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ABSTRACT

This thesis studies the geometric and deformational behavior of linear series under

degenerations with the aim of attacking the maximal rank conjecture. There are three

parts. The first part gives an explicit construction of the classical tangent-obstruction

theory for deformations of the pair (X,L) to the case when X is local complete

intersection scheme and L a line bundle on X. In the second part, we propose a

new method, using deformation theory, to study the maximal rank conjecture. We

prove that the maximal rank conjecture holds for the first unknown case: line bundles

of extremal degree. Problems related to the maximal rank conjecture have become

potentially accessible to this new method. In the third part, a canonical semi-stable

degeneration of the d-th symmetric product C(d) as the curve C becomes singular is

constructed.
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CHAPTER 1

INTRODUCTION

A central problem in algebraic curve theory is to describe algebraic curves with fixed

genus and degree and how they vary in families in a given projective space Pr.

There are two approaches to this problem. The first approach is to deal with

curves in projective spaces directly. We would like to analyze the extrinsic geometry

of C ⊂ Pr. For instance, one wants to describe the ideal of a curve C ⊂ Pr, and in

particular, to know how many independent hypersurfaces of each degree C lies on,

what are the relations between the generators of the ideal, etc.

The second approach is via abstract curves. One may think of a curve C ⊂ Pr as

a triple object: an abstract curve C, a line bundle L = OC(1) and an (r+ 1)-tuple of

global sections of OC(1). The good thing about this approach is that the collections of

objects we want to describe are themselves algebraic varieties (stacks), called moduli

spaces (stacks). Thus we can apply the general machinery in algebraic geometry to

study these spaces. The moduli space of smooth curves C of genus g is called Mg,

and the moduli space of linear series of degree d dimension r on C is called Gr
d(C).

One of the major open problem in algebraic curve theory, the maximal rank con-

jecture (Eisenbud-Harris [15]), lies in the area between these two approaches. It has
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to do with the extrinsic geometry of the pair (C,L), for C a general point of Mg, L

a general point of Gr
d(C).

Conjecture 1.1. (Maximal rank conjecture) For fixed d, g, r ≥ 3, let C be a general

curve of genus g and |L| be a general grd on C, then the multiplication map

SymkH0(C,L)
µk

// H0(C,Lk) (1.1)

is of maximal rank (either injective or surjective) for any k ≥ 1.

In the case |L| gives an embedding of C into Pr, SymkH0(C,L) is the space of

homogeneous polynomials of degree k in Pr and Ker(µk) is just the subspace consisting

of those vanishing on C. Since the dimension of the domain and target of µk are

constants only depending on k, d, r and g, the maximal rank conjecture (MRC)

simply says that the number of independent hypersurfaces containing C is as small

as it could be.

Since conjecture 1.1 concerns conditions that are open, it suffices to verify the

assertion for one point on each component of the Grd which dominates Mg, where

Grd = {(C,L, V ) | L line bundle on C, deg L = d, V ⊂ H0(L), dimV = r + 1}

is the parameter space in question.

However, this does not seem to help. Since Mg is of general type for g > 23, it

is very difficult to write down general curves satisfying this conjecture. The curves

we can write down for large g, such as hyperelliptic and trigonal curves, complete

intersections are all special with respect to the properties that this conjecture as-

serts to be general. The classic strategy to deal with this problem is to degenerate
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smooth curves to some sufficiently special singular ones on which we can carry out the

necessary analysis explicitly but remain general in the sense of the assertions. This

approach achieved great success for the more classical theorems of Brill- Noether ([24])

and Gieseker-Petri ([22], [14]), but has not been fully successful for the maximal rank

conjecture.

The aim of this thesis is to develop more tools to understand the geometric and

deformational behavior of linear series under degenerations and hopefully make some

progress on the maximal rank conjecture.

In chapter 2, we study the deformation theory of the pair (X,L) for X a local

complete intersection scheme and L a line bundle on X. We generalize the tangent-

obstruction theory the pair (X,L) from the classical case X is a smooth variety to

the case X is a local complete intersection scheme (l.c.i). We prove that even though

X could be singular, the functor of Artin rings

Def(X,L)(A) = {Flat deformations of (X,L) over A}/isomorphisms

still behaves well in the sense that there is a tangent-obstruction theory for this

deformation functor, with tangent space Ext1
OX

(P1
X(L), L) and obstruction space

Ext2
OX

(P1
X(L), L), where P1

X(L) is the sheaf of one jets or sheaf of principle parts

of the line bundle L on X. Moreover, a criterion for sections of L to extend is given.

When X is a l.c.i curve, L is a complete grd on X, this result is directly related to the

local behavior of the parameter space Grd near the boundary. For instance, the tangent

space of Grd at the point (X,L,H0(L)) consists of all vectors ξ ∈ Ext1
OX

(P1
X(L), L)

such that all global sections of L extend along ξ.
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In chapter 3, we take a first step to attack the maximal rank conjecture via de-

formations. We prove that the maximal rank conjecture holds for the first unknown

case: line bundles of extremal degree, i.e. line bundles such that

deg L = 2g − 2h1(L) − Cliff(C),

or equivalently,

Cliff(L) = Cliff(C),

where Cliff(C) is the Clifford index of C.

The method in the proof is different from classical degeneration methods. The gen-

eral idea is as follows: instead of constructing some (C,L) such that the multiplication

map µk in (1.1) is of maximal rank there, we relax the requirement by considering

a one parameter family of pairs (Ct, Lt) ∈ Grd, degenerating to some (C0, L0) (C0 is

singular) for which µk(0) is not of maximal rank, then use deformation theory to

show, however, only a subspace of “correct” dimension in Ker(µk(0)) can extend to

Ker(µk(t)) and therefore nearby µk(t) is of maximal rank.

Chapter 4 takes another more geometric point of view to study the degenerations

of linear series. We view a grd on C as a geometric object Pr sitting inside the d-th

symmetric product C(d) of C and the hope is to study the geometric properties of the

linear series by studying the geometry of the subvariety Pr ⊂ C(d). For instance, L

satisfies the Gieseker-Petri theorem, i.e the natural map

H0(L) ⊗H0(KC ⊗ L−1) −→ H0(KC)

is injective, if and only if Pr is unobstructed in C(d) ([12]). Taking this point of

view, to understand the degenerations of linear series, we need to first understand
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the degenerations of C(d) when C become singular. For a one parameter family of

smooth curves Ct degenerating to a nodal curve C0, the suitable degeneration we

want is a smooth space X over the t-disk ∆ such that the fiber of X over t 6= 0 is

isomorphic to C
(d)
t , and the fiber over t = 0 has simple normal crossing support.

It is proved in [33] that the total space of relative Hilbert scheme Hd parametrizing

length-d dimension-0 subschemes of the fiber is a partial resolution of singularities

of the relative d-th symmetric product C
(d)
∆ . Based on this result, we study in this

chapter the toric singularities appeared in Hd and give an algorithm to canonically

subdivide the cones corresponding to the toric singularities in question and describe

a canonical sequence of blowing-ups of Hd along smooth centers that leads to a

canonical log resolution H̃d of (Hd, H
d
0 ).

Throughout this thesis, we will work over the complex numbers C.
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CHAPTER 2

DEFORMATION OF PAIRS (X,L) WHEN X IS

SINGULAR

2.1 Background

The deformation theory of the pair (X,L) for X a smooth variety and L a line bundle

on X was first used to study Petri’s conjecture by Arbarello and Cornalba in [5]. It

was proved there that first-order deformations of the pair (X,L) are in natural one

to one correspondence with

ξ ∈ H1(X,D1(L)),

where D1(L) is the sheaf of holomorphic first-order differential operators, andH2(X,D1(L))

is an obstruction space. Given a first-order deformation φ ∈ H1(X, TX) of X, there

is a first-order deformation of L along φ if and only if φ ∪ c(L) = 0 ∈ H2(X,OX),

where c(L) ∈ H1(X,Ω1
X) is the first Chern class of L in the sense of Atiyah.

Moreover, there is a natural differentiation map

H1(X,D1(L))
M // Hom(H0(X,L), H1(X,L)) (2.1)

such that a section s ∈ H0(X,L) extends to first order along ξ if and only if the

element

M(ξ)(s) ∈ H1(X,L)

6



is zero.

The map M together with the tangent obstruction spaces have numerous de-

formation theoretic applications. For instance, for any first-order deformation of

(X,L), at least h0(L) − h1(L) linearly independent sections of L extend; Ker(M) ⊂

H1(X,D1(L)) is the space of first-order deformations of (X,L) to which all sections of

L extend. If X is a complete curve, a dual form of (2.1) is the higher µ-map µ1 in [7].

In case L gives an embedding of X into some projective space P, Coker(M) is natu-

rally isomorphic to H1(X,NX|P) (cf. [5]), and therefore the surjectivity of M implies

that X ⊂ P is unobstructed. Another direct consequence is that the deformations of

the pair (X,L) is unobstructed for a smooth curve X, since H2(X,D1(L)) = 0. If X

is a smooth K3-surface, the map H1(TX)
∪c(L)

// H2(OX) ∼= C is surjective for every

nontrival line bundle L. This means that L deforms along a 19-dimensional subspace

of H1(TX), because h1(X, TX) = 20.

In this chapter, we give an elementary approach to the deformation theory of the

pair (X,L) for X a separated reduced local complete intersection scheme (l.c.i) of

finite type over C. We prove that even though X could be singular, the functor of

Artin rings

Def(X,L)(A) = {Flat deformations of (X,L) over A}/isomorphisms

still behaves well in the sense that there is a tangent-obstruction theory for this

deformation functor, with tangent space Ext1
OX

(P1
X(L), L) and obstruction space

Ext2
OX

(P1
X(L), L), where P1

X(L) is the sheaf of one jets or sheaf of principle parts
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of L on X. Moreover, there is a natural map analogous to M characterizing ob-

structions for sections of L to extend. Therefore, all the nice consequences mentioned

above generalize to reduced l.c.i schemes. If X is smooth, P1
X(L) = D1(L)∗⊗L, where

D1(L) is the sheaf of first-order differential operators on L, and ExtiOX
(P1

X(L), L) =

H i(X,D1(L)). We go back to the classical case. The tangent and obstruction spaces

for deformations of (X,L) was known to experts and was stated implicitly in [29], [30].

Our approach is new and more elementary. In particular, it does not use the more ab-

stract machinery of cotangent complexes. The author believes that the generalization

of the map M in (2.1) to singular varieties is also new.

2.2 The sheaf of one jets

In this section, we briefly review some basic facts and definitions about the sheaf

of one jets.

Let g : X → Y be a morphism between two algebraic schemes (separated schemes

of finite type over C), L be a line bundle on X, and let ∆ ⊂ X ×Y X be the diagonal

defined by ideal sheaf I∆. Consider the first order neighborhood Spec
OX×Y X

I∆
2 of ∆

with two projections π1, π2 to X. The sheaf of one jets P1
X/Y (L) of X over Y is

defined to be P1
X/Y (L) := π1∗π

∗
2(L). P1

X/Y (L) has a natural left OX -module structure

induced by π1 and a right OX-module structure induced by π2 which, in general, is

not equivalent to the left one. Throughout this chapter, we will only use the left
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OX -module structure of P1
X/Y (L). Consider the short exact sequence

0 −→
I∆

I2
∆

−→
OX×Y X

I2
∆

−→
OX×Y X

I∆

−→ 0

Tensoring the above sequence with π∗
2L then applying the functor π1∗, we get a

short exact sequence of left OX -modules on X

0 // Ω1
X/Y (L) i // P1

X/Y (L) // L // 0 (2.2)

where Ω1
X/Y is the sheaf of relative Kähler differentials. The sequence is exact on

the right because there is no higher derived image for π1∗ (π1 has relative dimension

0). When Y = Spec(C), we will write P1
X(L) for P1

X/Y (L). The “fibre”of the sheaf

P1
X/Y (L) at a closed point x ∈ X is the stalk of L|g−1(g(x)) at x mod the maximal

ideal squared, i.e.

P1
X/Y (L)x ⊗OX,x

OX,x

mx

∼=
Lx

(mx
2 + g−1(mg(x)))Lx

.

This is the reason P1
X/Y (L) is called the sheaf of (relative) one jets. There is a OY -

linear splitting p1 : L→ P1
X/Y (L), which sends a section s of L to its one jet π1∗π

∗
2s.

p1 satisfies the property that

p1(fs) = i(df ⊗ s) + fp1(s) (2.3)

for anyf ∈ OX(U) and s ∈ L(U) where U ⊂ X is any open subset. (In fact, p1

is OX -linear if we use the right OX-module structure of P1
X/Y (L)). If X is smooth,

Y = Spec(C), P1
X(L) is the vector bundle HomOX

(D1(L), L), where D1(L) is the

sheaf of first-order differential operators on L.
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2.3 Computation of the tangent space

In this section, let X be a reduced algebraic scheme. Applying the functor

HomOX
(−, L) to (2.2), we get a long exact sequence

... −→ Ext1
OX

(L,L) −→ Ext1
OX

(P1
X(L), L) −→ Ext1

OX
(Ω1

X(L), L) −→

−→ Ext2
OX

(L,L) −→ Ext2
OX

(P1
X(L), L) −→ Ext2

OX
(Ω1

X(L), L) −→ ...

Notice that Ext1
OX

(Ω1
X(L), L) = Ext1

OX
(Ω1

X ,OX) is the tangent space of the defor-

mations of X, and Ext1
OX

(L,L) = H1(OX) is the tangent space of deformations of

L with the base X fixed. This suggests that Ext1
OX

(P1
X(L), L) is the tangent space

of deformations of the pair (X,L) and Ext2
OX

(P1
X(L), L) is an obstruction space.

If X is smooth, HomOX
(P1

X(L), L) is the sheaf of first-order differential operators

D1(L), and Ext1
OX

(P1
X(L), L) = H1(X,D1(L)) is the correct tangent space. In this

section and the next, we will prove this is indeed the correct generalization of the

tangent-obstruction theory for deformations of the pair (X,L).

Let’s first recall that for any reduced algebraic scheme over C, we have a one-to-one

correspondence between isomorphism classes of extensions of X by a coherent locally

free OX -module I and Ext1
OX

(Ω1
X , I) in the following way:

Given an isomorphism class of extensions of OX by I,

0 // I // OX
// OX

// 0 ,

i.e. a closed immersion X ⊂ X defined by ideal sheaf I, and I2 = 0 in OX ,

we associate to it (the isomorphism class of) the conormal sequence
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E : 0 // I // Ω1
X |X

// Ω1
X

// 0

(which is also exact on the left since I is locally free.)

This conormal sequence corresponds to an element cE in Ext1
OX

(Ω1
X , I).

Conversely, for any OX -module extension

0 // I // E
h // Ω1

X
// 0 , (2.4)

let d : OX → Ω1
X be the canonical derivation. Let O = OX×Ω1

X
E be the fibre product

sheaf: over an open subset U ⊂ X we have O(U) = {(f, a) : h(a) = df}, with ring

structure given by

(f, a)(f ′, a′) = (ff ′, fa′ + f ′a)

We get a commutative diagram:

0 // I
j

// O //

d′

��

OX
//

d
��

0

0 // I // E // Ω1
X

// 0

It is easy to check that d′ : O → E is a C-derivation, thus factors through Ω1
O⊗OOX .

Therefore Ω1
O ⊗O OX

∼= E by 5-lemma and we recover X from (2.4).

In case I = OX , we can give OX a C[ǫ]-module structure by sending ǫ to j(1) ∈ OX .

The fact that ǫOX
∼= OX means that X is flat over Spec(C[ǫ]). Therefore X is a

first-order infinitesimal deformation of X.

For the deformations of the pair (X,L), we have the following result:

Theorem 2.1. Let X be a reduced scheme of finite type over C, L be a line bundle

on X.

11



(1) The tangent space of the functor of Artin rings Def(X,L) is canonically identified

with Ext1
OX

(P1
X(L), L).

(2) There exists a natural pairing

Ext1
OX

(P1
X(L), L) ⊗H0(X,L)

p
// H1(X,L) . (2.5)

such that for any first-order deformation of the pair (X,L) corresponding to

ξ ∈ Ext1
OX

(P1
X(L), L), a section s ∈ H0(L) extends to first order along ξ if and

only if ξ and s pair to zero under p.

Proof. (1) Given a first-order deformation of the pair (X,L), i.e. the following

fibered diagram with OX flat over Spec(C[ǫ]) and L line bundle on X :

L
�

�

//

��

L

��
X

�

�

//

��

X

��
Spec(C) �

�

// Spec(C[ǫ])

We have a diagram of (left) OX -modules:

12



0

��

0

��

0 // L // Ω1
X (L)|X //

��

Ω1
X(L) //

i
��

0

0 // L // P1
X (L)|X

r //

��

P1
X(L) //

��

0

L|X

��

L

��
0 0

The two right columns are exact by (2.2), and the fact that restriction to X is

exact. (left exactness of restriction follows from the fact that T or1
OX

(L,OX) =

0, since L is a locally free OX -module!) The first row is the conormal sequence of

X ⊂ X twisted by L, which is exact. Thus by Snake Lemma, ker(r) = L and the

second row is exact . Therefore we can associate any first-order deformation of

the pair (X,L) the second row exact sequence, which corresponds to an element

of Ext1
OX

(P1
X(L), L).

Now consider the commutative diagram

0 // L // L //

p′1
��

L //

p1
��

0

0 // L // P1
X (L)|X

r // P1
X(L) // 0

where p′1 is the composition of p̃1 : L → P1
X (L) and the restriction map to X.

Thus p′1 factors through L×P1
X

(L)P
1
X (L)|X and therefore L ∼= L×P1

X
(L)P

1
X (L)|X

as a OX-module. We can give L ×P1
X

(L) P
1
X (L)|X a OX -module structure via

13



this isomorphism (This OX -module structure turns out to be given by formula

(2.6)). This fact suggests that we can recover L from P1
X (L)|X and L.

Conversely, for any element ξ ∈ Ext1
OX

(P1
X(L), L) corresponding to an OX-

module extension:

0 // L // E
r // P1

X(L) // 0.

The pull back extension E ′ = E ×P1
X

(L) Ω1
X(L) by the natural inclusion

i : Ω1
X(L) −→ P1

X(L),

sits naturally in the diagram

0 // L // E ′ = E ×P1
X

(L) Ω1
X(L) //

i′

��

Ω1
X(L) //

i
��

0

0 // L // E
r // P1

X(L) // 0

The first row exact sequence corresponds to an element in Ext1
OX

(Ω1
X(L), L) =

Ext1
OX

(Ω1
X ,OX), which corresponds to a first-order infinitesimal deformation X

of X as described in the beginning of this section.

To recover the deformation of L, let E ′′ = E ′ ⊗ L−1 and let

L = L×P1
X

(L) E = {(s, e) ∈ L⊕ E| p1(s) = r(e)}.

L sits naturally in the diagram

14



0 // L // L = L×P1
X

(L) E //

��

L //

p1

��

0

0 // L // E
r // P1

X(L) // 0

and has a natural OX -module structure (recall that OX = OX ×Ω1
X
E ′′ by the

construction in the beginning of this section) as below

(f, a)(s, e) = (fs, fe+ i′(a · s)) (2.6)

where (f, a) ∈ OX ×Ω1
X
E ′′ = OX , (s, e) ∈ L = L ×P1

X
(L) E and a · s ∈ E ′. This

is a well defined OX -module structure because

p1(fs) = i(df ⊗ s) + fp1(s) = r(i′(a · s)) + fr(e).

In order to see L is a locally free OX -module of rank one, it suffices to prove

the case L is the trivial bundle since the question is local. In this case, (2.2)

splits (as left OX -module) and P1
X(OX) ∼= OX ⊕ Ω1

X . The statement follows

immediately from this.

(2) For any ξ ∈ Ext1
OX

(P1
X(L), L) corresponding to the extension

0 −→ L −→ P1
X (L)|X −→ P1

X(L) −→ 0.

Define the natural pairing p(ξ⊗s) := δ(p1(s)) ∈ H1(L). Where δ : H0(P1
X(L)) →

H1(L) is the connecting homomorphism of the long exact cohomology sequence

corresponding to ξ:
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... // H0(P1
X (L)|X)

r // H0(P1
X(L))

δ // H1(L) // ...

δ(p1(s)) = 0 means there exists some e ∈ H0(P1
X (L)|X) such that r(e) = p1(s),

thus (s, e) determines a global section of L = L×P1
X

(L) P
1
X (L)|X .

2.4 Obstructions

In this section, let X be as in section 2.3 and we assume furthermore that X

is a local complete intersection scheme. We will show that Ext2
OX

(P1
X(L), L) is an

obstruction space for deformations of the pair (X,L).

The general idea is to apply Vistoli’s construction of obstruction spaces for defor-

mations of l.c.i schemes (cf. sections 3, 4 of [35]) to the total space of L∨ and keep

track of the bundle structure using a C∗-action.

For any z ∈ C∗, denote φz : L∨ → L∨ be the multiplication map by z in the fiber

direction. Define a C∗-action on OL∨ and Ω1
L∨ by

z · f = z−1φ∗
zf (2.7)

z · ω = z−1φ∗
zω (2.8)

for local sections f ∈ OL∨ , ω ∈ Ω1
L∨ .

Let OC∗

L∨ and ΩC∗

L∨ be the sheaf of sections which are invariant under the C∗-action.

Under some trivialization of L∨ over U ⊂ X: L∨
U
∼= U ×A1

t , O
C∗

L∨ consists of functions

on L∨ of the form f(x)t, and ΩC∗

L∨ consists of 1-forms f(x)dL∨t+ω(x)t where f is the

pull back of a function on U and ω ∈ Ω1
U .
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Both OC∗

L∨ and ΩC∗

L∨ have natural OX -module structures and we have natural iso-

morphisms of OX -modules OC∗

L∨
∼= L and P1

X(L) ∼= ΩC∗

L∨ . The isomorphisms can be

described as follows: for any section s ∈ L, we can naturally view it as a function on

the total space of L∨ which restricts to a linear function on the fiber. Such functions

are invariant under the C∗-action and vice versa. This gives the first isomorphism.

The second isomorphism is the natural one which identifies p1(s) with dL∨(fs), where

s is any section of L, fs is the function on L∨ corresponding to s and dL∨ is the

exterior derivative on L∨. Under some local trivialization of L∨ over U , it sends

(f, ω) ∈ P1
X(L)|U ∼= OX(U) ⊕ ΩX(U) to f(x)dL∨t+ ω(x)t ∈ ΩC∗

L∨ .

Let

e : 0 // J // Ã // A // 0

be a small extension of local artinian C-algebras with m
eA · J = 0. Suppose we have

a flat deformation (X ,L) of the pair (X,L) over Spec(A):

L //

��

L

��
X //

��

X

f
��

Spec(C) // Spec(A)

Let (X̃α, L̃α) and (X̃β, L̃β) be two liftings of (X ,L) to Spec(Ã). We would like to

measure the difference of two such liftings.
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Let’s restrict ourselves to the local situation first. Suppose that X is affine, em-

bedded in S = Spec(A[x1, ..., xn]) and the total space of L̃∨
i are both embedded into

Spec(Ã[x1, ..., xn]) × A1 = S̃ × A1 with image X̃i × A1.

Let I0 be the ideal sheaf of L∨ in S × A1. The conormal sequence

0 // I0

I2
0

d // ΩS×A1 |L∨
// ΩL∨

// 0

is exact because L∨ is l.c.i. Taking the invariant part under the C∗-action we get an

exact sequence of OX-modules

0 // ( I0

I2
0

)
C∗

d′ // (ΩS×A1 |L∨)C∗ // ΩC∗

L∨
// 0 . (2.9)

The difference of L̃∨
α and L̃∨

β as embedded deformations corresponds to an OL∨-

module homomorphism vαβ : I0

I2
0

→ J⊗COL∨ . The fact that L̃∨
i is embedded as X̃i×A1

implies that vαβ sends the invariant part ( I0

I2
0

)
C∗

to the invariant part J ⊗C OC∗

L∨ =

J ⊗C L. Denote the restriction v′αβ .

Now, take the push-out of (2.9) under v′αβ, we obtain an OX -module extension Eαβ

of P1
X(L) by J ⊗C L:

0 // ( I0

I2
0

)
C∗

d′ //

v′
αβ

��

(ΩS×A1 |L∨)C∗ //

ψαβ

��

ΩC∗

L∨
// 0

0 // J ⊗C L
lαβ

// Eαβ // P1
X(L) // 0

(2.10)

Lemma 2.2. The extension Eαβ does not depend on the choice of S̃.
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Proof. Suppose there are embeddings L̃∨
i → S̃j × A1, where i = α, β, j = 1, 2;

reducing to embeddings L∨ → S1 ×A1 and L∨ → S2 ×A1. These induce embeddings

L̃∨
i → S̃1 ×Spec( eA) S̃2 × A1

reducing to

L∨ → S1 ×Spec(A) S2 × A1.

Let C1, C2, C12 be the conormal bundles of L∨ in S1 × A1, S2 × A1, S1 × S2 × A1

respectively. Denote by v′j : CC∗

j → J ⊗C L the invariant part of the corresponding

sections of the normal bundles, Ej = v′j∗(ΩSj×A1 |L∨)C∗

, E12 = v′12∗(ΩS1×S2×A1|L∨)C∗

and pj : CC∗

j → CC∗

12 be the natural map between conormal bundles. Then

v′12 ◦ pj = v′j : CC∗

j → J ⊗C L.

We have the following diagram

0 // CC∗

j
//

pj

��

(ΩSj×A1 |L∨)C∗
//

��

ΩC∗

L∨
// 0

0 // CC∗

12
//

v′12
��

(ΩS1×S2×A1 |L∨)C∗ //

��

ΩC∗

L∨
// 0

0 // J ⊗C L // E12
// ΩC∗

L∨
// 0

By the universal property of push out, this diagram induces isomorphism of extensions

ψj : Ej ∼= E12. We define the canonical isomorphism between E2 and E1 to be ψ1 ◦ψ
−1
2 .

Proposition 2.3. For any two liftings of line bundles L̃∨
α, L̃

∨
β inside S̃ ×A1 as above,

there is an OX-module extension Eαβ of P1
X(L) by J⊗CL, well defined up to canonical

isomorphism, with the following properties.
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(a) For any three liftings L̃∨
α, L̃∨

β , and L̃∨
γ , there is a canonical isomorphism of

extensions

Fαβγ : Eαβ + Eβγ ∼= Eαγ
1

such that for any four liftings,

Fαγδ ◦ (Fαβγ + idEβγ
) = Fαβδ ◦ (idEαβ

+ Fβγδ) (2.11)

as homomorphism of extensions from Eαβ + Eβγ + Eγδ to Eαδ.

(b) Given an OX-module extension E of P1
X(L) by J ⊗C L, and a lifting L̃∨

α of L∨,

there is an abstract lifting L̃∨
β such that Eαβ is isomorphic to E .

(c) There is a natural bijection between bundle isomorphisms Φ : L̃∨
α
∼= L̃∨

β with

splittings of Eαβ.

Proof. (a) As embedded deformations we certainly have v′αβ + v′βγ = v′αγ as homo-

morphisms from ( I0

I2
0

)
C∗

to J ⊗C L Then Eαβ + Eβγ fits into the diagram

0 // ( I0

I2
0

)
C∗

d′ //

v′
αβ

+v′
βγ

��

(ΩS×A1 |L∨)C∗ //

(ψαβ ,ψβγ)

��

ΩC∗

L∨
// 0

0 // J ⊗C L // Eαβ + Eβγ // P1
X(L) // 0

By the universal property of push-out, there is a unique isomorphism F−1
αβγ :

Eαγ → Eαβ + Eβγ such that (ψαβ , ψβγ) factors through F−1
αβγ . The compatibility

condition (2.11) follows from the universal property of push-out as well.

1The sum of two extensions of OX -module 0 // G
li // Ei

ki // // F // 0 is defined to be

the quotient of the submodule B = {(e1, e2) ∈ E1 ⊕ E2 : k1(e1) = k2(e2)} by sections of the form
(l1(y),−l2(y)), y ∈ G.

The oposite extension −E is defined to be 0 // G
−l

// E
k //// F // 0 .
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(b) Applying the derived functor HomOX
(−, J ⊗C L) to (2.9), we obtain exact se-

quence

HomOX
(( I0

I2
0

)C∗

, J ⊗C L) // Ext1
OX

(P1
X(L), J ⊗C L) // Ext1

OX
((ΩS×A1 |L∨)C∗

, J ⊗C L)

where the last term is zero because X is affine and (ΩS×A1|L∨)C∗

is locally free.

Thus for any

E ∈ Ext1
OX

(P1
X(L), J ⊗C L),

there is

v′ ∈ HomOX
((
I0

I2
0

)C∗

, J ⊗C L)

such that v′∗(ΩS×A1|L∨)C∗ ∼= E . v′ can be uniquely extended to a OL∨-module

homomorphism v : I0

I2
0

→ J ⊗C OL∨ . Now choose L̃∨
β ⊂ S̃ × A1 such that the

difference of L̃∨
β and L̃∨

α as embedded deformations corresponds to v, then by

construction Eαβ ∼= E .

(c) First notice that by the construction of push-out, to give a splitting s : Eαβ →

J ⊗C L is equivalent to give a OX -module homomorphism D : (ΩS×A1 |L∨)C∗

→

J ⊗C L such that D ◦ d′ = v′αβ .

Now let φ : O
eL∨

α

∼= O
eL∨

β
be a bundle isomorphism inducing identity on OL∨ .

Consider the two projections πi : O
eS×A1 → O

eL∨
i
. The difference

D = πβ − φ ◦ πα : O
eS×A1 → O

eL∨

β

will have its image inside JO
eL∨

β
= J ⊗C OL∨ . It is easy to check that

D ∈ Der
eA(O

eS×A1 , J⊗COL∨) = DerC(OS×A1 , J⊗COL∨) ∼= HomOL∨
(ΩS×A1|L∨ , J⊗COL∨)
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and D◦d = vαβ . The fact that φ is a bundle isomorphism implies that D sends

(ΩS×A1|L∨)C∗

to J ⊗C OC∗

L∨ = J ⊗C L. This gives a spliting of Eαβ.

Conversely, any OX-module homomorphism

D : (ΩS×A1|L∨)C∗

→ J ⊗C OC∗

L∨

with D ◦ d′ = v′αβ can be extended uniquely to a OL∨-module homomorphism

D : ΩS×A1 |L∨ → J ⊗C OL∨ with D ◦ d = vαβ. Now consider

πβ −D ◦ d : O
eS×A1 −→ O

eL∨

β

If f̃ is a local function on S̃ ×A1 which vanishes on L̃∨
α and f be its restriction

to S × A1, then

πβ(f̃) − (D ◦ d)f = πβ(f̃) − vαβ(f)

is zero in O
eL∨

β
by the construction of vαβ .

Thus πβ − (D ◦ d) factors through πα, and therefore we recover the bundle

isomorphism φ from such D.

Remark. Proposition 2.3 still holds in the global case. Since the local extension does

not depending on the choice of embeddings, one can construct a global extension for

any two abstract liftings L̃∨
2 and L̃∨

1 by glueing together the local extensions using

the canonical isomorphisms in lemma 2.2 on the overlap of two open affine subsets.

22



One checks easily that the glued extension satisfies the properties in the proposition.

We will not need the global case in the construction of the obstruction space.

�

The rest of the proof is entirely based on the construction in [35]. The idea is to

use extension cocycles to measure the obstructions to patching together local liftings

(which always exist since X is l.c.i) coherently.

Here we collect some useful results about extension cocycles and refer to [35] for

details.

Definition 2.4. Let F , G be sheaves of OX-modules, {Uα} be an open covering of

X. An extension cocycle

({Eαβ}, {Fαβγ})

of F by G on {Uα} is a collection of extensions {Eαβ} of F|Uαβ
by G|Uαβ

, and isomor-

phisms

Fαβγ : Eαβ + Eβγ ∼= Eαγ

on Uαβγ satisfying the compatibility condition as in (2.11).

Two extension cocycles ({Eαβ}, {Fαβγ}), ({E ′
αβ}, {F

′
αβγ}) are isomorphic if there exist

isomorphism of extensions

φαβ : Eαβ ∼= E ′
αβ

such that

φαγ ◦ Fαβγ = F ′
αβγ ◦ (φαβ + φβγ).
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Definition 2.5. We say an extension cocycle is a boundary if it is isomorphic to

∂{Eα} = ({Eα − Eβ}, Fαβγ)

for a collection of extensions {Eα} of F|Uα
by G|Uα

, where

Fαβγ : Eα − Eβ + Eβ − Eγ −→ Eα − Eγ

is the obvious isomorphism.

The set of isomorphism classes of extension cocycles form an abelian group, and

the boundaries form a subgroup. The quotient group is called the group of extension

classes, and is denoted by ΞOX
(Uα;F ,G). We refer to section 3 in [35] for the proofs

of the above facts.

The following theorem is taken from theorem (3.13) of [35]. For the convenience of

the reader, we sketch the proof here.

Theorem 2.6. For {Uα} a good cover, there is canonical group isomorphism of

ΞOX
(Uα;F ,G) with the kernel of the localization map Ext2

OX
(F ,G) → H0(X, Ext2(F ,G)).

Proof. Let J be an injective sheaf of OX -modules containing G and Q be the quotient.

0 // G
j

// J
π // Q // 0.

Then the boundary map

Ext1
OX

(F ,Q) ∂ // Ext2
OX

(F ,G)
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is an isomorphism and we have a commutative diagram

Ext1
OX

(F ,Q)
∼= //

��

Ext2
OX

(F ,G)

��

H0(X, Ext1OX
(F ,Q))

∼= // H0(X, Ext2OX
(F ,G))

where the vertical arrows are localization maps. Hence the kernel of the left column

is isomorphic to the kernel of the right column. But from the local-to-global spectral

sequence, we get an exact sequence

0 // H1(X,HomOX
(F ,Q)) // Ext1

OX
(F ,Q) // H0(X, Ext1OX

(F ,Q))

Thus theorem follows from lemma 2.7.

Lemma 2.7. There is a canonical isomorphism

ΞOX
(Uα;F ,G) ∼= Ȟ1(Uα,HomOX

(F ,Q)).

Proof. Let ({Eαβ}, {Fαβγ}) be an isomorphism class of extension cocycles of F by G.

Since J is injective, we can we can find a homomorphism σαβ : Eαβ → J such that

the diagram on Uαβ
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0

��
0 // G

j
//

lαβ

��

J
π // Q // 0

Eαβ

kαβ

��

σαβ

>>
}

}
}

}
}

}
}

}

F

��
0

is commutative. We claim that we can do this coherently in the sense that

σαβ + σβγ = σαγ ◦ Fαβγ : Eαβ + Eβγ // J (2.12)

where σαβ + σβγ sends (e1, e2) ∈ Eαβ + Eβγ to σαβ(e1) + σαβ(e2).

Choose arbitrary homomorphisms σαβ such that σαβ ◦ lαβ = j and consider

ταβγ = (σαβ + σβγ) − σαγ ◦ Fαβγ : F −→ J .

It is easy to check that {ταβγ} is a Čech 2-cocycle in HomOX
(F ,J ). Since HomOX

(F ,J )

is flasque and thus has no higher cohomology. Hence we can find 1-cochain {ταβ} such

that ταβγ = ταβ − ταγ + τβγ . If we set

σ̃αβ = σαβ + ταβ

we see easily that σ̃αβ satisfies the coherence condition (2.12). Claim is proved.

Now we describe a homomorphism from ΞOX
(Uα;F ,G) to Ȟ1(Uα,HomOX

(F ,Q)) as

below. Choose σαβ satisfying the coherence condition (2.12). Then

π ◦ σαβ : Eαβ → Q
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sends G to zero and therefore induces ηαβ : F → Q satisfying ηαβ + ηβγ = ηαγ .

So we have associated to the extension cocycle ({Eαβ}, {Fαβγ}) an element {ηαβ} ∈

Ȟ1(Uα,HomOX
(F ,Q)). This does not depend on the choice of σαβ . If {ηαβ} represent

zero class, let ηαβ = ηβ − ηα and set Eα = η∗αJ . Here we view J as an extension of

Q by G. Since Eαβ is isomorphic to η∗αβJ , we conclude that Eαβ is isomorphic to the

boundary extension cocyle {Eβ −Eα}. This gives the injectivity. For the surjectivity,

let ηαβ represent a class in Ȟ1(Uα,HomOX
(F ,Q)). Set

Eαβ = η∗αβJ

and

Fαβγ : Eαβ + Eβγ = η∗αβJ + η∗βγJ
∼= (ηαβ + ηβγ)

∗J = η∗αγJ = Eαγ

is the natural homomorphism.

To finish the construction of the obstruction class, we cover X by open affine

subscheme {Uα} such that L∨
α = L∨|Uα

has a lifting L̃∨
α over Ũα. The difference of L̃∨

α

and L̃∨
β on the overlap corresponds to an extension Eαβ of P1

Uαβ
(Lαβ) by J ⊗C Lαβ .

For each triple α, β, γ, consider the isomorphism

Fαβγ : Eαβ + Eβγ ∼= Eαγ

in proposition 2.3 (a).

Then (Eαβ, Fαβγ) is an extension cocycle, which we will denote simply by (Eαβ). If
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L
∨

α is another collections of liftings, coresponding to another extension cocycle (E ′
αβ),

we get isomorphisms

Eαβ ∼= E ′
αβ + E(L̃∨

α,L
∨

α) − E(L̃∨
β ,L

∨

β ).

by proposition 2.3 (a). One checks that this is an isomorphism of extension cocycles.

Thus the class of

[Eαβ] ∈ ΞOX
(Uα;P

1
X(L), J ⊗C L)

is independent of the choice of local liftings.

A global lifting exists if and only if we can choose local liftings L̃∨
α and isomorphisms

of line bundles φαβ : L̃∨
α → L̃∨

β satisfying the cocycle condition

φαβ ◦ φβγ = φαγ .

By proposition 2.3 (c), to give φαβ is equivalent to assigning splittings for Eαβ. It is

easy to check that φαβ satisfies cocycle condition if and only if (Eαβ) is isomorphic to

the trivial extension cocycle.

Conversely, if the class

[Eαβ] ∈ ΞOX
(Uα;P

1
X(L), J ⊗C L)

is zero, (Eαβ) is isomorphic to a boundary (Eα − Eβ). By proposition 2.3 (b), we can

choose local lifting L
∨

α such that E(L̃∨
α,L

∨

α)
∼= Eα. Then L

∨

α will patch together to

give a global lifting.

Combine the above discussion with theorem 2.6 and the fact that Ext2OX
(P1

X(L), L) =

0 (since (2.9) is a locally free resolution of P1
X(L)), we get
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Theorem 2.8. Let X be a l.c.i scheme, L a line bundle on X. For any small

extension

e : 0 // J // Ã // A // 0

and any deformation (X ,L) of (X,L) over A,

(a) There is an element

◦(e) ∈ J ⊗C Ext2
OX

(P1
X(L), L),

such that ◦(e) = 0 if and only if a lifting (X̃ , L̃) of (X ,L) to Ã exists.

(b) If a lifting exists, the set of isomorphism classes of liftings is a principal homo-

geneous space for the group

J ⊗C Ext1
OX

(P1
X(L), L).
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CHAPTER 3

THE MAXIMAL RANK CONJECTURE FOR LINE

BUNDLES OF EXTREMAL DEGREE

3.1 Introduction

In this chapter, we take a first step to attack the maximal rank conjecture. We start

with a result by Green and Lazarsfeld [25] asserting that any very ample line bundle

L on C with

deg L ≥ 2g + 1 − 2h1(L) − Cliff(C)

or equivalently

Cliff(L) < Cliff(C), (this implies that h1(L) ≤ 1)

is projectively normal, where Cliff(C) is the clifford index of C:

Cliff(C) := min{Cliff(A) | A line bundle on C, h0(A) ≥ 2, h1(A) ≥ 2}

and

Cliff(A) = deg A− 2r(A).

and for a general curve C, Cliff(C) = ⌊g−1
2
⌋.
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It is also showed by Green and Lazarsfeld that the bound 2g+1−2h1(L)−Cliff(C)

is the best possible. There are line bundles of degree one less than this bound which

are not normally generated. We say a line bundle L on C has extremal degree if

deg L = 2g − 2h1(L) − Cliff(C),

that is,

Cliff(L) = Cliff(C).

On the other hand, if the maximal rank conjecture were true, we should still expect

projective normality for general line bundles of extremal degree on general curves.

Thus the extremal degree range may be thought of as the first unknown case to test

the maximal rank conjecture. There are four cases according to the value of h1(L):

(1) h1(L) = 0. L is non special and the MRC follows from [11].

(2) h1(L) = 1. If g = 2l even, L is a gl3l−1 and ρ = l − 1; if g = 2l + 1 odd, L is a

gl3l and ρ = l.

(3) h1(L) = 2. If g = 2l even, L is a gl−1
3l−3 and ρ = 0; if g = 2l + 1 odd, L is a gl−1

3l−2

and ρ = 1.

(4) h1(L) ≥ 3. The Brill-Noether number is negative. There are no such grd’s

(r ≥ 3) on a general curve.

In this chapter, we prove the MRC for the remaining open cases (2) and (3).
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Theorem 3.1. Let C be a general curve of genus g (g ≥ 10 if g even, g ≥ 13 if

g odd), L be a general line bundle of extremal degree on C, then (C,L) satisfies the

MRC, or equivalently, is projectively normal.

By the H0 lemma of Green (theorem (4.e.1) of [23]), in our degree range, H0(L)⊗

H0(Lk) → H0(Lk+1) is surjective for any k ≥ 2. Thus it suffices to prove µ2 in (1.1)

is surjective. We apply a new method, using deformation theory, to prove this fact.

The general idea of this method is as follows. Instead of looking for some (C0, L0)

such that µ2 is of maximal rank there, consider a one parameter family of pairs

(Ct, Lt) ∈ Wr
d , specializing to some (C0, L0) (C0 could be singular) with µ2(0) not

necessarily of maximal rank. Suppose moreover that all global sections of L0 extends

to Lt. Then one can construct obstruction maps

δ1 : Ker(µ2(0)) // Coker(µ2(0))

and inductively

δn+1 : Ker(δn) // Coker(δn)

such that an element s ∈ Ker(µ2(0)) extends to Ker(µ2(t)) modulo tn+1 if and only

if δi(s) = 0 for i = 0, ..., n.

For the decreasing sequence

Ker(µ2(0)) ⊃ Ker(δ1) ⊃ ... ⊃ Ker(δn) ⊃ ...

if we can show that the vector space V =
⋂
i Ker(δi) consisting of elements which

deform to Ker(µ2(t)) to any order is of “correct dimension”, then µ2(t) is of maximal

rank. Said differently, it suffices to prove that δn is of maximal rank for some n ∈ Z+.
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We find a nice singular curve C0 on which the computation of obstructions is

surprisingly simple. Enough information in the obstruction maps δn is captured by

the natural multiplication map

κn : H0(C0, Ln) ⊗H0(C0, L−n) // H0(C0, L
2
0)

in the following theorem:

Theorem 3.2. Let (Ct, Lt) ∈ Wr
d be a one parameter family of pairs (with smooth

total space L → C) degenerating to (C0, L0) with C0 = X∪Y a nodal curve consisting

of two smooth curves of genus gX, gY meeting at a point p. Write Ln = L(nY )|C0
.

Suppose all (global) sections of Ln extend to Lt for |n| ≤ a and the natural map

⊕a
n=0H

0(C0, Ln) ⊗H0(C0, L−n)
κ=⊕nκn// H0(C0, L

2
0) (3.1)

is surjective (resp. of rank = dimC Sym2H0(L0)) for some a ∈ Z+, then the multi-

plication map µ2(t) is surjective (resp. injective) for small t 6= 0.

Notice that κ only depends on (C0, L0), not on the actual family specializing to it.

This simple way to describe higher order obstructions is new and it is reasonable to

expect that it will have other applications.

The significance of theorem 3.2 is that we are now reduced to finding a smoothable

(C0, L0) such that all sections of Ln extend to the nearby fiber and ⊕a
n=0κn (instead

of κ0 = µ2(0)) is of required rank. By making a good choice of (C0, L0), we manage

to prove theorem 3.1 by showing that κ in theorem 3.2 is surjective.

This chapter is organized as follows:
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In section 3.2, we set up some machinery which measures the obstructions for

elements of Ker(µk(0)) to extend to Ker(µk(t)).

In section 3.3, we compute the obstruction maps δn for the special degeneration

described in theorem 3.2 and give a proof of this theorem.

Section 3.4 contains a proof of the main theorem 3.1.

Finally, in section 3.5, we include some technical facts about canonical bundles on

general curves which are needed in the proof of the main theorem.

3.2 Infinitesimal study of the degeneracy loci

Let C0 be a reduced l.c.i curve over C and L0 be a degree d line bundle on C0

with h0(L0) = r + 1. By theorem 2.8 of chapter 2, the deformations of the pair

(C0, L0) are unobstructed. Let S be the versal deformation space of (C0, L0), then S

is smooth near (C0, L0). Let Wr
d be the subvariety of S consisting of (C,L) such that

h0(L) ≥ r + 1. Consider the multiplication map

SymkH0(C,L)
µk

// H0(C,Lk) . (3.2)

We may think of this map as a morphism between two vector bundles (at least

near the point (C0, L0)) over Wr
d as (C,L) varies in Wr

d . We are interested in the

infinitesimal properties of the locusD consisting of (C,L) such that the multiplication

map is not of maximal rank, i.e it is neither injective nor surjective. Our goal is to

show that D is a proper subvariety of Wr
d (assuming Wr

d irreducible near (C0, L0)).

Suppose now that there is a (flat) one parameter family (Ct, Lt) of pairs specializing

to (C0, L0) such that all sections of L0 extend to Lt. If µk(0) is not of maximal rank at

34



(C0, L0), then the dimension of Ker(µk(0)) is bigger than expected. We would like to

knock down this dimension by showing that only an expected number of independent

sections of Ker(µk(0)) can extend to Ker(µk(t)). Thus µk(t) is of maximal rank for

t 6= 0.

Our goal in this section is to set up some machinery which measures the obstruc-

tions for elements of Ker(µk(0)) to extend to Ker(µk(t)).

To this end, let (C,L) be the total space of the one parameter family and (Cn,Ln)

be the restriction of (C,L) to Spec C[t]
(tn+1)

=: SpecRn. Let Mn = SymkH0(Cn,Ln),

Nn = H0(Cn,L
k
n) and µn : Mn → Nn be the multiplication map.

We have Mi+1⊗Ri+1
Ri = Mi, Ni+1⊗Ri+1

Ri = Ni compatibly with µi for any i ≥ 0.

Lemma 3.3. Under the above notations and assumptions, there exist obstruction

maps

δn+1 : Ker(δn) → Coker(δn)

for n ≥ 0 such that δ0 = µ0 and s ∈ Ker(µ0) can be lifted to Ker(µn) if and only if

δi(s) = 0 for i = 0, ..., n.

Proof. For each n ≥ 0 consider

0 // M0
·tn+1

//

µ0

��

Mn+1
pn+1

//

µn+1

��

Mn
//

µn

��

// 0

0 // N0
·tn+1

// Nn+1
qn+1

// Nn
// 0

(3.3)

Let δ′n+1 : Ker(µn) → Coker(µ0)) be the connecting homomorphism of (3.3) from
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snake lemma. Fix s0 ∈ Ker(µ0) and n ≥ 1. Suppose s0 has a lifting sn ∈ Ker(µn).

Let s′n+1 ∈Mn+1 be any lifting of sn. Suppose that µn+1(s
′
n+1) = tn+1v with

v = µ0(s
′
0) + δ′1(p1(s

′
1)) + ...+ δ′n(pn(s

′
n)), (3.4)

then

s′n+1 − (tn+1s′0 + tns′1 + ...+ ts′n) ∈ Ker(µn+1).

On the other hand, if (3.4) has no solution for any collection s′j ∈ Mj with pj(s
′
j) ∈

Ker(µj−1), then s0 has no lifting to Ker(µn+1).

Now, simply define δn+1(s0) = δ′n+1(sn) = v as an element of

Coker(µ0)∑n
i=1 Im(δ′i)

= Coker(δn).

Then δn+1(s0) does not depend on the choice of sn and is equal to zero in Coker(δn)

if and only if s0 can be lifted to Ker(µn+1).

Finally, we check

Coker(µ0)∑n+1
i=1 Im(δ′i)

= Coker(δn+1).

By theorem 2.1 of chapter 2, (C1,L1) determines a tangent vector ξ ∈ T(C0,L0)S =

Ext1
OC0

(P1
C0

(L0), L0) which annihilates H0(C0, L0). This means exactly that ξ is

tangent to Wr
d ⊂ S at (C0, L0). ξ is a tangent direction such that the rank of µk0 does

not increase if and only if

δ1 : Ker(µk0) −→ Coker(µk0)
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is zero. If this is the case, then every element in Ker(µk0) extends to Ker(µk1), thus to

first order, the rank of the map µk does not increase (It does not decrease either, by

lower semicontinuity of the rank).

On the other hand, if δ1 is of maximal rank, there are two cases:

1) δ1 is injective. No elements of Ker(µk0) will extend to Ker(µk1), thus for a general

t 6= 0, the multiplication map (3.2) is injective at (Ct, Lt).

2) δ1 is surjective. Only a subspace of Ker(µk0) of dimension equal to

dimC Ker(µk0) − dimC Coker(µk0) = dimC SymkH0(L0) − h0(Lk0)

will extend to first order, therefore, for the nearby (Ct, Lt), the multiplication map

(3.2) is surjective.

Suppose now that δ1 is not of maximal rank. It is not possible to test if the nearby

multiplication map is of maximal rank to first order. We have to look at the higher

order obstruction maps δn.

By lemma 3.3, any s ∈ Ker(µk0) can be extended to Ker(µkn) if and only if δi(s) = 0

for i = 0, ..., n. Let n be the smallest integer such that δn is of maximal rank (if

it exists). Since the index of δi Ind δi := dimC Ker(δi) − dimC Coker(δi) is always

constant for any i, we see that only a subspace of Ker(µk0) of expected dimension (0

if δn injective, Ind δn if δn surjective) can be extended to Ker(µkn). Therefore, the

multiplication maps for nearby fibers are of maximal rank.

We have proved the following proposition:

Proposition 3.4. If δn is of maximal rank for some n ∈ Z+, the multiplication map

µk is of maximal rank for nearby fibers.
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3.3 A nice degeneration

To use proposition 3.4, we need to compute the obstruction maps δn, which in

general is difficult. However, for the k = 2 case, there is a nice degeneration on which

the computation is surprisingly simple.

Let L → C be the total space of a one parameter family (Ct, Lt) ∈ Wr
d degenerating

to (C0, L0) with C0 = X ∪ Y a nodal curve consisting of two smooth curves of genus

gX , gY meeting at a point p. Write Ln = L(nY )|C0
. Suppose all sections of Ln extend

to Lt for |n| ≤ a. Notice that Ln|X = L0|X(np) and Ln|Y = L0|Y (−np), thus Ln only

depends on (C0, L0), not on the family specializing to it.

Figure 3.1: Smooth curves degenerating to a nodal curve

The multiplication map

Sym2H0(C0, L0)
µ(0)

// H0(C0, L
2
0) (3.5)

is usually not of maximal rank here, which means dimension of Ker(µ(0)) is bigger

than it should be.
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There are some obvious elements in Ker(µ(0)). LetW be the subspace of Sym2H0(L0)

spanned by

{σ · τ : σ, τ ∈ H0(L0), σ|X ≡ 0, τ |Y ≡ 0, }.

Clearly W is a subspace of Ker(µ(0)). Let’s compute the image of W under

δ1 : Ker(µ(0)) // Coker(µ(0)).

Let σ̃, τ̃ be sections of L which extend σ, τ respectively (They always exist, since

by assumption, all sections of L0 extend to Lt). Then σ̃ = σ̃′sX , τ̃ = τ̃ ′sY , where sX

(resp. sY ) is a section of OC(X) (resp. OC(Y )) which vanishes exactly on X (resp Y )

and σ̃′ (resp. τ̃ ′) is a section of L(−X) (resp. L(−Y )). By the construction of δ1,

δ1(σ · τ) =
σ̃τ̃

t
|C0

=
σ̃′sX τ̃

′sY
t

|C0
= σ̃′τ̃ ′|C0

mod Im(µ(0))

Therefore, the image of W under δ1 is equal to the image of the composition

H0(L1) ⊗H0(L−1)
κ1 // H0(L2

0)
// Coker(µ(0)).

δ1 in general is not injective. Let α be any section of L(−2X), β be any section of

L(−2Y ). Then (αs2
X)|C0

· (βs2
Y )|C0

∈ W ⊂ Ker(µ(0)), and δ1((αs
2
X)|C0

· (βs2
Y )|C0

) =

αs2X ·βs2Y
t

|C0
≡ 0. Clearly (αs2

X) · (βs2
Y ) ∈ Ker(µ1) as in diagram (3.3), and therefore

δ2((αs
2
X)|C0

· (βs2
Y )|C0

) =
αs2

X · βs2
Y

t2
|C0

= αβ|C0
.

Thus the image of δ2 contains the image of the composition

H0(L2) ⊗H0(L−2)
κ2 // H0(L2

0)
// Coker(δ1).
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Similarly, the image of δn contains the image of the composition

H0(Ln) ⊗H0(L−n)
κn // H0(L2

0)
// Coker(δn−1).

Therefore, we have a surjection

H0(L2
0)

Pa
n=0 Im(κn)

// // Coker(δa).

for any positive integer a.

The above analysis immediately gives a proof of theorem 3.2 because if

⊕a
n=0H

0(C0, Ln) ⊗H0(C0, L−n)
κ=⊕nκn// H0(C0, L

2
0)

is surjective (resp. of rank = dimC Sym2H0(L0)) for some a ∈ Z+, then δa is of max-

imal rank and therefore by proposition 3.4, the multiplication map µ2(t) is surjective

(resp. injective) for small t 6= 0.

3.4 Proof of the main theorem

We will prove theorem 3.1 in this section.

Notice that in our degree and genus range, the MRC for L is equivalent to the

statement that L is projectively normal. By theorem (4.e.1) of [23], in our degree

range, H0(L) ⊗H0(Lk) → H0(Lk+1) is surjective for any k ≥ 2. Thus to show such

L is projectively normal, it suffices to show the multiplication map µ2 in (3.2) is

surjective.

The idea is to make a good choice of (C0, L0) such that the hypothesis of theorem

3.2 is satisfied. We need the following lemma:
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Lemma 3.5. Let (C0, L0) be the same as theorem 3.2. Write LX = L0|X and LY =

L0|Y . Suppose the restriction maps H0(C0, Ln) → H0(X,LX(np)) and H0(C0, Ln) →

H0(Y, LY (−np)) are surjective for −a ≤ n ≤ a. If

⊕a
n=0H

0(LX(np)) ⊗H0(LX(−np)) // // H0(L2
X) (3.6)

and

⊕a
n=0H

0(LY (np)) ⊗H0(LY ((−n− 1)p)) // // H0(L2
Y (−p)) (3.7)

are both surjective, then the natural map κ in (3.1) is surjective.

Proof. Let s be any element ofH0(C0, L
2
0). Since (3.6) is surjective, and any section of

LX(np) extends to a section of Ln, we can modify s by some element in the image of κ

such that s|X ≡ 0. Thus we can assume s|X ≡ 0, then s|Y ∈ H0(L2
Y (−p)). Since (3.7)

is surjective, s|Y =
∑a

n=0(xnyn) with xn ∈ H0(LY (np)), yn ∈ H0(LY ((−n−1)p)). We

can view yn as a section of H0(LY (−np)) which vanishes at p, thus can be extended

constantly 0 to X as a section of Ln. Still call it yn. Extend xn arbitrarily to X as a

section of L−n. Then
∑a

n=0 κ(xn ⊗ yn) = s.

We now take C0 = X ∪ Y , where X and Y are general curves of genus gX , gY

meeting transversely at a general point p. In particular, p is not a Weierstrass point

of either X or Y . We will divide the proof of the main theorem 3.1 into two parts,

according to the value of h1(L).

1. h1(L) = 2 case.
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Since the residual series N of L is either a g1
l+1 or g1

l+2 depending on g = 2l

even or g = 2l + 1 odd. We will work backwards by starting with a line bundle N

with h0(N) = 1 and take its residual line bundle. Here we take a simple N whose

restriction to X and Y are just suitable multiples of OX(p) and OY (p), then take L0

as the residual series of N .

There are two subcases:

(1) g = 2l even. Here we are dealing with gl−1
3l−3’s. (l ≥ 6. l = 5 needs a special

argument and is proved in the appendix.) Let gX = gY = l, LX = KX(−⌈ l−1
2
⌉p)

and LY = KY (−⌊ l−1
2
⌋p).

(2) g = 2l+1 odd. L is a gl−1
3l−2 (l ≥ 6). Take gX = l+1, gY = l, LX = KX(−⌈ l

2
⌉p),

and LY = KY (−⌊ l
2
⌋p)

In both cases, it is easy to prove using the theory of limit linear series (see [16])

that (C0, L0) are smoothable in such a way all sections of L0 extend to nearby. More

precisely, the corresponding limit linear series on C0 has aspects VX = (l−1)p+ |KX|,

VY = (l − 1)p + |KY | in case g = 2l, and VX = (l − 1)p + |K(−p)|, VY = lp + |KY |

in case g = 2l+ 1. They are both smoothable because the variety of limit liner series

with the same ramification sequence as (VX , VY ) at p has expected dimensions.

Proposition 3.6. For (C0, L0) as described above, the natural map (3.1) is surjective.

Proof. Case (1). Here Ln|X = KX((−⌈ l−1
2
⌉ + n)p), L2

X = K2
X(−2⌈ l−1

2
⌉p). Ap-

ply lemma 3.8 or 3.9 for a = −⌊ l−1
2
⌋, LX satisfies (3.6). Meantime, L2

Y (−p) =

42



K2
Y (−(2⌊ l−1

2
⌋ + 1)p) and 2⌊ l−1

2
⌋ + 1 is either l − 1 or l depending on l even or odd.

Again by lemma 3.8 or 3.9, LY satisfies (3.7).

Case (2). Take a = ⌈ l
2
⌉ − 1. Ln|X = KX((−⌈ l

2
⌉ + n)p), L2

X = K2
X(−2⌈ l

2
⌉p),

L2
Y = K2

Y (−2⌊ l
2
⌋p).

If l even, by lemma 3.9, we see that LY satisfies (3.6) and LX satisfies (3.7) (notice

gX = l + 1).

If l odd, again by lemma 3.9, LX satisfies (3.6) and LY satisfies (3.7).

Thus in either case, the hypotheses of lemma 3.5 are satisfied, and therefore κ in

(3.1) is surjective.

2. h1(L) = 1 case

We are dealing with the residual series of g0
l−1’s if g = 2l and g0

l ’s if g = 2l + 1, so

smoothability is not a problem. Again there are two subcases:

(1) g = 2l even. L is a gl3l−1. Let gX = gY = l, DX (resp. DY ) be a divisor consisting

of ⌈ l−1
2
⌉ (resp. ⌊ l−1

2
⌋) general points on X (resp. Y ). Take LX = KX(p−DX),

LY = KY (p−DY ).

(2) g = 2l+1 odd. L is a gl3l. Let gX = l+1, gY = l DX a general divisor of degree

⌈ l
2
⌉ on X and DY a general divisor of degree ⌊ l

2
⌋ on Y . Take LX = KX(p−DX),

LY = KY (p−DY ).

Proposition 3.7. For (C0, L0) as described above, the natural map (3.1) is surjective.

Proof. Case (1). Let MX = LX((⌈ l−1
2
⌉ + 1)p) = KX((⌈ l−1

2
⌉ + 2)p − DX), MY =

LY ((⌊ l−1
2
⌋ + 1)p) = KY ((⌊ l−1

2
⌋ + 2)p−DY ).
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If l even, L2
X = K2

X(2p − 2DX) = M2
X(−(l + 2)p). By lemma 3.10, LX satisfies

(3.6). L2
Y (−p) = K2

Y (p− 2DY ) = M2
Y (−(l + 1)p), LY satisfies (3.7).

If l odd, L2
X = K2

X(2p − 2DX) = M2
X(−(l + 1)p), LX satisfies (3.6). L2

Y (−p) =

K2
Y (p−DY ) = M2

Y (−(l + 2)p), thus LY satisfies (3.7) by lemma 3.10.

Case (2). LetMX = LX((⌈ l
2
⌉+1)p) = KX((⌈ l

2
⌉+2)p−DX), MY = LY ((⌊ l

2
⌋+1)p) =

KY ((⌊ l
2
⌋ + 2)p−DY ).

If l even, L2
Y = K2

Y (2p−2DY ) = M2
Y (−(l+2)p), thus LY satisfies (3.6). L2

X(−p) =

K2
X(p− 2DX) = M2

X(−(l + 3)p) = M2
X(−(gX + 2)p), LX satisfies (3.7).

If l odd, L2
X = K2

X(2p− 2DX) = M2
X(−(l + 3)p) = M2

X(−(gX + 2)p), LX satisfies

(3.6). L2
Y (−p) = K2

Y (p− 2DY ) = M2
Y (−(l + 2)p)), LY satisfies (3.7).

Thus in either case, the hypotheses of lemma 3.5 are satisfied, and therefore κ in

(3.1) is surjective.

Combining propositions 3.6, 3.7 and theorem 3.2,

Sym2H0(Ct, Lt)
µ2(t)

// H0(Ct, L
2
t )

is surjective for small t 6= 0. Since there is a unique component P of Wr
d which domi-

nate Mg (ρ > 0 case follows from the Gieseker-Petri theorem and the connectedness

of W r
d (C); ρ = 0 case follows from [17]), to prove theorem 3.1, it suffices to arrange

so that (Ct, Lt) ∈ P . But this is immediate because C0 is a general point of the

boundary of Mg.
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3.5 Some facts about canonical bundles on general curves

We present some technical facts about canonical bundles for a general curve in

this section. They are needed in the proof of the main theorem. Lemma 3.8 to 3.10

are used in the previous section to show that maps of the type of (3.6) and (3.7) are

surjective for the specific L0 we choose in section 3.4.

Lemma 3.8. For a general smooth curve X of genus l ≥ 4, and p ∈ X a general

point (in particular,not a Weierstrass point), the natural map

∑
i+j=l−1,i,j≥0H

0(KX(−ip)) ⊗H0(KX(−jp))
ml−1 // H0(K2

X(−(l − 1)p))

is surjective and

∑
i+j=l,i,j≥1H

0(KX(−ip)) ⊗H0(KX(−jp))
ml // H0(K2

X(−lp))

is of corank at most 1.

Proof. Choose {ω0, ..., ωl−1} a basis of H0(KX) adapted to the flag

H0(KX) ) H0(KX(−p)) ) ... ) H0(KX(−(l − 1)p),

i.e. H0(KX(−ip)) = span{ωi, ..., ωl−1} for any i. By generality of X and p, we can

assume KX(−(l− 2)p) is a base point free pencil. By base point free pencil trick, the

kernel of the map

H0(KX) ⊗H0(KX(−(l − 2)p)
m′

// H0(K2
X(−(l − 2)p)) (3.8)

is H0(KX ⊗K−1
X ((l − 2)p) = H0(OX(l − 2)p). By Riemann-Roch, h0(OX(l − 2)p) =

h0(KX(−(l−2)p))+ l−2− l+1 = 1. Thus, by dimension count, m′ is surjective with
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a one dimension kernel generated by ωl−1 ⊗ ωl−2 − ωl−2 ⊗ ωl−1. We obtain a basis of

H0(K2
X(−(l − 2)p):

ω2
l−1, ωl−1ωl−2, ..., ωl−1ω1, ωl−1ω0,

ω2
l−2, ωl−2ωl−3 , ..., ωl−2ω1, ωl−2ω0.

(3.9)

Except ωl−2ω0, every other element of the above basis lies in the image of ml−1, thus

ml−1 is surjective. Similarly, except ωl−2ω0, ωl−1ω0, ωl−2ω1, every other element of

the above basis lies in the image of ml. Therefore, ml is of corank at most 1.

Lemma 3.9. For a general curve X of genus l ≥ 6, and p ∈ X a general point, ml

in lemma 3.8 is surjective.

Proof. It suffices to find some (X, p) for which ml is surjective. Take a special (X, p)

such that KX(−(l − 2)p) is a pencil with a base point q 6= p and that q is not a

base point of KX(−(l − 3)p). This is equivalent to find a X and p, q ∈ X such

that h0(OX((l − 2)p + q)) = 2 and h0(OX((l − 3)p + q) = h0(OX((l − 2)p)) = 1.

One can actually choose X to be a general point of Ml (but (X, p) is not general in

Ml,1). This is because by theorem 3.13, there exists a g1
l−1 on a general curves X

with vanishing sequence (0, l − 2) at some point p ∈ X, and by theorem 3.12, such

a g1
l−1 is base point free, complete and its residual series has a unique base point q.

For such (X, p), any element in

V = Im(
∑2

i=1H
0(KX(−ip)) ⊗H0(KX(−(l − i)p))

ml // H0(K2
X(−lp)))
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vanishes at q. Now, take ωl−3 ∈ H0(KX(−(l − 3)p)) which does not vanish at q,

then ω2
l−3 is in the image of ml but does not lie in V . It remains to show for this

special (X, p), V is still of codimension 1 in H0(K2
X(−lp)). Since KX(−(l− 2)p) has

a unique base point q, by base point free pencil trick, the kernel of m′ in (3.8) is

isomorphic to H0(OX((l − 2)p + q))), which is 2 dimensional. By dimension count,

m′ is corank 1, and there is exactly 1 linear relation among the generators in (3.9).

Let τ ∈ H0(OX((l−2)p+ q)) be a section viewed as a rational function having a pole

of order exactly l− 2 at p and a pole of order 1 at q, then the kernel of m′ is spanned

by

τωl−1 ⊗ ωl−2 − τωl−2 ⊗ ωl−1

and

ωl−1 ⊗ ωl−2 − ωl−2 ⊗ ωl−1.

Where {ωl−2, ωl−1} span H0(KX(−(l − 2)p)). Since a general curve only has normal

Weierstrass points, h0(KX(−(l − 1)p) = 1. We can assume ωl−2 vanishes to order

exactly l−2 at p. Thus τωl−2 ∈ H0(KX) does not vanish at p, and the linear relation

between the generators in (3.9) will have non-zero coefficient in ωl−1ω0. Thus

ω2
l−1, ωl−1ωl−2, ..., ωl−1ω1,

ω2
l−2, ωl−2ωl−3 , ..., ωl−2ω2.

are still linearly independent, and therefore V is still of codimension 1 inH0(K2
X(−lp)).
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Lemma 3.10. Let X be a general curve of genus l ≥ 6, D is a divisor of degree

0 < d < l − 2 consisting of d distinct general points, p ∈ X is a general point. Let

M = KX(−D + (d+ 2)p). Then the multiplication maps

∑
i+j=l+1,i,j≥0H

0(M(−ip)) ⊗H0(M(−jp)) // H0(M2(−(l + 1)p)) (3.10)

and

∑
i+j=l+2,i,j≥1H

0(M(−ip)) ⊗H0(M(−jp)) // H0(M2(−(l + 2)p)) (3.11)

are both surjective.

Proof. The idea is similar to the previous two lemmata. We have deg M = 2l,

h0(M) = l+1 and M(−lp) = KX(−D+(d+2− l)p) is a base point free pencil since

p is general. Consider

H0(M(−lp)) ⊗H0(M)
m′

// H0(M2(−lp)) (3.12)

By base point free pencil trick, Ker(m′) is isomorphic to H0(OX(lp)) and is 1 di-

mensional since p is not a Weierstrass point of X. Since h0(M2(−lp)) = 2l + 1, by

dimension count, m′ is surjective. Extend a basis {ωl, ωl+1} of H0(M(−lp)) to a

basis of H0(M):

{ ω0, ω1, ..., ωd, ω̂d+1, ωd+2, ..., ωl, ωl+1 } (3.13)

with each ωi vanish to order exactly i at p. The gap ω̂d+1 occurs because

h0(M(−(d + 1)p) = h0(KX(−D + p)) = h0(KX(−D)) = h0(M(−(d + 2)p).
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By the same argument as lemma 3.8, (3.10) is surjective and (3.11) is at most corank

1.

To prove that (3.11) is actually surjective for general (X,D, p), we specialize to

some (X,D, p) such that M(−lp) is a pencil with a base point q but q is not a base

point of M(−(l− 1)p). This is equivalent to h0(M(−lp− q)) = h0(M(−lp)) = 2 and

h0(M(−(l − 1)p − q)) = 2 or equivalently h0(OX(D + q + (l − d − 2)p)) = 2 and

h0(OX(D+(l− d− 2)p)) = 1. We can even choose (X, p) be a general point of Ml,1.

This is because by the existence half of theorem 3.11 (or by [32]), there exists a g1
l−1

with ramification sequence (0, l− d− 2) at p, and by the second half of theorem 3.11,

a general such g1
l−1 is base point free, complete, and its residual series has a unique

base point q. Then, as in lemma 3.9, ω2
l−1 is in the image of (3.11) but not in

V = Im(
∑2

i=1H
0(M(−ip)) ⊗H0(M(−(l + 2 − i)p)) // H0(M2(−(l + 2)p)))

It remains to prove for this special (X,D, p), V is still of codimension 1 inH0(M2(−(l+

2)p)). The problem here is that due to the base point q of M(−lp), Ker(m′) is iso-

morphic to H0(OX((lp + q)), which is 2 dimensional (because p is not a Weierstrass

point). Thus m′ is not surjective but corank 1. However, if H0(OX(ip + q)) is span

by {1, τ} with τ a rational function having pole of order exactly l at p, then Ker(m′)

is spanned by

τωl ⊗ ωl+1 − τωl+1 ⊗ ωl

and

ωl ⊗ ωl+1 − ωl+1 ⊗ ωl.

Again by theorem 3.11, we can even assume h0(M(−(l + 1)p)) = 1, and therefore
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can assume ml vanishes to order exactly l at p. Thus τωl does not vanish at p and by

the same argument as lemma 3.9, V is still of codimension 1 in H0(M2(−(l + 2)p)).

For the convenience of the reader, we state here some existence and non-existence

results in Brill-Noether theory which we used in the proof of Lemma 3.9 and 3.10.

Theorem 3.11. (Brill-Noether theorem, fixed ramification point) Let X be a general

curve of genus g, p ∈ X a fixed general point. For any sequence 0 ≤ m0 < ... < mr ≤

d, let ρ be the adjusted Brill-Noether number

ρ = g −

r∑

i=0

(mi − i+ g − d+ r).

and let ρ+ be the existence number

ρ+ = g −
∑

mi−i+g−d+r≥0

(mi − i+ g − d+ r)

If ρ+ is nonnegative, then X possesses grd’s with vanishing sequence (m0, .., mr) at p.

Moreover, the variety Grd(m0, ..., mr) parametrizing such grd’s is empty if ρ < 0 and

has pure dimension ρ if ρ ≥ 0.

Proof. For the existence half, see [31] theorem 3.2-1. For the second half, see [28]

theorem 5.37.

Theorem 3.12. (Non-existence for low ρmov)

Let X be a general curve of genus g, ρmov be the moving-point Brill-Noether number

ρmov = 1 + g − (r + 1)(g − d+ r) −

r∑

i=0

(mi − i).

50



If ρmov < 1 − r, then for any p ∈ X, there is no grd on X with vanishing sequence

(m0, ..., mr) at p.

Proof. See [31] theorem 4.3-6.

Theorem 3.13. (Existence of g1
d’s with movable ramification point)

Let X be a general curve of genus g, fix 0 < m1 ≤ d, then there exists a g1
d on X with

vanishing sequence (0, m1) at some point p ∈ X if g−d+1 ≥ 0 and the moving-point

Brill-Noether number ρmov = 1 + g − 2(g − d+ 1) − (m1 − 1) ≥ 0.

Proof. See [31] theorem 3.3-4 and example 3.3-8.

3.6 Appendix

We give a special treatment for the case of genus 10 curves C and a complete g4
12 |L|

on C. We include this case here because it does not follow from the general discuss

in section 3.4 (we need l ≥ 6 in lemma 3.9) and there is very interesting geometry

behind this example.

Since ρ = g− (r+1)(g− d+ r) = 0 in this case, by Brill-Noether Theorem, a general

genus 10 curve C has only finitely many g4
12s, and each g4

12 on C is very ample. It

is also known that for general such C, there exists some g4
12 |L| such that µ2 is not

injective, i.e. C is contained in some quadric hypersurface in P4 under the embedding

of |L|, if and only if C is contained in some K3 surface (see [20]). By proposition 2.2

of [13], the locus K in M10 consisting of curves contained in some K3 surface is a

divisor. (Interestingly, Farkas and Popa [20] proved that K is a counter example for
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the slope conjecture.) Thus, for a general genus 10 curve C, and any g4
12 |L| on C,

the multiplication map µ2 is injective (therefore an isomorphism, since the domain

and range of µ2 are of the same dimension).

Here we will use the results in the previous section to give a proof of this fact

without using the geometry of curves contained in K3 surfaces.

Proof. Notation the same as theorem 3.2. Take X and Y both general curves of

genus 5 meeting at a general point p. Take LX = KX(−2p) = g2
6, LY = KY (−2p)

(which is smoothable). We will check κ in (3.1) is surjective. Consider the following

exact sequence of sheaves:

0 // OC′
0
(2) // π∗OC0

(2) //
⊕5

k=1(Cpk
⊕ Cqk)

// 0 .

Where π : C0 −→ C ′
0 ⊂ P4 is the map given by the linear series |L0|. C ′

0 =

X ′ ∪ Y ′ is the image of π consisting of two degree 6 plane curves with 5 nodes, and

⊕5
k=1(Cpk

⊕ Cqk) is the skyscraper sheaf of rank 10 supported on the five nodes of

X ′ and five nodes on Y ′.

Taking the long exact cohomology sequence, we obtain

0 // H0(OC′
0
(2)) // H0(OC0

(2))
φ

//
⊕5

k=1(Cpk
⊕ Cqk)

// H1(OC′
0
(2)) // 0

From the above exact sequence we see that a section s ∈ H0(L2
0) is not coming

from pull back of H0(OP4(2)) if and only if φ(s) is not zero in C10, i.e. s separate at

least one node on C ′
0.

Now, choose σi sections of L1, σj sections of L−1 according to their value at the

inverse image under π of the ten nodes on C ′
0 as table 3.1 below. Where i = 0, 1,
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j = 2, 3, p′k, p
′′
k (resp. q′k, q

′′
k) are points in X (resp. Y ) which gets mapped to the

node pk (resp. qk) on X ′ (resp. Y ′). Here it suffices to consider two nodes on each

component, say k = 1, 2. Cross means that σi does not vanish at the corresponding

point, 0 means vanishing. For instance, σ0 is a section of L1, such that σ0|X is a

section of the g3
7 = KX(−p) on X that vanish on p′′1 and p′′2 but not on p′1 or p′2

(Although the g2
6 = KX(−2p) does not separate p′1, p

′′
1 or p′2, p

′′
2, the g3

7 does). σ0|Y

is a section of the g1
5 = KY (−3p) on Y that vanishes on q′1, q

′′
1 , but not on q′2 or q′′2 .

Similarly, for other σi. By the generality of X, Y and p, the assigned value in table

3.1 can be achieved.

Table 3.1:

p′1 p′′1 p′2 p′′2 q′1 q′′1 q′2 q′′2

σ0 × 0 × 0 × × 0 0

σ1 × 0 × 0 0 0 × ×

σ2 × × 0 0 × 0 × 0

σ3 0 0 × × × 0 × 0

Table 3.2 describes the difference of σiσj at p′k, p
′′
k and q′k, q

′′
k for k = 1, 2.
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Table 3.2:

p1 p2 q1 q2

φ(σ0σ2) × 0 × 0

φ(σ0σ3) 0 × × 0

φ(σ1σ2) × 0 0 ×

φ(σ1σ3) 0 × 0 ×

From table 3.2, we get a matrix of rank at least 3. Thus, Im(δ1) is mapped under

φ to a subspace of dimension at least 3 in C10. In other words, we have shown that

Ct for t 6= 0 is contained in at most one quadric in P4.

It remains to show that we get an extra dimension from

Im(H0(L2) ⊗H0(L−2) −→ H0(L2
0)).

Choose λ1 ∈ H0(L2), λ2 ∈ H0(L−2) according to table 3.3,

We get one more vector φ(λ1λ2) in C10. So we can add one row to the matrix in

table 3.2, to get table 3.4.

To show the matrix in table 3.4 has rank 4, it suffices to show that the first row

and the last row can be chosen linearly independently, or equivalently, that

σ0|X · σ2|X
λ1|X · λ2|X

(p′1) 6=
σ0|Y · σ2|Y
λ1|Y · λ2|Y

(q′1).

This can be easily achieved, for instance, as follows. Take X = Y andX, Y meeting

at the same point p ∈ X = Y and q1 = p3, q2 = p2. Choose σ0|X = σ2|Y , σ0|Y = σ2|X
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Table 3.3:

p′1 p′′1 p′2 p′′2 q′1 q′′1 q′2 q′′2

λ1 × 0 0 0 × × × ×

λ2 × × × × × 0 0 0

Table 3.4:

p1 p2 q1 q2

φ(σ0σ2) × 0 × 0

φ(σ0σ3) 0 × × 0

φ(σ1σ2) × 0 0 ×

φ(σ1σ3) 0 × 0 ×

φ(λ1λ2) × 0 × 0

λ1|X = λ2|Y and λ1|Y = λ2|X as the unique (up to scalar) sections satisfying the

conditions in table 3.5:

Then

σ0|X · σ2|X
λ1|X · λ2|X

=
σ0|Y · σ2|Y
λ1|Y · λ2|Y
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Table 3.5:

p′1 p′′1 p′2 p′′2 p′3 p′′3

σ0|X = σ2|Y × 0 × 0 × 0

σ0|Y = σ2|X × × 0 0 × ×

λ1|X = λ2|Y × 0 0 0 × 0

λ1|Y = λ2|X × × × × × ×

as rational functions, but since everything is general,

σ0|X · σ2|X
λ1|X · λ2|X

(p′1) 6=
σ0|Y · σ2|Y
λ1|Y · λ2|Y

(p′3).

In conclusion, we can arrange so that the rank of the matrix in table 3.4 is exactly

4 and therefore the image in P4 of a general genus 10 curve under a general (thus

every) g4
12 is not contained in any quadric.

Corollary 3.14. For g > 10, a general curve in P4 with degree d ≥ 4
5
g + 4 is not

contained in any quadric.

Proof. Consider the curve consists of a general curve X of genus 10 and a general

curve Y of genus g− 10 meeting at a general point p. Consider the limit linear series

with aspects VX = (d−12)p+ |g4
12|, VY = 8p+ |g4

d−8|. Since everything is general, VX

has vanishing sequence (d− 12, d− 11, ..., d− 8) at p, and VY has vanishing sequence
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(8, 9, 10, 11, 12). Since limit g4
d on X ∪Y with the above specified vanishing sequence

have dimension ρ(g−10, 4, d−8)+ρ(10, 4, 12) = (g−10)−5(g−10−(d−8)+4)+0 =

g−5(g−d+4) = ρ(g, 4, d), by the smoothing theorem of limit linear series (see [16]),

VX , VY are smoothable. On the other hand, the image of X in P4 under φVX
is not

contained in any quadric and VX |Y is a |g0
d−12|. Thus, by degenerating to such limit

g4
12 on X ∪ Y , we have our conclusion.
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CHAPTER 4

DEGENERATIONS OF SYMMETRIC PRODUCTS OF

CURVES

4.1 The relative Hilbert scheme of points

Suppose C → ∆ is a flat one parameter family of smooth projective curves over the

punctured disk ∆∗ = ∆ − {0}, degenerating to a reduced nodal curve at t = 0 ∈ ∆.

We will, in addition, assume the total space C is smooth over C.

Denote C
(d)
∆∗ the relative symmetric product of this family over ∆∗, parameterizing

effective divisors of degree d on fibres Ct for t 6= 0. We would like to construct a

compactification H̃d of C
(d)
∆∗ over ∆, such that H̃d has smooth total space and the

fibre over t = 0 has simple normal crossing support. By studying the fibre over t = 0

of H̃d, we understand how the symmetric products of smooth curves degenerate as

the curves degenerate to a nodal curve.

The first candidate for this compactification is the relative symmetric product C
(d)
∆

over ∆. But this is singular. In fact, let p ∈ C0 be a node of C0, locally at p, this

family is given by {xy = t} in affine 3 space. Thus locally (analytically) near the

cycle d[p], C
(d)
∆ is a quotient of a complete intersection by the symmetric group Sd
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(x1y1 = x2y2 = ... = xdyd)/Sd

For a smooth curve C, the Hilbert scheme parameterizing length-d dimension-0

subschemes of C is isomorphic to the symmetric product C(d). So if we consider

the relative Hilbert scheme Hd = Hilbd(C/∆) parameterizing length-d dimension-0

subschemes in the fibers of the family C/∆, it is a natural compactification of C
(d)
∆∗ .

Moreover, there is a natural morphism

π : Hd → C
(d)
∆

defined by

π(Zt) =
∑

x∈Ct

lengthx(Zt)[x],

where Zt is a length-d, dimension-0 subscheme of Ct.

In fact, Hd is a partial resolution of singularities of C
(d)
∆ . To explain why this is the

case. Let’s look at the simplest case:

Example. Suppose d = 2 and the special fibre C0 has only two components X and

Y meeting at a point p. C
(2)
0 has three components: X(2), Y (2), and X × Y . We can

figure out the scheme structure of C
(2)
∆ . Locally at p, this family is given by {xy = t}

with projection to the t-disk. The relative symmetric product is given by taking the

fibre product of the family with itself,

C ×∆ C ∼= Spec(C[x, y, z, w, t]/(xy = zw = t)) =: SpecA,

modulo the Z2 action x → z, y → w.
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The ring of invariants AZ2 under this action is generated by

C[x+ z, y + w, xz, yw, xw + yz, t] ⊂ Spec
C[x, y, z, w, t]

(xy − t, zw − t)
.

It is easy to write down all relations between the above generators, and we find

that AZ2 is isomorphic to

C[X1, X2, X3, X4, X5, t]

(X5 + 2t−X1X2, X1X4 − tX2, X2X3 − tX1, X3X4 − t2)

Eliminating X5, we get,

C[X1, X2, X3, X4, t]

(X1X4 − tX2, X2X3 − tX1, X3X4 − t2)
.

The fibre over t = 0 is

Spec
C[X1, X2, X3, X4]

(X1X4, X2X3, X3X4)
.

In particular, C
(2)
0 is not normal crossing. One of these components, namely, X×Y

(defined by X3 = X4 = 0 in the local description of C
(2)
0 ,) is distinguished in that it

meets both of the others along curves, the other pair of components meet only at the

bad point 2[p] (see figure 4.1).

Now, let’s consider the Hilbert-Chow morphism

π : Hilb2 (C0 ) −→ C
(2 )
0
.

It is an isomorphism away from the bad point 2[p]; over 2[p], there is a family of

ideals parameterized by P1
a:

(x+ ay) ⊂
C[x, y]

(xy)
.
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X(2)X

Y
X × Y Y (2)

Figure 4.1: Components of the symmetric square of a nodal curve

Each one of these ideals corresponds to the point (x = y = 0) plus a tangent

direction at that point. The P1
a is parameterizing the ratio of velocities of a point

on X and a point on Y approaching p. Hence, we obtain Hilb2 (C0 ) from C
(2)
0 by

blowing up the point 2[p] in the component X × Y and gluing back X(2)(resp.Y (2))

along the strict transform of X × {p}(resp.{p} × Y ) (see figure 4.2).

In fact,under the assumption about the special fibre C0 as in this example, Hilbd(C/∆)

is always smooth and Hilbd(C0) is reduced and normal crossing. So we have a nice

degeneration of the symmetric product of smooth curves.

�

In [33], Ran studied the local structure of the relative Hilbert scheme, i.e for C =

Spec(C[x, y](x,y)), with projection map t = xy to ∆ = Spec(C[t](t)). He proved

theorems 4.1 to 4.3, which describe the fibre of the Hilbert-Chow morphism, the

Hilbert scheme of the special fibre, and the total space of the relative Hilbert scheme:

Theorem 4.1. ([33])

61



Figure 4.2: Blowing up and regluing

(1) Every ideal I of R = C[x,y]
(xy) (x,y)

of colength d is one of the following, said to be of

type (cdi ),(q
d
i ),respectively:

Idi (a) = (yi + axd−i), 0 6= a ∈ C, i = 1, ..., d− 1,

Qd
i = (xd−i+1, yi), i = 1, ..., d.

(2) The closure Cd
i in the Hilbert scheme of the set of ideals of type (cdi ) is isomorphic

to P1 and consists of the ideals of types (cdi ) or (qdi ) or (qdi+1). In fact, we have

lim
a→0

Idi (a) = Qd
i ,

lim
a→∞

Idi (a) = Qd
i+1.

(3) The punctual Hilbert scheme Hilb0

d
(R), as algebraic set, is a rational chain

Cd
1 ∪Qd

2
Cd

2 ∪ ... ∪Qd
d−1

Cd
d−1;

it has ordinary nodes at Qd
2, ...Q

d
d−1 and is smooth elsewhere.
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Theorem 4.2. ([33]) The Hilbert scheme Hilbd(R), where R = C[x,y]
(xy) (x,y)

is a chain

W d
0 ∪W d

1 ∪ ... ∪W d
d−1 ∪W

d
d

where each W d
i is a smooth d-dimensional germ supported on Cd

i for i = 1, ..., d − 1

or Qd
i for i = 0, d; for i = 1, ..., d − 1, W d

i meets its neighbors W d
i±1 transversely in

dimension d − 1 and meets no other W d
i . The generic point of W d

i corresponds to

subscheme of Spec(R) comprised of d − i points on the x-axis and i points on the

y-axis.

Theorem 4.3. ([33]) Set R̃ = C[x, y](x,y). B = C[t](t) and view R̃ as a B-module

via xy = t. The relative Hilbert scheme Hilbd(R̃/B) is formally smooth, formally

(d+ 1)-dimensional over C.

Remark. Moreover, from the proof of theorem 4.3 in [33], Hilbd(R̃/B) is given by

equation x1y1 = t in Cd+1 × ∆t. �

The above theorems give the local structure of Hd = Hilbd(C/∆) completely (for

any one parameter nodal degeneration). For any Z ∈ Hd, suppose π(Z) =
∑

i ni[xi]

with xi pairwise distinct, choose small analytic neighborhood Ui of xi in C, then

locally at Z, Hd looks like the fibre product of Hilbni
(Ui/∆) over ∆. Even if each

Hilbni
(Ui/∆) is smooth by Theorem 2.3, the fibre product could still be singular.

Thus, we need a little bit more work to get a smooth compactification of C
(d)
∆∗ .

4.2 The augmented relative Hilbert scheme

In this section, we will describe explicitly a Log resolution H̃d of the pair (Hd, H
d
0 )

where Hd
0 = Hilbd(C0). Call it the augmented relative Hilbert scheme.
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Let’s first analyze the singularities of Hd. From the remark and the last paragraph

of section 4.1, we see that locally at Z, Hd looks like

Spec
C[x1, y1, ..., xm, ym]

(x1y1 = x2y2 = ... = xmym)
= X1 ×∆ X2 ×∆ ...×∆ Xm

modulo possibly crossing with an affine space. Here m is the number of distinct

points of the cycle corresponding to Z, Xi = SpecC[xi, yi], and each Xi maps to ∆

by t = xiyi.

To resolve the above singularity, we will do induction on m. The case m = 2 is

simple. We just have an isolated ordinary node in a 3-fold. Blowing up the node in

the 3-fold, we get a smooth space with exceptional divisor a quadric surface in P3.

The function t vanishes to order 2 on the exceptional divisor. It is also clear that the

fibre of this blowing-up at t = 0 has simple normal crossing support.

Let’s work out the case m = 3 in more detail, this will help us set up the induction.

Here Hd is locally isomorphic to

Spec
C[x1, y1, x2, y2, x3, y3]

(x1y1 = x2y2 = x3y3)
= X1 ×∆ X2 ×∆ X3

.

The fibre over t = 0 is X01 ×X02 ×X03, where

X0i = Spec
C[xi, yi]

(xiyi)
, i = 1, 2, 3.

The total space of Hd is singular at X01 × {0} × {0}
⋃
{0} × X02 × {0}

⋃
{0} ×

{0} × X03. Each X0i is a union of two lines. So the singular locus is union of six

lines meeting at the point (0, 0, 0). If we first blow up the point (0, 0, 0) in Hd, call
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the new space H̃′
d, then the proper transform of the above six lines become disjoint,

and H̃′
d has ordinary nodal singularity along each of the six lines (basically it is a

line cross the one dimension lower case). Then, we blow up the six lines to get our

smooth resolution H̃d. There are seven exceptional divisors for the map from H̃d

to Hd, namely, one over the point (0, 0, 0), and one over each of the six lines. The

(reduced) fibre over t = 0 is still normal crossing.

For the general case, X1 ×∆ ...×∆ Xm is singular at the points where at least two

of the m coordinates are 0. Let

Wi = {(x1, ..., xm) ∈ X01 × ...×X0m : at least i factors are 0}

To resolve the singularity, we first blow upX1×∆...×∆Xm along ”the most singular”

locus Wm. Then the proper transform W̃m−1 is disjoint union of 2m lines. There is

an open neighborhood of each line in the total space of the blow-up isomorphic to

the line cross one dimension lower case. And we keep on blowing up along W̃m−1,

etc. By induction, we will get a smooth total space H̃d after we blow up W̃2. The

fibre of H̃d over t = 0 has simple normal crossing support.

4.3 A toric description

Since X1×∆X2×∆X3 is an affine toric variety, we can describe the above resolution

by subdividing the cone associated to it. Again, we will use induction on m. Denote

N = Zm+1 the lattice and M = HomZ(N,Z) the dual lattice.

The case m = 2 is well known. The dual cone σ̌ of

Spec
C[x1, x2, y1, y2]

(x1y1 − x2y2)
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is generated by four lattice vectors u1, v1, u2, v2 (assuming they generate M = Z3 as

abelian group) in MR = M ⊗Z R = R3, satisfying

u1 + v1 = u2 + v2

Without loss of generality, set u1 = e1, u2 = e2, v1 = e3. Where {ei; i = 1, 2, 3} is the

standard basis for MR.

Under the natural pairing

(

2∧
R3)

⊗
R3 −→

3∧
R3 = R(e1 ∧ e2 ∧ e3),

we can identify NR =
∧2 R3 with HomR(MR,R). In this setting, the cone σ is

generated (up to sign) by u1 ∧ u2, u1 ∧ v2, v1 ∧ u2, v1 ∧ v2. In fact, u1 ∧u2 + v1 ∧ v2 =

(−u1 ∧ v2) + (−v1 ∧ v2) =: a. Then by adding a line through a, we subdivide σ into

four smaller cones. It is immediate to check each of the smaller cone is generated by a

basis of the lattice N . By the general theory of toric varieties (see [21] chapter 2), this

means the new variety we get by subdividing the cone is a resolution of singularities

of the original variety. Geometrically, this subdivision corresponds to blowing up the

singular point of the threefold node (figure 4.3).

For the general case, take σ̌ to be the (m+1)-dim cone generated in MR = Rm+1 =

⊕m
i=1Rei by {ui, vi; i = 1, ..., m} satisfying

u1 + v1 = u2 + v2 = ... = um + vm

(also assume they generate the lattice M as abelian group, say, ui = ei; i = 1, ..., m,

v1 = em+1). To find the generators of the dual cone σ (see [21]), we take each set of
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Figure 4.3: The cone of a threefold node

m independent vectors among the generators of σ̌ which spans an m-plane, solve for

a vector u ∈ NR annihilating the m-plane. If neither u or −u is nonnegative on all

generators of σ̌, it is discarded; otherwise either u or −u whichever is nonnegative on

σ̌ is taken as a generator for σ. In the latter case, the m-plane (more precisely the

cone generated by the m independent vectors) is a facet of σ̌. A little computation

will convince the audience that there are 2m facets of σ̌: each facet is generated by

choosing for each subindex i either ui or vi, not both, among {ui, vi; i = 1, ..., m}.

Under the natural identification of

NR = HomR(MR,R) ∼=

m∧
Rm+1,

we get 2m generators for σ (up to a sign) by taking wedge product of the generators

for each facet. Now let ~x = (xi; xi = ui or vi; i = 1, ..., m) be a set of generators

for a facet of σ̌. Then (−1)|~x|x1 ∧ ... ∧ xm is a generator of σ. The sign (−1)|~x| is

determined such that (−1)|~x|x1∧ ...∧xm∧b > 0, where b = u1 +v1 (This is equivalent
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to (−1)|~x|x1 ∧ ... ∧ xm ∧ (b− xi) > 0; i = 1, ..., m). There is a ’complementary’ facet

generated by (yi = b− xi; i = 1, ..., m). A little algebra tells us

(−1)|~x|x1 ∧ ... ∧ xm + (−1)|~y|y1 ∧ ... ∧ ym

does not depend on ~x. Call this vector a (well defined up to a scalar multiple) the

’barycenter’ of σ. So far, we have seen the 2m facets of σ̌ which are ’dual’ to the

2m generators of σ . For the same reason, the 2m generators of σ̌ correspond to 2m

facets of σ. The correspondence is the following: ui corresponds to the facet in the

m-plane ui ∧ (
∧m−1 Rm+1) ⊂ NR =

∧m Rm+1. This facet is generated by all possible

x1 ∧ ... ∧ xm with xi = ui. It is an m-dim cone with 2m−1 generators. Applying the

argument as before, we see there is also a ’barycenter’ for this facet. Therefore, we

get a ’barycenter’ for each facet. Then we work inductively to find a ’barycenter’ for

each (m − 1)-dim face of σ and so on. Finally we can construct a ’barycenter’ for

each face of σ of dimension at least three. It follows immediately that

Proposition 4.4. Notation as last paragraph. If we subdivide σ by adding all ’barycen-

ters’ of faces of σ. The resulting toric variety is the resolution of singularity described

in section 4.2.

Finally, we observe that if we cover the relative Hilbert scheme Hd by analytic

open subset like above, and take the resolution for each open subset. The resulting

nonsingular open sets will patch together to form H̃d, since on each small open set

the resolution is canonical.

In conclusion, we have proved

68



Theorem 4.5. For any one parameter family C → ∆ with smooth total space degen-

erating to a reduced nodal curve C0, there is a canonical sequence of blow-ups of Hd

along smooth centers in Hd
0 = Hilbd(C0) that leads to a canonical log resolution H̃d

of (Hd, H
d
0 ).
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