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ABSTRACT

Magnetostrictive materials have the ability to transfer energy between the mag-

netic and mechanical domains. They deform in response to magnetic fields and mag-

netize in response to stresses. Further, their stiffness and permeability depend on

both magnetic field and stress. Galfenol, an alloy of iron and gallium, is an emerging

magnetostrictive material which is unique for its combination of high magnetome-

chanical coupling and steel-like structural properties. Although its energy density

and coupling factor is less than that of other materials like Terfenol-D and piezoelec-

tric materials, this is compensated by its ease of packaging and manufacturability. In

terms of reliability, it is far superior and makes possible a new class of devices with in-

novative geometries capable of combined sensing and actuation in 3-D. Unique among

smart materials, Galfenol can serve both as a structural element and as an actuator

or sensor. Motivated by the need to utilize the full-scale, i.e., nonlinear, range of

Galfenol transduction, this work presents nonlinear characterization and modeling of

magnetization and strain from magnetic field and stress, and details the incorpora-

tion of the material model into system-level models for Galfenol-based transducers.

The system-level modeling is carried out in 3-D and is an enabling tool for creating

Galfenol-based systems with innovative 3-D geometries.
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Magnetomechanical measurements are presented which reveal that Galfenol con-

stitutive behavior is kinematically reversible and thermodynamically irreversible. Mag-

netic hysteresis resulting from thermodynamic irreversibilities is shown to arise from

a common mechanism for both magnetic field and stress application. Linear regions

in constant-stress magnetization curves are identified as promising for force sensing

applications. It is shown that the slope of these linear regions, or the magnetic suscep-

tibility, is highly sensitive to stress. This observation can be used for force sensing; the

19-22 at. % Ga range is identified as a favorable Galfenol composition for sensing, due

to its low anisotropy with moderate magnetostriction and saturation magnetization.

A thermodynamic framework is constructed to describe the magnetization and

strain with special attention to hysteresis properties. An elementary hysteron, de-

rived from the first and second laws, describes the underlying nature of the nonlin-

earities and hysteresis. Minimization of the energy of a single magnetic domain, the

microscopic unit responsible for magnetization and magnetostriction, gives analytic

expressions for the states of the hysteron and accurately describes certain features of

the constitutive behavior, including the stress dependence in the magnetization re-

gions identified for force sensing and the stress dependence of the location of the burst

magnetization region. The switching of the hysteron, or domain orientation change,

is characterized by a coercive energy, an energy loss analogous to overcoming dry-

friction. The energy loss in major magnetization hysteresis loops of research grade

Galfenol is found to be 873 J/m3 and for production grade it is 1149 J/m3. Stochastic

homogenization of certain parameters in the hysteron yields a homogenized energy

model for the bulk magnetization and strain that agrees with the measurements,

including the hysteresis properties.
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An alternate model is developed with special attention given to achieving high ac-

curacy at minimal computational expense. The model is shown to be 100 times faster

than previous models for Galfenol. While the homogenized energy model bridges the

gap between the domain scale and the macroscopic scale through stochastic homoge-

nization, the efficient model does this with energy-weighted averaging. The enabling

feature for faster computation is careful choice of which domain orientations to in-

clude in the averaging scheme. The orientations are the same as those derived from

energy principles in the homogenized energy model. Both models utilize a new en-

ergy formulation for magnetic anisotropy, the form of which depends explicitly on the

energetically preferred magnetization directions. This new formulation can describe

any anisotropy symmetry which is important for Galfenol, given that its anisotropy

can be manipulated through post-processing techniques such as stress-annealing.

The efficient model is adopted in a transducer-level model implemented with the

finite element method. The transducer-level model consists of Maxwell’s equations

describing eddy currents and flux leakage and the force balance equations from the

conservation of linear momentum. These equations are solved over a geometry that

includes a current carrying coil, an air volume, a magnetic circuit of steel, Galfenol

and additional structural materials. The efficient constitutive model based on energy-

weighted averaging is used for Galfenol. A broad range of effects are described such

as energy losses affecting device efficiency, dynamic magnetostructural effects, delay

and remanence from hysteresis, and eddy currents. This framework enables design

optimization of efficient and innovative Galfenol-based devices which take advantage

of the full transduction range of Galfenol.
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CHAPTER 1

Introduction

1.1 Overview

Magnetostrictive materials undergo dimensional changes in response to magnetic

fields and change magnetic state in response to stresses. These effects have been used

to create actuators and sensors that deliver superior performance with less weight,

size and moving parts than traditional electromagnetic devices [30]. Material and

modeling limitations have limited magnetostrictive devices to unidirectional loading

applications with either constant field or constant stress. Galfenol (Fe-Ga) is a recent

magnetostrictive material that enables a new class of transducers with 3-D function-

ality and the capability to withstand harsh environments. A ductile material with

high yield strength, it can be machined into intricate 3-D geometries, welded onto

passive structures, and serve simultaneously as a structural element and an actua-

tor/sensor. This work enables robust magnetostrictive devices and structures with

3-D functionality by developing a modeling framework for both Galfenol constitutive

behavior and Galfenol-based devices and structures. Furthermore, measurements are

performed to characterize the full nonlinear magnetization and strain constitutive

behavior of Galfenol.
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Magnetostrictive materials are smart or adaptive materials which convert one form

of energy to another. Common examples of smart materials are electrostrictives and

piezoceramics which provide transduction between electrical and mechanical energy

and shape-memory alloys which provide transduction between thermal and mechani-

cal energy. This transduction can be used to do mechanical work with non-mechanical

inputs and to sense mechanical quantities of stress and strain or the related quan-

tities, displacement and force. It can also be used to introduce tunable stiffness or

damping into structures and devices. Magnetostrictives provide transduction between

mechanical and magnetic energy. The transduction bandwidth is around 30 kHz,

lower than the 1 MHz bandwidth of electrostrictives and piezoceramics and higher

than the 100 Hz bandwidth of shape memory alloys [43]. The advantage of mag-

netostrictives over electrostrictives and piezoceramics is its superior mechanical and

thermal robustness. The advantage over shape memory alloys, which produce a much

larger strain, is its higher bandwidth and lower hysteresis. These advantages can be

exploited for actuation and sensing or even combined applications like self-sensing

actuators requiring high frequency operation and reliability.

Galfenol alloys of iron and gallium with 12-29 atomic percent (at. %) gallium. It

has both high magnetically induced strain or magnetostriction (∼ 400 microstrain)

and ductility similar to steel. Furthermore, the variation in its properties with tem-

perature is small. Prior to the advent of Galfenol, magnetostrictive materials included

mechanically robust materials with low magnetostriction such as iron (∼20 micros-

train) and nickel (∼40 microstrain) and brittle materials with giant magnetostriction

such as Terfenol-D (∼2000 microstrain.) The unique combination of mechanical ro-

bustness and high magnetostriction of Galfenol makes it ideal for creating sensors
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and actuators that can take tension, bending, torsion and shock loads in harsh en-

vironments. Furthermore, it can be machined, welded, extruded, and deposited into

complex geometries.

The full-scale magnetization M, or related quantity flux density B = µ0(H + M),

and strain S response to magnetic field H and stress T of Galfenol, and of magne-

tostrictive materials in general, is nonlinear and depends on material history. The

major nonlinearities in the constitutive behavior are saturation (both magnetization

and magnetostriction), and anisotropy. For example, the magnetostriction at satura-

tion in the 〈100〉 crystal direction λ100 of Terfenol-D is 90 microstrain and in the 〈111〉

crystal direction λ111, it is 1200 microstrain. Also, it is more difficult to magnetize or

requires much higher fields to reach saturation in the 〈100〉 direction than in the 〈111〉

direction. Galfenol is also anisotropic both in it magnetization and magnetostriction

but λ100 is greater than λ111 and it is easier to magnetize in the 〈100〉 direction.

To avoid these nonlinear complexities, transducers are often limited to small-signal

operating regimes. For small-signal operating ranges about a bias field and stress,

the constitutive behavior can be expressed as

B = µTH + dT,

S = dTH + sHT.
(1.1)

The permeability tensor µT is measured at constant stress and the compliance tensor

sH is measured at constant field; d is the piezomagnetic tensor.

Linear transduction properties defined from (1.1) serve as figures of merit for

evaluating the performance of a magnetostrictive material. The piezomagnetic tensor

d determines the maximum available strain or free strain which occurs under the

mechanically-free condition T = 0; the free strain is dTH. The piezomagnetic tensor
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and the compliance tensor together determine the maximum possible stress or blocked

stress which occurs under the mechanically-blocked condition S = 0; the blocked

stress is (sH)−1dH. Another figure of merit is the relative change in stiffness or ∆E

effect in the magnetically-blocked condition, B = 0. From (1.1), the magnetically-

blocked stress-strain relation is

S =
(
sH − dT (µT)−1d

)
T. (1.2)

Magnetically blocking the material effectively reduces the compliance by dT (µT)−1d.

For 1-D loading, the effective Young’s modulus in the magnetically-free condition

H = 0 is the soft modulus and in the magnetically-blocked condition B = 0 it is the

hard modulus.

The energy density or work capacity is half the product of the free strain and

blocked stress. The coupling coefficient k quantifies the efficiency of transduction.

The free energy is

G =
1

2
(T · S + H ·B)

=
1

2
T · sHT +

1

2

(
T · dTH + H · dT

)
+

1

2
H · µTH

:=Gmechanical + 2Gcoupling +Gmagnetic.

(1.3)

The coupling coefficient is

k =
Gcoupling√

GmechanicalGmagnetic

. (1.4)

For 1-D loading it is simply d/
√
µT sH . A good transduction material therefore has

high piezomagnetic coefficient, low permeability and low compliance resulting in high

free strain, blocked stress, ∆E, and transduction efficiency. However, when consider-

ing the electrical domain as well, it is desirable to have high permeability for effective
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electromagnetic transduction where lower voltage is required to create the magnetic

field.

The figures of merit for electrostrictives and piezoceramics are derived in an anal-

ogous fashion replacing magnetic field with electric field, magnetic flux density with

electric flux density, permeability with permittivity, and piezomagnetic with piezo-

electric. The figures of merit offer a means to compare active materials of different

mechanisms. Comparing magnetostrictives to electrostrictives and piezoceramics in

particular is prudent given their similar figures of merit at comparable bandwidths,

especially since the latter have received wide use in a broad range of applications from

buzzers inside pagers and cell phones to ultrasonic cleaners and ultra-precise position-

ing. Energy density or work capacity, coupling coefficient, free strain, and blocked

stress are shown for Terfenol-D, Galfenol, and PZT-5H (a common piezo-ceramic) in

Table 1.1 for 1-D application.

Terfenol-D and PZT-5A have similar figures of merit. Transducers using the for-

mer can achieve greater displacement but with less force since the two have nearly

the same energy density. Galfenol lags in terms of figures of merit related to trans-

duction, but there is more to be considered for transducer applications. Galfenol has

clear advantages in terms of reliability, manufacturability, and packaging which are

important considerations for transducer design.

Reliability

The properties of electrostrictives and piezoceramics degrade over time and change

irreversibly at elevated temperatures. Magnetostrictive materials have been shown to

go through millions of cycles with zero degradation. Both Terfenol-D and Galfenol

exhibit little change with temperature if operated below the curie temperature TC ,
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Table 1.1: Figures of merit for Terfenol-D, Galfenol, and PZT-5H.
Energy (kJ/m3) Coupling Strain (×10−6) Stress (MPa)

Terfenol-D(a) 25 0.75 1200 42

PZT-5H(b) 24 0.75 1000 48

Galfenol(c) 2.4 0.60 247 19

(a) Etrema Products Inc.
(b) Wilkie et al. [110]
(c) Single-crystal 16 at. % Ga, reported by Datta and Flatau [33]

380 oC for Terfenol-D and 500 oC for Galfenol. Even if the temperature is elevated

above TC , the properties assume their previous values when the temperature is low-

ered; irreversible changes do not occur. Only temperatures sufficient to cause melting

will irreversibly affect the properties, since re-crystallization occurs. A chief advan-

tage of Galfenol is its mechanical reliability. Electrostrictives, piezo-electrics, and

Terfenol-D are all brittle and have little tolerance for shock, bending, and tensile

loads.

Manufacturability

Because of their brittle nature, electrostrictives, piezo-electrics, and Terfenol-D

cannot be machined with conventional methods. Complex shapes are generally of

little use anyway since 3-D loads will usually lead to mechanical failure. Ueno et

al. [107] have shown that Galfenol can be machined with conventional milling tools

with no change to its transduction properties. Ueno et al. [108] have also showed

that it can be welded. Summers, Meloy, and Na [98] have shown that polycrystalline

Galfenol can be rolled to produce a textured material with 154×10−6 free strain.
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Packaging

Piezoceramics require high voltage power supplies and the placement of electrodes

for electric field generation while magnetostrictive materials require a drive solenoid

for magnetic field generation and permanent magnets for a bias field. An advantage of

Galfenol is that the drive solenoid and bias magnet can be small since its permeability

is ten to twenty times larger than that of Terfenol-D. It is even possible to eliminate

the bias magnet and apply the bias field through the solenoid since only low fields

are needed. An additional advantage resulting from the high permeability is that

both the magnetic circuit and active element can be made of Galfenol. Terfenol-D

and piezoceramics require a pre-compression mechanism to ensure it is operated only

in tension and to achieve maximum strain. Galfenol does not have this restriction

because it can be operated in tension and maximum strain can be achieved without

pre-compression through a process called stress annealing.

In general, Galfenol devices can be smaller, lighter, and more robust than tradi-

tional electromagnetic devices or smart material devices using piezoelectric materials

and Terfenol-D. Ueno et al. [105, 108, 109, 106, 117] have already exploited these

in the area of miniature robotics for medical devices—creating actuators with an

unprecedented combination of small size, high bandwidth, and reliability. A novel

displacement amplification concept that requires a ductile material was used to cre-

ate spherical and linear motors that achieve large strokes, on the order of millimeters.

The key advantage of Galfenol is that it is both a structural and an active material.

It can serve simultaneously as a structural element and an actuator/sensor. Both

fasteners and structural supports can be made of Galfenol and at the same time be
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used for health monitoring using Galfenol’s sensing capabilities and for active control

of the structure or system using its actuation capabilities.

This work develops a 3-D and full-scale, i.e. nonlinear, modeling framework for

Galfenol and Galfenol-based transducers in order to enable use of its full transduction

capabilities and take advantage of its unique status as both an active and a structural

material. Such a modeling framework is especially important for Galfenol applications

because of its comparatively low transduction properties. The framework can be used

to optimize device efficiency in order to compensate for the low coupling factor. It

can be used in model-based control schemes to utilize the full nonlinear range of its

work capacity. Finally, it can be used to design for 3-D functionality which, to date,

has not been done.

1.2 Literature Survey

Early work regarding Fe-Ga alloys focused primarily on material characterization,

including measurement of the saturation values of magnetostriction and magnetiza-

tion as a function of temperature and stoichiometry. The anisotropy constants and

elastic coefficients were also been measured. In addition to measuring these bulk prop-

erties, investigations were carried-out to understand the physical mechanism whereby

the introduction of non-magnetic gallium leads to a tenfold increase in the magne-

tostriction over pure iron. This involved identifying the material phases and lattice

structure of Fe-Ga alloys as affected by stoichiometry and heat treatment. Linear

characterization of the material constitutive behavior was performed by identifying

the linear coefficients and the coupling factor at different bias fields and stresses.
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In addition to the early work on material characterization, statistical models based

on energy-weighted averaging have been used to describe some nonlinear aspects of the

magnetization and strain constitutive behavior for applied magnetic field and stress,

including anisotropy, saturation, magnetostriction and hysteresis during magnetic

field application in the 〈100〉 and 〈110〉 directions. A limited number of transducer

models have also been developed including for nonlinear, quasi-static operation of

beam and plate actuators and sensors.

Researchers have developed actuators and sensors that make capital of the unique

properties of Galfenol. This development has taken place with a test and measurement

approach without modeling for optimization. To date, the proposed actuators and

sensors use Galfenol in unidirectional loading only, operated in the linear regime of

its constitutive behavior. While they do not take advantage of the 3-D functionality

or full nonlinear operating regime of Galfenol, they do benefit from its machinability

and mechanical robustness, specifically, its ability to withstand impact, bending, and

tensile loads.

Little attention has been given to modeling dynamic effects, both at the mate-

rial level like thermal relaxation and at the transducer level like eddy currents and

inertial loads. Dynamic effects have been studied for other materials like Terfenol-D

but these studies and accompanying models have been limited to 1-D applications.

Hysteresis in Galfenol has also received little attention both from a modeling and

from an experimental viewpoint, especially for combined stress and magnetic field

loading. Additionally, while the models that have been proposed for magnetization

and strain lead to a better understanding of the material behavior, they are less useful

for transducer development because they rely exclusively on statistical methods or
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energy-weighted averaging, which is computationally cumbersome and does not give

analytic expressions for the constitutive behavior. This dissertation is undertaken to

address these issues.

A survey of the literature regarding Fe-Ga alloys and magnetostrictive material

and transducer modeling follows. This chapter concludes with the research objectives

and outline of the dissertation.

1.2.1 Galfenol material characterization

Clark et al. [23] were the first to report on the large magnetomechanical coupling

of Galfenol alloys with a Ga content of 15-20 at. %. They measured saturation mag-

netization and magnetostriction, anisotropy, and the soft and stiff elastic moduli of

various Fe-Ga and Fe-Ga-Al single crystals from 180 K to room temperature. In a

separate study Clark et al. [25] found that quenched Galfenol exhibits magnetostric-

tions 25% higher than when furnace-cooled, the maximum exceeding 300 microstrain.

They proposed that the great increase of magnetostriction above that of Fe in FeGa

alloys is due to the substitutive presence of asymmetrically shaped clusters of the Ga

atoms. Clark et al. [24] reported the greatest magnetostriction for Galfenol at 19 at.

% Ga, 400 microstrain. Clark et al. [22] observed that in Galfenol with concentrations

of Ga between 4 and 27 at. % Ga, the maximum magnetostriction exhibits two peaks

as a function of Ga content. This unusual magnetostrictive behavior is interpreted on

the basis of a single maximum in the magnetomechanical coupling of Fe with increas-

ing amounts of non-magnetic Ga, combined with a strongly temperature dependent

elastic shear modulus.
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Cullen et al. [27] measured the saturation magnetostriction of Galfenol with 21-35

at. % Ga. They reported anomalous behaviors for the magnetostriction and shear

elastic modulus versus at. % Ga, which they attributed to internal stresses associated

with short-range atomic ordering. Wuttig, Dai, and Cullen [114] reported continuous-

wave measurements of the shear elastic constants of Galfenol. They concluded that

Galfenol is inhomogeneous and contains clusters consisting of embryos of a marten-

sitic phase. A model was proposed assuming that the clusters are centered around

next-nearest Ga pairs which reproduced the known composition dependence of the

magnetostriction in the composition range 0-23 at. % Ga. Lograsso et al. [66, 67] in-

vestigated the effect of thermal history on the lattice structure with X-ray diffraction.

Wu [111] investigated the phase stability, magnetism and magnetostriction using the

full potential linearized augmented plane wave method. This investigation showed

that the magnetostrictive coefficients strongly depend on the atomic arrangement.

The electronic origin of the enhancement in magnetostriction was discussed in terms

of density of states and band structures.

Kellogg et al. [58] measured the temperature and stress dependence of both the

magnetostriction and magnetization from -21 deg C to +80 deg C under compressive

stresses ranging from 14.4 MPa to 87.1 MPa. Constant temperature tests showed

that compressive stresses greater than 14.4 MPa were needed to achieve the max-

imum magnetostriction. The well-behaved temperature response reported in their

study illustrates that Galfenol is particularly valuable for industrial and military

smart actuator, transducer, and active damping applications. They also measured

the Youngs modulus and found it to be almost temperature independent.
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Kellogg et al. [59] tested Galfenol with 17 at. % Ga in tension at room tempera-

ture. Specimens with a [110] tensile axis orientation exhibited 110〈111〉 slip and an

ultimate tensile strength of 580 MPa through 1.6% elongation. The Young’s modulus

was 160 GPa in the loading direction with a Poisson’s ratio of -0.37 on the (100)

major face. A specimen with a [100] tensile axis orientation exhibited 211〈111〉 slip

and discontinuous yielding. A maximum tensile strength of 515 MPa was observed

with fracture occurring after 2% elongation. The Young’s modulus was 65 GPa in the

loading direction with a Poisson’s ratio of 0.45 on the (001) major face. Petculescu

et al. measured [80] measured the elastic shear moduli of Galfenol single crystals

via resonant ultrasound spectroscopy with and without a magnetic field and within a

4 − 300 K temperature range. Rafique et al. [83] measured the magnetic anisotropy

for Galfenol with 0.05, 0.125, 0.14, 0.18, and 0.20 at. % Ga.

Kellogg et al. [57] measured the nonlinear magneto-elastic transduction properties

of single-crystal and textured polycrystalline Galfenol for applied field at constant

stress and applied stress at constant field. Atulasimha et al. [9] studied the effect

of stoichiometry on the nonlinear magneto-elastic transduction properties. Yoo and

Flatau [115] measured the linear transduction and elastic properties at different bias

magnetic field levels.

Restorff et al. [86] and Wun-Fogle et al. [112, 113] investigated stress-annealing of

Galfenol. Applying stress at elevated temperatures changes the magnetic anisotropy

by introducing an internal stress. The linear transduction properties of stress annealed

Galfenol were reported.
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1.2.2 Galfenol transducer applications

Downey and Flatau [34] investigated the behavior of Galfenol in elastic bending to

facilitate design concepts for using Galfenol in novel sensor applications at the macro

to nano-scale. A series of experiments were conducted on the magnetic response of

cantilevered beams to dynamic bending loads. McGary et al. [69] presented a method

for growing Galfenol nano-wires to mimic the hairlike sensors or cilia which play an

important role in biological sensors such as the human ear.

Ueno et al. [105, 108, 109, 106, 117] have designed a number of novel actuators

based on Galfenol, including a bending actuator, a sonic transducer, a two-DOF bend-

ing actuator, a miniature spherical motor, and a linear motor. These compact devices

were shown to have high bandwidths (∼ 30kHz) and good mechanical robustness and

required low operating voltages. Each uses Galfenol with 1-D loading. Displacement

amplification is done by utilizing the ability of Galfenol to sustain bending and impact

loads. The spherical and linear motors achieve mm scale motion.

1.2.3 Galfenol constitutive and transducer modeling

Atulasimha, Flatau, and Summers [10] modeled the actuation and sensing be-

havior of polycrystalline Galfenol. The magnetomechanical behavior was modeled

as the sum of the volume fraction-weighted, single-crystal behavior along the [100],

[110], [210], [310], [111], [211] and [311] directions, which were modeled using an

energy-weighted average modeling approach. The energy includes terms for magnetic

anisotropy, magnetomechanical coupling, and magnetic work. The weighting func-

tions is the Boltzmann distribution. The model is anhysteretic and describes the
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nonlinear shape of magnetization and strain curves for applied magnetic field at con-

stant stress and applied stress at constant magnetic field. Atulasimha, Akhras, and

Flatau [7] combined the energy-weighted average modeling approach with a hysteresis

model for magnetic field application to describe the magnetization and strain of 〈110〉

oriented Galfenol with applied magnetic field at constant stress.

Mudivarthi et al. [70] developed a quasi-static transducer model for stress appli-

cation. The model couples Gauss’ law for magnetism with the conservation of linear

momentum using a nonlinear constitutive model based on energy-weighted averaging.

It was implemented with the finite-element method for a unimorph beam. Datta et

al. [31, 32, 88] developed nonlinear models for Galfenol beams and composite plates

by including magnetostriction in classical Euler beam theory and laminated plate the-

ory. The energy-weighted average model was again used for the constitutive behavior

relating magnetostriction to magnetic field and stress.

1.2.4 Constitutive modeling of magnetostrictive materials

The literature encompassing constitutive models for magnetization/strain versus

field/stress tends to focus on the field and stress dependence of the magnetization.

It has been assumed that the strain is simply the sum of a purely elastic, linear

component from Hooke’s law and the magnetostriction where the magnetostriction is

a simple quadratic function of the magnetization [61]. Thus, once the field and stress

dependence of the magnetization is known, the magnetostriction and total strain

directly follow. Various macroscopic models for magnetization have been proposed

which address effects such as hysteresis, anisotropy, and stress. However, a complete

3-D framework for magnetization due to any applied stress (in the elastic region) and
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field with these combined effects has not been developed. A summary of the current

state-of-the art macroscopic magnetization models follows. Micromagnetics models,

while very accurate, are not addressed because the focus of this work is on macroscopic

models for understanding bulk material behavior as well as transducer-level behavior.

Preisach

The Preisach model [82] was originally a purely mathematical approach to model

ferromagnetic hysteresis. Its major contribution is the idea that smooth hysteresis

curves obtained from macroscopic measurements are actually the result of a large

number of elementary hysterons. The hysterons are bistable, having a value ±Ms

(saturation magnetization.) Each hysteron switches to the up state (+Ms) and back

to the down state (−Ms) at different field values. The macroscopic magnetization

is then calculated as the weighted average of the elementary hysterons (see Fig 1.1.)

Scalar in its original formulation, Mayergoyz and Friedman [68] extended the ap-

proach to higher dimensions as an isotropic vector model and Cardelli et al. [19] as

an anisotropic vector model. The Preisach model does lend itself to physical inter-

pretation where each hysteron represents a magnetic moment which can be oriented

either up or down and switches its orientation when the field reaches the coercive

field value. The weighted summation essentially calculates the expected value of all

the moment orientations in the material thus giving the total magnetization. Us-

ing this physical interpretation, Della Torre included accommodation effects [102],

Della Torre et al. [103] included thermally-induced rate dependence and Suzuki and

Matsumoto [99] included stress dependence.

The afore mentioned extensions all add complexity to the weights which are ei-

ther experimentally determined or are represented by a probability density function
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Figure 1.1: Preisach kernel and total magnetization.

assumed a priori. Finding a suitable density function or measuring the weights be-

comes quite challenging with each added feature. Even with this added complexity,

the Preisach model can only be used for materials which have macroscopic constitu-

tive relationships similar to the basic Preisach hysteron. Most ferromagnetic materials

are only slightly magnetostrictive and even when stress is applied have magnetization

versus field curves that are similar to the elementary hysteron. Giant magnetostric-

tive materials however, do not. In particular, as stress is applied, kinking occurs. An

alternate hysteron developed by Reimers and Della Torre [85] has successfully mod-

eled giant magnetostrictives with relatively benign kinking such as Terfenol-D, but

the approach is phenomenological, making it inaccurate for materials with significant

kinking.

Jiles-Atherton

The Jiles-Atherton model [49] was first formulated for isotropic ferromagnetic hys-

teresis. The magnetization is calculated as the sum of the reversible component from

domain wall bowing and an irreversible component from domain wall motion impeded
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by material impurities. The nonlinear shape of the magnetization versus field curve

is dictated by an anhysteretic function which can be either purely phenomenological

or derived from energy principles. The irreversible losses leading to hysteresis are

calculated from an energy balance.

Extensions to the model to include anisotropy or stress dependence simply use

different anhysteretic functions that include contributions from these effects [53, 50].

The model was also extended to include hysteresis in the magnetization versus stress

curve and dynamic losses from eddy currents [48, 50]. Both these extensions were

made by including additional terms in the energy balance. The original model and

noted extensions are scalar but a simple extension to 3-D was made by Bergqvist [14].

While the original model produces minor loops—magnetization due to field cycled

around a bias point—inconsistent with measurements, the inconsistencies were elim-

inated by a scaling determined from a priori knowledge of the field turning points.

This technique however cannot be applied to the 3-D extension [14]. This model has

been widely used for power-electronics and has also been used by Dapino et al. [30]

to model Terfenol-D based actuators.

Homogenized energy

Smith’s homogenized energy framework [94] has broad application to ferroic ma-

terials having been applied to magnetostrictives, piezoelectrics, and shape-memory

alloys. The framework applied to ferromagnetic materials [91] is scalar and derives

an elementary hysteron or kernel by considering the exchange energy and the work

from a magnetic field at the lattice scale. Rate dependence is introduced into the

kernel with Boltzmann statistics and the total magnetization is calculated through

stochastic homogenization of certain parameters that define the kernel (see Fig. 1.2.)
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Figure 1.2: Smith kernel and total magnetization.

Stress dependence is incorporated in the kernel through an additional energy term in

the balance that defines the kernel.

The framework has mathematical similarities to the classical Preisach model and

its extensions in that macroscopic hysteresis curves are assumed to be the result of

a statistically distributed, elementary hysteron. The differences may largely be at-

tributed to the thermodynamic basis of Smith’s framework. The hysteresis properties

of Smith’s framework are in better agreement with experiments as compared to the

classical Preisach model. Specifically, the model includes (i) minor loops that are

not closed in operating regimes where thermal relaxation is significant (ii) noncon-

gruency exhibited by certain materials (iii) both reversible and irreversible behavior

(iv) certain accommodation processes and (v) stress and temperature dependence.

Extensions to the Preisach model also address these issues; the advantage of Smith’s

homogenized energy model is that additional physical effects are included in the kernel

rather than the weights or density function and thus fewer experiments are required to
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identify the model parameters. While the framework is scalar and isotropic, Oates [73]

made an extension to 3-D.

Other researchers have also used physics-based kernels with stochastic homoge-

nization, including Ossart et al. [76] and Appino et al. [4]. The formulation of their

kernels is done at the microscopic scale rather than the lattice scale. In other words,

the energy from the magnetization of groups of atoms called magnetic domains is

used to describe the underlying behavior rather than the energy of a single atom.

Magnetomechanical coupling was not considered in their formulations.

Energy-weighted averaging

The Armstrong model [6] applies statistical mechanics to calculate magnetization

and magnetostriction of magnetostrictives with cubic anisotropy. It was formulated

as an anhysteretic model that calculates any bulk quantity as an energy-weighted

average. The density function dictates that lower energy states are more likely, similar

to Boltzmann statistics. It is postulated that material impurities cause a spread in the

distribution of energy states about the minima rather than thermal-induced disorder

as in Boltzmann statistics. Stress and anisotropy terms are included in the energy

formulation.

A hysteretic variant of the model was used for major loops of Terfenol-D [5].

Major loops are hysteresis loops caused by cycling the field between positive and neg-

ative saturation. Hysteresis was introduced in a similar manner to the Jiles-Atherton

model. First, the number of possible energy states was reduced by only allowing the

local internal energy minima, with volume fraction of material in these energy states

determined by using a discrete version of the probability density function. Finally,

irreversible losses are introduced in the evolution of the volume fractions under a
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changing field by considering the energy losses associated with impediments to do-

main wall motion. Losses are not accounted for when stress is applied so hysteresis

is only included for magnetization/magnetostriction versus applied field.

Atulasimha et al. [7] mitigated inaccuracies associated with limiting the possible

energy states to the internal energy minima by expanding the number of possible

energy states; this extension was used to model major loops of 〈110〉 oriented, single-

crystal Galfenol. The anhysteretic model was extended by Restorff et al. [86] to

include the effect of stress-annealing in Galfenol while Atulasimha et al. [10] included

the effect of material texture.

1.2.5 Modeling of magnetostrictive transducers

Models for magnetostrictive transducers have been focused on devices that are

operated with Terfenol-D in unidirectional loading. Dapino, Smith, and Flatau [30]

modeled 1-D constitutive behavior of Terfenol-D with the Jiles-Atherton model, in-

cluding an effective field due to pre-stress. In their transducer-level description, the

magnetostriction calculated from the constitutive model is used as input to the wave

equation for the structural dynamics of a rod. Huang et al. [46] also used the Jiles-

Atherton model for 1-D characterization of a Terfenol-D actuator but included eddy

current losses in the energy formulation and used a lumped parameter model for

the structural dynamics; the effect of dynamic stress was not included in their con-

stitutive model. Sarawate and Dapino [87] also developed a decoupled model but

included time delay from eddy currents through solution of the magnetic field dif-

fusion equation with constant permeability. Engdahl and Bergqvist [37] calculated
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dynamic losses in a 1-D actuator by fully coupling the magnetic field diffusion equa-

tion, the wave equation for structural dynamics, and a lumped parameter model for

the magnetic circuit with constitutive behavior obtained both from measurement and

from a Stoner-Wohlfarth hysteresis model. Bottauscio et al. [17] modeled losses from

eddy currents using the field diffusion equation along with the Preisach model to

calculate the nonlinear permeability and stress-induced flux density changes. All of

the works referenced above have as input, externally applied magnetic field.

Some attention has also been given to higher dimension models. Datta et al. [32,

88] used classical laminated plate theory with the Armstrong magnetomechanical

model to characterize laminated sensors and actuators in the absence of current-

induced magnetic field. Zhou and Zhou [118] developed a dynamic finite element

model for a unimorph actuator with one-way magnetomechanical coupling. The

magnetostatic finite element model formulated by Kannan and Dasgupta [56] is 2-D,

uses nonlinear constitutive behavior for bi-directional coupling and includes current-

induced magnetic fields and electromagnetic body forces. Mudivarthi et al. [70] used

a fully-coupled, magnetostatic formulation for stress-induced flux density changes in

Galfenol with no current-induced fields. The 3-D model of Kim and Jung [60] employs

one-way coupling with force due to magnetostriction driving a coupled fluid-structural

model for a sonar transducer. Aparicio and Sosa [79] describe a 3-D, fully-coupled

finite element model including dynamic effects and give a simple implementation for

a magnetostrictive material using a single element.

1.3 Research objectives and dissertation outline

The objectives of this research are to
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• study the nonlinear and hysteretic constitutive behavior of Galfenol through

experiments,

• construct a constitutive modeling framework for understanding and describing

this behavior,

• develop a transducer-level modeling framework for describing a broad range

effects such as energy losses affecting device efficiency, dynamic magnetostruc-

tural effects, transducer-level consequences of using hysteretic materials, and

eddy currents.

Prior to the presentation of the main body of research, Chapter 2 introduces key

concepts from the two disciplines most important to the study of magnetostrictive

materials and devices: electromagnetics and mechanics of materials. Definitions of

electric flux density, electric field, magnetic flux density, and magnetic field are given

along with the equations describing their spatial and temporal dependence. The

various forms of magnetism are discussed with special attention given to ferromagnetic

materials; Galfenol exhibits this form of magnetism. The stress and strain tensors

are introduced—specifically, the Lagrangian definitions are given as well as their

reduction to infinitesimal strains, used throughout the dissertation. Finally, the origin

of magnetomechanical coupling in magnetostrictive materials is discussed along with

the classical energy and magnetostriction formulations for cubic materials. With

these concepts properly defined, presentation of the main research effort proceeds

as follows. Chapters 3-5 each follow the same format. A preamble introduces two

sections, each of which constitutes the body of a journal publication complete with

literature review, research presentation, and conclusion.
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Constitutive modeling: Part I

Chapter 3 details an initial effort to model the magnetization and strain consti-

tutive response of Galfenol under magnetic field loading at constant stress. The first

section presents a 1-D model employing Boltzmann statistics. The bulk magnetization

and strain are calculated from the expected value of the orientation of a continuum

of magnetic moments, atomic scale quantities which are discussed in the background

chapter. An energy formulation is used in conjunction with the Boltzmann proba-

bility function to model the distribution of magnetic moments as well as the rate at

which moments flip between adjacent energy wells. Direct energy minimization yields

analytic functions for certain features of the measurements while Boltzmann statistics

are used to give the overall behavior. Hysteresis is interpreted as the time-delay in the

transition of moments between energy wells, occurring as stress and field change the

energy of magnetic moments. The model is implemented in state-space form which

facilitates its adoption into transducer-level models.

The second section of Chapter 3 extends the energy and statistical principles

presented in the first section to 3-D, with two critical differences. An alternate inter-

pretation of hysteresis is given which is rate-independent. Additionally, key simpli-

fications enable efficient 3-D implementation. A finite number of magnetic moment

orientations, determined through direct energy minimization, is considered in place of

a continuum. The bulk anhysteretic behavior is calculated by assuming a Boltzmann

distribution of these moment orientations. Hysteresis is interpreted as the result of

energy loss that occurs when magnetic moments are impeded by material defects.

Polycrystallinity is also investigated; material texture is described by the probability
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density of grain orientations and its effects on the magnetization and magnetostriction

are demonstrated.

Constitutive modeling: Part II

Chapter 4 presents a two-tiered modeling framework, motivated by additional

magnetization and strain measurements. The first is for a detailed understanding

of hysteresis in Galfenol and the second is better suited for adoption in device-level

models. The measurements are reported in the first section and shed light on the

nature of magnetization and strain hysteresis in Galfenol. Magnetization and strain

are measured in two grades of Galfenol by applying both magnetic field at constant

stress and stress at constant magnetic field. Special attention is given to the history

and order of application.

Following the measurements, the first tier model, a new homogenized energy

model is developed. It is derived from the first and second laws of thermodynamics.

Anisotropy, magnetomechanical coupling, strain, and magnetic energy densities are

included in the energy formulation and provide a physical basis for the construction

of a 3-D hysteron for magnetostrictive materials. As in Smith’s homogenized energy

model, a statistically distributed interaction field is superimposed on the applied field

to account for material defects. An improvement is made to the homogenized energy

class of models and to Preisach-type models in general by using a coercive energy

rather than coercive field to determine the switching of the hysteron. This approach

satisfies the second law and reduces the required integration order from six to four.

The model satisfies the hysteresis properties observed in the measurements.

The second section of Chapter 4 presents the second tier model, a refinement

of the efficient modeling framework developed in Chapter 3 in light of the additional

24



measurements. It again employs concepts from Boltzmann statistics, using an energy-

weighted average of a discrete number of domain orientations to relate micro-scale

behavior to macro-scale behavior. A new formulation is used for the anisotropy

energy which is applicable to materials of any symmetry. This is particularly useful

for Galfenol since stress annealing, applying stress at elevated temperatures, can

change the crystal symmetry. Additionally, the hysteresis model is extended for 3-

D magnetic field and stress loading. The model gives an accurate representation

of magnetization and strain with minimal computational expense and is adopted

Chapter 5 for transducer modeling.

Application of Galfenol to force sensing and 3-D dynamic transducer mod-
eling

In Chapter 5 the application of Galfenol to force sensing is investigated and a

general framework for transducer-level modeling is constructed. Particular atten-

tion is given to the quantities of interest in transducers: voltage, current, force, and

displacement.

The first section investigates a force sensing concept based on Galfenol which is

motivated by the presence of linear regions in the measured magnetization versus

magnetic field curves. These regions are described through a simple rotational model

using only the saturation magnetization and magnetostriction and the anisotropy

constant. This model motivates a force sensing principle based on stress dependent

susceptibility—the slope of the magnetization versus field curve. A Ga content range

is identified which yields alloys having properties that best leverage the proposed

force sensing principle.
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In the second section, a framework is developed for the study of magnetostrictive

transducers operated in dynamic and nonlinear regimes and having complex geome-

tries. The finite element method is employed in the modeling strategy which is imple-

mented for a variety of cases in order to study various transducer-level effects. A 1-D

implementation is used to study the effect of eddy currents on the dynamic actuation

and sensing ability of Galfenol transducers. A 2-D implementation is considered to

describe the effect of hysteretic magnetostrictive materials on the device-level behav-

ior. A 2-D and dynamic implementation is done for composite beam actuators in

order to study the structural dynamics which are induced by nonlinear magnetostric-

tion. Finally, a fully 3-D and dynamic finite element model is used to study the entire

input-output relationship of a Galfenol-based micro-positioner, from the voltage ap-

plied to a solenoid to the output displacement. Measures are proposed to quantify

the transduction efficiency of the entire device as well as the magnetomechanical

transduction efficiency of the Galfenol element.

Summary

Chapters 3-5 are intended to be self-contained studies of topics ranging from

material to device-level behavior. Chapter 6 is the concluding chapter and summarizes

the important contributions that were made to the field of magnetostrictive materials

and devices with specific application to Galfenol. It also identifies future areas of

work that are possible in light of the research presented in this dissertation.
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CHAPTER 2

Background

2.1 Preamble

The study of magnetostrictive materials is inherently interdisciplinary. The cou-

pling between electromagnetic and mechanical domains present in these materials re-

quires understanding of two disciplines, electromagnetism and mechanics of materials.

The first is the study of electric and magnetic fields and their work conjugates electric

flux density and magnetic flux density. The second is the study of the work conju-

gates stress and strain. A concise background in the principles of electromagnetism

is given in Section 2.2 and of mechanics of materials in Section 2.3. Magnetostric-

tive materials exhibit magnetomechanical coupling with unusual work conjugates of

magnetic flux density and stress as well as strain and magnetic field. Section 2.4

discusses magnetomechanical coupling and includes a derivation of the energy and

magnetostriction formulations used for cubic materials.

2.2 Electromagnetism

This background in electromagnetism describes the electrical and magnetic quan-

tities of interest in magnetostrictive materials, structures, and devices. An overview
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of the field equations for electromagnetics is given, followed by a description of mag-

netization in ferromagnetic materials. Further descriptions can be found in recent

texts on magnetism from O’Handley [75] and Jiles [49] as well as classical texts from

Chikazumi [21], Bozorth [18], and Cullity [28].

2.2.1 Electromagnetic field equations

Electric flux density D is a measure of the strength of electric field E created by

free charges q. It is essentially the number of field lines which pass through an area.

Electric fields are detectable by virtue of the fact that they generate a force on electric

charge acting along the field lines. Magnetic flux density or magnetic induction B is a

measure of the strength of a magnetic field H created by charge in motion. Magnetic

fields are detectable by virtue of the fact that they generate a force on moving charge

which causes a change in the curvature of the charge path.

Coulomb’s law gives the differential electric field created by a differential charge

dE =
1

4πε0

dqr̂

r2
. (2.1)

This is the electric field in free space where the relationship between field and flux

density is linear, D = ε0E. Additionally, the electric field associated with flowing

charging in conductors is governed by Ohm’s law E = ρEJ, where ρE is the electrical

resistivity. While (2.1) suggests that the field is independent of the medium, in reality

the problem of determining D and E is more complex. When a charge creates an

electric field, this field causes polarization P in dielectric materials. The polarization

is the density of electric dipoles which act like paired charges. The total electric flux

density then is that seen in free space in addition to the flux density contributed by

the polarization, D = ε0(E + P).
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The Biot-Savart law gives the differential magnetic field element dH for a differ-

ential current IdÎ at a distance rr̂

dH =
1

4π

IdÎ× r̂

r2
. (2.2)

The field at a point is found by integrating (2.2) around a current loop with r a

unit vector pointing from dI to the point of interest. The approximation (2.2) is

valid when the conductor can be approximated as infinitely narrow. If there is some

thickness to the conductor, current density J is used and the proper formulation is

dH =
1

4π

JdV × r̂

r2
. (2.3)

From (2.3) it is observed that the field applied by a current carrying conductor is

independent of the properties of the surrounding medium. However, the medium

affects the total field because all media has some form of magnetism. Electron spins

and orbital motion act as charge in motion, creating magnetic field. They can be

thought of as microscopic magnets and in combination with the motion of electron

orbits create magnetic moments—analogous to electric dipoles. Magnetic field cre-

ated by a current carrying wire or by a permanent magnet causes reorientation of

these magnetic moments or magnetization M, which contributes to the magnetic flux

density in the same manner that polarization contributes to electric flux density. The

magnetic flux density is the sum of that seen in free-space and the contribution from

the involved materials, B = µ0(H + M).

To create a complete description of D, E, B, and H, Maxwell’s equations along

with constitutive relations are needed. A conceptual explanation of Maxwell’s equa-

tions follows:
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• Gauss’ law for electricity describes how divergence of electric flux density is

affected by electric charge density ρq. Field lines diverge from positive charges

and are drawn towards negative charges. Furthermore, the total electric flux

through a Gaussian surface must be zero unless it contains free charge.

• Gauss’ law for magnetism states that the total magnetic flux
∮
S

B · dA

through a Gaussian surface is zero. This is due to the apparent absence of

magnetic monopoles in nature. Magnetic charges always come in pairs which

have divergences that cancel. This fact creates an asymmetry in the laws of

electromagnetism with respect to the electric and magnetic variables.

• Faraday’s law of induction describes how a changing magnetic field creates

an electric field. This is the origin of eddy-currents and the basis for electric

power generation.

• Ampère’s law with Maxwell’s correction describes how magnetic fields

can be be generated by both electric current and by changing electric fields or

displacement currents.

In equation form these laws are,

∇ ·D = ρq, (2.4)

∇ ·B = 0, (2.5)

∇× E = −∂B

∂t
, (2.6)

∇×H = J + ε0
∂E

∂t
. (2.7)

Gauss’ law for magnetism and Ampère’s law (no displacement current) can be derived

from the Biot-Savart law.
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(a) (b)

Figure 2.1: Demonstration of (a) flux density continuity and (b) field continuity.

Continuity conditions

Gauss’ law for magnetism (2.5) enforces continuity of the normal flux component

across a boundary and the Ampére-Maxwell law (2.7) enforces continuity of the tan-

gential component of the magnetic field. Continuity of one results in discontinuity of

the other since B is a continuous function of H within a material and the function

changes abruptly at the boundary.

Continuity of the normal component of B through a material boundary is readily

shown from the integral form of Gauss’ law∫
S

B · dA = 0, (2.8)

which states that the total flux through a Gaussian (closed) surface is zero. Taking a

thin pill box around the boundary (see Figure 2.1(a),) as the height of the box goes

to zero, closing in on the boundary, and considering an infinitesimal area dA with N
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a unit vector normal to dA, Gauss’ law becomes

(B2 −B1) · ndA = 0→ B2 · n = B1 ·N, (2.9)

where the subscripts denote for which side of the boundary the flux density is calcu-

lated. Boundary conditions for the H field can be found from the integral form of

the Ampére-Maxwell law ∮
∂S

H · dl =

∫
S

J · dA. (2.10)

With an infinitesimal length dl = tdl tangent to the boundary and infinitesimal area

NdA enclosing the boundary (see Fig. 2.1(b),) the equation becomes

(H2 −H1) · tdl = J ·NdA = dI. (2.11)

In the absence of an inter-facial current

(H2 −H1) · t = 0, (2.12)

which states that the tangential components of the field must be continuous across

the boundary.

Continuity of flux density and discontinuity of field for the normal component

across a boundary is illustrated in Figure 2.1(b). Continuity of field and disconti-

nuity of flux density for the tangential component across a boundary is illustrated

in Figure 2.1(a). A typical measurement setup involves a sample subject to a mag-

netic field from a coil. The field over the cross section of the sample is uniform since

there is no current in the sample during quasi-static testing (eddy-currents will create

non-uniformity in the field.) Furthermore, since the permeability is constant in the

material, the flux density is also uniform over the cross-section.
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The boundary conditions on flux density and field can be understood in the fol-

lowing practical terms when magnetic systems are viewed as consisting of lumped

elements having different properties:

• Elements in series have the same flux

• Elements in parallel have the same field

These characteristics are analogous to electrical circuits. Flux is like current and field

is like voltage. Conductance is like permeability. Magnetic circuits should therefore

have an element property analogous to resistance which takes into account both the

material properties and the geometry of the element. For magnetic circuits this

property is called reluctance and it resists flux. Reluctance takes into account both

the permeability and the geometry of the element. Just as resistance relates voltage

to current in an element, reluctance relates field to flux.

For measurement purposes, flux should be measured with a device in series with

the element of interest and field should be measured in parallel. To mitigate the effects

of the instruments on the magnetic circuit, flux sensors should have low reluctance

and field sensors should have high reluctance. This is analogous to electrical sensors

where current sensor should have low resistance and voltage sensors should have high

resistance.

Electromagnetic potentials

A description of the boundary conditions for electrical quantities will not be given

here because the electrical and magnetic domains can be decoupled through introduc-

tion of auxiliary quantities or potentials. Various choices for electric and magnetic

potentials exist and selection is based on assumptions made on the problem to be
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solved [47]. For magnetostrictive systems in quasi-static operation with applied cur-

rents, the appropriate potentials are the scalar electric potential or voltage φ and

the vector magnetic potential A. Before describing these quantities, Ampére’s law is

simplified in accordance with the quasi-static assumption. For operation frequencies

below 30 MHz (consistent with the operating regime of magnetostrictive devices,) the

displacement current term in Ampére’s law may be omitted. This reduced form of

the electromagnetic field equations does not describe electromagnetic radiation but

does account for the important effects of demagnetizing fields, described by Gauss’

law for B, and eddy currents, described by Ampére’s law.

Chief intent of introducing potentials is to reduce the number of equations to

be solved while satisfying the continuity conditions on H and B. First, the vector

magnetic potential is introduced,

B = ∇×A. (2.13)

This statement is implied by (2.5) which is now automatically satisfied since the

divergence of the curl of a field is zero. The scalar electric potential, or voltage, is

now introduced,

E = −∇φ− ∂A

∂t
. (2.14)

This relation is implied by (2.6). The curl of the gradient of a scalar is always zero, this

ensures that the curl of the electric field is equal to the time rate of change of magnetic

induction. The remaining equations (2.4) and (2.7) are decoupled through inclusion

of Ohm’s law and decomposition of the current density. Magnetostrictive systems are

typically composed entirely of Ohmic materials which exhibit a linear relationship
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between current density and electric field, characterized by the conductivity σ,

J = σE. (2.15)

The current density is decomposed into a known, source current density Js and

the part resulting from eddy currents; this is motivated by (2.14), which combined

with (2.15) gives

J = −σ∇φ− σ∂A

∂t
,

: = Js − σ
∂A

∂t
.

(2.16)

The magnetic initial-boundary-value problem

Incorporating the electromagnetic potentials and Ohm’s law, the initial boundary

value problem describing magnetic quantities is now

∇×H = Js − σ
∂A

∂t
. (2.17)

The dependent variable to be solved for is A with input or source Js. For solution,

initial and boundary conditions are needed as well as a constitutive law relating H

to B which has already been defined as the curl of A. The boundary conditions are

of two types. The Dirichlet type is simply specified A and may consist of part or all

of the boundary,

A(ΓA, t) = AΓA . (2.18)

A typical system to be solved consists of electromagnetic components such as steel,

copper, and magnetostrictive materials, surrounded by an air volume, sufficiently

large to assume that the the boundary of the air volume is magnetically insulated, AΓ =

0. The Neumann type boundary condition is the specified magnetic field tangent to
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the boundary, H×N. The tangent component is specified because it is this compo-

nent that is continuous across material boundaries. This is implied by the fact that

the curl of H appears in (2.17). This is a Neumann condition because H is related

to A through first derivatives. On the boundary ΓH , the following condition holds,

H(B)×N = H(∇×A)×N

= HT,ΓH .
(2.19)

The boundary then is Γ = ΓA ∪ ΓH , ΓA ∩ ΓH = 0.

2.2.2 Ferromagnetism

To solve the magnetic initial boundary value problem (2.17) a constitutive law

is needed to relate B and H. As stated previously, the flux density is the sum of

the contribution from the magnetic field in free space µ0H and the contribution from

magnetizable materials µ0M. The magnetization is a function of magnetic field and

for certain materials, ferromagnetic materials, it can be quite large. The tangent

matrix of the M−H relationship is called magnetic susceptibility χ. Since the flux

density is B = µ0(H + M), the tangent matrix of the B−H curve, or the magnetic

permeability, is µ0(1 + χ). To summarize, small increments of magnetic flux density

due to small increments of magnetic field are linearly related according to

∆B = µ∆H = µ0(∆H + ∆M) = µ0(1 + χ)∆H. (2.20)

In general, a magnetic field can magnetize a material in two ways. The first is by

affecting electron orbits. Electron orbits may be thought of as charges in motion and

hence generate a magnetic field. Additionally, since a magnetic field imparts acceler-

ation on moving charges, a magnetic field will change an electron orbit and thereby
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change the magnetization in the material. Magnetization from this effect tends to be

very small and is termed diamagnetism. For diamagnetic materials the relationship

between M and H is nearly linear with a very small magnetic susceptibility.

The other possibility for magnetism comes from the electron spin which may also

be thought of as charge in motion. Ferromagnetic materials have unpaired electrons

which do not participate in bonding. For paired electrons the opposite spins cancel

and no magnetism results. In most materials, electrons are either paired with opposite

spins in the native atom or become paired when they participate in bonding. Iron has

a large number of unpaired electrons which do not participate in bonding and is fer-

romagnetic. The combined effect of the unpaired spin and the orbital motion is called

a magnetic moment since an external field creates a torque on the magnetic moment.

Unpaired electrons alone do not result in ferromagnetism because the torque which

neighboring magnetic moments exert on each other causes them to align opposite

resulting in zero net magnetization. Furthermore, thermal energy causes vibratory

motion of the magnetic moment which contributes to randomness in the moment ori-

entations. An external magnetic field can orient the magnetic moments and generate

a small amount of macroscopic magnetism termed paramagnetism.

In ferromagnetic materials a spontaneous ordering of magnetic moments occurs

below the Curie temperature. The Curie temperature marks the transition from dis-

order to order where exchange energy, an energy resulting from quantum constraints

on the states taken by nearest neighbor electrons, overcomes the thermal energy.

Spontaneous order of magnetic moments occurs at the micro-scale; in the absence

of an external magnetic field this yields no net macro-scale magnetization. At the

micro-scale magnetic moments are ordered in domains. Each domain has a uniform
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magnetization Ms, or magnetic moment per volume, from its ordered magnetic mo-

ments, however, the domains are ordered so as to produce no net magnetization. This

domain ordering reduces the overall energy. Magnetic flux density and field have an

associated energy (1/2)B ·H called the magnetostatic energy. Suppose that domains

in an infinite plate of a ferromagnetic material are all aligned, in the absence of a

magnetic field, and point towards one side of the plate. The magnetization of the

plate is then Ms and the field inside the plate is zero. However, Gauss’ law for flux

density dictates that the flux density is continuous across material boundaries and

therefore

Bplate = µ0(Hplate + Mplate) = µ0Ms

= Bair = µ0Hair,

→ Hair = Ms.

(2.21)

Even though H is zero in the plate, a field is generated outside of the plate and

results in an energy density (1/2)µ0M
2
s . It is therefore more energetically favorable

for domains to align in opposing directions so as to produce no net magnetization in

the absence of magnetic field. For certain geometries, alignment of domains does not

produce an external magnetic field and hence alignment can occur without an internal

magnetic field. These geometries have a closed magnetic circuit. For example, a ring

can be magnetized circumferentially without generating an external field since no air

boundaries are crossed.

Magnetization process for ferromagnetic materials

Below the curie temperature, competition between the exchange and thermal en-

ergies results in magnetic domains. The magnetization process M(H) occurs as an

externally applied magnetic field does work −µ0M · H to order the domains. In
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Domain wall

Figure 2.2: 180 degree domain wall.

general, three processes occur in the magnetization curve M −H: (1) domain wall

motion, (2) domain rotation, and (3) further alignment of magnetic moments within

domains.

The first process, which typically occurs at low magnetic fields where there are

many differently oriented domains, proceeds as the size of domains oriented close to

the field direction grow at the expense of domains which are oriented further from

the field direction. This growth occurs through motion of the boundary, called a

domain wall, that separates two differently oriented domains (see Figure 2.2.) In

domain wall motion, the exchange and anisotropy energies are important and the

process minimizes energy—domains with lower energy grow in size at the expense of

domains with higher energy. Exchange energy encourages neighboring moments to

align. Domain wall motion rotates neighboring moments with respect to each other

and hence requires overcoming the exchange energy. Furthermore, moments have

preferred or easy crystallographic orientations manifested in the anisotropy energy,

a consequence of the combination of spin-orbit coupling and orbit-lattice coupling.

Domains aligned in easy directions nearer the field direction have lower energy than

those aligned in easy directions further from the field direction. The anisotropy energy

also plays a significant role in the next process.
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The second process is dominant once domain wall motion has created a single

domain of the entire material. This domain may not be aligned with the field direction

because of the anisotropy energy. Further work from the magnetic field is required

to rotate a domain away from its preferred crystallographic direction.

The final process is the forced magnetization region where high magnetic fields

improve the moment alignment within the now single domain material. In this pro-

cess, the magnetic work improves moment alignment resulting in an increase in the

domain magnetization Ms.

In general the magnetization process is hysteretic, depending on the magnetization

history. During domain wall motion, magnetic moments at times are pinned by

material defects. Overcoming the energy associated with these pinning sites is an

irreversible, friction-like process. Additionally, the anisotropy energy has multiple

energy minima since crystal symmetry dictates that magnetic moments prefer more

than one crystallographic direction. Which of the possible orientations are taken

by domains thus depends on their history. Since energy principles will be utilized

extensively through the rest of this work, the classical form of the anisotropy energy

is given here. The form depends on the crystal symmetry and it is expressed in terms

of m, the direction of the magnetization vector, through a series expansion omitting

high-order terms. For example, uniaxial anisotropy can be expressed as,

EA = −K2m
2
1. (2.22)

The subscript refers to the order of the energy. For K2 > 0 this expression is minimum

at m = [±1, 0, 0], hence these are the easy directions. For a cubic material, one or

both of the direction families 〈100〉 and 〈111〉 are easy and the anisotropy energy can
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be expressed

EA = K4(m12m2
2 +m2

2m
2
3 +m2

3m
2
1) +K6m

2
1m

2
2m

2
3. (2.23)

The easy directions depend on the values of K4 and K6. Since all moments within

a domain have the same orientation (neglecting thermal precession), these energies

also define the energy density of a magnetic domain due to anisotropy.

2.3 Mechanics of materials

Mechanics of materials is the study of stress and strain in deformable bodies.

Since these quantities are of great interest in the study of magnetostrictive materials,

precise definitions for the concepts of stress and strain are needed. More detailed

explanations can be found in the book by Boresi and Chong [16].

2.3.1 Strain

The concept of strain is purely geometric; it does not depend on the material under

consideration. Strain is the study of transformations that occur with infinitesimal line

segments in a body that undergoes deformation.

Deformation gradient tensor

In order to define strain for a 3-D body, consider a body with initial configuration

K(B)0 which undergoes a deformation to a new configuration K(B) with coordinate

systems X and x, respectively (see Fig. 2.3.) The deformed and undeformed coor-

dinate systems are chosen to have the same basis ej. The transformation K(B)0 to

K(B) is given by a one-to-one mapping x = χ(X). Now consider point P located at

X in K(B)0 and a neighboring point Q located at X + dX, where dX is a straight,
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infinitesimal line segment. After deformation, P is displaced by an amount u(X) to

p and Q is displaced to q by an amount u(X + dX). Since Q is in the neighborhood

of P in the undeformed body, q is in the neighborhood of p in the deformed body. In

other words, p is located at x and q is at x + dx where dx is a straight, infinitesimal

segment. The displacement is defined as u = x−X and from Figure 2.3 it is observed

that

x + dx = X + dX + u(X + dX) (2.24)

→ dx = dX + u(X + dX)− x + X (2.25)

= dX + u(X + dX)− u(X) (2.26)

= dX + du. (2.27)

Since the segments dx and dX are infinitesimal,

du =
∂u

∂X
dX,

and from (2.27)

dx = dX +
∂u

∂X
dX, (2.28)

=

(
I +

∂u

∂X

)
dX, (2.29)

= FdX. (2.30)

The deformation gradient tensor F can also be found as the gradient of the mapping

χ(X), recalling that x = χ(X).

Normal strain

The normal strain is a measure of how much stretch is undergone by a differential

line segment directed in the N direction (a unit vector.) The original segment can
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Figure 2.3: Finite deformation of a body.

be represented by its magnitude dX and direction according to dX = dXN. After

deformation, the magnitude of the segment is dx and has an orientation n which is

not in general the same as N. The normal or engineering strain in the N direction is

the percentage change in length of an infinitesimal line segment dX in this direction,

SN =
dx− dX
dX

. (2.31)

It is beneficial to relate strain to displacement when analyzing deformable bodies.

While the deformation gradient F relates line segments in the deformed and unde-

formed body, it carries information for both the change in length and the rotation of

line segments. To obviate this, a measure using the square of the segment magnitudes

is typically used; a common measure is the Lagrangian finite strain tensor E which
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is derived from the magnification factor

MN =
1

2

dx2 − dX2

dX2
, (2.32)

=
dxTdx− dXTdX

dXTdX
, (2.33)

=
dXT

(
FTF− I

)
dX

dXTdX
, (2.34)

=
dX2dNT

(
FTF− I

)
dN

dX2dNTdN
, (2.35)

= NT
(
FTF− I

)
dN, (2.36)

:= NTEN. (2.37)

The finite strain tensor can be related to displacement since it is a function of the

deformation gradient tensor which was previously shown to be related to the displace-

ment gradient (2.30),

E =
1

2

(
FTF− I

)
, (2.38)

=
1

2

(
∂u

∂X

)T
+

1

2

∂u

∂X
+

1

2

(
∂u

∂X

)T (
∂u

∂X

)
. (2.39)

The diagonal components of the finite strain tensor give the magnification factor

in the basis directions since,

Mej = eTj Eej = Ejj. (2.40)

The magnification factor is related to the normal strain,

MN =
1

2

dx2 − dX2

dX2
, (2.41)

=
dx− dX
dX

+
1

2

(
dx− dX
dX

)2

, (2.42)

= SN +
1

2
S2

N. (2.43)

Thus for small strains, the magnification factor is the normal strain and the diagonal

components of E are the normal strains along the basis components ej.
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Shear strain

Shear strain is defined as the change in angle φjk that occurs between two line

segments dXj and dXk, perpendicular in the undeformed body, as they are deformed

to dxj and dxk in the deformed body. Before deformation the angle is π/2 and after

deformation the angle is θjk and thus cos θjk = sinφjk. The off-diagonal components

of the finite strain tensor are related to the shear strain of segments in the basis

directions,

dxTj dxk = dxjdxk cos θjk = dxjdxk sinφjk, (2.44)

=
√
dXT

j FTFdXj

√
dXT

kFTFdXk sinφjk, (2.45)

= dXjdXk

√
eTj (2E + I) ej

√
eTk (2E + I) ek sinφjk, (2.46)

= dXT
j FTFdXk, (2.47)

= dXjdXke
T
j (2E + I) ek, (2.48)

→ eTj (2E + I) ek =
√

eTj (2E + I) ej

√
eTk (2E + I) ek sinφjk, (2.49)

→ 2Ejk =
√

2Ejj + 1
√

2Ekk + 1 sinφ12. (2.50)

Thus for small strains, 2Ejj << 1 and sinφjk ≈ φjk, the off-diagonal components

give half the shear strain, Ejk = (1/2)φjk.

Infinitesimal strain tensor

It is deduced from the relationship between the displacement gradient and the

finite strain tensor that strains will be small if the displacement gradient is small, for
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in this case,

E =
1

2

(
∂u

∂X

)T
+

1

2

∂u

∂X
+

1

2

(
∂u

∂X

)T (
∂u

∂X

)
, (2.51)

≈ 1

2

(
∂u

∂X

)T
+

1

2

∂u

∂X
, (2.52)

= S. (2.53)

The diagonal components of the infinitesimal strain tensor S are the normal strains, or

the fractional change in length of an infinitesimal line segment, and the off-diagonal

components are the shear strains, or the change in angle between perpendicular,

infinitesimal line segments. Since the diagonal components are half the shear strain,

or the change in angle between line segments in two different basis directions, S is

symmetric. In other words, it does not matter whether it is said change in angle

between ej and ek or change in angle between ek and ej, exactly half the change

is given in Sjk and Skj. The symmetry is also clear when considering the strain-

displacement relationship,

S =
1

2

(
∂u

∂X

)T
+

1

2

∂u

∂X
(2.54)

=



∂u1

∂X1

1

2

(
∂u2

∂X1

+
∂u1

∂X2

)
1

2

(
∂u1

∂X3

+
∂u3

∂X1

)
1

2

(
∂u2

∂X1

+
∂u1

∂X2

)
∂u2

∂X2

1

2

(
∂u2

∂X3

+
∂u3

∂X2

)
1

2

(
∂u1

∂X3

+
∂u3

∂X1

)
1

2

(
∂u2

∂X3

+
∂u3

∂X2

)
∂u3

∂X3

 (2.55)

Since there are only six independent components, a compact notation can be devised

where the strain tensor is stored in a vector with the first three components being the

normal strains and the last three are the total shear strains. Furthermore, defining
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the gradient operator

∇S =


∂/∂X1 0 0

0 ∂/∂X2 0
0 0 ∂/∂X3

∂/∂X2 ∂/∂X1 0
0 ∂/∂X3 ∂/∂X2

∂/∂X3 0 ∂/∂X1

 , (2.56)

the strain-displacement relationship can be represented

S = ∇Su. (2.57)

For infinitesimal strains, the coordinate systems x and X can be interchanged. This

means that the Lagrangian description and the Eulerian description are essentially the

same or that the deformed configuration is very close to the undeformed configuration.

In the development of constitutive models for Galfenol as well as transducer-level

models for Galfenol-based devices in this work, infinitesimal strain theory will be

employed.

2.3.2 Stress

The concept of stress relates to the internal forces developed in deformable bodies

when acted upon by external loads. External loads may be point forces, distributed

loads on the surface, or body-type forces that act on the entire volume such as gravity

or inertia. For magnetostrictive materials, internal forces can develop due to the

simultaneous action of magnetic field-induced strain and an external constraint on

the deformation. The constraint causes internal force build-up from reaction forces.

To define stress, a cutting plane is inserted into the body. The plane maintains

equilibrium of the body by balancing the internal forces F. Now consider the incre-

ment of force ∆F acting on area ∆A (see Figure 2.4.) The stress vector or traction
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Figure 2.4: Cross-section of a deformable body with external loads.

force is then defined as

t = lim
∆A→0

∆F

∆A
. (2.58)

The component normal to the area is the normal stress vector or traction and the

component parallel to the area is the shear stress vector or traction. Tractions on one

side of the cutting plane are designated positive and on the other side negative. The

sign convention can also be understood to mean that traction forces direct outwards

from the plane are positive and towards the plane, negative. Tensile stresses are

therefore positive. Traction force tN acts on an infinitesimal area with unit normal

N. The stress at a point is tensor T whose columns are the tractions acting on

three perpendicular planes passing through the point. Each plane, with unit normal

one of the bases of the coordinate system, ej, has an associated 3-D traction tj.

Thus the stress has nine components. The three components of each traction are the

components directed along each of the three basis directions. The component Tjk of
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the stress is the component of the traction tj (acting on the area perpendicular to

ej) directed along ek.

The diagonal entries of the stress tensor Tjj are called normal stresses because

they are the normal components of the tractions acting on the planes perpendicular

to the coordinate axes. For example, in a coordinate system x, the stress T11 is the

component of the traction force acting on the 2−3 plane (perpendicular to x1) which

is directed toward x1. The off-diagonal entries Tjk are the shear stresses because they

act parallel to the plane. For example, the T12 stress component acts on the 2 − 3

plane in a parallel manner, directed towards x2.

The stress tensor is typically symmetric. Asymmetries only arise when pure mo-

ments are applied. Pure moments are torque loads which cannot be decomposed into

a force acting on a moment arm. It can be shown from angular momentum is con-

served in the absence of pure moments when Tjk = Tkj. The torques due to shear

stresses in opposing diagonal entries are understood to balance each other. As in the

case with the symmetric strain tensor, a compact vector notation can be used for

stress where the six independent stress components are stored in a vector with the

first three components the normal stresses, or diagonal components, and the second

three components the shear stresses, or independent off-diagonal components.

Transformation of a stress

The stress tensor can be interpreted as a mapping between the unit normal N of

an arbitrary plane and the traction acting on that plane tN = TN. This relation is

important in continuum mechanics because it connects conditions at the boundary of

a body to the internal stress of the body. It is also useful for understanding how to

transform a stress from one coordinate system to another.
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Suppose the stress T is known in one coordinate system x having bases ek and

it is desired to find the stress T′ in another coordinate system x′ having bases e′k.

Recall that the stress is fully defined when all the tractions are known on each of

the three perpendicular planes defined by unit normals e′j. To find T ′jk, first find the

traction on the plane defined by I′k, t′j = Te′k. Then the nine components of stress

are the three components of each of these three tractions, so the stress components

in the new coordinate system are T ′jk = e′Tj Te′k. The strain tensor transforms in the

same fashion.

Applying this transformation process, suppose that in a certain coordinate system

x with bases ej that the complete stress state is attributed to a single traction with

magnitude T acting normal to a plane with unit normal N = [γ1, γ2, γ3]. The 3-D

stress tensor in the x coordinate system is then Tjk = γjγkT . This relation is used

in the Armstrong magnetomechanical model [6] which is thus limited to uniaxial

stresses.

2.3.3 Stress-strain relations

The materials comprising typical active structures and magnetostrictive devices

have linear elastic behavior over the entire operating regime. The only exception is

the magnetostrictive element which typically has a nonlinear stress-strain relationship.

However, the strain in the magnetostrictive element can be decomposed into the sum

of a strain due to purely mechanical energy and a strain due to the energy of the

magnetomechanical coupling. The strain due to purely mechanical energy is linear

elastic. The operating regime refers to the frequency and magnitude of the mechanical

forces and displacements as well as electrical voltages applied to the system.
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The linear-elastic stress-strain relationship is represented by Hooke’s law, T = cS

with stiffness c. For asymmetric stress and strain tensors, c is a fourth-order tensor

with eighty-one components since it maps a second-order tensor to a second-order

tensor. As discussed previously, kinematic considerations show that the strain tensor

is always symmetric. Since there are only six independent components of strain, the

number of independent components in the stiffness tensor is reduced fifty-four. In

the absence of pure moments, the stress tensor is also symmetric. Since there are

only six independent components of stress, the number of independent components

in the stiffness tensor is reduced to thirty-six. In compact notation, stress and strain

are vectors with six components each and the stiffness tensor is a second-order tensor

having thirty-six components.

Energy considerations can further reduce the number of independent coefficients

in the stiffness tensor because it can be shown to be symmetric. Stress and strain are

work conjugates and the internal energy U is a function of strain; according to the

first law of thermodynamics under adiabatic conditions, the variation of the work W

and the internal energy are balanced,

δW = δU(S), (2.59)

T · δS =
∂U

∂S
· δS. (2.60)

Since δS is arbitrary,

∂U

∂S
= T (2.61)

= cS. (2.62)
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As long as the internal energy is twice differentiable, the coefficients of the stiffness

tensor can now be found from the internal energy

∂2U

∂Sj∂Sk
= cjk. (2.63)

Since switching the indices j, k on the left has no effect, cjk = ckj and the stiffness

tensor is symmetric.

The final form of the stiffness matrix can be deduced by considering material sym-

metries at the lattice level. Common magnetostrictive materials have a crystal lattice

with cubic symmetry. Galfenol for example has a body-centered cubic structure [22].

The type of symmetry in the stiffness matrix observed for cubic materials is called

isentropic symmetry and has the structure,

c =


c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

 . (2.64)

2.3.4 Equations of motion

The equations of motion governing mechanical quantities such as u, S, and T

are governed by Newtons’ second law or the conservation of linear momentum. As

discussed previously, conservation of angular momentum simply leads to the conclu-

sion that the stress tensor is symmetric. The equations of motion can be derived

by considering an infinitesimal volume of material acted upon by the three traction

vectors tj comprising the stress tensor, the body force, and the inertial or dÁlembert

force. Summing the forces and dividing by the material volume leads to the system
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Figure 2.5: Infinitesimal material volume in mechanical equilibrium.

of equations,

∂t1

∂x1

+
∂t2

∂x2

+
∂t3

∂x3

+ fB = ρü. (2.65)

Recalling that the tractions tj contain the stress components, the mechanical

equations of motion can be compactly represented by using the six-element, vector

representation of stress and the nabla operator previously defined (2.56)

∇T
ST + fB = ρü. (2.66)

To solve (5.104), the following are needed

• Initial conditions on u

• Boundary conditions

• Stress-strain constitutive law

• Strain-displacement kinematic relationship
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The initial condition for displacements is given as u(x, 0) = u(0). Boundary condi-

tions are of two kinds. The first consists of specified displacements,

u(Γu, t) = uΓu , (2.67)

where Γu is a subset of the boundary of the body where displacements are specified.

The other type of boundary condition is that of specified tractions,

T(ΓT , t)NΓT = tΓT (2.68)

where N is the unit normal of the boundary and tΓT is the traction force applied to ΓT ,

a subset of the boundary of the body. This form of the traction boundary condition

necessitates the use of the second-order tensor representation of the stress rather than

the vector representation. The traction boundary condition clearly shows how forces

applied to the surface of a body result in internal forces governed by (5.104) and

illustrates that stress is a tensor that maps surface normal to surface traction. The

traction boundary condition can be represented using the compact stress notation as

follows,

NTT(ΓT , t) = tΓT (2.69)

NT =

N1 0 0 N2 0 N3

0 N2 0 N1 N3 0
0 0 N3 0 N2 N1

 . (2.70)

For a passive system (no magnetomechanical coupling)and utilizing linear elas-

tic materials as well as the strain-displacement relation, the initial boundary value
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problem governing displacements is

∇T
Sc∇Su + fB = ρü (2.71)

u(x, 0) = u0 (2.72)

u(Γu, t) = uΓu (2.73)

NTc∇Su(ΓT , t) = tΓT . (2.74)

In Chapter 5, this system will be solved using the finite-element method for passive

mechanical elements in systems having magnetostrictive materials.

2.4 Magnetomechanical coupling

Thus far, the fields of electromagnetism and mechanics of materials have been

treated separately. The spatial and temporal dependence of electromagnetic quanti-

ties can be described by Maxwell’s equations, requiring a material constitutive law

relating B and H. The spatial and temporal dependence of mechanical quantities

can be described by Newton’s laws, requiring a material constitutive law relating S

and T. For magnetostrictive materials, B and S are each functions of both H and

T; the functional relationship is generally nonlinear. Descriptions of magnetostric-

tion in a variety of materials are given in the book by Engdahl [36] and O’Handley’s

book provides a detailed discussion on the energy derivations for magnetomechanical

coupling [75].

Passive, ferromagnetic materials always have a nonlinear B−H relationship. Al-

though the portion of B from the permeability of free space is linear, µ0H, the mag-

netization due to ferromagnetic domains M depends nonlinearly on H. Chief nonlin-

ear characteristics are saturation, occurring when all of the magnetic moments have
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aligned with the field, and hysteresis. Additionally, the behavior may be anisotropic

or direction dependent. Passive materials used in magnetostrictive devices are linear

elastic, obeying Hooke’s law T = cS.

Since the B−H relationship is nonlinear, the nonlinearity of the B−T behavior in

magnetostrictive materials is not surprising. With regards to stress application, the

magnetization also saturates at high stresses, is anisotropic and history dependent.

Stress, like magnetic field, causes domain rotation and domain wall motion. Experi-

ments have shown that the S−H behavior is also nonlinear and that the portion of

S due to magnetic field is an even function of H. The reason for this is clear when

the origin of magnetostriction is explained.

The ions in magnetostrictive materials have anisotropic charge clouds. As a mag-

netic moment rotates, spin-orbit coupling causes a rotation of the charge cloud which

in turn results in a lattice strain from the electrical attraction-repulsion between

neighboring ions. The strain associated with moment rotation induced by a mag-

netic field is Joule magnetostriction. Conversely, if the lattice is stressed then the

clouds will rotate and cause a rotation of magnetic moments. This stress-induced

magnetization is the inverse or Villari effect.

Isotropic magnetostriction is a simple case which illustrates the nature of the

nonlinearity associated with magnetostriction. Consider the four states depicted in

Figure 2.6. The direction of the magnetic moment vector is indicated with arrows and

their direction is attached to the long axis of the ellipse representing the anisotropy

of the electron cloud. In state (1) no field or stress is applied and moments or equiv-

alently, domains are randomly oriented. In states (2) and (3) a magnetic field causes

alignment of the moment vectors. For both positive and negative fields, positive
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Figure 2.6: Cartoon depiction of magnetomechanical coupling.

magnetostriction occurs. Applying a compressive stress in state (4) causes rotation

perpendicular to the stress. This eliminates the bulk magnetization in the horizontal

direction. Since the stress causes no preference for the up or the down orientation,

there is no net magnetization in the vertical direction either. The magnetomechanical

process is volume conserving. Positive magnetostriction in the horizontal direction

results in negative magnetostriction in the vertical direction and visa versa.

2.4.1 Magnetomechanical coupling of cubic anisotropy

Since Galfenol (unannealed) has cubic symmetry, special attention is given here

to magnetomechanical coupling in cubic materials. The magnetomechanical coupling

energy depends on the bond R = Rr, where R is the bond length and r the direction

between neighboring ions, and the direction m of the atomic magnetic moment. For

simplicity, consider a bond in the 1 Cartesian direction with an initial bond R0 =

R0[1, 0, 0]. A lattice strain S, using compact vector notation for infinitesimal strains,

changes the bond to R = [R0(1 + S1), 1/2S4, 1/2S6]. The energy of the initial bond

is expressed by a series expansion with cubic symmetry on the Legendre polynomial
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basis,

u0 = g(R0) + l(R0)
[
(r0 ·m)2 − 1/3

]
...

= g(R0) + l(R0)
(
m2

1 − 1/3
)

+ ...
(2.75)

Expanding g(R) and l(R) about R0, the energy after the strain is

u = g(R0) +
dg

dR
(R0)S1 +

(
l(R0) +

dl

dR
(R0)S1

)[
(r ·m)2 − 1/3

]
...

= g(R0) +
dg

dR
(R0)S1 +

(
l(R0) +

dl

dR
(R0)S1

)
×
[
(m1 +m2S4 +m3S6)2 − 1/3

]
+ ...

(2.76)

The magnetomechanical coupling energy between the strain and magnetic moment

direction for a bond in the 1 direction is defined as

uC :=u− u0 =
dg

dR
(R0)S1 +

dl

dR
(R0)S1(m2

1 − 1/3)

+ l(R0) (m1m2S4 +m1m3S6) + ...+O(S2
i ).

(2.77)

After summing this expression and similar expressions for the strain of bonds in the

2 and 3 directions, the magnetomechanical coupling energy for a cubic lattice is

UC =B1

[
(m2

1 − 1/3)S1 + (m2
2 − 1/3)S2 + (m2

3 − 1/3)S3

]
+B2(m1m2S4 +m2m3S5 +m1m3S6).

(2.78)

The parameters B1 and B2 are the magneto-elastic coupling coefficients. The total

energy from strain also includes the purely elastic energy associated with the lattice

stiffness

UE =
1

2
S · cS. (2.79)

Minimization of UC +UE yields the total equilibrium strain. Since the total energy is

a superposition of the coupling energy and the purely elastic energy, the total strain

is the superposition of the elastic strain due to stress and the strain due to moment

rotation or the magnetostriction,

S = Sm + c−1T, (2.80)
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where

Sm =


(3/2)λ100(m2

1 − 1/3)
(3/2)λ100(m2

2 − 1/3)
(3/2)λ100(m2

3 − 1/3)
3λ111m1m2

3λ111m2m3

3λ111m3m1

 , (2.81)

with magnetostriction coefficients

λ100 = −2

3

B1

c11 − c12

, (2.82)

λ111 = −1

3

B2

c44

. (2.83)

Inclusion of the 1/3 term is not strictly necessary but simply defines the strain refer-

ence state. By including the factor, the magnetostriction of a moment oriented in any

of the 〈100〉 directions is λ100 and the magnetostriction of a moment oriented in any

of the 〈111〉 directions is λ111. Additionally, the bulk magnetostriction of a collection

of randomly oriented moments is zero and the total change in strain for full 90 degree

moment rotation is (3/2)λ100.

2.5 Concluding remarks

In this chapter, the continuum quantities of interest in devices employing magne-

tostrictive materials have been discussed, including the field equations governing their

spatial and temporal dependencies. The quantities of interest in the electromagnetic

domain are magnetic field H and flux density B as well as current density J and

vector magnetic potential A, kinematically related to B. The quantities of interest

in the mechanical domain are stress T and strain S as well surface traction t and

displacement u, kinematically related to S. It was shown that constitutive relation-

ships are needed between B and H and S and T in order to solve the field equations.
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Chapters 3 and 4 are devoted to modeling and characterization of Galfenol consti-

tutive behavior and Chapter 5 to transducer applications, including a finite element

solution of the field equations.

60



CHAPTER 3

Constitutive modeling: Part I

3.1 Preamble

Magnetostrictive materials and devices can be studied at different length scales,

from the atomic and micro-scales involving individual atomic moments and magnetic

domain configurations, to the macro-scale. At the macro-scale, bulk magnetization

and strain are of interest as well as the interaction between magnetostrictive materi-

als and the surrounding media employed in transducers. This chapter presents initial

work in the modeling and characterization of the magnetization/strain versus mag-

netic field/stress constitutive behavior exhibited by Galfenol alloys. The work relies

on a set of magnetization and strain measurements acquired while applying mag-

netic field at constant stress. Two modeling approaches are presented; both employ

statistical principles to relate the micro-scale with the macro-scale but they provide

different interpretations of hysteresis.

Section 3.2 details a 1-D model employing Boltzmann statistics [38]. Bulk behav-

ior is calculated from the expected value of the orientation of a continuum of magnetic

moments. A triple well energy potential for the magnetic moments is employed; the

distribution of the moments within an energy well is given by Boltzmann’s equation.
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Boltzmann’s equation is again used to quantify the rate at which perturbations from

thermal energy cause moments to jump between wells. The rate equations are assem-

bled into a state-space model where the states are the volume fractions of moments

in each of the energy wells and the output is the bulk magnetization and strain, given

by the sum of the contributions of each state. Hysteresis is thereby interpreted as the

time-delay in moment jumping as stress and field change the energy landscape. This

interpretation of hysteresis is therefore rate-dependent. The state-space form of this

model is particularly advantageous for device design and control because it is readily

integrated with transducer models and because the stability of state-space systems is

well understood.

Section 3.3 is an attempt to extend the energy and statistical principles in Sec-

tion 3.2 to 3-D while providing a rate-independent interpretation of hysteresis. A

key simplification is made to enable 3-D application in an efficient manner. Rather

than consider a continuum of magnetic moments, a finite number of orientations is

considered. Furthermore, it is assumed that like-oriented moments are assembled in

groups and act as magnetization particles. These particles rotate with stress and

field application, are non-interacting, and approximate domains. The bulk anhys-

teretic behavior is calculated by assuming a Boltzmann distribution of the particle

orientations. In this section, hysteresis loss is interpreted as the energy loss occurring

when domain walls pass through material defects. Since domain wall motion is a

mechanism whereby the volume fractions of differently oriented magnetic moments

change, the effect of the loss can be modeled by a differential equation for each of the

volume fractions, driven by the anhysteretic value.
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During the peer review of the work in Section 3.2 prior to its publication [40], a

question was raised regarding the scaling parameter used in the Boltzmann relation.

In the pre-publication form of [38], the scaling parameter was interpreted as thermal

energy density kBθ/ϑ, where kB is Boltzmann’s constant, θ is temperature, and ϑ is

volume. A reviewer objected to this for two reasons regarding the interpretation of ϑ.

If ϑ is interpreted as the volume of a magnetic moment, then the Boltzmann relation

is the exponential of ratio of the energy density of a single moment with its thermal

energy density. The reviewer objected to this because the energy density used in the

model does not include exchange energy, a chief competitor with thermal energy. The

reviewer also objected to the value of ϑ used in the model simulations compared with

experiments because the volume was much larger than the volume of a moment. The

reviewer’s conclusion was that the volume was artificially scaled because the exchange

energy was not included. This interpretation of the scaling parameter was therefore

withdrawn from the paper and replaced with an empirical parameter Ω.

The following derivation is meant to provide an explanation for the large value

of ϑ by deriving the Boltzmann distribution from entropy principles. It provides a

more precise definition of ϑ without any artificial scaling. Following the derivation,

the two modeling approaches described above are presented.

Entropy formulation for magnetic domain scale particles

Consider a collection of N magnetization particles; as described earlier, the par-

ticles approximate domains and consist of like-oriented moments. Furthermore, the

orientation of one particle does not affect the orientation of another. The particles

have r possible orientations of free energy density Gk and occupy volume V . The

number of particles in the kth orientation is Nk. The entropy of a collection of N
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particles where each particle has r possible states is proportional to the number of

ways the collection can be arranged to produce the same energy [45]

η̄ = kB ln

(
N !

N1!N2!N3!...!Nr!

)
,

= kB (lnN !− lnN1!− lnN2!− ...) ,
(3.1)

where Boltzmann’s constant kB is the proportionality constant. Using Stirling’s ap-

proximation lnx! ≈ x lnx− x

η̄ ≈ kB (N lnN −N −N1 lnN1 +N1 −N2 lnN2 +N2 + ...) ,

= kB (N lnN −N1 lnN1 −N2 lnN2 − ...) ,

= kB

[
N lnN −N1 ln

(
N1

N
N

)
−N2 ln

(
N2

N
N

)
− ...

]
,

= kB

[
N lnN −N1

(
ln
N1

N
+ lnN

)
−N2

(
ln
N2

N
+ lnN

)
− ...

]
,

= kB

[
N lnN − (N1 +N2 + ...) lnN −N1 ln

N1

N
−N2 ln

N2

N
− ...

]
,

= kB

(
−N1 ln

N1

N
−N2 ln

N2

N
− ...

)
,

= kBN

(
−N1

N
ln
N1

N
− N2

N
ln
N2

N
− ...

)
.

(3.2)

The volume fraction of particles in orientation k is ξk = Nk/N and the entropy density

is then

η̄ =
kBN

V

r∑
k=1

−ξk ln ξk. (3.3)

The parameter ϑ can now be precisely defined from the particle density, 1/ϑ = N/V ;

it is the average volume of a magnetization particle. With this definition, the entropy

density is

η =
kB
ϑ

r∑
k=1

−ξk ln ξk. (3.4)

The total energy density of a collection of particles at temperature θ is

G = −θη +
r∑

k=1

Gk, (3.5)
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and substitution from (3.4) gives

G =
kBθ

ϑ

r∑
k=1

ξk ln ξk +
r∑

k=1

Gk. (3.6)

The volume fractions are internal variables and can be found through energy mini-

mization ∂G/∂ξk = 0. The result is the Boltzmann probability function

ξk =
e−Gk/(kBθ/ϑ)∑r
k=1 e

−Gk/(kBθ/ϑ)
. (3.7)

This same function is used in Section 3.3 but with the thermal energy density kBθ/ϑ

replaced with an empirical parameter Ω. Typical values for the parameter Ω which

result in good agreement with bulk magnetization measurements are on the order of

hundreds of J/m3. This supports using kBθ/ϑ in place of Ω since it gives a volume

consistent with the definition of ϑ. Using a thermal energy density kBθ/ϑ on the

order of hundreds of J/m3, the volume of magnetization particles would then have

a length on the order of hundreds of nanometers at room temperature. This length

is consistent with the physical description given for the magnetization particles. It

is larger than the length scale of atomic moments and smaller than the length scale

of magnetic domains. Experiments have shown that domain volume fractions change

in discrete jumps as groups of moments having a volume smaller than a domain yet

larger than a magnetic moment flip from one orientation to another. These jumps

actually cause acoustic signals called Barkausen noise (see page 302 of [28].)

3.2 State-space constitutive model for magnetization and mag-
netostriction of Galfenol alloys

Previous models for Galfenol [86, 8] have followed Armstrong’s approach [6] of

using a single energy-weighted average of the Gibbs free energy for the entire ma-

terial to calculate the distribution of moments. The weighting function tends to
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smooth the sharp magnetization and magnetostriction transitions obtained by direct

minimization of the Gibbs free energy, thus providing a more accurate description of

physical measurements. However, the weighting function depends on a non-physical

parameter. Because the moment volume fractions are not tracked, this model cannot

characterize the hysteresis due to anisotropy or rate dependent thermal effects, which

occurs because of the history dependence of the moment volume fractions in each

Gibbs energy well.

In this work we present a macroscopic constitutive model that accurately quan-

tifies hysteresis, stress and annealing-induced anisotropies, and thermal relaxation

effects present in the magnetization and magnetostriction of general magnetostrictive

materials, with especial consideration to Galfenol’s specific properties. Our approach

consists of finding a local magnetization kernel through minimization of the Gibbs

free energy of a single magnetic moment and then applying Boltzmann statistics to

calculate the evolution of moment volume fractions in the bulk material. We formu-

late the model in state-space form, which greatly simplifies model implementation for

large-signal (i.e., nonlinear) device design and control. The model requires a small

number of parameters which can be correlated with physical properties of the data.

In our approach, thermal energy creates a Boltzmann distribution of moments in

each of the Gibbs energy wells and causes moments to jump between wells. The bulk

magnetization and magnetostriction are calculated by tracking the volume fraction

of moments in each well and summing their expected contribution to the bulk mag-

netization or magnetostriction. The result is a linear time-variant equation which is

expressed in state-space form. The modeling of a nonlinear time-invariant system as
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a linear time-variant system is advantageous because the stability properties of such

systems are well understood (see, for example, [3]).

3.2.1 Model development

Energy formulations

The Helmholtz free energy ψ is given by the Legendre transformation of the in-

ternal energy U , ψ = U − θη, where θ is temperature and η is entropy. The internal

energy is comprised of magnetocrystalline anisotropy energy Ua and stress-induced

anisotropy energy UT .

The magnetocrystalline anisotropy energy depends on the orientation m̂ = [m̂x, m̂y, m̂z]

of the magnetization. Stress-annealed Galfenol has tetragonal crystal symmetry [86]

for which Ua has been given in [63],

Ua(m̂) = K2

(
m̂2
z −

1

3

)
+K4

(
m̂4
x + m̂4

y + m̂4
z −

3

5

)
+K ′4

(
m̂4
z −

6

7
m̂2
z +

3

35

)
.

(3.8)

The x, y, and z spatial directions are assumed to be aligned with the [100], [010],

and [001] crystal directions. The constant K4 is the fourth order cubic anisotropy

constant and the constants K2 and K ′4 are the second-order and fourth-order uniaxial

anisotropy constants which favor or penalize the z direction depending on their sign.

Recognizing that m̂2
x + m̂2

y + m̂2
z = 1, K4 can be shown to be related to K1 in the

traditional cubic formulation (used, for example, in [6])

E = K0 +K1(m̂2
xm̂

2
y + m̂2

ym̂
2
z + m̂2

zm̂
2
x) + · · · (3.9)

by 2K4 = −K1. Rafique et al. [83] measured K1 for single-crystal Galfenol alloys with

5-20 at.% Ga. We use a K4 value that is about 40% lower than the corresponding
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K4 value obtained from the K1 coefficients presented in [83]. The difference is due to

our samples being highly textured polycrystals rather than single crystals.

The stress anisotropy, which is induced by the magneto-elastic coupling energy,

depends on the stress tensor Tij in a manner dictated by the crystal symmetry. The

derivation of the stress anisotropy from the magneto-elastic coupling energy for ma-

terials exhibiting cubic symmetry in the magnetostriction has been presented by Kit-

tel [61]. The stress contribution to the anisotropy is

UT (m̂, Tij) = −(3/2)λ001

(
m̂2
xTxx + m̂2

yTyy + m̂2
zTzz

)
− 3λ111T (m̂xm̂yTxy + m̂ym̂zTyz + m̂zm̂xTzx)

(3.10)

where λ001 and λ111 are magnetostriction along the [001] and [111] directions, respec-

tively.

By considering only isothermal processes and incorporating irreversibilities into

the moment rotations (see Section 3.2.1) rather than through a direct entropy formula-

tion, the Helmholtz free energy reduces to the internal energy ψ = Ua(m̂)+UT (m̂, Tij).

Figure 3.1 shows the effect of stress-annealing or compressive stresses along the z-

axis on the Helmholtz free energy. The z-direction becomes a higher energy direction,

which has two effects on the magnetization due to magnetic fields applied in this

direction. First, the hysteresis and remanence magnetization decrease because there

is no longer a deep energy well to trap magnetic moments. Second, higher fields are

required to saturate the material. The depth of the wells on the z-axis is determined

by the magnitude and sign of K2 and K ′4 relative to K4. In the case when K2 and

K ′4 are zero as in Figure 3.1(a), relation (3.8) is identical to (3.9) up to the K1 term

and the symmetry is cubic.
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(a) (b)

Figure 3.1: Comparison of (a) unannealed and (b) annealed Helmholtz free energies
with no applied stress. The energy has been normalized and is proportional to the
distance from the origin and the color.

The Gibbs free energy of a single magnetic moment is obtained through the Leg-

endre transformation G = ψ−µoMsm̂ ·H, where Ms is the saturation magnetization

and H is an applied magnetic field. In the common case in which the applied magnetic

field and stress are oriented along the z-axis, the Gibbs free energy has the form

G = K4

(
m̂4
x + m̂4

y + m̂4
z

)
+K ′4m̂

4
z

+

(
K2 −

6

7
K ′4 −

3

2
λ001T

)
m̂2
z − µ0MsHm̂z,

(3.11)

with H the magnetic field and T the stress along the z-axis. Constant terms have

been omitted because it is the change in the Gibbs energy that determines the mo-

ment orientation. The Gibbs energy (3.11) is expressed more efficiently in spherical

coordinates with the orientation of the magnetization vector defined by the angle φ

it makes with the z-axis and the angle α that its projection in the x-y plane makes

with the x-axis,

G = K4

(
sin4 φ (sin4 α + cos4 α) + cos4 φ

)
+K ′4 cos4 φ

+

(
K2 −

6

7
K ′4 −

3

2
λ001T

)
cos2 φ− µ0MsH cosφ.

(3.12)
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When thermal energy and material defects are negligible, all of the magnetic

moments will be oriented in the locally minimum directions in each of the energy

wells. The bulk magnetization is the vector sum of the magnetization due to each

magnetic moment. Therefore, to determine the bulk magnetization one requires an

equation for the trajectory of the energy wells produced by applied magnetic fields and

the volume fraction of moments in each well. The symmetry in the 3-D Gibbs energy

implies that the moments in each of the four energy wells in the basal plane follow

the same φ path when an applied magnetic field in the z-direction induces rotation of

moments into the field direction. It is sufficient then to model the trajectory of just

one of these wells because the contribution to the magnetization in the z-direction of

moments lying in any of the four wells will be the same (Figure 3.2(a, c, e)). Choosing

the energy well in the x-direction (α = 0) to be tracked and using only cos functions,

(3.12) becomes

G = (2K4 +K ′4) cos4 φ+

(
K2 −

6

7
K ′4 − 2K4 −

3

2
λ001T

)
× cos2 φ− µ0MsH cosφ.

(3.13)

This reduced-dimension energy potential is shown in Figures 3.2(b, d, f) beside the

3-D energy potential (3.11). Minimization of (3.13) yields the φ orientation of the

energy wells. Since K4 and K ′4 always contribute together and in nearly the same

proportion, we neglect K ′4 as was done in the anhysteretic model of Restorff et al. [86].

Gibbs energy (3.13) was derived for single crystals under uniaxial compression.

However, it is also appropriate for highly textured polycrystals having negligible

grain misalignment. Consider for example a grain with a five degree misalignment

of the [001] direction with the axis of a rod subjected to a compressive stress T

along the axis (z-direction). The stress state in the rod reference frame would be
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[Tx, Ty, Tz, Txy, Tyz, Tzx] = T [0, 0, 1, 0, 0, 0] while the stress state in the grain reference

frame would be T [0.001523, 0, 0.999999, 0, 0, 0.001523] which is approximately uniax-

ial. To accommodate lower grade polycrystals having appreciable grain misalignment,

the tensorial stress-induced anisotropy energy (3.10) would need to be used along with

a homogenization technique like that of Appino, Valsania, and Basso [4] to charac-

terize the distribution of grain orientations.

Local magnetization

The orientation of a single magnetic moment is determined by two conditions,

∂G/∂φ = 0 and ∂2G/∂φ2 > 0. Application of the first condition to (3.13), followed

by factorization gives

8K4 cos3 φ+ 2

(
K2 − 2K4 −

3

2
λ001T

)
cosφ

− µ0MsH = 0,

(3.14)

sinφ = 0. (3.15)

Relation (3.15) coupled with the second condition simply identifies the easy axes in

the positive and negative z-directions and their intervals of existence. The positive z-

direction is a minimum energy direction on the interval [2(2K4+K2−3/2λ001T )/µ0Ms,+∞)

and the negative z-direction is a minimum on the interval (−∞,−2(2K4 + K2 −

3/2λ001T )/µ0Ms]. Magnetic fields outside of the first interval will cause the easy axis

in the positive z-direction to become hard and magnetic fields outside of the second

interval will cause the easy axis in the negative z-direction to become hard.

Relation (3.14) is a cubic equation in cosφ which can be solved analytically with

Cardano’s method. The three solutions give the φ location of the two energy maxima

and the energy minimum in Figure 3.2(a). The discriminant in Cardano’s method
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Figure 3.2: Left column: 3-D Gibbs free energy given by (3.11). Right column:
Reduced 2-D Gibbs free energy given by (3.13). The rows represent low, medium,
and high magnetic fields (top to bottom).
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can be used to determine the interval of existence of the energy minimum; this yields

a simpler solution than the condition on the second derivative of the Gibbs energy.

Setting the discriminant equal to zero yields the interval of existence

|H| ≤ −16
K4

µ0Ms

(
2K4 −K2 + 3

2
λ001T

12K4

)3/2

. (3.16)

The hysteretic, local magnetization in the z-direction (Figure 3.3) is constructed from

the relation M̄ = Ms cosφ, in which possible values of φ are the solutions to (3.14)

and (3.15) with their respective magnetic field intervals of existence. The result is

a triple valued hysteron in which the cubic branch that passes through the origin

accounts for the low hysteresis and characteristic “S” shape of the M − H major

loop of bulk Galfenol. The shallow slope and finite interval of existence of the cubic

branch is a manifestation of the rotation of magnetic moments away from the four

energy wells in the xy-plane into the direction of the applied magnetic field and the

eventual disappearance of these wells.

Local anhysteretic magnetization

At low magnetic field levels and in cases when a compressive stress is applied or

stress-annealed Galfenol is used, the energy wells that give rise to the cubic branch of

the kernel are much deeper than the wells that give rise to the saturation solutions.

As a result, at low magnetic fields most of the magnetic moments will reside in

these energy wells and the bulk magnetization will follow the cubic branch of the

kernel. The slope of the cubic branch at zero field can be obtained through a linear

approximation to (3.14),

M̄ =
(µ0Ms)

2

2
(
K2 − 2K4 − 3

2
λ001T

)H, (3.17)
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Figure 3.3: Local magnetization hysteron obtained from minimization of the Gibbs
free energy.

dM̄

dH
(H = 0) =

(µ0Ms)
2

2
(
K2 − 2K4 − 3

2
λ001T

) . (3.18)

Under the assumption that the bulk magnetization follows the cubic branch closely at

low fields, (3.18) provides a useful measure of the anisotropy since dM̄/dH(H = 0),

λ001, and µoMs are all easily measured. This assumption is accurate for sufficiently

high compressive stress.

A second measure of the anisotropy is necessary since there are two anisotropy

coefficients. As the applied magnetic field is increased or decreased from zero, it

reaches a level where the energy well of the saturation solution in the direction of

the applied field becomes deeper than the energy wells of the cubic branch. At this

point, rapid jumping of magnetic moments occurs from the energy wells of the cubic

branch to the energy well of the saturation solution. This situation is evident in

the burst region of the magnetization curve. A close approximation of the field level

that will initiate the burst region can be found analytically by equating the Gibbs
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energy (3.13) evaluated on the saturation solution with the Gibbs energy evaluated

on the linear approximation of the cubic branch (3.17). This yields

HB =
2(2K4 −K2 + 3/2λ001T )

µ0Ms

·

(√
K2 − 3/2λ001T

2K4 −K2 + 3/2λ001T
− 1− 1

)
.

(3.19)

Since the transition into the burst region of the measured magnetization curve is

smooth, it is not possible to measure HB exactly. However, a first approximation

of the anisotropy constants can be obtained by assuming that HB is the start of the

linear portion of the burst region (which is observable in data, see Figure 3.4) and then

using relations (3.18) and (3.19). This point is more clearly identifiable when either

a moderate compressive stress is applied or the material has been stress-annealed.

The anhysteretic curve is generated by forcing all of the magnetic moments to

follow the cubic branch of the kernel until the saturation branches become the global

minima at fields above HB or below −HB (Figure 3.4). This anhysteretic curve

does not closely follow actual magnetization curves due to the effects of thermal

energy. However, relations (3.18) and (3.19) do provide an approximate measure of

the anisotropy coefficients without the need of a least-squares fitting procedure to a

full model. Furthermore, these relations could be used in transducer design to select

the mechanical pre-stress needed to achieve a prescribed magnetization, and hence

magnetostriction, response.

The magnetization kernel also provides insight into the magnetization process.

Since the energy wells of the cubic branch shrink continuously with increasing fields

until they disappear, it is expected that by the time they disappear, nearly all of

the moments have jumped to the saturation branch. Thus, the end point of the
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Figure 3.4: Anhysteretic magnetization calculated from the measured magnetization
curve of Fe18.4Ga81.6. The following values were observed from the data using (3.18)
and (3.19): K4 = −8.0 kJ/m3, K2 = −0.10 kJ/m3, µoMs = 1.61 T and (3/2)λ001 =
260 µstrain.

cubic branch can be interpreted as the end of the burst region. Figure 3.4 shows the

theoretical anhysteretic curve and kernel along with Galfenol data. The material is

unannealed Fe81.6Ga18.4 subjected to a constant compressive stress of 27.6 MPa. The

anisotropy constants were approximated using (3.18) and (3.19).

Thermal energy

As proposed by Néel [72], thermal energy causes precession of magnetic moments

about local energy minima and jumping between energy wells. Following the approach

of Smith et al. [92], we assume that the magnetic moments follow a Boltzmann distri-

bution within each energy well and that Boltzmann statistics quantify the likelihood

that moments overcome the barrier between adjacent wells. Since jumping between

the four energy wells in the xy-plane and precession in the θ coordinate have little
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effect on the magnetization or strain in the z-direction, we neglect these effects and

continue using the reduced-dimension Gibbs energy (3.13).

The expected value of magnetization in the z-direction of moments residing in

each of the energy wells can be calculated from the assumed Boltzmann distribution

(with kθ/V the ratio of Boltzmann constant, temperature, and effective moment vol-

ume) [92],

¯〈M〉+ =

∫ 1

M0
µ0MsM̄re

−G(M̄r,T,H)V/kθdM̄r∫ 1

M0
e−G(M̄r,T,H)V/kθdM̄r

,

¯〈M〉c =

∫M0

−M0
µ0MsM̄re

−G(M̄r,T,H)V/kθdM̄r∫M0

−M0
e−G(M̄r,T,H)V/kθdM̄r

,

¯〈M〉− =

∫ −M0

−1
µ0MsM̄re

−G(M̄r,T,H)V/kθdM̄r∫ −M0

−1
e−G(M̄r,T,H)V/kθdM̄r

.

(3.20)

Here, ¯〈M〉+, ¯〈M〉c and ¯〈M〉− are the expected values of magnetization of moments

residing in the energy wells associated with the positive saturation branch, the cubic

branch, and the negative saturation branch of the kernel, respectively. The integration

limit M0 = cosφ0 is the location of the energy hump that separates the energy wells

and M̄r = cosφ is the relative magnetization in the z-direction (Figure 3.5).

To calculate the bulk magnetization, both the volume fraction of moments residing

in each energy well and the expected values of magnetization for each energy well are

needed. This requires knowledge of the initial distribution and the rates at which

moments jump between energy wells. When a magnetic moment is excited to the

inflection point in the Helmholtz free energy, it has enough energy to jump to the

adjacent energy well [28]. The probabilities pi,j of a magnetic moment jumping from
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an initial energy well i (i = +, c,−) to a destination well j (j = +, c,−) are [92]

p+,c =
1

τ

∫MI,1

MI,1−ε
e−G(M̄r,T,H)V/kθdM̄r∫ 1

MI,1−ε
e−G(M̄r,T,H)V/kθdM̄r

,

pc,+ =
1

τ

∫MI,2+ε

MI,2
e−G(M̄r,T,H)V/kθdM̄r∫MI,2+ε

0
e−G(M̄r,T,H)V/kθdM̄r

,

pc,− =
1

τ

∫ −MI,2

−MI,2−ε
e−G(M̄r,T,H)V/kθdM̄r∫ 0

MI,2
e−G(M̄r,T,H)V/kθdM̄r

,

p−,c =
1

τ

∫ −MI,1+ε

−MI,1
e−G(M̄r,T,H)V/kθdM̄r∫ −MI,1+ε

−1
e−G(M̄r,T,H)V/kθdM̄r

.

(3.21)

The proportionality constant 1/τ is the frequency at which moments attempt to jump,

with τ the thermal relaxation time constant. The integral bounds MI,1 and MI,2 are

the inflection points on either side of the energy humps in the Helmholtz free energy

(Figure 3.5) which may be found as the positive roots of the second derivative of the

Gibbs energy (3.13) under zero field. The parameter ε is the width of a small interval

of relative magnetization which includes the inflection point in the Helmholtz energy.

Because ε has to be small compared to the width of the energy wells, the integrals in

the numerators of (3.21) can be evaluated using right endpoint numerical integration,∫ MI,1

MI,1−ε
e−G(M̄r,T,H)V/kθdM̄r ≈ ε e−G(MI,1,T,H)V/kθ. (3.22)

This approximation allows us to define a time constant ratio, τ̄i = τ/εi, i = 1, 2, in

which index i is 1 for the positive and negative energy wells and 2 for the cubic energy

well. The unit of measure for τ̄i is seconds because εi is unit-less. The time constant

ratio is treated as a parameter to be identified from experimental data. Assuming a

typical time constant τ = 1×10−9 seconds, the integration intervals are calculated to

vary between 5.3 × 10−9 and 2.5 × 10−10 depending on stress, annealing, and which

energy well is considered (Tables 3.2 and 3.3). These values are sufficiently small
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Figure 3.5: Two-dimensional representation of the Helmholtz free energy.

relative to the width of the positive, negative, and cubic energy wells, which have

the relative magnetization values of 0.3172 (1 −M0), 0.3172 (−M0 + 1), and 1.3656

(2 ·M0), respectively.

With the jumping probabilities (3.21), the evolution of the moment volume frac-

tion in each energy well, Xi (i = +, c,−), can be expressed as

Ẋ+ = −p+,cX+ + pc,+Xc,

Ẋc = p+,cX+ − (pc,+ + pc,−)Xc + p−,cX−,

Ẋ− = pc,−Xc − p−,cX−.

(3.23)

Implicit in model equations (3.20)-(3.23) is the assumption that the rate at which

thermal equilibrium is achieved within each energy well is much faster than the rate

at which moments jump between wells. This justifies the local use of the Boltzmann

probability in (3.20)-(3.21) which is derived assuming thermal equilibrium (see pp.

104-108 of [90] for details). Analogous kinetic models have been used to characterize

the quasi-static behavior of piezoelectric and shape-memory materials [95, 89]. The
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bulk magnetization can now be obtained by integrating (3.23) and summing the

products of the volume fractions and their respective expected value of magnetization,

M = ˆ〈M〉+X+ + ˆ〈M〉cXc + ˆ〈M〉−X−. (3.24)

Equations (3.23) and (3.24) can be assembled in state-space form to yield a linear,

time-variant system of the form

Ẋ = A(t)X,
M = CM(t)X,

(3.25)

where X is the vector of volume fractions, A(t) is the matrix of field dependent

jumping probabilities, and CM(t) is the vector of field dependent expected values

of magnetization. System (3.25) depends only on the input magnetic field, applied

stress, and the six material constants in Table 3.1.

The thermal quantity kθ/V is interpreted as the thermal energy per volume,

where the volume is that of a single rotational element. This volume changes with

field and varies throughout the material because three distinct rotations take place:

coherent rotation of moments (domain rotation), incoherent rotation of moments

within domains (moment precession), and rotation of single moments at domain walls

(domain wall motion). Domain rotation occurs in the high permeability burst region,

moment precession at all field levels, and domain wall motion mainly in the low

field region [49]. To preserve the low order of the model we do not attempt to

characterize the domain configuration and hence use a constant volume which is

determined through a least squares fit to the data (V = 8.09 × 10−24 m3, or the

volume of a sphere with radius 12 nm).

While the hysteron described by relations (3.14) and (3.15) and shown in Figure

3.3 does not appear explicitly in the model (3.25), the model converges to the hysteron
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Figure 3.6: Bulk magnetization model (3.25) calculated for the cases: (a) low thermal
energy, (b) medium thermal energy, and (c) high thermal energy compared to the local
hysteron described by relations (3.14) and (3.15).

as the thermal energy decreases, i.e., as the quantity kθ/V decreases. This was shown

in [92] for a double well potential and is illustrated in Figure 3.6 for the triple well

potential (3.13).

Table 3.1: Model Parameters
K4 Anisotropy coefficient

K2 Anisotropy coefficient

3/2λ001 Saturation magnetostriction

µ0Ms Saturation magnetic flux density (intrinsic)

kθ/V Boltzmann constant, temperature, effective volume

τ̄1 Time constant ratio for the positive and negative wells

τ̄2 Time constant ratio for the cubic well
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Magnetostriction model

Kellogg et al. [57] experimentally quantified the nonlinear relationship between

the magnetostriction and the square of the magnetization, concluding that the mag-

netization process does not occur solely from 90o moment rotation. Since this agrees

with the magnetization model developed in Section 3.2.1, we follow the same approach

for the magnetostriction model. Probabilities (3.21) remain unchanged. We simply

need to calculate the expected value of the strain contribution of moments residing

in each energy well and sum their product with the volume fractions calculated from

integration of (3.23). With cubic crystal symmetry the relationship between the mag-

netization and magnetostriction under axially applied stresses and negligible thermal

activation is S̄ = (3/2)lambda001 cos2 φ [61]. The effect of thermal energy is quanti-

fied as in Section 3.2.1 by classical Boltzmann statistics. The expected values of the

magnetostriction thus are

¯〈S〉+ =

∫ 1

M0

3
2
λ001M̄

2
r e
−G(M̄r,T,H)V/kθdM̄r∫ 1

M0
e−G(M̄r,T,H)V/kθdM̄r

,

¯〈S〉c =

∫M0

−M0

3
2
λ001M̄

2
r e
−G(M̄r,T,H)V/kθdM̄r∫Mo

−Mo
e−G(M̄r,T,H)V/kθdM̄r

,

¯〈S〉− =

∫ −M0

−1
3
2
λ001M̄

2
r e
−G(M̄r,T,H)V/kθdM̄r∫ −M0

−1
e−G(M̄r,T,H)V/kθdM̄r

.

(3.26)

These are assembled into the output vector CS(t) to yield a state-space magnetostric-

tion model of the same form as (3.25),

Ẋ = A(t)X,
S = CS(t)X.

(3.27)

This system also depends only on the input field, applied bias stress, and the material

parameters in Table 3.1.
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Figure 3.7: High field measurement of Fe81.6Ga18.4 with 27.6 MPa pre-load.

Bulk anhysteretic model

The anhysteretic magnetization and magnetostriction are given by the steady-

state solution to systems (3.25) and (3.27),

Man = CMXss,

San = CSXss.

The components of the steady state vector Xss are calculated from A(t)X = 0 and

the conservation relation X+ +Xc +X− = 1,

X+,ss =
pc,+ (p−,c + pc,−)− pc,+pc,−

(p+,c + pc,+) (p−,c + pc,−)− pc,+pc,−
,

X−,ss =
pc,− (p+,c + pc,+)− pc,+pc,−

(p+,c + pc,+) (p−,c + pc,−)− pc,+pc,−
,

Xc,ss = 1−X+,ss −X−,ss.

The steady-state anhysteretic model may be used to quantify the magnetostriction

and magnetization of materials with small τ and in cases when the input magnetic

field varies slowly. Figure 3.8 illustrates the convergence of the hysteretic model to
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Figure 3.8: (a) Magnetostriction model and (b) magnetization model for decreasing
time constant τ including the anhysteretic steady-state model.

the anhysteretic model as τ is decreased. As τ is decreased, the delay decreases and

so does the hysteresis.

High stress or stress annealing

When the pre-stress or the uniaxial anisotropy constant K2 exceed a critical value,

the Helmholtz energy becomes a single-well potential. In this case all of the moments
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reside in the same well and there is no hysteresis due to anisotropy. This situation

occurs when the unstable equilibrium M0 of the Helmholtz free energy (see Figure 3.5)

is greater than unity. The level of stress or uniaxial anisotropy that produces M0 = 1

can be found by expressing M0 explicitly from dψ/dφ = 0, setting it equal to unity,

and solving for T or K2. This gives

T =
2

3λ001

2K4 +K2,

K2 =
3

2
λ001T − 2K4.

With a single-well Helmholtz potential there are no moment jumping effects due to

thermal energy. However, thermal energy does create a Boltzmann distribution of

moments within the well. Thus, for a single-well potential, the magnetization and

magnetostriction can be modeled as

M =

∫ 1

−1
µ0MsM̄re

−G(M̄r,T,H)V/kθdM̄r∫ 1

−1
e−G(M̄r,T,H)V/kθdM̄r

, (3.28)

S =

∫ 1

−1
3
2
λ001M̄

2
r e
−G(M̄r,T,H)V/kθdM̄r∫ 1

−1
e−G(M̄r,T,H)V/kθdM̄r

. (3.29)

3.2.2 Comparison with experimental data

The model is compared to major loop measurements of both unannealed and

annealed Fe81.6Ga18.4. The samples are research-grade highly textured polycrystals

from Etrema Products Inc. which have a large fraction of the crystallites with the

[001] direction oriented within five degrees of the rod axis. Galfenol manufactured

in this fashion exhibits cubic anisotropy when unannealed and tetragonal anisotropy

when annealed [86]. The measurements were performed in a closed magnetic circuit

with ramp current inputs to a solenoid that take 40 seconds to go from the positive
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saturation to negative saturation. Because of the nonlinear nature of the magnetic

circuit, the applied magnetic field was not a perfect ramp. However, perfect ramp

inputs were used in the model. Because the tests were quasi-static, the shape of the

major loop is not affected by the shape of the input field provided it is monotonic as it

increases to positive saturation and monotonic as it decreases to negative saturation.

To evaluate the accuracy of the model and its sensitivity to operating conditions,

we optimized the model parameters with a least-squares algorithm for four different

cases, each with a different level of compressive stress (Tables 3.2 and 3.3) for both

unannealed and annealed material. The parameters µ0Ms and 3/2λ001 were measured

directly as 1.62 T and 260 µstrain, respectively. Initial values for the anisotropy

constants were estimated from the M-H curve as described in Section 3.2.1. For

the magnetostriction measurements, the zero-field magnetostriction is defined as zero

for each curve. Zero magnetostriction for model equation (3.27) is the 90o moment

orientation which is only achieved at high stress levels. Hence, to compare the model

to measurements, the zero-field magnetostriction must be subtracted from the model.

The objective function of the optimization algorithm was the sum of the square of

the errors in the magnetostriction at each data point. The magnetostriction was used

partly because of the difference in the magnetostriction and magnetization-squared

behavior shown in Figure 3.7 and because the magnetostriction is of greater interest

for transducer design. If the magnetostriction were due solely to domain rotation

and domain rotation were the only magnetization process, the magnetostriction vs.

field and magnetization-squared vs. field would be nearly identical when plotted as a

relative magnitude. Since they are not, there are unmodeled effects present such as

domain wall motion and material defects.

86



Table 3.2: Parameter optimization for unannealed Fe81.6Ga18.4 at four stress levels

Case 1 2 3 4

T MPa −1.38 −13.9 −27.6 −41.4

K4 kJ/m3 −6.44 −6.64 −6.89 −9.37

K2 kJ/m3 −1.23 −0.455 0.182 −0.173

kθ/V kJ/m3 0.552 0.519 0.404 0.458

τ̄1 sec 0.918 1.69 1.90 1.53

τ̄2 sec 0.190 0.349 0.392 0.317

Maximum % error 1.2 1.2 0.70 0.96

Table 3.3: Parameter optimization for annealed Fe81.6Ga18.4 at four stress levels

Case 1 2 3 4

T MPa −1.38 −13.9 −27.6 −41.4

K4 kJ/m3 −8.29 −10.0 −1.26 −9.07

K2 kJ/m3 15.6 15.6 15.8 13.8

kθ/V kJ/m3 0.878 0.994 1.09 0.956

τ̄1 sec 4.07 4.35 3.95 NA

τ̄2 sec 0.841 0.898 0.815 NA

Maximum % error 0.64 0.85 0.85 1.7
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Figure 3.9: Comparison of model with experimental data of unannealed Fe81.6Ga18.4

with stresses of −1.38,−13.9,−27.6, and −41.4 MPa. Each model curve was gener-
ated with parameters obtained through minimization of the error with the respective
curve.

Because of our choice of objective function, the error in the magnetostriction (Fig-

ure 3.9(a)) is smaller than the error in the magnetization (Figure 3.9(b)). Tables 3.2

and 3.3 show the parameters optimized for each stress case and some amount of vari-

ability in the parameters is noted. While clear trends in the parameters with respect

to stress are not evident, the errors are larger for the unannealed, low-stress cases

1 and 2. This may be attributed to domain wall motion being a more significant

magnetization process when stress is low in unannealed material. Both stress and

annealing tend to align magnetic moments perpendicular to the rod; rotation then

becomes the dominant process as moments rotate into the direction along the rod in

response to an applied field.
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Figure 3.10: Comparison of model with experimental data of annealed Fe81.6Ga18.4

with stresses of −1.38,−13.9,−27.6, and −41.4 MPa. Each model curve was gener-
ated with parameters obtained through minimization of the error with the respective
curve.

The model accurately quantifies both the shape and the small amount of hysteresis

present in the data. Figure 3.9(a) shows that the thermal energy formulation in

Section 3.2.1 describes the ability of a compressive stress to encourage 90o initial

moment orientations. The model also describes the decrease in hysteresis to near

non-existence due to annealing and applied stress (Figure 3.10). For the fourth stress

level (−41.4 MPa), the uniaxial anisotropy and stress were high enough to require use

of the constitutive equations for a single-well potential (3.28) and (3.29). Figure 3.11

shows measurements of the annealed material at higher stresses and further illustrates

the accuracy of the single-well constitutive model.

The model parameters are related to physical properties of the data. The sat-

uration intrinsic flux density µ0Ms and magnetostriction are simply the intrinsic
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Figure 3.11: Comparison of the single-well model with experimental data of annealed
Fe81.6Ga18.4 for stresses of −55.2,−69,−82.7, and −96.5 MPa. Each model curve
was generated with parameters obtained through minimization of the error with the
respective curve.

flux density and magnetostriction (when sufficient pre-stress is applied) achieved at

high magnetic field. The effect of the anisotropy constants K2 and K4 is manifested

through relations (3.18) and (3.19) which describe how the low-field slope and the

start of the burst region change with stress. This change can be seen in the data (see

Figures 3.9(b), 3.10(b), and 3.11(b)) where the low-field slope decreases and the start

of the burst region is delayed with increasing stress. The effect of the thermal energy

kBθ/V is evident in the smooth transitions of the burst region as opposed to sharp

jumps as predicted by minimization of the Gibbs energy. Finally, the time constants

are related to the amount of hysteresis in the data where less hysteresis implies a

smaller time constant.

Figure 3.12 illustrates the performance of the model when the same parameter

set is used on the four stress cases; the parameters were optimized for the first and
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Figure 3.12: Comparison of model with experimental data of unannealed Fe81.6Ga18.4

with stresses of −1.38,−13.9,−27.6, and −41.4 MPa. Each model curve was gener-
ated with the same set of parameters.

third stress values with the error in the magnetostriction used as the optimization

objective function. The maximum percent error was 3.6%, 5.6%, 1.3%, and 1.3%

for stress cases 1-4, respectively (compare to Table 3.2.) The error is again larger in

cases 1 and 2 where the stress is not large enough to achieve complete alignment of

moments perpendicular to the rod axis.

3.2.3 Concluding remarks

A linear, time-variant, state-space constitutive model is presented which quanti-

fies the nonlinear magnetization and magnetostriction of Galfenol alloys. The effects

of external magnetic fields, stresses and stress annealing on the magnetization and
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magnetostriction of Galfenol are modeled by quantifying the coupling between mag-

netocrystalline anisotropy, magneto-elastic, Zeeman, and thermal energies. A triple-

valued magnetization kernel characterized by a triple-well Gibbs energy potential

provides an understanding of both the low permeability and burst regions of the ma-

jor loop magnetization curve. Boltzmann statistics is used to describe the distribution

and rotations of magnetic moments. This provides a physical basis for understanding

the key features of the magnetization and magnetostriction loops as well as the ability

of a compressive stress to align magnetic moments 90o from the z-axis for maximum

magnetostriction. A small amount of hysteresis is naturally present in the model due

to anisotropy and which agrees well with experimental measurements. Unaccounted-

for effects such as pinning sites are likely to contribute to the magnetic hysteresis as

well.

3.3 Efficient model for field-induced magnetization and mag-
netostriction of Galfenol

Recently, Datta, Atulasimha, and Flatau [31] presented a 3-D, quasi-static trans-

ducer model for single-crystal Galfenol in bending which couples Euler-Bernoulli beam

theory with the Armstrong model [6] for characterizing magnetomechanical behavior.

The 3-D Armstrong model has also been used to model the anhysteretic magnetome-

chanical behavior of polycrystals [10] and hysteresis of single crystals [7]. The model

is a statistical approach in which it is assumed that magnetic moment orientations

(φ, θ) follow a Boltzmann distribution. Magnetomechanical coupling is incorporated

through a stress-induced anisotropy term in the total energy (E) used in the distri-

bution. In the Armstrong model, a bulk quantity is calculated as an energy weighted
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integral of the point-wise quantity over all possible domain orientations,

Q̄ =

∫ π
0

∫ 2π

0
Q(φ, θ)e−E(φ,θ)/Ωdθdφ∫ π

0

∫ 2π

0
e−E(φ,θ)/Ωdθdφ

. (3.30)

The weighted average (3.30) serves to smooth the sharp transitions obtained by direct

minimization of the total energy.

To characterize, design, and control general Galfenol devices with 3-D function-

ality it is necessary to quantify the effects of domain wall motion, material texture,

hysteresis, and transducer geometry. Extending the Armstrong model (3.30) to in-

clude these effects comes at great computational expense, hence limiting the utility

of the resulting model. For example, to include irreversible domain wall motion At-

ulasimha, Akrhas, and Flatau [7] approximate the double integral in (3.30) with a

summation of ninety-eight point evaluations, which leads to ninety-eight ordinary

differential equations to be solved. Armstrong’s approach to including irreversible

domain wall motion is less computationally intensive as it only considers eight do-

main orientations corresponding to the eight easy crystal directions or internal energy

minima in Terfenol-D [5]. However, the approach is accurate only when the applied

field or stress is aligned with an easy crystal axis, since the easy crystal directions do

not rotate.

Extending (3.30) to include texture effects (neglecting grain boundary interac-

tions) can be done through a summation of double integrals [10]. To solve the

boundary-value problem of general Galfenol transducers it is necessary to couple

Maxwell’s equations with momentum conservation equations through a constitutive

model relating magnetization and strain to stress and magnetic field. This system

of partial differential equations must be discretized for numerical solution and the
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constitutive model evaluated at each node. A computationally efficient constitutive

model is thus highly desirable.

In this work we present an efficient, 3-D constitutive model describing magnetiza-

tion and strain as a function of applied magnetic field and stress. Owing to its compu-

tational efficiency, the model is ideal for design and control of cubic magnetostrictive

devices. The model provides greater accuracy than Armstrong’s hysteresis model [5],

while avoiding the computational expense of the approach presented by Atulasimha

et al. [7] by employing thermodynamic principles. Rather than discretize (3.30) with

a large number of fixed orientations, we directly minimize the enthalpy in order to find

the stress and magnetic field dependent local minima. Since the empirical smoothing

operator (3.30) most heavily weights the enthalpy minima, good accuracy is achieved

using only six orientations which rotate with stress and field.

3.3.1 Model development

Ferromagnetic materials are composed of regions of uniform magnetization Ms

called domains [61]. In the Stoner-Wohlfarth (S-W) approximation used here and

in other magnetomechanical models [54], the material is modeled as a collection of

non-interacting, single-domain particles [65]. The internal energy of a particle is due

to magnetocrystalline anisotropy which, for body-centered cubic materials such as

Galfenol, makes domains align in the 〈100〉 and 〈111〉 directions in the absence of

field and stress. Work is required to rotate domains away from these easy directions.

Gallium content affects the anisotropy energy and hence which directions are easy.

Measurements of Galfenol’s anisotropy [83] indicate that for Galfenol having less than

20 at.% Ga, the 〈100〉 directions are easy. As magnetic fields H and stresses T are
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applied, domains rotate towards the field direction and perpendicular to the principal

stress directions. When magnetic domains rotate, the magnetomechanical coupling

induces lattice strain and bulk magnetostriction. For a material composed of a col-

lection of S-W particles in thermodynamic equilibrium having r possible orientations,

the bulk magnetization M and strain S due to magnetostriction are the sum of the

magnetization Msm̂
k and magnetostriction Ŝkm due to each orientation, weighted by

the volume fraction ξ̂k of particles in each orientation

M = Ms

r∑
k=1

ξ̂km̂k, S =
r∑

k=1

ξ̂kŜkm. (3.31)

The equilibrium orientations and magnetostrictions are found from the enthalpy of

a single S-W particle and the equilibrium volume fractions are calculated with the

empirical smoothing function (3.30).

Equilibrium orientations

The energy formulation here pertains to non-interacting, single-domain particles

in accordance with the Stoner-Wohlfarth model for magnetization [65]. The material

is assumed to be well below the Curie temperature so that the thermal energy may

be neglected. The internal energy of a particle with orientation m = [m1 m2 m3]

is due to the magnetocrystalline anisotropy energy, which can be expressed as a series

expansion [61]. After considering the cubic crystal symmetry and neglecting higher

order terms, the internal energy with natural dependence on magnetization is

U (m) = K4 (m1m2 +m2m3 +m3m1) , (3.32)

where K4 is the fourth-order, cubic anisotropy coefficient. The enthalpy is

H(H,T) = U (m)− Sm ·T− µ0Msm ·H. (3.33)

95



Here, T is the six-element stress vector in which the first three components the

longitudinal stresses and the last three the shear stresses. The magnetostriction

Sm = Sm(m) has longitudinal components

Sm,i =
3

2
λ100m

2
i , i = 1, 2, 3 (3.34)

and shear components

Sm,4 = 3λ111m1m2,

Sm,5 = 3λ111m2m3,

Sm,6 = 3λ111m3m1.

(3.35)

These expressions are derived by balancing the elastic and magneto-elastic coupling

energies [61].

For K4 > 0, the internal energy has six minima or easy axes (r = 6) in the

〈100〉 directions and for K4 < 0, the internal energy has eight minima or easy axes

(r = 8) in the 〈111〉 directions. Applied magnetic and magnetomechanical work

rotates particles away from the easy axes towards the magnetic field direction and

perpendicular to the principal stress directions (see Figure 3.13). The equilibrium

orientations (m̂k; k = 1, ..., r), needed for calculation of the bulk magnetization (4.44),

are obtained through the conditions ∂H/∂mi = 0 constrained to a unit sphere. The

equilibrium magnetostrictions (Ŝkm; k = 1, ..., r), needed for calculation of the bulk

strain (4.44) due to magnetostriction, are obtained by evaluating relations (3.34)

and (3.35) using the equilibrium orientations, Ŝkm = Sm(m̂k).

Numerical calculation of equilibrium orientations

The derivatives of the enthalpy ∂H/∂mi restricted to a unit sphere are nonlinear

functions of mi yielding equations ∂H/∂mi = 0 which cannot be solved analytically.

96



(a) (b)

(c) (d)

Figure 3.13: Enthalpy with equilibrium orientations (solid) for (a) no field or stress
(b) field (dash) and stress (dash-dot) (c) field only (d) and stress only.

Newton’s method may be used for approximating a solution. For example, to calculate
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the energy equilibrium near the [001] easy direction (when K4 > 0), the system

m3 =
√

1−m2
1 −m2

2, (3.36)

∂H
∂m1

= 0, (3.37)

∂H
∂m2

= 0, (3.38)

is approximately solved by finding the perturbations m̃1, m̃2, m̃3 about the [001]

direction from the linearized system

m3 ≈ (m3)0 +

(
∂m3

∂m1

)
0

m̃1 +

(
∂m3

∂m2

)
0

m̃2, (3.39)

∂H
∂m1

≈
(
∂H
∂m1

)
0

+

(
∂2H
∂m2

1

)
0

m̃1 +

(
∂2H
∂m1m2

)
0

m̃2 = 0, (3.40)

∂H
∂m2

≈
(
∂H
∂m2

)
0

+

(
∂2H
∂m1m2

)
0

m̃1 +

(
∂2H
∂m2

2

)
0

m̃2 = 0, (3.41)

where the subscript 0 denotes evaluation of the quantity at the linearization point

(m1)0, (m2)0, (m3)0 which is initially (m1)0 = (m2)0 = 0, (m3)0 = 1 for this case.

Greater accuracy is achieved by iterating according to Newton’s method. Because

of the moderate magnetocrystalline anisotropy of Galfenol, the equilibrium direction

will remain near the 〈100〉 crystal directions; thus, high accuracy is achieved with

few iterations. Figure 3.14 shows the calculated equilibria with no iteration (linear

approximation), 1 iteration, and 100 iterations. Excellent accuracy is achieved with

only the linear approximation. The error gets larger as the equilibrium gets further

away from the easy crystal direction, i.e., at the ends of the magnetization kernel

branches. However, the energy also increases, so the global minimum switches before

significant error occurs.
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Figure 3.14: Equilibrium domain orientations for field and stress applied in the [132]
direction, calculated with 0, 1, and 100 iterations as described in Section 3.3.1.

The volume fractions are calculated as the energy weighted average

ξ̂k =
exp(−Hk/Ω)
r∑
j=1

exp(−Hj/Ω)

, (3.42)

where Hk is the enthalpy of the equilibrium orientation mk. Substitution of (3.42)

into (4.44) gives the bulk magnetization and magnetostriction

M =

r∑
k=1

Msm̂
k exp(−Hk/Ω)

r∑
k=1

exp(−Hk/Ω)

, S =

r∑
k=1

Ŝk exp(−Hk/Ω)

r∑
k=1

exp(−HkΩ)

. (3.43)

The volume fraction ξk calculated with (3.42) approaches unity as Hk becomes much

less than all other orientation enthalpies Hj. This property makes (3.43) a good ap-

proximation to (3.30) since it considers only orientations which are locally minimum.

Single-crystal, anhysteretic simulation and discussion

Simulations of anhysteretic, single-crystal behavior in the [001] and [011] direc-

tions are shown in Figure 3.15 and Figure 3.16, respectively. The 〈100〉 directions

99



are important because Galfenol rods are typically grown with this orientation along

the rod axis. The 〈110〉 directions are important because thin films manufactured

by electrochemical deposition typically have this orientation [11]. The macroscopic

magnetization and magnetostriction were calculated from (3.43) with r = 6 which

assumes K4 > 0. Because of the crystal symmetry, both application directions have

only three distinct contributions to the macroscopic behavior from the six equilibrium

domain orientations. For [001] application there are equilibria which remain fixed in

the the [001] and [001̄] directions. They are constant with field because they are

parallel with the field. A third contribution comes from domains which are aligned

with the [100], [1̄00], [010], and [01̄0] easy crystal directions in the absence of field and

rotate into the direction of the applied field. Application of compressive stress de-

creases the slope of this contribution and increases its volume fraction. Both of these

effects are due to the energy decrease of orientations perpendicular to compressive

stress. The volume fraction increase results in a significant increase in macroscopic

magnetostriction because more domains go through a full 90o rotation. A kink in the

field-magnetization and field-magnetostriction behavior also results as the field even-

tually pulls all the domains to the [001] direction for positive field and [001̄] direction

for negative field.

The [011] application direction differs from the [001] direction in its saturation be-

havior and magnetostriction magnitude. The domain orientations which contribute

to the positive saturation behavior are the domain families which start in the [010]

and [001] easy crystal directions, the easy crystal directions nearest the positive field

direction, and rotate into the applied field. The domain orientations which contribute

to the negative saturation behavior are the domain families which start in the [01̄0]
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Figure 3.15: Simulation of the (a),(b) magnetization (c),(d) magnetostriction and
(e),(f) domain volume fractions for [001] applied field with (a),(c), and (e) no pre-
stress and (b), (d), and (f) 30 MPa pre-stress (compression). Solid lines are bulk
quantities calculated from (3.43) and dashed/dotted lines correspond to local equi-
libria calculated as described in Section 3.3.1 and by (3.42).
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and [001̄] easy crystal directions, the easy crystal directions nearest the negative field

direction, and rotate into the applied field direction. Because of this rotation, sat-

uration is gradual rather than abrupt as in the [001] application. Furthermore, the

magnetostriction decreases at high fields as the domains rotate away from the easy

crystal directions because the material anisotropy is such that the magnetostriction

is maximum in the 〈100〉 directions and minimum in the 〈111〉 directions. A third

contribution to the macroscopic magnetization and magnetostriction comes from do-

mains which start in the [100] and [1̄00] directions and rotate into the direction of

the applied field direction. Here also compressive stress decreases the slope of the

contribution and increases its volume fraction resulting in an increase in the total

magnetostriction.

Hysteresis

Armstrong [5] modeled hysteresis due to irreversible domain wall motion by in-

cluding pinning energy in the evolution of the domain family volume fractions. We

take a similar approach,

dξ̂

dH
=
ξ̂an − ξ̂
K

, (3.44)

where K is proportional to the pinning site energy, ξ̂an is the anhysteretic volume

fraction given by (3.42), and H is the magnitude of the applied field. This implemen-

tation differs from that of Armstrong in that the domains are allowed to rotate in

order to minimize the enthalpy whereas Armstrong only considered the 8 fixed 〈111〉

orientations which correspond to the easy crystal axes or internal energy minima

in Terfenol-D. Neglecting domain rotation limits the accuracy of the model, espe-

cially when operated in directions away from the easy axes. Atulasimha, Akhras
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Figure 3.16: Simulation of the (a),(b) magnetization (c),(d) magnetostriction and
(e),(f) domain volume fractions for [011] applied field with (a),(c), and (e) no pre-
stress and (b), (d), and (f) 30 MPa pre-stress (compression). Solid lines are bulk
quantities calculated from (3.43) and dashed/dotted lines correspond to local equi-
libria calculated as described in Section 3.3.1 and by (3.42).
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and Flatau [7] improved the accuracy by considering ninety-eight fixed orientations.

Allowing domains to rotate in order to minimize enthalpy is thermodynamically con-

sistent and reduces the number of domain orientations to be tracked to six while

preserving accuracy.

This order of magnitude decrease in the number of volume fractions needed for

good accuracy is especially important for real-time, model-based controllers and when

extending the model to include additional effects such as material geometry and

texture. Inclusion of geometry effects necessitates numerical solution of Maxwell’s

equations, requiring evaluation of the model at many spatial locations. Material

texture or polycrystallinity, discussed in the next section, can be included through

stochastic homogenization which requires many evaluations of the model at each field

and stress value.

Polycrystallinity

Polycrystallinity is incorporated by considering the material to be composed of

regions of uniform crystal lattice having a statistically distributed orientation with

respect to the coordinate frame of the applied field and stress. Interactions at the grain

boundaries are neglected. This approach is similar to that of Appino, Valsania, and

Basso [4] which considers in-plane domain rotations in polycrystalline materials with

uniaxial anisotropy. For 3D rotations with cubic anisotropy, the bulk magnetization

takes the form

Mpoly =

∫ π/2

0

∫ π/2

0

M(H,T, φ0, θ0)ν(φ0, θ0)dφ0dθ0, (3.45)
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where (φ0, θ0) is the lattice shift, in spherical coordinates, of the crystal lattice with

respect to the field and stress directions. The grain orientation distribution ν de-

pends on the material texture, which influences the bulk magnetostriction [57]. This

approach differs from that of Atulasimha, Flatau and Summers [10] in that it consid-

ers a continuum of orientations rather than a finite sample and can describe various

textures through the density ν. Consider for example cylindrical rods grown by the

techniques described by Summers, Lograsso, Snodgrass, and Slaughter [97]. Orienta-

tion imaging microscopy shows a high degree of grain alignment with grains narrowly

distributed about the rod axis. This motivates the use of a normal distribution

ν(φ0, θ0) =
e−φ

2
0/2σ

2

σ
√

2π

e−θ
2
0/2σ

2

σ
√

2π
, (3.46)

where σ is the standard deviation of the grain misalignment angle. Since the 〈100〉

direction has the largest magnetostriction, any off-axis grains tend to decrease the

bulk magnetostriction [97], hence as the distribution broadens (increasing σ), the

maximum magnetostriction decreases (see Figure 3.17.) The degree of grain alignment

also affects the kinked shape which arises due to the magnetic and stress anisotropy.

Increasing grain misalignment tends to decrease the effect of kinking due to anisotropy

(see Figure 3.17.)

3.3.2 Experimental validation

The model given by (3.43), (3.44), and (3.45) is validated by comparing sim-

ulations to measurements of field-induced magnetization and strain at five levels of

constant compressive stress. The integral (3.45) is computed numerically with Gauss-

Quadrature integration and the distribution (3.46) is used. The material sample used

is research grade Fe81.6Ga18.4 from Etrema Products Inc., produced by the Free Stand
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Figure 3.17: Inverse effect simulation using (3.45) and (3.46) with increasing grain
misalignment.

Zone Melt method which results in a polycrystalline rod with a large percentage

of the grains having the [100] direction oriented along the axis of the rod, consistent

with (3.46). Magnetic field and induction are measured along the rod axis. The model

parameters are determined through a least-squares algorithm with initial values in the

parameter optimization algorithm chosen to be consistent with the literature. The

optimized parameters are K = 300 A/m, σ = 7.10 deg, Ms = 1.26 × 10−3 kA/m,

K4 = 36.0 kJ/m3, λ100 = 174 µε, λ111 = −13.3 µε, and Ω = 1.6 kJ/m3. The accuracy

of the model is illustrated by the fact that a single set of model parameters is used to

accurately describe data sets at five different compressive stresses (see Figure 3.18.)

3.3.3 Concluding remarks

A low-order, 3-D constitutive model relating magnetization and strain to magnetic

field and stress has been developed by utilizing thermodynamic principles with an
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Figure 3.18: Comparison of Galfenol inverse effect data with the hysteretic, polycrys-
talline model at stress levels of −13.8, −27.6, −41.4, −55.2, −69 MPa.

empirical smoothing operator. By directly minimizing the enthalpy to find the most

likely domain orientations, smooth constitutive behavior is achieved with a summa-

tion of only six terms. As a result, the framework is extended to include irreversible

domain wall motion and material texture without making it too cumbersome for use

in distributed parameter, general transducer models which are often solved with the

finite-element method, requiring evaluation of the material constitutive model at each

node. Comparison of the model to experiments has shown it to accurately model field

induced-magnetization and strain at constant stress. The efficiency and accuracy of

the model make it ideal for lumped parameter transducer models which may be used

for model-based, real-time control of magnetostrictive devices. While accurate, low-

order transducer models have been developed for magnetostrictive devices operated

in 1-D modes, the framework developed here can be used for characterization, design,

and control of Galfenol devices capable of 3-D magnetic field and stress loading.
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CHAPTER 4

Constitutive modeling: Part II

4.1 Preamble

This chapter presents a refinement of concepts from Chapter 3 and introduces

additional modeling approaches in order to describe features observed in a new set of

Galfenol magnetization and strain measurements which include stress application at

constant magnetic field. The contributions of the chapter include measurements that

characterize the nonlinearity in Galfenol constitutive behavior as well as a 2-tiered

modeling approach, a comprehensive framework for material characterization and for

inclusion of Galfenol constitutive behavior in device-level models. The first tier of the

modeling framework seeks to describe the finer details regarding Galfenol constitutive

behavior and is based on stochastic homogenization of energy functions formulated at

the domain level. The second tier provides an efficient yet accurate model [39] based

on discrete energy averaging and is intended for use in the device-level modeling

carried out in Chapter 5.

Section 4.2 reports a novel set of Galfenol measurements aimed at characterizing

the nature of the hysteresis loss in Galfenol alloys for both magnetic field and stress

loading. The measurements demonstrate that while the magnetization and strain

108



processes are thermodynamically irreversible, evidenced by hysteresis, these processes

are kinematically reversible in that cyclic processes overlap. The data further shows

that the magnetomechanical coupling exhibits an additional sense of reversibility,

defined by the ability to generate the same magnetization trajectories from both

applied stress at constant field and applied field at constant stress. The remainder of

the section is devoted to the development a new homogenized energy model, capable

of describing the features of Galfenol constitutive behavior that were brought to light

in the measurements.

Section 4.3 is a refinement of the efficient modeling framework in Section 3.3. It

again employs concepts from Boltzmann statistics, using an energy-weighted average

of a discrete number of domain orientations to relate micro-scale behavior to macro-

scale behavior. Two refinements are made: (1) an alternate energy formulation for

the magnetization particles representing domains is used and (2) the hysteresis model

is extended for 3-D magnetic field and stress loading and to include reversible domain

processes. The first refinement results in the ability to apply a single energy formu-

lation to materials of any anisotropy symmetry. The parameters in the energies are

readily found from features of the macroscopic measurements. The significance of the

second refinement is that the model can now be used at the transducer-level for 3-D,

nonlinear, and hysteretic behavior under combined magnetic field and stress loading.

Both models in this tiered framework, the homogenized energy model and the

discrete energy-averaged model, make use of energy terms defined at the magnetic

domain scale. The difference lies in how the macro-scale behavior is determined from

the domain scale. For the homogenized energy model, stochastic homogenization
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requiring quadruple integration bridges the two scales. The process tracks the ori-

entation of a large number of magnetization particles and can describe the details

of hysteretic changes in the domain volume fractions. While the model is certainly

a computational improvement over related models which require sextuple integra-

tion, the discrete energy-averaged model utilizes a simple six-term summation and is

shown to be 100 times faster than previous models. It does not describe the details

of the domain volume fraction changes but provides an accurate description of the

magnetization/strain versus stress/field relationship in an efficient manner.

4.2 Measurement and modeling of magnetic hysteresis under
field and stress in iron-gallium alloys

While linear characterization of Galfenol has been performed [57, 112], a non-

linear description of the coupled magnetomechanical behavior including hysteresis

has not been done. In this work, magnetization measurements of production and

research grade Galfenol from Etrema Products, Inc. are presented. The grades of

Galfenol differ in crystal growth rate. Experiments include applied magnetic field

at constant stress, applied stress at constant field, and alternately applied field and

stress. The measurements show a remarkable degree of kinematic reversibility in the

magnetomechanical coupling, even in the production grade sample. This is in con-

trast with the magnetomechanical coupling in steel which has been shown to exhibit

stress and field induced magnetization that is both thermodynamically and kinemat-

ically irreversible [26, 81]. The kinematic reversibility in Galfenol is demonstrated

by comparing a single stress-induced magnetization curve at constant magnetic field

with a series of field-induced magnetization curves at constant stress. Minor loop

measurements consisting of decreasing the field from a bias point, decreasing stress
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from a bias point, returning the field, and returning the stress show accommodation

is insignificant in Galfenol. These measurements indicate that magnetic hysteresis for

both applied field at constant stress and applied stress at constant field results from

the same physical mechanism.

A new modeling framework is needed for magnetostrictive materials like Galfenol

which respond in a nonlinear, anisotropic, and hysteretic manner to applied field and

stress yet are kinematically reversible. While many models have been developed for

ferromagnetic hysteresis and magnetomechanical coupling, a vector hysteresis model

for anisotropic, magnetostrictive materials applicable for both field and stress load-

ing is not available. Common approaches for modeling hysteretic materials include

the differential equation-based approaches, derived from energy principles like the

Jiles-Atherton model [49, 52] and empirical approaches like the Preisach model [82].

Scalar in its classical form, the Jiles-Atherton model has been generalized as a vec-

tor, anisotropic model as well as a scalar magnetomechanical model [14, 54]. The

magnetomechanical model is for kinematically irreversible behavior which has been

reported for nickel, mild steel, and silicon iron [26, 81]. The Preisach model is also

scalar in its classical form and has likewise been generalized for isotropic vector sim-

ulations [1, 2, 68], anisotropic vector simulations [104] and scalar stress-induced mag-

netization [13, 15]. The Preisach model has also been used to calculate magnetostric-

tion [35, 84]. Recent work has combined aspects of the differential equations approach

and the Preisach approach resulting in a model that benefits from the computational

simplicity of the former and physically accurate hysteresis properties of the latter [77].

An alternative to these classical approaches is an energy weighting approach for mag-

netostrictive materials consisting of an anhysteretic vector model for both field and
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stress application with a scalar hysteresis mechanism [6, 5, 7, 40]. The hysteresis

mechanism uses concepts from Jiles-Atherton model and hence inherits minor loop

properties which do not agree with measurements.

Preisach-like models based on energy principles have been developed by replac-

ing the simple Preisach relay which takes values of ±1 with multi-state relays with

states calculated from energy principles. In a class of vector models the states rep-

resent Stoner-Wohlfarth particle orientations which have anisotropic dependence on

magnetic field [76, 4]. A homogenized energy framework applicable to ferroic mate-

rials utilizes a relay derived from the balance of exchange and thermal energies of

magnetic moments and models scalar magnetic hysteresis for both field and stress

application [91, 92]. This framework has been extended in an anisotropic 2-D vector

implementation for electrostrictive materials [74]. In general, energy based mod-

els which utilize a Preisach-like switching mechanism provide physical insight from

physics based relays and exhibit hysteresis properties which agree with measurements.

In this work, a formal thermodynamic development is undertaken to construct

a relay or hysteron which is applicable to magnetostrictive materials of arbitrary

anisotropy. The hysteron depends on the 3-D field and stress and includes a small

number of parameters, each with a clear physical interpretation. The number of hys-

teron states is dictated by material symmetry and anisotropy with one state for each

easy axis. The criterion for switching follows from the second-law of thermodynamics

and results in a unified hysteresis model which has the same properties as observed

in the measurements. Following the approach of Smith et al. [91, 92], a statistically

distributed interaction field is superimposed on the applied field. Rather than em-

ploy a 3-D, statistically distributed coercive field, a scalar coercive energy is used
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in the homogenization scheme resulting in fewer computations. This model enables

accurate description of the measurements and provides a framework for understand-

ing hysteresis in ferromagnetic materials which exhibit kinematically reversible and

hysteretic magnetomechanical coupling.

4.2.1 Measurements

Measurements include magnetization and strain of 〈100〉 oriented, production and

research grade Galfenol samples from Etrema Products, Inc. in cylindrical rod form

with dimensions of 0.25×1 inches. In the measurement system, stress is applied with

an MTS 858 tabletop system, capable of applying compressive loads only, by loading

the sample between parallel plates. Magnetic field is applied with a drive coil situated

with the Galfenol sample in a steel canister providing a flux return path. Since the

permeability of Galfenol is similar to that of the steel return path, it is necessary

to use a feedback controller for the magnetic field. The changing permeability of

Galfenol results in a nonlinear relationship between the voltage applied to the drive

coil and the magnetic field in the Galfenol sample. Drive coil voltage is supplied by

a Test Star II MTS controller. The level of voltage required to achieve a desired

reference field is found by measuring the field with a Lakeshore 421 gauss meter and

implementing a PI controller with an NI SCB-69 DAQ acquisition board. Magnetic

flux density is measured with a Walker Scientific MF-30 fluxmeter and pick-up coil.

Magnetization is calculated by subtracting the field measurements from flux density

measurements. A cartoon depiction of the measurement setup is shown in Figure 4.1.
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Figure 4.1: Experimental setup for measuring magnetization and strain of Galfenol
under magnetic field and stress.

Production Grade 18.4 at. % Ga

Major magnetization loops for applied magnetic field at constant stress and ap-

plied stress at constant field are shown in Figure 4.2. Magnetization versus field

measurements have two regions of noticeable hysteresis, one at low fields and another

at higher fields. Consider for example the curve obtained under 79 MPa compressive

stress. There is a hysteretic region below 1 kA/m and another between 7-12 kA/m.

The higher field region moves higher with increasing stress. The magnetization ver-

sus stress, at low stresses, depends strongly on the field history. The curves in Fig-

ure 4.3(a) are measured after applying a positive saturating field and subsequently

lowering the field to the bias point while the curves in Figure 4.3(b) are measured

after applying a negative saturating field and subsequently bringing the field to the
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Figure 4.2: Magnetization and strain measurements of production grade Fe81.6Ga18.4

with constant stress levels of 0, −11, −19, −26, −35, −44, −52, −61, −70, −79
MPa.
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Figure 4.3: Magnetization and strain measurements of production grade Fe81.6Ga18.4

with constant field levels of 0, 1.6, 2.4, 3.3, 4.0, 4.8, 5.6 kA/m.
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Figure 4.4: (a) Comparison of production grade Fe-Ga magnetization versus stress
at 2.8 kA/m field obtained from sensing and actuation measurements and (b) mi-
nor loops from alternately varying the field between 2 and 2.8 kA/m and the stress
between 9.4 and 12.6 MPa compression, with the cycle repeated three times.
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bias point. In the latter, multiple loops overlap while in the former, the first loop

does not close. An exception is the case where there is zero bias field after having

negatively saturated the material. In this case the negative remanence resulting from

bringing the field from negative saturation to zero, is wiped out by a single cycle

of stress. Further cycles of the stress do not result in any magnetization change.

Reported measurements of steel have a very different response, exhibiting significant

accommodation with each stress cycle and a gradual convergence to a limiting loop.

Measurements shown in Figure 4.4 show a remarkable degree of reversibility in

the magnetomechanical coupling of Galfenol. In 4.4(a) a magnetization versus stress

curve at constant field is obtained from direct measurement and compared to mag-

netization versus stress points obtained from multiple sets of magnetization versus

field measurements at different bias stress levels. The points are obtained from the

upper and lower branches of the magnetization versus field hysteresis curves at the

bias field level. These points are then plotted versus the respective bias stresses at

which the magnetization versus field curves are measured. The overlap of the curve

measured directly while applying stress and the points obtained from magnetization

versus field curves at constant stress suggests that the magnetomechanical coupling

is reversible and that magnetic hysteresis from applied field and applied stress results

from the same physical mechanism.

Figure 4.4(b) shows measurements from alternately applied field and stress along

with two magnetization versus stress curves at constant field. The two magnetization

versus stress curves are obtained by first positively saturating the material and then

lowering the field to the bias point. A stress is then cycled three times to −70 MPa.

As before, the first loop is not closed. The curve from alternate stress and field
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application is initialized in the same manner by saturating positive and lowering

the field to the first bias field of 2.8 kA/m. Thus as stress is applied it follows the

magnetization versus stress curve with the higher bias field. At 12.6 MPa compression

the stress is held constant and the field is lowered to 2 kA/m from its previous value of

2.8 kA/m. This moves the magnetization from the upper branch of the magnetization

versus stress curve at the higher bias field to the upper branch of the magnetization

versus stress curve at the lower bias. Here the field is again held constant and the

stress is relaxed to 9.4 kA/m resulting in a shift of the magnetization towards the

lower branch of the major magnetization versus stress loop. The stress is again held

constant and the field is returned to 2.8 kA/m bringing the magnetization to the lower

branch of the magnetization versus stress curve obtained with a 2.8 kA/m bias field.

The stress is then returned to 12.6 MPa at constant field, moving the magnetization

towards the upper branch of the magnetization versus stress major loop. This stress

and field cycle is repeated three times before returning the stress to zero. These

minor loops obtained by alternately applying field and stress about a bias point lack

any noticeable accommodation. This again is in contrast with measurements of steel

which exhibit large changes in the shape of magnetization loops obtained from cycling

the stress and field [26, 81].

Research Grade 18.5 at. % Ga

Major magnetization loops of research grade material have similarities with the

production grade material. Specifically, the field location of the burst region is moved

to higher fields with increasing bias stress (see Figure 4.5(a).) The loops however do

not have a noticeable hysteretic region at low fields as do the production grade mag-

netization loops. Additionally, the differential susceptibility is higher in the hysteretic
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Figure 4.5: Magnetization and strain measurements of research grade Fe81.5Ga18.5

with constant stress levels of 0, −9, −16, −23, −28, −32, −37, −42, −46 MPa.
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Figure 4.6: Magnetization and strain measurements of research grade Fe81.5Ga18.5

with constant field levels of 1.9, 4.2, 2.4, 3.2, 4.8, 5.6, 6.5, 7.3, 8.1, 8.9 kA/m.
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Figure 4.7: (a) Comparison of research grade Fe81.5Ga18.5 magnetization versus stress
at 4.2 kA/m field obtained from sensing and actuation measurements and (b) mag-
netization excursions from the upper and lower hysteresis branches about a bias of
15 MPa and 4.2 kA/m, cycled three times.
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burst regions. The magnetization versus stress loops (see Figure 4.6(a)) are similar to

the production grade measurements where the first cycle is not closed and subsequent

cycles overlap. They differ in the high slope regions, having much sharper transitions.

The magnetomechanical coupling in the research grade material is shown to be re-

versible by comparing the magnetization versus stress measured at constant field and

the magnetization versus stress measured at constant stress in the same manner as

was done with the production grade material (see Figure 4.7(a).)

The coupled nature of the hysteresis mechanism observed in the magnetization

from both applied field and applied stress is emphasized in Figure 4.7(b). Starting

from a field of 4.2 kA/m and compressive stress of 15 MPa, if the magnetization

starts at point A on the upper branch of the major magnetization versus field loop,

increasing the stress and returning to 15 MPa pushes the magnetization to point B on

the lower branch of the major loop in a single cycle. Further cycles always return to

point B on the lower branch and overlap. Starting at point B on the lower branch of

the hysteresis loop, when the stress is lowered to zero and brought back to 15 MPa, the

magnetization is pushed to point A on the upper branch of the major loop. Further

cycles always return to the upper branch of the major loop and overlap. These results

show that the width of the hysteresis loops for applied stress and applied field are

constrained in that knowledge of one determines the other.

4.2.2 Model Development

A constitutive model relating magnetization and strain to magnetic field and stress

will be developed from thermodynamic principles with stochastic homogenization. A

hysteron for single crystalline material devoid of imperfections is first derived from
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thermodynamic principles. Stochastic homogenization is then employed to incorpo-

rate the smoothing effect of material inhomogeneities.

The first law of thermodynamics states that the rate of change of the internal

energy U is equal to the rate of change of the applied work plus generated heat, less

the heat leaving. For a thermomagnetomechanical material with stress T and strain

S (using vector notation), magnetic field H, magnetization M, heat generation Q and

heat flux q, this is expressed by

U̇ = T · Ṡ + µ0H · Ṁ +Q−∇ · q. (4.1)

The second law of thermodynamics states that thermal processes result in entropy

η increase. At temperature θ this can be expressed through the Clausius-Duhem

inequality

η̇ ≥ Q

θ
−∇ ·

(q

θ

)
. (4.2)

Eliminating the heat generation by combining the first and second laws gives

θη̇ − U̇ + T · Ṡ + µ0H · Ṁ−
1

θ
q · ∇θ ≥ 0. (4.3)

The dependencies are

U = U(S,M, η), (4.4)

T = T(S,M, η), (4.5)

H = H(S,M, η). (4.6)

In practice it is easier measure magnetization and strain as a function of field, stress,

and temperature. Furthermore, the magnetization can be interpreted as being a

function of internal variables representing r possible domain orientations mk each of
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which occurs with volume fraction of material ξk. The internal variables will provide

a mechanism for energy dissipation leading to a unified hysteresis mechanism for

both applied field and stress. The dependencies are switched through the Legendre

transformation

G(H,T, θ) = U(M,S, η)− ηθ − S ·T− µ0M ·H. (4.7)

Since magnetization is also dependent on the internal variables mk and ξk, the de-

pendencies after transformation are

M = M(H,T, θ,mk, ξk), (4.8)

S = S(H,T, θ,mk, ξk), (4.9)

η = η(H,T, θ,mk, ξk). (4.10)

The time rate of change of the free energy G is then

Ġ =
∂G

∂H
· Ḣ +

∂G

∂T
· Ṫ +

∂G

∂θ
θ̇ +

r∑
k=1

[
∂G

∂mk
· ṁk +

∂G

∂ξk
ξ̇k
]
. (4.11)

From (4.7), the time rate of change of the internal energy is

U̇ = Ġ+ ηθ̇ + θη̇ + S · Ṫ + T · Ṡ + µ0H · Ṁ + µ0M · Ḣ. (4.12)

Substitution of (4.12) and (4.11) into (4.3) gives the following restriction on thermo-

dynamic processes resulting from changes in the independent and internal variables,

−
(
η +

∂G

∂θ

)
θ̇ −

(
µ0M +

∂G

∂H

)
Ḣ−

(
S +

∂G

∂T

)
Ṫ

+
r∑

k=1

[
∂G

∂mk
· ṁk +

∂G

∂ξk
ξ̇k
]
− 1

θ
q · ∇θ ≥ 0.

(4.13)
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For thermo-magnetomechanical materials that are thermodynamically reversible, the

inequality becomes an equality and the constitutive relations can be found from

µ0M = −∂G
∂H

, (4.14)

S = −∂G
∂T

, (4.15)

η = −∂G
∂θ

, (4.16)

∂G

∂ξk
= 0, (4.17)

∂G

∂mk
= 0, (4.18)

q = −k∇θ. (4.19)

Now the following assumptions are made on the processes

• Isothermal

• Negligible temperature gradients

• Reversible domain rotation

• Irreversible domain volume fraction evolution

With these assumptions, the following constitutive relationships are consistent with

the first and second laws of thermodynamics

µ0M = −∂G
∂H

, (4.20)

S = −∂G
∂T

, (4.21)

∂G

∂mk
= 0, (4.22)

−∂G
∂ξk

ξ̇k ≥ 0. (4.23)
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For this case, dissipation occurs as domains reconfigure. The free energy and volume

fraction evolutions need to be defined. Given the free energy, the magnetization,

strain, and possible domain orientations can be calculated from the constitutive rela-

tions (4.20)-(5.9). The volume fraction evolution must satisfy the inequality (4.23) in

order for the thermo-magnetomechanical process to satisfy the first and second laws

of thermodynamics.

Energy formulation

The free energy has terms for magnetic anisotropy GA, magnetomechanical cou-

pling GC , Zeeman or field energy GZ , and elastic strain energy GE. These energies will

be expressed while idealizing the complex domain structure of ferromagnetic materi-

als as a system of non-interacting, single-domain, Stoner-Wohlfarth (S-W) particles.

Rather than employ an energy expression which is valid for all domain variants, a

local definition is used for each variant which depends only on the easy axis of the

variant ck and its temperature dependent anisotropy coefficient Kk(θ),

Gk
A =

1

2
Kk(θ)|mk − ck|2. (4.24)

This energy characterizes the torque require to rotate a S-W particle away from its

easy axis. For small rotations, the coefficient Kk is the slope of the torque-angle

curve. For cubic materials, the 〈100〉 or 〈111〉 directions tend to be easy. Because of

crystal symmetry, the anisotropy coefficient in each direction family is the same, thus

Kk = K100 for all six 〈100〉 directions and Kk = K111 for all eight 〈111〉 directions.

For negative anisotropy coefficients Kk, the direction ck is magnetically hard or an

unstable equilibrium. For the isothermal processes considered here the anisotropy

coefficients are constant.

127



The total anisotropy energy is simply the sum of the contribution from each

variant,

GA =
r∑

k=1

Gk
Aξ

k. (4.25)

The volume fraction evolution will ensure that using a locally defined anisotropy

energy introduces little error into the total anisotropy energy. For magnetically soft

materials, as a domain is pulled away from an easy axis, its size is reduced through

domain wall motion and the size of domains lying nearer an easy axis is increased.

This domain reconfiguration is modeled here through the evolution of the S-W particle

volume fractions and as ξk decreases, the anisotropy energy contribution from the kth

variant is likewise reduced.

The magnetomechanical coupling energy is the sum of the contributions to the

mechanical work from the magnetostriction λk of each particle variant

GC = −
r∑

k=1

(
λk ·T

)
ξk, (4.26)

and the Zeeman energy is the magnetic work due to each particle variant

GZ = −
r∑

k=1

(µ0Ms(θ)m ·H) ξk, (4.27)

where Ms is the magnetization of a S-W particle, constant for isothermal processes.

For Galfenol, the magnetostriction of a S-W particle for cubic materials is used [61]

λk =



(3/2)λ100(θ)
(
mk

1

)2

(3/2)λ100(θ)
(
mk

2

)2

(3/2)λ100(θ)
(
mk

3

)2

3λ111(θ)mk
1m

k
2

3λ111(θ)mk
2m

k
3

3λ111(θ)mk
3m

k
1


. (4.28)

128



The spontaneous magnetostrictions in the 〈100〉 and 〈111〉 directions are constant for

isothermal processes. The mechanical strain energy density of the material is

GE = −1

2
T · sT, (4.29)

where the 6 × 6 compliance s has symmetry consistent with the material crystal

structure. Summing the energy terms and weighting with the volume fractions, the

free energy of the material is

G =
r∑

k=1

ξkGk + T · sT, (4.30)

Gk =
1

2
Kk|mk − ck|2 − λk ·T− µ0Msm

k ·H. (4.31)

From (4.20), the magnetization is

M = − 1

µ0

∂G

∂H
= Ms

r∑
k=1

ξkmk, (4.32)

and from (4.21) the strain is

S = −∂G
∂T

=
r∑

k=1

ξkλk + sT, (4.33)

thus to calculate the magnetization and magnetostriction, the S-W particle orienta-

tions and volume fractions need to be known.

Calculation of particle orientations

The magnetic orientations mk of the S-W particles are calculated from the mini-

mization (5.9). This minimization is constrained since the vector mk is a unit vector.

The constraint is C = |mk| − 1 = 0. The constrained minimization can be cast

in the form of an inhomogeneous eigenvalue problem by using Lagrange multipliers,

∂Gk/∂mk = γ∂C/∂mk. Gathering terms from (4.50) and expressing the particle free
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energy as Gk = 1
2
mk ·Kkmk −mk ·Bk the eigenvalue problem is

(
Kk − γI

)
mk = Bk, (4.34)

where the magnetic stiffness matrix Kk and force vector Bk are

Kk =

 Kk − 3λ100T1 −3λ111T4 −3λ111T6

−3λ111T4 Kk − 3λ100T2 −3λ111T5

−3λ111T6 λ111T5 Kk − 3λ100T3

 , (4.35)

Bk =
[
ck1K

k + µ0MsH1 ck2K
k + µ0MsH2 ck3K

k + µ0MsH2

]T
. (4.36)

While the orientation can be easily solved for in terms of γ through diagonalization,

determination of γ requires solution of a sixth-order polynomial obtained by substi-

tuting the γ dependent orientation into the constraint. It is important to keep the

computation expense of the hysteron to a minimum since a large number of hysterons

are summed in the stochastic homogenization process. To this end, the constraint is

relaxed through linearization about the easy direction ck. This is accurate because

as a field or stress pulls a particle away from the easy direction, at a critical energy

level the particle flips to an equilibrium closer to the applied field or perpendicular

to the applied principal stresses. This is modeled through an instantaneous change

in ξk. Hence particles oriented near an easy axis always have large volume fractions

as compared to particles which have been rotated far from their easy axis. For the

relaxed, linear constraint, the solution to the inhomogeneous eigenvalue problem is

mk =
(
Kk
)−1

[
Bk +

1− ck ·
(
Kk
)−1

Bk

ck · (Kk)−1 ck
ck

]
. (4.37)

The particle orientations (4.54) define the possible states of a 3D, anisotropic, field

and stress dependent magnetization and strain hysteron. The magnetization of the

hysteron is calculated from (4.32) and the strain from (4.33). An evolution equation
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for ξk will be defined in the next section. This evolution defines the switches in the

hysteron states and is consistent with the second law of thermodynamics.

Evolution of domain volume fractions and hysteron development

The hysteron represents the magnetization and strain at the the domain level and

is constructed by tracking a single S-W particle as it switches state from an initial

orientation variant mI to a final orientation variant mF . This switching is modeled

through changes in ξk where prior to switching ξI = 1 and ξk = 0 for k 6= I and after

switching ξF = 1 and ξk = 0 for ξk 6= F . Switching occurs when the energy difference

GI − GF := GIF reaches a coercive energy Ec. As the field and stress change, the

energy difference with the globally minimum orientation always reaches the coercive

energy first, hence the state of the hysteron after switching mF is always the globally

minimum orientation variant. Since ξk = 1 for k = I or k = F and all other ξk are

non-zero, from (4.58) the free energy of the hysteron is

G = ξIGI + ξFGF − s ·T, (4.38)

and the thermodynamic condition (4.23) which is the rate of energy dissipation be-

comes

−∂G
∂ξI

ξ̇I − ∂G

∂ξF
ξ̇F = −GI ξ̇I −GF ξ̇F ≥ 0. (4.39)

The criterion for switching from mI to mF can be expressed mathematically as a

dirac-delta function

ξ̇F = δ(GIF − Ec), ξ̇I = −ξ̇F . (4.40)

The energy dissipation becomes

−GI ξ̇I −GF ξ̇F = GI ξ̇F −GF ξ̇F = GIf ξ̇F

= GIF δ(GIF − Ec) =

{
Ec, G

IF = Ec
0, else

.
(4.41)
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Thus there is an instantaneous energy dissipation of Ec when switching occurs. A

hysteron for changing field or stress is constructed as follows. For each time step, the

orientations mk are calculated from (4.54) and the particle energies Gk from (4.50).

The initial state k = I must be known. The final state k = F is taken as the

globally minimum state. After a step change in the field or stress, the hysteron state

either stays as k = I or switches to k = F if the switching criterion is met. The

magnetization and strain of the hysteron are then calculated from (4.32) and (4.33),

in other words, the magnetization before and after switching is Msm
I and Msm

F and

the magnetostriction before and after switching λI and λF where λk is given by (5.5)

for cubic materials.

Reduction of vector hysteron to scalar hysterons

The classical Preisach model is scalar and depends on magnetic field only. The

Preisach relay switches between two field independent states, ±1 representing domains

as oriented up and down. Switching occurs at a field value of H = ±Hc where Hc

is the coercive field and the magnetization contribution of the relay is ±Ms. For the

hysteron presented here, consider a material with uniaxial anisotropy having easy

axes in the [±100] directions. Associated with these two easy axes are two variants

of S-W particle orientations, m[100] and m[1̄00] having the same anisotropy constant,

K100. If the field is applied in the direction u = [1 0 0], then the hysteron reduces

to the classical Preisach relay. From Equation (4.54), the component of the variant

m[100] is +1 in the direction of u, i.e. u ·m[100] = 1 and the component of the variant

m[1̄00] is −1. No rotation of the S-W particles occurs with field application because it

is applied along the easy axes. The energies of the two variants are ∓µ0MsH − 1/2K

giving the energy difference between the two variants as G[1̄00] − G[100] = 2µ0MsH.
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Therefore the hysteron switches from the [1̄00] direction to the [100] direction at the

coercive field Hc = Ec/(2µ0Ms).

Smith’s homogenized energy model [92] employs two energy-based hysterons—one

for static operation and another which has rate-dependence characterizing the thermal

after-effect. The static hysteron differs from the Preisach relay in that up and down

states vary linearly with field. This same relay behavior can be achieved with the

proposed hysteron here by again considering uniaxial material but applying the field

away from the easy axes. Examples are shown in Figure 4.8 with the field applied 0,

30, 60, and 90 degrees from the easy axis in the [100] direction. At an increasing angle

the hysteron reflects greater difficulty in magnetizing since the direction is further

away from the easy axes. At 90 degrees the two variants have the same orientation

and energy and no switching occurs. For an angle θ the slope or relative susceptibility

of the up and down states is

χ = sin2(θ)
µ0Ms

K100

, (4.42)

and the remanence is ± cos θ. The energy difference is G[1̄00]−G[100] = 2 cos(θ)µ0MsH

which results in a coercive field for switching from the down to the up state Hc =

Ec/(2 cos(θ)µ0Ms). This anisotropic hysteron illustrates an important difference be-

tween Preisach models and homogenized energy models. Both employ an elementary

hysteron with statistically distributed parameters, however, the former includes ef-

fects from additional physics such as anisotropy or magnetomechanical coupling in the

density functions while the latter includes additional physics in the hysteron, which

captures the underlying material behavior. Typically this results in simpler density

functions, or in the discretized model, fewer weights.
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Figure 4.8: Anisotropic hysterons.

Description of measurements with elementary hysteron

The hysteron can describe the underlying shape of the magnetization versus field

curves in Figures 4.2(a) and 4.5(a) as well as the magnetization versus stress curves in

Figures 4.6(a), 4.3(a) and 4.3(b). Even though the measurements are unidirectional, a

vector model is needed for their description because anisotropic, 3-D domain rotation

occurs.

For 〈100〉 oriented, research grade material a 〈100〉 orientation is aligned with

the rod axis which is the direction of field and stress. The stress dependence of

the hysteretic burst regions in Figure 4.5(a) can be understood from the hysterons

in Figure 4.9(a). The low-field linear region is due to rotation of 〈100〉 domains

perpendicular to the field direction. The hysteron represents this region through the

field and stress dependence given by (4.54) of mk which have easy axes perpendicular

to the field. There are four such mk which explains why the hysteron has only three

unique states when calculating magnetization and strain in a 〈100〉 direction. The
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burst region occurs by domain reconfiguration as the size of domains along the 〈100〉

direction aligned with the field grows at the expense of the perpendicular domains.

In the hysteron, the burst region is described by switching from mI with easy axes

perpendicular to the field to mF with the easy axis parallel to the field. The coercive

or dissipation energy Ec causes a delay resulting in hysteresis which accounts for the

noticeable hysteresis in the burst region and lack thereof in the low-field region where

the magnetization process is dominated by domain rotation. With increased stress,

the energy of mk with easy axes perpendicular to the field is decreased, thus the field

location where switching occurs is pushed to higher fields.

The additional hysteretic region at low fields for the production grade, field ap-

plied major loops results from misalignment. Two of the 〈100〉 easy directions near

the plane perpendicular to the rod axis are closer to the negative rod direction and the

other two are closer to the positive rod direction. Thus hysteretic switching occurs

between these orientation variants as the field crosses zero (see Figure 4.10(a).) Al-

though this switching results in energy loss, it does not result in a low-field hysteresis

region for the magnetostriction (see Figures 4.2 and 4.10) because magnetostriction

is a quadratic relation; the variants which are slightly closer to the positive field di-

rection and the variants which are slightly closer to the negative field direction have

the same magnetostriction.

The center of the burst region in the magnetization versus field measurements

can be calculated analytically from GI = GF and the susceptibility in the low field,

domain rotation region, can be calculated from (4.54). The anisotropy coefficient

K100 can be determined directly from the measurements since (4.54) is an analytic

function of K100 . The particle magnetization Ms and the magnetostriction λ100 can
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Figure 4.9: Magnetization of a hysteron in the [100] direction for (a) applied field and
constant stress and (b) applied stress at constant field.
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Figure 4.10: Hysteron calculations of (a) magnetization and (b) strain in the near
[100] direction for applied field and constant stress.
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be directly found from the saturation magnetization and magnetostriction values.

The shear magnetostiction coefficient λ111 does not affect [100] behavior because no

shear stresses are present. The coercive energy can be found from the areas of the

hysteretic regions which give the energy loss. The values for the hysteron parameters

are in Table 4.1.

Magnetization versus stress loops in Figures 4.6(a), 4.3(a) and 4.3(b) can be un-

derstood from the hysterons in Figure 4.9(b). Stress causes domain switching from

the bias field direction or high state to the perpendicular plane or low state. At low

stresses, when the material has been saturated positively prior to application of the

bias field, if the hysteron is double-valued, it will be at the high state. Application

of stress switches the hysteron to the low state and upon removal of the stress it

remains in the low state. In subsequent loops, the hysteron starts and ends in the

low state. This accounts for the observed non-closure of the first loop and closure

of all subsequent loops; it is due to the history of the domain configuration. When

the material is saturated negatively prior to bias field application, the hysteron starts

in the low state and hence the first loop is closed also. A departure from this pat-

tern occurs when the bias field is zero. In this case the hysteron begins negative,

described by the mI with easy axis oriented in the negative field direction. Applied

stress switches the hysteron state to mF with easy axis perpendicular to the bias

field. Further cycles do not result in magnetization change because there is no field

causing a preference for either the positive or negative rod directions. Thus the re-

manent magnetization of materials with kinematically reversible magnetomechanical

coupling can be completely eliminated with a single stress cycle which forces all do-

mains to the perpendicular plane. For sufficiently high bias fields, the hysteron is
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Figure 4.11: Dependence of Gibbs free energy on [100] field and stress for the
Fe81.6Ga18.4, production grade sample, calculated from (a) the measurements and
(b) the model with a single hysteron; bias stresses are 0, −19, −35, −52, and− 70
MPa.

not double-valued at zero stress and thus there is no distinction between saturating

the material positively or negatively; in both cases, the starting and ending domain

configuration is all domains aligned in the bias field direction.

The dependence of the Gibbs free energy on [100] directed field can be calculated

from the measurements by numerically integrating (4.20); the free energy calculated

from applied field measurements are compared with the free energy of a hysteron in

Figures 4.11 and 4.12 for the research and production grade samples, respectively.

Just as a single Preisach relay is blocky compared to magnetization-field loops, the

energy calculated from a single hysteron has much sharper transitions than the mea-

surements. The energy loss associated with hysteretic domain reconfiguration causes

a difference between the beginning and ending energy level which is characterized in

the hysteron through the parameter Ec. For a full major loop of the research grade
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Figure 4.12: Dependence of Gibbs free energy on [100] field and stress for the
Fe81.5Ga18.5, research grade sample, calculated from (a) the measurements and (b)
the model with a single hysteron; bias stress levels are 0, −16, −28, −37, −46 MPa.
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material, the hysteron switches four times and for the production grade material six

switches occur, i.e. two switches occur for each hysteresis region—one on the up-side

and one on the down-side. The five energy versus field curves for the research grade

sample (calculated at different bias stresses) have nearly the same energy loss with

an average of 873 J/m3 which gives a value of 218 J/m3 for Ec (a fourth of the loop

energy loss.) The five energy versus field curves for the production grade sample have

an average energy loss of 1.149 kJ/m3 giving a value of 192 J/m3 for Ec (a sixth of

the loop energy loss.) Though the estimation of Ec is less for the production grade

sample, the total energy loss is greater since more switching occurs owing to the low

field hysteresis region. Despite this, the comparison is still unexpected and may re-

sult from describing the data with a single hysteron. In the next section, stochastic

homogenization will be employed where statistical variation in Ec and the magnetic

field are considered. Then, a collection of hysterons is considered and the energy

loss in a major loop is the average value of the product of the number of switches

occurring in a hysteron and Ec.

The dependence of the Gibbs free energy on [100] directed stress can be calculated

from the measurements by numerically integrating (4.21). A comparison between the

measurements and the free energy of a single hysteron is shown in Figure 4.13 at

four different bias fields. Stress-strain data for the production grade sample is not

available. For the research grade sample, three stress cycles were performed starting at

zero stress at each bias field level. Energy is lost for each cycle resulting in a downward

shift of the energy of an amount 2Ec since two switches occur—the up and the down

switches between the directions parallel to the field and near perpendicular to the

field. The average loss per cycle for the four measurements is 659 J/m3 which is less
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Table 4.1: Hysteron parameters for production grade Fe81.4Ga18.6 and research grade
Fe81.5Ga18.5.

µ0Ms (T) K100 (kJ/m3) Ec (J/m3)

Research 1.55 35 218
Production 1.6 35 192

λ100 ×106 λ111 ×106 E (GPa)

Research 170 N/A 75
Production 110 3 98

than for applied field major loops. That the loss per loop is less than for the applied

field measurements is expected since fewer switches or domain reconfigurations occur,

however, according to the model it should be exactly half since half as many switches

take place. Since it is not exactly half, this suggests the presence of a small amount

of energy loss from purely mechanical hysteresis which is neglected here where the

purely mechanical strain is modeled through Hooke’s law or a quadratic strain energy

density.

Stochastic homogenization

Material inclusions and lattice imperfections cause variations in the local mag-

netic field and coercive energy [92]. This variation is modeled using a statistically

distributed interaction field HI , superimposed on the macroscopic applied field H.

The macroscopic magnetization and strain can be calculated through stochastic ho-

mogenization of the interaction field and coercive energy,

M̄(H,T) =

∫ ∞
0

∫ ∞
−∞

M(H + HI ,T, Ec)ν(HI , Ec)dHIdEc,

S̄(H,T) =

∫ ∞
0

∫ ∞
−∞

S(H + HI ,T, Ec)ν(HI , Ec)dHIdEc.

(4.43)
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Figure 4.13: Dependence of Gibbs free energy on [100] field and stress for the
Fe81.5Ga18.5, research grade sample, calculated from (a) the measurements and (b)
the model with a single hysteron; bias field levels are 1.9, 3.2, 6.5, 8.9 kA/m.
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Figure 4.14: Simulated magnetization versus stress loops with bias field applied (a)
after positive saturation and (b) after negative saturation.
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Figure 4.15: (a) magnetization excursions from the upper and lower hysteresis
branches about a bias, cycled three times and (b) minor loops from alternately varying
the field and stress about a bias point, cycled times.

The homogenization procedure (4.43) is similar to the homogenized energy model of

Smith et al. [92] when thermal activation is neglected. Different energy potentials are

used for the hysterons and the energy formulation here is done in 3-D. Additionally, a

coercive energy consistent with the second law of thermodynamics was defined rather

than a coercive field. This homogenization procedure has a distinct computational

advantage over the vector implementation of Preisach models. Vector Preisach models

for 3-D magnetization-field behavior use six statistically distributed parameters, two

for each dimension which dictate when switching occurs from up to down and visa

versa. The model proposed here includes four statistically distributed parameters

meaning that the model implementation requires quadruple integration rather than

the sextuple integration required for vector models using the classical Preisach model.
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Figure 4.16: Stochastic homogenization of anisotropic, vector magnetization model.

The procedure here offers the additional advantage of simpler density functions

since the effects of anisotropy and stress are incorporated in the hysteron behavior

rather than the densities. Consider again the case of uniaxial anisotropy for which

the hysterons are shown in Figure 4.8. Since the physical information regarding

anisotropy is embedded in the hysteron, a simple Gaussian distribution of each com-

ponent of the interaction field can be used. Figure 4.16 shows the homogenized model

with a Gaussian distribution; the behavior is anisotropic even though all three com-

ponents of the interaction field have the same standard deviation. An exponential

distribution was used for the coercive energy.

The model is implemented by splitting the integrals into intervals and using 4-

point Gauss quadrature integration for each interval. Magnetization and strain are

thus calculated as the weighted sum of hysterons each with a different interaction

field and coercive energy. The weights are the discrete form of the probability density

function and are determined from least-squares optimization minimizing the error
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between simulation and measurement. Figures 4.14(b) and 4.14(a) show simulations

of magnetization versus stress loops for the conditions where the material is saturated

positively prior to bias field application and negatively prior to bias field application.

For the positive saturation case, the first loop is open and subsequent loops are closed.

For the negative saturation case, all loops are closed except for the zero field bias case

where stress removes the remanent magnetization.

Since the hysterons are stress and field dependent with a delay characterized by

a single parameter, the coercive energy, the widths of the hysteretic regions in the

magnetization versus field and magnetization versus stress curves are coupled. This

is demonstrated in Figure 4.15(a); when applying a stress about a field and stress

bias point starting from the top branch of a major magnetization versus field loop,

the magnetization is pushed to the lower branch. Subsequent excursions from a cyclic

stress always return to the lower branch. Starting from the lower branch, decreasing

the stress followed by returning to the bias stress pushes the magnetization to the

upper branch. Further stress cycles always return to the upper branch. This agrees

with measurements in Figure 4.7(a). Biased minor loops obtained from alternately

varying the field and stress give shapes similar to experiment and repeated loops do

not exhibit accommodation (see Figures 4.15(b) and 4.4(b).)

4.2.3 Comparison with experiments

Here, the homogenized energy model is compared with research grade measure-

ments. The hysteron parameters in Table 4.1 are used. The discretized probability
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density in the homogenized energy model (4.43) are found through least-squares op-

timization to a single M−H curve, measured with a -23 MPa bias stress. The pro-

cedure for identifying a general density, described in [93], is used. The integrals are

performed over small segments using Gauss-quadrature. The bounds of the integrals

for the interaction field are the fields required for positive and negative saturation,

±10 kA/m. The bound for the coercive energy was chosen as 600, over twice the

value used for a single hysteron in Section 4.2.2. This bound was chosen so that the

value of ν(HI , Ec) is approximately zero at the bounds. This condition is necessary

to ensure that the error introduced by using finite integral bounds is minimal. The

Gauss quadrature rules give the hysteron evaluation points (HI)1,i, (HI)2,j, (HI)3,k,

Ec,l and weights wijkl. The hysteron values are then calculated at each of the Gauss

points M(H + HI ,T, Ec)ijkl. The values of the density at each Gauss point, νijkl are

found through the least-squares optimization routine lsqnonlin in Matlab. The ob-

jective function for the routine is the error between the model and the measurements.

The model value of magnetization for each applied field and stress value are calcu-

lated with the summation over the four indices, M(H + HI ,T, Ec)ijkl(νw)ijkl, which

approximates the fourth-order integration. The strain is calculated similarly, but not

used in the optimization scheme. To illustrate the accuracy of the model, the den-

sity is first found from optimizing for the error between the model and the measured

magnetization values for applied field at a constant stress of -23 MP. A comparison

with the model is then made between the measured strain of this same experiment

along with the magnetization and strain of a separate experiment of applied stress

at a constant magnetic field of 4.8 kA/m. The result is displayed in Figure 4.17.

The density is only optimized for the measurements in Figure 4.17(a), yet there is
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Figure 4.17: Model and measured magnetization and strain from (a),(b) applied field
at a bias stress of -23 MPa and (c),(d) applied stress at a bias field of 4.8 kA/m.

excellent agreement between the model and the measurements in Figures 4.17(b)-(c).

This confirms that the hysteron describes the underlying physical behavior since from

figure to figure, the density remains the same and only the hysteron changes.
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4.2.4 Concluding remarks

Measurements were presented to characterize the coupled nonlinear and hysteretic

magnetization and strain of production and research grade Galfenol due to applied

stress and field. It was shown that hysteresis for both applied quantities can be

attributed to the same physical mechanism and that major magnetization versus

stress loops in compression depend heavily on magnetic history at low stress levels.

Remarkable reversibility in the magnetomechanical coupling was demonstrated by

generating the same magnetization versus stress hysteresis loop both from a series

of constant stress experiments and from a single constant field experiment. Cyclic

application of alternately applied field and stress did not result in any noticeable

accommodation, i.e., Galfenol constitutive behavior kinematically reversible.

A thermodynamic framework, satisfying the first and second laws, was devel-

oped to describe the observed nonlinear and hysteretic behavior. Like the measure-

ments, magnetization and strain calculations from the model are thermodynamically

irreversible, kinematically reversible, and demonstrate reversible magnetomechanical

coupling. Hysteresis was attributed to energy loss during the process whereby the

volume fractions of differently oriented domains change. This process was modeled by

tracking the orientation of a number of elementary hysterons whose states represent

the energetically possible domain orientations. The hysteron is 3-D, anisotropic, and

both stress and field dependent. The model thereby does not depend on complex den-

sity functions to describe these effects, as do models based on the classical Preisach

model. An additional advantage over Preisach models is that hysteron switching is

characterized by a coercive energy rather than a 3-D coercive field. As a result, the
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integration order is four rather than six. The model provides a physical and accu-

rate description of 3-D magnetic and strain hysteresis for anisotropic magnetostrictive

materials.

4.3 Efficient magnetic hysteresis model for field and stress
application in magnetostrictive Galfenol

Recent models for the 3-D magnetomechanical response have relied on Boltzmann

principles [6, 5, 7, 38, 40]. In the work of Armstrong [6], any bulk quantity related

to magnetic moment orientation, such as magnetization or magnetostriction, is the

expected value of a large collection of magnetic moments. The probability density

function is the Boltzmann distribution in which all possible moment orientations are

considered and minimum energy orientations are the most likely. While this model

was formulated to describe anhysteretic Terfenol-D measurements, extensions include

hysteresis in the presence of changing magnetic fields [5]. The hysteresis extension

of the model suffers from poor accuracy due to the choice of moment orientations

included in the summation for the expected value calculations—only moments at-

taining a local internal energy minimum are included (eight for Terfenol-D and six

for Galfenol.) The work of Atulasimha, Akhras, and Flatau [7] improves the accuracy

of the hysteresis model by including ninety-eight distributed orientations. The num-

ber of moments and their directions was chosen for 〈110〉-oriented material and may

be different for other orientations. To improve the computational efficiency while

preserving accuracy, Evans and Dapino [40] again restrict the number of possible

orientations but use the local minima of the free-energy, which includes magnetic

and magnetomechanical work terms. This approach is both efficient and accurate for

device characterization, design, and control.
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The previous energy-weighted models have three critical limitations. The first

is that the form of the magnetocrystalline anisotropy energy, which determines the

orientations preferred by magnetic moments, is material specific. Current material

processes for Galfenol are capable of significantly changing the magnetocrystalline

anisotropy energy [86], hence determining the appropriate form of the anisotropy

energy is challenging and difficult to generalize. The second limitation of previous

models is the absence of a mechanism for magnetic hysteresis under stress application.

The third limitation is that minor loops from field application have negative suscep-

tibility at the field reversal points, which is inconsistent with data. These limitations

are addressed in this work.

First, a general formulation for magnetocrystalline anisotropy energy is developed.

Rather than seek to define a global energy which includes the local energy minima or

preferred orientations, we define the energy locally about the known preferred orien-

tations. Second, the magnetic hysteresis model is extended to account for hysteresis

during both magnetic field and stress trajectories. A single parameter characterizes

the hysteresis delay for both field and stress application. Third, the effect of re-

versible changes in domain walls from wall bowing is included, while restricting the

effect of irreversible processes so as to exclude the unphysical behavior of negative

susceptibility.

4.3.1 Model development and experiments

Ferromagnetic materials are composed of regions of uniform magnetization Ms

called domains [61]. In the Stoner-Wohlfarth (S-W) approximation used here and

in other magnetomechanical models [54], the material is modeled as a collection of
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non-interacting, single-domain particles [65]. The internal energy of a particle is due

to magnetocrystalline anisotropy which gives domains preferred or easy directions.

Work is required to rotate domains away from these easy directions. As magnetic

fields H and stresses T are applied, domains rotate towards the field direction and

perpendicular to the principal stress directions. When magnetic domains rotate, the

magnetomechanical coupling induces lattice strain and bulk magnetostriction. For

a material composed of a collection of S-W particles in thermodynamic equilibrium

having r possible orientations, the bulk magnetization M and magnetostriction Sm are

the sum of the magnetization Msm
k and magnetostriction Skm due to each orientation,

weighted by the volume fraction ξk of particles in each orientation

M = Ms

r∑
k=1

ξkmk, Sm =
r∑

k=1

ξkSkm. (4.44)

The total strain is the sum of the magnetostriction and the purely mechanical strain

sT, where s is compliance. The anhysteretic values of the volume fractions are cal-

culated using an energy-weighted average,

ξkan =
exp

(
−Gk/Ω

)∑r
k=1 exp (−Gk/Ω)

. (4.45)

The energy Gk is the part of the free energy related to orientation mk and the pa-

rameter Ω is the Armstrong smoothing factor. A Boltzmann-type, energy-weighting

expression was first proposed for use in magnetostrictive materials by Armstrong [6, 5]

and applied to Galfenol by Atulasimha, Flatau, and Summers [10]. The cited works

use a large number r of fixed mk. Evans and Dapino reduced r while maintaining

accuracy by utilizing only mk which attain a local energy minimum [40].
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New energy formulation

The free-energy of a magnetostrictive material has terms for magnetic anisotropy,

magnetomechanical coupling, and Zeeman or field energy. These energies are for-

mulated by idealizing the complex domain structure of ferromagnetic materials as

a system of non-interacting, single-domain, Stoner-Wohlfarth (S-W) particles. The

system of S-W particles is composed of r distinct groups or variants which rotate

about an energetically favorable or easy direction which for the kth variant is ck. The

variants are distinguished by their easy directions. The free energy is formulated

separately for each of the variants whereas in previous work (Atulasimha, Akrhas,

and Flatau [7], and Evans and Dapino [40]) a single energy expression is used for any

S-W particle orientation. The benefit of this approach is that the anisotropy energy

depends explicitly on the easy direction. We can thus describe arbitrary anisotropy

symmetries, needing only a knowledge of the easy directions.

The anisotropy energy of the kth variant, Gk
A, is the work required to rotate a

S-W particle away from ck. This is analogous to mechanical systems where work is

required to displace a spring from equilibrium. This can be expressed as

Gk
A =

1

2
Kk|mk − ck|2. (4.46)

For materials with a cubic lattice, the 〈100〉 or 〈111〉 directions tend to be easy. The

anisotropy coefficient in each direction family is the same, thus Kk = K100 for all six

〈100〉 directions and Kk = K111 for all eight 〈111〉 directions. For negative anisotropy

coefficients Kk, the direction ck is magnetically hard or an unstable equilibrium.

Galfenol can thus have six, eight, or fourteen easy directions, which dictates the

number of variants r. While unannealed Galfenol is generally cubic and thus has
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either one or two distinct Kk coefficients, stress annealing or residual stresses from

the crystal growth process can cause a change in symmetry resulting in distinct values

for Kk within the orientation families 〈100〉 and 〈111〉.

The magnetomechanical coupling energy Gk
C of a single S-W particle with mag-

netization Ms is the strain energy density resulting from the magnetostriction of the

particle,

Gk
C = −Skm ·T, (4.47)

and the Zeeman energy is

Gk
Z = −µ0Msm ·H. (4.48)

Kittel [61] provides expressions for the magnetostriction of a S-W particle with cubic

symmetry,

Skm =



(3/2)λ100

(
mk

1

)2

(3/2)λ100

(
mk

2

)2

(3/2)λ100

(
mk

3

)2

3λ111m
k
1m

k
2

3λ111m
k
2m

k
3

3λ111m
k
3m

k
1


. (4.49)

The total free-energy for each particle variant therefore is

Gk = Kk|mk − ck|2 − Skm ·T− µ0Msm
k ·H, (4.50)

which is minimized to calculate the particle orientation.

Calculation of particle orientations

The magnetic orientations mk of the S-W particles are calculated from minimiza-

tion of (4.50) with constraint C = |mk| − 1 = 0 (since mk is a unit vector). The

constrained minimization can be formulated as an inhomogeneous eigenvalue problem

through the use of Lagrange multipliers. Gathering terms from (4.50) and expressing
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the particle free energy as Gk = 1
2
mk ·Kkmk −mk ·Bk, one can write the eigenvalue

problem as (
Kk − γI

)
mk = Bk, (4.51)

where the magnetic stiffness matrix Kk and force vector Bk are

Kk =

 Kk − 3λ100T1 −3λ111T4 −3λ111T6

−3λ111T4 Kk − 3λ100T2 −3λ111T5

−3λ111T6 −3λ111T5 Kk − 3λ100T3

 , (4.52)

Bk =
[
ck1K

k + µ0MsH1 ck2K
k + µ0MsH2 ck3K

k + µ0MsH2

]T
. (4.53)

While the orientations can be easily solved for in terms of γ, determination of γ

requires solution of a sixth-order polynomial obtained by substitution of each γ-

dependent orientation into the constraint. The constraint is relaxed through lin-

earization about the easy direction ck. This has little effect on the calculated bulk

magnetization and magnetostriction, since the energy weighting operation (4.44) en-

sures that particles which have rotated far from the easy axis are less likely or have

smaller volume fractions than those particles which have not rotated far. In other

words, the orientations which have easy axis near the field direction and perpendicular

to the stress direction are most favorable. For the linearized constraint, the solution

to the inhomogeneous eigenvalue problem is

mk =
(
Kk
)−1

[
Bk +

1− ck ·
(
Kk
)−1

Bk

ck · (Kk)−1 ck
ck

]
. (4.54)

The particle orientations (4.54) define the orientations to be included in the energy

averaging (4.44), thus in the present formulation r depends on the number of easy

axes. Galfenol has six easy axes in the 〈100〉 directions.
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Comparison between Armstrong model for cubic materials and discrete
energy-averaged model

The traditional manner of expressing anisotropy energy is to define a global energy

expression as a function of S-W particle orientation, which has minima corresponding

to the easy axes. The form for cubic materials is [21, 61]

GA = K4(m2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1). (4.55)

The subscript of the anisotropy coefficient refers to the order of the expression which

is fourth-order in this case. This energy has extrema in the 〈100〉 and 〈111〉 directions,

consistent with Galfenol, and for this reason it has been used in magnetomechanical

models for Galfenol [7, 40]. The anisotropy of Galfenol can be changed through stress

annealing—application of stress at elevated temperatures. Annealing along a 〈100〉

direction has been shown to result in Galfenol material with tetragonal anisotropy

where the four 〈100〉 directions perpendicular to the annealing direction have a lower

energy than the remaining two.

The formulation by Trémolet [64] for tetragonal symmetry is

GA =K2

(
m2

3 −
1

3

)
+K4

(
m4

1 +m4
2 +m4

3 −
3

5

)
+K ′4

(
m4

3 −
6

7
m2

3 +
3

35

)
,

(4.56)

where the [001] and [001̄] directions have different energies than the remaining four 〈100〉

orientations. The following reduced form for tetragonal symmetry has been used for

stress-annealed Galfenol [86, 38],

GA = K4(m4
1 +m4

2 +m4
3) +K2m

2
3. (4.57)

While for the global formulations different material symmetries necessitate differ-

ent forms for GA, adapting the locally defined expression (4.46) for different material
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symmetries requires only an adjustment of the coefficients. Another advantage of the

local formulation is the simplicity of the minimization process. Consider for example

a cubic material, the globally defined free energy G in this case is

G = K4(m2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1)− Sm(m) ·T− µ0Msm ·H. (4.58)

Depending on the values of the coefficients and the applied stress and field, this ex-

pression can have anywhere from one to six minima requiring a robust, nonlinear

minimization scheme. The fact that minima can disappear presents a challenge when

utilizing (4.44) to calculate the bulk magnetization and magnetostriction with di-

rect energy minimization, since r varies with stress and field. To obviate this issue,

previous works [40, 41] considered small particle rotations by performing a second-

order expansion of (4.58) about the easy crystal directions. The approach here is to

formulate second-order energy expressions directly, for each easy direction.

A comparative study shows that minimum energy orientations using the globally

defined energy are similar to the minimum orientations of the locally defined energies.

Consider a material with cubic symmetry having 〈100〉 easy directions. For the global

energy expression, (4.58) is used, and for the local formulation six expressions are

used, one for each of the easy directions. Since the symmetry is cubic, all of the local

expressions (4.46) have the same coefficient Kk = K100 and differ only in ck.

When applying field and stress along the [100] direction, energy (4.58) initially

has six minimum orientations. Two of the minima are

m =

±1
0
0

 , (4.59)

and the remaining four depend on stress and field, corresponding to the rotation of

particles away from the four remaining 〈100〉 directions and towards the applied field.
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Stress tends to impede these rotations since it favors perpendicular directions. Evans

and Dapino [41] showed that for small rotations these minima have the following

component in the [100] direction,

m1 =
µ0Ms

2K4 − 3λ100T
H. (4.60)

The other components are simply zero or ±1.

The local energies (4.50) result in similar expressions for the six minima. For the

energy expressions with ck = [±1 0 0] the minima are

m =

±1
0
0

 , (4.61)

and for the expressions with ck = [0 ± 1 0] and ck = [0 0 ± 1], the component in

the [100] direction is

m1 =
µ0Ms

K100 − 3λ100T
H, (4.62)

and the other components are again zero or ±1. Since (4.60) and (4.62) describe the

same magnetization process, K100 = 2K4 should be satisfied.

The Armstrong model uses the global energy expression with fixed orientations

whereas the discrete energy-averaged model presented here uses local energy expres-

sions with field and stress dependent orientations. Calculation of bulk behavior using

the two approaches yields similar results so long as one recognizes that K100 = 2K4.

Two cases are considered, [100] field application and [110] field application, both with

a bias stress. The bulk magnetization is calculated using (4.45) with various values of

smoothing parameter Ω. In the Armstrong model [6], the global energy expression is

used and r in (4.45) is a number of fixed particle orientations. In the model presented

here, local energy expressions are used and for cubic symmetry, r = 6 variants of
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orientations which rotate with stress and field, determined from direct minimization

of the energy corresponding to each variant. To determine r in the Armstrong for-

mulation, the discrete form (4.45) is found through discretization of the continuous

form,

ξ(φ, θ) =
exp(−G/Ω) sinφ dφdθ∫ π

0

∫ 2π

0
exp(−G/Ω) sin φdφdθ

, (4.63)

where ξ is now interpreted as a probability density and (φ, θ) represent the par-

ticle orientation in spherical coordinates. To numerically integrate, the integration

intervals are discretized into NI segments and over each segment, fourth-order Gauss-

quadrature is used. This results in 4NI values each for φ and θ and r = 16N2
I total

particle orientations. The required NI for good accuracy depends on Ω. As Ω ap-

proaches zero, ξ = 1 for the globally minimum orientation and ξ = 0 for all other

orientations. In the Armstrong model, if the discretization is too coarse, then it may

be that none of the fixed orientations are near the global minimum. In the model

presented here, this issue does not arise because the global minimum is simply the

minimum of the local minima which are calculated explicitly. Figure 4.18(a) shows

M −H curves calculated with the Armstrong model at constant T in which H and

T are applied in the 〈110〉 direction and Ω is low. Different values of NI are used.

Curves calculated with NI = 20 (r = 6400) and NI = 40 (r = 25600) show a small

difference, therefore the error in the NI = 40 case is assumed negligible and this curve

is taken as the benchmark for error calculations. The relative error was calculated for

each of the curves at all field values and is shown in Figure 4.18(b). The maximum

error is around 60% for NI = 5 and 10% for NI = 20.
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Figure 4.18: Effect of discretization in the Armstrong model.

Since it has been demonstrated that r = 25600 results in good accuracy, this is

used for Armstrong model calculations in comparing M −H curves with the anhys-

teretic discrete energy-averaged model (see Figure 4.19.) The anhysteretic discrete

energy-averaged model uses the local energy definition (4.50), S-W particle orien-

tations (4.54) and discrete energy-average (4.45). The model parameters used for

the comparison in Figure 4.19 are µ0Ms = 1.59 T, K100 = 2K4 = 17.5 kJ/m3,

(3/2)λ100 = 260× 10−6, and 3λ111 = −10× 10−6 at various values of Ω (50, 100, 200,

400, and 600 J.) A bias stress of −26 MPa is used for the 〈100〉 calculations and −50

MPa for the 〈111〉 calculations.

Although the difference between the Armstrong model and the model presented

here is greater with increasing Ω, both models provide the same trends. When Ω is

small, the magnetization is only due to the global minimum orientation. In this case

the two models are nearly identical. There is a small difference at high fields (∼ 10.5

kA/m) for 〈110〉 application owing to the fact that a linear approximation was used

159



−1 −0.5 0 0.5 1

x 10
4

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

6

Magnetic Field, A/m

M
ag

ne
tiz

at
io

n,
 A

/m

Armstrong
DEAM

Increasing Ω

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
4

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

6

Magnetic Field, A/m

M
ag

ne
tiz

at
io

n,
 A

/m

Armstrong
DEAM

Increasing Ω

(b)

Figure 4.19: Comparison of Armstrong model with the discrete energy-averaged
model.

for computing the minimum of the local energy expressions for the discrete energy-

averaged model. Though this error is small in all cases, it is greater when field or stress

rotates particles to a direction far from the easy axes. In both models, an increasing

Ω results in smoother curves. Whereas the curves for small Ω have sharp transitions

representing a change in the global minimum from one local minimum to another,

for large Ω the volume fractions or probability density are more distributed, meaning

that the bulk magnetization has contributions from the global minimum as well as the

other local minima in the discrete energy-averaged model, and it has contributions

from all the fixed orientations in the Armstrong model. The difference between the

two models for higher Ω can be attributed to the presence of orientations that are

neither global nor local minima in the Armstrong model, since the orientations used

in the summation of the Armstrong model are found from Gauss-quadrature rules

without regard to energy.
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Figure 4.20: FLOPs required for Armstrong model calculation.

In general, the discrete energy-averaged model requires fewer floating-point op-

erations since it utilizes only six particle orientations. Figure 4.20 shows the num-

ber of FLOPs required to calculate the magnetization and magnetostriction using

NI = 5, 10, 20, 40. The relationship is quadratic since the total number of parti-

cle orientations is a function of the square of NI . For the benchmark NI = 40, the

number of flops is 10 MFLOPs. For the discrete energy-averaged model the number

of orientations is fixed and the required flops is 0.1 MFLOPs, an improvement of two

orders of magnitude. The FLOPs were found by calculating 1000 magnetization and

magnetostriction values using a single core of an Intel Core 2 Duo processor running

at 1 GHz. The models were implemented in Matlab and timed. The total time was

divided by 1000 which was converted to FLOPs using the processor speed and as-

suming the processor performs 2 FLOPs per clock cycle (measured in Matlab using

an algorithm with a known number of FLOPs.)
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〈100〉 Single-crystal Fe79.1Ga20.9 measurements and anhysteretic model

Magnetization versus magnetic field measurements at constant stress for [100]-

oriented, single-crystal Fe79.1Ga20.9 are compared with the anhysteretic discrete energy-

averaged model ((4.45), (4.50), and (4.54).) The material was grown with the Bridg-

man method resulting in a single-crystal rod. Although the material is body-centered

cubic, the magnetostriction measurements indicate that the magnetic anisotropy has

tetragonal symmetry. Material with cubic symmetry has a maximum magnetostric-

tion of λ100 in the [100] direction when no stress is applied and (3/2)λ100 when suffi-

cient stress is applied to align all domains perpendicular to the field and stress. The

measurements in Figure 4.21(b) show that the maximum magnetostriction exhibits

little dependence on the bias stress. This suggests that the material has tetrago-

nal symmetry where perpendicular domain orientations are energetically preferred to

parallel domain orientations, even when no stress is applied. This could be due to

either the crystal growth process or tetragonal material phases. Studies have shown

that Fe-Ga alloys have a complicated phase diagram and any given alloy may have

multiple phases present [67].

The magnetization data has three linear regions separated by nonlinear transi-

tions (see Figure 4.21(a).) In the model, these regions are described by three variants

of S-W particles. The linear region below the approach to magnetic saturation is

dominated by rotation of particles away from the [010], [01̄0], [001], [001̄] directions—

orientations initially perpendicular to the applied stress and field—and into the field

direction. These orientations have anisotropy coefficient K⊥. The component of the

orientation in the [100] direction, m⊥ given by (4.62), results in a contribution of

M⊥ = Msm⊥(ξ010 + ξ01̄0 + ξ001 + ξ001̄) to the total magnetization. The remaining
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Figure 4.21: Magnetization and magnetostriction of 〈100〉 single-crystal Fe79.1Ga20.9

at constant stress values of 0.689, 13.8, 27.6, 41.3, 55.1, 68.9, 82.7, 96.4, 123 MPa
(compression), compared with anhysteretic model calculations.
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Figure 4.22: Rotation of perpendicular domain orientations compared with data of
〈100〉 single-crystal Fe79.1Ga20.9 at constant stress values of 0.689, 13.8, 27.6, 41.3,
55.1, 68.9, 82.7, 96.4, 123 MPa (compression).

regions are the positive and negative magnetic saturation regions where little mag-

netization change occurs with varying magnetic fields. These regions are dominated

by [100] and [1̄00] particles which are already aligned with the field and stress axis.

These particles have anisotropy coefficient K‖. The former orientation contributes to

positive saturation and the latter to negative saturation. Their contributions to the

total magnetization are M[100],[1̄00] = Msξ[100], −Msξ[1̄00].

The volume fractions are determined from the energy-weighted average (4.45).

Stresses favor the off-axis or initially-perpendicular variants, each of which have the

same energy level, from (4.50)

E⊥ =
H2(µ0Ms)

2 − 3λ100K⊥T +K2
⊥

6λ100T − 2K⊥
. (4.64)

Applied magnetic fields favor the parallel orientations which have energies

E[100],[1̄00] = ∓Hµ0Ms −
3

2
λ100T −

1

2
K‖. (4.65)
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With no applied field and stress, E⊥ is much greater than E[100],[1̄00]. In the energy

weighted average this results in ξ010 + ξ01̄0 + ξ001 + ξ001̄ ≈ 1 and the magnetization

is simply (4.62); this expression is compared with the data in Figure 4.22. The

anisotropy constant K⊥ can thus be calculated directly from the slope of the linear

magnetization region. The kink in the magnetization curves or the transition from the

linear region to saturation occurs when E⊥ = E‖. This gives a measure of the other

anisotropy coefficient, K‖. Two of the remaining parameters are determined directly

from the data; Ms and (3/2)λ100 are found from the magnetization and magnetostric-

tion at saturation. The smoothing parameter Ω is determined through least-squares

optimization and determines the sharpness of the transition to saturation. For 〈100〉

application, the shear magnetostriction coefficient λ111 does not enter into the model

and hence cannot be determined from the data. The total magnetization as calcu-

lated by (4.45) is compared with the data in Figure 4.21. The model parameters are

provided in Table 4.2.

Magnetomechanical hysteresis

Hysteresis is included in energy-weighting models [5, 7, 40] through an evolution

equation for the volume fractions,

dξk =
1

kp

(
ξkan − ξk

)
|dH|. (4.66)

Parameter kp quantifies pinning site density of the material. Pinning refers to mate-

rial impurities or defects which impede domain wall motion. This hysteresis model,

first proposed by Armstrong [5], employs concepts from the Jiles-Atherton model [51].

In the energy-weighted averaging model framework, domain wall motion is indirectly

accounted for through changes in the volume fractions. The energies described in the
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previous section pertain to S-W particles which approximately represent domain ori-

entations. The anhysteretic volume fractions ξkan are calculated through the averaging

function (4.45) which is a function of stress and magnetic field. As stress and mag-

netic field change, the volume fractions change. Physically, the changes occur through

motion of domain walls where the motion grows one set of domain orientations and

shrinks another. As the walls pass through defect sites, energy is lost. In the Jiles-

Atherton model, which is a domain wall motion model and does not involve volume

fractions and domain rotation, this loss is included through a differential equation

for magnetization. The energy loss is included in the present framework through the

differential equation (4.66) for the volume fractions.

The work of Atulasimha, Akrhas, and Flatau [7] shows that minor loops are

closed for the hysteresis model (4.66). Where major loops are complete hysteresis

cycles of the magnetization extending from negative saturation to positive saturation,

minor loops are small excursions from the major loop due to cyclic field reversal of a

magnitude less than that required for saturation. That minor loops are closed in the

present framework is an improvement over the Jiles-Atherton hysteresis model where

minor loops are not automatically closed. In operating regimes where thermal after-

effects are negligible, measured minor loops in ferromagnetic materials are typically

closed.

The model represented by (4.66) has three deficiencies: (1) it does not account for

hysteresis when stress is varied at constant field, (2) minor loops have an unphysical,

negative differential susceptibility at the reversal points, and (3) it is one dimensional.

Reported Galfenol measurements indicate that hysteresis is more significant for stress

application than for field application [9]. In this work, the reason for the apparently
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Figure 4.23: Minor loop calculations using (a) the discrete energy-averaged model
and (b) the Armstrong model.

wider hysteresis loops for stress application is found to be that for Galfenol the Zeeman

energy (4.48) is generally larger than the magnetomechanical coupling energy (4.47).

Since both stress and field change the domain volume fractions through domain

wall motion, a single evolution equation should describe the volume fractions in the

presence of energy loss from wall pinning for both stress and field application. Ad-

ditionally, reversible volume fraction changes from domain wall bowing should be

accounted for while restricting the irreversible changes predicted by the model which

lead to unphysical, negative differential susceptibility. The irreversible changes are

described by a modified form of (4.66) which includes stress application and consistent

scaling,

dξkirr =
ζ

kp

(
ξkan − ξkirr

)
[µ0Ms(|dH1|+ |dH2|+ |dH3|) + (3/2)λ100(|dT1|+ |dT2|+ |dT3|)

+3λ111(|dT4|+ |dT5|+ |dT6|)] .
(4.67)
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In this extended evolution equation, 3-D inputs are included and scaled appropriately

so that each input has units of energy density, hence, kp has units of energy density.

The value of ζ is zero or one and used to restrict irreversible changes to physically

appropriate situations. First the fractional change is calculated with ζ = 1 and if the

resulting increment gives a negative susceptibility, then it is changed to zero. This

condition was given by Jiles, Thoelke, and Devine [55]. The total volume fraction

change is

dξk = (1− c)dξkirr + cdξkan, (4.68)

where the parameter c is non-dimensional and has a value between zero and one. For a

value of one, volume fraction changes are completely reversible and for a value of zero

they are completely irreversible [52]. The magnetic hysteresis model for magnetome-

chanical materials defined by (4.67) and (4.68) describes magnetic hysteresis for 3-D

field and stress inputs. By including reversible magnetization changes and restricting

irreversible changes to physically relevant cases, minor loops do not have unphysical

negative differential susceptibility as exhibited by the previous model (4.66). Fig-

ure 4.23 demonstrates this improvement.

4.3.2 Comparison with experiments

〈100〉 textured Fe81.5Ga18.5 measurements and hysteretic model

Meaurements of 〈100〉 oriented, textured Fe81.5Ga18.5 grown with FSZM at Etrema

Products Inc. are compared with model calculations. The magnetostriction measure-

ments (see Figure 4.24) indicate a slightly tetragonal magnetic anisotropy but much

less so than the higher Ga content sample grown with the Bridgman technique. The

ratio of the maximum magnetostriction under zero stress and at 32.3 MPa is 1.34.
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Table 4.2: Model parameters.
µ0Ms (T) K⊥, K‖ (kJ/m3) (3/2)λ100 × 106 3λ111 × 106

〈100〉 Fe81.5Ga18.5 1.55 35, 34 255 N/A
〈100〉 Fe79.1Ga20.9 1.21 9.95, 2.0 210 N/A
〈110〉 Fe81.6Ga18.4 1.58 100, 100 290 -40

Ω (J/m3) kp (J) c E (GPa)

〈100〉 Fe81.5Ga18.5 1100 230 0.1 75
〈100〉 Fe79.1Ga20.9 500 N/A N/A N/A
〈110〉 Fe81.6Ga18.4 800 300 0.1 150

Increasing the stress beyond 34.3 MPa does not result in high magnetostriction, indi-

cating that the maximum magnetostriction in this case is (3/2)λ100. The zero stress

magnetization versus field curve has a slightly kinked shape. This also suggests that

K⊥ > K‖ or that the magnetic anisotropy is tetragonal. The anhysteretic model

parameters were determined in the same manner as the 20.9% Ga sample. The pa-

rameters in the hysteresis model kp and c determine the width of the hysteresis loops

and were found through least-squares optimization.

Figure 4.24 demonstrates the good agreement between model and data. The

pinning energy density kp characterizes the width of the hysteresis loops for both field

and stress application. It is the material properties which describe the anhysteretic

behavior that account for the apparently wider magnetic hysteresis loops when stress

is applied. In the hysteresis model (4.67), it is the ratio of the applied energy to the

pinning energy that determines the hysteresis delay. Since Galfenol alloys have high

saturation flux density µ0Ms and moderate maximum magnetostriction (3/2)λ100,

the energy from magnetic field application is higher than the energy from stress

169



−15 −10 −5 0 5 10 15

−1000

−500

0

500

1000

Magnetic Field, kA/m

M
ag

ne
tiz

at
io

n,
 k

A
/m

Data
Model

Increasing
stress

−15 −10 −5 0 5 10 15
0

50

100

150

200

250

Magneic Field, kA/m
S

tr
ai

n×
10

6

Data
Model

Increasing
stress

−70 −60 −50 −40 −30 −20 −10
0

200

400

600

800

1000

1200

1400

Stress, MPa

M
ag

nt
iz

at
io

n,
 k

A
/m

Increasing
field

Data
Model

−70 −60 −50 −40 −30 −20 −10 0
−1200

−1000

−800

−600

−400

−200

0

200

Stress, MPa

S
tr

ai
n×

10
6

Data
Model

Increasing
field

Figure 4.24: Measurement and model calculations for 〈100〉 Fe81.5Ga18.5 grown with
FSZM at constant stress values of 0.32, 8.00, 13.4, 23.1, 32.3 MPa (compression) and
constant field values of 1.85, 3.24, 5.65, 8.88 kA/m.
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application. It is energetically easier to overcome the pinning energy by applying a

magnetic field.

Hysteresis is most significant in the burst regions where volume fraction changes

occur and negligible where the magnetization process is dominated by domain rota-

tion. For example, in the magnetization versus magnetic field measurement with the

highest bias stress (32.3 MPa), there is little hysteresis in the range −5 < H < 5

kA/m, where ξ010 + ξ01̄0 + ξ001 + ξ001̄ ≈ 1 and magnetization changes are dominated

by rotation of domains away from the four perpendicular 〈100〉 easy directions and

towards the magnetic field. Above 5 kA/m, the 〈100〉 easy direction aligned with the

field becomes the global minimum which causes a change in the anhysteretic volume

fractions (4.45) which drives the first-order hysteresis model (4.67). For field appli-

cation at constant stress, the first-order equation (4.67) has a pseudo time constant

kp/µ0Ms (the coefficient of the field increment) which determines how the volume

fractions approach the anhysteretic volume fractions. Thus smaller kp and larger

µ0Ms reduces the field delay associated with hysteresis. Above 10 kA/m, there is

no more change in the anhysteretic volume fractions because ξ[100] ≈ 1, and as the

volume fractions ξkirr approach this state, there is no more hysteresis.

Consider now the magnetization versus stress curve at the highest bias field (8.88

kA/m). At zero stress, the bias field is enough to align all domains in the [100] di-

rection since its energy is significantly lower than the four perpendicular directions.

As the material is loaded in compression, the perpendicular orientations eventually

become globally minimum at around 35 MPa. At this point the anhysteretic volume

fractions change, which drives the first-order hysteresis model (4.67). For stress ap-

plication at constant field, the first-order equation (4.67) has a pseudo time constant
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kp/(3/2)λ100 which determines the stress delay as the volume fractions approach the

anhysteretic values. A smaller kp again reduces the delay as well as a larger λ100.

Above 50 MPa, the volume fractions have reached the anhysteretic fractions which

are no longer changing, ξ010 + ξ01̄0 + ξ001 + ξ001̄ ≈ 1. At this point the magnetization

is dominated by domain rotation as the stress competes with the bias field to more

fully align domains in the four perpendicular 〈100〉 crystal directions. This rotation

is described by (4.62). The rotation region is linear for applied field because (4.62) is

linear in H, however for stress application the rotation region is nonlinear since stress

appears in the denominator of (4.62).

The lower bias field cases (1.85 and 3.24 kA/m) have more complex behavior. The

first stress cycle is not a closed loop whereas subsequent cycles are closed for both the

measurements and the model calculations. This can be understood with the hysteresis

model. The first stress cycle has a different initial condition than subsequent cycles.

In collecting the measurements, the material is first saturated with a magnetic field

at zero stress followed by a reduction in the magnetic field to the bias field value.

At saturation, ξ[100] = ξan,[100] = 1 and when the field is decreased to the bias point,

(ξ[100] > ξan,[100]) < 1 since there is a delay in the volume fraction change. This is the

starting point of the first stress cycle. During the first cycle, the stress (compressive)

is increased until ξ[100] = ξan,[100] = 0 or all the domains are in the perpendicular

orientations. Upon reduction of the stress to zero, ξan,[100] increases, but due to the

hysteresis delay, (ξ[100] < ξan,[100]) < 1. Hence the final magnetization is less than the

initial magnetization for the first stress cycle since the starting and ending values of

the volume fractions are different. Additional stress cycles return to the same volume

fraction values and hence subsequent loops are closed.
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In the strain versus stress curves, the ∆E effect is observed in both the model

and the measurements. The linear regions are governed by Hooke’s law and are used

to determine Young’s modulus E, listed in Table 4.2. The steepest part of the active

region, where the effective modulus softens significantly, is hysteretic since domain

volume fractions change in this region. The hysteresis observed in the strain for both

applied field and stress is due to the delay in volume fraction changes of magnetic

domains, therefore magnetic hysteresis is responsible for the energy loss in both the

magnetization versus field relationship and in the strain versus stress relationship.

< 110 > single crystal Fe79.1Ga20.9 measurements and hysteretic model

For [110] application there are three distinct contributions from the six variants.

The variants which dominate the positive saturation region have their easy axes closest

to the positive field direction, [100] and [010] and rotate until they are aligned parallel

to the field (when field is applied at constant stress.) The variants which dominate the

negative saturation region have their easy axes closest to the negative field direction

[1̄00] and [01̄0] and rotate until they are aligned parallel to the field. Finally, the

variants which dominate the low field region, prior to the burst towards saturation of

the magnetization versus field curves, have easy axes perpendicular to the field, [001]

and [001̄]. Utilizing (4.54), the component of the orientation in the [110] direction for

the variants with easy axes perpendicular to the field and stress is

m⊥ =
µ0Ms

K⊥ − (3/2) (λ100 + λ111)T
H. (4.69)

The energy of these directions is

E⊥ =
(
√

2µ0MsH)2 − 3K⊥(λ100 + λ111)T + 2K2
⊥

6(λ111 + λ100)T − 4K⊥
. (4.70)
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The component of the orientation in the [110] direction for the variants with easy

axes closest to the positive field direction is

m‖+ =
µ0Ms

2K‖ − 3λ100T
H +

√
2

2

(
1 +

3λ111

2K‖ − 3λ100T

)
. (4.71)

The energy of these directions is

E‖+ =
(
√

2µ0MsH)2 + 6
√

2((λ111 − λ100)HT + (2/3)K100H)µ0Ms

12λ100T − 8K‖

+
9(λ2

111 − λ2
100)T 2 + 4K2

‖

12λ100T − 8K‖
.

(4.72)

Finally, the component of the orientation in the [110] direction for the variants

with easy axes closest to the negative field direction is

m‖− =
µ0Ms

2K100 − 3λ100T
H −

√
2

2

(
1 +

3λ111

2K‖ − 3λ100T

)
. (4.73)

The energy of these directions is

E‖− =
(
√

2µ0MsH)2 − 6
√

2((λ111 − λ100)HT + (2/3)K‖H)µ0Ms

12λ100T − 8K‖

+
9(λ2

111 − λ2
100)T 2 + 4K2

‖

12λ100T − 8K‖
.

(4.74)

Since the S-W orientations are calculated with first-order accuracy, the magne-

tostriction should also have first-order accuracy. Linearization of the particle magne-

tostriction (5.5) gives,

Sm ≈ Sm,0 +
∂Sm
∂m

(m−m0) . (4.75)

For [110] application with high bias-stress, the total magnetostriction (as measured in

the [110] direction) at high fields, or above the burst region, is the difference between

the magnetostriction of the [100], [010], [1̄00], [01̄0] easy axis variants and the [001]

and [001̄] easy axis variants. This is because the material starts completely in the
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latter variant and after the burst region is completely in the former variant. This

gives,

Sm =
3
√

2µ0Msλ111

4K‖ − 6λ100T
H +

(18λ2
111 − 3λ2

100)T + 2λ100K‖
8K‖ − 12λ100T

+
λ100

2
(4.76)

for the total magnetostriction at high fields. The presence of λ111 in the coefficient

of H explains how it is possible to have negative piezomagnetism at high fields.

The sign depends on the sign of λ111. For the measurements shown in Figure 4.25,

the slope of the magnetostriction versus magnetic field curve is negative above the

burst region. The anhysteretic model properties K⊥, K‖, µ0Ms, λ100 and λ111 can

all be found by measuring the slopes of the linear regions in the magnetization and

magnetostriction versus magnetic field curves and comparing with the analytic ex-

pressions (4.69), (4.71), and (4.73). The remaining model parameters are found from

least-squares optimization.

The analytic expressions accurately describe the data in the domain rotation re-

gions. There is negligible error in the linear regions below and above the burst regions

in the magnetization versus magnetic field curves. Additionally, the correct magni-

tudes and slopes are predicted by the model for the magnetostriction above and below

the burst region, including the negative slope in the magnetostriction at high fields.

In both the measured curves and the model curves, the magnetic hysteresis is again

more significant for stress application than for magnetic field application. The pseudo

time constant for field application is the same as for 〈100〉 application, however for

the stress it is

τ =
kp

(3/2)λ100 + 3λ111

. (4.77)

The negative λ111 thus increases the hysteresis delay as compared to 〈100〉 application.
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Figure 4.25: Measurement and model calculations for 〈110〉 Fe81.6Ga18.4 grown with
the Bridgman method at constant stress values of 0.644, 22.1, 39.5, 55.3 MPa (com-
pression) and constant field values of 0, 1.61, 3.23, 4.84, 6.46 kA/m.
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There is a discrepancy between the model and the experiments regarding the

location of the burst region. The predicted field location is lower and the predicted

stress location is higher. The location of the burst region caused by volume fraction

changes from the perpendicular variant to the variant with easy axes closer to the

field direction is governed by E⊥ = E‖+ for positive field application and E⊥ = E‖−

for negative field application. Therefore, the error suggests a missing energy term.

However, modification of the energies needs to be done with care since the S-W

particle orientations are calculated from the energies and the particle orientations are

correctly predicted by the model, as evidenced by the excellent correlation between

the model and the measurements in the anhysteretic regions dominated by domain

rotation. The details of the burst region are also affected by the energy weighting

scheme (4.45). Thus, the discrepancy may be a consequence of unmodeled details in

the underlying domain wall motion process which causes the volume fraction changes.

The same discrepancy is observed when employing the Armstrong model with the

global energy definitions since as was demonstrated earlier, both models predict the

same location for the burst region (see Figure 4.19(b).)

4.3.3 Concluding remarks

This work extends the energy-weighted averaging class of magnetomechanical

models by developing an efficient implementation for magnetic hysteresis due to both

applied field and stress. By using local energy formulations dependent on the magnetic

easy axes, the formulation is 100 times faster than previous energy-weighting models

and is applicable to materials with any symmetry of magnetocrystalline anisotropy.

Since the hysteresis model accounts for magnetic hysteresis for both field and stress
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application, it provides a means to understand the history dependence of the magneti-

zation and strain including the apparently larger hysteresis delay for stress application

than for field application. Because the model uses analytic expressions for domain ro-

tation, most of the model parameters can be directly determined from features of the

measurements. These analytic expressions accurately describe the nonlinear magne-

tization and strain versus field and stress behavior in regions where domain rotation

is the dominant process. In addition to furthering the understanding of Galfenol

magnetomechanical behavior, this work provides an efficient modeling framework for

Galfenol devices subjected to 3-D magnetic field and stress loading, operated in non-

linear and hysteretic regimes.
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CHAPTER 5

Application of Galfenol to force sensing and 3-D dynamic
transducer modeling

5.1 Preamble

This chapter addresses Galfenol transducer applications and transducer-level mod-

eling. While Chapters 3 and 4 focus on the nonlinear and hysteretic relationship

between magnetization/strain and magnetic field/stress, this chapter focuses on the

quantities of interest in motion control transducers: voltage, current, force, and dis-

placement.

The application of Galfenol to force sensing [41], presented in Section 5.2, is mo-

tivated by features observed in magnetization measurements of Galfenol, specifically,

the presence of linear regions where the slope changes with stress. This effect is

described through a simple rotational model using only the saturation magnetiza-

tion and magnetostriction and the anisotropy constant. A force sensing principle is

proposed, along with a Ga content range yielding alloys with properties which best

leverage this principle.

The work presented in Section 5.3 seeks to provide a comprehensive framework for

the study of magnetostrictive transducers, operated in dynamic and nonlinear regimes
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and having any geometry. Throughout the section, the anhysteretic and hysteretic

versions of the discrete energy-averaged model, the derivation of which is presented

in Section 4.3, are used for Galfenol constitutive behavior. The transducers studied

incorporate passive media as well, including the air surrounding the transducer, steel

for the flux return path, and copper for a drive solenoid.

5.2 Stress-dependent susceptibility of Galfenol and applica-
tion to force sensing

Models are used to describe nonlinear behavior in the design and control of mag-

netostrictive devices [100]. Jiles and Thoelke [54] employed energy minimization to

quantify the effect of stress and anisotropy on the magnetization of Terfenol-D. The

model incorporates the underlying assumptions present in the Stoner-Wohlfarth (S-

W) model and its derivatives. The magnetization is calculated as the sum of the

contributions of a set of non-interacting rotational particles or domains where ro-

tation is induced by an applied field or stress. The orientation of the domains is

calculated from the minimization of the anisotropy, field and magnetostrictive en-

ergies. This model has instantaneous jumps as minima are eliminated and created

at certain critical fields and stresses. While the sharp transitions in their approach

do not agree with measurements, the model provides an overall description of the

magnetization mechanism.

In Armstrong’s hysteretic model for magnetostrictive materials [5] magnetization

is also attributed to a discrete set of domains, but in this model the domains do

not rotate. This assumption can be made when the anisotropy energy is high and

the field and stress are applied along one of the preferred crystal directions dictated

by the anisotropy energy. Magnetization and magnetostriction changes occur as the
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fractional occupancies of the domains in the set change. These changes are calculated

from energy principles.

Other models for magnetostrictive materials use statistical mechanics to smooth

sharp transitions predicted by direct energy minimization. Smith and Dapino [91]

applied stochastic homogenization in conjunction with direct energy minimization to

model the effect of stress on magnetization of a variety of ferromagnetic materials.

The energy includes thermal, exchange, stress, and magnetic field terms but not

anisotropy. Stochastic homogenization smooths the sharp transitions predicted by

energy minimization by considering the critical field at which a transition occurs to

be a statistically distributed parameter.

Statistical mechanics principles have also been used to characterize the effect of

stress-annealing and to model rate-dependent hysteresis in Galfenol [86, 38]. In these

models, any domain orientation is possible; the likelihood of a given domain orienta-

tion is calculated from the energy of the orientation, which incorporates anisotropy,

stress, and magnetic field terms. The energy is not directly minimized but the prob-

ability density function causes minimum energy orientations to be more likely. In

micromagnetics models, the energy is minimized over a geometry with boundary con-

ditions [116]. While they provide more detailed information such as domain structure

they are computationally expensive and better suited for material characterization

rather than device design and control.

Chief intent of this study is to derive a simple analytical model for the field and

stress dependence of the linear region appearing in magnetization measurements of

〈100〉 oriented Galfenol, obtained from varying the magnetic field at constant stress.
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Magnetization changes in this region are attributed to domain rotation and the do-

main orientation is found from the Gibbs free energy of a S-W particle. Using this

simple model it is shown that, because of its lower anisotropy, Galfenol with higher

Ga content is ideal for transducers operating on the principle of stress dependent sus-

ceptibility from domain rotation. Furthermore, it is shown that although the stress

dependence of the susceptibility is nonlinear, a linear force sensor can be constructed

using a transformer with a Galfenol element.

5.2.1 Measurements

Magnetization measurements are reported for 〈100〉 oriented, single-crystal

Fe79.1Ga20.9 and 〈100〉 oriented, textured polycrystal Fe81.6Ga18.4. The textured poly-

crystal sample is near single-crystalline with 95 % of grains having the 〈100〉 axis

aligned within 5 degrees of the rod axis. Prior to magnetic field application, a con-

stant bias stress is applied with an MTS 858 table top system capable of applying

compressive loads only, by loading the sample between two parallel plates. A cyclic

magnetic field is then applied using a drive coil situated with the Galfenol sample in

a steel canister providing a flux return path. The waveform is triangular with a rate

of 1 kA/m per second and magnitude sufficient to saturate the sample. The magnetic

field is measured on the surface of the rod halfway along its length with a Lakeshore

421 gauss meter and magnetic flux density is measured with a Walker Scientific MF-

30 fluxmeter and pick-up coil. Magnetization is calculated by subtracting the field

measurements from flux density measurements. Prior to saturation, linear regions

are observed in the magnetization versus field curves of the single crystal sample (see

Figure 5.1) where the slope depends on the bias stress. The sample with lower Ga
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Figure 5.1: Magnetization measurements of (a) Fe79.1Ga20.9 at constant compres-
sive stresses of 1.38, 18.8, 27.6, 41.4, 55.2, 68.9, 82.7, 96.5, and 122.7 MPa and (b)
Fe81.6Ga18.4 at constant compressive stresses of 0.316, 9.17, 18.5, 27.7, 36.9, 46.2, 55.4
MPa.

content also has linear regions but exhibits significant kinking with a nonlinear shape

prior to saturation. Section 5.2.3 shows the difference in behavior to be due to a dif-

ference in the anisotropy. An analytic expression is derived for the stress dependence

of the slope in the linear region. Utilizing this expression, equations for the operation

of a linear magneto-elastic force sensor are derived.

5.2.2 Magnetization model

Ferromagnetic materials are composed of regions of uniform magnetization Ms

called domains [61]. Magnetization changes occur as domains rotate or as differently

orientated domains change size through domain wall motion. In the S-W approxima-

tion used here, the material is taken as a collection of non-interacting, single-domain

particles [65]. This approximation is accurate when domain rotation is the dominant
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magnetization mechanism; domain rotation is modeled as the rotation of S-W par-

ticles. The orientation m of an S-W particle can be calculated from its Gibbs free

energy G which has natural dependence on the applied quantities magnetic field H,

stress T, and temperature θ as well as the internal state variable m. The Gibbs free

energy G is the sum of the anisotropy

Gan = K4(θ)(m2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1)

+K6(θ)m2
1m

2
2m

2
3,

(5.1)

Zeeman

Gz = −µ0Ms(θ)m ·H, (5.2)

magnetomechanical coupling

Gcoup = −λ ·T, (5.3)

and mechanical

Gmech = −T · sT, (5.4)

energies. The anisotropy energy originates from magnetic moments having preferred

crystallographic directions, 〈100〉 and 〈111〉 for cubic materials. Rotation of S-W

particles away from these easy directions requires energy from field, stress, or tem-

perature application. The energy from the field is expressed as the Zeeman energy.

Stress contributes energy through the magnetomechanical coupling energy or the

strain energy density from magnetostriction as well as through the purely mechanical

energy due to the material compliance s, which for Galfenol has cubic symmetry.

In (5.3) and (5.4) the stress and magnetostriction are treated as vectors where the

first three components are longitudinal and the last three shear components. The
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magnetostriction depends on the S-W particle orientation [61]

λi =
3

2
λ100(θ)m2

i , i = 1, 2, 3 (5.5)

λ4 = 3λ111(θ)m1m2, (5.6)

λ5 = 3λ111(θ)m2m3, (5.7)

λ6 = 3λ111(θ)m3m1. (5.8)

The effect of temperature is accounted for through the temperature dependence of

the anisotropy coefficients K4 and K6, domain magnetization Ms, and magnetostric-

tion coefficients λ100 and λ111. For the isothermal processes considered here, these

coefficients are constant.

The particle orientation, magnetization M, and strain S are calculated from the

constitutive relations

∂G

∂m
= 0, (5.9)

M = − 1

µ0

∂G

∂H
= Msm, (5.10)

S = −∂G
∂T

= λ + sT. (5.11)

The minimization (5.9) is constrained since |m| = 1. Analytic solution is not

possible because G is a sixth-order function of the particle orientation. There are

fourteen possible solutions which correspond to rotation about the six 〈100〉 and eight

〈111〉 easy directions in response to applied field or stress. Thoelke and Jiles [101]

formulated the energy in spherical coordinates and solved for the local minima with

iteration. Here the problem is approximately solved in rectangular coordinates, yield-

ing analytic expressions for particle orientation.

First, the constraint is substituted into the Gibbs energy. For example, to find

the minimum orientation which lies near the [100] direction, the relation m1 =
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√
1−m2

2 −m2
3 is substituted into the energy so that when m2 = m3 = 0, the re-

maining component is the one associated with m1 = 1. Similarly, to find the local

minimum near the [1̄00] direction, the relation m1 = −
√

1−m2
2 −m2

3 is used so that

when m2 = m3 = 0, the remaining component is the one associated with m1 = −1.

After this substitution, the two nonlinear equations ∂G/∂mi = 0 are linearized about

the easy direction that was used in the substitution of the constraint. Linearization of

∂G/∂mi = 0 about the easy crystal directions is accurate because S-W particles are

always oriented near an easy crystal direction. If the stress or field rotates a particle

far from a particular easy direction it will flip to one of the other thirteen energy

equilibria which is closer to an easy direction.

A typical device having a magnetostrictive material consists of a rod in compres-

sion with an applied stress sufficiently large to align domains perpendicular to the rod

axis. An applied magnetic field causes magnetization change and magnetostriction

as domains rotate into the applied field direction. At certain critical fields, domains

will flip from the current equilibrium to an equilibrium closer to the field direction; in

addition, the size of domains in lower energy equilibria will grow at the expensive of

higher energy domains through domain wall motion. For [100] oriented material (see

Figure 5.2,) compressive stress at zero field lowers the energy of the four basal plane

directions [010], [01̄0], [001], and [001̄]. A sufficient compressive stress will cause all

domains to lie in these directions. Applied field rotates these domains into the field

direction along the rod. Eventually domain wall motion and domain flipping occurs

as the material saturates with all domains oriented in the [100] direction for positive

fields and [1̄00] for negative fields.
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Figure 5.2: [100] oriented material where arrows for the field and stress indicate the
positive direction which for the stress indicates a tensile load.

The S-W approximation is accurate when the magnetization process is dominated

by domain rotation. This occurs below saturation when sufficient compressive stress

has been applied to align all domain in the basal plane. In this case, magnetic field

causes magnetization change as domains rotate towards the field. This is calculated

with the approximation described previously, linearizing about any of the [010], [01̄0],

[001], or [001̄] basal plane directions. Substitution ofm3 =
√

1−m2
1 −m2

2 intoG with

H1 = H, T1 = T and all other inputs zero results in the following after differentiation

∂G

∂m1

= 2K4(m1 − 2m3
1 −m1m

2
2)− 3λ100Tm1 − µ0MsH, (5.12)

∂G

∂m2

= 2K4(m2 − 2m3
2 −m2m

2
1), (5.13)
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∂2G

∂m2
1

= 2K4(1− 6m2
1 −m2

2)− 3λ100T, (5.14)

∂2G

∂m1∂m2

= −4K4m1m2, (5.15)

∂2G

∂m2
2

= 2K4(1− 6m2
2 −m2

1.) (5.16)

The linear approximation of (5.12) and (5.13) about m1 = m2 = 0, the [100] direction,

is formulated by

∂G

∂m1

≈
(
∂G

∂m1

)
0

+

(
∂2G

∂m2
1

)
0

m1 +

(
∂2G

∂m1∂m2

)
0

m2, (5.17)

∂G

∂m2

≈
(
∂G

∂m2

)
0

+

(
∂2G

∂m2m1

)
0

m1 +

(
∂2G

∂m2
2

)
0

m2. (5.18)

Substitution from (5.12)-(5.16), equating to zero, and solving for m1, the component

in the field direction is

m1 =
µ0Ms

2K4 − 3λ100

H, (5.19)

hence, the stress-dependent susceptibility below saturation is

χ(T ) =
µ0M

2
s

2K4 − 3λ100T
. (5.20)

5.2.3 Force sensor model

The magnetization calculated using the susceptibility (5.20) is shown with the

magnetization measurements in Figure 5.3. The model parameters for the Fe79.1Ga20.9

sample are Ms = 970 kA/ m, λ100 = 138×10−6, measured directly from the saturation

values of the magnetization and magnetostriction of the 122.7 MPa data set, and

K4 = 4.98 kJ/m3, calculated by solving (5.20) for K4 with the susceptibility and

stress values from the 122.7 MPa data set. There is excellent agreement between

the model and the measurements except in the lowest stress case (see Figure 5.3(a).)

This suggests that 1.38 MPa is not enough stress to fully align domains in the basal
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plane and hence the magnetization process is not due to domain rotation alone.

Additionally, the full magnetostriction (3/2)λ100 (measured with a strain gauge) was

not achieved for this data set—further evidence that full domain alignment was not

achieved.

The model parameters for the Fe81.6Ga18.4 sample are Ms = 1281 kA/m, λ100 =

173 × 10−6, measured directly from the saturation values of the magnetization and

magnetostriction of the 55.4 MPa data set, and K4 = 19.1 kJ/m3, calculated by

solving (5.20) for K4 with the susceptibility and stress values from the 55.4 MPa

data set. Full magnetostriction was achieved for the 27.7 MPa and higher data sets,

these are compared with the rotational model in Figure 5.3(b). These sets follow the

model lines at low fields, less than 10 kA/m but diverge rather quickly—giving them

a nonlinear shape. The model comparison for each data set is shown in separate

plots for the Fe 81.6Ga18.4 sample (see Figure 5.3(b)) for clarity, since increasing stress

causes little change in the susceptibility, whereas the data sets for the Fe79.1Ga20.9

sample are easily distinguished in the same plot (see Figure 5.3(a).)

There is variability in the reported values of the fourth-order anisotropy con-

stant K4. Noting that K4 = −2Kcubic from their paper, Restorff et al. [86] report

values of 28.6, 32.0, 45.6 and kJ/m3 for three different Fe81.6Ga18.4 samples. The

values are not measured directly but determined from a nonlinear simplex algorithm

minimizing the error between an energy averaging model and the data. Rafique et

al. [83] report 32.5 kJ/m3 for a Fe82Ga18 sample. Their work uses the classical ap-

proach of numerically integrating the magnetic field over magnetization measurements

for two different crystal orientations and assuming that all of the field energy goes

to changing the internal energy—assumed to be entirely composed of the anisotropy
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energy of a rotating S-W particle. If the magnetization measurements are carried out

over a range including domain flipping or wall motion, this appears as an apparent

scaling of the anisotropy constant since all of the field energy is assumed to go towards

overcoming anisotropy energy alone. In our approach, a S-W model is also used, how-

ever, it is only applied in the domain rotation region and is measured directly from the

slope or susceptibility (after directly measuring the Ms and λ100.) Both cited works

show a trend of decreasing anisotropy with increasing Ga content which agrees with

our results. Finally, all three approaches actually measure K4 + ∆K4 where ∆K4 is

a strain-invariant change in the intrinsic cubic anisotropy due to the magneto-elastic

coupling energy [61].
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Figure 5.3: Comparison of rotational model with magnetization measurements of (a)
Fe79.1Ga20.9 and (b) Fe81.6Ga18.4.

It is the large difference in anisotropy that results in the different behavior of

the differing Ga content samples. Having low anisotropy, the magnetization of the
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Fe79.1Ga20.9 sample is dominated by domain rotation over a large range of fields

and stresses. The magnetomechanical coupling (5.3) dominates the anisotropy en-

ergy (5.1) so that domains which rotate from the basal plane with field application

have a large contribution to the bulk magnetization. The linear magnetization versus

field region arises from this rotation. Eventually the field energy (5.2) dominates,

causing a nonlinear approach to saturation as domain flipping and wall motion result

in the material being composed entirely of domains oriented in the 〈100〉 direction

aligned with the magnetic field. The denominator of (5.20) is dominated by the stress

term which causes large changes in the susceptibility as the stress is changed. This

effect can be used as the basis of a force sensor.

Whereas the magnetization of the Fe79.1Ga20.9 sample was dominated by the ro-

tation of a single set of domains, made energetically favorable by the applied stress,

the magnetization of the Fe81.6Ga18.4 is due to the simultaneous rotation of domains

from the six 〈100〉 and eight 〈111〉 easy axes as well as flipping and wall motion of

these domains. The larger anisotropy inhibits domain rotation and the field energy

goes to domain flipping and wall motion to change the volume fraction of material

having domain orientations close to the field direction. The effect of stress in this case

is mostly to shift the field location where flipping and wall motion begins, with little

change to the rotations. As an illustration, the slope of the domain rotation region

is not changed significantly in Figure 5.3(b) as stress is increased but the width of

the field interval where rotation occurs is increased since stress lowers the energy of

domains rotating from the basal plane.
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To summarize, the Fe79.1Ga20.9 sample is dominated by tetragonal anisotropy im-

parted by the applied stress and the Fe 81.6Ga18.4 is dominated by the cubic, magne-

tocrystalline anisotropy. The result is that the Fe79.1Ga20.9 magnetization has large

intervals of stress and field which can be accurately modeled by a simple stress de-

pendent susceptibility (5.20). The Fe81.6Ga18.4 sample magnetization has a kinked

shape with limited regions dominated by rotation and would benefit from more com-

plicated models involving statistical distributions of domain orientations [7, 38, 40]

or micromagnetics simulations [116].

The Fe79.1Ga20.9 sample is better suited for use in Galfenol force sensors. The

stress sensitivity of its susceptibility in the rotational region is much higher than

in the Fe81.6Ga18.4 sample (see Figure 5.4.) The accurate, low-order, expression for

the stress dependence of the susceptibility (5.20) enables the design and control of

transducers. To ensure that the material is used in the domain rotation region, it

can be stress annealed [86]. Magneto-elastic transducers for force sensing and energy

harvesting typically rely on the stress dependence of the magnetic susceptibility [29].

Kleinke and Uras [62] proposed a magneto-elastic force sensor using a transformer

made from a magnetostrictive material with an excitation coil on one arm and a

detection coil on the other (see Figure 5.5.) An amplitude modulated signal results

and the stress or force is related to the amplitude ratio between the drive and pickup

coils. A key advantage of Galfenol for this application is its combination of high

magnetostriction and high yield strength. Furthermore, the relationship between the

amplitude ratio and force is linear.

The magnetic field He produced by the current of the excitation coil is controlled

and the voltage of the detection coil measured. The force is related to the ratio of
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Figure 5.4: The stress dependent susceptibility (5.20) using parameters for the Fe

79.1Ga20.9 and Fe81.6Ga18.4 samples.

the magnetic field and detection voltage. Equations describing the operation of this

transducer using Galfenol with cross section area A can be calculated with (5.20) and

standard magnetic circuit laws. A bias stress or stress annealing and proper selection

of the magnetic field amplitude ensures that the Galfenol is operated in the domain

rotation region of its magnetization behavior. The detection voltage due to changing

flux φ is found from Faraday’s law of induction

Vd = −N dφ

dt
, (5.21)

where the detection coil has N turns of wire. From (5.20) the total magnetic flux is

φ = Aµ0 [1 + χ(T )]He ≈ Aµ0χ(T )He. (5.22)

The flux due to magnetic field alone can be neglected since χ(T ) >> 1. The detection

voltage is then

Vd = −µ0NA

[
χ(T )

dHe

dt
+
dχ(T )

dt

dT

dt
He

]
. (5.23)
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Figure 5.5: Force sensor with magnetostrictive core.

By using an excitation field with a frequency ωe much greater than the frequency of

the force, the second term in the square brackets can be neglected. The amplitude of

the detection voltage V̄d is then related to the magnetic field amplitude H̄e by

V̄d = µ0NAωeχ(T )H̄e. (5.24)

The Fe79.1Ga20.9 sample has a higher susceptibility which is more sensitive to stress

changes (see Figure 5.4,) giving a higher detection voltage. From (5.20), the suscep-

tibility can be increased by decreasing the anisotropy K4 or increasing the saturation

magnetization Ms. The sensitivity to stress changes can be increased by increasing

the magnetostriction λ100. Magnetostriction measurements have been reported for Ga

concentrations of 0-35 at.% with peaks occurring at 19 and 27 at.% [22]. Anisotropy

constants have been separately reported for Ga concentrations of 0-20 at.% [83] and

12.5-22 at.% with a trend of decreasing anisotropy for increasing Ga concentration.

The saturation magnetization has also been reported to decrease with Ga concentra-

tion but by much lower factors than the anisotropy. Ideally, the anisotropy coefficient

194



K4 should be slightly greater than zero. A negative value would result in the need

for a higher bias stress to pre-align domains in the basal plane, since in this case the

[100] directions are not easy directions. Given the variability and low resolution of

reported anisotropy values, it is difficult to accurately select the ideal Ga concentra-

tion. However, the trends suggest the optimal value lies between the magnetostriction

peak of 19 at.% and the anisotropy sign change value of around 22 at.%.

Using a higher magnetic field frequency and amplitude also gives a higher detection

voltage. Substituting from (5.20) and solving for the force F = 2AT gives

F = −2

3

N(Aµ0Ms)
2ωe

λ100

(
H̄e

V̄d

)
+

4AK4

3λ100

. (5.25)

The force is linearly related to the amplitude ratio H̄e/V̄d by known material and

geometric properties.

Employing the Fe79.1Ga20.9 sample, the difference between the maximum expected

tensile stress and the bias or internal compressive stress should not exceed 18 MPa.

In addition, the excitation field amplitude should be less than 5 kA/m. These limits

ensure the accuracy of (5.25) by keeping the magnetization process in the domain

rotation region.

5.2.4 Concluding Remarks

Magnetization measurements of Fe79.1Ga20.9 and Fe81.6Ga18.4 are linear with mag-

netic field in certain intervals of stress and magnetic field. These regions arise from

coherent rotation of domains from the basal plane and occur when a sufficient com-

pressive stress aligns domains in the four easy crystal directions of the basal plane

at zero magnetic field. The slope of the linear region is proportional to the field en-

ergy and inversely proportional to the anisotropy and magnetomechanical coupling
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energies. Energy minimization can be used to interpret the differences in the magne-

tization processes of the two samples. Magnetization of Fe81.6Ga18.4 is more strongly

influenced by domain flipping and wall motion due to its higher anisotropy imped-

ing domain rotation. As a result, its magnetization versus field curves at constant

stress have a distinctive kinked shape whereas the Fe79.1Ga20.9 curves are largely lin-

ear until saturation, having lower anisotropy which permits more domain rotation.

The susceptibility of the Fe79.1Ga20.9 sample is more sensitive to stress in the domain

rotation region. The stress dependence of the susceptibility in the linear or domain

rotation region of both samples is accurately modeled with a simple expression de-

rived from energy minimization. This expression motivates the use of Galfenol with

Ga concentrations having high magnetostriction and saturation magnetization with

a small, positive fourth-order anisotropy constant for transducers utilizing stress de-

pendent susceptibility. This expression also shows that despite the nonlinear stress

dependence of the susceptibility, a linear force transducer can be constructed with a

transformer made from Galfenol.

5.3 Transducer-level modeling with the finite element method

Magnetostrictive transducers operated as actuators have supply voltage applied

to a solenoid as input and displacement or force as output. Operated as sensors, the

input is force or surface traction and the output is typically the voltage in a pick-up

coil, induced by a changing flux density. These input-output relationships depend on

the electric flux density D, magnetic flux density B, and strain S as well as their work

conjugates electric field E, magnetic field H, and stress T which vary in space x and

time t. These are kinematically related to voltage φ, vector magnetic potential A,
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and displacement u—which are often used in the solution process of finite element

models.

Transducer-level models are useful for device design and optimization as well as

control [78, 71, 78, 96, 100]. Much attention has been given to devices utilizing

Terfenol-D loaded unidirectionally. Dapino, Smith, and Flatau [30] modeled 1-D con-

stitutive behavior of Terfenol-D with the Jiles-Atherton model, including an effective

field due to prestress. In their transducer-level description, the magnetostriction cal-

culated from the constitutive model is used as input to the wave equation for the

structural dynamics of a rod. Huang et al. [46] also used the Jiles-Atherton model for

1-D characterization of a Terfenol-D actuator but included eddy current losses in the

energy formulation and used a lumped parameter model for the structural dynamics;

the effect of dynamic stress was not included in their constitutive model. Sarawate

and Dapino [87] also developed a decoupled model but included time delay from eddy

currents through solution of the magnetic field diffusion equation with constant per-

meability. Engdahl and Bergqvist [37] calculated dynamic losses in a 1-D actuator by

fully coupling the magnetic field diffusion equation, the wave equation for structural

dynamics, and a lumped parameter model for the magnetic circuit with constitutive

behavior obtained from measurement and with constitutive behavior obtained from

a Stoner-Wohlfarth hysteresis model. Bottauscio et al. [17] modeled losses from eddy

currents using the field diffusion equation along with the Preisach model to calculate

the nonlinear permeability and stress-induced flux density changes. All of the works

referenced above have as input, externally applied magnetic field.

Some attention has also been given to higher dimension models. Datta et al. [32,

88] used classical laminated plate theory with the Armstrong magnetomechanical
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model to characterize laminated sensors and actuators in the absence of current-

induced magnetic field. Zhou and Zhou [118] developed a dynamic finite element

model for a unimorph actuator with one-way magnetomechanical coupling. The

magnetostatic finite element model formulated by Kannan and Dasgupta [56] is 2-D,

uses nonlinear constitutive behavior for bi-directional coupling and includes current-

induced magnetic fields and electromagnetic body forces. Mudivarthi et al. [70] used

a fully-coupled, magnetostatic formulation for stress-induced flux density changes in

Galfenol with no current-induced fields. The 3-D model of Kim and Jung [60] employs

one-way coupling with force due to magnetostriction driving a coupled fluid-structural

model for a sonar transducer. Aparicio and Sosa describe a 3-D [79], fully-coupled

finite element model including dynamic effects and give a simple implementation for

a magnetostrictive material using a single element.

This work provides a comprehensive framework for design and characterization of

3-D magnetostrictive transducers. The effects of eddy currents, structural dynamics,

flux leakage, and nonlinear material behavior are simultaneously included. Complex

implementations are considered which include air volumes and current-carrying coils

and describe the full input-output relationship between voltage, force, and displace-

ment. Simplified cases which illustrate transducer-level effects are also given. The

3-D formulation is first derived, followed by simplified 1-D and 2-D formulations with

example implementations. Finally, a dynamic and 3-D implementation is done to

study the efficiency of a Galfenol-based transducer.
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5.3.1 3-D Strong form

In the strong form, the spatial and temporal dependence of the electromagnetic

work conjugates are described by Maxwell’s equations and the inputs of interest in

transducers appear either as boundary conditions or source terms. The spatial and

temporal dependence of the mechanical work conjugates are described by Newton’s

laws and the transducer inputs again appear as either boundary conditions or source

terms. A description of these equations as well as the relevant kinematic relationships

is given in Chapter 2.

5.3.2 3-D Weak form

The weak form is derived here from the method of weighted residuals, using

Galerkin’s method. Prior to weighting, a few modifications to the local form are

made. First, displacement currents are neglected which limits the validity of the

resulting equations to quasi-static operation, in the electromagnetic sense. While

electromagnetic radiation is neglected, mechanical resonance can still occur, thus the

operating regime is still dynamic in the mechanical sense. Second, the current density

in (2.7) is defined as the sum of an applied current or source current Js and eddy-

currents. Finally it is assumed that voltage gradients are negligible, i.e., the only

electrical input is that from the source current density.

The magnetic vector potential is used, thus ensuring divergence free magnetic flux

density according to (2.5). With the assumptions described above and the definition

of the vector potential, the only of Maxwell’s equations to be solved is Ampère’s
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law (2.7) which is reduced to

∇×H = Js + JE, (5.26)

JE = −σ∂A

∂t
. (5.27)

The weak form is more easily derived using Einstein’s indicial notation and defin-

ing the permutation tensor

εijk =


1, clockwise sequence (123, 231, 312)

−1, counter-clockwise sequence (321, 213, 132)

0, any two indices equal

. (5.28)

Using the permutation tensor, the cross-product is (a × b)i = εijkajbk and the curl

is (∇ × a)i = εijk∂ak/∂xj. Also, switching the order gives εijkakbj = −εijkajbk. In

Einstein notation, the equations to be solved are

εijk
∂Hk

∂xj
= (Js)i − σ

∂Ai
∂t

, (5.29)

ρm
∂2ui
∂t2

+ c
∂ui
∂t

=
∂Tij
∂xj

+ (fB)i. (5.30)

The flux density is kinematically related to the vector magnetic potential and the

strain is kinematically related to the displacement. The magnetic field in (5.29) is

related, by a material constitutive law (to be determined), to flux density and strain,

if the material is magnetostrictive, or simply to the flux density for both passive

materials and free space. The stress in (5.30) is also related to flux density and strain

by a material constitutive law for magnetostrictive materials. For passive materials

the stress is simply related to the strain. Thus using the kinematic relationships

and the material constitutive laws, the two initial boundary value problems (5.29)

and (5.30) can be formulated with dependent variables flux density and displacement
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and source terms current density and body force. Essential boundary conditions

are specified vector potential and displacement. A typical system to be solved is

surrounded by an air volume, chosen sufficiently large so as to be able to assume

that Ai = 0 on the boundary. Upon conversion to weak form, the natural boundary

conditions emerge as work terms applied to material boundaries, arising from the

tangential component of magnetic fields applied at the boundary and the traction

force applied to the boundary.

The weak form is derived from the method of weighted residuals applied to (5.29)

and (5.30),∫
VB

εijk
∂Hk

∂xj
ψidV +

∫
VB

σ
∂Ai
∂t

ψidV =

∫
VB

(Js)iψidV, (5.31)

−
∫
Vu

∂Tij
∂xj

ϕidV +

∫
Vu

ρ
∂2ui
∂t2

ϕidV +

∫
Vu

c
∂ui
∂t
ϕidV =

∫
Vu

(fB)iϕidV, (5.32)

where ψi and ϕi are kinematically admissible test functions which are zero where

essential boundary conditions exist. The volumes VB and Vu are the subdomains for

which flux density and mechanical displacement are defined, respectively. Consider

for example the hypothetical system in Figure 5.6. The displacement volume con-

sists of the magnetostrictive material and the steel flux path, which is deformed by

the magnetostrictive material as well as externally applied traction forces. The flux

density volume consists of the entire domain since the current-carrying coil results in

magnetic fields on the entire domain. The air volume needs to be made sufficiently

large to assume magnetic potential on the boundary.
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Figure 5.6: Hypothetical system with a magnetostrictive material, flux return path,
and drive coil in an air volume.

Integration by parts gives for the first terms in (5.31) and (5.32),∫
VB

εijk
∂Hk

∂xj
ψidV =

∫
VB

εijk
∂(Hkψi)

∂xj
dV −

∫
VB

εijkHk
∂ψi
∂xj

dV, (5.33)

−
∫
Vu

∂Tij
∂xj

ϕidV = −
∫
Vu

∂(Tijϕi)

∂xj
dV +

∫
Vu

Tij
∂ϕi
∂xj

dV. (5.34)

Applying the divergence theorem to the first term in each of the above gives,∫
VB

εijk
∂(Hkψi)

∂xj
dV =

∫
∂VB

εijkHkψinjd∂V, (5.35)∫
Vu

∂(Tijϕi)

∂xj
dV =

∫
∂Vu

Tijϕinjd∂V. (5.36)
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Substitution of these relations into (5.31) and (5.32) along with εijkHk∂ψi/∂xj =

−εijkHi∂ψk/∂xj and εijkHkψinj = −εijkHjnkψi, gives∫
VB

Hiεijk
∂ψk
∂xj

dV +

∫
VB

σ
∂Ai
∂t

ψidV =

∫
∂VB

εijkHjnkψid∂V +

∫
VB

(Js)iψidV, (5.37)∫
Vu

Tij
∂ϕi
∂xj

dV +

∫
Vu

ρ
∂2ui
∂t2

ϕidV +

∫
Vu

c
∂ui
∂t
ϕidV =

∫
∂Vu

Tijϕinjd∂V +

∫
Vu

(fB)iϕidV.

(5.38)

In the Galerkin method, the weighting functions have the same basis as the dependent

functions which in this case are Ai and ui. The weighting functions can also be thought

of as virtual generalized displacements, ψi = δAi and ϕi = δui. The weak form, in

Einstein notation, is then∫
VB

Hiεijk
∂δAk
∂xj

dV+

∫
VB

σ
∂Ai
∂t

δAidV =∫
∂VB

εijkHjnkδAid∂V +

∫
VB

(Js)iδAidV,

(5.39)

∫
Vu

Tij
∂δui
∂xj

dV+

∫
Vu

ρ
∂2ui
∂t2

δuidV +

∫
Vu

c
∂ui
∂t
δuidV =∫

∂Vu

Tijnjδuid∂V +

∫
Vu

(fB)iδuidV.

(5.40)

In matrix notation, the weak form is∫
VB

H · (∇× δA) dV+

∫
VB

σ
∂A

∂t
· δA dV =∫

∂VB

(H× n) · δA d∂V +

∫
VB

Js · δA dV,

(5.41)

∫
Vu

T · ∇δu dV+

∫
Vu

ρ
∂2u

∂t2
· δu dV +

∫
Vu

c
∂u

∂t
· δu dV =∫

∂Vu

Tn · δu d∂V +

∫
Vu

fB · δu dV.

(5.42)

The weak form represents a balance of the internal and external virtual work, since

the kinematic relationships, δB = ∇× δA and δS = ∇δu appear as work conjugates

with H and T. Additionally, the surface traction at the mechanical boundary is
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t = Tn and the tangent field at the magnetic boundary is HT = H×n. Substituting

from the kinematic relationships and using the traction and tangential field gives the

virtual work ∫
VB

H · δB dV+

∫
VB

σ
∂A

∂t
· δA dV =∫

∂VB

HT · δA d∂V +

∫
VB

Js · δA dV,

(5.43)

∫
Vu

T · δS dV+

∫
Vu

ρ
∂2u

∂t2
· δu dV +

∫
Vu

c
∂u

∂t
· δu dV =∫

∂Vu

t · δu d∂V +

∫
Vu

fB · δu dV.

(5.44)

5.3.3 3-D Finite element formulation

In the finite element method, the solution domain is discretized into finite elements

and the integrations in the weak form equations (5.41) and (5.42) are performed over

elements. The solution variables, vector potential and displacement in the element

are interpolated from the nodal values. Therefore, only the interpolation or shape

functions are integrated resulting in matrix equations for the nodal values of the

solution variables.

The interpolations and integrations, performed over element number e, are done

in local or natural coordinates ξ with Jacobian J e relating the differential dx to dξ

so that dx = J edξ and dV = det(J e)dξ1dξ2dξ3 = Jeξ1dξ2dξ3. For a linearly inter-

polated geometry, the spatially dependent Ae and ue in an element are interpolated

from the nodal values qAe and que according to

Ae = NA(ξ)qAe , ue = Nu(ξ)que . (5.45)
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Figure 5.7: 4-node tetrahedral element.

Since the virtual quantities have the same basis in the Galerkin method, the same

shape functions are used for the virtual quantities,

δAe = NA(ξ)δqAe , δue = Nu(ξ)δque . (5.46)

As shown above, Ae and ue need not have the same element type or interpolation

matrix. The interpolation matrix NA has three rows, since A is a 3-D vector, and for

an element having NA
n nodes (NA

n depends on the element order) it has NA
q columns

where NA
q = 3NA

n , since each node has an associated 3-D vector containing the nodal

value of Ae. The vector qAe has NA
q entries which correspond to the three components

of Ae at each node. Since the displacements need not have the same shape functions,

Nu has Nu
q columns which depends on the number of nodes Nu

n . The total degrees of

freedom for an element is therefore Nq = Nu
q +NA

q .

Typical choices for the shape functions are linear or quadratic Lagrange shape

functions employed over tetrahedral elements. Six-node brick elements may also be

used but are more challenging to implement because of a lack of robust meshing
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algorithms. If 4-node tetrahedral elements are used for both vector potential and

displacement, then NA = Nq = N. A tetrahedral element using linear shape functions

has four nodes (see Figure 5.7.) The matrix shape function N is comprised of the

Lagrange shape functions,

N1 = ξ1, (5.47)

N2 = ξ2, (5.48)

N3 = ξ3, (5.49)

N4 = 1− ξ1 − ξ2 − ξ3. (5.50)

Shape functions have the property that at node i, Nj = 1 for j = i and Nj = 0 for

j 6= i and are thus used to interpolate both the geometry and the solution variables.

For example, the spatial coordinate x1 is interpolated from the nodal values x1,n in

the following manner,

x1 = N1x1,1 +N2x1,2 +N3x1,3 +N4x1,4. (5.51)

The vector qAe has twelve entries, the first three are the three components of Ae at

node 1, the second three are the components at node 2 and likewise for the remaining

two nodes. It follows that the shape function matrix is,

N(ξ) =

 N1 0 0 N2 0 0 N3 0 0 N4 0 0
0 N1 0 0 N2 0 0 N3 0 0 N4 0
0 0 N1 0 0 N2 0 0 N3 0 0 N4

 , (5.52)

so that when ξ = (1, 0, 0) or at node 1, Ae = Ae,1; the vector potential is simply

the value of node 1. Likewise when ξ = (0, 1, 0) or at node 2, Ae = Ae,2; the vector

potential is simply the value at node 2 and similarly for the other nodes. Elsewhere

in the tetrahedron, the shape functions simply result in a linear interpolation of the
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nodal values. For example, if ξ = (1/2, 1/2, 0) which lies midway along the edge

connecting nodes 1 and 2, Ae = (1/2)(Ae,1 + Ae,2).

In the finite element model, the nodal values of the vector potential and dis-

placement are the unknowns and the nodal values of the virtual vector potential and

displacement are arbitrary. To include the finite element discretization in the virtual

work equations (5.43) and (5.44), the flux density, magnetic field, strain and stress

need to be calculated from the vector potential and displacement,

Be = ∇×Ae = ∇× (NAqAe ) := Ceq
A
e (5.53)

Se = ∇ue = ∇(Nuque ) := Geq
u
e . (5.54)

The entries in the matrices Ce and Ge contain the derivatives of the local coordinate

system ξ with respect to the global coordinate system x and can be thought of as

the discrete form of the curl and gradient operators. For linear elements they do not

depend on ξ since the Jacobian J is a constant matrix containing the side lengths

of the tetrahedral element, however for higher order elements including the quadratic

element they depend on ξ. Making the substitutions and performing the integrals over

NA elements for the magnetic domain and Nu elements for the mechanical domain

results in the following summations for the virtual work balance,

NA∑
e=1

(∫
∆

H ·Ceδq
A
e Jed∆+

∫
∆

σeN
A∂qAe
∂t
·NAδqAe Jed∆

)
=

NA
S∑

b=1

∫
∆

HT,b ·NAδqAb Jb,Sd∆S +
NA∑
e=1

∫
∆

Js,e ·NAδqAe Jed∆,

(5.55)
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Nu∑
e=1

(∫
∆

T ·Geδq
u
e Jed∆ +

∫
∆

ρeN
u∂

2que
∂t2
·Nuδque Jed∆+

∫
∆

ceN
u∂que
∂t
·Nuδque Jed∆

)
=

Nu
S∑

b=1

∫
∆S

tb ·Nuδqub Jb,Sd∆S,

(5.56)

the body force term has been dropped since the effects of gravity and the electro-

magnetic Lorentz forces are usually negligible in magnetostrictive devices [56]. The

subscript b refers to the element number on the boundary; there are NA
S for the mag-

netic domain and Nu
S for the mechanical domain which have an applied magnetic field

and an applied traction, respectively. The integral
∫

∆
Je d∆ refers to the integral over

the element in natural coordinates and is the volume of the element,∫
∆

Jed∆ :=

∫ 1

−1

∫ 1

−1

∫ 1

−1

det

(
∂x

∂ξ

)
dξ1dξ2dξ3 = Ve, (5.57)

and the integral
∫

∆S
Jb,S d∆S gives the surface area of the element face on the bound-

ary, ∫
∆S

Jb,S d∆S :=

∫ 1

−1

∫ 1

−1

det

[
∂xi
∂ξi

∂xi
∂ξj

∂xj
∂ξi

∂xj
∂ξj

]
dξidξj = Ab. (5.58)

Point loads can be included in a very straightforward manner if they are applied

at element nodes. For point force Pp applied at node p, the virtual work is Pp · δqup ,

so for Nu
p point loads, the following should be added to the right-hand side of the

mechanical virtual work balance,

Nu
p∑

p=1

Pp · δqup . (5.59)

Incorporation of constitutive laws

Galfenol constitutive behavior of magnetic field and stress versus flux density and

strain is nonlinear. This nonlinearity is the only such in the finite element model de-

veloped in this work. All other materials considered have linear constitutive behavior,
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governed mechanically by Hooke’s law and magnetically by a constant, isotropic per-

meability. Geometric nonlinearities are not considered here. It may be necessary to

include geometric nonlinearities in order to model manufacturing processes involving

plastic strains. In this case, a plastic, nonlinear stress versus strain relationship would

be needed as well as the use of finite strains which are nonlinearly related to displace-

ment. The finite element model developed here is applicable to transducers which

are operated in the elastic region where the only source of nonlinearity in the stress

versus strain relationship is the magnetostriction. In the Newton-Raphson method

for solving nonlinear problems, the problem is linearized and solved iteratively for the

increments from the initial condition. For small enough increments, the constitutive

law for Galfenol and magnetostrictive materials in general is

∆H = µ−1∆B− a∆S, (5.60)

∆T = −aT∆B + c∆S. (5.61)

The permeability matrix µ is the permeability at constant S and the stiffness matrix c

is the stiffness at constant B. For passive materials in the magnetic domain, (5.60) is

used with a = 0. For passive materials in the mechanical domain, (5.61) is used with

a = 0. The importance of partitioning the total domain to be analyzed into magnetic

and mechanical subdomains can be understood from the constitutive law. Consider

for example the air volume which does not have an enclosure and is hence free to move.

The permeability is simply µ0 and the stiffness is essentially zero compared to other

media in the domain such as copper, steel, and Galfenol. To illustrate, the Galfenol

does no work if it deflects while pushing against air. The situation would be different

if the air were enclosed in an acoustic chamber. In that case, air pressure would need
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to be considered and the air would be characterized by its bulk modulus. Acoustic-

structural interactions are not addressed in this work. Integrating the virtual work for

both magnetic and mechanical quantities over the entire domain would give the same

amount of work as first partitioning and then integrating only over media which have

non-zero permeability for the magnetic virtual work and non-zero stiffness for the

mechanical virtual work. This is because media with zero permeability introduce no

magnetic virtual work, since the magnetic field is zero, and likewise media with zero

stiffness introduce no mechanical virtual work. While both approaches lead to the

same virtual work, performing the integration and element summation over the entire

domain will lead to a singular stiffness matrix in practice, resulting in a non-unique

solution.

In the incremental solution, solution starts from an initial state which is known

and qAe and que are the vector potential and displacement increments. Additionally,

the input quantities traction t, surface field HT and source current density Js are

increments. In incremental form, the linear constitutive laws can be used to relate

increments of magnetic field and stress to the finite element solution,

He = µ−1
e Ceq

A
e − aeGeq

u
e , (5.62)

Te = −aTe Ceq
A
e + ceGeq

u
e . (5.63)

These relations can now be substituted into the finite element approximation for the

virtual work given by (5.56) and (5.55). This yields matrix equations for increments

of the vector potential and displacement nodal values, since they can be pulled from
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the integral. To illustrate, the following matrices are defined,

kue =

∫
∆

GT
e ceGeJed∆, (5.64)

kAe =

∫
∆

CT
e µ−1

e CeJed∆, (5.65)

kuAe =

∫
∆

CT
e aeGeJed∆, (5.66)

dAe =

∫
∆

(
NA
)T
σeN

AJed∆, (5.67)

due =

∫
∆

(Nu)T ceN
uJed∆, (5.68)

me =

∫
∆

(Nu)T ρeN
uJed∆, (5.69)

and the following vectors are defined,

fub =

∫
∆S

(Nu)T tbJb,Sd∆S, (5.70)

fAb =

∫
∆S

(
NA
)T

HTJb,Sd∆S, (5.71)

fJe = −
∫

∆

(
NA
)T

Js,eJed∆. (5.72)

With these definitions, the finite element approximations for the magnetic and me-

chanical virtual work balance are

NA∑
e=1

(
dAe q̇Ae + kAe qAe − kuAe que

)
· δqAe =

NA∑
e=1

fJe · δqAe +

NA
S∑

b=1

fAb · δqAb , (5.73)

Nu∑
e=1

(
meq̈

u
e + due q̇

u
e + kueq

u
e −

(
kuAe
)T

qAe

)
· δque =

Nu
S∑

b=1

fub · δqub +

Nu
p∑

p=1

Pp · δqup . (5.74)

The global assembly process takes into account element connectivity and replaces the

summations with matrix operations (see Ch. 3 of [20] or Ch. 12 of [12] for details.)

After global assembly, the finite element model is(
DAQ̇A + KAQA −KuAQu

)
· δQA = FA · δQA, (5.75)(

MuQ̈A + DuQ̇u + KuQu −KuAQu
)
· δQu = Fu · δQu. (5.76)
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The vector QA contains the nodal values of the vector potential increments. In the

meshing scheme and global assembly process, a mapping is created which maps the

nodal values of an element qAe to an entry in QA. Most nodes are shared between

elements and therefore the total degrees of freedom due to vector potential, or the

length of the vector QA is less than the product of the number of elements and the

degrees of freedom of an element, NA
Q < NA

e N
A
q . Likewise, the length of the vector

of nodal displacement increments is Nu
Q < Nu

eN
u
q . A typical model uses thousands

of elements to represent the magnetostrictive element which has twelve degrees of

freedom for linear, tetrahedral elements. This illustrates the importance of using an

efficient constitutive model since it must be separately evaluated for each degree of

freedom of which there are tens of thousands.

The final incremental form of the finite-element model for the vector potential and

displacement increments results from equating the coefficients of the virtual general-

ized displacement in (5.75) and (5.76), which can be done because these are arbitrary,[
0 0
0 Mu

](
Q̈A

Q̈u

)
+

[
DA 0
0 Du

](
Q̇A

Q̇u

)
+

[
KA −KuA

−
(
KuA

)T
Ku

](
QA

Qu

)
=

(
FA

Fu

)
. (5.77)

The essential or Dirichlet boundary conditions must be incorporated in order to ob-

tain a unique solution to the finite element model (5.77). The essential boundary

conditions are specified displacement and vector potential, mechanically, these re-

move rigid body modes.

The structure of the finite element model contributes to the understanding of

coupled magnetomechanical systems operated under electromagnetically quasi-static

conditions. The mass matrix is singular, containing only contributions from the

mechanical mass. The absence of entries from the electromagnetic domain is a conse-

quence of neglecting Maxwell’s displacement current and prevents the finite element
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model from characterizing electromagnetic radiation, which does not occur in the

typical operating regime of magnetostrictive devices (<30 MHz.) Sources of damping

include the internal material damping (mechanical) which yields Du and eddy currents

which give rise to DA. From (5.67), the amount of eddy current damping depends

on the conductivity. The magnetic stiffness KA depends on permeability and char-

acterizes the ability to magnetically energize the system. The coupling matrix Kue

characterizes the ability to transfer mechanical energy, applied through surface trac-

tions in the mechanical load vector Fu, to magnetic energy and magnetic energy,

applied through current in the magnetic load vector FA, to mechanical energy.

Before presenting 3-D simulations and discussion, the following sections develop 1-

D and 2-D implementations in order to better understand magnetostrictive transducer

behavior. A dynamic, 1-D implementation elucidates the effect of eddy currents in

magnetomechanical systems. A 2-D, magnetostatic implementation is developed to

analyze the effect of hysteresis on transducer level behavior. Finally, a dynamic, 2-D

implementation for composite beams illustrates structural dynamics which occur due

to magnetostriction. The final implementation is done in 3-D for dynamic operating

regimes and provides a framework for characterization of magnetostrictive transducer

efficiency.

5.3.4 1-D Dynamic implementation with no demagnetizing
fields

In this section, the 3-D transducer model is reduced to 1-D for an infinite rod

with radius R. The purpose of this is to illustrate the effect of eddy currents on

coupled magnetostructural dynamics. The physics which give rise to eddy currents are

coupled to the physics which give rise to structural vibrations. Structural vibrations
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can result in eddy current losses (or Ohmic heating) which is manifested as a delay

in force-displacement loops. Additionally, stress results in a nonlinear distribution of

the magnetic field and flux density over the rod cross section. The inputs for this

problem are the magnetic field at the surface of the rod, which appears as a boundary

condition and a force (or stress) applied uniformly along the rod and appearing as a

weak term. The output quantities of interest are the elongation of the rod and the

average magnetic flux density over its cross section.

Diffusion equation (strong form)

For an infinite rod of radius R in an infinite solenoid, the flux density occurs

only in the direction parallel to the length of the rod and varies only over the radial

direction r. Gauss’ law is satisfied automatically under these conditions. This is true

of any prismatic geometry where the z component varies only over the cross section.

If the rod material obeys Ohm’s law, Maxwell’s equations are reduced to a scalar,

parabolic partial differential equation

∂

∂r

(
r
∂H

∂r

)
= rσ

∂B

∂t
. (5.78)

This equation represents the combined physics from the Faraday-Lenz law (2.6) and

Ampère’s law (2.7). The details of its derivation can be found in the book by Eng-

dahl [36]. The parameter σ is electrical conductivity and r is the distance from the

center of the rod in the radial direction. The flux density is generally a nonlinear

function of magnetic field and stress and, according to the chain rule, its time rate of

change is

∂B

∂t
=

∂

∂t
B(H,T ) =

∂B

∂H

∂H

∂t
+
∂B

∂T

∂T

∂t
,

: = µ(H,T )
∂H

∂t
+ d(H,T )

∂T

∂t
.

(5.79)
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When applied to (5.78), this yields the initial-boundary value problem

∂

∂r

(
r
∂H

∂r

)
= µ(H,T )(rσ)

∂H

∂t
+ d(H,T )(rσ)

∂T

∂t
,

H(r, 0) = H0 and H(R, t) = HR.

(5.80)

Additionally, the field and stress magnitudes may be restricted to a linear region of the

material response about some field H̄, T̄ allowing the use of a constant permeability

µ̄. The strong form of the model, for constant stress, is then

∂

∂r

(
r
∂H

∂r

)
= µ̄(rσ)

∂H

∂t
,

H(r, 0) = H0 and H(R, t) = HR.

(5.81)

First, analytic solutions for the transient and harmonic response to fields at the

surface will be derived and compared with a finite element solution. Subsequently, a

nonlinear permeability with stress dependence will be considered in the finite element

model in order to describe coupled magnetostructural dynamics.

Analytic harmonic solution

The steady-state solution can be found by assuming the field is harmonic H(r, t) =

h(r)ejωt [36]; the initial-boundary value problem becomes a boundary value problem

and applying the transformation u = r
√
−iω(µ̄σ) = gr to (5.81) yields the zero-order

Bessel equation

u2d
2h

du2
+ u

dh

du
+ u2h = 0,

h(R) = HR,

|h(0)| <∞,

(5.82)

which has solution

h(u) = c1J0(u) + c2Y0(u). (5.83)
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The second term approaches infinity near zero, so c2 is zero. The coefficient c1 can

be determined from the boundary condition at R

H(gR, 0) = c1J0(gR)HR → c1 = HR/J0(gR), (5.84)

yielding the field as

H(r, t) = HR
J0(gr)

J0(gR)
ejωt. (5.85)

For simulation, the input is real, so the real part of the solution is taken.

Analytic transient solution

Applying the method of separation of variables, it is possible to find the transient

solution for a rod with an initial field distribution H0 which is zero at the boundary.

The field is first separated into its radial and time dependence H(r, t) = h(r)g(t)

which, when substituted into (5.81) yields

(h′′ +
1

r
h′)g = µ̄σġh,

h′′ + 1
r
h′

h
= µ̄σ

ġ

g
= −λ,

(5.86)

where prime is spatial derivative and dot is time derivative. According to the method

of separation of variables, the ratios must be constant λ, since g and h are indepen-

dent. Two ordinary differential equations result

h′′ +
1

r
h′ + λh = 0,

h(R) = 0 and |h(0)| <∞,
(5.87)

and

ġ + λ
1

µ̄σ
g = 0

g(0) = g0.

(5.88)
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Figure 5.8: Bessel function.

Making the transformation u =
√
λr and substituting into (5.87) yields Bessel’s

equation

u2h′′ + uh′ + u2h = 0, (5.89)

the solution which grows to infinity at zero and is again discarded giving

h(r) = cλJ0(
√
λr). (5.90)

The eigenvalues are determined from the boundary condition J0(
√
λR) = 0 which

yields λ = (zn/R)2, where zn are the zeros of Bessel’s function (see Fig. 5.8) of which

there are infinitely many. The solution to (5.88) is g(t) = g0 exp (−λt/(µ̄σ)) and the

solution for the field is an infinite series

H(r, t) =
∞∑
n=1

anJ0(
√
λnr) exp

(
−λn

1

µ̄σ
t

)
, (5.91)
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where an = g0cλn . The coefficients an can be determined from the initial condition

H0 =
∑∞

n=1 anJ0(
√
λnr) by applying the orthogonality of the eigenfunctions

an =

∫ R
0
H0J0(

√
λnr)dr∫ R

0
J2

0 (
√
λnr)rdr

(5.92)

The coefficients an tend to zero for large n; typically not more than four terms are

needed in the summation.

General solution (finite elements)

The Galerkin method can be used for a finite element solution. The finite element

model can describe both the transient and steady-state response and can be imple-

mented with a field and stress dependent permeability. Additionally, the flux density

change due to a changing stress, uniform along the rod and over its cross section,

can also be included. First the strong form (5.80) is multiplied by a kinematically

admissible test function φ (it is zero where H is specified) and integrated to give the

weak form,∫ R

0

∂

∂r

(
r
∂H

∂r

)
φdr = σ

∫ R

0

r

(
µ(H,T )

∂H

∂t
+ d(H,T )

∂T

∂t

)
φdr. (5.93)

Integration by parts on the left side gives

r
∂H

∂r
φ

∣∣∣∣R
0

−
∫ R

0

r
∂H

∂r

∂φ

∂r
dr = σ

∫ R

0

r

(
µ(H,T )

∂H

∂t
+ d(H,T )

∂T

∂t

)
φdr. (5.94)

The boundary term is zero since at the left boundary r = 0 and at the right boundary

the test function is zero where H is specified. The conversion H̃ = H − HR →

∂H/∂r = ∂H̃/∂r, ∂H/∂t = ∂H̃/∂t is useful so that the boundary condition is H̃(R) =

0. In the Galerkin method, the dependent variable H̃ is expanded on the test function

basis,

−
∫ R

0

r
∂H̃

∂r

∂φ

∂r
dr = σ

∫ R

0

r

(
µ(H,T )

∂H̃

∂t
+ d(H,T )

∂T

∂t

)
φdr, (5.95)
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Figure 5.9: Hat functions used for linear finite element discretization over the radius
of an infinite rod.

H̃ =
N−1∑
j=0

(Hj −HR)φj, (5.96)

where the nodal values Hj are the field at the node. There are N nodes and therefore

N − 1 elements.

Choosing hat functions (see Figure 5.9) for φj, the boundary condition is satisfied

H̃(r = R) = 0, since φj(r = R) = 0. Note that φ0 is only the right half of the hat

function. The derivatives are

∂H̃

∂r
=

N−1∑
j=0

(Hj −HR)
dφj
dr

,

∂H̃

∂t
=

N−1∑
j=0

dHj

dt
φj.

(5.97)

Substitution of (5.97) into (5.81) with test functions φi yields N equations

−
∫ R

0

r(Hj −HR)φ′iφ
′
jdr = σ

∫ R

0

r

(
µ(Hj, T )

∂Hj

∂t
+ d(Hj, T )

∂T

∂t

)
φiφjdr. (5.98)

Performing the integrations and converting to matrix form, the finite element model

is

CḂ = −A(H− bHR), (5.99)
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where the system matrices with row index i and column index j are

C = σ∆r2


1
12

− 1
12

0 · · ·
− 1

12
2
3

1
4

0 · · ·
· · · 0 1

6
(i− 1

4
) 2

3
(i− 1) 1

6
(j − 1

4
) 0 · · ·

· · · 0 1
6
N − 1

4
2
3
(N − 1)


(5.100)

and

A =


1
2
−1

2
0 · · ·

−1
2

2 −3
2

0 · · ·
· · · 0 −i+ 1

2
2(i− 1) −j + 1

2
0 · · ·

−N + 1
2

2(N − 1)

 , (5.101)

with input vector

b =


1
1
...
1

 . (5.102)

In the construction of the system matrices it is assumed that all elements have length

∆r. The components of the flux density rate Ḃ are µ(Hj, T )Ḣj + d(Hj, T )Ṫ . The

system is therefore nonlinear for nonlinear magnetomechanical materials.

The N -degree system (5.99) can be reduced in order to characterize the time

lag associated with eddy current losses. Using a single element, the system has a

single degree of freedom, the field inside the rod, with two inputs, the field at the

rod boundary and the stress rate. The matrix equations are reduced to a nonlinear,

scalar equation

µ(H,T )Ḣ + d(H,T )Ṫ = − 6

σR2
(H −HR). (5.103)

For small field and stress magnitudes, µ(H,T ) = µ̄ and the the equation becomes

a linear system with time constant τ = σR2/µ̄. The time constant from the finite

element approach is very close to the first time constant in (5.91) τ1 = (σµ̄)/λ1 =

(σµ̄)R2/z2
n = (σµ̄)R2/5.7832.
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Field diffusion simulations

A comparison of the finite element model (5.99), the lumped parameter method

(5.103), and the analytic transient response (5.91) is shown in Fig. 5.10 for the tran-

sient response to an initial magnetic field H(r, 0) = Hc(1−r/R). For this comparison,

the stress rate is zero and the permeability is constant since this allows for analytic

solution. The field at varius points along the radius is shown where starting from

the initial field, the field over the cross section decays to zero. The lumped pa-

rameter model from the finite element method can be used in lumped parameter

electro-acoustic models.

A comparison with the analytic harmonic response (5.85) is shown in Fig. 5.11

where the error at the beginning is due to the fact that the numerical approaches

capture both the transient and steady-state response whereas a general analytic so-

lution is not possible. This comparison is also done with constant permeability and

zero stress rate.

Magnetostructural dynamics

Here the coupled magnetostructural dynamics of a longitudinal actuator/sensor

are described. Figure 5.12 depicts the transducer. Since the magnetic circuit is closed,

the infinite rod assumptions used for deriving the field diffusion equation are accurate.

An additional assumption made here is that the stress and strain are uniform in the

rod.

The initial-boundary value problem governing displacements is from Newton’s

second law

∇ ·T = ρü + cu̇. (5.104)
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Rod center

Rod surface

Figure 5.10: Transient response to initial field conditions in an infinite rod from the
finite element method the analytic solution (they overlap) the lumped parameter
model (dashed.)

Rod surface Rod center

Figure 5.11: Comparison of the finite element model and lumped parameter model
(dashed) with the harmonic analytic solution for magnetic field in an infinite rod.
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With the uniform stress and strain assumption, this is reduced to a second-order

differential equation for the rod tip displacement from equilibrium, driven by an

external force fext at the rod tip and the average magnetostriction S̄m calculated

from the anhysteretic discrete energy-averaged model developed in Section 4.3,

(mR +mL)
d2u

dt2
+ (cR + cL)

du

dt
+ (kR + kL)u = EAS̄m(H,T )− fext, (5.105)

u(0) = 0. (5.106)

The mass mR = (1/3)ρAl is the dynamic mass of the Galfenol rod with cross sec-

tional area A = πr2
0 and length l, cR = cA/l is the damping coefficient of the rod for

its internal thermal-mechanical losses, and kR = EA/l is its stiffness. The param-

eters mL, cL, and kL are the mass, damping, and stiffness of a load at the rod tip.

The reduction (5.105) is made by using a single linear element for the z dimension.

Details on the element definition can be found in the magnetostrictive transducer

model of Dapino, Smith and Flatau [30]. The work here differs by coupling the struc-

tural model to the electromagnetic model (5.80) including eddy current losses. A

consequence of using a single element for the mechanical domain is that structural

modes higher than the fundamental are ignored. This simplification is necessary in

order to couple to the 1-D electromagnetic model (5.80) since that model necessarily

assumes that the magnetic field is uniform along the rod length. For the magnetic

field to be uniform along the rod length, the stress and strain must also be uniform

due to magnetomechanical coupling in the constitutive relationship. The constitutive

relationship for stress in 1-D is

T = E(u/l − S̄m), (5.107)

where E is the modulus of elasticity.
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The outputs of the 1-D, magnetostructural model are the displacement u and the

flux density B̄ averaged over the cross section. The flux density is also calculated using

the anhysteretic discrete energy-averaged model along with the coefficients µ(H,T )

and d(H,T ) in (5.80). The anhysteretic model is used to illustrate delays due to

magnetostructural dynamics only. The inputs are the magnetic field applied to the

rod surface HR and the externally applied force fext. A block diagram for the model

is shown in Figure 5.13. The system is discretized in space with the finite element

method and in time with backward differences and then solved iteratively, updating

the stress with each iteration. The iterations continue until a convergence criterion

is satisfied.

1-D Magnetostructural dynamic simulations

For all simulations the rod dimensions are 1/4 × 1 inches, E = 60 GPa, ρ =

77.1 Kg/m3, λ100 = 173e − 6, λ111 = 20e − 6, µ0Ms = 1.62 T, K100 = 10 kJ/m3,

kBθ/V = 200 kJ/m3, and σ = 1.4e6 (Ωm)−1. For a slowly-varying external magnetic

field, the magnetic field is expected to be nearly uniform over the cross section and the

average flux density is expected to follow the flux density at the rod surface B(HR).
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Figure 5.12: Longitudinal transducer operable for actuation/sensing.
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Constitutive model

Figure 5.13: Block diagram for 1-D dynamic magnetostructural model.

Furthermore, if the spring load is zero and sufficient bias stress is applied to align

domains 90o to the rod axis, the stress should remain constant and the maximum

free-strain 3/2λ100 should be reached. This is verified in Figure 5.14; Figure 5.14(a)

shows that the magnetic field at all radius locations is the same; Figure 5.14(b) shows

that the stress remains constant at the applied bias stress (−5 MPa); Figure 5.14(c)

shows that the average flux density follows the surface flux density and Figure 5.14(d)

shows that a rod elongation of 3/2λ100 is achieved.

If a spring of stiffness kl >> EA/l is now added, the rod displacement should be

blocked and a blocking stress of 3/2λ100E should be achieved in addition to the bias

stress. Also, the flux density should be sheared because the magnetic field has to work

against the stress-induced anisotropy. This is verified in Figure 5.15; Figure 5.15(b)

shows that the stress varies from the bias stress to the sum of the bias stress and

3/2λ100E, and Figure 5.15(d) shows that the rod elongation is nearly zero.

As the transducer is actuated by a dynamic external magnetic field, eddy currents

give rise to magnetic fields which oppose the applied field; this results in a spatial
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distribution of the magnetic field. In addition, the magnetic field near the center of

the rod is no longer purely sinusoidal because of the nonlinear and stress dependent

permeability. Since the magnetic field near the center of the rod is delayed with

respect to the external magnetic field, the average magnetic flux density and the rod

elongation u/l plotted against the external applied field shows significant lag. These

dynamic effects are shown in Figure 5.16 for a 100 Hz applied magnetic field.

When the transducer is used as a sensor, a dynamic force input results in a dynamic

change in flux density due to stress-induced domain rotation. In response to this

dynamic flux density, eddy currents arise which create magnetic fields in opposition

to the flux density change (see Figure 5.17(a)). This results in dynamic hysteresis

loss as seen in Figure 5.17(b) which shows the average magnetic flux density versus

the force input and in Figure 5.17(c) which shows the rod elongation versus the force

input.

5.3.5 2-D Static implementation with hysteretic constitutive
law

A 2-D, magnetostatic (no eddy currents) analysis is performed in this section to

study hysteresis in magnetostrictive transducers. The virtual work equations (5.43)

and (5.44) are reduced under the following assumptions

• Spatially uniform stress

• Current density applied in z direction only

• Current density input varies slowly

• Zero magnetic field on the boundary of the air volume
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Figure 5.14: No-load model simulation with a constant bias stress of −5 MPa and a
100 mHz external field input with an amplitude of 3 kA/m.
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Figure 5.15: Blocked magnetostructural simulation with kL >> EA/l, a constant
bias stress of −5 MPa and a 100 mHz external field input with an amplitude of
3 kA/m
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Figure 5.16: Dynamic actuation simulation with kL = (EA/l)/8, a bias stress of
−5 MPa and a 100 Hz external field input where (a) shows the spatial variation
of the magnetic field with the smallest amplitude field at the center, (b) shows the
average flux density versus applied magnetic field, and (c) shows the rod elongation
u/l versus applied magnetic field.
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Figure 5.17: Dynamic sensing simulation with kL = EA/l/8, a bias stress of −2 MPa,
bias field of 1 kA/m and a 100 Hz external force input where (a) shows the eddy
current induced spatial variation of the magnetic field with the largest amplitude
field at the center (b) shows the average flux density versus applied force and (c)
shows the rod elongation u/l versus applied force
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Figure 5.18: 2-D Geometry for quasi-static, nonlinear electromagnetic simulations.
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With these assumptions the problem become planar; the virtual work is∫
V

H · δB dV =

∫
V

JzδAz dV. (5.108)

The magnetic field and flux density are the x and y components and Az is the only

nonzero component of the vector potential so that the flux density is,

Bx =
∂Az
∂y

, By = −∂Az
∂x

. (5.109)

For the air and copper subdomains, the constitutive relationship is simply B = µ0H

and for the steel it is B = µSH where µS is the permeability of steel. For the Galfenol

subdomain, the hysteretic discrete energy averaged model is used. The objective is

to solve for the vector potential, from which all other quantities can be calculated B,

H, Sm and the domain volume fractions ξk. The inputs are the current density Jz

and the stress applied to the Galfenol.

Incremental solution method

An incremental or piece-wise linear solution method is employed to describe the

planar system in Figure 5.18. The solution process begins from the known state

Az,0 = Jz,0 = 0 and B0 = H0 = 0. The current density is incremented Jz = Jz,0 +∆Jz

resulting in an increment in all other quantities. Since the virtual work is balanced

in the initial state, the increments must satisfy∫
V

∆H · δB dV =

∫
V

∆JzδAz dV. (5.110)

By taking small enough increments, the constitutive relationship between magnetic

field and flux density, given by the discrete energy-averaged model, can be linearized

∆H = µ−1(B0, T )∆B. (5.111)
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For each increment of applied current density, integration is performed over trian-

gular elements with linear shape functions. Details of the element definition and

matrices are not given since they follow directly from the 3-D definitions (5.53)

and (5.65). This yields a matrix equation for the nodal values of the vector potential

increments

KAQA = FA. (5.112)

The magnetic stiffness matrix and force vector are updated after each current density

increment. This incremental solution method is implemented with Matlab’s PDE

toolbox; simulations follow in the next section.

2-D Magnetostatic simulations

The same Galfenol material properties are used in these simulations as are used in

the 1-D magnetostructural model in addition to kp = 600 and c = 0.1. The pinning

coefficient is larger than expected for Galfenol in order to emphasize the effect of

hysteresis. The Galfenol sample is mechanically unconstrained and loaded with a

constant and spatially uniform compressive stress. The [010] crystal orientation is

oriented along the Galfenol length directed up and the [100] is along the Galfenol

width directed to the right. To analyze the effect of geometry and stress on the flux

density, magnetostriction, and domain volume fractions, simulations were performed

with and without air gaps between the steel flux path and Galfenol and with and

without stress applied to the Galfenol sample.

Figure 5.19 depicts quantities calculated from the simulations. Figure 5.19(a) is

the average magnetization over the cross section of the Galfenol sample at its center

plotted against the magnetic field located 3.2 mm from the surface at the rod center.
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Figure 5.19: (a) Magnetization and (b) field simulations for applied current with and
without stress and air gaps.
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(a) (b)

Figure 5.20: Norm of flux density at saturation (a) without and (b) with air gaps.

Both quantities are for the [010] direction. Both air gaps and stress tend to shear

the induction versus field behavior. Stress impedes domain rotation and favors the

[100] and [1̄00] directions which are perpendicular to the stress. Air gaps result in

flux-leakage which shears the curve. This causes a change in the current-field be-

havior as well (see Figure 5.19(b)) where more current is needed in the presence of

air gaps. Stress changes the current-field curves because it changes the permeabil-

ity of Galfenol. This nonlinear behavior as well as saturation result in a nonlinear

current-field relationship. The relationship is hysteretic as a result of the hysteresis

in Galfenol’s constitutive behavior which gives rise to a hysteretic permeability.

The cause of the sheared field-magnetization behavior for simulations with air

gaps is illustrated in Figure 5.20 which plots the FEM solution for the norm of the

induction at saturation. Here, saturation is defined as the point where the average

magnetization over the cross section (Figure 5.19) reaches the material’s saturation
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Figure 5.21: Norm of strain at saturation with no applied stress.

[010] [01̄0] [100] [1̄00]

(a)
[010] [01̄0] [100] [1̄00]

(b)

Figure 5.22: Domain volume fractions in Galfenol at saturation (a) without and (b)
with air gaps.
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magnetization. The difference in permeability between the air, steel and Galfenol re-

gions gives a nonuniform induction from Gauss’ law which can also be interpreted as

the presence of a demagnetizing field which must be overcome by the current induced

field. The non-uniformity for the case without air gaps (see Figure 5.20(a)) is much

less because steel and Galfenol have similar permeability. This results in negligible

demagnetizing fields and the Galfenol sample is easier to magnetize. Demagnetizing

fields from Gauss’ law also result in a nonuniform domain configuration. Although the

modeling framework presented here does not encompass a microscopic description of

domains including domain size, domain wall width and closure domains, the volume

fraction of energetically favorable domain orientations in the material is calculated

(see Figure 5.22.) Figure 5.22(a) shows a homogeneous domain distribution at satura-

tion when there are no air gaps. The Galfenol consists almost entirely of [010] oriented

domains except for the ends where [100] and [1̄00] domains are present to channel

the flux through the steel return path. When air gaps are present (Figure 5.22(b))

the domain distribution is less homogeneous. Although saturation has been achieved

at the center of the Galfenol sample, the rest of the material is not fully saturated

as evidenced by the presence of domain orientations other than [010]. Because of the

magnetomechanical coupling and non-uniformity in the magnetic state, the strain is

nonuniform even though the stress is uniform (see Figure 5.21.)

Hysteresis in the domain volume fraction evolution results in a remanent induction

and magnetostriction when the current is removed (see Figure 5.23.) Demagnetizing

fields from air gaps and application of stress both tend to reduce the remanent in-

duction. With no stress or air gaps, the remanent state has a significant fraction of

domains in the [010] orientation (see Figure 5.24(a)) resulting in a net flux density

236



(a)

(b)

Figure 5.23: Remanent (a) flux density and (b) strain norms in Galfenol with and
without stress and air gaps.
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(a)
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(d)

Figure 5.24: Domain volume fractions in Galfenol AT at remanence with (a) no stress
and no gap (b) -20 MPa stress and no gap (c) no stress and 6.35 mm gaps (d) -20
MPa stress and 6.35 mm GAPS.

238



at remanence following a magnetization cycle. Applied stress tends to favor the [100]

and [1̄00] directions equally (see Figure 5.24(b) and 5.24(d)) resulting in negligible

net flux density at remanence. Figure 5.24(c) shows a decrease in the volume fraction

of [010] oriented domains at remanence resulting in less flux density. The norm of the

magnetostriction exhibits behavior different from the norm of the induction because

the magnetostriction of opposing directions (e.g., [100] and [1̄00]) does not cancel.

Demagnetizing fields result in less domain alignment which yields less magnetostric-

tion (see Figure 5.23(b).) However, application of stress results in a high degree of

alignment in the [100] and [1̄00] directions which have the same magnetostriction and

thus a net magnetostriction or widening and simultaneous shortening of the Galfenol

region occurs. Thus the remanent magnetostriction in the case of applied stress is

not due to the magnetic hysteresis but rather to stress-induced domain alignment.

5.3.6 2-D Dynamic implementation for composite beams

The objective of the work in this section is to provide a model for tip displacement

and force in unimorph actuators. A unimorph actuator is a composite beam with a

Galfenol layer and a substrate. Applying a magnetic field, the Galfenol attempts to

elongate but the substrate constrains its horizontal deflection and causes a vertical

deflection. The study of unimorph actuators provides a setting for understanding the

structural dynamics that can occur as a result of magnetostrictive strains. Whereas

the focus of previous sections is on dynamic electromagnetic effects and hysteresis in

quasi-static operation, the emphasis here is on structural dynamics caused by nonlin-

ear magnetostriction. In fact, the electromagnetic field equations are not solved—the

magnetic field is assumed to be uniform in the Galfenol layer. This work differs from
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the recent work from Zhou and Zhou [118] by using a hysteretic material model and

coupling the actual stress to the magnetostriction as opposed to the bias stress only.

Geometric considerations

Consider a composite beam of length L and width b having a Galfenol layer of

thickness tG, elastic modulus EG, density ρG, and internal damping cG perfectly

bonded to a substrate with thickness tS, elastic modulus ES, density ρS, and internal

damping cS (see Fig. 5.25.) The distance from the mid-plane to an infinitesimal area

dA is y. The curvature κ is the inverse of the radius of curvature ρ (see Fig. 5.26)

and is exactly

κ =
1

ρ
=
dθ

ds
, (5.113)

and for small deflections

κ =
1

ρ
=
dθ

dx
. (5.114)

The bending strain is determined from purely geometric considerations. For pure

bending, sections mn and pq remain plane and normal to the longitudinal axis [42]

(see Fig. 5.27.) Line segment ef then has an initial length dx and a final length of

exactly

ef = (ρ− y)dθ = ds− y

ρ
ds, (5.115)

and for small deflections

ef = dx− y

ρ
dx. (5.116)

Thus the bending strain is

SB = −y
ρ

= −κy. (5.117)

Additionally, for small rotations the angle θ is is the slope of the beam

θ ≈ tan θ =
dν

dx
(5.118)
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where ν is vertical deflection of the beam mid-plane and the bending strain is

SB = −d
2ν

dx2
y. (5.119)

The total strain also has a contribution from the longitudinal strain ∂u/∂x where u

is the horizontal displacement of the composite beam on the mid-plane. The total

strain is

S =
∂u

∂x
− d2ν

dx2
y. (5.120)

The strain displacement relation (5.119) is in most cases accurate for nonuniform

bending as well. For a constant shear force along the axis of the beam, warping of

the sections is the same for all beam elements and strain due to bending is still given

by (5.119). The same expression is also accurate for a continuously varying shear

force [44].

Figure 5.25: Composite beam, G:Galfenol, S:substrate.

Virtual work

The stress in the substrate is modeled with Hooke’s law

TS = ESS. (5.121)
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Figure 5.26: Curvature of a beam.

The total strain of the Galfenol is the sum of the purely elastic strain obeying Hooke’s

law and the magnetostriction

S =
1

EG
TG + λ(TG, H), (5.122)

and thus the stress is

TG = EG (S − λ(TG, H))) . (5.123)

The magnetostriction is calculated using the hysteretic discrete energy-averaged model

with a 〈100〉 direction oriented along the beam length.

By assuming that the magnetic field is uniform along the beam length, the virtual

work is limited to mechanical quantities. The virtual work due to strain energy

density is

δWTS =

∫ L

0

∫
A

TδSdAdx.

Here the implicit incremental solution method is demonstrated which involves iter-

ation at each time step. The solution method for the 2-D magnetostatic implemen-

tation in the previous section employed an explicit scheme which has a tendency to
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Figure 5.27: Strain of a beam in pure bending.

introduce drift error. The incremental forms of the variables are

ut+∆t = ut + ∆u,

νt+∆t = νt + ∆ν,

T t+∆t = T t + ∆T,

St+∆t = St + ∆S,

=
∂ (ut + ∆u)

∂x
− ∂2 (νt + ∆ν)

∂x2
y,

=
∂ut

∂x
− ∂2νt

∂x2
y +

∂∆u

∂x
− ∂2∆ν

∂x2
y,

δSt+∆t = δ∆S =
∂∆u

∂x
− δ∂

2∆ν

∂x2
y.

(5.124)
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The virtual work from strain energy density in incremental form is

δWTS =

∫ L

0

∫
A

T t+∆tδSt+∆tdAdx,

=

∫ L

0

∫
A

T tδ∆SdAdx+

∫ L

0

∫
A

∆Tδ∆SdAdx,

=

∫ L

0

∫
AG

∆TGδ∆SGdAGdx+

∫ L

0

∫
AS

∆TSδ∆SSdAGdx+

∫ L

0

∫
A

T tδ∆SdAdx,

= EG

∫ L

0

∫
AG

(∆SG −∆λ) δ∆SGdAGdx

+ ES

∫ L

0

∫
AS

∆SSδ∆SSdAGdx+

∫ L

0

∫
A

T tδ∆SdAdx.

(5.125)

Substitution from the kinematic relations and material laws, and defining EA ≡

EGAG + ESAS, EQ ≡ EGQG + ESQS, EI ≡ EGIG + ESIS, where Q is the first

moment of the area gives,

δWTS =δWint − δWext,

δWint =EA

∫ L

0

∂∆u

∂x
δ
∂∆u

∂x
dx+ EI

∫ L

0

∂2∆ν

∂x2
δ
∂2∆ν

∂x2
dx

− EQ
(∫ L

0

∂∆u

∂x
δ
∂2∆ν

∂x2
dx+

∫ L

0

∂2∆ν

∂x2
δ
∂∆u

∂x
dx

)
,

δWext =EG

∫ L

0

∫
AG

∆λδ
∂∆u

∂x
dAdx− EG

∫ L

0

∫
AG

∆λδ
∂2∆ν

∂x2
ydAdx

−
∫ L

0

∫
A

T tδ
∂∆u

∂x
dAdx+

∫ L

0

∫
A

T tδ
∂2∆ν

∂x2
ydAdx.

(5.126)

The d’Alembert force, a function of the horizontal and vertical accelerations au and

aν , and Kelvin-Voight damping, a function of the horizontal and vertical velocities vu

and vν also give rise to virtual work

δWρ =

∫ L

0

∫
A

ρauδudAdx+

∫ L

0

∫
A

ρaνδνdAdx,

δWc =

∫ L

0

∫
A

cvuδudAdx+

∫ L

0

∫
A

cvνδνdAdx.

(5.127)
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In incremental form, the accelerations, velocities, and displacements are related by

au =
∆vu

∆t
,

aν =
∆vν

∆t
,

vu =
∆u

∆t
,

= vt,u + ∆vu,

vν =
∆ν

∆t

= vt,ν + ∆vν .

(5.128)

The virtual work from dynamic terms in incremental form is,

δWρ =

∫ L

0

∫
A

ρ
∆vu

∆t
δudAdx+

∫ L

0

∫
A

ρ
∆vν

∆t
δνdAdx,

=

∫ L

0

∫
A

ρ
1

∆t

(
∆u

∆t
− vt,u

)
δudAdx+

∫ L

0

∫
A

ρ
1

∆t

(
∆ν

∆t
− vt,ν

)
δνdAdx,

=
1

∆t2

∫ L

0

∫
A

ρ (∆uδu+ ∆νδν) dAdx− 1

∆t

∫ L

0

∫
A

ρ
(
vt,uδu+ vt,νδν

)
dAdx

δWc =

∫ L

0

∫
A

c
∆u

∆t
δudAdx+

∫ L

0

∫
A

c
∆ν

∆t
δνdAdx,

=
1

∆t

∫ L

0

∫
A

c∆uδudAdx+
1

∆t

∫ L

0

∫
A

c∆νδνdAdx.

(5.129)

Discretization

The beam is discretized into N elements of length le (see Figure 5.28) each with

two nodes giving Nn = 2Ne − 1 nodes. Each node has three degrees of freedom. The

first two are vertical displacement ν and rotation or slope dν/dx giving a total of

N ν = 2Nn degrees of freedom associated with vertical displacement; the other degree

of freedom is horizontal displacement which has Nu = Nn degrees of freedom. The

element values of the degrees of freedom associated with the vertical displacement are

denoted qνe where the first two components are the vertical displacement and rotation

245



of the left node and the second two are the vertical displacement and rotation of

the right node. The global notation is Qν . The element values of the degrees of

freedom associated with horizontal displacement are denoted que with the first entry

the horizontal displacement of the left node and the second entry the displacement of

the right node. The global notation is Qu. The mesh definition includes a mapping

between local and global variables which is used in the global assembly process.

Figure 5.28: Finite-element discretization of beam.

The vertical displacement and its increments are interpolated over the element

with Hermite shape functions, ensuring continuity of the first derivative (see Fig-

ure 5.29.) The horizontal displacement and its increments require only continuity of

the zeroth derivative, so linear shape functions are used. The local spatial coordinate

is ξ varying from negative one to one, the element vertical displacement and slope

increments are ∆qνe,1 and ∆qνe,2 at the left element node and ∆qνe,3 and ∆qνe,4 at the

right element node. The horizontal displacement increment is ∆que,1 at the left node

and ∆que,2 at the right node. The vertical displacement increment of an element is
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Figure 5.29: Hermite shape functions.

interpolated over the element according to

H1 =
1

4
(1− ξ)2(2 + ξ),

H2 =
1

4
(1− ξ)2(ξ + 1),

H3 =
1

4
(1 + ξ)2(2− ξ),

H4 =
1

4
(1 + ξ)2(ξ − 1),

∆νe = H∆qνe =
[
H1

le
2
H2 H3

le
2
H4

] 
∆qνe,1
∆qνe,2
∆qνe,3
∆qνe,4

 .

(5.130)

The horizontal displacement increment is linearly interpolated,

N1 =
1− ξ

2
,

N2 =
1 + ξ

2
,

∆ue = N∆que =
[
N1 N2

] [ ∆que,1
∆que,2

]
.

(5.131)
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The spatial coordinate x is interpolated in the same way as u. Derivatives are

dx =
le
2
dξ,

∂∆ue
∂x

= B ·∆que =
1

le

[
−1
1

]
·∆que ,

∂2∆νe
∂x2

=
4

l2e

∂2H

∂ξ2
·∆qνe .

(5.132)

After discretization, the virtual work terms from strain energy density are

δWint =
∑
e

δque ·
[
EA

le
BTB

]
∆que + δqνe ·

[
8EI

l3e

∫ 1

−1

(
∂2H

∂ξ2

)T
∂2H

∂ξ2
dξ

]
∆qνe

− δqνe ·

[
2EQ

le

∫ 1

−1

(
∂2H

∂ξ2

)T
Bdξ

]
∆que − δque ·

[
2EQ

le

∫ 1

−1

BT ∂
2H

∂ξ2
dξ

]
∆qνe ,

:=
N∑
e=1

δque · kue∆que + δqνe · kνe∆qνe − δqνe · kuνe ∆que − δque · (kuνe )T ∆qνe ,

δWext =
N∑
e=1

δque ·
[
EGble

2

(∫ 1

−1

∫
G

∆λdydξ

)
B

]
− δqνe ·

[
2EGb

le

∫ −1

1

∫
G

∆λ
∂2H

∂ξ2
ydydξ

]

− δque ·

[(
ble
2

∫ 1

−1

∫ t/2

−t/2
T tdydξ

)
B

]
+ δqνe ·

[
2b

le

∫ L

0

∫ t/2

−t/2
T t
∂2H

∂ξ2
dydξ

]
,

:=
∑
e

δque · fλ,ue − δqνe · fλ,νe − δque · f t,ue + δqνe · f t,νe .

(5.133)

The external virtual work is a function of the displacements since the magnetostriction

depends on the strain increments. The integrals involving the magnetostriction are

calculated numerically, with four-point Gauss-quadrature, since they are nonlinear

functions of strain and therefore the displacement increments.

The velocities are interpolated with the same shape functions as displacements.

After discretization and substitution of ρA = ρGAG + ρSAS and cA = cGAG + cSAS,
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virtual work terms from dynamic effects are

δWρ =
N∑
e=1

δque ·
1

∆t2

[
ρAle

2

∫ 1

−1

NTNdξ

]
∆que + δqνe ·

1

∆t2

[
ρAle

2

∫ 1

−1

HTHdξ

]
∆qνe

− δque ·
1

∆t

[
ρAle

2

∫ 1

−1

NTNdξ

]
∆qv

u

e − δqνe ·
1

∆t

[
ρAle

2

∫ 1

−1

HTHdξ

]
∆qv

ν

e

:=
N∑
e=1

δque ·
(

1

∆t2
mu

e∆que −
1

∆t
mu

e∆qv
u

e

)
+ δqνe ·

(
1

∆t2
mν

e∆qνe −
1

∆t
mν

e∆qv
ν

e

)

δWc =
N∑
e=1

δque ·
1

∆t

[
cAle

2

∫ 1

−1

NTNdξ

]
∆que + δqνe ·

1

∆t

[
cAle

2

∫ 1

−1

HTHdξ

]
∆qνe ,

:=
N∑
e=1

δque ·
1

∆t
cue∆que + δqνe ·

1

∆t
cνe∆qνe .

(5.134)

Combining with the virtual work terms from the strain energy and applying varia-

tional principles, the assembled system to solve is[
Ku + 1

∆t2
Mu + 1

∆t
Cu − (Kuν)T

−Kuν Kν + 1
∆t2

Mν + 1
∆t

Cν

] [
∆Qu

∆Qν

]
=[

Fλ,u + Ft,u + 1
∆t

MuQt,vu

Fλν + Ft,ν + 1
∆t

MνQt,vν

]
,

(5.135)[
∆Qvu

∆Q∆vν

]
=

[
∆Qu/∆t−Qt,vu

∆Qν/∆t−Qt,vν

]
, (5.136)

where the unknowns are the displacement and velocity increments. The form of these

matrix equations with regards to the time increment is essentially backward Euler

time integration, an implicit method. The load vectors Fλ,u and Fλ,ν contain the

magnetostriction which is a function of the strain and therefore the displacement

increments; this makes the matrix system nonlinear. Broyden’s algorithm, a quasi-

Newton method, is used to solve for the increments. The advantage of this nonlinear

solver is that the Jacobian does not need to be evaluated and it has super linear

convergence. The stress from the previous time step appears in the load vectors Ft,u
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Copper drive coil

Figure 5.30: Unimorph actuator used for model validations.

and Ft,ν and the velocity from the previous time step in the vectors Qt,vu and Qt,vν .

These correct the drift error associated with explicit methods.

Unimorph actuators are cantilevers. In the present model, the left end is clamped

so that the displacements and rotations are zero. The elimination approach is taken

to accommodate these conditions. The right end the beam is generally free but can

be loaded with a force or a spring-mass-damper. The stiffness, damping coefficient,

and mass of the load are added to the last diagonal components of the system mass,

stiffness, and damping matrices.

Measurements and simulations

The composite beam, finite element model is implemented in Matlab with the

m-script language and used to simulate the actuator pictured in Figure 5.30. The

actuator was manufactured by Etrema Products Inc. The constitutive model for the

magnetostriction increment is the hysteretic discrete energy-averaged model.
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A Keyence laser displacement sensor was used in concert with a dSpace control

system to simultaneously apply current to a solenoid, used to magnetically activate

the Galfenol, and acquire the vertical tip displacement data. While the measurement

system acquired the current to the coil, the model requires magnetic field as input.

A simple linear model was used for the field-current relationship, H = NI with

N = 2200. The substrate is brass and both it and the Galfenol have a thickness of

15 mili-inch with a 1 inch length and 1/4 inch width. The Galfenol and substrate

have density 7870 and 8400 kG/m3, stiffness 60 MPa and 120 MPa, and internal

damping 1× 104 kG/s ·m3 (both). The internal damping was found from the decay

in an impact test. The model parameters for the Galfenol constitutive behavior

are K100 = 30 kJ/m3, µ0Ms = 1.6 Tesla, (3/2)λ100 = 260 microstrain, 3λ111 =

−20 microstrain, Ω = 1200 kJ/m3, c = 0.1 (reversibility coefficient), and kp = 200

kJ/m3. Figure 5.31 shows a comparison between the finite element beam model and

measurements performed on the actuator (Figure 5.30). In the 0.5 Hz case, a full

hysteresis loop was attained, demonstrating butterfly-type nonlinearity. The other

three cases are for a biased input with an amplitude of 0.3 Amps. The hysteresis from

the material constitutive behavior results in a delay between the input and the output

which is frequency independent. At the higher frequencies of 150, 400, and 450 Hz,

inertia and damping result in additional time lag. Measurements from an impact

test indicate that the composite beam has a frequency of 620 Hz for the fundamental

vibration mode which agrees with the model. Because the higher frequency tests are

approaching the fundamental frequency, the displacement amplitudes increase and

the associated phase lag causes a CCW rotation of the loop. For the 450 Hz test,

there is significant negative deflection because of the beam inertia. As demonstrated
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Figure 5.31: Model validation for nonlinear and dynamic finite element model of a
composite beam actuator at (a) 0.5 Hz (b) 150 Hz (c) 400 Hz and (d) 450 Hz.

in the 0.5 Hz test, the deflection from the magnetostriction only cannot produce

negative deflection because it is an even function of magnetic field.

Figure 5.32 shows the force that can be achieved when the tip works against a very

stiff load with an alternated applied field. The blocked force is on the order of mili-

newtons because displacement amplification has been used. If this Galfenol material

were blocked in rod form, with no displacement amplification, it could produce a
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Figure 5.32: Blocked force of a unimorph actuator.

maximum stress of (3/2)λ100E = (260× 10−6)(60× 109) = 15.6 MPa. With a sample

of only 1/4 inch diameter, this for example is 494 N. However, the maximum strain is

260×10−6, which would have a maximum displacement of just 6.6 micrometers with a

1 inch rod. The maximum displacement of the unimorph actuator is 120 micrometers.

5.3.7 3-D dynamic implementation

In this section the unimorph actuator (Figure 5.30) is again studied but with

the fully 3-D and dynamic finite element model (5.77). The model is implemented

in COMSOL Multiphysics which provides a meshing tool, local to global matrix

assembly, and a post-processing and visualization toolbox. This is used because it

allows the flexibility of partitioning the solution domain while allowing for the different

subdomains to have different degrees of freedom. COMSOL Multiphysics also allows
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specifying essential boundary conditions on internal boundaries, which is important

because the mechanical constraints are inside the surrounding air volume.

The coefficient matrices in (5.60) and (5.61) can be calculated with the discrete

energy-averaged model. The constitutive model is formulated as

B = B(H,T), (5.137)

S = S(H,T). (5.138)

The derivatives,

µ =
∂B

∂H
(H0,T0), d =

∂B

∂T
(H0,T0),

s =
∂S

∂T
(H0,T0), dT =

∂S

∂H
(H0,T0).

(5.139)

can be calculated analytically. The coefficients relating ∆B,∆S to ∆H,∆T can then

be calculated, [
µ−1 −a
−a c

]
=

[
µ d
d s

]−1

. (5.140)

A difficulty arising in this process is that the derivatives in (5.139) need to be cal-

culated at H0,T0 which in the finite element model are functions of B and S, the

unknowns. The process of calculating the coefficient matrices in (5.60) and (5.61)

is iterative because the discrete energy-averaged model does not have an analytic

inverse. It is also therefore a vector process. All components of H0 and T0 must

be calculated simultaneously with numerical inversion, using a technique such as the

Newton-Raphson method. COMSOL Multiphysics does not have the capability of

implementing vector functions so a single set of linear coefficients is used for the

modeling in this section and the actuator is operated about a bias field applied by

a permanent magnet. The boundary conditions are A = 0 on the air boundary and

u = 0 on the bottom face of the block used for mounting the beam.
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Figure 5.33: Step-response of unimorph with 8.22 input voltage.

Step response measurement and dynamic efficiency

First a step response is measured by supplying a step input voltage source Vs =

8.19 volts to the coil. The finite element model requires as input, a source current

density Js. This can be calculated in the circumferential direction from the resistance

of the coil R and the cross sectional area of the coil wire Aw, Js = Vs/(RAw). The

coil is modeled as a solid cylinder with its center on the x1-axis, so the 3-D supplied

current density can be calculated from the circumferential component according to,

Js =


0

Vs/(RAw)×
(
−x3/

√
x2

2 + x2
3

)
Vs/(RAw)×

(
x2/
√
x2

2 + x2
3

)
 . (5.141)

Two quantities measured during the step-response are compared with the model,

the wire current in the coil and the vertical displacement of the beam tip. The

current is calculated as follows. The total current density is the sum of the source

current density and the back EMF, or the opposing current/eddy current from the
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Lenz-Faraday law, −σ∂A/∂t. The total circumferential current density then is

J(x) = Js − σ
∂A2

∂t

(
− x3√

x2
2 + x2

3

)
− σ∂A3

∂t

(
x2√
x2

2 + x2
3

)
, (5.142)

and the wire current I in the coil is then calculated from the average circumferential

current density J̄ , averaged over the coil, I = J̄Aw. The vertical displacement is

calculated from the model by averaging the vertical displacement of the top edge of

the Galfenol on the free end.

The same mechanical properties were used as in the 2-D beam model with the 3-D

stiffness matrices calculated from the elastic modulus while using 0.33 for Poisson’s

ratio. The elastic modulus of the steel base is 200 GPa and its density 7860 kG/m3.

The electrical conductivity of copper is σC = 59.6 × 106. However this is divided

by π since there is void within the coil winding with a ratio of 1/π void to copper

(the ratio of the area of a circle to the the area of a square.) The conductivity of

the brass substrate is 0.28σC and the steel and Galfenol have conductivities 0.1σC .

The permeability of the steel flux path is isotropic, 10 × 103µ0. The steel base for

clamping the beam is made of non-magnetic steel; a permeability of µ0 is used. Brass

is also non-magnetic.

Model and experiment are shown together in Figure 5.33. The voltage response is

typical of a linear inductor-resistor electrical circuit and is described accurately by the

model. The voltage step gives an impact-like input to the mechanical domain of the

system through magnetomechanical coupling. As a result, the fundamental mode is

excited and observed in both the measurement and the simulation. The fundamental

frequency of the 3-D beam is the same as the measured frequency, 620 Hz, which also

agrees with the 2-D beam model.
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Figure 5.34: Power consumption in step-response to voltage.
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Figure 5.35: Power consumption as a fraction of input power during step-response to
voltage.
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A power efficiency study of the unimorph actuator shows that the two greatest

sources of inefficiency are the power loss to the back EMF of the coil and the power

loss due to flux leakage in the air. From (5.43), the input power to the system is

Pinput =

∫
Vcoil

Js · ȦdV, (5.143)

where the variation is replaced with a time derivative; this is the electrical power,

IVS from the power supply. The input power is expended in the magnetic power of

each subdomain D,

PD
magnetic =

∫
VD

H · ḂdV, (5.144)

and in the eddy current losses of each subdomain

PD
loss =

∫
VD

σȦ · ȦdV. (5.145)

The most significant power sinks are plotted with the power source in Figure 5.34(a).

At the beginning of the step response, nearly all of the power is lost through eddy

currents. Figure 5.34(b) shows the total eddy current losses
∑
PD
loss along with losses

P coil
loss, P

Galfenol
loss and P steel

loss . The most significant is in the coil which is the back EMF,

followed by the steel and a negligible amount in the Galfenol. The most significant

power sinks are shown as a fraction of input power in Figure 5.35. This shows that

initially, the back EMF accounts for nearly all of the power consumption. As the

system approaches steady-state PD
magnetic begins to dominate with P air

magnetic accounting

for 65% of the power. The magnetic power supplied to the Galfenol, PD
magnetic accounts

for at most 5% of the power consumption.

Quasi-static power efficiency

A quasi-static simulation (0.1 Hz) provides more detail regarding the power loss

to flux leakage in the air P air
magnetic. Additionally, it demonstrates the capability of the
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Figure 5.36: Quasi-static (0.1 Hz) power consumption.

3-D finite element model to calculate the spatial dependence of the flux density (Fig-

ure 5.39), strain (Figure 5.41), magnetic field (Figure 5.40), and stress (Figure 5.42).

The powers Pinput,
∑
PD
magnetic, P

air
magnetic, P

Galfenol
magnetic and

∑
PD
loss are shown in Fig-

ure 5.36 and the same power sinks are shown as a fraction of Pinput in Figure 5.37.

Flux leakage to the air accounts for 82% of the input power while only 5% is supplied

to the Galfenol. The conversion efficiency of magnetic energy into mechanical energy

of the Galfenol is calculated from the magnetomechanical coupling

K =

∫
VGalfenol

−aS · ḂdV +
∫
VGalfenol

−aTB · ṠdV√∫
VGalfenol

µ−1B · ḂdV
∫
VGalfenol

cS · ṠdV
. (5.146)

The conversion efficiency is a function of geometry, coupling matrix a, the permeabil-

ity µ and the stiffness c. This calculation is shown in Figure 5.38. The conversion

efficiency is close to 50%, however this analysis shows that the efficiency of the overall

system is poor since only 5% of the input power is supplied to the Galfenol, which in
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Figure 5.37: Quasi-static (0.1 Hz) power consumption as a fraction of power input.

turn has a near 50% conversion efficiency. The geometry of the actuator is therefore

the chief reason for the poor efficiency. It can be improved by (1) reducing the air

gap thereby reducing flux leakage and (2) improving the coil geometry to reduce the

back EMF. Ideally, the flux path should not include air since its permeability is much

lower than the Galfenol. Additionally, a long narrow coil is generally more efficient

than a short wide coil.

5.3.8 Concluding remarks

The finite element method has been used in this section to describe a broad

range of effects related to the spatial and temporal dependence of the flux density,

strain or displacement, magnetic field and stress in magnetostrictive transducers.

A general formulation was developed for magnetostrictive transducers which allows

for subdomains to have different degrees of freedom. The virtual work was derived

260



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time, sec

E
ff

ic
ie

nc
y

Figure 5.38: Magnetomechanical coupling efficiency.

1.8Tesla

Figure 5.39: FEM solution for flux density.
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Figure 5.40: FEM solution for magnetic field.

Figure 5.41: FEM solution for strain.
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Figure 5.42: FEM solution for stress.

from the strong form or partial differential equation description, without the use of

assumptions on the material constitutive behavior, for example, linearity.

A 1-D implementation was developed which provides a fully-coupled, dynamic

model to characterize the nonlinear and dynamic strain and magnetization of Galfenol

with longitudinal magnetic field and stress loading. Dynamic effects include eddy cur-

rent losses and the mechanical dynamics of the transducer and load. The uncoupled

finite element solution was validated against analytic solutions for the field diffusion in

a rod. Important for dynamic actuation and sensing applications, this field diffusion

was shown to cause delays in the input-output relationship of coupled, longitudinal,

magnetostrictive transducers where the inputs are magnetic field applied to the sur-

face and force applied at the free end and the outputs are the average flux density

over the cross section and the displacement of the free end.

263



A 2-D implementation was developed for flux leakage or demagnetizing fields. It

demonstrates the use of a nonlinear and hysteretic constitutive model in the context

of the finite element solution of boundary value problems. In this implementation,

the hysteretic discrete energy-averaged model is shown to be of particular utility

for describing magnetic and strain remanence as well as the effect of changing the

distribution of domain orientations.

The operation of a composite beam, unimorph actuator—an application unique to

Galfenol—was described with a 2-D composite beam implementation. The implemen-

tation is an efficient means to describe the nonlinear, time-dependent input-output

relationship between drive current and vertical tip displacement as well as the force

at the tip of a loaded unimorph. It also illustrates the trade-off between maximum

displacement and force encountered when amplification schemes are employed.

Finally, a fully 3-D and dynamic implementation was used to analyze the efficiency

of the unimorph actuator. From the virtual work, expressions were developed for the

input power, the magnetic field power, and the power lost to eddy currents. Further-

more, a method for calculating the magnetomechanical energy conversion efficiency

was developed which includes geometry dependence. For this particular design, it

was shown that the geometry of the transducer is not optimal compared to the cou-

pling efficiency of Galfenol, shown to be nearly 50%. The implementation describes

the adverse effects of back EMF, eddy currents, and flux leakage in 3-D which are

emphasized in the unimorph application.

The framework developed in this section describes a broad range of 3-D nonlinear

and dynamic effects related to magnetostrictive transducers. It is an enabling tool for
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developing innovative and efficient designs for transducers capable of 3-D, combined

magnetic field and stress loading.
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CHAPTER 6

Conclusion

Design of Galfenol-based devices has not taken full advantage of its unique combi-

nation of high magnetostriction and robust mechanical properties, largely on account

of its nonlinear constitutive behavior and the lack of a general transducer modeling

framework with a dynamic and 3-D implementation. This dissertation was under-

taken to advance the modeling of magnetostrictive materials and transducers. The

research tasks presented in this dissertation were threefold: (1) study the nonlinear

constitutive behavior of Galfenol through experiments, (2) construct a constitutive

modeling framework for understanding this behavior, and (3) develop a transducer-

level modeling framework for describing a broad range effects such as energy losses

affecting device efficiency, dynamic magnetostructural effects, transducer-level conse-

quences of using hysteretic materials, and eddy currents. Chapters 3 and 4 dealt with

tasks (1) and (2) and Chapter 5 with task (3). Each chapter describes the important

results and conclusions in detail. This chapter summarizes the entire research and

lists the key contributions of this dissertation.
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6.1 Work summary

6.1.1 Characterization and modeling of constitutive behavior

The purpose of this work was to characterize the nonlinear and hysteretic relation-

ship between strain/magnetization and stress/magnetic field. In Part I, a 1-D model

with a state-space implementation was developed. An efficient 3-D model was also

developed; using similar statistical principles as the 1-D case but leveraging practical

knowledge of the most probable domain orientations allowed for 3-D computations

with minimal expense. These models relied on a limited set of measurements. In

Part II additional measurements were performed and the modeling framework was

refined in order to describe a broader range of observations from the measurements.

Summaries of the work on characterization and modeling of Galfenol constitutive

behavior follow.

Part I: State-space constitutive model for magnetization and magnetostric-
tion of Galfenol alloys

A linear, time-variant, state-space constitutive model was presented which quan-

tifies the nonlinear magnetization and magnetostriction of Galfenol alloys. The ef-

fects of external magnetic fields, stresses and stress annealing on the magnetization

and magnetostriction of Galfenol were modeled by quantifying the coupling between

magnetocrystalline anisotropy, magneto-elastic, Zeeman, and thermal energies. In

the model, a triple-valued magnetization kernel characterized by a triple-well Gibbs

energy potential provides an understanding of both the low permeability and burst

regions of the major loop magnetization curve. Boltzmann statistics was used to de-

scribe the distribution and rotations of magnetic moments. This provides a physical

basis for understanding the key features of the magnetization and magnetostriction
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loops as well as the ability of a compressive stress to align magnetic moments 90o from

the z-axis for maximum magnetostriction. A small amount of hysteresis is naturally

present in the model due to anisotropy and which agrees well with experimental mea-

surements. Unaccounted-for effects such as pinning sites are likely to contribute to

the magnetic hysteresis as well.

Part I: Efficient model for field-induced magnetization and magnetostric-
tion of Galfenol

A low-order, 3-D constitutive model relating magnetization and strain to magnetic

field and stress was developed by utilizing thermodynamic principles with an empirical

smoothing operator. By directly minimizing the enthalpy to find the most likely

domain orientations, smooth constitutive behavior was achieved with a summation of

only six terms. As a result, the framework was readily extended to include irreversible

domain wall motion and material texture, without making it too cumbersome for

use in distributed parameter, general transducer models which are often solved with

the finite-element method, requiring evaluation of the material constitutive model at

each node. Comparison of the model to experiments showed it to accurately model

field induced-magnetization and strain at constant stress. The model was also used

to investigate how polycrystallinity affects the magnetization and magnetostriction

behavior. Using a continuum of grain orientations characterized by a probability

density function, smoothing of constitutive behavior along with a reduction in the

magnetostriction was observed.
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Part II: Measurement and modeling of magnetic hysteresis under field and
stress in iron-gallium

In this work, magnetization measurements of production and research grade Galfenol

from Etrema Products, Inc. were presented. Experiments include applied magnetic

field at constant stress, applied stress at constant field, and alternately applied field

and stress. The measurements show a remarkable degree of kinematic reversibility in

the magnetomechanical coupling, even in the production grade sample. This is in con-

trast with the magnetomechanical coupling in steel which has been shown to exhibit

stress and field induced magnetization that is both thermodynamically and kinemat-

ically irreversible [81, 26]. The kinematic reversibility in Galfenol was demonstrated

by comparing a single stress-induced magnetization curve at constant magnetic field

with a series of field-induced magnetization curves at constant stress. Minor loop

measurements consisting of decreasing the field from a bias point, decreasing stress

from a bias point, returning the field, and returning the stress showed that accom-

modation is insignificant in Galfenol. These measurements indicate that magnetic

hysteresis for both applied field at constant stress and applied stress at constant field

results from the same physical mechanism.

A formal thermodynamic development was undertaken to construct a relay or

hysteron, representing magnetic domain orientation, which is applicable to magne-

tostrictive materials of arbitrary anisotropy. The hysteron depends on the 3-D field

and stress and includes a small number of parameters, each with a clear physical

interpretation. The number of hysteron states is dictated by material symmetry and

anisotropy with one state for each easy axis. The criterion for switching was mo-

tivated by the second-law of thermodynamics and resulted in a unified hysteresis
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model having the same properties as observed in the measurements. In the model

description for macroscopic or bulk magnetization and magnetostriction, a statisti-

cally distributed interaction field is superimposed on the applied field. Rather than

employ a 3-D, statistically distributed coercive field, a scalar coercive energy is used

in the homogenization scheme resulting in fewer computations. This model enables

accurate description of the measurements and is a vehicle for understanding hysteresis

in ferromagnetic materials that exhibit kinematically reversible magnetomechanical

coupling.

Part II: Efficient magnetic hysteresis model for field and stress application
in magnetostrictive Galfenol

This work created a discrete energy-averaged model within the energy-weighted

averaging class of constitutive models. A number of advancements were made to this

class of models. First a new formulation for magnetocrystalline anisotropy energy was

developed. This energy formulation is applicable to materials of any symmetry; it

depends explicitly on the known easy crystal directions. Rather than seek a globally

defined energy which includes the local energy minima or preferred orientations, the

energy is defined locally about the known preferred orientations. Second, the magnetic

hysteresis model used within this class of models was extended in a unified manner

to account for hysteresis during both magnetic field and stress application, in 3-D. A

single parameter characterizes the hysteresis delay for both field and stress. Finally,

reversible domain volume fraction changes were included in the model which led to

a better representation of minor hysteresis loops by eliminating unphysical regions of

negative susceptibility. This model is particularly suited for adoption in transducer

270



level models because it describes magnetization and strain in nonlinear and hysteretic

regimes with minimal computational expense.

6.1.2 Application of Galfenol to force sensing and 3-D dy-
namic transducer modeling

While the above work focused on the nonlinear and hysteretic relationship between

strain/magnetization and stress/magnetic field, the focus of this work was on voltage,

current, force, and displacement resulting from the spatial and temporal dependence

of magnetic field, flux density, stress and strain. The application of Galfenol to force

sensing was investigated. Additionally, a general framework was constructed to char-

acterize device-level transduction between voltage/current and force/displacement.

Stress dependent susceptibility of Galfenol and application to force sensing

Magnetization measurements of Fe79.1Ga20.9 and Fe81.6Ga18.4 are linear with mag-

netic field in certain intervals of stress and magnetic field. These regions were shown

to arise from coherent rotation of domains from the basal plane and to occur when a

sufficient compressive stress aligns domains in the four easy crystal directions of the

basal plane at zero magnetic field. A simple rotational model showed that the slope

of the linear region is proportional to the field energy and inversely proportional to

the anisotropy and magnetomechanical coupling energies. Energy minimization was

used to interpret the differences in the magnetization processes of Fe79.1Ga20.9 and

Fe81.6Ga18.4. It was found that magnetization of Fe81.6Ga18.4 is more strongly in-

fluenced by domain flipping and wall motion due to its higher anisotropy impeding

domain rotation. As a result, its magnetization versus field curves at constant stress
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have a distinctive kinked shape whereas the Fe79.1Ga20.9 curves are largely linear un-

til saturation, having lower anisotropy which permits more domain rotation. The

susceptibility of the Fe79.1Ga20.9 sample was shown to be more sensitive to stress.

The stress dependence of the susceptibility in the linear or domain rotation region of

both samples was accurately modeled with a simple expression derived from energy

minimization. This expression motivates the use of Galfenol with Ga concentrations

having high magnetostriction and saturation magnetization with a small, positive

fourth-order anisotropy constant for transducers utilizing stress dependent suscepti-

bility. This expression also shows that despite the nonlinear stress dependence of the

susceptibility, a linear force transducer can be constructed with a transformer made

from Galfenol.

Transducer-level modeling with the finite element method

The finite element method was used to describe a broad range of effects related

to the spatial and temporal dependence of the flux density, strain, magnetic field

and stress in magnetostrictive transducers. A general formulation was developed for

magnetostrictive transducers which allows for subdomains to have different degrees

of freedom. The virtual work was derived from the strong form or partial differential

equation description, without the use of assumptions on the material constitutive

behavior, for example, linearity.

A 1-D implementation was developed which provides a fully-coupled, dynamic

model to characterize the nonlinear and dynamic strain and magnetization of Galfenol

with longitudinal magnetic field and stress loading. Dynamic effects include eddy cur-

rent losses and the mechanical dynamics of the transducer and load. The uncoupled

finite element solution was validated against analytic solutions for the field diffusion in
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a rod. Important for dynamic actuation and sensing applications, this field diffusion

was shown to cause delays in the input-output relationship of coupled, longitudinal,

magnetostrictive transducers where the inputs are magnetic field applied to the sur-

face and force applied at the free end and the outputs are the average flux density

over the cross section and the displacement of the free end.

A 2-D implementation was developed for flux leakage or demagnetizing fields. It

demonstrates the use of a nonlinear and hysteretic constitutive model in the context

of the finite element solution of boundary value problems. In this implementation,

the hysteretic discrete energy-averaged model is shown to be of particular utility

for describing magnetic and strain remanence as well as the effect of changing the

distribution of domain orientations.

The operation of a composite beam, unimorph actuator—an application unique to

Galfenol—was described with a 2-D composite beam implementation. The implemen-

tation is an efficient means to describe the nonlinear, time-dependent input-output

relationship between drive current and vertical tip displacement as well as the force

at the tip of a loaded unimorph. It also illustrates the trade-off between maximum

displacement and force encountered when displacement amplification is employed.

Finally, a fully 3-D and dynamic implementation was used to analyze the effi-

ciency of the unimorph actuator. Current, voltage, and displacement calculated by

the model agree well with the measured step response. From the virtual work, ex-

pressions were developed for the input electrical power, the magnetic field power, and

the power lost to eddy currents. Furthermore, a method for calculating the mag-

netomechanical energy conversion efficiency was developed which includes geometry
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dependence. For this particular design, it was shown that the geometry of the trans-

ducer is not optimal compared to the coupling efficiency of Galfenol, shown to be

nearly 50%. The implementation describes the adverse effects of back EMF, eddy

currents, and flux leakage in 3-D.

6.2 Contributions and findings

Experimental characterization

• Magnetization and strain of Galfenol are thermodynamically irreversible and

kinematically reversible

• The same magnetization trajectory can be obtained from applied field at con-

stant stress and applied stress at constant field

• Energy loss (hysteresis) during domain rotation is negligible

• Hysteresis is greatest in the domain reconfiguration region of the magnetization

process

• The slope or susceptibility at low fields is inversely proportional to stress

• The energy loss per cycle of major magnetization loops is 873 J/m3 for research

grade Galfenol and 1149 J/m3 for production grade Galfenol

3-D and nonlinear framework for magnetization and strain

• Analytic expressions for the stress dependence of the burst region

• Analytic expressions for constitutive behavior dominated by domain rotation

• A state-space formulation for time-delay from thermal effects
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• A discrete energy-averaged model that is 100 times faster than previous energy-

averaged models

• A new hysteron for the homogenized energy class of constitutive models that is

3-D, anisotropic, and both stress and field dependent

• The integration order for Preisach-type, anisotropic, vector hysteresis models is

reduced from six to four by replacing the coercive field with a coercive energy

• A new domain energy formulation that depends explicitly on the energy and

direction of the easy axes applies to any material symmetry

• Hysteresis delay for stress application is greater than for magnetic field ap-

plication because the magnetomechanical coupling energy generally has lower

magnitudes than the Zeeman energy

• Negative piezomagnetic coupling observed at high fields in 〈110〉 oriented ma-

terial is from negative λ111

Applications to force sensing and 3-D dynamic transducer model

• A linear force sensor, operated with amplitude modulation, uses the stress de-

pendence of the linear region in the magnetization versus field relationship

• The optimal Ga content for sensing applications is in the 19 − 22 at.% range

where magnetostriction is sacrificed for lower anisotropy

• The weak form of the field equations governing flux density, magnetic field,

stress and strain is derived without assuming linear constitutive behavior

275



• Passive media are included in a 3-D and dynamic finite element model, allowing

for the inclusion of flux leakage to air, fields from current carrying coils, and

losses from eddy currents

• A method for characterizing the dynamic efficiency of magnetostrictive devices

with 3-D geometry

• A method for calculating the magnetomechanical coupling factor of Galfenol

that accounts for the transducer geometry

6.3 Future work

This research has resulted in a greater understanding of Galfenol constitutive

behavior and greatly enhanced the capabilities of material and device level modeling

for magnetostrictive materials. The following list enumerates possibilities for future

work:

• The possibility of consolidating the tiered constitutive model can be investigated

for the purpose of describing the hysteretic details of domain reconfiguration

with sufficient efficiency for adoption in device-level models.

• Microscopic measurements can be performed to experimentally quantify the

stress and field dependence of the domain volume fractions rather than rely on

macroscopic magnetization measurements.

• The tensile behavior of nonlinear magnetomechanical coupling in Galfenol can

be investigated.

276



• Identification of the interaction field and coercive energy density functions can

be revisited, perhaps devising a method for direct experimental determination.

• New experimental setups can be investigated for full 3-D material characteriza-

tion.

• Innovative devices with 3-D functionality can be investigated with the transducer-

level model developed in this dissertation.

• The transducer-level model can be extended to include structural-acoustic in-

teractions for characterization of sonar transduction devices.

• Fluid-structure interaction can also be added to the transducer-level model to

investigate the potential use of Galfenol in electro-hydraulic actuators.

• In order to investigate hybrid magnetostrictive—moving-iron or moving-coil ac-

tuators/sensors, the Maxwell stress tensor, arising from electromagnetic body

forces, can be added to the transducer-level model; this will require an Eulerian

formulation.

277



BIBLIOGRAPHY

[1] A.A. Adly and I.D. Mayergoyz. A new vector preisach-type model of hysteresis.
Journal of Applied Physics, 73(10):5824–5826, 1993.

[2] A.A. Adly, I.D. Mayergoyz, and A. Bergqvist. Preisach modeling of magne-
tostrictive hysteresis. Journal of Applied Physics, 69(8):5777–5779, 1991.

[3] D. Aeyels, R. Sepulchre, and J. Peuteman. Asymptotic stability conditions
for time-variant systems and observability: uniform and non-uniform criteria.
Mathematics of Control, Signals, and Systems, 11(1):1–27, 1998.

[4] C. Appino, M. Valsania, and V. Basso. A vector hysteresis model including
domain wall motion and coherent rotation. Physica B, 275(1-3):103–106, 2000.

[5] W. D. Armstrong. An incremental theory of magneto-elastic hysteresis in
pseudo-cubic ferro-magnetostrictive alloys. Journal of Magnetism and Mag-
netic Materials, 263:208, 2003.

[6] W.D. Armstrong. Magnetization and magnetostriction processes in tb0.27 −
0.30dy0.73 − 0.70fe1.9 − 2.0. Journal of Applied Physics, 81(5):23217–2326,
1997.

[7] J. Atulasimha, G. Akhras, and A.B. Flatau. Comprehensive 3-d hysteretic
magnetomechanical model and its validation with experimental 〈110〉 singe-
crystal iron-gallium behavior. Journal of Applied Physics, 103:07–336, 2008.

[8] J. Atulasimha and A.B. Flatau. Energy-based model for the magnetostrictive
behavior of polycrystalline iron-gallium alloys. Proceedings of SPIE, 6170, 2006.

[9] J. Atulasimha, A.B. Flatau, and R.A. Kellogg. Sensing behavior of varied
stoichiometry single crystal fe-ga. Journal of Intelligent Material Systems and
Structures, 17:97–105, 2006.

[10] J. Atulasimha, A.B. Flatau, and E. Summers. Characterization and energy-
based model of the magnetomechanical behavior of polycrystalline iron–gallium
alloys. Smart Materials and Structures, 16:1265–1276, 2007.

278



[11] R.R. Basantkumar, B.J. Stadler, W.P. Robbins, and E.M. Summers. Integra-
tion of thin-film Galfenol with mems cantilevers for magnetic actuation. IEEE
Transactions on Magnetics, 42(10):3102–3104, 2006.

[12] K. Bathe. Finite Element Procedures. Prentice Hall, Upper Saddle River, New
Jersey 07458, 1996.

[13] A. Bergqvist and G. Engdahl. A phenomenological magnetomechanical hys-
teresis model. Journal of Applied Physics, 75(10):5496–5498, 1994.

[14] A.J. Bergqvist. A simple vector generalization of the jiles-atherton model of
hysteresis. IEEE Transactions on Magnetics, 32(5):4213–4215, September 1996.

[15] G.V. Bolshakov and A.J. Lapovok. A Preisach model for magnetoelastic hys-
teresis. Journal of Magnetism and Magnetic Materials, 162:112–116, 1996.

[16] A.P. Boresi and R.J. Schmidt. Advanced Mechanics of Materials. John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, 6th edition, 2003.

[17] O. Bottauscio, M. Chiampi, A. Lovisolo, P.E. Roccato, and M. Zucca. Dynamic
modeling and experimental analysis of terfenol-d rods for magnetostrictive ac-
tuators. Journal of Applied Physics, 103:07F121, 2009.

[18] R.M. Bozorth. Ferromagnetism. D. Van Nostrand Company, Inc., New York,
1951.

[19] E. Cardelli, E. Della Torre, and E. Pinzaglia. Identifying the parameters of the
reduced vector preisach model: theory and experiment. IEEE Transactions on
Magnetics, 40(4):2164–2166, July 2004.

[20] T.R. Chandrupatla and A.D. Belegundu. Introduction to Finite Elements in
Engineering. Prentice-Hall, Upper Saddle River, New Jersey 07458, 3rd edition,
2002.

[21] S. Chikazumi. Physics of Magnetism. John Wiley, New York, 1964.

[22] A.E. Clark, K.B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, J. M.
Keppins, G. Petculescu, and R.A. Taylor. Extraordinary magnetoelasticity and
lattice softening in bcc fe-ga alloys. Journal of Applied Physics, 93(10):8621–
8624, 2003.

[23] A.E. Clark, J.B. Restorff, M. Wun-Fogle, T.A. Lograsso, and D.L. Schlagel.
Magnetostrictive properties of body-centered cubic fe-ga and fe-ga-al alloys.
IEEE Trans. Magn., 36(5):3238–3240, 2000.

279



[24] A.E. Clark, M. Wun-Fogle, J.B. Restorff, and T.A. Lograsso. Magnetostrictive
properties of Galfenol alloys under compressive stress. Material transactions,
43(5):881–886, 2002.

[25] A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, and J.R. Cullen. Effect
of quenching on the magnetostriction of Fe1−xGax(0.13 < x < 0.21). IEEE
Transactions on Magnetics, 37(4):2678–2680, July 2001.

[26] D.J. Craik and M.J. Wood. Magnetization changes induced by stress in a
constant applied field. Journal of Physics D Applied Physics, 3:1009–1016, jul
1970.

[27] J.R. Cullen, A.E. Clark, M. Wun-Fogle, J.B. Restorff, and T.A. Lograsso. Mag-
netoelasticity of Fe-Ga and Fe-Al alloys. Journal of Magnetism and Magnetic
Materials, 226-223:948–949, 2001.

[28] B.D. Cullity. Introduction to Magnetic Materials. Addison-Wesley, Reading,
MA, 1972.

[29] M.J. Dapino. On magnetostrictive materials and their use in adaptive struc-
tures. Structural Engineering and Mechanics, 17(3-4):303–329, 2004.

[30] M.J. Dapino, R.C. Smith, and A.B. Flatau. Structural magnetic strain model
for magnetostrictive transducers. IEEE Transactions on Magnetics, 36(3):545–
556, May 2000.

[31] S. Datta, J. Atulasimha, and A.B. Flatau. Modeling of magnetostrictive galfenol
sensor and validation using four point bending test. Journal of Applied Physics,
101:09–521, 2007.

[32] S. Datta, J. Atulasimha, C. Mudivarthi, and A.B. Flatau. The modeling of
magnetomechanical sensors in laminated structures. Smart Materials and Struc-
tures, 17:025010, 2008.

[33] S. Datta and A.B. Flatau. Magnetomechanical coupling factor and energy
density of single crystal iron-gallium alloys. Proceedings of SPIE, 6929:6929–
71, 2008.

[34] P.R. Downey and A.B. Flatau. Magnetoelastic bending of Galfenol for sensor
applications. J. App. Phys., 97:10–505, 2005.
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