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ABSTRACT

The convergence of emerging challenges in biological research and developments in

imaging and computing technologies suggests that image analysis will play an important

role in providing a better understanding of biological phenomenon. The ability of imaging

to localize molecular information is a key capability in thepost-genomic era and will be

critical in discovering the roles of genes and the relationships that connect them. The

scale of the data in these emerging challenges is daunting; high throughput microscopy can

generate hundreds of gigabytes to terabytes of high-resolution imagery even for studies

limited in scope to a single gene or interaction. In additionto the scale of the data, the

analysis of microscopic image content presents significantproblems for the state-of-the-art

in image analysis.

This dissertation addresses two significant problems in theanalysis of large histological

images: reconstruction and tissue segmentation. The proposed methods form a framework

that is intended to provide researchers with tools to explore and quantitatively analyze large

image datasets.

The works on reconstruction address several problems in thereconstruction of tissue

from sequences of serial sections using image registration. A scalable algorithm for non-

rigid registration is presented that features a novel method for the matching small nonde-

script anatomical features using geometric reasoning. Methods for the nonrigid registra-

tion of images with different stains are presented for two application scenarios. Correlation
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sharpness is proposed as a new measure for image similarity,and is used to map tumor

suppressor gene expression to structure in mouse mammary tissues. An extended pro-

cess of geometric reasoning based on the matching of cliquesof anatomical features is

presented and demonstrated for the nonrigid registration of immunohistochemical stain to

hemotoxylin and eosin stain for human cancer images. Finally, a method for the incorpora-

tion of structural constraints into the reconstruction process is proposed and demonstrated

on the reconstruction of ducts in mammary tissues.

The work on tissue segmentation focuses on the use of statistical geometrical methods

to describe the spatial distributions of biologically meaningful elements such as nuclei in

tissue. The two point correlation function is demonstratedto be an effective feature for the

segmentation of tissues, and is shown to possess a peculiar low-dimensional distribution in

feature space that permits unsupervised segmentation by robust methods. The relationship

between two-point functions for proximal image regions is derived and used to accelerate

computation, resulting in a 7-68x improvement over a naive FFT-based implementation.

In addition to the methods proposed for reconstruction and segmentation, a significant

portion of this dissertation is devoted to applying high performance computing to enable

the analysis of large datasets. In particular, multi-node parallelization as well as multi-core

and general purpose computing on graphics processing are used to form a heterogeneous

multiprocessor platform that is used to demonstrate the segmentation and reconstruction

methods on images up to 62K× 23K in size.
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CHAPTER 1

INTRODUCTION

Imaging will play a central role in addressing the emergent grand challenges of biol-

ogy. With the human genome sequenced the post-genomic era has arrived, and the focus

shifts to understanding the roles of genes and discovering the structures of the molecular

networks that they regulate. Technologies such as microarray and ChIP-chip provide the

opportunity to peer into this hidden world, however imagingis unique for its ability to lo-

calize molecular and genomic information. The need for locality is critical since tissues

and even individual cells of the same type can be heterogeneous in the genetic sense. A

realistic picture of a phenomenon such as cancer requires more than just observations of

molecular behavior averaged over entire tissues, information with resolution at the scale of

individual cells and beyond is required to understand intracellular regulation as well as the

role of intercellular interactions.

The scale of the emerging problems in bioimaging is daunting. High throughput mi-

croscopy techniques enable scientists to generate hundreds of gigabytes or terabytes of

high-resolution imagery even for an individual study that is limited in scope to a single

gene or interaction. The manual analysis of these quantities of visual information is often

beyond the capability of determined individuals. Additionally there are issues with regards
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to inter and intra-reader variability. Dividing visual analysis tasks among multiple indi-

viduals is prone to introduce biases in the analysis outcome. Likewise the analysis of a

single individual can vary significantly, especially when that individual is fatigued or over-

whelmed by massive quantities of data. A more quantitative approach to image analysis is

needed to address the new needs of bioimaging.

At the same time these grand challenges are emerging in biology, the state-of-the-art of

automated image analysis is maturing. A wide variety of algorithms are available for com-

monly conceived problems such as tracking objects in a videosequence, segmentation of

images into relevant regions, and the classification of image content. Microscopic images

of tissues present unique challenges for the cast of image analysis algorithms. In the imag-

ing sense their content is noisy, being characterized by many repeated and indistinguishable

structures such as cells that produce an overall textural appearance. Performing segmenta-

tion or registration (matching) in this environment is typically difficult since many popular

algorithms are not intended for the special case of microscopic imaging. Nevertheless suc-

cessful automated image analysis has been demonstrated formany common problems in

microscopic imaging.

In addition to the challenges posed by the content of microscopic images, their large

size presents a significant challenge in terms of computation. High resolution images typi-

cally contain hundreds of millions or billions of pixels, resulting in individual color images

that are several gigabytes each. A single study containing hundreds of images can eas-

ily push the scale of data into the terabyte range. Traditionally image analysis algorithms

are not intended to address data on this scale, so a new collection of efficient algorithms

is required. These new algorithms must strike a difficult compromise, being computa-

tionally feasible but also sufficiently complex to address the challenges of image content.
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Hardware acceleration also has a role to play in making imageanalysis computationally

tractable. Large parallel systems consisting of linked computing nodes offer a solution for

analyses that can be parallelized. More recently, emergingarchitectures such as multicore

processors and general purpose computing on graphics processors (GPGPU) provide solu-

tions for the desktop end user who does not have access to the resources of a computing

cluster.

The convergence of the challenges and available technologyin biology, image analysis,

and computing suggests that the time is ripe to develop systems for the quantitative analysis

of bioimages. This convergence prompted me to develop the work described in this disser-

tation High Performance Image Analysis for Large Histological Datasets. In this work I

have addressed two key problems in bioimage analysis: threedimensional reconstruction

and tissue segmentation.

1.1 Problem Statement

One of the key problems in bioimage analysis is the acquisition of meaningful three di-

mensional (3D) information. Biological interactions unfold in the three dimensional space

of tissues, and the analysis of individual two-dimensionalimages neglects off-plane infor-

mation. Confocal and multi-photon fluorescence microscopesprovide three dimensional

image data but have limited penetration depths, far less than what is necessary to image

large samples [1, 2]. Additionally, the staining techniques required for fluorescence imag-

ing are difficult to administer. The use of immunofluorescentcompounds, consisting of

antibody-fluorophore complexes that bind to molecules of interest, require the introduction

of antibodies into living tissue [3, 4]. An alternative approach allows fluorescent proteins

such as GFP to be expressed natively in tissues, but requiresthe production of transgenic
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animals and is still depth-limited [5–7]. Recently, fluorescent proteins have been devel-

oped that excite in the infra-red range, offering increasedtissue penetration, however this

technique is still new and it is not clear yet what depth limitations are for imaging at mi-

croscopic scale [8].

Another approach to garnering 3D information is the reconstruction of tissue from se-

quences of serial section images usingimage registration[9–14]. In this approach a speci-

men is stained and embedded with a material such as wax for rigidity. The prepared tissue

is then sliced on a microtome and mounted to produce a sequence of slides that are digi-

tized into a corresponding sequence of images. The images are then aligned (registered)

to generate a volumetric dataset of the original tissue. This technique enables whole-tissue

reconstructions of the tissue without depth limitations, however the process of reconstruc-

tion introduces several nontrivial challenges. The first challenge comes in accounting for

the nonrigid distortions introduced by the sectioning process. As the tissue is sliced and

mounted physical forces introduce relative distortions between slices. Due to the fragility

of these slices the distortions are typically “nonrigid” ornonlinear in nature. When the se-

quence is aligned for reconstruction these nonrigid distortions must be corrected to recover

a faithful representation of the original tissue. The second challenge is how to establish

spatial correspondences between adjacent section images,given that matching the textural

content of microscopic images is error prone, and that some natural difference in appear-

ance is expected. The third and final challenge is how to address the computational aspects

of the problem, given that section-scan images typically range into the tens-of-thousands

of pixels in each dimension.

Another key problem in bioimage analysis is the identification of tissue boundaries.

In order to calculate tissue volume fraction or investigatetissue layer morphologies the
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boundaries of tissues must first be identified. This can be a tedious manual task since the

differences between tissue may be subtle, or the boundariesmay be relatively complex and

difficult to trace. The image analysis approach to this problem is known asimage segmen-

tation, or in this particular instancetissue segmentation[15–21]. The automatic identifica-

tion of tissue boundaries is also a challenging image analysis problem due to the peculiar

content of microscopic images. The visual cues that distinguish one tissue from another

include a broad range of criteria including color, shape, texture, and scale. The differences

in these qualities for different tissues in the same sample may be relatively subtle. These

points are illustrated in Figure 1.1, where the tissue boundary is shown for a small region

of mouse placenta image. Developing a comprehensive segmentation algorithm that incor-

porates the multiple visual cue criteria and can distinguish subtle differences is a nontrivial

task.

In the chapters that follow I present methods for the reconstruction and tissue segmenta-

tion problems for large microscopic images. The proposed algorithms fit into a framework

that is intended to provide researchers in biology with the tools to explore and quantify large

image datasets. The framework from the perspective of the biologist is presented in Figure

1.2. A genetic change is induced in an organism and the tissueof interest is harvested.

The tissue is sectioned and the sections are mounted and digitized to produce a serial se-

quence of very large images. The sequence is used to reconstruct the tissue and segment

the tissue layers to prepare for further analysis. The details of the proposed framework

from an imaging perspective are described in Figure 1.3. Theframework relies on a large

number of image analysis components to produce the representations used for biological

quantification and exploration.
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Figure 1.1: The visual cues that distinguish tissues include color, shape, texture, and scale.
The green trace indicates the boundary between two different tissue layers with similar
appearances.
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Figure 1.2: Imaging as a phenotyping tool for biologists. The proposed framework enables
the exploration and analysis of sequences of large microscopic images.

1.2 Organization

This dissertation is organized into two parts: Chapters 2 through 7 address the problem

of reconstructing tissues in 3D from serial image sequences. Chapters 8 and 9 address the

problem of tissue segmentation.

Chapter 2 describes a scalabletwo-stage algorithmfor the reconstruction of tissues

from sequences of serial section images. A novel method based on the matching of rep-

resentative microanatomical features is presented along with a precise and efficient refine-

ment procedure for correcting nonrigid distortion. Chapter3 describes the implementation

of the two stage algorithm using general purpose computing on graphics processors (GPU).
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Figure 1.3: Image analysis components for the proposed framework. The framework de-
pends on the interaction of a large number of components.

This implementation results in a 6.68x speedup using hardware that is commonly available

on most desktop workstations. Chapter 4 extends these results to clusters of GPU-equipped

computing nodes, producing a 49x speedup using 32 GPUs that is capable of registering

500 16K× 16K images in 3.7 hours. The problem of registering images oftissues with

different stains is addressed in Chapter 5, where a novel metric of correlation sharpness is

proposed for comparing intensity signals. Chapter 6 also addresses the problem of different

stain registration, but in the scenario where intensity information is not sufficient for accu-

rate matching. This chapter extends the work of the anatomical feature matching of the two

stage algorithm to correct nonrigid distortion without intensity information. The final topic
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on reconstruction is contained in Chapter 7 which proposes a method for the reconstruction

of tissues under constraints on the structure of microanatomy.

The theoretical basis and procedure for the tissue segmentation method is described in

Chapter 8. Thetwo-point correlation functionis described as a feature for the characteriza-

tion of spatial distributions of cellular and subcellular components that distinguish tissues.

Building on existing work, a deterministic method for two point function calculation is de-

scribed and the two point features are demonstrated to possess peculiar low-dimensional

distributions in feature space. Chapter 9 addresses the computational aspects of the pro-

posed segmentation method. A theoretical shortcut based onthe linearity of correlation

is proposed for the calculation of two-point features that results in a 7-68x performance

increase over a naive FFT-based method. A GPU implementation of this updating method

nets another 11-16x for a total of 77-1088x improvement. This is extended to parallel

computation on a cluster of computers for further gains.
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CHAPTER 2

SCALABLE NONRIGID REGISTRATION FOR LARGE
MICROSCOPIC IMAGES

In this chapter I present a novel scalable algorithm for the nonrigid registration of large

microscopic images. The proposed algorithm address the shortcomings in the state-of-

the-art for the registration of histological and microscopic images, specifically large im-

age size, feature rich environment, and nonrigid distortion. The algorithm consists of two

stages: initialization by rigid registration, and refinement by precise nonrigid registration.

The initialization uses a novel approach that matches abundant anatomical features with

rigid geometric constraints. The refinement uses normalized cross correlation to perform

pixel-precision comparisons of local regions of intensityto establish more precise cor-

respondences, calculated in the frequency domain using a high-performance FFT software

library. The combination of initialization and refinement provides an approach to automatic

sectioned image registration and reconstruction that is robust and easily parallelizeable.

The two-stage algorithm is demonstrated using a set of 100 16K × 16K microscopic

images derived from a study on the role of the retinoblastomagene [22]. Results show that

the rigid initialization is comparable to a fully manual registration and that the nonrigid
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refinement is capable of correcting the distortion encountered in serially sectioned micro-

scopic images. The anatomical feature matching scheme usedin rigid initialization is also

demonstrated to be effective when tissue is partially occluded.

Execution times for a serial implementation are presented here along with a brief dis-

cussion on the computational aspects and parallelization of each stage. Chapters 3 and 4

treat these computational matters in further detail.

2.1 Introduction

An essential challenge for biologists in the post-genomic era is the understanding of

gene functions and gene interactions. A critical element inthis challenge is the ability to

characterize the phenotypes associated with specific genotypes. Three dimensional (3D)

morphologies of tissue structures at the cellular and sub-cellular scales are one aspect of

phenotype that provides information key to the study of biological process such as the ini-

tiation of cancer in the tumor microenvironment, the development of organs, or the forma-

tion of neural networks in the brain. Nevertheless, existing techniques for obtaining high

magnification 3D structures (e.g., confocal and multiphoton microscopy) from biomedi-

cal samples are rather limited. Therefore, a fundamental approach for 3D acquisition is

to perform reconstruction by aligning multiple 2D images obtained from serial thin tissue

sections viaimage registration[9–14,22–37].

Image registration has been extensively studied in biomedical imaging, geological sur-

vey and computer vision [23, 24]. It can be formulated as an optimization problem of

finding the optimal transformationT between two imagesI1 andI2 to maximize their sim-

ilarity, ie,

T = arg maxSimilarity (I1, T (I2)) . (2.1)
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Commonly used similarity/difference measures include mutual information (MI) [38], nor-

malized cross correlation (NCC), and summed square difference (SSD) [23,24]. The trans-

formation spaces include rigid transformation, which deals with only rotation and trans-

lation, and nonrigid transformation which compensates forscaling and deformations such

as bending, stretching, shearing and warping [27, 39, 40]. In order to search for the opti-

mal transformation, various searching procedures have been adopted such as Levenberg-

Marquardt algorithm [41], EM algorithm [42], and geometrichashing [43]. Like any op-

timization process a good initialization is critical for a global optimum outcome. In many

cases, a good rigid registration result serves as an ideal initialization for non-rigid registra-

tion [26]. For large images with conspicuous deformations,hierarchical multi-resolution

registration methods have also been widely used in medical imaging applications [44,45].

There are several major challenges for registering serial section microscopic images for

3D tissue reconstruction:

1. Large image size.High-resolution slide scanners are capable of generating images

with resolutions of0.23µm/pixel (with 40X objective lens), often producing images

with hundreds of millions or even billions of pixels. The reconstruction of an indi-

vidual tissue sample may involve hundreds of slides, and a full study may contains

several samples with image data easily ranging in the Terabytes. While a multiscale

approach can be applied to handle large images, it requires transformation of the

free-floating image at each scale which is computationally nontrivial. For instance,

this chapter deals with images sized16K × 16K pixels. With a scale factor of two,

this implies transformation of an image containing around8K × 8K pixels prior to

the final iteration at full resolution.
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2. Feature rich environment. The textural quality of microscopic image content pro-

vides a unique challenge to the problems of feature selection and matching. Specifi-

cally, traditional feature detection schemes such as corner detection generate an over-

whelming abundance of features that are similar in appearance making matching

prone to error. In addition, at sub-micron resolutions a shift of one millimeter cor-

responds to thousands of pixels. The search for corresponding features is therefore

computationally infeasible without a good initialization.

3. Nonrigid distortion and local morphological differences. The key challenge for

image registration of serial section images is to compensate for distortion between

consecutive images that is introduced by the sectioning process. Tissue sections are

often extremely thin (3 to 5µm) and delicate as a result. The preparation process (i.e.,

sectioning, staining, and mounting) can introduce a variety of nonrigid deformations

including bending, shearing, stretching, and tearing. At micron resolutions, even

minor deformations become conspicuous and may prove problematic when accuracy

is critical to the end application. In order to compensate for such deformations,

a nonrigid registrationis essential and its success depends on establishing a large

number of precisefeature correspondencesthroughout the extent of the image. This

precision requires comparison of intensity information and is very time consuming

with popular similarity measures such as Mutual Information.

Motivated by several large-scale biomedical studies including developmental biology

and breast cancer research, this chapter presents a scalable, efficient, and parallelizable

image registration algorithm to address the above challenges. Thetwo-stage algorithm

consists of initialization by rigid registration followedwith refinement by nonrigid regis-

tration. Theinitialization stageis a fast rigid registration algorithm based on the matching
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of high-level features. This approach circumvents the issue of the presence of numerous

and ambiguous local features, providing effective initialization for the next stage. In the

refinement stage, nonrigid registration is achieved by precisely matching alarge number

of local intensity features using cross-correlation. Thisapproach has the following advan-

tages:

1. Fast Rigid Registration for Initialization. This algorithm uses conspicuous anatom-

ical regions (e.g., blood vessels) as high-level features and the rigid transformation is

derived using a voting scheme in the Euclidean transformation space. It is highly effi-

cient and accurate for common histological images. In addition, it can accommodate

arbitrary rotation and translations. This provides us witha good initialization for the

nonrigid registration and the search space for point correspondence is significantly

reduced.

2. Feature Selection.Point features for precise matching in nonrigid registration are

selected based on neighborhood complexity rather than the presence of ambiguous

content such as corners. This not only reduces computational burden but also allows

the user to gain a more uniform distribution of features.

3. Fast Normalized Cross-Correlation for Precise Matching.Precise feature match-

ing is based on the normalized cross-correlation (NCC) between local neighborhoods

in each image. NCC calculation can be implemented efficientlyusing fast Fourier

transform (FFT) resulting in a very fast execution as compared to measures like mu-

tual information. This provides a significant advantage over mutual information that

requires expensive calculation of joint histograms. Additionally, as compared with
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other similarity measures like mutual information, NCC values have an intuitive in-

terpretation which simplifies the selection of threshold parameters used to discrimi-

nate good matches from bad.

4. Single Transformation Output. For precise matching the Euclidean transformation

parameters obtained from rigid initialization are used to locate and transform corre-

sponding local neighborhoods to avoid applying an expensive rigid transformation

to the entire image. Only one whole-image transform is necessary to generate the

final registered result. This offers a significant advantageover multi-resolution or

iterative optimization-based approaches that require a whole-image transformation

at each iteration.

5. Parallelization for Precise Matching. The process of precise matching is embar-

rassingly parallel, lending itself to execution on multiple cores, sockets, or a comput-

ers in a cluster.

This chapter is organized as follows: In Section 2.2, the two-stage registration algorithm

is presented along with a discussion on reconstruction applications. Section 2.3 discusses

the workflow and computational aspects to prepare for Chapters 3 and 4 where high perfor-

mance implementations are discussed. Results for the algorithm are presented in Section

2.5. In Section 2.6, existing approaches for image registration are reviewed with emphasis

on large scale research projects that require the alignmentof 2D microscopic slides for 3D

reconstructions.
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2.2 Two-Stage Scalable Registration

To address the specific challenges of nonrigid distortion, large image size, and feature

rich content, an algorithm is proposed that consists of two stages: rigid initialization and

nonrigid registration. Rigid initialization estimates therough alignment of the base-float

image pair from the consensus of correspondences betweenhigh level features, image re-

gions that correspond to small, distinct, and anatomicallysignificant features such as blood

vessels or other ductal-type structures. The nonrigid stage seeks to refine the rigid ini-

tialization by establishing pixel-precision correspondences by matching areas of intensity

information. The initialization reduces the search for matching in the nonrigid stage, re-

sulting in a lower likelihood of erroneous matches and less computation. This combination

provides an approach to the problem of automatic sectioned image registration and recon-

struction that is robust, easily parallelizable, and scalable.

2.2.1 Fast Rigid Initialization

The basis of the rigid initialization stage is the matching of high level featuresor small

regions that correspond to anatomically significant features such as blood vessels, mam-

mary ducts, or small voids within the tissue boundary. This is a natural choice for features

in microscopy images that has several advantages over the more primitive features gener-

ated by commonly used methods such as corner detection. First, the amount of high level

features is relatively limited keeping the total number of possible matches reasonable. This

is especially important when gross misalignment between images is possible and the range

of search for feature matches cannot be limited. Second, thedescriptions used to match

these features such as shape, size, and eccentricity are invariant under rotation and trans-

lation and so the matching can accommodate the full range of misalignments. Third, the
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feature descriptions are scalars and are fast and simple to compare once computed. Fi-

nally, many choices of high level features remain comparable even when the images to

be registered have distinct stain types. This permits, for example, the alignment of an

hematoxylin and eosin stained image with an immunohistochemically stained image. In

contrast, performing corner detection on a typical microscopy image generates an over-

whelming number of features due to the textural quality of the content. These features are

relatively ambiguous, and their comparison requires the use of neighborhood intensity in-

formation and has to account for differences in orientationand also appearance if distinct

stains are used.

High Level Feature Extraction

Extraction of high level features is a simple process as the features often correspond

to contiguous regions of pixels with a common color characteristic. Color segmentation

followed by morphological operations for cleanup usually suffice. The computational cost

of these operations can be significantly reduced by performing the extraction on down-

sampled versions of the original images without compromising the quality of the final

nonrigid result. The rigid estimate only serves as an initialization for the nonrigid stage

and a matter of even tens of pixels difference is insignificant to the outcome of nonrigid

stage. Figure 2.1 demonstrates the extraction process, showing an example from one of the

Placenta test images.

Given the base imageB, and float imageF , their respective feature setsB = {bi} and

F = {fj} are extracted according to the process described above. Each feature has as-

sociated with it a set ofdescriptorsused for the matching processes,bi = (~xb
i , s

b
i , e

b
i , φ

b
i)

andfj = (~xf
j , s

f
j , e

f
j , φ

f
j ), where~x = (x, y) is the feature centroid,s the feature area in
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pixels,e the feature eccentricity, andφ the feature semimajor axis orientation. These fea-

ture descriptions are computed using Matlab’s Image Processing Toolbox (The Mathworks,

Natick, MA).

Figure 2.1: High level feature extraction. The binary imageshows extracted features rep-
resenting blood vessels. These features are extracted using color segmentation with mor-
phological operations for cleaning up noise. Descriptionsof centriod location, size, eccen-
tricity, and major-axis orientation are calculated for each distinct feature.

High Level Feature Matching

The rigid initialization stage uses a scheme for matching high level features to establish

spatial correspondences between the base and float images. The following describes the

conventions used for feature matching. Matches between individual features are referred to

asmatch candidatesif their size and eccentricity descriptors areconsistent. That is, given

the feature setsB,F , a match candidate(bi, fj) is established if the descriptors of sizesb
i , s

f
j

and eccentricityeb
i , e

f
j are consistent within given percent difference thresholdsǫs, ǫe
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(bi, fj) ⇔











|sb
i−s

f
j |

min(sb
i ,s

f
j )

≤ ǫs

|eb
i−e

f
j |

min(eb
i ,e

f
j )

≤ ǫe

. (2.2)

Generating a model rigid transformation(θ̃, T̃x, T̃y) requires, at minimum, a pair of

match candidates. To identify models originating from coherent pairs of match candidates,

geometric consistency criteria are used to ensure consistent intra-image distances between

feature centroids and also consistent feature orientations. For a pair of match candidates

to form acandidate pair, {(bi, fj), (bk, fl)}, the intra-image centroid-to-centroid distances

between featuresbi, bk andfj, fl are required to be consistent within the percent difference

thresholdǫ~x (see Figure 2.2). Additionally, for the initialization stage, the orientations of

the feature semimajor axes must be consistent with the modeltransformation anglẽθ

{(bi, fj), (bk, fl)} ⇔















|‖~xb
i−~xb

k
‖2−‖~xf

j −~x
f
l
‖2|

min(‖~xb
i−~xb

k
‖2,‖~xf

j −~x
f
l
‖2)

≤ ǫ~x

|φb
i − φf

j − θ̃| < ǫφ

|φb
k − φf

l − θ̃| < ǫφ

. (2.3)

The model transformation(θ̃, T̃x, T̃y) for the candidate pair{(bi, fj), (bk, fl)} is calcu-

lated by first solving for the anglẽθ = tan−1((yf
i −yf

k )/(xf
i −xf

k))−tan−1((yb
j−yb

l )/(x
b
j−

xb
l )), corrected to the interval[−π, π]. The translation components̃Tx, T̃y are calculated us-

ing θ̃ and least squares. Typical values for percent difference tolerancesǫs, ǫe, ǫ~x are 0.1-0.2,

and5 − 10◦ for the orientation thresholdǫφ.

The match candidate and candidate pair concepts are illustrated in in Figure 2.2 and

the algorithm is summarized in Algorithm 1.

Histogram Voting

Determining an estimate for rigid registration from a set offeature matches requires a

method that is robust to erroneous matchings. This is especially true in microscope images
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Figure 2.2: High level feature matching. Features are matched between the base and float
images based on size and eccentricity to formmatch candidates(bi, fj), (bk, fl). Intra-
image distancesdi,k, dj,l, between pairs of match candidates are compared to identifycan-
didate pairs. A model rigid transformation,(θ̃, T̃x, T̃y), is defined for candidate pairs with
consistent distances.

where many features are indistinguishable, and a substantial amount of mismatches are

inevitable. The fundamental idea of the method presented in[33] is the recognition that

any candidate pair{(bi, fj), (bk, fl)} defines a model rigid transformation(θ̃, T̃x, T̃y), and

for candidate matches and candidate pairs chosen using the criteria described in Section

2.2.1, a large portion of the concomitant model transformations will concentrate around

the desired parameters in the Euclidean transformation space.

With a set of model transformations identified from consistent candidate pairs, a his-

togram voting scheme is used to estimate the initializationparameters(θ, Tx, Ty). First,θ

is estimated by counting the models in thewθ-interval centered at at each̃θ, takingθ as the

θ̃ with the largestwθ-interval count. The models that fall within this maximum count wθ-

interval are then selected and used to estimate the translation parameters. Interval counting

is then applied withwT -intervals centered at each of̃Tx, T̃y from the selected models to

identify T . This algorithm is summarized in Algorithm 2. Although counting with inter-

vals centered at each model adds computation, this preventsthe possibility of splitting the
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Algorithm 1 Rigid Feature Matching
1: input: Feature setsB andF , thresholdsǫs, ǫe, ǫ~x, ǫφ.
2: initialize match candidatesM = {}
3: for each bi ∈ B
4: for eachfj ∈ F
5: comparesb

i , s
f
j , andeb

i , e
f
j with ǫs, ǫe

6: if bi, fj consistentthen
7: M = M∪ {(bi, fj)}
8: end
9: end

10: initialize match pairsP = {}
11: for each (bi, fj) ∈ M
12: for each (bk, fl) ∈ M, k 6= i, l 6= j

13: if
|‖~xb

i−~xb
k
‖2−‖~xf

j −~x
f
l
‖2|

min(‖~xb
i−~xb

k
‖2,‖~xf

j −~x
f
l
‖2)

≤ ǫ~x then

14: compute model transformation(θ̃, T̃ )
15: if |φb

i − φf
j − θ̃|, |φb

k − φf
l − θ̃| < ǫφ then

16: P = P ∪ {(bi, fj), (bk, fl)}
17: end
18: end
19: output: P

mode with an arbitrarily placed histogram bin boundary, which might allow another inter-

val to emerge as the maximum. An example result for histogramvoting is presented in

Figure 2.3. Interval sizes for histogram voting typically range from0.5− 1◦ for θ and from

30-50 pixels forTx, Ty. Parameter choices for the placenta dataset are described in Table

2.1 of Section 2.5.

Feature Matching in Partial Common Tissue Scenario

In many microscopy applications, a pair of images that are tobe registered may share

only a portion of their tissue content. The harsh sectioningand mounting process may

remove or separate part of one sample, or there may be multiple samples mounted per slide.

Registering the pair via an optimization method such as Maximum Mutual Information may
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Algorithm 2 Rigid Voting
1: input: Candidate pairsP, interval sizesωθ, ωT .
2: for eachpi ∈ P
3: Θi = {pj ∈ P, j 6= i : |θ̃j − θ̃i| ≤ ωθ

2
}

4: t(i) = |Θi|
5: end
6: α = arg max

i

t(i)

7: θ = θ̃α

8: for eachpi ∈ Θα

9: x(i) = |{pj ∈ Θα, j 6= i : |T̃xj
− T̃xi

| ≤ ωT

2
}|

10: y(i) = |{pj ∈ Θα, j 6= i : |T̃y
j
− T̃y

i
| ≤ ωT

2
}|

11: end
12: β = arg max

i

x(i), Tx = T̃xβ

13: γ = arg max
i

y(i), Ty = T̃y
γ

14: output: (θ, Tx, Ty)

be troublesome in this scenario, since the optimum positionmay be obscured by the lack

of similarity of the overall image when the common areas are aligned.

Feature matching provides a means to establish correspondences between common tis-

sue regions of disparate images. Regardless of the matching criteria used, the set of correct

matches from the common areas will undoubtedly be accompanied by a significant number

of erroneous coincidental feature mismatches from the non-common areas. A method for

recovering the alignment of the image pair must distinguishthe signal of correct matches

from the noise of the erroneous matches. High level feature matching with histogram vot-

ing has demonstrated some capability of successfully recovering alignment in this scenario,

as is demonstrated in Section 2.5.
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Figure 2.3: Sample histogram voting result for rigid initialization of placenta image pair.
Manual parameter results are shown in red and automatic results in green. Errors between
manual and automatic parameter estimates are indicated foreach parameter. The images
used for this example were approximately16K × 16K pixels in size.

2.2.2 Nonrigid Registration

Correcting nonrigid distortion to the accuracy necessary for end applications in quanti-

tative phenotyping requires establishing a large number ofprecise spatial correspondences

between base and float image pairs. The desired pixel-level precision suggests that assign-

ment of correspondences between representative features,such as high level features, is

not accurate enough. Instead, direct comparison of intensity information is needed which

introduces the problem of computational burden. These considerations are addressed in an

approach to extraction and matching ofintensity featuresthat compares small tile regions

between the base and float images in an efficient manner, usingthe rigid initialization pa-

rameters to align them and Fast Fourier Transform to computetheir cross-correlations for
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matching. The implementation of this approach using graphics processing units (GPU) has

been presented previously [46], here this approach is explained in detail with a focus on

parallel implementation using CPU clusters.

Intensity Feature Extraction

The primary issue in extracting intensity features is the selection of unambiguous re-

gions that are likely to produce accurate matches. This issue is especially important for

matching in nonrigid registration since using the aggregate of matching results to make in-

ference about the quality of any single match is difficult dueto the freedom and subtlety of

nonrigid distortions. In this sense the matchings at this stage are local: the only information

available to judge their quality comes from the individual intensity regions themselves.

Good candidate regions for matching have rich content, a mixture of different tissues or

tissue and background that forms a distinctive appearance.Often these regions will coin-

cide with blood vessels, ducts, or other content with distinctive shape. Regions containing

uniform tissue are not good candidates for matching, as accurate matchings are unlikely

due to the textural quality of content and the natural morphological differences between

sections. A simple way to enforce this quality in selected intensity features is to choose

templates whose variance meets a certain minimum threshold. That is, for any feature

point p with coordinates[ x
y ] centered in theW × W -pixel window a variance condition

must be met

1

W 2 − 1

∑

i,j

(t(i, j) − t̄)2 ≥ σ2 (2.4)

wheret is thetemplate, a grayscale representation of thep-centered pixel window with

mean valuēt, andσ2 a significance threshold. There are cases where the variancethreshold
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can be met and an ambiguous matching result can occur (consider matching a two templates

with upper half white and lower half black) although these cases are uncommon in natural

images.

Another important issue in intensity feature matching is the spatial distribution of fea-

tures. The correspondences resulting from the matching of intensity features forms the set

of control points for a nonrigid transformation of the float image. These correspondences

should be fairly distributed throughout areas of interest in order to produce a result that

conforms in the areas where further analysis on the registered result will take place. To

keep the total number of features reasonable and attempt an even spatial distribution, fea-

tures are sampled uniformly over the image with aW × W tiling. For example, in the

16K × 16K placenta images a tiling would typically fall in the range of150-350 pixels to

generate a total of 2025-11236 possible features, the largemajority of which are discarded

due to insufficient variance.

Intensity Feature Matching

For a selected feature pointp1 with coordinate[ x1
y1 ] in the base image, aN × N -pixel

window is taken centered atp1. This window is converted to grayscale and rotated by the

angleθ obtained from the initialization stage. The centralW1×W1-pixel patch is then used

as thep1 template for identifyingp2, the correspondence point ofp1 in the float image.N

is calculated fromθ andW1, taken just large enough to accommodate the rotated template.

The coordinatep2 is estimated using the rigid initialization stage estimates for θ,T =

[Tx, Ty]
T

p′2 =

[

x2

y2

]

=

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

x1

y1

]

+ T . (2.5)
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A W2 ×W2-pixel tile (W2 > W1) centered atp′2, designated as thesearch window, is taken

from the float image.

Commonly used similarity measures for intensity information other than NCC include

summed square of difference (SSD) and mutual information (MI). SSD is not a good choice

for microscopic images since the content tends to be discrete (e.g., sharp boundaries be-

tween cell nucleus and cytoplasm and cell membrane). MI is commonly used as a metric in

gradient search strategies but the cost of joint-histogramcomputation makes its use in ex-

haustive search prohibitively expensive. We choose NCC since it is not only robust in iden-

tifying structural similarity but also highly efficient when implemented with fast Fourier

transform. Furthermore, NCC values have an intuitive interpretation, making threshold

parameter selection easier.

The NCC between the template and search window is computed as the quotient of

covariance and individual variances

ρ(u, v) =
∑

x,y

{t(x − u, y − v) − t̄}{s(x, y) − s̄u,v}
({t(x − u, y − u) − t̄}2{s(x, y) − s̄u,v}2)

1

2

, (2.6)

wheret̄ is the template mean and̄su,v is the mean of the search window portion overlapping

the template at offset(u, v). The center of the template offset location at the maximum

NCC result is taken asp2

(m,n) = arg max
u,v

ρ(u, v) (2.7)

p2 =

[

m
n

]

+ p′2 +

[

W1−W2

2
W1−W2

2

]

(2.8)

If ρ(m,n) value exceeds a threshold (usually 0.8 or greater), then thematch is con-

sidered successful andp1, p2 are recorded as a correspondence. The intensity feature

matching process is demonstrated graphically in Figure 2.4. A selection of sample matches
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is presented in Figure 2.5. The algorithm for intensity feature extraction and matching is

summarized in Algorithm 3.

The choice ofW1 andW2 is based on the severity of the deformation as well as com-

putational capacity. EmpiricallyW2 = 2W1, however cases with large deformation may

require a larger search area. Demonstration of the effect oftile size on execution time is

demonstrated in section 2.5.

Figure 2.4: Intensity feature matching. (a) A template region from the base image meet-
ing the variance condition is identified. (b) The region containing the rotated template is
selected and rotated. The sizeN of the bounding box for the rotated template is calculated
from θ. (c) The centerW1 × W1 portion of the rotated template area is extracted. (d) The
normalized cross correlation between (c) and the corresponding search area within the float
image is computed at all offsets with full overlap.

The large number of features that exist within a typical dataset makes efficient compu-

tation of NCC critical. Additionally, rather than using a search strategy NCC is computed

between template and search window pairs at all spatial offsets to avoid the problem of

local minima. For calculating normalizing factors in the denominator of Equation 2.6 the

method of running sums is used as presented in [47]. This avoids the expensive local calcu-

lations of search window mean and variance for the template overlap region as the template
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Algorithm 3 Intensity Feature Extraction and Matching
1: input: Rigid initialization estimate(θ, Tx, Ty), feature window sizeW1, search win-

dow sizeW2, variance thresholdσ2, NCC thresholdτ .
2: initialize correspondencesΩ = {}
3: tile base imageB into W1 × W1 tiles ti, centered atpi

4: for each ti
5: if variance(ti) ≥ σ2 then
6: computeN(θ)
7: takepi-centeredN × N tile from B
8: RotateN × N tile by θ,

extract centerW1 × W1 portion,ti

9: q′i =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

pi + T .

10: takeqi-centeredW2 × W2 tile from F , si

11: computeρ(u, v) = NCC(ti, si)
12: (m,n) = arg max

u,v

ρ(u, v)

13: qi =

[

u
v

]

+ q′i +

[

W1−W2

2
W1−W2

2

]

14: if ρ(m,n) ≥ τ then Ω = Ω ∪ {(pi, qi)}
15: end
16: output: Ω
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: (a-f) Sample intensity feature matches.

is shifted through each of(W1 + W2 − 1)2 positions, reducing the operation count from

3W 2
2 (W1 −W2 + 1)2 to approximately3W 2

1 . The unnormalized cross-correlation from the

numerator of Equation 2.6 is calculated via the convolutiontheorem of the Discrete Fourier

Transform that relates the product of DFT spectra to circular convolution in the spatial do-

main. To compute cross correlation ordinary convolution isrequired sot ands are padded

with zeros to sizeW1+W2−1 prior to forward transform to ensure that the circular overlap

portions of the convolution result are null.

2.2.3 Image Transformation

The collection of point correspondences generated by the precise matching process

provides the information needed to form a mapping that transforms the float image into

conformation with the base. A variety of nonrigid mappings are used in practice, differing

in computational burden, robustness to erroneous correspondences, and existence of inverse

form.
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The polynomial transformation

In choosing a transformation type a transformation is desired that is capable of cor-

recting complex distortions, that is robust to matching errors, that admits a closed inverse

form, and is computationally reasonable to calculate and apply. Of the commonly used

nonrigid mapping types such as thin-plate spline, local weighted mean, affine, polynomial,

and piece-wise variations, the polynomial mapping varietyis chosen. Thin plate spline

provides a minimum energy solution which is appealing for problems involving physical

deformation, however perfect conformity at correspondence locations can potentially cause

large distortion in other areas and excess error if an erroneous correspondence exists. The

lack of an explicit inverse form means the transformed imageis calculated in a forward

direction, likely leaving holes in the transformed result.Methods such as gradient search

can be used to overcome the inverse problem but at the cost of added computation which

can become astronomical when applied at each pixel in a gigapixel image. Kernel-based

methods such as local weighted mean require a uniform distribution of correspondences.

Given the heterogeneity of tissue features this distribution cannot always be guaranteed.

Polynomial warping admits an inverse form, is fast in application, and has been demon-

strated as capable of satisfactorily correcting the distortion encountered in sectioned im-

ages [46]. Polynomial warping parameters can be calculatedusing least squares or least

squares variants which can mitigate the effect of matching errors. Affine mapping offers

similar benefits but is more limited in the complexity of the warpings it can represent.
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Second degree polynomials are used for the nonrigid resultspresented in this chapter.

Specifically, for a point(x, y) in the base image, the coordinate(x′, y′) of its correspon-

dence in the float image is






x′ = a1x
2 + b1xy + c1y

2 + d1x + e1y + f1,

y′ = a2x
2 + b2xy + c2y

2 + d2x + e2y + f2,
(2.9)

Since each pair of matched point correspondences provide two equations, at least six pairs

of point correspondences are needed to solve for the coefficients in (2.9). In practice, a

much larger number of point correspondences is obtained.

2.2.4 3D reconstruction

For 3D tissue reconstruction applications, where a sequence of images is to be reg-

istered together, the matching process is applied successively to each ordered pair in the

sequence. Images are transformed starting at one end of the sequence, and at each step

the transformations from prior image pairs are propagated through the match coordinates

in order to achieve a coherent set of transformed images. Figure 2.10 in Section 2.5 shows

a reconstruction result generated from a sample set of mouseplacenta images. The im-

provement with respect to reconstruction quality that is provided by nonrigid registration

is demonstrated in Figure 2.11.

2.3 Workflow and Computational Aspects

In this section the parallelization and computational considerations of the two stage

algorithm are described to illustrate its potential to address large images. Chapters 3 and 4

treat these issues in greater detail in discussions on GPU and parallel implementations of

the two stage algorithm.

31



The workflow for the two stage algorithm is summarized in Figure 2.6. With the ex-

ception of nonrigid transformation, the CPU-bound operations of each stage are easily

parallelizable. The overwhelming majority of computationis concentrated in the normal-

ized cross correlation calculations of intensity feature matching. For example, consider that

the rigid initialization stage for a typical16K × 16K mouse placenta image executes in

four seconds where the nonrigid stage executes in 60-90 seconds (depending on intensity

feature and search window sizes). Referring to Table 2.3 containing a summary of serial

execution times, 90+% of the time in the nonrigid stage is spent in extracting and matching

intensity features, with upwards of 73% spent computing FFTs for normalized cross cor-

relation calculations. Therefore efforts can be focused onthe nonrigid stage, primarily on

distributing and accelerating intensity feature extraction and matching operations.

2.3.1 Rigid Initialization Stage

Due to the modest computational requirements it is typically not necessary to reduce

the execution time of the rigid initialization stage. If a real-time response is desired though

then the operations of this stage are all parallelizable. The extraction of high level features

uses a color segmentation followed with morphological operations for cleanup, both are

independent and local operations that can also be pipelinedwith reading source images

from disk. The matching of high level features and histogramvoting consist of the simple

search procedures detailed in Algorithm Tables 1 and 2. These searches can be carried out

straightforwardly in parallel as well.
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Figure 2.6: Workflow of the two stage nonrigid registration algorithm. Rounded items
indicate operations that can be carried out simply in parallel. The most computationally
demanding phase is the intensity feature matching portion,consisting of two forward FFTs
and one inverse.

2.3.2 Nonrigid Stage

Where the primary effort is focused on improving intensity feature extraction and match-

ing performance, the performance of reading images from disk and grayscale conversion

can be improved as well.

Given the large size of microscope images, some in excess of 10 GB, reading from disk

and decoding compressed images requires considerable time. A parallel file system may

be employed to reduce the time spent reading from disk, although this requires distributing

large amounts of data over network and complicates later implementation steps since the

data will be distributed among several nodes rather than a single head node. A more simple
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approach is to hide a portion of the read and decode time by overlapping reading/decoding

with grayscale conversion, using the a head node to read/decode incrementally and asyn-

chronous communication to distribute grayscale conversion of incremental read results to

worker nodes.

With the grayscale base and float images in memory, the next step is to determine which

template regions will serve as candidates for intensity feature matching. The base image

can be divided evenly among the worker nodes that then compute the variances of the

W1 × W1 template sized tiling of their portions and return the results.

With a set of candidate intensity feature regions identified, what remains is to rotate

them, extract their templates, and perform the correlations between the templates and their

corresponding search areas. The candidate features are evenly divided among the worker

nodes, who rotate them, extract their templates, and perform the correlations between tem-

plate and search, returning the maximum correlation valuesand corresponding coordinates

for each feature. The base image is stored in column-major format, so to keep communica-

tion to a minimum the candidate intensity feature regions are buffered and the remainder of

the image is discarded. Asynchronous communication is usedto keep the head node busy

while send operations post. The search windows, taken from the float image, are handled

in a similar manner. However, since the search windows for distinct features can overlap

significantly they are not individually buffered, rather their union is buffered as a whole.

The Discrete Fourier Transforms necessary for calculatingcorrelations on CPU are

performed using the FFT library FFTW [48]. The 2D-DFT dimensions are critical for

performance, ideally the size of the padded transformW1 + W2 − 1 is a power of two or

a small prime factor. For the cases when this size rule cannotbe obeyed, FFTW provides

a simple mechanism called aplan that specifies an optimized plan of execution for the
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transformation. This plan is precomputed and subsequentlyreused, resulting in a one-

time cost. For example, with a template sizeW1 = 350 and a search window sizeW2 =

700, FFTW takes around 0.7 seconds to compute the two1049 × 1049 forward transforms

without planning, whereas with plan the computation takes only 0.32 seconds with a six

second one-time penalty (a cost which can later be amortizedby loading the plan from disk

at runtime on subsequent transforms of the same size).

2.3.3 Nonrigid Transformation

The topic of high performance image transformations has been addressed previously

[49–51]. Most focus on optimizing the use of cache and/or parallelization. Efficient dis-

tributed transformations are possible for many transformation types but often result in com-

plex implementations due to spatial dependencies and communication requirements. For

these reasons the focus of high performance computing for registration in this dissertation

is restricted to the problems of establishing correspondences through feature matching.

2.4 Experimental Setup

The results of this chapter were computed with a fully serialimplementation. Multiple

cores or sockets were not used and no effort was made at acceleration other than using

FFTW library to compute normalized cross correlations. Chapter 3 presents the results

of [46] where a more sophisticated single node implementation uses graphics processors to

accelerate FFT operations and PThreads to access multiple sockets and graphics processors.

The parallel implementation described above is presented in further detail in Chapter 4.
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Table 2.1: Summary of test parameter values for rigid initialization stage.
Parameter Description Value

Size similarity (ǫs) 0.1
Eccentricity tolerance (ǫe) 0.1

Distance tolerance (ǫ~x) 0.1
Orientation tolerance (ǫφ) 5◦

Voting interval forθ (ωθ) 0.5◦

Voting interval forT (ωT ) 30

2.4.1 Benchmark Dataset and Parameters

The two stage registration algorithm was applied to a set of mouse placenta images from

a morphometric study on the role of retinoblastoma gene [22]. The goal in this study was

the reconstruction of 3D tissue models to study microanatomy. A total of 100 images (99

pairs) were used, averaging 16K×16K pixels in size and 730 MB each in uncompressed

RGB form.

All image pairs in the dataset were run in the rigid initialization stage with the parameter

values described in Table 2.1. The nonrigid stage was evaluated with a variety of values

for W1 andW2, chosen to cover both optimal and sub-optimal cases for DFT size and to

demonstrate the effect of parameter size on execution time performance. These parameter

sets are summarized in Table 2.2.

2.4.2 Hardware

Experiments were run on a single node of the BALE Visualization Cluster at the Ohio

Supercomputer Center, a General Purpose Graphics ProcessorUnit (GPGPU) equipped

computing cluster. The Visualization Cluster contains 16 nodes, each equipped with dual-

socket× dual-core AMD Opteron 2218 CPUs and 8GB DDR2 DRAM running at 667
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Table 2.2: Summary of test parameters values for the nonrigid stage. Parameters for tem-
plate sizeW1 and search window sizeW2 were chosen to reflect a realistic range that
demonstrate effect on performance of size and optimality with respect to FFT.

Window size: Small Medium Large

TemplateW1 (pixels) 171 250 342
SearchW2 (pixels) 342 500 683
Aggregate (W1 + W2 − 1) 512 749 1024

MHz. All nodes are connected by Infiniband and include 750 GB, 7200 RPM local SATA

II disks with 16 MB cache.

2.5 Experimental Results

2.5.1 Automatic Rigid Initialization vs. Manual Rigid Registration

The accuracy of rigid initialization is critical to the nonrigid stage. Most critical is

the estimate of angular offset between the image pair. Where offsets in translation can be

accounted for by increasing search window size, offsets in angle result in poor comparison

of intensity features via NCC.

To demonstrate the accuracy of rigid initialization, the 99image pairs were manually

registered by selecting four control point pairs for each image pair. Control points were se-

lected uniformly throughout the extent of the tissue area, taken at unambiguous visual fea-

tures to get as close as possible to pixel precision in correspondence. For each image pair,

the manual rigid estimates(θ, Tx, Ty) were calculated from the manually selected control

points and compared to their corresponding estimates generated by the rigid initialization

stage. Figure 2.7 shows the comparison errors between the manual and automatic results.

For θ estimates, the automatic results are acceptable in 92 of 99 cases, falling within±4◦
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of their manual counterparts. For the translation estimates, Tx, Ty, most automatic results

fall within 100 pixels of their manual counterparts, and allare within 450 pixels and so are

easily accommodated by reasonable search window sizes.
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Figure 2.7: Histogram of errors between manual rigid and automatic rigid registrations.
Automatic results are acceptable as input for the nonrigid stage in 93 of 99 cases.

The rigid initialization compares well to manual rigid registration, however a manual

registration is not implicitly superior in terms of the resulting similarity between the regis-

tered base and float images. To objectively compare the quality of registrations between the

automatic and manual methods, the manual and rigid initialization registrations from the

prior experiment were used to transform the 99 image pairs, and the Normalized Mutual
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Information (NMI) was calculated for both cases for each image pair. NMI is a popular

similarity measure commonly used in image registration [52]. NMI is defined as the ratio

of the sum of individual image entropies,H(B), H(F ), and the joint entropy of the base

and float images,H(B,F )

H(B,F ) =
H(B) + H(F )

H(B,F )
, (2.10)

and is calculated via joint and individual histograms of grayscale image conversions. Figure

2.8 shows the results of the NMI calculations for the manual and automatic rigid registra-

tions. Both methods are comparable, with the automatic registrations having greater NMI

in 23 of 99 cases, with a maximum difference of less than -0.085 normalized bits.
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Figure 2.8: Comparison of manual and automatic rigid registration quality. Image pairs
were registered using both manual rigid and automatic rigidmethods and the normalized
mutual information was calculated in each case. In terms of NMI, the manual and automatic
rigid registrations are comparable. The automatic registrations have greater NMI in 23 of
99 cases, the maximum difference is less than -0.085 normalized bits.
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2.5.2 Partial Common Tissue Simulation

To demonstrate the capability of the high level feature matching approach in a partial

common tissue scenario, high level features were discardedfrom each of the 99 image

pairs and the rigid initialization stage was re-applied to the truncated feature set images.

For each base-float pair, the bounding box of the base image feature set was calculated,

and the features in the rightmost 1/3 of this area were discarded. The manual registrations

were used to identify the corresponding leftmost 1/3 in the float image, and those features

were discarded as well. This left roughly 1/2 of the featurescommon between the base

float pair, depending on spatial distribution, effectivelyincreasing the signal to noise ratio

for the input to the rigid initialization stage. This is demonstrated in Figure 2.9. The rigid

initialization parameter estimates for these modified images were compared to the manual

registration parameters from the original images, and werefound to be acceptable in 37 of

99 cases, falling within four degrees forθ and several hundred pixels forTx, Ty.

2.5.3 Visualization of Nonrigid Registration Results

A sample 3D reconstruction from 50 placenta slides is presented in Figure 2.10. Due

to the absence of ground truth, evaluation beyond visual inspection of nonrigid registration

quality is difficult. Differences in morphology between adjacent sections can mask small

but significant differences in quality regardless of the choice of evaluation metric. Figure

2.11 (d) and (e) demonstrates the improvement of nonrigid registration over rigid alone,

where no coherent structures are apparent in the reconstruction (Figure 2.11(d)), preventing

morphometric analyses of the volume. This improvement is also demonstrated in 2D in

Figure 2.11, where difference images between the base and float are shown for the nonrigid

and rigid-only cases.

40



Figure 2.9: Partial common tissue simulation. Due to a feature matching approach, the
rigid initialization stage is capable of recovering base-float alignment in the scenario where
only part of the tissue is common between both images. To simulate this scenario, features
were selected in the 2/3 left portion of tissue area of the base image. Using the manual
rigid registrations, features from the float image are takenfrom the corresponding opposite
2/3 of tissue area, so that only 1/3 of the tissue area is common to both images. The rigid
initialization results on these modified image pairs are acceptable in 37 of 99 cases.

2.5.4 Performance Results

The experiments from Table 2.2 were performed on the benchmark dataset using a

serial implementation run on a single node configuration. A breakdown for the single

node configuration execution time spent between loading from disk, grayscale conversion,

and intensity feature extraction and matching is presentedin Table 2.3. For each window

size configuration, at least 90 percent of the total execution time is consumed by intensity

feature extraction and matching. Since intensity feature extraction and matching are so

demanding, and are consequently the focus of the high performance implementation effort,

from this point forward all references to execution times are limited to only this portion of

the nonrigid stage.

41



Figure 2.10: (a) A sample 3D reconstruction of mouse placenta. Only a fraction of the
reconstructed volume is shown at high resolution due to the memory limitations of the
rendering software; (b-e) Registration of mouse placenta images: (b) a1000 × 1000-pixel
patch from the base image; (c) Corresponding1000 × 1000-pixel patch taken from the
float image; (d) Patch from (c) after nonrigid transformation of the float image; (e) Overlay
between between (b) and (d) with the grayscale representations embedded in the red and
green channels respectively. Small areas of intense green or red indicate morphological
differences between sections.

The number of intensity features extracted within each image varies significantly due

to content. Table 2.4 summarizes the number of intensity features extracted per image in

the dataset. The percentage of intensity features selectedranges from 10% to 30% of the

total image area, with those percentages varying slightly with the value ofW1.

Execution times for the single node configuration running ona single Opteron CPU

are presented in Figure 2.12. The small and large parameter sets both fulfill the optimal

DFT size conditions, where the medium size is not compliant.The effect on execution

time is apparent: For CPU with the FFTW library, the average time for the case of 295

seconds for the medium size versus 58 seconds for the small and 91 seconds for the large.
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Figure 2.11: (a) Overlay of base and float placenta images after rigid registration; (b) High-
resolution differenced patch from (a); (c) High-resolution differenced patch from same
area as (b) following nonrigid registration; (d)-(e) Rendering of an edge view of placenta
reconstruction, the frontal views represent virtual cross-sections of the reconstructed tissue;
(d) with rigid registration alone, no coherent structures are apparent in the frontal view; (e)
nonrigid registration corrects the structural distortions apparent in (d) and the reconstructed
volume is then suitable for further analysis.

Doubling window sizes in the optimal cases from large to small only increments execution

times by 60%, where moving from the small optimal size to the non-compliant medium

size increases execution times by nearly 410%.

Taking the single node configuration as a departure point, the total execution times for

the entire dataset are 1.59, 8.10, and 2.51 hours for the small, medium, and large window

sizes respectively.
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Table 2.3: Average percentage of execution time for elements of the nonrigid stage over all
image pairs as executed on a single node (serial) configuration.

Window sizes: Grayscale Intensity Feature
(W1,W2) Loading Conversion Extraction & Matching FFT

Small (171,342) 9.3% 3.8% 90.7% 73.4%
Medium (250,500) 1.5% 0.6% 98.5% 95.4%
Large (342,683) 6.8% 2.8% 93.2% 78.5%

Table 2.4: Intensity feature distribution per image. The number of intensity features ex-
tracted for each image differs due to content and the value ofW1.

Number of features extracted
Statistic: Small Medium Large
(W1,W2) (171,342) (250,500) (342,683)

Maximum 2121 1105 657
Minimum 676 358 207
Average 1241 656 392

2.6 Related Work

Image registration has been extensively studied in many applications including biomed-

ical imaging, geological survey and computer vision. Sinceit is not possible to provide a

complete list of literatures on registration, this sectionfocuses on the recent works in 3D re-

construction of biological samples at microscopic resolution and HPC solutions for image

registration.

Besides these works on the topic of registration, the rigid registration algorithm pre-

sented in this chapter shares some similarities with the geometric hashing algorithm [43,

53]. However, since the rigid registration algorithm is focused on Euclidean transformation,
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Figure 2.12: Execution times for single node (serial) configuration.

the search for matches can be performed directly and exhaustively with voting in the space

of transformation parameters instead of working in the space of feature representations.

Voting over all possible matches yields very accurate estimates of rigid transformation.

2.6.1 Registering microscopic images for 3D reconstruction in biomed-
ical research

There have been many works focusing on acquiring the capability for analyzing large

microscopic image sets in 3D space. In [14] and [31], the authors used stacks of confocal

microscopic images to develop a 3D atlas for brains of various insects including honeybee

and fruit fly. Both research groups focus on developing a consensus 3D model (atlas) for

all key functional modules of insect brains. In [54], gene expression patterns in whole

fly embryos are studied in 3D space using stacks of confocal microscopic images. In the

Edinburgh Mouse Atlas Project (EMAP), 2D and 3D image registration algorithms have

been developed to map the histological images with 3D optical tomography images of the
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mouse embryo [28]. Similarly, in [25] the authors presenteda workflow for observing

the 3D distribution of expression patterns of genes in mouseembryo. In [26], the authors

built 3D models for human cervical cancer samples using stacks of histological images in

clinical settings. A complete study on registering large microscopic images of mouse brain

sections was presented in [37].

2.7 Discussion and Conclusions

The next generation of automated microscope imaging applications, such as quantita-

tive phenotyping, require the analysis of extremely large image datasets, making scalability

and parallelization of algorithms essential.

This paper presents a fast, scalable, and parallelizable algorithm for image registration

that is capable of correcting the nonrigid distortions of sectioned microscope images. Rigid

initialization follows a simply reasoned process of matching high level features that are

quickly and easily extracted through standard image processing techniques. Nonrigid reg-

istration refines the result of rigid initialization, usingthe estimates of rigid initialization

to match intensity features using a fast FFT-based implementation of normalized cross-

correlation.

The rigid initialization approach is based on the matching of high level features, us-

ing feature descriptions and geometric constraints to identify candidate pairs of feature

matches. Histogram voting on model rigid transformations computed from the candidate

pairs leverages the predominant presence of correct matches to produce estimates for rigid

alignment of the feature sets. The rigid initialization performs well when compared to a

manual registrations based on four control point pairs. Using normalized mutual infor-

mation (NMI) to compare the registration outcomes, the automatic rigid registrations are
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comparable to manual registrations, having greater NMI in 23 of 99 cases. Overall, the pro-

cess of high level feature matching and histogram voting yield high accuracy initialization

for the nonrigid stage in most cases (92 of 99 instances), which significantly reduces the

computational burden for handling images with hundreds of millions or billions of pixels.

The registration framework presented here is part of an effort in designing a micro-

scopic phenotyping system for biomedical research. One of the goals of this system is

to build realistic 3D models for biological samples at micron resolution. The effective-

ness of the nonrigid registration algorithm presented hereis demonstrated by the success

in building the 3D models for the samples (mouse placenta) with microanatomical struc-

tures clearly reconstructed. This framework is of great importance in helping biologists to

characterize the changes in tissue morphology at the microscopic level induced by various

genetic perturbations (e.g., gene knockout).

Two advantages of high level feature matching are being pursued in further applica-

tions. Firstly, high level feature matching enables the registration of images of different

modalities such as microscopic images with different staintypes. This turns out to be

important for many studies in pathology where serial histological sections are stained for

different proteins and overlaid (registered) to study the co-expression of multiple genes. A

system is currently being developed for registering imageswith different stain types based

on the work presented here. The second advantage of the high level feature matching ap-

proach is the capability to register images with only partial overlap. When simulating a

partial tissue overlap scenario, the outcome is acceptableas input to the nonrigid stage in

37 of 99 instances, demonstrating a capability that could possibly extend to registration of

images in occlusion scenarios in more general applications.
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CHAPTER 3

NON-RIGID REGISTRATION FOR LARGE SET OF
MICROSCOPIC IMAGES ON GRAPHICS PROCESSORS

The two stage algorithm provides a fast and parallelizable method for reconstructing

tissue from large microscopic image sequences. The time necessary to resolve correspon-

dences for nonrigid registration is not unreasonable at 1.6hours for a sequence of 100

16K×16K images. In practice, however, biological studies may require the analysis of

thousands of such images, or images of much larger sizes, easily extending execution time

from the scale of hours to days.

The primary bottleneck in the two stage algorithm is the precision matching of inten-

sity features. As indicated in the previous chapter, up to 94% of execution time is spent

computing the FFTs used to implement normalized cross-correlation. The first matter then

in reducing execution time is the acceleration of these FFT calculations.

In this chapter I present a method for the hardware acceleration of FFT calculations

using graphics processors (GPUs) and multi-socket processing on a single compute node.

The features of GPUs are combined with multi-socket programming to achieve speed-up

factors of up to 4.11x on a single GPU and 6.68x on a pair of GPUsusing CUDA and

pthreads versus a fully serial C++ CPU implementation. Execution results are shown for

a benchmark composed of large-scale images derived from twodifferent sources: Genetic
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studies (16K × 16K pixels) and breast cancer tumors (23K × 62K pixels). It takes more

than 12 hours for the genetic case in C++ to register a typical sample composed of 500

consecutive slides, which was reduced to less than 2 hours using two GPUs, in addition to

a very promising scalability for extending those gains easily on a large number of GPUs.

3.1 Introduction

This chapter describes a high-performance computing approach for single-node pro-

cessing of the two-stage algorithm, based on the work of [46]. Multi-socket parallelization

enables multiple GPUs to simultaneously calculate the FFTsused to generate correspon-

dences between microscopic images at the scale of hundreds of millions to billions of pix-

els. The primary advantage of this approach is the computingcapacity of the GPU which

has become a cost-effective parallel platform to implementgrand-challenge biomedical

applications [55, 56]. CUDA (Compute Unified Device Architecture) offers an alternate

programming model to the underlying parallel graphics processor without requiring a deep

knowledge about rendering or graphics. The interface uses standard C code with parallel

features to transform the GPU technology to massive parallel processors for commodity

PCs.

The results of this method are demonstrated by comparing serial and multi-socket par-

allel implementations with both CPU and GPU, using a variety of parameter choices to

explore the efficiency and scalability of the approach (see Table 3.4.) The benchmark of

image datasets (see Table 3.5) are taken from two quantitative phenotyping projects. The

first project is a morphometric study on the role of the retinoblastoma gene (a well-known

tumor suppressor) in mouse placenta development. In this study, three control placentas and

three mutant placentas with Rb gene deletion were obtained. Each sample was sliced into

49



5µm sections and each section was stained using standard hematoxylin and eosin staining.

The stained sections were digitized using an Aperio ScanScope high resolution scanner

with a 20X objective lens which produces a resolution of0.46µm/pixel. The six samples

yielded more than 3,000 images with typical dimensions16K × 16K pixels for a total of

more than three terabytes (uncompressed) of data. The second project is part of ongoing

work studying the breast cancer tumor microenvironment in mice. Images from this study

are typically23K × 62K pixels and around four gigabytes in uncompressed form.

This chapter is organized as follows: A summary of GPU architecture is provided in

Section 3.2. Descriptions of the two-stage algorithm GPU implementations are provided

in Section 3.3. The experimental setup is presented in Section 3.4. Performance results

and analysis are contained in Section 3.5. The chapter concludes in Section 3.6 with a

discussion on related work.

3.2 GPU Architecture and CUDA

The performance of algorithms on GPUs depends on how well they can exploit paral-

lelism, closer memory, bus bandwidth, and GFLOPS.

Parallelism: Programs running on GPU are decomposed into threads and are executed

on a massively parallel multiprocessor composed of 128 cores or stream processors (see

central row in Figure 3.1).

Memory access: Data is stored on L1 caches, L2 caches and video memory (see lower

rows in Figure 3.1), with closer memory being faster. Spatial locality is best exploited by

caches, which are around a thousand times larger on the CPU, whereas temporal locality

benefits the GPU, whose architectural rationale and programming model are inspired by

the producer/consumer paradigm.
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Figure 3.1: The block diagram of the Nvidia G80 architecture, the GPU used for experi-
ments. The program, decomposed in threads, is executed on 128 streams processors (cen-
tral row). The data are stored on L1 caches, L2 caches and video memory (lower rows).

Bus bandwidth: A state-of-the-art 2007 graphics card delivers a peak performance

memory bandwidth around 80 GB/sec., as compared to 10 GB/sec. for CPU. This is mainly

due to its wider data path (384 bits, decomposed into six partitions of 64 bits in Figure 3.1).
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Computational units: The GPU capacity for floating-point operations exceeds 500

GFLOPS, in contrast with around 10 GFLOPS for a 2007 state-of-the-art CPU. This ad-

vantage is a result of design for the color and position interpolations that are required for

performance graphics applications.

The outstanding features of the GPU and CPU are combined to create a bi-processor

platform that balances workload and enhances the executionof the nonrigid registration.

The rest of this section focuses on the GPU implementation.
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Figure 3.2: The CUDA hardware interface for the GPU.

3.2.1 The CUDA programming model

The CUDA (Compute Unified Device Architecture) [57] programming interface con-

sists of a set of library functions which can be coded as an extension of the C language.

The CUDA compiler generates executable code for the GPU, which is seen as a multicore
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processor resource by the CPU. CUDA is designed for generic computing and hence it

does not suffer from constraints when accessing memory, though the access times vary for

different types of memory.

Computation Paradigm

General-purpose on GPUs (GPGPU) [58] is designed to follow the general flow of

the graphics pipeline (consisting of vertex, geometry and pixel processors - see Figure 3.1),

with each iteration of the solution being one rendering pass. The CUDA hardware interface

(see Figure 3.2) attempts to hide all these notions by presenting a program as a collection

of threads running in parallel. The elements for this approach are:

• A warp is a collection of threads that can actually run concurrently (no time sharing)

on all of the multiprocessors. The size of the warp (32 on the G80 GPU) is less than

total available cores (128 on G80) due to memory access limitations. The program-

mer decides the number of threads to be executed, but if thereare more threads than

the warp size, they are time-shared.

• A block is a group of threads that are mapped to a single multiprocessor. Since

each multiprocessor has multiple cores (8 on the G80) and a shared memory, threads

in a block are executed together and can efficiently share memory. All threads of

a block executing on a single multiprocessor divide its resources equally amongst

themselves, with each thread and block having a unique ID accessed during its exe-

cution to process different sets of data in a SIMD (Single Instruction Multiple Data)

fashion.

• A kernel is the core code to be executed on each thread, which performson different

sets of data using its ID. The CUDA programming model does not allow you to
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select a different kernel to be executed on each of the multiprocessors. The hardware

architecture, however, allows multiple instruction sets to be executed on different

multiprocessors, so this may be simulated using conditionals.

• A grid is a collection of all blocks in a single execution. That way,a program is

decomposed into kernels, each implemented through a grid which is composed of

blocks consisting of threads (see Figure 3.3).
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Figure 3.3: The CUDA programming model. In this example, a program is decomposed
into two kernels, each implemented through a grid, with the first grid composed of 2x3
blocks, each containing 3x4 threads executed in a SIMD fashion.
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Table 3.1: Major limitations for the CUDA programming model on the Nvidia G80 GPU
used during the experimental study. The last column assesses its importance according to
the impact on the programmer’s job and overall performance.

Parameter Limit Impact

Multiprocessors per GPU 16 Low
Processors / Multiprocessor 8 Low
Threads / Warp 32 Low
Thread Blocks / Multiprocessor 8 Medium
Threads / Block 512 Medium
Threads / Multiprocessor 768 High
32-bit registers / Multiprocessor 8192 High
Shared Memory / Multiprocessor 16 KB High

A single block should contain 128-256 threads for an efficient execution. The maximum

possible thread total is 512. Other hardware limitations are listed on Table 3.1, where they

have been ranked according to impact on the programmer’s joband overall performance

based on experience.

Memory and registers

In CUDA, all threads can access any memory location, but as expected, performance

will increase with the use of closer shared memory whenever data to be collectively read

by threads within a block belong to different memory banks. The use of shared memory is

explicit within a thread and cannot exceed 16 Kbytes. Optimizations using shared memory

may speed-up the code up to a 10x factor for vector operations, and latency hiding up to

2.5x [59]. Other performance issues are summarized in the last two rows of Table 3.2.

The role of 32-bit registers becomes more important as a limiting factor for the amount

of parallelism that can be exploited, rather than as the conventional mechanism to hide
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Table 3.2: Constraints in memory addressing (first five rows) and maximum performance
(last two rows) reached by the CUDA programming model in its latest version (1.1, as of
December 2007).

Parameter Value

Constant memory / multiprocessor 64 KB.
Maximum sizes of each dimension of a block 512x12x64
Maximum sizes of each dimension of a grid 64K x 64K x 1
CUDA maximum memory pitch 256 KB.
CUDA texture alignment 256 bytes
Geometrical performance 3*108 triangles/sc.
Fill-rate (textural performance) 192*108 texels/sc.

memory latency. A multiprocessor contains 8192 registers,each owned exclusively by a

thread. Registers should be split among the threads so that the number of threads created

reaches the maximum occupancy on each multiprocessor giventhe constraints outlined in

Tables 3.1 and 3.2. For example, if a thread consumes 10 or fewer registers then an implied

819 threads may be used, but only 768 are allowed on a multiprocessor and only 512 are

allowed for a block: A possible solution is to build 3 blocks of 256 threads each. Reversely,

if a thread consumes 16 registers, a maximum of 512 threads isallowed (512x16=8192),

and all threads may belong to a single block.

Developing in CUDA

A typical CUDA development cycle is as follows. First, the code is compiled using

a special CUDA compiler that outputs the hardware resources (registers and local shared

memory) that are consumed by the kernel. Using these values,the programmer determines

the number of threads and blocks that are needed to use a multiprocessor efficiently. If a sat-

isfactory efficiency cannot be achieved, the code needs to berevised to reduce the memory
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foot print (registers and local shared memory). Due to the high FLOPS performance of the

streaming processor, memory access becomes the bottleneckin the registration algorithm.

3.3 Image registration on the GPU

The workflow for the registration algorithm is summarized inFigure 3.4. From a perfor-

mance perspective, the most interesting phase is the set of Fast Fourier Transforms (FFTs)

used to compute the normalized cross-correlations for precise point matching in nonrigid

registration, since they entail most of the execution time.For example, in experiments reg-

istering a pair of 23K x 62K images on the CPU, represented in Figure 3.5, more than 60%

of the total running time is spent in computing normalized cross-correlation.
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Table 3.3: Percentage weight on average for each of the computational stages before and
after porting to the GPU.

Computational phase CPU GPU

Two forward FFTs 68% 74%
Point-wise multiplication 3% 2%
One inverse FFT 29% 24%

Figure 3.5: Workload of each phase of the two stage registration algorithm.

This process is optimized by implementation on the GPU (see Section 3.3.1 below),

including the two forward FFTs and the subsequent inverse. The point-wise multiplication

of FFT spectra which is required between the forward and inverse transforms was also

implemented on the GPU to save data movement between processors and to take advantage

of higher arithmetic intensity versus computation on the CPU(see Table 3.6). Table 3.3

depicts the percentage weight for these operations on each platform.
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The remaining parts of the registration algorithm including voting, variance calcula-

tions, and simple transformations (e.g. rotating) did not show any significant speed-up on

the GPU for three major reasons:

1. They were already computationally cheap on the CPU.

2. More importantly, it was remarkable how much time was required to ship code and

data back and forth between the CPU and the GPU through the memory bus, hyper-

transport link, and PCI-express controller (see Figure 3.7). This cost could not be

amortized during the subsequent computation despite the high GFLOPS rate.

3. Most of these operations contain conditionals and are notarithmetic intensive, which

makes them more appropriate for the CPU processor. Additionally, this enables the

bi-processor platform to achieve a more balanced execution.

3.3.1 Normalized cross-correlation using CUDA

Normalized cross-correlation can be efficiently implemented on the GPU using the

CUDA programming model. The computation strategy is based onthe theorem that cir-

cular convolution in geometric space amounts to point-wisemultiplication in discrete fre-

quency space. This way, using the CUFFT library [60] as an efficient direct/inverse Fast

Fourier Transform implementation, Fourier-based correlation can be more efficient than

a straightforward spatial domain implementation, and permits leveraging of the floating-

point power and parallelism of the GPU without having to develop a custom GPU-based

implementation.

The FFT is a highly parallel ”divide and conquer” algorithm for the computation of the

Discrete Fourier Transform of single or multidimensional signals. The convolution theorem
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applies to an image (search window) and convolution kernel (template window) that share

the same sizes. In cases where the image is bigger than the kernel, such as the matching of

a template within a larger search area, the kernel has to be expanded to the image size as

shown in Figure 3.6. Also, ordinary convolution requires the template and search windows

to be padded with zeros on the bottom and right borders as anticipated in Section 2.2.2.
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Table 3.4: Template (feature) and search window sizes (in pixels). An evaluation about
whether those sizes contribute to perform further optimizations in the corresponding CPU
and GPU codes is included, considering the libraries used during the implementation:
FFTW on the CPU and CUFFT on the GPU. (*) This slot is partially infavour of the
GPU because 749 is a multiple of seven, a small prime number.

Input image: Placenta: 16K x 16K Mammary: 23K x 62K
Window size: Small Medium Large Small Medium Large

Template window (in pixels) 171 250 342 342 500 683
Search window (in pixels) 342 500 683 683 1000 1366
Aggregate (template+search-1) 512 749 1024 1024 1499 2048
CPU friendly (FFTW library) Yes No Yes Yes No Yes
GPU friendly (CUFFT library) Yes (*) Yes Yes No Yes

The 2D-FFT dimensions are fundamental in CUDA for optimizingperformance. When

the template and search window are multiples of either a power of two or a small prime fac-

tor, the memory footprint generated by the CUDA algorithm minimizes conflicts accessing

banks on shared memory and performance increases. For the counterpart C++ implementa-

tion on the CPU the FFTW [48] was used, one of the most popular and efficient CPU-based

FFT libraries, for a fair comparison with the GPU results. FFTW also favours certain 2D-

FFT dimensions, and the optimal cases arise when the sum of the template window and

the search window sizes minus one is a power of two. With a careful selection of FFT di-

mensions, a benchmark was created that fulfills most of theserules on both CPU and GPU

implementations. Table 3.4 summarizes all sizes selected for experimental evaluation and

evaluates their adequacy for each type of processor.

For the cases in which the data size cannot fulfill the previous rules, FFTW and CUFFT

provide a simple configuration mechanism called aplan that completely specifies the op-

timal - that is, the minimum floating-point operation - plan of execution for a particular
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FFT size and data type. The advantage of this approach is thatonce the user creates a plan,

the library stores on file whatever state is needed to executethe plan multiple times, thus

avoiding the penalty of carefully planning the transforms at run-time. For example, with

a template window equal to 350x350 pixels and a search windowequal to 700x700 pix-

els, FFTW takes around 0.7 seconds, whereas the pre-plannedcomputation takes only 0.32

seconds with a previous 6 seconds penalty required to pre-compute the plan (a cost which

can later be amortized by loading the plan at run-time on subsequent 2D transforms of the

same size).

3.4 Experimental Setup

3.4.1 Input data set

The multi-socket GPU implementation was applied to a seriesof microscopic images

derived from consecutive sections of (1) mouse placenta fora morphometric study on the

role of the retinoblastoma gene and (2) mammary gland for studying the breast cancer

tumor microenvironment [22]. For details about these sets of images, see Table 3.5. The

goal in both cases is to reconstruct 3D tissue models for the study of microanatomy.

Table 3.5: The set of images used as input data sets for our registration algorithm.

Field of Research area and Mouse Computational Image Number
study biomedical goals source workload size (pixels) of slides

Genetic Role of a gene Placenta Medium 16K x 16K 100

Oncology Breast cancer tumor Mammary Large 23K x 62K 4
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Table 3.6: Summary of the major features of the high-end GPU from Nvidia.

GPU feature Value

Model Quadro FX 5600
Core clock frequency 600 MHz
Stream processors clock 1.35 GHz
Manuf. technology 90 nm

Video memory feature Value

Clock frequency 1.6 GHz
Bus width 384 bits
Bandwidth 76.8 GB/sc
Memory size 1.5 GB

3.4.2 Hardware

The multisocket GPU implementation was executed on a GPGPU visualization node

where the features of dual-core AMD Opteron 2218 CPU are combined with dual-socket

high-end Nvidia Quadro FX 5600 GPU (see Figure 3.7). The CPU isendowed with 4 GB

of DDR2 DRAM running at 667 MHz, whereas each of the dual GPUs contains 1.5 GB of

on-board GDDR3 DRAM at 1600 MHz (see remaining features in Table 3.6). This leads to

a total available DRAM memory of 7 GB. The system is completed with a 750 GB, 7200

RPM local SATA II hard disk with 16 MB cache and an InfiniBand cardfor communication

purposes.

In the experiments, the time for reading the input images from file is not considered.

This time can be partially hidden by overlapping I/O communications with internal com-

putations on the GPUs due to the asynchronous communications supported within CUDA

1.1. In addition, it has been observed that shared I/O due to other cluster users slightly

affects the computational time. To minimize this variation, several runs were performed

for each experiments, taking the average among all of them.
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3.4.3 Software

The GPU was programmed using the CUDA Programming Toolkit, version 1.1 (De-

cember, 2007), and for the cases where we used two GPUs,pthreadswere used to run the

code on each GPU.

On the CPU side, we used the Microsoft Visual Studio 2005 8.0 C++compiler. Matlab

7.1 was also used to validate the results from our implementation as well as to provide the

departure sequential execution time.

3.5 Empirical Results

A broad number of experiments were conducted on one hundred images in the placenta

image set and four images for the mammary image set as reflected in Table 3.5.

3.5.1 Characterizing the workload

A preliminary issue to mention is that the execution time foreach slide within the same

working image set experiences variations due to the contentand consequentially the differ-

ent number of features processed. As described in Section 2.2.2, the variance is computed

on a200 × 200-pixel window to retain only feature points that are meaningful. This may

lead images of similar sizes to produce different workloadsbased on their contents (the

more homogeneous an image is, the less computation required). Table 3.7 summarizes

the number of features extracted for each input image belonging to the mammary data set

as well as the total and computational time required for the registration algorithm to be

completed on an Opteron CPU.

The percentage of features processed ranges from 4% to 30% oftotal image area, with

those percentages varying slightly when using small, medium or large window sizes (see
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Table 3.7: Workload breakdown on single CPU for mammary imageset. The number of
features extracted for each input image within the mammary data set differs due to content.
Execution times in the last two columns represent the large case.

Number of features extracted Workload on CPU (in seconds)
Window size: Small Medium Large Execution time Execution time
(template,search) (342,683) (500, 1000) (683, 1366) with I/O without I/O

Mammary 1 1196 655 384 650.86 558.54 (85%)
Mammary 2 1048 568 312 497.83 414.17 (83%)
Mammary 3 3119 1528 854 1320.01 1192.69 (90%)
Mammary 4 690 322 168 463.77 340.62 (73%)

Table 3.4). However they may consider as stable for each image if the smaller window size

is selected as the most representative (higher search resolution). Under this assumption,

Figure 3.8 provides details about the percentage of features processed for the placenta and

mammary image sets: For the placenta images the minimum percentage corresponds to

image 5 with 10.48% and the maximum to image 99 with 30.38%, and a total average

of 19.88%. For the mammary gland images the minimum percentage is 4.82% by image

4, with a maximum of 20.71% by image 3, and an average of 10.77%. According to

our definition of feature, the placenta image set containts nearly double the density of

meaningful information. While the mammary gland set is a larger image, it represents a

higher rate of sparsity.

3.5.2 Execution times on the CPU

Figure 3.9 presents the execution time for the registrationalgorithm depicted in Figure

3.4 when it is entirely computed on the CPU using the FFTW library. The results for

the placenta image set are shown on the left, mammary on the right. Within each case,

experiments were run for three different template and search windows (see Table 3.4):
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(a) Placenta image set. (b) Mammary image set.

Figure 3.8: Percentage of features processed per image on each input image set. The small
template and search window size was selected as the most representative.

small (blue, leftmost), medium (red, center) and large (yellow, rightmost). According to the

details provided by the FFTW library, the small and large sizes fulfill optimal conditions,

whereas the medium size breaks all rules (from now on, this case will be referred to asnon-

compliant). This has a major impact on the execution time, with an average time for the

placenta case of 294.57 seconds using the medium size versus57.97 seconds in the small

case and 91.33 seconds in the large one. This results in an increment of 57% when the

windows are doubling size within optimal conditions and an additional 222% when using

non-compliant sizes. Mammary offers a similar behavior, though the last two overheads

are reduced to 26% and 147% respectively.

3.5.3 Execution times on the GPU

Figure 3.10 shows execution times for the registration algorithm when the GPU helps

the CPU by computing the FFT-based cross-correlation using CUDA. The left side repre-

sents the placenta image set and the right side the mammary image set, with the legend

differentiating the small, medium and large window size cases (see Table 3.4). This time,
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(a) Placenta image set (b) Mammary image set.

Figure 3.9: Execution times on the CPU Opteron for the registration algorithm on a pair
of images under different image sets and window sizes. The first pair of numbers on chart
legends corresponds to the small window sizes (template andsearch window, respectively),
then medium and finally large sizes. For placenta, average times are 57.97 seconds (small),
294.57 seconds (medium) and 91.33 seconds (large). For mammary, average times are
530.41 seconds (small windows), 1660.91 seconds (medium) and 669.96 seconds (large).

the small and large sizes fulfill all conditions imposed by the CUFFT library and also

the medium search window size of 749 pixels satisfies being a multiple of a small prime

number (7). Nevertheless, its overhead is still significant. The average times for the pla-

centa case are 19.27 seconds (small), 47.80 (medium) and 22.22 seconds (large), and the

slowdown is of 15% when the windows are doubling size within optimal conditions and an

additional 115% for the non-compliant case. For mammary, the large sizes perform slightly

better than the small ones, and the non-compliant overhead (medium size) reaches the top:

531%.

3.5.4 CPU-GPU comparison

The central row in Table 3.8 reports the average speed-up factors on the GPU when

helping to compute the FFT-based cross-correlation using CUDA. Gains are unstable for

the non-compliant cases, and the most realistic results arethe small and large cases where
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(a) Placenta image set. (b) Mammary image set.

Figure 3.10: Execution times on the GPU Quadro for the registration algorithm on a pair
of images under different image sets and window sizes. The first pair of numbers on chart
legends corresponds to the small window sizes (template andsearch window, respectively),
then medium and finally large sizes. For placenta, average times are 19.27 seconds (small),
47.80 seconds (medium) and 22.22 seconds (large). For mammary, average times are
264.09 seconds (small windows), 1629.72 seconds (medium) and 257.95 seconds (large).

window sizes strictly follow the guidelines provided by theFFTW and CUFFT libraries.

For the placenta image set, small windows produce a three times acceleration factor and

large windows extend gains to reach 4.11x. For the mammary image set, those gains are

more modest: 2.00x and 2.59x, respectively.

Figure 3.11 demonstrates that the improvement factor on theGPU depends much more

on the input image when using mammary rather than placenta, where numbers are more

consistent. Additionally, gains are more volatile when increasing the window sizes. This is

because the image contents become more heterogeneous on a larger search, showing also

higher disparities among images. This effect is corroborated in Figure 3.8.

3.5.5 Parallelism and scalability on the GPU

The GPU has gained popularity as an outstanding scalable architecture over the past

decade, being able to succeed in its goal of sustaining performance doublings every six
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(a) Placenta image set. (b) Mammary image set.

Figure 3.11: Comparison between the GPU and CPU execution timein terms of GPU
speed-up factor. When the window sizes increase, times are more irregular in (b). The
first pair of numbers on chart legends corresponds to the small window sizes (template
and search window, respectively), then medium and finally large sizes. For placenta, the
average speed-up is 3.00x (small), 6.16x (medium) and 4.11x(large). For mammary, the
average speed-up is 2.00x (small windows), 1.01x (medium) and 2.59x (large).

Table 3.8: Execution times (in seconds) and speed-up factors for the different implemen-
tations developed for computing our registration algorithm on a pair of images with max-
imum performance. The average of all 100 and 4 runs is reported for the placenta and
mammary image sets. Boxed numbers highlight the GPU speed-upunder the most typical
scenarios.

Input image set: Placenta: 16K x 16K Mammary: 23K x 62K
Window size: Small Medium Large Small Medium Large
(template,search) (171,342) (250,500) (342,683) (342,683) (500,1000) (683,1366)

CPU exec. time 57.97 294.57 91.33 530.41 1660.91 669.96
GPU exec. time 19.27 47.80 22.22 264.09 1629.72 257.95
GPU speed-up 3.00x 6.16x 4.11x 2.00x 1.01x 2.59x
2 GPUs time 13.13 26.05 13.66 225.17 837.51 234.62
2 GPU / 1 GPU 1.46x 1.83x 1.62x 1.17x 1.94x 1.09x
2 GPU / 1 CPU 4.41x 11.30x 6.68x 2.57x 1.98x 2.85x

70



months. In addition to this intra-chip trend, other initiatives like SLI from Nvidia and

Crossfire from ATI have emerged to explore inter-chip parallelism (SMP - Symmetric

Multi-Processing). The initiative has achieved a remarkable success within the video-game

industry, but so far has not been explored for general-purpose computing to our knowledge.

This section evaluates the performance of our registrationalgorithm on a pair of GPUs

when applying SMP parallelism. Our programming techniquesare straightforwardly ex-

tensible to higher number of graphics cards, and the methodsused for partitioning the

problem guarantees excellent scalability beyond that point. Nevertheless, in this ambitious

project a warning against the critical role assumed by the input/output system is necessary:

Dozens or even hundreds of GPUs working in parallel can find aneasy way of distribut-

ing different search windows efficiently when working on large-scale input images, but

there must be a high-performance file system able to read the image tiles in parallel at a

sustainable bandwidth high enough to provide data to be processed over the Teraflop rate.

During experiments this bottleneck was not investigated ona larger number of GPUs. Table

3.7 quantifies in its last two columns the execution time (including input/output) and the

computational time (excluding I/O) to reveal that I/O is responsible of 10-20% of the total

execution time. This time has not been included in our subsequent analysis since it is the

same for both the CPU and the GPU-optimized versions of our registration algorithm, and

I/O is out of the scope of this work. This implicitly assumes that image data are available

in DRAM memory or that they can be retrieved efficiently from file using either a parallel

file system or a RAID system.

Once data reaches the CPU, there are two basic ways of distributing the workload

among multiple GPUs in our registration algorithm: BLOCK or CYCLIC. For the par-

ticular case of a pair of GPUs (but without losing any generality), BLOCK assigns the
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upper half of an image to the first GPU and its lower half to the second GPU. CYCLIC, on

the contrary, numbers image tiles and assign even tiles to the first GPU and odd tiles to the

second GPU. Because interesting image features tend to be spatially concentrated, BLOCK

presents higher potential risk for an unbalanced data partitioning, so CYCLIC was selected

for all experiments.

Table 3.9: Number of windows processed and discarded for each image within the mam-
mary image set on each GPU under the two GPUs parallel execution. Workload unbalance
and execution time are shown in the last two columns. The search window size here is
684x684 pixels.

Input Graphics Number of windows Workload Execution
image processor tested processed/discarded unbalance time (secs.)

Mammary 1 GPU 1 1672 196/1476 4.08% 260.41
GPU 2 1672 188/1484

Mammary 2 GPU 1 1496 158/1338 2.53% 101.32
GPU 2 1496 154/1342

Mammary 3 GPU 1 1872 428/1444 2.76% 522.43
GPU 2 1911 426/1485

Mammary 4 GPU 1 1786 78/1708 13.33% 225.37
GPU 2 1786 90/1696

The parallelization method works the following way: a thread is created for each image

region (tile) which computes the variance on a given CPU to assess whether it is worth

computing. If the tile passes this test, it is sent to a predetermined GPU to compute the

normalized cross-correlation and search for features. Table 3.9 outlines the number of

tiles processed and discarded on each GPU depending on the input image used from the

mammary data set. Workload unbalances range from 2.76% on image 2 to 13.33% on
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(a) Placenta image set. (b) Mammary image set.

Figure 3.12: GPU scalability. Improvement factor when enabling a second GPU. The
first pair of numbers on chart legends corresponds to the small window sizes (template
and search window, respectively), then medium and finally large sizes. For placenta, the
average speed-up is 1.46x (small), 1.83x (medium) and 1.62x(large). For mammary, the
average speed-up is 1.17x (small windows), 1.94x (medium) and 1.09x (large).

image 4, always growing for lower number of tiles to process (sparsity rate of the input

image).

Finally, Figure 3.12 shows that gains produced when enabling a second GPU are very

diverse, starting with 30-50% on small window sizes, continuing with 60% on large win-

dow sizes and ending with an optimal scalability (100% gain)on medium sizes. Those

gains are proportional to the computational workload, showing that the GPU is a more

scalable processor when it can exploit its arithmetic intensity. In other words, GFLOPS

are not limited by data shortages coming from insufficient bandwidth between the video

memory and the GPU.

3.5.6 Summary and conclusions

Several conclusions can be drawn from our experimental analysis:

1. The placenta image set shows higher speed-up factors on the graphics platform. This

is because the images have a larger portion of meaningful content, leading to a denser
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workload which exploits its arithmetic intensity and memory bandwidth better. Also,

a lower number of features processed means higher presence of conditionals in the

code, one of the most harmful instructions for GPU performance.

2. The placenta image set is more scalable on multiple GPUs, and gains are more stable

among different window sizes. The higher sparsity of the mammary images plays

a negative role in the workload distribution, introducing unbalances and preventing

parallelism from being fully exploited.

Overall, the GPU achieves a 3-4 speed-up factor in the most typical scenarios (boxed

slots in Table 3.8) versus the CPU, and a pair of GPUs show a satisfactory scalability but

unstable gains under different image sets and window sizes.

3.6 Related Work

Large scale image registration has many applications in both biomedical research [26,

37, 61] and geophysics [62]. However, there are currently few works addressing image

registration algorithms intended to run efficiently on highperformance computing (HPC)

environments.

The work on parallel image registration on multicomputers is limited [37] and is re-

stricted to either large computer clusters [63–65] or IBM cell clusters [66]. Clusters of

GPUs have been used to implement other heavy workload tasks [67], mostly within the

simulation and visualization fields. For example, numerical methods for finite element

computations used in 3D interactive simulations [68], and nuclear, gas dispersion and heat

shimmering simulations [69].

On the other hand, commodity graphics hardware has become a cost-effective parallel

platform to implement biomedical applications in general [55]. One work similar to the
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application in this dissertation on the registration of small radiological images [70], and

others within the fields of data mining [71], image segmentation and clustering [72] have

applied commodity graphics hardware solutions. Those efforts have reported performance

gains of more than ten times [56] but were mostly implementedusing shaders with the Cg

language [56].

The present work enhances the graphics implementation through CUDA [57] which

exploits parallelism to a wide variety of layers. The combined implementation of CPU

and GPU on a bi-processor platform is one step ahead in performance and provides the

first parallel processing solution on large microscopic images for users without requiring

an expensive multiprocessor.

In 2004 it was reported that on real numbers, the MxM product may run slower on the

GPU due to the lack of high bandwidth access to cached data [73]. The same set of opera-

tions that is described for the correlation phase (two direct FFTs, point-wise multiplication

in frequency space, and a inverse FFT) took 0.625 seconds on a2003 Intel Xeon CPU for a

1024x1024 matrix, versus 2.7 seconds on a counterpart GeForce 5 GPU [74]. This situation

is reversed in 2008 for two major reasons:

1. On the software side, the CUDA programming model makes explicit the use of

shared memory, which overcomes the lack of high bandwidth access to closer data.

2. On the hardware side, the higher scalability of the GPU is exploited, doubling perfor-

mance every six months during the present decade versus the 18 month period that

takes the CPU that achievement [59].

GPUs for general-purpose computations are an emerging fieldevolving quickly within

computer architecture. Tesla [75] is the latest and more powerful contribution from Nvidia
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to this area, offering multiple GPUs without video connectors into either a board or a desk-

side box to reach near supercomputer levels of single-precision floating-point operations at

a cost starting around $1500 (a price similar to the Quadro FX5600 used during experi-

ments). At a lower price range, there have been recent announcements on double precision

graphics architectures from Nvidia (GeForce 9 Series) and ATI (FireStream - see [76])

to provide a definitive solution to software requiring high-precision arithmetic in floating-

point operations.

3.7 Discussion and Conclusions

With the advances in imaging hardware, tasks like the nonrigid registration of large im-

ages with billions of pixels become increasingly popular, evolving towards computationally

demanding algorithms for which parallel and scalable solutions become essential. Within

this scope, the contribution of the work in this chapter is twofold:

• First, the two stage algorithm provides a parallelizable method for registration which

has been successfully applied to biomedical studies for reconstructing the 3-D struc-

tures of biological specimens with micron resolution. Whilethe algorithm is mo-

tivated by biomedical applications, the principle of usinghigh-level region features

for rigid registration and using uniform sampling for nonrigid feature matching are

ubiquitous for other applications.

• Second, a computational framework has been developed to expedite execution using

graphics processors. A solid heterogeneous and cooperative multiprocessor platform

is established using an AMD Opteron CPU and a pair of Nvidia Quadro GPUs, where

the best features of each processor are fully exploited for applying higher degree of

parallelism at a variety of levels: Multi-task for simultaneous executions of CPU and
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GPU codes, SMP (Symmetric MultiProcessing) for multicard GPUs using pthreads,

and SIMD (Simple Instruction Multiple Data) for the 128 stream processors of the

GPU using CUDA.

The CUDA programming model exploits all the capabilities of the GPU as a massively

parallel co-processor to achieve a remarkable speed-up factor as opposed to an expensive

supercomputer. Experimental numbers show the success of these techniques, first by de-

creasing the execution time a 2-4x factor on a single GPU and later extending those gains

to a pair of GPUs. For the genetic studies of a mouse placenta sample composed of 500

slides of16K × 16K pixels each, it takes more than 12 hours for serial C++ code to ac-

complish the registration process. This was reduced to lessthan 2 hours using two GPUs,

and in addition, promising scalability was demonstrated for extending those gains easily on

a large number of GPUs.

Overall, this study provides an illustrative example for how a graphics architecture in

conjunction with its CUDA programming model may assist non-computer scientists by

adapting grand-challenge biomedical applications to provide almost real-time response to

pathologists in computer-aided methods.
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CHAPTER 4

PARALLEL AUTOMATIC REGISTRATION OF LARGE SCALE
MICROSCOPIC IMAGES ON MULTIPROCESSOR CPUS AND

GPUS

During the present decade, emerging architectures including multicore CPUs and graph-

ics processing units (GPUs) have gained popularity for their ability to deploy high compu-

tational power at a low cost. The effectiveness of emerging architectures was demonstrated

in the previous chapter where GPUs with multi-socket parallelism were used to accelerate

the two stage registration algorithm on a single computing node.

In this chapter I introduce another level of parallelism to the two stage high perfor-

mance implementation, extending the single node methods for simultaneous execution to

multiple nodes. Parallelization techniques from multiplelevels are combined on a cooper-

ative cluster of multicore CPUs and multisocket GPUs to applytheir joint computational

power to further reduce execution time for the two stage algorithm. As before, the two

stage algorithm is analyzed to identify those parts that aremore favorable to the CPU or

GPU execution models and decomposed accordingly.

Performance results are presented for both the mouse placenta (16K × 16K pixels)

and mouse mammary tumor (23K× 62K pixels) image datasets. Execution times are

provided for different multi-node, multi-socket and multi-core configurations to provide
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performance insights about the most effective approach. For a mouse mammary sample

composed of 500 slides, more than 181 hours are required for afully serial C++ code to

accomplish the registration process on a high-end CPU. This time was reduced to less than

50 hours using a single GPU on a single node, and to 3.7 hours for a total speedup of 49×

when 32 CPUs and GPUs participate in the cooperative environment.

4.1 Introduction

Light microscopy offers the desired field range and magnification for the study of many

complex biological phenomenon, but acquiring 3-D information requires the reconstruc-

tion of sequences of very large images, often with hundreds of millions or billions of pixels

each. The challenges of image size, rich feature environment, and nonrigid distortion and

local morphological differences as described in Chapter 2.1are addressed through solu-

tions at both the software and hardware layers. The softwarelayer solutions of fast rigid

registration, refinement using correlations calculated with FFT, and single transform output

were a good departure point but not sufficient by themselves for large scale applications.

Chapter 3 introduced hardware layer solutions, using GPUs and multi-socket parallelism

to accelerate the FFT calculations that bottleneck the two stage algorithm.

This chapter extends the hardware layer effort to multiple nodes, using node-level par-

allelism to address additional portions of the refinement stage beyond FFT calculation. Im-

plementation issues and performance are studied on varioushigh performance computing

environments. Specifically, effort is split between two areas:

• Parallel systemsbased on a cluster of multisocket and multicore CPUs programmed

using MPI (Message Passing Interface) [77].

79



• GPUsreoriented to general-purpose computing using CUDA (ComputeUnified De-

vice Architecture) [57].

Since each approach presents unique features for a high performance execution, the

goal is to find cooperative scenarios where each resource is utilized at its peak while over-

coming the weaknesses of the other. This way, performance can be compared on single

nodes, CPU clusters, GPU clusters and a mixture of CPUs and GPUsin a cooperative

execution.

This chapter is organized as follows: Section 4.2 provides details on the software tools

and computing cluster hardware. Section 4.3 explains the implementation of the two stage

algorithm on multiple nodes. Results and discussion are provided in Section 4.4. Conclu-

sions about the high performance implementation are presented in Section 4.5.

4.2 Hardware and programming tools

4.2.1 The multiprocessor system at a glance

The two stage registration algorithm was implemented on a GPU equipped cluster, the

BALE system at the Ohio Supercomputer Center (see Figure 4.1). The BALE supercom-

puter is endowed with 55 workstation nodes based on a dual-core Athlon 64 X2 architecture

with integrated graphics card and 16 visualization nodes enhanced with dual-socket x dual-

core AMD Opteron 2218 CPUs and dual-card Nvidia Quadro FX 5600GPUs. All of these

nodes are interconnected with Infiniband, and include a 750 GB, 7200 RPM local SATA II

hard disk with 16 MB cache.

Experiments were run on the sixteen visualization nodes, where each node has 8 GB of

DDR2 DRAM running at 667 MHz on the CPU side and 2x1.5 GB of on-board GDDR3
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Figure 4.1: The BALE supercomputer at a glance.

DRAM running at 1600 MHz on the GPU side, for a total of 11GB available DRAM per

node.

4.2.2 The CPUs: AMD Opteron X2 2218

On the CPU side, each BALE node of the visualization cluster consists of two Opterons

X2 2218 composed of dual-core processors running at 2.6 GHz (see Table 4.1). Each core

can fetch and decode three x86 instructions per cycle and execute 6 micro-ops per cycle.
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Table 4.1: Summary of the major features of the high-performance multiprocessor nodes .

Hardware feature CPU GPU

Commercial model AMD Opteron 2218 Quadro FX 5600
Clock frequency 2600 MHz 600 MHz
Sockets (SMP) Dual Dual
Cores (per socket) Dual 128 stream procs.
Cache size (L1 & L2) 2x2x1MB. 2x 392 KB.
Cache latency (L1, L2) 3, 9 cycles 10 cycles
DRAM capacity 8 GB DDR2 2x 1.5 GB GDDR3
DRAM latency 138 cycles 200 cycles
DRAM data bandwidth 2x 10.8 GB/s 2x 76.8 GB/s
Peak processing power 2x 2x 4.4 GFLOPS 2x 330 GFLOPS

The cores support 128 bits SSE instructions in a half-pumpedfashion, for a peak double-

precision performance of 4.4 GFLOPS per core, 8.8 GFLOPS persocket, 17.6 GFLOPS

per node and 35.2 GFLOPS in simple precision, for a total aggregate of 563.2 GFLOPS for

the 16 visualization nodes in 32-bits arithmetic.

The Opterons contain two cores, each with a pair of 64 KB 2-wayset associative L1

caches, a 1 MB 4-way L2 cache, and a dual-channel DDR2-667 memory controller as well

as a single HyperTransport link to access the cache and memory of the other socket. Each

socket can thus deliver 10.6 GB/s for an aggregate memory bandwidth of 21.3 GB/s per

node.

4.2.3 The GPUs: Nvidia Quadro FX 5600

Figure 4.2 shows an outline of the G80 architecture, the baseline for the Nvidia Quadro

FX 5600 GPU. Further details of the G80 architecture are provided in Table 4.2. Vertices

and their attributes are the input to unified shaders (vertex, geometry and pixel), and later
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processing is organized using multiple functional units working on data groups. Unified

shaders are executed on 8 separated clusters, each containing 16 stream processors, 4 tex-

ture address units and 8 texture filtering units, together with a small L1 cache. This part is

built on a hardwired design for a much faster clock frequencythan the rest of the silicon

area (1350 MHz versus 600 MHz), leading to a peak processing power of one third of a

TFLOP. In the final stages of the graphics pipeline six partitions are responsible for the

antialiasing, z-buffer and blending, whose results are finally written into video memory.
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Figure 4.2: The graphics pipeline of the Nvidia G80 architecture.

From a graphics viewpoint, the G80 can be seen as a 4-stage graphics pipeline for

shading, texturing, rasterizing and coloring. As a parallel architecture, however, the G80

becomes a SIMD processor equipped with 128 cores, and CUDA is the programming in-

terface to use it for general purpose computing. From the CUDAperspective, cores are

organized into 16 multi-processors (each cluster becomes 2multi-processors with 8 cores),

each having a set of 32-bit registers, constants and texturecaches along with 16 KB of

shared memory. At any given cycle, each core executes the same instruction on different
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Table 4.2: Summary of the major features of our high-performance graphics card, the
Nvidia Quadro FX 5600, together with its limitations when programmed with CUDA.

GPU feature Value

Model G80GL
Core clock frequency 600 MHz
Stream processors clock 1.35 GHz
Manufacturing technology 90 nm

Memory feature Value

Memory clock 1.6 GHz
Bus width 384 bits
Bandwidth 76.8 GB/s
Size 1.5 GB

CUDA feature Value

Constant memory 64 Kbytes
Shared memory per multiprocessor16 Kbytes
32-bit registers per multiprocessor 8192
Max. no. threads per block 512 bytes

data, and communication between multiprocessors is performed through global memory

(see Figure 3.2). The features for the Nvidia Quadro FX 5600 GPU are summarized in the

last column of the Table 4.1, and the most important parameters for its programming with

CUDA are given in Table 3.6.

4.2.4 CPU-GPU comparison

Four key issues are considered for maximizing performance of algorithms running on

CPUs and GPUs:

1. Parallelism: CPUs are more popular on high-level parallelism like multi-nodes and

multi-sockets (SMP - Symmetric MultiProcessing). GPUs aremore aggresive on
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inner parallelism, like multicores (128 cores or stream processors in the G80 archi-

tecture), SIMD (Single Instruction Multiple Data) and ILP (Instruction-Level Paral-

lelism).

2. Computational power: The GPU capabilities for floating-point operations exceed

500 GFLOPS, in contrast with 10 GFLOPS for a 2007 state-of-the-art CPU. This ad-

vantage is a result of design for the color and position interpolations that are required

for performance graphics applications.

3. Memory access: Spatial locality is best exploited with cache memory, which is

around a thousand times larger in the CPU. Temporal locality,on the other hand,

benefits the GPU, whose architectural rationale and programming model are inspired

by the producer/consumer paradigm.

4. Bus bandwidth: A state-of-the-art 2007 graphics card delivers a peak performance

exceeding 80 GB/sec. of memory bandwidth, as compared to 10 GB/sec. for the

CPU. This is mainly due to its wider data path (384 bits, decomposed into six parti-

tions of 64 bits).

4.2.5 Layers of parallelism

These features are combined to create a cooperative multi-processor platform where all

the granularities of parallelism inherent in the architecture meet and are fully exploited in

the two stage algorithm at different layers:

1. Multi-node: The outer layer, where MPI is used for data partitioning and communi-

cation across nodes.
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2. SMP: The motherboard or inter-CPU layer, where MPI is also used formapping

processes to processors sharing the on-board DRAM memory.

3. Multi-core: The thread or intra-CPU layer, where pthreads are used as a software

mechanism to decompose the program according to the number of cores available.

Some multicore architectures have distributed all cache layers, while others share the

most outer one.

4. SIMD: Used within CUDA to fully occupy the 128 stream processors of the GPU

with a single code. These processors are grouped into 8 clusters of 16 cores sharing

16 KB of an internal shared memory.

5. ILP: The innermost layer, enabled by setting up CUDA blocks of computational

threads on the GPU. These blocks partition the internal register data set available in

the graphics processor.

4.2.6 Programming tools

Programming tools involved in the parallelization effort include MPI, Pthreads, C++,

Matlab and CUDA.

• MPI Message Passing Interface is used for programming the BALE multiprocessor,

or inter-node allocation and communication [77]. The MPI routines are callable from

C++ code.

• PthreadsPOSIX Threads are used for programming the multicore CPUs more ex-

plicitly [78]. This is an API for creating and manipulating threads which consists of

a set of C programming language types and procedure calls.
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• C++ Microsoft Visual Studio 2005 8.0 C++ compiler was used for programming the

CPU code. Multimedia extensions were enabled directly through HAL layer without

any specific library in between.

• CUDA Finally, the GPU was programmed using theCUDA Programming Toolkit,

version 1.1 (December, 2007).

4.3 Multiple Node Implementation

The two stage algorithm as implemented on the multiple node system is summarized in

Figure 4.3. As with the single node implementation, the mostdemanding task of computing

FFTs is carried out on GPU. In addition to the FFT calculations, other procedures of the

nonrigid refinement stage are effectively parallelized at the node-level:

1. The process begins as the head node/socket loads the imagepair from disk and dis-

tributes the RGB pixels to worker nodes/sockets for grayscale conversion. Multiple-

buffering is used along with asynchronous communication toamortize disk opera-

tion.

2. With the grayscale representation of the image pair residing on the worker nodes,

each node performs theW × W tile variance calculations on its portion of the base

image, reporting the variance calculations along with the grayscale conversion results

to the head node.

3. The qualified intensity features that meet theσ2 threshold are evenly distributed

among the nodes (including the head node) along with the corresponding portions

of the grayscale images. The nodes compute the normalized cross correlationρ and

report the maximum correlation for each intensity feature along with the maximum
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coordinates. Optionally additional cores are activated here as this is the most inten-

sive of the procedures.

Again, as with the single node implementation the rigid initialization stage is fast to the

extent that overall execution time would not benefit from GPUacceleration of node-level

parallelization.

Figure 4.3: The workflow for the two stage algorithm as implemented on a cluster of GPU-
equipped nodes. The most computationally demanding phase is selected to run on the GPU
for a much faster execution. The highlighted operations arecarried out in parallel at the
node level.

4.4 Experimental results

The multiple node implementation of the two stage algorithmwas applied to the bench-

mark dataset of mouse placenta and mouse mammary images described in Table 3.5. The
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experiments of Table 3.4 were performed on the BALE cluster using the visualization nodes

as computational resources and a enough number of additional frontend nodes playing an

active I/O role so as not to introduce a bottleneck. From thispoint forward, all references

to execution time are the total time without file I/O or conversion from RGB to grayscale.

As before the average of several runs for each experiment is reported.

4.4.1 Workload

The execution time for the registration algorithm is sensitive to three parameters:

1. The image contents. The more features found on an image, the higher computational

time. Figure 3.8 shows this variation between 10% and 30% forthe small window

size on the placenta data set.

2. The window size for feature search. The medium size is veryunstable and by far the

most demanding one in terms of computation (see Figure 4.4).The large window is

more representative and stable, and with a time slightly higher than the small case, it

will be the one chosen for parallel analysis on different numbers of BALE nodes.

3. The input data set. Mammary images are around six times larger (see Table 3.5), but

they contain approximately half of the feature density thanthe placenta images. This

way, the computational time is expected to be around 4-5 times higher on mammary

images.

Taking as departure point a fully serial C++ implementation,the placenta images each

take approximately 110 seconds for execution. Moving to thehigh-end Opteron CPU on

the BALE cluster and the mammary data set, the most computationally demanding case

consumes 1304 seconds (see the longest bar in Figure 4.5). For an average of 500 images
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such as required during a regular 3D reconstruction, this represents 181 hours of processing

time, more than an entire week.

4.4.2 Single node analysis

Figure 4.4 compares the computation time on a single CPU node with a single GPU

enabled to execute the convolution part of the registrationalgorithm for the placenta data

set. The average speedup for the GPU-enabled versions are 3.00x on a small window size,

6.16x on the medium size and 4.11x on the large size.

(a) Execution times on the CPU. (b) Execution times on the GPU.

Figure 4.4: Execution times for the three window sizes depending on the input image on
the placenta data set. (a) on the CPU and (b) for the combined CPU-GPU execution.

Figure 4.5 extends this analysis to an assorted set of configurations for the third image

of the mammary data set. In general, the GPU gains on the mammary image set are more

modest: 2.00x on a small window size and 2.59 for the large case (first chart column di-

vided by fifth). Within the mammary image set, multiple CPUa become more effective and

contribute to higher gains: Enabling a second CPU core provides a 1.82x factor improve-

ment (pthreads version) with an additional 25% improvementwhen allocating the cores on
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different sockets using MPI, and an almost optimal 1.93x factor when growing from two to

four cores within a single node.

Note that four CPU cores are faster than the combination of twoCPU cores and two

GPU chips. This is caused by the communication time requiredto feed the GPU with

data from its CPU partner via PCI-express. This cost is hidden in the four CPU case with

parallel I/O reads from file and/or dual channel DRAM memory modules. This fact is also

affecting parallel performance on the next section, where those configurations with double

the number of CPUs than GPUs are studied. These configurationsalso maintain better

workload balance considering that the convolution phase assigned to the GPU represents

around 60% of the computational time (see Figure 3.5), and that the GPU exceeds by far

the GFLOPS peak capacity of the CPU (see Table 4.1).

Figure 4.5: Single node performance under different node configurations for the largest
image in the mammary data set and the large window size.
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4.4.3 Parallel performance

Figure 4.6 shows the scalability of the algorithm on the CPU side, which is fairly con-

sistent for all images belonging to the placenta data set when running on different number

of CPUs. CPU executions are slower than GPU-assisted ones, butthey are expected to be

more scalable on a large number of nodes because computationcan be performed more

independently across multiple nodes than with the communication bindings of combined

CPU-GPU executions. This analysis is ratified in Figure 4.7, where the analysis extends

to the mammary data set for an assorted combination of CPUs andGPUs. A superlinear

speedup case is even observed when moving from 2 to 4 CPUs (thatis, from a dual-core to

a dual-socket dual-core execution). This was anticipated by the results in Figure 4.5, where

multi-socket parallelism was found to be more rewarding than the multi-core counterpart.

Figure 4.6: The scalability of the algorithm on CPUs for the placenta data set.
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(a)

(b)

Figure 4.7: Scalability on the mammary data set using the large window size (a) for the
CPU executions, and (b) for the combined CPU-GPU execution.
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(a)

(b)

Figure 4.8: (a) Scalability and (b) speedup on different number of nodes for the third image
in the mammary data set.
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Figure 4.9: GPU influence on algorithm performance when using the largest image in the
mammary data set and the large window size. The bars in the middle of the ”1” and ”2”
cases are empty because they correspond to impractical cases.

For an increasing number of nodes, Figure 4.8 shows on the left the progressive reduc-

tion in the execution time for the particular case of the third mammary image. On the right,

parallel speedup is more representative, telling us that the more aggressive a configuration

becomes at the intra-node layer, the less effective resultsin inter-node parallelism. In other

words, the fastest single-node configurations reduce theireffectiveness on a large number

of nodes, as a consequence of higher internal node communications.

Similarly, Figure 4.9 reports that GPUs are more effective on a small number of nodes

for accelerating a CPU code, showing us a small tradeoff in performance on massively

parallel computing.

Overall, from the departure point of 181 hours on a single Opteron CPU for a set of

500 images in the mammary data set, the parallel implementation on the 16 visualization
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nodes of the BALE cluster was able to reduce the time to 3.7 hours (26.61 seconds for a

single slide), achieving a total speedup of 49x when all 32 CPUs and GPUs participate in

the cooperative environment.

4.5 Discussion and Conclusions

With the advances in imaging hardware, applications like the registration of large gi-

gapixel images are increasingly popular, evolving towardscomputationally demanding al-

gorithms for which parallel and scalable solutions become essential. Within this scope the

contribution of this work is twofold: First, a parallelizable method is provided which has

been successfully applied to biomedical studies for reconstructing the 3-D structures of

biological specimens with micron resolution. Second, a solid heterogeneous and cooper-

ative multiprocessor platform has been established where the best features of CPUs and

GPUs meet for applying higher degree of parallelism at a variety of levels: (1) Multi-task,

for simultaneous executions on CPU and GPU codes, (2) multi-node, using MPI for data

partitioning across nodes, (3) SMP (Symmetric MultiProcessing) for multisocket CPUs

and multicard GPUs using pthreads, (4) multi-cores, eitherusing MPI or pthreads, and (5)

SIMD (Simple Instruction Multiple Data), for the 128 streamprocessors of the GPU using

CUDA.

For a mammary sample composed of 500 slides, it takes more than 181 hours to accom-

plish the registration process on a single Opteron CPU. This was reduced to 50 hours when

enabling the GPU as co-processor, and minimized to 3.7 hoursfor a total speedup of 49x

when all 32 CPUs and GPUs participate in our multiprocessor cooperative environment.

While GPU-assisted versions were more effective at an intra-node layer, the CPU showed
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higher gains on inter-node parallelism, suggesting that they may complement each other on

hybrid supercomputers.

Overall, this study provides an illustrative example on howemerging architectures like

multicore CPUs and GPUs meet and combine their power to assistnon-computer scien-

tists for efficiently adapting grand-challenge applications and providing almost real-time

response to pathologists when working on the analysis of large scale biomedical images.
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CHAPTER 5

REGISTERING HIGH RESOLUTION MICROSCOPIC IMAGES
WITH DIFFERENT HISTOCHEMICAL STAININGS - A TOOL

FOR MAPPING GENE EXPRESSION WITH CELLULAR
STRUCTURES

The use of normalized cross correlation to identify precisecorrespondences from in-

tensity information has several advantages, including efficient calculation and intuitive pa-

rameter selection. As Chapter 2 demonstrates, the resultingcorrespondences are accurate

and can be used to produce genuine three dimensional reconstructions from sequences of

microscopic images.

In some scenarios it is necessary to register two images withdifferent stains to map

molecular information to structure. Registering an immunohistochemically stained image

to a hematoxylin and eosin stained image enables the visualization of the spatial distribu-

tion of proteins in microscopic structures at cellular resolution and beyond. The variation

in color and morphological appearance between images with different stains creates a chal-

lenge for the task of identifying precise correspondences.How does normalized cross

correlation perform when comparing content between differently stained slides?

In this chapter I investigate the issue of identifying correspondences between differ-

ently stained images using intensity information. Maximumnormalized cross correlation

is demonstrated to be ineffective as a classifier for correspondence accuracy, and a new
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measure based on the topographical features of normalized cross correlation is proposed.

The fast calculation of the proposed measure provides an advantage over the state-of-the-

art in multi-modal similarity measures. A study mapping PTEN stain to hemotoxylin and

eosin stain for breast cancer research is used to demonstrate the effectiveness of this new

measure.

5.1 Introduction

One of the key problems in the post genomic era is to understand the regulation of gene

expressions in organisms. Proteomics techniques such as genechips (microarray) and mass

spectroscopy have provided a tremendous amount of information on gene expression pat-

terns, however in most experiments these techniques are applied to biological samples that

contain a diverse population of cells and therefore reflect unlocalized expression profiles.

In contrast, gene expression profiles in different types of cells can be drastically different

and studies show that even the same type of cell in the same tissue environment can exhibit

heterogeneity in the expression levels of key proteins [79]. Therefore, the capability to

map gene expression to individual cells is essential to explore gene regulation within tissue

environments at the cellular level.

Microscopic imaging is an essential tool for investigatinglocalized gene expression

since it can capture both cellular distribution as well as gene expression information. How-

ever, the integration of cellular and molecular distribution information is a difficult task,

since this information is usually obtained using differentstaining techniques on two or

more different histological sections. This is a particularly challenging problem if a com-

putational approach is taken due to the large size of microscopic images (usually in the
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size of several gigabytes per image). In order to address this problem, this chapter de-

velops a novel workflow for the precise nonrigid registration of microscopic images with

different stain types. The workflow contains three stages: rigid registration, nonrigid reg-

istration, and multiresolution refinement. The “sharpness” of maxima in the normalized

cross-correlation function is demonstrated as a similarity measure capable of identifying

correspondences between an image pair. The use of correlation avoids the high computa-

tional cost of computing other measures used for multi-modal registration such as mutual

information. The correspondences are used as control points to compute a nonrigid trans-

formation between the two images. In order to improve the matching accuracy, a multiple

resolution approach is adopted for accurately matching keyregions of interests.

The proposed workflow was tested using mouse mammary gland images with a focus

on the mammary duct regions that are the potential sites for tumorigenesis. Serial section

images were obtained in pairs: one section stained to identify cellular structure using a

specific immunohistochemical stain and the other section stained to show expression of an

important tumor suppressor genePTEN. By registering these two section images PTEN

expression was mapped to structures of interest such as fibroblasts and epithelial cells. The

results show that the proposed algorithm is highly accurateand applicable to large scale

gene expression mapping studies for breast tumor microenvironment.

Three challenges need to be addressed to accomplish registration at the precision neces-

sary for expression mapping: comparison of content betweenimages with different stains,

nonrigid deformation and natural morphological differences between sections, and the large

size of high magnification histological images. These challenges are addressed with the

following approaches:
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1. A new similarity measure for intensity feature matching. The goal of image

registration is to determine a transformation that maximizes the similarity between

two images. Mutual information (MI) and normalized cross correlation (NCC) are

commonly used as similarity measures for registration, however, it was observed

that thresholding these raw similarity measures is not adequate to discriminate good

matches from bad. A new similarity measure is proposed basedon the “sharpness”

of maxima in the cross correlation function.

2. Adoption of a multiple resolution approach for nonrigid tra nsformation. In or-

der to register the images as precisely as possible a large number of spatial corre-

spondences are required to compute an accurate mapping. Dueto the elasticity and

heterogeneity of the tissues a local transformation cannotbe extrapolated globally.

To address this challenge a multiple resolution matching approach was implemented

to align local regions of interest in a piecewise linear manner.

3. Scalable workflow. Microscopic images can be very large. Using an Aperio slide

scanner to scan a1.5cm × 3cm section at 20X objective length generates an image

at the resolution0.5µm/pixel that is30, 000 × 60, 000 pixels and 6.5 GB in uncom-

pressed form. These large sizes require algorithms that areefficient, scalable, and

parallelizable. The proposed workflow is a slight variationof the two stage algorithm

and so uses the same efficient operations and workflow demonstrated as efficient and

parallelizable in Chapters 3 and 4.

This chapter is organized as follows: The biological application is discussed in Section

5.2. Related works are discussed in Section 5.3. The workflow is presented in Section 5.4.

The novel correlation sharpness similarity measure is presented in Section 5.5. Results are

offered in Section 5.6. Discussion and conclusion are contained in Section 5.7.
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5.2 Biological Application

The application in this chapter uses on a transgenic mouse model: the PTEN gene

knocked out in mammary gland fibroblast cells.1 PTEN, also known as phosphatase and

tensin homolog, is a well known tumor suppressor gene. Inactivation of PTEN is associ-

ated with several diseases including cancer [80]. It has been observed that this strain of

mice inevitably develop epithelial breast tumor after the knockout. The biological question

is how the inactivation of the tumor suppressor gene PTEN in fibroblasts leads to tumor

development in epithelial cells. Answering this question will provide insight into cell in-

teractions and tumorigenesis in the tumor microenvironment. A critical part of this inquiry

is the expression mapping of key genes in different cell types.

The PTEN mapping is demonstrated using serial mammary tissue sections obtained

from the transgenic mice with hematoxylin and eosin staining (H+E) and PTEN staining

applied alternately to produce a sequence of sections with interleaved stain types. In this

paper the focus is on producing a visualization for one pair of H+E and PTEN images,

but the interleaved staining approach could also be used to produce a three-dimensional

reconstruction that contains both the structural information from H+E and the expression

information from PTEN. The work in [81] presents such a reconstruction for cervical tissue

using an H+E/p16(INK4a)/CD3 interleaved staining.

5.3 Related Work

There are many works on observing the expression map of a specific gene in cells. The

most direct approach is to use confocal microscopic imagingto visualize the co-expression

of the gene product and the cell specific markers, however this approach requires extensive

1This is a tissue-specific knockout animal model.
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molecular and genetic manipulation on the model animal system. In [82], a tissue microar-

ray (TMA) approach was developed where small samples of retina (0.5mm×0.5mm) were

fixed in plastic and sectioned at 250nm interval. Each section was stained for a special

molecule of interest using immunochemical staining. Therefore for a section of sample

of 5µm thick, the products of twenty different genes can be determined. A limit of this

approach is that it is difficult to extend this technique to larger samples in the multiple-

millimeter scale. Another approach to obtain gene expression profile at high spatial reso-

lution is to use laser capture microdissection (LCM) to carveout small piece of tissue in

each section and conduct microarray analysis on the carved samples. This way the entire

profile of gene expression can be mapped to a spatial resolution of tens of microns. Other

approaches to obtain the gene expression information for multiple genes include multiple

spectral imaging [83], multicolor staining [84] and multiwash technique, however, these

techniques all require special experimental facilities and equipment.

Work on the automatic registration of images with differentstains is limited. The au-

thors of [85] propose a segmentation-based method for the nonrigid registration of images

with different stains. This approach requires producing a consistent segmentation between

the image pair by re-ordering and merging class labels priorto registering the class-label

images.

5.4 Image Registration Workflow

The registration of two images with different stains essentially follows the same work-

flow as the two stage algorithm presented in Chapter 2. The proposed workflow in Figure

5.1 introduces two new elements to the standard approach: correlation sharpness similarity

measure and multi-resolution refinement.
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The images are first aligned with an approximate rigid registration and then this initial-

ization is refined using precise comparisons of intensity information. Salient anatomical

structures such as blood vessels or ducts are matched between images based on properties

such as size and shape. These pairs are filtered based on geometric constraints to produce

an estimate of the rigid registration parameters.

Figure 5.1: Image registration workflow. The algorithm consists of three stages: rigid
registration, nonrigid registration, and refinement. The green blocks are independent local
operations that can be straightforwardly carried out in parallel.

The proposed refinement stage differs slightly from the standard two stage algorithm.

Correlation sharpness replaces maximum normalized cross correlation as a similarity mea-

sure for intensity feature matches. Due to the heterogeneity of tissue in the biological sam-

ples there is also a focused refinement in regions of interest. In mouse mammary gland,
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the adipose tissue and the extracellular matrix around mammary gland ducts have dras-

tically different mechanical properties in terms of elasticity and rigidity. The difference

in mechanical properties between these tissues leads to variations in the extent of local

deformations in the histological sections. A global nonrigid transformation such as a poly-

nomial transformation is not sufficient to compensate for more drastic local deformations

and morphological changes. Other methods such as thin-plate spline and locally weighted

basis functions require a large number of matched control points in this scenario, which is

not computationally feasible. To accommodate this behavior special regions of interest are

identified and a more precise matching is conducted iteratively in these regions at multiple

resolutions to refine the correspondence accuracy.

After the initial matching of intensity features, the center points for the template regions

and their corresponding matches are used as control points to generate global nonrigid

transformation such as polynomial or piecewise affine transformation. In regions of interest

such as mammary gland ducts and breast tumor stroma these matches are refined at higher

resolution to achieve better matching precision. The selected regions are effectively split

and rematched: the500 × 500-pixel template patch surrounding the region is divided into

four 250 × 250-pixel patches that are each re-matched. A piecewise affine transformation

is then computed and applied to these regions based on the newlocal matches.

5.5 Sharpness of Normalized Cross Correlation Function as a Simi-
larity measure

In many approaches to registration, including the two stagealgorithm, correspondences

are identified by comparing local regions of intensity usinga similarity measure such as

mutual information or correlation. The similarity measureis calculated over a 2D grid to
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identify the most similar alignment, and the similarity at this best position is thresholded

to determine if the match is satisfactory. Mutual information is often used in cases for

comparing images with different modalities or staining, however the computation of MI

requires the time-consuming calculation of a 2-D histogramat every point on the grid.

In contrast normalized cross correlation can be computed very quickly over multiple grid

locations using fast Fourier transform.

An extensive manual experiment was conducted to test normalized cross correlation

and mutual information for effectiveness in match discrimination. One mouse mammary

H+E/PTEN image pair was chosen and 320 template regions of500 × 500 pixels each

were manually selected throughout the H+E image from areas with ductal content. The

corresponding regions from the PTEN image were also manually identified and a search

window of 1000 × 1000 pixels was designated for each template region. Both mutual

information and NCC functions were calculated between the region pairs to determine if

the maximal similarity alignments were satisfactory. Figure 5.2 shows an example of the

NCC from one of the pairs used for testing.Interestingly, in most cases (291 out of 320),

the peak location of NCC corresponds to a satisfactory match.This important observation

motivated a further investigation into how to use NCC for matching regions with different

stain types due to its low computational cost.

Based on these manual classifications the distribution of maximal NCC values for the

region pairs was examined to determine if simple thresholding could be applied to discrim-

inate satisfactory matches. As shown in Figure 5.3, the ranges of NCC values for satisfac-

tory and unsatisfactory matches overlaps significantly, indicating that maximal NCC value

is not a good candidate for match classification. This is alsodemonstrated with the pair of
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(a) (b)

(c) (d)

Figure 5.2: Example of satisfactory match. (a) H+E duct region. (b) PTEN overlaid on
H+E corresponding to correlation peak. (c) 3-D surface viewof the NCC function shows a
peak in NCC value. (d) Isocontour of the normalized cross-correlation (NCC) function for
the duct region between two images with respect to x- and y- translations.

regions shown in Figure 5.4. Although the two pairs have similar maximal NCC values,

one of the match results is unsatisfactory.

5.5.1 Sharpness of the NCC function peak as a similarity measure

It was observed in the correlations between PTEN and H+E staining that although max-

imal values are not reliable for classifying matches, a distinguishably sharp peak is present

in most cases where the matching is satisfactory. For this reason a sharpness measure for
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Figure 5.3: Peak NCC values for the 320 regions tested.

the correlation function was defined based on the cross sectional area of the peakS at

different depthsh (Figure 5.5). Specifically the measureR is defined as

R = h/
√

S. (5.1)

For fixed depthh, the smaller the cross-section areaS, the larger the sharpness measure

R is. As shown in Figure 5.6, thresholdingR at 0.0025 can discard most unsatisfactory

matches with the cost of discarding some satisfactory matches as well.

5.5.2 Computation of NCC sharpness

The approximate calculation of the sharpness measureR can be achieved using a sim-

ple procedure. For a correlation surfaceρ(x, y) with a single peak, the areaS can be
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(a) (b)

(c) (d)

Figure 5.4: Peak sharpness is an indicator of match specificity. (a) Satisfactory alignment.
(b) Unsatisfactory alignment. (c) The maxima of the correlation surface for the satisfactory
alignment lies atop a prominent peak. (d) The peak for the unsatisfactory alignment is
broad and gradual.

computed for smallh by simply counting over the whole grid the number of correlation

valuesρ(x, y) ≥ ρmax − h. This assumes that all correlation values greater thanρmax − h

lie under peak in question. In practice this assumption is met since most correlation sur-

faces contain only a single peak, be they sharp or broad. If the single-peak assumption

does not hold then a more sophisticated approach can be used,identifying distinct regions

whereρ(x, y) ≥ ρmax − h, and only counting the area of the region containingρmax. The

single-peak assumption was used for the experiments presented in this chapter.
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Figure 5.5: Illustration of a peak in whichh defines the height of the level set andS defines
the area of cross-section at heighth.

5.6 Validation and Results

A pair of images as described in Section 5.1 was used to test the proposed algorithm.

Since no ground truth is available the results were visuallyinspected and assessed.

5.6.1 The power of using the sharpness measureR as a similarity mea-
sure

The ROC curves were computed for thresholding onR and the peak NCC value respec-

tively. As shown in Figure 5.7, the choice of threshold onR has a fairly large range without

incurring any false positives (between 0.0026 to 0.0039 with at least 100 true positive but

no false positives). In practice this is a desirable characteristic since the unsatisfactory

matches can influence the quality of the final mapping results.

5.6.2 Multiple resolution matching

The goal of the multiple resolution matching is to improve the matching accuracy in key

areas of interest. These areas can be either manually selected or automatically chosen based
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Figure 5.6: The distribution ofR for 320 regions. The dashed line indicates that 0.0025 is
a reasonable threshold for discarding unsatisfactory matches while preserving a significant
number of satisfactory matches.

on biological criteria such as cell density or the existenceof certain structures. For valida-

tion 80 regions were manually selected. Seventy-nine (98.75%) regions show improvement

in matching accuracy in terms of continuity and smoothness of the structures. In order to

visualize the results of the mapping the images were converted to gray scale with the H+E

image as the red color channel and the PTEN image as the green channel. Overlapping

regions of significant intensity appear as yellow. Two examples are shown in Figure 5.8

and Figure 5.9. Not only are large structures such as mammarygland ducts mapped well,

microstructures such as cell nuclei and cell membrane are also closely aligned.
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Figure 5.7: Comparison of ROC curves for thresholding on the sharpness measureR and
on the peak NCC value.

5.6.3 Matching of mammary gland ducts

Mammary gland ducts are lined by a layer of epithelial cells which are thought to be the

primary sites for breast epithelial tumor initiation. It iscritical to have accurate matching

for these cells. In most cases the overall mammary gland ductlinings are accurate with

the layer of epithelial cells tightly overlapped. The individual cell nuclei are not always

matched, partially due to the fact that the gap between the two slides is 5µm and the nuclei

in one section may not appear in the adjacent section. In general the mapping is accurate
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(a) (b)

Figure 5.8: Visualization of multiresolution effect for stain mapping for regions of interest.
The mapped images are converted to gray scale and the H+E is embedded in the red color
channel and the PTEN in the green color channel. (a) Mapping before multiple resolution
matching. (b) Mapping after multiple resolution matching.

within the inspected regions. The results show that the epithelial cells have normal PTEN

expression while the fibroblasts that produce extracellular matrix in the periphery of the

ducts are PTEN deprived.

As shown in Figure 5.10, there are usually red regions aroundthe ducts. These regions

are mainly composed of fibroblasts and the extracellular matrix (with collagen produced

by fibroblasts). These regions are only stained in the H+E image but not the PTEN image

since the PTEN gene is deactivated in the fibroblasts, however, the epithelial cells which

form the lining of the ducts are stained in both sections as shown by the yellow color in the

overlaid images, implying that PTEN expression is normal inthe epithelial cells.
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Figure 5.9: Zoomed mapping results. The matching of cell nuclei can be seen in the blue
circle. However, in most cases this precise overlapping is not observed due to the natural
morphological difference between the two images.

5.7 Discussion and Conclusions

In this chapter a new image registration framework is proposed for overlaying micro-

scopic images with different stain types. In order to accurately register microscopic images,

it was first established that the sharpness of the normalizedcross-correlation function can be

used as a similarity measure for comparing intensity information between the two images.

This helps avoid the high computational cost of more sophisticated approaches, which is
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critical for processing images at this scale. In order to improve the matching accuracy, a

multiple resolution approach was adopted for key regions ofinterests. The algorithm has

been tested using real histological images of mouse mammarygland sample in a breast tu-

mor microenvironment study. The results show that the algorithm is highly accurate. This

work lays the foundation for large scale gene expression mapping of mouse breast tumor

microenvironment in where the plan is to map expression levels for 50-100 genes over four

stages of tumor progression.
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Figure 5.10: Examples of mapped mammary gland duct regions.
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CHAPTER 6

FEATURE-BASED REGISTRATION OF HISTOPATHOLOGY
IMAGES WITH DIFFERENT STAINS: AN APPLICATION FOR
COMPUTERIZED FOLLICULAR LYMPHOMA PROGNOSIS

Correlation sharpness provides a means for registering microscopic images with dif-

ferent stains. The ability of correlation sharpness to makediscriminating comparisons

between intensity content provides the precise correspondences needed for nonrigid regis-

tration. In some cases, however, the content is either too dissimilar or lacks the saliency

needed to generate accurate correspondences.

In this chapter I address this problem using a novel method for nonrigid registration

based on the matching of groups ofhigh level featuresthat represent small but conspicu-

ous anatomical structures through geometric constraints.This choice of feature provides

a rich matching environment, but also one that is fraught with a high mismatch probabil-

ity. Building upon the work of the fast rigid registration algorithm, this method increases

matching confidence by using geometric constraints to establish local groups of coherent

features. The proposed method is validated with a statistical analysis demonstrating that

given a proper feature set the accuracy of the automatic nonrigid registration is comparable

to a manual nonrigid registration.

This work is motivated by an application in the pathologicalgrading ofFollicular Lym-

phoma(FL). FL is the second most common type of non-Hodgkin’s lymphoma. Manual
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histological grading of FL is subject to remarkable inter- and intra-reader variations. A

promising approach to grading is the development of a computer-assisted system that im-

proves consistency and precision. Correlating informationfrom adjacent slides with differ-

ent stain types requires establishing spatial correspondences between the digitized section

pair through a precise nonrigid image registration. However, the dissimilar appearances of

the different stain types challenges existing registration methods.

6.1 Introduction

Histopathological examination is a crucial step in cancer prognosis. Pathological analy-

sis of biopsy samples is necessary to characterize the tumorfor treatment planning. Cancer

prognosis that relies on this qualitative visual examination may have significant inter- and

intra-reader variability due to due to several factors, such as experience or fatigue at the

time of examination [86, 87]. Poor reproducibility of histological grading may lead to in-

appropriate clinical decisions on the timing and type of therapy, and may result in under-

or over-treatment of patients with serious clinical consequences. A computer system ca-

pable of extracting quantitative, and thereby more preciseand objective prognostic clues,

may provide more accurate and consistent evaluations. For this reason a computer-assisted

grading system is being developed for one particular cancertype, Follicular Lymphoma

(FL) [88,89].

FL is the second most common type of non-Hodgkin’s lymphoma that consists of a

group of cancers developing from the lymphatic system. The word of “follicular” is de-

rived from round-shaped biological structures, namely “follicles”, which are visible under

microscope. In current clinical practice, the risk stratification and subsequent choice of
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therapy for FL mainly depends on the histological grading process that involves comput-

ing the average number of centroblasts (CBs), i.e., malignantfollicle center cells, as rec-

ommended by World Health Organization [90–92]. Due to the large number of follicles

usually exhibited in biopsy samples, only ten follicle regions equivalent to a microscopic

high power field (HPF) of0.159mm2 are randomly sampled to make this process feasible

in practice. Performing CB count over a limited number of follicles can introduce a con-

siderable sampling bias as the selected follicles may not berepresentative of other sample

regions, especially in heterogeneous tumors [87].

With sampling regions identified, centroblasts are then manually counted in HPFs of

the selected follicle regions. FL cases are classified into three histological grades based on

the centroblast average count: grade I (0-5 CB/HPF), grade II (6-15 CB/HPF) and grade

III ( >15 CB/HPF) [90]. Grade I is usually associated with indolent disease and not treated,

while Grade III is associated with aggressive disease and treated aggressively. A multi-site

study reported only61% ∼ 73% grading agreement across expert pathologists [86]. In

addition to this inter-observer variation, the manual counting of centroblasts is very time-

consuming, especially when a large number of biological samples need to be examined.

In the current follicle grading processes, pathologists usually resort to using pairs of

adjacent slides dyed with different stains to enhance visual contrasts. For example, im-

munohistochemical (IHC) stains, e.g., CD3 and CD20, provide a clear visual contrast for

the follicle structures at low magnifications, e.g. 2×, 4× and 8×. By comparison, Hema-

toxylin and Eosin (H&E) stain enhance the contrast of the cytological components, and

provide better cellular-level detail at higher magnifications, e.g. 20× and 40×. Two repre-

sentative sample image regions from IHC and H&E stained images captured at 2× magnifi-

cation are shown in Fig. 6.1, where follicle boundaries are clearly visible in the IHC (CD3
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(a) (b)

Figure 6.1: Sample image regions from CD3 and H&E stained FL slides captured at 2×
magnification. (a) and (b) correspond to adjacent sections from the same specimen and
demonstrate local and global deformations and the difficulty of identifying follicles from
H&E-stained slides. Sample regions corresponding to the same follicle are highlighted in
red.

stain in this specific example) stained image, but are not clearly discernible in the H&E

stained counterpart. The proposed computer-assisted system mimics the manual grading

procedure, working jointly with pairs of images with IHC andH&E stains. The flowchart

of this hybrid FL grading system is presented in Fig. 6.2.

One of the key steps in this system is to map the spatial coordinates of the detected

follicle positions from the IHC stained image to the H&E counterpart image where the

centroblast detection will occur. In order for the IHC imageanalysis to be able to interact

with the H&E analysis process, an image registration algorithm is required that allows the

output of IHC follicle detection to be fed into the H&E centroblast detection stage. In this

chapter, such a methodology and its implementation on clinical cases are reported.

Image registration for biological applications has been studied extensively [9,10,13,14,

22, 23, 26, 27, 32, 33, 35, 36]. Registration can be consideredas an optimization problem,
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Figure 6.2: Flowchart of the computer-aided FL grading system.

posed as finding the optimal transformationT between two imagesI1 andI2 to maximize a

defined similarity measure such as mutual information [38].Registration may also be for-

mulated as a problem of feature matching: finding correspondence between sets of repre-

sentative features using descriptors and spatial relations [62]. The space of transformations

includes rigid, that deals with only rotation and translation, and nonrigid, that compensates

for deformations such as bending, stretching, shearing andwarping [27,39,40]. Like most

optimization processes, a good initialization is criticalfor a global optimum outcome. In

many cases, a good rigid registration serves as an ideal initialization for non-rigid registra-

tion [26]. For large images with conspicuous deformations,hierarchical multi-resolution

registration methods have also been widely used in medical imaging applications [44,45].

The key challenge for the registration of sectioned histopathological images is to com-

pensate for distortion introduced by slide preparation. The input slide pairs are cut with a 5

µm thickness from adjacent locations so that the morphological structures vary minimally

between image pairs. However, there are discernible globaland local deformations between

these neighboring tissue sections due to the slide preparation procedure (i.e., sectioning,
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fixation, embedding, and staining). The preparation process can introduce a variety of

nonrigid deformations including bending, shearing, stretching, and tearing. At micron res-

olutions, even minor deformations become conspicuous and may prove problematic when

accuracy is critical to the end application. In order to compensate for such deformations,

a nonrigid registration is essential and success depends onestablishing a large number of

precise spatial correspondences throughout the extent of the image.

An additional challenge for the registration of histopathological images exists when the

images to be registered are stained with different stain types, and consequently have dis-

similar appearances. An approach based on intensity valuesrequires the ability to resolve

similarity between intensity signals using a measure such as mutual information. Such sim-

ilarity is not necessarily guaranteed for combinations of stain pairs, since for some stain

combinations only complex high-order perceptual qualities will be consistent. If the im-

ages do exhibit a significant visual similarity, then an approach exists that uses correlation

sharpness as a means for classifying local similarity between intensity information [61].

However, in the case of follicular lymphoma images with H&E and IHC staining, content

at local scales appears as a uniform texture of cellular components, certainly not an ideal

condition for intensity comparison between distinct sections. Another approach exists that

uses a segmentation of tissue types as input to a registration process [26]. The registration

reconciles differences in the segmentation by calculatinga displacement field that is used

for nonrigid registration. Again, this approach is not reasonable in the case of follicular

lymphoma, where the content is textural and segmentation isthe original problem that a

registration is intended to aid.

To address these challenges, this chapter proposes a registration approach based on the

matching of small salient anatomical features. Small features such as blood vessels appear
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universally in most tissues and have a common appearance in many stains, making their

extraction and matching feasible. These features are used to establish spatial correspon-

dences and register the images in two stages: first rigidly, to roughly align the images, then

nonrigidly, to correct for elastic distortions introducedby preparation. The first stage uses a

previously established mismatch-tolerant voting procedure [33]. With the rough alignment

of the images calculated, the second stage establishes coherent local networks of matched

features between the images to enhance the confidence of matching and reduce the prob-

ability of mismatch and provide a set of spatial correspondences that is satisfactory for

nonrigid registration.

The outline of the remaining chapter is organized as follows. Section 6.2 describes

the proposed algorithm for registering multi-stained consecutive histopathological FL im-

ages. Two components, including the feature extraction andthe actual transformation, are

presented. In Section 6.3, extensive experimental resultsand the validation processes are

presented. Conclusions are presented in Section 6.4.

6.2 Methods

To address the challenges of comparing content from consecutive slides stained with

different stain types, nonrigid distortion, and feature-rich content, a two stage algorithm is

proposed that consists of rigid initialization followed bynonrigid refinement. Both stages

operate by matchinghigh level features, image regions that correspond to distinct and

anatomically significant features such as blood vessels, other ductal structures, or small

voids within the tissue area. These matches serve as the control points for calculating spa-

tial transformations to register the image pair. Rigid initialization estimates the rigid align-

ment of the image pair from the loose consensus of correspondences between anatomical

123



features, following the method presented in [33]. The nonrigid stage refines the initial-

ization, by establishing a more accurate set of feature correspondences at a local scale.

Initialization reduces the search for matching in the refinement stage, resulting in a lower

likelihood of erroneous matches and less computation.

6.2.1 Data

The input images of FL tissue slides are digitized using a Scope XT digitizer (Aperio,

San Diego, CA) at40× magnification. Tissue slides are collected from the Department

of Pathology, The Ohio State University in accordance with an IRB (Institutional Review

Board) approved protocol. Slides are prepared by slicing thebiopsy specimen in 5 microm-

eter sections. Adjacent sections are stained pairwise, oneof each pair with CD3 and the

other with H&E. In this study five pairs of whole-slide biopsyspecimens associated with

multiple FL patients having different grades of the diseasewere used.

6.2.2 Measure for Evaluating Image Registration

For images with the same stain type, an ideal registration would be expected to match

the areas of corresponding follicles with perfect overlap,natural morphological differences

aside. However, this expectation does not apply to the scenario of images with different

stain types, as the difference in appearance of corresponding follicles in each stain type

results in significantly different follicle boundaries. Ingeneral, the follicles in CD3-stained

images appear smaller than their H&E counterparts due to thepreparation process (the tis-

sue is boiled or microwaved), and so when correctly registered the CD3 follicles only cover

the interior “kernel” regions of those follicle regoins in the H&E images. As illustrated in

Fig. 6.3, this fact implies a possible ambiguity in evaluating registration accuracy from a

ground truth perspective in that a decision cannot be made onwhich result is more optimal.

124



However, since the aim is to identify regions of interest in the H&E image, this ambigu-

ity will not compromise accuracy evaluation from the perspective of follicular lymphoma

grading. Therefore, a performance measure is proposed as the ratio between the overlap

area of the registered CD3 and H&E follicles and the area of theCD3 follicle as follows:

r =
Area(T (SCD3) ∩ SH&E)

Area(SCD3)
, (6.1)

whereSCD3 andSH&E are follicle regions detected in the CD3 and H&E images andT is

the transformation between the two images.

This quantity is measured for multiple manually marked follicles in each image as

described in Section 6.3.

(a) (b) (c)

Figure 6.3: Overlap ratio score. The corresponding boundaries of a follicle from the CD3
image (a) and it H&E counterpart (b). As shown in (c), different registration results can
produce a perfect overlap ratio score due to the differencesin follicle appearance between
the CD3 and H&E stains. In (c) The red line indicates the H&E follicle boundary, and the
green and blue lines indicate different manual registrations of the CD3 follicle boundary to
the H&E.
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6.2.3 Feature Extraction

Extraction of high level features is a simple process as for most types of stains these fea-

tures correspond to large contiguous regions of pixels witha common color characteristic.

For each stain type, a particular color segmentation followed by morphological operations

for cleanup usually suffices. Morphological opening is performed to reduce small noisy

features resulting from the color segmentation, and morphological closing follows to fill

in small gaps. The computational cost of these operations can be significantly reduced by

performing the extraction on down-sampled versions of the original images without com-

promising the quality of the final nonrigid result. Fig. 6.4 demonstrates sample input and

output of the extraction process.

Given the base imageB, and float imageF , their respective feature setsB = {bi}

andF = {fj} are extracted according to the process described above. Each feature has

associated with it a set ofdescriptorsused for the matching processes,bi = (~xb
i , s

b
i , e

b
i , φ

b
i)

andfj = (~xf
j , s

f
j , e

f
j , φ

f
j ), where~x = (x, y) is the feature centroid,s the feature area in

pixels,e the feature eccentricity, andφ the feature semimajor axis orientation.

6.2.4 Feature Matching

Both the initialization and refinement stages use feature matching schemes to establish

correspondences between the base and float images. The following describes the con-

ventions used for feature matching in both stages. Matches between individual features are

referred to asmatch candidatesif their size and eccentricity descriptors areconsistent. That

is, given the feature setsB,F , a match candidate(bi, fj) is established if the descriptors of

sizesb
i , s

f
j and eccentricityeb

i , e
f
j are consistent within given percent difference thresholds

ǫs, ǫe
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Figure 6.4: Feature extraction. This figure contains high-level feature extraction results
from a typical H&E image (left). Extracted features, shown in a binary image(right), repre-
sent regions such as blood vessels recognized by the use of a combination of color segmen-
tation and morphological operations. Descriptions of centroid location, size, eccentricity,
and major-axis orientation are calculated for each feature.

(bi, fj) ⇔











|sb
i−s

f
j |

min(sb
i ,s

f
j )

≤ ǫs

|eb
i−e

f
j |

min(eb
i ,e

f
j )

≤ ǫe

. (6.2)

If the base and float images are already roughly aligned thenφ-consistency may also be

enforced in the identification of match candidates.

Both stages also use feature matches to generate model rigid transformations(θ̃, T̃x, T̃y)

as part of their matching schemes. Generating a model rigid transformation requires, at

minimum, a pair of match candidates. To identify models originating from coherent pairs of

match candidates, geometric consistency criteria are usedto ensure consistent intra-image

distances between feature centroids and also consistent feature orientations. For a pair of

match candidates to form acandidate pair, {(bi, fj), (bk, fl)}, the intra-image centroid-to-

centroid distances between featuresbi, bk andfj, fl are required to be consistent within the

percent difference thresholdǫ~x. Additionally, for the initialization stage, the orientations of

the feature semimajor axes must be consistent with the modeltransformation anglẽθ
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{(bi, fj), (bk, fl)} ⇔















|‖~xb
i−~xb

k
‖2−‖~xf

j −~x
f
l
‖2|

min(‖~xb
i−~xb

k
‖2,‖~xf

j −~x
f
l
‖2)

≤ ǫ~x

|φb
i − φf

j − θ̃| < ǫφ

|φb
k − φf

l − θ̃| < ǫφ

. (6.3)

The model transformation(θ̃, T̃x, T̃y) for the candidate pair{(bi, fj), (bk, fl)} is cal-

culated by first solving for the anglẽθ = tan−1((yf
i − yf

k )/(xf
i − xf

k)) − tan−1((yb
j −

yb
l )/(x

b
j − xb

l )), corrected to the interval[−π, π]. The translation components̃Tx, T̃y are

calculated using̃θ and least squares.

The match candidate and candidate pair concepts are illustrated in in Fig. 6.5.

Figure 6.5: Rigid feature matching. Features are matched between the base and float im-
ages based on size and eccentricity to formmatch candidates(bi, fj), (bk, fl). Intra-image
distance between pairs of match candidates are compared to identify candidate pairs. A
model rigid transformation,(θ̃, T̃x, T̃y), is defined for candidate pairs with consistent dis-
tances.

6.2.5 Rigid Initialization

The rigid initialization procedure is described in detail in Chapter 2.2.

Determining an estimate for rigid registration from a set offeature matches requires a

method that is robust to erroneous matchings. This is especially true in microscope images
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where many features are indistinguishable, and a substantial amount of mismatches are in-

evitable. The fundamental idea of the method presented in [33] is the recognition that any

candidate pair{(bi, fj), (bk, fl)} defines a model rigid transformation(θ̃, T̃x, T̃y), and for

carefully chosen candidate matches and candidate pairs, a large portion of the concomi-

tant model transformations will concentrate around the desired parameters in the Euclidean

transformation space. Careful choice of matches and match pairs is achieved with a set

of consistency criteria enforced at two levels: between feature descriptors for matches be-

tween individual base and float features, and geometricallybetween pairs of such matches.

With a set of model transformations identified from consistent candidate pairs, a histogram

voting scheme is used to estimate the initialization parameters(θ, Tx, Ty).

Sample voting results from a follicular lymphoma image pairare presented in Fig. 6.6.

The associated parameter values are presented in Table 6.1.

6.2.6 Nonrigid Refinement

The challenge in nonrigid registration is the sensitivity of computed nonrigid transfor-

mations to errors in matching, a consequence of the freedom of such transformations to

accommodate distortion. In computing a relatively constrained transformation such as a

rigid transformation, the effect of mismatches can be mitigated through the constraints of

the transformation and least squares. For most common nonrigid transformation types the

effect of a mismatched feature is certainly strong locally,and depending upon the number

of matches used may also affect the registration quality globally.

For this reason the standard for establishing matches to compute a nonrigid transfor-

mation must be strict to achieve a low probability of mismatch. In the rigid stage, feature

comparisons are made globally to accommodate the possibly gross misalignment of the
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Figure 6.6: Sample histogram voting result for rigid initialization of follicular lymphoma
image pair. Manual parameter results are shown in red and automatic results in green.

image pair. The rigid transformation is inferred from the modes of the collection of model

transformations resulting from the set of all possible candidate pairs (which inevitably in-

cludes a large proportion of mismatches). Due to the presence of mismatches from model

transformations surrounding these modes these candidate pairs are not appropriate input

for computing the transformation of the nonrigid stage. However, the rigid initialization
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provides a starting point that can reduce the search area fora stricter feature matching

procedure that can reduce the likelihood of mismatching andalso computation.

Given the rigid initialization, the problem of matching individual features with high

confidence can be formulated as a pattern matching problem. Instead of comparing indi-

vidual features solely via their descriptors, the spatial patterns formed by the collection of

features within their neighborhood can be compared to increase the matching confidence.

Features that match with a high degree of confidence will havesimilar spatial patterns of

neighboring features with consistent descriptors. Since these neighborhood comparisons

are made at a local scale nonrigid distortion is usually mildand local rigidity can be as-

sumed.

Procedurally, the nonrigid matching scheme is as follows: Given feature setsB andF ,

for each base featurebi, the surrounding features in theRb-neighborhood are identified.

Match candidates forbi are located in the float image within theS-neighborhood centered

at~xb
i , and are matched tobi based on sizesf

j , eccentricityef
j , and orientationφf

j (orientation

can be used as criteria now that the images are rigidly aligned). For each match candidate

fj, the surrounding features are identified within theRf -neighborhood of~xf
j , and match

candidates other than(bi, fj) are identified. From these other match candidates, candidate

pairs are formed with(bi, fj), and pairs with model rotation angle|θ̃| > τ are eliminated.

The model for each of the remaining candidate pairs is used totransform the two neighbor-

hoods, and the number of base features inRb that fall within δ of ans, e, φ-consistent float

feature are counted. A match(bi, fj) is established if the maximum count exceeds the pat-

tern match thresholdν and|Rb
i |/2. This process is illustrated in Fig. 6.7 and summarized

in Algorithm Table 4.
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Parameters for the nonrigid matching procedure have clear interpretations and can be

selected by examining the features for a particular dataset. Neighborhood sizeRb is cho-

sen to capture small local networks of features, and dependson the density of features and

scan magnification. The match candidate search neighborhood, S, is selected to account

for error in the rigid alignment. The match neighborhood size, δ, is chosen to account for

physical distortion and noise due to feature extraction including natural morphological dif-

ferences. Parameter values for the dataset used in this chapter are presented in Section 6.3.

(a) (b) (c)

Figure 6.7: Nonrigid feature matching.(a) Locations of featurebi (red) and surrounding
features inRb

i -neighborhood (blue).(b) Match candidatefj (red) and surrounding features
in theRf

j -neighborhood (blue). Green lines in (a) and (b) indicate the pairings that generate

a model local rigid transformation.(c) The float features ofRf
j (red x’s) are transformed

ontoRb
i features (blue dots). In this case, the number of base features with a consistent

transformed float feature within itsδ-neighborhood (green circle) is three.
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Algorithm 4 Nonrigid Feature Matching
1: input: Feature setsB andF , neighborhood sizesRb, Rf , S, andδ, angle toleranceτ ,

and vote minimumν
2: initialize matchesN = {}
3: apply rigid transform(θ, T ) to float features and correct orientations
4: for each bi ∈ B
5: identifyRb

i = {bj : ‖~xb
i − ~xb

j‖2 ≤ Rb} \ bi

6: identify Si = {fj : ‖~xb
i − ~xf

j ‖2 ≤ S}
7: initialize match candidatesM = {}
8: for eachfj ∈ Si

9: comparesb
i , s

f
j , eb

i , e
f
j , andφb

i , φ
f
j

10: if (bi, fj) s, e, φ-consistentthenM = M∪ {(bi, fj)}
11: end
12: for each (bi, fj) ∈ M
13: identifyRf

j = {fk : ‖~xf
j − ~xf

k‖2 ≤ Rf} \ fj

14: identify match candidatesX betweenRb
i , Rf

j

15: identify match pairsP between(bi, fj), X
16: for each{(bi, fj), (bk, fl)} ∈ P
17: compute model transformation(θ̃, T̃x, T̃y)
18: if |θ̃| ≤ τ then
19: apply rigid transform(θ̃, T̃x, T̃y) toRf

j

20: countbm ∈ Rb
i within δ of consistentfn ∈ (θ̃, T̃ )-transformedRf

j

21: end
22: c(j) = max count
23: end
24: if max c ≥ ν AND max c ≥ |Rb

i |/2 then
25: match = arg max

j

c(j)

26: N = N ∪ (bi, fmatch)
27: end
28: output: N
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6.2.7 The polynomial transformation

The collection of point correspondences generated by nonrigid matching provides the

information needed to form a mapping that transforms the float image into conforma-

tion with the base. A variety of nonrigid mappings are used inpractice, differing in

computational burden, robustness to erroneous correspondences, and existence of inverse

form [27,39,40].

The desired transformation qualities include not only the capability to correct nonrigid

distortions, but also robustness to match errors, closed inverse form, and computationally

reasonable calculation and application. Of the commonly used nonrigid mapping types

such as thin-plate spline, local weighted mean, affine, polynomial, and piece-wise varia-

tions, polynomial offers a good compromise between warp complexity and the aforemen-

tioned qualities. Thin plate spline provides a minimum energy solution which is appealing

for problems involving physical deformation, however perfect conformity at correspon-

dence locations can potentially cause large distortion in other areas and excess error if an

erroneous correspondence exists. The lack of an explicit inverse form means the trans-

formed image is calculated in a forward direction, likely leaving holes in the transformed

result. Methods such as gradient search can be used to overcome the inverse problem, but

at the cost of added computation, which can become astronomical when applied to each

pixel in a gigapixel image. Kernel-based methods such as local weighted mean require a

uniform distribution of correspondences. Given the heterogeneity of tissue features this

distribution cannot always be guaranteed.

Polynomial warping admits an inverse form, is fast in application, and is capable of

satisfactorily correcting the mild distortion encountered in sectioned images. Polynomial

warping parameters can be calculated using least squares orits variants which can mitigate
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the effect of matching errors. Affine mapping offers similarbenefits but is more limited in

the complexity of the warping it can represent.

Second degree polynomials are used for the results in this chapter. Specifically, for

a point(x, y) in the base image, the coordinate(x′, y′) of its correspondence in the float

image is







x′ = a1x
2 + b1xy + c1y

2 + d1x + e1y + f1,

y′ = a2x
2 + b2xy + c2y

2 + d2x + e2y + f2,
(6.4)

Since each pair of matched correspondences provides two equations, at least six pairs

of correspondences are needed to solve for the coefficients in (6.4).

6.2.8 Experimental Procedures

To demonstrate the effectiveness of the automatic nonrigidregistration method, the fea-

ture extraction and registration algorithms were applied to the five image pairs described

in Section 6.2.1. Magnification was reduced from 40x to 4x using Aperio’s ImageScope

software, resulting in images roughly10, 000 × 7500 pixels in size. For feature extraction,

the same parameters for color segmentation and morphological operations were used for all

image pairs. The automatic registration parameters, presented in Table 6.1, were also iden-

tical for all image pairs. For comparison, manual rigid and manual nonrigid registrations

were also performed to the five image pairs, using eight manually selected control point

pairs per image pair. A simple Euclidean transformation wasused for the rigid registra-

tions. A second degree polynomial transformation was used for the nonrigid registrations.

All computations were carried out on a dual core 2.6 GHz AMD Opteron system with

8 Gigabytes of RAM. Software was developed using a combination of Matlab, and Mat-

lab’s C/C++ interface MEX. With the RGB images loaded into memory, the entire process
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Table 6.1: Summary of parameter values used in the tests and validation.
Rigid Nonrigid

Parameter Description Value Parameter Description Value
Size similarity (ǫs) 0.1 Base neighborhood (Rb) 1000

Eccentricity tolerance (ǫe) 0.1 Float neighborhood (Rf ) 1100
Distance tolerance (ǫ~x) 0.1 Search neighborhood (S) 250

Orientation tolerance (ǫφ) 5◦ Match neighborhood (δ) 30
Voting interval forθ (ωθ) 0.5◦ θ̃ angle tolerance (τ ) 5◦

Voting interval forT (ωT ) 30 Pattern match minimum (ν) 4

executes in two minutes for a single image pair. Less than onesecond of that is devoted to

the nonrigid matching procedure.

Visual inspection of the feature extraction results revealed that features in two of the five

image pairs are not uniformly distributed, being concentrated almost entirely in one half

of the tissue area in each case. In regions where features aresparse, nonrigid refinement

matches are hard to establish since it is difficult to identify coherent networks of features

at a local scale. This can result in spatially clustered control points, and depending on

the severity of distortion between the slides, a transformation that is significantly biased

to the feature-rich areas of the tissue. The validation analysis that follows is carried out

separately on these challenging image pairs and the featureregular image pairs, to illustrate

the importance of feature input and the expected outcome if asufficient feature set can be

identified.

6.2.9 Validation

The procedure for registration validation was motivated bythe application of auto-

mated FL grading. The goal in this application is to correctly register follicle regions so

that follicle segmentations from the CD3 image can be used to direct grading analysis in
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the counterpart H&E image. To evaluate registration performance in the context of this

application, the overlap of manually identified follicle regions was compared for different

registration methods.

For each H&E/CD3 image pair, five corresponding test folliclepairs were selected. The

boundaries of each of these test follicle pairs were then marked by five different observers.

The same test follicle pairs were marked by each observer, generating a total of 25 fol-

licle pair markings per observer. The overlap ratio demonstrated in Figure 6.3 was then

computed for every follicle test pair marking using the manual rigid, manual nonrigid, and

automatic nonrigid registrations for each image pair. These overlap ratios for observeri,

image pairj, and follicle test pairk are denoted asRigidi(j, k), Manuali(j, k), and

Autoi(j, k) respectively. The feature regular image pairs are the setj ∈ {1, 2, 3} and the

challenge image pairs are the setj ∈ {4, 5}.

This validation aims to illustrate two points: 1. that nonrigid registration is beneficial

in terms of follicle overlap and 2. that the automatic nonrigid registration is comparable to

a reasonable manual nonrigid registration. These points are addressed with three statistical

analyses: the boxplot graphical analysis, significance testing by paired t-test, and the Bland-

Altman graphical analysis.

The boxplot is a graphical analysis that presents the distributions of the overlap ratios

for feature image pairs, separated by both registration method and observer. The median,

inner-quartile range, and outliers are plotted for each observer-method set,{Methodi(j, k)},

∀(j, k) ∈ {1, 2, 3} × {1, . . . , 5}, for somei.

To demonstrate the similarities of manual nonrigid registrations, significance testing

was performed on these observer-method sets using thepaired t-test. For each observer

i, the overlap ratios were paired by method for all follicles in the feature regular image
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pairs,{(Manuali(j, k),Autoi(j, k))}∀(j, k) ∈ {1, 2, 3} × {1, . . . , 5}. The t-statistic

was calculated for these method-pair sets,

ti = Di

√

15

σ2
i

, (6.5)

whereDi andσ2
i are the mean and variance

Di =
3

∑

j=1

5
∑

k=1

(Autoi(j, k) − Manuali(j, k)),

σ2
i =

1

15 − 1

3
∑

j=1

5
∑

k=1

(Autoi(j, k) − Manuali(j, k))2.

The t-statisticti was compared against the Student’s t distribution to compute the p-

valuepi.

To further illustrate the similarities between automatic and manual nonrigid registra-

tions, a Bland-Altman graphical analysis was performed. TheBland-Altman analysis is

commonly used in biostatistics to examine the extent of agreement between to distinct

measurement methods [93,94]. It is included here because itillustrates the performance of

the automatic and manual methods well. It is noted, however,that comparing the overall

performance of two registration methods is fundamentally different from the assessment of

the agreement of measurement methods. In the case of measurement assessment, agree-

ment between individual samples is critical, since the measurements intended to provide

the same information about some underlying physical state.In registration, follicle over-

laps may disagree individually between methods, but the collection of overlaps may still

indicate comparable performance.

For each observeri, the differencedj,k and meanµj,k were computed

µj,k =
Autoi(j, k) + Manuali(j, k)

2
(6.6)

dj,k = Autoi(j, k) − Manuali(j, k), (6.7)
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and the mean and difference tuples(µj,k, dj,k) were plotted for all follicles in the feature

regular image pairs. Along with the mean and difference tuples, the average-difference and

95% confidence intervals are plotted to provide informationon the mean performance of

the methods and their range of agreement.

Finally, a simple analysis is performed to demonstrate the spatial variation of registra-

tion quality in the challenge image pairs. For each folliclek, the overlap ratiosAutoi(j, k),

j ∈ {4, 5} are averaged over observeri.

6.3 Results

The boxplot is presented in Figure 6.8. The corresponding means and standard devia-

tions of the observer-method sets are presented in Table 6.2. Comparing manual rigid and

manual nonrigid registrations, the nonrigid registrationimproves the mean overlap ratio

for all markings except those of observer two, demonstrating the benefit of correcting non-

rigid distortion. Mean overlap ratios for automatic nonrigid registration are comparable to

manual nonrigid, with slight improvements noted for the markings of three observers.

Table 6.2: Mean overlap ratios and standard deviations for observer-method sets of feature
regular image pairs.

Observeri Rigidi Manuali Autoi

mean± s.d. mean± s.d. mean± s.d.

1 0.8943± 0.0930 0.9373± 0.0889 0.9306± 0.1152

2 0.9223± 0.0667 0.9190± 0.0950 0.9213± 0.0718

3 0.9428± 0.0838 0.9520± 0.0617 0.9562± 0.0477

4 0.9167± 0.0850 0.9278± 0.0969 0.9316± 0.0727

5 0.9247± 0.0732 0.9384± 0.0691 0.9351± 0.0614
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Figure 6.8: Boxplots of overlap ratios for observer-methodssets from feature regular im-
age pairs. Outlier overlap ratios from poorly registered follicles are indicated by red cross
markers. Mean performance is comparable between manual nonrigid and automatic non-
rigid registrations.

The p-values for the t-statistics of the method-pair sets are presented in Table 6.3. These

p-values range from 0.79 to 0.93 indicating no statistically significant difference between

the manual and automatic methods.

Table 6.3: Significance values of paired t-tests for method-pair sets from feature regular im-
ages{(Manuali(j, k),Autoi(j, k))}. The p-values indicate no statistically significant
difference between the overlaps for manual and automatic nonrigid registration methods.

Observeri 1 2 3 4 5

pi 0.7981 0.9301 0.8194 0.8901 0.8905

The Bland-Altman plot is presented in Figure 6.9. Tuples plotted above zero indicate

better performance for the automatic method. The average-difference is nearly zero for all

observers. Most tuples are clustered tightly in the center right of their plot, indicating a
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high average overlap and small difference for the manual andautomatic methods. Each

observer has at least one outlier tuple with a difference beyond the 95% confidence limits.

For each outlier tuple indicating superior performance forthe manual registration, there is

a complementary tuple indicating superior performance forthe automatic method.

Figure 6.9: Bland-Altman analysis of manual and automatic nonrigid registrations. Aver-
age difference is indicated in red. The 95% confidence limitsare indicated in green.

The overlap results from the challenge image pairs illustrate the impact of feature input

to the automatic nonrigid registration. Where the test follicle pairs were chosen uniformly

throughout the extent of the tissue, the features in the challenge image pairs were not uni-

formly distributed, resulting in a transformation that is biased to feature-rich areas. The

overlap ratios of Table 6.4 demonstrate this point, where test follicles located in feature

rich regions show comparable quality and others apparentlysuffer from a lack of proximal

feature matches.
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Table 6.4: Challenge image pair overlap ratiosAutoi(j, k), separated by folliclek, and
averaged over observersi.

Follicle k 1 2 3 4 5

Image Pairj = 4 0.8482 0.2601 0.0505 0.8377 0.9366

Image Pairj = 5 0.9189 0.4540 0.9187 0.8862 0.9886

6.4 Discussion and Conclusions

This chapter presents a method for the nonrigid registration of distinctly stained follic-

ular lymphoma section images. As a key step for fusing the information extracted from

images of two different stains, i.e., IHC and H&E, computerized registration serves as a

bridge that allows for the combination of valuable information otherwise unique in each

resource in a meaningful way. In this particular study, the registration step makes it possi-

ble to recognize salient features from both stained images and map the follicle boundaries

detected in IHC images to appropriate locations in H&E images. As a consequence, fur-

ther grading analysis can proceed with H&E counterparts where cellular level analysis is

favorable. In the end, by providing accurate follicle boundaries on the H&E images, the

registration contributes to more precise CB count, the essential step in the FL grading pro-

cess.

The automatic matching method presented in this chapter offers a solution for applica-

tions such as microscopy imaging, where a large number of nondescript features are to be

matched with high-fidelity. Matching such features individually is a high probability-of-

error endeavor, and matching errors can result in poor conformation between the registered

image pair due to the freedom of nonrigid transformations. Here, confidence in matches
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between individual features is enhanced by verifying the existence of coherent networks of

features in the surrounding areas.

In terms of registration accuracy, the quality of transformations derived from automatic

matching depends on the ability to extract features throughout the extent of the tissue area.

When excluding the image pairs where extracted features are sparse and highly spatially

clustered, the registrations based on automatic matching are indistinguishable from those

based on the manual nonrigid method. This suggests that the registration framework could

benefit from a more sophisticated feature extraction process. However, in practice, poorly

registered follicles located in feature sparse areas couldpossibly be avoided by analyzing

the spatial distribution of feature matches and their proximities to each follicle.
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CHAPTER 7

REGISTRATION VS. RECONSTRUCTION: INCORPORATING
STRUCTURAL CONSTRAINT IN BUILDING 3-D MODELS FROM

2-D MICROSCOPY IMAGES

The methods of Chapters 2, 5, and 6 enable the nonrigid registration of large micro-

scopic images in a variety of scenarios. By establishing correspondences, either through

intensity feature or high-level feature matching, the nonrigid distortions in section images

can be corrected and the tissue reconstructed. In some casesthough the freedom that non-

rigid transformation provides has the unintended consequence of distorting the 3D structure

of the biological specimen. This is similar to the data modeling problem of overfitting: by

forcing features to conform perfectly the low-frequency trends in the 3D tissue reconstruc-

tion can be obscured.

In this chapter I demonstrate the overfitting phenomenon andpresent a method for

the reconstruction of tissues that preserves 3D structure.The proposed method is entirely

novel as the overfitting problem has not yet been demonstrated for reconstructions from se-

quences of sectioned images. The special case of tissues containing duct-like structures is

addressed. By automatically tracking duct trajectories through an image sequence a struc-

tural constraint is created that permits nonrigid reconstruction without structural distortion.

The structurally constrained reconstruction process is fully automatic and is demonstrated

on a set of 160 mouse mammary images.
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7.1 Introduction

Given a sequence (e.g., 200) of microscopy images taken as consecutive sections from a

mouse mammary gland, the goal of reconstruction is to infer the 3D structure of the tissue,

in this case specifically to study the microanatomy of the ductal structures in the mammary

gland. Due to the prevalence of soft tissues in the sample, section images typically con-

tain various distortions (e.g., bending, shearing, and tearing) and thus a pairwise nonrigid

registration of the sequence is used as the traditional reconstruction approach. A common

issue encountered with reconstruction is the evaluation/validation of the reconstructed tis-

sue since there is no ground truth available. Does the reconstructed tissue meet reasonable

expectations given the newly visible 3D anatomy? This question implies a fundamental

problem with the traditional approach: the lack of structural constraint in the reconstruc-

tion process. As the registration is performed pairwise over the image sequence, only the

consistency between any two images is considered, with the 3D anatomical structures usu-

ally serving as evaluation criteria rather than as a constraint to the reconstruction process.

One consequence of this sequential approach is illustratedin Figure 7.1 in which two ductal

structures are reconstructed as straight columns through perfect pairwise registration. All

of the trajectory in thex-direction andy-direction (within the image plane) is lost. In other

words, the traditional approach to reconstruction is more aregistration-for-registrationthan

a registration-for-reconstruction.

In this chapter a different approach is taken to the reconstruction problem by incorporat-

ing structural constraints into the processing pipeline. The incorporation of structural con-

straints implies that prior domain-specific (biological) knowledge is required. This chapter

uses the example of one of the most commonly accepted structural constraints: the smooth-

ness of ductal structures. In tissues, ductal structures such as blood vessels, lymph space,
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Figure 7.1: Left: original ductal structures sliced at different positions. Middle: the im-
ages for the ducts. Right: after the registration, the reconstructed ducts are column-like
structures.

and mammary gland ducts are commonly encountered. It is generally assumed that these

structures traverse smoothly throughout the tissues, neither jagged or perfectly straight.

An advantage of focusing on these ductal structures is that they are typically easily

identifiable within an image and can be easily extracted. These types of features easily

qualify as high-level features, and as demonstrated in Chapter 6 can be used to avoid ex-

pensive and sometimes error-prone comparisons of intensity information between images.

This is especially useful in fast registration for large microscopy images datasets. The only

assumption is that the nonrigid distortion of the sample is mild and so once an image pair

is rigidly registered subsequent operations can be performed in a limited locale.

7.2 The Reconstruction Pipeline

The reconstruction process is composed of three main stages:

1. Fast Rigid Registration. Rigid registration can be achieved using either optimiza-

tion based approach such as MMI [95] or high-level feature based approach such
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as those in Chapter 2 or [96, 97]. In addition, specific methodscan be applied to

provide good initial estimate on registration. In the mammary gland example, the

tissue samples have an elongated shape and principal component analysis (PCA) can

be used to determine the principal direction of the tissue which is used to estimate

the rotation angles between images. The purpose of this stage is to find the rigid

transformations between the images which facilitates the matching of corresponding

high-level features by narrowing down the search area.

2. Duct Tracking. In the example of this chapter the high-level features correspond to

ductal structures. In most cases, these features can be easily segmentated via color

space segmentation (see Figure 7.2). For instance, blood vessels usually have dis-

tinct red color and mammary gland ducts are distinct dark structures embedded in

the light-colored adipose tissues. After the ductal structures are segmented and the

images rigidly aligned, correspondences for each duct are located via search by nor-

malized cross correlation. The centroids of the duct regions are then linked together

between each image pair to form a trajectory. Due to the nonrigid distortion these

trajectories tend to be jagged.

3. Trajectory Smoothing and Transformation. The trajectory of each duct is then

smoothed using a smoothing filter. These smoothed trajectories then serve as the

structural constraint. Nonlinear transformations such the thin-plate spline are then

applied to each image to move the ducts to the locations of their respective smoothed

trajectories. Thus instead of sequentially registering each duct to its neighbor, the

ducts are registered to the desired structural configuration that incorporates informa-

tion from more distant neighbors (see Figure 7.3).
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Figure 7.2: Registration of ducts to smoothed trajectories.The trajectories for each duct
are tracked through the sequence of rigidly registered images. The resulting trajectories are
smoothed, and the duct centroids are then nonrigidly registered to the smoothed trajectories.

7.2.1 Duct Tracking

Given a sequence ofM rigidly registered imagesi = 1, 2, . . . ,M , the duct centroids for

ductdi
j are denoted as~xi

j = (xi
j, y

i
j). Starting with the ducts from image 1, aT×T template

is taken from image 1 surrounding each ductd1
j with center~x1

j . A correspondingS × S

search window is taken from image 2, withS > T (typically S = 1.5T ), also centered

at ~x1
j . The normalized cross correlation is computed between theT, S as in Equation 2.6.
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Figure 7.3: Registration of ducts to smoothed trajectories.The trajectories for each duct
are tracked through the sequence of rigidly registered images. The resulting trajectories are
smoothed, and the duct centroids are then nonrigidly registered to the smoothed trajectories.

The location of the maximum correlation is

(m,n) = arg max
u,v

ρ(u, v).

If ρ(m,n) exceeds a given thresholdτ (typically 0.8), then the ductd1
j is linked to the duct

d2
k with centroid nearest to the maximum correlation

k = arg min
k

((x1
j +

T − S

2
− x2

k)
2 + (y1

j +
T − S

2
− y2

k)
2), (7.1)

ρ(m,n) ≥ τ ⇒ d1
j ↔ d2

k. (7.2)

If a match satisfying the threshold cannot be identified, then the trajectory is terminated. If

a collision occurs, that is, if two ducts in image 1 both matchto the same duct in image 2

then the trajectory of the duct with lower maximum correlation is terminated. This process

repeats for each image pairi, i + 1, extending the linkage for each duct as far as possible.

Each unmatched duct in imagei + 1 marks the start of a new trajectory at iterationi + 1.

149



The result is a sequence of linked ducts, each resemblingdi
j ↔ di+1

j ↔ . . . ↔ d
i+Dj−1
j

for someDj. Each linked duct has associated with it a 3D trajectory of the duct centroids

which form the sequences

~Xj[z] = ~xz
j , Xj[z] = xz

j , Yj[z] = yz
j , z ∈ {i, i + 1, . . . , i + Dj − 1}. (7.3)

7.2.2 Trajectory Smoothing and Transformation

Any number of techniques can be applied to smooth the trajectory sequences. The

simplest approach is to apply a low pass filter toXj[z] andYj[z] independently to form the

smoothed trajectories

X̄j[z] = a0Xj[z] + a1Xj[z − 1] + . . . + aNXj[z − N ], (7.4)

Ȳj[z] = a0Yj[z] + a1Yj[z − 1] + . . . + aNYj[z − N ]. (7.5)

The drawback of this smoothing approach is that the couplingbetween theX andY direc-

tions is not taken into account. A more sophisticated approach using spline fitting could

simultaneously incorporate information in both theX andY directions.

The smoothed trajectories serve as the structural constraint for the 3D reconstruction.

For any value ofz the duct trajectory~Xj[z] incorporates not only the information from one

neighbor (as it would with a pairwise scheme), but information from several neighbors. In

the case of the traditional pairwise registration scheme, the information is flows in only one

direction, ductdi
j +1 is fixed to the same location of ductdi

j, so that all subsequent ducts are

fixed to the location of the first. In the structure preservingscheme the smoothing procedure

can use anacausal filterto incorporate information from both directions, backwards and
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also forwards inz

X̄j[z] = b0Xj[z +
N

2
] + . . . + bN

2
Xj[z] + . . . + bNXj[z − N

2
− 1], (7.6)

Ȳj[z] = b0Yj[z +
N

2
] + . . . + bN

2
Xj[z] + . . . + bNYj[z − N

2
− 1]. (7.7)

This way smoothing not only looks to where the duct has been, but also to where the

duct is going.

With the smoothed trajectories computed, what remains is tononrigidly register the

duct centroids to the smoothed locations. For each imagei the structural constraint as

it lies within the same image plane is used as an atlas for registration. The centroid of

each duct(Xj[i], Yj[i]) is assigned to the smoothed location(X̄j[i], Ȳj[i]) to form a control

point. The control points are then used to calculate a transformation based on thethin plate

splinewhich guarantees perfect conformity of the centroids to thedesignated smoothed

locations [98]. This transformation is calculated for eachimage and then applied to map

the image to its structural constraint.

7.3 Results

The structural constraint registration pipeline was implemented in Matlab and applied

to a set of 160 mouse mammary gland images (600 × 7500 pixels) as shown in Figure

7.4. Rigid registration was performed using PCA and MMI. The images were converted

to grayscale and the ducts were identified using a segmentation via thresholding combined

with morphological erosion to remove cell membranes of the adipose tissue. Each duct is

tracked with the resulting trajectories shown in Figure 7.5. The trajectories were smoothed

using a fifth order acausal low pass filter. The entire segmentation, tracking, and smoothing

process took several minutes. Each image was transformed using the thin-plate spline

method.
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Figure 7.4: Sample mouse mammary gland image.

(a) (b)

Figure 7.5: Duct trajectories. (a) Unsmoothed trajectories. (b) Smoothed trajectories.

Figure 7.6 shows several views of the reconstructed ducts in3-D space. The volumetric

rendering is generated using VolSuite, a volumetric rendering software developed at the

Ohio Supercomputing Center. From the detail views of the individual ducts it is apparent

that the trajectory components lying within in the imagexy-plane are not destroyed. Duct

bifurcations are also visible. Compare this to the reconstruction without structural con-

straint shown in Figure 7.7. The traditional pairwise approach that sequentially stacks the

duct centroids destroys thexy-components of the duct trajectories.
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(a)

(b) (c)

Figure 7.6: Mouse mammary reconstruction with structural constraint. (a) Rendering of
the reconstructed mouse mammary gland ducts. (b)-(c) Detailed views of the individual
ducts.

7.4 Discussion and Conclusions

This chapter presents a novel approach for the 3D reconstruction of tissue from se-

rial section images. The key contribution is the integration of a structural constraint into

the reconstruction process. As opposed to the traditional pairwise sequential registration

approach that infers structure from images one pair at a time, the proposed method uses

information from multiple images to enforce a structural criteria. The motivating example
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Figure 7.7: Mouse mammary reconstruction using traditional pairwise sequential registra-
tion. The ducts are reconstructed as straight columns void of any trajectory components
within the imagexy-plane.

of reconstructing mammary ducts provides a significant example of the benefits of this ap-

proach. By imposing a smoothness criteria the ducts can be registered naturally resulting

in reconstructions with visible bifurcations. The use of anacausal smoothing filter enables

the smoothing process to take into account not only where theduct has been but where it is

heading. The entire process is fast, automatic, and produces credible representations of the

morphology of structures of interest.
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CHAPTER 8

TWO POINT CORRELATION FUNCTIONS

The value of the reconstructions presented in the previous chapters goes beyond visu-

alization of tissues and microanatomy. As indicated in the introduction, reconstruction is

only one element in the proposed image analysis pipeline. Since biological phenomenon

are not contained to two-dimensional space, a complete picture of the tissue environment

requires off-plane information, and so reconstructions serve as the starting point for many

deeper quantitative analyses. Depending on the motivations any number of investigations

can be performed on a reconstructed volume including morphological analysis of tissue

layers, or an examination of the distributions and localization of different cell types. It is

clear that in many cases identifying the tissue boundaries is a requirement for deeper quan-

titative analysis at the tissue or cellular levels of organization. This is known as thetissue

segmentationproblem, and will be the focus of the remaining chapters of this document.

The segmentation of tissues in histological images is a challenging problem due to both

image content and size. The content of microscopic images istextural in nature, consisting

of highly self-similar patterns of cellular and subcellular structures. The visual cues that

distinguish one tissue from another are varied and include color, scale, and shape. Differ-

ence in these distinguishing characteristics from one tissue to another may be subtle even

to a trained observer. In addition to challenging content, the size of histological images
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tends to be very large, on the order of hundreds of millions orbillions of pixels each. Alto-

gether this creates a difficult scenario for the applicationof traditional image segmentation

features. A segmentation scheme must be complex enough to incorporate the varied cues

that distinguish tissues, but not so complex that it is computationally infeasible.

Fortunately these qualities also describe the content of images used for studies in a re-

lated discipline: the science of heterogeneous materials.The study of the physical proper-

ties of heterogeneous materials has many parallels with tissue analysis. At the microscopic

resolution the microstructure of composites also often appears highly textural, consisting

perhaps of “cells” of one or more substances of different sizes and shapes embedded within

a another material.

In the pursuit of characterizing the physical properties ofmaterials, a rich framework

of stochastic geometricmethods has been developed by the materials science community.

This framework has been previously adapted for the segmentation of tissues in microscopic

images. In particular, thetwo point correlation functionshave been demonstrated as an ef-

fective feature for tissue segmentation. In this chapter I contribute several significant devel-

opments to the existing two point function segmentation methods. A fast and deterministic

method for the calculation of two-point functions is presented. The two point functions

are demonstrated to possess a peculiar low-dimensional structure in feature space that can

be exploited for unsupervised segmentation. Furthermore it is shown that images can be

segmented effectively using only a limited set of two point functions, the autocorrelation

functions, resulting in a considerable reduction in computation. In light of these develop-

ments the effectiveness of the two point function as a feature for tissue segmentation is

demonstrated on human follicular lymphoma and mouse placenta images.
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This chapter is organized as follows: Section 8.1 casts the tissue segmentation problem

in the light of heterogeneous materials and provides an overview of the tissue segmentation

problem and the relevant research on heterogeneous materials and image segmentation.

Section 8.2 describes the stochastic geometric tools with afocus on the two point correla-

tion function. The segmentation algorithm based on two-point correlation function features

is described in Section 8.3. Experimental results are provided in Section 8.4, including ex-

periments performed on tissue and natural texture images. Section 8.5 contains a discussion

of the results and conclusions.

8.1 Introduction

In the context of materials science, aheterogenous materialis a substance composed of

multiple materials, either a composite of distinct materials, or the same material in differ-

ent physical phases. Examples include porous single materials (where the constituents are

solid phase or void), soils, concrete, fluid suspensions, and biological tissues. A compre-

hensive overview of heterogeneous materials is available in [99]. Scientists have pursued

descriptions of the macroscopic properties of heterogeneous materials through examination

of their microscopic structure for more than one hundred years. Macroscopic properties

like electrical conductivity, magnetic permeability, fluid transport properties such as trap-

ping time, and physical properties such as elasticity all have roots in the microstructural

characteristics of materials. A large collection of publications now exist that develop a rig-

orous and generalizable analytical framework for predicting macroscopic properties from

knowledge of material microstructure [100–103].
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In this chapter the analytical tools for heterogeneous materials are borrowed for the

purpose of segmenting tissues in histological images. The methods of stochastic geome-

try provide the material scientist with measurements of statistics on the shape, size, and

spatial arrangements of components in a heterogeneous material. Treating tissue as a het-

erogeneous material, a composite of biologically meaningful elements such as nuclei, cyto-

plasm, or cells of different types, these methods can provide similar statistics for the shape,

size, and arrangement of these meaningful elements. With the understanding that the qual-

ities of these elements vary from one tissue to another, the aim is to employ the stochastic

geometric framework to derive robust features that are capable of distinguishing tissues.

8.1.1 Background

Image segmentation is one of the fundamental problems in image processing and com-

puter vision and has been studied now for decades. Techniques include thresholding [104],

region growing [105], histogram [106], edge detection [107], graph based [108], model

based [109], multi-resolution [110], and level set methods[111]. Many of the works on

texture image segmentation [112–114] and medical image segmentation [115, 116] make

use of co-occurrence based methods that are closely relatedto the two point correlation

function, as described in Section 8.2.

Most of the general approaches to image segmentation are represented in the works on

microscopic image segmentation. The segmentation of subcellular structures such as nuclei

and individual cells has been demonstrated using watershed[117], graph-based [118], level

sets [119], and markov random field [120] approaches. Similar approaches are used for the

segmentation of clusters of cells []. While there are an abundance of works on segmenting

sub-cellular structures, individual cells, and cell clusters, there are relatively few works on
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the segmentation of tissues. Most of the existing approaches are focused on specialized

cases rather than offering generalizable methods. Blood vessels are segmented using a

neural network classifier with color information in [121]. Agraph-based method for iden-

tifying the interior boundaries of ducts in mammary tissue images is presented in [122]. A

level sets method with fast-marching initialization is also used to identify mammary ducts

in [123]. A more generalizable color histogram based methodusing a Bayesian classifier

with color histogram features was proposed in [16]. The authors in [124] develop an object-

based approach to segmentation that was demonstrated for segmenting cancerous regions

in colon biopsy images. This method follows the example of the earlier methods described

below in treating the tissue as a collection of discrete and biologically meaningful elements.

The N-point correlation functions were first proposed for the segmentation of tissues

in [125], where a high-order SVD classifier was used for supervised segmentation of mouse

placenta tissue layers. This provided promising results however the work was only vali-

dated using a single image. A more extensive validation was performed in [15] that in-

corporated more placenta images. This validation demonstrated that the NPCFs performed

significantly better than both Haralick and Gabor features for the placenta tissue. An ef-

fort was made at reducing execution time of NPCF feature calculation using a multiscale

approach in [126]. As in the previous works the same Monte Carlo approach for NPCF

calculation was used.

8.2 Preliminaries

8.2.1 Phase Images

In the language of heterogeneous materials, the constituents of a composite material

are referred to asphases. Where materials science is primarily concerned with physical
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medium, the notion of a heterogeneous material is easily generalized to the two dimensional

domain of images.

The termphase imageis defined here to describe an image composed of discrete con-

stituents. The phase imageI with P phases is a 2D scalar field, partitioned intoP comple-

mentary regionsVi that are both exhaustiveV1∪· · ·∪VP = I and disjointV1∩· · ·∩VP = ∅.

For the purposes of development, assume the phase imageI is a random entity in sampling

spaceΩ, and thatω ∈ Ω is one realization from the ensemble. For each phasei, an indicator

function is defined forx = (x, y) ∈ R
2 in I

I(i)(x, ω) =

{

1, x ∈ Vi(ω)

0, else
. (8.1)

The interpretation of phase is entirely specific to application. For example, in a bio-

logical specimen, the phases could correspond to biologically meaningful elements either

subcellular components such as nuclei and cytoplasm, or cellular components such as dif-

ferent types of cells. The flexibility in defining the phases of an image is one of the strengths

of the heterogeneous materials framework and will be discussed further in Section 8.3.

8.2.2 n-Point Correlation Functions

Statistical geometry appears in the study of physical phenomenon at both the micro-

scopic and macroscopic scales. In the study of heterogeneous materials an extensive theory

has been developed to characterize macroscopic physical properties using a statistical geo-

metrical framework. In particular, then-point correlation functions(NPCFs) have arisen in

expressions related to transport phenomenon and electrical and mechanical properties [99].

The NPCFs are also used in a problem of much larger scale, for cosmological studies on

dark energy and the distributions of galaxies [127,128].

160



(a) (b) (c)

Figure 8.1: Two point correlation function. (a) By placing line segments of lengthr with
random orientation onω, the fraction of times the endpoints both land in phase i represents
an estimate ofS2(r).

Given the set of indicatorsI(i)(x, ω), the n-point correlation functionS(i)
n is defined as

the probability of findingn pointsx1,x2, . . . ,xn in phasei

S(i)
n (x1,x2, . . . ,xn) ≡ E{I(i)(x1)I(i)(x2) . . . I(i)(xn)} (8.2)

= Pr{I(i)(x1) = 1, I(i)(x2) = 1, . . . , I(i)(xn) = 1}. (8.3)

Of particular interest is thetwo-point correlation function(TPCF)

S
(i)
2 (x) ≡ E{I(i)(x1)I(i)(x2)}. (8.4)

which is the centerpiece of the tissue segmentation methodology. If I is statistically ho-

mogeneous,S2 is invariant under translation and depends only onx1,2 = x1 − x2 rather

than absolute position. IfI is also statistically isotropic thenS2 is rotationally invariant

and depends only on distancer = |x12|. In this case the TPCF is denotedS2(r), and may

be visualized as an experiment similar to the familiar Buffon’s needle problem depicted in

Figure 8.2.2.
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The assumptions of a random field that is statistically homogeneous and isotropic are

used here for the purposes of illustration. In practice digital images are used rather than

random entities, and the TPCF is measured as a sample average within image boundaries.

Although images are typically anisotropic, estimatingS2 under the isotropic assumption

provides statistics that are insensitive to the orientation of content. This property is very

desirable for descriptors of image content in a classification or segmentation application.

8.2.3 Relationship to Co-Occurrence Matrix

The TPCF represents the probability that phases are separated by a given distance,

either directed or irrespective of orientation. Another popular measure used in the analysis

of traditional texture images is theco-occurrence matrix. The co-occurrence matrix is

based on a similar principal, namely the spatial distribution of image values [129], and is

closely related to the TPCF as demonstrated below.

Given an intensity imageG, the co-occurrence matrixCx represents the frequencies

that image valuesi, j are separated byx

Cx(i, j) =
∑

m

∑

n











1, G(m,n) = i,

G(m + x, n + y) = j

0, else.

(8.5)

Here,(x, y) are assumed to take on integer values to measure co-occurrence between pixels.

The diagonal frequencies ofCx are related to the sample TPCF ofG through a normaliza-

tion by the total comparisons in Equation 8.5

S
(i)
2 (x) =

Cx(i, i)

(N − x)(M − y)
, (8.6)

whereN andM are the horizontal and vertical image dimensions.

Despite this relationship the application of TPCFs to image segmentation is fundamen-

tally different from co-occurrence based approaches. The relationship between TPCFs and
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co-occurrence matrices is further explored in Section 8.3 where the use of TPCF as a fea-

ture for segmentation is described, and in Section 8.4.1 where TPCF is compared to a

commonly used co-occurrence based method, namely the Haralick features.

8.2.4 Sample TPCF Calculation

The TPCF can be determined analytically only in limited caseswhere the material is

explicitly defined. When dealing with tangible media the TPCF is calculated by sampling

a digitized representation of the heterogeneous material.

Given anM ×N digital phase imageI, to calculateS(i)
2 the autocorrelation of indicator

I(i)(x, y) is calculated first

R(i)(∆x, ∆y) =
∑

m

∑

n

I(i)(m,n)I(i)(m + ∆x, n + ∆y), (8.7)

where∆x, ∆y ∈ Z. The correlation of indicators effectively counts the number of pixels of

phasei that are separated by(∆x, ∆y), e.g.(0, 0) represents a full-overlap of the indicators,

andR(0, 0) is the number of pixels of phasei in I. The values ofR are normalized by the

number of overlapping pixels to calculate probabilities

R̂(i) = R(i)./(1M×N ∗ 1M×N), (8.8)

where1M×N is anM ×N matrix of ones,./ is element-wise division, and∗ is convolution.

The normalized elements of̂R represent the anisotropic but homogeneous TPCFS
(i)
2 (x).

To calculate the isotropic quantityS(i)
2 (r) from S

(i)
2 (x), a process ofcircumferential sam-

pling is used. Samples taken at a distancer from R̂(i)(0, 0) are averaged over angle

S
(i)
2 (r) =

∆θ

π

π
∆θ

−1
∑

k=0

R̂(i)(r cos (k∆θ), r sin (k∆θ)), (8.9)
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where∆θ is theangular interval. This sampling procedure is depicted in Figure 8.2. Sam-

ples that do not fall on the discrete grid ofR̂(i) can be inferred using bilinear interpolation.

Due to the symmetry of̂R(i), the sampling angles can be restricted to[0, π).

(a) (b) (c)

Figure 8.2: Sample TPCF calculation. (a)I(i) is extracted from the phase image to calculate
autocorrelation. (b) Circumferential samples are averagedat radiusr from R̂(i)(0, 0) to
calculateS

(i)
2 (r). (c) The pattern of on-grid samples required for interpolation is sparse.

Here∆θ = π/8 andr ranges from zero tow/2.

8.3 TPCF for Image Segmentation

The workflow for TPCF texture segmentation is presented in Figure 8.3. The process

begins with the identification of phases from a color or grayscale image to generate a phase

labeled image. Feature vectors containing the TPCFs of each phase are calculated from

local regions throughout the phase image. The dimensionality of the feature vectors is

reduced using principal component analysis, and the reduced dimension features are clus-

tered in feature space. The clustering in the feature space is then mapped back to the image

domain and refined if necessary to eliminate edge effects andaberrations. Each of these

stages is described in further detail below.
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Figure 8.3: TPCF segmentation workflow.

8.3.1 Phase Labeling

Given a color or intensity imageG with dimensionsM × N , the process of phase

labeling assigns a labeli ∈ {1, 2, . . . , P} to each pixel to generate the phase imageI.

While phase has a very specific definition in the study of heterogeneous materials, in

the imaging context phase is a flexible concept that providesa general approach to treating

images as mixtures of constituents. These constituents canbe identified by either low-

level information such as intensity or color, or high-levelinformation such as shape or size.

In the case of low-level information, any number of mode-identifying segmentations such

as mean shift [106] or K-means can be used to label constituents. If the distribution of

color/intensity is more uniform than multi-modal then a simple quantization may be more

effective. For high level information the determination ofphase is certainly application

specific since the phases likely represent meaningful unitse.g. different types of cells in a

tissue. A more complex knowledge-based approach may be required in this case, of which

there are many specifically for microscopic images [130–134].
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8.3.2 TPCF Feature Vectors

Define Φ(x, y) as thew × w region-of-interest with upper left cornerI(x, y). The

anisotropic sample TPCF is computed insideΦ(x, y) for r = 0 to w/2 and for each phase

i ∈ {1, 2, . . . , P} to form theP (w/2 + 1)-dimensional feature vector

vx,y = [S1
2(0), S1

2(1), . . . , S1
2(

w

2
), S2

2(0), S2
2(1), . . . , S2

2(
w

2
), . . . , SP

2 (0), SP
2 (1), . . . , SP

2 (
w

2
)]T.

(8.10)

This feature vector is computed over every position(x, y) ∈ {0, 1, . . . N − w} ×

{0, 1, . . . M − w} in the phase imageI.

8.3.3 Dimensionality Reduction

Although the feature vectorsvx,y reside inP (w/2 + 1) space, their energy is typically

concentrated in relatively few modes. Prior to segmentation the dimension of the feature

vectors is reduced by projectingvx,y onto the firstD primary two-point functions obtained

through singular value decomposition.

8.3.4 Clustering

To achieve a segmentation of the image the reduced dimensionfeature vectors are clus-

tered in the feature space and the clustering result is mapped back to the image space to

form a segmentation map.

The choice of clustering algorithm depends on the application and the distribution of

features in the feature space. As demonstrated in Section 8.4, the TPCF feature vectors

tend to be either restricted to a smooth low-dimensional manifold or distributed among a

mixture of low-dimensional linear structures. Several clustering methods are used in this

chapter to exploit these feature space distributions and depending on feature distribution
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and application constraints. K-means is used for a simple unsupervised clustering when

the features do not follow the mixture linear distribution.K-nearest-neighbors is used for

supervised clustering for problems where the feature distribution is not linear but is perhaps

too complex for K-means. When the features adhere to multiplelinear structures the lossy

data coding method of [135] is used to achieve an unsupervised segmentation.

Lossy data coding

The method of coding-length segmentation applies principals of lossy data coding to

achieve a robust segmentation of multivariate data by minimizing the coding length of the

segmented data. The method of lossy coding requires only oneparameter, the distortionε,

and is implemented using a simple iterative hierarchical procedure.

Given a set of vectorsV = (v1, v2, . . . , vm) ∈ R
n×m a lossy coding scheme maps the

sequence to a binary representation up to an acceptable lossε. If the vectors are assumed

to be independent and identically distributed from a multivariate normal distribution then

an approximation of the average coding rate is

R(V ) ≡ 1

2
log2 det

(

Id +
n

ε2m
V V T

)

(8.11)

whereId is the identity matrix. The overall coding length of the sequenceL(V ) in-

cludes the coding length for them vectors as well as the codebook lengthnR(V )

L(V ) ≡ m + n

2
log2 det

(

Id +
n

ε2m
V V T

)

. (8.12)

If the vectors are instead assumed to come from a mixture of normal distributions then

it may be more effective to code the overall sequenceV = V1 ∪ V2 ∪ · · · ∪ Vk by coding

each groupVi independently along with the group labels. In this case the coding length
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Algorithm 5 Pairwise Steepest Descent for Lossy Coding Clustering
1: input: DataV = (v1, v2, . . . , vm) ∈ R

n×m and distortionε.
2: initialize clusteringS = {Si = {vi}|i = 1, 2, . . . ,m}
3: while |S| > 1 do
4: Given setsSi, Sj, i 6= j such thatLs(Si ∪Sj)−Ls(Si, Sj) is minimal over all pairs
5: if Ls(Si ∪ Sj) − Ls(Si, Sj) ≥ 0 then break.
6: elseS = (S \ {Si, Sj}) ∪ {Si ∪ Sj}
7: end
8: output: clusteringS

becomes

Ls(V1, V2, . . . , Vk) =
k

∑

i=1

L(Vi) − |Vi| log2

( |Vi|
m

)

. (8.13)

The two terms in the summand of Equation 8.13 represent the coding length for each

groupVi and the (lossless) coding of group labels respectively.

This notion is the fundamental concept of lossy coding for clustering: an ideal cluster-

ing into groupsVi should correspond with an ideal coding length for the overall sequence.

By identifying the partitioning which produces the best compression, the segmentation into

clusters is obtained. In practice this can be achieved in a steepest-descent fashion using a

hierarchical clustering with coding length gain as the measure of distance. This procedure

is described in Algorithm 5. The optimality of this procedure is demonstrated in [135].

8.3.5 Segmentation Refinement

In some applications the results of the feature space segmentation may be unsatisfac-

tory. The limited spatial resolution of local TPCF calculations can produce edge effects

at texture boundaries, and the loss of spatial relationships between features in the image

space can result in mild segmentation noise. Simple corrections can be applied directly

to the segmentation result in the image domain to correct these problems. The approach

168



used depends on application requirements. Section 8.4.2 provides a refinement example

for tissue segmentation.

8.3.6 Computation

8.3.7 FFT method for sample TPCF calculation

The most computationally demanding portion of the TPCF calculations are the corre-

lations. These correlations may be computed efficiently using the Fast Fourier Transform

(FFT), as in Chapter 2. The implementation of TPCF segmentation is treated in further de-

tail in Chapter 9 where a more efficient method for calculatingTPCF features is described.

8.4 Experiments and Results

Experiments were performed with both natural textures and microscopic tissue im-

ages using the procedure described in Section 8.3. For natural textures TPCF features

were compared with both raw co-occurrence matrix features and traditional Haralick fea-

tures for images taken from the Brodatz texture collection. For microscopic tissue images

TPCF features were clustered with both supervised and unsupervised clustering methods

to demonstrate the ability to identify tissue boundaries.

8.4.1 Natural Textures

Three 128×128 images were selected from the Brodatz collection and arranged as in

Figure 8.4(a). The grayscale arrangement was quantized to two bits to produce a phase

image withP = 4 phases.

Three sets of features were calculated from the phase image:raw co-occurrence, Haral-

ick, and TPCF. Each set was independently reduced toD = 10 using PCA and clustered us-

ing K-means withK = 3. All feature sets were calculated in a sliding window ofw = 32.
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TPCF features were calculated at distancesr = 0, 1, . . . , 16 to generate 68-dimensional

features. Raw Co-occurrence features are the unwrapping ofCx into a 16-dimensional

vector, withCx computed atx = (0, d), (⌈
√

2d⌉, ⌈
√

2d⌉), (d, 0), (−⌈
√

2d⌉, ⌈
√

2d⌉) for

d = 1, 2, . . . , 16, and then averaged over the four orientations to form 256-dimensional

features. The Haralick features of contrast, correlation,energy, and homogeneity were cal-

culated from the unaveraged co-occurrence matrices and then averaged for each distance

to form 64-dimensional features.

The singular values of the three feature sets are presented in Figure 8.4(b) (normalized

for comparison). Each feature set clearly contains most of its energy in relatively few

modes. The features were reduced to 10 dimensions prior to clustering with K-means with

K = 3.

The segmentations are shown in Figure 8.4(c). The confusionmatrices for these seg-

mentations are contained in Table 8.1. For each feature typeall segmentation errors occur

within w/4 of the texture boundaries. The accuracy is comparable for each feature type at

94.1%, 97.3%, and 96.6% for Haralick, co-occurrence, and TPCF respectively.

A three-dimensional visualization of the TPCF feature spacewas produced using PCA

and is presented in Figure 8.4(d). The features conform to a smooth manifold-like structure.

The low-dimensional characteristic of the TPCF features suggests that this is an accurate

representation.

8.4.2 Tissue Segmentation

Two applications for tissue segmentation were explored using TPCF segmentation, us-

ing images and scenarios from previous chapters. The first isthe identification of follicle
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(a)

(b) (c)

(d)

Figure 8.4: Natural texture segmentation using TPCF, Haralick, and raw co-occurrence ma-
trices. (a) Brodatz textures grass, holes, straw, left to right. (b) Normalized singular values
for each feature set. (c) K-means segmentations. (d) Three-dimensional visualization of
TPCF features.
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Table 8.1: Confusion matrices for natural texture segmentations.
Haralick Co-oc TPCF

class 1 2 3 1 2 3 1 2 3
1 10961 0 0 10961 0 0 10961 0 0
2 1269 11147 0 606 11810 0 837 11579 0
3 750 0 10114 307 0 10557 335 0 10529

regions in human follicular lymphoma images from Chapter 6. The second is the distinc-

tion of spongiotrophoblast from labyrinth tissue in mouse placenta images from Chapter

2. In each application the phases were identified as cellularand subcellular components

representing nuclei, cytoplasm, red blood cells, and background.

Follicular Lymphoma

The motivation for the registation method of Chapter 6 was thedifficulty in segmenting

follicle regions in H+E stained images. To grade follicularlymphoma tumors it is necessary

to generate statistics on the concentration of centroblastcells within follicle boundaries.

While centroblast cells are easily identifiable in an H+E stain, the follicle regions are not,

prompting the use of nonrigid registration to map a folliclesegmentation from an IHC stain

to the H+E image.

Experiments were performed to demonstrate the capability of TPCF features to segment

follicles directly in H+E images. Two follicular lymphoma images with H+E stain were

selected from the dataset described in Section 6.2.1. One 1000×1000 region was selected

from each image to contain a mixture of follicles and other tissues, as shown in Figures

8.5(a) and 8.7(a). The pixels of these regions were labeled using a nearest neighbor clas-

sification to generate a four-phase image. TPCF feature vectors were generated for both
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(a)

(b)

Figure 8.5: Follicle segmentation example one. (a) H+E stained follicular lymphoma sec-
tion. Follicles appear as large elliptical regions. (b) Unsupervised segmentation using lossy
data coding clustering.
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Figure 8.6: Visualization of TPCF features for follicular lymphoma example one. Clusters
are color coded to correspond with Figure 8.5(b).
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(a)

(b)

Figure 8.7: Follicle segmentation example two. (a) H+E stained follicular lymphoma sec-
tion. Follicles appear as large elliptical regions. (b) Unsupervised segmentation using lossy
data coding clustering.
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Figure 8.8: Visualization of TPCF features for follicular lymphoma example two. Clusters
are color coded to correspond with Figure 8.7(b).
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phase images using the parametersw = 16, ∆θ = π/8, and lengthsr = 0, 1, . . . , 8. The

36-dimensional feature sets were reduced to ten-dimensional space using singular value

decomposition. Each reduced feature set was then clusteredusing the lossy coding length

algorithm in a semi-supervised configuration: to reduce clustering time the feature vectors

were sampled from the phase images with a horizontal and vertical stride of four pixels and

subsequently clustered. The remaining unsampled featureswere assigned to the resulting

clusters based on the most favorable coding length using Equation 8.13.

The results of the clustering are presented in Figures 8.5(b) and 8.7(b). In each case

some follicles are clearly identified. The quality of segmentation suffers towards the physi-

cal center of each tissue section, which corresponds to the lower right corner of each image.

From examining the RGB color images it is clear that there is a strong contrast gradient in

the same direction, with follicles closer to the physical center appearing less conspicuous.

This gradient may be due to either lack of stain penetration,nonuniform section thickness,

or nonuniform illumination in the scanning process.

Visualizations of the clustered TPCF features are presentedin Figures 8.6 and 8.8.

These visualizations were obtained by using singular valuedecomposition to project the

36-dimensional features into three-dimensional space. For both examples the TPCF fea-

tures follow a similar distribution. The features corresponding to the follicle and other

tissue regions are restricted to a smooth planar surface. The features corresponding to the

background and background-tissue transition regions forma conspicuous protrusion that

is approximately orthogonal from the planar surface. The features of the planar surface

originate from the tissue interior and so have very little energy in the TPCF feature vector
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components corresponding to the background phase. Likewise, the features of the protru-

sion have very little energy in the components corresponding to the tissue phases. These

facts together explain the peculiar distribution of the TPCFfeatures in these examples.

Placenta

The mouse placenta images originate from a study on the role of the Rb gene in induc-

ing morphological changes in mouse placenta [22]. The placenta contains several tissue

layers namely labyrinth, spongiotrophoblast, trophoblast, and glycogen. The aim of the

example segmentation application here is to distinguish the labyrinth layer from the spon-

giotrophoblast layer as they are the least distinctive pairof adjacent layers (see Figure 1.1).

A 1000×1000 pixel area was selected from each of 18 placenta images to contain ap-

proximately half labyrinth layer and half other-tissue layers. A maximum likelihood clas-

sifier was applied to these areas to classify the pixels into red blood cell, cytoplasm, nuclei,

extracellular matrix and background as in [15]. These classifications serve as seven-phase

images from which TPCF feature vectors are calculated. The parameters ROI sizew = 32,

lengthr = 0, 1, . . . , 16, and angular interval∆θ = π/8 produced 68-dimensional feature

vectors that were then reduced to ten-dimensional space prior to clustering.

The labyrinth tissue layer was manually marked to generate aground truth segmentation

for validation. To generate training data for KNN clustering the TPCF feature vectors for

a single image were spatially sampled both horizontally andvertically with a stride of

16 = w/2 pixels. The remaining seventeen images were then clusteredusing this training

feature set withK = 50. This was repeated using each of the eighteen images as training

data to explore the sensitivity of training data selection.The clustering results were then

mapped to the image domain and refined using morphological operations. Small objects

and holes appearing due to clustering noise were removed with the understanding that the
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Figure 8.9: Placenta image 22. The blue line represents the manual segmentation. The
green line indicates the segmentation with image 15 used fortraining.
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Figure 8.10: Placenta image 19. The blue line represents themanual segmentation. The
green line indicates the segmentation with image 18 used fortraining.
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labyrinth layer is contiguous. Accuracy was then measured on the refined segmentations

as the total percentage of correctly segmented pixels from both labyrinth and other-tissue

classes.

A summary of the segmentation accuracy is included in Appendix A, Table A.1. Each

row contains the segmentation results for one training image. The row medians indicate

the effectiveness of each image as training data, column medians indicate the quality of

segmentations for each image from all training data. With the exception of image 18, each

image was effectively segmented by at least one other. The images tend to form cliques

that produce mutually effective segmentation. For example, image 1 effectively segments

image 10 and visa versa, but poorly segments images 16 and 17.Likewise images 16 and

17 segment image 10 poorly. This indicates that there is variation in image content, either

owing to natural biological differences and/or the algorithm used to generate phase images

from color slide scans.

Two example segmentations are illustrated in Figures 8.9 and 8.10. In both exam-

ples the segmentation boundary conforms closely to the manually marked labyrinth tissue

boundary. In the upper left corner of Figure 8.9, the TPCF segmentation actually corrected

an error in the manual marking. The tissue between the segmentation boundary and man-

ual boundary in this area is not labyrinth tissue but giant cells from the spongiotrophoblast

layer. A mistake in the segmentation is apparent in the lowerportion of the same image

where the densely packed cluster of giant cell nuclei could not be distinguished from the

labyrinth layer. The results of Figure 8.10 are similar. Some areas of densely packed giant

cells from spongiotrophoblast tissue are again mistaken for labyrinth tissue. In the upper

left corner of this image there is a small protrusion of labyrinth tissue that is lost in the

segmentation due to the limitation in spatial resolution for the ROI sizew = 32.
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8.5 Discussion and Conclusions

By considering tissues as arrangements of discrete and biologically meaningful com-

ponents, the problem of tissue segmentation can be cast intothe heterogeneous materials

framework. The two point correlation function, a stochastic geometric function, provides a

means for acquiring statistics on the shape, size, and spatial distributions of these biological

components to use as cues for the segmentation of different tissues.

TPCF features were compared to the raw co-occurrence matrix and the Haralick fea-

tures for the problem of natural image segmentation. All results were comparable in terms

of segmentation accuracy, indicating that there is redundancy in the extra information of

both the raw co-occurrence and Haralick features. The raw co-occurrence and Haralick

features are calculated over multiple distances and averaged over orientation, as are the

TPCF features. Unlike the raw co-occurrence or Haralick features, the “off-diagonal”i-to-

j phase comparisons are not used for TPCF. The co-occurrence matrices are often sparse,

and so the raw frequencies are not used directly as features for segmentation or classifica-

tion, rather measures such as the Haralick features are computed fromC to extract features.

Neither the off-diagonal frequencies or feature extraction were beneficial in the example.

The TPCF features were demonstrated to be effective for the ultimate aim of tissue

segmentation. In the follicular lymphoma example the feature distributions (again low di-

mensional) permit an unsupervised segmentation using lossy coding clustering. The iden-

tification of follicles in the two examples provided was subject to the quality of inputs. The

lack of uniformity in the color distributions of the raw images implies a more sophisticated

preprocessing is required to produce consistent phase image for TPCF feature calculation.

The spatial resolution of TPCF features also presents a problem for identifying the narrow

channels that separate adjacent follicles. To have meaningthe TPCF must be calculated
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in some finite neighborhood which naturally implies limitations in spatial resolution. This

neighborhood must be large enough to capture the statisticsof the components that dis-

tinguish tissues, but not larger. In some scenarios the minimum neighborhood size may

indeed result in obscuring delicate or complex tissue boundary regions.

The phenomenon of non uniformity in phase images was also observed in the super-

vised segmentation of placenta, where images were bound into cliques as indicated by

effective mutual segmentations of one another. If natural biological variations are the root

of the difference in the distributions of components in the phase image then training data

must be chosen accordingly. If it is a matter of variation from slide preparation then phase

images must be generated using more sophisticated algorithms that can adapt to the dif-

ferences in content from one image to another. Regardless, the supervised segmentation

of placenta achieved 95%+ accuracy in many cases. This levelof accuracy is certainly

adequate for application in many biological studies.
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CHAPTER 9

COMPUTATION OF TPCF FEATURES WITH CORRELATION
UPDATING, PARALLELIZATION, AND GPU

TPCF features demonstrate promising results in the segmentation of tissues in micro-

scopic images, however they are accompanied by a significantcomputational burden. Con-

sider the following example: computing TPCF features for a16K×16K four-phase image

with w = 128 implies the calculation of more than one billion correlations. Performing

these correlations is a considerable task, with large imagedatasets pushing the correlation

calculations into the trillions.

In this chapter I present three approaches to reduce the execution time for the compu-

tation of TPCF features. The first approach is a novel method called correlation updating

that uses a derived relationship between TPCFs of neighboring regions-of-interest to up-

date TPCF values rather than computing them from scratch. This innovation results in an

extremely efficient TPCF calculation that does not waste computation on unused correla-

tion values, and that eliminates the strong time-dependency on window size that exists for

FFT-based correlation. The second approach is the parallelization of feature calculations

on the multi-node and multi-socket levels. The third approach is the implementation of cor-

relation updating on GPU, taking advantage of the fine-grained parallelism and fast on-chip

memory to further optimize TPCF feature calculation.
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9.1 Introduction

The computation of TPCF features is depicted in Figure 9.1. The computation consists

of three main processes: correlation calculation, normalization, and sampling/interpolation.

Given anM×N digital phase imageI, aw×w region-of-interest (ROI)Φx,y is defined

with upper left cornerI(x, y). For each phasei in the ROI, the autocorrelation of the binary

maskI(i)
x,y is calculated

R(i)(∆x, ∆y) =
∑

m

∑

n

I(i)
x,y(m,n)I(i)

x,y(m + ∆x, n + ∆y), (9.1)

where∆x, ∆y ∈ Z. The values ofRi are normalized by the number of overlapping pixels

to calculate probabilities

R̂(i) = R(i)./(1M×N ∗ 1M×N), (9.2)

where1M×N is anM ×N matrix of ones,./ is element-wise division, and∗ is convolution.

The normalized elements of̂R represent the homogeneous anisotropic TPCFS
(i)
2 (x).

The isotropic quantityS(i)
2 (r) is calculated using the process of circumferential sampling

depicted in Figure 8.2. Samples taken at a distancer from R̂(i)(0, 0) are averaged over

angle

S
(i)
2 (r) =

∆θ

π

π
∆θ

−1
∑

k=0

R̂(i)(r cos (k∆θ), r sin (k∆θ)), (9.3)

where∆θ is theangular interval. Samples that do not fall on the discrete grid ofR̂(i) can

be inferred using bilinear interpolation. Due to the symmetry of R̂(i), the sampling angles

can be restricted to[0, π).

This procedure is repeated for every phasei in the ROIΦx,y to calculate the feature

vectorvx,y. The ROI is positioned at every complete location in the phase image(x, y) ∈

{0, 1, . . . , N − w} × {0, 1, . . . ,M − w} to generate a set of(M − w + 1)(N − w + 1)

feature vectors.
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(a) (b)

(c) (d)

Figure 9.1: Computation of TPCF features. (a) A ROIΦ(x, y) is defined in the phase
image. (b) A binary mask is generated for each phase of the ROI. (c) The autocorrelation
R(i) is calculated for each mask and normalized and sampled to generate the TPCFS(i)

2 (r).
(d) The ROI is iterated throughout the entire image.
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9.2 Direct FFT-based correlation

The most computationally demanding portion of the TPCF calculations are the cor-

relations of Equation 9.1. These correlations may be computed efficiently using the Fast

Fourier Transform (FFT), as in Chapter 2. The binary maskI(i)
x,y is padded to the size2w−1

P(i)
x,y ≡

[

I(i)
x,y 0w×w−1

0w−1×w 0w−1×w−1

]

(9.4)

and transformed forward to the discrete frequency domain

F [k, l] =
1

√

(2w − 1)

2w−1
∑

n=0

2w−1
∑

m=0

P(i)
x,y[m,n]e−2πj mk+nl

2w−1 . (9.5)

The power spectrum is calculated by taking the magnitude of the complex elements

F [k, l] and the inverse transformation is computed to obtain the autocorrelationR

R(i) =
1

√

(2w − 1)

2w−1
∑

l=0

2w−1
∑

k=0

F (i)
x,y[k, l]e2πj mk+nl

2w−1 . (9.6)

The dimension2w − 1 is critical for the performance of the FFT calculations. The

most widely used FFT library, FFTW [48], offers optimal performance for powers of two

or small prime factors. The padding of Equation 9.4 may be manipulated to achieve these

sizes, only by adding zeros to achieve the next most favorable size. A demonstration of the

effects of transform size and padding is presented in Section 9.8.

9.2.1 Sparse sampling

The FFT calculates all(2w − 1)2 elements of the autocorrelationR, however only a

small set of these are required for the circumferential sampling procedure of Equation 9.3.

This is apparent in Figure 9.2, where only 10% elements ofR(i) are used to interpolate

S
(i)
2 (r). Although algorithms exist for computing subsets of FFT outputs [136–138], the
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Figure 9.2: Sparsity of samples for autocorrelation circumferential sampling. The full
autocorrelation matrix with the sampling pattern imposed is shown above. Here,w = 32
and∆θ = π/8. Red points indicate the interpolation locations. Black points indicate the
sampling points required for bilinear interpolation. In this case only 395 of the total 3969
elements ofR are used for interpolation.

available implementations of ordinary full-output FFT areoptimized to the extent that only

a relatively large transform will benefit [48].

9.3 Correlation updating

In addition to the sampling sparsity, the shared content between neighboring ROIs also

points to significant amounts of wasted computation. For example, althoughΦx,y, Φx+1,y
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differ by only two w-length columns of pixels, a straight-forward FFT method calculates

correlations from scratch for each.

The observations of sparsity and shared content may be simultaneously addressed using

the linearity of correlation. Rather than computingR(i) from scratch for each ROI, the

portions of neighboring ROIs, sayΦx,y andΦx+1,y, that are not shared may be used to

updateR(i) from Φx,y to Φx+1,y instead. Furthermore, if this updating is performed directly

in the image domain then the locations used in sampling may beselectively updated, and

the spatial dependency between the image and frequency domains can be avoided.

Given two horizontally adjacentw×w ROIsΦx,y, Φx+1,y with corresponding indicators

I(i)
x,y = [cx, cx+1, . . . , cx+w−1]

I(i)
x+1,y = [cx+1, cx+2, . . . , cx+w], (9.7)

wherec arew-length columns of pixels. The autocorrelation ofI(i)
x,y is denotedR(i)

x,y. Given

that I
(i)
x,y, I

(i)
x+1,y are distinguished only bycx, cx+w+1, the autocorrelationR(i)

x+1,y can be

calculated fromR
(i)
x,y by adding the contribution ofcx+w+1 and removing the contribution

of cx.

Define the correlation sums between the columns and their respective regions

a−
∆x,∆y ≡

∑

m

I(i)
x,y(∆x,m)cx(m + ∆y)

a+
∆x,∆y ≡

∑

m

I(i)
x+1,y(∆x,m)cx+w(m + ∆y). (9.8)
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Theupdate matricescontaining these correlation sums represent the contributions ofcx to

R
(i)
x,y andcx+w+1 to R

(i)
x+1,y

A− ≡























a−
w−1,w−1 · · · a−

0,w−1 a−
1,1−w · · · a−

w−1,1−w

a−
w−1,w−2 · · · a−

0,w−2 a−
1,2−w · · · a−

w−1,2−w
...

. ..
...

...
. . .

...
a−

w−1,0 · · · a−
0,0 a−

1,0 · · · a−
w−1,0

a−
w−1,−1 · · · a−

0,−1 a−
1,1 · · · a−

w−1,1
...

. ..
...

...
. . .

...
a−

w−1,1−w · · · a−
0,1−w a−

1,w−1 · · · a−
w−1,w−1























,

A+ ≡























a+
0,1−w · · · a+

w−1,1−w a+
w−2,w−1 · · · a+

0,w−1

a+
0,2−w · · · a+

w−1,2−w a+
w−2,w−2 · · · a+

0,w−2
...

...
...

...
...

...
a+

0,0 · · · a+
w−1,0 a+

w−2,0 · · · a+
0,0

a+
0,1 · · · a+

w−1,1 a+
w−2,−1 · · · a+

0,−1
...

...
...

...
...

...
a+

0,w−1 · · · a+
w−1,w−1 a+

w−2,1−w · · · a+
0,1−w .























(9.9)

The relationship between the autocorrelations for adjacent regions is then

R
(i)
x+1,y = R(i)

x,y − A− + A+. (9.10)

This updating procedure clearly applies to vertically adjacent ROIs as well.

Since only a subset of the elements ofR are required for sampling, the corresponding

update elements ofA+, A− may be calculated individually for the sampling locations.Each

sampling location will then require only2w multiply-add operations for updating from

one ROI to the next. Given the updating procedure, to calculate TPCF features over an

entire phase image requires onlyP total FFTs to initializeR(i)
0,0, i = 1, . . . , P . With the

initialization calculated the updating procedure is used to iterate the ROI both horizontally

and vertically through the remaining positions.

The updating procedure does not compromise numerical accuracy in the calculation of

autocorrelation. Since the elements ofR represent counts of pixels with a given separation
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there is no accumulation of error through repeated roundingoperations. The updating

procedure also provides flexibility in choosing the ROI sizew since performance is not

subject to the restrictions on FFT size.

Results comparing the time performance of updating against the ordinary FFT method

are presented in Section 9.8.

9.4 Parallelization

The procedure for calculating TPCF feature vectors from a phase image is a simple data

parallelism. The image may be divided among different nodes, sockets, or cores, with each

computing TPCF features for its portion.

The implementation used for the experiments of this chapterassumes a head/worker

organization. A single node loads the phase image, partitions it into horizontal strips and

distributes the strips to processing elements (including itself) using asynchronous commu-

nication and double buffering to overlap communication with disk operation. Each node

calculates the TPCF features for its portion of the image and returns the results to the head

node. MPI is used for communication between sockets and nodes [77] to achieve multi-

node and SMP parallelism.

9.5 GPU implementation

The process of calculating TPCF features contains both fine and coarse parallelisms:

the computation of sample updates (fine) and computation of ROIs (coarse). The fine

level of parallelism exists within a single ROI and is the computation of the update values

from Equation 9.9, the normalization of updated locations,and the bilinear interpolation

to calculateS(i)
2 (x). There are no dependencies in any of these processes so each is easily
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distributed. The coarse level of parallelism is the simultaneous calculation within multiple

ROIs. Clearly the process of correlation updating is dependent though, as updating the

autocorrelations forΦx+1,y requires the autocorrelations forΦx,y to be available.

Both of these levels of parallelism can be effectively exploited using CUDA on GPU

using block and thread parallelisms. A complete review of the CUDA programming model

is available in Chapter 3.2.

At the fine level, the computation of update values and bilinear interpolations can be

divided among threads in a single block. Fine level details aside, at the course level se-

quences of dependent ROIs can be divided among blocks. The arrangement into dependent

sequences of ROIs is essential since distinct blocks are unable to cooperate. A simple

way to achieve this arrangement is for each block may processa horizontal strip of ROIs

{Φ0,y, Φ1,y, . . . , ΦN−w,y}. Each block may then perform the updating sequentially on its

sequence of ROIs while other blocks do the same, achieving the coarse parallelism.

For the fine level parallelism the kernel runs in an iterativemanner, starting with initial-

ized values forR(
0,yi), i = 1, 2, . . . , P and lists of the sampling locations and interpolation

coordinates. In the first step, portions ofΦ0,y are loaded into shared memory, and each

thread calculates the update values for one sampling location until the list is exhausted.

These sampling locations are then updated and normalized. In the next step, each thread

then calculates one interpolation until the interpolationlist is exhausted. The threads then

reduce the interpolations, averaging to calculateS. The kernel repeats this process for each

ROI in the dependent sequence and then expires.
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9.5.1 Memory access patterns and shared memory

With each thread calculating a pair of update values, the memory accesses toΦ overlap

significantly among threads. Each update value requiresw multiply-add operations, and

some elements ofΦ may be accessed up tow times. For this reasonΦ is stored in shared

memory to avoid repeated reads to global memory. This decision is key since effective

shared memory usage is one of the critical components of algorithm performance on GPU.

Due to limited shared memory sizes, the autocorrelation matrices are maintained in

global memory. This presents a problem as the calculation ofupdate values cannot be

organized among the threads so that accesses toR(i) are coalesced. Storing R in texture

memory would be beneficial for caching and hardware interpolation, however textures are

read only and cannot be changed within the duration of a kernel.

The limitations on shared memory size prohibit a general implementation for different

ROI sizes. For this reason, the implementation used in Section 9.8 focused on the case

w = 32, ∆θ = π/8 that is useful for the analysis of 5X magnification images. Each block

was assigned 128 threads, 2176 bytes of shared memory, and 8 registers/thread to achieve

a 100% occupancy on a Quadro FX5600 card.

9.6 Related works

A description of works in the area of high performance computing for image processing

is presented in Chapter 3.6.

For the proposed fast correlation updating algorithm, a similar idea is found in the work

on fast median filtering [139]. In this algorithm the ROI filter response is calculated at every

position in the image by updating a kernel histogram based onthe incoming and exiting

information as the ROI shifts.
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9.7 Experimental Setup

Experiments were performed to examine the effects of correlation updating, paralleliza-

tion, and GPU implementation. Four implementations for calculating TPCF features were

produced:

1. Serial direct FFT. A fully serial implementation of the direct FFT-based method,

written in C++ using the FFTW library [48].

2. Serial correlation updating. A fully serial implementation of the correlation updat-

ing method, written in C++.

3. Parallel correlation updating. A parallel SMP/multi-node implementation of the

correlation updating method, written in C++ using MPI.

4. GPU correlation updating. A GPU implementation of correlation updating, using

C++/CUDA. The implementation is specific forw = 32, ∆θ = π/8.

9.7.1 Hardware

The above implementations were tested on a GPU equipped cluster, the BALE system

at the Ohio Supercomputer Center (see Figure 4.1). The BALE supercomputer is endowed

with 55 workstation nodes based on a dual-core Athlon 64 X2 architecture with integrated

graphics card and 16 visualization nodes enhanced with dual-socket x dual-core AMD

Opteron 2218 CPUs and dual-card Nvidia Quadro FX 5600 GPUs. All of these nodes are

interconnected with Infiniband, and include a 750 GB, 7200 RPM local SATA II hard disk

with 16 MB cache.

All GPU experiments and comparisons were run on the sixteen visualization nodes,

where each node has 8 GB of DDR2 DRAM running at 667 MHz on the CPU side and
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2x1.5 GB of on-board GDDR3 DRAM running at 1600 MHz on the GPU side, for a total

of 11GB available DRAM per node. The remaining experiments were performed on the

workstation nodes.

9.7.2 Data

Two sets of data were used in testing the three implementation varieties. The first

dataset is used to compare direct-FFT and correlation updating and to examine scalability

for the parallel implementation. It consists of ten1000 × 1000 five-phase images taken

from the placenta dataset described in Chapter 8.4.2.

The GPU time performance experiments used randomly generated images of size256×

256, 512 × 512, and1024 × 1024 with two, four, and eight-phase variations. The accuracy

performance experiment used one of the follicular lymphomaimages described in Chapter

8.4.2.

9.8 Results

9.8.1 Correlation Updating

To compare the performance of correlation updating with thedirect-FFT method, TPCF

features were calculated for the ten test images using the parameters of Table 9.1. Parame-

ters were chosen to reflect typical choices for the segmentation 5× and 20× magnifications,

and also favorable and unfavorable FFT sizes. In the power oftwo cases the2w − 1 DFT

was padded to2w. The transforms for the non power of two cases were not padded. Justi-

fication for this choice is provided in Table 9.2 where it is clear that this padding would be

detrimental in thew = 130 case, and would only help marginally in thew = 34 case.

The execution times for the serial direct-FFT and correlation updating calculations are

presented in Figure 9.3. The average per-image execution times for direct-FFT are 1280,
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Table 9.1: Correlation updating and direct-FFT comparison parameters.
case small-pow2 small large-pow2 large
w 32 34 128 130
∆θ π/8 π/8 π/16 π/16

Table 9.2: Effect of padding on DFT transform time. Averagedover 100 transforms.
w 32 34 64 128 130 256

milliseconds 0.27 2.6 1.9 10 31 53

11637, 43129, and 126489 seconds for thew =32, 34, 128, and 130 sizes respectively. The

corresponding average times for correlation updating are 162, 178, 3474, and 3557 seconds.

Overall the increase in execution times from the small window cases to the large window

cases are considerable. Fromw = 32 to 128, the increase for direct-FFT is 34x where the

corresponding increase for correlation updating is only 21x. There is a strong penalty with

the direct-FFT implementation for non power of two cases, roughly a 10x increase for the

small window sizes and 3x for the large. The correlation updating implementation does

not suffer the same penalties with commensurate increases limited to 1.1x for the small

window case.

The average speedup factors for correlation updating are presented in Table 9.3. The

speedup factors range between 8x and 67x depending onw. The larger speedup factors

correspond to the non-power-of-two sizes due to the large penalty on FFT performance.
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(a)

(b)

Figure 9.3: Execution times for serial direct-FFT and correlation updating. (a) Smallw
case. (b) Largew case.
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Table 9.3: Average speedup for correlation updating.
Small Large

w 32 34 128 130
speedup 7.9x 67.0x 12.4 x

9.8.2 Parallelization

To demonstrate parallelization scalability the TPCF features were calculated for the

large power of two case using the parallel implementation ofcorrelation updating on 2, 4,

8, 16, 32, and 64 processors on 1, 2, 4, 8, 16, and 32 nodes. The execution times for these

configurations are presented in Figure 9.4. Table 9.4 contains the speedup factors for the

parallel execution as compared to a fully serial single nodeimplementation. These speedup

factors are depicted graphically in Figure 9.5. There is a consistent reduction in execution

time all the way through 16 processors, with more limited gains for the 32 and 64 processor

cases, indicating that the unparallelized portions of execution account for a considerable

portion of the total execution time. There is a relatively large amount of communication

required for the worker nodes to report TPCF values to the headnode, with each ROI

generatingP (w/2 + 1) double-precision elements. In the case of a single 1000×1000 test

image this corresponds to approximately 1.85 GBytes. Where increasing the number of

nodes reduces the time spent in computation, the time spent in communication remains

unchanged and the result on scalability is apparent.

9.8.3 GPU Implementation

To demonstrate execution time performance TPCF features were calculated using corre-

lation updating implementations on both CPU and GPU for random images of size 256×256,
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Figure 9.4: Execution times for parallel correlation updating, w = 128 case.

Table 9.4: Average speedup for parallel correlation updating,w = 128 case.
processors 2 4 8 16 32 64
speedup 1.9x 3.8x 8.5x 13.8x 24.5x 41.9x
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Figure 9.5: Scalability of parallel TPCF correlation updating implementation.
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Table 9.5: Execution times for GPU correlation updating implementation.
CPU GPU

phases 256×256 512×512 1024×1024 256×256 512×512 1024×1024
2 3.64 16.69 71.07 0.33 1.15 4.52
4 7.28 33.22 141.13 0.55 2.21 8.84
8 14.54 66.41 282.71 1.02 4.32 ⋆

⋆ - watchdog timer intervention

512×512, and 1024×1024 with two, four, and eight phases. The results from this experi-

ment are presented in Table 9.5. The corresponding speedup factors are presented in Table

9.6. All measures of execution time include communication and transfer of data between

the CPU and GPU. For both CPU and GPU, execution time increases linearly with image

size and the presence of additional phases, as expected. Thespeedup factor is greater for

the more compute-intensive cases with larger image sizes and more phases, as the total

amount of time spent in communication represents a smaller percentage of the total execu-

tion time. The kernel execution is interrupted by the CUDA watchdog timer in the case of

1024× 1024 eight phase image. This is a feature of CUDA enabled to interrupt a kernel

after a prescribed period to prevent a loss of graphics response for the user. The duration of

the kernel depends on the sizes of the dependent sequences ofROIs, so to avoid watchdog

timer interruptions the the sizes of these sequences must belimited based on the allowed

kernel execution maximum.

Numerical Accuracy

The calculation of TPCF feature vectors is just one step in thesegmentation procedure.

After the features are calculated, they are subjected to dimensionality reduction prior to

being clustered to form a segmentation. To demonstrate the effect on the end segmentation
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Table 9.6: GPU/CPU speedup.
phases 256×256 512×512 1024×1024

2 11.1 15.6 15.7
4 13.2 15.0 16.0
8 14.2 15.4 ⋆

⋆ - watchdog timer intervention

Table 9.7: Confusion matrix between single-precision GPU segmentation and double-
precision CPU segmentation.

class 1 2 3 4 5 6
1 75692 0 0 0 0 0
2 0 136739 0 0 0 0
3 0 0 263018 0 0 0
4 0 0 0 253975 0 0
5 0 0 0 0 11532 0
6 0 0 0 0 0 1493

result, segmentations were generated for one of the Follicular Lymphoma examples (see

Chapter 8.4.2) using both double-precision CPU calculated features, and single-precision

GPU calculated features. The confusion matrix between the CPU and GPU generated

segmentations is presented in Table 9.7. The segmentationsare identical, indicating that

the loss of precision has no impact on the outcome of the downstream analysis in this case.

9.9 Discussion and Conclusions

TPCF features provide a method for the segmentation of histological images, how-

ever, this capability is accompanied by a significant computational burden. The direct-FFT
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method for deterministic TPCF calculation makes use of an efficient algorithmic staple,

but execution time is strongly influenced by ROI sizew as dictated by FFT transform size

guidelines. The direct method also neglects the sparse autocorrelation sampling pattern

and and close relationship between neighboring regions of interest resulting in significant

amounts of wasted computation.

This chapter proposes a novel method of correlation updating that uses the derived re-

lationship between the autocorrelations of neighboring ROIs to update TPCF values rather

than computing them from scratch. This method simultaneously addresses the consider-

ations of wasted computation and ROI size sensitivity without compromising accuracy.

Using the linearity of correlation, the autocorrelation calculations can be updated from one

ROI to the next, rather than computed from scratch. Furthermore, performing these updates

directly in the image domain permits the sampling locationsto be selectively updated, and

frees the algorithm from the sensitivity to ROI size. The improvements of correlation up-

dating result in a speedup from 8-67x over the direct-FFT method.

Both multi-node and GPU hardware solutions were pursued to further reduce execution

time. The parallelization of feature calculations produces a scalability up to 42x on 64

processors, reducing the total execution time for the set often 1000×1000 test images

from 9.6 hours to just 13 minutes. General purpose GPU implementation of correlation

updating provides a further 16x improvement over CPU, without compromising accuracy

in segmentation results. This gain is impressive considering it is more than equivalent to

using 16 processors on eight nodes, and puts performance within reach of end users who

do not have access to production computing clusters.
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CHAPTER 10

CONCLUSION

Microscopic imaging will play a central role in addressing the emergent grand chal-

lenges in biology. In the post-genomic era the ability to localize molecular information in

tissue will be critical in understanding the roles of genes and discovering the structures of

the molecular networks that they regulate. A realistic picture of complex phenomenon like

cancer requires more than just the molecular information averaged over a heterogeneous

tissue that ordinary “omic” approaches such as microarray provide. Information with reso-

lution at the scale of individual cells and beyond is needed to understand both intracellular

regulation as well as the role of intercellular interactions.

The scale of the data involved in the emerging problems in bioimaging is daunting.

High throughput microscopy techniques enable scientists to generate hundreds of gigabytes

to terabytes of high-resolution imagery for a single study that is limited in scope to one gene

or interaction. The manual analysis of this quantity of visual information is often beyond

the capability of determined individuals, let alone the issues with regards to inter or intra-

observer variabilities. Both the scale of data and the need for a more quantitative approach

suggests that image processing technology will play a role in the next phase of biological

discovery.
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This dissertation presents solutions for two common problems in microscopic image

analysis:reconstructionandtissue segmentation. The proposed algorithms fit into a frame-

work that is intended to provide researchers in biology withthe tools to explore and quan-

tify large image datasets (see Figures 1.2, 1.3). The algorithms were developed to be gen-

eralizable with wide applicability to different tissues and stains. Emphasis is placed on

addressing the challenges of content and image size that microscopic images pose to the

state-of-the-art in image processing. For each algorithm an implementation was pursued

that uses both theory and parallelization to reduce execution times. The emerging GPU

architecture was especially useful in this regard.

Chapter 2 describes thetwo-stage algorithmfor the reconstruction of tissues from se-

quences of serial section images. The algorithm is fast, scalable, and parallelizable and is

capable of correcting the nonrigid distortions of sectioned microscope images. Rigid ini-

tialization follows a simply reasoned process of matchinghigh level featuresusing feature

descriptions and geometric constraints. Nonrigid registration refines the rigid initialization

by using the estimates of rigid initialization to preciselymatch intensity features using an

FFT-based implementation of normalized cross-correlation.

Chapter 3 describes the implementation of the two stage algorithm using general pur-

pose computing on graphics processors (GPU). A computational framework was been de-

veloped to expedite execution by parallelizing FFT computations using general purpose

computing on GPU. A solid heterogeneous and cooperative multiprocessor platform was

established using an AMD Opteron CPU and a pair of Nvidia Quadro GPUs, where the best

features of each processor were fully exploited for applying higher degree of parallelism

at a variety of levels: Multi-task for simultaneous executions of CPU and GPU codes,

SMP (Symmetric MultiProcessing) for multicard GPUs using pthreads, and SIMD (Simple
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Instruction Multiple Data) for the 128 stream processors ofthe GPU using CUDA. The

features of GPUs combined with multi-socket programming achieved speed-up factors of

up to 4.11x on a single GPU and 6.68x on a pair of GPUs using CUDA and pthreads versus

a fully serial C++ CPU implementation. Execution results wereshown for a benchmark

composed of large-scale images derived from two different sources: mouse placenta (16K

16K pixels) and mouse mammary (23K 62K pixels). Using a fullyserial C++ implemen-

tation it takes more than 12 hours to register a typical sample composed of 500 placenta

slides. This time was reduced to less than 2 hours using two GPUs.

Chapter 4 extends the GPU implementation of the two stage algorithm to clusters of

GPU-equipped computing nodes. The heterogeneous and cooperative multiprocessor sys-

tem of Chapter 3 was augmented to include parallelisms at the multi-node level, using MPI

for data partitioning across nodes, and the multi-core level, using either MPI or pthreads.

For a mammary sample composed of 500 slides (23K 62K pixels each), it takes more than

181 hours to accomplish the registration process on a singleOpteron CPU. This was re-

duced to 50 hours when enabling the GPU as co-processor, and minimized to 3.7 hours for

a total speedup of 49x when all 32 CPUs and GPUs participate in our multiprocessor co-

operative environment. While GPU-assisted versions were more effective at an intra-node

layer, the CPU showed higher gains on inter-node parallelism, suggesting that they may

complement each other on hybrid supercomputers.

The problem of registering images of tissues with differentstains is addressed in Chap-

ter 5, where a novel metric of correlation sharpness is proposed for comparing intensity

signals. The sharpness of the normalized cross-correlation function was established as a

similarity measure for comparing intensity information between two images with different

stains. This helps avoid the high computational cost of moresophisticated approaches,
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which is critical for processing images at this scale. In order to improve the matching accu-

racy, a multiple resolution approach was adopted for key regions of interests. The algorithm

has been tested using real histological images of mouse mammary gland sample in a breast

tumor microenvironment study. The results show that the algorithm is highly accurate. This

work lays the foundation for large scale gene expression mapping of mouse breast tumor

microenvironment where the plan is to map expression levelsfor 50-100 genes over four

stages of tumor progression.

Chapter 6 also addresses the problem of different stain registration, but in the scenario

where intensity information is not sufficient for accurate matching. An automatic match-

ing method is presented that builds on the high-level feature matching procedure of rigid

initialization. Since matching high-level features individually is a high probability-of-error

endeavor, using these matches for nonrigid registration typically results in poor confor-

mation between the registered images, due to the freedom of nonrigid transformations.

Confidence in matches between individual features is increased by verifying the existence

of coherent networks of features in the surrounding areas, allowing the matches to serve as

control points for automatic nonrigid registration. Validation using a follicular lymphoma

image dataset showed that the automatic nonrigid registrations were equivalent to manual

nonrigid registrations when a sufficient feature set can be extracted.

The final topic on reconstruction is contained in Chapter 7 which proposes a method

for the reconstruction of tissues under constraints on the structure of microanatomy. The

key contribution is the integration of a structural constraint into the reconstruction process.

As opposed to the traditional pairwise sequential registration approach that infers structure

from images one pair at a time, the proposed method uses information from multiple images

to enforce a structural criteria. The motivating example ofreconstructing mammary ducts
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provides a significant example of the benefits of this approach. By imposing a smoothness

criteria the ducts can be registered naturally resulting inreconstructions with visible bifur-

cations. The use of an acausal smoothing filter enables the smoothing process to take into

account not only where the duct has been but where it is heading. The entire process is

fast, automatic, and produces credible representations ofthe morphology of structures of

interest.

Chapter 8 introduces the problem of segmenting tissues and proposes thetwo point cor-

relation functionas a feature for tissue segmentation. By considering tissuesas arrange-

ments of discrete and biologically meaningful components,the problem of tissue segmen-

tation can be cast into the heterogeneous materials framework. The TPCF, a stochastic

geometric function, provides a means for acquiring statistics on the shape, size, and spa-

tial distributions of these biological components to serveas cues for the segmentation of

tissues. For both natural and tissue image examples, TPCF features were demonstrated

to posses a simple but peculiar distribution in feature space, being confined to smooth

manifold-like structures with relatively low dimension. In the follicular lymphoma exam-

ple these distributions permit an unsupervised segmentation using lossy coding clustering,

however, the lack of uniformity in the color distributions of the raw images implies that

more sophisticated preprocessing is required to produce consistent phase images for TPCF

feature calculation. The same phenomenon was also observedin the supervised segmen-

tation of placenta where images were bound into cliques as indicated by effective mutual

segmentations of one another. Regardless, many placenta segmentations were effective at

95% and beyond.

Chapter 9 presents methods for the acceleration of TPCF calculations, based on short-

cuts derived from theory and hardware solutions. A novel method for the calculation of
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TPCF features is derived, based on the linearity of correlation and the relationship between

the autocorrelations of neighboring regions-of-interestwith shared content. This method

simultaneously addresses the considerations of wasted computation and ROI size sensitiv-

ity without compromising accuracy, resulting in improvements from 8-67x over a naive

direct-FFT calculation method. The multi-node parallelization of feature calculations pro-

duces a scalability up to 42x on 64 processors, reducing the total execution time for the set

of ten 1000×1000 test images from 9.6 hours to just 13 minutes. General purpose GPU

implementation of correlation updating provides a further16x improvement over CPU on

a single node. This gain is impressive considering it is morethan equivalent to using 16

processors on eight nodes, and puts performance within reach of end users who do not have

access to production computing clusters.
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SEGMENTATION RESULTS FOR MOUSE PLACENTA
LABYRINTH
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Table A.1: Segmentation accuracy (%).
Image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 median

1 95.0 91.9 88.3 90.7 92.5 80.2 87.8 89.4 85.2 93.5 94.8 97.0 95.6 86.7 91.2 68.3 73.1 58.3 90.0
2 87.8 97.0 89.7 90.7 91.8 89.8 88.5 88.7 90.5 77.8 82.0 89.9 91.4 87.2 89.5 86.9 86.0 57.5 89.1
3 89.4 97.2 90.1 91.3 93.7 89.6 90.7 91.6 91.0 79.2 84.3 94.8 93.0 89.6 89.2 87.2 85.3 59.8 89.8
4 90.5 96.9 90.2 93.1 93.1 91.2 90.6 91.4 88.5 85.0 87.9 96.3 93.5 89.4 93.8 80.2 76.8 59.1 90.5
5 88.1 97.1 89.6 90.9 95.7 93.0 91.4 91.8 92.7 80.7 89.0 96.5 94.9 92.5 97.7 89.0 86.7 59.6 91.6
6 87.6 96.4 89.5 89.6 93.8 90.0 89.5 91.3 92.0 77.2 86.6 94.8 92.3 89.1 95.9 91.7 88.4 59.6 89.8
7 88.0 96.2 89.3 89.6 94.9 89.3 91.1 90.9 92.4 75.6 85.9 95.8 95.8 93.2 95.7 93.8 90.6 62.1 91.0
8 89.6 97.1 90.7 91.8 96.4 93.0 93.8 94.1 93.5 82.7 92.5 96.7 97.1 95.8 98.0 90.1 90.2 61.0 93.2
9 85.1 95.6 88.7 87.0 93.1 89.4 89.4 91.0 94.0 73.3 84.9 91.2 92.0 87.5 96.0 94.9 91.2 61.8 90.2
10 92.7 81.1 79.4 84.1 81.2 70.7 67.4 78.2 67.7 96.7 72.6 92.7 78.4 67.3 79.0 59.1 66.6 58.3 78.3
11 90.1 96.9 89.8 92.7 96.0 91.8 94.1 93.9 92.1 85.1 95.6 97.7 98.1 95.7 97.8 86.9 81.6 60.9 93.3
12 90.0 96.9 89.9 92.4 96.2 92.2 94.5 93.7 91.5 87.1 94.9 97.8 98.0 94.3 97.4 83.2 79.2 60.3 93.0
13 87.9 97.2 89.4 90.8 95.9 92.8 92.5 92.5 93.1 83.4 93.2 97.1 97.6 94.6 98.0 86.7 85.4 59.7 92.6
14 84.7 94.9 88.0 88.0 94.6 91.0 92.2 91.3 92.3 70.4 89.6 96.4 97.5 95.6 98.2 94.5 94.5 65.6 92.2
15 84.8 94.8 88.3 87.4 94.9 90.9 91.4 91.4 92.3 70.4 89.1 96.3 96.7 95.1 98.1 94.2 93.5 64.6 91.8
16 74.8 84.0 81.5 70.0 82.1 75.3 79.9 78.2 81.2 52.6 71.5 81.7 86.8 83.0 92.4 96.0 89.4 67.9 81.3
17 82.3 89.6 85.9 83.4 91.9 82.7 88.2 84.3 86.5 61.3 78.4 94.9 94.0 93.3 94.0 94.5 95.4 69.1 87.4
18 67.5 69.6 58.4 54.6 39.6 48.0 69.5 43.4 74.2 35.4 59.5 36.9 48.6 48.0 46.6 59.2 61.8 78.6 56.5

median 87.9 96.3 89.4 90.1 93.7 89.9 90.6 91.3 91.8 78.5 87.2 96.1 94.4 91.1 95.8 88.1 86.3 60.6
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