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ABSTRACT

This dissertation examines theoretical and empirical topics in macroeconomic dy-

namics. A central issue in macroeconomic dynamics is understanding the sources of

business cycle fluctuations. The idea that expectations about future economic funda-

mentals can drive business cycles dates back to the early twentieth century. However,

the standard real business cycle (RBC) model fails to generate positive comovement

in output, consumption, labor-hours and investment in response to news shocks. My

dissertation proposes a solution to this puzzling feature of the RBC model by develop-

ing a theoretical model that can generate positive aggregate and sectoral comovement

in response to news shocks.

Another key issue in macroeconomic dynamics is gauging the performance of theo-

retical models by comparing them to empirical models. Some of the most widely used

empirical models in macroeconomics are level vector autoregressive (VAR) models.

However, estimated level VAR models may contain explosive roots, which is at odds

with the widespread consensus among macroeconomists that roots are at most unity.

My dissertation investigates the frequency of explosive roots in estimated level VAR

models using Monte Carlo simulations. Additionally, it proposes a way to mitigate

explosive roots. Finally, as macroeconomic datasets are relatively short, empirical

models such as autoregressive models (i.e. AR or VAR models) may have substantial
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small-sample bias. My dissertation develops a procedure that numerically corrects

the bias in the roots of AR models.

This dissertation consists of three essays. The first essay develops a model based on

learning-by-doing (LBD) that can generate positive covement in output, consumption,

labor-hours and investment in response to news shocks. I show that the one-sector

RBC model augmented by LBD can generate aggregate comovement in response to

news shock about technology. Furthermore, I show that in the two-sector RBC model,

LBD along with an intratemporal adjustment cost can generate sectoral comovement

in response to news about three types of shocks: i) neutral technology shocks, ii) con-

sumption technology shocks, and iii) investment technology shocks. I show that these

results hold for contemporaneous technology shocks and for different specifications of

LBD.

The second essay investigates the frequency of explosive roots in estimated level

VAR models in the presence of stationary and nonstationary variables. Monte Carlo

simulations based on datasets from the macroeconomic literature reveal that the fre-

quency of explosive roots exceeds 40% in the presence of unit roots. Even when all the

variables are stationary, the frequency of explosive roots is substantial. Furthermore,

explosion increases significantly, to as much as 100% when the estimated level VAR

coefficients are corrected for small-sample bias. These results suggest that researchers

estimating level VAR models on macroeconomic datasets encounter explosive roots,

a phenomenon that is contrary to common macroeconomic belief, with a very high

frequency. Monte Carlo simulations reveal that imposing unit roots in the estima-

tion can substantially reduce the frequency of explosion. Hence one way to mitigate

explosive roots is to estimate vector error correction models.

iii



The third essay proposes a numerical procedure to correct the small-sample bias

in autoregressive roots of univariate AR(p) models. I examine the median-bias prop-

erties and variability of the bias-adjusted parameters relative to the least-squares

estimates. I show that the bias correction procedure substantially reduces the median-

bias in impulse response functions. Furthermore, correcting the bias in roots signif-

icantly improves the median-bias in half-life, quarter-life and up-life estimates. The

procedure pays a negligible-to-small price in terms of increased standard deviation

for its improved median-bias properties.
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CHAPTER 1

INTRODUCTION

This dissertation examines theoretical and empirical topics in macroeconomic dy-

namics. A central issue in macroeconomic dynamics is understanding the sources of

business cycle fluctuations. The idea that expectations about future economic funda-

mentals can drive business cycles dates back to the early twentieth century. Recently

there has been a renewed interest in expectation shocks (the so-called ’news shocks’)

as a source of business cycle fluctuations. However, the standard real business cycle

(RBC) model, which is the building block of modern macroeconomics, fails to gen-

erate positive comovement in output, consumption, labor-hours and investment in

response to news shocks.

In the first essay, “News Shocks and Learning-by-doing,” I propose a simple and

intuitive solution to this puzzling feature of the RBC model based on learning-by-

doing (LBD). I introduce LBD into the standard one-sector RBC model and show

that the model is capable of generating an economic expansion in response to positive

news about future technology. Such news increases the value of learning immediately,

which induces the economic agents to accumulate it by increasing production as soon

as the news arrives. Hence the LBD mechanism provides a countervailing force to

the negative wealth effect on labor supply from positive news. The resulting increase
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in output is large enough to accommodate increases in both consumption and in-

vestment. As learning increases the productivity of factor-inputs, labor-hours and

investment continue to rise in subsequent periods. Consequently, the model gener-

ates an expansion in response to the positive news. I also investigate the role of LBD

in generating sectoral comovement in response to news shocks as several studies have

emphasized the importance of sectoral comovement in developing a single unified the-

ory of business cycles. I show that in the two-sector RBC model, LBD along with an

intratemporal adjustment cost can generate sectoral comovement in response to news

about three types of shocks: i) neutral technology shock, ii) consumption technology

shock, and iii) investment technology shock. We show that these results hold for

contemporaneous technology shocks and for different specifications of LBD.

Another key issue in macroeconomic dynamics is gauging the performance of theo-

retical models by comparing them to empirical models. Some of the most widely used

empirical models in macroeconomics are level vector autoregressive (VAR) models.

However, estimated level VAR models may contain explosive roots even if all the true

autoregressive roots lie inside the unit circle. The incidence of such explosive roots

is at odds with the widespread agreement among macroeconomists that roots are at

most unity. Given that level VAR models are used extensively and may estimate roots

greater than unity, it is important to examine how frequently researchers estimating

level VAR models on macroeconomic datasets encounter explosive roots.

In the second essay, “Explosive Roots in Level Vector Autoregressive Models,” I

investigate the frequency of explosive roots in level VAR models using Monte Carlo

simulations based on datasets that are representative of those commonly used in the
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macroeconomic literature. Monte Carlo results in this chapter reveal that the fre-

quency of explosive roots exceeds 40% in the presence of unit roots. Even when all

the variables are stationary, the frequency of explosive roots is substantial; it is as

high as 25%. Furthermore, explosion increases significantly, to more than 90% un-

der several specifications, when the estimated level VAR coefficients are corrected for

small-sample bias. Monte Carlo results in this chapter reveal that the frequency of

explosive roots exceeds 40% in the presence of unit roots. Even when all the vari-

ables are stationary, the frequency of explosive roots is substantial; it is as high as

25%. Furthermore, explosion increases significantly, to more than 90% under several

specifications, when the estimated level VAR coefficients are corrected for small-

sample bias. These results suggest that researchers estimating level VAR models on

macroeconomic datasets encounter explosive roots, a phenomenon that is contrary to

common macroeconomic belief, with a very high frequency. As per the well known

evidence of nonstationarity in most macroeconomic series, one way to reduce the

frequency of explosive roots is to impose unit roots in the estimation by estimating

VECMs instead of level VAR models. I examine the frequency of explosive roots

in estimated VECMs show that explosion occurs much less frequently in estimated

VECMs. VECMs reduce the frequency of explosive roots by restricting the magni-

tude of some of the otherwise explosive roots to unity. Hence one way to mitigate

explosive roots is to estimate vector error correction models.

Since macroeconomic datasets are relatively short, frequently used empirical mod-

els in macroeconomic literature, such as the univariate autoregressive models AR(p)

models suffer from small-sample bias. In consequence, the least-squares estimator is
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a misleading indicator of the true values of important parameters such as the au-

toregressive coefficients, the autoregressive roots and, the impulse response functions.

Several papers have addressed this by devising bias correction procedures to correct

the bias in estimated autoregressive coefficients or the estimated coefficients in the

Augmented Dickey-Fuller form. However, bias correction in coefficients may not cor-

rect the bias in roots because of the non-linear mapping between the two.

In the third essay, “Bias Correction in Autoregressive Roots,” I propose a nu-

merical procedure to correct the small-sample bias in autoregressive roots of uni-

variate AR(p) models. I examine the median-bias properties and variability of the

bias-adjusted parameters relative to the least-squares estimates. I show that the

bias correction in roots (BCR) procedure substantially reduces the median-bias in

impulse response functions. Furthermore, I show that correcting the bias in roots

significantly improves the median-bias in half-life, quarter-life and up-life estimates.

The BCR procedure pays a negligible-to-small price in terms of increased standard

deviation for its improved median-bias properties.
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CHAPTER 2

NEWS SHOCKS AND LEARNING-BY-DOING

2.1 Introduction

The idea that expectations about future economic fundamentals can drive busi-

ness cycles dates back to the early twentieth century (e.g. Pigou (1927) and Clark

(1934)). Recently there has been a renewed interest in expectation shocks (the so-

called “news shocks”) as a source of business cycle fluctuations. However, the stan-

dard real business cycle (RBC) model fails to generate an economic expansion in

which consumption, investment and labor-hours all rise relative to their trends, in

response to positive news about future technology. On the contrary, it generates a

recession today in response to positive news. Good news generates a positive wealth

effect today causing households to increase their consumption and leisure. Hence

labor-hours and consequently output decrease. The decline in output along with an

increase in consumption requires investment to decrease. Thus consumption increases

while labor-hours, investment, and output decrease in response to positive news. This

counterintuitive characteristic of the RBC model was first documented by Barro and

King (1984) and later examined by Beaudry and Portier (2004, 2008).
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This paper proposes a simple and intuitive solution to this puzzling feature of the

RBC model, based on learning-by-doing (henceforth, LBD). Several micro-studies,

including Bahk and Gort (1993), Benkard (1997), and Imai (2000) have estimated

LBD and have found strong empirical support. Recent studies have also investigated

the role of LBD in generating richer macroeconomic dynamics. Two prominent works

in the macroeconomic literature that incorporate LBD into general equilibrium mod-

els are those by Chang, Gomes and Schorfheide (2002) (CGS (2002)), and Cooper

and Johri (2002) (CJ (2002)). CSG (2002) model learning through skill accumulation

(LBD via Skill) that captures the effects of past work experience on labor produc-

tivity. CJ (2002) model learning through the accumulation of organizational capital

(LBD via Organizational Capital), which is a by-product of the production process;

the idea being that production activity creates information about the organization

which improves future productivity. Hence, learning in CGS (2002) is associated with

labor-hours while learning in CJ (2002) depends on the overall production activity

or output. These studies find empirical evidence for LBD and show that it can pro-

vide an important propagation mechanism in business cycle models. We introduce

LBD along the lines of these studies into the standard one-sector RBC model and

show that the model, under both these specifications of LBD, is capable of generating

an economic expansion in response to positive news about future technology. Such

news increases the value of LBD immediately, which induces the economic agents

to accumulate it by increasing production as soon as the news arrives. Hence the

LBD mechanism provides a countervailing force to the negative wealth effect on la-

bor supply from positive news. The resulting increase in output is large enough to

accommodate increases in both consumption and investment. As learning increases
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the productivity of factor-inputs, labor-hours and investment continue to rise in sub-

sequent periods. Consequently, the model generates an expansion in response to the

positive news.

We also investigate the role of LBD in generating sectoral comovement in response

to news about three types of shock: neutral technology shocks, investment technology

shocks, and consumption technology shocks. Several studies including Lucas (1977),

and Burns and Mitchell (1946) emphasize the importance of sectoral comovement in

developing a single unified theory of business cycles. Huffman and Wynne (1999)

document that labor-hours and investment across sectors comove and are procyclical.

However, the two-sector version of RBC model cannot generate sectoral or aggregate

comovement in response to contemporaneous shocks or news shock about future tech-

nology. As a result of the infinite elasticity of substitution between investment across

sectors and between labor in the two sectors, investment and employment across

sectors are very volatile and move in opposite directions in the benchmark model.

Consequently, we follow Huffman and Wynne (1999) and introduce an intratemporal

investment adjustment cost, which helps in generating comovement in response to

contemporaneous shocks, but not news shocks. This is because the model still lacks

any propagation mechanism that can compensate for the negative wealth effect on

labor supply from positive news about future technology. We show that LBD can pro-

vide a countervailing force that can offset this negative wealth effect in the two-sector

model. Accordingly, LBD along with intratemporal investment adjustment cost can

generate sectoral and aggregate comovement in response to contemporaneous and

news shocks about technology.

7



Our paper is related to the emerging literature on news driven business cycles.

Prominent works include Beaudry and Portier (2004), who propose a multi-sectoral

durable and non-durable goods model that can produce an expansion in response

to positive news about technology in the non-durable goods sector. Jaimovich and

Rebelo (2008) generate news driven expansions by appending three features into the

RBC model: variable capital utilization, investment adjustment cost, and special

type of preferences that reduce the negative wealth effect on labor supply. Chris-

tiano et al. (2007) add habit formation and investment adjustment costs in their

benchmark model, while including additional nominal frictions into their full model.

Schmitt-Grohe and Uribe (2008) estimate a structural Bayesian model that incor-

porates both anticipated and unanticipated components of various shocks, and find

that anticipated (news) shocks to technology can account for more than two-thirds

of business cycle fluctuations in the U.S.1 A recent study that is closest to our paper

is by Christopher Gunn and Alok Johri (2009) (GJ (2009), henceforth).2 They show

that ‘knowledge capital,’ which is produced through a learning-by-doing process, can

generate a boom in the aggregate economy and equity prices. While there are ob-

vious similarities, we believe there are at least two differences in our paper. First,

GJ (2009) model knowledge capital associated with labor-hours, which corresponds

to the ‘LBD via Skill’ specification. In addition to this specification, we examine an-

other specification of LBD that is popular in the macroeconomic literature, namely

‘LBD via Organizational Capital’. Second, and more importantly, while GJ (2009)

1Other papers in this literature include the early works of Beveridge (1909), Pigou (1927), and
Clark (1934) with more recent work done by Dupor and Mehkari (2009), Mehkari (2008), Nah (2009),
Beaudry and Portier (2008), Li and Mehkari (2009), Den haan and Kaltenbrunner (2007), Eusepi
(2008), and Lorenzi (2005).

2I had written the first draft of my paper and had presented it before I became aware of GJ
(2002).
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examine aggregate comovement in response to news about a neutral technology shock

in a one-sector model, this paper, in addition to the one-sector model, also examines

sectoral comovement in a two-sector model in response to news about three types of

shocks: neutral technology shocks, consumption technology shocks, and investment

technology shocks.

The rest of the paper is organized as follows. In Section 2 we explore the role of

LBD in generating news driven expansions in a one-sector economy. We examine two

different specifications of learning that are popular in the macroeconomic literature

and show that the model with both the specifications of LBD can generate news

driven booms. In section 3 we present a two-sector version of our model that can

generate sectoral and aggregate comovement with respect to contemporaneous and

news shocks about future technologies. The final section concludes.

2.2 The One-Sector Economy

In this section we explore the ability of learning-by-doing to generate news driven

expansions in a one-sector RBC model. Several empirical studies have examined LBD

and have found substantial evidence for it in micro datasets, in that production costs

decrease and productivity increases with cumulative output. Some recent studies

have also examined aggregate implications of LBD by incorporating it in dynamic

general equilibrium models. Two prominent works in the macroeconomic literature

that incorporate LBD into general equilibrium models are those by Chang, Gomes and

Schorfheide (2002) (henceforth, CGS (2002)), and Cooper and Johri (2002) (hence-

forth, CJ (2002)).
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CGS (2002) examine LBD associated with labor effort. They model a skill accu-

mulation process that captures the effects of past work experience on labor produc-

tivity. They estimate the LBD parameters using a Bayesian approach that combines

the micro-level panel data with the aggregate time-series data. They find that the

LBD mechanism is capable of generating richer macroeconomic dynamics. CJ (2002)

model LBD through organizational capital, which is a by-product of the production

process; the idea being that production activity creates information about the organi-

zation which improves future productivity. They estimate the LBD parameters using

sector and plant-level data and find that LBD can provide an important propagation

mechanism in business cycle models. The key difference in the LBD mechanism of

CGS (2002) and CJ (2002) is that while in the former learning is only associated

with labor-hours, learning in the latter depends on the overall production activity or

output.

In this section, we augment the standard one-sector RBC model with LBD along

the lines of these studies. We first introduce learning through skill accumulation as

outlined in CSG (2002), LBD via Skill. Next, we follow CJ (2002) and introduce

learning through the accumulation of organizational capital, LBD via Organizational

Capital. Subsequently, we examine the role of these LBD mechanisms in generating

aggregate comovement in response to news shocks.

2.2.1 Model

The model economy is populated with many identical agents who maximize their

expected discounted lifetime utility defined over consumption, ct, and labor-hours

10



worked, nt:

U = E0

∞∑
t=0

βt

[
c

(1−σ)
t

(1− σ)
− ψnt

]
(2.2.1)

The physical capital evolution is given by:

kt+1 = It + (1− δk)kt (2.2.2)

where δk is the depreciation rate of the capital stock. Output is the economy can be

used for production or consumption:

ct + It = yt (2.2.3)

LBD via Skill

We follow CGS (2002) and assume that experience from past employment is iden-

tified with skill level, xt. The skill accumulation process is given by:

ln
(xt+1

x

)
= φln

(xt
x

)
+ µln

(nt
n

)
0 ≤ φ < 1, µ ≥ 0 (2.2.4)

where variables without the time subscript denote the steady-states. This process cap-

tures that skill level is augmented by labor-hours worked in the past and it depreciates

over time (φ < 1). Output in the economy is produced using constant-returns-to-scale

Cobb-Douglas technology in physical capital, kt, and labor-input, ht:

yt = kαt h
(1−α)
t at (2.2.5)

where at is an exogenous technology shock. The labor-input in the production func-

tion consists of labor-hours worked and the skill level:

ht = ntxt (2.2.6)
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Hence skill raises the effective unit of labor supplied. Combining (2.2.3) with (2.2.5)

and (2.2.6), the recourse constraint becomes:

ct + It = kαt (ntxt)
(1−α) at (2.2.7)

The social planner’s problem for this economy with skill accumulation is to maximize

(2.2.1) subject to (2.2.2), (2.2.4), and (2.2.7).3

The first order conditions to the planner’s problem are:

c−σt = λt (2.2.8)

ψ = λt(1− α)

(
kt
nt

)α
x

(1−α)
t at + Λt

µ

n

(xt
x

)φ (nt
n

)(µ−1)

(2.2.9)

λt = βλt+1

(
(1− δk) + α

(
xt+1nt+1

kt+1

)(1−α)

at+1

)
(2.2.10)

Λt

x
= β

Λt+1

x
φ
(xt+1

x

)(φ−1) (nt+1

n

)µ
+ βλt+1(1− α)

(
kt+1

xt+1

)α
n

(1−α)
t+1 at+1 (2.2.11)

where λt and Λt are the Lagrange multipliers associated with the aggregate constraint

(2.2.7) and skill accumulation (2.2.4), respectively.

The first-order condition for labor-hours (2.2.9) differs from that of a standard

RBC model by the second term in (2.2.9), which captures the marginal value of

skill generated by an extra labor-hour. This second term, which is absent in the

standard RBC model, is crucial in generating positive comovement in labor-hours

and consumption in response to news shock about future technology. To see this,

consider (2.2.9) without the second term and substitute out λt:

ψcσt = (1− α)

(
kt
nt

)α
x

(1−α)
t at (2.2.12)

3CSG (2002) present a decentralized version of this economy. It is straightforward to verify that
the solution to the planner’s problem is identical to that of the decentralized economy.
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This would correspond to the first-order condition for labor-hours in the RBC model,

except for the skill term. The above equation shows that it is not possible to get

positive comovement between labor-hours and consumption when the news shock

occurs. When positive news about future productivity arrives, technology remains at

steady-state. Skill and physical capital are state variables and are thus predetermined;

they also remain at the steady-state level. Hence as consumption increases, labor-

hours must decrease. This explains why the standard RBC model fails to generate

positive comovement between labor-hours and consumption. The economics behind

increase in consumption and decrease in labor-hours in response to positive news is

as follows. The economic agents feel wealthier today as the good news about future

technology arrives. Thus they increase their consumption and work less hours. The

addition of the second term in (2.2.9) allows for the possibility of positive comovement

since the shadow value of skill, Λt, increases in response to positive news, as we will

discuss shortly. Rewriting (2.2.9) gives:

ψ

λt
= (1− α)

(
kt
nt

)α
x

(1−α)
t at +

Λt

λt

µ

n

(xt
x

)φ (nt
n

)(µ−1)

(2.2.13)

The above equation shows that the planner equates the marginal rate of substitution

between consumption and labor-hours to the sum of the marginal product of labor

and the marginal value of skill (in terms of consumption) generated from increasing

labor-hours by one unit.

The first-order condition for physical capital (2.2.10) is the same as that in stan-

dard RBC model, except for the skill term. First-order condition for skill (2.2.11)

shows that the marginal value of skill, Λt, depends on next period’s technology. Log

linearizing (2.2.11) around the non-stochastic steady rate and rearranging shows that
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the shadow value of skill depends on the discounted sum of expected future tech-

nology. Consequently, marginal value of skill increases immediately in response to

positive news about future technology. As we will discuss shortly, this increase in

marginal value of skill induces the social planner to invest in skill when the positive

news arrives, which leads to a boom in macroeconomic aggregates.

LBD via Organizational Capital

So far we have introduced LBD through skill accumulation. We now explore the

second specification of LBD that is popular in the literature: LBD through the ac-

cumulation of organizational capital. CJ (2002) model organizational capital as a

by-product of the production process; the idea being that production activity creates

information about the organization which improves future productivity. In this spec-

ification learning depends on the overall production activity (labor-hours, physical

capital and productivity) as opposed to only labor-hours in case of LBD via Skill.

The organizational capital is accumulated indirectly through the production process

and its evolution is given by:

ln(xt+1) = γln(xt) + τ ln(yt) (2.2.14)

where xt is the stock of organizational capital. The production technology converts

its inputs of physical capital, labor-hours, and organizational capital into output:

yt = kθtn
ν
t x

ω
t at (2.2.15)

where at represents an exogenous technology shock. Substituting (2.2.15) into the

organizational capital accumulation equation (2.2.14), we obtain:

xt+1 = xγxt n
γn
t k

γk
t a

γa
t (2.2.16)

14



where γx = γ + τω, γn = τν, γk = τθ, and γa = τ . The aggregate constraint can be

written as:

ct + It = kθtn
ν
t x

ω
t at (2.2.17)

We solve the model with organizational capital as a social planner’s problem.4 The

planner maximizes (2.2.1) subject to (2.2.2), (2.2.16), and (2.2.17). The first-order

conditions to the planner’s problem are:

c−σt = λt (2.2.18)

ψ = λtνn
ν−1
t kθt x

ω
t at + Λtx

γx
t γnn

γn−1
t kγkt a

γa
t (2.2.19)

λt = βλt+1

(
(1− δk) + θk

(θ−1)
t+1 nνt+1x

ω
t+1at+1

)
+ βΛt+1x

γx
t+1n

γn
t+1γkk

γk−1
t+1 aγat+1 (2.2.20)

Λt = βΛt+1γxx
γx−1
t+1 nγnt+1k

γk
t+1a

γa
t + βλt+1k

θ
t+1n

ν
t+1ωx

(ω−1)
t+1 at+1 (2.2.21)

where Λt and λt are the Lagrange multipliers corresponding to (2.2.16) and (2.2.17),

respectively. The first-order condition for labor-hours differs from that of a standard

RBC model by the second term in (2.2.19), which captures the value of organizational

capital generated by an extra labor-hour. It shows that the planner equates the

marginal rate of substitution between consumption and labor-hours to the sum of the

marginal product of labor and the marginal value of organizational capital (in terms

of consumption) generated from increasing labor-hours by one unit.

The first-order condition with respect to physical capital can be rewritten as:

λt
λt+1

= β(1− δk) + βθk
(θ−1)
t+1 nνt+1x

ω
t+1at + β

Λt+1

λt+1

xγxt+1n
γn
t+1γkk

γk−1
t+1 (2.2.22)

4CJ (2002) solve their model as a social planner’s problem since it allows them to be agnostic
about the question of whether the organizational capital is firm-specific or worker-specific.
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The above equation differs from that of the standard RBC model or the model with

skill accumulation by the last term in (2.2.22), which captures that physical capi-

tal also contributes to the accumulation of organizational capital. Hence increasing

physical capital by one unit today results in discounted undepreciated capital tomor-

row, increases output, and raises the organizational capital. The planner, therefore,

equates the inter-temporal marginal rate of substitution in consumption to the dis-

counted sum of discounted undepreciated capital, the marginal product of capital,

and the marginal value of organizational capital (in terms of consumption) generated

from increasing physical capital by an additional unit.

The first-order condition for organizational capital is similar to that of skill dis-

cussed above, in that the marginal value of organizational capital, Λt, depends on

future technology. Consequently, marginal value of organizational capital increases

immediately in response to positive news about future technology. As we will dis-

cuss shortly, this increase in the value of organizational capital induces the economic

agents to invest in it by increasing production immediately, which results in a news

driven expansion.

2.2.2 Results

We now present numerical results to the one-sector economy that is calibrated to

standard values found in the literature. We interpret one model economy period to

be a quarter.

Structure of News Shocks

The structure of the shock to future productivity, news shock, takes the following
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form introduced by Christiano et al. (2007):

ln(at) = ρaln(at−1) + ẽt−p − et (2.2.23)

where ẽt−p represents a news shock and et represents a contemporaneous shock. Under

this specification, in period 1 the planner (unexpectedly) gets the news that produc-

tivity will change after p periods. However, depending on the value of et+p, this news

may or may not turn out to be true in period p+1, which is the period of expected

change in productivity. In the benchmark case, the news turns out to be true, et = 0;

hence, the news is realized. If et = ẽt−p, then the news is false; thus the news is not

realized.

Calibration

We set share of capital in the production function, α, to 0.34, and set the capital

depreciation rate, δk, to 0.025. The subjective discount rate, β, is set to 0.99, im-

plying an annual steady-state real interest rate of 4 percent. Following Christiano et

al. (2007), we set ρa to 0.83 and p to 4 so that the news about technology is four

quarters into the future.

The LBD parameters are based on empirical estimates in CGS (2002) and CJ

(2002). In the skill accumulation specification, we set the LBD parameters to the

posterior means in CGS (2002): φ and µ are set to 0.8 and 0.11, respectively. In the

organizational capital specification, the LBD parameters ω, γ, and τ are based on

empirical estimates in CJ (2002) and are set to 0.3, 0.5, and 0.5, respectively. The

capital share, θ, and labor share, ν, in the production process under this specification

are also 0.34 and 0.66, respectively. Setting the LBD parameters to zero under both
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the specifications reduces the models to the RBC model. This allows us to compare

the responses of the LBD model with the RBC benchmark.

The relative risk aversion, σ, is set to 0.6, which is lower than the usual value of

unity for log utility; however, it is well within the range of empirical estimates in the

literature (Beaudry and Wincoop (1996), Vissing-Jorgensen and Attanasio (2003),

and Mulligan (2002)). The reason why a higher inter-temporal elasticity of substitu-

tion (a lower σ) helps in generating a news driven expansion is because it dampens the

recession generated by the benchmark RBC model in response to positive news, hence

reducing the problem to begin with. Higher intertemporal elasticity of substitution

diminishes the decrease in labor-hours, output and, investment and the increase in

consumption in response to the positive news. This is because it allows for greater

substitution of consumption across periods (less smooth consumption) as a result of

which agents defer most of the increase in consumption until the actual technology

increases. Therefore, the initial increase (decrease) in consumption (marginal utility

of consumption) is relatively less with lower σ. As a result, the wealth effect on leisure

is dampened through the labor-hours first-order condition. As a result the decrease

in labor-hours is less, which in turn diminishes the decline in output. The relative

decrease in consumption and increase in output diminishes the decline in invest-

ment through the resource constraint. Therefore, the higher intertemporal elasticity

of substitution in consumption dampens the recession generated in the benchmark

RBC model by positive news, and consequently helps in generating a news driven

expansion. Nevertheless, the model can generate an expansion in response to positive

news with log utility if the learning effect is amplified. For example, setting µ to

(1 − φ), so that there is CRS in the skill accumulation process, can produce a news
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driven expansion with log utility.

Numerical Results

We start out by examining the impulse responses to a positive news shock with-

out any LBD mechanism. The model is calibrated to the values discussed above

except that the LBD parameters are set to 0. Consequently, the model reduces to

the standard RBC model. Figure 2.1 shows that the RBC model generates a reces-

sion today in response to positive news about future technology; output, investment

and labor-hours all decrease until period 4 as the positive news arrives in period 1.

Consumption, on the other hand, increases due to the positive wealth effect. The

wealth effect also causes a decrease in labor supply. Since capital is fixed in period 1

and productivity is expected to increase in the future but does not change when news

arrives in period 1, the decrease in labor-hours causes output to decline. As output

decreases and consumption increases, investment must decrease. Consequently, the

RBC model generates a recession in response to positive news. In period 5 if the news

turns out to be true, the macroeconomic variables rise with the technology, whereas

if the news turns out to be false they return to their steady-state level. This puzzling

feature of the standard RBC model has been documented by Beaudry and Portier

(2004, 2008).

Figure 2.2 plots the impulse responses to a news shock in the model with LBD

via skill. The figure shows that the RBC model augmented by LBD can generate

an expansion in response to positive news about future technology. Output, labor-

hours, investment, and consumption all rise until period 4. The figure shows that

the marginal value of skill, Λt, increases in response to the news. This induces the
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planner to invest in LBD immediately by increasing labor-hours. The resulting in-

crease in output is large enough to accommodate increases in both consumption and

investment. As increasing skill raises productivity of factor-inputs, labor-hours and

physical capital continue to increase until period 4. In period 5 if the news turns out

to be true, labor-hours, investment, consumption and output continue to increase,

thus the expansion persists. If the news turns out to be false, all the variables de-

crease and revert to the steady-state level, hence causing a recession. This explains

how introducing skill accumulation into the standard RBC can generate news driven

business cycles.

Figure 2.3 shows the impulse responses in the model with organizational capital.

The figure reveals that the RBC model with organizational capital can also generate

an expansion in response to positive news about future productivity. Output, labor-

hours, investment and consumption rise until period 4 in response to the positive

news in period 1. The reason why organizational capital can generate a news driven

expansion is similar to that of skill. The marginal value of organizational capital, Λt,

increases as soon as the positive news arrives, which induces the planner to invest

in it. This is accomplished by increasing labor-hours and physical capital, both of

which are inputs into the organizational capital accumulation process. Increase in

labor-hours raises output substantially so that both consumption and investment can

increase. Consequently, labor-hours, output, consumption and investment rise until

period 4. If the news turns out to be true, the expansion continues. Otherwise, all

the variables decrease to the steady-state level.
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While both physical capital and labor-hours are inputs into the accumulation of

organizational capital, the former plays little role in the initial periods. Physical cap-

ital being predetermined does not contribute to the accumulation of organizational

capital or the production process until one period after the news shock. Even after

the first period it takes time for the physical capital to build up above the steady-state

level. Consequently, it does not contribute much to the accumulation of organizational

capital when the positive news arrives, which explains why the initial responses of

the two learning mechanisms look similar. Nevertheless, as physical capital builds

up, it contributes increasingly to the production of organizational capital. The low

depreciation of physical capital amplifies this effect. This is evident from the more in-

tertial responses under this specification of learning. For instance, in the model with

organizational capital once the news shock is realized, aggregate variables continue

to rise for a few periods even after the actual technology starts to dampen (period 6

onwards), hence displaying hump-shaped responses in output, labor-hours, consump-

tion and investment. Learning-by-doing via skill fails to generate this hump-shaped

behavior.

Next, we examine the responses to contemporaneous shock. Figure 2.4 plots the

impulse responses to contemporaneous technology shocks under both the specifica-

tions of LBD. Impulse responses in the figure reveal that both the LBD specifications

are capable of generating positive comovement in response to contemporaneous shock

as well. While both the specifications can generate positive aggregate comovement,

only the model with organizational capital can generate hump-shaped responses in

labor-hours and output.5

5For a discussion on responses to contemporaneous shocks, see CSG (2002) and CJ (2002).
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2.3 The Two-Sector Economy

To study sectoral comovement we consider a two-sector version of our model with a

consumption sector and an investment sector. Several papers including Lucas (1977)

and Burns and Mitchell (1946) have underscored the importance of sectoral comove-

ment in developing a single unified theory of business cycles. Huffman and Wynne

(1999) document that labor-hours and investment across sectors comove and are

procyclical in the data. Therefore in this section we explore the ability of LBD in

generating sectoral comovement in response to news shocks. We introduce learning-

by-doing in both the sectors. In the interest of brevity, we focus on LBD through

skill accumulation from hereon.6

2.3.1 Model

The model economy consists of a consumption sector and an investment sector.

The production technology in the two sectors has the standard Cobb-Douglas func-

tional form:

ct = kc
α

t h
c1−α

t atz
c
t (2.3.1)

Ict + I it = ki
α

t h
i1−α

t atz
i
t (2.3.2)

where the superscripts “c” and “i” denote variables specific to the consumption and

investment sectors, respectively.7 zct and zit are the sector-specific technology shocks

while at is the neutral technology shock. The consumption sector produces consump-

tion goods from capital, kct , and labor-input, hct , which is the product of labor-hours

6Our two-sector model with organizational capital can also generate sectoral and aggregate co-
movement in response to the three shocks considered in this paper. These results are available upon
request.

7The above two equations replace the resource constraint (2.2.3) in the one-sector economy.
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worked, nct , and skill xct . The investment sector produces investment goods for both

the sectors using capital, kit, and labor-input, hit, which consists of labor-hours worked,

nit, and skill level xit.

Following the literature, we assume that capital is not mobile across sectors. The

idea here is that capital used in the production of industrial machinery cannot eas-

ily be used to produce food. This assumption is formalized by specifying separate

equations for capital evolution in each sector:8

kct+1 = Ict + (1− δk)kct (2.3.3)

kit+1 = I it + (1− δk)kit (2.3.4)

Similarly, we assume that skill is sector-specific and cannot easily be used in the

other sector. The logic is the same; skill in producting industrial machinery cannot

easily be used for producing food. Hence we specifying separate equations for the

skill accumulation process in each sector:

ln

(
xct+1

xc

)
= φln

(
xct
xc

)
+ µln

(
nct
nc

)
(2.3.5)

ln

(
xit+1

xi

)
= φln

(
xit
xi

)
+ µln

(
nit
ni

)
(2.3.6)

where 0 ≤ φ < 1 and µ ≥ 0. Finally, aggregate labor-hours is the sum of labor-hours

in the two sectors.

nt = nct + nit (2.3.7)

8Under this specification, while capital cannot be moved across sectors in a given period, it can
be moved easily after one period if there are no investment adjustment costs.
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The planner solves (2.2.1) subject to the aggregate constraints, (2.3.1) and (2.3.2),

and the capital and skill accumulation equations, (2.3.3) through (2.3.6). The first-

order conditions to the planner’s problem are:

c−σt = λct (2.3.8)

ψ = λct(1− α)

(
kct
nct

)α
xc

(1−α)

t atz
c
t + Λc

t

µ

nc

(
xct
xc

)φ(
nct
nc

)(µ−1)

(2.3.9)

ψ = λit(1− α)

(
kit
nit

)α
xi

(1−α)

t atz
i
t + Λi

t

µ

nc

(
xit
xi

)φ(
nit
ni

)(µ−1)

(2.3.10)

Λc
t

xc
= β

Λc
t+1

xc
φ

(
xct+1

xc

)(φ−1)(nct+1

nc

)µ
+ βλct+1(1− α)

(
kct+1

xct+1

)α
nc

(1−α)

t+1 at+1z
c
t+1

(2.3.11)

Λi
t

xi
= β

Λi
t+1

xi
φ

(
xit+1

xi

)(φ−1)(
nit+1

ni

)µ
+ βλit+1(1− α)

(
kit+1

xit+1

)α
ni

(1−α)

t+1 at+1z
i
t+1

(2.3.12)

λit = βλit+1(1− δk) + βλct+1α

(
xct+1n

c
t+1

kct+1

)(1−α)

at+1z
c
t+1 (2.3.13)

λit = βλit+1(1− δk) + βλit+1α

(
xit+1n

i
t+1

kit+1

)(1−α)

at+1z
i
t+1 (2.3.14)

where λjt and Λj
t are the Lagrange multipliers with respect to the resource-constraints

and the skill accumulation equations in the two sectors (j = c, i). The first-order

conditions in this two-sector economy are analogous to those in the one-sector model.

For instance, the first-order conditions for labor-hours in the two sectors (2.3.9) and

(2.3.10) are similar to (2.2.9) and show that the social planner equates the marginal-

rate-of-substitution between labor-hours and consumption (investment) to the sum

of the marginal product of labor in the consumption (investment) sector and the

marginal value of skill in terms of consumption (investment) generated from increasing
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labor-hours by one unit in the respective sector.9 Similarly, the first-order conditions

with respect to skill in the two sectors (2.3.11) and (2.3.12) are analogous to (2.2.11),

in that the marginal value of skill in the two sectors depend of future technology.10

Intratemporal Adjustment Cost

In the two-sector model, there is an infinite elasticity of substitution between

investment across sectors, which makes it very easy to switch from the production

of one type of capital good to that of another. Specifically, by cutting back the

production of new capital goods for one sector by one unit, it is possible to increase

production of new capital goods for the other sector by one unit without any need to

increase overall production of new capital goods. Huffman and Wyne (1999) argue

that while an economy can alter its capacity for producing heavy capital equipment for

industrial use and alternative capital goods for service sector use, it can be costly to

do so quickly in practice. Consequently, they introduce an intratemporal investment

adjustment cost in a standard two-sector model and show that the this modification

can generate sectoral comovement in response to contemporaneous shock. We follow

Huffman and Wynne (1999) and introduce intratemporal investment adjustment cost

in our model.11 The production technology in the investment sector (2.3.2) will then

9As in (2.2.9), these first-order conditions differ from the standard two-sector RBC model by
the second terms in (2.3.9) and (2.3.10), which capture the marginal value of skill in the respective
sectors.

10In the same way, the first-order conditions for physical capital in the two sectors (2.3.13) and
(2.3.14) are analogous to (2.2.10).

11We introduce the intratemporal adjustment costs since LBD by itself cannot reduce the rapid
movement of factor across sectors.
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be replaced by:

(
Ic
−ρ

t + I i
−ρ

t

)− 1
ρ

= ki
α

t

(
nitx

i
t

)1−α
atz

i
t (2.3.15)

The central assumption behind this specification is that it is costly to alter the

composition of capital goods produced in the economy. This formulation generates a

convex production possibility frontier between investment in the two sectors.12 Set-

ting ρ = −1 would result in the standard resource constraint for the capital-goods

producing sector in a two-sector model. Thus, it is easy to understand the implica-

tions of introducing this adjustment cost.

2.3.2 Results

We now present numerical results to the two-sector economy. We follow Jaimovich

and Rebelo (2008) and calibrate the two-sector model with the same parameter values

used for the one-sector model.13 We set the intratemporal investment adjustment cost,

ρ to -1.4.14

Numerical Results

We now discuss the impulse responses of sector-specific and aggregate variables

to news about three types of shocks. The first is a sectoral shock to technology in

the investment sector, zit, and the second is a sectoral shock to technology in the

12For a detailed motivation for this form, refer to Huffman and Wyne (1999).
13Jaimovich and Rebelo (2008) calibrate their two sector growth model with the same parameter

values as their one sector version of the model. Huffman and Wyne(1999), on the other hand, use
different depreciate rates, labor capital shares and persistent parameters in the two sector. Hence
an alternative to the Jaimovich and Rebelo (2008) would be to follow Huffman and Wyne(1999).

14Huffman and Wyne (1999) estimated ρ in the range of -1.1 and -1.3. While ρ of -1.4 is slightly
larger (in absolute value), the results are essentially the same when ρ is set to -1.3.
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consumption sector, zct . The third is the combination of the two sectoral shocks,

which corresponds to a neutral technology shock, at. The timing is as follows. The

economy is in the steady-state at time zero. At time one the economy learns that

there is a one-percent increase in one of the three shocks after four periods.

Figure 2.5 shows that the model with LBD and intratemporal investment adjust-

ment cost can generate both sectoral and aggregate comovement in response to news

about all three shocks. The positive news increases the marginal value of skill in the

two sectors, Λc
t , and, Λi

t, immediately. This induces the planner to invest in skill by

increasing labor-hours in both the sectors, which raises aggregate consumption and

aggregate investment. The intratemporal investment adjustment cost restricts the

movement of investment across sectors and as a result investment in both the sectors

increase. As skill accumulation raises the productivity of factors-inputs, labor-hours

and investment continue to increase in both the sectors. Consequently, aggregate

consumption, investment, labor-hours and output also continue to increase in subse-

quent periods. Hence the model generates both sectoral and aggregate comovement

in response to positive news about neutral and sector-specific technology shocks. The

next figure shows the effects of the corresponding three contemporaneous shocks. The

timing is as follows. The economy is in the steady-state at time zero and the shock

occurs at time one. Figure 2.6 shows that the model generates both aggregate and

sectoral comovement in response to all three shocks.

To better understand the dynamics of the model, we first examine the responses

to contemporaneous and news shocks about investment-specific technology in the

two-sector version of standard RBC model. Subsequently, we will add the intratem-

poral investment adjustment cost and LBD one at a time to examine their relative
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contribution in generating a news driven expansion. Figure 2.7 shows the response

to contemporaneous shock and news shock in the benchmark model without skill

accumulation or intratemporal adjustment cost. The figure shows that in response

to contemporaneous shock, aggregate output and investment rise immediately and in

subsequent periods, while consumption falls for several periods. This is because as

investment productivity increases, investment (and subsequently capital) in the in-

vestment sector will increase to take advantage of the increased productivity. Later,

as investment technology decreases to the steady-state level, capital and investment

will also decrease. Since investment in the investment sector has increased by so

much, the corresponding investment in the consumption sector will fall immediately

upon the rise in technology, and consequently consumption falls in the following pe-

riods. As more capital goods are accumulated, capital in the investment sector falls

and capital in the consumption sector grows as agents desire more consumption. The

figure also plots responses to positive news about investment technology. In response

to this positive news, the planner increases labor-hours and capital in the consump-

tion sector immediately in order to build consumption before the investment-specific

technology arrives. However, due to the negative wealth effect on labor supply there

are more than offsetting decreases in the investment sector, which cause aggregate

labor-hours, output and investment to decline. Subsequently, the planner reallo-

cates the factors to the investment sector in order to take advantage of the increased

productivity when the actual investment technology arrives.15 After the shock, the

planner reallocates the factor to the consumption sector to increase consumption. As

15Since capital is predetermined, the planner increases investment one period in advance to ensure
that capital in the investment sector is at a higher level in the next period when the investment
technology arrives.
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the technology subsequently reverts to its steady-state level, so do the investments

and labor-hours in the two sectors. It is clear from the figure that the benchmark

two-sector model fails to generate sectoral or aggregate comovement in response news

and contemporaneous shocks.

Next we examine the impulse responses when the two key elements are introduced

to the benchmark two-sector model: skill accumulation and intratemporal investment

adjustment cost. Figure 2.8 shows that introducing intratemporal adjustment costs

substantially reduces the volatility in the factors as there is no longer an infinite elas-

ticity of substitution between the two types of investment goods. The figure confirms

that introducing this adjustment cost leads to positive sectoral and aggregate comove-

ment in response to contemporaneous shock. However, the adjustment cost by itself

cannot produce an expansion in response to positive news about future investment

technology. Labor and investment decrease in the consumption sector, causing aggre-

gate consumption to decline. While investment increases slightly in the investment

sector, the decrease in labor causes aggregate investment to decrease. The figure

shows that all the sectoral variables (except for investment in the investment sector)

and all aggregate variables decline, hence causing a recession in response to the posi-

tive news. The reason why the two-sector model with only intratemporal investment

adjustment cost fails to generate comovement in response to news shock is because

there are no forces in the model that can compensate for the negative wealth effect

on the labor supply from news about future productivity.

We now examine the impulse responses when the model is augmented with LBD.

Introducing LBD via skill in the two sectors increases the marginal value of skill

when the positive news arrives. This induces the planner to invest in skill, which is
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accomplished by an increase in labor-hours. Hence the LBD mechanism provides a

countervailing force to the negative wealth effect on labor supply. The figure shows

that when skill accumulation is added into the model both the sector-specific variables

and the aggregate variables rise in response to the positive news.16 Hence skill ac-

cumulation combined with intratemporal adjustment can produce both sectoral and

aggregate comovement in response to news shock.

Figure 2.9 shows the response in the benchmark two-sector model to news and

contemporaneous shocks in the consumption sector. Once again, the responses are

volatile as the factors are moved freely across sectors to where their marginal products

are higher. Introducing intratemporal investment adjustment cost leads to comove-

ment in response to contemporaneous shock. While in this case adding the adjustment

cost can also generate comovement in response to news about consumption technol-

ogy, initial increase in labor in the consumption sector and aggregate consumption is

negligible. Introducing LBD substantially increases the size of this initial boom.

Finally, we examine responses to news and contemporaneous shocks to neutral

technology, which is a combination of the two sectoral shocks. Figures 2.11 and 2.12

show that the benchmark two-sector model fails to generate sectoral or aggregate

comovement and introducing intratemporal investment adjustment cost helps in case

of contemporaneous shock. However, adjustment cost by itself fails to produce an ex-

pansion in response to positive news about neutral technology. Investment and labor

shrink in the consumption sector, resulting in a decrease in aggregate consumption.

While investment increases in the investment sector, the corresponding decrease in

16The impulse responses when only skill is added to the benchmark two-sector model are still
volatile because of the infinite elasticity of substitution between investment and labor in the two
sector. Hence learning-by-doing by itself is not sufficient to generate an expansion in response to
positive news.

30



labor-hours cause aggregate investment to shrink. As a result aggregate output also

decreases. The figure shows that except for investment in the investment sector all the

aggregate and sector-specific variables decline, thus causing a recession in response

to positive news. Introducing learning-by-doing via skill in the two sectors induces

the planner to invest in it by increasing labor-hours, which leads to increases in both

sectoral and aggregate variables.

2.4 Conclusion

It is well documented that the standard RBC model fails to generate positive

comovement in output, consumption, investment, and labor-hours in response to

news about future technology. This paper proposes a solution to this puzzling feature

of the RBC model based on learning-by-doing. We examine two specifications of LBD

that are popular in the literature and show that both these specifications can generate

aggregate comovement in response to news shocks about technology. Furthermore,

we show that LBD plays a crucial role in generating sectoral comovement in response

to news shocks. While several other recent studies have added features to the RBC

model to account for aggregate comovement in response to news shocks, we believe

that the primary virtue of our approach is that it provides a simple and intuitive

solution based on a mechanism that has strong empirical support. In addition, we

show that our model can generate sectoral comovement in response to news about

three types of shocks: neutral technology shocks, consumption technology shocks,

and investment technology shocks.
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CHAPTER 3

EXPLOSIVE ROOTS IN LEVEL VECTOR
AUTOREGRESSIVE MODELS

3.1 Introduction

Following the work of Sims (1980), impulse response analysis based on level vec-

tor autoregressive (VAR) models has been utilized in numerous studies and plays

an important role in contemporary macroeconomic research. One advantage of level

VAR models over alternatives such as the vector error correction models is that the

former are robust to the number of unit roots in the system. This robustness is one

of the reasons why level VAR models are used extensively in applied macroeconomic

research. However, estimated level VAR models may contain explosive roots even

if all the true autoregressive roots lie inside the unit circle. The incidence of such

explosive roots is at odds with the widespread agreement among macroeconomists

that roots are at most unity.17 Given that level VAR models are used extensively

and may estimate roots greater than unity, it is important to examine how frequently

researchers estimating level VAR models on macroeconomic datasets encounter ex-

plosive roots.

17Macroeconomists may model few phenomenon such as hyperinflations as explosive processes
(see Neilsen (2005) and Juselius (2002)). These are important but very specific cases and in general
most macroeconomic variables are modeled as non-explosive processes.
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This paper investigates this frequency using Monte Carlo simulations based on

datasets that are representative of those commonly used in the macroeconomic lit-

erature. In specific, datasets from three highly cited papers in the literature, Chris-

tiano, Eichenbaum, & Evans (1999, 2005), CEE henceforth, and Eichenbaum & Evans

(1995), EE henceforth, are employed to examine the frequency of explosive roots (ex-

plosion) in estimated level VAR models.18 Monte Carlo samples are generated under

two specifications of the data-generating process (DGP). The first specification of

the DGP imposes unit roots in the simulated data, while the second specification

is based on a stationary process. Subsequently, level VAR models are estimated on

the simulated data to compute the frequency of explosive roots. Under both these

specifications, this paper also examines the frequency of explosion after correcting for

the small-sample bias in estimated level VAR coefficients.

Monte Carlo results in this study reveal that the frequency of explosive roots ex-

ceeds 40% in the presence of unit roots. Even when all the variables are stationary,

the frequency of explosive roots is substantial; it is as high as 25%. Furthermore,

explosion increases significantly, to more than 90% under several specifications, when

the estimated level VAR coefficients are corrected for small-sample bias.

To understand why the frequency of explosive roots is very high in level VAR

models, it is useful to consider a hypothetical estimator that yields median-unbiased

autoregressive roots (MUAR estimator). If there are unit root(s) in the system and

thus the magnitude of the largest autoregressive root (λmax) is unity, we would expect

18CEE (1999), CEE (2005) and EE (1995) are among the most highly cited papers in the applied
macroeconomic research. Differences in VAR order, data frequency and variables used in these
papers facilitate the assessment of explosive roots under a variety of specifications.
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to encounter explosive roots with a very high frequency of 50% with MUAR estima-

tor. However, since the least-squares estimator used for level VAR estimations is

not median-unbiased, we can expect much lower frequency of explosive roots if there

is a substantial downward median-bias in λmax, whereas in the case of an upward

median-bias it would be even higher than 50%. Results in this paper suggest that the

least-squares bias in λmax is not substantially downward: there is either only a slight

downward median-bias or the median-bias is upward. Consequently, the frequency of

explosive roots is close to (or even exceeds) 50% in the presence of unit roots and is

very high even if all the variables are stationary.

The reason why bias correction in level VAR models leads to even higher fre-

quency of explosive roots is because the commonly used bias correction procedures

correct the bias in the coefficients and not the roots. Bias correction in coefficients

may not correct the bias in the roots because of the non-linear mapping between

the two. Median-unbiasedness is preserved under monotone transformation whereas

mean-unbiasedness is persevered under linear combinations. Since the autoregressive

roots are neither a monotone transformation nor a linear combination of the autore-

gressive coefficients, median or mean bias corrections in coefficients will not in general

correct the bias in the roots. Results in the paper show that the commonly used bias

correction procedures often increase the bias in the roots, resulting in substantial

upward bias. Consequently, the frequency of explosive roots is as high as 100% after

bias correction under several specifications.

These results suggest that researchers estimating level VAR models on macroeco-

nomic datasets encounter explosive roots, a phenomenon that is contrary to common

macroeconomic belief, with a very high frequency. Considering the consensus among
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macroeconomists that roots are at most unity, applied macroeconomists may discard

explosive VAR draws in simulated data used for constructing confidence intervals

for the impulse responses. For instance, Ditmar, Gavin & Kyland (2005) and Altig,

Christiano, Eichenbaum & Linde (2004) discard explosive VAR draws in the simu-

lated data used for constructing error bands for their impulse responses. However,

discarding explosive VAR specifications when estimating level VAR models on the ac-

tual datasets is problematic because it may lead to data mining biases. Data mining

can be a serious problem since it invalidates statistical theory. The high frequency of

encountering explosive roots in estimated level VAR models suggests that this data

mining problem can be severe. Additionally, the sharp increase in explosion after bias

correction in estimated level VAR coefficients indicates that researchers correcting for

the small-sample bias in these coefficients may encounter explosive roots with an even

higher probability.

As per the well known evidence of nonstationarity in most macroeconomic series,

one way to reduce the frequency of explosive roots is to impose unit roots in the

estimation by estimating VECMs instead of level VAR models. I examine the fre-

quency of explosive roots in estimated VECMs under the same specifications of the

DGPs. Monte Carlo simulations reveal that explosion occurs much less frequently in

estimated VECMs. VECMs reduce the frequency of explosive roots by restricting the

magnitude of some of the otherwise explosive roots to unity.

The rest of the paper is organized as follows. Section II examines the frequency

of explosive roots in estimated level VAR models in the presence of nonstationary

variables. Section III focuses on explosive roots in estimated level VAR models when
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all the variables are stationary. Section IV examines the frequency of explosive roots

in estimated VECMs. Section V concludes.

3.2 DGP with NonStationary Variables

Many macroeconomists model highly persistent time series, such as inflation, in-

terest rate, exchange rate and money demand, as unit root processes since empirical

studies that estimate these series have mostly failed to reject the null hypothesis of

unit root nonstationarity. Given this evidence for nonstationarity of several macroe-

conomic variables and that macroeconomic theory predicts that some of these series

have long-run equilibrium relationships, this paper tests for unit roots and cointegra-

tion in CEE (1995), CEE (2005) and EE (1995) datasets.19 Several unit root tests

are implemented to test stationarity of macroeconomic variables in CEE (1999), CEE

(2005) and EE (1995). These tests fail to reject the null of unit root for most macroe-

conomics series. Johansen’s (1988) tests are used to estimate the cointegration ranks

in the datasets. Based on these tests, cointegration ranks of five, four and two are

used for the DGPs based on CEE (1999), CEE (2005) and EE (1995) respectively.20

However, Podivinsky’s (1998) results suggest that Johansen’s cointegration test may

not be very reliable, especially in shorter samples due to severe size distortions.21 I

therefore examine the sensitivity of the results to varying cointegration ranks in the

19Unit root tests and cointegration tests are reported in Tables 3.8 and 3.9
20These cointegration ranks are chosen based on trace tests. The maximum eigenvalue tests, on

the other hand, yield cointegration ranks of four for CEE (1999), and one for CEE (2005) and
EE (1995). Given these mixed results, sensitivity of results to different cointegration ranks is also
examined.

21Johansen (2002) proposes a small sample Barlett correction that improves the finite-sample
performance of his test. However, Juselius (2006) points out that these corrections do not solve the
power problem and in some cases the size of the test and the power of alternative hypotheses close
to the unit circle are almost of the same magnitude.
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DGPs.

Given the evidence for the existence of nonstationarity and cointegration, common

stochastic trends are imposed in the Monte Carlo samples by estimating vector error

correction models (VECMs) on the datasets and using the estimated regression coef-

ficients for the DGP. Subsequently, the frequency of explosive roots in estimated level

VAR models is computed. Unrestricted level VAR models are robust to the number

of unit roots in the system and hence are not misspecified in the presence of unit

roots and cointegration, as is the case in the simulated data under this specification.

However, estimating VAR in levels in the presence of cointegration involves a loss of

efficiency because some restrictions, namely the reduced rank of ζ0 in (2) below, are

not imposed.

3.2.1 Estimation Procedure

Monte Carlo experiments in the paper can be summarized into the following steps:

1. First I estimate reduced form VECMs using Johansen’s maximum likelihood

method on the datasets.22

∆Yt = c+ ζ1∆Yt−1 + ζ2∆Yt−2 + ...+ ζp−1∆Yt−p+1 + ζ0Yt−1 + εt (3.2.1)

Assuming normal errors, VECM coefficients can be estimated by maximizing

the following likelihood function:

L (Ω, ζ1, ..., ζp−1, c, ζ0) = (−Tn/2) log (2π)− (T/2) log |Ω| (3.2.2)

22VECM(4) is estimated on the CEE (1999) and CEE (2005) datasets, and VECM(6) is estimated
on the EE (1995) dataset, since CEE (1999, 2005) used level VAR(4) and EE (1995) used VAR(6)
specifications for their reduced form estimations.

49



−1

2

T∑
t=1

[(∆Yt−c−ζ1∆Yt−1−...−ζp−1∆Yt−p+1−ζ0Yt−1)′

Ω−1 (∆Yt − c− ζ1∆Yt−1 − ...− ζp−1∆Yt−p+1 − ζ0Yt−1)]

subject to ζ0 = −BA′

where Yt is a n-dimensional vector of variables, Ω is the covariance matrix of

εt, B is an (n x h) matrix, A′ is an (h x n) matrix of cointegrating vectors, and

h is the cointegration rank based on Johansen’s test.23

2. Next I use the estimated VECM coefficients to generate 10,000 Monte Carlo

samples.24

3. Finally I estimate level VAR models on each of these samples to get the reduced

form coefficients:

Yt = ci + θi1Yt−1 + θi2Yt−2 + ...+ θipYt−p + εt for i = 1, 2, ...10, 000 (3.2.3)

and subsequently check their stability to compute the frequency of explosive

roots.25

23The likelihood function is maximized by implementing the step by step procedure proposed by
Johansen (1988, 1991) as outlined in Hamilton (1994).

24Initial values from the datasets are used as the starting values for the Monte Carlo samples.
25Stability of a VAR(p) model can be checked by calculating λmax, the modulus of the largest root

of its companion matrix. If λmax of an estimated VAR model lies outside the unit circle in a given
sample, the VAR model would be unstable for that Monte Carlo sample. Frequency of explosive
roots corresponds to the proportion of unstable VAR draws in the Monte Carlo samples. In order
to allow for rounding off errors, I consider a VAR model to be explosive only if its λmax exceeds
a threshold value of 1.00001 (instead of exactly one). Results are essentially the same for other
thresholds such as 1.0001 or 1.0005.
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3.2.2 Theoretical Predictions

Consider an estimator that yields median-unbiased estimates of autoregressive

roots in multivariate time series models. I refer to this imaginary estimator as ‘me-

dian unbiased autoregressive roots estimator’ (MUAR).26 If the true data-generating

process is a VECM and the magnitude of the largest autoregressive root, λmax, is

exactly one, we would expect to encounter explosive roots with a probability of 0.5

with MUAR. Needless to say, a 50% likelihood of explosion is extremely high. How-

ever, since the least-squares estimator used for level VAR estimations is not median-

unbiased, we can expect lower frequency of explosive roots if the least-squares bias in

λmax is downward, whereas in the case of an upward bias it would be even higher.

Least-squares bias in autoregressive roots can be downward or upward. Andrews

(1993) shows that the least-squares estimator is significantly downward biased in

AR(1)/unit root models. Similarly Andrews and Chen (1994) show that least-squares

estimates of α, the sum of autoregressive coefficients in AR(p) models, are substan-

tially downward biased in small samples. However, since the mapping from autore-

gressive coefficients to autoregressive roots is nonlinear, the bias in autoregressive

roots can go either way even if the autoregressive coefficients are downward biased.

For instance, Andrews and Chen (1994, Table 2) report upward least-squares bias in

most autoregressive roots.27 Given that the least-squares estimator can be signifi-

cantly biased in small samples and the bias in autoregressive roots can go in either

26It must be emphasized that no such estimator exists and MUAR is just an imaginary estimator,
mentioned solely for expository purpose.

27Andrews and Chen (1994, Table 2) report results for three autoregressive models, which have
upward bias in the magnitude of most autoregressive roots other than that of the largest one. Monte
Carlo simulations (available upon request) based on their models with slightly different coefficient
values yield upward bias in the magnitude of the largest root.
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direction, it is hard to predict how often estimated level VAR models may contain

explosive roots. Consequently, Monte Carlo simulations are used to estimate the fre-

quency of explosive roots in estimated level VAR models with and without correcting

for the small-sample bias using standard bias correction procedures.

Andrews (1993) and Andrews & Chen (1994) among others have proposed bias-

corrected estimators for univariate autoregressive models. Kilian (1998) proposes

a bias correction approach for multivariate time series models such as VAR. His

approach relies on calculating the mean-bias using nonparametric bootstrapping.

Nicholls and Pope (1988), on the other hand, provide a closed-form expression for

the bias in stationary multivariate Gaussian autoregressions. Pope (1990) extends

these results by relaxing the assumption of Gaussian innovations. It must be em-

phasized that common bias correction procedures, including those by Kilian (1998)

and Pope (1990), are designed to correct the small-sample bias in the autoregressive

coefficients, which may not correct the bias in autoregressive roots due to the nonlin-

ear relationship between the two. Median-unbiasedness is preserved under monotone

transformation whereas mean-unbiasedness is presevered under linear combinations.

Since the autoregressive roots are neither a monotone transformation nor a linear

combination of the autoregressive coefficients, median or mean bias corrections in

coefficients will not in general correct the bias in the roots.28 This paper uses bias

correction procedures based on Kilian (1998) and Pope (1990) to correct for the small-

sample bias in estimated level VAR coefficients.

Kilian’s bias correction procedure involves estimating VAR models and generating

28To my knowledge, there does not exist any bias correction procedure that is designed to correct
the bias in autoregressive roots of VAR models. Qureshi (2008) proposes a method to numerically
correct the median-bias in autoregressive roots.
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N replications of the estimated coefficients using standard nonparametric bootstrap

techniques. Subsequently, the mean-bias is estimated as the difference between the

average of the N replications of coefficients and the initial estimate of coefficients used

in the DGP. This procedure is computationally demanding since it requires generat-

ing N replications on each Monte Carlo sample. Therefore, this paper uses a modest

number of Monte Carlo samples: it generates 1000 Monte Carlo samples for the bias

correction simulations and estimates the bias using 1000 replications of the estimated

coefficients on each Monte Carlo sample.29

Kilian implements a stationarity correction after correcting the bias in coefficients

to avoid pushing stationary impulse response estimates into the nonstationary re-

gion. Kilian’s bias correction with stationarity correction would ensure that explosive

roots in estimated VAR models are eliminated. However, Sims and Zha (1995) criti-

cize Kilian’s stationarity correction as ‘ad hoc’. This paper implements Kilian’s bias

correction method without the stationarity correction. Hence results in this paper

reveal how frequently Kilian’s method relies on stationarity correction to avoid ex-

plosive roots in estimated level VAR models.

Pope’s expression for the mean-bias in VAR coefficients is defined for demeaned

stationary VAR(1) models. In order to implement bias correction based on this ex-

pression, VAR(p)s are estimated on demeaned simulated data and then reformulated

as VAR(1)s.30 Subsequently, the mean-bias is calculated using Pope’s expression.

29This would result in 10002 or one million simulations which take considerable time even with
the fast processors available to date. Sensitivity of results to increasing the number of simulations
to 20002 is examined for simulations reported in Table 3.1. Frequency of explosive roots essentially
remains the same.

30Demeaned data for simulations with Pope’s bias correction is generated by using estimated
VECM coefficients in (1) without the constant, and by setting the initial values in the Monte Carlo
samples to zero.

53



Finally the mean-bias is subtracted from the estimated VAR coefficients to yield

bias-corrected coefficients. I refer to these steps as Pope’s bias correction.

In this paper the bias correction procedures are implemented only on stable VAR

draws and explosive roots in unstable VARs are counted towards the frequency of

explosion without bias correction. This is because Pope’s solution for the bias in

VAR coefficients is defined for stationary VAR models. Similarly, Kilian’s approach

is designed for stationary models. However, Kilian (1998) argues that based on the

continuity of the finite-sample distribution of the OLS estimator, the bootstrap ap-

proximation may still be used for slightly explosive cases. In light of this argument, I

estimate the frequency of explosive roots after implementing Kilian’s and Pope’s bias

corrections on all Monte Carlo samples (including the explosive ones). Results based

on this exercise are essentially the same as the benchmark case of bias correction on

stable VARs only.

3.2.3 Results

Figure 2.1 presents an example illustrating the frequency of explosive roots in

estimated level VAR models. It plots the distribution of λmax, the modulus of the

largest autoregressive root, in estimated level VAR(4) models with and without bias

correction. The DGP is based on VECM estimation on the CEE (1999) dataset,

with a cointegration rank of five. The frequency of explosive roots corresponds to the

area under the distribution to the right of unity. The following tables report these

54



frequencies under various specifications.31
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Figure 3.1: Distribution of λmax

Table 3.1 reports the frequency of explosive roots in estimated level VAR models

for the benchmark estimations of VAR(4) in CEE(1999) and CEE(2005), and VAR(6)

in EE(1995). The frequency of explosion is considerably high. Estimated level VAR

models have explosive roots in 46.4%, 47.7% and 41.9% of the Monte Carlo samples

31EE (1995) estimate level VAR models with five, seven and eight variables and examine five
different nominal and real exchange rates. In the interest of brevity, this paper only presents results
for their nominal $/Franc exchange rate model with five variables. Results for other specifications
and exchange rates are essentially the same. CEE (1999) report results with both M1 and M2 in
their benchmark specification. This paper only presents results with M1. Once again, results are
almost the same if M1 is replaced by M2.
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based on CEE (1999), CEE (2005) and EE (1995) respectively. Furthermore, the fre-

quency of explosion increases substantially after correcting for the small-sample bias.

Results for both Pope (1990) and Kilian (1998) bias correction procedures, denoted

by ‘Pope’ and ‘Kilian’ respectively, are reported. Estimated level VAR models have

explosive roots more that 75% of the time after Kilian’s bias correction and 100%

of the time after Pope’s bias correction. Table 3.1 reveals that λmax has downward

median-bias because the frequency of explosive roots is less than 50% in the bench-

mark specifications. Additionally, Kilian’s and Pope’s bias corrections on level VAR

coefficients overcorrect this bias in λmax, consequently resulting in upward median-

bias.

These results suggest that researchers estimating level VAR on macroeconomic

datasets, which include some nonstationary I(1) variables, encounter explosive roots

very frequently, and even more so if they correct for the finite-sample bias in their

estimation.

The following subsection examines the sensitivity of these results to varying coin-

tegration ranks in the DGP, and to shorter samples and different lag orders in the

estimated VAR models. Results from table 3.1 are reproduced (in italics) in the

following tables to facilitate comparison with these benchmark specifications.

3.2.4 Sensitivity Analysis

Considering that cointegration rank tests may not be reliable in small samples,

table 3.2 examines the sensitivity of results to different cointegration ranks in the

DGP.32 In most cases as the cointegration rank, h, increases, and hence the number

32Number of variables in the system, n, equals 7, 9 and 5 for CEE (1999), CEE (2005) and EE
(1995) respectively. Any remaining cointegration ranks that are not reported yield very similar
results.
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of unit roots in the DGP decreases, the frequency of explosion goes down. For in-

stance, as h increases from 3 to 6 in CEE (1999), the frequency of explosion decreases

from 41.7% to 36.7%. However, explosion still remains high; in most simulations

estimated level VAR models have explosive roots in more than 40% of the Monte

Carlo samples. Once again, explosion increases substantially, to more than 90% in

several cases, after bias correction. These results confirm that the high frequency of

explosive roots is robust to varying cointegration rank in the DGP. The next table

assesses the sensitivity of results to different subsamples and lag orders in estimated

level VAR models.

Macroeconomic datasets for the post-Bretton Woods or post-Volcker eras are rela-

tively short, which may exacerbate explosion in estimated level VAR models.33 Level

VAR models are estimated on truncated Monte Carlo samples, namely ‘post-Bretton

Woods’ and ‘Volcker & post-Volcker’, to estimate the frequency of explosion in shorter

samples.34

Different lag orders in estimated level VAR models may also affect the frequency

of explosive roots. I therefore examine the sensitivity of results to varying orders in

level VAR models in the full-sample as well as the two subsamples. CEE (1999) and

CEE (2005) use level VAR(4) models while EE (1995) use level VAR(6) model for

their reduced form estimation. Since these subsamples are fairly short, degrees of

freedom would be low for the benchmark specifications of for four lags in CEE (1999,

33For example, if λmax is biased downward explosion may rise due to an increase in the variance
of λmax in shorter samples. However, it must be emphasized that median-bias as well as other
characteristics of the distribution (skewness, kurtosis, etc.) would also in general change in smaller
samples making it hard to predict how the frequency of explosion would be affected.

34‘post-Bretton Woods’ and ‘Volcker & post-Volcker’ subsamples correspond to the following sam-
ple periods: CEE (1999, 2005) quarterly - ‘post-Bretton Woods’ (1974:1 to 1995:2) and ‘Volcker &
post-Volcker’ (1979:3 to 1995:2). EE (1995) monthly - ‘post-Bretton Woods’ (1974:1 to 1991:12)
and ‘Volcker & post-Volcker’ (1979:8 to 1991:12).
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2005) and six lags in EE (1995). Hence, the frequency of explosion is also reported

for lower lag orders in level VAR models.

Table 3.3 reveals that the frequency of explosive roots remains high for different

lag orders in estimated models. Moreover, explosion increases further in shorter sam-

ples in several simulations. For instance, the frequency of explosion in the benchmark

cases increases to 56.1%, 70.2% and 44.9% in the ‘Volcker & post-Volcker’ subsamples.

Once more, explosion increases appreciably after correcting for the small-sample bias

in estimated level VAR coefficients. The frequency of explosive roots is more than

75% under all specifications after Kilian’s bias correction and increases to 100% in all

cases after Pope’s correction.

3.3 DGP with Stationary Variables

The previous section examined the frequency of explosive roots in estimated level VAR

models in the presence of unit root nonstationary variables. This section focuses on

explosive roots in estimated level VAR models when all the variables are stationary.

In this case the data-generating processes are based on level VAR models, as opposed

to VECMs.

3.3.1 Estimation Procedure

The procedure for conducting Monte Carlo experiments is the same as that in

the previous section except for the first two steps in which level VAR(p) models

are estimated on demeaned datasets and the corresponding coefficients are used to

generate 10,000 Monte Carlo samples.35 Starting values for the Monte Carlo samples

35p equals 4 for the DGP based on CEE (1999, 2005) datasets and 6 for EE (1995) dataset.
Since the DGP is based on demeaned data, I estimate level VAR models (without constant) on the
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are drawn from the stable VAR distribution. Subsequently, level VAR models are

estimated on these samples to compute the frequency of explosive roots.36

3.3.2 Results

Table 3.4 summarizes results for the frequency of explosive roots in estimated

level VAR models when the DGP is stationary. It presents results under the same

specifications of estimated level VAR models as those reported in the table 3.3. Re-

sults in table 3.4 reveal that even in the absence of any unit roots, the frequency

of explosive roots is considerable. Estimated level VAR models on full-samples have

explosive roots in 25.9%, 12.9% and 19.6% of the simulations based on the benchmark

specifications in CEE (1999), CEE (2005) and EE (1995) respectively. Furthermore,

explosion increases substantially in shorter subsamples. For instance, the frequency

of explosive roots in these benchmark cases increases to 56.0%, 61.4% and 31.7%

respectively in the ‘Volcker & post-Volcker’ subsamples. Results for different lag or-

ders in estimated models show that the high frequency of explosive roots is robust to

varying order in level VAR estimation. As before, explosion increases substantially

after bias correction. In most cases, explosive roots are encountered in more that

70% simulations after Kilian’s bias correction and in more than 90% simulations af-

ter Pope’s bias correction.

These results indicate that macroeconomists estimating level VAR model on datasets

encounter explosive roots very frequently even if all the variables in their dataset are

Monte Carlo samples. This is useful for Pope’s bias correction since Pope’s expression is defined for
demeaned stationary VARs.

36Since λmax in the stationary DGP is less than unity, it is hard to predict the frequency of
explosion even for the imaginary MUAR estimator.
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stationary. Moreover, they may almost always estimate explosive roots on macroeco-

nomic datasets if they correct for the small-sample bias in level VAR coefficients.

Considering that the frequency of explosive roots in estimated level VAR models

is very high, the next section explores alternatives to level VAR models and examines

the frequency of explosion in one such alternative, namely the vector error correction

models.

3.4 Explosive Roots in VECMs

As per the well known evidence of nonstationarity in most macroeconomic series,

one way to reduce the frequency of explosive roots is to impose unit roots in the

estimation by estimating VECMs instead of level VAR models. Imposing unit roots

in the estimation would restrict the magnitude of some of the otherwise explosive roots

to unity, hence reducing the frequency of explosive roots. This section examines the

frequency of explosive roots in estimated VECMs under the same specifications of

the DGPs as the previous sections.

3.4.1 Estimation Procedure

The procedure for conducting Monte Carlo experiments is identical to that in the

previous sections, except for the third step in which VECMs are estimated on the

simulated datasets instead of level VAR models. Cointegration ranks of five, four

and two are imposed on each simulated dataset for CEE (1999), CEE (2005) and EE

(1995) respectively. These cointergation ranks are the same as those imposed in the

nonstationary DGP.37

37An alternative approach would be to estimate cointergration rank for each simulated dataset
and impose the corresponding number of unit roots in the estimation.
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3.4.2 Results

Table 3.5 reports the frequency of explosive roots in estimated VECMs when the

DGP is nonstationary. Since the standard bias correction procedures for level VAR

models can not be applied to VECMs, the following tables only report the cases

without bias correction. These results reveal that the frequency of explosion reduces

dramatically once VECMs are estimated on the simulated datasets. Imposing unit

roots in the estimation restricts the magnitude of some of the explosive roots to unity,

hence reducing the frequency of explosion. Based on the benchmark specifications

in CEE (1999), CEE (2005) and EE (1995), estimated VECMs on full-samples have

explosive roots in only 2.3%, 0.6% and 0.4% of the simulations respectively, compared

to 46.4%, 47.7% and 41.9% in estimated level VAR models. Frequency of explosive

roots in estimated VECMs increases to some extent in shorter subsamples. Explo-

sion increases to 9.4% in the ‘Volker & post-Volker’ subsamples in the benchmark

specification of CEE (1999). However, the frequency of explosive roots in estimated

VECMs is still much lower than estimated level VAR models.

Table 3.6 reports the frequency of explosive roots when the DGP is stationary. It

presents results under the same specifications of estimated VECMs as those reported

in table 3.5. Once again, the frequency of explosive roots is very low. It is less that

1% under all specifications on full-samples. Estimated VECMs on full-samples have

explosive roots in only 0.9%, 0.0% and 0.1% of the simulations based on the bench-

mark specifications in CEE (1999), CEE (2005) and EE (1995) respectively. Even in

shorter samples, the frequency of explosive is less than 5% under most specifications.

The last table presents the sensitivity of these results to varying cointegration

ranks in estimated VECMs. Results in table 3.7 reveal that the frequency of explosion
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decreases as more unit roots are imposed in the VECM estimation. For instance,

explosion decreases from 47.7% to 5.1% in CEE (2005) simulations if the cointegration

rank, h, is reduced from 9 to 7. These results show that the frequency of explosive

roots can be reduced substantially by estimating VECMs instead of level VAR models.

3.5 Conclusion

Level VAR models are used extensively in applied macroeconomic research. However,

estimating VAR in levels may result in explosive roots even if all the true roots lie

strictly inside the unit circle. The occurence of such explosive roots is inconsistent

with the prevalent agreement among macroeconomists that roots are at most unity.

Given that level VAR models are used extensively and may estimate roots greater than

unity, this paper examines how frequently researchers estimating level VAR models

on macroeconomic datasets may encounter explosive roots. Monte Carlo simulations

based on datasets from the macroeconomic literature reveal that the frequency of

explosive roots exceeds 40% in the presence of unit roots and is substantial even if

all the variables are stationary. Furthermore, explosion increases substantially, to

as much as 100%, after correcting for the small-sample bias in estimated level VAR

coefficients.

These results suggest that researchers estimating level VAR models on macroeco-

nomic datasets encounter explosive roots with a very high frequency. Considering the

consensus among macroeconomists that roots are at most unity, if applied macroe-

conomists discard explosive VAR specifications when VAR models are estimated on

the datasets, it may lead to biases in the estimation or can even result in data min-

ing. Data mining can be a serious problem since it invalidates statistical theory. The
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high frequency of encountering explosive roots in level VAR models suggests that this

data mining problem can be severe. Additionally, the sharp increase in explosion after

bias correction indicates that researchers, who correct for the small-sample bias in

level VAR coefficients, may almost always estimate explosive roots on macroeconomic

datasets.

As per the well known evidence of nonstationarity in most macroeconomic series,

one way to reduce the frequency of explosive roots is to impose unit roots in the

estimation by estimating VECMs instead of level VAR models. Simulation results

suggest that VECMs can substantially reduce the frequency of explosive roots. An-

other alternative could be imposing cointegrating relationships among variables in

the VAR as in Shapiro & Watson (1988). Based on the continuity of the finite sample

distribution of least-squares estimator, applied macroeconomists may ignore explosive

roots with magnitudes artibrarily close to unity. Hence depending on the objective of

the analysis, ignoring slightly explosive roots may be another alternative. However, it

is not clear as to what would be a reasonable cutoff for categorizing an autoregressive

root as slightly explosive. Moreover, such a cutoff would vary with the system and

the purpose of the research.

Evaluating these alternatives in terms of the accuracy of estimated impulse re-

sponses, variance decompositions and robustness to various specifications such as the

number of unit roots in the system would be an interesting topic for future research.
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CHAPTER 4

BIAS CORRECTION IN AUTOREGRESSIVE ROOTS

4.1 Introduction

It is well documented that the least-squares estimators of key parameters in au-

toregressive models are significantly biased in small samples, especially when the

dominant root is close to unity. In consequence, the least-squares estimator is a mis-

leading indicator of the true values of important parameters such as the autoregressive

coefficients, the autoregressive roots and, the impulse response functions.

Several papers have addressed this by devising bias correction procedures for the

least-squares estimator in univariate models.38 Andrews (1993) proposed an ‘exactly’

median-unbiased estimator for AR(1)/unit-root models which was later extended by

Andrews and Chen (1994) who ‘approximately’ median-unbiased AR(p) models. Mc-

Culloch (2007) generalized median bias correction in Andrews and Chen (1994) by

simultaneously correcting the bias in all the coefficients of a ‘recursive’ ADF form,

hence proposing an ‘exactly’ median-unbiased estimation of AR(p) models. Hansen

(1999) developed a grid bootstrap method for univariate autoregressive processes,

38Pesavento and Rossi (2006), Kilian (1998), and Pope (1990) address bias in multivariate autore-
gressive models.
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which provides correct asymptotic coverage regardless of whether the autoregressive

model is near-integrated or exactly integrated. Other procedures have been proposed

by Wright (2000), Gospodinov (2004), and McCulloch (2009).

Most of the bias correction methods are designed to correct the bias in estimated

autoregressive coefficients or the estimated coefficients in the Augmented Dickey-

Fuller form. However, bias correction in coefficients may not correct the bias in

roots because of the non-linear mapping between the two. Median-unbiasedness is

preserved under monotone transformations whereas mean-unbiasedness is preserved

under linear combinations. Since the autoregressive roots are neither a monotone

transformation nor a linear combination of the autoregressive coefficients, median- or

mean-bias corrections in coefficients will not in general correct the bias in roots. For

instance, Qureshi (2008) shows that mean bias correction in autoregressive coefficients

can increase the bias in autoregressive roots.

Applied researchers are interested in bias-corrected roots for several reasons. For

instance, empirical economists frequently estimate the half-life of real exchange rates,

which depend critically on the magnitude of dominant root(s). Bias correction on

roots should enhance the accuracy of half-life estimates. Similarly, macroeconomists

widely use impulse response functions to evaluate the effect of shocks on macroeco-

nomic time-series. Bias correction on roots should also reduce the bias in impulse

response functions.

This paper develops a procedure to correct the small-sample bias in autoregres-

sive roots of AR(p) models. The procedure simultaneously corrects the bias in the

p autoregressive roots using numerical procedures. We estimate the median-bias in
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estimated roots using Monte Carlo simulations and use standard optimization algo-

rithms to minimize it. The objective is to estimate autoregressive roots whose Monte

Carlo median converges to the roots estimated from the dataset.

We evaluate the median-bias properties and variability of the bias-adjusted pa-

rameters by comparing them to the least-squares estimates. Considering that applied

macroeconomists are primarily interested in impulse response functions (IRFs), we

focus on examining the accuracy of bias-adjusted impulse responses. We also examine

measures such as half-life, quarter-life, and up-life, which are used in the literature to

capture the dynamics of impulse response functions.

Our simulation results reveal that bias correction in roots achieves a substantial

reduction in the median-bias of IRFs relative to the least-squares estimates. Further-

more, correcting the bias in roots significantly improves the median-bias in half-life,

quarter-life and up-life estimates. The procedure pays a negligible-to-small price in

terms of increased standard deviation for its improved median-bias properties.

The rest of the paper is organized as follows. Section 2 discusses the implemen-

tation of the bias correction procedure. Section 3 describes the simulation design to

examine the small-sample properties of bias-adjusted parameters, and subsequently

presents the results. The final section concludes.

4.2 The Bias Correction in Roots Method

In this section, we provide implementation details of our bias correction method.

The method is designed to correct the small-sample bias in autoregressive roots of

AR(p) models. It simultaneously corrects the bias in all the p roots using numerical
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procedures. Median-bias in autoregressive roots is estimated using Monte Carlo sim-

ulations and standard optimization routines are utilized to minimize it. The objective

is to estimate autoregressive roots whose Monte Carlo median converges to the roots

estimated from the dataset. The bias correction procedure can be summarized in the

following steps:

1. Calculate the median-bias in roots using Monte Carlo simulations:

(a) Estimate an AR(p) model in levels on the dataset and use the estimated

coefficients to calculate the corresponding autoregressive roots

(b) Use the estimated AR(p) coefficients as the data-generating process (DGP)

to generate N Monte Carlo samples. In each Monte Carlo sample, estimate

an AR(p) model by least-squares and calculate the autoregressive roots.

Subsequently, estimate the Monte Carlo medians of the p roots. Median-

bias in autoregressive roots is defined as the difference between the absolute

roots used as the DGP and the corresponding Monte Carlo medians of the

p roots.39

2. Find roots whose absolute values minimize the median-bias using a minimiza-

tion routine:

(a) Find roots, λ∗1, λ
∗
2, ...., λ

∗
p, such that the Monte Carlo median of these roots

converges to the roots estimated from the dataset. This is achieved by

setting it up as the following constrained minimization problem.

minλ1,λ2,....,λp

p∑
j=1

|biasmed(λj)| (4.2.1)

39The autoregressive roots in each Monte Carlo samples are sorted in ascending order to get the
roots corresponding to the sorted roots in the DGP
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subject to |λj| ≤ 1, ∀j (j = 1, 2, ..p)

(b) For a given iteration, k − 1, in the minimization routine:

i. Using λk−1
1 , λk−1

2 , ...., λk−1
p as the initial roots, calculate the sum of

median-bias in these roots using Step 1. Subsequently, the minimiza-

tion search routine estimates the next iteration of roots λk1, λ
k
2, ...., λ

k
p.

(c) Let the minimization routine iterate for a large number of iterations to get

λ∗1, λ
∗
2, ...., λ

∗
p.

The procedure can also be implemented in the presence of complex or repeated roots.

We now describe how to modify the above steps to account for a) complex roots and

b) repeated roots.

a) Complex Roots

If an autoregressive root in a given iteration, k, is complex, then the real and imagi-

nary components are adjusted to yield an absolute value corresponding to the mag-

nitude of the root for next iteration, k + 1, while preserving the sign and the angle

θ ( ratio of real to imaginary component) in the Argand plane.40 For example, if

λk = λkreal + λkimag.i and the magnitude of the root for iteration k + 1 is |λ|, then the

adjusted values of real and imaginary components of the root would be:

λk+1
real = sign(λkreal).

√√√√ |λ|2

1 +
(
λkimag
λkreal

)2

λk+1
imag = λkreal.

(
λkimag
λkreal

)
40Since we only correct the bias in the magnitude of complex root(s) and not in θ, the method

only ‘approximately’ corrects the bias in roots.

76



Preserving the angle θ in the real-imaginary plane ensures that the corresponding

bias-corrected coefficients will still be real.41 b) Repeated Roots

For matrices with repeated roots, the eigenvalue-eigenvector decomposition does not

exist. In this case Jordan Canonical form or Schur Decomposition form can be used.42

4.3 Evaluating Bias Correction in Roots

We now evaluate the small-sample properties of our bias correction method. The

main features that are of interest are the median-bias properties and variability of

the bias-adjusted parameters relative to the least-squares estimates.

Considering that applied macroeconomists are primarily interested in impulse re-

sponse functions, we focus on examining the accuracy of bias-adjusted impulse re-

sponses. While impulse response functions are mostly considered in the context of

multivariate models, there are several empirical applications in univariate models as

well. Typical examples include the evaluation of the persistence of shocks on aggre-

gate output (Campbell and Mankiw (1987)) or examining the effects of shocks on real

exchange rates (Murray and Papell (2002); Kilian and Zha (2002)). Bias in impulse

response functions (IRFs) arises from two distinct sources: the small-sample bias in

estimated AR coefficients or roots and the additional bias induced by the non-linear

41Since complex eigenvalues occur in conjugate pairs, absolute values of both conjugates should be
the same after bias correction to ensure that the bias-corrected coefficients are real. If the estimated
values of absolute bias in the simulations are different, an average of the biases is used for bias
correcting the conjugate pair. It is important to make sure that the coefficients after bias correction
are real because otherwise impulse responses generated from a complex coefficients may exhibit
oscillatory behavior, even though the true impulse responses are smooth.

42Matrices with repeated roots are rarely encountered in practice. Even if the true model has
repeated roots, rounding-off errors in the estimation would most likely produce slightly different
magnitudes of the roots.
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transformations of the estimated parameters.43 In practice, even small amounts of

bias in the autoregressive roots or coefficients can translate into dramatic changes in

the impulse response functions. To the extent that least-squares bias in autoregressive

roots is responsible for the bias in the IRF estimator, replacing the biased estimates

of autoregressive roots by bias-corrected estimates prior to constructing the impulse

response functions should reduce the bias. Given the nonlinearity mapping between

the roots and the IRFs, bias correction in roots will not in general produce unbiased

IRF estimates (and can potentially even increase the bias in IRFs), but as long as

the resulting impulse response estimators are approximately unbiased, the implied

impulse responses are likely to be good approximations.

We also examine measures such as ‘half-life’, ‘quarter-life’ and ‘up-life’, which

are used to capture the dynamics of impulse response functions in univariate mod-

els. Half-life of real exchange rate is one of the most commonly used measure in

international economics. It captures the time it takes for the impulse response to

fall below half the size of the impulse. It is defined as the largest time t such that

IRF (t − 1) ≥ 0.5 and IRF (t) < 0.5, where IRF (t) denotes the impulse response

function at time t. Studies on the dynamics of the real exchange rate interpret half-

life of real exchange rate as its rate of mean reversion. However, Steinsson (2008)

points out that only looking at half-life estimates can be misleading because the rate

of mean-reversion of real exchange rate is far from being constant. Thus, he examines

additional scalar measures that capture the dynamics of impulse responses, such as

43It may seem that a simple correction for median-bias in the Monte Carlo distribution of the
impulse estimator would suffice to produce accurate intervals. However, as Kilian (1998) points
out treating bias as a pure location shift problem ignores the fact that the distribution of the IRF
estimator is not scale-invariant.
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‘up-life’, ‘quarter-life’ and the difference between quarter-life and half-life.44 Conse-

quently, we examine four scalar measures: i) half-life (HL), ii) quarter-life (QL), iii)

up-life (UP), and iv) the difference between quarter-life and half-life (QL - HL).

In order to assess the small-sample properties of the bias-adjusted estimates rel-

ative to the least-squares estimates, we generate N Monte Carlo samples and esti-

mate AR(p) with and without bias correction on each sample. This would give N

draws from the distribution of the least-squares estimators and the corresponding

bias-adjusted parameters.

4.3.1 Monte Carlo Design

The Monte Carlo design is as follows. Let the DGP be:

p∏
j=1

(1− λjL)yt = et

where et ∼ iidN(0, 1), λj are the possible roots of the process. We assume p is known

to abstract from small-sample problems associated with the choice of lag length. We

consider a variety of representative AR(2) processes in which we vary the persistence

of the process by changing the largest root, λ1. We choose four values of λ1 (0.99,

0.95, 0.9, and 0.8) and fix the smaller root, λ2, at 0.5. The number of Monte Carlo

replications, N , is set to 500 and we consider a sample size of 80.45

We estimate autoregressive models with and without bias correction on each of

these samples to get draws from the distribution of the least-squares estimators and

44The up-life is the largest time t such that IRF (t − 1) ≥ 1 and IRF (t) < 1. It measures the
extent of hump-shaped response in impulse responses. Quarter-life is the largest time t such that
IRF (t − 1) ≥ 0.25 and IRF (t) < 0.25. It is meant to measure the time it takes for the impulse
response to fall below a quarter. The difference between half-life and quarter-life measures the time
it takes for the impulse response to fall from 0.5 to 0.25.

45Results for larger sample-size (e.g. 100) were similar. In smaller samples (e.g. 60), the least-
squares bias was larger and the improvement in median-bias of IRFs was more significant.
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the corresponding bias-adjusted estimates for i) autoregressive roots, ii) autoregressive

coefficients, iii) impulse response estimates at different horizons, and iv) measures

that capture dynamics of impulse responses. In the interest of brevity, we only report

impulse response functions at (t = 1, 5, 10, 15, 20, 25, 30, 35, 40, 25, and 50) in the

tables below. However, to get a more complete picture we also subsequently plot the

impulse responses for the first 50 periods.

4.3.2 Results

We now examine the properties of the bias-adjusted estimates of autoregressive

coefficients, autoregressive roots, impulse response functions, and the four measures,

relative to their least-squares estimates. Table 4.1 reports results for the first spec-

ification of the DGP with true largest root, λ1, set to 0.99. The second column of

the table shows the values of the true parameters. The next four columns report the

median-bias, standard deviation, and the 90% range of the least-squares estimators.

The last four columns report the corresponding statistics after correcting the bias in

roots.

Table 4.1 shows that when the AR(2) process is highly persistent, there is a

downward median-bias in the least-squares estimator of the largest root.46 The second

largest root has an upward median-bias. The bias correction procedure removes the

bias in roots without increasing the standard deviation. The 90% range for the roots

after bias correction are almost the same as that of least-squares.47 Median-bias in

46Median-bias is the difference between the median of the least-squares estimator for λ1 and its
true value of 0.99.

47The standard deviation for the largest root is actually lower after bias correction because of the
upper bound of unity in the optimization routine. Consequently, the upper limit of the range is
estimated to be 1.
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coefficients increases slightly after bias correction while the standard deviations are

esentially the same.48 There are large median-biases in the IRFs corresponding to

the least-squares estimator, especially at long horizons. The corresponding biases are

much lower after bias correction in roots. Additionally, the substantial bias at longer

horizon is essentially reduced to 0. The standard deviations are also lower after bias

correction in roots because of the upper bound of unity imposed in the procedure.

The least-squares estimates for half-life (HL), quarter-life (QL), up-life (UL), and

the difference between quarter-life and half-life (QL-HL) are substantially downward

biased. The corresponding median-biases in all the four measures are much lower

after bias correction in roots. The 90% range is very wide for both least-squares

and bias-adjusted estimates.49 This is consistent with several papers in international

economics that have estimated similar wide confidence intervals for half-life of real

exchange rates (see Murray and Papell (2002), Steinsson (2008) and the references

therein.) Standard deviations of these measures are not reported in Table 4.1 and

other tables because half-life, quarter-life and up-life estimates in some simulations

have infinite magnitudes. As a result, standard-deviation would not be meaningful.

To sum up Table 4.1 shows that bias correction in roots substantially reduces the

bias in IRFs without increasing the standard deviation by much. In addition, the

bias correction procedure results in much lower bias in half-life, quarter-life and up-

life estimates relative to the least-squares estimator.

Table 4.2 shows the corresponding results for the second specification of the DGP

with λ1 of 0.95. The least-squares estimator for the largest root is downward biased

48This should not be a surprising considering that median bias correction in roots will not be
preserved under the non-monotone mapping between the autoregressive roots and coefficients.

49This is because impulse responses decay very slowly and consequently the estimated half-life,
quarter-life and up-life are very large (infinity).
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while the smaller roots has an upward bias. The bias correction procedure removes

the bias in roots at a negligible cost in terms of increased standard deviation in

roots. Median-bias and standard deviation in coefficients are almost the same in least-

squares and the bias-adjusted estimates. Once again, the least-squares estimator has

a large bias in IRFs, which is reduced substantially after bias correction in roots.

Additionally, least-squares estimator for half-life and other measures have significant

downward bias. Median-bias of the bias-adjusted estimates are much lower. The

standard deviations for all the estimands are only slightly higher after bias correction

relative to that of least-squares.

Table 4.3 and 4.4 report the last two specifications of the DGP with λ1 set to 0.9

and 0.8, respectively. It shows that results for these two specifications are similar to

those of the first two. Bias correction procedure removes the bias in roots without

increasing the standard deviation by much. Bias in coefficients essentially remains

the same. Bias correction in roots substantially improves the median-bias of IRFs as

well as half-life and other measures.

To give a better picture of how bias correction in roots affects the accuracy of

the impulse responses, we plot the bias-adjusted and the least-squares estimates of

impulse response functions (IRFs) for the four specifications of the DGP. The figures

plot (i) True (DGP) IRF, (ii) ‘LS’ (least-squares) median IRF, which is the median

IRF from the Monte Carlo simulations without bias correction, (iii) ‘BCR’ median

IRF, which corresponds to the median IRF after bias correction in roots in each

sample, and (iv) the 90% range for BCR and LS denoted by ‘ci-BCR’ and ‘ci-LS’,
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respectively.50 Figure 4.1 plots the IRFs for the first two specifications of the DGP

(λ1 =0.99 and 0.95), while Figure 4.2 shows IRFs for the remaining two specifications

(λ1 =0.9 and 0.8).

Figure 4.1 shows that the least-squares median IRFs are significantly below the

true IRF, suggesting substantial downward bias in IRFs at all time horizons shown.

Median IRFs after bias correction are much closer to the true IRFs. Additionally,

while the least-squares biases in IRFs continues to increase at long horizons, that

of BCR decrease and are essentially 0 as the bias-adjusted median IRFs coincides

with the true IRFs at long horizons. Figure 4.2 shows the IRFs for the remaining two

specifications of DGP. While the least-squares median-bias in IRFs decreases with the

persistence of the DGP, BCR still significantly outperforms LS in terms of reduced

bias in IRFs.

In conclusion, we find that our bias correction procedure achieves a substantial

reduction in median-bias of IRFs as well as half-life and other measures examined

in this paper. The procedure pays a negligible-to-small price in terms of increased

standard deviations for its improved median-bias properties.

50Median-bias in IRFs of the BCR and least-squares estimates discussed above corresponds to the
differences between the true IRFs and the median IRFs based on least-squares estimations with and
without bias correction in roots, respectively.
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4.4 Conclusion

It is well known that the least-squares estimates for key parameters are signifi-

cantly biased in small samples, especially when the largest root is close to unity. Sev-

eral papers have addressed this issue by devising bias correction methods that correct

the small-sample bias in autoregressive coefficients. However, bias correction in coef-

ficients may not correct the bias in roots because of the non-linear mapping between

the two. This paper develops a procedure that numerically corrects the small-sample

bias in autoregressive roots. We examine the median-bias properties and variabil-

ity of our bias-adjusted parameters relative to the least-squares estimates. We find

that the bias correction procedure achieves a substantial reduction in median-bias

of IRFs, half-life, quarter-life, and up-life of the estimated impulse responses. The

procedure pays a negligible-to-small price in terms of increased standard deviations

for its improved median-bias properties.
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CHAPTER 5

CONCLUSION

It is well documented that the standard RBC model fails to generate positive co-

movement in output, consumption, investment, and labor-hours in response to news

about future technology. The first essay proposes a solution to this puzzling feature

of the RBC model based on learning-by-doing. I examine two specifications of LBD

that are popular in the literature and show that both these specifications can generate

aggregate comovement in response to news shocks about technology. Furthermore,

I show that LBD plays a crucial role in generating sectoral comovement in response

to news shocks. While several other recent studies have added features to the RBC

model to account for aggregate comovement in response to news shocks, I believe that

the primary virtue of our approach is that it provides a simple and intuitive solution

based on a mechanism that has strong empirical support. In addition, I show that

our model can generate sectoral comovement in response to news about three types

of shocks: neutral technology shock, consumption technology shock, and investment

technology shock.

The second essay examines the frequency of explosive roots in level VAR models.

Monte Carlo simulations based on datasets from the macroeconomic literature reveal

that the frequency of explosive roots exceeds 40% in the presence of unit roots and is
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substantial even if all the variables are stationary. Furthermore, explosion increases

substantially, to as much as 100%, after correcting for the small-sample bias in esti-

mated level VAR coefficients. These results suggest that researchers estimating level

VAR models on macroeconomic datasets encounter explosive roots with a very high

frequency. Considering the consensus among macroeconomists that roots are at most

unity, if applied macroeconomists discard explosive VAR specifications when VAR

models are estimated on the datasets, it may lead to biases in the estimation or can

even result in data mining. Data mining can be a serious problem since it invalidates

statistical theory. The high frequency of encountering explosive roots in level VAR

models suggests that this data mining problem can be severe. Additionally, the sharp

increase in explosion after bias correction indicates that researchers, who correct for

the small-sample bias in level VAR coefficients, may almost always estimate explosive

roots on macroeconomic datasets. As per the well known evidence of nonstationarity

in most macroeconomic series, one way to reduce the frequency of explosive roots is to

impose unit roots in the estimation by estimating VECMs instead of level VAR mod-

els. Simulation results suggest that VECMs can substantially reduce the frequency

of explosive roots.

The third essay develops a procedure that numerically corrects the small-sample

bias in autoregressive roots. I examine the median-bias properties and variability of

the bias-adjusted parameters relative to the least-squares estimates and show that the

bias correction in roots (BCR) procedure achieves a substantial reduction in median-

bias of IRFs, half-life, quarter-life, and up-life of the estimated impulse responses.

The BCR procedure pays a negligible-to-small price in terms of increased standard

deviations for its improved median-bias properties.
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