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Abstract 

 

 

 

 
There are compiler techniques using which efficient communication 

statements can be generated with user supplied data-distributions. These 

techniques work for regular array access functions but many applications use 

irregular access functions. It is difficult to generate efficient communication 

statements for irregular accesses as compile time characterization of the 

computation structure of such applications is infeasible.  In many 

applications, the irregular computational patterns recur a number of times 

during execution. This recurring section of an application can be analyzed 

once at run time to determine its computation structure and then the 

information collected can be used to generate an efficient communication 

schedule for it. This model of compiling a section of a program is an example 

of Inspector-Executor compilation. This thesis aims at identifying such 

sections in a program automatically at compile-time. The algorithms needed 

for this are implemented using the Low Level Virtual Machine (LLVM) 

compiler framework and are used to detect such sections in the SPEC 

benchmarks.  The relative running time of all such sections is calculated with 

respect to that of the entire program by using HPCToolkit. 
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Chapter 1 

Introduction 

 

Modern multiprocessors have the potential to significantly speed up scientific 

and engineering applications. But writing parallel programs using the 

message passing paradigm is currently impeding this. With the help of user 

specified data-distributions, a compiler can automatically generate 

communication statements needed for parallelization in shared-space 

programming models (5, 8). Though there are compiler techniques for 

generating efficient communication for programs with regular access 

functions (6, 7, 9), many applications use irregular access functions and 

compile time characterization of the computation structure of such 

applications is infeasible which makes it difficult to generate efficient 

communication statements. The paper by Eswar et al., [2] addresses an 

important issue pertaining to efficient parallel implementation of scientific 

and engineering computations with irregular array accesses. In many 

engineering applications, the irregular computational patterns recur a 

number of times during the execution [4, 10]. This recurring section of an 

application can be analyzed once at run time to determine its computation 

structure and then use the information collected to generate an efficient 

communication schedule for it. This model of compiling a section of a 
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program is an example of Inspector-Executor compilation. The analysis is 

performed by the Inspector and the execution by the Executor. In this 

context, the recognition of sections of programs with repetitive computation 

patterns is clearly very important. 

The Inspector-Executor model has been used in PARTI [3] which consists of a 

set of primitives that can be embedded in distributed-memory parallel 

programs which help in determining the communication required for arrays 

used in a parallel loop. The ARF compiler [11] can also generate Inspectors 

and Executors with help from user for specifying the parallel loops and their 

data distributions. PARTI primitives are embedded in the generated 

Inspectors and Executors. 

This thesis addresses the issue of automatic compile-time identification of 

sections of a program that exhibit recurring computational patterns using the 

algorithm from [2]. The relative execution time for all such sections with 

respect to that of the whole program is shown for each of the SPEC 2000 and 

2006 benchmarks. 

 

1.1 Inspector Executor Model 

In order to parallelize certain loops, enough information must be available 

about the required elements belonging to the loop body so that they can be 

sent to different processors. Some of this information may not be available at 

compiler time, but it can be obtained at run time by emulating one iteration 

of the loop body and information obtained can then be used to actually 

execute the loop in parallel. The code section that emulates the loop body to 
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find the information is called the Inspector and the code section that actually 

executes the loop body with the information supplied by the Inspector is 

called the Executor. This model of executing programs is called the 

Inspector-Executor (IE) model and the code sections are called IE-sections. 

Eswar et al., [2] deals with identification of sections of a program for which 

the Inspector-Executor model can be applied. The algorithm finds all loop 

bodies whose statement dependence graph remains invariant in a given 

execution of that loop. Such loop bodies are called IE/L-sections. Since the 

statement dependence graph remains invariant in a given execution of the 

loop, we can extract the information required by emulating one iteration and 

the cost for that can be amortized over that particular execution of the loop. 

However, the actual statement dependence graph cannot be computed until 

runtime so we cannot check if the actual dependence graph is invariant. But 

we can impose certain conditions (that can be checked at compile-time) on 

the structure of the loop that is sufficient to conclude that the dependence 

graph will be invariant at runtime.  

1.2 Compile-time identification of IE/L-sections 

If L is the loop under question, then let β denote its body. To describe the 

conditions to be checked, a function SI/L(β, v, S) is defined, where SI stands 

for Sequence Invariant. When applied to the use of a variable v in a 

statement S, it returns true or false depending on whether v’s value remains 

invariant during a particular instance of execution of the loop or not. The 

conditions are from [2] and are listed below for completeness. For β to be an 

IE/L-section, the following conditions have to be true: 
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a. For every control statement S in β and for every variable v used in its 

condition P,     (     )       . 

b. For every variable v used in the array subscript expression of a non-

control statement S in β,     (     )       . 

In order to do a compile-time test to check if a given loop-section is an IE/L-

section, we can check the above conditions on all possible (v, S) pairs in  . If 

both the conditions are true for that  , then it is considered an IE/L-section 

and not otherwise. Several definitions from the area of compiler design [1] 

will be used in the following for the computation of SI/L which are described 

below. Some definitions are from the compilers class at Ohio State University 

taught by Prof. Atanas Rountev. 

IE/L-sections are defined with respect to loops and hence we have to first 

recover the loops from the generated llvm bytecode. This is done by 

constructing a control flow graph. 

1.2.1 Control flow graph 

A control flow graph is a graph made up of Basic Blocks. Basic blocks are 

maximal sequences of consecutive three-address instructions with the 

following properties: 

1. There cannot be any jumps in the middle of the block and control flow 

can enter the block only through the first instruction in the block. 

2. The conditional or unconditional jump statement can only be at the 

end of the basic block. 
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There is an edge from one basic block in the control flow graph to another if 

there is a jump statement, either conditional or unconditional, from one basic 

block to another or the last instruction in the first block immediately precedes 

the first instruction in the second basic block in the input bytecode. The first 

block will be called the predecessor of the second block and the second block 

the successor of the first block. 

The control structure of the input bytecode can be represented using a 

control flow graph. Consider the code section below that shows a bytecode 

representation of an if-else statement. The entry basic block branches to 

either basic block bb or bb1 depending upon the value in %3. Both of these 

blocks will then branch the basic block bb2. Its control flow graph will be as 

shown but without the three address instructions for simplicity – 

 

 

 

Figure 1: LLVM bytecode and its control flow graph 

 

 

 

entry: 

 ... 

  br i1 %3, label %bb, label %bb1 

bb: 

 ... 

  br label %bb2 

bb1: 

 ... 

  br label %bb2 

bb2: 

 ... 

  br label %return 

 

 

 

entry 

bb2 

bb 

bb1 
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1.2.2 Loops 

A loop in the control flow graph is a strongly connected component with a 

single entry point. A strongly connected component is a maximal set of nodes 

such that each node in the set is reachable from every other node in the set.  

A backedge in the control flow graph is an edge (a, b) in that control flow 

graph such that a is dominated by b. A node x dominates another node y in 

the control flow graph, if all paths from the entry node to node y have go 

through node x. The natural loop for a back edge (a, b) is the set of all nodes 

m that can reach node n without going through node b. All such nodes m are 

dominated by b. For the natural loop formed by the backedge (a, b), node b 

will be the header. 

 

 

 

Figure 2: Structure of a loop showing its backedge and header node 

 

 

Thus using these concepts we can recover the loop structure of the input 

source code.  

b 

a 

backedge 

header 
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1.2.3 Reaching definitions 

A statement S that assigns a value to a variable v, scalar, array or structure 

variable, is called the definition of that variable. The first step of the 

algorithm requires the analysis of every use in every statement in the loop 

body. For each such use, all the definitions that are reaching it are 

computed. This is done using reaching definition analysis which is a type of 

dataflow analysis.  

If p is a point in the program and d is a definition of a variable x then d 

reaches p if there is a path in the control flow graph from p to d and if there 

are no other definitions for that variable x along that path. When there is a 

definition of the same variable along that path, the former definition is killed 

by the latter definition. 

1.2.4 Control Dependence 

Simply stated, a node n is control dependent on another node c in the control 

flow graph if the decision made at c decides whether node n is executed at 

runtime or not. Formally, there is a control dependence of node n on node c 

if, 

1. c has two edges e1 and e2 and one edge, say e1, causes n to be 

executed at runtime. 

2. Following edge e2 avoids the execution of n. 

Since a basic block consists of statements, it can be said that all the 

statements of node n are control dependent on the conditional statement in 

c. 
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1.3 Finding IE/L-sections 

The algorithm for identifying the IE/L-sections is a combination for computing 

the backward program slice and loop invariants for a program. It is from [2] 

and shown below for completeness.  

Call the loop L and its body as β.  

 
Step 1 

Check every variable v used in a statement S in β, and assign     (     ) a false 

value if v has definitions reaching S from both inside and outside of the loop L and 

true otherwise. 

 

Step 2 

Let RD be the set of definitions of v under question that are inside L and reaching a 

statement S under question 

Let CP be the set of control predecessors of a given statement S inside  

The following is repeated as long as there is a change to any SI/L value, 

for each v and S such that     (     )           do 

if any use in any statement in RD or CP has a false SI/L value then set 

    (     )        

 

Step 3 

Change     (     ) to true for any pair (v, S) such that     (     )           
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Chapter 2 

Implementation Using LLVM 

 

The Low Level Virtual Machine (LLVM) compiler framework has been used for 

implementing the algorithms described in other chapters. LLVM has frontends 

for compiling C, C++ and FORTRAN programs to the LLVM bytecode format. 

LLVM also has libraries for reading the bytecode programs and performing 

analysis, transformation and code-generation using it. The analysis part of 

LLVM has been used in this implementation.  

2.1 LLVM Passes 

Any analysis on the bytecode program is done through an LLVM pass. Even 

LLVM optimizations are implemented as passes. Analysis passes do not 

change the input program and just compute information that other passes 

can use. So one pass can depend on another pass and this dependency has 

to be defined when the pass is defined. There are several main LLVM passes 

available. A custom LLVM pass has to inherit from one of these passes. The 

main passes are: 

1. Module pass 

This pass as the name suggests runs on a module. Using this we can 

perform analysis on all the functions in the program. 
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2. Call Graph SCC pass 

This pass is used to traverse the call graph of the program in a bottom 

up fashion. 

3. Function Pass 

This pass visits every function in the input program once. 

 

4. LoopPass 

This pass visits every loop in the program once. If a loop is nested, 

then each of its sub-loops is also visited. 

5. BasicBlockPass 

This pass visits every basic block in the control flow graph of the input 

program. 

6. MachineFunctionPass 

This pass executes on the machine dependent-representation of an 

LLVM function in the program. 

Function Pass is used for implementing the algorithm for finding the IE/L-

sections. Even though it would be easier to implement using the LoopPass, 

FunctionPass is chosen because control dependence and reaching definition 

computation are done using a FunctionPass and LLVM does not allow a 

LoopPass to be dependent on a FunctionPass. 

To start defining a function pass, we have to inherit from the class 

FunctionPass. The construct for FunctionPass takes an identifier as its 

argument which must be passed from our pass. The functions 
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runOnFunction, getAnalysisUsage are virtual functions that have to be 

overridden in the derived class. The runOnFunction is the function where the 

actual implementation of the analysis will be. This function is called for every 

function in the input program and gets an object of type Function that 

represents the current function. The getAnalysisUsage method is used to 

define the dependency between various passes – either custom or built-in. 

The pass for finding IE/L-sections depends on the control dependence pass 

and the reaching definition pass so this dependency is established as shown- 

 

 

Figure 3: Defining interaction between passes 

 

 

The LoopInfo pass gives information about the loops and is also used to visit 

every loop in the program without having to depend on LoopPass. The 

custom pass also has to be registered so that it can be represented using a 

command line argument and provided with a description that can be 

accessed from the command line using the opt tool. Registration is done as 

shown: 

void SIL::getAnalysisUsage(AnalysisUsage &AU) const 

{ 

    AU.setPreservesAll(); 

    AU.addRequired<ControlDependence>(); 

    AU.addRequired<ReachingDef>(); 

    AU.addRequired<LoopInfo>(); 

  } 
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static RegisterPass<SIL> sil("iel", "find all IE/L sections"); 

Here iel is the name using which the SIL pass can be accessed from opt as 

described in sections ahead. 

LLVM is flexible enough to allow custom options to be passes to the opt tool 

so that they can be interpreted by custom passes. This is done by using the 

cl::opt template class.  

cl::opt<bool>  

printRejected("iel:print-rejected",  

cl::desc("Print rejected candidates for IE/L-sections")); 

 

This defines the option “iel:print-rejected” that when passed to opt will 

print the rejected candidates for IE-L/sections along with some brief 

information that describes why it was rejected. The object printRejected 

defined here can be treated as a boolean variable whose value will be true if 

the above flag was passed and false otherwise. The string passed to 

cl::desc’s constructor is description for this option that is printed when opt 

is executed with the flag --help. 

2.2 Control flow graph 

LLVM has a pass named BasicBlockPass that visits every basic block of the 

control flow graph. Another way of traversing the control flow graph is by 

manually visiting the successors or predecessors of a given node. We can 

start with the entry node which can be obtained for a given function in the 

input program using the following method on the LLVM Function object: 

const BasicBlock &getEntryBlock() const 
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There are several ways of accessing the successors predecessors of a given 

node in the control flow graph. A convenient way is shown below: 

 

 

Figure 4: Accessing control flow graph in LLVM 

 

 

2.3 Loops 

LLVM has a pass that makes it easy for traversing the loops in a control flow 

graph. The LoopInfo class provides information about a loop and it can also 

be used to iterate through all the loops in the input program. There are 

several ways by which we can get access to the loops in the program using 

the LoopInfo class. They are described below: 

1. Iterate through every basic block in the control flow graph and use the 

getLoopFor method. If that basic block is contained in a loop then that 

loop is returned otherwise NULL is returned. This way we can access 

every loop in the program but since a loop can contain more than  one 

for (succ_iterator i = succ_begin(node); i != succ_end(node); ++i) 

{ 

//... 

} 

for (pred_iterator i = pred_begin(node); i != pred_end(node); ++i) 

{ 

 //... 

} 

 

accessing successors 

accessing predecessors 
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basic block, we will be visiting the loops more than once. So some kind 

of flag must be used to avoid this. 

2. Use the iterators in LoopInfo to iterate through all outer loops in the 

program. If a loop is nested then its sub-loops can be accessed using 

getSubLoops method on the Loop class and this process can be 

repeated recursively to access all the loops in the program. 

 

 

Figure 5: Accessing loops in LLVM using LoopInfo 

 

 

void processLoop(Loop* loop) 

{ 

//do some work here 

const std::vector<Loop*>& subLoops = loop->getSubLoops(); 

for (std::vector<Loop*>::const_iterator j =  

subLoops.begin(); j != subLoops.end(); ++j) 

{ 

Loop* subLoop = *j; 

processLoop(loop); 

} 

} 

 

void processLoops(LoopInfo& loopInfo) 

{ 

for (LoopInfo::iterator i = loopInfo.begin(); i !=  

loopInfo.end(); ++i) 

  { 

Loop* loop = *i; 

  processLoop(loop);   

} 

 } 



 

15 

The LoopInfo object can be obtained by using the getAnalysis function as 

shown: 

LoopInfo& loopInfo = getAnalysis<LoopInfo>(); 

The LoopPass class can be used to visit every loop in the program once but 

LLVM does not allow a LoopPass to be dependent on a FunctionPass and 

since the control dependence and reaching definition passes are function 

passes, LoopInfo was used. 

2.4 Reaching definitions 

This section describes the algorithms used for computing reaching definitions 

and show how they differ when dealing with the specifics of LLVM. 

2.4.1 Reaching definitions for scalars 

The data flow analysis for reaching definitions can be represented using the 

following equations: 

IN[n]   m Predecessors(n)O  [m] 

O  [EN   ]    

O  [n] (IN[n]   KILL[n])   GEN n  

where, 

n is a basic block, 

Predecessors(n) is the predecessors of that basic block, 

ENTRY is the entry edge of the control flow graph, 

KILL[n] = KILL[s1]   KILL[s2]   KILL[s3]  …  KILL[sm] 

and s1, s2, …sm are the instructions in the basic block n and 
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KILL[sk] is set of all definitions of the variable whose value is changed by sk 

which is basically the set of instructions killed by instruction sk. 

GEN[n] = GEN[sm]   (GEN[sm-1] - KILL[sm])   (GEN[sm-2] - KILL[sm-1] - 

KILL[sm])   …  (GEN[s1] – KILL[s2] - KILL[s3] - … - KILL[sm]) 

where, 

GEN[sk] is the singleton set containing the definition sk and GEN[n] is the set 

of all instructions that are downwards exposed i.e., not killed by a 

subsequent definition in the basic block n. 

To calculate KILL[sk], all the instructions in the basic block can be examined 

and if a variable is found to be defined more than once then the kill sets can 

be modified accordingly. For example: 

d1: a = b + c 

d2: d = a + 10 

d3: a = e + f 

Variable a is defined twice and the definition at d3 kills the definition at d1 

and vice versa. So, the kill set KILL[d1] will contain d3 and KILL[d3] will 

contain d1. 

Once the KILL and GEN sets have been constructed, the IN and OUT sets can 

be constructed using the following iterative algorithm: 
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Figure 6: Algorithm for computing reaching definitions 

 

 

The registers in LLVM bytecode representation use the SSA format. SSA 

stands for Static Single Assignment, which is an intermediate representation 

where every variable is assigned only once. Since every variable is assigned 

only once, reaching definition analysis becomes easy. LLVM uses this 

representation for registers. Finding all the definitions reaching an instruction 

using this technique is shown below: 

for (use_iterator i = value.op_begin(); i != value.op_end(); ++i) 

{ 

 //... 

} 

 

The loop above iterates through every operand of an instruction. Since every 

register operand has only one definition, this directly finds all the definitions 

of registers that are reaching this instruction. 

set OUT[ENTRY] to   

for every basic block b other than ENTRY 

set OUT[b] to   

Repeat the following until there are no changes to any OUT 

for every basic block b other than ENTRY 

set IN[b] to  m is a Predecessor of b OUT[m]; 

set OUT[b] to GEN[b]  (IN[b] – KILL[b]); 
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2.4.2 Variables with loads and stores 

In some cases LLVM resorts to loads and stores for memory variables but 

this can be changed by running the pass mem2reg which promotes memory 

references to register references. However, arrays and structures are not 

promoted by this form and they are manipulated using loads and stores as 

shown: 

 

 

1 

2 

3 

 

4 

5 

%a = alloca [10 x i32]   

 

%3 = getelementptr inbounds [10 x i32]* %a, i64 0, i64 %2  

%4 = load i32* %3, align 4   

 

%1 = getelementptr inbounds [10 x i32]* %a, i64 0, i64 %0 

store i32 undef, i32* %1, align 4 

 

Figure 7: Load and store instructions for arrays 

 

 

%a is an array of size 10 whose elements are of 32 bits each. Line 2 gets the 

address of this array by indexing at location pointed by register %2. Line 3 

loads the value at this location and stores it into register %4.  

LLVM uses the SSA form only for registers and since reaching definitions for 

arrays and structures are also needed, it has to be implemented. This can be 

done by treating every load as a read and every store as a write. However, 

for arrays we will not know the exact element that is being written to until 
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run time and we would like to perform reaching definition analysis at compile 

time. For example: 

d1: a[0] = ... 

d2: ... = a[i] 

Here we cannot tell if a[0] is being used at d2 or not until we know the value 

of i and that value may not be available until runtime. Treating a load and a 

store of an array or a structure element as load and store of the array and 

the structure itself will get around this problem. This will result in a 

conservative analysis and a few actual IE/L-sections will be missing from the 

reported IE/L-sections. For example: 

 

1 

 

2 

3 

4 

5 

6 

7 

8 

a[0] = ... 

 

for (iter = 0; iter < 10; ++iter) 

{ 

for (i = 1; i < 10; ++i) 

{ 

 a[j] = a[j - 1] + ... 

} 

} 

 

The outer loop is a valid IE/L-section because at run-time, the only definition 

reaching line 6, from outside the loop, is a[0]. So a[1] uses a[0], a[2] uses 

a[1] and so on. At any point during the execution of the loop the value 

reaching a line is either from inside the loop or outside the loop but not both. 

But treating every read and write of an array element as read and write of 

the array itself will effectively change the above code from the perspective of 

reaching definition analysis into: 
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1 

 

2 

3 

4 

5 

6 

7 

8 

a = ... 

 

for (iter = 0; iter < 10; ++iter) 

{ 

for (i = 1; i < 10; ++i) 

{ 

 a = a + ... 

} 

} 

 

The loops above are clearly not IE/L-sections and this is mainly because of 

the transformation of read/write of array elements to read/write of arrays. 

Reaching definition analysis for arrays and stores treated as one variable 

does not differ much from that for scalar variables but there are a few 

changes. Described below is the procedure for this analysis along with the 

necessary changes. 

2.4.2.1 Kill sets for arrays and structures 
 

For arrays and structures, the read and write of any array or structure 

element is treated as the read and write of the entire array. So an array or 

structure definition cannot be killed because of a subsequent array or 

structure definition. For example: 

d1 

d2 

d3 

d4 

a[i] = … 

b = a[i] + … 

a[j] = … 

c = a[i] + a[j] 
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If d1 is killed because of d3 and if i and j are different, then the definitions 

reaching d4 will be computed as d3 which is incorrect. Hence, both d1 and d3 

reach d4 and d1 is not killed by d3 and vice versa. This requires that the kill 

set for arrays and definitions be empty sets and all the array and structure 

definitions be downward exposed.  

LLVM uses loads and stores for certain variables that are not arrays or 

structures. For these variables we can use the original equations for reaching 

definitions but for arrays and structures they are modified as shown: 

 

O  [EN   ]    

O  [ n ] IN  n     GEN  n   

where, 

GEN[ n ] = GEN[ sm ]   GEN[ sm-1 ]   GEN[ sm-2 ]  …  GEN[ s1 ] 

2.4.3 Generalized equations 

Generalizing this by combining it for all variables, 

IN[ n ]   m Predecessors(n)O  [ m ] 

O  [ EN    ]    

O  [ n ] (IN[ n ]   KILL[ n ])   GEN  n   

where n is a basic block, 

Predecessors(n) is the predecessors of that basic block, 

ENTRY is the entry edge of the control flow graph, 

KILL[n] = KILL[s1]   KILL[s2]   KILL[s3]  …  KILL[sm] 
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where s1, s2 …sm are the instructions that do not operate on arrays and 

structures in the basic block n and 

KILL[sk] is set of all definitions of the variable whose value is changed by sk 

is basically the set of instructions killed by instruction sk. 

GEN[n] = GEN[sm]   (GEN[sm-1] - KILL[sm])   (GEN[sm-2] - KILL[sm-1] - 

KILL[sm])   …  (GEN[s1] – KILL[s2] - KILL[s3] - … - KILL[sm]) 

where, 

GEN[sk] is the singleton set containing the definition sk and GEN[n] is the set 

containing any array, structure definitions in basic block n and all 

other instructions that are downwards exposed i.e., not killed by a 

subsequent definition in the basic block n. 

2.5 Control Dependences 

Algorithm for finding all control dependences is described below: 

1. Consider all control flow graph edges (c, b) such that b does not post-

dominate c. This implies that c is a branch node containing a 

conditional statement. 

2. Traverse the post-dominator tree bottom-up, starting at b and 

stopping immediately before the parent of c. 

3. For every visited node n, report that n is control dependent on c 

The above algorithm is based on the post-dominator tree of the control flow 

graph. A node x is said to post-dominate a node y if all paths to the exit node 

of the control flow graph starting from node y must go through node x. A 
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node x strictly post-dominates node y if x post-dominates y and x is not 

equal to y. The immediate post-dominator of a node x is the post-dominator 

of x that does not strictly post-dominate any other strict post-dominators of 

x. The post-dominator tree is a tree made up of the nodes from the control 

flow graph such that every parent node post-dominates all its children.  

LLVM has a pass named postdomtree represented by the class 

PostDominatorTree that computes the post dominator tree. So the algorithm 

for computing the control dependences can be implemented using this pass. 

The control dependences can be obtained in terms of basic blocks or 

instructions. So if a basic block X is control dependent on basic block Y, then 

all instructions in X are control dependent on the conditional branch 

instruction in Y. This branch instruction will be the last instruction of that 

basic block which is also called as Terminator Instruction in LLVM. The three 

types of Terminator instructions that are relevant to control dependences are 

described below [12] – 

1. conditional br instruction 

br i1 <cond>, label <iftrue>, label <iffalse> 

This instruction causes the control flow to transfer to basic block 

labeled by <iftrue> if the condition <cond> is true and to basic block 

labeled <iffalse> if the condition is false. 

2. switch instruction 

switch <intty> <value>, label <defaultdest> [ <intty> 

<val>, label <dest> ... ] 

 



 

24 

This instruction transfers control to one of several different basic 

blocks and specifies a table of values and destinations. This control 

transfer is dependent on the outcome of the comparison of <value>. If 

this value matches any of the values in the table then the control is 

transferred to the basic block that has the corresponding label. If the 

value is not found in the table then control is transferred to the basic 

block labeled <defaultdest>. 

 

3. invoke instruction 

<result> = invoke [cconv] [ret attrs] <ptr to function ty> 

<function ptr val>(<function args>) [fn attrs] 

                to label <normal label> unwind label 

<exception label> 

 

This instruction transfers control to a function that is specified as part 

of the instruction but the control may also be transferred to <normal 

label> if the callee returns with the ret instruction or <exception 

label> if the callee returns with the unwind instruction.  

2.6 Running the tool 

The tool to find the IE/L sections in a program is built using LLVM’s system of 

passes. LLVM’s passes are run using the LLVM tool named opt. This tool 

takes the name of the pass to run as its argument along with the file on 

which this pass is to run.  he file has to be in the LLVM’s bytecode format. 

LLVM has compilers to translate C, C++, FORTRAN source into LLVM 
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bytecode format. So if we want to find the IE/L sections in a C source file 

named input.c, it first needs to be compiled to the LLVM bytecode format 

using the command: 

$llvm-gcc –g –emit-llvm –c input.c –o input.bc 

The –g debug flag has to be included so that there is information about the 

source code line numbers in the resulting input.bc file. This information will 

be used while reporting the selected IE/L-sections. 

The tool assumes that mem2reg has been run on this resulting input.bc file. 

So mem2reg also needs to be applied to input.bc as shown- 

$opt –mem2reg input.bc –o input.bc –f 

If the source code for the tool has been installed with the rest of llvm then 

the resulting input.bc file has to be passed to opt as shown below – 

$opt –iel input.bc 

otherwise we have to load all the custom-built passes that iel is dependent 

upon line reaching definition analysis and control dependence analysis. 

$opt –load <llvm_installation>/Debug/lib/reaching-def.so \ 

-load <llvm_installation>/Debug/lib/control-dependence.so \ 

-load <llvm_installation>/Debug/lib/iel.so -iel input.bc 

where <llvm_installation> is the absolute/relative path of the llvm install 

directory. 

The output of this will be a list of IE/L-sections.  

2.7 Interpreting the output 

The reported IE/L-sections will have enough information to be mapped back 

to the corresponding source code loops. Here is an example –  
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Line no: 37 

Range: 37-38 

Source file: av.c 

Function: Perl_av_reify  

Loop header: bb2 

 

 

Header Description 

  

Line no 

Line number of the loop whose body 

has been idenfitied as an IE/L section 

Range 

Line numbers where this loop is 

spread across 

Source file The source file containing this loop 

Loop header 

The label of the header of this loop in 

LLVM bytecode 

Function The function that contains this loop 

 

Table 1: Description of the IE-L/section report 

 

 

If we want information about the rejected candidate loops then the option 

iel:print-rejected has to be passes to opt. This is mainly used for 

debugging. Here is an example of this output – 

Branch 

Line: 2829 

Loop: bb175 
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Line: 2829 

Value:   %378 = load i8* %p.1, align 1 

Step2a: 2829 

Step1: 2824     2827    2830 
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Header Description 

  

Branch 

This indicates that rejection’s cause is 

a branch instruction that mapped to a 

conditional statement in the source 

code. This corresponds to Proposition 

2’a 

Line Loop’s line number in the source code  

Loop 
Loop header’s label in in LLVM 

bytecode 

Line 

Line number of the branch instruction 

containing the value that lead to the 

rejection of this loop. 

Value 

The value in LLVM bytecode whose 

SI/L value was false which lead to the 

rejection of this loop 

Step1, Step2a, Step2b 

Trace to the rejection source. This 

shows different steps in the algorithm 

when a false value is assigned to an 

SI/L parameter. The source line 

numbers next to these show the 

propagation path of this value. If a 

parameter with false value at line 

number xyz is responsible for setting 

this parameter’s value to false in 

Step2a, then that line number is 

included here. 

 

Table 2: Description of rejected candidates for IE/L-section 
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A count of the total number of loops in the file along with the numberof IE/L-

sections can be obtained by passing the option –iel:print-count. 

2.8 Example 

Shown below is a modified code snippet from the jacobi-1d-imper test case 

from polyrose tests. Call the body of the loop at line 1 as β1. Since the 

algorithm is run on the bytecode, shown below Figure 8 is the bytecode for C 

code. 

 

1 

2 

3 

4 

5 

 

  for (t = 0; t < tsteps; t++) 

  { 

      for (i = 2; i < n - 1; i++) 

          B[i] = 33 * A[i]; 

  } 

 

Figure 8: Example code based on jacobi-1d-imper 
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1 

2 

3 

4 

5 

 

6 

7 

 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

 

24 

25 

26 

 

27 

28 

29 

30 

 

31 

32 

 

33 

34 

entry: 

  %A = alloca [10 x i32]                           

  %B = alloca [10 x i32]                           

  %"alloca point" = bitcast i32 0 to i32           

  br label %bb4 

 

bb:                                                

  br label %bb2 

 

bb1:                                               

  %0 = sext i32 %i.0 to i64                        

  %1 = getelementptr inbounds [10 x i32]* %A, i64 0, i64 %0  

  %2 = load i32* %1, align 4                       

  %3 = mul nsw i32 %2, 33                          

  %4 = sext i32 %i.0 to i64                        

  %5 = getelementptr inbounds [10 x i32]* %B, i64 0, i64 %4  

  store i32 %3, i32* %5, align 4 

  %6 = add nsw i32 %i.0, 1                         

  br label %bb2 

 

bb2:                                               

  %i.0 = phi i32 [ 2, %bb ], [ %6, %bb1 ]          

  %7 = sub nsw i32 4096, 1                         

  %8 = icmp sgt i32 %7, %i.0                       

  br i1 %8, label %bb1, label %bb3 

 

bb3:                                               

  %9 = add nsw i32 %t.0, 1                         

  br label %bb4 

 

bb4:                                               

  %t.0 = phi i32 [ 0, %entry ], [ %9, %bb3 ]       

  %10 = icmp slt i32 %t.0, 10000                   

  br i1 %10, label %bb, label %bb5 

 

bb5:                                               

  br label %return 

 

return:                                            

  ret i32 0 

 

Figure 9: LLVM bytecode for C code in Figure 8 
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(β, v, S) 
Reaching 
values 

RD CP s0 s1 

      

(β1, %t.0, 25) 0, %9 25  F F 

(β1, %7, 22)  22  D T 

(β1, %i.0, 22) 2, %6 16,   D T 

(β1, %8, 23)  23  D T 

(β1, %i.0, 9) 2, %6 16 23 D T 

(β1, %A, 10)  - 23 D T 

(β1, %0, 10)  10 23 D T 

(β1, %1, 11)  11 23 D T 

(β1, %2, 12)  12 23 D T 

(β1, %i.0, 13)  9 23 D T 

(β1, %B, 14)  - 23 D T 

(β1, %4, 14)  14 23 D T 

(β1, %3, 15)  15 23 D T 

(β1, %5, 15)  15 23 D T 

(β1, %i.0, %6) 2, %6 9 23 D T 

 

Table 3: Trace of SI/L values for the bytecode in Figure 9 

 

 

The first column shows the SI/L-parameters in β1. The second column labeled 

Reaching values is the set of definitions reaching the instruction for that SI/L 

parameter. RD and CP are as described from Section 1.3. s0 and s1 show the 

SI/L values for all the parameters for the different steps and iterations in the 

algorithm. The circled values are the ones that are finally checked to see if β1 

is an IE/L-section or not. These values are picked on the basis of conditions 

in Section 1.2. 
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Since an IE/L-section was found its details are printed so that it can be 

correlated with the source code as shown: 

Line no: 25 

Range: 25-28 

Source file: test.c 

Loop header: bb4 

Function: main 

 

Description of each of the above field is in Section 2.7. 
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Chapter 3 

Characterization Of IE/L-Sections 

 

This sections shows the relative running time of all the IE/L-sections in the 

program with respect to that of the entire program. The programs selected 

are from SPEC 2000 and SPEC 2006 benchmarks. HPCToolkit was used to 

measure the performance of the program.  

3.1 Using HPCToolkit 

HPCToolkit[13] reports the relative performance of individual loops in the 

program with respect to that of the entire program. HPCToolkit integrates 

with PAPI and allows specification of PAPI events. The list of PAPI events can 

be obtained by running the commands papi_avail and papi_native_avail. The 

event used in this performance analysis is PAPI_TOT_CYC which represents 

the total cycles. Specifiying a period of say 1000000 for this event in 

HPCToolkit samples the running application every 10000000 cycles. 

HPCToolkit can report the performance in three ways - calling context view, 

callers view and flat view. Flat view is used in this performance analysis as it 

shows the total cost of a loop for the entire duration of the program.  So 

even if two different procedures have a call to another procedure containing 
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a loop, then the cost of the loop in Flat view will be the aggregate of the cost 

of the loop in each of those calls. HPCToolkit comes with hpcviewer that 

shows all three views in a GUI. However, for this performance analysis 

hpcviewer was not used and instead hpcrun-flat and hpcproftt were used that 

provide the flat view of performance in a textual dump which is easier for 

analysis using shell scripts. 

The steps in obtaining the flat view performance using hpcrun-flat and 

hpcproftt are shown below: 

1. Compile the input program with debug information. 

2. Run the program using hpcrun-flat. This creates a file containing the 

performance information. A new file is created for every run. 

$hpcrun-flat -e PAPI_TOT_CYC:period -- binary_name 

binary_arguments 

3. Run hpcstruct with the binary to be profiled as its argument. This 

recovers the structure of the program in a file named 

binary_name.hpcstruct. 

$hpcstruct binary_name 

4. Run hpcproftt by providing the name of the files created by (1) and 

(2). There is an option to specify that we want the performance 

summary of just loops and performance information alongside source. 

This is done by using the option –src=l,src. l represents the loops. 

Other options can be found in hpcproftt’s man page. This creates a 

textual dump of the flat view performance summary. The -I option 

provides the location of the source code for this binary if hpcproftt 

cannot find the location but is not always required. 
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$hpcproftt --src=l,src  file_created_by_hpcrun-flat  -S  

file_created_by_hpcstruct   -I path_to_source_code 

 

3.2 Building SPEC benchmarks 

Compiling the benchmarks without using the benchmark’s makefiles can be 

tricky. SPEC has a simple method for building these benchmarks. Since we 

need debug information to be enabled we have to modify the makefiles. 

SPEC uses a common makefile for all the benchmarks that is in the folder 

spec-installation/benchspec and is named Makefile.defaults. This has 

separate sections for specifying the flags for C, C++ and FORTRAN 

programs. The EXTRA_CFLAGS,  EXTRA_CXXFLAGS and EXTRA_FFLAGS were 

modified by adding the “-g” flag which is for debug information in the 

binaries. Also, the optimizations were disabled by providing the –O0 flag in 

the EXTRA_OPTIMIZE field. 

3.3 Identifying IE/L-sections in SPEC benchmarks 

Since HPCToolkit reports the loop performance by providing the line number 

of the loop and the source file containing the loop, it becomes necessary to 

provide these pieces of information while printing out the IE/L-sections as 

well. This allows correlation of the idenfiied IE/L-sections with the output 

from HPCToolkit. This information is provided from llvm-2.7 onwards.   

The LLVM Instruction class has methods named getMetadata and 

setMetadata that can be used for managing information about every 

instruction that is available across different llvm passes. The debug 

information is also provided using this mechanism. If inst is an llvm 
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Instruction then inst->getMetadata(“dbg”) returns an object of type 

MDNode. The line and source file information can then be obtained as shown- 

 
MDNode* mdNode = inst->getMetadata(“dbg”); 

DILocation loc(mdNode); 

const char* file = loc.getFilename().str().c_str(); 

int line = loc.getLineNumber(); 

 

For getting the line number of a loop we can use the first instruction in the 

header node of the loop. We can also print out the range of line numbers of a 

loop by computing the min and max of all line numbers for the instructions in 

the loop by either going through all the basic blocks or just examining the 

header node and the node connected to the header node through the 

backedge. 

Since we want the performance of all IE/L-sections in the program, the outer 

loops of the program are first checked for IE/L-sections. If this check fails 

then its sub-loops are analyzed recursively. Thus even if all the loops in a 

nested loop are IE/L-sections, including the outer most loop, then only that 

loop is reported. This makes it easy for correlating the data from HPCToolkit 

automatically as HPCToolkit reports the performance of each loop in a nested 

loop separately. Not including the option iel:outer-loops in opt will report 

the nested loops as well. 

3.4 Results 

The following graphs show the relative execution time of IE/L-sections with 

respect to the whole program for SPEC 2006 and SPEC 2000 benchmarks. 
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The bars in red represent FORTRAN benchmarks. Some of FO   AN’s DO 

loops are translated by LLVM such that the source code body becomes part of 

the header of the control flow graph loop. Since the IE/L-section analysis is 

on the body of the loop and since there are no statements in the body that 

cause a rejection, all such loops are counted as IE/L-sections even though 

they are not IE/L-sections when their source code is analyzed. Since we are 

doing the analysis on the bytecode, we have to go by the definition of the 

loop with respect to a control flow graph. These loops are not reported in the 

figures below. 

 

 

 

Figure 10: Performance of IE/L-sections in SPEC 2006 benchmarks 
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SPEC 2006 

benchmark 

IE/L-sections’ 

relative execution 

time 

dealII 36.77% 

xalancbmk 16.65% 

bzip2 9.17% 

perlbench 7.11% 

gobmk 6.77% 

povray 3.85% 

h264ref 2.11% 

sphinx3 0.83% 

omnetpp 0.44% 

gromacs 0.17% 

leslie3d 0.1% 

astar 0.01% 

lbm 0.01% 

wrf 0% 

cactusADM 0% 

 

SPEC 2006 

benchmark cont.… 

IE/L-sections’ 

relative execution 

time 

tonto 20.85% 

bwaves 10.07% 

gcc 7.12% 

sjeng 6.89% 

libquantum 3.95% 

mcf 2.46% 

milc 1.09% 

calculix 0.76% 

soplex 0.19% 

gemsFDTD 0.17% 

gamess 0.02% 

namd 0.01% 

hmmer 0% 

zeusmp 0% 

 

 

Table 4: Performance of IE/L-sections in SPEC 2006 benchmarks 

 

 

The following figure shows the nesting depths of IE/L-sections in the SPEC 

2006 benchmarks. 
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Figure 11: Nesting depths of IE/L-sections in SPEC 2006 benchmarks 

 

 

SPEC 2006 
benchmark 

Number of IE/L-

sections 

1 6569 

2 1252 

3 417 

4 177 

5 78 

6 10 

7 5 

8 1 

9 2 

 

Table 5: Nesting depths of IE/L-sections in SPEC 2006 benchmarks 
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Figure 12: Performance of IE/L-sections in SPEC 2000 Int benchmarks 
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SPEC 2000 
Integer 

benchmark 

IE/L-sections’ 

relative execution 

time 

parser 12.99% 

perlbmk 11.91% 

twolf 8.95% 

mcf 8.22% 

gcc 6.59% 

bzip2 5.80% 

gzip 5.21% 

eon 2.83% 

crafty 2.70% 

vortex 1.00% 

vpr 0.03% 

gap 0.00% 

 

Table 6: Performance of IE/L-sections in SPEC 2000 Int benchmarks 
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Figure 13: Performance of IE/L-sections in SPEC 2000 FP benchmarks 
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SPEC 2000 

Floating point 
benchmark 

IE/L-sections’ 

relative execution 

time 

 

mesa 13.88% 

art 2.61% 

ammp 0.58% 

wupwise 0.46% 

galgel 0.05% 

quake 0.02% 

fma3d 0.01% 

lucas 0.01% 

swim 0% 

mgrid 0% 

applu 0% 

facerec 0% 

sixtrack 0% 

apsi 0.00% 

 

Table 7: Performance of IE/L-sections in SPEC 2000 FP benchmarks 

 

 

The following fitures show the nesting depths of IE/L-sections in the SPEC 

2000 Integer and Floating point benchmarks. The first one shows that among 

the IE/L-sections that were found in the Integer benchmarks, 62% of them 

had a nesting depth of 1, 26% of them had a nesting depth of 2 and so on. 
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Nesting depth Number of IE/L-sections 

1 2048 

2 1026 

3 385 

4 99 

5 1 

  

Table 8: Nesting depths of IE/L-sections in SPEC 2000 Int 
benchmarks 

 

 

 

Figure 14: Nesting depths of IE/L-sections in SPEC 2000 Int benchmarks 
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Nesting depth 
Number of IE/L-

sections 

1 100 

2 66 

3 39 

4 2 

 

Table 9: Nesting depths of IE/L-sections in SPEC 2000 FP benchmarks 

 

 

 

 

Figure 15: Nesting depths of IE/L-sections in SPEC 2000 Int benchmarks 

SPEC 2000 FP 
Nesting depths  
of IE/L-sections 

1

2

3

4

Nesting 
depths 



 

46 

Bibliography 

 

1. A. Aho, M. Lam, R. Sethi, and J. Ullman, "Compilers: Principles, 
Techniques and Tools" Pearson Education, 2007. 

2. K. Eswar, P. Sadayappan, C. Huang, "Compile-time Characterization of 
Recurrent Patterns in Irregular Computations" 

3. H. Berryman, J. Saltz, and J. Scroggs, "Execution time support for 

adaptive scientific algorithms on distributed memory machines". 
Concurrency: Practice and Experience, Vol. 3, pp. 159-178, 1991. 

4. R. Das, et al., "The design and implementation of a parallel unstructured 
Euler solver using software primitives". ICASE Report No. 92-12, Institute for 

Computer Applications in Science and Engineering, Rice University, 1992. 

5. G. Fox, et al., "Fortran D Language Specification". Rice COMP TR90-141, 

Department of Computer Science, Rice University, 1990. 

6. M. Gupta and P. Banerjee, "A methodology for high level synthesis of 

communication on multicomputers". Sixth ACM International Conference on 

Supercomptuting, 1991. 

7. S. K. S. Gupta, et al., "On the generation of efficient data communication 

for distributed-memory machines". Proceedings of the International 

Computing Symposium, Vol. 1, pp. 504-513, 1992. 

8. High Performance Fortran Forum, High Performance Fortran Language 

Specification, Version 1.0, Draft, 1993 

9. S. Hiranandani, K. Kennedy and C. Tseng, "Compiler support for 

machine-independent parallel programming in Fortran D", In Compilers and 
Runtime Software for Scalable Multiprocessors (J. Saltz and P. Mehrotra, 

editors), Elsevier, 1991. 

10. P. Sadayappan and V. Visvanathan, "Circuit simulation on shared-
memory multiprocessors". IEEE Trans. Comput., Vol. 37, pp. 1634-1642, 

1988 

11. J. Wu, J. Saltz, H. Berryman, and S. Hiranandani, “Distributed 

memory compiler design for sparse problems.” ICASE  eport No. 91-13, 

Institute for Computer Applications in Science and Engineering, 1991 



 

47 

12. Low Level Virtual Machine (http://llvm.org/) 

13. HPCToolkit (http://hpctoolkit.org/) 


