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ABSTRACT

The convergence of emerging challenges in biological rebeand developments in
imaging and computing technologies suggests that imaggsssavill play an important
role in providing a better understanding of biological ptve@non. The ability of imaging
to localize molecular information is a key capability in thest-genomic era and will be
critical in discovering the roles of genes and the relatijps that connect them. The
scale of the data in these emerging challenges is dauniglyifiroughput microscopy can
generate hundreds of gigabytes to terabytes of high-riésolimagery even for studies
limited in scope to a single gene or interaction. In additiorthe scale of the data, the
analysis of microscopic image content presents signifiseoiilems for the state-of-the-art
in image analysis.

This dissertation addresses two significant problems iamtiadysis of large histological
images: reconstruction and tissue segmentation. The peojpmethods form a framework
that is intended to provide researchers with tools to exydmid quantitatively analyze large
image datasets.

The works on reconstruction address several problems inett@nstruction of tissue
from sequences of serial sections using image registrafascalable algorithm for non-
rigid registration is presented that features a novel niefbothe matching small nonde-
script anatomical features using geometric reasoning.hdtks for the nonrigid registra-
tion of images with different stains are presented for twmaligption scenarios. Correlation



sharpness is proposed as a new measure for image simikardyis used to map tumor
suppressor gene expression to structure in mouse mammsanes$l. An extended pro-
cess of geometric reasoning based on the matching of cliguasatomical features is
presented and demonstrated for the nonrigid registrafiommunohistochemical stain to
hemotoxylin and eosin stain for human cancer images. Kirathethod for the incorpora-
tion of structural constraints into the reconstructiongass is proposed and demonstrated
on the reconstruction of ducts in mammary tissues.

The work on tissue segmentation focuses on the use of gtatigeometrical methods
to describe the spatial distributions of biologically meaful elements such as nuclei in
tissue. The two point correlation function is demonstratele an effective feature for the
segmentation of tissues, and is shown to possess a peowiaiinensional distribution in
feature space that permits unsupervised segmentatiorbbgtrommethods. The relationship
between two-point functions for proximal image regionsesived and used to accelerate
computation, resulting in a 7-68x improvement over a naivé-based implementation.

In addition to the methods proposed for reconstruction ageanentation, a significant
portion of this dissertation is devoted to applying highfpenance computing to enable
the analysis of large datasets. In particular, multi-ncgi@lbelization as well as multi-core
and general purpose computing on graphics processing adetogorm a heterogeneous
multiprocessor platform that is used to demonstrate thensatation and reconstruction

methods on images up to 62K 23K in size.
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CHAPTER 1

INTRODUCTION

Imaging will play a central role in addressing the emergeand challenges of biol-
ogy. With the human genome sequenced the post-genomic gr@tinged, and the focus
shifts to understanding the roles of genes and discovehagtructures of the molecular
networks that they regulate. Technologies such as miapand ChIP-chip provide the
opportunity to peer into this hidden world, however imagisignique for its ability to lo-
calize molecular and genomic information. The need forllocés critical since tissues
and even individual cells of the same type can be heterogsnedahe genetic sense. A
realistic picture of a phenomenon such as cancer requires than just observations of
molecular behavior averaged over entire tissues, infoomatith resolution at the scale of
individual cells and beyond is required to understand cellalar regulation as well as the
role of intercellular interactions.

The scale of the emerging problems in bioimaging is dauntiigh throughput mi-
croscopy techniques enable scientists to generate hundfegigabytes or terabytes of
high-resolution imagery even for an individual study tratimited in scope to a single
gene or interaction. The manual analysis of these quanbfigisual information is often

beyond the capability of determined individuals. Additdiy there are issues with regards



to inter and intra-reader variability. Dividing visual dysis tasks among multiple indi-
viduals is prone to introduce biases in the analysis outcobileewise the analysis of a
single individual can vary significantly, especially whéatindividual is fatigued or over-
whelmed by massive quantities of data. A more quantitaip@@ach to image analysis is
needed to address the new needs of bioimaging.

At the same time these grand challenges are emerging ingyidlee state-of-the-art of
automated image analysis is maturing. A wide variety of algms are available for com-
monly conceived problems such as tracking objects in a vé#epience, segmentation of
images into relevant regions, and the classification of enagntent. Microscopic images
of tissues present unique challenges for the cast of imaglgsas algorithms. In the imag-
ing sense their content is noisy, being characterized bymegpeated and indistinguishable
structures such as cells that produce an overall textupdapnce. Performing segmenta-
tion or registration (matching) in this environment is tgaly difficult since many popular
algorithms are not intended for the special case of micfmsdmaging. Nevertheless suc-
cessful automated image analysis has been demonstratethfyr common problems in
microscopic imaging.

In addition to the challenges posed by the content of miaiscimages, their large
size presents a significant challenge in terms of computakiagh resolution images typi-
cally contain hundreds of millions or billions of pixelsstéting in individual color images
that are several gigabytes each. A single study containimgiteds of images can eas-
ily push the scale of data into the terabyte range. Traditlpnmage analysis algorithms
are not intended to address data on this scale, so a newtmnllet efficient algorithms
is required. These new algorithms must strike a difficult poymise, being computa-

tionally feasible but also sufficiently complex to addrdss thallenges of image content.



Hardware acceleration also has a role to play in making inzagdysis computationally
tractable. Large parallel systems consisting of linked potimg nodes offer a solution for
analyses that can be parallelized. More recently, emei@icigitectures such as multicore
processors and general purpose computing on graphicsgsamsg GPGPU) provide solu-
tions for the desktop end user who does not have access tedberces of a computing
cluster.

The convergence of the challenges and available technaidgglogy, image analysis,
and computing suggests that the time is ripe to developmgsier the quantitative analysis
of bioimages. This convergence prompted me to develop thk e@escribed in this disser-
tation High Performance Image Analysis for Large Histological 8sgts In this work |
have addressed two key problems in bioimage analysis: thneensional reconstruction

and tissue segmentation.

1.1 Problem Statement

One of the key problems in bioimage analysis is the acqarsiif meaningful three di-
mensional (3D) information. Biological interactions urdah the three dimensional space
of tissues, and the analysis of individual two-dimensiomalges neglects off-plane infor-
mation. Confocal and multi-photon fluorescence microscgpeside three dimensional
image data but have limited penetration depths, far less Wiaat is necessary to image
large samples [1, 2]. Additionally, the staining technisjuequired for fluorescence imag-
ing are difficult to administer. The use of immunofluorescamipounds, consisting of
antibody-fluorophore complexes that bind to molecules t&fregst, require the introduction
of antibodies into living tissue [3,4]. An alternative appch allows fluorescent proteins

such as GFP to be expressed natively in tissues, but reghggsoduction of transgenic



animals and is still depth-limited [5-7]. Recently, fluorestproteins have been devel-
oped that excite in the infra-red range, offering increasssilie penetration, however this
technique is still new and it is not clear yet what depth latians are for imaging at mi-
croscopic scale [8].

Another approach to garnering 3D information is the reaomesibn of tissue from se-
guences of serial section images usimgge registratiorj9—14]. In this approach a speci-
men is stained and embedded with a material such as wax fdityigihe prepared tissue
is then sliced on a microtome and mounted to produce a segudérstides that are digi-
tized into a corresponding sequence of images. The imagethan aligned (registered)
to generate a volumetric dataset of the original tissues Tdhnique enables whole-tissue
reconstructions of the tissue without depth limitationsywhaver the process of reconstruc-
tion introduces several nontrivial challenges. The firgliemge comes in accounting for
the nonrigid distortions introduced by the sectioning psst As the tissue is sliced and
mounted physical forces introduce relative distortionsveen slices. Due to the fragility
of these slices the distortions are typically “nonrigid’rmnlinear in nature. When the se-
guence is aligned for reconstruction these nonrigid distas must be corrected to recover
a faithful representation of the original tissue. The selconallenge is how to establish
spatial correspondences between adjacent section ingiges,that matching the textural
content of microscopic images is error prone, and that scemh@ral difference in appear-
ance is expected. The third and final challenge is how to addhe computational aspects
of the problem, given that section-scan images typicalhgeainto the tens-of-thousands
of pixels in each dimension.

Another key problem in bioimage analysis is the identifmatof tissue boundaries.

In order to calculate tissue volume fraction or investigageue layer morphologies the



boundaries of tissues must first be identified. This can béiaus manual task since the
differences between tissue may be subtle, or the boundaagde relatively complex and
difficult to trace. The image analysis approach to this pobis known asmage segmen-
tation, or in this particular instancéssue segmentatidi5—21]. The automatic identifica-
tion of tissue boundaries is also a challenging image aisafysblem due to the peculiar
content of microscopic images. The visual cues that digtgigone tissue from another
include a broad range of criteria including color, shapetiuie, and scale. The differences
in these qualities for different tissues in the same samjlg be relatively subtle. These
points are illustrated in Figure 1.1, where the tissue bamd shown for a small region
of mouse placenta image. Developing a comprehensive segtioenalgorithm that incor-
porates the multiple visual cue criteria and can distingsigbtle differences is a nontrivial
task.

In the chapters that follow | present methods for the recansbn and tissue segmenta-
tion problems for large microscopic images. The proposgdrahms fit into a framework
that is intended to provide researchers in biology with tiedstto explore and quantify large
image datasets. The framework from the perspective of thledist is presented in Figure
1.2. A genetic change is induced in an organism and the tisEugerest is harvested.
The tissue is sectioned and the sections are mounted anitetigio produce a serial se-
guence of very large images. The sequence is used to reeciniste tissue and segment
the tissue layers to prepare for further analysis. The ldetdithe proposed framework
from an imaging perspective are described in Figure 1.3.fiidreework relies on a large
number of image analysis components to produce the repetgers used for biological

quantification and exploration.



Figure 1.1: The visual cues that distinguish tissues irelalor, shape, texture, and scale.
The green trace indicates the boundary between two difféigsue layers with similar
appearances.
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Figure 1.2: Imaging as a phenotyping tool for biologistse Pnoposed framework enables
the exploration and analysis of sequences of large micppsamages.

1.2 Organization

This dissertation is organized into two parts: Chapters@udpn 7 address the problem
of reconstructing tissues in 3D from serial image sequencChapters 8 and 9 address the
problem of tissue segmentation.

Chapter 2 describes a scalalileo-stage algorithnfor the reconstruction of tissues
from sequences of serial section images. A novel methoddbasehe matching of rep-
resentative microanatomical features is presented alaimgawprecise and efficient refine-
ment procedure for correcting nonrigid distortion. Chagteescribes the implementation

of the two stage algorithm using general purpose computingyaphics processors (GPU).



[ Preprocessing ]

v
/ Feature Selection Classification \

| I
v ¥

Registration, 3—D Reconstruction Segmentation

A 4

A\ 4 A 4

\Validation —| Surface Extraction Visualization [« Valiclation /

[ Quantification Exploration ]

Automatic Microscopic Imaging

Figure 1.3: Image analysis components for the proposedeiramrk. The framework de-
pends on the interaction of a large number of components.

This implementation results in a 6.68x speedup using hawltirat is commonly available
on most desktop workstations. Chapter 4 extends theses¢sglusters of GPU-equipped
computing nodes, producing a 49x speedup using 32 GPUsstlcapable of registering
500 16K x 16K images in 3.7 hours. The problem of registering imagetsseties with

different stains is addressed in Chapter 5, where a novelayétcorrelation sharpness is
proposed for comparing intensity signals. Chapter 6 alscesdés the problem of different
stain registration, but in the scenario where intensitgrimfation is not sufficient for accu-
rate matching. This chapter extends the work of the anatif@ature matching of the two

stage algorithm to correct nonrigid distortion withou&nsity information. The final topic



on reconstruction is contained in Chapter 7 which proposesthad for the reconstruction
of tissues under constraints on the structure of microamato

The theoretical basis and procedure for the tissue segtr@ntaethod is described in
Chapter 8. Théwo-point correlation functiofis described as a feature for the characteriza-
tion of spatial distributions of cellular and subcellulangponents that distinguish tissues.
Building on existing work, a deterministic method for two pioiunction calculation is de-
scribed and the two point features are demonstrated to gog&euliar low-dimensional
distributions in feature space. Chapter 9 addresses theutatigmal aspects of the pro-
posed segmentation method. A theoretical shortcut basdteolinearity of correlation
is proposed for the calculation of two-point features tlesuits in a 7-68x performance
increase over a naive FFT-based method. A GPU implementatithis updating method
nets another 11-16x for a total of 77-1088x improvement. sTihiextended to parallel

computation on a cluster of computers for further gains.



CHAPTER 2

SCALABLE NONRIGID REGISTRATION FOR LARGE
MICROSCOPIC IMAGES

In this chapter | present a novel scalable algorithm for thwerigid registration of large
microscopic images. The proposed algorithm address thecsinoings in the state-of-
the-art for the registration of histological and microscopnages, specifically large im-
age size, feature rich environment, and nonrigid distortibhe algorithm consists of two
stages: initialization by rigid registration, and refingrhby precise nonrigid registration.
The initialization uses a novel approach that matches amtrahatomical features with
rigid geometric constraints. The refinement uses norndlzess correlation to perform
pixel-precision comparisons of local regions of intengiyestablish more precise cor-
respondences, calculated in the frequency domain usinghagdarformance FFT software
library. The combination of initialization and refinememnbpides an approach to automatic
sectioned image registration and reconstruction thatagsand easily parallelizeable.

The two-stage algorithm is demonstrated using a set of 180>18.6K microscopic
images derived from a study on the role of the retinoblastgeme [22]. Results show that

the rigid initialization is comparable to a fully manual iggation and that the nonrigid
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refinement is capable of correcting the distortion encaentén serially sectioned micro-
scopic images. The anatomical feature matching schemeiusigid initialization is also
demonstrated to be effective when tissue is partially atsxdi

Execution times for a serial implementation are presenezd hlong with a brief dis-
cussion on the computational aspects and parallelizafi@ach stage. Chapters 3 and 4

treat these computational matters in further detail.

2.1 Introduction

An essential challenge for biologists in the post-genomécig the understanding of
gene functions and gene interactions. A critical elemeihis challenge is the ability to
characterize the phenotypes associated with specific gemt Three dimensional (3D)
morphologies of tissue structures at the cellular and slliodar scales are one aspect of
phenotype that provides information key to the study ofdmatal process such as the ini-
tiation of cancer in the tumor microenvironment, the depetent of organs, or the forma-
tion of neural networks in the brain. Nevertheless, exgstachniques for obtaining high
magnification 3D structures (e.g., confocal and multiphatacroscopy) from biomedi-
cal samples are rather limited. Therefore, a fundamenaloggh for 3D acquisition is
to perform reconstruction by aligning multiple 2D imagesaned from serial thin tissue
sections viamage registratiorj9—-14, 22-37].

Image registration has been extensively studied in biooa¢dnaging, geological sur-
vey and computer vision [23, 24]. It can be formulated as atimopation problem of
finding the optimal transformatiofl between two imageg and/, to maximize their sim-
ilarity, ie,

T = argmax Similarity (I, T(13)) . (2.1)
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Commonly used similarity/difference measures include mluhformation (MlI) [38], nor-
malized cross correlation (NCC), and summed square differé®8D) [23,24]. The trans-
formation spaces include rigid transformation, which deaith only rotation and trans-
lation, and nonrigid transformation which compensateséaling and deformations such
as bending, stretching, shearing and warping [27, 39, 40prdler to search for the opti-
mal transformation, various searching procedures have adepted such as Levenberg-
Marquardt algorithm [41], EM algorithm [42], and geometiniashing [43]. Like any op-
timization process a good initialization is critical for bolgal optimum outcome. In many
cases, a good rigid registration result serves as an idéalization for non-rigid registra-
tion [26]. For large images with conspicuous deformatidnsrarchical multi-resolution
registration methods have also been widely used in medieging applications [44, 45].
There are several major challenges for registering sexties microscopic images for

3D tissue reconstruction:

1. Large image size.High-resolution slide scanners are capable of generatiages
with resolutions of).23m/pizel (with 40X objective lens), often producing images
with hundreds of millions or even billions of pixels. The oastruction of an indi-
vidual tissue sample may involve hundreds of slides, andl atiudy may contains
several samples with image data easily ranging in the TézabyVhile a multiscale
approach can be applied to handle large images, it requaesformation of the
free-floating image at each scale which is computationadlytrvial. For instance,
this chapter deals with images sizetl x 16K pixels. With a scale factor of two,
this implies transformation of an image containing arot8iad x 8K pixels prior to

the final iteration at full resolution.
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2. Feature rich environment. The textural quality of microscopic image content pro-
vides a unique challenge to the problems of feature seleatio matching. Specifi-
cally, traditional feature detection schemes such as cdetection generate an over-
whelming abundance of features that are similar in appearamaking matching
prone to error. In addition, at sub-micron resolutions dt gffione millimeter cor-
responds to thousands of pixels. The search for correspgtieatures is therefore

computationally infeasible without a good initialization

3. Nonrigid distortion and local morphological differences. The key challenge for
image registration of serial section images is to compenfatdistortion between
consecutive images that is introduced by the sectioningga® Tissue sections are
often extremely thin (3 to/&m) and delicate as a result. The preparation process (i.e.,
sectioning, staining, and mounting) can introduce a waonénonrigid deformations
including bending, shearing, stretching, and tearing. Adram resolutions, even
minor deformations become conspicuous and may prove prabie when accuracy
is critical to the end application. In order to compensatesiach deformations,

a nonrigid registrationis essential and its success depends on establishing a large
number of preciséature correspondencésroughout the extent of the image. This
precision requires comparison of intensity information @ very time consuming

with popular similarity measures such as Mutual Informatio

Motivated by several large-scale biomedical studies ohaly developmental biology
and breast cancer research, this chapter presents a scadffldient, and parallelizable
image registration algorithm to address the above chadend hetwo-stage algorithm
consists of initialization by rigid registration followealith refinement by nonrigid regis-
tration. Theinitialization stageis a fast rigid registration algorithm based on the matching
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of high-level features. This approach circumvents theassfuthe presence of numerous
and ambiguous local features, providing effective init@ion for the next stage. In the
refinement stagenonrigid registration is achieved by precisely matchinigrge number

of local intensity features using cross-correlation. Tdpproach has the following advan-

tages:

1. Fast Rigid Registration for Initialization. This algorithm uses conspicuous anatom-
ical regions (e.g., blood vessels) as high-level featunelgiae rigid transformation is
derived using a voting scheme in the Euclidean transfoonaipace. Itis highly effi-
cient and accurate for common histological images. In auditt can accommodate
arbitrary rotation and translations. This provides us witjood initialization for the
nonrigid registration and the search space for point cpardence is significantly

reduced.

2. Feature Selection.Point features for precise matching in nonrigid registratare
selected based on neighborhood complexity rather thanrtsepce of ambiguous
content such as corners. This not only reduces computathanden but also allows

the user to gain a more uniform distribution of features.

3. Fast Normalized Cross-Correlation for Precise Matching.Precise feature match-
ing is based on the normalized cross-correlation (NCC) betweal neighborhoods
in each image. NCC calculation can be implemented efficiamglpg fast Fourier
transform (FFT) resulting in a very fast execution as corag#@o measures like mu-
tual information. This provides a significant advantager anatual information that

requires expensive calculation of joint histograms. Addally, as compared with
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other similarity measures like mutual information, NCC \elhave an intuitive in-
terpretation which simplifies the selection of thresholdapaeters used to discrimi-

nate good matches from bad.

4. Single Transformation Output. For precise matching the Euclidean transformation
parameters obtained from rigid initialization are usedoizate and transform corre-
sponding local neighborhoods to avoid applying an expensgid transformation
to the entire image. Only one whole-image transform is resrgsto generate the
final registered result. This offers a significant advantager multi-resolution or
iterative optimization-based approaches that require alevimage transformation

at each iteration.

5. Parallelization for Precise Matching. The process of precise matching is embar-
rassingly parallel, lending itself to execution on mukiglres, sockets, or a comput-

ers in a cluster.

This chapter is organized as follows: In Section 2.2, the $tage registration algorithm
is presented along with a discussion on reconstructionagifans. Section 2.3 discusses
the workflow and computational aspects to prepare for Chaptand 4 where high perfor-
mance implementations are discussed. Results for the thigodare presented in Section
2.5. In Section 2.6, existing approaches for image registrare reviewed with emphasis
on large scale research projects that require the alignai@i microscopic slides for 3D

reconstructions.
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2.2 Two-Stage Scalable Registration

To address the specific challenges of nonrigid distortiargd image size, and feature
rich content, an algorithm is proposed that consists of tiagess: rigid initialization and
nonrigid registration. Rigid initialization estimates tregh alignment of the base-float
image pair from the consensus of correspondences betwgknevel featuresimage re-
gions that correspond to small, distinct, and anatomicadjgificant features such as blood
vessels or other ductal-type structures. The nonrigidestagks to refine the rigid ini-
tialization by establishing pixel-precision correspomckes by matching areas of intensity
information. The initialization reduces the search for chatg in the nonrigid stage, re-
sulting in a lower likelihood of erroneous matches and lesspmutation. This combination
provides an approach to the problem of automatic sectiamedé registration and recon-

struction that is robust, easily parallelizable, and daala
2.2.1 Fast Rigid Initialization

The basis of the rigid initialization stage is the matchifidpigh level featuresr small
regions that correspond to anatomically significant festiguch as blood vessels, mam-
mary ducts, or small voids within the tissue boundary. Thia natural choice for features
in microscopy images that has several advantages over the primitive features gener-
ated by commonly used methods such as corner detection, thResamount of high level
features is relatively limited keeping the total number oggible matches reasonable. This
is especially important when gross misalignment betweegas is possible and the range
of search for feature matches cannot be limited. Secondjekeriptions used to match
these features such as shape, size, and eccentricity argamvunder rotation and trans-

lation and so the matching can accommodate the full rangeisdlignments. Third, the
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feature descriptions are scalars and are fast and simplentipare once computed. Fi-
nally, many choices of high level features remain compara&vien when the images to
be registered have distinct stain types. This permits, xangle, the alignment of an
hematoxylin and eosin stained image with an immunohistodtely stained image. In
contrast, performing corner detection on a typical micopgcimage generates an over-
whelming number of features due to the textural quality ef¢bntent. These features are
relatively ambiguous, and their comparison requires tleeaisieighborhood intensity in-
formation and has to account for differences in orientaéind also appearance if distinct

stains are used.

High Level Feature Extraction

Extraction of high level features is a simple process as ¢ag¢ufes often correspond
to contiguous regions of pixels with a common color changstie. Color segmentation
followed by morphological operations for cleanup usuallffise. The computational cost
of these operations can be significantly reduced by perfayritie extraction on down-
sampled versions of the original images without compramgighe quality of the final
nonrigid result. The rigid estimate only serves as an iieédion for the nonrigid stage
and a matter of even tens of pixels difference is insignititarthe outcome of nonrigid
stage. Figure 2.1 demonstrates the extraction processirginan example from one of the
Placenta test images.

Given the base imagB, and float imagé”, their respective feature sdfs= {b,} and
F = {f;} are extracted according to the process described abové fEaiure has as-
sociated with it a set aflescriptorsused for the matching processés,= (i, s°, e?, ¢?)
andf; = (&],s],¢l,¢7), whered = (z,y) is the feature centroids the feature area in

,]’ VR ]7
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pixels, e the feature eccentricity, antithe feature semimajor axis orientation. These fea-

ture descriptions are computed using Matlab’s Image Psiog3oolbox (The Mathworks,

Natick, MA).

Figure 2.1: High level feature extraction. The binary imagews extracted features rep-
resenting blood vessels. These features are extractegl cdior segmentation with mor-

phological operations for cleaning up noise. Descriptioinsentriod location, size, eccen-
tricity, and major-axis orientation are calculated forteddstinct feature.

High Level Feature Matching

The rigid initialization stage uses a scheme for matchigd kevel features to establish
spatial correspondences between the base and float imabgedollowing describes the
conventions used for feature matching. Matches betweevidugl features are referred to
asmatch candidates their size and eccentricity descriptors a@nsistent That is, given
the feature set8, 7, a match candidat;, f;) is established if the descriptors of sig‘?esj.c

and eccentricity?, ef are consistent within given percent difference threshalds
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Generating a model rigid transformatiéé, 7., 7,) requires, at minimum, a pair of
match candidates. To identify models originating from eehépairs of match candidates,
geometric consistency criteria are used to ensure consistea-image distances between
feature centroids and also consistent feature orienttiéor a pair of match candidates
to form acandidate pair {(b;, f;), (bx, f1)}, the intra-image centroid-to-centroid distances
between featurds, b, and f;, f; are required to be consistent within the percent difference
thresholde;z (see Figure 2.2). Additionally, for the initialization g the orientations of

the feature semimajor axes must be consistent with the ntigdeformation anglé

12278 |2~ |17] —7]

min(||70—a |2, |17] —7] |12)

{0 £3) (O )} & 9 (gt — 6 — 6] < e . (2.3)
\¢Z—¢f—§! < €p

The model transformatiofé, T, T,) for the candidate paif(b;, f,), (b, f)} is calcu-

[l2]

IN

€z

lated by first solving for the angte= tan~'((y! —y])/(z] —2f)) —tan (42 —y})/(a%
?)), corrected to the intervél-r, 7]. The translation componerits, 7, are calculated us-
ing @ and least squares. Typical values for percent differereesioces,, e, ez are 0.1-0.2,
and5 — 10° for the orientation threshole;.

The match candidate and candidate pair concepts are dtedtin in Figure 2.2 and

the algorithm is summarized in Algorithm 1.
Histogram Voting

Determining an estimate for rigid registration from a seteafture matches requires a

method that is robust to erroneous matchings. This is eslbetriue in microscope images
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Figure 2.2: High level feature matching. Features are neatdietween the base and float
images based on size and eccentricity to foratch candidatesb;, f;), (bx, f;). Intra-
image distanceg, i, d;,;, between pairs of match candidates are compared to ideatify
didate pairs A model rigid transformation(,é, T, Ty), is defined for candidate pairs with
consistent distances.

where many features are indistinguishable, and a subastamiount of mismatches are
inevitable. The fundamental idea of the method present¢83his the recognition that
any candidate paif(b;, f;), (b, f;)} defines a model rigid transformatid#, 7., 7,), and
for candidate matches and candidate pairs chosen usingiteeacdescribed in Section
2.2.1, a large portion of the concomitant model transforomat will concentrate around
the desired parameters in the Euclidean transformatiocespa

With a set of model transformations identified from consistandidate pairs, a his-
togram voting scheme is used to estimate the initializgp@ameterse, 7., 7,,). First, 6
is estimated by counting the models in thginterval centered at at eaéhtaking® as the
0 with the largestug-interval count. The models that fall within this maximunmuobw,-
interval are then selected and used to estimate the treomsfsirameters. Interval counting
is then applied withur-intervals centered at each @f, T, from the selected models to
identify 7. This algorithm is summarized in Algorithm 2. Although coimg with inter-

vals centered at each model adds computation, this pretrenmssibility of splitting the
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Algorithm 1 Rigid Feature Matching
1: input: Feature set® andF, thresholds,, ., €z, €.

2: initialize match candidate$1 = {}

3: foreachb, € B

4 for each f; € ]—"

5: compares?, s/, ande?, e/ with €, e,

6: if b;, f; con5|stenthen

7. M :MU{(bZ,fJ)}

8: end

9: end

10: initialize match pairs? = {}

11: for each (b;, f;) € M

12: for each (by, f;) € M,k # il # j

13: izl xi:l,'cﬂ < ez then
min(||70 &% 12,18 —] ||2) o

14: compute model transformatidf, 7)

15: if |67 — ¢! — 0], ]6% — ¢ — 0] < ¢, then

16: ,P:PU{(bl?f])ﬂ(bk?fl)}

17: end

18: end

19: output: P

mode with an arbitrarily placed histogram bin boundary,alimight allow another inter-
val to emerge as the maximum. An example result for histogratimg is presented in
Figure 2.3. Interval sizes for histogram voting typicabiyge from).5 — 1° for # and from
30-50 pixels forZ},, T,. Parameter choices for the placenta dataset are descnidedblie

2.1 of Section 2.5.

Feature Matching in Partial Common Tissue Scenario

In many microscopy applications, a pair of images that ateetoegistered may share
only a portion of their tissue content. The harsh sectior@ng mounting process may
remove or separate part of one sample, or there may be newdphples mounted per slide.

Registering the pair via an optimization method such as MaririMutual Information may
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Algorithm 2 Rigid Voting
1: input: Candidate pair®, interval sizesvg, wr.
for eachp; € P o
O;={p,eP,j#i:|0; -0 <2}
1(i) = |64
end

o = arg max (i)

0=90,

8: for eachp, € 6, ) .
o wli)=|{p; € Ouj#i:|Ts, ~To| <}
100 y(i) = |{p; € Ourj #i: |T,, —T,| < L}
11: end

12: 3 = argmax (i), T, = T,

s
i

~

13: v = argmax y(i), T, = T~y7

14: output: (0,7,,T,)

be troublesome in this scenario, since the optimum positiag be obscured by the lack
of similarity of the overall image when the common areas gned.

Feature matching provides a means to establish correspoesieetween common tis-
sue regions of disparate images. Regardless of the matatiiegacused, the set of correct
matches from the common areas will undoubtedly be accoragdnyi a significant number
of erroneous coincidental feature mismatches from theawmnmon areas. A method for
recovering the alignment of the image pair must distingtighsignal of correct matches
from the noise of the erroneous matches. High level feataemmg with histogram vot-
ing has demonstrated some capability of successfully examyalignment in this scenario,

as is demonstrated in Section 2.5.
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Figure 2.3: Sample histogram voting result for rigid irflidation of placenta image pair.
Manual parameter results are shown in red and automatitisésgreen. Errors between
manual and automatic parameter estimates are indicatexhédr parameter. The images
used for this example were approximatetf< x 16K pixels in size.

2.2.2 Nonrigid Registration

Correcting nonrigid distortion to the accuracy necessargifol applications in quanti-
tative phenotyping requires establishing a large numberexdise spatial correspondences
between base and float image pairs. The desired pixel-legeigion suggests that assign-
ment of correspondences between representative featiwes,as high level features, is
not accurate enough. Instead, direct comparison of irtiemgormation is needed which
introduces the problem of computational burden. Theseideretions are addressed in an
approach to extraction and matchingintensity featureshat compares small tile regions
between the base and float images in an efficient manner, th@migid initialization pa-

rameters to align them and Fast Fourier Transform to comjpeie cross-correlations for
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matching. The implementation of this approach using gi@ppiocessing units (GPU) has
been presented previously [46], here this approach is gulan detail with a focus on

parallel implementation using CPU clusters.

Intensity Feature Extraction

The primary issue in extracting intensity features is tHect®n of unambiguous re-
gions that are likely to produce accurate matches. Thieissespecially important for
matching in nonrigid registration since using the aggregéimatching results to make in-
ference about the quality of any single match is difficult ttughe freedom and subtlety of
nonrigid distortions. In this sense the matchings at tlaigestare local: the only information
available to judge their quality comes from the individugkinsity regions themselves.

Good candidate regions for matching have rich content, &umaof different tissues or
tissue and background that forms a distinctive appearadften these regions will coin-
cide with blood vessels, ducts, or other content with distve shape. Regions containing
uniform tissue are not good candidates for matching, asrateunatchings are unlikely
due to the textural quality of content and the natural molgujioal differences between
sections. A simple way to enforce this quality in selectadnsity features is to choose
templates whose variance meets a certain minimum threshidhat is, for any feature
point p with coordinategj | centered in thél” x WW-pixel window a variance condition

must be met

1
W2 -1

> (i 4) =8 =2 o (2.4)
irj
wheret is thetemplate a grayscale representation of flixeentered pixel window with

mean valué, ando? a significance threshold. There are cases where the vatiamesiold
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can be met and an ambiguous matching result can occur (esmsatching a two templates
with upper half white and lower half black) although thessasaare uncommon in natural
images.

Another important issue in intensity feature matching & gpatial distribution of fea-
tures. The correspondences resulting from the matchingtefsity features forms the set
of control points for a nonrigid transformation of the floatage. These correspondences
should be fairly distributed throughout areas of interesprider to produce a result that
conforms in the areas where further analysis on the registesult will take place. To
keep the total number of features reasonable and attemptearseatial distribution, fea-
tures are sampled uniformly over the image withlax W tiling. For example, in the
16K x 16K placenta images a tiling would typically fall in the rangel&0-350 pixels to
generate a total of 2025-11236 possible features, the taggerity of which are discarded

due to insufficient variance.

Intensity Feature Matching

For a selected feature poipt with coordinate| j; | in the base image, & x N-pixel
window is taken centered at. This window is converted to grayscale and rotated by the
angled obtained from the initialization stage. The centfial x 1//;-pixel patch is then used
as thepl template for identifying,, the correspondence point pf in the float image /N
is calculated fron® and1/;, taken just large enough to accommodate the rotated templat

The coordinate, is estimated using the rigid initialization stage estimdte 0, T' =

(T2, T, "

i [ =[5 ]+ >
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A Wy x Wo-pixel tile (W, > ;) centered ap),, designated as trsearch windowis taken
from the float image.

Commonly used similarity measures for intensity informatmher than NCC include
summed square of difference (SSD) and mutual informatiol). (85D is not a good choice
for microscopic images since the content tends to be des¢eet)., sharp boundaries be-
tween cell nucleus and cytoplasm and cell membrane). Minsonly used as a metric in
gradient search strategies but the cost of joint-histogramputation makes its use in ex-
haustive search prohibitively expensive. We choose NCstng not only robust in iden-
tifying structural similarity but also highly efficient whemplemented with fast Fourier
transform. Furthermore, NCC values have an intuitive intgiion, making threshold
parameter selection easier.

The NCC between the template and search window is computeldeagubtient of
covariance and individual variances

o) = 3 ey =) = DHslwy) =5} 26)
o ({t@ =y —u) =t} {s(2,y) — 84,0 }7)>

wheret is the template mean and, is the mean of the search window portion overlapping

the template at offsefu, v). The center of the template offset location at the maximum

NCC result is taken as;

(m,n) = argmaxp(u,v) (2.7)
m W1 —Ws

If p(m,n) value exceeds a threshold (usually 0.8 or greater), themtteh is con-
sidered successful and, p2 are recorded as a correspondence. The intensity feature

matching process is demonstrated graphically in FigureRsklection of sample matches
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is presented in Figure 2.5. The algorithm for intensity deatextraction and matching is
summarized in Algorithm 3.

The choice ofit; andW, is based on the severity of the deformation as well as com-
putational capacity. Empiricallyi’;, = 21/, however cases with large deformation may
require a larger search area. Demonstration of the effetifec$ize on execution time is

demonstrated in section 2.5.

Figure 2.4: Intensity feature matching. (a) A template sagrom the base image meet-
ing the variance condition is identified. (b) The region eaming the rotated template is
selected and rotated. The sieof the bounding box for the rotated template is calculated
from 6. (c) The cente#l; x W, portion of the rotated template area is extracted. (d) The
normalized cross correlation between (c) and the correipgrsearch area within the float
image is computed at all offsets with full overlap.

The large number of features that exist within a typical settanakes efficient compu-
tation of NCC critical. Additionally, rather than using a sgastrategy NCC is computed
between template and search window pairs at all spatia¢tsfi® avoid the problem of
local minima. For calculating normalizing factors in thendeninator of Equation 2.6 the
method of running sums is used as presented in [47]. Thislatbe expensive local calcu-

lations of search window mean and variance for the templagdap region as the template
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Algorithm 3 Intensity Feature Extraction and Matching

1

9:

10:
11:
12:

13:

14:
15:
16:

input: Rigid initialization estimated, 7,,, T, ), feature window sizél;, search win-
dow sizell,, variance threshold,, NCC threshold-.

initialize correspondences = {}
tile base image? into W, x W, tilest;, centered ap;
for eacht;
if variance(t;) > o, then

computeN (6)

takep,;-centeredV x N tile from B

RotateN x N tile by 6,

extract centefV; x W, portion,t;

,  |cos(f) —sin(6)

i [sin(&) cos(0) } pi+ T
takeg;-centeredl, x W tile from I, s;
computep(u,v) = NCC(t;, s;)

(m,n) = argmaxp(u, v)
’ u,v "
g = [v} + ¢+ | wliw,
it p(m,n) > then 0 = Q U {(pi, 4:)}
end
output: 2
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(d)

Figure 2.5: (a-f) Sample intensity feature matches.

is shifted through each df¥’; + W, — 1)? positions, reducing the operation count from
3WE(W, — Wy + 1)% to approximatel\31W2. The unnormalized cross-correlation from the
numerator of Equation 2.6 is calculated via the convolutimorem of the Discrete Fourier
Transform that relates the product of DFT spectra to ciratdavolution in the spatial do-
main. To compute cross correlation ordinary convolutioregpuired sa ands are padded
with zeros to sizéV; + W, —1 prior to forward transform to ensure that the circular caprl

portions of the convolution result are null.

2.2.3 Image Transformation

The collection of point correspondences generated by theigg matching process
provides the information needed to form a mapping that foenss the float image into
conformation with the base. A variety of nonrigid mappings ased in practice, differing
in computational burden, robustness to erroneous comelgpees, and existence of inverse

form.
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The polynomial transformation

In choosing a transformation type a transformation is e@esthat is capable of cor-
recting complex distortions, that is robust to matchingesrthat admits a closed inverse
form, and is computationally reasonable to calculate andyapOf the commonly used
nonrigid mapping types such as thin-plate spline, locabiveid mean, affine, polynomial,
and piece-wise variations, the polynomial mapping varistghosen. Thin plate spline
provides a minimum energy solution which is appealing fahbems involving physical
deformation, however perfect conformity at corresponédacations can potentially cause
large distortion in other areas and excess error if an eowsmeorrespondence exists. The
lack of an explicit inverse form means the transformed imiagealculated in a forward
direction, likely leaving holes in the transformed resitethods such as gradient search
can be used to overcome the inverse problem but at the codtdefiacomputation which
can become astronomical when applied at each pixel in a giglamage. Kernel-based
methods such as local weighted mean require a uniform ldision of correspondences.
Given the heterogeneity of tissue features this distrdputiannot always be guaranteed.

Polynomial warping admits an inverse form, is fast in agglmn, and has been demon-
strated as capable of satisfactorily correcting the distorencountered in sectioned im-
ages [46]. Polynomial warping parameters can be calculasety least squares or least
squares variants which can mitigate the effect of matchingre Affine mapping offers

similar benefits but is more limited in the complexity of thangings it can represent.
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Second degree polynomials are used for the nonrigid regrdtented in this chapter.
Specifically, for a poin{z, y) in the base image, the coordindté, y') of its correspon-
dence in the float image is

x = a1x2 + bixy + cly2 + diz + ey + f17
(2.9)
T— asx® + boxy + 02y2 + dox + exy + fo,

Since each pair of matched point correspondences proviaedwations, at least six pairs
of point correspondences are needed to solve for the cesificin (2.9). In practice, a

much larger number of point correspondences is obtained.
2.2.4 3D reconstruction

For 3D tissue reconstruction applications, where a sequehamages is to be reg-
istered together, the matching process is applied suvedss$d each ordered pair in the
sequence. Images are transformed starting at one end oédjuersce, and at each step
the transformations from prior image pairs are propagateslgh the match coordinates
in order to achieve a coherent set of transformed imagesr& 10 in Section 2.5 shows
a reconstruction result generated from a sample set of mgasenta images. The im-
provement with respect to reconstruction quality that mvigted by nonrigid registration

is demonstrated in Figure 2.11.
2.3 Workflow and Computational Aspects

In this section the parallelization and computational aerstions of the two stage
algorithm are described to illustrate its potential to &ddrlarge images. Chapters 3 and 4
treat these issues in greater detail in discussions on GEpamllel implementations of

the two stage algorithm.
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The workflow for the two stage algorithm is summarized in FegR.6. With the ex-
ception of nonrigid transformation, the CPU-bound operatiof each stage are easily
parallelizable. The overwhelming majority of computatierconcentrated in the normal-
ized cross correlation calculations of intensity featusgehing. For example, consider that
the rigid initialization stage for a typicdlo X' x 16 X mouse placenta image executes in
four seconds where the nonrigid stage executes in 60-9Mds¢depending on intensity
feature and search window sizes). Referring to Table 2.3agung a summary of serial
execution times, 90+% of the time in the nonrigid stage i:mspeextracting and matching
intensity features, with upwards of 73% spent computing $~f6F normalized cross cor-
relation calculations. Therefore efforts can be focusethemonrigid stage, primarily on

distributing and accelerating intensity feature exti@ttnd matching operations.

2.3.1 Rigid Initialization Stage

Due to the modest computational requirements it is typicadit necessary to reduce
the execution time of the rigid initialization stage. If ak¢ime response is desired though
then the operations of this stage are all parallelizable &ttraction of high level features
uses a color segmentation followed with morphological apens for cleanup, both are
independent and local operations that can also be pipelmgdreading source images
from disk. The matching of high level features and histogratmg consist of the simple
search procedures detailed in Algorithm Tables 1 and 2. &kearches can be carried out

straightforwardly in parallel as well.
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Figure 2.6: Workflow of the two stage nonrigid registratidgagithm. Rounded items
indicate operations that can be carried out simply in palkallhe most computationally
demanding phase is the intensity feature matching porntimmsisting of two forward FFTs
and one inverse.

2.3.2 Nonrigid Stage

Where the primary effort is focused on improving intensiigttere extraction and match-
ing performance, the performance of reading images fro aligl grayscale conversion
can be improved as well.

Given the large size of microscope images, some in excessGB] reading from disk
and decoding compressed images requires considerable Arparallel file system may
be employed to reduce the time spent reading from disk, adfhahis requires distributing
large amounts of data over network and complicates lateleimgntation steps since the

data will be distributed among several nodes rather thamgheshead node. A more simple
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approach is to hide a portion of the read and decode time hyapgeng reading/decoding
with grayscale conversion, using the a head node to reamtlddocrementally and asyn-
chronous communication to distribute grayscale convareidncremental read results to
worker nodes.

With the grayscale base and float images in memory, the regxisto determine which
template regions will serve as candidates for intensityuifeamatching. The base image
can be divided evenly among the worker nodes that then cartpet variances of the
W1 x W, template sized tiling of their portions and return the resul

With a set of candidate intensity feature regions identjfigdat remains is to rotate
them, extract their templates, and perform the correlatimtween the templates and their
corresponding search areas. The candidate features ang dixaded among the worker
nodes, who rotate them, extract their templates, and perioe correlations between tem-
plate and search, returning the maximum correlation vadnescorresponding coordinates
for each feature. The base image is stored in column-maijorety so to keep communica-
tion to a minimum the candidate intensity feature regioedaffered and the remainder of
the image is discarded. Asynchronous communication is teskeep the head node busy
while send operations post. The search windows, taken frenfléat image, are handled
in a similar manner. However, since the search windows fetirdit features can overlap
significantly they are not individually buffered, ratheeihunion is buffered as a whole.

The Discrete Fourier Transforms necessary for calculatmmgelations on CPU are
performed using the FFT library FFTW [48]. The 2D-DFT dimiems are critical for
performance, ideally the size of the padded transfarin+ W, — 1 is a power of two or
a small prime factor. For the cases when this size rule camobeyed, FFTW provides

a simple mechanism called@an that specifies an optimized plan of execution for the
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transformation. This plan is precomputed and subsequeatiged, resulting in a one-
time cost. For example, with a template sizg = 350 and a search window sid&, =
700, FFTW takes around 0.7 seconds to compute theltd x 1049 forward transforms
without planning, whereas with plan the computation takay 0.32 seconds with a six
second one-time penalty (a cost which can later be amortigdéohding the plan from disk

at runtime on subsequent transforms of the same size).
2.3.3 Nonrigid Transformation

The topic of high performance image transformations has laglelressed previously
[49-51]. Most focus on optimizing the use of cache and/oaleization. Efficient dis-
tributed transformations are possible for many transfoiondypes but often resultin com-
plex implementations due to spatial dependencies and comcation requirements. For
these reasons the focus of high performance computing d@stration in this dissertation

is restricted to the problems of establishing correspooelethrough feature matching.

2.4 Experimental Setup

The results of this chapter were computed with a fully sengdlementation. Multiple
cores or sockets were not used and no effort was made at mt@mieother than using
FFTW library to compute normalized cross correlations. @rap presents the results
of [46] where a more sophisticated single node implememaitses graphics processors to
accelerate FFT operations and PThreads to access mutigiets and graphics processors.

The parallel implementation described above is presentédther detail in Chapter 4.
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Table 2.1: Summary of test parameter values for rigid ilu@ion stage.
Parameter Description | Value
Size similarity €,) 0.1
Eccentricity toleranceef) | 0.1
Distance tolerance:§) 0.1
Orientation tolerance:{) | 5°
Voting interval foré (wy) | 0.5°
Voting interval forT" (w7) | 30

2.4.1 Benchmark Dataset and Parameters

The two stage registration algorithm was applied to a setafsa placenta images from
a morphometric study on the role of retinoblastoma gene [2Bg goal in this study was
the reconstruction of 3D tissue models to study microangtohtotal of 100 images (99
pairs) were used, averaging 18K6K pixels in size and 730 MB each in uncompressed
RGB form.

Allimage pairs in the dataset were run in the rigid initialibn stage with the parameter
values described in Table 2.1. The nonrigid stage was etealugith a variety of values
for W, and W5, chosen to cover both optimal and sub-optimal cases for DES and to
demonstrate the effect of parameter size on execution terfenance. These parameter

sets are summarized in Table 2.2.
2.4.2 Hardware

Experiments were run on a single node of the BALE Visual@atCluster at the Ohio
Supercomputer Center, a General Purpose Graphics ProdéssdiGPGPU) equipped
computing cluster. The Visualization Cluster contains 18a® each equipped with dual-

socketx dual-core AMD Opteron 2218 CPUs and 8GB DDR2 DRAM running at 667
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Table 2.2: Summary of test parameters values for the nehsigige. Parameters for tem-
plate sizell; and search window siz8/;, were chosen to reflect a realistic range that
demonstrate effect on performance of size and optimalitiy véispect to FFT.

Window size: Small Medium Large
Templatell; (pixels) 171 250 342
SearchiV;, (pixels) 342 500 683

Aggregate (I; + W, —1) 512 749 1024

MHz. All nodes are connected by Infiniband and include 750 GB0/RPM local SATA

[l disks with 16 MB cache.

2.5 Experimental Results

2.5.1 Automatic Rigid Initialization vs. Manual Rigid Registration

The accuracy of rigid initialization is critical to the nagid stage. Most critical is
the estimate of angular offset between the image pair. WHésets in translation can be
accounted for by increasing search window size, offsetagtearesult in poor comparison
of intensity features via NCC.

To demonstrate the accuracy of rigid initialization, thei®@ge pairs were manually
registered by selecting four control point pairs for eachgenpair. Control points were se-
lected uniformly throughout the extent of the tissue araleeh at unambiguous visual fea-
tures to get as close as possible to pixel precision in qooregence. For each image pair,
the manual rigid estimatg¥, 7, ,)) were calculated from the manually selected control
points and compared to their corresponding estimates gttkby the rigid initialization
stage. Figure 2.7 shows the comparison errors between theainand automatic results.

For 6 estimates, the automatic results are acceptable in 92 ch®8s¢cfalling withint4°
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of their manual counterparts. For the translation estigdig 7,, most automatic results
fall within 100 pixels of their manual counterparts, andeaa# within 450 pixels and so are

easily accommodated by reasonable search window sizes.
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Figure 2.7: Histogram of errors between manual rigid andmatic rigid registrations.
Automatic results are acceptable as input for the nonrigidesin 93 of 99 cases.

The rigid initialization compares well to manual rigid regation, however a manual
registration is not implicitly superior in terms of the ré&wy similarity between the regis-

tered base and float images. To objectively compare thetgoéliegistrations between the

prior experiment were used to transform the 99 image pand,tlae Normalized Mutual
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Information (NMI) was calculated for both cases for eachgmaair. NMI is a popular
similarity measure commonly used in image registratior].[B8VI is defined as the ratio
of the sum of individual image entropieK,(B), H(F'), and the joint entropy of the base

and float imagest (B, F))

H(B) + H(F)
H(B,F)

H(B,F) = (2.10)

and is calculated via joint and individual histograms ofygiale image conversions. Figure
2.8 shows the results of the NMI calculations for the manudl @itomatic rigid registra-
tions. Both methods are comparable, with the automatictragjisns having greater NMlI

in 23 of 99 cases, with a maximum difference of less than ®r@@malized bits.
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Figure 2.8: Comparison of manual and automatic rigid regfistn quality. Image pairs
were registered using both manual rigid and automatic mggdhods and the normalized
mutual information was calculated in each case. In termd\f fhe manual and automatic
rigid registrations are comparable. The automatic regjisins have greater NMI in 23 of
99 cases, the maximum difference is less than -0.085 narethhits.
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2.5.2 Partial Common Tissue Simulation

To demonstrate the capability of the high level feature matg approach in a partial
common tissue scenario, high level features were discdrded each of the 99 image
pairs and the rigid initialization stage was re-appliedhe truncated feature set images.
For each base-float pair, the bounding box of the base imageréset was calculated,
and the features in the rightmost 1/3 of this area were diechrThe manual registrations
were used to identify the corresponding leftmost 1/3 in thatfilmage, and those features
were discarded as well. This left roughly 1/2 of the featwwesimon between the base
float pair, depending on spatial distribution, effectivelgreasing the signal to noise ratio
for the input to the rigid initialization stage. This is denstrated in Figure 2.9. The rigid
initialization parameter estimates for these modified iesagere compared to the manual
registration parameters from the original images, and vianed to be acceptable in 37 of

99 cases, falling within four degrees fand several hundred pixels fog, 7,,.

2.5.3 Visualization of Nonrigid Registration Results

A sample 3D reconstruction from 50 placenta slides is pteseim Figure 2.10. Due
to the absence of ground truth, evaluation beyond visugkictson of nonrigid registration
quality is difficult. Differences in morphology between adgnt sections can mask small
but significant differences in quality regardless of theich®f evaluation metric. Figure
2.11 (d) and (e) demonstrates the improvement of nonrigicstr@ation over rigid alone,
where no coherent structures are apparent in the reconstrigigure 2.11(d)), preventing
morphometric analyses of the volume. This improvementss demonstrated in 2D in
Figure 2.11, where difference images between the base at@filshown for the nonrigid

and rigid-only cases.
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Figure 2.9: Partial common tissue simulation. Due to a featmatching approach, the
rigid initialization stage is capable of recovering basafflalignment in the scenario where
only part of the tissue is common between both images. Tolatmthis scenario, features
were selected in the 2/3 left portion of tissue area of the iasge. Using the manual
rigid registrations, features from the float image are tdkem the corresponding opposite
2/3 of tissue area, so that only 1/3 of the tissue area is canimboth images. The rigid
initialization results on these modified image pairs areptable in 37 of 99 cases.

2.5.4 Performance Results

The experiments from Table 2.2 were performed on the bendhdetaset using a
serial implementation run on a single node configuration. réakdown for the single
node configuration execution time spent between loading fisk, grayscale conversion,
and intensity feature extraction and matching is preseintddble 2.3. For each window
size configuration, at least 90 percent of the total exenutioe is consumed by intensity
feature extraction and matching. Since intensity featuteaetion and matching are so
demanding, and are consequently the focus of the high peafoce implementation effort,
from this point forward all references to execution times lanited to only this portion of

the nonrigid stage.
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Figure 2.10: (a) A sample 3D reconstruction of mouse place@nly a fraction of the
reconstructed volume is shown at high resolution due to teenamy limitations of the
rendering software; (b-e) Registration of mouse placensges: (b) a000 x 1000-pixel
patch from the base image; (c) Correspondiing0 x 1000-pixel patch taken from the
float image; (d) Patch from (c) after nonrigid transformatis the float image; (e) Overlay
between between (b) and (d) with the grayscale representaémbedded in the red and
green channels respectively. Small areas of intense gressdandicate morphological
differences between sections.

The number of intensity features extracted within each enaayies significantly due
to content. Table 2.4 summarizes the number of intensitipfea extracted per image in
the dataset. The percentage of intensity features selembe@s from 10% to 30% of the
total image area, with those percentages varying slighitly the value ofil/;.

Execution times for the single node configuration runningacsingle Opteron CPU
are presented in Figure 2.12. The small and large parametebsth fulfill the optimal
DFT size conditions, where the medium size is not complidiite effect on execution
time is apparent: For CPU with the FFTW library, the averagestfor the case of 295

seconds for the medium size versus 58 seconds for the sndafilaseconds for the large.
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8 of & Stack of Mousa
- e

Figure 2.11: (a) Overlay of base and float placenta imagesdid registration; (b) High-
resolution differenced patch from (a); (c) High-resolutidifferenced patch from same
area as (b) following nonrigid registration; (d)-(e) Rendgrof an edge view of placenta
reconstruction, the frontal views represent virtual cresstions of the reconstructed tissue;
(d) with rigid registration alone, no coherent structunesapparent in the frontal view; (e)
nonrigid registration corrects the structural distori@pparent in (d) and the reconstructed
volume is then suitable for further analysis.

Doubling window sizes in the optimal cases from large to $ovdl increments execution
times by 60%, where moving from the small optimal size to tba-nompliant medium
size increases execution times by nearly 410%.

Taking the single node configuration as a departure poiatidtal execution times for
the entire dataset are 1.59, 8.10, and 2.51 hours for thd,smedium, and large window

sizes respectively.
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Table 2.3: Average percentage of execution time for elesnefithe nonrigid stage over all
image pairs as executed on a single node (serial) configarati

Window sizes: Grayscale Intensity Feature

(W1,Ws) Loading Conversion Extraction & Matching FFT
Small (171,342) 9.3% 3.8% 90.7% 73.4%
Medium (250,500) 1.5% 0.6% 98.5% 95.4%
Large (342,683) 6.8% 2.8% 93.2% 78.5%

Table 2.4: Intensity feature distribution per image. Thenber of intensity features ex-
tracted for each image differs due to content and the valui&,of
Number of features extracted
Statistic: Small Medium Large

(W, W) (171,342)  (250,500) (342,683)
Maximum 2121 1105 657
Minimum 676 358 207
Average 1241 656 392

2.6 Related Work

Image registration has been extensively studied in mancapipns including biomed-
ical imaging, geological survey and computer vision. Siiiég not possible to provide a
complete list of literatures on registration, this sectmcuses on the recent works in 3D re-
construction of biological samples at microscopic resoiuand HPC solutions for image
registration.

Besides these works on the topic of registration, the riggisteation algorithm pre-
sented in this chapter shares some similarities with thengéic hashing algorithm [43,

53]. However, since the rigid registration algorithm isdsed on Euclidean transformation,
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Figure 2.12: Execution times for single node (serial) camfgjon.

the search for matches can be performed directly and extalyswith voting in the space
of transformation parameters instead of working in the spaicfeature representations.

\oting over all possible matches yields very accurate egtsof rigid transformation.

2.6.1 Regqistering microscopic images for 3D reconstruction in biomed-
ical research
There have been many works focusing on acquiring the capyalait analyzing large
microscopic image sets in 3D space. In [14] and [31], the@sthsed stacks of confocal
microscopic images to develop a 3D atlas for brains of varingects including honeybee
and fruit fly. Both research groups focus on developing a ase3D model (atlas) for
all key functional modules of insect brains. In [54], gen@rmssion patterns in whole
fly embryos are studied in 3D space using stacks of confoaaioscopic images. In the
Edinburgh Mouse Atlas Project (EMAP), 2D and 3D image regigin algorithms have

been developed to map the histological images with 3D dpiicaography images of the
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mouse embryo [28]. Similarly, in [25] the authors presersgedorkflow for observing
the 3D distribution of expression patterns of genes in mauskryo. In [26], the authors
built 3D models for human cervical cancer samples usingstathistological images in
clinical settings. A complete study on registering largenmscopic images of mouse brain

sections was presented in [37].

2.7 Discussion and Conclusions

The next generation of automated microscope imaging agpits, such as quantita-
tive phenotyping, require the analysis of extremely largade datasets, making scalability
and parallelization of algorithms essential.

This paper presents a fast, scalable, and parallelizatpbeiidm for image registration
that is capable of correcting the nonrigid distortions at®smed microscope images. Rigid
initialization follows a simply reasoned process of matghhigh level features that are
quickly and easily extracted through standard image psnegsechniques. Nonrigid reg-
istration refines the result of rigid initialization, usitige estimates of rigid initialization
to match intensity features using a fast FFT-based impléatien of normalized cross-
correlation.

The rigid initialization approach is based on the matchihdigh level features, us-
ing feature descriptions and geometric constraints totifyeoandidate pairs of feature
matches. Histogram voting on model rigid transformatioosputed from the candidate
pairs leverages the predominant presence of correct nsatclpeoduce estimates for rigid
alignment of the feature sets. The rigid initialization fpems well when compared to a
manual registrations based on four control point pairs.n@ysiormalized mutual infor-

mation (NMI) to compare the registration outcomes, the matiic rigid registrations are

46



comparable to manual registrations, having greater NMBinf29 cases. Overall, the pro-
cess of high level feature matching and histogram votinfgljnegh accuracy initialization
for the nonrigid stage in most cases (92 of 99 instances);wséignificantly reduces the
computational burden for handling images with hundredsitifoms or billions of pixels.

The registration framework presented here is part of arrteffiodesigning a micro-
scopic phenotyping system for biomedical research. Onéefgbals of this system is
to build realistic 3D models for biological samples at mitn@solution. The effective-
ness of the nonrigid registration algorithm presented edemonstrated by the success
in building the 3D models for the samples (mouse placenttf) microanatomical struc-
tures clearly reconstructed. This framework is of greatdartgmce in helping biologists to
characterize the changes in tissue morphology at the natiopislevel induced by various
genetic perturbations (e.g., gene knockout).

Two advantages of high level feature matching are beinguears$n further applica-
tions. Firstly, high level feature matching enables thastegtion of images of different
modalities such as microscopic images with different stgpes. This turns out to be
important for many studies in pathology where serial haialal sections are stained for
different proteins and overlaid (registered) to study thxegpression of multiple genes. A
system is currently being developed for registering imagés different stain types based
on the work presented here. The second advantage of thedvighféature matching ap-
proach is the capability to register images with only padigerlap. When simulating a
partial tissue overlap scenario, the outcome is accepsabieput to the nonrigid stage in
37 of 99 instances, demonstrating a capability that coussipty extend to registration of

images in occlusion scenarios in more general applications
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CHAPTER 3

NON-RIGID REGISTRATION FOR LARGE SET OF
MICROSCOPIC IMAGES ON GRAPHICS PROCESSORS

The two stage algorithm provides a fast and parallelizat#¢hod for reconstructing
tissue from large microscopic image sequences. The timessacy to resolve correspon-
dences for nonrigid registration is not unreasonable athbu@s for a sequence of 100
16Kx 16K images. In practice, however, biological studies mayue the analysis of
thousands of such images, or images of much larger sizely, eagnding execution time
from the scale of hours to days.

The primary bottleneck in the two stage algorithm is the igien matching of inten-
sity features. As indicated in the previous chapter, up % @4 execution time is spent
computing the FFTs used to implement normalized crosselaion. The first matter then
in reducing execution time is the acceleration of these FHdutations.

In this chapter | present a method for the hardware accelarat FFT calculations
using graphics processors (GPUs) and multi-socket progess a single compute node.
The features of GPUs are combined with multi-socket prognarg to achieve speed-up
factors of up to 4.11x on a single GPU and 6.68x on a pair of G&dilsg CUDA and
pthreads versus a fully serial C++ CPU implementation. Exewcuesults are shown for

a benchmark composed of large-scale images derived frondiffevent sources: Genetic

48



studies (6K x 16K pixels) and breast cancer tumo2S[{ x 62K pixels). It takes more
than 12 hours for the genetic case in C++ to register a typaalpge composed of 500
consecutive slides, which was reduced to less than 2 houng tvgo GPUSs, in addition to

a very promising scalability for extending those gainslgami a large number of GPUs.

3.1 Introduction

This chapter describes a high-performance computing appréor single-node pro-
cessing of the two-stage algorithm, based on the work of. [M&ilti-socket parallelization
enables multiple GPUs to simultaneously calculate the RISEsl to generate correspon-
dences between microscopic images at the scale of hundredbions to billions of pix-
els. The primary advantage of this approach is the compuatipgcity of the GPU which
has become a cost-effective parallel platform to implengrand-challenge biomedical
applications [55, 56]. CUDA (Compute Unified Device Architeet) offers an alternate
programming model to the underlying parallel graphics pssor without requiring a deep
knowledge about rendering or graphics. The interface useslard C code with parallel
features to transform the GPU technology to massive pamibeessors for commodity
PCs.

The results of this method are demonstrated by comparing s&d multi-socket par-
allel implementations with both CPU and GPU, using a varidtparameter choices to
explore the efficiency and scalability of the approach (s#elel'3.4.) The benchmark of
image datasets (see Table 3.5) are taken from two quaveifalienotyping projects. The
first project is a morphometric study on the role of the rdtiastoma gene (a well-known
tumor suppressor) in mouse placenta development. In thidyghree control placentas and

three mutant placentas with Rb gene deletion were obtainach Eample was sliced into
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5um sections and each section was stained using standard hgtiratmnd eosin staining.
The stained sections were digitized using an Aperio Scamsbagh resolution scanner
with a 20X objective lens which produces a resolution0of6.m/pixel. The six samples
yielded more than 3,000 images with typical dimensiofi& x 16K pixels for a total of
more than three terabytes (uncompressed) of data. Thed@copect is part of ongoing
work studying the breast cancer tumor microenvironmenticemimages from this study
are typically23 K x 62K pixels and around four gigabytes in uncompressed form.
This chapter is organized as follows: A summary of GPU aethitre is provided in
Section 3.2. Descriptions of the two-stage algorithm GPdlementations are provided
in Section 3.3. The experimental setup is presented in @e8td. Performance results
and analysis are contained in Section 3.5. The chapter wdeglin Section 3.6 with a

discussion on related work.

3.2 GPU Architecture and CUDA

The performance of algorithms on GPUs depends on how welldhe exploit paral-
lelism, closer memory, bus bandwidth, and GFLOPS.

Parallelism: Programs running on GPU are decomposed into threads angeamated
on a massively parallel multiprocessor composed of 128scorestream processors (see
central row in Figure 3.1).

Memory access Data is stored on L1 caches, L2 caches and video memorydaee |
rows in Figure 3.1), with closer memory being faster. Spédieality is best exploited by
caches, which are around a thousand times larger on the CR&eadstemporal locality
benefits the GPU, whose architectural rationale and pragiagimodel are inspired by

the producer/consumer paradigm.
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Figure 3.1: The block diagram of the Nvidia G80 architecttine GPU used for experi-
ments. The program, decomposed in threads, is executed3ostrEAms processors (cen-
tral row). The data are stored on L1 caches, L2 caches and wméenory (lower rows).

Bus bandwidth: A state-of-the-art 2007 graphics card delivers a peakopednce
memory bandwidth around 80 GB/sec., as compared to 10 GB&eCPU. This is mainly

due to its wider data path (384 bits, decomposed into sixtjpenrs$ of 64 bits in Figure 3.1).
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Computational units: The GPU capacity for floating-point operations exceeds 500
GFLOPS, in contrast with around 10 GFLOPS for a 2007 statfefart CPU. This ad-
vantage is a result of design for the color and position pakations that are required for
performance graphics applications.

The outstanding features of the GPU and CPU are combined &becaebi-processor
platform that balances workload and enhances the execatitite nonrigid registration.

The rest of this section focuses on the GPU implementation.
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Figure 3.2: The CUDA hardware interface for the GPU.

3.2.1 The CUDA programming model

The CUDA (Compute Unified Device Architecture) [57] programminterface con-
sists of a set of library functions which can be coded as aensitn of the C language.

The CUDA compiler generates executable code for the GPU,hwkiseen as a multicore
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processor resource by the CPU. CUDA is designed for generipobng and hence it
does not suffer from constraints when accessing memorygthnthe access times vary for

different types of memory.

Computation Paradigm

General-purpose on GPUs (GPGPU) [58] is designed to follmsvgeneral flow of
the graphics pipeline (consisting of vertex, geometry arelprocessors - see Figure 3.1),
with each iteration of the solution being one rendering paike CUDA hardware interface
(see Figure 3.2) attempts to hide all these notions by ptiesea program as a collection

of threads running in parallel. The elements for this apphncae:

e A warp is a collection of threads that can actually run concurygimb time sharing)
on all of the multiprocessors. The size of the warp (32 on tB8 GPU) is less than
total available cores (128 on G80) due to memory accessliimits. The program-
mer decides the number of threads to be executed, but if @nermore threads than

the warp size, they are time-shared.

e A block is a group of threads that are mapped to a single multiprocesSince
each multiprocessor has multiple cores (8 on the G80) andr@dimemory, threads
in a block are executed together and can efficiently shareanenAll threads of
a block executing on a single multiprocessor divide its ueses equally amongst
themselves, with each thread and block having a unique IBssed during its exe-
cution to process different sets of data in a SIMD (Singlérurezion Multiple Data)

fashion.

e A kernel is the core code to be executed on each thread, which pertormgferent
sets of data using its ID. The CUDA programming model does fiotvayou to

53



select a different kernel to be executed on each of the nnottgssors. The hardware
architecture, however, allows multiple instruction setdbée executed on different

multiprocessors, so this may be simulated using condilsona

e A grid is a collection of all blocks in a single execution. That wayprogram is
decomposed into kernels, each implemented through a grichwé composed of

blocks consisting of threads (see Figure 3.3).

Software on CPU (host) Hardware on GPU (device)

The input program The parallel execution

Grid 1

Kernel 1

Block goﬁ
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Figure 3.3: The CUDA programming model. In this example, gpam is decomposed
into two kernels, each implemented through a grid, with th& fyrid composed of 2x3

blocks, each containing 3x4 threads executed in a SIMD dashi
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Table 3.1: Major limitations for the CUDA programming model the Nvidia G80 GPU
used during the experimental study. The last column asséssenportance according to
the impact on the programmer’s job and overall performance.

Parameter Limit Impact
Multiprocessors per GPU 16 Low
Processors / Multiprocessor 8 Low
Threads / Warp 32 Low
Thread Blocks / Multiprocessor 8 Medium
Threads / Block 512 Medium
Threads / Multiprocessor 768  High
32-bit registers / Multiprocessor 8192  High

Shared Memory / Multiprocessor 16 KB High

A single block should contain 128-256 threads for an effiogecution. The maximum
possible thread total is 512. Other hardware limitatiomsligted on Table 3.1, where they
have been ranked according to impact on the programmer’andboverall performance

based on experience.
Memory and registers

In CUDA, all threads can access any memory location, but asat&d, performance
will increase with the use of closer shared memory wheneata tb be collectively read
by threads within a block belong to different memory bankse Tise of shared memory is
explicit within a thread and cannot exceed 16 Kbytes. Oiatidns using shared memory
may speed-up the code up to a 10x factor for vector operatang latency hiding up to
2.5x [59]. Other performance issues are summarized in giévie rows of Table 3.2.

The role of 32-bit registers becomes more important as aifigifactor for the amount

of parallelism that can be exploited, rather than as the eational mechanism to hide

55



Table 3.2: Constraints in memory addressing (first five rows) maximum performance
(last two rows) reached by the CUDA programming model in itedawversion (1.1, as of

December 2007).
Parameter Value
Constant memory / multiprocessor 64 KB.
Maximum sizes of each dimension of a block 512x12x64
Maximum sizes of each dimension of a grid 64K x 64K x 1
CUDA maximum memory pitch 256 KB.
CUDA texture alignment 256 bytes
Geometrical performance 3*1@riangles/sc.
Fill-rate (textural performance) 192*4 @exels/sc.

memory latency. A multiprocessor contains 8192 registsmsh owned exclusively by a
thread. Registers should be split among the threads so #hautnber of threads created
reaches the maximum occupancy on each multiprocessor tiieeronstraints outlined in

Tables 3.1 and 3.2. For example, if a thread consumes 10 er fegisters then an implied
819 threads may be used, but only 768 are allowed on a mugpsor and only 512 are
allowed for a block: A possible solution is to build 3 block266 threads each. Reversely,
if a thread consumes 16 registers, a maximum of 512 threaalkiged (512x16-8192),

and all threads may belong to a single block.

Developing in CUDA

A typical CUDA development cycle is as follows. First, the ead compiled using
a special CUDA compiler that outputs the hardware resoureggsfers and local shared
memory) that are consumed by the kernel. Using these vaheprogrammer determines
the number of threads and blocks that are needed to use praaéissor efficiently. If a sat-

isfactory efficiency cannot be achieved, the code needs teviged to reduce the memory
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foot print (registers and local shared memory). Due to tigh LOPS performance of the

streaming processor, memory access becomes the bottlenbekregistration algorithm.
3.3 Image registration on the GPU

The workflow for the registration algorithm is summarizedrigure 3.4. From a perfor-
mance perspective, the most interesting phase is the sasbfburier Transforms (FFTSs)
used to compute the normalized cross-correlations foriggemoint matching in nonrigid
registration, since they entail most of the execution tif@. example, in experiments reg-
istering a pair of 23K x 62K images on the CPU, representedgarii 3.5, more than 60%

of the total running time is spent in computing normalizeosrcorrelation.

Input images
,—L_ #\ ," Normaliééél ___________
High-level Selection local I cross—correlation
Ef(?raatgtri%n = (Sanity Regions ) | jmplemented on the GPU:
5 : = (Rotate Selected ) * Direct FFT on first ima.ge.
-% Feature 30—5 L Regions )/ * Direct FFT on second image.
= Matching g, /| *Matrix-Matrix product
g’ ) v . » Y rMatc_h Rotated ) (on complex numbers)
Y Cogiplil(tjmg = \szggelgcvsirtlggw ) * Inverse FFT on resulting image.
T | Registration ? e
-g—? v S | Use Matched
Voting to Z Patches to _
determine Compute > Output:
Optimal Rigid Nonrigid 3D Reconstruction
Transforms Transforms

Figure 3.4: The workflow for the two stage image registraatgorithm as implemented

on GPU. Rounded boxes are independent local operations dahabe straightforwardly

carried out in parallel. The most computationally demagdghase is selected to run on
the GPU for a much faster execution.
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Table 3.3: Percentage weight on average for each of the datgnal stages before and
after porting to the GPU.

1.400,00
@ 1.200,00
&

& 1.000,00
()

£ 800,00
§ 600,00
3 400,00
)

2 200,00

Computational phase CPU GPU

Two forward FFTs 68% 74%

Point-wise multiplication 3% 2%

One inverse FFT 29% 24%
Workload

OConvolution (2 FFTs + point-wise product)
H The rest of the algorithm
OInput/output time

e N

mammary 1 mammary 2 mammary 3 mammary 4
Input image

Figure 3.5: Workload of each phase of the two stage registraigorithm.

This process is optimized by implementation on the GPU (si@& 3.3.1 below),

including the two forward FFTs and the subsequent inverke.pbint-wise multiplication

of FFT spectra which is required between the forward andrgsvéransforms was also

implemented on the GPU to save data movement between poosessl to take advantage

of higher arithmetic intensity versus computation on the GBéeé Table 3.6). Table 3.3

depicts the percentage weight for these operations on éattbrm.
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The remaining parts of the registration algorithm inclggwoting, variance calcula-
tions, and simple transformations (e.g. rotating) did maivg any significant speed-up on

the GPU for three major reasons:

1. They were already computationally cheap on the CPU.

2. More importantly, it was remarkable how much time was nexglto ship code and
data back and forth between the CPU and the GPU through the mémus, hyper-
transport link, and PCl-express controller (see Figure. 3THis cost could not be

amortized during the subsequent computation despite fie@GFLOPS rate.

3. Most of these operations contain conditionals and aranibimetic intensive, which
makes them more appropriate for the CPU processor. Addilyotiais enables the

bi-processor platform to achieve a more balanced execution

3.3.1 Normalized cross-correlation using CUDA

Normalized cross-correlation can be efficiently impleneenbn the GPU using the
CUDA programming model. The computation strategy is basethertheorem that cir-
cular convolution in geometric space amounts to point-wisgtiplication in discrete fre-
guency space. This way, using the CUFFT library [60] as anieffidirect/inverse Fast
Fourier Transform implementation, Fourier-based coti@bacan be more efficient than
a straightforward spatial domain implementation, and psriaveraging of the floating-
point power and parallelism of the GPU without having to depea custom GPU-based
implementation.

The FFT is a highly parallel "divide and conquer” algorithar the computation of the

Discrete Fourier Transform of single or multidimensionighsls. The convolution theorem
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applies to an image (search window) and convolution keteehglate window) that share
the same sizes. In cases where the image is bigger than tha karch as the matching of
a template within a larger search area, the kernel has tomneed to the image size as
shown in Figure 3.6. Also, ordinary convolution requires tamplate and search windows

to be padded with zeros on the bottom and right borders asgatd in Section 2.2.2.

template expanded to 10x10 size

_ s BERREERER
®5x5 template window 6| 7/ 8/ ol ol olol ol 4] 5| o
,%(convolutlon kernel) 78 9lol 0o o 05l 6 §
2401/ 2[3[45 0/0 00/0/ 000003
9] 10x1 |
2112345 OOOOOOOOOO% 0x10 output result
| [3[4|86[ 7 |expand)> [o[0]0]0[0]0[0[0[0[0]|Z
g45678 0/0/0]0/0]0/0]0]0|0]|5
EY|5(6[7/8]9 0/0/0/0/0/0/0/0/0[0O]| =
= 3/ 4/5/0/0/0/0{0]12
4|5 6/0/0/0 0023
Multiply search
window elements
by transposed
template window.
Then add them u
40x40 large input image Expanded template transposed to compute the
decomposed into 10x10 tiles 3 7 65 2 final result
21 543
10x10 search wjrfdow (tile)
(ZOOM)
S~ ]T--_ |65 9l8l7]6
S~ 54 87/ 65| 4
T~ l4 3 - 7/ 61 4] 3
65 4[3[2
514l 3[2f4f -

Figure 3.6: The computation of FFT-based normalized coosselation. The template
window has to be expanded to the search window size and adiomwith the expanded
kernel is equivalent to the one with the initial kernel. Thample is shown for a large
image having 40x40 pixels and decomposed into 4x4 tiles tesulting a search window
of 10x10 pixels. The template window has 5x5 pixels, halhaf search window size as in
the registration algorithm.
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Table 3.4: Template (feature) and search window sizes el$). An evaluation about
whether those sizes contribute to perform further optitiore in the corresponding CPU
and GPU codes is included, considering the libraries usethgluhe implementation:
FFTW on the CPU and CUFFT on the GPU. (*) This slot is partiallyfamour of the
GPU because 749 is a multiple of seven, a small prime number.

Input image: Placenta: 16K x 16K Mammary: 23K x 62K
Window size: Small Medium Large Small Medium Large
Template window (in pixels) 171 250 342 342 500 683
Search window (in pixels) 342 500 683 683 1000 1366

Aggregate (template+search-1) 512 749 1024 1024 1499 2048
CPU friendly (FFTW library) Yes No Yes Yes No Yes
GPU friendly (CUFFT library)  Yes ™ Yes Yes No Yes

The 2D-FFT dimensions are fundamental in CUDA for optimiziegformance. When
the template and search window are multiples of either a poimevo or a small prime fac-
tor, the memory footprint generated by the CUDA algorithmimizes conflicts accessing
banks on shared memory and performance increases. Fortheegoart C++ implementa-
tion on the CPU the FFTW [48] was used, one of the most poputhe#iitient CPU-based
FFT libraries, for a fair comparison with the GPU results T®Falso favours certain 2D-
FFT dimensions, and the optimal cases arise when the sune déthplate window and
the search window sizes minus one is a power of two. With aleselection of FFT di-
mensions, a benchmark was created that fulfills most of thées on both CPU and GPU
implementations. Table 3.4 summarizes all sizes selecteeiperimental evaluation and
evaluates their adequacy for each type of processor.

For the cases in which the data size cannot fulfill the pressroles, FFTW and CUFFT
provide a simple configuration mechanism callgolan that completely specifies the op-

timal - that is, the minimum floating-point operation - plahexecution for a particular
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FFT size and data type. The advantage of this approach ietticatthe user creates a plan,
the library stores on file whatever state is needed to exebatplan multiple times, thus
avoiding the penalty of carefully planning the transformsum-time. For example, with
a template window equal to 350x350 pixels and a search wiretpal to 700x700 pix-
els, FFTW takes around 0.7 seconds, whereas the pre-planngultation takes only 0.32
seconds with a previous 6 seconds penalty required to prgete the plan (a cost which
can later be amortized by loading the plan at run-time onesnt 2D transforms of the

same size).

3.4 Experimental Setup

3.4.1 Input data set

The multi-socket GPU implementation was applied to a sexigmicroscopic images
derived from consecutive sections of (1) mouse placenta foorphometric study on the
role of the retinoblastoma gene and (2) mammary gland falystg the breast cancer
tumor microenvironment [22]. For details about these skimages, see Table 3.5. The

goal in both cases is to reconstruct 3D tissue models forttidy ©f microanatomy.

Table 3.5: The set of images used as input data sets for agtreggpn algorithm.
Field of = Research area and Mouse  Computational Image Number
study biomedical goals source workload size (pixels) afedi

Genetic Role of a gene Placenta Medium 16K x 16K 100

Oncology Breast cancer tumor Mammary Large 23K x 62K 4
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Table 3.6: Summary of the major features of the high-end GBi Nvidia.

GPU feature Value Video memory feature Value
Model Quadro FX 5600 Clock frequency 1.6 GHz
Core clock frequency 600 MHz Bus width 384 bits
Stream processors clock 1.35GHz Bandwidth 76.8 GB/sc
Manuf. technology 90 nm Memory size 1.5GB

3.4.2 Hardware

The multisocket GPU implementation was executed on a GPGRlaNzation node
where the features of dual-core AMD Opteron 2218 CPU are coecbivith dual-socket
high-end Nvidia Quadro FX 5600 GPU (see Figure 3.7). The CRin#owed with 4 GB
of DDR2 DRAM running at 667 MHz, whereas each of the dual GPUsains 1.5 GB of
on-board GDDR3 DRAM at 1600 MHz (see remaining features indal®). This leads to
a total available DRAM memory of 7 GB. The system is completeith wi750 GB, 7200
RPM local SATA Il hard disk with 16 MB cache and an InfiniBand cmdcommunication
purposes.

In the experiments, the time for reading the input imagemffibe is not considered.
This time can be partially hidden by overlapping I/O comneations with internal com-
putations on the GPUs due to the asynchronous communisatigyported within CUDA
1.1. In addition, it has been observed that shared I/O dughier @luster users slightly
affects the computational time. To minimize this variatiseveral runs were performed

for each experiments, taking the average among all of them.
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two GPUs.
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3.4.3 Software

The GPU was programmed using the CUDA Programming Toolkisia 1.1 (De-
cember, 2007), and for the cases where we used two GRhlgadswere used to run the
code on each GPU.

On the CPU side, we used the Microsoft Visual Studio 2005 8.0 €mpiler. Matlab
7.1 was also used to validate the results from our implentientas well as to provide the

departure sequential execution time.

3.5 Empirical Results

A broad number of experiments were conducted on one hunavagds in the placenta

image set and four images for the mammary image set as reflieciable 3.5.
3.5.1 Characterizing the workload

A preliminary issue to mention is that the execution timedach slide within the same
working image set experiences variations due to the coatamhtonsequentially the differ-
ent number of features processed. As described in Sec2od, 2he variance is computed
on a200 x 200-pixel window to retain only feature points that are meafuhgThis may
lead images of similar sizes to produce different worklobdsed on their contents (the
more homogeneous an image is, the less computation refjuifetble 3.7 summarizes
the number of features extracted for each input image beigrig the mammary data set
as well as the total and computational time required for #ggstration algorithm to be
completed on an Opteron CPU.

The percentage of features processed ranges from 4% to 3@@bimage area, with

those percentages varying slightly when using small, rmediularge window sizes (see
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Table 3.7: Workload breakdown on single CPU for mammary insee The number of
features extracted for each input image within the mammatg skt differs due to content.
Execution times in the last two columns represent the laage.c

Number of features extracted = Workload on CPU (in seconds)

Window size: Small Medium Large  Executiontime Executiondi
(template,search) (342,683) (500, 1000) (683, 1366) with 1/0 without 1/0
Mammary 1 1196 655 384 650.86 558.54 (85%)
Mammary 2 1048 568 312 497.83 414.17 (83%)
Mammary 3 3119 1528 854 1320.01 1192.69 (90%)
Mammary 4 690 322 168 463.77 340.62 (73%)

Table 3.4). However they may consider as stable for eachanidige smaller window size
is selected as the most representative (higher searchutiesgl Under this assumption,
Figure 3.8 provides details about the percentage of feapnecessed for the placenta and
mammary image sets: For the placenta images the minimunem@ge corresponds to
image 5 with 10.48% and the maximum to image 99 with 30.38%%, amotal average
of 19.88%. For the mammary gland images the minimum pergerita4.82% by image
4, with a maximum of 20.71% by image 3, and an average of 10.72%cording to
our definition of feature, the placenta image set contaietsly double the density of
meaningful information. While the mammary gland set is adaighage, it represents a

higher rate of sparsity.

3.5.2 Execution times on the CPU

Figure 3.9 presents the execution time for the registratlgarithm depicted in Figure
3.4 when it is entirely computed on the CPU using the FFTW hjpralhe results for
the placenta image set are shown on the left, mammary ondhe riwithin each case,

experiments were run for three different template and $eafiodows (see Table 3.4):
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Figure 3.8: Percentage of features processed per imagecbringat image set. The small
template and search window size was selected as the mossespative.

small (blue, leftmost), medium (red, center) and largel¢yelrightmost). According to the
details provided by the FFTW library, the small and largesiulfill optimal conditions,
whereas the medium size breaks all rules (from now on, tisis wéll be referred to ason-
complian). This has a major impact on the execution time, with an aetane for the
placenta case of 294.57 seconds using the medium size \&ffisseconds in the small
case and 91.33 seconds in the large one. This results in esmeat of 57% when the
windows are doubling size within optimal conditions and ddigonal 222% when using
non-compliant sizes. Mammary offers a similar behavioouthh the last two overheads

are reduced to 26% and 147% respectively.

3.5.3 Execution times on the GPU

Figure 3.10 shows execution times for the registrationrélym when the GPU helps
the CPU by computing the FFT-based cross-correlation usinQACThe left side repre-
sents the placenta image set and the right side the mammageiset, with the legend

differentiating the small, medium and large window sizeesasee Table 3.4). This time,
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Figure 3.9: Execution times on the CPU Opteron for the regfistn algorithm on a pair
of images under different image sets and window sizes. Tsiggiair of numbers on chart
legends corresponds to the small window sizes (templatseardh window, respectively),
then medium and finally large sizes. For placenta, averagsstare 57.97 seconds (small),
294.57 seconds (medium) and 91.33 seconds (large). For ragmaverage times are
530.41 seconds (small windows), 1660.91 seconds (medind$@9.96 seconds (large).

the small and large sizes fulfill all conditions imposed bg QUFFT library and also
the medium search window size of 749 pixels satisfies beingléipte of a small prime
number (7). Nevertheless, its overhead is still significarite average times for the pla-
centa case are 19.27 seconds (small), 47.80 (medium) aR@d &2conds (large), and the
slowdown is of 15% when the windows are doubling size wittptirnal conditions and an
additional 115% for the non-compliant case. For mammaeyldige sizes perform slightly
better than the small ones, and the non-compliant overhmadigm size) reaches the top:

531%.

3.5.4 CPU-GPU comparison

The central row in Table 3.8 reports the average speed-upréaon the GPU when
helping to compute the FFT-based cross-correlation usinBAGains are unstable for

the non-compliant cases, and the most realistic resultharemall and large cases where
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Figure 3.10: Execution times on the GPU Quadro for the reggish algorithm on a pair
of images under different image sets and window sizes. Tsigpiair of numbers on chart
legends corresponds to the small window sizes (templatseaa@th window, respectively),
then medium and finally large sizes. For placenta, averaggstare 19.27 seconds (small),
47.80 seconds (medium) and 22.22 seconds (large). For mamenerage times are
264.09 seconds (small windows), 1629.72 seconds (medind2%7.95 seconds (large).

window sizes strictly follow the guidelines provided by tRETW and CUFFT libraries.
For the placenta image set, small windows produce a thresstanceleration factor and
large windows extend gains to reach 4.11x. For the mammaagénset, those gains are
more modest: 2.00x and 2.59x, respectively.

Figure 3.11 demonstrates that the improvement factor oG #lg depends much more
on the input image when using mammary rather than placeritayemnumbers are more
consistent. Additionally, gains are more volatile wherr@asing the window sizes. This is
because the image contents become more heterogeneousrgaraskarch, showing also

higher disparities among images. This effect is corrolear&t Figure 3.8.
3.5.5 Parallelism and scalability on the GPU

The GPU has gained popularity as an outstanding scalabiéeoture over the past

decade, being able to succeed in its goal of sustaining peafoce doublings every six
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Figure 3.11: Comparison between the GPU and CPU executionitinrerms of GPU
speed-up factor. When the window sizes increase, times are immegular in (b). The
first pair of numbers on chart legends corresponds to thel smradiow sizes (template
and search window, respectively), then medium and finatyelaizes. For placenta, the
average speed-up is 3.00x (small), 6.16x (medium) and 4latge). For mammary, the

average speed-up is 2.00x (small windows), 1.01x (mediunmd}2a59x (large).

Table 3.8: Execution times (in seconds) and speed-up fabtborthe different implemen-
tations developed for computing our registration algonithn a pair of images with max-
imum performance. The average of all 100 and 4 runs is repdaethe placenta and
mammary image sets. Boxed numbers highlight the GPU speetdgr the most typical

scenarios.
Input image set: Placenta: 16K x 16K Mammary: 23K x 62K
Window size: Small Medium Large Small Medium Large

(template,search) (171,342)  (250,500)  (342,683)  (342,683)  (500,1000)  (EB35)

CPU exec. time 57.97 29457 91.33 53041 1660.91 669.96
GPU exec. time 19.27 47.80 22.22 264.09 1629.72 257.95

GPU speed-up 6.16x [4.11x| [2.00x] 1.01x

2 GPUs time 13.13 26.05 13.66 225.17 837.51 234.62

2GPU/1GPU 1.46x 1.83x 1.62x 1.17x 1.94x 1.09x
2GPU/1CPU 4.41x 11.30x 6.68x 2.57x 1.98x 2.85x
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months. In addition to this intra-chip trend, other initras like SLI from Nvidia and
Crossfire from ATl have emerged to explore inter-chip paliatie (SMP - Symmetric
Multi-Processing). The initiative has achieved a remal&kabccess within the video-game
industry, but so far has not been explored for general-m&gomputing to our knowledge.

This section evaluates the performance of our registratigorithm on a pair of GPUs
when applying SMP parallelism. Our programming technicaresstraightforwardly ex-
tensible to higher number of graphics cards, and the methedd for partitioning the
problem guarantees excellent scalability beyond thattpbiavertheless, in this ambitious
project a warning against the critical role assumed by tpatfioutput system is necessary:
Dozens or even hundreds of GPUs working in parallel can findemy way of distribut-
ing different search windows efficiently when working ongesscale input images, but
there must be a high-performance file system able to readrihgs tiles in parallel at a
sustainable bandwidth high enough to provide data to beegsad over the Teraflop rate.
During experiments this bottleneck was not investigated lamger number of GPUs. Table
3.7 gquantifies in its last two columns the execution timel@dimg input/output) and the
computational time (excluding 1/O) to reveal that I/O ispessible of 10-20% of the total
execution time. This time has not been included in our sulls@iganalysis since it is the
same for both the CPU and the GPU-optimized versions of oustragon algorithm, and
I/O is out of the scope of this work. This implicitly assumbattimage data are available
in DRAM memory or that they can be retrieved efficiently frone filsing either a parallel
file system or a RAID system.

Once data reaches the CPU, there are two basic ways of distighihe workload
among multiple GPUs in our registration algorithm: BLOCK or CYICL For the par-

ticular case of a pair of GPUs (but without losing any gengfalBLOCK assigns the
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upper half of an image to the first GPU and its lower half to theosid GPU. CYCLIC, on
the contrary, numbers image tiles and assign even tileetbrgt GPU and odd tiles to the
second GPU. Because interesting image features tend to ti@lgmancentrated, BLOCK
presents higher potential risk for an unbalanced datatipaitig, so CYCLIC was selected

for all experiments.

Table 3.9: Number of windows processed and discarded fdr ma&ge within the mam-
mary image set on each GPU under the two GPUs parallel epacWorkload unbalance
and execution time are shown in the last two columns. Theckeamdow size here is
684x684 pixels.

Input Graphics Number of windows Workload Execution

image processor tested processed/discarded unbalance (stos.)

Mammary 1 GPU 1 1672 196/1476 4.08% 260.41
GPU 2 1672 188/1484

Mammary 2 GPU 1 1496 158/1338 2.53% 101.32
GPU 2 1496 154/1342

Mammary 3 GPU 1 1872 428/1444 2.76% 522.43
GPU 2 1911 426/1485

Mammary 4 GPU 1 1786 78/1708 13.33% 225.37
GPU 2 1786 90/1696

The parallelization method works the following way: a tltéacreated for each image
region (tile) which computes the variance on a given CPU tessssvhether it is worth
computing. If the tile passes this test, it is sent to a peydahed GPU to compute the
normalized cross-correlation and search for features.leTal® outlines the number of
tiles processed and discarded on each GPU depending onpilneinmage used from the

mammary data set. Workload unbalances range from 2.76% agerd to 13.33% on
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Figure 3.12: GPU scalability. Improvement factor when dingba second GPU. The

first pair of numbers on chart legends corresponds to thel smradiow sizes (template

and search window, respectively), then medium and finatyelaizes. For placenta, the
average speed-up is 1.46x (small), 1.83x (medium) and 1(lé&ye). For mammary, the
average speed-up is 1.17x (small windows), 1.94x (mediund)1209x (large).

image 4, always growing for lower number of tiles to procegsa(sity rate of the input
image).

Finally, Figure 3.12 shows that gains produced when englalisecond GPU are very
diverse, starting with 30-50% on small window sizes, cantig with 60% on large win-
dow sizes and ending with an optimal scalability (100% gain)medium sizes. Those
gains are proportional to the computational workload, shgwhat the GPU is a more
scalable processor when it can exploit its arithmetic isitgn In other words, GFLOPS
are not limited by data shortages coming from insufficientdwveidth between the video

memory and the GPU.
3.5.6 Summary and conclusions

Several conclusions can be drawn from our experimentay/sisal

1. The placenta image set shows higher speed-up factoregmnaphics platform. This
is because the images have a larger portion of meaningfteogieading to a denser
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workload which exploits its arithmetic intensity and membandwidth better. Also,
a lower number of features processed means higher presénoaditionals in the

code, one of the most harmful instructions for GPU perforoean

2. The placenta image set is more scalable on multiple GRidsgains are more stable
among different window sizes. The higher sparsity of the many images plays
a negative role in the workload distribution, introducingoalances and preventing

parallelism from being fully exploited.

Overall, the GPU achieves a 3-4 speed-up factor in the mpgtalyscenarios (boxed
slots in Table 3.8) versus the CPU, and a pair of GPUs show staabry scalability but

unstable gains under different image sets and window sizes.

3.6 Related Work

Large scale image registration has many applications in bisimedical research [26,
37, 61] and geophysics [62]. However, there are currently i@rks addressing image
registration algorithms intended to run efficiently on hyggrformance computing (HPC)
environments.

The work on parallel image registration on multicomputerséimited [37] and is re-
stricted to either large computer clusters [63—65] or IBM ceisters [66]. Clusters of
GPUs have been used to implement other heavy workload t&3ksrmostly within the
simulation and visualization fields. For example, numérmuoathods for finite element
computations used in 3D interactive simulations [68], and@ar, gas dispersion and heat
shimmering simulations [69].

On the other hand, commodity graphics hardware has becommst-®ffective parallel
platform to implement biomedical applications in gene&®][ One work similar to the
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application in this dissertation on the registration of Bmediological images [70], and
others within the fields of data mining [71], image segmeataand clustering [72] have
applied commodity graphics hardware solutions. Thosetsfftave reported performance
gains of more than ten times [56] but were mostly implementgdg shaders with the Cg
language [56].

The present work enhances the graphics implementatiomdghr@ UDA [57] which
exploits parallelism to a wide variety of layers. The congainmplementation of CPU
and GPU on a bi-processor platform is one step ahead in peaifure and provides the
first parallel processing solution on large microscopicge®for users without requiring
an expensive multiprocessor.

In 2004 it was reported that on real numbers, the MxM produey min slower on the
GPU due to the lack of high bandwidth access to cached dajaTli8 same set of opera-
tions that is described for the correlation phase (two dif€d’s, point-wise multiplication
in frequency space, and a inverse FFT) took 0.625 second2003lntel Xeon CPU for a
1024x1024 matrix, versus 2.7 seconds on a counterpart GebdsPU [74]. This situation

is reversed in 2008 for two major reasons:

1. On the software side, the CUDA programming model makesi@iphe use of

shared memory, which overcomes the lack of high bandwidtessto closer data.

2. Onthe hardware side, the higher scalability of the GPWpéogted, doubling perfor-
mance every six months during the present decade versu$ tmeith period that

takes the CPU that achievement [59].

GPUs for general-purpose computations are an emergingefielding quickly within

computer architecture. Tesla [75] is the latest and moregpimivcontribution from Nvidia
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to this area, offering multiple GPUs without video connestato either a board or a desk-
side box to reach near supercomputer levels of single-gioecfloating-point operations at
a cost starting around $1500 (a price similar to the Quadr&600 used during experi-
ments). At a lower price range, there have been recent asemants on double precision
graphics architectures from Nvidia (GeForce 9 Series) ahd(RireStream - see [76])
to provide a definitive solution to software requiring higtecision arithmetic in floating-

point operations.

3.7 Discussion and Conclusions

With the advances in imaging hardware, tasks like the nahragistration of large im-
ages with billions of pixels become increasingly populegleing towards computationally
demanding algorithms for which parallel and scalable smhstbecome essential. Within

this scope, the contribution of the work in this chapter isftvid:

e First, the two stage algorithm provides a parallelizabl¢hoe for registration which
has been successfully applied to biomedical studies fenstcucting the 3-D struc-
tures of biological specimens with micron resolution. WhHhe algorithm is mo-
tivated by biomedical applications, the principle of ushigh-level region features
for rigid registration and using uniform sampling for nagid feature matching are

ubiquitous for other applications.

e Second, a computational framework has been developed al#gggexecution using
graphics processors. A solid heterogeneous and coopematiltiprocessor platform
is established using an AMD Opteron CPU and a pair of Nvidiadpu&PUs, where
the best features of each processor are fully exploiteddplyang higher degree of
parallelism at a variety of levels: Multi-task for simultwus executions of CPU and
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GPU codes, SMP (Symmetric MultiProcessing) for multicaflds using pthreads,
and SIMD (Simple Instruction Multiple Data) for the 128 stne processors of the

GPU using CUDA.

The CUDA programming model exploits all the capabilitieshd GPU as a massively
parallel co-processor to achieve a remarkable speed-tqr fas opposed to an expensive
supercomputer. Experimental numbers show the succesgs# techniques, first by de-
creasing the execution time a 2-4x factor on a single GPU ated &xtending those gains
to a pair of GPUs. For the genetic studies of a mouse placamgle composed of 500
slides of 16 K x 16K pixels each, it takes more than 12 hours for serial C++ code+o a
complish the registration process. This was reduced tatess2 hours using two GPUs,
and in addition, promising scalability was demonstrateagitending those gains easily on
a large number of GPUs.

Overall, this study provides an illustrative example fomha graphics architecture in
conjunction with its CUDA programming model may assist nomgputer scientists by
adapting grand-challenge biomedical applications to igealmost real-time response to

pathologists in computer-aided methods.
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CHAPTER 4

PARALLEL AUTOMATIC REGISTRATION OF LARGE SCALE
MICROSCOPIC IMAGES ON MULTIPROCESSOR CPUS AND
GPUS

During the present decade, emerging architectures imgyudulticore CPUs and graph-
ics processing units (GPUs) have gained popularity for @giity to deploy high compu-
tational power at a low cost. The effectiveness of emergingitectures was demonstrated
in the previous chapter where GPUs with multi-socket pelialh were used to accelerate
the two stage registration algorithm on a single computioden

In this chapter | introduce another level of parallelism lte two stage high perfor-
mance implementation, extending the single node methadsirfaultaneous execution to
multiple nodes. Parallelization techniques from multighels are combined on a cooper-
ative cluster of multicore CPUs and multisocket GPUs to apipdyr joint computational
power to further reduce execution time for the two stagerittyn. As before, the two
stage algorithm is analyzed to identify those parts thainaosee favorable to the CPU or
GPU execution models and decomposed accordingly.

Performance results are presented for both the mouse pdatEsK x 16K pixels)
and mouse mammary tumor (23K 62K pixels) image datasets. Execution times are

provided for different multi-node, multi-socket and mwdbre configurations to provide
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performance insights about the most effective approach.afoouse mammary sample
composed of 500 slides, more than 181 hours are requiredftdlysserial C++ code to
accomplish the registration process on a high-end CPU. theswas reduced to less than
50 hours using a single GPU on a single node, and to 3.7 housstfal speedup of 49

when 32 CPUs and GPUs participate in the cooperative envieahm

4.1 Introduction

Light microscopy offers the desired field range and magriibodor the study of many
complex biological phenomenon, but acquiring 3-D inforim@atequires the reconstruc-
tion of sequences of very large images, often with hundrédslbons or billions of pixels
each. The challenges of image size, rich feature envirohraed nonrigid distortion and
local morphological differences as described in Chapterageladdressed through solu-
tions at both the software and hardware layers. The softlages solutions of fast rigid
registration, refinement using correlations calculateti WFT, and single transform output
were a good departure point but not sufficient by themseloetafge scale applications.
Chapter 3 introduced hardware layer solutions, using GPdswauiti-socket parallelism
to accelerate the FFT calculations that bottleneck the tagesalgorithm.

This chapter extends the hardware layer effort to multijpldes, using node-level par-
allelism to address additional portions of the refinemeagebeyond FFT calculation. Im-
plementation issues and performance are studied on vérighgperformance computing

environments. Specifically, effort is split between twoaare

o Parallel systemsased on a cluster of multisocket and multicore CPUs progreeinm

using MPI (Message Passing Interface) [77].
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e GPUsreoriented to general-purpose computing using CUDA (Compuatéed De-

vice Architecture) [57].

Since each approach presents unique features for a higbriperice execution, the
goal is to find cooperative scenarios where each resourd#éized at its peak while over-
coming the weaknesses of the other. This way, performantéeaompared on single
nodes, CPU clusters, GPU clusters and a mixture of CPUs and @GP&sooperative
execution.

This chapter is organized as follows: Section 4.2 providgaits on the software tools
and computing cluster hardware. Section 4.3 explains tipéeimentation of the two stage
algorithm on multiple nodes. Results and discussion areiggdvin Section 4.4. Conclu-

sions about the high performance implementation are predém Section 4.5.

4.2 Hardware and programming tools

4.2.1 The multiprocessor system at a glance

The two stage registration algorithm was implemented on @ &guipped cluster, the
BALE system at the Ohio Supercomputer Center (see Figure %l BALE supercom-
puter is endowed with 55 workstation nodes based on a dualAtblon 64 X2 architecture
with integrated graphics card and 16 visualization nodésieced with dual-socket x dual-
core AMD Opteron 2218 CPUs and dual-card Nvidia Quadro FX 36P0s. All of these
nodes are interconnected with Infiniband, and include a /304200 RPM local SATA I
hard disk with 16 MB cache.

Experiments were run on the sixteen visualization nodesy&bach node has 8 GB of

DDR2 DRAM running at 667 MHz on the CPU side and 2x1.5 GB of on-8dabDR3
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Figure 4.1: The BALE supercomputer at a glance.

DRAM running at 1600 MHz on the GPU side, for a total of 11GB kfgle DRAM per

node.

4.2.2 The CPUs: AMD Opteron X2 2218

On the CPU side, each BALE node of the visualization clustesists of two Opterons
X2 2218 composed of dual-core processors running at 2.6 Gé&z Table 4.1). Each core

can fetch and decode three x86 instructions per cycle antigx®& micro-ops per cycle.
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Table 4.1: Summary of the major features of the high-peréoroe multiprocessor nodes .

| Hardware feature | CPU \ GPU |
Commercial model AMD Opteron 2218 Quadro FX 5600
Clock frequency 2600 MHz 600 MHz
Sockets (SMP) Dual Dual
Cores (per socket) Dual 128 stream procs,
Cache size (L1 & L2) 2X2x1MB. 2x 392 KB.
Cache latency (L1, L2 3, 9 cycles 10 cycles
DRAM capacity 8 GB DDR2 2x 1.5 GB GDDR3
DRAM latency 138 cycles 200 cycles
DRAM data bandwidth 2x 10.8 GB/s 2X 76.8 GB/s
Peak processing power 2x 2x 4.4 GFLOPS| 2x 330 GFLOPS

The cores support 128 bits SSE instructions in a half-punfigs&ition, for a peak double-
precision performance of 4.4 GFLOPS per core, 8.8 GFLOPS@eket, 17.6 GFLOPS
per node and 35.2 GFLOPS in simple precision, for a totalegae of 563.2 GFLOPS for
the 16 visualization nodes in 32-bits arithmetic.

The Opterons contain two cores, each with a pair of 64 KB 2-getyassociative L1
caches, a1 MB 4-way L2 cache, and a dual-channel DDR2-667 nyeronotroller as well
as a single HyperTransport link to access the cache and myevhtre other socket. Each
socket can thus deliver 10.6 GB/s for an aggregate memorywdtidof 21.3 GB/s per

node.

4.2.3 The GPUs: Nvidia Quadro FX 5600

Figure 4.2 shows an outline of the G80 architecture, thelinasi®r the Nvidia Quadro
FX 5600 GPU. Further details of the G80 architecture areigealin Table 4.2. Vertices

and their attributes are the input to unified shaders (vegegmetry and pixel), and later
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processing is organized using multiple functional unitskirmy on data groups. Unified
shaders are executed on 8 separated clusters, each augpthinstream processors, 4 tex-
ture address units and 8 texture filtering units, togeth#ér wismall L1 cache. This part is
built on a hardwired design for a much faster clock frequetheyn the rest of the silicon
area (1350 MHz versus 600 MHz), leading to a peak processimgipof one third of a
TFLOP. In the final stages of the graphics pipeline six partg are responsible for the

antialiasing, z-buffer and blending, whose results ardl§inaitten into video memory.
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Figure 4.2: The graphics pipeline of the Nvidia G80 arcliues.

From a graphics viewpoint, the G80 can be seen as a 4-staphicggipeline for
shading, texturing, rasterizing and coloring. As a paraltehitecture, however, the G80
becomes a SIMD processor equipped with 128 cores, and CUD#iprogramming in-
terface to use it for general purpose computing. From the CiP#pective, cores are
organized into 16 multi-processors (each cluster becomesl-processors with 8 cores),
each having a set of 32-bit registers, constants and tegagkes along with 16 KB of

shared memory. At any given cycle, each core executes the setnuction on different
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Table 4.2: Summary of the major features of our high-pertoroe graphics card, the
Nvidia Quadro FX 5600, together with its limitations whemgrammed with CUDA.

| GPU feature \ Value ||
Model G80GL
Core clock frequency 600 MHz
Stream processors clock 1.35 GHz
Manufacturing technology 90 nm

| Memory feature \ Value ||
Memory clock 1.6 GHz
Bus width 384 bits
Bandwidth 76.8 GB/s
Size 1.5GB

| CUDA feature \ Value ||
Constant memory 64 Kbytes
Shared memory per multiprocessoi6 Kbytes
32-bit registers per multiprocessar 8192
Max. no. threads per block 512 bytes

data, and communication between multiprocessors is paedrthrough global memory
(see Figure 3.2). The features for the Nvidia Quadro FX 56BQ@re summarized in the
last column of the Table 4.1, and the most important paramébe its programming with

CUDA are given in Table 3.6.
4.2.4 CPU-GPU comparison

Four key issues are considered for maximizing performamedgorithms running on

CPUs and GPUs:

1. Parallelism: CPUs are more popular on high-level parallelism like muitdes and

multi-sockets (SMP - Symmetric MultiProcessing). GPUs mi@e aggresive on
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inner parallelism, like multicores (128 cores or streancpsesors in the G80 archi-
tecture), SIMD (Single Instruction Multiple Data) and ILgtruction-Level Paral-

lelism).

2. Computational power: The GPU capabilities for floating-point operations exceed
500 GFLOPS, in contrast with 10 GFLOPS for a 2007 state-efatt CPU. This ad-
vantage is a result of design for the color and position pakations that are required

for performance graphics applications.

3. Memory access Spatial locality is best exploited with cache memory, whis
around a thousand times larger in the CPU. Temporal locaitythe other hand,
benefits the GPU, whose architectural rationale and pragiagimodel are inspired

by the producer/consumer paradigm.

4. Bus bandwidth: A state-of-the-art 2007 graphics card delivers a peakopexnce
exceeding 80 GB/sec. of memory bandwidth, as compared to 18eGBfor the
CPU. This is mainly due to its wider data path (384 bits, decased into six parti-

tions of 64 bits).

4.2.5 Layers of parallelism

These features are combined to create a cooperative nnattepsor platform where all
the granularities of parallelism inherent in the architeetmeet and are fully exploited in

the two stage algorithm at different layers:

1. Multi-node: The outer layer, where MPI is used for data partitioning amdmmuni-

cation across nodes.
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2. SMP: The motherboard or inter-CPU layer, where MPI is also usedrfapping

processes to processors sharing the on-board DRAM memory.

3. Multi-core: The thread or intra-CPU layer, where pthreads are used agveasef
mechanism to decompose the program according to the nurhlceres available.
Some multicore architectures have distributed all cacherta while others share the

most outer one.

4. SIMD: Used within CUDA to fully occupy the 128 stream processorshef GPU
with a single code. These processors are grouped into &cdust 16 cores sharing

16 KB of an internal shared memory.

5. ILP: The innermost layer, enabled by setting up CUDA blocks of aataonal
threads on the GPU. These blocks partition the internastegdata set available in

the graphics processor.

4.2.6 Programming tools

Programming tools involved in the parallelization effartiude MPI, Pthreads, C++,

Matlab and CUDA.

e MPI Message Passing Interface is used for programming the BAUlEprocessor,
or inter-node allocation and communication [77]. The MRitnoes are callable from

C++ code.

e Pthreads POSIX Threads are used for programming the multicore CPUg rexor
plicitly [78]. This is an API for creating and manipulatinigreads which consists of

a set of C programming language types and procedure calls.
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e C++ Microsoft Visual Studio 2005 8.0 C++ compiler was used forgpaanming the
CPU code. Multimedia extensions were enabled directly tnddAL layer without

any specific library in between.

e CUDA Finally, the GPU was programmed using 8&JDA Programming Toolkit,

version 1.1 (December, 2007).

4.3 Multiple Node Implementation

The two stage algorithm as implemented on the multiple ngdiem is summarized in
Figure 4.3. As with the single node implementation, the ndestanding task of computing
FFTs is carried out on GPU. In addition to the FFT calculajasther procedures of the

nonrigid refinement stage are effectively parallelizechatriode-level:

1. The process begins as the head node/socket loads the praadem disk and dis-
tributes the RGB pixels to worker nodes/sockets for gragscahversion. Multiple-
buffering is used along with asynchronous communicatioanmwrtize disk opera-

tion.

2. With the grayscale representation of the image pair irggidn the worker nodes,
each node performs tH& x 1V tile variance calculations on its portion of the base
image, reporting the variance calculations along with tiaggcale conversion results

to the head node.

3. The qualified intensity features that meet tiethreshold are evenly distributed
among the nodes (including the head node) along with theesponding portions
of the grayscale images. The nodes compute the normalinsd correlation and
report the maximum correlation for each intensity featuom@ with the maximum
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coordinates. Optionally additional cores are activatae las this is the most inten-

sive of the procedures.

Again, as with the single node implementation the rigidahization stage is fast to the
extent that overall execution time would not benefit from G&tideleration of node-level

parallelization.

Input images
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Feature
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! cross—correlation
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* Direct FFT on first image.

c
S
S T— =
-E Feature = * Direct FFT on second image.
E Matchin % * Matrix—Matrix product
a ) 3 . » & {on complex numbers)
K C“E}S;—g'ng - * Inverse FFT on resulting image.
© |_Registration = T
= 5 | Use Matched
Voting to = Patches to .
determine Compute > Output:
Optimal Rigid Nonrigid 3D Reconstruction
Transforms Transforms

Figure 4.3: The workflow for the two stage algorithm as impteed on a cluster of GPU-
equipped nodes. The most computationally demanding peasdscted to run on the GPU
for a much faster execution. The highlighted operationscareéed out in parallel at the
node level.

4.4 Experimental results

The multiple node implementation of the two stage algorithas applied to the bench-
mark dataset of mouse placenta and mouse mammary imagegddsn Table 3.5. The
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experiments of Table 3.4 were performed on the BALE clustargithe visualization nodes
as computational resources and a enough number of additrongend nodes playing an
active 1/O role so as not to introduce a bottleneck. Frompbisit forward, all references
to execution time are the total time without file 1/O or corsien from RGB to grayscale.

As before the average of several runs for each experimeep@ted.
4.4.1 Workload

The execution time for the registration algorithm is sewsito three parameters:

1. The image contents. The more features found on an imagijgher computational
time. Figure 3.8 shows this variation between 10% and 30%hi@ismall window

size on the placenta data set.

2. The window size for feature search. The medium size is wasyable and by far the
most demanding one in terms of computation (see Figure Fh¥.large window is
more representative and stable, and with a time slightligdrighan the small case, it

will be the one chosen for parallel analysis on different berms of BALE nodes.

3. The input data set. Mammary images are around six timgergésee Table 3.5), but
they contain approximately half of the feature density tthenplacenta images. This
way, the computational time is expected to be around 4-5gtinigher on mammary

images.

Taking as departure point a fully serial C++ implementatibtie, placenta images each
take approximately 110 seconds for execution. Moving tohtigh-end Opteron CPU on
the BALE cluster and the mammary data set, the most computdly demanding case

consumes 1304 seconds (see the longest bar in Figure 4i5nkwerage of 500 images
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such as required during a regular 3D reconstruction, tipiesnts 181 hours of processing

time, more than an entire week.
4.4.2 Single node analysis

Figure 4.4 compares the computation time on a single CPU ndttheansingle GPU
enabled to execute the convolution part of the registradigorithm for the placenta data
set. The average speedup for the GPU-enabled version&ed a small window size,

6.16x on the medium size and 4.11x on the large size.

CPU performance

600,00 GPU performance
(171,342) — (250,500) — (342,683) 90,00

500,00 80,00
] 70,00
60,00
50,00
40,00
30,00
20,00
10,00

(171,342) — (250,500) — (343,683)

Execution time (secs.)
N w »
[=3 o o
o o o
o o o
o o o
Execution time (secs.)

100,00

1 16 31 46 61 76 91 1 16 31 46 ) 61 76 91
Placenta images Placenta images

(a) Execution times on the CPU. (b) Execution times on the GPU.

Figure 4.4: Execution times for the three window sizes ddp®non the input image on
the placenta data set. (a) on the CPU and (b) for the combined@PWexecution.

Figure 4.5 extends this analysis to an assorted set of coafigns for the third image
of the mammary data set. In general, the GPU gains on the mpmmage set are more
modest: 2.00x on a small window size and 2.59 for the large @ast chart column di-
vided by fifth). Within the mammary image set, multiple CPUadree more effective and
contribute to higher gains: Enabling a second CPU core pesvaldl.82x factor improve-

ment (pthreads version) with an additional 25% improveméren allocating the cores on
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different sockets using MPI, and an almost optimal 1.93tdlaewhen growing from two to
four cores within a single node.

Note that four CPU cores are faster than the combination of@Rt cores and two
GPU chips. This is caused by the communication time requiveigéed the GPU with
data from its CPU partner via PCl-express. This cost is hiddeha four CPU case with
parallel I/O reads from file and/or dual channel DRAM memoryduoies. This fact is also
affecting parallel performance on the next section, whieosé configurations with double
the number of CPUs than GPUs are studied. These configuraleasmaintain better
workload balance considering that the convolution phasgasd to the GPU represents
around 60% of the computational time (see Figure 3.5), aatlttie GPU exceeds by far

the GFLOPS peak capacity of the CPU (see Table 4.1).
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Figure 4.5: Single node performance under different nod#igorations for the largest
image in the mammary data set and the large window size.
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4.4.3 Parallel performance

Figure 4.6 shows the scalability of the algorithm on the CRig sivhich is fairly con-
sistent for all images belonging to the placenta data sehwinening on different number
of CPUs. CPU executions are slower than GPU-assisted onethdyuare expected to be
more scalable on a large number of nodes because computatiobe performed more
independently across multiple nodes than with the comnatioic bindings of combined
CPU-GPU executions. This analysis is ratified in Figure 4.ieng the analysis extends
to the mammary data set for an assorted combination of CPU&ENMS. A superlinear
speedup case is even observed when moving from 2 to 4 CPUss(tfraim a dual-core to
a dual-socket dual-core execution). This was anticipaygtidresults in Figure 4.5, where

multi-socket parallelism was found to be more rewardingpttie multi-core counterpart.

CPU scalability

160,00
=1 CPU core
——2 CPU cores
—4 CPU cores
8 CPU cores

140,00

--16 CPU cores
——— 32 CPU cores

)
—
)
=}
o
1)

100,00
80,00

60,00

Execution times (secs.

40,00

20,00

1 15 29 43 57 71 85
Placenta images

Figure 4.6: The scalability of the algorithm on CPUs for thaegeinta data set.
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Figure 4.7: Scalability on the mammary data set using trgelarindow size (a) for the
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Nodes scalability
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Figure 4.8: (a) Scalability and (b) speedup on different benof nodes for the third image
in the mammary data set.
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Figure 4.9: GPU influence on algorithm performance whengugie largest image in the
mammary data set and the large window size. The bars in thelenad the ”1” and "2”
cases are empty because they correspond to impractical case

For an increasing number of nodes, Figure 4.8 shows on thihé&eprogressive reduc-
tion in the execution time for the particular case of thedimmammary image. On the right,
parallel speedup is more representative, telling us tleatrtbre aggressive a configuration
becomes at the intra-node layer, the less effective resultiser-node parallelism. In other
words, the fastest single-node configurations reduce #fieictiveness on a large number
of nodes, as a consequence of higher internal node comntiomisa

Similarly, Figure 4.9 reports that GPUs are more effectiveemall number of nodes
for accelerating a CPU code, showing us a small tradeoff ifopaance on massively
parallel computing.

Overall, from the departure point of 181 hours on a singlee@pt CPU for a set of

500 images in the mammary data set, the parallel implementah the 16 visualization
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nodes of the BALE cluster was able to reduce the time to 3.7h(#6.61 seconds for a
single slide), achieving a total speedup of 49x when all 32 €Bt GPUs participate in

the cooperative environment.

4.5 Discussion and Conclusions

With the advances in imaging hardware, applications likerggistration of large gi-
gapixel images are increasingly popular, evolving towaasputationally demanding al-
gorithms for which parallel and scalable solutions becossemtial. Within this scope the
contribution of this work is twofold: First, a parallelizi@omethod is provided which has
been successfully applied to biomedical studies for retcoang the 3-D structures of
biological specimens with micron resolution. Second, &dseéterogeneous and cooper-
ative multiprocessor platform has been established wherdeést features of CPUs and
GPUs meet for applying higher degree of parallelism at setanf levels: (1) Multi-task,
for simultaneous executions on CPU and GPU codes, (2) madtenusing MPI for data
partitioning across nodes, (3) SMP (Symmetric MultiPreaes) for multisocket CPUs
and multicard GPUs using pthreads, (4) multi-cores, eitisarg MPI or pthreads, and (5)
SIMD (Simple Instruction Multiple Data), for the 128 stregmocessors of the GPU using
CUDA.

For a mammary sample composed of 500 slides, it takes mard8iahours to accom-
plish the registration process on a single Opteron CPU. Tasreduced to 50 hours when
enabling the GPU as co-processor, and minimized to 3.7 Houestotal speedup of 49x
when all 32 CPUs and GPUs participate in our multiprocessoperative environment.

While GPU-assisted versions were more effective at an mbde layer, the CPU showed
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higher gains on inter-node parallelism, suggesting tregt thay complement each other on
hybrid supercomputers.

Overall, this study provides an illustrative example on lewmerging architectures like
multicore CPUs and GPUs meet and combine their power to assistomputer scien-
tists for efficiently adapting grand-challenge applicai@and providing almost real-time

response to pathologists when working on the analysis gélacale biomedical images.
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CHAPTER 5

REGISTERING HIGH RESOLUTION MICROSCOPIC IMAGES
WITH DIFFERENT HISTOCHEMICAL STAININGS - A TOOL
FOR MAPPING GENE EXPRESSION WITH CELLULAR
STRUCTURES

The use of normalized cross correlation to identify precisgespondences from in-
tensity information has several advantages, includingiefft calculation and intuitive pa-
rameter selection. As Chapter 2 demonstrates, the resglimgspondences are accurate
and can be used to produce genuine three dimensional reqctiteis from sequences of
microscopic images.

In some scenarios it is necessary to register two imagesdifigrent stains to map
molecular information to structure. Registering an immustatthemically stained image
to a hematoxylin and eosin stained image enables the vzstialn of the spatial distribu-
tion of proteins in microscopic structures at cellular tason and beyond. The variation
in color and morphological appearance between images vidreht stains creates a chal-
lenge for the task of identifying precise correspondenddsw does normalized cross
correlation perform when comparing content between difidy stained slides?

In this chapter | investigate the issue of identifying cependences between differ-
ently stained images using intensity information. Maximoarmalized cross correlation
is demonstrated to be ineffective as a classifier for coomedence accuracy, and a new
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measure based on the topographical features of normalibsd correlation is proposed.
The fast calculation of the proposed measure provides aandalye over the state-of-the-
art in multi-modal similarity measures. A study mapping RT&ain to hemotoxylin and

eosin stain for breast cancer research is used to demaengiesaeffectiveness of this new

measure.

5.1 Introduction

One of the key problems in the post genomic era is to undetstearegulation of gene
expressions in organisms. Proteomics techniques suchaslgps (microarray) and mass
spectroscopy have provided a tremendous amount of infamah gene expression pat-
terns, however in most experiments these techniques alie@ppbiological samples that
contain a diverse population of cells and therefore reflatdaalized expression profiles.
In contrast, gene expression profiles in different typesetlscan be drastically different
and studies show that even the same type of cell in the sasue @wvironment can exhibit
heterogeneity in the expression levels of key proteins.[7Bjerefore, the capability to
map gene expression to individual cells is essential tocggmene regulation within tissue
environments at the cellular level.

Microscopic imaging is an essential tool for investigatingalized gene expression
since it can capture both cellular distribution as well asggexpression information. How-
ever, the integration of cellular and molecular distribatinformation is a difficult task,
since this information is usually obtained using differstdining techniques on two or
more different histological sections. This is a particiylahallenging problem if a com-

putational approach is taken due to the large size of miommeamages (usually in the
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size of several gigabytes per image). In order to addressptioblem, this chapter de-
velops a novel workflow for the precise nonrigid registratal microscopic images with
different stain types. The workflow contains three stagegd registration, nonrigid reg-
istration, and multiresolution refinement. The “sharphegsnaxima in the normalized
cross-correlation function is demonstrated as a simylanieasure capable of identifying
correspondences between an image pair. The use of careatoids the high computa-
tional cost of computing other measures used for multi-rhoslgistration such as mutual
information. The correspondences are used as controlgpmompute a nonrigid trans-
formation between the two images. In order to improve thechiag accuracy, a multiple
resolution approach is adopted for accurately matchingé&gipns of interests.

The proposed workflow was tested using mouse mammary glaageswith a focus
on the mammary duct regions that are the potential sitesifootigenesis. Serial section
images were obtained in pairs: one section stained to fgteceilular structure using a
specific immunohistochemical stain and the other sectminedt to show expression of an
important tumor suppressor geR&FEN By registering these two section images PTEN
expression was mapped to structures of interest such ablfilstse and epithelial cells. The
results show that the proposed algorithm is highly accusatk applicable to large scale
gene expression mapping studies for breast tumor micrammvient.

Three challenges need to be addressed to accomplish agigistat the precision neces-
sary for expression mapping: comparison of content betwaages with different stains,
nonrigid deformation and natural morphological differesbetween sections, and the large
size of high magnification histological images. These emajes are addressed with the

following approaches:
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1. A new similarity measure for intensity feature matching. The goal of image
registration is to determine a transformation that maxawithe similarity between
two images. Mutual information (MI) and normalized crossretation (NCC) are
commonly used as similarity measures for registration, dvar, it was observed
that thresholding these raw similarity measures is not aalecto discriminate good
matches from bad. A new similarity measure is proposed basdbe “sharpness”

of maxima in the cross correlation function.

2. Adoption of a multiple resolution approach for nonrigid tra nsformation. In or-
der to register the images as precisely as possible a lamé&earuof spatial corre-
spondences are required to compute an accurate mappingo Ehe elasticity and
heterogeneity of the tissues a local transformation cahaaxtrapolated globally.
To address this challenge a multiple resolution matchingg@ach was implemented

to align local regions of interest in a piecewise linear n&ann

3. Scalable workflow. Microscopic images can be very large. Using an Aperio slide
scanner to scan B5cm x 3cm section at 20X objective length generates an image
at the resolutiond).5um/pixel that is30, 000 x 60, 000 pixels and 6.5 GB in uncom-
pressed form. These large sizes require algorithms thagfbceent, scalable, and
parallelizable. The proposed workflow is a slight variatdthe two stage algorithm
and so uses the same efficient operations and workflow deratetstas efficient and

parallelizable in Chapters 3 and 4.

This chapter is organized as follows: The biological agilan is discussed in Section
5.2. Related works are discussed in Section 5.3. The workfigwesented in Section 5.4.
The novel correlation sharpness similarity measure isgotes! in Section 5.5. Results are
offered in Section 5.6. Discussion and conclusion are aoedan Section 5.7.
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5.2 Biological Application

The application in this chapter uses on a transgenic mousielimthe PTEN gene
knocked out in mammary gland fibroblast céll®TEN, also known as phosphatase and
tensin homolog, is a well known tumor suppressor gene. ikamn of PTEN is associ-
ated with several diseases including cancer [80]. It has lobéserved that this strain of
mice inevitably develop epithelial breast tumor after the¢kout. The biological question
is how the inactivation of the tumor suppressor gene PTENbiolilasts leads to tumor
development in epithelial cells. Answering this questiah provide insight into cell in-
teractions and tumorigenesis in the tumor microenvirortm&ritical part of this inquiry
is the expression mapping of key genes in different cellgype

The PTEN mapping is demonstrated using serial mammaryetissations obtained
from the transgenic mice with hematoxylin and eosin sta@r{idi+E) and PTEN staining
applied alternately to produce a sequence of sections wniinléaved stain types. In this
paper the focus is on producing a visualization for one phiH6E and PTEN images,
but the interleaved staining approach could also be usedoupe a three-dimensional
reconstruction that contains both the structural inforamatrom H+E and the expression
information from PTEN. The work in [81] presents such a restarction for cervical tissue

using an H+E/p16(INK4a)/CD3 interleaved staining.

5.3 Related Work

There are many works on observing the expression map of #isggme in cells. The
most direct approach is to use confocal microscopic imatgingsualize the co-expression
of the gene product and the cell specific markers, howeveaproach requires extensive

1This is a tissue-specific knockout animal model.
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molecular and genetic manipulation on the model animaksystn [82], a tissue microar-
ray (TMA) approach was developed where small samples afa€@.5mnx0.5mm) were
fixed in plastic and sectioned at 250nm interval. Each seatias stained for a special
molecule of interest using immunochemical staining. Tfoeeefor a section of sample
of 5um thick, the products of twenty different genes can be deteechi A limit of this
approach is that it is difficult to extend this technique taé& samples in the multiple-
millimeter scale. Another approach to obtain gene expoessiofile at high spatial reso-
lution is to use laser capture microdissection (LCM) to caswesmall piece of tissue in
each section and conduct microarray analysis on the caareglss. This way the entire
profile of gene expression can be mapped to a spatial resolotitens of microns. Other
approaches to obtain the gene expression information fdtipteugenes include multiple
spectral imaging [83], multicolor staining [84] and mulésh technique, however, these
techniques all require special experimental facilitied aquipment.

Work on the automatic registration of images with differstains is limited. The au-
thors of [85] propose a segmentation-based method for thegid registration of images
with different stains. This approach requires producingmststent segmentation between
the image pair by re-ordering and merging class labels poioegistering the class-label

images.
5.4 Image Registration Workflow

The registration of two images with different stains essdigtfollows the same work-
flow as the two stage algorithm presented in Chapter 2. Theopsapworkflow in Figure
5.1 introduces two new elements to the standard approactelation sharpness similarity

measure and multi-resolution refinement.
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The images are first aligned with an approximate rigid regiistn and then this initial-
ization is refined using precise comparisons of intensitgrmation. Salient anatomical
structures such as blood vessels or ducts are matched Ioeitwages based on properties
such as size and shape. These pairs are filtered based ontge@wmestraints to produce

an estimate of the rigid registration parameters.

/Rigid Registration) /Nonrigid Registration\
High-Level Selection Local
Feature Sanity Regions
extraction y 4 Refinement )
v Rotate Selected Multiol
Feature Regions wple
matching 1 Rm:P°“
atchin
¥ Match Rotated i 9
Computing Regionsto a —
Rigid Large Window Local Nonrigid
Transformation J Transformation
$ Use Matched of Image Tile
Voting to Patches to \_ J
Determine Compute
Optimal Rigid Nonrigid
Transforms Transforms

\o AN /

Figure 5.1: Image registration workflow. The algorithm detssof three stages: rigid
registration, nonrigid registration, and refinement. Theeg blocks are independent local
operations that can be straightforwardly carried out irajbair

The proposed refinement stage differs slightly from thedsesh two stage algorithm.
Correlation sharpness replaces maximum normalized crossa&ioon as a similarity mea-
sure for intensity feature matches. Due to the heterogeatiissue in the biological sam-

ples there is also a focused refinement in regions of intetastnouse mammary gland,
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the adipose tissue and the extracellular matrix around nmemnigland ducts have dras-
tically different mechanical properties in terms of eleisyi and rigidity. The difference

in mechanical properties between these tissues leads iatioas in the extent of local

deformations in the histological sections. A global noittrigansformation such as a poly-
nomial transformation is not sufficient to compensate forerdrastic local deformations
and morphological changes. Other methods such as thie-gpdine and locally weighted
basis functions require a large number of matched contiiatp this scenario, which is

not computationally feasible. To accommodate this belapecial regions of interest are
identified and a more precise matching is conducted itesigtin these regions at multiple
resolutions to refine the correspondence accuracy.

After the initial matching of intensity features, the camgeints for the template regions
and their corresponding matches are used as control pargsrterate global nonrigid
transformation such as polynomial or piecewise affine fangation. In regions of interest
such as mammary gland ducts and breast tumor stroma theskeawnatre refined at higher
resolution to achieve better matching precision. The seteegions are effectively split
and rematched: th&)0 x 500-pixel template patch surrounding the region is divided int
four 250 x 250-pixel patches that are each re-matched. A piecewise afamsformation

is then computed and applied to these regions based on thivoawnatches.

5.5 Sharpness of Normalized Cross Correlation Function as a Simi-
larity measure

In many approaches to registration, including the two stédgerithm, correspondences
are identified by comparing local regions of intensity usigimilarity measure such as

mutual information or correlation. The similarity measisealculated over a 2D grid to
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identify the most similar alignment, and the similarity histbest position is thresholded
to determine if the match is satisfactory. Mutual inforroatis often used in cases for
comparing images with different modalities or stainingwkeer the computation of Ml
requires the time-consuming calculation of a 2-D histogetnevery point on the grid.
In contrast normalized cross correlation can be computedo@ckly over multiple grid
locations using fast Fourier transform.

An extensive manual experiment was conducted to test naadatross correlation
and mutual information for effectiveness in match discnation. One mouse mammary
H+E/PTEN image pair was chosen and 320 template regiori®mf 500 pixels each
were manually selected throughout the H+E image from are@isductal content. The
corresponding regions from the PTEN image were also manigshtified and a search
window of 1000 x 1000 pixels was designated for each template region. Both mutual
information and NCC functions were calculated between tgerepairs to determine if
the maximal similarity alignments were satisfactory. Fg6.2 shows an example of the
NCC from one of the pairs used for testingterestingly, in most cases (291 out of 320),
the peak location of NCC corresponds to a satisfactory makbis important observation
motivated a further investigation into how to use NCC for rhatg regions with different
stain types due to its low computational cost.

Based on these manual classifications the distribution oimeXNCC values for the
region pairs was examined to determine if simple threshgldould be applied to discrim-
inate satisfactory matches. As shown in Figure 5.3, theasuod NCC values for satisfac-
tory and unsatisfactory matches overlaps significanttyiceting that maximal NCC value

is not a good candidate for match classification. This is désoonstrated with the pair of
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Figure 5.2: Example of satisfactory match. (a) H+E ductoegi(b) PTEN overlaid on
H+E corresponding to correlation peak. (c) 3-D surface wéthe NCC function shows a
peak in NCC value. (d) Isocontour of the normalized crossetation (NCC) function for

the duct region between two images with respect to x- andcapstations.

regions shown in Figure 5.4. Although the two pairs have lsinhaximal NCC values,

one of the match results is unsatisfactory.

5.5.1 Sharpness of the NCC function peak as a similarity measure

It was observed in the correlations between PTEN and H+Ristathat although max-
imal values are not reliable for classifying matches, amystishably sharp peak is present

in most cases where the matching is satisfactory. For thsorea sharpness measure for
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Figure 5.3: Peak NCC values for the 320 regions tested.

the correlation function was defined based on the crossosettarea of the peak at

different depths: (Figure 5.5). Specifically the measukes defined as
R=h/VS. (5.1)

For fixed depthh, the smaller the cross-section argathe larger the sharpness measure
R is. As shown in Figure 5.6, thresholdirg at 0.0025 can discard most unsatisfactory

matches with the cost of discarding some satisfactory neatel well.

5.5.2 Computation of NCC sharpness

The approximate calculation of the sharpness meaBuwan be achieved using a sim-

ple procedure. For a correlation surfaeer, y) with a single peak, the ares can be

108



Max NCC: 0.41607 Max NCC: 0.41754
e o "Nl ' e

Figure 5.4: Peak sharpness is an indicator of match spégifja) Satisfactory alignment.
(b) Unsatisfactory alignment. (c) The maxima of the cotretasurface for the satisfactory
alignment lies atop a prominent peak. (d) The peak for thatisfactory alignment is

broad and gradual.

computed for smalh by simply counting over the whole grid the number of corielat
valuesp(z,y) > pmae — h. This assumes that all correlation values greater than — h
lie under peak in question. In practice this assumption issmee most correlation sur-
faces contain only a single peak, be they sharp or broad.el&ihgle-peak assumption
does not hold then a more sophisticated approach can beidsatifying distinct regions
wherep(z,y) > pma: — h, @nd only counting the area of the region containipg.. The

single-peak assumption was used for the experiments pegsignthis chapter.
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Figure 5.5: lllustration of a peak in whighdefines the height of the level set asidiefines
the area of cross-section at height

5.6 Validation and Results

A pair of images as described in Section 5.1 was used to tegirthposed algorithm.
Since no ground truth is available the results were visualipected and assessed.
5.6.1 The power of using the sharpness measureas a similarity mea-
sure
The ROC curves were computed for thresholdingend the peak NCC value respec-
tively. As shown in Figure 5.7, the choice of thresholdi®has a fairly large range without
incurring any false positives (between 0.0026 to 0.0039 waitleast 100 true positive but

no false positives). In practice this is a desirable charatic since the unsatisfactory

matches can influence the quality of the final mapping results

5.6.2 Multiple resolution matching

The goal of the multiple resolution matching is to improve thatching accuracy in key

areas of interest. These areas can be either manuallyesttecutomatically chosen based
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Figure 5.6: The distribution oR for 320 regions. The dashed line indicates that 0.0025 is
a reasonable threshold for discarding unsatisfactory meatahile preserving a significant
number of satisfactory matches.

on biological criteria such as cell density or the existeniceertain structures. For valida-
tion 80 regions were manually selected. Seventy-nine 838)fegions show improvement
in matching accuracy in terms of continuity and smoothndéskeostructures. In order to
visualize the results of the mapping the images were coegéotgray scale with the H+E
image as the red color channel and the PTEN image as the gheanal. Overlapping

regions of significant intensity appear as yellow. Two exkes@re shown in Figure 5.8
and Figure 5.9. Not only are large structures such as mamghang ducts mapped well,

microstructures such as cell nuclei and cell membrane acechdsely aligned.
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Figure 5.7: Comparison of ROC curves for thresholding on tamess measure and
on the peak NCC value.

5.6.3 Matching of mammary gland ducts

Mammary gland ducts are lined by a layer of epithelial celtéolv are thought to be the
primary sites for breast epithelial tumor initiation. Itdgtical to have accurate matching
for these cells. In most cases the overall mammary gland lohicys are accurate with
the layer of epithelial cells tightly overlapped. The indwal cell nuclei are not always
matched, partially due to the fact that the gap between theslides is wm and the nuclei

in one section may not appear in the adjacent section. Inrget® mapping is accurate
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(a) (b)

Figure 5.8: Visualization of multiresolution effect foagt mapping for regions of interest.
The mapped images are converted to gray scale and the H+Bbedeled in the red color
channel and the PTEN in the green color channel. (a) Mappfhgré multiple resolution

matching. (b) Mapping after multiple resolution matching.

within the inspected regions. The results show that thénelwt cells have normal PTEN
expression while the fibroblasts that produce extracellmatrix in the periphery of the
ducts are PTEN deprived.

As shown in Figure 5.10, there are usually red regions arthmducts. These regions
are mainly composed of fibroblasts and the extracellularim@with collagen produced
by fibroblasts). These regions are only stained in the H+Eerat not the PTEN image
since the PTEN gene is deactivated in the fibroblasts, hawte epithelial cells which
form the lining of the ducts are stained in both sections as/shby the yellow color in the

overlaid images, implying that PTEN expression is normdhaepithelial cells.
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Figure 5.9: Zoomed mapping results. The matching of celleiwan be seen in the blue
circle. However, in most cases this precise overlappingtbserved due to the natural
morphological difference between the two images.

5.7 Discussion and Conclusions

In this chapter a new image registration framework is pregdsr overlaying micro-
scopic images with different stain types. In order to acalyaegister microscopic images,
it was first established that the sharpness of the normadimss-correlation function can be
used as a similarity measure for comparing intensity infiraom between the two images.

This helps avoid the high computational cost of more sopaittd approaches, which is
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critical for processing images at this scale. In order toroup the matching accuracy, a
multiple resolution approach was adopted for key regionstefests. The algorithm has
been tested using real histological images of mouse mamghang sample in a breast tu-
mor microenvironment study. The results show that the &lgaoris highly accurate. This

work lays the foundation for large scale gene expressiornpmgpmf mouse breast tumor
microenvironment in where the plan is to map expressioriddee 50-100 genes over four

stages of tumor progression.
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Figure 5.10: Examples of mapped mammary gland duct regions.
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CHAPTER 6

FEATURE-BASED REGISTRATION OF HISTOPATHOLOGY
IMAGES WITH DIFFERENT STAINS: AN APPLICATION FOR
COMPUTERIZED FOLLICULAR LYMPHOMA PROGNOSIS

Correlation sharpness provides a means for registeringostopic images with dif-
ferent stains. The ability of correlation sharpness to mdikeriminating comparisons
between intensity content provides the precise corresgpores needed for nonrigid regis-
tration. In some cases, however, the content is either &ndilar or lacks the saliency
needed to generate accurate correspondences.

In this chapter | address this problem using a novel methoddorigid registration
based on the matching of groupstagh level featureshat represent small but conspicu-
ous anatomical structures through geometric constraifigs choice of feature provides
a rich matching environment, but also one that is fraught &ihigh mismatch probabil-
ity. Building upon the work of the fast rigid registration alighm, this method increases
matching confidence by using geometric constraints to kshalocal groups of coherent
features. The proposed method is validated with a statlsticalysis demonstrating that
given a proper feature set the accuracy of the automatiggidmegistration is comparable
to a manual nonrigid registration.

This work is motivated by an application in the pathologigading offFollicular Lym-
phoma(FL). FL is the second most common type of non-Hodgkin’s \ioqma. Manual
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histological grading of FL is subject to remarkable intendantra-reader variations. A
promising approach to grading is the development of a coenfagsisted system that im-
proves consistency and precision. Correlating informdtiom adjacent slides with differ-
ent stain types requires establishing spatial correspaadebetween the digitized section
pair through a precise nonrigid image registration. Howebe dissimilar appearances of

the different stain types challenges existing registratiethods.

6.1 Introduction

Histopathological examination is a crucial step in cancegposis. Pathological analy-
sis of biopsy samples is necessary to characterize the tiamimeatment planning. Cancer
prognosis that relies on this qualitative visual examoratnay have significant inter- and
intra-reader variability due to due to several factors hsag experience or fatigue at the
time of examination [86,87]. Poor reproducibility of hikigical grading may lead to in-
appropriate clinical decisions on the timing and type ofdpg, and may result in under-
or over-treatment of patients with serious clinical consages. A computer system ca-
pable of extracting quantitative, and thereby more preaigkobjective prognostic clues,
may provide more accurate and consistent evaluations hioredason a computer-assisted
grading system is being developed for one particular catyges, Follicular Lymphoma
(FL) [88,89].

FL is the second most common type of non-Hodgkin's lymphoha tonsists of a
group of cancers developing from the lymphatic system. Thedvef “follicular” is de-
rived from round-shaped biological structures, namelylidies”, which are visible under

microscope. In current clinical practice, the risk straéifion and subsequent choice of
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therapy for FL mainly depends on the histological gradingcpss that involves comput-
ing the average number of centroblasts (CBs), i.e., maligiwdindle center cells, as rec-
ommended by World Health Organization [90-92]. Due to tligdanumber of follicles
usually exhibited in biopsy samples, only ten follicle wgg equivalent to a microscopic
high power field (HPF) 0f.159mm? are randomly sampled to make this process feasible
in practice. Performing CB count over a limited number ofiéddls can introduce a con-
siderable sampling bias as the selected follicles may no¢jeesentative of other sample
regions, especially in heterogeneous tumors [87].

With sampling regions identified, centroblasts are thenualiy counted in HPFs of
the selected follicle regions. FL cases are classified hrethistological grades based on
the centroblast average count: grade | (0-5 CB/HPF), grad& 16(CB/HPF) and grade
Il (>15 CB/HPF) [90]. Grade I is usually associated with indolesedse and not treated,
while Grade Il is associated with aggressive disease &addd aggressively. A multi-site
study reported only1% ~ 73% grading agreement across expert pathologists [86]. In
addition to this inter-observer variation, the manual ¢ownof centroblasts is very time-
consuming, especially when a large number of biologicalasneed to be examined.

In the current follicle grading processes, pathologistsallg resort to using pairs of
adjacent slides dyed with different stains to enhance Visoatrasts. For example, im-
munohistochemical (IHC) stains, e.g., CD3 and CD20, providiear wisual contrast for
the follicle structures at low magnifications, e.g<,24x and 8<. By comparison, Hema-
toxylin and Eosin (H&E) stain enhance the contrast of thelogical components, and
provide better cellular-level detalil at higher magnifioas, e.g. 2& and 40<. Two repre-
sentative sample image regions from IHC and H&E stained @aagptured at:2 magnifi-

cation are shown in Fig. 6.1, where follicle boundaries dearty visible in the IHC (CD3
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() (b)

Figure 6.1: Sample image regions from CD3 and H&E stained kleslcaptured at:2
magnification. (a) and (b) correspond to adjacent sectimm the same specimen and
demonstrate local and global deformations and the diffanftidentifying follicles from
H&E-stained slides. Sample regions corresponding to theedallicle are highlighted in
red.

stain in this specific example) stained image, but are natrigiaiscernible in the H&E
stained counterpart. The proposed computer-assistegnsysimics the manual grading
procedure, working jointly with pairs of images with IHC aH&.E stains. The flowchart
of this hybrid FL grading system is presented in Fig. 6.2.

One of the key steps in this system is to map the spatial coates of the detected
follicle positions from the IHC stained image to the H&E coenpart image where the
centroblast detection will occur. In order for the IHC imagealysis to be able to interact
with the H&E analysis process, an image registration allgoriis required that allows the
output of IHC follicle detection to be fed into the H&E cenittast detection stage. In this
chapter, such a methodology and its implementation oncaimiases are reported.

Image registration for biological applications has beeigtd extensively [9,10,13,14,

22,23,26,27,32,33, 35, 36]. Registration can be considasegh optimization problem,
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Figure 6.2: Flowchart of the computer-aided FL gradingesyst

posed as finding the optimal transformatibrbetween two imageg and/; to maximize a
defined similarity measure such as mutual information [B&gistration may also be for-
mulated as a problem of feature matching: finding correspooel between sets of repre-
sentative features using descriptors and spatial re@f&#]. The space of transformations
includes rigid, that deals with only rotation and translatiand nonrigid, that compensates
for deformations such as bending, stretching, shearingrvamging [27, 39, 40]. Like most
optimization processes, a good initialization is critit@l a global optimum outcome. In
many cases, a good rigid registration serves as an idealirattion for non-rigid registra-
tion [26]. For large images with conspicuous deformatidnsrarchical multi-resolution
registration methods have also been widely used in medieaging applications [44, 45].
The key challenge for the registration of sectioned histoglagical images is to com-
pensate for distortion introduced by slide preparatiore ifiput slide pairs are cut with a 5
um thickness from adjacent locations so that the morpholbgicactures vary minimally
between image pairs. However, there are discernible ghoizhlocal deformations between

these neighboring tissue sections due to the slide prépanatocedure (i.e., sectioning,
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fixation, embedding, and staining). The preparation pmoas introduce a variety of
nonrigid deformations including bending, shearing, strgtg, and tearing. At micron res-
olutions, even minor deformations become conspicuous aydprove problematic when
accuracy is critical to the end application. In order to cemgate for such deformations,
a nonrigid registration is essential and success dependstahlishing a large number of
precise spatial correspondences throughout the extehe afitage.

An additional challenge for the registration of histopadtigical images exists when the
images to be registered are stained with different staisdypnd consequently have dis-
similar appearances. An approach based on intensity vedgesres the ability to resolve
similarity between intensity signals using a measure sachwtual information. Such sim-
ilarity is not necessarily guaranteed for combinationstainspairs, since for some stain
combinations only complex high-order perceptual quaitell be consistent. If the im-
ages do exhibit a significant visual similarity, then an aagh exists that uses correlation
sharpness as a means for classifying local similarity betwatensity information [61].
However, in the case of follicular lymphoma images with H&&ldHC staining, content
at local scales appears as a uniform texture of cellular compts, certainly not an ideal
condition for intensity comparison between distinct sewdi Another approach exists that
uses a segmentation of tissue types as input to a registaiecess [26]. The registration
reconciles differences in the segmentation by calculaidgsplacement field that is used
for nonrigid registration. Again, this approach is not m@eable in the case of follicular
lymphoma, where the content is textural and segmentatitmei®riginal problem that a
registration is intended to aid.

To address these challenges, this chapter proposes aaggisapproach based on the

matching of small salient anatomical features. Small festguch as blood vessels appear
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universally in most tissues and have a common appearancany stains, making their
extraction and matching feasible. These features are wsestablish spatial correspon-
dences and register the images in two stages: first rigmhgughly align the images, then
nonrigidly, to correct for elastic distortions introdudeglpreparation. The first stage uses a
previously established mismatch-tolerant voting proced83]. With the rough alignment
of the images calculated, the second stage establishesecbhmcal networks of matched
features between the images to enhance the confidence diintand reduce the prob-
ability of mismatch and provide a set of spatial correspoeds that is satisfactory for
nonrigid registration.

The outline of the remaining chapter is organized as folloBgction 6.2 describes
the proposed algorithm for registering multi-stained emsive histopathological FL im-
ages. Two components, including the feature extractiontla@e@ctual transformation, are
presented. In Section 6.3, extensive experimental reantighe validation processes are

presented. Conclusions are presented in Section 6.4.

6.2 Methods

To address the challenges of comparing content from cotigealides stained with
different stain types, nonrigid distortion, and featuidtrcontent, a two stage algorithm is
proposed that consists of rigid initialization followed bgnrigid refinement. Both stages
operate by matchingigh level featuresimage regions that correspond to distinct and
anatomically significant features such as blood vesset@ratuctal structures, or small
voids within the tissue area. These matches serve as thekpaints for calculating spa-
tial transformations to register the image pair. Rigid aliiation estimates the rigid align-

ment of the image pair from the loose consensus of corregpmed between anatomical
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features, following the method presented in [33]. The rpdrstage refines the initial-
ization, by establishing a more accurate set of featureespondences at a local scale.
Initialization reduces the search for matching in the refiaet stage, resulting in a lower

likelihood of erroneous matches and less computation.

6.2.1 Data

The input images of FL tissue slides are digitized using go8¢6T digitizer (Aperio,
San Diego, CA) atl0x magnification. Tissue slides are collected from the Depantm
of Pathology, The Ohio State University in accordance witHRB (Institutional Review
Board) approved protocol. Slides are prepared by slicindithygsy specimen in 5 microm-
eter sections. Adjacent sections are stained pairwisepbeach pair with CD3 and the
other with H&E. In this study five pairs of whole-slide biopsyecimens associated with

multiple FL patients having different grades of the diseases used.

6.2.2 Measure for Evaluating Image Registration

For images with the same stain type, an ideal registratiomavoe expected to match
the areas of corresponding follicles with perfect overfegiural morphological differences
aside. However, this expectation does not apply to the siceahimages with different
stain types, as the difference in appearance of correspgridilicles in each stain type
results in significantly different follicle boundaries. general, the follicles in CD3-stained
images appear smaller than their H&E counterparts due tpréygaration process (the tis-
sue is boiled or microwaved), and so when correctly regsténe CD3 follicles only cover
the interior “kernel” regions of those follicle regoins imet H&E images. As illustrated in
Fig. 6.3, this fact implies a possible ambiguity in evalogtregistration accuracy from a

ground truth perspective in that a decision cannot be maaeéhazh result is more optimal.
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However, since the aim is to identify regions of interestha H&E image, this ambigu-
ity will not compromise accuracy evaluation from the pertjpe of follicular lymphoma
grading. Therefore, a performance measure is proposectastib between the overlap

area of the registered CD3 and H&E follicles and the area o8 follicle as follows:

_ Area(T(Scpg) N SH&E)

Area(Scps) ’ (6.1)

whereScp; and Sy i are follicle regions detected in the CD3 and H&E images and
the transformation between the two images.
This quantity is measured for multiple manually markediét#ls in each image as

described in Section 6.3.

(@) (b) ()

Figure 6.3: Overlap ratio score. The corresponding boueslaf a follicle from the CD3
image (a) and it H&E counterpart (b). As shown in (c), diff@reegistration results can
produce a perfect overlap ratio score due to the differemctslicle appearance between
the CD3 and H&E stains. In (c) The red line indicates the H&Hidtd boundary, and the
green and blue lines indicate different manual registratiaf the CD3 follicle boundary to
the H&E.
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6.2.3 Feature Extraction

Extraction of high level features is a simple process as fustrtypes of stains these fea-
tures correspond to large contiguous regions of pixels avitbmmon color characteristic.
For each stain type, a particular color segmentation fakblwy morphological operations
for cleanup usually suffices. Morphological opening is perfed to reduce small noisy
features resulting from the color segmentation, and mdaggcal closing follows to fill
in small gaps. The computational cost of these operationdessignificantly reduced by
performing the extraction on down-sampled versions of tigiral images without com-
promising the quality of the final nonrigid result. Fig. 6.dndonstrates sample input and
output of the extraction process.

Given the base imag®, and float imageF, their respective feature sels = {b;}
andF = {f;} are extracted according to the process described abové fEaitire has
associated with it a set olescriptorsused for the matching processts= (i, s?, e?, ¢?)
andf; = (z/,s],el,¢7), where@ = (z,y) is the feature centroids the feature area in

pixels,e the feature eccentricity, anglthe feature semimajor axis orientation.
6.2.4 Feature Matching

Both the initialization and refinement stages use featuremrag schemes to establish
correspondences between the base and float images. Theifglldescribes the con-
ventions used for feature matching in both stages. Matchegden individual features are
referred to asnatch candidateis their size and eccentricity descriptors a@nsistent That
is, given the feature set$ F, a match candidat@;, f;) is established if the descriptors of
sizes?, ij and eccentricity:?, ej.c are consistent within given percent difference thresholds

ES? 66
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Figure 6.4: Feature extraction. This figure contains hayel feature extraction results
from a typical H&E image (left). Extracted features, showmibinary image(right), repre-
sent regions such as blood vessels recognized by the usewoftaration of color segmen-
tation and morphological operations. Descriptions of k®dtlocation, size, eccentricity,
and major-axis orientation are calculated for each feature

b_J
s?—s"
57755 < €4

(b, f;) & { mmla) . (6.2)

|eb—e] |
. b f S Ee
min(e; ;)

If the base and float images are already roughly aligneddhensistency may also be
enforced in the identification of match candidates.

Both stages also use feature matches to generate modekaigs'xllctrmation@, T, Ty)
as part of their matching schemes. Generating a model nigitstormation requires, at
minimum, a pair of match candidates. To identify modelsiaagng from coherent pairs of
match candidates, geometric consistency criteria are toselsure consistent intra-image
distances between feature centroids and also consisegntdeorientations. For a pair of
match candidates to formaandidate pair {(b;, f;), (b, fi)}, the intra-image centroid-to-
centroid distances between featubg$,, and f;, f; are required to be consistent within the
percent difference threshotd. Additionally, for the initialization stage, the orientats of

the feature semimajor axes must be consistent with the ni@deformation anglé
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12228 |2~ |17] = |12

< €z

min(| 22— |2, |12 —2] ||2)

{(i, f5), (b, 1)} = ‘¢§_¢;_§| < & . (6.3)

|0h — ¢ — 0] < e
The model transformatiot¥, T,, T,) for the candidate paif(b;, f;), (bx, fi)} is cal-
culated by first solving for the angte = tan~'((y/ — yi)/(z] — 2f)) — tan~ (3} —
yr)/ (x5 — x7)), corrected to the interval-r, 7]. The translation components,, 7, are

calculated using and least squares.

The match candidate and candidate pair concepts arealtedtm in Fig. 6.5.

Figure 6.5: Rigid feature matching. Features are matchetdeet the base and float im-
ages based on size and eccentricity to fonaitch candidate;, f;), (bx, f). Intra-image
distance between pairs of match candidates are compardéntfy candidate pairs A
model rigid transformation(d, T, T,), is defined for candidate pairs with consistent dis-
tances.

6.2.5 Rigid Initialization

The rigid initialization procedure is described in detailGhapter 2.2.
Determining an estimate for rigid registration from a setaafture matches requires a

method that is robust to erroneous matchings. This is esibetrue in microscope images
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where many features are indistinguishable, and a substantiount of mismatches are in-
evitable. The fundamental idea of the method presenteddji$3he recognition that any
candidate paif (b;, f,), (b, f)} defines a model rigid transformatidf, 7., 7, ), and for
carefully chosen candidate matches and candidate paiesge portion of the concomi-
tant model transformations will concentrate around thérdéparameters in the Euclidean
transformation space. Careful choice of matches and matcé isaachieved with a set
of consistency criteria enforced at two levels: betweetuieadescriptors for matches be-
tween individual base and float features, and geometribeliyeen pairs of such matches.
With a set of model transformations identified from consistandidate pairs, a histogram
voting scheme is used to estimate the initialization patarsé), T, 7).

Sample voting results from a follicular lymphoma image [@eie presented in Fig. 6.6.

The associated parameter values are presented in Table 6.1.

6.2.6 Nonrigid Refinement

The challenge in nonrigid registration is the sensitivityomputed nonrigid transfor-
mations to errors in matching, a consequence of the freedasunah transformations to
accommodate distortion. In computing a relatively conséd transformation such as a
rigid transformation, the effect of mismatches can be rated through the constraints of
the transformation and least squares. For most commongioiransformation types the
effect of a mismatched feature is certainly strong localhd depending upon the number
of matches used may also affect the registration qualitigalg.

For this reason the standard for establishing matches t@etara nonrigid transfor-
mation must be strict to achieve a low probability of misrhatm the rigid stage, feature

comparisons are made globally to accommodate the possibis gnisalignment of the
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Figure 6.6: Sample histogram voting result for rigid ifization of follicular lymphoma
image pair. Manual parameter results are shown in red amenatic results in green.

image pair. The rigid transformation is inferred from thedes of the collection of model
transformations resulting from the set of all possible ddae pairs (which inevitably in-

cludes a large proportion of mismatches). Due to the presehmismatches from model
transformations surrounding these modes these candidategre not appropriate input

for computing the transformation of the nonrigid stage. Ildeer, the rigid initialization
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provides a starting point that can reduce the search area $tricter feature matching
procedure that can reduce the likelihood of mismatchingadsol computation.

Given the rigid initialization, the problem of matching imdlual features with high
confidence can be formulated as a pattern matching problestedd of comparing indi-
vidual features solely via their descriptors, the spat#tgrns formed by the collection of
features within their neighborhood can be compared to asa¢he matching confidence.
Features that match with a high degree of confidence will Isawdar spatial patterns of
neighboring features with consistent descriptors. Sihesd neighborhood comparisons
are made at a local scale nonrigid distortion is usually raid local rigidity can be as-
sumed.

Procedurally, the nonrigid matching scheme is as followiseGfeature set and.F,
for each base featurg, the surrounding features in th&’-neighborhood are identified.
Match candidates far; are located in the float image within tiseneighborhood centered
atz?, and are matched tg based on sizejf , eccentricityej.c , and orientatiorabf (orientation
can be used as criteria now that the images are rigidly aligrféor each match candidate
fi, the surrounding features are identified within thé&neighborhood o‘w*;c, and match
candidates other tham,, f;) are identified. From these other match candidates, camdidat
pairs are formed wittb;, f;), and pairs with model rotation angjé > 7 are eliminated.
The model for each of the remaining candidate pairs is ustdisform the two neighbor-
hoods, and the number of base featureR'ithat fall within § of ans, e, ¢-consistent float
feature are counted. A match;, f;) is established if the maximum count exceeds the pat-
tern match threshold and|R?|/2. This process is illustrated in Fig. 6.7 and summarized

in Algorithm Table 4.
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Parameters for the nonrigid matching procedure have akarpretations and can be
selected by examining the features for a particular datageighborhood sizé?’ is cho-
sen to capture small local networks of features, and depamtise density of features and
scan magnification. The match candidate search neighbdytsos selected to account
for error in the rigid alignment. The match neighborhooeséz is chosen to account for
physical distortion and noise due to feature extractiofushiag natural morphological dif-

ferences. Parameter values for the dataset used in thiteclaap presented in Section 6.3.

X @

-
@
7N b1

(b) (c)

Figure 6.7: Nonrigid feature matchinga) Locations of featuré; (red) and surrounding
features inkP-neighborhood (blue)b) Match candidatg; (red) and surrounding features
in theRf—neighborhood (blue). Green lines in (a) and (b) indicagepthirings that generate
a model local rigid transformatior(c) The float features de (red x’s) are transformed
onto R? features (blue dots). In this case, the number of base fEatuith a consistent
transformed float feature within itsneighborhood (green circle) is three.
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Algorithm 4 Nonrigid Feature Matching

1:

NNNNRPRPRPRRRRRE R R R R
N QO O NDOR WDNROQ

)
a

26:
27:
28:

N

input: Feature set and.F, neighborhood size&’, R/, S, andd, angle tolerance,
and vote minimuny
initialize matchesV = {}
apply rigid transform(@, T') to float features and correct orientations
for eachb; € B
identify R? = {b; : [|27 — 24|, < R"} \ b
identify S; = {f; : [|7% — xf||2 < S}
initialize match candldateM {}
foreach f; € S
compares?, s/, e, e/, ande?, ¢!
if (bi, f;) s, e, p-consistenthnen M = M U {(b;, f;)}
end
for each (b;, f;) € M
identify R = {fy : [|#] — &[> < R} \ f;
identify match candidate% betweeriR?, Rf
identify match pairsP between(b;, f;), X
for each {(b;, f;), (bx, fi)} € P
compute model transformatidé, 7}, T} )
if || < 7 then
apply rigid transform(@, 7., T,) to R/
countb,, € R within § of conS|stengfn (0 T)-transformede
end
¢(j) = max count
end
if maxc > v AND maxc > |R?|/2 then
match = arg max c(j)

J
N = NU (bza fmatch)
end
output: N
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6.2.7 The polynomial transformation

The collection of point correspondences generated by giohmatching provides the
information needed to form a mapping that transforms thet flbage into conforma-
tion with the base. A variety of nonrigid mappings are usediactice, differing in
computational burden, robustness to erroneous correspoged, and existence of inverse
form [27, 39, 40].

The desired transformation qualities include not only thpability to correct nonrigid
distortions, but also robustness to match errors, closextse form, and computationally
reasonable calculation and application. Of the commongdusonrigid mapping types
such as thin-plate spline, local weighted mean, affine, mptyial, and piece-wise varia-
tions, polynomial offers a good compromise between warpptexity and the aforemen-
tioned qualities. Thin plate spline provides a minimum ggesolution which is appealing
for problems involving physical deformation, however getfconformity at correspon-
dence locations can potentially cause large distortiortheroareas and excess error if an
erroneous correspondence exists. The lack of an expligrse form means the trans-
formed image is calculated in a forward direction, likelgyeng holes in the transformed
result. Methods such as gradient search can be used to owetbe inverse problem, but
at the cost of added computation, which can become astraabmhen applied to each
pixel in a gigapixel image. Kernel-based methods such & leeighted mean require a
uniform distribution of correspondences. Given the hajeneity of tissue features this
distribution cannot always be guaranteed.

Polynomial warping admits an inverse form, is fast in amilan, and is capable of
satisfactorily correcting the mild distortion encountkre sectioned images. Polynomial

warping parameters can be calculated using least squaitessariants which can mitigate
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the effect of matching errors. Affine mapping offers simbanefits but is more limited in
the complexity of the warping it can represent.
Second degree polynomials are used for the results in tlapteh Specifically, for
a point(x,y) in the base image, the coordingté, y’) of its correspondence in the float
image is
¥ = az? + bizy + a1y + dix + ey + f1,

(6.4)
Y = asx® + boxy + oy + dox + ey + fo,

Since each pair of matched correspondences provides tvatieqs, at least six pairs

of correspondences are needed to solve for the coefficie(gs4).
6.2.8 Experimental Procedures

To demonstrate the effectiveness of the automatic nonmggjtration method, the fea-
ture extraction and registration algorithms were applethe five image pairs described
in Section 6.2.1. Magnification was reduced from 40x to 4xggsh\perio’s ImageScope
software, resulting in images roughlg, 000 x 7500 pixels in size. For feature extraction,
the same parameters for color segmentation and morphalaperations were used for all
image pairs. The automatic registration parameters, ptedén Table 6.1, were also iden-
tical for all image pairs. For comparison, manual rigid arahomal nonrigid registrations
were also performed to the five image pairs, using eight nnse@lected control point
pairs per image pair. A simple Euclidean transformation wsed for the rigid registra-
tions. A second degree polynomial transformation was usethé nonrigid registrations.

All computations were carried out on a dual core 2.6 GHz AMDe&Dgn system with
8 Gigabytes of RAM. Software was developed using a combinaifdMatlab, and Mat-

lab’s C/C++ interface MEX. With the RGB images loaded into megmtire entire process
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Table 6.1: Summary of parameter values used in the testsadialdton.

Rigid Nonrigid
Parameter Description ~ Value Parameter Description Value
Size similarity €,) 0.1 Base neighborhoodz() 1000

Eccentricity toleranceef) 0.1 Float neighborhoodq/) 1100
Distance tolerance:§) 0.1 Search neighborhood) 250
Orientation tolerance:) 5° Match neighborhoodj{ 30
\Voting interval ford (wg)  0.5° 6 angle tolerancer( 5°
Voting interval forT (wy) 30  Pattern match minimum) 4

executes in two minutes for a single image pair. Less tharsenend of that is devoted to
the nonrigid matching procedure.

Visual inspection of the feature extraction results resg#hat features in two of the five
image pairs are not uniformly distributed, being conceattaalmost entirely in one half
of the tissue area in each case. In regions where featuresparge, nonrigid refinement
matches are hard to establish since it is difficult to idgntherent networks of features
at a local scale. This can result in spatially clustered robmoints, and depending on
the severity of distortion between the slides, a transftonahat is significantly biased
to the feature-rich areas of the tissue. The validationysmathat follows is carried out
separately on these challenging image pairs and the fe@iguéar image pairs, to illustrate
the importance of feature input and the expected outcomsuffecient feature set can be

identified.

6.2.9 Validation

The procedure for registration validation was motivatedthy application of auto-
mated FL grading. The goal in this application is to corgectigister follicle regions so

that follicle segmentations from the CD3 image can be usedréztdgrading analysis in
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the counterpart H&E image. To evaluate registration pentorce in the context of this
application, the overlap of manually identified folliclegrens was compared for different
registration methods.

For each H&E/CD3 image pair, five corresponding test follpaérs were selected. The
boundaries of each of these test follicle pairs were therkethby five different observers.
The same test follicle pairs were marked by each observeergéng a total of 25 fol-
licle pair markings per observer. The overlap ratio denmamstl in Figure 6.3 was then
computed for every follicle test pair marking using the mamgid, manual nonrigid, and
automatic nonrigid registrations for each image pair. €hagerlap ratios for observey
image pairj, and follicle test pairk are denoted a&igid,(j, k), Manual;(j, k), and
Auto;(j, k) respectively. The feature regular image pairs are the se{1, 2,3} and the
challenge image pairs are the get {4,5}.

This validation aims to illustrate two points: 1. that ngmli registration is beneficial
in terms of follicle overlap and 2. that the automatic nomtigegistration is comparable to
a reasonable manual nonrigid registration. These poietaddressed with three statistical
analyses: the boxplot graphical analysis, significandegby paired t-test, and the Bland-
Altman graphical analysis.

The boxplot is a graphical analysis that presents the digtans of the overlap ratios
for feature image pairs, separated by both registratiomoteand observer. The median,
inner-quartile range, and outliers are plotted for eaclentes-method se{,M ethod,(j, k)},
V(j, k) € {1,2,3} x {1,...,5}, for somei.

To demonstrate the similarities of manual nonrigid regisdns, significance testing
was performed on these observer-method sets usingdined t-test For each observer

1, the overlap ratios were paired by method for all folliclasthe feature regular image
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pairs, { (M anual;(j, k), Auto;(j, k))}V(j, k) € {1,2,3} x {1,...,5}. The t-statistic

was calculated for these method-pair sets,

— /1
Dy |, (6.5)
0;

whereD; ando? are the mean and variance

3 5

D; = ZZ (Auto;(j, k) — Manual;(j,k)),
Jj=1 k=1

| 3.5

= —122 (Auto;(j, k) — Manual;(j, k))*.

j=1 k=1

The t-statistict; was compared against the Student’s t distribution to comthe p-
valuep;.

To further illustrate the similarities between automaticl ananual nonrigid registra-
tions, a Bland-Altman graphical analysis was performed. Blaand-Altman analysis is
commonly used in biostatistics to examine the extent of emgent between to distinct
measurement methods [93, 94]. Itis included here becailkssitates the performance of
the automatic and manual methods well. It is noted, howekat,comparing the overall
performance of two registration methods is fundamentaffgrent from the assessment of
the agreement of measurement methods. In the case of me&surassessment, agree-
ment between individual samples is critical, since the mesaments intended to provide
the same information about some underlying physical stateegistration, follicle over-
laps may disagree individually between methods, but thiectdn of overlaps may still
indicate comparable performance.

For each observer the differencel; , and mean.; ;, were computed

Auto;(j, k) + Manual;(j, k)
2

d; = Auto;(j, k) — Manual;(j, k), (6.7)

ik = (6.6)
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and the mean and difference tuplgs x, d; ) were plotted for all follicles in the feature
regular image pairs. Along with the mean and differencegsipghe average-difference and
95% confidence intervals are plotted to provide informatarthe mean performance of
the methods and their range of agreement.

Finally, a simple analysis is performed to demonstrate pfagial variation of registra-
tion quality in the challenge image pairs. For each follicléhe overlap ratiofAuto; (j, k),

j € {4,5} are averaged over observer

6.3 Results

The boxplot is presented in Figure 6.8. The correspondingns@nd standard devia-
tions of the observer-method sets are presented in Tahl€€éparing manual rigid and
manual nonrigid registrations, the nonrigid registratimproves the mean overlap ratio
for all markings except those of observer two, demonsigatie benefit of correcting non-
rigid distortion. Mean overlap ratios for automatic noigligegistration are comparable to

manual nonrigid, with slight improvements noted for the kinags of three observers.

Table 6.2: Mean overlap ratios and standard deviationslisexver-method sets of feature
regular image pairs.
Observer

Rigid, Manual; Auto;

mean+ s.d.

meant s.d.

meant s.d.

0.8943+ 0.0930

0.9373: 0.0889

0.9306: 0.1152

0.9223+ 0.0667

0.919@t 0.0950

0.9213t 0.0718

0.9428+ 0.0838

0.952@: 0.0617

0.9562+ 0.0477

0.9167+ 0.0850

0.9278 0.0969

0.9316- 0.0727

G| | W|IN| PP

0.9247+ 0.0732

0.9384t 0.0691

0.935H 0.0614
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Figure 6.8: Boxplots of overlap ratios for observer-methsels from feature regular im-
age pairs. Outlier overlap ratios from poorly registerdtidies are indicated by red cross
markers. Mean performance is comparable between manuagitband automatic non-
rigid registrations.

The p-values for the t-statistics of the method-pair setpegsented in Table 6.3. These
p-values range from 0.79 to 0.93 indicating no statistycsignificant difference between

the manual and automatic methods.

Table 6.3: Significance values of paired t-tests for metpaidsets from feature regular im-
ages{(Manwual;(j, k), Auto;(j, k))}. The p-values indicate no statistically significant
difference between the overlaps for manual and automatiagid registration methods.

Observer 1 2 3 4 5
Di 0.7981 0.9301 0.8194 0.8901 0.8905

The Bland-Altman plot is presented in Figure 6.9. Tuplestptbibove zero indicate
better performance for the automatic method. The averétgrahce is nearly zero for all

observers. Most tuples are clustered tightly in the cenggt of their plot, indicating a
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high average overlap and small difference for the manualaandmatic methods. Each
observer has at least one outlier tuple with a differencebéyhe 95% confidence limits.
For each outlier tuple indicating superior performancett@ manual registration, there is

a complementary tuple indicating superior performancefferautomatic method.

Observer | Observer 2 Observer 3 Observer 4 Observer 5

0.4 0.4 0.4 0.4 0.4
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Figure 6.9: Bland-Altman analysis of manual and automatrwrigad registrations. Aver-
age difference is indicated in red. The 95% confidence liarésindicated in green.

The overlap results from the challenge image pairs illtstitae impact of feature input
to the automatic nonrigid registration. Where the testdtdlpairs were chosen uniformly
throughout the extent of the tissue, the features in thdeshgg image pairs were not uni-
formly distributed, resulting in a transformation that iaded to feature-rich areas. The
overlap ratios of Table 6.4 demonstrate this point, whese falicles located in feature
rich regions show comparable quality and others apparsaoffer from a lack of proximal

feature matches.
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Table 6.4: Challenge image pair overlap ratidsto;(j, k), separated by folliclé:, and
averaged over observers

Follicle k& 1 2 3 4 5
Image Pairj =4 0.8482 0.2601 0.0505 0.8377 0.9366
Image Pairj =5 0.9189 0.4540 0.9187 0.8862 0.9886

6.4 Discussion and Conclusions

This chapter presents a method for the nonrigid registradfalistinctly stained follic-
ular lymphoma section images. As a key step for fusing thermation extracted from
images of two different stains, i.e., IHC and H&E, computed registration serves as a
bridge that allows for the combination of valuable inforroatotherwise unique in each
resource in a meaningful way. In this particular study, ggistration step makes it possi-
ble to recognize salient features from both stained imagdsvaap the follicle boundaries
detected in IHC images to appropriate locations in H&E insagks a consequence, fur-
ther grading analysis can proceed with H&E counterpartsreviellular level analysis is
favorable. In the end, by providing accurate follicle boanes on the H&E images, the
registration contributes to more precise CB count, the esdatep in the FL grading pro-
cess.

The automatic matching method presented in this chaptersoéf solution for applica-
tions such as microscopy imaging, where a large number alesmmipt features are to be
matched with high-fidelity. Matching such features induadly is a high probability-of-
error endeavor, and matching errors can result in poor cor#on between the registered

image pair due to the freedom of nonrigid transformationsre;confidence in matches
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between individual features is enhanced by verifying thsterce of coherent networks of
features in the surrounding areas.

In terms of registration accuracy, the quality of transfations derived from automatic
matching depends on the ability to extract features througthe extent of the tissue area.
When excluding the image pairs where extracted featurespamses and highly spatially
clustered, the registrations based on automatic matcha@éistinguishable from those
based on the manual nonrigid method. This suggests thagdgignation framework could
benefit from a more sophisticated feature extraction psoddswever, in practice, poorly
registered follicles located in feature sparse areas qoasgdibly be avoided by analyzing

the spatial distribution of feature matches and their pritkés to each follicle.
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CHAPTER 7

REGISTRATION VS. RECONSTRUCTION: INCORPORATING
STRUCTURAL CONSTRAINT IN BUILDING 3-D MODELS FROM
2-D MICROSCOPY IMAGES

The methods of Chapters 2, 5, and 6 enable the nonrigid retistrof large micro-
scopic images in a variety of scenarios. By establishingespondences, either through
intensity feature or high-level feature matching, the mgidrdistortions in section images
can be corrected and the tissue reconstructed. In sometbasegh the freedom that non-
rigid transformation provides has the unintended consarpief distorting the 3D structure
of the biological specimen. This is similar to the data modgproblem of overfitting: by
forcing features to conform perfectly the low-frequen@ntis in the 3D tissue reconstruc-
tion can be obscured.

In this chapter | demonstrate the overfitting phenomenon@medent a method for
the reconstruction of tissues that preserves 3D struciithre.proposed method is entirely
novel as the overfitting problem has not yet been demondtfateeconstructions from se-
guences of sectioned images. The special case of tissusreog duct-like structures is
addressed. By automatically tracking duct trajectoriesugh an image sequence a struc-
tural constraint is created that permits nonrigid recarcsion without structural distortion.
The structurally constrained reconstruction processlig dwtomatic and is demonstrated
on a set of 160 mouse mammary images.
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7.1 Introduction

Given a sequence (e.g., 200) of microscopy images takemagcuative sections from a
mouse mammary gland, the goal of reconstruction is to ikeB3D structure of the tissue,
in this case specifically to study the microanatomy of the@astructures in the mammary
gland. Due to the prevalence of soft tissues in the sampttioseimages typically con-
tain various distortions (e.g., bending, shearing, andrtgpand thus a pairwise nonrigid
registration of the sequence is used as the traditionahstaation approach. A common
issue encountered with reconstruction is the evaluatadidlation of the reconstructed tis-
sue since there is no ground truth available. Does the rétmhsd tissue meet reasonable
expectations given the newly visible 3D anatomy? This qoesmplies a fundamental
problem with the traditional approach: the lack of struatwonstraint in the reconstruc-
tion process. As the registration is performed pairwise tive image sequence, only the
consistency between any two images is considered, withDhenatomical structures usu-
ally serving as evaluation criteria rather than as a comstta the reconstruction process.
One consequence of this sequential approach is illustmateigure 7.1 in which two ductal
structures are reconstructed as straight columns throegbgt pairwise registration. All
of the trajectory in the:-direction andy-direction (within the image plane) is lost. In other
words, the traditional approach to reconstruction is moegstration-for-registratiorthan
aregistration-for-reconstruction

In this chapter a different approach is taken to the recaostm problem by incorporat-
ing structural constraints into the processing pipelinee Thcorporation of structural con-
straints implies that prior domain-specific (biologicatidwledge is required. This chapter
uses the example of one of the most commonly accepted stalicanstraints: the smooth-

ness of ductal structures. In tissues, ductal structurels as blood vessels, lymph space,
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Figure 7.1: Left: original ductal structures sliced at elifnt positions. Middle: the im-
ages for the ducts. Right: after the registration, the recocied ducts are column-like
structures.
and mammary gland ducts are commonly encountered. It isginassumed that these
structures traverse smoothly throughout the tissued)ergigged or perfectly straight.
An advantage of focusing on these ductal structures is tiest are typically easily
identifiable within an image and can be easily extracted. séhgpes of features easily
qualify as high-level features, and as demonstrated in @nh&ptan be used to avoid ex-
pensive and sometimes error-prone comparisons of injenéirmation between images.
This is especially useful in fast registration for large ragcopy images datasets. The only
assumption is that the nonrigid distortion of the sampleiig Bnd so once an image pair

is rigidly registered subsequent operations can be peddima limited locale.
7.2 The Reconstruction Pipeline
The reconstruction process is composed of three main stages

1. Fast Rigid Registration. Rigid registration can be achieved using either optimiza-

tion based approach such as MMI [95] or high-level featureedaapproach such
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as those in Chapter 2 or [96, 97]. In addition, specific methzads be applied to
provide good initial estimate on registration. In the mamygland example, the
tissue samples have an elongated shape and principal cempamalysis (PCA) can
be used to determine the principal direction of the tissuelvis used to estimate
the rotation angles between images. The purpose of thig $ai find the rigid

transformations between the images which facilitates taghing of corresponding

high-level features by narrowing down the search area.

. Duct Tracking. In the example of this chapter the high-level features spoad to
ductal structures. In most cases, these features can g ssgnentated via color
space segmentation (see Figure 7.2). For instance, blasskigeusually have dis-
tinct red color and mammary gland ducts are distinct dankcttres embedded in
the light-colored adipose tissues. After the ductal stmes are segmented and the
images rigidly aligned, correspondences for each ducioaaed via search by nor-
malized cross correlation. The centroids of the duct regare then linked together
between each image pair to form a trajectory. Due to the gmhdistortion these

trajectories tend to be jagged.

. Trajectory Smoothing and Transformation. The trajectory of each duct is then
smoothed using a smoothing filter. These smoothed trajesttinen serve as the
structural constraint. Nonlinear transformations suahttiin-plate spline are then
applied to each image to move the ducts to the locations ofréegpective smoothed
trajectories. Thus instead of sequentially registeringheduct to its neighbor, the
ducts are registered to the desired structural configur#tiat incorporates informa-

tion from more distant neighbors (see Figure 7.3).
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Figure 7.2: Registration of ducts to smoothed trajectoridse trajectories for each duct
are tracked through the sequence of rigidly registered @maghe resulting trajectories are
smoothed, and the duct centroids are then nonrigidly regdtto the smoothed trajectories.

7.2.1 Duct Tracking

Given a sequence af rigidly registered images= 1, 2, ..., M, the duct centroids for
ductd’, are denoted ag; = (z},y!). Starting with the ducts from image 17a<T template
is taken from image 1 surrounding each didtwith centera?}. A correspondings x S
search window is taken from image 2, with > T (typically S = 1.57), also centered

at :Tc]l The normalized cross correlation is computed betweem'tlteas in Equation 2.6.
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Figure 7.3: Registration of ducts to smoothed trajectoridse trajectories for each duct
are tracked through the sequence of rigidly registered @naghe resulting trajectories are
smoothed, and the duct centroids are then nonrigidly regdtto the smoothed trajectories.

The location of the maximum correlation is

(m,n) = argmaxp(u, v).

If p(m,n) exceeds a given threshotdtypically 0.8), then the ducd]l. is linked to the duct

d2 with centroid nearest to the maximum correlation

T — T —
k = arg min((z} + r=5_ 2%+ (yh + r=s5_ y)?), (7.1)
k J 2 J 2
p(m,n) > 1= d]l — d3. (7.2)

If a match satisfying the threshold cannot be identifiedy tiwe trajectory is terminated. If

a collision occurs, that is, if two ducts in image 1 both matckthe same duct in image 2
then the trajectory of the duct with lower maximum correlatis terminated. This process
repeats for each image pairi + 1, extending the linkage for each duct as far as possible.
Each unmatched duct in image- 1 marks the start of a new trajectory at iteratio 1.
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The result is a sequence of linked ducts, each resemb)j.in@ dj.“ oo d;

for someD;. Each linked duct has associated with it a 3D trajectory efdtct centroids

which form the sequences
X2 =&, X;[z] =23, Ylel=yi, ze{ii+l,...,i+D;—1}.  (7.3)
7.2.2 Trajectory Smoothing and Transformation

Any number of techniques can be applied to smooth the t@jgcdequences. The
simplest approach is to apply a low pass filteiig -] andY;[z] independently to form the

smoothed trajectories

X][Z] = G/OX]'[Z] + CLlXj[Z — 1] + ...+ aNXj[z — N], (74)

Yilz] = aoY;2] + a1Yjlz — 1] + ... + anY;[z — N]. (7.5)

The drawback of this smoothing approach is that the couetgeen theX andY direc-
tions is not taken into account. A more sophisticated apgrassing spline fitting could
simultaneously incorporate information in both tieandY” directions.

The smoothed trajectories serve as the structural consfaithe 3D reconstruction.
For any value ot the duct trajectorf(j [z] incorporates not only the information from one
neighbor (as it would with a pairwise scheme), but inforimatirom several neighbors. In
the case of the traditional pairwise registration scheheirtformation is flows in only one
direction, duc'd}+1 is fixed to the same location of dui;t so that all subsequent ducts are
fixed to the location of the first. In the structure presengolgeme the smoothing procedure

can use aracausal filterto incorporate information from both directions, backwsaeshd
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also forwards i

_ N N

Xj[Z] = bQXj[Z + E] + ...+ b%XJ[Z] + ...+ bNXj[Z — 5 — 1], (76)
_ N N

Yi[z] = boY;[z + 5] +o b X2+ Yz - 5 1]. (7.7)

This way smoothing not only looks to where the duct has beenhalso to where the
duct is going.

With the smoothed trajectories computed, what remains msotwigidly register the
duct centroids to the smoothed locations. For each imate structural constraint as
it lies within the same image plane is used as an atlas fostregjon. The centroid of
each duct X;[i], Y;[i]) is assigned to the smoothed locatio%; 4], Y;[i]) to form a control
point. The control points are then used to calculate a toamsdtion based on thtain plate
splinewhich guarantees perfect conformity of the centroids todesignated smoothed
locations [98]. This transformation is calculated for eanlage and then applied to map

the image to its structural constraint.

7.3 Results

The structural constraint registration pipeline was immated in Matlab and applied
to a set of 160 mouse mammary gland imag#® (x 7500 pixels) as shown in Figure
7.4. Rigid registration was performed using PCA and MMI. Thages were converted
to grayscale and the ducts were identified using a segmemtat thresholding combined
with morphological erosion to remove cell membranes of thp@se tissue. Each duct is
tracked with the resulting trajectories shown in Figure Tl5e trajectories were smoothed
using a fifth order acausal low pass filter. The entire segatient, tracking, and smoothing
process took several minutes. Each image was transformed the thin-plate spline

method.
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Figure 7.4: Sample mouse mammary gland image.
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Figure 7.5: Duct trajectories. (a) Unsmoothed trajector{b) Smoothed trajectories.

Figure 7.6 shows several views of the reconstructed du@<rspace. The volumetric
rendering is generated using VolSuite, a volumetric rendesoftware developed at the
Ohio Supercomputing Center. From the detail views of theviddal ducts it is apparent
that the trajectory components lying within in the imaggeplane are not destroyed. Duct
bifurcations are also visible. Compare this to the recoosittn without structural con-
straint shown in Figure 7.7. The traditional pairwise ajgtothat sequentially stacks the

duct centroids destroys thg-components of the duct trajectories.
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(b) (c)

Figure 7.6: Mouse mammary reconstruction with structuasistraint. (a) Rendering of
the reconstructed mouse mammary gland ducts. (b)-(c) lBdtaiews of the individual
ducts.

7.4 Discussion and Conclusions

This chapter presents a novel approach for the 3D recomisinuef tissue from se-
rial section images. The key contribution is the integraid a structural constraint into
the reconstruction process. As opposed to the traditionialvse sequential registration
approach that infers structure from images one pair at a, tineeproposed method uses

information from multiple images to enforce a structuraiesra. The motivating example
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Figure 7.7: Mouse mammary reconstruction using traditipagwise sequential registra-
tion. The ducts are reconstructed as straight columns viozhy trajectory components
within the imagery-plane.

of reconstructing mammary ducts provides a significant gtarof the benefits of this ap-
proach. By imposing a smoothness criteria the ducts can letesgd naturally resulting
in reconstructions with visible bifurcations. The use of@ausal smoothing filter enables
the smoothing process to take into account not only wherdubthas been but where it is
heading. The entire process is fast, automatic, and prgdueelible representations of the

morphology of structures of interest.
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CHAPTER 8

TWO POINT CORRELATION FUNCTIONS

The value of the reconstructions presented in the previbapters goes beyond visu-
alization of tissues and microanatomy. As indicated in tiieoduction, reconstruction is
only one element in the proposed image analysis pipelineceSbiological phenomenon
are not contained to two-dimensional space, a completarpicif the tissue environment
requires off-plane information, and so reconstructiomsesas the starting point for many
deeper quantitative analyses. Depending on the motiv&tog number of investigations
can be performed on a reconstructed volume including mdogieal analysis of tissue
layers, or an examination of the distributions and localraof different cell types. It is
clear that in many cases identifying the tissue boundasiagequirement for deeper quan-
titative analysis at the tissue or cellular levels of orgation. This is known as thissue
segmentatioproblem, and will be the focus of the remaining chapters fdocument.

The segmentation of tissues in histological images is deingihg problem due to both
image content and size. The content of microscopic imagestsral in nature, consisting
of highly self-similar patterns of cellular and subcellugructures. The visual cues that
distinguish one tissue from another are varied and incladi@r,cscale, and shape. Differ-
ence in these distinguishing characteristics from onediss another may be subtle even
to a trained observer. In addition to challenging contem, gize of histological images
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tends to be very large, on the order of hundreds of millionsilbons of pixels each. Alto-
gether this creates a difficult scenario for the applicatibmaditional image segmentation
features. A segmentation scheme must be complex enoughdmuorate the varied cues
that distinguish tissues, but not so complex that it is caempenally infeasible.

Fortunately these qualities also describe the content af@s used for studies in a re-
lated discipline: the science of heterogeneous mateiéls.study of the physical proper-
ties of heterogeneous materials has many parallels wiheianalysis. At the microscopic
resolution the microstructure of composites also oftereapphighly textural, consisting
perhaps of “cells” of one or more substances of differeresand shapes embedded within
a another material.

In the pursuit of characterizing the physical propertiesnaterials, a rich framework
of stochastic geometrimethods has been developed by the materials science cotgmuni
This framework has been previously adapted for the segriemtaf tissues in microscopic
images. In particular, thievo point correlation functionbave been demonstrated as an ef-
fective feature for tissue segmentation. In this chaptentribute several significant devel-
opments to the existing two point function segmentationhoas. A fast and deterministic
method for the calculation of two-point functions is preseh The two point functions
are demonstrated to possess a peculiar low-dimensionalste in feature space that can
be exploited for unsupervised segmentation. Furtherntaseshown that images can be
segmented effectively using only a limited set of two poundtions, the autocorrelation
functions, resulting in a considerable reduction in corapan. In light of these develop-
ments the effectiveness of the two point function as a feafor tissue segmentation is

demonstrated on human follicular lymphoma and mouse ptagsrages.
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This chapter is organized as follows: Section 8.1 castatsbad segmentation problem
in the light of heterogeneous materials and provides arvarof the tissue segmentation
problem and the relevant research on heterogeneous n&i@n@ image segmentation.
Section 8.2 describes the stochastic geometric tools wibkees on the two point correla-
tion function. The segmentation algorithm based on twaevpmorrelation function features
is described in Section 8.3. Experimental results are gealin Section 8.4, including ex-
periments performed on tissue and natural texture imagesio® 8.5 contains a discussion

of the results and conclusions.

8.1 Introduction

In the context of materials sciencehaterogenous materig a substance composed of
multiple materials, either a composite of distinct matsriar the same material in differ-
ent physical phases. Examples include porous single rabtéwhere the constituents are
solid phase or void), soils, concrete, fluid suspensions,bamlogical tissues. A compre-
hensive overview of heterogeneous materials is availabJ@9d]. Scientists have pursued
descriptions of the macroscopic properties of heterogememterials through examination
of their microscopic structure for more than one hundredsiedMacroscopic properties
like electrical conductivity, magnetic permeability, fiuransport properties such as trap-
ping time, and physical properties such as elasticity aleh@ots in the microstructural
characteristics of materials. A large collection of pusitions now exist that develop a rig-
orous and generalizable analytical framework for predgtnacroscopic properties from

knowledge of material microstructure [100-103].
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In this chapter the analytical tools for heterogeneous nadseare borrowed for the
purpose of segmenting tissues in histological images. Téthods of stochastic geome-
try provide the material scientist with measurements disttes on the shape, size, and
spatial arrangements of components in a heterogeneousahal@eating tissue as a het-
erogeneous material, a composite of biologically meanirg/fements such as nuclei, cyto-
plasm, or cells of different types, these methods can peosiighilar statistics for the shape,
size, and arrangement of these meaningful elements. Withrilerstanding that the qual-
ities of these elements vary from one tissue to another,ithésato employ the stochastic

geometric framework to derive robust features that areldep# distinguishing tissues.

8.1.1 Background

Image segmentation is one of the fundamental problems igemeocessing and com-
puter vision and has been studied now for decades. Techigclede thresholding [104],
region growing [105], histogram [106], edge detection [[L@faph based [108], model
based [109], multi-resolution [110], and level set methfdsl]. Many of the works on
texture image segmentation [112-114] and medical imageeetation [115, 116] make
use of co-occurrence based methods that are closely retatibe two point correlation
function, as described in Section 8.2.

Most of the general approaches to image segmentation aesegped in the works on
microscopic image segmentation. The segmentation of Hularestructures such as nuclei
and individual cells has been demonstrated using watefdi&(l graph-based [118], level
sets [119], and markov random field [120] approaches. Simaparoaches are used for the
segmentation of clusters of cells []. While there are an ahood of works on segmenting

sub-cellular structures, individual cells, and cell clust there are relatively few works on
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the segmentation of tissues. Most of the existing appreaehe focused on specialized
cases rather than offering generalizable methods. Bloosel&eare segmented using a
neural network classifier with color information in [121]. gkaph-based method for iden-
tifying the interior boundaries of ducts in mammary tissmages is presented in [122]. A
level sets method with fast-marching initialization isaaissed to identify mammary ducts
in [123]. A more generalizable color histogram based metgidg a Bayesian classifier
with color histogram features was proposed in [16]. Theaustin [124] develop an object-
based approach to segmentation that was demonstratedyfoesgéng cancerous regions
in colon biopsy images. This method follows the example efdarlier methods described
below in treating the tissue as a collection of discrete aoldbically meaningful elements.
The N-point correlation functions were first proposed fa fegmentation of tissues
in [125], where a high-order SVD classifier was used for suped segmentation of mouse
placenta tissue layers. This provided promising resultgever the work was only vali-
dated using a single image. A more extensive validation vemopned in [15] that in-
corporated more placenta images. This validation dematestithat the NPCFs performed
significantly better than both Haralick and Gabor featumegtie placenta tissue. An ef-
fort was made at reducing execution time of NPCF feature tation using a multiscale
approach in [126]. As in the previous works the same MontedCapproach for NPCF

calculation was used.

8.2 Preliminaries

8.2.1 Phase Images

In the language of heterogeneous materials, the condtitwéra composite material

are referred to aphases Where materials science is primarily concerned with plajsic
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medium, the notion of a heterogeneous material is easilgrgéined to the two dimensional
domain of images.

The termphase images defined here to describe an image composed of discrete con-
stituents. The phase imagdeavith P phases is a 2D scalar field, partitioned iit@omple-
mentary region®; that are both exhaustivg U- - -UVp = I and disjointy;N---NVp = (.

For the purposes of development, assume the phase ifiagerandom entity in sampling
spaceg?, and thatv € € is one realization from the ensemble. For each phaseindicator

function is defined for: = (z,y) € R?in I

T (x,w) = {1’ z € Vilw) : (8.1)
0, else

The interpretation of phase is entirely specific to appiccat For example, in a bio-

logical specimen, the phases could correspond to biolthgiceeaningful elements either

subcellular components such as nuclei and cytoplasm, laxetomponents such as dif-

ferent types of cells. The flexibility in defining the phaséamimage is one of the strengths

of the heterogeneous materials framework and will be dssxigurther in Section 8.3.

8.2.2 n-Point Correlation Functions

Statistical geometry appears in the study of physical phmmmn at both the micro-
scopic and macroscopic scales. In the study of heterogemeaterials an extensive theory
has been developed to characterize macroscopic physagpies using a statistical geo-
metrical framework. In particular, thepoint correlation function§NPCFs) have arisen in
expressions related to transport phenomenon and eléemnidanechanical properties [99].
The NPCFs are also used in a problem of much larger scale, $on@ogical studies on

dark energy and the distributions of galaxies [127,128].
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Figure 8.1: Two point correlation function. (a) By placingdisegments of lengthwith
random orientation o, the fraction of times the endpoints both land in phase iesg@nts
an estimate ob;(r).

Given the set of indicators® (, w), the n-point correlation functiofi” is defined as

the probability of finding: pointsx,, x-, . . ., x, in phase
SOy, xy, ..., 2,) = B{ZV(21) T (x3) ... TV ()} (8.2)
= Pr{ZW(x,) = 1,7V () = 1,...,TD(x,) = 1}. (8.3)

Of particular interest is theevo-point correlation functiorfTPCF)
S (x) = B{ZW(21)T9 (1)} (8.4)

which is the centerpiece of the tissue segmentation metbggolf I is statistically ho-
mogeneousy; is invariant under translation and depends onlyxgn = x; — x, rather
than absolute position. If is also statistically isotropic thef is rotationally invariant
and depends only on distance= |x5|. In this case the TPCF is denot8g(r), and may
be visualized as an experiment similar to the familiar Bufareedle problem depicted in

Figure 8.2.2.
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The assumptions of a random field that is statistically hcenegus and isotropic are
used here for the purposes of illustration. In practicetdigmages are used rather than
random entities, and the TPCF is measured as a sample avathgeimage boundaries.
Although images are typically anisotropic, estimatisfigunder the isotropic assumption
provides statistics that are insensitive to the orientatibcontent. This property is very

desirable for descriptors of image content in a classificedr segmentation application.
8.2.3 Relationship to Co-Occurrence Matrix

The TPCF represents the probability that phases are seghdata given distance,
either directed or irrespective of orientation. Anothepplar measure used in the analysis
of traditional texture images is theo-occurrence matrix The co-occurrence matrix is
based on a similar principal, namely the spatial distrioutbf image values [129], and is
closely related to the TPCF as demonstrated below.

Given an intensity imagé;, the co-occurrence matrik,, represents the frequencies

that image values j are separated hy

1, G(m,n)=1,
Ce(i,j) = ZZ Gm+z,n+y)=j (8.5)
mono 0, else.

Here,(x, y) are assumed to take on integer values to measure co-occeltretween pixels.
The diagonal frequencies 6f, are related to the sample TPCF®ftthrough a normaliza-
tion by the total comparisons in Equation 8.5

Cr(i,1)

() () —
=) = Ny

(8.6)

where N andM are the horizontal and vertical image dimensions.
Despite this relationship the application of TPCFs to imaggsentation is fundamen-
tally different from co-occurrence based approaches. €laionship between TPCFs and
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co-occurrence matrices is further explored in Section &18re the use of TPCF as a fea-
ture for segmentation is described, and in Section 8.4.Iravii®CF is compared to a

commonly used co-occurrence based method, namely theitkaiedtures.
8.2.4 Sample TPCF Calculation

The TPCF can be determined analytically only in limited casbere the material is
explicitly defined. When dealing with tangible media the TP€Ealculated by sampling
a digitized representation of the heterogeneous material.

Given anM x N digital phase imagé, to calculateséi) the autocorrelation of indicator

ZW(z,y) is calculated first
J(Az, Ay) = ZZI’)mn )(m + Az, n + Ay), (8.7)

whereAzx, Ay € Z. The correlation of indicators effectively counts the nambf pixels of
phase that are separated oAz, Ay), e.g.(0, 0) represents a full-overlap of the indicators,
andR(0,0) is the number of pixels of phagen /. The values of? are normalized by the

number of overlapping pixels to calculate probabilities
RY = RD /(1pen * Lasun), (8.8)

wherel,,, v is anM x N matrix of ones,/ is element-wise division, angis convolution.
The normalized elements éfrepresent the anisotropic but homogeneous TE@EB).
To calculate the isotropic quantlﬁé ) from S(Z (x), a process ofircumferential sam-

pling is used. Samples taken at a distandeom R(Z’)(O, 0) are averaged over angle

N
S (r) = RO (r cos (kAB), rsin (kA)), (8.9)

T
k=

[e=]

163



whereA# is theangular interval This sampling procedure is depicted in Figure 8.2. Sam-
ples that do not fall on the discrete grid Bf? can be inferred using bilinear interpolation.

Due to the symmetry oR(?, the sampling angles can be restrictedtor).

(b) (©

Figure 8.2: Sample TPCF calculation. {&) is extracted from the phase image to calculate
autocorrelation. (b) Circumferential samples are averageadiusr from R (0,0) to

calculateSé") (r). (c) The pattern of on-grid samples required for interpotais sparse.
HereAd = 7 /8 andr ranges from zero ta/2.

8.3 TPCF for Image Segmentation

The workflow for TPCF texture segmentation is presented inf€i@.3. The process
begins with the identification of phases from a color or gcajsimage to generate a phase
labeled image. Feature vectors containing the TPCFs of daafepare calculated from
local regions throughout the phase image. The dimenstgnaflithe feature vectors is
reduced using principal component analysis, and the reddioeension features are clus-
tered in feature space. The clustering in the feature sgabem mapped back to the image
domain and refined if necessary to eliminate edge effectsabrdations. Each of these

stages is described in further detail below.
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Vectors

Figure 8.3: TPCF segmentation workflow.

8.3.1 Phase Labeling

Given a color or intensity imagé&’ with dimensionsM x N, the process of phase
labeling assigns a labék {1,2,..., P} to each pixel to generate the phase image

While phase has a very specific definition in the study of hgemeous materials, in
the imaging context phase is a flexible concept that provadgsneral approach to treating
images as mixtures of constituents. These constituentbeadentified by either low-
level information such as intensity or color, or high-levgbrmation such as shape or size.
In the case of low-level information, any number of modentifging segmentations such
as mean shift [106] or K-means can be used to label const#udhthe distribution of
color/intensity is more uniform than multi-modal then a plenquantization may be more
effective. For high level information the determinationpifase is certainly application
specific since the phases likely represent meaningful emitsdifferent types of cells in a
tissue. A more complex knowledge-based approach may beaeddn this case, of which

there are many specifically for microscopic images [130}134
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8.3.2 TPCF Feature Vectors

Define ®(x,y) as thew x w region-of-interest with upper left corndfx,y). The
anisotropic sample TPCF is computed insi#le:, y) for » = 0 to w/2 and for each phase

ie{l,2,...,P}toformtheP(w/2 + 1)-dimensional feature vector

o

(8.10)

Vs = [S2(0), S(1), .. .,s;(%),sg(()),s;(n, . ,sg(%), ..., 8P(0),8P(1),..., 8P

This feature vector is computed over every positiony) € {0,1,... N — w} X

{0,1,... M — w} in the phase imagé.
8.3.3 Dimensionality Reduction

Although the feature vectors, , reside inP(w/2 + 1) space, their energy is typically
concentrated in relatively few modes. Prior to segmentdti@ dimension of the feature
vectors is reduced by projecting , onto the firstD primary two-point functions obtained

through singular value decomposition.
8.3.4 Clustering

To achieve a segmentation of the image the reduced dimefesiture vectors are clus-
tered in the feature space and the clustering result is ndappek to the image space to
form a segmentation map.

The choice of clustering algorithm depends on the appboagind the distribution of
features in the feature space. As demonstrated in Sectiprite TPCF feature vectors
tend to be either restricted to a smooth low-dimensionalifolahor distributed among a
mixture of low-dimensional linear structures. Severaktdning methods are used in this

chapter to exploit these feature space distributions apermiing on feature distribution
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and application constraints. K-means is used for a simpseipervised clustering when
the features do not follow the mixture linear distributidfxnearest-neighbors is used for
supervised clustering for problems where the featureiligton is not linear but is perhaps
too complex for K-means. When the features adhere to muliimar structures the lossy

data coding method of [135] is used to achieve an unsupergsgmentation.

Lossy data coding

The method of coding-length segmentation applies pritgipalossy data coding to
achieve a robust segmentation of multivariate data by maang the coding length of the
segmented data. The method of lossy coding requires onlparaneter, the distortion
and is implemented using a simple iterative hierarchicatedure.

Given a set of vector¥” = (v, v9,...,v,,) € R™™ alossy coding scheme maps the
sequence to a binary representation up to an acceptable. ltfsthe vectors are assumed
to be independent and identically distributed from a matiete normal distribution then

an approximation of the average coding rate is

R(V) =

1
~ log, det (Jd n LVVT) (8.11)
2 e2m

whered is the identity matrix. The overall coding length of the sexceLZ(V) in-

cludes the coding length for the vectors as well as the codebook length(1")

m-+n

L(V) = log, det (Id + EQLmva) . (8.12)

If the vectors are instead assumed to come from a mixture rof@adistributions then
it may be more effective to code the overall sequevice V; U V5 U --- UV, by coding

each group/; independently along with the group labels. In this case tiéng length
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Algorithm 5 Pairwise Steepest Descent for Lossy Coding Clusting

1: input: DataV = (v, v,...,v,) € R™™ and distortiore.

2: initialize clusteringS = {S; = {v;}|i = 1,2,...,m}

3: while |S| > 1do
4 Given setsS;, S;,i # j such thatL*(S; U.S;) — L*(S;, S;) is minimal over all pairs
5. if L*(S; U S;) — L*(S;, S;) > 0 then break.
6
7
8

elseS = (S \ {Sz, SJ}) U {Sl U Sj}
- end
. output: clusteringS

becomes

k
Vi
LV Vo Vi) = LV~ Villog, (121 819

i=1

The two terms in the summand of Equation 8.13 represent ttimgadength for each
groupV; and the (lossless) coding of group labels respectively.

This notion is the fundamental concept of lossy coding fast@ring: an ideal cluster-
ing into groupsV; should correspond with an ideal coding length for the oveeduence.
By identifying the partitioning which produces the best coegsion, the segmentation into
clusters is obtained. In practice this can be achieved ieepsist-descent fashion using a
hierarchical clustering with coding length gain as the measf distance. This procedure

is described in Algorithm 5. The optimality of this procedus demonstrated in [135].

8.3.5 Segmentation Refinement

In some applications the results of the feature space segtrmnmay be unsatisfac-
tory. The limited spatial resolution of local TPCF calcubas can produce edge effects
at texture boundaries, and the loss of spatial relatiossbgiween features in the image
space can result in mild segmentation noise. Simple caorectan be applied directly

to the segmentation result in the image domain to correcketipeoblems. The approach
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used depends on application requirements. Section 8.4\2dess a refinement example

for tissue segmentation.

8.3.6 Computation
8.3.7 FFT method for sample TPCF calculation

The most computationally demanding portion of the TPCF datmns are the corre-
lations. These correlations may be computed efficientlggithe Fast Fourier Transform
(FFT), as in Chapter 2. The implementation of TPCF segmentaitreated in further de-

tail in Chapter 9 where a more efficient method for calculalifgCF features is described.

8.4 Experiments and Results

Experiments were performed with both natural textures afatascopic tissue im-
ages using the procedure described in Section 8.3. Foratdaaxtures TPCF features
were compared with both raw co-occurrence matrix featunelstia@aditional Haralick fea-
tures for images taken from the Brodatz texture collectiar. rRicroscopic tissue images
TPCF features were clustered with both supervised and unsseeé clustering methods

to demonstrate the ability to identify tissue boundaries.
8.4.1 Natural Textures

Three 12& 128 images were selected from the Brodatz collection anchgedas in
Figure 8.4(a). The grayscale arrangement was quantizesladits to produce a phase
image withP = 4 phases.

Three sets of features were calculated from the phase imageco-occurrence, Haral-
ick, and TPCF. Each set was independently reducéd o 10 using PCA and clustered us-

ing K-means withK' = 3. All feature sets were calculated in a sliding windowof= 32.
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TPCF features were calculated at distances 0,1,...,16 to generate 68-dimensional
features. Raw Co-occurrence features are the unwrappirig, afto a 16-dimensional
vector, withC,, computed ate = (0,d), ([v2d], [v/2d]), (d,0), (—[v/2d], [v/2d]) for

d =1,2,...,16, and then averaged over the four orientations to form 2&&dsional
features. The Haralick features of contrast, correlagoergy, and homogeneity were cal-
culated from the unaveraged co-occurrence matrices amdatreraged for each distance
to form 64-dimensional features.

The singular values of the three feature sets are presentédure 8.4(b) (normalized
for comparison). Each feature set clearly contains mostsoémergy in relatively few
modes. The features were reduced to 10 dimensions prioustecing with K-means with
K = 3.

The segmentations are shown in Figure 8.4(c). The confus@tnices for these seg-
mentations are contained in Table 8.1. For each featurealygegmentation errors occur
within w/4 of the texture boundaries. The accuracy is comparable fdr fsmature type at
94.1%, 97.3%, and 96.6% for Haralick, co-occurrence, andH Respectively.

A three-dimensional visualization of the TPCF feature spea produced using PCA
and is presented in Figure 8.4(d). The features conformnoc®th manifold-like structure.
The low-dimensional characteristic of the TPCF featuregests that this is an accurate

representation.
8.4.2 Tissue Segmentation

Two applications for tissue segmentation were exploredgusPCF segmentation, us-

ing images and scenarios from previous chapters. The fitseiglentification of follicle
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Figure 8.4: Natural texture segmentation using TPCF, Havadind raw co-occurrence ma-
trices. (a) Brodatz textures grass, holes, straw, left tatrip) Normalized singular values
for each feature set. (c) K-means segmentations. (d) Tdireensional visualization of

TPCEF features.
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Table 8.1: Confusion matrices for natural texture segmiamisit

Haralick Co-oc TPCF
class| 1 2 3 1 2 3 1 2 3
1 |10961 0 0 | 10961 0 0 | 10961 0 0
2 1269 11147 0 606 11810 0 837 11579 0
3 750 0 10114{ 307 0 10557 335 0 10529

regions in human follicular lymphoma images from Chapter be $econd is the distinc-
tion of spongiotrophoblast from labyrinth tissue in moussgcpnta images from Chapter
2. In each application the phases were identified as celuldrsubcellular components

representing nuclei, cytoplasm, red blood cells, and backyd.

Follicular Lymphoma

The motivation for the registation method of Chapter 6 wadgltfieulty in segmenting
follicle regions in H+E stained images. To grade folliculanphoma tumors it is necessary
to generate statistics on the concentration of centrolokets within follicle boundaries.
While centroblast cells are easily identifiable in an H+Erst#ie follicle regions are not,
prompting the use of nonrigid registration to map a follégmentation from an IHC stain
to the H+E image.

Experiments were performed to demonstrate the capabiliffPCF features to segment
follicles directly in H+E images. Two follicular lymphomanages with H+E stain were
selected from the dataset described in Section 6.2.1. Co@<1IMOO0 region was selected
from each image to contain a mixture of follicles and othssues, as shown in Figures
8.5(a) and 8.7(a). The pixels of these regions were labedadja nearest neighbor clas-

sification to generate a four-phase image. TPCF feature ngeatere generated for both
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Figure 8.5: Follicle segmentation example one. (a) H+Ehstiollicular lymphoma sec-
tion. Follicles appear as large elliptical regions. (b) Umsrvised segmentation using lossy
data coding clustering.
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Figure 8.6: Visualization of TPCF features for folliculamiphoma example one. Clusters
are color coded to correspond with Figure 8.5(b).

174



Figure 8.7: Follicle segmentation example two. (a) H+Ergdifollicular lymphoma sec-
tion. Follicles appear as large elliptical regions. (b) Umsrvised segmentation using lossy
data coding clustering.
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Figure 8.8: Visualization of TPCF features for folliculamphoma example two. Clusters
are color coded to correspond with Figure 8.7(b).
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phase images using the parameters- 16, A¢ = «/8, and lengths = 0,1,...,8. The
36-dimensional feature sets were reduced to ten-dimealsgpace using singular value
decomposition. Each reduced feature set was then cluatsneg the lossy coding length
algorithm in a semi-supervised configuration: to reducsteling time the feature vectors
were sampled from the phase images with a horizontal antakstride of four pixels and
subsequently clustered. The remaining unsampled featees assigned to the resulting
clusters based on the most favorable coding length usingtitoud.13.

The results of the clustering are presented in Figures B&s{d 8.7(b). In each case
some follicles are clearly identified. The quality of segma¢ion suffers towards the physi-
cal center of each tissue section, which corresponds tovwr Iright corner of each image.
From examining the RGB color images it is clear that there tsang contrast gradient in
the same direction, with follicles closer to the physicaitee appearing less conspicuous.
This gradient may be due to either lack of stain penetrationuniform section thickness,
or nonuniform illumination in the scanning process.

Visualizations of the clustered TPCF features are presentédgures 8.6 and 8.8.
These visualizations were obtained by using singular vekmmposition to project the
36-dimensional features into three-dimensional space.bbth examples the TPCF fea-
tures follow a similar distribution. The features corresging to the follicle and other
tissue regions are restricted to a smooth planar surface fétures corresponding to the
background and background-tissue transition regions #ionspicuous protrusion that
is approximately orthogonal from the planar surface. Tladuees of the planar surface

originate from the tissue interior and so have very littlergyy in the TPCF feature vector
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components corresponding to the background phase. Likettis features of the protru-
sion have very little energy in the components correspantbrthe tissue phases. These

facts together explain the peculiar distribution of the THE&tures in these examples.

Placenta

The mouse placenta images originate from a study on the fofedrb gene in induc-
ing morphological changes in mouse placenta [22]. The placeontains several tissue
layers namely labyrinth, spongiotrophoblast, trophdblasd glycogen. The aim of the
example segmentation application here is to distinguishahyrinth layer from the spon-
giotrophoblast layer as they are the least distinctive gfeadjacent layers (see Figure 1.1).

A 1000x 1000 pixel area was selected from each of 18 placenta imagamtain ap-
proximately half labyrinth layer and half other-tissuedeay. A maximum likelihood clas-
sifier was applied to these areas to classify the pixels gdditood cell, cytoplasm, nuclei,
extracellular matrix and background as in [15]. These diaasions serve as seven-phase
images from which TPCF feature vectors are calculated. Trenpeters ROl size) = 32,
lengthr = 0,1, ...,16, and angular intervald = 7/8 produced 68-dimensional feature
vectors that were then reduced to ten-dimensional spagetprclustering.

The labyrinth tissue layer was manually marked to genergteund truth segmentation
for validation. To generate training data for KNN clustgrthe TPCF feature vectors for
a single image were spatially sampled both horizontally eadically with a stride of
16 = w/2 pixels. The remaining seventeen images were then clustisiad this training
feature set withi' = 50. This was repeated using each of the eighteen images asgrain
data to explore the sensitivity of training data selecti@he clustering results were then
mapped to the image domain and refined using morphologicatipns. Small objects
and holes appearing due to clustering noise were removédthétunderstanding that the
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Figure 8.9: Placenta image 22. The blue line represents #reiah segmentation. The
green line indicates the segmentation with image 15 usettldiming.
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Figure 8.10: Placenta image 19. The blue line representmtiteial segmentation. The
green line indicates the segmentation with image 18 usettldiming.
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labyrinth layer is contiguous. Accuracy was then measurethe refined segmentations
as the total percentage of correctly segmented pixels frotim labyrinth and other-tissue
classes.

A summary of the segmentation accuracy is included in AppefAdTable A.1. Each
row contains the segmentation results for one training anathe row medians indicate
the effectiveness of each image as training data, columnamgdndicate the quality of
segmentations for each image from all training data. Wighetkception of image 18, each
image was effectively segmented by at least one other. Thgastend to form cliques
that produce mutually effective segmentation. For exafiplage 1 effectively segments
image 10 and visa versa, but poorly segments images 16 arldkexvise images 16 and
17 segment image 10 poorly. This indicates that there istran in image content, either
owing to natural biological differences and/or the alguntused to generate phase images
from color slide scans.

Two example segmentations are illustrated in Figures 8d®&h0. In both exam-
ples the segmentation boundary conforms closely to the allgnmarked labyrinth tissue
boundary. In the upper left corner of Figure 8.9, the TPCF ssdation actually corrected
an error in the manual marking. The tissue between the sdgtm@nboundary and man-
ual boundary in this area is not labyrinth tissue but giaiis ¢eom the spongiotrophoblast
layer. A mistake in the segmentation is apparent in the Igyegetion of the same image
where the densely packed cluster of giant cell nuclei cooldbe distinguished from the
labyrinth layer. The results of Figure 8.10 are similar. ameas of densely packed giant
cells from spongiotrophoblast tissue are again mistaketafiyrinth tissue. In the upper
left corner of this image there is a small protrusion of latyr tissue that is lost in the

segmentation due to the limitation in spatial resolutiantiie ROI sizew = 32.
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8.5 Discussion and Conclusions

By considering tissues as arrangements of discrete andgimalty meaningful com-
ponents, the problem of tissue segmentation can be cadhiatioeterogeneous materials
framework. The two point correlation function, a stochageometric function, provides a
means for acquiring statistics on the shape, size, ancasgatiributions of these biological
components to use as cues for the segmentation of diffessoes.

TPCF features were compared to the raw co-occurrence maidixhee Haralick fea-
tures for the problem of natural image segmentation. Allitssvere comparable in terms
of segmentation accuracy, indicating that there is redocylan the extra information of
both the raw co-occurrence and Haralick features. The rawccarrence and Haralick
features are calculated over multiple distances and agdrager orientation, as are the
TPCF features. Unlike the raw co-occurrence or Haralickuiest, the “off-diagonal’-to-

j phase comparisons are not used for TPCF. The co-occurrerideenare often sparse,
and so the raw frequencies are not used directly as featoreg@mentation or classifica-
tion, rather measures such as the Haralick features areutethfromC' to extract features.
Neither the off-diagonal frequencies or feature extracti@re beneficial in the example.

The TPCF features were demonstrated to be effective for tiv@aie aim of tissue
segmentation. In the follicular lymphoma example the featiistributions (again low di-
mensional) permit an unsupervised segmentation using tas$ing clustering. The iden-
tification of follicles in the two examples provided was sdijto the quality of inputs. The
lack of uniformity in the color distributions of the raw imagimplies a more sophisticated
preprocessing is required to produce consistent phaseeifioad PCF feature calculation.
The spatial resolution of TPCF features also presents agrofur identifying the narrow

channels that separate adjacent follicles. To have medahend@PCF must be calculated
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in some finite neighborhood which naturally implies limideis in spatial resolution. This
neighborhood must be large enough to capture the statitittee components that dis-
tinguish tissues, but not larger. In some scenarios thenmim neighborhood size may
indeed result in obscuring delicate or complex tissue bagncegions.

The phenomenon of non uniformity in phase images was alseredd in the super-
vised segmentation of placenta, where images were bouondciigues as indicated by
effective mutual segmentations of one another. If naturdbgical variations are the root
of the difference in the distributions of components in thage image then training data
must be chosen accordingly. If it is a matter of variatiomirslide preparation then phase
images must be generated using more sophisticated algaritiat can adapt to the dif-
ferences in content from one image to another. Regardlessuibervised segmentation
of placenta achieved 95%+ accuracy in many cases. This ¢dwetcuracy is certainly

adequate for application in many biological studies.
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CHAPTER 9

COMPUTATION OF TPCF FEATURES WITH CORRELATION
UPDATING, PARALLELIZATION, AND GPU

TPCF features demonstrate promising results in the segtimntd tissues in micro-
scopic images, however they are accompanied by a signitcamputational burden. Con-
sider the following example: computing TPCF features fo6 & x 16 K four-phase image
with w = 128 implies the calculation of more than one billion correlaso Performing
these correlations is a considerable task, with large indaggsets pushing the correlation
calculations into the trillions.

In this chapter | present three approaches to reduce thetexe¢ime for the compu-
tation of TPCF features. The first approach is a novel methtéeldceorrelation updating
that uses a derived relationship between TPCFs of neiglipoemions-of-interest to up-
date TPCF values rather than computing them from scratcts ihovation results in an
extremely efficient TPCF calculation that does not waste eadatipn on unused correla-
tion values, and that eliminates the strong time-dependenavindow size that exists for
FFT-based correlation. The second approach is the pazatieh of feature calculations
on the multi-node and multi-socket levels. The third apphaa the implementation of cor-
relation updating on GPU, taking advantage of the fine-gcharallelism and fast on-chip

memory to further optimize TPCF feature calculation.
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9.1 Introduction

The computation of TPCF features is depicted in Figure 9.&. ddmputation consists
of three main processes: correlation calculation, noatibn, and sampling/interpolation.

Given anM x N digital phase imagé, aw x w region-of-interest (ROI®,, ,, is defined
with upper left cornef (z, y). For each phasen the ROI, the autocorrelation of the binary

maskZ!’) is calculated
RY(Az, Ay) = ZZ n)Z{) (m+ Az, n+ Ay), (9.1)

whereAz, Ay € Z. The values of?’ are normalized by the number of overlapping pixels
to calculate probabilities
RY = RDJ(Laren * Lassen), (9.2)
wherel,,, v is anM x N matrix of ones,/ is element-wise division, angis convolution.
The normalized elements df represent the homogeneous anisotropic TEB@R:(;).
The isotropic quantitﬁéi)(r) is calculated using the process of circumferential sargplin
depicted in Figure 8.2. Samples taken at a distanfrem R(“(O, 0) are averaged over

angle
Al

™

I:?(i) (r cos (EAG), rsin (kEAG)), (9.3)

MD‘:

() =
k=0

whereAd is theangular interval Samples that do not fall on the discrete griddf can
be inferred using bilinear interpolation. Due to the symmyef 2, the sampling angles
can be restricted tfo), ).

This procedure is repeated for every phase the ROI®, , to calculate the feature
vectorv, ,. The ROI is positioned at every complete location in the phasge(x,y) €
{0,1,...,N —w} x {0,1,...,M — w} to generate a set ¢f\/ — w + 1)(N —w + 1)
feature vectors.
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() (d)

Figure 9.1: Computation of TPCF features. (a) A R®z,y) is defined in the phase
image. (b) A binary mask is generated for each phase of the ®PThe autocorrelation
RU is calculated for each mask and normalized and sampled &ragerthe TPCES’éi)(r).
(d) The ROl is iterated throughout the entire image.
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9.2 Direct FFT-based correlation

The most computationally demanding portion of the TPCF datmns are the cor-
relations of Equation 9.1. These correlations may be coetpefficiently using the Fast

Fourier Transform (FFT), as in Chapter 2. The binary nﬁ@kis padded to the sizav—1

I8 Ouxwt
= - wxw 9.4
. 0.4)

w—1xXw 0w71><w71

and transformed forward to the discrete frequency domain

2w—12w—1

T 2 2 Pl ©5)
=

n=0 m=0

Flk,l] =

The power spectrum is calculated by taking the magnitudén@fcomplex elements

F|k, 1] and the inverse transformation is computed to obtain thecautelation??

2w—12w—1

RO = o 2 Y AT ©6)

=0 k=0
The dimensiorRw — 1 is critical for the performance of the FFT calculations. The

most widely used FFT library, FFTW [48], offers optimal parhance for powers of two
or small prime factors. The padding of Equation 9.4 may beipudated to achieve these
sizes, only by adding zeros to achieve the next most faversibé. A demonstration of the

effects of transform size and padding is presented in Se6ti®.
9.2.1 Sparse sampling

The FFT calculates al2w — 1)? elements of the autocorrelatidd, however only a
small set of these are required for the circumferential $engprocedure of Equation 9.3.
This is apparent in Figure 9.2, where only 10% element&®f are used to interpolate
Séi) (r). Although algorithms exist for computing subsets of FFTpo$ [136—138], the
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Figure 9.2: Sparsity of samples for autocorrelation cirfarential sampling. The full
autocorrelation matrix with the sampling pattern imposedhiown above. Herey = 32
andA# = 7 /8. Red points indicate the interpolation locations. Black poindicate the
sampling points required for bilinear interpolation. Imstbhase only 395 of the total 3969
elements of? are used for interpolation.

available implementations of ordinary full-output FFT apimized to the extent that only

a relatively large transform will benefit [48].
9.3 Correlation updating

In addition to the sampling sparsity, the shared contemtéeh neighboring ROIs also

points to significant amounts of wasted computation. Fongte, although®,, ,, ®,.1,
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differ by only two w-length columns of pixels, a straightsfeard FFT method calculates
correlations from scratch for each.

The observations of sparsity and shared content may betsinealusly addressed using
the linearity of correlation. Rather than computiRy§) from scratch for each ROI, the
portions of neighboring ROIs, s&y,, and®,, ,, that are not shared may be used to
updateR® from @, , to @, , instead. Furthermore, if this updating is performed diyect
in the image domain then the locations used in sampling maseleetively updated, and
the spatial dependency between the image and frequencyirtooza be avoided.

Given two horizontally adjacent x w ROIs®, ,, ®,.,, with corresponding indicators

I;L [va Cotly--- acx-i-w—l]
Ia(c:)-l Y [C:erlu Cat2y -+ C:):Jr'w]u (97)

wherec arew-length columns of pixels. The autocorrelatioriléﬁ is denotedRS,)y. Given
that 71"}, 1", , are distinguished only by, c, .1, the autocorrelatior®\’), , can be
calculated fromRSf,)y by adding the contribution af, ;.1 and removing the contribution

of ¢,.

Define the correlation sums between the columns and thgiecéise regions

N Z (Az,m)c,(m + Ay)

N Z o1y (AT, m)Cpy(m + Ay). (9.8)
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Theupdate matricesontaining these correlation sums represent the contiteibfc, to

RY), andc, o1 tO R;’L,y

Qp—1w—1 " Dw-1 Y1—w " Qy-11-w
aw—l,w—2 e a07w—2 al,Z—w T aw—l,?—w
AT = Ay_10 " Qo0 aro Q1,0 )
Ay—1,-1 Qg1 T Qy—1,1
Q11— """ Qoi—w Q-1 "7 Oy i1
-+ + + + q
Ao1—w 7 Qy_11-w Qw—2w-1 """ Agw-1
4 + 4
Qoo " Gy 192w Aw2p-2 """ Qou-2
+ = + - + + - +
AT = Qo0 1,0 Q20 Qo0 (9.9)
¥ + + +
Qo1 Ay—1,1 Apy—2,-1 Qp,—1
+ + + +
A w—1 Apy—1w-1 Aw—-21-w Ap1—w -

The relationship between the autocorrelations for adfa@gions is then
RV, =RY — A+ A", (9.10)

This updating procedure clearly applies to vertically adjg ROIs as well.

Since only a subset of the elementsiohre required for sampling, the corresponding
update elements oft, A~ may be calculated individually for the sampling locatioBach
sampling location will then require onl3w multiply-add operations for updating from
one ROI to the next. Given the updating procedure, to caleul®CF features over an
entire phase image requires onfytotal FFTs to initializeR(()’}),z' =1,...,P. With the
initialization calculated the updating procedure is useitierate the ROI both horizontally
and vertically through the remaining positions.

The updating procedure does not compromise numerical acgun the calculation of

autocorrelation. Since the elementsfofepresent counts of pixels with a given separation
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there is no accumulation of error through repeated roundjpgrations. The updating
procedure also provides flexibility in choosing the ROI sizesince performance is not
subject to the restrictions on FFT size.

Results comparing the time performance of updating agaiesbitdinary FFT method

are presented in Section 9.8.

9.4 Parallelization

The procedure for calculating TPCF feature vectors from a@image is a simple data
parallelism. The image may be divided among different npsieskets, or cores, with each
computing TPCF features for its portion.

The implementation used for the experiments of this chaggeumes a head/worker
organization. A single node loads the phase image, pansitiointo horizontal strips and
distributes the strips to processing elements (includself) using asynchronous commu-
nication and double buffering to overlap communicationhwdisk operation. Each node
calculates the TPCF features for its portion of the image ahdms the results to the head
node. MPI is used for communication between sockets andsn@d@@ to achieve multi-

node and SMP parallelism.

9.5 GPU implementation

The process of calculating TPCF features contains both fidecaarse parallelisms:
the computation of sample updates (fine) and computation@is Rcoarse). The fine
level of parallelism exists within a single ROI and is the g@urtation of the update values
from Equation 9.9, the normalization of updated locatiarg] the bilinear interpolation

to caIcuIateSéi)(w). There are no dependencies in any of these processes s emadily
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distributed. The coarse level of parallelism is the simnétaus calculation within multiple
ROIs. Clearly the process of correlation updating is depentteugh, as updating the
autocorrelations fo#,,, , requires the autocorrelations for, , to be available.

Both of these levels of parallelism can be effectively expldiusing CUDA on GPU
using block and thread parallelisms. A complete review ef@UDA programming model
is available in Chapter 3.2.

At the fine level, the computation of update values and alinaterpolations can be
divided among threads in a single block. Fine level detaldey at the course level se-
guences of dependent ROIs can be divided among blocks. Tdregament into dependent
sequences of ROIs is essential since distinct blocks arblema cooperate. A simple
way to achieve this arrangement is for each block may progéssizontal strip of ROIs
{0y, P1y,....Pn_wy}. Each block may then perform the updating sequentially ®n it
sequence of ROIs while other blocks do the same, achievangdarse parallelism.

For the fine level parallelism the kernel runs in an iterathanner, starting with initial-
ized values forRé’yz'), 1=1,2,..., Pand lists of the sampling locations and interpolation
coordinates. In the first step, portions ®f , are loaded into shared memory, and each
thread calculates the update values for one sampling tocaintil the list is exhausted.
These sampling locations are then updated and normalirethelnext step, each thread
then calculates one interpolation until the interpolatishis exhausted. The threads then
reduce the interpolations, averaging to calcutat@he kernel repeats this process for each

ROI in the dependent sequence and then expires.
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9.5.1 Memory access patterns and shared memory

With each thread calculating a pair of update values, the ongaccesses td overlap
significantly among threads. Each update value requir@sultiply-add operations, and
some elements ob may be accessed up totimes. For this reasos is stored in shared
memory to avoid repeated reads to global memory. This detisi key since effective
shared memory usage is one of the critical components ofigigoperformance on GPU.

Due to limited shared memory sizes, the autocorrelatiorriogst are maintained in
global memory. This presents a problem as the calculatiompdhte values cannot be
organized among the threads so that access&$’t@re coalesced. Storing R in texture
memory would be beneficial for caching and hardware intetpm, however textures are
read only and cannot be changed within the duration of a kerne

The limitations on shared memory size prohibit a generalemgentation for different
ROI sizes. For this reason, the implementation used in @e&i8 focused on the case
w = 32, A0 = 7/8 that is useful for the analysis of 5X magnification imagesctEalock
was assigned 128 threads, 2176 bytes of shared memory, agis&rs/thread to achieve

a 100% occupancy on a Quadro FX5600 card.

9.6 Related works

A description of works in the area of high performance conmgufior image processing
is presented in Chapter 3.6.

For the proposed fast correlation updating algorithm, alamdea is found in the work
on fast median filtering [139]. In this algorithm the ROI fiitesponse is calculated at every
position in the image by updating a kernel histogram basethenncoming and exiting

information as the ROI shifts.
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9.7 Experimental Setup

Experiments were performed to examine the effects of caticel updating, paralleliza-
tion, and GPU implementation. Four implementations focekating TPCF features were

produced:

1. Serial direct FFT. A fully serial implementation of the direct FFT-based meatho

written in C++ using the FFTW library [48].

2. Serial correlation updating. A fully serial implementation of the correlation updat-

ing method, written in C++.

3. Parallel correlation updating. A parallel SMP/multi-node implementation of the

correlation updating method, written in C++ using MPI.

4. GPU correlation updating. A GPU implementation of correlation updating, using

C++/CUDA. The implementation is specific for= 32, A = 7/8.
9.7.1 Hardware

The above implementations were tested on a GPU equippe@iltree BALE system
at the Ohio Supercomputer Center (see Figure 4.1). The BApErsomputer is endowed
with 55 workstation nodes based on a dual-core Athlon 64 XBitecture with integrated
graphics card and 16 visualization nodes enhanced with-sheet x dual-core AMD
Opteron 2218 CPUs and dual-card Nvidia Quadro FX 5600 GPUsfAlhese nodes are
interconnected with Infiniband, and include a 750 GB, 7200 R&®4Ill SATA 1l hard disk
with 16 MB cache.

All GPU experiments and comparisons were run on the sixtésualization nodes,
where each node has 8 GB of DDR2 DRAM running at 667 MHz on the CHE and
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2x1.5 GB of on-board GDDR3 DRAM running at 1600 MHz on the GPlésidr a total
of 11GB available DRAM per node. The remaining experimentseverformed on the

workstation nodes.
9.7.2 Data

Two sets of data were used in testing the three implementatoieties. The first
dataset is used to compare direct-FFT and correlation uqgdanhd to examine scalability
for the parallel implementation. It consists of t&000 x 1000 five-phase images taken
from the placenta dataset described in Chapter 8.4.2.

The GPU time performance experiments used randomly gestkbiranges of siz256 x
256, 512 x 512, and1024 x 1024 with two, four, and eight-phase variations. The accuracy
performance experiment used one of the follicular lymphameges described in Chapter

8.4.2.

9.8 Results

9.8.1 Correlation Updating

To compare the performance of correlation updating withdinect-FFT method, TPCF
features were calculated for the ten test images using ttaergders of Table 9.1. Parame-
ters were chosen to reflect typical choices for the segmentak and 20< magnifications,
and also favorable and unfavorable FFT sizes. In the powev@tases théw — 1 DFT
was padded t@w. The transforms for the non power of two cases were not padblesti-
fication for this choice is provided in Table 9.2 where it isar that this padding would be
detrimental in thev = 130 case, and would only help marginally in the= 34 case.

The execution times for the serial direct-FFT and correfatipdating calculations are
presented in Figure 9.3. The average per-image executiwstfor direct-FFT are 1280,
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Table 9.1: Correlation updating and direct-FFT comparisamrameters.
case small-pow2 small large-pow2 large
w 32 34 128 130
Al /8 /8 /16 /16

Table 9.2: Effect of padding on DFT transform time. Averagedr 100 transforms.
w 32 34 64 128 130 256
milliseconds 0.27 26 19 10 31 53

11637, 43129, and 126489 seconds fornthe32, 34, 128, and 130 sizes respectively. The
corresponding average times for correlation updating @2e 1178, 3474, and 3557 seconds.
Overall the increase in execution times from the small wimdases to the large window
cases are considerable. Fram= 32 to 128, the increase for direct-FFT is 34x where the
corresponding increase for correlation updating is only. Zhere is a strong penalty with
the direct-FFT implementation for non power of two casesghdy a 10x increase for the
small window sizes and 3x for the large. The correlation tipdamplementation does
not suffer the same penalties with commensurate increaséed to 1.1x for the small
window case.

The average speedup factors for correlation updating &epted in Table 9.3. The
speedup factors range between 8x and 67x depending. ofihe larger speedup factors

correspond to the non-power-of-two sizes due to the largalpeon FFT performance.
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Figure 9.3: Execution times for serial direct-FFT and catien updating. (a) Smalb

case. (b) Largev case.
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Table 9.3: Average speedup for correlation updating.
Small Large
w 32 34 128 130
speedup 7.9x 67.0x 124 X

9.8.2 Parallelization

To demonstrate parallelization scalability the TPCF fezguwere calculated for the
large power of two case using the parallel implementatioooofelation updating on 2, 4,
8, 16, 32, and 64 processors on 1, 2, 4, 8, 16, and 32 nodes x&bet®n times for these
configurations are presented in Figure 9.4. Table 9.4 acumthaie speedup factors for the
parallel execution as compared to a fully serial single rioggementation. These speedup
factors are depicted graphically in Figure 9.5. There isrsistent reduction in execution
time all the way through 16 processors, with more limitedhgdor the 32 and 64 processor
cases, indicating that the unparallelized portions of etien account for a considerable
portion of the total execution time. There is a relativelsggaamount of communication
required for the worker nodes to report TPCF values to the Imea, with each ROI
generating”(w/2 + 1) double-precision elements. In the case of a single XA@DO test
image this corresponds to approximately 1.85 GBytes. Whemeasing the number of
nodes reduces the time spent in computation, the time spesgmmunication remains

unchanged and the result on scalability is apparent.

9.8.3 GPU Implementation

To demonstrate execution time performance TPCF featureseadculated using corre-

lation updating implementations on both CPU and GPU for ramuheages of size 256256,
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Figure 9.4: Execution times for parallel correlation upnigtw = 128 case.

Table 9.4: Average speedup for parallel correlation updato = 128 case.
processors 2 4 8 16 32 64
speedup 1.9x 3.8x 8.5x 13.8x 24.5x 41.9x
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Figure 9.5: Scalability of parallel TPCF correlation updgtimplementation.

200




Table 9.5: Execution times for GPU correlation updatinglenpentation.

CPU GPU
phases 256256 512512 1024<1024 256<256 512<512 10241024
2 3.64 16.69 71.07 0.33 1.15 4.52
4 7.28 33.22 141.13 0.55 2.21 8.84
8 14.54 66.41 282.71 1.02 4.32 *

* - watchdog timer intervention

512x512, and 10241024 with two, four, and eight phases. The results from thjed-
ment are presented in Table 9.5. The corresponding speadigrd are presented in Table
9.6. All measures of execution time include communicatind ansfer of data between
the CPU and GPU. For both CPU and GPU, execution time incremssslly with image
size and the presence of additional phases, as expectedsp&hdup factor is greater for
the more compute-intensive cases with larger image sizeésramme phases, as the total
amount of time spent in communication represents a smadieeptage of the total execu-
tion time. The kernel execution is interrupted by the CUDAckalog timer in the case of
1024 x 1024 eight phase image. This is a feature of CUDA enabled &orunit a kernel
after a prescribed period to prevent a loss of graphics respior the user. The duration of
the kernel depends on the sizes of the dependent sequerkR@dpfso to avoid watchdog
timer interruptions the the sizes of these sequences mushited based on the allowed

kernel execution maximum.

Numerical Accuracy

The calculation of TPCF feature vectors is just one step iségenentation procedure.
After the features are calculated, they are subjected temionality reduction prior to

being clustered to form a segmentation. To demonstrateffinet en the end segmentation
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Table 9.6: GPU/CPU speedup.
phases 256256 512512 10241024

2 111 15.6 15.7
4 13.2 15.0 16.0
8 14.2 15.4 *

* - watchdog timer intervention

Table 9.7: Confusion matrix between single-precision GPghentation and double-
precision CPU segmentation.

class 1 2 3 4 5 6
1 | 75692 0 0 0 0 0
2 0 136739 0 0 0 0
3 0 0 263018 0 0 0
4 0 0 0 253975 0 0
5 0 0 0 0 11532 O
6 0 0 0 0 0 1493

result, segmentations were generated for one of the Flatitlymphoma examples (see
Chapter 8.4.2) using both double-precision CPU calculatatiifes, and single-precision
GPU calculated features. The confusion matrix between thd & GPU generated
segmentations is presented in Table 9.7. The segmentatiendentical, indicating that

the loss of precision has no impact on the outcome of the dogars analysis in this case.

9.9 Discussion and Conclusions

TPCF features provide a method for the segmentation of bigicdl images, how-

ever, this capability is accompanied by a significant coratomal burden. The direct-FFT
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method for deterministic TPCF calculation makes use of acieffi algorithmic staple,
but execution time is strongly influenced by ROI sizes dictated by FFT transform size
guidelines. The direct method also neglects the sparse@uébation sampling pattern
and and close relationship between neighboring regionstefast resulting in significant
amounts of wasted computation.

This chapter proposes a novel method of correlation upglatiat uses the derived re-
lationship between the autocorrelations of neighboringsR@update TPCF values rather
than computing them from scratch. This method simultangaagdresses the consider-
ations of wasted computation and ROI size sensitivity withcompromising accuracy.
Using the linearity of correlation, the autocorrelatiotcadations can be updated from one
ROI to the next, rather than computed from scratch. Furtbeznperforming these updates
directly in the image domain permits the sampling locatitanise selectively updated, and
frees the algorithm from the sensitivity to ROI size. The ioy@ments of correlation up-
dating result in a speedup from 8-67x over the direct-FFThogbt

Both multi-node and GPU hardware solutions were pursuedtdureduce execution
time. The parallelization of feature calculations produeescalability up to 42x on 64
processors, reducing the total execution time for the seemf1000< 1000 test images
from 9.6 hours to just 13 minutes. General purpose GPU imgftation of correlation
updating provides a further 16x improvement over CPU, witlcmmpromising accuracy
in segmentation results. This gain is impressive congidetiis more than equivalent to
using 16 processors on eight nodes, and puts performanbmwéach of end users who

do not have access to production computing clusters.
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CHAPTER 10

CONCLUSION

Microscopic imaging will play a central role in addressiig ttmergent grand chal-
lenges in biology. In the post-genomic era the ability taalae molecular information in
tissue will be critical in understanding the roles of gened discovering the structures of
the molecular networks that they regulate. A realisticypietof complex phenomenon like
cancer requires more than just the molecular informati@rayed over a heterogeneous
tissue that ordinary “omic” approaches such as microarrayige. Information with reso-
lution at the scale of individual cells and beyond is needaghiderstand both intracellular
regulation as well as the role of intercellular interaction

The scale of the data involved in the emerging problems iimiaging is daunting.
High throughput microscopy techniques enable scientigjeherate hundreds of gigabytes
to terabytes of high-resolution imagery for a single stuwt ts limited in scope to one gene
or interaction. The manual analysis of this quantity of @isnformation is often beyond
the capability of determined individuals, let alone theiesswith regards to inter or intra-
observer variabilities. Both the scale of data and the need foore quantitative approach
suggests that image processing technology will play a rotbe next phase of biological

discovery.
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This dissertation presents solutions for two common problén microscopic image
analysisrreconstructiorandtissue segmentatioffhe proposed algorithms fit into a frame-
work that is intended to provide researchers in biology wh#htools to explore and quan-
tify large image datasets (see Figures 1.2, 1.3). The &lhgosi were developed to be gen-
eralizable with wide applicability to different tissuesdastains. Emphasis is placed on
addressing the challenges of content and image size thabsoapic images pose to the
state-of-the-art in image processing. For each algorithrmmgplementation was pursued
that uses both theory and parallelization to reduce exatudimes. The emerging GPU
architecture was especially useful in this regard.

Chapter 2 describes theo-stage algorithnfor the reconstruction of tissues from se-
guences of serial section images. The algorithm is faslalslea and parallelizable and is
capable of correcting the nonrigid distortions of secttbn@croscope images. Rigid ini-
tialization follows a simply reasoned process of matchiigh level featuresising feature
descriptions and geometric constraints. Nonrigid regiiin refines the rigid initialization
by using the estimates of rigid initialization to precisahatch intensity features using an
FFT-based implementation of normalized cross-corratatio

Chapter 3 describes the implementation of the two stageitigousing general pur-
pose computing on graphics processors (GPU). A computdtframework was been de-
veloped to expedite execution by parallelizing FFT comfloms using general purpose
computing on GPU. A solid heterogeneous and cooperativéipmdessor platform was
established using an AMD Opteron CPU and a pair of Nvidia Qu&fUs, where the best
features of each processor were fully exploited for apghigher degree of parallelism
at a variety of levels: Multi-task for simultaneous execns of CPU and GPU codes,

SMP (Symmetric MultiProcessing) for multicard GPUs usitigyeads, and SIMD (Simple
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Instruction Multiple Data) for the 128 stream processorshef GPU using CUDA. The
features of GPUs combined with multi-socket programmingeed speed-up factors of
up to4.11x on a single GPU and 6.68x on a pair of GPUs using CUidp#hreads versus
a fully serial C++ CPU implementation. Execution results wamewn for a benchmark
composed of large-scale images derived from two differentees: mouse placenta (16K
16K pixels) and mouse mammary (23K 62K pixels). Using a faltyial C++ implemen-
tation it takes more than 12 hours to register a typical sampmposed of 500 placenta
slides. This time was reduced to less than 2 hours using twdsGP

Chapter 4 extends the GPU implementation of the two stageitdgoto clusters of
GPU-equipped computing nodes. The heterogeneous andratigpenultiprocessor sys-
tem of Chapter 3 was augmented to include parallelisms at th&-node level, using MPI
for data partitioning across nodes, and the multi-corelJew@ng either MPI or pthreads.
For a mammary sample composed of 500 slides (23K 62K pixels)et takes more than
181 hours to accomplish the registration process on a sf@gteron CPU. This was re-
duced to 50 hours when enabling the GPU as co-processor, iandiged to 3.7 hours for
a total speedup of 49x when all 32 CPUs and GPUs participatarimaltiprocessor co-
operative environment. While GPU-assisted versions wene mifective at an intra-node
layer, the CPU showed higher gains on inter-node parallelsmgesting that they may
complement each other on hybrid supercomputers.

The problem of registering images of tissues with diffeisains is addressed in Chap-
ter 5, where a novel metric of correlation sharpness is megdor comparing intensity
signals. The sharpness of the normalized cross-correlatiaction was established as a
similarity measure for comparing intensity informatiortween two images with different

stains. This helps avoid the high computational cost of nsmghisticated approaches,
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which is critical for processing images at this scale. Ireotd improve the matching accu-
racy, a multiple resolution approach was adopted for keiprespf interests. The algorithm

has been tested using real histological images of mouse rmaygiand sample in a breast
tumor microenvironment study. The results show that therétym is highly accurate. This

work lays the foundation for large scale gene expressiornpmgpmf mouse breast tumor
microenvironment where the plan is to map expression IdeelS0-100 genes over four
stages of tumor progression.

Chapter 6 also addresses the problem of different staintragas, but in the scenario
where intensity information is not sufficient for accuratatohing. An automatic match-
ing method is presented that builds on the high-level featoatching procedure of rigid
initialization. Since matching high-level features indivally is a high probability-of-error
endeavor, using these matches for nonrigid registratipicéjly results in poor confor-
mation between the registered images, due to the freedonorofgid transformations.
Confidence in matches between individual features is inecebg verifying the existence
of coherent networks of features in the surrounding ardi@syiag the matches to serve as
control points for automatic nonrigid registration. Vattbn using a follicular lymphoma
image dataset showed that the automatic nonrigid reg@tsatvere equivalent to manual
nonrigid registrations when a sufficient feature set candraeted.

The final topic on reconstruction is contained in Chapter 7ctigroposes a method
for the reconstruction of tissues under constraints on tituetsire of microanatomy. The
key contribution is the integration of a structural conistranto the reconstruction process.
As opposed to the traditional pairwise sequential redisinapproach that infers structure
from images one pair at atime, the proposed method usesiatamn from multiple images

to enforce a structural criteria. The motivating exampleeaonstructing mammary ducts
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provides a significant example of the benefits of this apgroBy imposing a smoothness
criteria the ducts can be registered naturally resulting@onstructions with visible bifur-

cations. The use of an acausal smoothing filter enables thetbing process to take into
account not only where the duct has been but where it is hgadihe entire process is
fast, automatic, and produces credible representatiottseainorphology of structures of
interest.

Chapter 8 introduces the problem of segmenting tissues apdges théwo point cor-
relation functionas a feature for tissue segmentation. By considering tisssi@srange-
ments of discrete and biologically meaningful componethiss problem of tissue segmen-
tation can be cast into the heterogeneous materials frarkewihe TPCF, a stochastic
geometric function, provides a means for acquiring siaisin the shape, size, and spa-
tial distributions of these biological components to semgecues for the segmentation of
tissues. For both natural and tissue image examples, TP@kdsavere demonstrated
to posses a simple but peculiar distribution in feature spaeing confined to smooth
manifold-like structures with relatively low dimensiom the follicular lymphoma exam-
ple these distributions permit an unsupervised segmentasing lossy coding clustering,
however, the lack of uniformity in the color distribution§the raw images implies that
more sophisticated preprocessing is required to produtsistent phase images for TPCF
feature calculation. The same phenomenon was also obseertlee supervised segmen-
tation of placenta where images were bound into cliquesdisated by effective mutual
segmentations of one another. Regardless, many placemeestgions were effective at
95% and beyond.

Chapter 9 presents methods for the acceleration of TPCF asitms, based on short-

cuts derived from theory and hardware solutions. A novelhoetfor the calculation of
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TPCF features is derived, based on the linearity of cormiand the relationship between
the autocorrelations of neighboring regions-of-interesgh shared content. This method
simultaneously addresses the considerations of wastedutation and ROI size sensitiv-
ity without compromising accuracy, resulting in improvertgeefrom 8-67x over a naive

direct-FFT calculation method. The multi-node parallgfian of feature calculations pro-
duces a scalability up to 42x on 64 processors, reducingtheexecution time for the set
of ten 1000x 1000 test images from 9.6 hours to just 13 minutes. Genergloge GPU

implementation of correlation updating provides a furthéx improvement over CPU on
a single node. This gain is impressive considering it is ntbag equivalent to using 16
processors on eight nodes, and puts performance withih tgand users who do not have

access to production computing clusters.
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APPENDIX A

SEGMENTATION RESULTS FOR MOUSE PLACENTA
LABYRINTH
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Table A.1: Segmentation accuracy (%).

Image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 median
1 95.0 919 883 90.7 925 80.2 878 89.4 852 935 948 97.06 986.7 91.2 68.3 731 583 90.0
2 87.8 97.0 89.7 90.7 918 898 885 887 905 778 820 89.94 987.2 895 869 86.0 575 891
3 89.4 972 90.1 913 93.7 89.6 90.7 916 910 79.2 843 9480 989.6 89.2 872 853 598 8938
4 90.5 96.9 90.2 931 931 912 906 914 885 850 879 96.359894 938 802 76.8 591 905
5 88.1 97.1 89.6 909 957 930 914 0918 927 80.7 89.0 96.59 9925 97.7 89.0 86.7 59.6 91.6
6 87.6 964 895 89.6 938 90.0 895 913 920 77.2 86.6 94.83 989.1 959 91.7 884 59.6 8938
7 88.0 96.2 89.3 89.6 949 893 911 909 924 756 859 9588 9932 957 938 90.6 621 91.0
8 89.6 97.1 90.7 918 964 93.0 938 941 935 827 925 096.71 9958 98.0 90.1 90.2 61.0 932
9 85.1 956 887 87.0 931 894 894 910 940 733 849 91.20 9875 96.0 949 912 618 90.2
10 92.7 811 794 841 812 70.7 674 782 677 96.7 726 9284 767.3 79.0 59.1 66.6 583 78.3
11 90.1 96.9 89.8 927 96.0 918 941 939 921 851 956 9781 9957 97.8 86.9 816 60.9 933
12 90.0 96.9 89.9 924 96.2 922 945 937 915 87.1 949 9780 9943 974 832 792 603 93.0
13 87.9 972 894 908 959 928 925 925 931 834 932 9716 9946 98.0 86.7 854 597 926
14 847 949 880 880 946 910 922 913 923 704 89.6 9645 9956 982 945 945 656 922
15 84.8 948 883 874 949 909 914 0914 923 704 89.1 9687 9951 98.1 942 935 646 918
16 748 840 815 700 821 753 799 782 812 526 715 814.8 883.0 924 96.0 894 679 813
17 82.3 89.6 859 834 919 827 882 843 865 613 784 9440 993.3 940 945 954 69.1 874
18 675 69.6 584 546 39.6 480 695 434 742 354 595 3686 448.0 46.6 59.2 618 786 565

median 87.9 96.3 894 90.1 937 899 90.6 913 918 785 8721 9944 911 958 881 86.3 60.6
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