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CHAPTER I

INTRODUCTION

The area of forecasting is often misunderstood.
Overtones of mysticism (ex. Delphi method) become mixed
with references to covariance matrices and
multicollinearity. 1In general, the forecaster's job is to
envision the different possible futures and decide which
are more likely, given current history and certain
assumptions.

Forecasts can be categorized in several ways, with the
most common being to consider (1) the lead time or horizon
of the forecast, and (2) the forecasting approach used.
Since forecasts are made for a future time period, the
question is how far into the future. The general division
is into short range, intermediate range, and long range.
Although Armstrong (1985) indicates these are difficult to
tie down and vary by the situation, they are useful ways to
divide forecasting tasks. They relate well to LaLonde's
(1984) three general categories of business decisions:
operational, tactical, and strategic. 1In contrast,
Wheelwright and Makridakis (1985) use a four member

taxonomy of immediate, short term, medium term, and long



2
term forecasts. Most agree that the period of time between
when a forecast is made, and the period of time for which
it is made can be called the forecast horizon. The
taxonomy of Wheelwright and Makridakis place forecasts with
horizons of one to three months as short term forecasts,
while those with horizons of two years or more are
classified as long term. The distinction is clearly
business specific.

A second way to categorize forecasts relates to the
forecasting approach utilized. Chambers, Mullick, and
Smith (1974) used the classifications of qualitative,
causal, and time series/projection. Wheelwright and
Makridakis (1985) classified approaches as judgmental,
quantitative, and technological. Armstrong (1985) used a
methodology tree with branches of subjective and objective.
Objective was then further divided into naive
(extrapolative) and causal. This dissertation considered
the three approaches to be subjective, causal, and |
extrapolative. This is consistent with the categorization
presented by Makridakis (1984). This dissertation deals in
depth only with the extrapolative or time series approach.

There has been considerable recent activity to answer
the question as to what extrapolative forecasting
techniques are better. The viewpoint that the more complex
techniques such as Box-Jenkins with differencing functions

and autocorrelation analysis would naturally be more



accurate than more automatic (simpler) approaches has been
strongly questioned in the management science literature.
Several empirical studies have indicated that the simpler
techniques perform very well and are often superior to the
more sophisticated techniques. For example, Makridakis and
Hibon (1979) concluded that a forecaster would have done as
well with simple methods such as deseasonalized exponential
smoothing as with the more complicated Box-Jenkins analysis
in forecasts from their set of 111 time series. These, and
other more recent findings, suggest that the field of
simple extrapolative techniques should be studied further.
Several authors including Lawrence (1983), Winkler
(1983), Mahmoud (1984), Weiss and Andersen (1984),
Kucukemiroglu and Ord (1985), and Gardner and McKenzie
(1985) indicated that robust extrapolative techniques are
needed for improved forecasting. Levenbach and Cleary
(1984) indicated that robust estimators not only should be
less sensitive to the true underlying distribution of the
data, but also must be resistant to outliers. Robust
extrapolative techniques should perform well over different
types of series. Robustness is one of the reasons for the
recent upsurge of interest in combinations of forecasts.
Winkler (1983) indicated that the use of averaged forecasts
from several techniques was robust in his study, with good
results for different types of series. Sanders and Ritzman

(1987) reported similar results. Some researchers, such as



Huss (1985), have found that the combination of an
extrapolative fdrecast and subjective adjustment of that
forecast provides results comparable to more sophisticated
techniques. Kucukemiroglu and Ord (1985) tried to achieve
robustness through use of least absolute deviation fitting,
with disappointing results.

This dissertation explores a different approach toward
achieving robustness for extrapolative forecasts. This
approach entails blending of nonparametric statistical
techniques with time series analysis. The field of
nonparametric statistics has been continually expanding
since the 1946's. General results of extensions of
nonparametrics to date have included a marked increase in
robustness. Nonparametric methods are less sensitive to
violations of the usual normality assumptions and to
outliers. Typically, they are based upon much less
restrictive assumptions as to the underlying distribution.
While parametric methods will usually give somewhat better
results if the normality assumptions are true, their
performance often degrades rapidly as these assumptions
fail. The writer hypothesized that the extension of
nonparametric concepts into the problem of extrapolative
forecasting would yield many of the same benefits already
achieved in other areas. Thus, this dissertation attempts
to provide insight into the possible gains of extending

nonparametric techniques to extrapolative forecasting.



1.1 Environment

There are many reasons why managers and analysts want
to know about the future. Primarily, perfect knowledge
about the future would allow perfect decision making in the
present. But the lack of this foresight leads managers and
analysts to do the next best thing, i.e., managers actively
consider future possibilities, and make decisions and
contingency plans based upon them. Sometimes the entire
bundle of future possibilities is considered, and at other
times only one possibility is forecasted. Virtually all
decision making involves some sort of forecast. Purposes
vary from cash budgeting to capital budgeting, from sales
quotas to inventory control. Approaches for forecasting
these futures can be divided into the three categories of
subjective forecasting, causal forecasting, and
extrapolative forecasting.

The subjective forecasting approach relies upon the
learned opinions of the manager, the expert, and/or the
analyst. Examples range from simple expert opinion to the
more complex Delphi method. The subjective approach is
most useful when there are severe data constraints or when
the forecast horizon is long range. Mentzer and Cox (1984)
indicated that most managers were very familiar with
subjective methods. Makridakis, Wheelwright, and McGee

(1983) cited its use for new product demand while Chambers,



Mullick, and Smith (1971 and 1974) indicated a subjective
approach, the Delphi method, was successfully used to
estimate demand for new products, and (in 1962-63) to
forecast a date for the first landing on the moon. Other
examples of Delphi use include a large scale Society of
Mechanical Engineers study on robotics.

The causal forecasting approach relies upon a good
historical data base and properly developed causal
relationships. Examples range from fairly simple equations
to complex econometric models. The causal approach is most
useful when the historical data are complete and when the
causal relationships that have existed in the past are
understood and remain unchanged. Ballou (1985) indicated
that this approach is useful over forecasting horizons of
intermediate and long range. Armstrong (1985) indicated
that the causal approach was preferred over the
extrapolative approach for long range forecasting.

The extrapolative (time series) approach also relies
upon a good historical data base, but does not require
explicit identification of causal relationships, or data on
causal variables. Examples range from simple naive
techniques through moving averages to the more complex Box-
Jenkins methodology. The extrapolative approach is most
useful for short range cases, and is the focus of this

study.



1.2 Extrapolative Forecasting

This approach is based upon the premise that, in the
short run, historical patterns will continue. Although the
causal variables are not explicitly identified, it is
assumed that they are generally known and are not expected
to change in their impact on the measure of concern in the
forecast horizon. To the extent that this assumption
cannot be met, the rationale for using the extrapolative
approach is weakened. 1In most situations, the assumption
is deemed to be adequately met and the analyst is faced
with a large spectrum of possible extrapolative techniques.
The analysis of the time series of data, the choice of an
appropriate technique, and the development of an
appropriate model within the technique are central to time
series analysis and extrapolative forecasting.

Although all the techniques are variations on the
theme of averaging, the mechanics can be quite complex
because the time series components of trend, cycle,
seasonality, and randomness must be addressed. Since the
model developed is used for short range forecasting, it is
commonly rerun at frequent intervals as time advances and
newer data become available. The model thus seeks a proper
balance between responsiveness and stability. It should
respond reasonably fast to a shift in the underlying
pattern, yet should not over react to the expected

randomness of the data since this would suggest changes in



trend, rate, etc. which have not occurred; making the
management job more difficult and costly. Because these
objectives are in direct opposition, the model selected
must be appropriately balanced.

Two distinct phases are recommended in model
development or selection. The first phase is fitting.
Here the chosen model type is best fitted to the bulk of
the historical data, with model parameters selected either
automatically or subjectively. They are most commonly
fitted automatically by a computer program using a least
squares best fit criterion. 1In other words, the parameters
are chosen which result in the smallest mean squared error
for one period ahead forecasts over the historical data.
This is like the historical simulation discussed by Graver
(1981) where for each time t within the data base one
assumes that only information up to that time is available.
That information is used to generate a forecast for the
next time period t+l. Comparison of the forecasts with the
actuals generates a set of error terms which can be
analyzed to determine the goodness of fit, or how well the
model would have forecast over the entire period of the
historical data used for fitting.

The assumption that a model best fit for one period
ahead forecasts will also be best for longer term forecasts
is questionable. Several authors have addressed this

issue, with mixed results. Dalrymple and King (1981)



concluded that one period ahead fitting was a reasonable
approach, but that sometimes separate models for different
horizons reduced forecasting errors. Carbone and
Makridakis (1986) developed a technique that shifts weight
from a short term model to a long term model as the horizon
lengthens, thus supporting the need for separate models.
This question is not addressed futher in this research.

All simulation work is done using one period ahead
forecasts. The empirical study in Chapter VI does consider
forecasts with horizons up to six periods ahead, with the
best model chosen based upon one period ahead fitting.

The second phase is forecasting. How well has the
model forecasted recently? To answer this question, a set
of recent hold-out data is generally used. This requires
that the most recent portion of the historical data not be
initially used in the fitting exercise. The best fit model
is used to forecast values of the time series through the
period of the hold out data. The set of error terms
generated by this forecasting exercise is considered to be
a better test of the model's forecasting ability. The
forecaster's concern is not how well the model fit the
historical data, but how well it would have forecast
recently. If the forecaster were satisfied with the
model's recent forecasting performance, the hold out data
would then be included in the data used for fitting and the

model parameters would be updated. If the model had been
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forecasting well, changes to the model parameters should be
minor. |

The extrapolative approach holds an advantage in ease
of short term forecasting. This advantage is largely due
to the reduced data requirements as compared to the causal
approach. Since it is easily automated, thousands of short
term forecasts can be updated quickly; a clear advantage
over the subjective and causal approaches when the resource

of time is critical.

1.3 Empirical Results

Although the extrapolative approach is less demanding
in terms of time and data, it is not necessarily an
inferior forecast. The superiority of quantitative
forecasts over strictly subjective forecasts under
repetitive forecasting conditions is generally accepted and
is well supported in the literature, with few exceptions
[for one exception see Lawrence (1983)]. While subjective
forecasting techniques perform well on very long range
(long horizon) situations, these typically are not
performed repetitively. Both the causal approach and the
extrapolative approach generate quantitative models.
Further results which compare quantitative approaches
frequently indicate that causal models perform no better

than extrapolative models.
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The extrapolative approach has been shown to be as
good as, or better than, other forecasting approaches for
short term forecasts. A physical analogy is that a large
system usually has sufficient momentum to retain its speed
and direction for the immediate future. Recent empirical
tests have almost unanimously shown that the simpler
extrapolative techniques, properly applied, compete very
successfully with the more complex techniques such as Box-
Jenkins. Armstrong (1985) refers to the complicated time
series techniques, such as Box-Jenkins and spectral
analysis, as "rain dances" and calls for a return to simple
methods for short term forecasting. Wheelwright and
Makridakis (1985) indicate that simpler methods do well for
noisy series and may be desirable in other cases where any
increase in accuracy from use of more complicated methods
would require additional cost. Makridakis, Andersen,
Carbone, Fildes, Hibon, Lewandowski, Newton, Parzen, and
Winkler (1982) relate that simpler methods can be as

accurate as more complex, sophisticated methods.

1.4 Nonparametric Philosophy

The development of nonparametrics has been significant
since the 1946's. Hollander and Wolfe (1973) relate
numerous nonparametric alternatives for many parametric
statistical tests. Work on applying nonparametric

techniques to the regression problem is continuing as
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evidenced by Hussain and Sprent (1983) and Hardle and
Gasser (1984). The work in nonparametric regression should
be compared with the robust regression approaches of
Conover (1980), and the R-estimation discussed by Hogg
(1979), both based on ranks. Conover, for example, ranked
the raw data, did least squares best fit regression on the
ranks, then interpolated for an estimate. The robust
regression technique commonly referred to as M-estimation,
see Draper and Smith (1981), which reduces the weight given
to points determined to be outliers, is not nonparametric.
Based upon review of the literature, one vital area which
had not been actively considered for extension of
nonparametric techniques was the extrapolative forecasting
problem.

The philosophy of the nonparametrician is to make as
few assumptions about the underlying population as
possible. Although some of the early tests were championed
for their simplicity, it has become evident through
simulation studies that the true worth of nonparametric
techniques is their increased power versus parametric tests
when standard normality assumptions are violated, see
Hollander and Wolfe (1973) and Noether (1984). Another
important advantage of nonparametric statistical tests is
their relative insensitivity to outliers. Robustness and
insensitivity to outliers would be very desirable

characteristics for a forecasting technique.



CHAPTER II

LITERATURE REVIEW

The main purpose of this chapter is to suggest that
simple extrapolative techniques do not necessarily lack
accuracy and to relate the apparent lack of nonparametric
extrapolative forecasting techniques. Since the proper
test of a forecasting technique is how well it forecasts, a
simple forecasting technique that performs well is vastly
superior to a complicated technique that performs no

better.

2.1 Comparisons Between Forecasting Approaches

The three approaches used for forecasting (subjective,
causal, and extrapolative) often have been compared for
accuracy. Although any one forecasting approach may prove
to be superior in a particular case, several studies have
reached conclusions as to their relative accuracy in
general. Armstrong (1978 and 1985) concluded that
subjective forecasting is not superior to quantitative
approaches, even for long range forecasts. After reviewing
the psychological literature, Makridakis and Hibon (1979)

concluded that quantitative methods outperformed clinical

13
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(subjective) judgment in repetitive situations. Carbone
and Gorr (1985) concluded that subjective adjustment by
students of extrapolative forecasts was not desired if
accuracy was the criteria. These results should be
tempered by the report by Armstrong (1983) that company
managers and analysts can forecast annual earnings more
accurately than the extrapolative forecasts. One should
Keep in mind, however, that company forecasters may have
data that is not available for use in the extrapolative
technique, and company managers have some control over
annual earnings. In addition, Huss (1985) reports that a
combination where extrapolative forecasts are subjectively
adjusted by experts knowledgeable on the causation system
is commonly used and works well in electric load
forecasting. Thus, subjective forecasting retains an
important role when the necessary conditions are satisfied.

How then do the two quantitative approaches compare?
The causal approach would seem to have the logical
advantage since more variables can be considered.
Armstrong (1978) judged econometric models as not being
superior to extrapolative models for short range forecasts,
but superior to extrapolative models for long range
forecasts. Makridakis and Hibon (1979) merely concluded
that the results are mixed. Makridakis et al. (1982)
concluded that the causal approach is not necessarily more

accurate than the extrapolative approach.
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Thus, it is clear that extrapolative forecasting is

competitive with the more demanding causal forecasting in
terms of accuracy when dealing with short horizons.
Development of a causal, regression, or econometric model
generally requires a considerable data base. This data
base, of course, needs to be adjusted to common definitions
throughout. It must contain not only the measure of
concern (say the cost) but also various and sundry
explanatory variables. Checks and adjustments need to be
made during the fitting process for autocorrelation,
multicollinearity, heteroscedasticity, insignificant
variables, incorrect functional specifications, etc. The
cost of developing and then maintaining this data base can
be quite high in terms of time, effort, and money. This is
in contrast to the extrapolative approach where the only
data needed are the time series of the measure of concern.
While the fitting requires identification of the trend,
seasonal, cycle, and randomness components, this is
certainly an easier task than for the causal model. Given
that the simpler approach results in competitive forecasts,
the rational conclusion is that it should be the first
approach considered when the estimate itself is the item of

principal interest.
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2.2 Comparisons Between Extrapolative Techniques

Until recehtly it was commonly believed that the more
complex extrapolative techniques, such as Box-Jenkins, were
superior to all the simpler techniques. This superiority
was supported by Newbold and Granger (1974) who cited "the
great beauty" of the Box-Jenkins technique since the
forecast function could be chosen from analysis of the
data. They felt this should result in more accurate
forecasts. Their results, based on the analysis of 166
time series, indicated that Box-Jenkins performed better
than Holt-Winters (a good extrapolative technique) 73% of
the time for horizons of one period, decreasing to 58% for
horizons of 4-8 periods. Based upon mean square error,
Box-Jenkins forecasts were 20% more accurate than Holt-
Winters. These results were not surprising and Priestly,
in a comment published with the article, concluded that
since Box-Jenkins attempted to fit the model to the series
it should be generally superior to the automatic
techniques. For the automatic techniques the model is
fixed, and only the parameters of the model are fitted.
Some results of the Newbold and Granger study are

summarized in Table 1.



17
TABLE 1
Summary of the Newbold and Granger Study:

Comparison of Box-Jenkins' and Holt-Winter's
Forecasting Performance on 106 Series

Percent 0of the Time that the Method is Better

Lead Times Box-Jenkins Holt-Winters
1 73 ‘ 27
2 64 36
3 60 40
4 58 42
5 58 42
6 57 43
7 58 42
8 58 42

The superiority was not supported by the Makridakis
and Hibon (1979) study. This study specifically addressed
the accuracy of extrapolative forecasting techniques. The
evaluative performance measures used were mean absolute
percentage error, a relative measure of absolute error; and
Theil's U, a measure of how well the models forecast
change. Complete definitions of these measures are
included in Chapter IV. The study dealt with 111 time
series using 22 techniques or variations of techniques.
They used nine nonseasonal methods on the original data,
four seasonal methods on the original data, and then
seasonally adjusted the data and used the same nine
nonseasonal methods on the adjusted data.

Their conclusions were that the best method depended
upon the particular evaluative measure used and on the

amount of randomness in the data. They found that simpler
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techniques performed better than more complex ones,
prompting reviewers to question their proper use of several
techniques. Chatfield (1979), in particular, was skeptical
of the results regarding the Box-Jenkins forecasts. Durbin
(1979) cited some of the results as "counter intuitive".

In contrast, Armstrong (1978) noted that the Holt-Winters
technique had not been properly applied in the previously
mentioned Newbold and Granger (1974) study, thus biasing
their results towards Box-Jenkins. Results of the
Makridakis and Hibon study are summarized in Table 2.

A forecasting competition was run as a follow up to
the Makridakis and Hibon study, with results published in
Makridakis, et. al. (1982 and 1984). This competition used
a total of 1001 time series and is frequently called the M-
competition. To counter some of the objections made about
the first study, experts in each of the techniques
performed analysis and made forecasts for either all 1001
series or a subset of 111 series. The more complex, labor
intensive methods were performed only on the subset.
Results were then summarized and tabulated.

Comparisons with the results of the previous study
indicated that Box-Jenkins performed better than before.
However, it was still not clearly better than the Winter's,
deseasonalized Brown's linear, or deseasonalized Holt's
linear exponential smoothing (extrapolative) techniques.

In fact, it was found to be worse than simpler



TABLE 2

Summary of the Makridakis and Hibon Study:
Comparison of Ten Extrapolative Method's
Forecasting Performance on 1ll1l Series

19

Mean Absolute Percentage Error

Model Forecasting Horizons
Method Fitting 1 2 3 4 5 6
Naive 1.0 14.5 15.6 15.1 15.3 15.6 16.6
Single Moving 8.4 12,9 13.6 13.7 13.8 14.3 15.3
Average
Single Exponential 8.5 12.8 13.4 13.8 14.0 14.3 15.6
Smoothing
Adaptive Response 9.2 13.6 14.6 14.5 14.7 15.2 16.2
Rate Exponential
Smoothing
Double Moving 9.1 15.4 15.6 16.3 16.6 17.4 18.6
Average
Brown's Linear 8.5 12.9 14.3 14.6 14.9 15.9 17.1
Exponential
Smoothing
Holt's Linear 9.0 12.8 12.8 13.2 13.7 14.8 16.0
Exponential
Smoothing
Brown's Quadratic 8.7 12,5 14.6 14.7 15.6 17.4 18.6
Exponential
Smoothing
Regression 11.4 19.6 20.4 21.1 21.1 21.9 22.8
Box-Jenkins 10.6 14.7 15.0 15.7 16.6 17.1 18.1
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extrapolative technigues a majority of the time when a
relative linear loss function was assumed. Some of the
results are summarized in Tables 3 and 4. A review of the
results indicates that the simple deseasonalized methods
performed competitively with Box-Jenkins over the horizons
reported. Over the shorter horizons, the simpler
techniques were frequently superior to Box-Jenkins, while
Box-Jenkins seemed to have the advantage for longer
horizons. Thus, one is drawn to the conclusion that
technique complexity does not assure a more accurate

forecasting model.

2.3 Nonparametric Forecasting Techniques

To date, a review of the literature on forecasting
indicates remarkably little on the use of nonparametric
approaches. The only reference located which relates time
series analysis together with nonparametric approaches is
the Quantile Estimation Procedure (QEP) developed by Gorr
and Hsu (1985). This adaptive filtering technique was
designed to provide nonparametric estimates of multivariate
regression quantiles. This procedure is not pursued in
this dissertation for two reasons. First it does not fit
within the category of "simple" extrapolative techniques.
Wheelwright and Makridakis (1985) rated eight extrapolative
" techniques as to their complexity. The simplest, with a

complexity rating of two was single exponential smoothing.



TABLE 3

Summary of the M-Competition:
Comparison of Ten Extrapolative Method's

Forecasting Performance on 1801 Series

21

Mean Absolute Percentage Errors

Model Forecast Horizon
Method Fitting 1 2 3 4 1-6
Naive 2 9.6 9.1 11.3 13.3 14.6 14.4
Single Exponential 9.5 8.6 11.6 13.2 14.1 14.1
Smoothing
Single Moving 8.4 11.5 14.9 17.6 17.8 17.5
Average
Adaptive Response 10.6 9.4 13.5 14.6 15.3 15.1
Rate Exponential
Smoothing
Holt's Linear 8.8 8.7 11.8 13.3 15.2 14.8
Exponential
Smoothing
Brown's Linear 9.9 8.7 19.9 13.8 15.9 14.7
Exponential
Smoothing
Brown's Quadratic 9.3 9.8 12.7 16.6 18.8 19.1
Exponential
Smoothing
Regression 15.6 15.5 16.9 19.1 18.3 19.1
Winter's Exponential 9.3 8.7 19.9 13.2 14.9 14.7
Smoothing
Automatic AEP” 9.9 9.1 11.9 13.4 13.7 14.4
Filtering

* Automatic univariate Adaptive Estimation Procedure

(AEP) .

1Y
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TABLE 4
Summary of the M-Competition:

Comparison of Selected Extrapolative Method's
Forecasting Performance on 111 Series

Mean Absolute Percentage Error

Model Forecast Horizon
Method Fitting 1 2 3 4 1-6
Holt's Linear 8.6 7.9 1.5 13.2 15.1 13.8
Exponential Smoothing
Brown's Linear 8.3 8.5 1#.8 13.3 14.5 13.9
Exponential Smoothing
Box-Jenkins n/a 1.3 18.7 11.4 14.5 13.4
56 Lewandowski
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Figure 1. Efficiency Frontier for Time Series Forecasting
Methods. 1If a forecaster is using a technique on the
frontier, then higher accuracy will require higher
complexity. However, if the technique used is off the
frontier, improved performance may be achieved with a less
complex technique. (From The Forecasting Accuracy of Major
Time Series Methods by Makridakis, et. al., 1984.
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The most complex, with a complexity rating of ten was the
Bayesian technique. On this scale, a similar filtering
technique (AEP) was rated with a complexity of six. 1In
contrast, the most complicated exponential smoothing
technique, Holt-Winters, rated only a three. A second
reason why the procedure is not pursued is the poor
performance of the filtering technique in the M-
competition, rating near the bottom. See Figure 1 from
Wheelwright and Makridakis (1985). This figure portrays
how they synthesized the results of the M-Competition. 1In
general, they felt that one should get better accuracy for
increased complexity. The efficiency frontier is
consistent with the concept of "Why pay more for less?"
The frontier consists of those techniques that provide the
best results for the least effort (complexity). For
example, Holt's exponential smoothing with a complexity of
2.5 was best or second best 28 times out of 111. 1In
contrast, the AEP filtering technique with a complexity of
6 was best or second best only 8 times.

Other nonparametric techniques such as those by
Hollander and Wolfe (1973) and Conover (1988) have been
used for estimation purposes. These will be discussed
later as alternatives to the standard simple extrapolative
forecasting techniques when the time series has a linear

trend.



CHAPTER III

RESEARCH OBJECTIVES

The objective of this research is to explore the area
of simple nonparametric extrapolative forecasting, and to
determine the relative performance of these techniques in
comparison with standard extrapolative techniques. To
accomplish this, nonparametric extrapolative methods are
proposed and their performance is compared to standard
extrapolative methods on a number of different types of
simulated series. Only stationary series and series with
linear trend are considered in the simulation. Seasonality
is not addressed to limit the research to a more manageable
size. Also, Makridakis et al. (1982) found that standard
deseasonalizing approaches are adequate to make simple
extrapolative techniques competitive with the more complex
technigues that are designed to explicitly deal with
seasonality. When techniques are compared based upon their
ability to forecast seasonal data, the effect of the
deseasonalize and reseasonalize steps would need to be
included. 1In this study, none of the techniques are
designed to handle seasonality. Following the simulation,

the performance of the nonparametric techniques is compared

24
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to the extrapolative technique's on deseasonalized series

used in the M-competition.

3.1 Stationary Series

According to Chatfield (1988), a stationary time
series has no systematic change in its mean, or in its
variance, over time. 1In time series analysis, the mean is
called the level of the series. No systematic change in
the level requires that the series not have a trend, and
that strict periodicities not be present. Stationarity
does not mean that the observed time values are
independent. 1In fact, the autocorrelation of values "tau"
time periods apart is a significant tool for more complex
extrapolative methods such as Box-Jenkins. Thus there are
any number of models for a stationary time series. A
series is said to be weakly stationary if the expected
value of the series for any time period is the level; the
variance is constant; and if the autocorrelation between
any two points in the series is a function of their
separation in time. For example, the simplest type of
stationary series is that with a constant level, constant
variance, and no autocorrelation between error terms.
Chatfield (1988) called this a purely random process or
white noise. Stationary series also can be generated by
moving average processes, by autoregressive processes, or

by mixed processes which are a combination of the two.
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This research could not perform simulation studies on every
possible type of stationary series, but instead used an

autoregressive model of order one with the form:

Xg = ¥V + (@) X g + e . (3.1)
Very different time series models are then generated by
varying the values of psi and phi.

One problem with actual time series is that the level
will sometimes change. If the measure of concern being
forecasted is a demand rate for a particular item in
inventory, the technique used to generate this forecast
needs to react to this increased or decreased demand.
Unfortunately, an outlier looks like a change in level
until more data points are received. The technique thus
needs to bélance responsiveness, the ability to quickly
react to a change in level, with stability, the ability to
weather the expected variation in the data. The simulation
study does not consider changes in level.

A simulation experiment comparing forecasting results
for simple parametric and nonparametric techniques is
discussed in Chapter V. Error term distributions used
were normal and Cauchy. The results are tabulated and
performance is evaluated based upon the measures discussed
in Chapter 1IV.

The techniques are then applied to a deseasonalized,
no monotonic trend subset of the series used in the M-

competition. Results are tabulated and discussed.
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3.2 Series With Linear Trend

An ideal series with linear trend is simply an
inclined straight line with the stationary series as
discussed in the previous section superimposed around it.
This portion of the experiment considers two standard
techniques used with this type series. They are the double
moving average and Brown's (1963) linear exponential
smoothing. One nonparametric alternative is similar to the
approach to nonparametric regression related by Hollander
and Wolfe (1973). A second nonparametric approach
considered is the double moving median. This approach is
similar to the double moving average, but uses medians. A
third nonparametric technique is the double smoothed
median, analogous to Brown's linear exponential smoothing.

These techniques are applied in a simulation study on
series with linear trend, with results tabulated and
compared in a manner similar to the stationary series case.

Following the simulation study, the techniques are
applied to a deseasonalized, monotonic trend subset of the
series used in the M-competition. Results are again

tabulated and discussed.

3.3 Limitations
As was noted, the complexities of cycle and

seasonality are not included in this study. Likewise, only
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selected standard techniques are compared to selected
nonparametric aiternatives. In addition, since there are
an infinity of possible stationary series, only a small
subset of these are considered in the simulation study.

The empirical study deals only with the 111 series subset
of the M-competition data, as selected by Makridakis et al.
(1982).

While fitting during the simulation and empirical
portions allows identification of separate models by error
" measure, one period ahead fitting is used throughout the
study. All simulation results deal with horizons of length
one. The empirical study deals with horizons of length one
through six, ignoring series observations beyond that
point.

All fitting utilizes a grid search technique, thus
actual best fit parameters are not determined. Simulation

results in Chapter VI are reported by the grid values.



CHAPTER IV

SELECTION OF ERROR MEASURES

An early step in any analysis must be the
determination of how the results will be evaluated.
Failure to make this determination before a study has been
performed can result in biased reports since the evaluation
method that supports the desired conclusions could be
selected afterwards. To preclude the possibility in this
study, a thorough review was made of how forecasting
techniques are evaluated so that proper measures could be
used in the simulation and empirical tests. This
incorporates a specific study of the forecasting literature
for qualitative and quantitative evaluation criteria, |
resulting in identification of several distinct types of
quantitative error measures. Since this research deals
with simulated and actual series for which qualitative
evaluation is either impossible or impractical, further
work is done to select the particular quantitative measures
for use by both canvassing error measures used in recent
forecasting studies and through a simulation study which
evaluates the relationship between four selected error

measures. The simulation then considers their

29
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relationships under conditions of different dispersion and
different probabilities of outliers.

While the techniques used in this research are
evaluated based strictly upon statistical measures, a
number of nonstatistical criteria are used to evaluate
forecasting techniques and forecasting models. Before a
forecast can fulfill its desired role, the forecast must be
accepted and decisions made based upon it. It is thus
important for the decision maker to believe the forecast
and to understand the technique used. A poor match between
the decision maker and the technique will decrease the
likelihood of acceptance of the forecast. One
nonstatistical criterion therefore must be a reasonable
match between the decisionmaker's present
expectations/capabilities and the technique used for the
forecast. Several authors including Wheelwright and Clark
(1976) indicate that models for a nonsophisticated company
should be based upon simple logic and techniques. Other
nonstatistical criteria include the cost of the forecast,
and the reasonableness of the forecast. Techniques whose
costs (in terms of computer usage, labor hours, data
collection, etc.) outweigh the potential benefits should
not be used. One should note, however, that the importance
of these various costs may change with the advances in
computer technology and the resulting drop in the cost of

computations.
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Regarding statistical measures, Mahmoud (1984)
surveyed over 1@8 forecasting articles. He listed several
statistical measures used to evaluate iterative forecasting
techniques, i.e. where forecasts are reaccomplished on a
regular basis. Other measures also had been proposed. A

number of these are listed in Table 5.

Table 5
Some Accuracy Statistics Used to
Compare Forecasting Techniques

Mean Error *
Average Ranking +
Mean Squared Error *
Theil's U Statistic *
Sum of Squared Errors #
Root Mean Squared Error *
Mean Absolute Deviation *
Coefficient of Variation *
Adjusted Theil's U Statistic *
McLaughlin's Batting Average -
Coefficient of Determination *
Mean Squared Percentage Error **
Mean Absolute Percentage Error *
Median Absolute Percentage Error +
Adjusted Mean Absolute Percentage Error *

* Mahmoud (1984)
- McLaughlin (1972)
+ Makridakis, et. al. (1982)
# Granger and Ramanthan (1984)
** Wright (1986)

It should be clear that use of all the error measures
listed in Table 5 is not possible. Further research is
performed to get a better understanding of the principal

error measurement approaches.
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4.1 How are iterative forecasts evaluated?

Iterative forecasting techniques are usually compared
based upon the errors that would have occurred if the
techniques had been used with the historical data.
Generally, the historical data are divided into two sets as
discussed in Section 1.2. The earliest set typically is
used to fit the selected model. The "best fit" model then
is used to forecast over the most recent set of data. The
techniques are compared based upon how well they would have
forecasted. A technique that would have generated smaller
errors on average would usually be considered the better
technique. This leads to a problem in that an unbiased
technique will have an average error of about zero. An
additional complication is that sometimes the proper impact
of an error is better indicated by taking the absolute
value of the error term, sometimes by squaring the error
term, sometimes by considering one of the preceding as a
percentage of the series value, and sometimes by
considering the amount of change properly forecasted. The
choice depends upon the forecaster's (or more ideally, the
manager's) loss function. While a complete discussion of
loss functions is outside the scope of this effort, it is
generally correct to say that sometimes several small
errors are preferable to one large one. A somewhat more
extensive discussion of loss functions is in Kankey and
Thompson (1986). These realities led to consideration of

several forms of error measures.
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4.1.1 Absolute and Squared Measures
Let the time series of data be expressed as a set of
Xeo with t denoting the index of the time period. Let the
forecast for time period t be denoted by F.. The error

term for that time period is defined as:

The absolute error is then designated as:
Iet| = |Xg = Fel o (4.2)

The average absolute error, more commonly called the Mean
Absolute Deviation (MAD), is then noted as:

MAD = [ X Jeill / n, (4.3)
where indicates the sumﬁation of the elements in the
brackets, and n denotes the number of error terms used in
the calculation. Here n may or may not be the total number
of data points available. The definition holds in either
case. If holdout data are being used, then the measure of
fit (MAD in this case) over the holdout data period would
be of concern. Thus, n would be the number of holdout data
points. The MAD can of course be calculated for the
fitting period, or for the whole set of historical data,
prompting different possibilities for the number n. This
interpretation for n is consistent across the different
error measures considered. Use of MAD for a model is
consistent with the existence of a linear loss function.

Given the same definitions, the squared error term for

time period t can be denoted by:
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(et)2 = (X¢ —Ft)2 . (4.4)
The average squéred error, more commonly called the Mean
Squared Error (MSE), is then computed as:

MSE = [ T (e)?] / n . (4.5)
Use of the MSE is consistent with a squared loss function.

The choice of whether an absolute or squared error

measure is more appropriate is driven by the loss function
perceived by the management of the firm. Since the results
of this research should be generalizable to either

situation, both absolute and squared error measures must be

considered.

4,1.2 Raw versus Relative Measures

The raw measures of error, such as those discussed in
the previous section, are expressed in terms of the time
series itself. 1If one series is in kilowatts, then the MAD
is in kilowatts while the MSE is in kilowatts squared. A
second series might be in millions of dollars, with a MAD
likewise in millions of dollars and an MSE in millions of
dollars squared. A natural question that should be
addressed is whether averaging raw error measures over
different series, with different levels and different
dispersions, is reasonable. Guerts (1983) states they are
not useful, Newbold (1983) indicates that technique
performance rankings based upon average MSE can be affected

by scaling of some of the series. Makridakis (1983)
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acknowledges that there are problems with averaging, but
supports it as necessary.

In contrast, relative measures are manipulated so that
the units are lost. They are in unitless or relative
terms. They are scale invariate. Thus they avoid some of
the criticism levied on raw error terms.

Using the same terminology as in the previous section,
the percentage error is a relative measure of the error at
time period t. It can be expressed as:

PE, = [(Xy -Fy)/X ] * 100 . (4.6)
As can be seen, this is merely the error at time t divided
by the actual value at time t, then converted to a
percentage. The most common relative measure developed
from the percentage error is the Mean Absolute Percentage
Error (MAPE). The MAPE can be written as:

MAPE = [ T |PE 1] / n . (4.7)
The MAPE is a relative absolute error measure and is
consistent with a relative absolute loss function.

Relative squared error measures are not commonly used.
One measure is the Mean Squared Percentage Error discussed
and used by Wright (1986) and by Kankey and Thompson
(1986). It is defined as:

MSPE = [ T (PE)2 ] / n . (4.8)
The use of this error measure is consistent with a relative

squared error loss function.
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It should be noted that the relative measures share a
common weakness. While powerful and meaningful in series

where X, values remain well above zero, they tend to become
distorted as series values near zero occur. Suppose, for
example, that at one point in time, the series value was

zero, and that the forecast was positive. That point would

cause the MAPE to be undefined. Values of X, close to zero

can produce very large MAPE or MSPE values.

4.1.3 Realization Measures

Other measures have been proposed which attempt to
relate how well a forecasting model estimates change. The
concept is that one should be concerned with how much of
the actual change was anticipated by the forecaster or the
forecast model. Both Theil (1966) and McLaughlin (1972)
proposed such measures. Theil called his measure the
Inequality Coefficient, while McLaughlin called his the
Standardized Realization Percent (SR%). Both consider the
ratio of predicted change to actual change. McLaughlin's
(1972) paper uses absolute values where Theil's (1966) work
uses squared differences, but either can be modified. The
concepts are equivalent. McLaughlin changes the measure
into a percentage and reverses the scale by subtraction
from a constant. Perfect forecasting would result in a
Theil's U statistic of @ and a SR% of 488. The Naive One

forecasting technique assumes there will be no change in
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the future and forecasts future periods at the latest
reported value. Use of the Naive One forecast technique
would result in a Theil's U of 2 and a SR% of 300.

Probably due to the scaling choice with values above 300
interpreted as good, and those below 300 as bad, SR% has
become commonly known as McLaughlin's Batting Average.
McLaughlin (1972) explained that he found it more intuitive
for the better technique to score higher, thus the reversal
of scales. Since for all other error measures considered
in this study (MAD, MSE, MAPE, MSPE) better techniques have
lower values, this argument seems inappropriate here.
Because there is a one-to-one relationship between the two
types of measures, only the Theil's type measure will be
considered.

Theil's U statistic can be explained as the comparison
of errors from the most naive forecasting method, called
Naive One (discussed briefly above and in more detail in
Section 5.1.1), with those from the technique being
evaluated. Theil (1966) squared these errors, while
Makridakis, Wheelwright, and McGee (1983) essentially
squared the percentage errors. Slight modifications to the
formulas allow use of absolute errors or absolute
percentage errors. Regardless of the formulation of the
statistic, the interpretation is consistent. If a
forecaster is to devote resources to a forecast technique,

the technique should show superior performance at
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forecasting change, versus the no effort Naive One
technique. The statistic values are bounded below by zero
(perfect forecasting), yet have no upper bound.

Theil expressed his Inequality Coefficient as:

2 2 2
U% = Z (P - A" / = (Ay) (4.9)
where Pt = Fy - Xeq (Predicted Change), (4.10)
At = Xy - X1 (Actual Change). (4.11)

Theil's Inequality Coefficient, now called Theil's U, 1is
then calculated as the positive square root of the value
above. It should be clear that the use of absolute values
or ratios in the above equation would be uncomplicated.
These measures also are relative in that they are
unitless. They share a problem similar to the other
relative measures. Here an instance where no actual change
occurs in the series can prompt an undefined measure for
that point in time. Theil's U is a measure useful when
comparing forecasting techniques over several forecasts,

but it may, in fact, not even exist for any one forecast.

4.2 Need for a Variety of Measures

Mahmoud (1984) and those references given in Section
4.1 indicate a wide variety of quantitative error measures
for iterative forecasts. Given the division of error
measure approaches into absolute versus squared, and raw
versus relative, it seems necessary to at least consider

the use of one measure of each type. The realization
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measures that deal with how well techniques forecast change
add another dimension to the problem, with the potential
for a Theil's type index for each basic measure. A quick
count indicates the possibility of eight error measures to
cover the spectrum. Before proceeding further in selection
of error measures to be used, a survey of recent
forecasting literature is presented for those measures most
commonly used.

A number of recent forecasting articles are reviewed.
The review results are presented in Table 6. Among the
articles listed in the table, it is clear that MAPE and MSE
are most commonly used. Thus, the choice of a relative
absolute error measure and a raw squared error measure is
clear. The only raw absolute error measure reported is the
MAD, and although only a small proportion of the sample
used the MAD, the measure is retained in this study. Based
upon the limited use that MSPE received, and upon the
conclusions by Kankey and Thompson (1986) that MAPE and
MSPE relate closely in most situations, MSPE is not
considered further. Although Theil's U is not extensively
used in the literature, it is a representative of the
realization measures and one form is retained in the study
on that basis. The particular form of Theil's U retained
is that used by Makridakis, Wheelwright, and McGee (1983),

based on squared relative changes.
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Error Measures Reported in
Fourteen Recent Forecasting Articles

40

Date Study Error Measures
1974 Newbold & Granger - MSE - -
1979 Makridakis & Hibon - - MAPE Theil's U
1980 Gardner & Dannenbring MAD¥* MSE MAPE¥* -
1982 Makridakis, et al - MSE MAPE+ -
1983 Winkler & Makridakis - MSE* MAPE -
1984 Granger & Ramanthan - SSE - -
Weiss & Andersen MAD MSE MAPE -
1985 Carbone & Gorr - - MAPE -
Gardner & McKenzie - - MAPE+ -
Gorr & Hsu - - MAPE -
1986 Bustos & Yohai - MSE - -
Carbone & Makridakis - - MAPE+ -
Fomby MAD RMSE - -
Wright MAD MSE MAPE MSPE
KEY: MAD - Mean Absolute Deviation
MAPE - Mean Absolute Percentage Error
MSE - Mean Squared Error ‘
MSPE - Mean Squared Percentage Error
RMSE - Root Mean Squared Error
SSE - Sum of Squared Error

+ Also reported Median Absolute Percentage Error.
* Computed this statistic, but did not report it.

4.3

Given the four selected error measures,

Simulation Study of Error Measure Relationships

are they

sufficiently different to merit retention of all of them in

the evaluation of the nonparametric forecasting techniques?

If two of these are highly related in all situations, then

perhaps the study can be reduced by dropping one of them.

No references explicitly compared the behavior of these

error measures under varying conditions.

Thus, a

simulation study is performed to address this question.
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The intent is to evaluate the relationship between each
pair of error measures. To do this, simulation results are
displayed on simple scatter diagrams and the Spearman's
correlations between measures are evaluated.

A time series of data and a set of forecasts are
denerated. Each element of the time series is distributed
about a level (mean) of ten. A forecasting model is then
used with this series to generate the described error terms
and measures. One might think that it would have been
sufficient to generate a set of error terms and then
perform the necessary operations to calculate the various
measures. But MAPE and Theil's U both require series
values for computation. Because of this need, the series
of Xt is generated and one of the simplest forecasting
techniques, appropriate for this type of series, is used to
generate the forecasts. While some would suggest that
different forecast techniques might generate error measures
that are related differently, this determination is
deferred for later work. For now, it is acknowledged that
different models will drive errors with different
autocorrelation properties. It is felt that the dimension
under consideration here, that is across error measures,
would not be affected by the model used. Forecasts for
this simulation are generated by a single exponential
smoothing model (single exponential smoothing is explained

in Section 5.1.1).
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The building block of the simulation is a set of
twenty observations. For each set of twenty observations,
MAD, MSE, MAPE, and Theil's U values are calculated.
Twenty~-six sets of these error measures are calculated per
replication. The measures for the first twenty
observations of each replication are discarded for two
reasons. The first reason is that the forecasts are
started by assuming that the first exponential average is
the first observed value, and the effects of this choice
could conceivably affect the results if the earliest
observations are used. The second reason is that both the
MAPE and Theil's U calculations lack a prior X value at the
first time period. Thus, twenty-six sets of error measures
provide twenty-five usable sets of error measures. This is
replicated twenty times, resulting in 500 sets of error
measures from 18,0800 observations. All 5088 sets of these
error measures are used in the scatter diagrams. Since the
relationships are nonlinear, Spearman correlation
coefficients are calculated between error measures for each
of the 20 replications. Data for box plots as discussed by
Tukey (1977) are generated and can be found in Tables 7 and
8.

The series Xt was generated using the following
formula:

Xt = 16.0 + k*RANNOR (SEED) (4.12)
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where RANNOR is the Statistical Analysis System (SAS)
standard normal function generator (reference SAS Users

Guide: Basics, Version 5 Edition, 1985, pg. 267). This

simulation study was performed using the VMS SAS Release
5.83. To test the effect of dispersion on the
relationshipé between the error measures, the values of .6,
1, 1.8, and 2.2 are used for k. The effect of outliers
upon the relationships is evaluated by using an approach
similar to Bustos and Yohai (1986). As the series values
are generated, a uniform random variable is used to control
from which of two distributions the error term is drawn.
Relatively small probabilities of outliers are used
(.905,.01,.82), with the second distribution having
dramatically larger dispersion (k = 18 vs. k = 1), Since a
very small value from the normal distribution might still
not be an outlier in this situation, these results all
stipulate that:

P(outlier) < Y (4.13)
where < is the standard symbol for "less than or equal to",
and Y takes on the values .005, .610, and .028. Sample

programs are in Appendix A.
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4.4 Evaluation of Results

4.4,1 MAD vs. MSE

The data in Table 7, Figure 2, and Figure 8 indicate
that these two raw error measures relate well in all
dispersion and outlier cases. The most notable, and
expected effect is the clear nonlinear relationship as the
dispersion or the probability of outliers is increased.
MSE should be expected to increase much more rapidly than

MAD as errors get larger.

4.4.2 MAD vs. MAPE

The nominal case (sigma = 1, no outliers) results in
the highly linear scatter plot illustrated in the lower
portion of Figure 3. For this case, the coefficient of
variation is .1l@d which keeps the denominator in the MAPE
calculations well away from zero. As the dispersion of the
error term is increased to a C.V. of .22, this linear
relationship began to include points with higher MAPEs,
illustrated by the larger dispersion in the upper portion
of Figure 3. It is clear that as the likelihood of xt
values near zero increased, the MAPE calculation:

Iet|/xt (4.14)

results in some large values on occasion which have a
significant impact on the measure. As might be expected,

outliers largely destroy this linear relationship, as shown
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by the scatter plot in Figure 9. The data in Table 7 also
reflect the gradual effect of increased dispersion
(probably better interpreted as increased Coefficient of
Variation). Table 7 data also indicate that outliers have
little effect on the Spearman's correlation between MAD and

MAPE.

4.4.3 MSE vs. MAPE

Based upon Table 8 and Figure 6, these measures relate
well in the nominal case and degrade slowly as dispersion
is increased. The relationship is markedly affected by
outliers. It is clear from Figure 11 that, in the case of
outliers, a high MSE or a low MSE do not assure a high or
low MAPE. Several cases with a very high MSE had a low
MAPE, while several cases with a very high MAPE had a low
MSE. Regardless of these cases, however, the data in Table
8 indicate that the Spearman's Correlation between the two
measures tends to increase with increased probability of
outliers. Carbone and Armstrong (1982) report that MSE has

had a larger usage in the forecasting community.
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4.4.4 Theil's U vs. any other measure

It is some&hat surprising to find that the
relationship between Theil's U and MAD, MSE, or MAPE tends
to be somewhat negative. This is reflected in Tables 7 and
8, and Figures 4, 6, 7, 16, 12, and 13. This lack of
systematic relationship is due to the different objective
of the standardized realization measures. The realization
measures, such as Theil's U, are designed to reflect the
ability of a model to forecast change. The others deal
with forecasting errors, rather than the amount of change
properly forecasted. Based upon the data in Table 8, the
relationships between Theil's U and MSE or MAPE tend to be
somewhat negative. The results in Table 7 indicate that
MAD is consistent with MSE. As the amount of dispersion
increases or as the probability of outliers increases, the
forecasting model does relatively better than a strict
Naive One model. Thus, Theil's U tends to decrease (that
is, reflect improvement) while the other error measures
tend to increase, therefore the somewhat negative
correlation with the other measures. This relationship is
consistent when dispersion is increased or when the

probability of outliers is increased.
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Figure 2. Scatterplot Illustrating the Effect of an
Increased Disturbance Standard Deviation of 2.2 versus 1.0
on the Relationship Between MAD and MSE. Note the clearly
nonlinear relationship between the effect of the smaller
deviation (lower left) and the larger deviation (upper

right).
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Figure 3. Scatterplot Illustrating the Effect of an
Increased Disturbance Standard Deviation of 2.2 versus 1.0
on the Relationship Between MAD and MAPE. ©Note that the
relationship remains fairly linear, but becomes less
symmetrical with the higher dispersion, with MAPE values
tending to increase faster than MAD values.
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. Scatterplot Illustrating the Effect of an

Increased Disturbance Standard Deviation of 2.2 versus 1.0

on the R

elationship Between MAD and Theil's U. Note that

while the increased dispersion clearly increases the MAD

values,

the Theil's U values tend to be somewhat smaller.

This is consistent with the small negative relationship
indicated in Table 7.
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Figure 5. Scatterplot Illustrating the Effect of an
Increased Disturbance Standard Deviation of 2.2 versus 1.0

on the Relationship Between MSE and MAPE.
clearly nonlinear relationship.

Again note the
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Figure 6. Scatterplot Illustrating the Effect of an
Increased Disturbance Standard Deviation of 2.2 versus 1.0
on the Relationship Between MSE and Theil's U. Clearly
indicates that increased dispersion had little effect on
Theil's U values. Reflects the small negative relationship
indicated in Table 8.
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Figure 7. Scatterplot Illustrating the Effect of an
Increased Disturbance Standard Deviation of 2,2 versus 1.8
on the Relationship Between MAPE and Theil's U, Note that
although both are unitless measures, there is little
relationship between them.
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Figure 8., Scatterplot Illustrating the Effect of a .82
Probability of Outliers on the Relationship Between MSE and
MAD. Reflects a nonlinear relationship with MSE increasing
much faster than MAD with the higher level of outliers.
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Figure 9. Scatterplot Illustrating the Effect of a .82
Probability of Outliers on the Relationship Between MAPE
and MAD., Note that on occasion outliers can drive a very
large MAPE value, although in most cases the relationship
is fairly linear. High MAPE values are driven by
observations where the actual series value is small.
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Figure 18. Scatterplot Illustrating the Effect of a .02
Probability of Outliers on the Relationship Between MAD and
Theil's U. Note that while the outliers tend to increase
MAD, they tend to decrease Theil's U,
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Figure 11. Scatterplot Illustrating the Effect of a .82
Probability of Outliers on the Relationship Between MSE and
MAPE. Note that you can have a large MSE with a small
MAPE, or a large MAPE with a small MSE,
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Figure 12. Scatterplot Illustrating the Effect of a .02
Probability of Outliers on the Relationship Between MSE and
Theil's U. MSE values tend to increase while Theil's U
values tend to decrease, but there seems to be no pattern
to this relationship.
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Figure 13. Scatterplot Illustrating the Effect of a .42
Probability of Outliers on the Relationship Between MAPE
and Theil's U. With outliers, the Theil's U values clearly
drop as the MAPE values tend to increase.



61
4.5 Summary and Conclusions

The information in the previous sections indicate how
the error measures were selected for use in this study.
Four measures were selected based upon a thorough
literature review of types of quantitative error measures.
A simulation study indicates that the three measures of
MAD, MSE, and MAPE are reasonably well related so long as
we have a well behaved series with a small coefficient of
variation. 1Increased dispersion or outliers do not
radically affect the relationships. These relationships
are not deemed strong enough to exclude MAD, MSE, MAPE, or
Theil's U from the study. It is acknowledged that the use
of these error measures will complicate the research to
some extent, but their use seems prudent at least through
the simulation study in Chapter VI. Further discussion of
the validity of raw error measures in the empirical test is
included in Section 6.2. The use of these four measures
should encourage those researchers and practitioners who
have selected a favored measure to evaluate the results.

It should increase the generality of the conclusions.



CHAPTER V

PARAMETRIC AND NONPARAMETRIC TECHNIQUES STUDIED

5.1 Techniques for Stationary Time Series

Techniques for stationary time series do not deal with
trend or seasonality. Only the level and randomness need
to be considered. While all time series techniques could
be applied in this case, those with parameters designed to
cope with trend and seasonality would be overspecified
(have insignificant parameters) and would violate Box and
Jenkins (1976) ground rules which call for parsimony in
time series models. Simple parametric techniques designed
for stationary series include Naive One, single exponential
smoothing, single moving average, and adaptive response
rate exponential smoothing. While adaptive response rate
exponential smoothing has some nice theoretical features,
it is dropped from further consideration due to its
increased complexity and reputation for poorer performance
than single exponential smoothing (Hibon, 1984). The
literature review did not indicate any nonparametric
techniques for extrapolative forecasting. As a
consequence, the parametric techniques are explained in the
next section, while nonparametric alternatives are

introduced in Section 5.1.2.
62
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5.1.1 Parametric Techniques

The techniques of Naive One, single moving average,
and single exponential smoothing are simple and yet perform
reasonably well. The Naive One technique presumes that
tomorrow will be like today, or that:

F (5.1)

e+l = X¢o -
McLaughlin (1975) considered this no-change model to be a
standard for measuring a forecasting technique. If the
forecaster or technique does no better than a no effort
Naive One technique, then the extra effort is for nought.
Besides its value for comparative purposes, Naive One is
used in the development and explanation of both
McLaughlin's Standardized Realization Percent (or batting
average) and Theil's U statistic. McLaughlin (1975) notes
that this technique has surprisingly good properties around
turning points, i.e. points in time when the underlying
trend or level change. Naive One can be considered the
most responsive, and least stable technique for stationary
series. While this technique is not seriously considered
as a competitor, it is used as a standard for comparison in
many tables.

The single moving average technique uses the average
of the last m time series values as the forecast, so that:

MALl, = (Xp + Xpop + oo + X q)/ m, (5.2)

represents the average and:

F (5.3)
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represents the forecast for time period t+l. The integer m
can vary from 1 upward, so that the single one period
moving average is identical to the Naive One technique.
Smaller m values result in a more responsive, less stable
model. Larger m values result in a less responsive, more
stable model. While Hibon (1984) dismisses this technique
as generally no better than Naive One or exponential
smoothing, it should be noted that the results of the
Makridakis and Hibon (1979) study indicated that single
moving average yielded a MAPE of 12.9 and an adjusted
Theil's U of 1.61, while single exponential smoothing
yielded values of 12.8 and 1.66 on their 111 series. Note
also that the M-competition ran all automatic techniques on
all 19001 series. For those series with trend, the fitting
procedures may have allowed a more responsive model for
exponential smoothing than for moving averages, thus
perhaps unjustly penalizing the moving average's
performance. Appendix 2 of the M-competition results
(Makridakis, et. al., 1984) does not indicate what
restrictions were used on either the number of periods in
the moving average or on the exponential average smoothing
parameter. Any restrictions could have affected the
results. For all 1401 series; moving average forecasts
exceeded those of exponential smoothing by 34% using MAPE
and 216% using MSE, a rather sharp contrast to the previous

results. The empirical portion of this study attempts to
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screen the M-competition series into more appropriate
categories prior to fitting and forecasting. The single
moving average is expected to be more competitive when used
on series that do not display monotonic trend.

The single exponential smoothing technique also uses
the average of the historical data as the forecast. But in
this case, all the historical data are used and weighted
exponentially with more weight on recent time periods' data
and less weight on old data. The equation for the
exponential average can be expressed as:

EAl + (1-c)EAl,_; (5.4)

e = Xt
where EAlt refers to the single exponential average at time
t and c refers to the smoothing constant or parameter of
the model. The smoothing constant can vary between f and 1
but Brown (1963), one of the originators of exponential
smoothing, suggests that the use of constants above .3
usually result from trying to use the technique for
inappropriate series. The smaller the smoothing constant,
the less weight is given to the most recent data points,
and the more stable the model. The recursive equation 5.4

leads to the question of how to start the forecasts.

Possible ways to begin include letting:

or

EAl T (X)/n (5.6)

=
|
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where the summation is over the set of data used for
fitting. Due to the rapid decrease in weight applied to
the first value, its effect on forecast accuracy is minimal
so long as the series of data used for fitting is of
sufficient length. For that reason the simulation study
used the first series value as EAll .

Although a very simple technique, single exponential
smoothing did well in the Makridakis and Hibon (1979)
study. On seasonally adjusted data, its MAPE was within
7.5% of the best reported method, while Box-Jenkins was
high by 22.5%. In the M-competition (Makridakis, et. al.,
1982) this technique had the lowest average MAPE for one
period ahead forecasts, and the lowest average MAPE over
horizons 1-18, among the standard techniques tested over
all 19001 series and over the 111 series (Table 2(a) and
Table 2(b), respectively, of the Makridakis article).

Since the results in Chapter IV indicated that MAPE and MSE
are not necessarily highly related, it should not be
surprising that in terms of MSE, simple exponential
smoothing did not perform as well. Of course, there
remains the question of whether the average of raw measures
of error across series of different levels and dispersion
is meaningful. Guerts (1983) indicated that while MSE is
an excellent accuracy measure for a single time series, its
average over several series can be distorted by the

magnitudes of the series.
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5.1.2 Nonparametric Alternatives

While no nonparametric extrapolative techniques were
found in the literature review, some nonparametric
techniques were found that could be applied to or modified
for the extrapolative forecasting problem. One promising
nonparametric technique is the running median as discussed
by Tukey (1977). This technique is used as a smoothing
device in data analysis, not in extrapolative forecasting,
but its application appears straight forward. Due to the
general strength of exponential smoothing techniques, a
second technique, a variation on running medians similar to
an exponential average, is proposed and evaluated. A third
nonparametric technique with promise for this stationary
case is Walsh Averages.

Similar techniques not included in the present study
include trimmed means and medial averages. Levenbach and
Cleary (1984) suggested using the trimmed mean as a robust
measure of location. The trimmed mean is developed by
deleting a specified proportion of the ordered observations
from the top and from the bottom. That is, a percentage of
the largest and smallest values are deleted, then the mean
is calculated from the data remaining. Wheelwright and
Makridakis (1985) used a medial average when smoothing
historical data for calculation of seasonals. These are
similar to the trimmed mean, but only the single largest

and single smallest values are deleted. Neither the
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trimmed mean, nor the medial average are strictly speaking
nonparametric techniques; although they do address the
problem of outliers.

Running medians are directly analogous to moving
averages. While moving averages consist of the arithmetic
average (mean) of m consecutive time series values, running
medians as discussed by Tukey (1977) consist of the median

of m consecutive time series values. Thus,

(5.7)

RMlt MED(Xt ’ Xt_l 7 e e ,Xt_m+l) ’
and

Feyp = RM1L . (5.8)

t+l
The running median is expected to be very robust to
outliers at the cost of being somewhat slower to respond to
changes in level.

A second nonparametric technique is a modification to
the running median which incorporates some of the features
of exponential smoothing. The idea is to reduce the
expected variability of forecasts over time from running
medians by inclusion of an exponential weighting to these
medians. The smoothed median can be expressed as:

SMlt = CRM1l, + (l-c)sMl._y , (5.9)
where;

SMl, is the single smoothed median at time t,

RMlt is the running median for time t,

C is the smoothing constant, with a value

ranging from zero to one.
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This is again a recursive equation and is started by
setting SM1, = RM1; . Since the items smoothed are medians
rather than series values, it is suspected that relatively
few time periods should be used in each median and that a
relatively large smoothing constant (compared to
exponential smoothing) would be better.

The third nonparametric technique for stationary
series is the median of the Walsh Averages as discussed by
Hollander and Wolfe (1973). Given a set of m consecutive
values, X, Xg—1+ oo+r Xg_ms1 + from the series, the m(m-
1)/2 Walsh Averages can be expressed as:

WAL = (X5 + X5)/2 , 1 <3l (5.10)
where i and j are chosen from [t,t-1l,...,t-m+l]. This is
perhaps easier to see from a small example. Suppose the

median of the Walsh Averages of 1, 2, and 5 was desired. A

table can be arranged as in Figure 2.

1 2 5
v 1
a 1 | 2 3 6
1 I
u 2 | - 4 7
e l
s 5 | -~ - 10

Figure 14. Development of a Walsh Average.

where the values from the series are in the upper and the
left column margins. The 3 by 3 body consists of the

pairwise sums of upper row and left column elements. Only
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the upper diagonal matrix is considered when calculating
the Walsh Averages. While the average of each matrix
element value could be performed at any time, it is more
efficient to perform the division just once, after the
median has been determined. The median of the six elements
in this upper diagonal matrix is the average of the third
and fourth ranked elements or 5. The forecast is then 5/2
or 2.5. If the data had been symmetric the median (2 in
this case) would have equaled the median Walsh Average.
Because the data was "skewed right", the median Walsh
Average was larger than the median. The median Walsh
Average is more responsive than the median, yet still

relatively insensitive to outliers.

5.2 Techniques for Series with Linear Trend

Simple techniques for linear trend must deal with
level and trend. All those considered use a linear
forecast. A level, ayr is estimated for time period t. A
slope or expected change in level per time period, bt' also
is estimated. Given these two estimates, forecasts for
future time periods are easily computed. Again, many time
series techniques can be applied to nonstationary series.
While nonlinear trends are certainly possible, as are
changes in the underlying series behavior, the techniques
used here are designed for series with linear trend. The

parametric techniques used were double moving average and
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Brown's Linear Exponential Smoothing. As in the stationary
case, no nonparametric extrapolative forecasting techniques
were found. Rather, a robust regression technigue and
modifications to the previous section's nonparametric

techniques are considered.

5.2.1 Parametric Technigques

Two parametric techniques for linear trend time series
were considered. These were the double moving average and
Brown's linear exponential smoothing. The single moving
average was discussed in Section 5.1.1 where the basic
equation was expressed as:

MAL, = (X¢ + Xpp + o0 + Xpe_pyg)/m . (5.11)
The double moving average, MA2,, can be expressed as:

MA2, = (MAl, + MAl _; + ... + MAl___.y)/m , (5.12)
where m is consistently used as the number of periods in
the average. It should be clear that in the case of a
perfect linear trend MAl will lag the proper time series
value by (m-1)/2 time periods, while MA2 will lag the

proper value by another (m-1)/2 periods. The proper level

at time t, a_, can then be expressed as:

a, = MAl, + (MAl, - MA2,) (5.13)
or = 2MAl,_ - MA2, . (5.14)

To forecast a linear trend, a slope for time period t also

is needed. Since the difference between MAlt and MAzt is

(m~1)/2 time periods of change, the slope can be estimated

as:
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by = [2/(m-1)] [MAl, - MA2.] . (5.15)
The double moving average forecast for any future time
period t+k can then be expressed as:

F (5.16)

t+k = ag *t bk .
For the purposes of the simulation study, k is fixed at
one, while the empirical study considers k = 1,2,...,6.

Double moving averages did not perform well in the
Makridakis and Hibon (1979) study, yet it was only three
tenths of a percentage point worse than Box-Jenkins for one
period ahead forecasts (MAPE of 15.0 versus 14.7). The
technique apparently was not used in the M-competition.
While this technique is not expected to be the best
performer in the present study, it is included because it
is quite similar to the proposed double running medians
technique. Since this study does not run the linear trend
techniques on clearly inappropriate series, this technique
is expected to perform better than in the previous studies.

The second and last parametric technique used for the
nonstationary series is Brown's linear exponential
smoothing. The single exponential average is expressed in
Equation 5.4 of Section 5.1.1 as:

EAl, = cX, + (l-c)EAl,_; . (5.17)
The double exponential average at time t is:
EA2, = cEAl, + (l-c)EA2,_, , (5.18)

where the smoothing constant ¢ remains a fixed value for

both averages. Forecasting using Brown's Linear
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Exponential Smoothing technique again requires an estimated
level at time t and an estimated slope. Here:

by

Brown (1963) explained the development of these formulas.

[c/(1-c)] [EAl, - EA2.]. (5.20)

As before, the forecast for future time period t+k is:
Fegp = ag + btk, (5.21)

while k is fixed at one for the simulation study.

Brown's linear exponential smoothing did rather well
in the Makridakis and Hibon (1979) study and in the M-
competition (Makridakis, et. al., 1982). In terms of MAPE,
Brown's one parameter method tied Holt's two parameter
method for one period forecasts and was slightly better
than Holt's for two period ahead forecasts over all 1001

series. Gardner (1983) indicates that Brown's technique

should be preferred over Holt's on theoretical grounds.

5.2.2 Nonparametric Alternatives.

The first nonparametric technique considered is a
modification of robust regression as discussed by Hollander
and Wolfe (1973). 1In the regression problem, their
technique determines the proper slope as the median of the
set of slopes generated from each pair of points. Their
intercept term is determined by running lines with this
slope through all the data points, generating a set of

possible intercept values. The median of this set of
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possible values is the intercept for the regression
equation:

Y = a + bXx . (5.22)
Modifying this technique for the extrapolative forecasting
problem required similar computations for each time period
advance, using the last m time periods of data for each
computation. The modified technique uses the same approach
for the development of a forecasting slope, then runs a
forecasting line through the point (median of t, median of
X).

A second proposed approach is the double running

median. Given a perfect linear trend the formulas that
gave forecasts for double moving averages also will work

for medians:

RM1, = median(Xy, Xe_1s ooe s Xpopgel) (5.23)
RM2, = median(RMl;, RM1l._;, ..., RM1._ .. )/ (5.24)
a, = 2RM1, - RM2, , (5.25)
by = [2/(m-1)][RM1, - RM2.] . (5.26)

A third possible approach is a double smoothed median.
Since in a perfect linear case the smoothed median is
always (m-1)/2 time periods behind xt, the inclusion of

this multiplier results in the following equations:
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SM1l, = CRM_ +(l-c)SM¢_; (5.27)
SM2, = cSM1, + (l-c)SM2,_; , (5.28)
ap = 2SM1, -SM2 . (5.29)
by = [c/(l-c)][SM1l, - sM2.] , (5.30)
Frep = ap + [(m+1)/2] by . (5.31)

Conover's (1988) robust regression technique,
regression on ranks and interpolation, was considered but
it is not included in the present study because forecasting
and interpolation are largely opposSite concepts.
Modifications similar to the trimmed means or medial
averages techniques also are not pursued for this study

since, strictly speaking, they are not nonparametric.

5.3 Summary and Conclusions

Simple parametric techniques have been identified that
have performed well in recent forecasting competitions.
Nonparametric techniques that also can be applied to
similar time series extrapolation problems have been
identified. Chapter VI compares the performance of these
techniques under a variety of simulated conditions and on
monotonic trend and no monotonic trend subsets of the M-

competition data.



CHAPTER VI

EVALUATION OF PERFORMANCE

Performance of the parametric and nonparametric
techniques discussed in Chapter V are compared on simulated
and actual time series. The simulation study deals with
both stationary and linear trend series with results
presented in Section 6.1l. Sample program listings are
included in Appendix B, while detailed supporting tables
are included in Appendix C. An empirical study is then
performed using a subset of 111 deseasonalized time series
from the M-competition with discussion and results
presented in Section 6.2. Sample program listings for the

empirical study are included in Appendix D.

6.1 Simulation Study

The purpose of the simulation is to try to identify
strengths and weaknesses, advantages and disadvantagdes
among and between the nonparametric and the parametric
techniques as the type of series and error distribution
vary. The series chosen for the simulation are all
autoregressive of order one. In the stationary case, a

series of this type can be expressed as:

76



77
Xg =0 * X, 1 +U + ep s (6.1)
where X, is the value of the series at time t,
¢® (Phi) is the autoregressive coefficient,
U is a constant, and
e is an error term from a chosen distribution.
In the linear trend case the equation for the series value
can be expressed as:
Xy =0 * X, 1 +V+b*t+e , (6.2)
where V is a constant, and
b is a slope.
For each case in this simulation, the combination of ¢, U,
V, and b is adjusted to maintain an expected series value
of 286. When normal errors are used, the expected
coefficient of variation is 15%. While the coefficient of
variation is not defined when using Cauchy errors, the
Cauchy scale parameter is adjusted so that the 25th and
75th quartiles are equal for the series of normal and
Cauchy errors.

According to Makridakis, Wheelwright, and McGee
(1983), the value of the autoregressive coefficient is
restricted to be between -1 and +1. Series with
coefficients ranging from -.9 to +.9 were generated,
plotted, and evaluated for use. Series with negative
coefficients ossilate about their mean. A large value is
followed by a small value, with the efféct damping out at a

speed determined by the size of the coefficient. This type
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of behavior is considered unlikely to be encountered in the
business world. As a result, three positive coefficient
values are chosen for study. These are ¢ = .3, ¢ = .5, and
® = .7. The series generated with these coefficients
display very similar behavior as evidenced by Figures 15
and 16, but yet are sufficiently different to shift the
fitting requirements from the most stable parameters to the
most responsive parameters. They are felt to be
sufficiently different to study the various techniques.

Two hundred replications are made for each combination
of autoregressive coefficient and error term distribution,
half for the stationary case and half for the linear case.
Sixty observations are drawn for each replication with each
technique restarted for each replication. The twenty
observations after each start are disregarded for two
reasons. One is to assure independence of the
replications, the second is to assure that the method used
to initiate some of the technigues does not taint the

results. Pictorially, one replication can be illustrated

as:

| Forecasts l Forty Observations l

|]<-- Calculated, But --->|<---- Used for Error Measure =-->|

| No Error Measures | Calculations |

| | |

1 21 6@
Observations

Figure 15. Pictoral of One Replication
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Figure 16. Graph of a Stationary Series with Phi = .3
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Figure 17. Graph of a Stationary Series with Phi = ,7.
Note the similarity to Figure 16, with the primary
difference being the larger maximum and smaller minimum
values.
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All forecasts are for the next time period. For each
technique used in the simulation and for each replication,
the error measures chosen in Chapter IV are calculated.
Over the 108 replications the maximum, upper quartile,
mean, median, lower quartile, and minimum error measure
values are calculated. Thus, each error measure represents
results for 4000 observations.

One should avoid the flaw of numeracy cited by Pack
(1983). Thus, the detailed results from the simulation
study are expressed as ratios in Tables 23 - 46 of Appendix
C. The ratios represent the actual error measure value for
the cell, to the error measure that resulted from use of
the Naive One technique on the series. Tables 9 - 14
within this chapter deal with comparisons of the best
parametric and best nonparametric technigues and are felt
to be integral to the chapter. 1Including the detailed
tables within the chapter was felt to distract from the
presentation. The detailed tables thus are included in

Appendix C.

6.1.1 Performance on Stationary Series

The extrapolative techniques of single moving average,
single exponential smoothing, running median, smoothed
median, and Walsh average are run for the six stationary
cases (0 = .3, .5, .7; normal and Cauchy errors). A grid

of parameter values is established so that performance can
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be related to parameters used in the models. For example,
the smoothed median uses smoothing constants of .2, .3, .4,
.5, and .6 on medians of length 3, 4, 5, and 6.

Performance results are then calculated for each of the 24
combinations of parameters. Box plots in Figures 18 and 19
illustrate the MAD performance of different length moving
averages and running medians on a stationary series with
normal errors. Figures 28 and 21 illustrate the
performance of moving averages and running medians on a
stationary series with Cauchy errors. Note that in the
case of Cauchy errors, the mean error measure is typically
near the upper quartile value. For this reason, both mean
and median error measure results are considered when

distributions have Cauchy errors.

6.1.1.1 Normal Errors

If results of previous nonparametric work can be
generalized into the time series arena, the parametric
techniques should on average perform better than comparable
nonparametric technigues on well behaved stationary series
with normal error terms. This expectation is realized for
each of the error measures considered. The parametric
technique of exponential smoothing is always superior to
all other techniques when the errors are normally

distributed. It should be mentioned that although
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Figure 18. Sample Box Plots of Simulation MAD Results
using Moving Averages on a Series with Normal Errors, and
Phi = .3
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Figure 19, Sample Box Plots of Simulation MAD Results
using Running Medians on a Series with Normal Errors, and
Phi = .3
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Figure 248. Sample Box Plots of Simulation MAD Results
using Moving Averages on a Series with Cauchy Errors, and

Phi = .3



86

MAD _ MAD
1207 120
1001 - 100
80 7 - 80
201 - 20
15 » - 15
X L

* *

10 - 10
|
51 T T - -5
07 S
T l T l J
3 4 5 6

LENGTH USED

Figure 21. Sample Box Plots of Simulation MAD Results
using Running Medians on a Series with Cauchy Errors, and
Phi = .3
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exponential smoothing is uniformly superior, the difference
between the best exponential smoothing result and the best
nonparametric result is not necessarily large, as can be
seen in Table 9. One conclusion to be drawn from Table 9
is that use of nonparametric techniques on these stationary
time series would result in errors that are 5% to 20%
larger than necessary, depending upon the error measure

chosen.

Normal Errors, {=.3

More detailed analysis of Tables 23 - 26 (of Appendix
C) indicates that when ® = .3, the best forecasting method
leans toward stability. That is smaller smoothing
constants and longer length averages or medians have lower
fitting values. Additional results (not tabled) indicated
that for this case, use of the population mean as the
forecast resulted in a lower error measure value (MAD, MSE,
MAPE, or Theil's U) than did the use of any other technigue
considered, including Naive One. Of course, one problem
with proposing the use of the population mean as a
forecasting method is that the mean is unknown in most
forecasting situations. A second problem is that even if
the true mean were known (or an excellent estimate could be
made), its use for forecasting would be ill advised.
Lawrence, Edmundson, and O'Connor (1986) noted many cases

of the failure of the assumption of constancy in a subset
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of the M-competition data. Thus the forecaster should use
a technique that will adjust the forecasts automatically if
the mean experienced a minor or major change. For this
reason, the simulation study restricted the average and
median lengths and the values used for the smoothing
constants. It is clear that a better fit exists outside
the grid range, but it was felt that the grids chosen
represented the lengths and smoothing constants most likely
to be utilized by forecasters. Reference to the ¢ = .3

portions of Tables 23 to 26 indicates that in general

Table 9

Best Nonparametric Results
versus Best Parametric Results:
Stationary Series, Normal Errors
Average Results over 100 Simulated Series

Error Best Best
Phi Measure Ratio¥* Nonparametric Parametric
.3 MAD 1.085 2.62 2.58
MSE 1.190 10.74 9.77
MAPE 1.85 13.69 13.09
Theil's U 1.05 .89 .84
.5 MAD 1.08 2.79 2.58
MSE 1.18 12.28 10.44
MAPE 1.08 14.57 13.48
Theil's U 1.08 1.01 .93
.7 MAD 1.09 2.85 2.61
MSE 1.21 12.86 10.65
MAPE 1.09 15.089 13.83
Theil's U 1.19 1.09 .99

*¥ Ratio is the value derived by dividing the best average
nonparametric result by the best average parametric result.
When Ratio is more than one then the best nonparametric
technique performed worse than the best parametric.
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the more stable parameter values yield lower error
measures. Reference to graphs such as those in Figures 19
and 28 result in the same conclusion.

To some extent, the magnitude of the ratio values in
the ® = .3 portion of the Tables 23 - 26 results from the
rather poor job done by Naive One on series with this
autoregressive coefficient. Numbers are rounded to two
decimal places. The best nonparametric results were always
obtained from the smoothed median technique with thed
smallest smoothing constant used for this technique. The
use of longer length medians (5 or 6 period versus 3 or 4
period) had surprisingly little effect as long as the
smoothing constant was kept at .2. Moving average did not
perform as well as exponential smoothing. In the case
where ¢ = .3 (stability desired), the moving average of
length nine (included in the study, but not tabled) was not
as good as exponential smoothing with a .1 smoothing

constant.

Normal Errors, $=.5

When @ = .5 the use of the mean as the forecast, or
the use of Naive One results in essentially the same error
measure values. In this case, the only technique that
improves upon Naive One is exponential smoothing (see
Tables 23 - 26). While the exponential smoothing results

lean toward a model that is more responsive, the smoothed
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medians technique achieves its best results with a small
smoothing constant yet the shortest length medians. Here
the best performing nonparametric method is the Walsh
average. It maintains much of the median's resistance to
outliers (not tested in the simulation), yet it is more

responsive.

Normal Errors, O=.7

With normally distributed errors and with ¢ = .7, the
Naive One technique outperforms all others tested (see
Tables 23 ~ 26). The most responsive exponential smoothing
model used was still worse than the simple Naive One. By
looking at the ¢ = .7 portions of Tables 23 - 26, the
techniques can be ranked by responsiveness or stability.
Consider the column with n = 3. The moving average is most
responsive, followed closely by the Walsh average, then by
the running median technique. The need for responsiveness
even has the smoothed median results properly ordered with
lower error measures for shorter period medians and for

larger smoothing constants.

6.1.1.2 Cauchy Errors

The Cauchy distribution is usually represented as a
long tailed distribution that looks somewhat like a normal
distribution. It is often used as an alternative

distribution when parametric and nonparametric measures and
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tests are evaluated, see Hollander and Wolfe (1973).
Parzen (1960), indicates that the Cauchy distribution can

be expressed as:
£(x) = 1/( = * 8 *(1+((x- « )/ B8 )?)) (6.3)

where alpha is the location parameter, and beta is the
scale parameter. Johnson and Kotz (1970) indicate that
while the Cauchy distribution does not have a finite
expected mean or standard deviation, the location and scale
parameters may be regarded as being analogous to the mean
and standard deviation. For this study, the errors are
constrained to be zero on average, and the location

parameter is thus set to zero. The SAS Users Guide:

Basics, Version 5 (1985) specifies that their RANCAU

function can be used to generate a Cauchy variate as:

x = ALPHA + BETA*RANCAU (seed) (6.4)
where ALPHA is the location parameter, BETA is the scale
parameter, and seed is a positive real number used to
intitialize the random number string. A scale parameter of
slightly less than two was required to equate the Cauchy
deviates' midrange to that of the normal. A comparison of
the best average results of parametric and nonparametric
techniques are presented in Table 10, while best median

results are in Table 11.
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Cauchy Errors, ¢=.3

When ¢ = .3, average results (Tables 27 - 38) and
median results (Tables 31 - 34) favor the nonparametric
techniques. Average improvements range from 1% for MSE to
13% for MAD, while median improvements range from less than
1% for MAPE to almost 16% for MSE. The best nonparametric
results are from smoothed medians for MAD, MSE, and Theil's

U; while running medians barely surpasses smoothed medians

Table 14

Best Nonparametric Results
versus Best Parametric Results:
Stationary Series, Cauchy Errors
Average Results over 100 Simulated Series

Error Best Best
Phi Measure Ratio* Nonparametric Parametric
.3 MAD .89 11.64 13.17
MSE .99 3144.09 3167.67
MAPE .90 72.140 80.19
Theil's U .89 .83 .93
.5 MAD 1.16 15.74 13.56
MSE 1.16 3928.30 3382.24
MAPE .70 123.96 177.47
Theil's U 1.05 1.19 1.13
.7 MAD 1.18 17.54 14.88
MSE 1.23 4279.36 3479.19
MAPE 1.14 183.77 161.82
Theil's U 1.15 1.37 1.19

* Ratio is the value derived by dividing the best average
nonparametric result by the best average parametric result.
If Ratio is less than one then the best nonparametric
technigque performed better than the best parametric
technique.
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for MAPE., The best median results are from running medians
for MSE, MAPE, and Theil's U; while smoothed medians are

better for MAD, and very close for MSE.

Cauchy Errors, 0=.5

When ¢ = .5 the results are mixed. Average MAD, MSE,
and Theil's U all indicate that the parametric technique of
exponential smoothing is favored (see Tables 27, 28, and
30). Average MAPE, however, indicates that the
nonparametric technique of running medians is preferable
(see Table 29). This seems inexplicable. If medians
rather than means are considered, all measures indicate
that exponential smoothing is the best technique (see
Tables 31 - 34).

Since the MAPE results are unexpected, some further
analysis was performed on the initial data. For the
original data, the exponential smoothing MAPE had a maximum
value of 63% when the smoothing constant was .18, versus a
maximum MAPE of 16% for the best length running medians.
While changes in average results were usually quite regular
with changes in the smoothing constant, for this instance
the average MAPE is very sensitive to the choice of
parameter. Simulating results from these two techniques on
a new data set resulted in a lower average MAPE from the
exponential average than from smoothed medians. This

raises the question of the stability or reliability of the
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Table 11

Best Nonparametric Results
versus Best Parametric Results:
Stationary Series, Cauchy Errors
Median Results over 108 Simulated Series

Error Best Best
Phi Measure Ratio* Nonparametric Parametric
.3 MAD .92 7.82 8.53
MSE .86 250.19 289.49
MAPE .99 53.46 53.81
Theil's U .98 .86 .88
.5 MAD 1.89 9.53 8.78
MSE 1.16 347.17 300.99
MAPE 1.16 73.28 63.33
Theil's U 1.43 1.62 .99
.7 MAD 1.16 11.46 9.54
MSE 1.26 401.55 318.42
MAPE 1.23 91.24 73.92
Theil's U 1.1¢0 1.18 1.08

* Ratio is the value derived by dividing the best median
nonparametric result by the best median parametric result.
If Ratio is less than one then the best nonparametric
technique performed better than the best parametric
technique.

use of MAPE since none of the other error measures under
consideration reflected any problem. Perhaps the
combination of MAPE and Cauchy errors drove this peculiar
result. While this anomaly is intriguing, it is not seen
as critical to this research and is not pursued further at
this point.

Review of Tables 27 - 34 indicates that the dominant

nonparametric technique is running medians. It had the
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lowest median MAD, MSE, MAPE, and Theil's U value, and also
the lowest average MAD and Theil's U, although Walsh
average and even smoothed median had lower average MSE
values., It is interesting to note that for ¢ = .3 and .5,
the error measures generally indicate that running medians
would be superior to moving averages (although worse than
exponential smoothing) when errors are Cauchy. Since
single moving averages did not do badly in the Makridakis
and Hibon (1979) study, hope remains that running medians

may perform well in the empirical portion of this study.

Cauchy Errors, 9=.7

When ¢ = .7, the results favor the parametric
techniques. Since the first order autocorrelation here is
.7, the value of an observation can be reasonably well
forecast by the Naive One technique. None of the other
technigues can match the Naive One results. The best
nonparametric technique is Walsh Averages based upon all
average measures as well as median MAD and median MAPE.
Running medians is best based upon median MSE and median

Theil's U,

6.1.1.3 Conclusions from Stationary Simulations
The best parametric technique is exponential
smoothing. For the smoothing constants and lengths

considered in this study, it is consistently a better
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performer than moving averages for ¢= .3, .5, or .7. 1If
Brown's (1963) suggested limit of .3 is imposed on the
exponential smoothing constant (that is, rows corresponding
to smoothing constants higher than .3 are ignored in Tables
23 - 34), then the difference in results between the two
parametric techniques is not large for cases with normal
errors., The difference is at most 6% for MSE and about 3%
for the other error measures used. When errors are from a
Cauchy distribution and the smoothing constant is limited
to .3, the moving average yields marginally better average
results for MAD and Theil's U; vyet somewhat worse for MSE
and MAPE. Exponential smoothing is superior otherwise for
average and median results. This is consistent with
earlier reported work that favors exponential smoothing
over moving averages.

The best nonparametric technique varies by type of
series. With ¢ = .3 and normally distributed errors, the
smoothed median technique results in the lowest error
measures, followed closely by Walsh average and then
running median. When ¢ = .3 and errors are from a Cauchy
distribution, smoothed medians remains superior based upon
average errors, followed closely by running medians. 1In
this case Walsh averages perform considerably worse,
probably because the technique is inherently more
responsive than the medians. Based upon median error
measure results, the running median is best for MSE, MAPE,

and Theil's U; losing only to smoothed medians for MAD.
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When the series has ® = .5 and normal errors, the
best nonparametfic technique is Walsh averages, followed by
smoothed medians, and then running medians. When the
errors are Cauchy, then the running median technique is
better based upon MAD, MAPE, and Theil's U. Average MSE
favors Walsh averages, but the median error measureé a}l
favor the running median.

The best nonparametric technique for series with the
highest autocorrelation (¢ = .7) is Walsh averages.

Running medians is better only for median MSE and median
Theil's U. The need for responsiveness placed smoothed
medians at a marked disadvantage versus the more responsive
Walsh average and running median.

It appears that stationary series with high levels of
autocorrelation will not be well forecast by nonparametric
techniques. The question remains as to whether high levels
of autocorrelation are common. Previous good performance
by exponential smoothing versus Box-Jenkins seems to imply
that such levels of autocorrelation are not all that
common, since exponential smoothing itself is not designed
for such series while Box-Jenkins is so designed.

Brown (1963) indicated that when the best fit
exponential smoothing model has a smoothing constant
greater than .3, the series probably is not appropriate for
use of the technique. Discounting the obvious case where a

stationary technique is being used for a nonstationary
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series (for example, a series with linear trend), this
raises a separate research gquestion. Brown merely
indicates the symptom and does not indicate how much
autocorrelation is too much. This simulation indicates
that for these types of series, a first order
autocorrelation of .3 gives series that are appropriate for
exponential smoothing. First order autocorrelation of .5
or higher results in series that are inappropriate. That
is, best fitting results in a model with a smoothing
constant that is too large. While it might be interesting
to determine the autocorrelation levels at which
exponential smoothing becomes inappropriate, this is not
seen as central to the nonparametric forecasting question

and is thus deferred.

6.1.2 Performance on Linear Trend Series

The extrapolative techniques of double moving average,
linear exponential smoothing, double running median, double
smoothed median, and robust regression are run for six
cases (0 = .3, .5, .7; normal and Cauchy errors). The same
grid approach of parameter values is used for the trend as

was used on the stationary simulations.

6.1.2.1 Normal Errors

When errors are drawn from a normal distribution,

results again always favor the parametric technique of
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exponential smoothing. Table 12 compares the best
parametric and nonparametric results achieved. Detailed
results are presented in Tables 35 - 38. For exponential
smoothing and ¢ = .5, MAD and MSE are minimized at a
smoothing parameter value of .1, MAPE is minimized at a
value of .3, and Theil's U is minimized at .2. If ¢ = .7,
MAD and MSE are minimized at smoothing constant values of
.4, MAPE at a value of .5, and Theil's U at a value of .3.

When ® = .3 or .5 the smoothed median yields the best
nonparametric results, with the choice of a smoothing
constant having a more pronounced effect than the length of
the medians being smoothed. When ¢ = .7, the robust
regression technique becomes much more competitive. Robust
regression is quite competitive with double moving averages

in terms of MAD, MSE, and MAPE.

6.1.2,2 Cauchy Errors

Simulation results when the error around the trend
line was Cauchy are in Tables 39 - 46. As with the
stationary case, the nonparametric technique based on
smoothed medians is superior to all other techniques when @
= .3. When the first order autocorrelation rises to .5 and
above, average error measures favor the more responsive
parametric technigue. Comparison of best average
parametric and nonparametric results is displayed in Table
13 and for median results in Table 14. It is somewhat

interesting to note that the double smoothed median seems
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Table 12

Best Nonparametric Results
versus Best Parametric Results:
Trend Series, Normal Errors
Average Results over 188 Simulated Series

Error Best Best
Phi Measure Ratio* Nonparametric Parametric
.3 MAD 1.85 2.69 2.57
MSE 1.19 11.34 19.34
MAPE 1.05 15.92 15.19
Theil's U 1.46 .87 .82
.5 MAD 1.08 2.93 2.72
MSE 1.16 13.51 11.63
MAPE 1.19 188.35 163.93
Theil's U 1.19 1.82 .93
.7 MAD 1.20 3.35 2.80
MSE 1.45 17.86 12.35
MAPE 1.19 200.41 168.87
Theil's U 1.21 1.23 1.02

* Ratio is the value derived by dividing the best
nonparametric result by the best parametric result. A
Ratio value above one indicates that the best nonparametric
method did not perform as well as the best parametric
method.

to be more competitive with linear exponential smoothing
than the smoothed median is with single exponential
smoothing. When median error measures are considered,

double smoothed medians is the dominant nonparametric

.3 and .5, while robust regression is

technique for ©

dominant when Q@ .7.
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Table 13

Best Nonparametric Results
versus Best Parametric Results:
Trend Series, Cauchy Errors
Average Results over 1008 Simulated Series

Error Best Best
Phi Measure Ratio¥* Nonparametric Parametric
.3 MAD .81 12.06 14.81
MSE .94 3159.09 3365.98
MAPE .79 95.93 120.71
Theil's U .82 .93 1.14
.5 MAD 1.963 16.97 16.41
MSE 1.06 4833.95 3807.84
MAPE 1.04 197.88 193.88
Theil's U 1.11 1.29 1.16
.7 MAD 1.06 17.58 16.61
MSE 1.09 4353.85 3998.69
MAPE 1.04 126,240 121.62
Theil's U 1.14 1.36 1.19

* Ratio is the value derived by dividing the best
nonparametric result by the best parametric result. A
Ratio value less than one indicates that the best
nonparametric technique is better than the best parametric
technique.

When 0 = .3, reference to Tables 39 - 42 indicates
that the minimum exponential smoothing mean MAD, MSE, and
MAPE is achieved with c= .1; yet the minimum mean Theil's
U is achieved with c= .4 (the minimum median Theil's U is
with c= .1). For O = .7 the average MAPE and average
Theil's U are minimized with ¢ = .5 while average MAD and
average MSE are minimized with ¢ = .4. This, along with

the similar results when errors are normal underscore that
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one should not expect a technique fit to minimize one error
measure to also minimize the other error measures. Further
analysis of the detailed results in the Appendix C tables

is left to the interested reader.

Table 14

Best Nonparametric Results
versus Best Parametric Results:
Trend Series, Cauchy Errors
Median Results over 166 Simulated Series

Error Best Best
Phi Measure Ratio* Nonparametric Parametric
.3 MAD .88 8.18 9.25
MSE .82 256.51 312.06
MAPE .91 56.04 61.39
Theil's U .93 .89 .96
.5 MAD 1.03 19.68 19.41
MSE 1.04 357.36 345.25
MAPE 1.87 70.67 66.09
Theil's U .99 1.82 1.02
.7 MAD 1.09 11.48 16.56
MSE 1.15 413.84 361.03
MAPE 1.85 75.52 72.04
Theil's U 1.01 1.07 1.06

* Ratio is the value derived by dividing the best
nonparametric result by the best parametric result. A
Ratio value less than one indicates that the best
nonparametric technique is better than the best parametric
technique.
6.1.2.3 Conclusions of Linear Trend Simulation

The best parametric technique is linear exponential

smoothing., It provides better forecast statistics in

almost every case even if restricted to a smoothing
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constant of .3. Double moving averages performs worse
relative to linéar exponential smoothing than the analogous
techniques in the stationary case.

The best nonparametric technique again depends upon
the combination of series type and error measure., With
normally distributed errors, all average error measures
favor the double smoothed median technique, except for MAPE
when ¢ = ,7. For this one combination, robust regression
provides the best result. When errors are from a Cauchy
distribution, optimal results are dependent on ¢ value.

When @ = .3 and errors are Cauchy, the double smoothed
median is the clear choice, while double running median
comes in second and robust regression last. When ¢ = .5
robust regression outperforms double running medians,
although double smoothed medians generally still provides
the best results. When ® = .7 robust regression becomes
the dominant nonparametric technique.

If the exponential smoothing constant is restricted to
.3 for Brown's linear exponential smoothing, it is
interesting to note that robust regression is quite
competitive with the best parametric technique for ¢ = .7
and Cauchy errors. With average measures (Tables 39 - 42),
they tie based upon the MAD, while exponential smoothing is
preferable based on MSE, and robust regression wins on
MAPE and Theil's U. With median measures (Table 43 - 46),

exponential smoothing is better for the raw measures of MSE
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and MAD, while robust regression is better for the relative

measures of MAPE and Theil's U.

6.1.3 Simulation Conclusions

Results indicate that nonparametric forecasting
techniques show promise for series with nonnormal errors
and lower levels of autocorrelation. Series with normally
distributed errors, or with high levels of autocorrelation
seem to be better forecasted using the parametric methods.

As an example of the value of nonparametric techniques
when the autocorrelation is low, consider the trend series,
with ¢ = .3. 1If double smoothed medians (the best
nonparametric technique based upon mean MAD from Table 39)
is used instead of double exponential smoothing (the best
parametric technique) on a series with normally distributed
errors, then the resulting average MAD is about 5% higher
than necessary (see Table 12). If on the other hand, the
series has errors from a Cauchy distribution, then the
smoothed median average MAD is some 22% better than that
achieved by exponential smoothing (see Table 13). The 5%
applies to the rather small MAD of 2.94 when the errors are
normal, while the larger percentage applies to a MAD of
14.77 when the errors are Cauchy.

The simulation study has allowed an evaluation of the
proposed nonparametric techniques on generated time series

under a few limited conditions. This provides greater
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insight for when the use of nonparametric extrapolative
techniques might be worthwhile. The empirical study which

is discussed next further examines their usefulness.

6.2 Empirical Study

The time series used are the 111 series subset of the
M-competition data used by Makridakis, et. al. (1982).
When received from Dr. Makridakis, these were loaded
directly onto a VAX 11/785 super minicomputer, and
transformed into a SAS data set. (The empirical study used
VMS SAS Releases 5.63 and 5.16). Each of the series
consists of a number (NFIT) of values used for fitting, a
number (NOF) of additional hold-out values used to evaluate
the techniques' forecasting performance, seasonal factors,
and some descriptive codes. NOF ranges from 6 to 18
depending upon the type of series., One important
descriptive code is the series identification number. The
series are numbered from 1 to 1481, The series
identification number (SID) uniquely identifies each
series. The 111 series subset starts with the series with
SID = 4, and every seventh series thereafter. These 111
series were used in the M-competition to evaluate the
performance of the more complex, time intensive techniques.
Before testing the techniques used in this study on these
series, two adjustments were made. First, the series are

deseasonalized using the seasonal factors included with the
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data, then the series are separated into two groups through
use of a Rank-Spearman test.

The data are deseasonalized since none of the
techniques being tested are designed to cope with the
additional complexities of seasonality. Makridakis and
Hibon (1979) and Makridakis, et. al. (1982) found that
deseasonalizing time series allowed simpler techniques to
be very competitive with those more complicated approaches
designed to handle seasonality. Use of the deseasonalized
series for fitting and forecasting is deemed an adequate
and appropriate test of the techniques.

The M-competition applied techniques indiscriminately
to all series despite the fact that some of the techniques,
such as moving average, and exponential smoothing, will be
biased in cases of linear or monotonic trend series. For
example, they will, on average, forecast low if there is an
increasing trend. Use of a stationary technique for a
monotonic trend series is clearly inappropriate, while use
of a linear trend technique on a stationary series violates
the principle of parsimony and very likely would drive
larger forecast errors, particularly for longer horizons.
Some division of the series into those more appropriate for
particular classes of techniques is therefore necessary.
This division is made based upon a Rank-Spearman test for
monotonic trend on the first NFIT points. Basically, this

test indicates that if the absolute value of the
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correlation between the ranks of the values and their
associated time period is sufficiently large, then we
likely have monotonic trend which presumably continues into
the NOF values. If this correlation is low, then we
conclude that we do not have monotonic trend. This group
of series without monotonic trend would consist of
stationary series, series with a nonlinear trend that
display a changing pattern (increasing to decreasing, or
decreasing to increasing) near the middle of the series,
and perhaps series where the variation in the data
overpowers the trend. This division of the series into two
groups provides more logical series for testing of the
stationary and linear trend techniques used in this study.
At a 90% confidence level, ninety-two of the series test to

have monotonic trend, while nineteen do not.

6.2.1 Stationary Techniques

The stationary techniques of moving average,
exponential smoothing, running median, smoothed median, and
Walsh average are tested on the subset of nineteen series.
All techniques were programmed in the SAS data step.
Starting values for moving average, running median, aﬁd
Walsh average are clear from Section 5.1. Exponential
smoothing, however, requires a starting exponential average
which can affect the fitting measures. Since observations

are limited in an empirical study, the first twenty
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observations cannot be discarded to eliminate
initialization effects. A good initialization procedure
must be used. The procedure chosen was suggested by
Montgomery and Johnson (1976) where the mean of the first
six values is used to initialize exponential smoothing.

The smoothed median technique is initialized by using the
first running median of the appropriate length as the
initial value. Where possible, the program results were
checked versus results of other software. The moving
average program gave identical results, while the
exponential smoothing results only differed due to
variations in starting procedures. Fitting was done using
a grid search technique over NFIT observations. Grid width
was set at .85 for all smoothing parameters, medians up to
length six, and moving averages up to length 18 were
considered. (For one series where NFIT is equal to twelve,
the moving average length is restricted to six periods to
assure an adequate number of points for fitting evaluation.
More extensive discussion is deferred until Section 6.2.2
where the problem is much more prevalent.) Four different
error measures are used with the five different techniques,
resulting in a possibility of twenty different forecasting
models for each series. Forecasts are made from time
period NFIT for times NFIT+l1 through NFIT+6. Thus,
horizons ranged from one to six periods. Results are

presented by error measure.
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6.2.1.1 Results Using MAD

The results using MAD are displayed in Table 15. They
indicate that the smoothed median technique not only has a
lower fitted MAD, but also is most accurate on average over
the nineteen series for horizons of one, four, and five
periods. The lowest average MAD over all six horizons is
achieved by the moving average technique, followed closely
by Walsh average, and smoothed median. Since the MAD is a
raw error measure, a quick look at the magnitudes of the
fitted MAD values is worthwhile. The largest fitted MAD

for a series was over 8080, while the smallest was less

Table 15

Empirical Results
using Mean Absolute Deviation:
Stationary Techniques'
Average MAD Values over 19 Series

Forecast Horizon Avg

Technique Fitting 1 2 3 4 5 6 1-6
Moving

Average 693 1938 1375 672 1378 525 664 939
Exponential

Smoothing 714 1094 1468 597 1433 602 574 961
Running

Median 696 984 1199 834 1325 514 85¢ 949
Smoothed

Median 690 952 1236 868 1292 504 823 944
Walsh

Average 695 1042 1411 631 1382 567 629 943

Tabled values are the average MAD for the indicated
technique over the 19 series that did not test to have
monotonic trend.
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than one. The performance of a technique on the series
with the largest values thus carries much larger weight

than the technique's performance on series with smaller

values.

6.2.1.2 Results Using MSE

The results when using MSE are similar to those for
the MAD. The results in Table 16 indicate that smoothed
median again was most accurate over the fitted data and for
horizons 1, 2, and 4. In this case the running median
technique had the best average MSE over the six horizons,

followed closely by the smoothed median technique. Here,

Table 16

Empirical Results
using Mean Squared Error:
Stationary Technigues'
Average MSE Values (Millions) over 19 Series

Forecast Horizon Avg

Technique Fitting 1 2 3 4 5 6 1-6
Moving

Average 6.24 8.62 14.37 2.61 19.52 1.280 2.12 7.97
Exponential

Smoothing 6.36 9.67 16.84 1.85 22.06 1.72 1.47 8.94
Running

Median 6.5 6.53 9.36 2.990 14.14 1.02 4.58 6.42
Smoothed

Median 5.98 6.49 9.21 2.68 14.14 1.24 4.80 6.43
Walsh

Average 6.15 7.75 14.25 2.49 18.56 1.02 2.89 7.69

Tabled values are the average MSE for the indicated
technique over the 19 series that did not test to have
monotonic trend.
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magnitudes ranged from around 108 million for one series to
almost zero for another, so the techniques that fit the

larger series well are especially favored.

6.2.1.3 Results Using MAPE

The MAPE results displayed in Table 17 indicate
relative small differences in the mean absolute percentage
error between these techniques. The parametric techniques

were slightly better for fitting. The best technique over

Table 17

Empirical Results
using Mean Absolute Percentage Error:
Stationary Techniques
Average MAPE Values over 19 Series

Forecast Horizon Avg

Technique Fitting 1 2 3 4 5 6 1-6
Moving

Average 11.1 9.4 16.6 19.8 26.9 15.5 20.6 17.1
Exponential

Smoothing 11.1 9.9 16.3 19.4 19.9 14.6 20.3 16.7
Running

Median 11.4 8.6 15.8 19.9 21.4 15.7 21.3 17.0
Smoothed

Median 11.6 9.8 15.6 20.2 20.8 15.4 20.4 16.9
Walsh

Average 11.5 9.6 16.6 19.p 21.8 15.7 20.8 16.9

Tabled values are the average MAPE for the indicated
technique over the 19 series that d4id not test to have
monotonic trend.

all six horizons was exponential smoothing, with a 1.2%

advantage over both smoothed median and Walsh average.
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6.2.1.4 Results Using Theil's U
Results fof use of the Theil's U measure are more

difficult to portray. The extreme skewness of the measure
causes the average Theil's U per horizon to be large. Due
to this problem, Makridakis and Hibon (1979) limited their
Theil's U values to a maximum of two. 1In this study, an
alternative approach was used. That is, median values were
calculated and used in Table 18 for each horizon. Even so,
this is not highly informative since the medians in almost

every case are one. A simple interpretation of these

Table 18

Empirical Results
using Theil's U:
Stationary Techniques
Theil's U Values over 19 Series

Forecast Horizon

Technigque Fitting 1 2 3 4 5 6 1-6
Moving _

Average .807 1.00 1.0 1.00 1.00 1.00 1.00 1.017
Exponential

Smoothing .812 1.060 1.00 1.00 1.00 1.00 1.00 1.022
Running

Median .818 1.0 1.00 1.00 1.00 1.00 1.00 1.049
Smoothed

Median .866 1.50 1.01 .95 1.68 1.10 1.11 1.046
Walsh

Average .816 1.00 1.00 1.00 1.00 1.006 1.00 1.035

The fitting column is the average fitted Theil's U value
over the 19 series that did not test to have monotonic
trend. The numbers for horizons 1 through 6 are medians.
The 1-6 column in this table is not the average of the
median Theil's U values for horizons one through six.
Rather, the numerator and denominator terms for the Theil's
U measure were summed over these six horizons, then the
Theil's U computation was performed.
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results is that none of the techniques improved upon use of
a simple naive estimate that future values would be the
same as the values at time period NFIT. Perhaps the last
column is the most informative in this table. Summing the
numerator and denominator components of the Theil's U
measure over several observations seems to reduce it's
variability enough to provide useful information. 1In this
case, summing the components over the six forecasts for the
six different horizons results in the reported values.
Since only a rare forecaster would be content to use a
naive forecast, this column indicates that the parametric

techniques would have been close to the naive results.

6.2.1.5 Stationary Techniques Conclusion

The proportion of the series that failed to display
monotonic trend indicates that opportunities to use these
stationary techniques are somewhat limited. The
nonparametric techniques of running median and smoothed
median are very competitive on these series when raw error
measures were used. When relative error measures were
used, the parametric techniques appear marginally superior.
The next section deals with the application of linear trend
techniques on the considerably larger set of monotonic

trend series.
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6.2.2 Linear Trend Techniques

The linear trend techniques of double moving average,
linear exponential smoothing, double running median, double
smoothed median, and robust regression are tested on the
subset of 92 series that did test to have monotonic trend.
All techniques are programmed in the SAS data step. Sample
programs appear in Appendix D. Essential elements in these
programs include the initialization of the smoothing
techniques and control of averaging lengths.

When dealing with long series, the initialization of
exponential smoothing may not be critical. 1If the
smoothing constant is subjectively selected by the analyst,
then the initialization procedure has little effect.
Forecasts are only slightly affected because the
exponential smoothing process rapidly reduces the effect of
the initialization. If the smoothing constant is best fit,
then the initialization can have a significant effect,
especially on shorter series. The selection of a smoothing
constant could be driven by rather large fitting errors on
the first few data points, errors that were in fact more a
function of the poor initialization procedure than the
smoothing constant. The series in this sample ranged in
length from 9 to 126 fitted values, with 14 series ranging
in length from 18 to 20 fitted values. The selection of a

good initialization procedure is therefore necessary.
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The procedure selected was recommended by Montgomery
and Johnson (1976). This procedure uses a regression line
through the first six data points to initialize the single
exponential average and double exponential average. The
procedure applies directly for linear exponential
smobthing, while a slight modification is necessary for
initialization of the double smoothed median technique. An
alternative initialization procedure, not selected, uses
regression on all NFIT points to start the exponential
averaging process. A comparison of the fitting errors
using each procedure indicated the clear superiority of the
chosen procedure. Although the details are not included in
this report, the use of regression results on all fitting
data for initialization did not work well. It resulted in
large fitting errors for the first few observations when
the series displayed a nonlinear monotonic trend.

The double moving average and double running median
programs require control statements to keep the length of
the average or median within reason given a particular
series size. This problem was briefly discussed in Section
6.2.1, although only one series was affected. 1In this
case, a much larger number of series is affected. For
example, a ten period double moving average does not
generate an error term until time period 20. Recalling the
lengths of the series in the sample, the longer length

averages or medians are not always possible. A further
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constraint is that when a best coefficient is being
selected using a grid search, it is better to compare the
average of several error terms. A series of length (NFIT)
22 would result in only three errors contributing to the
fitting error measure for the ten period double moving
average, while the three period double moving average would
be evaluated on sixteen errors. To avoid this disparity
and the concurrent increased risk of a poor choice of
length, control statements were inserted into the program
to keep the considered lengths short enough to assure that
approximately NFIT/2 errors were available for the longest
considered length.

Forecasts are again best fit using the grid search
technique. Forecasts are made from time period NFIT for
horizons of length 1 through 6. Results are considered by
the type of error measure used for fitting and evaluation,
first for the raw error measures of MAD and MSE, then for

the relative error measures of MAPE and Theil's U.
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6.2.2.1 Results Using MAD

The results when using the Mean Absolute Deviation are
displayed in Table 19. They indicate that the exponential
smoothing approaches of linear exponential smoothing and
double smoothed median fit better. 1In contrast, the best
forecasts for most horizons and overall were from double
moving averages. Parametric techniques thus yielded lower

MAD values for fitting and forecasting.

Table 19

Empirical Results
using Mean Absolute Deviation:
Linear Trend Techniques
Average MAD Values over 92 Series

Forecast Horizon Avg
Technique Fitting 1 2 3 4 5 6 1-6

Double Moving
Average 1079 947 1130 2296 30884 3517 3704 2446

Double Exponential
Smoothing 847 1313 1699 2886 3645 4141 3547 2872

Double Running

Median 1168 1641 2278 3728 4643 5346 4848 3745
Double Smoothed

Median 846 1351 1869 3197 4173 4674 4288 3874
Robust

Regression 1123 1864 2314 3497 4579 4957 4419 3605

Tabled values are the average MAD for the indicated
technique over the 92 monotonic trend series.
6.2.2.2 Results Using MSE

The results using MSE are shown in Table 20. 1In this

case the trend technique of linear exponential smoothing
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yielded both the best fit and the best forecast over all
horizons. Whilé double smoothed medians matched the
fitting ability, its forecasts were not as accurate using
this error criteria. It is well to keep in mind the
cautions from various researchers that average raw error
measures over series that vary widely in magnitude are of

gquestionable value.

Table 28

Empirical Results
using Mean Squared Error:
Linear Trend Techniques
Average MSE Values (Millions) over 92 Series

Forecast Horizon Avg
Technique Fitting 1 2 3 4 5 6 1-6

Double Moving

Average 24.7 33.5 41.0 187.2 327.2 396.0 147.1 188.7
Double Exponential

Smoothing 18.1 27.6 34.9 161.4 284.7 341.9 165.0 169.8
Double Running

Median 31.7 52.1 75.6 260.5 431.2 533.0 328.5 2808.2
Double Smoothed

Median 18.1 27.9 45.7 211.8 391.4 504.8 293.5 245.9
Robust

Regression31.7 112.4 144.2 393.2 625.8 760.6 442.9 413.2

Tabled values are average MSE for the indicated technique
over the 92 monotonic trend series.
6.2.2.3 Results Using MAPE

The results when using the mean absolute percentage
error are in Table 21. The fitting and forecasting
advantage went to the double smoothed median technique.

For fitting, the double exponential smoothing technique was
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Table 21

Empirical Results
using Mean Absolute Percentage Error:
Linear Trend Techniques
Average MAPE Values over 92 Series

Forecast Horizon Avg
Technique Fitting 1 2 3 4 5 6 1-6

Double Moving
Average 7.7 8.4 9.5 11.8 13.5 18.5 19.3 13.5

Double Exponential
Smoothing 7.3 8.5 9.7 12.¢0 13.6 17.7 18.4 13.3

Double Running

Median 8.6 9.4 12.3 15.2 17.3 22.6 23.5 16.7
Double Smoothed

Median 7.2 8.3 9.2 11.3 12.5 16.1 16.8 12.4
Robust

Regression 8.7 8.6 9.7 11.2 12.7 15.9 16.2 12.4

Tabled values are average MAPE for the indicated technique
over the 92 monotonic trend series,

a close second, while robust regression fit poorest. For
forecasting, robust regression essentially tied for best
performance on average over the six horizons considered.
robust regression was competitive over all horizons, and
seemed to be superior for the longer horizons. It is
interesting to note that double smoothed median was
superior to linear exponential smoothing for fitting and
for every horizon considered, and that the difference
between them seems to be increasing with longer horizons.
Although the double moving average did not fit as well as
linear exponential smoothing, its forecasts were superior
to those from linear exponential smoothing for horizons 1

through 4.
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6.2.2.4 Results Using Theil's U

The results from use of Theil's U are presented in
Table 22. The technigues that included exponential
smoothing procedures achieved the best fit, with double
smoothed medians fitting somewhat better than linear
exponential smoothing. Techniques that forecast best over
the separate horizons were double moving averages (lowest
median three times), double smoothed median (lowest median

twice), and double running median (lowest median once).

Table 22

Empirical Results
using Theil's U:
Linear Trend Techniques
Theil's U Values over 91 Series

Forecast Horizon
Technique Fitting 1 2 3 4 5 6 1-6

Double Moving
Average .892 .884 .881 .849 .809 .957 .811 .997

Double Exponential
Smoothing .825 .900 .906 .897 .814 .902 .845 .992

Double Running

Median .949 1.048 .839 .939 .857 1.812 .945 1.827
Double Smoothed

Median .817 .892 .,947 .888 .791 .862 .985 .979
Robust

Regression .972 1.091 .987 .887 .933 .898 .948 .974

The fitting column represents the average Theil's U value
for each technique. The columns for the different horizons
contain median values for 91 series. The final column is
developed by summing the numerator and denominator of the
Theil's U equation, then calculating one Theil's U value as
a measure of each technique's forecasting ability over the
set of forecasts.
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Considering the techniques' average ability over all
horizons, the nonparametric techniques of double smoothed

median and robust regression were superior.

6.2.2.5 VLinear Trend Techniques Conclusion

Comparison of the forecasting performance of these
five techniques over the subset of ninety-two series leads
to the conclusion that nonparametric techniques indeed hold
promise. The nonparametric techniques of robust regression
and double smoothed median provided superior forecasts on
average over the six horizons for the more meaningful
relative measures of MAPE and Theil's U.

While the parametric techniques performed better when
raw errors are considered, these results should be
discounted due to the great difference in the levels of the
series considered. MAD and MSE performance of a technique
is greatly influenced by its performance on the series with
a high level and a large variability. For example, series
4 (SID = 4) has a last fitted value of 350,008 and an MSE
fitting value (using linear exponential smoothing) of 1.17
billion. This series has over four times the influence of
the second ranked series (SID = 391) with a last fitted
value of about 113 thousand, yet an MSE fitting value of
241 million. The third most influential series (SID = 49)
has respective values of 80,389 and 144 million. On the

other hand, the MAPE values for these three series are 21%,
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7% and 18%. Comparison of results using relative terms is
much more equitable and less prone to dominance by

particular series.

6.2.3 Empirical Study Summary

The empirical study was performed to see how these
techniques would compare on real series. As displayed in
Tables 15 - 22, parametric techniques forecast best on
average five times out of eight. They had lower errors for
MAD, MAPE and Theil's U on the smaller set of no monotonic
trend series. They also had lower MAD and MSE values for
the monotonic trend series.

The best parametric technique appears to be
exponential smoothing. Exponential smoothing is superior
in terms of MAPE for both subsets, and for MSE and Theil's
U on the larger subset. The moving average technique is
superior based on MAD, MSE and Theil's U on the smaller
subset of series, and for the MAD on the larger subset.
Discounting the raw error measures of MAD and MSE leaves
exponential smoothing with stronger credentials.

The best nonparametric techniques appear to be Walsh
averages for no monotonic trend series, and robust
regression when monotonic trend series are used. However,
if MSE is chosen as the error measure, then smoothed or

running median techniques perform better.
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6.3 Summary of Performance

The tests of the performance of nonparametric
extrapolative techniques indicate that these techniques
would not perform well on series where there was a high
level of autocorrelation, or where the true error term
distribution was normal. They do, however, perform well on
empirical series with monotonic trend. Smoothed medians
was the leading contender through the simulation study.
The empirical study found that robust regression would be
the best nonparametric technique for horizons 1-6 on
average. The double smoothed median technique performed
better for horizons 1 and 2, while robust regression gained

the overall advantage on the longer horizons tested.



CHAPTER VII
SUMMARY AND CONCLUSIONS

7.1 Summary

The objective of this research was to explore the
extension of nonparametrics into the time series arena, and
to evaluate the relative performance of nonparametric and
parametric extrapolative techniques. Four parametric
techniques were selected for inclusion based upon their
solid performance in prior studies and their tractability;
two techniques were designed for stationary series, and two
were designed for linear trend series. Since no references
to nonparametric extrapolative techniques were found, six
techniques were developed or modified for time series
application. Three technigues were for stationary series
and three were for linear trend series. Since results can
be affected by the error measure used, a study was
performed to select the appropriate error measure or
measures. Four error measures were selected based upon
usage by researchers, the structure of the error measure,
and the joint behavior of the error measures. A simulation
study disclosed that when the series error terms were in
fact normally distributed, the parametric techniques
outperformed the nonparametric techniques. The study also

illustrated that when the errors were Cauchy, the
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nonparametric techniques outperformed the parametric
techniques so long as there was not a high level of first
order autocorrelation. The simulation study did not
attempt to test for performance when outliers were present
or when there were shifts in level.

The empirical study used the 111l series subset of the
M-competition data. All series were deseasonalized.
Series were divided into two subgroups based on a Rank-
Spearman test for monotonic trend. Stationary techniques
were used on the subset that did not test to have monotonic
trend, while linear trend techniques were used on those
that did test to have monotonic trend. On the stationary
subset, the nonparametric techniques were superior using
the raw error measures, while the parametric techniques
were superior using the relative error measures. On the
larger monotonic trend subset, the nonparametric techniques
were superior using the relative error measures, while the
parametric techniques were superior using the raw error

measures.

7.2 Conclusions and Recommendations for Further Study
While the raw error measures of MAD and MSE are
commonly used in forecasting, their value lies in
comparison of forecasting techniques on the same series.
When different series have different levels, different

inherent coefficients of wvariation, and different units of
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measure, the use of average MAD or average MSE cannot be
justified. Their use in simulation studies where levels
and variation are controlled is appropriate. Thelr average
results in comparisons over empirical series must be
discounted. This is probably the reason why Makridakis,
et. al. (1982) leaned so strongly toward MAPE, although
they did report MSE results as well.

Considering the average relative error results from
the empirical study, the nonparametric techniques were
superior for the larger subset of monotonic trend series.
The difference was about a 7% improvement based upon MAPE
and over a 2% improvement based upon Theil's U values. The
nonparametric techniéues did not fare so well on the series
without monotonic trend. The relative differences were
about a negative 1% for MAPE and almost a negative 2% for
Theil's U.

To help reconcile these results, it is interesting to
compare exponential smoothing results between the M-
competition and this study. Although both used the same
series, the only comparison must be made based upon the
exponential smoothing results when measured using MAPE.

The double exponential smoothing MAPE from the M-
competition for the 111 series was 13.9%. Double
exponential smoothing in this study yielded 13.3% on the 92
monotonic trend series, while single exponential smoothing

yielded 16.7% on the 19 series that did not test to have
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monotonic trend. These results are consistent. Weighting
this study's results by the number of series in each subset
results in the same overall average.

The principal conclusion from this research is that
nonparametric techniques hold promise in extrapolative
forecasting. The simulation study indicated their
superiority only with nonnormal errors and low levels of
autocorrelation. The empirical study identified robust
regression as a technique superior (on average, for
horizons 1 - 6) to exponential smoothing for monotonic
trend series. This level of performance places it among
the best extrapolative technigues available., Additional
advantages of the robust regression technique are that it
can be completely automated and that it is insensitive to
outliers. While it will require more computation time than
exponential smoothing or moving averages, it probably would
not require as much time as methods such as Bayesian
forecasting or Box-Jenkins.

Further study is needed in several areas. First
robust regression and double smoothed medians should be
tested on both the entire 111 series subset, and on all
1881 series used in the M-competition. While these
techniques would strictly not satisfy the principle of
parsimony when applied to series without trend, their MAPE
results could then be compared directly to MAPEs of other

techniques used in the M-competition. Only further testing
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can validate the situations when robust regression, or
other nonparametric techniques such as double smoothed
medians, can help provide better forecasts and better
information to the decision maker. The proposed procedures
for this study parallel the procedures used in the
monotonic trend portion of the empirical study. Use of all
111 series would require a modest increase in computer
memory and processing time. Use of all 1601 series would
require a larger increase in memory, and a much larger
increase in processing time.

Second, if such testing yields results consistent with
this study, the robust regression technique should be
written in an alternate language (such as FORTRAN or Basic)
so that it can be provided for those interested in further
study and testing. While SAS is very common on mainframes,
a FORTRAN or Basic program would be more useful to those
who work with smaller computers. A skilled programmer
could doubtlessly improve the efficiency of the SAS
programs used in this research, and the programs rewritten
into any alternate languages.

Third, forecasting competitions should divide the
series under consideration into categories that more nearly
match the design capabilities of the techniques. 1It is
doubtful that any forecaster would apply a technique
designed for cases without trend to series with known

monotonic trend, this would assure bias in the forecasts.
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It is not difficult to perform a Rank Spearman (or
comparable) test to segregate the deseasonalized series for
more appropriate forecasting. The portion of the M-
competition that dealt with simple extrapolative techniques
on deseasonalized series should be redone with this
segregation as an early step.

Fourth, further work is needed on error measures for
comparison of technique results over nonhomogeneous series,
i.e. series with different variables, scales, levels, and
dispersion. All error measures identified have flaws under
certain conditions. Raw errors have serious logical
problems. MAPE is insensitive to scale yet sensitive to
level (and is particularly sensitive when series values are
near zero). Theil's U is reasonable over a series of
forecasts, but may not even exist for a single forecast and
is extremely skewed. Development of a relative error
measure that avoided the sensitivity to small series values
of MAPE, and the skewness inherent in Theil's U type
measures could be of great help in evaluating techniques
over dissimilar series.

Fifth, the question of whether error measures display
the same relationships across forecasting models needs to
be answered. This study used an exponential smoothing
model to generate forecast errors when the relationships
between different error measures was considered. The

assumption was made that, for example, the relationship
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between MAD and MAPE depended more upon the structure of
the error measufes themselves than upon the forecasting
model or technique used. The use of different forecasting
models on different types of simulated series could be used
to answer this research guestion.

Sixth, the procedure of selecting parameters based
upon one period ahead forecasts should be further
considered. If researchers and practitioners report better
success using different techniques for different horizons,
the use of the same model for all horizons seems very ill
advised.

Seventh, the anomaly discovered when the MAPE is used
to evaluate forecasts of a series with Cauchy errors needs
to be researched. This could be a weakness of the MAPE, or
a result of the combination.

Eighth, the relationship between autocorrelation
levels and exponential average smoothing constant could be
established. In particular, where within the first order
autocorrelation range of .3 to .5 does the exponential
smoothing coefficient break the .3 level identified by
Brown (1963).

Ninth, the autocorrelation levels within
deseasonalized business type series should be determined.
The simulation study indicated that the nonparametric
techniques would not do well when there was a high level of

autocorrelation. Their good performance on empirical
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series tends to imply that at least the first order
autocorrelation is not high, but only further research can
provide a definitive answer.

Tenth, research should be performed to see how the
choice of an error measure affects the resulting model.
Several examples were given where smoothing constants
(therefore forecasting models) were different when best fit
using different error measures. If all error measures
result in the choice of the same forecasting model, then
the choice of an error measure carries much less
significance. 1If different error measures result in the
choice of different forecasting models, then the choice is
very critical. A preliminary study (not reported in this
study) indicates the effect lies somewhere between these
extremes, with different error measures frequently, but not

always, providing similar models.



APPENDIX A

SAMPLE ERROR MEASURE EVALUATION PROGRAMS

These programs were written and run using the VMS Version of
SAS, Release 5.083 and Release 5.16. Reference SAS Institute
Inc. (1982 and 1985).
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SAMPLE PROGRAM FOR THE EVALUATION OF ERROR MEASURES. THIS
EXAMPLE GENERATES THE SERIES WITH NORMAL ERRORS, THE LARGEST
VARIATION, AND NO OUTLIERS. AN EXPONENTIAL SMOOTHING MODEL
IS USED TO GENERATE ERRORS, WHICH ARE THEN SUMMARIZED BY USE
OF MAD, MSE, MAPE AND THEIL'S U.

1 DATA VALUES; This data step generates
2 OPTIONS NOCENTER; the series and the
3 DO I =1 TO 20; exponential average.
4 DO J =1 TO 528;
5 IF RANUNI(86) LT 1.1 THEN K = 2.2;
6 ELSE K = 18;
7 V = 18. + K*RANNOR(46);
8 IF J = 1 THEN EA = V;
9 ELSE EA = .2*V + _8*EA;
10 OUTPUT VALUES;
11 END;
12 END;
13
14 DATA NORMAL; This data step calculates
15 SET VALUES; the error measures.
16 DEV = V-LAG(EA);
17 LAGV = LAG(V);
18 IF N =1 THEN REP = 1; There are 20
19 RETAIN REP; replications.
20 N+1l; M+1;
21 IF M LT 2 THEN GO TO NEXTOBS;
22 MADI = ABS (DEV); The instant MAD.
23 MADS + MADI; The sum of the absolute
24 MSEI = (DEV)**2. deviations.
25 MSES + MSEI:
26 MAPEI = (MADI/ABS(V))*100;
27 MAPES + MAPEI;
28 THDI = ((V-LAGV)/LAGV)**2; Theil's U has a
29 THDS + THDI; denominator and a
30 THNI = (DEV/LAGV)**2; numerator, which must
31 THNS + THNI:; be summed seperately.
32 IF N = 20 THEN DO;
33 MAD = MADS/N; Calculate error measures
34 MSE = MSES/N; for twenty observations
35 MAPE = MAPES/N; and then reset
36 TH = (THNS/THDS)**.,5; for the next 24.
37 KEEP REP K MAD MSE MAPE TH:
38 N=0; MADS=0; MSES=0; MAPES=0; THDS=@; THNS=0;
39 IF M = 20 THEN RETURN; Note that REP
40 ELSE QUTPUT; (replication) is output.
41 END; Each of the twenty
42 IF M = 52¢ THEN DO; replications uses
43 REP + 1; 528 observations, the
44 M= 6; first 20 observations are for
45 END; initialization.
46 IF N GT 22 THEN ABORT RETURN;
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48
49
50
31
52
53
54

55
56
57

58
59
60
61
62
63
64
65
66

68
69
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IF M GT 522 THEN ABORT RETURN;

NEXTOBS : ;
DATA NULL ; This data step calculates
SET WORK.NORMAL; Spearman's correlations.

FILE CKDIS22;

PUT REP K MAD MSE MAPE TH;

PROC CORR DATA=NORMAL SPEARMAN NOSIMPLE NOPROB
NOPRINT OUTS=CORRS;

VAR MAD MSE MAPE TH;

BY REP; Note, results by replication.
TITLE 'CORRELATION RESULTS, DISPERSION = 2.2 *
NOMINAL';

DATA NEXT; This data step sorts and
SET CORRS; prints the results.
PROC SORT;

BY NAME ;

PROC PRINT;

DATA _NULL_; This data step calculates
SET WORK.NEXT; the values for the box
PROC UNIVARIATE; plots.

VAR MAD MSE MAPE TH;
BY NAME ;
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SAMPLE PROGRAMS FOR PLOTTING. THESE TYPE PROGRAMS WERE USED
TO GET SIMPLE SCATTERPLOTS DISPLAYING THE JOINT BEHAVIOR OF
SELECTED ERROR MEASURES.

1 DATA PLOTT; Simple scatterplot, dot

2 INFILE CKDIS22; matrix results.

3 INPUT REP K MAD MSE MAPE TH;

4 TITLE 'PLOT OF ERROR MEASURES, DISPERSION = 2.2
* NOMINAL';

5 PROC PLOT;

6 PLOT MAD*MSE/HAXIS=0 TO 40 BY 4 VAXIS=8 TO 3.25

BY .25;

THIS CODE RESULTS IN A PLOT COMBINING THE NOMINAL DISPERSION
(SIGMA = 1) AND LARGEST DISPERSION (SIGMA = 2.2) RESULTS.

1 DATA ONE; Scatterplot combining
2 INFILE CKDIS18; the results of two
3 INPUT REP K MAD MSE MAPE THEILS; different
4 INFILE CKDIS22; dispersions.
5 INPUT REP2 K2 MAD2 MSE2 MAPE2 THEILS2;

6 PROC PLOT;

7 PLOT MAD*MSE='0' MAD2*MSE2='+' / OVERLAY;

THIS THIRD EXAMPLE RESULTS IN A SASGRAPH GRAPHICS STRING
FILE THAT WAS THEN RUN THROUGH A LASER PRINTER FOR
PUBLICATION QUALITY PLOTS. PLOT SIZE AND SYMBOL SIZE ARE
REDUCED FOR REPRODUCTION AND LEGIBILITY. AXES ARE DEFINED
AND LEGENDS FOR THE PLOT SYMBOLS ARE INCLUDED WITH THE PLOT.
THIS PROGRAM PRODUCES THE PLOTS TO ILLUSTRATE THE EFFECT OF
OUTLIERS.

1 LIBNAME ERREVAL '[RKANKEY.ERREVAL]':;
2 GOPTIONS DEVICE=TEK401l0d
3 HSIZE=5.5 VSIZE=6.5 Reducing the plot
4 DISPLAY dimensions.
5 GSFMODE=REPLACE
6 GSFNAME=GPOUTA;
7 FILENAME VECTOR ' [RKANKEY.ERREVAL]PLOTOUT';
8 DATA A;
9 SET ERREVAL.PLOTOUT;
18 SYMBOL1l V=PLUS H=.2; Defining the plot
11 SYMBOL2 V=TRIANGLE H=.5; symbols.
12 SYMBOL3 V=NONE;
13 SYMBOL4 V=NONE;
14 PROC GPLOT;
15 AXIS1 LABEL=(F=SIMPLEX H=1.5 'MAD')
16 ORDER=(® TO 4 BY 1)
17 VALUE= (F=SIMPLEX)
18 OFFSET=(1,1);
19 AXIS2 LABEL=(F=SIMPLEX H=1.5 ‘'MSE')

20 ORDER=(# TO 56 BY 19)
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53

RUN;
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VALUE= (F=SIMPLEX)
OFFSET=(1,1);

AXIS3 LABEL=(F=SIMPLEX H=1.5 'MAPE')
ORDER=(# TO 400 BY 100)
VALUE=(F=SIMPLEX)

OFFSET=(1,1);
AXIS4 LABEL=(F=SIMPLEX H=1.5 ‘'U')
ORDER=(# TO 1.2 BY .2)
VALUE=(F=SIMPLEX)
OFFSET=(1,1);
LEGEND]1 LABEL=(F=TITALIC 'PROB. OF
OUTLIER:: ')
VALUE=(F=SIMPLEX '=8' '=.062"')
ACROSS=2
FRAME ;
PLOT MAD*MSE=SIGMA / VAXIS=AXIS1 HAXIS=AXIS2
LEGEND=LEGEND1 FRAME;
PLOT2 MAD*MSE=3 / VAXIS=AXIS1 HAXIS=AXIS2
NOLEGEND;
PLOT MAD*MAPE=SIGMA / VAXIS=AXIS1l
HAXIS=AXIS3 LEGEND=LEGENDI1
FRAME;
PLOT2 MAD*MAPE=3 / VAXIS=AXIS1 HAXIS=AXIS3
NOLEGEND;
PLOT MAD*THEIL=SIGMA / VAXIS=AXIS1
HAXIS=AXIS4 LEGEND=LEGENDI1
FRAME;
PLOT2 MAD*THEIL=3 / VAXIS=AXIS1 HAXIS=AXIS4
NOLEGEND;
PLOT MSE*MAPE=SIGMA / VAXIS=AXIS2
HAXIS=AXIS3 LEGEND=LEGEND1
FRAME;
PLOT2 MSE*MAPE=3 / VAXIS=AXIS2 HAXIS=AXIS3
NOLEGEND;
PLOT MSE*THEIL=SIGMA / VAXIS=AXIS2
HAXIS=AXIS4 LEGEND=LEGENDI1
FRAME;
PLOT2 MSE*THEIL=3 / VAXIS=AXIS2 HAXIS=AXIS4
NOLEGEND;
PLOT MAPE*THEIL=SIGMA / VAXIS=AXIS3
HAXIS=AXIS4 LEGEND=LEGEND1
FRAME;
PLOT2 MAPE*THEIL=SIGMA / VAXIS=AXIS3
HAXIS=AXIS4 NOLEGEND;
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THIS FOURTH EXAMPLE PROGRAM PRODUCES THE PLOTS TO ILLUSTRATE
THE EFFECT OF INCREASED DISPERSION.

WO WM

38

39
40

41

42
43

LIBNAME ERREVAL '[RKANKEY.ERREVAL]';
GOPTIONS DEVICE=TEK40180
HSIZE=5.5 VSIZE=6.5
DISPLAY
GSFMODE=REPLACE
GSFNAME=GPDIS3M;
FILENAME VECTOR ' [RKANKEY.ERREVAL]PLOTDIS';
DATA A;
SET ERREVAL.PLOTDIS;
SYMBOL1 V=PLUS H=,2;
SYMBOL2 V=TRIANGLE H=.5;
SYMBOL3 V=NONE;
SYMBOL4 V=NONE;
PROC GPLOT;
AXIS1 LABEL=(F=SIMPLEX H=1.5 'MAD')
ORDER=(@# TO 3 BY 1)
VALUE= (F=SIMPLEX)
OFFSET=(1,1);
AXIS2 LABEL=(F=SIMPLEX H=1.5 'MSE')
ORDER=(# TO 14 BY 2)
VALUE= (F=SIMPLEX)
OFFSET=(1,1);
AXIS3 LABEL=(F=SIMPLEX H=1.5 'MAPE')
ORDER=(@# TO 5@ BY 186)
VALUE= (F=SIMPLEX)
OFFSET=(1,1);
AXIS4 LABEL=(F=SIMPLEX H=1.5 'U')
ORDER=(# TO 1.2 BY .2)
VALUE= (F=SIMPLEX)
OFFSET=(1,1);
LEGEND1l LABEL=(F=TITALIC 'SIGMA: ')
VALUE=(F=SIMPLEX '=1' '=2,2"')
ACROSS=2
FRAME;
PLOT MAD*MSE=SIGMA / VAXIS=AXIS1l HAXIS=AXIS2
LEGEND=LEGEND1 FRAME;
PLOT2 MAD*MSE=3 / VAXIS=AXIS1l HAXIS=AXIS2
NOLEGEND;
PLOT MAD*MAPE=SIGMA / VAXIS=AXISl
HAXIS=AXIS3 LEGEND=LEGEND1
FRAME;
PLOT2 MAD*MAPE=3 / VAXIS=AXIS1l HAXIS=AXIS3
NOLEGEND;
PLOT MAD*THEIL=SIGMA / VAXIS=AXIS1
HAXIS=AXIS4 LEGEND=LEGENDI1
FRAME;
PLOT2 MAD*THEIL=3 / VAXIS=AXIS1l HAXIS=AXIS4
NOLEGEND;
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RUN;
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PLOT MSE*MAPE=SIGMA / VAXIS=AXIS2
HAXIS=AXIS3 LEGEND=LEGEND1
FRAME ;

PLOT2 MSE*MAPE=3 / VAXIS=AXIS2 HAXIS=AXIS3
NOLEGEND; '

PLOT MSE*THEIL=SIGMA / VAXIS=AXIS2
HAXIS=AXIS4 LEGEND=LEGENDI1
FRAME;

PLOT2 MSE*THEIL=3 / VAXIS=AXIS2 HAXIS=AXIS4
NOLEGEND;

PLOT MAPE*THEIL=SIGMA / VAXIS=AXIS3
HAXIS=AXIS4 LEGEND=LEGENDI1
FRAME;

PLOT2 MAPE*THEIL=SIGMA / VAXIS=AXIS3
HAXIS=AXIS4 NOLEGEND;



APPENDIX B

SAMPLE SIMULATION PROGRAMS

These programs were written and run using the VMS Version of
SAS, Release 5.03 and Release 5.16. Reference SAS Institute
Inc. (1982 and 1985).
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SAMPLE PROGRAM FOR SERIES GENERATION. THE SERIES GENERATED

BELOW IS AUTOREGRESSIVE OF ORDER ONE, WITH A LEVEL OF 28 AND
COEFFICIENT OF VARIATION OF 15%. HERE THE PHI VALUE IS .5.

WHEN THE CAUCHY SERIES WERE GENERATED, A SCALE PARAMETER OF

1.9393 WAS USED (VS 3) SO THAT THE MIDRANGE OF THE CAUCHY

AND THE MIDRANGE OF THE NORMAL WERE APPROXIMATELY EQUAL
INTERVALS.

DATA NULL ;
DO T =1 TO 6008;
IF T EQ 1 THEN X = 28;
ELSE X = .5*X + 18 + 3*RANNOR(75);
FILE NEWNS5;
PUT T X;

END;

SNV W -
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THIS PROGRAM GENERATES A GRAPHICS STREAM FILE TO DISPLAY THE
PLOT OF A FIRST ORDER AUTOREGRESSIVE SERIES WITH A PHI VALUE
OF .3, ALREADY FILED IN AR1PHI3N. BY PLOTTING A NULL
CHARACTER WITH THE PLOTZ2 STATEMENT, A SCALED RIGHT HAND AXIS
IS ADDED TO THE PLOT.

GOPTIONS DEVICE=TEK401@
HSIZE=5.5 VSIZE=5.5
DISPLAY
GSFMODE=REPLACE
GSFNAME=GRAFPHIS;
FILENAME VECTOR ' [RKANKEY.STAT]AR1PHI3N';
DATA A;
INFILE VECTOR;
INPUT T Y;
18 SYMBOL1 L=1 V=STAR I=JOIN H=.8;
11 SYMBOL2;
12 PROC GPLOT;
13 PLOT Y*T=1 / FRAME VAXIS=0 TO 30 BY 10;
14 PLOT2 Y*T=2 /VAXIS=0 TO 38 BY 14;
15 ROUN;

OO ~Ioy Nl W=
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MOVING AVERAGE PROGRAM. THIS PROGRAM UTILIZES THE LAG
FUNCTIONS AVAILABLE IN SAS TO FIT THE SERIES USING SINGLE
MOVING AVERAGES OF LENGTHS FROM ONE TO NINE, FORECASTS ARE
FOR ONE PERIOD AHEAD.

Woo~JoanUl e WN -

DATA NULL_; Infile sixkc7 is a file with
INFILE SIXKC7; 6008 observations and a Cauchy
INPUT T X; error term, Phi equal to .7.
RETAIN;

IF T = 1 THEN DO;

K =1;

COUNTER = 8; The V array was used for
END; checking and debugging.
ARRAY V{l1l8} V1-V18;

ARRAY MA{9} MA1-MA9; Nine moving averages.
ARRAY SUMS{11,11} S1-S121;

ERRTYPE = 2; Errtype = 1 when normal errors
PHI = .7; are used. Errtype = 2 when
LAGX = LAG(X); Cauchy errors are used.
COUNTER + 1;

L1=LAGX; Renaming the lag values
L2=LAG2 (X); for easier programming
L3=LAG3(X); statements.
L4=LAG4 (X) ;
L5=LAGS5 (X) ;
L6=LAG6 (X) ;
L7=LAG7 (X) ;
L8=LAGS8 (X) ;
SUM=X;

MA1=SUM;

SUM=SUM+L1;

MA2=SUM/2;

SUM=SUM+L2;

MA3=SUM/3;

SUM=SUM+L3;

MA4=SUM/4;

SUM=SUM+L4;

MA5=SUM/5;

SUM=SUM+L5;

MA6=SUM/6; Moving averages up to
SUM=SUM+L6; length 9 are calculated.
MA7=5UM/7;

SUM=SUM+L7;

MA8=SUM/8;

SUM = SUM+LS;

MA9=SUM/9;

DO I=1 TO 9;

N = I;

F = LAG(MA{I});
E =X -F;

V1l = T;

V2 = K;
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V3 = X; Many of these elements of

V4 = N; the V array are duplicate

V5 = MA{I}; variables used in debugging.

V6 = F;

V7 = E;

IF COUNTER LT 21 THEN GO TO CUT:

V8 = ABS(E); The error is manipulated

V9 = E**2; as necessary for the

V1g = (V8/X)**2; various error measures.

V1l = ABS(E/X);

V12 = (X-LAGX) **2;

V13 = ABS(E/LAGX);

V14 = ABS ((X-LAGX)/LAGX):;

V15 = ABS (E);

V16 = ABS (X-LAGX);

V17 = (E/LAGX)**2;

V18 = ((X-LAGX)/LAGX)**2;

SUMS{I,1} + V8; These various items

SUMS{I,2} + V9; are summed.

SUMS{1I,3} + V10;

SUMS{I,4} + V11;

SUMS{I,5} + V12;

SUMS{1,6} + V13;

SUMS{1,7} + V14;

SUMS{I,8} + V15;

SUMS{I,9} + Vle;

SUMS{I,18} + V17;

SUMS{I,11} + V18; Eight

IF COUNTER EQ 68 THEN DO; error measures
MAD = SUMS{I,1}/48; are calculated,
MSE = SUMS{I,2}/48; although only four
MSPE = SUMS{I,31}/44; are ultimately
MAPE = SUMS{I1,41/48; reported.
TH1 = SQRT(SUMS{I,2}/SUMS{I,5});
TH2 = SQRT(SUMS{I,8}/SUMS{I1,9});
TH3 = SQRT(SUMS{I,16}/SUMS{I,11l});
TH4 = SQRT(SUMS{I,6}/SUMS{I1,7});

FILE SUM6KC7M;
PUT T K ERRTYPE N PHI MAD MSE MAPE MSPE
TH1 THZ2 TH3 TH4;

END;

CUT:END;

IF COUNTER = 68 THEN DO; Resetting the
COUNTER = @; counters and arrays
K+1; for the next

iteration.
DOM=1T0 11;
DO N=1TO 11;
SUMS{M,N} = @;
END;
END;

END;



EXPONENTIAL AVERAGE PROGRAM.
ON THE SERIES WITH CAUCHY ERRORS AND PH
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THIS SAMPLE PROGRAM OPERATES

I .7. FOR SINGLE

EXPONENTIAL SMOOTHING THE SMOOTHING CONSTANTS EVALUATED

RANGE FROM ZERO TO .5.

THE KEY TO USE OF RECURSIVE

EQUATIONS IN SAS IS THE SMALL TERM ON LINE 4 OF THE PROGRAM,
WITHOUT WHICH SAS SETS VALUES TO MISSING WHEN IT READS THE

NEXT OBSERVATION'S VALUES.

1 DATA _NULL_;

2 INFILE SIXKC7;

3 INPUT T X;

4 RETAIN;

5 IF T=1 THEN DO;

6 K=1;

7 COUNTER=0;

8 END;

9 ARRAY V{18} Vv1-V18;
10 ARRAY EX{11} EX1-EX1l1l;
11 ARRAY SUMS{11,11} s1-8121;
12 ERRTYPE = 2;
13 PHI = .7;
14 LAGX = LAG(X); For
15 COUNTER +1; exponential
le6 DO I=1 TO 11; smoothing
17 C=(I-1)*.05; the smoothing
18 IF COUNTER=1 THEN EX{I} = 20; constant ranges
19 EX{I} = C*X+(1-C)*EX{1}; from zero to .5.
29 F = LAG(EX{1I}):

21 IF COUNTER = 1 THEN F=28; The initial
22 E=X-F; exponential
23 vVl = T; average is set to
24 V2 = K; equal the true
25 V3 = X; population mean.
26 V4 = C; Initialization is not
27 V5 = EX{I}; critical here since
28 vVé = F; no errors are collected
29 V7 = E; until t = 21.
39 IF COUNTER LT 21 THEN GO TO CUT; ‘
31 V8 = ABS (E);

32 V9 = E**2;

33 V1@ = (V8/X)**2;

34 V11l = ABS (E/X);

35 V12 = (X-LAGX)**2;
36 V13 = ABS (E/LAGX);
37 V14 = ABS ((X-LAGX)/LAGX);

38 V15 = ABS(E);

39 V16 = ABS (X-LAGX);

40 V17 = (E/LAGX) **2;

41 V18 = ((X~LAGX)/LAGX)**2;
42 SUMS{I,1l} + V8;

43 SUMS{1,2} + V9;

44 SUMS{I,3} + V18;



45

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65

66
67
68
69
70
71
72
73
74

145

SUMS{I,4} + V11;
SUMS{1,5} + V12;
SUMS{I,6} + V13;
SUMS{I,7} + V14;
SUMS{I1I,8} + V15;
SUMS{1,9} + V16;

SUMsS{1,19} + V17;
SUMS{I,11} + V18;

IF COUNTER EQ 66 THEN DO; Eight
MAD = SUMS{I,1}/49; error measures
MSE = SUMS({I,2}/40; are calculated.
MSPE = SUMS{I,3}/46;

MAPE = SUMS{I,4}/406;

TH1 = SQRT(SUMS{I,2}/SUMS{1,5});
TH2 = SQRT(SUMS{I,8}/SUMS{1,9});
TH3 = SQRT(SUMS{I,10}/SUMS{I,11l});
TH4 = SQRT(SUMS{I,6}/SUMS{I,7});

FILE SUM6KCT7E;
PUT T K ERRTYPE C PHI MAD MSE MAPE MSPE
TH1 TH2 TH3 TH4;

END;

CUT:END;

IF COUNTER = 68 THEN DO; Counters and arrays
COUNTER = 0 are set for the
K+1; next iteration.

DOM=1T0 11;
DO N =1 TO 11;
SUMS{M,N} = 8;
END;
END;
END;
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THIS PROGRAM USES LAG FUNCTIONS AND

BUBBLE SORTS TO FIND THE RUNNING MEDIANS OF LENGTH THREE

THROUGH SIX.

ONE KEY TO THIS PROGRAM IS RENAMING THE LAG

VALUES BEFORE SORTING, OTHERWISE THE LAG VALUES THEMSELVES
BECOME JUMBLED DURING THE PROCESS.

1 DATA NULL ; Infile sixkch is a file
2 INFILE SIXKC5; with 60008 observations
3 INPUT T XI; generated with Cauchy
4 IF T=1 THEN DO; errors and Phi = .5,
5 K=1;
6 COUNTER=%;
7 END;
8 ARRAY V{18} V1-V18;
9 ARRAY SUMS{4,11} S1-S44;
10 ERRTYPE = 2;
11 PHI = .5;
12 X = XI;
13 LAGX = LAG(X):; Defining the arrays as
14 COUNTER +1; shown below and then
15 L1=LAGX; calculating the running medians
16 L2=LAG2 (X); in the order indicated takes
17 L3=LAG3(X); advantage of the sorting for
18 L4=LAG4 (X); the three period when calculating
19 L5=LAG5 (X) ; the four period median, etc.
20 IF COUNTER LE 14 THEN GO TO SKIP;
21 ARRAY TEMP3{3} X L1 L2;
22 ARRAY TEMP4{4} X L1 L2 L3;
23 ARRAY TEMP5{5} X L1 L2 L3 L4;
24 ARRAY TEMP6{6} X L1 L2 L3 L4 L5;
25 DO H=1 TO 3; Calculate running median
26 MORE=0; of length three.
27 DO I =1 TO 2;
28 IF TEMP3{I+l1} LT TEMP3{I} THEN DO;
29 TEMP = TEMP3{I1};
39 TEMP3{I} = TEMP3{I+1l};
31 TEMP3{I+1} = TEMP;
32 MORE = 1;
33 END;
34 END;
35 IF MORE = @ THEN GO TO DONE3;
36 END;
37 DONE3:;
38 RM3 = TEMP3{2};
39 DO H =1 TO 4; Calculate running median
49 MORE = 0; of length four.
41 DO I =1 TO 3;
42 IF TEMP4{I+1} LT TEMP4{I} THEN DO;
43 TEMP = TEMP4({I};
44 TEMP4{I} = TEMP4{I+1};
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TEMP4{I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = B THEN GO TO DONE4;
END;
DONE4: ;
RM4 = (TEMP4{2} + TEMP4{3})/2;
DO H =1TO 5; Calculate running median
MORE = @; of length five.

DO I =1 TO 4;
IF TEMP5{I+1} LT TEMP5{I} THEN DO;
TEMP = TEMP5{1};
TEMP5{I} = TEMP5{I+l};
TEMP5{I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = @ THEN GO TO DONES5;
END;
DONES: ;
RM5 = TEMPS5{3};
DO H=1TO 6; Calculate running median
MORE = 0; of length six.

DO I =1 TO 5;
IF TEMP6{I+1} LT TEMP6{1I} THEN DO;
TEMP = TEMP6{1};
TEMP6{I} = TEMP6{I+l};
TEMP6{I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = @ THEN GO TO DONEG6;
END;
DONEG6: ;

RM6 = (TEMP6{3} + TEMP6{4})/2;

SKIP:;

ARRAY RM{4} RM3 RM4 RM5 RM6;
LAGXI = LAG(XI);

DO I=1 TO 4;

F = LAG(RM{I});
N = I+2;
E=XI-F;

V1l = T;

V2 = K;

V3 = XI;

V4 = N;

V5 = RM{I};

V6 = F;
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94 V7 = E;
95 IF COUNTER LT 21 THEN GO TO CUT;
96 Vv8 = ABS (E):;
97 V9 = E**2; Manipulating
98 V1g = (V8/XI)**2; the error.
99 V1l = ABS(E/XI);
1090 V12 = (XI-LAGXI) **2;
191 V13 = ABS (E/LAGXI);
182 V14 = ABS ((XI-LAGXI)/LAGXI);
183 V15 = ABS(E);
104 V16 = ABS (XI-LAGXI):;
185 V17 = (E/LAGXI)**2;
196 V18 = ((XI-LAGXI)/LAGXI)**2;
167 SUMS{I1I,1} + V8; Summing.
198 SUMS{1,2} + V9;
199 SUMS{I,3} + V10;
119 SUMS{1,4} + V11;
111 SUMS{I,5}! + V12;
112 SUMS{I,6} + V13;
113 SUMS{1,7} + V14;
114 SUMS{1,8} + V15;
115 SUMS{I1I,9} + Vle;
116 SUMS {1,198} + V17;
117 SUMS{I,11l} + V18;
118 IF COUNTER EQ 6@ THEN DO;
119 MAD = SUMS{I,1}/49; Calculating the error
129 MSE = SUMS{I1,2}/48; measures.
121 MSPE = SUMS{1,3}/49;
122 MAPE = SUMS{I1,4}/48;
123 TH1 = SQRT(SUMS{I,2}/SUMS{I1,51}):
124 TH2 = SQRT(SUMS{I,8}/SUMS{I,9}):
125 TH3 = SQRT(SUMS{I,19}/SUMS{I,11l});
126 TH4 = SQRT (SUMS{I,6}/SUMS{I,71}):
127 FILE SUMGKC5R;
128 PUT T K ERRTYPE N PHI MAD MSE MAPE MSPE
TH1 TH2 TH3 TH4;
129 END;
139 CUT:END;
131 IF COUNTER = 68 THEN DO; Resetting.
132 COUNTER = §;
133 K+1;
134 DOM =1 TO 4;
135 DO N =1 TO 11;
136 SUMS{M,N} = 8;
137 END;
138 END;

139 END;
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WALSH AVERAGE PROGRAM - FIRST HALF. THIS HALF OF THE
PROGRAM PRODUCES MOVING WALSH AVERAGES OF LENGTHS THREE

THROUGH SIX.

THE VALUE OF THE LATEST WALSH AVERAGE IS THE

FORECAST VALUE FOR THE FUTURE,

WO wWwh

DATA NULL_;

INFILE SIXKC7;

INPUT T XI;

IF T EQ 1 THEN COUNTER = 8;

COUNTER+1;

Wl = XI; Renaming for ease of
W2 LAG (XI); programming, and to
W3 LAG2 (XI); avoid jumbling
w4 LAG3 (XI); during any sorts.
W5 LAG4 (XI);

w6 LAGS5 (XI);

WAl=0;

WA2=0;

WA3=0;

WA4=0;

IF COUNTER LT 28 THEN GO TO SKIP:

IF COUNTER EQ 64 THEN GO TO SKIP2;

ARRAY VALUES{6} W1-Wé6;

ARRAY 7Z{6,6} Z1-Z36; The array of sums.
ARRAY ORDERING{21} UNORD1-UNORD21;

ARRAY WAL{4]} WAl-WA4; Array of Walsh Averages.

DO I =1 TO 6; . Calculating the 6 X 6

DO J = I TO 6; matrix of sums.
Zz2{1,J} = (VALUES{I} + VALUES{J});
END;

END;

Q = 1;

DO N =3 TO 6 BY 1; N is the number of
K=1; data points considered
DO I = 1 TO N; in the Walsh Average.

DO J = 1I TO N3
ORDERING({K} = 2{1,J3}; Pulling out the
K+1; appropriate sums,
END; i.e. upper triangular
END; matrix elements.
IF N EQ 3 THEN MAX = 6;
IF N EQ 4 THEN MAX = 18; Number of sums to
IF N EQ 5 THEN MAX = 15; to consider 1in
IF N EQ 6 THEN MAX = 21; each case.
Walsh averages are
DO L =1 TO MAX; calculated for lengths
MORE = 8; four through six
DO I =1 TO (MAX-1);
IF ORDERING{I+1} LT ORDERING{I} THEN DO;

TEMP = ORDERING{I};
ORDERING{I} = ORDERING{I+1l};
ORDERING {I+l} = TEMP;
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MORE = 1; This step uses a
END; bubble sort.
END;
IF MORE EQ # THEN GO TO NEXTN;
END;
NEXTN: IF MOD{MAX,2) EQ 1 THEN WAL{Q} =
ORDERING{ (K+1)/21}1/2; If an odd
ELSE WAL{Q} = (ORDERING{K/2} + number of
ORDERING{K/2+1})/4; sums is considered
Q+1; the median is the center value after
END; ranking, otherwise the average of the
two center values. Note division by two.
SKiP2:; File the results for
FILE WAVGSC7; access by the second
PUT T COUNTER XI WAl-WA4; program and
SKIP:; reset the counter.
IF COUNTER = 68 THEN COUNTER = 8;

WALSH AVERAGE PROGRAM - SECOND HALF, THIS HALF OF THE
PROGRAM TAKES THE WALSH AVERAGES CALCULATED FROM THE
PREVIOUS PROGRAM AND USES THEM TO FIT THE SERIES. EIGHT
ERROR MEASURES ARE CALCULATED FOR EACH OF THE WALSH AVERAGE

SIZES USED.,

WOV & W

DATA _NULL_; Note that for this
INFILE WAVGSC7; program, counter is an
INPUT T COUNTER XI WA3 WA4 WAS5 WAG6; input
ERRTYPE = 2; variable.
PHI = .7;

ARRAY WAL{4} WA3 WA4 WAS5 WAG6;
ARRAY SUMS{4,11} sl1-544;
LAGXI = LAG(XI):;

DO I=1 TO 4;

F = LAG(WAL{I});

N = I+2; N is the number of observations
E=XI-F; used in calculating the Walsh Avg.
Vvl = T;

V2 = K;

V3 = XI;

V4 = N;

VS5 = WAL{I1};

Vé = F;

V7 = E;

IF COUNTER LT 21 THEN GO TO CUT;
V8 = ABS(E);

V9 E**2; Manipulating the error.
V1@ = (V8/XI)**2;

V11l = ABS(E/XI);

V12 = (XI-LAGXI)**2;

V13 = ABS (E/LAGXI);

V14 = ABS ((XI-LAGXI)/LAGXI);
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V15
V1é
V17
v1s
SUMS{I,1}
SUMS{I,2}
SUMS{I,3}
SUMS{I,4}
SUMS{I,5}
SUMS{I,é6}
SUMS{I1I,7}
SUMS{I,8}
SUMS{I1,9}
SUMS{I1,18
SuMs{I1,11

ABS

(E);:

V8;
vV9;
vV1g;
V1l;
V1i2;
V13;
V14;
v15;
V1eé6;
} + V17;
} + V18;

+H+++ 4+ ++

ABS (XI-LAGXI);
(E/LAGXI) **2;
((XI-LAGXI)/LAGXI) **2;

IF COUNTER EQ 60 THEN

MAD
MSE
MSPE
MAPE
TH1
TH2
TH3
TH4

SUMS{1,1}/49;
SUMS{I,2}/48;

SUMS{I,3}/40;
SUMS{I,4}/48;

FILE SUM6KC7W;
PUT T K ERRTYPE N PHI MAD MSE MAPE MSPE
TH1 TH2 TH3 TH4;

END;

CUT:END;

IF COUNTER

K+1;
DOM =1
DO N =
SUMS {
END;
END;

END;

= 60 THEN

TO 4;
1 TO 11;
M,N} = B;

SQRT (SUMS{I,2}/SUMS({I,5
SQRT (SUMS{I,8}/SUMS{I,9
SQRT(SUMS{1I,1@}/SUMS{I,
SQRT (SUMS{I,6}/SUMS{I,7

DO;
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Summing up the
terms needed for
the various error

measures.

Calculating the
error measures,

Resetting.
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SAMPLE ANALYSIS PROGRAM. THIS SAMPLE PROGRAM TAKES THE
RESULTS IN TESTCS5E.DAT (RESULTS ON A CAUCHY ERROR SERIES
WITH PHI = .5 USING EXPONENTIAL SMOOTHING), RUNS THE SAS
PROCEDURE UNIVARIATE, AND PRODUCES AN OUTPUT DATA SET
CONTAINING THE MEANS, MEDIANS, MAX AND MIN, AND FIRST AND
THIRD QUARTILE VALUES FOR EACH OF THE EIGHT ERROR MEASURES
INITIALLY CONSIDERED., THIS DATA SET IS THEN AVAILABLE FOR
PLOTTING.

LIBNAME STAT '[RKANKEY.STAT]';:

DATA RESULTS;

INFILE TESTCS5E;

INPUT T K ERRTYPE C PHI MAD MSE MAPE MSPE
TH1 TH2 TH3 TH4;

PROC SORT;

BY C;

PROC UNIVARIATE NOPRINT;

VAR MAD MSE MAPE MSPE TH1 TH2 TH3 TH4;

BY C;

OUTPUT OUT=STAT.TESTCE MEAN=AV1-AV8 Q3=QU1-QU8
Q1=QL1~-QL8 MEDIAN=MD1-MD8 MAX=MX1-MX8
MIN=MI1-MIS8;

[V S

—
2O~ wuUm

THIS PROGRAM USES A FILE SIMILAR TO THAT ABOVE TO PRODUCE
BOX PLOTS AS IN FIGURES 18-21. THIS PARTICULAR EXAMPLE
PRODUCES BOX PLOTS OF RUNNING MEDIAN RESULTS ON A STATIONARY
SERIES WITH PHI = .3 AND NORMAL ERRORS, THE PROGRAM
PRODUCES A GRAPHICS STRING FILE WHICH IS THEN RUN ON A LASER
PRINTER. UNFORTUNATELY THE MISSING VALUES WOULD NOT BREAK
THE LINE, SO A CERTAIN AMOUNT OF WHITEOUT WAS USED TO REMOVE
UNDESIRED CONNECTING LINES,

1 LIBNAME STAT ' [RKANKEY.STAT]';
2 GOPTIONS DEVICE=TEK4918

3 HSIZE=5.5 VSIZE=6.5

4 DISPLAY

5 GSFMODE=REPLACE

6 GSFNAME=GPBOX7;

7 DATA ONE;

8 SET STAT.AR3NG6KM;

9 KEEP N X Y AVl MX1 MI1 QL1 MD1 QUI;
19 SYMBOL1 L=1 I=JOIN;

11 SYMBOL2 V=NONE;

12 SYMBOL3 V=STAR H=1;
13 DELTA=.25;
14 Y=QU1l;

15 X=N-DELTA; OUTPUT;
16 X=N+DELTA; OUTPUT;

17 Y=QL1;

18 X=N+DELTA; OUTPUT;

19 X=N-DELTA; OUTPUT;
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Y=QUl; OUTPUT;

X=.; ¥Y=.; OUTPUT;

X=N; Y=MX1l; OUTPUT;

X=N; ¥Y=QUl; OUTPUT;

X=.; ¥=.; OUTPUT;

X=N; ¥Y=MI1l; OUTPUT;

X=N; ¥Y=QLl; OUTPUT;

X=.; ¥Y=.; OUTPUT;
X=N-DELTA; ¥Y=MDl; OUTPUT;
X=N+DELTA; ¥Y=MDl; OUTPUT;
X=.; ¥=.,; OUTPUT;

PROC PRINT;
PROC GPLOT;

AXIS1 LABEL=(F=SIMPLEX H=1 'LENGTH USED')

ORDER=(3 TO 6 BY 1)

VALUE= (F=SIMPLEX)

MINOR=NONE

OFFSET=(186 PCT,18 PCT);
AXIS2 LABEL=(F=SIMPLEX H=1 'MAD')

ORDER=(# TO 286 BY 5, 8@ TO 128 BY 28)

VALUE= (F=SIMPLEX)
OFFSET=(1,1);
AXIS3 LABEL=(F=SIMPLEX H=1 'MAD')
ORDER=(1 TO 4 BY 1)
VALUE= (F=SIMPLEX)
OFFSET=(1,1);
PLOT Y*X=1 AV1*N=3 / OVERLAY VAXIS=AXIS3
HAXIS=AXIS1 FRAME;
PLOT2 Y*X=2 / VAXIS=AXIS3 HAXIS=AXIS1;
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DOUBLE MOVING AVERAGE PROGRAM. THE TREND SIMULATIONS
OPERATE FROM THE SAME DATA FILES USED IN THE STATIONARY
SIMULATIONS. THE STATIONARY SERIES IS ESSENTIALLY SPREAD
AROUND A TREND LINE WITH A .5 SLOPE. THE INTERCEPT VALUE OF
ZERO IS SELECTED SO THAT THE EXPECTED VALUE OF THE FORTY
OBSERVATIONS USED FOR THE MEASURES IS CONSISTENT WITH THE
STATIONARY SIMULATION.

1 DATA NULL ;
2 INFILE SIXKC7;
3 INPUT T XI;
4 IF T =1 THEN K = 1;
5 COUNTER + 1;
6 X = XI -28 +.5*COUNTER; Recall that the
7 ARRAY V{18} Vv1-V18; stationary series
8 ARRAY MA{9} MA1-MA9; had a level of 24,
9 ARRAY DMA {9} DMA1-DMA9; line six thus
14 ARRAY FC{9} FC1l-FC9; results in X
11 ARRAY SUMS{11,11} S1-5121; values around
12 ERRTYPE = 2; the line from the
13 PHI = .7; origin to the
14 LAGX = LAG(X): point (68,38).
15 L1 = LAGX:;
16 L2 = LAG2(X);
17 L3 = LAG3(X);
18 L4 = LAG4 (X);
19 L5 = LAGS5 (X);
29 L6 = LAG6 (X);
21 L7 = LAG7(X);
22 L8 = LAGS8 (X);
23 SUM = X;
24 MAl = SUM;
25 SUM = SUM+L1;
26 MA2 = SUM/2;
27 SUM = SUM+L2:
28 MA3 = SUM/3;
29 SUM = SUM+L3;
30 MA4 = SUM/4;
31 SUM = SUM+L4;
32 MAS = SUM/5; Moving averages (MA1-MA9)
33 SUM = SUM+L5; are calculated in this
34 MA6 = SUM/6; section, double moving
35 SUM = SUM+L6; averages (DMA{1}-DMA{9}) are
36 MA7 = SUM/7; calculated below.
37 SUM = SUM+L7;
38 MA8 = SUM/8;
39 SUM = SUM+LS8;
49 MA9 = SUM/9;
41 SUM = §;
42 DMA{l} = MA{l};
43 DMA{2} = (MA{2} + LAG(MA{2}))/2;
44 DMA{3} = (MA{3} + LAG(MA{3}) + LAG2(MA{3}))/3;
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69
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72
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74
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76
77
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79
808
81
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84
85
86
87
88
89

DMA {4}
DMA {5}

DMA {6}

DMA {7}

DMA {8}

DMA {9}
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= (MA{4} + LAG(MA{4}) + LAG2(MA{4}) +
LAG3 (MA{4}))/4;

= (MA{5} + LAG(MA{5}) + LAG2(MA{5}) +
LAG3 (MA{5}) + LAG4(MA{51}))/5;

= (MA{6} + LAG(MA{6}) + LAG2(MA{6}) +
LAG3(MA{6}) + LAG4(MA{6}) +
LAG5(MA{6}))/6;

= (MA{7} + LAG(MA{7}) + LAG2(MA{7}) +
LAG3 (MA{7}) + LAG4(MA{7}) +
LAGS5(MA{7}) + LAG6(MA{7}))/7;

= (MA{8} + LAG(MA{8}) + LAG2(MA{8}) +

LAG3 (MA{8}) + LAG4(MA(8}) +

LAG5(MA{8}) + LAG6(MA{8}) +

LAG7 (MA{81}))/8;

(MA{9} + LAG(MA{9}) + LAG2(MA{9}) +

LAG3 (MA{9}) + LAG4(MA{9}) +

LAG5 (MA{9}) + LAG6(MA{9}) +

LAG7 (MA{9}) + LAG8 (MA{91}))/9;

DO I=1 TO 9;

N =1;
AT = 2*MA{I} - DMA{I};
IF N = 1 THEN BT=0;
ELSE BT = (2/(N-1))*(MA{I}-DMA{I});
FC{I} = AT + BT;
F = LAG(FC{I});
E = X-F;
vl = T;
v2 = X;
V3 = AT;
V4 = BT;
V5 = N;
Ve = F;
V7?7 = E;
IF T GT 9 THEN DO; Example of checking/
IF T LT 20 THEN DO; debugging.
FILE CHECK;
PUT V1 V2 N MA{I} DMA{I} V3 V4 V6 V7;
END;
END;
IF COUNTER LT 21 THEN GO TO CUT;
V8 = ABS(E);
V9 = E**2; Manipulating the error.
Ve = (V8/X)**2;
V1l = ABS (E/X);
V12 = (X-LAGX)**2;
V13 = ABS (E/LAGX);
V14 = ABS ((X-LAGX)/LAGX);
V15 = ABS(E);
V16 = ABS (X-LAGX):
V17 = (E/LAGX)**2;
V18 = ((X-LAGX)/LAGX) **2;

SUMS{I,1} + V8; Summing.
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99 SUMS{I,2} + V9;
91 SUMS{I,3} + V1@;
92 SUMS{1,4} + V11;
93 SUMS{I1I,5} + V12;
94 SUMS{I,6} + V13;
95 SUMS{I,7} + V14;
96 SUMS{1,8} + V15;
97 SUMS{1I,9} + V1e;
98 SUMS{I,18} + V17;
99 SUMS{1,11} + Vv18;
194 IF COUNTER EQ 68 THEN DO;
101 MAD = SUMS{I,1}/48; Calculating.
192 MSE = SUMS{I,2}/40;
103 MSPE = SUMS{I,3}/40;
104 MAPE = SUMS{I,4}/49;
195 TH1 = SQRT(SUMS{I,2}/SUMS{I,5});
106 TH2 = SQRT(SUMS{I,8}/SUMS{I1,9});
1a7 TH3 = SQRT (SUMS{I,10}/SUMS{I,11});
108 TH4 = SQRT(SUMS{I,6}/SUMS{I,7});
199 FILE TCT7M; Filing.
119 PUT ERRTYPE N PHI MAD MSE MAPE MSPE TH1
TH2 TH3 TH4;
111 END;
112 CUT:END;
113 IF COUNTER = 60 THEN DO;
114 COUNTER = @;
115 K+1;
116 DOM =1 TO 11;
117 DO N=1T0 11; Resetting.
118 SUMS {M,N} = @;
119 END;
120 END;

121 END;
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LINEAR EXPONENTIAL AVERAGE PROGRAM. THIS SAMPLE DEALS WITH
THE CAUCHY ERROR DISTRIBUTION WITH PHI = .7. THE SERIES IS
IDENTICAL WITH THAT DISCUSSED FOR THE DOUBLE MOVING AVERAGE.

Ooo~Jo N Wik

DATA NULL ;
INFILE SIXKC7;

INPUT T XI;

RETAIN;

COUNTER + 1;

X = XI - 20 + .5*COUNTER;
ARRAY V{18} V1-V18;

ARRAY EX{190} EX1-EX19; Since no errors
ARRAY E2X{18} E2X1-E2X18; are accumulated
ARRAY FA{l14d} Fl1-Fl8; for the first 28
ARRAY SUMS{11,11} s1-s8121; observations,
ERRTYPE = 2; the initialization
PHI = .7; scheme is not critical
LAGX = LAG (X); for the simulation.
DO I =1 TO 18; The single and double
C = (I)*.85; exponential averages
IF COUNTER = 1 THEN DO; are initialized
EXf# = -((1-C)/C)*.5; to match the known
E2X08 = 2*EXQ; population value
EX{I} = (C*X)+(1-C)*EX®; at time t = 1.
E2X{I} = C*EX{I} + (1-C)*E2X0;
END;
ELSE DO;

EX{I} = C*X + (1-C) *EX{I};

E2X{I} = C*EX{I} + (1-C) * E2X{1};
END;
AT = 2*EX{I} - E2X{1};
BT = (C/(1-C))*(EX{I} - E2X{I});
FA{I} = AT + BT;
F = LAG(FA{I});

E = X-F;
VvVl = T;
V2 = X;
V3 = C;
V4 = AT;
V5 = BT;
Ve = F;
V7 = E;

IF COUNTER LT 21 THEN GO TO CUT;
V8 = ABS(E);

V9 E*x%*2; Calculating the
V19 = (V8/X)**2; various error term
V1l = ABS (E/X); elements.
V12 = (X-LAGX)**2;

V13 = ABS (E/LAGX);

V14 = ABS ((X-~LAGX)/LAGX):;

V15 = ABS(E);

V16 = ABS (X-LAGX);
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V17 = (E/LAGX) **2;
V18 = ((X-LAGX)/LAGX)**2;

SUMS{I1I,1l} +
SUMS{I1I,2} +
SUMsS{1,3} +
SUMS{I,4} +
SUMS{1,5} +
SUMS{I,6} +
SUMS{I,7} +
SUMS{I1I,8} +
SUMS{1,9} +

Vv8;
v9; Summing the necessary
V1ag; error term elements.
v1il;
vV1i2;
V13;
V14;
V15;
V16;

SUMS{I,l1@8} + V17;
SUMS{I,11} + V18;
IF COUNTER EQ 6@ THEN DO;

MBD = SUMS{I,1}/40; Calculating the
MSE = SUMS{I,2}/49; error measures.
MSPE = SUMS{I1,3}/48;

MAPE = SUMS({I,4}/40;

TH1 = SQRT(SUMS{I,Z}/SUMS{I,S});

TH2 = SQRT(SUMS{I,8}/SUMS{I1,9});

TH3 = SQRT (SUMS{1,10}/SUMS{I,11l});

TH4 = SQRT (SUMS{I,6}/SUMS{I1I,7});

FILE TC7E;

PUT T ERRTYPE C PHI MAD MSE MAPE MSPE TH1
TH2 TH3 TH4;

END;
CUT:END;

IF COUNTER = 60 THEN DO; Resetting.

COUNTER = @;
DOM=1TO

11;

DON =1 TO 11;
SUMS {M,N} = @;

END;
END;
END;
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DOUBLE RUNNING MEDIAN PROGRAM - FIRST HALF. DOUBLE RUNNING
MEDIANS ARE MUCH LIKE DOUBLE MOVING AVERAGES, EXCEPT THEY
ARE MUCH LESS SENSITIVE TO OUTLIERS. THIS FIRST HALF OF THE
PROGRAM CALCULATES THE SINGLE RUNNING MEDIANS AND STORES
THEM IN A DATA SET FOR LATER USE.

WOV WD -

DATA NULL ;

INFILE SIXKC7;

INPUT T XI;

IF T=1 THEN DO;
K=1;

END;

ARRAY V{18} v1-V18;

ERRTYPE = 2;

PHI = .7;

COUNTER + 1;

XI = XI - 20 + .5*COUNTER;

X = XI;

LAGX = LAG(X):;

L1=LAGX; Renaming the lags
L2=LAG2 (X); makes programming
L3=LAG3(X); easier and precludes the
L4=LAG4 (X) ; jumbling problems when
L5=LAG5(X); sorting.
IF COUNTER LT 9 THEN GO TO SKIP; Skipping
ARRAY TEMP3{3} X L1 L2; unneeded
ARRAY TEMP4{4} X L1 L2 L3; calculations.

ARRAY TEMP5{5} X L1 L2 L3 L4;

ARRAY TEMP6{6} X L1 L2 L3 L4 L5;

DO H=1 TO 3;

MORE=0;

DO I =1 TO 2;

IF TEMP3{I+l} LT TEMP3{I} THEN DO;

TEMP = TEMP3{I};
TEMP3{I} = TEMP3{I+l};
TEMP3{I+l} = TEMP;

MORE = 1;
END;
END;
IF MORE = # THEN GO TO DONE3;
END; If all values are sorted
DONE3:; properly, then MORE remains
RM3 = TEMP3{2}; equal to zero and there
DOH =1 TO 4; is no reason to continue
MORE = @; in the do loop.
DO I =1 TO 3;

IF TEMP4{I+l} LT TEMP4{I} THEN DO;
TEMP = TEMP4({1};
TEMP4{I} = TEMP4{I+1};
TEMP4{I1I+1} = TEMP;
MORE = 1;
END;
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47 END;

48 IF MORE = § THEN GO TO DONE4;

49 END;

58 DONE4: ;

51 RM4 = (TEMP4{2} + TEMP4{3})/2; Median of length
52 DO H =1 TO 5; four.
53 MORE = 4;

54 DO I =1 TO 4;

55 IF TEMP5{I+1} LT TEMP5{I} THEN DO;

56 TEMP = TEMPS5{1};

57 TEMP5{I} = TEMP5{I+l};

58 TEMP5{I+1} = TEMP;

59 MORE = 1;

69 END;

61 END;

62 IF MORE = # THEN GO TO DONES5;

63 END;

64 DONES5: ;

65 RM5 = TEMP5{3}; Median of length five.
66 DOH=1TO 6;

67 MORE = 8;

68 DO I =1 TO 5;

69 IF TEMP6{I+1} LT TEMP6{I} THEN DO:

740 TEMP = TEMP6{I};

71 TEMP6{I} = TEMP6{I+1};

72 TEMP6{I+1} = TEMP;

73 MORE = 1;

74 END:

75 END;

76 IF MORE = # THEN GO TO DONEG6;

77 END;

78 DONEG: ; Median of length
79 RM6 = (TEMP6{3} + TEMP6{4})/2; six.
89 SKIP:;

8l ARRAY RM{4} RM3 RM4 RM5 RM6;

82 FILE MEDSC7; Filing.
83 PUT T XI RM3 RM4 RM5 RM6;

84 IF COUNTER = 60 THEN COUNTER =0; Resetting.

DOUBLE RUNNING MEDIAN PROGRAM - SECOND HALF. HERE THE
SINGLE RUNNING MEDIANS ARE READ, THE DOUBLE MOVING MEDIANS
ARE CALCULATED, AND ONE PERIOD AHEAD FORECASTS ARE EVALUATED
FOR FIT USING EACH OF THE FOUR LENGTHS OF MEDIANS
CONSIDERED.

1 DATA NULL ;

2 INFILE MEDSC7;

3 INPUT T XI RMI3 RMI4 RMI5 RMIG;

4 RM3 = RMI3; Renamed again to
5 RM4 RMI4; avoid jumbling
6

RM5 RMIS5; during sorting.
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11
12
13
14
15
16
17
18
19
29
21
22
23
24
25
26
27
28
29
39
31
32
33
34
35
36
37
38
39
49
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

RM6 =
COUNT

RMIG6;
ER + 1;
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ARRAY RM{4} RMI3 RMI4 RMIS5 RMI6;
ARRAY FC{4} FCl-FC4;

ERRTY
PHI
LT1
LT2
LF1
LF2
LF3
LFIl
LFI2
LFI3
LFI4
LSl
LS2
LS3
LS4

PE = 2;

=.7;

LAG(RM3):
LAG2 (RM3);
LAG(RM4);
LAG2 (RM4) ;
LAG3 (RM4) ;
LAG (RM5) ;
LAG2 (RM5) ;
LAG3 (RM5) ;
LAG4 (RM5S) ;
LAG (RM6) ;
LAG2 (RM6) ;
LAG3 (RM6) ;
LAG4 (RM6) ;
LAG5 (RM6) ;

The three period double

running median is the median
of the last three three-period
(single) running medians.

In this section all the

appropriate lags of the
medians are defined for

the following arrays.

LT - lags for Three period
LF - lags for Four period
LFI - lags for FIve period
LS - lags for Six period

ARRAY SC3{3} RM3 LTl LT2;
ARRAY SC4{4} RM4 LF1-LF3;
ARRAY SC5{5} RM5 LFI1-LFI4;
ARRAY SC6{6} RM6 LS1-LS5;

DOH=1TO 3;
MORE = 0;
DO I =1 TO 2;

IF SC3{I+1} LT SC3{I} THEN DO;
TEMP = SC3{I1};
SC3{I} = SC3{I+l};
SC3{1+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = § THEN GO TO DONE3;
END;
DONE3: ;
DRM3 = SC3{2}; Three period double running
DOH =1 TO 4; median.
MORE = @;
DO I =1 TO 3;

IF SC4{I+1} LT SC4{I} THEN DO;
TEMP = SC4({1};
SC4{I} = SC4{I+1};
SC4{I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = @ THEN GO TO DONE4;
END; '
DONE4:;
DRM4 = (SC4{2} + sC4{3})/2; Four period DRM.
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60
61

63
64
65
66
67
68
69
70
71
72
73
74
75

77
78
79
80
81
82
83
84
85
86
87
88
89
99
91
92

93
94
95
96
97
98
99
109
191
192
1983
194
195
1926
187
148
199

DOH=1TO 5;
MORE = @;
DO I =1 TO 4;

IF SC5{I+1} LT SC5{I} THEN DO;
TEMP = SC5{1};
SC5{I} = SC5{I+1};
SC5{I+1} = TEMP;
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MORE = 1;
END;
END;
IF MORE = 6 THEN GO TO DONES5;
END;
DONES: ;
DRM5 = SC5{3}; Five period DRM.
PO H = 1 TO 6;
MORE = 9;
PO I =1 TO 5;

IF SsC6{I+1} LT SC6{I} THEN DO;
TEMP = SC6{1};
SC6{I} = SC6{I+1};
SC6{I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = @ THEN GO TO DONEG6;
END;
DONEG6: ;
DRM6 = (SC6{3} + SC6{4})/2; Six period DRM.

ARRAY DRM{4} DRM3 DRM4 DRM5 DRM6;
ARRAY SUMS{4,11} S1-S44;
LAGXI = LAG(XI);

IF T LE 25 THEN DO; An example of a checking/
FILE CHECKDRM; debugging routine.
PUT T COUNTER XI RMI3 RMI4 RMIS5 RMI6 DRM3 DRM4

DRM5 DRM6;
END;
DO I=1 TO 4;

N = I+2; N is the length of the
running medians used.

AT 2*RM{I} - DRM{I1};

BT (2/(N-1))*(RM{I} -DRM{I});
FC{I} = AT +BT;

F = LAG(FC{I});

N = I+2;

E=XI-F;

V1l = T;

V2
V3
V4
V5
Vé
v7

wnnu uu
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110 IF COUNTER LT 21 THEN GO TO CUT;

111 V8 = ABS(E):; Manipulating.

112 V9 = E**2;

113 V1ig = (VB8/XI)**2;

114 V1l = ABS(E/XI);

115 V12 = (XI-LAGXI)**2;

116 Vi3 = ABS (E/LAGXI);

117 V14 = ABS ((XI-LAGXI)/LAGXI);

118 V15 = ABS(E); _

119 V16 = ABS (XI-LAGXI);

124 V17 = (E/LAGXI) **2;

121 V18 = ((XI-LAGXI)/LAGXI)**2,

122 SuUMs{1,1} + V8; Summing.

123 SUMS{I,2} + V9;

124 SUMS{I,3} + V19;

125 SUMS{1,4} + V11;

126 SUMS{I,5} + V12;

127 SUMS{I,6} + V13;

128 SUMS{1,7} + V14;

129 SUMS{I,8} + V15;

139 SUMS{I,9} + Vlé6;

131 SUMS {1,149} + V17;

132 SUMS{I,11} + V18;

133 IF COUNTER EQ 68 THEN DO;

134 MAD = SUMS{I,l}/48; Calculating.

135 MSE = SUMS{I,2}/48;

136 MSPE = SUMS{I,3}/49;

137 MAPE = SUMS({I1,4}/40;

138 TH1 = SQRT (SUMS{I,2}/SUMS{I,5});

139 TH2 = SQRT (SUMS{I,8}/SUMS{I1I,9});

140 TH3 = SQRT (SUMS{I,10}/SUMS{I,11});

141 TH4 = SQRT(SUMS{I,6}/SUMS{I,7});

142 FILE TCT7R; Filing.

143 PUT ERRTYPE N PHI MAD MSE MAPE MSPE TH1 TH2
TH3 TH4;

144 END;

145 CUT:END;

146 IF COUNTER = 60 THEN DO; Resetting.

147 COUNTER = 4;

148 K+1;

149 DO M =1 TO 4;

150 DON =1 TO 11;

151 SUMS{M,N} = 9;

152 END;

153 END;

154 END;
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DOUBLE SMOOTHED MEDIAN PROGRAM., HERE RUNNING MEDIANS ARE
DEVELOPED AND USED TO CALCULATE SMOOTHED AND DOUBLE SMOOTHED
MEDIANS, THESE ARE THEN USED IN THE DOUBLE SMOOTHED MEDIAN
TECHNIQUE,

1 DATA NULL ;

2 INFILE SIXKC7;

3 INPUT T XI;

4 RETAIN;

5 COUNTER + 1;

6 XI = XI - 20 + .5*COUNTER;

7 ARRAY V{18} V1-V18;

8 ARRAY SUMS{4,6,11} S1-8264;

9 ERRTYPE = 2;

149 PHI = .7; For the simulation all
11 X = XI; smoothed medians are
12 LAGX = LAG (X); initialized at time counter
13 L1=LAGX; equals six, the first period
14 L2=LAG2(X); the longest median considered
15 L3=LAG3 (X) ; exists (see line 18).
16 L4=LAG4 (X);
17 L5=LAG5 (X) ;
18 IF COUNTER LE 5 THEN GO TO SKIP;
19 ARRAY TEMP3{3} X L1 L2;

20 ARRAY TEMP4{4} X L1 L2 L3;

21 ARRAY TEMP5{5} X L1 L2 L3 L4;

22 ARRAY TEMP6{6} X L1 L2 L3 L4 L5;

23 DO H=1 TO 3;

24 MORE=0;

25 PO I =1 TO 2;

26 IF TEMP3{I+l1} LT TEMP3{I} THEN DO;
27 TEMP = TEMP3{I};

28 TEMP3{I} = TEMP3{I+l};
29 TEMP3{I+1l} = TEMP;

30 MORE = 1;

31 END;

32 END;

33 IF MORE = § THEN GO TO DONE3;

34 END;

35 DONE3:;

36 RM3 = TEMP3{2};

37 DO H =1 TO 4;

38 MORE = @;

39 DO I =1 TO 3;

49 IF TEMP4{I+1} LT TEMP4{I} THEN DO;

41 TEMP = TEMP4{1};

42 TEMP4{I} = TEMP4{I+l}:;

43 TEMP4{I+1} = TEMP;

44 MORE = 1;

45 END;
46 END;

47 IF MORE = § THEN GO TO DONEA4;



48
49
508
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

92
93
94
95
96
97
98
99

165

END;
DONE4:;
RM4 = (TEMP4{2} + TEMP4{3})/2;
DOH=1TO 5;
MORE = 8;
DO I =1 TO 4;
IF TEMP5{I+1} LT TEMP5{I} THEN DO;
TEMP = TEMP5{1};
TEMP5{I} = TEMP5{I+l};
TEMP5{1I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = @ THEN GO TO DONES;
END;
DONE5: ;

RM5 = TEMP5{3};

DO H =1 TO 6;

MORE = 8;

DO I =1 TO 5;

IF TEMP6{I+l1} LT TEMP6{I} THEN DO;
TEMP = TEMP6{I};
TEMP6 {1} = TEMP6{I+l};
TEMP6{I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = @ THEN GO TO DONEG6;
END;
DONEG6: ;
RM6 = (TEMP6{3} + TEMP6{4})/2;
SKIP:;

ARRAY RM{4} RM3 RM4 RM5 RM6;
ARRAY SM{4,6} SM1-SM24;
ARRAY DSM{4,6} DSM1-DSM24;
ARRAY FI{4,6} F1-F24;

LAGXI = LAG(XI); For the trend simulation
DO I=1 TO 4:; smoothing constants were
N = I+2; varied from .1 to .6.
DO J =1 TO 6;
C = .1*J;
IF COUNTER EQ 6 THEN DO; Initializing.

SM{I,J} = 3 - ((N-1)/4) -.5*((1-C)/C);
DSM{I,J} = 3 - ((N-1)/4) - ((1-C)/C);
END;

ELSE DO; Once Initialized.
SM{I,J} = C*RM{I} + (1-C)*sSM{1,J};
DSM{I,J} = C*SM{1,J} + (1-C)*DSM{I1,J};

END;

AT = 2*SM{I,JdJ} - DSM{I,J};

BT = (C/(1-C))*(SM{I,J} ~ DSM{I,J});

FI{I,J} = AT + ((N+1)/2)*BT;
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191
192
183
124
185
1986
187
198
199
1148
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143
144
145

146
147
148
149

F = LAG(FI{I,J});

E=XI-F;

Vvl = T;

V2 = XI;

V3 = N;

V4 = C;

V5 = RM{I};

V6 = F;

V7 = E;

IF COUNTER LT 21 THEN GO TO CUT;
V8 = ABS(E); Manipulating.
V9 = E**2;

V1g = (VB8/XI)**2;

V1l = ABS(E/XI);

V12 = (XI-LAGXI)**2;

V13 = ABS (E/LAGXI);

V14 = ABS ((XI-LAGXI)/LAGXI);
V15 = ABS (E);

V16 = ABS (XI-LAGXI);

V17 = (E/LAGXI)**2;

V18 = ((XI-LAGXI)/LAGXI)**2;
SUMS{1,J,1} + V8; Summing.
SUMS{1,J,2} + V9;

SUMS{I,J,3} + V14;

SUMS{I,J,4} + V11;

SUMS{1,J,5} + V12;

SuUMs{1,J,6} + V13;

SUMS{I,J,7} + V14;

SUMSs{1,J,8} + V15;

SUMSs{1,J,9} + V1e6;

SuMs{I1,J,18} + V17;
SUMS{1,J,11} + V18;
IF COUNTER EQ 60 THEN DO;

MAD = SUMS{1,J,11/48; Calculating.

MSE = SUMS{I1,J,2}/48;

MSPE = SUMS{I,J,3}/49;

MAPE = SUMS{I,J,4}/48;

TH1 = SQRT(SUMS{I,J,2}/SUMS{I,J,5});

TH2 = SQRT (SUMS{I,J,8}/SUMS{I,J,9});

TH3 = SQRT(SUMS{I,J,18}/SUMS{I,J,11});

TH4 = SQRT (SUMS{I,J,6}/SUMS{I,J,7});

FILE TC7DSM; Filing.

PUT ERRTYPE N C PHI MAD MSE MAPE MSPE TH1
TH2 TH3 THA4;
END;

CUT:END;

END;

IF COUNTER = 68 THEN DO; Resetting.

COUNTER = 0;
K+1;
DO M =1 TO 4;
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DO P =1 TO 6;
DON=1TO 11;
SUMS {M,P,N} = 8;
END:
END;
END;
END;
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ROBUST REGRESSION PROGRAM - FIRST HALF. THIS PROGRAM
PERFORMS A ROBUST REGRESSION SIMILAR TO THAT DESCRIBED BY
HOLLANDER AND WOLFE (1973). THE DIFFICULTY IS THAT FOUR
REGRESSIONS ARE CONSIDERED FOR EACH ADVANCED OBSERVATION,
ONE USING THE LAST THREE OBSERVATIONS, ONE USING THE LAST
FOUR, ETC. EACH REGRESSION DETERMINES A LINE, WITH A SLOPE
AND A POINT. EACH OF THESE FOUR LINES IS USED TO ESTIMATE
THE NEXT OBSERVATION'S VALUE, GENERATING FITTING ERRORS.
THE FIRST HALF OF THE PROGRAM CALCULATES THE PARAMETERS OF
THE LINES, USES THE LINES TO ESTIMATE ONE PERIOD AHEAD, AND
FILES THE RESULTS FOR THE SECOND HALF OF THE PROGRAM,

1 DATA NULL_;

2 INFILE SIXKC7;

3 INPUT T XI;

4 COUNTER + 1;

5 XI = XI - 20 + .5*COUNTER;

6 X = XI; Renaming.

7 L1 = LAG (X);

8 L2 = LAG2(X);

9 L3 = LAG3(X); Since no initialization
149 L4 = LAG4 (X):; is required, no computations
11 L5 = LAGS5 (X); are performed until counter
12 IF COUNTER LT 15 THEN GO TO SHORT; is equal

- 13 ARRAY LAGS{6} L5 L4 L3 L2 L1 X; to fifteen.
14 ARRAY SLOPE {15} S1-S15;
15 L = B;
16 PO I =1 TO 5; Generating the set of
17 DO J = I+l TO 6; pairwise slopes.
18 L+1;
19 SLOPE{L} = (LAGS{J} - LAGS{I})/(J-1);
29 END;
21 END;
22 ARRAY SL3{3} S13 S14 sl15; Finding the median
23 DO I =1 TO 3; of the slopes from
24 REDO = 2; the last three pts.
25 DO J =1 TO 2;
26 IF SL3{J+1} LT SL3{J} THEN DO;
27 TEMP = SL3{J};
28 SL3{J} = SL3{J+1};
29 SL3{J+1} = TEMP;
3@ REDO = 1;
31 END;
32 END;
33 IF REDO = @# THEN GO TO DONESL3;
34 END;
35 DONESL3:; The slope statistic from
36 SLOPE3 = SL3{(2}; use of the last three
37 ARRAY SL4{6} S14-S15; points.
38 DO I =1 TO 6;
39 REDO = §;
44 DO J =1 TO 5;
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IF SL4{J+1} LT SL4{J} THEN DO;
TEMP = SL4{J};
SL4{J} = SL4{J+1};
SL4{J+1} = TEMP;

REDO = 1;
END;
END;
IF REDO = @ THEN GO TO DONESL4;
END;
DONESL4: ; The slope statistic
SLOPE4 = (SL4{3} + SL4{4})/2; using four pts.

ARRAY SL5{1@} S6-S15;

DO I =1 TO 16;

REDO = @;

pOJ =1 TO 9;
IF SL5{J+1} LT SL5{J} THEN DO;

TEMP = SL5{J};
SL5{J} = SL5{J+1};
SL5{J+1} = TEMP;

REDO = 1;
END;
END;
IF REDO = @ THEN GO TO DONESLS;
END;
DONESLS5:; The slope statistic
SLOPE5 = (SL5{5} + SL5{6})/2; using five pts.

DO I = 1 TO 15;
DO J =1 TO 14;
IF SLOPE{J+l1} LT SLOPE{J} THEN DO;
TEMP = SLOPE{J};
SLOPE{J} = SLOPE{J+1};
SLOPE{J+1} = TEMP;

REDO = 1;
END;

END;

IF REDO = @ THEN GO TO DONESL6;
END;
DONESL®6: ;
SLOPE6 = (SLOPE{8}); The slope statistic
ARRAY B{4} SLOPE3-SLOPE6; using six pts.

ARRAY TEMP3{3} L2 L1 X;
DO I =1 TO 3;
REDO = #;
DO J =1 TO 2;
IF TEMP3{J+1} LT TEMP3{J} THEN DO;
TEMP = TEMP3{J};

TEMP3{J} = TEMP3{J+1}; Finding the
TEMP3{J+1} = TEMP; y-value of the
REDO = 1; point, the median of
END; the last three observations,
END;

IF REDO = 8 THEN GO TO DONE3;
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END;
DONE3:; A3 is the y-value for the
A3 = TEMP3{2}; three period
ARRAY TEMP4{4} L3 L2 L1 X; robust regression.
DO I =1 TO 4;

REDO = 8;

DO J =1 TO 3;
IF TEMP4{J+l1} LT TEMP4{J} THEN DO;
TEMP = TEMP4{J};
TEMP4{J} = TEMP4{J+1};
TEMP4{J+1} = TEMP;

REDO = 1;
END;
END;
IF REDO = @ THEN GO TO DONE4;
END;
DONE4: ;
A4 = (TEMP4{2} + TEMP4{3})/2; Point for four
ARRAY TEMP5{5} L4 L3 L2 L1 X; periods.
DO I = 1 TO 5;
REDO = 0;

DO J =1 TO 4;
IF TEMP5{J+1} LT TEMP5{J} THEN DO;
TEMP = TEMP5{J};
TEMP5{J} = TEMP5{J+1};
TEMP5{J+1} = TEMP;

REDO = 1;
END;
IF REDO = @ THEN GO TO DONES5;
END;
IF REDO = 0 THEN GO TO DONES5;
END;
DONES:; Point for five periods.

A5 = TEMP5{3};
ARRAY TEMP6{6} L5 L4 L3 L2 L1 X;
DO I =1 TO 6;
REDO = @;
DO J = 1 TO 5;
IF TEMP6{J+1} LT TEMP6{J} THEN DO;
TEMP = TEMP6{J};
TEMP6{J} = TEMP6{J+1l};
TEMP6 {J+1} = TEMP;

REDO = 1;
END;
IF REDO = @ THEN GO TO DONEG6;
END;
IF REDO = # THEN GO TO DONEG6;
END;
DONEG6: ; Point for six
A6 = (TEMP6{3} + TEMP6{4})/2; periods.

ARRAY A{4} A3-A6;
ARRAY FI{4} FI1-FI4;
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DO I =1 TO 4;
H = I+3;
FI{I} = A{I} + (H/2)*B{1};
END;
SHORT: ;
FILE RRC7;
PUT T XI FI1l-FI4;
IF COUNTER = 60 THEN COUNTER

ROBUST REGRESSION PROGRAM - SECOND HALF.
PROGRAM READS IN THE ESTIMATES AND CALCULATES THE ERROR
MEASURES FOR EACH MODEL.

WWWWWWWwWW NN EHEHEHEEHERFRFRFE
O~ WNNHEBOVOSNSNOANLEWNHNHFHFROOJOOUVEWNEHEROYOIAAU & WNDH

DATA NULL ;
INFILE RRC7;

INPUT T XI FI1-FI4;
COUNTER + 1;

ARRAY FI{4} FI1l-FI4;
ARRAY SUMS{4,11} sl1-S44;
ERRTYPE = 2;

PHI = .7;

LAGXI = LAG(XI);

DO I =1 TO 4;

N = I+2;

F = LAG(FI{I});
E = XI-F;

Vil = T;

V2 = XI;

V3 = AT;

V4 = BT;

V5 = N;

V6 = F;

V7 = E;
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Forecasts for each
observation.

Filing.

= @;

THIS HALF OF THE

File created by the

first half of the
program.

IF COUNTER LT 21 THEN GO TO CUT;

V8 = ABS(E);
V9 = E**2;

Manipulating.

Summing.

V1@ = (V8/XI)**2;

V11l = ABS(E/XI);

V12 = (XI-LAGXI)**2;

V13 = ABS (E/LAGXI);

V14 = ABS ((XI-LAGXI)/LAGXI);
V15 = ABS(E);

V16 = ABS (XI-LAGXI);

V17 = (E/LAGXI)**2;

V18 = ((XI~-LAGXI)/LAGXI)**2;
SUMS{I,1} + V8;

SUMS{I,2} + V9;

SUMS{I,3} + V18;

SUMS{I,4} + V11;

SUMS{I,5} + V12;

SUMS{I,6} + V13;
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57

59
60
61
62
63
64
65

172

SUMS{I,7} + V14;
SUMS{I,8} + V15;
SUMS{I,9} + V16;
SUMS{I,18} + V17;
SUMS{I,11} + V18;

IF COUNTER EQ 68 THEN DO;

MAD = SUMS{I,l1}/49; Calculating.
MSE = SUMS{I,2}/48;

MSPE = SUMS{I,3}/48;

MAPE = SUMS{1,4}1/48;

TH1 = SQRT(SUMS{I,2}/SUMS{I,5});

TH2 = SQRT(SUMS{I,8}/SUMS{I,%});

TH3 = SQRT(SUMS{I,18}/SUMS{I,11l});

TH4 = SQRT (SUMS{I,6}/SUMS{I,7});

FILE TC7REG; Filing.
PUT ERRTYPE N PHI MAD MSE MAPE MSPE TH1
TH2 TH3 TH4;

END;

CUT:END;

IF COUNTER = 68 THEN DO; Resetting.
COUNTER = 0;
K+1;

DOM=1TO 4;

DO N =1 TO 11;
SUMS {M,N} = 0;
END;

END;

END;
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SAMPLE PLOT PROGRAMS. THIS FIRST PROGRAM READS A SAS DATA
SET CREATED THROUGH PROC UNIVARIATE. IT THEN PLOTS THE
AVERAGE (AV), UPPER QUARTILE (QU), LOWER QUARTILE (QL),
MEDIAN (MD), MAXIMUM (MX), AND MINIMUM (MI) VALUES OVER THE
TWENTY REPLICATIONS.

1 LIBNAME STAT ' [RKANKEY.TREND]'; All trend
2 DATA DISPLAY; simulations files are in a
3 SET STAT.AR3NDM; subdirectory. This data set

has results from the
autoregressive simulation
with Phi = .3 and normal
errors when double moving
averages was used as the
technique.
4 PROC PLOT;
5 PLOT AV1*N='A' QUI*N='U"' QL1*N='L' MDI1*N='M'
6 MX1*N='G' MI1*N='S' / OVERLAY;
7 PLOT AV2*N='A' QU2*N='U' QL2*N='L*' MD2*N='M"
8 MX2*N='G' MI2*N='S' / OVERLAY;
9 PLOT AV3*N='A' QU3*N='U' QL3*N='L' MD3*N='M'
19 MX3#*N='G' MI3*N='S' / OVERLAY;
11 PLOT AV4*N='A' QU4*N='U"' QL4*N='L' MD4*N="M"'
12 MX4#*N="'G' MI4*N='S' / OVERLAY;
13 PLOT AVS5#*N='A' QUS5*N='U"' QL5*N='L"' MD5*N="M"

14 MX5*N='G' MI5*N='S' / OVERLAY;
15 PLOT AV6*N='A' QU6*N='U' QL6*N='L' MD6*N="'M'
16 MX6*N='G' MI6*N='S' / OVERLAY;
17 PLOT AV7*N='A' QU7*N='U' QL7*N='L' MD7*N='M'
18 MX7*N='G' MI7*N='S' / OVERLAY;
19 PLOT AV8*N='A' QU8*N='U' QL8*N='L' MD8*N='M'

29 MX8*N='G' MI8*N='S' / OVERLAY;
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DETAILED SIMULATION RESULTS
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APPENDIX D

SAMPLE EMPIRICAL PROGRAMS

These programs were written and run using the VMS Version of
SAS, Release 5.16. Reference SAS Institute Inc. (1985).
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PROGRAM TO READ THE DATA FROM THE M-COMPETITION DATA SET AND
CHANGE IT INTO A SAS DATA SET FOR FURTHER PROCESSING. THE
DATA WAS RECEIVED FROM PROFESSOR MAKRIDAKIS ON MS-DOS
COMPATIBLE FILES ON FLOPPY DISKS, THEN READ INTQO THE
MAINFRAME USING A CARDWARE SYSTEM. THE FORMAT OF THE DATA
WAS NOT USEFUL FOR SAS PROCESSING, SO IT HAD TO BE MODIFIED.

LIBNAME STAT ' [RKANKEY.SIX2]';

DATA STAT.S11l1;

INFILE SER11l1l;

INPUT SID / NFIT / SEASON / NOF / DUMMY;
DO I = 1 TO NFIT;

INPUT X; Key:
FITCODE = 'FIT'; SID Series I.D.

OBSNUM = I; NFIT Number of obs used for fitting
QUTPUT; SEASON identifies if nonseasonal,
END; quarterly or monthly seasonal
DO I = 1 TO NOF; _ NOF number of hold out observations

INPUT X; DUMMY a duplicate series ID
FITCODE = 'NOF'; X the series values
OBSNUM = NFIT + I; FITCODE is 'fit' for fitted values,
OUTPUT; 'nof' for hold out values, and
END; 'adj' for the seasonal indices
DO I =1 TO 12; OBSNUM is the observation number
INPUT X;
FITCODE = 'ADJ';
OBSNUM = .,;
OUTPUT;
END;

DROP DUMMY I;
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MOVING AVERAGE PROGRAM. THIS PROGRAM READS DATA FROM THE
SUBSET OF NO MONOTONIC TREND SERIES AND CALCULATES THE ONE
PERIOD AHEAD FIT MEASURES FOR MOVING AVERAGES OF LENGTH ONE
THROUGH MASIZE. EACH SERIES HAS NFIT VALUES USED FOR
FITTING AND NOF HOLDOUT VALUES. WHEN TESTED FOR MONOTONIC
TREND, THE NULL HYPOTHESIS OF NO MONOTONIC TREND COULD NOT
BE REJECTED FOR NINETEEN., THESE NINETEEN SERIES ARE IN A
SAS DATA SET NOTREND2.SSD.

1 LIBNAME STUFF '[RKANKEY.SIX2]';
2 DATA INTERIM;
3 SET STUFF.NOTRENDZ2;
4 RETAIN;
5 IF OBSNUM GT NFIT THEN GOTO NEXTORBS; Do not
6 ARRAY MA{14} MA1-MAlQ; calculate
7 ARRAY SUMS{16,6} SUM1-SUM6D; anything for the
8 IF OBSNUM = 1 THEN DO; hold out data.
9 MASIZE = 10;
19 IF NFIT/2 LT 14 THEN DO; MASIZE is equal to
11 MASIZE = CEIL(NFIT/2); ten unless the
12 END; series is short.
13 END;
14 LAGX = LAG(X); Renaming for
15 L1 = LAG(X); easier programming.
16 L2 = LAG2(X);
17 L3 = LAG3(X);
18 L4 = LAG4(X);
19 L5 = LAGS5(X);
23 L6 = LAG6(X);
21 L7 = LAG7 (X);
22 L8 = LAG8(X);
23 L9 = LAGY9 (X);
24 SUM = X;
25 MAl = SUM; Calculating the
26 SUM = SUM+L1; moving averages.
27 MA2 = SUM/2;
28 SUM = SUM+L2;
29 MA3 = SUM/3;
30 SUM = SUM+L3;
31 MA4 = SUM/4;
32 SUM = SUM+L4;
33 MA5 = SUM/5;
34 SUM = SUM+L5;
35 MA6 = SUM/6;
36 SUM = SUM+L6;
37 MA7 = SUM/7;
38 SUM = SUM+L7;
39 MA8 = SUM/8;
40 SUM = SUM+L8;
41 MA9 = SUM/9;
42 SUM = SUM+L9;
43 MAl@ = SUM/10;
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45
46
47
48
49
58
51
52
53
54
55
56
57
58
59
69
6l
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
808
81
82
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DO J = 1 TO MASIZE;

N = J;
F = LAG(MA{J}); Forecasting.
IF N GE I THEN GO TO SKIP;
E = X-F; Calculating the fit error.
V8 = ABS(E); Manipulating the error.
V9 = E**2.
V14 = (V8/X)**2;
V1il = ABS(E/X);
V12 = (X-~-LAGX)**2;
V13 = ABS (E/LAGX);
V14 = ABS ((X-LAGX)/LAGX);
V16 = ABS (X-LAGX);
V17 = (E/LAGX)**2;
V18 = ((X-LAGX)/LAGX)**2;
SUMS{J,1} + V8; Summing.
SUMS{J,2} + V9;
SUMS{J,3} + V14; Note that the use of
SUMS{J,4} + V11; eight error measures
SUMS{J,5} + V17; is discontinued. Now
SUMS{J,6} + V18; only four are used.
SKIP:;
IF OBSNUM = NFIT THEN DO;
MAD = SUMS{J,1}/(NFIT-J); Calculating the
MSE = SUMS{J,2}/(NFIT-J); error measures

MAPE = SUMS{J,4}/(NFIT-J); for the series.
TH3 SQRT (SUMS {J,5}/SUMS {J,61}) ;

FILE MATEMP1l; Filing.
PUT SID N MASIZE SEASON RSCORR NFIT

MAD MSE MAPE TH3 MA{J}:;

i

END;
END;

IF OBSNUM = NFIT THEN DO; Resetting for the
DOM =1 TO 18; next series.
DON=1TO 6; Each series starts
SUMS{M,N} = @; with OBSNUM = 1, but
END; with NFIT equal to the
END; number of fitted values in the
END; new series.

NEXTOBS: ;



EXPONENTIAL AVERAGE PROGRAM.

ERROR MEASURES BY SERIES OVER
THE SMOOTHING CONSTANT VARIES
OF .8#5. RESULTS ARE FILED SO
CAN IDENTIFY THE BEST FITTING

203

THIS PROGRAM CALCULATES THE
THE NO MONOTONIC TREND SUBSET.
FROM ZERO TO ONE BY INCREMENTS
THAT A LATER SEARCH PROGRAM
SMOOTHING CONSTANTS FOR EACH

SERIES FOR EACH OF THE FOUR ERROR MEASURES (MAD, MSE,
THEIL'S U) PRIOR TO FORECASTING.

MAPE,

1 LIBNAME RDK '[RKANKEY.SIX2]':

2 DATA NULL ;

3 SET RDK.NOTREND2;

4 IF OBSNUM GT NFIT THEN GO TO NEXTOBS;

5 RETAIN;

6 ARRAY EX{21} EX1-EX21;

7 ARRAY SUMS{21,6} S1-S126;

8 LAGX = LAG (X);

9 IF OBSNUM = 1 THEN DO;
1ag INFILE EASTART; Used the average of the
11 INPUT SID XBAR; first six observations
12 END; of each series to
13 DO J =1 TO 21; initialize.
14 C = (J-1)*.05; Smoothing constants from
15 IF OBSNUM = 1 THEN DO; zero to one by .05.
16 EX8 = XBAR;
17 EX{J} = C*X + (1-C)*EX0;
18 END;
19 IF OBSNUM GT 1 THEN DO;

20 EX{J} = C*X + (1-C)*EX{J};
21 END;

22 F = LAG(EX{J});

23 IF OBSNUM = 1 THEN GO TO SKIP; There was no
24 E =X - F; forecast before
25 V8 = ABS(E); time period 2.
26 V9 = E**2;,

27 V1l = ABS(E/X); Note that many of the
28 V17 = (E/LAGX)**2; unnecessary V variables
29 V18 = ((X-LAGX)/LAGX)**2; have been dropped.
39 SUMS{J,1} + V8;

31 SUMS{J,2} + V9; Summing.
32 SUMS{J,3} + V11;

33 SUMS{J,4} + V17;

34 SUMS{J,5} + V18;
35 IF OBSNUM = NFIT THEN DO;

36 MAD = SUMS{J,1}/(NFIT-1); Calculating.
37 MSE = SUMS{J,2}/(NFIT-1);

38 MAPE = SUMS{J,3}/(NFIT-1);

39 TH3 = SQRT(SUMS{J,4}/SUMS{J,51});
49 FILE EAMEAS; Filing.
41 PUT SID C MAD MSE MAPE TH3 EX{J}:;

42 END;
43 SKIP:;
44 END;



45
46
47
48
49
50
51
52

IF OBSNUM = NFIT THEN DO;

DO M =1 TO 21;
DON =1 TO 6;
SUMS {M,N} = 8;
END;
END;
END;
NEXTOBS: ;

Reset for

284

the next
series.



205

RUNNING MEDIAN PROGRAM. THIS PROGRAM DEVELOPS THE FITTING
MEASURES FOR EACH OF THE NO MONOTONIC TREND SERIES WHEN THE
TECHNIQUE OF RUNNING MEDIANS IS APPLIED. RUNNING MEDIANS OF
LENGTH ONE THROUGH SIX ARE CONSIDERED. RESULTS ARE FILED
FOR A LATER SEARCH PROGRAM PRIOR TO FORECASTING VALUES OF
THE HOLD OUT DATA.

1 LIBNAME STUFF '[RKANKEY.SIX2]':;
2 DATA _NULL ;
3 SET STUFF.NOTREND2;
4 ARRAY SUMS{6,5} S1-s30;
5 XI = X;
6 LAGXI = LAG(XI);
7 LAGX = LAG(X):;
8 L1=LAGX; Renaming.
9 L2=LAG2 (X)
10 L3=LAG3(X);
11 L4=LAG4 (X);
12 L5=LAG5 (X);
13 IF OBSNUM GT NFIT THEN GOTO NEXTOBS;
14 ARRAY TEMP3{3} X L1 L2;
15 ARRAY TEMP4{4} X L1 L2 L3;
16 ARRAY TEMP5{5} X L1 L2 L3 L4;
17 ARRAY TEMP6{6} X L1 L2 L3 L4 L5;
18 RM1 = XI; Finding the running
19 RM2 = (XI+Ll)/2; medians.
29 DO H=1 TO 3;
21 MORE=@;
22 DO K =1 TO 2;
23 IF TEMP3{K+l1l} LT TEMP3{K} THEN DO;
24 TEMP = TEMP3{K};
25 TEMP3{K} = TEMP3{K+l};
26 TEMP3{K+1l} = TEMP;
27 MORE = 1; Using a bubble
28 END; sort for those of
29 END; length three or more.
30 IF MORE = @ THEN GO TO DONE3;
31 END;
32 DONE3:;
33 RM3 = TEMP3{2};
34 DO H =1 TO 4;
35 MORE = 0;
- 36 DO I =1 TO 3;
37 IF TEMP4{K+1} LT TEMP4{K} THEN DO;
38 TEMP = TEMP4{K};
39 TEMP4{K} = TEMP4{K+l};
49 TEMP4 {K+1} = TEMP;
41 MORE = 1;
42 END;
43 END;
44 IF MORE = @ THEN GO TO DONE4;

45 END;
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47
48
49
508
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
79
71

73
74
75
76
717
78
79
80
81
82
83
84
85
86
87
88
89
98
91
92
93
94
95
96
97

DONE4:;

RM4 = (TEMP4{2} + TEMP4{3})/2;
DOH =1 TO 5;

MORE = @;

DO K = 1 TO 4;
IF TEMP5{K+1} LT TEMP5{K} THEN DO
TEMP = TEMPS5{K};
TEMP5{K} = TEMPS5{K+1};
TEMP5{K+1} = TEMP;

-e

MORE = 1;
END;
END;
IF MORE = 0§ THEN GO TO DONES5;
END;
DONES5: ;

RM5 = TEMP5{3};
DO H =1 TO 6;
MORE = 0;
DO K =1 TO 5;
IF TEMP6{K+1} LT TEMP6{K} THEN DO;
TEMP = TEMP6{K};
TEMP6 {K} = TEMP6 {K+1};
TEMP6 {K+1} = TEMP;
MORE = 1;
END;
END;
IF MORE = @ THEN GO TO DONES6;
END;
DONEG6: ;
RM6 = (TEMP6{3} + TEMP6{4})/2;
ARRAY RM{6} RM1 RM2 RM3 RM4 RM5 RM6;
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DO J=1 TO 6; The forecast is the most
F = LAG(RM{J}); recent running median of
IF OBSNUM LT J+1 THEN GO TO CUT; the right
E = XI-F; length.
V8 = ABS (E);

V9 = E**2; Manipulating.
V1l = ABS(E/XI);
V17 = (E/LAGXI)**2;
V18 = ((XI-LAGXI)/LAGXI)**2;
SUMS{J,1} + V8;
SUMS{J,2} + V9; Summing.
SUMS{J,3} + V11;
SUMS{J, 4} + V17;
SUMS{J,5} + V18;
IF OBSNUM EQ NFIT THEN DO;
MAD = SUMS{J,l}/(NFIT-J); Calculating
MSE = SUMS{J,2}/(NFIT-J); for the series.
MAPE = SUMS{J,3}/(NFIT-J);
TH3 = SQRT(SUMS{J,4}/SUMS{J,5}):
FILE RMRES; Filing.

PUT SID J MAD MSE MAPE TH3 RM{J};



98

99
100
101
12
103
104
185
196
187

END;
CUT:END;

IF OBSNUM = NFIT THEN

DO M =1 TO 6;
DO N =1 TO 5;
SUMS{M,N} = @
END;
END;
END;
NEXTOBS: ;

.
!

DO;
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Resetting for
the next series.
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THIS PROGRAM CONSIDERS MEDIANS
FROM LENGTH ONE THROUGH SIX, AND SMOOTHING CONSTANTS OF .81,
.85 TO .95 BY .85, AND .99. 1IT CAN BE VERY STABLE (LARGE
LENGTH MEDIANS AND SMALL SMOOTHING CONSTANT) OR VERY
RESPONSIVE (SHORT LENGTH MEDIANS AND A LARGE SMOOTHING
CONSTANT). RESULTS ARE FILED AND USED BY A LATER SEARCH
PROGRAM FOR THE IDENTIFICATION OF THE BEST FITTING
COMBINATION OF LENGTH AND SMOOTHING CONSTANT FOR EACH SERIES
FOR EACH ERROR MEASURE.

SMOOTHED MEDIAN PROGRAM.

1 LIBNAME STUFF '[RKANKEY.SIX2]';

2 DATA _NULL_;

3 SET STUFF.NOTREND2;

4 RETAIN;

5 ARRAY SUMS{6,21,5} Ss1l-s634;

6 XJ = X;

7 LAGX = LAG(X):;

8 L1=LAGX; Renaming.
9 L2=LAG2(X);
19 L3=LAG3 (X):;
11 L4=LAG4 (X);
12 L5=LAG5(X) ;
13 IF OBSNUM GT NFIT THEN GO TO NEXTOBS;
14 ARRAY TEMP3{3} X L1 L2;

15 ARRAY TEMP4{4} X L1 L2 L3;

16 ARRAY TEMP5{5} X L1 L2 L3 L4;

17 ARRAY TEMP6{6} X L1 L2 L3 L4 L5;
18 RM1 = X;

19 RM2 = (X+LAGX)/2; Developing the
20 DO H=1 TO 3; running medians.
21 MORE=0;

22 DO J =1 TO 2;

23 IF TEMP3{J+1} LT TEMP3{J} THEN DO;

24 TEMP = TEMP3{J};

25 TEMP3{J} = TEMP3{J+1};

26 TEMP3{J+1} = TEMP;

27 MORE = 1; Several bubble
28 END; sorts.
29 END;

30 IF MORE = § THEN GO TO DONE3;

31 END;

32 DONE3:;

33 RM3 = TEMP3{2};

34 DO H =1 TO 4;

35 MORE = @;

36 DO J =1 TO 3;

37 IF TEMP4{J+l1} LT TEMP4{J} THEN DO;

38 TEMP = TEMP4{J};

39 TEMP4{J} = TEMP4{J+1};

40 TEMP4{J+1} = TEMP;

41 MORE = 1;

42 END;
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45
46
47
48
49
50

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

87
88

90
91
92
93
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END;
IF MORE = # THEN GO TO DONE4;
END;.
DONE4: ;
RM4 = (TEMP4{2} + TEMP4{3})/2;
DOH =1TO 5;
MORE = @;
DO J =1 TO 4;
IF TEMP5{J+1} LT TEMP5{J} THEN DO;
TEMP = TEMP5{J};
TEMP5{J} = TEMP5{J+1l};
TEMP5{J+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = @ THEN GO TO DONES5;
END;
DONES5: ;

RM5 = TEMP5{3};

DO H=1TO 6;

MORE = 0;

DO J =1 TO 5;

IF TEMP6{J+1} LT TEMP6{J} THEN DO;
TEMP = TEMP6{J};
TEMP6{J} = TEMP6{J+1l};
TEMP6{J+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = 0 THEN GO TO DONEG6;
END; Running medians are all
DONEG6: ; calculated, place them in
RM6 = (TEMP6{3} + TEMP6{4})/2; an array.

ARRAY RM{6} RM1 RM2 RM3 RM4 RM5 RM6;
LAGXJ = LAG(XJ);

ARRAY SM{6,21} SM1-SM126; Six lengths of
DOJ =1 TO 6; medians are considered
DO K = 1 TO 21; and 21 smoothing constants
C = (K-1)/28; so 126 models are
IF C = ¢§ THEN C = .01; considered.

IF C =1 THEN C = .99;

IF OBSNUM LT J THEN SM{J,K}
IF OBSNUM EQ J THEN SM{J,K}
IF OBSNUM GT J THEN SM{J,K}

XI:; Initial-
RM{J}; izing.
C*RM{J} +

(1-C)*sM{J,K};

F = LAG(SM{J,K});
IF OBSNUM LE J THEN GO TO CUT;

E = XJ - F; Manipulating.
V8 = ABS (E);
V9 = E**2;

V11l = ABS (E/XJ);
V17 = (E/LAGXJ) **2;



94

95

96

97

98

99
100
191
182
1e3
134
185
186
187
148
189
116
111
112
113
114
115
116
117
118
119
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V18 = ((XJ-LAGXJ)/LAGXJ)**2;
SUMS{J,K,1} + V8; Summing.
SUMS {J,K,2} + V9;
SUMS{J,K,3} + V11;
SUMS{J,K,4} + V17;
SUMS{J,K,5} + V18;
IF OBSNUM = NFIT THEN DO;
MAD = SUMS{J,K,1}/(NFIT-J); Calculating.
MSE = SUMS{J,K,2}/(NFIT-J);
MAPE = SUMS{J,K,3}/(NFIT-J);
TH3 = SQRT(SUMS{J,K,4}/SUMS{J,K,5});

FILE SMMEAS; Filing.
PUT SID C J MAD MSE MAPE TH3 SM{J,K};
END;
CUT:END;
END;
IF OBSNUM = NFIT THEN DO; Resetting.

DO J =1 TO 6;
DO K =1 TO 21;
DO N =1 TO 5;
SUMS{J,K,N} = @;
END;
END;
END;
END;
NEXTOBS: ;
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WALSH AVERAGE PROGRAM - FIRST HALF, THIS PART OF THE
PROGRAM CALCULATES THE WALSH AVERAGES AND FILES THEM FOR

LATER USE.

HFRIYWOIONUL s LD

b

LIBNAME KANK '[RKANKEY.SIX2]';

DATA _NULL_; Uses the no monotonic
SET KANK.NOTRENDZ2; trend data.
IF OBSNUM GT NFIT THEN GO TO NEXTOBS;
Wl = X;
W2 = LAG(X): Renaming.
W3 = LAG2(X);
W4 = LAG3(X):
W5 = LAG4 (X);
W6 = LAGS5(X);
WAl = @; WA2 = 0; WA3 = @; WA4 = @; WAS = ;
WA6 = 0;

ARRAY VALUES{6} W1-W6;
ARRAY 7{6,6} z1-236;
ARRAY ORDERING{21} UNORD1-UNORD21;
ARRAY WAL{6} WALl-WAG6;
DO J = 1 TO 6;
DO K = J TO 6;

Zz{J,K} = (VALUES{J} + VALUES{K}):
END;
END; This program uses Walsh
WAL{l} = Wl; averages of length one
WAL{2} = (W1l4+Ww2)/2; through six.

IF OBSNUM EQ 1 THEN WAL{2} = 8;
DO N =3 TO 6 BY 1;
OLDK=1;
DO J =1 TO N;
DO K = J TO N;
ORDERING{OLDK} = Z{J,K};
OLDK+1;
END;
END;
IF OBSNUM LT N THEN GO TO PLUSDAT;

IF N EQ 3 THEN MAX = 6;

IF N EQ 4 THEN MAX = 10;
IF N EQ 5 THEN MAX = 15;
IF N EQ 6 THEN MAX = 21;

DO L =1 TO MAX;
MORE 0; Bubble sort.
DO J 1 TO (MAX-1);
IF ORDERING{J+1} LT ORDERING{J} THEN DO;
TEMP = ORDERING{J};
ORDERING{J} = ORDERING{J+1l};
ORDERING {J+1} = TEMP;:
MORE = 1;
END;
END;
IF MORE EQ 0 THEN GO TO NEXTN:
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END;
NEXTN: IF MOD(MAX,2) EQ 1 THEN WAL{N} =
ORDERING{ (OLDK+1)/2}/2;
ELSE WAL{N} = (ORDERING{OLDK/2} +
ORDERING{OLDK/2+1}) /4;
END;
PLUSDAT: ;
FILE WAVGSNF; Filing.
PUT SID X WAl-WAG6;
NEXTOBS: ;
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WALSH AVERAGE PROGRAM - SECOND HALF. THIS HALF OF THE
PROGRAM READS IN THE WALSH AVERAGES, CALCULATES THE FITTING
ERROR MEASURES BY SERIES, AND FILES THE RESULTS.

WoOoJaUlse WK

LIBNAME KANK '[RKANKEY.SIX2]1';
DATA _NULL_;
SET KANK.NOTRENDZ2;
IF OBSNUM GT NFIT THEN GO TO NEXTOBS;
INFILE WAVGSNF;
INPUT SID2 X2 WAl WA2 WA3 WA4 WAS5 WA6;
XI = X;
ARRAY WAL{6} WAl WA2 WA3 WA4 WAS WAG6;
ARRAY SUMS{6,5} S1-534;
IF OBSNUM EQ 1 THEN DO; Setting SUMS
DO Q =1 TO 6; equal to zero.
DO R =1 TO 5;
SUMS {Q,R} = @;
END;
END;
END;
LAGXI = LAG(XI);
DO J=1 TO 6;

F = LAG(WAL{J}); Forecasts.
N = J;

E = XI-F;

IF OBSNUM LT J+1 THEN GO TO CUT:

V8 = ABS(E); Manipulating.
V9 = E**2.,

V11 = ABS(E/XI);

V17 = (E/LAGXI) **2;

V18 = ((XI-LAGXI)/LAGXI)**2;

SUMS{J,1} + V8;
SUMS{J,2} + V9; Summing.
SUMS{J,3} + V11;
SUMS{J,4} + V17;
SUMs{J,5} + V18;
IF OBSNUM EQ NFIT THEN DO; Calculating.
MAD SUMS{J,1}/(NFIT-J);
MSE SUMS{J,2}/(NFIT-J);
MAPE = SUMS{J,3}/(NFIT-J);
TH3 SQRT (SUMS{J,4}/SUMS{J,5});
FILE TEMPWA; Filing.
PUT SID J MAD MSE MAPE TH3 WAL{J};
END;
CUT:END;
NEXTOBS: ;



FITTING PROGRAM TO SELECT BEST PARAMETER FOR EXPONENTIAL

SMOOTHING.

EXPONENTIAL SMOOTHING PROGRAM AND FINDS THE SMOOTHING
CONSTANTS THAT YIELDED THE BEST FIT FOR MAD, MSE, MAPE,

THEIL'S U.
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THIS PROGRAM TAKES THE COMPLETE RESULTS FROM THE

LIBNAME STUFF '[RKANKEY.SIX2]';
DATA ONE;
INFILE MEAS111D;

INPUT J SID C NFIT MAD MSE MAPE MSPE TH3;

RETAIN;

IF J = 1 THEN DO;
MSEMIN = MSE; MSEC = C;
MADMIN = MAD; MADC = C;
MAPEMIN = MAPE; MAPEC = C;
MSPEMIN = MSPE; MSPEC = C;
TH3C = C; TH3MIN = TH3;
END;

ELSE DO;

IF MSE LT MSEMIN THEN DO;
MSEMIN = MSE; MSEC = C
END;
IF MAD LT MADMIN THEN DO;
MADMIN = MAD; MADC =
END;
IF MAPE LT MAPEMIN THEN DO;
MAPEMIN = MAPE; MAPEC
END;
IF MSPE LT MSPEMIN THEN DO;
MSPEMIN = MSPE; MSPEC
END;
IF TH3 LT TH3MIN THEN DO;
TH3MIN = TH3; TH3C = C
END;
END;
IF J = 99 THEN DO;
FILE PARAMSD;

END;

.
1

C

-
1

.
1

AND

Filing best constants.
PUT SID MADC MSEC MAPEC MSPEC TH3C;



FITTING PROGRAM TO SELECT THE BEST PARAMETER FOR RUNNING
MEDIANS.

THIS PROGRAM FINDS THE BEST LENGTHS FOR EACH
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SERIES CONSIDERED AND FOR EACH OF THE FOUR ERROR MEASURES.

HF&ROOJAUT S WN

=

LIBNAME STUFF '[RKANKEY.SIX2]';

DATA ONE;

INFILE RMRES;

INPUT SID N MAD MSE MAPE TH3 FORECAST;

RETAIN;

IF N = 1 THEN DO;
MSEMIN = MSE; MSEN N
MADMIN = MAD; MADN N
MAPEMIN = MAPE; MAPEN = N;
TH3N = N; TH3MIN = TH3;
FMAD=FORECAST; FMSE=FORECAST;
FMAPE=FORECAST; FTH3=FORECAST;
END; ‘

ELSE DO;

IF MSE LT MSEMIN THEN DO;
MSEMIN = MSE; MSEN = N;
FMSE = FORECAST;

END;

IF MAD LT MADMIN THEN DO;
MADMIN = MAD; MADN = N;
FMAD = FORECAST;

END;

IF MAPE LT MAPEMIN THEN DO;
MAPEMIN = MAPE; MAPEN = N;
FMAPE = FORECAST;

END;

IF TH3 LT TH3MIN THEN DO;
TH3MIN = TH3; TH3N = N;
FTH3 = FORECAST;

~e we

[}

END;
END; This program files the
IF N = 6 THEN DO; best lengths and the
FILE RMTEMP1; best fit measure values.

PUT SID MADN MSEN MAPEN TH3N FMAD FMSE
FMAPE FTH3 MADMIN MSEMIN MAPEMIN
TH3MIN;
END;
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PROGRAM TO CALCULATE FORECASTING ERRORS OVER HORIZONS ONE
THROUGH SIX USING THE BEST MAPE MODEL FOR EACH TECHNIQUE
OVER EACH SERIES, AND TO ACCUMULATE AND REPORT THE
FORECASTING MAPE

NG W

19
11
12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

41
42

44
45
46

LIBNAME
DATA ONE

SET KANK.BYSIDS8;

KANK

.
[

' [RKANKEY.SIX2]';

ARRAY DEVS{5,6} DEVM1-DEVM6 DEVEl-DEVE6 DEVRI1-
DEVR6 DEVS1-DEVS6 DEVW1-DEVW6;

ARRAY PD{5,6} PD1~PD38;

ARRAY MAPEFIT{5} MAPEMFIT MAPEEFIT MAPERFIT

MAPESFIT MAPEWFIT;

ARRAY XVALS{7} XNFIT XNOF1-XNOF6;
ARRAY SUMPDEV{5,6} SUM1-SUM34;
ARRAY SMAPEFIT{5} SMAPE1-SMAPES;
ARRAY AMAPEF{5,6} AMAPEF1-AMAPEF34;
ARRAY AMAPEFT{5} AMAPEFT1-AMAPEFTS5;

DEVM1 = XNOF1l -
DEVM2 = XNOF2 -
DEVM3 = XNOF3 -
DEVM4 = XNOF4 -
DEVM5 = XNOF5 -
DEVM6 = XNOF6 -
DEVEl = XNOF1l -
DEVE2 = XNOF2 -
DEVE3 = XNOF3 -
DEVE4 = XNOF4 -
DEVE5 = XNOF5 -
DEVE6 = XNOF6 -
DEVR1 = XNOF1l -
DEVR2 = XNOF2 -
DEVR3 = XNOF3 -
DEVR4 = XNOF4 -~
DEVR5 = XNOF5 -
DEVR6 = XNOF6 -
DEVS1l = XNOF1l -
DEVS2 = XNOF2 -
DEVS3 = XNOF3 -
DEVS4 = XNOF4 -~
DEVS5 = XNOF5 -~
DEVS6 = XNOF6 -~
DEVW1 = XNOF1l -
DEVW2 = XNOF2 -~
DEVW3 = XNOF3 -
DEVW4 = XNOF4 -
DEVW5 = XNOF5 -
DEVW6 = XNOF6 -
DO J =1 TO 5;
SMAPEFIT{J} +
DO K = 1 TO 6;

FMMAPE ;
FMMAPE;
FMMAPE ;
FMMAPE ;
FMMAPE ;
FMMAPE ;
FEMAPE;
FEMAPE;
FEMAPE;
FEMAPE;
FEMAPE;
FEMAPE;
FRMAPE ;
FRMAPE ;
FRMAPE;
FRMAPE;
FRMAPE ;
FRMAPE;
FSMAPE;
FSMAPE;
FSMAPE;
FSMAPE;
FSMAPE;
FSMAPE;
FWMAPE ;
FWMAPE;
FWMAPE ;
FWMAPE;
FWMAPE ;
FWMAPE ;

MAPEFIT{J};

Deviations from use
of moving average for
horizons 1 through 6.

Deviations from use

of exponential
smoothing for horizons
1 through 6.

Deviations using
running medians.

Deviations using
smoothed medians.

Deviations using
Walsh averages.

Summing the fitting
MAPEs.

PD{J,K} = ABS((DEVS{J,K})/(XVALS{K+1}));
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51
52
53
54
55
56
57

58
59
60
6l
62
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SUMPDEV{J,K} + PD{J,K}; Calculating and
END; summing the forecasting
END; MAPESs.

IF SID LT 994 THEN GO TO NEXTOBS:;

DO J =1 TO 5;
AMAPEFT{J} = SMAPEFIT{J}/19; Avg fitting MAPE,.
DO K =1 TO 6;

AMAPEF {J,K} = SUMPDEV{J,K}/19; Average
END; forecasting
END; MAPEs.
PUT AMAPEFT1 AMAPEF1-AMAPEF6; Average

fitting MAPE, and average forecasting MAPE
for horizons one through six using moving
averages. PUT into the log.

PUT AMAPEFT2 AMAPEF7-AMAPEF12; Ex. Smoothing.
PUT AMAPEFT3 AMAPEF13-AMAPEF1l8; Running Medians.
PUT AMAPEFT4 AMAPEF19-AMAPEF24; Smoothed Mds.
PUT AMAPEFT5 AMAPEF25-AMAPEF30; Walsh Avgs.

NEXTOBS: ;
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PROGRAM TO CALCULATE THE MEDIANS OF THE THEIL'S U VALUES.
SINCE THEIL'S U VALUES WERE NOT SYMMETRIC, RESULTS BY
THEIL'S U WERE FELT TO BE BEST DISPLAYED THROUGH USE OF THE
MEDIAN THEIL'S U VALUES RATHER THAN THE AVERAGES.

VAR VAR1-VAR30;

OUTPUT OUT=KANK.Z5MEDRES Ql1=LOWER1-LOWER34d
MEDIAN=MED1-MED3@ Q3=UPPER1-UPPER3@
MAX=MAX1-MAX34;

1 LIBNAME KANK ' [RKANKEY.SIX2]':

2 DATA ONE;

3 INFILE TH3CK;

4 INPUT VAR1-VAR34d; Six horizon values times
5 PROC UNIVARIATE NOPRINT; five techniques.
6

7

8
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DOUBLE MOVING AVERAGE PROGRAM -~ FIRST HALF. THIS PROGRAM IS
APPLIED TO THE 92 SERIES THAT DID TEST TO DEMONSTRATE
MONOTONIC TREND OVER THE FIT DATA. THESE SERIES ARE ALL
STORED IN THE FILE TREND2.SSD. THIS HALF OF THE PROGRAM
CALCULATES THE SINGLE AND DOUBLE MOVING AVERAGES FOR EACH
APPROPRIATE OBSERVATION OF EACH SERIES AND FILES THEM.

WCOJIAUNd W=

LIBNAME STAT ' (RKANKEY.SIX2]';
LIBNAME TREND '[RKANKEY.SIX2T]';

DATA NULL_;

SET STAT.TREND2;

IF OBSNUM GT NFIT THEN GO TO NEXTOBS;

ARRAY MA{10} MA1-MAlQ; Moving averages.
ARRAY DMA{10} DMA1-DMAld; Double moving avgs.
ARRAY FC{l@0} FCl-FCl@; Forecasts.

ARRAY SUMS{18,5} S1-S50;
LAGX = LAG(X);

L1 = LAGX;

L2 = LAG2(X); Renaming.
L3 = LAG3(X);

L4 = LAG4 (X);

L5 = LAGS5(X);

L6 = LAG6 (X);

L7 = LAG7(X);

L8 = LAG8(X);

L9 = LAGY(X);

SUM = X;

MA1l = SUM;

SUM = SUM+L1; Calculating the
MA2 = SUM/2; single moving
SUM = SUM+L2; averages,
MA3 = SUM/3;

SUM = SUM+L3;

MA4 = SUM/4;

SUM = SUM+L4;

MA5 = SUM/5;

SUM = SUM+L5;

MA6 = SUM/6;

SUM = SUM+L6;

MA7 = SUM/7;

SUM = SUM+L7;

MA8 = SUM/8;

SUM = SUM+LS;

MA9 = SUM/9;

SUM = SUM+LI;

MAlQ = SUM/14;

SUM = 0;

DMAl = MA{l}; Calculating the double moving
DMA2 = (MA{2} + LAG(MA{2}))/2; averages.
DMA3 = (MA{3} + LAG(MA{3}) + LAG2(MA{3}))/3;
DMA4 = (MA{4}+LAG(MA{4})+ LAG2(MA{4}) +



45
46

47
48

49
58

51
52
53
54

55
56
57
58

59
60
61
62
63

65
66
67
68
69
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LAG3 (MA{41}))/4;
(MA{5} + LAG(MA{5}) + LAG2(MA{5}) +
LAG3 (MA{5}) + LAG4 (MA{5}))/5;
(MA{6} + LAG(MA{6}) + LAG2(MA{6}) +
LAG3(MA{6}) + LAG4(MA{6}) +
LAG5 (MA{6}))/6;
(MA{7} + LAG(MA{7}) + LAG2(MA{7}) +
LAG3(MA{7}) + LAG4(MA{7}) +
LAGS (MA{7}) + LAG6 (MA{7}))/7;
(MA{8} + LAG(MA{8}) + LAG2(MA{8}) +
LAG3(MA{8}) + LAG4(MA{8}) + LAG5(MA{8})
+ LAG6 (MA{8}) + LAG7(MA{8}))/8;
(MA{9} + LAG(MA{9}) + LAG2(MA{9}) +
LAG3(MA{9}) + LAG4(MA{9}) + LAGS(MA{9})
+ LAG6(MA{9}) + LAG7(MA{9})+
LAG8 (MA{9}))/9;
DMAld = (MA{106} + LAG(MA{10}) + LAG2(MA{19}) +
LAG3(MA{10}) + LAG4(MA{1@}) +
LAG5 (MA{18}) + LAG6(MA{18}) +
LAG7(MA{108}) + LAG8(MA{18}) +
LAG9 (MA{18})) / 18;
DO K =1 TO 10;

DMAS

DMA6

DMA7

DMAS

DMA9

IF OBSNUM LT K THEN DO; Cleaning up some
MA{K} = O; missing values for
END; the next program.

IF OBSNUM LT 2*K-1 THEN DO;
DMA{K} = 8;
END;
END;
FILE MOVAVGS; Filing.
PUT SID OBSNUM X MA1-MAld DMA1-DMAlQ;
NEXTOBS:;
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DOUBLE MOVING AVERAGE PROGRAM - SECOND HALF. THIS PART OF
THE PROGRAM READS IN THE AVERAGES, CALCULATES THE
APPROPRIATE MAXIMUM LENGTH AVERAGE TO USE, THEN FINDS THE
FITTING ERROR MEASURE RESULTS FOR MOVING AVERAGES OF LENGTH
ONE THROUGH TEN.
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LIBNAME STAT '[RKANKEY.SIX2]';
LIBNAME TREND ' [RKANKEY.SIX2T]':;
DATA NULL ;

SET STAT.TREND2; Reading the raw data.
IF OBSNUM GT NFIT THEN GO TO NEXTOBS;
INFILE MOVAVGS; Reading the averages.

INPUT SID2 OBSNUM2 X2 MA1-MAl§ DMA1-DMAl#®;

RETAIN;

ARRAY MA{10} MA1-MAlQ; Setting up the

ARRAY DMA{14} DMA1-DMAl@; arrays.

ARRAY FC{106} FCl-FCl9;

ARRAY SUMS{14,5} Ss1l-S5#8;

IF OBSNUM = 1 THEN DO; Determining the
DMASIZE = 14; desired maximum length
IF NFIT/2 LT 20 THEN DO; averages to be
LENGTH = CEIL(NFIT/2); considered.
DMASIZE = CEIL (LENGTH/2);

END;

END;

LAGX LAG (X) ;

DO J 1l TO DMASIZE;

N =J;

IF OBSNUM LT 2*N-1 THEN DO; Getting started.
AT = @;
BT = @;
GO TO SKIP;

END;

IF N EQ 1 THEN DO;
AT = X;

BT = X-LAGX;

GO TO SKIP;

END;

AT = 2*MA{J} - DMA{J}; Initializing.

BT = (2/(N-1))*(MA{J}-DMA{J});

SKIP:;

FC{J} = AT + BT;

F = LAG(FC{J}): Forecasting.

IF N EQ 1 THEN DO;

IF OBSNUM LE 2 THEN GO TO CUT;

[T}

END;
ELSE IF OBSNUM LT 2*J THEN GO TO CUT;
E = X-F; Manipulating the
V8 = ABS (E): error term.
V9 = E**2;
V1l ABS (E/X);

V17 = (E/LAGX)**2;
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V18 = ((X-LAGX)/LAGX)**2;
SUMS{J,1} + V8; Summing over the
SUMS{J,2} + V9; series.
SUMS{J,3} + V11l;
SUMS{J,4} + V17;
SUMS{J,5} + V18;
IF OBSNUM EQ NFIT THEN DO;
IF N = 1 THEN DEN = NFIT-2*N;

ELSE DEN = NFIT-2*N+1; Calculating
MAD = SUMS{J,1l}/DEN; series error
MSE = SUMS{J,2}/DEN; measures.

MAPE = SUMS{J,3}/DEN;

TH3 = SQRT(SUMS{J,4}/SUMS{J,51});
FILE RESDMA; Filing.
PUT SID N NFIT DMASIZE MAD MSE MAPE TH3
AT BT;
END;
CUT:END;
IF OBSNUM EQ NFIT THEN DO; Resetting for
DOM =1 TO 18; for the next series.

DO N =1 TO 5;
SUMS{M,N} = 8;
END;
END;
END;
NEXTOBS: ;
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PROGRAM TO GET THE LEAST-SQUARES, BEST-FIT INTERCEPT AND
SLOPE OVER THE FIRST SIX OBSERVATIONS OF EACH OF THE 111
SERIES, USED TO START THE LINEAR EXPONENTIAL SMOOTHING
TECHNIQUE.

1 LIBNAME STUFF '[RKANKEY.SIX2]':

2 DATA ONE;

3 SET STUFF.DS111:;

4 IF OBSNUM GT 6 THEN GO TO RDK;

5 RETAIN;

6 Y = X; Just an implementation
7 SUMY + Y; of the least-squares,
8 SUMIY + (Y*I); best fit formulas
9 IF OBSNUM = 6 THEN DO; where the independent
19 YBAR = SUMY/6; variable values are known
11 LSBFB = (SUMIY-21*YBAR)/17.5; and constant.
12 LSBFA = YBAR - (LSBFB*3.5); For comparison
13 FILE LSBFAB; with other references, the
14 PUT SID LSBFA LSBFB; dependent variable is
15 SUMY = 0; renamed from X to Y.
16 SUMIY = 8;
17 END;

18 RDK: ;
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LINEAR EXPONENTIAL SMOOTHING PROGRAM. THIS PROGRAM
CALCULATES THE VARIOUS ERROR MEASURES ACHIEVED BY LINEAR
EXPONENTIAL SMOOTHING MODELS WITH SMOOTHING CONSTANTS OF

.01,

.95 BY .05, AND .99 OVER THE SET OF NINETY TWO

MONOTONIC TREND SERIES.
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LIBNAME STAT '[RKANKEY.SIX2]':;
LIBNAME TREND ' [RKANKEY.SIX2T]':;
DATA _NULL_;
SET STAT.TREND2;
RETAIN;
IF OBSNUM = 1 THEN DO;

ONEMORE: ;

INFILE LSBFAB; Reading in the LSBF values
INPUT SID2 LSBFA LSBFB; for initialization.
IF SID GT SID2 THEN GO TO ONEMORE; Making
END; sure the proper 92 are read.
IF OBSNUM GT NFIT THEN GO TO RDK;
ARRAY EX{21} EX1-EX21; Setting up the
ARRAY E2X {21} E2X1-E2X21; arrays.

ARRAY FA{21} F1-F21;
ARRAY SUMS{21,5} S1-S165;
LAGX = LAG(X);

DO J =1 TO 21;
C = (J=1)*.05;
IF C = § THEN C .01; Initializing
IF C = 1 THEN C .99; section.
IF OBSNUM = 1 THEN DO;
EX@ = LSBFA - ((LSBFB*(1-C))/C);
E2X0 = LSBFA - ((2*LSBFB*(1~C))/C);
EX{J} = (C*X)+(1-C)*EXH;
E2X{J} = C*EX{J} + (1-C)*E2X0Q;
END;
IF OBSNUM GT 1 THEN DO;
EX{J} = C*X + (1-C)*EX{J};
E2X{J} = C*EX{J} + (1-C)*E2X{J};
END;

AT = 2*EX{J} - E2X{J};

BT (C/(1-C))*(EX{J} - E2X{J});

FA{J} = AT + BT;

F = LAG(FA{J}); Forecasting.
IF OBSNUM = 1 THEN GO TO SKIP;

E = X~-F;

V8 = ABS(E); Manipulating the
V9 = E**2,; error term.
V1l ABS (E/X)*100;

V17 (E/LAGX) **2;
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V18 = ((X-LAGX)/LAGX) **2;

SUMS{J,1} + V8; Summing over
SUMS{J,2} + V9; the series.
SUMS {J,3} + V11;
SUMS{J,4} + V17;
SUMS{J,5} + V18;
IF OBSNUM = NFIT THEN DO; Calculating.

MAD = SUMS{J,1}/(NFIT-1);
MSE = SUMS{J,2}/(NFIT-1);
MAPE = SUMS{J,3}/(NFIT-1);

TH3 = SQRT(SUMS{J,4}/SUMS{J,5}):;
FILE DEARES; Filing.
PUT J SID C RSCORR NFIT MAD MSE MAPE TH3
AT BT;
END;
SKIP:;
END;
IF OBSNUM = NFIT THEN DO; Resetting for
DOM =1 TO 21; the next series.

DO N =1 TO 5;
SUMS{M,N} = @;
END;
END;
END;
RDK: ;
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DOUBLE RUNNING MEDIAN PROGRAM - FIRST PART., THIS PART OF
THE PROGRAM CALCULATES THE SINGLE RUNNING MEDIANS OF LENGTHS
ONE THROUGH SIX AND FILES THEM.

WOoJdAAWU S W -

LIBNAME STAT '[RKANKEY.SIX2]';

DATA _NULL_;

SET STAT.TREND2;

IF OBSNUM GT NFIT THEN GO TO NEXTOBS;

XI = X;

LAGX = LAG(X):; Renaming.
L1=LAGX;

L2=LAG2 (X);

L3=LAG3 (X);

L4=LAG4 (X);

L5=LAGS (X) ;

ARRAY TEMP3{3} X L1 L2; Setting up the
ARRAY TEMP4{4} X L1 L2 L3; arrays.
ARRAY TEMP5{5} X L1 L2 L3 L4;

ARRAY TEMP6{6} X L1 L2 L3 L4 L5;

RM1 = X; Defining/
IF OBSNUM LT 2 THEN GO TO OBSOUT; calculating
RM2 = (X+LAGX)/2; the running
IF OBSNUM LT 3 THEN GO TO OBSOUT; medians.
DO H=1 TO 3;

MORE=0;

DO I =1 TO 2;
IF TEMP3{I+1} LT TEMP3{I} THEN DO;
TEMP = TEMP3{I};

TEMP3{I} = TEMP3{I+1}; Bubble sorts for
TEMP3{I+1} = TEMP; medians of lengths
MORE = 1; three through six.
END;
END;
IF MORE = @ THEN GO TO DONE3;
END;
DONE3:;

RM3 = TEMP3{2};
IF OBSNUM LT 4 THEN GO TO OBSOUT;
DOH =1T0O 4;
MORE = @;
DO I =1 TO 3;
IF TEMP4{I+l1} LT TEMP4{I} THEN DO;
TEMP = TEMP4{I};
TEMP4{I} = TEMP4{I+1};
TEMP4 {I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = g THEN GO TO DONE4;
END;
DONE4: ;

RM4 = (TEMP4{2} + TEMP4{3})/2;
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IF OBSNUM LT 5 THEN GO TO OBSOUT;
DO H =1 TO 5;
MORE = @;
DO I = 1 TO 4;
IF TEMP5{I+l1} LT TEMP5{I} THEN DO;
TEMP = TEMP5{I};
TEMP5{I} = TEMP5{I+l};
TEMP5{I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = @ THEN GO TO DONES;
END;
DONES5: ;

RM5 = TEMP5{3};
IF OBSNUM LT 6 THEN GO TO OBSOUT;
DO H =1 TO 6;
MORE = 0;
DO I = 1 TO 5;
IF TEMP6{I+1} LT TEMP6{I} THEN DO;
TEMP = TEMP6{I}:
TEMP6{I} = TEMP6{I+l};
TEMP6 {I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = @ THEN GO TO DONEG6;
END;
DONEG6: ;
RM6 = (TEMP6{3} + TEMP6{4})/2;
OBSOUT: ;
FILE MEDIANS: Filing the

PUT SID OBSNUM XI RM1-RM6;
NEXTOBS: ;

227

medians.
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DOUBLE RUNNING MEDIANS PROGRAM - SECOND PART. THIS PART OF
THE PROGRAM READS THE SINGLE RUNNING MEDIANS, CALCULATES THE
DOUBLE RUNNING MEDIANS, AND FILES BOTH FOR LATER USE.

Woo-NaAUnd wN -

DATA _NULL_;
INFILE MEDIANS;
INPUT SID OBSNUM XI RMI1-RMI6;

RM1 = RMI1l: Renaming.
RM2 = RMI2;
RM3 = RMI3;
RM4 = RMI4;
RM5 = RMIS;
RM6 = RMIG6;

ARRAY RM{6} RMI1 RMI2 RMI3 RMI4 RMI5 RMI6;
ARRAY FC{6} FC1l-FC6;

LRM2 = LAG(RM2); Renaming,
LT1 = LAG(RM3);

LT2 = LAG2(RM3);

LF1 = LAG(RM4);

LF2 = LAG2(RM4);

LF3 = LAG3 (RM4);

LFI1 = LAG(RM5);

LFI2 = LAG2(RM5);

LFI3 = LAG3(RM5);

LFI4 = LAG4 (RM5);

LS1 = LAG(RM6);

LS2 = LAG2(RM6);

LS3 = LAG3 (RM6);

LS4 = LAG4 (RM6);

LS5 = LAGS5 (RM6);

ARRAY SC3{3} RM3 LT1 LT2; Setting up arrays
ARRAY SC4{4} RM4 LF1l-LF3; of running medians.

ARRAY SC5{5} RM5 LFI1-LFI4;
ARRAY SC6{6} RM6 LS1-LS5;

DRM1 = RM1;

IF OBSNUM LT 3 THEN GO TO SKIP;
DRM2 = (RM2+LRM2)/2;

IF OBSNUM LT 5 THEN GO TO SKIP;

poH =1 TO 3; Sorting the running
MORE = #; medians to find the
DO I =1 TO 2; double running medians.

IF SC3{I+1} LT SC3{I} THEN DO;
TEMP = SC3{I1};
SC3{I} = SC3{I+l};
SC3{I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = 8 THEN GO TO DONE3;
END; .
DONE3: ; Double running median of
DRM3 = SC3{2}; length three.
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IF OBSNUM LT 7 THEN GO TO SKIP;
DO H 1 TO 4;
MORE a;
DO I =1 TO 3;
IF SC4{I+1} LT SC4{I} THEN DO;
TEMP = SC4{1};
SC4{I} = SC4{I+1l};
SC4{I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = 8 THEN GO TO DONE4;
END;
DONE4:;

DRM4 = (SC4{2} + SC4{3})/2; DRM of length four.
IF OBSNUM LT 9 THEN GO TO SKIP;

DOH=1TO 5;
MORE = §;
DO I =1 TO 4;

IF SC5{I+1} LT SC5{I} THEN DO;
TEMP = SC5{1};
SC5{1} = SC5{1I+l};
SC5{I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = @ THEN GO TO DONES5;
END;
DONES: ;
DRM5 = SC5{3}; DRM of length five.
IF OBSNUM LT 11 THEN GO TO SKIP;
DOH =1 TO 6;
MORE = §;
DO I =1 TO 5;

IF SC6{I+l} LT SC6{I} THEN DO;
TEMP = SC6{I};
SC6{I} = SC6{I+l};
SC6{I+1} = TEMP;

MORE = 1;
END;
END;
IF MORE = § THEN GO TO DONEG®6;
END;
DONEG6: ; DRM of length
DRM6 = (SC6{3} + SC6{4})/2; six.
SKIP:;

ARRAY DRM{6} DRM1-DRM6;
DO K =1 TO 6;
IF OBSNUM LT 2*K-1 THEN DRM{K} = @;
END;
FILE MEDSALL; Filing.
PUT SID OBSNUM XI RMI1-RMI6 DRM1-DRM6;
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DOUBLE RUNNING MEDIANS PROGRAM - THIRD PART. THIS PART OF
THE PROGRAM READS THE SINGLE AND DOUBLE RUNNING MEDIANS,
MAKES THE FORECASTS, AND RECORDS THE FITTING PERFORMANCE FOR
EACH LENGTH MEDIAN BY SERIES.
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B b B R WWWWWWWWWWRNNNNNNDNNN e e
MWD HFEYONOAEWNHFROVONONBRWUNHFEFROOJAOAUT L WN S

LIBNAME STAT °'[RKANKEY.SIX2]';
DATA NULL ;

SET STAT.TREND2; Reading the raw data.
RETAIN;

IF OBSNUM GT NFIT THEN GO TO NEXTOBS;

INFILE MEDSALL; Reading the medians.

INPUT SID2 OBSNUM2 X2 RM1-RM6 DRM1~DRM6;

IF SID NE SID2 THEN STOP;

ARRAY RM{6} RM1-RM&6; Setting up
ARRAY DRM{6} DRM1-DRM6; the arrays.
ARRAY FC{6} FCl-FCé6;

ARRAY SUMS{6,5} S1-S38;

LAGX = LAG(X):;

IF OBSNUM = 1 THEN DO; Calculating the
DRMSIZE = 6; maximum length medians
IF NFIT/2 LT 12 THEN DO; to be considered.

LENGTH = CEIL(NFIT/2);
DRMSIZE = CEIL(LENGTH/2);
END;
END;
DO J=1 TO DRMSIZE;
N = J;
IF OBSNUM LT 2*N-1 THEN DO;
AT = 8;
BT = 8;
GO TO SKIP;
END;
IF N EQ 1 THEN DO;
AT X;
BT X~-LAGX; Calculating
GO TO SKIP; the line for
END; forecasting,
AT = 2*RM{J} - DRM{J}; i.e. AT and BT.
BT = (2/(N-1))*(RM{J} -DRM{J});
SKIP:;
FC{J} = AT +BT;
F = LAG(FC{J}); Forecasting.
E = X-F;
IF N EQ 1 THEN DO;
IF OBSNUM LE 2 THEN GO TO CUT;
END;
ELSE IF OBSNUM LT 2*N THEN GO TO CUT;
V8 = ABS (E);
V9 = E**2; Manipulating
V1l = ABS (E/X); the error term.
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V17 (E/LAGX) **2;

V18 ((X-LAGX) /LAGX) **2;
SUMS{J,1} + V8;

SUMS {J,2} + V9; summing over
SUMS{J,3} + V11; the series.
SUMS{J,4} + V17;
+

SUMS{J,5} v18;
IF OBSNUM NFIT THEN DO;
IF N = 1 THEN DEN = NFIT-2*N;

ELSE DEN = NFIT-2*N+1; Calculating the
MAD = SUMS{J,1l}/DEN; error measures
MSE = SUMS{J,2}/DEN; for the series.

MAPE = SUMS{J,3}/DEN;

TH3 = SQRT(SUMS{J,4}/SUMS{J,5});
FILE RESDRM; Filing.
PUT SID N DRMSIZE MAD MSE MAPE TH3 AT BT;
END;
CUT:END;
IF OBSNUM = NFIT THEN DO; Resetting for
DOM =1 TO 6; the next series.

DO N =1 TO 5;
SUMS {M,N} = @;
END;
END;
END;
NEXTOBS:;
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DOUBLE SMOOTHED MEDIAN PROGRAM. THIS PROGRAM TAKES
ADVANTAGE OF PREVIOQOUS WORK BY CALLING IN THE LSBF VALUES
FROM A PREVIOUSLY DEVELOPED FILE, AND BY CALLING IN THE
RUNNING MEDIANS THAT WERE ALSO PREVIOUSLY CALCULATED.,
SMOOTHING CONSTANTS OF .85 TO .95 BY .#5 ARE CONSIDERED.

WU & W

LIBNAME STAT '[RKANKEY.SIX2]':
LIBNAME TREND '[RKANKEY.SIX2T]';
DATA _NULL_;
SET STAT.TREND2;
RETAIN;
IF OBSNUM GT NFIT THEN GO TO NEXTOBS;
IF OBSNUM = 1 THEN DO;
ONEMORE: ;
INFILE LSBFAB;
INPUT SID3 LSBFA LSBFB;
IF SID GT SID3 THEN GO TO ONEMORE; Assures
DROP SID3; proper observations are
LENGTH = 6; used from LSBFAB.
IF NFIT/2 LT 6 THEN DO;
LENGTH CEIL (NFIT/2); Here DMASIZE refers
DMASIZE = CEIL (LENGTH/2); to the length
END; running medians considered. A
END; very short series should not be
INFILE MEDSALL; forcast with a long median.
INPUT SID2 OBSNUM2 X2 RM1-RM6 DRM1-DRM6;
IF SID NE SID2 THEN STOP;
ARRAY SUMS{6,19,5} S1-5578;
LAGX = LAG(X);
ARRAY RM{6} RM1-RMS6; Setting up
ARRAY SM{6,19} SM1-SM1l1l4; the arrays.
ARRAY DSM{6,19} DSM1-DSM114;
ARRAY FI{6,19} F1-Fl1l4;
DO K=1 to LENGTH;

N = K;
DO J =1 TO 19;
C = .05*J;
IF OBSNUM = 1 THEN DO; Initializing.

IF N = 1 THEN DO;
SM@ = LSBFA-LSBFB*(1-C)/C;
DSM@® = LSBFA - ((2*LSBFB*(1-C))/C);
SM{K,J} = C*RM{K} + (1-C)*SM@;
DSM{K,J} = C*SM{K,J} + (1-C)*DSM#@;
END;
IF N EQ 2 THEN DO;
DSM{K,J} = LSBFA+K*LSBFB - 2* (LSBFB*
(1-C)/C);
SM{K,J} = DSM{K,J} + LSBFA*(1-C)/C:
END;
IF N GT 2 THEN DO;
SM{K,J} = 4;
DSM{K,J} = 8;



46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
78
71
72
73
74
75
76

78
79
80
81
82
83
84
85
86
87
88

233

END;
GO TO ENDNEQI1;

END;

IF 1 LT OBSNUM LT N-1 THEN DO;
SM{K,J} = 0;

DSM{K,J} = 0;

END;

IF OBSNUM = N-1 THEN DO;

DSM{K,J} = LSBFA+K*LSBFB - 2* (LSBFB¥*
(1-C)/C):
SM{K,J} = DSM{K,J} + LSBFA*(1-C)/C;

END;

IF OBSNUM GE N THEN DO; Recursive equations.
SM{K,J} = C*RM{K} + (1-C)*SM{K,J}:;
DSM{K,J} = C*sSM{K,J} + (1-C)*DSM{K,J};

END;

ENDNEQ1l: ;

AT = 2*SM{K,J} - DSM{K,J};

BT = (C/(1-C))*(SM{K,J} - DSM{K,J});

FI{K,J} = AT + ((N+1)/2)*BT;

F = LAG(FIL{K,J}); Forecasting.
IF OBSNUM LT N+1 THEN GO TO CUT;

E = X~-F;

V8 = ABS(E); Manipulating the
V9 = E**2, error terms,
V1l ABS (E/X)*1880;

V17 (E/LAGX) **2;

V18 ( (X-LAGX) /LAGX) **2;

SUMS{K,J,1} + V8;

SUMS{K,J,2} + V9; Summing over
SUMS{K,J,3} + V11; the series.
SUMS{K,J,4} + V17;

SUMS{K,J,5} + V18;

IF OBSNUM = NFIT THEN DO;

DEN = NFIT - N; Calculating fitting
MAD = SUMS{K,J,l1}/DEN; errors for the
MSE = SUMS{K,J,2}/DEN; series.,

MAPE = SUMS{K,J,3}/DEN;

TH3 SQRT (SUMS{K,J,4}/SUMS{K,J,5});

FILE RESDSM1;

PUT SID N C MAD MSE MAPE TH3 AT BT;
END;

CUT:END;
END;
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IF OBSNUM = NFIT THEN DO;
DOM=1TO 6;
DO P =1TO 19;
DO N =1 TO 5;
SUMS {M,P,N} = B;
END;
END;
END;
END;
NEXTOBS: ;

234

Resetting for
the next series.
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ROBUST REGRESSION PROGRAM - FIRST HALF., THIS HALF OF THE
PROGRAM CALCULATES STATISTICS FOR ROBUST REGRESSION LINES
FOR LENGTHS OF THREE THROUGH SIX, CALCULATES THE FORECASTS
AT EACH OBSERVATION, AND STORES RESULTS IN FILES.

LIBNAME STAT '[RKANKEY.SIX2]';
LIBNAME TREND '[RKANKEY.SIX2T]';

DATA _NULL ;

SET STAT.TREND2;

IF OBSNUM GT NFIT THEN GO TO NEXTOBS;

L1 = LAG(X); Renaming.
L2 = LAG2(X);

L3 = LAG3(X);

L4 = LAG4 (X);

L5 = LAG5(X);

XI = X;

IF OBSNUM LT 3 THEN GO TO NEXTOBS;
ARRAY LAGS{6} L5 L4 L3 L2 L1 X;
ARRAY SLOPE{15} S1-S15;

o
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L = @; Finding the
DO I =1 TO 5; slopes.
DO J = I+l TO 6;

18 L+l;

19 SLOPE{L} = (LAGS{J} - LAGS{I})/(J-1);

29 END;

21 END;

22 ARRAY SL3{3} S13 Sl1l4 sSl5;

23 DO I =1 TO 3;

24 REDO = @;

25 DO J =1 TO 2;

26 IF SL3{J+1} LT SL3{J} THEN DO;

27 TEMP = SL3{J};

28 SL3{J} = SL3{J+1};

29 SL3{J+1} = TEMP;

38 REDO = 1;

31 END;

32 END;

33 IF REDO = @ THEN GO TO DONESL3;

34 END;

35 DONESL3:;

36 SLOPE3 = SL3{2};

37 IF OBSNUM LT 4 THEN GO TO INT3;

38 ARRAY SL4{6} S14-S15;

39 DO I =1 TO 6;

4P REDO = 8;

41 DO J =1 TO 5;

42 IF SL4{J+1} LT SL4{J} THEN DO;

43 TEMP = SL4{J};

44 SL4{J} = SL4{J+1};

45 SL4{J+1l} = TEMP;

46 REDO = 1;

47 END;
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END;

IF REDO = @ THEN GO TO DONESL4;
END;
DONESL4: ;

SLOPE4 = (SL4{3} + SL4{4})/2;

IF OBSNUM LT 5 THEN GO TO INT3;
ARRAY SL5{1@} S6-S15;
DO I 1 TO 10;
REDO "}
DO J =1 TO 9;
IF SL5{J+1} LT SL5{J} THEN DO;
TEMP = SL5{J};
SL5{J} = SL5{J+1};
SL5{J+1} = TEMP;

REDO = 1;
END;
END;
IF REDO = @ THEN GO TO DONESLS5;
END;
DONESL5:;

SLOPE5 = (SL5{5} + SL5{6})/2;

IF OBSNUM LT 6 THEN GO TO INT3;

DO I =1 TO 15;

DO J =1 TO 14;
IF SLOPE{J+l1} LT SLOPE{J} THEN

TEMP = SLOPE{J};
SLOPE{J} = SLOPE{J+l};
SLOPE{J+1} = TEMP;

REDO = 1;
END;
END;
IF REDO = @ THEN GO TO DONESL®6;
END;
DONESL6:;

SLOPE6 = (SLOPE{8});
ARRAY B{4} SLOPE3-SLOPE6;
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Array B has slopes for
robust regression

INT3:; of lengths three
through six.

ARRAY TEMP3{3} L2 L1 X;
DO I =1 TO 3;

REDO = 0; Finding the "intercepts".

DO J = 1 TO 2;
IF TEMP3{J+1} LT TEMP3{J} THEN
TEMP = TEMP3{J};
TEMP3{J} = TEMP3{J+1};
TEMP3{J+1} = TEMP;
REDO = 1;
END;
END;
IF REDO = 0 THEN GO TO DONE3;
END;
DONE3:;
A3 = TEMP3{2};

DO;
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IF OBSNUM LT 4 THEN GO TO KEEP;
ARRAY TEMP4{4} L3 L2 L1 X;
DO I =1 TO 4;
REDO = 0;
DO J =1 TO 3;
IF TEMP4{J+1} LT TEMP4{J} THEN
TEMP = TEMP4{J};
TEMP4{J} = TEMP4{J+1};
TEMP4{J+1} = TEMP;

REDO = 1;
END;
END;
IF REDO = @ THEN GO TO DONE4;
END;
DONEA4: ;

A4 = (TEMP4{2} + TEMP4{3})/2;
IF OBSNUM LT 5 THEN GO TO KEEP;
ARRAY TEMP5{5} L4 L3 L2 L1 X;
DO I =1 TO 5;
REDO = @;
DO J =1 TO 4;
IF TEMP5{J+1} LT TEMP5{J} THEN
TEMP = TEMP5{J};
TEMP5{J} = TEMP5{J+1};
TEMP5{J+1} = TEMP;
REDO = 1;
END;
IF REDO = @ THEN GO TO DONES5;
END;
IF REDO = @ THEN GO TO DONE>5;
END;
DONES5: ;
A5 = TEMP5{3};
IF OBSNUM LT 6 THEN GO TO KEEP;
ARRAY TEMP6{6} L5 L4 L3 L2 L1 X;
DO I =1 TO 6;
REDO = 8;
DO J =1 TO 5;
IF TEMP6{J+1} LT TEMP6{J} THEN
TEMP = TEMP6{J};
TEMP6{J} = TEMP6{J+1};
TEMP6{J+1} = TEMP;
REDO = 1;
END;
IF REDO = @ THEN GO TO DONE6;
END;
IF REDO = @ THEN GO TO DONEG6;
END;
DONEG6: ;
A6 = (TEMP6{3} + TEMP6{41})/2;
KEEP:;

DO;

DO;
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ARRAY A{4} A3-A6; Array with the "intercepts".
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ARRAY FI{4} FI1-FI4;
DO I =1 TO 4;

H = I+3;

FI{I} = A{I} + (H/2)*B{I}; Forecasts over
END; the fit data.
FILE ROBUST1; Filing the forecasts.

PUT SID NFIT OBSNUM XI FI1-FI4;
IF OBSNUM = NFIT THEN DO;

FILE RRAB; Filing the slope and "intercept"
PUT SID OBSNUM A3-A6 SLOPE3-SLOPEG6; for the
END; last fitting observation, used to

NEXTOBS: ; forecast over the holdout data.
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ROBUST REGRESSION PROGRAM - SECOND HALF. THIS HALF OF THE
PROGRAM READS IN THE FITTING FORECASTS, CALCULATES THE
VARIOUS ERROR MEASURES FOR EACH LENGTH ROBUST REGRESSION FOR

EACH SERIES,
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AND FILES THE RESULTS.

DATA NULL_;

INFILE ROBUSTI1; File with the
INPUT SID NFIT OBSNUM XI FI1-FI4; forecasts.
ARRAY FI{4} FI1-FI4;

ARRAY SUMS{4,5} S1-520;

LAGXI = LAG(XI);

DO I =1 TO 4;

N = I+2;
F = LAG(FI{I}); Finding the fitting
E = XI-F; error.

IF OBSNUM LT N+1 THEN GO TO CUT;
V8 = ABS (E);

V9 = E**2; Manipulating the
V1l = ABS (E/XI); error.
V17 = (E/LAGXI)**2;

V18 ((XI-LAGXI)/LAGXI)**2;
SUMS{I,1} + V8;
SUMS (1,2} + V9; Summing over the
SUMS{I,3} + V11; series.
SUMS{I,4} + V17;
SUMS{I,5} + V18;
IF OBSNUM NFIT THEN DO;
DEN NFIT - N; Calculating the
MAD SUMS{I,l}/DEN; error measures.
MSE SUMS{I,2}/DEN;
MAPE = (SUMS{I,3}/DEN)*188;
TH3 = SQRT (SUMS{I,4}/SUMS{I,5});

FILE RRRES; Filing the

PUT SID N MAD MSE MAPE TH3; results.
END;

CUT:END;

IF OBSNUM = NFIT THEN DO; Resetting for
DOM =1 TO 4; the next series.

DO N =1 TO 5;
SUMS{M,N} = 0;
END;
END;
END;
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PROGRAM TO FIND THE BEST PERIOD LENGTH FOR THE ROBUST
REGRESSION TECHNIQUE. THIS PROGRAM SEARCHES THROUGH THE
FILE CREATED BY THE PREVIOUS PROGRAM AND IDENTIFIES THE BEST
LENGTHS IN TERMS OF FITTED MAD, MSE, MAPE, AND THEIL'S U.

1 LIBNAME TREND '[RKANKEY.SIX2T]';
2 DATA ONE;
3 INFILE RRRES;
4 INPUT SID N MAD MSE MAPE TH3;
5 RETAIN;
6 IF N = 3 THEN DO;
7 MADMIN = MAD; MADN = N;
] MSEMIN = MSE; MSEN = N;
9 MAPEMIN = MAPE; MAPEN = N;
19 TH3MIN = TH3; TH3N = N;
11 END;
12 ELSE DO;
13 IF MAD LT MADMIN THEN DO;
14 MADMIN = MAD; MADN = N;
15 END;
16 IF MSE LT MSEMIN THEN DO;
17 MSEMIN = MSE; MSEN = N;
18 END;
19 IF MAPE LT MAPEMIN THEN DO;
29 MAPEMIN = MAPE; MAPEN = N;
21 END;
22 IF TH3 LT TH3MIN THEN DO;
23 TH3MIN = TH3; TH3N = N;
24 END;
25 IF N = 6 THEN DO;
26 FILE RRBEST1;
27 PUT SID MADMIN MSEMIN MAPEMIN TH3MIN MADN
28 MSEN MAPEN TH3N;
29 : END;

38 END;
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THIS PROGRAM TAKES THE BEST FITTING RESULTS FROM THE
PREVIOUS PROGRAM, USES THIS INFORMATION TO PULL THE
FORECASTING SLOPE AND "INTERCEPT" FROM THE PREVIOUSLY
CREATED FILE RRAB.DAT, AND REFILE THE COMPLETE ROBUST
REGRESSION FITTING RESULTS.
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LIBNAME TREND '[RKANKEY.SIX2T]';

DATA NULL_;

INFILE RRBESTI;

INPUT SID MADRFIT MSERFIT MAPERFIT TH3RFIT MADRN
MSERN MAPERN TH3RN;

INFILE RRAB;

INPUT SID NFIT A3-A6 B3-B6;

ARRAY A{4} A3-A6;

ARRAY B{4} B3-B6;

MADRA = A{MADRN-2}; The variable MADRN is
MADRB = B{MADRN-2}; the best length robust
MSERA = A{MSERN-2}; regression over the
MSERB = B{MSERN-2}; fitting data, based upon
MAPERA A {MAPERN-2} MAD.

= ;

MAPERB = B{MAPERN-2};

TH3RA = A{TH3RN-2};

TH3RB = B{TH3RN-2};

FILE RRBESTI1A;

PUT SID MADRFIT MSERFIT MAPERFIT TH3RFIT MADRN
MSERN MAPERN TH3RN MADRA MADRB MSERA MSERB
MAPERA MAPERB TH3RA TH3RB;
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PROGRAM TO CALCULATE THE FORECAST ERRORS FOR HORIZONS ONE
THROUGH SIX USING THE BEST MODEL FOR EACH TECHNIQUE AND EACH
SERIES, AND TO CALCULATE THE MAPE AVERAGE VALUES OVER THE
NINETY TWO MONOTONIC TREND SERIES. THIS PROGRAM OPERATES ON
THE SAS DATA SET TBYSID11l.SSD WHERE ALL BEST FIT INFORMATION
AND FORECASTING EQUATIONS WERE STORED.

1 LIBNAME TREND '[RKANKEY.SIX2T]':

2 DATA ONE;

3 SET TREND.TBYSID1ll1;

4 ARRAY DEVS{5,6} DEVM1-DEVM6 DEVE1-DEVEG6

5 DEVR1-DEVR6 DEVS1-DEVS6 DEVW1-DEVW6;

6 ARRAY PAD{5,6} PAD1-PAD34;

7 ARRAY MAPEFIT{5} MAPEMFIT MAPEEFIT MAPERFIT

MAPESFIT MAPEWFIT;

8 ARRAY XVALS{7} XNFIT XNOF1l-XNOF6;

9 ARRAY SUMAPDEV{5,6} SUM1-SUM34;

1@ ARRAY SMAPEFIT{5} SMAPEl-SMAPES5;
11 ARRAY AMAPFO{5,6} AMAPFOl-AMAPFO030;

12 ARRAY AMAPEFT{5} AMAPEFT1-AMAPEFTS;
13 DO J =1 TO 6;
14 DEVS{1,J} = XVALS{J+l1l} - (MAPEMA + J*MAPEMB);
15 DEVS{2,J} = XVALS{J+1} - (MAPEEA + J*MAPEEB);
16 DEVS{3,J} = XVALS{J+1} - (MAPERA + J*MAPERB);
17 DEVS{4,J} = XVALS{J+l1l} - (MAPESA + ((J+l1)/2)*

MAPESB) ;
18 DEVS{5,J} = XVALS{J+1} - (MAPEWA + ((J+1)/2) *
MAPEWB) ;

19 END;
20 DO J =1 TO 5;
21 SMAPEFIT{J} + MAPEFIT{J};
22 DO K =1 TO 6;
23 PAD{J,K} = ABS(DEVS{J,K}/XVALS {K+1});
24 SUMAPDEV{J,K} + PAD{J,K};
25 END; The series with SID=976 is the
26 END; last series in the trend data set.
27 IF SID LT 976 THEN GO TO NEXTOBS;
28 DO J =1 TO 5;
29 AMAPEFT{J} = SMAPEFIT{J}/92;
30 DO K =1 TO 6;
31 AMAPFO{J,K} = SUMAPDEV{J,K}/92;
32 END;
33 END; -fitting- forecasting - MAPE results for:
34 PUT AMAPEFT1 AMAPFOl1-AMAPFO6; D. Moving Avg
35 PUT AMAPEFT2 AMAPFO7-AMAPF012; L. Exp. Smooth
36 PUT AMAPEFT3 AMAPFO13-AMAPFO018; D. Running Med
37 PUT AMAPEFT4 AMAPFOl9-AMAPF024; D. Smoothed M.
38 PUT AMAPEFTS5 AMAPFO25-AMAPFO030; Robust Regress

39 NEXTOBS: ;



243

PROGRAM TO CALCULATE THE THEIL'S U VALUES OVER THE NINETY

ONE SERIES.

THE SERIES WITH SID=967 HAD ONE HORIZON VALUE

WHERE THEIL'S U WAS NOT DEFINED DUE TO NO CHANGE IN THE

SERIES BETWEEN TWO POINTS IN TIME,

SO THE SERIES IS DROPPED.

1 LIBNAME TREND '[RKANKEY.SIX2T]';
2 DATA ONE;
3 SET TREND.TBYSID11l;
4 IF SID = 967 THEN GO TO NEXTOBS;
5 ARRAY DEVS{5,6} DEVM1-DEVM6 DEVE1l-DEVE®6
DEVR1-DEVR6 DEVS1-DEVS6
6 DEVW1-DEVW6;
7 ARRAY TH{5,6} TH1-TH30;
8 ARRAY TH3FIT{5} TH3MFIT TH3EFIT TH3RFIT TH3SFIT
TH3WFIT;
9 ARRAY XVALS{7} XNFIT XNOF1l-XNOF6;
19 ARRAY SUMTH3{5,6} SUM1-SUM34;
11 ARRAY STH3FIT{5} STH31-STH35;
12 ARRAY ATH3F{5,6} ATH3F1-ATH3F30;
13 ARRAY ATH3FT{5} ATH3FT1-ATH3FT5;
14 ARRAY THNUM{5,6} THN1-THN30;
15 ARRAY THDEN{5,6} THD1-THD34;
16 ARRAY STHNUM{5} STHN1-STHNS5;
17 ARRAY STHDEN{5} STHD1-STHD5;
18 ARRAY THALL{5} THALLl1-THALLS5;
19 DO J =1 TO 6;
20 DEVS{l1,J} = XVALS{J+1} - (TH3MA+J*TH3MB);
21 DEVS{2,J} = XVALS{J+1l} - (TH3EA+J*TH3EB);
22 DEVS{3,J} = XVALS{J+l1} - (TH3RA+J*TH3RB);
23 DEVS{4,J} = XVALS{J+1l} ~ (TH3SA+((J+1)/2)*
TH3SB) ;
24 DEVS{5,J} = XVALS{J+1} ~ (TH3WA+((J+1)/2)*
TH3WB) ;
25 END;
26 pbo J =1 TO 5;
27 STH3FIT{J} + TH3FIT{J};
28 DO K = 1 TO 6;
29 THNUM{J,K} = ((DEVS{J,K}/XVALS{1})**2);
30 THDEN{J,K} = ((XVALS{K+l} - XVALS{1l})
‘ /XVALS {1}) **2;
31 STHNUM{J} + THNUM{J,K};
32 STHDEN{J} + THDEN{J,K};
33 TH{J,K}= SQRT(((DEVS{J,K}/XVALS{1})**2) /
((XVALS {K+1} - XVALS{1l}) /
XVALS{1}) **2);
34 SUMTH3{J,K} + TH{J,K};
35 END;
36 THALL{J} = SQRT (STHNUM{J}/STHDEN{J});
37 END;
38
39
40 IF SID LT 976 THEN GO TO NEXTOBS;
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DO J =1 TO 5;
ATH3FT{J} = STH3FIT{J}/91;
DO K =1 TO 6;
ATH3F{J,K} = SUMTH3{J,K}/91;

END;
END; Fitting - forecasting Theil's U results
PUT ATH3FT1 ATH3F1-ATH3F6; D. Moving Avg.

PUT ATH3FT2 ATH3F7-ATH3F1l2; D. Exponential Sm

PUT ATH3FT3 ATH3F13-ATH3F18; D. Running Medians
PUT ATH3FT4 ATH3F19-ATH3F24; D. Smoothed Meds.

PUT ATH3FTS5 ATH3F25-ATH3F384; Robust Regression

NEXTOBS: ;

IF SID EQ 976 THEN DO;

PUT THALL1-THALLS5; Theil's U by technigque
END; over all six horizons.
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