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Abstract

Ranked Set Sampling (RSS) is a data collection technique that combines mea-

surement with judgment ranking for statistical inference. After a brief review of the

basics of RSS, this dissertation lays out a formal and natural Bayesian framework for

RSS that is analogous to its frequentist justi�cation, and that does not require the

assumption of perfect ranking or use of any imperfect ranking models. Prior beliefs

about the judgment order statistic distributions and their interdependence are em-

bodied by a nonparametric prior distribution. Posterior inference is carried out by

means of Markov Chain Monte Carlo (MCMC) techniques, and yields estimators of

the judgment order statistic distributions (and of functionals of those distributions).

Because of non-conjugacy, di�erent MCMC algorithms are used for continuous and

discrete data. Judgment post-strati�cation is introduced to answer questions about

handling information from multiple rankers, the quality of judgment ranking, and the

role of set size. Finally, a more speci�c model is proposed for RSS with judgment

ranking via a concomitant variable.
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Chapter 1

An Unorthodox Introduction to Ranked Set Sampling

1.1 Motivation: Tallying Termites in Trenches is Tedious.

Reticulitermes �avipes, better known as the Eastern Subterranean Termite, is a

common economic pest in North America. In the early 1980's, the Southern Forest

Experiment Station, a branch of the U.S. Forest Service, initiated research on this and

other Reticulitermes species in southern Mississippi. An important step in developing

a fuller understanding of termite ecology was estimating the mean number of termites

in a mature R. �avipes colony. Howard et al. [1982] describe in great detail the

painstaking procedure of estimating the number of termites in a single colony:

A trench (30 cm wide by 122 cm deep) was dug with a tractor-mounted
backhoe at a radius of ca. 20 m completely around the colony site to
constrain both emigration of the colony's foraging population and immi-
gration of termites from other colonies. The log and associated stump
were assumed to constitute the epicenter of the colony. Any logs or other
large cellulose debris without termites were placed outside the trench. As
the trench was dug, the log portion of the colony was sawed into ca. 25-
cm lengths, and each was examined for termites. Segments containing
termites were placed in sequence into garbage cans and taken to the labo-
ratory. Segments without termites were removed from the site. The stump
and taproot associated with the log then were extracted from the soil by
severing lateral roots with an axe and digging out the stump/taproot
with the tractor-mounted backhoe. This wood was sawed into ca. 25-cm
segments and processed as above.
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To sample termites remaining in the soil, a double layer of corrugated
cardboard, 60 cm wide by 2 cm deep, was laid on the ground covering the
previous site of the log and stump. The cardboard then was moistened
and covered with black polyethylene plastic and held in place with small
amounts of soil at the edges. One to 3 weeks later, the cardboard was
examined for termites, and penetration sites were noted. The cardboard
from each penetration site was taken to the laboratory. Uninfested card-
board was discarded. Fresh sections of cardboard, 60 cm wide by 5 cm
thick, were placed over only the active infestation sites, covered with black
plastic, and completely buried with soil. This cardboard was examined
weekly and replaced with new cardboard until termite infestation either
ceased or declined to negligible levels (500 or fewer termites). The logs
and stump/taproots were sampled from 23 March to 12 April 1981; the
cardboard was sampled from 16 April to 12 June.

Termites were exhaustively extracted by splitting the wood along growth
rings or by pulling layers of cardboard apart. Extraneous debris was
removed and the termites from each garbage can were weighed. Repre-
sentative subsamples (n = 3 to 16) from each colony then were reweighed
and counted. The resulting average numbers of termites per gram were
used to estimate the numbers of termites in each colony.

If estimating the number of termites in a single colony is so tedious, costly, and

time-consuming, what hope is there of estimating the average number of termites

in a mature R. �avipes colony? Obviously, measuring a large random sample of

colonies is not feasible. Since the standard error of the sample mean for a Simple

Random Sample (SRS) varies in inverse proportion to the square root of the sample

size, smaller samples will produce estimators marred by a higher margin of error.

However, even a small sample can be made less �random� and more �representative�

by allocating its units across the spectrum of the population.

In this example, the experimenters used a method �rst proposed by McIntyre

[1952] (in an agricultural context involving pasture yields) that had lain dormant

until it was put to use again by Halls and Dell [1966] for �estimating weights of browse

and herbage in a pine-hardwood forest of east Texas.� Howard et al. identi�ed 18
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mature R. �avipes colonies in the study site, and allocated them at random into 6

sets, each containing 3 colonies. The members of each set were ranked visually by

estimated size as �small,� �medium,� or �large.� �The ranking of each of the three

colonies within a set was done on the same day, to facilitate visual comparisons of

termite numbers.� In two sets, those two colonies labeled �small� were designated as

sampling units and chosen for measurement. In another two sets, the two colonies

labeled �medium� were chosen for measurement. In the remaining two sets, the two

colonies deemed �large� were chosen for measurement. The 6 selected colonies were

measured as described above. The remaining 12 colonies were not measured. Howard

et al. provide the data in Table 1 of their paper. This method is called Ranked Set

Sampling (RSS), for entirely conspicuous reasons.

Positing a population of mature R. �avipes colonies, the researchers were inter-

ested in estimating the population mean number of termites in such colonies, �. Their

estimate was the RSS sample mean, about 244,445 termites per colony, merely the

average of the 6 sample measurements. It will be shown in Section 1.3 of this chapter

that the RSS mean is an unbiased estimator of the population mean. The standard

error of the RSS mean, that is, the square root of its variance, is unknown, but an

unbiased estimate of the variance of the sample mean may be calculated, and its

square root is 53,901.69. (Howard et al. incorrectly give a standard error for the

RSS mean of 53,156, which is the standard error of the SRS mean for a SRS of size 6

consisting of these data.) Needless to say, the population variance �2 is also unknown,

but an unbiased estimate (see Section 1.5) is 17,033,026,187 (square root is 130,510.6

termites).
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1.2 Judgment Ranking

The sampling scheme described in the previous section is known as balanced RSS,

since an equal number of measurement units is allocated to the judgment ranks

�small,� �medium,� and �large.� The terms judgment ranks and judgment order statis-

tics are used to emphasize that these are not necessarily perfect rankings, and to

distinguish them from order statistics. In RSS, judgment ranking is usually done

visually (by a �eld expert, say), or via a concomitant variable. Typical set sizes used

in RSS are in the range 2 - 5, since small sets are fairly easy to rank e�ectively, but

larger set sizes can also be considered if they do not hinder judgment ranking.

If judgment ranking is the least bit accurate, then measurements for units assigned

to di�erent judgment ranks are not identically distributed. That is, if the judgment

ranking mechanism can distinguish e�ectively between population units, then the

hypothetical population of measurements for units assigned judgment rank �small,�

say, will di�er from that of those units deemed �medium� or �large,� and the same

may be said, mutatis mutandis, for the other judgment ranks.

To further develop these insights into the statistical properties of judgment or-

der statistics, suppose that the sets under consideration are all of size K, and that

the underlying population has CDF F . Then there are K judgment order statistic

distributions, F[1], ..., F[K]. For each r, F[r] may be interpreted as the conditional

distribution of the measurement Y from a hypothetical population unit given that it

was assigned judgment rank r in a set of size K. Intuitively, it is easy to see that these

judgment order statistic distributions may run the gamut from being the distributions

of the K order statistics (i.e., F[r] = F(r), for each r) in the ideal case when judgment

ranking is always perfect, to being indistinguishable from the general population (i.e.,
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F[r] = F , for each r) when judgment ranking is no better than random. In practice,

they will usually lie somewhere in between the two extremes.

Consider a generic SRS Y1, ..., YK from the CDF F . These are i.i.d. draws from

F . Suppose these K units are judgment ranked to obtain the ranked set Y[1], ..., Y[K].

The members of the ranked set are obviously no longer independent. Nor are they

identically distributed (unless judgment ranking is no better than random), for the

specialized information implies that Y[r] is distributed according to F[r], r = 1, ..., K.

The following argument, inspired by Stokes [1980a], relates the judgment order

statistic distribution functions to the parent distribution. Let t be a real number,

and de�ne Wr = 1 (Yr ≤ t) and W[r] = 1
(
Y[r] ≤ t

)
, r = 1, ..., K, where 1 (⋅) is the

indicator function. It is easy to see that
∑K

r=1Wr =
∑K

r=1W[r], since both sides of

the equation count the number of Y 's no greater than t. Taking expectations of both

sides and dividing throughout by K gives

F (t) =
1

K

K∑
r=1

F[r] (t) . (1.1)

This relation, known to hold for order statistics [David and Nagaraja, 2003, p. 38],

turns out to hold in general for judgment ranking as well, thus providing a constraint

on how �di�erent� judgment order statistic distributions can be, both from one another

and from the population as a whole.

When the population distribution function F is absolutely continuous, a similar

result for densities can be derived by di�erentiating both sides of 1.1 with respect to

t, yielding

f (t) =
1

K

K∑
r=1

f[r] (t) , (1.2)
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where f is the density associated with F and f[r] is the density associated with

F[r], r = 1, ..., K. The relationship 1.2 also holds in the discrete case for probability

mass functions. This may be seen by di�erencing both sides of equation 1.1.

When the �rst moment of the distribution F exists, it also follows from 1.1 that

� =
1

K

K∑
r=1

�[r], (1.3)

where � =
´∞
−∞ x dF (x) is the population mean and �[r] =

´∞
−∞ x dF[r] (x) is the mean

of the rtℎ judgment order statistic, r = 1, ..., K.

When F has a �nite second moment as well, the population variance �2 may be

broken down into two quantities, as follows:

�2 =

ˆ ∞
−∞

(x− �)2 dF (x)

=
1

K

K∑
r=1

ˆ ∞
−∞

(x− �)2 dF[r] (x)

=
1

K

K∑
r=1

E
[(
Y[r] − �

)2]
=

1

K

K∑
r=1

E
[(
Y[r] − �[r]

)2]
+

1

K

K∑
r=1

(
�[r] − �

)2
.

That is,

�2 =
1

K

K∑
r=1

�2
[r] +

1

K

K∑
r=1

(
�[r] − �

)2
, (1.4)

where �2
[r] is the variance of the r

tℎ judgment order statistic, r = 1, ..., K. Equation

1.4 is best understood as a decomposition of the population variance into two compo-

nents, one accounting for within-rank variability, and the other measuring between-

rank variability. It will become apparent in the next section that this is, in fact, a

recurring theme in RSS.
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Little can be said in general about judgment order statistic distributions beyond

the results presented in this section. Unlike order statistics, which have well-known

formulas for CDFs, joint, marginal, and conditional densities (in the absolutely con-

tinuous case), as well as moments [David and Nagaraja, 2003], no such information

is available about judgment order statistic distributions. It is therefore a common

assumption in the RSS literature that judgment ranked data are order statistics from

their respective sets. (See, for example, Takahasi and Wakimoto, 1968, and Wolfe,

2004.) This is regarded as a simplifying assumption, and many RSS procedures in

the literature depend very heavily on it. (For a relevant example which will be dis-

cussed in greater detail in Chapter 2, see Kvam and Samaniego, 1994.) Naturally,

one is skeptical of the assumption that judgment ranking is perfect and does, in fact,

identify the exact order statistic in question from every set. In the example of Section

1.1, the �eld experts had no way of knowing (short of outright measurement) whether

the termite colonies they labeled �small,� �medium,� and �large� in a given ranked set

were indeed the smallest, the median, and the largest, respectively. The assumption

of perfect ranking is dubious at best, and one only made to reap the bene�ts of using

the many explicit results known about the distributions of order statistics.

Those whose perception of RSS revolves around order statistics, but who are

understandably suspicious of the assumption of perfect ranking, have introduced im-

perfect ranking models, in an attempt to account for ranking error and include it

in statistical inference. An early such model was the �measurement error� model

proposed by Dell and Clutter [1972], and analyzed in the appendix of that paper

by David and Levine. Bohn and Wolfe [1994] endeavor to understand how di�erent

order statistics are assigned to given judgment ranks by postulating �xed transition
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probabilities. Yet another imperfect ranking model is given by Frey [2007]. In lieu of

a review of these models, a di�erent imperfect ranking model, under which judgment

ranking is accomplished by means of a concomitant variable, will be examined in

depth and its di�culties illustrated in Chapter 5.

It is the aim of the present chapter to provide a formulation of RSS and an under-

standing of its advantages over SRS that do not involve order statistics. Given their

pervasive ubiquity throughout the RSS literature, it is the circumvention of order

statistics that makes this introduction to RSS so unorthodox. Instead, this chapter

argues for another understanding of the bene�ts of RSS that even a crude judgment

ranking procedure can procure. This alternative line of reasoning will become abun-

dantly clear by the end of the next section.

1.3 Balanced RSS and Properties of the Sample Mean

As described in Sections 1.1 and 1.2, a balanced RSS uses a �xed set size and

allocates the same number of measurement units to every judgment rank. The process

of drawing a balanced RSS can be visualized in the following manner (which has

the added bene�t of being computationally e�cient for programming purposes). A

single cycle is obtained by drawing K2 units from the population and placing them

in a K × K table. Thinking of each row (or each column) as a set, the statistician

proceeds to judgment rank each row (or column), sorts the row (or column) according

to these rankings, and measures the K diagonal elements. The o�-diagonal units are

discarded. This procedure is repeated m times to obtain a balanced RSS of size

n = m×K.

8



The measurements obtained from the itℎ cycle (i = 1, ..., m), Y[1]i, ..., Y[K]i, are

independent (since they are obtained from independent sets) but not identically dis-

tributed. In fact, their distributions are F[1], ..., F[K], respectively. Looking across

cycles, it is easy to see that all measurements from units assigned the same judg-

ment rank are identically distributed. That is, Y[r]1, ..., Y[r]m is a SRS from F[r],

r = 1, ..., K. Thus, this balanced RSS consists of K independent SRS, each of size

m, from F[1], ..., F[K], respectively.

Let Y[r]i, r = 1, ..., K, i = 1, ..., m, be a balanced RSS from a population with

distribution function F , mean �, and �nite variance. Suppose the statistician wishes

to estimate the population mean �. The �rst intuitive estimator that comes to mind

is the RSS sample mean

ȲRSS =
1

mK

m∑
i=1

K∑
r=1

Y[r]i =
1

K

K∑
r=1

Ȳ[r], (1.5)

where Ȳ[r] = 1
m

∑m
i=1 Y[r]i, r = 1, ..., K. Standard calculations show that, for each r,

E Ȳ[r] = �[r] and V ar Ȳ[r] =
�2
[r]

m
. It follows from these results and 1.3 that

E ȲRSS = � (1.6)

and

V ar ȲRSS =
1

mK2

K∑
r=1

�2
[r]. (1.7)

Equation 1.6 states that the RSS sample mean is an unbiased estimator of the

population mean. Moreover, it follows from 1.3, 1.5, and the Strong Law of Large

Numbers that ȲRSS is a strongly consistent estimator of � as m → ∞, even if the

population variance is in�nite.
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The variance of ȲRSS may be estimated by using unbiased estimators of the un-

known quantities in 1.7:

ˆV ar ȲRSS =
1

mK2

K∑
r=1

S2
[r], (1.8)

where S2
[r] = 1

m−1
∑m

i=1

(
Y[r]i − Ȳ[r]

)2
is the within-rank sample variance of the rtℎ

judgment rank, r = 1, ..., K.

To compare RSS to SRS, let ȲSRS denote the mean of a (generic) SRS of size

n = m×K from F . It is well known that ȲSRS is also an unbiased estimator of the

population mean, and that its variance is given by �2

n
. It follows from this and 1.4

that

V ar ȲSRS =
1

mK2

K∑
r=1

�2
[r] +

1

mK2

K∑
r=1

(
�[r] − �

)2
, (1.9)

which, by comparison with 1.7, immediately implies that

V ar ȲSRS ≥ V ar ȲRSS, (1.10)

for the same sample size n.

This result yields the classical argument in favor of RSS relative to SRS: that

RSS produces unbiased estimators which have variances no larger than their SRS

counterparts. Judgment ranking need not be perfect for this improvement to hold,

but the improvement may be minimal if judgment ranking is too far o� the mark.

Dell and Clutter derive properties of the relative precision of RSS to SRS under

imperfect ranking, and describe situations in which RSS does much better, as well as

distributions for which RSS o�ers no advantage over SRS even with perfect ranking.

There are two common interpretations of the variance reduction in 1.10. The �rst

is heuristic, observing that a balanced RSS of size n consisting of m cycles and with

set size K uses information about far more units than a SRS of the same sample size.
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The RSS includes n = m×K measurements and uses judgment ranking information

about m×K × (K − 1) unmeasured units, whereas the SRS includes measurements

only and has no mechanism for making use of judgment ranking information.

The second argument, both more rigorous and more instructive, is that RSS cre-

ates an ordered covariate, namely the judgment ranks, which induces an ANOVA-style

variance decomposition of the form 1.9, and explains away between-rank variation,

leaving only within-rank variability unaccounted for.

It is noteworthy that for a �xed sample size, both RSS and SRS have the same

cost of measurement, yet RSS produces a more e�cient estimator. Thus, if the cost of

judgment ranking is relatively low, the gains in RSS may be purchased at a bargain.

This reduction in variance may be translated into a reduction in cost: as the example

in Section 1.4 amply illustrates, a SRS may have to be much larger (thereby incurring

a signi�cantly higher cost of measurement) than a RSS for their sample means, say,

to have the same standard error.

It is straightforward to show that ȲRSS has a limiting normal distribution when the

set size K is held �xed, but the number of cycles m tends to∞. This may be proved,

for example, by applying the usual Central Limit Theorem to the component means

Ȳ[r] in 1.5. It follows that ȲRSS ± z�/2
√

ˆV ar ȲRSS is an approximate (1− �) 100%

con�dence interval for �, where z�/2 is the �/2 upper percentile of the standard normal

distribution.

As a curious tangent, note that, unlike its SRS counterpart, the RSS mean is not,

in general, the best linear unbiased estimator of the population mean [Barnett and

Moore, 1997].
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1.4 An Application to Auditing

The data set used in this section was provided by Professor James A. Tackett

of the Department of Accounting at Youngstown State University. It consists of a

hypothetical population of 5000 di�erent inventory items derived from the �nancial

records of a retail clothing store. Each of these 5000 items represents the inventory

value of a particular retail item. In the presence of inventory fraud, the true value

of each item remains unknown until it is audited. In creating this data set, a typical

inventory fraud scenario was simulated by randomly overstating the book values of

750 (15%) inventory items. The amount of overstatement for each fraudulent account

was calculated using random numbers, with an average overstatement factor of twice

the true value. Thus, whereas the total audited value of the inventory is $1,877,837, its

total value �on the books� is actually $2,140,057, namely an overstatement of almost

14%. This data set represents a modest inventory overstatement, consistent with a

company fraudulently looking to boost its stated earnings by a material amount, yet

without attracting inordinate attention.

Initially, the auditor only has access to the book values. Suppose the auditor

wishes to estimate the mean audited value (or total audited value) of the inven-

tory items. Since auditing inventory items (i.e., measurement) is costly and time-

consuming, but items may be ranked with a fairly high degree of accuracy by their

book values, this seems like an ideal application for RSS. Here, the book values serve

as the concomitant variable for judgment ranking. The purpose of this example is

two-fold: �rst, to compare balanced RSS to SRS, and second, to examine what hap-

pens in RSS when the set size varies with the sample size held �xed.
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To allow for a wide range of set sizes, the auditor uses samples of size n = 400

audited accounts and compares the SRS mean based on this sample size with seven

di�erent balanced RSS means corresponding to set sizes K = 5, 8, 10, 20, 25, 40, and

50. The associated numbers of cycles to maintain the common sample size n = 400

for the RSS means are m = 80, 50, 40, 20, 16, 10, and 8, respectively.

The SRS mean is known to be an unbiased estimator of the population mean. In

this example, the population mean audited value is $375.57. The population standard

deviation for the audited values is � = $112.69, so that the standard error of the RSS

mean based on a sample size of n = 400 is �√
n

= $5.63. The means and standard

errors of the RSS means were obtained via Monte Carlo simulation. (The sampling

distribution of each RSS mean was approximated by 10,000 RSS means of sample

size n = 400 and the same set size.)

Figure 1.1 illustrates the overall gain obtained from using RSS estimators over the

SRS estimator through a comparison of the approximate (i.e., large sample) sampling

distributions of the various RSS estimators and the SRS estimator. The three solid

curves represent the densities of the approximate sampling distributions of the RSS

means for set sizes 50, 25, and 10 (in order from highest to lowest peak), and the

dotted curve is the density of the approximate sampling distribution of the SRS mean.

The vertical line passes through the population mean.

Notice that while the approximate sampling distributions of all four estimators

are centered about the population mean, those for the RSS means are considerably

tighter than that of the SRS mean. Moreover, the precision increases (i.e., the curves

become narrower and more peaked) as the set size increases. Another visual that
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Figure 1.1: Densities of the approximate sampling distributions of the RSS means for
n = 400 and set sizes 50, 25, and 10 (solid curves, in order of highest peak) and the
SRS mean (dotted curve) for n = 400. The vertical line is drawn at the population
mean $375.57.

conveys the same point is Figure 1.2, a plot of the standard errors of the estimators

against set size. (The SRS mean corresponds to set size 1.)

As Figure 1.2 shows, the standard errors of all the RSS estimators under consid-

eration are signi�cantly smaller than the standard error of the RSS mean, for the

same sample size. Moreover, the standard error decreases as set size increases. Thus,

increased precision may be obtained by using a larger set size. However, this im-

provement tapers o� and once the set size exceeds a certain threshold, there is little

to be gained from using an even larger set size. This phenomenon may be referred to

as the diminishing marginal returns of increasing set size.
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Figure 1.2: Plot of the standard errors of the SRS mean (set size = 1) and the RSS
means for set sizes 5, 8, 10, 20, 25, 40, and 50.

Another way to understand the advantages of RSS over SRS is to calculate the

relative sample sizes needed to attain the same level of precision. Table 1.1 gives

the standard errors for the RSS means (rounded to 3 decimal digits) for the set sizes

under consideration, and provides the minimum sample size necessary for the SRS

mean to have a standard error at least as small. For example, a SRS would need a

sample size of at least 1001 for its mean to have a standard error at least as small as

that of the RSS mean with sample size n = 400 and set size K = 25.

These results demonstrate that RSS produces a much more precise estimator of

the population mean than a SRS of the same sample size or, equivalently, that a SRS
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Set Size 5 8 10 20 25 40 50

Standard Error of RSS Mean 4.360 4.072 3.962 3.680 3.562 3.428 3.380
Minimum SRS n 668 766 810 938 1001 1081 1112

Table 1.1: Standard errors of the RSS means for set sizes 5, 8, 10, 20, 25, 40, and 50,
and the smallest sample sizes necessary for the SRS mean to be at least as precise as
the RSS means with n = 400 and these set sizes.

would have to be much larger than a RSS to equal the precision of its sample mean.

Given the high cost of auditing (measurement) and the negligible e�ort required for

judgment ranking (using the accessible concomitant, book value), the advantages of

RSS over SRS in assessing fraud in this scenario are striking.

1.5 Estimating the Population Variance

Section 1.3 provides the elementary theory for estimation of the population mean

using a balanced RSS. These results were illustrated in Section 1.4. In that toy ex-

ample, the population variance was known since the audited values for the entire

population were available. Needless to say, this is not usually the case, and so esti-

mators of the population variance are important in their own right. Stokes [1980a]

proposes a RSS estimator of the variance that is analogous to the usual SRS estima-

tor, i.e., the sample variance. Stokes' estimator is biased, but unbiased in the limit.

MacEachern et al. [2002] observe that

Stokes's estimator overestimates the population variance; a within-judgment-
class estimator of variation will underestimate �2. Intuitively we want an
estimator that lies somewhere between these two extremes and has little or
no bias. The approach that we take is to combine within-judgment-class
and between-judgment-class estimators in such a way that the resulting
estimator is unbiased for the variance of the underlying population.
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This estimator may be written, after algebraic simpli�cation, as the weighted linear

combination

�̂2 =
1

K
S2
W +

(
1− 1

K

)
S2
B, (1.11)

where S2
W =

(
1− K−1

mK

) ∑K
r=1 S

2
[r] represents within-judgment-rank variability and

S2
B = 1

K−1
∑K

r=1

(
Ȳ[r] − ȲRSS

)2
measures between-judgment-rank variability. �̂2 is an

unbiased estimator of the population variance �2, and MacEachern et al. show that

it is always more e�cient than both Stokes' RSS variance estimator, and the sample

variance of a SRS.

1.6 Beyond Balanced RSS

Many procedures involving judgment ranking fall under the banner of RSS. In

addition to balanced RSS, one may devise unbalanced RSS procedures, where the

set size K is held �xed, but unequal numbers of measurement units are allocated to

the di�erent judgment ranks. Wolfe [2004] gives the simple example of estimating the

population median using an odd set size and measuring only the ranked medians from

each set. Such a design is unbalanced to the extreme. Moreover, cost considerations

can sometimes make it worthwhile to measure more than one member of each ranked

set, in spite of the increase in the variance of the mean caused by dependence among

sample measurements [Wang et al., 2004]. Beyond that, RSS procedures can be

envisaged that involve multiple set sizes in a single application [Gemayel et al., in

press].
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1.7 Description of This Work

This chapter develops the basic elements of RSS necessary for an understanding of

the core results in this dissertation. Chapter 2 provides a Bayesian view of RSS and

proposes a framework for Bayesian modeling of RSS data. It also includes a model

for continuous data. In Chapter 3, the framework of Chapter 2 is applied to discrete

data, and the resulting computational problems are resolved. Chapter 4 introduces

judgment post-strati�cation and explores the role of the set size K from the Bayesian

perspective. It also proposes a method for combining the judgments of multiple

rankers. Chapter 5 considers the special case when judgment ranking is induced by a

concomitant variable. Finally, Chapter 6 lists conclusions and suggestions for future

research.
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Chapter 2

Ranked Set Sampling as an ANOVA-type Procedure: A

Bayesian Nonparametric Perspective

2.1 On the Likelihood Principle and Survey Sampling

In his classic paper on the role of the su�ciency and likelihood principles in sample

survey theory, Basu [1969] reaches the provocative (but entirely justi�ed) conclusion

that the statistician at the analysis stage need not pay any attention to the nature

of the sampling design that produced the data. In fact, the statistician does not

even need to know the speci�cs of the sampling design, beyond understanding it well

enough to obtain the likelihood function. The role of the data is merely to change the

prior scale of preference (or prior probability distribution) about unknown parameters

to the posterior scale. This change is represented by the likelihood function, evaluated

at the measured data.

Ericson [1969] adds that �when reasonable prior distributions are introduced, their

revision by sample data can lead to meaningful and useful inferences.� Ericson's

paper is also an early example of the use of the multinomial distribution in modeling

�extreme prior vagueness� in the �nite population setting, which re-interprets some

common frequentist procedures as Bayesian procedures based on a noninformative

prior distribution. Meeden and Vardeman [1991] note that
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It is somewhat paradoxical that in sampling, the one area of statisti-
cal practice where prior information is routinely used, formal Bayesian
methods of inference are seldom called upon. One reason for this is the
di�culty of specifying sensible prior distributions over a large dimensional
parameter space.

Early work on noninformative Bayesian procedures spawned the Bayesian bootstrap

[Rubin, 1981], and the �nite population Bayesian bootstrap [Lo, 1988], which revolves

around the Polya posterior [Nelson and Meeden, 1998]. In turn, the Polya posterior

can be seen as an approximation to the posterior under a ��at� Dirichlet process prior.

The Dirichlet process is a fundamental building block of Bayesian nonparametrics and

will be discussed at length in Section 2.4.

The implications of likelihood principle-based thinking for RSS are striking. Much

of the current RSS literature is dominated by stringent attachment to design assump-

tions, from balanced RSS to unbalanced RSS and beyond. (See, for example, the

annotated bibliography by Kaur et al. [1995].) In light of the likelihood principle, the

role of RSS as a design is altered: its task is solely to deliver the data (and the like-

lihood). It is no longer called upon to provide �average� or �long-run� performance

characteristics of statistical procedures, such as bias, variance, or e�ciency, since

these measures average over �all possible samples,� whereas the likelihood principle

exhorts the statistician to base inference only on the sample at hand. To put it more

bluntly, any statistician committed to the likelihood principle (and by extension, any

dyed-in-the-wool Bayesian) will not be swayed by the frequentist argument in favor

of RSS made in the previous chapter.

A di�cult series of questions ensue: how can a Bayesian be convinced of the value

of RSS? Does RSS have any bene�ts at all from a Bayesian or likelihood principle

perspective? How can these bene�ts (if, in fact, there are any) be assessed and
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understood? It is the aim of this chapter to construct a framework in which these

questions may be made more rigorous, and subsequently answered.

2.2 Some Common Assumptions in the RSS Literature

The design structure of RSS is sometimes not su�cient, in and of itself, for devising

statistical procedures and evaluating them, and typically must be supplemented with

additional assumptions. Many authors make no qualms about their mistrust of these

assumptions, the most salient being that of perfect ranking, already discussed in

Section 1.2. It is well known that even a crude judgment ranking mechanism for

RSS can provide signi�cant improvement over SRS. In fact, the mere use of judgment

order statistic distributions implicitly presupposes that the measurements from each

judgment rank are homogeneous relative to measurements from other judgment ranks.

When ranking is haphazard, units assigned the same judgment rank may di�er little

from the general population at large. Moreover, it is conceivable in some applications

that units in the same ranked set may resemble each other more than they do units

assigned the same judgment rank in other ranked sets. This may be the case, for

example, when sets are taken to be clusters of adjacent population units. That is, an

unranked set is not necessarily a SRS from the population, yet many RSS procedures

are derived with this assumption built in from the start.

Another frequent presupposition, coupled to perfect ranking, is absolute conti-

nuity of the underlying population. The reason for this assumption is that if the

population has a density (with respect to Lebesgue measure) and ranking is perfect,

then the possibility of ties in ranking is excluded and, more importantly, judgment

order statistic distributions have explicit densities (namely, those of the usual order
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statistics). Many RSS procedures shun discrete data for these reasons. (Discrete data

will be considered in Chapter 3.)

Finally, when concomitant variables are used for judgment ranking, they are often

assumed to be linearly related to the variable of interest. This is clearly an unnec-

essarily stringent assumption, since a concomitant variable need only be associated

in some manner with the quantity of interest for it to be of potential assistance in

statistical inference. The auditing application in Section 1.4 is a simple example of a

concomitant variable that contains a great deal of information about the variable of

interest, yet is not linearly related to it.

Assuming a linear relationship between the concomitant and the variable of inter-

est, however, negates the need for a deeper understanding of the relationship between

the two variables. Instead, that relationship is entirely summarized by the correlation

coe�cient. It is only a short step from there to assume that the joint distribution of

the concomitant and the variable of interest is bivariate normal. (See, for example,

Stokes, 1980b.) In Chapter 5, an approach to handling concomitants will be proposed

that does not require a linear relationship. Instead, it tries to �learn� the relationship

between the concomitant and the variable of interest from the data and embed that

relationship into the analysis.

While there is skepticism of the usual RSS assumptions among researchers and

practitioners of RSS, many argue that such strong postulates are necessary for deriv-

ing properties of the design and evaluating procedures based upon it. By adopting

the likelihood principle, RSS is liberated from this burden, and the statistician is in

a position to do away with some unnecessary assumptions or restrictions (although

they may be supplanted by di�erent assumptions). Providing an alternative that is
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entirely likelihood principle-driven (from model construction to evaluation) in a fully

nonparametric framework is tricky. The next section deals with some of the thorny

aspects of this construction.

2.3 A Bayesian View of RSS

It is by no means an easy or direct leap to incorporate Bayesian ideas into RSS.

For one thing, RSS has emerged in the nonparametrics literature, which seems dia-

metrically opposed to the strong parametric assumptions made by Bayesians. (As the

previous section amply demonstrates, however, RSS practitioners are not immune to

making strong assumptions of their own.) Little work has been done on the Bayesian

aspect of RSS, and most of that work employs order statistics and/or emphasizes

scalar or other low-dimensional parameters, making RSS seem rather incidental to

the problem (e.g., Lavine, 1999). This section seeks to place RSS in a deeper, and

less contrived, Bayesian framework.

Perhaps the most �nonparametric� of all objectives in statistics is to estimate

a population distribution function. As a result, that objective is very well suited

to illustrating how skepticism of the assumptions discussed in Section 2.2 can lead a

statistician to view RSS through a Bayesian lens. The simplest approach to estimating

a CDF is to estimate it point-wise as a population proportion. This is, indeed, the

approach taken by Stokes and Sager [1988]. In the usual notation, let Y[r]i, r =

1, ..., K, i = 1, ..., m, denote a balanced RSS from a distribution function F .

Stokes and Sager's proposed estimator of F is just the sample empirical distribution

function

F ∗ (t) =
1

mK

m∑
i=1

K∑
r=1

1
(
Y[r]i ≤ t

)
.
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It follows from Equations 1.1 and 1.6 that F ∗ (t) is an unbiased estimator of F (t),

and the fact that it has a variance no larger than its SRS counterpart follows from

Equation 1.10. Moreover, the estimator F ∗(t) is strongly consistent and has a simple

normal limiting distribution for each t.

While establishing the superiority of RSS to SRS, the empirical CDF proposed

by Stokes and Sager makes hardly any use of the additional information provided by

judgment ranking, since it treats all measurements across judgment ranks in the same

way, as though they were i.i.d. This was observed by Kvam and Samaniego [1994],

who recti�ed the problem at the cost of some rigor. Their solution was to assume

perfect ranking, which allowed them to write the joint p.d.f. of the sample as a prod-

uct of densities of order statistics. Such a product may be re-written in terms of the

population distribution function and density evaluated at the measured data. Upon

closer scrutiny, this likelihood function bears a strong resemblance to a product of bi-

nomial probability mass functions with ordered success probabilities, which suggests

a simple parametrization of the likelihood function. Kvam and Samaniego's proposed

estimator is the maximizer of this likelihood function, the NonParametric MLE, or

NPMLE [Kiefer and Wolfowitz, 1956]. Huang [1997] obtained some asymptotic re-

sults for Kvam and Samaniego's NPMLE, and Ozturk (in press) extended Kvam and

Samaniego's work to incorporate the Bohn-Wolfe model for imperfect ranking [Bohn

and Wolfe, 1994].

For sake of simplicity, let us illustrate Kvam and Samaniego's procedure and high-

light our objections to it in the case when the data consist of a balanced RSS with

set size K = 2 and m = 1 cycle. In this simple setting, the statistician considers a

ranked set of size 2 from F , say Y(1)1 < Y(2)1, but measures only Y(1)1. (Note the use of
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parentheses instead of brackets in the subscript, in line with the authors' assumption

that the judgment ranking procedure orders the set perfectly.) The statistician then

considers another ranked set (independent of the �rst), Y(1)2 < Y(2)2, and measures

only Y(2)2. The units corresponding to Y(2)1 and Y(1)2 are discarded: their sole purpose

was to provide information for judgment ranking.

The joint density function of Y(1)1 and Y(2)2 is given by

4
(
1− F

(
y(1)1

))
F
(
y(2)2

)
dF
(
y(1)1

)
dF
(
y(2)2

)
. (2.1)

Let p1 = dF
(
y(1)1

)
and p2 = dF

(
y(2)2

)
be the point masses assigned to the two

measurements. Suppose it turns out that y(1)1 < y(2)2. Then the likelihood function

2.1 may be written as ℒ = 4 (1− p1) (p1 + p2) p1 p2. Since it must be the case that

p1 +p2 = 1, the likelihood function reduces to ℒ = 4 p1 (1− p1)2, which is maximized

at (p1, p2) =
(
1
3
, 2

3

)
. The maximum value of the likelihood function is ℒ

(
1
3
, 2

3

)
= 16

27
,

whereas its value at the empirical CDF is ℒ
(
1
2
, 1

2

)
= 1

2
.

If, however, the statistician observes y(2)2 < y(1)1, it can no longer be said that

p1 + p2 = 1, since the population distribution function F is known to assign positive

mass to the interval
(
y(1)1, ∞

)
. The unwanted side e�ect of this is that the NPMLE is

a step function that never reaches one on the right (and is therefore not a CDF). This

occurs, regardless of set size, whenever the sample maximum is drawn from any rank

other than the largest rank. At any rate, the likelihood function in this case can be

parametrized as ℒ = 4 (1− p1 − p2) p22 p1, which is maximized at (p1, p2) =
(
1
4
, 1

2

)
.

The maximum value attained by the likelihood function is ℒ
(
1
4
, 1

2

)
= 1

16
, whereas its

value at the empirical CDF is 0.

While the assumption of perfect ranking provides a framework for a tractable

likelihood function combining densities of order statistics, it is too strong in the sense
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that it betrays the essence of judgment ranking. Nowhere is this more evident than

in the EM algorithm proposed by Kvam and Samaniego to maximize their likelihood

function. To use the EM algorithm, the authors frame the problem in terms of

censored data. For instance, the censored observation Y(2)1 is known to necessarily

lie to the right of the measurement Y(1)1. This need not be the case when judgment

ranking is not perfect. In other words, Kvam and Samaniego's assumption of perfect

ranking translates into the assumption that the variable of interest is censored by

its own measured values. Judgment ranking, however, is by its very nature fuzzy

and error-prone. It is one thing to seek to incorporate such information into data

analysis; it is an entirely di�erent matter to treat it as infallible, especially when this

assumption can produce a de�cient estimator.

To elucidate this point further, consider using an accessible concomitant variable,

X, for judgment ranking. In this instance, all the information about the judgment

ranking mechanism is contained in the joint distribution of (X, Y ). In the simple

example above, the statistician draws a pair of units from the population, (X11, Y11)

and (X21, Y21), characterized by a known concomitant variable X and a not-yet-

known variable of interest Y . The X's are ranked in increasing order. (Assume for the

moment that there are no ties in the concomitant.) The ranked set is now
(
X(1)1, Y[1]1

)
and

(
X(2)1, Y[2]1

)
. The statistician measures the judgment ranked minimum, Y[1]1,

which may or may not be the actual minimum. Similarly, the statistician obtains

a second ranked set (independent of the �rst)
(
X(1)2, Y[1]2

)
and

(
X(2)2, Y[2]2

)
and

measures the judgment ranked maximum, Y[2]2. In this instance, the variable of

interest is being censored not by its own values, but by the values of another variable.

This means that one cannot tell with any certainty how many of the non-measured
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units are below or above the measured Y values. As a result, Kvam and Samaniego's

approach is not replicable when ranking by an imperfect concomitant.

To show why strictly likelihood-based inference is futile in this setting, start by

writing the likelihood function for this simple example with self-evident notation.

Following Yang [1977], the distribution of Y[r] given X(r) is merely the population

conditional distribution of Y given X. Hence the likelihood function in this setting

may be written as

f
(
y[1]1∣x(1)1

)
fX
(
x(1)1

)
fX
(
x(2)1

)
f
(
y[2]2∣x(2)2

)
fX
(
x(1)2

)
fX
(
x(2)2

)
. (2.2)

As a moment's thought should make clear, inference based on this likelihood

function alone is problematic, since it estimates the joint distribution of (X, Y ) by

placing masses of 1/4 at the points
(
x(1)1, y[1]1

)
and

(
x(2)2, y[2]2

)
and on the vertical

lines x = x(2)1 and x = x(1)2. Marginalizing to estimate the distribution of Y alone

merely recovers the empirical distribution function. That is, purely likelihood-based

inference does not make full use of the structure of RSS.

There are many joint distributions that �t the framework of the estimate above.

Obviously, not all are equally credible to the statistician. That is, the statistician has

a preconceived idea about the nature of the relationship between the concomitant

and the variable of interest. (A concomitant that is not relevant to the variable of in-

terest would not have been used in the �rst place.) For example, the statistician may

believe that the variable of interest �tends to increase� with the concomitant. Such

prior knowledge implies an assumption of some vague stochastic order on the joint

distribution. This may be taken to mean the usual (weak) stochastic order, or mono-

tone likelihood ratio (MLR), or that the population regression function E[Y ∣X = x]
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is an increasing function of x, or any other way of putting in concrete terms such

fuzzy prior information.

As this example illustrates, an essential feature of inference for RSS is the ability

to learn about the (conditional) distribution of Y across the range of the concomitant

(if there is one) or, more generally, over the various judgment ranks. A Bayesian

framework for RSS is, then, a tool that weaves these vague prior beliefs about the

judgment ranking mechanism into inference in a formal and natural fashion. That is,

the statistician's parameter space is really a set of collections of distribution functions

on the data space that are related in some manner. It will come as no surprise that

specifying workable prior distributions on such a parameter space is no easy feat.

Between the Bayesian penchant for over-generous use of parametric assumptions

for the likelihood function and prior on one hand, and the austerity of nonparametrics

on the other, an amalgam of the two approaches seems rather like a contradiction

in terms. Nonetheless, it turns out that Bayesian nonparametric methods are more

than just a grudging concession on the part of Bayesian modeling to the minimalist

style of nonparametrics (which, after all, is the home of RSS). In fact, they provide

powerful tools for modeling in parameter spaces as abstract as the one discussed

above. The next section deals with Bayesian nonparametric modeling, starting with

a review of the basic properties of the Dirichlet process, and on through dependent

Dirichlet processes and mixture of Dirichlet process models, in a crescendo leading

up to a general Bayesian nonparametric model for RSS data.

2.4 A General Model for RSS Data

Ferguson [1973] lists two desirable properties of a nonparametric prior:
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1. It should have �large support� on the space of probability distributions on the

data space, and

2. �Posterior distributions given a sample of observations from the true probability

distribution should be manageable analytically.�

Both these properties are satis�ed by the Dirichlet process, the nonparametric prior

presented in Ferguson's paper. Ferguson shows that a random probability distribution

can be characterized by the joint distributions of the probabilities it assigns to �nite

partitions of the data space.

More speci�cally, let X denote the data space, let A denote a �-�eld of subsets of

X , and let � denote a non-null, �nite measure on the measurable space (X , A). To

say that a random probability P on (X , A) follows a Dirichlet process with parameter

� (abbreviated P ∼ DP (�)) means that for any positive integer m, and for any

�nite measurable partition (A1, ..., Am) of X , (P (A1) , ..., P (Am)) follows a Dirichlet

distribution with parameters � (A1) , ..., � (Am). (When � (A) = 0, this means that

P (A) = 0 with probability 1.) P is called a random probability measure since P (X )

is degenerate at 1. Ferguson shows that P is discrete with probability one.

The positive number M = �(X ), called the precision parameter (or mass pa-

rameter) of the Dirichlet process, and the probability measure �0 = �
M
, together

characterize the Dirichlet process. Ferguson shows that E P (A) = �0 (A), for any

A ∈ A, and that a single draw X from P is just a draw from �0.

Moreover, if P ∼ DP (�) and X1, ..., Xn is a random sample of size n from P ,

then the posterior distribution of P given X1, ..., Xn is also a Dirichlet process, with

parameter � +
∑n

i=1 �Xi , where �x denotes a unit point mass at x. The precision
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parameter of this posterior is M + n, so that

E [P (A) ∣X1, ..., Xn] =
(� +

∑n
i=1 �Xi) (A)

M + n

=
M

M + n
�0 (A) +

n

M + n
Fn (A) , (2.3)

where Fn (⋅) = 1
n

∑n
i=1 �Xi (⋅). Equation 2.3 shows that the posterior mean of P given

the sample is a convex linear combination of the base measure �0 and the empirical

distribution measure of the sample, Fn. This equation also highlights the role of the

precision parameter M .

Under squared error loss, the Bayes estimator of the distribution P is the posterior

mean, given by 2.3. WhenM is large, the posterior mean is close to the base measure

of the prior, whereas when M approaches 0, the posterior mean is well approximated

by the empirical distribution of the data. Thus, inference based on the posterior

mean when M ↘ 0 is similar to strictly data-based inference from the empirical

distribution function, and a sample from the posterior mean can be approximated

closely by bootstrapping the data [Lo, 1986, 1988].

Blackwell and MacQueen [1973] relate the Dirichlet process to the Polya urn

scheme, which is tantamount to saying that X1, ..., Xn are exchangeable and that

p (xn∣x1, ..., xn−1) =

{
�xi with probability 1

M+n−1 , i = 1, ..., n− 1

�0 with probability M
M+n−1

.

Sethuraman [1994] o�ers another representation of the Dirichlet process as a stick-

breaking process. Speci�cally, if P ∼ DP (�), then P may be written in stick-breaking

form as

P (⋅) =
∞∑
ℎ=1

pℎ��ℎ (⋅) , (2.4)

where the weights p1, p2, ... are derived from the i.i.d. Beta (1, M) random vari-

ables V1, V2, ... via p1 = V1 and, for ℎ ≥ 2, pℎ = Vℎ
∏

l<ℎ (1− Vl), and the locations
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�1, �2, ... are i.i.d. draws from �0, independent of the V 's. The stick-breaking repre-

sentation 2.4 of the Dirichlet process provides a new way of looking at the parameter

� of the process: the discrete random distribution P is broken down into a set of

random locations and random weights assigned to those locations (and independent

of them). The locations �ℎ are determined solely by the base measure �0, while the

precision parameter M alone in�uences the weights pℎ. Both the Polya urn scheme

and the stick-breaking representations of the Dirichlet process yield a simple way of

thinking about the sample X1, ..., Xn from P when � is absolutely continuous with

respect to Lebesgue measure: the distinct X values are i.i.d. draws from �0, but

some of the sample values may be tied. By contrast, in a fully parametric setup with

absolutely continuous �0 and no intervening Dirichlet process, the probability of ties

among X1, ..., Xn is zero. The importance of this clustering caused by the Dirichlet

process will become apparent in the modeling stage (Section 2.5).

MacEachern [1999, 2000] exploits the stick-breaking representation of the Dirich-

let process to develop an elegant and strikingly simple formulation of Dependent

Dirichlet Processes (DDP). Suppose the statistician seeks a nonparametric prior on

d-tuples of dependent random distributions (P1, ..., Pd). Such a need arises, for ex-

ample, when modeling the distribution of a response over d values of a covariate. It

is immediately obvious how this can be done using the breakdown 2.4. By repre-

senting each component of (P1, ..., Pd) as Px (⋅) =
∑∞

ℎ=1 pxℎ��xℎ (⋅), x = 1, ..., d, and

maintaining dependence across x between the weights pxℎ and between the locations

�xℎ, MacEachern's DDP provides the statistician with a nonparametric prior over

the space of d-dimensional distributions, with each component Px having a marginal

Dirichlet process distribution, and with an intuitive visualization of the structure of
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the dependence across components. A major simplifying assumption for the DDP,

and one that signi�cantly reduces the computational burden of posterior calculations,

is to keep the weights pℎ constant over the range of x, letting only the locations �xℎ

vary. This is called the �single-p� DDP. This assumption does not diminish the broad

scope of the DDP; in fact, it forces the component distributions to be dependent.

For, if a d-tuple of locations (�1ℎ, ..., �dℎ) carries a large clump of mass pℎ, then the

distributions (P1, ..., Pd) are restricted in how much they can vary from one another,

and thus they cannot be independent. (See MacEachern, 2000, for details.)

On �rst thought, the discreteness of a random draw from a Dirichlet process

may seem an obstacle to modeling continuous data. The actual use of Dirichlet

processes in Bayesian modeling, however, is to embed the Dirichlet process prior in

a hierarchical model and to smooth away its discreteness by convolving it with a

continuous density. Even when the data are discrete, the Dirichlet process may be

convolved with an appropriate likelihood function, such as the multinomial for count

data. These models are known as Mixture of Dirichlet Process (MDP) models.

As with many Bayesian innovations, posterior inference for MDP models is car-

ried out via Markov Chain Monte Carlo (MCMC) methods [MacEachern, 1998]. As

MacEachern [2000] shows, a single-p DDP can be treated as a single Dirichlet process

with a multivariate (d-dimensional) base measure specifying the locations. It follows

that any MCMC algorithm for MDP models can also be used for posterior inference

in a single-p DDP model.

As argued in Section 2.3, a natural Bayesian model for RSS should account for the

variability in judgment order statistic distributions that is caused by the judgment

ranking mechanism. In fact, the model presented in this section re-casts RSS as
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a Bayesian nonparametric ANOVA [De Iorio et al., 2004], which suggests a direct

analogy with the ANOVA-style frequentist argument for RSS presented in Section

1.3. In light of Equation 1.1, the judgment order statistic distributions F[1], ..., F[K]

are clearly dependent. Intuitively speaking, since units assigned di�erent judgment

ranks are drawn from the same population, they must all contain information about

all the judgment order statistic distributions. The DDP provides a simple way of

borrowing this information across judgment ranks.

Suppose the data are a balanced or unbalanced RSS with �xed set size K. It

is assumed that only one measurement is taken from each ranked set. Let Y[r]i, i =

1, ..., mr, r = 1, ..., K, denote the sample, and suppose f(y∣�, �) is an appropriate

density for the quantity Y , as discussed above. Here, � denotes a parameter that

may vary between observations, while � is an optional parameter common to all

observations. (For example, if � is a location parameter, then � may be taken to be

a scale parameter.)

The individual �'s for the rtℎ judgment rank are modeled as i.i.d. draws from a

random distribution Pr, r = 1, ..., K, and the K-tuple (P1, ..., PK) is itself a random

draw from a single-p DDP, speci�ed by a mass parameter M and a base measure.

The base measure of the DDP is taken to be a multivariate (K-dimensional) normal

distribution, since the normal distribution allows for easy speci�cation of the mean

and the covariance structures. The precision parameterM and the covariance matrix

Σ of this normal distribution regulate how information is borrowed across judgment

ranks.

For added �exibility, the mean vector � of the base measure is itself assigned a

normal prior distribution with known mean �0 and covariance matrix Σ0. Finally,
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the parameter � is given its own (independent) prior distribution. All parameters not

explicitly assigned a prior are taken to be known and �xed. In particular, the mass

parameter M is kept �xed because it would be very di�cult to elicit a meaningful

prior distribution for it.

The model may be summarized as

Y[r]i∣�[r]i, � ∼ f
(
y∣�[r]i, �

)
, i = 1, ..., mr, r = 1, ..., K (2.5)

�[r]1, ..., �[r]mr ∣Pr ∼ Pr, r = 1, ..., K

(P1, ...PK) ∣� ∼ DDP (M, N (�,Σ))

� ∼ N (�0,Σ0)

� ∼ [�]

with the usual convention of independence holding among the terms at each level of

the hierarchy.

To rephrase the model in terms of a single Dirichlet process, write the data as

(r1, Y1) , ..., (rn, Yn), where n is the sample size. Let di denote a 1×K design vector

consisting of 1 in the rtℎi position and 0 elsewhere, i = 1, ..., n. Then the model

becomes

Yi∣�i, � ∼ f (y∣di�i, �) , i = 1, ..., n (2.6)

�1, ..., �n∣P ∼ P

P ∣� ∼ DP (M, N (�,Σ))

� ∼ N (�0,Σ0)

� ∼ [�]
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MacEachern [1998] provides the basic MCMC algorithm for sampling from the

posterior distribution of MDP models such as model 2.6, along with some add-ons for

increased e�ciency. The basic algorithm, a Gibbs sampler, relies to a great extent on

conjugacy of the likelihood and hyperprior. (Here, conjugacy is used in the informal

sense, to mean that the posterior resulting from the likelihood/prior pair is easy to

work with.) In the next section, a simple model for continuous data is proposed

and its associated Gibbs sampler is described in detail. In Chapter 3, the model is

extended to discrete data and the resulting non-conjugacy problem is explored.

2.5 A Model for Continuous Data

When the variable of interest Y is continuous, the density f(y∣�, �) in models

2.5 and 2.6 is merely an expedient kernel that smooths away the discreteness of the

Dirichlet process. Since the hyperprior �0 is taken to be multivariate normal (for

reasons explained in the previous section), a natural, conjugate choice is to take f

to be the normal density. This is not to say, however, that the statistician believes

for a second that the data themselves may be normally distributed. Rather, the

stick-breaking representation 2.4 of the Dirichlet process implies that the judgment

order statistic distributions are being modeled as in�nite mixtures of normals, while

maintaining dependence across judgment ranks among the means of each mixture

component. The parameter � is taken to be the data variance �2
Y , and is assigned an

Inverse Gamma IG (a, b) prior, with density proportional to (�2
Y )
−(a+1)

exp
(
− 1
b�2
Y

)
.
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Model 2.6 for continuous data becomes

Yi∣�i, �2
Y ∼ N

(
di�i, �

2
Y

)
, i = 1, ..., n (2.7)

�1, ..., �n∣P ∼ P

P ∣� ∼ DP (M, N (�,Σ))

� ∼ N (�0,Σ0)

�2
Y ∼ IG (a, b)

Note that the �rst line of model 2.7 may be rewritten as Yi = di�i + �i, where

�1, ..., �n are i.i.d. N (0, �2
Y ), lending itself to a natural interpretation as a random-

e�ects ANOVA model. The Gibbs sampler for sampling from the posterior under

model 2.7 makes use of the clustering of the �'s at k ≤ n distinct values, �∗1, ..., �
∗
k,

owing to the fact that the distribution P is discrete. In any given scan of the Gibbs

sampler, the individual �'s (and their associated observations) are allowed to leave

their current clusters to join another existing cluster, or to start a brand new cluster,

in accordance with the Polya urn scheme representation of the Dirichlet process.

To formalize this idea, de�ne the random variables s1, ..., sn by si = j i� �i = �∗j ,

j = 1, ..., k, i = 1, ..., n, to identify observations with clusters. Thus, every cluster

consists of all those observations whose means (at the current stage of the algorithm)

are components of the same � vector. It is easy to see that these means may be

di�erent if observations come from di�erent judgment ranks. In the sequel, '(⋅∣m, v)

and Φ(⋅∣m, v) denote, respectively, the (univariate or multivariate) normal density

and CDF with mean m and variance v. To save space, the conditional posterior

distribution of every parameter is denoted by ⋅∣rest, where rest means all the model

components not to the left of the conditioning bar.
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The Gibbs sampler for model 2.7 consists of the following steps:

∙ Step 0: Set the values of the �xed parametersM, Σ, �0, Σ0, a, and b. Initialize

all the other parameters to �plausible� values.

∙ Step 1: Update (si, �i) ∣rest. Excluding �i, there are k− clusters left, containing

n−1 , ..., n
−
k− members. Thinking of �i as a fresh draw from a Polya urn containing

the remaining clusters, it is clear that it can join one of the existing k− clusters,

or it can start a new cluster. In fact, it joins cluster j, i.e. (si, �i) =
(
j, �∗j

)
,

with probability

qj ∝
n−j

M + n− 1
'
(
yi∣di�∗j , �2

Y

)
,

for j = 1, ..., k−, or it starts a new cluster, i.e. (si, �i) = (k− + 1, �∗new), with

probability

q0 ∝
M

M + n− 1

ˆ
ℝK

'
(
yi∣di�, �2

Y

)
' (�∣�,Σ) d� (2.8)

=
M

M + n− 1
'
(
yi∣di�, �2

Y + Σriri

)
,

where Σriri is the r
tℎ
i diagonal element of Σ. In the latter case, �∗new is drawn

from the distribution with density proportional to ' (yi∣di�∗new, �2
Y )⋅' (�∗new∣�,Σ),

which turns out to be the normal distribution with mean(
1

�2
Y

d′idi + Σ−1
)−1(

yi
�2
Y

d′i + Σ−1�

)

and covariance matrix
(

1
�2
Y
d′idi + Σ−1

)−1
. Repeat this step for i = 1, ..., n.

∙ Step 2: Update �∗1, ..., �
∗
k∣rest. The �∗j 's are independent, and

[�∗j ∣rest] ∝
n∏

i=1, si=j

'
(
yi∣di�∗j , �2

Y

)
⋅ '
(
�∗j ∣�,Σ

)
,
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which turns out to be the normal density with mean(
1

�2
Y

D′BD + Σ−1
)−1(

1

�2
Y

D′By + Σ−1�

)
(2.9)

and covariance matrix
(

1
�2
Y
D′BD + Σ−1

)−1
, where D is a n×K matrix with

rows d1, ..., dn, B = diag (1 (s1 = j) , ..., 1 (sn = j)), and y = (y1, ..., yn)′ .

Generating �∗j from this distribution is akin to setting �∗j equal to its posterior

mean (given by 2.9) and contaminating it with random error. Gelfand and

Smith [1990] suggest Rao-Blackwellization as a straightforward improvement of

the accuracy of posterior inference. The Rao-Blackwellized update of �∗j merely

sets it equal to its posterior mean, given by 2.9. Repeat this step for j = 1, ..., k.

∙ Step 3: Update �∣rest. A familiar calculation shows that

[�∣rest] ∝
k∏
j=1

'
(
�∗j ∣�,Σ

)
⋅ ' (�∣�0,Σ0) ,

which is proportional to the density of the normal distribution with mean

(
kΣ−1 + Σ−10

)−1(
Σ−1

k∑
j=1

�∗j + Σ−10 �0

)
(2.10)

and variance
(
kΣ−1 + Σ−10

)−1
. Once again, a Rao-Blackwellized update for �

is given by 2.10.

∙ Step 4: Update �2
Y ∣rest. From

[�2
Y ∣rest] ∝

n∏
i=1

'
(
yi∣di�i, �2

Y

)
⋅
(
�2
Y

)−(a+1)
exp

(
− 1

b�2
Y

)
,

it is easy to see that the posterior distribution of �2
Y is IG (a′, b′), where a′ =

a+ n
2
and 1

b′
= 1

b
+ 1

2

∑n
i=1 (yi − di�i)2.
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∙ Step 5: Repeat steps 1 - 4 until convergence, and from then on, until the desired

number of posterior draws is obtained.

Convergence and mixing for this Gibbs sampler are assessed visually by means of

time series plots and scatter plots of parameters. The Gibbs sampler is run for an

initial burn-in period, allowing it to converge to the stationary distribution, then it is

run until T posterior draws are accumulated for inference. These recorded draws are

separated by a suitable lag to diminish the impact of dependence.

Once the Gibbs sampler has completed its run, it is straightforward (though com-

putationally intensive) to obtain posterior estimates of the judgment order statistic

distributions. Following De Iorio et al. [2004], the posterior mean of a judgment order

statistic distribution may be expressed as a predictive distribution for a future mea-

surement from that judgment rank. That is, E
[
f[r]∣data

]
= p (yn+1∣rn+1 = r, data),

for a future observation yn+1 having judgment rank rn+1 in a set of size K. For

brevity, let  denote a vector consisting of all the unknown parameters in the model.

Then

p (yn+1∣rn+1 = r, data) = E [p (yn+1∣rn+1 = r, data, ) ∣data]

≈ 1

T

T∑
t=1

p
(
yn+1∣rn+1 = r, data, (t)

)
=

1

T

T∑
t=1

p
(
yn+1∣rn+1 = r, (t)

)
which immediately suggests as an estimator of the judgment order statistic density

f[r] its estimated posterior mean

f̂[r] (y) =
1

T

T∑
t=1

p
(
y∣r, (t)

)
, (2.11)

39



where

p
(
y∣r, (t)

)
=

k(t)∑
j=1

n
(t)
j

M + n
'
(
y∣d�∗(t)j , �

2 (t)
Y

)
+

M

M + n
'
(
y∣d�(t), �

2 (t)
Y + Σrr

)
,

(2.12)

and d is the 1 × K vector with a one in the rtℎ position and zero elsewhere. Note

that 2.12 approximates a draw from the posterior of f[r].

Similarly, the posterior mean of the judgment order statistic CDF F[r] may be

estimated by

F̂[r] (y) =
1

T

T∑
t=1

P
(
y∣r, (t)

)
, (2.13)

where P
(
y∣r, (t)

)
has the same form as 2.12 with ' replaced by Φ.

Finally, equations 1.1 and 1.2 suggest estimating the population density f and

CDF F by

f̂ (y) =
1

K

K∑
r=1

f̂[r] (y) (2.14)

and

F̂ (y) =
1

K

K∑
r=1

F̂[r] (y) , (2.15)

respectively.

2.6 Applications

The downside to using the model proposed in the previous section is its reliance

on MCMC methods and computationally intensive posterior calculations. Once these

hurdles are overcome, the natural question is whether the model is any good. In this

section, the model is �rst tested on a sample drawn from the normal distribution with

perfect ranking (so that judgment order statistic distributions are fully known). This

toy example is meant to investigate whether the model can recover judgment order
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statistic distributions with minimal prior knowledge about how exactly the data were

generated. Finally, the model is applied to a real-life data set.

2.6.1 The Normal Distribution with Perfect Ranking

The �data� in this example are a balanced RSS of size n = 30 with set size

K = 3 generated from the standard normal distribution with perfect ranking. That

is, the data set consists of three independent random samples, each of size m = 10,

from the distributions of the order statistics Z1:3, Z2:3, and Z3:3, respectively, where

Z ∼ N(0, 1). However, this information is not shared with the statistician �tting

the model, who is only given the data. The purpose of this example is to test the

model's ability to estimate the �correct� judgment order statistic distributions and the

population distribution. The statistician chooses the hyperparameters of the model

by a cursory inspection of the data.

A plot of the data versus the judgment ranks shows an increasing trend, with the

data from the three judgment ranks centered roughly about -1, 0, and 1, respectively,

so the statistician takes �0 = (−1, 0, 1)′. Without giving the matter much thought,

the statistician takes Σ0 = diag(16, 16, 16). To allow for some variability in the data,

the Inverse Gamma parameters are taken to be a = 2 and b = 0.3, giving �2
Y a prior

mean of 31/3. Since the data from the tails seem more spread out than the judgment

ranked medians, the diagonal of Σ is set to (1.5, 1, 1.5)′. For the sake of simplicity,

the covariance matrix Σ is given a constant correlation coe�cient � = 0.5, so that

Σ =

⎡⎣ 1.5 0.6124 0.75
0.6124 1 0.6124
0.75 0.6124 1.5

⎤⎦ .
Finally, not being too con�dent in the prior speci�cation, the statistician sets the

precision parameter to M = 0.1 to reduce reliance on the prior.
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Figure 2.1: Estimated posterior means of the judgment order statistic densities (solid
curves) for judgment ranks 1 (top left), 2 (top right), and 3 (bottom left) along with
the true order statistic densities (dashed curves), and estimated posterior mean of
the population density (solid curve, bottom right) along with the standard normal
density (dashed curve).

The Gibbs sampler is run for a burn-in period of 1000 iterations. Subsequently,

T = 5000 iterations are saved (with a lag of 20 between recorded draws). Posterior

inference is based on these 5000 posterior draws. SinceM is small, the Gibbs sampler

rarely starts new clusters, and the mean number of clusters is 1.329. The judgment

order statistic densities f1:3(t) = 3 (1− Φ(t))2 '(t), f2:3(t) = 6Φ(t) (1− Φ(t))'(t),

and f3:3(t) = 3Φ(t)2'(t) are compared to their estimated posterior means f̂[1], f̂[2], and

f̂[3], given by Equation 2.11, and the population density ' is estimated by Equation
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2.14. These four density estimates are compared to the corresponding true densities

in Figure 2.1. The estimates are evaluated on a grid of points from -3 to 3 that are

0.05 apart. Observe that even though the prior parameters were chosen without much

care, the density estimates are reasonably close to their targets. This author is not

aware of any other RSS procedures that can produce estimates of the judgment order

statistic distributions (either density or CDF) which do not assume perfect ranking

or a speci�c imperfect ranking model and can borrow information across judgment

ranks.

Figure 2.2: Estimated posterior mean of the population CDF (solid curve), standard
normal CDF (dashed curve), and NPMLE (step function).

43



Likewise, posterior estimates can be calculated for the the judgment order statis-

tic distribution functions, and these in turn can be averaged to produce an esti-

mate of the population distribution function, using Equation 2.15. This CDF esti-

mate is compared in Figure 2.2 to the standard normal distribution and Kvam and

Samaniego's NPMLE. (The EM algorithm for the NPMLE converged in 16 iterations

using tolerance level 0.0001.) The Kolmogorov-Smirnov statistic of the CDF estimate,

supy∈ℝ

∣∣∣F̂ (y)− Φ (y)
∣∣∣, is approximately 0.061.

2.6.2 Median Household Income by State

The data set used in this example illustrates how fuzzy and amorphous judgment

ranking can be. It consists of the two-year-average median household incomes of all

50 states and the District of Columbia for the years 2007-2008 (U.S. Census Bureau

[2009]). Of the 51 entries, three were discarded at random, and the remaining 48

were allocated into 12 sets of size K = 4. A U.S. resident was shown the names of

the states in each set and asked to rank them to the best of their ability in order of

(perceived) increasing median household income. The 12 ranked sets were divided

into m = 3 cycles to obtain a balanced RSS of size n = 12. The sample is given in

Table 2.1.

The continuous data model 2.7 was �t on the log-scale. The prior parameters

were set to M = 1, a = b = 20, �0 =
(
Ȳ[1], Ȳ[2], Ȳ[3], Ȳ[4]

)′
, and Σ0 = 0.1 ⋅ I4, and

the matrix Σ was designed so that its diagonal terms re�ect the higher variance of

the middle two judgment order statistics relative to the extremes. Intuitively, the

correlation should be highest between adjacent judgment ranks, and should decay as

the judgment ranks grow further apart. Moreover, the correlation should be greater
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between adjacent judgment ranks when the set size is larger. Thus, a reasonable

choice for the correlation in Σ between judgment ranks r1 and r2 is
(

K
K+1

)∣r1−r2∣ .
State Median Household Income ($) Judgment Rank

Tennessee 41240 1
Ohio 48960 2
Utah 59062 3

California 57445 4
Kentucky 41058 1
Wisconsin 52224 2
Oregon 51947 3
Colorado 62217 4
Mississippi 37579 1
Louisiana 41232 2

New Mexico 44081 3
Delaware 53695 4

Table 2.1: RSS of size n = 12 used in Subsection 2.6.2.

The Gibbs sampler was run for a burn-in period of 1000 iterations, and subse-

quently 5000 draws (20 iterations apart) were saved for posterior inference. Time

series plots and scatter plots of the parameters indicated convergence. The estimated

posterior mean of the population CDF F is compared to the true CDF in Figure 2.3.

The judgment order statistic mean �[r] can be estimated using the judgment order

statistic density estimate f̂[r] via

�̂[r] =

ˆ ∞
−∞

yf̂[r] (y) dy

=
1

T (M + n)

T∑
t=1

⎡⎣ k(t)∑
j=1

n
(t)
j d�

∗(t)
j +Md�(t)

⎤⎦ ,
and the corresponding estimator of the population mean � is �̂ = 1

K

∑K
r=1 �̂[r]. The

Bayesian and frequentist estimates of �[r] are given in Table 2.2. Note that the Ȳ[r]
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Figure 2.3: Estimated posterior mean of the population CDF (smooth curve) and
true population CDF (step function) for the log median household income data.

are consistently smaller than the �̂[r], and that �̂ = 10.81917 is closer to the true

population mean 10.83998 than the balanced RSS sample mean ȲRSS = 10.79161.

One of the features of judgment ranking highlighted by this data set is the fact

that within-set ranking errors depend to a large extent on the units allocated to that

set. For instance, one set under consideration consisted of Arkansas, West Virginia,

Mississippi, and the District of Columbia. While the ranker felt con�dent that the

District of Columbia had the highest median household income in the set, and less

con�dent that Mississippi had the lowest, the remaining two states were e�ectively

a toss-up for second and third place. The ranker did not have the option to assign

them a tied rank and had them in the reverse order. The lesson here is that within-set
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r �̂[r] Ȳ[r]

1 10.60172 10.5947
2 10.79515 10.76301
3 10.91157 10.84604
4 10.96825 10.96268

Table 2.2: Comparison of the Bayesian estimators �̂[r] and frequentist estimators Ȳ[r]
of the judgment order statistic means �[r], r = 1, 2, 3, 4.

ranking errors vary with the units allocated to the set, but are more likely when the

members of the set resemble each other (in the ranker's opinion, at least). Moreover,

if the design strategy dictates in advance which ranked unit is to be measured from

a given set, then units that are ranked with high accuracy (extremes in particular)

may be passed over for units assigned judgment ranks that may not re�ect their true

rank.
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Chapter 3

Bayesian Nonparametric Models for Discrete Data

3.1 Non-conjugacy: The Bane of Bayesian Statistics

When eliciting prior distributions, the statistician must always keep in mind how

di�cult posterior inference can be. More complicated prior structures may constitute

a far more accurate representation of prior beliefs, but they may also be much harder

to work with. The standard approach in low-dimensional parameter spaces is to use

conjugate priors, if possible. A likelihood/prior pair is usually said to be conjugate

if the resulting posterior belongs to the same family of distributions as the prior, or

if the prior and the likelihood function have matching kernels. Naturally, specify-

ing conjugate priors in high-dimensional parameter spaces can be di�cult. While

the Dirichlet process itself is a conjugate prior (Section 2.4), MDP models such as

Model 2.6 are not. However, the MCMC algorithm for posterior simulation for the

continuous data Model 2.7 was simpli�ed a great deal by the conjugacy of the normal

hyperprior, the Inverse Gamma prior on �2
Y , and the likelihood function.

What happens when the data density f (y∣�, �) is taken to be non-normal? For

example, when modeling count data, the usual choices for f (y∣�, �) are the Bernoulli,

binomial, or Poisson probability mass functions. More generally, one can assume that
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f (y∣�, �) has the exponential family form given by McCullagh and Nelder [1999]:

f (y∣�, �) = exp

[
y� − b (�)

a (�)
− c (y, �)

]
, (3.1)

where � is the (real-valued) canonical parameter. For example, when f (y∣�, �) is the

Bernoulli density, py (1− p)1−y , for y = 0, 1, it is easy to see that � = log
(

p
1−p

)
and b (�) = ln

(
1 + e�

)
. Similarly, when f (y∣�, �) is the Poisson density, �ye−�

y!
, for

y = 0, 1, 2, ..., then � = ln� and b (�) = exp �.

Suppose one wishes to perform posterior inference for Model 2.6 with f (y∣�, �) as

in 3.1. Naturally, one may start o� trying to mimic the algorithm proposed in Section

2.5. Every iteration of the algorithm would then consist of the following updates:

∙ Update the clustering structure s1, ..., sn.

∙ Update the cluster locations �∗1, ..., �
∗
k.

∙ Update �.

∙ Update �, if it is included in the model.

(These variables were de�ned in Sections 2.4 and 2.5.) Whereas the third update

above (of �) requires a simple normal-normal posterior calculation, the �rst two

updates are signi�cantly more complicated as a result of the non-conjugacy of the

normal hyperprior and f (y∣�, �).

3.1.1 Updating the Clustering Structure

In Step 1 of the Gibbs sampler of Section 2.5, each (si, �i) , i = 1, ..., n, was

removed from the clustering structure in turn and, following the Polya urn scheme, it
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was allowed to rejoin an existing cluster or start a new cluster on its own. The latter

event occurs with probability q0, which involves an integral of the form

ˆ
ℝK

f (yi∣di�, �)' (�∣�,Σ) d�. (3.2)

In Equation 2.8, the integral of the form 3.2 reduced to a single evaluation of

a normal density. In most other cases, however, this integral can be very hard to

compute. West et al. [1994] suggest using either numerical integration techniques

or Monte Carlo integration to evaluate the integral. Unfortunately, these techniques

are both computationally costly (especially since they need to be performed at every

stage of the sampler) and not accurate enough. MacEachern and Muller [1998] ob-

serve that the resulting Markov chain may have a stationary distribution that di�ers

substantially from the posterior, and that the quality of the approximation is di�cult

to evaluate because it impacts the transition probabilities.

Rather than evaluate the integral 3.2, MacEachern and Muller propose their �No

Gaps� algorithm for non-conjugate models which circumvents the integration entirely.

Reasoning that the number of clusters cannot exceed the sample size n, they augment

the k occupied clusters with n − k unoccupied, or empty, clusters. Thus, rather

than having to start a new cluster, the algorithm may simply borrow one of the

empty clusters on stand-by and place it with the occupied clusters. Calculating the

probability of this event (up to a constant of proportionality) requires only likelihood

evaluations.

Neal [2000] notes that �there is a puzzling ine�ciency in the algorithm's mechanism

(...) for assigning an observation to a newly created mixture component.� Neal,

therefore, also proposes several algorithms, some of which are Gibbs samplers and

others Metropolis-Hastings algorithms. In the algorithm of the next section, the
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clustering structure will be updated by combining a Metropolis step and a partial

Gibbs step (Neal's Algorithm 7). The justi�cation for this procedure is that while

Metropolis steps are su�cient to obtain an ergodic chain, �such a chain would often

sample ine�ciently, however, since it can move an observation from one existing

component to another only by passing though (sic) a possibly unlikely state in which

that observation is a singleton. Such changes can be made more likely by combining

these Metropolis-Hastings updates with partial Gibbs sampling updates, which are

applied only to those observations that are not singletons,� and which may only move

such an observation to a component associated with some other observation [Neal,

2000].

In addition, more advanced algorithms for non-conjugate models in the literature

include the split-merge algorithm [Jain and Neal, 2007] and a Metropolis-Hastings

algorithm based on the Laplace approximation to exponential-family likelihood func-

tions [Guha, 2008].

3.1.2 Updating the Cluster Locations

The natural update for �∗j , j = 1, ..., k, is a random draw generated from its

posterior distribution given all yi such that si = j (and the other model components).

In Section 2.5, conjugacy led to a normal posterior, and a Rao-Blackwellized update

(the posterior mean of �∗j) was deemed more accurate than generating a random draw

that amounted to contaminating the posterior mean with random error. In the non-

conjugate case, the posterior is not in general a well-known distribution, so generating

a random draw from it requires a non-standard sampling sub-routine. Note that this

problem arises even in fully parametric Bayesian settings. Moreover, since it is not
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obvious whether the mean represents a �typical� value for this posterior distribution

(or even how to approximate the mean accurately), Rao-Blackwellization may not be

a good idea in this setting.

In the next section, an algorithm is proposed for �tting non-conjugate models.

3.2 MCMC Algorithm for Non-conjugate Models

The algorithm proposed here uses Neal's Algorithm 7 for updating the cluster

identi�ers s1, ..., sn (Steps 1 and 2), a Random Walk Metropolis-Hastings algorithm

to update the cluster locations �∗1, ..., �
∗
k (Step 3), and a familiar conjugate normal-

normal update for �. The update step for � is omitted, but it is quite obvious how

to insert it if it is needed.

∙ Step 0: Set the values of the �xed parameters M, Σ, �0, and Σ0. Initialize all

the other parameters to �plausible� values.

∙ Step 1: Update (si, �i) ∣rest via a Metropolis step, as follows.

� If nsi > 1, set (si,�i) = (k + 1,�new), where �new is drawn from N (�,Σ),

with probability

min

[
1,

M

n− 1

f (yi∣di�new, �)

f (yi∣di�i, �)

]
. (3.3)

� Otherwise, when nsi = 1, draw j from 1, ..., k− with probability
n−j
n−1 , and

set (si,�i) =
(
j,�∗j

)
with probability

min

[
1,
n− 1

M

f
(
yi∣di�∗j , �

)
f (yi∣di�i, �)

]
.

If (si,�i) is not changed, it remains at its present value. Repeat this step

for i = 1, ..., n.
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∙ Step 2: Update (si, �i) ∣rest via a partial Gibbs step, as follows.

� If nsi = 1, do nothing.

� Otherwise, set (si,�i) =
(
j,�∗j

)
with probability proportional to

n−j
n−1 f

(
yi∣di�∗j , �

)
,

j = 1, ..., k. If (si,�i) is not changed, it remains at its present value. Re-

peat this step for i = 1, ..., n.

∙ Step 3: Update �∗1, ..., �
∗
k∣rest. The �∗j 's are independent, and

[�∗j ∣rest] ∝
n∏

i=1, si=j

f
(
yi∣di�∗j , �

)
⋅ '
(
�∗j ∣�,Σ

)
∝ exp

[
− 1

a (�)
1′nBDb

(
�∗j
)]
⋅ '
(
�∗j ∣m,Σ

)
,

where 1′n is the row vector of n ones, B, D, and y are as in Section 2.5, and

m = 1
a(�)

ΣD′By + �. This posterior can be sampled using a Random Walk

Metropolis-Hastings algorithm [Robert and Casella, 2005, page 288].

Repeat this step for j = 1, ..., k.

∙ Step 4: Update �∣rest. This is identical to Step 3 of the Gibbs sampler in

Section 2.5, and a Rao-Blackwellized update for � is given by the quantity

2.10.

∙ Step 5: Repeat Steps 1 - 4 until convergence and, subsequently, until the desired

number of posterior draws is accumulated.

Note that this formulation of the discrete data problem can be expanded in obvious

ways. For example, the parameter � can be included to account for overdispersion.

One may opt for a non-canonical link function (such as the probit link for binary

data), or even a nonparametric link function [Mallick and Gelfand, 1994]. Finally,
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one can also introduce latent variables to model categorical or ordinal data [De Iorio

et al., 2004].

Posterior inference can be carried out in much the same way as in Section 2.5,

except that evaluating an expression similar to Equation 2.12 becomes problematic,

since the second term on the right-hand side requires numerous evaluations of an

intractable integral of the form 3.2 [Mukhopadhyay and Gelfand, 1997]. Monte Carlo

approximations are deemed adequate in this setting since they are carried out in

parallel, rather than in series. That is, when calculating features of the posterior

distribution from the MCMC output (as opposed to running the chain), replacing one

of these integrals by an approximate value will not a�ect all subsequent calculations.

Finally, the intervening link function necessitates care when moving back and forth

between the scales of the canonical and actual parameter. This is especially the case

when specifying the parameters of the hyperprior.

3.3 On Questions of Allocation

Chen et al. [2005] discuss the use of balanced RSS for estimating a population

proportion, and propose logistic regression as a way of pooling information from

multiple concomitants for performing judgment ranking. Chen et al. [2006b] show

that an unbalanced RSS scheme using Neyman allocation is optimal (with especially

noticeable improvements over balanced RSS when the proportion is close to 0 or 1)

�in the sense that it leads to minimum variance within the class of RSS estimators

that are simple averages of the means of the order statistics.�

Kohlschmidt [2009] analyzes RSS estimation of a population proportion under var-

ious missing data models. Both Kohlschmidt and Terpstra and Nelson [2005] consider
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optimal allocations for the naive (sample proportion) estimator and the MLE of the

population proportion. In the former case, the optimal allocation corresponds to Ney-

man allocation, which draws measurements from all the judgment ranks (in varying

proportions), whereas in the latter, the optimal allocation is extremely unbalanced

and assigns all the measurements to a single judgment rank.

This dissertation's main focus is Bayesian modeling of RSS data, namely, how

to analyze data once it has been collected. It does not propose any optimal rules

for designing the sample or allocating measurement units to the judgment ranks.

However, it is still worthwhile to think about the role that allocation plays from a

Bayesian point of view. Early work indicates that good Bayesian sampling schemes

are usually sequential [Basu, 1969, Zacks, 1969, 1970, Solomon and Zacks, 1970].

Ericson [1965] generalizes Neyman allocation to include prior information about the

unknown stratum means in strati�ed sampling. (This prior information is represented

by a multivariate normal distribution.) Draper and Guttman [1968] obtain optimal

allocation results for the second phase of a two-phase strati�ed sampling procedure,

using information obtained from the �rst stage.

Answering questions about allocation for hierarchical Bayesian nonparametric

models such as Model 2.5 is di�cult because there is no closed-form representa-

tion of the posterior distribution or useful summaries of the posterior. Our modeling

strategy incorporates dependence between the judgment order statistic distributions

F[1], ..., F[K] via the DDP, i.e., by maintaining dependence within the (symbolic)

K-tuples �∗j of locations about which the F[r]'s concentrate their mass. From an

intuitive standpoint, allocating measurement units to judgment rank r is a way of

�pinning down� the curves �∗j at judgment rank r. (This is evident, for example, in
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the update 2.9, in which the term D′By is a K × 1 vector whose rtℎ term is the

sum of only those yi's in cluster j which come from units assigned judgment rank r

in their respective ranked sets.)

A more formal decision-theoretic approach invokes arguments from the Bayesian

design of experiments. Chaloner [1984] and Lohr [1995] consider optimal Bayesian

designs for linear models and one-way random e�ects models, respectively. Chaloner

and Verdinelli [1995] present an extensive review of Bayesian experimental design.

Following Lindley [1972, page 19-20], decision-making is done in two parts: �rst, the

statistician must choose a design (from a set of possible designs) and collect data

according to the chosen design. The data are used for inference about unknown

model parameters, and �nally the statistician makes a terminal decision about the

problem at hand. The statistician's preferences and the goals of the experiment can

be described by a utility function, U (⋅, ⋅, ⋅, ⋅), which is a function of the design, the

data, the model parameters, and the terminal decision. Since the design needs to be

selected before the data are collected or the terminal decision is made, the search for

an optimal design requires preposterior analysis, i.e., averaging the utility function

over the data and unknown model parameters (under a utility-maximizing terminal

decision).

When utility is understood as a measure of the information gained from an ex-

periment, a common choice for U is the expected gain in Shannon information or,

equivalently, the Kullback-Leibler divergence between the posterior and prior distri-

butions [Lindley, 1956]. This choice gives rise to the various Bayesian �alphabet�

optimality criteria [Chaloner and Verdinelli, 1995]. For nonlinear design problems

(i.e., when the model is non-linear or the experimenter is interested in a nonlinear
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function of the parameters in a linear model), the expected utility is a very com-

plicated integral and it is often replaced by an approximation (usually based on a

normal approximation to the posterior distribution). For binary response data, a

common choice of design is one that is most e�cient for a �best guess� of the pa-

rameters. Such a design, however, may be ine�cient even for parameter values in

a close neighborhood of that best guess. Numerical optimization techniques can be

used to derive optimal designs that take into account uncertainty about prior guesses

of the parameter values [Chaloner and Larntz, 1989]. Muller [1999] and Amzal et al.

[2006] propose MCMC-based optimization techniques for Bayesian design. Finally,

Hamada et al. [2001] use a genetic algorithm to �nd near-optimal Bayesian designs

in a regression setting.

In the next section, the role of the �xed prior parameters is examined in the

context of estimating the proportion of diabetics in a population of adult women.

For simplicity, the analysis is based on a single balanced RSS. Chapter 4 introduces

judgment post-strati�cation, in which judgment ranking is done after measurement,

thereby relieving the statistician of the burden of allocating measurement units to

judgment ranks.

3.4 Application: Diabetes in Pima Indian Women

In this section, the roles of the prior mass and variance parameters are explored in

a simulation study using a �xed sample from a data set on the prevalence of diabetes

among Pima Indian women collected by the US National Institute of Diabetes and

Digestive and Kidney Diseases. (The data set Pima.te is part of the MASS package

in the statistical software R.) The parameter of interest is the proportion of diabetic
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women in the population. Body Mass Index (BMI) is used as the concomitant variable

for judgment ranking, since women with high BMI appear more likely to be diabetic

in a cursory examination of the data. A balanced RSS of size n = 60 consisting of

m = 20 cycles and using set size K = 3 is obtained and remains �xed throughout

this simulation study. The within-rank sample proportions are given by p̂[1] = 0.3,

p̂[2] = 0.4, and p̂[3] = 0.45, and the overall sample proportion is given by p̂ = 0.3833.

(The true population proportion is p = 0.3283.) For simplicity, the components of

the hyperprior mean �0 are set to the logits of p̂[1], p̂[2], and p̂[3], and Σ0 is taken to

be 10−4I3, thereby concentrating the prior distribution of � around (logits of) the

usual frequentist estimates.

The total variability in the hyperprior also includes the covariance matrix Σ. In

fact, a simple pre-integration could be carried out to eliminate the parameter �, leav-

ing the DDP with an e�ective N (�0,Σ + Σ0) hyperprior. (See MacEachern, 1998,

for more on pre-integration and other techniques for improving MCMC convergence

and mixing.) For the purposes of this simulation study, the covariance matrix Σ is

given the form v
[(

K
K+1

)∣i−j∣]3
i,j=1

, where v takes on the successive values 0.01, 0.1, and

0.5. When translated back to the 0 − 1 scale, these values of v produce hyperpriors

that assign most of their mass within 0.05 of the p̂[r]'s (for v = 0.01), to ones that

spread out over virtually the entire unit interval (for v = 0.5). In addition, the mass

parameter M is assigned the values 1, 10, and 20.

For each (M, v) combination, the MCMC algorithm of Section 3.2 is run with 1000

burn-in iterations and 10,000 saved posterior draws. The estimated posterior means

of p[1], p[2], p[3], and p = 1
3

∑3
r=1 p[r] (rounded to 4 decimal digits) are calculated from

the MCMC output and are given in Table 3.1.
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v = 0.01
p[1] p[2] p[3] p

M = 1 0.2795 0.3640 0.4171 0.3535
M = 10 0.2796 0.3566 0.4053 0.3471
M = 20 0.2834 0.3593 0.4093 0.3489

v = 0.1
p[1] p[2] p[3] p

M = 1 0.2513 0.3231 0.3681 0.3142
M = 10 0.2468 0.3102 0.3598 0.3056
M = 20 0.2507 0.3144 0.3636 0.3096

v = 0.5
p[1] p[2] p[3] p

M = 1 0.2256 0.2874 0.3342 0.2824
M = 10 0.2197 0.2641 0.2987 0.2609
M = 20 0.2266 0.2727 0.3113 0.2702

Table 3.1: Estimated posterior means of p[1], p[2], p[3], and p = 1
3

∑3
r=1 p[r] for all

combinations of M = 1, 10, 20 and v = 0.01, 0.1, 0.5 for the example in Section 3.4.

The main impact of increasing the mass parameter M is increasing the number

of clusters k. In fact, the mean number of clusters ranges from about 5 when M = 1,

to about 21 when M = 10 and 28 when M = 20. This is in line with the intuitive

implications of Equations 2.8 and 3.3 in which the probabilities of starting new clusters

increase with M . It is also consistent with the �ndings of De Iorio et al. [2004] who

show that k is stochastically increasing in M . In fact, larger values of M would

produce estimates that di�er little from the fully parametric version of the model

(with no intervening Dirichlet process), whereas smaller values of M would force

observations from di�erent judgment ranks to cohabitate in the same clusters, leading

to more dependence between the posterior distributions of the p[r]'s. Hence, all else

being equal, estimates obtained for M = 1 should be preferred to those obtained

under larger values of M .
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Notice that the Bayesian estimates of p are all smaller than the frequentist estimate

p̂ = 0.3833. Moreover, the most accurate Bayes estimates of p appear to be those

for v = 0.1. The intuitive explanation of this is that since the frequentist estimate

di�ers somewhat from the true value of p, a very small value of v (such as 0.01) will

concentrate the prior on the p[r]'s very close to the frequentist estimates p̂[r] and thus

restrict the posterior's ability to place mass elsewhere. By contrast, a larger value of v

(such as 0.5) may lead to a prior that is far too di�use. Thus, placing v in the �middle

ground� balances the statistician's desire for an �informative� prior with skepticism

about the choice of �0.
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Chapter 4

Judgment Post-strati�cation: Multiple Rankers and the Role

of Set Size

4.1 Judgment Post-Strati�cation

In Chapter 1, RSS was introduced as a means of combining imperfect judgment

rankings with measurements for statistical inference. Crucially, judgment ranking

was always performed before units were chosen for measurement. That is, population

units were �rst allocated to sets (of �xed set size K, say), and then presented to the

ranker. Working on one set at a time, the ranker assigned its units their judgment

ranks, from 1 to K. Finally, a subset of these judgment-ranked units was selected for

measurement, in accordance with a pre-determined allocation scheme. In balanced

RSS (Section 1.3), all judgment ranks are equally represented among the measurement

units. However, design considerations (such as Neyman allocation, c.f. Section 3.3)

can sometimes prompt the experimenter to choose an unbalanced allocation scheme

(Section 1.6).

Judgment ranking, however, need not always precede the selection of measurement

units. MacEachern et al. [2004] introduce judgment post-strati�cation as a procedure

which starts out with a SRS of units from the population. Each unit is measured

and then placed in a set with K − 1 other (unmeasured) population units. The
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units in each set are then judgment ranked. The end result, after all the sets are

ordered, is much the same as with RSS, a sample consisting of measurements and

their associated judgment ranks (except that a judgment post-strati�ed sample is far

more likely to be unbalanced). The main di�erence is that the data were not collected

under RSS as a design. This feature may be attractive to practitioners. Consider, for

example, the case of investigators who wish to reap the bene�ts of RSS but are wary

of employing a design unfamiliar to subject matter journal editors and reviewers. By

using judgment post-strati�cation, the investigators can easily ignore the judgment

ranking information (should the need arise) and revert to SRS-based analysis.

MacEachern et al. propose the average of the within-rank sample means as an esti-

mator of the population mean, and study its properties under both RSS and judgment

post-strati�cation. Wang et al. [2008] propose an improved version of MacEachern

et al.'s estimator which uses an isotonized version of the within-rank sample means.

This is intended to account for the fact that judgment order statistic distributions

are usually stochastically ordered, which in turn forces monotonicity on their means.

Frey and Ozturk (in press) derive additional constraints satis�ed by judgment rank

post-strata which are not satis�ed by ordinary strata. These constraints can be used

to obtain better small-sample estimates of the judgment order statistic distribution

functions. Du and MacEachern [2008] use judgment post-strati�cation in an experi-

mental design setup to estimate a contrast parameter (the di�erence between control

and treatment e�ects).

An estimator based on judgment-ranked data will have di�erent frequentist prop-

erties depending on whether the data arise from RSS or judgment post-strati�cation.
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From a Bayesian standpoint, however, it should not matter whether a sample con-

sisting of measurements and their associated judgment ranks originated from a RSS

design or judgment post-strati�cation. (See the discussion of the role of the likelihood

principle in survey sampling in Section 2.1.) As a result, the Bayesian methods devel-

oped in Chapters 2 and 3 for RSS can also be applied to judgment post-strati�ed data.

Moreover, judgment post-strati�cation allows investigators to conveniently side-step

the thorny problem of optimal allocation for Bayesian nonparametric models (Section

3.3).

4.2 Imprecise Rankings and Multiple Rankers

The subjectivity of judgment ranking opens up a possibility not mentioned so far,

namely, that the ranker may express varying degrees of con�dence in the assigned

ranks. MacEachern et al. [2004] develop judgment post-strati�cation as a means

of allowing such imprecise rankings. That is, instead of being forced to assign the

ranks 1 through K to the members of a set, the ranker may assign a probability

distribution to the ranks. For example, consider a set of size K = 3 in which the

ranker has con�dently identi�ed the minimum, but is unable to di�erentiate between

the remaining two units. Instead of being forced to assign the ranks 2 and 3 to these

two units (a choice that may di�er little from a coin toss), the ranker may assign their

ranks the probability distribution
(
0, 1

2
, 1
2

)
, which means that the ranker believes that

both units are equally likely to have ranks 2 and 3.

Another advantage for judgment post-strati�cation over RSS is that it provides

a mechanism for combining rankings from multiple rankers. Suppose an investigator

wishes to elicit input from two rankers. If they disagree over the ranking of a particular
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set or wish to provide imprecise rankings, drawing a (balanced or unbalanced) RSS

based on their rankings may be problematic, since they may di�er on which unit of a

ranked set should be measured. By �xing the measured units beforehand, judgment

post-strati�cation avoids this problem. MacEachern et al. suggest using a convex

combination of the rankings as a way of combining the judgment ranking opinions

of multiple rankers. Wang et al. [2006] de�ne concomitants of multivariate order

statistics and obtain some of their theoretical properties, to derive estimators of the

population mean that combine ranking information from several auxiliary variables.

The Bayesian methods of Chapters 2 and 3 are based on Model 2.5, which as-

sumes a non-random covariate. That is, the model was not intended to accommodate

�randomness� in the judgment ranks, which tie observations to speci�c coordinates

of the �∗j vectors. For two rankers, one may express the problem as a two-way ran-

dom e�ects ANOVA model [De Iorio et al., 2004], taking care to impose the right

constraints on the hyperprior, in addition to the standard identi�ability constraints.

4.3 Quality of Ranking and the Role of Set Size

Chen et al. [2006a] conduct an empirical simulation study to examine the qual-

ity of ranking and the role of set size in the context of estimating a population

proportion. They �nd that judgment ranking based on multiple logistic regression

(combining several concomitant variables) is more accurate than ranking based on a

single concomitant. Moreover, �the ranking errors increase progressively as the set

size increases, which, of course, has a negative e�ect on the precision of a RSS esti-

mator. The larger set size itself, on the other hand, will increase the precision of a

RSS estimator if the rankings are perfect. In general, the combined e�ect of these
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opposing factors still leads to overall improvement in precision with increasing set

size [Chen et al., 2005].�

Providing Bayesian answers to questions about the quality of ranking and the role

of set size is more di�cult, since it involves evaluating models rather than estimators.

There are many factors that enter the picture, including the data (both the measure-

ments and the judgment ranks), the choice of set size and sample size, and the �xed

parameters in the model (not to mention the model itself). Naturally, one tries to

�x as many of these variables as possible in order to examine the e�ects of changing

one aspect of the problem, such as increasing the set size or improving the accuracy

of ranking. However, things are not always so clear-cut. For example, when studying

the role of the set size K, should the mass parameter M of the DDP in Model 2.5 be

held �xed as the set size is changed, or should it vary with the set size? This is an

important question since M is the mass assigned to a space of dimension K.

Frequentist properties of statistical procedures are evaluated by averaging over a

large number of samples (all of the same size). Thus, any peculiar features speci�c to

a particular sample will be washed out in the long run. For Bayesian models, however,

the sample remains �xed, and the model's properties are studied by averaging over

the unknown model parameters. This makes it very di�cult to compare Bayesian

models estimated from di�erent samples. Any attempt to answer questions about

the quality of judgment ranking and the role of set size falls under the banner of

model comparison. To help control for the many unknowns in this problem, the

simulation study in the following section keeps the sample measurements �xed, and

uses judgment post-strati�cation to allocate them to sets of di�erent set sizes by

rankers with varying accuracy.
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4.3.1 Simulation Study Using the Normal Distribution

This computationally intensive simulation study was carried out with the aim of

simultaneously exploring the e�ect of both the quality of ranking and set size. The

�sample measurements,� which were �xed from the outset, consist of a SRS of size

n = 100, Y1, ..., Y100, from the standard normal distribution. The sample size was

chosen to allow for a wider variety of possible set sizes, although the simulation can

be replicated with a smaller sample size. The set sizes used in the study are K = 2,

3, 4, 5, 8, and 10.

The normal distribution provides a simple and e�cient method for judgment

ranking with di�erent levels of accuracy. Using properties of the bivariate nor-

mal distribution, one can simply create a concomitant variable having correlation

coe�cient � ∈ (0, 1) with the variable of interest. Smaller values of � lead to

judgment ranking that is hardly any better than random, whereas larger values of

� make ranking more accurate. The values of � used in this study are 0.2, 0.5,

and 0.8. For each value of �, a concomitant variable X is generated from the

N (�y, 1− �2) distribution, and for each particular set size K, each measurement

unit is ranked according to its X value in a set of size K, with K − 1 hypothetical

�other population units,� i.e., draws from X. The end result is a judgment post-

strati�ed sample, (r1, Y1) , ..., (r100, Y100). Model 2.7 is �t to the data with M = 0.1,

Σ = 3
[(

K
K+1

)∣i−j∣]K
i,j=1

, �0 = � (E (Z1:K) , ..., E (ZK:K))′, Σ0 = diag (25, ..., 25),

a = 2, and b = 0.3. The estimated posterior mean F̂ of the population CDF is

obtained from the MCMC output via Equation 2.15.
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There are many ways of assessing the �t of Bayesian nonparametric models. (See,

for example, Mukhopadhyay and Gelfand, 1997.) This simulation study only consid-

ered the posterior dispersion about F̂ , for each (�,K) combination, estimated by the

posterior Integrated Mean Square Error (IMSE),

ˆ ∞
−∞

E

[(
F̂ (y)− F (y)

)2
∣data

]
dy,

where the inner expectation was estimated point-wise from the MCMC output, and

the integral was crudely approximated via the Trapezoidal Rule. Finally, to account

for variability of the judgment ranking process itself, the judgment ranking was carried

out 10 times and the resulting IMSE values were averaged.

Figure 4.1: Approximate estimated posterior IMSE for set sizes K = 2, 3, 4, 5, 8,
and 10 and � = 0.2, 0.5, and 0.8, averaged over 10 judgment rankings. The plotting
symbol is 10�.
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Figure 4.1 plots the average approximate estimated posterior IMSE against the

set size K. The plotting symbol used is 10�. Overall, the magnitude of the IMSE is

small, indicating a strong concentration of the posterior about its mean. This is only

to be expected since the sample size used is fairly large. Moreover, when ranking

is not much better than random, the IMSE does not vary much with set size. On

the other hand, when ranking is very accurate, the IMSE decreases with set size,

implying that the posterior becomes more concentrated. (Compare to the frequentist

properties of the RSS mean in Section 1.4.) It is worth noting that replicating this

simulation study usually leads to di�erent plots, but the overall trends remain largely

the same.

4.3.2 Application to the Auditing Data Set

This section revisits the auditing application of Section 1.4 and its main goal of

estimating the mean audited value of a population of accounting books. Recall that

book value is a very accurate concomitant ranking variable in this example, except in

the presence of massive accounting fraud. For the purposes of this application, a SRS

of size n = 100 audited accounting books is held �xed. (The sample mean audited

value is $371.53, whereas the population mean audited value is about $375.57.) The

accounting books in the sample are judgment post-strati�ed in sets of size K, which

takes on the successive values 2, 4, and 8. Table 4.1 reports the frequentist estimates

(within-rank sample means) and Bayesian estimates (estimated posterior means) of

the K judgment order statistic means �[1], ..., �[K], as well as the frequentist estimate

of � (the average of the within-rank sample means) and its Bayesian estimate, all

rounded to two decimal digits.
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K = 2 � �[1] �[2]

Frequentist 375.67 306.66 444.69
Bayesian 375.52 306.67 444.38

K = 4 � �[1] �[2] �[3] �[4]

Frequentist 381.29 267.11 368.68 429.25 460.14
Bayesian 381.27 267.30 368.38 429.31 460.09

K = 8 � �[1] �[2] �[3] �[4] �[5] �[6] �[7]

Frequentist 378.70 213.07 295.79 337.20 395.40 416.59 447.65 417.76
Bayesian 378.78 213.22 295.82 337.45 395.48 416.72 447.69 417.76

�[8]

506.11
506.12

Table 4.1: Frequentist and Bayesian estimates of the judgment order statistic means
and the population mean for a SRS of n = 100 accounting books judgment post-
strati�ed into sets of size K = 2, 4, and 8.

For the Bayesian estimates, the �xed parameters of the MCMC were set to �0 =(
Ȳ[1], ..., Ȳ[K]

)′
, M = 1, Σ = 100

[(
K
K+1

)∣i−j∣]K
i,j=1

, Σ0 = 100 ⋅ IK , a = 2, and b = 0.01.

Notice that, for this particular application, the frequentist and Bayesian estimates

are all remarkably close. Moreover, this remains the case for di�erent speci�cations

of the prior parameters, suggesting that there is little to be gained from resorting to

these Bayesian methods in this particular instance.
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Chapter 5

Ranked Set Sampling with a Concomitant Variable

5.1 Concomitants of Order Statistics and Judgment Ranking

The examples of the previous chapters illustrate the two main sources of the imper-

fect ranking information which is used in RSS: subjective ranking, as in the examples

of Section 1.1 (the termites example) and Subsection 2.6.2 (median household income

by state), and ranking by a concomitant variable, as in the examples of Sections 1.4

(the auditing application) and 3.4 (diabetes among Pima Indian women). In the case

of judgment ranking by a concomitant variable, the concomitant may even be the out-

put of a model that combines several auxiliary variables, such as logistic regression

[Chen et al., 2006b]. For the purposes of this chapter, it is enough to assume that the

concomitant variable X has a continuous distribution (to avoid ties in ranking) and

that the variable of interest Y �tends to increase� with X. For simplicity, Y will also

be assumed to follow a continuous distribution (although it is important to note that

this does not imply that the joint distribution of (X, Y ) is also continuous). This sec-

tion reviews some basic results from the theory of concomitants of order statistics and

examines their implications for RSS, including the choice of set size and allocation.

Since X is used for ranking sets of population units, it is important that X be

easily obtained (if not already available) for all population units. For example, in a
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medical setting, measurement of the variable of interest Y may require intrusive or

expensive procedures, but X may be based on easy-to-obtain factors, such as age,

Body Mass Index (BMI), and blood pressure. To expand upon an argument already

begun in Section 2.3, consider a generic ranked set of K population units, represented

symbolically by the K pairs
(
X(1), Y[1]

)
, ...,

(
X(K), Y[K]

)
. Here, X(1) < ... < X(K)

are necessarily known (how could the set have been ranked otherwise?), but none

of the Y values are known before measurement. It is well known that the random

variables Y[1], ..., Y[K] are conditionally independent given x(1), ..., x(K), and that the

conditional density of Y[r] given x(1), ..., x(K) is merely the population conditional

density of Y given X = x(r), namely f
(
y[r]∣x(r)

)
[Yang, 1977, David and Nagaraja,

2003, page 145]. (Notice the discrepancy between the RSS literature, which labels

X as the concomitant variable for the quantity of interest Y , and the order statistics

literature, in which Y[r] is called the concomitant of the order statistic X(r).)

If a statistician draws a RSS of size n under a (balanced or unbalanced) design that

measures only one unit from each ranked set, then the measurements Y[r1]1, ..., Y[rn]n

are independent but not identically distributed (INID) conditional on the X values.

They are also marginally independent since they come from independent sets. More-

over, the statistician has amassed a SRS of n×K X's, which can be used to estimate

the marginal distribution of X. (Note that the marginal distribution of X plays the

role of a �mixing distribution� when averaging over the conditional distributions of

Y given di�erent X values to recover features of the marginal distribution of Y .) In

particular, the set of X values at which a corresponding Y is measured constitute a

RSS following the same design and drawn with perfect ranking. Furthermore, since

the Y values from a single ranked set are conditionally independent, it is also possible
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to employ a design that calls for measurement of more than one unit per ranked set

[Wang et al., 2004] without introducing dependence among the measured Y values,

when inference is carried out conditionally on the X values. Regardless of the design,

the end result is a sample consisting of (X, Y ) pairs as well as unpaired X's, in which

the Y 's are conditionally independent, and the entire set of X's is a SRS from the

marginal distribution of X. Thus, when modeling the evolution of the conditional

distributions of Y over the range of X, the set size K is irrelevant (as long as the sam-

ple size n remains �xed), and so are the speci�cs of the design. A balanced RSS, for

example, would spread out the measurements over the spectrum of the concomitant,

whereas a SRS is more likely to be a clump of adjacent points.

As argued in Section 2.3, �an essential feature of inference for RSS is the ability to

learn about the (conditional) distribution of Y across the range of the concomitant.�

The next section extends Model 2.5 by replacing the multivariate normal hyperprior

of the DDP with a Gaussian Stochastic Process (GSP). Thus, the K-dimensional

vector � is replaced with a curve � (x). In addition, this model allows the user to

��ll in the blanks� and obtain posterior estimates of the conditional distribution of Y

even at those X values where no measurements were taken.

5.2 A Model for RSS with a Concomitant Variable

This section proposes a model for the conditional distribution of Y given X = x.

By conditional independence of the Y 's given the X's, it is enough to consider the

(X, Y ) pairs in the sample and disregard the unpaired X's for the moment. Let

(x1, Y1) , ..., (xn, Yn) denote the sample measurements and their associated values of

the concomitant variable, and suppose these have been ordered so that x1 < ... < xn.
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Also, let x = (x1, ..., xn)′ and X = (1n, x). The base measure of the DDP is taken

to be a GSP with mean function �0 + �1x, constant variance �2
� , and correlation

function R (⋅, ⋅) . Finally, the model speci�cation is completed with � = (�0, �1)
′ ∼

N2

(
�(0), �2

�I2

)
. To summarize, the model is given by

Yi∣�i (x) , �2
Y ∼ N

(
�i (xi) , �

2
Y

)
, i = 1, ..., n (5.1)

�1 (x) , ..., �n (x) ∣P ∼ P

P ∣� ∼ DP
(
M, GSP

(
�0 + �1x, �

2
�R (⋅, ⋅)

))
� ∼ N

(
�(0), �2

�I2

)
�2
Y ∼ IG (a, b)

The Gibbs sampler of Section 2.5 is easily modi�ed to �t this model, using the

usual technique of dealing with Gaussian Stochastic Processes via multivariate normal

distributions. To that end, let k once again denote the number of distinct curves

�i (x) , namely, �∗1 (x) , ..., �∗k (x), and de�ne the random variables s1, ..., sn by si = j

i� �i (x) = �∗j (x). As before, let nj denote the number of curves �i (x) equal to �∗j (x).

Finally, let �i = �i ( x) and �∗j = �∗j (x).

The Gibbs sampler for model 5.1 consists of the following steps:

∙ Step 0: Set the values of the �xed parameters M, �2
� , R (⋅, ⋅) , �(0), �2

�, a, and

b. Initialize all the other parameters to �plausible� values.

∙ Step 1: Update (si, �i) ∣rest. Excluding �i, there are k− clusters left, containing

n−1 , ..., n
−
k− members. Following the Polya urn scheme, �i can join one of the

existing k− clusters, or it can start a new cluster. In fact, it joins cluster j, i.e.
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(si, �i) =
(
j, �∗j

)
, with probability

qj ∝
n−j

M + n− 1
'
(
yi∣�∗j (xi) , �

2
Y

)
,

for j = 1, ..., k−, or it starts a new cluster, i.e. (si, �i) = (k− + 1, �∗new), with

probability

q0 ∝
M

M + n− 1

ˆ ∞
−∞

'
(
yi∣�, �2

Y

)
'
(
�∣�0 + �1xi, �

2
�

)
d�

=
M

M + n− 1
'
(
yi∣�0 + �1xi, �

2
Y + �2

�

)
.

In the latter case, �∗new is drawn from the distribution with density proportional

to ' (yi∣di�∗new, �2
Y ) ⋅ ' (�∗new∣X�, �2

�R), where di is a 1× n vector with 1 in the

itℎ position and 0 elsewhere, and R = [R (xi, xj)]
n
i,j=1. This density is that of

the normal distribution with mean(
1

�2
Y

d′idi +
1

�2
�

R−1
)−1(

yi
�2
Y

d′i +
1

�2
�

R−1X�

)

and covariance matrix
(

1
�2
Y
d′idi + 1

�2
�
R−1

)−1
. Repeat this step for i = 1, ..., n.

∙ Step 2: Update �∗1, ..., �
∗
k∣rest. The �∗j 's are independent, and

[�∗j ∣rest] ∝
n∏

i=1, si=j

'
(
yi∣�∗j (xi) , �

2
Y

)
⋅ '
(
�∗j ∣X�, �2

�R
)
,

which turns out to be the normal density with mean(
1

�2
Y

B +
1

�2
�

R−1
)−1(

1

�2
Y

By +
1

�2
�

R−1X�

)

and covariance matrix
(

1
�2
Y
B + 1

�2
�
R−1

)−1
, whereB = diag (1 (s1 = j) , ..., 1 (sn = j))

and y = (y1, ..., yn)′ . Repeat this step for j = 1, ..., k.
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∙ Step 3: Update �∣rest. A familiar calculation shows that

[�∣rest] ∝
k∏
j=1

'
(
�∗j ∣X�, �2

�R
)
⋅ '
(
�∣�(0), �2

�I2

)
,

which is proportional to the density of the normal distribution with mean(
k

�2
�

X′R−1X +
1

�2
�

I2

)−1(
1

�2
�

X′R−1
k∑
j=1

�∗j +
1

�2
�

�(0)

)

and variance
(
k
�2
�
X′R−1X + 1

�2
�
I2

)−1
.

∙ Step 4: Update �2
Y ∣rest. From

[�2
Y ∣rest] ∝

n∏
i=1

'
(
yi∣�i (xi) , �2

Y

)
⋅
(
�2
Y

)−(a+1)
exp

(
− 1

b�2
Y

)
,

it is easy to see that the posterior distribution of �2
Y is IG (a′, b′), where a′ =

a+ n
2
and 1

b′
= 1

b
+ 1

2

∑n
i=1 (yi − �i (xi))2.

∙ Step 5: Repeat steps 1 - 4 until convergence, and from then on, until T posterior

draws are obtained.

As before, one can replace some updates with Rao-Blackwellized versions that merely

require computation of the posterior means (rather than random number generation).

To obtain a predictive density for Y at X = x0, let  denote the unknown model

parameters, and note that

p (y∣x0, data) = E [p (y∣x0,  , data)]

≈ 1

T

T∑
t=1

p
(
y∣x0,  (t)

)
,

where

p
(
y∣x0,  (t)

)
=

1

M + n

k(t)∑
j=1

n
(t)
j p
(
y∣x0, �∗(t)j (x) , �

2(t)
Y

)
+

M

M + n
'
(
y∣�(t)

0 + �
(t)
1 x0, �

2(t)
Y + �2

�

)
.
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Next, note that(
�
∗(t)
j (x0)

�
∗(t)
j (x)

)
∼ Nn+1

((
1x0
X

)
�(t), �2

�

(
1 r′0
r0 R

))
,

where r0 = (R (x0, x1) , ..., R (x0, xn))′. Recall that this implies that

�
∗(t)
j (x0) ∣�∗(t)j (x) ∼ N

(
m

(t)
j (x0) , V (x0)

)
,

where

m
(t)
j (x0) = �

(t)
0 + �

(t)
1 x0 + r′0R

−1
(
�
∗(t)
j (x)−X�(t)

)
and V (x0) = �2

� (1− r′0R
−1r0). Therefore,

p
(
y∣x0, �∗(t)j (x) , �

2(t)
Y

)
=

ˆ ∞
−∞

'
(
y∣�∗(t)j (x0) , �

2(t)
Y

)
⋅

'
(
�
∗(t)
j (x0) ∣m(t)

j (x0) , V (x0)
)
d�
∗(t)
j (x0)

= '
(
y∣m(t)

j (x0) , �
2(t)
Y + V (x0)

)
.

Hence,

p
(
y∣x0,  (t)

)
=

1

M + n

k(t)∑
j=1

n
(t)
j '

(
y∣m(t)

j (x0) , �
2(t)
Y + V (x0)

)
+

M

M + n
'
(
y∣�(t)

0 + �
(t)
1 x0, �

2(t)
Y + �2

�

)
,

and the predictive density for Y at x0 is given by

f̂ (y∣x0) =
1

T

T∑
t=1

p
(
y∣x0,  (t)

)
. (5.2)

Moreover, the conditional mean of Y given x0 may be estimated by

Ê [Y ∣x0] =

ˆ ∞
−∞

yf̂ (y∣x0) dy

=
1

T

T∑
t=1

⎡⎣�(t)
0 + �

(t)
1 x0 +

1

M + n
r′0R

−1
k(t)∑
j=1

n
(t)
j

(
�
∗(t)
j (x)−X�(t)

)⎤⎦ . (5.3)
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5.3 Application: Weights and Prices of Cars

The methods derived in the previous section are applied to a data set consisting

of the weights (in thousands of pounds) and prices (in thousands of dollars) of 93 car

models. (The data set Cars93 is available in the R package MASS, and more details

about it can be found in Lock, 1993.) Treating price as the variable of interest (Y ) and

weight as the concomitant variable (X), a balanced RSS of size n = 30 with m = 15

cycles and set size K = 2 is obtained. A cursory examination of the data shows that

there is a positive heteroskedastic relationship between weight and price; that is, as

car weight increases, so too do the prices and the variability in price. The purpose of

this application is to compare the Ordinary Least Squares (OLS) regression line and

the estimator 5.3 as estimators of the population regression function E [Y ∣x]. These

are given in Figure 5.1.

The unconditional covariance (under Model 5.1) between the Y values at two

generic points x1 and x2 is given by

Cov (Y (x1) , Y (x2)) =
�2
�

M + 1
R (x1, x2) ,

implying that a small value for M increases the amount of information extracted

from the sample (x, y) pairs. The correlation function is given the form R (x1, x2) =

exp
[
−
 (x1 − x2)2

]
, where the choice of 
 is driven primarily by the need to make

the correlation matrix R invertible. The estimator 5.3 plotted in Figure 5.1 was

derived for the speci�c values M = 0.1, �2
� = 10, 
 = 25, �2

� = 10, 000, a = 2, and

b = 0.01. In addition, �(0) was set to the OLS estimates for the regression of y1, ..., yn

on x1, ..., xn. By trial and error, it was found that the estimator 5.3 is very close to

the regression line when �2
� is small, but very serpentine when it is large.
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Figure 5.1: Plot of the estimator 5.3 (solid curve), the OLS regression line (dashed
line), and the RSS of size n = 30 for the application of Section 5.3.

Finally, note that while one would expect E [y∣x] to be monotone in this setting,

this estimator does take a small downward plunge for weights around 3500 pounds,

where it clearly mistakes the increasing spread in the data for a dip in its target

function.
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Chapter 6

Conclusions and Future Research

The research process that culminated with the ideas presented in this dissertation

began with three seemingly disparate points of inquiry:

1. Devising e�ective sequential sampling procedures for RSS:

There are many reasons why a statistician would choose to carry out sequential

sampling. These may range from the purely theoretical (inference carried out

under abstract loss criteria and stopping rules) to real-life applications (such as

an auditor using previously-collected data to net a larger number of fraudulent

accounting records while not exceeding budget constraints). Regardless of the

motivation behind it, one can easily envision a place for sequential sampling

procedures in RSS by asking the question: given a sample of measurements and

their associated judgment ranks, does one have any preference regarding which

ranked units to measure from future sets? Answering this question is clearly

tied to the speci�cs of the application at hand and, while this dissertation

does not address sequential sampling procedures for RSS, it does provide a

meaningful starting point by showing how to calculate predictive distributions

for measurements from future ranked sets.
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2. Estimation of in�nite-dimensional parameters:

When the variable of interest is absolutely continuous, estimating the judgment

order statistic distribution functions F[r] and densities f[r] is no straightforward

task. On the one hand, one may estimate them using only the measurements

from judgment rank r (for example, by a kernel density estimate for f[r] or

the empirical distribution function for F[r], c.f. Stokes and Sager, 1988), but

then one would be treating the judgment order statistic distributions as though

they were independent populations and not making full use of the information

provided by judgment ranking. At the other extreme, one could assume that

judgment ranking is perfect, in which case the judgment order statistic distri-

butions reduce to their true order statistic counterparts. The latter in turn

are completely determined by the population distribution function and density,

which can be estimated using the entire sample [Kvam and Samaniego, 1994].

The approach proposed in this dissertation neither treats the judgment order

statistic distributions as independent, nor does it force stringent assumptions

upon the judgment ranking process. Instead, it uses hierarchical Bayesian mod-

eling to maintain independence between the data while embedding dependence

between the judgment order statistic distributions (using the DDP). This con-

struction was shown in Chapter 2 to be equivalent to a Bayesian random-e�ects

ANOVA with a nonparametric prior on the random e�ects structure, which is

analogous to the frequentist ANOVA interpretation of RSS from Chapter 1.

Furthermore, this construction allows information to be shared freely among

the judgment ranks.

3. Skepticism of common assumptions:
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As discussed in Section 2.2, many estimators and procedures in the RSS lit-

erature are derived under some very restrictive assumptions, such as perfect

ranking or absolute continuity of the population distribution, among others.

This dissertation seeks a more comprehensive understanding of RSS that ac-

cepts the inevitable errors in judgment ranking and holds for both discrete and

continuous data.

The discussion in Section 2.3 is a very accurate depiction of the thought process that

led to the results of the subsequent section. The adoption of this Bayesian approach

may be met with two criticisms. The �rst is the subjectivity of the prior speci�ca-

tion, implying that two reasonable statisticians can arrive at varying inferences by

specifying their own priors. This criticism is easily dismissed in the RSS setting, since

two subjective rankers may also assign di�erent judgment ranks to the same set of

units, leading to di�erent inferences. The second, more substantial, criticism is the

computational burden of MCMC models. Even with today's powerful computers, the

algorithms presented in this dissertation need at least several minutes to complete

their run. The time expended on writing and checking the code, trying di�erent

values of the �xed model parameters, and examining model diagnostics may be sub-

stantial, and all of these steps need to be carried out before actual posterior inference

is performed.

There remain some interesting questions which are not resolved in this dissertation

but which may be addressed in light of its results. Most of these fall under the banner

of Bayesian design, and they include:

1. the choice of sample size, n, which depends heavily on the cost of measurement.
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2. the choice of set size, K, which depends on the cost and quality of ranking.

3. optimal allocation of measurement units to judgment ranks (c.f. Section 3.3).

4. sequential sampling schemes for RSS.

Finally, one more possible area of research is the pursuit of large-sample (asymptotic)

properties of the posterior distribution and whether they are at all useful in simplifying

computations. Naturally, this question is only worth asking for Model 2.5 and its

derivatives when the set size K (and the dimension of the DDP) is �xed.
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