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ABSTRACT 

Fourier-Transform infrared (FT-IR) spectroscopy is a simple, fast and highly 

specific technology that can provide valuable insights into the complex chemical make-

up of foods. Infrared provides tools, especially in the fingerprint region of the spectrum, 

to detect specific compounds in biological systems without the use of time-consuming 

methods or the use of hazardous organic solvents. Advances in FT-IR instrumentation 

and pattern recognition techniques have made it possible to extract information related to 

composition and conformation of food components from the spectra. We have evaluated 

the capability of infrared spectroscopy in classification and quantification of chemical 

compounds of interest for the dairy (butter) and tomato industries.  

Authentication is a critical quality issue for organic products since consumers are 

willing to pay 10-40% price premiums. There is a need for rapid and reliable analytical 

tools for determination of authenticity since traditional methods often involve time-

consuming and laborious processes. Our objective was to evaluate the application of 

infrared spectroscopy combined with pattern recognition techniques to discriminate 

among organically and conventionally-produced butter in relation to quality and 

authenticity. Spectra from butter purchased from a local market (Columbus, OH) were 

collected by using Attenuated total reflectance (ATR) spectroscopy and analyzed using 

soft independent modeling of class analogy (SIMCA), a multivariate classification 
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technique. This simple protocol generated unique mid-infrared signature profiles that 

permitted the chemically-based classification of butter samples based on manufacturer 

and production practice (organic vs. conventional). By using the spectral region from 

1400-800 cm-1, multivariate (SIMCA) modeling showed well-separated clusters that 

discriminated among butter samples according to manufacturer, due to -HC=CH- trans 

bending out of plane vibration modes, (966 cm-1) presumably attributed to conjugated 

fatty acids. Infrared spectroscopy combined with multivariate analysis provides a simple 

and efficient tool for monitoring butter authenticity with minimal sample preparation. 

The objective of the second study was to develop a simple, accurate and cost 

effective protocol using ATR-IR spectroscopy and multivariate analysis to determine 

sugars in tomatoes. Tomatoes, the second most produced and consumed vegetable in the 

United States, are classified for use as fresh or processed tomato products based on their 

sugar and acid profile. Current methods to analyze sugar content of tomatoes are time and 

labor intensive making efficient assays for quantification desirable.  Samples were 

obtained from genetically diverse tomato varieties that encompassed hybrids and elite 

parents used in the processing and fresh market industry.  Samples were centrifuged, the 

supernatant vacuumed dried on a ZnSe crystal and infrared spectra collected.  Enzymatic 

kits for glucose and fructose were used as reference methods. Multivariate models (PLSR) 

accurately predicted glucose and fructose using the supernatant with R-values > 0.98 and 

SECV <0.25g/100g, using the fingerprint infrared region of 1200-900cm-1 for sugars. 

Vacuum drying of the sample onto the ATR crystal caused spectral artifacts in some 

samples. ATR-IR combined with chemometrics could provide the tomato industry with a 
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simple and high throughput method for determination of sugars in tomatoes that could 

lead to improved varieties with enhanced characteristics for industry and consumer 

demands.   
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CHAPTER 1 

 

LITERATURE REVIEW 

 

1.1 THE TOMATO 

The tomato (Solanum lycopersicum) is an important agricultural commodity 

worldwide and the United States is one of the world’s leading producers of tomatoes, 

second only to China (Lucier and Detteman 2009).  Production of fresh and processing 

tomatoes has increased steadily for the past 20 years, and the farm value of the tomato 

crop is around $800 million (Lucier and Detteman 2009).  In the United States tomatoes 

are bred specifically to serve the requirements of either fresh or processing markets.  A 

tomato’s composition classifies it for use as a fresh market or processing tomato.  Factors 

such as soluble sugars, amino acids, acids, minerals and carotenoids, as well as the 

overall nutrient value are important in determining overall quality and best use of a 

tomato crop.  

1.1.2 Tomato Composition 

Soluble sugars are well known for contributing to the overall flavor of tomatoes 

and tomato products (Lenucci and others 2008).  Sugars make up about 4-6% of tomato 

composition (Gould 1974).  It has been demonstrated that the characteristic sweet taste of 

tomatoes is mainly due the reducing sugars glucose and fructose.  Sucrose is also present 
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in tomatoes but at negligible levels (Petro-Turza 1987).   It is also worth noting that 

fructose is found in higher concentrations than glucose (Hernández, Rodríguez-Rodríguez 

and Díaz-Romero 2008).  Sugar concentration in tomatoes varies based on several factors 

such as genetics, growing conditions, environment and water availability (Davies, 

Hobson and Davies 1981).  In addition to this previous studies have also shown that fruits 

picked earlier in development showed lower soluble sugar than fruits that were allowed 

to continue to develop on the vine (Davies, Hobson and Davies 1981).   

Amino acid composition of tomatoes is not widely reported because it varies 

considerably mostly due to variety and different growing conditions (Hobson and Davies 

1971).  It is generally noted that the prominent amino acid in ripe tomatoes is glutamic 

acid which has been found to have a concentration as high as 270mg/100g fw (Hobson 

and Davies 1971).  During ripening, amino acid contents remain stable however, 

glutamic acid concentrations rise sharply during maturation (Hobson and Davies 1971).   

Tomatoes also contain a variety of organic acids.  The presence of these acids 

imparts the sour or acid taste many associate with tomatoes and can vary widely from one 

variety to another (Hobson and Davies 1971).  The ratio of sugars to acids has also been 

studied as a tool to determine flavor acceptability (Malundo, Shewfelt and Scott 1995).  

The major organic acids in tomatoes are citric, malic and oxalic acids; also present, 

although in much lower concentrations are fumaric and pyruvic acids (Hernández, 

Rodríguez-Rodríguez and Díaz-Romero 2008). Other studies on tomatoes have shown 

that of the acids present in tomatoes, citrate makes the greatest contribution to sourness 

because it is present in high concentrations ranging from 321mg/100g fw to 389mg/100g 

fw while malic and oxalic levels range from 71mg/100g fw to 92mg/100g fw and 
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24.9mg/100 to 29.3mg/100g, respectively (Hernández, Rodríguez-Rodríguez and Díaz-

Romero 2008). Similar to sugars, organic acid levels vary between varieties, as a function 

of ripening and the stage at which the fruit is picked.  Generally, the acidity in tomatoes 

peaks during development, and then decreases during ripening (Hobson and Davies 1971)  

Large variations in vitamin C levels have been reported in tomatoes of different 

varieties.  While one study by Abushita (2000) reports vitamin C contents of 210-

480mg/kg other studies showed vitamin C contents of 10 varieties ranging from 84-

324mg/kg fw (George and others 2004).  During thermal processing, vitamin C is labile 

to degradation and in the case of tomato paste has been found to degrade by as much as 

55% (Abushita, Daood and Biacs 2000).   

While there is much data on the sugar and acid contents of tomatoes, there is 

limited information about the mineral content.  Tomatoes are good sources of minerals 

such as potassium, sodium, calcium, magnesium and phosphorus (Souci and others 2008).  

The most prominent mineral in tomatoes is potassium with 0.126g/100g fw (Hobson and 

Davies 1971).  Some studies have shown a relationship between the amount of potassium 

and overall acidity (Hobson and Davies 1971).  It is suggested that the potassium acts as 

a buffer for the weak acids of the tomato fruit (Hobson and Davies 1971).  Thus, any 

action that results in increased acid levels will also increase potassium to maintain a 

constant pH around 4.5 (Hobson and Davies 1971). 

1.1.3 Carotenoids in Tomato 

Carotenoids are a class of fat soluble pigments found in tomatoes.  Carotenoids 

are becoming increasingly recognized for their health benefits and plant breeders are 

looking to maximize the carotenoid contents of their plants.  They have been linked to 
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disease prevention in the case of certain cancers, macular degeneration, athersclerosis and 

other degenerative diseases (Inbaraj and Chen 2008).  Daily consumption of carotenoids 

is highly desirable because the human body cannot synthesize carotenoids so they must 

be obtained from dietary sources (Krinsky, Mayne and Sies 2005).  In plants, carotenoids 

are responsible for harvesting light energy and this is made possible by their extensive 

conjugated double bond system.  It is also what imparts the characteristic yellow, orange 

and red color of tomatoes (Inbaraj and Chen 2008).  The predominant carotenoid in 

tomatoes is lycopene with levels ranging from 72-200mg/100g fw, and it comprises 90% 

of the total carotenoid content (Inbaraj and Chen 2008).  The concentration of lycopene 

will vary based on variety and also on environmental conditions.  It has been shown that 

lycopene content is reduced at extreme temperatures, both low and high, as well as in 

times of moisture stress (Inbaraj and Chen 2008).  In nature, lycopene occurs in the all 

trans position but it is labile to light, heat, oxygen and the presence of pro-oxidant ions 

such as Cu2+ and Fe2+ (Shi and Le Maguer 2000).  In the presence of these materials 

lycopene will isomerize to its mono and poly cis forms mainly mono-5-cis, mono-9-cis, 

and mono-15-cis (Shi and Le Maguer 2000).  Thus the trans form of lycopene is 

prevalent in fresh tomatoes and the cis isomers are found in processed tomato products 

(Shi and Le Maguer 2000).  It has been found that thermal processing increases the total 

lycopene content of processed tomato products (Abushita, Daood and Biacs 2000).   

Another carotenoid found in tomatoes is β-carotene.  β-carotene is of particular 

interest because of its pro-vitamin A properties.  It can be converted by enzymes in the 

intestinal mucosa to vitamin A (retinol) (Krinsky, Mayne and Sies 2005).  Like lycopene, 

β-carotene is subject to degradation, however when exposed to high heat the levels of β-
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carotene decrease as the isomers are far less bioactive than the naturally occurring all 

trans-β-carotene (Inbaraj and Chen 2008).   

Lycopene and β-carotene have both been shown to have many health benefits, as 

have other carotenoids that are present at lower concentrations in tomatoes (Krinsky, 

Mayne and Sies 2005).  While β-carotene is a precursor for vitamin A, lutein and 

zeaxanthin may be linked to the lower risk of cataracts by filtering harmful blue light and 

scavenging singlet oxygen in retinal tissues (Krinsky, Mayne and Sies 2005). 

1.2 ANALYTICAL TECHNIQUES FOR TOMATO CONSTITUENTS 

1.2.1 High Performance Liquid Chromatography 

High performance liquid chromatography (HPLC) is the most traditional method 

for analysis of sugars. HPLC is a form of chromatography where there is a separation 

between the mobile phase and the stationary phase.   It has gained acceptance for use in 

food analysis because it can be used with a variety of compounds and it is highly 

automated. 

An HPLC is comprised of four main components (Figure 1.1): a pump, a column, 

an injector, and a detector (Bélanger and Pare 1997).  The pump is electronically 

controlled to regulate the pressure, flow and delivery rate of the mobile phase (Bélanger 

and Pare 1997).  Samples must be soluble in the mobile phase, therefore it is important to 

keep the polarity of the sample in mind when choosing the mobile phase.  The injector is 

used to inject the sample onto the mobile phase so that it can be carried to the column.  

The column is where the actual separation of the compounds occurs (Bélanger and Pare 

1997).  The most widely used type of chromatography is adsorption and can be classified 

as normal phase and reverse phase (Bélanger and Pare 1997).  During normal phase 
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chromatography the stationary phase is polar and the mobile phase is non polar.  Reverse 

phase is the opposite with a non-polar stationary phase and a polar mobile phase.  Other 

types of chromatography include partition chromatography, ion exchange 

chromatography and size exclusion (Bélanger and Pare 1997).  The retention of solutes 

depends on the mobile phase ionic strength, pH, and flow rate (Bélanger and Pare 1997).  

Generally the flow rate of the mobile phase is kept low to maximize separation (Bélanger 

and Pare 1997).    Using an HPLC system requires a lot of trial and error because it is 

sensitive and the slightest change will create drastically different results.   

Once an anylate passes through a column it goes on a detector.  There is no 

universal detector for HPLC so it also important to use the correct detector for the analyte 

(Bélanger and Pare 1997).  There are four commonly used detectors for HPLC, these 

include UV-absorption, fluorescence, refractive index, and mass detectors (Bélanger and 

Pare 1997).  The most commonly used detector is a UV/Vis because it has good 

selectivity, high sensitivity for most compounds, and is easy to operate and non 

destructive (Bélanger and Pare 1997).  The last step is presenting the results to the analyst 

for further investigation.    

Sugars are often analyzed using HPLC utilizing a refractive index detector (Table 

1.1).  Hernández (2008) used HPLC to determine sugars in tomatoes and Porretta (1992) 

examined the sugars in tomato paste.   

While HPLC is a sensitive and accurate tool for analysis it does have drawbacks.  

Sample preparation and method development is lengthy and depends mostly on trial and 

error before a suitable technique is found.  The end results depend greatly on the stability 

of the compounds, as well as the ability of the analyst to properly extract the compounds 
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of interest and prepare the sample for analysis properly.   In addition, HPLC is an 

expensive instrument that requires the use and disposal of hazardous organic solvents 

(Halim and others 2006). 

 

 

 

 

 

 

 

 

Figure 1.1 HPLC Schematic 
 
 
 

 Column Detector Solvent  Conditions Source 

Sugar C18 Refractive index Acetonitrile Isocratic (Irudayaraj and 
Tewari 2003) 

Organic 
Acid 

C18 Photo Diode array Triflouracetic Isocratic (Marconi, Floridi and 
Montanari 2007) 

Carotenoids C18 Photo Diode array Methanol: 
Methyl tert-
butyl ether 

Gradient 
0-20% MTBE 

(Halim and others 
2006) 

 

Table 1.1  HPLC analysis of different tomato components 

 

 

1.2.2 Ultra-Violet/Visible Spectroscopy 

 
Ultra Violet/Visible Spectroscopy (UV/Vis) is a common tool for food analysts.  

UV/Vis uses wavelengths from 200-700.   The colorless UV section ranges from 200-
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350nm while the Visible section ranges from 350-700nm. Characteristic colors from 

violet to red represent the different wavelengths (Penner 2003).  UV/Vis is most 

commonly used for quantitative work but can be used for qualitative techniques as well 

(Penner 2003).  Quantitative assays are based on measuring the absorbance of a sample at 

one wavelength, because the absorbance of the test solution will be a function of the 

concentration (Penner 2003). 

The objective of quantitative absorption spectroscopy is to determine the 

concentration of analyte in a sample and is based on the amount of light that is absorbed 

as it passes through the sample (Penner 2003).  In some cases, the analyte may naturally 

absorb in the UV/Vis range and in other cases the analyte must be altered by chemically 

converting the analyte into a species that can readily absorb radiation (Penner 2003). In 

cases like this, the absorbance is used as an indicator of the analyte concentration.   

Absorbance is a unitless expression that is directly proportional to the 

concentration of a specific analyte (Penner 2003).  The relationship between the 

absorbance of a solution and the concentration is known as Beer’s Law. 

A = εlc…………………………………………………………………………[Equation 1] 

A is the absorbance of a sample.  The concentration variable, c, can be expressed in any 

terms and the path length, l, is in centimeters.  The molar absorptivity (ε), is expressed in 

(1/(cm x M)).  This value is wavelength dependent and is determined by the molecular 

properties of a molecule and can vary based on the pH and solvent (Penner 2003).   

UV/Vis is almost entirely dependent on the use of a reference cell.  This is 

because quantitative spectroscopy is based on the amount of light that is absorbed by the 

sample, so any other decrease in the incident beam must be accounted for (Penner 2003).  
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This is accomplished with the use of a reference cell.  A reference cell is one that exactly 

matches the sample cell except that it contains no analyte.  Most often this is 

accomplished with an absorbance cell filled with distilled water and the absorbance of 

this cell is used as Psolvent for the sample cell.  And the following equation is used in the 

laboratory to determine absorbance.   

A=log …………………………………………………….[Equation 2] 

There are three essential components of all spectrophotometers: a light source, a 

monochromator, and a detector.  The light source used in spectrophotometer must be 

capable of emitting strong bands of radiation that will encompass the entire wavelength 

range (Penner 2003).  The two common radiation sources are a tungsten filament lamp 

for Vis and a deuterium electrical-discharge lamp for UV (Penner 2003).  Tungsten 

filament lamps can cover from 350nm to 2500nm while the deuterium lamps can cover 

160nm to 375nm (Penner 2003).   

Light emitted from a light source is polychromatic and a monochromator isolates 

the specific group of wavelengths to be used for analysis (Penner 2003).  The 

polychromatic light enters the monochromator and is dispersed according to wavelength, 

with only a single wavelength exiting.  Once the light exits the monochromator it 

continues on to interact with the sample. 

When the light passes through the sample it is quantified by means of a detector.  

There a several different types of detectors but the two most popular are phototubes and 

photomultiplier tubes (Penner 2003).  Both detectors work by converting the energy from 
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incoming photons into electrical current.  The signal from a detector is amplified and then 

displayed to the analyst in the form of absorbance.   

The determination of sugars in food samples is complicated by the fact that sugar 

does not absorb UV radiation.  Thus, enzymatic kits are used to determine the sugar 

content of a sample by measuring the amount of NADH formed during a chemical 

reaction.   During this chemical reaction, fructose is phosphorylated by adenosine 

triphosphate (ATP) to fructose-6-phosphate via hexokinase (Bergmeyer 1974).  Fructose-

6-phosphate is converted to glucose-6-phosphate by phosphoglucose isomerase (PGI) 

(Bergmeyer 1974).  The glucose-6-phosphate is oxidized to 6-phosphogluconate in the 

presence of nicotinamide adenine dinucleotide (NAD) (Bergmeyer 1974).  This reaction 

is catalyzed by glucose-6-phosphate dehydrogenase.  During this oxidation an equimolar 

amount of NAD is reduced to NADH (Bergmeyer 1974).  This increase in NADH causes 

an increase in absorbance at 340nm and it is directly proportional to the concentration of 

fructose (Bergmeyer 1974).  A similar reaction is used to quantify the amount of glucose 

in a sample.  In this reaction, glucose is phosphorylated directly to glucose-6-phosphate 

by hexokinase at which point the reaction proceeds in the same manner as fructose 

(Bergmeyer 1974).   

 

 

Fructose + ATP  Hexokinase    Fructose 6-Phosphate + ADP PGI    Glucose-6-Phosphate 
Glucose-6-Phosphate  +  NAD  G6PDH    NADH + 6-Phosphogluconate 
 

Figure 1.2 Enzymatic determination of Fructose  
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Glucose Hexokinase     Glucose-6-Phosphate + NAD  G6PDH    NADH + 6-Phosphogluconate 

 

Figure 1.3 Enzymatic determination of Glucose 

 

 

Enzymes have been used as analytical tools with great success in a variety of applications 

including food, pharmaceutical and biochemical industries. Porretta (1992) compared the 

accuracy of HPLC and enzymatic kits for measuring fructose and glucose in tomato paste 

and found that there was no significant difference between the methods.  Steegmans 

(2004) also used an enzymatic method on a variety of food matrices with good results. 

While enzymatic kits are reproducible and rapid they take some laboratory fines and can 

be very costly.   

1.2.3 Infrared Spectroscopy 

Currently, the quantification of sugars is still heavily reliant on HPLC and 

UV/Vis, but infrared spectroscopy (IR) is emerging as a new technique that can easily, 

rapidly, and accurately determine sugar concentrations in a sample. 

Infrared spectroscopy (IR) is an analytical technique that measures the absorption 

of different infrared radiation frequencies of a sample.   As a molecule absorbs infrared 

radiation it vibrates via a stretching and bending motion.  This vibrational energy is 

measured and is directly proportional to the strength of the bond. Different functional 

groups absorb IR radiation in a distinct wavelength region, making it possible to identify 

unknown molecules based on the infrared spectrum.  IR can be classified into three 

regions, near-infrared (NIR), mid-infrared (MID), and far-infrared. The near and mid IR 
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regions are most commonly used in the food industry as many organic molecules show 

absorbance in this region. 

Mid-infrared spectroscopy uses light in the 4,000-650 cm-1 region.  The most 

popular spectrophotometer in mid-IR is Fourier transform (Wehling 1994).  Unlike 

UV/Vis which uses a monochromator to separate light into individual wavelengths, a 

Fourier transfer uses an interferometer (Wehling 1994) which splits the beam into two 

parts (Wehling 1994, Ismail, Van de Vort and Sedman 1997).  One beam is reflected onto 

the stationary mirror and the other is transmitted to a moving mirror whose motion varies 

with time (Jaggi and Vij 2006).  Once reflected back they recombine and pass through the 

beam splitter again and undergo interference.  The combined beams are then passed 

through the sample and the signal is detected (Jaggi and Vij 2006).  This signal, created 

by the absorbance of the radiation by functional groups, results in a series of peaks in the 

spectrum (Wehling 1994).  The signal is converted by Fourier transform, a series a 

mathematical equations, which converts a time domain to a frequency domain (Ismail, 

Van de Vort and Sedman 1997).  

Almost all functional groups show absorption in the mid infrared region, therefore 

absorption bands are well defined. Mid-IR also utilizes the region between 1200-900 cm-1, 

which is known as the fingerprint region, and produces distinct and reproducible 

chemical fingerprints that reflect the total composition of the sample.  The fingerprint 

region shows bands that represent lipids, proteins, carotenoids and polysaccharides 

(Halim and others 2006, Ismail, Van de Vort and Sedman 1997).   

Near infrared spectroscopy utilizes light in the 700-2500nm.  Unlike mid-IR, 

which is characterized by well defined peaks, absorption bands in the near-IR region are 
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mainly overtones and absorption is weak (Wehling 1994).  This causes the bands to be 

broad and overlap making analysis difficult (Wehling 1994).  Bands that have enough 

intensity to be observed in this region are mostly due to hydrogen atoms attached to 

carbon, nitrogen, or oxygen (Wehling 1994).  This makes near-IR an ideal tool for 

measuring water, proteins, lipids, and carbohydrates (Wehling 1994).     

Depending on the sample, either reflectance or transmittance measurements can 

be made with near-IR (Wehling 1994).  Solid samples are generally measured with 

reflectance because this method measures the light that bounces off the sample (Wehling 

1994).  To do this, detectors are set up at a 45° angle to measure the light that bounces off 

the sample (Wehling 1994).  Transmittance is used for liquid samples where the light can 

pass through the sample (Wehling 1994).  The sample is placed in a quartz cuvette, and 

the radiation light passes through the entire sample, measuring the absorbance at the 

wavelength of interest (Wehling 1994).  Transmission measurements are more desirable 

because they have higher signal-to-noise ratios, use inexpensive tools for sample 

preparation, and reduce the sample preparation time by not requiring a homogenous 

sample surface since the radiation passes through the whole sample (Wehling 1994).   

Attenuated total reflectance (ATR) is a technique widely used in mid-IR 

spectroscopy, because it is one of the easiest and most convenient ways of handling 

samples for IR spectroscopy (Ismail, Van de Vort and Sedman 1997).  Traditional 

infrared sampling, called transmission, is based on the samples absorption of infrared 

radiation as the beam propagates through the sample; thus measurements in this mode 

have severe limitations on thickness (Sedman, van de Vort and Ismail 1999).  ATR was 

developed as a solution to this problem.  ATR-IR measures the total amount of energy 
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reflected from the portion of the sample in direct contact with the crystal (Sedman, van de 

Vort and Ismail 1999).  ATR-IR uses a highly refractive index material, called the 

internal reflection element.  When light from the source strikes the element at one end it 

is internally reflected at the top and bottom faces of the crystal before it exits (Ismail, 

Van de Vort and Sedman 1997).  The radiation only penetrates a short distance into the 

sample before it is reflected back onto the crystal (Sedman, van de Vort and Ismail 1999). 

A spectrum is produced as the sample absorbs radiance (Ismail, Van de Vort and Sedman 

1997).    

FTIR/ATR spectroscopy is catching on in popularity as they are able to analyze 

large amounts of data in a very short time. It has been proven a fast, cost effective tool for 

routine monitoring of sugars in fruit and fruit juices (Davies, Hobson and Davies 1981, 

Irudayaraj and Tewari 2003, Beullens and others 2006, Bureau and others 2009). 
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2.1 ABSTRACT 

Organic foods constitute more than 2% of all U.S. food; sales are estimated to have 

increased nearly 20% annually since 1990, reaching $13.8 billion in 2005. This rapid 

growth may be traced to increased consumer confidence in organic foods as well as 

concern about possible health risks and environmental impacts of conventional food 

production methods. Authentication is a critical quality issue for organic products since 

consumers are willing to pay 10-40% price premiums. There is a need for rapid and 

reliable analytical tools for determination of authenticity since traditional methods often 

involve time-consuming and laborious processes. Our objective was to evaluate the 

application of infrared spectroscopy combined with pattern recognition techniques to 

discriminate among organically and conventionally-produced butter in relation to quality 

and authenticity. Butter produced by different manufacturers from different production 

lots were purchased from a local market (Columbus, OH). Samples were filtered at 65°C 

and the collected fat samples were directly applied onto a temperature-controlled single 

bounce ZnSe crystal for attenuated total reflectance measurements. The ZnSe crystal was 

heated at 65°C and spectra analyzed using soft independent modeling of class analogy 

(SIMCA), a multivariate classification technique. This simple protocol generated unique 

mid-infrared signature profiles that permitted the chemically-based classification of 

butter samples based on manufacturer and production practice (organic vs. conventional). 

By using the spectral region from 1400-800 cm-1, multivariate (SIMCA) modeling 

showed well-separated clusters that discriminated among butter samples according to 

manufacturer, due to -HC=CH- trans bending out of plane vibration modes (966 cm-1) 
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presumably attributed to conjugated fatty acids. SIMCA effectively classified between 

organically and conventionally-produced butter (interclass distance of 3.2) with major 

discrimination due to -C-O asymmetric stretching vibrations of esters. Infrared 

spectroscopy combined with multivariate analysis provides a simple and efficient tool for 

monitoring butter authenticity with minimal sample preparation 

2.2 INTRODUCTION 

Sales of organic products in the U.S. topped $14.6 billion last year (Winter CK 

and Davis SF 2006).  Despite higher production costs, the increased consumer demand 

and high profitability are convincing more producers to switch to organic (Winter CK 

and Davis SF 2006). Consumers site avoidance of pesticides, freshness and health and 

nutrition as the main reasons they purchased organic foods. These consumers are willing 

to pay 10%-40% more for organically produced butter (Winter CK and Davis SF 2006).  

Adulteration of food goes back centuries and involves using inferior or cheaper 

ingredients to cheat consumers (Kurtzweil P 1999). It rarely presents a health hazard but 

it cheats the consumer out of hundreds of thousands of dollars each year and undercuts 

the competition (Kurtzweil P 1999).  High value products like organic butter must 

maintain a strong image with consumers in order to maintain sales and profit margins 

(Fairchild GF, Nichols JP and Capps O 2003).  

Methods of adulteration have become more sophisticated in recent years, 

making it more difficult to identify (Kurtzweil P 1999).  Traditional methods of fat 

analysis involve hydrolysis and methylation of the fatty acids for gas chromotography 

(GC). Although GC is sensitive and can detect adulteration of butter fat with a detection 
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limit of 1-2%, it is time and labor intensive and requires the use of hazardous organic 

solvents (Dupuy and others 1996).  FTIR has also been proven as an effective tool to 

determine adulteration of butter samples with a detection limit of 3% (Sato 1990).  

FTIR is also able to classify fats and oils.  The most important spectral region in the 

analysis of fats and oils occurs between 1400-1800cm-1 which represents C-H bending, 

C=O stretching, and C=C stretching (Yang, Irudayaraj and Paradkar 2005).  Fourier 

transform infrared spectroscopy (FT-IR) is a rapid and non-destructive authentication 

tool that is capable of detecting butter adulteration with minimal sample preparation.  

FTIR has also been used to detect fat and oil adulteration in a variety of 

products.  One study was able to predict the lard adulteration in chocolate and chocolate 

products with great success (Che Man and others 2005).  FTIR combined with principal 

component analysis (PCA) has been shown as an effective method to discriminate 

between oils of different plant species, detect adulteration of extra virgin olive oil and 

discriminate between butter and margarine (Dupuy and others 1996, Lai, Kemsley and 

Wilson 1995).  

 The industry is looking for a fast way to detect butter adulteration, and infrared 

technology is ideal for rapid screening and identification of target analytes in foods with 

minimal sample preparation.  Our objective was to evaluate the application of infrared 

spectroscopy combined with pattern recognition techniques to discriminate among 

organically and conventionally-produced butter in relation to authenticity.  
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2.3 MATERIALS AND METHODS 

2.3.1 Butter Samples 

A total of 12 butter samples were purchased from local markets (Columbus, OH).  

There were 6 traditional and 6 organic butters each with 3 salted and unsalted products.  

The butter was analyzed in triplicate with repetitions from different lots and production 

dates.  Samples were melted in a 60° C oven and filtered through Whatman filter paper 

(Kent, England).  The fat (top) layer was extracted and analyzed on a single bounce fatIR 

with a ZnSe crystal (Harrick, Plesantville, NY) attached to a temperature controller 

(Harrick, Pleasentville, NY).  A FTS 3500GX Fourier-Transform (FT) infrared 

spectrophotometer (Varian, Palo Alto, California) was used with a potassium bromide 

beam splitter and Deuterated Triglycine Sulfate (DTGS) detector for all readings, 

operating at 4 cm-1 resolution.  Spectra were collected over the frequency region from 

4000-600 cm-1 and interferogram of 32 scans were co-added according to Beer-Norton 

apodization.  Spectra were displayed in terms of absorbance and viewed using Win-IR 

Pro Software (Varian, Palo Alto, California). Each sample was analyzed in triplicate.  To 

prevent interference in the spectra, the instrument was continuously purged with CO2 –

free dry air from CO2RP140 dryer (Dominick Hunter, Charlotte, NC, USA). 

2.3.2 Multivariate Analysis 

 The spectra were exported as GRAMS.spc file format and imported into 

Pirouette®, for Windows Comprehensive Chemometrics Modeling Software, version 

3.11 (Infometrix, Inc. Bothell, WA). The spectra were then analyzed by soft independent 

modeling of class analogy (SIMCA) to generate clustering groups.  SIMCA is a 

multivariate analysis technique based on principal component analysis (PCA).  The 
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program allows for the visualization of clustering among samples.  This was used to 

evaluate the ability of the ATR-IR spectra to discriminate butters based on production 

method and manufacturer.    

In SIMCA, training sets are assigned to classes and a principle component model 

is generated for each class with distinct confidence regions within them (Naumann, 

Schultz and Helm 1996). The performance of this method depends not only on the 

difference between classes, but also strongly on the training set for each class (Naumann, 

Schultz and Helm 1996). The scores plot allows the visualization of clustering among 

samples (sample patterns, groupings or outliers). Between-class distances were calculated 

using interclass distances and Mahalanobis distances were used for outlier diagnostics. 

The clusters can be defined using the discriminating power, which identifies the 

wavenumbers that have a predominant effect on sample classification by minimizing the 

difference between samples within clusters and maximizing those from different clusters 

(Dunn and Wold 1995). If a sample falls outside the class border, it is considered an 

outlier. For this reason, class-modeling techniques can be regarded as outlier detection 

methods (Candolfi and others 1999). Therefore, the identity of unknown samples can be 

predicted using the training models with three possible outcomes: (i) the unknown is part 

of one class, (ii) the unknown is part of more than one class, or (iii) the unknown does not 

belong to one class. 
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2.4 RESULTS AND DISCUSSION 

 The typical ATR-IR spectrum for the butter samples showed characteristic bands 

associated with fats between 1200-700 cm-1 (Figure 2.1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Attenuated total reflectance (ATR) spectra of butter samples 
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plane.  Mathematical processing of the raw spectra using a Savitzky-Golay second 

derivative algorithm (5-pt gap size) resulted in removal of baseline shifts, resolved 

overlapping peaks, and reduced variability between replicates (Kansiz and others 1999).   

Class projections are used to illustrate the ability of SIMCA to differentiate IR 

data based on the first three principal components (Figure 2.2A). This model offered 

good class separation, tight clustering among butter samples, zero misclassifications, and 

an interclass distance of 3.2. Generally, interclass distances above 3 are considered good 

for discrimination with larger interclass distances indicating well separated classes (Dunn 

and Wold 1995). The major discrimination bands were between 1300 and 800 cm-1 with 

strong absorption bands at 966 cm-1, as shown by the discrimination power (Figure 1.1B)   

Wavelength 966 cm-1  is characteristic of C=H trans bending out of plane (Stuart 2004).   

This is presumably due to the presence of conjugated fatty acids in butter and other dairy 

products (Guillén and Cabo 1997). 

Separation based on manufacturer also showed tight clustering without any 

misclassifications (Figure 2.3A).  The interclass distances ranged from 2-16 (Table 2.1).  

Some of the class distances obtained in the experiment were lower than three, due to the 

subtle differences between manufactures.  It is interesting to note that the lowest 

interclass distance occurs between two organic manufacturers.  The discriminating bands 

for the separation of butter samples based on manufacturer showed the peak at 966 cm-1 

as well as an additional peak at 1109 cm-1 (Figure 1.2B).   This band is attributed to C-O 

stretching (Sato 1990, Guillén and Cabo 1997).     

We were not able to separate between salted and unsalted products.  Salt exhibits 

no absorption in the infrared region, however monitoring the change in the water 
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component of spectra gives information about the salt in a sample (Begley and others 

1984).  This method only utilizes the lipid fraction of the sample, making it impossible to 

monitor salt using this method.   

 

 

 

 

 

 

 

 

 

 

Figure 2.2 SIMCA classification of organic and conventional butter (A) and 
discriminating bands (B). 
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Figure 2.3 SIMCA classification of butter by manufacturer (A) and discriminating bands 
(B). 

 

 

 

 

 

 

 

 

Table 2.1 Interclass distances for the separation of butter based on manufacturer 
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2.5 CONCLUSIONS 

The ATR-IR technique allowed the development of SIMCA models for the 

qualitative analysis of organic and conventional butters.  The determination of organic 

and conventional butters occurs mostly at wavenumber 966cm-1 and is presumably 

attributed to a difference in conjugated acids.  These differences in conjugated acids 

could be due to differences in feed between organically and conventionally raised dairy 

cattle.  This method also shows promise for the discrimination of butter based on 

manufacturer as well as butter origin.  The same band at 966cm-1 is also important in 

discriminating butter based on manufacturer in addition to a band at 1109cm-1 which is 

attributed to C-O stretching.   

These results show that FTIR is a rapid, accurate, and cost-effective assay that is 

less time consuming than current analytical practices, such as gas chromatography, for 

the authentication of butter.  IR spectroscopy can resolve the unique information of 

samples accurately and discriminate between conventional and organic products as well 

as manufacturer.  
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3.1 ABSTRACT 

Tomatoes are the second most produced and consumed vegetable in the United 

States with a production value in the U.S. over $2 billion every year since 2005. 

Tomatoes are classified for use as fresh or processed tomato products based on their 

sugar and acid profile and the presence of carotenoids which provide health benefits.  

Current methods to analyze sugar content of tomatoes are time and labor intensive 

making efficient assays for detection and quantification desirable.  Our objective was to 

develop a simple, accurate and cost effective protocol to determine sugars using 

Attenuated Total Reflectance Infrared (ATR-IR) spectroscopy and multivariate analysis. 

 Samples were obtained from genetically diverse tomato varieties that 

encompassed commercial hybrids, experimental hybrids, and elite parents used in tomato 

processing and fresh market industry. Fresh tomatoes were blended, aliquots (5 mL) 

centrifuged and infrared spectra collected from supernatant (2 µL) vacuumed dried onto a 

ZnSe crystal.  Enzymatic kits for glucose and fructose were used as the reference 

methods. Partial least squares regression (PLSR) was used to create calibration models 

that correlated the sugar concentration in tomatoes with infrared spectra.  Multivariate 

models accurately predicted reducing sugars (glucose, fructose) using the supernatant 

with R-values > 0.98 and SECV <0.25 g/100g using the fingerprint infrared region of 

1200-900cm-1 for sugars. Vacuum drying of the tomato soluble extracts onto the ATR 

crystal caused spectral artifacts in selected samples. ATR-IR combined with 

chemometrics could provide the tomato industry with a simple and high throughput 
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method for determination of sugar in tomatoes that could lead to improved varieties with 

enhanced characteristics for industry and consumer demands.    

3.2 INTRODUCTION 

The United States is one of the world’s leading producers of tomatoes, second 

only to China (Lucier and Detteman 2009).  Production of fresh and processing tomatoes 

has increased steadily for the past 20 years and the farm value of the tomato crop is 

around $800 million (Lucier and Detteman 2009).  In the United States, tomatoes are 

bred specifically to serve the requirements of either fresh or processing markets.  A 

tomato’s composition classifies it for use as a fresh market or processing tomato.  Factors 

such as soluble sugars, amino acids, acids, minerals and carotenoids, as well as the 

overall nutrient value are important in determining overall quality and best use of a 

tomato crop. 

The market price for tomatoes depends on a variety of factors including the 

intended use (fresh market or processing), as well as composition.  The most important 

aspect in flavor acceptability is the sugar to acid ratio (Malundo, Shewfelt and Scott 

1995).  

Current methods to analyze tomato composition include high performance liquid 

chromatography (HPLC) and enzymatic kits.  While these methods are accurate and 

widely accepted they do have limitations.  HPLC requires extensive sample preparation, 

method development is lengthy and depends mostly on trial and error before a suitable 

technique is found (Halim and others 2006). To monitor the total composition of 

tomatoes would require the development of a new method of extraction and analysis for 
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each compound.  The end results depend greatly on the stability of the compounds as well 

as the ability of the analyst to properly extract the compounds of interest and prepare the 

sample for analysis properly (Halim and others 2006).  Enzymatic kits are another option 

for monitoring tomato composition.  Enzymatic kits require the use of a 

spectrophotometer and this method has a high cost per test.  As opposed to HPLC or 

spectroscopy, which requires an initial investment and upkeep, enzymatic kits are an 

ongoing financial burden.  Enzymatic kits are very sensitive and require much practice on 

the part of the analyst before accurate results are obtained (Bergmeyer 1974). 

 Attenuated total reflectance infrared spectroscopy (ATR-IR) combined with 

multivariate analysis offers the industry and plant breeders a rapid and accurate test to 

monitor tomato composition with little sample preparation. Spectral bands arising from 

functional group vibrations of organic molecules in the mid-infrared region (4000-700cm-

1) may be associated to specific functional groups with known wavelength assignments in 

most cases.  Halim (2006) used ATR-IR to quantify lycopene in tomatoes. ATR-IR has 

also been used to monitor organic acid and sugars in apple and mango juice (Irudayaraj 

and Tewari 2003, Duarte and others 2002).   Sugar production is often an indicator of 

tomato ripeness and by picking at the right time producers have fewer spoiled fruits and 

are able to obtain a higher price for their tomatoes (Hulme 1970).  Using IR, tomato 

producers can track the development of tomatoes in the field to determine the optimum 

picking time. ATR-IR is the ideal method for monitoring tomato composition because it 

is rapid, easy to use, and less costly than other techniques.   
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3.3 MATERIALS AND METHODS  

3.3.1 Plant material and Sample Preparation 

 A total of 17 tomato varieties were grown and harvested in Fremont, Ohio, at the 

north central agricultural research center.  The homogenized frozen samples were 

obtained from varieties and breeds that encompass a wide range of sugar, pigment, and 

acid levels.  Plant materials included hybrids, experimental hybrids, and elite parents 

used in the tomato processing industry.   

 Aliquots (1mL) of the homogenized tomato sample were centrifuged for five 

minutes at 3000rpm and the supernatant withdrawn. Each tomato variety was analyzed in 

triplicate. 

 

3.3.2 Sample preparation: enzymatic determination of sugar 

 Glucose and fructose were quantified using a fructose assay kit from Sigma 

Aldrich (Saint Louis, MO).  Quantification of glucose and fructose is based on the 

phosphorylation of fructose and glucose catalyzed by hexokinase.  During the reaction 

NAD is reduced to NADH causing an increase in absorbance.  Samples were prepared in 

a 1:20 dilution with distilled water and were analyzed according to the method by 

Sigma/Bergmyer with the addition of a cuvette of 2.02 mL of distilled deionized water 

and 0.1 mL of diluted tomato sample.  Absorbencies were monitored at 340nm using a 

UV/Visible spectrophotometer 2450 (Shimadzu, Columbia, Md.) with 1cm pathlength 

disposable cells. 
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3.3.3 Infrared spectroscopy 

To obtain spectra, the samples were dried directly on an ATR-IR ZnSe crystal 

before the spectra were collected.  An FTS 3500GX Fourier-Transform infrared 

spectrophotometer (Varian, Palo Alto, California) was used with a potassium bromide 

beam splitter and Deuterated Triglycine Sulfate (DTGS) detector for all readings, 

operating at 8 cm-1 resolution.  A three-reflection ZnSe ATR accessory was used with a 

refractive index of 2.5 that permitted a triple reflection within the sample at an incidence 

angle of 45°, for the highest infrared sample throughput (Pike Technologies, Madison, 

WI).  Spectra were collected over the frequency region from 4000-600 cm-1 and 

interferogram of 32 scans were co-added according to Beer-Norton apodization.  Spectra 

were displayed in terms of absorbance and viewed using Win-IR Pro Software (Varian, 

Palo Alto, California).  Each sample was analyzed in duplicate.  To prevent interference 

in the spectra, the instrument was continuously purged with CO2-free dry air from 

CO2RP140 dryer (Dominick Hunter, Charlotte, NC, USA).  

 

3.3.4 Multivariate Analysis 

 The spectra were exported as GRAMS.spc file format and imported into 

Pirouette®, for Windows Comprehensive Chemometrics Modeling Software, version 

3.11 (Infometrix, Inc. Bothell, WA).  Partial least squares regression (PLSR) was used to 

analyze the spectra using a cross validated (leave-one-out approach).  PLSR is a bi-linear 

regression model that reduces a large number of variables into a small number of latent 

variables that are linear combinations of the spectral variables and uses these to 
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determine the analyte’s concentration (Wold, Sjostrom and Eriksson 2001).  These latent 

variables explain much of the co-variance of X and Y (Martens and Martens 2001).   

PLSR is a versatile analytical approach because of its ability to analyze large, complex, 

and noisy data sets (Wold, Sjostrom and Eriksson 2001, Wold and others 2001).  This 

technique is widely used in spectroscopy because it uses the concentration information 

(Y) to determine how regression factors are computed from the data set (X); this reduces 

the impact of irrelevant variations in the calibration model (Martens and Martens 2001).  

PLSR models are evaluated in terms of standard error of calibration (SEC), standard error 

of cross validation (SECV), and coefficient of determination (r-values).   
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3.4 RESULTS AND DISCUSSION 

3.4.1 Enzymatic Kits 

The glucose and fructose levels for 17 varieties of tomatoes were determined by 

enzymatic methods, used as a reference method in developing multivariate calibration 

models for ATR-IR spectroscopy.  Based on enzymatic kits, fructose and glucose levels 

in tomatoes ranged from 0.395-1.114g/100 g and 0.194-0.882g/100g, respectively (Table 

3.1).  Levels of sugars in tomatoes have been reported to range from 0.9g -1.62g/100g for 

glucose and 1.25-1.70g/100g for fructose, based on HPLC analysis (Souci and others 

2008).  The values reported in this study are close to those found in literature, taking into 

consideration that sugar levels may be affected by factors such as variety, maturity, 

temperature, and soil nutrients among others (Gould 1974, Jones and Scott 1983).  The 

lower levels of sugars reported in our study could be attributed to the use of enzymatic 

kits instead of the more accurate HPLC analysis.  Also, our results showed higher values 

for fructose than glucose which is consistent with literature (Hernández, Rodríguez-

Rodríguez and Díaz-Romero 2008).  The sugar concentration of tomatoes has also been 

evaluated as a tool to determine flavor acceptability (Malundo, Shewfelt and Scott 1995) 

Our precision (%CV) for replicated enzymatic analysis was <16% and <11% for 

fructose and glucose, respectively.  The variable %CV indicates the limitations of the 

enzymatic method for the determination of sugars. CV reflects the cumulative effect of 

the sample’s in homogeneity among replicated samples, due to natural variability of the 

tomatoes, signal noise, the skill of the analyst, experimental error (mainly dilution effects, 

reaction times, assay temperature), day-to-day environmental variations (such as 
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temperature, humidity, air, etc.), and many more (Halim and others 2006). For instance, 

the detection range of the kits required a concentration range from 100-1000µg/ml 

fructose/glucose, resulting in sample dilutions of 20 to 40 fold to be within the acceptable 

concentrations for analysis.  Consequently, %CV can be lowered as the skill of the 

experimentalist improves and assay variations can be minimized.  Enzymatic kits have 

been found to have higher %CV in sugar determination in tomato products as compared 

to HPLC and Fehling reagent methods (Porretta and others 1992).  

 

 

Tomato Variety Code Fructose CV Glucose CV 

    mg/100g % mg/100g % 

Vintage Cultivar 6407 0.876 4.561 0.700 4.711 

Vintage Cultivar 6409 0.794 6.537 0.626 7.448 

Fresh Market 6414 0.664 15.754 0.569 7.243 

Vintage Cultivar 6420 0.737 12.620 0.655 10.701 

Fresh Market 6423 0.803 6.093 0.638 8.227 

Vintage Cultivar 6435 0.637 5.596 0.479 4.700 

Latin American Land Race  6451 0.910 6.520 0.736 5.644 

Processing 6453 0.395 6.837 0.194 8.383 

Wild Cherry 6455 0.909 8.819 0.729 10.298 

Vintage Cultivar 6467 0.794 6.388 0.639 7.683 

Processing 6480 0.747 6.810 0.576 8.718 

Latin American Land Race  6485 0.968 0.788 0.821 6.705 

Unimproved breeding line 6495 0.843 8.998 0.549 10.749 

Processing 6498 0.599 2.327 0.436 2.200 

Processing 6501 0.557 1.274 0.394 1.558 

Vintage Cultivar 6511 0.999 6.255 0.828 8.848 

Processing 6547 0.593 0.000 0.436 2.153 

 

Table 3.1 Sugar concentrations determined by enzymatic kits 

 

 



 

 
 

40 

 

3.4.2 Infrared Spectroscopy 

 Infrared analysis was first carried out using an infrared microscope because of its 

sensitivity and high throughput capabilities.  The ATR-IR microspectroscopic technique 

uses a slide on an ATR with a germanium crystal that is lowered onto the sample surfaces 

to generate the spectra. Samples were vacuum dried to minimize the effect of the strong 

water absorption bands centered at 3400 cm-1 and 1700 cm-1 that possibly overlapped the 

analyte spectral signal. Elimination of the solvent and analysis of the dried sugar extract 

resolved several spectral features (Figure 3.1). However, upon vacuum drying, the high 

sugar levels of the tomato samples resulted in syrup instead of a homogeneous film which 

caused inconsistency in the spectra because the ATR probe was disturbing the sample’s 

surface, thus, resulting in irreproducible results (Fig. 3.1).  

 

  

 

 

 

  

 

 

Figure 3.1 Attenuated Total Reflectance (ATR) infrared absorption spectrum of one 
tomato sample 
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The analysis protocol was modified by using the standard ATR-IR benchtop 

equipped with a 3-bounce ZnSe crystal onto which the sample was vacuum dried, 

minimizing disruption of the sample. The spectra were reproducible within a sample with 

no difference in spectral bands among replicates (Figure 3.2 A), while spectral 

differences were noticed when comparing tomato varieties with extreme sugar 

concentrations (Figure 3.2 B). However, spectra from tomato samples (6409, 6420, 6480) 

having comparable levels of fructose and glucose, with average values of 0.764 mg/100g 

and 0.596mg/100g, respectively, produced spectra with vastly different spectral 

intensities and profiles (Figure 3.2C).  This is even more evident when comparing the 

second derivative (Figure 3.3). This mathematical transformation of the spectral 

measurements resolves overlapping bands and allows for easier comparisons of the 

differences between samples.  This indicates that there might be components in the 

samples, other than sugar, that are influencing the spectra.  
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Figure 3.2 Attenuated Total Reflectance (ATR) infrared absorption spectrum of tomato 
samples: repetition of the same sample (A), comparison of a high and low sugar variety 
(B), and comparison of three different samples with similar sugar concentrations (C). 
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Figure 3.3 Second derivative transformation of ATR spectrum of tomato samples: 
comparison of a high and low sugar variety (A), and comparison of three different 
samples with similar sugar concentrations (B). 
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obtained for the reference method can impact our model, limiting the precision of the 

PLSR prediction.  

Examination of these loading spectra indicates which regions of the spectrum are 

associated with the most sample variation. The PLSR loading spectra (Fig. 3.5) show 

absorption features for glucose and fructose.  The regions with the highest variation were 

similar in fructose and glucose, and are associated with C-O and C-O-H functional 

groups.  Frequencies from 1000-1300 cm-1 are characteristic of C-O stretching and the 

bands at 930 cm-1 and 1430 cm-1 are due to C-O-H in plane bending (Stuart 2004).   

 

 

 

  

 

 

 

 

Figure 3.4 Cross-validated (leave one out) PLSR plots for glucose (A) and fructose (B) 
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  SECV r-value factors 

Fructose 0.027 0.98 11 

Glucose 0.028 0.97 7 

Table 3.2 Comparison of SECV, r-values and factors for partial least squares regression 

 

 

 

 

 

 

 

 

 

Figure 3.5 Partial least squared loadings plot for cross validated models for the 
determination of fructose (A), glucose (B). 
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or sugar-water interactions.  This could impact the spectral profiling, limiting the ability 

of PLSR to accurately estimate sugar levels in unknown samples.   In summary, ATR-IR 

coupled with multivariate analysis has shown promise as a fast and reliable technique for 

determination of sugars in tomato samples. This spectroscopic technique could provide a 

valuable tool for the rapid screening of tomato sugars for the industry.   
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