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ABSTRACT

In this thesis we study the analogue of Arithmetic Quantum Unique Ergodicity

conjecture on the Hilbert modular variety. Let F be a totally real number field with

ring of integers O, and let Γ = SL(2,O) be the Hilbert modular group. Given the

orthonormal basis of Hecke eigenforms in S2k(Γ), the space of cusp forms of weight

(2k, 2k, · · · , 2k), one can associate a probability measure dµk on the Hilbert modular

variety Γ\Hn. We prove that dµk tends to the invariant measure on Γ\Hn weakly

as k →∞. This shows that the analogue of Arithmetic Quantum Unique Ergodicity

conjecture is true on the average on Hilbert modular variety. Our result generalizes

Luo’s result [Lu] for the case F = Q.

Our approach is using Selberg trace formula, Bergman kernel, and Shimizu’s di-

mension formula.
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CHAPTER 1

INTRODUCTION

1.1 Arithmetic Quantum Unique Egrodicity

Suppose Y is a compact Riemannian manifold with the normalized Riemannian mea-

sure dν and the associated Laplace operator ∆. Let {φj}j≥0 be an orthonormal basis

of L2(Y ) consisting of Laplace eigenfunctions with increasing eigenvalues, i.e.

∆φj + λjφj = 0 and 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · → ∞.

From quantum physics ∆ is the quantization of the Hamiltonian generating the

geodesic flow and the weak∗ limits of the sequence of probability measures

dνj = |φj(x)|2dν

are called quantum limits. One can find more details from the physics viewpoint in

the conference volume ”Chaos and Quantum Physics” [GVZ]. An important result in

studying quantum limits is due to Shnirelman, Zelditch and Colin de Verdière ([Shn],

[Ze], [CV]) as follows:

Theorem 1.1.1. (Quantum Ergodicity).
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If the geodesic flow is ergodic, then there exists a full density subsequence {λjk}

of {λj}, i.e.

lim
T→∞

# {jk|λjk ≤ T}
# {j|λj ≤ T}

= 1

such that

dνjk −→ dν as λjk →∞.

This phenomenon is called Quantum Ergodicity and it is known that if Y has

negative sectional curvature, then the geodesic flow is ergodic. However quantum

ergodicity does not give an explicit subsequence having quantum limit dν. It does

not eliminate the possibility of existing an exceptional subsequence having a quantum

limit different from dν either. Such exceptional weak limits are called strong scars. In

the special case of an arithmetic hyperbolic surface, Rudnick and Sarnak conjectured

the non-existence of strong scars which is the main topic we will discuss here.

Let X = Γ\H be an arithmetic hyperbolic surface where Γ ⊂ SL(2,R) is a discrete

arithmetic subgroup with finite covolume. We denote by ∆ the Laplace-Beltrami

operator associated to X. In this case the Laplacian is given by

∆ = y2(
∂2

∂x2
+

∂2

∂y2
).

We also denote {φj}j≥0 an orthonormal basis of eigenfunctions with increasing eigen-

values {λj}j≥0 , (i.e. 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · → ∞). According to Weyl’s law,

# {j : λj ≤ T} ∼ Area(Γ\H)

4π
T, as T →∞.

One can define a commutative family H of Hecke operators on L2(X) (see [IR] or

[Iw1] for details). Moreover H commutes with ∆. Hence we may consider that φj
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are also eigenfunctions of H. This is the case we will concern from now on. We may

note that the spectrum of the Laplace operator is expected to be simple, so that any

eigenfunction of ∆ would be automatically an eigenfunction of all Hecke operators.

However this has not been proved.

An important problem of arithmetic quantum chaos is understanding the asymp-

totic behavior of such φj as the eigenvalue λj → ∞. The equidistribution problem

of φj asks whether |φj(z)| is approximately constant as λj → ∞. One approach is

to bound the L∞-norm or Lp-norm of φj in terms of λj. Iwaniec and Sarnak ([IR])

gave a nontrivial bound of L∞-norm: ‖φj‖∞ �ε λ
5
24

+ε

j . Sarnak and Watson had

some unpublished results concerning the bound of L4-norm. The conjecture in this

direction is |φj(z)| �ε,z λ
ε
j as λj →∞ and it is still out of reach at the present.

Another approach is to study the probability measures dµj = |φj(z)|2dµ on X as

λj → ∞. Here dµ =
1

vol(X)

dxdy

y2
is the normalized Γ-invarant measure on X. In

1994, Rudnick and Sarnak [RS] formulated the following conjecture predicting the

behavior of Maass-Hecke eigenforms on arithmetic surfaces as their corresponding

Laplace eigenvalues tend to infinity. The conjecture is known as the Arithmetic

Quantum Unique Ergodicity (AQUE) conjecture for modular surfaces.

Conjecture 1.1.2 (Arithmetic Quantum Unique Ergodicity). Let X = Γ\H be an

arithmetic hyperbolic surface of negative curvature. Then the measure dµ is the unique

arithmetic quantum limit. This means the measures dµj is weak∗ convergent to dµ

as λj →∞. i.e. for any h(z) in C0(X), we have

lim
λj→∞

∣∣∣∣∫
X

h(z)|φj(z)|2dµ−
∫
X

h(z)dµ

∣∣∣∣ = 0.
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The AQUE conjecture for compact arithmetic hyperbolic surfaces (associated with

quaternion algebras) was proved by Lindenstrauss [Li] by using ergodic theory.

Theorem 1.1.3 (Lindenstrauss). Let X = Γ\H be an arithmetic hyperbolic surface.

If X is compact, then the only arithmetic quantum limit is the normalized invariant

measure dµ. If X is not compact, then the arithmetic quantum is of the form c · dµ

for some c ∈ [0, 1].

The most interesting arithmetic group in number theory is the full modular group

Γ = SL(2,Z). In this case X = SL(2,Z)\H is noncompact and the conjecture was

just proved by Soundararajan [So1]. He based on Lindenstrauss’ result to prove

c = 1 in above theorem. However Soundararajan’s result does not give the rate

of convergence. Luo and Sarnak formulated the following quantitative form of the

conjecture predicting the rate of convergence: For ε > 0,∫
X

|φi(z)|2h(z)dµ =

∫
X

h(z)dµ+Oε,f (λ
−1/4+ε
i ).

They showed in [LS] that the conjecture holds on average. More precisely, for any

ε > 0, they showed that

∑
λi≤λ

∣∣∣∣∫
X

h(z)dµj −
∫
X

h(z)

∣∣∣∣2 �ε,h λ
1/2+ε.

1.2 Holomorphic Analogue of AQUE in Weight Aspect

It is of great interest to consider a natural analogue of the AQUE conjecture for

holomorphic cusp forms with the weight going to infinity.

4
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Figure 1.1: A fundamental domain for SL(2,Z)

Let Γ = SL(2,Z) be the full modular group and let X = Γ\H (see Figure 1.1).

Let {fj,k}1≤j≤Jk be the orthonormal basis of Hecke eigenforms in S2k(Γ), the space

of holomorphic cusp forms of weight 2k with respect to the full modular group Γ =

SL(2,Z). Thus by the Riemann-Roch theorem

Jk = dimC S2k(Γ) =

 b
k
6
c − 1, if k ≡ 1(mod 6)

bk
6
c, if k 6≡ 1(mod 6).

Let

dµ =
1

vol(X)

dxdy

y2
=

3

π

dxdy

y2
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be the normalized invariant measure on X and let

dµj,k = |fj,k|2y2kdµ.

As an analogue of unique ergodicity, Shiffman-Zelditch [SZ] proved the following

theorem.

Theorem 1.2.1 (Shiffman-Zeldithch). There exists a full density subsequence of

{fj,k}1≤j≤Jk , i.e. there exist a subset Λk ⊆ {1, 2, · · · , Jk} satisfying

lim
k→∞

#Λk

Jk
= 1,

such that for any compact region A ⊂ SL(2,Z)\H, we have

lim
k→∞,j∈Λk

∫
A

dµj,k =

∫
A

dµ.

Moreover using the potential theory, they showed that the zeros of the sequence fj,k (j ∈

Λk) are also equidistributed, i.e.

lim
k→∞,j∈Λk

# {z ∈ A : fj,k(z) = 0}
Jk

=

∫
A

dµ.

One expects the following mass equidistribution conjecture on the modular surface

X = SL(2,Z)\H should be true (i.e. no exceptional subsequence).

Conjecture 1.2.2 (Mass Equidistribution Conjecture). For any h(z) in C0(X), we

have

lim
k→∞

max
1≤j≤Jk

∣∣∣∣∫
X

h(z)|fj,k(z)|2y2kdµ−
∫
X

h(z)dµ

∣∣∣∣ = 0.
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This conjecture was proved just recently by Holowinsky and Soundararajan ([HS],

[Ho][So]). Their approaches use in an essential way that the Hecke eigenvalues of a

holomorphic cusp eigenform satisfy the Ramanujan conjecture (Deligne’s theorem).

Assuming the Ramanujan conjecture for Maass forms, their methods would obtain

the AQUE conjecture. In Holowinsky and Soundararajan’s proof, it is necessary to

consider the Fourier expansion of a holomorphic cusp form at a cusp. Hence it does

not apply to the holomorphic forms on compact modular surface and in this case the

mass equidistribution conjecture is still open.

Remarks.

1) Note that by Riemann-Roch theorem, we have

# {z ∈ X : fj,k(z) = 0} ∼ Jk, as k →∞.

Rudnick [Ru] proved that the mass equidistribution conjecture implies that the zeros

of a Hecke eigen-cusp form become equidistributed in SL(2,Z)\H with respect to dµ

as k →∞. Now this is a theorem. This feature is not clear in Maass form case.

2) In the Maass form case, the Laplacian eigenform is expected to be a Hecke

eigenform. However in the holomorphic case, it is necessary to restrict to consider

Hecke eigenforms in this conjecture. For example, the measure associated to the cusp

form 4(z)
k
12 in Sk(SL2(Z)) does not tend to equidistribution as k → ∞. Here 12|k

and 4(z) is the Ramanujan cusp form (see [Iw]).

3) From Watson’s explicit triple product L-function formula [Wa], it follows that

the generalized Riemann hypothesis for certain triple product L-functions implies

the AQUE conjecture for Maass forms and the mass equidistribution conjecture for

7



holomorphic Hecke eigen-cusp forms and provides sharp convergent rate. We will

give more precise discussion in Chapter 5.

4) The conjecture may be formulated for holomorphic newforms onXN = Γ0(N)\H.

Holowinsky and Soundararajan’s methods would also apply in this case. For the spe-

cial case of dihedral forms in the holomorphic (respectively non-holomorphic) case,

the conjecture has been established by Sarnak [Sa] (respectively Liu-Ye [LY]).

5)It is not clear how to extend Lindenstrauss’ ergodic method [Li] to the holo-

morphic setting.

One may consider quantum unique ergodicity in higher dimensional symmetric

spaces. See Silberman-Venkatesh [SV] for a locally symmetric space and Cogdell-

Luo [CL] for the Siegel modular variety. In this thesis we will consider an analogue

equidistribution problem for holomorphic Hecke eigenforms on the Hilbert modular

varieties SL(2,O)\Hn, where F is a totally real number field and O is the ring of

integers in F (See chapter 3 for details). In this case, SL(2,O)\Hn is noncompact.

We expect the following mass equidistribution conjecture on the Hilbert modular

variety Γ\Hn should be true (where Γ = SL(2,O)).

Conjecture. (Mass Equidistribution)

lim
k→∞

max
1≤i≤Jk

∣∣∣∣∫
A

(Ny)2k|fi,k(z)|2dµ−
∫
A

dµ

∣∣∣∣ = 0

where A ⊂ Γ\Hn is compact and {fi,k}Jki=1 is the orthonormal Hecke basis of S2k(Γ).

Our main result is to prove the mass equidistribution conjecture on the average

and give a sharp bound of the rate of convergence as follows:

8



Theorem. Let {fi,k}Jki=1 be an orthonormal basis of S2k(Γ). Set

dµk =
1

Jk

(
Jk∑
i=1

|fi,k(z)|2
)

(Ny)2kdµ.

Then for any compact subset A ⊂ Γ\Hn and any 0 < ε < 1, we have∫
A

dµk =

∫
A

dµ+Oε,A

(
(k−1+ε)n

)
as k −→∞.

Our approach is using Selberg trace formula, Bergman kernel, and Shimizu’s di-

mension formula.

9



CHAPTER 2

PRELIMINARIES

2.1 The Hilbert Modular Group

Let F be a totally real number field of degree n over Q with ring of integers O and

σ1, σ2, · · · , σn be all the real embeddings of F . The group Γ = SL(2,O) is called

the (full) Hilbert modular group. It can be shown that Γ acts discontinuously on the

product of n upper half planes Hn in the following way:

For γ =

 a b

c d

 ∈ Γ, and z = (z1, · · · , zn) ∈ Hn, we define

γz = (γ1z1, · · · , γnzn)

where

γi =

 σi(a) σi(b)

σi(c) σi(d)

 , γizi =
σi(a)zi + σi(b)

σi(c)zi + σi(d)
(1 ≤ i ≤ n).

Remark. We may also identify Γ with its image in SL(2,R)n via

γ ∈ Γ, γ = (γ1, · · · , γn) ∈ SL(2,R)n.

10



It is well known that Γ has finite co-volume (see [Fr]), i.e.

vol(Γ\Hn) =

∫
Γ\Hn

dxdy

(Ny)2
<∞,

where z = (x1 + iy1, · · · , xn + iyn) ∈ Hn, dx = dx1 · · · dxn, dy = dy1 · · · dyn, and

Ny = y1 · · · yn.

In fact, this volume is calculated precisely by Siegel [Sie]:

vol(Γ\Hn) = 2π−nζF (2)D
3/2
F

where ζF (s) is the Dedekind zeta function of F and DF is the discriminant of F .

Although we know the fundamental domain has finite volume, there is no easy way

to determine its shape. One way to describe a fundamental domain for GL+(2,O) is

given by Herrmann [He] as follows.

A fundamental domain for GL+(2,O) is the set of z ∈ Hn satisfying the inequalities:

1) |j(γ, z)|2 ≥ 1 for all γ ∈ GL+(2,O) ;

2) Tr(log ε(log ε+ 2 log Im(z))) ≥ 0 for all ε ∈ O×+ ;

3) Tr(ν(ν + Re(z)) ≥ 0 for all ν ∈ O,

where O×+ is the group of totally positive units, Tr and j(γ, z) are defined in next

two sections. He also showed that the domain can be already described by a finite

number of above inequalities.

Some properties of Γ.

An element γ 6= ±1 in SL(2,R) is called elliptic (respectively parabolic and

hyperbolic) if tr(γ) < 2 (respectively tr(γ) = 2 and tr(γ) > 2).

An elliptic element has one fixed point in H and moves points along hyperbolic

circles centered at its fixed point. The fixed point is the hyperbolic center. A parabolic

11



element has one fixed point on R = R ∪ {∞} and moves points along horocycles

(circles in H tangent to R). A hyperbolic element has two distinct fixed points in R

and moves points along hypercycles (the segments in H of circles in C through the

fixed points on R). See Figure 2.1.

•

(a) elliptic (b) parabolic (c) hyperbolic

Figure 2.1: motions in H

Recall that for γ ∈ Γ we identify γ = (γ1, · · · , γn) ∈ SL(2,R)n. We say that an

element γ(6= identity) of Γ is elliptic (respectively parabolic and hyperbolic) if all the

γi are elliptic (respectively parabolic and hyperbolic). If γ(6= identity) is not of above

types, we say that γ is mixed. A point z in Hn is called an elliptic point if it is fixed

by an elliptic element in Γ. A point κ in Rn
(where R = R∪ {∞}) is called a cusp if

it is fixed by a parabolic element in Γ.

Definition 2.1.1. Two points z1 and z2 in Hn ∪ Rn
are called Γ-equivalent if there

exists a γ in Γ such that γz1 = z2.

12



Proposition 2.1.2. ([Sh] Theorem 6) The number of the Γ-inequivalent elliptic points

of Γ is finite.

Proposition 2.1.3. ([Sh] Lemma 15) Let e1, · · · , es ∈ Hn be complete representatives

of Γ-inequivalent elliptic points of Γ. Then the union of Γei \ {1} (1 ≤ i ≤ s) forms

a complete representatives of non-conjugate elliptic elements in Γ, where Γei = {γ ∈

Γ|γei = ei} (1 ≤ i ≤ s).

Since Γei is a discrete subgroup of a compact subgroup, Γei is a finite subgroup.

Hence we have the following lemma.

Lemma 2.1.4. There are only finitely many elliptic conjugacy classes in Γ.

Proposition 2.1.5. ([Fr] 3.5 Corollary) There are only finitely many Γ-inequivalent

cusps. Moreover the number of Γ-inequivalent cusps is equal to the class number of

F .

We may note that the Hilbert modular variety X = Γ\Hn is noncompact.

2.2 Hilbert Modular Forms

Let Γ = SL(2,O).

Definition 2.2.1. Let k = (k1, · · · , kn) ∈ Zn. A Hilbert modular form of weight k

with respect to Γ is a holomorphic function f(z) on Hn that satisfies

f(γz) = j(γ, z)kf(z) = N(cz + d)kf(z)

13



for all γ =

 a b

c d

 ∈ Γ.

Here for z = (z1, · · · , zn) ∈ Hn,

N(cz + d) =
n∏
i=1

(σi(c)zi + σi(d)),

and we use a standard multi-index notation:

j(γ, z)k = N(cz + d)k =
n∏
i=1

(σi(c)zi + σi(d))ki .

For F = Q, one has to add the condition that f is holomorphic at the cusps. For

n = [F,Q] > 1, f is automatically holomorphic at cusps by the Koecher’s principle

which we will explain in a moment.

We may consider the cusp at infinity. A Hilbert modular form f is invariant under

the subgroup 
 1 u

0 1

 : u ∈ O

 .

Thus f has a Fourier expansion

f(z) =
∑
ν∈O∗

aν exp(2πiTr(νz)),

where Tr is the C-linear extension to Cm → C of the Galois trace F → Q and where

O∗ = {ν ∈ F : Tr(νO) ⊂ O}

is the inverse of the different.

14



Definition 2.2.2. A Hilbert modular form f of weight k = (k1, · · · , kn) ∈ Zn is a

cusp form if the constant term a0 = 0 in the Fourier expansion of

f |γ(z) := N(cz + d)−kf(γz)

for all γ =

 a b

c d

 ∈ SL(2, F ).

Theorem 2.2.3 (Koecher’s Principle). Suppose [F : Q] = n > 1 and let f be a Hilbert

modular form of weight k = (k1, · · · , kn) ∈ Zn. Then in the Fourier expansion

f(z) =
∑
ν∈O∗

aν exp(2πiTr(νz))

of f , we have aν = 0 unless ν = 0 or ν is totally positive. Moreover, unless k1 =

k2 = · · · = kn, we also have a0 = 0.

Corollary 2.2.4. For [F : Q] > 1, every holomorphic Hilbert modular form of weight

k = (k1, · · · , kn) ∈ Zn is a cusp form unless k1 = k2 = · · · = kn.

Denote by S2k(Γ) the space of Hilbert modular cusp forms of weight 2k =

(2k1, · · · , 2kn). Let

dµ =
1

vol(Γ\Hn)

dxdy

(Ny)2
.

For f and g in S2k(Γ), we define the (normalized) Petersson inner product by

〈f, g〉 =

∫
Γ\Hn

f(z)g(z)(Ny)2kdµ

where we use the multi-index notation (Ny)2k = y2k1
1 · · · y2kn

n .

15



It is well known that S2k(Γ) is a finite dimensional Hilbert space. Furthermore, if

we let Jk = dimC S2k(Γ), then it was shown by Shimizu [Sh] (using the Selberg trace

formula) that

Jk =
vol(Γ\Hn)

(4π)n

n∏
i=1

(2ki − 1) +O(1). (2.2.1)

2.3 Poincare Series

Recall that F is a totally real number field of degree n over Q with ring of integers

O and σ1, σ2, · · · , σn are all the real embeddings of F .

Definition 2.3.1. An element η of F is called totally positive, denoted η � 0, if

σi(a) > 0 for i = 1, · · · , n.

Definition 2.3.2. Let ν be a totally positive element of O∗ and let 2k = (2k1, 2k2, · · · , 2kn).

We define the ν-th Poincare series of weight 2k with respect to Γ by

P (z; k, ν) =
∑

γ∈Γ∞\Γ

j(γ, z)−2k exp(2πiTr(ν(γz)))

where Γ∞ =

γ =

 1 b

0 1

 ∈ Γ

 .

Proposition 2.3.3. Suppose kj ≥ 2 for j = 1, 2, · · · , n. Then the Poincare series

P (z; k, ν) is absolutely convergent and uniformly for z in compact subsets of Hn.

Moreover P (z; k, ν) is in S2k(Γ).
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Proof. See [Ga 1.13].

Proposition 2.3.4. Let 2k = (2k1, 2k2, · · · , 2kn) with each kj ≥ 2. Let

f(z) =
∑
µ

aµ exp(2πiTr(νz))

be in S2k(Γ) and let P (z; k, ν) be the ν-th Poincare series of weight 2k for Γ. Then

〈f, P (· ; k, ν)〉 = aνN(ν)1−2k × vol(Λ\Rn)

vol(Γ\Hn)
×

n∏
j=1

(4π)1−2kjΓ(2kj − 1)

where

Λ =

x = (σ1(b), σ2(b), · · · , σn(b)) ∈ Rn :

 1 b

0 1

 ∈ Γ

 .

Proof. The proof is using the unfolding method.

〈f, P (· ; k, ν)〉

=

∫
Γ\Hn

f(z)P (z; k, ν)(Ny)2k 1

vol(Γ\Hn)

dxdy

(Ny)2

=

∫
Γ∞\Hn

∑
µ

aµ exp(2πiTr(νz)) exp(2πiTr(νz))(Ny)2k 1

vol(Γ\Hn)

dxdy

(Ny)2

We integrate over x first and use the othogonality of exponential functions.∫
Γ∞\Hn

∑
µ

aµ exp(2πiTr(νz)) exp(2πiTr(νz))(Ny)2k 1

vol(Γ\Hn)

dxdy

(Ny)2

= aν ×
vol(Λ\Rn)

vol(Γ\Hn)
×

n∏
j=1

∫ ∞
0

y
2kj−1
j e−4πσj(ν)yj

dyj
yj

= aν ×
vol(Λ\Rn)

vol(Γ\Hn)
×

n∏
j=1

(4πσj(ν))1−2kjΓ(2kj − 1).
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Corollary 2.3.5. Let 2k = (2k1, 2k2, · · · , 2kn) with each kj ≥ 2. The Poincere series

{P (z; k, ν) : ν � 0} span S2k(Γ).

Proof. Suppose f in S2k(Γ) with 〈f, P (· ; k, ν)〉 = 0 for all ν � 0. Then all its

Fourier coefficients aν = 0, hence f ≡ 0.

2.4 Hecke Operators

One may define a commutative family of Hecke operators on S2k(Γ). However it is

not easy to define them in a classical way in general. In the special case that F has

narrow class number one, we may define them classically. In general, one needs to

lift the Hilbert modular forms to the automorphic forms on GL(2,AF ) and consider

the spherical Hecke algebra. In this section we restrict to consider F has narrow class

number one and give a classical definition of Hecke operators. For general F and adelic

setting one can find the definition in Garrett’s book [Ga]. An important property

of the Hecke operators in all cases is that they are commutative and normal. Hence

S2k(Γ) has an orthonormal basis consisting of the eigenforms of the Hecke operators.

In this section, we assume that F has narrow class number one which means that

every ideal of F has a generator that is totally positive. In this case, its ring of

integers O is a principal ideal domain and the totally positive units are squares of

units.

Let O× denote the group of units and let O×+ denote the group of totally positive

units. Recall that O∗ is the inverse different.
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Definition 2.4.1. Let n = (η) be an ideal of O, with η totally positive. Let

∆(n) =

δ =

 a b

c d

 ∈ GL(2, F ) : a, b, c, d ∈ O, η−1 det δ ∈ O×+

 .

Let Z(O) be the center of GL+(2,O), the set of elements of GL(2,O) with totally

positive determinant. We define the n-th Hecke operator Tn on S2k(Γ) by

(Tnf)(z) =
∑

δ∈ΓZ(O)\∆(n)

(f |δ)(z)

where (f |δ)(z) = N(det δ)kj(δ, z)−2kf(δz).

We can use the assumption on narrow class number one to give an explicit set of

representatives

X(n) =


 a b

0 d

 : ad = rη, d� 0, r ∈ O×+, b ∈ O/(d)


for ΓZ(O)\∆(n). One can use the explicit representatives to prove the following

proposition.

Proposition 2.4.2. Let m, n be non-zero ideals of O. Then

TmTn =
∑

d⊃m+n

N(d)Tmn
d2
.

In particular, the Hecke operators commute.

The Hecke operators act on Poincare series can be computed precisely as follows.

Proposition 2.4.3. Let n = (η) be an ideal of O with η totally positive.

TnP (· ; k, ν) = (Nη)k
∑
d

(Nd)1−2kP (z; k, νη/d2)

where the sum is over totally positive divisors d of η modulo O× such that ν/d ∈ O∗.
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Proof. See [Ga 1.15]

Corollary 2.4.4. Assume that the weight 2k = (2k1, · · · , 2kn) with each kj ≥ 2.

Then the Hecke operators on S2k(Γ) are self-adjoint with respect to the Petersson

inner product.

Proof. Since S2k(Γ) is spanned by Poincare series, it suffices to examine this prop-

erty for Poincare series. For detail we refer to [Ga 1.15].

Corollary 2.4.5. Assume that the weight 2k = (2k1, · · · , 2kn) with each kj ≥ 2. Then

there is an orthogonal basis for S2k(Γ) consisting of simultaneous eigenfunctions for

all the Hecke operators.

20



CHAPTER 3

EQUIDISTRIBUTION OF HECKE EIGENFORMS

3.1 Mass Equidistribution Conjecture and Main Results

Let Γ = SL(2,O). Denote by S2k(Γ) the space of holomorphic Hilbert modular cusp

forms of weight 2k = (2k, 2k, · · · , 2k). Shimizu’s dimension formula (2.2.1) tells us

dimC S2k(Γ) = Jk =
vol(Γ\Hn)

(4π)n
(2k − 1)n +O(1) (3.1.1)

as k →∞.

One expects the following mass equidistribution conjecture on the Hilbert modular

variety Γ\Hn should be true:

Conjecture 3.1.1.

lim
k→∞

max
1≤i≤Jk

∣∣∣∣∫
A

(Ny)2k|fi,k(z)|2dµ−
∫
A

dµ

∣∣∣∣ = 0 (3.1.2)

where A ⊂ Γ\Hn is compact and {fi,k}Jki=1 is the orthonormal Hecke basis of S2k(Γ).

This is an analogue of arithmetic quantum unique ergodicity conjecture, formu-

lated by Rudnick and Sarnak [RS].

Luo [Lu] established this conjecture on average for n = 1 and Lau [La] generalized

Luo’s result to the arithmetic surface Γ0(N)\H. The purpose of this paper is to
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generalize Luo’s and Lau’s results to the Hilbert modular varieties (Theorem 3.1.2

and Theorem 4.1.1).

Let {fi,k}Jki=1 be an orthonormal basis of S2k(Γ). Set

dµk =
1

Jk

(
Jk∑
i=1

|fi,k(z)|2
)

(Ny)2kdµ.

Theorem 3.1.2. For any compact subset A ⊂ Γ\Hn and any 0 < ε < 1, we have∫
A

dµk =

∫
A

dµ+Oε,A

(
(k−1+ε)n

)
as k −→∞.

Remark 1. The key ingredients in [Lu] and [La] are the Bergman kernel for the

Hecke operator and the Petersson trace formula respectively. Our approach is using

the Bergman kernel on Γ\Hn.

Remark 2. [Lu] proved a uniform result for all measurable subsets A. In our The-

orem 1, the result depends on the compact subset A. But our decay rate is sharper

than in [Lu].

Corollary 3.1.3. For any z ∈ A, we have

|Ny|k|fi,k(z)| �A k
n/2.

Remark 3. This corollary generalizes [Ru, prop. A.1] for the case n = 1.
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3.2 Bergman kernel

For k ∈ N, k ≥ 2 and z = (z1, , · · · zn), w = (w1, · · · , wn) ∈ Hn, we define the

Bergman kernel by

Bk(z, w) =
∑
γ∈Γ

N(γz − w)−2kj(γ, z)−2k

where N(γz − w) =
n∏
i=1

(σi(γ)zi − wi) and j(γ, z) = N(cz + d), γ =

 a b

c d

 .

Proposition 3.2.1. (1) Bk(z, w) converges absolutely and uniformly for (z, w) in

compact subsets of Hn ×Hn.

(2) For each fixed w ∈ Hn, Bk(z, w) ∈ S2k(Γ) (as a function of z).

Proof. The proof can be found in [Ga, 1.14]. However there are some minor

mistakes in [Ga, 1.14]. So we follow the idea of [Ga] and give a proof here.

We need a general result in complex analysis:

Lemma 3.2.2. If a sequence of holomorphic functions {fn} is L1-convergent in an

open subset U of Cn, then it is uniformly convergent to a holomorphic function on

any compact subset C ⊂ U.

We note that

(Ny)k
∑
γ∈Γ

|N(γz − w)−2kj(γ, z)−2k|

is Γ-invariant. It suffices to show that∫
Γ\Hn

(Ny)k
∑
γ∈Γ

∣∣N(γz − w)−2kj(γ, z)−2k
∣∣ dxdy

(Ny)2
<∞.
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By unfolding method, the above integral is equal to∫
Hn
|N(z − w)−2k|(Ny)k

dxdy

(Ny)2
=

n∏
j=1

∫
H
|(zj + wj)

−2k|yk dxjdyj
y2
j

Let wj = uj + ivj ∈ H. We make changes of variables by replacing xj by xj − uj and

then replacing xj by xj(yj − vj). So the integral is equal to

n∏
j=1

∫
R
|xj + i|−2kdxj ×

∫ ∞
0

|yj − vj|−2k+1yk−2
j dyj.

Hence the integral is convergent if k ≥ 2.

To prove Bk(z, w) is a cusp form in z, one shows that it can be expressed as a

linear sum of Poincare series. We refer [Ga 1.14] for detail.

Proposition 3.2.3. If f ∈ S2k(Γ), then

f(w) =

(
2k − 1

4π

)n
(2i)2kn

2

∫
Γ\Hn

f(z)Bk(z, w)(Ny)2k dxdy

(Ny)2

=

(
2k − 1

4π

)n
(2i)2kn

2
vol(Γ\Hn)〈f,Bk(·, w)〉

where z = (x1 + iy1, · · · , xn + iyn) ∈ Hn, w ∈ Hn.

Proof. By unfolding, we have

〈f,Bk(·, w)〉 =
2

vol(Γ\Hn)

∫
Hn
f(z)(Ny)2kN(z − w)−2k dxdy

(Ny)2
.

We insert the Fourier expansion of f(z):

f(z) =
∑
ν�0

aν exp(2πiTr(νz))
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and then factor it into n integrals

2

vol(Γ\Hn)
×
∑
ν�0

aν

n∏
j=1

∫
H

exp(2πiσj(ν)zj)y
2k
j (xj − iyj − wj)−2k dxjdyj

y2
j

.

Integrating over xj first (using Cauchy residue theorem), the inner integral becomes

2πi

∫ ∞
0

(2πiσj(ν))2k−1

(2k − 1)!
exp(2πiσj(ν)(2iyj + wj))y

2k−1
j

dyj
yj

= (2πi)
(2πiσj(ν))2k−1

(2k − 1)!
exp(2πiσj(ν)wj)

∫ ∞
0

exp(−4πσj(ν)yj)y
2k−1
j

dyj
yj

= (2πi)
(2πiσj(ν))2k−1

(2k − 1)!
exp(2πiσj(ν)wj)(4πσj(ν))1−2kΓ(2k − 1)

=
4π

2k − 1
(2i)−2k exp(2πiσj(ν)wj).

This proves the proposition.

For convenience, denote by

C−1
k =

(
2k − 1

4π

)n
(2i)2kn

2
vol(Γ\Hn) (3.2.1)

and note that Ck = Ck when k ≥ 2.

For k ∈ N, γ ∈ Γ and z = (z1, · · · , zn) ∈ Hn, let

h(γ, z) = N(z − z)2N(γz − z)−2j(γ, z)−2

and

hk(γ, z) = (h(γ, z))k = N(z − z)2kN(γz − z)−2kj(γ, z)−2k.
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Lemma 3.2.4. |hk(γ, z)| ≤ 1 for all z ∈ Hn, and γ ∈ Γ. Moreover, |hk(γ, z)| = 1 if

and only if γ = ±1 or γ is elliptic and z is its fixed point.

Proof. It suffices to prove that when n = 1. By definition,

|hk(γ, z)| =
∣∣∣∣ z − zγz − z

· 1

cz + d

∣∣∣∣2k

where γ =

 a b

c d

 ∈ Γ. Let γz = z′ = x′ + iy′ and z = x+ iy. Then

∣∣∣∣ z − zγz − z
· 1

cz + d

∣∣∣∣ =
y1/2∣∣∣ (x′−x)+i(y+y′)

2i

∣∣∣
(

y

|cz + d|2

)1/2

=
y1/2(y′)1/2

|y+y′

2
+ ix−x

′

2
|
≤ y1/2(y′)1/2

y+y′

2

≤ 1.

The equality holds if and only if x = x′ and y = y′. i.e. γz = z. Hence the equality

holds if and only if γ = ±1 or γ is elliptic and z is its fixed point.

Lemma 3.2.5. For each fixed k ≥ 2,
∑
γ∈Γ

hk(γ, z) converges absolutely and uniformly

on any compact subset of Hn.

Proof. Note that∑
γ∈Γ

hk(γ, z) = N(z − z)2kBk(z, z) (3.2.2)

and then the result follows from Proposition 3.2.1.

Lemma 3.2.6. For any M ∈ Γ, we have

hk(M
−1γM, z) = hk(γ,Mz).

Proof. By a simple computation or see [Fr].
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3.3 Proof of Main Theorem

Before we prove the theorem, we make the following observation.

Since Bk(z, w) is a cusp form in z (by Proposition 3.2.1), we have

Bk(z, w) =

Jk∑
i=1

〈Bk(·, w), fi,k〉fi,k(z)

= Ck

Jk∑
i=1

fi,k(w)fi,k(z) (by Proposition 3.2.3).

Let w = z, then we obtain the identity

Bk(z, z) = Ck

Jk∑
i=1

|fi,k(z)|2 , (3.3.1)

where Ck is defined in (3.2.1).

Proof of Theorem 3.1.2. Let χA(z) denote the characteristic function of A on

Γ\Hn. One can extend it (with the same notation) to Hn as a Γ- invariant function.

By (3.3.1)and (3.2.2),∫
A
dµk =

1

JkCk

∫
A

Bk(z, z)(Ny)2kdµ

=
1

(2i)2knJkCk

∫
Γ\Hn

χA(z)
∑
γ∈Γ

hk(γ, z)dµ

=
1

(2i)2knJkCk

[∑
γ=±1

∫
Γ\Hn

χA(z)hk(γ, z)dµ +

∑
γ∈Γ,γ is elliptic

∫
Γ\Hn

χA(z)hk(γ, z)dµ +

∫
Γ\Hn

χA(z)

( ∑
γ∈Γ,γ 6=±1,γ is not elliptic

hk(γ, z)

)
dµ

]
.
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We estimate the above three summation of integrals in the following cases.

Case 1. γ = ±1.∫
Γ\Hn

χA(z)hk(γ, z)dµ =

∫
Γ\Hn

χA(z)dµ = µ(A).

Case 2. For γ ∈ Γ elliptic, let

Γγ = {M ∈ Γ : Mγ = γM} (the centralizer of γ in Γ)

and

[γ] =
{
M−1γM : M ∈ Γ

}
.

Also let Λ be a set of complete representatives of elliptic conjugate classes in Γ.

Remark. |Λ| <∞ by Lemma 2.1.4.∑
γ∈Γ,γ is elliptic

∫
Γ\Hn

χA(z)hk(γ, z)dµ =
∑
γ∈Λ

∑
γ′∈[γ]

∫
Γ\Hn

χA(z)hk(γ
′, z)dµ

=
∑
γ∈Λ

∑
M∈Γγ\Γ

∫
Γ\Hn

χA(z)hk(M
−1γM, z)dµ

Using Lemma 3.2.6 and unfolding, we have∑
M∈Γγ\Γ

∫
Γ\Hn

χA(z)hk(M
−1γM, z)dµ =

∫
Γγ\Hn

χA(z)hk(γ, z)dµ

=
1

|Γγ|

∫
Hn
χA(z)hk(γ, z)dµ

=
1

|Γγ|

∫
Hn
χA(z)

n∏
i=1

hk,i(γi, zi)dµ

≤ 1

|Γγ|
1

vol(Γ\Hn)

n∏
i=1

∫
H
hk,i(γi, zi)

dxidyi
y2
i
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where

hk,i(γi, zi) = (zi − zi)2k(γizi − zi)−2kj(γi, zi)
−2k.

Remark. hk,i(M
−1γiM, zi) = hk,i(γi,Mzi) for any M ∈ SL(2,R).

Hence we may assume that each γi is of the form cos θi sin θi

− sin θi cos θi

 θi 6= 0, π.

For convenience, we drop the subscripts i in γi, zi, θi and etc · · · .

Now we make change of variables by using the Cayley transform

H −→ D (unit disc)

z 7−→ w = z−i
z+i

and then use the polar coordinates w = ρeiϕ of the unit disc. It yields∫
H
|hk,i(γ, z)|dxdy

y2
= 4

∫ 2π

0

∫ 1

0

(1− ρ2)2k−2

|1− eiβρ2|2k
ρdρdϕ

= 4π

∫ 1

0

(1− t)2k−2

|1− eiβt|2k
dt

(where β = 2θ 6= 0, 2π)

• When 0 ≤ t ≤ k−1+ε, (0 < ε < 1). It is easy to see that
1− t
|1− eiβt|

≤ 1. Hence

∫ k−1+ε

0

(1− t)2k−2

|1− eiβt|2k
dt =

∫ k−1+ε

0

(
1− t
|1− eiβt|

)2k−1
1

|1− eiβt|2
dt

≤
∫ k−1+ε

0

1

|1− eiβt|2
dt� k−1+ε.
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• When k−1+ε ≤ t ≤ 1. We have
2t

(1− t)2
≥ 2k−1+ε

4
=

1

2
k−1+ε. So

1− t
|1− eiβt|

=
1

|1 + 2t
(1−t)2 (1− cos β)|1/2

� (1 + k−1+ε)−1/2.

Hence ∫ 1

k−1+ε

(1− t)2k−2

|1− eiβt|2k
dt� [(1 + k−1+ε)−1/2]2k−2 = (1 + k−1+ε)−k+1

Combining these estimates, we get

∑
γ∈Γ,γ is elliptic

∫
Γ\Hn

χA(z)hk(γ, z)dµ� (k−1+ε)n.

Note that here the implicit constant only depends on ε.

Case 3. Let Γ′ = Γ \ ({±1} ∪ {γ ∈ Γ : γ is elliptic}) .

Since
∑
γ∈Γ′

|h3(γ, z)| converges uniformly on A (by Lemma 3.2.5) and |h3(γ, z)| < 1

for all z ∈ A, γ ∈ Γ′ (by Lemma 3.2.4), there exists a constant 0 < λ < 1 (depends

on A) such that |h3(γ, z)| < λ for all z ∈ A, γ ∈ Γ′. Hence∫
Γ\Hn

χA(z)

(∑
γ∈Γ′

hk(γ, z)

)
dµ ≤

∫
A

∑
γ∈Γ′

|h3(γ, z)||h3(γ, z)|
k−3
3 dµ

≤
∫
A

∑
γ∈Γ′

|h3(γ, z)|λ
k−3
3 dµ� (λ1)k

where λ1 = (λ)3 < 1.
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From case 1, 2, 3 and using Shimizu’s asymptotic formula (3.1.1) for Jk, Theorem

3.1.2 follows directly.

Proof of Corollary 3.1.3. From (3.2.2) and (3.3.1), we have∑
γ∈Γ

hk(γ, z) = N(z − z)2kBk(z, z)

= 22nk(Ny)2kCk

Jk∑
i=1

|fi,k(z)|2.

Hence by Lemma 3.2.5

(Ny)2k

Jk∑
i=1

|fi,k(z)|2 � 2−2nkC−1
k

∣∣∣∣∣∑
γ∈Γ

hk(γ, z)

∣∣∣∣∣
�A 2−2nkC−1

k �A k
n.

This implies

|Ny|k|fi,k(z)| �A k
n/2.
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CHAPTER 4

MASS EQUIDISTRIBUTION ON HILBERT

CONGRUENCE VARIETIES

4.1 Congruence Subgroups

Let Γ be a discrete subgroup of SL(2,R)n with finite co-volume which satisfies the

irreducibility condition below and Assumption(F) on its fundamental domain.

Irreducibility condition: The restriction of each of the n projections

pj : SL(2,R)n −→ SL(2,R) (1 ≤ j ≤ n)

to Γ is injective.

Assumption(F): Let κv (1 ≤ v ≤ t) be a set of complete representatives of Γ-

inequivalent cusp of Γ. For each v, take a gv ∈ SL(2,R)n such that gvκv = ∞ and

put

Uv =

{
g−1
v z :

n∏
i=1

Im(zi) > dv, z = (z1, · · · , zn)

}
where dv is a suitably chosen positive number. Let Γκv = {γ ∈ Γ : γκv = κv} and let

Vv be a fundamental domain of Γκv in Uv. Then Γ has a fundamental domain F of

the form

F = F0 ∪ V1 ∪ · · · ∪ Vt
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where F0 is relatively compact in Hn.

In this case, Shimizu’s dimension formula (3.1.1) also holds for Γ([Sh]). Moreover,

our propositions, lemmas and theorem in previous chapter all remain true for Γ. Then

one can follow previous argument to give an analogous theorem. In particular, for a

non-zero ideal n of O, let

Γ0(n) =

γ =

 a b

c d

 ∈ SL(2,O) : c ≡ 0 modulo n

 .

Then Γ = Γ0(n) satisfies the irreducible condition and Assumption(F). Hence we have

the following theorem:

Theorem 4.1.1. For any compact subset A ⊂ Γ0(n)\Hn and any 0 < ε < 1, we have∫
A

dµk =

∫
A

dµ+Oε,A

(
(k−1+ε)n

)
as k −→∞.

Remark. Again the decay rate here is sharper than in [La], but the implicit

constant depends on the compact subset A. In [La], the result is uniform.

4.2 Nonequal Weights

We may also consider mass equidistribution property for S2k(Γ) with weight 2k =

(2k1, 2k2, · · · , 2kn) where Γ = SL(2,O) or Γ0(n). Let Jk = dimCS2k(Γ). Shimizu’s

dimension formula gives

J2k =
vol(Γ\Hn)

(4π)n

n∏
i=1

(2ki − 1) +O(1) (4.2.1)
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as |k| = min{ki} −→ ∞. The Bergman kernel in this case is given by

Bk(z, w) =
∑
γ∈Γ

N(γz − w)−2kj(γ, z)−2k.

Following the similar argument, we have

Theorem 4.2.1. For any compact subset A ⊂ Γ\Hn and any 0 < ε < 1, we have∫
A

dµk =

∫
A

dµ+Oε,A

(
n∏
i=1

k−1+ε
i

)

as |k| −→ ∞.
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CHAPTER 5

DIRECTION FOR FURTHER RESEARCH

5.1 AQUE and Subconvexity Bound of L-functions

Let f be a primitive weight zero Maass cusp form with eigenvalue λ = 1
4

+ t2f (resp.

holomorphic cusp Hecke eigenform of weight 2k) for the group Γ = SL(2,Z). Let

dµf =
|f |2

〈f, f〉
dµ (resp. dµf =

|f |2

〈f, f〉
y2kdµ).

The AQUE (resp. mass equidistribution) conjecture asserts that:∫
Γ\H

h(z)dµf −→
∫

Γ\H
h(z)dµ

as λ → ∞ (resp. k → ∞), where h is a smooth bound function on Γ\H. By Weyl’s

equidistribution criterion, it is sufficient to show that: as λ→∞ ( resp. k →∞),∫
Γ\H

φ(z)dµf −→ 0

and ∫
Γ\H

E(z,
1

2
+ it)dµf −→ 0

for any primitive Maass form φ and the Eisentein series E(z, 1
2

+ it) with any t (fixed)

∈ R. By unfolding method, we have∫
Γ\H

E(z,
1

2
+ it)dµf =

Λ(f ⊗ f, 1/2 + it)

〈f, f〉
,
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where

Λ(f ⊗ f, s) = ΓR(s)2
∏
±

ΓR(s± 2itf )L(f ⊗ f, 1

2
+ it)

if f is a Maass form, and

Λ(f ⊗ f, s) = ΓR(s)ΓR(s+ 1)ΓR(s+ 2k − 1)ΓR(s+ 2k)L(f ⊗ f, 1

2
+ it)

if f is holomorphic. Here ΓR(s) = π−s/2Γ(s/2).

Using Stirling formula and the bound (see [DFI])

(1 + |tf |)−ε|Γ(
1

2
+ itf )|2 �ε 〈f, f〉 � (1 + |tf |)ε|Γ(

1

2
+ itf )|2

if f is a Maass form, or

k−ε
Γ(2k)

(4π)2k
�ε 〈f, f〉 �ε k

ε Γ(2k)

(4π)2k

if f is holomorphic, one has∫
Γ\H

E(z,
1

2
+ it)dµf �t,ε (1 + |tf |)−

1
2

+εL(f ⊗ f, 1/2 + it)

if f is a Maass form and∫
Γ\H

E(z,
1

2
+ it)dµf �t,ε k

− 1
2

+εL(f ⊗ f, 1/2 + it)

if f is holomorphic.

On the other hand, Harris-Kudla [HK] and Watson [Wa] proved the formula

|
∫

Γ\H φ(z)dµf |2

〈φ, φ〉
=

Λ(f ⊗ f ⊗ φ, 1/2)

Λ(sym2f, 1)2Λ(sym2φ, 1)
,

where

Λ(f ⊗ f ⊗ φ, s) =

∏
{±}3

ΓR(s± itf ± itf ± itφ + δφ)

L(f ⊗ f ⊗ φ, s)
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(here δφ = ±1 depends on φ is even or odd) if f is a Maass form and

Λ(f ⊗ f ⊗ φ, s)

=

(∏
±

ΓR(s+ 2k − 1± itφ)ΓR(s+ 2k + itφ)ΓR(s+ itφ)ΓR(s+ 1± itφ)

)
×L(f ⊗ f ⊗ φ, s)

if f is holomorphic.

By Stirling formula and the bound (see [HL])

(1 + |tf |)−ε �ε L(sym2f, 1)�ε (1 + |tf |)ε

if f is an Maass form or

k−ε �ε L(sym2f, 1)�ε k
ε

if f is holomorphic, one has∣∣∣∣∫
Γ\H

φ(z)dµf

∣∣∣∣2 �ε,φ (1 + |tf |)−1+εL(f ⊗ f ⊗ φ, 1/2)

if f is a Maass form and∣∣∣∣∫
Γ\H

φ(z)dµf

∣∣∣∣2 �ε,φ k
−1+εL(f ⊗ f ⊗ φ, 1/2)

if f is holomorphic.

Now we use the following factorizations

L(f ⊗ f, s) = ζ(s)L(sym2f, s),

L(f ⊗ f ⊗ φ, s) = L(φ, s)L(sym2f ⊗ φ, s).

37



Moreover by Phragmén-Lindelöf convexity principle,

L(sym2f,
1

2
+ it)�t,ε |tf |

1
2

+ε

L(sym2f ⊗ φ, 1

2
)�φ,ε |tf |1+ε

if f is a Maass form and

L(sym2f,
1

2
+ it)�t,ε k

1
2

+ε

L(sym2f ⊗ φ, 1

2
)�φ,ε k

1+ε

if f is holomorphic.

Hence any subconvexity bounds for L(sym2f, 1
2

+ it) and L(sym2f ⊗ φ, 1
2
) will

imply the AQUE conjecture.

Remark.

1. Soundararajan [So] proved

L(sym2f ⊗ φ, 1

2
)�φ,ε

k

(log k)1−ε .

This weak subconvexity bound is slightly better than the convexity bound but it is

not a power saving. It is of great interest to improve convexity bound for this family

of L-function with power saving.

2. The Lindelöf hypothesis

L(sym2f,
1

2
+ it)�t,ε |tf |ε (resp. kε)

L(sym2f ⊗ φ, 1

2
)�φ,ε |tf |ε (resp. kε)
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would give us the sharp convergent rate:∫
Γ\H

E(z,
1

2
+ it)dµf �t,ε |tf |−

1
2

+ε (resp. k−
1
2

+ε)

∫
Γ\H

φ(z)dµf �φ,ε |tf |−
1
2

+ε (resp. k−
1
2

+ε).

5.2 L∞-norms of Cusp Forms

Let φ be a L2-normalized Hecke-Maass cusp form with Laplacian eigenvalue λ. As

point out in [S], the bound of ‖φ‖∞ in terms of λ is related to many things, like

Ramanujan conjecture, subconvexity bound of L-function and so on. It is also inter-

esting to bound L∞-norm of Maass cusp form or holomorphic Hecke cusp form in all

aspect. For modular surfaces only few results are known and it is almost unknown for

higher dimensional modular varieties. For example given a holomorphic Hilbert cusp

form or a holomorphic Siegel cusp form, we may ask what is the bound of L∞-norm

in terms of its weight or level. Now we end up with stating some known results in

modular surfaces.

In the spectral aspect, Iwaniec and Sarnak [IR] proved that ‖φ‖∞ � λ5/24+ε. In

the level aspect, Blomer and Holowinsky proved that ‖f‖∞ � N−1/38 for f an L2-

normalized weight zero Hecke-Maass cusp form of square-free level N and Laplacian

eigenvalue λ ≥ 1/4. In the weight aspect, Xia proved that k1/4−ε � ‖f‖∞ � k1/4+ε

for f an L2-normalized holomorphic Hecke cusp form of weight 2k with respect to

SL(2,Z).
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