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ABSTRACT

The ability to perform high-speed dynamic maneuvers is an important aspect of lo-

comotion for bipedal animals such as humans. Running, jumping, and rapidly chang-

ing direction are fundamental dynamic maneuvers that contribute to the adaptability

and performance required for bipeds to move through unstructured environments.

A number of bipedal robots have been produced to investigate dynamic maneuvers.

However, the level of performance demonstrated by biological systems has yet to be

fully realized in a biped robot. One limiting factor in achieving comparable per-

formance to animals is the lack of available control strategies that can successfully

coordinate dynamic maneuvers. This thesis develops a control strategy for producing

vertical jumping in a planar biped robot as a preliminary investigation into dynamic

maneuvers. The control strategy was developed using a modular approach to allow

adaptation to further dynamic maneuvers and robotic systems.

The control strategy was broken into two functional levels to separately solve the

problems of planning and performing the jump maneuver. The jump is performed

using a low-level controller, consisting of a state machine for determining the current

phase of the jump and motor primitives for executing the joint motions required by

the current phase. The motor primitives, described by open- and closed-loop control

laws, were defined with numeric control parameters for modifying their performance.

The high-level controller performs the task of planning the motion required to achieve
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the desired jump height. Fuzzy control, an intelligent control approach, was selected

for the high-level controller. The fuzzy controller uses heuristic information about the

biped system to select appropriate control parameters. This heuristic knowledge was

implemented in a training algorithm. The training algorithm uses iterative jumps

with error-based feedback to determine the control parameters to be implemented by

the fuzzy controller.

The control strategy was developed and validated using a numerical simulation of

the experimental biped KURMET. The simulation models the dynamics of the biped

system and has demonstrated the ability of the control strategy to produce stable

successive jumps with an approximate height of 0.575 m. The control strategy was

also implemented on the experimental biped for a simplified case, resulting in stable

successive jumps with a range of heights from 0.55 to 0.57 m.
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CHAPTER 1

INTRODUCTION

1.1 Bipedal Robots

The incredible variety of maneuvers performed by humans and other animals has

captivated the interest of researchers for many years. Bipedal animals are of particular

interest, due to the fact that humans themselves are bipeds. Bipeds also represent

the simplest form of a multi-legged animal, reducing the complexity associated with

additional joints and limbs while maintaining valuable locomotion capabilities.

The tasks of planning and controlling maneuvers are often completed with little

conscious effort on the part of the animal. The internal processes used to complete

these tasks give rise to many fundamental questions regarding how they are per-

formed. The primary tools used to investigate legged locomotion include biological

experimentation and analysis, numerical simulation of systems, and experimentation

with robotic platforms. The use of experimental robotic platforms offers several ben-

efits over other tools including a defined physical structure, easily obtainable physical

parameters and state variables, complete access to the motor control process, and

real-world demonstration of concepts. These benefits as well as others have led to the

creation of a number of bipedal robots for research purposes.
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The use of robotic platforms in locomotion research presents a particular challenge

with respect to control of the complete system. Legged robots often represent simpli-

fied versions of animals, with mechanical links used to mimic body parts including the

legs and trunk of an animal while actuators take the place of muscles for providing

power to the body parts. Even with a simplified mechanical structure, legged robotic

systems can contain many links and actuators. Performing locomotive maneuvers

requires that the motion of the robotic links be coordinated. This coordination is

built upon a control strategy for achieving the desired locomotion.

1.2 Control Strategies for Legged Locomotion

The control strategy is a critical element for achieving robotic locomotion. The

primary function is to plan the manipulation of the robotic links through activation

of the actuators in a manner that will achieve the locomotive goals. The motions

defined for the links will depend upon the characteristics of the locomotion desired,

but the function will remain the same. The difficulty in performing this function

is introduced through the requirement of physical stability of the system. Physical

stability can be interpreted in a number of ways. A natural interpretation related to

this work is the ability of a legged robot or animal to perform a maneuver in a manner

such that continued locomotion is possible. While this description of stability is useful

for a general understanding of locomotive goals, it lacks the precision necessary for

direct integration into a control strategy. More rigorous definitions of stability have

been developed and used to create control strategies capable of producing legged

locomotion. In the following discussion of control strategies, the term ‘system’ will

be used to refer to a generic bipedal animal or robot unless otherwise specified.
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1.2.1 Static Stability and the Zero Moment Point

The most basic posture in which a system can be described as stable or balanced

occurs when the links are held in a static configuration such as standing. When

this situation occurs, the stability of the system can be described by the projection

of the center-of-mass (CoM) onto the ground, defined as point P . The contact

points between the feet and the ground describe a finite area called the support

polygon. In a biped with flat rectangular feet, the support polygon will form a

shape as depicted in Fig. 1.1. In a statically balanced configuration, the projection

of the CoM on the ground will fall within the area defined by the support polygon.

The system is statically stable due to the ground reaction forces on the feet balancing

the gravitational forces and resultant moments. If the system is disturbed from such

a configuration to a position where the point P is outside the support polygon, the

ground reaction forces will no longer be capable of counteracting the gravitational

forces. The system will fall unless corrective action is taken.

The static stability described by the location of point P within the support poly-

gon is sufficient to develop a basic control strategy for bipedal locomotion. In a system

with feet that achieve multiple points of contact with the ground such as those de-

picted in Fig. 1.1, the control strategy can consist of planning trajectories for the

links such that point P remains in the support polygon throughout the maneuver. If

the trajectories are performed at a low enough speed, system dynamics introduced

by inertial effects can be neglected. The locomotion control process can be performed

by transitioning support of the system from foot to foot while maintaining the static

stability criteria. This control strategy, while achievable, does not produce locomo-

tion that resembles the natural locomotion of animals. The principles of this strategy

3



P

(a) (b)

CoM

Figure 1.1: Simplified biped schematic for static stability. The link arrangement and CoM
are shown in (a). The support polygon is depicted in a planar view in (b) using a dashed
red line, with the projected center of mass P represented by the black dot. The rectangular
feet are shaded grey in both.

may be extended to provide more flexibility to the control strategy for planning stable

motions. The zero-moment point (ZMP) was developed in this manner.

Vukobratovic and Borovac [1] describe the ZMP in detail as it corresponds to

development of legged locomotion control strategies. The ZMP can be defined as

the point on the ground surface about which a net moment of zero is exerted on the

system by gravitational, inertial, and ground reaction forces. This point can also be

explained as the location on the ground surface where moments introduced by ground

reaction forces on the foot (or feet) balance the moments produced by gravity and

inertia. The inclusion of inertial effects in the definition of the ZMP allows for use of

4



the point in explaining the stability of non-static situations in which the systems links

are moving at an appreciable speed. In order for the system to have stability (also

called dynamic balance), the ZMP must fall within the support polygon. The ZMP

can be implemented in control strategies for planning locomotion to ensure system

balance throughout a maneuver. Maintaining the ZMP within the support polygon

can be achieved through control of the link trajectories used to execute a maneuver.

The introduction of the ZMP enabled the development of control strategies capable

of performing basic locomotive maneuvers such as walking. The first bipedal robot

to demonstrate the effectiveness of the ZMP for describing stability was WABOT-1

[2]. The control strategy for WABOT-1 maintained stability through planning joint

trajectories that respected the ZMP location within the support polygon until the

time of foot transition. At foot transition during a step, the robot was allowed to

fall forward onto the opposite foot, ultimately returning to a new stable posture.

This brief instability defines the walking as a quasi-static maneuver. In a quasi-

static maneuver, statically-based stability is maintained through the majority of the

maneuver with short phases of instability.

A more recent demonstration of the ZMP-based control strategy is given by the

humanoid robot ASIMO [3]. ASIMO has demonstrated a variety of maneuvers using

this general control strategy, including walking, stair-climbing, and running. A similar

level of performance has been achieved with the small entertainment robot QRIO [4].

The maneuvers demonstrated by these systems lack much of the fluid nature present

in similar maneuvers performed by animals. The restrictions of a control strategy

based on the ZMP cause this lack of fluidity. Achieving more natural-appearing

locomotion requires a different approach to the control strategy.
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1.2.2 Control Strategies Exploiting Dynamics

At their origin, control strategies based on the ZMP rely on the concept of main-

taining static or quasi-static stability. In contrast to this, building a control strategy

based upon dynamic considerations can produce a substantially different end result.

Fully dynamic motion, in which the system is continuously outside the region of static

stability, encompasses a much greater number of maneuvers. Introducing fully dy-

namic movement into a robot’s repertoire of maneuvers expands the design space,

offering greater performance potential and flexibility.

The improved performance and flexibility of robotic systems offered by the de-

velopment of dynamic maneuvers are critical to realizing performance comparable to

biological systems. Specifically, robots expected to perform tasks in the diverse un-

structured environments frequented by humans must have maneuvering capabilities

similar to those of humans. Actions such as running, jumping, stopping, starting,

and rapidly changing direction are fundamental dynamic maneuvers exhibited by bi-

ological systems. The ability of legged robots to replicate these maneuvers presents

a significant challenge.

Raibert sought to exploit the natural dynamics of legged systems to improve sta-

bility and performance of maneuvers [5]. A monopod robot was first used to demon-

strate the possibility of producing maneuvers in which static balance is not required.

The robot consisted of a single prismatic leg and a body housing controllers and ac-

tuators. Three dimensional hopping was produced using a relatively simple control

strategy that exploits the mechanical structure of the robot. The controller separated

the problems of performing a maneuver and maintaining balance. During the ground
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contact phase, the monopod’s leg delivered thrust via a pneumatically-powered, pris-

matic actuator to drive the system through the following hop. Simultaneous to the

delivery of thrust, a servo-controller was used to actively correct the orientation of

the robot’s body. In this manner, Raibert was able to produce a consistent hopping

behavior. Furthermore, control over the characteristics of the hop maneuver includ-

ing forward velocity and height was demonstrated through control of the leg position

and the amount of thrust delivered. This control strategy was extended to a bipedal

system to produce running. The biped demonstrated a planar run exhibiting stable,

dynamic characteristics.

The robots designed by Raibert, while showing impressive performance and sta-

bility, lack realism when compared to legged animals, which rely on articulated legs.

The mechanical design of these robots reflects modeling of legged systems using a

spring-loaded inverted pendulum (SLIP) as described by Full and Koditschek

[6]. While the SLIP model has been found useful in analyzing and controlling loco-

motion [7], it does not include dynamic effects introduced by articulated joints with

massive links. Schmiedeler et al. [8] presented evidence that leg mass is an integral

part of system dynamics when modeling quadrupedal locomotion. The limitations

of prismatic actuators in representing animals become clear when considering ma-

neuvers with extended flight phases where angular momentum becomes significant.

Despite the simplifications, the SLIP model has been shown to contribute to develop-

ing dynamic running control strategies for an articulated monopod by Poulakakis and

Grizzle [9]. The monopod relies on a control strategy using hybrid zero dynamics

(HZD).

7



The HZD control strategy was developed by Westervelt et al. [10] for application to

a special class of robots consisting of planar bipeds with one more degree-of-freedom

(DOF) than the number of actuators. The ‘planar’ aspect of these bipeds refers to the

fact that they operate only in the saggital plane. The dynamics of bipedal walking

are modeled in two parts based upon whether one or both feet are in contact with the

ground. These phases have a dynamic model associated with each, while the initial

contact of the feet with the ground surface is modeled as a discrete, impulsive event

occurring in an infinitesimally small time. The control strategy works by reducing the

dynamic models to a single DOF hybrid zero dynamic model. The HZD model is then

used to determine a stable periodic orbit that describes the behavior of the system

during the walking maneuver. The characteristics of the HZD model are such that a

stable periodic orbit of the reduced dynamic model correlates to a periodic orbit of

the full dynamic model that can be stabilized through feedback control. The resulting

controllers produced by the HZD-based control strategy have been demonstrated on

multiple robotic systems. The planar biped ERNIE has shown the ability to perform

dynamic, stable walking at a variety of speeds [11]. A similar biped robot, RABBIT,

used the HZD control approach to perform a sequence of six running steps, revealing

the capability of the control strategy to extend beyond walking [12]. The walking

and running demonstrated by these systems resemble natural maneuvers much more

closely than statically-based approaches.

The results of the HZD-based control strategy support the validity of the tech-

nique. However, the intensive mathematical analysis and modeling involved requires

a significant time investment to produce locomotion. Additionally, the resulting con-

trollers have restricted application to a particular type of system. The ability of
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animals to perform complex maneuvers suggests that less analytically intensive con-

trol strategies may be viable.

1.2.3 Intelligent Control Strategies

Intelligent control strategies have emerged as an alternative approach to ana-

lytically intensive methods. Antsaklis and Passino [13] describe intelligent control

systems as a necessary development to address the increasingly complex nature of

dynamic systems. They characterize intelligent control methods by inclusion of mul-

tiple levels for action planning, the ability to learn from past experience, or the ability

to react to threats or challenges. Multiple levels of control suggest the use of a high-

level intelligent control method in conjunction with low-level controllers for producing

link motion. Neural networks, genetic algorithms, and fuzzy control are some of the

primary tools of intelligent control that have seen application to robotic systems.

Neural networks are used to mimic the cognitive processes of animals. The ele-

ments of biological neural systems, neurons, are represented through programming

objects. These artificial neurons are joined together to form a complex network capa-

ble of performing tasks including reinforcement learning and problem solving. Miller

[14] applied a neural network to the problem of controlling dynamic walking in a hu-

manoid robot. Given fixed low-level control strategies, the neural network was used

to provide an adaptation mechanism for adjusting the maneuvers to produce stability.

Continuous walking was not achieved; however, the ability of the neural network to

improve the balance of the mechanism while maneuvering was demonstrated.

Genetic algorithms are based on the concept of evolution. Combinations of pa-

rameters for controlling a system can be considered as individuals in a population.
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An initial set of candidate individuals are evaluated using a performance metric. The

best performing individuals are selected to produce a new generation of individuals

using combinations of their parameters. The process of performance evaluation and

genetic recombination are repeated iteratively to locate a combination of parameters

that achieve the desired goal. Genetic algorithms are able to search a large, multi-

dimensional design space of parameters in an efficient manner. Curran [15] used

a genetic algorithm in this manner to determine actuator command parameters for

achieving a maximal height jump in an articulated, hopping leg constrained to verti-

cal motion. Galloping quadrupedal motion was produced by Krasny through use of

a genetic algorithm to search for appropriate control parameters to be implemented

by low-level motor controls [16].

Fuzzy control allows the integration of heuristic control information into a struc-

tured control strategy. Heuristic information can be provided by a user to describe

the appropriate control actions for a system for a variety of scenarios. This heuristic

information is used to create a set of rules describing the action to be taken by the

controller. The fuzzy controller examines the status of the system and implements

the control rules that are applicable to the given situation. Some of the key advan-

tages of fuzzy controllers are their ability to incorporate a user’s knowledge, their

applicability to complex, nonlinear systems, and their ease of implementation [17].

Fuzzy controllers have been implemented in robotic control strategies for determining

control parameters for producing locomotion. Palmer [18] successfully used a fuzzy

controller for producing trotting in a quadruped in numerical simulation. Marhefka

[19] similarly used a fuzzy controller for a quadruped to produce galloping as well
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as starting and stopping. In these implementations, the fuzzy controller is used as a

high-level controller for determining parameters for low-level motor controllers.

The demonstrated ability of intelligent control to produce locomotive behaviors in

robotic systems encourages the application of such techniques to additional systems

and maneuvers.

1.2.4 Jumping Control Strategies

Many of the bipedal systems already described have emphasized walking or run-

ning as the desired locomotion. Some of the systems have demonstrated these ma-

neuvers experimentally. A number of projects have also been created to research the

possibility of another basic legged maneuver: jumping. Jumping poses an attractive

maneuvering capability for legged robots. The ability to overcome obstacles or rugged

terrain is enhanced by the extended flight phase and foot clearance demonstrated in

jumps in comparison to walking and running.

The control strategies that have been developed to produce jumping in biped

robots typically exhibit one of two shortcomings: either the height of the jump relative

to the size of the robot is unimpressive or the mechanical structure of the robot lacks

biological realism. Nunez et al. [20] developed a control strategy for stable vertical

jumping in a biped through use of the sliding mode control technique. The control

strategy incorporates the ZMP concept to maintain the stability of the system by

keeping the foot positioned directly below the CoM. The demonstrated results of the

control scheme in simulation show the achievement of a jump in which the system’s

CoM reaches approximately 0.60 m. The system was composed of legs with a segment

length of 0.30 m. The jump can be evaluated using the normalized jump height s,

11



defined by Alexander [21] as

s =
h

Li
, (1.1)

where h is the hip height at the top-of-flight and Li is the leg segment length. The

normalized jump height for this result is approximately s = 2.0. This estimate is a

maximum based upon the height of the CoM in place of the height of the hip (which

is not provided). This jump height is unimpressive in light of the abilities of animals

to achieve normalized jump heights in the range of 2.5-5.5 (based on Alexander’s

simulations).

A humanoid robot simulator ROCOS was used by Hirano et al. [22] to validate

a biped jumping control strategy using active impedance control and a simplified

system model. The resulting jumps produced foot heights above ground of 0.05

meters. The normalized jump height cannot be assigned due to a lack of available

data. Hosoda et al. [23] achieved dynamic jumping capabilities in a pneumatically

actuated biped-type robot through use of a feedforward controller. Two additional

legs were included in the robot to provide lateral stability. The robot demonstrated

jumps of 0.12 meters with a standing body height of 0.90 meters. However, the

control strategy did not provide stability, and the robot was observed to fall forward

or backward during the jump maneuver. A similar pneumatic actuation approach was

successfully implemented in a robot designed specifically for jumping; Mowgli [24], a

bipedal robot, demonstrated impressive jumps using an open-loop motor command

control strategy. The robot includes a foot link of similar length to the leg links,

providing a large support polygon during ground contact at the beginning and end of

the jump. This large foot size does not reflect the structure of animals such as humans

and other primates. The control strategy thus has minimal requirements for achieving
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stability. Despite these and other projects focused on jumping legged robots, jumping

with comparable performance to animals has not yet been demonstrated in a biped

robot with a biologically realistic mechanical structure.

1.3 Objectives

The primary objective of this work is development of a control strategy capable

of driving a biologically realistic biped robot with articulated legs through stable

jumping maneuvers. The control strategy is split into two functional levels: planning

and performance of the maneuver. The planning level (high-level) of the controller

implements a fuzzy controller similar to that used by Palmer and Marhefka and

motivated by their results. The performance level (low-level) controller uses open-

loop and closed-loop control over the robot’s actuators to achieve the necessary link

motions.

The biped robot used for modeling and experimentation is KURMET, developed

by Knox as an experimental platform for dynamic bipedal maneuvers [25]. Hereafter,

references to the ‘system’ will denote the biped KURMET unless otherwise specified.

The control strategy will be formulated with the additional goal of remaining flexible

and modular enough to apply to different robotic systems and dynamic maneuvers

other than jumping. The primary objective is accomplished through the following

intermediate objectives.

• Develop a dynamic model of the system that captures all the critical character-

istics affecting performance

• Implement the dynamic model in simulation for development and testing of the

control strategy
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• Define the link motions required to produce jumping and develop low-level

controllers for executing these motions

• Define control parameters sufficient for describing a jump of specified height

and forward motion

• Develop a high-level fuzzy controller capable of providing appropriate control

parameters

• Implement the control strategy in simulation and in hardware for proof-of-

concept

The development of the control strategy, the primary objective, serves as a founda-

tion for investigating more loosely defined concepts related to this work. It is intended

that the control development process and resulting experimentation will provide in-

sight into practical aspects of legged locomotion, motor control theory, and bipedal

system dynamics.

1.4 Motivation

The motivation for this work is the potential benefit to a variety of applications

related to legged locomotion. A thorough understanding of the nature of dynamic

maneuvers, from the standpoint of both motor control and physical performance,

can be used to guide development of human prosthetics, rehabilitation programs and

devices, and more advanced robotic systems. A robot capable of dynamic maneuvers

could be used to analyze dynamic locomotion in a systematic way and to explore

solutions to challenges in these fields.
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The capability of modern medicine to save human lives even in cases of traumatic

injuries has increased the demand for prosthetic limbs. The design of prosthetic limbs

relies heavily on an understanding of the dynamics and kinematics of human motion.

Improvements in the design of these devices directly translates to improved user

experience and satisfaction. Examination of the physical characteristics of dynamic

locomotion in a robot, including joint speeds and structural forces, could help to

precisely define performance requirements for future prosthetic devices.

The field of physical therapy and rehabilitation has seen a large growth in the use

of robotic or otherwise mechanical devices to assist in the recovery process. These

devices can serve functions such as guiding limbs through defined trajectories to

reestablish or improve motor control [26], or counteracting gravitational forces to

reduce the muscular strength required for rehabilitation programs [27]. An improved

understanding of human motor control processes could be used to refine rehabilitation

programs to work in harmony with biological responses to treatment. Kinematic

and dynamic descriptions of dynamic legged maneuvers could direct the design of

more advanced rehabilitation-assistance mechanisms. The control strategy developed

in this work could help to validate theoretical models of motor control, while the

resulting dynamic maneuvers supply physical descriptions of legged locomotion.

An improved understanding of practical issues in controlling legged systems sup-

ports the development of future robots with improved performance capabilities. As

robots approach the performance capabilities of humans, their application can be ex-

panded to include completing tasks hazardous or strenuous for humans. Currently,

robots are being developed for use in high risk environments, such as disaster areas,

to supplement human efforts in search-and-rescue missions. One example of this is
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the wheeled robot developed by Tsukagoshi et al. [28]. This wheeled robot uses a

pneumatic cylinder to produce a jump maneuver for traversing difficult terrain. The

quadrupedal robot BigDog [29], developed for military use in carrying heavy loads

through battle environments, has demonstrated robust locomotion over irregular ter-

rain. Rescue robots and legged systems such as BigDog are examples of how robots

can be used to reduce risk and toil on the part of humans. Practical problems en-

countered during the development of the dynamic robot maneuvers could inform the

design of systems that share these objectives.

1.5 Organization of Thesis

Chapter 2 describes the development of a mathematical model of the biped robot

used in this work. The robot is described with emphasis placed on the unique ac-

tuation scheme used. Modeling of the primary elements of the system includes the

robotic links, the actuators, and the electronic components. The software used for

the numerical simulation is then described. Specific challenges encountered during

the model development are found in the chapter’s conclusion.

The focus of Chapter 3 is the control strategy. The overall strategy is split into

two functional levels, consisting of a high- and low-level controller. The motivation

for these functional levels is presented along with the algorithms used for each. The

low-level controller is explained with respect to the biological principles used as in-

spiration. The high-level fuzzy controller is developed from its base principles.

The training algorithm for the fuzzy controller is the emphasis of Chapter 4. The

criteria for determining acceptable performance are created to reflect the stability

and robustness desired in the resulting controller. The training algorithm is broken
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into specific cases to reduce the difficulty of determining appropriate changes to the

control parameters. The results of the training algorithm are examined. The heuristic

knowledge gained from the training algorithm and development of the control strat-

egy is presented. The chapter concludes with interpretations of the fuzzy training

algorithm and a brief summary.

The results of the control strategy as implemented in simulation and the experi-

mental biped are presented in Chapter 5.

The final chapter, Chapter 6, contains conclusions on the control strategy de-

scribed in this thesis and suggestions for future work.
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CHAPTER 2

MODELING AND SIMULATION

2.1 Introduction

This chapter begins with an overview of the complete robotic system and a discus-

sion of the unique actuator design used in this work. An explanation of the notation

used is then provided. Following this is the development of the modeling for the ac-

tuators, electrical system, and environmental interactions, with respect to their role

in the complete system model. The software and dynamic engine used to perform

the simulation are described, and the chapter concludes with a discussion of several

modeling challenges and a brief summary.

2.2 Complete System

This work focuses on application to a specific bipedal experimental platform,

KURMET, seen in Fig. 2.1. Developed by Knox [25], the system consists of a 5-degree-

of-freedom (DOF) planar bipedal robot with series-elastically actuated, articulated

legs. The actuators are physically located within the torso and are connected to their

respective links via steel cables and pulleys. The design is based upon previous gen-

erations of biped robots and legged systems, including a single-leg prototype system
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Figure 2.1: Experimental biped robot KURMET. The control electronics, including the
control board and power amplifiers, are shown mounted on the top of the torso.

[30] and the biped ERNIE [31]. KURMET was developed to provide the dynamic

performance capabilities required for maneuvers such as running and jumping. Con-

trol is provided by an on-board Galil Motion Control board working in conjunction

with a remote personal computer running real-time Linux.

The robot is mounted on a carbon-fiber boom collinear with the hip axes, set at a

height to be horizontal with full leg extension and the feet contacting the ground. The

boom functions to restrict the motion of the robot to a spherical surface. The length

of the boom (2.08 m), in comparison to the size of the robot (0.5 m leg length), causes
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Figure 2.2: System model in the saggital plane with the boom and boom support not
included. Not to scale.

the curvature of the spherical surface to be low enough to approximate a restriction to

the saggital plane. Revolution of the torso about the boom axis is left free, allowing

body pitch. Restriction to the saggital plane, or more precisely the spherical surface

to which the saggital plane is always tangent, prevents the robot from yawing and

rolling.

The robot is modeled using five rigid links connected by revolute joints: the torso,

two thighs, and two shanks, seen in Figs. 2.2 and 2.3. An additional rigid link is
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Figure 2.3: System model in the coronal plane. Note that the vertical boom support
aligned with the y-axis provides a kinematic connection between the boom and the ground,
but is not included in the system dynamics. Not to scale.

used to model the boom. Each of the two legs is composed of geometrically identical

thigh and shank links, joined at the knee and attached to the torso at the hip.

All of the rigid links include mass, inertia, and geometric properties estimated from

CAD models of the experimental hardware, found in Appendix A. Four series-elastic

actuators drive the two hip joints and two knee joints. Current-control amplifiers

supply the actuators with power. Control of the actuators is performed by specifying

the commanded current supplied to each by the amplifiers.

2.2.1 Overview of Actuator Design

The unidirectional series-elastic actuator (USEA) design described in this work

was developed to provide the explosive leg power required for performing dynamic
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maneuvers [25]. Series-elastic actuators (SEA) can generally be described as a tra-

ditional actuator (such as a pneumatic piston or DC motor) placed mechanically in

series with an elastic element, which is ultimately attached to the driven link. The

elastic element serves the purpose of decoupling the torque and speed output of the

traditional actuator from the torque and speed delivered to the actuated link. Ad-

ditionally, the elastic element allows the storage of energy in the form of potential

energy, which can be delivered to the actuated link in a manner such that the per-

formance exceeds the capabilities of the traditional actuator acting alone.

The USEA design used here represents a special class of SEA, which only realizes

SEA behavior when actuated in one direction. The direction of the actuator chosen

for series-elastic behavior is selected to allow deflection of the elastic elements during

thrusting of the legs. When driven in the opposite direction, the actuator design

causes it to behave as though the actuated link is directly attached to the traditional

actuator, at which point the actuator is said to be operating as a direct-drive actuator

(DDA).

The USEA consists of three primary components: an elastic element, a brush-

less DC motor with attached gearbox, and the unidirectional hardware. The elastic

element used in this work is a spiral torsion spring. The brushless DC motor and

gearbox are commercially available products: the Maxon EC-30 Powermax 200W

motor and matching gearbox. The unidirectional hardware consists of a mechanical

hardstop pair which is engaged when the actuator is operated opposite the thrust

direction. Details of the dynamics of this actuator design will be clarified during the

development of the actuator model below.
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2.2.2 Notation

Simplified system diagrams, shown in Figs. 2.2 and 2.3, depict the physical ar-

rangement of the robot links with joint angles shown referenced to their zero positions.

The variables used to describe the state of the robot are θ1, θ2, θ3, θ4, θ5, θ6, and

θ7, and their associated time derivatives (θ̇1, θ̈1 . . . ). Additional variables used in the

simulation and control include the motor positions θm,1, θm,2, θm,3, and θm,4 and their

time derivatives, with subscripts correlated to the joint state variables. The height

above ground of the hip axis at its connection point with the boom is represented

by h; this value can be kinematically calculated based upon the state variables and

link lengths. Physical constants characteristic of the actuators are listed in Table 2.1

with experimental values provided. The equivalent motor inertia and damping, Jm,eq

and Bm,eq, are approximations of the combined values for both the motor and gear-

box, which are used in modeling for simplification. The motor and gearbox damping

cannot be defined precisely, so the equivalent motor damping is set to be the same

order of magnitude as the equivalent motor inertia. The commanded motor currents,

as determined by the control laws, are represented by ic,1, ic,2, ic,3, and ic,4. Torques

produced by the actuators are denoted by τ1, τ2, τ3, and τ4.

This work uses the standard measurement units defined by the MKS system.

Unless otherwise noted, the following units are assumed for each type of measure

(including state variables and control parameters): length - meter, mass - kilogram,

time - second, angle - radians, current - amp, resistance - ohm, velocity - meters per

second, angular velocity - radians per second, force - Newton, torque - Newton meter.
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Table 2.1: Actuator System Physical Constants

Symbol Physical Constant Experimental Value

Jm Motor Inertia 3.33×10−6kg ·m2

Bm Motor Damping N.A.

Jg Gearbox Inertia 1.40×10−6 kg ·m2

Bg Gearbox Damping N.A.

Jm,eq Equivalent Motor Inertia 4.73×10−6 kg ·m2

Bm,eq Equivalent Motor Damping 1.0×10−6 N·m·s
rad

Rm Motor Winding Resistance 0.386 Ω

kτ Motor Torque Constant 2.76×10−2 N·m
A

nm Gearbox Ratio 126

ηf Forward Gearbox Efficiency 0.72

ηb Backward Gearbox Efficiency 0.36

ks Actuator Spring Constant 30 N·m
rad

Vmax Maximum Voltage 48.0 V

imax Maximum Current 12.0 A

2.2.3 Sensors

A number of sensors are included in the physical hardware for detection of state

changes and to provide feedback to the controller. Shaft encoders attached to the

boom and boom support monitor the variables θ5, θ6, and θ7. Potentiometers are

attached to all four actuated joints to sense θ1, θ2, θ3, and θ4. Shaft encoders, attached

to the DC motors, are used to detect the motor states θm,1, θm,2, θm,3, and θm,4. A

mechanical switch, integrated in the design of each foot, detects ground contact.

Sensor dynamics are not modeled as part of the simulation. The time scale of the

sensor dynamics is assumed to be small enough relative to the control effort that the

effects would be negligible. Additionally, the accuracy of the sensors is assumed to

be high enough to neglect error introduced through sensor performance. The state
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variables defined above are used directly in the control algorithm and dynamic engine

for simulation purposes.

The foot contact switch is modeled in simulation through detection of foot pen-

etration into the ground. The foot height in simulation is continuously calculated

using the kinematic structure of the links and the Denavit-Hartenburg convention as

described by Spong [32]. Homogeneous transformation matrices are used to describe

the coordinate transformations between the links. The link coordinate frames, as well

as two additional coordinate frames labeled with the subscript t and p for the torso

and pelvis, respectively, are shown in Fig. A.1 in Appendix A. The link coordinate

frames are numbered in correspondence to the joint variables defined in Figs. 2.2 and

2.3. The point p̄f defining the position of the foot in the coordinate frame of the

shank (for both legs) is

p̄f = (llink, 0, 0, 1)T , (2.1)

where llink is the length of the leg links (0.25 m) and the coordinates form a 4 x 1

vector. The fourth element of the point is included to allow the matrix multiplication

required and has no physical sense. The homogenous transformation matrix T ab used

to transform a point in coordinate frame b to coordinate frame a can be defined as

T ab =


cos(θb) −sin(θb)cos(αb) sin(θb)sin(αb) lbcos(θb)
sin(θb) cos(θb)cos(αb) cos(θb)sin(αb) lbsin(θb)

0 sin(αb) cos(αb) db
0 0 0 1

 , (2.2)

where αb is the angle from za to zb in the plane normal to xb, lb is the distance

between za and the origin of coordinate frame b measured perpendicular to za, db

is the distance from the origin of frame a to the intersection of xb and za, and θb

is the angle from xa to xb in a plane normal to za (equal to the joint angle for the

numbered joints). All angular measurements follow the right hand rule. The global

25



coordinate frame (x0, y0, z0) is defined at the base of the boom support, with axes

as shown in Figs. 2.2, 2.3, and A.1. The cumulative transformation matrix from the

shank link coordinate frame to the global coordinate system is then defined as T 0
2

for the right leg and T 0
4 for the left leg. The torso and pelvis coordinate frames are

required to calculate the cumulative transformation matrices, as they are used to

define the kinematic relationships between the torso link and each of the thigh links.

The transformation matrices that define the relationships between the additional

coordinate frames are T 5
t , T tp, T

p
1 , and T p3 , which can be calculated using Eq. 2.2. The

two required transformation matrices can then be calculated by matrix multiplication

as

T 0
2 = T 0

7 T
7
6 T

6
5 T

5
t T

t
p T

p
1 T

1
2 (2.3)

and

T 0
4 = T 0

7 T
7
6 T

6
5 T

5
t T

t
p T

p
4 T

4
3 . (2.4)

The position of the right foot in the global coordinate frame p̄f,r is then defined as

p̄f,r = T 0
2 p̄f . (2.5)

Similarly, the left foot position in the global coordinate frame p̄f,r is

p̄f,l = T 0
4 p̄f . (2.6)

The coordinates of p̄f,r and p̄f,l are of the form (x0, y0, z0,1)T in the global coordinate

frame, where the fourth element is included as a result of the required matrix multi-

plication. The foot is considered to be in contact with the ground if the foot height

y0 in the global coordinate frame, noted as hf,r and hf,l for the right foot and left

foot respectively, is less than or equal to zero.
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2.3 Actuator Model

Consistency between the numerical simulation and the physical hardware requires

an accurate model of the actuators to reveal the dynamics and performance limita-

tions. The unidirectional series-elastic actuators used in this work present unique

modeling challenges.

The actuator modeling and dynamic simulation are performed within the control

algorithm to allow for explicit manipulation of the many characteristics unique to

unidirectional series-elastic actuators. The dynamics are simulated with a second-

order Euler integration scheme performed at every control step. The control step size

is specified as 0.1 millisecond.

2.3.1 Parallel Actuation

The location of all actuators within the torso of the robot necessitates use of a

parallel actuation scheme. In a typical application, actuators driving revolute joints

produce equal and opposite torques between the two links comprising the joint, as

in Fig. 2.4(a). This method of actuation is referred to as serial actuation because

torques act between serially connected links. Parallel actuation, as used in this work,

does not by default produce torque between serially connected links. The torque

produced by a hip actuator is developed between the torso and the thigh link as

in serial actuation; however, the torque produced by a knee actuator is developed

between the shank link and the torso, as opposed to the shank link and the thigh

link as with serial actuation. The parallel actuation scheme is depicted in Fig. 2.4(b).

This subtle difference necessitates the use of absolute angles of the leg links relative to

the torso for calculating the actuator dynamics, as described in the following sections.
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Figure 2.4: Serial (a) vs parallel (b) actuation.

The simulation software used, RobotBuilder, was designed assuming a serial

actuation scheme. As a result, it is necessary to manipulate the torques produced by

the actuators before supplying them to RobotBuilder for inclusion in the dynamic

simulation. The calculated joint torques are modified to the equivalent values for a

serially actuated mechanism τi,ser as

τi,ser =

{
τi + τi+1 for i=1,3

τi for i=2,4,
(2.7)

where i represents the actuated joint number. The effect of this manipulation is that

the torque developed by the knee actuators is ultimately applied between the shank

links and the torso, as desired.
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2.3.2 Basic Series-Elastic Actuation

The torque developed by a series-elastic actuator is calculated based upon the net

deflection of the spring and the stiffness of the elastic element ks. The deflection of

the spring is determined from the relevant link position and the output shaft of the

gearbox, which is dependent on the motor position and the gearbox ratio nm. Using

the notation of this work, the basic equation for torque developed at the ith joint is

τi =


ks(

θm,i
nm
− θi) for i=1,3

ks(
θm,i
nm
− θi − θi−1) for i=2,4.

(2.8)

It is important to note that the θi−1 term is included in the knee actuators to calculate

the torque based on the absolute angle of the shank link relative to the torso (to which

the knee actuator is rigidly attached).

2.3.3 Unidirectional Characteristics

The inclusion of an elastic element in the actuator, while offering benefits related

to power performance, introduces potential issues with respect to position control of

the joint angles; the large compliance in the drive train makes position control more

difficult than with a less compliant actuator, such as a direct drive. Additionally, a

compliant actuator can allow for oscillation in the joint position. To counter these

problems, a design was implemented to make the compliant element active only during

thrusting of the legs. This unidirectional approach is realized through the inclusion of

a hardstop in the actuator, based on a design revision made to the single-leg prototype

to address similar issues in Curran’s experimental work [33]. The actuator hardstop

is designed to place a preload torque τp on the elastic element by forcing an initial

angular deflection; this prevents additional deflection until the thrust torque exceeds
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the preload torque. During motion opposite the thrust direction, the hardstop is

engaged, making the elastic element inactive. During this time, the USEA behaves

as a DDA.

The engagement of the hardstop creates a contact problem in the hardware of

the actuator. This contact location is padded with an elastomer to reduce impacts.

The contact is modeled using a linear spring and damper model in parallel, with the

stiffness kc of the contact spring set an order of magnitude higher than the actuator’s

spring element (300 N·m
rad

). The damping constant Bc is set to produce approximately

critical damping (4.477N·m·s
rad

).

The torque in Eqn. 2.8 is modified to include a model of the hardstop contact as

well as the preload. The calculation of the torque produced by the actuator is split

into the two primary regimes mentioned above: series-elastic actuation and direct

drive actuation. The two cases are distinguished by the inequalities

θi <
θm,i
nm

for i=1,3 (2.9)

θi + θi−1 >
θm,i
nm

for i=2,4.

If the inequality does not hold, the actuator is considered to be in the DDA regime

(i.e. the actuator is being operated opposite the thrust direction). The actuator

torque is then calculated as

τi =


kc(

θm,i
nm
− θi) +Bc(

θ̇m,i
nm
− θ̇i) for i=1,3

kc(
θm,i
nm
− θi − θi−1) +Bc(

θ̇m,i
nm
− θ̇i − θ̇i−1) for i=2,4.

(2.10)

If the inequality of Eq. 2.9 holds, the actuator is considered to be in the SEA regime.

This regime is further divided into two cases to account for the preload torque. The
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Figure 2.5: Static force-displacement diagram of USEA. The ordinate represents the actu-
ator deflection ∆θi and the abscissa represents the joint torque τi.

cases are distinguished by the additional inequalities

|θm,i
nm
− θi| <

τp
kc

for i=1,3 (2.11)

|θm,i
nm
− θi − θi−1| <

τp
kc

for i=2,4.

If the inequality of Eq. 2.11 is valid, the actuator is within the preload range of the

actuator. This is modeled by using a spring constant equal to the contact stiffness

for the torque calculation until the preload value is exceeded, as depicted in the

force-displacement diagram of Fig. 2.5.
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The large magnitude of the contact stiffness relative to the spring constant of

the elastic element prevents large deflections of the elastic element until the preload

torque is overcome. The damping coefficient Bc is included in the preload regime.

The torque in the preload range is thus calculated as

τi =


kc(

θm,i
nm
− θi) +Bc(

θ̇m,i
nm
− θ̇i) for i=1,3

kc(
θm,i
nm
− θi − θi−1) +Bc(

θ̇m,i
nm
− θ̇i − θ̇i−1) for i=2,4

(2.12)

until the inequality of Eq. 2.11 is invalid, at which point the torque equation becomes

τi =


ks(

θm,i
nm
− θi) + τp for i=1,3

ks(
θm,i
nm
− θi − θi−1)− τp for i=2,4.

(2.13)

The actuator range modeled by Eq. 2.13 matches the original series-elastic torque of

Eq. 2.8, with the addition of the preload torque τp.

2.3.4 Joint Limits

The physical system incorporates mechanical stops on the joint angles θ1 through

θ4 in both the positive and negative directions to prevent damage to components.

The angular positions of these limits, represented by θsj where the superscript s is

the sign [+/-] and the subscript j is the joint [h-hip,k-knee], are included in Table

2.2. The mechanical limits include an elastomer pad for reduction in the impact force

associated with contacting the joint limits, similar to the actuator hardstop discussed

above. An identical contact model to the actuator hardstop is used to determine the

contact torque τc,i developed during joint limit contact, with modifications to include

the angular joint limit,

τc,i = kc(θ
s
j − θi)−Bcθ̇i, (2.14)
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Table 2.2: Joint Limits
Limit Value

θ+
h 1.232 rad

θ−h -1.232 rad

θ+
k 2.175 rad

θ+
k -0.103 rad

where the appropriate value of θsj is taken for the ith joint. It is important to note

that the contact torque τc,i is developed directly between serially connected links in all

four joints, in contrast to and independent of the previously defined actuator-based

joint torque.

2.3.5 Electrical Components

The two electrical components of the actuator that are included in the model are

the motors and the current-control power amplifiers. The modeling of these elements

is identical to that developed for actuator simulation by Curran [15], to which the

reader is referred for derivation and detailed explanation. A brief description of the

governing equations is included here.

The current and voltage limitations of the components require attention to ensure

that physical capabilities of the electronics are not exceeded within the simulation.

The amplifier’s terminal voltage vt required to realize a commanded current ic,i is

calculated for the ith actuator as

vt = ic,iRm + kτ θ̇m,i, (2.15)
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where Rm is the winding resistance of the motor and kτ is the torque constant. The

actual terminal voltage vt,a produced by the amplifier with consideration of physical

limitations is then described as

vt,a =


−vmax if ic,i < 0 and vt < −vmax
vmax if ic,i > 0 and vt > vmax

vt otherwise,

(2.16)

where vmax is the maximum voltage the electrical system can deliver. The effect being

modeled by Eqns. 2.15 and 2.16 is that of saturation of the amplifier due to back-emf.

If the required terminal voltage vt exceeds the voltage limit vmax, the current actually

supplied by the amplifier ia,i will not reach the commanded value ic,i but rather will

be restricted to

ia,i =
vmaxsign(ic,i)− kτ θ̇m,i

Rm

. (2.17)

Furthermore, it is not possible for the amplifier to draw current in excess of the

maximum current imax. The actual current supplied by the amplifier is thus delivered

as

ia,i =


−imax if ia,i < −imax
imax if ia,i > imax

ia,i otherwise.

(2.18)

The model for the DC motors used in the actuators is based on a second-order

equation of motion that captures the relevant electromechanical dynamics. The model

includes the effective motor torque τ̄m,i and the effective damping B̄m and is dependent

on the critical speed ω∗n.

Jm,eqθ̈m,i = τ̄m,i − B̄m,eqθ̇m,i −
τi

ηeffnm
, (2.19)

where

τ̄m,i =


kτ ia,i for θ̇m,i ≤ ω∗n

vmaxkτ
Rm

for θ̇m,i > ω∗n,
(2.20)
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B̄m =


Bm for θ̇m,i ≤ ω∗n

Bm +
k2
τ

Rm

for θ̇m,i > ω∗n,
(2.21)

and

ω∗n =
sign(ia,i)vmax − ia,iRm

kτ
. (2.22)

The effective efficiency of the gearbox ηeff is calculated based upon the direction of

the motor relative to the torque as

ηeff =


ηf for θ̇m,iτi ≥ 0

1

ηb
for θ̇m,iτi < 0,

(2.23)

which includes the forward and backward gearbox efficiencies, ηf and ηb. The back-

ward gearbox efficiency cannot be assigned from the physical hardware, so the value

is taken as ηb = ηf/2.

This compact model of the motor dynamics allows for easy implementation in

simulation and was experimentally verified to accurately describe the behavior of the

current-control amplifier/DC motor system [33].

2.4 Environment Model

The environment model consists of ground contact and gravity. Additional envi-

ronmental effects, including air resistance, are neglected for simplicity. The ground-

foot contact is modeled at a single, axially located point on the end of each shank

link using a linear spring and damper in the normal and planar directions, as well

as constant coefficients of static and kinetic friction. The single-point contact model

between the foot and the ground is used as the simplest representation of the behav-

ior of the hemispherical foot. The values of the contact parameters are provided in
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Table 2.3: Environmental Contact Parameters
Parameter Value

Normal Stiffness 7.5×104 N
m

Normal Damping 2.0×103 N·s
m

Planar Stiffness 7.5×104 N
m

Planar Damping 2.0×103 N·s
m

Coefficient of Static Friction 0.75

Coefficient of Kinetic Friction 0.60

Table 2.3. The ground is modeled using a level, even surface. A more detailed descrip-

tion of the environment model can be found in the simulation software documentation

provided by Orin and Rodenbaugh [34].

An inherent trade-off exists in contact simulation between the integration step

size and the stiffness of the contact. Small integration steps are required to capture

the behavior of contacts with high stiffness, while lower stiffness contact may allow

unrealistic penetration of the contact pair and produce inaccurate results in the sim-

ulation. Excessively small integration step size reduces the speed of simulation and

is thus undesirable. The parameters used in the simulation were selected to pro-

duce realistic behavior while not requiring simulation times of unmanageable length.

The friction coefficients were chosen to represent the interaction between rubber and

concrete.

2.5 Software/Dynamic Engine

The numerical simulation is performed in the RobotBuilder application de-

veloped by Rodenbaugh, which provides dynamic simulation of multi-body physics,
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Figure 2.6: Basic file interaction diagram for simulation. Not all data transfers are included.
Stored data and user inputs can include values such as control parameters or initial joint
angles.

specifically robotic simulation [35]. The application itself offers a graphical user inter-

face (GUI) that interacts with DynaMechs, a dynamic engine developed by McMil-

lan [36], to numerically solve the equations of motion for the system and return the

state variables of the system for graphical depiction in RobotBuilder. Control of

the robot is implemented in the Visual C++ programming language, which is ulti-

mately compiled and supplied to RobotBuilder as a dynamic link library (DLL)

file. During simulation, the control DLL is called at every control step to calculate

the control effort and the resulting actuator dynamics, to determine torques for the

actuated joints, and to supply these to the dynamic engine. A basic flow chart of the

simulation process involving the applications and control files is shown in Fig. 2.6.
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2.6 Explanation of Specific Modeling Challenges

The development of the system model required investigation of several specific

problems for which multiple solutions were considered. In particular, the contact

problem presented by engagement of the hardstop in the unidirectional elements

of the actuators was examined. Another significant problem that was discovered

and addressed involved limitations on simulation run-time inherent to the software

package used.

The engagement of the hardstop was identified during the design of the hardware

and control strategy as a possible source of impact loading to the legs during opera-

tion. The impact force is reduced through the addition of elastomer pads to the metal

contact points. The elastomer serves to distribute the contact more evenly across the

mating parts and to increase the time of contact, reducing the peak force due to the

impact. Additionally, the increased contact damping introduced by the elastomer

reduces energy transfer between the mating parts.

The inclusion of the elastomer pad in the hardware, while improving the physical

performance, does not remove the issue of modeling the contact for simulation. Two

models were considered for capturing the effect of the contact on the system dynamics.

The first model represented the contact with a linear spring and nonlinear damper

in parallel, based upon the work of Orin [37] and Sung [38]. The contact torque

developed in the hip actuator is determined as

τi = λ(θi −
θm,i
nm

)N(θ̇i −
θ̇m,i
nm

) + kc(θi −
θm,i
nm

), (2.24)

where λ is the nonlinear damping coefficient and N is a constant. The benefit offered

by the nonlinear model is in the initial torque calculated upon engagement of the
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Figure 2.7: Qualitative comparison of contact torques for nonlinear and linear models.
The dashed red line demonstrates the high contact torque developed upon initial impact in
the linear model, while the solid blue line shows the smooth increase in the contact torque
characteristic of the nonlinear model.

hardstop. The inclusion of the relevant angles (θi and θm,i) in the damping term causes

the torque to increase in magnitude from zero with increasing depth of penetration,

whereas exclusion of these angles would result in a non-zero torque being calculated

immediately upon contact due to the damping term. The resulting impact torque

profiles for the contact using the nonlinear model have a smooth rise to the peak value,

as depicted qualitatively in Fig. 2.7 along with the linear model. The nonlinear term

introduces an additional problem, however, for position control of the joints. The

effective damping is low around the zero point of the actuator (where θi ≈ θm,i

nm
) and

reduces the controllability of the joint. This controllability issue is manifested when

performing PD control of the joint angles, where low amplitude oscillations can arise

as a result of the low effective damping.
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The controllability problem presented by the nonlinear contact model was deter-

mined to counteract the benefit offered by low initial impact torque, and so a linear

spring and damper contact model is used in Eq. 2.10. The high value of the impact

torque at initial hardstop engagement, while not considered to accurately represent

the physical system, occurs at a time during maneuvering when only the gross system

dynamics are necessary. The linear contact model thus offers the required level of ac-

curacy without introduction of further modeling or control problems. The damping

coefficient Bc is included in the preload regime, described by Eq. 2.12, to further

address the issue of joint oscillation around the zero point of the actuator.

The selection of the contact parameters kc and Bc for the actuator hardstops and

joint limits with the given linear contact model was based on the desired characteris-

tics of the contact behavior. Penetration of the contact pairs was desired to be kept

small relative to the range of motion of the joints, which drove the selection of the

contact spring constant as an order of magnitude higher than the actuator spring

constant. An excessively large contact spring constant could introduce complications

due to the specified integration step size of 0.1 milliseconds for the actuator dynamics.

The selected value of 300 N·m
rad

is considered to balance these two considerations. The

corresponding damping constant Bc was specified as 4.477 N·m·s
rad

to produce critical

damping using an early approximation of the link inertia. The lack of more accurate

determination of contact parameters is caused by the difficulty of predicting values for

irregular geometries in the contact pair combined with the nonexistence of available

experimental data for the elastomer material used.
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Additional modeling challenges are introduced through the limitations inherent

to the DynaMechs/RobotBuilder software. These challenges include a finite pre-

cision on the time variable used in the simulation and restricted integration options

for calculating the system dynamics. The variable used within the software to repre-

sent the running time t is limited in precision to six digits. The integration step size

used for the actuator dynamics is dependent on the precision of the running time,

calculated as the difference in time between calls of the control algorithm. Sufficient

precision is required in the integration calculation to maintain consistent behavior of

the system dynamics. Loss of precision in the integration calculations can cause the

system behavior to become unpredictable, due to the stiff contact pairs present in the

actuators. A local time variable was introduced in the control algorithm to address

this issue. The local time variable can be reset at convenient points during simulation

to avoid loss of precision. The control strategy and the actuator dynamics use this

local time variable in their associated algorithms.

The integration options provided by the software for calculation of system dynam-

ics include Euler integration with fixed integration step sizes (both second and third

order) and Runge-Kutta 4th/5th order adaptive integration. The Euler integration

schemes, as implemented by the dynamic engine, have a minimum integration step

size of one millisecond, below which the integrator fails. This limitation is insufficient

for accurately calculating the system dynamics when modeling the stiff environmen-

tal contacts between the feet and the ground. The Runge-Kutta adaptive integration

scheme is thus used to avoid the limitation of the Euler integrators and allow accurate

simulation of the stiff contact pairs.
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2.7 Summary

This chapter describes the dynamic system model used to simulate the robot for

development of the control strategy. The complete system structure was desribed,

followed by the notation for the state variables and physical constants quantifying the

system. The characteristics unique to this system, those of a unidirectional series-

elastically actuated robot using parallel actuation, were examined in depth. The

software used to perform the simulation was then discussed. Finally, several spe-

cific problems encountered during the model development were presented and their

solutions described.
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CHAPTER 3

CONTROL STRATEGY

3.1 Introduction

The control strategy developed in this work is split into two functional levels,

each of which has an associated algorithm. The functional levels are used to sepa-

rate the tasks of planning and performing maneuvers so that each may be addressed

independently. High-level control, also referred to as supervisory control, is used to

determine the values of control parameters necessary to achieve the desired maneu-

ver objectives using a fuzzy controller. The determined control parameters are then

supplied to the low-level controller for implementation. The low-level controller con-

sists of a state machine which segments the desired maneuver into discrete sequential

phases and motor primitives that supply control laws for each phase. This chapter

describes both the high-level and low-level control in detail, including discussion of

the biofidelity of the techniques used, and concludes with a summary of the material

presented.
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3.2 Low-Level Controller: State Machine and Motor Primi-
tives

The low-level controller provides real-time, continuous control of the actuators to

achieve defined motion objectives. A state machine is used to detect the occurrence

of specific events and implement the control law appropriate for the current phase of

motion. The phases of motion and associated control laws are described using motor

primitives.

3.2.1 Motivation for Motor Primitive Control

The inherent complexity of multi-joint legged systems gives rise to a significant

control problem. Possible joint trajectories and their resultant multi-body motions

create a design space of behaviors for producing a maneuver. The size of such a

design space is so immense, due to the large potential number of variables describing

the maneuver, that it is not computationally feasible to examine all of the space.

However, the design space can be reduced in size by representing a maneuver as a finite

sequence of parameterized motions, making the control problem much more tractable.

The sequential motions, implemented in this work through motor primitives, provide

a framework for controlling the desired maneuver that is defined by a finite number

of parameters.

The concept of motor primitives has its roots in biological motor control the-

ory. Experimental and theoretical work both support the concept that the central

nervous system of animals controls the performance of complex behaviors through

concatenation of multiple simple motions. Bizzi et al. [39] examined motor primitives

experimentally using different locomotive behaviors of frogs and ultimately concluded
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that linear combinations of modular motions offer an experimentally and analytically

sound model for motor control.

The application of such biological motor control theory to the control of robotic

systems has precedent. The quadrupedal locomotion control developed by Palmer

[18], Marhefka [19], and Krasny [16] is based on a comparable concept, where complex

maneuvers such as running or galloping are segmented into simpler motions. Of higher

relevance to this work, Schaal has suggested that control strategies implementing

modular motor control offer a promising approach to the control of humanoid robots

[40].

The modular nature of the motor primitive control approach offers adaptability

to the overall control strategy developed in this work. Modification or substitution

of the motor primitives used to achieve jumping could yield viable control for addi-

tional dynamic maneuvers. In particular, dynamic maneuvers similar in nature to the

jumping performed with the motor primitives defined in this work may require only

minor modifications. Such expansion of the dynamic repertoire of robotic systems

could greatly improve performance capabilities with minimal investment in control

development.

3.2.2 Structure of the State Machine/Motor Primitives

The state machine monitors a number of physical variables, as well as state vari-

ables, to determine the appropriate motor primitive at any given time. Each leg is

handled independently to counteract ground contact timing discrepancies, which are

introduced by the uneven foot contact as a result of the spherical restriction of the

boom mount. The boom is mounted at a vertical height of 0.5 m, which corresponds
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to equal left and right foot contact with the ground at full leg extension and the

torso upright (θ1 : θ5 = 0). When the boom is less than horizontal, θ6 < 0, the two

feet are no longer equidistant from the ground for equal left and right hip and knee

joint angles. Driving the left and right leg joints through the same joint trajectories

will thus produce ground contact at different times. The control of each leg is han-

dled independently to avoid commanding inappropriate control actions based on the

position of the other leg.

The state machine operates in a cyclic manner, being reset at the top-of-flight

(TOF) for every jump. The top-of-flight is sensed through a change in sign of θ̇6.

The actuated joints are commanded to specific angular positions at the top-of-flight,

represented by θh,tof and θk,tof for the hip and knee joints. These angular positions

were chosen to provide a defined starting and ending configuration for every jump

to ensure consistent system states at the time of control parameter selection via the

fuzzy controller.

The sequential motor primitives used in the state machine are shown in Fig. 3.1

with descriptions of the events used to detect transition between states. Many of

these motor primitives were defined based on joint motions observable in the jumping

of bipedal animals to which KURMET is structurally similar, particularly humans.

The jumps performed by human subjects in [41] were examined to determine the

qualitative goals of joint motions during the manuever. The simple motion goals of

positioning the leg for ground contact, slowing the vertical motion of the body through

compression of the legs, delivery of energy to the body through leg extension, and

retraction of the legs to clear an obstacle are the basis of the motor primitives used

in this work. These motor primitives provide the control objectives necessary for
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Figure 3.1: State machine diagram including motor primitives. The light grey portion
of the state machine approximates the flight phase, while the dark grey approximates the
ground contact phase.

completing the jump maneuver. Additional motor primitives were added as needed

to counteract problems observed in the performance of the jumping in simulation.

3.2.3 Motor Primitive: Position

The position motor primitive serves the function of driving the hip and knee

joints to the angular positions desired at ground contact during the descent of the

robot in flight. The primitive begins at the detection of top-of-flight, determined by

the state machine as a change in sign of θ̇6, and is terminated upon the expiration

of the motor primitive period ∆tp,1. The motor primitive period for position is

calculated as

∆tp,1 = 0.75

√
2(hmax − 0.30)

g
, (3.1)
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where hmax is the torso height at top-of-flight and g is the gravitational acceleration.

This equation is based on the simple physics of a body falling under gravity, modified

to account for an approximate leg length at ground contact (0.30 m) and reduced

(by 25 percent) to ensure completion of the position primitive at the approximate

time of ground contact. The control parameters required are the desired hip and knee

joint angles, θh,d and θk,d, respectively. The desired joint angles are transformed to

the corresponding desired motor angle θd as

θd =

θh,d nm for the hip joint

(θh,d + θk,d)nm for the knee joint.
(3.2)

The position control law calculates a trajectory θm,pos, as well as the associated

velocity θ̇m,pos, for the motor corresponding to the controlled joint. The trajectory

is defined by equal periods of constant acceleration and deceleration to reduce the

magnitudes of both values required to perform a given trajectory. The trajectory is

timed to be completed in the period ∆tp,1, using additional inputs of the primitive

start time t0, the current time t, and the motor position at the start of the primitive

θm,t0 .

θm,pos =


θm,t0 +

a

2
(tfun)2 for 0 ≤ tfun < ∆tb

θd −
a

2
(∆tp,1 − tfun)2 for ∆tb ≤ tfun < ∆tp,1

(3.3)

θ̇m,pos =

{
a tfun for 0 ≤ tfun < ∆tb

2 a tb − a tfun for ∆tb ≤ tfun ≤ ∆tp,1,
(3.4)
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where the function time tfun, blend time ∆tb, and acceleration a are defined as

tfun = t− t0 (3.5)

tb =
∆tp,1

2
(3.6)

a =
4(θd − θm,t0)

(∆tp,1)2
. (3.7)

The calculated motor trajectory is achieved through proportional control on the

motor position and velocity. The control law determines the command current for

the ith motor as

ic,i = kpos(θm,pos − θm,i) + kvel(θ̇m,pos − θ̇m,i), (3.8)

where kpos and kvel are the experimentally tuned proportional position and velocity

feedback gains.

3.2.4 Motor Primitive: Catch

The catch motor primitive, following position, provides control for the initial

portion of ground contact. The associated control law is simple; open loop motor

currents represented by the control parameters ih,cat and ik,cat are commanded for

both the hip and knee motors. The command currents are

ic,i =

{
ih,cat for i=1,3

ik,cat for i=2,4.
(3.9)

The open loop currents are used to slow the vertical velocity of the torso and store the

kinetic energy of the falling body as potential energy in the actuator spring elements

or to dissipate the energy through the resistance of the motors and energy loss of the

impact. The primitive begins upon expiration of ∆tp,1 during the previous primitive

and is terminated after ground contact of the foot and upon the knee joint angular
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velocity of either knee dropping below an experimentally tuned zero threshold θ̇lim.

The zero threshold is expressed as

θ̇i ≤ θ̇lim for i=2,4. (3.10)

Fod et al. [42] suggest the use of similar thresholds for segmentation of motions into

movement primitives. Changes in joint direction or dwells at a constant position

generally indicate a change in the immediate low-level objective. This termination

criteria is used to detect the approximate time at which the knee actuator ceases to

store the kinetic energy and begins delivering the stored energy via thrust.

3.2.5 Motor Primitive: Thrust

The thrust motor primitive encapsulates the phase during which the actuators

inject energy into the jumping maneuver. A similar control law to that used in the

catch primitive is implemented for thrust. The open loop command currents for the

hip and knee motors are represented by the control parameters ih,thr and ik,thr. The

control law of Eq. 3.9 is then changed to

ic,i =

{
ih,thr for i=1,3

ik,thr for i=2,4.
(3.11)

The primitive begins upon completion of catch and is terminated upon either knee

joint angle becoming less than an experimentally tuned position threshold θlim.

θi < θlim for i=2,4. (3.12)

This termination criteria is formulated to achieve two specific objectives. The first

objective is reduction of the impact of the joint limits upon foot liftoff. The use of

foot liftoff itself as the termination criteria would lead to the rapid expulsion of any
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remaining potential energy stored in the spring elements. This would cause actuated

links to be forced into the joint limits at high velocity, producing large impact forces.

Large impact forces are undesirable both for hardware longevity and system stability.

The preemptive termination of the thrust allows time to implement the leg slow

primitive, which is intended to counteract this effect. The second objective is the

reduction of torque developed between the shank and the torso as the leg approaches a

singular configuration. As singularity is approached, the torque produced by the knee

actuator contributes less to the vertical velocity of the system (as desired for height

performance) and more to the rotational velocity of the torso. The high sensitivity

of the torso to torque developed in the knee joints will be discussed in Chapter 4 as

an undesirable effect of the articulated joint design of the legs.

3.2.6 Motor Primitive: Leg Slow

The purpose of the leg slow primitive, as discussed above, is to prevent the

undesirable occurrence of the links being driven into the joint limits. The termination

criteria for thrust, the knee joint angle becoming less than the threshold value, is

used to detect the start of the leg slow primitive. The control law uses open loop

command currents for the motors in a manner similar to the previous two control

laws. The command current for each motor is set to the maximum value imax in

the direction opposite of thrust until the velocity of the joint changes sign. The

commanded motor current is then set to zero until termination of the primitive. The

command currents are

ic,i =


−imax for i=1,3 and θ̇i > 0

0 for i=1,3 and θ̇i ≤ 0

imax for i=2,4 and θ̇i < 0

0 for i=2,4 and θ̇i ≥ 0.

(3.13)
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The termination criteria used is the detection of a sign change in the velocity of both

the hip and knee joints for both legs, the occurrence of which is marked by the binary

flag fls, defined as

fls =

{
1 if (θ̇1 < 0) and (θ̇2 > 0) and (θ̇3 < 0) and (θ̇4 > 0)

0 otherwise.
(3.14)

The inclusion of both legs in the termination criteria is unique to this primitive and is

used to synchronize the leg motion for the start of the following primitive. Separate

termination criteria for the two legs were observed to elicit behaviors involving foot

slip across the ground.

3.2.7 Motor Primitive: Retract

The termination of the leg slow primitive signifies the start of the retract primi-

tive, noted as start time t0. The retract primitive is similar in structure and objective

to position. The hip and knee motors are driven from their positions θm,t0 at the

completion of leg slow to angular positions corresponding to the desired top-of-flight

joint angles θh,tof and θk,tof . The primitive is timed to be completed in the primitive

period ∆tp,5. The primitive period uses an adjusted model of the physics, similar to

Eq. 3.1, using the desired jump height hd in place of hmax. The primitive period is

∆tp,5 = 0.55

√
2(hd − 0.30)

g
. (3.15)

The leading constant (0.55) for this model was experimentally tuned to ensure com-

plete retraction of the legs prior to achieving top-of-flight. The desired motor positions

described in Eq. 3.2 can be modified suitably to

θd =

{
θh,tof nm for the hip joint

(θh,tof + θk,tof )nm for the knee joint.
(3.16)
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The motors are driven through a triangular velocity trajectory similar to that de-

scribed by Eq. 3.3 with a modification to address difficulties introduced by the elastic

elements of the actuators. During the retract primitive, the links are moved oppo-

site the direction used for thrust. As a result of this, the actuators remain in the

DDA regime during the initial part of the trajectory, during which time the joints

closely track the desired trajectories. However, during the deceleration phase of the

trajectories, the actuators are effectively in the SEA regime, as they are during the

catch and thrust primitives. The momentum of the links cause the elastic elements

to be engaged, and the links no longer track the desired trajectories as closely. Any

potential energy stored in the springs as angular deflection will be delivered to the

joints upon the motors reaching the desired positions, leading to overshoot. To de-

crease the effect of actuator spring deflection and overshoot, the magnitude of the

deceleration can be reduced. The trajectory specified for the motors in Eq. 3.3 is

changed so that the deceleration portion is completed over twice the time period of

the initial acceleration, reducing the deceleration required. The revised trajectory is

defined as

θm,pos =


θm,t0 +

a

2
(tfun)2 for 0 ≤ tfun < ∆tb

θd −
a

4
(∆tp,5 − tfun)2 for ∆tb ≤ tfun < ∆tp,5

(3.17)

θ̇m,pos =


a tfun for 0 ≤ tfun < ∆tb

a tb −
a

2
(tfun − tb) for ∆tb ≤ tfun ≤ ∆tp,5,

(3.18)
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where the function time tfun, blend time ∆tb, and acceleration a are

tfun = t− t0 (3.19)

tb =
∆tp,5

3
(3.20)

a =
6(θd − θm,t0)

(∆tp,5)2
. (3.21)

The trajectory is achieved through feedback control of the motor position and

velocity using the same control law as for position, Eq. 3.8, with the same experi-

mentally tuned gains.

3.2.8 Motor Primitive: Hold

The expiration of the previous primitive is used to mark the transition from re-

tract to hold. The hold primitive is used to maintain the desired top-of-flight joint

angles θh,tof and θk,tof during the remainder of the ascending phase of the jump. The

termination criteria used is the detection of the top-of-flight. Top-of-flight is sensed

through a change in sign of θ̇6 between two successive control steps and denoted with

the binary flag ftof . The binary flag is set to

ftof =

{
1 if θ̇6 < 0 and θ̇6,p ≥ 0

0 otherwise,
(3.22)

where θ̇6,p is the value of θ̇6 at the previous control step. When ftof changes value, the

state machine is reset, and the position is implemented. The control law used is sim-

ple proportional-derivative (PD) feedback control performed on the motor position.

Integral feedback control, implemented in many applications to eliminate steady-state

error (SSE), is not required in this work. The short time periods spent at a given

position, in combination with finite precision limits due to mechanical backlash, make
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the elimination of SSE unnecessary. The PD control law determines the command

current for the ith actuator as

ic,i = kp(θm,tof − θm,i) + kd
d

dt
(θm,tof − θm,i), (3.23)

where the desired top-of-flight motor position θm,tof is defined as

θm,tof =

{
θh,tof nm for the hip joint

(θh,tof + θk,tof )nm for the knee joint
(3.24)

and the rate of change of the difference in desired and actual motor position d
dt

(θm,tof−

θm,i) is calculated as

d

dt
(θm,tof − θm,i) =

(θm,tof − θm,i)− (θm,tof − θmp,i)
∆t

. (3.25)

The control law requires the motor position at the previous control step θmp,i and the

time elapsed since the last control step ∆t.

3.2.9 Revisions to State Machine

The final structure of the state machine and related motor primitives, listed in

Table 3.1 with the defined start and termination criteria, is the result of several

revisions to the original structure. Trial and error was necessary to determine an

appropriate set of motor primitives for performing the desired jumping maneuvers.

Several dynamic characteristics of the system unique to the unidirectional series elastic

actuators necessitated creation, elimination, or modification of certain primitives.

• The leg slow primitive was introduced to reduce the impact of the links with

the joint limits, a problem that is amplified by the release of the remaining

energy stored in the elastic elements at foot lift-off (making the problem more

severe than for a direct drive actuator). It was also introduced for the beneficial
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Table 3.1: State Machine and Motor Primitives
Motor Primitive Index Motor Primitive Name Starting Event Ending Event

1 Position ftof = 1 ∆tp,1 Expired

2 Catch ∆tp,1 Expired θ̇i < θ̇lim
3 Thrust θ̇i < θ̇lim θi < θlim
4 Leg Slow θi < θlim fls = 1
5 Retract fls = 1 ∆tp,5 Expired
6 Hold ∆tp,5 Expired ftof = 1

effect of stabilizing the joint positions prior to entering the trajectory defined

in the retract primitive.

• An additional hold primitive (similar to the one used just prior to the top-of-

flight) was originally implemented upon completion of the position primitive

and before the catch primitive. It was intended to maintain the desired joint

positions until foot contact was sensed. The primitive was eliminated to allow

for an increased primitive time period for position, reducing the accelerations

required for the desired joint trajectories. High accelerations were observed to

cause the actuator to leave the direct drive and preload regimes, introducing

difficulty for the control.

• The primitive time periods calculated from approximate falling time, Eq. 3.1

and 3.15, were modified through changes to the leading constant to ensure

that the corresponding primitives terminate at appropriate points during the

jumping maneuver while maintaining as long of time periods as possible for

performing joint motions.
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• The joint trajectories described for position and retract originally used trape-

zoidal velocity profiles with three segments of equal time for acceleration, con-

stant velocity, and deceleration. The change to triangular velocity profiles was

made in both primitives to reduce the required accelerations for achieving the

desired joint positions. The reduced acceleration and deceleration were found

to produce trajectories that are easier to track with less disturbance introduced

to the overall system dynamics.

3.3 Supervisory Controller: Fuzzy Control

The supervisory controller serves to define the value of the control parameters

required by the motor primitives described above for completing the desired maneu-

ver. The high-level control serves no function in the actual implementation of the

parameters. The supervisory controller consists of fuzzy control performed once per

jump, at the top-of-flight.

3.3.1 Introduction to Fuzzy Control

The method of intelligent control known as fuzzy control offers a strategy for

creating a mapping between control inputs, typically state variables, and control ac-

tions for complex, nonlinear systems. The elements of fuzzy control will be discussed

in detail below; however, a general understanding of the basic principle will inform

this discussion. In general terms, a fuzzy controller contains a data set consisting

of control actions appropriate for defined instances of the control inputs in various

combinations. Given a number of control inputs, the fuzzy controller consults its data

set to determine which stored instances most closely represent the given input. The
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Table 3.2: Fuzzy Control Notation

Symbol Variable Name

n Number of Control Inputs
m Number of Control Outputs
nmf Number of Input Membership Functions

i Input Index, 1 ≤ i ≤ n
j Output Index, 1 ≤ j ≤ m
k Membership Function Index 1 ≤ k ≤ nmf
z Fuzzy Rule Number
xi ith Control Input
yj jth Control Output
uz,j jth Fuzzy Consequent
ci,k kth Membership Function Center of ith Input
µi,k Certainty of kth Membership Function for ith Input

µz,prem Certainty of Premise for zth Rule

fuzzy controller then produces control outputs that represent the stored control ac-

tions for the applicable input instances, with the output contribution of each instance

weighted by a metric of how relevant the stored instance is to the given input.

The notation used for the following discussion of fuzzy control is shown in Table

3.2. More precise explanations of the variables are provided as they become relevant.

Fuzzy control can be divided into three primary processes referred to as fuzzifi-

cation, inference, and defuzzification. A flow chart for the control processes can

be seen in Fig. 3.2. Each of these three processes is discussed below, in order.

3.3.2 Fuzzy Control: Fuzzification

The first process of fuzzy control, fuzzification, serves to interpret the numeric

values of the control inputs x1 : xn. Every control input xi has a total number

of nmf membership functions associated with it. The membership functions divide
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Figure 3.2: Fuzzy control flow chart. In this work, the ‘Process’ is a complete jumping
cycle of the biped.

the control input range into nmf segments centered around the membership function

centers ci,k. It should be noted that in traditional fuzzy control, as described by

Passino [17], the membership function centers are associated with linguistic values,

whereas strictly numeric values are used here. This work uses triangular membership

functions, depicted in Fig. 3.3. A membership function for the ith control input,

identified by the membership function index k, describes the certainty µi,k that the

numeric input value can be represented by the membership function center ci,k. The

certainty µi,k ranges in value from 0 to 1 as a function of the distance of the numeric

input from the relevant membership function center. As an example, for a given

numeric input xi where xi = ci,k, the certainty will be calculated as µi,k = 1. This

example represents the case where the numeric input value lies directly at the center

of a membership function, and so the certainty that the membership function center

represents the input value is maximum. As the numeric value moves away from a

membership function center, the certainty decreases. An important exception to this
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Figure 3.3: Triangular fuzzy membership functions with end saturation

is the end membership functions. These membership functions include saturation,

such that input values outside of the range of the membership function centers, i.e.

xi < ci,1 or xi > ci,nmf
, are still represented by the numerically closest membership

function center.

The use of triangular membership functions that terminate at the adjacent mem-

bership function centers, as shown in Fig. 3.3, ensures that a maximum of two mem-

bership functions will have a non-zero certainty. This information is useful for reduc-

ing the calculations required by the fuzzy control process.

Upon completion of calculating the certainty of the inputs based on membership

functions, the fuzzy controller moves to the inference process.

3.3.3 Fuzzy Control: Inference

The inference process of fuzzy control functions to match appropriate control

outputs to the given inputs; this requires the use of fuzzy rules. Fuzzy rules are used
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to specify control outputs appropriate to particular values of the inputs. A fuzzy rule

is created for every combination of the control input membership function centers

previously defined. Assuming an equal number nmf of membership functions for each

of the n control inputs, the fuzzy controller contains (nmf )
n total rules. These rules

are collectively referred to as the fuzzy rule-base and are numbered from 1 to (nmf )
n,

represented by the index z. Associated with each of the fuzzy rules are appropriate

control outputs, called consequents, represented by uz,j where j continues to represent

the control output index.

Linguistically, a fuzzy rule can be expressed as a conditional statement.

If x1 = c1,k and x2 = c2,k and . . . and xn = cn,k (3.26)

then y1 = uz,1 and y2 = uz,2 and . . . and ym = uz,m.

The rule consists of two elements. The conditional statement is called the premise of

the rule, which states when the rule applies. The specified control outputs, previously

defined as the consequents, collectively comprise the consequence of the rule.

The membership function certainty for each of the inputs is used to determine

the applicability of a rule to the given inputs. This applicability is defined as the

certainty of the premise µz,prem for the zth rule. This certainty reflects the certainty

that each matches the value stated in the premise. The certainty of the premise can

be calculated in many ways as a function of certainty of the membership functions.

In this work, the product of the certainties of the input membership functions is used

as the certainty of the premise.

µz,prem = µ1,k · µ2,k · · · · · µn−1,k · µn,k, (3.27)
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where the membership function index k for each µi,k matches the index of the ith

input for rule number z. This definition of µz,prem maintains the influence of all input

values on the resulting outputs.

As mentioned above, the use of overlapping triangular membership functions as-

sures that for each input a maximum of two membership functions will have a non-zero

certainty. This property dictates that a maximum of 2n rules will be applicable for

any combination of inputs. The reduction of the number of rules that are potentially

applicable minimizes the required computations, which due to the exponential growth

of the rule-base, can offer substantial savings in terms of computational efficiency.

3.3.4 Fuzzy Control: Defuzzification

The final stage of fuzzy control, the defuzzification process, is responsible for

determining specific values for each of the control outputs. This work uses singleton

membership functions for the control outputs. Singleton membership functions can be

represented by impulse functions at every value on the range. Effectively, this means

that the control outputs described by the fuzzy rule consequents are not modified

from their numerical values. The determination of the specific values to be output is

based upon the applicable rules and the respective certainty of the premise for each.

A center-average defuzzification scheme is used in this work. This scheme defines each

control output as a weighted average of the consequents for the active rules. The jth

control output is calculated as

yj =

∑
z∈S

µz,premuz,j∑
z∈S

µz,prem
, (3.28)
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where S is the set of active rule numbers. The formula is applied for every control

output yj, for 1 ≤ j ≤ m.

The control output calculation of Eq. 3.28 does not account for the possibility of

fuzzy rules for which no appropriate control parameters are specified by the rule-base.

Allowing the inclusion of inappropriate control parameters in the fuzzy control process

can cause otherwise acceptable jumps to be performed incorrectly. This possibility is

counteracted through the inclusion of an additional variable in the fuzzy controller.

The training satisfaction flag fsat,z represents whether an appropriate combination

of control parameters are known for the zth rule. The flag is set equal to 1.0 if

appropriate control parameters were found by the training algorithm and 0.01 if they

were not. The ratio is set to 0.01 in place of 0.00 for unsatisfactory rules to ensure a

set of non-zero control parameters will be provided by the fuzzy controller regardless

of the ability to perform the desired jump. The defuzzification calculation of Eq. 3.28

is then modified to include this satisfaction ratio. The fuzzy control output becomes

yj =

∑
z∈S

(µz,premuz,j)fsat,z∑
z∈S

(µz,prem)fsat,z
. (3.29)

The use of the training satisfaction flag reduces the effect of control parameters that

will potentially disturb the system.

3.3.5 Motivation for Fuzzy Control

The division of the control architecture into two levels, low and supervisory, im-

proves the tractability of the control problem. However, the complexity of the system

still presents challenges to the supervisory controller. The selection of fuzzy control

63



as the supervisory controller was made to address several of the main challenges as-

sociated with the system, including the multi-body dynamics, the nonlinear nature

of the system, the multiple inputs and outputs, and the desired flexibility in the

implementation of the controller.

The multi-body dynamics of the system pose a potentially large challenge for

the controller. Many control approaches require accurate models of the system dy-

namics. Accurate modeling of a multi-body system is analytically intensive and is

highly reliant on the knowledge of the physical model parameters. Deviation be-

tween the model and the physical hardware can produce non-functioning controllers.

Additionally, changes to the physical system or application of the control approach

to a new physical system requires that the development of the model be repeated.

Fuzzy controllers, in contrast to this, do not require an accurate system model. The

fuzzy controller works around the necessity of a dynamic model by associating control

outputs directly with the relevant control inputs. This association exists within the

rule-base. The relationships between the control inputs and outputs stored within

the rule-base also solve the challenge of the nonlinearity of the system. The discrete

points in the rule-base described by each individual rule form an approximation of

the nonlinear, multi-dimensional surface that relates the inputs and outputs.

The multiple control inputs and outputs present an additional challenge. The na-

ture of the physical system produces coupling between the various control parameters

and state variables. Similar to the dynamic model, the fuzzy rule-base is capable of

storing and managing an inherent understanding of this phenomenon without requir-

ing an explicit description.
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The emphasis of this work is the control of jumping in a biped robot. The control

approach, however, is desired to be applicable to a variety of systems and maneuvers.

In particular, it is desired that the control approach could be adapted to bipedal

maneuvers including running, starting, and stopping. The flexibility of fuzzy con-

trol, when used in conjunction with modular motor primitives, allows the adaptation

required for new maneuvers or systems.

3.3.6 Variation from Traditional Fuzzy

The implementation of fuzzy control used in this work varies somewhat from tra-

ditional fuzzy control methods. The principal difference is the way in which heuristic

information provided by the user is applied to the development of the controller. More

traditional approaches to fuzzy control implement heuristic information about how to

control the system through the development of the rule-base. Typically, consequents

for each premise are selected by the user based on past experience with determin-

ing appropriate control actions. This work implements heuristic information in the

process of training the fuzzy rule-base, where control outputs are varied to find ap-

propriate values. More detailed discussion of the use of heuristic information is found

in Chapter 4.

3.3.7 Structure of Fuzzy

The rule-base of the fuzzy controller can be visualized as an n-dimensional space,

where n is the previously defined number of control inputs. The range of values in

the space is defined for each dimension as the minimum and maximum membership

function center of the associated input. The space contains discrete points at the

intersection of the input membership function centers; these points represent each
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Table 3.3: Control Input Membership Function Centers

Symbol Input Membership Function Centers

x1 Torso Angle at TOF, rad -0.340 , -0.320 , -0.30 , -0.280 , -0.260
x2 Torso Angular Rate at TOF, rad

s
0.50 , 0.55 , 0.60 , 0.65 , 0.70

x3 Current Jump Height, m 0.550 , 0.565 , 0.575 , 0.585 , 0.600
x4 Forward Angular Rate at TOF, rad

s
-0.03 , 0.015 , 0.00, 0.015 , 0.03

individual fuzzy rule. The fuzzy controller in this work includes four control inputs

- torso angle at top-of-flight θ5,tof , torso angular rate at top-of-flight θ̇5,tof , current

jump height hmax, and forward angular rate at top-of-flight θ̇7,tof - represented by

x1, x2, x3, and x4, respectively. Each of the four control inputs has five triangular

membership functions, with centers as described in Table 3.3. The total number of

rules is thus 54 = 625.

3.3.8 Revisions to Fuzzy Structure

The structure of the fuzzy controller described above is the result of several re-

visions to the original structure. The control inputs describing the torso state at

the top-of-flight (angular position and rate) as well as forward angular rate were not

included in the original structure. The values selected for the membership function

centers were also modified throughout the development of the control strategy. The

method of determining the certainty of the premise of a fuzzy rule proved to be a key

aspect of the controller and was changed from the initial strategy to the final result.

The inclusion of the torso state variables (θ5 and θ̇5) in the fuzzy controller was

necessitated by two problems: the difficulty of training control parameters to return
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the torso to a specific state and the sensitivity of the system to perturbations in the

torso state. The original design of the fuzzy controller assumed that it would be

possible to select control parameters for any desired jump within the performance

limitations that would return the state of the robot (including the torso) to precisely

the same state from which it started the jump. Simulations intended to find these

control parameters revealed difficulty in returning the torso state to the desired an-

gular position and rotational speed. It was either not possible to achieve this goal

with the limitations introduced through the motor primitive control architecture or

computationally infeasible to find such precise control parameters. In simulation, it

was observed that sequential jumps intended to maintain a specific height could not

be performed with a constant set of control parameters, due to variation in the top-

of-flight torso state causing the system to become unstable. This observation, that

small perturbations in the torso state could produce instability, suggested that the

torso state was a necessary input to the fuzzy controller for determining appropriate

control parameters.

The addition of the forward angular rate at top-of-flight followed a similar rea-

soning to that of the torso state. It was observed during implementation of previous

fuzzy controllers that small perturbations to the forward angular rate of the system

could cause otherwise acceptable jumps to become unstable. Inclusion of the forward

angular rate in the fuzzy controller also allowed for a more direct definition of the

allowable forward motion for a jump in the training algorithm (discussed in Chapter

4).

Selection of the membership function centers for the fuzzy controller required iter-

ation to achieve satisfactory performance. The space described by the fuzzy controller
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inputs represents the working range of the controller and offers conflicting goals re-

lated to the size of the space as described by the membership function centers. A

large working range is desirable for the controller to allow for more varied physical

performance of the robot and to minimize the difficulty in selecting control param-

eters that will return the state of the robot to the working range of the controller.

Resolution issues present a direct conflict with the desire for a large working range.

The interpretation of the rule-base as an approximation of the nonlinear mapping be-

tween the fuzzy inputs and outputs indicates that the accuracy of the approximation

is dependent upon maintaining a fine enough resolution among the inputs to capture

the important features of the nonlinear relationships. The final values selected for

the membership function centers were determined through trial and error to be a

compromise between these two conflicting goals.

The calculation of the certainty of the premise for a fuzzy rule of Eq. 3.27 initially

used a minimum function, of the form

µz,prem = min{µ1,k, µ2,k, . . . , µn−1,k, µn,k}. (3.30)

This method of calculating the certainty of the premise was based on a simple idea:

the controller can be no more certain of a fuzzy rule than it is of any of the elements

of the premise of that rule. While this method of determining the relevance of fuzzy

rules can be successfully implemented for some control systems, it introduces problems

when applied to the fuzzy controller described in this work. The ability of the fuzzy

controller to select control parameters for returning the system to the desired top-

of-flight state is dependent on appropriately combining the relevant stored values in

the fuzzy rule-base. The difference in the minimum and product functions can be

explained by the nature of the resulting fuzzy outputs when the controller receives
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inputs between membership function centers. A generic fuzzy controller with two

inputs (n=2) and a single output (m=1) can be used to demonstrate this. The

fuzzy output can be interpreted as a surface that is a function of the two control

inputs across a range of values between the membership function centers. The surface

produced using the certainty calculation of Eq. 3.30 has a key difference from that

produced when using Eq. 3.27. The surface produced by the minimum function will

show zero-order continuity only, while the surface produced by the product function

will show zero- and first-order continuity. This difference between the two surfaces

represents the problem introduced by using the minimum function. The minimum

function is unable to capture the relevance of multiple fuzzy inputs in a manner that

produces smoothly continuous fuzzy outputs with varied input values. When used in

the fuzzy controller described in this work, this problem introduced by the minimum

function causes the biped system to become unstable, while the product function

maintains stability.

3.3.9 Control Parameters

The control parameters required by the motor primitive control laws are stored

as the consequents of the fuzzy rules. The motor primitives used for low-level control

dictate the number of control parameters that must be specified for performing the

desired maneuver. In this work, the required control parameters are: desired hip and

knee angles, θh,d and θk,d, hip and knee motor open loop catch currents, ih,cat and

ik,cat, and the hip and knee motor open loop thrust currents, ih,thr and ik,thr; these

are represented by the fuzzy control outputs y1, y2, y3, y4, y5, and y6.
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3.4 Summary

This chapter describes the control approach used to achieve the desired maneuver.

The low-level control laws, motivated by the concept of motor primitives, are devel-

oped in detail and presented as phases of a state machine. The supervisory controller

is described and contrasted with traditional fuzzy controllers. Emphasis is placed on

the revisions to the controller, both high- and low-level, required to produce stable

jumping maneuvers.
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CHAPTER 4

FUZZY TRAINING

4.1 Introduction

The control strategy described in the previous chapter lays out the framework

required for achieving jumping. However, the method for determining the control

outputs for every rule in the rule-base remains to be explained. The task of de-

termining appropriate control outputs for every scenario described in the rule-base

presents a significant challenge. The size of the rule-base, 54=625 rules, combined

with the number of required control outputs (six) produces a total of 3750 control

outputs that must be specified for the rule-base to be complete. This challenge is

addressed with an algorithm used to train the fuzzy controller in the numerical simu-

lation through iterative jumps with error-based feedback. This chapter describes the

fuzzy training algorithm, specific difficulties encountered, and results of the completed

training. Heuristic knowledge derived from the training results and control strategy

development are then presented. The chapter concludes with interpretations of the

fuzzy training algorithm and a summary.
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4.2 Training Satisfaction Criteria

The purpose of training the fuzzy controller is to find values of the control outputs

y1:y6 that will achieve the desired performance of the jumping maneuver for every

rule z. In order to determine when a rule is considered to be trained, criteria that

the jump must satisfy are needed. These are referred to as the training satisfaction

criteria. The three criteria used in this work emphasize the state of the system at the

top-of-flight. The ability of the controller to produce stable, successive jumps requires

that any control action specified by parameters in the rule-base results in the system

state at the end of a jump falling within the range of the fuzzy controller with respect

to all inputs. This will ensure that appropriate control actions will be available for

the following jump. This can also be explained as a requirement that the controller

must map the system state back to within its own working range to provide stability

and robustness.

The most directly formulated satisfaction criteria are based on the gross char-

acteristics of the jump. The height and forward angular rate of the system at the

top-of-flight are evaluated based upon the desired behavior of the robot. The jump

height h is desired to achieve a specific value, while the forward angular rate θ̇7,tof is

desired to be small enough that the system maintains motion primarily in the vertical

direction. These two variables are assigned an acceptable amount of deviation, δ1 and

δ2 for the height and forward motion, from central desired values hd and θ̇7,d. The

allowable deviation, or control error tolerance, and central desired value for the two

control errors are based upon the values of the membership function centers for the

fuzzy control inputs associated with the criteria: current jump height and forward

angular rate at top-of-flight (x3 and x4, respectively). The control error tolerance is
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selected for each error to ensure that the training algorithm will produce jumps with

both a height and forward angular rate that fall within the working range of the fuzzy

controller.

The control errors corresponding to jump height and forward angular rate at top-

of-flight are ε1 and ε2, calculated as

ε1 = h− hd (4.1)

and

ε2 = θ̇7,d − θ̇7,tof . (4.2)

The values of the desired height and forward angular rate are set equal to the middle

membership function center of their associated fuzzy control input.

hd = c3,3 = 0.575 m (4.3)

and

θ̇7,d = c4,3 = 0.00
rad

s
. (4.4)

These criteria are formulated such that a negative control error for height represents

a jump that is too short, while a negative control error for the forward angular

rate represents a jump in the backward direction (based on the previously defined

sign conventions and state variables). The training satisfaction criteria can then be

expressed by the inequalities

−δ1 ≤ ε1 ≤ δ1 (4.5)

and

−δ2 ≤ ε2 ≤ δ2. (4.6)
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The acceptable range of values in these two criteria cover only part of the range

of the fuzzy controller. This formulation of the satisfaction criteria is designed to

cause the training algorithm to find control parameters that will return the system

to the central region of the fuzzy controller’s range. When the trained rule-base is

implemented with the fuzzy controller, this encourages stability by causing the state

of the system to be returned from points near the edge of the rule-base back to the

central region.

The achievement of an acceptable top-of-flight torso state is also required for

control stability and robustness. Consider a planar subspace of the complete rule-

base, shown in Fig. 4.1, that is formed by holding the current jump height and forward

angular rate fixed. The two dimensions of the plane represent the pitch and pitch rate

of the torso, where the range of each is specified by the membership function centers.

The torso state at top-of-flight must fall within the shaded area of this plane to allow

the fuzzy controller to select appropriate control parameters for the following jump.

The tight coupling between the pitch and pitch rate of the torso does not allow the

use of individual control errors for each, but necessitates the use of a single control

error metric that incorporates both parameters. This is accomplished through use

of a modified version of the planar subspace, as seen in Fig. 4.2. The torso state

at the end of the training jump is located on the (x1,x2) plane at a point p, with

coordinates defined by the variable θ5 and its time derivative θ̇5. A new coordinate

system (X1,X2) is added to the plane with the origin at the center (defined by the

membership function centers c1,3 and c2,3) and a coordinate transformation is used to
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p

Figure 4.1: Planar subspace of the fuzzy rule-base. Point p is an arbitrary point with
coordinates (x1, x2).

scale the pitch error and define the origin as zero.

X1 = (x1 − c1,3)(
c2,5 − c2,3
c1,5 − c1,3

) (4.7)

X2 = x2 − c2,3. (4.8)

The transformation can be used to map the point p to the (X1,X2) equivalent P . The

radial distance r of point P from the (X1,X2) origin is used in the third control error

metric. A maximum allowable radius rmax defines a small, circular region centered

in the plane, described by the x1 and x2 membership function centers in the (X1,X2)

plane, calculated as

rmax = c2,4 − c2,3. (4.9)
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Figure 4.2: Modified planar subspace for use in training criteria. Q represents the Cartesian
quadrant within the plane.

The control error ε3, control error tolerance δ3, and training satisfaction criteria are

then defined directly as

ε3 = r, (4.10)

δ3 = rmax, (4.11)

and

ε3 ≤ δ3. (4.12)

The maximum allowable radius is defined in this manner to produce trained jumps

that return the torso state to a central region of the working range of the fuzzy

controller. In a similar manner to the previous satisfaction criteria, this provides

the system with a margin of stability in relation to the system state, which can be

graphically interpreted as the shaded region of the plane in Fig. 4.2 outside of the
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circle. When the torso state is within this shaded region, the fuzzy controller will

select control parameters that attempt to return the state to the circular region.

The location of the point P is further defined using the standard notation for

quadrants in a Cartesian plane, as shown in Fig. 4.2, represented by the variable Q.

The quadrant Q is used in the training algorithm to identify the nature of failure in a

training jump. The error metrics ε1 and ε2 represent error of a one dimensional nature,

and as a result, the direction of change needed for improved jump performance can be

described as positive or negative. In contrast to this, the torso state error metric ε3 is

used to account for error in two dimensions and requires more discretion to determine

the direction needed to improve jump performance. As an example, a jump that fails

to satisfy the torso state satisfaction criteria and is located in quadrant 3 typically

represents a case where the torso pitch and pitch rate both need to be increased to

reach the acceptable range.

4.3 Training Cases

The error feedback provided by the training satisfaction criteria and associated

metrics defined by Eqs. 4.1, 4.2, and 4.10 is used to diagnose the nature of failure

observed for a training jump. The values of the error are then supplied to training

laws that serve to update specific control parameters in an attempt to reduce the error

during the following training jump. The selection of the training law appropriate to

the given failure mode is performed through the use of training cases, which integrate

heuristic information with a structured training scheme.
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Table 4.1: Training Case Structure

Case Number ε1 ε2 Q

1 OK OK 1
2 OK OK 2
3 OK OK 3
4 OK OK 4
5 OK + n/a
6 OK - n/a
7 + OK n/a
8 + + n/a
9 + - n/a
10 - OK n/a
11 - + n/a
12 - - n/a

The training cases are intended to observe the failure mode of the training jump,

determine the most significant aspect of the failure, and supply an appropriate train-

ing law. The training laws are formulated to modify the control parameters through

small changes that will cause the training to converge to an acceptable jump. The

cases are defined by twelve specific combinations of the error metrics and are depen-

dent on the sign of the error, as described in Table 4.1.

The combined pitch and pitch rate error metric ε3 is included only in the first

four training cases. These four cases represent situations in which the jump height

and forward angular rate are in the acceptable range and only the torso state fails to

satisfy the training criteria. The additional cases ignore the torso state and focus only

on the jump height and forward angular rate errors. The purpose of this structure is

to focus on the gross performance of a jump before examining the satisfaction of the

torso state criteria. The first four cases serve to fine tune the control parameters once
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the remaining training cases have performed the task of generating an approximately

acceptable jump.

4.3.1 Training Laws

The training laws, each associated with a particular case, are the repository for

heuristic information about control of the system. Selection of which control param-

eters and errors to use in the training law is based upon knowledge of the system

developed by the user. The laws modify control parameters in proportion to the

observed error of the previous training jump. Training gains are used to specify the

proportion, represented by kJ,R, where J is the joint [h-hip,k-knee] and R is the type

[c-current,a-angle]. The gains are selected to provide stable, convergent training be-

havior. Excessively high training gains can cause the training to diverge from stable,

acceptable jumping behaviors. Conservative training gains can require large numbers

of iterative training jumps to achieve a desired result; however, the stability offered to

the training outweighs the impact of a slow training algorithm. A maximum number

of training iterations nmax is set for any given jump so that fuzzy rules for which no

acceptable combination of control parameters may exist will not stop the algorithm

from further training the rule-base.

The training laws for the twelve cases are provided in Table 4.2. The conditional

statements included in training cases one and ten were found to be necessary additions

to the training. These cases were observed to exhibit an oscillatory behavior during

training, with training jumps repeatedly switching back and forth between the two.

The conditional statements provide more discretion to the training algorithm and help

to eliminate this observed oscillation. The numerical values defining the conditional
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Table 4.2: Training Laws

Training Case Law Addl. Conditions

1 ∆ih,thr = kh,t · ε3 if ih,thr <11.95
∆ik,thr = kk,t · ε3 if ih,thr <11.95
∆ih,cat = kh,c · ε3 if ih,thr >11.95 and ih,cat <11.95
∆ik,cat = kk,c · ε3 if ih,thr >11.95 and ih,cat <11.95
∆ik,thr = kk,t · ε3 otherwise

2 ∆ih,thr = kh,t · ε3

∆ik,cat = −kk,c · ε3

3 ∆ih,thr = −kh,t · ε3

∆ik,thr = −kk,t · ε3

4 ∆ik,thr = kk,t · ε3

∆ik,cat = kk,c · ε3

5 ∆θh,d = −kh,a · ε2

6 ∆θh,d = −kh,a · ε2

7 ∆ih,cat = −kh,c · ε1

∆ik,cat = kk,c · ε1

8 ∆θh,d = −kh,a · ε2

9 ∆θh,d = −kh,a · ε2

10 ∆ih,thr = −kh,t · ε1 if ih,thr <11.75
∆ik,thr = kk,t · ε1 if ih,thr <11.75
∆ih,cat = −kh,c · ε1 if ih,thr >11.75 and ih,cat <11.75
∆ik,thr = kk,t · ε1 if ih,thr >11.75 and ih,cat <11.75
∆ik,thr = kk,t · ε1 otherwise

11 ∆θh,d = −kh,a · ε2

12 ∆θh,d = −kh,a · ε2

statements are used to determine how close the current control parameters are to the

physical limitations of the system. Training case 1 uses a limit of 11.95 Amps on

the hip command currents for catch and thrust to determine if small changes to

these values may be made that respect both the physical limitations and improve the

torso state. Training case 10 uses a lower limit of 11.75 Amps on the same control

parameters in an attempt to address other control parameters for correcting the jump
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height error and leave more range in the hip command currents for fine tuning the

torso state. Adding these conditional statements prevents training cases 1 and 10

from manipulating the same control parameter and switching back forth from torso

state error to jump height error.

4.4 Physical Limitations

The training of the fuzzy rule-base must respect the physical limitations of the

robot for the control approach to be realized in hardware. Many of the physical limits

are incorporated directly into the model of the system, such as joint limits. However,

some of the limits must be expressed directly in the training algorithm. In particular,

the command currents must be closely monitored.

The maximum current imax that the amplifiers are capable of delivering is included

in the modeling of the electrical system. However, the primary action of many of the

above training cases involves modification of the various command current control

parameters. The training laws, implemented without consideration of the amplifier

limits, can potentially increase the command currents beyond the realizable values

in an attempt to train for an acceptable jump. This behavior can allow the training

algorithm to modify the control parameters beyond the region in which an acceptable

jump exists. To counteract this effect, command currents (for both catch and thrust)

are examined after the training laws are applied for each jump. The command currents

are modified to fall within the limits of the amplifiers.

ic,i =


imax for ic,i > imax

ic,i for −imax ≤ ic,i ≤ imax

−imax for ic,i < −imax.
(4.13)
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The use of this limit after the training law has been enacted allows for alteration of

any control parameters for which physical limits have not been exceeded.

4.5 Seeding the Training

The training algorithm, while capable of varying the control parameters required

to perform a specific desired jump, offers the best performance when provided with

approximate starting values of the control parameters. The set of starting values

for the control parameters are considered as a seed. The seed serves to reduce the

number of iterations required for training a given rule by initializing the training in the

approximate region of the design space that will yield appropriate control parameters.

The technique of seeding the training algorithm parallels the use of initial values in

numerical solution algorithms.

The initial seed for the rule-base is trained manually through manipulation of

the control parameters and observation of the performance. The human-in-the-loop

nature of the manual seed determination offers flexibility to the process that avoids

more laborious searches of the entire design space. The initial seed used in this work

is provided in Table 4.3. This seed is used as the starting point for the training of

the first rule in the training order.

The training begins with the rule located at an edge of the rule-base and proceeds

out through the rule-base in a dictated order. The rule is identified by the membership

function centers used to determine the fuzzy control inputs, with x1 = c1,5, x2 = c2,5,

x3 = c3,3, and x4 = c4,1. The rules subsequent to the first rule are then provided with

trained control parameter from previously trained rules to use as seeds. This method

of seeding serves two distinct purposes. Primarily, as mentioned above, seeding the
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Table 4.3: Initial Training Seed

Control Parameter Value

Desired Hip Angle -0.82 rad
Desired Knee Angle 1.28 rad
Hip Catch Current 9.56 A

Knee Catch Current -3.67 A
Hip Thrust Current 12.0 A

Knee Thrust Current -7.31 A

training of a rule reduces the number of iterations required for success, reducing

the training time for the entire rule-base while avoiding the necessity of manually

creating a seed for every rule. Additionally, using previously trained rules as seeds

for subsequent rules serves to maintain consistent behavior between adjacent rules

in the rule-base. Drastic changes in the control parameters between adjacent rules

could evolve different jumping behaviors and introduce complications into the fuzzy

control algorithm.

The order of training the rules in the rule-base and the method of seeding sub-

sequent rules are closely tied. The rules must be trained in an order such that

appropriate seeds are available from previously trained rules. The seeding should

be performed in a manner that elicits as much consistency of behavior across the

rule-base as possible. These two considerations led to the training order and seeding

pattern used in this work.

Consider again a planar subspace of the rule-base, shown in Fig. 4.3, formed by

holding x3 and x4 fixed at values equal to their respective fuzzy input membership

function centers. The two remaining inputs x1 and x2 form the axes of the planar
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Figure 4.3: Progression of rules for training, (x1,x2) plane

subspace. The fuzzy rules in this plane exist at the intersection of the membership

function centers for the two inputs, producing 25 rules in the plane (n2
mf = 52 = 25)

shown as discrete points in the figure. The training algorithm begins in the plane at

the top, right corner rule (depicted as a circle) and progresses from rule to rule as

depicted by the arrows in the figure.

A planar space of the type depicted in Fig. 4.3 exists for every combination of the

input x3 and x4 membership function centers, producing a total of 25 planes. The

training proceeds from plane to plane in a specified pattern, with every plane starting

at the corner rule and following the progression shown in Fig. 4.3 before moving on

to the next plane. The progression between the planes is depicted in Fig. 4.4. The

seeding is performed within the (x1, x2) plane starting from the top, right corner rule

following the pattern shown in Fig. 4.5.
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Figure 4.4: Progression of rule training and seeding, (x3,x4) plane

The top, right rule of every (x1, x2) plane, subsequent to the initial manually

seeded rule, is seeded with trained control parameters from the corner of an adjacent

plane, using the same pattern as the training progression depicted in Fig. 4.4.

4.6 Training in Parallel

The computational requirements of the simulation software place a high demand

on the processing resources of the computer used to run the training algorithm. While

the software is not optimized for use on computer systems utilizing multi-core proces-

sors, such systems can reduce the time required to complete the training algorithm

in comparison to single-core systems. Multiple instances of the simulation software

can be run in parallel on multi-core systems, which allows for each instance of the

software to make use of a single processor core.

The linear order of the training progression requires some manipulation to allow

for multiple instances of the algorithm to run simultaneously. The training order
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Figure 4.5: Progression of rule seeding, (x1,x2) plane

described above is manually overridden to determine the control parameters for a rule

closer to the center of the rule-base, identified as rule number zss (in this case, where

x1 = c1,5, x2 = c2,5, x3 = c3,3, and x4 = c4,3). This fuzzy rule is located approximately

40% of the way through the training progression. The training algorithm is then run

simultaneously within two instances of the simulation software. One instance begins

with the initial seed for the first rule in the training progression and proceeds up

to rule number zss. The second instance of the simulation begins at rule number

zss and proceeds through the training progression to the end of the rule-base. The

division of the rule base in this manner is used to improve the training time on a

dual-core computer. The two segments of the rule-base trained by each instance of

the simulation are not of equal size. This reduces some of the time improvement

possible through training in parallel; however, it allows for easier reconstruction of

the complete rule-base from the two distinct parts produced by the separate training

instances.
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The results of the training algorithm run in parallel are identical to those that

would be achieved by a single instance of the training simulation. The seeding progres-

sion described above is maintained for the training algorithm even when the training

order is manually overridden. This method of dividing the rule-base into multiple seg-

ments can be extended for use on computers with larger numbers of processor cores

or even used on multiple computer systems for further improvement of the training

time.

4.7 Training Challenges

Satisfactory completion of the fuzzy rule-base required a number of large changes

to the original version of the training algorithm presented above. In particular, the

training satisfaction criteria, seeding pattern, and training case structure and control

laws are the final result of many iterative attempts that were unsuccessful in com-

pleting the training as desired. The specific problems encountered and the resulting

changes are described below.

The initial training satisfaction criteria did not include the combined torso pitch

and pitch rate error ε3. In place of this combined error metric, the torso pitch and

pitch rate were each considered as separate metrics and were given acceptable ranges

(similar to δ1 and δ2). The training cases and associated training laws were structured

to handle the two metrics separately. In practice, it proved impossible to make

an appreciable reduction in one of the error metrics without greatly affecting the

other. This reflects on the tight coupling between the two. The revision to the

training algorithm to handle the torso pitch and pitch rate as a single error metric
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was implemented along with a revised structure of the fuzzy controller to include the

two as fuzzy control inputs.

The forward angular rate was also a necessary addition to the training algorithm.

Early versions of the training algorithm attempted to restrict the forward motion of

the system based entirely on the angular value of θ7 at top-of-flight, as opposed to its

time derivative. It proved difficult to define control error tolerances on the angular

value that would ensure that θ7 would fall within the working range of the fuzzy

controller. To address this issue, the forward angular rate was included directly in

the training algorithm in place of the angle.

The seeding pattern used within the (x1,x2) plane, as shown in Fig. 4.5, was

created in response to a hysteretic behavior observed in the training algorithm using

a previous seeding pattern. The original seeding and training pattern began in the

center of the (x1,x2) plane and worked outwards in a radial fashion. This pattern

was intended to produce more consistent fuzzy rules across this plane by minimizing

the average distance of any given rule and the initial seed of the plane. However,

the direction of seeding was observed to influence the order in which the training

laws were used to find an acceptable combination of control parameters. Rules that

were seeded from previous control parameters for more negative values of θ5,tof and

θ̇5,tof were found to quickly reach current limits for the open-loop command currents.

Changing the training and seeding order allows the rules to be seeded in a consistent

direction, which eliminates the hysteretic effect.

The training case structure was reduced greatly in size through the development

of a working training algorithm. The original structure included a case for every

combination of the error metrics (jump height, forward motion, pitch, and pitch
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rate) divided into sections as positive, acceptable, and negative. Extra training cases

were included to account for the possibility of foot slip during the catch and thrust

primitives. Implementation of this training case structure revealed several important

characteristics. Many of the control laws for various cases were ultimately selected in

identical forms, suggesting that the large number of training cases were unnecessary.

It also proved futile to attempt to correct torso state errors in the same training

jump that corrections for forward motion and jump height were applied, as the scale

of changes for the jump height and forward motion often overshadowed any changes

intended to affect the torso state (which is reflected in the final training case structure

described above). Finally, the foot slip training cases were eliminated altogether, upon

the observation that jumps including foot slip could be eliminated from the training

through careful seed selection and conservative training gains.

The training laws of Table 4.2 do not include the desired knee angle at ground

contact θk,d. This control parameter was originally included in the training laws,

but was finally removed upon observation that the training algorithm did not make

significant changes to the value of the parameter for the different fuzzy rules. Addi-

tionally, it was discovered during the development of the controller that the value of

the knee angle at ground contact was critical to avoiding contact with the joint limits.

Maintaining a static value for this parameter, determined by the initial training seed,

allows the training algorithm to select appropriate values for the remaining control

parameters that do not violate the joint limits. The desired knee angle at ground

contact, however, is kept as a control parameter for the motor primitives to maintain

the flexibility of the controller for application to maneuvers that may require variation

in this value.
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The control laws associated with each of the training cases were modified many

times before the final training algorithm was considered acceptable. The laws reflect

the knowledge of the user about the dynamic behavior of the robot in reaction to

small changes to specific control parameters. Through the development and revision

of the training algorithm, the user’s knowledge of the system was continually improved

through observation and analysis of simulation results. This allowed for corresponding

improvements to the training laws. Training laws that were observed to drive a jump

away from convergence to an acceptable jump were examined in detail to determine

what modifications would be required for convergent training behavior; this could

include variation of the training gains or selection of different control parameters and

error metrics for inclusion in the laws. Small changes to the model were found to

require revision of the training algorithm, specifically the control laws. The heuristic

knowledge contained in the training laws includes information required to successfully

implement the control strategy described in this work. This knowledge is summarized

following a brief description of the training results.

4.8 Training Results

The completion of the training algorithm resulted in the successful determination

of control parameters for 607 of the 625 rules in the fuzzy rule-base. The average

number of iterative training jumps required for a successfully trained rule was 189. A

diagram of the rule-base can be seen in Fig. B.1 of Appendix B. This figure demon-

strates the fuzzy rules for which the training algorithm failed.
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The training algorithm took a total of 12 hours to complete. The training simu-

lation was performed on a desktop PC with an Intel Core 2 Duo 3.0 Ghz processor

and 2 Gb of RAM.

4.9 Heuristics Developed and Observed

The motivation for using fuzzy control as a supervisory controller emphasizes the

inclusion of heuristic knowledge and the resulting ‘functional model’ of the system

dynamics. This ‘functional model’ is contained within the control strategy at two

locations: the fuzzy rule-base and the training laws. The topology of the control

parameters in the rule-base throughout the space of the fuzzy controller serves as a

mapping of the nonlinear relationships between control parameters and inputs. This

mapping can be used to extract heuristic information about the system. Many of

the same relationships are also present in more qualitative terms in the training laws

used to determine appropriate control outputs for every rule. The development of

the control strategy itself offered insight into the system dynamics and limitations

that can be expressed in the form of heuristic statements. The following heuristic

information was drawn from these three areas. This information captures details

of the system dynamics that are critical for successfully implementing the control

strategy described in this work.

• The primary factor restricting maximum jump height is hip actuator power.

Higher jump heights approach hip power in excess of the physical limit described

by imax, while the knee actuators do not approach this limit.
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• The torso state at top-of-flight described by both angle and angular rate is a

critical factor in producing stable jumping. The inability to determine accept-

able control parameters for a given torso state reflects the sensitivity of the

system to these two state variables.

• The torso state at top-of-flight is directly affected by all control parameters. The

magnitude of change in control parameters required to address forward motion

or jump height has a significant impact on the torso state, typically requiring

further refinement of the parameters to correct for the error introduced.

• Small amounts of energy stored in the actuator springs can negatively affect the

ability of the fuzzy controller to accurately determine the torso state at top-of-

flight. The state of all links at top-of-flight must be static enough to allow for

determination of appropriate control parameters.

• The torso angular rate and position at the top-of-flight can negate one another.

Fuzzy rules located on or near the negative diagonal passing through the center

of the (x1,x2) plane typically train more rapidly than others.

• Foot position relative to the torso at ground contact has a large effect on for-

ward motion. Training laws implemented to reduce error in the forward motion

manipulate the horizontal distance between the feet and torso at ground con-

tact through modification of the desired hip angle at contact (see training laws

for cases 5, 8, and 11 for examples). This heuristic, observable in the training

laws, is also an integral part of the decoupled forward motion and height control

strategy implemented by Raibert [5] with monopodal and bipedal robots.
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• Initial forward motion of the robot, when unaccounted for in the control pa-

rameter selection process, can cause otherwise valid control parameters to be

ineffective in producing the desired jump and lead to immediate control failure

in the form of falling.

• Jump height is controlled primarily through the magnitude of the hip and knee

catch and thrust command currents. The jump height is particularly sensitive

to the commanded knee currents, as shown by the relative size of the hip and

knee current training gains seen in the training laws emphasizing jump height

correction (including cases 7 and 10).

• The range of jump height described for the controller must respect the ability

of the robot to achieve the necessary joint positions during all phases of a

maneuver. Excessively low jump heights may not allow time for positioning of

the legs during the position or retract motor primitive.

• Jumps described by lower desired jump height typically offer a higher possibility

of acceptable performance. Lower height jumps require control parameters that

do not push the limits of the electronics and actuators, leaving more flexibility

in the control parameters for achieving an acceptable torso state at top-of-flight.

• Large torques in the knee actuators are undesirable as the robot approaches

liftoff. The mechanical coupling between the knee actuators and the torso (due

to the parallel actuation scheme) causes a direct transfer of torque from the

shank links to the torso. This mechanical coupling creates a high sensitivity of

the torso state to the torque developed by the knee actuators and can easily

drive the robot out of the working range of the fuzzy controller.
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• The top-of-flight joint angles should approximate a midpoint between joint an-

gles at liftoff and touchdown. The transitions between the hold and position

motor primitives will occur with less disturbance to the system as a result.

• The varied failure modes possible during a maneuver make universal training

laws infeasible. Training laws must be tailored to address specific failure modes.

• Joint trajectories described by the minimum acceleration required to reach the

end state are desirable for reducing disturbances to the system dynamics.

4.10 Fuzzy Training as a Design Space Search

The reduction of the design space for producing a maneuver from an effectively

infinite space to the six-dimensional space described by the fuzzy control outputs

improves the tractability of selecting appropriate control parameters. However, this

reduced space still requires searching to find the necessary values. The training algo-

rithm makes small changes to the control parameters via the training laws, resulting

in incremental steps through the design space in search of acceptable performance.

This incremental search process follows a pattern similar to that present in gradient

search methods used in numerical optimization techniques such as those described

by Arora [43]. Rather than using a formula to describe the cost function as with

optimization techniques, this work uses the simulated jump results to evaluate the

performance of the given point in the design space. The training laws replace the

topology of the optimization surface in deciding the direction and dimension through

which to proceed for improved performance.

Description of the training algorithm as a design space search routine is also useful

when considering the motivation for using fuzzy control in this work. A traditional
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search of the design space using numerical search techniques would rely on an accurate

analytical model of the system dynamics to describe the performance of points in the

design space. The avoidance of an accurate analytical model is made possible in

this work through the use of simulated jumps and user-based heuristic knowledge for

improving jump performance.

4.11 Fuzzy Training as a Learning Algorithm

The training algorithm for the fuzzy controller finds control parameters that will

produce the desired jump performance. The determination of these parameters can

be interpreted as a learning process. Schaal [40] describes an approach to develop-

ing control of humanoid robots that implements imitation learning. The imitation

learning process is performed through observation of a demonstrated maneuver. The

controller attempts to represent the observed maneuver as a sequence of motor prim-

itives already known by the system. If sufficient motor primitives are not available to

the system, existing primitives may be modified or new ones created to address the

shortcoming. The controller then implements the motor primitives and refines the

control parameters or sequence based on feedback to improve the performance of the

motion.

The training algorithm of this work follows a routine similar to this, with the motor

primitive identification process removed. Refinement of the performance is completed

solely through modification of the control parameters based on error feedback, essen-

tially skipping over the identification of appropriate primitives. The identification of

the appropriate motor primitives for the desired jump was performed in this work

by the user and maintained as a constant throughout the training. The use of error
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feedback in motor control learning has been an issue of some debate, with questions

raised as to the validity of the approach. In his discussion of the biological plausibility

of computational cognition methods, O’Reilly [44] states that error-driven learning

does not conflict with available information on biological processes.

The concepts of imitation learning and error-driven feedback support the inter-

pretation of the training algorithm as a learning process. This interpretation helps to

create a parallel between the control approach described in this work and the motor

control theories used to model biological systems.

4.12 Summary

This chapter describes the training algorithm used to select control parameters

for the fuzzy rule-base, including the training cases and control parameter update

laws. The training algorithm represents much of the user’s heuristic knowledge about

control of the robot. The heuristics gained from the training algorithm and the

control development process are summarized. Interpretations of the fuzzy training

are provided in support of the control approach described in this work. The trained

fuzzy controller produced by this training algorithm will next be implemented to

validate the control strategy.
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CHAPTER 5

CONROL STRATEGY RESULTS

5.1 Introduction

The trained rule-base for the fuzzy controller provides the necessary parameters

for performing jumping maneuvers. To verify the capability of the control strategy

to produce stable sequential jumps, the trained rule-base must be implemented. The

numerical simulation was initially used to verify the stability of the controller before

implementing the control strategy in the experimental biped. This chapter begins

with the implementation and results of the control strategy in the numerical sim-

ulation, with emphasis on the assumptions and modifications required to produce

stable jumping. The application of the control strategy to a simplified case of the

bipedal system is then introduced for use on the experimental system. The chapter

concludes with a discussion of the difficulties preventing implementation of the full

control strategy and a number of potential solutions to these issues.
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5.2 Implementing the Control Strategy in Simulation

Implementation of the control strategy in the numerical simulation is a simple

process. The thigh and shank links of the robot are initially placed in the top-of-

flight configuration with zero joint velocity. The boom angle θ6 is set at a position to

provide the desired initial height for the robot to fall from, while the value of θ̇7 is set

to the desired initial forward angular rate. The torso state is then set using a pitch

and pitch rate that are within the range of the fuzzy controller. Upon the start of the

simulation, the fuzzy controller is called to evaluate the current state of the robot and

provide the control parameters for executing the initial jump. The state machine is

then started from the beginning of the position motor primitive and cycles through

the remaining primitives as defined in Chapter 3. Upon reaching the top-of-flight, the

fuzzy controller is again called and the state machine is reset. The process of calling

the fuzzy controller and executing a cycle of the state machine is repeated until the

desired number of jumps have been completed or the system becomes unstable.

5.2.1 Assumptions Required for Stable Performance

The mathematical model presented in Chapter 2 includes a number of assumptions

regarding the nature of the bipedal system KURMET. During the process of develop-

ing and implementing the control strategy in simulation, some of these assumptions

proved problematic for stable sequential jumps. The final simulation results presented

here and in Chapter 4 for the 5-DOF system model include changes to these assump-

tions, particularly in the contact model presented for the unidirectional elements of

the series-elastic actuators.
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The unidirectional contact model of Eq. 2.10 includes a linear spring and damper

acting in parallel between each link and actuator when in the DDA and SEA preload

regimes. The spring stiffness and damping ratio of the contact model were defined

assuming a stiffness one order of magnitude higher than that of the actuator spring

and a damping ratio of approximately 1.0. These values were selected to reflect the

predicted behavior of the physical system. This contact model, while expected to

capture the most relevant aspects of the system, introduces difficulty to the control

strategy described in this work.

One of the heuristics offered in Chapter 4 describes the importance of having the

entire system exhibit a smooth, consistent behavior at the top-of-flight. Due to the

tight coupling between the legs and the torso of the robot, small deviations from

the desired TOF state of the legs (zero velocity and defined positions) can easily

change the torso state. When the fuzzy controller is called at TOF, it is critically

important for the torso state to exhibit the same behavior as shown during the training

algorithm. If the position and velocity of all leg links do not closely match the desired

TOF states, the torso angle will not follow the trajectories expected for the following

jump. As a result of this, the control parameters selected by the fuzzy controller may

not be effective in returning the system to the desired jump height, forward angular

rate, and torso state at the next TOF. Failure to return the system to within the

bounds of the fuzzy controller quickly leads to instability.

The short period of time available for the retract motor primitive requires the

use of trajectories that quickly return the motor positions to the desired TOF val-

ues. With closed-loop feedback control available for the motor positions, this task

introduces no significant problems. However, when the compliance of the USEAs is
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considered, the goal of quickly returning to a desired position and achieving zero ve-

locity in the joint angles at TOF is no longer trivial. The compliance of the actuators

(both in the series-elastic and direct drive regimes) allows the joint position to oscil-

late around desired position after experiencing a large acceleration or deceleration.

The magnitude of oscillation observed in the system when using the previously defined

values for the unidirectional contact parameters is significant enough to rapidly cause

instability in the system when the fuzzy controller is implemented. To counteract this

instability, the contact parameters were modified to a higher stiffness and damping

ratio to reduce the magnitude and settling time of these oscillations in the leg joint

angles. Increasing the contact stiffness to 900 N·m
rad

and the damping coefficient to 10.0

N·m·s
rad

was found to allow the oscillations to be reduced enough to avoid instability. In

addition to the increased unidirectional contact stiffness and damping, the preload

torque of the actuators was set to a value of 6.0 N·m. This allows the damping in-

cluded in the preload range of the actuator to further improve the response of the leg

joints to the high speed trajectories in the retract primitive.

The consequences of the modifications to the contact model are discussed later

in this chapter as they apply to implementation of the simulation results to the

experimental hardware.

5.2.2 Simulation Results

The implementation of the fuzzy controller in the numerical simulation allows

for an examination of the capabilities of the control strategy to produce the desired

jump performance. To this end, the simulation was used to perform multiple jumping
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Table 5.1: Summarized Simulation Results

Sequence θ5 (rad) θ̇5 ( rad
s

) h0 (m) θ̇7,tof ( rad
s

) Summary

1 c1,3 c2,3 c3,1 c4,1 stable

2 c1,3 c2,3 c3,3 c4,1 stable

3 c1,3 c2,3 c3,5 c4,1 stable

4 c1,3 c2,3 c3,1 c4,3 stable

5 c1,3 c2,3 c3,3 c4,3 unstable after 13 jumps

6 c1,3 c2,3 c3,5 c4,3 stable

7 c1,3 c2,3 c3,1 c4,5 unstable after 1 jump

8 c1,3 c2,3 c3,3 c4,5 stable

9 c1,3 c2,3 c3,5 c4,5 stable

10 c1,1 c2,1 c3,3 c4,3 stable

11 c1,5 c2,1 c3,3 c4,3 stable

12 c1,1 c2,5 c3,3 c4,3 stable

13 c1,5 c2,5 c3,3 c4,3 unstable after 3 jumps

14 c1,1+c1,2

2

c2,1+c2,2

2
c3,3 c4,3 stable

15 c1,4+c1,5

2

c2,1+c2,2

2
c3,3 c4,3 stable

16 c1,1+c1,2

2

c2,4+c2,5

2
c3,3 c4,3 stable

17 c1,4+c1,5

2

c2,4+c2,5

2
c3,3 c4,3 stable

sequences for several scenarios. These scenarios describe different initial conditions

for the state of the system.

The different initial conditions in the simulation are used to verify the ability of

the controller to stabilize the system from different regions of the fuzzy rule-base. The

different jumping sequences resulting from these initial conditions are tabulated and

summarized in Table 5.1. The variables used as inputs to the fuzzy controller were
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initialized at values located both on and between the centers of the fuzzy membership

functions.

5.2.3 Discussion of Simulation Results

The general characteristics of the stable jump sequences offer insight into the

behavior of both the biped system and the control strategy. The simulation data

provided by sequence 1 from Table 5.1 is discussed here as representative of the

stable jump sequences detailed in the table.

The leg joint and motor positions follow similar trajectories during all cycles of

the state machine. The initial cycle of the state machine from sequence 1 demon-

strates these trajectories. Figure 5.1 depicts the joint positions and corresponding

motor position for this cycle with the active motor primitive noted. The position

and retract primitives demonstrate the close agreement between the motor and link

positions during the flight phase, while the deviation between these values during

catch and thrust reveals the deflection of the spring elements in the actuators. The

position of the leg links at the desired angles at top-of-flight demonstrates the smooth

behavior required for stability, with negligible difference between the motor and link

positions. The slight disparity between the left and right leg throughout the state

machine cycle is a result of the asymmetry introduced by approximating a planar

restriction using a spherical surface, as discussed in Chapter 2.

The torso height h, shown in Fig. 5.2, follows a smooth trajectory throughout

the cycle. The trajectory does not appear parabolic toward the end of the cycle, as

would be expected of ballisic flight. The influence of the leg retraction on the net

momentum of the system explains this effect. The final height of 0.58 m for the given
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Figure 5.1: Simulated leg joint and motor positions for a single cycle of the state machine.
(a) shows the behavior of the shank links and motors using the angle of the link relative
to the torso, while (b) shows the thigh links and motors. Motor positions are displayed as
the angle of the gearbox output. Motor primitive transitions are marked with dashed red
vertical lines and noted at the bottom of the figure.
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Figure 5.2: Simulated torso height h for one cycle of the state machine. The initial and
final height are noted, as well as the minimum height.

cycle deviates from the desired height of 0.575 m by 0.005 m. An error in the final

height is a feature common to the jumps produced by the simulation. Despite the

error from the desired final height, this value falls within the range of the membership

function centers for the fuzzy input of x3. The training algorithm, as described in

Chapter 4, includes an error tolerance of 0.02 m on the final height of the jump to

improve the convergence of the training algorithm.

The behavior of the torso during a jump cycle is also significant to the control

strategy. Figure 5.3 shows the torso angle θ5 and angular rate θ̇5 through the jump

cycle. The minimum and maximum values of the fuzzy control input membership

functions are included to show the return of these variables to the desired range

at the top-of-flight. The oscillation of the torso state, both the angle and angular

rate, are not of concern at times other than the top-of-flight. However, the value of
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Figure 5.3: Simulated torso state (a) θ5 and (b) θ̇5 for one cycle of the state machine. The
boundaries of the fuzzy control inputs are shown for each as dashed red horizontal lines.

these variables at the top-of-flight must be consistent enough to allow for the fuzzy

controller to select appropriate control parameters for the following cycle. As the

cycle nears the top-of-flight, both the torso angle and angular rate exhibit a smooth

behavior.

The final input to the fuzzy controller, the forward angular rate, follows the trend

displayed by the torso angle and angular rate. The value of θ̇7 varies throughout

the cycle, but ultimately returns to the desired range (defined by the minimum and

maximum membership function centers for x4). Figure 5.4 demonstrates this char-

acteristic of a stable cycle of the state machine. It is important to note that while

the forward angular rate at the top-of-flight is measured by the fuzzy controller, the
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Figure 5.4: Simulated forward angular rate θ̇7 for one cycle of the state machine. The
boundaries of the fuzzy control inputs are shown as dashed red horizontal lines.

forward angular position is not. As a result of this, the system shows a tendency to

drift in the forward or backward direction during a jump sequence. The fuzzy con-

troller attempts to correct error in the forward angular rate by returning the system

to θ̇7 = 0, but does not attempt to correct the forward position of the robot. Devi-

ation from the initial forward position of θ7 can accumulate over sequential jumps,

causing the drift observed in the simulation jump sequences.

The stable jump sequences described in Table 5.1 exhibit the characteristics de-

scribed in detail for the single cycle of the state machine. In particular the sequences

demonstrate

• a consistent return of the variables representing fuzzy control inputs x1:x4 to

within the range of the relevant membership functions, that is ci,1 < xi < ci,5

for i = 1 : 4,
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• a consistent, smooth behavior of these variables around top-of-flight,

• and a negligible difference between the position of the actuated links and their

corresponding motors around top-of-flight.

These characteristics are discussed in Section 5.4.1 as they relate to implementation

of the control strategy on the experimental hardware.

While the stable jump sequences demonstrate the desirable characteristics of the

control strategy, the unstable sequences offer more detail regarding the limitations.

Three of the seventeen jump sequences detailed in Table 5.1 became unstable. One

of these three, sequence 7, represents a jump for which the failure can be directly

attributed to divergence of the training algorithm. The fuzzy rule defined by the

input membership function centers c1,3, c2,3, c3,1, and c4,5 was not successfully trained.

As a consequence of this, the control parameters specified by this fuzzy rule do not

return the state of the system to within the desired range of the fuzzy controller. The

left and right membership functions defined for the fuzzy inputs include saturation,

which allows the fuzzy controller to determine the most applicable fuzzy rules for top-

of-flight states outside of the desired range. However, the system is unable to recover

from the end state of this initial jump, and falls immediately. The two remaining

failed jump sequences, numbers 5 and 13, do not share this problem of initialization

on an untrained fuzzy rule.

The first jump of sequence 13 successfully returns the state of the system to within

the range of the fuzzy controller. Despite this, the control strategy fails to maintain

stability. A similar problem occurs here to that described for sequence 7. The state

of the system at the top-of-flight of the first jump, while within the range of the

fuzzy controller, exists at a point in the fuzzy rule base that contains fuzzy rules that
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Table 5.2: Top-of-flight States for Sequence 13

Jump Number θ5 (rad) θ̇5 ( rad
s

) h (m) θ̇7,tof ( rad
s

)
Init -0.300 0.600 0. 550 0.030
1 -0.312 0.641 0.558 0.003
2 -0.281 0.742 0.580 -0.001
3 -0.177 1.04 0.571 -0.080

failed to train. The influence of these rules on the following jump, while reduced

by including the training satisfaction flag in Eq. 3.29, is significant enough to cause

the system to become unstable. The controller is able to produce an additional two

jumps before completely failing to maintain an upright configuration of the robot.

The deviation of the torso state fuzzy control inputs from the desired range increases

during these additional jumps as noted in Table 5.2, until there is no chance for

recovery.

The instability demonstrated by sequence 5 does not exhibit a problem with un-

trained fuzzy rules as observed for sequences 7 and 13. The initial stability of the

sequence, as demonstrated by the first 10 repetitive jumps, suggests that the system

is in a stable mode similar to that demonstrated by the remaining jump sequences.

The sudden instability, observable as a top-of-flight torso angular rate outside the

range of the fuzzy controller at the end of the eleventh jump, suggests a different

issue with the sequence. To verify the ability of the control strategy to stabilize the

system at the top-of-flight conditions observed at the end of jump number 10, the

simulation was initialized using these values, listed in Table 5.3. The resulting jump

sequence exhibits stable performance. This result suggests that the instability of
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Table 5.3: Top-of-flight States for Sequence 5

Jump Number θ5 (rad) θ̇5 ( rad
s

) h (m) θ̇7,tof ( rad
s

)
Init -0.300 0.600 0. 575 0.000
1 -0.314 0.635 0.590 0.008
2 -0.306 0.641 0.585 0.004
3 -0.308 0.637 0.584 0.004
4 -0.307 0.635 0.585 0.003
5 -0.304 0.657 0.586 0.005
6 -0.308 0.645 0.582 0.004
7 -0.304 0.668 0.581 0.004
8 -0.307 0.648 0.580 0.002
9 -0.302 0.676 0.580 0.004
10 -0.310 0.633 0.579 0.001
11 -0.294 0.708 0.583 0.005
12 -0.281 0.724 0.581 -0.013
13 -0.232 0.857 0.565 -0.045

jump sequence 5 is a numerical anomaly of the simulation. Further support for this

conclusion is demonstrated by varying the initial conditions of sequence 5 and observ-

ing the resulting performance. The varied conditions are shown in Table 5.4 with a

summary of the resulting stability. These results demonstrate that minor changes to

the initial conditions result in stable jump sequences, indicating that the instability

of sequence 5 is a flaw in the numerical simulation as opposed to the control strategy.

The simulated jump sequences described above demonstrate the capability of

the control strategy to produce stable dynamic maneuvers using the five degree-

of-freedom model of the bipedal system. The control strategy is able to successfully

produce continuous vertical jumping with an approximate normalized jump height s

of 2.3. The jump sequences observed to be unstable indicate that the performance
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Table 5.4: Varied Sequence 5 Results

Sequence θ5 (rad) θ̇5 ( rad
s

) h0 (m) θ̇7,tof ( rad
s

) Summary

5 c1,3 c2,3 c3,3 c4,3 unstable after 14 jumps
5.1 c1,3 × 1.001 c2,3 c3,3 c4,3 stable
5.2 c1,3 × 0.999 c2,3 c3,3 c4,3 stable
5.3 c1,3 c2,3 × 1.001 c3,3 c4,3 stable
5.4 c1,3 c2,3 × 0.999 c3,3 c4,3 stable

of the simulated system is ultimately reliant upon the quality of control parameters

selected by the fuzzy training algorithm.

5.3 Implementing the Control Strategy in Hardware

The results presented above demonstrate the capability of the control strategy

for producing stable jumping under the ideal conditions modeled by the simulation.

When the experimental hardware is used in place of the simulation, a number of issues

arise that prevent the implementation of the full control strategy. To address these

issues, a simplified case of the bipedal system is used for the experimental hardware.

5.3.1 Simplified Bipedal System

The simplification of the bipedal system consists of eliminating one of the five

degrees of freedom. The mechanical design of KURMET includes a removable pin

which, when in place, locks the torso into an upright configuration (θ5 = 0.05 rad)

and eliminates the freedom of the robot to rotate about this axis. Elimination of this

degree of freedom simplifies the control strategy by avoiding stability issues related

to the torso pitch and pitch rate.
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The inclusion of the pin is modeled in simulation through placing a proportional-

derivative (PD) controller on θ5 in the form of

τ5 = kp(θ5,d − θ5) + kd
d

dt
(θ5,d − θ5), (5.1)

where τ5 is the torque applied to the joint, θ5,d is the desired torso angle, and kp and

kd are the proportional and derivative gains. The rate of change of the difference in

desired and actual torso angle d
dt

(θm,tof − θm,i) is calculated as

d

dt
(θ5,d − θ5) =

(θ5,d − θ5)− (θ5,d − θ5,p)

∆t
, (5.2)

where θ5,p is the torso angle at the previous control step and ∆t is the time between

control steps. The gains are manually tuned to stiff values to maintain a low error

from the desired value.

5.3.2 Modifications to the Control Strategy

The control strategy was modified both at the supervisory and motor primitive

level for implementation on the simplified biped system. In particular, the structure

of the fuzzy controller was changed with respect to the control inputs, and the motor

primitives were modified to address issues observed during implementation on the

experimental hardware. The following changes focus on these two areas; however,

the general approach of the full control strategy described in Chapter 3 remains the

same.

• The revised fuzzy control structure consists of three inputs, the current jump

height hmax, the desired jump height hd, and the average forward angular rate

θ̇7,ave measured from the termination of the thrust primitive to the top-of-

flight, identified as fuzzy inputs x̄1, x̄2, and x̄3 respectively. Each input is
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Table 5.5: Control Input Membership Function Centers, Simplified Case

Symbol Input Membership Function Centers

x̄1 Current Jump Height, m 0.550 , 0.5625 , 0.575 , 0.5875 , 0.600
x̄2 Desired Jump Height, m 0.550 , 0.5625 , 0.575 , 0.5875 , 0.600
x̄3 Average Forward Angular Rate, rad

s
-0.10 , -0.05 , 0.00, 0.05 , 0.10

described using five triangular membership functions as shown in Fig. 3.3 with

membership function centers provided in Table 5.5. The total number of fuzzy

rules in the resulting rule-base is thus 53=125.

• The average forward angular rate is used as a fuzzy input in place of θ̇7,tof

due to the level of noise present in the numerically differentiated encoder signal

used for θ7. Using the average forward angular rate allows the fuzzy controller

to receive a single value that describes the current behavior of the complete

system. This also avoids delay issues introduced by filtering the signal during

real-time operation.

• The rule-base was trained in simulation using the training algorithm described

in Chapter 4, with several changes corresponding to the revised fuzzy structure.

The control error ε3 and training cases one through four are eliminated, as they

are no longer applicable. The training algorithm uses the desired height hd

defined by the membership function centers of x̄2 when calculating the error

metric ε2 in Eqn. 4.1 in place of a constant value. This allows the fuzzy rules

to be trained to reach the varied jump heights described by the range of values

for x̄2 in Table 5.5. The error tolerance for the height is set at 0.001 m to

112



Table 5.6: Initial Training Seed, Simplified Case

Control Parameter Value

Desired Hip Angle -0.55 rad
Desired Knee Angle 0.80 rad
Hip Catch Current 5.00 A

Knee Catch Current -3.00 A
Hip Thrust Current 10.00 A

Knee Thrust Current -8.00 A

improve the height accuracy of the controller for the simplified case. The seed

used for the training algorithm for the simplified case can be found in Table 5.6.

Acceptable control parameters were found for all 125 rules in the fuzzy rule-base

for the simplified case.

• The state machine was modified to include an additional hold primitive between

the position and catch primitives. This additional primitive was introduced in

response to the inability to precisely determine the point during the jump cycle

that top-of-flight is achieved. Identical control laws to those defined in Section

3.2.8 are used for executing this primitive, with the desired values changed to

the fuzzy control outputs of θh,d and θk,d in place of the top-of-flight angles.

The angular position signal produced by the shaft encoder placed on the joint

of θ6 includes significant noise when numerically differentiated to determine θ̇6.

As a result, the determination of the top-of-flight is imprecise when using a

change in sign of θ̇6. The precision is acceptable for determining the height at

top-of-flight, but is problematic when the following cycle of the state machine

is performed. Performing the following position primitive and terminating the
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primitive after the completion of ∆tp,1 allows the open-loop control currents of

the catch primitive to be implemented at inconsistent points relative to the

time of ground contact. This inconsistency can drastically change the behavior

of the following jump cycle. Introducing the additional hold primitive allows

for the leg joints to be kept at the desired angles until ground contact is sensed.

The implementation of the catch command currents then produces consistent

behavior between jumps.

• The point of ground contact was originally determined from the mechanical

switches integrated into the feet of the robot. However, it was observed during

experimentation that the delay introduced between the sensing of ground con-

tact and the beginning of the catch motor primitive allowed for the actuator

behavior to deviate from that predicted in simulation. To counteract this, the

hold motor primitive was changed to terminate upon either the left of right foot

height, hf,l and hf,r respectively, becoming less than an experimentally tuned

threshold. This ensures that the open-loop command currents of the catch

primitive are implemented in a timely manner.

• The leg slow motor primitive was eliminated entirely. This primitive was found

necessary in the full control strategy to slow the leg joint velocities and avoid

striking the joint limits after lift-off. When the torso is locked into the upright

position, the leg configurations used to produce jumping do not require this

primitive to avoid striking the joint limits. Removing the leg slow primitive
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allows for more time to be allocated to the retract primitive, improving the re-

sponse of the joint trajectories by decreasing the magnitudes of the accelerations

required.

• The calculation of the primitive periods for the catch and retract primitives

were changed to ensure completion of the primitives before ground contact

and top-of-flight, respectively. The position time period ∆tp,1 uses a leading

coefficient of 0.60 in place of 0.75, while the leading coefficient for the retract

period of ∆tp,5 was changed from 0.45 to 0.60. These reduced values ensure

that the primitives are completed in a satisfactory time, allowing the following

hold motor primitives to fill the remaining time between their completion and

the desired event.

• The top-of-flight joint angles were modified during the implementation. Oscil-

lation in the joint angles during the flight phase of the jump maneuvers was

found to result in inconsistent leg positions at the time of ground contact. The

top-of-flight angle for the thigh links was changed to -0.30 rad from -0.40 rad.

This modification causes the hip motor trajectories defined by the position

motor primitive to include larger angle changes. As a result, the positions of

both the hip and knee joints show a tendency to overshoot the desired ground

contact values. When oscillations are present in the leg joints, this overshoot

reduces the possibility of experiencing ground contact at joint angles less than

the desired values. Jump cycles that experience ground contact with the joint

angles less than the desired position were observed to produce a visibly different

motor behavior during the subsequent ground contact phase. While overshoot
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Table 5.7: Modified State Machine and Motor Primitives, Simplified Case

Index Motor Primitive Name Starting Event Ending Event

1 Position ftof = 1 ∆tp,1 Expired
2 Hold ∆tp,1 Expired hf,l < 0.01 or hf,r < 0.01

3 Catch hf,l < 0.01 or hf,r < 0.01 θ̇i < θ̇lim
4 Thrust θ̇i < θ̇lim θi < θlim
5 Retract θi < θlim ∆tp,5 Expired
6 Hold ∆tp,5 Expired ftof = 1

of the desired angles may interfere with precise control of the forward angu-

lar rate, the overall stability of the system is improved by the more consistent

motor behaviors observed during the ground contact phase.

• The assumed value of the back efficiency of the gearbox ηb was modified from

the initial value of
ηf

2
to a value of 0.58. The initial value was based on an

approximation made by Curran [15] to address the inability to reliably assign a

value based on the manufacturer’s specifications. Comparisons made between

simulated motor positions and experimentally measured motor positions during

jump cycles indicated that the back efficiency was in fact higher than initially

assumed. The final value of ηb = 0.58 was manually tuned until similar behavior

was observed between experimental and simulated motor data.

The revised state machine used for the simplified biped system is summarized in

Table 5.7. A more detailed description of the programming and control electronics

used to implement this strategy on the experimental system may be found in [45].
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Table 5.8: Summarized Experimental Results

Experiment h0 (m) hd (m) n ε̄h (m) θ̇7,mean ( rad
s

) Summary

1 0.549 0.550 10 0.010 0.079 stable
2 0.557 0.560 10 0.006 0.093 stable
3 0.567 0.570 10 0.008 0.086 stable
4 0.549 0.550 20 0.012 0.082 stable

5.3.3 Experimental Results

The modified control strategy was implemented on the experimental hardware to

produce varied jump sequences in a manner similar to the simulation sequences dis-

cussed above. The constraint placed on the torso by the inclusion of the mechanical

pin eliminates the possibility of the robot falling forward or backward. The perfor-

mance of the experimental system is therefore evaluated based upon the ability of the

controller to maintain the desired height hd of the jump and keep the average forward

angular rate θ̇7,ave within the range of the fuzzy controller.

The jump sequences performed by the experimental system are detailed in Ta-

ble 5.8. The table includes the starting and desired height of the system h0 and hd,

the number of jumps performed n, the mean height error ε̄h, the mean value of θ̇7,ave

noted as θ̇7,mean, and a brief description. The robot was dropped from the starting

height with an approximate initial forward angular rate of 0.00 rad
s

. The mean height

error is

ε̄h =

∑n
i=1 |hd − hi|

n
, (5.3)
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where n is the number of jumps performed and hi is the height achieved by the ith

jump. The mean value of θ̇7,ave is

θ̇7,mean =

∑n
i=1 θ̇7,i

n
, (5.4)

where θ̇7,i is the value of θ̇7,ave for the ith jump. The experimental data used for these

calculations can be found in Appendix C.

5.3.4 Discussion of Experimental Results

The experimental results produced using the biped system KURMET for the

simplified case can be generalized in much the same way as the simulation results.

The varied jump sequences described in Table 5.8 exhibit common characteristics,

including the behavior of the links and motors during the state cycle, the torso height

h through the jump cycle, and the forward angular rate θ̇7. Theses characteristics will

be examined for a cycle of the state machine taken from the third jump in experiment

2 of Table 5.8.

The leg joint and motor positions are shown in Fig. 5.5 for the jump cycle of

interest. The joint angles follow the general trend of the relevant motor positions

during the position, hold, and retract motor primitives. The joint positions do,

however, oscillate about the desired position. The oscillations can be seen to begin

when the motor and link positions cross after the large actuator deflections exhib-

ited during ground contact. These oscillations are an undesirable behavior of the

unidirectional hardware in the actuators. The motor positions during the beginning

of the retract primitive display unusual trajectories that deviate from the desired

trajectories described by Eq. 3.17. The trajectories described by Eq.3.17 assume an

initial motor velocity of zero, which can be seen in Fig. 5.5 to not be applicable. The
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Figure 5.5: Experimental joint and motor positions for a single state machine cycle, third
jump of experiment 2. (a) shows the shank links (relative to the torso) and motor positions
while (b) shows the thigh links and motor positions. Motor primitives are indicated at the
bottom of the figure with dashed red vertical lines marking the transitions.

non-trivial initial velocities of the motors at the beginning of the primitive cause the

desired trajectories to not be tracked closely during the beginning of the primitive.

The motor positions begin to follow the desired path during the deceleration phase

of the trajectories, approximately one third of the way into the primitive period.

The torso height during the jump cycle is shown in Fig. 5.6. The figure demon-

strates a relatively smooth behavior of the variable h throughout the state machine

cycle, with minor inconsistencies due to impacts with the ground as well as the leg os-

cillations during the flight phase. The desired jump height hd of this particular jump

cycle is 0.56 m. The initial and final height noted in the figure both show a positive

error from this value. The 50 jump cycles summarized in Table 5.8 and detailed in
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Figure 5.6: Experimental torso height h for a single state machine cycle, third jump of
experiment 2. The initial and final height are indicated.

Appendix C include only 2 cycles that resulted in a final jump height less than the

desired height. The system consistently overshoots the desired jump height. While

this reflects on a discrepancy between the mathematical model of the system and the

actual physical hardware, the resultant effect is beneficial in this particular instance.

The jump sequences described in Table 5.8 all represent a desired height that falls

within the bottom half of the membership functions for x̄2. The positive error on the

final jump height results in the fuzzy input x̄1, the current jump height, falling within

the range of the membership function centers for this input. The alternative, final

jump heights that consistently fall short of the desired height, would result in satu-

ration of the lowest membership function for x̄1, indicating that the fuzzy controller

would be extrapolating for a region beyond the trained range instead of interpolating

within the trained range.
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Figure 5.7: Experimental forward angular rate θ̇7 (unfiltered) for a single state machine
cycle, third jump of experiment 2. The dashed red vertical lines indicate the beginning and
end of the averaging period for calculating θ̇7,ave. The calculated value of θ̇7,ave is shown as
a dashed black line across this period in the figure.

The final input to the fuzzy controller, the average forward angular rate θ̇7,ave, is

shown in Fig. 5.7 along with the unfiltered value of θ̇7 for the state machine cycle.

The calculated average values of θ̇7 show a tendency to fall in the upper range of

the input membership functions for x̄3. As a result, the experimental system moves

in the backward (positive x0) direction during the jump sequences. This behavior is

partially the result of changes to the control strategy required to produce consistent

sequential jumping with the experimental system, including the modified top-of-flight

joint angles discussed above. Additionally, the tendency of the system to drift in the

forward or backward direction during sequential jumps is a feature common to both

the simulated and experimental results due to the exclusion of θ7 in the control

strategy.
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The experimental results summarized in Table 5.8 demonstrate the application

of the general control strategy described in this work to a simplified case of the

bipedal system. The results show the ability to achieve normalized jump heights of

approximately 2.3 in a stable, repetitive manner.

5.4 Experimental Difficulties

This chapter describes performance results of the control strategy described in this

work for two distinct applications, the simulated five degree-of-freedom biped system

and the simplified experimental biped KURMET. The restricted application of the

control strategy to only the simplified bipedal system for the experimental biped re-

flects a number of issues discovered during work with the experimental system. Many

of the issues contradict the desired behavior of the system described in Section 5.2.3 as

necessary requirements for producing stability. These issues are discussed here, and

possible solutions are provided to address the problems that currently prevent the

implementation of the full control strategy to the five degree-of-freedom experimental

biped.

5.4.1 Issues in Experimental Implementation

The issues discovered with implementing the full control strategy on the exper-

imental system primarily consist of the limited ability to accurately sense variables

critical to the stability of the controller and the non-ideal behavior of the actuators

when in the direct-drive regime.

The sensors used to measure the variables of θ5, θ6, and θ7 consist of optical shaft

encoders. The encoders provide a high-resolution signal of the angular position of

these variables. While this is sufficient to instill confidence in the accuracy of their
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Figure 5.8: Sample of experimental forward angular rate θ̇7 signal, unfiltered (a) and
filtered (b) using a digital 4th order Butterworth filter with a cutoff frequency of 25 Hz.
The approximate delay with this filter is 20 milliseconds.

signals, the results require numerical differentiation to produce the time derivatives

of the variables. The discrete nature of the sampled data signals from the sensors

causes the numerical differentiation to produce noise in the resulting angular rates.

Additionally, vibrations in the entire experimental system are excited by the impact

forces with the ground as well as the rapid movements of the legs. The combined

effect of the noise and vibration results in values for θ̇5, θ̇6, and θ̇7 that exhibit large

perturbations. A sample of the experimental data collected for θ̇7 can be seen in

Fig. 5.8 with no filtering applied and with a digital filter applied. As a result of

these perturbations, the state of the system can be difficult to accurately identify.

123



Filtering of these signals can help to address the perturbed behavior as demonstrated

in Fig. 5.8. The use of low-bandwidth digital filters on these signals introduces a delay

on the order of tens of milliseconds. The high speed nature of the dynamic jumps

described in this work require accurate sensing with minimal delay. In particular, the

fuzzy controller produced for the full five-degree-of-freedom model has a small range

of acceptable values for the torso angular rate θ̇5. The presence of noise or vibrational

perturbations in this signal would quickly lead to instability of the system.

The direct-drive regime of the actuators is modeled in this work using a linear

spring and damper operating in parallel, as described by Eq. 2.10. The simulation

results presented above for the full five-degree-of-freedom model were found to require

a large assumed value for the contact stiffness, damping ratio, and preload torque in

order to achieve stability. The observed behavior of the experimental system during

jump cycles for the simplified case indicates that the contact model over-estimates

the values of the contact stiffness and damping. The oscillatory behavior of the legs

during the flight phase, shown in detail in Fig. 5.9 for a segment of a state machine

cycle, reveals that the damping and stiffness do not approach the magnitude modeled

in the numerical simulation. The tight coupling between the biped’s legs and torso

would result in this oscillatory behavior being transferred in part to the torso state

if the mechanical pin locking the torso in place were removed. Oscillation of the

torso state around the top-of-flight would introduce large problems into the selection

of appropriate control parameters by the fuzzy controller. Additionally, a consistent

top-of-flight leg configuration is required by the full control strategy to ensure that

the system will behave as expected during the time between top-of-flight and ground

contact.
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Figure 5.9: Leg oscillation during part of the flight phase for the right leg only. The
oscillation of the shank link (shown relative to the torso) about the motor position can be
seen in (a), while the thigh link and motor position can be seen in (b). The motor primitives
in effect are noted at the bottom of the figure, with vertical dashed red lines used to indicate
the transitions.

5.4.2 Suggested Solutions

The following items are suggested for addressing the oscillations observed in the

leg joints during flight.

• The elastomer material used on KURMET to pad the contact points in the

unidirectional actuator hardware was not selected based on performance char-

acteristics. Alternative materials, including viscoelastic materials with large

damping capabilities, could reduce the amplitude and settling time of the joint

oscillations.
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• Friction could be added to the leg joints themselves to increase the damping

of the actuated joints, reducing their sensitivity to small torques. This would,

however, negatively impact the height performance of the system due to energy

loss to friction during the jump cycle.

• The spiral torsion springs used in the design of KURMET assume a nearly linear

force-displacement curve. Modifying the spring design to produce a nonlinear

force-displacement curve with a large initial stiffness could improve the position

control of the links during the flight phase.

• The low-level feedback control laws used to achieve the desired motor positions

during the position, retract, and hold primitives do not monitor the actual

link positions. More advanced low-level controls utilizing feedback of the actual

link positions could improve the system’s ability to eliminate joint oscillations.

The difficulties encountered in accurately sensing the state of the robot with noise

and vibrational perturbations present could be improved by the following.

• A model of the system dynamics could be used to develop a state estimator for

the biped KURMET. Pat Wensing has made a preliminary investigation into

the use of Kalman filters for the system, which could be extended and improved

to provide an accurate and timely state estimator for the system state while

avoiding noise in the sensor signals.

• The sensitivity of the control strategy to errors in the values of these variables

could be reduced through modifications to the low-level controls, in particular

the termination criteria for the motor primitives. The inclusion of the additional
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hold motor primitive in the state machine for the simplified case is a good

example of this, where it is used to improve the control’s robustness to sensing

error.

5.5 Summary

This chapter describes the results of the control strategy when implemented both

in the numerical simulation and on a simplified case of the bipedal system KURMET.

The ability of the control strategy to produce stable sequential jumps is examined for

both implementations. The modifications to the control strategy required to produce

jumping on the experimental system were discussed in detail. Issues preventing the

implementation of the full control strategy on the experimental system were discussed

and a number of possibles solutions were presented.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

The impressive maneuvering abilities demonstrated by legged animals has largely

remained outside the grasp of robotic systems. While a number of remarkable bipedal

robot designs have emerged, the value of these systems remains limited until control

strategies are developed that are capable of successfully producing fully dynamic

maneuvers. The inherent difficulty of controlling these systems is rooted in the com-

plexity of multi-DOF mechanisms with nonlinear dynamic relationships. In order for

these robotic systems to be used to their maximum potential, control issues must be

addressed and the performance limits pushed higher. This work developed a control

strategy for producing vertical jumping in a particular biped robot, which represents

a first step into the realm of further dynamic maneuvers. The control strategy is

structured using a modular approach to allow for adaptation to additional maneuvers

and robotic systems.

The control strategy development relied on a numerical simulation of the 5-DOF

experimental biped KURMET. The simulation models the system dynamics, with

emphasis placed on the modeling of the unique unidirectional series-elastic actuators
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used. The simulation model includes the mass and inertial effects of all elements of

the system, the effects introduced by the electrical components, and the environmen-

tal interactions. It was intended to capture all the dynamic characteristics relevant

to the performance of locomotive maneuvers. The simulation is performed in the

RobotBuilder software application in conjunction with the DynaMechs dynamic

engine, allowing the implementation of the simulation on a personal computer. Future

control development for additional dynamic maneuvers can implement the modeling

and simulation described in this work.

The control strategy was split into two functional levels to address the problems

of planning and performing the jump maneuver. The low-level controller performs

the motion control and uses a state machine to detect specific events and define tran-

sitions between the phases of the maneuver. The jump maneuver was defined using

six phases, described as motor primitives and labeled as position, catch, thrust,

leg slow, retract, and hold. The motor primitives are executed using open- and

closed-loop control laws, which perform the joint motions necessary to achieve defined

objectives. The use of motor primitives is based upon biological concepts of motor

control theory that suggest concatenation of simple motions to achieve complex ma-

neuvers. The high-level control is provided by a fuzzy controller, a class of intelligent

control algorithms that allows inclusion of heuristic information in the controller.

The fuzzy controller is called once during every cycle of the state machine, at the

top-of-flight. The fuzzy controller examines the current state of the robot and then

selects control parameters to be included in the low-level control laws to achieve the

desired jump height at the next top-of-flight. The fuzzy control inputs include the
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torso angle and angular rate, which proved to be critical in determining appropri-

ate control parameters. The additional fuzzy control inputs are the current height

and the desired jump height. The desired jump height is defined as 0.575 m, which

represents a normalized jump height of 2.3

The control parameters selected by the fuzzy controller were determined through

the use of a training algorithm in the numerical simulation. The training algorithm

implements the low-level control laws to drive the system through a jump maneuver.

Upon completion of the jump, the training algorithm examines the performance and

selects from a total of 12 failure modes to described the jump. These failure modes

are used to select a training law that will modify the control parameters to produce

a jump with performance closer to that desired. The jump maneuver is repeated

iteratively until the performance is acceptable or the number of iterations exceeds

a defined limit. The training algorithm was successfully able to determine control

parameters for 607 of the 625 varied jump maneuvers defined in the fuzzy controller.

The control strategy, using the control parameters for the fuzzy controller selected

by the training algorithm, was implemented on the simulated robotic system. In

simulation, the control strategy demonstrated the ability to produce stable sequential

jumping with an approximate height of 0.575 m. A simplified case of the experimental

biped was also used to demonstrate the control strategy. The experimental biped

KURMET was used to demonstrated stable sequential jumps with heights ranging

from 0.55 to 0.57 m.
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6.2 Future Work

The control strategy presented in this work was demonstrated to be capable of

producing sequential vertical jumping in an experimental, planar biped robot. Many

improvements could be made to various parts of the strategy and simulation to im-

prove the performance of the control strategy. Additionally, the groundwork provided

in this thesis could be extended to a number of projects in locomotion research to

examine additional dynamic maneuvers. The following suggestions for future work

focus on these subjects.

• The issues preventing implementation of the full control strategy on the ex-

perimental biped, as discussed in Chapter 5, should be examined in detail to

investigate the future application of the full control strategy to the experimental

system.

• The numerical simulation used to develop the control strategy has not been

optimized for performance. Improvements to the source code structure for the

control DLL, including conversion to an object-oriented programming approach,

could improve the performance of the simulation and reduce the required time

for computationally intensive algorithms such as the fuzzy training algorithm.

Additionally, the use of super-computing facilities for performing time intensive

simulations should be considered.

• The jumping produced in this work was limited to vertical jumps. The structure

of the fuzzy controller should be modified to include two additional dimensions

of control inputs to account for desired forward motion and desired height. The
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fuzzy training algorithm has demonstrated the ability to correct forward mo-

tion error and could be easily modified to train for a desired forward motion

and account for a varied desired height in determining appropriate control pa-

rameters. Expanding the fuzzy controller in this way will increase the number

of fuzzy rules exponentially. The expansion should therefore be performed in

conjunction with the simulation optimizations discussed above.

• The jumps produced in this work do not represent the maximum height perfor-

mance predicted for the experimental biped. The development of the control

strategy indicated a trade-off between maximal performance and stability of the

system, with the stability of the system given precedence in this work. The con-

trol strategy should be modified to produce maximal height jumps. This could

be achieved in a manner that interfaces cohesively with the controller used to

produce jumping in this work. An additional level of control above the high-

level fuzzy controller could be used to select between strategies for achieving

performance or stability, producing a system with greatly increased flexibility.

• The robustness of the controller described in this work is limited by the discrete

nature of the supervisory fuzzy controller. A continuous controller could be

added to the strategy to monitor the torso state throughout the maneuver and

apply corrections to the control parameters to counteract disturbances. The

heuristic knowledge for what control parameters to modify could be taken from

the training algorithm. The robustness could be greatly improved by the ability

to apply corrections between executions of the fuzzy controller.
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• The linear contact model used to represent the joint hardstops and the unidi-

rectional elements of the actuators should be examined in more detail. With

the experimental hardware now available, a more accurate model of the contact

pairs could be developed and experimentally verified.

• Additional dynamic maneuvers should be examined using this control strategy.

In particular, maneuvers which are similar in nature to the simple jumping

described in this work should be examined, including forward jumps, jumps

starting from a standing or crouching position, and ultimately running jumps.

A similar control strategy for running is currently being investigated by Yiping

Liu using the principles described in this work. The results of the running

strategy and other investigations should be verified using the experimental biped

KURMET.

• Much of the complexity of the USEA design modeled in this work is intended to

remove compliance from the actuators in situations where it is undesirable. An

alternative approach using a transmission with variable compliance could offer

considerable value, allowing low compliance for precise position control when

desired and high compliance for energy storage. Actuator designs of this nature

have been examined by Ghorbani and Wu [46] and continue to be a topic of

research in robotic locomotion. This type of actuator design could be highly

useful in investigating further dynamic maneuvers in legged systems where the

objective of delivering explosive leg power currently conflicts to some degree

with the need for precise position control.
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• The difficulty in controlling the torso state at top-of-flight demonstrates the im-

portance of the angular momentum of the system during flight. The possibility

of influencing the system dynamics during flight through addition of passive or

actuated links to the torso should be explored. Additional links, or perhaps

actuated flywheels used to mimic their angular momentum, could improve the

stability of the system.

• A widely accepted metric of stability for dynamic locomotion in robotic system

remains undefined. The dynamic, repetitive jumps produced in this work should

be examined in detail to determine what characteristics define the performance

of a stable maneuver in quantifiable terms. These characteristics should be com-

pared to applicable theories of stability criteria, including angular-momentum-

based criteria such as that suggested by Goswami and Vinutha [47].

In conclusion, this work has developed a control strategy capable of producing

vertical jumping in a planar biped robot with articulated legs. The dynamic nature

of the jumping and the jump heights demonstrated in both simulation and hardware

represent an improvement in the locomotive capabilities of robots currently available.

Of greater interest to the field of legged robotics, this work offers a control approach

that can be adapted for various robotic systems and maneuvers. The insight gained

from the development process can serve to guide future control strategies that realize

the maximum potential of robotic systems.
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APPENDIX A

SYSTEM PARAMETERS: MASS, INERTIA, AND
GEOMETRY

Table A.1: Mass Properties of Links

Link Mass/Link Number of Links Total Mass

Boom 2.70 kg 1 2.70 kg
Torso 12.1 kg 1 12.1 kg

Thigh Link 0.81 kg 2 1.62 kg
Shank Link 0.63 kg 2 1.26 kg
Total Biped - - 14.98 kg

Table A.2: Center of Mass in Link Coordinate Frame, m

Link x y z

Boom 0.00 -1.0 0.00
Torso 0.138 0.0008 0.0849

Right Thigh Link 0.0784 -0.0001 -0.0037
Left Thigh Link 0.0784 -0.0001 0.0015

Shank Link 0.0964 -0.0003 -0.0002
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Table A.3: Inertia Tensor Format in Link Coordinate Frame, kg·m2

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

Table A.4: Torso Inertia Tensor, kg·m2

0.218 1.76×10−3 0.159
1.76×10−3 0.470 4.28×10−3

0.159 4.28×10−3 0.334

Table A.5: Thigh Inertia Tensor, kg·m2

3.90×10−4 -1.60×10−5 -2.10×104

-1.60×10−5 1.27×10−6 0.00
-2.10×104 0.00 1.27×10−6

Table A.6: Shank Inertia Tensor, kg·m2

2.38×10−4 -2.0×10−6 -1.00×10−6

-2.0×10−6 1.16×10−2 0.00
-1.00×10−6 0.00 1.16×10−2

Table A.7: Boom Inertia Tensor, kg·m2

3.60 0.00 0.00
0.00 4.10×10−3 0.00
0.00 0.00 3.60
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Figure A.1: Coordinate frame definitions for modeling. Not all axes are included for clarity.
Remaining axes follow right-hand rule. Not to scale.
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APPENDIX B

FUZZY TRAINING RESULTS
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Figure B.1: Training algorithm results
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APPENDIX C

EXPERIMENTAL DATA

Table C.1: Data for Experiment 1

Jump Number hd (m) h (m) h− hd (m) θ̇7,ave ( rad
s

)

1 0.55 0.542 -0.008 0.083
2 — 0.569 0.019 0.095
3 — 0.556 0.006 0.075
4 — 0.562 0.012 0.083
5 — 0.566 0.016 0.076
6 — 0.558 0.008 0.067
7 — 0.557 0.007 0.081
8 — 0.559 0.009 0.076
9 — 0.556 0.006 0.089
10 — 0.559 0.009 0.068
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Table C.2: Data for Experiment 2

Jump Number hd (m) h (m) h− hd (m) θ̇7,ave ( rad
s

)

1 0.56 0.568 0.008 0.130
2 — 0.568 0.008 0.139
3 — 0.565 0.005 0.118
4 — 0.568 0.008 0.093
5 — 0.559 -0.001 0.040
6 — 0.573 0.013 0.117
7 — 0.564 0.004 0.064
8 — 0.566 0.006 0.067
9 — 0.564 0.004 0.065
10 — 0.569 0.009 0.099

Table C.3: Data for Experiment 3

Jump Number hd (m) h (m) h− hd (m) θ̇7,ave ( rad
s

)

1 0.57 0.571 0.001 0.104
2 — 0.584 0.014 0.090
3 — 0.575 0.005 0.093
4 — 0.579 0.009 0.091
5 — 0.576 0.006 0.055
6 — 0.573 0.003 0.095
7 — 0.581 0.011 0.061
8 — 0.573 0.003 0.108
9 — 0.582 0.012 0.075
10 — 0.582 0.012 0.090
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Table C.4: Data for Experiment 4

Jump Number hd (m) h (m) h− hd (m) θ̇7,ave ( rad
s

)

1 0.55 0.570 0.020 0.069
2 — 0.556 0.006 0.094
3 — 0.562 0.012 0.087
4 — 0.554 0.004 0.086
5 — 0.563 0.013 0.080
6 — 0.561 0.011 0.085
7 — 0.563 0.013 0.064
8 — 0.566 0.016 0.101
9 — 0.561 0.011 0.058
10 — 0.561 0.011 0.096
11 — 0.565 0.015 0.074
12 — 0.558 0.008 0.056
13 — 0.567 0.017 0.088
14 — 0.564 0.014 0.096
15 — 0.558 0.008 0.063
16 — 0.567 0.017 0.101
17 — 0.557 0.007 0.078
18 — 0.562 0.012 0.087
19 — 0.560 0.010 0.082
20 — 0.556 0.006 0.092
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