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ABSTRACT 

 

The metabolic cost of leg-swing comprises (an estimated) 10% to 33% of the total cost of 

human walking and running.  Experiments studying the swing phase of walking gait have 

been performed by numerous biomechanics researchers.  One particular investigation by 

Doke, Kuo, et al. studied the cost of isolated leg-swing.  Human subjects were asked to 

swing one leg forward and backward (in the sagittal plane) at a specified swinging amplitude 

and frequency.  Metabolic rate was inferred by measuring maximal oxygen consumption 

during the leg-swinging task.  

 

The goal of this thesis is to obtain a plausible functional form for the muscle metabolic cost 

that fits the Doke et al. experiments.  Toward this end, we create a simple one-degree of 

freedom computer model of a leg, actuated by two uniarticular muscles.  These muscles are 

modeled as having one of several functional forms for the cost, and these cost models relate 

the energetic expense of leg-swing to muscle torque, muscle shortening rate, etc. 

 

Given one of the hypothesized forms of cost, optimization tools (in MATLAB) are used to 

find leg-swing strategies which minimize the objective function:  total cost of leg-swing.  The 

theoretical findings (from converged optimization results) are then compared with empirical 

data (from Doke et al.) to assess the validity of each cost model.   
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The optimization results show that three substantially different cost functions seem to fit the 

experiments by Doke et al., at least approximately.  This suggests that the experimental data 

is not rich enough to distinguish these functional forms, and that we might need more 

extensive experimental data to obtain a reliable model of the metabolic cost. 
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CHAPTER 1: INTRODUCTION. 

 

1.1 Animal locomotion and motives for energy optimality. 

An animal’s ability to move from one place to another is essential to survival.  In many cases, 

there is an evolutionary pressure to move optimally – to minimize time, distance, energy, etc.  

(Srinivasan, 2006).  For example, the cheetah must swiftly hunt and catch prey for 

sustenance, while the gazelle must tactically evade hungry predators.  In preparation for the 

cold winter months, squirrels go in search of scarce seeds and nuts, while geese migrate 

toward warmer climates in remote locations. 

 

 

Figure 1:  Cheetah hunting gazelle, squirrel foraging for food,  
and geese migrating toward warmer climates. 

 

It is commonly believed that animals move and locomote in ways that tend to minimize 

metabolic energy consumption.  For humans and other legged animals, this inclination to 
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walk or run a certain distance using the least amount of metabolic energy might be a vital 

strategy for survival.  An early human hunter-gatherer, for example, might journey long 

distances in search of nourishment.  Given one stomach full of food (i.e. fuel), the most 

economical use of available food energy is desirable because the hunter-gatherer might have 

to travel for an indefinite amount of time (or distance) to reach the next available food 

source. 

 

Studying optimal strategies for human walking and running helps researchers and 

bioengineers gain a better understanding of locomotion, and gives instructive information 

for practical applications like:  building energy-efficient robots, developing prosthetic limbs, 

correcting walking gait disorders, and predicting how one might move in a novel situation 

(e.g. astronauts hopping on the moon). 

 

1.2 Literature review and previous research works. 

The metabolic cost of walking and running has been considered by various researchers in 

humans and other running animals.  One component of the metabolic cost of walking and 

running relates to swinging the leg forward relative to the body.  Estimates for the cost of 

leg-swing from past research range from 10% to 33% of the net metabolic cost of walking.  

Here, the term “net” refers to the metabolic rate of energy consumption which exceeds the 

baseline “resting” metabolic rate (typically measured while the subject stands at rest, with no 

leg motion).   
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One view suggests that the cost of moving the legs during the swing phase of walking gait is 

small relative to the cost of supporting body weight.  Historically, the motion of swinging 

the legs relative to the body during walking or running has been characterized by pendulum 

dynamics (Mochon & McMahon, 1980).  For a simple gravity pendulum, minimal effort is 

required for the pendulum to swing at its natural frequency.  Along the same logic, research 

evidence has suggested that the swing phase of the human walking gait is primarily a passive 

motion that requires minimal metabolic energy input.  Experiments in which various loads 

are applied to the human torso (close to the body center of mass) have shown that the 

stance phase accounts for the majority of energy expenditure during walking, whereas the 

cost of leg-swing comprises (approximately) only 10-15% of net locomotor costs (Griffin, 

Roberts, & Kram, 2003).  Other investigations have demonstrated that animals of 

comparable size and weight exhibit similar walking costs, despite having different limb 

masses (Taylor, Shkolnik, Dmi'el, Baharav, & Borut, 1974).  In other words, animals with 

small limbs and animals with massive limbs (but equal in size, overall) consume roughly the 

same amount of metabolic energy during walking, which might suggest that the cost of leg-

swing is relatively inexpensive. 

 

A different view on human locomotion suggests that the energetic cost of leg-swing is fairly 

substantial.  That is, some research suggests that leg-swing during human locomotion 

requires active control by which muscles exert force and accordingly expend metabolic 

energy.  Evidence has shown that metabolic energy consumption increases significantly 

when loads are applied to the legs, rather than the body center of mass (Soule & Gouldman, 

1969).  Experiments where loads were attached to the legs of humans (Myers & Stuedel, 

1985) and dogs (Steudel, 1990) brought about higher locomotor costs than when the same 
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loads were attached to the torso (close to the body center of mass).  Direct in vivo 

measurements of muscle blood flow in guinea fowl revealed that leg-swing energy 

expenditure comprises 26% of the net costs of walking (Marsh, Ellerby, Carr, Henry, & 

Buchanan, 2004).  Investigation of isolated leg-swing demonstrated that swinging the human 

leg faster than its natural frequency required a considerable increase in muscle force and 

metabolic energy input (Doke, Donelan, & Kuo, 2005).  Estimates from the isolated leg-

swing experiment suggest that the swing phase of human gait accounts for nearly 33% of net 

metabolic energy requirements for walking.  Further studies indicate that the net metabolic 

rate during leg-swing might increase in proportion to peak muscle force or torque, and in 

inverse proportion to force duration (Doke & Kuo, 2007).   

 

Since the metabolic cost of walking increases sharply with higher step frequencies, this might 

suggest that the cost of leg-swing is in fact a critical component of human locomotion.  

Altogether, estimates of leg-swing costs range widely from 10% to 33% of the net cost of 

walking.  Such uncertainty exists partly because researchers are presently unable to directly 

measure in vivo the energy expenditure of individual muscles in human locomotion 

investigations.  Due to these limitations, a computer modeling approach in combination with 

numerical optimization might be a useful technique for examining the metabolic cost of 

muscle function during locomotion. 

 

1.3 Purpose of studying human leg-swing. 

The aim of the present research study is to investigate the costs associated with driving the 

legs back-and-forth during human walking and running, and to develop reasonably accurate 
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models of metabolic energy expenditure.  In particular, isolated human leg-swing will be the 

focus of the present study.  Physical parameters and task constraints for the leg-swing are 

adopted from the experiments by Doke et al. (2005 & 2007).  Empirical data obtained from 

these experiments is used to verify the feasibility of computer model results. 

 

 

Figure 2:  Experimental apparatus for isolated leg-swing experiment.   
Re-drawn from Doke, Donelan, & Kuo (2005). 

 

Doke et al. (2005) built an apparatus to measure the mechanical and metabolic energy costs 

of isolated leg-swing for twelve healthy, adult, human subjects.  As shown in Figure 2, the 

participant was securely fastened to the rigid metal support frame, mounted above a ground 

force plate.  The subject rested both arms on the metal frame, stood one leg on a raised 

Optical
encoder

Leg
splint

Support
frame

Force
plate

θ
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platform, and was able to swing the other leg freely.  The swinging leg was constrained to be 

straight with the use of a knee splint.  Using visual and audible cues, subjects were asked to 

swing their legs at an amplitude of 45° peak-to-peak, and at various swinging frequencies 

ranging from 0.5 to 1.1 Hz.   Leg angle of rotation about the hip was measured by an optical 

encoder.  Torque actuation due to the hip muscles was inferred by measuring the ground 

reaction forces of the force platform.   Finally, metabolic energy expenditure was estimated 

by measuring the amount of oxygen consumed (VO2) during leg-swing. 

 

Doke et al. (2005) proposed that the rate of energy expenditure during isolated leg-swing 

increased approximately with the fourth power of frequency.  The results of the study 

suggested that, due to the low muscle efficiency of exerting high forces for short periods of 

time, the cost of swinging the leg faster than its natural frequency increased dramatically.  It 

was proposed that the net metabolic rate during leg-swing might be proportional to muscle 

force, and inversely proportionally to the duration of the applied force – called the 

“force/time hypothesis” (Doke, Donelan, & Kuo, 2005).  A possible weakness of the 

force/time hypothesis, however, is that it is only applicable to swinging frequencies above 

the natural frequency of the leg.  Perhaps a better hypothesis would involve a mathematical 

relationship that can be applied to all leg-swing frequencies.  Hence, one purpose of this 

study is to examine various cost models different from the force/time hypothesis, and to see 

whether or not they are consistent with experimental data. 
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In short, some central questions that are addressed in the present research study are: 

 

1. What are some plausible cost models of metabolic energy expenditure?  How can 

these cost models be expressed in a mathematical, functional form? 

2. Given a set of constraints (leg-swing amplitude, frequency, etc.), what is the optimal 

leg-swing strategy (muscle excitation and muscle shortening rate as functions of 

time) for each of the proposed cost functions? 

3. Lastly, does the optimal strategy from the computer model match the leg-swing 

strategy that human subjects choose to do naturally? 

 

On the whole, the leg-swing problem was chosen for this research investigation because the 

mechanics of the isolated leg-swing task are fairly simple.  If a reasonably accurate model of 

metabolic energy expenditure is developed for the simple leg-swing problem, then there 

might be an opportunity to extend this cost model to other (perhaps more complex) motor 

tasks like walking, bicycling, pitching a softball, etc. 

 

1.4 Motivation for computer modeling approach. 

There are a number of advantages in using a computer modeling approach to evaluate cost 

functions and optimal leg-swing strategies.  Computer modeling allows the researcher to run 

a variety of simulations by merely changing a few variables or settings in the programming.  

In this investigation, the swinging movement of the human leg is approximated by 

pendulum motion with torque actuators representing the hip muscles.  The physical 

structure of the simulated human leg can be modified to explore different body weights, leg 
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lengths, muscle and tendon properties, etc.  Modifying various task constraints such as leg-

swing amplitude and frequency is also possible.   

 

With a computer modeling approach, numerical optimization may be used to determine 

optimal strategies for various leg-swing experiments.  In Chapters 5 & 6, computer 

optimization results are compared with existing empirical data obtained by Doke et al. (2005 

& 2007).  Here, indirect evidence of energetic optimality is shown by matching the behavior 

predicted by the computer optimization to the behavior observed experimentally.  A more 

direct approach to proving energetic optimality would involve purely physical experiments 

by which the best possible leg-swing strategy is determined by comparing all possible leg-

swing strategies of which humans are capable – but to do this would require a sizeable 

number of experiments and might be time-inefficient.  In a physical experiment using real 

human subjects, swinging the leg in a new or unusual manner might be energetically 

expensive just because the swinging pattern is unfamiliar (Srinivasan, 2006).  For that reason, 

computational analysis might be a more objective tool for investigating optimal leg-swing 

strategies.   

 

1.5 Thesis outline. 

A brief outline of the rest of the thesis follows:  First, Chapter 2 introduces muscle 

contraction dynamics, and describes the force-length and force-velocity properties of 

muscle.  Chapter 3 explains how pendulum dynamics are used to model the mechanics of 

leg-swing, and how constraints are defined to set up the nonlinear optimization problem.  

Chapter 4 proposes different ways to model the energetics of leg-swing, and gives details 
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about each of the different cost models under investigation.  Chapters 5 & 6 examine 

theoretical results (from the computer model) against existing empirical data (Doke et al., 

2005 & 2007).  Lastly, Chapter 7 presents a summary of research findings and offers some 

concluding remarks. 
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CHAPTER 2: MODELING MUSCLE BEHAVIOR. 

 

2.1 Contraction dynamics. 

Performing a motor task is a complex process that involves interactions between different 

physiological systems within the body.  Motor function begins with the central nervous 

system of the brain and spinal cord.  Neurons are fired and excite the muscles to generate a 

force, which is then transmitted from muscle to tendon, and from tendon to the skeletal 

structure.  This process is what enables an animal to move and to impart mechanical energy 

to the surrounding environment.  Generally speaking, a broad research goal in the field of 

biomechanics is to develop dynamic equations that express how the body’s structural, 

muscular, and central nervous systems are related and how they interact. 

 

Examining the mechanics and energetics of locomotion requires modeling of muscle 

behavior – how muscles generate force and how metabolic energy is expended when 

exerting such a force. The diagrams shown in Figure 3 and Figure 4 illustrate different levels 

of the muscle structural hierarchy.  The basic units of muscle tissue are called sarcomeres – a 

collection of which form muscle fiber.  Similarly, a collection of muscle fibers form a motor 

unit, and a collection of motor units form a whole muscle.  The properties of the whole 

muscle are assumed to be homogenous, scaled-up versions of the muscle motor units, fibers, 
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and sarcomeres.  That is, the properties of muscle tissue are assumed to be the same for any 

level of the muscle structural hierarchy. 

 

 

Figure 3:  Repeating sarcomere units form a muscle fiber.  
Adapted from Zajac (1989). 

 

 

Figure 4:  A collection of muscle fiber forms a motor unit.   
Repeating motor units form a whole muscle. 

Adapted from Zajac (1989). 

 

So, what properties do muscles possess?  Muscle contraction dynamics are characterized by 

force-length and force-velocity properties. The force-length curve illustrated in Figure 5 

F

sarcomeres sarcomeres sarcomeres sarcomeres

F

motor unit

motor unit

motor unit

F1

un(t)

u2(t)

u1(t)

F2 . . .

. . .

Fn

..
.



12 
 

shows that the muscle is capable of actively producing a maximum force oF  at an optimal 

muscle length ox .  The active muscle force falls to zero when the muscle is stretched to 1.5 

times its optimal length, or is shortened to 0.5 times its optimal length.  Passively, the muscle 

generates tension when stretched beyond the optimal length (like stretching a spring beyond 

its equilibrium length). 

 

The force-velocity curve illustrated in Figure 6 shows that the muscle produces the 

maximum isometric force oF  when muscle shortening rate is zero.  Muscle force decreases 

as the muscle shortening rate increases, and ultimately, force drops to zero at a maximum 

shortening velocity maxv .  A lengthening muscle, on the other hand, exerts a force that is 

higher than the maximum isometric force oF .  At high muscle lengthening rates, the muscle 

is able to generate a force close to 1.8 times that of oF . 

 

Note that the movement characterized by a shortening muscle is called concentric 

contraction, whereas the movement of a lengthening muscle is called eccentric 

contraction.  Static effort where the muscle produces a pulling force but does not change in 

length is called isometric contraction. 
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Figure 5:  Force-length property of muscle.   
Re-drawn from Zajac (1989). 

 

 

Figure 6:  Force-velocity property of muscle.   
Re-drawn from Zajac (1989). 
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2.2 Mechanical power and metabolic cost rate. 

Power is the rate at which work is performed.  For a working muscle, mechanical power (or 

rate of mechanical work) is calculated as follows: 

 

 Mechanical power = F x  (1) 

 

where F  is muscle force and x is (linear) muscle shortening rate.  Note that muscles can 

only generate a pulling (not pushing) force.  For an analogous system in which muscle 

produces torque rather than force (assuming a constant moment arm for the muscle), the 

equation for mechanical power becomes: 

 

 Mechanical power = T  (2) 

 

where T  is muscle torque and   is (angular) muscle shortening rate.  Rate of mechanical 

work is considered positive when the muscle is shortening, and negative when the muscle is 

lengthening.  Based on the definitions of mechanical power expressed in Equation (1) and 

Equation (2), a muscle that exerts an isometric force (static effort) does zero mechanical 

work.  It is clear from experience, however, that metabolic energy is required to exert such a 

force and to keep the muscle at a constant length.  In other words, metabolic energy is 

expended when muscles are engaged and producing force or torque, regardless if the muscle 

experiences a change in length. 
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Since one major goal of this research is to develop various models that accurately predict leg-

swing costs, understanding metabolic power might be a key part of this investigation. 

 Metabolism refers to the chemical reactions that take place in the body to convert food 

energy to useful mechanical work.  The efficiency of converting metabolic energy to 

mechanical energy, however, is not constant (Minetti & Alexander, 1997).  As previously 

explained in Section 2.1, the amount of force (or torque) that muscles produce is dependent 

on both muscle length and shortening rate.  Accordingly, metabolic cost rate may be a 

function of muscle force (and its derivatives), and muscle length (and its derivatives).  One 

plausible generalized expression for rate of metabolic energy expenditure could be: 

 

 Cost rate =  , , , , , , ,f F F F x x x      (3) 

 

where F  is muscle force and x  is muscle length.  For an analogous system in which muscle 

produces torque rather than force, the corresponding generalized expression for rate of 

metabolic energy expenditure becomes: 

 

 Cost rate =  , , , , , , ,f T T T         (4) 

 

where T  is muscle torque and   is muscle arch length.  Here, metabolic cost rate may be a 

function of muscle torque (and its derivatives), and muscle arch length (and its derivatives). 
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In this research investigation, a number of different models of metabolic cost will be 

evaluated.  These cost functions will be introduced in Chapter 4, and be further discussed in 

subsequent chapters. 
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CHAPTER 3: MODELING MECHANICS OF LEG-SWING. 

 

By modeling the swinging leg as a pendulum, the mechanics of isolated leg-swing can be 

roughly simulated.  This chapter describes how pendulum dynamics are used to model the 

swinging human leg, and how constraints are defined to set up the nonlinear optimization 

problem. 

 

3.1 Pendulum dynamics. 

Assuming that the knee and the ankle are locked, the leg is modeled as a single planar rigid 

body (see Figure 7) with mass m , moment of inertia I  about an axis through the center of 

mass, and the center of mass located a distance r  from the hip pivot.  The upper body is 

ignored as being infinitely massive, so the motion of the leg does not affect the upper body – 

modeled as the rigid ceiling in Figure 7.  The leg is assumed to be actuated by two 

uniarticular muscles (the main flexor and extensor muscles at the hip).  Total torque totalT  

applied to the leg is the summation of torques 1T  and 2T  generated by the agonist and 

antagonist hip muscles.  Tendons are represented as zero-length (torsional) springs added in 

series with the muscles. 
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Figure 7:  Leg-swing schematic with muscles and tendons. 

 

The following differential equation is used to model the pendulum-like dynamics of the 

swinging leg: 

 

  2
1 2sinI mr mgr T T       (5) 

 

where   is the angular displacement of the leg (measured from vertical), 1T  and 2T  are the 

torques applied from the agonist and antagonist hip muscles, m  is the total leg mass, I  is 

the centroidal mass moment of inertia, and r  is the distance between the hip pivot and leg 

center of mass.  Height and weight measurements of the twelve healthy, adult, human 

subjects (Doke, Donelan, & Kuo, 2005) were used as a guideline for defining the physical 
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parameters of the swinging leg in the computer model.  The assumed physical parameters are 

listed in Table 1. 

 

Table 1:  Parameter values for isolated leg-swing simulation model. 

Variable Physical description Parameter value 
M Total body mass. 70 kg 
m Leg mass (16% of total body mass). 11.2 kg 

L  Total leg length. 0.90 m 
r  Distance from hip to leg center of mass. 0.45 m 

I  Centroidal mass moment of inertia. 1.0 kg-m2 

 

 

The mass of the leg m  was taken as 16% of the subject’s total body mass M  (Doke, 

Donelan, & Kuo, 2005) and the distance r  from the hip joint to the leg center of mass was 

estimated to be half the total length of the leg L .  Assuming the leg to be a cylinder of 

length L  and mass m , an estimate for the centroidal mass moment of inertia could also be 

calculated: 

 

  0.16 0.16 70 11.2m M kg kg    (6) 

  0.5 0.5 0.90 0.45r L meters meters    (7) 

 
  22

211.2 0.90
1

12 12

kg metersmL
I kg meter     (8) 

 

The pendulum-like motion of isolated leg-swing may be modeled with or without the 

presence of tendons.  For the case where tendons are present, each of the hip muscles are 

connected in series with tendons, as illustrated in Figure 7.   
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Tendons are bands of connective tissue that connect muscle to bone and function much like 

springs – they have elastic properties and are capable to storing and releasing elastic energy. 

When tendon "springs" are added in series with muscle "motors", muscle shortening rate 

can be computed as follows: 

 

 

1
1

1

2
2

2

T

k

T

k





  

  

 

 
 (9) 

 

where 1
  and 2

  are the angular shortening velocities of the two muscles, 1k  and 2k  are 

the torsional stiffnesses of the two tendons (again, assuming constant moment arms), and   

is the angular velocity of the leg. 

 

In order to determine the stiffness of tendon, empirical data was used as an estimate for 

average linear spring stiffness.  Assuming a moment arm of 5 cm (0.05 m) for the hip flexors 

and extensors, torsional spring stiffness might be estimated by the following: 

 

  s s mF k x k r     (10) 

 2
m s m effT F r k r k       (11) 

 2
eff s mk k r  (12) 
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where sk  is the linear spring stiffness of tendon (in N/m), mr  is the moment arm (assumed 

to be 5 cm), and effk  is the effective torsional spring stiffness.  Additionally, F  is muscle 

force, T  is muscle torsion, x  is linear muscle displacement, and   is angular muscle 

displacement. 

 

The elastic properties of tendons play an important role in muscle function, but the level of 

tendon stiffness varies for different parts of the human body.  The tendons connected to hip 

flexor and extensor muscles in the human body are relatively short and, as a result, offer high 

stiffness (Minetti & Alexander, 1997).  In order to model infinitely-high spring stiffness, 

tendons are excluded from the hip muscle complex as shown in Figure 8.  Using this model, 

the angular displacement (position) of the leg is directly related to the change in length of the 

hip muscles.   
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Figure 8:  Leg-swing schematic with muscles only (no tendons). 

 

Consequently, the shortening velocity of each muscle is directly related to the velocity of the 

swinging leg: 

 

 1

2





 

 

 
 

 (13) 

 

where 1
  and 2

  are the shortening velocities of the two muscles, and   is the angular 

velocity of the leg.  Both cases – with and without tendon in series with muscle – are 

examined in this research study, but excluding tendons from the muscle complex (simulating 

infinitely-high spring stiffness) yields a leg-swing model that better fits experimental data (see 

θ
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Appendix A).  For this reason, the proposed cost functions are evaluated with the 

assumption that tendon stiffness is very high. 

 

3.2 Constrained nonlinear optimization. 

The two muscles can move and swing the leg in essentially an infinite number of ways.  

Given a specific amplitude and frequency, it is assumed that a person swings their leg in a 

manner that minimizes something (e.g. mechanical work, metabolic cost, etc.).  So 

correspondingly, the optimal leg-swing motion for the model is always compared with 

experiment.   

 

Dynamic optimization methods are used to determine the control parameters  

(        1 1 2 2, , , , ,T t T t T t T t   ) that simulate optimal leg-swing behavior (please see 

Srinivasan (2006 & 2011) for a detailed description of the numerical methods used).  This is 

an “infinite-dimensional” optimization (optimal control problem), because infinitely-many 

numbers need to be specified to define a general function for torques  1T t  and  2T t  such 

that some objective function is minimized.  The computer, however, is unable to solve an 

infinite-dimensional optimization problem.  Hence, the model must be made into a finite-

dimensional problem by constraining the control variables to be finite, well-defined 

functions (e.g. piece-wise function, Fourier series, Taylor series expansion, polynomial 

expansion, etc.).  In this case  1T t  and  2T t  are specified as piece-wise linear functions of 

time.  The corresponding torques  1T t  and  2T t , and torque rates  1T t  and  2T t  are 

then smooth, continuous functions of time.   
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Linear and nonlinear constraints are established to help bound the solution space. For 

instance, the leg-swing simulation is constrained to be cyclic such that starting and ending 

conditions – leg position, leg velocity, muscle torque, and muscle torque rates – are the 

same.  

 

 

   
   

   
   
   

   
   
   

1 1

1 1

1 1

2 2

2 2

2 2

start end

start end

start end

start end

start end

start end

start end

start end

t t

t t

T t T t

T t T t

T t T t

T t T t

T t T t

T t T t

 

 

















 

 

 

 

 

 (14) 

 

In addition, symmetry about mid-cycle is imposed such that the forward swing motion is the 

reverse of the backward swing motion.  The position and velocity of the leg at mid-cycle is 

constrained to be equal and opposite to the position and velocity of the leg at the start (and 

end) of the leg-swing cycle. 

 

 
     
     
start end mid cycle

start end mid cycle

t t t

t t t

  

  

  

    
 (15) 
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Further constraints are added to ensure that muscle torque T  does not exceed a maximum 

value of 100 N-m, and to limit muscle shortening (or stretching) rate   to a maximum 

velocity of 8 rad/sec (Minetti & Alexander, 1997). 

 

 1 2 max 100T and T T N m    (16) 

 1 2 max 8 secand rad       (17) 

 

Note that the agonist and antagonist hip muscles tend to move the leg in opposite directions 

(see Figure 8).  As previously noted, muscles can only generate a pulling (not pushing) force 

or torque.  Therefore, the torques exerted by the opposing hip muscles are constrained such 

that 1 0T   and 2 0T  . 

 

The last missing piece of the leg-swing optimization puzzle is the objective function.  What 

scalar value should be minimized (or maximized) in the leg-swing optimization problem?  A 

reasonable objective pertaining to human locomotion (as discussed in Section 1.1) is to 

minimize energy expenditure.  Using this hypothesis, the goal of the optimization search 

might be to determine the leg-swing strategy which minimizes total cost.  The objective 

value J  (total cost of leg-swing) would then be the time-integral of cost rate:  

 

 max

1

swing

t
f

  (18) 

  
max

0

, , , , , , ,
t

J f T T T dt           (19) 
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where swingf  is the swinging frequency of the leg, and maxt is the time period of one full leg-

swing cycle.  Equation (19) suggests that the total cost of leg-swing might be a function of 

muscle torque (and its derivatives) and muscle arch length (and its derivatives).   

 

Figure 9 shows a flowchart describing the structure of the numerical optimization procedure. 

Appendix B provides a listing of the typical MATLAB code used to solve the high-

dimensional leg-swing optimization problem described here.  Note that each different cost 

function required some modification of this MATLAB code, as also the addition of tendons 

(described in Appendix A). 

 

 

 

Figure 9:  Flowchart describing the structure of the numerical optimization 
procedure.  The functions to be optimized (i.e. T1(t) and T2(t)) are discretized to 
make the leg-swing problem finite-dimensional, and constraints are added to narrow 
the solution space.  Nonlinear programming software (such as “fmincon” in 
MATLAB’s in optimization toolbox) is used to determine the optimal variable values 
such that the objective function (in this case, cost of leg-swing) is minimized. 

 

The following chapter presents various simple cost functions  , , , , , , ,f T T T         for 

use in Equation (19).    
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CHAPTER 4: POSSIBLE COST MODELS. 

 

In this chapter, a variety of objective functions J  are considered.  The objective of the leg-

swing optimization is to minimize total cost – which might be related to metabolic energy, 

mechanical work, or some other function of muscle torque, muscle length, and their 

derivatives.  General expressions for the cost rate functions considered in this study are 

listed below: 

 

MechanicalWorkf
 1 1 2 2T T

 
       
    

Minetti Alexanderf   
1 2

1 max 2 max
max max

o oT T 
   

      
   

      
 

Torque Ratesf
 

   1 2 1 2 3 1 2Minetti Alexandera f a T T a T T            

Torquef
  1 2T T

    

Weighted T squaredf     2 2

1 21 T T     

 

In each case, the objective function J  is the time-integral of cost rate function f  over the 

duration of one full leg-swing cycle (see Equation (19), Section 3.2).  Hence, the cost 

function Mechanical WorkJ  quantifies the total positive mechanical work exerted by the hip 

actuator muscles, whereas Minetti AlexanderJ   estimates metabolic energy consumption.  Torque RatesJ  
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is a cost function which (in addition to Minetti Alexanderf  ) incorporates the rate at which muscle 

torque (or force) is applied.  TorqueJ  is related to the magnitude of torque raised to some 

power of  .  Lastly, Weighted T squaredJ   presents a cost model that distinguishes the muscle 

efficiencies of the hip flexors and extensors.  Not all of these cost expressions are 

biophysically motivated.  Nevertheless, it seems potentially useful to understand how well 

such (perhaps unphysical) cost models fit the cost data and what optimal strategies arise 

when they are optimized.  

 

4.1 Positive Mechanical Work cost model. 

The mechanical work cost model measures total positive work performed by the hip 

actuator muscles.  Here, mechanical work refers to the energy required for a muscle to exert 

a torque T  through an angular displacement  .  The rate of positive mechanical work is of 

the form: 

 

 1 1 2 2MechanicalWorkf T T
 

       
    (20) 

 

where 1T and 2T  are torques generated by the agonist and antagonist hip muscles, and 1
  

and 2
  are muscle angular shortening rates.  If P T   is the rate of mechanical work, then 

the positive part of work rate  P 
 is defined such that:   P P

   when 0P  , and 

  0P
   when 0P  .  The negative part of work rate  P 

 is defined as:     P P
   .  

Recall that muscle can only exert a pulling (not pushing) force.  Thus, positive work is 
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performed when muscle is shortening ( 0 ) and exerting a pulling torque (i.e. torque and 

angular displacement are in the same direction). 

Note that the slope of  P 
 changes abruptly at 0P   (i.e. the first derivative is 

discontinuous).  In order to smooth out this kink and thereby help the smooth optimization 

methods converge to a solution, the functional form of positive mechanical work rate is 

modified as follows: 

 

  
2 2

2

P P
P

  
  (21) 

 

where constant   is a small value (relative to the magnitude of P ), and 2 2P P   .  

Equation (21) is consistent with the definition of  P 
 described previously:   P P

   

when 0P  , and   0P
   when 0P   

 

The total positive mechanical work of a full leg-swing cycle is then the time-integral of 

Equation (20): 

 
max

1 1 2 20

t

MechanicalWorkJ T T dt
 

            (22) 

 

Note that, for this cost model, the energetic expense of static effort ( 0i  ) is zero. 
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4.2 Minetti-Alexander cost model. 

The Minetti-Alexander cost model is one of many models of muscle energy expenditure.  

The metabolic rate cost function developed by Minetti & Alexander (1997) is of the form: 

 

 1 2
1 max 2 max

max max
Minetti Alexander o of T T 

   
      

   

      
 (23) 

 

where Minetti Alexanderf   is rate of metabolic energy expenditure, i  is the fraction of activated 

muscle fibers needed to exert muscle torque iT  ( 1i   implying full activation), oT  is 

maximum isometric muscle torque, and i
  is the angular shortening velocity of muscle 

(Minetti & Alexander, 1997).  Here, i
  is taken to be positive when the muscle is shortening 

and performing positive work, whereas i
  is negative when the muscle is stretching and 

performing negative work.  The maximum shortening rate of the hip muscles, max
 , is 

assumed to be 8 rad/sec for both flexors and extensors (Minetti & Alexander, 1997).  Lastly, 

  is a function of relative muscle shortening rate max/i   .  Adapted from experimental 

data obtained from Ma & Zahalak (1991), Figure 10 shows function   plotted against the 

relative angular velocity ratio max/i   .   

 

The metabolic rate function   shown in Figure 10 illustrates that the metabolic cost of 

static effort (isometric contraction, muscle shortening rate 0i  ) has been taken into 

account.  That is, an isometric muscle force or torque requires some amount of metabolic 

energy expenditure.   
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If muscle shortening rate i
  is known, the muscle torque fullT exerted by a fully-activated 

muscle ( 1i  ) can be predicted by the force-velocity property of muscle.  Figure 11 shows 

the ratio /full oT T  plotted against relative angular velocity max/i   .  Note that Figure 11 

resembles (and is essentially the same as) the force-velocity curve shown in Figure 6 (see 

Section 2.1), except that muscle force F  is replaced by muscle torque T . 

 

The expression for metabolic cost rate Minetti Alexanderf   presented in Equation (23) may be 

rearranged in such a manner that eliminates the muscle activation term  :   

 

 1 2
1 2

full full

T T
and

T T
    (24) 

 1 2
1 max 2 max

max max

o o
Minetti Alexander

full full

T T
f T T

T T

   
      

   

      
 (25) 

 

Note that the relative muscle torque ratio o fullT T  is the reciprocal of the torque function 

expressed by Figure 11.  So, by fitting algebraic functions to Figure 10 and Figure 11, 

Equation (25) becomes an expression for computing metabolic power at any instance, given 

only four inputs:  muscle torques 1T  and 2T , and muscle shortening rates 1
  and 2

 . 
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Figure 10:  Metabolic rate function Φ versus relative angular velocity. 
Re-drawn from Minetti & Alexander (1997). 

 

 

Figure 11:  Relative muscle torque versus relative angular velocity. 
Re-drawn from Minetti & Alexander (1997). 
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The specific functional form used by Minetti & Alexander (1997) does not satisfy certain 

desirable convexity and smoothness properties (see Srinivasan (2011)).  An approximation to 

the Minetti-Alexander cost rate function (albeit a cumbersome one) that has these desirable 

properties is presented below.  The product of relative torque function o fullT T  multiplied by 

metabolic rate function  maxi     might be replaced by the following algebraic expression: 

 

 2 2
1 1

3

c f
c f

f
  (26) 

 

where 1c , 2c , 1f , 2f , and 3f  are defined as follows: 

 

 

1 2

2 2
1

1

2 2
1

2

2
2 2

3

0.075, 2

2

2

2

c c

q q
f

q q
f

s s
f







 

  


 


 


 (27) 

 

with max 0.01iq     , max1 is      , 1 0.04  , and 2 0.1   .  In essence, the 

expression  1 1 2 2 3c f c f f  is an approximation to Figure 10 divided by Figure 11.  

Substituting this expression into Equation (25), the new metabolic cost rate function 

becomes: 
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1 2

2 2 2 2
1 max 1 1 2 max 1 1

3 3
Minetti Alexander

c f c f
f T c f T c f

f f

   
        

     

    (28) 

 

Curve fitting to the relative torque function o fullT T  and metabolic rate function  maxi     

may be slightly adjusted by changing the constants 1c , 2c , 1 , and 2 .  Figure 12 plots 

metabolic power per unit torque ( Minetti Alexander if T ) against relative muscle shortening rate.  

Figure 13 plots muscle efficiency (“output” mechanical work rate divided by “input” 

metabolic power, i i Minetti AlexanderT f 
 ) against relative muscle shortening rate.   

 

Figure 12 shows that metabolic rate (per unit torque) increases as the value of 2c  increases.  

Figure 13 illustrates how muscle efficiency (ratio of mechanical work rate to metabolic rate) 

decreases as the value of 2c  increases.  For 2 2c   the peak efficiency is 0.4, whereas for 

2 4c   the peak efficiency is only 0.2.  Thus, 2c  is essentially inversely proportional to 

efficiency. 

 

After selecting the appropriate positive scalar values for constants 1c , 2c , 1 , and 2 , the 

total metabolic cost of one full leg-swing cycle may be estimated by computing the time-

integral of Equation (28): 

 

 
max

1 2

2 2 2 2
1 max 1 1 2 max 1 10

3 3

t

Minetti Alexander

c f c f
J T c f T c f dt

f f

   
        

   


  

    (29) 
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Figure 12:  Metabolic rate (per unit torque) versus relative muscle shortening rate, 
using different values of c2 in the metabolic cost rate function ƒMinneti-Alexander. 

 

 

Figure 13:  Muscle efficiency versus relative muscle shortening rate,  
using different values of c2 in the metabolic cost rate function ƒMinneti-Alexander. 
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4.3 Torque Rate cost model. 

Investigations by Doke et al. (2005 & 2007) suggest that the metabolic cost of isolated leg-

swing might be related to muscle force (or torque) and the duration which the force is 

applied.  For speeds higher than the natural frequency of the swinging leg, the force/time 

hypothesis (Doke, Donelan, & Kuo, 2005) predicts that metabolic cost is proportional to 

muscle force (or torque) and inversely proportional to force duration.  Using the force/time 

hypothesis as the basis for a new cost model, an appropriate cost function might include 

torque and torque rate: 

 

    1 2 1 2 3 1 2Torque Rate Minetti Alexanderf a f a T T a T T            (30) 

 

where Minetti Alexanderf   is the cost function described in Section 4.2, T  and T are derivatives of 

muscle torque, and 1a , 2a , and 3a  are non-negative constant coefficients that weigh the 

contributions by each of the cost terms.  The Torque Rate cost functions examined in this 

research investigation use the following coefficient values: 

 

Table 2:  Coefficient values for Torque Rate cost function. 

Experiment 1a 2a 3a
A 1 1 1 
B 1 1 0 
C 1 0 1 
D 0 1 0 
E 0 0 1 
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Table 2 proposes five different cost rate functions, each having cost terms which are either 

one or zero (i.e. “on” or “off”).  The total cost of one full leg-swing cycle is then the time-

integral of Equation (30): 

 

    max

1 2 1 2 3 1 20

t

Torque Rate Minetti AlexanderJ a f a T T a T T dt             (31) 

 

4.4 Torque cost model. 

Another commonly used model for metabolic rate is torque magnitude raised to some 

power: 

 

 1 2Torquef T T
    (32) 

 

where 1  .  The set of   values examined for this cost function are:  

 

  1, 2, 3, 4, 5   (33) 

 

Here, the set of exponent values are all greater than or equal to one.  For exponent values 

less than one ( 1  ), T


 yields a concave function of T  rather than a convex function.  

Such concave functions are ignored as they tend to give rise to optimal solutions with 

potentially wildly fluctuating (and therefore unphysical) torque functions.  In any case, the 

total cost of one full leg-swing cycle is the time-integral of Equation (32): 
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max

1 20

t

TorqueJ T T dt
    (34) 

 

4.5 Weighted T-squared cost model. 

A variation of the T


 family of cost functions might include different weights for the two 

muscles.  In this cost model, the exponent is taken as 2   because 
2

T  (or simply 2T ) is 

commonly used by other researchers as a substitute for metabolic cost.  Thus, the general 

expression for the cost rate function described above would be: 

 

   2 2

1 21Weighted T squaredf T T      (35) 

 

where 0 1  .  Note that summing the two coefficients   and 1   adds up to unity.  

The set of   values examined for this cost function are: 

 

  0.1, 0.2, 0.3, 0.4, 0.5   (36) 

 

The size difference between coefficients   and 1   denote the relative contribution by 

each muscle to the overall cost of leg-swing.  For example, 0.1   and 1 0.9   implies 

that the total cost contribution by the muscle exerting 1T is significantly larger than the cost 

contribution by the complementary muscle exerting 2T .  Hence, the muscle exerting 1T is 

considerably less cost efficient than the muscle exerting 2T for the same amount of torque. 
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Finally, the total cost of one full leg-swing cycle is the time-integral of Equation (35): 

 

  max 2 2

1 20
1

t

Weighted T squaredJ T T dt      (37) 
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CHAPTER 5: OPTIMAL LEG MOTIONS, OPTIMAL 

COSTS, AND COMPARISON TO DOKE ET AL. (2005). 

 

The optimization results are compared with empirical data to check the validity of the 

proposed cost models and to explore ways to better fit the model results to the work and 

energy-related costs measured experimentally by Doke et al (2005 & 2007).  In this chapter, 

the amplitude of leg-swing is held constant while frequency of leg-swing is varied.  In the 

next chapter, the amplitude and frequency of leg-swing are both varied such that the rate of 

mechanical work is (more or less) held constant.  For all cases, tendon springs are excluded 

from the hip muscle complex to imply infinitely-high tendon stiffness (see Section 3.1). 

 

5.1 Positive Mechanical Work cost model. 

Recall the “Positive Mechanical Work” cost function (Equation (22), Section 4.1): 

 

max

1 1 2 20

t

Mechanical WorkJ T T dt
 

            
 

 

Minimizing this cost function (for a 1.0 Hz leg-swing frequency) results in leg-swing motion 

that is shown in Figure 14, which plots leg position and velocity as functions of time.  The 

plot shows symmetry about mid-swing and shows the leg achieving a swinging amplitude of 
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45° peak-to-peak (from -22.5° to +22.5°).  Figure 14 illustrates one full period of leg-swing 

which repeats in a continuous, cyclical fashion. 

 

 

Figure 14:  Leg position and velocity versus time for  
“Positive Mechanical Work” cost model (1.0 Hz leg-swing frequency). 
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refers to the torque impulses, and “coast” refers to the interludes where the hip muscles are 

not engaged.  Figure 15 shows that the “coast” duration is relatively long in comparison with 

the “bang” duration.  One possible way to augment the bang-coast-bang behavior (longer 
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constraints on torque rate, which limit how sharply muscle torque can rise and fall.  A formal 

mathematical proof of why a bang-coast-bang-like strategy is optimal is provided in 

Srinivasan (2006) (see also appendix of Srinivasan (2011)).  Such a strategy is also consistent 

with human data – where it is observed that the swinging leg is powered by muscle 

activations (measured via EMG) at the beginning and the end of the swing, with very little 

muscle activation in between (see Doke et al. (2005) for a plot of the EMG data). 

 

 

Figure 15:  Muscle torque versus time for  
“Positive Mechanical Work” cost model (1.0 Hz leg-swing frequency). 
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 

1 1 1

2 2 2

T T

T T





  

   

 
 

 (38) 

 

Rate of positive mechanical work (i.e. positive mechanical power) versus time is plotted in 

Figure 16.  Again, periodic behavior is illustrated. 

 

 

Figure 16:  Rate of positive mechanical work versus time for  
“Positive Mechanical Work” cost model (1.0 Hz leg-swing frequency). 
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Doke et al. (2005).  For both model and experiment, positive mechanical work rate is 
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there is a visible vertical offset between the optimization results and the empirical data.  

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

R
at

e 
of

 P
os

iti
ve

 M
ec

ha
ni

ca
l W

or
k 

[W
]

Time [sec]

 

 

P
Mech1

P
Mech2

P
Mech1

+P
Mech2



44 
 

Since the optimal leg-swing strategy performs zero work at the natural frequency, it may be 

impossible for the model results to match the experimental results (which appear to have 

non-zero work at the natural frequency).  Thus, an offset difference between model and 

experiment at the natural frequency is to be expected.  There are a couple of possible 

explanations for this disparity.  First, the human leg is not completely isolated from the rest 

of the body – as was assumed in the leg-swing model.  Rather, the leg is connected to the 

human subject’s body which might move a little during leg-swing experiments.  Second, the 

procedure of inferring hip torque from the experimentally measured ground reaction forces 

might be a reason why average rate of work is non-zero at the natural frequency of leg-

swing. 

 

 

Figure 17:  Average rate of positive mechanical work (per unit weight)  
versus leg-swing frequency for “Positive Mechanical Work” cost model,  

compared with empirical data (Doke, Donelan, & Kuo, 2005). 
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In Figure 17, the theoretical and experimental results appear to be in reasonable agreement, 

but the cost model might be improved by accounting for both positive and negative work 

performed by the muscles.  Such a model might weigh the price of positive work differently 

from the price of negative work to distinguish their individual contributions to the total cost 

of leg-swing. 

 

 

Figure 18:  Average rate of cost (per unit weight) versus  
leg-swing frequency for “Positive Mechanical Work” cost model,  

compared with empirical data (Doke, Donelan, & Kuo, 2005). 
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the cost model roughly matches the plot of net metabolic rate (empirical data from Doke et 

al., 2005) particularly for frequencies higher than the natural frequency of leg-swing.  Muscle 

efficiency (ratio of mechanical work rate to metabolic rate) may be computed by taking the 

inverse of the pre-multiplier value as shown in Equation (39). 

 

Thus, the muscle efficiency (a constant) corresponding to the pre-multiplier value of 16 is 

0.0625 or 6.25%, as shown below: 

 

   1 1
0.0625

16
Muscle Efficiency premultiplier

    (39) 

 

Perhaps a weakness of using an “inverse efficiency” or “pre-multiplier” term is that muscle 

efficiency (i.e. efficiency of transforming metabolic energy into useful, mechanical work) is 

assumed to be constant.  However, this is not always a valid assumption (see Section 2.2) 

and therefore a different cost model might be needed to more accurately estimate metabolic 

energy expenditure.  In the following section, the Minetti-Alexander cost model of muscle 

energy expenditure is evaluated. 
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5.2 Minetti-Alexander cost model. 

Recall the “Minetti-Alexander” cost function (Equation (29), Section 4.2): 

 

max

1 2

2 2 2 2
1 max 1 1 2 max 1 10

3 3

t

Minetti Alexander

c f c f
J T c f T c f dt

f f

   
        

   


  

    

 

Minimizing this cost function (for a 1.0 Hz leg-swing frequency) results in leg-swing motion 

that is shown in Figure 19, which plots leg position and velocity as functions of time for 

various 2c  values ranging from 2 to 11.  The plots are nearly identical to the position and 

velocity graphs of the Positive Mechanical Work cost model (see Figure 14, Section 5.1). 

 

Figure 19 also shows that the optimal motion appear to be essentially independent of the 

value of 2c  (see Srinivasan (2011) for proof of this observation in the context of a simplified 

problem).  The torque-histories of both muscles (for a 1.0 Hz leg-swing frequency) are 

shown in Figure 20.  The plots have the expected symmetry and periodic behavior, and 

shows how the leg is driven in a “bang-coast-bang” manner when optimal. 
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Figure 19:  Leg position and velocity versus time for  
“Minetti-Alexander” cost model (1.0 Hz leg-swing frequency). 

 

 

Figure 20:  Muscle torques T1 and T2 versus time for  
“Minetti-Alexander” cost model (1.0 Hz leg-swing frequency). 
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Figure 21 plots average rate of positive mechanical work against leg-swing frequency, and 

compares the optimization results with existing empirical data by Doke et al. (2005).  Aside 

from minor fluctuations due to optimization convergence issues, modifying the value of 2c  

has little effect on the average rate of positive mechanical work (obviously because 2c  has 

no effect on the optimal motion).  Figure 21 shows that the theoretical and experimental 

curves are shaped similarly, yet there is a visible offset difference between the optimization 

results and the empirical data.  As discussed in Section 5.1, adjustments to the model can 

change the shape of the work rate curve, but the offset difference at the leg-swing natural 

frequency is not likely to change. 

 

 

Figure 21:  Average rate of positive mechanical work (per unit  
weight) versus leg-swing frequency for “Minetti-Alexander” cost model,  

compared with experimental data (Doke, Donelan, & Kuo, 2005). 
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Figure 22 plots average rate of cost (i.e. average rate of metabolic energy expenditure) against 

leg-swing frequency, and compares the optimization results with existing empirical data (net 

metabolic rate) by Doke et al. (2005).  The plot shows how the value of 2c  affects the shape 

of the cost rate curves.  Theoretical and experimental results seem to be in good agreement 

when 2 11c  .  The efficiency plot shown in Figure 13 (see Section 4.2) shows that 2 11c   

corresponds to muscle efficiency that is rather low (less than 8%).   

 

Although modifications to the cost rate function might change the shape of the cost rate 

curve, there still exists an offset difference (between model and experiment) near the natural 

frequency of legs-wing.  There is a possibility that the human subjects expended significant 

amounts of energy to stabilize their bodies (standing on one leg, holding the armrests, 

activating core muscles, etc.) during the leg-swing experiment.  Therefore, the costs of 

stabilization, balance, and support were likely adjoined to the cost of isolated leg-swing when 

measured in the experiment.  There is also a possibility that the leg-swing model 

underestimated the cost of muscle energy expenditure – thus, the disparity between model 

and experiment might be reduced if the cost of muscle activity were more heavily penalized 

in the model. 
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Figure 22:  Average rate of cost (per unit weight)  
versus leg-swing frequency for “Minetti-Alexander” cost model,  

compared with experimental data (Doke, Donelan, & Kuo, 2005). 
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5.3 Torque Rate cost model. 

Recall the “Torque Rate” cost function (Equation (31), Section 4.3): 

 

     max

1 2 1 2 3 1 20

t

Torque Rate Minetti AlexanderJ a f a T T a T T dt          

 

Minimizing this cost function (for a 1.0 Hz leg-swing frequency, and for various values of  

1a , 2a , and 3a ) results in leg-swing motion that is nearly identical to the position and 

velocity graphs of the Positive Mechanical Work and the Minetti-Alexander cost models.  

Figure 23 plots leg position and velocity versus time for the Torque Rate cost functions 

described in Section 4.3.  Note that there exist only minor variations between the five 

different cost functions. 

 

 

Figure 23:  Leg position, velocity versus time for  
“Torque Rate” cost model (1.0 Hz leg-swing frequency). 
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Figure 24 plots muscle torques 1T  and 2T  as functions of time (for a 1.0 Hz leg-swing 

frequency) whereas Figure 25 plots total torque totalT  (summation of 1T  and 2T ) against time.  

The plots show qualities of symmetry and cyclic-behavior, and appear to be wave-like.  For 

two of the cost functions, torque flattens out to a constant value such that T  (first 

derivative of torque) is minimized (nearly zero).  Note that totalT  as a function of time would 

likely be a square wave if torque rate (T , T , etc.) were unbounded and permitted to be as 

large as infinity.  The other three cost functions show triangle-like waveforms where torque 

steadily rises then steadily falls in a repeating manner.  These three cost functions each 

contain the term T  (second derivative of torque), therefore both torque and torque rate 

change gradually to minimize the overall cost of leg-swing. 

 

 

Figure 24:  Muscle torques T1 and T2 versus time for  
“Torque Rate” cost model (1.0 Hz leg-swing frequency). 
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Figure 25:  Total muscle torque Ttotal versus time for  
“Torque Rate” cost model (1.0 Hz leg-swing frequency). 

 

Figure 26 plots average rate of positive mechanical work against leg-swing frequency for 
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solution is non-unique) and achieve the same minimal cost of leg-swing.  The size or 

magnitude of the individual muscle torques is of little concern and, consequently, rate of 

mechanical work appears to fluctuate wildly when plotted against leg-swing frequency. 

 

 

Figure 26:  Average rate of positive mechanical work (per unit  
weight) versus leg-swing frequency for “Torque Rate” cost model,  
compared with experimental data (Doke, Donelan, & Kuo, 2005). 
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proportional to muscle force (or torque), and is inversely proportional to the duration of the 
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Figure 27:  Average rate of cost (per unit weight) versus  
leg-swing frequency for “Torque Rate” cost model, compared  

with experimental data (Doke, Donelan, & Kuo, 2005).   

 

 

Figure 28:  Scaled version of the cost rate curve for “Torque Rate” cost model,  
compared with experimental data (Doke, Donelan, & Kuo, 2005). 
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Since average rate of cost varies in magnitude and the cost function coefficients 1a , 2a , and 

3a  can be chosen somewhat arbitrarily (see Section 4.3), perhaps another useful comparison 

between model and experiment would be to evaluate the shapes of the cost curves.  Figure 28 

plots a modified version of the cost rate curve where the theoretical results are scaled such 

that the peak rate of cost (from the model) matches the peak metabolic rate (measured 

experimentally).  Using this method of comparison, all five Torque Rate cost functions seem 

viable and are in good agreement with the experimental data obtained by Doke et al. (2005). 

 

5.4 Torque cost model. 

Recall the “Torque” cost function (Equation (34), Section 4.4): 

 

max

1 20

t

TorqueJ T T dt
    

 

Minimizing this cost function (for a 1.0 Hz leg-swing frequency) results in leg-swing motion 

that is shown in Figure 29, which plots leg position and velocity as functions of time.  The 

plot is nearly identical to the position and velocity graphs of the Positive Mechanical Work, 

Minetti-Alexander, and Torque Rate cost models.  Using values of   ranging from 1 to 5, 

Figure 29 plots leg position and velocity versus time for each of the different Torque cost 

functions.  The figure shows that there exist only minor differences between the various cost 

models.  The maximum swinging velocity increases as   increases from 1 to 5.  For 1  , 

the velocity profile seems to flatten out, signifying a more steady and uniform leg-swing 

motion than for cost models with higher values of  . 



58 
 

 

Figure 29:  Leg position, velocity versus time for  
“Torque” cost model (1.0 Hz leg-swing frequency). 
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Figure 30:  Muscle torques T1 and T2 versus time for  
“Torque” cost model (1.0 Hz leg-swing frequency). 

 

 

Figure 31:  Total muscle torque Ttotal versus time for  
“Torque” cost model (1.0 Hz leg-swing frequency). 
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Figure 32 plots average rate of positive mechanical work versus leg-swing frequency for each 

of the Torque cost rate functions.  For the cost function 1 2T T  (i.e. 1  ), the plot is 

close to the minimum possible mechanical work (see Figure 17).  But when the objective 

function is very different from mechanical work (e.g. rate of cost is defined as 
4 4

1 2T T or

5 5

1 2T T ) the mechanical work for the optimal motions can be much larger than the 

minimum possible mechanical work.  Figure 32 shows that the cost function with 3   

offers perhaps the best fit to the experimental data (from Doke et al., 2005).  The theoretical 

and experimental results are in particularly good agreement for swinging frequencies higher 

than the natural frequency of leg-swing.  Aside from the (more or less) constant offset 

difference, the cost function with 2   seems to mimic the shape and curvature of the 

experimental plot.  

 



61 
 

 

Figure 32:  Average rate of positive mechanical work (per unit  
weight) versus leg-swing frequency for “Torque” cost model,  

compared with experimental data (Doke, Donelan, & Kuo, 2005). 

 

Figure 33:  Scaled and shifted cost rate curve for “Torque” cost model,  
compared with experimental data (Doke, Donelan, & Kuo, 2005). 

 

0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Legswing Frequency [Hz]

R
at

e 
of

 P
os

iti
ve

 M
ec

ha
ni

ca
l W

or
k 

[W
/k

g]

 

 

Mechanical Work Rate
(Doke et al., 2005)

  = 1

  = 2

  = 3

  = 4

  = 5

0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.5

1

1.5

2

2.5

Legswing Frequency [Hz]

(M
od

ifi
ed

) 
R

at
e 

of
 C

os
t 

[W
/k

g]

 

 

Net Metabolic Rate
(Doke et al., 2005)

  = 1

  = 2

  = 3

  = 4

  = 5



62 
 

Since the computed cost of leg-swing drastically varies in magnitude between the different 

Torque cost functions, perhaps it would instead be useful to compare the shapes of the cost 

curves.  In Figure 33, theoretical costs are scaled and shifted such that the computed rate of 

cost matches metabolic rate (measured experimentally) for two of the examined leg-swing 

frequencies:  1.0833 Hz and 0.7500 Hz.  Because T


 is not directly motivated by biological 

measurements, it is acceptable to multiply this rate of cost by any scalar value.  In addition, it 

is acceptable to shift the theoretical cost curves up or down because (as discussed in Sections 

5.1 and 0) there are a number of possible reasons to explain the vertical offset between 

model and experiment (human subjects might expend substantial amounts of energy to 

stabilize their bodies, the swinging leg is not completely isolated from the rest of the body, 

etc.).  Using this scaling and shifting approach, Figure 33 shows that the cost curves for 

1   and 2   best fit the experimental data obtained by Doke et al. (2005). 

 

5.5 Weighted T-squared cost model. 

Recall the “Weighted T-squared” cost function (Equation (37), Section 4.5): 

 

 max 2 2

1 20
1

t

Weighted T squaredJ T T dt      

 

As explained in Section 4.5, the coefficients   and 1   denote the weighted contribution 

by each muscle to the overall cost of leg-swing.  The Weighted T-squared cost function 

described here is nearly identical to the Torque cost function with 2  , which is 

commonly used by other researchers as a proxy for metabolic cost.  Figure 32 and Figure 33 
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shows that model and experiment are in strong agreement, giving confidence that the square 

of muscle torque is a reasonable proxy for the cost of leg-swing. 

 

Unlike previously explored cost models, the aim of the Weighted T-squared cost model is not 

to match theoretical findings with experimental data.  Rather, the goal is to see how torque 

actuation is affected when the cost of leg-swing is weighted differently for each of the two 

muscles.  If the hip flexors and extensors are not the same size or shape, for instance, then 

the muscles might not equally contribute to total metabolic cost.  In this sense, this section 

might be treated as a digression, and the reader may skip it without loss of continuity. 

 

Minimizing the Weighted T-squared cost function (for a 1.0 Hz leg-swing frequency) results 

in leg-swing motion that is shown in Figure 34, which shows leg position and velocity versus 

time for coefficient values ranging from 0.1   to 0.5  .  The plot shows that there 

exist only minor variations between the optimal motions for different cost functions. 
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Figure 34:  Leg position, velocity versus time for  
“Weighted T-squared” cost model (1.0 Hz leg-swing frequency). 

 

Figure 35 plots muscle torques 1T  and 2T  as functions of time, while Figure 36 plots total 
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may be approximated as a triangle-like waveform.  This is identical to the results found in 

Section 5.4, Figure 31.  Conversely, for 0.1   (one muscle is more energetically expensive 

than the other muscle) the peak torque generated by the cost-heavy muscle is significantly 

smaller than the peak torque generated by the low-cost muscle.  Lastly, the case where the 

total cost of leg-swing depends only on one of the two muscles ( 0  ) is a degenerate 

special case.  True flatness of the cost landscape (i.e. non-uniqueness) in some directions 

would be expected and therefore the optimization search might find multiple optima and 

result in bad convergence. 
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Figure 35:  Muscle torques T1 and T2 versus time for  
“Weighted T-squared” cost model (1.0 Hz leg-swing frequency). 

 

 

Figure 36:  Total muscle torque Ttotal versus time for  
“Weighted T-squared” cost model (1.0 Hz leg-swing frequency). 
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5.6 Summary of results (part 1 of 2). 

In this chapter, optimal leg-swing strategies were examined and evaluated against empirical 

data (Doke, Donelan, & Kuo, 2005) to check the validity of the proposed cost models and 

to seek ways for improvement.  The following list identifies some of the cost models that 

best fit the experimental data: 

 

 “Positive Mechanical Work” cost model with pre-multiplier 16   

( i.e. constant muscle efficiency 1/16 .0625   ). 

 “Minetti-Alexander” cost model with 2 11c  . 

 “Torque Rate” cost model with 1 0a  , 2 0a  , and 3 1a   

( i.e. 
max

1 20

t

Torque RateJ T T dt     ), and with some extra scaling. 

 “Torque” cost model with 1   and 2  , and with some extra 

shifting and scaling. 

 

The proposed cost functions identified in the list above are re-examined in the next chapter, 

using a different set of leg-swing amplitude and frequency conditions.  Findings from this 

new optimization problem are evaluated against empirical data from Doke & Kuo (2007) to 

determine whether or not these cost models are applicable to an entirely different leg-swing 

experiment. 
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CHAPTER 6: OPTIMAL COSTS AND COMPARISON TO 

DOKE & KUO (2007). 

 

A good leg-swing model should be applicable to any leg-swing experiment.  Several of the 

best cost models identified in the previous chapter (see Section 5.6) are re-examined in the 

present chapter to assess their accuracy, using a new set of leg-swing conditions. 

 

6.1 A different leg-swing experiment. 

Last chapter, the amplitude of leg-swing was held constant while frequency of leg-swing was 

varied.  In this chapter, the amplitude and frequency of leg-swing are both varied such that 

the rate of mechanical work is (more or less) held constant.  For the leg-swing experiments 

conducted by Doke & Kuo (2007), subjects were asked to swing their legs at increasing 

frequency, and with decreasing amplitude as shown in Figure 37.  The plot illustrates how 

swinging amplitude varies as a function of frequency. 

 

Again, rate of mechanical work and (metabolic) cost are examined in contrast to empirical 

information obtained by Doke & Kuo (2007).  Using the new set of leg-swing conditions 

(decreasing amplitude with increasing frequency), the following list of cost functions are 

evaluated: 
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 “Positive Mechanical Work” cost model with pre-multiplier 16 . 

 “Minetti-Alexander” cost model with 2 11c  . 

 “Torque Rate” cost model with 1 0a  , 2 0a  , and 3 1a  . 

 “Torque” cost model with 1   and 2  . 

 

 

Figure 37:  Swinging amplitude versus swinging frequency.   
Plot adapted from Doke & Kuo (2007). 

 

6.2 Rate of positive mechanical work. 

For the cost functions listed in Section 6.1, the optimization search determines the leg-swing 

strategy which minimizes total cost.  Figure 38 through Figure 42 plot average rate of 

mechanical work against swinging frequency for each of the proposed cost functions.  All of 

the plots illustrate that rate of mechanical work stays (more or less) constant and appear to 

be in reasonable agreement with the experimental measurements, despite the visible offset 
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difference.  This disparity between model and experiment is to be expected for a couple of 

possible reasons.  First, (as explained in Section 5.1) the human leg is not completely isolated 

from the rest of the body – as was assumed in the leg-swing model.  Instead, the leg is 

connected to the human subject’s body which might move a little during leg-swing 

experiments.  Second, the procedure of inferring hip torque from the experimentally 

measured ground reaction forces might be a possible source of error.   

 

The only trace of inconsistency is seen in Figure 40, where the plot of mechanical work rate 

seems to deviate from a constant value.  However, this is the result of flatness in the cost 

landscape due to the fact that cost (for this particular “Torque Rate” cost model) only 

depends on the rate at which torque is applied, T  (see Section 5.3). 

 

 

Figure 38:  Average rate of positive mechanical work (per unit weight) versus leg-
swing frequency for “Positive Mechanical Work” cost model with pre-mult = 16, 
compared with experimental data (Doke & Kuo, 2007).  Rate of mechanical work is 
roughly constant for both model and experiment. 
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Figure 39:  Average rate of positive mechanical work (per unit weight) versus leg-
swing frequency for “Minetti-Alexander” cost model with c2 = 11, compared with 
experimental data (Doke & Kuo, 2007).  Rate of mechanical work is roughly constant 
for both model and experiment. 

 

 

Figure 40:  Average rate of positive mechanical work (per unit weight) versus leg-
swing frequency for “Torque Rate” cost model with  a1 = 0, a2 = 0, and a3 = 1; 
compared with experimental data (Doke & Kuo, 2007).  The computed mechanical 
work curve deviates from a constant value, due to flatness in the cost landscape. 

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Legswing Frequency [Hz]

A
ve

ra
ge

 R
at

e 
of

 P
os

iti
ve

 M
ec

ha
ni

ca
l W

or
k 

[W
/k

g]

 

 

Mechanical Work Rate (Doke et al., 2007)

Converged optimization results

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Legswing Frequency [Hz]

A
ve

ra
ge

 R
at

e 
of

 P
os

iti
ve

 M
ec

ha
ni

ca
l W

or
k 

[W
/k

g]

 

 

Mechanical Work Rate (Doke et al., 2007)

Converged optimization results



71 
 

 

Figure 41:  Average rate of positive mechanical work (per unit weight) versus leg-
swing frequency for “Torque” cost model with α = 1, compared with experimental 
data (Doke & Kuo, 2007).  Rate of mechanical work is roughly constant for both 
model and experiment. 

 

 

Figure 42:  Average rate of positive mechanical work (per unit weight) versus leg-
swing frequency for “Torque” cost model with α = 2, compared with experimental 
data (Doke & Kuo, 2007).  Rate of mechanical work is roughly constant for both 
model and experiment. 
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6.3 Cost rate (or net metabolic rate). 

Figure 43 through Figure 47 plot average rate of cost against swinging frequency for each of 

the cost functions listed in Section 6.1.  Generally speaking, all of the plots seem to be in 

reasonable agreement with the experimental measurements obtained by Doke & Kuo (2007). 

 

In particular, the Minetti-Alexander cost curve shown in Figure 44 matches the shape of the 

experimental curve very well.  The (more or less) constant offset difference between model 

and experiment might be explained by possible error in experimental procedure.  Recall that 

there is a possibility that human subjects expend significant amounts of energy to stabilize 

their bodies (standing on one leg, holding the armrests, activating core muscles, etc.) during 

leg-swing experiments (see Section 5.2).  Therefore, the costs of stabilization, balance, and 

support are likely adjoined to the cost of isolated leg-swing – perhaps explaining why the 

experimental cost curve is higher than the Minetti-Alexander cost curve. 

 

The modified (scaled and shifted) cost curves shown in Figure 45, Figure 46, and Figure 47 

intersect with the experimental curve.  Though the shape and bend of the cost curves might 

differ between model and experiment, they appear to be in good accord with one another. 
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Figure 43:  Average rate of cost (per unit weight) versus leg-swing frequency for 
“Positive Mechanical Work” cost model with pre-multiplier = 16, compared with 
experimental data (Doke & Kuo, 2007).  The costs of body stabilization (during 
experiment) might account for the vertical offset between model and experiment. 

 

 

Figure 44:  Average rate of cost (per unit weight) versus leg-swing frequency for 
“Minetti-Alexander” cost model with c2 = 11, compared with experimental data 
(Doke & Kuo, 2007).  Except for the vertical offset, the curves match well. 
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Figure 45:  Scaled cost rate curve for “Torque Rate” cost model with a1 = 0, a2 = 0, 
and a3 = 1; compared with experimental data (Doke & Kuo, 2007).  Except for the 
difference in slope, the curves match well. 

 

 

Figure 46:  Scaled and shifted cost rate curve for “Torque” cost model with α = 1, 
compared with experimental data (Doke & Kuo, 2007).  Except for the difference in 
slope, the curves match well. 
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Figure 47:  Scaled and shifted cost rate curve for “Torque” cost model with α = 2, 
compared with experimental data (Doke & Kuo, 2007).  Except for the difference in 
slope, the curves match well. 

 

6.4 Summary of results (part 2 of 2). 

In this chapter, optimal leg-swing strategies are examined and evaluated against empirical 

data (Doke & Kuo, 2007)  to determine whether or not the proposed cost models are 

applicable to a new leg-swing experiment with varying swinging amplitudes and frequencies.  

In examining rate of mechanical work and (metabolic) cost, the findings suggest that most 

(or all) of the cost models identified in Section 6.1 are in agreement with the experimentally 

measured data.  Hence, there are various possible ways to express the cost of leg-swing in a 

functional form which, when minimized, results in leg-swing activity similar to the behavior 

observed experimentally with real, human subjects.   
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CHAPTER 7: CONCLUSIONS. 

 

7.1 Discussion, summary, and concluding remarks. 

By approximating the mechanics of isolated leg-swing as a pendulum actuated by torque 

“motors”, a variety of simple cost functions (estimating the energetic expense of leg-swing) 

were examined.  Different cost functions related to muscle torque, rate of muscle length 

change, mechanical work, and metabolic energy were considered.  For this nonlinear, 

constrained optimization problem, total cost of leg-swing was minimized to find optimal leg-

swing strategies (muscle excitation and muscle shortening rate as functions of time).  Rate of 

mechanical work and (metabolic) cost were then examined in contrast to empirical data 

obtained by Doke et al. (2005 & 2007).  We found that, up to an affine transformation 

(scaling and shifting), several of the proposed cost functions agreed reasonably with 

experimental measurements.  Also, some of the minimizations produced bang-coast-bang 

optimal solutions, consistent with what is qualitatively observed in human data. 

 

The fact that multiple models fit the experimental curves suggests that the experimental data 

we fit our models to might not be rich enough to distinguish categorically between the 

various models.  One option is to obtain more extensive experimental data – for instance, 

perform leg swing experiments at a 10-by-10 grid of frequency and swing amplitude, and 

then attempt to fit the models to these 100 data points.  Another option would be to use 
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biophysically motivated “molecular” models of muscle mechanics to restrict the metabolic 

cost functional forms explored to only those that are consistent with these molecular 

models. 

 

Other cost functions of the form  F g dt   or  ,h F dt   might also be considered to 

see if they can fit the data better.  Also, to be sure, even though several of our cost functions 

agreed reasonably with experimental data, the best-fit cost function often implied very low 

efficiencies – perhaps unrealistically low for mammalian muscles.  Ideally, we would like cost 

functions that both have plausible efficiency values (about 20%) for steady state isotonic 

stretch experiments, and also fit the experimental data.  Perhaps this requires use of terms 

related to force derivatives as is the case in some of our cost functions and as also posited 

implicitly by Doke et al.  Perhaps the molecular-based models alluded above will provide 

some insights in this regard. 

 

Moreover, additional confidence might be gained if the proposed cost functions can be 

applied to any human movement experiment – for instance, to other motor tasks like leg-

swing with bending at the knee, or swinging the arm.  Another research direction might be 

to incorporate activation dynamics (i.e. the action of transmitting neural signals to excite the 

muscles) into the leg-swing model with the aim of simulating all the physiological 

interactions in the human body.  Overall, we believe that the problem of finding a cost 

function that is both plausible and fits a variety of metabolic cost data satisfactorily remains 

open – even in the limited context of leg-swing – and an extensive program of more 

carefully controlled experiments and associated theory would be required to fill this gap in 
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our understanding.  Once a good model of metabolic cost is developed, it can be used in the 

context of whole body tasks such as walking and running. 
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APPENDIX A:  THE EFFECTS OF INCLUDING TENDONS 

IN THE LEG-SWING MODEL. 

 

Minimizing the Minetti-Alexander cost function for various values of tendon stiffness, the 

resulting optimal leg-swing strategies (from model) are evaluated against the measured 

experimental data from Doke et al. (2005).  Average rate of cost versus swinging frequency is 

shown in Figure 48.  The plot illustrates that the leg-swing model best fits the experimental 

data when tendon stiffness is very large.  This supports the notion that human hip muscles 

have short tendons and, accordingly, exhibit low compliance (Minetti & Alexander, 1997).  

For these reasons, the swinging human leg is modeled with the assumption that stiffness is 

infinitely-high and the tendons are excluded from the muscle complex, as shown in Figure 8. 
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Figure 48:  Average rate of cost  
using various tendon stiffnesses for “Minetti-Alexander” cost model,  

compared with experimental data (Doke, Donelan, & Kuo, 2005). 
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APPENDIX B:  SAMPLE MATLAB CODE. 

 

Solve function: 

% ======================================================================== 
% The following code analyzes the swinging leg problem.  The dynamics of 
% a swinging leg are modeled by a simple pendulum with an applied hip  
% torque.  ddTorque is represented as a piecewise linear function of time. 
% 
% This code uses "fmincon" to determine the piecewise linear torque rate 
% function that minimizes the objective function "J" defined in 
% "pendulumObjective.m", where "J" is some form of leg-swing cost. 
% ======================================================================== 
  
clear all; close all; clc; 
% ------------------------------------------------------------------------ 
% DEFINE PARAMETERS AND INITIAL CONDITIONS 
% ------------------------------------------------------------------------ 
% Initialize global iteration counter, for in-progress saving purposes. 
global iterationCounter; 
iterationCounter = 0; 
  
% Specify parameter values in struct called "param". 
param.m         = 70*(.16); % leg mass (~16% of total body mass) [kg] 
param.g         = 9.8;      % gravitational acceleration [m/sec^2] 
param.r         = 0.45;     % distance to center of leg mass [m] 
param.I         = 1;        % leg mass moment of inertia [kg-m^2] 
param.torqueMax = 100;      % maximum hip torque [N-m] 
param.N         = 24;       % number of piecewise segments [unitless] 
param.epsilon   = .01;      % square root approximation 
param.Wmax      = 8;        % max muscle shortening rate [rad/sec] 
param.savedelay = 500;      % delay counter for saving [unitless] 
  
% Define initial leg position, leg velocity, and cost. 
pos_initial = -pi/8;        % position [rad] 
vel_initial = 0;            % velocity [rad/sec] 
cost_initial= 0;            % cost [] 
  
% Make an initial guess for muscle torques and torque rates. 
dT1_initial = 0;            % initial guess for torque rate [N-m/sec] 
dT2_initial = 0;            % initial guess for torque rate [N-m/sec] 
T1_initial  = 0;            % initial guess for torque [N-m] 
T2_initial  = 0;            % initial guess for torque [N-m] 
  
% Define initial values for piecewise linear ddTorque function (C0), 
% and initial values for initial state variables (x0). 
C0 = zeros(2*param.N+2,1);  % piece-wise values for ddTorque [N-m/sec] 
x0 = [pos_initial; vel_initial; cost_initial; ... 
    dT1_initial; dT2_initial; T1_initial; T2_initial];      
  
% Define "p0" the set of parameters to be SOLVED by the fmincon optimizer. 
p0 = [C0; dT1_initial; dT2_initial; T1_initial; T2_initial]; 
                                     
% Specify desired leg-swing frequencies, ranging from 0.5000Hz to  
% 1.0833Hz.  Specify shape factor constant c2. 
frequency   = 13/12 : -1/12 : 1/2; 
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c2          = [2 3 5 7 9 11]; 
  
for c2Counter = 1:1:length(c2); 
    for frequencyCounter = 1:1:length(frequency); 
         
    % ---------------------------------------------------------------- 
    % MINIMIZE FUNCTION "J" 
    % ---------------------------------------------------------------- 
    % Specify parameter values that change. 
    param.c2    = c2(c2Counter);                    % shape factor c2. 
    param.tmax  = 1/frequency(frequencyCounter);    % simulation time [sec] 
  
    % Use TOMLAB's "snopt" to determine the piecewise linear ddTorque  
    % function that minimizes the objective function "J" (total cost). 
    options = optimset('display','iter','MaxFunEvals',100000, ... 
        'MaxIter',100000); 
    LB = -50000*ones(size(p0));                     % ddTorque lowerbound 
    UB = +50000*ones(size(p0));                     % ddTorque upperbound 
    Prob = ProbDef; Prob.Solver.Tomlab ='snopt'; 
    [presult,objval] = fmincon('pendulumObjective',p0,[],[],[],[], ... 
        LB,UB,'pendulumConstraint',options,Prob,x0,param); 
  
    % Make initial guess p0 equal to presult (the converged result of 
    % the previous iteration). 
    p0 = presult; 
  
    % ---------------------------------------------------------------- 
    % SAVE CONVERGED RESULTS 
    % ---------------------------------------------------------------- 
    save(['MinettiAlexander_c2val',num2str(c2(c2Counter)),'_',... 
        num2str(frequency(frequencyCounter),'%0.4f'),'Hz.mat']); 
     
    end     % End "frequencyCounter" for-loop. 
end     % End "c2Counter" for-loop. 
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ODE file: 

% ======================================================================== 
% This pendulum ODE file solves the differential equation for a gravity 
% pendulum with applied hip torque. 
% 
% Motion occurs in a 2-D plane.  ddTorque is represented as a function 
% of time in terms of a piecewise linear function.  The applied hip torque  
% results from integrating the torque rate function. 
% ======================================================================== 
  
function xdot = pendulumODE(t,x,C,param,i) 
  
% ------------------------------------------------------------------------ 
% DEFINE STATE VARIABLES 
% ------------------------------------------------------------------------ 
% Introduce state variables x1, x2, x3, x4, x5. 
x1 = x(1);      % leg angular position [rad] 
x2 = x(2);      % leg angular velocity [rad/sec] 
x3 = x(3);      % function "J", metabolic energy cost to be minimized 
x4 = x(4);      % muscle1 torque rate [N-m/sec] 
x5 = x(5);      % muscle2 torque rate [N-m/sec] 
x6 = x(6);      % muscle1 torque [N-m] 
x7 = x(7);      % muscle2 torque [N-m] 
  
  
% ------------------------------------------------------------------------ 
% WRITE 1ST ORDER ODE'S FOR LEG SWING DYNAMICS 
% ------------------------------------------------------------------------ 
% Unpack struct "param". 
m = param.m;        % leg mass [kg] 
g = param.g;        % gravitational acceleration [m/sec^2] 
r = param.r;        % distance ot center of leg mass [m] 
I = param.I;        % leg mass moment of inertia [kg-m^2] 
  
% Compute total torque, the summation of hip torques developed by muscle1 
% and muscle2. 
torqueTotal = x6 + x7; 
  
% Write pendulum equations as first order ODEs by appropriately using the 
% variables x1,x2.  x1dot is the angular velocity and x2dot is the angular 
% acceleration of the leg mass. 
x1dot = x2;                                     % velocity [rad/sec] 
x2dot = (torqueTotal-m*g*r*sin(x1))/(I+m*r^2);  % acceleration [rad/sec^2] 
  
% Define "tstep" the time interval for each segment of the piecewise linear 
% ddTorque function. 
tstep = param.tmax/param.N; 
tInitial = -param.tmax/2+(i-1)*tstep; 
  
% Determine the value of ddTorque for all instances of time.  ddTorque  
% is a time-dependent piecewise linear function.  Hip torque (the 
% anti-derivative of torque rate) is driven by two opposing muscles -- 
% agonist and attogonist (torque1 and torque2). 
x4dot = C(i)+(C(i+1)-C(i))/tstep*(t-tInitial);      % muscle1 ddTorque 
x5dot = C((param.N+1)+i)+(C((param.N+1)+i+1)- ...   % muscle2 ddTorque 
    C((param.N+1)+i))/tstep*(t-tInitial); 
x6dot = x4;                                         % muscle1 torque rate 
x7dot = x5;                                         % muscle2 torque rate 
  
  
% ------------------------------------------------------------------------ 
% DEFINE RATE OF MUSCLE CONTRACTION/EXTENSION 
% ------------------------------------------------------------------------ 
% Determine the muscle shortening rate for muscles 1 and 2.  Note that W1 
% and W2 are positive when muscle is shortening.  Conversely, W1 and W2 are 
% negative when muscle is lengtening. 
W1 = +x2;                                           % NO tendons 
W2 = -x2;                                           % NO tendons 
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% ------------------------------------------------------------------------ 
% DEFINE RATE OF CHANGE OF OBJECTIVE VALUE "J" 
% ------------------------------------------------------------------------ 
% Define metabolic muscle power.  "J" is metabolic energy (integral of 
% metabolic power), the objective function to be minimized.  See m-file 
% called "computePower" to view how the metabolic muscle power is computed. 
power1 = computePower(x6,W1,param); 
power2 = computePower(x7,W2,param); 
x3dot = power1 + power2; 
  
  
% ----------------------------------------------------------------------- 
% COMBINE 1ST ORDER ODE'S 
% ----------------------------------------------------------------------- 
xdot = [x1dot; x2dot; x3dot; x4dot; x5dot; x6dot; x7dot]; 
  
  
end     % End function "pendulumODE".
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Constraint function: 

% ======================================================================== 
% This code establishes the inequality and equality constraints for 
% "pendulumObjective.m". 
% 
% The pendulum ODE file is called by the "ode45" solver in order to 
% determine the angular position and velocity of the leg center of mass. 
% ======================================================================== 
  
function [cineq,ceq] = pendulumConstraint(pinput,x0,param) 
  
global iterationCounter; 
% ------------------------------------------------------------------------ 
% SOLVE USING "ode45" 
% ------------------------------------------------------------------------ 
% Define "tstep" the time interval for each segment of the piecewise linear 
% ddTorque function. 
tstep = param.tmax/param.N; 
  
% Extract ddTorque, dTorque, and Toruqe values from "pinput". 
C   = pinput(1:2*param.N+2);        % ddTorque [N-m/sec^2] 
dT1_initial = pinput(2*param.N+3);  % initial dTorque1 [N-m/sec] 
dT2_initial = pinput(2*param.N+4);  % initial dTorque2 [N-m/sec] 
T1_initial  = pinput(2*param.N+5);  % initial Torque1 [N-m] 
T2_initial  = pinput(2*param.N+6);  % initial Torque2 [N-m] 
  
% Define intial state variables (x0). 
x0  = [x0(1:3); dT1_initial; dT2_initial; T1_initial; T2_initial]; 
  
% Use "ode45" solver to generate list of legmass position and velocity 
% versus time.  The ddTorque function is broken up into segments so that  
% the optimization avoids discontinuities (and runs smoothly). 
options = odeset('reltol',1e-10,'abstol',1e-10); 
tliststore = -param.tmax/2;     % store initial time 
xliststore = x0';               % store initial position, velocity, etc. 
for i = 1:param.N 
    tspan = linspace(-param.tmax/2+(i-1)*tstep,-param.tmax/2+i*tstep,3); 
    [tlist, xlist] = ode45(@pendulumODE,tspan,x0,options,C,param,i); 
    x0 = xlist(end,:)'; 
     
    % Store tlist and xlist.  These will be used to define constraints. 
    tliststore = [tliststore; tlist(2:end,:)]; 
    xliststore = [xliststore; xlist(2:end,:)]; 
end 
  
  
% ------------------------------------------------------------------------ 
% COMPUTE POWER 
% ------------------------------------------------------------------------ 
% Extract values of torque from "xliststore". 
torque1 = xliststore(:,6);                      % muscle1 torque 
torque2 = xliststore(:,7);                      % muscle2 torque 
  
% Determine the muscle shortening rate for muscles 1 and 2.  Note that W1 
% and W2 are positive when muscle is shortening.  Conversely, W1 and W2 are 
% negative when muscle is lengtening. 
W1 = +xliststore(:,2);                          % NO tendons 
W2 = -xliststore(:,2);                          % NO tendons 
  
  
% ------------------------------------------------------------------------ 
% ASSIGN INDEX NAMES FOR CLARITY 
% ------------------------------------------------------------------------ 
% Determine the index at the end of the forward swing. 
indexForward        = (length(xliststore)+1)/2; 
  
% For simplicity, identify the position and velocity at the end of the 
% forward swing, and at the end of the backward swing. 
posStart        = xliststore(1,1); 
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posForward      = xliststore(indexForward,1); 
posBackward     = xliststore(end,1); 
velForward      = xliststore(indexForward,2); 
velBackward     = xliststore(end,2); 
  
  
% ------------------------------------------------------------------------ 
% SET INEQUALITY AND EQUALITY CONSTRAINTS 
% ------------------------------------------------------------------------ 
% Combine torque1,torque2 and W1,W2 terms for simplicity.  Unpack Wmax from 
% struct "param". 
torque  = [torque1; torque2]; 
W       = [W1; W2]; 
  
% Set inequality constraints. (i.e. less than or equal to zero) 
cineq   =  [-torque-param.torqueMax;            % ALL torques >= -torqueMax 
            +torque-param.torqueMax;            % ALL torques <= +torqueMax 
            -torque1;                           % torque1 >= 0 
            +torque2;                           % torque2 <= 0 
            -W-param.Wmax;                      % W >= -Wmax 
            +W-param.Wmax];                     % W <= +Wmax 
                         
% Set equality constraints.  (i.e. equal to zero) 
        % Enforce position and velocity at forward and backward positions. 
ceq     =  [posStart+posForward;                % forward position mirrors the starting 
position 
            posStart-posBackward;               % backward position is same as the 
starting position 
            velForward;                         % forward velocity equals zero 
            velBackward;                        % backward velocity equals zero 
  
        % Enforce periodicity of Torque, dTorque, and ddTorque. 
            C(1)-C(param.N+1);                  % equal starting and ending ddTorque 
            C(param.N+2)-C(2*param.N+2);        % equal starting and ending ddTorque    
            xliststore(1,4)-xliststore(end,4);  % equal starting and ending dTorque 
            xliststore(1,5)-xliststore(end,5);  % equal starting and ending dTorque 
            xliststore(1,6)-xliststore(end,6);  % equal starting and ending Torque 
            xliststore(1,7)-xliststore(end,7);  % equal starting and ending Torque       
            ]; 
  
% ------------------------------------------------------------------------ 
% DISPLAY GLOBAL ITERATION COUNT 
% ------------------------------------------------------------------------ 
% Increment global iteration counter and show count number. 
iterationCounter = iterationCounter+1; 
if mod(iterationCounter,param.savedelay)==0 
    save inprogress24nodecalculation 
    iterationCounter 
end 
  
  
end     % End function "pendulumConstraint". 
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Objective function: 

% ======================================================================== 
% The following code determines the piecewise linear ddTorque values "C" 
% that minimize the objective function "J" (metabolic energy cost).  As  
% shown below, "J" is the integral of "x3dot" defined in "pendulumODE.m",  
% where "x3dot" is some form of metabolic power expenditure. 
% 
% The pendulum ODE file is called by the "ode45" solver in order to 
% determine the angular position and velocity of the leg center of mass. 
% ======================================================================== 
  
function J = pendulumObjective(pinput,x0,param) 
  
global iterationCounter; 
% ------------------------------------------------------------------------ 
% SOLVE USING "ode45" 
% ------------------------------------------------------------------------ 
% Define "tstep" the time interval for each segment of the piecewise linear 
% ddTorque function. 
tstep = param.tmax/param.N; 
  
% Extract ddTorque, dTorque, and Toruqe values from "pinput". 
C   = pinput(1:2*param.N+2);        % ddTorque [N-m/sec^2] 
dT1_initial = pinput(2*param.N+3);  % initial dTorque1 [N-m/sec] 
dT2_initial = pinput(2*param.N+4);  % initial dTorque2 [N-m/sec] 
T1_initial  = pinput(2*param.N+5);  % initial Torque1 [N-m] 
T2_initial  = pinput(2*param.N+6);  % initial Torque2 [N-m] 
  
% Define intial state variables (x0). 
x0  = [x0(1:3); dT1_initial; dT2_initial; T1_initial; T2_initial]; 
  
% Use "ode45" solver to generate list of legmass position and velocity 
% versus time.  The ddTorque function is broken up into segments so that  
% the optimization avoids discontinuities (and runs smoothly). 
options = odeset('reltol',1e-10,'abstol',1e-10); 
for i = 1:param.N 
    tspan = linspace(-param.tmax/2+(i-1)*tstep,-param.tmax/2+i*tstep,3); 
    [tlist, xlist] = ode45(@pendulumODE,tspan,x0,options,C,param,i); 
    x0 = xlist(end,:)'; 
end 
  
  
% ------------------------------------------------------------------------ 
% DEFINE OBJECTIVE FUNCTION "J" 
% ------------------------------------------------------------------------ 
% Define "J" as total cost. 
J = xlist(end,3); 
  
  
% ------------------------------------------------------------------------ 
% DISPLAY GLOBAL ITERATION COUNT 
% ------------------------------------------------------------------------ 
% Increment global iteration counter and show count number. 
iterationCounter = iterationCounter+1; 
if mod(iterationCounter,param.savedelay)==0 
    save inprogress24nodecalculation 
    iterationCounter 
end 
  
end     % End function "pendulumObjective".
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Post-processing: 

% ======================================================================= 
% The following code illustrates the results of the swinging leg 
% optimization problem.  Plots include: 
%   (1) Angular position & velocity of pendulum versus time 
%   (2) Driving torque versus time 
%   (3) Driving power versus time 
%   (4) Animation of pendulum position in the xy-plane 
% ======================================================================= 
  
function [output] = pendulumPostProcess(pinput,x0,param) 
  
% ------------------------------------------------------------------------ 
% SOLVE USING "ode45" 
% ------------------------------------------------------------------------ 
% Define "tstep" the time interval for each segment of the piecewise linear 
% torque function. 
tstep = param.tmax/param.N; 
  
% Unraveling pinput to get C, etc. 
C       = pinput(1:2*param.N+2);    % piece-wise lin ddTorque [N-m/sec^2] 
dT1_0   = pinput(2*param.N+3);      % initial muscle1 dTorque [N-m/sec] 
dT2_0   = pinput(2*param.N+4);      % initial muscle2 dTorque [N-m/sec] 
T1_0    = pinput(2*param.N+5);      % initial muscle1  Torque [N-m] 
T2_0    = pinput(2*param.N+6);      % initial muscle2  Torque [N-m] 
x0      = [x0(1:3); dT1_0; dT2_0; T1_0; T2_0];  % initial state variables 
  
  
% Use "ode45" solver to generate list of legmass position and velocity 
% versus time.  The ddTorque function is broken up into segments so that  
% the optimization avoids discontinuities (and runs smoothly). 
options = odeset('reltol',1e-10,'abstol',1e-10); 
tliststore = -param.tmax/2;     % store initial time 
xliststore = x0';               % store initial position, velocity, etc. 
for i = 1:param.N 
    tspan = linspace(-param.tmax/2+(i-1)*tstep,-param.tmax/2+i*tstep,20); 
    [tlist, xlist] = ode45(@pendulumODE,tspan,x0,options,C,param,i); 
    x0 = xlist(end,:)'; 
     
    % Store tlist and xlist.  These will be used for plotting purposes. 
    tliststore = [tliststore; tlist(2:end,:)]; 
    xliststore = [xliststore; xlist(2:end,:)]; 
end 
  
  
% ------------------------------------------------------------------------ 
% COMPUTE METABOLIC MUSCLE POWER 
% ------------------------------------------------------------------------ 
% Extract values of torque and torque rate from "xliststore". 
T1 = xliststore(:,6);      % muscle1 torque [N-m] 
T2 = xliststore(:,7);      % muscle2 torque [N-m] 
  
% Determine the muscle shortening rate for muscles 1 and 2.  Note that W1 
% and W2 are positive when muscle is shortening.  Conversely, W1 and W2 are 
% negative when muscle is lengtening. 
W1 = +xliststore(:,2);              % NO TENDONS (infinite stiffness) 
W2 = -xliststore(:,2);              % NO TENDONS (infinite stiffness) 
  
% Using the "smooth" metabolic cost function from Manoj Srinivasan, 
% compute metabolic power. 
meta_power1 = computePower(T1,W1,param); 
meta_power2 = computePower(T2,W2,param); 
avgMetaPower = (mean(meta_power1)+mean(meta_power2)); 
  
  
% ------------------------------------------------------------------------ 
% COMPUTE MECHANICAL POWER 
% ------------------------------------------------------------------------ 
% Compute mechanical power due to leg swing. 
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mech_power1 = max(T1,0).*xliststore(:,2);  % use T1 >= 0 only 
mech_power2 = min(T2,0).*xliststore(:,2);  % use T2 <= 0 only 
mech_power1 = max(mech_power1,0);               % positive mech power only 
mech_power2 = max(mech_power2,0);               % positive mech power only 
avgMechPower = (mean(mech_power1)+mean(mech_power2)); 
  
  
% ------------------------------------------------------------------------ 
% COMPUTE AVERAGE COST RATE 
% ------------------------------------------------------------------------ 
avgCostRate = xliststore(end,3)/param.tmax; 
  
  
% ------------------------------------------------------------------------ 
% OUTPUT RESULTS 
% ------------------------------------------------------------------------ 
output.TIME             = tliststore;           % time 
output.theta            = xliststore(:,1);      % legswing position 
output.dtheta           = xliststore(:,2);      % legswing velocity 
output.totalCost        = xliststore(end,3);    % total cost 
output.dT1              = xliststore(:,4);      % muscle1 dtorque 
output.dT2              = xliststore(:,5);      % muscle2 dtorque 
output.T1               = xliststore(:,6);      % muscle1 torque 
output.T2               = xliststore(:,7);      % muscle2 torque 
output.avgMetaPower     = avgMetaPower; 
output.avgMechPower     = avgMechPower; 
output.avgCostRate      = avgCostRate; 
  
 
end     % End function "pendulumPostProcess". 

 


