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ABSTRACT

To date, fifteen phases of ice have been discovered. Many of these phases occur in

pairs consisting of a fully ordered member and a hydrogen bond (H-bond) disordered

phase. The disordered phase contains the water oxygens in nearly the same positions

as the fully ordered phase, but the orientations of hydrogens are disordered. Our re-

search examines the phase transitions between members of these ordered/disordered

pairs. These transitions are sluggish because they occur at such low temperatures

that water molecules cannot easily rotate to rearrange the directions in which the hy-

drogen bonds point. It is defects in the ice lattice that make the transitions possible.

For instance, ice Ih transforms to ice XI only when doped with hydroxide ions, but

many questions linger about the mechanism since experiments suggest that hydroxide

ions are not mobile near the transition temperature. In this dissertation, theoretical

methods are introduced which are capable of describing the small energy differences

among the innumerable H-bond configurations of the water molecules in ice. The

theory uses input from periodic electronic density functional theory calculations for

small unit cells to parameterize interactions in terms of the H-bond topology. This

parameterization enables statistical mechanical calculations for systems large enough

to approximate the thermodynamic limit. Our calculations were the first to confirm

that ordinary ice, a disordered phase, transforms into a fully ordered counterpart, ice

XI. For those disordered phases for which an ordered version has been experimentally
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characterized, our methods yield transition temperatures in good agreement with

experiment. We also proposed a candidate structure to experimentalists for proton-

ordered ice VI, for which an ordered version has yet to be observed. We have also

extended these methods to describe the interactions of the H-bond topology with

defects (ionic and orientational) and oxygen site-disorder. We have successfully con-

structed a model to describe a hydroxide ion in an ice Ih lattice. We found that the

lowest-energy configuration surrounding the ion is the experimentally proposed ice XI

structure. When coupled to the proton transfer events between hydroxide and water,

our statistical mechanical simulations provide a description of defect diffusion within

the disordered H-bond network.
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CHAPTER 1

INTRODUCTION

Water is a unique substance. All other compounds made up of small molecules −

nitrogen, oxygen, carbon dioxide, for example − exist only as gases on earth. In

contrast, water is commonly found as a vapor, liquid or solid. The uniqueness of

water arises because of the strong attractions, known as “hydrogen bonds,” between

water molecules. Not only are hydrogen bonds (H-bonds) unusually strong, they are

directional.

                                                  

covalent bond

hydrogen bond

Figure 1.1: A set of 4 non-adjacent corners from among the 8 corners of a cube define
the tetrahedral directions for hydrogen bonds.
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A water molecule prefers to accept two H-bonds and donate two other H-bonds

in tetrahedral directions (Fig. 1.1). When liquid water is cooled below 0◦C, ice is

formed. In this phase of ice, called ice Ih, the oxygen atoms of water form a periodic

lattice, an infinitely repeating pattern. The hydrogen atoms, however, do not form a

periodic lattice (Fig. 1.2), though they are always found in between two oxygen atoms

forming a covalent bond with one oxygen and an H-bond with the other oxygen. The

water molecules in ice always donate and accept two H-bonds. This is such a well

accepted notion that the previous statements are recognized as the “ice rules” and

have been used for decades. [1]

d)c)

a) b)

Figure 1.2: Four possible arrangements of H-bonds within a 16-water-molecule unit
cell of ice Ih. The H-bonds in ice can be described by arrows which point from H-bond
donor to H-bond acceptor as shown for isomer (b).

In 1935, Linus Pauling [15] predicted that there are (3/2)N different ways to

arrange the H-bonds of N water molecules in an ice Ih lattice subject to the “ice
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rules” for which several examples are shown in Fig. 1.2. Pauling’s estimate would

prove to be remarkably accurate. In the following year, Giauque and Stout [16]

measured the disorder of ice Ih near 0 K and the experiments agreed with Pauling’s

estimate. The experiment confirmed that the H-bonds in ice are in a nearly random

arrangement, i.e. the H-bonds are disordered. The third law of thermodynamics

states that as the temperature is lowered to 0 K (absolute zero), the entropy of a

crystalline system approaches zero. If ice were to behave as a perfect pure crystal,

then its entropy would drop to zero at 0 K and, somewhere between the freezing

temperature of water and 0 K, all H-bonds in ice should become ordered.

Little progress was made concerning a possible low-temperature form of ice until

the 1980’s, when calorimetry experiments on samples doped with impurities, partic-

ularly potassium hydroxide (KOH), exhibited a clear signature of a proton ordering

transition at 72 K. [2, 17] The transition temperature was independent of the KOH

concentration, suggesting that KOH acts like a catalyst. This proton-ordered struc-

ture is called ice XI, i.e. it was the eleventh crystalline phase of ice characterized in

the literature. The mechanism by which KOH induces the proton ordering transition

in ice Ih is unclear. Furthermore, the structure of ice XI is most unexpected. It

has a net electrical polarization, meaning that a crystal has negatively and positively

charged ends. This type of crystal is called a ferroelectric, in analogy with iron mag-

nets (ferromagnets) which have magnetic north and south ends. Over the years, there

has been continued debate and research as to whether the H-bond arrangements in

ice are actually random, whether a phase transition to a fully H-bond-ordered struc-

ture exists, and if so, its identity. To give an example of the debate in the literature,

a skeptical viewpoint was expressed by Cowin and co-workers [18]: “Over the years
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there have been many UFI citings (underidentified ferroelectric ices) in the literature

regarding ice I, often where the hope was high, and the data suggestive, that a fully

proton-ordered ice phase was created.” Our calculations were the first to confirm that

ice XI was the low-temperature form of ordinary ice. [19, 20] Our calculated transi-

tion temperature, 98 K, is in good agreement with experiment, 72 K. Predictions of

H-bond ordering in ice encounter several obstacles.

An important approximation made in Pauling’s estimate was that all allowed H-

bond configurations occurred with equal probability which implies that the energy

differences between isomers is zero. Realistically, these energy differences are not

exactly zero, but are indeed very small. It has been shown that commonly used

models disagree amongst each other with regard to the subtle energetic ordering of

H-bond isomers in ice Ih and by an order of magnitude with respect to the range of

energy differences. [21] Furthermore, none of the models predicted the ground state to

be the ice XI structure, including one they constructed with that hope in mind. [21]

We overcome the problem of determining H-bond energetics via electronic density

functional theory (DFT) calculations which we have found yields accurate results for

the relative energetics of H-bond isomers.

While it may be feasible to perform electronic structure calculations on several

H-bond isomers for a small unit cell (10−100 waters), it would certainly be imprac-

tical to perform the same level of calculation on the numerous H-bond isomers of a

unit cell (thousands of waters) large enough to obtain good statistics. We solve the

problem of statistical sampling of H-bond configurations by linking the energy of a

configuration to the orientation of the H-bonds, the arrows in Fig. 1.2. We have de-

veloped group theoretical tools to construct analytic expressions, as functions of the
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H-bond orientations, which exploit the symmetry of the ice lattice. [20, 22] We can

then use these functions, what we call graph invariants, to describe scalar physical

properties of the system, such as energy. Graph invariants provide us with a means

to “bootstrap” from expensive DFT calculations for small unit cells to statistical

mechanics simulations using much larger cells.

At present, there are fifteen crystalline phases of ice whose structures have been

characterized and reported in the literature. [1] In total, there are five phases of

disordered ice (Ih, III, V, VII, and XII as highlighted in Fig. 1.3) which when cooled

under appropriate conditions transform to a proton-ordered version (XI, IX, XIII,

VIII, and XIV respectively). The proton-ordered version of another disordered phase,

ice VI, has yet to be identified experimentally. The VII−VIII system is the best

characterized of all the proton order/disorder transitions in ice. Calculations using

the graph invariant methodology predict that, of all possible H-bond isomers, ice

VII transforms into the correct low-temperature ice VIII structure. The calculated

transition temperature of 228 K is in good agreement with experimental reports in

the range 263−274 K. [19,20] As stated above, an ordered version of ice VI has not yet

been experimentally characterized, although various attempts have been made. Using

graph invariants coupled with electronic structure calculations, we find a transition

to a ferroelectric proton-ordered phase at 108 K. [23] Thus, we were able to propose

to experimentalists a candidate structure for proton-ordered ice VI.

The disordered phases of ice discussed above are regarded as nearly fully disordered

phases. Neutron diffraction studies on ices III and V, however, have shown that these

phases are only partially disordered, i.e. some H-bond arrangements are preferred over

others. The degree of partial order/disorder can be determined experimentally using
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Figure 1: Hydrogen bond disordered phases, the

Figure 1.3: A series of H-bond disordered phases, the shaded regions in the figure,
surround the liquid in the phase diagram of water. [1]

diffraction and/or calorimetry techniques to measure occupational probabilities and

the transition entropy respectively. For the ice III−IX system, we again found that

the ground state configuration and transition temperature agree with experiment. [24]

Because our work includes a statistical mechanical treatment of H-bond fluctuations,

we can estimate the degree of partial H-bond order in the high-temperature disordered

phases and partial disorder in the low-temperature ordered phases. Our calculated

transition entropies are in good agreement with available experiment and we have been

able to provide some insight regarding an apparent contradiction in the literature.

It was only recently that the proton-ordered versions of ices V and XII were first

reported. Similar to the ice Ih/XI system, these proton ordering transitions were
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only observed in the presence of a small amount of dopant, in this case HCl. It has

been stated in the literature [25], “It would be a challenging test of the ability of

modern day computational methods to reproduce our experimentally found lowest

energy state.” With our methods, we have found that the ground state configuration

agrees with the experimental ice XIII structure as well as provide insight into the

degree of partial ordering. [26]

r

E

Figure 1.4: Defects in ice move in a random potential created by the disordered
hydrogen bonds.

In the work discussed so far, no defects were present in the ice lattices. The

ordering transitions of ice Ih, V, and XII only occur when a small amount of dopant

is present presumably introducing defects. Recent experiments indicate that ionic

defects are immobilized on an accessible experimental time scale somewhere between

100−200 K. [27, 28] If there are no ionic defects actively diffusing at 72 K, then it is

unclear how hydroxide ions catalyze the ice Ih/XI transition. In ice Ih, the H-bond

disorder sets up a random medium (Fig. 1.4) for the defects to diffuse with potential

traps for defects. With an appropriate description of defects in ice, the mobility of
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defects throughout the disordered ice lattice, and hence the mechanism of H-bond

order and disorder in ice, could be studied.

To date, we have successfully extended graph invariants to describe a hydroxide

ion and its accompanying orientational defect in an ice Ih lattice. We have found

that the lowest energy configuration agrees with the experimentally proposed ice XI

structure. [29] We are currently analyzing the proton transfer between water molecules

and hydroxide ions in ice. Hydroxide ions in an ice lattice accept three H-bonds and

donate a single H-bond. Hydroxide ion motion occurs via proton transfer from one

of the three donating water molecules to the hydroxide ion, as illustrated in Fig. 1.5.

                                                  

hydroxide ion

transferring protons

Figure 1.5: Hydroxide motion in ice occurs when protons transfer from water mole-
cules to the hydroxide ion.

After the proton hops across the H-bond, the water molecule and hydroxide ion will

have switched places resulting in migration of the hydroxide within the ice lattice.

Coupling this “microscopic” proton transfer event with our “macroscopic” statistical

mechanical simulations, using graph invariants, will provide a description of defect

diffusion within the disordered H-bond network.
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CHAPTER 2

PREDICTION OF THE Ih/XI AND VII/VIII PROTON

ORDERING PHASE TRANSITIONS

2.1 Introduction

As mentioned in chapter 1, Linus Pauling [15], in 1935, predicted that there were

(3/2)N different ways to arrange the hydrogen bonds (H-bonds) of N water molecules

in an ice Ih lattice, “ordinary ice”, subject to the ice rules. The ice rules state

that each oxygen must be covalently bonded to two hydrogens, there is only one

hydrogen per bond, and each water molecule accepts a maximum of two hydrogens

from other waters, as illustrated in Fig. 2.1. The following year, Giauque and Stout

measured the entropy of ice Ih near 0 K to be NkB ln 3
2

within experimental error. [16]

Pauling’s estimate proved to be remarkably accurate and was verified when the exact

result was calculated to be 1.5069N . [10] This nonzero entropy implies that somewhere

between freezing and 0 K, ordinary ice becomes a proton glass with a quenched, nearly

random, arrangement of H-bonds. There has been continued debate and research as

to whether the H-bond arrangements are truly random, whether a phase transition

to a fully proton-ordered structure exists, and if so, the identity of that structure.

9



 137  +   1  4 14 15 17 20 30 31                22

  53      1                                     22 141  +   1  2  3  4  5  6  7  8 17 18 19 20 21 22

  30      1                                     22

b)

c) d)

a) trans

cis

Figure 2.1: Four possible arrangements of H-bonds within a 16-water 2x1x1 ortho-
rhombic unit cell of ice Ih. Cis and trans H-bonds are defined as whether protons lie
on the same or opposite side of the H-bond respectively, as indicated for isomer (a).
The H-bond isomers are summarized mathematically by directed graphs in which
directional bonds point from H-bond donor to H-bond acceptor, as illustrated for
isomer (b).

Close to the melting point of ice, the protons are fully disordered subject to the

ice rules. As ice is cooled to low temperatures, proton motion comes to a halt, and a

glassy transition has been observed to occur ∼110 K [30] prohibiting the transition

to a proton-ordered phase. As tabulated in Ref. [31], numerous dielectric studies on

powder and single crystal samples have been performed over the years. Kawada and

Niinuma reported results on dielectric studies on single crystals with a Curie-Weiss

temperature of 46 K and 55 K for H2O [32, 33] and D2O [34] respectively with the

electric field parallel to the c−axis. Studies by Johari and Whalley on powdered

samples of H2O indicate a Curie-Weiss temperature significantly lower, 6.2 K [31].
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However, in samples doped with impurities, particularly KOH, it was observed that

there is a clear calorimetric signature of a first order phase transition at 72 K with

weak dependence on the concentration of the KOH impurity. [17, 34] In experiments

with samples of D2O, the transition temperature is shifted by four degrees to 76 K.

Antarctic ice samples have been examined with neutron diffraction and Raman spec-

troscopy. It is believed that these samples, kept at a constant low temperature for

thousands of years, have equilibrated to a proton-ordered arrangement [35]. These

studies indicate that a second-order phase transition to an H-bond ordered phase of

ice occurs at 237 K, which is significantly larger than the observed transition tem-

perature in KOH doped ice samples. Neutron diffraction spectra of Greenland ice

samples, prepared under similar conditions, showed no distinct differences when com-

pared to the spectra of ice Ih, thus casting doubt on the earlier Antarctic studies. [36]

Additional diffraction studies on Antarctic ice samples concur that it is unlikely that

a proton-ordered arrangement can be observed under such conditions. [37]

The unit cell of ice Ih, Fig. 2.2, is hexagonal with space group P63/mmc. The sym-

metry of the low-temperature proton-ordered configuration, ice XI, shown in Fig. 2.2c,

is orthorhombic, space group Cmc21, as indicated by neutron scattering [2–5] and

thermal depolarization experiments [6, 7] on KOH-doped ice Ih. Bonds that are ori-

ented parallel to the c−axis all point in the same direction. The ab−layers, composed

of bonds oriented perpendicular to the c−axis are polarized parallel to the b−axis with

alternating layers oppositely aligned. Thus, the structure is overall anti-ferroelectric

in the a− and b−directions and ferroelectric in the c−direction. This anti-ferroelectric

arrangement of the ab−layers gives rise to a slight displacement of the oxygen lat-

tice parallel to the b−axis in the direction of the polarization. The calculated shift,
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Figure 2.2: a) A 1 × 1 × 1 hexagonal unit cell of ice Ih, space group P63/mmc,
containing 12 water molecules. b)A 1 × 1 × 1 orthorhombic unit cell of ice Ih, space
group Cmc21, containing 8 waters. Both unit cells are appropriate for describing
the relative energetics of the H-bond isomers possible in each unit cell. Bonds that
appear to point straight up and down are parallel to the c−axis and hence called
c−axis bonds. The remaining bonds, perpendicular to the c−axis, are referred to
as ab−bonds. c) Proposed experimental structure of proton ordered ice Ih, ice XI,
as determined from diffraction and thermal depolarization experiments [2–7]. The
ab−layer bonds(1) are all cis with the ab-layers polarized parallel to the b−axis and
alternating layers oppositely aligned. The c−axis bonds(2) are trans and all oriented
in the same direction. Cis and trans H-bonds are defined, respectively, as to whether
the non-hydrogen bonded hydrogens fall on the same or opposite side of the H-bond.

0.11 Å, determined from the optimized geometry of the ice XI configuration, calcu-

lated as described below, is in agreement with the experimentally determined shift of

0.12 Å [2].

This view has been contested: Iedema et al. [18] referred to more recent claims

as “UFI citings (underidentified ferroelectric ices) in the literature.” Even if the

Cmc21 structure proves to be correct, there is some justification for characterizing
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the current state of knowledge of low-temperature ice Ih/XI as “underidentified.”

While a mechanism has been proposed for incomplete conversion of ice Ih to ice

XI [38], several features of the presumed ice Ih/XI transition are not understood.

While the calorimetric signature of the Ih/XI transition is remarkably insensitive

to KOH concentration, the amount of conversion, as measured by the total heat of

transformation, is strongly concentration dependent. If KOH truly acts as a catalyst

and samples have adequate time to equilibrate, there should be no concentration

dependence. The KOH seems to be playing another role, perhaps related to the

crystal strain discussed by Johari [38]. Furthermore, there are reports that protons

in ice become immobile below a certain temperature due to being trapped by the

defects present in ice [39]. Wooldridge and Devlin performed FT-IR experiments

which indicated that proton motion comes to a halt below 100 K [27]. More recently,

“soft-landing” experiments by Cowin et al. indicate that hydronium ions are in fact

immobile at all temperatures below 190 K [28]. If hydroxide is as immobile as excess

protons at low temperature, then the basis for the catalytic role of hydroxide would be

cast in doubt. Recent dielectric and calorimetric experiments [40] indicate that the

alkali hydroxide dopants polarize nearby water molecules to promote orientational

ordering at low temperatures which may explain the observed weak concentration

dependence on the amount of transformation achieved.

In contrast to the controversy surrounding the ice Ih/XI proton ordering phase

transition, the ice VII/VIII transition has been well characterized. The ice VII/VIII

proton ordering transition will then serve as a means for validating our theoretical

methods. Ice VII was first identified by Bridgman [41] in 1937. Ice VII has one of the

simplest structures of all the high pressure phases of ice, two interpenetrating, but
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not interconnected ice Ic lattices. The unit cell of the ice VII crystal is cubic, space

group Pn3m, containing 2 water molecules. X-ray [42, 43] and neutron [44] diffrac-

tion studies indicate that the H-bonds in ice VII, the structure of which is shown

in Fig. 2.6, are fully disordered subject to the ice rules. Ice VIII is the correspond-

ing low-temperature proton-ordered structure. The ice VIII unit cell is tetragonal,

space group I41/amd, containing 8 water molecules. Both sub-lattices are ferroelec-

trically aligned parallel to the c−axis, but the sub-lattices are oriented opposite to

one another resulting in an overall anti-ferroelectric structure. The relative oxygen

positions remain essentially unchanged from that of the ice VII structure except for a

small distortion, ∼0.2 Å [45], arising from the nonbonded oxygen-oxygen interactions

between the sub-lattices.

The ice VII/VIII proton ordering transition was first observed when dielectric

experiments indicated that the Debye relaxation disappeared below 0◦C [46]. Over a

range of pressures from 2.1 to 12 GPa, proton ordering, via rearrangement of H-bonds,

occurs at nearly constant temperature. All experiments are in general agreement on

the ice VII/VIII transition temperature, 263 to 273 K [44,47], although hysteresis [48]

effects make the precise determination difficult. The effects of D2O on the transfor-

mation are negligible at these temperatures, shifting on the order of a degree [49],

indicating quantum effects are minimal. In the ice Ih-XI transition, the transition

temperature shifts from 72 K for H2O to 76 K for D2O. With still higher pressure,

the ice VII/VIII transition temperature abruptly decreases as the mechanism of the

transition shifts to proton tunneling across the shortened H-bonds. Our calculations

are pertinent to the temperature independent region.
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Predictions of H-bond ordering in ice encounters several obstacles. Buch, Sandler,

and Sadlej [21] showed that commonly used empirical potentials disagree amongst

each other with regard to the subtle energetic ordering of the H-bond isomers in ice

Ih and by an order of magnitude with respect to the range of energy differences.

Furthermore, none of the empirical potentials predicted the ground state to be the

Cmc21 crystal structure, Fig. 2.2, suggested by diffraction data, including a potential

they constructed with that hope in mind. We overcome the problem of determining

H-bond energetics by using electronic DFT calculations. Below, we report results

from three DFT methods that yield consistent results for the relative energetics of

H-bond isomers, including the identification of the ground state. In the future, em-

pirical potentials capable of describing the energetics of H-bond isomers in ice may be

available. Even if that goal is realized, it is useful to have a method in which the con-

struction of empirical potentials is entirely circumvented. The data presented in this

work provides a benchmark by which future empirical potentials can be calibrated.

While it may be feasible to perform electronic structure calculations on a handful

of H-bond isomers for a small unit cell, it would certainly be impractical to per-

form the same level of calculation on the ∼(3
2
)N H-bond isomers of a unit cell large

enough to obtain good statistics. We solve the problem of statistical sampling of H-

bond configurations by linking energy to hydrogen-bond topology using graph invari-

ants [19,22,50–52], combinations of H-bond variables which are invariant to symmetry

operations of the appropriate space group and are therefore appropriate variables for

describing scalar physical properties. Graph invariants provide a means to “boot-

strap” from expensive DFT calculations for smaller unit cells to statistical mechanics

simulations using a larger unit cell.
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In section 2.2, we gently introduce the graph techniques we use to link hydrogen

bond topologies to scalar physical quantities. A more detailed account can be found

in previous works [22, 51]. Graph invariants are then validated, in section 2.4, as

an appropriate method of treating H-bond fluctuations in a large simulation cell

by direct comparison to experimental data on the proton ordering transition in the

ice VII/VIII system. In section 2.5, we discuss the agreement among various DFT

methods in describing the energetics of H-bond isomers for two unit cells of ice Ih and

present the results of statistical simulations on the ice Ih/XI proton ordering phase

transition.

2.2 Introduction to Graph Invariants for Ice

Each hydrogen bond in ice consists of a single hydrogen covalently bonded to the

oxygen from the donor molecule and hydrogen bonded to the second oxygen from

the acceptor molecule. Hence, H-bonds are directional and conventionally taken to

point from donor to acceptor, as shown in Fig. 2.3. The H-bond network can then be

summarized mathematically by oriented graphs, vertices connected by directed lines.

The direction of the rth H-bond in the ice lattice is specified by a bond variable br

which takes values ±1 according to whether the bond points along, or opposite to, an

arbitrarily defined canonical direction for that bond. The directed graph of Fig. 2.3b

defines our canonical orientation of the H-bonds in the 2-water primitive unit cell of

ice VII. The bond variables b1, b2, b3, and b4 for one of the actual H-bond isomers

of ice VII are assigned the value of +1 when they point in the directions shown in

Fig. 2.3b, and −1 when they point in the opposite direction. Examples of directed

graphs for the 2-water unit cell of ice VII are shown in the bottom of Fig. 2.3.
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Figure 2.3: a) An isomer of a 2-water primitive unit cell of ice VII, obeying the Bernal-
Fowler ice rules, is shown. The thin black lines outline the unit cell and neighboring
oxygen atoms are included for clarity. The H-bonds are labeled from 1 to 4 to provide
a means to associate a bond variable, br, with the H-bond labeled r. b) The H-bond
configuration in (a) is summarized by a directed graph. The H-bonds are taken to
point from oxygen donor to oxygen acceptor as discussed in the text. c, d) Additional
directed graphs corresponding to other H-bond isomers of ice VII that satisfy the ice
rules and periodicity constraints. As an example, if all the bond variables, br, for
configuration (b) were assigned the value +1, then all the br’s for configuration (d)
would take the value −1 since all H-bonds are reversed.

Some graphs or their corresponding H-bond isomers may be related to others by

one or more symmetry operations, such as rotations, reflections, and translations. In

this simple exercise using the highly symmetric unit cell of ice VII, it so happens

that all H-bond configurations of this primitive unit cell, obeying the ice rules and

periodicity constraints, are related to every other graph via symmetry operations of

the corresponding symmetry group, space group Pn3m for ice VII, and thus there
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is only one symmetry-distinct H-bond configuration. Therefore, scalar properties,

such as energy, should be equivalent for all H-bond configurations allowed in this unit

cell. In larger unit cells, the possible graphs can be partitioned into sets (orbits) of

symmetry-related configurations. All scalar physical properties, such as the energy,

must be identical for all configurations within a set. If the energy depends on the

topological features of the H-bond configuration, then it must depend on functions of

bond variables, br, that are themselves equivalent under symmetry operations [22,51].

Functions of bond variables that are invariant to symmetry operations of the

corresponding symmetry group can be constructed by the application of the projection

operator for the totally symmetric representation, Ĝ. Application of the projection

operator on a single bond variable, br, yields

Ir = Ĝ(br) =
1

|G|

|G|
∑

α=1

gα(br), (2.1)

where gα is a symmetry element of the group G, |G| is the number of symmetry

elements in the group, and the sum is performed over all elements in the group

G. Ir is referred to as a first-order graph invariant constructed by application of the

projection operator to bond r and is an intensive quantity. For systems with sufficient

symmetry, most first-order invariants are algebraically equal to zero. A necessary and

sufficient condition for any graph invariant to be identically zero is the existence of

symmetry elements that take bond br into minus itself: [51]

gα(br) = −br. (2.2)

Higher order graph invariants, Irs, Irst, . . ., can be constructed as follows,

Irs = Ĝ(brbs) =
1

|G|

|G|
∑

α=1

gα(brbs), (2.3)
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Irst =
1

|G|

|G|
∑

α=1

gα(brbsbt), . . . , (2.4)

where Irs is a second-order graph invariant, Irst is a third-order graph invariant,

etc. For the primitive cell of ice VII, all first-order invariants are algebraically zero.

Application of the projection operator for the totally symmetric representation onto

all pairs of bonds yields two unique second-order graph invariants,

I1,1 =
1

4
(b2

1 + b2
2 + b2

3 + b2
4), (2.5)

I1,2 =
1

6
(b1b2 + b1b3 + b1b4 − b2b3 − b2b4 − b3b4). (2.6)

The details of constructing Ir(b1, b2, . . .) and Irs(b1, b2, . . .) given the crystalline space

group are provided in another publication. [22] The action of the projection operator

on bond pairs brbs when r = s yield Eq. (2.5) while all permutations of r and s such

that r 6=s yield Eq. (2.6). Evaluating the second-order graph invariants for the H-bond

configurations in Fig. 2.3 yields I1,1 = 1 and I1,2 = 0 for all three configurations. The

second-order invariant I1,1 effectively counts the number of H-bonds in the system,

which is a constant for all H-bond configurations allowed by the ice rules and peri-

odicity constraints. Since I1,2 is zero for all possible H-bond configurations allowed

in this primitive cell, both second-order invariants will have the same value for all

H-bond isomers allowed by the ice rules and periodicity constraints reflecting the fact

that there is only one symmetry distinct H-bond isomer possible in the primitive unit

cell of ice VII. A more interesting exercise, although still relatively simple, would be

to analyze the invariants obtained from a unit cell of ice VII measuring 2 × 1 × 1

primitive cells on each side as shown in Fig. 2.4. There are three symmetry-distinct

isomers allowed in this unit cell. All first-order invariants for this cell are identically
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Figure 2.4: a) The canonical orientation of H-bonds, obeying the Bernal-Fowler ice
rules, for a unit cell of ice VII measuring 2 × 1 × 1 primitive cells on each side.
The black lines outline the primitive unit cells and neighboring oxygen atoms are
included for clarity. H-bonds are labeled so as to identify a bond variable, br, with
H-bond r. The orientation of H-bonds in this isomer are assigned to be the canonical
arrangement of H-bonds and all bond variables are assigned the value +1. b−d)
Isomers of three symmetry-distinct H-bond configurations possible in this unit cell.
The bond variables for each of the three configurations, assigned according to H-bond
configuration (a), are given in Table 2.1.
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zero and there are four unique second-order invariants,

I1,1 =
1

8
[b1b1 + b2b2 + b3b3 + b4b4 + b5b5 + b6b6 + b7b7 + b8b8] (2.7)

I1,2 =
1

24
[2b1b2 − 2b3b4 + 2b5b6 − 2b7b8 + b1b3 − b2b3 + b1b4 − b2b4 + b3b5

+b4b5 − b3b6 − b4b6 + b1b7 − b2b7 + b5b7 − b6b7 + b1b8 − b2b8 + b5b8

−b6b8] (2.8)

I1,5 =
1

12
[b1b5 + b2b6 + b3b7 + b4b8 + b1b1 + b2b2 + b3b3 + b4b4 + b5b5 + b6b6

+b7b7 + b8b8] (2.9)

I1,6 =
1

24
[2b1b6 + 2b2b5 − 2b3b8 − 2b4b7 + b1b3 − b2b3 + b1b4 − b2b4 + b3b5

+b4b5 − b3b6 − b4b6 + b1b7 − b2b7 + b5b7 − b6b7 + b1b8 − b2b8 + b5b8

−b6b8]. (2.10)

By examining the generating bond pairs for the second-order invariants in this larger

cell, it is seen that two of the invariants, I1,1 and I1,2, have the same generating bond

pairs as found in the second-order invariants for the primitive cell. The other two

Graph b1 b2 b3 b4 b5 b6 b7 b8 I1,1 I1,2 I1,5 I1,6

a,b 1 1 1 -1 1 1 1 -1 1 1
3

1
3

-1
3

d 1 1 1 -1 -1 -1 -1 1 1 1
3

2
3

0
d 1 1 1 -1 -1 -1 1 -1 1 1

3
1 1

3

Table 2.1: Bond variables and second-order invariants for the three symmetry-distinct
H-bond isomers of the 2×1×1 unit cell of ice VII. The bond variables are assigned the
value of ±1 depending on the orientation of the H-bond with respect to the canonical
orientation illustrated in Fig. 2.4a. The last four columns indicate the values that the
second-order graph invariants take when evaluated for each H-bond configuration.
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invariants, I1,5 and I1,6, are generated by bond pairs that are farther apart than pos-

sible in the primitive cell. It should be noted that H-bonds throughout the entire

lattice are generated by the action of the projection operator on a single bond. How-

ever, because of periodicity, the value of the bond variables can be expressed as the

value of a bond within the unit cell. That is why the action of a projection operator

containing an infinite number of translation elements gives rise to the finite expres-

sions in Eqs. (2.7− 2.10) . The presence of I1,1 and I1,2 in this larger cell illustrates

an important fact that invariants in small cells will also be found in larger cells. In

addition, new invariants not possible in the small cell will be associated with the

larger cell. From close inspection of the invariants, when evaluated for the H-bond

configurations consistent with the ice rules, it is clear that some invariants are now

linearly dependent on other invariants. For example, in Table 2.1 one can verify that

I1,2 =
1

3
I1,1 (2.11)

I1,5 = I1,6 + 2I1,2

= I1,6 +
2

3
I1,1. (2.12)

Using I1,1 and I1,6 as independent variables, we can write down an expression relating

scalar physical quantities to functions of the H-bond topology. Assuming a simple

linear form, the energy of an H-bond isomer, as a function of the bond variables, can

be written as

E(b1, b2, . . . , b8) = E0 + αI1,6, (2.13)

where Eo, a constant, and α can be determined by fitting to energies, obtained from

either experiment or calculation, of H-bond configurations.
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The idea of correlating the energy of an H-bond configuration of ice to features of

the H-bond topology is not new, but has never been successfully implemented in the

past. Long ago, Bjerrum [53] suggested that H-bonds in ice break into two categories,

depending on whether the non-hydrogen bonded hydrogens are in a trans or cis ar-

rangement, that is whether they fall on opposite or the same sides of the H-bond,

as illustrated in Figs. 2.1 and 2.2. The presumed dominance of pairwise interactions

has led to proposals that ice structures with the highest fraction of trans H-bonds are

most stable [53], a notion that, if correct, would conflict with the proposed ferroelec-

tric structure of ice XI, Fig. 2.2, in which three-quarters of the H-bonds are cis. Also,

as described below, another conflicting result is that both the lowest and highest en-

ergy configurations for a 2× 2× 2 unit cell of ice VII contain no H-bonds in the trans

configuration. Nevertheless, the number of trans H-bonds is actually an example of

an invariant and is useful for outlining our bootstrap strategy of invariants to larger

unit cells. The cis/trans energy difference is a parameter that can be determined from

small unit cells [54]. Electronic structure calculations could be performed on a small

unit cell to calculate the cis/trans energy. Next, the cis/trans energy difference could

be calculated for larger unit cells, for which these types of calculations are feasible,

thus indicating whether convergence to the large cell limit has been reached. Then,

the number of trans H-bonds could be used to extrapolate to even larger unit cells

where it is not possible to do these calculations on the billions of possible H-bond

arrangements needed for statistical simulations. If the relative number of cis and

trans H-bonds did control the energy, then the energy of the billions of H-bond ar-

rangements possible in a large cell would be known by counting the relative number

of cis and trans H-bonds in each of those configurations. While, as argued above, the
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number of cis/trans H-bonds is not sufficient to describe the H-bond energetics of ice,

an analogous bootstrap strategy using graph invariants will prove successful.

Graph invariants provide a hierarchy of increasingly accurate approximations, with

two independent routes for improving the description of scalar physical quantities.

The first is determined by the number of bonds multiplied to generate an invariant, i.e.

the order of the invariant polynomial in bond variables. Invariants can be constructed

by projecting onto a single bond, a bond pair, a bond triplet, and so on corresponding

to invariants of first, second, third and higher order, respectively. We have already

demonstrated [51] how graphical techniques can be used to understand and predict

physical properties of water clusters, finding that the expansion was well-converged

at second order. As will be described below, the energy of H-bond isomers for various

unit cells of ice is also well described using second-order invariants. The second

manner by which the invariant approximation could be improved is by including

invariants generated by bond pairs separated by greater distances. As described

above, invariants for a large unit cell, when compared to invariants from a smaller

unit cell, can be divided into two groups. Those invariants that were only present in

the smaller unit cell and those invariants generated by bond pairs farther apart than

possible in the smaller unit cell. Including invariants generated by bonds only possible

in the larger unit cells would improve the approximation. As will be described below,

acceptable convergence for the energy of H-bond isomers of ice only requires bond

pairs that are nearest neighbors.

The proton order/disorder transitions in the various ice phases all share similar

features. The underlying oxygen lattice is essentially unchanged between the dis-

ordered and ordered configurations. Hence, we neglect the small lattice parameter
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changes as the temperature changes. As indicated above, experiments on samples of

H2O and D2O indicate a difference in the transition temperature of a few degrees.

In experiments on ice Ih, the proton ordering transition occurs at 72 K for H2O and

76 K for D2O, a difference of 4 K [17,34]. A significant change in the transition tem-

perature due to a change in mass is a sign that quantum effects are important. The

small shift in the transition temperature indicates that quantum effects are negligible,

thus we use classical statistical mechanics for our calculations.

If we stay away from extremely high pressure where the hydrogen bond becomes

symmetrical, the potential energy surface for ice exhibits a number of deep minima,

each corresponding to a different hydrogen bond topology. Working within the frame-

work of classical statistical mechanics, the partition function can be written as a sum

of contributions from each of the M symmetry-distinct local minima of the poten-

tial energy surface. [55–63] We have previously discussed [22, 51] how the partition

function for ice can be written as a sum over M symmetry-distinct H-bond topologies

Q =
M∑

i=1

fie
−β(Ei+Avib,i) , (2.14)

where fi is the number of symmetry-related configurations which are represented by

one symmetry-distinct configuration, Ei is the potential energy at the ith potential

minimum, and Avib,i is the vibrational free energy associated with movement near

that minimum. At sufficiently low temperature the classical procedure could be mod-

ified to incorporate some quantum effects, for example by calculating Avib,i quantum

mechanically. However, the use of classical statistical mechanics seems warranted for

H-bond order/disorder transitions in ice.

Each Ei and Avib,i in Eq. (2.14) corresponds to a local minimum of the potential

surface defined by an H-bond topology. The graph invariants we have introduced
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[19, 22, 51] provide a feasible way to circumvent the need to calculate all the Ei and

Avib,i for the billions of hydrogen bond topologies found in a “simulation cell”, a unit

cell large enough to approximate the thermodynamic limit. Graph invariants link

quantities like Ei and Avib,i to H-bond topology, and allow us to construct statistical

models with a kind of bootstrap procedure. [22,51] In all of our work on ice to date,

we have obtained good agreement with available experiments assuming that Avib,i,

the vibrational free energy in each of the H-bond isomers, is approximately the same:

Avib,i ≈ Avib. Then the problem reduces to estimating the energy Ei of each of the

symmetry-distinct isomers. If the approximation Avib,i ≈ Avib would break down,

then an alternative would be to fit the Avib,i to invariants with an expression similar

to the energy expansion in Eq. (2.15).

Assuming the simplest linear dependence1, the energy of an H-bond isomer as a

function of the bond variables is written as,

E(b1, b2, . . .) = E0 +
∑

r

αrIr +
∑

rs

αrsIrs + . . . . . . , (2.15)

with the overall constant E0 and the α-coefficients to be determined either by com-

parison with experiment, or as we do in this work, by first-principles calculations.

For our bootstrap strategy, we first determine the graph invariants for a small unit

cell of ice from which a training set of isomers is chosen for DFT calculations which

will determine the coefficients in the energy expression Eq. (2.15). Next, the graph

invariants for a larger unit cell are determined. Each successively larger cell contains

invariants that were already present in the smaller cell as well as new invariants in-

volving bond combinations that are farther apart than possible in the small unit cell.

1Including high order invariants could be regarded as implementing a more complicated functional
form.
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A handful of isomers is chosen from the larger cell, DFT calculations are performed,

and invariant parameters are refit to the energy expression. Enlarging the unit cell is

continued until the invariant parameters converge and new invariants become unim-

portant. The converged invariant parameters will then be used to evaluate the energy

expression for the many H-bond isomers of a large simulation cell to generate sta-

tistical averages. Our results indicate there are other important features, besides cis

and trans H-bonds, which are required to appropriately link scalar physical proper-

ties to H-bond topology in ice. The use of graph invariants provides a systematic

means to generate the full set of topological parameters, in the form of invariant

polynomials of bond variables br, and organizing them in a hierarchy of increasingly

accurate approximations [22, 51]. In this work we only retain the leading order, that

is second-order invariants, which will be seen to provide an accurate description of

the H-bond energetics of larger ice unit cells.

2.3 Metropolis Monte Carlo Simulations of Ice

Rather than introducing possible uncertainty associated with further approxima-

tions, we obtained an essentially exact numerical solution for the thermal behavior

governed by the H-bond Hamiltonian using the standard Metropolis Monte Carlo al-

gorithm(e.g. Ref. [64]). Metropolis Monte Carlo simulations were typically performed

on simulation cells containing thousands of water molecules. A series of simulations

were performed for both increasing and decreasing temperatures. The initial struc-

ture for the increasing temperature simulations was that of the ground state H-bond

configuration. To date, this configuration agreed with the experimental structure for

all cases where experimental data was available. A highly disordered configuration
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obtained from simulation at an extremely large temperature (∼ 107 K) was used to

initialize the sequence of simulations descending in temperature. The final configura-

tion for each simulation was always the initial configuration for the next simulation.

When simulating our model at low temperatures, where acceptance of trial moves

is rare, we found that care in the choice of random number generator was required,

and that some random number generators produced artificial periodic excitations out

of the ground state with a period lasting thousands of Monte Carlo passes. Since

this behavior only occurred when excitations were rare, it actually had no effect on

the statistical averages reported below. Nevertheless, we took care to find simulation

conditions free of the artificial periodic behavior. We found that the “Mersenne

Twister” generator developed by Matsumoto and Nishimura [65] was not susceptible

to the spurious behavior.

a) b)

Figure 2.5: Example of flipping a loop of H-bonds which point in similar directions
to generate trial configurations that are allowed by ice rules.

The only non-standard feature of our Monte Carlo algorithm is the generation

of the trial moves, since our trial rearrangements of H-bonds must not violate the
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ice rules. We use the algorithm invented by Rahman and Stillinger [66] for sampling

H-bond configurations in ice, which randomly identifies closed loops of H-bonds. Flip-

ping the entire loop of H-bonds, as shown in Fig. 2.5, will preserve the number of

outgoing and incoming bonds at each oxygen atom and will not “break” any water

molecules, thereby preserving the ice rules. Recently, Rick and Haymet have general-

ized the Rahman-Stillinger idea to do off-lattice simulations of ice [67]. In their paper,

one can find references to work where the ergodic nature of the Rahman-Stillinger

loop algorithm was proved. In an approximation where the total dipole is a sum of

bond dipoles, it is easily seen that closed loops do not change the total dipole moment

of the system. However, as Rahman and Stillinger noted, loops that begin in one pe-

riodic simulation cell and terminate in another cell will change the dipole moment.

We allow both types of moves because we want to sample all H-bond configurations,

including ferroelectric and anti-ferroelectric configurations, and allow exact statistical

simulations to identify the equilibrium properties of the system.

The transition temperature is calculated as the point of equal free energy(∆A = 0

in Eq. (2.16)) between the two phases as determined by thermodynamic integration

of the low-temperature proton-ordered phase from 0 K and the high-temperature

proton-disordered phase from infinite temperature.

∆A(T ) = (EH(T ) − EL(T )) − T (SH(T ) − SL(T )) (2.16)

SH(T ) = S(∞) −
∫ ∞

T

dT ′CV

T ′
(2.17)

SL(T ) =

∫ T

0

dT ′CV

T ′
(2.18)

Since we neglect the effect of what is known to be a small change in the lattice

constants with temperature, we do not include a pressure-volume term in the free
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energy. The constant, S(∞), in Eq. (2.17) for the entropy of the high temperature

phase is the configurational entropy for a fully disordered ice phase subject to the ice

rules which we take from the work of Nagle: S(∞) = NkB ln(1.5069) [10].

2.4 The VII/VIII Proton Ordering Transition

a) b)
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Figure 2.6: a) An H-bond isomer of a 16-water unit cell of ice VII measuring 2
primitive unit cells on each side. Bonds representative of the three 2nd-order graph
invariants used to fit the DFT energies are shown, as further described in Table 2.2.
b) The ground-state H-bond isomer of a 32-water unit cell of ice VII measuring 2

√
2×

2
√

2×2 primitive cells on each side corresponding to the experimentally determined ice
VIII structure. Bond pairs representative of the 2nd-order graph invariants, including
bond pairs not possible in the smaller 16-water unit cell, used to fit the DFT energies
are shown. Bond 37 connects to a water molecule in an adjoining cell.

Our study of proton ordering phase transitions in ice begins with the ice VII/VIII

transition. The smallest unit cell we examined was a cubic 16-water unit cell of ice

VII, 2 primitive unit cells on each side as shown in Fig. 2.6. The lattice constant used

in the following calculations was a = 3.337 Å, as determined by diffraction studies at

1.1 GPa and 263 K [44].
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All first-order invariants for the 2 × 2 × 2 cell were identically zero for reasons

described in section 2.2. There are eight second-order graph invariants for this cell,

which, when evaluated for the 52, symmetry-distinct H-bond isomers possible in this

unit cell, enumerated using previously described methods [50,51,68], could be sorted

into two groups. The first group contained two invariants which evaluated to the same

constant for all H-bond configurations and the second group consisted of the remaining

six invariants. The two invariants in the first group, I1,1 and I1,5, were generated by

bond pairs that had at least one common vertex. I1,1 was generated from Ĝ(brbr) and

I1,5 is equivalent to invariant I1,2 found in the smaller unit cells discussed in section 2.2.

Due to the periodicity constraints and the ice rules, invariants may become linearly

dependent on other invariants when evaluated for H-bond isomers. The second group

contained three linearly independent invariants while the first group contained only

one invariant. We will speak of “eliminating linearly dependent invariants” when,

more precisely, we are eliminating invariants which are dependent on others over the

restricted set of configurations allowed by the ice rules. Since it is arbitrary which

invariants are chosen to be the linearly independent set of invariants, we selected

invariants based on geometrical features of the generating bond pairs such as whether

the generating bond pairs belong to the same sub-lattice and minimum distance

between bond pairs. Geometrical features of the invariants included in Eq. (2.15) are

described in Fig. 2.6 and at the top of Table 2.2.

Periodic DFT calculations were performed on all 52 enumerated H-bond configura-

tions using the Car-Parrinello Molecular Dynamics(CPMD) [69–71] program with the

Becke-Lee-Yang-Parr gradient correction [72, 73] to the local density approximation,

Troullier-Martins norm-conserving pseudopotentials [74], and a planewave cutoff of
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70 Ry. The Brillouin zone sampling was restricted to the Γ−point. The dependence

of energy on H-bond topology was well captured by an expression, Eq. (2.15), with

second-order invariants as the leading term, as shown in Fig. 2.7a. The DFT energy

is plotted against a linear fit to the 52 energies using the first three invariants listed

in Table 2.2 plus an overall constant. In Fig. 2.7, perfect agreement is indicated when

points lie on the diagonal line.
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Figure 2.7: a) Graph invariant fit to the energies of the 52 H-bond isomers of a
16-water unit cell of ice VII. b) Calculated DFT energy of H-bond isomers of a 32-
water ice VII cell plotted against energies predicted from graph-invariant parameters
derived from the 16-water cell. c) Graph invariant fit, using second-order invariants
whose generating bond pairs are farther apart than possible in the smaller 16-water
unit cell, to the energies of the H-bond configurations for the 32-water unit cell. d)
Same as plot (c) except only invariants whose generating bond pairs exist in the
smaller 16-water unit cell were fit to the energies. A line of slope unity is shown to
indicate where points would lie for perfect agreement. Invariant coefficients for each
of the three fits are listed in Table 2.2.
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Next, calculations were performed on a larger ice VII unit cell, measuring 2
√

2 ×

2
√

2× 2 primitive cells on each side. As discussed above, in section 2.2, all invariants

from the smaller cell were also found in the larger unit cell. All first-order invariants

were algebraically zero. There were ten additional second-order graph invariants gen-

erated from bond pairs that were farther apart than possible in the smaller 16-water

unit cell. DFT calculations were performed on 50 H-bond isomers chosen “semi-

randomly” from the 35806 symmetry-distinct H-bond configurations possible in this

unit cell [50,51,68]. From a prediction based on the graph-invariant parameters fit to

the 2 × 2 × 2 cell, we selected isomers that would cover the entire energy range, plus

other isomers that would test whether the new invariants that appear for the larger

2
√

2×2
√

2×2 cell are actually needed to fit the energy of the isomers for the larger cell.

The energies of the 32-water unit cells are well predicted using invariant parameters

obtained from calculations on the 16-water cell, shown in Fig. 2.7b. However, there

is a small systematic discrepancy in which the invariant prediction overestimates the

energy differences in the 32-water cell. This discrepancy is actually not a consequence

of requiring more invariant parameters for the larger cell but instead arises because

the conditions under which the calculation is performed changes with cell size. In the

larger cell, there is more freedom for configurational relaxation and greater effective

k−point sampling at the Γ−point. Thus, the small discrepancy is actually an indica-

tion that we are nearing convergence of the graph-invariant parameters with respect

to both unit cell size and k−point sampling.

Of the 18 second-order invariants for the 2
√

2 × 2
√

2 × 2 cell, eight invariants

were linearly independent when evaluated for all H-bond configurations. A fit of the

DFT energies incorporating invariants whose generating bond pairs were farther apart
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generating same 16-water 32-water 32-water
invariant bond pair distance(Å) lattice? (inv. 1−3) (inv. 1−7) (inv. 1−3)

1 1,20 2.89 N 0.0155118 0.0243047 0.0192577
2 1,18 2.89 Y −0.0471626 −0.0657520 −0.0709555
3 1,2 2.89 N 0.0907482 0.1009400 0.1093980
4 1,48 5.53 N − 0.01063060 −
5 1,16 5.53 N − −0.00705523 −
6 1,15 4.72 Y − −0.00248413 −
7 1,37 4.72 Y − 0.01210390 −

Table 2.2: Geometrical features and contribution to the description of the energy of H-bond isomers of the second-order
graph invariants. Invariants 4−7 do not appear in the 16-water, 2× 2× 2 unit cell of ice VII. The indices of the generating
bond pair refer to Fig. 2.6. The distance associated with each bond pair is the distance between the closest vertices from
each bond in an ideal structure before geometry optimization. The last three columns give the fitting coefficients for each
of the invariants as used in Eq. (2.15) for the energy in units of kcal mol−1 per water.
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Figure 2.8: Relative DFT energy of H-bond isomers of a 16-water(•) and 32-water(◦)
unit cell of ice VII plotted against fraction of trans H-bonds for each isomer. The
lowest and highest energy isomers for both unit cells contain no H-bonds in the
trans configuration thus indicating that features of the H-bond topologies other than
cis/trans H-bonds are important if physical properties are to be correctly described.

than possible in the smaller 16-water unit cell (Fig. 2.7c) yielded a fit just as good

in quality as that obtained from only using invariants whose generating bond pairs

existed in the smaller cell (Fig. 2.7d). We conclude that the energy of the H-bond

isomers is accurately described by invariants whose generating bond pair contains

vertices that are nearest neighbors. The energy plotted as a function of the percent

of trans H-bonds is shown in Fig. 2.8. The fraction of trans H-bonds can be expressed

as a linear combination of graph invariants,

% trans H-bonds = −3

4
Î1,18 +

3

4
, (2.19)

where Î1,18 is one of the invariants, Table 2.2 and Fig. 2.6, used to fit the energies.

For both unit cells, the ground state and highest energy configurations contain no H-

bonds that are trans. If the relative number of trans H-bonds was the only feature of
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the H-bond topology used to describe the energetics, those configurations would then

be degenerate. Clearly, it is evident that additional features of the H-bond topology,

exhibited by the graph invariants, are necessary to accurately describe the relative

energetics of H-bond isomers of ice.

Using the improved invariant parameters and Eq. (2.15), we have a Hamiltonian

describing the energy differences due to fluctuating H-bonds in a large simulation cell.

Metropolis Monte Carlo simulations were performed on a simulation cell measuring

eight primitive cells on each side containing 1024 water molecules. A series of simu-

lations were performed for both increasing and decreasing temperatures. The initial

structure for the increasing temperature simulations was that of the experimentally

determined ice VIII structure.

The Monte Carlo simulations yield a prediction of a first-order phase transition

near 228 K with significant hysteresis, as shown in Fig. 2.9a. The transition temper-

ature is calculated as the point of equal free energy(∆A = 0 in Eq. (2.16)) between

the two phases as determined by thermodynamic integration of the low-temperature

proton-ordered phase from 0 K and the high-temperature proton-disordered phase

from infinite temperature. Entropy as a function of temperature is plotted in Fig. 2.9b.

With decreasing temperature, 7% of the ideal entropy for a fully disordered ice phase

is lost before the transition. The calculated entropy at the transition, 228 K, is 91% of

the ideal configurational entropy associated with H-bond disordering compared with

experimentally reported values of 83% for H2O and 91% for D2O [47].

Partial disordering below the transition is also observed in a plot of 〈Ma.Mb〉

as a function of temperature, as shown in Fig. 2.9c. Ma and Mb are the dipole mo-

ments, calculated using a bond-dipole approximation, for each of the two independent
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Figure 2.9: a) Average energy plotted as a function of temperature from Metropolis
Monte Carlo simulations for a large simulation cell of ice VII/VIII. Data is presented
for series of Metropolis Monte Carlo runs ascending(△) and descending(▽) in tem-
perature. The vertical line is located at the calculated transition temperature near
228 K. b) Entropy plotted as a function of temperature. The horizontal line is the
Pauling entropy for a fully disordered ice lattice subject to the ice rules. c) Degree
of anti-ferroelectric ordering of the ice VII sub-lattices as a function of temperature.
Ma and Mb are the total dipoles, in units of bond dipoles, for the two independent
sub-lattices.

sub-lattices and 〈 . . . 〉 is an ensemble average. Ma and Mb are each normalized to

NµH2O, where µH2O is the dipole moment magnitude of one water molecule and N is

the total number of waters in one system. At high temperatures, 〈Ma.Mb〉 is zero

corresponding to fully disordered ice VII. At low temperatures, anti-ferroelectrically

ordered ice VIII is the stable phase with both sub-lattices oriented oppositely so that

〈Ma.Mb〉 =
(−N

2
µH2O).(N

2
µH2O)

|NµH2O|2
= −1

4
. (2.20)
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Fig. 2.9c indicates that the degree of pre-transitional alignment and post-transitional

disorder in 〈Ma.Mb〉 is small.

Despite the challenge posed by small energy variation among H-bond isomers, our

results qualitatively match the observed features of the ice VII/VIII phase transi-

tion in several respects: 1) the calculated ground state is the known ice VIII anti-

ferroelectric structure [68], 2) the transition temperature, 228 K, is similar to the

experimental transition point measured in the range 263−274 K [44, 47], 3) the de-

tectable partial ordering above the transition and partial disordering below the tran-

sition, as measured by the entropy at the transition, is in agreement with experiment.

2.5 The Ih/XI Proton Ordering Transition

Having calibrated our methods with the ice VII/VIII transition, we now turn

to ice Ih/XI, which is not as well characterized experimentally. Given the degree

of controversy surrounding the Ih/XI transition and the small energy differences, we

attempted to gauge how sensitive the calculated energy differences were to the level of

theoretical treatment. We performed DFT calculations for ice Ih using three different

combinations of density functionals and basis sets for two smaller unit cells of ice Ih, an

orthorhombic unit cell containing eight water molecules [54] and a hexagonal cell with

twelve waters. The lattice constants for the hexagonal unit cell were a = 7.7808 and

c = 7.3358 Å and those for the orthorhombic unit cell were a = 4.4922, b = 7.7808, and

c = 7.3358 Å. [54] The number of symmetry-distinct H-bond isomers consistent with

the ice rules and lattice periodicity is 16 and 14 for the orthorhombic and hexagonal

unit cells respectively [22].
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Three separate methods of calculation were employed to check the consistency of

DFT in describing the energetics of H-bond isomers. The CPMD [69–71] program

was used as previously described. The BLYP [72,73] functional using numerical basis

sets was implemented within the DMol program [75]. The CASTEP program [76]

was used with the PW91 functional [77–79] and a plane wave basis. The different

density functionals, basis sets, and programs agree quite well when applied to starting

configurations(Fig. 2.10 for the 16-water orthorhombic unit cell and Fig. 2.11 for the

12-water hexagonal unit cell), for which the cell dimensions and molecular geometries

for each isomer are exactly the same. Moreover, each method yields the Cmc21

structure as the lowest-energy isomer. The isomers are arranged in Figs. 2.10 and

2.11 in order of increasing fraction of trans H-bonds and it is once again apparent

that this feature does not predict their relative energies. We can express the fraction

of trans H-bonds as a linear combination of the same three graph invariants used to

fit the energies,

% trans H-bonds = −3

4
Î4,9 +

3

8
Î1,6 −

3

16
Î1,3 +

11

16
. (2.21)

Comparing these coefficients to those listed for the energies in Table 2.3, we can see

that the only difference, apart from a scaling factor, is the sign of the coefficient for

invariant Î1,3.

After comparing energies from different methods calculated for exactly the same

geometries, we subsequently optimized geometries within the capabilities of each

method. For two of the methods, CPMD and DMol, the atomic positions were op-

timized with cell dimensions fixed. Those two cases are in very good agreement. In

the third method, CASTEP, the cell dimensions were optimized as well and, as would

be expected, this case deviates further from the other two. As shown in Figs. 2.10
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Figure 2.10: Relative energy of H-bond isomers calculated by periodic DFT meth-
ods for 16 isomers of an 8-water orthorhombic unit cell listed in order of increasing
fraction of trans H-bonds. The lowest graph (dotted lines) gives the fraction of trans
H-bonds associated with each isomer. The energy of the H-bond isomers were cal-
culated using the programs CPMD(•,◦), DMol(�,�), and CASTEP(N,△). Solid
lines: energy of H-bond isomers before geometry optimization. Dashed lines: ener-
gies after optimization of the molecular coordinates, and for the CASTEP results cell
dimensions as well. The 6 energy data sets, optimized and unoptimized, are plotted
with their average taken as the zero of energy to facilitate comparison of the relative
energies of the isomers. For clarity, the Cmc21 isomer is noted and the unoptimized
data sets are shifted by 0.12 kcal mol−1.

and 2.11, the overall trends do not depend on the choice of density functional, or the

optimization method. The lowest-energy isomer is the Cmc21 ferroelectric structure

in each case. Similar comparisons from calculations using empirical water poten-

tials indicated that the relative energetics of H-bond isomers differed by an order of

magnitude among the models and none had identified the Cmc21 structure as the

ground state [21]. While many commonly used empirical potentials do not give a

reliable description of H-bond energetics in ice, DFT calculations provide a robust

description.
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Figure 2.11: Relative energy of H-bond isomers calculated by periodic DFT methods
for 14 isomers of a 12-water hexagonal unit cell listed in order of increasing fraction
of trans H-bonds. The lowest graph (dotted lines) gives the fraction of trans H-bonds
associated with each isomer. The energy of the H-bond isomers were calculated using
the programs CPMD(•,◦), DMol(�,�), and CASTEP(N,△). Solid lines: energy
of H-bond isomers before geometry optimization. Dashed lines: energies after opti-
mization of the molecular coordinates, and for the CASTEP results cell dimensions
as well. The 6 energy data sets, optimized and unoptimized, are plotted with their
average taken as the zero of energy to facilitate comparison of the relative energies
of the isomers. For clarity, the Cmc21 isomer is noted and the unoptimized data sets
are shifted by 0.12 kcal mol−1.

As discussed above, the ab puckered sheets of the Cmc21 structure have a net

polarization. The polarization alternates from sheet to sheet making the ice XI struc-

ture anti-ferroelectric in the ab direction. Thus, the puckered sheets are slightly

displaced in the direction of the polarization, as shown in Fig. 2.13, by a magnitude

of ǫ/2, where ǫ is the relative displacement of two adjacent layers. Using the opti-

mized geometry of the 12-water Cmc21 structure, obtained using the CPMD [69–71]

program as described above, we calculated the distance between the center of mass
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for each of the ab layers. The calculated value, ǫ = 0.11 Å, is in agreement with the

experimentally determined value, ǫ = 0.12 Å [2].
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Figure 2.12: a) Graph invariant fit to the energies of the 14 H-bond isomers
of a 12-water hexagonal(•) unit cell and the 16 H-bond isomers of an 8-water
orthorhombic(N) unit cell of ice Ih. b) Calculated DFT energy of H-bond isomers of
a 48-water hexagonal ice Ih unit cell plotted against energies predicted from graph-
invariant parameters derived from the small unit cells. c) Graph-invariant fit to the
energies of the 63 “semi-randomly” chosen H-bond isomers of a 48-water hexagonal
unit cell of ice Ih. A line of slope unity is shown to indicate where points would lie
for perfect agreement.

Similar to ice VII, all first-order invariants for both the 12-water hexagonal and 8-

water orthorhombic unit cell were identically zero. Application of the projection oper-

ator for the totally symmetric representation on bond pairs in the 12-water hexagonal

unit cell resulted in thirteen second-order invariants for which five were linearly in-

dependent when evaluated for the enumerated H-bond configurations. Periodic DFT
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calculations using the CPMD [69–71] program, as described above, were performed

on all H-bond isomers. A good description of the energetics was obtainable using

only three invariant parameters, shown in Table 2.3. The invariants listed in Table

2.3 represent a set of linearly independent invariants from among those for which the

generating bond pairs are no further apart than one nearest-neighbor distance. Since

linear dependencies exist among the invariants when evaluated for configurations that

satisfy the ice rules, the choice of a set of independent parameters is arbitrary. Even

though Table 2.3 only includes second-order invariants generated from pairs in the

ab puckered sheets, the configuration of H-bonds in the c−direction is effectively

included because these invariants are linearly dependent on those listed in Table 2.3.

In the case of the 8-water orthorhombic unit cell, sixteen second-order invariants

exist for which six were linearly independent when evaluated for all enumerated H-

bond configurations. The energy of the H-bond isomers was well described using

invariants generated by the same three bond pairs as those that generated the invari-

ants used to predict the energy of the 12-water hexagonal unit cell, Table 2.3. The

generating bond pairs for the invariants used to describe the energies of H-bond iso-

mers in both unit cells are shown in Fig. 2.13. A combined fit of the DFT energies for

both types of unit cells, hexagonal and orthorhombic, plotted against the predicted

values using three invariant parameters is shown in Fig. 2.12.

Next, periodic DFT calculations were performed on a larger hexagonal unit cell,

containing 48 waters, measuring 2 × 2 × 1 primitive cells on each side. In order

to evaluate the convergence of the invariants achieved in the small unit cells, the

predicted energies of 63 H-bond configurations, chosen from the 8360361 symmetry-

distinct H-bond isomers possible in the larger unit cell [50, 51,68], were compared to
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generating bond 12-water 16-water 12 & 16-water 48-water
invariant bond pair type hex-(1 × 1 × 1) orth-(2 × 1 × 1) combined fit hex-(2 × 2 × 1)

1 1,3 ab,ab 0.0288485 0.0249965 0.0267952 0.0250812
2 4,9 ab,ab −0.0789488 −0.0775161 −0.0777339 −0.0952566
3 1,6 ab,ab 0.0346155 0.0416369 0.0359921 0.0481123

Table 2.3: Geometrical features and contribution to the description of the energy of H-bond isomers of the second-order
graph invariants. The indices of the generating bond pair refer to the H-bonds shown in Fig. 2.13. The H-bonds can be
described as either lying parallel, c−bonds, or perpendicular, ab−bonds, to the c−axis. The last four columns give the
fitting coefficients for each of the invariants as used in Eq. (2.15) for the energy in units of kcal mol−1 per water.
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Figure 2.13: a) An H-bond isomer of a 12-water primitive unit cell of ice Ih. Bonds
representative of the three 2nd-order graph invariants used to fit the DFT energies
are shown, as further described in Table 2.3. All bonds used to generate second-
order invariants, used to describe energy differences for H-bond fluctuations in a
large simulation cell, lie perpendicular to the c−axis and are referred to as ab−bonds.
b) An H-bond isomer of a 48-water unit cell of ice Ih measuring 2 × 2 × 1 primitive
cells on each side. Both H-bond isomers shown are the lowest-energy isomer for each
unit cell in agreement with the experimentally proposed ferroelectric, space group
Cmc21, ice XI structure. Arrows indicate direction of the relative displacement, ǫ/2,
of the ab layers which are oppositely polarized.

the actual DFT energy, shown in Fig. 2.12. The 63 configurations for the 2 × 2 × 1

cell were “semi-randomly” chosen, as described in section 2.4, to provide coverage of

the entire range of energies and test whether new invariants arising from the larger

cell were required to describe the energetics. The prediction from the small cells

does a good job at predicting the energies of the large-cell isomers, even better than

the small cell predictions of ice VII described above. Again, the small deviation

can be accounted for by the additional freedom for geometrical relaxation and more

effective k−point sampling at the Γ−point in the larger cell. As with ice VII, we only

require graph invariants generated by nearest-neighbor bond pairs to describe the

energy differences due to the numerous H-bond configurations in a large simulation
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cell. By refitting the invariant coefficients to the large cell energies, we are able

to, with Eq. (2.15), calculate the energy differences arising from the various H-bond

configurations in Metropolis Monte Carlo simulations of a large ice Ih system.

Monte Carlo simulations of ice Ih were performed, following the same procedure for

that of the ice VII simulations, using an orthorhombic cell measuring 7×4×4 primitive

cells on each side containing 896 water molecules. Average energy as a function of

temperature indicates that a first-order transition to the low-temperature proton-

ordered structure occurs near 98 K. The structure of the low-temperature phase is that

of the experimentally proposed ferroelectric Cmc21 structure, shown in Fig. 2.14. The

system exhibits negligible hysteresis, unlike that observed in the VII/VIII transition.

The entropy as a function of temperature, shown in Fig. 2.14, indicates that as ice

Ih is cooled, the system loses 11% of it configurational entropy before the transition,

in agreement with pre-transitional effects seen calorimetrically [17] and in diffraction

studies [5]. Only 1% of the configurational entropy for an ideal ice phase is lost below

the transition resulting in 88% of the ideal entropy lost at the transition.

2.6 Discussion

In this work, we have presented the results of statistical simulations used to predict

the proton order/disorder phase transition for two different ice systems, ices Ih/XI

and VII/VIII. Using an analytic technique, graph invariants, we have illustrated how

features of the H-bond topology can be linked to scalar physical properties, in this case

energy, and used to extrapolate data taken from calculations on small units cells to

calculate properties for simulation cells large enough to approach the thermodynamic
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Figure 2.14: a) Average energy plotted as a function of temperature from Metropolis
Monte Carlo simulations of a large simulation cell of ice Ih. Data is presented for series
of Metropolis Monte Carlo runs ascending(△) and descending(▽) in temperature. b)
Entropy plotted as a function of temperature. The horizontal line is the Pauling
entropy for a fully disordered ice lattice.

limit. Our results indicate that invariants generated by pairs of bonds, whose closest-

lying vertices are nearest neighbors, are appropriate to describing the energies of the

numerous H-bond isomers possible in a large unit cell.

The energy differences between the H-bond isomers in proton-disordered phases

of ice are quite small, indicating that careful checking of our theoretical methods is

needed. We have shown that DFT methods are capable of describing the subtle energy

differences between the various H-bond isomers possible in a given unit cell. We first

validated our methods by predicting the proton ordering phase transition for the ice

VII/VIII system. Our results yielded a transition to H-bond ordered ice VIII near

228 K which is in qualitative agreement with the experimental transition temperatures

263−274 K [44, 47]. We then reported on results from simulations of the ice Ih/XI
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phase which predicted that a transition should occur near 98 K to the proposed

ground state. This is in good agreement with the observed transition at 72 K(76 K)

for samples of H2O(D2O). The functionals and optimization methods explored in this

work correctly identified the ice VIII ground state from among the configurations

possible in ice VII. The fact that our calculations yield a transition temperature

close to the experimental results indicates that the energy spectrum of the H-bond

isomers, not just the ground state, is described by our methods. The quality of the

results for ice VII/VIII provides some calibration of our calculations for ice Ih/XI.

In this case, three different combinations of electronic density functionals, basis sets,

and optimization methods yielded similar energy spectra of the isomers. Our results

for ice Ih/XI provide support for the interpretation of experimental observations

as a transition to a ferroelectric Cmc21 structure. However, better experimental

characterization of the low-temperature phase and close comparison with theory are

certainly needed in the future.
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CHAPTER 3

PREDICTION OF A PHASE TRANSITION TO A

HYDROGEN BOND ORDERED FORM OF ICE VI

3.1 Introduction

In the phase diagram of water, the liquid phase is surrounded by a series of H-

bond-disordered ice phases. Ice-Ih (ordinary hexagonal ice) is the H-bond-disordered

solid phase adjacent to the liquid at low pressures. Then, in order of appearance with

increasing pressure, ice-III, ice V, ice VI and then ice VII are adjacent to the liquid

phase. Several of these phases give way to an H-bond-ordered version of themselves

at lower temperatures. Ice Ih, when suitably doped with hydroxide, transforms to

what is thought to be a ferroelectric phase, ice XI, near 72 K for H2O and 76 K for

D2O. [17, 34, 80–82] The oxygen atom positions in ice XI are very close to those of

ice-Ih, [2–5] and the transition principally involves selection of one particular H-bond

arrangement in the low-temperature phase. Ice III, when cooled at about 1 K per

minute or faster, transforms to a metastable H-bond-ordered version known as ice-

IX. [9,14,83–85] In the 2.1−12 GPa range, the H-bond-ordered form of ice VII, known

as ice VIII, appears near 0◦C. [44,47]

At low temperature, the H-bond-ordered form of ice VI has not been clearly

identified, although some experiments, as described below, give some preliminary
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indications of low-temperature, fully ordered phases. The purpose of this work is

to predict the structure of a low-temperature, H-bond-ordered form of ice VI, and

the temperature at which the transformation should be found. In accordance with

past practice, this new phase should be granted a roman numeral of its own, but

for now, following Kamb, [86, 87] we use primes to distinguish the H-bond-ordered

phase and call this phase ice VI′.2 Our predictions are based on a method we have

developed that enables us to use data from electronic structure calculations from

small unit cells to parametrize a Hamiltonian for a cell large enough for statistical

simulations. [19, 22, 51] The energy difference between various H-bond isomers of ice

is known to be rather small. [1] However, we have shown in chapter 2 that periodic

DFT successfully predicts the low-temperature structure and location of the phase

transition for ice-Ih/XI and ice VII/VIII. [19]

There is partial experimental evidence for the transformation of ice VI to an

H-bond-ordered form, but complete diffraction data that would identify the H-bond-

ordered version of ice VI is not available. In 1965, Kamb noticed an X-ray reflection at

77 K that was incompatible with the P42/nmc space group of ice VI and could have

signaled the formation of an H-bond-ordered version of ice VI. [86] Later, he reported

neutron diffraction data taken at 100 K on a sample previously equilibrated at high

pressure and 77 K which indicated anti-ferroelectric ordering. [87] In 1976, Johari

and Whalley predicted an ordering transition at 47 K to a ferroelectrically ordered

state in ice VI based on observed Curie-Weiss behavior of the low-frequency dielectric

constant. [88] Later, they concluded that the high frequency permittivity of ice VI

at 0.9 GPa indicated that a very slow phase transition occurs in the temperature

2Actually, Kamb uses VI′ to indicate a partially ordered phase, and VI′′ to denote the fully
ordered form of ice VI.
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Figure 3.1: Examples of different H-bond topologies possible for a 10-water unit cell
of ice VI. After the cell is periodically replicated, each water molecule is hydrogen-
bonded to four others, and the oxygen atoms are in nearly the same positions. The
black bonds are covalent, and the white bonds are hydrogen bonds.

range 123−128 K, but these experiments did not reveal the structure of the low-

temperature phase. Kuhs et al. [44] obtained neutron diffraction data on ice VI under

temperature and pressure conditions where ice VI is stable, unlike earlier diffraction

experiments where the diffraction experiments were performed at ambient pressure

on samples recovered from high-pressure cells. Their data, taken at 225, 125, and 8 K,

was not sufficient to fully determine the structure. They found no evidence of the

transformation observed by Johari and Whalley, [89] although the transition might

be too slow compared to their experimental time scales.
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In this chapter, we report periodic DFT calculations for many H-bond isomers of

ice VI, and the prediction of the low-temperature phase transition that results from

those calculations. Our calculations predict that H-bond-disordered ice VI should give

way to H-bond-ordered ice VI′ near 108 K. At this point, ice VI′ should be more stable

than ice VI, and at least be a metastable, if not the globally stable, phase. Factors

that might affect global stability are discussed in section 3.4. In section 3.2, we discuss

graph invariants as applied to proton-disordered ice VI. The periodic DFT [69, 71]

results are presented in section 3.3, and our predictions for the thermodynamic limit

are developed there.

3.2 Graph invariant theory for ice VI

The smallest unit cell we examined was the primitive unit cell containing 10 water

molecules (Fig. 3.2a). The projection operator for the totally symmetric represen-

tation, when applied to some of the bonds in Fig. 3.2a, Ĝ(br), did not always yield

zero, indicating that, algebraically, some first-order invariants exist. However, all the

first-order invariants vanished when evaluated for bond configurations allowed by pe-

riodicity and the ice rules. Applying the projection operator to bond pairs, Ĝ(brbs),

we find 22 linearly independent second-order invariants. Some of them, as is obvious

for those generated from projection on the square of one bond, Ĝ(brbr), evaluate to

constants. The remaining second-order invariants could be sorted into groups based

on the geometrical features of the generating bond pairs, such as whether the gener-

ating bond pair both lay in the same sub-lattice, and distance between the two bonds

of the generating pair. We found that only invariants generated by proximate bonds

had significant weight in the energy fit, and were the only invariants necessary to
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Figure 3.2: a) A fragment of ice VI, as viewed perpendicular to the c−axis, depicting
the 10-water primitive unit cell of ice VI, and some additional waters that help clarify
the bonding pattern. Labels for the bonds used to generate the graph invariants, as
described in Table 3.1, are indicated in the figure. The dashed lines represent H-
bonds emanating from waters not explicitly shown in the figure. b) A larger unit cell,
measuring

√
2 ×

√
2 × 2 primitive cells on each side, containing 40 water molecules

as viewed down the c−axis. The lowest-energy isomer, that of the ice VI′ phase, is
shown. It consists of two interpenetrating, but not interconnected lattices. Bonds
which appear horizontal in the figure all point to the left, while bonds that are vertical
all point downward.

achieve acceptable accuracy in fitting energy as a function of H-bond topology, as in

Eq. (2.15). The invariants which were significant are given in Table 3.1, where the

generating bond pairs are defined with reference to Fig. 3.2a. One main result, as

discussed in the previous chapter, is that invariants for a small unit cell are also in-

variants for a larger unit cell. A larger unit cell will, in general, also contain additional

invariants which are generated by projection on bond pairs brbs which are separated

further than possible in the smaller cell. At some point, we expect that addition of

further invariants involving bond pairs far from each other will make no improvement
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generating same sub- 10-water 10-water 40-water
invariant bond pair distance(Å) lattice? (Γ only) (2 × 2 × 2) (Γ only)

1 5,37 3.56 N 0.0484750 0.0467906 0.0469840
2 2,17 3.29 N 0.0128617 0.0224267 0.0161480
3 10,21 3.29 N 0.0502166 0.0552413 0.0451664
4 22,38 2.77 Y −0.0103455 −0.0105270 −0.0143332
5 9,20 0.00 Y −0.0088294 −0.0451725 −0.0367145
6 9,21 3.29 N −0.0328446 −0.0391773 −0.0383506
7 10,12 5.70 Y − − −0.0049708

Table 3.1: Geometrical features and contribution to the description of the energy of H-bond isomers of the second-order
graph invariants. Invariant 7 does not appear as a linearly independent invariant in the 10-water, primitive 1 × 1 × 1 cell
The indices of the generating bond pair refer to Fig. 3.2. The distance associated with each bond pair is the distance
between the closest vertices from each bond in an ideal structure before geometry optimization. The last three columns
give the fitting coefficients for each of the invariants as used in Eq. (2.15) for the energy in units of kcal mol−1 per water.
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in the energy [Eq. (2.15)]. At that point, the invariant expansion is converged and

electronic structure calculations on larger cells are no longer necessary. Furthermore,

even within a small unit cell we only require bond pairs that either share a common

vertex, or for whom br and bs contain vertices that are nearest neighbors. This is

confirmed below for ice VI. Therefore, the expansion for which second-order graph

invariants provide the leading term appears to converge quite rapidly.

Once the coefficients αrs have been determined from electronic structure calcu-

lations, the energy expression in Eq. (2.15) serves as the Hamiltonian for what is

effectively a spin-lattice model. While it is possible to derive analytic approximations

to solve this model, we have simply used relatively inexpensive Metropolis Monte

Carlo simulations to obtain predictions without introducing further approximations.

Extrapolation of electronic structure calculations to large cells using graph invari-

ants is essential. For example, Kuo and Klein [68] predicted that the ice VII/VIII

transition should occur at 150 K based on energetics of a cell consisting of 16 water

molecules. Using similar energetics as input to the graph invariant theory, a tran-

sition temperature of 228 K was calculated, in better agreement with experimental

reports of 274 K [47] and 263 K [44].

3.3 Results

Ice VI consists of two interpenetrating, but not interconnected lattices with a

tetragonal unit cell. The space group is P42/nmc. The lattice constants used in the

following calculations were a = 6.181 Å and c = 5.698 Å as determined by diffraction

experiments [44] in the region of stability of ice VI, at 1.1 GPa and 225 K. Kuhs et al.

report that the a− and c−axis lattice constants change by −0.15 Å(−2.4%) and
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0.10 Å(+1.8%), respectively, upon decreasing the temperature from 225 to 8 K at

1.1 GPa. [44] The smallest unit cell we examined was the primitive unit cell contain-

ing 10 water molecules. The 45 symmetry-distinct H-bond isomers possible in this

unit cell were enumerated, using previously described methods [50, 51, 68]. Geome-

try optimizations were performed on all 45 H-bond isomers using the CPMD [69–71]

program with periodic boundary conditions. We employed the BLYP gradient cor-

rection [72,73] to the local density approximation, Troullier-Martins norm-conserving

pseudopotentials [74], and a planewave cutoff 70 Ry in the DFT calculations. Sam-

pling of the Brillouin zone was either restricted to the Γ point, or sampling was

extended by way of a 2× 2× 2 k−point grid using the Monkhorst-Pack scheme. [90]
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Figure 3.3: a) Test of the ability of the graph invariant expansion, Eq. (2.15), to
fit the energies of the 45 H-bond isomers of a 10-water unit cell of ice VI. The filled
symbols are the energies calculated using only the Γ−point, and the open symbols are
a fit to the energies of 15 isomers calculated with 2×2×2 k−point sampling. b) Test
of the ability of graph invariant parameters derived from the 10-water cell to predict
energies of a larger 40-water cell. The filled symbols are a comparison for parameters
derived from Γ−point calculations for the 10-water cell. The open symbols are a
similar prediction using extended 2 × 2 × 2 k−point sampling. In both plots, a line
of slope unity is shown to indicate where points would lie for perfect agreement.

56



The ability of the expansion of Eq. (2.15), using invariants 1−6 of Table 3.1, to

fit the energies of the isomers of the 10-water unit cell is evaluated in Fig. 3.3a. The

fitted value is plotted as a function of the actual DFT energy. If a perfect fit was

achieved, all the points would lie on the diagonal. As can be seen from the figure,

even though the energy difference between isomers is quite small, the typical error

fitting Γ-point energies of the 45 symmetry-distinct isomers is a small fraction of the

energy range. Furthermore, we recalculated some of the energies using 2 × 2 × 2

k−point sampling and, among those isomers, the fit was even better.

As mentioned in section 3.2, any invariant present in a small unit cell is also an

invariant for a larger unit cell whose cell vectors are multiples of those of the smaller

cell. Fig. 3.3b shows that by the time we move beyond the 10-water cell, we are

very close to the point where the additional invariants that arise from larger cells

are not important in describing the energy of the H-bond isomers. We performed

DFT calculations for 54 isomers of a 40-water cell measuring
√

2 ×
√

2 × 2 primitive

cells on each side. The 40-water cell energies predicted using invariant functions

from the smaller 10-water cell with the coefficients determined from the smaller cell

calculation are compared with the calculated energies for the 40-water cell in Fig. 3.3b.

Using the coefficients from the Γ−point calculation for the small cell, we find that the

prediction from the small cell has the correct trend, but the prediction underestimates

the range of energies in the larger cell. Actually, this effect does not a indicate lack of

convergence of the invariant expansion, but rather the inadequacy of taking only the

Γ−point for the small cell. Coefficients determined by 2 × 2 × 2 k−point sampling

of the small cell, the open symbols in Fig. 3.3, yield an excellent prediction of the

energies in the 40-water cell. The larger cell, even though calculated at the Γ−point,
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effectively includes more k−point sampling than a Γ−point calculation for the small

cell. Therefore, the small-cell coefficients obtained with extended k−point sampling

do a better job predicting the energetics of the large cell. Ideally, one needs to

converge the energies with respect to k−point sampling for each cell size.

                                                  
a) b)

Figure 3.4: H-bond orientations of the ferroelectric ground state(a) and second lowest-
energy anti-ferroelectric structure(b) indicating the smallest repeating unit for each of
the independent lattices that generate the second lowest-energy isomer, as determined
from DFT calculations on a 40-water unit cell of ice VI, viewed perpendicular to the
c−axis. The H-bonds, in orientation (b), are anti-ferroelectrically oriented for each
lattice making the overall structure anti-ferroelectric. This arrangement of H-bonds
has tetragonal symmetry and is assigned the space group P212121 as determined using
the FINDSYM [8] program. The H-bonds parallel to the a− and b−axes point in
a counter-clockwise fashion as one looks down the c−axis. The bonds that must be
reversed to interconvert the two structures are circled on the left.
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Among the new invariants possible for the larger 40-water cell that are not present

in the 10-water cell, all the first-order invariants evaluated to zero for configurations

allowed by periodicity and the ice rules, just as they did for the smaller cell. We

included one of the new second-order invariants, invariant 7 in Table 3.1, for the

following reason. In the large unit cell, the two lowest-energy H-bond isomers, shown

in Fig. 3.4, are nearly degenerate. Invariant functions 1−6 in Table 3.1 have exactly

the same value for these two isomers. We therefore included a new second-order

invariant from the 40-water cell that broke the degeneracy between these isomers. As

can be seen from the last column in Table 3.1, the coefficient of this invariant is quite

small.

The lowest-energy structure of the 10-water unit cell was a ferroelectric structure

(Fig. 3.2 and Fig. 3.4a) whose space group is Cc, as confirmed using the FINDSYM

program. [8] We attempted to identify alternative low-energy structures for the larger

40-water cell using Monte Carlo sampling based on invariants obtained from the 10-

water cell, much like the Monte Carlo simulations described below. Of the low energy

structures identified in this way, the ferroelectric Cc structure was still the ground

state. The energy of an anti-ferroelectric structure of P212121 symmetry (right side

of Fig. 3.4) was only 4 K per water molecules higher in energy, as determined from

DFT calculations on the 40-water unit cell. The two structures actually have many

H-bonds oriented in the same way. Those bonds that must be reversed to go from

the ferroelectric to anti-ferroelectric structures are circled in Fig. 3.4. While the

electronic structure methodology we use has proved to be remarkably accurate for

the ice VII/VIII and Ih/XI transitions, the very small energy difference between

the two structures in Fig. 3.4 implies that both structures should be considered as
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candidates for the ground state of ice VI′. We explored the effect of reversing the

energetic ordering of the two structures shown in Fig. 3.4 by artificially changing the

sign of the coefficient of invariant 7 in Table 3.1, and report those results below.

Using the invariant parameters obtained from the 40-water unit cell and Eq. (2.15)

for the energy, we have an effective Hamiltonian describing H-bond fluctuations. In

essence, we have turned the H-bond order/disorder problem into a spin lattice model.

Metropolis Monte Carlo simulations were performed on a simulation cell measuring

five primitive unit cells on each side containing 1250 waters. The seven invariant

coefficients obtained from the 40-water unit cell were used to evaluate Eq. (2.15)

for the simulation cell. A series of simulations were performed for both decreasing

and increasing temperature. The lowest-energy isomer, as determined from DFT cal-

culations, was the starting configuration for the initial low-temperature simulation.

The final H-bond configuration in a preceding simulation was always the initial con-

figuration in the next simulation. A highly disordered configuration obtained from

simulation at an extremely large temperature (∼107 K) was used to initialize the

sequence of simulations descending in temperature. The simulations predict a first-

order phase transition near 108 K to the ferroelectric ground state identified from

calculations on the 10 and 40-water unit cells. As shown in Fig. 3.5, negligible hys-

teresis, 1−2 degrees, is observed from the series of simulations with decreasing and

increasing temperature. The predicted proton ordering transition temperature is lo-

cated in a region of the phase diagram where the ice II−VI and VI−VIII extrapolated

phase boundaries have not intersected. Partial H-bond ordering above the transition

and disordering below the transition is observed. Shown in Fig. 3.5b is 〈cos θab〉,

the average cosine between unit vectors in the direction of the total dipole for each
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Figure 3.5: a) Average energy plotted as a function of temperature from Metropolis
Monte Carlo simulations for a simulation cell of ice VI containing 1250 waters. b)
Ferroelectric ordering of the ice VI lattices as a function of temperature. Data is
presented for series of Metropolis Monte Carlo runs ascending(△) and descending(▽)
in temperature.

sub-lattice of the ice VI structure.

〈cos θab〉 =

〈
Ma · Mb

|Ma||Mb|

〉

(3.1)

In the above equation, Ma and Mb are the total dipole moments of the two sub-lattices

of the ice VI lattice calculated using a bond dipole approximation. Ferroelectric

ordering of the H-bonds takes place over a wide temperature range gradually starting

from above 300 K.

61



Even though the low-energy ferroelectric and anti-ferroelectric configurations

shown in Fig. 3.4 are quite close in energy, the simulations rapidly convert to the

ferroelectric configuration at all temperatures below the transition temperature. We

found no evidence of a barrier to this conversion. Given that the lowest-energy ferro-

electric and next-lowest-energy anti-ferroelectric structures are quite close in energy,

we sought to determine the effect of reversing the energetic ordering of these two

structures. We could accomplish this conveniently by changing the sign of the small

coefficient of invariant 7 in Table 3.1, the one added to distinguish the energy of these

two structures. After this change, the energies of the other configurations are barely

shifted. We find that reversing the energetic order of the two low-energy structures

causes ice VI′ to be anti-ferroelectric, but the transition occurs within 2 K of the

transition to the ferroelectric phase found with the original parameters.
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Figure 3.6: Entropy plotted as a function of temperature calculated from Metropolis
Monte Carlo simulations on a 1250-water simulation cell. The horizontal line is
the Pauling entropy for a fully disordered ice lattice. With decreasing temperature,
29.8% is lost before the transition, 45.5% at the transition, and 24.7% is lost as the
ferroelectric ground state is formed.
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Entropy as a function of temperature is shown in Fig. 3.6. The entropy of the

low-temperature phase was calculated by thermodynamic integration from 0 K and

that of the high-temperature phase from infinite temperature. The entropy at infinite

temperature is taken to be the Pauling entropy for a fully disordered arrangement

of H-bonds in ice. With decreasing temperature, 29.8% of entropy is lost before the

transition while 24.7% is lost after the transition. The calculated entropy at the

transition is 45.5% of the ideal value for a fully disordered ice phase.

3.4 Discussion

In this work, we have presented the results of DFT calculations on H-bond isomers

for two unit cells of ice VI. The lowest-energy H-bond isomer in each case was ferro-

electric, space group Cc. From calculations on a larger unit cell, an anti-ferroelectric

H-bond isomer was identified lying 4 K per molecule higher in energy. This configu-

ration was assigned the space group P212121.

From application of graph invariants and DFT calculations on small unit cells,

the energy differences in H-bond fluctuations for a large simulation cell, containing

1250 waters, could be calculated. A first-order phase transition to the proton-ordered

ferroelectric ground state (Fig. 3.4a) was observed near 108 K. We note that an

anti-ferroelectric structure (Fig. 3.4b) lies very close to the ferroelectric structure

in energy. If more accurate electronic structure calculations would indicate that

the anti-ferroelectric structure is actually lower in energy, our explorations with the

anti-ferroelectric structure as the ground state reported in section 3.3 suggest that we

would find a transition at almost the same temperature, but to an anti-ferroelectrically

ordered phase.
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We have shown that H-bond-disordered ice VI gives way to a proton-ordered

phase near 108 K. While we have shown that the ordered phase is more stable than

ice VI, establishing this phase as the global minimum in this portion of the phase

diagram is another, and more difficult matter. To establish whether ice VI′ is globally

stable we would have to determine whether there exists another phase with a different

underlying oxygen lattice that supersedes ice VI′ as the stable phase in this region. In

fact, this scenario does occur in the case of ice III, which can order into metastable ice

IX which is superseded by the more stable ice II. There is also a possibility that ice VI

might give way to either ice II or ice VIII at low temperatures. In the phase diagram

of ice, the range of pressure where ice VI is stable seems to shrink as temperature is

lowered, as the ice II and VIII regions expand. If the ice II and VIII regions would

expand and meet at low temperature, providing a lower bound to the ice VI phase,

then our ice VI′ phase would be metastable with respect to either ice II or VIII. At

our calculated transition temperature of 108 K, ices II and VIII are typically drawn

as separate, [1] but the phase diagram is not well characterized in this region. In

summary, we cannot exclude another phase intervening and rendering ice VI′ only

metastable. However, even in such a case (like ice III/IX) experimental evidence for

the metastable phase may be obtained.

In our calculations, significant proton ordering was observed above the transition

over a wide temperature range. This should be observable in calorimetric experiments

provided that H-bond arrangements can equilibrate on an experimental time scale.

(The H-bonds in phases such as ices VII and VIII seem to reach equilibrium on an

experimental time scale, while those in ices Ih and XI do not.) Even below the transi-

tion, the degree of residual proton disorder is much larger than we found in ice XI or
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ice VIII. We were somewhat surprised that, despite the near degeneracy of ferroelec-

tric and anti-ferroelectric structures, fluctuations to anti-ferroelectric configurations

do not persist to lower temperatures. Simulations initialized with the H-bond con-

figuration of the second lowest-energy anti-ferroelectric isomer rapidly transformed

to the ferroelectric ground state, indicating that factors beside energetics (i.e. en-

tropic factors) seem to also favor the ferroelectric state. In Fig. 3.5b, we see that

the dipole moment of the sub-lattices have nearly complete ferroelectric order at all

temperatures below the transition. In conclusion, we have predicted that ice VI will

transform into an H-bond-ordered phase near 108 K, and have identified the likely

low-temperature phase as ferroelectric with an anti-ferroelectric structure close by in

energy.
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CHAPTER 4

A REEXAMINATION OF THE ICE III/IX HYDROGEN

BOND ORDERING PHASE TRANSITION

4.1 Introduction

The phase diagram of ice contains numerous stable and metastable phases over a

range of pressures and temperatures. A number of these phases are hydrogen bond

(H-bond) disordered, and when cooled to lower temperatures, under appropriate con-

ditions, they transform to proton-ordered crystals. At low pressures, these H-bond

ordering transitions occur via molecular rearrangements of the water molecules. At

atmospheric pressure, proton-disordered ice Ih transforms to what is believed to be

ferroelectric ice XI near 72 K for H2O and 76 K for D2O in the limit of vanishing hy-

droxide dopant [17,34,80–82]. When cooled faster than 1 K per minute, ice III trans-

forms to metastable proton-ordered ice IX, which exists in the stability region of ice

II. [83–85,91] Ice VII transforms to its proton-ordered counterpart, anti-ferroelectric

ice VIII, between 2.1−12 GPa at constant temperature. At still higher pressures,

the transition temperature abruptly decreases as the mechanism of transformation

changes from molecular rearrangement to proton tunneling across the shortened H-

bond.
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The stability region of ice III occupies a small portion of the phase diagram, in

comparison to the other stable phases, extending from 240−260 K and 0.2−0.4 GPa.

The unit cell, first identified by Tammann in 1900 [92], is described by a tetragonal

arrangement of oxygen atoms, space group P41212, as determined by X-ray [83,93,94]

and neutron [12, 14, 95] diffraction experiments. Proton order was suggested by in-

frared spectra [96] near 100 K, and later confirmed when dielectric experiments [84]

indicated that a progressive ordering takes place as the temperature is lowered from

210 to 165 K. Ice III, when cooled at about 1 K per minute or faster, transforms to

a metastable H-bond-ordered version known as ice IX which has the same symme-

try as its proton-disordered counterpart. [9, 14, 83–85] Subsequent warming of ice IX

back across the transition results in the formation of ice II, the stable phase in this

region of the phase diagram. The space group P41212 allows for the possibility that

the H-bonds may be partially ordered or disordered in ices III and IX respectively.

La Placa et al. [9] identified one of four possible H-bond arrangements possessing

the appropriate symmetry, configuration (d) in Fig 4.1, to be the structure of ice

IX, in agreement with earlier suggestions [83, 84]. The error in their refinement was

acceptable only after deuterons were allowed to fractionally occupy sites other than

those of the dominant H-bond arrangement. They proposed that this disagreement

with dielectric experiments [84], which suggested a fully ordered structure, may have

resulted either from the rate of cooling or as a feature of the ice IX structure. Calcu-

lations reported by Handa et al. [97] also suggested that ice IX is fully ordered, but

their calculated heat of transition is almost twice that measured by Nishibata and

Whalley [85]. This discrepancy has yet to be resolved.
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Using a differential calorimetric technique, Nishibata and Whalley [85] measured

the heat of transition, −56 cal mol−1, for the ice III−IX phase transition. The

measured change in entropy, −0.32 cal K−1 mol−1, is nearly 40% of the expected

value if ice III is fully disordered and ice IX fully ordered. This suggests that to some

degree, ice IX is partially disordered and ice III partially ordered. Neutron diffraction

experiments are able to determine occupational probabilities for deuteron sites. The

symmetry of the ice III/IX structures permits the probabilities of protons residing in

one of two possible sites along a given H-bond to be summarized by two occupancy

probabilities, α or β, as shown in Fig 4.1. For the ice IX structure, Londono et al. [14]

determined that α and β were 2.9 and 5.6% respectively, in agreement with earlier

reported values of α = 3.4% and β = 5.1%. [9] For partially ordered ice III, Londono et

al. [14] determined that α and β were 33 and 41% respectively. With samples of higher

quality and a more flexible refinement, Lobban et al. [12] determined that α = 35%

and β = 50%. Mean field statistical mechanical models have been developed to

approximate the configurational entropy of partially ordered structures using these

occupational probabilities as input. [11, 87, 98, 99] The most recent of which is able

to account for multiple occupational parameters which is necessary in ices III and V.

[100] Lobban et al. [12] have discussed how their diffraction data used in conjunction

with these models imply changes in entropy at the ice III/IX transition significantly

different than that reported by Nishibata and Whalley. [85] Our results from statistical

simulations, as discussed below, may provide insight into this discrepancy.

In this chapter, we report results from periodic DFT calculations for many H-

bond isomers of ice III, extended to a full statistical mechanical theory of the ice

III/IX phase transition using graph invariants. [19,22,23,51] Our calculations indicate
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that proton-disordered ice III is partially ordered before transforming to partially

disordered ice IX, near 126 K, which becomes fully ordered at lower temperatures. In

section 4.2, we present a brief review, from section 2.2, of the graph invariant theory

by which we calculate energy differences among H-bond isomers in a large simulation

cell using data extrapolated from DFT [69, 71] calculations on small systems. The

results of periodic DFT calculations are presented in section 4.3 where we discuss

the necessity of a converged k−point sampling if the ground state is to be correctly

identified. We then report the results from statistical simulations on a large unit cell

of ice III comparing our results to available experimental data and mean field models

in section 4.4. We conclude with a discussion of our results and their implications.

4.2 Graph Invariants for Ice III

Hydrogen bonds are directional, with the convention taken that H-bonds point

from the covalently bonded hydrogen of a donor molecule to the lone pair on oxygen of

an acceptor molecule. In all but the highest pressure phases of ice, each water molecule

donates two hydrogen bonds with nearest-neighbor acceptor molecules and accepts

two H-bonds from nearest-neighbor donor molecules. There can be many H-bond

arrangements which satisfy these so-called “ice rules” [101], leading to the existence of

several H-bond-disordered phases of ice. The small entropy differences among these H-

bond isomers lead to transitions to ordered phases at lower temperatures. As shown in

chapter 2, the H-bond network can be summarized mathematically as vertices, oxygen

atoms, connected by directed lines, H-bonds. The oriented graph representing an H-

bond isomer of an ice lattice is specified by a set of bond variables, br for the rth bond,

which take the values ±1 depending on whether the H-bond points along, or opposite
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to, an arbitrarily defined canonical orientation. The oxygen atoms, or vertices in this

representation, essentially remain stationary during the proton ordering transition.

The transformation of ice Ih to ice XI results in a compression along the a− and

c−axes of only −0.75% and −0.36% respectively, and an elongation of the b−axis of

0.84%. [5] Similar changes are observed in the proton ordering transformation of ice

VII in which the a− and c−axes differ by −1.0% and 2.0% respectively. The lattice

constants change by +0.4% and −3.3% for a and c respectively when ice III is cooled

from 250 to 165 K to form ice IX. [14] In the discussion section, we estimate the effect

that the volume change might have on the ice III/IX transition.

In our work to date on proton ordering transitions in ice, we have obtained good

agreement with available experiments assuming that Avib,i, the vibrational free energy

in each of the H-bond isomers, is approximately the same: Avib,i ≈ Avib. Then the

problem reduces to estimating the energy Ei of each of the symmetry-distinct isomers.

We determine the Ei’s by expressing them as a sum of first- and second-order graph

invariants.

E(b1, b2, . . .) = E0 +
∑

r

αrIr(b1, b2, . . .) +
∑

rs

αrsIrs(b1, b2, . . .) (4.1)

In the above equation, E0 is an overall constant for the energy, and the sums are

over first- and second-order invariant functions of the bond variables, Ir(b1, b2, . . .)

and Irs(b1, b2, . . .) respectively. We identify the first-order invariants with a single

subscript “r” to indicate the bond from which the invariant is generated by action of

the projection operator. Obviously, several bonds can generate the same invariant so

the notation is not unique. Second-order invariants are denoted with a double sub-

script “rs” to indicate the bond pair brbs that is projected. Typically, the first-order

invariants, in Eq. (4.1) vanish either because of symmetry or the constraints of the
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Figure 4.1: Examples of H-bond configurations of the primitive unit cell of ice III
which have P41212 symmetry and obey periodic boundary conditions. After the cell
is periodically replicated, each water molecule is hydrogen bonded to four others. The
black bonds are covalent and the white bonds are hydrogen bonds. The space group
P41212 allows for two occupational probabilities, α and β, to describe the H-bond
topology. If one site of an H-bond has a probability of being occupied of α, then the
other site, within the same H-bond, has a probability of (1 − α). All proton sites
related by symmetry have the same occupational probability. The configurations are
labeled (a,b,c,d) corresponding to those configurations considered in Ref. [9], with
configuration (d) representing the fully ordered ice IX structure where α and β equal
zero. Configurations (c) and (d) differ in that all H-bonds are reversed. Oxygen atoms
found in adjacent unit cells are shown for identification of structural data found in
Tables 4.2 and 4.3. O(1)i and O(2)i identify two families of symmetry-related oxygen
atoms in the unit cell of ice III. Oxygen atom O(1)4 is hydrogen bonded to H(7)−O(2)
as indicated by the arrow.
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ice rules. The two exceptions to date are ices III and V where first-order invariants

provide the leading dependence in our expression for energy. The coefficients αrs are

determined by fitting to the results of periodic DFT calculations. If the approxima-

tion Avib,i ≈ Avib would break down, then an alternative would be to fit the Avib,i to

invariants with an expression similar to the energy expansion in Eq. (4.1). The small-

est unit cell we examined was the primitive unit cell containing 12 water molecules

(Fig. 4.2).

The bonds in the unit cell of ice III belong to one of three sets (orbits) of symmetry-

related bonds. The projection operator for the totally symmetric representation, when

applied to the bonds in Fig. 4.2, Ĝ(br), yielded three unique, linearly-independent

first-order invariants. Applying the projection operator to bond pairs, Ĝ(brbs), we

find 45 unique, linearly independent second-order invariants. Some of them, as is

obvious for the three generated from projection on the square of one bond, Ĝ(brbr),

evaluate to constants for pure water ice with no defects. Their effect is included

by the constant E0 in Eq. (4.1). The remaining second-order invariants could be

sorted into groups based on geometrical features of the generating bond pairs, such

as the distance between the two bonds of the generating pair. We found that energy

as a function of the H-bond topology could be fit with acceptable accuracy using

only invariants generated by proximate bonds. The invariants which were significant

are given in Table 4.1, where the generating bond pairs are defined in reference to

Fig. 4.2a.

One main result from the previous chapters is that invariants for a small unit

cell are also invariants for a larger unit cell. A larger unit cell will, in general, also

contain additional invariants which are generated by projection on bond pairs brbs
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generating occupancy 12-water 12-water 48-water
invariant bonds distance(Å) parameter (Γ only) (2 × 2 × 2) (Γ only)

1 2,3 2.73 α,α −0.0189300 −0.0355877 −0.0319170
2 1,4 3.45 α,α −0.0048711 0.0312539 −0.0186354
3 1,3 2.73 α,α −0.0213581 0.0173227 −0.0554111
4 4,9 2.98 α,β −0.0153386 −0.0383516 −0.0125568
5 8,17 2.73 α,α 0.1087494 0.0599093 0.1050547
6 3,17 0.00 α,α 0.0942803 0.0990837 0.1047808
7 15,17 2.73 β,α −0.1012657 −0.0717686 −0.0923311
8 17,18 2.73 α,α −0.1087226 −0.1222358 −0.0597738
9 9 − β 0.0697125 −0.0079468 −0.0091154

Table 4.1: Geometrical features and contribution to the description of the energy of H-bond isomers of the first- and second-
order graph invariants. The indices of the generating bond pair refer to Fig. 4.2. The distance associated with each bond
pair is the distance between the closest vertices from each bond in an ideal structure before geometry optimization. The
occupancy parameters to which each H-bond contributes are identified. The last three columns give the fitting coefficients
for each of the invariants as used in Eq. (4.1) for the energy in units of kcal mol−1 per water.
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which are separated further than possible in the smaller cell. At some point, we

expect that addition of further invariants involving bond pairs far from each other

will make no improvement in the energy [Eq. (4.1)]. At that point, the invariant

expansion is converged and electronic structure calculations on larger cells are no

longer necessary. In practice, we have found that calculations on relatively small

unit cells are sufficient, provided convergence with respect to k−point sampling has

been reached. Furthermore, even within a small unit cell we only require bond pairs

that either share a common vertex, or for whom br and bs contain vertices that are

nearest-neighbors. This is confirmed below for ice III. Therefore, the expansion for

which Eq. (4.1) is the leading term appears to converge quite rapidly.

Once the coefficients αrs have been determined from electronic structure calcu-

lations, the energy expression in Eq. (4.1) serves as the Hamiltonian for what is

effectively a spin-lattice model. While it is possible to derive analytic approximations

to solve this model, we have simply used relatively inexpensive Metropolis Monte

Carlo simulations to obtain predictions without introducing further approximations.

Extrapolation of electronic structure calculations to large cells using graph invari-

ants is essential. For example, Kuo and Klein [68] predicted that the ice VII/VIII

transition should occur at 150 K based on energetics of a cell consisting of 16 water

molecules. Using similar energetics as input to the graph-invariant theory, a tran-

sition temperature of 228 K was calculated, in better agreement with experimental

reports of 274 K [47] and 263 K [44]. Furthermore, some extrapolation procedure like

graph invariants is required for a full statistical mechanical theory, without which one

cannot obtain predictions of fractional occupancies for comparison with diffraction

experiments or thermodynamic quantities for comparison with calorimetry. Using
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only small unit cells without extrapolation [102], one obtains diffuse heat capacity

peaks shifted from the ultimate thermodynamic limit and unreliable occupancies.

4.3 Periodic DFT and Parametrization of Graph Invariants

The lattice constants used in the following calculations were a = 6.666 Å and

c = 6.936 Å as determined by diffraction experiments [14] in the region of stabil-

ity of ice III, at 0.28 GPa and 250 K. The smallest unit cell we examined was the

primitive unit cell containing 12 water molecules. The 102 symmetry-distinct H-bond

isomers possible in this unit cell were enumerated, using previously described meth-

ods [50, 51, 68]. Geometry optimizations were performed on all 102 H-bond isomers,

using the CPMD [69–71] program with periodic boundary conditions. We employed

the BLYP gradient correction [72, 73] to the local density approximation, Troullier-

Martins norm-conserving pseudopotentials [74], and a plane wave cutoff of 70 Ry in

the DFT calculations. Sampling of the Brillouin zone was either restricted to the

Γ−point or extended by way of a 2 × 2 × 2 k−point grid, using the Monkhorst-Pack

scheme. [90]

The ability of this level of electronic structure theory to describe the small en-

ergy differences among H-bond isomers of ice has been addressed in chapter 2. This

methodology identifies the correct low-temperature phase of the ice Ih/XI, VII/VIII,

[19] and, in this chapter, III/IX [24] systems. Furthermore, because the transition

temperatures are in qualitative agreement with experiment we have some confidence

that the energies of higher-lying isomers are adequately described. For ice Ih, we

have calculated the energies of the H-bond isomers using different combinations of

density functionals and basis sets, finding good agreement. [19] This contrasts with
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Figure 4.2: (a) A 12-water primitive unit cell of ice III, as viewed down the c−axis,
which defines the canonical orientation with all bond variables, br, equal to +1. The
labels indicate which bonds were used to generate the graph invariants, as described
in Table 4.1. (b) A larger unit cell, measuring

√
2 ×

√
2 × 2 primitive cells on each

side, containing 48 water molecules as viewed down the c−axis. The lowest-energy
isomer, corresponding to the experimentally determined ice IX structure, is shown
for both cases. The lowest-energy isomer of the 12-water unit cell only agreed with
experiment when sufficient k−point sampling was achieved.

the situation for commonly used empirical potentials which can differ in their predic-

tions of energy differences among H-bond isomers by an order of magnitude and fail

to identify the correct ground state. [21] Finally, structural features like sub-lattice

shifts in ice XI and ice VIII [68] are in agreement with experimentally observed val-

ues. The ability of the expansion of Eq. (4.1), using invariants 1−9 of Table 4.1, to

fit the energies of the isomers of the 12-water unit cell is evaluated in Figure 4.3a.

The fitted value is plotted as a function of the actual DFT energy. If a perfect fit was

achieved, all the points would lie on the diagonal. As can be seen from the figure,

even though the energy difference between isomers is quite small, the typical error

fitting Γ−point energies of the 102 symmetry-distinct isomers is a small fraction of
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the range of energy differences. The lowest Γ−point energy structure of the 12-water

cell was configuration (c) of Fig. 4.2 in which all bonds are reversed compared to the

experimentally determined structure, configuration (d) of Fig. 4.2. This ground state

calculated using Γ−point sampling, which we will eventually show is inadequate for

the 1 × 1 × 1 cell, is found 43 K per molecule below the dominant H-bond config-

uration found experimentally for ice IX. Our results are consistent with another set

of recent calculations limited to the Γ−point [102] where it was shown that the rela-

tive energies between this structure and the ice IX structure were insensitive to the

method of calculation or changes in lattice constants. However, when we recalculated

the energies using an extended k−point sampling, the experimental ice IX structure

was now the ground-state H-bond isomer, with the other configuration lying 11 and

14 K per molecule higher in energy with a 2× 2× 2 and 4× 4× 4 k−point sampling,

respectively.

We next calculated the DFT energies of 50 isomers of a 48-water cell measuring

√
2×

√
2× 2 primitive cells on each side. Using Γ−point sampling, the ground-state

isomer for this unit cell was that of the fully ordered version of ice IX. The energy

difference between this structure and the H-bond isomer with all bonds reversed was

13 K per molecule. This value is in good agreement with the energies calculated

using extended k−point sampling for the smaller cell, reflecting that moving to the

larger unit cell increases the effective k−point sampling. Calculations extended with

a 2 × 2 × 2 k−point sampling also yielded an energy difference of 13 K per molecule

thus indicating we have reached convergence with respect to k−point sampling. The

48-water cell energies predicted by using invariant functions from the smaller 12-water

cell with the coefficients determined from the smaller cell calculations are compared
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Figure 4.3: (a) Test of the ability of the graph-invariant expansion, Eq. (4.1), to fit
the Γ−point energies of the 102 symmetry-distinct H-bond isomers of a 12-water unit
cell of ice III. (b) Test of the ability of graph-invariant parameters derived from the
12-water cell to predict energies of a larger 48-water cell. The filled symbols are a
comparison for parameters derived from Γ−point calculations for the 12-water cell.
The open symbols are a similar prediction with extended 2×2×2 k−point sampling.
In both plots, a line of slope unity is shown to indicate where points would lie for
perfect agreement.

with the calculated energies for the 48-water cell in Fig.4.3b. As mentioned in section

4.2, any invariant present in a small unit cell is also an invariant for a larger unit cell

whose cell vectors are multiples of those of the smaller cell. Using the coefficients

from the Γ−point calculations for the small cell, we find that the prediction from

the small cell is not adequate to predict the energies of the larger cell. Actually,

this does not indicate lack of convergence of the invariant expansion, but rather the

inadequacy of taking only the Γ−point for the small cell. Coefficients determined
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by extended k−point sampling of the small cell, the open circles in Fig. 4.3b, yield

an excellent prediction of the energies in the 48-water cell. The larger cell, even

though calculated at the Γ−point, effectively includes more k−point sampling than a

Γ−point calculation for the small cell. Therefore, the small-cell coefficients obtained

with extended k−point sampling do a better job predicting the energetics of the larger

cell. Ideally, one needs to converge the energetics with respect to k−point sampling

for each cell size. Our previous work was based on invariants derived from larger unit

cells and should be close to convergence with respect to k−point sampling.

We re-optimized the ground state and second lowest-energy H-bond isomers, con-

figurations (d) and (c) in Fig. 4.1 respectively, increasing the plane-wave cutoff to

90 Ry. Geometric data, such as bond lengths and angles, from these structures are

reported in Tables 4.2 and 4.3. The structural data obtained from the calculations

are in general agreement with the trends observed in diffraction experiments. [9, 14]

Differences are observed when comparing data from the second lowest-energy iso-

mer with the experimental and calculated structures of ice IX. Notable deviations

between configuration (c) and experiment are ∠O(1)1-H(6)- - -O(2), ∠O(2)-H(7)- -

-O(1)2, ∠O(1)3-O(2)-O(1)5, ∠O(1)1-O(1)-O(2)1, and ∠O(1)1-O(2)-O(1)3 with differ-

ences reaching as large as 11◦. Optimization of the ground-state isomer using ice

IX lattice constants brings the calculated structural data into closer agreement with

experiment.

4.4 Statistical Mechanical Results

Using the invariant parameters obtained from the 48-water unit cell and Eq. (4.1)

for the energy, we have an effective Hamiltonian for a spin-lattice model describing
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config. (d) config. (d) config. (c) ice XI [9] ice XI [14]
vol.=ice III vol.=ice IX vol.=ice III 0.0 kbar,110 K 0.0 kbar, 30 K

O(1)-H(5) 0.993 0.993 0.993 0.977 0.991
O(1)1-H(6) 0.992 0.992 0.994 0.972 0.983
O(2)-H(7) 0.994 0.994 0.993 0.979 0.940

H(5)- - -O(1)1 1.702 1.734 1.721 1.789 1.759
H(6)- - -O(2) 1.781 1.765 1.700 1.813 1.839
H(7)- - -O(1)2 1.717 1.761 1.763 1.821 1.832

O(1)-H(5)- - -O(1)1 2.684 2.713 2.695 2.750 2.738
O(1)1-H(6)- - -O(2) 2.756 2.737 2.683 2.763 2.802
O(2)-H(7)- - -O(1)2 2.700 2.751 2.738 2.793 2.768

Table 4.2: Average molecular distances for ice IX obtained from neutron diffraction experiments [9, 14] and the present
DFT calculations on a unit cell containing 48 water molecules with the cutoff for the plane wave expansion increased to
90 Ry to converge bond distances and angles. Further increasing the plane wave cutoff to 120 Ry did not significantly
alter the geometry. The first two columns are the lowest-energy isomer, corresponding to fully ordered ice IX, with unit
cell volumes corresponding to ices III and IX respectively. Data for configuration (c), the isomer where all H-bonds are
reversed compared to ice IX, is included for comparison. It should be noted that the hydrogen positions listed in the first
column refer to the structure of ice IX, configuration (d). The hydrogen positions for both configurations are defined in
Fig. 4.1. Experimental values, using partially ordered models, are shown in the last column. Distances are reported in
units of Ångströms(Å).
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config. (d) config. (d) config. (c) ice XI [9] ice XI [14]
vol.=ice III vol.=ice IX vol.=ice III 0.0 kbar,110 K 0.0 kbar, 30 K

∠H(5)-O(1)-H(6) 105.7 105.7 105.3 106.0 106.7
∠H(7)-O(2)-H(7) 104.8 104.7 105.9 104.7 110.1
∠O(1)-H(5)-O(1)1 168.5 168.1 166.9 167.2 168.7
∠O(1)1-H(6)-O(2) 166.9 165.8 170.6 165.0 165.5
∠O(2)-H(7)-O(1)2 170.3 173.4 166.6 174.6 173.3
∠O(1)2-O(1)-O(1)1 114.1 112.6 113.7 112.7 112.6
∠O(1)3-O(2)-O(1)5 93.1 93.1 102.8 90.9 89.4
∠O(1)2-O(1)-O(2)1 141.4 144.4 143.4 143.7 143.7
∠O(1)1-O(1)-O(2)1 98.2 98.1 90.4 98.2 97.8
∠O(1)-O(2)-O(1)3 103.7 105.6 100.9 106.1 −
∠O(2)-O(1)-O(2)1 101.5 101.0 105.9 99.2 97.6
∠O(2)-O(1)-O(1)1 92.2 93.1 93.6 91.9 91.4
∠O(1)-O(2)-O(1)5 130.7 129.3 128.7 128.1 127.4
∠O(2)-O(1)-O(1)2 97.9 96.3 99.9 96.9 99.6
∠O(1)-O(2)-O(1)4 99.4 99.0 98.6 100.8 106.1

Table 4.3: Average molecular angles for ice IX obtained from neutron diffraction experiments [9,14] and the present DFT
calculations. The table is organized similar to Table 4.2 with angles reported in units of degrees(◦).
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H-bond fluctuations. Metropolis Monte Carlo simulations were performed on a sim-

ulation cell measuring five primitive unit cells on each side containing 1250 waters.

The nine invariant coefficients obtained from the 48-water unit cell were used to eval-

uate Eq. (4.1) for the simulation cell. A series of simulations were performed for both

decreasing and increasing temperature. The lowest-energy isomer, as determined

from DFT calculations, was the starting configuration for the initial low-temperature

simulation. The final H-bond configuration in a preceding simulation was always

the initial configuration in the next simulation. A highly disordered configuration

obtained from simulation at an extremely large temperature (∼107 K) was used to

initialize the sequence of simulations descending in temperature. Comparison of the

ascending and descending temperature sequences exhibited negligible hysteresis, sug-

gesting that the simulations were adequately equilibrated. The simulations predict a

first-order phase transition near 126 K to the anti-ferroelectric ground state identi-

fied from calculations on the 12- and 48-water unit cells with 2 × 2 × 2 and Γ−point

sampling respectively.

Entropy as a function of temperature is shown in Figure 4.4b. The entropy of

the low-temperature phase was calculated by thermodynamic integration from 0 K,

and that of the high-temperature phase integrating from infinite temperature. The

entropy at infinite temperature is taken to be Nagle’s result for the Pauling entropy

for a fully disordered arrangement of H-bonds in ice [10]. With decreasing temper-

ature, 29.7% of the entropy is lost before the transition while 2.6% is lost after the

transition. The calculated entropy at the transition is 67.7% of the ideal value for

a fully disordered ice phase which is larger than the experimentally observed change

in entropy, 40% [85]. In the discussion section, we explain how taking the lattice
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Figure 4.4: (a) Average energy plotted as a function of temperature from Metropolis
Monte Carlo simulations for a simulation cell of ice III containing 1500 waters. En-
ergies are presented for a series of Metropolis Monte Carlo runs ascending(△) and
descending(▽) in temperature. (b) Entropy from the present work (thick solid line)
plotted as a function of temperature where the horizontal line is the Pauling entropy
for a fully disordered ice lattice. With decreasing temperature, 29.7% is lost before
the transition, 67.7% at the transition, and 2.6% as the fully ordered ice IX structure
is formed. In addition, entropy as a function of temperature calculated using the
occupational probabilities, α and β obtained from our simulations, is plotted using
the one parameter expressions of Nagle(△) [10] and Howe and Whitworth(▽) [11].
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distortion that accompanies the phase transition into account would further lower

the transition entropy. Also plotted in Figure 4.4b is predicted entropy as a function

of temperature calculated using various mean-field theories with the occupational

probabilities, α and β, obtained from our simulations as input. The occupational

parameter α is shown in Fig. 4.5. Our value for α, 38%, at the transition is close to

the experimental values, 33% [14] and 35% [12]. Our β, 38%, is close to the value

extracted from one diffraction experiment, 41% [14], but rather low compared to a

more recent report, 50% [12].

0 50 100 150 200 250 300
T(K)

0

0.1

0.2

0.3

0.4

0.5

α

Figure 4.5: Occupational probability, α, plotted as a function of temperature. In the
fully disordered ice III and fully ordered ice IX phases, the occupational probabilities
are α = 50% and 0% respectively. From our simulations, α ≈ β at all temperatures,
so only α is shown. Data are presented for a series of Metropolis Monte Carlo runs
ascending and descending in temperature. The dashed line corresponds to the occu-
pational parameter as a function of temperature obtained from the model of Howe
and Whitworth [11] using entropies from our simulations as input.

In our simulations, the value of β never significantly differed from α, so we could

effectively model the system with a one parameter theory for partially disordered ice

systems. Using the average of α and β as the single occupational probability for
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each temperature, predicted entropy is plotted as a function of temperature obtained

from the expressions by Nagle(△) [98] and Howe and Whitworth(▽) [11] in Fig. 4.4.

Application of the two parameter expression by MacDowell et al. [100], with α and β

from our simulations as input, yielded entropy as a function of temperature that was

quantitatively the same as that obtained using the one parameter expression of Howe

and Whitworth [11], because our model predicts that α and β are very close to each

other. Howe and Whitworth’s expression was used by Lobban et al. to determine

the thermodynamic implications of their diffraction data. As seen from the inset,

the entropy of the low-temperature ice IX phase calculated from our simulations

is in very good agreement with the entropy predicted from Howe and Whitworth’s

expression. Nagle’s expression overestimates the entropy for partially disordered ice

IX in agreement with previous analysis. [11] Both models, however, when asked to

estimate the entropy of partially ordered ice III based on occupational probabilities α

and β, significantly overestimate the configurational entropy. This test of the mean-

field theories does not depend on the quality of our effective Hamiltonian, unless

our model is somehow grossly atypical of the true Hamiltonian for this system (and

we would argue, based on its agreement with experiment, it is at least qualitatively

accurate). The mean-field theories are given the exact occupational probabilities for

the model and should return a value close to the exact simulations, if accurate. We

can also run the comparison in the opposite direction. Using the entropy calculated

from our simulations, we use the Howe and Whitworth’s expression to determine the

occupational probability as a function of temperature. As shown in Fig. 4.5, α would

have to be 25%, significantly lower than the results of our simulations, α = 38%, and

experiment [12,14] to yield the true entropy.
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4.5 Discussion

A statistical mechanical theory of the ice III/IX transition is developed in this

chapter. The structure of the low-energy phase and the transition temperature are

both in qualitative agreement with experiment. Structural parameters, such as the

bond distance and angles are in very good agreement with observed values. Our

theoretical methodology has been previously shown to provide an accurate description

of the ice VII/VIII phase transition and the ice Ih/XI transition. [19] It has also been

used to predict the low-temperature fully-ordered form of ice VI [23].

The ice III/IX transition was recently treated by Kuo [102], who concludes based

on methodology identical to ours that the previously reported ice IX structure is not

the lowest H-bond isomer for this system. Unfortunately, this conclusion is based on

failure to converge the calculations and to extrapolate to the infinite-system limit.

Kuo only considered the Γ−point energy of a small unit cell. In this work we have

shown that using either a larger unit cell or extended k−point sampling of the small

unit cell reverses Kuo’s conclusion. We find that the previously observed ice IX struc-

ture [9, 14] is the lowest-energy structure when calculations are properly converged.

However, it must be realized that these calculations are dependent on the accuracy of

the BLYP density functional, albeit one that has been remarkably successful in pre-

dicting the properties of other ice phases [19, 68, 103]. Therefore, while using higher

order methods might affect the results, we can definitely say that Kuo’s conclusion

concerning the ground state using the BLYP functional was an artifact of only using

the Γ−point of a small unit cell. Finally, we note that using only a small unit cell

only gives a hint of the true thermal properties of the system, for example, a rounded

heat capacity peak that extends to room temperature [102]. Extrapolation to the
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thermodynamic limit using graph invariants is needed to reveal the character of the

phase transition, the partial order in the high-temperature phase and partial disorder

in the low-temperature phase.

Besides developing a theory that can reproduce observed behavior, this work also

suggests a resolution of an apparent discrepancy between diffraction [9, 12, 14] and

calorimetric [85] experiments. Thermodynamic data has been inferred from diffrac-

tion data using mean-field theories [11, 87, 98–100] that relate the system entropy to

hydrogen-site occupations. Because we have a full statistical mechanical model of ice

III and ice IX, we can compare the exact entropy from this model with the entropy

that would be predicted on the basis of these mean-field theories. We find that all

existing mean-field theories significantly overestimate the entropy of the disordered

ice III phase. When used to interpret diffraction data [12, 14], they imply a value

for the transition entropy that is too large. The transition entropy obtained from

our calculation is in better agreement with the value reported from the calorimetric

experiments of Nishibata and Whalley [85]. Further correcting our calculations for

the change in unit cell dimensions should bring the results in closer agreement with

experiment. We assumed that the unit cell does not change from ice III to ice IX.

Since ice IX is actually more dense than ice III, we underestimate the Gibbs free

energy of our ice IX phase. Correcting for this will destabilize the low-temperature

phase and consequently reduce the transition temperature. As can be seen from Fig.

4b, this will further narrow the entropy gap between the two phases at the transition.

In conclusion, from application of graph invariants and DFT calculations on

small unit cells, the energy differences in H-bond fluctuations for a large simula-

tion cell could be calculated. A first-order phase transition to the proton-ordered
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anti-ferroelectric ground state (Figure 4.2) was observed near 126 K. Partial H-bond

ordering was observed over a range of temperatures above the transition with the

occupational probabilities, α and β, reaching 38% before the transition. The low-

temperature structure, partially disordered near the transition, transformed to fully

ordered ice IX at lower temperatures.
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CHAPTER 5

HYDROGEN BOND ORDERING IN ICE V AND THE

TRANSITION TO ICE XIII

5.1 Introduction

Most of the currently known phases of ice can be grouped into pairs. [1] The

subject of this chapter is one of the latest pairs to be discovered, ice V and ice

XIII. [25, 104, 105] In each pair of ice phases, the oxygen atoms sit at virtually the

same position. The orientation of the water molecules, while constrained to tetrahe-

dral bonding directions, are disordered in the high-temperature member of the pairs

because there are six ways that the two hydrogens of each water can be placed along

four tetrahedral directions. In the low-temperature counterpart, the system con-

denses into one hydrogen bonding arrangement. The known order-disorder pairs of

ice phases are ice Ih and XI [2–7,11,17,34,80,106], ice VII and VIII [42,44–49], ice III

and IX [14,84,85], and, most recently, ice V and XIII and ice XII and XIV [25,104,105].

The complexity of the phase diagram of water, as evident in the continuing discovery

of new phases of ice, results from the interplay between hydrogen bonding interactions

and the tendency to pack efficiently in the crystal. Besides the need to understand

the properties of water on earth and other planets, understanding of the behavior
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of ice provides insight into forces between water molecules that can be applied in a

variety of materials and biological applications.

In 2006, the proton-ordered version of ice V, ice XIII, was first reported by Salz-

mann et al. [25] Unlike the ice Ih/XI transformation [17,34,80–82], where doping with

hydroxide enables formation of ice XI near 72 (76)K for H2O (D2O), ice V reversibly

transforms to ordered ice XIII in the presence of excess protons in the form of HCl

dopant [25, 104, 105]. In both cases, dopants presumably facilitate hydrogen bond

rearrangements enabling a phase transition that otherwise has prohibitive activation

barriers. No ordering of ice V was observed when pure ice or samples doped with

hydroxide were cooled. Using Raman spectroscopy and monitoring the change in

lattice parameters, the ordering transition was found to be reversible. [25, 104, 105]

When cooling samples of ice V, the beginning of the ordering transition occurred near

117 K and upon heating ice XIII, it started near 108 K. [104] The unit cell of ice V,

containing 28 water molecules, is monoclinic, space group A2/a, as determined by

X-ray and neutron diffraction techniques. [12,107,108] The unit cell of ice XIII, also

containing 28 water molecules, is monoclinic with space group P21/a, a reduction in

symmetry from the ice V space group.

The region of stability for proton-disordered ice V is 210−270 K and 3.4−6.3 kbar.

[12] Similar to ice III [12, 14, 85], there exists some degree of partial ordering of the

protons in ice V. Results from infrared [96] and dielectric [109] studies were only

able to indicate that ice V was proton disordered, not the degree of the disorder. A

neutron diffraction study on single crystals of ice V, recovered to ambient pressure,

indicated some proton sites had larger probabilities of being occupied than others at

110 K. [108] Recently, neutron diffraction experiments on ice V conducted in its region
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of stability has shed light onto the degree of partial order. [12] Lobban, Finney, and

Kuhs have measured lattice constants and occupation probabilities from 100−254 K at

5 kbar. [12] They found no evidence of a transition to an ordered structure with P21/a

symmetry which was first proposed by Kamb and LaPlaca [91] and later supported

with calorimetric evidence by Handa, Klug and Whalley [110]. (The ordered phase

eventually characterized by Salzmann et al. does indeed possess P21/a symmetry.)

In their work, Lobban et al. only observed a gradual ordering of the protons, not

a change in the space group which is necessary for a transition to an ordered H-

bond configuration. Johari and Whalley discussed these results in the context of

dielectric studies on ice V and agreed that partial anti-ferroelectric ordering occurs

as the temperature of ice V is lowered. [111]

Due to the size and symmetry of the ice V unit cell (Fig. 5.1), there are a large

number of possible H-bond configurations. There are 69380 symmetry-distinct H-

bond configurations possible for the 28-water unit cell. There are even 35 symmetry-

distinct possibilities possessing the same space group as the experimental ground

state. The complexity of the ice V and XIII structures makes analysis and prediction

of ordering and partial ordering a daunting task. Lobban et al. [12] have remarked

that, “the factors responsible for the partial order cannot be easily identified for

such a complicated structure.” Salzmann et al. have stated [25], “It would be a

challenging test of the ability of modern day computational methods to reproduce our

experimentally found lowest energy state.” While not reducing the behavior of ice V

and XIII to any simple rule, we demonstrate in this work that theoretical methods

can indeed describe partial ordering of ice V and the transformation to ice XIII. We

find that among the numerous, nearly degenerate, low-lying H-bond isomers of the
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ice V unit cell, calculated using periodic DFT, that the ground-state configuration

corresponds to that of the experimental ice XIII structure. In section 5.2, we discuss

results of applying the graph-invariant approach to the ice V unit cell. Periodic DFT

calculations are described in section 5.3 for H-bond configurations in two unit cells of

ice V containing 28 and 112 water molecules respectively. In section 5.4, we discuss

results from statistical mechanical calculations on a simulation cell containing 6048

water molecules. Besides calculation of the transition to fully ordered ice XIII, we

observe a subtle second-order transition to a partially ordered phase that would be

difficult to observe in experiments. We also calculate occupation probabilities (order

parameters) that quantify the degree of partial ordering in ice V and compare these

calculated quantities to experimental data.

5.2 Graph Invariants for Ice V

In phases of ice where water molecules are hydrogen-bonded to four others in a

tetrahedral arrangement, there are six ways that a water molecule can be oriented

at each lattice site. [15] Once one molecule is fixed, the possible arrangement of

its neighbors is restricted by the Bernal-Fowler ice rules [101], which simply require

that each water simultaneously donate two hydrogen bonds and accept two hydrogen

bonds. Pauling [15] produced a remarkably accurate estimate for the number of H-

bond arrangements available in ice Ih after imposition of the ice rules,
(

3
2

)N
, where

N is the number of water molecules. The exact result is (1.5069)N [10, 112]. The

number of H-bond arrangements in ice V is given by the same expression.

The H-bond arrangements in ice are separated by only ∼0.1 kcal mol−1 per water

in the ice phases (see Fig. 5.3 for ice V), leading to almost complete disordering
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at the high-temperature stability edge of the solid. Depending on the ice phase,

partial ordering can occur as the temperature is lowered. Also, of all the known high-

temperature phases that coexist with liquid water − Ih, III, V, VI and VII in order of

increasing pressure − a transition from an H-bond-disordered phase to a fully ordered

phase has been discovered for all except ice VI [23] as the temperature is lowered.

To date, we have found that including up to second-order graph invariants con-

structed from bonds that are either neighbors or next-nearest neighbors is sufficient to

parametrize the subtle energetics of ice lattices. In the previous chapters, this method

has been used to successfully calculate H-bond ordering and phase transitions in ice

Ih/XI [19, 20], ice VII/VIII [19, 20], ice III/IX [24], and to make a prediction of the

H-bond-ordered phase derived from ice VI [23]. To fix the overall constant E0 and the

coefficients of the graph-invariant functions, {αr, αrs} , . . ., we require the energies of

some H-bond configurations as input. We have used relatively modest periodic DFT

calculations, such as those using the BLYP functional [72, 73], as input. We have

documented that the small energy differences in ice are not sensitive to the density

functional or basis set used in the calculations. [19, 20, 113] Tribello and Slater [114]

have provided insight into why relatively modest levels of DFT are successful in de-

scribing the energetics of H-bond arrangements in ice. They showed that the energy

differences were insensitive to the choice of gradient-corrected functional because the

energy differences between H-bond isomers largely depended on electrostatic inter-

actions. Ideally, Eq. (4.1) should be a free energy expansion that incorporates the

vibrational free energy of each H-bond arrangement. In all of our work to date, we

have made the assumption, evidently justified by comparison with experiment, that
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the vibrational free energies of the H-bond isomers are nearly the same and can there-

fore be neglected. The same assumption seems to be justified for ice V/XIII, as shown

in section 5.4.

There are eight sets (orbits) of bonds related by symmetry in the unit cell of ice

V. Application of the projection operator Ĝ to members of the same orbit will nec-

essarily generate the same invariant. Thus a maximum of eight first-order invariants

is possible by application of the projection operator. Application of the projection

operator onto two of the bond orbits gives zero, leaving six non-trivial first-order

invariant functions. Application of the projection operator onto bond pairs, Ĝ(brbs),

generates 226 unique, linearly-independent second-order invariants. The number of

unique invariants generated for the ice V primitive cell is substantially larger than for

any other system studied to date. The runner up is the primitive cell of ice III, 12

water molecules with space group P41212, only possessing 45 second-order invariants.

When evaluated for values of the bond variables allowed by the ice rules, some

of these invariants have values which are linearly dependent on other invariants. A

simple example of this arises when the projection operator acts on the square of one

bond, Ĝ(brbr). This generates invariants which are the sum of squared bond variables

for each orbit. These invariants could be used to count the number of defects (e.g. D-

or L-defect) if such configurations were considered, but for ice without such defects

these invariants evaluate to the number of bonds within an orbit for all configurations.

Their contribution to the expansion in Eq. (4.1) is equivalent to the constant E0.

We speak of “eliminating linearly-dependent invariants” when, more precisely, we

are eliminating invariants which are dependent on others over the restricted set of

configurations allowed by the ice rules. When evaluated for 94 H-bond configurations
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in the 28-water cell of ice V, 165 graph invariants were linearly dependent leaving

3 first-order and 57 second-order linearly independent invariants to describe scalar

physical quantities. Invariants which evaluated to a constant were removed while

the remaining invariants were sorted into groups based on bond types and distance

between the generating bond pair. In previous studies, we have found that a good fit

of the H-bond topology to energy only required those invariants generated by nearest-

neighbor bonds. Next, invariants from the linearly independent set were eliminated if

their contribution to the energy fit was negligible. For ice V, we found that an overall

good fit to the energy was achievable using approximately 10 invariants. However,

the predicted ordering of the low-energy isomers was a difficult property to converge

without using more invariants, as discussed in the next section. Those invariants

which were significant are given in Tables 5.1 and 5.2. We report coefficients for two

models for reasons discussed in the next two sections.

The space group symmetry of the ice V structure permits the use of five occu-

pation probabilities, or order parameters, that describe the probability of protons

being on one or the other side of a particular hydrogen bond (Fig. 5.1). The order

parameters have traditionally been designated by the first five Greek letters, α, β,

γ, δ, and ǫ, and range from 0 to 1 in an obvious way where 1
2

indicates equal proba-

bility of the H-bond pointing in two possible directions. As might be expected, the

occupation probabilities are strongly related to some of the graph invariants. Due

to the symmetry of the ice V phase, the H-bonds described by the ǫ parameter are

forced to be fully disordered, i.e. ǫ = 1
2
. Thus the two first-order invariants generated

by ǫ type bonds are the ones that were found to be identically zero using the full

symmetry group of the high-temperature ice V phase. The invariants associated with

95



ǫ bonds assume non-zero values below the phase transition where the ice V symmetry

is broken. Naturally, these invariants do not contribute to the Hamiltonian, which

must have the full symmetry of the ice V system. Bonds of the α and γ type are each

associated with two first-order invariants (and hence the notation α1, α2 and γ1, γ2 in

the next section, where further discussion is given), while β and δ are each described

by a single first-order invariant.

5.3 Periodic DFT and Parametrization of Graph Invariants

Investigating the degree of proton disorder in ice V, Lobban, Finney and Kuhs

measured lattice constants over a wide temperature range, observing changes of

∼0.02−0.03 Å and ∼0.1◦ at temperatures above 200 K. Lattice constants used in

the present calculations were taken from data at 5.0 kbar and 198.9 K: a=9.0847,

b = 7.5099, c = 10.2328 Å, and β = 109.19◦. [12] Geometry optimizations were

performed on H-bond isomers for unit cells containing 28 and 112 water molecules

using the CPMD [69–71] program with periodic boundary conditions. We employed

the BLYP gradient correction [72, 73] to the local density approximation, Troullier-

Martins norm-conserving pseudopotentials [74], and plane wave cutoffs ranging from

70−150 Ry in the DFT calculations. Sampling of the Brillouin zone was restricted

to the Γ−point, which we have shown in previous chapters is sufficient for systems

containing more than ∼30 water molecules.

As discussed above, the symmetry of the ice V unit cell permits the degree of

proton order to be captured by five occupation probabilities. The parameters α, γ,

and ǫ are each described by bonds which belong to two separate orbits, thus there

are two contributions. When the ice rules are strictly obeyed, the two contributions
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Figure 5.1: H-bond configurations of two unit cells, as viewed down the b−axis, used
in periodic DFT calculations, discussed in section 5.3, containing 28 and 112 waters
respectively. The larger atoms are oxygens and the smaller atoms are hydrogens.
Hydrogens related by symmetry and thus contributing to the same order parameter
are similarly colored: α (yellow), β (green), δ (blue), γ (violet), and ǫ (turquoise).
The configuration shown here is the ground state at a plane wave cutoff of 90 Ry or
higher, which corresponds to the experimentally determined proton-ordered ice XIII.
The labels in (a) identify those bonds used to generate graph invariants as described
in Tables 5.1 and 5.2. The thin black lines outline the monoclinic cell.

to α are always identical, and similarly for γ. The two parameters that contribute to

ǫ, which we label ǫ1 and ǫ2, however, can differ and they in fact do so as discussed

in the next section. When labeling the bond types for the generating bond pairs in

Tables 5.1 and 5.2, we signify the bond type with a subscript identifying which orbit

to which those bonds belong. Since the two first-order invariants that contribute to

α and γ have the same values for all configurations in which the ice rules are obeyed,

the first-order invariants arising from projecting onto bonds 19 or 45 in Tables 5.1

and 5.2 are listed as contributing to either order parameter.

There are 69380 symmetry-distinct H-bond configurations possible in the primitive

unit cell of ice V, enumerated using previously described methods. [50, 51, 68] There
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are 35 symmetry-distinct configurations which have the same space group P21/a as

proton-ordered ice XIII, determined using the FINDSYM [8] program. Since it is

not realistic to perform periodic DFT calculations on all of these realizations, we

“semi-randomly” selected isomers for geometry optimization. We first performed cal-

culations on a handful of configurations, parametrized a graph-invariant expression

for the energy, and then using the predicted energies, chose additional configurations

for further calculations. This procedure of selecting additional H-bond isomers was

then continued until a thorough sampling of the energy range was obtained and the

coefficients of the invariants in Eq. (4.1) did not change upon adding more configura-

tions to the fit used to determine those coefficients. We also included all low-energy

configurations to identify the ground state H-bond configuration. As shown in the

plots of Fig. 5.3, a number of configurations lie very close in energy to the ground

state.

The ground-state configuration obtained using a plane wave cutoff of 70 Ry does

not agree with the experimental structure. The configuration corresponding to ice

XIII was the fifth lowest-energy configuration lying 2.3 K (4.6×10−3 kcal mol−1) per

water above the ground state, Fig. 5.2d. However, increasing the plane wave cutoff

switched the energetic order of the low-lying isomers bringing the ground state con-

figuration into agreement with experiment. The previous ground state configuration

was now the second lowest-energy configuration lying 1.2 K per water higher in en-

ergy. The ice XIII configuration remained the lowest-energy isomer when the plane

wave cutoff was increased to 120 and 150 Ry, although there were some changes in

the energetic ordering of the low-lying configurations. Regardless of the plane wave

cutoff, the same group of ∼20 H-bond configurations appeared within 10 K per water
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of the ground state. Increasing the plane wave cutoff changed the order of these con-

figurations, but did not bring other higher-lying configurations into this group. We

also performed preliminary tests with the PBE [115] and revPBE [116] density func-

tionals. Again, the group of energetically low-lying isomers remained intact, although

the ordering within the group was sensitive to the functional. The ice XIII structure

was the ground state using the PBE functional when the calculation was adequately

converged (cutoff > 120 Ry). Using the revPBE functional, the ice XIII structure

was 0.9 K per water above the lowest-energy isomer. For other ice systems studied to

date, no more than two configurations were identified lying within that energy range

above their corresponding ground state. For the case of ice VI, for which an ordered

version has yet to be identified experimentally, the ground state energy gaps for the

2nd and 3rd lowest configurations were 4 and 10 K per water respectively. [23]

The energetically low-lying configurations shown in Fig. 5.2 are obtained from the

ground state by flipping several closed loops of H-bonds, the same operation used

to generate trial moves in the Monte Carlo algorithm discussed below. Bonds of

the ground state configuration that are conserved in all the energetically low-lying

configurations are shaded in blue in Fig. 5.2a (see caption). Configuration (c) is

obtained after flipping four loops consisting of five bonds each. In Fig. 5.2c, two

of the loops are entirely contained in the middle of the unit cell while the other

two loops are split across the cell boundary where periodic boundary conditions are

enforced. These 5-membered loops each contain two bonds that contribute to the

α order parameter, two to the γ order parameter, and one to ǫ. They occur in the

sequence α2−α2−γ2− ǫ1−γ2. In the ice XIII structure, the two α bonds in this loop

have opposing contributions to the α order parameter. Hence, flipping this loop to go

99



 

  

                                                  

a)

c)

b)

d)

Figure 5.2: Four lowest-energy H-bond configurations of the 28-water unit cell of ice
V determined by calculations at plane wave cutoffs of 90 and 120 Ry using the BLYP
density functional. The larger atoms are oxygens and the smaller atoms are hydro-
gens. In panel (a), H-bonds whose orientation is conserved in all the energetically
low-lying isomers are shaded in blue. To some extent, this is arbitrary because, in
general, several symmetry-equivalent versions of each configuration may be compared
with the ground state. The shaded bonds in panel (a) are based on choosing excited
configurations that maximize the number of conserved bonds relative to the ground
state, not always the configuration shown in panels (b,c,d). In panels (b,c,d), H-bonds
that are flipped with respect to the ground state configuration (a) are shaded in blue.
Panels (b,c,d) show the configurations lying 2.3, 2.5, and 2.6 K per water, respec-
tively, above the ground state with a plane wave cutoff of 120 Ry. The corresponding
energies from calculations at 90 Ry are 1.7, 2.1, and 1.2 K per water.
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from the configuration of Fig. 5.2a to Fig. 5.2c does not change the value of α. The

same is true for the two γ bonds and the γ order parameter. Hence, only the ǫ order

parameter is altered. In principle, this could be used as an experimental signature

of this excitation. However, we find that the population of such excitations is quite

small in the ice XIII phase. Configurations (b) and (d) are each obtained by flipping

two loops of this sequence as well as several other bonds. In configuration (b), two

loops of type α2 − α2 − δ − γ1 − ǫ1 − ǫ2 − γ2 are flipped while for configuration (d) a

single loop of α2−α2−δ−γ1−γ2−α2−α2−δ−γ1−γ2 is flipped. In configurations (b)

and (d), changes in the γ, δ, and ǫ occupation parameters occur. Although α−type

bonds were flipped, all of the low-lying configurations had the same value for the α

order parameter as the ground state by the same mechanism described in connection

with the configuration in Fig. 5.2c. Reversal of β bonds was relatively rare in the

∼20 low-lying configurations. Only three low-lying configurations were obtained after

flipping β bonds which resulted in a change of that order parameter.

The ability of the graph-invariant expansion in Eq. (4.1), using those invariants

listed in Table 5.1, to fit the energies of the isomers of the primitive unit cell is

evaluated in the left column of Fig. 5.3 for two different models. If a perfect fit was

achieved, all points would lie on the diagonal. As can be seen from the figure, the

typical errors in fitting the energies is a small fraction of the energy range. However,

these differences become important when trying to describe the nearly degenerate set

of isomers which lie close in energy to the ground state. An overall good fit to the

energy required only 10 invariants, but in order to sufficiently describe the energetic

ordering of low-lying isomers, additional invariants were necessary. Thus, half of the

coefficients used in the models had magnitudes in the range 0.001−0.01 kcal mol−1 per
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Generating Occupancy model 1 model 2
bonds Distance(Å) parameter 90 Ry 120 Ry 90 Ry 120 Ry

2,19 2.76 α1,α2 0.0120385 0.0117782 0.00644397 0.00619219
9,19 3.55 α2,α2 −0.0021314 −0.0021849 −0.00526965 −0.0052024
10,19 3.55 β,α2 0.0154397 0.0150414 − −
1,30 2.77 α1,δ 0.0142382 0.0146183 0.0134419 0.0137168
2,34 3.51 α1,γ1 −0.0149567 −0.0154769 −0.0118619 −0.0129105
10,52 2.80 β ,ǫ1 0.0139424 0.0141327 − −
3,51 3.51 α1,γ2 0.0078866 0.0077727 0.00456332 0.00459766
13,51 3.51 α2,γ2 0.0105991 0.0112825 0.0110774 0.0119336
16,51 3.33 β ,γ2 −0.0079029 −0.0079268 − −
10,45 3.90 β,γ2 0.0050779 0.0053086 0.0110158 0.0110525
46,51 2.78 ǫ2,γ2 0.0133983 0.0139472 0.0106671 0.0104636
4,29 3.14 α1,γ1 − − −0.00014175 0.00014839
10,29 0.00 β,γ1 − − 0.0121478 0.0116609
20,52 2.82 β,ǫ1 − − −0.0181417 −0.0185411
26,52 2.71 γ1,ǫ1 − − 0.0076593 0.0079862
38,52 3.14 γ1,ǫ1 − − −0.00318216 −0.00263071
42,52 2.71 ǫ1,ǫ1 − − −0.00034917 −0.00046292
9,51 3.51 α2,γ2 − − 0.00499258 0.00491852
45,46 0.00 γ2,ǫ2 − − −0.00762639 −0.00664159
19 − α1 or α2 0.0427572 0.0428228 0.0400461 0.0402459
10 − β 0.0418449 0.0419556 0.0415911 0.041752
45 − γ1 or γ2 0.0154168 0.0133746 0.0198209 0.0177913

Table 5.1: Geometrical features and contributions to the description of the energy of H-bond isomers in the primitive unit
cell containing 28 water molecules. The indices of the generating bond pair refer to Fig. 5.1. The distance associated
with each bond pair is the distance between the closest vertices from each bond in an idealized structure before geometry
optimization. The occupancy parameters to which each bond contributes are identified. The next two columns give the
fitting coefficients for each invariant used in Eq. (4.1) for the energy, in units of kcal mol−1 per water, for the first model
for plane wave cutoffs of 90 and 120 Ry. The last two columns contain similar data for the second model.
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Generating Occupancy model 1 model 2
bonds Distance(Å) parameter 90 Ry 120 Ry 90 Ry 120 Ry

2,19 2.76 α1,α2 0.00873907 0.00855733 0.00618326 0.00648071
9,19 3.55 α2,α2 −0.00868823 −0.00893164 −0.00944809 −0.0104118
10,19 3.55 β,α2 0.00419561 0.00430824 − −
1,30 2.77 α1,δ 0.0150852 0.014914 0.0197974 0.0194143
2,34 3.51 α1,γ1 −0.00797234 −0.00856979 −0.00732364 −0.00767692
10,52 2.80 β ,ǫ1 0.00614274 0.00477601 − −
3,51 3.51 α1,γ2 0.00784255 0.00786155 0.00573805 0.00571859
13,51 3.51 α2,γ2 0.00869924 0.00929597 0.0120731 0.0131678
16,51 3.33 β ,γ2 0.00581676 0.00582805 − −
10,45 3.90 β,γ2 0.0125182 0.0120234 0.012123 0.0112275
46,51 2.78 ǫ2,γ2 0.0120792 0.0115931 0.0126021 0.0114718
4,29 3.14 α1,γ1 − − −0.00368077 −0.00437427
10,29 0.00 β,γ1 − − 0.00691887 0.00668232
20,52 2.82 β,ǫ1 − − −0.0133792 −0.0119001
26,52 2.71 γ1,ǫ1 − − 0.0164779 0.0150925
38,52 3.14 γ1,ǫ1 − − 0.00432525 0.00419826
42,52 2.71 ǫ1,ǫ1 − − 0.00500769 0.00518427
9,51 3.51 α2,γ2 − − 0.00652325 0.00721475
45,46 0.00 γ2,ǫ2 − − −0.0164089 −0.0141192
19 − α1 or α2 0.0387347 0.0388697 0.0446275 0.0443862
10 − β 0.0439473 0.0446142 0.0436782 0.0444514
45 − γ1 or γ2 0.0185417 0.016885 0.012622 0.0110797

Table 5.2: Geometrical features and contributions to the description of the energy of H-bond isomers in a unit cell,
measuring 2 × 2 × 1 primitive cells on each side, containing 112 water molecules. A description of the columns and their
contents is identical to that given in Table 5.1.
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water, ten times smaller than typical in ice systems. We used two models, differing

in their description of the low-lying isomers, to test the sensitivity of the predicted

thermodynamic properties to the graph-invariant expression. As seen in the Tables 5.1

and 5.2, the models have a number of common invariants between them with model

2 possessing more invariants generated by ǫ type bonds.
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Figure 5.3: Test of the ability of the graph invariant expansion, Eq. (4.1), to fit the
energies of H-bond isomers of ice V at various plane wave cutoffs: 70 Ry(◦), 90 Ry(�),
and 120 Ry(�). The top row shows results using model 1 while the bottom row shows
results for model 2, as defined in Tables 5.1 and 5.2. The left column shows the fit of
energies for 94 H-bond configurations in the 28-water unit cell. The middle column
shows the ability of parameters derived from the 28-water cell to predict the energies
of 61 H-bond configurations in the 112-water cell at the same plane wave cutoff. The
right column shows the fit of energies to the 112-water cell. The insets show the
performance of the graph invariant fit for the lowest-energy configurations. In all
plots, a line of slope unity is shown to indicate where points would lie for perfect
agreement.
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We next calculated the DFT energies for 61 isomers, chosen “semi-randomly”

using a similar procedure as described above, for a larger 112-water cell measuring

2 × 2 × 1 primitive cells on each side. Similar to the small cell calculations, the

ground-state configuration only agreed with the experimental structure at plane wave

cutoffs of 90 Ry and higher. The second lowest-energy configuration in the large cell,

corresponding to Fig. 5.2c from the small cell, was now found to lie 0.58 (0.57) K per

water above the ground state at a plane wave cutoff of 90 (120) Ry. We can test the

performance of Eq. (4.1) by using the coefficients from the 28-water cell to predict the

energies of the 112-water cell, as shown in the middle column of Fig. 5.3. As shown in

the figure, the coefficients from the small cell do a good job of predicting the energies.

In our previous calculations for the ice Ih/XI system, small systematic deviations were

observed when we predicted energies of a larger cell based on invariant coefficients

derived from a small unit cell. [19,20] In that case, the small deviations are attributed

to insufficient k−point sampling because only the Γ−point was employed for the

smallest unit cell. No such deviations using only the Γ−point are observed here,

suggesting we have probably already reached convergence with respect to k−point

sampling because our smallest cell is already fairly large. Overall, both models provide

a good description of the energetics, but model 2, which includes more invariants, gives

a better prediction of the low-lying isomers. Reparametrizing the graph-invariant

expression using coefficients obtained from the 112-water cell leads to an effective

Hamiltonian for describing H-bond fluctuations in a large simulation cell, as discussed

in the next section.
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5.4 Statistical Mechanical Results

Metropolis Monte Carlo simulations were performed on a simulation cell measuring

six primitive unit cells on each side, containing 6048 water molecules. The invariant

coefficients, shown in Table 5.2, obtained from the 112-water unit cell at a plane

wave cutoff of 120 Ry were used to evaluate Eq. (4.1) for both models. Simulations

were performed for both decreasing and increasing temperature. Trial moves were

generated using the algorithm of Rahman and Stillinger [66] by reversing bond loops

in which H-bonds point in the same direction that either close upon themselves in

the same unit cell or in a periodic replica. The lowest-energy isomer, corresponding

to the experimental ground state, was the starting configuration for the initial low-

temperature simulation. The final H-bond configuration in a preceding simulation

was always the initial configuration in the next simulation. A highly disordered

configuration obtained from simulation at an extremely large temperature (107 K)

was used to initialize the sequence of simulations decreasing in temperature.

Simulations of model 1 (columns 5 and 6 of Table 5.2) with decreasing temperature

leads to a configuration very similar to the ground state, but higher in energy, with a

transition temperature near 62 K. The precise transition temperature for model 1 was

found by thermodynamic integration [20] which, as expected, places the transition

in the middle of the very small hysteresis loop visible in Fig. 5.4. The configuration

obtained would be the ground-state configuration if a single loop of 42 H-bonds were

flipped. Flipping this loop is possible in our simulations, but such a trial move has an

extremely small probability of being attempted and did not occur. Model 2 (columns

7 and 8 of Table 5.2) does freeze to the ground-state configuration near 69 K, 3 de-

grees below the thermodynamic transition temperature for model 2 as determined by
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thermodynamic integration. The increasing and decreasing temperature sequences of

simulations form a hysteresis loop of width 1 K for model 1 and 4 K for model 2,

as shown in Fig. 5.4a. At temperatures above 100 K, both models closely resemble

one another. Deviations between the models are most noticeable at temperatures

below 100 K. Besides the first-order transition at 62 K, model 1 undergoes a mi-

nor second-order phase transition at 96.1 K associated with the ǫ order parameter.

Probability distributions of the occupation parameters as a function of temperature

provide insight into the additional second-order phase transition and is discussed be-

low. Model 2 also goes through the same second-order phase transition, but at the

lower temperature of 82.1 K and its effect on energy and entropy is not as evident as

in model 1.

In Fig. 5.4b, the entropy is plotted as a function of temperature using data from

model 2. The entropy of the low-temperature phase was calculated by thermodynamic

integration from 0 K, and that of the high-temperature phase was integrated from

infinite temperature. The entropy at infinite temperature is taken to be Nagle’s result

for the Pauling entropy for a fully disordered arrangement of H bonds in ice. [10] With

decreasing temperature, 53% of configurational entropy is lost before the transition,

45% at the transition, and 2% after the transition. Recent calorimetric experiments

have measured the change in configurational entropy at the transition to be 66% of

the Pauling entropy. [117]

From the simulations, we can calculate occupation probabilities for each model.

In Fig. 5.5, occupation probabilities as a function of temperature are compared with

data obtained from the neutron diffraction studies of Lobban, Finney, and Kuhs.

[12] At temperatures above 100 K, the order parameters from models 1 and 2 are
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Figure 5.4: a) Average energy plotted as a function of temperature from Metropolis
Monte Carlo simulations for a simulation cell of ice V containing 6048 water molecules.
The solid curves are for model 1, and the dashed curves, shifted upward by 15 K for
clarity, are for model 2. Energies are presented for a series of runs ascending and
descending in temperature for both models, indicated by the upward and downward-
pointing triangles, respectively. As can be seen, both models are very similar at
temperatures above 100 K. The inset, where there is no shift in the data sets, focuses
on the transition region for both models. b) Entropy plotted as a function of tem-
perature obtained from simulations using model 2. The horizontal dashed line is the
Pauling entropy for a fully disordered ice lattice. With decreasing temperature, 53%
of the entropy is lost before the transition, 45% at the transition, and 2% after the
transition.
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Figure 5.5: Occupation probabilities plotted as a function of temperature. The solid
lines are data obtained from statistical mechanical calculations and the symbols are
data taken from the neutron diffraction data of Lobban, Finney, and Kuhs. [12] The
occupation probabilities from top to bottom are δ(•), γ(�), α(�), and β(N). Data
from both models are nearly superimposable at temperatures above 100 K, thus only
the data from model 2 is shown for clarity. The ǫ type bonds, also not shown, are
fully disordered (ǫ = 0.5) above 100 K, identical to experiment.

nearly superimposable. At high temperatures, all order parameters take the value 1
2
,

corresponding to a fully disordered structure. The ǫ bonds, similar to experiment,

remain fully disordered until the system approaches the transition temperature below

100 K. The ground-state configuration, fully ordered ice XIII, is described by the

following occupation parameters: δ = ǫ = 1, α = γ = 1
2
, and β = 0. (Actually, there

are two symmetry-related configurations corresponding to the ground state in which

ǫ = 0 or 1 while all other parameters remain the same.) As discussed in section 5.3,
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there are two orbits that contribute to α, γ, and ǫ respectively. Strict adherence to

the ice rules, as done in the simulations, forces the contributions to α to be identical,

and similarly for γ. However, the two contributions to ǫ, which must average to zero

in the ice V phase, differ at lower temperatures where the ice V symmetry is broken.

For both models, bonds of type ǫ1 remain fully disordered until the transition to the

ice XIII phase. Bonds of type ǫ2, break ice V symmetry above the transition to ice

XIII in the second-order phase transition.
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Figure 5.6: Probability distributions for a) (ǫ− 1
2
) and b) |ǫ− 1

2
| for a series of temper-

atures, taken from simulations using model 1. In this series of simulations, the center
of the probability distributions approach −0.5 and 0.5 respectively as temperature is
decreased. The symbols in the inset show the peak probability locations as a function
of temperature. The smooth lines are fits to that data using the scaling form of the
order parameter given in Eq. (5.1).

The continuous nature of the phase transition associated with ǫ2 is demonstrated

in the probability distributions for ǫ − 1
2

in Fig. 5.6. Data for model 1 is shown, and

model 2 exhibits similar behavior. Above the second-order transition temperature

the parameter ǫ − 1
2

fluctuates about zero, as shown by the distribution for 100 K
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in Fig. 5.6. Slightly below the transition, as depicted by the data in Fig. 5.6 for

94 K, the distribution in ǫ− 1
2

becomes bimodal and symmetric. The point where the

probability distribution becomes bimodal, and the Landau free energy surface turns

from single- to double-welled, is the critical temperature for the second-order phase

transition [118, 119]. At 86 K and 62 K, the system has not yet condensed into the

ice XIII phase, but the free energy as a function of ǫ − 1
2

is developing deeper and

further-separated wells. In principle, the probability distribution in Fig. 5.6a at these

temperatures should remain bimodal. However, the free energy barrier separating the

wells at ±(ǫ − 1
2

) is now too large to be surmounted for our simulation system and

only a single peak is apparent. Of course, it is only because of the finite size of our

simulation cell that the bimodal nature of the probability distribution could be seen

in 94 K. In the thermodynamic limit, the system would be trapped in one of the wells

at all temperatures below the critical point, constituting the mechanism of symmetry

breaking of the second-order transition.

Further evidence for the second-order nature of the phase transition comes from

the behavior of
∣
∣ǫ − 1

2

∣
∣
max

, the location of the peaks of the probability as a function

of temperature.
∣
∣ǫ − 1

2

∣
∣
max

is the equilibrium value of the order parameter in the

thermodynamic limit (N → ∞). Near a critical point,
∣
∣ǫ − 1

2

∣
∣
max

is expected to obey

a scaling relation [118,120],

∣
∣
∣
∣
ǫ − 1

2

∣
∣
∣
∣
max

∝ |T − Tc|β . (5.1)

The inset near Fig. 5.6a shows
∣
∣ǫ − 1

2

∣
∣
max

as a function of temperature for models

1 and 2, and a fit to the data using the form in Eq. (5.1). The fit yields Tc values

of 96.1 and 82.1 K for models 1 and 2, respectively. The critical exponent β, as

determined by fitting Eq. (5.1) to the data, is 0.4104 and 0.4112 for models 1 and 2,
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respectively. The similarity of the β values between the two models suggests that the

models exhibit an identical mechanism for the phase transition.

5.5 Discussion

Judging by the size of the unit cell, the ice V/XIII system is the most complex of all

the phases of ice. Despite the challenging nature of this system, using graph-invariant

techniques [19, 20, 22–24, 51, 113] we have been able to construct a Hamiltonian for

hydrogen bond fluctuations in ice V and XIII that successfully predicts the ordered

phase and the nature of H-bond fluctuations in ice V.

Because of the size and complexity of the ice V and XIII crystal structures, rela-

tively many parameters were needed to describe the dependence of energy on H-bond

topology. The large set of parameters, established using periodic DFT calculations,

are listed in Tables 5.1 and 5.2. (In contrast, a description of the energy differences of

H-bond isomers in the ice Ih/XI system required only 3 parameters [19,20].) Because

the description of H-bond energetics for ice V was so intricate, we investigated the

properties that resulted from two different parameter sets. In this way, we attempted

to provide some “error bars” on the predictions from our methods. Model 1 gave the

correct ground state, but did not give the right energy ordering of configurations lying

close to the ground state. Model 2 was more extensive and gave a representation of

the low-lying configurations that was faithful to the DFT results.

The good news was that the energy and entropy (Fig. 5.4) and order parameters

in the ice V phase (Fig. 5.5) were largely insensitive to the parametrization of the

invariant coefficients in Eq. (4.1). The continuous phase transition that preceded the
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first-order phase transition to ice XIII was found in both models 1 and 2. Quantita-

tively, the transition to ice XIII occurred 10 K lower in model 1. Also, a sequence

of decreasing temperature simulations of model 1 became kinetically trapped in a

configuration very close to the ground state while model 2 was able to find its way to

the perfect ice XIII structure.

Perhaps the most gratifying comparison between theory and experiment in this

work is contained in Fig. 5.5 where predicted and measured order parameters are

plotted. Given the relatively modest BLYP level of DFT which was practical to use

to parametrize our graph-invariant Hamiltonian, the very small energy differences that

are at play here, and the assumptions made in our calculations (i.e. equal vibrational

free energy of all the H-bond isomers), additional evidence that the graph-invariant

Hamiltonian for H-bond fluctuations is meaningful is welcome. Fig. 5.5 shows that the

H-bond energetics predicted by our model are at least qualitatively correct. Another

source of confidence is the fact that our methods also make correct predictions for

ice Ih/XI, III/IX, and VII/VIII. Experimentally, the ice V/XIII transition occurs

between 108 and 117 K, 50 K higher than our theoretical predictions. Again, given

the approximations and sources of error in the calculation of very subtle energetics,

discrepancies of this magnitude are not surprising.

In our model of the ice V/XIII system, a second-order transition to a phase par-

tially ordered with respect to the ǫ order parameter intervenes before ice V transforms

to ice XIII. We describe the nature of this second-order transition to provide a com-

plete description of our model, but it would be somewhat fortuitous if this transition

would actually be observed in experiments. The effect of the phase transition on

the average energy and entropy in Fig. 5.4 is barely noticeable. In fact, the reader
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will note that many data points in Fig. 5.4 near the transition point were required

to capture this effect. The phase that intervenes between ice V and ice XIII is the

thermodynamically stable phase in our model over a very limited range of roughly

10 K. Since this behavior is controlled by extremely small energy differences, this

behavior could easily be revised by, say, more accurate energy calculations. Perhaps

it is most appropriate to take our calculations as a suggestion to look for enhanced

fluctuations of the ǫ order parameter in the vicinity of the ice V/XIII transition.

The calculations presented in this work only concern equilibrium properties, not

the dynamics of H-bond ordering. The mechanism by which defects promote the

ordering transitions in ice is not yet understood, and this is the problem we investigate

in the next chapter.
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CHAPTER 6

STUDY OF A HYDROXIDE ION AND L-DEFECT IN A

PROTON-DISORDERED Ih LATTICE

6.1 Introduction

One of the most difficult and intriguing aspects of ice physics is the behavior

of defects. [1] Although defects have little effect on the statics of phase transitions,

they are the key to understanding the dynamics and mechanism of phase transi-

tions. For example, ice-Ih must be doped with hydroxide to catalyze the transition

to ice-XI. [2–5, 17, 34, 80–82] The mechanism by which hydroxide (OH−) catalyzes

the ice-Ih/XI transition is not understood. [18, 121, 122] In fact, it is not even clear

that hydroxide defects have significant mobility in this temperature range near 70 K.

The structure and transport properties of defects is relevant to problems in environ-

mental and atmospheric science [123] and glaciology. [1] In this work, we introduce

techniques applicable to the study of ionic defects, H+ and OH−, and neutral defects,

such as the OH radical, in ice. There is general agreement that ionic defects are

immobilized on an accessible experimental time scale somewhere between 100 and

200 K. Beyond that, there is considerable disagreement, and seeming contradiction

in the literature. Devlin and co-workers doped D2O impurities into H2O ice, or D2O
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impurities into H2O ice. [27,124–126] For the case of D2O impurities in H2O, passage

of an ionic defect through the location of the impurity will lead to the formation of

HOD molecules. Ionic defects diffusing through a D2O molecule split that molecule

into two neighboring HOD molecules, [27,124–126] designated as (HOD)2 in the De-

vlin group’s work. Both Bjerrum and ionic defects are needed for further diffusion

of the deuterium contained in the (HOD)2 pair, ultimately leading to isolated HOD

molecules. D2O, (HOD)2 and isolated HOD molecules are spectroscopically identifi-

able as separate species. Devlin’s group spectroscopically monitors the formation of

HOD as a functional of temperature, providing information on the mobility of ionic

impurities as a function of temperature. They observe that excess protons begin to

actively diffuse at temperatures above 120 K, while hydroxide diffusion seems to be

much slower.

The results of the Devlin group raise several issues. Recall that the ice-Ih/XI

phase transition at 72 K is catalyzed by hydroxide. [2–5, 17, 34, 80–82] However, it

appears that no ionic defects are actively diffusing at 72 K. Furthermore, even though

hydroxide, not protons, catalyze this phase transition, the results of Devlin’s group

indicate that protons are initially the most active diffusing species as temperature

is raised. Hence, the results of the Devlin group call out for a better understanding

of the behavior of ionic defects in ice, and in particular, the mechanism by which

hydroxide catalyzes the Ih/XI phase transition.

There are further gaps in our understanding of ionic defects in ice. Cowin and

co-workers probed the diffusion of protons by a different method, by gently landing

hydronium ions on the surface of a layer of ice and subsequently observing the electric

potential set up by the ionic layer. [28] In contrast to the Devlin group experiments,
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they found that the excess protons did not diffuse into the ice until the temperature

reached 190 K. The difference between the Cowin and Devlin group experiments may

originate from the fact that the former probes long-range movement of the excess

protons, while the latter may be more sensitive to local motions. Clearly, there is

ample room for theoretical methods to make an impact on this field. However, this is

a challenging system. Since ice-Ih is an H-bond-disordered substance, it is incorrect

to picture ionic defects as diffusing in a periodic potential. The H-bond disorder sets

up a random medium, with potential traps for both ionic and Bjerrum defects in the

disordered material. Characterizing the statistical properties of this random medium,

particularly with interest in characterizing the passage of ionic defects, is one of the

goals of this work.

We have shown in the previous chapters that periodic DFT is capable of describing

the delicate energy differences between H-bond isomers in ice phases. At this stage, we

have accumulated a body of evidence for several different H-bond order/disorder phase

transitions (Ih−XI, VII−VIII, III−IX, V−XIII) that confirm that DFT for small unit

cells, combined with an analytic method we call graph invariants [22,51] to extrapolate

to the bulk limit for statistical mechanical systems, can accurately describe H-bond

order-disorder phenomena in ice phases. The methodology is not as well tested for

charged defects. Whereas, in the previous chapters, we have verified that H-bond

energetics in pure ice were rather insensitive to the DFT functional and basis set,it is

known that hydroxide in liquid water is more sensitive to the DFT method. [127–133]

Therefore, we regard the results presented here for hydroxide ion in ice as a first step

in the process of building a reliable model of charged defects in ice. We first present

results on the structure of hydroxide and L-defects in section 6.2. Next, in section
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6.3, we extend the graph-invariant theory presented in section 2.2 to describe the

presence of defects. We then report preliminary results from Metropolis Monte Carlo

simulations of a hydroxide ion in a proton-disordered ice Ih lattice. In section 6.4,

we investigate the proton transfer between a hydroxide ion and neighboring water

molecule before concluding with a discussion of future studies.

6.2 Structure of Hydroxides and L-defects in an Ice Ih Lat-

tice

An ionic defect cannot be studied in isolation in a periodic system. For example,

removal of a proton from one water molecule creates a hydroxide and L-defect pair,

which can diffuse away from each other, as shown schematically in Fig. 6.1. Alter-

natively, a hydroxide/hydronium pair can be created. We used the process shown in

Fig. 6.1, removing a proton and rearranging H-bonds in a unit cell containing 96 wa-

ter molecules, to generate configurations with variable distance between the ionic and

Bjerrum defects. The structural parameters given here are obtained from DFT cal-

culations using the BLYP functional [72,73], Troullier-Martins pseudopotentials [74],

and a plane wave cutoff of 70 Ry.

Strong hydrogen bonds are characterized by a shortening of the distance between

donor and acceptor oxygens, and a lengthening of the oxygen-hydrogen distance of

the donor bond. Based on this criterion, the hydroxide ion in ice-Ih forms strong

H-bonds as an acceptor, and weak H-bonds as a donor. The local structure near a

hydroxide ion shows little variation depending on the hydrogen bonding arrangement

of the water surrounding the defect, and even depends little on whether the hydroxide

points along the c−axis or lies within an ab layer. A generic local geometry near a

hydroxide is shown in Fig. 6.2a. Unlike interstitial-pointing hydroxide ions, discussed
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L−defect L−defect

Figure 6.1: Creation of a hydroxide (OH−) defect is shown schematically in the left
panel. The result, center panel, is the creation of neighboring L and hydroxide defects,
which can diffuse away from each other as shown in the right panel.

below, these hydroxide ions accept three H-bonds and donate a single H-bond. Bond-

length variations from site to site are on the order of 0.01 Å and bond-angle variations

are typically a degree or less. Compared to normal H-bonded oxygen-oxygen distances

in ice, the distance from the oxygens of water molecules that donate to the hydroxide

is shortened to about 2.56 Å, while the distance from the hydroxide oxygen to the

oxygen of the water that accepts an H-bond from the hydroxide is lengthened to

2.99 Å. The bond lengths are the only structural feature that deviate strongly from

bulk ice. The H-bonds donating to the hydroxide are all within 3 degrees of being

linear and the water angles are close to 106◦, both typical of bulk ice. Also shown

in Fig 6.2 is the local geometry near a typical L-defect. The water molecules of

an L-defect donate two H-bonds and accept one. Due to the missing H-bond, the

increased electrostatic repulsion displaces the oxygen atoms away from the perfect

lattice sites. The observed oxygen-oxygen distance of 3.49 Å is similar to that seen

in molecular dynamics simulations with an empirical polarizable potential. [134] The
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Figure 6.2: Local geometries near a hydroxide(a) and L-defect(b) averaged over 110
H-bond configurations in a 96-water unit cell. All lengths are in units of Ångström.

waters in an L-defect are strong H-bond acceptors and weak H-bond donors with

typical oxygen-oxygen separations of 2.62 and 2.83 Å respectively.

A second type of hydroxide defect can be created if the water molecule that accepts

an H-bond from the hydroxide were to rotate, so that one of its H-bonds were directed

towards the hydroxide. This would push the hydroxide H-bond off of the lattice as well

as create a second L-defect. This hydroxide is referred to as an interstitial-pointing

hydroxide, OH−
I , and was first identified in the work of Cwiklik and Buch. [135] This

mechanism for the creation of an OH−
I is shown in Fig. 6.3a. The hydroxide ion, which

now accepts four H-bonds, has its H-bond pointing into the interstitial space. The

oxygen atom of this defect is five-coordinated with roughly trigonal bypyramidal co-

ordination. An example of the local geometry near an interstitial-pointing hydroxide

is shown in Fig 6.3b. To date, we have only examined two configurations involving
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1.02
1.65

1.88
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Figure 6.3: a) Creation of an interstitial-pointing hydroxide via rotation of nearby
water molecules. Rotation of the water next to the hydroxide creates a DL defect
pair. The hydroxide and D-defect combine to form an interstitial-pointing hydroxide.
b) Local geometry near an interstitial-pointing hydroxide taken from a single H-bond
configuration. All lengths are in units of Ångström.

interstitial-pointing hydroxides and found the change in energy for the creation of

this defect to be ∼15 kcal mol−1. Using this energy and the formation energy for a

D+L defect pair (a D-defect is an H-bond with two hydrogen atoms), we can esti-

mate the change in energy when a D-defect and hydroxide ion combine to form an

interstitial-pointing hydroxide to be −11.7 kcal mol−1.

DL → D + L ∆E = 26.6 kcal mol−1 (6.1)

L + OH− → 2L + OH−
I ∆E = 14.9 kcal mol−1 (6.2)

D + OH− → OH−
I ∆E = −11.7 kcal mol−1 (6.3)

The energy of reaction (6.3) is obtained by summing the energy of reaction (6.2) with

the reverse of reaction (6.1). The symbol DL on the left of reaction (6.1) signifies

a recombined D- and L-defect, the absence of a defect. The DL formation energy

was obtained by de Koning et al. using periodic DFT calculations. [136] The OH−
I
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formation energy would suggest that when hydroxide ions come across D-defects, they

readily combine to form interstitial-pointing hydroxides. In this deep trap, hydroxide

ion mobility would be significantly decreased because of the increased barrier for

proton transfer. This result may explain why the effectiveness of hydroxide doping

on the ice Ih/XI ordering transition is concentration dependent. A sufficient amount

of hydroxide needs to be added to titrate all of the D-defects. In the configurations we

examined, the oxygen-oxygen separation for H-bonds within the trigonal plane were

only slightly shorter, ∼2.6−2.7 Å, than typical separations in ice. The fourth H-bond,

perpendicular to the trigonal plane, had an oxygen-oxygen separation of ∼2.9 Å. The

H-bonds donating to the hydroxide parallel to the trigonal plane are roughly 170◦

while the fourth H-bond remains linear. The tetrahedral hydrogen bonding of the

four water molecules that donate H-bonds to this hydroxide ion is not significantly

disturbed. We have not yet included interstitial-pointing hydroxides in the statistical

mechanical models developed below.

We now turn to the interaction between the hydroxide ion and the surrounding

random H-bond-disordered medium. To illustrate the effect, two configurations of a

96-water (95 waters and a hydroxide) unit cell are shown in Fig. 6.4. The hydroxide

and L-defects in Fig. 6.4 are at the same lattice positions. The H-bond arrangement

of the other water molecules differs, while, except for the defects, still maintaining

the ice rules [101] (each water donates two H-bonds and accepts two other H-bonds).

With the help of the graph-invariant theory described in section 6.3, we were able

to identify the most stable H-bond configurations surrounding the defect pair. In

pure water ice, the Cmc21 arrangement of ice XI proposed on the basis of diffraction

data [2–5] is calculated to be the lowest-energy arrangement. Now the question
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L L OH
OH

Figure 6.4: Two different H-bond arrangements for 95 waters and a hydroxide. The
H-bonds adjacent to the defects are the same in both configurations. The L-defect,
originally created when a proton was removed from the system, has diffused away
from the hydroxide ion by a distance of roughly 8.5 Å.

arises as to the degree to which these defects disrupt the lowest-energy pure water

arrangements. The answer is that the disruption is minimal: a hydroxide prefers to

be surrounded by an ice XI structure. Of course, neither a hydroxide nor an L-defect

is compatible with a perfect ice XI structure. At least one of the surrounding bonds

must be reversed. The family of low-energy H-bond arrangements preferred in our

unit cell contains a path of bonds reversed from the ice XI structure that connects

the two defects. The lowest-energy structure located to date is shown in Fig. 6.5.

In the Cmc21 ice XI structure, all c−axis H-bonds point in the same direction. The

H-bonds in each ice XI ab layer are aligned in a direction that alternates from layer

to layer. The H-bonds in Fig. 6.5 are all in the ice XI structure except for a path of

reversed H-bonds leading from the L-defect to the hydroxide. The reversed H-bonds

are shown as thicker and colored purple in the figure. Because of periodic boundary
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conditions (pbc’s), the chain of reversed H-bonds leaves the unit cell at the top of

Fig. 6.5 and then re-emerges at the bottom to point into the hydroxide defect. These

results are significant because they indicate that the hydroxide defect and the ice XI

structure are highly compatible, and that the ice XI structure is disturbed only to

the extent necessary to maintain full hydrogen bonding. In the next section, we will

quickly review the graph-invariant theory, presented in section 2.2, before discussing

how we extend graph invariants to account for the presence of defects.

L−defect

Hydroxide

pbc’s

Figure 6.5: The most stable H-bond arrangement in a 96-water unit cell containing
a hydroxide ion and an L-defect.

124



6.3 Graph-Invariant Theory

It would not currently be practical to use electronic structure calculations to

search through the billions of possible H-bond arrangements possible for the unit cell

pictured in Figs. 6.4 and 6.5. Nor would it be possible to use only electronic structure

methods to describe the statistical mechanics of the H-bond-disordered ice lattice. To

sift through, or thermally average over H-bond fluctuations, we first link the energy

to the H-bond topology. The configuration of H-bonds is described by a set of bond

variables. In pure water ice the bond variable br takes the values +1 or −1 depending

on the orientation of the H-bond at bond position r. If the energy, or any other

scalar physical quantity, can be linked to the H-bond topology (and this is indeed

a significant “if” because the topology contains less information than the full set of

atomic position coordinates), then it must depend upon combinations of the full set

of bond variables {br} in special combinations that, like the energy, are invariant

to symmetry operations. We refer to these combinations, polynomials in the bond

variables, as graph invariants. Linear polynomials in the {br} are first-order graph

invariants, quadratic polynomials are second-order graph invariants, and so on. For

most ice lattices, there are no invariant linear functions of the {br} and the leading-

order basis functions used to link energy to H-bond topology are the second-order

graph invariants. The ability of graph invariants to capture the energetic trends

among H-bond arrangements in ice phases, and to predict H-bond ordering phase

transitions between ice phases, is documented in the previous chapters. Here we are

concerned with the extension to systems with defects.

To describe a system containing both a hydroxide ion and an L-defect, as pictured

in Figs. 6.4 or 6.5, the bond variables are also allowed to take the value of 0, which
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signifies the absence of a hydrogen bond. In addition to the b−variables, we introduce

a variable cr for each bond indexed by r. The c’s are zero except at the hydroxide site

where the c−variable takes the value ±1 to describe the orientation of the hydroxide

ion. This scheme is not unique, but it is sufficient to capture all possible H-bond

arrangements in the system pictured in Figs. 6.4 or 6.5. Following the discussion in

section 2.2, polynomials in the b− and c−variables invariant to symmetry operations

are generated using the projection operator for the totally symmetry representation

of the appropriate symmetry group for the system under study. [19, 20, 22–24, 51]

For ice lattices, this is the crystal space group [22] while for finite water clusters it

is the point group. [51] Because there are usually no invariant linear polynomials

(first-order graph invariants) and higher-order polynomials have, to date, never been

needed, the most important of these polynomials are the quadratic ones (second-order

graph invariants). Second-order graph invariants involving only b−variables,

Irs =
1

|G|

|G|
∑

α=1

gα(brbs) , (6.4)

are used to describe pure water ice. In this equation, |G| is the order of the symmetry

group and the sum is over the members of the symmetry group. The invariant is

labeled by the bond pair, r and s, from which it is generated by the projection

operator. With a single hydroxide ion present, second-order graph invariants of the

form

Irs,c =
1

|G|

|G|
∑

α=1

gα(brcs) , (6.5)

involving a b− and a c−variable are also needed to describe interactions between

the hydroxide and surrounding water molecules. In principle, if several hydroxides

were present and interacting with each other, invariants involving two c−variables
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would be required. We have previously shown how this formalism can be applied to

a hydroxyl radical defect in a water cluster. [52]

Using expressions like Eqs. (6.4−6.5) we can generate a complete set of invariant

functions to parametrize the dependence of energy on the H-bond topology in the

following form.

E(b1, b2, . . . , c1, c2, . . .) =
∑

r

αrIr(b1, b2, . . . , c1, c2, . . .)

︸ ︷︷ ︸

sum over 1st-order invariants

(6.6)

+
∑

rs

αrsIrs(b1, b2, . . . , c1, c2, . . .)

︸ ︷︷ ︸

sum over 2nd-order invariants

+ . . .
︸︷︷︸

negligible

In practice, the α−coefficients are determined for small unit cells for which electronic

structure calculations are feasible. Since we have shown that invariants for a small

unit cell are automatically invariants for larger cells, the formalism provides a means

to extrapolate an expression for the energy to unit cells large enough to be a simulation

cell for statistical mechanical calculations. In practice, the expansion is truncated at

second order, as indicated in Eq. (6.6).

To date, for pure water ice phases, second-order invariants generated by projection

on a small number of nearby bond pairs were sufficient. Kuo et al. have shown that

the existence of a graph element that takes one bond into minus itself is a necessary

and sufficient condition for there to be no first-order invariants. [51] This is the usual

case for ice structures, and first-order invariants only appear for the ice III/IX and

ice V/XIII systems. For the ice-Ih system, discussed in chapter 2, three second-order

invariant functions provided an accurate parametrization of the energy. [19, 20] We

used those same three invariant functions with α−coefficients calculated from the

48-water 2× 2× 1 cell to describe the pure water portion of the system. On physical
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grounds, we expect charge-dipole interactions to be important in the presence of ionic

defects. The implication would be that invariants involving variables br and cs where

bonds r and s are not close to each other might also be significant. The charge-dipole

interaction amounts to collecting a large number of brcs terms together with a single

coefficient proportional to the combination qµ

ǫeff
,

ECD =
qµ

ǫeff

∑

rs

Irs(b1, b2, . . . , c1, c2, . . .), (6.7)

where ǫeff is an effective dielectric constant for the medium and the sum is over bonds

r and s that are not nearest neighbors.

To account for this possibility, we included interactions (also invariant!) involving

charges on the hydroxide ion, L-defect, and water molecules. The energy expression

with the defect-water electrostatic interactions is still in the form of Eq. (6.6). The

location of the L-defect charge was placed at the midpoint of the two oxygen atoms

which formed the L-defect. For the hydroxide ion, the charge was entirely localized

on the oxygen atom. Charges for the water molecules were placed at the location

of the oxygen and hydrogen atoms. The sum of the hydroxide and L-defect charges,

QOH and QL respectively, was constrained to be −1.

QL + QOH = −1 (6.8)

The sum of the charges on each water molecule was constrained to be zero,

QO + 2QH = 0, (6.9)

where QO and QH are the oxygen and hydrogen atom charges respectively. The

energy expression for the defect-defect and defect-water interactions takes the form

QOH(QOEOH,O + QHEOH,H)
︸ ︷︷ ︸

hydroxide-water

+ QL(QOEL,O + QHEL,H)
︸ ︷︷ ︸

(L-defect)-water

+ QLQOHEL,OH
︸ ︷︷ ︸

hydroxide-(L-defect)

, (6.10)
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where the Ej,k are Ewald sums calculated with positive test charges located at the

corresponding positions of the j− and k−type atoms. In order to use this expression

to evaluate the energies of H-bond configurations in a large simulation cell, it will be

necessary to know the coordinates of all atoms. To calculate the Ewald sums and fit

the charges, we employed the following model to generate atomic coordinates. For

each H-bond configuration, all oxygen atoms were fixed at their perfect lattice sites.

The hydrogen atoms were placed 1 Å from the covalently bonded oxygen along the

line joining the two oxygen atoms in the H-bond.

We proceeded by generating a handful of H-bond configurations in the 96-water

cell and used periodic DFT calculations, as described above, to obtain the minimum-

energy geometries. Using the calculated energies and model geometries, we fit the

charges and invariant coefficients for the brcs type second-order invariants. Again,

the coefficients for the bulk ice invariants were taken from previous calculations dis-

cussed in chapter 2. With this expression, Metropolis Monte Carlo simulations of the

96-water cell were performed to generate a sampling of configurations for further cal-

culations. An energy expression was parametrized and the procedure repeated until

a thorough sampling of the energy range was obtained. Also, with this procedure, we

were able to efficiently identify the lowest-energy H-bond configuration, the structure

of which is shown in Fig 6.5.

At the beginning of this section, we described the link between energy and the H-

bond topology as something that cannot be taken for granted and must be verified.

The data in Fig. 6.6 is an important part of that verification process. If the fit

using the graph-invariant expression of Eq. (6.6) was perfect, then all points would

lie on the diagonal. The low-energy points in Fig. 6.5 are the ice XI-like structures
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Figure 6.6: Energy of 110 H-bond isomers of a 96-water unit cell containing a hy-
droxide ion and an L-defect is compared with a fit of the form of Eq. (6.6).

described in section 6.2 with closed loops of H-bonds and paths of reversed H-bonds

connecting the hydroxide and the L-defect. In our fit to the data, the charge on the

L-defect went to zero and the hydroxide had a charge of −1. (The charge of −0.38

normally associated with an L-defect is a charge associated with a polarization current

when a water molecule reorients, not a physical charge.) Increasing the flexibility in

the model by allowing a nonzero charge on the hydrogen atom of the hydroxide

ion still resulted in the full charge of −1 being located on the oxygen atom of the

hydroxide. The charge of the oxygen atoms in the water molecules was −0.20. We

found that inclusion of brcs type invariants was not necessary for a good quality fit of

the energies. Their contribution to the relative energies of the H-bond configurations

was consistently an order of magnitude smaller than the bulk-ice graph-invariant

and electrostatic contributions. When included, 6−7 additional invariants of the
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form given in Eq. (6.5) involving bonds r and s that were nearest-neighbors gave a

satisfactory fit of the relative energies of H-bond configurations. A good quality fit of

the energies without including electrostatic interactions was possible, but as expected,

it required a relatively large number of invariants whose generating bond pairs were

separated further than next-nearest-neighbors.
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Figure 6.7: Energy as a function of the distance between a hydroxide ion and its
original location. Each curve is the result of averaging 10000 trajectories.

Using the graph-invariant theory, extended to treat the presence of defects, we

have parametrized an effective Hamiltonian for describing H-bond fluctuations in a

large simulation cell when a hydroxide ion and an L-defect are present. The following

is preliminary work on the statistical properties of a hydroxide ion in a disordered

ice lattice. To investigate the degree to which hydroxide ions are trapped in ice,
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we performed a series of simulations at several temperatures. These simulations were

performed in a cell measuring 10×10×10 unit cells on each side containing 12000 water

molecules. For these simulations, the only trial moves that were attempted involved

the hydroxide ion moving one H-bond at a time. One of the three H-bonds donating

to the hydroxide was chosen at random to be flipped. If the trial configuration

caused the distance between the hydroxide ion and its original location at the start

of the simulation to increase, then the move was accepted regardless of the change in

energy. The simulations were terminated when the hydroxide distance reached 25 Å,

which was the maximum distance possible in this simulation cell due to periodic

boundary conditions. For each temperature, averages over 10000 trajectories were

used to obtain the energy vs. hydroxide distance curves shown in Fig 6.7. Initial

configurations for these trajectories were obtained from standard Metropolis Monte

Carlo simulations with the hydroxide and L-defect positions frozen at the largest

possible separation allowed in this simulation cell. From the energetics along the

hydroxide diffusion paths shown in Fig 6.7, we can see that the general trend is for

energy to increase with distance. The barrier for hydroxide diffusion increases with

decreasing temperature, almost doubling from 300 to 100 K. In the next section, we

present our work to date on the proton transfer between a hydroxide ion and water

molecule in a disordered ice lattice.

6.4 Proton-Transfer Barriers in Ice

The information presented up till now concentrated on the equilibrium energetic

and structural aspects of defects in a proton-disordered ice lattice. We now investi-

gate the mechanism by which hydroxide ions diffuse through a disordered ice lattice.
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The motion of hydroxide ions occurs via proton transfer from one of the three water

molecules donating H-bonds to the hydroxide. After one of the protons hops across

its H-bond, the water molecule and hydroxide will have switched places resulting in

the migration of the hydroxide within the ice lattice. In Figure 6.8a, the proton-

transfer barrier for five different H-bond configurations in a 96-water cell are shown.

The periodic DFT calculations are similar to those discussed above with a plane wave

cutoff of 70 Ry. In these plots, energy is plotted versus the proton-transfer reaction

coordinate taken to be the difference between the two oxygen-hydrogen distances in

the H-bond, as illustrated in Fig 6.8b. For each proton-transfer event, the zero of

energy is taken to be the lowest energy point along the path corresponding to one

of the two equilibrium configurations. For all cases, the transition state is found

to be close to the midpoint of the H-bond with a proton-transfer barrier height of

∼0.8−1.0 kcal mol−1. With such small barrier heights, one would expect that quan-

tum effects will be important to accurately describe proton transfer in an ice lattice.

To illustrate this point, in Fig 6.8c, there is an example of fitting a proton-transfer

barrier to a double-well potential and solving for the lowest-energy eigenvalues and

eigenstates. It is not surprising that we find the lowest energy state lying at, if not

above, the barrier for proton transfer. The ground-state probability distribution for

this proton is delocalized across both wells. We now report on the current progress

of investigating whether the effects on the barrier heights due to proton disorder can

be accurately described by a graph-invariant expression.

In addition to the five proton-transfer barriers shown in Figure 6.8, we calculated

seven additional barrier heights for different H-bond configurations in the 96-water

cell. In these additional calculations, we assume that the transition state for the
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Figure 6.8: a) Potential energy as a function of proton-transfer reaction coordinate
for five H-bond configurations in a 96-water cell. b) The reaction coordinate for the
proton transfer between a hydroxide and water molecule is taken to be the difference
in oxygen-hydrogen distances in the H-bond. c) The energy levels and probability
distributions for the lowest states of a double-well potential calculated using a discrete
variable representation algorithm [13].

proton is located at the midpoint of the H-bond. Thus, we only used energies of the

two minima, E1 and E2, and transition state, E†, to determine the barrier heights,

as shown in Fig 6.9a. The quantity E12 is the average energy of the reactant and

product ground-state energies,

E12 =
1

2
(E1 + E2). (6.11)

As shown in the previous section, these are quantities for which we have successfully

parametrized an effective Hamiltonian using graph invariants. For the barrier height,

we use the following quantity,

∆E = E† − E12, (6.12)
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to parametrize a graph-invariant expression using second-order brcs type invariants.

∆E(b1, b2, . . . , c1, c2, . . .) = ∆E0 +
∑

rs

αrsIrs(b1, b2, . . . , c1, c2, . . .) (6.13)

For this problem, the c−variables describe the H-bond that the proton is transferring

across and is defined to always take the value of 1. The b−variables describe all other

H-bonds and take values ±1 depending on the orientation of the H-bond. Empty

H-bonds are assigned the value of zero. In this model, we only examine the case of

a single proton-transfer event occurring at a time. The ability of the graph invariant

expression, Eq. (6.13), to predict the barrier heights for the 15 proton-transfer reac-

tions is shown in Figure 6.9b for both plane wave cutoffs of 70 and 90 Ry. To achieve

good quality fits, it was only necessary to include 6 and 7 invariants, respectively,

plus a constant. As can be seen, the graph-invariant expressions do a good job of

reproducing the barrier heights. It is also clear, from the figure, that the barrier
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Figure 6.9: a) Model used to calculate barrier heights which are fit to a graph invariant
expression. b) Predicted vs. calculated barrier heights for 15 proton transfer events
in a 96-water cell calculated at plane wave cutoffs of 70(•) and 90 Ry(�).
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heights calculated at 70 Ry are not converged with respect to the plane-wave cutoff.

To test if the 90 Ry barrier heights are converged, we need to repeat the calculations

at a higher plane-wave cutoff, maybe 120 Ry. We also need to double or triple the

sampling of proton-transfer reactions to test the robustness of the graph-invariant

fits. It is possible that with a more thorough sampling of H-bond configurations, a

good quality fit with graph invariants may require many more terms. With increased

sampling, if the quality of the fit degraded past the point of no longer being meaning-

ful, then there may be an alternative worth pursuing. The barrier heights calculated

at 90 Ry only span a range of ∼0.13 kcal mol−1. It may prove adequate to assume

that all barrier heights, ∆E, are independent of the surrounding H-bond topology.

We could then simply use the average barrier height, which for the 90 Ry calculations

is 0.72 ± 0.04 kcal mol−1.

6.5 Outlook

In this chapter, we successfully extended the graph-invariant theory, discussed in

section 2.2, to account for the presence of defects. Using previously determined bulk-

ice invariant coefficients, brcs defect type invariants, and defect-water electrostatic

interactions, we successfully constructed a model to describe the relative energies

of H-bond configurations in a 96-water cell. We calculated barrier heights for the

proton transfer between a hydroxide and water molecule. We found that typical

barrier heights were less than 1 kcal mol−1 indicating that the proton is likely to be

delocalized across the H-bond. This indicates that the inclusion of quantum effects

are important if one is to obtain an accurate description of hydroxide motion in a

disordered ice lattice. We presented preliminary work on using a graph-invariant
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expression to account for the effects on the proton-transfer barrier heights due to the

surrounding disordered ice lattice. The next piece of the puzzle is to construct an

empirical potential, which would keep track of the detailed atomic coordinates, but

know nothing about the effects due to H-bond disorder. If we are able to couple these

three models together, we may then be able to study the quantum transport of a

hydroxide ion in a disordered ice lattice and shed light onto the mechanisms by which

proton order/disorder transitions occur in ice.
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CHAPTER 7

SITE DISORDER IN ICE VII ARISING FROM H-BOND

FLUCTUATIONS

7.1 Introduction

The proton ordering phase transition of ice VII to anti-ferroelectric proton-ordered

ice VIII is, in many respects, considered to be well-characterized. What is not well

understood, however, is the apparent site disorder of the oxygen atoms as suggested

from recent neutron diffraction studies. [44, 137, 138] Studying ice VII in its region

of stability, Kuhs et al. achieved a good fit to neutron diffraction data treating the

thermal motion of the oxygens anharmonically. [44] This model led to a surprisingly

short O-D distance of ∼0.89 Å which lengthened by ∼0.13 Å when this distance was

allowed to vary freely after another refinement with a rigid water geometry. From

this analysis, it appeared that there was significant motion along the set of 〈100〉 axes

suggesting disorder of the oxygen atoms about their perfect lattice sites. Here, the

symbol 〈100〉 stands for all axes related by symmetry to the [100] axis, for example:

[100], [1̄00], [010], [01̄0], [001], and [001̄]. Jorgensen and Worlton investigated the

structure of ice VII using a time-of-flight neutron diffraction technique. [137] They

also found it difficult to separate the static and thermal displacements of the oxygen
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atoms. Introducing a multisite model for the hydrogens did elongate the O-D distance

somewhat, but it suggested D-O-D angles that did not seem probable. Thus, they

also concluded that some displacement of the oxygen along the 〈100〉 directions, away

from the covalently bonded deuteriums, would allow for the lengthening of the O-D

distance.

More recently, an investigation by Nelmes et al. refined neutron diffraction data

using various combinations of multisite models for both the oxygen and hydrogens

treating the thermal motion harmonically. [138] A good fit of their models was mea-

sured by the closeness of the water molecule geometry to that found in ice VIII,

the proton-ordered phase, with an O-D distance and D-O-D angle of 0.970 Å and

107.3◦ respectively. [138] They found the best fit was achieved when oxygen atoms

were displaced along the set of 〈111〉 axes and the hydrogens shifted along 3-fold sites

surrounding the 〈111〉 axes. This gave an O-D distance and D-O-D angle of 0.977 Å

and 107.1◦ respectively. The best fit that could be achieved using the 〈100〉 axes for

oxygen, with 3-fold sites for hydrogens, resulted in a water geometry of 1.01 Å and

107◦, consistent with the earlier work of Kuhs et al. [44] Regardless of model, all

fits yielded site displacement magnitudes of ∼0.135Å. The 〈100〉 model for oxygen

displacement yielded H-bonded oxygen-oxygen distances of 2.833 and 2.839 Å, both

in close agreement with their data from ice VIII under similar conditions. However,

the 〈111〉 model which gave the best water geometry overall also predicted two sets of

H-bonded oxygen-oxygen distances that were ∼0.1 Å longer and shorter than the H-

bond distances in ice VIII. As the authors indicate, this is a feature not yet observed

in spectroscopic studies.
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In an attempt to understand these results and shed light on the nature of the

static motion of the oxygen atoms in ice VII, we have developed a model that predicts

the oxygen displacement from a perfect lattice site as a function of the surrounding

H-bond network. Looking at the distance over which H-bond topology affects the

site geometry, we find good convergence of the model only including neighboring

waters. In section 7.2, we review DFT theory calculations of H-bond configurations

of a 32-water ice VII cell, discussed in chapter 2. We develop and parametrize a

model in section 7.3 which describes the displacements of oxygen atoms from their

perfect lattice sites. In section 7.4, we discuss the results of statistical mechanical

calculations on a large simulation cell where we use graph invariants to describe H-

bond fluctuations. We conclude with a discussion of the results in section 7.5.

7.2 Periodic DFT Calculations

H-bond configurations used in a previous study of the ice VII/VIII proton or-

dering phase transition were used to parametrize the oxygen displacement model

discussed below. [19, 20] Here, we repeat some details of the calculations for con-

venience. The ice VII unit cell measures 2
√

2 × 2
√

2 × 2 primitive cells on each

side consisting of 32 water molecules with lattice constant a = 3.337 Å. Periodic

DFT calculations were performed on 50 configurations using the CPMD [69–71] pro-

gram with the BLYP gradient correction [72, 73] to the local density approximation,

Troullier-Martins norm-conserving pseudopotentials [74] and plane wave cutoffs of up

to 120 Ry. The increased cutoff, relative to the 70 Ry cutoff used in the previous

studies [19,20], was used to ensure convergence of the geometries. The Brillouin zone

sampling was restricted to the Γ−point.
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system O-H(Å) H-O-H(◦) O–H(Å) O-H–O(◦) O–O(Å)
VIII(70Ry) 0.9889 ± 0.0000 105.92 ± 0.00 1.9016 ± 0.0000 177.30 ± 0.00 2.8898 ± 0.0000
VIII(90Ry) 0.9844 ± 0.0000 106.24 ± 0.00 1.9061 ± 0.0000 177.56 ± 0.00 2.8898 ± 0.0000
VIII(120Ry) 0.9837 ± 0.0000 106.25 ± 0.02 1.9068 ± 0.0008 177.56 ± 0.02 2.8898 ± 0.0008
VII(70Ry) 0.9893 ± 0.0004 105.34 ± 0.30 1.9021 ± 0.0090 177.72 ± 1.03 2.8907 ± 0.0085
VII(90Ry) 0.9847 ± 0.0004 105.61 ± 0.31 1.9066 ± 0.0098 177.87 ± 0.99 2.8908 ± 0.0093
VII(120Ry) 0.9840 ± 0.0004 105.59 ± 0.30 1.9073 ± 0.0100 177.88 ± 0.98 2.8908 ± 0.0096

Table 7.1: Averaged geometrical features of H-bond configurations of an ice VII unit cell for a series of plane wave cutoffs.
Geometrical properties labeled ice VIII were averaged over the 32-water configuration corresponding to the experimental
ice VIII structure with error bars indicating one standard deviation. Those properties labeled ice VII were averaged over all
waters in the 50 H-bond configurations studied here. The O–O distances reported are H-bonded oxygen-oxygen distances.
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Figure 7.1: Probability distributions for various geometrical features calculated from
the 50 H-bond configurations optimized with a 90 Ry plane wave cutoff.

From the optimized geometries, probability distributions of certain distances and

angles were calculated and are shown in Figure 7.1. Averages of the distances and

angles, presented in Table 7.1, showed a decreasing change with increasing plane

wave cutoff suggesting we have nearly reached convergence with respect to geomet-

rical properties. We find that the H-bonded oxygen-oxygen probability distribution

has a single peak with an average of 2.8908 ± 0.0093 Å. We do not see evidence of

a bimodal distribution of H-bonded distances with a peak separation of ∼0.2 Å as

suggested by Nelmes et al. [138] However, analysis of the nonbonded oxygen-oxygen

distances shows three peaks each separated by ∼0.1 Å with the central peak located

very close to the H-bonded oxygen-oxygen distance. Average oxygen-oxygen dis-

tances for the nearest-nonbonded peaks, shown in Figure 7.1, are 2.7956 ± 0.0153,

142



2.8928 ± 0.0126, and 2.9855 ± 0.0154 Å. As discussed below, the largest component

of the oxygen site displacement is in a direction away from the water dipole vector.

When nearest-neighbor nonbonded waters have dipoles pointing toward each other,

similar to waters labeled “0” and “12” in Figure 7.2b, the oxygen displacements are

away from each other giving rise to the peak near 2.99 Å. When the dipoles point

away from each other, like waters labeled “0” and “6” (also “0” and “7”) in Fig-

ure 7.2b, the displacements push the waters closer generating the peak near 2.79 Å.

Dipoles oriented in the same direction result in a nonbonded oxygen-oxygen distance

unchanged from the hydrogen bonded distance. Orientations of dipoles whose dot

product is zero, waters “0” and “13”, can have distances of 2.89 Å and, coinciden-

tally, one of the other values depending on whether the dipole of the central water,

labeled “0” in Figure 7.2b, points towards or away from the nonbonded neighbor.

7.3 H-Bond Model for Site Displacements

To model the oxygen site displacement, we seek an expression that accounts for

the surrounding H-bond network of a given water molecule. In the previous chapters,

we have shown that an economical description of the dependence of scalars, like the

energy, on H-bond topology can be developed. The key is to form combinations of

variables that capture the orientation of H-bonds that are invariant to all symmetry

operations of the appropriate space group. We refer to these combinations as graph

invariants. Here we extend that idea by forming combinations of H-bond variables

that transform as a first-rank vectorial tensor. The simplest function that captures

how the displacement vector, d0, depends on the local H-bond topology is a linear
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Figure 7.2: (a) Nearest H-bonded neighbors (1-4), nearest non-H-bonded neighbors
(5-14) surrounding a central water labeled “0” in the figure. We refer to the orien-
tation of the central water, dipole pointing in the +z−direction and hydrogen bonds
along the 〈111〉 axes, as the “canonical” orientation. Water molecules labeled with
asterisks are those that make up the primitive unit cell of ice VII which the thin
black lines outline. (b) Arrows on the central water and its four nearest-nonbonded
neighbors indicating the direction of the site displacements as discussed in the text.
The water labeled “13” has its dipole vector in the xy−plane while the other labeled
waters (0,6,7,12) have their dipoles pointing along the z−axis.

combination of H-bond vectors. Higher order combinations that transform as a first-

rank tensor can be generated with group theoretical projection operators [22,51], but

we have found that the lowest-order linear description given in the following equation

is adequate to describe site disorder in ice VII.

d0 = c0µ̂0 +
2∑

i=1

ciµ̂i +
4∑

i=3

ciµ̂i +
14∑

i=5

ciµ̂i + . . . (7.1)

The ci are 3×3 coefficient matrices and µ̂i is a unit vector in the direction of the dipole

of the ith water where the indices are defined in Figure 7.2. The leading term in the

expression, µ̂0, is a sum over the two bond vectors of the water whose displacement
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is being described by the linear expansion. It is found that the water is displaced in

a direction opposite to the direction of the dipole, placing the center of mass of the

molecule closer to the perfect lattice site. Keeping only this term in the expression

results in a model identical to the 〈100〉 model used to fit experimental data.

d
〈100〉
0 = c0µ̂0 (7.2)

The next two terms in Eq. (7.1) arise from nearest neighbors on the same sub-lattice

which donate and accept hydrogen bonds respectively. Each of these four waters can

only take three of the six allowed orientations, due to the ice rules, resulting in 81

possible displacements from the set of 〈100〉 axes. The next term in the expression

comes from the 10 closest neighbors found on the other sub-lattice which were divided

into 5 groups of waters depending on their height with respect to the z-axis. We found

no significant improvement in fitting the oxygen site displacement when additional

waters were included in the linear model.

error =

config
∑

i

water∑

j

{

[Rj + d
(i)
j ] − [r

(i)
j + s(i)]

}2

(7.3)

The coefficient matrices, the c’s in Eq. (7.1), were determined by minimizing the

least squares error defined by Eq. (7.3), where the index i runs over the 50 H-bond

configurations and j over the 32 water molecules per configuration. The perfect lattice

positions, Rj, for the jth water were generated using the lattice constant a = 3.337 Å,

the same lattice constant used in the periodic DFT calculations. The displacement of

the oxygen from its perfect lattice site, d
(i)
j , for the jth water in the ith configuration

was defined in Eq. (7.1). r
(i)
j is the position of the jth water in the ith configuration in

the optimized geometry obtained from periodic DFT calculations. A translation for

each H-bond configuration, s(i), was included to account for any overall translation of
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the system that may have occurred during the geometry optimization. All coefficient

matrices could be made to be of the form

c =





c11 c12 0
c12 c11 0
0 0 c33





without any degradation in quality of fit to the data. Since we divide the fifteen

waters shown in Figure 7.2 into eight unique contributions, this leads to a total of

22 independent parameters which are listed in Table 7.2. The coefficient matrix for

the water labeled “0” only has one nonzero entry, c33, because µ̂0 is taken to be

parallel to the z−axis in the canonical orientation. If this was the only term used in

waters c11 c12 c33

0 0 0 −0.06644760
1−2 −0.00236387 −0.00147139 −0.00298849
3−4 −0.00295796 −0.00163781 −0.00281003
5 −0.01463340 −0.01180770 −0.00569223

6−7 0.00923378 0.00288609 0.00415282
8−11 0.00087710 0.00414371 0.00107050
12−13 −0.00211376 −0.00142694 0.00455538

14 0.01100470 −0.00684993 0.00402371

Table 7.2: Matrix elements for the coefficient matrices, the c’s in Eq. (7.1), for the
oxygen displacement, in units of Ångströms, for a water molecule in the canonical ori-
entation as shown in Figure 7.2. These coefficients were obtained using the geometries
calculated with a 90 Ry plane wave cutoff.

the model, d
〈100〉
0 , then this nonzero entry would correspond to the site displacement

magnitude in the 〈100〉 model discussed above. Fitting the data to the d
〈100〉
0 model

gave c33 = −0.076Å which is only slightly larger than the corresponding coefficient in

Table 7.2.
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There are two ways to measure the degree to which our model links site displace-

ments to H-bond topology: 1) prediction of the displacements in their original crystal

lattice orientation from perfect lattice positions, 2) rotation of each water into the

canonical orientation defined in Figure 7.2a and then measuring the displacement

from the perfect lattice position. In the former case, the displacements range from

−0.1 to +0.1 Å. The displacements of waters in their original crystal lattice orienta-

tion take place with equal magnitude in six directions from the perfect lattice sites.

In the latter case, because the waters are now oriented in the same way and the dis-

placement largely occurs in a direction opposite to the water dipole, the displacements

now range from −0.1 to 0 Å in the z−direction, the direction of the dipole in the

canonical orientation, and are much smaller in the x− and y−directions. Agreement

between the model and calculated site displacements is shown in Figure 7.3 for water

molecules in their original crystal lattice orientation and the canonical orientation.

The largest disagreement between the model and calculated displacement is ∼0.03 Å

with 3% of oxygens having deviations larger than 0.02 Å. As shown in Figure 7.3,

when all waters are similarly oriented, the deviations are magnified. The largest dis-

placement obtained using predictions from the d
〈100〉
0 model was ∼0.04Å with 38%

and 5% of oxygens having deviations larger than 0.02 and 0.03Å respectively.

7.4 Statistical Mechanical Results

We performed Metropolis Monte Carlo simulations on a simulation cell measuring

eight primitive cells on each side containing 1024 water molecules. Results reported

below were obtained from simulations at 1000 K, essentially infinite temperature

for the H-bond orientations. Data obtained at lower temperatures for ice VII was
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Figure 7.3: Fit of the oxygen-displacement model to the oxygen displacements of
waters in the 50 optimized H-bond configurations. The top row shows the data for
waters in their original orientation in the crystal lattice where the dipoles can point in
any one of six directions. The bottom row shows data for all waters in the canonical
orientation where their dipole now points towards positive z. The columns, left to
right, show the agreement along the x, y, and z axes respectively. All points would
lie on the straight line if there was perfect agreement.

essentially identical to data at 1000 K in line with the fact that only 7% of the con-

figurational entropy is lost before the ordering transition in our simulations. [19, 20]

Additional simulation details, including a description of the graph-invariant expres-

sion used here to describe H-bond fluctuations, are identical to those found in previous

work on the ice VII/VIII proton ordering transition presented in chapter 2. Using the

site-displacement model developed here, we calculated equilibrium distributions for

the site displacements and oxygen-oxygen distances. As seen in Figure 7.4, the prob-

ability distributions obtained from the statistical mechanical simulations are similar
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to those obtained from ab initio calculations on H-bond configurations chosen “semi-

randomly” for the 32-water cell. For the oxygen-site displacement distribution, the

peak near 0.1 Å in the data for the optimized geometries is mostly due to ice VIII

like H-bond configurations, those with most neighboring water dipoles pointing in the

same direction, which are rarely sampled at temperatures above the ordering transi-

tion. The 3-D probability distribution of the atomic center of oxygen displaced from
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Figure 7.4: The red curves are the probability distributions for the bonded(a) and
nonbonded(b) oxygen-oxygen distances calculated from Monte Carlo simulations at
1000 K. The black curves are the same as those shown in Figure 7.1 to compare
with the simulated structure. (c) Probability distribution of the site displacement
calculated from 50 H-bond configurations(black) and Monte Carlo simulations(red).

its perfect lattice site, obtained from Monte Carlo simulations at 1000 K, is shown in

Figure 7.5a. The probability distribution is spread across six sites which are located

on the 〈100〉 axes as discussed above. As one looks down an axis, the z−axis for

example, one can see a 4−fold symmetry in the probability density. Contour plots,

projection onto the xy−plane, of the lobes lying on the negative x−axis and positive

z−axis are shown in Figures 7.5b and c. In both contours, the largest probability of
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finding the oxygen center is found to lie on the axes with probability decreasing away

from the axis. The 4−fold symmetry is clearly seen in the contour plot of the lobe

located on the positive z−axis viewed down the z−axis.
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Figure 7.5: (a) 3-D probability distribution of the position of the oxygen centers
relative to the perfect lattice site, small red sphere, obtained from Monte Carlo sim-
ulations at 1000 K. The center of each lobe is located on one of the 〈100〉 axes. (b)
and (c) Contour plots of the probability distribution, projected onto the xy−plane, of
the position of the oxygen centers relative to the perfect lattice site. (b) The oxygen
sites closest to the negative x−axis, [1̄00], with some contours labeled indicating the
fraction of oxygen atoms enclosed. The most probable location of the oxygen center
is within the contour labeled 10%. (c) The oxygen sites closest to the positive z−axis,
[001]. In both plots, starting from the contour labeled 90%, the contours decrease in
increments of 10% as one looks towards the center of each distribution. For clarity,
the 20% contour, nearly identical to the 30% contour, was omitted in (c).
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7.5 Discussion

This work has described the success of expressing the displacement of an oxy-

gen atom from its perfect lattice site, obtained from periodic DFT calculations, as

a function of the surrounding H-bond topology. Combined with an analytic tech-

nique to describe H-bond fluctuations, graph invariants, we were able to perform

statistical mechanical calculations on the site displacements in a large simulation cell.

We find that the oxygen atoms are displaced along the 〈100〉 axes and not the re-

cently suggested 〈111〉 axes. [138] The maximum of the probability distribution for

the site displacements is near 0.071 Å. The hydrogen bonded oxygen-hydrogen and

oxygen-oxygen distances had unimodal probability distributions with average lengths

of 1.9073 and 2.8908 Å respectively. The nonbonded oxygen-oxygen probability dis-

tribution had three peaks separated by ∼0.1 Å with the central peak centered at the

H-bonded oxygen-oxygen distance

The site displacement model is sufficient to explain the sub-lattice shift observed

in anti-ferroelectric ice VIII. The model predicts a sub-lattice shift of 0.196 Å(0.203 Å)

in agreement with the present calculated shift, 0.205 Å(0.204 Å), with a plane wave

cutoff of 90 Ry(120 Ry) and previous experimental and calculated shifts. [45,68,139]

By optimizing the H-bond configurations at increasing plane wave cutoffs, we found

that the geometrical features, such as H-bonded oxygen-oxygen distances, are nearly

converged by 90 Ry, although other properties, such as the energy and forces, need

much larger cutoffs. [140] We have not attempted to calculate the thermal motion

of the oxygen atoms, which would require lattice force constants available from our

periodic electronic structure calculations, but the degree of static motion we observed

here is already on the order of the site displacements observed experimentally.
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