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ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease in which the body’s own immune

system attacks the central nervous system. Relapsing remitting MS (RRMS) is an

initial stage of the disease where the patient experiences distinct phases of relapse

and remittance. Magnetic resonance imaging (MRI) is commonly used to monitor

the RRMS disease progression. MRI scans of the brain are taken each month and

the total number of new MRI lesions seen during the follow-up period is used as the

response variable of interest. The Negative Binomial (NB) and the Poisson-Inverse

Gaussian (P-IG) distributions have been shown to fit this over-dispersed data well.

Currently, only nonparametric tests are being used to test for the treatment effect in

RRMS trials, but the NB and P-IG distributions have been used for simulating the

MRI data for the power analyses of these tests and determination of the associated

sample sizes.

We consider three different trial designs in our study, namely parallel group (PG),

baseline vs. treatment (BVT), and parallel group with a baseline correction (PGB).

We identify the treatment effect by the parameter γ, with 1−γ representing the pro-

portion reduction in the mean count of new lesions. For these designs we investigate

the finite-sample properties of likelihood based parametric tests such as the likelihood

ratio test (LRT) and Rao’s score test (RST) for γ, and Wald tests (WT) for g(γ) with

g(γ) = γ, γ2,
√
γ, and log(γ).
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We use the NB and the P-IG models for PG trials and propose optimal likelihood

based tests. Recently, tests based on the NB model have been proposed for PG trials;

they rely on the χ2 approximation and do not maintain Type I error rates for small

samples. We propose simulation based tests that maintain Type I error rates, and

for the NB model we also consider the case of unequal dispersion parameters for the

two groups. For BVT and PGB trials, assuming a bivariate NB (BNB) model, we

investigate various parametric tests and compare them. We perform power analyses

and sample size estimation using the simulated percentiles of the exact distribution

of the preferred test statistics for all the above scenarios.

We compare the sample sizes of our recommended parametric tests with those of

the nonparametric tests published in the literature. For the NB models the exact

LRT, RST, and WT for log(γ) remained unbiased and generally did equally well for

all the three designs. When compared to the corresponding nonparametric test, the

LRT gave 30-45% reduction in sample sizes for the PG trials, 25-60% for the BVT

trials, and 70-80% for the PGB trials. The WT for γ2, though not unbiased, had

the highest power for γ < 1 and provided a further reduction of around 10-20% over

the LRT in terms of sample sizes. Hence, it is best suited for RRMS clinical trials.

For the P-IG model for PG trials, the LRT provided a sample size reduction of 30-

50% compared to the Wilcoxon Rank Sum test and the exact WT for γ provided a

reduction of 40-50%.
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CHAPTER 1

Introduction

1.1 Multiple Sclerosis

Multiple sceloris (MS) is an autoimmune demyelinating disease in which the im-

mune system attacks the central nervous system and damages the myelin sheath

covering the nerves resulting in a break down of the blood-brain barrier (BBB). This

affects the ability of the brain cells and the spinal cord to communicate with each

other. The term “multiple sclerosis” refers to scars or lesions that result from the

destruction of the tissues that wrap around the nerves (myelin sheath). This destruc-

tion is called demyelination.1 In the United States alone, there are approximately

400,000 individuals affected by MS. It is more common among women and starts

usually among people aged between 20 and 40.

There are many possible symptoms of MS since the central nervous system controls

much of the body’s functioning. Since these are very general symptoms, it often takes

many years for patients to be diagnosed with MS. Vision loss, muscle weakness, pain

in the arms and legs, fatigue, loss of balance, problems with speech, paralysis etc., are

some of, but not limited to, symptoms of MS. These symptoms vary with each patient

1http://www.merck.com/mmhe/sec06/ch092/ch092b.html
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and it is also very difficult to predict the progression of the disease for any individual

patient. During the initial stages of the disease the symptoms are usually experienced

few and far between. The disease generally progresses from a relapsing-remitting

phase to a more severe stage where symptoms are experienced fairly regularly. The

different stages of MS are described in the next section below.

1.1.1 Different Stages of MS

There are four basic stages of MS. These are:

1. Relapsing-Remitting Multiple Sclerosis (RRMS): At this stage, the pa-

tient experiences periods called a relapse which are characterized by the acute

attacks and worsening of symptoms. This is then followed by a remission where

full or partial recovery of the body function is observed. The relapse can last

from a few days to several weeks followed by prolonged periods of remission.

Usually, at this stage, the symptoms do not seem to worsen between attacks.

2. Secondary Progressive Multiple Sclerosis (SPMS): This initially begins

with a relapsing-remitting stage and later develops into a progressive stage.

This may start immediately after the onset of the MS or may appear several

years later.

3. Primary Progressive Multiple Sclerosis (PPMS): This stage is charac-

terized by gradual progression of the disease without any obvious periods of

remission although the disease tends to level out in between. This is the most

common type of MS in people who develop the disease after the age of 40.
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4. Progressive Relapsing Multiple Sclerosis (PRMS): This is the least com-

mon type of MS where patients experience very steady disease progression with

severe attacks with little to no relief from the symptoms.

Our research work is primarily focussed on the study of clinical trials involing RRMS

patients.

1.1.2 Monitoring Disease Progression in MS

Several measures of clinical evaluations are used to monitor disease progression in

various types of MS. Degree of disability, relapse rate and time to clinical deterioration

are used as the primary outcome measures in RRMS clinical trials.

Magnetic Resonance Imaging (MRI)

MRI is an imaging technique that has increasingly been used to diagnose and

monitor the pathological progression of the disease MS. MRI is able to identify lesions

in about 95% of the patients with clinically established MS. This tool can produce

high quality images of the brain and makes it possible to visualize the lesions inside

the brain. Serial MRI scans, possibly taken every month, can be used to study the

evolution of the lesions and to determine the disease progress.

Gadolinium-enhancing lesions are accepted as markers of subclinical disease ac-

tivity. However, the correlation between enhancing lesions and relapse rate is poor

even when observed for long periods of time. When looking at individual cases, there

may not be any relationship between the two for a long period of time. This hap-

pens when the disease activity occurs in clinically silent regions of the central nervous

system (CNS). On the contrary, a single lesion appearing in the functionally critical
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region of the CNS may show severe clinical consequences. Also, even though the

short term relationship between enhancing lesions and clinical disability is poor or

non-existent, a weak but significant relationship between the enhancing lesions and

long-term disability is observed.

Other Measures

Disease activity in MS has been traditionally measured on clinical grounds such

as the Expanded Disability Status Scale (EDSS) (Kurtzke [1983]). It is a method of

quantifying disability in MS and is the most standard measure for monitoring changes

in the level of disability over time. The EDSS scale ranges from 0 to 10 in increments

of 0.5. Higher EDSS score corresponds to a greater level of disability of the patient.

Although EDSS scale is used as a primary end point in Phase III clinical trials, it

is not without its limitations. Firstly, it is not a continous scale and takes on only

ordinal values (0 to 10, in steps of 0.5). Secondly, since it places greater importance

on the ambulatory functions it is somewhat insensitive to neurological and cognitive

dysfunctions. EDSS is a very subjective measure and calculating EDSS scores can

be extremely complicated. Finally, due to the limitations in its design, it is very

susceptible to “jumps” from one end of the scale to the other rather than seeing a

smooth decline or improvement.

Another measure used in MS trials is the relapse rate, the rate at which relapses

occur. This is also often used as a primary endpoint in Phase III MS trials. The quan-

tification of relapses suffers due to the possible large variability among MS symptoms.

Furthermore, a relapse can be a very rare occurrence since the manifestation of clinical

evidence can be very modest in a trial lasting 2 to 3 years.
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MRI detects 5-10 times more disease activity in RRMS and SPMS patients than

is clinically apparent. MRI has two further advantages over the EDSS. Firstly, it

is quantitative in the sense that the information gathered is the number of active

lesions in contrast to the ordinal nature of the scales such as EDSS (measured from

0-10). These are objective while the clinical scales such as EDSS and relapse rate

are subjective. Cumulative MRI lesion counts are used as a primary end point in

Phase II clinical trials and as a secondary end point in Phase III clinical trials. In

this thesis, we will be interested only in modelling the number of new enhancing

lesions (lesions not seen during the previous month) seen each month in clinical trials

involving RRMS patients.

1.2 Clinical Trial Designs in MS

Parallel Group (PG) trials, Baseline vs. Treatment (BVT) trials and Parallel

Group trials with a baseline correction scan (PGB) are some of the most important

and widely used experimental designs in clinical trials. In this section, we describe

these designs in the context of RRMS clinical trials.

1.2.1 Parallel Group (PG) Trials

In PG trials, also called the randomized placebo-controlled trials, the patients

are randomly split into two groups where one group receives the treatment while

the other receives the placebo. This design has become the gold standard of clinical

research. To establish the causality between the treatment and the outcome, steps

are taken to ensure that the treatment and the control arms are similar in every way

except the actual treatment itself. This ensures that no other variables are confounded
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with the treatment. Double blinding, if feasible, ensures that neither the patients nor

the investigators are aware of the patient assignment. The purpose of blinding is to

minimize the patients receiving different care, or their data be interpreted differently,

based on their assignment. Blinding is especially important when the end point of

the study is subjective, but less important when it is objective as it is in the case

of MS trials when the end point of the study is the number of enhanced MRI lesion

counts.

1.2.2 Baseline vs. Treatment Trials (BVT)

In this design, all the patients would be subjected to an initial set of MRI scans,

typically for 3 to 6 months, before the treatment is initiated. After that monthly MRI

scans are taken over a pre-determined interval usually for up to 6 months. The first

period is often called the baseline period and the second is called as the treatment

period. The cumulative number of new enhancing lesions seen in both the baseline

period and the treatment period are used as the primary outcome measures. This

type of design is also known as the open-label cross-over design.

In this design, each patient serves as his or her own control. The within patient

variation is reduced and this leads to smaller sample sizes to detect a significant

treatment effect. A limitation of this design however is that even when the decrease

in the number of lesions is not due to the treatment it may be perceived to be of

treatment related.
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1.2.3 Parallel Group Trials with a Baseline Correction Scan

(PGB)

In this design, the baseline correction scan is obtained before the treatment is

initiated. Once it is obtained, the rest of the trial design and protocol is exactly the

same as for the PG trials. The two control groups have to be as similar as possible

before the treatment is initiated. In some cases, even when randomization is done,

the two groups are different with respect to the mean of the end point. The baseline

correction scan is obtained to counter any significant differences among the two arms

of the trial even before the treatment is initiated.

1.3 Statistical Models and Methods

1.3.1 Distributions

We give a brief introduction to the three distributions that will be used in later

chapters.

Negative Binomial Distribution

The probability mass function of a random variable (rv) Y which is distributed

according to a negative binomial (NB) distribution with mean µ and dispersion α is

PY (y) =
αα

Γ(α)

µy

y!

Γ(y + α)

(µ+ α)y+α
, y = 0, 1, 2, . . . ; µ, α > 0. (1.3.1)

We say Y has NB(µ, α). Here E(Y ) = µ and V ar(Y ) = µ + µ2/α. Note that the

variance of Y depends on the mean µ and the dispersion parameter α. Also, the

variance of Y exceeds its mean by a quantity µ2/α. Further, the Poisson distribution

is a special case of the NB distribution. When α goes to ∞ the V ar(Y ) converges
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to µ and Y converges in distribution to a Poisson rv with rate parameter µ. These

properties make the NB distribution ideally suited to model over dispersed count

data. The applications of this distribution to PG trials involving RRMS patients will

be seen in Chapter 2.

Bivariate Negative Binomial Distribution

The joint pmf of two random variables X and Y that are distributed according

to a bivariate negative binomial (BNB) distribution parameters µ1, µ2 and α is

PX,Y (x, y) =
αα

Γ(α)

µx1
x!

µy2
y!

Γ(x+ y + α)

(µ1 + µ2 + α)x+y+α
, x, y = 0, 1, 2, . . . ; µ1, µ2, α > 0.

(1.3.2)

We then say (X, Y ) ∼ BNB(µ1, µ2, α). Marginally X and Y are each distributed ac-

cording to NB(µ1, α) and NB(µ2, α) respectively. The applications of this distribution

to RRMS BVT and PGB trials will be seen in Chapters 3 and 4 respectively.

The Poisson-Inverse Gaussian (P-IG) Distribution

The pmf of a rv Y distributed according to P-IG distribution with mean µ and

shape parameter λ is

P (Y = y) =
τ y

y!

(
2θ

π

) 1
2

exp

(
λ

µ

)
Ky− 1

2
(θ), y = 0, 1, . . . , (1.3.3)

Here τ =
[

1
µ2 + 2

λ

]− 1
2
, θ = λ

τ
and K(·) is the modified Bessel function of the third

kind. It is defined as

Kν(z) =
π

2
· I−ν(z)− Iν(z)

sin νπ
,

where I(·) is the modified Bessel function of the first kind defined by

Iν(z) =
∞∑
m=0

( z
2
)ν+2m

m!Γ(m+ ν + 1)
.
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Here, E(Y ) = µ and V ar(Y ) = µ+ µ3/λ. This distribution is sometimes used as an

alternative to the NB distribution to model over dispersed count data. As λ goes to

∞, Y converges in distribution to a Poisson rv with mean µ, as in the case of the NB

distribution.

1.3.2 Parametric Tests

Let y = (y1, y2, . . . , yn) be an independently and identically distributed (iid) sam-

ple from a distribution with probability function PY (y|θ) where θ is a p× 1 para-

metric vector. Suppose θ, is partitioned into θ1, a scalar parameter of interest and

θ2, a (p− 1)× 1 vector nuisance parameters. Also let the score vector, the vector of

first order derivatives, s(θ) = [s1(θ), s2(θ)]′ and the Fisher information matrix (FIM)

I(θ) =

(
I11 I12

I21 I22

)
be partitioned accordingly. Let the log-likelihood be `(θ|y). Suppose H0 : θ1 = θ0

1 be

the hypothesis of interest. Let θ̂ = (θ̂1, θ̂2) and θ̃ = (θ̃1, θ̃2) be the MLE of θ obtained

under the unrestricted and restricted hypothesis respectively. We present below three

popular parametric tests.

The Likelihood Ratio Test (LRT)

The LRT statistic (Rao [2005]) for testing H0 : θ1 = θ0
1 vs. H1 : θ1 6= θ0

1 is

LR = −2(`(θ̃|y)− `(θ̂|y)) (1.3.4)

where `(θ̃|y) and `(θ̂|y) are the log-likelihood functions evaluated at the restricted

and the unrestricted MLEs respectively.

9



The Rao Score Test (RST)

The RST statistic (Rao [1948, 2005]) for testing H0 : θ1 = θ0
1 vs. H1 : θ1 6= θ0

1 is

RS =
[
s1(θ̃)

]2

[I1.2(θ̃)]−1, (1.3.5)

where I1.2 = I11 − I12I
−1
22 I21 is a scalar and equals σ2

θ̂1
(θ̃), the asymptotic variance of

θ̂1 evaluated at the MLEs obtained under H0.

The Wald Test (WT)

The WT statistic (Wald [1943], Rao [2005]) for testing H0 : θ1 = θ0
1 vs. H1 : θ1 6= θ0

1

is

WT =

[
θ̂1 − θ0

1

σθ̂1(θ̂)

]2

(1.3.6)

where σ2
θ̂1

(θ̂) is the asymptotic variance of θ̂1 evaluated at θ̂.

Each of the above three tests are asymptotically equivalent and have a χ2
1 distri-

bution under H0. The LRT requires computation of the MLEs of θ under both the

restricted and the unrestricted cases, while the RST requires the MLEs under only

the restricted case and the WT requires the MLEs under only the unrestricted case.

1.4 The Research Problem

This work is motivated by the problem of sample size and power calculations for

clinical trials in MS. These trials routinely use MRI lesion counts as their outcome

measure of interest and are very expensive since they involve taking repeated MRI

scans of the brain. Typically the patients are followed up for several months and the

MRI scans of the brain are taken each month. Currently only nonparametric tests

such as the Wilcoxon Rank Sum (WRS) and the Wilcoxon Signed Rank (WSR) test
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are being used in MS trials even though it has been shown that the NB and P-IG

distributions provide a good fit to such count data. Using parametric tests for the

assumed parametric models generally increase the power to detect a treatment effect

and thus reduce the sample sizes required. The goals of this thesis are (i) to develop

desirable parametric tests for the treatment effect based on the NB and the P-IG

model for different trial designs in RRMS clinical trials, and (ii) to examine the mag-

nitude of the increase in power and reduction in sample size over the corresponding

nonparametric tests. In Section 1.1 we have given a brief introduction to the disease

of multiple sclerosis and discuss its different stages and progression. Three of the

most common clinical trial designs used in multiple sclerosis clinical trials, the PG,

BVT, and PGB designs were described in Section 1.2. Section 1.3 has introduced the

NB, BNB and P-IG models to model MRI lesion count data and the LRT, RST and

WTs that will be used in future chapters to test for the treatment efficacy.

In Chapter 2 we apply the NB model to MRI lesion count data in RRMS PG trials.

In Chapter 3 we propose a bivariate NB (BNB) distribution to model lesion count

data arising out of RRMS BVT trials. The BNB distribution is used to model data

from RRMS PGB trials in Chapter 4. In Chapter 5 the P-IG distribution is used as an

alternative to model lesion count data from PG trials. For all these models we obtain

maximum likelihood estimates of the parameters and propose LRT, RST and WTs

to test for the treatment effect. Through a detailed simulation study we evaluate and

compare the performance of these tests and suggest appropriate tests for each trial

design and parametric model considered. For each of the above scenarios we obtain

sample size estimates based on selected tests and compare them to those obtained

using nonparametric tests. Finally, in Chapter 6, we conclude by summarizing our
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results and discuss avenues for further work. All the computational work required for

this thesis was done using the software R Development Core Team [2010].

The Appendix contains basic notations and abbreviations used in this thesis.

There we present data sets from MRI studies and an epilepsy study where the NB

models provide a good fit. It also contains a brief description of the simulation method

for different trial designs and sample R codes.

12



CHAPTER 2

Univariate Negative Binomial Models for Parallel Group

Trials

2.1 Introduction

Use of the Poisson distribution to model the number of new enhancing lesions

seen in RRMS patients requires the highly unrealistic assumption that the mean

number of new enhancing lesions in any particular time period is the same for all

the patients within a group. When subjects are randomly chosen and the subject

effect is taken to be random where the mean parameter is assumed to be distributed

as a Gamma variable, the distribution of the observed count data turns out to be

negative binomial. When X|θ is assumed to be distributed according to Poisson(θ)

and θ is further assumed to be distributed according to Gamma(α, µ/α), the marginal

distribution of X is

PX(x) =

∫ ∞
0

PX|θ(x)f(θ)dθ

=

∫ ∞
0

e−θθx

x!

1

Γ(α)(µ/α)α
θα−1e−θα/µ

=
Γ(x+ α)

Γ(α)x!

(
µ

µ+ α

)x(
α

µ+ α

)α
, x = 0, 1, 2, . . . ;α, β > 0. (2.1.1)
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The expected value of X is µ and its variance is µ + µ2/α where α is called the

dispersion parameter. As α goes to infinity, X converges in distribution to a Poisson

random variable with rate parameter µ but it has larger variance than the Poisson for

all real α. Thus the NB distribution is used as an alternative to Poisson distribution

when modeling over dispersed count data. This relationship between the NB and

Poisson distributions was first derived by Greenwood and Yule [1920] who used it to

represent “accident proneness”.

There are several other chance mechanisms that give rise to the NB distribution.

In a sequence of independent Bernoulli trials with probability of success p, ifX denotes

the number of failures that precede the rth success, then X has a NB distribution

with the following pmf:

PX(x) =

(
x+ r − 1

r − 1

)
pr(1− p)x, x = 0, 1, . . . ; 0 < p < 1. (2.1.2)

If in the above experiment, Y denotes the number of “trials” required to attain r

successes, then Y = X + r is said to have a NB distribution with pmf

PY (y) =

(
y − 1

r − 1

)
pr(1− p)y−r, y = r, r + 1, . . . ; 0 < p < 1. (2.1.3)

The NB distribution in (2.1.2) and (2.1.3) can also be derived as a sum of r i.i.d.

geometric random variables which are appropriately defined. Johnson et al. [2005]

provide a detailed description of this distribution and its properties and discuss several

other chance mechanisms which lead to it.

In this chapter we focus on the NB distribution that arises as a gamma mixture of

Poisson random variables as given in (2.1.1). In Section 2.2 this distribution is used to

model MRI lesion counts data arising out of PG trials involving RRMS patients. The

maximum likelihood estimation of the model parameters is done in Section 2.3. Exact
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parametric tests for the treatment effect are developed in Section 2.4. Section 2.5

compares the performance of these tests and Section 2.6 provides sample size estimates

applicable to RRMS PG trials. The findings are summarized in Section 2.8.

2.2 The NB Model

Sormani et al. [1999] show that the NB distribution fits better than the Poisson

distribution to the data on the number of new enhancing lesions counted in 56 MS

patients followed for 9 months. Sormani et al. [2001a] show that the NB distribution

fits well to other larger data sets (see Appendix Section C.1.3 for the data) of MRI

counts from RRMS patients. We use the empirical evidence provided by these data

sets to build univariate NB models for PG trials on RRMS patients. In PG trials (also

called randomized placebo-controlled trials), the patients are randomly assigned to

one of two groups where one group receives the treatment while the other receives the

placebo. Let Y1 (Y2) be the total number of new enhancing lesions seen during the

follow-up period of an RRMS patient in the placebo (treatment) group. Let Z1, Z2

denote the random subject effects, assumed to be independent Gamma(α, α−1) rvs.

We assume that

Y1|Z1 = z ∼ Poisson(µz) and Y2|Z2 = z ∼ Poisson(γµz), µ, γ > 0.

Then Y1 is NB(µ, α), and Y2 is NB(γµ, α), and since the patients are nested within

groups, Y1 and Y2 are assumed to be independent.

If there is evidence that the dispersion parameter α is also affected by the treat-

ment, we assume

Y1|Z1 = z1 ∼ Poisson(µz1) and Y2|Z2 = z2 ∼ Poisson(γµz2),
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where Zi is distributed according to Gamma(αi, αi
−1) , i = 1, 2. Then Y1 and Y2 are

independent, Y1 is NB(µ, α1), and Y2 is NB(γµ, α2).

We assume there are n1 subjects in the placebo group and n2 in the treatment

group.

2.3 Estimation

2.3.1 Equal Dispersion Parameters

We now find the MLEs of the parameters of the NB model.2 Since the subjects

in each group and between groups are independent of each other, the joint likelihood

for this model with data y1 = (y11, y12, . . . , y1n1) and y2 = (y21, y22, . . . , y2n2) is given

by

L(γ, µ, α|y1,y2) =

n1∏
i=1

PY1(y1i)

n2∏
j=1

PY2(y2j)

=

[
αα

Γ(α)

]n1+n2 µ
∑
y1i

(µ+ α)
∑
y1i+n1α

(γµ)
∑
y2j

(γµ+ α)
∑
y2j+n2α

×
n1∏
i=1

Γ(y1i + α)

y1i!

n2∏
j=1

Γ(y2j + α)

y2j!
, (2.3.1)

and the parameter space is Θ = {(γ, µ, α) : γ, µ, α > 0}. The log-likelihood is

`(γ, µ, α) =(n1 + n2) {α logα− log Γ(α)}+ (n1ȳ1 + n2ȳ2) log(µ)

− n1(ȳ1 + α) log(µ+ α) + n2ȳ2 log(γ)− n2(ȳ2 + α) log(γµ+ α)

+

n1∑
i=1

{log Γ(y1i + α)− log(y1i!)}+

n2∑
j=1

{log Γ(y2j + α)− log(y2j!)} .

(2.3.2)

2These are available in Aban et al. [2009]. We present the likelihood function and the parameter

estimates here for completeness.
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The first order derivatives of the log-likelihood with respect to the three parameters

are:

∂`(γ, µ, α)

∂γ
=
n2α(ȳ2 − γµ)

γ(γµ+ α)
, (2.3.3)

∂`(γ, µ, α)

∂µ
=
n1ȳ1 + n2ȳ2

µ
− n1(ȳ1 + α)

µ+ α
− n2(ȳ2 + α)

γµ+ α
γ, (2.3.4)

∂`(γ, µ, α)

∂α
=− (n1 + n2)[ψ(α)− 1] + n1 log

(
α

µ+ α

)
− n1(ȳ1 + α)

µ+ α
+

n1∑
i=1

ψ(y1i + α)

+ n2 log

(
α

γµ+ α

)
− n2(ȳ2 + α)

γµ+ α
+

n2∑
j=1

ψ(y2j + α). (2.3.5)

The MLEs of the parameters are obtained by setting the above first order score vector

equations to 0 and solving for the three parameters. This gives us the following result:

Lemma 2.3.1. The MLEs of γ and µ are

γ̂ = ȳ2/ȳ1 and µ̂ = ȳ1. (2.3.6)

The MLE of α, α̂, is obtained by numerically maximizing the profile log-likelihood

`(γ̂, µ̂, α) with respect to α.

When γ = γ0 (known), the MLEs of µ and α are obtained by setting equations

(2.3.4) and (2.3.5), with γ = γ0, to 0 and solving for the two parameters. This leads

us to the following result:

Lemma 2.3.2. (Aban et al. [2009]) When γ = γ0 is known, the MLEs of µ and α

satisfy the following constraints:

µ̃ =
n1(γ0ȳ1 − α̃) + n2(ȳ2 − γ0α̃)

2γ0(n1 + n2)

+

√
[n1(γ0ȳ1 − α̃) + n2(ȳ2 − γ0α̃)]2 + 4γ0α̃(n1 + n2)(n1ȳ1 + n2ȳ2)

2γ0(n1 + n2)
;

0 = − (n1 + n2) [ψ(α̃)− 1] + n1 log

(
α̃

µ̃+ α̃

)
+ n2 log

(
α̃

γ0µ̃+ α̃

)
− n1(ȳ1 + α̃)

µ̃+ α̃
− n2(ȳ2 + α̃)

γ0µ̃+ α̃
+
∑

ψ(y1i + α̃) +
∑

ψ(y2j + α̃).
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When γ0 = 1, µ̃ above simplifies to

µ̃ =
n1ȳ1 + n2ȳ2

n1 + n2

,

and is free of α̃ and in that case α̃ is obtained by numerically maximizing the profile

log-likelihood `(γ0, µ̃, α) with respect to α.

The second order derivatives of (2.3.2) are:

∂2`(γ, µ, α)

∂γ2
=
−n2α [γµ(γµ+ α) + (ȳ2 − γµ)(2γµ+ α)]

[γ(γµ+ α)]2
,

∂2`(γ, µ, α)

∂γ∂µ
=− n2α(ȳ2 + α)

(γµ+ α)2
=
∂2`(γ, µ, α)

∂µ∂γ
,

∂2`(γ, µ, α)

∂γ∂α
=− n2µ(γµ− ȳ2)

(γµ+ α)2
=
∂2`(γ, µ, α)

∂α∂γ
,

∂2`(γ, µ, α)

∂µ2
=− n1ȳ1 + n2ȳ2

µ2
+
n1(ȳ1 + α)

(µ+ α)2
+
n2γ

2(ȳ2 + α)

(γµ+ α)2
, (2.3.7)

∂2`(γ, µ, α)

∂µ∂α
=− n1(µ− ȳ1)

(µ+ α)2
− n2γ(γµ− ȳ2)

(γµ+ α)2
=
∂2`(γ, µ, α)

∂α∂µ
,

∂2`(γ, µ, α)

∂α2
=− (n1 + n2)ψ′(α) +

n1µ

α(µ+ α)
+

n2γµ

α(γµ+ α)
− n1(µ− ȳ1)

(µ+ α)2

− n2(γµ− ȳ2)

(γµ+ α)2
+

n1∑
i=1

ψ′(y1i + α) +

n2∑
j=1

ψ′(y2j + α).

The Fisher Information Matrix (FIM) is I(θ) =
(
I(θ)

)
i,j

= −E
{
∂2`(θ)
∂θi∂θj

}
where θ =

(θ1, θ2, θ3) = (γ, µ, α) is the parameter vector.

Lemma 2.3.3. Using the fact that E(Ȳ1) = µ and E(Ȳ2) = γµ, and from the fact

that Y1i, i = 1, . . . , n1 and Y2j, j = 1, . . . , n2, are respectively identically distributed,
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we get the elements of the FIM to be

I11(θ) =− E
{
∂2`(γ, µ, α)

∂γ2

}
=

n2µα

γ(γµ+ α)
,

I22(θ) =− E
{
∂2`(γ, µ, α)

∂µ2

}
=

n1α

µ(µ+ α)
+

n2γα

µ(γµ+ α)
,

I33(θ) =− E
{
∂2`(γ, µ, α)

∂α2

}
= n1

{
ψ′(α)− µ

α(µ+ α)

}
− n1E(ψ′(Y1 + α))

+ n2

{
ψ′(α)− γµ

α(γµ+ α)

}
− n2E(ψ′(Y2 + α)),

I12(θ) =− E
{
∂2`(γ, µ, α)

∂γ∂µ

}
=

n2α

γµ+ α
= I21(θ), and

Iij(θ) = 0, otherwise.

2.3.2 Unequal Dispersion Parameters

When the dispersion parameters differ,

L(γ, µ, α1, α2|y1,y2) =

[
αα1

1

Γ(α1)

]n1 µ
∑
y1i

(µ+ α1)
∑
y1i+n1α1

[
αα2

2

Γ(α2)

]n2 (γµ)
∑
y2j

(γµ+ α2)
∑
y2j+n2α2

×
n1∏
i=1

Γ(y1i + α1)

y1i!

n2∏
j=1

Γ(y2j + α2)

y2j!
,

and the parameter space is Θ = {(γ, µ, α1, α2) : γ, µ, α1, α2 > 0}. The log-likelihood

is

`(γ, µ, α1, α2) = n1 {α1 logα1 − log Γ(α1)}+ n2 {α2 logα2 − log Γ(α2)}

+ (n1ȳ1 + n2ȳ2) log(µ)− n1(ȳ1 + α1) log(µ+ α1) + n2ȳ2 log(γ)

− n2(ȳ2 + α2) log(γµ+ α2) +

n1∑
i=1

{log Γ(y1i + α1)− log(y1i!)}

+

n2∑
j=1

{log Γ(y2j + α2)− log(y2j!)} . (2.3.8)
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The score vector components are

∂`(γ, µ, α1, α2)

∂γ
=

n2α2(ȳ2 − γµ)

γ(γµ+ α2)
, (2.3.9)

∂`(γ, µ, α1, α2)

∂µ
=

n1ȳ1

µ
− n1(ȳ1 + α1)

µ+ α1

+
n2ȳ2

µ
− n2(ȳ2 + α2)

γµ+ α2

γ, (2.3.10)

∂`(γ, µ, α1, α2)

∂α1

= −n1[ψ(α1)− 1] + n1 log

(
α1

µ+ α1

)
− n1(ȳ1 + α1)

µ+ α̃1

+

n1∑
i=1

ψ(y1i + α1), (2.3.11)

∂`(γ, µ, α1, α2)

∂α2

= −n2[ψ(α2)− 1] + n2 log

(
α2

γµ+ α2

)
− n2(ȳ2 + α2)

γµ+ α2

+

n2∑
j=1

ψ(y2j + α2). (2.3.12)

where ψ(·) is the digamma function.

Lemma 2.3.4. The MLEs of γ and µ are given by (2.3.6) as in the equal dispersion

parameter case, and the MLEs of α1 and α2 are obtained by numerically maximizing

the profile loglikelihoood `(γ̂, µ̂, α1, α2) with respect to (α1, α2).

Lemma 2.3.5. When γ = γ0 and known, the MLEs of µ, α1 and α2 satisfy the

following:

µ̃ =
n1α̃1(γ0ȳ1 − α̃2) + n2α̃2(ȳ2 − γ0α1)

2γ0(n1α̃1 + n2α̃2)

+

√
[n1α̃1(γ0ȳ1 − α̃2) + n2α̃2(ȳ2 − γ0α̃1)]2 + 4γ0α̃1α̃2(n1α̃1 + n2α̃2)(n1ȳ1 + n2ȳ2)

2γ0(n1α̃1 + n2α̃2)
,

0 =− n1[ψ(α̃1)− 1] + n1 log

(
α̃1

µ̃+ α̃1

)
− n1(ȳ1 + α̃1)

µ̃+ α̃1

+

n1∑
i=1

ψ(y1i + α̃1),

0 =− n2[ψ(α̃2)− 1] + n2 log

(
α̃2

γ0µ̃+ α̃2

)
− n2(ȳ2 + α̃2)

γ0µ̃+ α̃2

+

n2∑
j=1

ψ(y2j + α̃2).
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The second order derivatives of (2.3.8) are

∂2`(γ, µ, α1, α2)

∂γ2
=
−n2α2 [γµ(γµ+ α2) + (ȳ2 − γµ)(2γµ+ α2)]

[γ(γµ+ α2)]2
,

∂2`(γ, µ, α1, α2)

∂γ∂µ
=− n2α2(ȳ2 + α2)

(γµ+ α2)2
=
∂2`(γ, µ, α1, α2)

∂µ∂γ
,

∂2`(γ, µ, α1, α2)

∂γ∂α1

=0 =
∂2`(γ, µ, α1, α2)

∂α1∂γ
,

∂2`(γ, µ, α1, α2)

∂γ∂α2

=− n2µ(γµ− ȳ2)

(γµ+ α2)2
=
∂2`(γ, µ, α1, α2)

∂α2∂γ
,

∂2`(γ, µ, α1, α2)

∂µ2
=− n1ȳ1 + n2ȳ2

µ2
+
n1(ȳ1 + α1)

(µ+ α1)2
+
n2γ

2(ȳ2 + α2)

(γµ+ α2)2
, (2.3.13)

∂2`(γ, µ, α1, α2)

∂µ∂α1

=− n1(µ− ȳ1)

(µ+ α)2
=
∂2`(γ, µ, α1, α2)

∂α1∂µ
,

∂2`(γ, µ, α1, α2)

∂µ∂α2

=− n2γ(γµ− ȳ2)

(γµ+ α)2
=
∂2`(γ, µ, α1, α2)

∂α2∂µ
,

∂2`(γ, µ, α1, α2)

∂α2
1

=− n1ψ
′(α1) +

n1µ

α1(µ+ α1)
− n1(µ− ȳ1)

(µ+ α1)2
+

n1∑
i=1

ψ′(y1i + α1),

∂2`(γ, µ, α1, α2)

∂α2
2

=− n2ψ
′(α2) +

n2γµ

α2(γµ+ α2)
− n2(γµ− ȳ2)

(γµ+ α2)2
+

n2∑
j=1

ψ′(y2j + α2),

∂2`(γ, µ, α1, α2)

∂α1∂α2

=0 =
∂2`(γ, µ, α1, α2)

∂α2∂α1

.

Lemma 2.3.6. Using the fact that E(Ȳ1) = µ and E(Ȳ2) = γµ, and from the fact

that Y1i, i = 1, . . . , n1 and Y2j, j = 1, . . . , n2 are respectively identically distributed, we

get the elements of the FIM I(θ) to be

I11(θ) =− E
{
∂2`(γ, µ, α1, α2)

∂γ2

}
=

n2µα2

γ(γµ+ α2)
,

I22(θ) =− E
{
∂2`(γ, µ, α1, α2)

∂µ2

}
=

n1α1

µ(µ+ α1)
+

n2γα2

µ(γµ+ α2)
,

I33(θ) =− E
{
∂2`(γ, µ, α1, α2)

∂α2
1

}
= n1

{
ψ′(α1)− µ

α1(µ+ α1)

}
− n1E(ψ′(Y1 + α1)),

I44(θ) =− E
{
∂2`(γ, µ, α1, α2)

∂α2
2

}
= n2

{
ψ′(α2)− γµ

α2(γµ+ α2)

}
− n2E(ψ′(Y2 + α2)),

I12(θ) =− E
{
∂2`(γ, µ, α1, α2)

∂γ∂µ

}
=

n2α2

γµ+ α2

= I21(θ), and

Iij(θ) = 0, otherwise,
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where ψ′(·) is the trigamma function and θ = (γ, µ, α1, α2) is the parameter vector.

Lemma 2.3.7. The asymptotic covariance matrix of θ̂ is Σ(θ) = [I(θ)]−1. Further,

σ2
γ̂ = Σ11(θ), the asymptotic variance of γ̂, is given by

σ2
γ̂(θ) =

γ [n1α1(γµ+ α2) + n2α2γ(µ+ α1)]

n1n2α1α2µ
. (2.3.14)

Remarks: The MLEs are determined using a combination of solution of likeli-

hood equations for some of the parameters and direct numerical maximization of the

likelihood with respect to the others. For PG trials with common α, the solutions

of µ and γ (or just of µ when γ0 = 1) are obtained from likelihood equations while

keeping the α fixed. It can be shown that these solutions correspond to the maximum

value of the likelihood for a fixed α. When the model is parametrized in terms of

(µ1, µ2, α), the solutions for µ1 and µ2 obtained from the score equations are ȳ1 and

ȳ2 respectively. For a fixed α, the determinant of the second order derivative matrix

of the log-likelihood evaluated at µ̂1 = ȳ1 and µ̂2 = ȳ2 is

∂2`(µ1,µ2,α)

∂µ2
1

∂2`(µ1,µ2,α)
∂µ1∂µ2

∂2`(µ1,µ2,α)
∂µ1∂µ2

∂2`(µ1,µ2,α)

∂µ2
2

=
−n1α

ȳ2(ȳ2+α)
0

0 −n2α
ȳ2(ȳ2+α)

=
n1n2α

2

ȳ1ȳ2(ȳ1 + α)(ȳ2 + α)
> 0 ∀ α > 0.

Since ∂2`(µ1,µ2,α)

∂µ2
1

< 0, it can be said that ȳ1 and ȳ2 are the MLEs of µ1 and µ2 respec-

tively. Since these are independent of α, we can say that L(µ̂1, µ̂2, α) ≥ L(µ1, µ2, α)

for all µ1 and µ2 > 0. Thus, to get the MLE of α, the profile likelihood (or log-

likelihood) at these MLEs can be looked at and maximized with respect to α.

For PG trials assuming equal α, Figure 2.1 shows the plots of g(α) = `(ȳ1, ȳ2, α)

(Plot (a)) and g′(α) = ∂`(µ1, µ2, α)/∂α at µ1 = ȳ1 and µ2 = ȳ2 (Plot (b)) as a

function of α for one simulated dataset. It can be seen that the profile log-likelihood

g(α) increases until a certain point and then decreases as α becomes larger. Plot (b)

of Figure 2.1 shows that g′(α) decreases with α until a certain point (crossing zero
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only once) and then increases as α becomes larger without ever reaching zero again.

This shows that maximizing g(α) numerically with respect to α yields its MLE α̂

as does solving the equation g′(α) = 0. Of course, in the above discussion, the log-

likelihood function is in terms of (µ1, µ2, α) instead of the original parametrization

(γ, µ, α) but since there is a one to one relation between the two parametrizations

and because of the invariance property of the MLEs the above method can be used

to obtain the MLEs under the (γ, µ, α) parametrization as well.

For PG trials with α1 6= α2, when γ is unknown, we use numerical maximization

of ` with respect to α1 and α2, and when γ is known, we use numerical maximization

with respect to all unknown parameters. A similar argument to the one given above

can be used to show that this method gives the MLEs of the required parameters.

In all these cases one could also obtain the MLEs identified through the solutions of

relevant likelihood equations.

2.4 Testing for the Treatment Effect

The treatment effect, 100(1 − γ)%, represents the proportion of reduction in the

mean new lesion counts. If the treatment had no effect, γ would be equal to 1 and in

RRMS trials the treatment is considered ineffective if γ ≥ 1.

2.4.1 Equal Dispersion Parameters

We now present parametric tests for the general case H0 : γ = γ0 vs. H1 : γ 6= γ0.

To test if the treatment is effective in the RRMS clinical trials, γ0 is taken to be 1.

Wang et al. [2001] have considered this comparison assuming the common dispersion

parameter α is known. Then, the likelihood function given in (2.3.1) belongs to a
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Figure 2.1: Plot of the log-likelihood g(α) and first derivative g′(α) for PG trials

assuming equal dispersion parameters with µ1 and µ2 fixed at their MLEs ȳ1 and ȳ2

respectively.
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two-parameter exponential family and consequently, they use classical results (see,

e.g., Section 4.4 of Lehmann [1986]) to derive a uniformly most powerful unbiased

(UMPU) test. But when α is unknown, it is not known whether a UMPU test exists.

Aban et al. [2009] derive the LRT for testing H0 : γ = γ0 vs. H1 : γ 6= γ0 for PG

trials using the NB model with common unknown dispersion parameter. To construct

the LRT, the MLEs of the parameters are needed under both Θ and Θ0 specified by

H0. These are described in Lemmas 2.3.1 and 2.3.2, respectively.

Theorem 2.4.1. The LRT statistic for testing H0 : γ = γ0 vs. H1 : γ 6= γ0 is given

by

LPG = −2 log

(
supΘ0

L(γ, µ, α)

supΘ L(γ, µ, α)

)
= −2(`(γ0, µ̃, α̃)− `(γ̂, µ̂, α̂)).

When H0 is true, this statistic is asymptotically distributed as a χ2
1 rv as n1, n2 in-

crease. An approximate level ν test rejects H0 if LPG > χ2
1(1− ν).

For testing the treatment effect Aban et al. [2009] also propose and compare other

asymptotic parametric tests such as the Rao’s Score Test (RST) and Wald tests (using

several transformations g(γ) of γ such as γ, γ2, and log(γ)) for testing the treatment

effect. The LRT needs the MLEs of parameters for both parameter spaces Θ and Θ0.

The Wald tests need them only for Θ whereas the RST needs MLEs only under Θ0.

While these three tests are asymptotically equivalent, they behave very differently for

small samples and the χ2 critical value may fail to maintain the assumed significance

level. Using simulation methods these authors show that the LRT and Wald tests

are not appropriate for sample sizes under 50 as they have a highly inflated Type I

error rate. For larger sample sizes these tests have more power than the RST and

their significance levels are close to the nominal level. Although RST is less powerful

than either the LRT or the Wald test, its Type I error rate is well below the nominal
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5% level even for small sample sizes. Their paper recommends the use of RST when

individual sample sizes are under 50, and either the LRT or the Wald test that tests

log γ = 0 for larger sample sizes.

The PROC GENMOD procedure in SAS can be used to compare the means of two

independent NB populations assuming equal dispersion parameters. It provides LRT,

and WT(log(γ)) when we use log link function and takes c0 = χ2
1(1−ν) as the critical

value. With µ1 = µ and µ2 = γµ as the parameters of interest, PROC GENMOD

can be used with appropriate link functions to generate LRT and Wald tests for

H0 : g(µ1) = g(µ2) where g(µ) = µ, µ2 or
√
µ. However those Wald tests are different

from the Wald tests for g(γ) while the LRT is invariant of these transformations. See

also Remark 7 of Aban et al. [2009].

2.4.2 Unequal Dispersion Parameters

When α1 and α2 are not equal and assumed to be known, the likelihood func-

tion can still be shown to be a two-parameter exponential family and a two-sided

UMPU test for H0 : γ = 1 can be derived using the results given in Section 4.4 of

Lehmann [1986]. The above likelihood based tests can be derived when the dispersion

parameters are unknown and assumed unequal. They are described next.

Theorem 2.4.2. (LRT). When α1 6= α2, the LRT statistic to test H0 : γ = γ0 vs.

H1 : γ 6= γ0 is given by −2(`(γ0, µ̃, α̃1, α̃2) − `(γ̂, µ̂, α̂1, α̂2)), where the MLEs are

described in Lemmas 2.3.4 and 2.3.5. The LRT statistic is asymptotically distributed

as a χ2
1 rv under H0.
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Theorem 2.4.3. (RST). When α1 6= α2, the RST statistic for testing H0 : γ = γ0

vs. H1 : γ 6= γ0 is given by

RPG =

[
∂`(θ)

∂γ

]2

θ=θ̃

·σ2
γ̂(θ̃) =

n2α̃2

n1α̃1γ0µ̃

(ȳ2 − γ0µ̃)2

(γ0µ̃+ α̃2)2
[n1α̃1(γ0µ̃+ α̃2) + n2α̃2γ0(µ̃+ α̃1)]

where µ̃, α̃1 and α̃2 are the MLEs under H0 of µ, α1 and α2, respectively. Then an

approximate level ν test rejects H0 if RPG > χ2
1(1− ν).

Theorem 2.4.4. (Wald Test (WT (g(γ)), See Rao [2005], Sec 1.2). When α1 6= α2

and g(·) is a 1 − 1 function with nonzero derivative, a Wald Test for testing H0 :

g(γ) = g(γ0) vs. H1 : g(γ) 6= g(γ0) is based on

WPG(g(γ)) =

[
g (ȳ2/ȳ1)− g(γ0)

g′(γ̂)σγ̂(θ̂)

]2

where

σ2
γ̂(θ̂) =

γ̂ [n1α̂1(γ̂µ̂+ α̂2) + n2α̂2γ̂(µ̂+ α̂1)]

n1n2α̂1α̂2µ̂

is the asymptotic variance of γ̂ (see Lemma 2.3.7) evaluated at the MLEs. An ap-

proximate level ν test rejects the null hypothesis H0 if WPG(g(γ)) > χ2
1(1− ν).

2.4.3 Exact Parametric Tests and Critical Values

The choice of c0 (= 3.8415) as the critical value for a 5% significance level may

be inappropriate for small studies. For small PG trials, as observed by Aban et al.

[2009], it may lead to very liberal (LRT, WT) or too conservative (RST) tests. A

more precise critical value (referred to as the exact critical value from now on) of the

test statistic can be obtained through simulation. For example, for a given sample

size, the LRT statistic is simulated from the null distribution a large number of times

(say 200,000). The 100(1− ν)th sample percentile provides an exact critical value for

a 100ν% level test. The null hypothesis is then rejected if the LRT statistic is greater
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than the simulated critical value. The properties of such exact and approximate

LRTs, RSTs and Wald tests for PG trials are compared in Section 2.5.

For the PG trials, the simulated 95th percentile values for the different tests are

displayed as a function of the sample sizes in Figure 2.2. There we take µ = 5.9,

α = 0.49; these values are suggested by data sets from RRMS studies Sormani et al.

[2001b]. For the LRT and Wald tests they are well above c0 for small samples in all

cases. As expected, the exact percentile values converge to c0 as sample sizes increase

although the convergence is quicker for the LRT than for any of the Wald tests. The

convergence appears to be the slowest for the Wald test for γ2. The exact percentile

values for the RST are below c0 for small samples sizes. This means RST tends to be

conservative while the other tests fail to maintain the nominal level for small samples.

We conducted simulation studies to check on the effect of µ and α on the simulated

percentiles of LRT and WT (γ2), and actual Type I error rates when one uses c0 as the

critical value. We considered several values of µ ranging from 1 to 10 and α ranging

from 0.2 to 5. Sample sizes of 10, 20, 50 and 100 subjects per group were considered.

For the LRT, µ has little to no effect on the simulated percentiles or the Type I error

rates (Figures 2.3 and 2.4). Increasing α results in smaller simulated percentiles and

consequently reduced levels for PG trials. For smaller sample sizes (n = 10, 20) it can

be seen that the exact percentiles are well above c0. For larger sample sizes they seem

to be reasonably close to c0. The ‘effect’ of these exact percentiles can be seen on the

asymptotic Type I error rates. For small sample sizes (n = 10, 20) the Type I error

rates using the asymptotic LRT seem to be very high even for larger values of α. For

n = 50, the Type I error rates seem to higher than the nominal level when α is very

small. Thus, for sample sizes of 50, it is still advisable to use exact percentile based
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Figure 2.2: PG Trial: Simulation based 95th percentile value for the null distribution

of LRT, RST and Wald test statistics as a function of common sample size n; µ = 5.9,

α1 = 0.49 and (a) PG Trial with α2 = α1, (b) PG Trial with α2 = 0.75α1, (c) PG

trial with α2 = 1.25α1. The solid horizontal line refers to c0 = 3.8415(= χ2
1(0.95)).

tests if α is very small. For n = 100 per group the Type I error rates seem to be very

close to 0.05 for all values of µ and α and hence the asymptotic approximation can

safely be used.
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For WT (γ2) (Figures 2.5 and 2.6)), the effects are more pronounced. Here increas-

ing µ does not affect the simulated percentiles or the levels. Increasing α brings exact

percentile values closer to c0. In all the cases considered, the effect of α decreases

with increasing sample size. The asymptotic Type I error rates using the WT(γ2)

seem to be much higher than the nominal level of 5% even for very high sample sizes.

Unless the sample size is very large (100 or greater) and α is very large (5 or greater)

it is not advisable to use asymptotic approximation for the WT(γ2).

The Type I error rates and exact percentile values for the WT(log(γ)) (Figures

not shown) were very similar to those for the LRT. For the RST (Figures not shown),

for sample sizes less than 50, the exact percentile values were less than c0 leading to

conservative tests for all values of α. For sample sizes >= 50, the exact percentiles

are very close to c0 leading to Type I error rates close to nominal level of 0.05 except

for α = 0.2. We did not consider the other tests as they were not the “best” tests as

will be seen in the next section (see Figure 2.7).

2.5 Power Analysis

Sormani et al. [2001b] used the NB model and simulation methods to enumerate

PG trial sample sizes for the nonparametric WRS test. For this purpose they used

parameter estimates from large data sets from control groups from RRMS trials. One

can use the associated parametric assumptions to produce more powerful parametric

tests. Aban et al. [2009] show the advantages of using likelihood based asymptotic

tests assuming the NB model with equal dispersion parameter. We now compare the

power and sample size estimates of our exact tests and of the asymptotic tests for PG

trials with both equal and unequal dispersion parameters. For the equal dispersion
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Figure 2.3: PG Trial: Simulation based 95th percentile values for the null distribution

of LRT for different values of µ and α and n = 10, 20, 50, 100 subjects per group. The

solid horizontal line refers to the c0 = 3.8415(= χ2
1(0.95)).

case, the estimated sample sizes are compared to the sample sizes given by Sormani

et al. [2001b]. We use their parameter estimates for the control group, and as they

have done, we assume monthly scans and use 3 and 6 month observation periods.
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Figure 2.4: PG Trial: Type I error rates for LRT using asymptotic approximation

for different values of µ and α and n = 10, 20, 50, 100 subjects per group. The solid

horizontal line refers to nominal level ν = 0.05.

Figure 2.7 presents the power curves as a function of γ for the various tests using

exact critical values for PG trials assuming equal dispersion parameter across the two

groups. The null hypothesis takes γ0 = 1 and we use the initial parameter estimates
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Figure 2.5: PG Trial: Simulation based 95th percentile value for the null distribution

of WT(γ2) for different values of µ and α and n = 10, 20, 50, 100 subjects per group.

The solid horizontal line refers to the c0 = 3.8415(= χ2
1(0.95)).

of µ = 5.9, α = 0.49 for the control group as suggested by Sormani et al. [2001b] (for

3 month trials). The power curves correspond to n1 = n2 = 50, and a nominal level

ν = 0.05 based on simulated critical values reported in Figure 2.2 (a). The power
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Figure 2.6: PG Trial: Type I error rates for WT(γ2) using asymptotic approximation

for different values of µ and α and n = 10, 20, 50, 100 subjects per group. The solid

horizontal line refers to nominal level ν = 0.05.

estimates for LRT, RST and the WT(log(γ)) are very close and show that they are

unbiased (empirically). For γ < 1, the WT(γ2) has a slightly higher power than the

WT(γ) and both have better power than the three unbiased tests. For γ > 1, the
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Figure 2.7: PG Trial, Common Dispersion: Power of Exact 5% level LRT, RST,

and Wald tests for treatment effect, assuming (i) initial parameter estimates of µ =

5.9, α = 0.49, and (iii) n1 = n2 = 50. The solid horizontal line refers to nominal level

ν = 0.05.

power for WT(γ2) goes to zero very quickly. For the test for γ it slowly rises above the

5% level and remains well below the power estimates for the unbiased tests. For the

RRMS clinical trials where the treatment is expected to reduce the number of new

enhancing lesions, the emphasis is on the region γ < 1, and hence the Wald test for γ2

is the most suitable test for detecting such a change. It also has a desirable property

of small power for γ > 1 since if the treatment results in increased counts, the Wald
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test fails to reject H0 with probability close to 1. The WT(
√
γ) is not unbiased and

does not excel in any region under H1, and hence is not considered further.

2.6 Sample Size Estimation

In Tables 2.1-2.3, sample sizes required to achieve 80% and 90% power for LRT

and the WT(γ2) are obtained under three different scenarios. For the LRT both the

chi-squared percentile (c0) and the exact percentile obtained through simulation are

used. For the Wald test sample sizes are presented using only the exact percentile

as c0 is a very poor underapproximation even for large sample sizes. The sample

sizes obtained by Sormani et al. [2001b] using the nonparametric Wilcoxon Rank

Sum (WRS) test are given for comparison. The exact percentiles for the LRT and

the Wald test for the corresponding sample sizes are also given. They are helpful in

carrying out the tests when the associated data sets are available at the end of the

study.

The power was computed as the proportion of trials out of B = 10, 000 that

yielded a significant result. Due to the inherent natural variation of this type of

simulation, one standard error above the estimate obtained (p +
√
p(1− p)/B) is

used in determining whether the required power is attained. That is, for B = 10,000

trials, when the required power is 80% (say), a simulated power of 79.6% or higher is

considered enough and when the required power is 90%, a simulated power of 89.7%

is considered sufficient. Two-sided significance level was set at 5% and only equal

sample sizes (n1 = n2) were considered in our power analyses.

The MLEs of µ and α of the NB model were obtained for a follow-up period (t)

of 3 and 6 months (Sormani et al. [2001b]). They were, respectively, 5.9 and 0.49
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for t = 3, and 13 and 0.52 for t = 6. Sormani et al. [2001b] use these estimates and

nominal 5% significance level to obtain sample sizes using the WRS test. We use the

same parameter estimates in our sample size calculations.

Sample sizes for the equal dispersion parameter case are given in Table 2.1 as

(1− γ) ranges from 0.50 to 0.80. There is a 30-45% reduction in sample sizes by the

use of LRT when compared to those using the nonparametric test for the treatment

effects and follow-up time periods considered. The exact and asymptotic 5% level

LRTs produce almost identical sample sizes when they are large. The latter test

produces slightly lower n when the sample sizes are small; it also inflates the level

beyond the nominal 5%. The 5% level WT(γ2) reduces the required sample sizes

by further 18-28% resulting in about half the sample sizes demanded by the WRS

test. As expected, the sample sizes for the 6 month follow-up period are smaller than

those needed for the 3 month follow-up period. But the doubling of the follow-up

period from 3 to 6 months reduces the sample sizes by only about 10-15%. This is

understandable since the number of new enhancing lesions seen during the first three

months tend to be highly correlated with the number of new enhancing lesions seen

during the next 3 months. Increased power from 80% to 90% will require an increase

in sample sizes of 22-36% for the LRT and 30-40% for the WT(γ2).

Similar sample size estimates are also obtained for the unequal dispersion parame-

ter case. For Case (a): α2 = 0.75α1, sample sizes for the LRT (exact and asymptotic)

and WT(γ2) are given in Table 2.2. When compared to the equal dispersion case, the

sample sizes have increased by about 12-27%. Table 2.3 provides a similar comparison

for Case (b): α2 = 1.25α1. Here the required sample sizes have decreased by 10% or

less. As seen in Figure 2.9, the power curves for the LRT, RST and WT(log(γ)) are
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Table 2.1: PG Trial: Sample sizes per group to achieve 80% and 90% power for

100(1 − γ)% treatment effect and follow-up period (t) of 3 and 6 months assum-

ing equal dispersion parameter, and initial estimates (µ, α) = (5.9, 0.49) for t =

3, and (13, 0.52) for t = 6; level ν = 0.05.

1− γ t

80% power; 5% level

Test Critical Value

WRS LRT LRT WT(γ2) LRT WT(γ2)

Asymptotic Exact Exact Exact Exact

0.50 3 125 76 76 61 3.892 7.354

6 118 68 69 54 3.928 7.420

0.60 3 75 45 45 35 3.988 10.821

6 65 39 40 32 3.724 10.790

0.70 3 48 27 28 21 4.083 17.612

6 40 24 25 19 4.073 17.731

0.80 3 28 16 18 13 4.162 34.260

6 24 14 15 11 4.242 38.103

1− γ t

90% power; 5% level

Test Critical Value

WRS LRT LRT WT(γ2) LRT WT(γ2)

Asymptotic Exact Exact Exact Exact

0.50 3 150 102 103 83 3.908 6.298

6 140 90 92 73 3.914 6.410

0.60 3 98 60 60 49 3.939 8.499

6 85 52 52 43 3.935 8.573

0.70 3 64 36 36 28 4.021 13.143

6 58 32 33 25 4.050 13.366

0.80 3 40 22 22 17 4.146 23.177

6 35 19 19 15 4.133 24.106
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Table 2.2: PG Trial: Sample sizes per group to achieve 80% and 90% power for

100(1−γ)% treatment effect and follow-up period (t) of 3 and 6 months with unequal

dispersion parameters and initial estimates of (µ, α1, α2) at (5.9, 0.49, 0.3675) for t =

3, and (13, 0.52, 0.39) for t = 6; level ν = 0.05.

1− γ t

80% power; 5% level

Test Critical Value

LRT LRT WT(γ2) LRT WT(γ2)

Asymptotic Exact Exact Exact Exact

0.50 3 87 89 68 3.902 7.765

6 79 80 62 3.883 7.967

0.60 3 52 53 41 3.915 11.267

6 47 47 37 3.936 11.702

0.70 3 33 33 25 3.932 18.797

6 28 30 22 3.996 19.539

0.80 3 21 22 15 4.017 39.749

6 18 19 13 4.083 43.209

1− γ t

90% power; 5% level

Test Critical Value

LRT LRT WT(γ2) LRT WT(γ2)

Asymptotic Exact Exact Exact Exact

0.50 3 115 115 95 3.862 6.534

6 104 104 83 3.905 6.694

0.60 3 69 70 55 3.892 8.977

6 62 63 49 3.911 9.158

0.70 3 43 43 34 3.951 13.139

6 36 38 30 3.976 13.719

0.80 3 27 27 20 3.992 25.066

6 22 23 17 4.010 27.252
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Table 2.3: PG Trial: Sample sizes per group to achieve 80% and 90% power for

100(1−γ)% treatment effect and a follow-up period (t) of 3 and 6 months with unequal

dispersion parameters and initial estimates of (µ, α1, α2) at (5.9, 0.49, 0.6125) for t =

3 and (13, 0.52, 0.65) for t = 6; level ν = 0.05.

1− γ t

80% power; 5% level

Test Critical Value

LRT LRT WT(γ2) LRT WT(γ2)

Asymptotic Exact Exact Exact Exact

0.50 3 68 70 53 3.920 7.209

6 62 62 48 3.911 7.252

0.60 3 41 42 31 3.945 10.212

6 36 37 28 3.950 10.294

0.70 3 26 26 19 3.991 15.904

6 22 23 17 4.037 16.462

0.80 3 17 18 12 4.053 28.975

6 14 15 10 4.128 32.698

1− γ t

90% power; 5% level

Test Critical Value

LRT LRT WT(γ2) LRT WT(γ2)

Asymptotic Exact Exact Exact Exact

0.50 3 93 94 76 3.881 6.074

6 82 83 66 3.900 6.161

0.60 3 55 55 44 3.904 8.052

6 47 48 40 3.939 8.058

0.70 3 33 35 26 3.963 11.756

6 29 30 24 3.975 11.816

0.80 3 21 22 16 4.068 19.176

6 18 18 14 4.043 20.107
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very close and consequently the last two tests produce very similar sample sizes and

they differ from the LRT sample sizes by at most 2. The sample sizes for the Wald

test for γ2 are around 17-32% smaller than the sample sizes needed for LRT.

2.7 A Robustness Study

A robustness study was done to evaluate the performance of these exact parametric

tests which assume equal dispersion parameter α = 0.49 across the two groups. Two

cases with α1 = 0.49 were considered: (a) α2 = 0.5α1 and (b) α2 = 2α1. In case

(a) [(b)] variability in the treatment group response is increased [decreased] when

compared to the equal α case. Figure 2.8 (a) and (b) show the power curves for

these parametric tests for cases (a) and (b) respectively for n1 = n2 = 50. When

α2 = 0.5α1, the power estimates are slightly lower than the corresponding estimates

for the equal dispersion case (given in Figure 2.7) while the simulated Type I error

rates are higher than the nominal 5% level. The departure is the most serious for the

WT(γ2) but it has the highest power for γ < 1. WT(γ) behaves very similar.

As Figure 2.8 (b) shows, the estimated power when α2 = 2α1 is higher than when

α2 = α1. The WT(γ2) has Type I error rate below the 5% level at 0.0367 but still has

a higher power than other tests for γ < 1. The Type I error rates for LRT, RST and

WT(log(γ)) are still slightly above 5%. Thus the LRT, RST and WT(log(γ)) seem

to be more robust when the suspicion is that α2 = 0.5α1 and the Wald test for γ2 is

the best test when α2 = 2α1 and the region of interest is γ < 1. In the latter case,

the treatment reduces the mean as well as the variance of the new lesion counts.
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Figure 2.8: PG Trial, Robustness Study: Powers of exact parametric tests with 5%

level that assume equal dispersion parameter across groups when the data come from

groups with unequal dispersion parameters; µ = 5.9, α1 = 0.49, n1 = n2 = 50; (a)

α2 = 0.5α1 (b) α2 = 2α1. The solid horizontal line refers to the nominal level ν = 0.05.
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Figure 2.9: PG Trial, Unequal Dispersion: Power of Exact 5% level LRT, RST, and

Wald tests for treatment effect, assuming initial parameter estimates µ = 5.9, α1 =

0.49, sample sizes n1 = n2 = 50, and (a) α2 = 0.75α1 (b) α2 = 1.25α1. The solid

horizontal line refers to the nominal level ν = 0.05.
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Unequal Dispersion Parameters

Figures 2.9 (a) and (b) show the power curves for five parametric tests for cases

(a) α2 = 0.75α1 and (b) α2 = 1.25α1, respectively. In both these cases Wald test

for γ2 has the highest power for γ < 1 and for γ > 1 its power quickly goes to 0

as in the equal α case. The LRT, RST and WT(log(γ)) are unbiased. For case (a),

the RST has the highest power for γ > 1 but has the least power for γ < 1. The

WT(log(γ)) has a slightly better power than the LRT for γ < 1 but for γ > 1 the

LRT does better. For case (b), the power of the three unbiased tests are very close to

each other although the RST seems to have the highest power for γ < 1 and the LRT

has the highest power for γ > 1. These differences in power among the unbiased tests

observed in Figures 2.9 (a) and (b) are magnified respectively when α2 = 0.5α1 and

α2 = 2α1 (figure not shown). Thus, for the unequal dispersion parameter case, the

use of an appropriate test is suggested based on the region of interest and whether or

not an unbiased test is desired.

2.8 Discussion

Here we have assumed NB models and used large data sets on new monthly MRI

lesion counts to produce sample size calculations for future RRMS trials. Since the

estimates of the parameters were obtained by fitting the NB model to RRMS patients

not selected for MRI activity at baseline, it is highly suggested that the sample sizes

reported here be applied only to clinical trials involving a similar group of RRMS

patients. The parametric tests described in Section 2.4 are two-sided tests which test

H0 : γ = 1 vs. H1 : γ 6= 1. Although the intrinsic research hypothesis is one-sided
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(γ < 1) as it is often believed the treatment could not harm the patient, the FDA

prefers a two-sided test in order to be more conservative.

For PG trials with equal dispersion parameter α across groups, one of the three

unbiased tests (LRT, RST and WT(log(γ))) can be used with exact percentiles. They

are comparable in terms of computational efforts. For PG trials with unequal dis-

persion parameters across groups an unbiased test can be chosen based on the region

of interest. For α2 < α1 case, when γ < 1, the WT(log(γ)) has the highest power

among all unbiased tests considered, and when γ > 1 the RST has the highest power.

The reverse is true when α2 > α1. The use of LRT has resulted in a 30-45% reduc-

tion in sample sizes for PG trials when compared to those based on nonparametric

tests. When unbiasedness of a test is not important, as in the case of RRMS clinical

trials where the researcher is interested in only one side of the null hypothesis, using

the Wald test for γ2 results in a further reduction in sample sizes by 10-30% when

compared to the LRT.

Another important thing to note is that, for PG trials, increasing the mean pa-

rameter µ from 5.9 to 13 (or the follow-up period from 3 to 6 months) without much

change in α, the sample sizes required to detect a significant effect seem to reduce by

10-15%. This is because, increasing the follow-up period adds more redundant data

and thus does not result in a corresponding reduction in sample size.

So far only nonparametric sample size estimates are being used in RRMS clinical

trials. The results presented in this chapter show the advantages of using parametric

tests when the NB model assumption seems reasonable. Obtaining monthly MRI

scans of the brain for each patient and counting the number of new enhancing lesions
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is a very expensive and tedious process and these results will help reduce the cost and

effort involved significantly.
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CHAPTER 3

Bivariate Negative Binomial Models for Baseline vs.

Treatment Trials

3.1 Introduction

Many forms of bivariate negative binomial (BNB) distributions exist in the lit-

erature. Subramaniam and Subramaniam [1992] give a detailed description of the

several chance mechanisms that give rise to a BNB distribution. A few of them are

discussed here.

Suppose a sequence of independent trials result in one of three distinct outcomes

labeled A,B or C, with probabilities P (A) = p1, P (B) = p2 and P (C) = 1− p1 − p2.

Let the number of trials of C be fixed at r, and let X denote the number of occurrences

of A and Y be the number of occurrences of B before the rth occurrence of C. Then

the joint distribution of X and Y is bivariate negative binomial with pmf

P (x, y) =
(r + x+ y − 1)!

(r − 1)!x!y!
px1p

y
2(1− p1 − p2)r, x = 0, 1, . . . , y = 0, 1, . . . . (3.1.1)

The form of the pmf given in (3.1.1) can be seen from the fact that the first x+y+r−1

trials constitute a trinomial distribution with index parameter (x + y + r − 1) and

probabilities p1, p2 and 1 − p1 − p2 and the last trial has to be C. This distribution
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was first developed by Guldberg [1934]. The probability generating function for this

distribution is

GX,Y (s1, s2) = (1− p1 − p2)r(1− p1s1 − p2s2)−r. (3.1.2)

It can be seen that each of the marginal distributions of X and Y is univariate negative

binomial. Also,

Cov(x, y) =
rp1p2

(1− p1 − p2)2

and

ρX,Y (x, y) =

{
p1p2

(1− p1)(1− p2)

}1/2

which is always positive. The pgf of the conditional distribution of X|Y = y is

GX(s|y) =
G(0,y)(s, 0)

G(0,y)(1, 0)

where

[
G(x,y)(u, v) =

∂x+y

∂sx1s
y
2

G(s1, s2)|s1=u,s2=v

]
=(1− p1)r+y(1− p1s)

−(r+y) (3.1.3)

which is NB
(

(r + y) p1
1−p1 , r + y

)
. Thus the regression of X on Y is

E(X|Y = y) = r
p1

1− p1

+ y
p1

1− p1

which is linear in y with a positive slope.

Downton [1970] comes up with a bivariate geometric distribution arising out of

the following mechanism. Suppose shocks arrive attacking a two component system.

Let p1 be the probability that a shock is received by the first component and p2 be

the probability that a shock is received by the second component and 1− p1 − p2 be

the probability that a shock is received by both components. Let X be the number

of shocks suffered by component 1 prior to the first failure and Y be the number of
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shocks suffered by component 2 prior to the first failure. Then the joint distribution

of (X, Y ) is bivariate geometric with pmf

P (x, y) =

(
x+ y

x

)
px1p

y
2(1− p1 − p2), x = 0, 1, . . . , y = 0, 1, . . . . (3.1.4)

This model can also be generalized to a BNB distribution when X and Y represent

the number of shocks to the components before the rth failure of the system. This

will lead to the bivariate negative binomial distribution given in (3.1.1).

In this chapter, however, we are interested in the BNB distribution arising out

of compounding two independent Poisson random variables with a gamma random

variable. Section 3.2 introduces such a BNB model and discusses its applications in

modelling MRI lesion counts arising out of RRMS BVT trials. The MLEs of the model

parameters are obtained in Section 3.3. Several parameteric tests for the treatment

effect are proposed and compared in Section 3.4 and Section 3.5 respectively. Sample

size estimates using the selected parametric tests are obtained in Section 3.6 and

these are compared to sample sizes based on nonparametric tests. Finally, the results

are summarized in Section 3.7.

3.2 The BNB Model

The compounding approach that generated the univariate NB model in Section 2.2

can be extended to the bivariate case where we compound two conditionally indepen-

dent Poisson rvs with a Gamma rv. Assume that

X|Z = z ∼ Poisson(µz) independent of Y |Z = z ∼ Poisson(γµz), µ, γ > 0,

(3.2.1)
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where Z is the random subject effect that is assumed to be a Gamma(α, 1/α) rv.

Then the joint distribution of (X, Y ) is BNB with pmf

PX,Y (x, y) =
αα

Γ(α)

µx

x!

(γµ)y

y!

Γ(x+ y + α)

(µ+ γµ+ α)x+y+α
, x, y = 0, 1, 2 . . . ; µ, γ, α > 0.

(3.2.2)

Then (X, Y ) ∼ BNB(µ, γµ, α). Note that one can get the above expression from

(3.1.1) with p1 = µ
µ+γµ+α

, p2 = γµ
µ+γµ+α

and r = α. One thing to note is that, in

(3.1.1), r by definition is a positive integer but α in (3.2.2) need not be an integer.

The moment generating function (mgf) of the BNB distribution given in (3.2.1) can

be obtained from the pgf given in (3.1.2) and using the parametric relations given

before as follows:

MX,Y (t1, t2) =GX,Y (et1 , et2)

=

[
α

µ(1− et1) + γµ(1− et2) + α

]α
. (3.2.3)

The marginal distribution of X can be obtained from the above mgf using the relation

MX(t1) =MX,Y (t1, 0)

=

[
α

µ(1− et1) + α

]α
. (3.2.4)

This is the mgf of NB(µ, α). Similarly, the marginal distribution of Y can also be

seen to be NB(γµ, α).

Several authors have used the compounding approach to produce families of BNB

distributions. For example, Arbous and Kerrich [1951] and Bates and Neyman [1952]

apply this BNB distribution to the study of accident proneness. Edwards and Gurland

[1961] and Subramaniam [1966] relax the assumption of conditional independence

given in (3.2.1) and assume X and Y are positively correlated.
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In RRMS BVT trials, the subjects are observed for a specified period of time

before and after the treatment is initiated. Assuming X (Y ) to be the total number

of new enhancing lesions seen during the baseline (treatment) period we apply the

model given in (3.2.2).

3.3 Estimation

Assuming there are n subjects with data (x,y) = {(x1, y1), . . . , (xn, yn)} the like-

lihood function of our BVT model is

L(γ, µ, α|(x,y)) =
n∏
i=1

PX,Y (xi, yi)

=

{
αα

Γ(α)

}n
µ
∑
xi+

∑
yi∏n

i=1 xi!

γ
∑
yi∏n

i=1 yi!

∏n
i=1 Γ(xi + yi + α)

(µ+ γµ+ α)
∑
xi+yi+α

. (3.3.1)

The log-likelihood function is

`(γ, µ, α) =n{α logα− log Γ(α)}+ n(x̄+ ȳ) log µ+ nȳ log γ +
n∑
i=1

log Γ(xi + yi + α)

− n(x̄+ ȳ + α) log(µ+ γµ+ α)−
n∑
i=1

log(xi!)−
n∑
i=1

log(yi!). (3.3.2)

The components of the score vector for the log-likelihood given in (3.3.2) are

∂`(γ, µ, α)

∂µ
=
n(x̄+ ȳ)

µ
− n(x̄+ ȳ + α)

µ+ γµ+ α
(1 + γ), (3.3.3)

∂`(γ, µ, α)

∂γ
=
nȳ

γ
− n(x̄+ ȳ + α)

µ+ γµ+ α
µ, (3.3.4)

∂`(γ, µ, α)

∂α
= − n[ψ(α)− 1] + n log

(
α

µ+ γµ+ α

)
− n(x̄+ ȳ + α)

µ+ γµ+ α

+
n∑
i=1

ψ(xi + yi + α). (3.3.5)

The MLEs of γ and µ obtained by setting the score equations (3.3.3)-(3.3.5) to 0

and solving for the parameters giving us the following result:
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Lemma 3.3.1. The MLEs of γ and µ are

γ̂ =
ȳ

x̄
and µ̂ = x̄.

The MLE α̂ can be obtained by numerically maximizing the profile loglikelihood func-

tion `(γ̂, µ̂, α) with respect to α.

Bates and Neyman [1952] have given the MLEs of the parameters of the BNB pmf

given in (3.2.2) under a different parameterization.

When γ = γ0 is known, the MLEs of µ and α are obtained by setting (3.3.4) and

(3.3.5) to 0 and solving for the two parameters. The MLEs in this case are given by

the lemma below.

Lemma 3.3.2. For a known γ = γ0, the MLE of µ is

µ̃ =
x̄+ ȳ

1 + γ0

,

and α̃, the MLE of α is obtained by numerically maximizing the profile loglikelihood

`(γ0, µ̃, α) with respect to α.

The second order derivatives of the log-likelihood function in (3.3.2) are

∂2`(γ, µ, α)

∂γ2
=− nȳ

γ2
+
nγµ(x̄+ ȳ + α)

(µ+ γµ+ α)2
,

∂2`(γ, µ, α)

∂γ∂µ
=− nα(x̄+ ȳ + α)

(µ+ γµ+ α)2
=
∂2`(γ, µ, α)

∂µ∂γ
,

∂2`(γ, µ, α)

∂γ∂α
=− nµ(µ+ γµ− x̄− ȳ)

(µ+ γµ+ α)2
=
∂2`(γ, µ, α)

∂α∂γ
, (3.3.6)

∂2`(γ, µ, α)

∂µ2
=− n(x̄+ ȳ)

µ2
+
n(x̄+ ȳ + α)(1 + γ)2

(µ+ γµ+ α)2
,

∂2`(γ, µ, α)

∂µ∂α
=− n(1 + γ)(µ+ γµ− x̄− ȳ)

(µ+ γµ+ α)2
=
∂2`(γ, µ, α)

∂α∂µ
,

∂2`(γ, µ, α)

∂α2
=− nψ′(α) +

nµ(1 + γ)

α(µ+ γµ+ α)
− n(µ+ γµ− x̄− ȳ)

(µ+ γµ+ α)2

+
n∑
i=1

ψ′(xi + yi + α).
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Lemma 3.3.3. The FIM I(θ) where
(
I(θ)

)
i,j

= −E
{
∂2`(θ)
∂θi∂θj

}
and θ = (γ, µ, α) is

the parameter vector. We use the fact that E(X̄) = µ , E(Ȳ ) = γµ and X ′is, Y ′i s are

identical to get

I11(θ) =− E
{
∂2`(γ, µ, α)

∂γ2

}
=

nµ(µ+ α)

γ(µ+ γµ+ α)
,

I22(θ) =− E
{
∂2`(γ, µ, α)

∂µ2

}
=

nα(1 + γ)

µ(µ+ γµ+ α)
,

I33(θ) =− E
{
∂2`(γ, µ, α)

∂α2

}
= n

{
ψ′(α)− µ(1 + γ)

α(µ+ γµ+ α)

}
− nE{ψ′(Xi + Yi + α)}

I12(θ) =− E
{
∂2`(γ, µ, α)

∂γ∂µ

}
=

nα

µ+ γµ+ α
= I21(θ), and

Iij(θ) = 0, otherwise.

Lemma 3.3.4. Proceeding as in the case of PG trials, the asymptotic variance of γ̂

for the BNB model simplifies to

σ2
γ̂(θ) =

γ(1 + γ)(µ+ γµ+ α)

n [µ(µ+ α)(1 + γ)− αγ]
. (3.3.7)

Remark: A similar argument to the one given in Chapter 2 for PG trials can be

used to show that the estimation methods used in this section give the MLEs of the

parameters as desired. When the model is parametrized in terms of (µ1, µ2, α), the

solutions for µ1 and µ2 obtained from the score equations are x̄ and ȳ respectively. For

a fixed α, the determinant of the second order derivative matrix of the log-likelihood

evaluated at µ̂1 = ȳ1 and µ̂2 = ȳ2 is

∂2`(µ1,µ2,α)

∂µ2
1

∂2`(µ1,µ2,α)
∂µ1∂µ2

∂2`(µ1,µ2,α)
∂µ1∂µ2

∂2`(µ1,µ2,α)

∂µ2
2

=
−n(ȳ+α)
x̄(x̄+ȳ+α)

n
x̄+ȳ+α

n
x̄+ȳ+α

−n(x̄+α)
ȳ(x̄+ȳ+α)

=
n2α

x̄ȳ(x̄+ ȳ + α)
> 0 ∀ α > 0.

Also, since ∂2`(µ1, µ2, α)/∂µ2
1 < 0 for all α > 0, we can say that x̄ and ȳ are the

MLEs of µ1 and µ2 respectively. Furthermore, these two estimates are independent

of α and hence we can maximize the profile log-likelihood obtained at these estimates

to get α̂, the MLE of α.
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3.4 Testing for the Treatment Effect

Parametric tests based on the likelihood can be developed for the treatment effect

as in the case of PG trials.

3.4.1 Known Dispersion Parameter α

When the dispersion parameter α is known, classical results can be used to derive

a UMPU test for testing H0 : γ = 1 vs. H1 : γ 6= 1. When α is known, the likelihood

function for the BNB model given in (3.3.1) can be expressed as

`(γ, µ) =

∏n
i=1 Γ(xi + yi + α)∏n
i=1 xi!

∏n
i=1 yi!

[
1

Γ(α)

]n
exp

{
nx̄ log

(
µ

µ+ γµ+ α

)
+nȳ log

(
γµ

µ+ γµ+ α

)
+ nα log

(
α

µ+ γµ+ α

)}
=h(x,y) exp

{
2∑
j=1

ηj(θ)Tj(x,y)− A(θ)

}
(3.4.1)

where

T1(x,y) = nx̄ = T1 (say), T2(x,y) = nȳ = T2, η1(θ) = log

(
µ

µ+ γµ+ α

)
,

η2(θ) = log

(
γµ

µ+ γµ+ α

)
, A(θ) = −nα log

(
α

µ+ γµ+ α

)
and

h(x,y) =

∏n
i=1 Γ(xi + yi + α)∏n
i=1 xi!

∏n
i=1 yi!

[
1

Γ(α)

]n
.

Let T12 = T1+T2. Since (T1, T2) belongs to a two-parameter exponential family as seen

above, we know that it is a complete sufficient statistic for (η1, η2) and so is (T12, T2).

Clearly T1 ∼ NB(nµ, nα) and T2 ∼ NB(nγµ, nα). Also the joint distribution of
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(T1, T2) is BNB(nµ, nγµ, nα). The joint pmf of (T2, T12) can then be derived as

P (T2 = t2, T12 = t12) =P (T1 = t12 − t2, T2 = t2)

=
(nα)nα

Γ(nα)

(nµ)t12−t2

(t12 − t2)!

(nγµ)t2

t2!

Γ(t12 + nα)

(nµ+ nγµ+ nα)t12+nα

=

(
t12

t2

)
Γ(t12 + nα)

Γ(t12 + 1)Γ(nα)

(nα)nα(nµ)t12γt2

(nµ+ nγµ+ nα)t12+nα
, (3.4.2)

where t2 = 0, 1, 2, . . . , t12; t12 = t2, t2 + 1, . . . .

The conditional distribution of T2 given T12 = t12 is given by

P (T2 = t2|T12 = t12) =
P (T2 = t2, T12 = t12)

P (T12 = t12)

=
P (T2 = t2, T12 = t12)∑t12
k=0 P (T2 = k, T12 = t12)

=

(
t12
t2

)
γt2∑t12

k=0

(
t12
k

)
γk
, t2 = 0, 1, . . . , t12. (3.4.3)

This is known as a generalized power series distribution (Patil [1962]). Then, using

the results in Section 4.4 of Lehmann [1986], we can obtain a UMPU test for testing

H0 : γ = 1 vs. H1 : γ 6= 1. The critical function for this test is

φ(t2, t12) =


1 if t2 < c1(t12) or t2 > c2(t12)
δ1(t12) if t2 = c1(t12)
δ2(t12) if t2 = c2(t12)
0 if c1(t12) < t2 < c2(t12)

(3.4.4)

where δ1, δ2, c1 and c2 are functions of t12 such that

E(φ(T2, T12)|T12 = t12) = ν (3.4.5)

and

E(T2 · φ(T2, T12)|T12 = t12) = νE(T2|T12 = t12) (3.4.6)

when γ = 1. Clearly, the distribution of T2 given T12 = t12 is symmetric about

E(T2|T12 = t12) = t12/2 when γ = 1. Hence the above test can be further simplified
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since any symmetric test that satisfies condition (3.4.5) must also satisfy (3.4.6). It

then becomes a “symmetric” test with δ1 = δ2 and c2 = t12 − c1. Condition (3.4.5)

now becomes ∑c1−1
l=0

(
t12
l

)
+ δ1

(
t12
c1

)∑t12
k=0

(
t12
k

) =
ν

2
. (3.4.7)

The p-value of the above UMPU test can be estimated using the following two meth-

ods:

Regular p-value = 2

∑t
l=0

(
t12
l

)∑t12
k=0

(
t12
k

) (3.4.8)

or

Mid p-value =
2
∑t−1

l=0

(
t12
l

)
+
(
t12
t

)∑t12
k=0

(
t12
k

) (3.4.9)

where t = min(t1, t2).

A simulation study was conducted to compare the power of the UMPU test using

the regular p-value and the mid p-value methods. The power for these methods were

computed as the proportion of B = 10, 000 trials for which H0 is rejected (p-value

< 0.05). In addition to these two methods, the “Exact” power was also estimated

using the definition of power, i.e., P(Reject H0|H1 is True). For each simulated data

set (trial), the power of the conditional test given T12 = t12 given by

β(γ|T12 = t12) =EH1 [φ(T2, T12)|T12 = t12]

=

∑c1−1
l=0

(
t12
t2

)
γl +

∑t12
l=c2+1

(
t12
l

)
γl + δ1

(
t12
c1

)
γc1 + δ2

(
t12
c2

)
γc2∑t12

k=0

(
t12
k

)
γk

. (3.4.10)

This is free of the nuisance parameters (µ, α) and thus has a known value. The

average of these power values over B trials is taken to compute an estimate of the

unconditional power β(γ, µ, α). We call this estimate, the “Exact” power. This

estimate is unbiased for the actual power and has the smallest variance among all

unbiased estimates of β(γ, µ, α) (see Section 4.5 of Lehmann [1986]). However, a
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major disadvantage of this method of computing power is that it can only be found

after the data has been observed and hence will not be suitable for computing sample

sizes required to design an experiment. In such a case, the power can be estimated

using the simulation method described before using the “Mid p- value” method. This

method maintains its Type I error rate very well and also has higher power compared

with the “Regular p- value” method even for very small sample sizes (see Figure 3.1).

3.4.2 Unknown Dispersion Parameter α

When the dispersion parameter α is unknown, the likelihood of the model in

(3.3.1) does not belong to an exponential family and it is not known whether an

UMPU test exists. In that case, likelihood based tests such as LRT, RST and Wald

tests can be derived as in the case of PG trials. A test for the treatment effect tests

H0 : γ = γ0 vs. H1 : γ 6= γ0 with γ0 = 1. The tests are presented below:

Theorem 3.4.1. The LRT statistic for testing H0 : γ = γ0 vs. H1 : γ 6= γ0 is given

by

LBV T = −2(`(γ0, µ̃, α̃)− `(γ̂, µ̂, α̂))

where `(γ0, µ̃, α̃) is the log-likelihood evaluated at the MLEs under H0 (Lemma 3.3.2)

and `(γ̂, µ̂, α̂) is the log-likelihood evaluated at the unrestricted MLEs (Lemma 3.3.1).

Theorem 3.4.2. The RST statistic for testing H0 : γ = γ0 vs. H1 : γ 6= γ0 for BVT

trials is given by

RBV T =
n [µ̃(ȳ − γ0x̄) + α̃(ȳ − γ0µ̃)]2 (1 + γ0)

γ0(µ̃+ γ0µ̃+ α̃) [µ̃(1 + γ0)(µ̃+ α̃)− α̃γ0]
.
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Figure 3.1: BVT Trial: Power as a function of γ for UMPU test with 5% levels

for trials with 3-month baseline and 3-month treatment periods with sample sizes

(a)n = 5, (b)n = 10 and µ = 5.9, and α = 0.49. The solid horizontal line refers to

nominal level ν = 0.05.
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Theorem 3.4.3. If g(·) is a 1 − 1 function with nonzero derivative, the Wald test

statistic for testing H0 : g(γ) = g(γ0) vs. H1 : g(γ) 6= g(γ0) for BVT trials is

WBV T (g(γ̂)) =

[
g (ȳ/x̄)− g(γ0)

g′(γ̂)σγ̂(θ̂)

]2

where

σ2
γ̂(θ̂) =

γ̂(1 + γ̂)(µ̂+ γ̂µ̂+ α̂)

n [µ̂(1 + γ̂)(µ̂+ α̂)− α̂γ̂]

is the asymptotic variance of γ̂ evaluated at the MLEs (see Lemma 3.3.4)).

Under H0, all the above test statistics converge in distribution to a χ2
1 rv as n→∞

and consequently we choose c0 as the critical value for an asymptotic 5% level test.

A simulation study was conducted to check the effect of changes in parameter

values of the BNB model on the exact percentiles and estimated Type I error rates for

LRT and WT(γ2). The LRT can be used with asymptotic approximation safely even

for very small sample sizes without compromising on Type I error rates (Figures 3.3

and 3.4). For RST and WT(log(γ)) the results were similar to the LRT (Figure not

shown).

For the WT(γ2), the exact percentiles can be much different than c0 and the

simulated levels higher than the nominal level for small sample sizes. The exact

percentiles (Figure 3.5) tend to converge to c0 for increasing values of µ (unlike for

PG trials) and the convergence is quicker for larger sample sizes. Similarly, the

Type I error rates seem to converge to the nominal level for increasing values of µ

(Figure 3.6). Also, higher values of α tend to increase the significance level although

the change is very small for α less than or equal to 2. The significance level for the

WT(γ2) can be much higher than the nominal level even for higher sample sizes if α

is very high. Unless the sample size is 50 or greater and µ is 10 or greater, it may

not reasonable to use the asymptotic approximation for the Wald test. We did not
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Figure 3.2: BVT Trial: Simulation based 95th percentile value for the null distribution

of LRT, RST and Wald test statistics as a function of common sample size n; µ = 5.9,

α1 = 0.49. The solid horizontal line refers to c0 = 3.8415(= χ2
1(0.95)).

consider the WT(
√
γ) and WT(γ) as they did not have the highest power on either

side of H0 as we will see in the next section.

3.5 Power Analysis

Figure 3.7 shows the power curves for the six parametric tests discussed in Sec-

tion 3.4, using exact percentiles. A sample size of 10 is considered and the initial

parameter estimates considered for simulation were taken to be the same as for PG

trials. Here again, the power estimates for the LRT, RST and WT(log(γ)) are very
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Figure 3.3: BVT Trial: Simulation based 95th percentile value for the null distribution

of LRT for different values of µ and α and n = 5, 10, 20, 50 subjects. The solid

horizontal line refers to the c0 = 3.8415(= χ2
1(0.95)).

similar and the tests are unbiased. The WT(
√
γ) also appears to be unbiased and

has a slightly higher power than the other three unbiased tests for γ < 1, but has

lower power for γ > 1. A suitable unbiased test can be chosen from these four tests
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Figure 3.4: BVT Trial: Type I error rates for LRT using asymptotic approximation

for different values of µ and α and n = 5, 10, 20, 50 subjects per group. The solid

horizontal line refers to nominal level ν = 0.05.

depending on the region of interest. The WT(γ2) has the highest power for γ < 1

but is biased and has the least power for γ > 1. The WT(γ) is also biased, has a

lower power than the WT (γ2) for γ < 1 and for γ > 1 it has lower power than any of
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Figure 3.5: BVT Trial: Simulation based 95th percentile value for the null distribution

of WT(γ2) for different values of µ and α and n = 5, 10, 20, 50 subjects. The solid

horizontal line refers to the c0 = 3.8415(= χ2
1(0.95)).

the unbiased tests. Thus, for RRMS clinical trials where the interest is on the region

γ < 1, the WT(γ2) is perhaps the best choice.
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Figure 3.6: BVT Trial: Type I error rates for WT(γ2) using asymptotic approximation

for different values of µ and α and n = 5, 10, 20, 50 subjects per group. The solid

horizontal line refers to nominal level ν = 0.05.

A comparison of the power estimates when we use asymptotic and exact per-

centiles for LRT, RST and WT(γ2) is presented in Figure 3.8. As apparent from the
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Figure 3.7: BVT Trial: Power curve as a function of γ for six tests with exact 5%

levels for 3-month baseline vs 3-month treatment trials with sample size n = 10,

µ = 5.9, and α = 0.49. The solid horizontal line refers to nominal level ν = 0.05.

exact 5% critical values given in Figure 3.2, the power estimates for the exact and

asymptotic tests are very similar for LRT, and the exact test produces slightly higher

power for RST. In contrast, the power curves for the exact and asymptotic WT(γ2)

differ substantially and the asymptotic test has an inflated level of significance. In

conclusion, we suggest the use of c0 as the critical value for the LRT, and it works

reasonably well for RST and Wald test for log(γ), for samples of size 10 or higher.

We suggest using the exact critical value for Wald test for γ2.
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with sample size n = 10, µ = 5.9, and α = 0.49. The solid horizontal line refers to

nominal level ν = 0.05.

3.6 Sample Size Estimation

Table 3.1 gives the sample sizes required to achieve 80% and 90% power for BVT

trials obtained when we use the LRT, WT(γ2), and Wilcoxon Signed Rank (WSR)

test. The WSR sample sizes were reported in Sormani et al. [2001b]. We use c0 as

the critical value for LRT and simulated percentile for WT (γ2). Sample sizes are

obtained for 20-50% reduction in the lesion rate during a follow-up period of 3 and

6 months and for a power of 80% and 90%. It can be seen that the sample sizes for
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the LRT are around 25-60% smaller than those for the WSR test. As the treatment

effect increases from 20% to 50%, the percentage reduction in sample sizes observed

seems to increase from around 25% to 60%. Samples sizes for the Wald test are

10-30% smaller than those of the LRT and 35-65% smaller than the nonparametric

sample sizes. Sample sizes for 90% power are 30-40% (35-50%) greater for LRT (Wald

test) than those for 80% power. In contrast to the PG trials, doubling the period

duration will reduce the sample size by almost half. This can be anticipated from

the properties of Poisson process and the fact that the comparison takes place within

a subject. Increasing µ from 5.9 to 13 (by a factor of 2.2) reduces the sample size

required by almost 50%. This is true since, conditional on the subject the lesion

counts every month are independent and following up a patient for twice as long

results in twice the amount of ‘information’ gained regarding the parameters there

by resulting in a significant reduction.

3.7 Discussion

In this chapter, we looked at several parametric tests for the treatment effect

in BVT trials assuming a BNB model for the data. A UMPU test was proposed

in Section 3.4.1 when the dispersion parameter α is assumed known. It was shown

that the “Mid p- value” method did best according to having a higher power and

also maintaining Type I error rate very well even for small sample sizes. When α is

assumed unknown, several likelihood based tests such as LRT, RST and Wald tests

were compared using both the asymptotic and exact percentiles. When an unbiased

test is preferred, any of the three asymptotic tests, LRT, RST and WT(log(γ)) can

be used. They perform equally well in terms of power and also maintain Type I error
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Table 3.1: BVT Trial: Numbers of patients needed to achieve 80% and 90% power for

100(1− γ)% treatment effect and follow-up period (t) of 3 and 6 months, and initial

estimates (µ, α) = (5.9, 0.49) for t = 3 and (13, 0.52) for t = 6; level ν = 0.05.

1− γ t

80% power; 5% level

Test Critical Value

WSR LRT WT(γ2) WT(γ2)

Asymptotic/Exact Exact Exact

0.20 3 80 61 51 4.155

6 48 29 25 4.068

0.30 3 42 27 21 4.428

6 22 13 10 4.467

0.40 3 26 15 11 5.420

6 14 8 6 5.253

0.50 3 18 10 7 6.769

6 12 5 4 6.703

1− γ t

90% power; 5% level

Test Critical Value

WSR LRT WT(γ2) WT(γ2)

Asymptotic/Exact Exact Exact

0.20 3 108 84 70 4.051

6 60 39 34 4.013

0.30 3 50 35 31 4.260

6 32 18 15 4.195

0.40 3 35 21 16 4.721

6 20 11 8 4.699

0.50 3 25 13 10 5.621

6 17 7 6 5.278
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rates even for smaller sample sizes. So an exact percentile based test is not necessary

in these cases. The sample sizes obtained using the LRT are 25-50% smaller than the

corresponding sample sizes using WSR test.

When an unbiased test is not important, the WT(γ2) has the highest power for

γ < 1 and has the least power for γ > 1. With this test one needs to use the simulated

percentiles to maintain the nominal levels. The exact WT(γ2) reduces the sample

sizes 10-30% when compared to the LRT based sample sizes. As discussed, this test

is highly appropriate for clinical trials in MS as one is only interested in the region

γ < 1 and needs to find a test that has the highest power in that region.

There are other examples for which the BNB distribution was shown to fit well.

Appendix Section C.1.1 gives MRI lesion count data on 23 RRMS and SPMS patients.

The number of new active lesions seen during 6 monthly follow-up scans from 31

RRMS patients is given in Appendix Section C.1.2. The number of epileptic seizures

observed in 28 patients from the placebo group is given in Appendix Section C.2.

In all these cases the BNB distribution has been shown to fit well. The methods

developed in this chapter can also be applied to all areas where the BNB distribution

provides a good fit and not just for clinical trials involving RRMS patients.
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CHAPTER 4

Bivariate Negative Binomial Models for Parallel Group with

Baseline Correction Trials

4.1 Introduction

Parallel group trials with a baseline correction (PGB) is a very important trial

design in clinical trials involving count data. This is also a common design in multiple

sclerosis clinical trials. The baseline correction scan is obtained to counter any signifi-

cant differences among the two arms of the trial even before the treatment is initiated.

Denoting the number of new enhancing lesions seen in the baseline scan as X and

the number of new enhancing lesions seen in the follow-up period as Y , we propose

in Section 4.2 a joint bivariate NB (BNB) distribution for modelling (X, Y ) coming

from RRMS PGB trials. This extends the univariate NB model seen in Chapter 2.

In Sections 4.3 and 4.4, MLEs of the parameters are obtained and parametric tests

are constructed to test for the treatment effect using the joint distribution of (X, Y ).

The power of these tests are compared in Section 4.5 and sample size estimates using

the “best” tests are given in Section 4.6. In Section 4.7, we derive the distribution

of Y − X and show why this distribution is not suited for comparison between two

groups. We finally conclude this chapter with some discussion in Section 4.8.
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4.2 The Model

Let (Xi, Yi), i = 1, 2 be the total number of new enhancing lesions seen during

the baseline and follow-up period of a patient in the placebo and treatment groups

respectively. Let Zi, i = 1, 2 denote the random subject effects assumed to be iid

Gamma(α, α−1) rvs. We assume that

X1|Z1 = z1 ∼ Poisson(µz1) independent of Y1|Z1 = z1 ∼ Poisson(tµz1) and

X2|Z2 = z2 ∼ Poisson(µz2) independent of Y2|Z2 = z2 ∼ Poisson(tγµz2).

The joint marginal distribution of (X1, Y1) can be easily derived as follows:

PX1,Y1(x1, y1) =

∫ ∞
0

P (X1|Z1 = z1)× P (Y1|Z1 = z1)× fZ1(z1)dz1

=

∫ ∞
0

e−µz1(−µz1)x1

x1!
× e−tµz1(tµz1)y1

y1!
× αα

Γ(α)
zα−1

1 e−αzdz1

=
αα

Γ(α)

µx1

x1!

(tµ)y1

y1!

∫ ∞
0

z
(x1+y1+α)−1
1 e−(µ+tµ+α)z1dz1

=
αα

Γ(α)

µx1

x1!

(tµ)y1

y1!

Γ(x1 + y1 + α)

(µ+ tµ+ α)x1+y1+α

×
∫ ∞

0

(µ+ tµ+ α)x1+y1+α

Γ(x1 + y1 + α)
z

(x1+y1+α)−1
1 e−(µ+tµ+α)z1dz1

=
αα

Γ(α)

µx1

x1!

(tµ)y1

y1!

Γ(x1 + y1 + α)

(µ+ tµ+ α)x1+y1+α
, x1, y1 = 0, 1, 2 . . . ; µ, α > 0.

(4.2.1)

Thus (X1, Y1) follows a BNB distribution with parameters µ and α and we write

(X1, Y1) is BNB(µ, tµ, α). It can be shown similarly that (X2, Y2) is BNB(µ, tγµ, α)

with pmf

PX2,Y2(x2, y2) =
αα

Γ(α)

µx2

x2!

(tγµ)y2

y2!

Γ(x2 + y2 + α)

(µ+ tγµ+ α)x2+y2+α
, x2, y2 = 0, 1, 2 . . . ;

γ, µ, α > 0. (4.2.2)
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4.3 Estimation

In this section we obtain the MLEs of the BNB model parameters for the PGB

design. Let there be n1 observations in the placebo group and n2 observations in the

treatment group. If the observed data is given by (x,y) = (x1,y1), (x2,y2) where

(xi, yi) = (xi1, yi1), (xi2, yi2), . . . , (xini , yini), i = 1, 2 then the joint likelihood function

for the above PGB model is

L(γ, µ, α|(x,y)) =

n1∏
i=1

PX1,Y1(x1i, y1i)×
n2∏
j=1

PX2,Y2(x2j, y2j)

=

n1∏
i=1

αα

Γ(α)

µx1i

x1i!

(tµ)y1i

y1i!

Γ(x1i + y1i + α)

(µ+ tµ+ α)x1i+y1i+α

×
n2∏
j=1

αα

Γ(α)

µx2j

x2j!

(tγµ)y2j

y2j!

Γ(x2j + y2j + α)

(µ+ tγµ+ α)x2i+y2i+α

=

{
αα

Γ(α)

}n1+n2 µn1(x̄1+ȳ1)tn1ȳ1

(µ+ tµ+ α)n1(x̄1+ȳ1+α)

∏n1

i=1 Γ(x1i + y1i + α)∏n1

i=1 x1i!y1i!

× µn2(x̄2+ȳ2)(γt)n2ȳ2

(µ+ tγµ+ α)n2(x̄2+ȳ2+α)

∏n2

j=1 Γ(x2j + y2j + α)∏n2

j=1 x2j!y2j!
. (4.3.1)

The log-likelihood function is

`(γ, µ, α) = (n1 + n2) {α log(α)− log Γ(α)}

+ n1(x̄1 + ȳ1) log µ+ n1ȳ1 log t− n1(x̄1 + ȳ1 + α) log(µ+ tµ+ α)

+ n2(x̄2 + ȳ2) log µ+ n2ȳ2 log(tγ)− n2(x̄2 + ȳ2 + α) log(µ+ tγµ+ α)

+
∑

log Γ(x1i + y1i + α)−
∑

log(x1i!)−
∑

log(y1i!)

+
∑

log Γ(x2j + y2j + α)−
∑

log(x2j!)−
∑

log(y2j!). (4.3.2)
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The components of the score vector for the log-likelihood function given in (4.3.2)

are

∂`(γ, µ, α)

∂γ
=
n2ȳ2

γ
− n2(x̄2 + ȳ2 + α)

µ+ tγµ+ α
(tµ), (4.3.3)

∂`(γ, µ, α)

∂µ
=
n1(x̄1 + ȳ1) + n2(x̄2 + ȳ2)

µ
− n1(x̄1 + ȳ1 + α)

µ+ tµ+ α
(1 + t)

− n2(x̄2 + ȳ2 + α)

µ+ tγµ+ α
(1 + tγ), (4.3.4)

∂`(γ, µ, α)

∂α
=(n1 + n2) [1 + logα− ψ(α)]− n1

[
x̄1 + ȳ1 + α

µ+ tµ+ α
+ log(µ+ tµ+ α)

]
+

n1∑
i=1

ψ(x1i + y1i + α)− n2

[
x̄2 + ȳ2 + α

µ+ tγµ+ α
+ log(µ+ tγµ+ α)

]
+

n2∑
j=1

ψ(x2j + y2j + α). (4.3.5)

Lemma 4.3.1. The MLEs of µ, γ and α do not have a closed form expression and

they need to be obtained by direct numerical maximization of the log-likelihood or by

equating the score vector to zero and solving for the parameters.

When γ = γ0 is known the MLEs of µ and α can be obtained by equating (4.3.4)

and (4.3.5) to 0 and solving for the parameters. For a general γ0 no close form solutions

for the parameters are available and numerical methods need to be employed to obtain

the MLEs.

Lemma 4.3.2. When γ0 = 1, the MLE of µ, denoted by µ̃, reduces to

µ̃ =
n1(x̄1 + ȳ1) + n2(x̄2 + ȳ2)

(n1 + n2)(1 + t)
.

The MLE of α, α̃, solves (4.3.5) set to 0 at γ = 1 and µ = µ̃. One can also

numerically maximize `(1, µ̃, α) with respect to α to obtain α̃.
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The second order derivatives of the log-likelihood function in (4.3.2) are

∂2`(γ, µ, α)

∂γ2
=− n2ȳ2

γ2
+
n2(x̄2 + ȳ2 + α)(tµ)2

(µ+ tγµ+ α)2
,

∂2`(γ, µ, α)

∂γ∂µ
=− n2(x̄2 + ȳ2 + α)(tα)

(µ+ tγµ+ α)2
=
∂2`(γ, µ, α)

∂µ∂γ
,

∂2`(γ, µ, α)

∂γ∂α
=− n2tµ

{
µ+ tγµ− x̄2 − ȳ2

(µ+ tγµ+ α)2

}
=
∂2`(γ, µ, α)

∂α∂γ
, (4.3.6)

∂2`(γ, µ, α)

∂µ2
=
n1(x̄1 + ȳ1 + α)(1 + t)2

(µ+ tµ+ α)2
+
n2(x̄2 + ȳ2 + α)(1 + tγ)2

(µ+ tγµ+ α)2

− n1(x̄1 + ȳ1) + n2(x̄2 + ȳ2)

µ2
,

∂2`(γ, µ, α)

∂µ∂α
=− n1(1 + t)[(µ+ tµ)− (x̄1 + ȳ1)]

(µ+ tµ+ α)2
− n2(1 + tγ)[(µ+ tγµ)− (x̄2 + ȳ2)]

(µ+ tγµ+ α)2

=
∂2`(γ, µ, α)

∂α∂µ
,

∂2`(γ, µ, α)

∂α2
=

n1(µ+ tµ)

α(µ+ tµ+ α)
+

n2(µ+ tγµ)

α(µ+ tγµ+ α)
− (n1 + n2)ψ′(α)

− n1[(µ+ tµ)− (x̄1 + ȳ1)]

(µ+ tµ+ α)2
− n2[(µ+ tγµ)− (x̄2 + ȳ2)]

(µ+ tγµ+ α)2

+

n1∑
i=1

ψ′(x1i + y1i + α) +

n2∑
j=1

ψ′(x2j + y2j + α).

Lemma 4.3.3. The elements of the FIM I(θ), where
(
I(θ)

)
i,j

= −E
{
∂2`(θ)
∂θi∂θj

}
and

parameter vector θ = (γ, µ, α) are given below:

I11(θ) =− E
{
∂2`(γ, µ, α)

∂γ2

}
=

n2tµ(µ+ α)

γ(µ+ tγµ+ α)
,

I22(θ) =− E
{
∂2`(γ, µ, α)

∂µ2

}
=
n1(1 + t) + n2(1 + tγ)

µ
− n1(1 + t)2

µ+ tµ+ α
− n2(1 + tγ)2

µ+ tγµ+ α
,

I33(θ) =− E
{
∂2`(γ, µ, α)

∂α2

}
= − n1µ(1 + t)

α(µ+ tµ+ α)
− n2µ(1 + tγ)

α(µ+ tγµ+ α)
+ (n1 + n2)ψ′(α)

−
n1∑
i=1

E [ψ′(x1i + y1i + α)]−
n2∑
j=1

E [ψ′(x2i + y2i + α)] ,

I12(θ) =− E
{
∂2`(γ, µ, α)

∂γ∂µ

}
=

n2tα

γ(µ+ tγµ+ α)
= I21(θ), and

Iij(θ) = 0, otherwise.
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Lemma 4.3.4. The asymptotic variance of γ̂ is the first element of the inverse of

the FIM given in Lemma 4.3.3. We have,

σ2
γ̂(θ) =I−1

1.2 =
[
I11 − I12I

−1
22 I21

]−1

=
(µ+ tγµ+ α)

n2tµ

×
{
µ+ α

γ
− n2tα(µ+ tµ+ α)

n1(µ+ tγµ+ α)(1 + t) + n2(µ+ tµ+ α)(1 + tγ)

}−1

.

4.4 Testing for the Treatment Effect

In this section we propose likelihood based parametric tests (LRT, RST and WT)

to test for a general H0 : γ = γ0 vs. H1 : γ 6= γ0. For RRMS clinical trials a test for

no treatment effect would test H0 : γ = 1 vs. H1 : γ 6= 1.

Theorem 4.4.1. (LRT). The LRT statistic to test H0 : γ = γ0 vs. H1 : γ 6= γ0 is

LRTPGB = −2(`(γ0, µ̃, α̃)− `(γ̂, µ̂, α̂)),

where µ̃, α̃ are the MLEs under Θ0 given in Lemma 4.3.2 and γ̂, µ̂, α̂ are the MLEs

under Θ given in Lemma 4.3.1.

Theorem 4.4.2. (RST). The RST statistic to test H0 : γ = γ0 vs. H1 : γ 6= γ0 is

RSTPGB =

[
∂`(γ, µ, α)

∂γ

]2

θ=θ̃

× σ2
γ̂(θ̃)

=

[
n2ȳ2

γ0

− n2(x̄2 + ȳ2 + α̃)(tµ̃)

µ̃+ tγ0µ̃+ α̃

]2 [
µ̃+ tγ0µ̃+ α̃

n2tµ̃

]
×
{
µ̃+ α̃

γ0

− n2tα̃(µ̃+ tµ̃+ α̃)

n1(µ̃+ tγ0µ̃+ α̃)(1 + t) + n2(µ̃+ tµ̃+ α̃)(1 + tγ0)

}−1

.

The MLEs µ̃ and α̃ are given in Lemma 4.3.2.

Theorem 4.4.3. (WT) The WT statistic for testing H0 : g(γ) = g(γ0) vs. H1 :

g(γ) 6= g(γ0) is given by

WTPGB =

[
g(γ̂)− g(γ0)

g′(γ̂)σγ̂(θ̂)

]2
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where γ̂ is MLE of γ under Θ (Lemma 4.3.1) and σ2
γ̂(θ̂) is the asymptotic variance

of γ̂ given in Lemma 4.3.4.

We consider the following functions g(γ) : γ, log(γ),
√
γ and γ2. Each of the above

statistic is asymptotically distributed as χ2
1 rv under H0 and an approximate level ν

test rejects H0 if the test statistic is > χ2
1(1− ν). This 5% critical value of 3.8415 is

denoted, as before, by c0.

A simulation study was done to evaluate the effect of changing n, µ and α on the

exact 95th percentiles and actual Type I error levels when one uses c0 as the critical

value. Figures 4.1 and 4.2 give the simulated exact percentiles for asymptotic LRT

and for the WT(γ2). The empirical Type I error rates for these two tests are given in

Figures 4.3 and 4.4. These were obtained for n = 5, 10, 20, 50 per group, tµ ranging

from 1 to 20 and for α =0.20, 0.50, 1, 2 and 5.

For the LRT and WT(γ2), the exact percentiles (Type I error rates) converge to

c0 (0.05) as tµ increases and the convergence is much quicker for higher sample sizes.

Increasing α results in higher exact percentiles and Type I error rates for the LRT

but these values reduced for WT(γ2). For the LRT, the Type I error rates are well

under 0.06 for sample sizes 20 or higher for all values of µ and α. Even for a sample

size of 10 subjects per group, the error rates for the asymptotic LRT are close to 0.05

unless µ is very small or α is very large. Hence the asymptotic LRT can be used for

PGB trials as long as the sample size is reasonably large for most values of µ and α.

For the asymptotic WT(γ2) the Type I error rates are much higher than the nominal

level for most values of µ and α even for higher sample sizes. Hence for the WT(γ2)

the asymptotic approximation is not suggested unless the sample size is 50 or above,

tµ ≥ 10 and α ≥ 2.
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For the RST, the exact percentile estimates converge to c0 as n increases and

also as α increases for a fixed n (Figure not shown). They are relatively stable with

respect to µ. The Type I error rates for the asymptotic RST are very close to the

nominal level of 0.05 for all values of n >= 10, µ and α. Thus, unless the sample

size is very small (< 10 subjects per group) and µ <= 5 and α = 0.2 it is very safe

to use the asymptotic RST without compromising on Type I error rates. We did not

consider the other tests since they were not the most powerful on either side of the

null hypothesis as we will see in the next section.

4.5 Power Analysis

Sormani et al. [2001b] used Monte-carlo simulations assuming the BNB model but

use nonparametric tests to obtain sample sizes for RRMS PGB trials. Here we use the

BNB assumption for simulations and use the associated parametric tests described in

Section 4.4 to obtain sample size estimates. We use the initial parameter estimates

suggested by Sormani as done in the case of PG and BVT trials seen in Chapters

2 and 3 respectively. For the BNB model given in Section 4.2, µ represents the

new enhancing lesions seen during one month (or on one scan) and hence we take

µ = 5.9/3 for t = 3 and µ = 13/6 for t = 6 as our initial parameter estimates for

our simulations. We generated 10, 000 trials (datasets) assuming the BNB model in

Section 4.2 for several values of γ ranging from 0.50 to 2 and assuming n1 = n2 = 10

subjects for each group. The power of each test was estimated as the proportion of

these 10,000 trials for which the null hypothesis is rejected.

The exact percentiles for the six tests are much higher than c0 for small sam-

ple sizes (see Figure 4.5). Therefore using asymptotic approximations for WT(γ2),
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Figure 4.1: PGB Trial: Simulation based 95th percentile value for the null distribution

of LRT statistic for different values of tµ and α and n = 5, 10, 20, 50 subjects per

group; The solid horizontal line refers to the c0(= 3.8415 = χ2
1(0.95)).

WT(γ) and WT(log(γ)) results in inflated error levels (Figure 4.6). Even though

WT(γ2) has the highest power for γ < 1, it also has the highest Type I error rate.

Hence it is not advisable to use asymptotic approximations especially for WT(γ2)
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Figure 4.2: PGB Trial: Simulation based 95th percentile value for the null distribution

of WT(γ2) statistic for different values of tµ and α and n = 5, 10, 20, 50 subjects per

group; The solid horizontal line refers to the c0(= 3.8415 = χ2
1(0.95)).

(and also for other Wald tests). The LRT and RST seem to maintain Type I error

rates very well even for small sample sizes and hence the asymptotic approximation

may be used.
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Figure 4.3: PGB Trial: Type I error rates for LRT with critical value c0 for different

values of tµ and α and n = 5, 10, 20, 50 subjects per group; The solid horizontal line

refers to nominal level ν = 0.05.

The power curves for the six exact tests are shown in Figure 4.7. All the tests

(by definition) maintain significance levels. The WT(γ2) has the highest power for

γ < 1. For γ > 1 its power goes to 0. The LRT, RST and WT(log(γ)) are empirically
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Figure 4.4: PGB Trial: Type I error rates for WT(γ2) with critical value c0 for differ-

ent values of tµ and α and n = 5, 10, 20, 50 subjects per group; The solid horizontal

line refers to nominal level ν = 0.05.

unbiased. The WT(log(γ)) or the LRT seem to have similar power estimates for

γ < 1 and their power is higher than the power corresponding to RST. Hence either

the LRT or the WT(log(γ)) are recommended for γ < 1 if an unbiased test is desired.
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For γ > 1, the RST has the highest power and is recommended. The WT(γ) and

WT(
√
γ) have consistently lesser power (although very slightly for WT(γ)) than the

WT(γ2) for γ < 1 and for γ > 1 they have lesser power than either of the three

unbiased tests and thus are not considered further.

Based on the results given above it is very clear that a choice of the “best” test

very much depends on the underlying research problem and the region of interest

(γ < 1 vs. γ > 1). For RRMS PGB clinical trials where the interest is in reducing

the number of lesions seen in the brain, a test which has the highest power to detect

a reduction in the total number of brain lesions is desired. Consequently the exact

WT(γ2) is best suited. If on the other hand, the treatment is expected to increase

the counts (of a certain response) then perhaps a RST which has the highest power

for γ > 1 is more appropriate.

4.6 Sample Size Estimation

Appropriate tests based on the research hypothesis and the side of interest were

suggested in the previous section. The LRT and WT(γ2) are the two tests we are

interested in the case of RRMS PGB trials (LRT is unbiased and WT(γ2) has the

highest power) and we obtain sample sizes for these only. For the LRT we estimate

sample sizes based on the asymptotic approximation as well as the exact test and for

WT(γ2) we only use the exact test as the asymptotic approximation performs poorly

as seen in the previous sections. The power for each sample size was computed using

the method described in Section 4.5. Sample sizes (Table 4.1) to achieve 80 and

90% power are obtained for a follow-up period of t = 3, 6 months and for treatment

effects (1 − γ) ranging from 0.50 to 0.80. These estimates are compared to the
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Figure 4.5: PGB Trial: Simulation based 95th percentile value for the null distribution

of LRT, RST and WT statistics as a function of common sample size n; µ = 5.9,

α = 0.49. The solid horizontal line refers to c0(= 3.8415 = χ2
1(0.95)).

sample sizes obtained by Sormani et al. [2001b] using nonparametric tests. Initial

parameter estimates used was tµ = 5.9, α = 0.49 for a 3 month follow-up period and

tµ = 13, α = 0.52 for a 6 month follow-up period. These parameter estimates were

those obtained by Sormani et al. [2001b] by fitting a NB distribution to MRI lesion

counts data obtained from a group of 66 untreated RRMS patients not selected for

activity during the baseline scan. Hence we strongly recommend that the sample sizes

given in this section be used only for RRMS clinical trials involving such a group of

patients.
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The results show that for the LRT, the asymptotic and the exact sample sizes are

very close in most cases and the exact sample sizes are higher than the asymptotic

ones by at most one. This can be seen due to the fact that the asymptotic LRT

maintains significance level reasonably well even for small sample sizes as seen from

the discussion in the previous sections. The LRT sample sizes are around 70-80%

smaller than the sample sizes obtained using WRS test. For a 3 month follow-up

period assuming a 50% treatment effect the WRS Test estimates a sample of 57

subjects (minimum) per group to have 80% power where as the LRT (approximate

or exact) estimates only 15 per group. Similar reduction in sample sizes are observed

for other values of treatment effects, follow-up period and for 90% power. Also, the

sample sizes using the WT(γ2) are a further 25% smaller than the LRT sample sizes

and upto 85% lesser than those obtained using WRS test. For the situation described

above, the WT(γ2) estimates only 12 per group which is a 79% reduction from the

57 estimated by WRS test.

The sample sizes for a 6 month follow-up period are 15 to 20% lesser than those for

3 months. That is if a patient is followed for approximately twice as long, we expect

to see a reduction in sample sizes of around 20%. As seen in the case of PG trials,

following patients for twice as long (in addition to the 1 month baseline period) does

not add a whole lot of independent ‘information’ to the already existing knowledge

we have about the parameters. Since these data are collected on the same patient

the number of lesion counts seen in the patients for the second 3 months are likely

very highly correlated with the number of lesions seen in the patients during the first

3 months of the follow-up period. This is the reason for the sample sizes reducing by

only 20% and not by 50%. The initial estimate for tµ used in the calculations of these
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sample sizes were 5.9 and 13 respectively for 3 and 6 months without much change in

α. Thus we expect about a 20% reduction in sample sizes when µ is doubled without

changing α. The sample sizes for achieving 90% power are 30-40% higher than those

for 80% power.

As noted above, the reduction in sample sizes when using a parametric test such

as LRT or WT(γ2) is much greater for PGB trials assuming a BNB model. For PG

(BVT) trials using the NB (BNB) models a 40-60% reduction was observed when

parametric tests were used as opposed to nonparametric tests but for PGB trials the

reduction was much greater at 80%. For PG trials, the minimum required sample size

per group to detect a 50% treatment effect with 80% power and a 3 month follow-up

period as estimated by LRT is 76 where as for PGB trials it is only 15 which is an

80% reduction. This suggests that adding a baseline correction scan just before the

treatment is initiated results in much lesser sample sizes there by reducing trial costs.

One needs to however ensure that appropriate models and appropriate tests are used.

4.7 Testing Using the Distribution of Y −X

When a baseline correction scan is obtained before the treatment period, the num-

ber of new enhancing lesions seen during this scan, X, may sometimes be subtracted

from the total number of new enhancing lesions seen in the treatment period, Y . This

method was adopted by Nauta et al. [1994], Sormani et al. [1999, 2001b]. Although

nonparametric tests were employed by these authors, obtaining the distribution of

Y − X will allow us to employ parametric tests to test for the significance of the

treatment effect. In this section we derive the distribution of Y −X and show that
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Table 4.1: PGB Trial: Sample sizes per group to achieve 80% and 90% power

for 100(1 − γ)% treatment effect, baseline period of 1 month, and follow-up pe-

riod (t) of 3 and 6 months, and initial estimates (tµ, α) = (5.9, 0.49) for t =

3 and (13, 0.52) for t = 6; level ν = 0.05.

1− γ t

80% power; 5% level

Test Critical Value

WRS LRT WT(γ2) LRT WT(γ2)

Sormani Asymptotic Exact Exact Simul. Simul.

0.50 3 57 15 15 12 3.9013 7.8747

6 50 12 12 9 3.9343 8.6777

0.60 3 42 10 10 8 3.9441 11.2759

6 38 8 8 6 3.9570 13.1829

0.70 3 34 7 7 6 4.0040 16.3149

6 29 6 6 4 4.0252 27.9923

0.80 3 25 5 5 4 4.0574 40.0743

6 22 4 4 3 4.1886 75.3760

1− γ t

90% power; 5% level

Test Critical Value

WRS LRT WT(γ2) LRT WT(γ2)

Sormani Asymptotic Exact Exact Simul. Simul.

0.50 3 80 19 20 16 3.8904 6.5502

6 70 16 16 12 3.8862 7.2002

0.60 3 58 13 14 10 3.8751 9.0683

6 50 10 11 8 3.9241 9.7634

0.70 3 47 9 9 7 3.9448 13.5862

6 38 7 8 6 3.9540 13.2785

0.80 3 35 7 7 5 3.9570 23.5071

6 30 5 6 4 4.0322 28.1685
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comparing the two groups based on this distribution is not a viable approach as the

‘effect size’ ∆ does not always increase monotonically with longer follow-up period t.

Consider the model described in Section 4.2. Using the joint pmf of (X1, Y1) which

is given in (4.2.1), the pmf of Y1 −X1 can be derived as

P (Y1 −X1 = k) =
∞∑

j=max(0,−k)

P (X1 = j, Y1 −X1 = k)

=
∞∑

j=max(0,−k)

P (X1 = j, Y1 = k + j)

=
∞∑

j=max(0,−k)

αα

Γ(α)

µj

j!

(tµ)k+j

(k + j)!

Γ(j + (k + j) + α)

(µ+ tµ+ α)j+(k+j)+α

=
∞∑

j=max(0,−k)

αα

Γ(α)

µj

j!

(tµ)k+j

(k + j)!

Γ(2j + k + α)

(µ+ tµ+ α)2j+k+α
, k = 0,±1, . . . .

(4.7.1)

Similarly, using the joint distribution of (X2, Y2) which is BNB(µ, tγµ, ν), the distri-

bution of Y2 −X2 can be found to be

P (Y2 −X2 = l) =
∞∑

j=max(0,−l)

αα

Γ(α)

µj

j!

(tγµ)l+j

(l + j)!

Γ(2j + l + α)

(µ+ tγµ+ α)2j+l+α
, l = 0,±1, . . . .

(4.7.2)

We note that marginally X1, X2 ∼ NB(µ, α), Y1 ∼ NB(tµ, α) and Y2 ∼ NB(tγµ, α).

Lemma 4.7.1. The expected values of Y1 −X1 and Y2 −X2 are

E(Y1 −X1) = E(Y1)− E(X1) = tµ− µ = µ(t− 1)

E(Y2 −X2) = E(Y2)− E(X2) = tγµ− µ = µ(tγ − 1)

Lemma 4.7.2. We have

Cov(X1, Y1) =
tµ2

α
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Proof:

Cov(X1, Y1) = E(X1Y1)− E(X1)E(Y1)

= E(E(X1Y1|Z = z))− E(X1)E(Y1)

= E(E(X1|Z = z)E(Y1|Z = z))− E(X1)E(Y1)

= E {(µZ)(tµZ)} − tµ2

= tµ2{E(Z2)− 1}

= tµ2

{
1

α
+ 1− 1

}
( Since Z ∼ Gamma(α, 1/α))

=
tµ2

α

Similarly it can be shown that Cov(X2, Y2) = tγµ2/α. Using the fact that each of

X1, X2, Y1, Y2 are marginally distributed as NB random variables and from Lemma 4.7.2

we have the following result:

Lemma 4.7.3.

V ar(Y1 −X1) = µ(1 + t) +
µ2

α
(1− t)2

and

V ar(Y2 −X2) = µ(1 + tγ) +
µ2

α
(1− tγ)2.

In Section 4.2, we used the joint (X, Y ) distribution to construct the model for

PGB trials. Similarly, we can construct a model for PGB trials using the distribution

of Y −X and come up with parametric tests. Parameter estimates for the model can

be obtained using the maximum likelihood method and parametric tests such as LRT,

RST and Wald tests can be constructed to test for the treatment effect. Although we

do not provide the details of estimation and testing here, we estimated the sample

sizes required to detect a significant treatment effect based on the distribution of
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Y − X. We used the same initial parameter estimates as we used for the (X, Y )

model. For example, for the LRT, to detect a 50% treatment effect with 80% power,

the required sample size is 25 subjects per group for a follow-up period of 3 months

and 38 per group for a follow-up period of 6 months. This is intriguing since the

required sample size increases when the patients are followed for longer time periods.

That is, the power of the test decreased as the follow-up period increased. The same

was true even for the other parametric tests and also for the nonparametric tests. We

attempt here to give a plausible explanation for this anomaly.

When comparing two population means µ1 and µ2, one often uses the effect size

∆ = µ1−µ2

σ
(Cohen [1988]) as a standardized measure of difference. Here σ is the

standard deviation of either population when they are assumed equal. When the

standard deviations of the two populations are different, say σ1 6= σ2, Cohen suggests

to use the square root of the average of the two variances σ′ in place of σ. That is

σ′ =

√
σ2

1 + σ2
2

2
.

For comparing means of two normal populations with unequal variances (using the

same notations as above), there is a direct connection between the power of the test

1−β, where β = P(Type II error), the significance level ν, the sample size n and the

effect size ∆ as can be seen from the formula for the sample size;

n =
(σ2

1 + σ2
2)(Z1−α

2
+ Z1−β)2

(µ1 − µ2)2

=
(Z1−ν/2 + Z1−β)2

∆2
. (4.7.3)

It is clear that for a fixed sample size n, the power increases as the effect size increases.

Although this is true for normal populations, the relationship between the power and

effect size is not clear in our case. To estimate the effect size for the BNB model
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above, we need to define the standard deviation σ. Since for our BNB model, the

standard deviation depends on the mean, the standard deviation of the lesion counts

for the two groups are different. Hence, we use a pooled standard deviation σ′ as

defined above. For our model,

σ′ =

√
V ar(Y1 −X1) + V ar(Y2 −X2)

2
. (4.7.4)

Using Lemmas 4.7.1 and 4.7.3, the effect size is

∆ =
E(Y1 −X1)− E(Y2 −X2)

σ′

=
tµ(1− γ)√

µ(2+t(1+γ))+µ2

α
((1−t)2+(1−tγ)2)

2

(4.7.5)

To study the behaviour of ∆ as the follow-up period t varies, we first consider

1

∆2
=
µ(1 + t) + µ2

α
(1− t)2 + µ(1 + tγ) + µ2

α
(1− tγ)2

2 [tµ(1− γ)]2

=
µ[2 + t(1 + γ)]

2t2µ2(1− γ)2
+
µ2[(1− t)2 + (1− tγ)2]

2αt2µ2(1− γ)2

=
α + µ

t2αµ(1− γ)2
+

1 + γ2

2α(1− γ)2
+

(1 + γ)(α− 2µ)

2µαt(1− γ)2
. (4.7.6)

Note that the above expression decreases as t increases for all t > 0 when α−2µ ≥ 0.

That is the effect size ∆ increases as t increases when α ≥ 2µ.

To determine the behavior of ∆ when α < 2µ, we consider the first order derivative

of (4.7.6) with respect to t.

∂(1/∆2)

∂t
=

(α + µ)

αµ(1− γ)2

[
−2

t3

]
+

(1 + γ)(α− 2µ)

2µα(1− γ)2

[
−1

t2

]
.

Equating the above expression to 0 and solving for t we get

t0 =
−4(α + µ)

(1 + γ)(α− 2µ)
. (4.7.7)
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The second order derivative of (4.7.6) with respect to t is

∂2(1/∆2)

∂t2
=

(α + µ)

αµ(1− γ)2

[
6

t4

]
+

(1 + γ)(α− 2µ)

2µα(1− γ)2

[
2

t3

]
Then

∂2(1/∆2)

∂t2
t=t0 =

(1 + γ)4(α− 2µ)4

128(αµ)(1− γ)2(α + µ)3

which is positive when α < 2µ. Therefore t0 given in (4.7.7) is the value at which

1
∆2 attains its minimum or ∆ attains its maximum. Thus, for α < 2µ, the effect

size ∆ reaches a maximum at t0 after which it starts to decrease. For example, for

µ = 5.9/3 and α = 0.49 (the parameter estimates so far considered in thesis), ∆ has

a maximum at t = 1.9025. So for a follow-up period of 2 months or more, the effect

size ∆ decreases with increasing t. For example, for (γ, µ, α) = (0.50, 5.9/3, 0.49) the

effect size ∆ = 0.61 for t = 3 and 0.53 for t = 6. This is a bad property to have for a

test and hence using the distribution of Y −X to compare between two groups is not

recommended when (X, Y ) are jointly distributed according to a BNB distribution.

4.8 Discussion

In this chapter we proposed a BNB model to produce sample sizes for PGB trials

in RRMS clinical trials. Since the initial estimates in our simulation studies were

obtained by fitting the NB model to RRMS patients not selected for MRI activity at

baseline, we suggest that the sample sizes reported in this chapter be used only for

clinical trials involving a similar group of patients.

We propose likelihood based parametric tests such as LRT, RST and several Wald

tests and compare their performances when using both asymptotic and exact per-

centiles. We recommend appropriate tests based on the properties of the test and

93



the region of interest desired. If an unbiased test is preferred and γ < 1 is the region

of interest, then the asymptotic LRT is well suited. On the other hand, if γ > 1 is

the region of importance, then the asymptotic RST is most powerful and is hence

recommended. The WT(γ2) has the highest power among all tests when γ < 1 but

it is not unbiased. We suggest the use of WT(γ2) for clinical trials in MS since the

interest is in finding a test which has the highest power to detect reductions in mean

lesion counts in the treatment group.

The sample sizes obtained using the LRT are 70-80% smaller than those based on

nonparametric tests that are given in Sormani et al. [2001b]. The WT(γ2) provides

a further 25% reduction in required sample sizes. We considered as initial estimates,

a mean (tµ) of 5.9 and 13 for a follow-up period of 3 and 6 months respectively with

little change in α. This doubling of the mean reduced the sample sizes by 15-20%.

We also considered simulation studies to examine the effect of µ and α on the

simulated percentiles of the LRT and WT(γ2) and the Type I error rates when one

uses c0 as the critical value. For both these tests, increasing µ reduced the simulated

percentiles and brought them closer to c0 and consequently the Type I error rates

came closer to the nominal level of 0.05. Increasing α actually resulted in higher

(smaller) simulated percentiles and the Type I error rates for the LRT (WT(γ2)).

We derived the distribution of the difference Y − X when (X, Y ) is assumed to

be distributed according to a BNB distribution and showed that the effect size for

comparing between the groups based on the difference in lesion counts seen in the

follow-up period to the baseline scan does not always increase monotonically when

the follow-up period t increases.
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The results of this chapter show that when a parametric BNB distribution is as-

sumed, using appropriate parametric tests results in significantly higher power com-

pared to nonparametric tests and provides vast reduction in sample sizes. These

methods thus reduce the costs of clinical trials in RRMS that are prone to be very

expensive. There are other situations where the BNB distribution is appropriate. For

example, it fits well to number of eplipetic seizures observed in a group of 28 pa-

tients in a placebo arm of a trial (Appendix Section C.2). In such cases the methods

developed in this chapter can be used as well.
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CHAPTER 5

Poisson-Inverse Gaussian Distribution for Parallel Group

Trials

5.1 Introduction

The Poisson-Inverse Gaussian (P-IG) distribution has been discussed by numerous

authors in the literature as a possible alternative to the negative binomial distribution

in modelling overdispersed count data. Willmot [1987] studied the P-IG distribution

and showed its mathematical and statistical properties are very similar to those of the

NB distribution. Hence it is only natural to think of P-IG as a possible alternative

to the NB model for modelling MRI count data arising out of RRMS clinical trials.

Sormani et al. [2001a] show that the P-IG distribution provides a marginally better

fit than the NB distribution for MRI lesion counts in 115 RRMS patients selected for

having at least one enhancing lesion on the baseline scan. These data are given in

Appendix Section C.1.3.

In this chapter we use the P-IG distribution as a model for the MRI count data

in PG trials involving RRMS patients who are selected for activity at baseline and

derive parametric tests for the treatment effect. In Section 5.2.2, we use the P-IG
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distribution to model MRI count data in such trials. The parameters of the model

are estimated in Section 5.3 and likelihood based parametric tests for the treatment

effect are developed in Section 5.4. In Section 5.5, the performance of the proposed

tests are compared and sample size estimates for RRMS PG trials are estimated in

Section 5.6. We conclude with some discussion in Section 5.7.

5.2 The Poisson-Inverse Gaussian (P-IG) Model

5.2.1 The Basic Model

Tweedie [1957] discusses the properties of the Inverse Gaussian (IG) distribution

with density function given by

fZ(z|µ, λ) =

[
λ

2πz3

] 1
2

exp

{
−λ(z − µ)2

2µ2z

}
, z > 0, µ, λ > 0. (5.2.1)

We use the notation IG(µ, λ) to denote IG distribution with the above density func-

tion. The mean of an IG(µ, λ) random variable is µ and its variance is µ3/λ. The

parameter λ is seen as a measure of relative precision. Tweedie shows that the MLE

of µ is the sample mean and that the distributions of the MLE of µ and λ are stochas-

tically independent.

Holla [1971] first derived the P-IG distribution by assuming that the parameter

of the Poisson distribution follows an IG distribution and discussed its applications

to accident statistics. Ord and Whitmore [1986] discuss the P-IG distribution as a

model for species abundance.

Assume Y |Z = z ∼ Poisson(z) and that Z is further distributed according to

IG(µ, λ) with density in (5.2.1). As noted in Section 1.3.1, the marginal distribution
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of Y is then P-IG(µ, λ) with pmf

P (Y = y) = py =

∫ ∞
0

e−zzy

y!
fZ(z|µ, λ)dz

=
τ y

y!

(
2θ

π

) 1
2

exp

(
λ

µ

)
Ky− 1

2
(θ), y = 0, 1, . . . , (5.2.2)

Here τ =
[

1
µ2 + 2

λ

]− 1
2
, θ = λ

τ
and K(·) is the modified Bessel function of the third

kind. It is defined as

Kν(z) =
π

2
· I−ν(z)− Iν(z)

sin νπ
(5.2.3)

where I(·) is the modified Bessel function of the first kind defined as

Iν(z) =
∞∑
m=0

( z
2
)ν+2m

m!Γ(m+ ν + 1)
. (5.2.4)

It can be seen from (5.2.2) that

p0 = exp

{
λ

µ
− λ

τ

}
and p1 = τp0. (5.2.5)

Also, the P-IG probabilities satisfy the following recurrence relation:

py = τ 2

{
py−2

y(y − 1)
+

2y − 3

λy
py−1

}
, y = 2, 3, . . . . (5.2.6)

To compute the P-IG probabilities using the closed form expression given in (5.2.2)

we need to evaluate the Bessel function of the third kind K(·). This can be computed

easily for small values of y, but for large values, (5.2.3) and/or (5.2.2) may return

infinite values in which case the probabilities cannot be computed directly. To avoid

this problem, one can first check if (5.2.2) returns a finite value for the maximum

value of y in the observed data. If yes, the direct expression in (5.2.2) can be used;

otherwise, the recursive relation (5.2.6) needs to be used. This additional comparison

operation for each data led to a 15% increase in computational times when compared
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to using the recurrence relation alone to obtain the probabilities. Thus the use of

recurrence relation given in (5.2.6) is suggested for computing the probabilities very

efficiently.

The mean and variance of P-IG(µ, λ) are µ and µ + µ3/λ respectively. We also

observe here that the variance of the P-IG distribution exceeds the variance of the

Poisson distribution by µ3/λ, which is the variance of the mixing IG distribution.3

The P-IG distribution is unimodal and right skewed as the NB model and hence

can be used as a possible model for overdispersed count data. The MLE of the mean

of the P-IG distribution is the sample mean itself (Stein et al. [1987]) as in the case

of the NB model. Hence it is only natural to think of P-IG as a possible alternative

to the NB model for modelling MRI count data arising out of RRMS clinical trials.

Remark: Sichel [1971] derived a generalized P-IG distribution by mixing Poisson

distribution with a generalized IG distribution. The resulting distribution with three

shape parameters has pmf

P (X = x) =
(1− θ)γ/2

Kγ(α
√

1− θ)
αθ/2

x!
Kx+γ(α), α > 0, 0 < θ < 1, −∞ < γ <∞.

(5.2.7)

This distribution is called the Sichel distribution and we denote it as P-IG(α, θ, γ).

When γ = −1
2

is known, this becomes the two parameter P-IG distribution (al-

though under a different parametrization) for which Sichel derives the MLEs. This

parametrization adopted by Sichel leads to the MLEs of α and θ being strongly cor-

related resulting in an unstable estimation process. Stein et al. [1987] propose a

parametrization in terms of the population mean where the MLEs of the two param-

eters are asymptotically independent.

3This is true for any compound Poisson distribution.
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5.2.2 The P-IG Model for PG Trials

Suppose there are n1 subjects in the placebo group and n2 subjects in the treat-

ment group. Let Yi, i = 1, 2 denote the total number of new enhancing lesions seen

for the patients in the placebo group and the treatment group, respectively. Let

Zi, i = 1, 2 denote the random subject effects seen for two groups. We assume that

Y1|Z1 = z1 ∼ Poisson(z1) and Y2|Z2 = z2 ∼ Poisson(z2). (5.2.8)

We also assume that Z1 and Z2 follow IG(µ, λ) and IG(γµ, λ) respectively. Here

1 − γ is the measure of the treatment effect which can be viewed as the percentage

reduction in the mean lesion counts seen in the treatment group. Then, it can be

seen that Y1 and Y2 are independently and marginally distributed as P-IG(µ, λ) and

P-IG(γµ, λ) respectively. Using the pmf for P-IG given in (5.2.2), the marginal pmfs

of Y1 and Y2 can be seen to be

P (Y1 = y1) =
τ y11

y1!

(
2θ1

π

) 1
2

exp

{
λ

µ

}
Ky1− 1

2
(θ1)

P (Y2 = y2) =
τ y22

y2!

(
2θ2

π

) 1
2

exp

{
λ

γµ

}
Ky2− 1

2
(θ2) (5.2.9)

where

τ1 =

[
1

µ2
+

2

λ

]− 1
2

τ2 =

[
1

γ2µ2
+

2

λ

]− 1
2

and

θi =
λ

τi
, i = 1, 2.

Then E(Y1) = µ, V ar(Y1) = µ + µ3/λ, E(Y2) = γµ and V ar(Y2) = γµ + (γµ)3/λ.

Note that we assume the same shape parameter λ for the two groups.
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The following lemma presents some useful results needed to obtain the score vector

and the matrix of the second order derivatives.

Lemma 5.2.1.

∂τ1

∂γ
= 0;

∂τ1

∂µ
=
τ 3

1

µ3
;

∂τ1

∂λ
=
τ 3

1

λ2
.

∂τ2

∂γ
=

τ 3
2

γ3µ2
;

∂τ2

∂µ
=

τ 3
2

γ2µ3
;

∂τ2

∂λ
=
τ 3

2

λ2
.

Using the above results we further obtain

∂θ1

∂γ
= 0;

∂θ1

∂µ
= −λτ1

µ3
;

∂θ1

∂λ
=
λ− τ 2

1

λτ1

∂θ2

∂γ
=− λτ2

γ3µ2
;

∂θ2

∂µ
= − λτ2

γ2µ3
;

∂θ2

∂λ
=
λ− τ 2

2

λτ2

.

5.3 Estimation

The parameters for the P-IG model given in the previous section can be estimated

using the method of maximum likelihood. Suppose there are n1 subjects in the

placebo group and n2 subjects in the treatment group. For observed counts y1 =

(y11, y12, . . . , y1n1) and y2 = (y21, y22, . . . , y2n2), the likelihood function for the model

in (5.2.8) is given by

L(γ, µ, λ|y1,y2) =

n1∏
i=1

P (Y1 = y1i)×
n2∏
j=1

P (Y2 = y2j)

=
(τ1)n1ȳ1∏

y1i!

(
2λ

πτ1

)n1
2

exp

{
n1λ

µ

} n1∏
i=1

Ky1i− 1
2
(θ1)

× (τ2)n2ȳ2∏
y2j!

(
2λ

πτ2

)n2
2

exp

{
n2λ

γµ

} n2∏
j=1

Ky2j− 1
2
(θ2) (5.3.1)
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Then the log-likelihood function is

`(γ, µ, λ|y1,y2) =n1ȳ1 log(τ1) +
n1

2
log

(
2λ

πτ1

)
+
n1λ

µ
+

n1∑
i=1

logKy1i− 1
2
(θ1)

+ n2ȳ2 log(τ2) +
n2

2
log

(
2λ

πτ2

)
+
n2λ

γµ
+

n2∑
j=1

logKy2j− 1
2
(θ2)

+

n1∑
i=1

log y1i! +

n2∑
j=1

log y2j!. (5.3.2)

The following lemma provides useful results involving modified Bessel functions that

simplify the derivation of the score vector and the second order derivatives.

Lemma 5.3.1. (Modified Bessel function of the third kind (See Section 9.6, Abramowitz

and Stegun [1970])).

The following relations hold for the modified Bessel function of the third kind

Kν(z):

K−ν(z) = Kν(z)

K− 1
2
(z) = K 1

2
(z) =

√
π

2z
e−z

Kν+1(z) = Kν−1(z) +
2ν

z
Kν(z) (5.3.3)

∂

∂z
Kν(z) = K ′ν(z) = −Kν+1(z) +

ν

z
Kν(z).

The ratio of modified Bessel functions Rν(z) = Kν+1(z)
Kν(z)

, satisfies the following rela-

tions:

R− 1
2
(z) = 1;

Rν(z) =
2ν

z
+

1

Rν−1(z)
, ν =

1

2
,
3

2
,
5

2
, . . . ; (5.3.4)

∂

∂z
Rν(z) = R′ν(z) = R2

ν(z)− 2(ν + 1/2)

z
Rν(z)− 1.
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The score vector components for the log-likelihood function given in (5.3.2) are

∂`(γ, µ, λ)

∂γ
=
λτ2

γ3µ2

n2∑
j=1

Ry2j− 1
2
(θ2)− n2λ

γ2µ
, (5.3.5)

∂`(γ, µ, λ)

∂µ
=
λτ1

µ3

n1∑
i=1

Ry1i− 1
2
(θ1) +

λτ2

γ2µ3

n2∑
j=1

Ry2j− 1
2
(θ2)− λ(n1γ + n2)

γµ2
, (5.3.6)

∂`(γ, µ, λ)

∂λ
=
n1ȳ1 + n2ȳ2

λ
+
n1γ + n2

γµ
−
(
λ− τ 2

1

λτ1

) n1∑
i=1

Ry1i− 1
2
(θ1)

−
(
λ− τ 2

2

λτ2

) n2∑
j=1

Ry2j− 1
2
(θ2). (5.3.7)

The MLEs of the parameters γ, µ and λ can be obtained by equating the score vec-

tor equations (5.3.5) - (5.3.7) to zero and by solving simultaneously for the three

parameters. Equating the first two components to 0, we readily obtain

n1∑
i=1

Ry1i− 1
2
(θ1) =

n1µ

τ1

and

n2∑
j=1

Ry2j− 1
2
(θ2) =

n2γµ

τ2

.

Using these results in the third score vector component equated to 0, and using the

fact that (
λ− τ 2

1

τ 2
1

)
=
λ+ µ2

µ2
and

(
λ− τ 2

2

τ 2
2

)
=
λ+ γ2µ2

γ2µ2
,

we get

n1(ȳ1 − µ) + n2(ȳ2 − γµ) = 0. (5.3.8)

One solution for equation (5.3.8) is that µ̂ = ȳ1 and γ̂µ̂ = ȳ2 which is a local maxima.

We examined the surface of the log-likelihood as a function of γ and µ for selected

λ values (figures not shown). This is a smooth concave function for the values of

the parameters considered with a unique maxima attained at µ̂ = ȳ1 and γ̂ = ȳ2/ȳ1,

where λ maximized the profile log-likelihood `(ȳ2/ȳ1, ȳ1, λ). Thus the local maxima

obtained as a solution to the score vector equations ((5.3.5)-(5.3.7)) can be argued to

be the MLEs of the parameters which leads us to the following conclusion:
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Lemma 5.3.2. The MLEs of µ and γ are

µ̂ = ȳ1 and γ̂ =
ȳ2

ȳ1

.

The MLE of λ, λ̂ can be obtained as a solution to the equation(
λ̂− τ̂ 2

1

λτ̂1

)
n1∑
i=1

Ry1i− 1
2
(θ̂1) +

(
λ̂− τ̂ 2

2

λ̂τ̂2

)
n2∑
j=1

Ry2j− 1
2
(θ̂2) =

n1ȳ1 + n2ȳ2

λ̂
+
n1γ̂ + n2

γ̂µ̂
,

where θ̂i = λ̂/τ̂i, i = 1, 2 and

τ̂1 =

[
1

µ̂2
+

2

λ̂

]− 1
2

and τ̂2 =

[
1

γ̂2µ̂2
+

2

λ̂

]− 1
2

.

Alternatively the MLE of λ can also be obtained by numerically maximizing the profile

log-likelihood function `(γ̂, µ̂, λ) with respect to λ.

When γ = γ0 is assumed known, the MLEs of µ and λ can be obtained by setting

the score equations (5.3.6) and (5.3.7) to 0 with γ = γ0 and simultaneously solving

for the two parameters. For a general γ0 the MLEs are not available in closed form

and numerical methods seen previously must be employed. However, for γ0 = 1, we

have τ1 = τ2 and θ1 = θ2 using which we have the following result:

Lemma 5.3.3. When γ = 1, the MLE of µ is

µ̃ =
n1ȳ1 + n2ȳ2

n1 + n2

.

The MLE of λ, λ̃ solves the equation(
λ− τ̃ 2

1

λτ̃1

) n1∑
i=1

Ry1i+
1
2
(θ̃1) +

(
λ̃− τ̃ 2

2

λ̃τ̃2

)
n2∑
j=1

Ry2j− 1
2
(θ̃2) =

n1ȳ1 + n2ȳ2

λ̃
+
n1 + n2

µ̃

where θ̃i = λ̃/τ̃i, i = 1, 2 and

τ̃1 =

[
1

µ̃2
+

2

λ̃

]− 1
2

and τ̃2 =

[
1

µ̃2
+

2

λ̃

]− 1
2

.

The MLE of λ can also be obtained by numerically maximizing the profile log-likelihood

function `(1, µ̃, λ) with respect to λ.
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The second order derivatives of the log-likelihood function are

∂2`(γ, µ, λ)

∂γ2
=− λ2τ 2

2

γ6µ4

n2∑
j=1

R′
y2j− 1

2
(θ2) +

λτ2

γ6µ4
(τ 2

2 − 3γ2µ2)

n2∑
j=1

Ry2j− 1
2
(θ2) +

2n2λ

γ3µ
,

∂2`(γ, µ, λ)

∂γ∂µ
=− λ2τ 2

2

γ5µ5

n2∑
j=1

R′
y2j− 1

2
(θ2) +

λτ 3
2

γ5µ5
(τ 2

2 − 2γ2µ2)

n2∑
j=1

Ry2j− 1
2
(θ2) +

n2λ

γ2µ2
,

∂2`(γ, µ, λ)

∂γ∂λ
=

(
λ− τ 2

2

γ3µ2

) n2∑
j=1

R′
y2j− 1

2
(θ2) +

τ2

γ3µ2λ
(τ 2

2 + λ)

n2∑
j=1

Ry2j− 1
2
(θ2)− n2

γ2µ
,

(5.3.9)

∂2`(γ, µ, λ)

∂µ2
=− λ2τ 2

1

µ6

n1∑
i=1

R′
y1i− 1

2
(θ1) +

λτ1

µ6
(τ 2

1 − 3µ2)

n1∑
i=1

Ry1i− 1
2
(θ1)

− λ2τ 2
2

γ4µ6

n2∑
j=1

R′
y2j− 1

2
(θ2) +

λτ2

γ4µ6
(τ 2

2 − 3γ2µ2)

n2∑
j=1

Ry2j− 1
2
(θ2)

+
2λ(n1γ + n2)

γµ3
,

∂2`(γ, µ, λ)

∂µ∂λ
=

(
λ− τ 2

1

µ3

) n1∑
i=1

R′
y1i− 1

2
(θ1) +

τ1

λµ3
(τ 2

1 + λ)

n1∑
i=1

Ry1i− 1
2
(θ1)

+

(
λ− τ 2

2

γ2µ3

) n2∑
j=1

R′
y2j− 1

2
(θ2) +

τ2

λγ2µ3
(τ 2

2 + λ)

n2∑
j=1

Ry2j− 1
2
(θ2)

− n1γ + n2

γµ2
,

∂2`(γ, µ, λ)

∂λ2
=− n1ȳ1 + n2ȳ2

λ2
−
(
λ− τ 2

1

λτ1

)2 n1∑
i=1

R′
y1i− 1

2
(θ1) +

τ 3
1

λ3

n1∑
i=1

Ry1i− 1
2
(θ1)

−
(
λ− τ 2

2

λτ2

)2 n2∑
j=1

R′
y2j− 1

2
(θ2) +

τ 3
2

λ3

n2∑
j=1

Ry2j− 1
2
(θ2).

Lemma 5.3.4. Using the fact that E(Ȳ1) = µ and E(Ȳ2) = γµ, and from the fact

that Y1i, i = 1, ldots, n1 and Y2j, j = 1, . . . , n2 are respectively identically distributed,

the elements of the FIM I(θ), where
(
I(θ)

)
i,j

= −E
{
∂2`(θ)
∂θi∂θj

}
and parameter vector
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θ = (γ, µ, λ) are:

I11(θ) =
n2λ

2τ 2
2

γ6µ4
E
{
R′
Y2− 1

2
(θ2)

}
− n2λτ2

γ6µ4
(τ 2

2 − 3γ2µ2)E
{
RY2− 1

2
(θ2)

}
− 2n2λ

γ3µ
,

I12(θ) =
n2λ

2τ 2
2

γ5µ5
E
{
R′
Y2− 1

2
(θ2)

}
− n2λτ

3
2

γ5µ5
(τ 2

2 − 2γ2µ2)E
{
RY2− 1

2
(θ2)

}
− n2λ

γ2µ2
,

I13(θ) =− n2

(
λ− τ 2

2

γ3µ2

)
E
{
R′
Y2− 1

2
(θ2)

}
− n2τ2

γ3µ2λ
(τ 2

2 + λ)E
{
RY2− 1

2
(θ2)

}
+

n2

γ2µ
,

I22(θ) =
n1λ

2τ 2
1

µ6
E
{
R′
Y1− 1

2
(θ1)

}
− n1λτ1

µ6
(τ 2

1 − 3µ2)E
{
RY1− 1

2
(θ1)

}
− 2λ(n1γ + n2)

γµ3

+
n2λ

2τ 2
2

γ4µ6
E
{
R′
Y2− 1

2
(θ2)

}
− n2λτ2

γ4µ6
(τ 2

2 − 3γ2µ2)E
{
RY2− 1

2
(θ2)

}
,

I23(θ) =− n1

(
λ− τ 2

1

µ3

)
E
{
R′
Y1− 1

2
(θ1)

}
− n1τ1

λµ3
(τ 2

1 + λ)E
{
RY1− 1

2
(θ1)

}
+
n1γ + n2

γµ2

− n2

(
λ− τ 2

2

γ2µ3

)
E
{
R′
Y2− 1

2
(θ2)

}
− n2τ2

λγ2µ3
(τ 2

2 + λ)E
{
RY2− 1

2
(θ2)

}
,

I33(θ) =
n1µ+ n2γµ

λ2
+ n1

(
λ− τ 2

1

λτ1

)2

E
{
R′
Y1− 1

2
(θ1)

}
− n1τ

3
1

λ3
E
{
RY1− 1

2
(θ1)

}
+ n2

(
λ− τ 2

2

λτ2

)2

E
{
R′
Y2− 1

2
(θ2)

}
− n2τ

3
2

λ3
E
{
RY2− 1

2
(θ2)

}
.

and Iij = Iji for i 6= j.

Lemma 5.3.5. The asymptotic variance of γ̂ for the P-IG model is the first element

of the inverse of the FIM. That is, σ2
γ̂(θ) = I−1

1.2 = [I11 − I12I
−1
22 I21]−1 where the

elements of the FIM are as in Lemma 5.3.4.

5.4 Hypothesis Testing

In this section we propose parametric tests such as the LRT, RST and WT to test

for the treatment effect for a general H0 : γ = γ0 vs. H1 : γ 6= γ0. For RRMS clinical

trials, a test for no treatment effect would test H0 : γ = 1 vs. H1 : γ 6= 1. In the

results that follow, γ̂, µ̂, λ̂ denote the MLEs with no restrictions on the parameters

and are given in Lemma 5.3.2. Further, µ̃, λ̃ denote the MLEs of the parameters

under H0 and are given in Lemma 5.3.3.
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Theorem 5.4.1. (LRT). The LRT statistic to test H0 : γ = γ0 vs. H1 : γ 6= γ0 is

LRT = −2(`(γ0, µ̃, α̃)− `(γ̂, µ̂, α̂)).

Theorem 5.4.2. (RST). The RST statistic to test H0 : γ = γ0 vs. H1 : γ 6= γ0 is

RST =

[
∂`(γ, µ, α)

∂γ

]2

θ=θ̃

× σ2
γ̂(θ̃)

=

[
λ̃τ̃2

γ3
0 µ̃

2

n2∑
j=1

Ry2j− 1
2
(θ̃2)− n2λ̃

γ2
0 µ̃

]2

× σ2
γ̂(θ̃)

where σ2
γ̂(θ̃) is the asymptotic variance of γ̂ (Lemma 5.3.5) evaluated at the MLEs

under H0.

To compute σ2
γ̂, one needs to be able to compute the Fisher information matrix.

Since this is not available in a closed form, the observed information evaluated at

the MLEs under H0 is used in its place. A major problem here is that the observed

information can generate negative variance estimates which leads to negative score

test statistics. Further it may produce an inconsistent test. Thus an RST using the

observed information may not produce a valid chi-square test in this case. Freed-

man [2007] gives a detailed discussion on the anomalies of the score test when using

the observed information matrix. Morgan et al. [2007] give an example involving a

zero-inflated Poisson distribution where the score test statistic using the observed

information is negative.

Theorem 5.4.3. (WT) The WT statistic for testing H0 : g(γ) = g(γ0) vs. H1 :

g(γ) 6= g(γ0) is given by

WT =

[
g(γ̂)− g(γ0)

g′(γ̂)σγ̂

]2

where σ2
γ̂ is the asymptotic variance of γ̂ given in Lemma 5.3.5.
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To evaluate σ2
γ̂, one needs to obtain the inverse of the observed information matrix

(negative of the Hessian matrix) evaluated at the unrestricted MLEs. At the unre-

stricted MLE, the observed information will be positive definite ensuring consistency

of the test.

We consider the following functions g(γ) : γ, log(γ),
√
γ and γ2. Each of the above

statistic is asymptotically distributed as a χ2
1 rv under H0 and an approximate level ν

test rejects H0 if the test statistic is > χ2
1(1−ν). This approximation does not always

work well for small sample sizes as seen in previous chapters. Figure 5.1 shows the

simulation based exact 95th percentiles for the six asymptotic tests as a function of

sample size n. These percentiles, especially for the Wald tests, can be much higher

than c0 even for sample sizes as high as 100 for each group.

We did a simulation study to evaluate further, the effect of changing sample size

n, µ and λ on the simulated levels and exact percentiles. We computed the exact

percentiles for these test statistics by simulating M = 10, 000 datasets from the null

distribution (under H0) and then picking the 95th percentile for a 5% test.4 Four

different sample sizes were considered: n = 10, 20, 50, 100 with µ ranging from 1 to 20

and λ = 0.5, 1, 25, 10. The simulated exact 95th percentiles of the LRT and the WT(γ)

statistics are given in Figures 5.2 and 5.3 respectively. Increasing µ, has no effect on

the exact percentiles for the LRT . However, when µ increases the exact percentiles

for WT(γ) move away from c0. For both the LRT and the WT(γ), increasing α brings

the exact percentiles closer to c0. As expected, the exact percentiles converge to c0

as the sample size n increases.

4Computing P-IG probabilities is very time consuming and hence we had to restrict ourselves

to using M = 10, 000. Increasing M to at least 100,000 will produce more precise estimates of the

exact percentiles.
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Figure 5.1: P-IG Model for PG Trial: Simulation based 95th percentile value for the

null distribution of LRT, RST and WT statistics as a function of common sample size

n; µ = 16.8, λ = 6.56. The solid horizontal line refers to c0 = 3.8415(= χ2
1(0.95)).

The Type I error rates for the asymptotic LRT and WT(γ) (Figures 5.4 and 5.5)

converge to the nominal level of 0.05 as n increases and also as λ increases for a

fixed n. Changing µ does not seem to have an effect on the empirical error levels for

the asymptotic LRT. However, increasing µ seems to increase the Type I error levels

although not very significantly. Also the error rates for the asymptotic WT(γ) seem

to be higher than those for the LRT. For the asymptotic LRT, the error rates are

very close to the nominal level for sample sizes 50 and above per group for all values

of µ and λ. For smaller sample sizes however the error rates can be much higher than
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Figure 5.2: P-IG Model for PG Trial: Simulation based 95th percentile value for

the null distribution of LRT statistic for different values of µ and λ and n1 = n2 =

10, 20, 50, 100, the solid horizontal line refers to c0(= 3.8415 = χ2
1(0.95)).

0.05 and hence the asymptotic LRT is not suggested. For the asymptotic WT(γ), the

empirical Type I error rates are very high for all values of µ and γ for sample sizes

less than or equal to 20 per group. Even for very large sample sizes per group (n =

50, 100), the error rates can be very high for λ (≤ 5). Thus, we suggest the use of
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Figure 5.3: P-IG Model for PG Trial: Simulation based 95th percentile value for

the null distribution of WT(γ) statistic for different values of µ and λ and n =

10, 20, 50, 100, the solid horizontal line refers to c0(= 3.8415 = χ2
1(0.95)).

the exact percentile based WT(γ) unless the sample size is 100 or above per group

and λ is 10 or higher.

The exact percentile estimates and the Type I error rates RST and WT(
√
γ) as

they were not the ‘best’ tests as we will see in the next section (see Figure 5.7 of
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Figure 5.4: P-IG Model for PG Trial: Type I error rates for LRT with critical value

c0 for different values of µ and λ and n = 10, 20, 50, 100 subjects per group, the solid

horizontal line refers to nominal level ν = 0.05.

Section 5.5). The exact percentiles and the Type I error rates for WT(log(γ)) are

very similar to those for the LRT (Figure not shown). For the WT(γ2), the exact

percentiles and simulated levels are much higher than those for WT (γ) but the effect

of n, µ and λ is very similar to that of WT (γ) (Figure not shown).
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Figure 5.5: P-IG Model for PG Trial: Type I error rates for WT(γ) with critical value

c0 for different values of µ and α and n = 10, 20, 50, 100 subjects per group, the solid

horizontal line refers to nominal level ν = 0.05.

5.5 Power Analysis

We conducted a simulation study to compare the performance of the asymptotic

and the exact percentile based LRT, RST and the Wald tests given in Section 5.4. The
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exact percentiles for these test statistics are calculated as discussed in the previous

section using M = 10, 000. Equal sample sizes of 50 per group was considered.

Nominal level was set to be ν = 0.05. The power for each γ is then calculated as

the proportion of trials for which the null hypothesis H0 is rejected using either the

asymptotic or the exact percentile based test. The initial parameter estimates for

the simulation study were µ = 16.8 and λ = 6.56. These were estimated by Sormani

et al. [2001b] by fitting a P-IG distribution (by the method of maximum likelihood)

to MRI lesion count data from RRMS patients who were selected for lesion activity

at baseline and followed for a period of 6 months.

The power curves for the six asymptotic tests for the P-IG model are shown in

Figure 5.6. The LRT and WT(log(γ)) are unbiased tests and have very similar power

estimates for all values of γ. These two tests also maintain Type I error rates very

well (close to the nominal level 0.05 under H0 : γ = 1) for a sample size of 50 per

group. The WT(γ2) has the highest power for γ < 1 but also has the highest Type

I error rate, much higher than the nominal 5%. The asymptotic WT(γ) has lesser

power than the WT(γ2) for γ < 1 and has slightly higher power for γ > 1. The

simulated error rate for WT(γ) is still higher than the nominal 5%. The asymptotic

WT(
√
γ) is not considered further as it is not the most powerful test on either side

of the null hypothesis.

Figure 5.7 shows the power curves for the six exact tests. One can see that all the

tests maintain the Type I error rates very precisely. The LRT and the WT(log(γ))

are unbiased and have very similar power estimates. WT(γ) and WT(γ2) have similar

power estimates and have the highest power for γ < 1. For γ > 1, their power quickly

goes to 0 and hence either test is best suited for RRMS clinical trials as discussed in

114



previous chapters. We therefore suggest the use of WT(γ) for RRMS clinical trials.

The WT(
√
γ) is neither unbiased nor has the highest power on either sides of the null

hypothesis and is not considered further.

Thus if an unbiased test is preferred, either the LRT or WT(log(γ)) can be used.

For these two tests, asymptotic approximation can be used for sample sizes 50 or

above but for smaller sample sizes the exact percentile based tests are recommended.

For RRMS clinical trials, we are interested in the region γ < 1 and hence the exact

WT(γ) is recommended. We do not recommend the asymptotic WT(γ) even for very

large sample sizes.

The RST statistic was computed using the observed information matrix evaluated

at the MLEs under the null hypothesis. This sometimes led to the observed informa-

tion matrix not being positive definite which resulted in a negative RST statistic and

an inconsistent test. The power of the RST using the observerd information may also

be non monotonic. Moving away from H0 does not necessarily result in an increase in

power (see Figures 5.6 and 5.7). Thus, the RST is not considered for the P-IG model

for PG trials.

5.6 Sample Size Estimation

The LRT was the preferred unbiased test and the WT(γ) had the highest power

for γ < 1 and was hence chosen as the best test for RRMS clinical trials even though

it was not unbiased. In this section, we present sample size estimates for PG trials

assuming the P-IG model for these two tests. We present sample sizes using both

the asymptotic and the exact LRT and only for the exact WT(γ) as the asymptotic

WT(γ) was very liberal. The exact percentile and the power estimates were calculated
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Figure 5.6: P-IG Model for PG Trial: Power of asymptotic 5% level LRT, RST, and

WTs for treatment effect, assuming initial parameter estimates µ = 16.8, λ = 6.56,

sample sizes n1 = n2 = 50. The solid horizontal line refers to the nominal level

ν = 0.05.
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Figure 5.7: P-IG Model for PG Trial: Power of exact 5% level LRT, RST, and WTs

for treatment effect, assuming initial parameter estimates µ = 16.8, λ = 6.56, sample

sizes n1 = n2 = 50. The solid horizontal line refers to the nominal level ν = 0.05.
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using the method described in Section 5.4. We also present the sample sizes obtained

using the Wilcoxon Rank Sum test as well.

Sormani et al. [2001a] fit the P-IG model (using alternate parametrization µ and

β = µ2/λ) to new MRI lesion counts in 115 RRMS patients selected for having at

least 1 enhancing lesion on the baseline scan. They estimate, using the method of

maximum likelihood, that µ̂ = 16.8 and β̂ = 43 for a 6 month follow-up period. Thus,

in our parametrization, we have µ̂ = 16.8 and λ̂ = 6.56. We use these estimates for

µ and λ as our initial estimates for the simulation study. Since parameter estimates

are not available for a 3 month follow-up period, we do not present sample sizes for

that case.

Sample sizes (Table 5.1) for each group are given for 80 and 90% power, follow-

up period of 6 months and treatment effect 1 − γ ranging from 0.50 to 0.80. The

LRT sample sizes are approximately 30-52% smaller than the WRS sample sizes. For

example, for a 50% treatment effect and 80% power, WRS estimates a sample size of

134 per group where as the LRT (asymptotic or exact) estimates only 66 per group,

a reduction of 51%. The exact LRT sample sizes are higher than the asymptotic LRT

sample sizes by at most 1. This difference is seen only for higher values of treatment

effects which yield smaller sample sizes. Sample sizes using the exact WT(γ) are

7-18% smaller than the sample sizes using LRT and around 40-57% smaller than the

WRS sample sizes. Sample sizes to achieve 90% power are 20-40% higher in general

than the sample sizes required for 80% power.
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Table 5.1: P-IG Model for PG Trial: Sample sizes per group to achieve 80% and 90%

power for 100(1 − γ)% treatment effect, baseline period of 1 month, and follow-up

period (t) of 6 months, and initial estimates (µ, λ) = (16.8, 6.56); level ν = 0.05.

1− γ
80% power; 5% level

Test Critical Value

WRS LRT WT(γ) LRT WT(γ)

Asymptotic Exact Exact Simul. Simul.

0.50 134 66 66 58 3.8402 3.9483

0.60 69 36 36 30 3.8846 4.0164

0.70 34 19 20 17 4.0961 4.3876

0.80 17 11 12 10 4.2762 4.7157

1− γ
90% power; 5% level

Test Critical Value

WRS LRT WT(γ) LRT WT(γ)

Asymptotic Exact Exact Simul. Simul.

0.50 179 87 87 78 3.9009 4.0004

0.60 88 48 49 40 3.8530 4.0088

0.70 45 26 26 24 4.0377 4.0382

0.80 23 13 13 12 4.2129 4.4614
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5.7 Discussion

In this chapter we proposed likelihood based parametric tests such as LRT, RST

and several Wald tests for the P-IG model for PG trials. We compared their perfor-

mance using the asymptotic and exact percentiles and proposed sample size estimates

based on appropriate tests. The initial parameter estimates used in the simulation

study were obtained by fitting the P-IG model to MRI lesion count data in RRMS

patients selected for baseline activity. Therefore, we suggest the sample sizes reported

in this chapter be used only in clinical trials involving such a group of patients.

The recommendations are based on the properties of the test and the research

hypothesis in question. We do not consider the RST due to the issue of getting nega-

tive test statistics. For RRMS clinical trials, though not unbiased, the exact WT(γ)

for all sample sizes. When an unbiased test is desired irrespective of whether one is

interested in γ < 1 or γ > 1, the LRT or the WT(log(γ)) is preferred. Asymptotic

approximation (for the LRT and WT(log(γ)) can be used for sample sizes over 50

but for lesser sample sizes the exact test needs to be used to ensure the Type I error

levels are close to nominal values. When compared to the WRS sample sizes, the

ones obtained using LRT are around 30-50% smaller and the ones using WT(γ) are

around 40-57% smaller. Thus, when the P-IG model is assumed, using the parametric

tests proposed in this chapter provide a way of significantly reducing costs in RRMS

clinical trials.

Several other areas of application of the P-IG model have been discussed in the

literature. Willmot [1987] showed that the model provides an extremely good fit to

automobile claim frequency data and also showed that the P-IG model fits better

than the negative binomial model in most cases. Ord and Whitmore [1986] discuss
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the P-IG distribution as a model for species abundance. Sankaran [1968] illustrates

the applicability of the P-IG model to larvae counts on corn bean plants. In all these

cases the methods developed in this chapter can be used.

121



CHAPTER 6

Conclusion and Further Work

Although the NB distribution has been shown to fit well to MRI lesion count

data in RRMS clinical trials, only nonparametric tests are being used in current

clinical trials to test for the treatment effect. The main focus of this thesis was to

develop parametric tests for NB models with applications to RRMS clinical trials.

Three important trial designs that are very common in MS trials were considered. In

Chapter 2, we assumed the NB model for PG trials and proposed likelihood based

parametric tests such as LRT, RST and WTts to test for the treatment effect. Using

BNB models parametric tests for BVT trials and PGB trials using BNB models

were proposed in Chapters 3 and 4, respectively. Likelihood based tests were also

derived for PG trials assuming the P-IG model in Chapter 5. These tests were

then compared using simulation studies and appropriate tests were chosen based

on the properties of the test and the region of interest for each trial design and each

parametric model. Sample size estimates for RRMS clinical trials were obtained using

the chosen parametric tests and were compared to those obtained using nonparametric

tests.

The choice of the test depends on the parametric model being considered, the

property of the test itself and the research hypothesis in question. The LRT, RST
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and WT(log(γ)) are empirically unbiased for all trial designs and parametric models

considered. If unbiasedness of a test is a property that is strictly desired, usually

one of the three tests depending on the region of interest can be used for PG, BVT

and PGB trials that assume NB models. For the NB models in Chapters 2 to 4, the

WT(γ2), though not unbiased, had the highest power for the region γ < 1 and lowest

power for γ > 1 and hence best suited for clinical trials in MS. For the P-IG model

for PG trials in Chapter 5, the WT(γ) is the preferred test for RRMS clinical trials.

Asymptotic percentile based tests may be a poor approximation for smaller sample

sizes and may result in a very liberal or a very conservative test. We developed exact

percentile based tests that maintain Type I error rates even for very small sample

sizes. For PG trials using the NB and the P-IG model, the asymptotic LRT can be

used in general for sample sizes over 50 but for lesser sample sizes the exact LRT

is preferred. For the BVT trials and the PGB trials assuming BNB models, the

asymptotic LRT maintains Type I error rates reasonably well even for very small

sample sizes and hence the exact LRT is not required. These recommendations hold

true even for the other two unbiased tests RST and WT(log(γ)) when their use is

appropriate. The asymptotic WT(γ2) and the WT(γ) are not suggested even for very

large sample sizes and the exact percentile based tests are suggested always for all

trial designs and models considered.

When compared to the nonparametric tests, the preferred parametric tests pro-

vided significant reductions in sample sizes. For the NB models considered, the LRT

provided a reduction of 30-45% for PG trials, 25-50% for BVT trials and 70-80% for

PGB trials. The exact WT(γ2) provided a further 10-20% reduction in sample sizes

when compared to the LRT. For the P-IG model for PG trials, the LRT provided a
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reduction of 30-50% in sample sizes when compared to the WRS test and the exact

WT(γ) provided a further reduction of 7-16%.

The RST statistic using the observed information can sometimes be negative (Sec-

tion 5.4). This is because the observed information matrix evaluated at the restricted

MLEs may sometimes generate negative variance estimates. For the NB models in

Chapters 2 to 4, closed form expressions for the Fisher information were available

and hence observed information was not required. For the P-IG model for PG tri-

als however, the Fisher information was not available in closed form and hence the

observed information was used. This resulted in negative RST statistics and hence

the RST using the observed information is not suited for this model. The same issue

arose when the observed information was used for the PG trials assuming NB model.

Thus one has to be look out for such issues when using the observed information for

the RST.

We have developed likelihood based parametric tests for the treatment effect for

PG, BVT and PGB trials assuming NB models and for PG trials assuming a P-IG

model. For the P-IG model for PG trials we have only considered the case of equal

λ for the two groups. As done for the NB model in Chapter 2, the parametric tests

developed in this chapter can be extended to case of unequal λ as well. A robustness

study needs to be done to study the performance of these tests for deviations from

distributional assumptions and also for deviations from the equal λ assumption.

Similar methods can be developed for BVT and PGB trials assuming a bivariate

P-IG (BPIG) model. Also, since cross-over trials are also commonly used in RRMS

clinical trials, one can develop similar tests for such a design assuming NB and P-IG

distributions. One can develop similar tests to test for the treatment effect in the
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presence of covariates. For a NB model for example, a generalized linear model can

be used to adjust for covariates. MLEs of the parameters can be obtained using a

Fisher scoring algorithm and similar tests for the treatment effect can be developed

in those cases as well.
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APPENDIX A

Notations and Abbreviations

A.1 Abbreviations

BNB Bivariate negative binomial
BVT Baseline vs. Treatment
EDSS Expanded Disability Status Scale
FIM Fisher Information Matrix
LRT Likelihood ratio test
MRI Magnetic Resonance Imaging
MS Multiple Sclerosis
NB Negative binomial
PG Parallel Group
PGB Parallel Group with baseline correction
P-IG Poisson-Inverse Gaussian
PPMS Primary Progressive Multiple Sclerosis
PRMS Progressive Relapsing Multiple Sclerosis
RRMS Relapsing Remitting Multiple Sclerosis
RST Rao’s score test
SPMS Secondary Progressive Multiple Sclerosis
WRS Wilcoxon Rank Sum test
WSR Wilcoxon Signed Rank test
WT Wald test
UMPU Uniformly Most Powerful Unbiased
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A.2 Symbols

L Likelihood function given the data
` log(L)
PX(x) Probability mass function (pmf) of a discrete random variable X
E(X) Expected value of a random variable X
fX(x) Probability density function (pdf) of a continuous random variable X
G(s) Probability generating function of a discrete random variable
I(θ) Fisher information of parameter vector θ
M(t) Moment generating function
ν Significance level
Θ Unrestricted parameter space
Θ0 Restricted parameter space

A.3 Distributions

Gamma (α, β) Gamma distribution with pdf f(x) = 1
Γ(α)βα

xα−1e−
x
β , x > 0.

Poisson(λ) Poisson distribution with pmf PX(x) = e−λλx

x!
, x = 0, 1, 2, . . . .

NB(µ, α) Negative binomial distribution with mean µ and dispersion parameter α

and with pmf PX(x) = αα

Γ(α)
µx

x!
Γ(x+α)

(µ+α)x+α
, x = 0, 1, 2, . . . .

BNB(µ1, µ2, α) Bivariate negative binomial distribution with pmf

PX,Y (x, y) = αα

Γ(α)

µx1
x!

µy2
y!

Γ(x+y+α)
(µ1+µ2+α)x+y+α

, x, y = 0, 1, 2, . . . .

IG(µ, λ) Inverse Gaussian distribution with pdf

fX(x) =
(

λ
2πx3

) 1
2 exp

{
−λ(x−µ)2

2µ2x

}
, x > 0.

P-IG(µ, λ) Poisson-Inverse Gaussian distribution with mean µ
and scale parameter λ. with pmf

PX(x) = τx

x!

(
2θ
π

) 1
2 exp

(
λ
µ

)
Kx− 1

2
(θ), y = 0, 1, . . . ,

with τ =
[

1
µ2 + 2

λ

]− 1
2

and θ = λ
τ
.
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APPENDIX B

Simulation Method

The parameters of the NB distribution can be estimated from an already existing

dataset. These estimated parameters µ̂ and α̂ can then be used to simulate the data.

Here are the steps to simulate data using the NB model for PG trials and BNB model

for BVT trials. The code to do this in R is given in Appendix Chapter D.

B.1 PG Trial

Suppose that there are n1 patients in the placebo group and n2 patients in the

treatment group.

If the underlying distribution is NB, the placebo group is generated by drawing n1

observations at random from NB(µ, α). The n2 observations in the treatment group

are randomly generated from NB(γµ, α). For the unequal dispersion parameter case

the observations in the placebo group are randomly generated from NB(µ, α1) and

the observations in the treatment group are generated from NB(γµ, α2).

If the underlying distribution is P-IG distribution, the data are generated by

simply drawing n1 random observations from P-IG(µ, λ) and n2 random obsevations

from P-IG(γµ, λ).
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B.2 BVT Trial - BNB model

Random observations (xi, yi), i = 1, . . . , n from the BNB(µ1, µ2, α) distribution

can be generated by following the steps below: For each i,

1. zi is randomly sampled from Gamma(α, α−1).

2. xi is generated by randomly sampling one observation from Poisson(µ1zi).

3. yi is generated by randomly sampling from Poisson(µ2zi).

To generate data for BVT trials assuming the BNB model in Section 3.2, n random

observations from a BNB(µ, γµ, α) can be generated using the above method.

B.3 PGB Trial - BNB model

To generate data from PGB trials assuming the BNB model in Section 4.2, we

need to generate n1 random observations from BNB(µ, tµ, α) and n2 random obser-

vations from BNB(µ, tγµ, α). These can be generated using the method described in

Section B.2.
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APPENDIX C

Datasets

In this chapter we look at some of the datasets from the literature for which the

NB and BNB fit well. Pearson’s χ2 goodness-of-fit (GOF) statistics along with the

degrees of freedom (df) and P value are given.

C.1 MRI lesion counts

C.1.1 Nauta

Table C.1 (Nauta et al. [1994]) gives the number of MRI active lesion counts

seen each month for 6 months from 23 unselected patients who remained untreated

during the course of the study. Active lesions were defined as either new enhancing

lesions, new non-enhancing lesions or enlarging non-enhancing lesions. We assumed

the number of lesions seen during the first month as the baseline value (x) and the

total number of lesions seen during the other 5 months (y) as the follow-up value.

The BNB distribution (1.3.2) was fit to this data using ML method (χ2 GOF statistic

= 4.68, df = 4, P = 0.32). The estimates of the parameters µ1, µ2 and α are 0.91,

6.39 and 0.65 respectively.
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Patient
Month of Scanning

Total
1 2 3 4 5 6

1 0 1 0 0 0 0 1

2 5 10 2 2 1 2 22

3 0 3 2 2 1 1 9

4 2 1 1 0 3 1 8

5 0 0 0 0 0 0 0

6 1 0 0 1 0 0 2

7 0 0 0 0 0 0 0

8 0 0 0 0 0 1 1

9 4 0 0 0 0 0 4

10 3 0 3 0 2 0 8

11 4 0 4 1 0 1 10

12 0 0 0 0 0 0 0

13 0 1 0 0 0 1 2

14 0 0 0 0 0 1 1

15 0 0 1 0 0 1 2

16 1 0 0 0 0 0 1

17 1 2 0 0 0 0 3

18 0 4 0 0 1 0 5

19 0 0 0 0 1 1 2

20 0 1 3 0 2 2 8

21 0 0 0 2 2 1 5

22 0 3 3 2 0 3 11

23 0 16 9 13 10 15 63

Table C.1: MRI lesions (Nauta): Number of active lesions seen in 6 monthly follow-up

MRI scans for 23 RRMS and SPMS patients.

C.1.2 Tubridy

Table C.2 (taken from Tubridy et al. [1998]) gives the number of new active lesions

seen in 6 monthly MRI scans for 31 RRMS patients. New active lesions are defined as
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in Appendix Section C.1.1. We fit the BNB distribution given in (1.3.2) to the joint

data on the total number of new active lesions seen during the first 3 monthly scans

x and the total number of new active lesions seen during the last 3 monthly scans y.

The χ2 GOF statistic was 13.31 on 7 degrees of freedom with P = 0.065 suggesting

the appropriateness of the BNB distribution.

C.1.3 Sormani

Sormani et al. [2001a] give the data on total MRI lesion counts seen during 6

monthly scans of the brain in 66 RRMS patients not selected for the presence of MRI

activity on the baseline scan (Group A) and 115 RRMS patients selected for having

at least one enhancing lesion seen during the baseline scan (Group B). Observed and

expected frequency counts obtained by fitting the NB (2.1.1) and P-IG model (1.3.3)

to the data are given in Table C.3. They estimate the parameters of the NB model

to be (µ̂, α̂) = (13, 0.52) for Group A and (16.8, 0.74) for Group B. The P-IG model

parameters were estimated as (µ̂, λ̂) = (13, 2.96) for Group A and (16.8, 6.56) for

Group B. The NB model (χ2 GOF statistic = 1.21, df = 2, P = 0.55) fit better than

the P-IG model (χ2 GOF statistic = 5.25, df = 2, P = 0.07) for Group A. The P-IG

model (χ2 GOF statistic = 5.08, df = 2, P = 0.08) provided a more satisfactory fit

than the NB model (χ2 GOF statistic = 18.7, df = 2, P < 0.0001) for Group B.

C.2 Epileptic Seizures

The data given below arise from a clinical trial involving 59 epileptic patients

(Thall and Vail [1990]). Patients suffering from simple or complex partial seizures

were randomized to receive either the antiepileptic drug progabide or a placebo, as an
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adjuvant to standard chemotherapy. At each of four successive post randomization

clinic visits, the number of seizures occurring over the previous 2 weeks was reported.

Baseline values (x) are the number of seizures seen in each patient during 8 weeks

of the baseline period. Let y be the total number of seizures seen in the follow-up

period. The BNB distribution with pmf (1.3.2) was fit to the observations in the

placebo and treatment group.

The parameters were estimated using the method of maximum likelihood (ML).

For the placebo group, µ1, µ2 and α were estimated to be 27.638, 34.386 and 1.951

respectively. For the treatment group, the parameters µ1, µ2 and α were estimated

to be 31.606, 31.7658 and 1.5 respectively. The BNB distribution provided a good fit

to the observations in the placebo group (χ2 GOF statistic 14.54, df=10, P = 0.15)

but not for the treatment group (χ2 GOF statistic 29.69, df=12, P = 0.003).
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Patient
Month of Scanning

x y Total
1 2 3 4 5 6

1 0 0 0 0 0 0 0 0 0

2 0 4 3 5 10 17 7 32 39

3 0 0 2 0 13 6 2 19 21

4 2 1 2 7 4 4 5 15 20

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0

7 1 1 0 0 1 0 2 1 3

8 0 0 0 0 0 0 0 0 0

9 4 2 2 0 0 1 8 1 9

10 0 1 1 3 1 0 2 4 6

11 6 4 4 7 9 7 14 23 37

12 0 0 0 0 0 0 0 0 0

13 0 0 0 1 0 0 0 1 1

14 2 1 0 0 0 0 3 0 3

15 2 2 1 2 4 1 5 7 12

16 4 1 4 0 0 0 9 0 9

17 1 0 0 0 1 0 1 1 2

18 0 0 0 0 0 0 0 0 0

19 2 0 0 0 0 0 2 0 2

20 0 2 2 2 0 0 4 2 6

21 0 5 1 1 1 0 6 2 8

22 1 0 7 5 11 12 8 28 36

23 0 0 1 2 0 0 1 2 3

24 1 1 0 1 0 1 2 2 4

25 4 0 1 0 2 0 5 2 7

26 2 0 0 0 0 0 2 0 2

27 11 5 3 2 1 0 19 3 22

28 1 1 1 0 0 0 3 0 3

29 3 0 0 1 1 2 3 4 7

30 2 0 0 0 1 1 2 2 4

31 1 1 1 3 0 1 3 4 7

Table C.2: MRI lesions (Tubridy): Number of new active lesions seen in 6 monthly

follow-up MRI scans for 31 patients.
140



Group A Group B

Lesion Counts Observed NB P-IG Observed NB P-IG

0 11 12.12 7.19 8 20.62 4.41

1 6 6.06 8.71 8 9.62 7.97

2-4 13 11.04 17.77 18 17.19 25.96

5-7 10 7.05 8.79 19 11.01 18.17

8-10 4 5.17 5.10 14 8.22 12.00

11-15 6 6.23 5.03 16 10.18 12.65

16-20 5 4.38 3.02 5 7.46 7.87

21-30 1 5.59 3.48 9 10.17 9.19

31-40 5 3.21 1.95 5 6.44 5.11

41-50 2 1.93 1.23 1 4.26 3.19

51-60 1 1.18 0.84 3 2.90 2.13

61-70 0 0.74 0.44 3 2.00 1.49

71-80 1 0.47 0.00 2 1.40 1.08

81-90 0 0.30 0.00 3 0.99 0.80

91+ 1 0.19 0.00 1 0.71 0.61

Table C.3: MRI lesions (Sormani): Observed and expected frequency (NB and P-IG)

of lesion counts for two groups of patients. Group A: 66 RRMS patients not selected

for the presence of MRI activity on the baseline scan. Group B: 115 RRMS patients

selected for having at least one Gd-enhancing lesion on the baseline scan.
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Patient ID Baseline y1 y2 y3 y4

104 11 5 3 3 3

106 11 3 5 3 3

107 6 2 4 0 5

114 8 4 4 1 4

116 66 7 18 9 21

118 27 5 2 8 7

123 12 6 4 0 2

126 52 40 20 23 12

130 23 5 6 6 5

135 10 14 13 6 0

141 52 26 12 6 22

145 33 12 6 8 4

201 18 4 4 6 2

202 111 7 9 12 14

205 18 16 24 10 9

206 20 11 0 0 5

210 12 0 0 3 3

213 9 37 29 28 29

215 17 3 5 2 5

217 28 3 0 6 7

219 55 3 4 3 4

220 9 3 4 3 4

222 17 2 3 3 5

226 28 8 12 2 8

227 55 18 24 76 25

230 9 2 1 2 1

234 10 3 1 4 2

238 47 13 15 13 12

Table C.4: Epileptic Seizures: Bi-weekly seizure counts for 28 patients in the placebo

group; baseline counts are observed over an 8 week period.
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Patient ID Baseline y1 y2 y3 y4

101 76 11 14 9 8

102 38 8 7 9 4

103 19 0 4 3 0

108 10 3 6 1 3

110 19 2 6 7 4

111 24 4 3 1 3

112 31 22 17 19 16

113 14 5 4 7 4

117 11 2 4 0 4

121 67 3 7 7 7

122 41 4 18 2 5

124 7 2 1 1 0

128 22 0 2 4 0

129 13 5 4 0 3

137 46 11 14 25 15

139 36 10 5 3 8

143 38 19 7 6 7

147 7 1 1 2 3

203 36 6 10 8 8

204 11 2 1 0 0

207 151 102 65 72 63

208 22 4 3 2 4

209 41 8 6 5 7

211 32 1 3 1 5

214 56 18 11 28 13

218 24 6 3 4 0

221 16 3 5 4 3

225 22 1 21 19 8

228 25 2 3 0 1

232 13 0 0 0 0

236 12 1 4 3 2

Table C.5: Epileptic Seizures: Bi-weekly seizure counts for 31 patients in the treat-

ment group.
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APPENDIX D

R Code

The following is the R code used for the simulations in this thesis. Only the code

for the NB model for PG trials (Chapter 2) is given. The code for the other chapters

are similar and hence not provided for brevity.

D.1 PG Trial - NB Model

## MLE under the restricted hypothesis
nbsimMLEnull<-function(init=3,n1,n2,y1=y1,y2=y2,maxit=maxit,method=method)
{

muhat<-(sum(y1)+sum(y2))/(n1+n2);
loglikenull <- function(alpha)
{

if (alpha>0)
{

num<-sum(log(dnbinom(y1,mu=muhat,size=alpha)))
+ sum(log(dnbinom(y2,mu=muhat,size=alpha)));
return(-num);

}
else
{

return(1e+08);
}

}
mlenull<-optim(par=init,fn=loglikenull,method=method,
control=list(maxit=maxit));
return(c(-mlenull$value,muhat,mlenull$par));

}

## MLE under the unrestricted hypothesis
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nbsimMLEalt<-function(init,n1,n2,y1=y1,y2=y2)
{

mu1hat<-mean(y1);mu2hat<-mean(y2);
#loglikealt <- function(par)
loglikealt <- function(alpha)
{

if (alpha>0)
{

den<- sum(log(dnbinom(y1,mu=mu1hat,size=alpha)))
+ sum(log(dnbinom(y2,mu=mu2hat,size=alpha)));
return(-den);

}
else
{

return(1e+08);
}

}
mlealt<-optim(par=init,fn=loglikealt, method="Nelder-Mead");
return(c(-mlealt$value,mu1hat,mu2hat,mlealt$par));
}

## First order score vector equations
firstorder<-function(y1,y2,mu1,mu2,alpha)
{

n1<-length(y1);n2<-length(y2);
domu1<- sum(y1)/mu1 - (sum(y1)+ n1*alpha)/(mu1+alpha);
domu2<- sum(y2)/mu2 - (sum(y2)+ n2*alpha)/(mu2+alpha);
doalpha<- (n1+n2)*(1+log(alpha)-digamma(alpha))
- (sum(y1)+ n1*alpha)/(mu1+alpha) - (sum(y2)+ n2*alpha)/(mu2+alpha)
- n1*log(mu1+alpha) - n2*log(mu2+alpha)
+ sum(digamma(y1+alpha)) + sum(digamma(y2+alpha));
return(matrix(c(domu1,domu2,doalpha),ncol=1));

}

## 04/28/2009
## Matrix of the second order partial derivatives
## 10/22/2009 - Updated to expected second order derivatives
secondorder<-function(y1,y2,mu1,mu2,alpha)
{

n1<-length(y1);n2<-length(y2);
domu1.2 <- -n1*alpha/(mu1*(mu1+alpha));
domu1mu2<- 0;
domu1alpha<-0;
domu2mu1<-domu1mu2;
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domu2.2<- -n2*alpha/(mu2*(mu2+alpha));
domu2alpha<-0;
doalphamu1<-domu1alpha;
doalphamu2<-domu2alpha;
doalpha.2 <- (n1+n2)*(1/alpha - trigamma(alpha)) - n1/(mu1+alpha)
- n2/(mu2+alpha) + sum(trigamma(y1+alpha)) + sum(trigamma(y2+alpha));
return(matrix(c(domu1.2,domu1mu2,domu1alpha,domu2mu1,domu2.2,domu2alpha,
doalphamu1,doalphamu2,doalpha.2),nrow=3,byrow=T));

}

## Function to compute the power
nbpower<-function (n1,n2,mu1,alpha,alpha1=0,delta=0.50,B=1000,M=1000,
lrt.cutoff,rst.cutoff,wal1.cutoff,wal2.cutoff,wal3.cutoff,wal4.cutoff,
cutoff.sim=1,method="Nelder-Mead",maxit=500,nu=0.05)
{

cat("mu = ",mu1,"Alpha = ",alpha,"Alpha1 = ",alpha1,"Gamma = ",(1-delta),
"n1=",n1,"n2=",n2,sep=" ","\n");
lrt.power.chisq<-0;lrt.power.exact<-0;rst.power.chisq<-0;
rst.power.exact<-wal.power.chisq<-wal.power.exact<-0;

## variables for the Other Wald Chisq and Exact tests
wal1.power.chisq<-wal2.power.chisq<-wal3.power.chisq<-wal4.power.chisq
<-wal5.power.chisq<-0;
wal1.power.exact<-wal2.power.exact<-wal3.power.exact<-wal4.power.exact
<-wal5.power.exact<-0;

## To calculate the exact p-value, the quantile is obtained by simulating
## from the null distribution and calculating the LRT statistic

lrt<-null<-alt<-rst<-wal<-wal1<-wal2<-wal3<-wal4<-wal5<-array(dim=M);

## Toggle variable to get the exact power or not for all tests
toggle.lrt<-toggle.rst<-toggle.wal1<-toggle.wal2<-toggle.wal3<-
toggle.wal4<-0;

## Chisq cutoff value
cutoff.chisq<-qchisq(nu,1,lower.tail=F);
## Updated 12/04/2009
## Get simulated cutoff values only if asked to; if cutoff.sim=1,
## then get simulated cutoff
## Otherwise calculate using specified cutoff values
if (cutoff.sim==1)
{

for (i in 1:M)
{
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y1 <- rnbinom(n=n1, mu=mu1,size = alpha);
## 11/26/2009 To allow for generating data from NB populations
## with different dispersion parameters
if (alpha1==0)
{
y2 <- rnbinom(n=n2, mu=mu1,size = alpha);
}
else
{
y2 <- rnbinom(n=n2, mu=mu1,size = alpha1);
}
y1bar<-mean(y1);y2bar<-mean(y2);

while (y2bar==0)
{
y1 <- rnbinom(n=n1, mu=mu1,size = alpha);
if (alpha1==0)
{
y2 <- rnbinom(n=n2, mu=mu1,size = alpha);
}
else
{
y2 <- rnbinom(n=n2, mu=mu1,size = alpha1);
}
y2bar=mean(y2);
}

## Likelihood Ratio Test
null.0<-nbsimMLEnull(init=alpha,n1=n1,n2=n2,y1,y2,maxit=maxit,
method=method);
alt.0<-nbsimMLEalt(init=alpha,n1=n2,n2=n2,y1,y2);
null[i]<-null.0[1];alt[i]<-alt.0[1];
lrt[i]<- -2* (null[i]-alt[i]);

## Rao’s Score Test: Need MLEs of mu and alpha in the restricted case
mu.0<-null.0[2];alpha.0<-null.0[3];
first<-firstorder(y1,y2,mu.0,mu.0,alpha.0);
hessian_score<-secondorder(y1,y2,mu.0,mu.0,alpha.0);
fisherinf.inv_score<-diag(3);
fisherinf.inv_score[1,1]<- -1/hessian_score[1,1];
fisherinf.inv_score[2,2]<- -1/hessian_score[2,2];
fisherinf.inv_score[3,3]<- -1/hessian_score[3,3];
rst[i]<- t(first)%*%fisherinf.inv_score%*%first;
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## Wald Test: Need MLEs of parameters under the unrestricted case
## MLE of mu1, mu2 and alpha in the unrestricted case
mu1.1<-alt.0[2];mu2.1<-alt.0[3];alpha.1<-alt.0[4];

## Other Wald Tests constructed using the delta method for variance

## Aban et. al Wald Statistic: (using \hat{gamma})
gamma.hat<-mu2.1/mu1.1;gamma.0<-1;
sigma2.gamma.hat.1<-(gamma.hat*(n1*(alpha.1+gamma.hat*mu1.1)
+n2*gamma.hat*(alpha.1+mu1.1)))/(n1*n2*alpha.1*mu1.1);
wal1[i]<-(gamma.hat-gamma.0)^2/sigma2.gamma.hat.1;

## Wald Statistic: (using log transformation of gamma hat)
## g(gamma.hat) = log(gamma.hat); So g’(gamma.hat) = 1/gamma.hat
sigma2.gamma.hat.2<-(1/gamma.hat)^2*sigma2.gamma.hat.1;
wal2[i]<-(log(gamma.hat)-log(gamma.0))^2/((1/gamma.hat)
^2*sigma2.gamma.hat.1);

## Wald Statistic: using square root transformation;
## g(gamma.hat) = (gamma.hat)^(0.5); g’(gamma.hat) =
## 1/(2*sqrt(gamma.hat))
sigma2.gamma.hat.3<- (1/(2*sqrt(gamma.hat)))^2*sigma2.gamma.hat.1;
wal3[i]<-(sqrt(gamma.hat)-sqrt(gamma.0))^2/sigma2.gamma.hat.3;

## Wald Statistic: using square transformation
## H0: gamma^2=1; g(gamma.hat) = gamma.hat^2 => g’(gamma.hat)
## = 2*gamma.hat;
sigma2.gamma.hat.4<- (2*gamma.hat)^2*sigma2.gamma.hat.1;
wal4[i]<-(gamma.hat^2 - gamma.0^2)^2/sigma2.gamma.hat.4;

## 11/09/2009
## Wald Statistic: testing H0:mu1^2=mu2^2
#wal5[i]<- (mu1.1^2-mu2.1^2)^2/wald5_var(n1,n2,mu1.1,mu2.1,alpha.1);
}
like<-data.frame(null=null,alt=alt,lrt=lrt);
like$lrt[like$lrt<0]<-0;

## Get the exact cutoff for the lrt and the rst and wald tests
lrt.cutoff.exact<-sort(lrt)[M*(1-nu)];
rst.cutoff.exact<- sort(rst)[M*(1-nu)];
# wal.cutoff.exact<- sort(wal)[M*(1-nu)];
wal1.cutoff.exact<-sort(wal1)[M*(1-nu)];
wal2.cutoff.exact<-sort(wal2)[M*(1-nu)];
wal3.cutoff.exact<-sort(wal3)[M*(1-nu)];
wal4.cutoff.exact<-sort(wal4)[M*(1-nu)];
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# wal5.cutoff.exact<-sort(wal5)[M*(1-nu)];
}
else if (cutoff.sim==0)
{

## Get power using exact cutoff values given
if (lrt.cutoff<0)
{
"LRT cutoff value must be positive. Cannot compute exact power for
LRT";
toggle.lrt<-1;
}
if (rst.cutoff<0)
{
"RST cutoff value must be positive. Cannot compute exact power for
RST";
toggle.rst<-1;
}
if (wal1.cutoff<0)
{
"Wald 1 cutoff value must be positive. Cannot compute exact power for
Wald 1";
toggle.wal1<-1;
}
if (wal2.cutoff<0)
{
"Wald 2 cutoff value must be positive. Cannot compute exact power for
Wald 2";
toggle.wal2<-1;
}
if (wal3.cutoff<0)
{
"Wald 3 cutoff value must be positive. Cannot compute exact power for
Wald 3";
toggle.wal3<-1;
}
if (wal4.cutoff<0)
{
"Wald 4 cutoff value must be positive. Cannot compute exact power for
Wald 4";
toggle.wal4<-1;
}
lrt.cutoff.exact<-lrt.cutoff;
rst.cutoff.exact<-rst.cutoff;
wal1.cutoff.exact<-wal1.cutoff;
wal2.cutoff.exact<-wal2.cutoff;
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wal3.cutoff.exact<-wal3.cutoff;
wal4.cutoff.exact<-wal4.cutoff;

}

## B simulations to calculate the power
for (i in 1:B)
{

mu2<-mu1*(1-delta);
y1 <- rnbinom(n=n1, mu=mu1,size = alpha);
## 11/26/2009 To allow for generating data from NB populations
with different dispersion parameters
if (alpha1==0)
{
y2 <- rnbinom(n=n2, mu=mu2,size = alpha);
}
else
{
y2 <- rnbinom(n=n2, mu=mu2,size = alpha1);
}
y1bar=mean(y1);y2bar=mean(y2);

## Get the MLEs under the restricted and unrestricted case
null<-nbsimMLEnull(init=alpha,n1=n1,n2=n2,y1,y2,maxit=maxit,
method=method);
alt<-nbsimMLEalt(init=alpha,n1=n2,n2=n2,y1,y2);
lrt<- -2* (null[1]-alt[1]);

## Likelihood Ratio Test

## Rao’s Score Test (Need the MLEs under the restricted case)
mu.hat.0<-null[2];alpha.hat.0<-null[3];
first<-firstorder(y1=y1,y2=y2,mu1=mu.hat.0,mu2=mu.hat.0,
alpha=alpha.hat.0);
hessian<-secondorder(y1=y1,y2=y2,mu1=mu.hat.0,mu2=mu.hat.0,
alpha=alpha.hat.0);
fisherinf.inv<-diag(3);
fisherinf.inv[1,1]<- -1/hessian[1,1];fisherinf.inv[2,2]<-
-1/hessian[2,2];
fisherinf.inv[3,3]<- -1/hessian[3,3];
rst<- t(first)%*%(fisherinf.inv)%*%first;

# Aban et. al Wald Statistic: (using \hat{gamma})
if (y2bar>0)
{
## Get the MLEs under the restricted and unrestricted case
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null<-nbsimMLEnull(init=alpha,n1=n1,n2=n2,y1,y2,maxit=maxit,
method=method);
alt<-nbsimMLEalt(init=alpha,n1=n2,n2=n2,y1,y2);

## Likelihood Ratio Test
lrt<- -2* (null[1]-alt[1]);

## Rao’s Score Test (Need the MLEs under the restricted case)
mu.hat.0<-null[2];alpha.hat.0<-null[3];
first<-firstorder(y1=y1,y2=y2,mu1=mu.hat.0,mu2=mu.hat.0,
alpha=alpha.hat.0);
hessian<-secondorder(y1=y1,y2=y2,mu1=mu.hat.0,mu2=mu.hat.0,
alpha=alpha.hat.0);
fisherinf.inv<-diag(3);
fisherinf.inv[1,1]<- -1/hessian[1,1];fisherinf.inv[2,2]<-
-1/hessian[2,2];
fisherinf.inv[3,3]<- -1/hessian[3,3];
rst<- t(first)%*%(fisherinf.inv)%*%first;

## Wald Tests: Need MLEs of the parameters in the unrestricted case
mu1.hat.1<-alt[2];mu2.hat.1<-alt[3];alpha.hat.1<-alt[4];
gamma.hat<-mu2.hat.1/mu1.hat.1;gamma.0<-1;
sigma2.gamma.hat.1<-(gamma.hat*(n1*(alpha.hat.1+gamma.hat*mu1.hat.1)
+n2*gamma.hat*(alpha.hat.1+mu1.hat.1)))/(n1*n2*alpha.hat.1*mu1.hat.1);
wal1<-(gamma.hat-gamma.0)^2/sigma2.gamma.hat.1;

# Wald Statistic: (using log transformation of gamma hat)
# g(gamma.hat) = log(gamma.hat); So g’(gamma.hat) = 1/gamma.hat
sigma2.gamma.hat.2<-(1/gamma.hat)^2*sigma2.gamma.hat.1;
wal2<-(log(gamma.hat)-log(gamma.0))^2/( (1/gamma.hat)^2
*sigma2.gamma.hat.1);

# Wald Statistic: using square root transformation;
# g(gamma.hat) = (gamma.hat)^(0.5); g’(gamma.hat) = 1/(2*sqrt(gamma.hat))
sigma2.gamma.hat.3<- (1/(2*sqrt(gamma.hat)))^2*sigma2.gamma.hat.1;
wal3<-(sqrt(gamma.hat)-sqrt(gamma.0))^2/sigma2.gamma.hat.3;

# Wald Statistic: using square transformation;
# g(gamma.hat) = gamma.hat^2 => g’(gamma.hat) = 2*gamma.hat;
sigma2.gamma.hat.4<- (2*gamma.hat)^2*sigma2.gamma.hat.1;
wal4<-(gamma.hat^2 - gamma.0^2)^2/sigma2.gamma.hat.4;

## Power for LRT, RST and Wald using chisq cutoff value
if (lrt > cutoff.chisq) {lrt.power.chisq<- lrt.power.chisq + 1;}
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if (rst > cutoff.chisq) {rst.power.chisq<-rst.power.chisq+1;}
if (wal1 > cutoff.chisq) {wal1.power.chisq<-wal1.power.chisq+1;}
if (wal2 > cutoff.chisq) {wal2.power.chisq<-wal2.power.chisq+1;}
if (wal3 > cutoff.chisq) {wal3.power.chisq<-wal3.power.chisq+1;}
if (wal4 > cutoff.chisq) {wal4.power.chisq<-wal4.power.chisq+1;}
#if (wal5 > cutoff.chisq) {wal5.power.chisq<-wal5.power.chisq+1;}

## Power for LRT, RST and Wald tests using exact cutoff values
## Only if the cutoff values are valid
if (toggle.lrt==0)
{
if (lrt > lrt.cutoff.exact) { lrt.power.exact<- lrt.power.exact + 1;}
}
if (toggle.rst==0)
{
if (rst > rst.cutoff.exact) {rst.power.exact<-rst.power.exact+1;}
}
if (toggle.wal1==0)
{
if (wal1 > wal1.cutoff.exact) {wal1.power.exact<-wal1.power.exact+1;}
}
if (toggle.wal2==0)
{
if (wal2 > wal2.cutoff.exact) {wal2.power.exact<-wal2.power.exact+1;}
}
if (toggle.wal3==0)
{
if (wal3 > wal3.cutoff.exact) {wal3.power.exact<-wal3.power.exact+1;}
}
if (toggle.wal4==0)
{
if (wal4 > wal4.cutoff.exact) {wal4.power.exact<-wal4.power.exact+1;}
}
}
else if (y2bar==0) ## Assume the treatment is effective
{
lrt.power.chisq<-lrt.power.chisq+1;
rst.power.chisq<-rst.power.chisq+1;
wal1.power.chisq<-wal1.power.chisq+1;
wal2.power.chisq<-wal2.power.chisq+1;
wal3.power.chisq<-wal3.power.chisq+1;
wal4.power.chisq<-wal4.power.chisq+1;

if (toggle.lrt==0) {lrt.power.exact<-lrt.power.exact+1;}
if (toggle.rst==0) {rst.power.exact<-rst.power.exact+1;}
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if (toggle.wal1==0) {wal1.power.exact<-wal1.power.exact+1;}
if (toggle.wal2==0) {wal2.power.exact<-wal2.power.exact+1;}
if (toggle.wal3==0) {wal3.power.exact<-wal3.power.exact+1;}
if (toggle.wal4==0) {wal4.power.exact<-wal4.power.exact+1;}
}

}

lrt.power.chisq<-round(lrt.power.chisq/B,4);
lrt.power.exact<-round(lrt.power.exact/B,4);
## go one standard error below and see if it contains 0.80 or 0.90
lrt.chisq.lb<-lrt.power.chisq-1*sqrt(lrt.power.chisq*(1-lrt.power.chisq)/B);
lrt.exact.lb<-lrt.power.exact-1*sqrt(lrt.power.exact*(1-lrt.power.exact)/B);

rst.power.chisq<-round(rst.power.chisq/B,4);
rst.power.exact<-round(rst.power.exact/B,4);

rst.chisq.lb<-rst.power.chisq-1*sqrt(rst.power.chisq*(1-rst.power.chisq)/B);
rst.exact.lb<-rst.power.exact-1*sqrt(rst.power.exact*(1-rst.power.exact)/B);

## Chisq power for the other Wald Tests
wal1.power.chisq<-round(wal1.power.chisq/B,4);
wal2.power.chisq<-round(wal2.power.chisq/B,4);
wal3.power.chisq<-round(wal3.power.chisq/B,4);
wal4.power.chisq<-round(wal4.power.chisq/B,4);

## Exact power for the other Wald Tests
wal1.power.exact<-round(wal1.power.exact/B,4);
wal2.power.exact<-round(wal2.power.exact/B,4);
wal3.power.exact<-round(wal3.power.exact/B,4);
wal4.power.exact<-round(wal4.power.exact/B,4);

wal4.chisq.lb<-wal4.power.chisq-1*sqrt(wal4.power.chisq
*(1-wal4.power.chisq)/B);
wal4.exact.lb<-wal4.power.exact-1*sqrt(wal4.power.exact
*(1-wal4.power.exact)/B);

cat("LRT : Chisq: ", lrt.power.chisq, "Exact: ",lrt.power.exact,
"Exact Cutoff: ",round(lrt.cutoff.exact,4),"\n");
cat("RST : Chisq: ", rst.power.chisq, "Exact: ",rst.power.exact,
"Exact Cutoff: ",round(rst.cutoff.exact,4),"\n");
cat("WALD 1 : Chisq: ", wal1.power.chisq,"Exact: ",wal1.power.exact,
"Exact Cutoff: ", round(wal1.cutoff.exact,4), "\n");
cat("WALD 2 : Chisq: ", wal2.power.chisq,"Exact: ",wal2.power.exact,
"Exact Cutoff: ", round(wal2.cutoff.exact,4), "\n");
cat("WALD 3 : Chisq: ", wal3.power.chisq,"Exact: ",wal3.power.exact,
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"Exact Cutoff: ", round(wal3.cutoff.exact,4), "\n");
cat("WALD 4 : Chisq: ", wal4.power.chisq,"Exact: ",wal4.power.exact,
"Exact Cutoff: ", round(wal4.cutoff.exact,4), "\n");
power<-c(lrt.chisq.lb,lrt.exact.lb,lrt.cutoff.exact,rst.chisq.lb,
rst.exact.lb,rst.cutoff.exact, wal4.chisq.lb,wal4.exact.lb,
wal4.cutoff.exact);
return(power);

}
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