

Knowledge Based Topology Discovery and Geo-localization

Thesis

Presented in Partial Fulfillment of the Requirements for the Degree Master of

Science in the Graduate School of The Ohio State University

By

Yuri Rajendra Shelke, B.E.

Graduate Program in Computer Science & Engineering

The Ohio State University

2010

Dissertation Committee:

Dr. Rajiv Ramnath, Advisor

Dr. Ola Ahlqvist

Dr. Jay Ramanathan

Copyright by

Yuri Rajendra Shelke

2010

ii

Abstract

Cable networks demand a high level of reliability as critical services are carried

over them. Maintenance operations will be greatly facilitated if faults can be

geographically located on the network topology. We demonstrate the application

of knowledge-based techniques and a novel ontology based software framework

for topology discovery and geo-localization by integrating topology data with

data from GIS based systems, where these databases have incomplete, obsolete

or inaccurate information. In addition to addressing this specific problem this

framework may be generalized for integration of data from multiple sources

with syntactic heterogeneity.

iii

Dedication

Dedicated to the Almighty God, my Guruji and my loving Parents

iv

Acknowledgements

I am immensely grateful to Prof. Dr. Rajiv Ramnath, my advisor. He has been a

real Guru during my academic career at The Ohio State University. His

encouraging support at all times and in all aspects at OSU has been invaluable.

He has been a constant source of inspiration and motivation to maintain my

momentum in the academic and research field at OSU. With his strong expertise

in the field of enterprise architecture, he inculcated the essential quality to look at

a bigger picture while solving a problem and thinking big and innovative. Not

only academic, his teachings, guidance and advice have also built up my

professional skill sets positively.

I am grateful to Dr. Jay Ramanathan for instilling the virtue of concentrating at

the research perspective of the problem. Her teachings of enterprise architecture

and complex adaptive enterprise services have been priceless.

v

I am greatly thankful to my parents. Their support, in all senses, has been

precious. This encouragement and support proved as a major motivation to lead

the work in high spirits.

I am thankful to Dr. Ola Ahlqvist for suggesting the adaptability of the ontology

based framework and its application to transportation problem. I am thankful to

Chowdary Davuluri and Thomas Loffing for their discussions on ontology and

rule based inference engines.

I am thankful to CableLabs, Inc for giving me an opportunity to gain an insight

in the field of cable networks and providing me with insightful domain

knowledge.

I am thankful to my room-mates and friends for their constant support and

motivation during my academic studies at OSU.

vi

Vita

March 1999…… Dnyanmata High School, Amravati, India

July 2005 …….. B.E. Computer Science & Engineering, Government College of

 Engineering, Amravati University, India

2005 – 2006…... Lecturer, College of Engineering & Technology, Amravati, India

2006 – 2008 …. Programmer Analyst, Cognizant Corporation, India

2009 – 2009 Graduate Fellow, NSF-CETI, The Ohio State University

Field of Study

Major Field: Computer Science & Engineering

vii

Table of Contents

Abstract ... ii

Dedication.. iii

Acknowledgements .. iv

Vita…. .. vi

Table of Figures ..ix

1.0 Introduction .. 1

1.1 Problem Statement .. 5

1.2 Solution Approach .. 7

1.3 Contributions ... 8

2.0 Related Work .. 9

2.1 Data Fusion .. 9

2.2 Ontology .. 16

2.3 Geographic Topology .. 22

2.4 Ontology-based Data Integration .. 29

3.0 Contributions .. 33

4.0 Solution Approach & Implementation ... 39

4.1 Software Tools.. 48

4.1.1 DxGrep .. 48

viii

4.1.2 Normalization ... 52

4.1.3 Geo-translation ... 56

4.1.4 Ontology and Rule based Inference Engine .. 61

4.2 Evaluation of Architecture .. 69

5.0 Conclusion ... 74

6.0 Future Work .. 75

7.0 References .. 78

Appendix A: Environment set for the development of DxGrep Tool ... 85

Appendix B: Code Implementation ... 91

B.1 DxGrep Tool ... 92

B.2 Normalization Component.. 154

B.3 Geo-translation Component ... 159

ix

Table of Figures

Figure 1: Cable Network Infrastructure with multiple topological layers4

Figure 2: Different layers of General Knowledge representation [24] 17

Figure 3: High Level View of Proactive Network Maintenance Model [1] 41

Figure 4: Cable Topology Plant model for high level representation of plant elements
[12]

 .. 42

Figure 5: Generating Fiber Node Topology Maps with geo-location Workflow [12]

 .. 44

Figure 6: General Description of a methodology to achieve standardization and

visualization of CAD maps over GIS maps .. 46

Figure 7: Component-based architecture depicting the transformation from

detailed As-built maps to Geo-localization on the GIS maps 47

Figure 8: Normalization process using mapping provided by operator 53

Figure 9: Process to geo-localize the network topology on the GIS 57

Figure 10: UML Representation of an ontology developed for cable network

topology discovery ... 63

Figure 11: Ontology and Rule-based inference engine for topology discovery 66

Figure 12 Ontology-based Data Integration ... 71

Figure 13: Additional Include directories for DxGrep development 87

Figure 14: Additional library directories for DxGrep development 88

x

Figure 15 Additional dependencies for DxGrep development 89

1

1.0 Introduction

A unique knowledge based software architecture approach can be applied to

achieve topology discovery. This approach exploits domain knowledge to

provide formal representations of a set of concepts within a domain and the

relationships between those concepts and make the knowledge explicit.

Ontology based data integration and rule based inference engine are the

knowledge based approaches that play a pivotal role in accomplishing the

complex task of topology discovery and geo-localization. This research

hypothesis has been illustrated by applying a novel software architecture

approach to a practical problem of cable network topology discovery and geo-

localization.

As cable networks evolve, and many diverse services such as telephony, data,

video, business and advanced services (i.e., Tele-medicine, remote education,

home monitoring) are carried over them, the demand for maintaining a high

level of reliability for services increases. To achieve such high reliability,

operators have to fix problems before they have any impact on service.

Increasingly, intelligent end devices are deployed in cable networks such as

termination devices and monitoring instruments installed in Headends (HE) and

hubs. Also, new devices being deployed by operators such as Set Top Boxes

(STB), Multimedia Terminal Adapters (MTA), Hybrid Monitoring Systems and

even high end TV sets comply with the Data Over Cable Service Interface

Specification (DOCSIS) standard, resulting in ubiquity of this standard [1].

As DOCSIS devices evolve and are equipped with elaborate monitoring tools, it

becomes practical to use them for plant monitoring purposes. By using these

devices as network probes, the operators can collect device and network

parameters. Combining the analysis of data along with the network topology

and device location, it is possible to isolate the source of a problem. By analyzing

the pre-equalization coefficients and correlating multiple channel data, the

operator can determine the gravity of the problem and geographically isolate the

source of the problem.

The cable network infrastructure [12] can be composed of multiple topological

layers.

3

1. Physical Location: This layer corresponds to the physical location of several

network elements like the Cable Modem (CM), Cable Modem Termination

System (CMTS), amplifiers, taps, couplers, etc. This physical address can

be located on a Geographical Information System (GIS) map.

2. Utility Plant: This consists of shared or private infrastructure for public

utilities and communication services (such as cable services). It includes

manholes, poles, ducts, buildings, where the physical network elements

are placed.

3. Physical Cable Plant: This is the Hybrid Fiber Coaxial (HFC) physical

network from the Fiber Node to the customer premise. The Subscriber

feed consists of branches derived from the fiber node through amplifiers,

splitters and taps. This information has the context of civil constructions

from the utility plant described above.

4. Data Service Layer: Within a fiber node, the CM is tied to a set of upstream

and downstream channels. These sub-layers represent CMTS Media

Access Control (MAC) Domains and, CMTS Blades containment. This

layer is responsible for conveying the data on health metrics of the

network.

4

Figure 1: Cable Network Infrastructure with multiple topological layers

5. IP Network Layer: It corresponds to the Internet Protocol (IP) topology and

sub-network arrangements within the service area from the customer to

the Fiber node equipment.

6. Service layer: For each individual service, there is a link between IP

network topology and content servers & management servers associated

within the user premises where the service is to be delivered.

5

Fault localization is conducted at the plant level, and therefore draws

information from geographical location, the utility plant layer, and the cable

physical plant layer. The data service layer is the source of data for the fault

localization. The common signature & patterns of the impairments in the CM

and CMTS within the context of a service help locate the failures.

For the proactive network maintenance process to remain viable, the plant

design databases have to be analyzed and kept up to date so that the information

obtained from them is valid. Plant design databases, along with customer

databases, have to be analyzed such that, for every end-device that is installed,

the correlation between the street address and the network path that the

customer‘s end-device goes through to receive service is obtained.

1.1 Problem Statement

The research and development work leading to this thesis at the Center for

Enterprise Transformation and Innovation (CETI) at The Ohio State University

focuses on the geo-localization aspect of this Proactive Network Maintenance

project at Cable Labs, Inc. Localization of failures with a topology aware

structure is a compelling tool that facilitates operations and better ticket

6

handling. The goal of our work is to completely automate the fault identification

and resolution through the usage of geo-location to correlate and localize failures

within a small area. The ideal problem statement for this project is to account for

all the topology layers mentioned to move most of the inferences from

technicians into automated systems based on geo-localized network maps that

could not only prioritize but also expedite the resolution of critical and latent

problems of overtime.

Even though good geo-location information (customer addresses mapped to a

geo-position) is typically available, in many cases operator‘s information on the

topology layers above is unreliable, incomplete, obsolete or not accurate as the

technologies used for maintenance and updates are very costly. The successful

usage of proactive network maintenance methodologies requires operators to

have accurate, or near to accurate network topology information. But, some of

the times, operators do not have accurate cable network topology information or

as-built maps.

7

1.2 Solution Approach

The thesis proposes a knowledge based software architecture for topology

discovery to create usable network topology information, when only limited

topology information is available. This solution approach is achieved using the

domain ontology and rule based inference engine to solve the topology

discovery problem. The process first includes geo-localization of the available

network topology information (usually in the form of as-built CAD maps). This

geo-localization is achieved through extraction of the as-built map, normalization

of that extraction and geo-translation of that normalized extracted topology

information. This information then should be fed to a knowledge based system,

an ontology in this case, built on a domain knowledge available. With this

ontology, the inference engine in the knowledge based system works towards

the goal of topology discovery and infers the geo-locations of the missing

elements in the network topology depending on the domain rules. Ontology then

integrates the inferred data with the data from other sources and creates a single

amalgamated view to achieve fault identification and resolution.

8

1.3 Contributions

The thesis successfully illustrates the ontology based data integration and data

fusion approach to design and specify the geo-localization processes to allow

operators to integrate topology data coming from databases and digital maps

(e.g. ―As-Built‖ maps) with GIS based systems. This helps the operators get an

integrated view of all the data sets and localize segments of the network where

the frequency response analysis determines existing problem plant condition that

can lead to future service interruption. The research work applies the novel

concept of knowledge engineering to leverage the plant topology and geo-

location information for the automation of processes that would otherwise be

conducted manually relying on field technician. The thesis also designs a

framework whose software building blocks are interoperable and are open for

the use in future maintenance systems.

9

2.0 Related Work

For the implementation of the knowledge based approach to accomplish

topology discovery and geo-localization, four major research areas are studied in

detail. The thesis has made significant contribution and an excellent employment

of these computer science areas. The four major research areas are:

 Data fusion

 Ontology

 Geographic topology

 Ontology-based data integration

2.1 Data Fusion

Data fusion is the process of putting together information obtained from many

heterogeneous data sources, on many platforms, into a single composite picture

of the environment. Data fusion is an efficient method that improves accuracy of

sensor network localization. A key effect of data fusion is the ability to deal with

10

 conflicting data, producing intermediate results that the algorithm can revise as

more data becomes available.

This localization concept is mainly used in the field of sensor networking to

determine the positions or the physical coordinates of the sensor nodes in a

network given incomplete and inaccurate pair-wise distance measurements.

Many sensor network applications like habitat monitoring, smart building failure

detection and reporting, and target tracking make it necessary to accurately

orient the nodes with respect to a global coordinate system. This data can be

reported in a geographically meaningful way. The sensor node localization

employs many algorithms that deal with localizing many missing sensor nodes

with the help of some limited information of some anchor nodes, relative

distances and signal strengths.

The concept of revising the location information of the sensor on the availability

of more data is widely used in sensor network localization. This is done by

injecting a pattern of chirps or a signals in the network and the time, angles and

distances are calculated with respect to the listening nodes or the anchor nodes.

Anchor nodes, also known as beacon nodes, are the typical prerequisites to

localize a sensor network in a coordinate system. Anchor nodes are nodes whose

11

position in the sensor network is already known. At a minimum, three non-

collinear beacon nodes are required to define a global coordinate system in two

dimensions. In a three dimensional coordinate system at least four non-coplanar

beacons must be present [11].

The energy of a radio signal decreases with the square of the distance from the

signal‘s source. Consequently, a sensor node listening to a signal transmission

from one of the other sensor nodes in the network should be able to use the

strength of the received signal, known as Received Signal Strength Indication, to

calculate its distance from the transmitter. Many researchers find hop count to be

useful measure to computer the inter-node distances. If the hop count between si

and sj is hij, then the distance between si and sj, dij , is less than R*hij , where R is

again the maximum radio range. The local connectivity information provided by

the radio defines an un-weighted graph, where the vertices are sensor nodes, and

edges represent direct radio links between nodes. The hop count hij between

sensor nodes si and sj is then defined as the length of the shortest path in the

graph between si and sj
[11].

Time Difference of Arrival (TDoA) and Angle of Arrival (AoA) have also been

important factors in determining the location of the sensor node in the sensor

12

network. Angle of Arrival data allows the listening node to determine the

direction of a transmitting node. A digital compass, along with the Angle of

arrival data, helps determine the global orientation of the node. In TDoA, the

transmitter first sends a radio message. It waits some fixed interval of time, tdelay,

and then produces a fixed pattern of ―chirps‖ on its speaker. The listening nodes

note the current time, tradio,. Then, they note the current time, tsound on detection of

the chirp pattern. Then the listeners compute the distance d between themselves

and the transmitter using [11]

d = (sradio − ssound) _ (tsound − tradio − tdelay)

TDoA is more effective in practice than RSSI is due to the difference between

using signal travel time and signal magnitude. TDoA is vulnerable only to

occlusion while the RSSI is vulnerable to both occlusion and multipath.

Many algorithms and papers have been studied in order to understand the

process of sensor network localization to approximate the positions of the

network elements and refine the earlier inferences as additional information

becomes available and then use that analogy for the topology discovery process.

Srirangarajan S. et al. [5], have researched on a method to accomplish distributed

sensor network localization using Second order cone programming relaxation.

13

They show that the positions of sensor nodes can be estimated based on local

information, a technique that also compensates for anchor position errors. The

localization process starts with the sensor nodes estimating their positions using

information from their neighbors. The anchors then refine their positions using

relative distance information exchanged with their neighbors and finally, the

sensors refine their position estimates. Kannan A. et al. [7], have talked about the

wireless sensor network localization based on the Simulated Annealing

approach. This research also takes care of the flip ambiguity mitigations.

Simulated annealing (SA) is a technique for combinatorial optimization

problems. This process defined by Kannan et al., is a two phase simulated

annealing based localization. Here, an initial location estimate is obtained in the

first phase using the SA and the large error due to flip ambiguity is mitigated in

the refinement phase using neighborhood information of nodes. Flip ambiguity

arises when a node's neighbors are placed nearly collinear such that the node can

be reflected across the line connecting its neighbors while satisfying the distance

constraint.

Pratik Biswas et al. [8], have concentrated on the centralized localization

algorithm approach. Centralization allows an algorithm to undertake much more

complex mathematics than is possible in a distributed setting. Biswas et al., have

14

researched on Semi-definite Programming (SDP) approach for sensor network

localization. In a semi-definite programming approach, as explained by Doherty

[13], geometric constraints between nodes are represented as linear matrix

inequalities (LMIs). Once all the constraints in the network are expressed in this

form, the LMIs can be combined to form a single semi-definite program. This is

solved to produce a bounding region for each node [11]. In the approach used by

Biswas et al. [8], distance data is acquired by a sensor node by communicating

with its neighbors. Their approach uses the points estimated from the SDP

solution as the initial iterate for a gradient-descent method to further refine the

estimated points. Zhang, Q. [9], et al have improved on the Semi-definite

programming approach by suggesting a two-phase localization algorithm for

wireless sensor network. In the first phase, they use a genetic algorithm to get an

accurate estimation of location. In the second phase, Simulated Annealing

algorithm refines the location estimates of those nodes that are likely to have a

flip ambiguity problem. This method of localization achieves higher accurate

position estimation than semi-definite programming with gradient search

localization.

The methods of sensor network localization employ an underlying principle that

the chirps injection and nodes communication with anchor nodes. Depending on

15

the time, delay, angle and signal strengths, the positions of the remaining nodes

are determined. However, when it comes to a cable network, all the network and

all the devices are not DOCSIS enabled to transmit the information back. Also, all

the cable network elements do not communicate with each other. Also, the data

is collected just from the cable modems and not from other entities like taps.

However, the concept of data fusion and sensor network localization has been

applied in the context of topology discovery of a cable network. The common

impairment signature shared among the network elements signify that these

network elements are connected to each other. So, with notion of sensor chirps

injection, the faults or certain impairments are injected in the network. The

common signature of the impairments confirms the connectivity information. On

the availability of such information and with the perception of data fusion, the

location of the network elements and their connectivity information is revised

and then geo-localized on a GIS map. So, the topology discovery is achieved by

combining multiple data from disparate sources in order to produce information

of tactical value. But, there was a need to research for a new approach to achieve

the cable network elements localization or more accurate topology discovery

when only limited topology information is available.

16

2.2 Ontology

Ontology refers to a formal representation of knowledge and a shared

understanding of a domain of interest. This ontology may be used as a unifying

framework to solve the domain specific problems. Ontology necessarily involves

some sort of conceptualization, a conceptualization of a set of concepts. A body

of formally represented knowledge is based on that conceptualization. These

concepts would include entities, attributes, processes, their definitions and their

inter-relationships [10]. A conceptualization is an abstract view of the domain.

Every system or a domain can be represented and is attached to some kind of

conceptualization, explicitly or implicitly. Ontology is an explicit specification of

a conceptualization.

The definitions in ontology associate the names of entities with human-readable

text describing what the names mean, and rules that constrain the interpretation

and well-formed use of these entities [5]. The quote from electronic mailing list of

shared reusable knowledge bases [25] states that ontology is an agreement about

shared conceptualizations. These conceptualizations include conceptual

frameworks for modeling domain knowledge, content specific protocols for

17

communication among inter-operating agents, and agreements about the

representation of particular domain theories [10].

Figure 2: Different layers of General Knowledge representation [24]

A general methodology to develop an ontology includes four major steps. The

first step is to identify the purpose and scope. This step identifies the motive and

characterizes the range of intended users of the ontology. The second step is to

build an ontology. This step can be broadly divided into Capturing, Coding and

Integration sub-steps. In ontology capture phase, the key concepts and their

18

relationships in the domain are identified. The definitions for these concepts are

produced and the rules governing these concepts and the relationships are

identified. In coding, the concepts, which are captured, are explicitly represented

confirming to the terms that were agreed upon during the ontology capture step.

Once this is complete, the ontology is merged or integrated with any existing

ontology. The third step is the evaluation of an ontology. The last step is the

documentation step. In this step, all the important assumptions about the main

concepts defined in an ontology and the about the primitives used to express the

definitions are explained [10]. The methodology used in the Enterprise Integration

Laboratory [23] for the design and evaluation of integrated ontologies consists of

the following steps:

1. Capture of motivating scenarios

2. Formulation of informal competency questions

3. Specification of the terminology of the ontology within a formal language

4. Formulation of formal competency questions using the terminology of the

ontology.

5. Specification of axioms and definitions for the terms in the ontology

within the formal language.

6. Justification of the axioms and definitions by proving characterization

theorems.

19

This mechanism of guiding the design of ontologies allows a more precise

evaluation of different proposals for an ontology, by demonstrating the

competency of each proposal with respect to the set of questions that arise from

the applications.

Silvana Castano [15], et al have proposed a knowledge discovery-based approach

to ontology concept design. Concept design is the activity of defining a new

concept into an ontology, by setting name, properties and semantic relations that

are required to frame the new concept in the ontology. It is an important activity

for both the creation and evolution of an ontology for adaptation to

requirements. This paper exploits ontology matching techniques in order to

retrieve useful external concepts semantically related to the design at hand. The

resulting ontology knowledge space is open towards external knowledge sources

by complementing the ontology expert knowledge with domain knowledge

stored in other external sources. This approach is expressed in two main phases.

Concept commitment is the activity of defining final ontology concepts by

refining the initial concept definitions through the integration of knowledge

fragments related to the retrieved matching concepts. This adds new ontology

axioms in the current ontology to enrich the current domain conceptualization.

20

Researching on improving communication among computers and human users,

Raymond Y.K. Lau [16], et al researched on context sensitive domain ontology

extraction. They exploited the contextual information of the knowledge sources

for the extraction of high quality domain ontologies. As per the paper, by

combining lexico-syntactic and statistical learning approaches, the accuracy and

the computational efficiency of the extraction process can be improved. Gloss [17],

et al discusses the service and design considerations of an ontology for a multi-

agent system. They use a Protégé-based ontology to convey the semantic

structure and to drive the actual Java Agent Development Framework (JADE)-

based demonstration.

We show that a knowledge based system approach, such as ontology and rule

based inference engine can be employed to solve the topology discovery

problem. The problem of topology discovery is a knowledge inference problem.

The cable network has different network elements, and these are treated as

entities of the ontology. Their inter-relationships and processes are also

represented as a part of an ontology. The set of laws that apply to the cable

network are captured in the ―Rules‖ module of the ontology using the SWRL.

The reasoner helps infer the inferences, which are later processed to output the

missing network elements‘ positions. The positions of the elements are refined

21

with the availability of more information in the form of rules and constraints in

an ontology. For example, the impairment signatures collected from the first 5

phases of the proactive network maintenance process make a strong positive

assertion that there is a network link joining all the network elements sharing the

same impairment signatures. Also, ontologies take care of all the domain

constraints and requirements and help the process of topology discovery.

The ontology based data integration of the data with syntactic heterogeneity has

been achieved in this thesis. The data coming from multiple sources in different

syntactic forms is integrated with the help of ontology to achieve more accurate

estimation of topology. As demonstrated in the case of cable network topology

discovery problem, the data comes from different sources, such as, the utility

pole databases, the limited cable network topology, some pre-existing geo-

localized network topologies and other GIS databases. These different sources

are integrated with the use of an ontology and the rule based inference engine

which associates the different data sources as per the rules defined and gives you

the final integrated topology with the geographic locations of missing network

elements.

22

2.3 Geographic Topology

In a GIS, topology is a set of rules which define the geometric relationship

between objects located in space, represented by points, lines and polygons. The

geometric characteristics of these objects do not change under transformations

such as stretching or bending, and are independent of any coordinate system. A

topological map refers to a map that has been simplified so that only vital

information remains and unnecessary detail has been removed. The topological

characteristics of an object are also independent of scale of measurement. A GIS

can recognize and analyze the spatial relationships that exist within digitally

stored spatial data. These topological relationships allow complex spatial

modeling and analysis to be performed. Topological relationships between

geometric entities traditionally include adjacency (what adjoins what),

containment (what encloses what), and proximity (how close something is to

something else). Adjacency and containment describe the geometric

relationships that exist between area features. Areas can be described as

‗adjacent‘ when they share common boundaries. Connectivity is a geometric

property used to describe the linkages between line features, e.g. roads are

connected to form a road network. The method to determine spatial

relationships is vector data models. It conveys the information as to what is

23

inside or outside a polygon or which nodes are connected by arcs and turns

vector nodes, arcs, and polygons into intelligent maps. Topology rules are

particularly important within GIS, and are used for a variety of correction and

analytical procedures. Principles of connectivity associated with topology lead to

applications in hydrology, urban planning, and logistics, as well as other fields;

as such, topological analyses offer unique modeling capabilities, defining the

vector nature of topological features and correcting spatial data errors from

digitizing.

Topological data structures include points, lines, vertices, nodes, chain, arcs,

rings and polygons. Points are either isolated or linked to form lines in which

case they are vertices. A line is a sequence of ordered vertices, having a start

node and an end node. A chain is a line which is part of one or more polygons. It

can have (left, right) polygon identifiers as well as (start, end) nodes. Chains are

also called arcs or edges. A node is point where lines or chains meet or terminate.

A polygon consists of one outer rings and zero or more inner rings. A ring

consists of one or more chains. A simple has no inner ring, whereas complex

polygon has one or more inner rings.

24

Van Roessel [28] described a topological structure in the relational normal form. It

was intended to be used as a basis for an interchange structure for changing from

one vector structure to another. It provides unambiguous description of

topological relationships. In his approach, the polygons are defined in terms of

rings by a polygon topology table. If there is more than one ring per polygon, the

first one is the outer ring, and all the others are inner rings. The second table,

which is ring topology table links rings to chains. The third links chains to nodes

and polygons. The other two tables provide linkages from nodes and chains,

respectively, to a table of vertices and coordinates. In the last table, the spatial

coordinates are held in one table only, quite separate from topological attributes.

The set of six tables completely defines the spatial and topological relationships

found on the map. Non-spatial attributes can be added additionally to link any

spatial object to thematic attributes. So, vertices are not directly linked to

polygons or rings, nor there is a direct link between nodes and rings. So, major

advantages of this structure are firstly, there is no repetition of spatial

coordinates between one polygon and the next and, secondly, the topological

information is explicitly stored and is separated from the spatial coordinates,

facilitating search that requires adjacency, containment and connectivity

information. Using the relational form for topological tables has the advantage of

being very clear and unambiguous. In addition, editing lines is relatively simple,

25

because the coordinates are kept separate, repeating groups of attributes are

eliminated, each tuple is unambiguously associated with a unique key.

Another operational topological structure is POLYVRT structure developed by

Peucker and Chrisman [32]. This structure uses polygons, chains, nods and

points. The polygon topology table specifies chains directly, without using

intervening rings. Chains that form inner rings are flagged. The chain topology

table contains (start, end) node pointers and (left, right) polygon pointers.

Coordinate data is held separately from topological data in two tables for

vertices and nodes. This structure can be used for both areal and network objects.

As compared to can Roessel relational tables, the sequence of records in the

tables is important.

One more topological structure is NCGIA core curriculum [33], suggested by

Goodchild and Kemp. It is a description of pair of simple structures for area and

network relationships. The topological information is reduced. For area

relationships, an arc topology table contains (left, right) polygons, and an arc

geometry table holds the coordinate strings. For network relationships, an arc

topology table specifies (start, end) nodes and a node topology table specifies a

26

list of arcs. Polygon information and nodes coordinates are not stored separately,

but they can be derived from other tables.

The TIGER [34] (Topologically Integrated Geographic Encoding and Referencing)

structure is more complex. It allows threading from one table to another and

minimizes data redundancy. Extensive non-spatial attribute data forms an

integral part of the data structure, organized according to the 0-, 1- and 2-cell

clssification. In CANSIS topological structure, developed by Canadian

Department of Agriculture in 1970s, there are tables linking object to polygons,

polygons to arcs and objects, arcs to polygons and an arc geometry table

containing coordinates of vertices. Nodes and node topology are not used in this

structure, because the design is for areal objects rather than networks.

A network topology is a description of the layout of physical connections of a

network, or the description of the possible logical connections between nodes,

indicating which nodes are able to communicate. It is a logical characterization of

how the devices on the network are connected and the distances between them.

A network layer must stay abreast of the current network topology to be able to

facilitate the process of fault identification and resolution. In the case of cable

27

network topology, the different topology structures are the network elements.

The cable network topology bears resemblance to the geographic topological

structures and the relational form of the topological structures as discussed by

van Roessel [28]. The data of the topology are kept at different levels and maintain

the hierarchical form to conform to the goal of clear and unambiguous

description of topological relationships. The as-built CAD maps are the cable

network topology information. These CAD maps are arranged in the form of

block table, block references, lines, poly-lines, vertices, arcs, solids and circles.

The block table keeps the definition or the template of all the block references

and other structures such as lines, poly-lines, arcs, solids, etc. Each of the block

references, lines, poly-lines, arcs, solids and circles are the instances of the

templates created in the block table. The block references form the network

elements like taps, telephone poles, fiber node, amplifier, couplers, etc. and the

lines, poly-lines, arcs, etc form the connectivity among the network elements. All

of these components are put in different layers and put together they form a

single cable network topology in the form of the as-built CAD map.

The DxGrep tool converts the cable network topology from the CAD map format

into a knowledge based XML format. It formats the cable network topology into

28

a more unambiguous and comprehensible hierarchical topological structure. This

knowledge based format is formatted in such a way that the network elements

lie at the top level and the following tuples describe the network element with

the characteristics such as, its position coordinates, extent, name and identifier

key. The attributes for these network elements are expressed further at another

level description. The lines, poly-lines, arcs, solids, circles are expressed under

different topological structure other than the block references. This gives the user

the freedom to mine in more and more information as per the requirement than

complicating thing into a spaghetti structure. As the relational form suggested

by van Roessel [28], this knowledge based format of the topology structure

provides with clear advantages that there is no repetition of spatial coordinates

and the topological information is stored separately from the spatial coordinates

at a level deeper than the spatial coordinates, facilitating operations that require

adjacency, containment and connectivity information.

29

2.4 Ontology-based Data Integration

It is an approach to use ontologies to effectively integrate data from multiple

heterogeneous sources. These sources can be databases as well as unstructured

information such as files, HTML pages, XML, etc. A data integration system

provides a uniform interface to distributed and heterogeneous sources. The

effectiveness of ontology based data integration is closely tied to the consistency

and expressivity of the ontology used in the integration process. Ontologies

enable the unambiguous identification of entities in heterogeneous information

systems and assertion of applicable named relationships that connect these

entities together [35].

Ontology might play roles for content explication, query modeling and

verification. During content explication, the ontology enables accurate

interpretation of data from multiple sources through the explicit definition of

terms and relationships in the ontology. During verification, the ontology verifies

the mappings used to integrate data from multiple sources. These mappings may

either be user specified or generated by a system. During query modeling, the

query is formulated using the ontology as a global query schema. In order to

30

establish efficient information sharing, the information sources must be

identified as they are the one that work with the system that query the

information. Data integration is concerned with unifying data that share some

common semantics but originate from unrelated sources. Necessarily, when we

work on data integration, we must take into account a more important and

complex concept called ―heterogeneity‖. Heterogeneity might be classified into

four categories: (1) structural heterogeneity, involving different data models; (2)

syntactical heterogeneity, involving different languages and data

representations; (3) systemic heterogeneity, involving hardware and operating

systems; and (4) semantics heterogeneity, involving different concepts and their

interpretations.

The vocabulary provided by the ontology serves as a stable conceptual interface

to the databases and is independent of the database schemas and the language

used by the ontology is expressive enough to address the complexity of queries

typical of decision-support applications. The knowledge represented by the

ontology is sufficiently comprehensive to support translation of all the relevant

information sources into its common frame of reference. So, being a knowledge

based approach, ontology has many advantages for performing data integration

31

over other approaches. Buccella et al. [36], and Wache et al. [37], have compared

and contrasted different approaches for ontology based data integration. Wache

et al., have explained different roles of ontologies for single and multiple

ontologies. They have also surveyed on hybrid approaches of ontology, which

were developed to overcome the drawbacks of single and multiple ontologies. Li

Dong and Huang linpeng [21], have suggested a framework for ontology based

data integration that is capable of deriving an ontology from a collection of XML

schemas in a semiautomatic manner and integrating heterogeneous XML sources

at the semantic level. In this framework, the ontology is constructed following a

layered approach where an intermediate model is introduced to explicate the

underlying semantics of XML schemas and to reduce the complexity of ontology

derivation. This two-phase approach is performed semi-automatically by

applying a set of heuristic rules and by interpreting mapping information

defined by users. The resulting ontology serves as a global semantic view over a

set of data sources to be integrated.

On the similar lines of the framework suggested by Li Dong and Huang linpeng

[21], the knowledge based approach developed in this thesis uses ontologies for

the integration of heterogeneous data. Our work has an ontology approach,

32

where data with syntactic heterogeneity from multiple sources is integrated. In

our framework, the data integration is performed based on the domain rules

provided to the ontology. With the capability and strength of a knowledge based

approach, the ontology and rule based inference engine provide a uniform

interface to distributed and heterogeneous sources. For the illustration of this

knowledge based approach to the cable network domain, available cable

network topologies are converted into the KML layers, which conform to the

XML with KML schema. The other databases that are and can be integrated with

the help of ontology are the utility pole databases, pre-existing topological

information and other GIS databases, such as Census data, weather data, etc.

Depending on the rules and input provided, the ontology figures the inferences

and does the data integration to provide a unified view to facilitate the inference

process and topology discovery.

33

3.0 Contributions

The thesis successfully shows that a knowledge based software approach can be

applied to achieve topology discovery and geo-localization. This has been

demonstrated by solving the cable network topology discovery problem using an

ontology and a rule based inference engine. Knowledge based approach, such as,

ontology based data integration has also been successfully applied to achieve

Geo-localization. The thesis also widely incorporates the concept of data fusion

to combine heterogeneous data from disparate sources in order to produce

information of tactical value. Also, the thesis shows that the concept of fault

injection based inferences and the notion of refining the inferences on the

availability of more information helps in the topology discovery inference

process.

The thesis has largely incorporated the computer science concept of data fusion

in the area of topology discovery and geo-localization. The process of geo-

localization combines data from multiple sources into a single unified data set,

which includes data points from all the input sources like cable network

34

topology as-built CAD maps, GIS maps and other utility pole information maps.

The information is gathered from these sources in order to achieve inferences to

make it more efficient and potentially more accurate than if they were achieved

by means of a individual source separately [19]. Data fusion provides a way to

deal with data that is redundant, inconsistent and conflicting and is dependent

on the user requirements. Data fusion is examined as a means to prevent

information overload and to expedite processing of the vast amounts of data. So,

the data fusion architecture in the thesis has been decentralized. The thesis

makes it possible to bring in different topology databases depending on the user

requirements and fuse them into the existing data fusion created earlier. This is

illustrated by converting the available network topology information into the

form of KML layers. These KML layers may be varied or decentralized enough to

keep network element information separate from road and connecting lines

information separately. In addition to that, utility pole, road maps information

and physical address information may be stored separately in different topology

databases. The thesis formats each of the topology databases in the form of a

layer and fuses them together by creating an overlay on-demand. So, the

dynamic data fusion can be achieved as per the requirements of the user. This

way, it adds more intelligence to the inference process and creates a single

coordinated view of the data from various sources.

35

Our work also demonstrates ontology based data-integration. The process of

topology discovery successfully deals with data having different representation

formats to accomplish integration of data with syntactic heterogeneity. The data

integration of the data from sources with system heterogeneity has been

achieved through the DxGrep tool. The ontology framework in the thesis is

capable of deriving a complete fulfilled topology from a collection of XMLs and

integrating heterogeneous XML sources at the semantic level. On the similar

lines of the framework suggested by Li Dong [21], et al, the ontology based data

integration in the system, specified in the thesis, is achieved by following a

layered approach where an rule-based inference engine model is introduced to

clarify the underlying semantics of XML schemas and assist in the ontology

derivation. This is performed by applying a set of domain specific rules and by

interpreting mapping information defined by users. The resultant ontology acts

as a global semantic view over a set of multiple data sources to be integrated.

The components of the software developed include the DxGrep Tool,

normalization component, a geo-translation component, a domain ontology and,

a rule based inference engine.

36

The extraction of the network elements information is done using the DxGrep

tool. This tool uses the C++ library support by Open Design Alliance and extracts

the elements information and attributes and puts them in XML format. However,

the names used in these as-built CAD maps are varied and do not follow specific

standards. Every operator has his own nomenclature for the network

components. These names are normalized as per the nomenclature standards

provided by the SCTE (Society for Cable Telecommunication Engineers). The

normalization component developed takes the mapping of the non-standard

names of the network elements to the standard names as provided by the SCTE.

This normalization component does the translation and outputs the standard

normalized mapping for the operator to take on to the next phase of Geo-

translation.

The geo-translation component of the thesis takes the normalized XML

extraction of the as-built CAD map and translates them. This is done by

converting the maps with xyz coordinates system into KML formatted GIS maps

having geographic coordinates. The operator provides the geographic

coordinates of the origin in the cable network plant topology map. If the operator

does not have that, then the translation is done using the geo-coding and creating

an anchor-point scale estimation method. The anchor-point scale estimation is

http://www.scte.org/

37

further explained in detail in the Implementation part of the thesis. This KML

document can then be rendered on any GIS based software like Google Earth or

Arc GIS to create an overlay of the as-built map over the GIS maps. These

different KML layers for each of the topology database are then employed in a

knowledge based system for data fusion and ontology based data integration to

achieve topology discovery and geo-localization.

Topology discovery is done using cable network domain ontology and a rule-

based inference engine. The ontology part of the thesis describes basic rules

specific to the cable network domain. In case, only limited topology information

is available, the reasoning in the ontology develops inferences. The inference

engine handles these inferences and calculates accurate or almost accurate

geographic positions of the missing network elements from the limited cable

network plant topology.

The thesis, thus, demonstrates that knowledge based software architecture can

be employed to carry out the process of topology discovery and geo-localization.

This solution proves to be a very cost-effective way to correlate and geo-localize

failures within an area of a possible or real trouble. This solution suggested is

scalable to a larger scale and is able to handle growing amounts of work in a

38

graceful manner. The solution has appreciable extensibility to the application

development and is open to carry-forward of customizations to achieve that.

Considering the usability of this framework, this architecture has huge

implications in many domains, particularly in domains that strive to determine

the geographic positions of the elements in the domain. The thesis suggests best

practices and builds interoperable software that is open for future enhancements

and reuse. The software part developed as a part of the thesis is able to be

integrated with the existing technologies of the cable operators. This suggested

framework has applicability to future maintenance of network.

39

4.0 Solution Approach & Implementation

The thesis work mainly aims to demonstrate that a knowledge based solution

approach can be applied to achieve accurate or near accurate cable network

topology discovery and geo-localization of the cable network topology.

Considering geo-localization of the cable network topology, we aim to achieve a

location-rich network information. With location-rich network information, the

operator or technician can accurately locate all the network elements on the

ground and thus finds the bad devices that cause or can lead to interruptions. We

attempt to achieve geo-localization through creating an overlay of the cable

network topology layer over the GIS maps.

In case of limited topology information is fed to a knowledge model in the form

of an ontology and rule based inference engine. The ontology has a rule-base of

the cable network domain-specific rules that bind the cable network elements,

their inter-relationships and the behavior, which they follow. The rule based

inference engine of the ontology calculates accurate or almost accurate

40

geographic coordinates of the missing network elements in the cable network

plant topology.

 In this section we describe a structured knowledge-based process and best

practices that should be followed to achieve topology discovery and geo-

localization of a fault in the cable network topology. The work done in this thesis

falls in the Fault Location Identification section, which is the last part of the

Proactive Network Maintenance [1] model developed done at CableLabs, Inc.

With a given detailed network plant topology and impairment signatures with

complete assessment and analysis, this fault can be geo-localized in this fault

location identification process of the Proactive Network Maintenance process.

As per the Proactive Network Maintenance process, the micro-reflection relative

amplitude level and delay signature obtained are used to evaluate the

uniqueness of the impairments. A list of all the cable modems and their

corresponding CMTS indexes compiled during network performance monitoring

and data collection is a pre-dispatch list. The micro-reflection signature of each of

the CMs that is in the pre-dispatch list is compared against other CMs in the list.

The CMs with the same uniqueness attribute are analyzed using their path

information to obtain an accurate location of the impairment. This accurate

41

localization of the impairment is the module which needs the geo-localization of

all the network elements in the topology.

Figure 3: High Level View of Proactive Network Maintenance Model [1]

This cable plant topology can be represented as a XML tree structure with some

basic elements: the plant, region, head-end, fiber node and element. The element

node is generic and multiple types are defined. The proposed XML schema

definition of the topological elements enables commercial XML parsers to extract

common path of the affected Cable Modems and eliminate the path of unaffected

42

ones. This approach optimizes CM correlation tasks enabling the processing of

large numbers of CMs, thus facilitating scalability and automation.

Figure 4: Cable Topology Plant model for high level representation of plant elements
[12]

The XML representation is used for modeling purposes and quick prototyping of

use cases and scenarios. Large scale solutions may take into account other

representations more efficient on memory and topology convergence. The figure

below represents a plant model that allows the inference of the naming

convention format.

43

Knowing the limitations of as-built maps, this thesis proposes generalizations of

the problem of fault localization at the plant topology level with an incremental

approach. The tool available for troubleshooting is the geo-location maps if the

impairments were located within the neighborhood. The full solution will be able

to determine the possible troublesome component at the very deep network

element level e.g., at the tap level. However such detail information is not

practically available from the beginning. An accurate plant topology could offer

further narrowing of the problem saving time and better assessment of the

problem. Thus, it provides a methodology that allows the slow improvement of

the fault localization accuracy as more plant topology components are

introduced and managed by operators. This notion of slowly discovering the

topology is implemented in a knowledge based approach using a rule based

inference engine. The rules in the ontology help in most of the inference process

for the topology discovery. However, one of the rules specifies that network

elements sharing common impairment signatures share a common connecting

network link. To deduce a connectivity between network elements in absence of

any impairment event, a fault is injected in the network and the impairment

signatures help in deducing the locations of the missing elements as well as their

connections.

44

The GIS information provides street location for the area where the fault is being

analyzed and provides a way to achieve data fusion with the contextual

information of fault localization data. This layer enhances the user experience as

could enhance the workflow of a troubleshooting task like route scheduling

assistance for technicians, logs of activities with geo-position context, etc.

Figure 5: Generating Fiber Node Topology Maps with geo-location Workflow [12]

45

The Cable Topology Maps are the engine behind the routing the problems. The

as-built maps are components that can be slowly added to the geo-map as tagged

values or as a connected graph of objects creating context. The impairments are

placed in context of as-built maps components and then merged with the GIS

maps for user presentation.

A prototype of anonimized fiber nodes and contextual maps with streets,

network components and impairments for visualization has been developed here

in this thesis. The document generated from DWG extractions from as-built CAD

maps is a full XML and not simple mashups of data from different sources in

order to provide automated or assisted operations, trending, route optimizations,

etc. This project defines frameworks of possible interoperable use cases based on

the rules to define the data models and dependencies between GIS and network

information.

A methodology has been introduced to bring Geo-location in context of cable

modems plant topology, in the form of network feeds and network components.

This is accomplished by a merge of As-Built Maps and topology database

occurring on demand (e.g., no cached process based on updates to CAD files or

DBs).

46

Figure 6: General Description of a methodology to achieve standardization and

visualization of CAD maps over GIS maps

The CAD maps provided by the operators are the As-built maps that are overlaid

over the GIS maps to achieve the visualization of the network. These CAD maps

are used to extract the information of the network and the network elements in a

full XML file. This XML file is further used to render a KML file that is used over

the GIS maps. Keyhole Markup Language (KML) is a candidate format for

47

merging contextual information and GIS information. KML was proposed by

Google and will be harmonized with GML (existing GIS standards).

Figure 7: Component-based architecture depicting the transformation from

detailed As-built maps to Geo-localization on the GIS maps

The CAD file extraction is done with the help of C++ libraries provided by Open

Design Alliance. This DWG extraction done for CAD maps for each operator‘s

standards is then standardized with normalized network components standards

available from SCTE. As a result of this, a full XML available from DWG

48

extraction from CAD maps is translated into a standardized XML file ready for

GIS maps visualization. The network components obtained from the DWG

extraction of the CAD maps are displayed on the GIS maps with all the

attributes. These attributes are displayed with the help of Extended Data feature

of the KML. So, the technician can get that extra information about the network

elements along with the geo-location of that element.

The topology discovery module of the thesis is implemented with the help of

Ontology, rule-based inference engine and then geo-localizing the inferred or the

approximated network element locations.

4.1 Software Tools

4.1.1 DxGrep

The DxGrep is a C++ tool that helps extract the information from the Autodesk

CAD files. The CAD maps provided in this regard would be the network

topology maps. The network elements information is extracted and put in a well

defined XML. This tool is developed using the Open DWG library support

49

provided by the Open Design Alliance. This library has been renamed as Teigha,

a C++ development platform specifically designed for creating CAD

applications. This tool was developed was developed in Visual Studio 2005 IDE

using ―VS2005 MT Release libraries‖. This tool was later ported to Visual Studio

2008 IDE to get the latest support of IDE and was run successfully using ―VS2008

MT Release libraries‖. This tool was later ported and run successfully on Linux

with GCC 3.4 compiler using ―Teigha for .DWG files for Linux x86 - GCC 3.4

static‖ library support.

The DxGrep is a command line execution tool which accepts the arguments of

options, types of extraction and the CAD drawing file to be extracted. The

different options in the tool pertain to help (-h OR --help), version (-v OR --

version) and extraction type (-e OR --extract). This extraction type arguments

goes further to receive one of the types (block, blockRef, line, polyline, text, arc,

circle, hatch, solid OR all). The tool also automatically detects whether the

platform on which it is run is a Windows 32-bit, Windows 64-bit or a Mac.

Depending on that, it runs the proper code and gets the execution correct.

It dumps all the entities and their corresponding attributes in a text file. Every

single entity displayed under a <AcDbBlockReference> tag. Every tag has a

http://www.opendesign.com/

50

unique identifier number in hexadecimal corresponding to the entity. Under this

tag, all the information for this entity is dumped. The name of the entity comes in

―Name‖. Position of the entity in the drawing is at ―Position‖. Layer information

is at ―Layer‖ bullet. The tag <AcDbBlockReference> is further elaborated with

the attributes for that specific entity. All the values of a attribute are grouped

under <AcDbAttribute> tag. The attributes in the entity are numbered starting

from 0. For example, TAP_2EQ has 2 attributes TAPVALUE and EQVALUE. So,

first <AcDbAttribute> tag has serial number = 0 and second one has serial

number = 1. Every attribute tag has a unique hexadecimal value under ―Handle‖

tag. The name of the attribute is kept under ―TAG‖ tag. Some entities may have

some value displayed on the drawing. For example, TAP_2EQ displays the

TAPVALUE and EQVALUE. So, these values are kept as ―Text String‖ under the

attribute as these strings are displayed. These entities and their attributes need to

be extracted and then placed on the map as extended data. They are also

required for other fault isolation process.

Once the extraction type is selected using switch-case statements in DxGrep main

program, the corresponding extraction method is called using the DbDumper

program. Depending upon the argument, it extracts the blocks or block

references or lines or polylines from the drawing file. Depending upon the

51

argument to extract the lines, blocks or block references, it calls the dumper

functions in DbDumper.CPP to dump the specific types‘ information in a XML

file. The main program DxGrep.cpp passes an object of class OdDbDatabase as

argument to the DbDumper.cpp program. Each of the dumper methods in

DbDumper.CPP creates a Block Table pointer as each of the element type is

covered by a Block Table record. So, for every block table, the dumper methods

create an entity iterator. This entity iterator calls a method to dump the

information of each of the entities. Depending upon the type of entity, the entity

pointer calls the respective function to dump the information of blocks, block

references, lines, polylines, text, arc, circle, hatch, solid OR all. The dumping of

each of the entities‘ information takes place in the ExProtocolExtension.cpp

program. This program extracts all the elements pertaining to that specific type

in that drawing file. It prints all the values and the attributes, along with their

values, for that specific network element. Each of the entity type is defined as a

class in this program. Each of those classes has a dump method that creates the

object pointers depending on the class and calls the methods defined for those

classes for dumping the specified information. The block references class also

creates an attribute data pointer to dump the attribute definition corresponding

to the specific block reference. The detailed implementation to use the tool is

specified in Appendix B.

52

4.1.2 Normalization

The thesis demonstrates the knowledge based approach to achieve the geo-

localization. In this complete framework, the knowledge based system approach

is also applied to the process of normalization. The domain rules are provided to

the normalization module of the knowledge based software architecture. These

domain rules, in this case mapping rules, are applied to the input topology

extraction XML files. As a result of this, these extraction files are normalized with

knowledge based approach. This approach to achieve normalization has been

demonstrated by its successful application to the cable network domain, where

the nomenclatures of the network elements are not standard.

The operators have different nomenclature schemes for every network element

they have in their detailed plant topology network maps. So, these maps are not

interoperable among different operators. So, the SCTE (Society of Cable

Telecommunications Engineers) suggested a standard nomenclature scheme for

every cable network element any operator would use in their As-built maps.

http://www.scte.org/

53

The thesis suggests a normalization process which takes a mapping of operator

specific network elements to standard names of network elements and applies

that mapping to the extraction acquired from the DxGrep tool. The figure below

Figure 8 describes architecture to achieve this normalization process.

Figure 8: Normalization process using mapping provided by operator

54

The mapping rules are the rules specified in a XML format and are provided by

the operators. If the extraction or dump acquired from the DxGrep tool is of the

type ―BlockRef‖, then it would be of the format:

The operators can create mapping program which can result into a XML file

specifying rules in a specific format. The example below specifies the format of

the rule or network element mapping XML document.

<Rule>

 <Element path="AcDbBlockReference" ID="[4774]">

 <Item path="Id" compareTo="NoChange" nName="NoChange"/>

 <Item path="Name" compareTo="TAP_2EQ" nName="TAP2EQ"/>

 <Item path="Linetype" compareTo="625CABLE" nName="Cable625"/>

 <Item path="Position" compareTo="NoChange" nName="NoChange"/>

 <Item path="Rotation" compareTo="NoChange" nName="NoChange"/>

 <Item path="Attribute" handle="[4775]">

<AcDbBlockReference>

 <Id>...</Id>

 <Name>...</Name>

 <Linetype >...</Linetype >

 <Attribute>

 <Tag>AttributeVal1</Tag>

 <Color>....</Color>

 <Normal>....</Normal>

 </Attribute>

 <Attribute>

 <Tag>AttributeVal2</Tag>

 <Color>....</Color>

 <Normal>....</Normal>

 </Attribute>

</AcDbBlockReference>

55

 <AttrItem path="Tag" compareTo="EQVALUE" nAttr="eqValue"/>

 <AttrItem path="Color" compareTo="Foreground"

nAttr="FGround"/>

 <AttrItem path="Normal" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="MinExtents" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="MaxExtents" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="Layer" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="u-Axis" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="v-Axis" compareTo="NoChange"

nAttr="NoChange"/>

 </Item>

 </Element>

</Rule>

Here, for every network element with an ID, the information about the element,

including the name of the element, is specified in the <Item> tags under the

<Element> tag. The item whose value is to be changed is specified in

‗compareTo‗ and the new value for that specific tag is specified in ‗nName‗. If the

value is to remain constant and does not change, then both the fields for

‗compareTo‗ and ‗nName‗ remain at NoChange. The Attributes from the Block

Reference XML are covered under <AttrItem>. They have the same guidelines

as the <Item> tags have for them.

The rules from the operator come in this specified fixed format in an XML named

―Rules.xml‖. A XSL file named ―RulesTransform.xsl‖ has been written as a part

of the implementation of the normalization process. This XSL file takes any

56

―Rules.xml‖ with a specified format as above and applies a transformation to the

rules file provided by the operator. So, the XSL transformation should be setup

such that ―RulesTransform.xsl‖ is applied to a ―Rules.xml‖ to get ―RulesOut.xsl‖

as output. This XSL file is further applied to the non-normalized

―BlockReference.xml‖ dump, which is acquired from the DxGrep application to

the cable network plant topology maps. A second XSL transformation should be

setup such that ―RulesOut.xsl‖ is applied to non-standard ―BlockReference.xml‖

to get the normalized extraction of the CAD map. The result would be named as

―BlockReferenceOut.xml‖ and this would have all the elements standardized as

per the SCTE standards. This normalized output from the normalization process

is now ready for the geo-localization process.

4.1.3 Geo-translation

For the normalized extraction dump of the cable network plant topology to be

geo-localized, the thesis implementation has developed a XSL file named

―geolocate.xsl‖. This XSL is applied to the normalized XML output of the

normalization process. So, a XSL transformation should be setup such that

―geolocate.xsl‖ is applied to ―BlockReferenceOut.xml‖ and the result is a KML

57

file ―Geo-Localization.kml‖. This KML is the file that is ready to be rendered on

GIS software.

This ―Geo-Localization.kml‖ file creates an overlay over the GIS map and makes

an illusion to the observer that the cable network topology or the As-built map is

in-built in the GIS maps. The As-built CAD maps are built in three-dimensional

xyz coordinate system. These maps need to be converted into three-dimensional

latitude, longitude, altitude coordinate system to be geo-localized.

Figure 9: Process to geo-localize the network topology on the GIS

58

The ―geolocate.xsl‖ has a major logic of extracting the Cartesian coordinates of a

network element from the normalized ―BlockReferenceOut.xml‖ and converting

them into geospatial coordinates in the form of longitude, latitude and altitude.

This logic of conversion from Cartesian coordinates to geo-coordinates has been

suggested by National Deep Submerge Facility (NDSF) of Woods Hole

Oceanographic Institution (WHOI)[3]. This logic was suggested in Java Script.

This JavaScript logic was then converted into XSL as a part of this thesis. The XSL

logic for conversion in this ―geolocate.xsl‖ program is as follows:

<xsl:function name="func:getResult">
 <xsl:param name="olat" />
 <xsl:param name="olon" />
 <xsl:param name="Xcord" />
 <xsl:param name="Ycord" />
 <xsl:param name="Zcord" />
 <xsl:variable name="sx" select="$Xcord div 3.2808399" />

 <xsl:variable name="sy" select="$Ycord div 3.2808399" />
 <xsl:variable name="temp1" select="($sx * $sx) + ($sy * $sy)" />

 <xsl:variable name="r" select="math:sqrt($temp1)" />

 <xsl:variable name="ct" select="$sx div $r" />

 <xsl:variable name="st" select="$sy div $r" />

 <xsl:variable name="sx1" select="$r * $ct" />

 <xsl:variable name="sy1" select="$r * $st" />

 <xsl:variable name="deg2radLat" select="$olat div 57.2957795" />

 <xsl:variable name="deg2radLatx3" select="$deg2radLat * 3" />

 <xsl:variable name="deg2radLatx5" select="$deg2radLat * 5" />

 <xsl:variable name="deg2radLatcos" select="math:cos($deg2radLat)" />

 <xsl:variable name="deg2radLatx3cos" select="math:cos($deg2radLatx3)" />

 <xsl:variable name="deg2radLatx5cos" select="math:cos($deg2radLatx5)" />

 <xsl:variable name="deg2radLon" select="$olon div 57.2957795" />

 <xsl:variable name="deg2radLonx2" select="$deg2radLon * 2" />

 <xsl:variable name="deg2radLonx4" select="$deg2radLon * 4" />

59

 <xsl:variable name="deg2radLonx6" select="$deg2radLon * 6" />

 <xsl:variable name="deg2radLonx2cos" select="math:cos($deg2radLonx2)" />

 <xsl:variable name="deg2radLonx4cos" select="math:cos($deg2radLonx4)" />

 <xsl:variable name="deg2radLonx6cos" select="math:cos($deg2radLonx6)" />

 <xsl:variable name="metDegLon" select="((111415.13 * $deg2radLatcos) - (94.55 *

$deg2radLatx3cos) + (0.12 * $deg2radLatx5cos))" />
 <xsl:variable name="metDegLat" select="(111132.09 - (566.05 * $deg2radLonx2cos)
+ (1.20 * $deg2radLonx4cos) - (0.002 * $deg2radLonx6cos))" />

 <xsl:variable name="plon" select="($olon + ($sx1 div $metDegLon))" />
 <xsl:variable name="plat" select="($olat + ($sy1 div $metDegLat))" />

 <xsl:value-of select="concat($plon,',',$plat,',',$Zcord)" />

 </xsl:function>

While calling the function to convert the Cartesian coordinates to geospatial

coordinates, the user needs to pass the geographic coordinates of the origin in the

CAD as-built map, which is to be geo-localized.

<Point>

 <coordinates>

 <xsl:value-of select="func:getResult(38.983073,-

77.05617,$PosXcord,$PosYcord, $PosZcord)" />

</coordinates>

</Point>

Here, the user passes the geo-coordinates of the origin as (38.983073,-77.05617). If

the geo-coordinates of the origin in the as-built CAD maps are not known, then

the process of Geocoding is implemented. Geocoding is the process of finding

associated geographic coordinates (often expressed as latitude and longitude)

from other geographic data, such as street addresses. Here, the user would have

to provide the street addresses of any two adjacent subscribers. The street

60

addresses of the subscribers correspond to the location of the Cable Modems at

that street address or in that subscriber‘s home. The user would also have to

provide the [ID] of these network elements. The program extracts the Cartesian

coordinates of these network elements and then compares the distance between

these two network elements on the Cartesian coordinates with the distance

between those on the geographic coordinates. This logic provides the scale to do

the inference process for inferring the geographic coordinates of the origin in the

cable network topology map. Once the origin in the as-built CAD map is known,

the further process of the function getResult is performed in the same way as

before. The geographic coordinates once obtained are placed into a <Point> tag

and more specifically into the <coordinates> tag of the KML.

Once the network elements in the as-built CAD maps are geographically

localized, all the information, including the attributes and their values, of these

network elements which was dumped in the normalized

―BlockReferenceOut.xml‖, needs to be shown on the GIS map overlay created by

the geo-localizing the network elements. This information attachment to the

network elements on the GIS maps is done using the <Placemark> tag[4]. A

Placemark is a Feature with associated Geometry. In Google Earth, a Placemark

appears as a list item in the Places panel. A Placemark with a Point has an icon

61

associated with it that marks a point on the Earth in the 3D viewer. This tag

pertains to the GIS namespace provided by Google:

http://earth.google.com/kml/2.1. The <description> tag of the Placemark

element offers techniques for adding custom data to a KML Feature. In this case,

the custom data is data specific to each of the network elements. This is attached

to the <description> element and displayed in a HTML format using the

<![CDATA …]>.

4.1.4 Ontology and Rule based Inference Engine

This section covers the description of a knowledge based approach for the

topology discovery. The knowledge based system employed in our work is

ontology and rule based inference engine. This section illustrates how an

ontology based approach was used to achieve the topology discovery of the cable

network and accurately geo-locate the missing network elements in the cable

network topology.

Ontology is a formal specification of a shared conceptualization. These

conceptualizations include conceptual frameworks for modeling domain

knowledge, content specific protocols for communication among inter-operating

http://earth.google.com/kml/2.1

62

agents, and agreements about the representation of particular domain theories

[10]. In other words, ontology is a description of the concepts and relationships

that can exist for an agent or a community of agents [14]. It refers to a formal

representation of general knowledge and shared understanding of a domain of

interest. The ontology in the thesis has been developed in four major steps,

namely Identification, Building, Evaluation and Documentation.

The first step Identification in the development of the ontology is to identify the

purpose and scope of the ontology. This step identifies the motive to achieve the

topology discovery in the cable network domain and characterizes the range of

intended users of the ontology. This step also explores the space of possible uses

of the ontology. The ontology has been developed in order to achieve the

accurate geographic positions of the missing network elements in view of limited

topology information available. The ontology also intended to achieve

knowledge based data integration to integrate data from varied sources like

utility pole databases, the limited cable network topology, some pre-existing geo-

localized network topologies and other GIS databases.

63

Figure 10: UML Representation of an ontology developed for cable network

topology discovery

The second step in the development of the ontology is to build the ontology. This

step is further subdivided into 3 sub-steps namely, Ontology capture, Ontology

coding and integrating with existing ontologies. In the capture sub-step, the key

concepts and relationships in the domain of interest are defined, precise

unambiguous text definitions for such concepts and relationships are produced,

and the terms to refer to such concepts and relationships are identified [10]. This

phase identifies the network element types, such as fiber nodes, amplifiers, taps,

64

and splitters as the entities or classes and specified the relationships between

these different network entities. The domain knowledge of is captured using the

domain rules, which are used to express the legal steps of inference. The rules in

the ontology are represented using the SWRL (Semantic Web Rule Language).

Some of the rules that have been identified in the cable network domain and put

in the ontology‘s rules module are:

 Every tap is associated with a telephone pole and vice-versa.

 The cable modem is associated to the nearest tap.

 If the cable modem is equidistant to two taps, then it is associated to the

tap having the highest value.

 If you have a common impairment signature, there must be a joint

connectivity

 Coaxial cable flows joining all the taps. If there is no tap on the corner of

the street block, probability is less that coaxial cable flows through that

corner.

The second step of building the ontology includes coding the ontology. The

OWL-2 ontology for this thesis was developed using a tool Protégé 4.1. Ontology

in an OWL-file (Web Ontology Language) as a whole is represented in a XML

65

format, obeying the RDF-XML schema. The ontology uses a Pellet OWL

Reasoner for reasoning and testing what rules prove true for the given input.

The rule based inference engine has been written in Java using the OWL-API

support. The OWL API, primarily maintained at the University of Manchester, is

a Java API and a reference implementation for creating, manipulating and

serializing the OWL 2 ontology. The output of the Pellet OWL Reasoner is taken

by the rule based inference engine. Depending on the qualifying and satisfying

rules, the Inference engine program extracts the information from the input and

creates the geo-localizable KML output. In this way, the information missing in

the limited topology information provided as input to the ontology is fulfilled by

the rule-based Inference engine and becomes ready for rendering on any GIS

software.

66

Figure 11: Ontology and Rule-based inference engine for topology discovery

If the operator has the limited topology information and expects to use the

Ontology and rule based inference engine process to fulfill this information, then

the input must be formatted. The limited topology information in the form of as-

built CAD maps must go through the process of DxGrep Tool, Normalization

and Geo-localization. This way, the operator gets a KML format for its as-built

map. The information in this KML would be incomplete as was the input as-built

67

CAD map. This KML format input is then fed to the ontology. The ontology then

implements the knowledge based approach to achieve the topology discovery

process. For the input available, the reasoner in the ontology identifies the rules

and deduces the inferences for that input. The inference engine takes these

Boolean inference values and calculates the geographic positions of the network

elements. For example, in case of discovering the geographic location of the

missing tap in the network topology, the inference engine searches for the

inferences that relate to the entity ‗tap‘ in the ontology. The inference engine,

then, takes the inference of the association of tap with the utility pole and

calculates the geographic position of the ‗tap‘. This geographic position is then

put into the KML file that is compiled after calculating the geo-locations of all the

missing network elements.

The notion of fault injection inferences is also used in the knowledge based

topology discovery process. The connections between the network elements in

the topology may be unknown. This approach of fault injection introduces

impairment into the network on purpose. With the concept of data fusion of

improving the inferences on availability of additional data is employed to

deduce the inference that there is a connecting network link between all the

network elements sharing the common impairment signature. This coded

68

ontology is then merged with the other existing ontologies in the third sub-step

to build the ontology. In this way, the geographic locations of the missing

network elements and their connectivity completes the topology discovery

process and outputs the complete network topology.

The third step in the development of the ontology is evaluation of the ontology

developed. This ontology confirms completely to the requirement specifications

and non-functional requirements. The ontology is open for more adaptability as

the user can add more rules and requirements to even more refine the inference

process and help in realizing more accurate topology. The Ontology approach of

the framework successfully captures the domain knowledge via providing

relevant concepts and relations between them and impeccably leverages the

process of topology discovery.

The last step in development of the ontology is documentation of the ontology.

In this step, all the important assumptions about the main concepts defined in an

ontology and about the primitives used to express the definitions are explained.

This step has considerable benefits to achieve effective knowledge sharing when

this developed ontology is integrated with ontology of different domain. The

69

ontology editor used to develop the ontology facilitates the formal and informal

documentation.

4.2 Evaluation of Architecture

The thesis has suggested a framework to achieve topology discovery and geo-

localization with the use of ontologies. This complete framework can be

implemented to almost any problem of any domain that strives to determine the

geographic positions of the entities in the domain. Every domain has certain

domain specific entities, relationships, processes and rules that govern the

behavior of the entities and processes of that domain. These domain specifics can

be captured in the concepts and rules modules of the Ontology. With this small

change to the ontology‘s building block modules and the rule based inference

engines, which captures the ontology inferences and processes it further as per

the user requirements, this framework can be applied to almost every domain to

discover the domain based topology or estimate the geographic positions of all

the entities in the domain almost accurately.

This evaluation has been successfully demonstrated by cable network topology

discovery. However, suppose if we have another topology discovery problem in

70

the domain transportation. In this domain, the different entities are the trucks,

warehouses, factories, production houses and local offices and headquarters.

These entities are related to each other with some inter-relationship and some

processes. There are certain rules that these entities and their relationships follow

such as, trucks drive only to and from between factories and warehouses. The

warehouse manager and factory manager has to report the status of the truck

channelized in a particular direction. This information might be reported to the

headquarters. With this different inter-relationships, processes and rules, the

topology discovery problem might be to determine the current position of the

truck in the situations when the tracking devices in the truck do not work and

the topology maps of the routes followed by trucks is incomplete or inaccurate.

So, this framework can be successfully implemented with minimal changes to the

framework. The changes would include concepts module, domain rules module

and the rule based inference engine. With this revived ontology, the architecture

would be able to solve the topology discovery and geo-localization problem in

the transportation domain also.

71

Figure 12 Ontology-based Data Integration

The thesis also makes a provision to attain the data integration of data belonging

to completely different domains. The obvious example of this application is in

the field of defense. The defense command might need to approximate the

geographic positions of the opponent‘s assets, soldiers and bunkers. These

positions might be the function of the weather conditions, hardness to move the

troop and probability of the position being identified. So, the weather conditions

belong to a different domain. With the ontology based data integration in the

72

project, the army command can create overlays of each domain and use them to

provide it to the rule based inference to give the inferences of the opponent‘s

positions properly and almost accurately. So, data from multiple domains can be

integrated together to get a unified view of the data.

The framework suggested is scalable and able to handle growing amounts of

work in a graceful manner and has an ability to be enlarged. It has an ability to

maintain performance and usefulness of expansion and is open to carry-forward

of customizations to achieve that. This solution has considerable extensibility to

extend the solution to future growth with minimal modification in the existing

software framework and minimal impact to existing system functions. This

framework can be applied to almost any domain that endeavors to discover the

geographic locations by merely changing the domain entities and their inter-

relationships. Since the framework is based on ontology based data integration,

the software system‘s behavior is modifiable at the run-time as the user has the

liberty to integrate data from different domains depending on his requirements

and achieving the topology discovery accordingly. The solution, thus, builds

highly interoperable software that is able to be integrated with the existing

technologies of the cable operators and is open for future enhancements and

reuse. Since, the complete framework is developed using a knowledge based

73

software architecture approach, it is not rigidly bound to any specific data format

and has significant syntactic interoperability.

74

5.0 Conclusion

The thesis has successfully provided a framework for topology discovery to

create usable network topology information. This thesis accomplishes a process

to discover accurate, or near to accurate network topology information. This

framework effectively helps the operators to localize segments of the network

where the frequency response analysis determines existing problem plant

condition that can lead to future service interruption and performance

degradation due to defects or deterioration of the cable plant. It adds more

intelligence to develop the network topology.

The thesis successfully demonstrates the ontology based data integration process

for the data with syntactic heterogeneity and system heterogeneity. The ontology

based approach also facilitates the ontology integration from different domains.

The data fusion of the data from multiple sources and multiple domains, where

in the data can be added on-demand from different topologies, is achieved in the

software.

75

6.0 Future Work

The thesis tries to simulate the human thinking process in the topology discovery

part of the thesis. This thinking process is then converted into domain specific

rules, which are used to infer the positions of the network elements in the cable

network topology. Future models can take research on features and factors of the

network that will help represent cable network more precisely and model that

human perception much more accurately.

In this thesis, a novel methodology has been presented to accomplish the task of

topology discovery with the ontology being manually provided with rules of the

domain. This thesis also presents a process to optimize the fault localization

techniques in the cable network domain using Geo-localization. The future work

to this thesis would be to accomplish the automated ontology extraction. The

researcher can make use of SMART (System for the Mechanical Analysis and

Retrieval of Text) Information Retrieval System, Part-of-Speech tagging, Token

stemming followed by Token Analysis to understand the domain constraints and

concepts and then place them into the ontology. A research has been done on the

76

similar lines by Lau, R.Y.K. [16], et al. The research in automated ontology

extraction would further help the application of the knowledge based approach

for topology discovery. For example, it is always considered a better practice to

document all the requirements in a document. In that case, the domain

knowledge is captured in a document with functional specifications and domain

rules. The formal functional specification documents tend to be more perfect and

precise in nature. The research in automated ontology extraction would make it

possible to extract the domain rules automatically from the formal documents.

As a result of this, the knowledge based software architecture would be able to

achieve a more accurate topology discovery.

The future work would also include the usage of knowledge based approach to

support object oriented analysis. Object oriented analysis is a knowledge

intensive process. Lin [26], et al have discussed on coupling object-oriented

analysis with domain knowledge by using Information Process Unit (IPU) and

Knowledge Process Unit (KPU) to achieve the object oriented analysis. Two

kinds of knowledge are involved in this approach, i.e., static semantic and

dynamic control knowledge. Static semantic knowledge, which constitutes

domain knowledge, refers to application-specific concepts, constraints and their

relationships. Dynamic control knowledge describes the techniques, processes,

77

and notations for the analysis method that we use to model this application. For

example, if we have a domain system which is based on object oriented

discipline and we want to apply the knowledge based framework developed in

the thesis. So, to gain proper domain knowledge of the system, object oriented

analysis needs to be done which can be done in knowledge based way. This

analysis gives a way to formalize and elaborate them into concrete requirement

specifications. With this concrete requirement specification, the domain rule

section of the ontology can be more precise as per the requirement specification

and be automated. More research needs to be done in knowledge-based object-

oriented analysis for applying these knowledge based techniques to the problem

of identifying, specifying, and formalizing software requirement that uses the

object-oriented discipline. Schaschinger [27], on the other hand, proposes an object

oriented analysis approach to collect and classify all relevant information to

identify proper objects required for knowledge engineering. This can be a future

work to support an analyst starting at the collection of the requirements for the

knowledge based software architecture.

78

7.0 References

1. Campos A., Cardona E., and Raman L. "Pre-Equalization based Pro-active

Network Maintenance Model (Ver.3)", Cable Television Laboratories, Inc.,

Sep 2007.

2. Cardona E. and Campos A. " CATV network topology discovery

mechanism for fault localization and network map updating when limited

network information is available", CableLabs Invention Disclosure (filed

Jan 2010),

3. NDSF Coordinate Conversion Utility; National Deep Submerge Facility

(NDSF) of Woods Hole Oceanographic Institution (WHOI);, URL:

http://www.whoi.edu/marine/ndsf/utility/NDSFutility.html

4. Google‘s KML Reference Documentation;, URL:

http://code.google.com/apis/kml/documentation/kmlreference.html

(accessed September 2009).

5. Knowledge Systems Lab: Stanford University;, URL: http://www-

ksl.stanford.edu/kst/what-is-an-ontology.html (accessed April 2010)

http://code.google.com/apis/kml/documentation/kmlreference.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

79

6. Srirangarajan, S.; Tewfik, A.; Zhi-Quan Luo; , "Distributed sensor network

localization using SOCP relaxation," Wireless Communications, IEEE

Transactions on , vol.7, no.12, pp.4886-4895, December 2008

7. Kannan, A.A.; Guoqiang Mao; Vucetic, B.; , "Simulated Annealing based

Wireless Sensor Network Localization with Flip Ambiguity Mitigation,"

Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd ,

vol.2, no., pp.1022-1026, 7-10 May 2006

8. Biswas, P.; Tzu-Chen Liang; Kim-Chuan Toh; Ye, Y.; Ta-Chung Wang; ,

"Semidefinite Programming Approaches for Sensor Network Localization

With Noisy Distance Measurements," Automation Science and

Engineering, IEEE Transactions on , vol.3, no.4, pp.360-371, Oct. 2006

9. Qingguo Zhang; Jingwei Huang; Jinghua Wang; Cong Jin; Junmin Ye; Wei

Zhang; Jing Hu; , "A two-phase localization algorithm for wireless sensor

network," Information and Automation, 2008. ICIA 2008. International

Conference on , vol., no., pp.59-64, 20-23 June 2008

10. Uschold, M.; Gruninger, M.; , "Ontologies: Principles, Methods and

Applications", Knowledge Engineering Review, Vol. 11, No. 2, June 1996

11. Bachrach, J.; Taylor, C.;, "Localization in Sensor Networks", Computer

Science and Artificial Intelligence Laboratory, MIT

80

12. CableLabs Devzone; Project Proactive Network Maintenance;, URL:

https://devzone.cablelabs.com (accessed August 2009).

13. Doherty, L.; Ghaoui, E.; Pister, K. S. J. ;, ―Convex position estimation in

wireless sensor networks‖, In Proceedings of Infocom 2001, April 2001.

14. Gruber, T. R. ;, "Toward principles for the design of ontologies used for

knowledge sharing", International Journal of Human-Computer Studies,

Vol. 43, Issues 4-5, November 1995, pp. 907-928

15. Castano, S.; Ferrara, A.; ,"Enhancing Ontology Concept Design by

Knowledge Discovery," Database and Expert Systems Applications, 2007.

DEXA '07. 18th International Conference on , vol., no., pp.480-484, 3-7

Sept. 2007

16. Raymond Y.K. Lau; Jin Xing Hao; Maolin Tang; Xujuan Zhou; , "Towards

Context-Sensitive Domain Ontology Extraction," System Sciences, 2007.

HICSS 2007. 40th Annual Hawaii International Conference on , vol., no.,

pp.60-60, Jan. 2007

17. Gloss, L.; Mason, B.; McDowall, J.;, "Multi-agent System Service and

Ontology Design Methods," E-Commerce Technology and the Fifth IEEE

Conference on Enterprise Computing, E-Commerce and E-Services, 2008

10th IEEE Conference on , vol., no., pp.453-456, 21-24 July 2008

https://devzone.cablelabs.com/

81

18. Akita, R.M.;, "User based data fusion approaches," Information Fusion,

2002. Proceedings of the Fifth International Conference on , vol.2, no., pp.

1457- 1462 vol.2, 2002

19. Klein, L.A.;, "Sensor and data fusion: A tool for information assessment

and decision making", SPIE Press, 2004, p.51, ISBN 0819454354, URL:

http://books.google.co.za/books?id=-782bo4u_ogC

20. "Data fusion - Wikipedia, the free encyclopedia", URL:

http://en.wikipedia.org/wiki/Data_fusion (accessed April 2010).

21. Li dong; Huang linpeng;, "A Framework for Ontology-Based Data

Integration," Internet Computing in Science and Engineering, 2008.

ICICSE '08. International Conference on , vol., no., pp.207-214, 28-29 Jan.

2008

22. Gómez-Pérez, A.; Fernández-López, M.; Corcho, O.;, "Ontological

Engineering: With Examples from the Areas of Knowledge Management,

E-commerce and the Semantic Web", Springer, 2004

23. Grüninger, M.; Fox, M.;, "Methodology for the Design and Evaluation of

Ontologies", 1995

24. Herman, I.; ―Rule Interchange Format (RIF) Highlight‖, Banff AC

Meeting, May 2007, URL: http://www.w3.org/2007/Talks/0507-rif

(accessed June 2010)

http://books.google.co.za/books?id=-782bo4u_ogC
http://en.wikipedia.org/wiki/Data_fusion
http://www.w3.org/2007/Talks/0507-rif

82

25. "Shared Reusable Knowledge Bases - Electronic Mailing", Knowledge

Systems Laboratory, Stanford University, URL: http://www-

ksl.stanford.edu/email-archives/srkb.messages/132.html (accessed April

2010)

26. Chau-Young Lin; Chih-Cheng Chien; Cheng-Seen Ho; Chien-Tsung

Huang; , "A knowledge-based approach to support object-oriented

analysis," Computer Software and Applications Conference, 1994.

COMPSAC 94. Proceedings., Eighteenth Annual International , vol., no.,

pp.104, 9-11 Nov 1994

27. Schaschinger, H.; , "Expert-supported object-oriented analysis in

knowledge engineering," Software Engineering and Knowledge

Engineering, 1992. Proceedings., Fourth International Conference on , vol.,

no., pp.116-122, 15-20 Jun 1992

28. van Roessel, J.W., "Design of a spatial data structure using the relational

normal form", International Journal of Geographical Information

Sysytems, v.1, p. 33-50, 1987.

29. ―Statistical Geography – Wikipedia, the free encyclopedia‖, URL:

http://en.wikipedia.org/wiki/Statistical_geography, (accessed June,

2010)

http://www-ksl.stanford.edu/email-archives/srkb.messages/132.html
http://www-ksl.stanford.edu/email-archives/srkb.messages/132.html
http://en.wikipedia.org/wiki/Statistical_geography

83

30. Egenhofer, M. J.; Dube, M. P., "Topological relations from metric

refinements.", In Proceedings of the 17th ACM SIGSPATIAL international

Conference on Advances in Geographic information Systems, (Seattle,

Washington, November 04 - 06, 2009), GIS '09, ACM, New York, NY, 158-

167, 2009

31. Aurenhammer, F.; , "Voronoi diagrams—a survey of a fundamental

geometric data structure.", ACM Computer Survey 23, 345-405, Sep. 1991

32. Peucker, T.K.; Chrisman, N.;, ―Geographic data structures: American

Cartographer‖, v. 2, p. 55-69, 1975.

33. Goodchild, M.F.; Grandfield, A.W.; ―NCGIA core curriculum project‖,

National Center for Geographic Information and Analysis, University of

California, Santa Barbara, California, 1990.

34. Marx, R.W.; ―The TIGER system: automating the geographic structure of

the United States census‖, 1986.

35. ―Ontology-based Data Integration – Wikipedia, the free encyclopedia‖,

URL: http://en.wikipedia.org/wiki/Ontology_based_data_integration,

(accessed April 2010)

36. Buccella, A.; Cechich, A; Brisaboa, N.R.;, "Ontology-Based Data

Integration Methods: A Framework for Comparison", URL:

http://en.wikipedia.org/wiki/Ontology_based_data_integration

84

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.6139&rep

=rep1&type=pdf

37. Wache, H.; Vögele, T.; Hübner, S.; Visser,U.; Stuckenschmidt,H.; Schuster,

G.; Neumann; H.;, ―Ontology-Based Integration of Information — A

Survey of Existing Approaches‖, 2001, URL:

http://www.let.uu.nl/~paola.monachesi/personal/papers/wache.pdf

(accessed April 2010)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.6139&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.6139&rep=rep1&type=pdf
http://www.let.uu.nl/~paola.monachesi/personal/papers/wache.pdf

85

Appendix A: Environment set for the development of

DxGrep Tool

86

1. Environment set for the development of DxGrep Tool

The DxGrep tool was developed using Teigha, a C++ development platform

specifically designed for creating CAD applications. To use these C++ libraries

from the Open Design Alliance, we need to set the project properties with the

proper Include directories. Here, we need to specify the path of the Include

directories where these directories are copied.

87

Figure 13: Additional Include directories for DxGrep development

The Additional Include Directories should have the following paths included:

1. ..\DWGdirect\Extensions\Exservices

2. ..\DWGdirect\Examples\Common

3. ..\DWGdirect\Include

88

Figure 14: Additional library directories for DxGrep development

The Additional Library Directories should include the path to the ‗lib‘ folder

(..\lib\vc9mt) or (..\lib\vc8mt).

The names of all the library files must be put in Additional Dependencies section

of the Project Property page. The libraries to be copied in this section of

Additional Dependencies are:

89

Jpeg.lib DD_Br.lib DD_Gs.lib

DD_Db.lib DD_BrepRenderer.lib DD_DbRoot.lib

DD_Ge.lib SpatialIndex.lib DD_Root.lib

DD_AcisBuilder.lib ExFieldEvaluator.lib DD_Gi.lib

DD_Alloc.lib ModelerGeometry.lib DD_ExamplesCommon.lib

RecomputeDimBlock.lib

Figure 15 Additional dependencies for DxGrep development

90

The Include directories‘ path must be copied in the Options window. Also, the

Extensions/ExServices path must also be copied.

Following these steps, all the libraries and Include files were included during the

build of the C++ project.

91

Appendix B: Code Implementation

92

Appendix B: Code Implementation

B.1 DxGrep Tool

DxGrep.cpp

/**

* This console application reads a DWG file and dumps its contents

* to the console.

*

* Usage: DxGgrep [options] FILE

* -v, --version show version and license information

* -h, --help show usage information

* -e, --extract=<extract> CAD Entities Types to extract

* -t, --cadType=types Autodesk, Bentley etc file formats

*

*Supported CAD entities:

* blocks : AutoDesk block entities ... bently

* blockRefs : AutoDesk block entities ... bently

*

*Supported CAD file Types:

* DWG :AutoDesk file format

* XYZ :Bentley file format

**/

//#ifdef _MSC_VER

//#define _WIN32_WINNT 0x0400 // to enable Windows Cryptographic API

//#endif

#include <map>

#include <string>

#include <iostream>

#include "OdaCommon.h"

#include "diagnostics.h"

#include "DbDatabase.h"

#include "DbEntity.h"

#include "DbDimAssoc.h"

#include "OdCharMapper.h"

#include "RxObjectImpl.h"

#include "ExSystemServices.h"

#include "ExHostAppServices.h"

#include "ExProtocolExtension.h"

93

#include "OdFileBuf.h"

#include "RxDynamicModule.h"

#include "FdField.h"

#include <string.h>

using namespace std;

#define STL_USING_IOSTREAM

#include "OdaSTL.h"

#define STD(a) std:: a

#ifndef _DWG_DB_DUMPER_H_

#include "DwgDbDumper.h"

#endif

#if defined(TARGET_OS_MAC) && !defined(__MACH__)

#include <console.h>

#endif

static enum StringValue {evNotDefined, all, blockref, line, block,

polyline, header, arc, circle, hatch, solid};

static std::map<std::string, StringValue> s_mapStringValues;

static enum StringValue2 {eevNotDefined, eall, eblockref, eline,

eblock, epolyline, eheader, earc, ecircle, ehatch, esolid};

static std::map<std::string, StringValue2> s_mapStringValues2;

static char* szInput;

static void Initialize();

/**

* This is a Custom Services class. It combines the platform

* dependent functionality of ExSystemServices and ExHostAppServices.

* @extends ExSystemServices

* @extends ExHostAppServices

**/

class MyServices : public ExSystemServices, public ExHostAppServices

{

protected:

 ODRX_USING_HEAP_OPERATORS(ExSystemServices);

private:

};

/**

**/

/* Define a module map for statically linked modules:

*/

/**

**/

#ifndef _TOOLKIT_IN_DLL_

94

ODRX_DECLARE_STATIC_MODULE_ENTRY_POINT(ModelerModule);

ODRX_DECLARE_STATIC_MODULE_ENTRY_POINT(OdRecomputeDimBlockModule);

ODRX_DECLARE_STATIC_MODULE_ENTRY_POINT(ExFieldEvaluatorModule);

ODRX_BEGIN_STATIC_MODULE_MAP()

ODRX_DEFINE_STATIC_APPLICATION((wchar_t *)DD_T("ModelerGeometry"),

ModelerModule)

ODRX_DEFINE_STATIC_APPLICATION((wchar_t *)DD_T("RecomputeDimBlock"),

OdRecomputeDimBlockModule)

ODRX_DEFINE_STATIC_APPMODULE(L"ExFieldEvaluator.drx",

ExFieldEvaluatorModule)

ODRX_END_STATIC_MODULE_MAP()

#endif

/**

**********/

/* Define Assert function to not crash Debug application if assertion

is fired. */

/**

**********/

static void MyAssert(const char* expression, const char* fileName, int

nLineNo)

{

 OdString message;

 message.format(L"\n!!! Assertion failed: \"%s\"\n file: %ls, line

%d\n", OdString(expression).c_str(), OdString(fileName).c_str(),

nLineNo);

 odPrintConsoleString(message);

}

/**

**********/

/* Define Ge error handler to not crash DxGrep application and dump

errors. */

/**

**********/

static void MyGeError(OdResult res)

{

 OdString message;

 message.format(L"\n!!! Ge error: \"%s\"\n",

OdError(res).description().c_str());

 odPrintConsoleString(message);

}

/**

* It defines the string variables to the enumerators:

* all, blockref, line, block, polyline, header, arc, circle, hatch,

solid

**/

void Initialize()

95

{

 s_mapStringValues["all"] = all;

 s_mapStringValues["blockref"] = blockref;

 s_mapStringValues["line"] = line;

 s_mapStringValues["block"] = block;

 s_mapStringValues["polyline"] = polyline;

 s_mapStringValues["header"] = header;

 s_mapStringValues["arc"] = arc;

 s_mapStringValues["circle"] = circle;

 s_mapStringValues["hatch"] = hatch;

 s_mapStringValues["solid"] = solid;

 s_mapStringValues2["--extract=all"] = eall;

 s_mapStringValues2["--extract=blockref"] = eblockref;

 s_mapStringValues2["--extract=line"] = eline;

 s_mapStringValues2["--extract=block"] = eblock;

 s_mapStringValues2["--extract=polyline"] = epolyline;

 s_mapStringValues2["--extract=header"] = eheader;

 s_mapStringValues2["--extract=arc"] = earc;

 s_mapStringValues2["--extract=circle"] = ecircle;

 s_mapStringValues2["--extract=hatch"] = ehatch;

 s_mapStringValues2["--extract=solid"] = esolid;

}

/**

**/

/* Main

*/

/**

**/

#if (defined(WIN32) || defined(WIN64))

int wmain(int argc, wchar_t* argv[])

//int wmain(int argc, char* argv[])

#else

int main(int argc, char* argv[])

#endif

{

#if defined(TARGET_OS_MAC) && !defined(__MACH__)

 argc = ccommand(&argv);

#endif

/**

/

 /* Verify the argument count and display an error message as required

*/

/**

/

 Initialize();

 OdString argstr1(argv[1]);

 if (argc < 3)

96

 {

 if ((argstr1.compare("-h") == 0) || (argstr1.compare("--help") ==

0))

 {

 //printf("The option selected by string is %s", argv[1]);

 printf("\n Usage: DWGgrep [options] FILE");

 printf("\n\t -v, --version show version and license

information");

 printf("\n\t -h, --help show usage information");

 printf("\n\t -e, --extract=<extract> CAD Entities Types to

extract");

 printf("\n\t -t, --cadType=types Autodesk, Bentley etc file

formats");

 printf("\n");

 printf("\n Supported CAD entities:");

 printf("\n\t block : AutoDesk block entities. ");

 printf("\n\t blockRef : AutoDesk block reference entities.

");

 printf("\n\t line : AutoDesk Line entities. ");

 printf("\n\t polyline : AutoDesk Polyline entities. ");

 printf("\n\t text : AutoDesk Text entities. ");

 printf("\n\t arc : AutoDesk Arc entities. ");

 printf("\n\t circle : AutoDesk circle entities. ");

 printf("\n\t hatch : AutoDesk hatch entities. ");

 printf("\n\t solid : AutoDesk hatch entities. ");

 printf("\n\t all : All AutoDesk entities above. ");

 printf("\n");

 printf("\n Supported CAD file Types: ");

 printf("\n\t DWG :AutoDesk file format");

 printf("\n\t DNG :Bentley file format - Not yet-");

 printf("\n ");

 exit(0);

 }

 else if ((argstr1.compare("-v") == 0) || (argstr1.compare("--

version") == 0))

 {

 printf("\n DxGrep version: 1.0\n");

 exit(0);

 }

 else

 {

 printf("\n");

 return 1;

 }

 }

#ifndef _TOOLKIT_IN_DLL_

ODRX_INIT_STATIC_MODULE_MAP();

#endif

/**/

97

 /* Create a custom Services instance.

*/

/**/

 OdStaticRxObject<MyServices> svcs;

 svcs.disableOutput(true);

/**

/

 /* Set customized assert function

*/

/**

/

 odSetAssertFunc(MyAssert);

/**

/

 /* Set customized Ge exception processing

*/

/**

/

 OdGeContext::gErrorFunc = MyGeError;

/**/

 /* Initialize DWGdirect.

*/

/**/

 odInitialize(&svcs);

/**/

 /* This ExProtocolExtension class defines an OdDbEntity_Dumper

*/

 /* protocol extension for each of the supported OdDbEntity classes

*/

 /* and a default dumper for the non-supported classes.

*/

/**/

 ExProtocolExtension theProtocolExtensions;

/**/

 /* Initialize protocol extensions

*/

/**/

98

 theProtocolExtensions.initialize();

 bool bSuccess = true;

 try

 {

 ::odrxDynamicLinker()->loadModule(L"ExFieldEvaluator.drx");

/**/

 /* Create a database and load the drawing into it.

*/

 /*

*/

 /* Specified arguments are as followed:

*/

 /* filename, allowCPConversion, partialLoad, openMode

*/

/**/

 OdString argstr2(argv[1]);

 OdString leftargstr2 = argstr2.left(9);

 if ((argstr2.compare("-e") == 0) && (leftargstr2.compare("--

extract") != 0))

 {

 OdString f(argv[3]); // for UNIX UNICODE support

 printf("<Results source=\"%ls\">\n", f.c_str());

 fflush(stdout);

 DwgDbDumper dumper;

 OdDbDatabasePtr pDb = svcs.readFile(f.c_str(), true, false,

Oda::kShareDenyNo);

 if (!pDb.isNull())

 {

 oddbEvaluateFields(pDb, OdDbField::kOpen);

/**/

 /* Dump the database

*/

/**/

 char* szInput = new char[wcslen(argv[2]) + 1];

 wcstombs(szInput, argv[2], wcslen(argv[2]));

 switch(s_mapStringValues[szInput])

 {

 case all:

 try

 {

 dumper.dumpHeader(pDb);

 dumper.dumpBlocks(pDb);

 dumper.dumpBlockRefs(pDb);

 dumper.dumpLines(pDb);

 dumper.dumpPolylines(pDb);

 dumper.dumpText(pDb);

99

 dumper.dumpArcs(pDb);

 dumper.dumpCircles(pDb);

 dumper.dumpHatches(pDb);

 dumper.dumpSolids(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case blockref:

 try

 {

 dumper.dumpBlockRefs(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case line:

 try

 {

 dumper.dumpLines(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case block:

 try

 {

 dumper.dumpBlocks(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

100

 break;

 case polyline:

 try

 {

 dumper.dumpPolylines(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case header:

 try

 {

 dumper.dumpHeader(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case arc:

 try

 {

 dumper.dumpArcs(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case circle:

 try

 {

 dumper.dumpCircles(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

101

 break;

 case hatch:

 try

 {

 dumper.dumpHatches(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case solid:

 try

 {

 dumper.dumpSolids(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 default:

 printf("<Status Error=\"Yes\"

ErrorDescription=\"Invalid option\"/>\n");

 printf("</Results>\n");

 exit(0);

 break;

 }

 }

 }

 else if (leftargstr2.compare("--extract") == 0)

 {

 OdString f(argv[2]); // for UNIX UNICODE support

 printf("<Results source=\"%ls\">\n", f.c_str());

 fflush(stdout);

 DwgDbDumper dumper;

 OdDbDatabasePtr pDb = svcs.readFile(f.c_str(), true,

false, Oda::kShareDenyNo);

 if (!pDb.isNull())

 {

 oddbEvaluateFields(pDb, OdDbField::kOpen);

/***/

/* Dump the database */

/***/

 char* szInput = new char[wcslen(argv[1]) + 1];

102

 wcstombs(szInput, argv[1], wcslen(argv[1]));

 switch(s_mapStringValues2[szInput])

 {

 case eall:

 try

 {

 dumper.dumpHeader(pDb);

 dumper.dumpBlocks(pDb);

 dumper.dumpBlockRefs(pDb);

 dumper.dumpLines(pDb);

 dumper.dumpPolylines(pDb);

 dumper.dumpText(pDb);

 dumper.dumpArcs(pDb);

 dumper.dumpCircles(pDb);

 dumper.dumpHatches(pDb);

 dumper.dumpSolids(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case eblockref:

 try

 {

 dumper.dumpBlockRefs(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case eline:

 try

 {

 dumper.dumpLines(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

103

 break;

 case eblock:

 try

 {

 dumper.dumpBlocks(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case epolyline:

 try

 {

 dumper.dumpPolylines(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case eheader:

 try

 {

 dumper.dumpHeader(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case earc:

 try

 {

 dumper.dumpArcs(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

104

 break;

 case ecircle:

 try

 {

 dumper.dumpCircles(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case ehatch:

 try

 {

 dumper.dumpHatches(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 case esolid:

 try

 {

 dumper.dumpSolids(pDb);

 }

 catch (OdError& e)

 {

 printf("<Status Error=\"Yes\"

ErrorDescription=\"%ls\"/>\n", OdString(e.description()).c_str());

 printf("</Results>");

 exit(0);

 }

 break;

 default:

 printf("<Status Error=\"Yes\"

ErrorDescription=\"Invalid option\"/>\n");

 printf("</Results>\n");

 exit(0);

 break;

 }

 }

 }

 else

 {

 printf("<Results>\n<Status Error=\"Yes\"

105

ErrorDescription=\"Invalid option\"/>\n");

 printf("</Results>\n");

 exit(0);

 }

 }

/**/

 /* Display the error

*/

/**/

 catch (OdError& e)

 {

 printf("<Results>\n<Status Error=\"Yes\"

ErrorDescription=\"%ls\">",OdString(svcs.getErrorDescription(e.code()))

.c_str());

 printf("</Status>\n");

 bSuccess = false;

 }

 catch (...)

 {

 printf("<Results>\n<Status Error=\"Yes\"

ErrorDescription=\"UnknownError\">");

 printf("</Status>\n");

 }

/**/

 /* Uninitialize protocol extensions

*/

/**/

 theProtocolExtensions.uninitialize();

/**/

 /* Uninitialize DWGdirect

*/

/**/

 odUninitialize();

 printf("</Results>");

 return 0;

 }

DwgDbDumper.cpp

#define STL_USING_IOSTREAM

#include "OdaSTL.h"

#define STD(a) std:: a

106

#ifndef _DWGDBDUMPER_H_

#include "DwgDbDumper.h"

#endif

#ifndef _TOSTRING_H_

#include "toString.h"

#endif

#include "DbProxyObject.h"

#include "DbProxyExt.h"

#include "DbAttribute.h"

#include "DbAttributeDefinition.h"

#pragma once

/**

* This function is used to write a XML tag-value pair.

* @param tag It is a XML tag for the entity.

* @param value It is the value for that XML tag.

**/

void writeTag(OdString tag, OdString value)

{

 try

 {

 //OdString buffer;

 //buffer.format(L"<%s>%s<//%s>", tag, value, tag);

 //printf("\n%ls", (OdString)buffer.c_str());

 OdString buffer = "<" + tag + ">" + value + "</" + tag + ">";

 odPrintConsoleString(L"%ls\n", buffer.c_str());

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\" ErrorDescription=\"%ls\">",

OdString(e.description()).c_str());

 printf("\n</Status>");

 printf("\n</Results>");

 exit(0);

 }

}

/**

* This function is used to write an open tag for the entity.

* @param tag It is the tag that is to be opened.

**/

void writeOpenTag(OdString tag)

{

 //OdString buffer;

 //buffer.format(L"<%s>", tag);

107

 //printf("\n%ls", (OdString)buffer.c_str());

 OdString buffer = "<" + tag + ">";

 odPrintConsoleString(L"%ls\n", buffer.c_str());

}

/**

* This function is used to write a close tag for the entity.

* @param tag It is the tag that is to be closed.

**/

void writeCloseTag(OdString tag)

{

 //OdString buffer;

 //buffer.format(L"<//%s>", tag);

 //printf("\n%ls", (OdString)buffer.c_str());

 OdString buffer = "</" + tag + ">";

 odPrintConsoleString(L"%ls\n", buffer.c_str());

}

/**

**/

/* Dump the Entity

*/

/**

**/

void DwgDbDumper::dumpEntity(OdDbObjectId id, int indent)

{

/**

/

 /* Get a SmartPointer to the Entity

*/

/**

/

 OdDbEntityPtr pEnt = id.safeOpenObject();

/**

/

 /* Retrieve the Protocol Extension registered for this object type

*/

/**

/

 OdSmartPtr<OdDbEntity_Dumper> pEntDumper = pEnt;

/**

/

 /* Dump the entity

108

*/

/**

/

 try

 {

 pEntDumper->dump(pEnt, indent);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\" ErrorDescription=\"%ls\">",

OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

}

/**

* This function is used to dump the Block Table Record entity

information.

* @param pDb This is OdDbDatabase pointer object to point to every

OdDbObjectId object iteratively.

* @param indent This is the space indent.

**/

void DwgDbDumper::dumpBlocks(OdDbDatabase* pDb, int indent)

{

/**

/

 /* Get a SmartPointer to the BlockTable

*/

/**

/

 OdDbBlockTablePtr pTable = pDb->getBlockTableId().safeOpenObject();

/**

/

 /* Dump the Description

*/

/**

/

 writeOpenTag("BlockTables");

/**

/

 /* Get a SmartPointer to a new SymbolTableIterator

109

*/

/**

/

 OdDbSymbolTableIteratorPtr pBlkIter = pTable->newIterator();

/**

/

 /* Step through the BlockTable

*/

/**

/

 for (pBlkIter->start(); ! pBlkIter->done(); pBlkIter->step())

 {

/**/

 /* Open the BlockTableRecord for Reading

*/

/**/

 OdDbBlockTableRecordPtr pBlock = pBlkIter-

>getRecordId().safeOpenObject();

/**/

 /* Dump the BlockTableRecord

*/

/**/

 writeOpenTag("AcDbBlockTableRecord");

 writeTag("Id", pBlock->getDbHandle().ascii());

 writeTag("Name", toString(pBlock->getName()));

 if((toString(pBlock->comments())) == "\"\"")

 //TBD Turn off in case of no attributes, so XSLT are easier

 writeTag("Comments","");

 else

 writeTag("Comments",toString(pBlock->comments()));

//Turned off in case of no attributes, so XSLT are easier

// if ((toString(pBlock->hasAttributeDefinitions())) == "false")

// {

// writeTag("Attribute", "");

// }

/**/

 /* Get a SmartPointer to a new ObjectIterator

*/

/**/

110

 OdDbObjectIteratorPtr pEntIter = pBlock->newIterator();

/**/

 /* Step through the BlockTableRecord

*/

/**/

 for (; !pEntIter->done(); pEntIter->step())

 {

/**/

 /* Dump the Entity

*/

/**/

 OdDbObjectId id = pEntIter->objectId();

 OdDbEntityPtr pEnt = id.safeOpenObject();

 if (toString(pEnt->isA()) == "<AcDbAttributeDefinition>")

 {

 try

 {

 writeOpenTag("Attribute");

 OdDbAttributeDefinitionPtr pAttr = pEnt;

 writeTag("Name", toString(pAttr->tag()));

 dumpEntity(pEntIter->objectId(), indent+1);

 //dumpEntity(pEnt, indent+1);

 writeCloseTag("Attribute");

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\"

ErrorDescription=\"%ls\">", OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 }

 }

 writeCloseTag("AcDbBlockTableRecord");

 }

 writeCloseTag("BlockTables");

}

/**

* This function is used to dump the File header.

* @param pDb This is OdDbDatabase pointer object to point to every

OdDbObjectId object iteratively.

* @param indent This is the space indent.

**/

/**

111

**/

/* Dump the Header Variables

*/

/**

**/

void DwgDbDumper::dumpHeader(OdDbDatabase* pDb, int indent)

{

 writeOpenTag("Header");

 writeTag("FileName", shortenPath(pDb->getFilename()));

 writeTag("Version", toString(pDb-

>originalFileVersion()));

 writeTag("Created", toString(pDb->getTDCREATE()));

 writeTag("Updated", toString(pDb->getTDUPDATE()));

 OdGePoint3d corner;

 corner = pDb->getEXTMAX();

 writeOpenTag("ExtMax");

 writeTag("x", toString(corner.x));

 writeTag("y", toString(corner.y));

 writeTag("z", toString(corner.z));

 writeCloseTag("ExtMax");

 corner = pDb->getEXTMIN();

 writeOpenTag("ExtMin");

 writeTag("x", toString(corner.x));

 writeTag("y", toString(corner.y));

 writeTag("z", toString(corner.z));

 writeCloseTag("ExtMin");

 writeCloseTag("Header");

}

/**

* This function is used to dump the Block References entity

information.

* @param pDb This is OdDbDatabase pointer object to point to every

OdDbObjectId object iteratively.

* @param indent This is the space indent.

**/

void DwgDbDumper::dumpBlockRefs(OdDbDatabase* pDb, int indent)

{

/**

/

 /* Get a SmartPointer to the BlockTable

*/

/**

/

 OdDbBlockTablePtr pTable = pDb->getBlockTableId().safeOpenObject();

112

/**

/

 /* Dump the Description

*/

/**

/

 writeOpenTag("BlockRefs");

/**

/

 /* Get a SmartPointer to a new SymbolTableIterator

*/

/**

/

 OdDbSymbolTableIteratorPtr pBlkIter = pTable->newIterator();

/**

/

 /* Step through the BlockTable

*/

/**

/

 for (pBlkIter->start(); ! pBlkIter->done(); pBlkIter->step())

 {

/**/

 /* Open the BlockTableRecord for Reading

*/

/**/

 OdDbBlockTableRecordPtr pBlock = pBlkIter-

>getRecordId().safeOpenObject();

/**/

 /* Get a SmartPointer to a new ObjectIterator

*/

/**/

 OdDbObjectIteratorPtr pEntIter = pBlock->newIterator();

/**/

 /* Step through the BlockTableRecord

*/

/**/

113

 for (; !pEntIter->done(); pEntIter->step())

 {

/**/

 /* Dump the Entity

*/

/**/

 OdDbObjectId id = pEntIter->objectId();

 OdDbEntityPtr pEnt = id.safeOpenObject();

 if (toString(pEnt->isA()) == "<AcDbBlockReference>")

 {

 try

 {

 dumpEntity(pEntIter->objectId(), indent+1);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\"

ErrorDescription=\"%ls\">", OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 }

 }

 }

 writeCloseTag("BlockRefs");

}

/**

* This function is used to dump the Lines entity information.

* @param pDb This is OdDbDatabase pointer object to point to every

OdDbObjectId object iteratively.

* @param indent This is the space indent.

**/

void DwgDbDumper::dumpLines(OdDbDatabase* pDb, int indent)

{

/**

/

 /* Get a SmartPointer to the BlockTable

*/

/**

/

 OdDbBlockTablePtr pTable = pDb->getBlockTableId().safeOpenObject();

/**

/

114

 /* Dump the Description

*/

/**

/

 writeOpenTag("BlockLines");

/**

/

 /* Get a SmartPointer to a new SymbolTableIterator

*/

/**

/

 OdDbSymbolTableIteratorPtr pBlkIter = pTable->newIterator();

/**

/

 /* Step through the BlockTable

*/

/**

/

 for (pBlkIter->start(); ! pBlkIter->done(); pBlkIter->step())

 {

/**/

 /* Open the BlockTableRecord for Reading

*/

/**/

 OdDbBlockTableRecordPtr pBlock = pBlkIter-

>getRecordId().safeOpenObject();

/**/

 /* Get a SmartPointer to a new ObjectIterator

*/

/**/

 OdDbObjectIteratorPtr pEntIter = pBlock->newIterator();

/**/

 /* Step through the AcDbLine Record

*/

/**/

 for (; !pEntIter->done(); pEntIter->step())

 {

115

/**/

 /* Dump the Entity

*/

/**/

 OdDbObjectId id = pEntIter->objectId();

 OdDbEntityPtr pEnt = id.safeOpenObject();

 if (toString(pEnt->isA()) == "<AcDbLine>")

 {

 try

 {

 dumpEntity(pEntIter->objectId(), indent+1);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\"

ErrorDescription=\"%ls\">", OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 }

 }

 }

 writeCloseTag("BlockLines");

}

/**

* This function is used to dump the Polyline entity information.

* @param pDb This is OdDbDatabase pointer object to point to every

OdDbObjectId object iteratively.

* @param indent This is the space indent.

**/

void DwgDbDumper::dumpPolylines(OdDbDatabase* pDb, int indent)

{

/**

/

 /* Get a SmartPointer to the BlockTable

*/

/**

/

 OdDbBlockTablePtr pTable = pDb->getBlockTableId().safeOpenObject();

/**

/

 /* Dump the Description

*/

116

/**

/

 writeOpenTag("BlockPolyLines");

/**

/

 /* Get a SmartPointer to a new SymbolTableIterator

*/

/**

/

 OdDbSymbolTableIteratorPtr pBlkIter = pTable->newIterator();

/**

/

 /* Step through the BlockTable

*/

/**

/

 for (pBlkIter->start(); ! pBlkIter->done(); pBlkIter->step())

 {

/**/

 /* Open the BlockTableRecord for Reading

*/

/**/

 OdDbBlockTableRecordPtr pBlock = pBlkIter-

>getRecordId().safeOpenObject();

/**/

 /* Get a SmartPointer to a new ObjectIterator

*/

/**/

 OdDbObjectIteratorPtr pEntIter = pBlock->newIterator();

/**/

 /* Step through the AcDbLine Record

*/

/**/

 for (; !pEntIter->done(); pEntIter->step())

 {

/**/

 /* Dump the Entity

117

*/

/**/

 OdDbObjectId id = pEntIter->objectId();

 OdDbEntityPtr pEnt = id.safeOpenObject();

 if (toString(pEnt->isA()) == "<AcDbPolyline>")

 {

 try

 {

 dumpEntity(pEntIter->objectId(), indent+1);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\"

ErrorDescription=\"%ls\">", OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 }

 }

 }

 writeCloseTag("BlockPolyLines");

}

/**

* This function is used to dump the Text entity information.

* @param pDb This is OdDbDatabase pointer object to point to every

OdDbObjectId object iteratively.

* @param indent This is the space indent.

**/

void DwgDbDumper::dumpText(OdDbDatabase* pDb, int indent)

{

/**

/

 /* Get a SmartPointer to the BlockTable

*/

/**

/

 OdDbBlockTablePtr pTable = pDb->getBlockTableId().safeOpenObject();

/**

/

 /* Dump the Description

*/

/**

/

118

 writeOpenTag("BlockTexts");

/**

/

 /* Get a SmartPointer to a new SymbolTableIterator

*/

/**

/

 OdDbSymbolTableIteratorPtr pBlkIter = pTable->newIterator();

/**

/

 /* Step through the BlockTable

*/

/**

/

 for (pBlkIter->start(); ! pBlkIter->done(); pBlkIter->step())

 {

/**/

 /* Open the BlockTableRecord for Reading

*/

/**/

 OdDbBlockTableRecordPtr pBlock = pBlkIter-

>getRecordId().safeOpenObject();

/**/

 /* Get a SmartPointer to a new ObjectIterator

*/

/**/

 OdDbObjectIteratorPtr pEntIter = pBlock->newIterator();

/**/

 /* Step through the AcDbLine Record

*/

/**/

 for (; !pEntIter->done(); pEntIter->step())

 {

/**/

 /* Dump the Entity

*/

119

/**/

 OdDbObjectId id = pEntIter->objectId();

 OdDbEntityPtr pEnt = id.safeOpenObject();

 if (toString(pEnt->isA()) == "<AcDbText>")

 {

 try

 {

 writeOpenTag("AcDbText");

 dumpEntity(pEntIter->objectId(), indent+1);

 writeCloseTag("AcDbText");

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\"

ErrorDescription=\"%ls\">", OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 }

 }

 }

writeCloseTag("BlockTexts");

}

/**

* This function is used to dump the AcDbArc entity information.

* @param pDb This is OdDbDatabase pointer object to point to every

OdDbObjectId object iteratively.

* @param indent This is the space indent.

**/

void DwgDbDumper::dumpArcs(OdDbDatabase* pDb, int indent)

{

/**

/

 /* Get a SmartPointer to the BlockTable

*/

/**

/

 OdDbBlockTablePtr pTable = pDb->getBlockTableId().safeOpenObject();

/**

/

 /* Dump the Description

*/

/**

/

 writeOpenTag("Arcs");

120

/**

/

 /* Get a SmartPointer to a new SymbolTableIterator

*/

/**

/

 OdDbSymbolTableIteratorPtr pBlkIter = pTable->newIterator();

/**

/

 /* Step through the BlockTable

*/

/**

/

 for (pBlkIter->start(); ! pBlkIter->done(); pBlkIter->step())

 {

/**/

 /* Open the BlockTableRecord for Reading

*/

/**/

 OdDbBlockTableRecordPtr pBlock = pBlkIter-

>getRecordId().safeOpenObject();

/**/

 /* Get a SmartPointer to a new ObjectIterator

*/

/**/

 OdDbObjectIteratorPtr pEntIter = pBlock->newIterator();

/**/

 /* Step through the AcDbLine Record

*/

/**/

 for (; !pEntIter->done(); pEntIter->step())

 {

/**/

 /* Dump the Entity

*/

/**/

121

 OdDbObjectId id = pEntIter->objectId();

 OdDbEntityPtr pEnt = id.safeOpenObject();

 if (toString(pEnt->isA()) == "<AcDbArc>")

 {

 try

 {

 dumpEntity(pEntIter->objectId(), indent+1);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\"

ErrorDescription=\"%ls\">", OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 }

 }

 }

 writeCloseTag("Arcs");

}

/**

* This function is used to dump the AcDbCircle entity information.

* @param pDb This is OdDbDatabase pointer object to point to every

OdDbObjectId object iteratively.

* @param indent This is the space indent.

**/

void DwgDbDumper::dumpCircles(OdDbDatabase* pDb, int indent)

{

/**

/

 /* Get a SmartPointer to the BlockTable

*/

/**

/

 OdDbBlockTablePtr pTable = pDb->getBlockTableId().safeOpenObject();

/**

/

 /* Dump the Description

*/

/**

/

 writeOpenTag("Circles");

/**

122

/

 /* Get a SmartPointer to a new SymbolTableIterator

*/

/**

/

 OdDbSymbolTableIteratorPtr pBlkIter = pTable->newIterator();

/**

/

 /* Step through the BlockTable

*/

/**

/

 for (pBlkIter->start(); ! pBlkIter->done(); pBlkIter->step())

 {

/**/

 /* Open the BlockTableRecord for Reading

*/

/**/

 OdDbBlockTableRecordPtr pBlock = pBlkIter-

>getRecordId().safeOpenObject();

/**/

 /* Get a SmartPointer to a new ObjectIterator

*/

/**/

 OdDbObjectIteratorPtr pEntIter = pBlock->newIterator();

/**/

 /* Step through the AcDbLine Record

*/

/**/

 for (; !pEntIter->done(); pEntIter->step())

 {

/**/

 /* Dump the Entity

*/

/**/

 OdDbObjectId id = pEntIter->objectId();

 OdDbEntityPtr pEnt = id.safeOpenObject();

 if (toString(pEnt->isA()) == "<AcDbCircle>")

123

 {

 try

 {

 dumpEntity(pEntIter->objectId(), indent+1);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\"

ErrorDescription=\"%ls\">", OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 }

 }

 }

 writeCloseTag("Circles");

}

void DwgDbDumper::dumpHatches(OdDbDatabase* pDb, int indent)

{

/**

/

 /* Get a SmartPointer to the BlockTable

*/

/**

/

 OdDbBlockTablePtr pTable = pDb->getBlockTableId().safeOpenObject();

/**

/

 /* Dump the Description

*/

/**

/

 writeOpenTag("Hatches");

/**

/

 /* Get a SmartPointer to a new SymbolTableIterator

*/

/**

/

 OdDbSymbolTableIteratorPtr pBlkIter = pTable->newIterator();

124

/**

/

 /* Step through the BlockTable

*/

/**

/

 for (pBlkIter->start(); ! pBlkIter->done(); pBlkIter->step())

 {

/**/

 /* Open the BlockTableRecord for Reading

*/

/**/

 OdDbBlockTableRecordPtr pBlock = pBlkIter-

>getRecordId().safeOpenObject();

/**/

 /* Get a SmartPointer to a new ObjectIterator

*/

/**/

 OdDbObjectIteratorPtr pEntIter = pBlock->newIterator();

/**/

 /* Step through the AcDbLine Record

*/

/**/

 for (; !pEntIter->done(); pEntIter->step())

 {

/**/

 /* Dump the Entity

*/

/**/

 OdDbObjectId id = pEntIter->objectId();

 OdDbEntityPtr pEnt = id.safeOpenObject();

 if (toString(pEnt->isA()) == "<AcDbHatch>")

 {

 try

 {

 dumpEntity(pEntIter->objectId(), indent+1);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\"

ErrorDescription=\"%ls\">", OdString(e.description()).c_str());

125

 printf("\n </Status>");

 printf("\n</Results>");

 writeCloseTag("Hatches");

 exit(0);

 }

 }

 }

 }

 writeCloseTag("Hatches");

}

void DwgDbDumper::dumpSolids(OdDbDatabase* pDb, int indent)

{

/**

/

 /* Get a SmartPointer to the BlockTable

*/

/**

/

 OdDbBlockTablePtr pTable = pDb->getBlockTableId().safeOpenObject();

/**

/

 /* Dump the Description

*/

/**

/

 writeOpenTag("Solids");

/**

/

 /* Get a SmartPointer to a new SymbolTableIterator

*/

/**

/

 OdDbSymbolTableIteratorPtr pBlkIter = pTable->newIterator();

/**

/

 /* Step through the BlockTable

*/

/**

/

 for (pBlkIter->start(); ! pBlkIter->done(); pBlkIter->step())

126

 {

/**/

 /* Open the BlockTableRecord for Reading

*/

/**/

 OdDbBlockTableRecordPtr pBlock = pBlkIter-

>getRecordId().safeOpenObject();

/**/

 /* Get a SmartPointer to a new ObjectIterator

*/

/**/

 OdDbObjectIteratorPtr pEntIter = pBlock->newIterator();

/**/

 /* Step through the AcDbLine Record

*/

/**/

 for (; !pEntIter->done(); pEntIter->step())

 {

/**/

 /* Dump the Entity

*/

/**/

 OdDbObjectId id = pEntIter->objectId();

 OdDbEntityPtr pEnt = id.safeOpenObject();

 if (toString(pEnt->isA()) == "<AcDbSolid>")

 {

 try

 {

 dumpEntity(pEntIter->objectId(), indent+1);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\"

ErrorDescription=\"%ls\">", OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 writeCloseTag("Solids");

 exit(0);

 }

 }

 }

 }

127

 writeCloseTag("Solids");

}

ExProtocolExtension.cpp

/**

* This is a Implementation of the ExProtocolExtension class

*/

#include "OdaCommon.h"

#include "ExProtocolExtension.h"

#include "RxObjectImpl.h"

#include "Db2LineAngularDimension.h"

#include "Db2dPolyline.h"

#include "Db3PointAngularDimension.h"

#include "Db3dPolyline.h"

#include "Db3dPolylineVertex.h"

#include "Db3dSolid.h"

#include "DbAlignedDimension.h"

#include "DbArc.h"

#include "DbArcAlignedText.h"

#include "DbArcDimension.h"

#include "DbAttribute.h"

#include "DbAttributeDefinition.h"

#include "DbBlockReference.h"

#include "DbBlockTableRecord.h"

#include "DbBody.h"

#include "DbCircle.h"

#include "DbDiametricDimension.h"

#include "DbEllipse.h"

#include "DbFace.h"

#include "DbFaceRecord.h"

#include "DbFcf.h"

#include "DbHatch.h"

#include "DbIndex.h"

#include "DbLine.h"

#include "DbMInsertBlock.h"

#include "DbMText.h"

#include "DbMline.h"

#include "DbOle2Frame.h"

#include "DbOrdinateDimension.h"

#include "DbPoint.h"

#include "DbPolyFaceMesh.h"

#include "DbPolyFaceMeshVertex.h"

#include "DbPolygonMesh.h"

#include "DbPolygonMeshVertex.h"

#include "DbPolyline.h"

#include "DbProxyEntity.h"

#include "DbRadialDimension.h"

#include "DbRasterImage.h"

#include "DbRay.h"

128

#include "DbRegion.h"

#include "DbRotatedDimension.h"

#include "DbShape.h"

#include "DbSolid.h"

#include "DbSpatialFilter.h"

#include "DbSpline.h"

#include "DbTable.h"

#include "DbTrace.h"

#include "DbViewport.h"

#include "DbWipeout.h"

#include "DbXline.h"

#include "Ge/GeCircArc2d.h"

#include "Ge/GeCircArc3d.h"

#include "Ge/GeCurve2d.h"

#include "Ge/GeEllipArc2d.h"

#include "Ge/GeKnotVector.h"

#include "Ge/GeNurbCurve2d.h"

#include "GeometryFromProxy.h"

#include "GiWorldDrawDumper.h"

#include "Gs/Gs.h"

#include "OdFileBuf.h"

#include "StaticRxObject.h"

#include "toString.h"

/**

**/

/* Construction/Destruction

*/

/**

**/

ODRX_NO_CONS_DEFINE_MEMBERS(OdDbEntity_Dumper, OdRxObject)

/**

* This is a constructor for class ExProtocolExtension.

**/

ExProtocolExtension::ExProtocolExtension()

{

}

/**

* This is a destructor for class ExProtocolExtension.

* If m_pDumpers is set, then it uninitializes it.

**/

ExProtocolExtension::~ExProtocolExtension()

{

 if(m_pDumpers)

 uninitialize();

}

129

/**

* This method dumps the common data and WorldDraw information for all

* entities without explicit dumpers

* @param pEnt This is an instance of OdDbEntity

* @param indent This is a margin that is to be left.

**/

void OdDbEntity_Dumper::dump(OdDbEntity* pEnt, int indent) const

{

 //writeLine(indent++, toString(pEnt->isA()),toString(pEnt-

>getDbHandle()));

 dumpEntityData(pEnt, indent);

 //writeLine(indent, DD_T("WorldDraw()"));

/**

/

 /* Create an OdGiContext instance for the vectorization

*/

/**

/

 OdGiContextDumper ctx(pEnt->database());

/**

/

 /* Create an OdGiWorldDraw instance for the vectorization

*/

/**

/

 OdGiWorldDrawDumper wd(indent + 1);

/**

/

 /* Set the context

*/

/**

/

 wd.setContext(&ctx);

/**

/

 /* Call worldDraw()

*/

/**

/

 pEnt->worldDraw(&wd);

}

130

/**

* This method dumps the data common to all entities.

* @param pEnt This OdDbEntity pointer points to the certain entity type

object dynamically.

* @param indent This is a space indent

**/

void dumpEntityData(OdDbEntity* pEnt, int indent)

{

 OdGeExtents3d extents;

 if (eOk == pEnt->getGeomExtents(extents)) {

 writeOpenTag("MinExtents");

 writeTag("x", toString(extents.minPoint().x));

 writeTag("y", toString(extents.minPoint().y));

 writeTag("z", toString(extents.minPoint().z));

 writeCloseTag("MinExtents");

 writeOpenTag("MaxExtents");

 writeTag("x", toString(extents.minPoint().x));

 writeTag("y", toString(extents.minPoint().y));

 writeTag("z", toString(extents.minPoint().z));

 writeCloseTag("MaxExtents");

 }

 writeTag("Layer", toString(pEnt->layer()));

 writeTag("ColorIndex", toString(pEnt->colorIndex()));

 writeTag("Color", toString(pEnt->color()));

 writeTag("Linetype", toString(pEnt->linetype()));

 writeTag("LTscale", toString(pEnt->linetypeScale()));

 writeTag("Lineweight", toString(pEnt->lineWeight()));

 writeTag("PlotStyle", toString(pEnt->plotStyleName()));

 writeTag("TransparencyMethod", toString(pEnt-

>transparency().method()));

 writeTag("Visibility", toString(pEnt->visibility()));

 writeTag("Planar", toString(pEnt->isPlanar()));

 OdGePlane plane;

 OdDb::Planarity planarity = OdDb::kNonPlanar;

 pEnt->getPlane(plane, planarity);

 writeTag("Planarity", toString(planarity));

 if (pEnt->isPlanar())

 {

 OdGePoint3d origin;

 OdGeVector3d uAxis;

 OdGeVector3d vAxis;

 plane.get(origin, uAxis, vAxis);

 writeOpenTag("Origin");

 writeTag("x", toString(origin.x));

 writeTag("y", toString(origin.y));

 writeTag("z", toString(origin.z));

 writeCloseTag("Origin");

 writeOpenTag("u-Axis");

131

 writeTag("x", toString(uAxis.x));

 writeTag("y", toString(uAxis.y));

 writeTag("z", toString(uAxis.z));

 writeCloseTag("u-Axis");

 writeOpenTag("v-Axis");

 writeTag("x", toString(vAxis.x));

 writeTag("y", toString(vAxis.y));

 writeTag("z", toString(vAxis.z));

 writeCloseTag("v-Axis");

 }

}

/**

* This function dumps Block Text data for OdDbAttributeDefinition class

object.

* @param pText This is a OdDbText pointer.

* @param indent This is a space indent.

**/

void dumpBlockTextData(OdDbText* pText, int indent)

{

 //OdDbAttributeDefinitionPtr pAttr = pText;

};

/**

* This function dumps Text data depending for the entity that pText

pointer is pointing.

* @param pText This is a OdDbText pointer

* @param indent This is a space indent.

**/

void dumpTextData(OdDbText* pText, int indent)

{

 writeTag("TextString", toString(pText->textString()));

 OdGePoint3d x;

 writeOpenTag("TextPosition");

 writeTag("x", toString(pText->position().x));

 writeTag("y", toString(pText->position().y));

 writeTag("z", toString(pText->position().z));

 writeCloseTag("TextPosition");

 writeTag("DefaultAlignment", toString(pText-

>isDefaultAlignment()));

 writeOpenTag("AlignmentPoint");

 writeTag("x", toString(pText->alignmentPoint().x));

 writeTag("y", toString(pText->alignmentPoint().y));

132

 writeTag("z", toString(pText->alignmentPoint().z));

 writeCloseTag("AlignmentPoint");

 writeTag("Height", toString(pText->height()));

 writeTag("Rotation", toDegreeString(pText->rotation()));

 writeTag("HorizontalMode", toString(pText->horizontalMode()));

 writeTag("VerticalMode", toString(pText->verticalMode()));

 writeTag("MirroredInX", toString(pText->isMirroredInX()));

 writeTag("MirroredInY", toString(pText->isMirroredInY()));

 writeTag("Oblique", toDegreeString(pText->oblique()));

 writeTag("TextStyle", toString(pText->textStyle()));

 writeTag("WidthFactor", toString(pText->widthFactor()));

/***/

 /* Dump Bounding Points

*/

/**

/

 OdGePoint3dArray points;

 pText->getBoundingPoints(points);

 writeOpenTag("TLBoundingPoint");

 writeTag("x", toString(points[0].x));

 writeTag("y", toString(points[0].y));

 writeTag("z", toString(points[0].z));

 writeCloseTag("TLBoundingPoint");

 writeOpenTag("TRBoundingPoint");

 writeTag("x", toString(points[1].x));

 writeTag("y", toString(points[1].y));

 writeTag("z", toString(points[1].z));

 writeCloseTag("TRBoundingPoint");

 writeOpenTag("BLBoundingPoint");

 writeTag("x", toString(points[2].x));

 writeTag("y", toString(points[2].y));

 writeTag("z", toString(points[2].z));

 writeCloseTag("BLBoundingPoint");

 writeOpenTag("BRBoundingPoint");

 writeTag("x", toString(points[2].x));

 writeTag("y", toString(points[2].y));

 writeTag("z", toString(points[2].z));

 writeCloseTag("BRBoundingPoint");

 writeOpenTag("Normal");

 writeTag("x", toString(pText->normal().x));

 writeTag("y", toString(pText->normal().y));

 writeTag("z", toString(pText->normal().z));

133

 writeCloseTag("Normal");

 writeTag("Thickness", toString(pText->thickness()));

 try

 {

 dumpEntityData(pText, indent);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\" ErrorDescription=\"%ls\">",

OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

};

/**

* This function dumps the Attribute data.

* @param indent This is a space indent.

* @param pAttr This is OdDbAttribute pointer to read the attribute

data.

* @param i This is serial number of the attribute passed by the calling

function.

**/

void dumpAttributeData(int indent, OdDbAttribute* pAttr, int i)

{

 writeOpenTag("Attribute");

 writeTag("Handle", toString(pAttr-

>getDbHandle().ascii()));

 writeTag("Tag", toString(pAttr->tag()));

 writeTag("FieldLength", toString(pAttr->fieldLength()));

 writeTag("Invisible", toString(pAttr->isInvisible()));

 writeTag("Preset", toString(pAttr->isPreset()));

 writeTag("Verifiable", toString(pAttr->isVerifiable()));

 writeTag("LockedInPosition", toString(pAttr-

>lockPositionInBlock()));

 writeTag("Constant", toString(pAttr->isConstant()));

 try

 {

 dumpTextData(pAttr, indent);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\" ErrorDescription=\"%ls\">",

OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 writeCloseTag("Attribute");

134

};

/**

* This function dumps the Block Reference Data.

* @param pBlkRef This is a OdDbBlockReference pointer.

* @param indent This is a space indent.

**/

void dumpBlockRefData(OdDbBlockReference* pBlkRef, int indent)

{

 writeOpenTag("Position");

 writeTag("x", toString(pBlkRef->position().x));

 writeTag("y", toString(pBlkRef->position().y));

 writeTag("z", toString(pBlkRef->position().z));

 writeCloseTag("Position");

 writeTag("Rotation", toDegreeString(pBlkRef-

>rotation()));

 writeOpenTag("ScaleFactors");

 writeTag("x", toString(pBlkRef->scaleFactors().sx));

 writeTag("y", toString(pBlkRef->scaleFactors().sy));

 writeTag("z", toString(pBlkRef->scaleFactors().sz));

 writeCloseTag("ScaleFactors");

 writeOpenTag("Normal");

 writeTag("x", toString(pBlkRef->normal().x));

 writeTag("y", toString(pBlkRef->normal().y));

 writeTag("z", toString(pBlkRef->normal().z));

 writeCloseTag("Normal");

 try

 {

 dumpEntityData(pBlkRef, indent);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\" ErrorDescription=\"%ls\">",

OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

/**

/

 /* Dump the attributes

*/

/**

/

 OdDbObjectIteratorPtr pIter = pBlkRef->attributeIterator();

 for (int i=0; !pIter->done(); i++, pIter->step())

135

 {

 OdDbAttributePtr pAttr = pIter->entity();

 if (!pAttr.isNull())

 {

 try

 {

 dumpAttributeData(indent, pAttr, i);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\" ErrorDescription=\"%ls\">",

OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 }

 }

}

/**

**/

/* Dump data common to all OdDbCurves

*/

/**

**/

void dumpCurveData(OdDbEntity* pEnt, int indent)

{

 OdDbCurvePtr pEntity = pEnt;

 OdGePoint3d startPoint;

 if (eOk == pEntity->getStartPoint(startPoint))

 {

 writeOpenTag("StartPoint");

 writeTag("x", toString(startPoint.x));

 writeTag("y", toString(startPoint.y));

 writeTag("z", toString(startPoint.z));

 writeCloseTag("StartPoint");

 }

 OdGePoint3d endPoint;

 if (eOk == pEntity->getEndPoint(endPoint))

 {

 writeOpenTag("EndPoint");

 writeTag("x", toString(endPoint.x));

 writeTag("y", toString(endPoint.y));

 writeTag("z", toString(endPoint.z));

 writeCloseTag("EndPoint");

 }

 writeTag("Closed", toString(pEntity-

>isClosed()));

136

 writeTag("Periodic", toString(pEntity-

>isPeriodic()));

 double area;

 if (eOk == pEntity->getArea(area))

 {

 writeTag("Area", toString(area));

 }

 dumpEntityData(pEntity, indent);

}

/**

* This class is a basic Block Reference Dumper inherited from the Class

OdDbEntity_Dumper.

* @extends OdDbEntity_Dumper

**/

class OdDbBlockReference_Dumper : public OdDbEntity_Dumper

{

public:

/**

* This function initializes the dumping of the Block Reference

information.

* @param pEnt This is a OdDbEntity pointer pointing to a

OdDbBlockReference_Dumper object.

* @param indent This is a space indent.

**/

 void dump(OdDbEntity* pEnt, int indent) const

 {

 OdDbBlockReferencePtr pBlkRef = pEnt;

 writeOpenTag("AcDbBlockReference");

 OdDbBlockTableRecordPtr pRecord = pBlkRef-

>blockTableRecord().safeOpenObject();

 writeTag("Id", toString(pBlkRef->getDbHandle().ascii()));

 writeTag("Name", toString(pRecord->getName()));

 try

 {

 dumpBlockRefData(pBlkRef, indent);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\" ErrorDescription=\"%ls\">",

OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 OdDbSpatialFilterPtr pFilt =

OdDbIndexFilterManager::getFilter(pBlkRef,

 OdDbSpatialFilter::desc(), OdDb::kForRead);

137

/**/

 /* Dump the Spatial Filter (Xref Clip)

*/

/**/

 if(pFilt.get())

 {

 writeTag(toString(pFilt->isA()), toString(pFilt-

>getDbHandle()));

 OdGePoint2dArray points;

 OdGeVector3d normal;

 double elevation, frontClip, backClip;

 bool enabled;

 pFilt->getDefinition(points, normal, elevation, frontClip,

backClip, enabled);

 writeOpenTag("Normal");

 writeTag("x", toString(normal.x));

 writeTag("y", toString(normal.y));

 writeTag("z", toString(normal.z));

 writeCloseTag("Normal");

 writeTag("Elevation",

toString(elevation));

 writeTag("FrontClipDistance", toString(frontClip));

 writeTag("BackClipDistance", toString(backClip));

 writeTag("Enabled", toString(enabled));

 for (int i = 0; i < (int) points.size(); i++)

 {

 writeOpenTag("ClipPoints");

 writeTag("ClipPoint", toString(points[i]));

 writeCloseTag("ClipPoints");

 }

 }

 writeCloseTag("AcDbBlockReference");

 }

};

/**

* This class is a basic Body Dumper inherited from the Class

OdDbEntity_Dumper.

* @extends OdDbEntity_Dumper

**/

class OdDbBody_Dumper : public OdDbEntity_Dumper

{

public:

/**

* This function initializes the dumping of the Body information.

* @param pEnt This is a OdDbEntity pointer pointing to a

OdDbBody_Dumper object.

* @param indent This is a space indent.

138

**/

 void dump(OdDbEntity* pEnt, int indent) const

 {

 OdDbBodyPtr pBody = pEnt;

 try

 {

 dumpEntityData(pBody, indent);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\" ErrorDescription=\"%ls\">",

OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 }

};

/**

* This class is a basic Line Dumper inherited from the Class

OdDbEntity_Dumper.

* @extends OdDbEntity_Dumper

**/

class OdDbLine_Dumper : public OdDbEntity_Dumper

{

public:

/**

* This function dumps the Line entity information.

* @param pEnt This is a OdDbEntity pointer pointing to a

OdDbLine_Dumper object.

* @param indent This is a space indent.

**/

 void dump(OdDbEntity* pEnt, int indent) const

 {

 OdDbLinePtr pLine = pEnt;

 writeOpenTag("AcDbLine");

 OdString idTxt = toString(pLine->getDbHandle().ascii());

 writeTag("Id", idTxt.mid(1, idTxt.getLength() -2));

 writeOpenTag("Normal");

 writeTag("x", toString(pLine->normal().x));

 writeTag("y", toString(pLine->normal().y));

 writeTag("z", toString(pLine->normal().z));

 writeCloseTag("Normal");

 writeTag("Thickness", toString(pLine->thickness()));

 try

 {

 dumpEntityData(pLine, indent);

 }

139

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\" ErrorDescription=\"%ls\">",

OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 writeCloseTag("AcDbLine");

 }

};

/**

* This class is a basic Polyline Dumper inherited from the Class

OdDbEntity_Dumper.

* @extends OdDbEntity_Dumper

**/

class OdDbPolyline_Dumper : public OdDbEntity_Dumper

{

public:

/**

* This function dumps the polyline entity information.

* @param pEnt This is a OdDbEntity pointer pointing to a

OdDbPolyline_Dumper object.

* @param indent This is a space indent.

**/

 void dump(OdDbEntity* pEnt, int indent) const

 {

 OdDbPolylinePtr pPoly = pEnt;

 writeOpenTag("AcDbPolyline");

 writeTag("Id", pPoly->getDbHandle().ascii());

 writeTag("HasWidth", toString(pPoly->hasWidth()));

 if (!pPoly->hasWidth())

 {

 writeTag("ConstantWidth", toString(pPoly-

>getConstantWidth()));

 }

 writeTag("HasBulges", toString(pPoly->hasBulges()));

 writeTag("Elevation", toString(pPoly->elevation()));

 writeOpenTag("Normal");

 writeTag("x", toString(pPoly->normal().x));

 writeTag("y", toString(pPoly->normal().y));

 writeTag("z", toString(pPoly->normal().z));

 writeCloseTag("Normal");

 writeTag("Thickness", toString(pPoly->thickness()));

/**/

140

 /* dump vertices

*/

/**/

 writeOpenTag("Vertices");

 for (int i = 0; i < (int) pPoly->numVerts(); i++)

 {

 writeOpenTag("Vertice");

 writeTag("SegmentType", toString(pPoly->segType(i)));

 OdGePoint3d pt;

 pPoly->getPointAt(i, pt);

 writeOpenTag("Point");

 writeTag("x", toString(pt.x));

 writeTag("y", toString(pt.y));

 writeTag("z", toString(pt.z));

 writeCloseTag("Point");

 if (pPoly->hasWidth())

 {

 double startWidth;

 double endWidth;

 pPoly->getWidthsAt(i, startWidth, endWidth);

 writeTag("StartWidth", toString(startWidth));

 writeTag("EndWidth", toString(endWidth));

 }

 if (pPoly->hasBulges())

 {

 writeTag("Bulge", toString(pPoly-

>getBulgeAt(i)));

 if (pPoly->segType(i) == OdDbPolyline::kArc)

 {

 writeTag("BulgeAngle", toDegreeString(pPoly-

>getBulgeAt(i)));

 }

 }

 writeCloseTag("Vertice");

 }

 writeCloseTag("Vertices");

 try

 {

 dumpEntityData(pPoly, indent);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\" ErrorDescription=\"%ls\">",

OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 writeCloseTag("AcDbPolyline");

 }

141

};

/**

* This class is a basic Block Text Dumper inherited from the Class

OdDbEntity_Dumper.

* @extends OdDbEntity_Dumper

**/

class OdDbText_Dumper : public OdDbEntity_Dumper

{

public:

/**

* This function dumps the Block Text entity data.

* @param pEnt This is a OdDbEntity pointer pointing to a

OdDbText_Dumper object.

* @param indent This is a space indent.

**/

 void dump(OdDbEntity* pEnt, int indent) const

 {

 OdDbTextPtr pText = pEnt;

 try

 {

 dumpTextData(pText, indent);

 }

 catch (OdError& e)

 {

 printf("\n<Status Error=\"Yes\" ErrorDescription=\"%ls\">",

OdString(e.description()).c_str());

 printf("\n </Status>");

 printf("\n</Results>");

 exit(0);

 }

 }

};

/**

* This class is a basic Arc Dumper inherited from the Class

OdDbEntity_Dumper.

* @extends OdDbEntity_Dumper

**/

class OdDbArc_Dumper : public OdDbEntity_Dumper

{

public:

/**

* This function dumps the Arc entity data.

* @param pEnt This is a OdDbEntity pointer pointing to a OdDbArc_Dumper

object.

* @param indent This is a space indent.

**/

 void dump(OdDbEntity* pEnt, int indent) const

 {

142

 writeOpenTag("AcDbArc");

 OdDbArcPtr pArc = pEnt;

 writeOpenTag("Center");

 writeTag("x", toString(pArc->center().x));

 writeTag("y", toString(pArc->center().y));

 writeTag("z", toString(pArc->center().z));

 writeCloseTag("Center");

 writeTag("Radius", toString(pArc->radius()));

 writeTag("StartAngle", toDegreeString(pArc-

>startAngle()));

 writeTag("EndAngle", toDegreeString(pArc-

>endAngle()));

 writeOpenTag("Normal");

 writeTag("x", toString(pArc->normal().x));

 writeTag("y", toString(pArc->normal().y));

 writeTag("z", toString(pArc->normal().z));

 writeCloseTag("Normal");

 writeTag("Thickness", toString(pArc->thickness()));

 dumpCurveData(pArc, indent);

 writeCloseTag("AcDbArc");

 }

};

/**

* This class is a Hatch Dumper inherited from the Class

OdDbEntity_Dumper.

* @extends OdDbEntity_Dumper

**/

/**

**/

/* Hatch Dumper

*/

/**

**/

class OdDbHatch_Dumper : public OdDbEntity_Dumper

{

private:

/**

*/

 /* Dump Polyline Loop

*/

/**

*/

 static void dumpPolylineType(int loopIndex , OdDbHatchPtr &pHatch,int

indent){

143

 OdGePoint2dArray vertices;

 OdGeDoubleArray bulges;

 pHatch->getLoopAt (loopIndex, vertices, bulges);

 bool hasBulges = (bulges.size() > 0);

 writeOpenTag("PolyLineLoop");

 writeOpenTag("Bulges");

 for (int i = 0; i < (int) vertices.size(); i++)

 {

 writeOpenTag("Bulge");

 writeTag("x", toString(vertices[i].x));

 writeTag("y", toString(vertices[i].y));

 if (hasBulges)

 {

 writeTag("BulgeValue", toString(bulges[i]));

 writeTag("BulgeAngle", toDegreeString(4*atan(bulges[i])));

 }

 writeCloseTag("Bulge");

 }

 writeCloseTag("Bulges");

 writeCloseTag("PolyLineLoop");

 }

/**

/

 /* Dump Circular Arc Edge

*/

/**

/

 static void dumpCircularArcEdge(int indent, OdGeCurve2d* pEdge) {

 OdGeCircArc2d* pCircArc = (OdGeCircArc2d*)pEdge;

 writeOpenTag("CircularArcEdge");

 writeOpenTag("Center");

 writeTag("x", toString(pCircArc->center().x));

 writeTag("y", toString(pCircArc->center().y));

 writeCloseTag("Center");

 writeTag("Radius", toString(pCircArc->radius()));

 writeTag("StartAngle", toDegreeString(pCircArc-

>startAng()));

 writeTag("EndAngle", toDegreeString(pCircArc-

>endAng()));

 writeTag("Clockwise", toString(pCircArc-

>isClockWise()));

 writeCloseTag("CircularArcEdge");

 }

144

/**

/

 /* Dump Elliptical Arc Edge

*/

/**

/

 static void dumpEllipticalArcEdge(int indent, OdGeCurve2d* pEdge) {

 OdGeEllipArc2d* pEllipArc = (OdGeEllipArc2d*)pEdge;

 writeOpenTag("EllipticalArcEdge");

 writeOpenTag("Center");

 writeTag("x", toString(pEllipArc->center().x));

 writeTag("y", toString(pEllipArc->center().y));

 writeCloseTag("Center");

 writeTag("MajorRadius", toString(pEllipArc-

>majorRadius()));

 writeTag("MinorRadius", toString(pEllipArc-

>minorRadius()));

 writeTag("MajorAxis", toString(pEllipArc-

>majorAxis()));

 writeTag("MinorAxis", toString(pEllipArc-

>minorAxis()));

 writeTag("StartAngle", toDegreeString(pEllipArc-

>startAng()));

 writeTag("EndAngle", toDegreeString(pEllipArc-

>endAng()));

 writeTag("Clockwise", toString(pEllipArc-

>isClockWise()));

 writeCloseTag("EllipticalArcEdge");

 }

/**

/

 /* Dump NurbCurve Edge */

/**

/

 static void dumpNurbCurveEdge(int indent, OdGeCurve2d* pEdge) {

 OdGeNurbCurve2d* pNurbCurve = (OdGeNurbCurve2d*)pEdge;

 int degree;

 bool rational, periodic;

 OdGePoint2dArray ctrlPts;

 OdGeDoubleArray weights;

 OdGeKnotVector knots;

 pNurbCurve->getDefinitionData (degree, rational, periodic, knots,

ctrlPts, weights);

 writeOpenTag("NurbCurveEdge");

145

 writeTag("Degree", toString(degree));

 writeTag("Rational", toString(rational));

 writeTag("Periodic", toString(periodic));

 int i;

 writeOpenTag("ControlPoints");

 for (i = 0; i < (int) ctrlPts.size(); i++)

 {

 writeTag("ControlPoint", toString(ctrlPts[i]));

 }

 writeCloseTag("ControlPoints");

 writeOpenTag("Knots");

 for (i = 0; i < knots.length(); i++)

 {

 writeTag("Knot", toString(knots[i]));

 }

 writeCloseTag("Knots");

 if (rational)

 {

 writeOpenTag("Weights");

 for (i = 0; i < (int) weights.size(); i++)

 {

 writeTag("Weight", toString(weights[i]));

 }

 writeCloseTag("Weigthts");

 }

 writeCloseTag("NurbCurveEdge");

 }

/**

*/

 /* Dump Edge Loop

*/

/**

*/

 static void dumpEdgesType(int loopIndex , OdDbHatchPtr &pHatch , int

indent){

 EdgeArray edges;

 pHatch->getLoopAt (loopIndex, edges);

// writeLine(indent++, DD_T("Edges"));

 writeOpenTag("Edges");

 for (int i = 0; i < (int) edges.size(); i++)

 {

 OdGeCurve2d* pEdge = edges[i];

 writeOpenTag("Edge");

 writeTag("Type", toString(pEdge->type()));

 switch (pEdge->type ())

146

 {

 case OdGe::kLineSeg2d :

break;

 case OdGe::kCircArc2d : dumpCircularArcEdge(indent + 1,

pEdge); break;

 case OdGe::kEllipArc2d : dumpEllipticalArcEdge(indent + 1,

pEdge); break;

 case OdGe::kNurbCurve2d : dumpNurbCurveEdge(indent + 1, pEdge);

break;

 }

/**/

 /* Common Edge Properties

*/

/**/

 OdGeInterval interval;

 pEdge->getInterval(interval);

 double lower;

 double upper;

 interval.getBounds(lower, upper);

 writeOpenTag("StartPoint");

 writeTag("x", toString(pEdge->evalPoint(lower).x));

 writeTag("y", toString(pEdge->evalPoint(lower).y));

 writeCloseTag("StartPoint");

 writeOpenTag("EndPoint");

 writeTag("x", toString(pEdge->evalPoint(upper).x));

 writeTag("y", toString(pEdge->evalPoint(upper).y));

 writeCloseTag("EndPoint");

 writeTag("Closed", toString(pEdge->isClosed()));

 writeCloseTag("Edge");

 }

 writeCloseTag("Edges");

 }

public:

/**

* This function dumps the Hatch entity data.

* @param pEnt This is a OdDbEntity pointer pointing to a

OdDbHatch_Dumper object.

* @param indent This is a space indent.

**/

 void dump(OdDbEntity* pEnt, int indent) const

 {

 OdDbHatchPtr pHatch = pEnt;

 //writeLine(indent++, toString(pHatch->isA()),

toString(pHatch->getDbHandle()));

147

 writeOpenTag("AcDbHatch");

 writeTag("Id", pHatch->getDbHandle().ascii());

 writeTag("Style", toString(pHatch-

>hatchStyle()));

 writeTag("ObjectType", toString(pHatch-

>hatchObjectType()));

 writeTag("IsHatch", toString(pHatch-

>isHatch()));

 writeTag("IsGradient", toString(!pHatch-

>isGradient()));

 if (pHatch->isHatch())

 {

/**/

 /* Dump Hatch Parameters

*/

/**/

 writeTag("PatternType", toString(pHatch-

>patternType()));

 switch (pHatch->patternType())

 {

 case OdDbHatch::kPreDefined:

 case OdDbHatch::kCustomDefined:

 writeTag("PatternName", toString(pHatch-

>patternName()));

 writeTag("SolidFill", toString(pHatch-

>isSolidFill()));

 if (!pHatch->isSolidFill())

 {

 writeTag("PatternAngle",

toDegreeString(pHatch->patternAngle()));

 writeTag("PatternScale", toString(pHatch-

>patternScale()));

 }

 break;

 case OdDbHatch::kUserDefined:

 writeTag("PatternAngle", toDegreeString(pHatch-

>patternAngle()));

 writeTag("PatternDouble", toString(pHatch-

>patternDouble()));

 writeTag("PatternSpace", toString(pHatch-

>patternSpace()));

 break;

 }

 }

 if (pHatch->isGradient())

 {

/**/

 /* Dump Gradient Parameters

148

*/

/**/

 writeTag("GradientType", toString(pHatch-

>gradientType()));

 writeTag("GradientName", toString(pHatch-

>gradientName()));

 writeTag("GradientAngle", toDegreeString(pHatch-

>gradientAngle()));

 writeTag("GradientShift", toString(pHatch-

>gradientShift()));

 writeTag("GradientOne-ColorMode", toString(pHatch-

>getGradientOneColorMode()));

 if (pHatch->getGradientOneColorMode()) {

 writeTag("ShadeTintValue", toString(pHatch-

>getShadeTintValue()));

 }

 OdCmColorArray colors;

 OdGeDoubleArray values;

 pHatch->getGradientColors(colors, values);

 writeOpenTag("Colors");

 for (int i = 0; i < (int) colors.size(); i++)

 {

 writeTag("Color", toString(colors[i]));

 writeTag("Interpolation", toString(values[i]));

 }

 writeCloseTag("Colors");

 }

/**/

 /* Dump Associated Objects

*/

/**/

 //writeLine(indent, DD_T("Associated objects"), toString(pHatch-

>associative()));

 OdDbObjectIdArray assocIds;

 pHatch->getAssocObjIds(assocIds);

 int i;

 writeOpenTag("AssociatedObjects");

 for (i = 0; i < (int) assocIds.size(); i++)

 {

 OdDbEntityPtr pAssoc = assocIds[i].safeOpenObject();

 writeTag("Id", pAssoc->getDbHandle().ascii());

 }

 writeCloseTag("AssociatedObjects");

/**/

 /* Dump Seed Points

149

*/

/**/

 writeOpenTag("SeedPoints");

 for (i = 0; i < pHatch->numSeedPoints(); i++)

 {

 writeOpenTag("SeedPoint");

 writeTag("x", toString(pHatch->getSeedPointAt(i).x));

 writeTag("y", toString(pHatch->getSeedPointAt(i).y));

 writeCloseTag("SeedPoint");

 }

 writeCloseTag("SeedPoints");

/**/

 /* Dump Loops

*/

/**/

 writeOpenTag("Loops");

 for (i = 0; i < pHatch->numLoops(); i++)

 {

 writeOpenTag("Loop");

 writeTag("type", toLooptypeString((int) pHatch-

>loopTypeAt(i)));

/**/

 /* Dump Loop

*/

/**/

 if(pHatch->loopTypeAt(i) & OdDbHatch::kPolyline)

 {

 dumpPolylineType(i , pHatch, indent + 2);

 }

 else

 {

 dumpEdgesType(i , pHatch , indent + 2);

 }

/**/

 /* Dump Associated Objects

*/

/**/

 if (pHatch->associative())

 {

 assocIds.clear();

150

 pHatch->getAssocObjIdsAt(i, assocIds);

 writeOpenTag("AssociatedObjects");

 for (int j = 0; j < (int) assocIds.size(); j++)

 {

 OdDbEntityPtr pAssoc = assocIds[j].safeOpenObject();

 writeTag("Id", pAssoc->getDbHandle().ascii());

 }

 writeCloseTag("AssociatedObjects");

 }

 writeCloseTag("Loop");

 }

 writeCloseTag("Loops");

 writeTag("Elevation", toString(pHatch->elevation()));

 writeOpenTag("Normal");

 writeTag("x", toString(pHatch->normal().x));

 writeTag("y", toString(pHatch->normal().y));

 writeTag("z", toString(pHatch->normal().z));

 writeCloseTag("Normal");

 dumpEntityData(pHatch, indent);

 writeCloseTag("AcDbHatch");

}

private:

};

/**

* This class is a basic Circle Dumper inherited from the Class

OdDbEntity_Dumper.

* @extends OdDbEntity_Dumper

**/

class OdDbCircle_Dumper : public OdDbEntity_Dumper

{

public:

/**

* This function dumps the Circle entity data.

* @param pEnt This is a OdDbEntity pointer pointing to a

OdDbCircle_Dumper object.

* @param indent This is a space indent.

**/

 void dump(OdDbEntity* pEnt, int indent) const

 {

 writeOpenTag("AcDbCircle");

 OdDbCirclePtr pCircle = pEnt;

 writeOpenTag("Center");

 writeTag("x", toString(pCircle->center().x));

 writeTag("y", toString(pCircle->center().y));

 writeTag("z", toString(pCircle->center().z));

 writeCloseTag("Center");

151

 writeTag("Radius", toString(pCircle->radius()));

 writeTag("Diameter", toString(2*pCircle-

>radius()));

 writeOpenTag("Normal");

 writeTag("x", toString(pCircle->normal().x));

 writeTag("y", toString(pCircle->normal().y));

 writeTag("z", toString(pCircle->normal().z));

 writeCloseTag("Normal");

 writeTag("Thickness", toString(pCircle-

>thickness()));

 dumpCurveData(pCircle, indent);

 writeCloseTag("AcDbCircle");

 }

};

/**

**/

/* Solid Dumper

*/

/**

**/

class OdDbSolid_Dumper : public OdDbEntity_Dumper

{

public:

 void dump(OdDbEntity* pEnt, int indent) const

 {

 OdDbSolidPtr pSolid = pEnt;

 //writeLine(indent++, toString(pSolid->isA()), toString(pSolid-

>getDbHandle()));

 writeOpenTag("AcDbSolid");

 writeTag("Id", pSolid->getDbHandle().ascii());

 writeOpenTag("Points");

 for (int i = 0; i < 4; i++)

 {

 OdGePoint3d pt;

 pSolid->getPointAt(i, pt);

 writeOpenTag("Point");

 writeTag("x", toString(pt.x));

 writeTag("y", toString(pt.y));

 writeTag("z", toString(pt.z));

 writeCloseTag("Point");

 }

 writeCloseTag("Points");

 dumpEntityData(pSolid, indent);

 writeCloseTag("AcDbSolid");

 }

152

};

class Dumpers

{

 OdStaticRxObject< OdDbBlockReference_Dumper >

m_blockReference;

 OdStaticRxObject< OdDbBody_Dumper >

m_bodyDumper;

 OdStaticRxObject< OdDbLine_Dumper >

m_lineDumper;

 OdStaticRxObject< OdDbPolyline_Dumper >

m_polylineDumper;

 OdStaticRxObject< OdDbText_Dumper >

m_textDumper;

 OdStaticRxObject< OdDbArc_Dumper >

m_arcDumper;

 OdStaticRxObject< OdDbCircle_Dumper >

m_circleDumper;

 OdStaticRxObject< OdDbHatch_Dumper >

m_hatchDumper;

 OdStaticRxObject< OdDbSolid_Dumper >

m_solidDumper;

public:

/**

/

 /* Add Protocol Extensions

*/

/**

/

 void addXs()

 {

 OdDbBlockReference ::desc()-

>addX(OdDbEntity_Dumper::desc(), &m_blockReference);

 OdDbBody ::desc()-

>addX(OdDbEntity_Dumper::desc(), &m_bodyDumper);

 OdDbLine ::desc()-

>addX(OdDbEntity_Dumper::desc(), &m_lineDumper);

 OdDbPolyline ::desc()-

>addX(OdDbEntity_Dumper::desc(), &m_polylineDumper);

 OdDbText ::desc()-

>addX(OdDbEntity_Dumper::desc(), &m_textDumper);

 OdDbArc ::desc()-

>addX(OdDbEntity_Dumper::desc(), &m_arcDumper);

 OdDbCircle ::desc()-

>addX(OdDbEntity_Dumper::desc(), &m_circleDumper);

 OdDbHatch ::desc()-

>addX(OdDbEntity_Dumper::desc(), &m_hatchDumper);

 OdDbSolid ::desc()-

153

>addX(OdDbEntity_Dumper::desc(), &m_solidDumper);

 } // end addXs

/**

/

 /* Delete Protocol Extensions

*/

/**

/

 void delXs()

 {

 OdDbBlockReference ::desc()-

>delX(OdDbEntity_Dumper::desc());

 OdDbBody ::desc()-

>delX(OdDbEntity_Dumper::desc());

 OdDbEntity ::desc()-

>delX(OdDbEntity_Dumper::desc());

 OdDbLine ::desc()-

>delX(OdDbEntity_Dumper::desc());

 OdDbPolyline ::desc()-

>delX(OdDbEntity_Dumper::desc());

 OdDbText ::desc()-

>delX(OdDbEntity_Dumper::desc());

 OdDbArc ::desc()-

>delX(OdDbEntity_Dumper::desc());

 OdDbCircle ::desc()-

>delX(OdDbEntity_Dumper::desc());

 OdDbHatch ::desc()-

>delX(OdDbEntity_Dumper::desc());

 OdDbSolid ::desc()-

>delX(OdDbEntity_Dumper::desc());

 }

};

/**

**/

/* Initialize protocol extensions

*/

/**

**/

void ExProtocolExtension::initialize()

{

 // Register OdDbEntity_Dumper with DWGdirect

 OdDbEntity_Dumper::rxInit();

 m_pDumpers = new Dumpers;

 m_pDumpers->addXs();

}

/**

154

**/

/* Uninitialize protocol extensions

*/

/**

**/

void ExProtocolExtension::uninitialize()

{

 m_pDumpers->delXs();

 OdDbEntity_Dumper::rxUninit();

 delete m_pDumpers;

 m_pDumpers = 0;

}

B.2 Normalization Component

Rules.xml: Rules document provided by the operator in this

format.

<?xml version="1.0" encoding="UTF-8"?>

<Rule>

 <Element path="AcDbBlockReference" ID="[4774]">

 <Item path="Id" compareTo="NoChange" nName="NoChange"/>

 <Item path="Name" compareTo="TAP_2EQ" nName="TAP2EQ"/>

 <Item path="Linetype" compareTo="625CABLE" nName="Cable625"/>

 <Item path="Position" compareTo="NoChange" nName="NoChange"/>

 <Item path="Rotation" compareTo="NoChange" nName="NoChange"/>

 <Item path="ScaleFactors" compareTo="NoChange"

nName="NoChange"/>

 <Item path="Normal" compareTo="NoChange" nName="NoChange"/>

 <Item path="MinExtents" compareTo="NoChange" nName="NoChange"/>

 <Item path="MaxExtents" compareTo="NoChange" nName="NoChange"/>

 <Item path="Layer" compareTo="NoChange" nName="NoChange"/>

 <Item path="ColorIndex" compareTo="NoChange" nName="NoChange"/>

 <Item path="Color" compareTo="NoChange" nName="NoChange"/>

 <Item path="LTscale" compareTo="NoChange" nName="NoChange"/>

 <Item path="Lineweight" compareTo="NoChange" nName="NoChange"/>

 <Item path="PlotStyle" compareTo="NoChange" nName="NoChange"/>

 <Item path="TransparencyMethod" compareTo="NoChange"

nName="NoChange"/>

 <Item path="Visibility" compareTo="NoChange" nName="NoChange"/>

 <Item path="Planar" compareTo="NoChange" nName="NoChange"/>

 <Item path="Planarity" compareTo="NoChange" nName="NoChange"/>

 <Item path="Origin" compareTo="NoChange" nName="NoChange"/>

 <Item path="u-Axis" compareTo="NoChange" nName="NoChange"/>

 <Item path="v-Axis" compareTo="NoChange" nName="NoChange"/>

 <Item path="Attribute" handle="[4775]">

 <AttrItem path="Tag" compareTo="EQVALUE" nAttr="eqValue"/>

 <AttrItem path="Color" compareTo="Foreground"

155

nAttr="FGround"/>

 <AttrItem path="Normal" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="MinExtents" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="MaxExtents" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="Layer" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="ColorIndex" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="LTscale" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="Lineweight" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="PlotStyle" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="TransparencyMethod" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="Visibility" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="Planar" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="Planarity" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="Origin" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="u-Axis" compareTo="NoChange"

nAttr="NoChange"/>

 <AttrItem path="v-Axis" compareTo="NoChange"

nAttr="NoChange"/>

 </Item>

 <Item path="Attribute" handle="[4776]">

 <AttrItem path="Tag" compareTo="TAPVALUE"

nAttr="tapValue"/>

 </Item>

 <CadProp name="BlockRef"/>

 </Element>

 <Element path="AcDbBlockReference" ID="[142B]">

 <Item path="Name" compareTo="POLE_JOINT" nName="JointPole"/>

 <Item path="Attribute" handle="[142C]">

 <AttrItem path="Tag" compareTo="DETAG" nAttr="Detag"/>

 </Item>

 <CadProp name="BlockRef"/>

 </Element>

 <Element path="AcDbPolyline" ID="[46AF]">

 <Item path="Layer" compareTo="CABLE_625" nName="Cable625"/>

 <CadProp name="PolyLine"/>

 </Element>

</Rule>

156

RulesTransform.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output indent="yes" method="xml"/>

 <xsl:template match="/">

 <xsl:element name="xsl:stylesheet">

 <xsl:namespace name="xsl"

select="'http://www.w3.org/1999/XSL/Transform'"/>

 <xsl:attribute name="version" select="'2.0'"/>

 <xsl:apply-templates/>

 </xsl:element>

 </xsl:template>

 <xsl:template match="Rule">

 <xsl:element name="xsl:output">

 <xsl:attribute name="indent" select="'yes'"/>

 <xsl:attribute name="method" select="'xml'"/>

 </xsl:element>

 <xsl:element name="xsl:template">

 <xsl:attribute name="match" select="'/'"/>

 <xsl:for-each select="Element">

 <xsl:variable name="AcDb">

 <xsl:value-of select="@ID"/>

 </xsl:variable>

 <xsl:variable name="Elemvar">

 <xsl:value-of select="@path"/>

 </xsl:variable>

 <xsl:element name="xsl:apply-templates">

 <xsl:attribute name="select" select="concat('//',

$Elemvar, '[Id', "='", $AcDb, "']")"/>

 </xsl:element>

 </xsl:for-each>

 </xsl:element>

 <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="Rule/Element">

 <xsl:variable name="Acdbvarp">

 <xsl:value-of select="@path"/>

 </xsl:variable>

 <xsl:variable name="Acdbvarn">

 <xsl:value-of select="@ID"/>

 </xsl:variable>

 <xsl:variable name="ItComTo">

 <xsl:value-of select="Item/@compareTo"/>

 </xsl:variable>

 <xsl:element name="xsl:template">

157

 <xsl:attribute name="match" select="concat('//', $Acdbvarp,

'[Id', "='", $Acdbvarn, "']")"/>

 <xsl:element name="{$Acdbvarp}">

 <xsl:for-each select="//Element/Item">

 <xsl:if test="../@ID = $Acdbvarn">

 <xsl:variable name="Itpath">

 <xsl:value-of select="@path"/>

 </xsl:variable>

 <xsl:variable name="ItCompTo">

 <xsl:value-of select="@compareTo"/>

 </xsl:variable>

 <xsl:if test="$ItCompTo = 'NoChange'">

 <xsl:element name="xsl:copy-of">

 <xsl:attribute name="select"

select="@path"/>

 </xsl:element>

 </xsl:if>

 <xsl:if test="$ItCompTo != 'NoChange'">

 <xsl:element name="{$Itpath}">

 <xsl:value-of select="@nName"/>

 <xsl:if test="$Itpath = 'Attribute'">

 <xsl:variable name="AttrHand">

 <xsl:value-of

select="@handle"/>

 </xsl:variable>

 <xsl:if test="@handle = $AttrHand">

 <xsl:for-each

select="//Item/AttrItem[../@handle=$AttrHand]">

 <xsl:if test="@compareTo = 'NoChange'">

 <xsl:element name="xsl:copy-of">

 <xsl:attribute name="select"

select="@path"/>

 </xsl:element>

 </xsl:if>

 <xsl:if test="@compareTo != 'NoChange'">

 <xsl:variable name="AttrItpath">

 <xsl:value-of select="@path"/>

 </xsl:variable>

 <xsl:element name="{$AttrItpath}">

 <xsl:value-of select="@nAttr"/>

 </xsl:element>

 </xsl:if>

 </xsl:for-each>

 </xsl:if>

 </xsl:if>

 </xsl:element>

 </xsl:if>

 </xsl:if>

 </xsl:for-each>

 </xsl:element>

158

 </xsl:element>

 <xsl:apply-templates/>

 </xsl:template>

</xsl:stylesheet>

RulesOut.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="2.0">

 <xsl:output indent="yes" method="xml"/>

 <xsl:template match="/">

 <xsl:apply-templates select="//AcDbBlockReference[Id='[4774]']"/>

 <xsl:apply-templates select="//AcDbBlockReference[Id='[142B]']"/>

 <xsl:apply-templates select="//AcDbPolyline[Id='[46AF]']"/>

 </xsl:template>

 <xsl:template match="//AcDbBlockReference[Id='[4774]']">

 <AcDbBlockReference>

 <xsl:copy-of select="Id"/>

 <Name>TAP2EQ</Name>

 <Linetype>Cable625</Linetype>

 <xsl:copy-of select="Position"/>

 <xsl:copy-of select="Rotation"/>

 <xsl:copy-of select="ScaleFactors"/>

 <xsl:copy-of select="Normal"/>

 <xsl:copy-of select="MinExtents"/>

 <xsl:copy-of select="MaxExtents"/>

 <xsl:copy-of select="Layer"/>

 <xsl:copy-of select="ColorIndex"/>

 <xsl:copy-of select="Color"/>

 <xsl:copy-of select="LTscale"/>

 <xsl:copy-of select="Lineweight"/>

 <xsl:copy-of select="PlotStyle"/>

 <xsl:copy-of select="TransparencyMethod"/>

 <xsl:copy-of select="Visibility"/>

 <xsl:copy-of select="Planar"/>

 <xsl:copy-of select="Planarity"/>

 <xsl:copy-of select="Origin"/>

 <xsl:copy-of select="u-Axis"/>

 <xsl:copy-of select="v-Axis"/>

 <Attribute>

 <Tag>eqValue</Tag>

 <Color>FGround</Color>

 <xsl:copy-of select="Normal"/>

 <xsl:copy-of select="MinExtents"/>

 <xsl:copy-of select="MaxExtents"/>

 <xsl:copy-of select="Layer"/>

 <xsl:copy-of select="ColorIndex"/>

 <xsl:copy-of select="LTscale"/>

 <xsl:copy-of select="Lineweight"/>

 <xsl:copy-of select="PlotStyle"/>

159

 <xsl:copy-of select="TransparencyMethod"/>

 <xsl:copy-of select="Visibility"/>

 <xsl:copy-of select="Planar"/>

 <xsl:copy-of select="Planarity"/>

 <xsl:copy-of select="Origin"/>

 <xsl:copy-of select="u-Axis"/>

 <xsl:copy-of select="v-Axis"/>

 </Attribute>

 <Attribute>

 <Tag>tapValue</Tag>

 </Attribute>

 </AcDbBlockReference>

 </xsl:template>

 <xsl:template match="//AcDbBlockReference[Id='[142B]']">

 <AcDbBlockReference>

 <Name>JointPole</Name>

 <Attribute>

 <Tag>Detag</Tag>

 </Attribute>

 </AcDbBlockReference>

 </xsl:template>

 <xsl:template match="//AcDbPolyline[Id='[46AF]']">

 <AcDbPolyline>

 <Layer>Cable625</Layer>

 </AcDbPolyline>

 </xsl:template>

</xsl:stylesheet>

B.3 Geo-translation Component

geoLocate.xsl

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:xalan="http://xml.apache.org/xalan"

 xmlns:math="http://exslt.org/math"

 xmlns:func="http://exslt.org/functions"

 xmlns:kmln="http://earth.google.com/kml/2.1"

 exclude-result-prefixes="xalan math func"

 version="2.0">

 <xsl:template match="/">

 <kml>

 <Document id="0" xmlns="">

 <name>CAD Geolocalization</name>

160

 <Snippet maxLines="0" />

 <Style id="khStyle_0">

 <IconStyle>

 <color>FF00AAFF</color>

 <scale>1</scale>

 <Icon>

 <href>root://icons/palette-4.png</href>

 <x>32</x>

 <y>128</y>

 <w>32</w>

 <h>32</h>

 </Icon>

 </IconStyle>

 <LabelStyle>

 <color>FFFFFFFF</color>

 <scale>1</scale>

 </LabelStyle>

 </Style>

 <xsl:apply-templates/>

 </Document>

 </kml>

 </xsl:template>

 <xsl:function name="func:getResult">

 <xsl:param name="olat"/>

 <xsl:param name="olon"/>

 <xsl:param name="Xcord"/>

 <xsl:param name="Ycord"/>

 <xsl:param name="Zcord"/>

 <xsl:variable name="sx" select="$Xcord div 3.2808399"/>

 <xsl:variable name="sy" select="$Ycord div 3.2808399"/>

 <xsl:variable name="temp1" select="($sx * $sx) + ($sy * $sy)"/>

 <xsl:variable name="r" select="math:sqrt($temp1)"/>

 <xsl:variable name="ct" select="$sx div $r"/>

 <xsl:variable name="st" select="$sy div $r"/>

 <xsl:variable name="sx1" select="$r * $ct"/>

 <xsl:variable name="sy1" select="$r * $st"/>

 <xsl:variable name="deg2radLat" select="$olat div 57.2957795"

/>

 <xsl:variable name="deg2radLatx3" select="$deg2radLat * 3"/>

 <xsl:variable name="deg2radLatx5" select="$deg2radLat * 5"/>

 <xsl:variable name="deg2radLatcos"

select="math:cos($deg2radLat)"/>

 <xsl:variable name="deg2radLatx3cos"

select="math:cos($deg2radLatx3)"/>

 <xsl:variable name="deg2radLatx5cos"

select="math:cos($deg2radLatx5)"/>

 <xsl:variable name="deg2radLon" select="$olon div 57.2957795"

/>

161

 <xsl:variable name="deg2radLonx2" select="$deg2radLon * 2"/>

 <xsl:variable name="deg2radLonx4" select="$deg2radLon * 4"/>

 <xsl:variable name="deg2radLonx6" select="$deg2radLon * 6"/>

 <xsl:variable name="deg2radLonx2cos"

select="math:cos($deg2radLonx2)"/>

 <xsl:variable name="deg2radLonx4cos"

select="math:cos($deg2radLonx4)"/>

 <xsl:variable name="deg2radLonx6cos"

select="math:cos($deg2radLonx6)"/>

 <xsl:variable name="metDegLon" select="((111415.13 *

$deg2radLatcos) - (94.55 * $deg2radLatx3cos) + (0.12 *

$deg2radLatx5cos))"/>

 <xsl:variable name="metDegLat" select="(111132.09 - (566.05 *

$deg2radLonx2cos) + (1.20 * $deg2radLonx4cos) - (0.002 *

$deg2radLonx6cos))"/>

 <xsl:variable name="plon" select="($olon + ($sx1 div

$metDegLon))"/>

 <xsl:variable name="plat" select="($olat + ($sy1 div

$metDegLat))"/>

 <xsl:value-of select="concat($plon,',',$plat,',',$Zcord)"/>

 </xsl:function>

 <xsl:template match="//AcDbBlockReference">

 <Placemark>

 <name>

 <xsl:value-of select="Id" />

 </name>

 <styleUrl>#khStyle_0</styleUrl>

 <Snippet maxLines="0" />

 <description>

 <xsl:text disable-output-

escaping="yes"><![CDATA[<]]></xsl:text>

 <xsl:value-of select="'![CDATA['" />

 <xsl:for-each select="*">

 <xsl:if test="compare(name(),'Attribute') = 0">

 <xsl:text disable-output-

escaping="yes"><![CDATA[Attribute]]></xsl:text>

 <xsl:for-each select="../Attribute/*">

 <xsl:value-of select="concat(name(.),' =

')" />

 <xsl:value-of select="." />

 <xsl:text disable-output-

escaping="yes"><![CDATA[
]]></xsl:text>

 </xsl:for-each>

 </xsl:if>

 <xsl:if test="compare(name(),'Attribute') != 0">

 <xsl:value-of select="concat(name(),' = ')" />

 <xsl:value-of select="." />

 <xsl:text disable-output-

escaping="yes"><![CDATA[
]]></xsl:text>

162

 </xsl:if>

 </xsl:for-each>

 <xsl:value-of select="']]'" />

 <xsl:text disable-output-

escaping="yes"><![CDATA[>]]></xsl:text>

 </description>

 <xsl:variable name="PosXcord" select="number(substring-

before(Position,' '))" />

 <xsl:variable name="parsVar" select="substring-

after(Position,' ')" />

 <xsl:variable name="PosYcord" select="number(substring-

before($parsVar,' '))" />

 <xsl:variable name="PosZcord" select="number(substring-

after($parsVar,' '))" />

 <!--

 <Pars1>

 <xsl:value-of select="$PosXcord"/>

 </Pars1>

 <Pars2>

 <xsl:value-of select="$PosYcord"/>

 </Pars2>

 <Pars3>

 <xsl:value-of select="$PosZcord"/>

 </Pars3>

 -->

 <Point>

 <coordinates>

 <xsl:value-of select="func:getResult(38.983073,-

77.05617,$PosXcord,$PosYcord,$PosZcord)" />

 </coordinates>

 </Point>

 </Placemark>

 </xsl:template>

</xsl:stylesheet>

	Abstract
	Dedication
	Acknowledgements
	Vita
	Table of Figures
	Introduction
	Problem Statement
	Solution Approach
	Contributions

	Related Work
	Data Fusion
	Ontology
	Geographic Topology
	Ontology-based Data Integration

	Contributions
	Solution Approach & Implementation
	Software Tools
	DxGrep
	Normalization
	Geo-translation
	Ontology and Rule based Inference Engine

	Evaluation of Architecture

	Conclusion
	Future Work
	References
	Appendix A: Environment set for the development of DxGrep Tool
	Appendix B: Code Implementation
	DxGrep Tool
	Normalization Component
	Geo-translation Component

