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ABSTRACT

Recent advances in wireless networking and data acquisition have enabled us with

a unique capability to remotely sense our environment. Data acquisition networks can

be used to sense natural as well as human-created phenomena. As these applications

may require deployment in remote and hard-to-reach areas, it is critical to ensure that

such wireless sensor networks are capable of operating unattended for long durations.

The lack of easy access to a continuous power source in most scenarios and the limited

lifetime of batteries have hindered the deployment of such networks. Consequently,

the central objective in wireless sensor network design is to utilize the available energy

as efficiently as possible. In this thesis, we study the design of optimal or near-optimal

energy management schemes for various wireless sensor networks composed of nodes

with different capabilities.

Firstly, we derive theoretical upper bounds on the performance of a transmission

scheduler for sensor networks. We do this by calculating the information theoretic

channel capacity of finite-state Markov channels with imperfect feedback contain-

ing different grades of channel state information including that, obtained through

Automatic Repeat Request (ARQ) feedback. Secondly, we consider the problem of

energy optimal transmission scheduling over a finite state Markov channel with im-

perfect feedback. We propose a transmission controller that utilizes different “grades”

of channel state information to schedule packet transmissions in an energy-optimal
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way, while meeting a deadline constraint for all packets waiting in the transmis-

sion queue. Our scheduler is readily implementable and it is based on the dynamic

programming solution to the finite-horizon transmission control problem. We illus-

trate that our scheduler achieves a given throughput at a power level that is fairly

close to the information-theoretic limit. Finally, we consider the problem of energy

management in nodes with energy replenishment capabilities. Here, we derive the

performance limits of sensor nodes with limited energy, being replenished at a vari-

able and random rate. We provide a simple localized energy management scheme

for nodes with limited energy storage space, and show that our scheme achieves a

performance asymptotically close to that available with an unlimited energy source.

Based on the insights developed, we address the problem of energy management for

energy-replenishing nodes with finite data buffer capacities as well as limited energy

storage space. To this end, we give an energy management scheme that is provably

asymptotically optimal.
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CHAPTER 1

INTRODUCTION

Recent advances in wireless networking and data acquisition have enabled us with

a unique capability to remotely sense our environment using sensor networks. A

sensor network is defined as a data acquisition network that consists of a number of

spatially-distributed sensor nodes that monitor natural or human-created phenomena.

Sensor networks can be employed for various tasks including:

• Environmental study and monitoring [1,2,3] e.g., monitoring earthquakes, wild-

fires, glacial movements, pollution, etc.

• Health care [4] e.g., patient monitoring, drug administration, etc.

• Home automation [5, 6, 7] e.g., habitat monitoring and smart environments.

• Security [8, 9] e.g., battlefield surveillance, intrusion detection, infrastructure

security, urban monitoring, etc.

• Other applications [10] e.g., inventory control, vehicle tracking, traffic monitor-

ing, etc.

The emergence of sensor networks can be attributed to two factors, (a) develop-

ment of sensor nodes that can sense natural/man-made phenomena, e.g., temperature,
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humidity, pressure, noise, and vehicular movement, and (b) development of network

architectures and algorithms that allow for the operation of such networks [11]. While

progress has been made in the development of sensor nodes, network architectures

and algorithms, the scarcity of energy limits the lifetime of sensor networks and limits

their performance in many crucial applications. In this work, we will look at devel-

oping algorithms that enable long-term sensor network operation via efficient use of

energy resources. Note that sensor networks usually consist of a large number of sen-

sor nodes. For the network to make economic sense, sensor nodes should have a low

production cost which, in most cases, translates to simplicity in design and limited

capabilities. Due to the low-cost design, sensor nodes have limited communication,

computational and data storage capabilities. Therefore, we focus our attention on

energy management schemes that do not require sophisticated modulation schemes

and can be implemented with minimal computational power.

The objective of this introductory chapter is to provide motivation for the under-

lying theme of this thesis - efficient energy management in wireless sensor networks.

We provide a high-level overview of the different problems addressed in this area and

summarize our contributions. Detailed literature reviews and problem statements are

presented in individual chapters.

1.1 Energy Management Problem and Our Contributions

The energy management problem faced by a single node is illustrated in Fig. 1.1.

Here, we have a sensor node with an energy source represented by the battery that can

store a finite amount of energy. The battery has access to some energy replenishment

mechanism that replaces the energy at a variable rate. The node has a finite data

2
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Sensor Node
(Transmitter)

Base Station
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Energy
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Wireless Channel

ACK/NAK

Data Buffer

Battery

Fig. 1.1: Illustration of the energy management problem in sensor networks.

buffer that stores the data arriving at the sensor node for transmission. Stored data

has to be transmitted subject to a deadline or a throughput constraint. The transmit-

ter sends data packets over an “unreliable” wireless channel. An unreliable channel

implies that there is a non-zero probability of transmission failure. The receiver ac-

knowledges a successful packet transmission by sending an ACK (acknowledgment)

to the transmitter and a failed packet transmission is indicated by a NAK (negative

acknowledgment).

Energy consumption in sensor nodes can be classified under four broad categories:

idle listening, communication, sensing, and data processing. We will limit the scope of

our thesis to exploring problems related to developing energy-efficient communication

algorithms. Within the problems of our interest, there are a multitude of scenarios

that a network designer might choose to solve. Here, we consider two specific problem

setups.
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In the first part of this thesis, we design an energy-efficient transmission sched-

uler that uses the least amount of energy to reliably transmit the data contained in

the buffer by a specified deadline. Here, we assume that the battery does not have

access to energy replenishment. To understand the crucial role of a transmission

scheduler, consider one that does not adapt to channel variability. This scheduler

will be unable to anticipate bad channel conditions and, consequently, waste a high

amount of energy in multiple retransmissions. An intuitive way to improve the per-

formance of such a scheduler would be to use channel information to intelligently

schedule packet transmissions. However, due to hardware constraints on the sensor

node design, it may not be possible to perfectly sense the channel before making the

decision to transmit. In fact, the only information available to the sensor nodes in

practical deployments might be in the form of previous error realization sequence,

i.e., ACK/NAK sequence of the previous transmissions.

Our contributions: (1) In Chapter 2, we use tools from information theory

to derive the throughput limits of an energy-efficient transmission scheduler over an

FSMC with ARQ feedback. We use the notion of capacity-cost function for commu-

nication channels with feedback to find these theoretical bounds. Each state of the

FSMC corresponds to an erasure channel with different erasure probability. Erasure

channels are particularly suited to model packetized transmissions as a packet loss is

detectable, and it can be treated as an erasure. With these capacity results, we eval-

uate the potential energy savings achieved by a transmission scheduler that adapts

to channel variability using the available channel state information (CSI).

A special case of this setup is imperfect CSI, such as that obtained from the

ACK/NAK sequence of the previous transmissions. As mentioned previously, this

4



type of feedback is freely available at the link layer of most network architectures. For

a FSMC with different erasure probabilities, ACK or NAK is a randomized feedback,

which gives coarse information about the channel state. One of the main contributions

of this thesis is the derivation of the capacity-cost function for this channel. Using the

capacity-cost function, we illustrate the value of using ACK/NAK relative to other

kinds of feedback including no feedback.

(2) With these insights, in Chapter 3 we design an energy-efficient transmission

scheduler that uses available channel information to reliably communicate data sub-

ject to deadline constraints. Our scheduler is based on the dynamic programming

(DP) solution to a finite-horizon transmission control problem with perfect and im-

perfect CSI. We evaluate the performance of our scheduler numerically and illustrate

that it achieves a given throughput at a power level that is fairly close to the informa-

tion theoretic limits evaluated in Chapter 2. Since sensor nodes have computational

power constraints, we approximate the proposed transmission scheduler with a lookup

table based scheduler that requires minimal computations. We show that the per-

formance loss associated with the approximation is small even with reasonably low

table sizes.

(3) In Chapter 4, we give a MAC-layer implementation of a practical energy

management scheme. Using the data collected from an actual sensor network testbed,

we study the temporal characteristics of the channel variations and interference. We

use this data to estimate the parameters of a hidden Markov-model based channel. A

novel concept called “pushbacks” is introduced at the MAC layer. Pushback delays

packet transmissions appropriately to overcome periods of poor channel quality and

high interference. This mechanism increases the packet transmission success rate

5



while ensuring that the throughput requirement of the node is met. Using extensive

numerical and experimental evaluations, we show that significant gains in energy

and/or throughput can be observed using the pushback technique.

In the final part of this thesis, we consider the case where the sensor node has

a finite-sized battery that is being replenished at a variable rate. In addition, the

data buffer has a constant stream of incoming data. An efficient energy management

scheme should control the transmission power in such a way that the probabilities of

battery discharge and data queue overflow are minimized while achieving an optimal

or near-optimal performance. Typically, for nodes with energy replenishment, aggres-

sive use of energy can lead to frequent energy outages causing communication failures

(for time-critical data) and lack of coverage in sensor networks, whereas energy con-

servative schemes may lead to large number of data queue overflows as well as missed

recharging opportunities. In addition to this challenge of trying to find the right

balance, we note that there is a strong coupling between the battery and the data

queue processes that complicates the performance evaluation of energy management

schemes.

Our Contributions: In Chapter 5, we identify the performance limits of sensor

nodes with energy replenishment and provide guidelines to approach these limits. (1)

First, we assume a finite battery size and an infinitely backlogged data queue. The

success of the node in achieving communication and/or sensing tasks is measured

in terms of a concave and non-decreasing utility function of the consumed energy.

Intuitively, increasing the battery size should lead to a decay in the battery dis-

charge probability and convergence to the maximum utility function. However, we
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identify a basic trade-off by showing that it is not possible to simultaneously ob-

serve an exponential decay (with the battery size) for the discharge probability and

achieve maximum utility. With this limitation in mind, we develop a “simple” energy

management scheme that achieves asymptotic convergence to the maximum average

utility achieved by a scheme that has access to an infinite energy buffer at the same

power level. In addition, the probability of energy outage decays quadratically for

this scheme. Our simple energy management scheme uses local information available

to the node and does not require intensive computations.

(2) Based on the insights developed, we also address the problem of energy man-

agement for energy replenishing nodes with finite battery and finite data buffer ca-

pacities. Since the drifts of the battery and data queue are dependent, evaluation

of battery discharge and buffer overflow probabilities simultaneously for any energy

management scheme is highly complex. To that end, we use the diffusion limit to

approximate these expressions. We develop an localized energy management scheme

that achieves convergence to the maximum utility achieved by a scheme that has

access to an infinite data and energy buffers at the same power level. In addition,

we show that the buffer overflow probability decays quadratically with the buffer size

and battery discharge probability decays exponentially with the battery size for our

energy management scheme.

The summary of our contributions and tools used to solve different variants of the

energy management problem are summarized in Table 1.1.

1.2 Relevant Publications

The material of Chapters 2 and 3 is based on:
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Problem Tools Used Chapter
Performance Bounds Information Theory 2
for Transmission Schedulers Optimization Theory
Design a Dynamic Programming 3
Transmission Scheduler
Implement an Hidden Markov Models 4
energy-aware protocol Maximum Likelihood Estimation

MAC layer implementation
Energy Management in Large Deviations Theory 5
Energy Replenishing Networks Diffusion Approximation

Table 1.1: Summary of the thesis contributions

Rahul Srivastava, and Can Emre Koksal,

“Energy Optimal Transmission Scheduling in Wireless Sensor Networks,”

IEEE Transactions on Wireless Communications, Vol. 9, No. 5, pp. 1550 -

1560, May 2010.

An extended version of this work is also available as:

Rahul Srivastava and Can Emre Koksal,

“Energy Optimal Transmission Scheduling in Wireless Sensor Networks,”

Technical Report, The Ohio State University, February 2009.

Available: http://arxiv.org/abs/1003.0054

The material of Chapter 4 is based on:

Sha Liu, Rahul Srivastava, Can Emre Koksal, and Prasun Sinha

“Pushback: A Hidden Markov Model Based Scheme for Energy Efficient Data

Transmission in Sensor Networks,”

Ad Hoc Networks, Vol. 7, No. 5, pp. 973-986, July 2009.
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And:

Sha Liu, Rahul Srivastava, Can Emre Koksal, and Prasun Sinha

“Achieving Energy Efficiency with Transmission Pushbacks in Sensor Networks,”

Proceedings of IEEE IWQoS, June 2008

The material of Chapter 5 is based on:

Rahul Srivastava, and Can Emre Koksal,

“Basic Tradeoffs for Energy Management in Rechargeable Sensor Networks,”

Under Submission IEEE/ACM Transactions on Networking.

An extended version of this work is also available as:

Rahul Srivastava and Can Emre Koksal,

“Basic Tradeoffs for Energy Management in Rechargeable Sensor Networks,”

Technical Report, The Ohio State University, August 2010.

Available: http://arxiv.org/abs/1009.0569
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CHAPTER 2

THROUGHPUT LIMITS FOR TRANSMISSION
SCHEDULERS IN FINITE STATE MARKOV CHANNELS

2.1 Introduction

The objective of this chapter is to find throughput bounds for energy-efficient

transmission schedulers. As we have discussed in Chapter 1, design of transmission

schedulers is a challenging research problem due to the limited computational and

energy resources available to the sensor node. Also, nodes do not have access to

accurate CSI that would guide the scheduler to attempt packet transmissions at

times with best chance of success. For instance, nodes often have access to only the

randomized CSI in the form of ACK/NAK information about previous transmissions.

Moreover, sensor nodes typically use an ON-OFF type transmission scheduler, which

can either transmit a packet at a fixed power level or defer the packet transmission.

It is under these general settings that we propose to find the fundamental limits on

the performance of transmission schedulers in sensor networks. Here we define the

performance of a scheduler as the maximum achievable throughput, subject to an

average power constraint.
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A transmission scheduler provides a strategy to consume the minimum energy,

PT , to attempt successful transmission of B packets by a specified deadline T . This

corresponds to a throughput of B/T at power P. In this chapter, we relax the deadline

constraint and find the maximum achievable asymptotic throughput subject to a

power constraint P. This quantity is known as the capacity-cost function C(P) [12].

The inverse of the capacity-cost function gives the minimum power P for a given

asymptotic throughput C [13], linking it to the objective of the DP problem. Inverting

the axes of P-C(P) plot will give the plot of P as a function of C.

The capacity-cost function will give an upper bound on the achievable throughput

of any transmission scheduler for the corresponding wireless channel. To understand

this statement, we note that the information theoretic calculations are asymptotic

results, i.e., number of channel uses tend to infinity while meeting a throughput

requirement. Any scheduler that transmits B packets in T time slots will achieve an

asymptotic throughput of B/T packets/time slot by replicating itself every T time

slots. However, the converse is not true, as ensuring an asymptotic throughput does

not guarantee a throughput for every block of T time slots. As a result, the capacity-

cost function requires less power to achieve the same throughput and provides an

upper bound on the throughput of the transmission scheduler. The wireless channel

is modeled as a finite state Markov channel (FSMC).

Capacity of FSMCs with CSI is a well studied topic. Goldsmith and Varaiya [14]

gave the channel capacity of FSMCs with perfect CSI at the transmitter and re-

ceiver. In this case, CSI implies accurate knowledge of the instantaneous state of the

Markov channel. The optimal power adaptation for such a channel model implies

“water-filling” in time, which is analogous to the water-filling result in frequency in a

11



frequency-selective channel [15]. Viswanathan [16] extended these results for delayed

perfect CSI at the transmitter. Here, CSI is defined as the delayed knowledge of the

Markov channel state. Yüksel and Tatikonda derived the capacity of a FSMC with

imperfect deterministic feedback [17]. Imperfect deterministic feedback implies that

the transmitter has inaccurate (quantized) information about the channel state. The

quantizer used is a deterministic function of the channel state. Although these results

are useful for a wide variety of capacity calculations, they can not be applied directly

to channels with discrete power levels and a long term average power constraint on

the input symbols. This is due to the fact that the aforementioned results assume

continuous transmission or transmission in very time slot. However, our transmitter

might have to defer transmission, due to the presence of discrete power levels, in order

to meet the power constraints.

To incorporate skipped transmission attempts in the classical capacity results, we

introduce a new discrete channel, which we call channel with vacation. We associate

a channel with vacation to each state of the FSMC, and calculate the capacity-cost

function for this special Markov channel. The general problem of finding the capacity

of a feedback channel with memory has been notoriously difficult in information

theory; and the problem of feedback capacity containing a CSI, which is a random

function of the channel state has not been addressed before. We use this kind of a

feedback in our channel model because the probability of a transmission success is

channel state dependent, which implies that the feedback is a random function of

the channel state. We generalize [17] and combine it with [16] and [18] in order to

calculate the capacity-cost function of our channel with feedback. We compare this

capacity-cost function with the performance achieved by our scheduler and observe

12



w ŵxk yk
Encoder FSMEC (sk) Decoder

ck = sk/sk−d/zk−d

Fig. 2.1: Block diagram showing the system model used for the capacity calculations
for the FSMEC with CSI at the receiver and feedback.

that for a given throughput requirement, the power expended by our scheme is close

to the theoretical limit of the system.

The rest of the chapter is organized as follows. First, we provide some basic

definitions and system model in Section 2.2. We present the capacity-cost results

for this system model in Section 2.3. In Section 2.4, we evaluate and compare the

capacity-cost function for different types of channel feedback.

2.2 Definitions and System Model

The system model used in this work is shown in Figure 2.1. We consider a slotted

time model indexed by k. Each symbol requires one time slot for transmission. The

channel model that we consider for our analysis is a finite-state Markov erasure chan-

nel (FSMEC). A more detailed discussion of FSMECs is provided in Section 2.2.1.

For now, we note that FSMECs are a special case of the FSMCs. A FSMC is a chan-

nel model which, during each symbol duration, is in one of a finite number of states

with Markov transition between these states. While not as simple as a Bernoulli or

an independent loss channel model, Markov models are used to approximate channels

with memory. FSMCs were first used to model a channel with bursty errors [19], and

are popular in the literature [20].
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The channel input is denoted by Xk ∈ X and output is denoted by Yk ∈ Y . The

messages, chosen from a set of equally probable set of messagesW, are denoted by W

and the decoded messages are denoted by Ŵ . The size of the message set W is M .

The channel state {Sk ∈ S, k = 1, 2, . . .} determines the channel transition (or error)

probability during the kth symbol duration and the CSI Ck is a function of Sk. Here

S is the state space of the Markov channel. We derive capacity results for different

“grades” of CSI at the transmitter and the possible grades of CSI are classified as:

1. Non-causal Perfect CSI: the scheduler knows the instantaneous channel

state, i.e., Ck = Sk.

2. Causal Perfect CSI: the scheduler knows the channel state delayed by d time

units, i.e., Ck = Sk−d.

3. Causal Partial CSI: in this case, the controller knows the ACK/NAK upto

and including the dth previous transmission, i.e., Ck = Zk−d.

Before presenting the specifics of the capacity calculation, we define some infor-

mation theoretic quantities.

Encoder: For a given message set W, an encoder is a sequence of code functions

{fk(w, ck−1
0 )}k≥1, where the symbol to be sent at time k is given by fk(w, ck−1

0 ).

Channel Code: For a given message set W, the (T, M,P, e) channel code consists of:

(1) The block-length of the codewords is equal to T , i.e., the number of channel uses to

transmit a message is equal to T . (2) Each codeword {fk(w, ck−1
0 )}1≤k≤T ∀ w, cT−1

0 ,

satisfies the constraint, 1
T

∑T

i=1 b(fi(w, ci−1
0 )) ≤ P, where b(x) is the non-negative

14



cost associated with the input symbol x ∈ X . Therefore P is a hard power con-

straint imposed on every sample outcome of the channel state or ACK/NAK se-

quence. (3) The average probability of incorrectly decoding a message is bounded as

1
|W|

∑

w∈W p(ŵ 6= w|W = w) ≤ e.

Capacity-Cost Function: Given 0 ≤ e < 1 and P > 0, a non-negative number R is

an e-achievable rate with the average cost per symbol not exceeding P if for every

δ > 0 there exists T0 such that if T ≥ T0, then an (T, M,P, e) code can be found

whose rate satisfies log M > T (R − δ). Furthermore, R is said to be achievable if it

is e-achievable for all 0 < e < 1. The maximum achievable rate with average cost per

symbol not exceeding P is the channel capacity denoted by C(P), which is referred

to as the capacity-cost function.

We cannot directly apply classical channel capacity results as the system that we

consider has special properties. The factors to consider while evaluating the channel

capacity are:

1. Skipped Channel Uses: An ON-OFF scheduler is limited to two discrete

power levels corresponding to the decision to transmit (at a fixed power) or

not to transmit. As a result, under a power constraint, we should consider an

“outage capacity” in which the decision not to transmit is accounted for in the

capacity calculations.

2. Markov Channel with Delayed Feedback: Deterministic perfect and quan-

tized feedback in such channels has been treated in literature [16, 17], but ran-

domly quantized feedback has not. We have to calculate the capacity-cost

function of a Markov channel with feedback in the form of ACK/NAK. In our
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0

ǫs

ǫs

ǫs

ǫs

1− ǫs

1− ǫs

1− ǫs

1−ǫs

2N

Fig. 2.2: The Erasure Channel with Vacations (ECV). ‘V’ is a zero-cost, zero-
information symbol. {‘1’,‘2’,. . .,‘2N ’} incur a unit cost on transmission. The transition
labels represent the appropriate probabilities.

channel model, ACK/NAKs are a random function of the channel state and

hence need to be considered accordingly.

2.2.1 Finite State Markov Erasure Channels (FSMECs)

A FSMEC is a special case of FSMC, where each state has an erasure channel (EC)

associated with it. The channel state Sk determines the channel erasure probability

during the kth symbol. Note that we describe an entire packet (or the lack of it) as

a channel symbol and model a detectable packet error/loss using an erasure. In this

problem, since we assume an ON-OFF transmitter, the input symbols are restricted to

discrete power levels and have a long term average power constraint. Consequently, it

is not possible to transmit data at every time instant. Discrete ECs [15] do not provide
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any provision for calculating mutual information rate under such power constraints.

As a result, the channel model has to be designed in such a way that it incorporates

the “OFF-period” of the transmitter in the capacity calculations.

To integrate the idea of no transmission in our channel model, we add an input

symbol (‘V’) to the traditional EC as shown in Figure 2.2 and call the new channel

erasure channel with vacations (ECV). Each input symbol has an associated cost

(power) of 1 unit and the cost required to transmit ‘V’ is 0. The transition probabili-

ties of ‘V’ are chosen according to the statistical requirement rather than the physical

signaling system. We will show in Section 2.3 that the capacity-cost function C(P)

of the ECV in Figure 2.2 is PN(1 − ǫs). This can be intepreted as the capacity of

an EC that is active for P fraction of time. One can observe that the unconstrained

capacity (i.e., P = 1) of this ECV is the same as that of an EC with 2N input symbols

and erasure probability ǫs. As a result, addition of ‘V’ to the EC does not change the

mutual information between the input and output symbols. Therefore, we infer that

‘V’ is a zero-cost, zero-information symbol which can replace the OFF-period of the

transmitter for the capacity calculation. For the ON-period, we consider transmission

of N -bit (fixed-size) packets that require unit cost to transmit. Hence, there will be

2N distinct symbols, {‘1’, . . . , ‘2N ’}, shown in Figure 2.2 representing the ON-period

of the transmitter. We assume that the probability of packet error is independent

of the packet “content”. As a result in state s, each packet (symbol) is transmitted

correctly with probability 1− ǫs.
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2.3 Capacity Results

In this section we state the capacity results for the FSMEC with different CSI

at the transmitter. More specifically, we are interested in the capacity cost function

C(P), which is defined as,

C(P) = sup
X

E[b[X]]≤P

I(X; Y ).

Where b[X] is the cost of transmitting symbol X. We apply this general definition to

specific channel scenarios to find the capacity-cost functions.

2.3.1 Capacity-Cost Function for Causal Perfect CSI

First, we derive the capacity-cost function for FSMEC channels with causal perfect

CSI at the transmitter. Each state s ∈ S is associated with an ECV (shown in

Figure 2.2) with parameter ǫs and 2N + 1 input symbols. We define π(s) as the

steady state distribution of states.

Theorem 2.1. The capacity-cost function for a FSMEC with d-step transition prob-

ability matrix Pd, each state s associated with an ECV with parameter ǫs and causal

perfect CSI at the encoder is given by,

CFSMEC-CSI(P) = sup
P(s̃)

∑

s̃∈S

∑

s∈S

π(s̃)Pd(s̃, s)(1− ǫs)NP(s̃),

s.t.

∑

s̃ π(s̃)P(s̃) ≤ P
0 ≤ P(s̃) ≤ 1, ∀s̃ ∈ S

. (2.1)

The optimization variable is P(s̃), which can be thought of as the power allocation

policy for state s̃. It is the fraction of unit cost symbols in the codebook for state s̃.
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Proof. The capacity-cost function of a cost constrained memoryless stationary chan-

nel is given by,

C(P) = sup
X

E[b[X]]≤P

I(X; Y ). (2.2)

The transmission of one bit of information requires 1/C(P) symbols at a cost of

P/C(P). In order to find the capacity-cost function, first we find the Capacity per

unit cost, CCost, using the expression given in [18],

Ccost = sup
X

I(X; Y )

E[b[X]]

= sup
x

D(PY |X=x||PY |X=V)

b[x]

= (1− ǫs)N. (2.3)

In our case, b[x] = 1 for x = {1, . . . , 2N} and b[x] = 0 for x = V. We find that for

an ECV, D(PY |X=1||PY |X=V) = . . . = D(PY |X=2N ||PY |X=V) = 1− ǫs. Using Eq. (2.3)

and incorporating the average power constraint of P we can find the capacity-cost

function of the ECV,

C(P) = E[b[X]]Ccost = P [N(1− ǫs)] . (2.4)

The FSMEC at each instant, is in some state s ∈ S. In each of these states, the

channel is an ECV with the corresponding transition probabilities. The capacity-cost

calculations made earlier are used in conjunction1 with results from [16] to find the

capacity of FSMECs with delayed feedback. For a average symbol power constraint

P and unit feedback delay, the channel capacity CFSMEC(P) for a finite-state Markov

1It might appear that the capacity-cost calculations which have been made for a memoryless
channel are not applicable for Markov channels (which are not memoryless). However [16] derives
capacity results which use the mutual information rate conditioned on the present state of the
channel, which makes the channel memoryless for Markov channels.
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channel is given by [16],

CFSMEC(P) = max
P (X|S̃)

I(X; Y |S, S̃)

s.t.

∑

s̃ π(s̃)P(s̃) ≤ P
0 ≤ P(s̃) ≤ 1, ∀s̃ ∈ S

. (2.5)

Where s̃ ∈ S represents the state information fed back (s̃ = st−d) to the transmitter

from the receiver and s ∈ S is state at the time of transmission. P(s̃) is the average

cost per symbol (channel use) incurred (or power allocation strategy) while in state

s̃. And we define,

I(X; Y |S, S̃) =
∑

s̃∈S

π(s̃)I(X; Y |S, S̃ = s̃)

=
∑

s̃∈S

π(s̃)
∑

s∈S

Pd(s̃, s)I(X; Y |S = s, S̃ = s̃).

We have previously defined π(s) as the steady state distribution of state s and Pd as

the d-step transition probability matrix of the Markov chain representing the channel.

To sum up, we can write the capacity of the energy constrained channel as follows,

CFSMEC(P) = sup
P (X|S̃)

∑

s̃

π(s̃)
∑

s

P(s̃, s)I(X; Y |S = s, S̃ = s̃)

s.t.

∑

s̃ π(s̃)P(s̃) ≤ P
0 ≤ P(s̃) ≤ P ∀s̃

. (2.6)

Using the results derived in Eq. (2.4), the optimization problem (2.6) becomes a

power allocation problem and can be written as,

CFSMEC(P) = sup
P(s̃)

∑

s̃

∑

s

π(s̃)P(s̃, s)(1− ǫs)NP(s̃),

s.t.

∑

s̃ π(s̃)P(s̃) ≤ P
0 ≤ P(s̃) ≤ 1, ∀s̃ ∈ S

. (2.7)
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p12

p11

p21

p22

Fig. 2.3: A 2-state Markov erasure channel with two states, “1” and “2”. The asso-
ciated erasure probabilities are ǫ1 and ǫ2 and the transitions have been labeled with
the respective probabilities.

Theorem 2.1 gives the expression for the capacity of a FSMEC when causal perfect

CSI is available at the encoder. The solution to the optimization problem (2.1) gives

the optimal power allocation policy {P∗(s), ∀s ∈ S}. Substituting this optimal power

allocation into the original expression gives the channel capacity. Also note that the

capacity-cost function for the non-causal perfect CSI case is given by substituting

d = 0. In this case, Pd becomes an identity matrix of size |S| × |S|.

Example 2.1 2-state Markov erasure channel (2SMEC) with perfect causal

CSI

We consider a 2SMEC which at each instant, is in one of the two states, i.e. S =

{1, 2} as shown in Figure 2.3. For this channel, π1 = p21

p12+p21
and π2 = p12

p12+p21
, and,

P =

[
1− p12 p12

p21 1− p21

]

.

Applying Theorem 2.1 for s ∈ {1, 2} and d = 1, we can solve this problem for

{P∗(1),P∗(2)} as a constrained optimization problem [21]. The problem has to be

divided into two cases and the power allocation policy for these cases are:
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P∗(1)
P∗(2)

P∗(1)
P∗(2)

PP

11

11π(1) π(2)

Case 1 Case 2

Fig. 2.4: The power allocation policy as a function of the power constraint P for the
2SMEC with delayed CSI at the transmitter. The solid (dashed) trace corresponds
to the power allocation for s̃ = 1(2).

• Case 1: (1− p12)(1− ǫ1) + p12(1− ǫ2) ≥ p21(1− ǫ1) + (1− p21)(1− ǫ2)

P∗(1) =

{
P

π(1)
if P ≤ π1

1 if P > π1

P∗(2) =

{

0 if P ≤ π1

P−π1

π2
if P > π1

.

• Case 2: (1− p12)(1− ǫ1) + p12(1− ǫ2) < p21(1− ǫ1) + (1− p21)(1− ǫ2)

P∗(1) =

{

0 if P ≤ π2

P−π2

π1
if P > π2

P∗(2) =

{
P
π2

if P ≤ π2

1 if P > π2

.

The plot for the power allocation policy as a function of the power constraint

for the two cases are shown in Figure 2.4. For case 1, when the power constraint

P ≤ π1, power is allocated only to s̃ = 1. This is represented by the solid blue trace.

For P > π1, there are more opportunities to transmit then there are “good states”

available. As a result, (P −π1) part of the power constraint is now allocated to s̃ = 2

shown by the dashed red trace. This continues till P = 1, at which point all the
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states are utilized for transmission. These traces can be interpreted as level-filling

results for power allocation in discrete channels, analogous to the one derived in [14].

Case 2 has a similar power allocation process.

2.3.2 Capacity-Cost Function for Causal Partial CSI

Next, we present similar results when causal partial CSI is available to the encoder.

We denote zn
1 ∈ {0, 1}

n as an ACK/NAK sequence of length n and p(zn
1 ) is the

probability of a particular sequence zn
1 .

Theorem 2.2. The capacity-cost function for FSMEC with each state s ∈ S asso-

ciated with an ECV with parameter ǫs and causal partial CSI (ACK/NAK) at the

encoder is given by,

CFSMEC-ARQ(P) = lim
n→∞

∑

zn
1 ∈{0,1}n

s∈S

p(zn
1 ) sup

P(zn
1 )

{p(Sn+d = s|zn
1 )(1− ǫs)NP(zn

1 )}

s.t.

∑

zn
1
p(zn

1 )P(zn
1 ) ≤ P

0 ≤ P(zn
1 ) ≤ 1, ∀ zn

1 ∈ {0, 1}
n

. (2.8)

Here, the optimization is done over P(zn
1 ), which can be thought of as the power

allocation policy for the ACK/NAK observation zn
1 .

Proof. We calculate the capacity of an energy-constrained finite state Markov era-

sure channel with causal imperfect CSI by extending the proof given by Yüksel and

Tatikonda in [17]. The problem formulation in that work is very similar to ours. The

main difference comes from the fact that we consider a causal probabilistic quantizer

(i.e., ACK/NAK) for state feedback. In order to incorporate this feature, we first

make some modifications to converse of the channel theorem.

If we consider a coding scheme such that ǫ→ 0, Fano’s inequality gives,

H(W |Y T
1 , ST

1 , ZT
1 ) ≤ h(pe) + pe log2(M), (2.9)
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where pe gives the probability of error. Also,

H(W |Y T
1 , ST

1 , ZT
1 ) = H(W )− I(W ; Y T

1 , ST
1 , ZT

1 )

= log2(M)− I(W ; Y T
1 , ST

1 , ZT
1 ). (2.10)

Combining Eqs. (2.9) and (2.10) we have,

log2(M)

T
≤

I(W ; Y T
1 , ST

1 , ZT
1 ) + h(pe)

T (1− pe)
.

As N →∞, pe → 0 and we can write,

lim sup
N→∞

log2(M)

T
≤ lim sup

N→∞

1

T
I(W ; Y T

1 , ST
1 , ZT

1 ). (2.11)
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We focus our attention on the right side of Eq. (2.11),

1

T
I(W ; Y T

1 , ST
1 , ZT

1 )

=
1

T

T∑

k=1

I(W ; Yk, Sk, Zk|Y
k−1
1 , Sk−1

1 , Zk−1
1 )

(a)
=

1

T

T∑

k=1

I(W, Zk−1
1 ; Yk, Sk, Zk|Y

k−1
1 , Sk−1

1 , Zk−1
1 )

− I(Zk−1
1 ; Yk, Sk, Zk|Y

k−1
1 , Sk−1

1 , Zk−1
1 , W )

︸ ︷︷ ︸

=0

=
1

T

T∑

k=1

H(Yk, Sk, Zk|Y
k−1
1 , Sk−1

1 , Zk−1
1 )−H(Yk, Sk, Zk|Y

k−1
1 , Sk−1

1 , Zk−1
1 , W )

(b)
=

1

T

T∑

k=1

H(Yk, Sk, Zk|Y
k−1
1 , Sk−1

1 , Zk−1
1 )−H(Yk, Sk, Zk|Y

k−1
1 , Sk−1

1 , Zk−1
1 , W, Xk)

(c)
=

1

T

T∑

k=1

H(Sk|Y
k−1
1 , Sk−1

1 , Zk−1
1 ) + H(Yk|Y

k−1
1 , Sk−1

1 , Zk−1
1 , Sk)

+ H(Zk|Y
k−1
1 , Sk−1

1 , Zk−1
1 , Sk, Yk)−H(Sk|S

k−1
1 , Zk−1

1 , W, Xk)

−H(Yk|S
k−1
1 , Zk−1

1 , W, Xk, Sk)−H(Zk|S
k−1
1 , Zk−1

1 , W, Xk, Sk, Yk)

=
1

T

T∑

k=1

H(Yk|Y
k−1
1 , Sk−1

1 , Zk−1
1 , Sk) + H(Sk|Sk−1)

︸ ︷︷ ︸

(d)

+H(Zk|Sk)

−H(Sk|Sk−1)−H(Yk|Sk, Xk)−H(Zk|Xk, Yk)
︸ ︷︷ ︸

(e)

=
1

T

T∑

k=1

H(Yk|Y
k−1
1 , Sk−1

1 , Zk−1
1 , Sk)−H(Yk|Sk, Uk)

︸ ︷︷ ︸

I

+ H(Zk|Sk)
︸ ︷︷ ︸

II

Here, (a) and (c) follow from the chain rule of Mutual Information and entropy

respectively, and (b) is due the fact that the channel input Xk is a function of the

channel observations Zk−1
1 and the message W . The above expression can be divided

into two parts I and II. Part I is the same as that given by [17] and can be written as a

cost which is a function of the coding policy p(xk|z
k−1
1 ). This cost expression is used to

recast the maximization problem (2.11) as a Markov Decision Process. Consequently,
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the argument for the converse just follows the original proof given in [17]. Part II of

the expression is just a constant that does not depend on the coding policy and can

be ignored. The direct theorem can be used without modification to complete the

proof.

Theorem 2.2 extends Theorem 2.1 to the case when only ACK/NAK information

is available to the encoder. In this case the power allocation policy becomes a function

of the observed ACK/NAK sequence instead of the observed state.

2.4 Numerical Evaluations

2.4.1 Capacity-Cost for Different Feedback Schemes

Figure 2.5 shows the comparison of the theoretical bounds for schedulers with

different CSI for a 2SMEC. The state space in this case is S = {1, 2}, and the

channel parameters used are ǫ1 = 0.2 and ǫ2 = 0.8. The transition probability matrix

is given by P =

[
0.8 0.2
0.1 0.9

]

. In all capacity cost functions with feedback a knee-point

in the curve is observed when P is equal to 0.33. This is due to the fact that as the

number of data units to be transmitted is increased, the cost will increase at a certain

rate since only the good states are being used initially. However after all the good

states are exhausted, the controller will use the bad states for transmission, which

increases cost at a faster rate as more packets will be dropped. The dotted green trace

represents a blind transmission scheduler. Blind scheduler refers to a transmission

scheduler that does not use any type of CSI. A blind scheme will give the lower bound

on performance of any channel aware transmission scheme. The curve C(P) for this

scheduler has a constant slope, since the controller does not adapt the transmission

policy to the channel state. As the power constraint is increased to unity, making it an
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Fig. 2.5: Comparison of the capacity-cost functions for the 2SMEC with different
feedback. Here ǫ1 = 0.2, ǫ2 = 0.8, p21 = 0.1 and p12 = 0.2.

unconstrained problem, the performance of all the schemes converge. This happens

due to the controller attempting transmission in each slot regardless of the channel

state.

2.4.2 Maximum Power Penalty

Next, we find the maximum power penalty incurred by the feedback schemes

using ACK/NAK information. We define the maximum power penalty as AdB ,

maxR 10 log10

(
Cost-Capacity function for rate R using ACK/NAK feedback
Cost-Capacity function for rate R using causal CSI feedback

)

. Cost-Capacity func-

tion is the inverse of the Capacity-Cost function. Maximum power penalty quantifies

the worst-case extra cost (power) required by an ACK/NAK based scheme to achieve
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different values of packet loss probabilities {ǫ1, ǫ2} with π(1) = 1/3 and π(2) = 2/3.

the same transmission rate achieved by a causal perfect CSI based scheme. To com-

plete the comparison, we define a similar quantity for blind scheme, i.e., the case

when no feedback is used for scheduling transmissions.

Figure 2.6 compares the maximum power penalties incurred by ACK/NAK and

blind schemes as a function of channel memory µ , 1 − p12 − p21. We plot this

quantity for different values of loss probabilities {ǫ1, ǫ2}, while keeping the steady

state probabilities {π(1), π(2)} constant. For the range of values considered in our

evaluations, the ACK/NAK based schemes do not incur a maximum power penalty

of more than 1 dB. On the other hand, in case of no feedback (blind) the maximum

power penalty can be as much as 4.5 dB. An interesting observation is that when the

channel conditions are “good” (i.e., ǫ1 = 0.01 and ǫ2 = 0.1) the advantage of having
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different values of steady state probabilities {π(1), π(2)} with ǫ1 = 0.1 and ǫ2 = 0.99.

ACK/NAK feedback over causal CSI is negligible. The difference in maximum power

penalties for the two cases is less than 0.1 dB in this case. This can be explained by

noting that under good channel conditions, there will be negligible packet drops and

consequently, the value of estimating the channel (using feedback) is minimal.

In Figure 2.7, we plot the maximum power penalties for different values of the

steady state probability {π(1), π(2)}, while keeping the loss probabilities constant

(ǫ1 = 0.1, ǫ2 = 0.95). In this case, the ACK/NAK feedback based scheduler incurs a

maximum power penalty of upto 1.5 dB when {π(1) = 0.15, π(2) = 0.85}. When no

feedback is provided to the transmitter, the maximum power penalty can be as high as

7 dB. We also note from Figures 2.6 and 2.7 that as the channel memory (1−p12−p21)

increases, the difference in maximum power penalties between the case of ACK/NAK
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feedback and no feedback also increases. This is explained by the fact that for higher

values of channel memory, the ACK/NAK feedback will provide estimates of the

channel state which are close to that of causal perfect CSI. From these result, we

can draw the conclusion that using ACK/NAK feedback to schedule transmissions

will lead to substantial energy savings as compared to using no information at all.

Channel memory is an indicator of burstiness in Markov channel. This leads to the

conclusion that ACK/NAK feedback based schedulers will provide best results when

the wireless channel is bursty.
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CHAPTER 3

ENERGY OPTIMAL TRANSMISSION SCHEDULER FOR
SENSOR NETWORKS

3.1 Introduction

As we observed in Chapter 2, without any effort for adapting to the variability

in the channel, the energy resources are consumed inefficiently. Intuitively, if bad

channel conditions are not anticipated, a high fraction of the node energy can be

consumed by multiple retransmissions per correctly decoded packet. To avoid such

inefficiencies, sensor nodes use transmission schedulers. The objective of an energy-

efficient transmission scheduler is to reliably communicate data using minimal amount

of energy, while meeting deadline and/or throughput constraints.

We propose a transmission scheduler that utilizes different grades of CSI on the

state of a FSMC to schedule packet transmissions in order to meet a deadline con-

straint for the packets waiting in the transmission queue. We are specifically interested

in the highly imperfect CSI that can be obtained based solely on the ACK/NAK se-

quence for the past transmissions. Note that, this level of information is available at

the link layer in almost all wireless networks without any extra effort (such as sending

special non-information carrying physical-layer pilot symbols over the channel). Our

31



transmitter has a single transmit power level and the coding and modulation schemes

are fixed. In every transmission opportunity, the transmitter can choose to attempt

the packet transmission or defer it.

Our scheduler is based on the dynamic programming (DP) solution to a finite-

horizon transmission control problem. We show how a simple version of it can be

implemented in sensor nodes. We will evaluate the performance of our scheduler and

illustrate that it achieves a given throughput at a power level that is fairly close to

the fundamental limit achievable over the channel.

In the transmission scheduling problem, the parameter we minimize is the number

of transmission attempts, subject to a deadline constraint for the packets in the queue.

One can realize that, with the limitation of binary power control (transmit or do

not transmit), the number of transmissions is proportional to the energy consumed

per correctly decoded packet and the deadline constraint can be translated into a

throughput constraint at every point in time2. Hence the problem can be viewed as

minimizing the energy per packet subject to a throughput constraint.

Transmission strategies based on channel estimation in FSMCs have been consid-

ered by Zorzi and Rao [22] as well as Chiasserini and Meo [23]. These papers assume

a two-state Markov chain and detect the bad channel state upon receipt of a NAK.

Both schemes reduce the transmission rate and constantly probe the channel as a

response. In [23], the transmitter switches to a greedy transmission mode when the

buffer level exceeds a certain threshold, regardless of the channel state. Our scheme

is based on a dynamic program, which takes the queue and the estimated channel

states jointly into account to schedule packet transmissions in an optimal manner.

2For instance if the buffer contains 5 packets with a deadline constraint of 1 sec, then the scheduler
has to guarantee a minimum of 5 packets/sec for the next second
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Johnston and Krishnamurthy [24] give an algorithm that minimizes the transmis-

sion energy and latency while transmitting over a fading channel by formulating the

problem as a partially observed Markov decision process (POMDP) search problem.

However, their threshold-based policy result is optimal for a 2-state channel only. In

addition, the channel model is assumed to have a unity packet loss probability in one

state. This may not seem like a fundamental difference, but in such a scenario, an

ACK implies a “good” state. The corresponding time dependence is finite and the

associated solution can exploit it. Our results are valid for a general FSMC.

Uysal, et. al., [25] and Zafer, et. al., [26] have considered rate control policies for

transmission scheduling similar to ours. However, [25] uses a static channel model for

deriving the control policy. On the other hand, [26] considers a Markov channel, but

assumes knowledge of the channel state prior to transmission. In our model, this infor-

mation is not available to the controller. Haleem, et. al., [27] use ACK/NAK feedback

in a learning automata algorithm to schedule transmissions. This method is shown

to converge to the optimal throughput in stationary channels. Ho, et. al., [28] give

a sub-optimal rate adaptation scheme to maximize throughput that uses ACK/NAK

feedback. Karmokar, et. al., [29] pose the problem of rate adaptation in Type-I Hy-

brid ARQ systems as a POMDP and provide some heuristic solutions. The authors

develop this idea further and propose a linear programming approach to solve the

POMDP problem [30,31].

The chapter is organized as follows. We give our system model and the assump-

tions in Section 3.2. We present the DP formulation of the problem in Section 3.3.

We discuss some implementation issues in Section 3.4. In Section 3.5, we analyze the
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Fig. 3.1: Block diagram showing the system model considered in this work.

performance of the DP scheduler and compare it with the theoretical bounds derived

in Chapter 2.

3.2 System Model

The system model used in this work is shown in Figure 3.1. Here, we consider

a single point-to-point wireless link with a feedback path. The transmitter has B

packets in a queue to be sent to the receiver within T time slots. The transmitter

is assumed to transmit at a fixed rate and we define a time slot as the time it takes

to transmit a packet and receive the associated ACK/NAK. The controller, which is

attached to the transmitter, determines the decision to attempt a transmission or to

defer transmission of a packet in every time slot. For the kth time slot, we denote this

packet (or lack of it) as xk. The receiver decodes the packet yk and sends feedback

ck about the channel state to the controller over an error-free channel. The different

types of feedback will be discussed shortly. At time k, the controller has access to the

queue state information (i.e., number of packets in the queue, qk) and the feedback

ck. We use the following notation for a sequence, cn
m , {cm, cm+1, . . . , cn}. The
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information vector Ik = {qk
0 , c

k
0} is defined as the information available at time k

to the controller. The controller makes control decision uk ∈ {0, 1} based on the

information vector, Ik. Here ‘0’ corresponds to the decision not to transmit and ‘1’

corresponds to the decision to transmit packet xk.

As previously, the channel model that we consider for this problem is a FSMC. The

channel state at time k is denoted by sk ∈ S, determines the packet loss probability

during the kth time slot. The state space of the Markov channel, S is a discrete set

containing the different channel states of the FSMC. Each channel state s ∈ S has

a certain packet loss probability denoted by ǫs. The channel state is assumed to be

constant during the period of packet transmission, i.e., one time slot. The steady

state probability of state s is represented by π(s).

We assume that the controller has accurate estimates of the channel parameters,

i.e., transition probabilities and the packet loss probabilities associated with each

state. Estimation of these channel parameters is beyond the scope of this paper.

We note that this topic has been treated widely in literature, where an FSMC with

unknown parameters is posed as a hidden Markov model (HMM). Iterative procedures

for the Maximum Likelihood estimation of HMM parameters are well-understood,

e.g., Baum-Welch algorithm [32].

The receiver is assumed to have an error detection scheme with a negligible proba-

bility of undetected error. The decoder identifies whether a packet is decoded correctly

or not, i.e., yk = xk or yk 6= xk. Packet error process at time k is denoted by zk,

where zk = 1 for a correct transmission and zk = 0 for an incorrect transmission.

The receiver sends the feedback containing the CSI to the controller on a channel
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assumed to be error-free. Like chapter 2, we will consider the following cases/grades

of receiver feedback to the controller:

1. Non-causal Perfect CSI: the controller knows the instantaneous channel state

when it determines uk, i.e., ck = sk and Ik = {qk
0 , s

k
0}.

2. Causal Perfect CSI: the controller knows the delayed channel state when it

determines uk, i.e., ck = sk−1 and Ik = {qk
0 , s

k−1
0 }.

3. Causal Partial CSI: in this case, the controller knows the ACK/NAK for the

previous transmissions, i.e., ck = zk−1 and Ik = {qk
0 , z

k−1
0 }.

For clarity of presentation, we use a unit delay for the causal CSI cases. The results

contained in this chapter can be easily extended to a general fixed delay.

3.3 The Dynamic Programming Solution

In this section we develop an algorithm/decision rule for the controller that min-

imizes the energy expended by the transmitter and the receiver for the successful

delivery of a certain number of data packets while maintaining a deadline require-

ment. Intuitively, without a deadline constraint, the controller would be inclined to

transmit at times only when it is almost sure of the good channel state to achieve en-

ergy efficiency. However, with the deadline constraint, if there are packets remaining

in the queue close to the deadline, it may need to take chances with the bad state

occasionally as well. Thus the controller has to make decisions on packet transmis-

sion, based jointly on the queue and channel states. Note that the controller needs

to consider the effect of the current decision on future decisions. For instance, if

the controller decides not to transmit at a time slot, there will be no feedback on the
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channel state for that time slot. This makes the available information more outdated,

affecting the success of subsequent decisions made. In our system the CSI used by

the controller is provided solely by the receiver. We assume that the initial queue

state is also known by the receiver, hence the receiver also has the entire information

vector. Consequently, the receiver has the knowledge of whether a transmission will

be attempted at any given point in time and it can remain inactive to conserve energy

during skipped transmission attempts.

Since the packet-loss process is a stochastic process, this problem can be viewed

as one of sequential decision making under uncertainty. In our system model, both

the queue evolution and channel evolution have a Markov structure. The queue state

can be observed completely by the controller, however for the channel state, we have

different cases of observation (complete and partial). The combination of these factors

necessitates the use of a finite horizon DP approach [33] to achieve energy optimality

and meet the deadline constraint at the same time.

3.3.1 The Dynamic Program

Using the notation introduced in the previous section, we can write the state

equation for the queue occupancy qk at the beginning of time slot k = 0, 1, . . . , T −1,

as follows,

qk+1 = f(qk, sk, uk) = qk − 1ǫsk
uk, (3.1)

where uk ∈ {0, 1}. The packet loss process is denoted by 1ǫsk
, where 1ǫsk

= 0 with

probability ǫsk
and 1ǫsk

= 1 otherwise.

Our objective is to minimize the energy consumption of the transmitter while

transmitting B packets over T time slots. Consequently, the cost function should
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be proportional to the total energy of the transmissions required to transmit all

packets correctly. In order to do this, we set the cost incurred at time k, denoted by

gk(qk, sk, uk), equal to uk. When the controller decides to transmit, it incurs a cost

of 1 unit. On the other hand, if the controller decides to defer transmission, then it

does not incur any cost. Since the packet loss is a stochastic process, there is always

a non-zero probability associated with not transmitting all packets correctly by the

deadline. To make this undesirable, we use a terminal cost gT (qT ) = CqT , C ≫ 0.

Terminal cost implies that if there are qT packets left in the buffer at the end of time

T , then the controller will incur a cost of CqT . One would expect that the decision

rule and hence the performance is strongly tied to the choice of C, but we show that,

somewhat surprisingly, in most simulations the choice of C has little effect on the

performance of the scheduler as long as C ≥ 10. We can express the expected cost

incurred from the (T − 1)th stage to termination, also called the cost-to-go function

JT−1(IT−1) as,

JT−1(IT−1)

= min
uT−1∈U

{
EsT−1

[gT (f(qT−1, sT−1, uT−1)) + gT−1(qT−1, sT−1, uT−1)|IT−1, uT−1]
}

= min
uT−1∈U

{
uT−1 + EsT−1

[Cf(qT−1, sT−1, uT−1)|IT−1, uT−1]
}

. (3.2)

The cost-to-go Jk(Ik) for stages k = 0, 1, . . . , T − 2, can be expressed iteratively by

using successive cost-to-go functions Jk+1(Ik+1),

Jk(Ik) = min
uk∈U

{
Esk,ck+1

[Jk+1(Ik, qk+1, ck+1, uk) + gk(qk, sk, uk)|Ik, uk]
}

= min
uk∈U

{
uk + Esk,ck+1

[Jk+1(Ik, qk+1, ck+1, uk)|Ik, uk]
}

. (3.3)

We note that these optimization problems reduce to a DP with perfect state infor-

mation when non-causal perfect CSI is available. In case of causal CSI (perfect and
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Fig. 3.2: A 2-state Markov channel with two states, “1” and “2”. The associated loss
probabilities are ǫ1 and ǫ2 and the transitions have been labeled with the respective
probabilities.

partial) these problems are treated as DP with imperfect state information. At each

k = 0, 1, . . . , T − 1, the optimal policy µ∗
k(Ik) maps the information vector Ik to the

control action uk ∈ {0, 1} that minimizes the cost-to-go given in (3.2) and (3.3). The

optimal policy is obtained recursively, we first solve the optimization problem (3.2)

for all possible values of the information vector IT−1 to get µ∗
T−1(IT−1). The corre-

sponding value of J∗
T−1(IT−1) is used to calculate µ∗

T−2(IT−2) in (3.3) and J∗
T−2(IT−2).

This process is continued till J∗
0 (I0) = J∗

0 (q0, c0) is found. We note that, in general,

at each stage k the state space size of Ik will grow exponentially. However, if the

components of Ik follow a Markov transition (e.g., perfect CSI feedback) then only

the most recent state observations are required for determining the control decision

keeping the state space size constant.

Example 3.1 2-state Markov channel with perfect causal CSI

To illustrate the DP algorithm, we present a simple example, where a transmission

policy for one packet (B = 1) is to be optimized over two time slots (T = 2).

We consider the two-state Markov channel shown in Figure 3.2 with p12 = 0.2 and

p21 = 0.1. The possible queue states are qk ∈ {0, 1} and the possible channel states

are sk ∈ {1, 2}. The probability of errors are ǫ1 = 0 and ǫ2 = 1 and perfect causal
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CSI is known to the controller, i.e., ck = sk−1. If we set C = 20, the terminal cost,

g2(q2 = 0) = 0 and g2(q2 = 1) = 20. To obtain the optimal policy for the 1st stage,

we calculate the optimal action µ∗
1(q1, c1) given by the minimizing argument of (3.2)

for all possible values of the state {q1, c1}. Using this control law, we can find the

corresponding optimal cost-to-go function, J∗
1 (q1, c1). The values of µ∗

1(q1, c1) and

J∗
1 (q1, c1) will be,

µ∗
1(q1, s1) =







0, q1 = 0, s1 = 1, 2

1, q1 = 1, s1 = 1

1, q1 = 1, s1 = 2

and J∗
1 (q1, c1) =







0, q1 = 0, c1 = 1, 2

5, q1 = 1, c1 = 1

19, q1 = 1, c1 = 2

,

i.e., the controller will transmit whenever the queue is non-empty. This expression is

substituted in (3.3) to find µ∗
0(q0, c0) and J∗

0 (q0, c0) for the zeroth stage,

µ∗
0(q0, c0) =

{

1, q0 = 1, c0 = 1

0, q0 = 1, c0 = 2
and J∗

0 (q0, c0) =

{

4.8, q0 = 1, c0 = 1

17.6, q0 = 1, c0 = 2
,

i.e., the controller will transmit only when the CSI c0 = 1. Note that q0 = B = 1.

Next, we derive the dynamic programming equations for the various cases of feed-

back discussed in Section 3.2.

3.3.2 DP Equation for Non-causal Perfect CSI at the Con-
troller

Non-causal CSI is the case when the channel information is known to the controller

in advance and {Ik = qk
1 , s

k
1}. Since both the queue state and channel state follow a

Markov transition, we can reduce the conditioning on Ik in Eqs. (3.2) and (3.3) to the

most recently observed states, i.e., {qk, sk}. In fact, since this is the only information

used by the controller, we can state that Ik = {qk, sk}. Using this fact, we can rewrite
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these equations as,

JT−1(qT−1, sT−1) = min
uT−1∈{0,1}

{
uT−1 + ǫsT−1

CqT−1 + (1− ǫsT−1
)C(qT−1 − uT−1)

}
,

(3.4)

for the terminating stage. Similarly, we can find the equations for the cost functions

in the intermediate stages k = 1, 2, . . . , T − 2,

Jk(qk, sk) = min
uk∈{0,1}

{

uk + ǫsk

∑

sk+1∈S

P(sk+1, sk)Jk+1(qk, sk+1)

+ (1− ǫsk
)
∑

sk+1∈S

P(sk+1, sk)Jk+1(qk − uk, sk+1)
}

. (3.5)

Here, P is the one-step transition probability matrix and we define P(sk+1, sk) ,

p(Sk+1 = sk+1|Sk = sk). These equations can be solved iteratively to derive a decision

rule for the causal CSI case.

3.3.3 DP Equation for Causal Perfect CSI at the Controller

For the causal CSI case, we follow a similar approach. When causal CSI is available

to the controller, then Ik = {qk
1 , s

k−1
1 }. As argued previously, since both these state

variables follow a Markov chain, the cost function conditioned on the most recent

state observations will be independent of the previous states. In other words, we can

write Ik = {qk, sk−1}. Therefore, we can write the cost-to-go function Jk given by

Eqs. (3.2) and (3.3) as,

JT−1(qT−1, sT−2)

= min
uT−1∈{0,1}

{

uT−1 +
∑

sT−1∈S

P(sT−1, sT−2)(ǫsT−1
CqT−1 + (1− ǫsT−1

)C(qT−1 − uT−1))
}

,

(3.6)
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where ck = sk−1 is the CSI available at the controller at time k. For k = 1, 2, . . . , T−2,

Jk(qk, sk−1) = min
uk∈{0,1}

{

uk +
∑

sk∈S

P(sk, sk−1)
(

ǫsk

∑

sk+1∈S

P(sk+1, sk)Jk+1(qk, sk+1)

+ (1− ǫsk
)
∑

sk+1∈S

P(sk+1, sk)Jk+1(qk − uk, sk+1)
)}

. (3.7)

3.3.4 DP Equation for Causal Partial CSI at the Controller

Recall that with causal partial CSI, Ik = {qk
1 , z

k−1
1 }. The queue state, qk, follows

a Markov transition, so we can reduce the information vector to Ik = {qk, z
k−1
1 }. We

cannot apply the same reduction to the ACK/NAK sequence, zk. This is due to

the fact that, even though zk is a function of the channel state sk, in general, the

probability distribution of zk does not depend only on zk−1 but all the past observa-

tions, zk−1
1 . The problem with directly applying the DP approach, (3.2) and (3.3), in

this case is that the state space of the information vector will expand exponentially

with the received observations. To avoid this problem, we introduce a new quantity

wk = {wk(1), . . . , wk(|S|)} which is the conditional state distribution given the past

sequence, i.e., wk(s) , p
(
sk = s

∣
∣ zk−1

1

)
. The conditional state distribution follows a

Markov transition, wk = Φ(wk−1, zk−1, uk−1), which can be derived using a straight-

forward application of Bayes’ rule. Since this quantity depends on observations and

control actions from the previous stage only, the controller needs to track only the

most recent value of this variable. Evaluating the expectation in (3.2) and (3.3), using

wk, we write the cost-to-go function Jk. For the terminal stage,

JT−1(qT−1, wT−1) = min
uT−1

{

uT−1 +
∑

s∈S

wT−1(s) (ǫsCqT−1 + (1− ǫs)C(qT−1 − uT−1))
}

,

(3.8)
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and for the intermediate stages, k = 0, . . . , T − 2,

Jk(qk, wk) = min
uk

{

uk +
∑

s∈S

wk(s)ǫsJk+1(qk, Φ(wk, 0, uk))

+
∑

s∈S

wk(s)(1− ǫs)Jk+1(qk − uk, Φ(wk, 1, uk))
}

. (3.9)

Note that (3.8) and (3.9) are valid for any discrete set S. The recursive relation for

wk is given by,

wk = Φ(wk−1, zk−1, uk−1) =
wk−1A(zk−1, uk−1)P

wk−1A(zk−1, uk−1)1
T
, (3.10)

with w0 initialized as the steady state distribution of states, {πs, ∀s ∈ S}. Here

A(zk−1, uk−1) is a diagonal |S| × |S| matrix with ith diagonal term defined as,

p (zk−1 | Sk−1 = i, uk−1 ) =







ǫi, zk−1 = 0, uk−1 = 1

1− ǫi, zk−1 = 1, uk−1 = 1

1, uk−1 = 0

,

P is the transition probability matrix for the FSMC, and 1 = {1, . . . , 1} is a |S|-

dimensional vector. We note here that when uk−1 = 0, there is no transmission in the

(k − 1)th slot and zk−1 is not known. When this “gap” appears in the ACK/NAK

sequence, wk is updated by vector multiplication with the transition matrix P. In-

tuitively, the conditional state estimate will be less accurate when there are gaps

in the ACK/NAK sequence which leads to a degradation in the performance of the

DP-scheduler. As expected, with increasing gap size, the state estimate converges to

the steady state probability.

Next, we derive the recursive relation for the conditional state distribution wk(s) =

p(Sk = s|zk−1
1 ). We consider the two possible cases individually.

Case 1: ACK/NAK for the (k − 1)th slot is available

In this case uk−1 = 1, which means that there is transmission in the (k − 1)th

slot. In this case the ACK/NAK zk−1 is available to the controller to update the
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conditional state distribution. We can write,

p(Sk−1 = s̄|zk−1
1 ) =

p(Sk−1 = s̄, zk−1
1 )

p(zk−1
1 )

=
p(zk−1|Sk−1 = s̄)p(Sk−1 = s̄, zk−2

1 )

p(zk−1
1 )

=
p(zk−1|Sk−1 = s̄)p(Sk−1 = s̄|zk−2

1 )p(zk−2
1 )

p(zk−1
1 )

. (3.11)

And,

p(zk−1
1 ) =

∑

ŝ∈S

p(zk−1
1 , Sk−1 = ŝ)

=
∑

ŝ∈S

p(zk−1|Sk−1 = ŝ)p(Sk−1 = ŝ, zk−2
1 )

=
∑

ŝ∈S

p(zk−1|Sk−1 = ŝ)p(Sk−1 = ŝ|zk−2
1 )p(zk−2

1 ). (3.12)

Substituting Eq. (3.12) in Eq. (3.11), we have,

p(Sk−1 = s̄|zk−1
1 ) =

p(zk−1|Sk−1 = s̄)p(Sk−1 = s̄|zk−2
1 )p(zk−2

1 )
∑

ŝ∈S p(zk−1|Sk−1 = ŝ)p(Sk−1 = ŝ|zk−2
1 )p(zk−2

1 )
. (3.13)

Finally we can write wk(s) as,

wk(s) = p(Sk = s|zk−1
1 ) =

∑

s̄∈S

p(Sk = s|Sk−1 = s̄)p(Sk−1 = s̄|zk−1
1 )

=

∑

s̄∈S p(zk−1|Sk−1 = s̄)p(Sk−1 = s̄|zk−2
1 )p(Sk = s|Sk−1 = s̄)

∑

ŝ∈S p(zk−1|Sk−1 = ŝ)p(Sk−1 = ŝ|zk−2
1 )

=

∑

s̄∈S p(zk−1|Sk−1 = s̄)wk−1(s̄)p(Sk = s|Sk−1 = s̄)
∑

ŝ∈S p(zk−1|Sk−1 = ŝ)wk−1(ŝ)
. (3.14)

Case 2: ACK/NAK for the (k − 1)th slot is not available

In this case uk−1 = 0, which means there is no transmission in the (k − 1)th slot.

As a result, the controller does not have access to the ACK/NAK zk−1 to calculate
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the update equations for wk(s). We can write,

wk(s) = p(Sk = s|zk−1
1 ) =

∑

s̄∈S

p(Sk = s|Sk−1 = s̄, zk−2
1 )p(Sk−1 = s̄|zk−2

1 )

=
∑

s̄∈S

p(Sk = s|Sk−1 = s̄)p(Sk−1 = s̄|zk−2
1 )

=
∑

s̄∈S

p(Sk = s|Sk−1 = s̄)wk−1(s̄). (3.15)

Eqs. (3.14) and (3.15) can be written compactly in vector form given in Eq. (3.10).

For a general fixed delay d > 1, the conditional state distribution update does not

have a recursive relation. However, using simple manipulations, we can derive an

evaluation process that has an iterative structure to it. We can write,

p(Sk = s|zk−d
1 ) =

∑

s̄∈S

p(Sk = s, Sk−d+1 = s̄|zk−d
1 )

=
∑

s̄∈S

p(Sk = s|Sk−d+1 = s̄)p(Sk−d+1 = s̄|zk−d
1 )

=
∑

s̄∈S

p(Sk = s|Sk−d+1 = s̄)wk−d+1(s̄). (3.16)

Note that wk−d+1(s̄) has a recursive relation. This provides us a two-step iterative

method to evaluate the conditional state distribution:

1. Update wk−d→ wk−d+1 using Eq. (3.10).

2. Calculate p(Sk = s|zk−d
1 ) by evaluating the vector Pd

wk−t+1 and choosing the

appropriate entry. Here Pd is the d-step transition matrix for the FSMC.

3.4 Implementation Issues

Next, we discuss some implementation issues associated with the DP-scheduler.

First, consider the example of a two-state Markov channel with ACK/NAK infor-

mation. The optimization problems (3.8) and (3.9) can be simplified for a 2-state
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Fig. 3.3: Comparison of the thresholds for the control action uk with respect to
conditional probability estimate qk for different values of xk.

Markov channel by defining vk = p(Zk = 0|zk−1
1 ) = wk(1)(ǫ1−ǫ2)+ǫ2, the probability

of packet loss in the kth slot, given the previous ACK/NAK sequence. The recursive

relation for vk is given by,

vk+1 = Ψ(vk, zk, uk)

=







ǫ1 + p12(ǫ2 − ǫ1) + (1− p12 − p21)(vk − ǫ1)
(1−ǫ2)
(1−vk)

, zk = 0, uk = 1

ǫ1 + p12(ǫ2 − ǫ1) + (1− p12 − p21)(vk − ǫ1)
ǫ2
vk

, zk = 1, uk = 1

ǫ1 + p12(ǫ2 − ǫ1) + (1− p12 − p21)(vk − ǫ1), uk = 0

. (3.17)

The control action at time k is a function of three variables: k, qk and vk. On

numerically solving the DP equations, it is observed that for a fixed k and qk, the

decision rule uk(qk, vk) is a threshold rule with respect to vk. The intuition for this

is that, since vk is the estimated probability of losing a packet, the controller would

decide to transmit if it is below a certain value and not to transmit if it is above

46



a certain value. We call this threshold Qk(qk), which is a function of k and qk for

a particular set of channel parameters. When the calculated vk < Qk(qk) then the

controller transmits a packet (uk = 1), and defers transmission otherwise (uk = 0).

We illustrate this property of the decision rule in Figure 3.3. In this case, B = 40

packets need to be transmitted in T = 200 time slots. The channel parameters are:

p21 = 0.1, p12 = 0.2, ǫ1 = 0.2 and ǫ2 = 0.8. Here, the control uk is plotted as a

function of vk for different values of qk and k = 100. When q100 = 10, then u100 = 1

for v100 ≤ 0.455. Increasing q100 to 20, we have Q100(20) = 0.588 and for q100 = 30,

it increases to 0.697. Clearly Qk(qk) is monotonic with qk for a fixed k. Note that

Qk(qk) is also monotonic with k for a given qk, since there are more packets in the

queue waiting to be transmitted by a fixed deadline, the “anxiety” of the controller

to transmit them increases.

The DP solution described above provides an energy optimal transmission sched-

uler for sensor networks. However, the computation required to solve the DP equa-

tions is beyond the capability of most sensor network transmitters. Instead, we make

use of lookup tables to implement the scheduler. This approach requires storage re-

sources rather than computation resources. A lookup table TQ(p21, p12, ǫ1, ǫ2, k, qk)

which has been pre-computed and loaded in the sensor memory is used to determine

the control rule. This table contains the value of the threshold Q for different channel

conditions and queue conditions. The controller updates the probability estimate vk,

compares it with the appropriate threshold Qk(qk) and returns the control variable

uk ∈ {0, 1}. Since it is not practical to have such a table for all channel realizations,

we store tables for a discrete set of channel realizations, i.e., {p21, p12, ǫ1, ǫ2}.
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The major design parameters on the transmitter/controller in this approach is

the amount of memory to store the look-up table TQ(p21, p12, ǫ1, ǫ2, k, qk). The size of

memory will depend on the number of channel realizations ({p21, p12, ǫ1, ǫ2}) stored

in the look-up table. For instance, a user can store 5 values each of p21, p12, ǫ1

and ǫ2 to get 625 different realizations of the channel. In addition, for each channel

realization, each value of qk and k will have a threshold value Qk(qk) associated with

it. If the DP algorithm provides a solution for up to 200 data packets transmitted

over a duration of up to 500 time slots, the memory requirement for one channel

realization will be 100 Kbytes (since each threshold value will need only one byte of

storage). In this case, the total memory requirement for the controller will be 62.5

Mbytes. The computational requirement of this approach is minimal, since it only

involves the evaluation of a simple algebraic expression given by Eq. (3.17) at every

time step.

Table 3.1 shows the pseudocode for the proposed scheduler. The channel param-

eters are required for initializing the scheduler and we assume that they are already

provided to the controller. A lookup table TQ(p21, p12, ǫ1, ǫ2, k, qk) which has been

pre-computed and loaded in the sensor memory is used to determine the control rule.

This table contains the value of the threshold Q for different channel conditions and

queue conditions. The controller updates the probability estimate vk according to

Eq. (3.17), compares it with the appropriate threshold Qk(qk) and returns the con-

trol variable uk ∈ {0, 1}. In this case, uk = 1 when the probability estimate is lower

than the threshold and vice versa.

For FSMCs with |S| > 2, the look-up table TU(P, ǫ1, ǫ2, . . . , ǫ|S|, k, qk, wk) will

be slightly different in structure. Here the table contains the control action uk
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Input: p21, p12, ǫ1 and ǫ2 from Initialization/Calibration phase.

Output: Control uk ∈ {0, 1}.

Given: A six-dimensional lookup table, TQ(p21, p12, ǫ1, ǫ2, k, qk) con-
taining values of threshold Q for various channel conditions (character-
ized by {p21, p12, ǫ1, ǫ2}) and queue conditions (characterized by k and
xk).

The DP Scheduler

1: if Transmission in (k − 1)th slot then
2: zk−1 ← ACK/NAK received for the (k − 1)th packet
3: vk ← Ψ(vk−1, zk−1, 1)
4: else
5: vk ← Ψ(vk−1, zk−1, 0)
6: end if
7: qk ← From the Queue
8: if vk > TQ(p21, p12, ǫ1, ǫ2, k, qk) then
9: return uk ← 0

10: else
11: return uk ← 1
12: end if

Table 3.1: Pseudocode for the proposed controller.
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for different channel condition vectors wk. The controller updates wk according

to Eq. (3.10) and looks up the control action uk, according to this vector. As

previously, it is not practical to have such a table for all channel realizations, we

store tables for a discrete set of channel realizations, A. Consequently the look-

up table TU (P, ǫ1, ǫ2, . . . , ǫ|S|, k, qk, wk) will have values for the channel realizations

{P, ǫ1, ǫ2, . . . , ǫ|S|} ∈ A. The size of memory will depend on the number of channel re-

alizations |A| stored in the look-up table. In addition, each value of qk and k will have

a set of wk associated with it. Let each component of wk be quantized into 10 levels.

If the DP algorithm provides a solution for up to 100 data packets transmitted over

a duration of up to 500 time units, the memory requirement will be |A|×50×10|S|−1

Kbits (since each the control action will need only one bit of storage). For |A| = 100

and |S| = 3, the memory requirement for the controller will be 62.5 Mbytes.

Before concluding this section, we would like to point out that there is an inherent

tradeoff between accuracy and complexity with increasing number of states. The

memory requirements for storing the controller action will increase exponentially with

the number of FSMC states. On the other hand, the channel model will become

more “accurate” as more channel states are taken into account. However, there is no

universal rule for selecting the number of states in the FSMC model for all possible

physical fading processes. We direct the reader to [20] and references therein for a

discussion on the selection of number of FSMC states.

3.5 Performance Evaluation

We conduct simulations on FSMCs to compare the various transmission schedulers

and compare them against their respective theoretical bounds. The metric used to
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Fig. 3.4: Comparison of the energy efficiency performance of various schemes with
their theoretical bounds for 2-state Markov channel. Here ǫ1 = 0.2, ǫ2 = 0.8, p21 = 0.1
and p12 = 0.2.

compare the scheduler performance is termed normalized transmission cost (NTC).

We define d as the number of data packets successfully transmitted in one time slot

and NTC(d) is the number of transmission attempts required to achieve this. For

the theoretical bounds, the capacity-cost function C(P), given by Theorem 2.1 and

Corollary 2.2, is plotted as a function of the power constraint P. Here P is equivalent

to the number of packet transmission attempts made in a time slot. The capacity-cost

function C(P) is divided by the packet length N to represent the capacity in terms

of data packets and offer a direct comparison to the NTC.
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3.5.1 Comparison of DP-Schedulers for FSMCs

Figures 3.4 and 3.5 show the performance comparison of various DP-schedulers for

2- and 3-state Markov channels. The transition probabilities for the 2-state Markov

channel (2SMC) are p21 = 0.1 and p12 = 0.2. The loss probability in each state

is ǫ1 = 0.2 and ǫ2 = 0.8. For the 3-state Markov channel (3SMC), the transition

probabilities are p12 = 0.025, p13 = 0.075, p21 = 0.075, p23 = 0.05, p31 = 0.05 and

p32 = 0.05. The loss probabilities are ǫ1 = 0.2, ǫ2 = 0.85 and ǫ3 = 0.95. The time

horizon T for the simulations is 500 time slots and 105 realizations of the channel are

simulated. The packet error process is simulated by first generating a Markov process

500 time slots long and then setting the loss variable zk according to the given state

sk.

First, we plot the performance of DP-scheduler (solid red trace) and the corre-

sponding bound (dashed red trace) for the non-causal perfect CSI case. For both

cases (2SMC and 3SMC), the bound is tight up to the point when the deadline con-

straint requires a throughput of 0.2 packets/time slot. This can be due to the fact

that for a lightly loaded system, the effect of queue state on decision making is min-

imal, and the scheduler considers CSI for decision making leading to a performance

close to the theoretic bound. In all performance curves with feedback, for a 2SMC,

a knee-point is observed when the NTC (or P) is equal to 0.33 (for 3SMC, knee

points at NTC = 0.37 and NTC = 0.6). As the number of packets to be transmitted

is increased, the cost will increase at a certain rate since only the good states are

being used initially. However after all the good states are exhausted, the scheduler

will use the bad states for transmission, which increases cost at a faster rate as more

packets will be dropped. For a throughput requirement of 0.25 packets/time slot in
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a 2SMC, causal perfect CSI scheduler requires 25% more transmission attempts than

a non-causal perfect CSI scheduler (10% for a 3SMC).

We observe that the performance of the causal imperfect CSI scheduler or the

ACK/NAK scheduler (solid black traces) is within 80% of the theoretical bound

(dashed black traces) for the 2SMC (75% for the 3SMC). The bound is not very

tight as the capacity calculations assume knowledge of the complete ACK/NAK se-

quence, whereas the ACK/NAK scheduler has access to the incomplete sequence

(since ACK/NAK is unavailable for the time slots when no transmission is attempted).

In both the cases, the ACK/NAK scheduler, at worst, requires 50% more transmission

attempts than the non-causal perfect CSI based scheduler for achieving a throughput

of 0.25 packets/time slot. The green trace represents a blind transmission scheme.

In this case, the scheduler does not have any channel feedback, instead it just keeps

transmitting till the queue is emptied out. This can be the lower bound on per-

formance of any feedback scheme. The performance of this scheduler has a constant

slope, since the scheduler does not adapt the transmission policy to the channel state.

For a 2SMC, ACK/NAK scheduler outperforms the blind transmission scheme by up

to 25% for 0.1 packets/time slot throughput (50% for a 3SMC) and 15% for 0.25

packets/time slot throughput (20% for a 3SMC).

3.5.2 Look-up Table Size

Figure 3.6 compares the effect of look-up table size on the performance of the

ACK/NAK scheduler. The parameters for the 2SMC are: p12 = 0.18, p21 = 0.09, ǫ1 =

0.23 and ǫ2 = 0.78. The 32 MB table contains control action for |A| = 256 channel

realizations and 20 levels of wk. The parameters for the 1 MB table are |A| = 16 and
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Fig. 3.6: Comparison of the performance of ACK/NAK schedulers with different table
sizes. Here ǫ1 = 0.23, ǫ2 = 0.78, p21 = 0.09 and p12 = 0.18.

10 levels of wk. Both tables store control action for up to 100 packets transmitted

over a duration of up to 500 time slots. We observe that the ACK/NAK schedulers

using a look-up table perform close to the exact solution. For instance, the 32 MB

table requires 7% extra transmission attempts (11.5% for 1 MB table) to achieve

throughput of 0.1 packets/time slot. Note that we have used uniform quantization

for this example, however quantization methods that perform better might also exist.

3.5.3 Time Horizon

Figure 3.7 compares the performance of the ACK/NAK scheduler with different

time horizons T . The parameters for the 2SMC are: p12 = 0.2, p21 = 0.1, ǫ1 = 0.1

and ǫ2 = 0.9. We observe that with increasing T , the performance of the ACK/NAK
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Fig. 3.7: Comparison of the performance of ACK/NAK schedulers with different time
horizons T . Here ǫ1 = 0.1, ǫ2 = 0.9, p21 = 0.1 and p12 = 0.2.

scheduler improves. A scheduler with T = 100 requires, at most, 10% more trans-

mission attempts than a scheduler with T = 800. The improvement in performance

can be due to the scheduler having greater flexibility in scheduling transmissions with

larger T . We also observe that the performance of the ACK/NAK schedulers (for all

T ) is within 75% of the theoretical bound.

3.5.4 Terminal Cost

In Figure 3.8, we compare the effect of terminal cost C on the performance of

the ACK/NAK scheduler for a 2SMC. The channel parameters are: p12 = 0.2, p21 =

0.1, ǫ1 = 0.2 and ǫ2 = 0.8. For C = {10, 50, 200}, we observe that there is not much

of a difference in the performance of the ACK/NAK schedulers formulated using
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Fig. 3.8: Comparison of the performance of ACK/NAK schedulers formulated with
different terminal costs C. Here ǫ1 = 0.2, ǫ2 = 0.8, p21 = 0.1 and p12 = 0.2.

these terminal costs. Other channel realizations also exhibit a similar behavior. This

leads to the observation that the choice of C does not impact the performance of the

scheduler, as long as C > 10.

3.5.5 Actual Power Penalty

Next, we find the actual power penalty incurred by an ACK/NAK scheduler,

LdB , 10 log10

(
attempts made by ACK-NAK scheduler
attempts made by causal CSI scheduler

)

, for a given throughput. We define

a similar quantity for the blind transmission scheme. Figure 3.9 shows the power

penalty incurred by the ACK/NAK based and blind schedulers for 2SMCs as a func-

tion of channel memory µ. We plot this quantity for different values of packet loss

probabilities, {ǫ1, ǫ2} keeping the steady state probabilities {π(1), π(2)} constant.
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Fig. 3.9: The power penalty LdB as a function of the channel memory µ for different
values of packet loss probabilities {ǫ1, ǫ2} with π(1) = 1/3 and π(2) = 2/3. The
scheduler attempts to transmit 100 packets over 500 time slots for all cases.
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Fig. 3.10: The power penalty LdB as a function of the channel memory µ for different
values of steady state probabilities {π(1), π(2)} with ǫ1 = 0.1 and ǫ2 = 0.9. The
scheduler attempts to transmit 50 packets over 500 time slots for all cases.

For the range of channel parameters considered in our simulations and a throughput

requirement of 0.2 packets/time slot, ACK/NAK scheduler does not incur a power

penalty of more than 1.5 dB. On the other hand, a blind transmission scheme takes

a power penalty of up to 4.5 dB (for ǫ1 = 0 and ǫ2 = 1).

In Figure 3.10, we consider different steady state probabilities {π(1), π(2)}, while

keeping the loss probabilities constant (ǫ1 = 0.1, ǫ2 = 0.9). The throughput require-

ment is set at 0.1 packets/time slot. In the worst case, the ACK/NAK scheduler

incurs a power penalty of 2.5 dB for π1 = 0.2 and π2 = 0.8 whereas the blind scheme

incurs a power penalty of almost 4.5 dB. For µ = 0.9, in all the cases, the performance

59



of the ACK/NAK scheduler is 2 dB better than the blind scheduler. Since µ is an in-

dicator of the burstiness (as bursty channels have high values of µ), the improvement

provided by our scheme will be more pronounced in bursty channels. This confirms

the trends we saw in Section 2.4.2 with the performance bounds.
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CHAPTER 4

A PRACTICAL IMPLEMENTATION OF AN ENERGY
MANAGEMENT SCHEME

4.1 Introduction

Sensor networking applications often have stringent requirements for QoS param-

eters such as throughput and delay. In battery operated sensor networks, such QoS

requirements must be met while consuming the least amount of energy. Since a high

percentage of the energy is spent on data communication, support for efficient and

reliable communication is critical. However, high variability in channel quality caused

by factors such as fading, mobility, and time-varying multiuser interference make it

difficult to achieve those objectives. Indeed, Woo et. al., [34], and Zhao and Govin-

dan [35] have both observed a significant variability in link quality in wireless sensor

networks with radios in the 433 MHz band. The former paper points out that the

instantaneous packet error probability varies by approximately 30% around its mean.

The latter paper, as well as Willig et. al., [36], both show that the packet-error

stochastic process exhibits significant long-term dependence.

The existing CSMA protocol is an example of an adaptive transmission technique.

The CSMA protocol uses carrier sensing to avoid collisions and backoffs to address
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the problem of contention among nearby nodes. However, packet transmissions may

fail due to cumulative interference from other nodes in the network. Indeed in our

testbed experiments with Mica2 nodes, we have observed that with interfering sources

that are sufficiently far away, 69% of the packets for which the CSMA granted a

transmission permit are lost. From this example, we can conclude that the combined

effect of a large number of interfering sources can be very detrimental and the CSMA

based protocols - designed to suppress collisions - are not effective in avoiding such

losses. Immediate solution to this problem is reducing the carrier sense threshold

that triggers a backoff and consequently increasing the carrier sense range. This, in

effect, would enable a node to sense this combined interference and hidden terminals

to some extent, and avoid part of the losses. However, the increase of carrier sense

range makes a node overly conservative with respect to interference and it leads to a

lower effective throughput. Therefore, simple adjustment of the carrier sense range

is not sufficient to avoid transmissions during poor channel conditions.

Our objective in this chapter is to optimize the energy consumption with con-

straint on the throughput. Our solution methodology is also different as it explicitly

models the channel based on rigorous estimation techniques. Existing MAC layer

solutions for sensor networks such as [37, 38, 39, 40], have not considered direct mod-

eling of the time-varying channel quality for optimization of transmission attempts.

MAC layer protocols such as [22,23] model the bursty nature of wireless channel as a

Markov model. However these techniques do not directly incorporate channel estima-

tion into the transmission scheduler. Several back-pressure based mechanisms have

been proposed at the link layer [41,42,43,44] to address high interference and network
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(for illustration only)
Poor

Transmitted packet Transmitted but dropped packet

Time

Good

CSMA 
Resumed

Fig. 4.1: Transmission Pushback: CSMA unnecessarily transmits during poor channel
conditions. With exponential backoff, there will be fewer transmissions during poor
channel conditions, however opportunities to transmit during good states will also
be lost. With transmission pushback CSMA can avoid periods with poor channel
quality, while making use of good channel states.

congestion. These approaches are orthogonal to our proposed solution, and can be

used in conjunction with our solution to improve performance, as shown in [45].

In this chapter, we systematically study the problem of addressing packet losses

due to cumulative interference, and propose a binary control technique over CSMA.

Our approach is based on exploiting the temporal correlations of the interference

process. We introduce a new concept called transmission pushbacks, which refers

to an appropriately computed delay introduced at the MAC layer in order to avoid

periods with bad-channel quality while considering a node’s throughput requirement.

Therefore, we reduce the number of transmissions per packet as well as the number

of transmission attempts per unit time. In case of bursty losses, avoiding the bad

channel state may also lead to a higher throughput (visible at higher layers) despite

lower number of transmission attempts.
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Mechanisms Designed for Designed for interference
collision losses and channel losses

CSMA Plain Partially No
CSMA/EB Yes Partially
CSMA/EB+Pushback Yes Yes

Table 4.1: Types of losses addressed by various mechanisms

The main idea of transmission pushbacks is to defer packet transmission attempts

for an appropriately selected period upon failed packet transmissions. Figure 4.1

illustrates the benefits of using transmission pushbacks in comparison with CSMA

based approaches in the presence of time-varying channels. Plain CSMA leads to

failed transmissions, and thus wasted energy, during periods with poor channel qual-

ity. CSMA with exponential backoff may reduce such failed transmissions, but it

also cuts down the transmission attempts, even at times of improved channel quality.

Our proposed transmission pushback mechanism predicts the duration for which the

channel quality will remain poor. Thus, unnecessary transmissions can be avoided

to conserve energy and the good channel states are taken advantage of. The con-

trast is also highlighted in Table 4.1 which shows that Pushback along with CSMA

with exponential backoff can handle various types of packet losses. Observe that as

pushback operates over the CSMA algorithm, improvements of the CSMA mechanism

such as [46] are orthogonal to pushback.

To determine the pushback time, we need to estimate the channel quality and

how it varies over time. We use an adaptive channel prediction technique, based

on estimating the parameters of a simple hidden Markov model (HMM), which rep-

resents our channel. The parameters of the HMM are dynamically updated based
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solely on the binary ACK sequence (transmission success or failure) for the previous

packet transmissions. We choose the appropriate pushback period by considering the

throughput requirement measured by the incoming data rate, and the predicted qual-

ity of the channel. Such an adjustment in rate, based on the throughput requirement

is also seen in lazy packet schedulers (e.g., [25]). Designing an “optimal” sleep-wake

scheduling solution that integrates with pushback is beyond the scope of this the-

sis. The main complexity of that task is caused by the missed receive opportunities:

during pushback, if a node goes into sleep mode, then it will miss opportunities to

receive packets from other nodes. We assume that nodes are awake at all times for

potential received packets. However, nodes do not spend extra energy in sensing the

channel since the calculation of the deferral time depends solely on the ACK/NACK

packets. The proposed approach is simple to implement over existing CSMA based

MAC solutions, as well as queue and congestion control algorithms. Therefore it is

highly suited for existing sensor network platforms.

The rest of the chapter is organized as follows. Section 4.2 presents our approach

to model the channel losses. Section 4.3 presents a description of our pushback

algorithm.

4.2 Channel Model

In this section we describe our channel loss model and its parameters and give an

experimental justification for our model. As we have done previously in Chapters 2

and 3, we use a Markov channel to model the packet level error process. However,

in this case, we assume that the underlying transition probabilities are not known to

the transmitter initially. We will call our channel a hidden Markov model (HMM)
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channel. We use this channel loss model to derive the theoretical expressions for

Packet Success Ratio (PSR) and throughput as functions of channel and system

parameters. Our algorithm will describe how to estimate these parameters based on

the available measurements at the sensor nodes in the next section.

4.2.1 The Hidden Markov Model (HMM) Channel

Let An, n > 1 be the process, which takes on an ‘S’ or an ‘F’ depending on

whether a packet transmitted at time n is successfully decoded at the receiver or not.

We assume that only one packet can be transmitted in each time slot and that An

is a wide-sense Markov of order 1 for the packet error process. We will discuss the

validity of this assumption later, but first we describe An further.

A sequence An, n ≥ 1 is said to be wide-sense Markov if the probability of a future

value, An+m, is completely determined by its most recent value, i.e. An and the time

difference (m) between the two events. The autocovariance function for such a process

is exponential. More specifically, suppose the process is in steady state3 at time n and

let P (An = F) = p. Then the autocovariance function of An is KA(m) = p(1−p)α|m|

for some α, |α| < 1. Here p is the long-term loss probability and α quantifies the

“coherence” or correlation between a successful (failed) transmission in the future

based on the present observation. The loss probability p increases with the number

of interfering users and the noise in the channel and α is a measure for the burst

length for the failed transmissions. Next, we derive the conditional probabilities of a

wide-sense Markov process An, n ≥ 1.

3We assume that the process started at time n = −∞. In practice the data transmission is only
finite, however we make this technical assumption, since we do not have any information about the
initial channel state.
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Lemma 4.1. For the wide-sense Markov process An, n ≥ 1, the probability of a suc-

cessful (failed) transmission in a future time slot, conditioned on a successful (failed)

transmission in the present slot, is unique:

P (An+m = F|An = S) = p(1− αm) (4.1)

P (An+m = S|An = S) = 1− p(1− αm) (4.2)

P (An+m = F|An = F) = p + (1− p)αm (4.3)

P (An+m = S|An = F) = 1− p− (1− p)αm. (4.4)

Proof. A wide-sense Markov process has an exponential autocovariance function. In

our analysis, we assume that the autocovariance function is of the form KA(m) =

p(1 − p)α|m| and the unconditioned probability of failure (P (An = F)) and success

(P (An = S)) are p and 1− p respectively.

First, we derive the probabilities conditioned on failure, i.e., Eqs. (4.3) and (4.4).

To facilitate the evaluation of the expectation, we code the event of Failure (F) as ‘1’

and the event of Success (S) as ‘0’. Covariance is defined as,

KA(m) = E[An+mAn]− E[An+m]E[An]

=
∑

x∈{0,1}

∑

y∈{0,1}

xyP (An+m = x|An = y) P (An = y)

−
∑

x∈{0,1}

xP (An+m = x)
∑

y∈{0,1}

yP(An = y)

= P (An+m = 1|An = 1) p− p2. (4.5)

For m ≥ 0, we can compare Eq. (4.5) to the autocovariance function for a wide-sense

Markov process,

KA(m) = p(1− p)αm = P (An+m = 1|An = 1) p− p2,
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to get Eq. (4.3) or P (An+m = 1|An = 1) = p+(1−p)αm. Using the fact, P (An+m = 0|An = 1) =

1−P (An+m = 1|An = 1), we get Eq. (4.4) or P (An+m = 0|An = 1) = 1−p−(1−p)αm.

To derive the probabilities conditioned on success, i.e., Eqs. (4.1) and (4.2), we

follow the same steps with minor modifications. In this case, we code the event of

Success (S) as ‘1’ and the event of Failure (F) as ‘0’. From the definition of Covariance,

we get,

KA(m) = p(1− p)αm

= P (An+m = 1|An = 1) (1− p)− (1− p)2. (4.6)

On simplification of Eq. (4.6), we get Eq. (4.2) or P (An+m = 1|An = 1) = 1− p(1−

αm). Finally, P (An+m = 0|An = 1) = 1 − P (An+m = 1|An = 1) gives Eq. (4.1) or

P (An+m = 0|An = 1) = p(1− αm).

Hence only a pair of parameters is sufficient to represent the channel with the first

order Markov assumption. For the purpose of illustration, the conditional probabil-

ities of failure for p = 0.6 and α = 0.8 are plotted in Fig. 4.2. The “deferred time

slots” represents the number, m, of time slots waited before the next transmission

attempt after an event S or F.

We can form an underlying Markov chain corresponding to this wide-sense Markov

process as follows. The Markov chain has two states S (Good) and F (Bad) and the

chain makes a transition between these states depending on An taking on an S or an

F as shown in Figure 4.3. One can evaluate the parameters p and α for the associated

Markov process given the transition probabilities, x and y for this Markov chain and

vice versa as shown in Section 4.2.2. The channel model is an HMM, since x and

y are unknown initially and we estimate them based on the observed values of An
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Fig. 4.2: Conditional probability of failure as a function of deferred time slots setting
p = 0.6 and α = 0.8.

using a maximum likelihood estimator. Based on these estimated values, we calculate

the two channel parameters α and p, which is detailed in Section 4.3. Note that the

reason for estimating x and y initially is due to the simplicity of the task (based on

observation of An). The reason why we pursue our analyses with α and p afterwards,

instead of x and y, is that the performance metrics of the pushback algorithm are

tied to α and p more naturally.

From the two curves in Fig. 4.2, one can see the reasoning behind choosing a

pushback duration conditional on an event F only. If we schedule the next packet

for immediate transmission (i.e., m = 1) after an S, we have the best chance of

observing another S. Intuitively, we are taking advantage of the good channel state.

On the other hand, if we defer scheduling the transmission (i.e., m > 1) of the
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Fig. 4.3: Markov chain representation of the channel.

next packet after an F, we lower the probability of failing in that transmission. The

longer the deferral time, the higher the probability of an S in the next transmission.

However, waiting indefinitely can cause the throughput to drop significantly. So we

need to strike a balance between these two requirements, throughput and probability

of success. Hence, with the Markov channel model, the problem reduces to finding

the appropriate pushback period after a failed transmission. In the next subsection,

we will derive the expressions for the throughput and packet success rate for this

scheme using our channel model.

4.2.2 Channel Parameters

To find the channel parameters, packet success ratio and throughput, we sketch

the Markov chain associated with our first order Markov process. Our main objective

here is to find the throughput as a function of the number of deferred time slots, k,

on a transmission failure4. Once we have this function, we can choose k according

to the desired throughput based on the incoming data rate. To validate this model

using real data, we also find the expression for the PSR.

Our Markov chain has two states, S and F as illustrated in Fig. 4.3. The current

state is S if the final packet transmission is successful and F, otherwise. Note that

4Upon a successful transmission, the deferral time is 1 (no deferral).
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a transition does not necessarily occur every time slot, rather it occurs for every

packet transmission attempt. Since we schedule a transmission immediately after a

successful event, the expression for x is obtained by substituting m = 1 in (4.1).

Direct application of (4.3) with m = k gives the expression for y.

x = P (An+1 = F|An = S) = p(1− α) (4.7)

y = P (An+k = F|An = F) = p + (1− p)αk (4.8)

Notice that the transition probabilities at state F are functions of k as well as p

and α. This is due to the effect of the pushback period of k time slots after the

failed transmission attempts. The associated steady state probabilities are therefore

functions of k as well, and these probabilities for state S and state F are respectively,

πS(k) =
(1− p)(1− αk)

p(1− α) + (1− p)(1− αk)
(4.9)

πF(k) = 1− πS(k).

We define the packet success ratio (PSR) as the total fraction of the packets that are

successfully transmitted, i.e., it is equal to the steady state probability, πS(k) of state

S.

Likewise, we define the throughput (ρ) as the number of successful packet trans-

missions in a unit time slot. To formulate an expression for throughput, consider the

following: on a transmission attempt, we wait for k time slots in state F and 1 time

slot in state S for the next transmission attempt. Thus, the average number of slots

per attempt is πS(k)+kπF (k). Consequently the number of packet transmissions per

slot,

X(k) =
1

πS(k) + kπF (k)
=

p(1− α) + (1− p)(1− αk)

kp(1− α) + (1− p)(1− αk)
. (4.10)
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The resulting throughput, ρ(k), is thus

ρ(k) = πS(k)X(k)

=
(1− p)(1− αk)

kp(1− α) + (1− p)(1− αk)
. (4.11)

The theoretical value of the throughput (ρ) is plotted as a function of the pushback

period k in Fig. 4.4 for different channel parameters p and α. In Fig. 4.4, by changing

the value of p (keeping α constant), we can see that a channel with lower p gives a

better throughput performance. This trend is expected as we have defined p as the

probability of transmission failure and a channel with a smaller p will have a lower

chance of transmission failure which leads to a higher throughput. For the same value

of p, larger α implies a higher correlation in the channel quality. Since pushback takes

advantage of the correlation in channel quality to schedule transmissions, we can see

that the throughput performance of a channel with higher correlation will be better

with transmission pushback than a channel with lower correlation.

We tested the validity of our Markov model using an experimental setup in the

Kansei testbed [47] by setting up a wireless link between two sensor motes. This link

was encircled with seven sensor motes spread around the perimeter of a 20 m2 area.

We measured the packet success rate between two motes, while the rest of the motes

acted as sources of interference. For this experiment, the wireless link transmitted 36

byte packets at 100 ms interval. We programmed the nodes causing interference to

transmit bursts of packets once every second. The burst size was selected according

to a uniform distribution between [0,15]. We estimated the two parameters, α and p

using the ACK-level data of the entire trace of 30 mins. Note that the purpose of this

experiment was to validate the model. In our actual algorithm, the estimation of the

two parameters is much simpler and does not depend on a long trace of data. The
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Fig. 4.4: Theoretical throughput (ρ) achieved by deferring transmission on a packet
loss for different values of p and α.

theoretical packet success rate based on the estimated α and its actual experimental

value are plotted in Fig. 4.5 as a function of k. This plot gives credence to the Markov

model.

4.3 The Pushback Algorithm

The objective of the pushback algorithm is to estimate the period for which the

channel will remain in a poor state and defer retransmissions accordingly in order

to conserve energy. In addition, the algorithm must provide similar throughput as

CSMA for a reduced number of transmission attempts.

The proposed pushback algorithm is based on CSMA. If a transmission is suc-

cessful, the next transmission is scheduled by CSMA. However, in case of a failed
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transmission, the next transmission is pushed back by k slots after which CSMA

takes effect. Note that a pushback “slot” is a packet slot, i.e., the time it takes to

transmit a packet. Therefore it is different from the contention slot of CSMA. Also,

even though the value of k is generated deterministically, the randomness of the back-

off period (in contention slots) of CSMA avoids persistent pushbacks caused by local

synchronization of nodes due to similar channel conditions.

When nodes boot up, an initial value kinit is assigned to k, and then k is recalcu-

lated periodically each time the m-th (predefined) transmission failure happens using

a simple mechanism based on the estimates of the channel parameters and through-

put constraint. Our computation is both practical to implement and is also shown to

perform well using simulations in [45].

The proposed mechanism for computing k is based on the formulation presented

in Section 4.2. First, k is set to an initial value kinit, and based on the ACK-level

observations of success and failure in the recent past, a maximum likelihood (ML)

estimation of parameters α and p is made. In fact, estimating the transition probabil-

ities of the Markov chain (parameters x and y in Fig. 4.3) is sufficient for the desired

ML estimation. Indeed, given the ML estimates x̂ and ŷ (of x and y respectively),

we show next that the solution (α̂, p̂) to the system of Eqs. (4.7) and (4.8) gives the

ML estimates of α and p which characterize the channel.

Lemma 4.2. For a HMM channel with n ≫ 1 packet transmissions, the maximum

likelihood estimates α̂ML and p̂ML of α and p are given by,

1−
nss

ns

= p̂ML(1− α̂ML) (4.12)

nff

nf

= p̂ML + (1− p̂ML)α̂k
ML. (4.13)
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Here ns and nf are the number of successful and unsuccessful packet transmissions,

nss is the number of consecutive sucessful packet transmission and nff is the number

of consecutive unsuccessful packet transmissions.

Proof. Consider the ML Estimation of the Markov channel parameters, α, p, based

on the binary error realization sequence. We assume that the initial state of the chain

is picked according to its steady state distribution.

Suppose a transmitter transmits n≫ 1 packets and observes the associated ACK

sequence. Let the number of successful transmissions be Ns (i.e., the number of failed

transmissions is Nf = n − Ns), the number of consecutive successful transmissions

be Nss and the number of consecutive failed transmissions be Nff . First we find the

estimates of the Markov chain transition probabilities x, y based on the observations

Ns = ns, Nss = nss and Nff = nff . For notational simplicity, we drop the random

variables and use P (nss) instead of P (Nss = nss) for instance. The ML estimate for

the pair

(x̂ML, ŷML) = arg max
(x,y)∈(0,1)

P (ns, nss, nff | x, y)

= arg max
(x,y)∈(0,1)

P (nss, nff | ns, x, y) P (ns|x, y)

= arg max
(x,y)∈(0,1)

{(
ns

nss

)

(1− x)nssxns−nss

︸ ︷︷ ︸

(I)

×

(
n− ns

nff

)

(1− x)nssynff (1− y)n−ns−nff

︸ ︷︷ ︸

(II)

×P (ns | x, y)
︸ ︷︷ ︸

(III)

}

.

(4.14)
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The value of x ∈ (0, 1) that maximizes Term (I) is xm = 1 − nss

ns
and the value of y

that maximizes Term (II) is ym =
nff

n−ns
. If we show

(xm, ym) = arg max
(x,y)

P (ns | x, y) , (4.15)

then (x̂ML, ŷML) = (xm, ym). For n ≫ 1, P (Ns = ns | x, y) is maximized for ns =

nπs = n 1−y

x+1−y
. Thus, if we verify

ns

n
=

1− ym

xm + 1− ym

,

then (4.15) is proved. Note that the number of transitions from state ‘S’ to state

‘F ’ is nsf = ns − nss and the number of transitions from state ‘F ’ to state ‘S’ is

nfs = nf − nff . Since nsf = nfs ∓ 1,
nsf

nfs
→ 1 as n → ∞ (x, y ∈ (0, 1), therefore

nsf , nfs →∞). Consequently

1− ym

xm + 1− ym

=
1−

nff

n−ns

1− nss

ns
+ 1−

nf f

n−ns

=
nfs/nf

nsf/ns + nfs/nf

=
1/nf

1/ns + 1/nf

=
ns

n

Since p, α is deterministic given x, y, the ML estimates p̂ML, α̂ML can be found by

solving the system of equations

1−
nss

ns

= p̂ML(1− α̂ML)

nff

nf

= p̂ML + (1− p̂ML)α̂k
ML.

In addition, to ensure that a node can sustain the incoming rate of packets, the

computation of k must take the incoming packet rate into account. We use the

running average of the incoming packet rate, ρnew = γ/te + (1− γ)ρold, to represent
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Table Eqs. Purpose
Tα(x, y, k) Eqs. (4.7), (4.8) To compute α for given x, y and k.
Tk(p, α, ρ) Eq. (4.11) To compute k for given p, α and ρ.

Table 4.2: Lookup tables used in the pushback algorithm.

the throughput constraint. Here ρnew (ρold) is the new (previous) estimate of the

throughput requirement, te is the time elapsed since the last packet arrival and γ is

smoothing factor. Using ρnew (throughput constraint), α̂ and p̂, Eq. (4.11) can be

used to compute the new value of k.

To avoid the complexity of direct computation of k, we propose the use of look-

up tables. The first table Tα̂(x, y, k) contains the values of α̂ corresponding to k

and discretized x and y. The second table Tk(p̂, α̂, ρ) contains the values of ρ(k)

corresponding to k and discretized α and p. A brief description of the various tables

used is given in Table 4.2. These tables will not change during the operation of the

node, so they can be computed offline and uploaded. The available storage spaces on

the nodes will determine the size of the tables. From our experimental experience, it

should suffice to have a 10×20×20 table. For instance, this table can have 10 values

of k (2 to 11), 20 values of p (0 to 0.95 in increments of 0.05) and 20 values of α (0

to 0.95 in increments of 0.05). These numbers could be stored as integers between 0

and 100. Hence, the two tables would take 8K bytes.

In summary, upon the m-th transmission failure, function Pushback(), shown in

Table 4.3, is called. In this algorithm, The ML estimates x̂ and ŷ are calculated in

lines 3 and 4. A table lookup is employed to find the value of α̂ corresponding to x̂,

ŷ and k, and then p̂ can be calculated according to Eq. (4.7). Finally the pushback
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Input: Throughput constraint ρ.

Output: Pushback duration k.

Given: A three-dimensional lookup table Tα̂(x̂, ŷ, k) and Tp̂(x̂, ŷ, k)
containing values of α̂ and p̂ for various values of x̂, ŷ and k, failure
count m, a three-dimensional lookup table Tk(p̂, ˆalpha, ρ) containing
values of the pushback period k for various values of p̂, α̂ and ρ.

Pushback()

1: if (failureCount = m) then
2: failureCount← 0

3: x̂← Number of S→F transitions
Total number of stays in S states

4: ŷ ← Number of F→F transitions
Total number of stays in F states

5: α̂← Tα̂(x̂, ŷ, k)
6: p̂← x̂/(1 − α̂)
7: k ← Tk(p̂, α̂, ρ)
8: end ifDelay the retransmission for k slots

Table 4.3: The Pushback Algorithm.

79



period k is estimated using another table lookup with the appropriate values of p̂, α̂

and ρ.

4.3.1 Remedial Mechanisms

The pushback algorithm above can work well if the real packet loss pattern is

captured well by our channel model introduced earlier and the transition probabilities

are accurately measured. However, either of them may deviate from reality, in which

case the throughput may not be maintained if k is chosen too aggressively. Hence,

we introduce two remedial mechanisms to solve such problems.

Measuring Actual Pushback Amount

In our pushback algorithm, the delay amount, k slots, is calculated according to the

state transition probabilities and the throughput constraint. However, after delaying

k slots, nodes may need to delay their retransmissions further due to contentions from

other senders. This could lead to the loss in throughput since the delaying amount

is longer than expected by the model. Hence, the running average of the difference

between the calculated delay amount and the actual delay amount is maintained, and

subtracted from the newly calculated k.

Controlling the Pushback Amount at the Interface Queue

Once our channel model deviates from the actual channel, simply adjusting the

k as in Section 4.3.1 may still not work very well. To cope with such situations,

we let the interface queue impose a pushback control policy to speed up the packet

forwarding once the queue is excessively built up. This policy simply commands the
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pushback algorithm to fall back to CSMA (using k = 1) if the queue length is above

a certain threshold. In our evaluations, this value is set to half of the queue capacity.
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CHAPTER 5

ENERGY MANAGEMENT IN SENSOR NETWORKS
WITH REPLENISHMENT

5.1 Introduction

One of the major requirements for sensor networks is the ability of operate unat-

tended for long durations. However, the lack of easy access to a continuous power

source in most scenarios and the limited lifetime of batteries have hindered the de-

ployment of these networks. With new and exciting developments in the areas of

renewable sources of energy [4, 48, 49, 50, 51, 52, 53] it is feasible for sensor networks

to operate unsupervised for extended periods. These renewable sources of energy

could be attached to sensing nodes and would typically provide energy replenishment

at a rate that could be variable and dependent on the surroundings. For example,

self-powered sensors have been developed that rely on harvesting strain and vibration

energies from their working environment [49], as well as other types of energy sources

including solar cells [4, 50, 51].

In this chapter, we analyze the limits of the performance of networks comprised

of sensor nodes with limited energy, being replenished at a variable rate. We provide

a simple localized energy management scheme that achieves a performance, close to
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the optimal scheme that has access to an unlimited energy reservoir. Indeed, we

show that, if the performance can be measured by a general utility function of the

energy, it is possible to observe a quadratic decay for the probability of complete

battery discharge, and at the same time achieve a Θ
(

(log M)2

M2

)

convergence to the

optimal utility5. Here M is the total capacity of the energy source. Based on the

insights developed, we address the problem of energy management in the presence

of a finite data buffer. We modify our basic energy management scheme to achieve

a Θ
(

(log K)2

K2

)

convergence to the maximum utility achieved by a scheme that has

access to an infinite data and energy buffers. Here K is the data buffer size. In

addition, this scheme achieves an exponential decay with M for the battery discharge

probability and a quadratic decay with K for the buffer overflow probability. To

evaluate these decay rates, the main tools we use are the large deviations theory and

diffusion approximations.

The added dimension of renewable energy makes the problem of energy manage-

ment in sensor networks substantially different from its non-replenishment counter-

part. For nodes with replenishment, conservative energy expenditure may lead to

missed recharging opportunities due to battery capacity limitations. On the other

hand, aggressive usage of energy may cause battery outages that leads to lack of

coverage or connectivity for certain time periods. Thus, new techniques must be

developed to balance these seemingly contradictory goals to maximize performance.

Here, our main goal will be to identify the performance limits of sensor nodes with

energy replenishment and provide guidelines to approach these limits.

5The following notations will be used to compare rates of convergence: an = O(bn) if an goes to
zero at least as fast as bn; an = o(bn) if an goes to zero strictly faster than bn; an = Θ(bn) if an and
bn go to zero at the same rate; an = Ω(bn) if an goes to zero no faster than bn.
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Many fundamental wireless communication and networking problems can be stated

as utility maximization problems, subject to energy constraints. The utility function

can be the throughput (e.g., in energy efficient routing), the probability of detection

of an intruder (e.g., in coverage) or the network lifetime (e.g., in sleep-wake schedul-

ing) or the achievable rate of reliable transmission in basic wireless communication.

These problems have been mainly addressed for stations with unlimited and/or non-

replenishing energy sources. Here, we focus on basic guidelines to formulate energy

aware schemes that exploit the replenishment energy to maximize the utility of a

node. This problem has two aspects: (a) development of an optimal or near-optimal

energy management scheme, and (b) evaluation of the performance metrics (e.g.,

probability of battery discharge, probability of buffer overflow) for this scheme. De-

velopment of an optimal scheme typically requires stochastic optimization techniques

involving high computational overheads that might be unsuitable for sensor nodes.

Consequently, we will focus our attention on simple localized solutions that achieve

near-optimal or asymptotically optimal performance. Evaluation of performance met-

rics can be quite a hard problem for all but the simplest models. In this work, we

formulate an analytical framework to model the battery and buffer dynamics for our

energy management policies. We use tools from large deviations theory and diffusion

approximation to find closed-form expressions for these metrics. These techniques

allow us to analyze a large variety of system models, as we need to make only mild

assumptions on the battery charging and data arrival processes.

There have been recent works that have studied different problems in networks

with energy replenishment. Kar, et. al., [54] have proposed an activation scheme for

rechargeable sensors that maximizes the network-level utility of sensing networks. The
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utility function in [54] depends on the number of active sensors. Gatzianas, et. al., [55]

use back pressure policies to maximize the network flow of information in networks

with energy replenishment. While [54] and [55] look at the total system utility,

we will focus on the analyzing node-level performance leading to localized energy

management schemes. Liu, et. al., [56] have derived a battery control scheme similar

to the one described in this work. In addition to providing stronger convergence

results than those in [56], we also consider the effect of a finite data buffer in this thesis.

Kansal, et. al., [57] introduce the concept of energy neutral operation which can be

defined as the operation mode wherein the energy consumed by a node is less than or

equal to the energy harvested. Vigorito, et. al., [58] extend the idea of energy neutral

operation to propose an algorithm that attempts to keep the battery state close to a

fixed level and at the same time stabilizes the duty cycle in order to maximize system

performance. Sharma, et. al., [59] have proposed energy management scheme for

energy harvesting nodes that is throughput optimal. However, in all these works [57,

58, 59], the authors do not analyze battery discharge or queue overflow probabilities

for their energy management schemes.

The outline of this chapter is as follows. We first state the general form of the

utility maximization problem in Section 5.2 and show ways to achieve the maximum

achievable utility with replenishing sources. In Section 5.3 we add a finite buffer

to the problem and study energy management schemes that achieve optimal utility

asymptotically while keeping the probabilities of battery discharge and buffer overflow

low. Finally, we numerically evaluate the performance of our energy management

schemes in Section 5.4.
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Fig. 5.1: Energy source with a replenishment rate r(t).

5.2 Achieving Maximum Utility With a Finite-Battery Con-

straint

Fig. 5.1 shows the energy source (or the battery) of a node. The total capacity of

this battery is M units of energy. We denote the total available energy in the battery

as B(t), where t is the discrete time index. The battery replenishes at a rate r(t).

The replenishment process {r(t), t ≥ 1} is assumed to be an ergodic stochastic process

with a long term mean limτ→∞ E [r(τ)] = µ. A power allocation policy S draws energy

from this battery at a rate eS(t) to achieve certain tasks. The success of the node

in achieving these tasks is measured in terms of a concave and non-decreasing utility

function6 U(eS(t)) of the consumed energy eS(t). We define the time average utility,

ŪS(τ) =
1

τ

τ∑

t=1

U(eS(t)). (5.1)

We consider the optimization problem in which a node tries to maximize its long-

term average utility, ŪS = limτ→∞ ŪS(τ), subject to battery constraints:

max
{eS(t), t≥1}

ŪS (5.2)

subject to B(t) = max
{
0, min{M, B(t− 1) + r(t)− eS(t− 1)}

}

and eS(t) ≤ B(t).

6Note that, in many practical scenarios, it is reasonable to assume that the utility function is
non-decreasing and there is diminishing returns for increasing power. Equivalently, one can also
consider a convex and non-increasing cost function.
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This optimization problem can be solved using Markov decision process (MDP) tech-

niques. Since solving MDPs is computationally intensive, these methods are not

suited for resource-limited sensor nodes. Consequently, we seek schemes that are

easy to implement and achieve close to optimal performance. Note that, with an

unlimited energy reservoir (i.e., M = ∞) and average energy replenishment rate µ,

the maximum average utility that a node can achieve is U(µ). This can be achieved

by simply choosing eS(t) = µ for all t, and a higher utility cannot be achieved due

to Jensen’s inequality. However, if M < ∞, achieving ŪS = U(µ) is not possible.

Indeed, if one uses eS(t) = µ, for all t ≥ 1, B(t) will occasionally get discharged

completely, due to the variability of r(t). At such instances, eS(t) has to be set to 0

leading to a service outage, which is highly undesirable. One may think that as M

increases, it is straightforward to achieve an average utility close to the upper bound

U(µ). However, this statement is not true in general as we will show next.

5.2.1 Basic Limitations of Power Allocation Schemes

In this section we show that there is a trade-off between achieving maximum utility

and keeping the discharge probability low. First, we make some weak assumptions

on the replenishment process r(t), which we will be using throughout this chapter.

In particular, we assume that the asymptotic semi-invariant log moment generating

function,

Λ̄r(s) = lim
τ→∞

1

τ
log E

[

exp

(

s
τ∑

t=1

r(t)

)]

, (5.3)

of r(t) exists for s ∈ (−∞, smax), for some smax > 0. We also assume that the

asymptotic variance σ̄2
r , limτ→∞

1
τ

var
∑τ

t=1 r(t) of r(t) exists. Note however that,

in practice, the recharging process is not necessarily stationary. The statistics of r(t)
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has significant variations due to clouds and the solar power at different times of the

day. Hence, these assumptions should be interpreted as follows: The battery size M

is large enough for the variations in r(t) to average out nicely over the time scale that

B(t) changes significantly and that there are no long-range dependencies in r(t).

Theorem 5.1. Consider any concave and non-decreasing utility function U(·). If

an ergodic energy management scheme S has a discharge probability pSdischarge(M) =

Θ(exp(−αcM)) for some constant αc > 0, then the time average utility for policy S,

ŪS , satisfies U(µ)− ŪS = Ω(1).

Proof. Consider an energy management scheme S that uses eS(t) units of energy in

the time slot t with E
[
eS(t)

]
< E [r(t)]7. Note that Scheme S can be deterministic

or randomized, with the only restriction being that the asymptotic semi-invariant log

moment generating function Λ̄dS (s) of the net battery drift dS(t) , eS(t)−r(t) should

exist. Let s∗
dS

be the positive root8 of Λ̄dS (s), i.e., Λ̄dS (s∗
dS

) = 0.

Before we prove Theorem 5.1, we state the following lemma. This lemma is

adapted from [60]. The detailed proof is provided in Appendix A.1.

Lemma 5.1. The probability of battery discharge under Scheme S with battery size

M follows pSdischarge(M) = Θ(exp(−s∗
dS

M)), where s∗
dS

is the positive root of Λ̄dS(s).

Since we have assumed that {eS(t), t > 0} is an ergodic process, the time-average

utility achieved by Scheme S is given by ŪS = E
[
U(eS(t))

]
. The difference between

7If the scheme S does not satisfy this condition, the battery will not operate under energy neutral
conditions and it will discharge with probability 1.

8Note that Λ̄dS (0) = 0 and
∂Λ̄

dS (s)

∂s

∣
∣
∣
s=0

= limτ→∞ E
[
dS(τ)

]
< 0, consequently s∗

dS > 0 will exist.
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the utilities is given by,

U(µ)− ŪS = U(µ)− E
[
U(eS(t))

]

≥ U(µ)− U(E
[
eS(t)

]
) (5.4)

= Ω(1). (5.5)

Where Eq. (5.4) follows from Jensen’s inequality and Eq. (5.5) follows from the fact

that µ > E
[
eS(t)

]
and U(·) is a non-decreasing function. By choosing αc = s∗

in Lemma 5.1, we get the required scaling law pSdischarge = Θ(exp(−αcM)). This

completes the proof.

Theorem 5.1 states that an energy management scheme cannot achieve expo-

nential decay in discharge probability and convergence (even asymptotically) to the

maximum average utility function simultaneously. In Lemma 5.1 we have applied the

large deviations technique to the net drift of the battery process to find pSdischarge(M).

Jensen’s inequality is then used to lower bound the difference between U(µ) and ŪS .

The question we answer next is, “how close can the average utility ŪS get to the

upper bound U(µ) asymptotically, as M → ∞, while keeping the battery discharge

probability low?”

5.2.2 An Asymptotically Optimal Power Allocation Scheme

We can infer that by choosing a battery drift that goes to zero with increasing

battery size, one might achieve a long-term average utility that is close to U(µ) as

M increases. However, smaller drift away from the empty battery state implies a

higher discharge probability. In the following theorem, we show that one can achieve

a quadratic decay for the battery discharge probability, and at the same time achieve

a utility that approaches the maximum long-term utility value as (log M)2/M2.
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Theorem 5.2. Consider any concave and non-decreasing utility function U(e(t))

such that
∣
∣
∣
∂2U(e)

∂e2

∣
∣
∣ <∞ for all e > 0. Given any β ≥ 2, there exists a power allocation

scheme B such that the battery discharge probability pBdischarge(M) = O(M−β) and

U(µ)− ŪB = Θ
(

(log M)2

M2

)

.

Proof. Recall that the scheme B is described as,

eB(t) =

{

µ− δ−, B(t) ≤M/2

µ + δ+, B(t) > M/2
, (5.6)

for some pair δ−, δ+, that will be chosen later.

Depending on whether the battery state is less than (or more than) half full, the

expected drift of the battery state becomes positive (or negative). Given B(t) ≤M/2,

the asymptotic semi-invariant log-moment generating function of the battery state

drift, d− , r(t)− (µ− δ−), is

Λ̄d−(s) = lim
τ→∞

1

τ
log E

[

exp

(

s
τ∑

t=1

d−(t)

)]

= Λ̄r(s)− s(µ− δ−). (5.7)

Where Λ̄r(s) is given by Eq. (5.3). Let s∗
d−

be the negative root9 of Λ̄d−(s), i.e., Λ̄d−(s∗
d−

) =

Λ̄r(s
∗
d−

)− s∗
d−

(µ− δ−) = 0. Also as δ− → 0, s∗
d−
→ 0.

Before we prove Theorem 5.2, we state and prove the following lemmas. Lemma 5.2

gives the rate of decay of the probability of battery discharge with respect to the bat-

tery size M for the Scheme B. This lemma is a minor modification of Lemma 5.1,

however we provide the entire proof in Appendix A.2 for completeness. Lemma 5.3 ex-

presses the rate decay exponent s∗
d−

for scheme B in terms of the asymptotic variance

of energy replenishment process r(t).

9Note that Λ̄d−(0) = 0 and
∂Λ̄

d− (s)

∂s

∣
∣
∣
s=0

= limT→∞
1
T

∑T

t=1 E [d−(t)] = δ− > 0 for δ− > 0,

consequently s∗
d− < 0 will exist.
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Lemma 5.2. The probability of battery discharge under Scheme B with battery size

M follows,

pBdischarge(M) = Θ

(

exp

(
s∗

d−
M

2

))

, (5.8)

where s∗
d−

is the negative root of Λ̄d−(s).

Lemma 5.3. The asymptotic variance of r(t), σ̄2
r , limT→∞

1
T

var
∑T

t=1 r(t) satisfies,

∂s∗d−

∂δ−

∣
∣
∣
∣
δ−=0

= −
2

σ̄2
r

(5.9)

Proof. First, we define Λ̄
(n)
d−

(0) =
∂nΛ̄

d−
(s)

∂sn

∣
∣
∣
s=0

. The Taylor series expansion of Λ̄d−(s∗
d−

)

about s = 0 gives,

0 = Λ̄d−(s∗) =

∞∑

n=0

Λ̄
(n)
d−

(0)
(s∗

d−
)n

n!

= Λ̄d−(0)
︸ ︷︷ ︸

=0

+Λ̄
(1)
d−

(0)s∗d− + Λ̄
(2)
d−

(0)
(s∗d−)2

2!
+ · · ·

=

∞∑

n=1

Λ̄(n)
r (0)

(s∗
d−

)n

n!
− (µ− δ−)s∗d−

= µs∗d− +
∞∑

n=2

Λ̄(n)
r (0)

(s∗
d−

)n

n!
− (µ− δ)s∗d− .

Rearranging the terms, we have

∞∑

n=2

Λ̄(n)
r (0)

(s∗
d−

)n−1

n!
= −δ−. (5.10)

Differentiating with respect to δ−, we have,

∂s∗d−

∂δ−

∞∑

n=2

Λ̄(n)
r (0)

(n− 1)(s∗d−)n−2

n!
= −1.

As δ− → 0, s∗
d−
→ 0 the above expression reduces to,

∂s∗d−

∂δ−

∣
∣
∣
∣
δ−=0

Λ̄(2)
r (0)

1

2
= −1. (5.11)
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Since Λ̄
(2)
r (0) = σ̄2

r , Eq. (5.11) becomes,

∂s∗d−

∂δ−

∣
∣
∣
∣
δ−=0

= −
2

σ̄2
r

.

Which implies,

∂s∗d−

∂δ−
= −

2

σ̄2
r

+ o(δ−).

Integrating this expression, we have,

s∗d− = −
2

σ̄2
r

δ− + o(δ−). (5.12)

Substituting the expression for s∗
d−

from Lemma 5.3 in Eq. (5.8), we have,

pBdischarge(M) = O

(

exp

((

−
2

σ̄2
r

δ− + o
(
δ−
)
)

M

2

))

.

By choosing δ− = α ln M
M

and α = βσ̄2
r we have pBdischarge(M) = O(M−β).

Next we show that with δ+ = α lnM
M

the scheme achieves an average utility ŪB

such that U(µ) − ŪB = Θ
(

(ln M)2

M2

)

. The instantaneous utility U(eS(t)) is zero with

an O(M−β) probability. For the remaining time, the utility alternates between U+

and U− as illustrated in Fig. 5.2. The Taylor series expansion of the utility functions

about µ will be,

U+ = U(µ) + U (1)(µ)δ+ + U (2)(µ)(δ+)2 + o((δ+)2),

and,

U− = U(µ)− U (1)(µ)δ− + U (2)(µ)(δ−)2 + o((δ−)2).
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U(eS(t))

eS(t)µ

U+
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Fig. 5.2: With scheme B, utility alternates between U+ and U−

We define ρ+ as the fraction of time that B(t) > M/2 and ρ− = 1−ρ+ as the fraction

of time that B(t) ≤M/2. The average utility ŪS can be written as,

ŪS = (ρ+U+ + ρ−U−)(1− pSdischarge(M))

= U(µ) + U (1)(µ)(ρ+δ+ − ρ−δ−) + Θ

(
(ln M)2

M2

)

, (5.13)

where Eq. (5.13) follows from the fact that δ−, δ+ = α lnM
M

and pBdischarge(M) =

O(M−β) where β ≥ 2.

From conservation of energy,

ρ+(µ + δ+) + ρ−(1− pBdischarge(M))(µ− δ−) = µ(1− pBoverflow(M)), (5.14)

where pBoverflow(M) is the probability of the battery being full under the power allo-

cation scheme B. By a straightforward extension of Lemmas 5.2 and 5.3, it can be
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shown that pBoverflow(M) = Θ
(
M−β

)
. We can simplify Eq. (5.14) as,

ρ+δ+ − ρ−δ− = (ρ−(µ− δ−)− µ)Θ
(
M−β

)

= Θ
(
M−β

)
. (5.15)

By substituting Eq. (5.15) in the first-order term of Eq. (5.13), we observe that the

scheme B achieves U(µ)− ŪS = Θ
(

(ln M)2

M2

)

. This concludes the proof.

Here, we illustrated that with simple localized solutions, it is possible to achieve

good scaling laws for the performance of a given task if the replenishment process

behaves “nicely.” To illustrate the theorem we consider a specific example.

Example 5.1 Capacity of an AWGN Channel

We study the basic limitations of point to point communication with finite but re-

plenishing energy sources. For simplicity, we consider the additive white Gaussian

noise (AWGN) channel. At time t, the transmitter transmits a complex valued block

(packet) X(t) and the receiver receives Y (t). We have,

Y (t) = hX(t) + W (t), (5.16)

where the channel gain h is a complex constant and W (t) is additive white (complex)

Gaussian noise with two sided power spectral density N0/2. We define the channel

SNR as γ = E [|h|2] /N0. The maximum amount of data that could be reliably

communicated [15] over this channel with an amount of energy e(t) at time t is,

C(e(t)) = log2 (1 + e(t)γ) bits/channel use, (5.17)

assuming the block size is long enough so that sufficient averaging of additive noise

is possible. Thus, the rate at which reliable communication can be achieved is a
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concave non-decreasing function of the transmit power and it can be viewed as our

utility function. Consequently, using a constant power µ, the maximum utility of

C̄ = C(µ) can be achieved, which is the famous AWGN channel capacity result.

Now, we generalize the AWGN capacity result to the case with finite energy

sources. Suppose that we want to transmit the maximum amount of data over

the AWGN channel, using a battery of energy capacity M and a replenishment

rate r(t). We assume that each time slot is long enough for sufficiently long code

blocks to be formed. We substitute U(·) with C(·) in Eq. (5.1) to get the rele-

vant optimization problem. With an unlimited energy source (M = ∞) of lim-

ited average power µ, the maximum achievable long term average rate, i.e., the

channel capacity is C(µ) = log2(1 + µγ) bits/channel use. By using the energy

management scheme B given in Eq. (5.6), an average rate C̄B can be achieved

such that C(µ) − C̄B = Θ
(

(log M)2

M2

)

while the battery discharge probability follows

pBdischarge(M) = Θ(M−β) for some β ≥ 2.

5.3 Achieving Maximum Utility with Finite Buffer and Bat-
tery Constraints

So far, we have shown how to maximize a concave non-decreasing utility function

subject to battery constraints. At every point in time, one should choose a power level

as close to the replenishment rate as the battery constraints allow and this way one

can asymptotically achieve a performance very close to that with unlimited energy

sources. The main limitation of this approach is that it may not be feasible for some

applications in practice. For instance in many sensor network applications, data is

stored in finite buffers for transmission. Since scheme B does not adapt to the buffer

state, this may lead to data buffer overflows. To overcome these limitations, in this
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section, we investigate energy management schemes with finite buffer and battery

constraints.

In this section, we extend the problem introduced in Section 5.2 to the case when

data packets arrive at a node and are kept in a finite buffer before transmission.

Hence, the task is to transmit packets arriving at the data buffer without losing

them due to data buffer overflow and/or battery discharge. We define Q(t) as the

data queue state at time t, and the data buffer size is K < ∞. The data arrival

process a(t), represents the amount of data (in bits) arriving at the data buffer in

the time slot t. The process {a(t), t ≥ 1} is a stochastic process independent of the

energy replenishment process {r(t), t ≥ 1} and limτ→∞ E [a(τ)] = λ. We assume that

the process a(t) has a finite asymptotic variance σ̄2
a = limτ→∞

1
τ

var
∑τ

t=1 a(t). The

energy replenishment model is the same as used previously. The rate-power function

for the wireless channel is given by C(·). We also assume that µ < C(λ) which is a

necessary condition for system stability [59]. Without this condition, there exists no

joint energy and data buffer control policy, which can keep the battery discharge and

data buffer overflow probabilities low at the same time.

The objective of an efficient energy management scheme in this case is to maximize

the average utility function of the data transmitted subject to battery and data buffer

constraints:

max
e(t), t≥1

lim
τ→∞

1

τ

τ∑

t=1

UD(C(e(t))) (5.18)

subject to B(t) = max{0, min{M, B(t− 1) + r(t)− e(t− 1)}},

Q(t) = max{0, min{K, Q(t− 1) + a(t)− C(e(t− 1))}},

e(t) ≤ B(t) and C(e(t)) ≤ Q(t).
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Here UD(C(e)) is a non-decreasing concave utility gained by transmitting C(e) bits.

5.3.1 An Asymptotically Optimal Energy Management Scheme

Intuitively, an optimal or near-optimal solution for the optimization problem (5.18)

should jointly control the data queue state and the battery state to avoid energy

outage and data overflow while maximizing the utility. However, the main complexity

in such an approach stems from the fact that the drifts of Q(t) and B(t) are dependent.

In Fig. 5.3 we illustrate the connection between the service rate and the energy

consumed at a time slot for an AWGN channel with SNR 0 dB. For instance, to

provide 3 units of service, the node needs to consume ∼ 18 units of energy.

With this dependence, the parameter of importance becomes the relative “size”

of the data buffer with respect to the battery. In this chapter, we assume a large

battery regime, where the time scale at which changes occur in B(t) is much larger

than the time scale at which Q(t) varies. Namely, within the duration that some

change occurs in B(t), Q(t) may fluctuate significantly. Technically, for an AWGN
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channel with an SNR γ, this assumption is equivalent to M ≫ 1
γ
(2λ − 1)K, i.e., the

total amount of energy in the battery is much larger than that required to serve a

full data buffer worth of packets. In such a case, we should give priority to adjust

the queue state. In other words we need to control Q(t) instead of B(t), i.e., choose

e(t) such that the drift of Q(t) is always toward a desired queue state. With these

observations, we state the following theorem.

Theorem 5.3. Consider any non-decreasing concave utility function UD(·) such that
∣
∣
∣
∂2UD(e)

∂e2

∣
∣
∣ < ∞ for all e > 0. For any λ < C(µ), given any βQ ≥ 2, there ex-

ists an energy management scheme Q that achieves a buffer overflow probability

pQoverflow(K) = O(K−βQ), battery discharge probability pQdischarge(M) = O(exp(−αQM))

for some αQ > 0 and UD(λ)− ŪQ = Θ
(

(log K)2

K2

)

under the large battery regime.

Theorem 5.3 states that it is possible to have an exponential decay (with M) for the

battery discharge probability and a quadratic decay (with K) for the buffer overflow

probability and at the same time achieve a time average utility that approaches

the maximum long term value (with an infinite buffer and battery capacities) as

(log K)2/K2. To preserve continuity we provide an outline for the proof, a full version

of which can be found in Appendix A.3. The proof for this theorem is also constructive

as we first present the scheme Q, and then derive the performance metrics for this

scheme.

Consider the energy management scheme Q, where

eQ(t) =

{

µ− δ
(r)
1 , Q(t) ≥ K/2

µ− δ
(r)
2 , Q(t) < K/2

, (5.19)

and the drifts δ
(r)
1 and δ

(r)
2 are chosen to satisfy the relationship C(µ − δ

(r)
1 ) − λ =

λ− C(µ− δ
(r)
2 ) = βQσ̄2

a
log K

K
. From Fig. 5.4, we note that this choice of energy drifts
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(a)
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(r)
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(r)
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correspond to a queue drift of |δ(a)
1 | = βQσ̄2

a
lnK
K

, toward the state K/2, regardless of

the queue state Q(t). The queue and battery drifts with scheme Q are illustrated in

Fig. 5.5. We observe that even though the scheme Q regulates the data queue to a

desired state (i.e., K/2), the battery is always regulated towards full state (i.e., M).

State equation for Q(t) is given by,

Q(t + 1)

=

{

min{K, Q(t) + a(t)− λ− δ
(a)
1 }, Q(t) ≥ K/2

max{0, Q(t) + a(t)− λ + δ
(a)
1 }, Q(t) < K/2

. (5.20)

While pQoverflow(K) can be found using a method similar to the one used in Theo-

rem 5.2 to calculate pBdischarge(M), calculation of pQdischarge(M) needs careful analysis.

More specifically, the battery drift in a particular time slot depends on the data

queue state which makes the application of large deviation techniques for calculating
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pQdischarge(M) difficult. To show these order results, we use a sequence of arrival rates

such that λ ↑ C(µ). In this limit, both the battery and the data queues operate in the

heavy traffic limit. Consequently, we can apply the diffusion approximation to ana-

lyze the joint queue and battery process and get a 2-dimensional reflected Brownian

motion (RBM) [61]. Probability of battery discharge or buffer overflow can be found

as the probability of reflection at the appropriate boundary. Closed-form analysis

of the stationary distribution for RBMs is not possible except in some special cases

given in [62]. Since our model does not fall in that category, the steady state reflection

probabilities cannot be derived in closed form. In order to find an analytical solution

for the performance metrics, we approximate the system model using a 2-dimensional

Brownian motion without reflections. The data buffer approximation Q(t) is given

by [61],

Q(t)
d
≈ Q(t) =

{

BM(−δ
(a)
1 , σ̄2

a), Q(t) ≥ K/2

BM(δ
(a)
1 , σ̄2

a), Q(t) < K/2
, (5.21)
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and the battery diffusion approximation B(t) is given by,

B(t)
d
≈ B(t) =

{

BM(δ
(r)
1 , σ̄2

r), Q(t) ≥ K/2

BM(δ
(r)
2 , σ̄2

r), Q(t) < K/2
. (5.22)

Here ‘
d
≈’ denotes approximately equal in distribution and BM(m, σ̄2) is a Brown-

ian motion process with mean mt and variance σ̄2t. With the heavy traffic limit,

these probabilistic equalities are precise. Referring to Figure 5.5, the buffer overflow

probability is given by pQoverflow(K) = limτ→∞ P (Q(τ) > K). The battery discharge

probability is given by pQdischarge(M) = limτ→∞ P (B(τ) < 0). The following lemmas

give the scaling laws for these probabilities.

Lemma 5.4. For the energy management scheme Q, given any βQ ≥ 2, the buffer

overflow probability for a buffer of size K is given by pQoverflow(K) = O(K−βQ).

We provide a brief sketch of the proof, details of which can be found in Ap-

pendix A.3. If we assume the starting state of the Brownian motion to be Q(0) = K/2.

Note that due to the strong Markovian property of a Brownian motion [63], the in-

stants {Tn, n = 1, 2, . . .} at which the system returns to state K/2 (i.e., Q(Ti) = K/2)

is probabilistically equal to the starting state. Hence we can study these renewal

epochs10 to obtain steady state properties for the data queue process. Now, consider

the random variables Tu , arg mint>0{Q(t) = K/2,Q(0) = K/2,Q(0+) > K/2}

and Tl , arg mint>0{Q(t) = K/2,Q(0) = K/2,Q(0+) < K/2}. From Eq. (5.21),

we note that the random variables Tu and Tl will have the same distribution. Fur-

thermore, once the process Q(t) = K/2, it can go above or below K/2 with equal

probability. Consequently, we need to study the renewals associated with Qu(t) ,

10If we assume the starting state to be Q(0) 6= 0, we can simply consider the process to be a
delayed renewal process. The steady state properties in the resulting analysis will not change.
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|Q(t) − K/2| + K/2 and can find P (Q(t) > K) = 1
2
P (Qu(t) > K). If we define a

unit reward (i.e., R(t) = 1) for every time t that the process Qu(t) > K then from

renewal-reward theory [64],

lim
t→∞

P (Qu(t) > K) = lim
t→∞

E [R(t)] =
E [Rn]

E [Tu]
. (5.23)

Where E [Rn] is the expected award accumulated in one renewal period, and E [Tu]

is the expected length of the renewal period. Evaluating Eq. (5.23), and noting that

the stochastic process will be in the upper half of the buffer with probability 1/2, we

have,

lim
K→∞

1

K
log(pQoverflow(K)) = −

δ
(a)
1

σ̄2
a

(5.24)

By substituting δ
(a)
1 = βQσ̄2

a
log K

K
, we have pQoverflow(K) = O(K−βQ).

Lemma 5.5. For the energy management scheme Q, the battery discharge probability

for a battery of size M is given by limM→∞
1
M

log(pQdischarge(M)) = −2(µ−C−1(λ))
σ̄2

r
, where

C−1(·) is the inverse of the rate-power function C(·).

The detailed proof for this Lemma is in Appendix A.3, we provide a brief outline

here. First we define,

pA(x) = P (B(t) hits 0 before + A|B(0) = x),

i.e., probability of discharge starting with x amount of charge in the battery. The

differential equation for pA(x) can be written as,

−

(

δ
(r)
1 + δ

(r)
2

σ̄2
r

)

p
(1)
A (x) + p

(2)
A (x) = 0, (5.25)
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where p
(n)
A (x) = ∂npA(x)

∂xn . By applying the appropriate boundary conditions, we can

solve Eq. (5.25) for pA(x). Discharge probability can then be found by passing the

limit limA→∞ pA(M),

pQdischarge(M) = lim
A→∞

pA(M) = exp

(

−
(δ

(r)
1 + δ

(r)
2 )M

σ̄2
r

)

. (5.26)

For a rate-power function C(·), we have δ
(a)
1 +δ

(a)
2 = 2(µ−C−1(λ))+o(δ

(a)
1 ). Substitut-

ing this expression in Eq. (5.26), we get the required result. Proof for the convergence

of the time average utility is similar to that for Theorem 5.2.

5.4 Performance Evaluation

We conduct simulations to evaluate the performance of our energy management

schemes. We construct the energy replenishment process r(t) using the real solar

radiation measurements collected at the Solar Radiation Research Laboratory [65].

The data set used is the global horizontal radiation or the total solar radiation using

a Precision Spectral Pyranometer. We use data from January 1999 to July 2010

collected at 1 minute intervals. We assume that the energy replenishment process

is proportional to the total solar radiation. To compare our scheme, we use the

Throughput-Optimal (TO) policy given in Eq. (4) of [59]. The TO policy is given by,

eTO(t) = min{B(t), µ− ǫ}, (5.27)

where ǫ is a constant such that C(µ − ǫ) > λ. Note that the TO policy will follow

the scaling laws given by Theorem 5.1.

In Fig. 5.6, we revisit the power allocation scheme B discussed in Example 5.1.

The communication channel is AWGN and we choose β = 2. Fig. 5.6(a) shows a

sample of the replenishment process r(t) over a 48 hour period. Note that, in all
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Fig. 5.6: Performance evaluation for the AWGN channel example.
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numerical evaluations, we normalize the energy units by the channel noise power N0.

From Theorems 5.1 and 5.2 we know that the TO policy should achieve an exponential

decay for discharge probability compared to the quadratic decay for scheme B. On

the other hand, the TO policy can not achieve the maximum utility while scheme

B should achieve maximum utility as (log M)2/M2. Fig. 5.6(b) plots the battery

discharge probability as a function of the battery size M . As expected, the TO policy

performs better than scheme B. However, the advantage of using policy B is evident

in Fig. 5.6(c), which compares the time average utilities achieved by each scheme.

It can be seen that, for the choice of parameters and data used in this simulation,

scheme B achieves the maximum utility U(µ) for a battery size of 107 energy units,

whereas the TO scheme does not achieve the maximum utility even asymptotically.

Fig. 5.7 compares the performance of power allocation schemes when both battery

and buffer constraints are present. We simulate the data arrival process by generating

a Poisson random variable with mean λ = 7.44 bits in every time slot. The mean

of the energy replenishment process µ = 191.78 energy units per time slot and we

choose βQ = 2. In Fig. 5.7(a), we fix the buffer length to 105 bits and plot the battery

discharge probability as a function of the battery size M . The discharge probabilities

for both schemes should decay exponentially for both schemes. However, the decay

exponent for scheme Q should be larger than the decay exponent for the TO scheme.

As expected, the discharge probability for scheme Q decays faster than that of the

TO scheme. In Fig. 5.7(b), we plot the buffer overflow probability as a function of the

buffer size while keeping the battery size fixed at 107 energy units. Here we expect

the overflow probability for the TO scheme to have an exponential decay compared to

a quadratic decay for scheme Q. However, we observe that the overflow probabilities
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Fig. 5.7: Performance evaluation for energy management schemes under buffer and
battery constraints.
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for both the schemes decay at approximately the same rate. This anomaly can be

explained by noting that the discharge probability of the TO scheme is higher than

that of scheme Q. Consequently, there are more service outages for the TO scheme.

This offsets the advantage that the TO scheme (with an infinite battery) has in

terms of a better buffer overflow probability decay rate. Fig. 5.7(c) compares the

convergence of the time average utilities to the maximum utility function for the two

schemes. We observe that scheme Q converges to the maximum utility for moderately

large buffer sizes (∼ 103 bits). On the other hand, TO scheme does not achieve the

optimal utility even asymptotically.

Fig. 5.8 compares the performance of power allocation schemes with increasing

traffic intensity. We define traffic intensity as ρ , λ
C(µ)

= λ
log2(1+γµ)

. We fix the buffer

length at 105 bits and battery capacity is set at 107 energy units. In Fig. 5.8(a)

we observe that the discharge probability increases with traffic intensity. For values

of ρ < 0.97, scheme Q performs almost 10 times better than the TO scheme in

terms of the discharge probability. For traffic intensities close to unity the scheme Q

degenerates to the TO scheme and their performances converge. Fig. 5.8(b) shows

that the buffer overflow probabilities for both schemes also increases with increasing

traffic intensity. For values of ρ < 0.97, the overflow probability for scheme Q is

almost an order of magnitude lower than that for the TO scheme. Again, this can

be explained by the higher discharge probability for the TO scheme leading to severe

performance degradation. Finally, we observe in Fig. 5.8(c) that the time average

utility decreases with increasing ρ. This is a direct consequence of increasing battery

discharge and buffer overflow probabilities leading to sub-optimal performance in both
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schemes. Once again, we observe that with ρ ≈ 1, the performance of the two energy

management schemes converge.
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CHAPTER 6

CONCLUSIONS

6.1 Summary of Our Work

An important consideration in the effective performance and deployment of sensor

network is the design of efficient energy management schemes. For instance, sensor

network applications may require deployment in remote area. Hence, it becomes

critical to ensure that the networks are capable of operating unattended for long

durations of time. Since battery lifetime limitation plays a major role in determining

the sensor node/network lifetime, we focused on developing efficient management of

energy resources for sensor networks in this thesis.

We derived the capacity-cost function for energy-efficient transmission schedulers

over finite state Markov channels with imperfect feedback. The capacity-cost function

found here constitute an upper bound for the achievable throughput of transmission

schedulers over finite state Markov channels. Our analysis provides insights into the

fundamental value of using ACK/NAK information while scheduling transmissions.

For instance, in one example, the maximum power penalty (relative to perfect feed-

back) of no feedback is 7 dB. The use of ARQ feedback, can potentially reduce this

power penalty to less than 1 dB.
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With these insights, we introduced a channel aware transmission scheduler to min-

imize energy expenditure for communication tasks in sensor networks. Our transmis-

sion scheduler meets the deadline constraint for all packets waiting in the transmission

queue with high probability while optimizing the total energy spent on transmission.

To achieve this, we used finite-horizon DP and utilized different types of CSI in

the optimization process. We showed that the performance achieved by a DP-based

scheduler is close to the fundamental limits for a wide range of channel parameters.

Indeed, for some cases, the ACK/NAK scheduler achieves performance that is within

80% of the theoretical bound. Comparisons between the performance of different

grades of CSI show that the difference between performance of causal perfect CSI

and ACK/NAK schemes for a wide range of channel parameters is not significant.

On the other hand, blind transmission scheme in which the ACK/NAK feedback is

not exploited to estimate the channel state incurs a significant power penalty.

We also developed a practical channel aware energy management scheme for sensor

networks called the pushback algorithm. Here, we used channel estimation to track

channel variability and schedule retransmissions accordingly. For a given throughput

requirement, the pushback mechanism optimizes the packet success rate leading to

improving energy efficiency in a sensor network. Using a simple packet loss model, we

developed an implementation of this mechanism that incurred a low computational

overhead on the sensor nodes. This algorithm is easy to implement over existing

MAC and link layer protocols. The combination of these features make the pushback

algorithm highly suitable for energy constrained wireless networks.

Finally, we studied the basic limitations of energy management schemes in energy

replenishing sensor networks. We showed that it is possible to observe a quadratic
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decay for the discharge probability with increased battery size M , and at the same

time achieve Θ((log M)2/M2) convergence to the maximum achievable utility using

a simple energy management scheme. The strength of this result can be seen by

noting that it is not possible to simultaneously observe an exponential decay for the

discharge probability and achieve maximum utility. With the insights drawn, we

addressed the problem of energy management with buffer and battery constraints.

We showed that, in addition to achieving Θ((log K)2/K2) convergence, with buffer

size K, to the optimum utility, it is possible to achieve a quadratic decay for the buffer

overflow probability and exponential decay for the battery discharge probability using

a simple energy management scheme. To analyze the buffer and battery processes we

used large deviations theory and diffusion approximations. The main advantage of

using these tools in our work is that it allows analytical tractability while keeping the

system model fairly general. We compared our energy management schemes with the

Throughput Optimal (TO) scheme, and demonstrated that our scheme can perform

upto an order of magnitude better in terms of outage probabilities while achieving

the maximum utility asymptotically.

6.2 Future Research Directions

In this thesis we have used channel quality prediction to appropriately sched-

ule transmissions. However, channel quality prediction can be used to adjust other

parameters such as physical layer data rate, transmission power, and carrier- sense

threshold, some of which are inter-related. The existing framework of the dynamic

programming algorithm can be modified to incorporate different control actions cor-

responding to these transmission parameters.

112



Our transmission scheduler has been designed for a point-to-point link. However,

the dynamic programming algorithm can also be applied to networks for multi-user

scheduling. One natural extension would be the multi-user downlink case. For a

general multi-user case, as long as the decision-making is centralized, some variation

of the dynamic programming approach can be applied. However for the distributed

decision-making case, a more sophisticated approach employing elements of game

theory might be required. All these scenarios would be interesting research topics for

the future.

We have focused on the application of the concept of pushbacks in the context

of sensor networks. However, pushbacks, when applied to other networking scenarios

such as ad hoc networks and mesh networks, can be used to optimize other parameters

such as the number of transmissions. In these networks, reduced interference due to

reduction in number of transmission is expected to result in increased throughput.

Future directions of research in energy replenishing networks include the design of

optimal or near-optimal cross-layer distributed energy management solutions in the

presence of channel fading and multi-user interference.
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APPENDIX A

PROOFS FOR CHAPTER 5

A.1 Proof of Lemma 5.1

This lemma gives the rate of decay of the probability of complete discharge with

respect to the battery size M . To prove this result, we first find an upper bound for

the required probability. We fix a constant A > 0 and decompose the time line into

intervals, such that each interval is of length ⌈M
A
⌉ and the ith interval ends at time

slot ti = i⌈M
A
⌉. Next, define Ei as the event that the battery is empty at the end of

time slot 0 and the last time the battery was full (i.e., M) is some time during the

interval −i =
[
−(i + 1)⌈M

A
⌉+ 1,−i⌈M

A
⌉
]
. The event of an empty battery at time slot

0 can be decomposed as a union of events Ei,

pSdischarge(M) =
∞∑

i=0

P (Ei) (A.1)

A necessary condition for event Ei to occur is,

0∑

t=−(i+1)⌈M
A
⌉+1

(
eS(t)− r(t)

)
> M. (A.2)
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iJ

γ + iβ

γ

fi(θ̃)

0

Fig. A.1: A geometric proof for the existence of K and δ > 0 such that for every
i > K, fi(θ̃) > γ + iδ.

Using Chernoff’s bound, for any θi ≥ 0,

P





0∑

t=−(i+1)⌈M
A
⌉+1

dS(t) > M





≤ E



exp



θi

0∑

t=−(i+1)⌈M
A
⌉+1

dS(t)







 exp (−θiM)

= exp

(

−M

(

θi −
i + 1

A
Λ̄dS (θi) + ǫi(M, θi)

))

, (A.3)

where ǫi(M, θi)→ 0 as M →∞.

In order to find the tightest bound for each i, we choose θ∗i ≥ 0 to maximize

fi(θ) , θ − i+1
A

Λ̄dS (θ), and define γ = infi≥0 supθ≥0 fi(θ). We can rewrite fi(θ) as,

fi(θ) = θ −
Λ̄dS (θ)

A
− i

Λ̄dS (θ)

A
.

Since limτ→∞ E
[
dS(τ)

]
< 0, the function Λ̄dS (θ) has a negative slope at θ = 0.

Hence, we can choose some θ̃ > 0, such that Λ̄dS(θ̃) < 0. This implies that there

exists a J and a β > 0 such that for every i > J (see Fig. A.1 for a graphical proof),

fi(θ̃) > γ + iβ. (A.4)
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Returning to Eq. (A.1),

pSdischarge(M) =
∞∑

i=0

P (Ei)

≤
∞∑

i=0

P





0∑

t=−(i+1)⌈M
A
⌉+1

dS(t) > M





≤
J∑

i=0

exp (−M (fi(θ
∗
i ) + ǫi(M, θ∗i )))

+
∞∑

i=J+1

exp
(

−M
(

fi(θ̃) + ǫi(M, θ̃)
))

≤
J∑

i=0

exp

(

−M

(

γ + min
0≤i≤J

ǫ(M, θ∗i )

))

+
∞∑

i=J+1

exp

(

−M

(

γ + iβ + inf
i>J

ǫi(M, θ̃)

))

= exp (−Mγ)

[

(J + 1) exp

(

min
0≤i≤J

ǫ(M, θ∗i )

)

+
exp

(

−M
(

(J + 1)β + infi>J ǫi(M, θ̃)
))

1− exp (−βM)

]

. (A.5)

As M →∞,

lim sup
M→∞

1

M
log pSdischarge(M) ≤ −γ

(A.6)

Since this inequality holds for any A > 0, we let A→∞ and get,

lim sup
M→∞

1

M
log pSdischarge(M) ≤ − inf

i≥0
sup
θ≥0

[

θ −
i

A
Λ̄dS (θ)

]

= − inf
T≥0

sup
θ≥0

[
θ − T Λ̄dS (θ)

]

= − inf
T≥0

T sup
θ≥0

[
θ

T
− Λ̄dS (θ)

]

. (A.7)
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Next, we find the lower bound. For some T ≥ 0, a sufficient condition for the

battery to be empty at some time slot in the interval [−⌈TM⌉, 0] is that,

0∑

t=−⌈TM⌉+1

(eS(t)− r(t)) > M. (A.8)

We can lower bound pSdischarge(M) using the union bound,

pSdischarge(M)⌈TM⌉

≥ P (battery is empty in some slot during [−⌈TM⌉, 0]) . (A.9)

We define, ZM,T , 1
TM

∑0
t=−⌈TM⌉+1 dS(t). Consequently,

P





0∑

t=−⌈TM⌉+1

dS(t) > M



 = P

(

ZM,T >
1

T

)

.

Now, limM→∞ E [ZM,T ] < 0 < 1
T

for all T > 0. Applying the Gärtner-Ellis Theorem,

we get,

lim
M→∞

1

M
log P

(

ZM,T >
1

T

)

= − sup
s≥0

[ s

T
− Λ̄Z (s)

]

= −T sup
s≥0

[ s

T 2
− Λ̄dS

( s

T

)]

= −T sup
θ≥0

[
θ

T
− Λ̄dS (θ)

]

, (A.10)

where Λ̄Z(s) is the asymptotic semi-invariant log-moment generating function of ZM,T .

By noting that Eq. (A.10) holds for all T ≥ 0 and combining it with Eq. (A.9), we

have,

lim inf
M→∞

1

M
log pSdischarge(M) ≥ − inf

T≥0
T sup

θ≥0

[
θ

T
− Λ̄dS(θ)

]

. (A.11)

From Eqs. (A.7) and (A.11) we have,

lim
M→∞

1

M
log pSdischarge(M) = − inf

T≥0
T sup

θ≥0

[
θ

T
− Λ̄dS(θ)

]

= −s∗dS . (A.12)

This gives us pSdischarge(M) = Θ(exp(−s∗
dS

M)).
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A.2 Proof of Lemma 5.2

Fix a constant A > 0 and decompose the time line into intervals, such that each

interval is of length ⌈M
2A
⌉ and the ith interval ends at time slot ti = i⌈M

2A
⌉. Assume

that the system is in steady state. We define Ei as the event that the battery is

empty at the end of time slot 0 and the last time the battery was half full (i.e., M/2)

is some time during the interval −i =
[
−(i + 1)⌈M

2A
⌉+ 1,−i⌈M

2A
⌉
]
. The event of an

empty battery at time slot 0 can be decomposed as a union of events Ei,

pBdischarge(M) =

∞∑

i=0

P (Ei) (A.13)

A necessary condition for event Ei to occur is,

0∑

t=−(i+1)⌈ M
2A

⌉+1

(
eB(t)− r(t)

)
>

M

2
(A.14)

Using Chernoff’s bound, for any θi ≥ 0,

P





0∑

t=−(i+1)⌈ M
2A

⌉+1

(eB(t)− r(t)) >
M

2





≤ E



exp



θi

0∑

t=−(i+1)⌈ M
2A

⌉+1

(eB(t)− r(t))







 exp

(

−θi

M

2

)

= E



exp



−θi

0∑

t=−(i+1)⌈ M
2A

⌉+1

r(t)









× exp

(

θi(i + 1)

⌈
M

2A

⌉

(µ− δ−)

)

exp

(

−θi

M

2

)

= exp

(

−
M

2

[

θi

(

1−
i + 1

A
(µ− δ−)

)

−
i + 1

A
Λ̄r(−θi)

+ ǫi(M, θi)

])

, (A.15)

where ǫi(M, θi)→ 0 as M →∞.
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In order to find the tightest bound for each i, we choose θ∗i ≥ 0 to maximize,

fi(θ) , θ

(

1−
i + 1

A
(µ− δ−)

)

−
i + 1

A
Λ̄r(−θ), (A.16)

and let γ = infi≥0 supθ≥0 fi(θ). We can rewrite fi(θ) as,

fi(θ) = θ −
µ− δ−

A
θ −

Λ̄r(−θ)

A
− i

(
(µ− δ−)θ + Λ̄r(−θ)

A

)

Since limτ→∞
1
τ

∑τ
t=1 E [r(t)] = µ > µ − δ−, the function (µ − δ−)θ + Λ̄r(−θ) has a

negative slope at θ = 0. Hence, we can choose some θ̃ > 0, such that (µ − δ−)θ̃ +

Λ̄r(−θ̃) < 0. This implies that there exists a J and a β > 0 such that for every i > J ,

fi(θ̃) > γ + iβ. (A.17)

Returning to Eq. (A.13),

pBdischarge(M) =

∞∑

i=0

P (Ei)

≤
∞∑

i=0

P





0∑

k=−(i+1)⌈ M
2A

⌉+1

(eB(k)− r(k)) >
M

2





≤
J∑

i=0

exp

(

−
M

2
[fi(θ

∗
i ) + ǫi(M, θ∗i )]

)

+

∞∑

i=J+1

exp

(

−
M

2

[

fi(θ̃) + ǫi(M, θ̃)
])

≤
J∑

i=0

exp

(

−
M

2

[

γ + min
0≤i≤J

ǫ(M, θ∗i )

])

+
∞∑

i=J+1

exp

(

−
M

2

[

γ + iβ + inf
i>J

ǫi(M, θ̃)

])

= exp

(

−
M

2
γ

)[

(J + 1) exp

(

min
0≤i≤J

ǫ(M, θ∗i )

)

+
exp

(

−M
2

(

(J + 1)β + infi>J ǫi(M, θ̃)
))

1− exp
(
−β M

2

)

]

. (A.18)
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As M →∞,

lim sup
M→∞

2

M
log pBdischarge(M) ≤ −γ

Since this inequality holds for any A > 0, we let A→∞ and get,

lim sup
M→∞

2

M
log pBdischarge(M)

≤ − inf
i≥0

sup
θ≥0

[

θ

(

1−
i

A
(µ− δ)

)

−
i

A
Λ̄r(−θ)

]

= − inf
T≥0

sup
θ≥0

[
θ (1− T (µ− δ))− T Λ̄r(−θ)

]

= − inf
T≥0

T sup
θ≥0

[

−θ

(

µ− δ −
1

T

)

− Λ̄r(−θ)

]

(A.19)

Next, we find the lower bound. For some T ≥ 0, a sufficient condition for the

battery to be empty at some time slot in the interval [−⌈TM/2⌉, 0] is that,

0∑

t=−⌈TM
2

⌉+1

(eB(t)− r(t)) > M. (A.20)

We can lower bound pBdischarge(M) using the union bound,

pBdischarge(M)

⌈
TM

2

⌉

≥ P

(

battery is empty in some slot during

[

−

⌈
TM

2

⌉

, 0

])

. (A.21)

We can write,

P





0∑

t=−⌈TM
2

⌉+1

(eB(t)− r(t)) >
M

2





= P





0∑

t=−⌈TM
2

⌉+1

(µ− δ− − r(t)) >
M

2



 . (A.22)

We define, ZM,T , 2
TM

∑0
k=−⌈TM

2
⌉+1 (µ− δ− − r(k)). Consequently,

P





0∑

t=−⌈TM
2

⌉+1

(µ− δ− − r(t)) >
M

2



 = P

(

ZM,T >
1

T

)

.
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Now, limM→∞ E [ZM,T ] = −δ− < 0 < 1
T

for all T > 0. Applying the Gärtner-Ellis

Theorem, we get,

lim
M→∞

2

M
log P

(

ZM,T >
1

T

)

= − sup
s≥0

[
1

T
s− s (µ− δ) + T Λ̄r

(

−
s

T

)]

= −T sup
s≥0

[

−
s

T

(

µ− δ −
1

T

)

− Λ̄r

(

−
s

T

)]

= −T sup
θ≥0

[

−θ

(

µ− δ −
1

T

)

− Λ̄r(−θ)

]

. (A.23)

Combining Eqs. (A.21) and (A.23), we have,

lim inf
M→∞

2

M
log pBdischarge(M)

≥ − inf
T≥0

T sup
θ≥0

[

−θ

(

µ− δ −
1

T

)

− Λ̄r(−θ)

]

. (A.24)

From Eqs. (A.19) and (A.24) we have,

lim
M→∞

2

M
log pBdischarge(M)

= − inf
T≥0

T sup
θ≥0

[

−θ

(

µ− δ −
1

T

)

− Λ̄r(−θ)

]

= s∗d−. (A.25)

This gives us pBdischarge(M) = Θ
(
exp

(
s∗

d−
M
2

))
.

A.3 Proof of Theorem 5.3

As discussed in Section 5.3.1, the buffer overflow probability is given by pQoverflow(K) =

limτ→∞ P (Q(τ) > K) and the battery underflow probability is given by pQdischarge(M) =

limτ→∞ P (B(τ) < 0). Under the heavy traffic condition, taking the diffusion limit of

the queue process, we get the data queue approximation,

Q(t) =

{

BM(−δ
(a)
1 , σ̄2

a), Q(t) ≥ K/2

BM(δ
(a)
1 , σ̄2

a), Q(t) < K/2
, (A.26)
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and the battery approximation,

B(t) =

{

BM(δ
(r)
1 , σ̄2

r), Q(t) ≥ K/2

BM(δ
(r)
2 , σ̄2

r), Q(t) < K/2
. (A.27)

Here BM(m, σ̄2) is a Brownian motion process with mean mt and variance σ̄2t. For

completeness, we re-state the lemmas used for the proof of Theorem 5.3.

Lemma 5.4. For the energy management scheme Q, given any βQ ≥ 2, the buffer

overflow probability for a buffer of size K is given by pQoverflow(K) = O(K−βQ).

Proof. We focus on the component Brownian motions of the process Q(t) given

in Eq. (A.26). Here we note that the only difference between the two component

processes is that their drifts are in opposite directions. If we assume the start-

ing state of the queue process to be Q(0) = K/2. Note that due to the strong

Markovian property of a Brownian motion [63], the instants11 {Tn, n > 0} at which

the system returns to state Q(Tn) = K/2 is probabilistically equal to the start-

ing state Q(0). Hence we can study these renewal epochs12 {Tn, n = 1, 2, · · · }

to obtain steady state properties for the data queue process. Now, consider the

random variables Tu , arg mint>0{Q(t) = K/2,Q(0) = K/2,Q(0+) > K/2} and

Tl , arg mint>0{Q(t) = K/2,Q(0) = K/2,Q(0+) < K/2}. From Eq. (A.26), we

note that the random variables Tu and Tl will have the same distribution. Fur-

thermore, at renewal epochs t = Tn, the process can go above or below K/2 with

equal probability. Consequently, we need to study the renewals associated with

Qu(t) , |Q(t) − K/2| + K/2. Once the process reaches Q(t) = K/2, it can go

above or below Q(t) with equal probability. Consequently, we need to study only

11By definition, we let T0 = 0

12If we assume the starting state to be Q(0) 6= 0, we can simply consider the process to be a
delayed renewal process. The steady state properties in the resulting analysis will not change.
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Qu(t) and can find P (Q(t) > K) = 1
2
P (Qu(t) > K). If we define a unit reward

(i.e., R(t) = 1) for every time t that the process Qu(t) > K then,

lim
t→∞

P (Qu(t) > K) = lim
t→∞

E [R(t)] . (A.28)

From renewal-reward theory [64] we can write,

lim
t→∞

E [R(t)] =
E [Rn]

E [X]
, (A.29)

where E [Rn] is the expected award accumulated in one renewal period, and E [X] is

the expected length of the renewal period. To get a non-trivial expression for E [X],

we define E [X] as the expected time for process Q(t) to return to K/2 given that

it starts at K/2 + ǫ and then pass the limit ǫ ↓ 0. The expression for E [X] is given

by [66],

E [X] = lim
ǫ↓0

ǫ

δ
(a)
1

. (A.30)

Starting at K/2 + ǫ, the probability of reaching K before K/2 will give the expected

reward accumulated in one renewal period. Applying the expression for this proba-

bility from [66],

E [Rn] = lim
ǫ↓0

exp

(

2δ
(a)
1

σ̄2
a

ǫ

)

− 1

exp

(

2δ
(a)
1

σ̄2
a

K
2

)

− 1

= lim
ǫ↓0

2δ
(a)
1

σ̄2
a

ǫ + o(ǫ)

exp

(

2δ
(a)
1

σ̄2
a

K
2

)

− 1

. (A.31)

Plugging Eqs. (A.30) and (A.31) in Eq. (A.29) we have,

lim
t→∞

E [R(t)] = lim
ǫ↓0

(

2δ
(a)
1

σ̄2
a

+ o(ǫ)
ǫ

)

δ
(a)
1

exp

(

2δ
(a)
1

σ̄2
a

K
2

)

− 1

. (A.32)
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Evaluating the limit ǫ ↓ 0, and noting that the stochastic process will be in the upper

half of the buffer with probability 1/2, for large K we have,

pQoverflow(K) =
δ
(a)
1

2

σ̄2
a

exp

(

−
δ
(a)
1 K

σ̄2
a

)

= O

(

exp

(

−
δ
(a)
1 K

σ̄2
a

))

. (A.33)

By choosing δ
(a)
1 = βDσ̄2

a
ln K
K

, we have pQoverflow(K) = O(K−βD).

Lemma 5.5. For the energy management scheme Q, the battery discharge probability

for a battery of size M is given by limM→∞
1
M

log(pQdischarge(M)) = −2(µ−C−1(λ))
σ̄2

r
, where

C−1(·) is the inverse of the rate-power function C(·).

Proof. Next, we focus our attention on pQdischarge(M) or limt→∞ P (B(t) < 0). First we

define,

pA(x) = P (B(t) hits 0 before + A|B(0) = x),

i.e., probability of discharge starting with x amount of charge in the battery. Dis-

charge probability would be given by limA→∞ pA(x). If we define Y = B(h) −B(0),

we can write,

pA(x) = EY [pA(x + Y )] + o(h),

where o(h) refers to the probability that the process would have hit one of the barriers

by time h. Using the Taylor series expansion of pA(x + Y ) about x, we get,

pA(x) = EY

[

pA(x) + p
(1)
A (x)Y + p

(2)
A (x)

Y 2

2
+ · · ·

]

+ o(h).

Under the diffusion approximation, we observe that Y ∼ N (δ
(r)
1 h, σ̄2

rh) with proba-

bility 1/2 and Y ∼ N (δ
(r)
2 h, σ̄2

rh) with probability 1/2. So we can write Eq. (A.34)
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as,

pA(x) = pA(x) +
1

2
p

(1)
A (x)(δ

(r)
1 + δ

(r)
2 )

+ p
(2)
A (x)

δ
(r)
1

2
h2 + δ

(r)
2

2
h2 + 2σ̄2

rh

4
+ o(h), (A.34)

which can be rewritten as the differential equation (passing the limit h→ 0),

−

(

δ
(r)
1 + δ

(r)
2

σ̄2
r

)

p
(1)
A (x) + p

(2)
A (x) = 0. (A.35)

Integrating the differential equation (A.35) twice we have,

pA(x) = C1 + C2 exp

(

−
δ
(r)
1 + δ

(r)
2

σ̄2
r

x

)

. (A.36)

Solving for the constants C1 and C2 using the initial conditions, pA(0) = 1 and

PA(A) = 0, we get,

pA(x) =

exp

(

−
δ
(r)
1 +δ

(r)
2

σ̄2
r

x

)

− exp

(

−
δ
(r)
1 +δ

(r)
2

σ̄2
r

A

)

1− exp

(

−
δ
(r)
1 +δ

(r)
2

σ̄2
r

A

) . (A.37)

To find the discharge probability, we set x = M/2 and pass the limit A→∞,

pQdischarge(M) = lim
A→∞

pA(M) = exp

(

−
(δ

(r)
1 + δ

(r)
2 )M

σ̄2
r

)

. (A.38)

For a rate-power function C(·), we have δ
(a)
1 + δ

(a)
2 = 2(µ−C−1(λ)) + o(δ

(a)
1 ). Substi-

tuting this expression in Eq. (A.38), we get the required result.

To illustrate Lemma 5.5, we consider the AWGN channel capacity given in Eq. (5.17).

If we assume γ = 1, δ
(r)
1 = µ−

exp
““

λ+δ
(a)
1

”

ln 2
”

−1

γ
and δ

(r)
2 = µ−

exp
““

λ−δ
(a)
1

”

ln 2
”

−1

γ
. We

can use the power series expansion of the exponential function to get,

δ
(r)
1 = µ−

1

γ

(

(λ + δ
(a)
1 ) ln 2 +

(λ + δ
(a)
1 )2(ln 2)2

2
+ · · ·

)

,
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and,

δ
(r)
2 = µ−

1

γ

(

(λ− δ
(a)
1 ) ln 2 +

(λ− δ
(a)
1 )2(ln 2)2

2
+ · · ·

)

.

Combining these expressions, we get,

δ
(r)
1 + δ

(r)
2 = 2µ−

1

γ

(

λ ln 2 + Θ(1) + o(δ
(a)
1 )
)

= Θ(1). (A.39)

Substituting Eq. (A.39) in Eq. (A.38), we get pQdischarge(M) = O(exp(−αQM)).

Finally, we show that Scheme Q achieves an average utility ŪQ
D such that UD(λ)−

ŪQ
D = Θ

(
(ln K)2

K2

)

. The instantaneous utility will be zero when the queue is empty or

when the battery is discharged. Due to symmetry of the Brownian approximation,

the empty queue probability will be the same as the queue overflow probability.

Since pQdischarge(M) = O(exp(−M)), under the large battery regime we can ignore

the discharge term. The average utility ŪQ
D can be written as,

ŪQ
D =

1

2

(

UD(λ + δ
(a)
1 ) + UD(λ− δ

(a)
1 )
)

(1− pQoverflow(K))

= UD(λ) + U
(2)
D (λ)(δ

(a)
1 )2 + o

(

(δ
(a)
1 )2

)

(A.40)

= UD(λ) + Θ

(
(lnK)2

K2

)

. (A.41)

Where Eq. (A.40) follows from the fact that pQoverflow(K) = O(K−β) for β ≥ 2 and

Eq. (A.41) comes from choosing δ
(a)
1 = βDσ̄2

a
lnK
K

. This completes the proof of Theo-

rem 5.3.
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[17] S. Yüksel and S. Tatikonda, “Capacity of Markov Channels with Partial State
Feedback,” in Proc. IEEE ISIT ’07, Nice, France, June 2007, pp. 1861–1865.
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