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INTRODUCTION

This thesis is devoted to a study of the Farrell-Tate
cohomology of the mapping class group Fg, where Fg is
defined to be the group of path components of the group
of orientation preserving diffeomorphisms of the closed
orientable surface, Sg, of genus g > 1.

The mapping class group Fg acts properly
discontinuously on Teichmuller space Tq with quotient
moduli space Mg, so the rational cohomology of the moduli
space, Mg, may be identified with that of the mapping class
group, Fg. Since the 1980's, the computation of the
cohomology (or homology) of Fg has been studied by many
people, for example, Miller [Mi], Morita [Mo], Harer [H]),
Charney and Cohen [C,C], Charney and Lee {C,L], Glover and
Mislin [G,M], Cohen [C], [C], and Benson [Bel].

The mapping class group Fg is known to be of virtual
finite cohomological dimension and Harér shows that the
virtual cohomological dimension(vcd) of Fg is 4g-5 [H].

1



Farrell extended Tate's cohomology theory for finite
groups to groups of virtual finite cohomological dimension
in 1977 [F]. Recall that the Farrell-Tate cohomology group
Hi(I';M) with coefficients in the I'-module M are always
torsion groups for i€ Z. The groups ?{i(F;M) are the same as
ordinary cohomology Hi(I';M) if the dimension i is greater
than the virtual cohomological dimension of I'. In fact, the
Farrell-Tate cohomology groups f{i(F;M) reflect many
properties related to finite subgroups of I' and depend upon
the normalizers of finite subgroups, not only upon the
finite subgroups themselves.

In this thesis we give some computations of Farrell
-Tate cohomology of mapping class groups Fg. However; the
methods we use are generally suitable for the computations
of Farrell-Tate cohomology of any group of finite vcd. The
basic idea for most of our results is to compare the
Farrell-Tate cohomology (or ordinary cohomology) groups of
the mapping class group Tg with that of its interesting
subgroups and quotient groups.

Although Fg is never 2-periodic for Farrell-Tate
cohomology, the first observation we make is that, for
fixed odd prime p, most mapping class groups Fg are
p-periodic. We completely determine the necessary and

sufficient conditions for Fg to be p-periodic. Of course



this is equivalent to the Krull dimension of H*(Fg,zp)
being zero or one [Bro]l.

The Brown decomposition theorem [Br] says that in the
p-periodic case the p-primary component of the Farrell-Tate
cohomology groups of I' are given by the product of the p-
primary components of the normalizers of the conjugacy
classes of Zp subgroups of I'. A description of these
conjugacy classes of Zp subgroups and their normalizers in
F(p_l)/z leads to a complete description of the p-torsion
of the Farrell-Tate cohomology groupé f{*(r(p_l)/z;Z)(p).
However, in general, we do not yet have enough information
about these normalizers to compute f{*(rg;Z)(p). We ask the
question: what is the p-period of Fg if Fg is p-periodic?

Burgisser and Eckmann studied the p-periodicity of
arithmetic subgroups I' of general linear groups in the
1980's [B,E]. The basic method they used is as follows:
Suppose I' is p-periodic. On the one hand, they look for
some interesting finite subgroups to give a lower bound of
the p-period of I'. On the other hand, if the canonical
finite quotient of I' is p-periodic, an upper bound of the
p-period of I' is given by the p-period of the finite
quotient.

In other words, the p-period of any group I' which is

of finite vcd has a strong relation with its finite



subroups and finite quotients. By contrast, for finite p-
periodic group G, Swan's classical result [Sw] states that
for p odd the p-period of G is twice the order of

IN(<x>) /C(<x>) | where x generates the maximal p-cyclic
subgroup of G, and N(<x>) (resp. C(<x>)) denote the
nor&alizer (resp. centralizer) of this cyclic subgroup.

Is it possible that the p-period of group I which is
of finite vcd, an invariant of the homology of I, can be
completely described in terms of "elementary"™ non-
homological properties of the p-subgroups of I'? As an
extension of the result of Swan, we answer this question
affirmatively if I’ has a finite quotient whose p-Sylow
subgroup is elementary abelian or cyclic, and the kernel
being torsion free. In these two cases, the p-period of
I' is exactly twice the least common multiple of
{IN(<x>)/C(<x>) |} where <x> ranges over the conjugacy
classes of Zp subgroups of I'. However, we haﬁe no general
answer yet.

For g < p(p-1)/2, choosing suitable prime g, the
finite group Sp(2g,Fq) has elementary abelian p-sylow
subgroups. On the other hand, Sp(2g,Fq) is a finite
quotient of the mapping class group Fg with torsion-free
kernel.

As an application of the previous result, we give a
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formula computing the p-period of Fg in terms of only p and
g if g < p(p-1)/2. The key point of the proof of this
formula is the observation that |N(<x>)/C(<x>) | er Fg can
be completely determined by the classic fixed point data
introduced by Nielsen [N]. In particular, these results
allows us to give a near complete description of the p-
periodicity for g = 2, 3, 4 and 5. We still miss the 3-
period of I'3 and only know that it is either 4 or 12.

A different method to get an upper bound for the p-
period of a mapping class groups Fg is to study a
homogeoneous Chern class polynémial(not only Chern classes)
of the canonical homology representation of the mapping
class group Fg. More generally, this bound, even in the
non-periodic case, gives an upper bound for the Yagita
invariant [Y] of Fg. U;fortunately, this upper bound
generally does not match any lower bound we can get.
However, interesting inequalities for the Yagita invariants
of some mapping class groups Fg are still obtained.

An additional byproduct of the study of subgroups and
quotient groups of the mapping class group is to provide
non-trivial elements in a family of the reduced projective
class groups Ko(zr(p_»l),z) for p = 6k+1l. These results are
analogous to ones of Carter {Ca] who did this for general
linear groups and special linear groups.

Now, we summarize our main results as follows:



Theorem 2.1, a) The mapping class group Fg is never
2-periodic.

b) The mapping class group ka+i is always p-periodic
if i#l mod(p) for p odd prime, k 2 0.

c) The mapping class group ka+1 is p-periodic if and
only if [(2k+3)/p, (2k+2)/(p~1l)] does not contain an
integer and k # 0,-1 mod(p) for p an odd prime. In
particular, ka+1 can be p-periodic only when k < (p2-5)/2.

Theorem 2,2, For k # 0 mod(p), p > 2, r(p—l)(kp-k—2)/2
is p-periodic and the p-period of r(p—l)(kp—k—Z)/Z is a
multiple of 2(p-1). Moreover, if k < (p-1)/2, the p-period
of T'(p-1) (kp-k-2) /2 equals 2(p-1).

Corollary 2.3, F(p_l)(p_3)/2 is p-periodic and the p-
period = 2(p-1) for p > 3.

Theorem 2.4, r(p—l)(d-2)/2 is p-periodic and the p-
period of r(p-l)(d—2)/2 is a multiple of 2d if 3 divides d
and d divides p-1.

Proposition 2.5, F(p_l)/z is p-periodic and the p-
period of r(p—l)/2 divides p-1.

Theorem 3.1, (Farrell-Tate cohomology version)

a) f{i(l"(p_l)/z;Z) (p) = 11 15n$kﬁi(zp?2) (p)r if p = 6k-1.
b) Hi(T po1y,2:8) (py =H(2p%23:2) (py X I 15nskH i (2pi2)

1f p=6k+l.



Corollary 3.2. (ordinary cohomology version)
a) H2A(T (5 1),2:2) (p) = IT 14nskB23(2p;2) = I 14nsk Zp
if p = 6k-1 and 2i > 2p-7.
b) HOL(T (1) /2i2) (p)= HO2(2p223:2) (p) X IT 14n<kHO? (2p:2)
= II 1<n<k+12p, if p = 6k+l and 6i > 2p-7.
c) H2i(I‘(p_1)/2;Z) (p)= HZ1(2p%23:2) (p) <11 15n5kH2i(Zp;Z)

IT 1<n<kZps if p = 6k+l, i # 0 mod(3) and 2i > 2p-7.

I

d) H2L(T (5 1) /2i2) (p) = 0 if 2i-1 > 2p-7,

Theorem 4.1. Let 2g-2 = mp-i, 0 £ 1 € p-1, p odd prime
and pF~l < m < pf, i: Zp — Fg an inclusion, 7N: Fg -
GL(2g,C) the canonical homology representation and ¢ the
Euler totient function.

a) If [2g/(p-1)] < pY, then i*[c¢(pr)(n)] has order
p for every Zp in Fg (ci denotes the i-th Chern class). So
the Yagita invariant p(Fg) divides 2pr~1l(p-1).

b) If [2g/(p-1)] 2 p¥, then i*{[c¢(pr)(n)]P(P—l)
+[c¢(pr+1)(n)]P‘1} has order p for every Zp in Fg. So the
Yagita invariant p(Fg) divides 2pT¥(p-1)2.

Corollary 4.2, In addition, if Tg is p-periodic,

a) If [2g/(p-1)] < p¥, the p-period of Fg divides
2pt~1(p-1).

b) If [2g/(p-1)] 2 p¥, the p-period of Fg divides

2pt (p-1) 2.



Theorem 4.3. Let 25-1 g g £ 25, Then i*{[czs-l(n)]2
+cps (M) } has order 2 for every Zj in Fg.

Theorem 5.1, Let I' be a group which has a normal
subgroup of finite cohomological dimension so that the
associated quotient is a finite group with the elementary
abelian p-Sylow subgroup. If I' is p-periodic, then the p-
period of T is twice the least common multiple of
{IN(<x>) /C(<x>) |} where <x> ranges over the conjugacy
classes of Zp subgroups of T.

Theorem 5.2, Let I' be a group which has a normal
subgroup of finite cohomological dimension so that the
associated quotient is a finite group with the cyclic p-
Sylow quotient. If I' is p-periodic, then the p-period of T
is twice the least common multiple of {|N(<x>)/C(<x>) |}
where <x> ranges over the conjugacy classes of Zp subgroups
in T.

Theorem 5,3, Let 2g-2=kp-i, 0 £ i € p-1, p odd prime.

Define sets

Bg,p = {i,p+i,2p+i, - ([2g/(p-1)]-k)p+i}, if 1 # 1,

{1+p,2+p, =+ =" ([2g/(p-1)]1-k)p+l1l}, if i = 1.

il

Bg,p
If the mapping class group Fg is p~periodic and

g < p(p-1)/2, then the p-period of Fg = 2LCM(gcd(p-1,by)),

where bj; ranges over the set By, p.



Theorem in appendix A. If p = 6k+l is prime, then the
mapping class group r(p—l)/2 contain metacyclic group G =

Zp>4Z3 (semi-direct) such that the reduced projective class

group KO(Zr(p—l)/Z) DIndI(;KO(ZG) contains a cyclic group

of order 3.

The remainder of this thesis is organized as follows:
In chapter I, we state(without proof) the basic properties
of the mapping class group I ,‘g > 1, and also those of
ord%nary and Farrell-Tate cohomology. In chapter II, we
prove theorems 2.1 through 2.5, In chapter IlI, we prove
theorem 3.1 and corollary 3.2. In the end of this chapter,
we point out a gap in the proof of lemma 5.1.[B,H]2 and
give our correction, proposition 3.5.1, In chapter IV, we
study the homogeneous Chern class polynomials of the
mapping class group needed in the proofs of theorems 4.1,
through 4.3. In charpter V, we prove theorems 5.1. and 5.2.
which are results about any groups of finite vcd and then
apply them to the computation of the p-period of the
mapping class group given in theorem 5.3. Finally, since
two of our results about the mapping class group are not
included in our title " Farrell-Tate cohomology of the
mapping class group"”, we make two appendixes. The first
of these provides nontrivial elements in the reduced

projective class group of the mapping class group F(p-l)/2'
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for p = 6k+1l prime. The second one displays the
distribution of "strange" p-~torsion in the cohomology of

the mapping class group Fg in the sense of Connolly [Con].



CHAPTER |
COHOMOLOGY AND THE MAPPING CLASS GROUP

This chapter consists of two sections. In the first we
review both ordinary cohomology and Farrell-Tate cohomology
of groups. The standard reference for this materal is the
book "Cohomology of groups” by K. Brown [Br]. In the second
section, we give the definitions and basic facts about the
mapping class group that we need. The references of this
section will be indicated in context when necessary. We
omit all nontrivial proofs and only list what we need in

this thesis.

1.1. The ordinary and the Farrell-Tate cohomology of groups
Recall for any group G, there exists an aspherical
space with fundamental group G. A path-connected space X is
called aspherical if ®m;(X) are trivial for i 2 2. Hurewicz
[Hu] proved in 1936 that the homotopy type of an aspherical

space X is completely determined by its fundamental group

11



12
1 (X) . Therefore, we can consider the cohomology of the
group G as the cohomology of the aspherical space with
fundamental group G from the topological point of view.

Actually, the aspherical space X, whose fundamental
group is ®;(X) = G, can be realized by an Eilenberg-
Maclane CW-complex K(G,1).

Let Y denote the covering space of the CW- complex
K(G,1l). Then Y has a CW structure induced by K(G,1).
Define Cx(Y) to be the cellular chain complex of Y. G
acts on this covering space Y as the group of deck
transformations freely and transitively, hence Ci(Y) is a

free ZG-module and the sequence — C,(Y) — Cph_1(Y) —

Ch-n(Y) —> oo C1(Y) = Cy(Y) @ 2> 0 is exact. From the
definition of cohomology, Hi(G;Z) = Hi(K(G,l);Z) =
Hi (Hom (Cx (K(G, 1) ;2)) = H(Homyg(Cx(Y)i2)) .

Now, the cohomology of a group G can be naturally
defined algebraically in terms of a projective resolution.

Definition 1,1.,1. Let ZG be the free Z-module
generated by the elements of G. Any element of ZG can be

write in the form Engg, with only finite many n_#0, and

g

the multiplication in G extends uniquely to a Z-bilinear
product ZGXZG — ZG. This ring is called the integral
group ring of group G.

Definition 1.1.2. Let R be an associative ring with
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identity and M a R-module. An exact sequence of R-modules,
- F, - oo —)FZ—)F1—>FO—>M—)Oiscalleda
free resolution of M if Fy are free and is called a
projective resolution if Fi are projective for all i.

Definition 1.1.3. For any ZG-module M, pick a
projective resolution F=(Fy)i59r — Fp — = - F,—
Fl—) FO - Z > 0.

Regard Z as a trivial module over the integral group
ring ZG. Define HT (G;M) = Hi (Hom, (F,M)) .

One must show that the definition of the cohomology
of the group does not depend on the choices of projective

resolutions. In fact,

Proposition 1.1.4. Given two projective resolutions F

and F' of a module M, there is an augmentation-preserving
chain map f: F =& F', unique up to (chain)homotopy and f is
a (chain)homotopy equivalence.

Example 1.

Suppose G is the infinite cyclic group with generator

t. There is a free resolution of 72 over ZG-module

t-1
0 = 2G - 2G = 2. Hence H*(G;M) is the

cohomology of t-1: M — M — 0. Thus, HO(G;M) = MG,
- Hl(G;M) = Mg, and Hi(G;M) = 0. Here MG, called invariants,

is equal to the submodule {m €M: gm = m for all geG}. Mg,
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called co-invariants, is equal to the quotient module
divided by the additive subgroup generated by the elements
of the form gm-m(gEG, mEM).

In particular, HO(Z;Z) =12, Hl(Z;Z) = 2, Hi(Z;Z) =0
if i > 1.

Example 2: suppose G is a cyclic group of finite order
n with generator t. Then there is a free resolution of 2

over ZG

N t-1 N t=1
------ - 26 — 26 — 216 - 26 — I — 0.

Here N = EOSisn—lti' Hence H*(G;M) is the cohomology of

t-1 N t-1 N

Note Ngm = Nm, and that NM C MG; i.e. N induces a map
N*: Mg — MG, called the norm map. So H2i(G;M) = CokerN*,
B2i-1(G;M) = RerN*, i > 0. HO(2p;2) = 3, H21(3p;2) = 3
and HZi‘l(Zp;Z) = 0 for i > 1.

Basi £

Let A be the category where an object is a pair (G,M),
where G is a group and M is a ZG-module; a morphism in A
from (G,M) to (G',M') is a pair (h,f), where h: G — G' is
a homomorphism of groups and f: M' — M is a 2G-module
homomorphism, i.e. £ is a map of abelian groups such that
f(h(g)m') = gf(m') for g&€G, m'EM'. If F and F' are

resolutions for G and G' and ¢: F — F' is a chain map
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compatible with h, there is a chain map Hom(c, f):
Homg' (F',M) — Homg(F,M), which induces (h,f)*: H*(G',M")
— H*(G,M). In this way H* becomes a contravariant functor
on A. Suppose M = M', £ = Id, then the induced map h* =
(h, Id) *:H*(G',M) — H*(G,M). In particular, if h:G—>G' is
an inclusion, h*:H*(G';M) — H*(G;M) is called the
restriction map.

For an inclusion h: H 5 G and a ZG-module M, if the
index [G:H] is finite, there are maps going in the other
direction, called transfer maps. In fact, let F be a
projective resolution of Z over ZG. Notice that Homg(F,M) =
Hom(F,M)CG, and Homyg(F,M) = Hom(F,M)H, where G acts
diagonally on Hom. Define a cochain map tr: Hom(F,M)H —
Hom(F,M) G, tr(f) = Zgeg/ggf, which induces tr: H*(H;M) —
H* (G;M) on cohomology.

Given a subgroup H of the group G with finite index,
the important relation between the restriction and transfer
maps is as follows: Tr-Res(z)=[G:H]z for z€H*(G;M).

Suppose G an arbitray group, H a subgroup of G, M a G-
module. Define an element zeH*(H;M) to be stable if Res(z)
= Res(gz) €H*(HM gHg’l;M) for every geG. Here g:H*(H;M) —
H* (gHg~1;M) is induced by the conjugation map g(h) = ghg~1,

Theorem 1.1.5. Let G be a finite group and H a p-sylow

subgroup. For any G-module M and any n > 0, Res maps
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HR(G;M) (p) isomorphically onto the set of stable elements
of HR(G;M). In particular, if H is normal in G, then
HD(G;M) (p) = Hn(H;M)(p)G/H. Where H*(-) (p) means the
p-primary component of H*(-).

Cup product for the cohomology of dgroups

Definition 1.1.6, Let G, G' be groups, M a G-module,
M' a G'-module, then MXM' is GXG'-module. And let F, F'
be projective resolutions of Z over 2ZG and ZG'. For
cochains u€Homg(F,M) and u'€Homg' (F',M'), define uxXu'€E€
Homg xg' (F®F',M®M') to be tensor product u®u' which
satisfies <u®u’',m®m'>=(-1)deg(u’)deg(m) <y, m>®<u',m'>
for m&M, m'EM'. It is routin to verify that d(uXu') =
duxu'+(-1)deg(u) yxdu' where & is the usual coboundary
map. The induced map HP(G;M) ®HI(G';M') — HPTI(GXG';MAOM')
is called the cohomology cross-product.

Defipition 1.1.7. For u €HP(G;M) and v €HY(G;N),
define the cup product of u and v, denoted uv, to be the
element d*(uXv) EHPt9(G;M®N), where d: G - GXG is the
diagonal map.

Properties of cup product

a) Compatibility with coboundary operators 3. Let
0 > M - M — M" — 0 be a short exact sequence of G-
modules and let N be a G-module such that the sequence

0 > M®N - MON — M"®N — 0 is exact. Then the square
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S
HP (G;M") - HPtl(g;M")

v ‘L 8 ‘L v

HP+tq (G;M"®N) — HPTI+1l(G;M'®N) commutes.

b) Existence of identity. The element 1€HO(G;2) = 2
satisfies lu = ul = u for all ueH* (G;M).

c) Associativity. (ujuz)uz = uj(upuz) holds in
H* (G;M1 ®M, ®M3) for all ujeH*(G;M;), i = 1,2,3.

d) Commutativity. uv = (-1)deg(u)deg(Vv)yy holds for
any ueH* (G;M), veH*(G;N).

e) Naturality with respect to group homomorphisms.
Given a homomorphism f: H — G, we have f*(uv) = f£*(u)f*(v)
for any ueH*(G;M), veH*(G;N). In particular, f*: H* (G;M)
— H*(G;M) is a ring homomorphism.

f) Transfer formular. If H & G is a subgroup of
finite index. For any u€H*{(G;M) and veH* (H;N), Tr(Res(u)v)
= uTr(v) holds.

The Farrell-Tate cohomology of group

Definjtion 1,1.8. Let G be a finite group. Picking a

projective resolution P = {Pj}i>0 of Z over 2G. we can

follows: ----- —Py > Pg = P_q — P_p - Where P.q =

2G and i: 2—>P_q, i(1l) = Egegg. Let C = coker(i). Take P_j
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= 2G®C, j: C = P_7, j(c) = ZgEGg@)g'lc, etc.

One can show that any two such acyclic complexes of

A A
projective modules P, P, which are extension of P are

homotopy equivalent, so we can define Tate cohomology of

A A

a finite group G as H™(G;M)=H*(Homgg( P;M)) for any
ZG-module M.

It is not so difficult to see that:
A, .
(a) Hi(g;M)=H*(G;M) for i > 0.

A A
(b) HO(G;M)=Coker of norm map N: Hy — HO. H-1(g;M)

= Ker of the norm map N:Hy — HO.

(c) Hi(g;M) = H_oj_1(G;M) if i < -1.

(d) As in the ordinary cohomology theory, there are
restriction and transfer maps and cup products.

Definition 1.1.9. For any group I', recall that the
cohomological dimension of I' is defined as the minimal
length of a projective resolution of 2 over ZI'(possible).

Refipnition 1,1.10, The group I is Yirtually torsion-
free if there is a torsion-free subgroup H of finite
index. the virtual cohomological dimension of I', denoted
ved(T'), is defined as the cohomological dimension of H.

(It does not depend on the choice of H by Serre's theorem)

Definition 1.1.11, let T be a group such that ved(I') =

n finite, P = {Pj}i=0 a projective resolution of Z over ZI.
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A
We can construct an acyclic complex P of projectives
which agrees with P in dimension i > n.
Let K = Im{Pp—Pp-1}, I'' be a torsion free subgroup of

finite index. Then K is zZl''-projective. For example, take
> -1
P,.1 = 2ZI'®yr'K and i(x) = Zy®y -x, where Y ranges over a
set of represenatives for the cosets I'/T'. Applying the
same process to coker(i) and inductively, we obtain a
A A A

"completion P = {Pj}" of P: Py =Py if 1 > n.

Again one shows that any two such acyclic complexes of

projectives are canonically homotopy equivalent. Define the
A % % A
Farrell-Tate cohomology groups by H*(I';M)=H (Homzr(P,M)) .

A
There is a chain map P — P, whence a map g*: H*(I';M)
A
— H*(';M) which is the identity map in dimensions higher

than ved(I'). So

A, '
(a) Hi(T;Mm) HI(I';M) for i > n = ved(ID).

]

A
(by Hn(I';M) Coker of the tr: H(I'';M) — HIMT;:M).

I

Where I'' is a torsion-free subgroup of finite index.
A *
(c) H*(;M) = 0 if T is torsion-free.
(d) There are the restriction and transfer maps and

cup products.
In addition, there is a Hochschild-Serre spectral

sequence associated to a short exact sequence 1 — I'' —» T

— I'" -1 of group of finite vcd.
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Pq
(e) If I'" is torsion-free this takes the form E2 =
A AP+
P (I'"; Ha(r')) = H (T), and if T'' is torsion-free then

AP+

Pa A
2 = HP(I'';nq(I'))=>H (I .

it takes the form E

A
(£) H*(';M) are torsion groups.

As the case of ordinary cohomology, The Farrell-Tate

A
cohomology H*(';M) has ring structure with identity
element.

Definition 1.1.12. We say that a group I' which is of

finite ved has periodic cohomology if for some integer d >0
A
there is an element of H4(I';M) which is invertible in the

A
ring H*(I';M) . Similarly, for a fixed prime p, if there is
an invertible element of positive degree d in the ring
I\* A*
H (F;M)(p), the p-primary component of H*(I';M), we say
that group I' is p~periodic. The p-period of I' is defined as
the minimum value of d.

Theorem 1.1.13, (Brown) Let I' be a group of finite vcd,

p a fixed prime. The following conditions are equivalent:
(1) T has p-periodic cohomology.
(2) There exist integers i and d > 0, such that

A » A ]

Hi(;M) (py = HI*A(T;M) () for all I'-modues M.
(3) T does not contain any subgroup isomorphic to

prZp.
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(4) Every finite p-subgroup of I' is a cyclic or
generalized quaternion group.

Theorem 1.1.14,(Brown) If I' contains no subgroup

A, A,
isomorphic to ZpXZp, then Iil(F;M)(p) = IIIIl(N(P);M)(p),
where P ranges over the conjugacy classes of Zp subgroups.

Theorem 1.1.15, (Brown-Venkov) If there exists an
A
element uefid(F;Z)(p)(d > 0) whose restriction to

A
fid(G;M)(p) is invertible for every finite subgroup G, then
u is invertible and hence I' is p-periodic and the p-period

of I' divides d.

1.2, T] Jefinit 3 ] ic fact ] £t .
class group.

Definition 1.2.1. The mapping class group, Fg, is
defined to be the group of path components of orientation
preserving diffeomorphisms of the orientable closed surface
Sq of genus g. We always assume g > 1 in this thesis.

Similarly, the mapping class group can be defined for
a nonclosed orientable surface. Unless specially indicated,
we restrict our study to the mapping class group of closed
orientable surface.

Let Sg denote the closed orientable surface with
genus g.

Let Rg denote a Riemann Surface of genus g, i.e.
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Sq equipped with an complex structure.

Let Cg denote the space of complex structures on Sg.

A complex structure on Sg can be considered as an
automorphism A of tangent bundle TSq satisfying A2 = -1d.
Conversely, every automorphism A: TSq — TSq satisfying A2
= -Id can be realized by a complex structure on Sg- This is
essentially the classical result of Gauss and Riemann.
Therefore, the space of complex structures Cg can be
identify with a subspace of smooth sections of the vector
bundle End(TSg). The topology on Cq is defined induced
from topology on the space of sections.

Let Tg = Cq/Diffg*(Sy) denote Teichmuller space of Sg-
Two complex structures on Sg represent the same point in Tg
iff there exists an orientation preserving diffeomorphism,
which is isotopic to identity, taking one structure into
another.

Let Mg = Cg/Diff+(Sg) denote moduli space of Sg. Two
complex structures on Sg represent the same point in Mg iff
there exists an orientation preserving diffeomorphism
taking one structure into another.

Recall T'y = Diff*(Sq)/Diffp*(Sg) . Obviously, Mg =
Tg/Tg.

It is also a classical result "called the

uniformization theorem” which states that every Riemann
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surface Rg is conformally equivalent to one which admits a
hyperbolic metric, and this metric is uniquely determined
up to isometry by the conformal equivalence class of Rg.

Namely, we can also view Tg, Mg as the Techimuller
space and Moduli space of a hyperbolic surface. By a
hyperbolic surface we will mean a smooth surface Sg
equipped with a complete Riemann metric of constant
curvature -1.

The remarkable fact [F,N] is that Tg actually is
homeomorphic to R69-6, and the action of I'g on Tq is
properly discontinuous. i.e. for every compact set K € Tgs
the collection of ¢eTg such that ¢ (K) MK # @& is finite.

Theorem 1.2.1 (Heegaard Splitting) Any orientable
closed 3-manifold M can be split into two handle bodies
with the same genus g gluing together by an orientation
preserving diffeomorphism of their boundaries.

Namely, the orientable closed 3-manifold M is nothing
but two handle bodies and an element of some mapping class
group since two isotopic diffemorphisms of the boundaries
of the handle bodies make the diffeomorphic 3-manifolds.
The mapping class groups seem to play a fundamental role in
3-dimension manifold theory from this point of view.

Every homeomorphism ¢: Sq —»Sg is isotopic to a

diffeomorphism and if two diffeomorphisms ¢3, ¢2: Sg — Sg

)
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can be homotopic by a path of homeomorphisms, then they can
be connected by a path of diffeomorphisms. Therefore, the
definition of mapping class groups Fg can be defined as the
groups of path component of orientation preserving
homeomorphisms of Sg-

Furthermore, it is again a classical result by Dehn
and Nielsen that every homotopy class which trivially acts
on Hj(Sq;Z) contains a homeomorphism ¢ : Sq = Sg and if
any two homeomorphisms ¢71, ¢ : Sq — Sq are homotopic,
then ¢ and ¢, are isotopic. Therefore Fg = subgroup of
[Sg,Sg] = subgroup of [K(ﬂl(Sg),l),K(ﬂl(Sg),l)].

There exists a purely algebraic definition of the
mapping class group Fg, i.e. Fg = Out+(ﬂl(sg)) =
But® (7 (Sq))/Inn* (T (Sq)). It is easy to see this
description agrees with an definition. It is remarkable
result [H] by Harer that the mapping class groups Fg are
all groupé of finite vcd and vcd(Fg) = 4g-5. Therefore the
Farrell-Tate cohomology groups of Fg are well-defined.

In fact, in the last ten years, a number of people
have worked on the computations of cohomology(or homology)
of mapping class groups Fg.

For example, Miller and Morita [Mi] [Mo] showed
independently in the 1980's that:

Theorem 1.2,2. (Miller-Morita) Let Q[kj, kp = === ] be

the polynomial algebra on indeterminate kj of degree 2i.
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Then there is a map I: Qlky,kp == ] = H*(Fg;Q) which is
injective in dimension less than g/3.

As one of many propéerties analogous to arithmetic
groups, a stability theorem of mapping class groups was
shown by Harer in 1985 [H]>.

Theorem 1.2,3, (Harer) Hi(Fg;Z) is independent of g
when g >> 1i.

Glover and Mislin obtained some torsion in the stable
cohomology of the infinite mapping class group in 1987
[G,M].

Theorem 1.2.4, (Glover and Mislin) The stable
cohomology group H4i(rg;Z)(g >> 1) contains an element of
order Ep4i = denominator of Bjj/2i, where Byi is the 2i-th
Bernoulli number.

Charney and Cohen [C,C] proved a stable splitting
theorem for the infinite mapping class group I.

Theorem 1.2.5. (Charney and Cohen) The map Bt: BI'M —
ImJ(1/2) has a stable section. That is, there is a stable
map O€ {ImJ(1/2), BI'*} such that I™B10 is an equivalence.
Here BI'Y is the Quillen's plus-construction of BT, ImJ (1/2)
=:HBGL(Fq)+(p) for suitable g, p ranges over all odd
prime, {X, Y} denotes the group of homotopy classes of
stable maps XZ7X — X™Y.

Cohen, Bensen and others have been working recently on
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the torsion in mapping class groups of low genus, and prove
many beautiful theorems [Be] [C] [C]z etc.

It is classical that there is a homology representation
of the mapping class group Fg with image the sympletic
group Sp(2g,2) and kernel, called Torreli group, which is

torsion free. We will frequently make use of this fact.



CHAPTER I

THE P-PERIODICITY OF THE MAPPING CLASS GROUP

In this chapter, we will determine completely the
primes p for which Fg is p-periodic. Also we compute the
exact p-period of Fg for g equal to certain multiples of
(p-1)/2. As an application of these results we tabulate
some information about the p-periodicity of Fg for g = 2,
3, 4 and 5. A near complete tabulation of these p-
periodicity results appears at the appendix C in table C.3.
The results in this chapter are obtained by using the p-
periodicity of metacyclic subgroups as lower bounds and the
non-vanishing of Chern classes of the canonical homology
representation when restricted to every Zp subgroup as an
upper bound. We note Burgisser studied the p-periodicity of
arithmetic subgroups of general linear groups in a similar
way [Bul]l.

Assume g > 1. The main results are as follows:

Theorem 2.1. a) the mapping class group Fg is never 2-
periodic.

27
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b) The mapping class group ka+i is always p-periodic
if i #1 mod(p) for p odd prime, k 2 0.

c) The mapping class group ka+1 is p-periodic if and
only if [(2k+3)/p, (2k+2)/(p-1)] does not contain an
integer and k # 0, -1 mod(p) for p odd prime. In particular
ka+1 can be p-periodic only when k < (p2-5)/2.

Theorem 2.2. If k #0 mod(p), P > 2, (5 1) (kp-k-2)/2
is p-periodic and the p-period of r(p—l)(kp—k—Z)/Z is a
multiple of 2(p-1). Moreover, if k < (p-1)/2, the p4period
of r(p-l)(kp—k—Z)/Z equals 2 (p-1).

Corollary 2.3. r(p—l)(p—3)/2 is p-periodic and the
period equals 2(p-1) for p > 3.

Theorem 2.4. r(p-l)(d—2)/2 is p-periodic and the p-
period of r(p—l)(d—Z)/Z is a multiple of 2d if 3 divides d
and d divides p-1.

Proposition 2.5. F(p_l)/z is p-periodic and the period
of r(p—l)/2 divides p-1.

Two well-known theorems are consequently employed to
reach the upper and lower bounds of mapping class groups Fg

in this chapter:

A
1) Brown-Venkov theorem [Brlp. If ae H™(I';2) exists

A
such that Ressr(a) is a maximal generator in HM(S,;2) for
every p-Sylow subgroup Sp of I, then I' is p-periodic, and

the p-period of I' divides m. Moreover, the cup-product
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with a is an isomorphism ﬁli(G;A)(p) = £1i+m(G;A)(p) for
all i and A.

2) If I" is p-periodic, and H is a finite subgroup,
then the p-period of H divides the p-period of T [Br].

The rest of this chapter is organized as follows: In
section 2.1 we prove theorem 2.1. In section 2.2 we find a
metacyclic subgroup of Fg that we use to give a lower bound
for the p-period of Fg and in section 2.3 we identify the
Chern classes of the canonical homology representation of
Fg which we use to give an upper bound for this p-period.
In section 2.4 we present the Euler class of the homology
representation which allows us to improve the upper bound
in certain cases. Finally in section 2.5 we apply the

previous results to Fg, g=2, 3, 4 and 5.

2.1. The proof of theorem 2.1

For a group I’ of finite vecd, recall the property that
I' has p-periodic cohomology is equivalent to the property
that every elementary abelian p-subgroup of I' has rank <1
[Br]. In other words, I' is p-periodic if and only if I' does
not contain Zp X 2p.

Let Sg be an orientable closed surface of genus g. As
a conclusion of the positive solution of the Nielsen

conjecture by Kerchoff [K], F is a finite subgroup of Fg if
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and only if F is contained in Homeo+(Sg), the group of
orientation preserving homeomorphisms of Sg-

The following is a necessary and sufficient condition
for a finite subgroup F to be contained in Homeo*(Sg).

Proposition 2.1.1. The finite group F is isomorphic to
a subgroup of Homeo+(Sg) with branching data (h; nq-- -
np) if and only if F satisfies the following conditions:

1) F=<aq, »@hs bl’ ...... 7bh’ C1,tr o \Cb> -

2) Migcicnlaipilllicyepey = 1.

3) Order(cy) = nj.

4) Riemann-Hurwitz equation

2g-2 = |F|(2h-2) + |F|2q<iqp(1-1/n4).

Proof: See[Tu].

We need an essentially geometrical lemma.

Lemma 2.1.2. Let G be a finite subgroup of Homeo*(Sg),
then G is also a finite subgroup of Homeo+(Sg+k|G|). Here k
is a non-negative integer.

Proof: By induction. If k = 1, For any g€G, note that
g can be represented as an orientation preserving
homeomorphism Tg: Sg —Sg such that Tg has only finite
many fixed points. Picking a point X€Sqg which is not a
singular point for every ge€G, a neighberhood N of x can be
found satisfing giNNgoN = @ for every g; # gp€G. Remove

|G| disjoint neighberhoods {gN}, geG, and connect sum |G|



31
tori to Sg-{gN}, geG. We obtain the closed orientable
surface Sg+|G| with G acting so that the [G]| tori are
permuted.

If G acts on Sg4 (k-1) |G|r Using the construction above
again, G can also act on Sg+ka|.

Remark: The lemma above can be also proved in
algebraic way simply uSing the proposition 2.1.1.

The proof of theorem 2.1: a) Let Dg be the dihedral
group of order 8. We will show that every mapping class
group Fg contains Dg, not only 25 X Z,. Therefore, Fg is
not 2-periodic for g 2 2.

In fact, we only need use proposition 2.1.1 to check
'y Dbg D23 X2, 2 <1i<9, by lemma 2.1.2.

a) For g = 2:

l) Dg = <x, ¥ I‘x2 = y4 =1, xyx'l = y‘1> =< x, Y,
y2, yx >

2) xyy2yx = 1.

3) 0(x) =2, O(y) = 4, O(y?) = 2, O(yx) = 2. Branch
data (23, 4) .

4) Riemann-Hurwitz: 2(2)-2 = 8(2(0)-2)+8(1-1/2) 3+
8(1-1/4).

b) For g = 3:

1) D8 = <x, y I x2 = y4 = 1, xyx_l = y_1> = <X, Xy2,

Yr Y >
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2) xxy2yy = 1.

3) O(x) = 2, O(xy?) =2, O(y) = 4, O(y) = 4. Branch
data (22, 42).

4) Riemann-Hurwitz: 2(3)-2 = 8(2(0)-2)+8(1-1/2)2+
8(1-1/4)2. '

c) For g = 4:

l) bg = <x, y | x2 = y4 =1, xyx'1 = y'1> = <x, Yy, Xy,
X, X >

2) xyxyxx = 1.

]
N

3) O(x)‘= 2,0(y) = 4,0(xy) = 2, O(x) = 2, 0O(x)
Branch data (24,4).

4) Riemann-Hurwitz: 2(4)-2 = 8(2(0)~-2)+8(1-1/2)4+
8(1-1/4)1.

d) For g = 5:

1) Dg = <x,y | x2 =y =1, xyx71 = y71> = <x, x, y?,
Y,y >

2) xxy2yy = 1.

3) O(x) = 2,0(x) = 2,0(y?) = 2,0(y) = 4,0(y) = 4.

Branch data (23,42).

]

4) Riemann-Hurwitz: 2(5)-2 8(2(0)~2)+8(1-1/2) 3+
8(1-1/4)2.

e) For g = 6:

l) Dg = <x,y |x2 = y4 =1, xyx"1 = y"1 > = <x, XY, Y,

Yr Y >




2) xxyyyy = 1.
3) Q(X) = 2,0(xy) =
Branch data (22,43).
4) Riemann-Hurwitz:
8(1-1/4) 3.
f) For g = 7:
l) Dg = <x, y | x2
xy?, v%, v, ¥y >
2) xy2xy2ylyy =1
3) O(x) = 2,0(y?) =
Branch data (24,42).
4) Riemann-Hurwitz:
8((1-1/4)2.
g) For g = 8:
1) Dg = <x, y | x2
v2, v, v, ¥3>.
2) xxyy?yyy3 = 1.

3) O(x) = 2, O(xy)

2,0(y)

2(6)-2

2,0(xy?)

2(7)-2

4IO(Y) = 4I.O(Y) = 4,

8(2(0)-2)+8(1-1/2) 2+

= 2,0(y2) = 2,0(y) =

8(2(0)-2)+8(1-1/2) 4+

=2, O(y2) = 2, O(y) = 4, O(y)

Oo(y3) = 4. Branch data (23, 43).

4) Riemann-Hurwitz:
8(1-1/4) 3.

h) For g = 9:

1) Dg = <x, y | x2

X, ¥2, v, ¥>.

2) xxxxyzyy = 1.

2(8)-2

8(2(0)-2)+8(1-1/2) 3+

4.

33
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3) 0(x) =2, O(x) =2, O(x) =2, O(x) =2, O(y?) = 2,
O(y) = 4, O(y) = 4. Branch data (25,42),

4) Riemann-Hurwitz: 2(9)-2 = 8(2(0)-2)+8(1-1/2)5+
8(1-1/4)2.

b) ka+i is p-periodic for i # 1, here p is an odd
prime, k 2 0, and 0 £ i £ p-1.

In fact, if ka+i D Zp X Zp , the Riemann-Hurwitz
formula must hold: 2(kp+i)-2 = p2(2h-2)+p2(1-1/p)b,
2k+(2i-2)/p = p(2h-2) +(p-1)b implies 2i-2 =0 mod (p).
Forcing i =1 mod(p). This is a contradiction!

c) Claim 1: If k = 0, -1 mod(p) or [(2k+3)/p,

(2k+2) /(p-1)] contains an integer, then ka+123 ZpX Zp.
Therefore, ka+1 is not p-periodic.

Case 1: If k =0 mod(p);

Let Zp X Zp = <a, b | aP = pP =1, ab = ba>. We show
a Zp XZp free action on Syp+1 by proposition 2.1.1.

Suppose k = np, here n is a non-negative integer.

1) Zp X Zp = <aj, b1, az, by - a(n+l)r b(n+1)>. ai

2) Migien+rlair byl = 1.

3) Riemann-Hurwitz: 2 (kp+l)-2 = p2(2(n+1)—2).
Case 2: If k = -1 mod(p).

We show that there is a Zp X Zp action with two

singular points on Skp+1-
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l) zp X zp = <aj, by, az, by - ans bn, a, a~1>,
n= (k+l)/p21. a; =a, by =b, 1 £1i<n.
2) Ili<i<nlaj, byjlaa™l = 1.

3) O0(a) = p, O(a~l) = p.

4) Riemann-Hurwitz: 2(kp+l)-2 p22(n—1)+p2(1-1/p)2.

Case 3: The interval [(2k+3)/p, (2k+2)/(p-1l)] contains
an integer n.

We show that there is a Zp X Zp action with t = np-2k
singular points on Skp_j. Notice t = np-2k 2 3.

Let h = k+1l-n(p~1)/2. Notice h 2 k+1-(2k+2)/2 = 0.

1) 2ZpXZp = < a3, by, az, by -+ an, bpn, b, ai, az -
toag-2y (IIlSjSt_zaj)'lb‘l >. Here, aj = a, by =b, ay = a,
b=Db, 1<i<h, 15 3j< b-2,

2) Migjenlai bilblligyge-nag Tligyge-2a4) "1 = 1.

3) o(b) = p, O(ad) = p, Ol ¢ygr-2ay) "1b™1) = p.

4) Riemann-Hurwitz: 2(kp+l)-2 = p2(2h—2)+p2(1—1/p)t,
i.e. 2kp = p2(2k-n(p-1))+p(p-1) (np-2k) = 2kpZ-np2 (p-1)
+np? (p-1) -2kp (p-1) .

Claim 2: Conversely, if ka+1 is not p-periodic, then
k =0 mod (p), k = -1 mod(p) or [(2k+3)/p, (2k+2)/(p-1)]
contains an integer.

In fact, suppose ka+1 D Zp X Zp. i.e. there exists a
Zp XZp action on Skp4+1-

Case 1l: Zp X Zp acts freely on Syp41- Riemann-Hurwitz
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formula 2(kp+l)-2 = p2(2h-2) implies k = p(h-1), i.e.
k = 0 mod(p) .

Case 2: 2p X Zp acts on Syp+] with two singular
points. Riemann~Hurwitz formula 2(kp+1)l2 = p2(2h-2)+
p2(1-1/p)2 implies k = p(h-1)+p-1. i.e, k =-1 mod(p) .

Case 3: Zp X Zp acts on Sypy+) with more than three
singular points. Riemann-Hurwitz formula: 2 (kp+l)-2 =
p2(2h—2)+p2(1-1/p)t implies (2k+t)p = (2h—2+t)p2. Suppose n
= 2h-2+t, np = (2h-2+t)p = 2k+t 2 2k+3, since t 2 3. i.e,

n > (2k+3)/p. In addition, 2kp-(2h-2)p2 = p(p-1)t,
t = (2k-2hp+2p)/(p-1) implies n = 2h-2+t =

[(2h-2) (p-1) +2k-2hp+2p]/ (p-1) = (2k+2-2h)/(p-1)

< (2k+2)/(p-1l) since h 2 0.

So, (2k+3)/p € n <(2k+2)/(p-1). n is an integer.

Claim 3: ka+1 is not p-periodic if k 2 (p2-3)/2.

Recall Fg is never 2-periodic for g > 1. For p an odd
prime, (2k+2)/(p-1)-(2k+3)/p =(2kp+2p-2kp+2k-3p+3)/[p(p-1)]
= (2k-p+3)/[p(p-1)1 2 (p2-p)/[p(p-1)] = 1 implies that
there exists at least a integer ne [ (2k+3)/p, (2k+2)/(p-1)1.

Remark: No finite group acts on Sg with only one
singular point.

Remark: As a supplement of theorem 2.1, we give table
C.1 and table C.2 in the appendix C by working on the

computer programs. In table C.1l, the p-torsion gaps of
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mapping class groups Fg are displayed, i.e. fixing odd
prime p, list the all genus g of mapping class groups Fg
which do not have p-torsion. In table C.2, corresponding to
theorem 2.1.b), we list all genus ¢4 = kp+l of mapping class

groups ka+1 which have p-periodicity for odd prime p.

> o 13 ] F 1] . ]
Define metacyclic groups Mp,k = <a, bl ak(p-1) = 1,
bP=1, aba~l = pM >, where p is an odd prime, k is a
positive integer, m is an integer such that>the order of m
in the multiple group (2/pZ)* is equal to ¢(p) = p-1, then
IMp, k| = kp(p-1).
Lemma 2.2.1. r(p-l)(kp—2—k)/2 D Mp,k except for k =1
and p = 3.
Proof: We need to show Homeo™ (S (p-1) (kp-2-k)/2) @ Mp,k.
1) Mp,x = <b~1l, a, a~lob>.
2) b laa"lp = 1.
3) o(b"1) = p, O(a) = k(p-1), 0(a~1lb) = k(p-1).
Actually, (a~lb)D = a-npl+m+:-+mn-1
4) Riemann-Hurwitz: 2 (p-1) (kp-2-k)/2-2 = kp(p-1)
(2h-2) +kp (p-1) (1-1/p)tq+kp(p-1) (1-1/[k(p-1)]1)ty, taking h
=0, t1 = 1, to=2, i.e.kp2-kp-2p+2-kp+k-2 = =2kp2+2kp+
kp2—2kp+k+2kp2;2kp—2p. Define metacyclic groups Np,d =

<a,b| ad =1, pP = 1, aba~l = bM >, where p is an odd
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prime, 3 £ d, d divides (p-1), m is an integer such that
the order of m in the multiple group (Z/pZ)* is equal to d,
then [Np 4l = pd.

Lemma 2.2.2. Iy 1) (g-2)/2 @ Np,q-

Proof: We only need to show Homeo*(S(p-1) (4-2)/2)
- Np,d'

1) Np,q = < b1, a, a=lb >.

2) b~laa"lp = 1.

3) o(b™l) = p, O(a) =d, O(a~lb) = 4, since (a~lp)n
— a-npl+mt---+mn-1

4) Riemann-Hurwitz: 2(p-1) (d-1)/2-2 = pd(2h-2)+
pd(1-1/p)t; +pd(l-1/d)tp. Taking h = 0,t] = 1,tp = 2,
pd-d-2p = -2pd+pd-d+2pd-2p.

Corollary 2.2.3. T(p-1) (p-3) /22 Np,p-1 = <a,blaP~1 =
1,bP = 1 aba~l = pm >,

Corollary 2.2.4. I'(p_1y/2ONp,3 = <a, b | a3 =1, bP
=1, aba~l = pM >, if 3 divides (p-1).

Suppose G a p-periodic finite group for p odd prime.
The main result in [Sw] by Swan is that the p-period of G
is equal to 2|N(an)/C(an)|, where N and C denote the
normalizer and centralizer of order pT!' cyclic p-sylow
subgroup in G.

Lgmma_z*zii.’The finite group Mp,k [resp Np,d] is p-
periodic with the p-period is 2(p-1) [resp 2d] for k #0

mod (p) .
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Proof: |Mp’k| = kp(p-1), INp’dl = pd imply that the
Mp,k and Np 4 can not contain Zp X 2p. i.e, These groups
are p-periodic.

Now, consider the group My x = <a, b | ak(p-1) = 1,
bP = 1, aba™l = b™>, let 2, = <b>, then N(Zp) = Mp, g, C(Zp)
= <aP~1, b>, IN(Zp)I = kp(p-1), IC(Zp)I = kp, therefore,
IN(Zp)/C(Zp)I = p-1 = @¢(p). The p-period of Mp,k = 2(p-1).

Similarly, consider the group Np,d = <a, b | ad = 1,
bP = 1, aba~l = b™>, Let Zp = <b> again, then N(Zp) = Np,dr
C(Zp) = <b>, IN(Zp)I = pd, IC(Zp)I = p, therefore,

IN(Zp) /C(Zp) | = d. The p-period of Np 4 = 2d.

In particular, the p-period of Np,p-1 = 2(p-1).

Actually, The p-periodicity of F(p-l)(kp—2—k)/2 and
I'(p-1) (d-2) /2 are obviously by b) of theorem 2.1. The low
bounds of the p-period of these mapping class groups are
obtained by combining the results of this section.

r ition 2

a) The p-period of I'(p-1) (kp-2-k)/2 is a multiple of
2(p-1).

b) The p-period of I'(p-1)(d-2)/2 is a multiple of 2d,
if 3 divides d, d divides (p-1).
c) In particular, The p-period of F(p_l)(p_3)/2 is a

multiple of 2(p-1).
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2.3. The C} ] £ t] ical 1 ]

tat ] £ t] . ]

Recall that for a complex representation f: G— GLk(C)
of the discrete group G the Chern classes ci(f)eH2i(G;Z)
are defined as Chern classes of the flat CK-bundle over
K(G,1) classfied by Bf: K(G,1) — BGLy (C).

Q is a subring in C, if f: G — GLx(Q) is a
representation over Q, we will write cj(f) for the i-th
Chern class of the associated complex representation G —
GLk (Q) — GLk(C) [E,Ml2.

It is well-known that over Q the group Z/nZ has a
unique faithful irreducible representation O,: Z/nZ —
GL¢(n)(Q), where @(n) is the Euler function [Se].

Glover and Mislin [G,M] showed the proposition as
following:

Proposition [Glover, Mislin]: Let r: Z/p® — GLyx(Q) be
a Q-representation. Suppose that in the decomposition of r
into Q-irreducible representation G, occurs with
multiplicity m, where m is not divisible by p, then, for
every j > 0, (C¢(pa)(r))j eH2j¢(Pa)(Z/pa; Z) has order p@%.

Let W : Tg — Sp(2g,Z) be the map obtained by allowing
a homeomorphism h of Sg to act on Hj(S4;Z), i: Sp(2q,2) —
GL(2g,2) — GL(2g,Q) be canonical inclusion, then €= ip: Fg

— GL(2g,Q) is a representation over Q.
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If p: 2Zp — I' . > GL(2g9,Q) is composite of inclusion

9
and &, since the representation p is faithful, Xp = MpXtr
+npxo, where % stands for character of the representation;
tr is the trivial representation, o is the unique
irreducible representation of Zp, the integers my and np
only depend on p [Se].

Proposition 2.3.,1. Suppose Fg is p-periodic for p odd
prime, p==¢i: Zp — Fg — GL(2g9,Q) is a representation of Zp
over Q for any inclusion 1i: Zp = I'gs Xp = MpXtr+hpXo- If np
is never divisible by p where i varies over all inclusions,

then T';, has the p-period LY which divides 2¢(p).

9
Proof: It is well-known that Fg is p-periodic if and
only if every p-Sylow subgroup Sp of Fg is cyclic. We only
need to show that there exists an element aef{2¢(P)(Fg; Z)
such that Res(a)Ef12¢(P)(Zp;Z) is nontrivial for every Zp

inclusion by Brown-Venkov theorem.
& A
Let g*:H2Q(P)(Ty; 2) — H29(P)(I'y; %) be the canonical
map from the ordinary cohomology to the Farrell-Tate

cohomology [Br]. The following diagram is commutative.
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Res

f{Zcp(p)(rg; z) - f{2€P(p)(zp;Z)
T g* T g*
H29(P)(Ty; 2) ~—  H2®(P)(zp;2)

Res

Now,let a = g*[cp_l(s)]eHZCP(p)(rg; z), &: Ty —
GL(2g9,0), 1i: Zp — Pp. Then Res(a) = Resg*[cp_l(s)] =

g*Res[cp_1(g)] = g*[cp-1(p)] has nontrival order in

A

}{2®(P€1)(zp;z) ~ H2¢(P‘?)(ZP;Z) for every inclusion

p= €i since the irreducible representation ¢ occurs with
multiplicity n which is not divisible by p. i.e. the cup-

product with g*[cp-1(€)] is an isomorphism for all integer

i and Fg-module A: fli(rg;A)(p) ~ fli+2¢(9)(rg;A)(p).
Consider any inclusion i: 2p — I'(p-1)(kp-2-k)/2-
Riemann-Hurwitz holds : 2(p-1) (kp-2-k)/2-2 = p(2h-2)+(p-1)t
implies t = kp-k-2ph/(p-1) = k(p-1)-sp, here s = 2h/(p-1)
must be an integer. The Lefschetz-Hopf trace formula also
gives us Xp(T) = 2-t = 2-k(p-1)+sp, here T is a generator

of Zp, p= €i: Zp—+ GL( (p-1) (kp-k-2),0Q).

Suppose Xp = MpXtr+hpXgs since Xt (1) = 1, X (T) = 1,
Xo(1) = p=1, %Xg(T) = -1, %5(1) = mtn(p-1) = (p-1) (kp-k-2),
xp(T) = m-n = 2-k(p-1)+sp. Then np = (p-1) (kp-k-2)-2
+k(p-1)-sp = kp2-kp-kp+k-2p+2-2+kp-k-sp = kp2-kp-2p-sp,

implies n = kp-k-2-s. Recall 0 s s s k-1, if k < (p-1)/2,
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then, (k-1)p < kp-k-k+1-2 s kp-k-s-2 = n < kp, or say, n 1is
not divisible by p. So the p-period of r(p-l)(kp-Z-k)/Z
divides 2(p-1) if k < (p-1)/2 and k =0 mod(p). We already
proved theorem 2.2 by combining the lower bounds of section
2 this chapter.

In particular, take k =1, p =2 5, we obtain that

r(p-l)(p-3)/2 is p-periodic and the period equals 2(p-1).

2.4. The Fuler cla >f the canonical homology
. f t) . ]

Recall that for’a real orientable representation @: G
— GLi(R) of the discrete group G the Euler class e(¢) €
Hk(G;Z) is defined as Euler class of the flat RK-bundle
over K(G,1) classified by Bj: K(G,1) — BGLk(R).

If p: G - GLy(A) is an orientable representation over
A, A is a subring of R, we can write e(¢) for the Euler
class of real representation G — GLy(A) — GLx(R). An
important relation between the Euler class and the Chern
class is as follows:ck(w)=(-1)k(k‘1)/2e2(w)EHZk(G;Z)[E,M].

Proposition 2.4.1. Let p= €i: Zp r(p-l)/z —
GL(p-1,Q), then e(g)E ﬁjﬁd]r]p_l)/z; %) are restricted to
yp-1

order p elements in (2pi2) for any i. The p-period

of r(p_l)/z divides p-1.
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Proof: Consider p: Zp — I (p-1)/2 = GL(p-1,Q). The

Riemann-Hurwitz 2 (p-1)/2-2 p(2h-2)+(p-1)t implies

t = 3-2ph/(p-1), forcing t 3. By the Lefschetz fixed
point theorem again, % (T) = 2-t = -1, but % = L1y NS o) A
m+n (p-1l) = p-1l, m-n = -1, solving for n = 1 #0 mod(p). The
proposition by Glover and Mislin provides the element
Res(g*cp_l(a)) has order p for every p. Furthermore,

Cp-1(€) = (-1) (P~1) (P—2) /2¢ (g)2, Res (g*e (€) ) has order p for

every i. So the p-period of F(p_l)/z divides p-1.

2.5 7] _ iod of 1 . ]
As the examples of application of the theorems above,
in the rest of this chapter, we start to check the p-period
of low genus mapping class groups Fg for g = 2,3,4 and 5.
a) I'y. There are only 2, 3 and 5 torsions in I5.
1) Ty is not 2-periodic.
2) Ty is 3-periodic. The 3-period of I';, is equal to 4.

The 3-period of I'y is multiple of 4 by theorem 2.2.

I

(k =2, p= 3.)
The 3-period of I'y divides 4 by proposition 2.3.1. 1In
fact, Riemann-Hurwitz formular: 2(2)-2 = 3(2h-2)+2t implies
t =4, Y(T) = -2, n =2 #£0 mod(3).

3) Ty is 5-periodic.

The possible 5-period of I') = 2 or 4 by prop.2.4.1.
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b) I'3. There are only 2, 3 and 7 torsions in I'j3.

1) I'3 is not 2-periodic.

2) T'3 is 3-periodic and the 3-period of I'; is a
multiple of 4.

In fact, I'3y D Dg, since I'y DDg and I'g DDg, by Lemma
2.1.1 in section 1. Here Dg is order 6 dihedral group, k is
a positive integer.

3) T3 is 7-periodic and the 7-period of I'3 is 6.

In fact, the 7-period of I'y is multiple of 6 by
theorem 2.4, the 7-period of F3 divides 6 by prop. 2.4.1.

c) F4. There are only 2, 3 and ‘5 torsions in F4.

1) T'y is not 2-periodic.

2) T'y is not 3-periodic by c) of theorem 2.1.

In fact, 4 = 3(1)+1 and 2e€[(2k+3) /p, (2k+2) / (p-1) ]

= [5/3,2].
3) Iy is 5-periodic and the 5-period of I'y = 8.
In fact, this is exactly theorem 2.2.for k =1, p =5
d) I's has only 2, 3, 5 and 11 torsions.
1) T's is not 2-periodic.
2) Ty is 3-periodic and the 3-period of I's = 4. In

fact, Dg = I'5,2 = <a, b | a3 = b2 = 1, bab~l = a2> = <p, b,
b, b, a, a2 > bbbbaa? = 1, O(b) = 2, O(a) = 3, 0(a?) = 3.
Branch data (24, 32). Riemann-Hurwitz: 2(5)-2 = 6(2(0)-2)

+6(1-1/2)4+6(1-1/3)2. So, I's DDg, the 3-period of I's is a
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multiple of 4.

Consider p= €i: 23 = I's = GL(10, Q), 23 = < T >.
Riemann-Hurwitz formula: 2(5)-2 = 3(2h-2)+3(1-1/3)t implies
t =4o0r 7. i.e. X(T) = -2 or -5, therefore, X = M), +n)g
leads n = 4 or 5, both 4 and 5 are not multiples of 3, by
proposition 2.3.1, the 3-period of FS divides 4.

(3) I's is 5-periodic and the 5-period of FS =2, 4
or 8.

In fact, Riemann-Hurwitz: 2(5)-2 = 5(2h-2)+4t implies
t =2, Y(T) = 0, therefore, n = 2 is prime to 3. The
5-period of I'g divides 8.

(4) FS is 1ll-periodic and the possibilities of the
ll-period of I's = 2 or 10.

This is simply proposition 2.4.1.



CHAPTER III
THE p-TORSION OF THE FARRELL-TATE COHOMOLOGY

OF THE MAPPING CLASS GROUP r(p-l)/2

In this chapter we give a complete calculation of the
p-torsion of the Farrell-Tate cohomology of the mapping
class group r(p-l)/2' Therefore, the p-torsion of the
ordinary cohomology of mapping class group r(p—l)/2 is also
determined for dimensions greater than 2p-7.

Theorem 3.1. (the main result)

a) BT o1y /22 (o) = Mignsk Bt (2Zpiz), if p = 6k-1.

D) LT o1y /2i2) (=B Epe3iz)  Micnax Bt (zpi2)

p) (p)
if p = 6k+1.
Corollary 2. (ordinary cohomology version)
a) H2H(T(5_1)/2:i2) (p) = My <<t (2pi2) = Tli<nsk?p
if p = 6k-1 and 2i > 2p-7.
b) HOI(T (1) /2/2) (p) = n61 (2,923, 2) (p) % M1<n<x B8 (250 2)

47
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o) H2L(T (1) /2:2) ) = B2H(2px23:2) ) XIT1cnekB?t (2p;2)
= M1¢nexpr if p = 6k+1l, 1 # 0 mod(3) and 2i > 2p-7.

d) H2i—1 (F(p_l)/z;Z) = 0 if 2i-1 > 2p—7.

(p)
3.1. T ] £ . ] £ ! ] s i
Lhe_ﬂmming_c.laas_g.raup_]:(p_l) /2

The odd, prime order, cyclic group Zp acts on the
closed surface S(p-1)/2 with 3 fixed points, and ZpXZp can
not act on S(p-1)/2 since the Riemann-Hurwitz formula
fails, i.e. the mapping class group F(p—l)/2 is p-periodic
[Br].

The Brown theorem for the p-primary components of
Farrell-Tate cohomology groups can be used since r(p—l)/2
has p-periodicity: H1(T (po1),/272) ®) =Hpjesf{i(N(pj) i2) (o)
where S is the set of conjugacy classes of Zp in r(p—l)/2'
and N(Pj) is the normalizer Py in r(p—l)/2 [Br].

Lemma 3.1.1., The number of conjugacy classes of
elements of order p in F(p—l)/2 equals (p-1) (p+1)/6.

Proof: The set of conjugacy classes of elements of
order p in r(p—l)/2 is in one to one correspondence with
all possible fixed point data ( By,Bp, B3 ), Bjezp-{0},
By+By+P3= 0 mod(p) [Syl. Recall for x, an orientation-
preserving diffeomorphism of closed orientable surface Sg

of prime period p, the fixed point datum of x is an
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(unordered) set o(x) = (B1, Bp, - Bq), where q is the
number of fixed points of x and Bi is the integer mod(p)
such that xBi acts as multiplication by e2%/P in the local
invariant complex structure at the i-th fixed point.

Arrange all fixed point data as follows:

Table 3.1
[1] [2] [3] [4] e e
(1,1,p-2)
(1,2,p-3) (2,2,p-4)
(1,3,p-4) (2,3,p-5)  (3,3,p-6)

(1,4,P‘5) (214lp_6) (3l4lp—7) (4l4lp_8)

(1,p-2,1) EMPTY (3,p-2,p-1) (4,p-2,p-2)

EMPTY (2,p-1,p-1) (3,p-1,p-2) (4,P-1,0-3)  ciivrirerinnnns

[ (p-3) /2] [ (p-1)/2] [ (p+1) /2]
((p-3)/2,(p-3)/2,3)
((p-3)/2, (p-1)/2,2) ((p-1)/2,(p-1)/2,1)
((p-3)/2, (p+1)/2,1) EMPTY ((p+1)/2, (p+1)/2, 1)

EMPTY ((p-1)/2, (p+3)/2,p-1) ((p+1) /2, (p+3)/2,p-2)

(p-3)/2,p-1, (p+5)/2) (p-1)/2,p-1, (p+3) /2) (p+1) /2,p-1(p+1) /2)
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table 3.1 (continued)

[(p+3) /2] i [p-2] [p-1]

((p+3)/2, (p+3)/2,p-3)

((p+3)/2,p-2, (p+1)/2) ..c.u...e. (p-2,p-2,4)
((p+3)/2,p-1, (p-1)/2) ............ (p-2,p-1,3) (p-1,p-1,2)
Notice:

1) Given two numbers B; and B,, the third number fBj
is uniquely determined.

2) In the i-th column the first number B, = i,

3) The inequality B, < B; is always true.

We observe the following facts:

(a) The i-th column has an "empty box" when i <(p-1)/2
the i-th column has no "empty box" when i > (p-1)/2.

(b) If we count the number of fixed point data in
table 3.1 ignoring order, (B;, By, B3) occurs twice if B; =
Bj for some 1 € i < j £ 3, otherwise it occurs three times.
For example, (1, 1, 5) occurs twice and (1, 2, 4) occurs
three times.

(c) Each fixed point datum must appear in some column.
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(d) The number of fixed point data in the i-th column
= p-1-i for i £ (p-1)/2.

(e) The number of fixed point data in the i-th column

p-i for i > (p-1)/2.
The number of conjugacy classes of elements of order p
= 1/3[(p-2) (p-1)/2+(p-1) /2+p-1] = (p+l) (p-1)/6.

Remark, (p+1l) (p-1)/6 is always an integer.

3424_In§_ngzmaliz§;_gi_zp_in_I(p_l)/2

Lemma 3.2.1., Let Zp be in r(p—l)/2' Then there exists
an exact sequence 1 — Zp -91KZp) — I'3, where I'3 denotes
noDiff+(S2;3), the group of path components of orientation
preserving diffeomorphisms of S2 which permute three
distinguished points. (In fact, F3=E3, the symmetry group
of 3 letters [Bi].)

Proof: We try to construct an injective homomorphism
I:N(2p)/2p —T3.

a) Let Zp=<x>, heN(<x>), hxh~1l=xk in I'(p-1)/2- By the
result of Birman and Hilden (1972) [B,H]2, we can represent
x and h be elements of Diff+(S(p-1)/2) (which we also
denote x and h) such that hxh~l=xk,

Consider the following diagram:
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h n-1
S(p-1) /2 - S(p-1)/2 = S(p-1)/2
l jol lp 1 p
§2=S (p-1) /2/%p - $2=8 (p-1) /2/%p = $2=S(p-1)/2/%p
£ £-1

The map h takes fiber to fiber, so h induces a map £
from S2 to S2. Obviously f is an orientation preserving
diffeomorphism since h is.

For the fixed points bj, bj, b3z of diffeomorphism x,
since xk(h(bi)) = hx(bj) = h(x(bj)) = h(bj), h(bj) is also
a fixed point of x, i.e. h(bj) = bj 1 <1i,j £ 3. Therefore
f permutes the three points p(bj), p(b2) and p(b3) in s2.
This implies fel3,

b) I: N(<x>)/Zp — I3 is well-defined.

If hy = hy in N(<x>), i.e. hy is isotopic to hjy in
Difft(-) and hixhy~1 = xK, hoxh,~1 = xK, then by Birman and
Hilden's result again [B,H]2, there exists an isotopy
H:S(p-1)/2 X I = S(p-1)/2 such that Hg = hi1, H1 = hp,
HSXHS‘1 = xK. So, the diffeomorphisms fi and fy of s2
induced by hy and hy are isotopic in Diff*(S2,3). This
implies f1 = f5 in 3. 1f h = xK, then f induced by h must
be the identity map from S2 to s2.

c) I is a homomorphism by the definition of I.
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d) I is an one to one.

Suppose f, induced by h, is isotopic to the identity
map in Difft(s2,3). The homotopy lifting theorem shows that
h is isotopic to the identity map up to the choice of
initial point, i.e. I is a one to one.

e) In fact, I'S =< wi,Wwo| Wiwpw] = wpwiwp, Wiwplwi =
1, (w1w2)3 =1>=<wi,w2l w12 =1, w22 =1, (W1W2)3 =1 >

= X3 = the symmetric group of 3 letters [Bi].

3.3. The action of
N(zp)_on 2p
Lemma 3.3.1. For each Zp of r(p—l)/2' consider the

subgroup Im(I) & I'; of lemma 3.2.1.

a) If p 6k-1, Im(I) acts trivially on Zp -

It

b) If p 6k+1, there exists exactly one conjugacy
class of Zp in r(p-l)/2 such that the order 3 elements in
Im(I) act nontrivially on that Zp. For other Zp's in
r(p-l)/2' Im(I) acts trivially on Zp.

A basic number theory sublemma is needed before we

complete the proof of lemma 3.3.1.
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Sublemma. There is no integer m such that ml+m+l = 0
mod(p) for p = 6k-1, 1 < m < p. There are two integers mj
and my such that mj2+mj+1 = 0 mod(p) for p = 6k+l and 1 <
mjy < p, and these satisfy mp = my2.

Proof: Suppose m is a solution of m2+m+l = 0 mod(p),
then m # 1 mod(p), otherwise, m =1 mod(p) and mZ+m+1=0
mod(p) implies 3 = 0 mod(p), a contradiction.

The fact that m # 1 mod(p) and m2+m+l = 0 mod (p) also
imply m3 = 0 mod(p), i.e. 3 divides p-1. So, for p = 6k-1,
there is no solution; for p = 6k+l, there are exactly two
solutions of the quadratic equation. In fact, if m is a
solution, mé is a solution too.

The proof of lemma 3.3.1: Let us rearrange all the

fixed point data (By, By, B3) for ['(p-1)/2 as follows:

Table 3.2
(1) (2) (3) cee veeeensee (P11
(1, 1, p-2) (1, 2, p-3) (1, 3, p-4) ... (1, p-2,1)
(2, 2, p-4) (2, 4, p-6) (2, 6, P—-8) ...civiives (2, 2p-4,2)
(3, 3, p-6) (3, 6, p-9) (3, 9, p-12) ............(3, 3p-6,3)

(p-1,p-1,2) (p-1,2p-2,3) (p-1,3p-3,4) ...(p~-1, (p-2) (p-1),p-1)
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Note that the i-th row of the table is i times the
first row mod(p).
We observe two facts:
(1) Any fixed point datum is contained in table 3.2.
(2) 1f (oq, B1s Y1) = (@, By, Yp) as unordered
triple, where (oy, By, v;) and (ay, By, ¥p) are in
different columns, then these two columns must be the same
up to permutation.
In fact, for (1), any fixed point data (o, B, y) can
be multipled by m such that ma= 1 mod(p), so (a, B, y)
must be in the mB-th column.
For (2), as unordered triple, (@q, By, Y1) =(0y,Bs,7;)
implies m(ay, By, Y1) = m(ay, By, ¥p) i.e. (moy, mBy, my;)
= (ma,, mB,, my,) for any m, 1 £ m £ p-1. Therefore, these
two columns are the same.
Claim: a) Assume p > 3. Then any two fixed point data
in the m-th column are different if mZ2+m+1l # 0 mod (p) .
b) Three sets of fixed point data are the same in the
m-th column in table 2 if m2+m+l = 0 mod(p) .
Suppose (1, m, n) = (h, hm, hn), 1 # h mod(p).
Case 1: 1 = hm, m = hn, n = h mod(p) implies 1 = n3,
m = n? mod (p) or m3 =1 mod(p), so m2+m+l = 0 mod (p) .
Case 2: 1 =hn, m = h, n = hm mod(p) implies 1 = m3
mod (p) or m2+m+l = 0 mod (p) .

Note: in fact, n = m2 mod (p) .
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Conversely, if there is a m such that m2+m+1 =0

mod(p) 1 < m £ p-1, then (1, m, m2) is a fixed point datum
in the m-th column and (1, m, ml) = m(l, m, m2) = m2(1, m,
m2)

Therefore, three sets in the m-th column are the same.

Let x be an element of order p in F(p—l)/2' If o(x),
the fixed point datum of x, lies in some column of table
3.2, then all the sets in the i-th column of table 3.2
represent the fixed points data o(xK), 1 € k € p-1.
Therefore, by using the claim above, if OG(x) is in the
m-column, where m2+m+l = 0 mod(p), then O(x) = o(xM) =
G (x™%) . Otherwise, o(xl) # o(xJ) for i # j. It is well-
known that |N(<x>)/C(<x>)| = the number of i such that xi
is conjugate with x, where 1 £ i £ p-1. Here N(<x>) (resp.
C(<x>)) denotes the normalizer (resp. centralizer) of the
cyclic subgroup generated by x.

The sublemma and argument above imply that:

a) If p = 6k-1, IN(Zp)/C(Zp)I = 1 for all Zp in
I'p-1)/2-

b) If p = 6k+1, there exists exactly one conjugacy
class of Zp in F(p—l)/2 such that |N(Zp)/C(Zb)| = 3. For
other Zp in I'(,_1y /2, IN(Zp)/C(Zp)| = 1.

The lemma 3.2.1, a) and b) above imply lemma 3.3.1.
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Corollary 3.3.2. There are k different conjugacy
classes of 2Zp in r(p—i)/2 for p = 6k-1. There are k + 1
different conjugacy classes of Zp in F(p_l)/z for p = 6k+1.

Proof: Lemmas 3.1.1 and 3.3.1 imply this corollary.

3.4. The proof of theorem 3.1

There is a short exact sequence for an odd prime p by
lemma 3.2.1.
1 =25 N(Zp) = Im(I) - 1,
where Im(I) is a finite subgroup of Ij.
Case 1: Im(I) acts trivially on Zp. By [Br,p.84], for
AN ] . s
i > 1(N(2p) ;2 = H1(N(2p) ;2 = H1(2p;2)Im(I) =
Hi(25;2). Since the p-period of N(Zp) = 2|N(2Zp)/C(2p) | = 2
A 2 A s ' '
[Swl, Iil(N(Zp);Z)(p) = H(2p;2) for all integer i.
Case 2: Im(I) acts nontrivially on Zp. By [Br,p.84]

and lemma 3.3.1, for i > 0, Fi(N(zp);2) )" i (N (2p) ;2) ®)

= ni(zp;2)Im(I) = ni(z,;2)23 = ml(zp23;2) Since the p-

(p)°
the p-period of

period of N(Zp) = 2|N(Zp)/C(Zp)| = 6

ZpXZ3 (semi-direct), ﬁ[i(N(Zp);Z) ﬁli(szz3;z)(p) for

(p)
all integers 1i.
Finally, Brown's decomposition theorem, lemma 3.3.1

and corollary 3.3.2 imply theorem 3.1.
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3.5, Birman-Hilden theory

Lemma 3.2.1 is a special case of the statement by
Birman and Hilden that N(2p)/2Zp is isomorphic to rn =
noDiff+(Sz;n) if the orbit space Sg/2p = S2, where n is the
number of fixed points of Zp acting on Sqg-

However, it seems that there exists a gap on the proof
of lemma 5.1.[B,H]2. In particular, the homomorphism I may
not be a surjection of N(Zp)/Zp onto rm,

The claim in lemma 5.1. [B,H]> that a closed curve
lifts to a closed curve if and only if it encircles a
multiple of p branch points is false. Actually,

Proposition 3.5.1. For a prime p, let p: Sg—->S2 be a
p-sheeted branched covering map with ramification points
by, by - bne€Sq, 2p = < T >, T the deck transformation

of p with n fixed points in Sg. Denote the fixed point

datum of T as O(T) = (Bq,Bp, B3, By) - Let Y be a closed
curve in S2 - {p(by), p(bp) ==* - p(bny)} , then y lifts to
a closed curve in Sg - (b1, bo, oo bp} if and only if

the homotopy class [Yle m1(S2 - {p(b1), p(b2),  p(bp)})

= < X1, X, v Xn | Xpxpeerreeeer Xn = 1 > can be written
in the form [y] = IIx;2i [Ixy™i «-- - IMx;ki such that
Z(niBy+myBitee o +kiB;) = 0 mod(p) where xj is represented

by a simple closed curve cj such that p(bj) is in one

complementary component of cj and p(bj) j # i, are in
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the other.

Proof: In fact, the covering map p: Sg — {b1, b2, - -

bpl} = S2 - {p(by), p(bp), «==e e p(bp)} is classfied by
the homomorphism f: Jtl(S2 - {p(b1), p(bp), <oxeee e p(bp)}) =
< xll X2, ......... xn I X1X2 ......... xn =1 > into Zp =< T > ’

where f(x3) = TBi, 1 £i<€n [Ew].

Recall that a closed curve Y lifts to a closed curve
if and only if [yl€ p*([®(Sg ~ {by, b, --- - bal)1, i.e.
£([Y]) = 0 in 2Zp, or o= (0B amiPis. akiBiy - o ¢ oyl =
IMxyPillx{™i-- .- [Tx;ki. This implies Z(njPB;+miB;+... ... +kiB;)
= 0 mod(p).

Example 1. Let p: S» —S2 be a 5-sheeted branched
covering map with 3 branch points by, by and b3, T the deck
transformation of p with the fixed points bj, by and b3 in
S, and the fixed point datum o(T) = (1,3,1). If Yy, an
orientable closed curve in S2 - {p(b1), p(b2), p(b3)}, goes
around p(bjy) twice, around p(bs) once and not around p(b3),
then vy lifts to S - {bj, bz, b3}, although Y encircles the
two branched points(or three if counted with multiplicity).

Consider the diffeomorphism w of 82, which switches
p(by) and p(by) in a disk D containing p(bj) and p(bj), and
w = Id in 82 - D. Then w(y) can not lift to Sy - {bj, by,
b3} since w(y) goes around p(bj) once, around p(b2) twice

and not around p (b3), n1B1+n2B2+n3B3 = 146 =7 # 0 mod(S)(
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i.e. the w can not lift to a diffeomorphism of S5. So the
W, as an element of F3, can not be in the image Im(I) of
lemma 3.2.1.

Example 2. The special case when p = 2 [B,H]7 is
valid. Consider the 2-sheeted covering map p: Sg —S2 with
n branch points. Now B; = B, = =+-- = B, = 1 and a closed
curve Y in $2 - ({p(by),p(by), - p(b,)} 1lifts if and
only if [Y] = Hxininximi ...... Hxiki, Z(nytmytees - ki) =0
mod(2) . For any diffeomorphism w of S2 permuting the set
{p(by),p(b2), -~ p(bn)}, the closed curve w(y) lifts if
and only if ¥y 1lifts. So w 1lifts to a diffeomorphism of Sq
permuting the set {bj, bo,:- - bp}. This shows that N(Zj3)/Z;

= C(23)/22 = I’ by an argument similar to lemma 3.2.1.



CHAPTER 1V
A FAMILY OF HOMOGENEOUS CHERN CLASS
POLYNOMIALS OF MAPPING CLASS GROUPS

Some torsion for Hi(rg;Z) (g >> 1) has been worked out
by Glover and Mislin in terms of the Chern classes of the
canonical homology representation 1: Fg—éGL(Zg,Z) [G,M].

In this chapter, we construct a family of homogeneous
Chern class polynomials of the canonical homology
representation Fg —-GL(2g9,2) , which depend only upon the
genus g and the prime p so that the restrictions of the
homogeneous Chern class polynomial to all Zp inclusions in
Fg are nontrivial. Therefore the upper bounds of the
Yagita's invariant p(rg) [Y], in particular, the upper
bounds of the p-period for p-periodic mapping class groups

r

gr may be obtained.

The main results are as follows:
Theorem 4.1. Let 2g-2 = mp-i, 0 £ i € p-1, p an odd
prime, and pf~l < m < pT, i: Zp —éré an inclusion,

61
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n: Fg — GL(2g,C) the canonical homology representation,
¢ (p¥) = p¥~1l (p-1) the Euler totient function.
a) If [2g/(p-1)]1 < p¥, i*[c¢(pr)(n)] has order p for every
Zp in Fg. As a result, the Yagita invarant p(Fg) divides
2pT~l(p-1).
b)If [2g/(p-1)]1 2 p¥,i*{[cg(pr) M IP P D +(cq(pr+ly (M) 1P~1)
has order p for every Zp inclusion in Fg. As a result, the
Yagita invarant p(Fg) divides 2p¥(p-1)2.

QQIQLLQLX_ALZ. In addition, Fg is p-periodic and

a) If [2g/(p-1)] < p¥, the p-period of Fg divides
2pr'1(p—1)

b) If [2g/(p-1)] 2 pY¥, the p-period of Fg divides
2p¥ (p-1) 2.

Theorem 4.3. Let 25°1 < g < 25, Then i*{[cps~-1(n)]2

+cps (M)} has order 2 for every Z) in Fg.

4,1, The Yagita invariant and the p-period of
f Finit i

Recall that Yagita defined an invariant in 1985 [Y],
denoted p(G), for a finite group G as follows:

Let i:Zp — G be an inclusion of an order p subgroup
in a finite group G, then Im(i*: H*(G;z)— il*(zp;Z)) # 0.
Recall the fact that H*(Zp;Z) = Z[u]l/< pu >, where u €

H2(Zp;Z). Consider the reduction map P: Z{ul/< pu > =
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Zp[u] by P: 2 — Zp. These implies that there is a maximum
value m such that the Im(H*(G;2)) & Zp[um]. Define p(G)
as the least common multiple of the values 2m for all
inclusions Zp —G.

Thomas [Th] comments that the Yagita invariant can be
extended to the Farrell-Tate cohomology [F] for group I’ of
finite vcd with finitely many conjugacy classes of order p
subgroups by the same defintion for p an odd prime. In
fact, there exists a torsion free, normal and finite index
subgroup N such that I'’/N = M. Consider the following
diagram, for the finite group M, choosing a representation
M: M = GL(n,C) so that MN(2Zp) is nontrivial for subgroup Zp
[Sel, then i*(cu(M)) # 0 in H*(Zp;Z) for at least one m > 0
where the element cp(n) € HZM(M;Z) is the Chern class

associated to the representation 1.
-k -k N N A*
Note Im( H™(M;2)) # 0 € H™ (2p;Z) implies Im(H™T;2))

A
# 0 € Ii*(Zp;Z) for some * > 0.

1%
H*iz) - f-l*(zp,-Z)
Tre i« T
Brazy o Bz
n T g* 1% Tg*

H*(GL(n,C);2Z) — H*(M;2) - H* (2p:2)




64
A*
Note H (Zp;Z) = Zp[u,u‘1]. Similarly, there exists a
' .*A* A*
maximum value m such that Im(i*:H*{T;z) - H (2pi2)) S

Zp[um,u‘m}, where 0 # uefiz(zp;Z). The Yagita invariant of
group I' of finite vcd, denoted p(I'), is defined as the
least common multiple of values 2m for all inclusions Zp
I', where p is an odd prime.

The Yagita invariant p(I') shares many nice properties
of the p-period of the groups [Y], [Th]. For example,

a) p(abelian group) = 2.

b) p(H) divides p(G), if H is a subgroup of G.

Proposition 4.1.1. If I’ is a p-periodic group of
finite ved, p(I') = the p-period of T.

If I’ is a p-periodic group of finite vecd, by Brown's

theorem, H*(T;z2) (p) = Hpiesf'l*(N(Pi);Z) (p) Where S
denotes the set of conjugacy classes of Zp in T, N(P3)
denotes the normalizer of the subgroup P;. Obviously, the
p-period of T equals LCMPjEs{the p-period of N(Pj)}; the
Yagita invariant p(I') equals LCijes{P(N(Pi))}- So we only
need to show the p-period of I'equals p(I') in the case I’
containing only one conjugacy class of Zp -

Lemma 4.1.2. p(I') = the greatest common divisor of
A * ’ .
dimensions of H (ZpiZ) whose elements are hit by i*:

A A
H*T;z) » H*(z5:2).
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A
Proof: In fact, let 2m = p(I), if uneI{2n(zp;z) is hit
A* L] 1 A*
by the element xe H*(I';2), i.e. i*(x) =ul, uPeIm(H™(T;2))
< Zp[um,u‘m], then m divides n.
A
Conversely, if d divides all dimensions of }1*(Zp;Z)
' A* A*

whose elements are hit by i*: H*T;zy - H (Zp;Z), then

A*
ix: H*(T;2) - 2zpiud,u 9

The proof of proposition 4.1.1: a) The p-period of T

divides p(I'). We want to show that 2m = p(I') is a p-period
A
of I'. In fact, if the element in dimension 2n of I{*(Zp;Z)

A A
is hit by i*: H*T;z) - Ii*(Zp;Z), then 2n is a p-period
of I' by Brown-Venkov theorem [B]. We can suppose 2m =

2ajnj+2agnoteec oo 2ayny by lemma 4.1.2, where 2nj are the
A on.
dimensions where there exist elements xieliznl(F;Z) such
A*
that i*(xy) # 0 in H (ZpiZ), aj are integers, 1 < 1i <k,
A*
and x;{ are invertable in H™(I';2). Consider the element
A _ ' . .
M<i<kxi®i eHeMTG2), ix(Tl1gyexxi®l) = Iigiqei* (x3) 34
A
# 0 in H2M(z,;2). i.e. 2m is a p-period of T.

b) p{I') divides the p-period of I'. Let 2d = the p-
A
period of I'. Because if there exists an element er{Zd(F;Z)

A
such that i*(x) # 0 in H*(25:2). then 2m divides 2d by

lemma 4.1.2.
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4.2, The fixed points number set of Z, action on the
surface Sq4

For g > 1, p odd prime, let 2g-2 = mp~-i, 0 £ i £ p-1.
The m and i are determined uniquely by g and p. Also,
define sets Bg,p = i, i+p, i+2p, - - i+([2g/ (p=-1)]1-m)p}
if i#l. Bg,p = { 1l+p, 1+2p, == 1+ ([2g/ (p-1) 1-m)p} if i=1.

Note, for i # 1, 2g9/(p-1) < m, define Bg,p = @, and
for 1 = 1, 2g/(p-1) < m+l, define Bg,p = D.

Lemma 4.,2.1. If <x> = Zp acts on surface Sg, and 2g-2
= mp-i, 0 € i £ p-1, then the number t of fixed points of x
belongs toBg,p- Conversely, any number t € Bg,p can appear
as the number of fixed points of a diffeomorphism x on
surface Sq, xP =1.

Proof: If Zp = <x> acts on Sg, Riemann-Hurwitz formula
2g-2 = (2N-2)p+tp(1-1/p) implies t = 2(g-M)/(p-1)-2M-2
= n—(2g;n(p-l))+2 = np-2g+2. Here g-N = n(p-1)/2.
Here n is an integer and n £ [2g/(p-1)] since 1M 2 0.
Therefore, t =-2g+2 =1 mod(p) and 0 < t £ ([2g/(p-1)]-m)p
+i, i.e. t €Bg,p- Notice, if i=1l, t#l1l, since the number of
fixed points of Zp action can not be 1.

Conversely, if t €Bg, pr i.e. t = i+kp, where 0 £ k £
[2g/(p-1)]-m if 1 #1; 0 <k £ [2g/(p-1)]-m if 1 = 1.

Let n = k+m £ [2g/(p-1)], then N = g-n(p-1)/2
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= g-(k+m) (p-1)/2 2 g-g = 0. Write Zp = <x> = <xq, xq171,

XTI, Xn—l, Xn+1, """ Xn+t_1, X_(t_l) > for t #1 mod(p), Xj
= x, 0 < j < N+t; Zp = <x> = <xj, xl'l, """" XN xn'l,
x2n+1, ------ M+t-1r x t > for t = 1 mod(p). We know
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(2n-2)p+(p-1)t
since n = k+m, i.e. we actually construct Zp action on
surface Sgq such that the number of fixed points of x is in
the set Bg,p-

Lemma 4.2.2. Let Zp act on Sqg, p=ni: Zp -9Fg -
GL(2g,Q) is a representation for any inclusion
i: 2p = Fg. Here 1M: Fg — GL(2g,Q) is the canonical
homology rational representation. Then p is equivalent to
one of the representations below up to complex
representation: py = (m+k)0'p®nTr. Here 2g-2 = mp-i, 0 £ i
< p-1. If i#l, 0 € k < [2g/(p-1)]-m; If i =1, 1 £ k <
[2g/(p-1)]-m. n = 2g-(m+k) (p~-1). Op and Tr are the
cyclotomic and trivial representations of Zp. Conversely,
any py = (m+k)0'p®nTr can be equivalent to p =Mi for some
inclusion i: Zp = I'g.

Proof: On the one side, we calculate characteristic
number % of Py, Px = (m+k)0b€kﬂky xpk(Id)=(m+k)(p—1)+n=2g,
xpk(x) = (mt+k)+n = 2g~(m+k)p = 2-i-kp. Here <x> = Zp. On
the other side, by using Lefschetz fixed point theorem, for

any p=mi, xp(x) = 2~-t ez-Bg’p = {2-i-kpl, Xp(Id) = 2g.
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lemma 4.2.1 implies Xp = %p for some k and there exists Zp
k
representation p such that xp = xp for every k. Namely
k

Lemma 4.2.2 holds.

4.3. Basic number theory lemmas

Lemma 4.3.1. Let 2g-2 = mp-i, p an odd prime, 0 £ i £
p-1. If m < pY, then [2g/(p-1)] < prtl- pr,

Proof: Because of m < pY, we have 2g-2+i = mp < prtl,
or 2g/(p-1) < (pF*l+2)/(p-1). (pr+l+2)/(p-1) < pr+l-pr
since prtl+2 g pr+2-pr+l_pr+lypr, 4 .e, 3prtli2 < pr+24pr,
this is true since p 2 3, r 2 1.

Lemma 4.3.2, The integer n!/pf!(n-pf)! = k mod(p) if
kp¥f £ n < (k+1)pf, where 1 £ k < p-1.

Proof: We consider the integer n!/pT! (n-p¥)! as an
element of Fp , then do multiplication and division

operations in Fp as follows:

In fact, n!/pT!(n-pf)! = [(pT+1) /(1) ] [(pPT+2)/(2)]
[(PT+3)/(3)] == [(pT+p) /(P)] [(pT+p+l)/(p+1)] --- -
[ (pT+p2) /(p?)] =+ = [ (PT+PT) / (pT) ] [ (pT+pT+1) / (PT+1) ]

------ [ (pT+2pT) / (2pF) ] [(pT+2pT+1)/(2pT+1)] *+- -+
[ (pE+3pT) / (3pT)] === -+ [ (kpT) / (k=1)pT] -+ -+ [(n)/(n-pt)].
If i # 0 mod(p), then [(pF+i)/(i)] =1 in the field Fp.

If i = 0 mod(pS~1) and i #0 mod(pS), s £ r, then



69
[(p¥+i)/(1)] = 1 in the field Fp.
If i =mpf, m=20, 1, 2, = k-1, then [(p¥+i)/(1)] =
[(m+1) /(m)] in Fp.
So, n!/pT!(n-pr)! = [1][1]- - [(2) /(1)1 [(k)/ (k-1)]
= [k] in Fp, i.e. the integer n!/pT! (n-p¥)! =k mod(p)

where kpf € n < (k+1)pT.

\.4. The C} ] ] {al ¢ . ]
for p an odd prime.

For a complex representation p:G — GL(n,C) of discrete
group G the Chern classes Cj (p) € H21(G;2) are defined as
Chern classes of the flat CIl-bundle over K(G,1l) classified
by Bp: K(G,1) — BGL(n,C) [E,M].

In this section, we assume that p is an odd prime. Let

Cp

well-known that Chern classes ck(op) =0 if 1 £ k < p-1 and

be the rational cyclotomic representation of Zp. It is

cp_l(ob) has order p.

Proof of theorem 4.,1: a) If [2g/(p~1)] < pT, let
Px: Zp— Fg —GL(2g,C) be a representation corresponding
to pk = (m+k)0'p€9nTr, here 0 £ k £ [2g9/(p-1)]-m.

The total Chern class C satisfies C(pyk) = C(O'p)m+k
= [14cp-1(0p) 1™ = Toepqryy (m+k) 1/t (mrk-t)i[cp-1 (o) 1E.

Therefore, Cgpf) (Px) = (m+k) ! /pE~11 (m+k-pr=1) ¢

[Cp—l("p”pr_lr i*c(pT) M) = Co(pf) (PK) = (m+k)!/prTl
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1 # 0 mod(p) in H2¢(pr)(zp;Z) for

(m+k=pT~1) t [ep_1 (6,) IPT T
every inclusion i: Zp — Fg since m+k £ [2g/(p-1)] < pT by
lemma 4.3.1. By using the definition of the Yagita
invariant, p(Fé) divides 2pT~1l(p-1). Notice the notations
N* and i* as follows:

n* i*

H20(P)) (6L (2g,C);2) —» 2P (T ;2) — H20(P") (z.,;3).

b)If [2g/(p-1)] 2 PY,i*{[cg(pr) M) IP(P D +[cy pr+1) (M) P71}
[cp (pT) (Pk) 1P P~ +[cp (pr+1) (py) 1P-1

[(m+k)!/pr'll(m+k—pr‘1)!]P(P‘l)[cp_l(cp)]pr(P'l)

+[(m+k)!/pr!(m+k-pr)!]P"l[cp_l(cp)]pr(P‘l)_

Now, if m+k < pr, the second term above vanishes, and
the first term is nontrivial by lemma 4.3.2 since pr-1l <
m+k < pfT.

If m+k 2 pY, then m+k £ [2g/(p-1)] < pftl - pr by
lemma 4.3.1.

It implies (m+k)!/pT! (m+k~pT)! #0 mod(p), therefore,
the second term above always egquals 1 mod(p) and the first
term above is 0 or 1 mod(p). i.e. i*{[c¢(pr)(n)]P(P—1)
+[c¢(pr+l)(n)]P‘1} is of order p. By the definition of
Yagita invariant, p(Fé) divides 2pT(p-1)2.

The proof of corollary 4.2: This follows from theorem
4.1 and proposition 4.1.1.

Remark: The upper bounds of the p-period in cor. 4.2.
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are a litter bit rough. They can be improved by
individually computing the Chern classes of the homology
representation of Fg in same way.

Example: Consider the 3-periodic group I'3, z3 — I'5 an
inclusion, the number of possible fixed points are 2 or 5,
i.e. the associated representations are p; = Niq = 263€QTr
or pp = Miz = 303. But, i1*c2(N) = ca2(py) = c2(203@2Tr)

= 2¢2(03), i1*cg(M) = cg(p1) = cE(20382Tr) = 0.Therefore,

i1*{[ca (M 13+cg(M} = 2[c2(03)13 is nontrivial. Similarly,
iz*cp (M) = c2(py) = c2(303) = 3c2(03) = 0 mod(3), iz*cg(M)
= cg(pp) = cg(303) = [02(03)]3. So, iz*{[cz(n)]3+cs(n)} =
[02(63)]3 is nontrivial, i.e. the element [cz(n)]3+ce(n)
€ H12(Fg,Z) is nontrivial when restricted to every 2z3
subgroups. If we use canonical map from the Farrell-Tate
cohomology to ordinary cohomology, we obtain the upper
bound 12 of the 3-period of I'y by the Brown-Venkov theorem
[Brlao.

Comparing the upper bound given in the corollary 4.2
and the upper bound of the computation above. Now g = 3, p
=3, m=2, i=2,30<2<3l, sor=1, [2(3)/(3-1)] =3
satisfing b) in corollary 4.2. The upper bound 24 given by

corollary 4.2 is bigger than 12 given by our computation by

hand above.
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1.5. The CI ] ] {al e , ]
forp =2
The group Fg is never 2-periodic, however we still can
construct Chern class polynomials of mapping class groups

Fg which are nontrivial when restricted to every Z;

inclusion in ordinary cohomology.

Now p = 2, if g = odd, let Bg = {0, 4, 8, - 2g+2};
if g = even, let Bg = {2, 6, -+ 2g+2}. Similar to the
case p an odd prime, we have results as following:

Lemma 4.5.1. If <x> = Z5 acts on surface Sg, then the
number t of fixed points of x belongs to Bg. Conversely,
any number t €Bg can be realized as the number of fixed
points of an order 2 orientation preserving homeomorphism x
on the surface Sg-

Proof: Riemann Hurewitz formular 2g-2 = 2 (2Nn-2)
+2(1-1/2)t forces t = 2g-4M+2, which implies t € By.

Conversely, if t € Bg, then M= (2g+2-t)/4 is an
integer, and M 2 0. Write Zp = <x| x2 = 1> = <xq, x1°%,

X, xn_l, XN+1r X420 U Xq+t-1v x~(t-1) >, Here
xy = x, for 0 £ i < M+t-1. This shows that Zp acts on Sg.
Lemma 4.5.2. Let p=T1i: Zjp —aré.—e GL(2g,Q) be a

representation for any Z, inclusion. Then, if g is even, p
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is equivalent to p; =(g+21)0,@(g-2i)Tr; if g odd, p is
equivalent to p; = (g+2i-1)0,®(g-2i+1)Tr up to complex
representation. Here 0 < i £ g/2 or 0 £ i £ (g+1)/2, Oy is
the cyclotomic representation.

Conversely, p; can be realized from Zp as a subgroup
of Fg.
Proof: In fact, xp(id) = 2g, xp(x) = 2-t €2-Bp, g, the
set with element 2 minus the elements of Bp, g. And Xp, (id)
= 2qg, Xpi(x) = -(gt+2i)+(g-2i) = -4i or Xpi = —-(g+2i-1)
+(g-2i+1) = -4i+2, here 0 £ i1 £ g/2, or 0 £ i £ (g+1)/2,
then by lemma 4.5.1.

It is well-known that c0(02) = 1,c1(62) is of order 2
and ck(oz) = 0, if k > 1. Now we suppose 25-1 < g < 28,

The proof of theorem 4.3: In fact,

(g+21i-1) /25711 (g+21-1-25"1) 1=1 mod(2) if g+2i-1<2S.

(g+2i-1)1/25711 (g+2i-1-25"1) 1=0 mod(2) if g+2i-122S,

(g+2i) 1 /28~ 11 (g+2i-25"1) 1=1 mod (2) if g+2i<2S.

(g+2i) 1 /2811 (g+2i-28-1) 1=0 mod(2) if g+2i>2S.

(g+2i-1)1/25! (g+2i-1-25) I=0 mod(2) if g+2i-1<2S,

(g+2i-1) 1/251 (g+2i-1-25) !=1 mod(2) if g+2i-122S.

(g+21i) 1 /28! (g+2i-29) =0 mod(2) if g+2i<2S,

(g+2i)1/281 (g+21-28) 1=1 mod(2) if g+2i228S,.

So, for g an odd number, i*{[cys-1(MN)]2+cos(N)}

S
= [(g+2i-1)1/25711 (g+2i-1-25"1) 112[cq (0p) 1 2 +[ (g+2i-1) !/25!
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25 25
(g+2i-1-25)11[c1(05)1“ = [c1(05)]1“ mod(2).

For g an even number, i*{[czs—l(n)]2+c23(n)}

S
= [(g+21) 1725711 (g+2i-25"1) 112[cq (0,)1 2 +[ (g+21) 1 /25!

2° 2°
(g+2i-28) 1] [c1(0p) ] = [c1(0%)] mod (2) .

s+1
Those imply that [czs—l(n)]2+czs(n) eI{2 (Fg) may be

restricted nontrivially for every Z2 inclusion in Fg.
! 6 I] L] ] L ! I ] :: L I L3 s ! E ! ] L]
class group

By choosing a sequence of suitable mapping class
groups Fg which contain metacyclic subgroups with big
Yagita invariants(not p-periodic) and applying for theorem
4.1 we have interesting inequalities.

Theorem 4.4: Let g = pf~l(p-1) (p¥-1)/2+1-p%, r 2 2,

p 2 3. ¢ the Euler function. Then 2¢(pf) < p(Fg)
< 2¢(p2r—1)_

Proof: Since 2g-2 = pr~1l(p-1) (p¥-1)-2pF = -2p2r-1(p-1)
+p2T~1 (p-1) (1-1/p%) +2p2T~1 (p-1) (1-1/pF 1 (p-1)), the
proposition 2.1.1 shows that there exists a Zpr>42(p_1)pr—1
action on Sg with two order pr'l(p—l) and one order pT

T
singular points. In fact, Zpr>42(p_1)pr-1 = <X,y xP =1,

-1 r-1
y(P-1) P "= 1,yxy~1 = xf >, where r(P~1) P "= 1 mod(p¥).

Write Zper(p_l)pr-l =< X,¥Y, (XY)_l >.



75

Claim: p(ZprNZ(p_l)pr—l) is a multiple of 2¢(pT).
Consider the restriction i*: H2n(zpr>qz(p_1)pr—1;2) -
Hzn(Zpr;Z) - Hzn(zp;Z). For an element z EHzn(Zpr;Z),
there exists an element x eHzn(Zpr>4Z(p_1)pr—1;Z) such that
i*(x) = z only if z is a stable element (See chapter 1,
p.15). Denote <x> = Zpr, however, yxy~l = xT induces
y*zy*~l = rNz, z is stable if and only if n = 0 mod (@ (p¥))
since r®(PY) = 1 mod(pf). Therefore, P(2pr X2 (5-1)pr-1) is
a multiple of 2Q(p¥f), i.e. the Yagita invariant p(Fg) >
29 (pt) .

On the other hand, 2g-2 = pT¥~1(p-1) (p¥-1)-2pF = mp-i,
0£Li<p-l, r22, p2 3. This forces m = pr‘z(p—l)(pr-l)
_.2pr—1, i = 0. Then m = _zpr—l+p2r—1_p2r-2+pr—2_pr-1
= -3pr~l4p2r-1_p2r-24pr-2 > p2r-2, The last inequality
follows because of 2r-3 2 r-1, p2r—3 > pr-l, p2r-2 > 3pr-1,
therefore p2r~l4pr=2 = pp2r-24pr-2 > 2p2r-24p2r-2 > 2p2r-2
+3pT-1l, i.e. p2T"2 < m < 2g/(p-1) =pT~1l(pT-1)+2(1-p%)/ (p-1)

< p2r-1, By theorem 4.1, p(Ty) < 2@ (p2r-1y,



CHAPTER V
THE p-PERIOD OF A GROUP OF VIRTUAL FINITE

COHOMOLOGICAL DIMENSION

Swan showed the following result for finite groups:

Theorem (Swan) [Sw]

a) If the 2-sylow subgroup of G is cyclic, the
2-period is 2. If the 2-sylow subgroup of G is a
(generalized) quaternion group, the 2-period is 4.

b) Suppose p an odd prime and the p-sylow subgroup of
finite group G is cyclic. Let Sp denote a p-sylow subgroup
and Ap the group of automorphisms of Sp induced by inner
automorphism of G. Then the p-period of G is twice the
order of Ap.

Remark: The group Ap above is isomorphic to
N(Sp)/C(Sp), where N and C denote the normalizer and
centralizer of Sy in G.

Question: If I is a p-periodic group of finite wvcd,
are similar results still true at least with some

assumption about I'?
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In other words, is it possible to describe the p-period of
the group I' of finite ved by algebraic "non-homological"
invariant of group I' itself?
In Burgisser's thesis (1979) [Bu], he obtained the
following result:

If T has a finite p-periodic quotient M with torsion
free kernel, then the group I' is p-periodic and the p-
period of I divides the p-period of quotient M.

Our goal in this chapter is to generalize Swan's
results for finite group to the p-periodic group I' which
has a finite quotient whose p-Sylow subgroup is elementary
abelian or cyclic, and the kernel being torsion free, i.e.
the p-period of group I', which is an homological invariant,
will be completely determined as a non-homological
invariant of the group I' itself in these two cases.
Finally, an application will be made for calculating the

p-periods of mapping class groups.

5.1. The main results
Theorem 5.1. Let I' be a group which has a normal
subgroup of finite cohomological dimension so that the
associated quotient is a finite group with the elementary
abelian p-Sylow subgroup , then the p-period of I' is twice

the least common multiple of {|N(<x>)/C(<x>)|} where x
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ranges over the conjugacy classes of Zp subgroups of r.

Theorem 5.2. Let I' be a group which has a normal
subgroup of finite cohomological dimension so that the
associated quotient is a finite group with the cyclic p-
Sylow quotient, theﬂ the p-period of I' is twice the least
common multiple of {|N(<x>)/C(<x>)|} where x ranges over
the conjugacy classes of Zp subgroups of I.

Recall the set Bg,p from chapter IV,

Theorem 5.3. If the mapping class group Fg is
p-periodic and g < p(p~1)/2. Then the p-period of Fg =
~ 2LCM{gcd(p-1,bj)}, bj € Bg,p-

Lemma 5,1.1. Let H = <x,y IxP =1, y9 =1, yxy~ 1 = x>
where g = 0 or g # 0 mod(p). If d is the minimal positive
integer such that rd = 1 mod(p), then the p-period of H
equals 2d.

Proof: If gq # 0, H is a finite group, the proof is
immediate by Swan's theorem. Otherwise, if g = 0, H is
infinite and we look at the short exact sequence

1 - Zp - H—>2Z2 - 1.
The spectral sequence of Farrell-Tate cohomology converges
in the following way:
EoPrd = HP(2; H9(2p:2)) - HPYA(H;2).
This spectral sequence collapses since Hp(z;£IQ(Zp;Z)) =0

when p < 0 and p > 1. Therefore,
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& n-1 . ANy An .7y 2
1 - HM1(Zpi2), — HB(HiZ) = H"(2pi2)2 o1

is an exact sequence. By looking at the Z action given on
the subgroup Zp. Clearly ud ef}2d(zp;Z) is an invariant
element of the Z action on ﬁ[2d(zp;Z). Here u is a
generator of ﬁ[Z(zp,Z). Therefore, there exists an element
h ef-IZd(H;Z) such that Re Sgp (h) = ud # 0 on AHZd(Zp;Z) . By

Brown~Venkov theorem and caculations £[2kd(H;Z) = Zp,

H2kd+1(n;2) = 25, Hi(H;2) = 0 for other i's, the p-
period of H = 2d.

lemma 5.1.2. Let 2y be a normal subgroup of group I
which is of finite vcd, and let M be a finite quotient of I
with torsion free kernel. Then I'/Cr(Zp) = N[ (2p)/Cr(zp) =
NM(Zp) /CM(2Zp) = M/CM(2Zp) . Here we still use 2p to stand for
the image of Zp in M.

Proof: Let p:I' &M be the projection map. The map p
maps Nr(zp) onto NM(Zp) and Cri(zp) to Cm(Zp), so induced
map p*:N['(2p) /Cr(2p) — NM(2p) /CM(2p) is a well-defined
surjective homomorphism. Let <x> = Zps if yxy~l = xT, then
p(y)xp(y)~l = xF. i.e. p* is an injective.

Lemma 5.,1.3. Suppose a group M contains a cyclic
subgroup Zpn D 2Zp and |Nm(Zpn) /CM(Zpn) | is prime to p,
then the map induced by inclusion i*:NM(2pn)/CM(Zpn) —

NM(2p) /CMm(2Zp) is an injective homomorphism.
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Proof: Notice Ny(Zp) DNy(Zpn) and the inclusion i
maps CM(an) to CM(Zp), i.e. the induced map by inclusion
i*:NM(an)/CM(an) —>NM(Zp)/CM(Zp) is a well-defined

if

homomorphism. Now let <x> = Zpn, then <xpn~1> Z

pl
YECM(Zp) , yxy-1l = xK, then yxpn'ly-l = xkpn'1 = xpn'll so
(k-1)pP~1 = 0 mod(pR),i.e. k = 1 mod(p). Let k = Ap™41, A
is prime top and 1 s m < n, kd =1 mod(pl), d divides p-1

(Ap™+1)d = B+AdpM™+1 = 1 mod(ph),

by assumption. Hence kd
where pm2 divides B. This implies Ad = 0 mod(p), this is a
contradiction unless A = 0.

Lemma 5.1.4 (Swan) [Sw] Suppose the p-Sylow subgroup
Sp of a finite group M is abelian. Let Ap be the group of
automorphisms of Sp induced by inner automorphisms of M.
Then an element a EHi(Sp;Z) is stable if and only if it is
fixed under the action of Ap on Hi(Sp;Z).

Proof: See [Sw].

The proof of theorem 5.1: Brown's theorem states that
for T p-periodic f-l*(l";Z)(p) = HPjESf‘I*(N(Pi)7Z)(p)I where
S is the set of all conjugacy classes of Zp of I'. Therefore
the p-period of I' is nothing but the least common multiple
of the p-periods of N (P;) if the least common multiple
exists.

1) Lower bound. Let |Np(Pj)/Cr(Pj)| = dj, <x> = Pj.

There exists y €I, such that yxy-l = xT, rdi =1 mod(p) .
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Let H = <x,y> be a subgroup of I' generated by elements x
and y. Then the p-period of H = 2d; by lemma 5.1.1, i.e.
the p-period of Nr(Pj) is a multiple of 2dj.

2) Upper bound. Let p: I' = M be a projection onto the
finite elementary abelian p-Sylow quotient M, pj: Np(Pj) —
M; be the restriction map of p, Mj; is the image of pj.
Since the p-Sylow subgroup S, of Mj is elementary abelian,
and Mj = ImNp(Pj) = Nyq(Pij) normalizes Pj, the group Ap of

automorphisms of Sp induced by inner automorphisms of M;

fixes Pj.
Let u € Hz(Sp,Z) = Hom(P;X ZpX - - Zpr C*), u(x) =1
and u(y) =1 if <x> = P;j, <y> = Zp, then Resili’(u) = 0 in

Hz(Pi;Z). Now we claim that udi € HZdi(Sp;Z) is a stable
element. In fact, dj = Ny(Pj)/Cy(Pj) by lemma 5.1.2, and Ap
fixes the element udiEHZdi(Sp;Z) since Ny(Pj)/Cy(Pi) fixes
the element udi. By lemma 5.1.4 [Sw], wdi is a stable
element in Mj, i.e. there exists an element v € HZdi(Mi;Z)
such that Resl;,dii(v) = Resi‘i’(udi) = Resi‘i’(u)di = 0. If we
apply the canonical homomorphism g* from ordinary

cohomology to Farrell-Tate cohomology, we have

Re sMi (g*(v)) = ResP(g*(udi)) = ResP(g*(u))di = 0, i.e.

there exists an element p*g*(v) EE£12di(Nr(Pi);Z) such that

Rcsggm)‘P*g*(V’) # 0 in iIZdi(Pi7Z), by Brown-Venkov
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theorem [Br)]s and the fact that Nr(Pj) has only a order p

subgroup, the p-period of Nr(Pj) divides 2dj.

Res
H2di (Np(P;:2)) - H2di(p;;2)
p* ¢ Res Res f”
H2di(M;;2) — H2di(sp;z) — H2i(pi;2)
tllg* tllg* i
H2di(M;;2) — B2di(sp;z) - H2di(py;7)

Res Res

The proof of theorem 5.2 is basically a similar
argument except for the upper bound part. In fact, simply
using lemma 5.1.3 and Burgisser's and Swan's theorems, we
obtain the upper bound of the p-period of Np(Pj) as follows
the p-period of N (P;) divides the p-period of Mj, which is

2 |NM(Zpn)/Cy(Zpn) | = 2|Ny(Pi)/Cyq(Pi)| = 2|Np(Pi)/Cr(Pi)].

2,2, The proof of theorem 5.3

As an application of the theorem 5.1, we can exactly
obtain the p-periods of some p-periodic mapping class
groups.

Lemma 5.2.1. For the mapping class group Fg,

LCM{| (N(<x>)/C(<x>)|} = LCM{gcd(p-1,bj)}, where x ranges
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over all x El"g, xP =1, bj ranges over all bj EBg,p.
Proof: 1) Let |N(<x>)/C(<x>)| = d. Then there exists r
such that x~xT¥ ~...... ~xrd_1, where rd = 1 mod(p). The d
divides p-~1 obviously. Let bj = the number of fixed points
of x action on Fg, o(x) = (Bys Bys - Pp) fixed point datum.

Let us define the permutation r* on the (order)set

o(x), T*(By, Poror - Bp) = (xBys Ty, ... ... Bp) s (r*)2 =
(x2)* - -e (r*)9-1 = (rd-1)* 1t is well-defined since
o(x) = o(xt2) == o(xt9"l), We can decompose

r* = By Bigre oo Big) (Bipr Bigre Big) wovoon (Bkyr By

~-3ku)' a product of cyclic permutations. Notice, the
permutations r*, (r*)2,----- (r*)d"1 do not have fixed
points. otherwise, there exists f; such that rjﬁi = B3
mod(p), 1 = j s d-1. This forces rl =1 mod(p) and a
contradiction. But, of course, (r*)d =(rd)* = Id. These
imply s =t =----=u =4d, i.e. |N(<x>)/C(<x>)| = d divides
the number bj of fixed points of x action on the surface
Sg. We actually have shown LCM{ |N(<x>)/C(<x>)|} divides
LCM{gcd(p~1,bj)}, where x ranges over all x ETg, xP =1,
bj ranges over all bj €Bgq,p-

2) Conversely, Let gcd(p-1,b;j) = d. Then there is an
integer rGEZp such that d is a minimal non-negative integer

satisfying rd = 1 mod(p). If d = 1, consider the b; points

unordered set S = (1, r, r2, ------ rd'l, 1, r, r2, ------ rd'l,
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= 0 mod(p). There exists an element x ETg, xP = 1, and the
x's fixed point datum o(x) = S, i.e. the set S can be
realized as a fixed point datum of order p element in Fg.

2 d-1

Obviously, g(x) = g(xT) = o(xF°) == o(x ) or x mxT
- xL2 e - xrd-1 n Iy. This implies that d divides
|N(x)/C(x)]|.

If gcd(p-1,bj) = d = 1. For any order p element x in
[y with the number of fixed points bj, obviously 1 divides
|N(<x>)/C(<x>)]|.

If bj = 0, then gcd(p-1,bj) = p-1. On the other hand,
X acts on Syg freely. All order p free actions are conjugate
by [N] or [Ed], i.e. |N(<x>)/C(<x>)]|= p-1.

So, the LCM{gcd(p-1,bj)} divides LCM{|N(<x>)/C(<x>)]|}.

The proof of theorem 5.3: Let u: Fg — Sp(29,Z) be
the canonical homology representation and p: Sp(29,2) —
Sp(Zg,Fq) be the reduction map. Here q can be chosen a
primitive root of mod(p) such that g = 3, and qp'1 is not
congruent to 1 mod(p2)(by the Dirichlet theorem). Now
Ker(pu) = N is a torsion free, normal, finite index
subgroup of Fg and the finite quotient Fg/N = Sp(2g,Fq) has
only elementary abelian p-sylow subgroup if 2g < p(p-1).

Then we can use theorem 5.1 and lemma 5.2.1 to conclude our

theorem 5.3.
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Example: If p = 47, the 47-periods of Fg are obtained
for g < 1081 if Fg is p-periodic.

Notice that we have a complete display of the p-period
of Fg for all g, 2 £ g < 5, except for the 3-period of I3
which is only known 4 or 12.

Finally, we give the tables C.3, C.4 and C.5 in the
appendix C to list the p-periods of some mapping class
groups Fg in terms of the computer programs. For a pair
(g, p), 200 2 g 2 2, 233 2 p 2 3 , we enter one of the four
possible symbols: N = No p-torsion, X = Not p-priodic,
Number = The known p-period and U = Unknown (even though

p-periodical).



APPENDIX A
A NOTE ON THE PROJECTIVE CLASS GROUP OF THE
MAPPING CLASS GROUP

Let ng denote the integer group ring of the mapping
class group Fg. Recall that the reduced projective class
group Rb(z—) is a covariant functor from groups to abelian
groups [Bulsz.

Carter [Cal] and Burgisser [Bulj, separatly found some

nontrivial elements of reduced projective class groups

Ky (z6L(n,2)) and K (2SL(n,2)) in the 1980's. Their basic
common idea was to choose suitable finite subgroups G of
GL(n,Z) (or SL(n,Z)) and finite quotients Q of GL(n,Z) (or

SL(n,2)) such that the reduced projective class groups

Ky (2G) are nontrivially injected into K; (2Q) factoring
through K, (2GL(n,Z)) (or SL(n,2)).

As one more example of the fact that the mapping class
group shares many properties with the arithmetic group, we
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provide nontrivial elements of the reduced projective class
group Kb(ZF(p_l)/z) by studying the metacyclic subgroups
and the natural finite symplectic quotient group of the
mapping class group F(p—l)/z for p = 6k+1l prime.

Theorem A.l. If p = 6k+1l is a prime, the mapping class
group F(p—l)/z contain metacyclic groups G = ZpXR Z3 (semi-
direct product) such that the reduced projective class
groups Ko (2l (5-1)/2) 2 Indg Ky (2G) has the cyclic group of
order 3.

Denote G = ZpX 23, I'= F(p—l)/2' Q = Sp(p—l,Fq), where
p = 6k+1l prime. Take q 2 3 prime such that gP~l = 1 mod(p)
and gP~1 # 1 mod(p2) (Dirichlet theorem).

Proposition A.2. If p = 6k+l prime, the mapping class
group F(p-l)/z contains subgroup G = ZpX Z3 = <x,y|xP = 1,
y3 = 1,yxy"1 = x>, r3 = 1 mod(p),r # 1.

Proof: In fact, G = <x,y,(xy)‘1> and order (xy) = 3.
The Riemann~Hurwitz formula shows 2 (p-1)/2-2 = 3p(2(0)-2)
+3p(1-1/p) +2(3p) (1-1/3).

Consider the inclusion i:G — I, and the canonical
pfojection p:I’ > Q. Note that Ker(p) is a torsion-free

subgroup of I'. Therefore the composite map pi: G—Q is

injective and there is an induced map

Indg (Pi)=Ind(r2, (p) Indg (1): Ky (26) - Ky 2l - Ky (20).

Proposition A.3. Indg(Pi): Ko (z6) - Kp (2Q) 1is
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injective.
Proposition A.4. K; (26) o z3.

The theorem A.l follows from propositions A.2, A.3 and

The proof of proposition A.3 basically comes from
Carter's theorem 2 [Ca] which states the following: Let Q
be a finite group of order pm with p prime, m not divisible
by p. Let P be a sylow p-subgroup of Q, and N = No(P), the
normalizer of P in Q. Suppose NODG O P and that G is a
retract of N. Then there is a subgroup Hg of G such that G

= PN Hg (semi-direct) and Im(hdfb ) D Ker(hdg) .

Note Q| =ISp(p-1,Fq)| = qp(p-l)/znlsis(p_l)/z(qzi_l)

pm, where m not divisible by p.

Lemma A.5. Let P be the Sylow p-subgroup of finite
group Q = Sp(p-l,Fq) and N = Ng(P), the normalizer of P in
Q. Then G is a retract of N, i.e. there exists a
homomorphism r:N — G such that ri = Id:G =3 N —G.

Proof: Let Cg(P) be the centralizer of Zp in Q. There
is a short exact sequence: 1 = Cp(P) =3 Ng(P) — Z4 -1,
here 3 divides d and d divides p-1.

Now we claim that Cp(P) is a cyclic group. In fact,
GL(p-1,Fq) DSp(p-1,Fgq) = Q, Cgr(P) DCo(P). But Cgr(P) is
exactly the multiplicative group of the finite field Fglz]

by [Ca], <z> = P, hence cyclic. So Cqh(P) = Zp X Cpts Cp is
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the cyclic group of order prime to p. Therefore define the

1

map r : NQ(P) (Zp X va)x Zg 2 G = pr Z3 by r(z,c',s)

)]

= (z,s8'), s = s' mod(3). It is easy to check that r is a
retract.
Also, Hg = Z3. It is well-known that K, (223) = 0,

Im(Ind%G) = 0 implies Ker(mdz) = 0 by Carter, i.e.

Proposition A.3 holds.

The proposition A.4 actually is due to Galovich,
Reiner and Ullom [G,R,U]. For our case, their theorem
states that there is an epimorphism KO (zG) — K (8)
GBKO(ZZ3), whose kernel Dg(ZG) is a finite cyclic group of
order 3. Here S is the algebraic integer L, L is the unique
subfield of Q(®) such that (Q(®):L) = 3, ® is a primitive

p-th root of 1.



APPENDIX B
STRANGE p-TORSION IN THE MAPPING CLASS GROUPS

Connolly posed a concept "strange p-torsion" for a
group I' in 1986.

Definition. A group I' has strange p-torsion if

1) I’ does not contain p-torsion.

2) For some i, the cohomology group Hi(T;2) contains
p—-torsion.

In addition, a group I’ has very strange p-torsion if

1) T does not contain p-torsion.

2) There exists an integer Np, the cohomology groups
Hi([;2) contain p-torsion if i > Np.

Proposition B.1, If I' is a ved group (i.e. I has
virtually finite cohomological dimension n). Then I has

no very strange p-torsion.
A,
Proof: Let H1(I;Z) be Farrell-Tate cohomology groups.

R A YN A,
Then Hi(I';2) = H1(;2) if 1 > n = ved(I). H1(T;2) has

90
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p-torsion if and only if I has p-torsion [Br]. So I' has no
very strange p-torsion.

Obviously, a finite group G has even no strange
torsion.

Proposition B.2. There are at least (p-15)2/4 mapping
class groups Fg such that HZ(P‘l)(Fg;Z) contain p—torsion,
but Fg has strange p-torsion for p 2 17 prime.

Lemma. For p an odd prime, there exist exactly
(p-3)2/4 gaps, here we call g as a gap of p, if Fg does not
contain Zp-

Proof: By [G,M], Fg contains an element of prime
order p if and only if g is of the form g = up+v(p-1)/2,
(u,v) €2X2, u=20, v2-2and v -1,

List the gaps as following:

Table B.1l
v = =2: No
v =20: No
v = 2; No
v =4 p-2
v =6 p-3, 2p-3
v = 2i: p-i, 2p-i, 3p-i, ceeeceeee (i-1)p-i.

v =p-1: p-(p-1)/2, 2p=(p=1)/2, - e sreee" (p-3)p/2-(p-1)/2.
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table B.1l. (continued)

v = 1: No.

v = 3: (p-1)/2-1.

v = 5: (p-1)/2-2, p+(p-1)/2-2.

v = 2i+l: (p-1)/2-i,p+(p=1)/2-1i, -:oreeee- (i-1)p+(p-1) /2-i.
v = p-2: 2, pt+2, 2p+2, ceeeceees (p-7)p/2+2.

The total number of gaps = (p-3) (p-1)/8+(p-5) (p-3)/8

(p-3)2/4.

The proof of the proposition B.2: If g > 3(2) (p-1)

6 (p-1), HZ(P‘l)(Fg;Z) is independent of g by Harer's
stability theorem.

On the other hand, let g = p(p-3)/2 > (p-3)p/2-(p-1)/2
Fg contains Zp and it is easy to see by the Riemann-Hurwitz
formula that (p-3)p-2 = p(2MN-2)+t(p-1l) implies the fixed
points number t = p+2-2p(N+1l)/(p-1) = 2.
Let T be a generator of Z,, p= Ni a representation of

Zp under the composite of the inclusion i:Zp =15 (p-3)/2

and the canonical homology representation n:Fp(p_3)/2—+
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GL(p(p-3),Z). Note xp(Id) = p(p-3), xp(T) = 2~t = 2-2 =0,
Let xp= ereg + DY reds then m = p-3, n = 0, m+tn = p-3 is
prime to p, by prop.2 [G,M], cp-1(N) € HZ(P'l)(F(p_3)p/2;Z)
is an element of order a multiple of p. So HZ(P‘l)(Fg;Z)
contains an order p element only if g > 6(p-1). Because of
p(p-1)/2 > 6(p~1l) for p > 17, checking the table B.1l in
the lemma above , we actually find at least (p-15) (p-13)/8
+(p-15) (p-17) /8 = (p-15)2/4 mapping class groups Fé such
that Hz(p"l)(rg;Z) contain p-torsion, but Fg has no
p-torsion for p 2 17, i.e. there exist at least (p-15)2/4

mapping class groups Fg which have strange p-torsion.



APPENDIX C

TABLE C.1

THE p-TORSION GAPS OF MAPPING CLASS GROUPS

111.

I'g FOR p < 41
5.
4, 6, 7,
18, 19, 24,
. 4’ 5) 7’
16, 17, 20,
33, 34, 35,
4, 5, 6,
13, 14, 15,
26, 27, 28,
38, 39, 43,
54, 55, 60,
77, 78,

79,

21,
41,

19,
29,

61,
87,

22,
46,

20,
30,
45,
62,
94,

13,
39.

10,
23,
47,

10,
21,
31,
46,
63,
95,



Table C.1 (continued)

p= 19:

2,
11,
22,
32,
44,
60,
78,
98,

p= 23:

10,
19,
30,
40,
52,
63,
76,
94,
107,
128,
151,
186,

p= 29:

10,
19,
27,
38,

3,
12,
23,
33,
48,
61,
79,

105,

12,
20,
31,
41,
53,
64,
81,
95,
108,
129,
152,
196,

11,
20,
31,
39,

4,
13,
24,
34,
49,
62,
80,

106,

4,
13,
21,
32,
42,
54,
65,
82,
96,

109,
130,
153,
197,

12,
21,
32,
40,

14,
25,
35,
50,
67,
86,
107,

S5,
14,
25,
35,
43,
58,
71,
83,
97,
117,
131,
163,
219.

13,
22,
33,
41,

15,
26,
40,
51,
68,
87,
116,

6,
15,
26,
36,
48,
99,
72,
84,

98,
118,
140,
164,

15,
23,
34,
44,

16,
29,
41,
52,
69,
88,
124,

7,
16,
27,
37,
49,
60,
73,
85,

104,

119,
141,
173,

16,
24,
35,
45,

17,
30,
42,
53,
70,
89,
125,

8,
17,
28,
38,
50,
61,
74,
86,

105,
120,
142,
174,

17,
25,
36,
46,

10,
21,
31,
43,
59,
71,
97,
143.

18,
29,
39,
51,
62,
75,
87,
106,
127,
150,
175,

18,
26,
37,
47,

95



Table C.1 (continued)

48,

60,

68,

79,

92,
104,
118,
131,
139,
160,
176,
191,
208,
234,
251,
292,
363.

p= 31:
2,
10,
19,
27,
38,
48,

56,

79,
87,
100,
112,
126,
134,

49,
61,
69,
80,
93,
105,
119,
132,
147,
161,
177,
192,
209,
235,
263,
293,

11,
20,
28,
39,
49,
57,
80,
88,
101,
113,
127,
140,

50,
62,
73,
81,
94,
106,
120,
133,
148,
162,
178,
193,
218,
236,
264,
305,

12,
21,
29,
40,
50,
58,
81,
89,
102,
114,
128,
141,

51,
63,
74,
82,
95,
107,
121,
134,
149,
163,
179,
194,
219,
237,
265,
306,

13,
22,
33,
41,
51,
99,
82,
95,
103,
115,
129,
142,

52,
64,
75,
83,
96,
108,
122,
135,
150,
164,
180,
195,
220,
247,
276,
307,

14,
23,
34,
42,
52,
72,
83,
96,
104,
116,
130,
143,

53,
65,
76,
89,
97,
109,
123,
136,
151,
165,
181,
205,
221,
248,
277,
321,

16,
24,
35,
43,
53,
73,
84,
97,
109,
117,
131,
144,

54,

66,

77,

90,
102,
110,
124,
137,
152,
166,
189,
206,
222,
249,
278,
334,

17,
25,
36,
44,
54,
74,
85,
98,
110,
118,
132,
145,

55,
67,
78,
91,
103,
111,
125,
138,
153,
167,
190,
207,
223,
250,
279,
335,

18,
26,
37,
47,
55,
78,
86,
99,
111,
119,
133,
146,

96



Table C.1 (continued)

147,
162,
176,
192,
207,
224,
250,
267,
296,
327,
374,

p= 37:

2,
10,
19,
27,
35,
46,
56,
64,
76,
84,
95,

103,
116,
124,
136,
150,
158,
171,
179,

148,
163,
177,
193,
208,
233,
251,
268,
297,
328,
388,

11,
20,
28,
39,
47,
57,
65,
77,
85,
96,
104,
117,
125,
137,
151,
159,
172,
187,

149,
164,
178,
194,
209,
234,
252,
269,
298,
329,
389,

12,
21,
29,
40,
48,
58,
66,
78,
86,
97,
105,
118,
130,
138,
152,
160,
173,
188,

157,
171,
179,
202,
219,
235,
253,
281,
299,
343,
419.

13,
22,
30,
41,
49,
59,
67,
79,
87,
98,
106,
119,
131,
139,
153,
161,
174,
189,

158,
172,
188,
203,
220,
236,
254,
282,
312,
344,

14,
23,
31,
42,
50,
60,
68,
80,
88,
99,
107,
120,
132,
140,
154,
167,
175,
190,

159,
173,
189,
204,
221,
237,
264,
283,
313,
357,

15,
24,
32,
43,
51,
61,
69,
81,
89,
100,
113,
121,
133,
141,
155,
168,
176,
191,

160,
174,
190,
205,
222,
238,
265,
284,
314,
358,

16,
25,
33,
44,
52,
62,
70,
82,
93,

101,

114,

122,

134,

142,

156,

169,

177,

192,

161,
175,
191,
206,
223,
239,
266,
295,
326,
359,

17,
26,
34,
45,
53,
63,
71,
83,
94,
102,
115,
123,
135,
143,
157,
170,
178,
193,

97



Table C.1 (continued)

194, 195, 196, 197, 204, 205, 206, 207,
208, 209, 210, 211, 212, 213, 214, 215,
224, 225, 226, 227, 228, 229, 230, 231,
232, 233, 241, 242, 243, 244, 245, 246,
247, 248, 249, 2580, 251, 261, 262, 263,
264, 265, 266, 267, 268, 269, 278, 279,
280, 281, 282, 283, 284, 285, 286, 287,
298, 299, 300, 301, 302, 303, 304, 305,
315, 316, 317, 318, 319, 320, 321, 322,
323, 335, 336, 337, 338, 339, 340, 341,
352, 353, 354, 355, 356, 357, 358, 359,
372, 373, 374, 375, 376, 377, 389, 390,
391, 392, 393, 394, 395 409, 410, 411,
412, 413, 426, 427, 428, 429, 430, 431,
446, 447, 448, 449, 463, 464, 465, 466,
467, 483, 484, 485, 500, 501, 502, 503,
520, 521, 837, 538, 539, 5857, 574, 575,
611.

p= 41:

2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79,
84, 85, 86, 87, 88, 89, 90, 9,
92, 93, 94, 95, 96, 97, 98, 99,
103, 104, 105, 106, 107, 108, 109, 110,
111, 112, 113, 114, 115, 116, 117, 118§,



Table C.1 (continued)

119, 125,
132, 133,
144, 145,
152, 153,
166, 167,
174, 175,
187, 188,
195, 196,
210, 211,
218, 219,
232, 233,
248, 249,
256, 257,
271, 272,
279, 289,
296, 297,
312, 313,
330, 331,
338, 339,
355, 356,
374, 375,
392, 393,
412, 413,
431, 432,
439, 453,
472, 473,
494, 495,
515, 516,
538, 539,
576, 577,
509, 617,
658, 659,

759.

126,
134,
148,
154,
168,
178,
189,
197,
212,
228,
234,
250,
258,
273,
290,
298,
314,
332,
349,
357,
3786,
394,
414,
433,
454,
474,
496,
517,
554,
578,
618,
677,

127,
135,
147,
155,
169,
177,
190,
198,
213,
227,
235,
251,
259,
274,
291,
299,
315,
333,
350,
358,
377,
395,
415,
434,
455,
475,

497,

518,
555,
579,
619,
678,

128,
136,
148,
156,
170,
178,
191,
199,
214,
228,
236,
252,
267,
275,
292,
308,
316,
334,
351,
359,
378,
396,
416,
435,
456,
476,
498,
519,
556,
595,
636,
679,

129,
137,
149,
157,
171,
179,
192,
207,
215,
229,
237,
253,
268,
276,
293,
309,
317,
335,
352,
371,
379,
397,
417,
436,
457,
477,
499,
535,
557,
596,
637,
699,

130,
138,
150,
158,
172,
185,
193,
208,
216,
230,
238,
254,
269,
277,
294,
310,
318,
336,
353,
372,
390,
398,
418,
437,
458,
478,
513,
536,
558,
597,
638,
718,

131,
139,
151,
159,
173,
186,
194,
209,
217,
231,
239,
255,
270,
278,
295,
311,
319,
337,
354,
373,
391,
399,
419,
438,
459,
479,
514,
537,
559,
598,
639,
719,

99



LIST OF THE ALL GENUS g = kp+1 OF MAPPING

CLASS GROUPS I'q WHICH HAVE p-PERIODICITY

309

118
274
521

18
154
324
477

22

23
144
419

27
131
287
586

35
171
341
494

29

34
177

40
183
352
599

52
188
358
511

TABLE C.2

FOR p < 41

56 67
188 199
53 79
196 209
365 417
755

69 86
205 222
375 426
596 613

78
254

92
248
430

103
239
443
630

89
298

105
261
443

137
307
460
647

100



Table C.2 (continued)

715
919
1293

p=19

20
172
305
533
742
932
1160
1483
1844
2699

24
185
369
599
806
967
1220
1450
1726
1979
2393
2715
3198
3727
4509

732
1004
1310

39
191
381
552
761
951

1255
1502
1977

47
208
392
622
829
1082
1312
1473
1841
2140
2416
2738
3221
3750
5015

749
1021
1327

58
210
400
571
780
970
1274
1616
1996

70
254
415
645
852
1105
1335
1611
1864
2163
2439
2899
3244
3957

766
1038
1463

77
229
419
590
799
989
1293
1635
2015

93
277
438
668
875

1128
1358
1634
1887
2186
2462
2922
3428
3980

783
1055
1582

96
248
438
609
818
1103
1312
1654
2186

116
300
461
691
898
1151
1381
1657
1910
2209
2485
2945
3451
4003

885
1174
1599

115
267
457
628
894
1122
1331
1673
2338

139
323
553
714

921
1174
1404
1680
1933
2232
2669
2968
3474
4256

101

902
1191
1871

134
286
476
647
913
1141
1464
1825
2357

162
346
576
783
944
1197
1427
1703
1956
2370
2692
2991
3497
4486



Table C.2 (continued)

p= 29

30
233
465
668
958
1161
1422
1741
1944
2234
2582
2785
3104
3481
3829
4235
4612
4815
5453
5917
6352
6845
7628
8469
10499

p= 31
32
249
497
714

59
262
494
697
987
1248
1451
1770
1973
2263
2611
2930
3133
3510
3858
4264
4641
5076
5482
5946
6381
7135
7657
8817

63
280
528
745

88
291
523
726
1016
1277
1480
1799
2089
2292
2640
2959
3162
3539
3887
4293
4670
5105
5511
5975
6410
7164
7976
8846

94
311
559
776

117
320
5562
755
1045
1306
1509
1828
2118
2321
2669
2988
3191
3568
3916
4322
4699
5134
5540
6004
6439
7193
8005
8875

125
342
590
807

146
349
581
871
1074
1335
1538
1857
2147
2350
2698
3017
3394
3597
3945
4351
4728
5163
5569
6033
6758
7222
8034
9281

156
373
621
838

175

407

610

900
1103
1364
1567
1886
2176
2379
2727
3046
3423
3771
3974
4380
4757
5192
5598
6294
6787
7251
8063
9658

187
404
652
869

102

204

436

639

929
1132
1393
1712
1915
2205
2553
2756
3075
3452
3800
4003
4409
4786
5221
5627
6323
6816
7599
8440
9687

218
466
683
993
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Table C.2 (continued)

1024 1055 1086 1117 1148 1179 1210
1241 1272 1303 1334 1427 1458 1489
1520 1551 1582 1613 1644 1675 1706
1737 1768 1799 1954 1985 2016 2047
2078 2109 2140 2171 2202 2233 2264
2388 2419 2450 2481 2512 2543 2574
2605 2636 2667 2698 2729 2915 2946
2977 3008 3039 3070 3101 3132 3163
3194 3349 3380 3411 3442 3473 3504
3535 3566 3597 3628 3659 3876 3907
3938 3969 4000 4031 4062 4093 4124
4310 4341 4372 4403 4434 4465 4496
4527 4558 4589 4837 4868 4899 4930
4961 4992 5023 5054 5271 5302 5333
5364 5395 5426 5457 5488 5519 5798
5829 5860 5891 5922 5953 5984 6232
6263 6294 6325 6356 6387 6418 6449
6759 6790 6821 6852 6883 6914 7193
7224 7255 7286 7317 7348 7379 7720
7751 7782 7813 7844 8154 8185 8216
8247 8278 8309 8681 8712 8743 8774
9115 9146 9177 9208 9239 9642 9673
9704 10076 10107 10138 10169 10603 10634
11037 11068 11099 11564 11998 12029 12959

p= 37
38 75 112 149 186 223 260
297 334 371 408 445 482 519
556 593 667 704 741 778 815

852 889 926 963 1000 1037 1074
1111 1148 1185 1222 1259 1407 1444
1481 1518 1555 1592 1629 1666 1703



Table C.2 (continued)

1740
2073
2332
2591
2998
3257
3627
3886
4330
4589
4996
5255
5736
6180
6439
6957
7216
7697
8252
8511
9029
9621
9880
10435
11064
11656
11915
12581
13210
13913
14579
15763
16540

1777
2110
2369
2776
3035
3405
3664
3923
4367
4774
5033
5514
5773
6217
6476
6994
7253
7734
8289
8548
9066
9658

9917

10472
11101
11693
12359
12988
13247
14357
15097
15800
16577

1814
2147
2406
2813
3072
3442
3701
4145
4404
4811
5070
5551
5810
6254
6513
7031
7512
7771
8326
8585
9103
9695

10250

10509
11138
11730
12396
13025
13728
14394
15134
15837
17095

1851
2184
2443
2850
3109
3479
3738
4182
4441
4848
5107
5588
5847
6291
6550
7068
7549
7808
8363
8881
9140
9732

10287

10546
11175
11767
12433
13062
13765
14431
15171
15874
17132

1888
2221
2480
2887
3146
3516
3775
4219
4478
4885
5144
5625
5884
6328
6587
7105
7586
7845
8400
8918
9177
9769
10324
10583
11212
11804
12470
13099
13802
14468
15208
15911
17169

1925
2258
2517
2924
3183
3553
3812
4256
4515
4922
5181
5662
5921
6365
6883
7142
7623
7882
8437
8955
9214
9806
10361
10990
11249
11841
12507
13136
13839
14505
156245
16466
17206

104

2036
2295
2554
2961
3220
3590
3849
4293
4552
4959
5218
5699
6143
6402
6920
7179
7660
7919
8474
8992
9251
9843
10398
11027
11619
11878
12544
13173
13876
14542
15726
16503
17243
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Table C.2 (continued)

17835 17872 17909 18464 18501 18538 18575
19204 19241 19833 19870 19907 20573 21202
21239 22571

p= 41
42 83 124 165 206 247 288
329 370 411 452 493 534 575
616 657 698 739 821 862 903

944 985 1026 1067 1108 1149 1190
1231 1272 1313 1354 1395 1436 1477
1518 15659 1723 1764 1805 1846 1887
1928 1969 2010 2051 2092 2133 2174
2215 2256 2297 2338 2379 2502 2543
2584 2625 2666 2707 2748 2789 2830
2871 2912 2953 2994 3035 3076 3117
3158 3199 = 3404 3445 3486 3527 3568
3609 3650 3691 3732 3773 3814 3855
3896 3937 3978 4019 4183 4224 4265
4306 4347 4388 4429 4470 4511 4552
4593 4634 4675 4716 4757 4798 4839
5085 5126 5167 5208 5249 5290 5331
5372 5413 5454 5495 5536 5577 5618
5659 5864 5905 5946 5987 6028 6069
6110 6151 6192 6233 6274 6315 6356
6397 6438 6479 6766 6807 6848 6889
6930 6971 7012 7053 7094 7135 7176
7217 7258 7299 7545 7586 7627 7668
7709 7750 7791 7832 7873 7914 7955
7996 8037 8078 8119 8447 8488 8529
8570 8611 8652 8693 8734 8775 8816
8857 8898 8939 9226 9267 9308 9349
9390 9431 9472 9513 9554 9595 9636
9677 9718 9759 10128 10169 10210 10251



Table C.2 (continued)

10292
10579
111583
11809
12096
12711
12998
13695
14351
14638
15376
16073
16852
17139
17877
18697
19476
20337
21157
22059
23576
24478
26118
28619

10333
10907
11194
11850
12137
12752
13039
13736
14392
14679
15417
16114
16893
17631
17918
18738
19517
20378
21198
22674
23617
24519
26159
29398

10374
10948
11235
11891
12178
12793
13490
13777
14433
15171
15458
16155
16934
17672
17959

- 18779

19558
20419
21239
22715
23658
25257
26938
29439

10415
10989
11276
11932
12219
12834
13531

13818
14474
16212
15499
16196
16975
17713
18533
19312
19599
20993
21895
22756
23699
25298
26979
31079

10456
11030
11317
11973
12588
12875
13572
13859
14515
15253
15950
16237
17016
17754
18574
19353
20214
21034
21936
22797
24355
25339
27717

10497
11071
11358
12014
12629
12916
13613
14269
14556
15294
15991
16278
17057
17795
18615
19394
20255
21075
21977
22838
24396
26036
27758

106

10538
11112
11399
12055
12670
12957
13654
14310
14597
15335
16032
16319
17098
17836
18656
19435
20296
21116
22018
22879
24437
26077
27799



TABLE C.3

THE p-PERIODS OF MAPPING CLASS GROUPS I'g

FOR g < 200 AND p < 61

p= 3 57 111317192329 31 37 41 43 47 53 59 61

g=2: 4 2 N NNNNNNNNNNNNNN
g=3: UNGB NNNNNNNNNNNNNN

g=4: X 8 NN NNNNNNNNNNINNNN

g=10: X U 6 4 NN NNNNNNNNNDNNN
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"N = No p-torsion, X = Not p-periodic, U = Unknown.




Table C.3 (continued)

p= 3 57 1113171923 29

31

37 41 43 47 53 59 61

g=11: U UN 4 NNN 2 N
g=12: U 81220 8 N N N N
g=13: X U 4 N 4 N N NN
g=14: U U 4 N24 N N N 2
g=15: U U X110 N N N N N
g=16: X X 2 2 N 8 N N N
g=17: U U 6 N N 4 N NN
g=18: U U 4 N 2324 N N
g=19: X U112 N 6 N 4 N N
g=20: U U 4 4 N N36 N N
g=21: U X U 4 NN N NN
g=22: X U U 4 NNN 4N

g=23: U U U20 N NN 4 N

N

N NNNNN

6 NN NNN

N

N

N NNNNNN

N2 NNNN

N N6 NNN

N

N

N NNNNNN

N NNZ2NNINN

g=24: U U UN12 2 N4 N NN NNNNNN

g=25: X UU 28 2NN NNNNNNNNINN

108
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Table C.3 (continued)

p= 3 57 111317192329 31 37 4143 47 53 59 61

g=26: U X U110 4 NN NNNNNNNZ2NN
g=27: U U U 224 N2 NN NNNNNNNN
g=28: X U UNN NB6 NS8NNNNNNNINN
g=29: U UUNN NNNJ4NNNNNNZ2N
g=30: U U124 2 N N N5 4 NN NNNNG6
g=31: X XU 42 NNNNJ4NNNNNNN
g=32: U U U 46 4 NNNGBG60 NN NNNNNN
g=33: U U U4 N 8N2NNNNNNNNN
g=34: X U U200 N4 N2 NN NNNNNNN
g=35: U U U 2 N32 NNNNNNNNINNNN
g=36: U X X 2 8 N12 NN N8 NNNN NN
g=37: X U U1012 N 4 NN N4 NNNNNN
g=38: U U U 2 8 N4 NNN72NINNNNN

g=39: U U U N 4 N3 NN NNNNNNNN



Table C.3 (continued)

110

p= 3 57 111317192329 31 37 41 43 47 53 59 61
g=40: X UU 20242 N NN N NB8NNNINNINN
g=41: U XU 4 N2N NNNNJ4NNNNN
g=42: U UU 46 2 NN 2 NN B84 NNNN
g=43: X U X 42 NNNZ2 NN N4 NNNN
g=44: U U U 4 2 NN 4 NNNN NS NNNN
g=45: U U U X6 N2 4 NIO NN NNNINNN
g=46: X X U2 NN2 4 N6 NNNJ4NNN
g=47: U U U 2 NN G644 NNNNNU4NNN
g=48: U U 1210416 N N N N N N N 922 N N N
g=49: X UU 2 84 NNNNNNNNNNN
g=50: U U X 412 8 N NN NNNN NNNN
g=51: U X U20 8 4 N NNNNNNNNNN
g=52: X U U 4 4322 NNNNNI NN N B8 NN
g=53: U UU 424 NN NNNNNNN4NN
g=54: U U U 4 2 N4 NNNZ2NNN1I4N N
g=55: X UUU®6 N12 2 NN 6 N NN NNN
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Table C.3 (continued)

p= 3 57 111317192329 31 37 4143 47 53 59 61

g=56: U X U U2 2 424 NNNNNNNN
g=57: U U X U2 2 42 8NNNNNNNN
g=58: X U U U 6 236 N4 NNNINININN4N
g=59: U U U UN2 NN NS NNNNNN4N
g=60: U U U U24 N N N N12 N 10 N N Ni16 8
g=61: X X U U 4 NNNNJ4N 2 NNNN4
g=62: U U U U8 NNNNJ4NNNNN Ni120
g=63: U U U U112 N18 N NGO N N 2 N N N N
g=64: X U X U8 42 NNNNINUIGBNNNN

g=65: U U U U 416 2 N N NN NNNNNN

g=67: X U U U2 8NA4NNNNNNNNN
g=68: U U U U6 4 N4 NNNNNNNNN
g=69: U U U U232 N4 NNNN NNZ2NNN

g=70: X U U U 2 NN 414 N NN NZ2NNN



Table C.3 (continued)

112

p= 3 57 111317192329 3137 4143 47 53 59 61
g=71: U X UU®B6 NN N2NNNNNNNN
g=72: U U U U 424 N2N12NNNNNN
g=73: X UU U2 2 4 NNNZBNNNNNN
g=74: U U U U 4212 NNN4NNNNNN
g=75: U U U U 824 NNZ272NNNNNN
g=76: X X U U112 2 4 N N10 N N NN NN N
g=77: U U U U 8 N3 2N6NNNNNNN
g=78: UU X UUN N2 NNNNNNZ2NN
g=79: X UUUUN N2NNNNNNZ2NN
g=80: U U U UUS8 N2NNNJ4NNNNN
g=81: UX U UU4 2 NNNNZBNNNNN
g=82: X U U U U1618 N NN N4 N NN NN
g=83: UU U U U4 2 NNNNBSB NNNNN
g=84: U U U U U8 2 N8NNNI12NNNN
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Table C.3 (continued)

p= 3 57 111317192329 31 37 41 43 47 53 59 61

UXUU4 6 N4 NNNJ4NNNN

XUUU32NNZ BNNNI4NNNN
g=87: U U UUUN NNNI4NNNSB NNZ2N

UUUUZ2NU45 N NNNNNZ2N

UUUUZ2NA4NNNNNNNNN
g=90: U U U20U 212 4 N 4 2 NN N N N 10
g=91: X X U U U2 4 4 N12 2 NN N NN 6
g=92: U U X UU2 44 N46 NNA4NNN
g=93: U U U U U 21244 N 4 N NN 4 N NN
g=94: X U U UUN 4 N NG60 NN NNUJ4NNN
g=95: U U U UUNZ4NNNNNNOI92 N NN
g=96: U X U U U 433 NNNNNNINNNNN
g=97: X U U U U8 NNNNNNNNNNN
g=98: U U U UU4 NN2NNNNNNNN

g=99: U U X U U1622214 N N NN NNNN
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Table C.3 (continued)

p= 3 5§ 7 111317192329 3137 4143 47 53 59 61

g=100: X U U U U 4 22 2 NN2NNNNN
g=101: U X U U U 818 2 2 N N10O N N N N N
g=102: U U U U U 4 2 2 NN N2 NNNNN
g=103: X U U U U332 22 NNNNNINNNNN
g=104: U U U U U 2 6 NNNNNNN4NN
g=105: U U U U U 2 N NNB6NN14 N 8 NN
g=106: X X X U U 2 NNNZ2NNZ2NU4NN
g=107: U U U U U 2 N N N10 N N 6 N104 N N
g=108: U U U U U 2 4 NN 6 8 NNNNNN
g=109: X U U U U 212 N N N12 N N NN NN
g=110: U U U U U 2 4 4 NN B8 NNNNNN
g=111: U X U X UN 4 4 NNJ4NNNNNINN
g=112: X U U U U 3212 4 4 N72 N N N N N N
g=113: U U X U U 4 4 4 8 N NNINNNNN

g=114: U U U U U 8 4 4 4 N N NNNNNN



Table C.3 (continued)

115

p= 3 57 1113171923 29 31 37 41 43 47 53 59 61
g=115: UU 436 48 NNNNZ2NNN
g=116: UU16 N4 4 N N NN 2 N4 N
g=117: UU46 N5 NNNNZ2N4N
g=118: UUB82NNNRNNNNINNA4N
g=119: UU4 2NN NNNNNNNIiIIE6N
g=120: UU X188 N N20 N 16 N N N N 12
g=121: UU222N 4N4NNNINNS
g=122 : X U2 222N12 N 8 N N N N 4
g=123: UU26 2 N4N4 NNN N120
g=124 : UU2NZ2N4NS8 NNNNINN
g=125: UU2N2N60NNNNNNN
g=126: UU2 422 N1 N4 NNNN
g=127 : UU24N2N2N12NNNN
g=128 : UU 412 N14 N 2 N 4 N N N N
g=129 : UU32 4 N2NUG6N4NNNN



Table C.3 (continued)

p= 3 57 11

116

1317 19 23 29 31 37 41 43 47 53 59 61

g=130: X U U‘ U
g=131: U X U U
g=132: U U U U
g=133: X U U U
g=134: U U X U
g=135: U U U U
g=136: X X U U
g=137: U U U U
g=138: U U U U
g=139: X U U U
g=140: U U U 20
g=141: U X X U
g=142: X U U U
g=143: U U U U

U4 4 N2 NNNS84 N

U

24

812 N N N

4 4 4 N N

U166 4 4 N N

U

U

U

U

U

U

U

U

43 4 NN

N N NN

N NNN

N NNN

N N NN

N

N

N

N

8 24 N2NNNNNNN

U6 4 NG6NNNNNNN

U2 4 N2NNNNNNN

U2 4 N1IO NN N 4 N NN

U118 44 N 6

U2 N 8N

U2 N 4N

U6 N 8N

UNZ2 4 N

U336 2 8 N

N NN 4 NNN

N2 N4 NNN

N2 N4NNN

N 10 N 92 N N N

N2 NN NNNN

4 NNNNNN
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Table C.3 (contipued)

p= 3 57 1113171923 29 31 37 41 43 47 53 59 61

g=145: X U U U U U 422 4 N8 NNNN 2N
g=146: U X U U U U 4 25 N12 N N N N 2 N
g=147: U U U U U U122 NNB8NGBNN2N
g=148: X U X U U U 4 2 N N4 N1 NN N N
g=149: U U U UU U4 2NN72N2NNNN
g=150: U U U U U U12 N N12N N 6 N N N 2
g=151: X X U UU U 4 NN20N N NN N N 10
g=152: U U U U UU4 NN4NNNNNNSG®6
1 g=153: UU UUUUXNNI2NNNNNNN
g=154: X UU UUU2424NNNNNNN
g=155: U U X U U U 6 424 NNNNNNN
g=156: U X U U U U 2 4 260N N NN 8 NN
g=157: X U U U X U2 414 NN NNN 4 NN
g=158: U U U U U U118 4 2 NN N NN 8 N N
g=159: U U UU UU242NNNNNZ4NN

g=160: X U U U U U 2 4 NN N20N N104 N N
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Table C.3 (continued)

p= 3 57 111317192329 31 37 4143 47 53 59 61

g=161: U X U U U U 6 4 NN N16 N 2 N N N
g=162: U U X U U U 44 N N 2 4 N2 N N N
g=163: X U U U U U336 N N N18 8 N 2 N N N
g=164: U U U U U U 4 NN N24 N2 NNN
g=165: U U U U U U 4 2 N 2 280 N N N N N
g=166: X X U X U U112 2 N 2 6 NN NN NN
g=167: U U U U U U 4 2 N6 NNNNNNN
g=168: U U U U U U 42228 2 N N4 N NNN
g=169: X U X U U U122 2 810 N N 4 N N NN
g=170: U U U U X U 4 2 4 6 N N12 N N NN
g=171: U X U U U U U2 8NN NNZ4NNNN
g=172 :‘ XUUUUUU24NNN4NNNN
g=173: U U U U U U UNBS8NNNDNS88NNNN
g=174: U U U U U UUNJ4NNNNNNA4N

g=175: X U U U U U U NS5 NNNNNN 4N
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Table C.3 (continued)

p= 3 57 111317192329 31 37 4143 47 53 59 61

g=176: U X X U U U U 4 NNNNNNNA4N
g=177: U U U U U U U 4 N NNNNNN4N
g=178: X U U U U U U 4 NN NNN N N116 N
g=179: U U U U UUU4 NNNNNNNINNN
g=180: U U U U U U U 4 N 424 2 NN NN 8
g=181: X X U U U U U 4 N12 4 2 N N N N 12
g=182: U U U U U U U 4 220 8 2 NN 2 N 8
g=183: U U X U U U U 4 2 41210 N N 2 N 4
g=184: X U U U U U U 4 212 8 2 N 4 2 N120

U44 2 4 4 NN 4 2 N N

cC
cC

g=185: U U U U

g=186: U X U U UN114 472 NN 4 N NN

Cc C
cC

g=187: X UU UUUU2260 NNNUJ4NNN
g=188: U U U UUUU 22 NNNNJ4NNN
g=189: U U UUUUU2 NNNNZ29 NNN

g=190: X U X U U U U2 NNNNUGBGNNNN



Table C.3 (continued)

120

p= 3 57 111317192329 3137 4143 47 53 59 61
g=191: U X U U U U U22N N N N14 N N N N
g=192: U U U U UUU2NNNNZ2NNNN
g=193: X U U U U U U2 NN NNNGBNNNN
g=194: U U U U U U U2 NN NNNNNNNN
g=195: U U U U U U U2 N3O NNNNNNN
g=196: X X U U U U UNUBS82NNNNNNN
g=197: U U X U U U U N28 2 NN NNN NN
g=198: U U U U U U U 4 86 2 NNNNNN
g=199: X U U UUUU4422NNNNNN
g=200: U U U U U U U 4 810188 N N N N N



TABLE C.4

THE p-PERIODS OF MAPPING CLASS GROUPS I'y

FOR g < 200 AND 67 <p < 151

p = 67 71 73 79 83 89 97 101 103 107 109 113 127 137 139 149 151

121

g=3: NNNNNNNN N N N N N NNN N N
g=4: NNNNNNN N N N N N NNN NN
g=5: NNNNNNN N N N N N NNNNN
g=6: NNNNNNNN NN N N NNN N N
g=7: NNNNNNN N NN N N NNNNN
g=8: NNNNNNN N NN N N NNNNN
g=9: NNNNNNN N NN N N NNNNN

g=10:NNNNNNNN N N N N NNN N N

*N = NO p-torsion, X = Not p-periodic, U = Unknown.



Table C.4 (continued)

P =

122

67 71 73 79 83 89 97 101 103 107 109 113 127 137 139 149 151

g=11:
g=12:

g=13:

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N
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Table C.4 (continued)

pP= 67 71 73 79 83 89 97 101 103 107 109 113 127 137 139 149 151

g=27: NN NNNNNNNNNNNNNNN
g=28: NN NNNNN NN N N NN NNNNN
g=29: NN NNNNNN N N NN N NN NN
g=30: NN NNNNN NN N N NNNNNNN
g=31: NN NNNNNNN N NNNNN NN
g=32: NN NNNNNN N N N N N N NN N
g=33: 6 N NNNNN NN N NNNNNN NN
g=34: NN NNNNNNNNNNNNNNN
g=35: N2 NNNN NN N N NNNNNNN
g=36: NN 6NNNN NN N N N N N NN NN
g=37: NN NNNNNN N N N NN NN NN
g=38: NN NNNN NN N N N NN N N N N
g=39: NN NB6NN NN N N N N N N NN N
g=40: NN NNNNNN N N NNNINNNN

g=41: NN NN2N NN N N N N N N N N N

g=42: NN NNNNNN N N N N N N N N N



124
Table C.4 (continued)

p = 67 71 73 79 83 89 97 101 103 107 109 113 127 137 139 149 151

g=43: NN NNNN NN N N N NN NN NN
g=44: NN NNN2NNNNNNNNNN N
g=45: NN NNNN NN N N N NN NNNN
g=46:NNNNNNNNNNNNNNNNN
g=47: NN NNNNNN N N NN NNN NN
g=48: NN NNNNG6 N N N N N NN NN N
g=49: NN NNNNNN N N NN NNNN N
g=50: NN NNNNNZ2 N N N NN N N N N
g=51: NN NNNNNN 6 N N N N N N N N
g=52:NNNNNNNNNNNNNNNNN
g=53: NN NNNNNN N 2 N N NN N N N
g=54: NN NNNNNN N N 6 N N N N NN
g=55: NN NNNN NN N N N NNNNNN
g=56: NN NNNNNN N N N 2 N N N N N
g=57: NN NNNNNN N N NN NNNNN

g=58: NN NNNN NN N N N NNNN NN
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Table C.4 (continued)

p = 67 71 73 79 83 89 97 101 103 107 109 113 127 137 139 149 151

g=59: NN NNNNN NN NN NN NNN N N
g=60: NN NNNNN NN N N N N N NN N N
g=61: NN NNNNN NN N N N N N NNN N
g=62: NN NNNNNN N N N N N N N N N
g=63: NN NNNNNN N N N N 6 N N N N
g=64: NN NNNNNN N N N NN NNNN
g=65: NN NNNNNN N N N NNNNNN
g=66: 4N NNNNNNNNNNNNNN N
g=67:4 N NNNNNNNNNNNNN N N

68:132N NNNN NN N N N N N 2 N N N

«
i

69: NN NNNNN NN N N N N N N 6 N N

«
I

70: N4A NNNNN NN N N N NN NN N N

«
n

71: N4 NNNNNN N N N NNNNN N

(o]
i

72:NT40 B NNN NN N N N N N NN N N

«
n

g=73: NN 4NNNNN N N N NNNN N N

g=74: NNIM4NNNNN N N NN N NN 2 N
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Table C.4 (continued)

p = 67 71 73 79 83 89 97 101 103 107 109 113 127 137 139 149 151

g=75: NN NNNNNN N N N N NN NN 6
g=76: NN NNNNINN N N N NN NN N N
g=77: NN NNNN NN N N N NN NN N N
g=78: NN NANNNN N N N N NN N N N
g=79: NN NANNNN N N N N NN N NN
g=80: NN NIGBNN N N N N N N N N N N N
g=81: NN NNNNNNNNNNNNNN N
g=82: NN NN4NNNN N N N N NN N N
g=83:NNNN4NNNNNN‘NNNNNN
g=84: NN NN6G4dN N N N N N N N N N N N
g=85: NN NNNNNN N N N N N N N N N
g=86: NN NNNN NN NNNNNNNNN
g=87: NN NNNNNWN N N N NN NN NN
g=88: NN NNN8NNINNNNNNN N N
g=83: NN NNN4 NN N N NNNNN NN

g=90: NN NNNI7Z6N N N N NN NNNNN



Table C.4 (continued)

127

67 71 73 79 83 89 97 101 103 107 109 113 127 137 139 149 151

g=100

g=101:
g=102:
g=103:
g=104:

g=105:

NN NNNNNN N N
NN NNNNNN N N
NN NNNNNN N N
NN NNNNNN N N
NN NNNNNN N N
NN NNNNB8N N N
NN NNNNA4N N N
NN NNNN®2N N N
2N NNNNNN N N

6N NNNNNUS8 N N

NN NNNNNA4 N N

NN NNNN N200 4 N

NNNNNNNN 4 N

NN NNNNN N204 N

NIONNNNN NN N N

N

N

N

N

N

N

N

N

N

N

N

N

N

N
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Table C.4 (continued)

p= 67 71 7379 83 89 97 101 103 107 109 113 127 137 139 149 151

g=106:N 2 NNNN NN N 4 N N NN NN N
g=107:NN NNNNNNN 4 N N N N N N N
g=108:N N 2NNNNN N2128 N N N N N N
g=109:NN 6NNNNN NN 4 N N NN NN
g=110:N N NNNN NN N N216N N N N N N
g=111:NN NNNN NN N N N NN NNNN
g=112:N N NNNN NN N N N 8 N N N N N
g=113:N N NNNN NN N N N 4 N N N N N
g=114:N N NNNNN NN N N N224 N N N N N
g=115:N N NNNNNN N N NN N NN NN
g=116:N N NNNN NN N N N N N NN N N
g=117:NN N2NN NN N N N NN NN NN
g=118:N N N6NNINN N N N N N N N N N
g=119:N N NNNN NN N N N NN NNNN
g=120:N N NNNN NN N N N N N NN NN

g=121:N N NNNN NN N N N N N NN N N
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Table C.4 (continued)

p = 67 71 73 79 83 89 97 101 103 107 109 113 127 137 139 149 151

g=122: NN NNNN NN N N N N NN N NN
g=123:N N NN2N NN N N N NN N N N N
g=124:N N NN2N NN N N N N N N N N N
g=125:NN NNNN NN N N N N NN N NN
g=126:N N NNNN NN N N N N 4 N N N N
g=127:N N NNNN NN N N N N 4 N N N N
g=128:N N NNNNNN N N N N252N N N N
g=129: NN NNNN NN N N NN N NNNN
g=130:N N NNNNNN N N N NN NNNN
g=131:NN NNNNNN N N NN N NNNN
g=132:12N NNN2 NN N N NN NNN NN
g=133:4 N NNN2 NN N N N N N N N NN
g=134:4 N NNNN NN N N N NN N N NN
g=135132N NNNN NN N N N NN N NN N
g=136: NN NNNN NN N N N N N 8 N N N

g=137Z" NN NNNN NN N N N N N 4 N NN
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Table C.4 (continued)

p = 67 71 73 79 83 89 97 101 103 107 109 113 127 137 139 149 151

g=138:N N NNNNNN N N N N N2724 N N
g=139:N N NNNN NN N N N N NN 4 N N
g=140:N4 NNNN NN N N N N N N276 N N
g=141:N4 NNNN NN N N N N N N N N N
g=142:N4 NNNN NN N N N N N N N N N
g=143:NMAON N NN N N N N N N N N N N N

144:NN12NNN 2 N N N N N N N N N N

«Q
1

g=145:N N 8NNNGB6 N N N NN N NNNN
g=146:N N 4 NNN NN N N N N N N NN N
g=147:NN144NNNINN N N NN NNNNN
g=148:N N NNNN NN N N N NN NN 8 N
g=149:N N NNNN NN N N N NNNN 4 N
g=150:N N NNNN N10O N N N N N N N 2% 4
g=151T:NN NNNN N2 N N N N N N N N 4
g=152:N N NNNN NN N N N N N N N N300

g=153:NN NNNN NN 2 N NN NNNNN
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Table C.4 (continued)

p = 67 71 73 79 83 89 97 101 103 107 109 113 127 137 139 149151

g=154:N N NNNN NN 6 N N NN NN N N
g=155:N N NNNN NN N N N N NNNNN
g=156:N N NI2NN NN N NN NN NN NN
g=157:N N NANNN NN N N N NNNNNN
g=158:N N N4ANN NN N N N N NN N NN
g=159:N N NIG6N N N N N 2 N N N N N N N
g=160:N N NNNN NN N 2 N NN NN NN
g=161:N N NNNN NN N N N N NN N NN
g=162:N N NNNN NN N N 2 N N N N N N
g=163:N N NNNN NN N N 6 N NN N N N
g=164:N N NN4N NN N N N N N NN NN
g=165:2 N NN4N NN N N N NN NNNN
g=166:2 N NN4N NN N N N NN NN NN
g=167:6 N NN64dN N N N N N N N N N N N
g=168:N N NNNN NN N N N 2 N N N N N

g=169:N N NNNN NN N N N 2 N N N N N
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Table C.4 (continued)

pP= 6771 73 79 83 89 97 101 103 107 109 113 127 137 139 149 151

g=170:N N NNNN NN N N N N N N N N N
g=171:NN NNNN NN N N N N N N N N N
g=172:-N N NNNN NN N N N N N N N N N
g=17Z3:N N NNNN NN N N N N NN N NN
g=174:N N NNNN NN N N N N N N N N N
g=175:N14 NN NN NN N N N N NN N N N
g=176 :N1IONNN4 NN N N N N N N N N N
g=177: N2 NNN8 NN N N N N N N N N N
g=178:N N NNN4 NN N N N N N N N N N
g=179:N N NNN176N N N N N N N N N N N
g=180:NN 2NNNNNNNNNNNN NN
g=181:N N 2NNNNN N N NN NNNNN
g=182:NN B6NNNINN N N N NN N N N N
g=183:N N NNNN NN N N N N N NN N N
g=184:NN NNNNNN N N NN NNNNN

g=185:NN NNNNNN N N N N N NN NN
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Table C.4 (continued)

p= 67 71 73 79 83 89 97 101 103 107 109 113 127 137 139 149 151

g=186:NN NNNN NN N N N NN NN N N
g=187:NN NNNN NN N N N NN NN N N
g=18:NN NNNNNN N N N NN NN N N
g=189:NN NNNN NN N N N N 2 N N N N
g=190:NNNNNN‘NNNNNN6NNNN
g=191:NN NNNN NN N N N N N NN N N
g=192:NN NNNN12N N N N N N N N N N
g=193:NN NNNN 8 N N N N NN NN N N
g=194:NN NNNN 4 N N N N NN NN N N
g=195:N N N2NN1922N N N N N N N N N N
g=196:NN N2NN NN N N N NN N N N N
g=197:NN NENN NN N N N N N N NN N
g=198:4N NNNN NN N N N N N N N N N
9=199:12N NNNN NN N N N N N N N N N

g=200:4 N NNNNN4 N N NNNNNNN



TABLE C.5

THE p-PERIODS OF MAPPING CLASS GROUPS T’y

FOR g <200 AND 157 <p <233

134

157 163 167 169 173 179 181 191 193 197 199 211 217 223 227 229 233

0=8: N
09=9: N

0=10: N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N NNNNN

N

N

N

N

N

N

N

*N = No p-torsion, X = Not p-periodic, U = Unknown.
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Table C.5 (continued)

p= 157 163 167 169 173 179 181 191 193 197 199 211 217 223 227 229 233

g=1:N N N N N N N N N NN N N N N N N
g=i22N N N N N N N N N NN N N N N N N

g=13:N N N N N N N NN NNNNNNNN
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Table C.5 (continued)

p= 157 163 167 169 173 179 181 191 193 197 199 211 217 223 227 229 233

g=27’N N N N N N N N N NN N N N NN N
g=286:N N N N N N N N N NN N N N N N N

g=29:N N N N N N N N N NN N N N N N N
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Table C.5 (continued)

p= 157 163 167 169 173 179 181 191 193 197 199 211 217 223 227 229 233

g=43:N N N N N N N N N NN N N N N N N

g=44:N N N N N N N N N NN N N N N N N
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Table C.5 (continued)

p= 157 163 167 169 173 179 181 191 193 197 199 211 217 223 227 229 233
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Table C.5 (continued)

p= 157 163 167 169 173 179 181 191 193 197 198 211 217 223 227 229 233
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Table C.5 (continued)

p= 157 163 167 169 173 179 181 191 193 197 199 211 217 223 227 229 233

g=8:N N N N N N N N N NN N N N N N N
g=922N N N N N N N N N NN N N N N N N

g=983:N N N N N N N N N NN N N N N NN
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Table C.5 (continued)

p= 157 163 167 169 173 179 181 191 193 197 199 211 217 223 227 229 233

g=107ZN N N N N N N N N NN N N N N N N
g=108N N N N N N N N N N N N 6 N N N N
g=109N N N N N N N N N N N N N N N N N
g=T1ION N N N N N N N N NN N N N N N N
g=11IN N N N N N N N N NN N N 6 N N N
g=112N N N N N N N N N N N N N N N N N
g=113N N N N N N N N N NN N N N 2 N N
g=114N N N N N N N N N NN N N N N 6 N
g=11I&N N N N N N N N N NN N N N N N N
g=11BEN N N N N N N N N N N N N N N N 2
g=117ZN N N N N N N N N N N N N N N N N
g=118N N N N N N N N N N N N N N N N N
g=11l9N N N N N N N N N NN N N N N NN
g=1200N N N N N N NN N NN N N N N N N
g=12tN- N N N N N N N N N N N N N N N N

g=122N N N N N N N N N NN N N N N N N
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Table C.5 (continued)

p= 157 163 167 169 173 179 181 191 193 197 199 211 217 223 227 229 233

g=i1232N N N N N N N N N N N N N N N N N
g=124N N N N N N N N N NN N N N N N N
g=125N N N N N N N N N N N N N NN NN
g=i126N N N N N N N N N N N N N N N N N
g=12ZN N N N N N N N N N N N N N N N N

g=1286N N N N N N N N N N N N N N

P
Z
Z

g=122N N N N N N N N N N N N N N

Zz Z
Z
Z

g=1I30CON N N N N N N N N N N N N N
g=1I31:N N N N N N N N N NN N N NN N N
g=132N N N N N N N N N NN N N N N N N
g=1I33BN N N N N N NN NN NNNNNNNN
g=134¢N N N N N N N N N NNNNNNNN
g=1I33N N N N N N N N N N N N N N N N N
g=136N N N N N N N N N NNNNNNNN
g=137ZN N N N N N N N N NN N N N N NN

g=138N N N N N NN NN NNNNNNNN
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Table C.5 (continued)

p= 157 163 167 169 173 179 181 191 193 197 199 211 217 223 227 229 233

g=139:N N N N N N N N N N N N N N N N N
g=14 00N N N N N N N N N N N N N N NA N N
g=141N N N N N N N N N N N N N N N N N
g=142N N N N N N N N N N N N N N N N N
g=143N N N N N N N N N N N N N N N N N
g=144N N N N N N N N N N N N N N N N N
g=145N N N N N N N N N N N N N N N N N
g=146N N N N N N N N N N N N N N N N N
g=147ZN N N N N N N N N N N N N N N N N
g=148&N N N N N N N N N N N N N N N N N
g=143N N N N N N N N N NN N NN N NN
g=1I500N N N N N N N N N NN N N N N N N
g=i1I5:N N N N N N N N N N N N N N N N N
g=152N N N N N N N N N NN N N N N N N
g=1533N N N N N N N N N NN NNNNNN

g=154N N N N N N N N N NN N N N N N N
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Table C.5 (continued)

p= 157 163 167 169 173 179 181 191 193 197 199 211 217 223 227 229 233

g=155N N N N N N N N N N N N N N N N N
g=156:8 N N N N N N N N N N N N N N N N
g=1572:4 N N N N N N N N NN N N N N N N
g=188312N N N N N N N N N N N N N N N N
g=159N N N N N N N N N NN NN N NNN
g=f6OON N N N N N N N N NN N NN NN N
g=iI6I:N N N N N N N N N NN N N N N NN
g=162N 4 N N N N N N N N N N N N N N N
g=163:N 4 N N N N N N N N N N N N N N N
9g=164IN324 N N N N N N N N N N N N N N N
g=165EN N N N N N N N N NN N N NN NN
g=166EN N 4 N N N N N N NN N N N N N N
g=1I67ZZN N 4 N N N N N N NN N N NN NN
g=168N N 3328 N N N N N N N N N N N | N N
g=169:N N N - 4 N N N N N NN NN N N N N

g=170N N N33 N N N N N NN N N N N N N
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Table C.5 (continued)

p= 157 163 167 169 173 179 181 191 193 197 199 211 217 223 227 229 233

g=17N N N N N N N N N NN N N N N N N
g=172N N N N 8 N N N N N N N N N N N N
g=173N N N N 4 N N N N N N N NN N NN
g=174N N N N34 N N N N N N N N N N N N
g=175N N N N N N N N N NN N NN NN N
g=1766N N N N N N N N N N N N N N N N N
g=i77ZN N N N N N N N N NN NN NN NN
g=178N N N N N 4 N N N N N N NN N N N
g=179N N N N N 4 N N N N NN N N N N N
g=180CN N N N N335 8 N N N N N N N N N N
g=18I:N N N N N N 4 N N NN N N N N N N
g=182:N N N N N N3O N N N N N N N N N N
g=i83N N N N N N N N N NN N NNNN N
g=1I84N N N N N N N N N NN NNNNNN
g=iI8N N N N N N N N N NN N N N N N N

g=186:N N N N N N NN N NNNNNNNN
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Table C.5 (continued)

p= 157 163 167 169 173 179 181 191 193 197 199 211 217 223 227 229 233

g=18ZN N N N N N N N N NN N N N N N N
g=18N N N N N N NN N NN N NN N N N
g=18:N N N N N N NN NNNNINNNNN
g=190N N N N N NN 4 N NN N N N N N N
g=19:N N N N N N N 4 N NN N N N N N N
g=1922N N N N N N N3808 NN N N N N N N
g=19B3N N N N N N N N 4 NN N N N N N N
g=194N N N N N N N N38NNNNNN NN
g=195N N N N N N NN NNNNNNNNN
g=i19%:N N N N N N N N N8N NNNNNN
g=1I9ZN N N N N N N N N 4N N N N N N N
g=198N N N N N N N N N3924 N N N N N N
0=<199N N N N N N N NN N4 NNNNNN

g=2000N N N N N N N N N N3% N N N N N N
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