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Abstract 

 

The self-regulatory construct known as effortful control (EC) has garnered 

considerable support from childhood psychopathology research (e.g. Muris, de Jong, 

& Engelen, 2004), which has relied upon multiple methods of data acquisition, 

including questionnaires and performance-based measures.  Corroborative findings 

have emerged from adult research indicating that deficits in effortful control may 

serve as a risk factor for the development of anxiety and depression (e.g. Dinovo & 

Vasey, 2003, 2005), yet adult research exploring this construct has relied almost 

exclusively on self-reports.  An important step in remedying this deficit would be 

additional validation of existing self-reports of EC.  Fortunately, means for assessing a 

self-regulatory construct like effortful control are plentiful within the extant scientific 

literature, particularly from research on executive functions: neurological processes 

that permit self-regulation.  Moreover, converging findings from physiological 

investigations of executive function and the cardiovascular system suggest that the 

processes underlying self-regulation can be indirectly assessed via measures of heart-

rate variability (HRV), since many of the neural structures implicated in executive 

function also modulate heart rate (Ruiz-Padial et al., 2003). 

Using correlation- and regression analyses within an undergraduate student 

sample, this investigation found that self-reported EC held significant relations with 
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physiological measurements of heart-rate variability.  By contrast, neither self-

reported EC nor indices of HRV were related to performance-based measures of 

executive functioning.  Thus, while providing some important support for the validity 

of self-report instruments used in the extant adult literature exploring EC, not all 

findings were consistent with expectations.  Implications for the construct of EC and 

future directions for research are discussed.     
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Chapter 1: Introduction 

 

Recent decades have born witness to an emergent interest in self-regulatory 

processes in human personality development (e.g. Carver & Scheier, 1981, 1998; 

Gollwitzer & Bargh, 1996; Mischel, 1973; Posner & Rothbart, 1998).  Although 

discussion of self-regulation dates back to the psychoanalytic framework of Freud 

(1940/1949) and even to ancient formulations of personality (Galen, 150 A. D.; see 

Carver & Scheier, 2004), recent work in the areas of biological, developmental, and 

personality psychology has greatly elucidated the mechanisms underlying self-

regulation and its consequences for both normal and abnormal personality 

development.  Although a comprehensive review of all the pertinent findings and 

issues (e.g. promotion-focused vs. prevention-focused self-regulation; see Higgins, 

1997) within the self-regulatory literature is beyond the scope of the present inquiry 

(for a review, see Bronson, 2000), an attempt will be made in the current study to 

integrate some of the key findings from research in the areas of cognition, 

development, physiology, and personality.  Moreover, it is my hope that through the 

proposed investigation additional insights might be gleaned as to the utility of 

adopting a self-regulatory construct of some importance in the area of child 

development, known as effortful control (EC), for use with adults.     
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Though various definitions of self-regulation have been promulgated in the 

psychological literature, they share much in common. Therefore, for simplicity the 

present study will adopt the viewpoint espoused by Posner and Rothbart (1998).  

Namely, that self-regulation refers to the control of lower order processes responsible 

for the planning and execution of behavior by higher order (i.e. executive) processes 

within the brain.  Such executive control includes the modulation of a person‟s 

reactivity to environmental stimuli, including emotional responses, and the initiation 

and inhibition of approach behavior (Rothbart & Rueda, 2005).  The present paper 

will also make a distinction between this more voluntary form of self-regulation and 

the reactive regulation of behavior, whereby mechanisms governing a person‟s initial 

reactions to environmental events regulate behavior automatically, without personal 

volition (Derryberry & Rothbart, 1997).   

In this vein, self-regulation will be treated as a major component of the 

organization of temperament: the seat of biologically based individual differences in 

persons‟ reactions to internal and external events that are influenced over time by both 

genes and the environment (Rothbart & Bates, 1998; for an alternate though not 

incompatible information-processing perspective on self-regulation, see Hoyle, 2006).  

Such temperamental dispositions purportedly stem from evolutionarily conserved 

systems (Strelau, 1983) that are shared by all humans, but differ in terms of both 

strength and sensitivity between individuals.  In other words, dispositions differ in 

both degree and valence across persons such that one‟s particular constellation of 

inborn responses serves as a foundation from which individual differences emerge.  
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These individual differences in behavior become more and more distinct through 

transactional developmental processes in which people assimilate information from 

their environments and adapt their behaviors accordingly and in which environments 

are modified by or in response to the individual.  By extension, no two individuals are 

identical in terms of personality: the complex organization of psychophysical systems 

within the person that give rise to characteristic patterns of behavior, thoughts, and 

feelings (Carver & Scheier, 2004).  Thus, in addition to reflecting temperamental 

dispositions, personality has many other facets, including an individual‟s perceptions 

of others, self-concepts, attitudes, beliefs, morals, and coping strategies that develop 

over the lifespan.  Accordingly, temperament is personality in its most rudimentary 

form; the individual differences in childhood behavior that one sees before the 

development of the more cognitive and socialized aspects of personality (Rothbart, 

Ellis, & Posner, 2004). 

In the area of personality research, theorists have long posited that 

temperament consists of a strong self-regulatory component that is driven by 

underlying differences in individuals‟ level of arousal or constitutional differences in 

the reactivity of affective-motivational systems (Bronson, 2000; for review, see 

Rothbart et al., 2004).  In two of the more influential accounts of temperament 

(Eysenck, 1967; Gray, 1970), individual differences in both approach and avoidance 

behavior are believed to be mediated through reactive self-regulatory processes.  In 

Eysenck‟s (1967) biological trait theory, variations in personality characteristics are 

purportedly traceable to inherited differences in the human nervous system, giving rise 
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to three broad dimensions of personality.  These biological differences are said to 

create variations in people‟s typical levels of physiological arousal and in their 

sensitivity to stress and other environmental stimulation.  The first of these personality 

dimensions, Introversion-Extraversion (or E), reflects an implicit self-regulatory 

connection between arousal, on the one hand, and distress and pleasure, on the other.  

Eysenck postulated that the quintessential introvert has inherited a nervous system that 

is more sensitive and arousable to environmental stimulation than that inherited by a 

prototypical extravert.  As stimulation increases in quantity, intensity, or duration, an 

optimum level of stimulation is reached more quickly by the introvert than the 

extravert, and once this stimulation threshold is surpassed, distress will ensue.  

Consequently, introverts are believed to enjoy low-intensity pleasures to a greater 

degree than do extraverts, who are likely to be bored with low levels of stimulation.  

By implication, then, the introvert will automatically regulate their behavior so as to 

avoid overstimulation, whereas the extravert will be a sensation seeker.   

Not only did Eysenck (1967) posit that there were individual differences in 

arousal sensitivity, but he also believed that people inherited biological sensitivities to 

stress that are captured in a second major personality dimension, Emotional Stability-

Neuroticism (or N).  Seen as orthogonal to the first major dimension (for review, see 

Rothbart et al., 2004), this second trait dimension contrasted individuals who have 

inherited nervous systems that are relatively insensitive to stressors, with those who 

have nervous systems that are highly reactive to stressors.  Consequently, persons who 

score toward the neuroticism side of the continuum will generally be more emotional 
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than those who are emotionally stable, and adjust their behavior to minimize contact 

with stressors.  Eysenck later added a third dimension, Psychoticism, which reflects a 

predisposition toward psychological detachment from other people.  This third 

dimension contrasts such habitual responses as being hostile and impulsive, found 

amongst those high in psychoticism, with the behaviors of those low in psychoticism, 

who tend to be open and careful (Carver & Scheier, 2004).  Therefore, Eysenck‟s third 

dimension includes aspects of psychopathy or disinhibition (i.e. Conscientiousness 

factor of the Big Five Model of Personality; see McCrae & Costa, 1987), and as such 

is related to the ability to regulate action (Watson, 2000). 

Jeffrey Gray (1970) followed Eysenck‟s general framework, but offered a 

different explanation of the biological factors underlying behavioral approach and 

avoidance (for review, see Rothbart et al., 2004).  According to Gray (1991), 

differences among people in introversion-extraversion (E) and emotional stability (N) 

stem from two related brain systems: the behavioral approach system (BAS) and 

behavioral inhibition system (BIS).  The BAS purportedly consists of brain regions 

that affect people‟s sensitivity to rewards and their motivation to seek those rewards 

(Pickering & Gray, 1999) and, as such, has been called the “go” system because it is 

responsible for how impulsive or uninhibited a person is.  By contrast, the BIS is the 

“stop” system, in that is responsible for how fearful or inhibited a person is. The BIS 

purportedly involves brain regions that underlie sensitivity to potential punishment 

(and nonreward) and the motivation to avoid punishment.  Gray also postulated (1981) 

that when there is a mismatch between expectation and outcome, the so-called „control 
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mode‟ of the BIS comes into play by mentally identifying stimuli to resolve the 

mismatch and interrupting the current execution of behavioral programs until the 

mismatch can be resolved.  Through its connections with physiological systems 

underlying arousal, the BIS regulates ongoing behavior by increasing arousal past an 

optimum level when in the presence of punishment, thereby inhibiting approach to the 

source of potential punishment.  It is important at this point to distinguish between the 

more anxiety-driven forms of self-regulation carried out by the BIS and more 

voluntary forms of self-regulation (Derryberry & Rothbart, 1997; Eisenberg, Smith, 

Sadovsky, & Spinrad, 2004) that will be addressed shortly.  Thus, while Gray 

followed Eysenck‟s general approach when it came to explaining approach and 

avoidance, Gray rotated the axes of Eysenck‟s Extraversion-Neuroticism structure in 

proposing separate approach and avoidance systems: the former of which ranges from 

low Extraversion-low Neuroticism to high Extraversion-high Neuroticism (i.e. the 

BAS), the latter of which ranges from high Extraversion-low Neuroticism to low 

Extraversion-high Neuroticism (i.e. the BIS; Rothbart et al., 2004).  Although Gray‟s 

theory has its critics (e.g. Corr, 2002), it is now more widely accepted than Eysenck‟s 

framework, primarily because Gray‟s formulation is consistent with some – but not all 

(e.g. Demaree, Everhart, Youngstrom, & Harrison, 2005) – contemporary findings 

from neuroscience research (e.g. Canli, Zhao, Desmond, Kang, Gross, & Gabrieli, 

2001). 

Notwithstanding the debate over whether Eysenck or Gray‟s temperamental 

formulation is correct, any credible foray into the issue of self-regulation and 
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temperament would look for corroborative evidence in the childhood research 

literature, since one would expect to see individual differences in temperamental 

substrates at even an early age.  Much of our current understanding of temperament in 

infancy and childhood is owed to the seminal work of Mary K. Rothbart and 

colleagues.  Through a comprehensive program of research involving both 

questionnaire (e.g. Rothbart, Ahadi, Hershey, & Fisher, 2001) and performance-based 

(e.g. Rothbart, 1988) measures, three broad factors of children‟s temperament have 

consistently emerged (Rothbart et al., 2004).  The first broad factor 

(Surgency/Extraversion), combines positive emotionality and approach, including 

activity level, impulsivity, positive anticipation, sensation seeking, and a negative 

loading for shyness, whereas the second broad factor (Negative Affectivity) is defined 

by anger/frustration, discomfort, fear, sadness, shyness, and a negative loading for 

soothability.  It is worth noting the congruence between these findings and those 

derived from studies on adult personality (see Watson, Clark, & Harkness, 1994) 

showing considerable overlap between positive affectivity (PA) and negative 

affectivity (NA), on the one hand, and the Surgency/Extraversion and Emotional 

Stability/Neuroticism factors of the Big Five Model of Personality (McCrae & Costa, 

1987), respectively. 

By contrast, the third broad factor (Orienting/Regulation) reflects only modest 

affective content in the form of low-intensity pleasure, but is also defined by 

attentional focusing, inhibitory control, and perceptual sensitivity (Ahadi, Rothbart, & 

Ye, 1993).  This third dimension has been consistently found (e.g. Rothbart, et al., 
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2001) to be orthogonal to, or negatively related to, fearfulness, the form of 

temperamental self-regulation purportedly carried out by Gray‟s (1970) BIS.  These 

three factors have been replicated in a longitudinal study of infants combining both 

parent-report and laboratory measures (Rothbart, Derryberry, & Hershey, 2000) and 

by factor analytic studies (e.g. Gartstein & Rothbart, 2003) on parent-reported infant 

temperament.  Thus, it would appear that as early as infancy, there are at least three 

broad temperamental dimensions defined by positive reactivity and approach, negative 

affectivity, and self-regulation, respectively.  However, it is not until 6 or 7 years of 

age that another form of self-regulation clearly begins to emerge and stabilize: a 

dimension that Rothbart and colleagues have labeled effortful control (Derryberry & 

Rothbart, 1997; Eisenberg et al., 2004).   

 Subsumed under the broad self-regulatory construct of effortful control (EC) 

are processes implicated in the executive control of attention and behavioral 

responding (Evans & Rothbart, 2007).  These processes include the flexible 

distribution of attention between threatening and rewarding sensory inputs: a capacity 

known as attentional control (Derryberry & Reed, 2002).  As elaborated on in the 

ensuing discussion, this capacity to both focus and shift attention when desired is 

viewed (Mathews, 2004; Rothbart & Rueda, 2005) as important in the voluntary 

execution of behavior, since attention to environmental stimuli is essential to the 

execution of responses to those stimuli (Corbetta & Shulman, 2002; Peake, Hebl, & 

Mischel, 2002; Posner & Rothbart, 2000; Rothbart & Bates, 2006; Rueda, Posner, & 

Rothbart, 2004, 2005).  The regulation of these behavioral responses can assume two 
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broad forms (Evans & Rothbart, 2007): (1) performing an action despite reactive 

tendencies to avoid said action (i.e. activation control); and (2) inhibiting reactive 

behavioral tendencies when they are maladaptive or do not concord with the 

immediate context (i.e. inhibitory control).  All three self-regulatory processes have 

been shown to be distinct (Evans & Rothbart, 2007), yet are interrelated and share 

common neural circuitry (Banfield, Wyland, Macrae, Münte, & Heatherton, 2004; 

Bronson, 2000), primarily within the prefrontal cortex (PFC).    

Approach and Reactive Self-regulation 

Consistent individual differences in approach behavior appear by 6 months of 

age, including differences in smiling and laughter that are related to short latencies in 

approaching objects (Rothbart, 1988).  Moreover, in the aforementioned longitudinal 

study by Rothbart, Derryberry, and Hershey (2000), individual differences in approach 

and positive emotionality in infancy were predictive of approach behavior and 

emotionality at 7-year follow up.  In this study, infants‟ reactions to nonsocial and 

social-eliciting stimuli were videotaped, and the smiling and laughter present in these 

infant responses were coded for duration, intensity, and duration.  These measures 

were then aggregated into measures of positive affect.  Infants‟ latency to grasp low-

intensity toys, such as small squeeze toys, were used as an index of approach, whereas 

children‟s movement amongst toys distributed throughout a room were treated as an 

index of activity level.  In this study, smiling and laughter in infancy predicted 

approach tendencies at seven years of age.  Moreover, when parents of a subset of the 

study infants completed the Children‟s Behavior Questionnaire (CBQ; Rothbart, et al., 
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2001) at 7-year follow-up, infant approach at 6, 10, and 13 months of age predicted 

paternal reports of their child‟s anger, aggression, approach, impulsivity, and sadness 

(Rothbart et al., 2004).  These findings are consistent with the positive relations 

between anger and activity level found in infancy (Rothbart, et al., 2001).  Fear did not 

predict later frustration/anger, and was negatively related to approach, impulsivity, 

and aggression at age 7, which is consistent with the idea (see Rothbart et al., 2004) 

that fear may be involved in the regulation of these tendencies (Gray & McNaughton, 

1996), a point that will be addressed below.  Thus, approach tendencies present as 

early as infancy may be related to both the short-term and long-term expression of 

negative and positive emotions (Derryberry & Reed, 1994a). 

By the last quarter of the first year of life, individual differences in inhibited 

approach to both unfamiliar and intense stimuli begin to emerge (for review, see 

Derryberry & Rothbart, 1997).  Anxiety and inhibition at 21 months can be predicted 

by a measure of combined crying and motor reactivity to stimulation taken at 4 

months (Calkins, Fox, & Marshall, 1996; Kagan, Snidman, & Arcus, 1992).  

Longitudinal research suggests considerable stability of anxiety-related inhibition 

from age 2 to age 8 (Kagan, Reznick, & Snidman, 1988), from 3 years of age to 18 

years of age (Caspi & Silva, 1995), and from early adolescence to early adulthood 

(Gest, 1997).  Such findings are consistent with the proposition that approach 

tendencies are relatively consistent across the lifespan, and concords with evidence 

gleaned from neuroscience research indicating that anxiety plays an important role in 

the regulation of approach behavior (Fowles, 1994).    
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Some theorists (Derryberry & Rothbart, 1997; Fowles, 1994; Gray, 1987) have 

posited that the neural circuitry related to anxiety may influence appetitive approach 

behavior via inhibitory connections to structures implicated in approach.  Structures 

related to anxiety are believed by some to be situated primarily within the 

septohippocampal system and Papez Circuit (i.e. Gray‟s BIS; Gray 1987, 1991), 

whereas the neurological substrates implicated in approach include dopaminergic 

neurons within the brainstem‟s ventral tegmental area and the nucleus accumbens (i.e. 

Gray‟s BAS; Gray 1987, 1991).  It has been argued that once the circuitry underlying 

anxiety has received information from sensory registers and the thalamus indicating 

the presence of a potential threat, such inhibitory connections allow the anxiety system 

to suppress approach responses that may place the organism in contact with harmful 

stimuli (Derryberry & Rothbart, 1997).  Anxiety-driven inhibition, thus, has potential 

implications for behavior both within and beyond the social realm, such as preventing 

a person from walking into oncoming traffic, or suppressing reward-seeking behaviors 

considered inappropriate in many social contexts (e.g. interpersonal violence). 

By implication, a relative lack of anxiety-driven inhibition may lead a person 

to respond with too much impulsivity.  For instance, a relatively fearless child with 

strong approach tendencies may initially respond with hope and enthusiasm at the 

prospect of forcefully procuring candy from its sibling, and act accordingly.  

However, such impulsive behavior would likely place the child in contact with 

potential sources of punishment, including reprimands from its parents and reprisals 

by its sibling.  Therefore, while it would be easy for such a person to anticipate the 
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positive consequences of approach behavior, it would be considerably more difficult 

for them to anticipate any negative outcomes that might result.  By contrast, the child 

with both strong approach tendencies and anxiety-driven inhibition would presumably 

be better at anticipating any potential problems that may result from their appetitive 

behavior, and be able regulate their behavior accordingly (Derryberry & Rothbart, 

1997).     

While the foregoing discussion highlights the adaptive value of anxiety-driven 

inhibition, it is also worth noting that anxiety could result in an overregulation of 

approach motivation.  This could be particularly problematic in persons with weak 

approach tendencies, who either do not anticipate or derive as much pleasure from 

positive and novel experiences as those with strong approach tendencies.  For 

instance, an adolescent who anticipates the social threats they may encounter from 

attending a party (i.e. strong fear motivation) may tend to avoid the party and other 

social encounters, regardless of any potential rewards that may be obtained through 

behavioral approach.  Such avoidance would presumably maintain social anxiety by 

denying the adolescent opportunities for positive, varied experiences that could help 

him or her develop the skills necessary for coping with their social fears (Derryberry 

& Rothbart, 1997).  The finding that anxious individuals show enhanced attention to 

threat cues (e.g. Derryberry & Reed, 1996; Vasey, Daleiden, Williams, & Brown, 

1995) is congruent with the idea that high levels of anxiety could promote 

overregulation of approach and maintain anxiety through the negative reinforcing 

consequences of operant avoidance (Brown, Chorpita, & Barlow, 1998).  
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Approach and Effortful Self-Regulation 

Although anxiety-driven regulation of behavior can be highly reflexive in that 

it enhances attention to both anticipated and immediate sources of threat, and inhibits 

approach accordingly, extreme anxiety may lead to the rigid overcontrol of behavior 

and its attendant developmental sequelae (Derryberry & Rothbart, 1997; Kremen & 

Block, 1998).  By contrast, an altogether different form of self-regulation that 

implicates voluntary, executive control processes within the brain has been proposed 

as a more flexible means for adapting behavior to meet contextual demands. Captured 

in the broad capacity for “effortful control (EC)”, this self-regulatory dimension of 

temperament is posited to reflect a person‟s capacity for inhibiting a dominant 

response so that a subdominant response can be performed (Rothbart & Bates, 1998; 

Rothbart, Ellis, Rueda, & Posner, 2003, Rothbart & Rueda, 2005, p. 169).  In other 

words, EC is conceptualized as an individual‟s ability to both temporarily stop 

performing an action that he/she ordinarily performs or is reactively inclined to 

execute, and replace that action with a response that is presumably more adaptive.  As 

such, EC allows a person to resist the immediate influence of his/her emotions and 

either approach feared situations (i.e. activation control) or flexibly resist what he/she 

is inclined to do (i.e. inhibitory control).  Hence, effortful control has been proposed 

as allowing for the voluntary control of behavior and emotion, including the flexible 

distribution of attention between threatening and rewarding sensory inputs (i.e. 

stimuli), and by implication is viewed as offering a more flexible means of self-

regulation than that afforded by reactive, anxiety-driven inhibition.   
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Effortful control has been characterized by some as being “situated at the 

intersection of the temperament and behavioral regulation literatures (Kochanska, 

Murray, & Harlan, 2000, p. 220; see Rothbart et al., 2004, p. 362).”  Much of the 

original impetus for research on EC stemmed from the emergence of a factor in 

parental measures of childhood temperament that captured seemingly voluntary forms 

of attentional and behavioral regulation (Rothbart & Bates, 1998).  Similarly, 

significant correlations were found among self-report measures of attentional 

focusing, attentional shifting, and inhibitory control in adults (Derryberry & Rothbart, 

1988).  Such findings led to the development of experimental tasks testing effortful 

control under conflict conditions (e.g. Gerardi-Caulton, 2000; Posner & Rothbart, 

2000).  More specifically, Rothbart and colleagues (2003) devised a task wherein 

children 2-to-3 years of age were required to resolve a conflict between the identity of 

an object and its spatial location (for a more detailed account of this study, see 

Rothbart et al., 2003).  In short, using a computerized touch screen, children were 

asked to press one of two keys that matched the identity of a stimulus presented on the 

left or right side of the screen.  Under such task conditions, there is a reported 

tendency for persons across the lifespan to press the key located on the same side of 

the screen as the stimulus itself, even when such a key does not match the identity of 

said stimulus (Gerardi-Caulton, 2000).  Subjects who perform well on this task are 

apparently able to suppress the conflicting spatial information and thus inhibit the 

dominant response tendency to respond with the hand corresponding to the location of 

the stimulus.  While anticipatory eye movements toward object locations were present 
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by 24 months, children could successfully perform the spatial conflict task only by the 

30th-month of life.  Nonetheless, individual differences on the task emerged between 

children by 30 months, such that children who performed well on the task were 

described by their caregivers as more skilled at attentional shifting and focusing, as 

well as less impulsive, less prone to frustration, and as having lower levels of negative 

affectivity.  Other studies (Gerardi-Caulton, 2000) have demonstrated that 

performance on this same task improves considerably between 27 and 36 months of 

age, which is in line with the hypothesis that effortful control is a function of the 

relatively late-developing “anterior attentional system” responsible for both the 

regulation of attention (Derryberry & Rothbart, 1997), the conscious control of 

behavior, and the ability to regulate more reactive motivational functions (Posner & 

Rothbart, 1992).   

Many of the primary brain structures responsible for the executive control of 

action, emotion, and thought are believed to reside within the prefrontal cortex (PFC), 

the anterior portion of the frontal lobe, which undergoes considerable maturational 

processes during early childhood (Banfield, Wyland, Macrae, Münte, & Heatherton, 

2004; Bunge, Dudokovic, Thomason, Vaidya, & Gabrieli, 2002).  Of particular 

importance is the ventromedial prefrontal cortex (VPFC), which is believed to be 

important in emotional processing and the control of behavioral output during social 

interactions (Dolan, 1999); the anterior cingulate cortex (ACC), a structure connected 

to the PFC that is purportedly involved in error detection (Miller, 2000), the resolution 

of conflicts between executive attention and prepotent attentional responding to threat-
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relevant stimuli (Mathews, 2004), the translation of intentions into actions (Banfield et 

al., 2004), and the executive control of attention (Bush, Luu, & Posner, 2000); and the 

dorsolateral prefrontal cortex (DPC), which is implicated in the ability to compare an 

achieved outcome with an intended goal (Dimitrov, Granetz, Peterson, Hollnagel, 

Alexander, & Grafman, 1999).  All of these structures develop in both functional and 

structural complexity across the lifespan, but undergo the most profound changes 

during early childhood (Bunge, et al., 2002), especially during the second and third 

years of life, when individual differences in effortful control begin to emerge 

(Derryberry & Rothbart, 1997; Eisenberg et al., 2004). 

Recent analyses (e.g. Kopp, 1992; Bronson, 2000) of the development of self-

regulation in childhood provide converging evidence that increased impulse control 

becomes available during the second year of life, as children attempt to influence both 

objects and other people (Rothbart et al., 2004).  However, self-regulatory skills and 

patience remain underdeveloped and it is not uncommon for children of this age to 

respond with anger when expectations are not met.  Nonetheless, by 3-to-4 years of 

age, more advanced self-control beings to emerge as children are able to comply with 

caregiver requests and maintain self-control when caregivers are absent (Kopp, 1992).  

Some researchers have argued that these and other developmental changes during this 

period are directly related to the development of executive attention and effortful 

control (Rueda, Posner, & Rothbart, 2005).  Although the temporal stability of 

effortful control has received surprisingly little research attention, some theorists (e.g. 

Derryberry & Rothbart, 1997) cite studies that have found children who are better at 
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delaying gratification during conflict tasks in preschool to be more attentive and 

resistant to stress as teenagers (Shoda, Mischel, & Peake, 1990).  Additional follow-up 

studies have found that preschoolers‟ delay of gratification behavior predicted their 

goal-setting and self-regulatory abilities when they reached their early-30s (Ayduk, 

Mendoza-Denton, Mischel, Downey, Peake, & Rodriquez, 2000).  What is more, in a 

longitudinal study by Caspi and Silva (1995), children who were inhibited (as 

measured by behavioral ratings) at 3 years of age, when differences in EC begin to 

emerge, scored low on self-report measures of impulsivity, danger seeking, 

aggression, and interpersonal alienation at age 18. 

While the foregoing discussion highlights the regulation of approach behavior, 

it has been argued that effortful control holds an essential function in the regulation of 

anxiety itself (Derryberry & Rothbart, 1997; Eisenberg et al., 2004).  This is 

attributable, in large part, to EC‟s role in the executive control of finite information 

processing resources essential to the regulation of behavior (MacCoon, Wallace, & 

Newman, 2004).  In cases where a person has strong anxiety-driven inhibition and a 

low capacity for the effortful control of action, attention will operate under 

predominantly reactive control and favor negative informational input, especially in 

situations where threat is anticipated.  For instance, if an anxious person narrowly 

focuses finite attentional resources on threatening stimuli within the environment, 

feelings of anxiety are likely to occur and increase in intensity, thereby limiting 

his/her capacity to devote attention to information relevant to safety and relief.  By 

implication, such individuals will be less able to flexibly shift attention between 
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sources of threat, relieving inputs, and information relevant to coping within their 

cognitive representations, hindering their capacity to confront the external stressor 

effectively.  By contrast, anxious individuals with high effortful control would be 

better able to disengage attention from both environmental threats and internal 

feelings of anxiety (i.e. attentional control), allowing them to deal with the stressor 

effectively (Derryberry & Reed, 2002; Derryberry & Rothbart, 1997; Lonigan & 

Vasey, 2009).  This proposition is supported by evidence obtained from research with 

adults (e.g. Derryberry & Rothbart, 1988), infants (e.g. Rothbart, Ziaie, & O‟Boyle, 

1992), and children (Wells & Matthews, 1994) indicating that the disengagement of 

attention from environmental threats attenuates feelings of anxiety and general 

negative affect.  

The Measurement of Attention Biases and Effortful Control in  

Cognitive Psychology 

Experimental paradigms used to test attention biases have their roots in 

cognitive psychology, where much of the empirical study of mental processes has 

originated.  One method that has been used extensively in the attention bias literature 

is the probe detection task developed by MacLeod and colleagues (1986), where two 

stimuli are presented simultaneously on a computer display for brief intervals (e.g. 

500 msec): stimuli that are either threat-relevant (e.g. the word “death”) or 

emotionally-neutral (e.g. the word “trees”) in content.  These presentation trials 

consist of either (a) two emotionally-neutral words, or (b) one threatening word and 

one neutral word.  This design is adopted so that one can test whether a person 
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preferentially allocates his or her attention to certain stimuli when multiple stimuli 

compete for processing priority, a situation analogous to those encountered by 

individuals in their daily lives.  On many of these trials, the presentation of these two 

words is followed by dot probes that appear in the location previously occupied by 

one of the two words.  Response times for probe detection are used as a measure of 

attention to a given word, where quicker (i.e. temporally shorter) response times 

across trials are taken as evidence of greater attentiveness to specific word content 

over the other (e.g. greater attention to threatening words than to emotionally-neutral 

words).  Clinically anxious (Taghavi, Neshat-Doorst, Moradi, Yule, & Dalgliesh, 

1999; Vasey, Daleiden, Williams, & Brown, 1995) and high test-anxious children 

(Vasey, El-Hag, & Daleiden, 1996), as well as high-trait anxious children and 

adolescents (e.g. Schippell, Vasey, Cravens-Brown, & Bretveld, 2003) have been 

found to be significantly faster at detecting probes in locations previously occupied by 

threatening words versus neutral words (see Lonigan, Vasey, Phillips, & Hazen, 

2004).  Similar findings have emerged in the adult literature, where dental phobics 

(Johnsen, Thayer, Laberg, Wormnes, Radaal, Skaret, Kvale, & Berg, 2003), clinically-

anxious (MacLeod & Mathews, 1991; Mogg, Mathews, & Eysenck, 1992), and high 

trait-anxious adults (e.g. Mogg, Bradley, & Hallowell, 1994) have exhibited 

attentional biases favoring threat cues.  By contrast, low trait-anxious children (e.g. 

Vasey & Schippell, 2002) and low-anxious adults (e.g. Mogg et al, 1994) seemingly 

have an attentional bias favoring neutral stimuli over threat-relevant stimuli (see 

Lonigan et al., 2004).   
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 Notwithstanding these similar findings across the lifespan, conflicting 

accounts have emerged that suggest elevations in state anxiety are characterized by 

attentional shifts away from threat cues (e.g. Mogg, Bradley, Williams, & Mathews, 

1993; see Lonigan et al., 2004).  To account for this incongruity, some researchers 

have posited (Mathews & MacLeod, 1994; Mogg et al., 1993) that the time interval of 

stimulus presentation determines whether or not the cue has entered conscious 

awareness for a sufficient duration, and as such the stimulus presentation interval may 

engage different stages of attentional processing: stages that fall under the broad 

rubrics of reactive and effortful attention.  In other words, if cues are presented for a 

time interval (e.g. 250 msec) insufficient to permit the effortful control of attention, 

persons who are highly reactive to threat cues (i.e. high NA) will demonstrate the 

aforementioned attentional bias toward said stimuli.  By contrast, when a threat cue is 

presented for a comparatively longer period that is sufficient to permit the effortful 

control of attention (e.g. 500 msec), individual differences in attention allocation 

emerge among those with reactive biases toward threat (i.e. high NA/N), such that 

persons with a greater capacity for effortful control (EC) are better able to override the 

reactive control of attention and redirect their attention away from threat cues than 

persons with less EC capacity.   

A review of the experimental literature supports this proposition. Whereas 

studies that present stimulus information for very brief intervals consistently 

demonstrate the aforementioned bias toward negative stimuli in persons with high 

NA/N, studies utilizing presentation intervals sufficiently long to engage effortful 
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processing yield smaller estimates of bias on average, suggesting the operation of 

differences in the effortful control of attention as a moderator of the association 

between NA/N and threat bias (Bar-Haim, Lamy, Pergamin, Bakersman-Kranenburg, 

& van Ijzendoorn, 2007; Lonigan et al., 2004).  This conclusion is further bolstered by 

a study (Derryberry and Reed, 2002), where they measured the attention allocation of 

high trait anxious (i.e. high NA/N) individuals toward and away punishment cues at 

different stimulus presentation intervals.  When signals of punishment were presented 

for intervals too brief to permit the effortful control of attention, participants 

demonstrated delayed disengagement from these punishment cues regardless of their 

attentional control (i.e. effortful control) capacity.  By contrast, high trait anxious (i.e. 

high NA/N) individuals with concurrently high levels of attentional control (AC) were 

able to disengage their attentional bias from threat and, thereby, resemble low trait 

anxious subjects in their attention allocation when punishment cues were presented at 

intervals permitting the effortful control of attention.  High trait anxious (i.e. high 

NA/N) individuals with concurrently low levels of AC, on the other hand, still 

demonstrated delayed disengagement from threat at these longer presentation 

intervals. 

 Similarly, in a recent study by Lonigan and Vasey (2009), participants between 

the ages of 9 and 18 completed a dot probe detection task (PDT) consisting of word-

pair trials presented supraliminally (1250 msec).   Excluding filler trials where no dot 

probe appeared subsequent to word-pair presentation, half of the testing trials 

consisted of two words of neutral emotional valence (e.g. “invent”), whereas the 
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remaining word-pair trials consisted of both threatening (e.g. “murder”) and neutral 

words (i.e. threat-neutral critical trials).  On the average, youths with concurrently 

high levels of NA/N and low EC, in contrast to those with high NA/N and high EC, 

evidenced significant reaction time biases (i.e. short response latencies) for probes 

following threatening words in comparison to probes following neutral words.  In 

effect, these results extended previous findings (e.g. Derrryberry & Reed, 2002) 

showing that individual differences in biases toward threat at stimulus presentation 

intervals sufficient for effortful attention are a function not only of NA /N or trait 

anxiety but also of EC.  Thus, it would appear that (i.e. high NA/N) persons with 

reactive biases favoring threatening cues differ amongst themselves in terms of a 

second, self-regulatory dimension (i.e., EC) that helps override the reactive control of 

attention.   

Temperament and the Development of its Attendant Neural Circuitry 

The foregoing discussion highlighted how effortful self-regulation contributes 

to a number of important developmental processes, including the ability to flexibly 

adjust approach behaviors and regulate anxiety, both of which are implicated in major 

theories of personality (Carver & Scheier, 2004).  In particular, aspects of the Five-

Factor Model of Personality (McCrae and Costa, 1987) implicate these developmental 

processes.  For instance, individual differences in Factor 1 (Extraversion) partly 

reflects variability in approach behavior by contrasting such personality characteristics 

as being assertive, self-confident, spontaneous, and socially adaptable with such traits 

as timidity, diffidence, cautiousness, and retire.  Anxiety would also seem to be 
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implicated in Factor 1, but would also ostensibly underlie individual differences in 

Factor 4 (Neuroticism) which, itself contrasts being calm, secure, and composed with 

being anxious, insecure, and excitable (Rothbart, et al., 2000).  The regulation of both 

approach and fear would also seemingly have implications for individual variability in 

Factor 5 (Openness to Experience) which reflects curiosity, independence, and a 

preference for variety on the one hand, with lack of interest, conformity, and a 

preference for routine (Rothbart & Bates, 1998).  

Though not the focus of the present study, it is worth devoting some attention 

to the purported neurobiological substrates of effortful control.  A primary goal of 

temperamental approaches is to understand how the development of specific neural 

systems is tied to the emergence of major dimensions of personality (Rothbart & 

Bates, 1998).  Although our understanding of how underlying differences in 

temperament translate into long-term personality differentiations is still in its infancy, 

a compelling account of how this process might unfold is provided by Derryberry and 

Rothbart (1997).  Central to their account is the notion that underlying differences in 

affective-motivational systems within the brain progressively shape an individual‟s 

personality in ways that are consistent with underlying temperament.  Their basic 

proposition is that cortical synapses progressively stabilize over time as the child‟s 

brain develops in response to environmental events (see Derryberry & Rothbart, 

1997).  As cognitive representations within the cortex progressively develop, neural 

plasticity allows for extreme diversity in neuronal interconnectivity, such that more 

active synapses tend to be strengthened and stabilized upon exposure to the 
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environment, whereas those synapses that are underutilized will regress.  Attention to 

certain types of environmental information will depend upon internal, selective 

information processes that arise from a child‟s motivational systems and constrain the 

impact of environmental events.  Thus, the resulting representational networks within 

the brain are shaped by active processes rather than passive instruction by the 

environment.  Such selective processes help determine which synapses are likely to be 

stimulated by the environment and subsequently stabilized upon repeated activation.  

 One form of motivational selection proposed within Derryberry and Rothbart‟s 

(1997) account arises from a person‟s inborn response tendencies, such that individual 

differences in temperament will expose them to specific types of information.  For 

instance, a fearful child may avoid contact with stimulating experiences and favor 

more familiar and calm environments.  By contrast, a child with strong approach 

tendencies will seek out novel and stimulating experiences.  Moreover, children with 

different response tendencies will also differ with respect to the types of information 

they evoke from their environments.  Fearful children may be treated in a gentle and 

protective manner by others, whereas children with strong approach tendencies may 

elicit intense social stimulation from others.  What is more, fearful versus approach-

oriented children will differ in their exposure to interoceptive emotional information, 

such that fearful children will be prone to negative affect and approach-oriented 

children will tend to experience positive affect.  Since underlying differences in 

temperament will expose persons to different types of information, such selective 
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processes will give rise to differential content across person‟s cognitive 

representations.   

 A more specific form of selective information processing proposed by 

Derryberry and Rothbart (1997) involves the regulation of attention by motivational 

systems.  This is rooted in the idea that people with different temperaments will be 

motivated to attend to different types of information.  Citing evidence from both 

developmental psychology (e.g. Ruff & Rothbart, 1996) and neuroscience (e.g. 

Singer, 1990), Derryberry and Rothbart (1997) argue that attention plays a significant 

role in enabling cortical plasticity.  By extension, since individuals with different 

temperaments will selectively attend to different types of information, as a 

consequence they will selectively store different information within their 

representational networks.  Consistent with this hypothesis, individuals with strong 

approach tendencies (e.g. neurotic extraverts) are slow to disengage attention from 

cues signaling the opportunity to gain points during a simple detection response, 

whereas anxious persons with weak approach tendencies (e.g. neurotic introverts) are 

slow to disengage attention from cues signaling the possibility of losing points 

(Derryberry & Reed, 1994b).  Moreover, anxious subjects are slow to disengage 

attention from locations containing negative trait adjectives and shift attention to 

targets in another location (Derryberry & Reed, 1996), which in concert with findings 

of negative attentional biases favoring threat in trait anxious and clinical anxious 

subjects (e.g. Vasey et al., 1995; Wells & Matthews, 1994), bolsters the proposition 



      

 

 26 

 

that people with different temperaments will preferentially attend to different types of 

information. 

Additional evidence (see Derryberry & Rothbart, 1997) indicates that anxious 

persons form stronger short-term memory representations for attended negative words 

(Reed & Derryberry, 1995) and show enhanced recall of negative information (e.g. 

Eysenck & Byrne, 1994; Wells & Matthews, 1994).  Derryberry and Reed (1997) 

maintain that findings of such attentional effects make adaptive sense, in that 

motivational systems would be expected to promote processes that facilitate attention 

to- and storage of information that promotes survival advantage and may prove useful 

for functioning in the future.  By implication, then, they argue that selective 

motivational biases in attention will progressively shape a person‟s cognitive 

representations (i.e. schemas) in ways that reflect underlying temperament and give 

rise to increased personality differentiation (Derryberry & Rothbart, 1997).  

Limitations of Previous Research  

Discussions of self-regulation as a key facet of personality are hardly unique to 

the literature on effortful control, as theorists from various perspectives have wrestled 

with self-regulation‟s place within the overall “architecture of personality” (Cervone, 

2004).  Much of the contemporary discussion on this topic has emphasized the 

adaptive value of self-regulation in governing human actions, yet debate continues as 

to whether self-regulation should be viewed as an enduring capacity of personality or 

as a ever-changing cognitive operation stemming from the dynamic interplay between 

knowledge structures, cognitive appraisals, and other mental processes (Pervin, 
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Cervone, & John, 2004).  Much of the conceptual and empirical work adhering to the 

view that self-regulation is a dispositional facet of personality has been carried out by 

Roy Baumeister, whose extensive program of research has greatly elucidated the 

importance of self-regulation in governing numerous domains of behavior, including 

aggression (e.g. DeWall, Baumeister, Stillman, & Gailliot, 2007), impression 

management (e.g. Vohs, Baumeister, & Ciarocco, 2005), thought suppression (e.g. 

Gailliot, Schmeichel, & Baumeister, 2006), and sexual (in)fidelity (Baumeister, 

Catanese, & Vohs, 2001).  According to his view, self-regulation relies on a limited 

resource that can become depleted through intense or prolonged periods of use 

(Muraven & Baumeister, 2000).  As a capacity with strength-like properties, efforts at 

self-regulation are believed to be prone to failure under conditions of “ego depletion”, 

leading to potentially less-than-optimal outcomes (Baumeister, Heatherton, & Tice, 

1994).  While an impressive body of evidence has been brought to be bear supporting 

this self-regulatory strength model (for review, see Baumeister, Gailliot, DeWall, & 

Oaten, 2006), much of this work has focused on the state-dependent properties of self-

regulation and the effects of temporarily depleting self-regulatory resources.  Though 

posited as a personality trait within Baumeister‟s framework (Schmeichel & 

Baumeister, 2004), forays into potential self-regulatory differences among individuals 

are notably lacking, save for examinations (e.g. Tangney, Baumeister, & Boone, 2004) 

of individual differences in factors believed to interact with ego depletion (e.g. 

psychological adjustment).  An examination of the dimensional features of a self-
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regulatory construct like effortful control may lend insight into the purported trait-like 

properties of self-regulation. 

It is worth underscoring, however, that the only studies to date that have been 

expressly intended to measure individual differences in effortful control with adults 

(e.g. Skowron & Dendy, 2004; Dinovo & Vasey, 2003, 2005) have relied to a large 

extent on self-reports.  Though potentially fruitful, such approaches do not accord 

with those promoted by such scholars as Fiske and Campbell (1992), who advocate 

the use of multiple methods when investigating psychological constructs.  Arguably, 

such monomethodism does not control for method variance wholly attributable to self-

reports as an assessment technology, nor does it permit one to disentangle this 

extraneous variance from that attributable to the constructs of interest.  Moreover, the 

reliance on self-reports is rooted in the presumption that participants are capable of 

introspectively apprehending the processes that underlie their behaviors and emotions 

when it is not clear that self-reports accurately describe these processes.  To the 

contrary, some experimental evidence suggests that people are often very inaccurate 

when asked to introspectively report their patterns of cognition (Nisbett & Wilson, 

1977), which raises some poignant concerns about the utility of such measures.  Thus, 

there remains a compelling need to determine whether or not findings from the extant 

adult effortful control literature are mere artifacts of self-report methodology.  A 

crucial step in this process is validation of the self-report measures of effortful control 

used to date. 
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Fortunately, means for assessing self-regulation are plentiful within the extant 

scientific literature, particularly in the area of research on executive functions (EFs): 

“…the principle classes of behavior that we use toward ourselves for purposes of self-

regulation...(Barkley, 2004; p. 304).”  To date, attempts at measuring self-regulation 

in adults have run the gamut from studies investigating regulatory control of 

interpersonal functioning (Vohs, Baumeister, & Ciarocco, 2005) to investigations of 

visual attention control during goal pursuit (Diehl, Semegon, & Schwarzer, 2006).  

Studies of this nature have utilized not only normative community samples (e.g. Fan, 

McCandliss, Sommer, Raz, & Posner, 2002), but also persons with Attention-

Deficit/Hyperactivity Disorder (e.g. Happe, Booth, Charlton, & Hughes, 2006) and 

those with neuropsychiatric disorders, including Schizophrenia (e.g. Perry, Potterat, & 

Braff, 2001; Twamley, Palmer, Jeste, Taylor, & Heaton, 2006).  While forays into the 

self-regulation literature provide countless options for measuring the construct using 

performance-based tasks, the prospect of choosing any one of these tasks is, 

nonetheless, quite daunting.  Moreover, the utilization of performance based measures 

that have been adopted in the extant self-regulation literature may ironically prove 

quite limiting, as they generally tap certain types of self-regulation (e.g. perseveration, 

emotion regulation) rather than self-regulation writ large.  Therefore, for purposes of 

the present study, it would seem that validation of existing measures of a self-

regulatory construct like effortful control should, at this stage, entail measuring those 

cognitive processes (or “classes of behavior”) necessary for all manner of self-

regulatory action.  Provided that the results of this study lend support for the use of 
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existing self-report inventories of effortful control with adults, subsequent studies 

could implement any number of the methods described in the self-regulation literature, 

particularly those utilized in studies investigating effortful control in childhood.  

At the heart of effortful control is the ability to override reflexive responses to 

environmental stimuli or delay a behavior for which reinforcement – either positive or 

negative – is immediately available.  Collectively, these conditioned responses and 

operants are referred to as prepotent responses.  These behaviors are highly reactive in 

nature, are often ingrained after years of use, and stem from the dynamic interplay of 

biological propensities and environmental shaping.  These behaviors comprise a large 

part of a person‟s psychological make-up, as inborn temperament interacts with 

learning in the emergence of personality.  With regard to voluntary prepotent 

responses, such operants can be either positively or negatively reinforced, such that 

certain responses are geared toward obtaining immediate rewards (i.e. positive 

reinforcement), or directed at avoiding and/or escaping aversive or undesirable stimuli 

(i.e. negative reinforcement).  Inhibition of a prepotent response – or the interruption 

of an ongoing prepotent response – involves the evaluation of information from one‟s 

immediate context, often with reference to long-term plans and more distal 

opportunities for reinforcement (i.e. goals).  This often requires maintenance of 

information in consciousness so that both the execution and sequencing of mental 

operations can be carried out (Baddeley, 1986); hence the self-regulatory importance 

of both working memory and the shifting of attentional resources (i.e. cognitive 

flexibility) between mental operations.  By extension, some have argued (e.g. Engle, 
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Conway, Tuholski, & Shisler, 1995) that increases in working memory load (not 

capacity) bring about concomitant decreases in the ability to engage in response 

suppression.  The proposition that working memory and inhibitory processes work in 

tandem to regulate prepotent responses was supported in a recent study by Mitchell, 

Macrae, and Gilchrist (2001), who found increased oculomotor antisaccadic errors 

during the inhibitory component of an n-back task (see Banfield et al., 2004).  

Nonetheless, it is worth noting that debate remains as to whether working memory and 

behavioral inhibition engage the same or different portions of the PFC (see Miller & 

Cohen, 2001).   

The above discussion also underscores the centrality of response inhibition 

within the effortful control construct.  Subsumed under this broad rubric is the 

capacity to both select and inhibit appropriate subsets of information obtained from 

the environment.  Studies investigating this key component of self-regulation have 

often focused on the process of thought suppression in both normal and disordered 

populations.  Although problems with thought suppression are hardly unique to 

clinical syndromes, particular deficits in this arena have been found in persons with 

lateral PFC lesions (e.g. Shimamura, Jurica, Mangels, Gershberg, & Knight, 1995), 

who demonstrate considerable problems suppressing previously learned material.  

Other studies that have utilized measures of inhibitory processes – including the 

Stroop and antisaccadic tasks – in these populations have generated comparable 

deficits (see Alvarez & Emory, 2006), bolstering the proposition of some that such 

inhibitory problems are reflective of a “general dysexecutive deficit” that manifests in 
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multiple cognitive tasks (Stuss, Floden, Alexander, Levine, & Katz, 2001).  Whether 

such effects would be found in low EC adults without frontal lobe lesions remains to 

be seen, but the concordance of low EC with childhood syndromes (e.g. attention-

deficit/hyperactivity disorder) involving deficits in impulse control lends preliminary 

support to this hypothesis (Auerbach, Berger, Atzaba-Poria, Arbelĺe, Cypin, 

Friedman, & Landau, 2008; Martel, Nigg, & Lucas, 2008; Martel, Nigg, & Von Eye, 

2009; Muris, Meesters, & Rompelberg, 2007; Wiersema & Roeyers, 2009). 

Another potentially worthwhile means of assessing effortful control may be 

found in psychophysiological explorations of executive function and the 

cardiovascular system.  Particular attention has been directed at fluctuations in the 

interbeat-intervals (IBI) between heartbeats in human subjects, otherwise known as 

heart rate variability (HRV).  Measurements of HRV have been taken in several 

studies involving cognitive tasks that require utilization of executive processes.  

Among such executive processes are those that engage working memory, as well as 

selective and sustained attention.  In particular, tasks requiring participants to maintain 

attention on environmental stimuli over extended time periods (i.e. vigilance), or those 

involving increasing mental workloads, have been used by researchers to assess 

executive function, since such paradigms are believed to tap limited capacity cognitive 

processes involved in the execution of behaviors during non-routine tasks (see 

Hansen, Johnsen, & Thayer, 2003).     

An investigation on the relationship between HRV and cognitive processes in 

healthy normal participants was recently carried out by Hansen and colleagues (2003).  
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Utilizing both a continuous performance test (CPT), as well as a working memory test 

(WMT), as measures of executive functioning, the study required that participants 

correctly identify the presentation of previously shown stimuli and complete a simple 

addition test.  Participants identified as being high in resting HRV via a median split 

evidenced more correct responses, faster mean reaction times (mRT), and fewer errors 

on these executive function tests than were subjects identified as having low HRV.  

Moreover, a study with dental phobics found that those with high resting HRV had 

shorter response latencies (i.e. RT) during a Stroop task than their low HRV 

counterparts to color-incongruent words and words related to dental threat (Johnsen et 

al., 2003).  These findings are consistent with those obtained in an earlier study with 

GAD patients and nonanxious controls, wherein both acceleration in heart rate and 

failures in cardiac orienting habituation to nonthreatening words were characteristic of 

those with low resting HRV (Thayer, Friedman, Borkovec, Johnsen, & Molina, 2000).  

By contrast, participants high in HRV habituated more quickly and had larger cardiac 

orienting responses to nonthreatening words than their low HRV counterparts.  Heart 

rate variability (HRV) also appears to be associated with a variety of indices related to 

psychological and physical functioning, such that low HRV is involved in a variety of 

disease states, including cardiovascular disease (Stein & Kleiger, 1999), depression 

(Thayer, Smith, Rossy, Sollers, & Friedman, 1998), generalized anxiety disorder 

(Thayer, Friedman, & Borkovec, 1996), and posttraumatic stress disorder (Cohen, 

Matar, Kaplan, & Kotler, 1999).  Low HRV has also been found to be associated with 

poor attentional control and emotion regulation (especially anxiety), as well as 
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behavioral inflexibility (Friedman & Thayer, 1998a, 1998b; for review see Thayer & 

Friedman, 2004). 

As mentioned previously, many of the neural structures believed to be 

implicated in executive function are thought to reside within the prefrontal cortex 

(PFC), which itself consists of structures that constitute a portion of what has been 

coined the central autonomic network (CAN; Benarroch, 1997; Bob, Susta, 

Gregusova, & Jasova, 2009; Thayer & Broschott, 2005; Thayer & Friedman, 2004).  

Consisting of various subdivisions of the hindbrain (e.g. ventrolateral medulla, pons) 

and forebrain (cerebral cortex, amygdala, hypothalamus), the CAN is involved in 

goal-directed behavior and the modulation of autonomic processes (e.g. heart beat, 

blood pressure) through sympathetic and parasympathetic neuronal innervation of the 

stellate ganglia and vagus nerve.  These latter structures modulate heart rate through 

cardiac vagal activity and parasympathetic inputs and, in so doing, underlie the 

variability that one sees in heart rate over time (Ruiz-Padial, Sollers, Vila, & Thayer, 

2003).  Problems in self-regulation are viewed by some as a failure in the negative 

feedback functions of inhibitory vagal processes, resulting in positive feedback loops 

that promote hypervigilance and other deleterious consequences that deplete the 

processing resources needed to carry out other behavioral and cognitive functions 

(Thayer & Friedman, 2004).  Since many of the neural structures associated with the 

regulation of attention and emotion are also implicated in the functions of the CAN, it 

is possible that the processes underlying self-regulation – including effortful control – 

can be indirectly assessed vis-à-vis measures of HRV.   
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In light of the above possibilities, the purpose of the present study was 

twofold.  First, I endeavored to determine the extent to which self-report measures of 

effortful control concord with performance-based measures of executive function in 

adults.  In pursuit of this first aim, efforts were made to determine whether effortful 

control, as measured by self-report, concords with the executive functions presumed to 

underlie self-regulation.  It was hypothesized that effortful control and its various 

facets (i.e. activation control, attentional control, and inhibitory control), as measured 

by the effortful control subscale of the Adult Temperament Questionnaire (ATQ-EC; 

Rothbart, 2001; Evans & Rothbart, 2007) and the Attentional Control Scale (ACS; 

Derryberry and Reed, 2002), would have significant relations to measures of executive 

function, where persons with high levels of EC would perform better on executive 

function measures than those reporting low levels of EC.  Specifically, it was 

predicted that persons who score low on the ATQ-EC and ACS, relative to those who 

score high on these self-reports, would demonstrate deficits in various areas of 

executive function, as evinced by the following: longer response latencies (i.e. lower 

Interference T-Scores) to color-incongruent words on the Stroop Color Word 

Interference Test (Stroop, 1935); higher numbers of perseverative errors (i.e. repeating 

incorrect responses) during sorting rule shifts on the Wisconsin Card Sorting Task 

(WCST; Heaton, Chelune, Talley, Kay, & Curtiss, 1993); and lower working memory 

index scores on the Wechsler Memory Scale – 3
rd

 Edition (WMS-III; Wechsler, 

1997a).  With respect to the Stop-Signal Task (Logan et al., 1997), it was expected 

that, relative to those self-reporting high EC, persons with low EC would evidence 
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longer reaction times on stop-trials owing to deficits in response inhibition, as well as 

longer and more variable reaction times on go-trials owing to deficits in attentional 

focusing.   

A second aim of the proposed study was to determine the degree of 

concordance between self-report measures of effortful control and a non-invasive 

physiological measure of executive function, heart rate variability (HRV).  It was 

hypothesized that effortful control and its facets (i.e. activation control, attentional 

control, and inhibitory control), as measured by self-report (e.g. ATQ-EC, ACS), 

would have positive relations with HRV, such that persons who score high on EC self-

reports would have concurrently high HRV at resting state, as demonstrated by high 

variability in their interbeat-intervals (IBI).  IBI variability was indexed by the time-

domain measure of root mean square successive differences (RMSSD) between R-

waves, as well as natural-logarithmic transformed heart period variability in high-

frequency (0.15 to 0.30 Hz) spectral power.  Consistent with the findings of Johnsen 

and colleagues (2003), those with high resting HRV were expected to demonstrate 

shorter response latencies (i.e. higher Interference T-Scores) during the Stroop Color 

Word Interference Test than their low HRV counterparts to color-incongruent words.  

It was also expected that persons with high HRV, compared to those with low HRV, 

would have fewer numbers of perseverative errors on the WCST; higher working 

memory index scores on the WMS-III; and shorter RTs on stop-trials, as well as 

shorter and less variable RTs on go-trials, on the Stop-Signal Task.   
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To control for the possibility that EC is merely an indicator of intelligence (a 

construct that involves executive functions and prior knowledge), the WAIS Sattler-2 

Composite (Sattler, 2001) was included as a proxy measure of intelligence in the test-

administration battery.  My hypothesis was that the WAIS Sattler-2 Composite would 

not correlate significantly with heart-rate variability, effortful control, or any facet of 

effortful control (i.e. activation control, attentional control, inhibitory control), since 

self-regulation is viewed as a capacity independent from intelligence that involves 

executive functions but not other constructs (e.g. vocabulary, mathematical 

knowledge) subsumed under the higher-order construct of intelligence (Wechsler, 

1997b).  It was my expectation that such findings would not only provide evidence-

based support for using a self-report measure of effortful control, like the ATQ-EC, in 

adults, but also that the findings of this study would lend tentative support to the 

construct validity of effortful control.   
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Chapter 2: Method 

Participants  

 Data were obtained from introductory psychology students enrolled at The 

Ohio State University, excluding pilot data from participants that were gathered prior 

to formal data acquisition.  A priori power analyses indicated that we needed to 

procure data from at least 115 partcipants for a moderate effect size (d = 0.50; r = 

0.243; r
2
 = 0.059) and adequate power (1 – β = 0.80) at the 0.05 significance (α) level 

(Cohen, Cohen, West, & Aiken, 2003).  For inclusion in this study, participants had to 

be 18 years of age or older.  No additional exclusion criteria were used.   

Procedure 

 Introductory psychology students were recruited via the Research Experience 

Program (REP) website, which manages participation in departmental studies for 

persons receiving credit in partial fulfillment of a course research requirement.  Prior 

to enrollment, a brief description of the study was provided which informed subjects 

that participation required them to attend one assessment session of approximately two 

hours duration, during which questionnaires, tests of cognitive ability, and heart rate 

measurements were to be administered.  To facilitate better attendance, an email 

reminder was sent to participants one day prior to their scheduled appointment. 

 Upon arriving to their scheduled session, each individual participant provided 

his or her name to the researcher to ensure that research credit was given.  Shortly 
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thereafter, subjects read and signed a consent form that reiterated participation 

requirements and confidentiality procedures, and informed them that they had the 

option to withdraw from the study at any time without penalty.  After providing their 

written consent, participants were instructed in how to put on the HRV recording 

device (i.e. a POLAR heart-rate monitor) and given privacy so that they could attach it 

to their person.     

 The HRV device consisted of a WearLink coded transmitter and chest strap 

that sends short wave signals to a wristwatch receiver.  The chest transmitter strap was 

to be placed in direct contact with a participant‟s upper body, such that the WearLink 

transmitter was situated at the thoracic diaphragm.  Sensors on the chest strap were 

moistened with room-temperature tap water to improve skin conductance.  To ensure 

that the HRV device was properly attached, an individual member of the research staff 

asked the participant to explain how the HRV device was attached and subsequently 

activated the POLAR watch receiver to ensure that it was receiving heart-rate 

measurements from the WearLink transmitter.  The POLAR wristwatch was held by 

the assigned staff member so that he or she could both monitor the functioning of the 

transmitter on a continuous basis, and press buttons on the watch so that HRV data 

could be time-stamped at the beginning and end of each assessment phase.  The watch 

receiver was situated within 5 feet of the participant for the entirety of the protocol to 

facilitate reception of heart-rate signals sent by the WearLink transmitter.   

Assessment involved four phases, three of which were completed in a 

randomized order to control for fatigue and order effects.  In all cases, the first phase 
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was a 10 minute resting period during which participants sat alone in a darkened, 

sound-attenuated room so that measurements of resting heart-rate could be procured.  

Participants were instructed to minimize physical movement (e.g. no foot tapping, no 

rocking in chair) and avoid standing upright during the resting period.  Participants 

were made aware that physical movements could elevate their heart-rate and, thereby, 

render their heart-rate data invalid.  To help further ensure that accurate measurements 

of resting heart-rate were being taken, this initial assessment phase began no earlier 

than 10 minutes after the participant arrived.  This procedure was implemented so that 

heart-rate could return to baseline from any elevations that covaried with pre-

assessment physical activity (e.g. walking to assessment location).   

Following this initial resting period were three assessment phases: (1) 

questionnaire completion; (2) completion of manually administered executive function 

measures; and (3) completion of computerized executive function measures.  

Assessment administration was hierarchically randomized, such that both the order of 

phase completion, and measure administration within these phases, was randomly 

determined.  Heart-rate measurements were taken continuously throughout completion 

of all phases, but only HRV data from the initial resting period were utilized in our 

analyses (note: remaining HRV data were collected for analytic purposes not germane 

to the present study).  Details regarding each of the assessment measures utilized 

follow.   

Self-Report Instruments 
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Self-report measures were included in a questionnaire packet and arranged in a 

randomized order.  All of these measures have been used extensively in undergraduate 

samples.  A demographic information sheet will also be included as the first document 

of the questionnaire battery.  In light of our use of self-report measures, the Balanced 

Inventory of Desirable Responding (BIDR) was used as an index of social desirability 

response bias.   

The Adult Temperament Questionnaire – Short Form (ATQ; Evans & 

Rothbart, 2007; Rothbart, 2001; Rothbart, Ahadi, & Evans, 2000): The ATQ is a 77 

item self-report originally adapted from the Physiological Reactions Questionnaire 

(Derryberry & Rothbart, 1988), a putative measure of temperamental constructs 

related to affect, arousal, and attention.  Items on this measure are rated on a 7-point 

Likert response scale from 1 (extremely untrue of you) to 7 (extremely true of you), 

with higher scores indicating greater levels of a corresponding temperamental 

construct.  Each of four temperamental constructs – Negative Affect, 

Extraversion/Surgency, Orienting Sensitivity, and Effortful Control – is represented 

by a corresponding subscale on the ATQ.  Nineteen of the 77-items make up the 

Effortful Control subscale (ATQ-EC), which is internally consistent (α = 0.77) and 

itself consists of subscales corresponding to Attentional Control, Inhibitory Control, 

and Activation Control.  Attentional control refers to the ability to voluntarily focus 

and shift attention, whereas Inhibitory Control reflects the capacity to suppress 

inhibitory approach behavior.  By contrast, the capacity to perform an action, despite 

prepotent tendencies to avoid it, is captured by Activation Control.  The ATQ-EC 
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holds both inverse (r = -0.38) and positive (r = 0.60) relations with the Neuroticism 

and Conscientiousness dimensions of the Big Five, respectively (Evans & Rothbart, 

2007).   

The Attentional Control Scale (ACS; Derryberry & Reed, 2002):  The ACS is 

a 20-item measure that assesses the general capacity for attentional control, a key 

function of the more broadly defined effortful control.  Items on the ACS require 

participants to rate their degree of voluntary attentional control on a 4-point Likert 

response scale (1=almost never, 2=sometimes, 3=often, 4=always).  The scale is 

internally consistent (alpha = 0.88), and is positively associated with indices of 

Positive Emotionality (r = 0.40), for instance Extraversion, and is inversely associated 

with facets of Negative Emotionality (r = - 0.55), such as Trait Anxiety (Derryberry & 

Reed, 2002).  Scores on the ACS have also been shown to be positively correlated 

with activity in the anterior cingulate cortex (ACC) during the control of attention to 

threat-relevant stimuli (Mathews, 2004).  

 The Balanced Inventory of Desirable Responding (BIDR; Paulhus, 1984):  The 

BIDR is a 40-item measure of two constructs: self-deception positivity (the tendency 

to provide honest yet positively biased self-reports) and impression management 

(deliberate self-presentation).  Each item is stated as a proposition, requiring 

respondents to indicate on a 7-point Likert response scale their level of agreement 

with each of the statements.  The BIDR is internally consistent (alpha = 0.83) and has 

adequate test-retest reliability over a 5-week period for the self-deception (r = 0.69) 

and impression management (r = 0.65) scales, respectively.   
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Task Completion Questionnaire (TCQ; Dinovo, 2007; not published): The 

TCQ is a 15-item self-report designed for this study to measure the extent to which 

participants believed that task performance was affected by factors extraneous to the 

test measures.  From these items one can compute not only a total score, but the items 

were designed to relate to five types of factors that could potentially impact task 

performance (i.e. fatigue, distraction, stress, effort, and task attention), and three 

subscales corresponding to task completion phases (i.e. questionnaires, computerized 

measures of executive function, and researcher-administered measures of executive 

function).   

Executive Function Measures 

Executive function measures were completed in two separate phases: manual 

test-administration and computerized administration.  Manual administration was 

conducted by the author, who had extensive testing experience with each of these 

measures.  The decision to assign manual test administration to the primary 

investigator alone was made to both minimize the costs associated with training 

research personnel in the proper use of these instruments, and to maximize uniformity 

in both test administration and scoring.  The battery of manually-administered tests of 

executive function included the (1) Stroop Color-Word Interference Test, (2) Letter-

Number Sequencing and Spatial Span subtests of the WMS-III (i.e. working memory 

subscales), and (3) Vocabulary and Matrix Reasoning subtests of the WAIS-III (i.e. 

Saddler-2 Composite).  The administration and scoring of these (and our 
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computerized) tests were conducted without knowledge of either participant 

responding to questionnaire items or individuals‟ resting HRV. 

The computerized testing battery consisted of the Wisconsin Card Sorting 

Task (WCST) and a Stop-Signal Task.  While the WCST is often manually 

administered, a computerized version was chosen due to the primary investigator‟s 

limited experience administering this measure and attendant concerns about 

measurement reliability.  Thus, a commercially-available automated, computer-based 

platform was chosen to help ensure uniformity in test administration and scoring, and 

minimize the costs associated with training research personnel in the complicated 

administration of the WCST.  By contrast, the Stop-Signal Task can only be 

administered in a computerized format.       

These computerized tests of executive function were completed in a 

randomized order in a darkened, sound-attenuated room.  Participants sat directly 

facing the computer monitor and viewed stimuli from approximately 3 feet (i.e. 0.9 

meters) away.  Responses on both tasks were collected via the computer‟s keyboard 

while participants viewed stimuli presented on a Dell monitor controlled by a Dell 

Optiplex GX240 computer.   

Computerized Stop-Signal Paradigm (Logan et al., 1997): A measure of 

inhibitory control, the Stop-Signal Paradigm involves two tasks that are completed 

concurrently; a Go Task where subjects are to discriminate one stimulus (i.e. “X”) 

from another stimulus (i.e. “O”), and a Stop Task that is interspersed with go-task 

trials and accounts for 25% of all trials.  Each trial involves the presentation of one 
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stimulus (an “X” or “O”).  On Go Trials, participants are required to identify which 

stimulus is presented by pressing one of two keyboard buttons corresponding to the 

stimuli themselves.  However, on Stop Trials a 1000-Hz tone of 100-ms duration (i.e. 

the Stop Signal) is sounded that indicates that a participant should refrain from 

pressing the keyboard button that corresponds to the stimulus presented on the 

computer screen.  Thus, the Stop Task requires participants to inhibit a Go Trial 

response.  Whether or not the participant is able to inhibit a Go Trial response depends 

on a race between the stop task and the go task. Stimuli are presented in eight blocks, 

each consisting of 32 trials.  The delay in sounding the Stop Signal following the 

presentation of the go stimulus varies between trials, and was continuously adjusted 

throughout the entire test based on the participant‟s success or failure in inhibiting a 

response on the previous Stop Trial.  If a response was successfully inhibited during 

the Stop Trial, the delay between onset of the go stimulus and the Stop Signal was 

lengthened by 50 ms (i.e., the participant was given less time to inhibit the go 

response).  By contrast, if a response was not successfully inhibited during the 

previous Stop Trial, the stop-signal delay was shortened by 50 ms (i.e., the participant 

was given a longer interval in which to inhibit the go response).  Thus, the reaction 

time algorithm adopted for this study (see Logan, Schachar, & Tannock, 1997) 

adjusted the stop-signal delay based on performance on the preceding Stop Trial (with 

the exception of the first Stop Trial, on which the Stop-Signal Delay was fixed at 250 

ms for every participant).  Stop-Signal Reaction Time is computed as the difference 
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between a participant‟s reaction time (i.e. latency of button pressing) on Go Trials and 

his/her mean Stop Signal Delay, and serves as an index of inhibitory control.   

Computerized Wisconsin Card Sorting Task (WCST; Heaton, Chelune, Talley, 

Kay, & Curtiss, 1993):  The WCST is widely cited (e.g. Baddeley, 1996; Stuss & 

Levine, 2002) as the most frequently used measure of executive function and is 

regarded by many as a key measure in the diagnosis of frontal lobe dysfunction (e.g. 

Bornstein, 1986; Stuss, Levine, Alexander, Hong, Palumbo, Hamer, Murphy, & 

Izukawa, 2000).  Participants are presented with a series of geometric figures that vary 

not only by shape, but also by color and number.  This task requires participants to 

sort cards according to a rule that must be deduced from feedback (“right” or 

“wrong”) provided by the test administrator.  Cards are to be sorted according to the 

shape, color, or number of figures presented on each trial, but the sorting rule shifts 

after correct placements on ten consecutive trials.  The sorting rule change can only be 

gleaned by the change in feedback provided by the test administrator, such that ten 

consecutive “right” placements followed by a “wrong” placement implicitly indicates 

a change in the sorting rule.  This procedure is repeated until six sorting rule shifts 

have been achieved or all the trials have been completed.  In this study, a 64-trial (i.e. 

card) computerized version of the WCST was utilized (Psychological Assessment 

Resources, Inc., 2006).  Numerous studies indicate that adults with frontal lobe lesions 

perform worse on the WCST than healthy controls (e.g. Van Den Broek, Bradshaw, & 

Szabadi, 1993), although this performance differential has been notably absent in 

many studies comparing patients with frontal and non-frontal brain lesions (e.g. 
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Axelrod, Goldman, Heaton, Curtiss, Thompson, Chelune, & Kay, 1996).  These latter 

findings, in concert with neuroimaging studies indicating that WCST performance 

activates both frontal and non-frontal brain regions (e.g. Bermen, Ostrem, Randolph, 

Gold, Goldberg, Coppola, Carson, Herscovitch, & Weinberger, 1995; Nagahama, 

Fukuyama, Yamauchi, Matsuzaki, Konishi, Shibasaki, & Kimura, 1996), would seem 

to suggest that performance on the WCST is a sensitive, though not specific, indicator 

of frontal lobe functioning (for review, see Alvarez & Emory, 2006).  The number of 

perseverative errors (i.e. repeating incorrect responses despite feedback) on this task 

provides an index of inhibitory functioning and cognitive flexibility (Kongs, 

Thompson, Iverson, & Heaton, R. K., 2000, p. 44), key components of effortful 

control.      

Stroop Color Word Interference Test (Stroop, 1935): One of the most 

extensively studied measures of selective attention for over 70 years, the Stroop is a 

classic test of cognition that has generated over 1000 published articles (for review, 

see MacLeod, 1991; Stuss et al., 2001).  Although multiple versions of the Stroop 

exist, the test often consists of three sets of stimuli: (a) color words (e.g. “RED”) 

printed in black ink; (b) color patches or colored X‟s; and (c) color words printed in 

ink colors that are incongruent with the meaning of the word (e.g. the word “GREEN” 

printed in red ink).  The Stroop requires participants to read the actual color words 

themselves as they are presented in the first set, and subsequently name the colors 

presented (not the words) in the second and third sets.  It is during the latter set, in 

which color words are printed in incongruous colored ink, that one generally sees a 
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slowing in reaction time (RT) known as the “Stroop effect”.  This significant slowing 

of performance owes itself to the tendency of participants to name the color words 

themselves rather than the ink color in which the words are printed.  Consequently, the 

Stroop may be a useful measure of response inhibition, a key component of effortful 

control.  The colors are often highly differentiable and the different color words 

(typically 3 to 5, depending on the test utilized) are usually presented in sets of 100.  

Persons with frontal lobe lesions typically perform worse on the Stroop than normal, 

healthy controls (Stuss et al., 2001; Vendrell, Junque, Pujol, Jurado, Molet, & 

Grafman, 1995), although these effects appear to be limited to the lateral and superior 

medial areas of the frontal lobes (Alvarez & Emory, 2006).  In particular, persons with 

left frontal lobe lesions usually perform worse on the incongruent color naming 

portion of the Stroop than persons with lesions in the right frontal, right non-frontal, 

and left non-frontal regions (Stuss et al., 2001).  Though many methods for analyzing 

reaction time on the Stroop exist (MacLeod, 1991), the index for color-naming 

interference utilized in this study was a participant‟s color-word score minus his or her 

predicted color-word score: a value which is estimated on the basis of a participant‟s 

obtained scores on the color and word sections of the test.  The difference between 

these two values is then converted into an Interference T-score, where higher T-scores 

correspond to less color-word interference (i.e. better response inhibition) than lower 

T-scores (Golden & Freshwater, 2002).  

Matrix Reasoning & Vocabulary subtests of the Wechsler Adult Intelligence 

Scale – 3
rd

 Edition (WAIS-III; Wechsler, 1997b): Numerous attempts have been made 
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in the past two decades to develop a valid measure of IQ that can be administered in 

less time than currently required by standard intelligence tests like the WAIS-III 

(Axelrod, 2002).  Many of these efforts have involved seeing which portions of the 

WAIS-III correlate most highly with Full Scale IQ and, at present, the Sattler-2 

Composite (Sattler, 2001), which combines the WAIS-III Matrix Reasoning and 

Vocabulary subtests, offers the most time-efficient and valid measure of IQ available.  

Combined, these two subtests of the WAIS-III hold correlations of 0.89, 0.90, and 

0.93 with Verbal IQ, Performance IQ, and Full IQ, respectively (Brooks & Weaver, 

2005).  The Vocabulary subtest asks that respondents define words, whereas the 

Matrix Reasoning subtest requires participants to look at incomplete pictures 

involving abstract patterns and identify which of 5 response options completes the 

pattern.  The Wechsler Adult Intelligence Scale itself is a well validated, standardized 

assessment device used in medical, psychiatric, and educational settings for the 

purposes of measuring individual differences in intelligence.  The WAIS-III is one of 

the most widely used instruments for measuring IQ employed by professionals 

(Brooks & Weaver, 2005; Lange et al., 2006). 

Letter-Number Sequencing & Spatial Span subtests of the Wechsler Memory 

Scale – 3
rd

 Edition (WMS-III; Wechsler, 1997a): These two subtests of the WMS-III 

form a combined measure of working memory, a key executive function. Letter-

Number Sequencing involves the presentation of letters and numbers and requires that 

respondents repeat the letters and numbers in a different order: the numbers in 

increasing order, then the letters in alphabetical order.  Spatial Span consists of a 
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series of blocks situated on a flattened board.  The test is divided into two parts.  First, 

on each trial the test administrator touches a pattern of blocks that the respondent must 

replicate.  By contrast, during the second part of this test the respondent must touch 

the blocks in reverse order from the way they were touched by the test administrator.  

Higher numbers of correctly-responded trials on both parts are believed to be 

indicative of greater working memory capacity.  The Wechsler Memory Scale itself is 

a well validated, standardized assessment device used in medical, psychiatric, and 

educational settings for the purposes of measuring individual differences in memory 

(Lange et al., 2006). 

Assessment of Heart Rate Variability (HRV) 

  Electrocardiographic (ECG) signals were obtained during a 10 minute resting 

period from a POLAR RS800 Running Computer Wristwatch and WearLink 

Transmitter (Heart Rate Monitors USA, Inc., 2007).  Data obtained from the POLAR 

watch were downloaded to a computer using an IrDA Interface Port.  Using the ECG 

signal, heart period was defined as the time interval between sequential R-waves, as 

measured in milliseconds.  Per the joint recommendations of the Task Force of the 

European Society of Cardiology and the North American Society of Pacing 

Electrophysiology (1996), we adopted the spectral power in high-frequency (0.15 to 

0.30 Hz) heart period variability (HF-HPV) as a frequency domain measure, since the 

vagus is the only autonomic influence known to exist at this high frequency and, thus, 

modulation of heart rate reflected cardiac vagal activity and parasympathetic input 

(Ruiz-Padal et al., 2003).  Vagally mediated HRV was indexed, in part, using this 
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frequency-domain measure.  Spectral power estimates were natural-log transformed 

prior to statistical analysis to ameliorate distributional violations.  Frequency-domain 

analyses used an autoregressive statistical method.   Resting HRV measurements were 

analyzed using the KUBIOS HRV Analysis Software (Biosignal Analysis and 

Medical Imaging Group, 2008).   

    Resting HRV measurements were taken during a 10 minute resting period 

where each participant was sequestered individually in a sound-attenuated room.  

Resting periods began 10 minutes subsequent to each participant‟s arrival to the study.  

During this resting period, all participants were instructed to sit silently in a chair and 

minimize motor movements while resting their heads on a table situated in front of 

them.  Upon completion of the study, heart-rate variability measurements were 

submitted to KUBIOS, whereby a Hamming window was used to linearly detrend, 

mean center, and taper the time series.  Vagally-mediated (parasympathetic) cardiac 

control was then measured using both the time-domain measure, square root of mean 

successive differences (RMMSD) between R-waves, and the frequency-domain 

measure, natural logarithm of high frequency power (Ln (Resting HF Power).  Higher 

scores on both measures are associated with higher heart rate variability (HRV) in 

contrast to lower scores. 

Data Analytic Strategy 

 Internal consistencies for the self-report measures of effortful control were 

computed as Cronbach‟s alpha (α) coefficients, which effectively function as indices 

of inter-item response consistency to all items in a test measure (Anastasi & Urbina, 



      

 

 52 

 

1997, p. 97).  Split-half reliabilities were calculated for our performance-based 

measures of executive function by dividing odd and even numbered test items into 

separate halves (rather than correlating the first and second halves of the tests) to help 

minimize differences not only in the nature and difficulty of test items, but also to 

minimize cumulative effects related to practice, fatigue and other factors the vary from 

the beginning to the end of test administration.  The reliability of HRV was assessed 

via intraclass correlation coefficients (ICC) computed between the first and last five-

minute periods of measurement during our initial resting phase.   

To assess the degree of concordance between the three self-regulation 

measurement modalities, several data analytic procedures were adopted.  First, the 

overall agreement between these measures (i.e. self-report, EF tests, HRV) was 

computed via Pearson correlation coefficients.  Correlations between these measures 

served as proxy validity coefficients, where statistically significant, high correlations 

between measures were indicative of a high degree of correspondence. Second, any 

significant correlations identified between the effortful control self reports (ATQ-EC 

and ACS) and non-questionnaire measures (i.e. executive function measures, HRV 

measures) were explored further via multiple linear regression to control for 

demographic characteristics, intelligence, social desirability response bias (i.e. self-

deception positivity and impression management, as indexed by the BIDR), and 

factors extraneous to the test measures that may have affected performance (i.e. TCQ 

Total).  Similarly, non-significant correlations relevant to predictions were re-

examined via multiple regression to determine whether extraneous variance associated 
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with task performance (i.e. TCQ Total), socially desirable responding (i.e. BIDR 

Impression Management, BIDR Self-Deception), or sex-based variable differences 

(i.e. sex differences in HRV) suppressed zero-order relations.  

These multiple linear regressions were conducted in a hierarchical fashion, 

where a main effect model was first computed, followed by the subsequent addition of 

covariates in a “Full Model” that included the main effect variable and six covariates.  

Semi-partial correlation (sr) coefficients were computed for each of the full models, 

which provided estimates of the linear relationships between two variables after 

partialling out (or removing) the variance that those two variables share with other 

covariates included in the regression models (Cohen et al., 2003, pp. 72-73).   

In light of the fact that all of the TCQ subscales were intended to measure 

extraneous factors (e.g. fatigue, inattention) that could have affected task performance, 

a decision had to be made regarding their inclusion in our regression analyses.  This 

decision was particularly important because one can utilize up to nine separate indices 

from the TCQ.  It was ultimately my view that it was important to limit the number of 

TCQ variables in our regression equations to minimize the possibility of committing 

Type I error (see Cohen et al., 2003, pp. 185-187).  Additionally, as discussed in the 

Results section, these subscales lacked adequate distributional properties relative to 

the TCQ Total. Moreover, the TCQ Total alone arguably provided an adequate basis 

for assessing the impact of extraneous performance factors, since the eight remaining 

subscales generally correlated substantially with one another and the TCQ Total 

evidenced good internal consistency (0.86).   
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 Multiple linear regression analyses were first limited to those correlations 

which achieved statistical significance (see Tables A.3 – A.6, Appendix A).  However, 

in the likely event that significant sex differences emerged for key study variables (see 

Table A.1), a second set of regression analyses were conducted for all variable 

relationships to test for statistical suppression effects for both significant and 

nonsignficant zero-order correlations.  The only relations for which there was no 

explicit retesting via multiple regressions were those between key study variables and 

subscales of the BIDR and TCQ, since the latter variables (BIDR Impression 

Management, BIDR Self-Deception, TCQ Total) were included as covariates in each 

of the regression analyses.     

Continuous measures were standardized and dichotomous predictors were 

effect coded to reduce multicollinearity (Aiken & West, 1991).  
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Chapter 3: Results 

 

Preliminary Analyses 

 

Sample Characteristics 

Data were initially obtained from 131 introductory psychology students 

enrolled at The Ohio State University.  From this initial sample, data from 7 

participants were excluded from analyses owing either to technical errors (e.g. 

computer failure, test/task administration errors) that occurred during data collection, 

or insufficient or missing data.  The resulting sample consisted of 124 participants, the 

majority of whom were Caucasian (77.2%).  The mean age for the sample was 19.05 

years (SD = 1.02) and the composition of our sample consisted of approximately the 

same number of males (n = 63; 50.8%) and females (n = 61; 49.2%).  The final sample 

(n = 124) met the sample size requirements determined by a priori power analyses. 

 Means and standard deviations for all variables are shown for the full sample 

and separately for males and females in Table A.1 (see Appendix A [Note: all tables 

and figures appearing in Appendix A are designated with an „A‟ preceding their 

number]).   With the exception of HRV and ACS scores, no sex differences emerged. 

With regard to ACS scores, females on the average reported lower levels of attentional 

control than males. In contrast, mean HRV, as indexed by the root mean square of the 

successive differences between heart beats (rMSSD; time-domain measure), and the 

natural log of high frequency power (LogHF; frequency-domain measure) was 

http://en.wikipedia.org/wiki/Root_mean_square
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significantly higher in females than males. This finding is consistent with sex-

differences observed in other studies using frequency-domain (Britton, Shipley, 

Malik, Hnatkova, Hemingway, & Marmot, 2007; Huikuri, Pikkujamsa, Airaksinen, 

Ikaheimo, Rantala, Kauma, Lilja, & Kesaniemi, 1996; Koskinen, Kähänon, Jula, 

Laitinin, Keltikangas-Järvinen, Viikari, Välimäki, & Raitakari, 2009; Kuo, Lin, Yang, 

Li, Chen, & Chou, 1999; Liao, Barnes, Chambless, Simpson, Sorlie, & Heiss, 1995; 

Zhang, 2007), and both time- and frequency-domain measures (Sinnreich, Kark, 

Friedlander, 1998; Sztajzel, Jung, & de Luna, 2008) of HRV in adults.   

Variable Distribution Diagnostics: Pre-Transformations 

Diagnostics were performed on all measures to determine whether 

distributional problems (e.g. skew, kurtosis) would impede the interpretation of 

correlation and regression coefficients (see Appendix B for a detailed discussion).  

The issues of normality and distributional similarity are particularly important within 

the context of correlation and linear regression (Cohen et al., 2003; Hays, 1994), since 

the magnitude of the Pearson product moment correlation coefficient (r) can only 

range from –1.00 to 1.00 when the frequency distributions of two variables (say, X 

and Y) are identical (zx = zy).  Indeed, while it is widely recognized that true normality 

is exceedingly rare in behavioral science research (Bradley, 1982; Levine, 2005; 

Micceri, 1989), extreme deviations from distributional similarity between two 

variables can limit the maximum possible value of rxy to 0.3 or less (Carroll, 1961; 

Hays, 1994).  In light of the multimethodism of this study and the possibility that 

correlation coefficients between different measures might be attenuated owing to their 
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differing methods of data acquisition (e.g. self-reports vs. physiological 

measurements), considerations of statistical normality and distributional similarity are 

particularly patent.  

 Methods for evaluating the distributional properties of sample data are 

numerous and opinions vary widely concerning which method (or combination of 

methods) is best suited for this purpose (Thode, 2002; interested readers are referred 

to Appendix B for a detailed discussion of these issues).  Whereas some researchers 

prefer “eyeballing” or visual inspection of order data (e.g. Cleveland, 1984; Orr et al., 

1991), others prefer more objective assessments of normality (e.g. Gan & Koehler, 

1990; Henderson, 2006) that can range from the examination of either probability-

probability (P-P) plots or quantile-quantile (Q-Q) plots, to quantitative indices of 

kurtosis and skewness and inferential tests of normality, such as the Kolmogorov-

Smirnov test (Cabaña, 1996; Drew, Glen, & Leemis, 2000; Massey, 1951; Wilcox, 

1997) and its modifications (e.g. Lilliefors modification; Lilliefors, 1967).  Still others 

prefer utilizing multiple criteria to determine the extent to which observed data deviate 

from a Gaussian distribution (Cohen et al., 2003; D‟Agostino et al., 1990; Judd et al., 

1995; Wang, Yam, & Zuo, 2004), and it is this multi-criterion approach that was 

adopted in the present case.  

The methods used to assess for problems associated with distributional 

skewness, kurtosis, and general non-normality included (a) visual inspection of 

univariate frequency histograms (see Figures B.1 – B.5 in Appendix B [Note: all 

tables and figures appearing in Appendix B are designated with an „B‟ preceding their 
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number]; (b) examination of probability-probability (P-P) and quantile-quantile (Q-Q) 

plots (see Figures B.6 – B.15); and (c) the computation of Kolmogorov-Smirnov 

(Lilliefors modification), as well as skewness and kurtosis, test statistics both before 

and after variable transformations (refer to Tables B.1 and B.2, respectively). 

 With a few noteworthy exceptions (e.g. ATQ-EC subscales, Stroop 

Interference, WMS-Working Memory) nearly all variables in this study evidenced 

significant signs of statistical non-normality.  Of the 18 variables whose distributions 

deviated from the normal curve, 14 of them displayed signs of significant skew.  By 

contrast, only five variables evidenced significant signs of kurtosis: a distributional 

feature of particular importance to covariance and correlational analyses since it can 

attenuate coefficient values (Browne, 1982, 1984; DeCarlo, 1997; Jobson, 1991, p. 55; 

Mardia, Kent, & Bibby, 1979, p. 149).   

Variable Transformations & Post-Transformation Distributional Diagnostics  

Although the foregoing distributional analyses provided evidence of non-

normality, distributional dissimilarity between study variables was the primary 

concern, since correlation and regression coefficients are particularly susceptible to 

attenuation under such conditions (Carroll, 1961; Cohen et al., 2003; Hays, 1994).  In 

the absence of statistical tests for comparing empirical data distributions to one 

another, the transformation strategy utilized aimed to maximize distributional 

similarity by transforming all non-normal variables to Gaussian-distributions.  For a 

detailed discussion of the transformation methods utilized in this study, the reader is 

directed to Appendix C.   
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Kolmogorov-Smirnov, skewness, and kurtosis indices were then re-computed 

after variable transformations to assess for non-normality.  These statistics are 

presented in Table B.2.  Through the usage of outlier deletion and logarithmic 

transformations, seven variables no longer displayed evidence of significant 

distributional non-normality.  Only two of these variables (BIDR Self-Deception and 

WCST – Perseverative Errors) continued to evidence some quantitative signs of 

distributional non-normality, but neither of these variables displayed evidence of 

kurtosis: a feature that could have substantially impacted our correlational analyses 

(Browne, 1982, 1984; DeCarlo, 1997; Jobson, 1991, p. 55; Mardia, Kent, & Bibby, 

1979, p. 149).  Similarly, two key study variables (BIDR Impression Management and 

WAIS – Saddler 2 Composite) that did not display marked improvement from 

following transformation attempts and whose original values were consequently 

retained (see Table B.2), displayed no significant signs of skew or kurtosis despite 

evincing significant K-S statistics. 

In summary, whereas attempts at transforming variable distributions had 

mixed results, the measures of key constructs (e.g. HRV, executive function test 

performance) on the whole either benefitted significantly from these transformations 

and/or their distributions were sufficiently normal as to minimize concerns about 

attenuated correlation coefficient values.  

Data Acquisition-by-Date Analyses 

To determine whether sample characteristics varied by date of data acquisition, 

the sample was temporarily divided for purposes of data analysis into four groups 
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organized nominally by time-period of participant involvement (see Table A.2).  

These analyses were conducted since problems with planning and goal 

implementation are associated with self-regulatory deficits (for review, see Gollwitzer, 

Fujita, & Oettingen, 2004).  This general observation, combined with the statistical 

observation that the responses of participants are more likely to be similar when their 

data are collected at similar, as opposed to different, times (see Cohen et al., 2003, p. 

120; Judd et al., 1995, p. 459), gave rise to concerns that individual differences in 

effortful control could have varied systematically by participation date (e.g. low 

effortful control, late participation date).  These individual differences, in turn, could 

have interacted with other factors extraneous (e.g. weather, participant stress varying 

with period academic term) to study protocols and, consequently, could have 

compromised measurement accuracy.  Thus, it was viewed as important to examine 

whether variable scores varied significantly by data acquisition date. 

Data acquisition groups were organized on the basis of 15 day intervals over 

the course of the Winter Quarter 2007 academic term.  As determined by the 

Department of Psychology‟s Research Experience Program, students were eligible to 

participate between 7 January 2008 and 6 March 2008 (i.e. 60 days).  Thus, one group 

consisted of subjects who participated during the first 15 days of eligibility, another 

group consisted of participants whose data were collected during the second 15 day 

eligibility interval, and so forth.  As shown in Table A.2, none of the comparisons 

between group means for any study measure achieved statistical significance.  Since 
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participant data did not vary systematically on the basis of acquisition time-period, no 

post-hoc analyses were necessary to explore specific group comparisons.   

Correlation Results 

Intercorrelations: Primary Variables 

 For ease of interpretation, intercorrelations between all the primary variables in 

this study are presented in Table A.3.   

Correlations among self-report measures of EC. As expected, all correlations 

between the ATQ-EC subscales achieved statistical significance.  Similarly, the 

Attentional Control Scale (ACS) correlated significantly with the ATQ-EC total score 

and with all ATQ-EC subscales, most especially (r = 0.78) the attentional control 

subscale of the ATQ (i.e. ATQ-EC Attentional Control).    

Correlations among performance measures of executive control.  

Unexpectedly, the performance measures of different aspects of executive control did 

not correlate significantly with one another. For example, although measures derived 

from the Stop-Signal Task correlated significantly with one another, none of those 

measures correlated significantly with Stroop performance, WCST – Perseverative 

Errors, or WMS - Working Memory. Among these measures, only Stroop 

performance was significantly correlated with WMS-Working Memory; r = 0.26).   

 HRV and self-reports of EC. Consistent with expectations, resting HRV, as 

measured in the time-domain (rMSSD), evinced significant correlations with 

aggregate effortful control (ATQ-EC Total; r = 0.27), inhibitory control (ATQ-EC 

Inhibitory Control; r = 0.23) and activation control (ATQ-EC Activation Control; r = 
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0.27).  These correlations were consistent with those obtained with the HRV 

frequency-domain measure (LogHF), which also correlated significantly with 

aggregate effortful control (r = 0.25), inhibitory control (r = 0.18), and activation 

control (r = 0.26).  In striking contrast to these correlations, self-reports of attentional 

control (i.e., ATQ-EC Attentional Control and ACS) were not significantly related to 

HRV. Indeed, these correlations approached zero.    

HRV and performance measures. Contrary to predictions, no significant 

correlations were found between measures of resting HRV and the performance 

measures of executive control.  

Performance measures and self-reported EC. Similar to the findings involving 

measures of HRV, performance-based measure of executive functioning were 

generally not found to be significantly correlated with self-reports of EC or its facets. 

However, two significant correlations were observed. First, the working memory 

subscale of the Wechsler Memory Scale had a modest significant relation with the 

ATQ–EC Attentional Control (r = 0.19).  By comparison, the correlation between 

WMS-Working Memory and the ACS (r = 0.15) was smaller and consequently did not 

achieve significance. Second, a modest-though-significant correlation was found 

between Stop-Signal – Go-Trial RT Sd. and ATQ-EC Inhibitory Control (r = −0.19) 

indicating that higher self-reported levels of inhibitory control were associated with 

less variability in responses to Go Trials in the Stop Signal Task. The correlation was 

similar between Stop-Signal – Go Trial RT and ATQ-EC Inhibitory Control (r = 

−0.18), although that correlation did not achieve significance. 
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Correlations between measures of EC and intelligence. In general, results were 

consistent with the prediction that EC is not merely a proxy for intelligence. With 

regard to self-reports of EC and its facets, only ATQ-EC Activation Control had a 

significant zero-order correlation with the WAIS Saddler 2 Composite (r = –0.34).  

However, it should be noted that this correlation shows that lower levels of activation 

control in this sample were associated with higher levels of itelligence. No other self-

report measure of effortful or attentional control bore a significant relation with 

intelligence. 

With respect to the relations between intelligence and performance measures 

of executive functioning, the WAIS Saddler 2 Composite evidenced significant 

correlations with working memory (i.e. WMS-Working Memory; r = 0.49) and several 

measures of response inhibition: Stroop Interference (r = 0.23) and go-trial 

performance on the Stop-Signal Task (i.e. Stop-Signal – Go-Trial RT, r = −0.19; Stop-

Signal – Go-Trial RT Sd., r = −0.31).   

Finally, measures of resting HRV were not significantly correlated with 

intelligence.  

Self-deception and impression management. Self-deception (i.e. the tendency 

to provide honest yet positively biased self-reports), as indexed by the self-deception 

subscale of the Balanced Inventory of Desirable Responding (i.e. BIDR – Self-

Deception), was moderately related to attentional control (r = 0.37) and all facets of 

effortful control (ATQ-EC Total and subscales) with the exception of inhibitory 

control (ATQ-EC Inhibitory Control).  Moreover, no significant relationship emerged 
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between inhibitory control and impression management (i.e. deliberate self-

presentation), as indexed by the impression management subscale (i.e. BIDR 

Impression Management) of the BIDR.  Neither self-deception, nor impression 

management, evidenced statistically significant relationships with any physiological or 

performance measure.   

Unlike BIDR Self-Deception, which exhibited significant concurrent relations 

with attentional control and most facets of effortful control, BIDR Impression 

Management was only moderately related to aggregate effortful control (r = 0.24) and 

the activation control subscale of the ATQ (r = 0.23).  However, like BIDR Self-

Deception, BIDR Impression Management did not covary with any performance 

measure, yet both self-deception (r = 0.37) and impression management (r = 0.24) 

correlated significantly with effortful control (ATQ-EC Total).   

Intercorrelations: Primary Self-Reports & Task-Completion Questionnaire 

 As discussed in Appendix C, the individual TCQ subscales had problematic 

distributional properties whereas the TCQ Total had adequate properties. However, as 

shown in Table A.4, the TCQ subscales were generally moderately to strongly 

correlated with one amother. Thus, as shown in Table A.4, the TCQ total score had 

good internal consistency (Cronbach‟s alpha = .86). Therefore, analyses were limited 

to the TCQ total score. 

 As shown in Table A.4, with but a few exceptions, all primary self-report 

measures correlated significantly with TCQ total.  The reader is reminded that high 

scores on the TCQ correspond to the endorsement of fewer problems with extraneous 
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performance factors (i.e. fatigue, attention, distraction, stress, effort).  Thus, positive 

correlations between these measures would be consistent with the idea that 

participants who endorsed fewer problems with factors that could affect performance 

(i.e. fatigue, attention, distraction, stress, effort) endorsed higher levels of effortful 

control and attentional control than those who endorsed more problems with 

performance factors.  However, as also shown in Table A.4, responses on the TCQ 

were also positively correlated with measures of socially desirable responding, as 

indexed by the impression management and self-deception subscales of the BIDR.  

This finding, combined with the aforementioned significant relations between socially 

desirable responding and facets of self-reported attentional- and effortful control, 

suggests that both the BIDR and TCQ should be included as covariates in regression 

models where self-reports of effortful and attentional control are treated as predictor 

variables. 

 Intercorrelations: Heart-Rate Variability Measures & Task-Completion 

Questionnaire 

Whereas self-report measures of effortful control and socially desirable 

responding correlated almost uniformly with the TCQ Total, Table A.5 shows that 

measures of HRV held no significant relations with the TCQ.  These null findings are 

not unexpected since measurements of resting HRV were procured prior to the 

completion of all self-reports and tests of executive functioning, before the assessment 

phases about which items on the TCQ inquired. 

Intercorrelations: Executive Function Measures & Task-Completion Questionnaire 
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For ease of interpretation, relationships between measures of executive 

functioning and the TCQ are shown in Table A.6.  As in the case of HRV, scores on 

the performance measures of executive functioning were not significantly correlated 

with TCQ total.  

Multiple Linear Regression Results 

Although the foregoing correlational analyses helped shed some light on the 

relations between multiple combinations of two variables, it was necessary to explore 

significant zero-order correlations further via multiple linear regression to control for 

demographic characteristics, intelligence, social desirability response bias (i.e. self-

deception positivity and impression management, as indexed by the BIDR), and 

factors extraneous to the test measures that may have affected performance (i.e. TCQ).        

Results: Regression Diagnostics  

When conducting these regression analyses, it was necessary to calculate 

diagnostics relevant to the assumptions of multiple linear regression (MLR).  What 

follows is a summary of the major findings from the regression diagnostics conducted 

as part of this study‟s data-analytic procedure.  For a detailed discussion of the 

procedures utilized in the regression diagnostics performed, please refer to Appendix 

D (Note: all tables and figures appearing in Appendix D are designated with a „D‟ 

preceding their number).   

No evidence of multicollinearity emerged for any of the study variables 

included in the regression analyses.  Similarly, none of the residual scatterplots 

displayed in Figures D.1-D.29 indicated significant deviations from linearity for of 
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any the multiple regression analyses (see Tables A.7-A.20).  However, visual 

inspection of these residual scatterplots unconvered potential problems with 

heteroscedasticity for 5 regressions (see Figures D.5, D.6, D.7, D.13, and D.14).  

Nevertheless, post-hoc analyses, first in the form of modified Levene tests, and later 

through slicing (see Cohen et al., 2003, pp. 145-147), determined that the magnitude 

of the nonconstant variance (i.e. heteroscedasticity) was not high enough to warrant 

corrective action (e.g. logarithmic transformation of Y, weighted least squares 

regression).   

To assess residual independence, Durbin-Watson coefficients (d) were 

computed for each linear regression (see Appendix D).  All Durban-Watson 

coefficients (see Tables A.7-A.20) were within acceptable limits (ranged from 1.757-

to-2.276) and suggestive of residual independence.  Moreover, as shown in Figures 

D.1 – D.29, no evidence of residual non-normality manifested, as the residual plots 

adequately followed the linear patterns indicative of a normal curve. 

 In summary, regression diagnostics indicated that the multiple regression 

analyses met all necessary data-analytic assumptions.  Consequently, these results lent 

support to the veracity of our multiple linear regressions as bases for verifying the 

correlation coefficient values obtained. 

Results: Multiple Linear Regression Analyses 

As depicted in Tables A.7 – A.20, a series of hierarchical multiple linear 

regressions were conducted to further ascertain whether the magnitude of the linear 

relation between sets of two variables would be affected through the inclusion of 
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covariates.  These results are further summarized in Table A.21, which presents the 

primary zero-order correlations (r) and semi-partial correlations (sr) from the 

regression analyses.  For all regression analyses, a zero-order correlation between the 

primary predictor variable and criterion variable was first computed (see Tables A.7-

A.20, “Zero Order Model).  After this initial calculation, six covariates were added, 

resulting in the “Full Model” (see Tables A.7-A.20) that included the primary 

predictor variable and six covariates.   

With only two exceptions, these correlations remained statistically significant 

even after the inclusion of six covariates.  Furthermore, even when statistical 

significance changed, the magnitude of the observed effect remained similar to the 

zero-order relation.   

The first of the two exceptions was the correlation between ATQ-EC 

Attentional Control and WMS-Working Memory (r = 0.19; see Table A.3), which was 

no longer significant (sr = 0.116; see Table A.9) after the inclusion of covariates – 

especially BIDR Self-Deception (srATQ-EC Attentional Control = 0.229) and Task Completion 

TOTAL (srATQ-EC Attentional Control = 0.201).   

The second exception was the relation between ATQ-EC Inhibitory Control 

and Stop-Signal – Go-Trial RT Sd., which was rendered statistically nonsignificant 

with the inclusion of covariates (see Table A.12). However, the actual magnitude of 

this relation changed very little (sr = -.192 to sr = -.180), suggesting the change in 

significance largely reflected reduced degrees of freedom.  
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One other change is potentially of interest. The relation between ATQ-EC 

Inhibitory Control and HRV – Resting RMSSD (see Table A.10) became stronger 

with the addition of the covariates. This may reflect the inclusion of participant sex as 

a covariate, because the semi-partial correlation increased markedly with the inclusion 

of participant sex: a variable previously shown to have significant relations with 

HRV-Resting RMSSD (see the discussion of suppression effects below).  

Suppression Analyses 

Recall that sex differences were found in HRV and ACS scores, with HRV 

scores being higher in females and ACS scores being higher in males. This pattern of 

results suggested that participant sex could operate as a suppressor variable (Cramer, 

2003; Cohen et al., 2003, p. 78; MacKinnon, Krull, & Lockwood, 2000; Shrout & 

Bolger, 2002; Tzelgov & Henik, 1991) in regression models involving either the ACS 

or measures of HRV and provided justification for examining possible sex-based, 

statistical suppression effects for correlations involving our two measures of HRV, 

and scores on the ACS. 

To test for the possibility of statistical suppression on the basis of participant 

sex, a series of analyses was conducted in which sex was included as a covariate. 

Specifically, this was done for all relations between ACS and HRV as well as between 

either ACS or HRV and performance measures. For each analysis I first computed the 

zero-order “regression” (i.e. correlation) and then followed-up by adding sex as a 

covariate (i.e. mixed model).  Then I compared the partial correlations, standardized 

betas, and significant levels between the two models.   
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Evidence of a sex-based suppression effect emerged in several cases.  

However, in only one case, the aforementioned findings with respect to HRV-Resting 

RMSSD and ATQ-EC Inhibitory Control (see Table A.10) was the suppression effect 

of sufficient magnitude to increase coefficient values to such a degree that it resulted 

in a change in statistical significance.  In other words, in all but this one case (Table 

A.10), when the original correlations were significant they remained significant at the 

same level (i.e. alpha: 0.05 or 0.01) when sex was partialled out.  Similarly, in cases 

when the original correlations were nonsignificant, partialling out sex resulted in 

higher semi-partial correlations that, nonetheless, remained statistically nonsignificant.   

Thus, it is likely that participant sex contributed irrelevant variance to ATQ-

EC Inhibitory Control that was subsequently partialled-out in the regression equation 

when participant sex was included as a covariate: the result of which was an increased 

semi-partial correlation between ATQ-EC Inhibitory Control and HRV – Resting 

RMSSD.  The finding of a potential suppressor effect in HRV (Resting RMSSD only) 

data should perhaps not be too surprising, given that suppressor variables are very 

common biological models where feedback mechanisms are present (Cohen et al., 

2003, p. 457; Tzelgov & Henik, 1991).  

Given that a number of significant correlations were found between self-

reports of EC and the two BIDR scores (impression management and self-deception), 

whereas the BIDR scores were unrelated to HRV or performance measures, it is 

possible that the BIDR variables might serve to suppress correlations between EC 

questionnaire scores and both HRV and performance-measures. However, 
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examination of the regression analyses reported above (see Tables A.7 – A.20) 

suggests little evidence for this possibility. Nonetheless, it remains possible that some 

non-significant correlations between self-reports of EC and either HRV or 

performance measures might become significant after controlling for impression 

management and self-deception. This possibility was tested following the strategy 

described fort possible suppression due to sex differences. In no case was any non-

significant correlation substantially changed nor did any achieve significance.  
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Chapter 4: Discussion 

 The overarching purpose of the present study was to investigate the convergent 

validity of self-report measures of effortful control (EC): a self-regulatory construct 

that has garnered considerable support from research on development and 

psychopathology in childhood and adolescence that has relied upon multiple modes of 

data acquisition.  Although some of the findings gleaned from this child and 

adolescent research have been replicated in adults, these replications have been 

limited primarly to studies which have relied solely on self-reports (e.g. ATQ-EC): a 

mode of data acquisition that is reliant upon the insight and veracity of participant 

responding.  Consequently, questions have remained concerning the accuracy and 

attendant validity of findings gleaned from adult EC research; questions that were 

ultimately addressed in this study by assessing the degree of concordance of these 

self-reports with both a well-established measure of self-regulation (i.e. heart-rate 

variability) and cognitive operations (i.e. executive functions) that subserve self-

regulation.  It is my view that the results of this investigation provide qualified support 

for the construct validity of effortful control and for the use of two self-report 

measures (i.e. ATQ-EC, ACS) of this self-regulatory construct in young adults. 

I. Relations among Self-Reports of EC 

 Before testing hypotheses concerning covergent validity of self-reports of EC 

with other measurement modalities, it was necessary to examine the convergent 
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validity among the self-report measures under investigation and their correlations with 

other factors that might influence the correlations among variables.  These 

questionnaires included the (1) EC scale of the Adult Temperament Questionnaire 

(ATQ-EC) and (2) Attentional Control Scale (ACS), as well as two measures of: (3) 

social desirability response bias (i.e. Balanced Inventory of Desirable Responding; 

BIDR) and (4) extraneous performance factors (i.e. Task Completion Questionnaire; 

TCQ).   

 After conducting variable transformations to achieve distributional similarity, 

correlational analyses on the ATQ-EC revealed statistically significant relationships at 

the 0.01 significance level among all ATQ-EC subscales and ATQ-EC Total.  These 

correlations ranged in magnitude from 0.25-to-0.50, which was consistent with the 

idea that attentional control, activation control, and inhibitory control are related, 

though distinct facets of the broader construct of effortful control.  The distinctness of 

these facets is particularly illustrated by the observed relation between ATQ-EC 

Activation Control and ATQ-EC Inhibitory Control, which achieved the lowest zero-

order correlation (r = 0.25): a coefficient which suggests that the  capacity to perform 

an action for which there is a strong tendency to avoid (i.e. activation control; 

overriding behavior inhibition or prepotent tendencies to engage in less behavioral 

approach) is distinct from the capacity to suppress non-optimal approach behavior (i.e. 

inhibitory control; overriding behavioral activation).  The ACS also achieved 

statistically significant relations with all subscales of the ATQ-EC, especially ATQ-

EC Attentional Control (r = 0.78), which measures the same facet of effortful control 
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as the ACS.  This was consistent with expectations and provides support for the 

convergent validity of both scales.   

This pattern of intercorrelations was consistent with previous research both 

with the ATQ-EC subscales (Evans, 2004; Evans & Rothbart, 2007; Rothbart, 2001; 

Rothbart, Ahadi, & Evans, 2000) and concurrent usage of the ACS and self-reported 

effortful control (Dinovo & Vasey, 2003, 2005).  Nevertheless, questions of 

convergent validity remained as to whether or not self-reported effortful control would 

manifest concurrent relations with an objective measure of self-regulation and 

standardized measures of executive functioning.   

 Giving rise to potential doubts about these ATQ-EC and ACS 

intercorrelations, however, were the significant correlations that emerged between 

these measures and the BIDR and TCQ subscales.  As shown in Table A.3, the self-

deception subscale of the BIDR correlated significantly with ATQ-EC Total, ATQ-EC 

Attentional Control, ATQ-EC Activation Control, and ACS.  Similarly, the impression 

management subscale of the BIDR held significant correlations with ATQ-EC Total 

and ATQ-EC Activation Control.  Only the inhibitory control subscale of the ATQ 

displayed no significant relations with the BIDR, suggesting that participant responses 

on ATQ-EC Inhibitory Control may not be related to either deliberate (i.e. BIDR 

Impression Management) or indeliberate (i.e. BIDR Self-Deception) positive self-

presentations.   

 By contrast, as shown in Table A.4, ATQ-EC Inhibitory Control was 

significantly related to responses on the TCQ.  These results were similar to those of 
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the ACS and the remaining ATQ-EC subscales, which without exception held 

significant correlations with the TCQ.  Since high scores on the TCQ correspond with 

few self-reported problems with task performance, these combined results suggested 

that participant responses on the ATQ-EC and ACS were systematically related to the 

endorsement of fewer problems with extraneous performance factors (i.e. fatigue, 

attention, distraction, stress, effort).  Whether these significant correlations were due 

to the fact that people high in EC actually experience fewer problems with distraction, 

task effort, et cetera could not be gleaned from these correlational findings.   

 In light of these significant relations between the ATQ-EC, ACS, the two 

BIDR scales, and the TCQ, the latter three scales were included as covariates in 

regression models to control for method variance attributable to self-report 

responding.  This allowed for the computation of semi-partial correlations, which 

involved the partialling-out of such shared variance in models where correlations 

between the ATQ-EC, ACS, and other key study variables (e.g. heart-rate variability) 

were reexamined.  These semi-partial correlations (sr) among self-report measures are 

displayed in Tables A.7 – A.15 and are discussed below.     

II. Effortful Control & Executive Functioning 

 As summarized in Tables A.3 and A.21, with only two exceptions, none of the 

self-report measures of EC or its facets evidenced significant relations with any facet 

of executive or cognitive functioning tapped by the performance measures used in this 

study.  These measures included indices of response inhibition (i.e. Stop-Signal Task, 

Stroop Color-Word Interference Test, Wisconsin Card Sorting Test: Perseverative 



      

 

 76 

 

Errors), working memory (i.e. Wechsler Memory Scale – Working Memory Index), 

cognitive flexibility (i.e. Wisconsin Card Sorting Test: Perseverative Errors), and 

general intelligence (WAIS – Saddler 2 Composite), the latter of which was included 

to rule out the possibility that effortful control is simply the joint application of a 

person‟s knowledge and executive functioning (i.e. intelligence).   

The only zero-order correlations which attained statistical significance were (a) 

ATQ-EC Attentional Control and WMS-Working Memory (r = 0.19), and (b) ATQ-

EC Inhibitory Control and Stop-Signal – Go-Trial RT Sd (r = −0.19).  However, as 

shown in Table A.21, these zero-order relations were qualified by non-significant 

semi-partial (sr) correlations after including self-report and demographic covariates.  

Thus, little support was found in this study for hypotheses with respect to the relations 

between self-reported effortful control and executive functioning. 

The general lack of significant relations between EC self-reports and 

performance measures ran counter to the expectation that such self-reports of EC 

would be related to (a) the inhibition of prepotent responses (i.e. response inhibition); 

(b) the maintenance of information in consciousness so that both the execution and 

sequencing of mental operations can be carried out (i.e. working memory); and (c) the 

shifting of attentional resources between mental operations (i.e. cognitive flexibility).  

This latter finding was particularly surprising, since attentional shifting – a facet of 

attentional control – is conceptually similar to cognitive flexibility (Barcelo, Perianez, 

& Knight, 2002; Greve, Ingram, & Bianchini, 1998; Loose, Kaufmann, Tucha, Auer, 

& Lange, 2006; Mueller, Dreisbach, Goschke, Hensch, Lensch, & Brocke, 2007; 
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Ravizza & Carter, 2008; Stemme, Deco, Busch, & Schneider, 2005).  A consideration 

of why these performance measures did not relate to self-reported effortful control, 

including the possibility that scores were insensitive to individual differences in 

executive functioning in our college student sample, is addressed later. 

By contrast, the absence of a correlation between the WAIS – Saddler 2 

Composite and most measures of self-reported self-regulatory capacity – ATQ-EC 

Total, ATQ-EC Attentional Control, ATQ-EC Inhibitory Control, and ACS – was 

consistent with expectations, since general intelligence was not expected to be 

empirically related to effortful control or any of its subfacets.  However, conclusions 

about the relations between effortful control and general intelligence remained 

qualified by the significant zero order (r = −0.34) and semi-partial correlations (sr = 

−0.326) between ATQ-EC Activation Control and the WAIS Saddler-2 Composite 

(see Table A.15).  On its face, this unexpected result suggests that high intelligence 

may be associated with a lesser capacity to override behavioral disengagement (i.e. 

low activation control).  Given that ATQ-EC Activation Control did not correlate 

significantly with any individual measure of executive functioning but correlated 

significantly with general intelligence, this could mean that activation control is 

subserved by several executive functions that work in tandem (i.e. general 

intelligence), not in isolation.   

In light of the possibility that the self-report measures of effortful control and 

attentional control may hold significant relations with executive functions that work in 

tandem (rather than in isolation), a composite measure of executive functioning was 
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computed.  This composite measure was an aggregate of the standardized scores of the 

four following measures: (1) WMS-Working Memory Index; (2) Stroop Interference 

T-Score; (3) WCST Perseverative Errors (Log10); and (4) Stop-Signal RT (Log 10). 

To ensure that all four measures were coded in the same direction, the latter measure 

(i.e. Stop-Signal RT) was recomputed (i.e. Stop-Signal RT x −1).  The same data-

analytic procedures were adopted when computing these correlation and semi-partial 

correlation statistics as had been implemented in the previous regression analyses, 

including residual diagnostics and inclusion of six covariates.  No MLR violations 

came to light through these diagnostic procedures.  As shown in Table A.22, only one 

variable (i.e. Attentional Control Scale) held a significant correlation (r = 0.201) with 

our composite measure of executive functioning.  However, with the inclusion of 

covariates, the semi-partial correlation attained for this measure (sr = 0.075) did not 

achieve statistical significance, effectively invalidating the aforementioned significant 

correlation.   

III. Effortful Control & Heart-Rate Variability 

 Although the validity of the ATQ-EC, ACS, and perhaps even the construct of 

effortful control (EC), could be challenged on the basis that they appear to lack 

empirical relations to executive functions (processes that underlie self-regulation), 

such challenges could be countered by the manifest correlations that emerged in this 

study between self-reported effortful control and heart-rate variability (HRV).  As 

shown in Tables A.3 and summarized in Table A.21, resting heart-rate variability 

indexed in the time (RMSSD)- and frequency (Log HF Power)-domains was 
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significantly related to effortful control (rRMSSD = 0.27; srRMSSD = 0.257; rLogHF = 0.25; 

srLogHF = 0.230), inhibitory control (rRMSSD = 0.23; srRMSSD = 0.244; rLogHF = 0.18; 

srLogHF = 0.185), and activation control (rRMSSD = 0.27; srRMSSD = 0.227; rLogHF = 0.26; 

srLogHF = 0.207).  These findings are particularly compelling because HRV is a robust 

measure of self-regulation (Segerstrom, & Nes, 2007; Thayer, Hansen, Saus-Rose, & 

Johnsen, 2009), lending some compelling support to the validity of self-reported 

effortful control.  The convergence of these self-report and physiological measures 

also support the trait-like properties of effortful control (Derryberry & Rothbart, 1997; 

Eisenberg et al., 2004; Rothbart et al., 2000, 2003, 2004) and resting heart-rate 

variability (Thayer et al., 2009), since EC self-reports inquire about longstanding 

patterns of behavior and resting HRV has been shown to be temporally stable (Li, 

Snieder, Su, Ding, Thayer, Trieber, & Wang, 2009) and to have significant genetic 

influences (Neumann, Lawrence, Jennings, Ferrell, & Manuck, 2005; Snieder, van 

Doornen, Boomsma, & Thayer, 2007; Wang, Thayer, Treiber, & Snieder, 2005). 

Qualifying the relationship between HRV and EC, however, was the absence 

(see Table A.3) of any significant relations between HRV and attentional control 

(ATQ-EC Attentional Control, Attentional Control Scale): a facet of effortful control 

which, like the other facets of EC, did not correlate (sr) significantly with executive 

functioning with the inclusion of covariates.  This null finding between self-reported 

attentional control and HRV, and between self-reported attentional control and 

standardized measures of executive functioning, potentially raise doubts about the 
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validity of attentional control as a self-regulatory construct or, alternatively, challenge 

the validity of both the attentional control subscale of the ATQ-EC and the ACS.  

In light of these findings, it might be of interest to the reader that neither index 

of heart-rate variability correlated significantly with any individual (see Table A.3) or 

composite (see Table A.22) measure of executive functioning.  Although these latter 

results do not reconcile the absence of a relationship between attentional control and 

HRV, they do raise questions about the validity or usage of the executive function 

measures in this study, since one would expect an objective measure of self-regulation 

(i.e. HRV) to be related to executive processes (e.g. response inhibition, working 

memory) fundamental to self-regulation (Goldman-Rakic, 1998; Thayer et al., 2009).  

Indeed, measures of cardiac vagal tone (e.g. HRV) have been shown in previous 

research (Hansen et al., 2003; Richards, 1987; Suess, Porges, & Plude, 1994) to be 

significantly related to executive functioning, and heightened activity in the prefrontal 

cortex (a key structure of the central autonomic network, or CAN) has been 

demonstrated repeatedly during the completion of executive function tasks (Aron, 

Robbins, & Poldrack, 2004; Diwadkar, Carpenter, & Just, 2000; Garavan, Ross, & 

Stein, 1999; Konoshi, Nakajima, Uchida, Kikyo, Kameyama, & Miyashita, 1999; 

Nystrom et al., 2000; Stern, Owen, Tracy, Look, Rosen, & Petrides, 2000).   

Thus, while the absence of a significant relationship between attentional 

control and HRV in this study may raise doubts about the convergent validity of this 

one facet of effortful control, this null finding may instead be attributable to other 

factors (e.g. measurement error, range restriction) specific to our investigation, since it 
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does not accord with an extensive body of research.  This body of research includes 

evidence supporting the self-regulatory relevance of attentional control in quasi-

experimental tasks (e.g. Derrberry & Reed, 2002; Diehl, Evans, 2004; Semegon, & 

Schwarzer, 2006; Posner & Rothbart, 1998; Rueda, Posner, & Rothbart, 2005); the 

high degree of convergence between attentional control and other facets of effortful 

control, which themselves have been shown to be related to HRV in this study; and 

the aforementioned results of other studies demonstrating the convergence of 

executive functioning with HRV and prefrontal cortex activity.  Consequently, it is 

important to consider two additional factors that may have attenuated the correlation 

coefficients observed in our study: measurement reliability and variance.   

IV. Measurement Reliability 

 One assumption in ordinary least squares regression is that each independent 

variable is measured without error (Cohen et al., 2003, p. 119).  Although findings of 

imperfect reliability are quite typical in behavioral sciences research, where many of 

the concepts that form the theoretical foundation of a study are only indirectly (and 

thereby imperfectly) measured (McDonald, 1999; Nunnally & Bernstein, 1993), a 

consequence is that all indices of a partial relationship (e.g. standardized β, sr) 

between two or more variables will often be attenuated.  Hence, the empirical relation 

between variables can be underestimated as a consequence of measurement error.  

Although problems of measurement error in dependent variables do not impact the 

magnitude of unstandardized beta (β) coefficients (Cohen et al., 2003, p. 124), 
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significance testing, statistical power, and the estimation of confidence intervals can 

still be aversely impacted.    

Owing to our study procedures, where measurements were procured from 

single administrations, the temporal stability (i.e. test-retest reliability) could not be 

ascertained.  However, our mode of data acquisition still permitted the computation of 

internal consistencies.  As shown in Table A.3, no variable in our study attained 

perfect (1.00) reliability, which could have resulted in attenuated correlation and 

regression coefficients.  However, it is worth noting that all study measures achieved 

indices indicative of moderate-to-good reliability (Anastasi & Urbina, 1997; 

McDonald, 1999; Nunnally & Bernstein, 1993).  With respect to the reliability of our 

HRV measurements, the intraclass correlation coefficients (ICCs) obtained indicated 

substantial – though not excellent (ICC ≥ 0.80) – agreement (Pinna, Maestri, 

Torunski, Danilowicz-Szymanowiczm, Szwochm, La Rovere, & Raczak, 2007).  

Although some of our measures of executive function (e.g. Stroop Interference, 

WMS-Working Memory) attained among the lowest reliability coefficients in our 

study, it is also worth noting that these reliability statistics were still comparably 

higher than those observed in comprehensive psychometric reviews of cognitive tests 

(e.g. Miyake et al., 2000; see Alvarez & Emory, 2006).    

 Thus, while it is certainly possible that the correlation and regression 

coefficients obtained in this study were attenuated and thereby underestimated the 

degree of association between variables, there is little evidence that the extent of 

unreliability in our study measures surpassed conventional standards.  Nevertheless, 
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the noted lack of high reliability (r ≥ 0.90; ICC ≥ 0.80) in our study measures, and the 

attendant likelihood of some attenuation in our measures of inter-variable association 

(Cohen et al., 2003, p. 119), may provide a partial explanation for the null findings for 

some key study hypotheses.  These findings might also serve as a reminder that, 

especially in the absence of perfect measurement reliability, the interpretation of 

correlations and regression coefficients between variables must be carefully 

distinguished from the interpretation of the theoretical constructs those variables 

represent. 

V. Measurement Variance & Dispersion 

 Closely related to the problem of measurement unreliability is the issue of 

whether or not the range and variance of variables was restricted by one‟s sampling 

procedures (Cohen et al., 2003, p. 57).  This issue is particularly salient given the 

nature of our sample, which exclusively consisted of college students: a population 

that is arguably more homogenous on potentially relevant variables (e.g. level of 

cognitive functioning) than the general population.  Like the absence of perfect 

reliability, low variance or range restriction can attenuate correlation and regression 

coefficients (Aiken & West, 1991; Atkinson, 1985; Belsley et al., 1980; Berk, 2003; 

Berry, 1993; Fox, 1991; Kahane, 2001).  Thus, a key question that remained was how 

the dispersion of scores on various measures in this study compared to studies 

investigating individual differences in effortful control, heart-rate variability, and 

executive functioning.  
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 As shown in Table A.23, none of our variables consisted of values that 

spanned the range of possible values, providing some evidence of range restriction.  In 

general this was most pronounced on the lower ends of variable continuums, 

especially with our performance measures of executive functioning, where no 

participant obtained extremely low scores consistent with acute cognitive deficits.  

These findings were consistent with our regression diagnostics in which visual 

inspection of residual scatterplots suggested that there were few observations for 

lower variable values (see Regression Diagnostics: Relationship Linearity & 

Homogeneity of Variance).  With respect to our measures of executive functioning, 

the presence of few observations on the lower ends of their distributions is perhaps not 

too surprising given the nature of our sample, which consisted exclusively of college 

undergraduates, who tend to score higher on measures of cognition than members of 

the general population (Wechsler 1997a, 1997b).  Thus, it is possible that because our 

sample consisted of persons who, in general, possess higher cognitive functioning 

than the general population, there were too few observations on the lower ends of the 

executive functioning continuum for an adequate comparison with concurrently poor 

self-regulation, thus attenuating our correlation and regression coefficients. 

 Indeed, this interpretation is consistent with findings obtained from recent 

work with children and adolescents showing poor correlations between measures of 

executive functioning and child- and parent-reported EC.  For example, Verstraeten 

and associates (2010) found that poor correlations between measures of EC and Tests 

of Everyday Attention (TEA-Ch) were attributable, at least in part, to ceiling effects 
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and low variability in the TEA-Ch performance of older children and adolescents.  

Such findings were consistent with earlier child- and adolescent based community 

research, where child-reported EC evidenced low correlations to performance on 

executive functioning tasks (Muris, Mayer, van Lint, & Hofman, 2008; Muris, van der 

Pennen, Sigmond, & Mayer, 2008).  Thus, the results of this study are both consistent 

and contribute to a growing body of evidence that tests of executive function may fail 

to correlate with measures of EC owing to their insensitivities to individual 

differences in effortful self-regulation in specific samples. 

VI. Summary & Implication of Findings: 

In summary, the results of this investigation provide some compelling support 

for one measure of the self-regulatory trait effortful control (EC), the Adult 

Temperament Questionnaire – Effortful Control Scale (ATQ-EC).   This support came 

in two forms: (1) high correlations between the ATQ-EC and all of its subscales with 

another measure of self-regulation, the Attentional Control Scale (ACS); and (2) the 

high degree of association between ATQ-EC Total, ATQ-EC Activation Control, and 

ATQ-EC Inhibitory Control and both the time- and frequency-domain measure of 

heart-rate variability (HRV).  Not only is the former finding impressive because the 

ATQ-EC and ACS were developed independently, but the latter findings collectively, 

for the first time, provide evidence that self-reported EC is related to an objective 

physiological measure of self-regulatory capacity.    

By contrast, although some support was provided for the ACS, a self-report 

measure of attentional control (a facet of effortful control), this support came by way 
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of its associations with the ATQ-EC.  Like the ATQ-EC, the ACS held no significant 

relations to any measure of executive functioning, but unlike the ATQ-EC held no 

relation to either measure of heart-rate variability.  It is worth noting that this null 

finding held constant even when the ACS was divided into its attentional shifting 

(rRMSDD = −0.140; rLog(HF Power) = −0.046) and attentional focusing (rRMSSD = 0.43; 

rLog(HF Power) = 0.077) subfacets.  This finding with respect to HRV could engender 

some doubts about the self-regulatory relevance of the ACS, given the extensive body 

of evidence attesting to the validity of HRV as an index of self-regulatory capacity 

(Thayer et al., 2009).   

Not only did the absence of a relationship between the ACS and HRV 

challenge the validity of the ACS, but the construct validity of attentional control can 

arguably be challenged because the attentional control subscale of the ATQ-EC (i.e. 

ATQ-EC Attentional Control) also did not correlate significantly with either measure 

of HRV.  Nevertheless, one could attribute the absence of a relation between 

attentional control and HRV to their measuring differing aspects of effortful control.  

Indeed, countervailing evidence abounds that attentional control may attenuate 

temperamental vulnerability to diffuse negative affect and low positive affect (e.g. 

Ayduk, Zayas, Downey, Cole, Shoda, & Mischel, 2008; Derryberry & Reed, 2002; 

Dinovo, 2003, 2005; Meesters, Muris, & van Rooijen, 2007; Muris, de Jong, & 

Engelen, 2004; Muris, Mayer, van Lint, & Hofman, 2009).  Similarly, the lack of a 

relationship between attentional control and HRV is not consistent explanatory 

accounts of this (and closely related) constructs, since discussions of attentional 



      

 

 87 

 

control (e.g. Derryberry & Reed, 2002; Posner & Rothbart, 1998) implicate many of 

the same neural systems (e.g. anterior cingulate cortex, rostral limbic system) central 

to the neurovisceral integration perspective (Thayer & Friedman, 2004; Thayer et al., 

2009; Thayer & Lane, 2000): a comprehensive account of the relationship between 

cardiac vagal tone and self-regulation that implicates the executive control of 

attentional processes.  Thus, definitive statements about the construct validity of 

attentional control within the realms of psychopathology and health cannot be made at 

the present time.   

The relations between measures of HRV and the ATQ-EC are noteworthy, 

since one could not attribute their correlations to shared methods variance.  That is, 

whereas self-reports require respondents to answer questions about self-regulation and 

its attendant consequences, measures of heart-rate variability have the advantage of 

being objective measures of parasympathetic functioning that do attempt to glean the 

same information as self-reports based on differences in question construction, 

because cardiac vagal tone was not indexed on the basis of conscious, verbal (written 

or spoken) responding by participants.  Nevertheless, even if one were to still argue 

that some of the shared variance between these measures is attributable to shared 

methods variance, these correlations at worst still provide evidence of the convergent 

validity of subjective self-reporting, since objective physiological measurements have 

already shown to be reliable measures of self-regulation (Thayer et al., 2009).  Thus, it 

remains plausible that self-reported EC reflects the outcome or byproduct of latent 

self-regulatory capacity: a capacity captured by measurements of HRV.   
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Evidence supporting a delineation between two subfacets of EC, inhibitory 

control and activation control, also emerged in this study.  Both inhibitory control and 

activation control evidenced relations of comparable magnitude and direction to HRV 

(time- and frequency-domain), attentional control (ACS and ATQ-EC Attentional 

Control), and effortful control (ATQ-EC Total), and neither inhibitory control nor 

activation control were related to executive functioning.  One could argue that this 

parallel pattern of inter-relations to other measures supports the convergent validity of 

both inhibitory control and activation control, whereas the significant – though modest 

– correlation between them attests to their discriminant validity within the 

nomological network (Cronbach & Meehl, 1955) of effortful control.  This distinction 

between inhibitory control and activation control is congruent with the idea that 

suppression of prepotent responses by the prefrontal cortex can assume a variety of 

forms (Evans & Rothbart, 2007), including the suppression of inappropriate approach 

behavior (i.e. inhibitory control) or the overriding of prepotent tendencies to avoid 

performing an action (i.e. activation control).  One might speculate that both inhibitory 

and activation control could either work together to attenuate maladaptive tendencies 

in some conditions (e.g. obsessive-compulsive disorder: inhibitory control over 

compulsive behaviors, and activation control overriding behavioral avoidance of 

feared stimuli), or work independently in conditions, for instance, that are 

characterized by pronounced impulsivity (e.g. inhibitory control: ADHD, susbstance 

use disorders) or social withdrawal (e.g. activation control: unipolar depression, social 

anxiety disorder).  Such questions may prove to be fertile ground for future research.   
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Additional directions for future research that could provide further support for 

the convergent validity of effortful control, inhibitory control, and activation control 

have their roots in several lines of research.  For example, despite compelling 

evidence that HRV may have strong genetic bases (Neumann et al., 2005; Snieder et 

al., 2007; Thayer, Merritt, Sollers, Zonderman, Evans, Yie, & Abernethy, 2003; Wang 

et al., 2005), resting HRV can be increased through a variety of changes in diet, 

physical activity, and stress reduction techniques (Thayer et al., 2009; Thayer & Lane, 

2009).  In this light, future research may want to focus on whether changes in resting 

HRV over time relate to predictable changes in self-reported EC, inhibitory control, 

and activation control.   

VII. Closing Remarks 

 The results of our study provide the first evidence that effortful control, a self-

regulatory construct that has thus far been measured only through questionnaire (e.g. 

ATQ-EC) in adults, is not an artifact of self-report responding: a mode of data 

acquisition that relies upon the honesty, insight, and comprehension of participants.  

This evidentiary support resides in the convergence of self-reported effortful control 

with heart-rate variability (HRV): a construct that has been shown to be a reliable and 

valid measure of self-regulation across multiple domains (Thayer et al., 2009).  

Notwithstanding the informative and promising nature of our findings, it is worth 

noting that these conclusions are constrained by the absence of relevant comparative 

information concerning variables known to influence HRV.  These clinical variables 

include body mass index (Antelmi et al., 2004; Gutin, Howe, Johnson, Humphries, 
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Snieder, & Barbeau, 2005; Reed et al., 2006), alcohol consumption (Ingjaldsson, 

Laberg, & Thayer, 2003; Reed, Porges, & Newlin, 1999), hypothalamic-pituitary-

adrenal (HPA) axis dysregulation (Thayer, Hall, Sollers, & Fischer, 2006), tobacco 

use (Nabors-Oberg, Sollers, Niaura, & Thayer, 2002), and physical activity (Carter, 

Banister, & Blaber, 2003; Gutin et al., 2005; Reed et al., 2006; Rossy & Thayer, 

1998).  Not only would such information be useful from the standpoint of elucidating 

the relations between these conditions and effortful control, but such information 

would be important in helping us identify potential moderators that could have 

impacted participants‟ heart-rate variability during data acquisition.   

 Moreover, given the influence of physical activity (Carter, Banister, & Blaber, 

2003; Gutin et al., 2005; Reed et al., 2006; Rossy & Thayer, 1998) and stress 

(Bernardi, Wdowczyk-Szulc, Valenti, Castoldi, Passino, Spadacini, & Sleight, 2000; 

Berntson, Cacioppo, Binkley, Uchino, Quigley, & Fieldstone, 1994; Lackschewitz, 

Hüther, & Kröner-Herwig, 2008; Shapiro, Sloan, Bagiella, Kuhl, Anjilvel, & Mann, 

2000) on short-term measurements of cardiac-vagal functioning, it may have been 

more prudent to take measurements of resting HRV near the end of our study protocol 

rather than at the beginning.  That is, by measuring resting HRV near the beginning of 

our study procedure we may have introduced nuisance variance associated with 

participants‟ activities prior to participation, including physical and psychological 

stresses associated with arriving to the study promptly, as required of them according 

to Research Experience Program (REP) protocols. Thus, by procuring resting HRV 

measurements near the termination of the study procedure, we may have been able to 
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minimize such nuisance variance by assuring some degree of continuity in participant 

activity prior to measurement.  On the other hand, it could be argued that taking 

resting HRV measurements near the end of the study protocol could have introduced 

nuisance variance in the form of mental stress associated with extensive testing and/or 

motivations to leave the study.  Thus, an alternate strategy might have been to procure 

resting HRV by counterbalancing resting periods among participants.       

 Given the absence of any significant correlation between our measures of 

executive functioning and both EC and HRV, it could similarly be argued that our 

choice of cognitive measures were not adequate for investigating our study 

hypotheses.  While such a critique may not extend to some of the more well-validated 

measures (e.g. WMS-III, WCST) of executive functioning utilized in our study, a few 

of our other measures (e.g. Stop-Signal Task) may not have been appropriate choices 

for indexing facets of executive functioning.  For instance, it has been argued (e.g. 

Cowan, 1988, 1994) that simple reaction time and choice reaction time tasks, like the 

Stop-Signal Task, do not require executive cognitive processes like working memory 

and are, instead, driven reflexively by stimulus properties (see Thayer et al., 2009, p. 

146).  Indeed, the Stop-Signal Task did not correlate significantly with our other 

measures of executive functioning, suggesting that individual differences on this 

measure may have been driven by reactive, inhibitory processes.  Consequently, it 

remains possible that certain facets of executive functioning are related to effortful 

control.  Future research should be directed at addressing this important question. 
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What is more, some caution should be exercised when attempting to generalize 

our findings given the nature of our sample.  Although the primary motivation of this 

study was to investigate the validity of self-reported effortful control in young adults, 

since previous adult research (Dinovo, 2003, 2005; Skowron & Dendy, 2004) had 

relied almost exclusively on this age group, it remains an open question regarding the 

extent to which EC would correlate with resting HRV in other (perhaps more 

heterogeneous) samples.  For example, previous research has shown age, sex, and 

ethnic-related differences in short-term HRV measurements (e.g. Britton et al., 2007; 

Choi, Hong, Nelesen, Bardwell, Natarajan, Schubert, & Dismale, 2006; Zhang, 2007).  

Consequently, while our study may lend support to the validity of the ATQ-EC in 

young adults, additional research utilizing different types of samples (e.g. community-

based samples, clinical samples) is likely warranted to establish the external validity 

of our findings.   

 Notwithstanding the limitations of this study, it is my belief that the results of 

this investigation lend support to the construct validity of effortful control: a self-

regulatory construct with broad applications across the lifespan.  Given the noted 

applicability of effortful control in realms as ostensibly disparate as normative 

childhood development and psychopathology, it seems likely that the self-regulatory 

processes subsumed under the umbrella of effortful control implicate a common 

inhibitory network (Aron et al., 2004; Chikazoe, Konishi, Asari, Jimura, & Miyashita, 

2007) discussed in other theoretical frameworks.  Most notably, the neurovisceral 
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intergration perspective (Thayer et al., 2009) upon which the link between HRV and 

self-regulation has been explicated.   
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Appendix A 

Tables: Correlation & Regression Analyses 

 

 

_____________________________________________________________________ 

  Male Female Sample 

 Measure (n = 63)           (n = 61) (n = 124)  

_____________________________________________________________________ 

ATQ – EC Total 

 M 82.04 81.16 81.59 

 SD 15.20 14.25 14.66 

ATQ – EC Attentional Control  

M 20.91 19.17 20.01 

 SD 5.83 4.91 5.42 

ATQ – EC Inhibitory Control      

 M 28.95 27.85 28.38 

 SD 6.56 6.59 6.57 

ATQ – EC Activation Control 

 M 32.18 34.15 33.20 

 SD 7.16 6.64 6.94 

Attentional Control Scale 

 M 54.63 51.04 52.77
*
 

 SD 9.42 8.82 9.25 

BIDR Self-Deception   

 M 6.21 5.35 5.77  

 SD 3.49 2.98 3.25 

BIDR Impression Management 

 M 5.46 6.19 5.84 

 SD 3.76 3.10 3.44 

HRV – Resting RMSSD 

 M 47.28 61.04 54.36
**

 

 SD 37.17 33.02 35.60 

_____________________________________________________________________ 

Continued 

 

Table A.1. Descriptive Statistics on Primary Measures.  Note: * = Sex difference 

significant at p < 0.05, two-tailed.  ** = Sex difference significant at p < 0.01, two-

tailed.  
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Table A.1. Continued 

_____________________________________________________________________ 

  Male Female Sample 

 Measure (n = 63)           (n = 61) (n = 124)  

_____________________________________________________________________ 

HRV – Ln (Resting HF Power) 

 M 6.33 7.08 6.71
**

 

 SD 1.52 1.23 1.42 

Stop-Signal RT 

 M 185.38 180.62 182.93 

 SD 65.76 59.02 62.13 

Stop-Signal Go-Trial RT 

 M 515.31 509.27 512.20 

 SD 120.35 116.45 118.35 

Stop-Signal Go-Trial RT Sd. 

 M 120.35 116.45 118.35 

 SD 42.38 33.32 37.86 

Stroop Interference    

 M 58.16 56.80 57.46 

 SD 7.93 6.25 7.11 

WCST Perseverative Errors  

 M 58.55 56.33 57.41 

 SD 9.85 9.87 9.88 

WMS Working Memory Index 

 M 112.94 108.09 110.45 

 SD 12.38 11.70 12.22 

WAIS Saddler-2 Composite 

 M 24.02 23.00 23.50 

 SD 3.88 3.00 3.48 

TCQ – Total Score 

 M 50.73 50.37 50.54 

 SD 6.40 6.81 6.59 

TCQ – Computer Tests 

 M 16.43 16.27 16.34 

 SD 2.26 2.57 2.41 

TCQ – Hand Tests 

 M 17.13 16.58 16.84 

 SD 2.55 3.00 2.79 

_____________________________________________________________________ 

Continued 
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Table A.1. Continued 

_____________________________________________________________________ 

  Male Female Sample 

 Measure (n = 63)           (n = 61) (n = 124)  

_____________________________________________________________________ 

TCQ – Self-Reports 

 M 17.18 17.52 17.35 

 SD 2.53 2.57 2.55 

TCQ – Tired/Fatigued  

 M 8.45 8.12 8.28 

 SD 2.37 2.31 2.33 

TCQ – Task Attention 

 M 10.72 10.88 10.81 

 SD 1.50 1.43 1.46 

TCQ – Distracted  

 M 10.46 10.27 10.36 

 SD 1.62 1.97 1.81 

TCQ – Stressed  

 M 9.98 9.97 9.98 

 SD 1.89 1.78 1.82 

TCQ – Task Effort 

 M 11.11 11.13 11.12 

 SD 1.50 1.35 1.42 

_____________________________________________________________________ 

 

 

 



 

 127 

 

______________________________________________________________________________________________________ 

  Group 1 Group  2 Group 3  Group 4 Sample 

Measure (n = 14) (n = 24) (n = 31)  (n = 55) (n = 124) 

______________________________________________________________________________________________________ 

ATQ – EC Total 

 M 85.10 81.58          79.02 82.46  81.59 

 SD 11.14 12.98 16.60 14.30  14.66 

ATQ – EC Attentional Control  

M 21.17 19.13 19.42 20.42  20.01 

 SD 4.76 5.97 6.14 4.78  5.42 

ATQ – EC Inhibitory Control      

 M 28.19 27.75 27.41 29.28  28.38  

 SD 5.85 6.44 6.68 6.53  6.57 

ATQ – EC Activation Control 

 M 35.75 34.71 32.20 32.76  33.20 

 SD 7.47 6.84 7.18 6.43   6.94 

Attentional Control Scale 

 M 53.42 51.12 50.46 54.40   52.77 

 SD 9.10 10.21 7.70 9.03  9.25 

BIDR Self-Deception   

 M 5.42 6.16 5.51 5.94  5.77  

 SD 2.68 3.44 2.65 3.62  3.25 

______________________________________________________________________________________________________ 

Continued 

 

Table A.2. Descriptive Statistics on Primary Measures: Data Acquisition Date Comparisons. Note: Group 1 = January 7 – 

January 21, Group 2 = January 22 – February 5, Group 3 = February 6 – February 20, Group 4 = February 21 – March 6; No 

between-group differences achieved statistical significance (p < 0.05, two-tailed). 
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Table A.2. Continued 

______________________________________________________________________________________________________ 

  Group 1 Group  2 Group 3  Group 4 Sample 

Measure (n = 14) (n = 24) (n = 31)  (n = 55) (n = 124) 

______________________________________________________________________________________________________ 

BIDR Impression Management 

 M 5.33 5.44 6.66 5.39  5.84 

 SD 3.39 3.08 3.54 3.50  3.44 

HRV – Resting RMSSD 

 M 48.05 59.13 49.38 54.10  54.36 

 SD 22.00 35.07 35.70 36.53  35.60 

HRV – Ln (Resting HF Power) 

 M 6.74 6.96 6.59 6.64  6.71 

 SD 1.34 1.55 1.26 1.48  1.42 

Stop-Signal RT 

 M 172.46 201.78 173.18 178.20  182.93 

 SD 73.03 74.71 41.69 58.00  62.13 

Stop-Signal Go-Trial RT 

 M 508.22 528.11 500.82 519.08  512.20 

 SD 143.84 96.79 113.09 103.00  118.35 

Stop-Signal Go-Trial RT Sd. 

 M 110.70 125.73 114.92 120.26  118.35 

 SD 35.29 38.21 37.97 36.47  37.86 

______________________________________________________________________________________________________ 

Continued 
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Table A.2. Continued 

______________________________________________________________________________________________________ 

  Group 1 Group  2 Group 3  Group 4 Sample 

Measure (n = 14) (n = 24) (n = 31)  (n = 55) (n = 124) 

______________________________________________________________________________________________________ 

Stroop Interference    

 M 59.17 58.20 56.39 57.58  57.46 

 SD 5.02 8.05 7.98 6.55  7.11 

WCST Perseverative Errors  

 M 58.50 57.24 55.93 58.33  57.41 

 SD 7.78 9.67 9.89 9.87  9.88 

WMS Working Memory Index 

 M 109.67 109.36 108.16 111.51  110.45 

 SD 10.76 11.18 11.48 13.36  12.22 

WAIS Saddler-2 Composite 

 M 24.18 22.56 23.48 23.36  23.50 

 SD 3.19 3.85 3.21 3.73  3.48 

TCQ – Total Score 

 M 50.33 51.04 51.74 49.39  50.54 

 SD 3.28 5.57 5.47 8.07  6.59 

______________________________________________________________________________________________________ 
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______________________________________________________________________________________________________ 

      

                                  1        2        3       4       5       6       7       8       9        10      11     12     13    14     15     16                       

______________________________________________________________________________________________________ 

 

1. ATQ – EC Total                         (.81
**

) 

2. ATQ – EC Attentional Control    .81
** 

(.76
**

)    

3. ATQ – EC Inhibitory Control      .73
**

  .44
** 

(.60
**

)   

4. ATQ – EC Activation Control     .77
**  

.50
**  

.25
** 

(.72
**

)        

5. Attentional Control Scale             .68
** 

.78
**  

.44
**  

.40
** 

(.86
**

)   

6. BIDR Self-Deception                   .37
** 

.38
**

 .15    .33
**  

.38
** 

(.67
**

)     

7. BIDR Impression Management    .24
** 

.15    .17    .23*  .13    .30
** 

(.69
**

)        

8. HRV – Resting RMSSD               .27
** 

.09    .23*  .27
**

–.01   .06    .13    (.75
**

)          

9. HRV – Ln (Resting HF Power)    .25
** 

.13    .18*  .26
**

 .04    .08    .14    .95
**

 (.74
**

)             

10. Stop-Signal RT                         –.07  –.01 –.02  –.10  –.10  –.12   –.05   .08    .08      (na) 

11. Stop-Signal – Go-Trial RT       –.01   .05  –.18    .11    .08    .12  –.14  –.02  –.05   –.59
**  

(na) 

12. Stop-Signal – Go-Trial RT Sd. –.02   .05  –.19*  .10    .08    .10  –.13  –.09  –.11   –.57
**

  .87
**  

(na) 

13. Stroop Interference                     .09    .04    .10    .08    .07    .07    .01    .01   .01    –.03  –.05   –.08  (.65
**

) 

14. WCST – Perseverative Errors    .08    .06    .12    .01    .18  –.08    .02    .05    .01    –.15    .09    .04   .05   (na) 

15. WMS – Working Memory         .05    .19*  .11 –.16     .15    .11  –.09  –.11  –.05   –.06   –.01  –.09   .26
**

  .16  (.71
**

) 

16. WAIS – Saddler 2 Composite –.13   –.09   .14  –.34
** 

–.03 –.14    .06  –.07  –.07   –.11   –.19* –.31
**

.23*    .07  .49
**

 (.82
**

) 

______________________________________________________________________________________________________ 

 

Table A.3. Correlations among Primary Measures after Transformations. Note: * = Correlation significant at p < 0.05, two-

tailed.  
**

 = Correlation significant at p < 0.01, two-tailed. Internal consistencies are shown on the diagonal, unless otherwise 

indicated (na; individual measurements/items not available for computing internal consistency). --- = previously reported 

correlation; na = correlation not calculated. 
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______________________________________________________________________________________________________ 

      

                             1       2       3      4       5        6       7       8       9      10      11      12      13     14     15    16                       

______________________________________________________________________________________________________ 

 

1. ATQ – EC Total         (---) 

2. ATQ – EC Attentional Control  --- (---)    

3. ATQ – EC Inhibitory Control        --- ---
 

(---)   

4. ATQ – EC Activation Control  --- --- --- (---)        

5. Attentional Control Scale        --- --- --- --- (---)   

6. BIDR Self-Deception        --- --- --- --- --- (---)     

7. BIDR Impression Management  --- --- --- --- ---  --- (---)        

8. TCQ Total            .40
**

 .36
**

 .27
**

 .30
**

 .33
**

 .41
**

.35
** 

(.86
**

)          

9. TCQ – Computer Tests  na  na  na  na  na  na  na   .85
**

   (.62
**

)             

10. TCQ – Hand Tests na  na  na  na  na  na  na   .85
** 

 .60
**

  (.74
**

) 

11. TCQ – Self-Reports                  na  na  na  na  na  na  na   .85
** 

 .60
**

  .55
** 

 (.75
**

) 

12. TCQ – Tired/Fatigued              na  na  na  na  na  na  na   .77
** 

 .67
**

  .63
**

  .65
**

  (.74
**

) 

13. TCQ – Task Attention na  na  na  na  na  na  na   .84
** 

 .75
**

  .65
**

  .75
**

  .53
**

 (.71
**

) 

14. TCQ – Distracted   na  na  na  na  na  na  na   .80
**

  .66
**

  .72
**  

 .66
**  

.44
**

 .66
**

 (.66
**

) 

15. TCQ – Stressed  na  na  na  na  na  na  na   .60
**

  .45
**

  .61
**

  .46
**

  .30
**

 .27
** 

.42
** 

(.70
**

) 

16. TCQ – Task Effort                       na  na  na  na  na  na  na   .73
**

  .65
**

  .56
**

  .66
**

  .42
**

 .81
** 

.49
**  

.19* (.76
**

) 

______________________________________________________________________________________________________ 

 

Table A.4. Correlations among Task Completion Questionnaire (TCQ) Subscales after Transformations. Note: * = Correlation 

significant at p < 0.05, two-tailed.  
**

 = Correlation significant at p < 0.01, two-tailed. Internal consistencies are shown on the 

diagonal, unless otherwise indicated (na; individual measurements/items not available for computing internal consistency). --- 

= previously reported correlation; na = correlation not calculated. 
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_____________________________________________________________________ 

      

                            1       2        3        

_____________________________________________________________________ 

 

1. HRV – Resting RMSSD             (---)          

2. HRV – Ln (Resting HF Power)     ---  (---)             

3. TCQ Total             .06  .07  (---)     

_____________________________________________________________________ 

 

Table A.5. Correlations among Heart-Rate Variability Measures and Task Completion 

Questionnaire (TCQ) after Transformations. Note: * = Correlation significant at p < 

0.05, two-tailed. ** = Correlation significant at p < 0.01, two-tailed. --- = previously 

reported correlation 
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_____________________________________________________________________ 

      

                                   TCQ Total                       

_____________________________________________________________________ 

 

1. Stop-Signal RT           −.09 

2. Stop-Signal – Go-Trial RT         
              

−.01 

3. Stop-Signal – Go-Trial RT Sd.              −.04 

4. Stroop Interference      .16 

5. WCST – Perseverative Errors       .01 

6. WMS – Working Memory       .09 

7. WAIS – Saddler 2 Composite          .00 

_____________________________________________________________________ 

 

Table A.6. Correlations among Executive Function Measures and Task Completion 

Questionnaire (TCQ) after Transformations. Note: * = Correlation significant at p < 

0.05, two-tailed.   
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.072*     (1, 109)        0.005**    

i. HRV – Resting RMSSD           .268**   .268**

           

Full Model           0.285**   (7, 103)        0.537       

i. HRV – Resting RMSSD           .272**   .257**      

ii. Self-Deception            .220*     .193*      

iii. Impression Management           .056       .050 

iv. Task Completion TOTAL                .269**   .232*      

v. Age                   .068       .066 

vi. Sex                 −.100     −.094       

vii. Race            −.054     −.052 

 

Durban-Watson Statistic = 2.276 

_____________________________________________________________________ 

 

Table A.7.  Hierarchical regression predicting ATQ-EC Total from HRV – Resting 

RMSSD. Note: R
2
 = squared multiple correlation. Sig. F. Change = p-value of 

significance of change in R
2
 with addition of predictor. Β = standardized beta. sr = 

semi-partial correlation. * = Significant at p < 0.05, two-tailed.  ** = Significant at p < 

0.01, two-tailed. Self-Deception = BIDR Self-Deception. Impression Management = 

BIDR Impression Management. 
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.064*     (1, 109)        0.008**    

i. HRV – Ln (Resting HF Power)          .253**   .253**    

 

Full Model           0.272**   (7, 103)        0.583       

i. HRV – Ln (Resting HF Power)          .242**   .230*      

ii. Self-Deception            .216*     .189*      

iii. Impression Management           .054       .049 

iv. Task Completion TOTAL                .270**   .233*      

v. Age                   .068       .066 

vi. Sex                 −.087     −.082       

vii. Race            −.049     −.047 

 

Durban-Watson Statistic = 2.256 

_____________________________________________________________________ 

 

Table A.8. Hierarchical regression predicting ATQ-EC Total from HRV – Ln (Resting 

HF Power). Note: R
2
 = squared multiple correlation. Sig. F. Change = p-value of 

significance of change in R
2
 with addition of predictor. Β = standardized beta. sr = 

semi-partial correlation. * = Significant at p < 0.05, two-tailed.  ** = Significant at p < 

0.01, two-tailed. Self-Deception = BIDR Self-Deception. Impression Management = 

BIDR Impression Management. 
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.037*     (1, 109)        0.044*    

i. WMS – Working Memory           .192*      .192*

           

Full Model           0.234**   (7, 103)        0.975       

i. WMS – Working Memory           .120       .116      

ii. Self-Deception            .263**   .229*      

iii. Impression Management           .017       .015 

iv. Task Completion TOTAL                .234*     .201*      

v. Age                 −.051     −.050 

vi. Sex                 −.135     −.131       

vii. Race              .003       .003 

 

Durban-Watson Statistic = 2.117 

_____________________________________________________________________ 

 

Table A.9. Hierarchical regression predicting ATQ-EC Attentional Control from 

WMS – Working Memory. Note: R
2
 = squared multiple correlation. Sig. F. Change = 

p-value of significance of change in R
2
 with addition of predictor. Β = standardized 

beta. sr = semi-partial correlation. * = Significant at p < 0.05, two-tailed.  ** = 

Significant at p < 0.01, two-tailed. Self-Deception = BIDR Self-Deception. Impression 

Management = BIDR Impression Management. 
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.054*     (1, 109)        0.016*    

i. HRV – Resting RMSSD           .232*      .232*     

     

Full Model           0.149*     (7, 103)        0.854       

i. HRV – Resting RMSSD           .257**   .244**      

ii. Self-Deception            .007       .006      

iii. Impression Management           .079       .071 

iv. Task Completion TOTAL                .223*     .192*      

v. Age                   .006       .006 

vi. Sex                 −.172     −.162       

vii. Race              .018       .017 

 

Durban-Watson Statistic = 2.092 

_____________________________________________________________________ 

 

Table A.10. Hierarchical regression predicting ATQ-EC Inhibitory Control from HRV 

– Resting RMSSD. Note: R
2
 = squared multiple correlation. Sig. F. Change = p-value 

of significance of change in R
2
 with addition of predictor. Β = standardized beta. sr = 

semi-partial correlation. * = Significant at p < 0.05, two-tailed.  ** = Significant at p < 

0.01, two-tailed. Self-Deception = BIDR Self-Deception. Impression Management = 

BIDR Impression Management. 
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.034       (1, 109)        0.059    

i. HRV – Ln (Resting HF Power)          .183*      .183*     

     

Full Model           0.124       (7, 103)        0.814       

i. HRV – Ln (Resting HF Power)          .195*      .185*      

ii. Self-Deception            .006        .005      

iii. Impression Management           .081        .073 

iv. Task Completion TOTAL                .225*      .194*      

v. Age                   .002        .002 

vi. Sex                 −.152      −.143       

vii. Race              .023        .022 

 

Durban-Watson Statistic = 2.088 

_____________________________________________________________________ 

 

Table A.11. Hierarchical regression predicting ATQ-EC Inhibitory Control from HRV 

– Ln (Resting HF Power).  Note: R
2
 = squared multiple correlation. Sig. F. Change = 

p-value of significance of change in R
2
 with addition of predictor. Β = standardized 

beta. sr = semi-partial correlation. * = Significant at p < 0.05, two-tailed.  ** = 

Significant at p < 0.01, two-tailed. Self-Deception = BIDR Self-Deception. Impression 

Management = BIDR Impression Management. 
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.037*     (1, 109)        0.047*    

i. Stop-Signal – Go-Trial RT Sd.        −.192*    −.192*     

     

Full Model           0.122       (7, 103)        0.930       

i. Stop-Signal – Go-Trial RT Sd.        −.184*    −.180      

ii. Self-Deception            .054        .047      

iii. Impression Management           .071        .064 

iv. Task Completion TOTAL                .214*      .184*      

v. Age                 −.016      −.016 

vi. Sex                 −.104      −.102       

vii. Race              .009        .008 

 

Durban-Watson Statistic = 2.090 

_____________________________________________________________________ 

 

Table A.12. Hierarchical regression predicting ATQ-EC Inhibitory Control from Stop-

Signal – Go-Trial RT Sd.. Note: R
2
 = squared multiple correlation. Sig. F. Change = 

p-value of significance of change in R
2
 with addition of predictor. Β = standardized 

beta. sr = semi-partial correlation. * = Significant at p < 0.05, two-tailed.  ** = 

Significant at p < 0.01, two-tailed. Self-Deception = BIDR Self-Deception. Impression 

Management = BIDR Impression Management. 
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Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.072**     (1, 109)        0.005**    

i. HRV – Resting RMSSD           .269**   .269**     

     

Full Model           0.249**     (7, 103)        0.193       

i. HRV – Resting RMSSD           .239**    .227*      

ii. Self-Deception            .225*      .197*      

iii. Impression Management           .049        .045 

iv. Task Completion TOTAL                .173        .149      

v. Age                   .175        .170 

vi. Sex                   .093        .088       

vii. Race            −.117      −.114 

 

Durban-Watson Statistic = 2.108 

_____________________________________________________________________ 

 

Table A.13. Hierarchical regression predicting ATQ-EC Activation Control from 

HRV – Resting RMSSD. Note: R
2
 = squared multiple correlation. Sig. F. Change = p-

value of significance of change in R
2
 with addition of predictor. Β = standardized beta. 

sr = semi-partial correlation. * = Significant at p < 0.05, two-tailed.  ** = Significant 

at p < 0.01, two-tailed. Self-Deception = BIDR Self-Deception. Impression 

Management = BIDR Impression Management. 
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.066**     (1, 109)        0.008**    

i. HRV – Ln (Resting HF Power)          .257**   .257**     

     

Full Model           0.240**     (7, 103)        0.216       

i. HRV – Ln (Resting HF Power)          .218*     .207*      

ii. Self-Deception            .221*     .193*      

iii. Impression Management           .048       .043 

iv. Task Completion TOTAL                .175       .150      

v. Age                   .175       .170 

vi. Sex                   .103       .098       

vii. Race            −.113    −.109 

 

Durban-Watson Statistic = 2.106 

_____________________________________________________________________ 

 

Table A.14. Hierarchical regression predicting ATQ-EC Activation Control from 

HRV – Ln (Resting HF Power). Note: R
2
 = squared multiple correlation. Sig. F. 

Change = p-value of significance of change in R
2
 with addition of predictor. Β = 

standardized beta. sr = semi-partial correlation. * = Significant at p < 0.05, two-tailed.  

** = Significant at p < 0.01, two-tailed. Self-Deception = BIDR Self-Deception. 

Impression Management = BIDR Impression Management. 
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.115**     (1, 109)        0.000**    

i. WAIS – Saddler 2 Composite        −.339**   .339**     

     

Full Model           0.304**     (7, 103)        0.073       

i. WAIS – Saddler 2 Composite        −.336** −.326**      

ii. Self-Deception            .182        .157      

iii. Impression Management           .109        .098 

iv. Task Completion TOTAL                .180        .155      

v. Age                   .152        .148 

vi. Sex                   .132        .128       

vii. Race            −.158     −.152 

 

Durban-Watson Statistic = 1.890 

_____________________________________________________________________ 

 

Table A.15. Hierarchical regression predicting ATQ-EC Activation Control from 

WAIS – Saddler 2 Composite. Note: R
2
 = squared multiple correlation. Sig. F. 

Change = p-value of significance of change in R
2
 with addition of predictor. Β = 

standardized beta. sr = semi-partial correlation. * = Significant at p < 0.05, two-tailed.  

** = Significant at p < 0.01, two-tailed. Self-Deception = BIDR Self-Deception. 

Impression Management = BIDR Impression Management. 
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.037*       (1, 109)      0.046*    

i. WAIS – Saddler 2 Composite        −.193*    −.193*    

     

Full Model           0.101         (7, 103)      0.100       

i. WAIS – Saddler 2 Composite        −.183*    −.177      

ii. Self-Deception            .175        .152      

iii. Impression Management         −.177      −.159 

iv. Task Completion TOTAL              −.028      −.024      

v. Age                   .038        .037 

vi. Sex                   .041        .040       

vii. Race            −.165      −.158 

 

Durban-Watson Statistic = 1.818 

_____________________________________________________________________ 

 

Table A.16. Hierarchical regression predicting Stop-Signal Go-Trial RT from WAIS – 

Saddler 2 Composite. Note: R
2
 = squared multiple correlation. Sig. F. Change = p-

value of significance of change in R
2
 with addition of predictor. Β = standardized beta. 

sr = semi-partial correlation. * = Significant at p < 0.05, two-tailed.  ** = Significant 

at p < 0.01, two-tailed. Self-Deception = BIDR Self-Deception. Impression 

Management = BIDR Impression Management. 
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.096**     (1, 109)      0.001**    

i. WAIS – Saddler 2 Composite        −.310** −.310**    

     

Full Model           0.136*       (7, 103)      0.188       

i. WAIS – Saddler 2 Composite        −.308** −.299**      

ii. Self-Deception            .127        .110      

iii. Impression Management         −.120     −.107 

iv. Task Completion TOTAL              −.057     −.049      

v. Age                   .036        .035 

vi. Sex                 −.025     −.025       

vii. Race            −.129     −.124 

 

Durban-Watson Statistic = 1.880 

_____________________________________________________________________ 

 

Table A.17. Hierarchical regression predicting Stop-Signal Go-Trial RT Sd. from 

WAIS – Saddler 2 Composite. Note: R
2
 = squared multiple correlation. Sig. F. 

Change = p-value of significance of change in R
2
 with addition of predictor. Β = 

standardized beta. sr = semi-partial correlation. * = Significant at p < 0.05, two-tailed.  

** = Significant at p < 0.01, two-tailed. Self-Deception = BIDR Self-Deception. 

Impression Management = BIDR Impression Management. 
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.065**     (1, 109)      0.007**    

i. WMS – Working Memory           .256**   .256** 

     

Full Model           0.115         (7, 103)      0.067       

i. WMS – Working Memory           .219*     .212*      

ii. Self-Deception            .033       .028      

iii. Impression Management         −.004    −.003 

iv. Task Completion TOTAL                .106       .091      

v. Age                 −.041    −.040 

vi. Sex                   .014       .014       

vii. Race            −.178     −.172 

 

Durban-Watson Statistic = 2.087 

_____________________________________________________________________ 

 

Table A.18. Hierarchical regression predicting Stroop Interference from WMS – 

Working Memory. Note: R
2
 = squared multiple correlation. Sig. F. Change = p-value 

of significance of change in R
2
 with addition of predictor. Β = standardized beta. sr = 

semi-partial correlation. * = Significant at p < 0.05, two-tailed.  ** = Significant at p < 

0.01, two-tailed. Self-Deception = BIDR Self-Deception. Impression Management = 

BIDR Impression Management. 
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.051*       (1, 109)      0.020*    

i. WAIS – Saddler 2 Composite          .225*      .225*    

 

Full Model           0.113         (7, 103)      0.083       

i. WAIS – Saddler 2 Composite          .213*      .207*      

ii. Self-Deception            .096        .083      

iii. Impression Management         −.056      −.050 

iv. Task Completion TOTAL                .117        .101      

v. Age                 −.054      −.053 

vi. Sex                   .003        .003       

vii. Race            −.173      −.166 

 

Durban-Watson Statistic = 2.121 

_____________________________________________________________________ 

 

Table A.19. Hierarchical regression predicting Stroop Interference from WAIS – 

Saddler 2 Composite. Note: R
2
 = squared multiple correlation. Sig. F. Change = p-

value of significance of change in R
2
 with addition of predictor. Β = standardized beta. 

sr = semi-partial correlation. * = Significant at p < 0.05, two-tailed.  ** = Significant 

at p < 0.01, two-tailed. Self-Deception = BIDR Self-Deception. Impression 

Management = BIDR Impression Management. 
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_____________________________________________________________________ 

 

Model and Predictor       R
2
             df  Sig. F Change        β  sr__ 

 

Zero Order Model      0.235**       (1, 109)      0.000**    

i. WAIS – Saddler 2 Composite          .485**   .485** 

     

Full Model           0.314**       (7, 103)      0.647       

i. WAIS – Saddler 2 Composite          .512**   .497**      

ii. Self-Deception            .214*     .185      

iii. Impression Management         −.182    −.163 

iv. Task Completion TOTAL                .059       .051      

v. Age                 −.057    −.056 

vi. Sex                 −.085    −.083       

vii. Race            −.040    −.038 

 

Durban-Watson Statistic = 2.090 

_____________________________________________________________________ 

 

Table A.20. Hierarchical regression predicting WMS – Working Memory from WAIS 

– Saddler 2 Composite. Note: R
2
 = squared multiple correlation. Sig. F. Change = p-

value of significance of change in R
2
 with addition of predictor. Β = standardized beta. 

sr = semi-partial correlation. * = Significant at p < 0.05, two-tailed.  ** = Significant 

at p < 0.01, two-tailed. Self-Deception = BIDR Self-Deception. Impression 

Management = BIDR Impression Management. 
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_____________________________________________________________________ 

 

Variable 1    Variable 2   r12  sr12 

 

7. ATQ-EC Total   HRV – Resting RMSSD 0.27
**         

0.257
**

 

8. ATQ-EC Total    HRV – Ln (Resting HF Power) 0.25
**         

0.230
**

 

9. ATQ-EC Attentional Control WMS – Working Memory 0.19*       0.116 

10. ATQ-EC Inhibitory Control HRV – Resting RMSSD 0.23*       0.244
**

 

11. ATQ-EC Inhibitory Control HRV – Ln (Resting HF Power) 0.18*       0.185* 

12. ATQ-EC Inhibitory Control Stop-Signal – Go-Trial RT Sd. −0.19*    −0.180 

13. ATQ-EC Activation Control HRV – Resting RMSSD 0.27
**         

0.227
**

 

14. ATQ-EC Activation Control HRV – Ln (Resting HF Power) 0.26
**         

0.207* 

15. ATQ-EC Activation Control WAIS – Saddler 2 Composite  −0.34
**    

−0.326
**

 

16. Stop-Signal Go-Trial RT   WAIS – Saddler 2 Composite  −0.19*   −0.177 

17. Stop-Signal Go-Trial RT Sd. WAIS – Saddler 2 Composite  −0.31
**   

−0.299
**

 

18. Stroop Interference  WMS – Working Memory  0.26
**       

0.212* 

19. Stroop Interference  WAIS – Saddler 2 Composite  0.23*     0.207* 

20. WMS – Working Memory WAIS – Saddler 2 Composite  0.49
**      

0.497
**

 

_____________________________________________________________________ 

 

Table A.21. Summary of Statistical Significant Correlation and Semi-Partial 

Correlations. Note: Integer to the left of variable name corresponds with table # in 

Appendix A from which the coefficients were obtained. r12 = zero-order correlation 

derived from zero-order model multiple linear regression. sr12 = semi-partial 

correlation derived from full model multiple linear regression (with all covariates 

included).  * = Significant at p < 0.05, two-tailed.  ** = Significant at p < 0.01, two-

tailed.  
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_____________________________________________________________________ 

 

Variable 1    Variable 2      r12      sr12___ 

 

Composite Executive Functions ATQ-EC Total       0.112        0.030 

Composite Executive Functions ATQ-EC Attentional Control   0.137        0.000 

Composite Executive Functions ATQ-EC Inhibitory Control   0.149        0.079 

Composite Executive Functions ATQ-EC Activation Control  −0.011     −0.020 

Composite Executive Functions Attentional Control Scale   0.201
*          

0.075 

Composite Executive Functions  HRV – Resting RMSSD  −0.063     −0.028 

Composite Executive Functions      HRV – Ln (Resting HF Power)  −0.062     −0.053 

_____________________________________________________________________ 

 

Table A.22. Summary of Correlations and Semi-Partial Correlations between 

Composite Executive Function and Key Measures of Self-Regulation. Note: 

Composite Executive Functions = Sum of Standardized Scores (WMS-Working 

Memory Index, Stroop Interference T-Score, Log10WCST Perseverative Errors, 

Log10Stop-Signal RT). r12 = zero-order correlation between Variable 1 and Variable 

2. sr12 = semi-partial correlation derived from full model multiple linear regression 

(with all covariates included).  * = Significant at p < 0.05, two-tailed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 152 

 

_____________________________________________________________________ 

  

  Range Observed      Range Possible/Typical  

Variable  (a) (b)  

 

ATQ-EC Total  43 – 123  19 – 133    

ATQ-EC Attentional Control 7 – 35  5 – 35    

ATQ-EC Inhibitory Control 13 – 43  7 – 49    

ATQ-EC Activation Control 16 – 49  7 – 49    

Attentional Control Scale 32 – 80  20 – 80    

BIDR Self-Deception 0 – 15  0 – 20    

BIDR Impression Management 0 – 15  0 – 20    

HRV – Resting RMSSD            6.32 – 182.45  typical 

HRV – Ln (Resting HF Power) 2.17 – 9.63 typical 

Stop-Signal RT  57.89 – 456.51    na 

Stop-Signal – Go-Trial RT          332.27 – 797.58     na 

Stop-Signal – Go-Trial RT Sd.          57.95 – 226.58     na 

Stroop Interference 40 – 80  21 – 80    

WCST – Perseverative Errors 28 – 79  19 – 80    

WMS – Working Memory 79 – 146 49 – 155     

WAIS – Saddler 2 Composite     12 – 33  2 – 38    

_____________________________________________________________________ 

 

Table A.23. Summary of Variable Range Values Obtained and Variable Range Values 

Possible. Note: a = Range of values observed in our sample. b = Range of possible 

values that could have been assumed by measure. Typical = range is consistent with 

general expectations for an undergraduate sample. na = no standard range available. 
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Appendix B 

Distributional Analyses 

 

 

 

Visual Inspection of Univariate Frequency Histograms 

 The most frequently used visual tool for qualitatively assessing a sample‟s 

normality is the histogram (Cohen et al., 2003; Hays, 1994; Henderson, 2006), which 

allows for a quick visual inspection of data symmetry and spread.  Figures B.1 – B.5 

show separate data distributions for every major variable included in this study.  To 

facilitate interpretation, overlaying each sample distribution is a normal curve with the 

same mean and standard deviation as its corresponding variable.   

 An examination of the plots in Figures B.1 − B.5 indicated possible asymmetry 

(i.e. skewness) within the distributions of some variables.  Variables that demonstrated 

potential signs of positive skew (i.e. where much of the distribution is concentrated on 

the left of the figure and the right tail is longer) included BIDR Self-Deception (Figure 

B.2), HRV – Resting RMSSD (Figure B.3), and all three measurements from the 

Stop-Signal Task (Figure B.4).  By contrast, only HRV – Ln (Resting HF Power), 

shown in Figure B.3, evidenced possible signs of negative skew (where much of the 

distribution is concentrated on the right of the figure and the left tail is longer). 

Regarding the extent to which sample data clustered around a central point, or 

resembled the probability densities of the normal distribution, several variables 
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evidenced potential signs of kurtosis.  Among those variables whose distributions 

showed possible signs of positive kurtosis, or leptokurtosis (where order data assume 

values closer to the mean, and the extremes, of a distribution than normally distributed 

data, as evidenced by a more pronounced “peak” near the mean and “fatter” tails, than 

the normal curve), were both measures of heart-rate variability (Figure B.3), HRV – 

Resting RMSSD and HRV - Ln (Resting HF Power), Stop-Signal RT (Figure B.4), 

and Stroop Interference and the WAIS – Saddler 2 Composite (Figure B.5).  One 

variable that displayed potential signs of negative kurtosis, or platykurtosis (where 

order data assume values not as close to the mean, nor the extremes, of a distribution 

than normally distributed data, as evidenced by a wider “peak” near the mean and 

“thinner” tails than a normal curve), was ATQ-EC Inhibitory Control (Figure B.1).  

Visual Inspection of P-P Plots & Q-Q Plots  

 Whereas frequency histograms provide a useful, qualitative way to assess the 

distributional properties of sample data, probability-probability (P-P) and quantile-

quantile (Q-Q) plots can provide semi-quantitative evidence of deviations from a 

specified distribution (in this context, the normal distribution).  Both methods do so by 

plotting order statistics (i.e. observed data) against the expected values of those order 

statistics from the distribution of interest (Henderson, 2006).  However, since the 

particular parameters of any distribution are rarely known, both methods must 

estimate these unknown parameters before the expected values themselves can be 

estimated.   
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While the particulars of how these expected values are estimated are beyond 

the scope of the present discussion, it is worth noting that both methods derive these 

values from a cumulative distribution function (CDF) for each random variable.  

Consequently, both plots are interpreted similarly when drawing inferences about how 

closely a data set approximates a specified distribution (e.g. normal distribution) and, 

thus, either method could be used to assess deviations from statistical normality.  

However, inclusion of both plots was viewed as being potentially useful in the present 

context, since the P-P plot is believed to be better at assessing goodness-of-fit near the 

center of a data distribution compared to the Q-Q plot, which by contrast is believed to 

be a better goodness-of-fit measure at the tails of a data distribution (Gan, Koehler, & 

Thompson, 1991; Holmgren, 1995). 

Probability-probability (P-P) plots for every major variable included in this 

study can be found in Figures B.6 – B.10.  Deviations from normality are indicated by 

data patterns that approximate an “S-curve” and/or “banana” or “crescent” shaped data 

plot (Henderson, 2006).  Variables that demonstrated possible deviations from 

normality (especially near the center of their respective data distributions) were both 

BIDR subscales (Figure B.7), both heart-rate variability indices (Figure B.8), and all 

three measurements from the Stop-Signal Task (Figure B.9). 

Corroborating the visual evidence of non-normality gleaned from the P-P plots 

are the quantile-quantile (Q-Q) plots shown in Figures B.11 − B.15, which, like the P-

P plots, evidenced possible deviations from normality (especially near the tails of the 

data distributions) for all measurements of socially desirable responding (BIDR; 
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Figure B.12), heart-rate variability (Figure B.13), and Stop-Signal Task performance 

(Figure B.14).  These Q-Q plots also showed potential deviations in normality in 

WCST – Perseverative Errors and WAIS – Saddler 2 Composite (Figure B.15) 

performance, the latter inference of which would be consistent with our observation of 

kurtosis in the WAIS – Saddler 2 Composite distribution in the previous section. 

Left unclear by the visual inspections of the histograms presented in the 

previous section, and the P-P plots and Q-Q plots in this section, was whether these 

potential deviations from normality were genuine and, if so, were they of a sufficient 

magnitude to have attenuated our correlation coefficients.  This was especially the 

case with the ATQ subscales, which displayed (see Figures B.1, B.6, and B.11) 

seemingly minor deviations from statistical normality (e.g. signs of platykurtosis in 

ATQ-EC Inhibitory Control) but were less clearly non-normal than many of the other 

variables discussed.  Such ambiguity both underscores the near-ubiquity of non-

normality in behavioral science data (Bradley, 1982; Levine, 2005; Micceri, 1989) and 

highlights the limited utility of visual inspection in determining the extent to which a 

data distribution approximates a distribution of interest.  Thus, while visual inspection 

of data plots may be useful when clear signs of kurtosis, skewness, and other factors 

(e.g. outliers) that can significantly affect statistical tests are present, quantitative 

indices of normality might be of particular value when visual evidence of non-

normality is far from compelling.   

Quantitative Assessment of Normality 
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 Since the advent of modern statistics many tests have been devised to surmise 

the distributional properties of sample data (for review, see Henderson, 2006).  These 

tests have ranged from the classical chi-square (χ
2
) goodness-of-fit test (Pearson, 

1900) and tests of central (C-moment), linear (L-moment), and absolute moments 

(Cornish & Fisher, 1937; Cramér, 1946; Hosking, 1990), to more contemporary 

approaches based on statistical regression or empirical distribution functions, like the 

Shapiro-Wilk (Shapiro & Wilk, 1965) and modified Kolmogorov-Smirnov (Lilliefors, 

1967) tests, respectively.  Although one must certainly consider a variety of factors 

(e.g. hypothesized distribution specifications, sample size, data scale) when choosing 

among tests of departure from normality, comprehensive studies comparing the 

effectiveness of these tests (Gan & Koehler, 1990; Filliben, 1975; Pearson, 

D‟Agostino, & Bowman, 1977; Shapiro, Wilk, & Chen, 1968; Stephens, 1974) have 

generally found the Shapiro-Wilk test to be a superior test of non-normality for 

samples of up to 50 participants, and the Kolmogorov-Smirnov (Lilliefors 

modification) test to be best suited for measuring non-normality in samples consisting 

of more than 50 participants (Henderson, 2006; Thode, 2002).  Therefore, our 

quantitative test of choice for measuring statistical non-normality was the 

Kolmogorov-Smirnov (Lilliefors modification) test (Lilliefors, 1967; Mason & Bell, 

1986).  For a detailed discussion of the mathematical theory underlying the 

Kolmogorov-Smirnov (Lilliefors modification) test statistic, please refer to Henderson 

(2006).  
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 Consistent with standard statistical practices and recommendations (Balanda & 

MacGillvray, 1988; Cohen et al., 2003; D‟Agostino, 1986), we also calculated 

kurtosis and skewness statistics to accompany results from the modified Kolmogorov-

Smirnov (K-S) test to further ascertain the extent to which variable distributions 

deviated from normality.  Whereas the Kolmogorov-Smirnov test provides a robust 

general estimate of non-normality, separate skewness and kurtosis statistics (not 

provided by the K-S test) provide specific information concerning how a data 

distribution deviates from a hypothetical distribution of interest (e.g. normal 

distribution).  Indices of skewness and kurtosis are widely available for use in most 

statistical packages, and have been consistently shown to have excellent statistical 

properties (Balanda & MacGillvray, 1988, p. 114; Cohen et al., 2003; D‟Agostino et 

al., 1990; DeCarlo, 1997), including those normality indices provided by SPSS (SPSS 

Inc., 2008): the statistical program utilized for these and many of our other analyses.   

 Presented in Table B.1 one will find the results obtained from our modified 

Kolmogorov-Smirnov tests, as well as our skewness and kurtosis test statistics.  When 

interpreting these test statistics, the reader should note that a normal distribution 

would have skewness and kurtosis values of 0, whereas positive and negative test 

statistic values are indicative of positive skew (or kurtosis) and negative skew (or 

kurtosis), respectively.  As shown in Table B.1, the data distributions of no self-report 

measure of effortful control or attentional control deviated significantly (α = 0.05) 

from a Gaussian distribution, allaying concerns about skewness and kurtosis within 

those key study variables.  However, consistent with the evidence of non-normality 
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presented in Figures B.2, B.7, and B.12, it would appear that both BIDR subscales 

deviated significantly from normality.  The self-deception subscale of the BIDR, in 

particular, evidenced significant signs of positive skew (0.638), whereas the 

impression management subscale of the BIDR appeared to have been significantly 

non-normal in the aggregate but, nonetheless, displayed no statistically significant 

signs of either skew or kurtosis.   

 With respect to measures of heart-rate variability, only HRV – Resting 

RMSSD showed evidence of significant positive skew (1.261) and kurtosis (2.087), 

and had a correspondingly high Kolmogrov-Smirnov (K-S) test statistic value.  By 

contrast, our other measure of heart-rate variability, HRV – Ln (Resting HF Power), 

displayed significant signs of negative skew (–0.480) but did not yield a significant K-

S value.  This finding with respect to HRV – Ln (Resting HF Power) could indicate 

that while the data distribution for this variable was negatively skewed, the skewness 

was not of magnitude sufficient to yield a significant difference between the empirical 

distribution function and normal cumulative distribution for this variable (perhaps 

because kurtosis was so minimal; see Henderson, 2006 and Mason & Bell, 1986).   

Notwithstanding these complicated findings with respect to HRV – Ln 

(Resting HF Power), it was our view that the evidence of skew – a near ubiquitous 

property of heart-rate variability distributions (Agelink, Boz, Ullrich, & Andrich, 

2002; Bhattacharyya, Whitehead, Rakhit, & Steptoe, 2008; Britton et al., 2007; 

Carney, Blumenthal, Stein, Watkins, Catellier, Berkman, Czajkowski, O‟Connor, 

Stone, & Freedland, 2001; Goldberger, Challapalli, Tung, Parker, & Kadish, 2001; 
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Koskinen et al., 2009; Kuo et al., 1999; Kupper, Willemsen, van der Berg, de Boer, 

Posthuma, Boomsma, de Geus, 2004; Maestri, Pinna, Porta, Balocchi, Sassi, 

Signorini, Dudziak, & Raczak, 2007; McCraty, Atkinson, Tomasino, & Stuppy, 2001; 

Nunan, Jakovljevic, Donovan, Hodges, Sandercock, & Brodie, 2008; Reed, 

Warburton, Whitney, & McKay, 2006; Sinnreich et al., 1998; Stein, Barzilay, Chaves, 

Domitrovich, & Gottdiener, 2009; Stein, Carney, Freedland, Skala, Jaffe, Kleiger, & 

Rottman, 2000; Stein, Domitrovich, Ambrose, Lyden, Fine, Gracely, & Clauw, 2004; 

Sztajzel, 2008; Umetani, Singer, McCraty, & Atkinson, 1998; Vuksanovic & Gal, 

2007) –  provided an adequate justification for later transforming this variable to 

minimize the potential effects of non-normality on our second set of 

correlation/regression analyses.   

 Consistent with the visual evidence of non-normality gleaned from the 

previous sections, the data distributions for all three measures of Stop-Signal Task 

performance attained not only significant Kolmogorov-Smirnov test values, but also 

index values indicative of positive skew (see Table B.1).  These findings are 

consistent with both the ubiquity of positive skew in response times on the Stop-

Signal Task (Band, van der Molen, & Logan, 2003; Clark, Blackwell, Aron, Turner, 

Dowson, Robbins, & Sahaklan, 2007; Li, Chao, & Lee, 2009; Logan, 1994), and 

extensive research showing that reaction time distributions are often positively skewed 

(see Luce, 1986).  Moreover, Stop-Signal RT attained an extremely high index of 

positive kurtosis (6.594), which was congruent with our interpretation of its 

corresponding frequency histogram presented in Figure B.4.  Combined, these 
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findings provided ample justification for transforming the data obtained from the 

Stop-Signal Task for subsequent analyses. 

 Additional performance-based measures that showed significant departures 

from statistical normality were WCST – Perseverative Errors and WAIS – Saddler 2 

Composite, both of which attained significant K-S values (see Table B.1).  These 

values were consistent with our observations of non-normality in the Q-Q plots for 

these variables (see Figure B.15).  However, running counter to the aforementioned 

visual inspection of the WAIS – Saddler 2 Composite (Figure B.5) frequency 

histogram (where possible signs of leptokurtosis emerged), neither of these variables 

attained significant skewness or kurtosis values.  Combined, these findings may 

indicate that while the WAIS – Saddler 2 Composite and WCST – Perseverative 

Errors distributions are significantly non-normal, neither display signs of significant 

skew or kurtosis.  As was the case with BIDR Impression Management, it was our 

view that the evidence of non-normality provided by the modified Kolmogorov-

Smirnov test justified subsequent data transformations for these two variables to 

ascertain whether their distributions could have attenuated the correlation coefficients 

in our first set of analyses. 

 The reader may have taken notice that in none of the preceding sections were 

the distributional properties of the Task Completion Questionnaire (TCQ) subscales 

discussed.  Our reasons for these omissions were twofold.  First, while the TCQ may 

provide some useful information about factors that could have affected task 

performance, these scales were designed mostly for exploratory purposes and not 
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viewed as central to our hypotheses.  As a result, it was our position that it was more 

important to minimize pagination where possible to facilitate reader comprehension.  

Second, while the TCQ has the potential to be a useful psychometric measure, any 

inferences derived from TCQ scores would be highly tentative because its statistical 

properties are far from clear at the present time. 

Whether or not one takes issue with the soundness of this decision is 

ultimately moot, because as one can see in Table B.1, quantitative indicators of 

normality were computed for all TCQ subscales.  Without exception, the modified K-

S statistics for all of these subscales achieved statistical significance, indicating 

substantial departures from normality.  Eight out of nine TCQ subscales also attained 

index values indicative of negative skew, demonstrating that the majority of 

respondents endorsed having experienced few problems (e.g. distraction, heightened 

stress) during task completion.  Evidence of platykurtosis emerged for the hand test, 

self-report, and task effort subscales of the TCQ, which in combination with the 

negative skew observed in these variables, suggests that few respondents (a) endorsed 

substantial motivational difficulties while completing the tasks, or (b) endorsed 

significant problems when completing the self-reports (e.g. ATQ-EC) and manually 

administered tests of executive function (e.g. Wechsler Memory Scale).   

Summary & Significance of Distributional Analyses 

Most variables evidenced signs of significant distributional non-normality.  

Skewness was a particularly common distributional characteristic of our study 

variables, with nine variables showing negative skew and five variables evidencing 
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positive skew.  By contrast, kurtosis was not a distributional property within our 

sample data, with only five variables showing signs of positive kurtosis.  Although the 

high frequency of skew within our sample may have been cause for concern, the 

relative infrequency of kurtosis was even more striking given the nature of our 

correlational analyses.  Sampling (Monte Carlo) studies have generally shown that 

tests of covariances are affected to a much larger degree by kurtosis than skewness 

(Browne, 1982, 1984; DeCarlo, 1997; Jobson, 1991, p. 55; Mardia, Kent, & Bibby, 

1979, p. 149).  While both skewness and kurtosis can substantially impact correlation 

coefficients, the emergence of kurtosis in only five variables arguably allowed for 

greater latitude during the data transformation process, which can often necessitate 

trade-offs between decreasing skewness or kurtosis at the expense (or increasing) of 

the other (Cleveland, 1984; Ruppert & Aldershof, 1989; Yanagihara & Yuan, 2005).  

Similarly, while skewness can impact tests of both means and covariances, these 

effects are much more pronounced in directional (or one-tailed) tests of statistical 

significance (Hopkins & Weeks, 2000) than in non-directional (or two-tailed) tests, 

like those utilized in the present study.  Therefore, it was our view that while data 

transformation efforts would attempt to minimize both skewness and kurtosis, our 

primary concern would be on lessening kurtosis.   

While the foregoing analyses dealt explicitly with the matter of distributional 

normality, it is worth noting that these analyses were ultimately aimed at addressing 

the matter of variable distribution similarity.  Indeed, while extreme deviations from 

distributional similarity between two variables can attenuate their shared correlation or 
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regression coefficients (Carroll, 1961; Cohen et al., 2003; Hays, 1994), there is no 

expectation or assumption (Cohen et al., 2003; pp. 110-117) that the distributions of 

independent or dependent variables approximate a normal distribution in ordinary 

least squares regression or correlational analyses (however, as will be addressed later 

in our regression analyses, the residuals are assumed to be normally distributed).  

Unfortunately, while many statistical tests are available for comparing distributions of 

variable data to hypothetical distributions (e.g. Gaussian, Chi-Square, Gamma), tests 

for comparing empirical data distributions to one another are lacking.   

In light of these issues, we adopted a two-stage strategy to test and 

subsequently correct for deviations from distributional similarity.  First, we compared 

each variable‟s data distribution to the normal (i.e. Gaussian) distribution (i.e. the 

stage completed in this section).  In those cases where significant deviations from 

statistical normality were evident, we then transformed non-normal distributions to a 

Gaussian distribution (see next section).  It was our hope that this approach would 

ultimately yield data distributions that approximated the normal curve and, in so 

doing, increased the level of distributional similarity between study variables to help 

ensure that adequate assessments of their empirical relations could be conducted. 
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ATQ-EC Total 

 

 

ATQ-EC Attentional Control  

 
 

 

 

ATQ-EC Inhibitory Control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ATQ-EC Activation Control  

 

 

Figure B.1. Frequency Histograms for ATQ-EC and ATQ-EC Subscales. 
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Attentional Control Scale 

 

 

 

BIDR Self-Deception 

 

 

 

BIDR Impression Management  

 

 

 
 

 

 

 

Figure B.2. Frequency Histograms for Attentional Control Scale and Balanced 

Inventory of Desirable Responding (BIDR). 
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HRV – Resting RMSSD  

 

 

 
 

 

 

 

 

HRV – Ln (Resting HF Power)  

 

 

 

 

Figure B.3. Frequency Histograms for Heart Rate Variability (HRV) Measurements. 
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Stop-Signal RT 

 

 

 

 

Stop-Signal – Go-Trial RT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stop-Signal – Go-Trial Sd. 

 

 
 

 

 

Figure B.4. Frequency Histograms for Stop-Signal Task. 
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Stroop Interference 

 

 

 

 

WCST – Perseverative Errors 

 

 

 

WMS – Working Memory 

 

 

 

WAIS – Saddler 2 Composite 

 

 
 

Figure B.5. Frequency Histograms for Stroop Color-Word Interference Test, WCST, 

WMS, and WAIS Saddler 2 Composite. 
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ATQ-EC Total 

 

 

 

 

ATQ-EC Attentional Control  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ATQ-EC Inhibitory Control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ATQ-EC Activation Control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.6. Probability-Probability (P-P) Plots for ATQ-EC and ATQ-EC Subscales. 
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Attentional Control Scale 

 

 

 

 

BIDR Self-Deception 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIDR Impression Management  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.7. Probability-Probability (P-P) Plots for Attentional Control Scale and 

Balanced Inventory of Desirable Responding (BIDR). 
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HRV – Resting RMSSD  

 

 

 

 

 

 

 

 

HRV – Ln (Resting HF Power)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.8. Probability-Probability (P-P) Plots for Heart Rate Variability (HRV) 

Measurements. 
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Stop-Signal RT 

 

 

 

 

Stop-Signal – Go-Trial RT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stop-Signal – Go-Trial Sd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.9. Probability-Probability (P-P) Plots for Stop-Signal Task. 
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Stroop Interference 

 

 

 

 

WCST – Perseverative Errors 

 

 
 

WMS – Working Memory 

 

 

 

WAIS – Saddler 2 Composite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.10. Probability-Probability (P-P) Plots for Stroop Color-Word Interference 

Test, WCST, WMS, and WAIS Saddler 2 Composite. 
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ATQ-EC Total 
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ATQ-EC Inhibitory Control 
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Figure B.11. Quantile-Quantile (Q-Q) Plots for ATQ-EC and ATQ-EC Subscales. 
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Attentional Control Scale 

 

 

 

 

BIDR Self-Deception 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIDR Impression Management  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.12. Quantile-Quantile (Q-Q) Plots for Attentional Control Scale and 

Balanced Inventory of Desirable Responding (BIDR). 
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HRV – Resting RMSSD  

 

 

 

HRV – Ln (Resting HF Power)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.13. Quantile-Quantile (Q-Q) Plots for Heart Rate Variability (HRV) 

Measurements. 
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Stop-Signal RT 

 

 

 

Stop-Signal – Go-Trial RT  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stop-Signal – Go-Trial Sd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.14. Quantile-Quantile (Q-Q) Plots for Stop-Signal Task. 
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Stroop Interference 

 

 

 

WCST – Perseverative Errors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WMS – Working Memory 

 

 

 

 

 

WAIS – Saddler 2 Composite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.15. Quantile-Quantile (Q-Q) Plots for Stroop Color-Word Interference Test, 

WCST, WMS, and WAIS Saddler 2 Composite. 
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_____________________________________________________________________________________________________ 

      Normality               Skewness               Kurtosis  

______________________________________________________________________________________________________ 

 

     

      Kolmogorov-Smirnov Statistic
a
    Statistic   Std. Error    Statistic     Std. Error 

 

1. ATQ – EC Total         .053 .193 .219 .199 .435 

2. ATQ – EC Attentional Control  .054       .242  .219 –.219 .435     

3. ATQ – EC Inhibitory Control        .071  .074  .219 –.598 .435 

4. ATQ – EC Activation Control         .074  –.129  .219 –.351 .435 

5. Attentional Control Scale        .054  .051  .218 .223 .433 

6. BIDR Self-Deception        .117*  .638*  .217 .068 .431 

7. BIDR Impression Management          .098*  .394  .217 –.471 .431 

8. HRV – Resting RMSSD                 .109*  1.261*  .224 2.087* .444 

9. HRV – Ln (Resting HF Power)           .069 –.480*  .224 .288 .444 

10. Stop-Signal RT  .142*  1.918*  .225 6.594* .446 

11. Stop-Signal – Go-Trial RT  .090*  .490*  .225 –.443 .446 

12. Stop-Signal – Go-Trial RT Sd.  .093*  .513*  .225 –.387 .446 

13. Stroop Interference  .062  .294  .221 .629 .438 

14. WCST – Perseverative Errors   .150*  .088  .222 .537 .440 

15. WMS – Working Memory   .079 –.061  .220 –.083 .437 

16. WAIS – Saddler 2 Composite  .102* –.329  .226 .724 .447 

______________________________________________________________________________________________________ 

Continued 

 

Table B.1. Normality Diagnostics on Measures. Note: a = Computed with Lilliefors Significance Correction. * = Value 

significant at p < 0.05, two-tailed.  
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Table B.1. Continued 

_____________________________________________________________________________________________________ 

      Normality               Skewness               Kurtosis  

______________________________________________________________________________________________________ 

 

     

      Kolmogorov-Smirnov Statistic
a
    Statistic   Std. Error    Statistic     Std. Error 

 

17. TCQ – TOTAL          .089*                                  −.614* .222 −.126 .440 

18. TCQ – COMPUTER   .120*       −.544*  .222  .097 .440     

19. TCQ – HAND TESTS        .143*  −1.044*  .222 1.693* .440 

20. TCQ – SELF-REPORTS  .149*  –1.127*  .222 1.568* .440 

21. TCQ – TIRED/FATIGUED  .088* –.102  .222 –.606 .440 

22. TCQ – TASK ATTENTION  .267* –1.042*  .222  .261 .440 

23. TCQ – DISTRACTED  .215* –.876*  .222 –.329 .440 

24. TCQ – STRESSED  .187* –.814*  .222 –.052 .440 

25. TCQ – TASK EFFORT  .359* –1.564*  .222 1.651* .440 

______________________________________________________________________________________________________ 
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_____________________________________________________________________________________________________ 

      Normality               Skewness               Kurtosis  

______________________________________________________________________________________________________ 

 

     

      Kolmogorov-Smirnov Statistic
a
    Statistic   Std. Error    Statistic     Std. Error 

 

Outliers Removed  

                HRV – Ln (Resting HF Power)   .066 –.285 .225 .265 .446 

 

Log10 Transformed 

                BIDR Self-Deception        .098*    –.237    .225 –.581 .446  

                HRV – Resting RMSSD                 .062    –.396  .224 –.108 .444 

                Stop-Signal RT  .068    –.089  .233 –.051 .461 

                Stop-Signal – Go-Trial RT  .051     .095  .225 –.717 .446 

                Stop-Signal – Go-Trial RT Sd.  .055    –.089  .225 –.660 .446 

                WCST – Perseverative Errors   .141*    –.185  .223  .097 .442 

 

Original Variable Retained 

                BIDR Impression Management          .098*  .394  .217 –.471 .431 

                WAIS – Saddler 2 Composite  .102*   –.329  .226 .724 .447 

______________________________________________________________________________________________________ 

Continued 

 

Table B.2. Normality Diagnostics on Revised & Retained Measures. Note: a = Computed with Lilliefors Significance 

Correction. * = Value significant at p < 0.05, two-tailed.  
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Table B.2. Continued 

_____________________________________________________________________________________________________ 

      Normality               Skewness               Kurtosis  

______________________________________________________________________________________________________ 

 

     

      Kolmogorov-Smirnov Statistic
a
    Statistic   Std. Error    Statistic     Std. Error 

 

Original Variable Retained 

                TCQ – TOTAL                 .089* –.614*  .222                 –.126            .440 

                TCQ – COMPUTER           .120* –.544*  .222 .097           .440 

                TCQ – HAND TESTS  .143* –1.044*  .222                   1.693*        .440 

                TCQ – SELF-REPORTS  .149* –1.127*  .222                   1.568*        .440 

                TCQ – TIRED/FATIGUED  .088* –.102  .222                 –.606            .440 

                TCQ – TASK ATTENTION  .267* –1.042*  .222 .261           .440 

                TCQ – DISTRACTED  .215* –.876*  .222                 –.329            .440 

                TCQ – STRESSED  .187* –.814*  .222                 –.052            .440 

                TCQ – TASK EFFORT  .359* –1.564*  .222                   1.651*        .440 

______________________________________________________________________________________________________ 
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Appendix C 

Variable Transformations & Post-Transformation  

Distributional Analyses 

 

 

     

What follows is a summary of the variable transformation methods utilized in 

this study, and a discussion of the method that yielded the best results for each 

variable transformed (and, in some cases, not transformed).   

Provided that the variable distribution diagnostics revealed evidence of 

distributional non-normality or dissimilarity amongst study variables, it was viewed as 

necessary to transform these variables to minimize the attenuation of correlation and 

regression coefficients.  Although the finer points of how and whether one should 

resolve issues of distributional nonnormality remain sources of debate among some 

psychologists (Games, 1983, 1984; Levine & Dunlap, 1982, 1983; Levine, Liukkonen, 

& Levine, 1992), the practice of re-expressing variable data through certain variance-

stabilizing transformations has become generally accepted within the behavioral 

sciences (Cohen et al., 2003; Judd et al., 1995).  Among the more widely utilized 

transformations of correlational data are the "Fisher's z' transformation" (Aroian, 

1941; Fisher, 1934) and linear “z” transformation (see Cohen et al., 2003, p. 25), but 

neither transformation was considered appropriate in the present context.  Whereas the 

nonlinear "Fisher's z' transformation" converts the sampling distribution of “Pearson‟s 
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r” to a normal distribution so that one can determine whether one correlation is 

significantly different from another, linear transformations have no effect on 

correlation coefficients (or squared proportions of variance in general) because the 

inclusion of a numerical constant merely alters variable data in a uniform fashion 

across a numerical scale (Cohen et al., 2003, p. 222).   

Fortunately, as discussed at length below, when approaching the issue of how 

to address distributional nonnormality within our sample, two commonly utilized and 

viable product-moment remedies remained: (1) the removal and detection of outliers 

(Orr et al., 1991; Stevens, 1984; Zimmerman, 1994, 1995); and (2) nonlinear data 

transformations (Cleveland, 1984; (Ruppert & Aldershof, 1989; Yanagihara & Yuan, 

2005).  In the interest of expediting our discussion of these issues, it is worth noting 

that it was my intent to both methods (albeit separately) to correct for deviations from 

distributional normality for all variables necessitating transformations.  The 

distributional properties of each variable would then be re-evaluated after each 

transformation to ascertain (a) which method best corrected for distributional non-

normality and (b) determine whether the variable distributions were adequately 

transformed so that the appropriate calculation of correlation and regression 

coefficients could ensue. 

Solution #1: Outlier Detection & Removal 

While in many cases violations of statistical normality are rooted in general 

distributional problems within the data, it is sometimes the case that normality 

violations stem from a few discrepant observations, or outliers.  However, even when 
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general distributional problems are minimal or nonexistent, it is worth underscoring 

that the least-squares minimization procedures that are central to correlation, multiple 

regression analyses, and other statistical methods are not robust in the presence of 

even a few outliers (Rousseeuw & Leroy, 1987).  Consequently, many statisticians 

(Atkinson, 1985; Cohen et al., 2003; Hays, 1994; Judd & McClelland, 1989; Stevens, 

1984; Zimmerman, 1994, 1995), though certainly not all (e.g. Orr et al., 1991), view 

the identification and removal of outliers as a crucial step in the data-analytic process 

(for a compelling justification of this practice, see Judd et al., 1995; pp. 453-454).   

Although a variety of useful graphical techniques (e.g. frequency histograms, 

scatterplot matrices) are available for detecting discrepant observations within sample 

data, we opted to utilize univariate boxplots to facilitate identification of data outliers, 

since this method is widely used and particularly effective at identifying cases that fall 

both within and outside the quartiles of a data distribution (Cohen et al., 2003 p. 108-

110).  This graphical technique was augmented through the calculation of “Cook‟s Di” 

(Cook, 1977, 1979), which is a widely used index of how the inclusion or deletion of 

an outlier can affect a data set (Cohen et al., 2003; p. 402).  

An examination of these univariate boxplots and “Cook‟s Di” coefficients 

revealed high leverage-value outliers in each of these variables (note: number of 

discrepant cases in parentheses):  BIDR Self-Deception (n = 6); HRV – Ln (Resting 

HF Power; n = 1); Stop-Signal RT (n = 8); WCST – Perseverative Errors (n = 9); 

WAIS – Saddler 2 Composite (n = 2); TCQ – TOTAL (n = 1); TCQ – COMPUTER 

(n = 5); TCQ – HAND TESTS (n = 2); TCQ – SELF-REPORTS (n = 4); TCQ – 
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TIRED/FATIGUED (n = 6); TCQ – TASK ATTENTION (n = 3); TCQ – STRESSED 

(n = 6); and TCQ – TASK EFFORT (n = 11).  Per the recommendations of those 

supporting the Gaussian-focused removal of discrepant data observations (Atkinson, 

1985; Cohen et al., 2003; Hays, 1994; Judd & McClelland, 1989; Judd et al., 1995; 

Orr et al., 1991; Stevens, 1984; Zimmerman, 1994, 1995), we adopted a stepwise 

procedure whereby individual outliers (beginning with the most discrepant 

observations) were deleted and the distributional properties of the corresponding 

variable were reassessed via “Cook‟s Di” to determine whether outlier removal 

resulted in a (quasi-) normal distribution.  This procedure was repeated for each 

variable until quantitative indices of normality (i.e. Kolmogorov-Smirnov) indicated 

that outlier removal yielded a distribution that approximated a normal distribution.  

In only one case, HRV – Ln (Resting HF Power), did the removal of outliers 

alone remedy distributional nonnormality (see Table B.2, Appendix B).  By contrast, 

the deletion of discrepant observations did little to correct for deviations from 

normality for some variables (e.g. BIDR Self-Deception, Stop-Signal RT, WCST – 

Perseverative Errors) and, in many cases (e.g. all TCQ subscales), actually appeared to 

engender greater departures from distributional normality.  As a result, we 

implemented nonlinear data transformations to remedy distributional problems for 

those variables whose distributions were not adequately or appropriately responsive to 

outlier detection and removal.  

Solution #2: Nonlinear Transformations of Variable Data 
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While outlier detection and deletion are in many cases all that are needed to 

remedy problems of distributional nonnormality, by far the most common methods for 

correcting departures from normality in regression analyses fall under what are 

collectively known as “nonlinear transformations” (see Cohen et al., 2003, Tabachnick 

& Fidell, 2007).  Although their uses are numerous, within the present context these 

nonlinear transformations can re-express variable data via exponential, square-root, 

and/or logarithmic conversions so that the relationships between dependent and 

independent variables can be meaningfully interpreted, owing to the resultantly 

decreased risk of committing Type I and Type II error.  After an extensive review of 

the literature on the application and conceptual bases for these nonlinear 

transformations (see Cleveland, 1984; Cohen et al., 2003; Ruppert & Aldershof, 1989; 

Tabachnick & Fidell, 2007; Yanagihara &Yuan, 2005), and following multiple 

attempts at using the assorted nonlinear transformations in question, it was our 

conclusion that logarithmically-based transformations were best suited for remedying 

distributional problems within our sample data.    

Depending on whether data distributions evidenced signs of positive or 

negative skew, different procedures were adopted when implementing these 

logarithmic transformations.  For positively skewed variable distributions, it was only 

necessary to logarithmically transform the variable (with the appropriate base power) 

since this nonlinear transformation compresses the right side of the distribution more 

than the left side of the distribution.  For negatively skewed variable distributions, it 

was necessary to first reflect (or reverse) the distribution and, add a numerical 
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constant to bring its minimum value above 1.0 before logarithmically transforming the 

variable.  After completing this logarithmic transformation, it was necessary to again 

reflect (or reverse) the variable distribution to restore the original order of the once-

negatively skewed variable.       

In all cases, a logarithmic transformation base 10 (log10) was used initially.  It 

might be of interest to the reader, however, that per the recommendations of Cleveland 

(1984), a natural logarithm (Ln) was also applied separately as a precaution when 

transforming some variables (e.g. Stop-Signal – Go-Trial RT) whose departures from 

normality were less extreme, since high logarithmic bases (e.g. log10) can sometimes 

worsen distributional violations in such cases.  However, this precautionary measure 

(i.e. implementing natural logarithmic transformation instead of log10) ultimately 

provided no appreciable benefit over log base 10 transformations, even for those 

variables (see Table B.2, Appendix B; Original Variable Retained) whose 

distributions ultimately evidenced no improvements in normality through our 

transformation processes.  Nevertheless, as one can see in Table B.2, the normality 

diagnostics of six variable distributions (BIDR Self-Deception, HRV – Resting 

RMSSD, Stop-Signal RT, Stop-Signal – Go-Trial RT, Stop-Signal – Go-Trial RT Sd., 

WCST – Perseverative Errors) evidenced significant improvements in normality 

through our log base 10 transformations.   

 Although our nonlinear transformations were largely successful at remedying 

problems of distributional non-normality, the reader may note that in Table B.2 two 

variables (BIDR Self-Deception and WCST – Perseverative Errors) still evidenced 
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significant K-S statistics.  Nevertheless, a comparison of these values to those K-S 

statistics presented in Table B.1 (see Appendix B) still demonstrated overall 

improvement in the distributional properties of these two variables.  Moreover, BIDR 

Self-Deception evidenced statistically significant reductions in skew, and WCST – 

Perseverative Errors evidenced marked improvements in kurtosis after our logarithmic 

transformations. 

Finally, no appreciable or beneficial changes in the distributional properties of 

the TCQ subscales ever manifested despite numerous and varied transformation 

efforts (see Table B.2, Appendix B). These did little to ameliorate concerns about 

attenuated correlation coefficients due to distributional dissimilarity with respect to 

these variables (Carroll, 1961; Hays, 1994).  However, the TCQ total score was found 

to have adequate distributional properties and that score was therefore used in all 

analyses. 
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Appendix D 

Multiple Linear Regression Diagnostics 

 

 Although correlational analyses helped shed some light on the relations 

between multiple combinations of two variables, no examination of this study‟s 

hypotheses would have been complete without addressing two related questions.   

First, to what extent are the correlation coefficients that manifested actual indicators of 

empirical relationships between specific variables?  Second, what do the combinations 

of intercorrelations tell us about the relationships between the assorted variables under 

investigation?  Although the former question is addressed to some extent by the null 

hypothesis significance testing (NHST), left unresolved by the product moment 

correlations is how or why two variables appear to be related.  While definitive 

answers regarding causality between variables are undoubtedly beyond the scope of 

our data, product moment correlations alone are not sufficient for examinations of 

whether one variable is influenced by the other, because neither variable is explicitly 

regarded as the criterion (or dependent) variable whose values can be estimated by the 

predictor (or independent) variable.  This limitation is attributable, at least in part, to 

the fact that although two correlated variables could be causally related, they could 

alternatively be correlated with each other by virtue of (a) the overlap or redundancy 

of information they provide or (b) their independent relationships to another variable 

(or combination of variables), perhaps unidentified.    
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 As discussed previously, questions still abound as to whether the relations 

between key study variables (e.g. effortful control and heart-rate variability) are the 

result of socially desirable responding on questionnaire items.  To address this matter, 

one can include measures of socially desirable responding (e.g. BIDR Impression 

Management) as covariates of predictor variables (e.g. ATQ-EC Total) in regression 

models of criterion measures (e.g. HRV – Resting RMSSD): „dependent‟ measures 

previously shown to hold significant correlations with the predictor variables.  From 

these stepwise regression analyses one can (a) determine whether the inclusion of the 

covariate attenuates (i.e. moderates or suppresses) or explains (i.e. mediates) the 

statistically significant relationship between the predictor and criterion variables, as 

well as (b) calculate semi-partial correlations to examine the relationships between 

three or more variables at one time.                  

When conducting these regression analyses, it was necessary to calculate 

diagnostics relevant to the assumptions of multiple linear regression (MLR), 

particularly with respect to variable residuals (or “errors”).  What follows is an 

overview of the regression diagnostics conducted as part of our data-analytic 

procedure. 

i. Regression Diagnostics: Collinearity 

An assumption underlying multiple regression is that each independent 

variable (or X) included in a regression analysis has the potential to contribute 

information that can improve prediction of the dependent variable (or Y) under 
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investigation (for review see Cohen et al., 2003, pp. 419-430).  As a result, the 

inclusion of more predictor variables in a multiple regression not only has the 

potential to improve the prediction of Y, it also decreases the likelihood that each 

predictor variable can contribute unique information (or variance) not provided by 

other variables in a multiple regression of Y, especially when those predictor variables 

are highly related to one another.  While this aspect of multiple regression has the 

advantage of allowing one to investigate variable mediation and moderation, problems 

in the interpretation of individual regression coefficients can arise as predictors 

become increasingly correlated.  In cases where a predictor variable is perfectly 

correlated (i.e. exact collinearity) or highly correlated (i.e. multicollinearity) with 

other X variables, individual regression coefficients become unreliable (as evidenced 

by large standard errors) and difficult to compute accurately (e.g. resultantly increased 

or decreased coefficient magnitudes, and/or changes in coefficient directionality).  

Consequently, testing for collinearity is viewed by some statisticians (e.g. Belsley, 

Kuh, & Welsch, 1980; Cohen et al., 2003; Hays, 1994) as a crucial component of any 

regression analysis.   In light of the aforementioned correspondence among key 

variables in this study, such admonishments are particularly patent.   

To ascertain whether potential problems with collinearity could hinder the 

interpretation of regression coefficients, a series of analyses were conducted wherein 

each predictor was regressed on all of the remaining predictors: an approach that 

yields separate squared-multiple correlations that can be used to compute a variance 

inflation factor (VIF) for each of the predictor variables.  Per the recommendations of 
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Cohen and colleagues (2003; p. 423), a criterion was adopted in which any VIF of 10 

or more would be considered evidence of serious multicollinearity involving the 

corresponding regressed independent variable.   

Our preliminary analyses revealed evidence of severe multicollinearity when 

both measures of heart-rate variability (i.e. HRV – Resting RMSSD, HRV – Ln 

(Resting HF Power)) were included simulataneously in linear regression equations 

predicting scores on the ATQ-EC subscales (VIFResting RMSSD = 11.050 to and VIFLn 

(Resting HF Power) = 11.025).  Similar results were obtained for the heart-rate variabilty 

measures, Resting RMSSD and Ln (Resting HF Power), when the following were 

treated as criterion variables: Attentional Control Scale (VIFResting RMSSD = VIFLn (Resting 

HF Power) = 11.012); WAIS – Saddler 2 Composite (VIFResting RMSSD = 11.789 and VIFLn 

(Resting HF Power)  = 11.703); WMS – Working Memory (VIFResting RMSSD = 11.017 and 

VIFLn (Resting HF Power)  = 11.018); Stroop Interference (VIFResting RMSSD = 10.963 and 

VIFLn (Resting HF Power)  = 10.962); Stop-Signal RT (VIFResting RMSSD = 11.149 and VIFLn 

(Resting HF Power)  = 11.110); Go-Trial RT (VIFResting RMSSD = 11.308 and VIFLn (Resting HF 

Power)  = 11.266); Go-Trial RT Sd. (VIFResting RMSSD = 11.308 and VIFLn (Resting HF Power)  = 

11.266); and WCST – Perseverative Errors (VIFResting RMSSD = 10.651 and VIFLn (Resting 

HF Power)  = 10.647).  These results affirmed our decision not to include either heart-rate 

variability measure as a covariate in models wherein its counterpart was treated as a 

predictor variable.   



 

 195 

 

Additional analyses indicated no signs of serious multicollinearity for any 

other study variable.  Hence, we proceeded to our analyses of variable linearity and 

residual homoscedasticity, independence, and normality.   

ii. Regression Diagnostics: Relationship Linearity & Homogeneity of Variance 

Another important assumption of ordinary least squares regression (univariate 

and multivariate) is that the form or mathematical shape of the relationship between Y 

and each of the predictor variables has been correctly specified (see Cohen et al., 

2003, pp. 117-119).  In linear regression and correlation, the relationship between the 

dependent (Y) and independent (X) variable(s) is expected to follow a straight line 

across the full range of X values.  When this assumption is not satisfied and the 

relationship between X and Y is curvilinear (e.g. quadratic), their co-relation cannot 

be adequately represented by a linear regression equation, which would produce both 

biased regression (or correlation) coefficients and standard errors, and resultantly 

compromised significance tests. 

Subsumed under the linearity assumption is the expectation that the variability 

of residual (or “error”) terms will be constant for every value of a predictor (see 

Cohen et al., 2003, pp. 119-120).  Otherwise stated, when predicting the value of Y in 

a regression model for every value of a predictor (based on the specifications of the 

regression equation), the variance of the residuals (e.g. standard deviations of the error 

terms) is expected to be the same regardless of the value of the predictor variable.  

When this homogeneity of variance assumption is met, the distribution is said to meet 

the conditions of homoscedasticity.  By contrast, when the residual variance changes 
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across values of the predictor variable, this condition is known as heteroscedasticity.  

Although heteroscedasticity does not directly affect regression coefficients, it can 

aversely impact standard errors and result in biased significance tests.   

 A common practice for evaluating the linearity and homoscedasticity 

assumptions is to examine the scatterplots of the standardized residuals (ordinate) 

against the predicted residual values (abscissa) for each regression model under 

investigation (for review see Cohen et al., 2003, pp. 125-126, 130-132).  This is 

possible because a residual represents the portion of a specific case‟s (i.e. 

participant‟s) score on the dependent measure not adequately accounted for by the 

regression equation.  When systematic variance remains across residuals, it is likely 

that the regression model has been misspecified, and these systematic residual 

variations will reveal certain graphical display patterns.  Among these patterns are 

residual plot curvatures indicative of linearity violations and heteroscedasticity (see 

Cohen et al., 2003, pp. 130-132). 

 To assist in the assessment of the linearity assumption, loess fit lines (see 

Cleveland, 1979; Cohen et al., 2003, pp. 111, 131), sometimes referred to as lowess 

lines (lowess is an acronym for “locally weighted scatterplot smoother”), were 

superimposed on the aforementioned scatterplots (note: loess trends computed for 

99% of cases with Gaussian-kernel fitting).  No assumptions are made in the loess 

method about the form of the relationship between X and Y.  Instead, the loess lines 

follow the trend of the data, and if the variable relationship under scrutiny is linear in 

the population, the loess line will roughly approximate (not necessarily follow) a 
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straight line (see Cohen et al., 2003, p. 111).  Per loess fit interpretation guidelines 

(Alvarez & Emory, 2006, p. 31; Borkowf, Albert, & 2003; Cleveland, 1991, p. 54; 

Cohen et al., 2003, pp. 111, 131; Sohn, Kim, Hwang, & Lee, 2008, pp. 4111-4113; 

Wilcox, 2007), none of the residual scatterplots displayed in Figures D.1-D.29 

indicated significant deviations from linearity for of any our multiple regression 

analyses (see Tables A.7-A.20, Appendix A).    

 To help ascertain whether problems with heteroscedasticity could interfere 

with the significance testing of our regression coefficients (see A.7-A.20), we 

examined the residual scatterplots to see if the residual variance changed across 

predictor variables.  Per interpretation guidelines (Broto & Ruiz, 2009, pp. 5-22; 

Cohen et al., 2003, p. 132; Robinson, 2008; Yang & Tse, 2008, pp. 357-368), visual 

inspection of these residual scatterplots (see Figures D.1-D.29) revealed potential 

problems with heteroscedasticity in Figures D.5, D.6, D.7, D.13, and D.14.  However, 

definitive statements regarding heteroscedasticity could not be made on the basis of 

these visual inspections alone, because the scatterplot patterns indicated few 

observations for lower predictor values, perhaps indicating problems with range 

restriction (see ensuing discussion).  Thus, modified Levene tests were conducted for 

each regression equation to further assess for nonconstant variance (see Cohen et al., 

2003, p. 133), which confirmed the presence of heteroscedasticity in three of these 

graphical displays (Figures D.5, D.6, D.7).   

 In light of the aforementioned signs of heteroscedasticity, it was necessary to 

determine whether or not the magnitude of the nonconstant variance was high enough 
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to warrant corrective action (e.g. logarithmic transformation of Y, weighted least 

squares regression).  To do so, cases were separately organized from lowest-to-highest 

value for each predictor variable and divided into five segments or slices (for review 

of method, see Cohen et al., 2003, pp. 145-147).  Residual variance was then 

calculated for each data segment and the ratio of the largest-to-smallest conditional 

residual variance segments was computed.  Since these ratios (ranging from 6.26:1-to-

5.97:1) were less than 10:1, the magnitude of nonconstant variance was deemed 

insufficient to warrant remedial procedures to correct for heteroscedasticity.   

iii. Regression Diagnostics: Independence of Residuals 

Just as residuals are expected to be constant across values of a predictor 

variable, there is also the expectation that no relationship exists between the residuals 

for any two cases in a sample (see Cohen et al., 2003, p. 120; Judd et al., 1995, p. 

459).  Although the use of random sampling virtually ensures that the assumption of 

residual/observational independence will be met, when data are gathered in groups 

and/or are procured at similar times (as they were on occasion when multiple 

participants were assessed simultaneously in our study), the responses of two 

participants selected from the same group (e.g. introductory psychology students) or 

time (e.g. Saturday at 3:30PM) are more likely to be similar than those of two 

participants from different groups our whose data was gathered at different times (i.e. 

autocorrelation).  Although cases of non-independence (or clustering) do not give rise 

to errors in estimating regression coefficients, they can engender effects in standard 

errors and, resultantly, affect significance testing.  
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 To assess residual independence, Durbin-Watson coefficients (d) were 

computed for each linear regression.  For a detailed discussion of the usage and 

mathematical theory underlying the Durbin-Watson Test statistic, several excellent 

resources are available (e.g. Belsley et al., 1980; Berk, 2003; Berry, 1993; Cohen et 

al., 2003; Cook & Weisberg, 1982; Fox, 1991; Kahane, 2001).  In brief, values of “d” 

range from 0 to 4, where 0 is indicative of extreme positive autoregression (i.e. 

standard errors of regression coefficients too small) and 4 is indicative of extreme 

negative autoregression (i.e. standard errors of regression coefficients too large).  

While the exact critical value of the Durbin-Watson coefficient (d) is extremely 

difficult to calculate for a regression model (see Cohen et al., 2003; p. 137), as a 

general rule test statistic values of between 1.5 and 2.5 are regarded as evidence of 

independence.  These Durban-Watston coefficients are presented along with the 

independent linear regressions in Tables A.7-A.20.  All Durban-Watson coefficients 

were within acceptable limits (ranged from 1.757-to-2.276) and suggestive of residual 

independence. 

iv. Regression Diagnostics: Normality of Residuals 

 As discussed in our variable distribution analyses, while the order data from 

independent and dependent variables is neither expected nor assumed to approximate 

a normal distribution (Cohen et al., 2003; pp. 110-117, 120), the residuals of these 

variables are expected to be normally distributed.  Although regression coefficient 

estimates are not biased as a consequence of violating this assumption, significance 

testing can be impacted when residuals are not normally distributed and sample size 
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does not provide statistical power sufficient for the correlations observed (the reader is 

reminded that we anticipated correlations approximating r = 0.50: a magnitude that 

did not manifest for the majority of our coefficients). 

 To assess residual normality, Q-Q plots of standardized residuals were 

constructed for each regression equation.  These residual plots were constructed in 

much the same way as they had been when assessing our variable distributional 

analyses, except that they entailed plotting residuals and expected residual values 

derived from a cumulative distribution function (Cohen, 2003, p. 137).  As shown in 

Figures D.1-D.29, no evidence of residual non-normality manifested, as the residual 

plots adequately followed the linear patterns indicative of a normal curve (Cohen et 

al., 2003, pp. 138-139; Henderson, 2006, pp. 115-116). 

v. Summary of Residual Diagnostics 

 To further ascertain whether or not the significant correlations presented in 

Tables A.3-A.6 were indicators of empirical relationships between specific variables, 

it was necessary to conduct a series of multiple regression analyses: procedures that 

would help determine whether (a) socially desirable responding or problems with task 

completion gave risk to spurious correlations, and (b) allow for the calculation of 

partial correlations between three or more variables at one time.  When conducting 

these regression analyses, it was necessary to calculate diagnostics relevant to the 

assumptions of multiple linear regression (MLR), particularly with respect to variable 

residuals (or “errors”).   
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Our collinearity analyses evidenced signs of significant multicollinearity 

between our measures of heart-rate variability, indicating that their dual inclusion in 

regression equations could potentially lead to unreliable regression coefficients, thus 

affirming our decision not to include either heart-rate variability measure as a 

covariate in models wherein its counterpart was treated as a predictor variable.  Signs 

of heteroscedasticity also emerged for several regression equations.  However, post-

hoc analyses indicated that the magnitude of nonconstant variance was deemed 

insufficient to warrant corrective action (e.g. logarithmic transformation of Y, 

weighted least squares regression).   

 Additional residual diagnostics evidenced no signs of assumption violations 

that could compromise the utility of our regression analyses.  As shown in Figures 

D.1-D.29, residual scatterplots displayed no significant deviations from variable 

relationship linearity, suggesting that the relationship between Y and each of the 

predictor variables had been correctly specified.  Similarly, none of the residual 

scatterplots displayed in Figures D.1-D.29 indicated significant evidence of residual 

non-normality, as the residual plots adequately followed the linear patterns indicative 

of a normal curve.  What is more, the Durban-Watson coefficients presented in Tables 

A.7-A.20 were all indicative of residual independence, which in concert with the other 

residual diagnostics, suggested that the multiple regression analyses would provide an 

adequate basis for verifying the bi-variate correlations obtained in our earlier analyses.   
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Assumptions: Linearity & Homoscedasticity 

 

 

Assumption: Normality  

 
 

 

Figure D.1. Graphical Displays Testing Residual Assumptions for ATQ-EC Total and 

ATQ-EC Attentional Control Multiple Regression (corresponds with Table A.7, 

Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.2. Graphical Displays Testing Residual Assumptions for ATQ-EC Total and 

ATQ-EC Inhibitory Control Multiple Regression (corresponds with Table A.8, 

Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.3. Graphical Displays Testing Residual Assumptions for ATQ-EC Total and 

ATQ-EC Activation Control Multiple Regression (corresponds with Table A.9, 

Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.4. Graphical Displays Testing Residual Assumptions for ATQ-EC Total and 

Attentional Control Scale Multiple Regression (corresponds with Table A.10, 

Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.5. Graphical Displays Testing Residual Assumptions for ATQ-EC Total and 

HRV – Resting RMSSD Multiple Regression (corresponds with Table A.11, 

Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.6. Graphical Displays Testing Residual Assumptions for ATQ-EC Total and 

HRV – Ln (Resting HF Power) Multiple Regression (corresponds with Table A.12, 

Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.7. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Attentional Control and ATQ-EC Inhibitory Control Multiple Regression 

(corresponds with Table A.13, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.8. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Attentional Control and ATQ-EC Activation Control Multiple Regression 

(corresponds with Table A.14, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.9. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Attentional Control and Attentional Control Scale Multiple Regression (corresponds 

with Table A.15, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.10. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Attentional Control and WMS – Working Memory Multiple Regression (corresponds 

with Table A.16, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.11. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Inhibitory Control and ATQ-EC Activation Control Multiple Regression (corresponds 

with Table A.17, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.12. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Inhibitory Control and Attentional Control Scale Multiple Regression (corresponds 

with Table A.18, Appendix A). 

 

 

R
eg

re
ss

io
n
 S

ta
n
d
ar

d
iz

ed
 

R
es

id
u
al

 

Regression Standardized 

Predicted Value 

E
x
p

ec
te

d
 C

u
m

u
la

ti
v
e 

P
ro

b
ab

il
it

y
 

Observed Cumulative 

Probability 



 

 214 

 

 

Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.13. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Inhibitory Control and HRV – Resting RMSSD Multiple Regression (corresponds 

with Table A.19, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.14. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Inhibitory Control and HRV – Ln (Resting HF Power) Multiple Regression 

(corresponds with Table A.20, Appendix A). 

 

 

R
eg

re
ss

io
n
 S

ta
n
d
ar

d
iz

ed
 

R
es

id
u
al

 

Regression Standardized 

Predicted Value 

E
x
p

ec
te

d
 C

u
m

u
la

ti
v
e 

P
ro

b
ab

il
it

y
 

Observed Cumulative 

Probability 



 

 216 

 

 

Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.15. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Inhibitory Control and Stop-Signal – Go-Trial RT Sd. Multiple Regression 

(corresponds with Table A.21, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.16. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Activation Control and Attentional Control Scale Multiple Regression (corresponds 

with Table A.22, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.17. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Activation Control and HRV – Resting RMSSD Multiple Regression (corresponds 

with Table A.23, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.18. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Activation Control and HRV – Ln (Resting HF Power) Multiple Regression 

(corresponds with Table A.24, Appendix A). 

 

 

R
eg

re
ss

io
n
 S

ta
n
d
ar

d
iz

ed
 

R
es

id
u
al

 

Regression Standardized 

Predicted Value 

E
x
p
ec

te
d
 C

u
m

u
la

ti
v
e 

P
ro

b
ab

il
it

y
 

Observed Cumulative 

Probability 



 

 220 

 

 

Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.19. Graphical Displays Testing Residual Assumptions for ATQ-EC 

Activation Control and WAIS – Saddler 2 Composite Multiple Regression 

(corresponds with Table A.25, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.20. Graphical Displays Testing Residual Assumptions for Attentional 

Control Scale and WCST – Perseverative Errors Multiple Regression (corresponds 

with Table A.26, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.21. Graphical Displays Testing Residual Assumptions for HRV – Resting 

RMSSD and HRV – Ln (Resting HF Power) Multiple Regression (corresponds with 

Table A.27, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.22. Graphical Displays Testing Residual Assumptions for Stop-Signal RT 

and Stop-Signal – Go-Trial RT Multiple Regression (corresponds with Table A.28, 

Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.23. Graphical Displays Testing Residual Assumptions for Stop-Signal RT 

and Stop-Signal – Go-Trial RT Sd. Multiple Regression (corresponds with Table 

A.29, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.24. Graphical Displays Testing Residual Assumptions for Stop-Signal Go-

Trial RT and Stop-Signal – Go-Trial RT Sd. Multiple Regression (corresponds with 

Table A.30, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.25. Graphical Displays Testing Residual Assumptions for Stop-Signal Go-

Trial RT and WAIS – Saddler 2 Composite Multiple Regression (corresponds with 

Table A.31, Appendix A). 

 

 

R
eg

re
ss

io
n
 S

ta
n
d
ar

d
iz

ed
 

R
es

id
u
al

 

Regression Standardized 

Predicted Value 

E
x
p
ec

te
d
 C

u
m

u
la

ti
v
e 

P
ro

b
ab

il
it

y
 

Observed Cumulative 

Probability 



 

 227 

 

 

Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.26. Graphical Displays Testing Residual Assumptions for Stop-Signal Go-

Trial RT Sd. and WAIS – Saddler 2 Composite Multiple Regression (corresponds 

with Table A.32, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.27. Graphical Displays Testing Residual Assumptions for Stroop 

Interference and WMS – Working Memory Multiple Regression (corresponds with 

Table A.33, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.28. Graphical Displays Testing Residual Assumptions for Stroop 

Interference and WAIS – Saddler 2 Composite Multiple Regression (corresponds with 

Table A.34, Appendix A). 
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Assumptions: Linearity & Homoscedasticity 

 

 

 

Assumption: Normality  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.29. Graphical Displays Testing Residual Assumptions for WMS – Working 

Memory and WAIS – Saddler 2 Composite Multiple Regression (corresponds with 

Table A.35, Appendix A). 
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Appendix E 

Self-Report Measures 
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Demographic Information 

 

1. Age: ____________ 

 

 

 

2. Gender:  Female   Male 

 

 

 

3. Racial Heritage:   African-American or Black    

     

    American Indian or Alaska Native 

 

    Asian   

 

    Hispanic or Latino     

 

    Native Hawaiian or other Pacific Islander 

 

    White (non-Hispanic) 

 

    Other (please describe):____________ 
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TASK COMPLETION QUESTIONNAIRE  

 

We would like to know now about your experience during our study.  We are 

especially interested in how motivated you were to complete each of the measures and 

whether or not you were distracted while completing these measures.  This 

information can be VERY IMPORTANT and particularly useful in helping us 

determine if the data we collected is accurate and a true reflection of your abilities.   

 

We also recognize that some participants may be reluctant to provide information 

related to their study involvement.  For example, if a participant was feeling tired and 

not motivated to put forth his/her best effort, the participant may feel embarrassed if 

the experimenter knew about this. 

 

Therefore, we also ask that after you have completed this questionnaire, please 

PLACE THIS QUESTIONNAIRE IN THE ENVELOPE PROVIDED AND SEAL 

THE ENVELOPE.  We will not look at the contents of the envelope until long after 

you have left the study to help further ensure that we do not know which data belongs 

to you.  You should also know that you will still receive 2.0 hours of REP credit, no 

matter how you respond to the following questionnaire items. 
 

Using the scale below as a guide, write a number beside each statement to indicate 

how much you agree with it. 

   

1   2   3   4 

  

       Strongly      Moderately      Moderately         Strongly 

        Agree         Agree        Disagree         Disagree               

 

1. I felt tired (or sleepy) when completing the computerized tests. 

 

1   2   3   4 

 

2. I did NOT pay attention when completing the computerized tests. 

 

1   2   3   4 

 

3. I was distracted when completing the computerized tests. 

 

1   2   3   4 
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1   2   3   4 

  

       Strongly      Moderately      Moderately         Strongly 

        Agree         Agree        Disagree         Disagree               

 

4. I was feeling stressed when completing the computerized tests. 

 

1   2   3   4 

 

5. I did NOT put for my best effort when completing the computerized tests. 

 

1   2   3   4 

 

6. I felt tired (or sleepy) when completing the cognitive tests given to me by the 

experimenter. 

 

1   2   3   4 

 

7. I did NOT pay attention when completing the cognitive tests given to me by the 

experimenter. 

 

1   2   3   4 

 

8. I was distracted when completing the cognitive tests given to me by the 

experimenter. 

 

1   2   3   4 

 

9. I was feeling stressed when completing the cognitive tests given to me by the 

experimenter. 

 

1   2   3   4 

 

10. I did NOT put for my best effort when completing the cognitive tests given to me 

by the experimenter. 

 

1   2   3   4 

 

11. I felt tired (or sleepy) when completing the questionnaires. 

 

1   2   3   4 
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1   2   3   4 

  

       Strongly      Moderately      Moderately         Strongly 

        Agree         Agree        Disagree         Disagree               

 

12. I did NOT pay attention when completing the questionnaires. 

 

1   2   3   4 

 

13. I was distracted when completing the questionnaires. 

 

1   2   3   4 

 

14. I was feeling stressed when completing the questionnaires. 

 

1   2   3   4 

 

15. I did NOT put for my best effort when completing the questionnaires. 

 

1   2   3   4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 236 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix F 

Study Materials 
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RECRUITMENT SCRIPT  

(POSTED ON R.E.P. WEBSITE) 

 

Protocol Title:  Effortful Self-Regulation in Personality Research: A Multi- 

Method Validation of Questionnaire-Based Measures of 

Effortful Control 

 

Investigators:   Michael W. Vasey, Ph.D. & Salvatore Dinovo, M.A.  

 

 

Title: Cognition & Self-Regulation 

 

Hours: 2.0 

 

Requirements: Must attend one session lasting approximately 120 minutes, during 

which questionnaires, tests of cognitive ability, and non-invasive heart rate  

measurements will administered and completed. Participants must be 18 years 

of  

age or older.  To participate, you must bring a picture ID confirming your age. 

 

Researcher: Michael Vasey & Salvatore Dinovo 

  

Researcher E-Mail: dinovo.13@osu.edu  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:dinovo.13@osu.edu
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INTRODUCTORY SCRIPT 

 

 “Hello and welcome to our experiment.  The study that you are about to 

participate in will involve your completing questionnaires and other measures and 

will last approximately 2 hours.  For your participation you will receive 2.0 hours of 

REP credit.” 

 

 “First, you will be completing a variety of tests of cognition, some of which 

measure facets of IQ.  We do ask that you try your best on each of these tests so that 

we can obtain the most accurate results possible.”     

 

 “After completing these cognitive tests, you will complete a battery of 

questionnaires.  The questionnaire packet consists of questions that require you to 

disclose information of a personal nature.  If you feel at any time uncomfortable 

answering a particular question, you may leave the item blank.” 

 

“While completing both the cognitive tests and questionnaires, you will wear a 

polar wrist watch that will take measurements of your heart rate.”  

 

 “To preserve your confidentiality, we ask that NO information related to your 

personal identity be provided.  Instead, your data will be linked to an arbitrary 

identification number that will NOT be connected to your name in any way.  This 

way, even we would not be able to break confidentiality because we will not know 

which data is yours.” 

 

“You should know that you have the option NOT to participate and may 

withdraw at any time without penalty.  In other words, you‟ll still be given 2.0 hours 

of REP credit, whether or not you choose to complete the study.”   

 

 “Before you leave you will be given a sheet which will explain the study in a 

little more detail. If you have any questions I will gladly assist you. We greatly 

appreciate your participation!” 
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DEBRIEFING 

 

Protocol Title:  Effortful Self-Regulation in Personality Research: A Multi- 

Method Validation of Questionnaire-Based Measures of 

Effortful Control 

 

Principal Investigators: Michael W. Vasey & Salvatore A. Dinovo 

 

We greatly appreciate your participation.  The tests you just completed are 

intended to help us determine the extent to which tests of thinking and 

cognition are related to questionnaire-based measures of self-regulation: a 

capacity that helps a person control his or her emotions and behaviors (see 

your Psychology 100 text, page 483). 

 

Previous research has shown that individuals who have self-regulation deficits 

think about negative experiences with great frequency are more likely to 

develop an anxiety or depressive disorder.  While most people reflect upon 

experience from time to time, persons with these disorders experience such 

rumination as more distressing and disabling than do most people.  They also 

seem to find MORE environmental events distressing.  We hypothesize that 

this disparity reflects individual differences in the ability to control one‟s 

emotional reactions to negative stimuli in one‟s environment.  This ability is 

captured in a self-regulatory construct known as effortful control (EC). 

 

Unfortunately, most of the research investigating effortful control has relied 

upon questionnaires, which may or may not be accurate measures of self-

regulation.  An important step remedying this problem is to see if these 

questionnaires are related to more objective measures of self-regulation, such 

as the tests of cognition and heart rate measurements you just completed.   

 

As stated at the beginning of today‟s study, some of the measures you 

completed measure components of IQ.  However, since we are only measuring 

parts of IQ, we have no adequate basis for providing you reliable scientific 

feedback on matters related to intelligence or IQ.  Moreover, since we are only 

measuring specific components of IQ, you should not treat your performance 

on any these measures as a reliable predictor of your intelligence, or probable 

academic or vocational success. 

 

Should you have ANY questions about this study in the future, you may 

contact Dr. Michael Vasey at: vasey.1@osu.edu or 614-292-2951. 

 

Moreover, if at any time you feel that anxiety or depression is a significant 

problem for you, we would gladly assist you in finding help.  One source of 

services you may wish to consider is the OSU Counseling and Consultation 

mailto:vasey.1@osu.edu
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Service, which is located in the Younkin Success Center.  Their telephone 

number is 292-5766.  Alternatively, you may wish to contact one of the 

following agencies in the Columbus area:  

 

Anxiety and Stress Disorder Clinic   OSU Counseling and 

Consultation Services 

223 Townshend Hall     4
th

 Floor, Younkin Success 

Center 

614-292-2345      614-292-5766 

 

OSU Psychological Services Center   Columbus Area Community 

Mental Health  

105 Psychology Building    614-252-0711 

614-292-2059 

       For emergencies: 

Mental Health Association of Franklin County   Net Care Access  

614-221-1441       199 S. Central or 741 E. 

Broad Street       614-276-2273 

 

   

 

 

 

 

 

 


