close to the box better than the P -sampled simulations.

Conclusions regarding the self-similar scaling beyond the scale of the initial mean interparticle

spacing are hindered by the aliasing of the 10243 grid used to measure the power spectrum. Since

the scale of the resolution elements of this grid is only a factor of four smaller than the scale of the

initial mean interparticle spacing (indicated as kNy,p with a dot-dashed vertical line) it is unclear

whether the power spectrum results corroborate the results in Fig. 3.4, namely, that the self-similar

behavior extends below the initial mean interparticle spacing. Increasing the grid size significantly

beyond 10243 proved to be technically challenging.

3.5 Halo Mass Function and Halo Bias

As aspects of structure formation with their own set of numerical challenges (Lukić et al. 2007;

Tinker et al. 2010), I also investigate the halo abundance and clustering bias in my simulation

ensembles. I principally compare my results to Bagla et al. (2009) who measured the f(ν) mass

function in a variety of different powerlaw models using higher resolution simulations than employed

here but with far fewer realizations. Using halo abundances, Bagla et al. (2009) reports their best

fit parameters for each powerlaw to the Sheth & Tormen (1999) form of f(ν), a result which can be

used to predict both the halo abundance and the halo clustering using the Sheth-Tormen framework.

Other models for f(ν) exist in the literature as calibrated fits to ΛCDM simulations. I principally

compare to Bagla et al. (2009), who focused on pure powerlaw models.

3.5.1 Halo Mass Function

Fig. 3.8 shows my primary results for the halo mass function. To highlight the self-similar evolution

in the upper panel of each sub-figure I multiply the halo mass function by a factor of (4π/3)R3
∗ =

M∗/ρm where σ(M∗) = δc. This choice is motivated as follows: the halo mass function can be

characterized solely as a function of σ,

dn

d log M
=

ρm

M

d log σ−1

d log M
νf(ν) (3.23)

where ν = δc/σ(M) and f(ν) is calibrated to simulations or estimated analytically. For powerlaw

models ν = (M/M∗)
(n+3)/6 and Eq. 3.23 becomes

dn

d log M
=

ρm

M

(

n + 3

6

)(

M

M∗

)(n+3)/6

f

(

(

M

M∗

)(n+3)/6
)

, (3.24)

66



d
n

d
lo

g
M

·4
π
R

3 ∗

3

P−sampled ICs (n = −1; N = 2563; 20 simulations)

 

 

M
*
 / m

p
 = 

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

M/M∗

ra
tio

 to
 B

ag
la

 e
t a

l. 
20

10
 fi

t

28437
3555
1500
444
152
12

d
n

d
lo

g
M

·4
π
R

3 ∗

3

P−sampled ICs (n = −1.5; N = 2563; 20 simulations)

 

 

M
*
 / m

p
 =

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

M/M∗

ra
tio

 to
 B

ag
la

 e
t a

l. 
20

10
 fi

t

8413
526
166
33
8
0.3

d
n

d
lo

g
M

·4
π

R
3 ∗

3

P−sampled ICs (n = −2; N = 2563; 20 simulations)

 

 

M
*
 / m

p
 =

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

M/M∗

ra
tio

 to
 B

ag
la

 e
t a

l. 
20

10
 fi

t

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

736
131
12
2
0.2
0.02

M / M
*

d
n

d
lo

g
M

·4
π
R

3 ∗

3

ξ−sampled ICs (n = −1; N = 2563; 50 simulations)

 

 

M
*
 / m

p
 = 

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

ra
tio

 to
 B

ag
la

 e
t a

l. 
20

10
 fi

t

M/M∗

28437
3555
1500
444
152
12

d
n

d
lo

g
M

·4
π

R
3 ∗

3

ξ−sampled ICs (n = −1.5; N = 2563; 150 simulations)

 

 

M
*
 / m

p
 =

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

ra
tio

 to
 B

ag
la

 e
t a

l. 
20

10
 fi

t

M/M∗

8413
526
166
33
8
0.3

d
n

d
lo

g
M

·4
π

R
3 ∗

3

P−sampled ICs (n = −2; N = 2563; 50 simulations)

 

 

M
*
 / m

p
 =

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

ra
tio

 to
 B

ag
la

 e
t a

l. 
20

10
 fi

t

M/M∗

736
131
12
2
0.2
0.02

Figure 3.8: Halo mass function results for my fiducial simulation set. Results are shown either scaled by (4π/3)R3
∗ = M∗/ρm

(upper panels in each case) or relative to the fitting function of Bagla et al. (2009) (lower panels in each case). For each output the
characteristic non-linear mass (σ(M∗) ≡ δc) is shown in the legend; each output is colored consistently with other plots. Error bars
show the error on the mean.
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Figure 3.9: Halo clustering bias measured with b2(M) = ξhh(r)/ξmm(r). Results from my simulations are shown by magenta points;
error bars show the measured error on the mean. In each panel the bias functions of Jing (1998) (blue), Sheth & Tormen (1999)
(green) and Bagla et al. (2009)(cyan) are shown for comparison. Since the Sheth & Tormen (1999) bias has been calibrated to
ΛCDM simulations (rather than scale-free models) this prediction is shown only for reference to the familiar ΛCDM case.
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so that multiplying by M∗/ρm = (4π/3)R3
∗ this expression becomes a unique function of M/M∗.

Alternatively, this (4π/3)R3
∗ factor can be thought of as a characteristic non-linear volume, the

abundance of halos at a particular M/M∗ halo mass being set by the ratio of the fixed volume

to the characteristic non-linear volume. For this reason the earliest simulation outputs probe the

large M/M∗ regime because the fixed volume of the simulation is so much larger than (4π/3)R3
∗

that these rare objects can be more easily found than at later outputs when the non-linear volume

is significantly larger.

In Fig. 3.8 both ξ-sampled and P -sampled simulation sets give remarkably similar results in each

case. Dividing by the prediction from Bagla et al. (2009) as in the bottom panels in each sub-figure

does not break self-similarity, and the overlap of the mass functions from each output is still a test

of self-similar evolution that my simulation results typically achieve, although, interestingly, the

self-similar solution deviates significantly from the Bagla et al. (2009) fit. This can be explained

by noticing in the plots shown in Bagla et al. (2009) that the measurements of f(ν) from their

simulations can fall below the best fit f(ν) by up to 50%. Had they used more than two free

parameters in their fit to f(ν) (as they did in adopting the Sheth-Tormen framework), it seems

likely that my results would agree more closely with theirs.

3.5.2 Halo Bias

In the Sheth & Tormen (1999) framework the halo bias is given by

b(M) = 1 +
aν − 1

δc
+

2p/δc

1 + (aν)p
(3.25)

where a and p are free parameters. Using the best fit values for a and p quoted in Bagla et al. (2009)

for each powerlaw, in Fig. 3.9 I compare their results to the measured halo bias in my simulations.

Although the halo bias can be equally well measured in fourier space (Jing 1999; Tinker et al.

2010) as in real space, to avoid the oscillatory features in P (k) I measure the bias with b2(M) =

ξhh(r)/ξmm(r) in both P -sampled and ξ-sampled simulation results, where ξhh(r) is the halo-halo

correlation function and ξmm(r) is the matter-matter correlation function (elsewhere referred to as

ξ(r)). One subtlety with this measurement deserves mention: in P -sampled simulations the ξhh(r)

measurements, like the ξmm(r) measurements, suffer from the artificial imposition of the integral

constraint on the scale of the box. In Appendix C, drawing upon the procedure for correcting

ξmm(r) described in Appendix B, I demonstrate that this correction cancels (at least to first order)

in the measurement of the clustering bias. ξ-sampled simulations naturally circumvent this issue,

and no integral-constraint corrections are needed to the measured ξhh(r) and ξmm(r).

Generally, in Fig. 3.9, the bias measurements from the two methods agree within errors and

the results typically stay closer to the Bagla et al. (2009) predictions rather than the formula from

Jing (1998). (The Sheth & Tormen (1999) bias, calibrated to ΛCDM simulations, is overplotted

for comparison.) At large M/M∗ in particular the measurements typically fall below the fitting
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function of Jing (1998), as previously observed for n = −1 in Zheng et al. (2002), who point out

that the fit deviates slightly from the original simulations in Jing (1998). My results (and indirectly

the f(ν) results of Bagla et al. 2009) corroborate this conclusion.

Of particular note, in Fig. 3.9, the ξ-sampled bias for n = −1 shows substantially larger error

bars at low M/M∗ than the P -sampled case. This discrepancy stems from the large variance of

ξmm(r) and deviation from the self-similar fit, as seen in Figs. 3.3 & 3.4, rather than the ξhh(r)

measurement.

Taken together the results in this section assert that the process of halo formation is consistent

between the two methods, at least for the measurements I show here (see also Reid 2008).

3.6 Box-to-Box Variance

Having explored the ensemble-averaged predictions for the mean ξ(r), P (k), and halo mass func-

tion, in this section I turn to comparing the box-to-box variance of these quantities with expec-

tations from theory. As emphasized by Habib et al. (2007), it is important to be able to model

both the mean dark matter and/or halo statistics and the covariances of these quantities to in-

fer the appropriate cosmological constraints from a set of large-scale structure data. In this vein,

there are a number of groups that have taken up this concern for ΛCDM (Meiksin & White 1999;

Scoccimarro et al. 1999; Cohn 2006; Hamilton et al. 2006; Takahashi et al. 2009). By comparing

gaussian and other expectations for the box-to-box variance of these statistics, I aim to compare

these predictions to a more diverse range of cosmological models with the added simplicity and

clarity of powerlaw setups.

3.6.1 Var ξ results

Fig. 3.10 shows my main results for the box-to-box variance of the correlation function, in each case

multiplying by a well-motivated power of (Lbox/r0) to normalize the y-axis. In each plot I compare

with the expected Gaussian variance (see below) for a volume V = L3
box as well as an estimate

of what I refer to as a “floor” to the variance from non-linear effects (i.e. higher-order statistics)

provided by Hyper Extended Perturbation Theory (HEPT; Scoccimarro & Frieman 1999). This

term produces a fractional error proportional to the volume averaged correlation function,

σξ,hept

ξpow(r)
=
√

4(1 − 2Q3 + Q4)ξ̄(RS) (3.26)

where Q3 and Q4 come from HEPT14. Note that the scalings in Fig. 3.10 are designed to cancel with

the
√

ξ̄(Rs) ∼ (r0/Lbox)
(n+3)/2 dependence of this term so that the “HEPT floor” is a horizontal

line in each plot. Although not expected to be an extremely good match to simulations, I include

it in Fig. 3.10 for qualitative comparison to my results.

14The Journal version of this paper contains a typographical error in the equation for Q4. The arXiv version is
correct or, c.f., Bernardeau et al. (2002).
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Figure 3.10: Measurements of the box-to-box variance of ξ(r) (colored points) compared to expectations from Gaussian statistics
(dashed colored lines). Open circles show a jackknife estimate of the variance from breaking up each simulation box into octants and
measuring the correlation function in each sub-volume. The anticipated contribution to the variance from higher-order correlations
(as predicted by “Hyper-Extended”PT Scoccimarro & Frieman (1999)) is shown with gray dot-dashed lines. The y-axis in each plot
is scaled by (Lbox/r0)

(n+3)/2 so that this expected “floor” to the box-to-box variance is a fixed horizontal line. Also shown is the
Poisson noise level (colored dotted lines) and, for the ξ-sampled results in the lower three panels, a black dot-dashed line shows the
result of Eq. 3.33.
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Figure 3.11: Focusing on the box-to-box variance of ξ(r) for the P -sampled, n = −1 simulation
ensemble (top left plot in Fig. 3.10). The y-axis is shown without the (Lbox/r0)

(n+3)/2 scaling used
in Fig. 3.10 and the x-axis shows the scale, r, of the correlation function measurement relative to
the box scale so that the expected Gaussian variance (dashed black lines; Eq. 3.28) appears as a
fixed line. Results from including a low k cutoff at k = 2π/Lbox in the expected Gaussian variance
are shown for comparison as a solid gray line.

The Gaussian variance is given by

σ2
ξ =

1

V π2

∫ ∞

0
dkk2

(

sin kr

kr

)2

P (k)2. (3.27)

(Cohn 2006), which, for powerlaw, P (k) = Akn, models can be shown to be equivalent to

σξ

ξpow(r)
=

An

π

√

Γ(1 + 2n) sin nπ

4(n+1)/2

(

r

Lbox

)3/2

(3.28)

where A ≡ Anrn+3
0 , and Γ(1 + 2n) is the usual gamma function. Notice that all of the r0 depen-

dence has canceled out with the division by ξpow(r) = (r0/r)
n+3. Unfortunately, Eq. 3.28 is only

convergent for the limited range of −1.5 < n < −0.5. Therefore, the Gaussian variance predictions

for the n = −1.5 and n = −2 results in Fig. 3.10 include cutoffs in P (k) at k = kbox. As a correction

to a divergent result, the poor comparison of the expected Gaussian variance for these two cases is

unsurprising.

In Fig. 3.10, the ξ-sampled results clearly exhibit much larger box-to-box variance than the

P -sampled simulations. The ξ-sampled n = −1 results are perhaps most instructive since the

Gaussian variance is accurate in this case – the measured variance is clearly much higher than this

expectation. Though initially quite puzzling, the box-to-box variance of ξ(r) turns out to be almost

entirely dominated by the variance of the DC mode, so much so that it is as if the (auni/abox)
3
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factor in Eq. 3.9 is the direct cause of the large variance over a wide regime without any interference

from the variance of the Γ(r) term. More explicitly, since abox,i/auni = 1 − ∆i/3,

(

auni

abox,i

)3

≈ 1 + ∆i +
2

3
∆2

i (3.29)

and referring to ξuni,i(r) as the result of scaling ξbox,i(r) with the appropriate weighting,

ξuni,i(r) ≈ (1 + ∆i +
2

3
∆2

i )
Γ(r)

n̄
− 1 (3.30)

=
Γ(r)

n̄
− 1 +

Γ(r)

n̄
∆i +

2

3
∆2

i

Γ(r)

n̄

= ξbox,i(r) + (1 + ξbox,i(r))∆i + (1 + ξbox,i(r))
2

3
∆2

i .

Ignoring, for the moment, the ∆2
i term, this is simply

ξuni,i(r) ≈ ξbox,i(r) + (1 + ξbox,i(r))∆i (3.31)

and computing the variance while assuming that 〈∆i〉 = 0, i.e. that the mean of the DC mode is

equal to zero, it can be shown

〈ξ2
uni,i〉 − 〈ξuni,i(r)〉2 ≈ (1 + 2〈ξbox,i(r)〉)〈∆2

i 〉 (3.32)

= (1 + 2〈ξbox,i(r)〉)
2n+2π

−n

(

r0

Lbox

)n+3

(3.33)

where in the last step I used the fact that the variance of the DC mode, 〈∆i〉, is equal to

Preal(0)/L
3
box. Using black dot-dashed lines, I compare this formula, with much agreement, to

the ξ-sampled results in Fig. 3.10. An important detail in this derivation, which was lost in drop-

ping the ∆2
i term in Eq. 3.31, is that the mean correlation function (i.e. 〈ξuni,i(r)〉) will still retain

a (2/3)〈∆2
i 〉 term. This term is schematically very similar to the integral constraint correction

described in Appendix B. The difference is that in ξ-sampled simulations this correction is, in a

sense, applied individually to each simulation with a large scatter, rather than statistically as a

correction to the ensemble-averaged correlation function. The n = −1 case, where the expected

variance of ξ(r) from Gaussian statistics is still well defined, is decisive for assessing which ap-

proach, if either, is more accurate. With this in mind, the lower left panel of Fig. 3.10 shows that

the variance from the ξ-sampled method substantially exceeds the Gaussian expectations and the

upper left panel of Fig. 3.10 argues that the results from the P -sampled method fall significantly

below this expectation. This latter conclusion is more clearly shown in Fig. 3.11 which shows the

P -sampled variance results for n = −1 relative to the scale of the box. As in Eq. 3.28 the Gaussian

variance in Fig. 3.11 is independent of r0. On the largest scales, the measurements from simulations

systematically fall below the Gaussian expectations while on smaller scales non-linear (i.e. higher

order) contributions to the variance dominate and the comparison to pure-Gaussian statistics is no
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longer appropriate. The suppression of the variance of ξ(r) on large scales closely resembles the

prediction from Eq. 3.27 using a lower limit of k = 2π/Lbox (solid gray line).

Note that Sánchez et al. (2008) found good agreement comparing Eq. 3.28 to the covariance of

the halo-halo correlation function. I point out that their comparison was made for r/Lbox . 0.1,

where my results match the gaussian expectations without a low k cutoff.15

3.6.2 Var P(k) results

As discussed in the previous section the ξ-sampled method features large box-to-box variance in

the correlation function. Fig. 3.12 shows the box-to-box variance of the power spectrum results in

my simulation set. Unsurprisingly, the variance of the ξ-sampled results is much greater than the

variance of the P -sampled results, which lie closer to the black-dashed line indicating the gaussian

uncertainty from the number of modes at each k, i.e., Var1/2(P (k))/P (k) = 2N
−1/2
k . Overlayed

for the P -sampled simulations in dot-dashed lines is the expected variance from non-linear effects

related to the amplitude of the trispectrum (Scoccimarro et al. 1999), the fourier-space analogy of

the “HEPT floor” in Fig. 3.10. This term depends on perturbation theory results which are not

expected to be extremely accurate in practice. Nevertheless the n = −1 results agree reasonably

well, while the n = −1.5 and n = −2 cases are much less convincing.

Though this source of variance should still be a contribution to the variance in ξ-sampled

simulations, it is nevertheless small and I omit this term in Fig. 3.12, showing instead an estimate

of the “beat coupling” expectation from Hamilton et al. (2006). I apply this term in much the same

way as Reid et al. (2009), directly using the variance of the DC modes in the simulations rather than

PL(2kbox) to estimate this effect which is only relevant to simulations being used to produce mock

catalogues. Reid et al. (2009) find that the measured amplitude of the beat coupling term is ∼ 15%

below the expectation from HEPT. Compared with my results, the simulation measurements are

closer to ∼ 50% lower variance than this expectation. To make the most accurate mock catalogues

possible, with accurate covariances, this effect should be studied more carefully. I will return to

this issue in future work.

3.6.3 Var hmf results

For predicting the abundance of galaxy clusters or for more general use, high precision predictions

of the halo mass function are becoming increasingly important for inferring the original, linear

density field (containing the cosmological information) from observations of halo number counts.

Here again, there exists an expectation of the variance from a sample volume which can be compared

to the simulation results. Derived originally by Hu & Kravtsov (2003), the variance in the halo

15n.b. Sánchez et al. (2008), focusing on halo statistics, required careful bin-averaging of the sin kr/kr terms in
Eq. 3.28 to achieve this agreement. In my matter correlation function results the bin widths are sufficiently small
that this effect is negligible.
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Figure 3.12: Results for the box-to-box variance of P (k) in my fiducial simulation ensembles. In each plot I show in black dashed

lines the expected variance from mode counting (= 2N
−1/2
k ). For the P -sampled simulations I additionally show with colored dot-

dashed lines the expected contribution to the variance from higher-order correlations Scoccimarro et al. (1999), while for ξ-sampled
simulations (which, with fluctuating DC modes, are more analogous to surveys), I show expectations from the “beat coupling” result
of Hamilton et al. (2006) and neglect to show the expected variance from non-linear effects merely for clarity.
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mass function should be simply related to the Poisson noise and a sample variance term,

σ2
h =

〈n2〉 − n̄2
h

n̄2
h

=
1

n̄hV
+ b2σ2(Rbox) (3.34)

where σ(Rbox) is the rms variance in the matter overdensity in the sample volume. The first term

in Eq. 3.34 is the Poisson error from number counts. Separating these two sources of error in

Fig. 3.13 I plot separately the Poisson noise with dotted lines and the sample variance with a black

dot-dashed line. The y-axis is normalized by σ(Rbox) so that the sample variance term is fixed in

this plot (and equal to the value of b(M/M∗)). I assume the Bagla et al. (2009) model for the bias

as in § 3.5.1.

The measured variance in P -sampled simulations seems to fall well below the sample variance

estimate; the Poisson errors dominate in all regimes. This has been noticed before in a few ΛCDM

studies (Crocce et al. 2010; Bhattacharya et al. 2010) The measured variance in the ξ-sampled

simulations do seem to give different predictions for the variance, although, confusingly, they do

drop significantly below the expectated sample variance for low M/M∗. It is not entirely clear why

this is and I defer the topic to future work.

3.7 Discussion

In a suite of tests I demonstrate the accuracy of the ξ-sampled method for the ensemble-averaged

statistics of ξ(r), P (k) and the halo mass function, finding good agreement with the expected

self-similar scaling of these statistics and agreement with results P -sampled ensembles. For its

capacity to predict the mean P (k) and ξ(r) for steep (e.g. n = −2) power spectra I anticipate that

the ξ-sampled approach may be better suited than P -sampled simulations to model the non-linear

evolution of extremely red spectra (n . −2). Widrow et al. (2009) demonstrate self-similarity in

n = −2.25 simulations for the first time with impressively large, N = 15833, simulations. Recapping

their argument for the numerical requirements for modeling redder spectra, one can estimate the

necessary number of particles required to reach k/kNL ∼ 20 (approximately the large k/kNL limit

of their n = −2.25 simulations). If I consider that I can measure power spectra reliably up to one

half the particle nyquist wavenumber,

kmax =
kNy,p

2
=

πN1/3

2Lbox
=

N1/3

4
kbox (3.35)

then noting that kNL/kbox = (a/a∗)
−2/(n+3) (Widrow et al. 2009), and assuming we are interested

in scales up to kmax/kNL = 20 this implies

N1/3 = 4

(

kmax

kNL

)(

kNL

kbox

)

= 80

(

a

a∗

)−2/(n+3)

. (3.36)
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Figure 3.13: Measurements of the box-to-box variance of the halo mass function in our fiducial simulation set. As in Fig. 3.8, the
legend shows outputs in terms of the characteristic non-linear mass, M∗, and the color scheme of the outputs is consistent with other
figures. The y-axis is scaled by σ(Rbox) = δc(Rbox/R∗)

−(n+3)/2 so that the sample variance expectation (in Eq. 3.34) is a fixed line
in each plot. Colored dotted lines show the expected variance from Poisson noise (i.e. uncertainties from counting the number of
clusters).
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Widrow et al. (2009) conclude that the n = −2.5 case is impossible to accurately simulate with

current machines. If the rules of thumb regarding the maximum a/a∗ apply to n = −2.5, namely

that the P -sampled method can be used up to (a/a∗)max = 0.25 and that the ξ-sampled method

can be used up to (a/a∗)max = 0.5, then this would imply that ξ-sampled simulations substantially

lower the particle requirements from N = 803 (0.25)−6/(n+3) = 204803 with the P -sampled method,

ridiculously beyond the range of current simulations, while for ξ-sampled simulations this require-

ment relaxes to N = 803(0.5)−6/(n+3) = 12803, which is well within the capabilities of current

state-of-the-art supercomputers.

If, in fact, these projections hold true, then self-similar tests with the n = −2.25 and −2.5 cases

would prove that ξ-sampled simulations are accurate in this regime and the ξ-sampled method

would become a valuable tool for modeling the very small-scale dark matter clustering – on scales

approaching the so-called end of the CDM hierarchy (Elahi et al. 2009; Reed et al. 2009). I am

currently investigating the predictions of the ξ-sampled model for the n = −2.25 case as a proof-of-

principle for these arguments and as a stepping stone to n = −2.5 simulations with the ξ-sampled

method.

In regards to the excessively large box-to-box variance in the correlation function in ξ-sampled

simulations, although the scatter in the DC mode correctly and naturally matches linear theory

– avoiding the integral constraint problem – this feature comes at the cost of running many more

simulations to reach the same precision on the mean ξ(r). I experimented with different choices

for abox/auni, in an attempt to address this issue. In particular, one can instead choose to set

abox so that instead of ensuring that the age of the universe in each box is approximately the

same, as for the choice abox/auni = 1 − ∆/3, one can match the amplitude of the linear theory

growth function in each box. For an Ωm = 1 cosmology with no dark energy (as in the simulations

presented throughout this paper) it can be shown that the choice abox/auni = 1 − (4/7)∆i meets

this requirement to first order. Tests using this 4/7 factor, rather than the original 1/3, further

increased the variance in ξ(r) (with the the box size fixed). Since 4/7 is larger than 1/3, a re-

derivation of the result of Eq. 3.33 only increases the variance ξ(r) about the mean, thus working

in the opposite direction to the desired effect.

From the point of view of creating mock catalogues using the ξ-sampled approach, as in

Reid et al. (2009), the varying DC mode is, in fact, an attractive feature that closely mimics the

expectations for fluctuations about the mean number density in an ensemble of survey volumes.

However, the gross disagreement with the Gaussian variance estimate in the ξ-sampled n = −1

variance measurements in Fig. 3.10 may suggest that the DC mode was allowed to fluctuate too

wildly (even in the n = −1 case in which those fluctuations are smallest). I hope to return to this

topic in future work, comparing P -sampled and ξ-sampled mock catalogues and considering which

method (or some hybrid of the two) most optimally mimics surveys conducted in the real universe

and in what regimes.
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3.8 Summary

I conducted extensive tests demonstrating the accuracy of both conventional, P -sampled ensembles

of simulations as well the so-called ξ-sampled method originally inspired by Pen (1997) and devel-

oped by Sirko (2005). Notably I point out that the ξ(r) results shown in Sirko (2005) suffer from a

measurement bias – an integral constraint on the scale of the box. This substantially improves the

agreement with the P -sampled ξ(r) results and the linear theory model in the fiducial simulations

in that study.

The ξ-sampled code is very infrequently used in the literature and I show tests using pure

powerlaw simulations to establish the veracity of its predictions for the mean ξ(r), P (k) and halo

mass function results. The “scale-free” nature of these simulations give rise to the expected self-

similar behavior, with the possible exception of the n = −1 spectral slope, which deviates from

linear theory on scales approaching the box. Despite running 50 simulations, the measured mean

value of the randomly sampled DC modes in these boxes was not sufficiently close to zero to correct

for a correlation function as weak as the n = −1 correlation function on large scales. Comparing

the correlation function results from my simulation set to high resolution results for the self-similar

evolution of the correlation function revealed that my simulations do exhibit self-similar behavior

on scales below the initial mean interparticle spacing – convincing evidence that cosmological N-

body simulations do accurately render large scale structure in this regime and possibly refuting

arguments in Joyce et al. (2009) that this is not the case.

I further explore the predictions of the code for the non-linear power spectra, finding remarkably

good adherence to self-similar evolution in ξ-sampled simulations. I regard this as evidence that

the ξ-sampled method is without bias when predicting mean quantities. The method also seems

to maintain self-similar evolution longer for the n = −1.5 and n = −2 cases, which leads me to

speculate that the ξ-sampled approach may excel at simulating extremely red (n . −2) power

spectra, possibly becoming useful for exceedingly small box simulations which seek to model the

“end” of the CDM hierarchy (Elahi et al. 2009; Reed et al. 2009).

I also set up and ran the ξ-sampled code to evolve initial conditions consistent with a powerlaw

correlation function times a bump as a simplified model of BAO. At fixed r0/rbao, these models

should give unique results independent of the box size or other numerical details. I find that

the ξ-sampled code performs well in these self-similar tests, matching the results of Fig. 2.3 with

reasonable accuracy.

Previously, the ξ-sampled approach has been used to generate mock catalogues (Reid et al.

2009). I also measure the halo clustering in my simulations and halo mass functions, finding some

discrepancies with the halo abundance measurements in Bagla et al. (2009) but generally matching

the bias results that are consistent with their findings. Mindful of the code’s potential use for

generating mock catalogues, I then investigate the box-to-box variance in ξ(r), P (k) and the halo

mass function. I found that in the n = −1 case, in which the Gaussian expectation for the variance
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of ξ(r) is well-defined, my ξ-sampled simulations still dramatically overpredict the variance in ξ(r).

A more detailed study, comparing more definitively the P -sampled and ξ-sampled approaches to

creating mock catalogues, will investigate these another issues in further detail, building off of the

framework developed here and potentially optimizing the ξ-sampled approach for certain problems.

With the growing need for accurate predictions from simulations to interpret observations and

constrain cosmological parameters, I foresee that a plurality of methods may be useful. In some

cases – for example, measurements of the mean ξ(r) or P (k) from a finite set of simulations

– the conventional P -sampled method will be optimal while for others, e.g., mock catalogues,

the ξ-sampled approach or some variant may prove to be most accurate. Or, conceivably, the

computationally-lean method of Angulo & White (2010) may be adequate for the task. In any

case, an active consideration of simulation methods should prove to be most useful in the wider

quest to characterize dark energy and other parameters of interest.
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Appendix A

Pure Powerlaw Simulations

Having performed pure powerlaw simulations for the sake of better understanding the non-linear

power spectra of the fiducial simulations, I give fitting functions for the n = −0.5,−1 and −1.5

powerlaws using 5123-particle Gadget2 simulations, which were set up similarly to the fiducial sim-

ulations as outlined in § 2.2. The interested reader can consult the excellent paper by Widrow et al.

(2009) to find fitting functions for other powerlaws.

Fig. A.1 shows the primary powerlaw results compared against other fitting functions in the

literature, either specific to each powerlaw or universal fitting functions designed to match a variety

of powerlaws and cosmologies. These simulations do not extend to impressively large values of k/kNL

compared to Widrow et al. (2009), in part because of how long I chose to evolve the simulations and

in part because I chose, conservatively, to only show k-values up to one fourth the particle nyquist

wavenumber, i.e., half the rule of thumb recommended by Heitmann et al. (2010). However, I run

a number of realizations of each powerlaw (six realizations for n = −0.5, four for n = −1, and ten

for n = −1.5), which is a few to many more than in previous studies. As a result the error bars

in Fig. A.1, which show the measured errors on the mean from all realizations in each case, can be

quite constraining.

Since there is always a concern that the numerical results will be invalidated when the clustering

power on the scale of the box becomes large, following the convention of Widrow et al. (2009) I show

the value of a/a∗ = (kB/kNL)(n+3)/2 for each output in all three panels as an indicator for how close

the non-linear scale has come to the scale of the box. As stated previously, even the simulations

with the most large scale clustering (n = −1.5) fall comfortably below the threshold where the

loss of clustering power from beyond the box scale might be a concern. More quantitatively, in

Fig. A.1, a/a∗ is typically ≪ 1, and in the n = −1.5 case the last output only reaches a/a∗ = 0.18.

Importantly, the later outputs seem to show the self-similar scaling required by the scale-free nature

of the initial conditions, the results falling along the same curve when plotted against k/kNL and

divided by ∆2
L(k). For the earlier outputs this scaling seems not to have set in yet in some cases, a

fact revealed by the self-similar test. Therefore I define the non-linear fitting functions as much as

possible to the later outputs which are least affected by the clustering signature of the initial grid.
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I present non-linear fitting functions as a generalization of the functional form in Widrow et al.

(2009):

∆2
NL(k) = ∆2

L(k)fn(k/kNL), (A.1)

fn(x) =

(

1 + Ax + Bxα + Exǫ

1 + Cxγ + Dxδ

)β

. (A.2)

Table A.1: Best-fit Parameters for the Non-linear Fitting Function

n A B C D E α β γ δ ǫ
−0.5 −0.1309 0.1131 0.1296 −0.02472 0.0 8.599 2.066 8.714 0.4565 0.0
−1 −0.4722 0.3542 0.04449 −0.2020 −0.08956 1.358 1.447 1.911 0.3963 0.2564
−1.5 −0.0792 0.1704 0.008748 0.0 0.0 1.225 2.672 2.1306 0.0 0.0

The n = −1 results primarily drive the necessity of making this generalization. The n = −1.5

results seem reasonably well represented with the Widrow formula, so I set E = D = ǫ = δ = 0

in that case, while in the n = −0.5 case I set E = ǫ = 0, which still allows sufficient degrees of

freedom to adequately describe the simulation results. The fitting formula above should be accurate

to k/kNL ∼ 5 for n = −0.5, k/kNL ∼ 100 for n = −1 (larger because the fit was forced to closely

match the results of Widrow et al. (2009) at high k), and k/kNL ∼ 6.5 for n = −1.5.

A.0.1 Specific Comments on n = -0.5, -1, & -1.5

To my knowledge the most recent work to explicitly show the non-linear evolution of a pure n = −0.5

spectrum from simulations is Jain et al. (1995), whose universal fitting function I plot alongside

my results in Fig. A.1. The universal fitting functions of Peacock & Dodds (1996) and Smith et al.

(2003) are capable of making predictions for n = −0.5, but their fitting functions were trained only

on n = 0 and n = −1 simulations to set the scaling in this regime. With this caveat the remarkable

agreement of the prediction of Peacock & Dodds (1996) and my n = −0.5 results seems somewhat

fortuitous and the disagreement with the Smith et al. (2003) prediction seems not so surprising.

The discrepancy between my n = −1 simulation results and the Widrow fitting function is

entirely explainable by the sparseness of their measurements in the quasi-linear regime and is not

indicative of any kind of problem with either their or our simulations. At larger k/kNL both results

overlap nicely, and I define a fitting function to closely match theirs for k/kNL & 3. Also plotted

alongside the n = −1 simulation results is a fitting function specific to n = −1 from Appendix B
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of Smith et al. (2003). There is a typo in their fitting formula (their Eq. B1), which should read

fEdS(y) = y

[

1 + y/a + (y/b)2 + (y/c)α−1

(1 + (y/d)(α−β)γ )1/γ

]

(A.3)

(R. Smith private communication). The corrected formula for n = −1 is shown in the middle panel

of Fig. A.1, and although at k ∼ kNL it deviates strongly from either fitting function, at lower k it

matches my results reasonably well.

Appendix B of Smith et al. (2003) also includes a set of constants tuned specifically for their

n = −1.5 results, but there is a typo in their table in the reported value of α. From quantitative

comparison to their Fig. 11 (especially at large k/kNL), the correct value seems to be α ≈ 7, rather

than α = 0.707 as reported. I show this result alongside my other results for n = −1.5 in the right

panel of Fig. A.1. Since both Peacock & Dodds (1996) and Jain et al. (1995) include n = −1.5

simulations in their universal fits, I also show the predictions of their fitting functions. Finally, I

plot the expectations from SPT for n = −1.5 in the limit that the UV cutoff goes to infinity, as in

Appendix B of Scoccimarro & Frieman (1996). In my fiducial simulations this is the formula used

to predict the evolution of the powerlaw in the SPT model shown in Fig. 2.11. The SPT+ models

in Fig. 2.11 instead use the non-linear fitting functions just described to model the evolution of the

n = −0.5 and n = −1 powerlaws.
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Figure A.1: Results from pure powerlaw simulations (colored points with error bars) compared to
various fitting functions in the literature (black dotted, dash-dotted or dashed lines). Also shown
is my improved fit in thick black lines (Eqs. A.1 & A.2) and, for n = −1.5, the analytically derived
SPT prediction from Appendix B of Scoccimarro & Frieman (1996) is shown with a thick black
dashed line.
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Appendix B

Integral Constraint Corrections

to the Matter Autocorrelation

Function

When estimating the correlation function in simulations, I divide the average number of neighbors

found around paticles in the separation range r → r+dr by the number expected for an unclustered

distribution of number density N/V :

ξ̂(r) =
〈Nnbr(r → r + dr)〉

4πr2 dr × N/V
− 1 , (B.1)

where N is the simulation box volume, N is the total number of particles and I use ξ̂(r) to

distinguish this estimated correlation function from the true correlation function ξtrue(r) of the

underlying cosmological model. This procedure is subject to a well known “integral constraint”

bias (described by, e.g., (Peebles 1980, §47)), which arises because the simulation volume itself is

forced to have the cosmological mean density. The fact that the total number of particle pairs in

the box is N(N − 1)/2 ≈ (1/2)N2 imposes the requirement

∫

Vbox

d3r ξ̂(r) ≈
∫ RS=Lbox/1.61

0
4πr2 dr ξ̂(r) = 0 , (B.2)

where I have approximated the integral over the box volume as the integral over a sphere of volume

(4π/3)R3
S = V = L3

box. For large volume ΛCDM simulations, the bias in ξ̂(r) is usually a small

effect because the true correlation function goes rapidly to zero, then becomes negative at large

r, making equation (B.2) easy to satisfy. However, for powerlaw models with negative n, the slow

decay of the correlation function makes the integral constraint bias more important.

I account for the integral constraint by assuming that it produces a scale-independent additive

bias, so that the mean value of ξ̂(r) averaged over an ensemble of simulations would be

ξ̂(r) = ξtrue(r) + ξbias . (B.3)
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For powerlaw models, Eq. (B.2) then implies

∫ RS

0
4πr2 dr [ξtrue(r) + ξbias] = 0 (B.4)

and thus

ξbias = − 3

4πR3
S

∫ RS

0
4πr2 dr ξtrue(r) =

3

n

(

r0

RS

)n+3

, (B.5)

where I have used the linear theory ξL(r) = (r/r0)
−(n+3) for ξtrue(r). More elegantly, this bias

is simply the volume-averaged correlation function, ξbias = −ξ̄L(Rs), which agrees with the con-

clusions of (Bernardeau et al. 2002, §6.4.2), who derived this term using the sophisticated error

analysis in Landy & Szalay (1993).

In all figures I plot the corrected correlation function

ξ(r) = ξ̂(r) + ξ̄L(RS) . (B.6)

At large r, the fractional correction is

ξ(r) − ξ̂(r)

ξL(r)
=

3

−n

(

1.61r

Lbox

)n+3

. (B.7)

Since r is always less than Lbox/1.61, this correction is fractionally larger for more negative n and,

at fixed n, the effect is most important for r approaching the box scale as previously mentioned. In

practice, I find that the integral constraint makes little quantitative difference to the appearance of,

e.g., Figs. 2.3 & 2.8 for n = −0.5, a noticeable difference for n = −1, and an important difference

for n = −1.5. In particular, the box size convergence tests in Figure 2.8 succeed for n = −1.5 only

because I include the integral constraint correction.
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Appendix C

The Integral Constraint in Halo

Bias Measurements

As discussed in Appendix B, correlation function measurements in P -sampled simulations suffer

from an integral constraint imposed on the scale of the box. These conclusions extend to clustering

measurements for any distribution of points in a finite volume (e.g. dark matter, halos, quasars),

and, as a remedy consistent with the conclusions of Bernardeau et al. (2002) & Landy & Szalay

(1993), I proposed the correction:

ξ(r) = ξ̂(r) + ξ̄(RS) (C.1)

where ξ̄(r) is the measured correlation function, ξ(r) is the “true” corrected correlation function

and ξ̄(RS) is given by

ξ̄(RS) =
3

4πR3
S

∫ RS

0
4πr2drξL(r) (C.2)

assuming a linear theory model for ξ(r) in the integral. RS is set by RS = (4π/3)−1/3Lbox ≈
Lbox/1.61. This correction is used in the P -sampled results in Figs. 3.3 & 3.4. Importantly,

without this correction, the ξ(r) results would not match linear theory, as expected, in the large

r/r0 regime.

For bias measurements I am interested in the quantity,

b2 =
ξhh(r)

ξmm(r)
, (C.3)

where ξhh(r) is the halo-halo correlation function and ξmm(r) is the matter-matter correlation

function, elsewhere referred to in this paper as ξ(r). Using the corrected values of ξhh(r) and

ξmm(r) yields,

b2 =
ξ̂hh(r) + b2ξ̄(RS)

ξ̂mm(r) + ξ̄(RS)
(C.4)

where ξ̂hh(r) are ξ̂mm(r) are uncorrected correlation function measurements. Moving the denomi-
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nator of Eq. C.4 to the left hand side,

b2(ξ̂mm(r) + ξ̄(RS)) = ξ̂hh(r) + b2ξ̄(RS) (C.5)

the ξ̄(RS) terms cancel, leaving just

b2 =
ξ̂hh(r)

ξ̂mm(r)
. (C.6)

It is unclear whether this subtlety was noticed in previous studies where bias measurements from

pure powerlaw simulations using real-space statistics have been made Jing (1998); Zheng et al.

(2002). In any case, this appendix argues that the correction cancels, at least to first order. More

sophisticated models for correcting for the integral constraint (e.g. Bagla & Prasad (2006)) may

require more lengthy derivations to obtain unbiased estimators of the halo clustering bias.
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