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ABSTRACT

Complex computer models have extensive usage in scientific and engineering stud-

ies. Because the number of computer runs is typically limited, statistical models are

used to predict the computer codes. This thesis considers two research problems.

The first problem is prediction for computer experiments having quantitative and

qualitative mixed input variables. The second is the simultaneous determination of

tuning and calibration parameters.

To predict the output from a computer experiment having mixed inputs, we re-

gard the output from a computer experiment code as a realization from a mixture of

Gaussian Stochastic Processes (GaSPs) and have developed two methods. The first

method assumes that the responses at different qualitative input levels share similari-

ties. We build one GaSP model for each level of the qualitative input. Using Bayesian

hierarchical models with an empirical prior, the predictions at one qualitative input

level are able to borrow information from the responses at other levels. The second

method estimates the common trend of the responses at all the qualitative input lev-

els. The prediction is the sum of the estimated average and the predicted deviation

of a response from the average. We develop a data adaptive algorithm for the esti-

mation of the common trend to guarantee that the predictive error of this predictor

is no bigger than that of a predictor using the data at one level only. We extend the

both methods to computer experiments having multiple qualitative inputs.
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To simultaneously select tuning and calibration parameters, we develop a Bayesian

discrepancy-based procedure to estimate the tuning parameters and simulate the

estimated posterior distribution of the calibration parameters.

We compare our methodologies with alternatives and implement the methodolo-

gies in three biomechanical engineering applications.
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1,2,3,12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Specifications of the Metropolis-Hastings algorithm. The four columns,
from left to right, correspond to the prior distributions, the lower and

upper bounds of the parameters as the program iterates, the initial
values of the parameters, and the lengths of the uniform distributions.

We let TN(µ, σ2) on [a, b] denote the truncated normal distribution

with mean µ and variance σ2 on the support [a, b]. . . . . . . . . . . . 79

4.2 Grid of t and the approximate integral (4.14) . . . . . . . . . . . . . . 90

xii



LIST OF FIGURES

Figure Page

2.1 A simulated surface with ρ = 0.5 (the left panel) and a simulated

surface with ρ = 0.9 (the right panel). . . . . . . . . . . . . . . . . . . 31

2.2 Four plots of the RMSPE comparisons of ŷSHB(·) and ŷHQV (·) for 100
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and ŷHQV (·). The three panels correspond to Process 1 (the left panel),
Process 2 (the middle panel), and Process 3 (the right panel). . . . . 36

2.5 Boxplots of the 30 extrapolation RMSPEs of ŷSHB(·), ŷPBP (·), ŷKOH(·),
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CHAPTER 1

INTRODUCTION

This chapter introduces concepts, models, and numerical methods that will be

used later. Section 1.1 introduces physical experiments, mechanical simulators, and

computer experiments. Section 1.2 defines different types of the input to computer

experiments. Section 1.3 sketches the computer experimental designs that will be used

in the later chapters. Section 1.4 describes the Gaussian stochastic process model.

Section 1.5 discusses the Metropolis-Hastings algorithm for simulating the posterior

distribution.

The rest of the thesis is organized as follows. Chapters 2 and 3 propose a hier-

archical Bayesian method and an ANOVA method, respectively, for the prediction

for computer experiments having quantitative and qualitative inputs. Chapter 4

proposes a discrepancy-based methodology together with a Bayesian model for the

simultaneous tuning and calibration.
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1.1 An Overview of Computer Experiments

1.1.1 Physical Experiments – the Gold Standard

In a physical experiment, one measures a stochastic response with a set of treat-

ment input variables (Dean and Voss (1999)). Because of the random error and rec-

ognized and unrecognized nuisance parameters, randomization, blocking, and replica-

tion are useful techniques to improve the experimental validity. Randomization helps

to prevent the confounding between the unrecognized nuisance parameters and the

treatment factors. Blocking removes the effect of the recognized nuisance parameters.

Replication is needed to estimate the random error.

Physical experiments are the mainstay of agriculture, industry, and medical re-

search. However, physical experiments can be hard or impossible to run. For example,

physical experiments studying climate changes, the efficacy of prosthetic devices, and

cosmic phenomenon are hard or impossible to conduct. (See Santner, Williams and

Notz (2003), chapter 1 and Fang, Li and Sudjianto (2005), chapter 1 for details.) For

such a physical experiment, mechanical simulator and computer simulation code can

be used to approximate the response.

One type of physical experiment used in biomechanics is based on mechanical

simulator of the physical phenomenon. In some of the computer experiments we con-

sider, the computer codes are used to mimic the mechanical simulator. In Chapter 4,

we will analyze the output from a computer experiment and that from a mechanical

simulator.
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1.1.2 Computer Experiments

Computer simulations that implement the mathematical models describing the

input-output relationships in the physical experiments are used as surrogates when

physical experiments are difficult or impossible to conduct. In a computer exper-

iment, a (complex) numerical code relates the important inputs to the outputs of

engineering or scientific interest. Computer codes are also used to supplement phys-

ical experiments. Computer codes that serve as the basis for computer experiments

have running times that can range from minutes to days (Santner et al. (2003), chap-

ter 1). Thus, statistical predictive models are typically needed to infer the responses

at input points that have not been run.

1.1.3 A Motivating Example

We introduce a biomechanical engineering application having a mechanical simu-

lator and a complex computer simulation code. Rawlinson, Furman, Li, Wright and

Bartel (2006) compared the Install-Burstein (IB) knee implant produced by Zimmer,

Inc. and the Optetrak knee implant produced by Exactech, Inc using finite element

code and a knee testing machine. In this application, a hypothetical physical ex-

periment would relate in vivo damage with the implant properties and the patient

conditions. Such experiments are not performed.

An Instron-Stanmore KC1 loaded control knee simulator, which is produced by In-

stron Engineering Corporation, related the damage to kinematics. However, the knee

simulator was unable to measure the kinetics and the stresses, which were believed to

cause damage to the knee implants. A finite element analysis (FEA) computer code
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simulated the kinematics, kinetics, and stresses of the two implants. The FEA code

provided useful information for reducing the overall forces in the knee implants.

1.2 Inputs to Computer Experiments

We define different types of inputs to computer experiments. Section 1.2.1 illus-

trates quantitative and qualitative inputs. Section 1.2.2 introduces control variables,

tuning parameters, and calibration parameters.

1.2.1 Quantitative and Qualitative Inputs

Some computer codes have only quantitative inputs. However, many computer

codes have both quantitative inputs as well as inputs that are nominal valued. For ex-

ample, Rawlinson et al. (2006) implemented a finite-element analysis to determine the

kinematics and kinetics of prosthetic joints. Their computer codes included numer-

ous quantitative inputs such as the prosthesis material-properties and patient bone

material-properties. Their computer codes also included nominal valued qualitative

inputs such as “the knee-loading configuration.” which could be set to either “gait

walking” or “stair climbing.”

Another example of a computer experiment having both quantitative and qualita-

tive inputs is described in Qian and Wu (2006) where a computer code determines sev-

eral room air characteristics of a data storage area. The quantitative inputs included

the measurements of the room such as the volume and the height. The qualitative

inputs in the computer code were the location of an air diffuser unit, the location of

a hot-air return vent, and the type of power unit used.
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Whereas many statistical models have been developed for prediction when a com-

puter experiment has only quantitative inputs, relatively few efforts have been ded-

icated to the statistical modeling of computer experiments having quantitative and

qualitative mixed inputs. In Chapter 2 and 3, we will propose two predictors to

address this issue.

1.2.2 Control Variables and Calibration/Tuning Parameters

Control variables (such as engineering design inputs) are inputs that are control-

lable in both the computer code and the corresponding physical experiment (Santner

et al. (2003)). Tuning parameters and calibration parameters are controllable in the

running of the computer code but not the physical experiment.

Tuning parameters are typically numerical quantities that control the solution of a

numerical algorithm implemented in a computer experiment. Tuning parameters have

no meaning in the physical experiment. For example, Cox, Park and Singer (1996)

studied a computer code simulating the time scale over which nuclear energy could

leak out of the plasma in a tokamak nuclear fusion reactor. The tuning parameter was

a certain coefficient in the mathematical equation implemented by this code. Thus,

tuning is the process of determining the values of the tuning parameters so that a

computer simulation can best represent the corresponding physical experiment.

On the other hand, calibration parameters have meanings in the physical exper-

iment but are either unknown or unmeasured during the running of the physical

experiment. For example, Kennedy and O’Hagan (2001) described a computer code

for simulating the deposition of ruthenium 106 in the Tomsk-7 chemical plant that

5



caused an accident in 1993. In their code, one calibration parameter was the de-

position velocity. Calibration is the process of determining plausible values of the

calibration parameters using a limited number of observations from the computer

and the physical experiments.

Some computer experiments have both tuning and calibration parameters. For ex-

ample, Rawlinson et al. (2006) described a Finite Element Analysis (FEA) computer

code simulating the forces and movements of a knee prosthesis under a given loading

regimen. The two tuning parameters were mesh density and load discretization used

to describe the knee loading. The two calibration parameters were friction between

the bone and the prosthesis and the position of the femur relative to the tibial tray

in the initial gait cycle.

Although considerable research has been dedicated to setting tuning or calibration

parameters, there has been little effort on setting both simultaneously. We introduce a

methodology for the simultaneous determination of tuning and calibration parameters

in Chapter 4.

1.3 The Design of Computer Experiments

Because the number of runs in a computer experiment is often limited, a reasonable

design of the input points is necessary in the study of computer experiments. A

design should be based on the research objective. For example, to predict the output

from computer experiments, a design that helps improve the predictive accuracy is

favorable, while for optimization purposes, a (sequential) design that can correctly

find the minimum (maximum) is desirable.
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In this thesis, the ideal design is one that can best help explore the response

surface of the computer code output (or the response from a physical experiment).

Thus, we choose to use space-filling designs whose goal is to evenly fill up the design

space with input points (Santner et al. (2003), chapter 5). Specifically, we implement

the Maximin Latin Hypercube Design (MmLHD) in our examples because MmLHD

has clear intuition and is easy to generate (Johnson, Moore and Ylvisaker (1990)).

We briefly introduce the Latin Hypercube Design (LHD) and the MmLHD next.

The design matrix of an LHD with n runs and d inputs, which is denoted as

LHD(n, d), is an n× d matrix each of whose columns is a permutation of the integers

{1, 2, . . . , n}. Latin hypercube design was first developed for numerical integration.

McKay, Beckman and Conover (1979) proved that the sample mean of an LHD con-

verges to the population mean almost everywhere and that the variance of the sample

mean of an LHD is smaller than the variance of the sample mean of a simple random

sampling under mild conditions on the function being evaluated. Further, it is obvi-

ous that the projection of an LHD to each of the d inputs has n points evenly spread.

However, generic LHDs may behave poorly in terms of the space-filling property and

thus may result in poor estimation of the model parameters and biased prediction of

unknown responses. This is because an LHD can be regarded as a specific form of the

stratified sampling, which does not involve any criterion measuring the space-filling

properties. For example, when each column of the design matrix is (1, 2, . . . , n)⊤, the

design points will lie on a line in the d dimensional space, which does not seem to be

space-filling. Latin Hypercube designs have therefore been integrated with other cri-

teria or other types of designs such as the Maximin criterion (Johnson et al. (1990))

and orthogonal arrays (Tang (1993) and Wu and Hamada (2000)). The MmLHD
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having n points in d dimensions is an LHD that maximizes the minimum distance

between all pairs of the design points among all the possible LHD(n, d) designs. Thus

in this article, our n× d design is an LHD design with the property that the smallest

distance between any two design points are maximized.

1.4 Gaussian Stochastic Process Models

1.4.1 Introduction

Gaussian Stochastic Processes (GaSPs) are used ubiquitously for modeling out-

puts of computer experiments (Sacks, Welch, Mitchell and Wynn (1989b), Sacks,

Schiller and Welch (1989a), Currin, Mitchell, Morris and Ylvisaker (1991), Morris,

Mitchell and Ylvisaker (1993), and Santner et al. (2003). Their flexibility, tractabil-

ity, and interpolating properties make them generally the most popular models for

the study of computer experiments. This section provides a brief overview of GaSP

models. The models described here are closely related to the models that we develop

in Chapter 2, 3, and 4.

We let y(·) denote the response from a computer experiment and x ∈ [0, 1]d (or

can be so scaled) denote an input having d components. The GaSP model views y(·)

as a realization from stochastic process

Y (x) = f⊤(x)β + Z(x), (1.1)

where f(x) = (f1(x), f2(x), . . . , fq(x))⊤ is a q × 1 vector with the elements being

real-valued functions of inputs x and β = (β1, . . . , βq)
⊤ is a q × 1 vector of unknown

regression parameters. The process Z(·) is a stationary Gaussian process with mean

0 and covariance between two responses Z(x1) and Z(x2)

Cov(Z(x1), Z(x2)) = σ2
ZR(x1 − x2), (1.2)
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where σ2
Z denotes the process variance and R(x1−x2) denotes the correlation function

of Z(·).

Specifically, we consider the product exponential correlation function; i.e.,

R(x1 − x2) =
d∏

i=1

ρ
|x1,i−x2,i|αi

i , (1.3)

where 0 ≤ θi ≤ 1 and 0 < αi ≤ 2 denote the correlation parameters and x1,i and x2,i

denote the ith components of x1 and x2 for all i = 1, . . . , d. The ρi’s indicate the

degree to which the correlation decreases as the distance between the ith dimension of

x1 and that of x2 grows. When ρi decreases, Cov(x1, x2) approaches 0 faster for fixed

|x1,i − x2,i|. When ρi is 0, the Y (x1) and Y (x2) become independent if x1,i 6= x2,i.

The parameters α1, . . . , αd are referred to as the smoothness parameters controlling

the roughness of the random function Y (·). Specifically, y(·) becomes rougher as αi

approaches 0. In this thesis, I build GaSP models with the product exponential

correlation function having the smoothness parameters equal to 2. This correlation

function is also known as Gaussian correlation.

1.4.2 Inferences about the Model Parameters

There are two methodologies for estimating the model parameters. The first is

the frequentist methodology, which estimates the GaSP model parameters. Some es-

timators proposed in the literature are the Maximum Likelihood Estimator (MLE),

REstricted Maximum Likelihood estimator (REML), and the cross validated estima-

tor. (See Santner et al. (2003), page 65 – 68, for details about frequentist estimators.)

The second methodology is Bayesian. The idea of the Bayesian estimation is to

propose a prior distribution for each of the model parameters and then study the

corresponding posterior distribution. Specifically, let φ = (β, σ2
Z , ρ) denote all the

9



model parameters, [φ] denote the prior, and ys = (y(x1), . . . , y(xn))⊤ denote the runs

from the computer simulation. The posterior distribution of φ is proportional to the

product of the prior density and the likelihood; i.e.,

[φ|ys] ∝ [φ] × [ys|φ]. (1.4)

In Chapter 2, 3, and 4, we simulate the posterior distribution of the parameters in

the proposed model following (1.4).

Based on the (simulated) posterior distribution of φ, a point estimator of φ can be

obtained as the posterior mean, median, or mode, depending on one’s loss function.

The uncertainty in this point estimator can be evaluated by the variance of the pos-

terior distribution. In this paper, we will study the simulated posterior distributions

to make inferences about certain parameters in the model and to predict unknown

responses. We introduce the frequentist and the Bayesian predictors for an unknown

observation y(x0) next.

1.4.3 Prediction

The basis of both the frequentist and the Bayesian predictor is the conditional

normal distribution. Given parameters φ = (β, σ2
Z , ρ), y(x0) and ys are realizations

from a random function Y (x0) and a random vector Y s, which jointly distributed as

[
Y (x0)
Y s

]
∼ MV N

((
f⊤(x0)

F⊤

)
β, σ2

Z

(
1 r⊤

0

r R

))
, (1.5)

where F is an q × n matrix whose jth column is f (xj), r0 is an n × 1 vector whose

jth element is R(x0 −xj), and R is an n×n matrix whose (j, k)th element is R(xj −

xk). Thus, given the training data ys and parameters φ, Y (x0) has the conditional
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distribution

[Y (x0)|ys, φ] ∼ N(f⊤(x0)β + r⊤
0 R−1(ys − F⊤β), σ2

Z(1 − rt
0R

−1
0 r0)). (1.6)

The conditional mean f⊤(x0)β + r⊤
0 R−1(ys − F⊤β) is the Best Linear Unbiased

Predictor (BLUP) of y(x0) (Cressie (1993), Chapter 3 and Santner et al. (2003),

Chapter 3). The conditional variance σ2
Z(1−rt

0R
−1
0 r0) is a measure of the predictive

uncertainty.

When components of φ are unknown, one estimates them and plugs them into

(1.6). The frequentist prediction is the mean of the distribution
[
Y (x0)|ys, φ̂

]
. On

the other hand, the Bayesian predictive distribution is [Y (x0)|ys] , where one puts a

prior, [φ], on φ. One can numerically approximate [Y (x0)|ys] by simulating [φ|ys]

and approximating the integral

[Y (x0)|ys] =

∫
[Y (x0)|ys, φ][φ|ys]dφ (1.7)

by
m∑

i=1

[
Y (x0)|ys, φ(i)

]
/m,

where m is the number of draws from [φ|ys], and φ(i) denotes the ith draw from

[φ|ys]. The Law of Large Number guarantees that the approximation converges to

the true value of [y(x0)|ys] with a sufficiently large m. In this thesis, we use the

Bayesian predictive method. Without other specification, we regard the mean of

[Y (x0)|ys] as the predictor of y(x0).

In applications, it is necessary to implement a numerical approach, together with

a statistical model, to determine the posterior distribution [φ|ys]. We implement a

Markov chain Monte Carlo sampling scheme, the Metropolis-Hastings (MH) algorithm

in our examples.
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1.5 The Metropolis-Hastings (M-H) Sampling Algorithm

The following procedure produces draws φ(1), φ(2), . . . , φ(m), φ(m+1) that converge

to the posterior distribution [φ|ys] as m → ∞. For a real-valued generic parameter

φ,

Initialization Initialize φ to be φ(0) and set m = 1.

Update Given φ(m), the mth value in the sequence, generate a candidate φ⋆ from

a symmetric proposal distribution f(· | φ(m)), i.e., f(φ(m) | φ⋆) = f(φ⋆ | φ(m)).

Set

φ(m+1) =

{
φ⋆, with probability α

φ(m), with probability 1 − α
(1.8)

where

α = min

{
1,

[φ⋆ | ys]

[φ(m) | ys]

}
.

Recursion Increase m by 1 and repeat the Update Step.

It is known that draws from this algorithm will converge to the posterior distribu-

tion (Robert and Casella (1999)). Notice that, in this algorithm [φ|ys] needs only be

known up to a proportional constant. By (1.4),
[φ⋆|ys]

[φ(m)|ys]
is computed as

[φ⋆][ys|φ⋆]

[φm][ys|φ(m)]
.

We specify our choices of the proposal distributions in Chapter 2, 3, and 4.

The Metropolis-Hastings algorithm has a number of advantages that make it worth

using. First, it can handle multiple parameters. For example, if there are p parame-

ters, i.e., φ = (φ1, . . . , φp)
⊤, then the update step in the algorithm is

Update For i = 1, 2, . . . , p in turn, given φ
(m)
i = (φ

(m+1)
1 , . . . , φ

(m+1)
i−1 , φ

(m)
i , φ

(m)
i+1, . . . ,

φ
(m)
p )⊤, generate a trial φ⋆

i from a symmetric proposal distribution f(· | φ
(m)
i ),
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i.e., f(φ
(m)
i | φ⋆

i ) = f(φ⋆
i | φ

(m)
i ). Set

φ
(m+1)
i =

{
φ⋆

i , with probability α

φ
(m)
i , with probability 1 − α

(1.9)

where

α = min

{
1,

[φ⋆
i | ys, φ

(m+1)
1 , . . . , φ

(m+1)
i−1 , φ

(m)
i+1, . . . , φ

(m)
p ]

[φ
(m)
i | ys, φ

(m+1)
1 , . . . , φ

(m+1)
i−1 , φ

(m)
i+1, . . . , φ

(m)
p ]

}
.

Second, the M-H algorithm works for multivariate output as long as the likelihood

function of [ys|φ] is available. Third, this M-H algorithm is time efficient in our

examples. For the examples in Chapter 2, 3, and 4, the programs typically take 2 to

3 minutes to take 10, 000 draws.
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CHAPTER 2

PREDICTION FOR COMPUTER EXPERIMENTS
HAVING QUANTITATIVE AND QUALITATIVE INPUT

VARIABLES

2.1 Introduction

The goal of this chapter is to develop a predictive model for the output from

a computer code having both quantitative and qualitative inputs. While there are

numerous well-developed statistical models for predicting the output from computer

codes when all inputs are quantitative (Sacks et al. (1989b), Currin et al. (1991),

Santner et al. (2003), Fang et al. (2005)), there have been relatively few attempts

to propose models for cases where there are both quantitative and qualitative in-

puts. Kennedy and O’Hagan (2000) proposed an autoregressive model to describe

outputs from computer codes of different complexities and running times but hav-

ing the same set of quantitative inputs. In their case, different codes correspond to

different levels of speed and fidelity. Qian, Wu and Wu (2008) proposed a Gaussian

stochastic process model for mixed quantitative and qualitative input settings based

on linear combinations of independent Gaussian processes. McMillan, Sacks, Welch

and Gao (1999) proposed a proportionality model that can be used for predicting the

output from a physical experiment. Conti and Hagan (2006) developed a Bayesian
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methodology, based on a separable covariance model for their multivariate Gaussian

stochastic processes. Their methodology can be applied to predicting scalar outputs

when there are both quantitative and qualitative inputs. Qian and Wu (2008) pro-

posed a Bayesian model to combine outputs from a faster (coarse) code and a slower

(more accurate) code.

This chapter assumes that the outputs corresponding to different levels of a quali-

tative input are draws from Gaussian stochastic processes having “similar” correlation

structures and magnitudes of variation. The proposed model describes the “similari-

ties” in the model parameters by an appropriate prior distribution.

The outline of this chapter is as follows: Section 2.2 describes a hierarchical

Bayesian model and the prediction for the output from a computer experiment hav-

ing an arbitrary number of quantitative inputs and one qualitative input. Section 2.3

generalizes this model to handle multiple qualitative inputs. Section 2.4 illustrates the

method with examples and compares the predictor of our model with three compet-

ing predictors. Section 2.5 implements the proposed model to a computer experiment

having two quantitative inputs and two qualitative inputs. Section 2.6 summarizes

this chapter.

2.2 Prediction for Computer Experiments Having Quantita-
tive Input(s) and One Qualitative Input

Suppose the inputs to a computer experiment are t and x where t ∈ {1, 2, ..., T}

is a nominal-valued qualitative input and x is a d× 1 vector denoting d quantitative

inputs. We assume x ∈ [0, 1]d or can be so scaled. We let y(t, x) denote the real-

valued output for the inputs t and x. For n computer runs, we place the inputs in an

n× (1 + d) matrix whose ith row is (ti, x
⊤
i ), for all i = 1, . . . , n, so that the left-most
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column corresponds to the qualitative input. We let yn = (y(t1, x1), . . . , y(tn, xn))⊤

denote the corresponding n×1 response vector and y0 ≡ y(t0, x0) denote an unknown

output to be predicted.

The Hierarchical Quantitative-Qualitative Variable (HQQV) model we propose

as the basis for prediction is a hierarchical Bayesian model. We regard the model

parameters at different levels as independently and identically distributed (i.i.d.)

draws from the prior distribution to be specified.

The parameters in the HQQV model are denoted by β = (β1, ..., βT )⊤, σ =

(σ2
1, . . . , σ

2
T )

⊤
, and ρ = (ρ⊤

1 , . . . , ρ⊤
T )⊤ where ρt = (ρt1, . . . , ρtd)

⊤ with 0 ≤ ρtj ≤ 1 for

all t ∈ {1, . . . , T} and j ∈ {1, . . . , d}. The first stage of the model, given (β, σ, ρ),

regards the output at (t, x) as a realization of the stochastic process

Y (t, x)|(β, σ, ρ) ∼ βt + Zt(x), (2.1)

where βt ∈ IR1 and Z1(·), . . . , ZT (·) are independent stationary Gaussian processes

with means zero and variances σ2
1, . . . , σ

2
T , respectively. For two d × 1 quantitative

inputs xa and xb, Zt(xa) and Zt(xb) have covariance σ2
t R(xa − xb|ρt) where for

0 ≤ ρtj ≤ 1 for all (t, j) and a d × 1 difference vector (h1, . . . , hd)
⊤,

R((h1, . . . , hd)
⊤|ρt) =

d∏

j=1

ρ
h2

j

tj . (2.2)

The correlation structure in (2.2) is the Gaussian correlation. The sample paths for

this covariance structure are infinitely differentiable (Parzen (1967), Adler (1981)).

Thus, this stage assumes that the outputs at each level t can be well-approximated

by a smooth function of the quantitative inputs.

We construct higher stages of the Bayesian hierarchical model with the idea that

the parameters should induce similarities of the responses at different levels of the
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qualitative input. By setting the parameters at different levels to have the same prior

distribution, we expect the predictions to borrow information from all the training

data. We state our priors for β, σ, and ρ next.

To construct meaningful priors, we standardize the outputs at each level of the

qualitative input so that the outputs at each level have sample mean 0 and sample

variance 1. The regression parameters β1, . . . , βT are taken to be i.i.d. with the

standard non-informative prior distribution, which is proportional to 1. The variance

parameters σ2
1 , . . . , σ

2
T are taken to be i.i.d. with informative Inverse Gamma(α, γ)

where α > 0 and γ > 0 are known so that E(σ2
t ) = 1/[γ(α − 1)] and V ar(σ2

t ) =

1/[γ2(α − 1)2(α − 2)] for t ∈ {1, . . . , T}. Henceforth we denote the Inverse Gamma

distribution by IG(·, ·). Specifically, the prior for σ2
1, . . . , σ

2
T , in the examples of this

article, is taken to be IG(5, 0.2), whose 95% symmetric probability interval is about

(0.49, 3.08). This prior has its mean and median close to 1 and allows the variance

parameters to deviate some, but not greatly, from 1.

The prior distributions of ρ1, . . . , ρT are important in order for the predictions

at any level of the qualitative input to be able to borrow information from the data

at the other levels. With the assumption that the responses at all the levels have

similar correlation structures, we construct an informative prior for each correlation

parameter next. Recall from Chapter 1 that as ρtj increases to 1, the jth element of

the quantitative input x, xj , has less impact on each of y(t, ·) and y(t, ·) is smoother

in the jth dimension (Sacks et al. (1989b) and Santner et al. (2003), Chapter ). We

quantify the idea that the effects of xj on y(1, ·), . . . , y(t, ·) are similar by assuming

that ρ1j , . . . , ρTj are independently and identically Beta distributed with parameters

αj > 0 and γj > 0 for all j ∈ {1, . . . , d}. The beta distribution is denoted by
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Be(·, ·) henceforth. The extent to which the effects of xj on each of y(1, ·), . . . , y(t, ·)

are similar depends on the mean and the variance of the Be(αj , γj). This section

proposes an empirical prior for the correlation parameters. This empirical prior is

similar in spirit to the Uniform Shrinkage prior in Christiansen and Morris (1997)

and Wallstrom (2007). Below we describe a two-step procedure for obtaining our

empirical estimation of (αj , γj).

1. Estimate ρtj using the training data in the level t for all t ∈ {1, . . . , T}. Use the

REstricted Maximum Likelihood (REML) estimation developed in Patterson

and Thompson (1971). Let ρ̂tj denote the estimated ρtj .

2. Let the mean of Be(αj , γj) be the maximum of ρ̂1j , . . . , ρ̂Tj and have a lower

bound 0.005 and an upper bound 0.995. Let the variance of Be(αj , γj) be the

sample variance of ρ̂1j , . . . , ρ̂Tj but no larger than 0.004; i.e., we select αj and

γj to satisfy

αj

αj + γj
= median{0.005, M, 0.995} (2.3)

and

αjγj

(αj + γj)2(αj + γj + 1)
= min{s2

j , 0.004}, (2.4)

where M = max1≤t≤T{ρ̂tj} and (T − 1)s2
j =

∑T
t=1(ρ̂tj − ρ̂·j)

2 with ρ̂·j =

∑T
t=1 ρ̂tj/T .

The idea behind this shrinkage prior for ρ1j , . . . , ρTj is as follows: When the design

of the computer experiment is not space-filling or when the number of the training

data points in level t is different from the numbers of points in the other levels, an

estimate of ρtj can be close to zero. If ρ̂tj is near zero, the prediction of the output in

level t will converge quickly, in the dimension j of the quantitative input, to the process
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mean and thus the prediction errors can be undesirably large (see Santner et al.

(2003) and Joseph (2006) for more details). With the assumption that the correlation

structures of the processes at all the levels are similar, we avoid this problem by letting

M = max1≤t≤T{ρ̂tj} be the mean of Be(αj , γj) when M ∈ [0.005, 0.995]. Furthermore,

we let the variance of Be(αj , γj) be s2
j and have the upper bound 0.004 so that the

estimates of the correlation parameters in the jth dimension are quantitatively similar

(i.e., ρ̂t1j − ρ̂t2j < 0.35 for all t1, t2 ∈ {1, . . . , T}). The other reason for setting the

lower and upper bounds is that when the mean is in the interval [0.005, 0.995] and

the variance is less than 0.004, αj and γj satisfy αj > 0 and γj > 0 so that a valid

beta distribution is specified.

After specifying the priors, we further assume that β, σ, and ρ are independent.

The joint prior density of β, σ, and ρ can therefore be computed as the product of

their prior densities. Based on the model and the prior distribution, we describe the

prediction of unknown outputs next.

We attempt to predict y0 ≡ y(t0, x0) given output yn, where (t0, x0) is assumed

to be a new input with t0 ∈ {1, . . . , T} and x0 ∈ [0, 1]d. We let the square bracket

notation [X|Y ] denote the conditional distribution of X given Y and [X] denote

the (marginal) distribution of X. As in Section 1.4.3, the predictive distribution

of Y0 ≡ Y (t0, x0) is the conditional distribution [Y0|Y n] obtained from the prior

distribution [β, σ, ρ] and the multivariate distribution

[(
Y0

Y n

)∣∣∣∣β, σ, ρ

]
∼ N

((
f⊤

0

F

)
β,

(
Σy0 Σ⊤

0n

Σ0n Σyn

))
, (2.5)

where F = (f1, . . . , fn)⊤ and β = (β1, . . . , βT )⊤. Here f i is a 0/1 vector satisfying

f⊤
i β = βti for all i ∈ {0, 1, . . . , n}. Each covariance component in the Normal distri-

bution in (2.5) denotes the covariance of the corresponding component of (Y0, Y n).
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Thus Σy0 = σ2
t0 is a scalar and Σyn is the n×n covariance matrix of Y n. The (i, j)th

element of Σyn is equal to 0 if ti 6= tj . The (i, j)th element is equal to σ2
t R(xi−xj|ρtj

)

if ti = tj . Finally, Σ0n is an n × 1 vector with the jth element equal to 0 if t0 6= tj

and to σ2
t R(x0 − xj|ρtj

) if t0 = tj .

Given the parameters (β, σ, ρ) and the training data yn we can compute the

conditional mean and the conditional variance of Y0 given yn as

E(Y0|yn, β, σ, ρ) = f⊤
0 β + Σ⊤

0nΣ
−1
yn (yn − Fβ) (2.6)

and

V ar(Y0|yn, β, σ, ρ) = Σy0 − Σ⊤
0nΣ

−1
ynΣ0n. (2.7)

The Minimum Variance Unbiased predictor of y(t0, x0) is

ŷHQV (t0, x0) = E(Y0|yn) = E [E(Y0|yn, β, σ, ρ)] (2.8)

(Santner et al. (2003), Chapter ). As a measure of the predictive uncertainty, the

variance of Y0 given yn is

V ar(Y0|yn) = V ar [E(Y0|yn, β, σ, ρ)] + E [V ar(Y0|yn, β, σ, ρ)] . (2.9)

To compute (2.8) and (2.9) numerically, we take draws from [β, σ, ρ|yn]. Then,

using each draw of (β, σ, ρ), we estimate E(Y0|yn, β, σ, ρ) and V ar(Y0|yn, β, σ, ρ)

by applying (2.6) and (2.7). Thus, we obtain two samples. One contains estimates

of E(Y0|yn, β, σ, ρ) and the other contains estimates of V ar(Y0|yn, β, σ, ρ). Using

(2.8) and (2.9), the Strong Law of Large Numbers guarantees that the appropriate

combinations of the sample means and the sample variances converge to E(Y0|yn)

and V ar (Y0|yn) almost everywhere.
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To carry out this computation, we use the Metropolis-Hastings algorithm to draw

values from [β, σ, ρ| yn] and then follow (2.8) and (2.9) to evaluate E(Y0|yn) and

V ar(Y0|yn). (See Higdon, Kennedy, Cavendish, Cafeo and Ryne (2004) and Higdon,

Williams, Moore, McKay and Keller-McNulty (2005) for more detailed descriptions

of the Metropolis-Hastings algorithm.) Our numerical setting of the algorithm is

summarized below. For all t ∈ {1, . . . , T} and j ∈ {1, . . . , d},

• The initial value of βt is taken to be 0. An updated βt is a random draw from a

uniform proposal distribution with the mean equal to the previous value of βt

and the range 0.5. As the algorithm iterates, βt has no enforced upper bound

nor lower bound.

• The initial value of σ2
t is taken to be 1. An updated σ2

t is a random draw from

a uniform proposal distribution with the mean equal to the previous value of σ2
t

and the range 0.1. As the algorithm iterates, σ2
t has the enforced lower bound

0 but no enforced upper bound. (If a draw of σ2
t is smaller than 0, the posterior

density of that draw is 0.)

• The initial value of ρtj is taken to be the median of {0.005, max1≤t≤T{ρ̂tj}, 0.995}.

We parametrize ρtj by θtj where ρtj = e−θtj/4. An updated θtj is a random draw

from a uniform proposal distribution with the mean equal to the previous value

of θtj and the range 0.05. As the algorithm iterates, ρtj has the lower and upper

bounds 0 and 1. (If a draw of ρtj is smaller than 0 or bigger than 1, the posterior

density of that draw is 0.)

We have found that, in all the examples in Section 2.4, the acceptance rates of the

parameters were between 0.5 and 0.9. For the data sets we have used, there has
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been no convergence issues. Moreover, this approach is computationally efficient.

Our MATLAB implementation requires only about 3 minutes on a 2.8GHz PC to

compute 5000 burn-in and 10,000 production draws of (β, σ2, ρ) and to predict 1580

outputs when there are two quantitative inputs, one qualitative input with four levels,

and 20 training data points per level.

2.3 Prediction for Computer Experiments Having Quantita-

tive Input(s) and Multiple Qualitative Inputs

A simple method to deal with multiple qualitative inputs is to regard the com-

binations of the values of the qualitative inputs as distinct values of a new single

qualitative input variable. Philosophically, this is equivalent to including all the main

and interaction effects of all the qualitative inputs. For example, if there are three

qualitative inputs having 3, 3, and 2 levels, respectively, one can construct a single

qualitative variable having 18 = 3 × 3 × 2 levels where each level of the new qual-

itative input variable corresponds to a combination of the original three qualitative

inputs. Generally, if there are K qualitative inputs and the kth input has Tk levels for

all k ∈ {1, . . . , K}, then the new qualitative input variable will have
∏K

k=1 Tk levels

and the HQQV model with a d-dimensional quantitative input and this new quali-

tative input has (d + 2) ×
∏K

k=1 Tk parameters (T regression parameters, T variance

parameters, and d × T correlation parameters).

This method has at least two limitations. First, the number of parameters (d +

2)×∏K
k=1 Tk can be extremely large if K is big. Second, one may expect that as the

number of identical components in ta and tb increases, the correlation between the

two responses y(ta, xa) and y(tb, xb) will be increasing, where ta = (t
(1)
a , . . . , t

(K)
a )⊤

and tb = (t
(1)
b , . . . , t

(K)
b )⊤ denote two multiple qualitative inputs and xa, xb ∈ [0, 1]d
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denote two quantitative inputs. The method above does not have this feature. To

overcome these limitations, we propose a multivariate HQQV model next.

The idea of the multivariate HQQV model is to build a stochastic process for each

qualitative input factor and to regard the response as coming from the sum of these

processes. Specifically, suppose a computer code has K qualitative inputs (where

K ≥ 1) and the input has the form (t, x) where x = (x1, . . . , xd)
⊤ denotes d quan-

titative inputs in [0, 1]d and t = (t(1), . . . , t(K))⊤ denotes the vector of K qualitative

inputs where t(k) ∈ {1, . . . , Tk} for all k ∈ {1, . . . , K}. We let y(t, x) denote the

corresponding real-valued output. To simplify the discussion, we first consider the

case K = 2 and then generalize K to be any positive integer.

When K = 2, the multivariate HQQV model regards y(t, x) = y(t(1), t(2), x) as a

realization from a stochastic process Y (t(1), t(2), x). The parameters corresponding to

both k = 1 and k = 2 in this multivariate HQQV model have structures comparable

to the structure of the parameters in the HQQV model in Section 2 except that a

superscript (k) is used to denote the kth qualitative input. Corresponding to both

k = 1 and 2, the parameters are β(k) = (β
(k)
1 , . . . , β

(k)
Tk

)⊤, σ(k) = (σ
(k)2
1 , . . . , σ

(k)2
Tk

)⊤,

and ρ(k) = (ρ
(k)
1

⊤
, . . . , ρ

(k)
Tk

⊤
)⊤ = (ρ

(k)
11 , . . . , ρ

(k)
1d , . . . , ρ

(k)
Tk1, . . . , ρ

(k)
Tkd)

⊤. Then given

(β(1), σ(1), ρ(1)) and (β(2), σ(2), ρ(2)), we model Y (t(1), t(2), x) as

Y (t(1), t(2), x)|(β(1), σ(1), ρ(1), β(2), σ(2), ρ(2)) ∼ (2.10)

Y1(t
(1), x)|(β(1), σ(1), ρ(1)) + Y2(t

(2), x)|(β(2), σ(2), ρ(2)),

where

Yk(t, x)|(β(k), σ(k), ρ(k)) ∼ β
(k)
t + Zk,t(x) (2.11)
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with β
(k)
t being an unknown constant, Zk,1(·), . . . , Zk,Tk

(·) being Tk independent Gaus-

sian processes having zero means and variances σ
(k)
1

2
, . . . , σ

(k)
Tk

2
, and Z1,t(1)(·) and

Z2,t(2)(·) being also independent. For two quantitative inputs xa ∈ [0, 1]d and xb ∈

[0, 1]d, the covariance between Zk,t(xa) and Zk,t(xb) is σ
(k)2
t R(xa − xb|ρ(k)

t ), where

R(·|ρ(k)
t ) is the Gaussian correlation in (2.2). As a result, given (β(1), σ(1), ρ(1)) and

(β(2), σ(2), ρ(2)), Y (t(1), t(2), x) is modeled as a Gaussian process with mean β
(1)

t(1)
+β

(2)

t(2)
,

and for any two inputs (ta, xa) = (t
(1)
a , t

(2)
a , xa) and (tb, xb) = (t

(1)
b , t

(2)
b , xb), the co-

variance between Y (t
(1)
a , t

(2)
a , xa) and Y (t

(1)
b , t

(2)
b , xb) is

Cov(Y (t(1)a , t(2)a , xa), Y (t
(1)
b , t

(2)
b , xb)) = (2.12)

σ2

t
(1)
a

R(xa − xb|ρt
(1)
a

)I0(t
(1)
a − t

(1)
b ) + σ2

t
(2)
a

R(xa − xb|ρt
(2)
a

)I0(t
(2)
a − t

(2)
b ),

where I0(·) is a univariate indicator function such that I0(0) = 1 and for all real

valued s 6= 0, I0(s) = 0.

When K = 2, we assume that all the model parameters have independent prior

distributions. For both k = 1 and k = 2, the prior distributions of (β(k), σ(k), ρ(k)) are

constructed in the same way as the priors of (β, σ, ρ) in Section 2. Specifically, we

standardize the outputs at each (t(1), t(2)) combination to have mean 0 and variance

1. We take the regression parameters {β(k)
t |t = 1, . . . , Tk} to be i.i.d. with standard

non-informative prior proportional to 1. We take the variance parameters {σ(k)2
t |t =

1, . . . , Tk} to be i.i.d. with the prior σ
(k)2
t ∼IG(5, 0.2 × 2), so that for all t(1) ∈

{1, . . . , T1} and t(2) ∈ {1, . . . , T2}, σ
(1)2

t(1)
+ σ

(2)2

t(2)
is roughly 1 and the posterior draws

of σ
(2)2

t(1)
+ σ

(2)2

t(2)
can deviate some, but not greatly, from 1.

Same as the prior for ρ in Section 2, we use an empirical prior, which is similar

in spirit to the Uniform Shrinkage prior in Christiansen and Morris (1997) and Wall-

strom (2007), for the correlation parameters ρ(1) and ρ(2). For all j ∈ {1, . . . , d}, let
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ρ̂
(k)
1j , . . . , ρ̂

(k)
Tkj denote the REML estimates of ρ

(k)
1j , . . . , ρ

(k)
Tkj. The correlation parameters

{ρ(k)
tj |t ∈ {1, . . . , Tk}} are taken to be i.i.d. with Be(α

(k)
j , γ

(k)
j ). Similar to (2.3) and

(2.4), the hyper-parameters α
(k)
j and γ

(k)
j are computed using

α
(k)
j

α
(k)
j + γ

(k)
j

= median{0.005, M (k), 0.995}

and

α
(k)
j γ

(k)
j

(α
(k)
j + γ

(k)
j )2(α

(k)
j + γ

(k)
j + 1)

= min{s(k)2
j , 0.004},

where M (k) = max1≤t≤Tk
{ρ̂(k)

tj } and (Tk − 1)s
(k)2
j =

∑Tk

t=1(ρ̂
(k)
tj − ρ̂

(k)
·j )2 with ρ̂

(k)
·j =

∑Tk

t=1 ρ̂tj/Tk.

Next, we describe how to generalize the above model and priors to computer

experiments having d quantitative inputs and K qualitative inputs, where d and K

can be any positive integers. Using the same additive structure as in (2.10), the

model regards an observation y(t, x) as a realization of a random function Y (t, x).

Given the model parameters β = (β(1)⊤, . . . , β(K)⊤)⊤, σ = (σ(1)⊤, . . . , σ(K)⊤)⊤, and

ρ = (ρ(1)⊤, . . . , ρ(K)⊤)⊤ we model Y (t, x) as

Y (t, x)|(β, σ, ρ) ∼
K∑

k=1

Yk(t
(k), x)|(β(k), σ(k), ρ(k)), (2.13)

where Y1(·, ·), . . . , YK(·, ·) are K independent Gaussian processes. For all k = 1, . . . , K,

given the parameters corresponding to the kth qualitative input β(k) = (β
(k)
1 , . . . , β

(k)
Tk

)⊤,

σ(k) = (σ
(k)
1

2
, . . . , σ

(k)2
Tk

)⊤, and ρ(k) = (ρ
(k)
1

⊤
, . . . , ρ

(k)
Tk

⊤
)⊤ = (ρ

(k)
11 , . . . , ρ

(k)
1d , . . . , ρ

(k)
Tk1, . . . ,

ρ
(k)
Tkd)

⊤, Yk(t
(k), x) is modeled as (2.11). Thus, Y (t, x) is a Gaussian stochastic process

with mean
∑K

k=1 β
(k)

t(k) and covariance between Y (ta, xa) and Y (tb, xb)

Cov(Y (ta, xa), Y (tb, xb)) =
K∑

k=1

σ2

t
(k)
a

R(xa − xb|ρt
(k)
a

)I0(t
(k)
a − t

(k)
b ), (2.14)
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where ta = (t
(1)
a , . . . , t

(K)
a ) and tb = (t

(1)
b , . . . , t

(K)
b ) with t

(k)
a , t

(k)
b ∈ {1, . . . , Tk} and

xa, xb ∈ [0, 1]d. All the model parameters are set to have independent prior dis-

tributions and for all k = 1, . . . , K, the prior distributions of (β(k), σ(k), ρ(k)) are

constructed in the same way as the priors of (β, σ, ρ) in Section 2. Specifically, we

standardize the responses at each value of t to have mean 0 and variance 1. Then we

set the priors of (β(k), σ(k), ρ(k)) (where K is any positive integer and k = 1, . . . , K)

to be the same as the above priors of (β(k), σ(k), ρ(k)) (where K = 2 and k = 1, 2)

except that we let the prior of {σ(k)2
t |t = 1, . . . , Tk} be i.i.d. IG(5, 0.2 × K) so that

for all k = 1, . . . , K and t(k) ∈ {1, . . . , Tk},
∑K

k=1 σ
(k)2

t(k) is roughly 1 and the posterior

draws of
∑K

k=1 σ
(k)2

t(k) can deviate some, but not greatly, from 1. It is worth noting that

compared with the simple method that uses a qualitative input having
∏K

k=1 Tk levels

to replace the K qualitative input variables and requires (d + 2)
∏K

k=1 Tk parameters,

the multiple HQQV model reduces the number of parameters from (d + 2)
∏K

k=1 Tk

to (d + 2)
∑K

k=1 Tk.

To predict an unknown response y(t0, x0) given the response vector yn = (y(t1, x1),

. . . , y(tn, xn))⊤, we first simulate the posterior distribution of the model parameters

using the Metropolis-Hastings algorithm and then use the draws from the simulation

to approximate ŷHQV (t0, x0) = E(Y (t0, x0)|yn). Specifically, for all k ∈ {1, . . . , K},

t ∈ {1, . . . , Tk} and j ∈ {1, . . . , d}, the initial values of β
(k)
t , σ

(k)2
t , and ρ

(k)
tj are taken

to be 0, 1/K, and the median of {0.005, max1≤t≤Tk
{ρ̂(k)

tj }, 0.995}. We parametrize ρ
(k)
tj

by θ
(k)
tj where ρ

(k)
tj = e−θ

(k)
tj /4. Updated β

(k)
t , σ

(k)2
t , and θ

(k)
tj are drawn from uniform

proposal distributions with the means being the previous values of β
(k)
t , σ

(k)2
t , and θ

(k)
tj

and the ranges being 0.5, 0.1/K, and 0.05, respectively. As the algorithm iterates, β
(k)
t
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has no enforced upper bound nor lower bound, σ
(k)2
t has the lower bound 0 but no en-

forced upper bound, and ρ
(k)
tj has the lower bound 0 and the upper bound 1. Similar

to (2.8) and (2.9), the predictor of y(t0, x0) and a measure of the predictive un-

certainty are E(Y (t0, x0)|yn) = E [E(Y (t0, x0)|yn, β, σ, ρ)] and V ar(Y (t0, x0)|yn)

= V ar [E(Y (t0, x0)|yn, β, σ, ρ)] + E [V ar(Y (t0, x0)|yn, β, σ, ρ)] , which can be ap-

proximated by plugging the draws of (β, σ, ρ) into E(Y (t0, x0)|yn, β, σ, ρ) and

V ar(Y (t0, x0)|yn, β, σ, ρ) and then applying the Law of Large Numbers.

2.4 Comparing the HQQV Predictor with Three Competing

Predictors

In this section, we will compare the predictive accuracy of the HQQV predictor

with three competing predictors in examples having one qualitative input. Before

introducing examples, we first specify the competing predictors.

2.4.1 Competing Predictors

A Surface-wise Hierarchical Bayes Predictor

The first competing predictor we consider is a hierarchical Bayes predictor com-

puted separately for each surface corresponding to a level of the qualitative input.

This model is comparable with the HQQV model having T = 1. Specifically, we re-

gard the output of a computer code as coming from a realization of the stochastic

process

Y (t, x)|(βt, σ
2
t , ρt) ∼ βt + Zt(x), (2.15)

where Zt(x) is a Gaussian stochastic process with mean zero, covariance σ2
t , and cor-

relation structure (2.2) with parameters ρt = (ρt1, . . . , ρtd)
′. The stationary processes

Z1(·), . . . , ZT (·) are independent. However, the higher stages of this model do not tie
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together the processes modeling the outputs at different levels of the qualitative input.

The second stage specifies that the means β1, . . . , βT are i.i.d. with non-informative

prior proportional to 1, the variance parameters σ2
1, . . . , σ

2
T are i.i.d. IG(5, 0.2), and

the correlation parameters {ρtj ; t ∈ {1, . . . , T}, j ∈ {1, . . . , d}} are independent with

ρtj ∼ Be(αtj , γtj). We determine the beta parameters by setting the mean and vari-

ance of Be(αtj , γtj) equal to the median of {0.005, ρ̂tj, 0.995} and 0.004, respectively,

where ρ̂tj is the REML estimate (of ρtj) obtained using the training data at level t. We

let ŷSHB(t0, x0) denote the predictor of y(t0, x0), which is defined as the conditional

mean of Y (t0, x0) given the training data at the level t0, ynt0
; i.e., ŷSHB(t0, x0)=

E(Y (t0, x0)|ynt0
). We refer to this predictor as the “Surface-wise Hierarchical Bayes”

(SHB) predictor.

An Autoregressive Predictor

Kennedy and O’Hagan (2000) described an autoregressive multivariate model ap-

plied to the output from several codes of increasing accuracies but for the same

physical phenomenon. In this setup, the slowest computer code is the gold-standard

whose outputs we wish to predict.

Below, we consider a T = 3 level application of the autoregressive model with

a scalar quantitative input x ∈ [0, 1] and so briefly describe the model in this set-

ting. Let y(1, x), y(2, x), and y(3, x) denote the output of the three codes where

y(3, x) is the gold-standard output, y(2, x) is a less accurate version of y(3, x), and

y(1, x) is less accurate than y(2, x). Based on the training data from the three codes,

the object is to predict y(3, x0), where (3, x0) denotes an untried input. The re-

sponses are viewed as coming from a three-variate process (Y (1, x), Y (2, x), Y (3, x))′,
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where Y (1, x), Y (2, x), and Y (3, x) are modeled as linear combinations of three in-

dependent processes Z1(x), Z2(x), and Z3(x) to mimic a hierarchical autoregressive

process; i.e., Y (1, x)= Z1(x), Y (2, x) = τ1Y (1, x) + Z2(x) = τ1Z1(x) + Z2(x), and

Y (3, x) = τ2Y (2, x) + Z3(x) = τ2τ1Z1(x) + τ2 Z2(x) + Z3(x). Here, Z1(x), Z2(x), and

Z3(x) are assumed to be independent stationary Gaussian Stochastic Processes having

unknown constant means β1, β2, and β3. For all i, j ∈ {1, 2, 3} and x1, x2 ∈ [0, 1], the

covariance between Zi(x1) and Zi(x2) is set to σ2
i × ρ

(x1−x2)2

i . Following Kennedy and

O’Hagan (2000), we estimate (β, τ , σ, ρ) by maximum likelihood estimate (MLE).

Given the estimates (β̂, τ̂ , σ̂, ρ̂) of (β, τ , σ, ρ) and the training data yn, the predictor

of y(3, x0) is the mean of the conditional normal distribution [Y (3, x0)|yn, β̂, τ̂ , σ̂, ρ̂],

i.e., ŷKOH(3, x0) = E(Y (3, x0)|yn, β̂, τ̂ , σ̂, ρ̂).

Note that the autoregressive model treats the qualitative input as ordinal. While

its intent is to perform prediction only for the final level of the qualitative input, the

method can be used sequentially to predict the outputs at any level of the ordinal

variable based on the “preceding” data. In the examples given in Section 4.3, we took

the code at level t = 3 of the qualitative variable as the gold-standard and used all

the data to predict the output at this level.

A Proportionality-based Predictor

Qian et al. (2008) regarded the training data as a draw from [Y n|β, σ2, ρ, K(·)]

∼ N(Fβ, σ2R), where F denoted an n × q matrix and was a known function of

the n inputs X = (x1, . . . , xn)′, β denoted a q × 1 vector of unknown coefficients,

σ2 denoted an unknown variance parameter, and R denoted an n × n correlation

matrix with unknown correlation parameters. For two inputs (t1, x1) and (t2, x2),

where t1, t2 ∈ {1, . . . , T} and x1, x2 ∈ [0, 1]d, the correlation between Y (t1, x1) and
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Y (t2, x2) was denoted by
∏d

i=1 ρ
(x1i−x2i)

2

i if t1 = t2 and by K(t1, t2)×
∏d

i=1 ρ
(x1i−x2i)

2

i

for 0 ≤ K(t1, t2) ≤ 1 if t1 6= t2.

The proportionality-based predictor (PBP) regards the function K(t1, t2) as an

unknown constant (i.e., K(t1, t2) ≡ κ) and let β = (β1, . . . , βT )′, where β1, . . . , βT

are the unknown constant means of the stochastic processes at levels 1, . . . , T. We

let ŷPBP (t0, x0) = E(Y (t0, x0)|yn, β̂, ρ̂, κ̂) (the Empirical Best Linear Unbiased Pre-

dictor (EBLUP) of y(t0, x0)) denote the proportionality-based predictor of y(t0, x0),

where β̂, ρ̂, and κ̂ are the maximum likelihood estimators of β, ρ, and κ.

2.4.2 Comparison of ŷSHB(·) and ŷHQV (·)

In this first example, we investigate the effect on the predictive accuracy of tying

the processes together at different levels of the qualitative input in the idealized

situation where the data are consistent with both the HQQV model assumption and

the SHB model assumption. We then compare their predictive accuracies.

We generate the testing data sets following the steps described next. Each testing

data set consists of T = 4 surfaces; each surface has 1600 data points. We let

x ∈ [0, 1]2 denote the d = 2 continuous inputs.

Step 1 Set parameters β1 = · · · = β4 = 0, σ2
1 = . . . = σ2

4 = 1, and ρ1 = . . . = ρ4 = ρ.

The value of ρ is taken to be either 0.5 or 0.9 in our simulations.

Step 2 Generate an input set having 40 × 40 points by crossing { 1
80

, 3
80

, . . . , 79
80
}

with the same 40 values. Let x1, . . . , x1600 denote the 1600 inputs. For each

t ∈ {1, . . . , 4}, simulate a vector y(t,1600) = (y(t, x1), . . ., y(t, x1600))
′ as a ran-

dom sample of a 1600 × 1 multinormally distributed random vector Y (t,1600) =
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(Y (t, x1), . . ., Y (t, x1600))
′ where Y (t, x1), . . ., Y (t, x1600) have means 0 and vari-

ances 1 and Y (t,1600) has the 1600× 1600 correlation matrix with the Gaussian

correlation ρ(xi1−xj1)2ρ(xi2−xj2)2 for all xi, xj ∈ [0, 1]2. With the 1600 quantitative

inputs x1, . . . , x1600, regard y(t, x1), . . ., y(t, x1600) as 1600 points on the tth

simulated response surface.

Thus, these data satisfy the HQQV and SHB model assumptions. One can adjust the

curvatures of the simulated surfaces by modifying ρ. The two panels in Figure 2.1

show two simulated surfaces. The surface on the left panel is with ρ = 0.5; the one

on the right panel is with ρ = 0.9. We see that the simulated surface with a bigger ρ

is smoother.

0 0.2 0.4 0.6 0.8 10

0.5

1
−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 10

0.5

1
−0.5

0

0.5

1

1.5

Figure 2.1: A simulated surface with ρ = 0.5 (the left panel) and a simulated surface
with ρ = 0.9 (the right panel).

We generate the training data set by conducting a design for the quantitative

inputs and acquiring the outputs at each level t from y(t,1600). We construct a Maximin

Latin Hypercube Design (Maximin LHD) having size n (McKay et al. (1979), Johnson
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et al. (1990)). We let n = 8 or n = 20 and let the design inputs coincide with n points

in the 40 × 40 input data set.

With a training data set having 4×n points, we predict the remaining (1600−n)

outputs when t = 1. We measure the predictive accuracy using the Root Mean Squared

Prediction Error (RMSPE) over the (1600 − n) points. The RMSPE of a predictor

ŷ(·) is defined as √√√√ 1

1600 − n

1600−n∑

i=1

(y(1, xi) − ŷ(1, xi))2.

We considered four choices of (ρ, n) : (0.5, 8), (0.5, 20), (0.9, 8), and (0.9, 20). For

each choice, we generated 100 data sets. For each data set, we predicted the (1600−n)

values of y(1, x) using ŷSHB(·) and ŷHQV (·) and then computed the RMSPEs of the

two predictors. We thus obtained 100 pairs of the RMSPEs for each choice of (ρ, n).

Each of the four panels in Figure 2.2 is a plot of the 100 pairs of the RMSPEs

of ŷSHB(·) and ŷHQV (·) for one of the four combinations. The average of the 100

RMSPEs of ŷSHB(·) and ŷHQV (·) are 0.261 and 0.222 for (ρ, n) = (0.5, 8), 0.066 and

0.072 for (ρ, n) = (0.5, 20), 0.035 and 0.026 for (ρ, n) = (0.9, 8), and 0.004 and 0.004

for (ρ, n) = (0.9, 20).

Figure 2.2 and the average RMSPEs show that for both ρ = 0.5 and ρ = 0.9, the

two predictors have comparable prediction errors when n = 20, but ŷHQV (·) gener-

ally has significantly smaller prediction errors than ŷSHB(·) when n = 8. It is worth

noting that we have used values of ρ other than 0.5 and 0.9 to run the same proce-

dure. We have found that, except for ρ near 0, e.g., ρ ≤ 0.05 (where the observations

are approximately coming from a noise process and thus accurate prediction of un-

known outputs is not possible), the above mentioned contrast between the RMSPEs
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of ŷHQV (·) and ŷSHB(·) holds. So ŷHQV (·) has the advantage of borrowing informa-

tion from the data at all the levels. Furthermore, this advantage is more obvious

when the number of training data at the level for prediction is small.
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Figure 2.2: Four plots of the RMSPE comparisons of ŷSHB(·) and ŷHQV (·) for 100
test surfaces. The upper left panel uses (ρ, n) = (0.5, 8), the upper right panel uses
(ρ, n) = (0.5, 20), the lower left panel uses (ρ, n) = (0.9, 8), and the lower right panel
uses (ρ, n) = (0.9, 20). In each panel, the horizontal axis corresponds to the RMSPE
of ŷSHB(·); the vertical axis corresponds to the RMSPE of ŷHQV (·); the solid line
is the 45 degree line passing through the origin; the circles denote the RMSPEs of
ŷHQV (·) against ŷSHB(·); a circle below the 45 degree line indicates that ŷHQV (·) has
a smaller RMSPE than ŷSHB(·).
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2.4.3 Interpolation and Extrapolation Accuracies of ŷSHB(·),

ŷKOH(·), ŷPBP (·), and ŷHQV (·)

In this second example, we compare ŷSHB(·), ŷKOH(·), ŷPBP (·), and ŷHQV (·) in

three cases, where the true data come from three quadratic curves; thus in each

case, T = 3 and d = 1. We denote the three curves by y(1, x) = b01 + b11x + b21x
2,

y(2, x) = b02 +b12x+b22x
2, and y(3, x) = b03 +b13x+b23x

2 with x ∈ [0, 1]. We observe

y(1, ·) and y(2, ·) at five equally spaced inputs {0, 0.25, 0.5, 0.75, 1}. The third curve

is observed only at three inputs {0.5, 0.75, 1}. We intentionally selected inputs at the

boundary, e.g., x = 0 or 1, because in many situations, the responses at the boundary

are of particular interest. For example, in Rawlinson et al. (2006) the internal and

external rotational force of a knee prosthesis at the starting and ending positions of

a gait cycle are of interest. We chose the quantitative input at t = 3 to be between

0.5 and 1 so that we can investigate both the interpolation and the extrapolation

accuracies.

To compare the predictive accuracies, we first describe three processes (corre-

sponding to the three cases) producing the true quadratic curves and the training data

on the curves. For each process, the coefficients of the quadratic curves are drawn from

independent normal distributions whose standard deviations are 0.01. The expected

values of (b01, b02, b03, b11, b12, b13, b21, b22, b23) are set to be (1, 0,−1, 6, 4, 5,−6,−6,−6)

(for Process 1), (1, 0,−1, 0, 6, 5, 2,−6,−6) (for Process 2), and (1, 0,−1, 6, 6, 6,−6,−6,

−6) (for Process 3). Geometrically, the three curves drawn using Process 1 are all

concave and differ only slightly in terms of their maxima and curvatures. One of the

three curves drawn using Process 2 has substantially different trend, shape, curvature,

and concavity than the other two curves. The three curves drawn using Process 3 are
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nearly identical except for their intercepts. For each of the three processes, a draw of

the three curves and the training data are depicted in Figure 2.3.
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Figure 2.3: Plots of the true responses (solid curves) and the training data (circles) for
one draw using Process 1 (the left panel), Process 2 (the middle panel), and Process 3
(the right panel).

With a known function y(3, ·) generated by a process, the RMSPE of a predictor

ŷ(·) over npred points x1, x2, . . . , xnpred
is

RMSPE =

√√√√ 1

npred

npred∑

i=1

(ŷ(3, xi) − y(3, xi))2. (2.16)

To explore the interpolation accuracies, we let the inputs for prediction

{x1, x2, . . . , xnpred
} = {0.5, 0.51, . . . , 1.00};

to explore the extrapolation accuracies, we let

{x1, x2, . . . , xnpred
} = {0, 0.01, . . . , 0.50}.

35



We generated 30 true data sets for each process and computed the RMSPEs in

(2.16). The boxplots in Figures 2.4 and 2.5 display the interpolation and extrapolation

RMSPEs of the four predictors for each of the three processes.

Figure 2.4: Boxplots of the interpolation RMSPEs of ŷSHB(·), ŷPBP (·), ŷKOH(·), and
ŷHQV (·). The three panels correspond to Process 1 (the left panel), Process 2 (the
middle panel), and Process 3 (the right panel).

Figure 2.5: Boxplots of the 30 extrapolation RMSPEs of ŷSHB(·), ŷPBP (·), ŷKOH(·),
and ŷHQV (·). The three panels correspond to Process 1 (the left panel), Process 2
(the middle panel), and Process 3 (the right panel).

To help interpret the figures, we first identify three types of information: the

information in the prior (Prior Information), the information in the training data
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taken at the level of the qualitative input where the prediction is desired (Prediction

Level Information), and the information in the data at the remaining levels of the

qualitative input (Non-prediction Level Information).

Figures 2.4 and 2.5 show that for both interpolation and extrapolation, ŷHQV (3, ·)

has smaller prediction errors than ŷSHB(·) for all the three processes. In particular,

we have found that for the three processes, ŷHQV (3, x) has no larger predictive un-

certainties than ŷSHB(3, x) for all x ∈ {0, 0.01, . . . , 1}. (A measure of the predictive

uncertainty has been derived in (2.9).) For example, for one of the 30 data sets

generated using Process 1, the predictive uncertainty of ŷHQV (3, x) is about 0.55 at

x = 0.00, but the predictive uncertainty of ŷSHB(3, x) is about 0.73 at x = 0.00. Our

intuition is that ŷHQV (·) is able to use information from all levels of the qualitative

input so that there are smaller uncertainties in the predictions. (We did not compare

the predictive uncertainties of ŷHQV (·) and ŷSHB(·) with the predictive uncertainties

of ŷPBP (·) and ŷKOH(·) because the variance estimate of the predictive uncertainty

used by frequentist predictors are not comparable with the posterior variance measure

used by Bayesian hierarchical models.)

The predictor ŷKOH(·) uses both Prediction Level Information and Non-prediction

Level Information. Figure 2.4 shows that when used for interpolation, ŷKOH(·) and

ŷHQV (·) are comparable and both have smaller RMSPE than the other two predictors.

Figure 2.5 shows that when used for extrapolation, if the outputs at different levels of

the qualitative input are nearly parallel, ŷKOH(·) can capture this common shape and

have better extrapolation accuracy than the other three predictors (the right panel in

Figure 2.5). But if the shapes of the curves differ substantially, ŷKOH(·) can be worse

than any of the other predictors (the middle panel in Figure 2.5). However, ŷHQV (·)
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performs well even if the three curves are not parallel and is thus more robust (e.g.,

the left panel and the middle panel in Figure 2.5).

From Figures 2.4 and 2.5, ŷHQV (·) has smaller RMSPEs than ŷPBP (·). Our in-

tuition is that, in this example, ŷPBP (·) would do better if it could borrow more

information from the data at the levels t = 1 and t = 2. Combining the model for

ŷPBP (·) with a Bayesian analysis or a different correlation structure might improve

its performance.

In conclusion, ŷHQV (·) is able to make effective use of the prior knowledge and the

information from the training data at all the levels. It has smaller prediction errors

no matter whether or not the three curves are parallel.

2.5 An Application of the Multivariate HQQV Model in
Biomechanical Engineering

We apply the multivariate HQQV model to a computer code described in Rawl-

inson et al. (2006). This code emulated the anterior posterior displacement (APD) of

the femoral component of a knee prosthesis relative to the tibial tray when the knee

was loaded with a force pattern that mimics gait. The output we analyze is the APD

(in millimeters) at the point that is the 13% of the way through the gait cycle which

roughly corresponded to the point of the peak load and thus intuitively corresponded

to the largest APD.

We consider the output as a function of four inputs. Among the four inputs,

two are quantitative inputs: the Initial Position (IP) of the femoral component with

respect to the tibial tray and the Interface Friction (IF) between the bone and the

prosthesis. In our analysis, IP and IF are scaled to [0, 1]d. Two are qualitative inputs:

the Prosthesis Design (with value CR or PS where CR is a “cruciate retaining” design
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that is used if the cruciate ligament is retained while PS is a “posterior stabilized”

design that is used if the cruciate ligament is resected) and the Loading Pattern (with

value NG or SC where NG is the loading corresponding to normal gait while SC is

the loading corresponding to stair climbing). We expect that the response surfaces

of the same design (or loading pattern) share more similarities than the surfaces of

different designs (or loading patterns) do.

Setting K = 2 and (T1, T2) = (2, 2), we apply the multivariate HQQV model with a

training data set having 22 computer runs (8, 3, 7, and 4 runs for the four combinations

of the qualitative inputs) to predict the outputs over a grid of the two quantitative

inputs. Specifically, for each combination of the design by the loading pattern we

predict the outputs on a 10 by 10 grid (obtained by crossing {0.05, . . . , 0.95} with

itself) of the IP by the IF values. The four predicted surfaces are shown in Figure 2.6.

From the predicted surfaces we can see that (1) APD is strictly positive under SC

loading but APD can be either positive or negative under NG loading, (2) APD is

more sensitive to the loading pattern than to the prosthesis design; response surfaces

have significantly different shapes under NG and SC loadings but similar shapes

under a same loading, (3) APD is relatively insensitive to the IF values, and (4) APD

increases with the IP except for IP close to 0 under SC loading (however accounting

for the uncertainty in the prediction also makes it feasible that APD increases with

the IP for this case). The above results are consistent with the design objectives of

the CR and the PS knees.
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Figure 2.6: Predicted APD surfaces for the four combinations of (Prosthesis Design,
Loading Pattern). The four combinations are (a) (CR,NG): the upper left panel, (b)
(CR,SC): the upper right panel, (c) (PS,NG): the lower left panel, and (d) (PS,SC):
the lower right panel. The two quantitative inputs are the Initial Position and the
Interface Friction.

2.6 Summary and Future Research

In the examples we have presented, the HQQV model performs well for cases

where the responses have similar curvatures at different levels of the qualitative input

variable. At least three characteristics of the HQQV model are worth noting. First,

the parameters in the HQQV model can indicate the sensitivity of the output to

both quantitative inputs and the qualitative inputs. For quantitative inputs, one

can conduct the sensitivity analysis by investigating the magnitude of the correlation

parameters as described in Gattiker (2005) and Linkletter, Bingham, Hengartner,

Higdon and Ye (2006). For the qualitative inputs, one can examine the effects of the
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different levels by comparing the histograms of the posterior draws of β, σ2, and ρ

at these levels. Second, the HQQV model has (d + 2) ×∑K
k=1 Tk parameters. These

parameters are bounded by the hyper-priors. When there are a large number of

quantitative inputs and a large number of qualitative inputs with high levels, there is

the potential for the HQQV (or any) model to be nearly unidentifiable. One method

of minimizing this problem is to use as strong an informative prior as one can elicit

from expert opinions. Another possible method is to impose priors on the current

hyper-parameters (i.e., ρtj in the HQQV model) so that with this new stage, there

can be fewer parameters to be estimated and thus the non-identifiability problem

could be minimized. Third, the HQQV model can adapt to both nominal and ordinal

qualitative inputs. But because the qualitative variables inherently bear no order in

the statistical analysis, we suggest that one should transform the ordinal variables to

a quantitative scale. A method for such a transformation has been proposed by Qian

et al. (2008).

Based on the HQQV model, there are several directions for future work. We clas-

sify the future research into two areas. The first area includes various applications

of the HQQV model to other statistical research topics in the study of computer

experiments. These topics at least include the design, optimization, calibration, and

validation of computer experiments having quantitative and qualitative input vari-

ables. The second area consists of generalizations of the HQQV model. Here we note

three possible generalizations. The first generalization is to model computer exper-

iments with multivariate (or functional) output and quantitative/qualitative inputs.

The second generalization is to build a stochastic model combining observations from

both a physical experiment and its computer simulation code where both the physical
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and the computer experiments have quantitative and qualitative inputs. The third

generalization is to estimate the deterministic trend of the output from a computer

code. To capture the trend, one can combine the HQQV model with at least two

approaches. One approach is the blind kriging proposed by Joseph, Hung and Sud-

jianto (2007). The other approach allowing the HQQV model to capture the common

trend (of the responses) related by different qualitative input levels is currently being

developed by the authors.

Finally, we shall emphasize that the (multivariate) HQQV model is constructed

based on the assumption that the responses at different levels of the qualitative in-

put(s) are similar in terms of the correlation structures. If, in applications, this

assumption is doubtful (e.g., expert knowledge suggests that the response surface is

smooth at one level of t but is bumpy at another level), one can either use the HQQV

model with a joint prior distribution (of β, σ, and ρ) determined by expert knowl-

edge or use other plausible models, e.g., the cumulative roughness model proposed

by Kennedy and O’Hagan (2000).
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CHAPTER 3

ANOVA KRIGING: A METHODOLOGY FOR

PREDICTING THE OUTPUT FROM A COMPLEX
COMPUTER CODE HAVING QUANTITATIVE AND

QUALITATIVE INPUTS

3.1 Introduction

Complex computer simulations (computer experiments) have increasing usage in

the recent years. This is because, first, many physical experiments can be difficult or

impossible to run, and second, mathematical equations and the computer codes imple-

menting them are developed to mimic these physical experiments (See the chapter 1

in Santner et al. (2003) and chapter 1 in Fang et al. (2005) for examples of physical

experiments and their complex computer codes).

The number of observations from a computer code are often limited because one

computer experiment can typically take days to finish. The accurate prediction for

a computer code with a limited number of runs is thus necessary. Statistical models

have therefore been developed to predict the output from computer experiments as

well as the corresponding physical experiment. Whereas Gaussian stochastic process

models (Sacks et al. (1989b)) and kriging theory (Matheron (1963) and Cressie (1993))

have been well developed for predicting computer experiments having quantitative
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inputs, there are fewer attempts for modeling the output from a computer code having

quantitative and qualitative mixed inputs. We can group the studies for predicting

the output from computer experiments having mixed inputs in terms of their focus.

McMillan et al. (1999) and Qian et al. (2008) focused on the correlation function

and modeled the correlation between responses at different levels of the qualitative

input. Kennedy and O’Hagan (2001) and Qian and Wu (2008) focused on building

stochastic processes to describe the observations and regarded the responses at all

the levels as coming from linear combinations of independent Gaussian stochastic

processes. In Chapter 2, we used Bayesian analysis with an empirical prior to capture

the similarities of the responses at different levels.

The above works have at least two limitations. First, none of them provided

condition(s) under which a predictor would have a smaller prediction error than the

ordinary kriging predictor using the data at one level of the qualitative input. Second,

none addressed the issue as to whether combining the data in all the levels can help

improve the prediction accuracy. As will be shown in Section 3, including the training

data at a level where the responses differ substantially from the responses at other

levels can increase the prediction error.

This chapter proposes a methodology for predicting the output from computer

experiments having quantitative and qualitative mixed inputs. Our predictor can

capture the common trend of the responses. The methodology we propose differs

from the previously proposed methods in that if the responses at level t⋆ have a sub-

stantially different shape comparing with the responses at other levels, our predictor
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will not use the observations at level t⋆. Thus, the prediction for a computer ex-

periment will not be affected by invalid (or incorrectly calibrated/tuned) computer

codes.

The outline of this chapter is as follows: Section 3.2 introduces our predictor

for computer codes having one qualitative input. Section 3.3 generalizes our predic-

tor to the prediction for computer experiments having multiple qualitative inputs.

Section 3.4 illustrates this method in a biomechanical engineering application. A

summary of Chapter 3 is given in Section 5.

3.2 The ANOVA Kriging Model for Computer Experiments

Having One Qualitative Input

This section proposes the HQQV ANOVA kriging (HAK) predictor. Section 3.2.1-

3.2.2 compare the ordinary predictor with an average effect predictor. Section 3.2.3

and Section 3.2.4 propose an ANOVA kriging predictor in and the HAK predictor.

Section 3.2.5 illustrates the HAK predictor in a numerical example. In Section 3.2.1–

3.2.3, the model views the computer experiment output as a draw from a second-order

stationary stochastic process. Section 3.2.4–3.2.5 combine the kriging predictors with

a Gaussian stochastic process model.

3.2.1 Ordinary Kriging and Average Effect Kriging

Kriging is desirable for predicting the output from a computer code because kriging

predictors are interpolators and kriging needs no assumption about the probabilistic

distribution of the process model (Cressie (1993), chapter 3). If the trend of the

unknown response function is treated as an unknown constant, the kriging predictor

is known as the ordinary kriging predictor. Next, the ordinary kriging predictor is
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constructed as well as an “average effect” kriging predictor for computer experiments

having one quantitative variable with T levels. We let t ∈ {1, . . . , T} denote the

qualitative input and x denote the quantitative input in [0, 1]d (scaled if necessary).

Let y(t, x) denote the output at (t, x) and Y (t, x) denote the corresponding ran-

dom function. Conditionally, assume the second order stationary condition so that

E(Y (t, x)) = βt for all x ∈ [0, 1]d and Cov(Y (t, x1), Y (t, x2)) = C(x1 − x2|θt) for

all x1, x2 ∈ [0, 1]d, where βt is an unknown constant, θt is the vector of correlation

parameters, and C(·|θ) is the covariance function (covariogram). Further, assume

that Y (t1, x) and Y (t2, x) are independent if t1 6= t2 for all t1, t2 ∈ {1, . . . , T}.

For all t ∈ {1, . . . , T}, let nt denote the number of inputs at level t and x
(t)
1 , . . . , x

(t)
nt

denote the inputs at level t. Let

y(t) = (y(t, x
(t)
1 ), . . . , y(t, x(t)

nt
))⊤

denote the vector of the responses at (t, x
(t)
1 ), . . . , (t, x

(t)
nt ) at level t and regard y(t) as

a realization of the random vector

Y (t) = (Y (t, x
(t)
1 ), . . . , Y (t, x(t)

nt
))⊤.

Let y(t0, x0) denote an unknown output. The ordinary kriging predictor of y(t0, x0)

based on the data observed at level t0 is λ(t0, x
(t0)
0 )⊤y(t0), where y(t0) are observations

at level t0 and λ(t0, x0) =
(
λ

(t0,x0)
1 , . . . , λ

(t0,x0)
nt0

)⊤
satisfies λ(t0, x0)

⊤ × 1nt0×1

=
∑nt0

i=1 λ
(t0,x0)
i = 1 and λ(t0, x

t0
0 )⊤y(t0) minimizes the mean squared prediction error

among all the linear predictors; i.e.,

λ(t0, x0)
⊤ = argmin

λ
E(Y (t0, x0) − λ⊤y(t0))2, (3.1)

where λ = (λ1, . . . , λnt0
)⊤ is any nt0 by 1 vector with λ⊤1nt0×1 = 1. According

to the theory of kriging (Matheron (1963)), λ(t0, x0) can be written as a function
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of the covariogram C(·|θt0) under the second order stationarity. Let ŷOK(t0, x0) =

λ(t0, x0)
⊤y(t0) denote the ordinary kriging predictor of y(t0, x0).

Next, we introduce a predictor named the average effect kriging predictor. The

idea is that we predict the trend A(·) at x

A(x) =
1

T

T∑

t=1

y(t, x)

and the deviation from the trend y(t0, x0) − A(x0); the sum of these two predictors

is the average-effect kriging predictor of y(t0, x0). Specifically, with the second order

stationarity,

Â(x0) =

T∑

t=1

1

T
λ(t, x0)

⊤y(t) (3.2)

is a predictor of A(x0) = 1
T

∑T
t=1 y(t, x).

By subtracting Â(·) from the training data we obtain a new set of observations

y⋆(t0) = (y⋆(t0, x
(t0)
1 ), . . . , y⋆(t0, x

(t0)
nt0

))⊤

=
(
y(t0, x

(t0)
1 ) − Â(x

(t0)
1 ), . . . , y(t0, x

(t0)
nt0

) − Â(x(t0)
nt0

)
)⊤

(3.3)

with the corresponding random vector being

Y ⋆(t0) =
(
Y (t0, x

(t0)
1 ) − Â(x

(t0)
1 ), . . . , Y (t0, x

(t0)
nt0

) − Â(x(t0)
nt0

)
)⊤

. (3.4)

We regard λ⋆(t0, x0)
⊤y⋆(t0) as a predictor of (y(t0, x0)−A(x0)) where λ⋆(t0, x0) is

an nt0 × 1 vector such that λ⋆(t0, x0)× 1 = 1 and λ⋆(t0, x0)
⊤y⋆(t0) is an interpolator

of the data points in y⋆(t0). We regard the average effect predictor ŷ
AE(t0, x0) as the
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sum of Â(x0) and λ⋆(t0, x0)
⊤y⋆(t0); i.e.,

ŷAE(t0, x0) = λ⋆(t0, x0)
⊤
y⋆(t0) + Â(x0)

= λ⋆(t0, x0)
⊤


y(t0) −




∑T
t=1

1
T
λ(t, x

(t0)
1 )⊤y(t)

...∑T
t=1

1
T
λ(t, x

(t0)
nt0

)⊤y(t)







+
T∑

t=1

1

T
λ(t, x0)

⊤y(t). (3.5)

It can be shown that both ŷOK(·) and ŷAE(·) are unbiased interpolators. The unbi-

asedness and the interpolating property of ŷOK(·) can be found in Matheron (1963)

and Cressie (1993), chapter 3. To show that ŷAE is unbiased, we use the unbiased

property of the ŷOK (which is E(ŷOK(t, x0)) = βt); i.e.,

E(ŷAE(t0, x0)) = λ⋆
(t0,x0)

×


E(Y (t0) −




∑T
t=1

1
T
λ⊤

(t,x(t0)
1 )

E(Y (t))

...∑T
t=1

1
T
λ⊤

(t,x(t0)
nt0

)
E(Y (t))







+
T∑

t=1

1

T
λ⊤

(t0,x0)E(Y (t))

= λ⋆(t0, x0)
⊤(βt0 × 1 −

T∑

t=1

1

T
βt × 1) +

T∑

t=1

1

T
βt

= βt0 = E(Y (t0, x0)).

To show that ŷAE is an interpolator, we use the result that λ⋆(t0, x0)y
(t0) is an

interpolator so that ŷAD(t0, x0) = λ⋆(t0, x0)
⊤y⋆(t0) + Â(x0) = y(t0, x0) − Â(x0) +

Â(x0) = y(t0, x0) is an interpolator.

3.2.2 Comparing ŷOK(·) and ŷAE(·)

We compare the predictive accuracies of ŷOK and ŷAE for predicting y(t0, x0) here

and propose our predictor in Section 3.2.3. A measure to describe the prediction error
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of the predictor ŷ(t0, x0) is the (mean) squared prediction error V (t0, x0); i.e.,

V (t0, x0) = E(ŷ(t0, x0) − y(t0, x0))
2 = (ŷ(t0, x0) − y(t0, x0))

2. (3.6)

The second equation in (3.6) holds because here we regard y(·) as an unknown de-

terministic function of (t, x). We let V OK(t0, x0) and V AE(t0, x0) denote the mean

squared prediction errors of ŷOK(t0, x0) and ŷAE(t0, x0). Proposition 1 quantifies the

discrepancy between the squared errors of the two predictors.

Proposition 1. If

1. let λ⋆(t0, x0) = λ(t0, x0), where λ(t0, x0) and λ⋆(t0, x0) are in (3.1) and (3.5),

respectively,

2. the quantitative inputs at level t0 {x(t0)
1 , . . . , x

(t0)
nt0

} and x0 are quantitative inputs

at level t for all t 6= t0; i.e., {(t, x(t0)
1 ), . . . , (t, x

(t0)
nt0

), (t, x0)} are inputs to the

computer code for all t 6= t0,

then

V OK(t0, x0) − V AE(t0, x0) =
2

T
B × D − 1

T 2
D2, (3.7)

where

B = λ(t0, x0)
⊤y(t0) − y(t0, x0) (3.8)

denotes the deviation from the predictor at t0 and

D =
∑

t6=t0


λ(t0, x0)

⊤




y(t, x
(t0)
1 )

...

y(t, x
(t0)
nt0

)


− y(t, x0)


 (3.9)

denotes the deviations from the predictors at levels other than t0.

Proof. Notice that V OK(t0, x0) can be derived as

V OK(t0, x0) =
(
λ(t0, x0)

⊤y(t0) − y(t0, x0)
)2

= B2. (3.10)
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On the other hand, ŷAE can be written as

ŷAE(t0, x0) = λ⋆(t0, x0)
⊤


y(t0) −




∑T
t=1

1
T
λ(t, x

(t0)
1 )⊤y(t)

...∑T
t=1

1
T
λ(t, x

(t0)
nt0

)⊤y(t)







+

T∑

t=1

1

T
λ(t, x0)

⊤y(t)

= λ⋆(t0, x0)
⊤




T − 1

T
y(t0) −




∑
t6=T

1
T
y(t, x

(t0)
1 )

...∑T
t6=T

1
T
y(t, x

(t0)
nt0

)







+
∑

t6=T

1

T
y(t, x0) +

1

T
λ(t0, x0)

⊤y(t0)

= λ(t0, x0)
⊤y(t0) − 1

T
D = ŷOK(t0, x0) −

1

T
D. (3.11)

So

V AE(t0, x0) =

(
ŷOK(t0, x0) − y(t0, x0) −

1

T
D

)2

=

(
B − 1

T
D

)2

,

and

V OK(t0, x0) − V AE(t0, x0) = B2 − (B − 1

T
D)2 =

2

T
BD − 1

T 2
D2.

Proposition 2 provides conditions guaranteeing that ŷAE has no larger squared

prediction error than ŷOK.

Proposition 2. If the responses at different levels of the qualitative input have the

same shape; i.e.,

y(t, x) = βt + B(x),

where βt is the unknown mean and B(x) is the unknown common trend centered at

0 so that
∫

B(x)dx = 0, then with the two conditions in Proposition 1,

V OK(t0, x0) − V AE(t0, x0) =
T 2 − 1

T 2

(
λ(t0, x0)

⊤B(t0) − B(x0)
)2

≥ 0, (3.12)
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where B(t) is an nt × 1 vector whose ith element is B(x
(t0)
i ) for all i = 1, . . . , nt.

Proof. Notice that V OK(t0, x0) can be derived as

V OK(t0, x0) =
(
λ(t0, x0)

⊤y(t0) − y(t0, x0)
)2

=
(
λ(t0, x0)

⊤(βt0 × 1nt0×1 + B(t0)) − (βt0 + B(x0))
)2

=
(
λ(t0, x0)

⊤B(t0) − B(x0)
)2

. (3.13)

Because
{

x
(t0)
1 , . . . , x

(t0)
nt0

, x0

}
are inputs to the level t 6= t0,

ŷAE(t0, x0) =

[
T − 1

T
λ⋆(t0, x0)

⊤ +
1

T
λ(t0, x0)

⊤

]
× (βt0 × 1nt0

+ B(t0))

+
T − 1

T
B(x0) +

∑

t6=t0

βt

T

−λ⋆(t0, x0)
⊤

[(
∑

t6=t0

βt

T

)
× 1nt0×1 +

T − 1

T
B(t0)

]

= λ(t0, x0)
⊤(βt0 × 1nt0×1 + B(t0)) − T − 1

T
λ(t0, x0)

⊤B(t0)

+
T − 1

T
B(x0)

= βt0 +
1

T
λ(t0, x0)

⊤B(t0) +
T − 1

T
B(x0). (3.14)

By (3.14),

V AE(t0, x0) =

[
βt0 +

1

T
λ(t0, x0)

⊤B(t0) +
T − 1

T
B(x0) − (βt0 + B(x0))

]2

=

(
1

T
λ(t0, x0)B

(t0) − 1

T
B(x0)

)2

=
1

T 2

(
λ(t0, x0)

⊤B(t0) − B(x0)
)2

. (3.15)

By Equations 3.13 and 3.15,

V OK(t0, x0) − V AE(t0, x0) =
T 2 − 1

T 2

(
λ(t0, x0)

⊤B(t0) − B(x0)
)2

.

Proposition 2 implies that if the responses at different levels share a common

trend, using ŷAE results in a no bigger prediction error than ŷOK. In reality, however,
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one usually has no information about the trend of the responses. We thus propose a

new predictor with a cross-validation procedure to select the levels to be included for

the prediction.

3.2.3 The ANOVA Kriging Predictor for Computer Exper-
iments Having an Arbitrary Number of Quantitative

Inputs and One Qualitative Input

For computer experiments having d ≥ 1 dimensional quantitative input x ∈ [0, 1]d

and one qualitative input t ∈ {1, . . . , T}, we construct the ANOVA kriging predictor

of y(t0, x0) as follows. Step 1-Step 4 select levels to estimate the average effect;

Step 5-Step 7 use these levels to predict y(t0, x0).

Step 1 For all t 6= t0, augment the training data at level t by predicting (t, x
(t0)
1 ), . . . ,

(t, x
(t0)
nt0

), (t, x0) and merging these predictions with the training data set.

Step 2 Predict the T responses y(1, x0), . . . , y(T, x0). Let ŷ(t0, x0) = λ(t0, x0)
⊤y(t0)

denote the predictor of y(t0, x0).

Step 3 Construct all 2T−1 combinations of the levels 1, . . . , t0 − 1, t0 + 1, . . . , T.

Step 4 For each of the combinations, suppose tc1, . . . , t
c
Pc

are the levels in the selected

combination. Compute

nt0∑

i=1

{
2

T
B−iD−i −

1

T 2
D2

−i

}
, (3.16)

where B−i and D−i are computed using (3.8) and (3.9) based on the data set
{
y(t0, x

(t0)
1 ), . . . , y(t0, x

(t0)
i−1), y(t0, x

(t0)
i+1), . . . , y(t0, x

(t0)
nt0

),

ŷ(tc1, x
(t0)
1 ), . . . , ŷ(tcPc

, x
(t0)
1 ), . . . , ŷ(tc1, x

(t0)
i−1), . . . , ŷ(tcPc

, x
(t0)
i−1),

ŷ(tc1, x
(t0)
i+1), . . . , ŷ(tcPc

, x
(t0)
i+1), . . . , ŷ(tc1, x

(t0)
nt0

), . . . , ŷ(tcPc
, x

(t0)
nt0

)
}

, which is the aug-

mented training data set without y(t0, x
(t0)
i ), y(tc1, x

(t0)
i ), y(tc1, x

(t0)
i ), . . . , y(tcPc

, x
(t0)
i ).
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Therefore, the AK predictor predictor using levels tc1, . . . , t
c
Pc

to estimate the av-

erage effect has the smallest cross-validated prediction error for the training data

at level t0 y(t0, x
(t0)
1 ), . . . , y(t0, x

(t0)
nt0

).

Step 5 Denote the set of levels corresponding to the smallest

∑nt0
i=1{ 2

T
B−iD−i− 1

T 2 D
2
−i} as tAK

1 , . . . , tAK
P . Compute ÂAK(x

(t0)
1 ), . . . , ÂAK(x

(t0)
nt0

),

ÂAK(x0) using the formula

ÂAK(x) =
1

P + 1



λ(t0, x)⊤y(t0) +

tAK
P∑

t=tAK
1

λ(t, x)⊤ŷ
(t)



 , (3.17)

where ŷ
(t) = (ŷ(t, x

(t0)
1 ), . . . , ŷ(t, x

(t0)
nt0

))⊤.

Step 6 Construct the deviation data set y⋆(t0) using (3.3).

Step 7 Compute the ANOVA kriging predictor of y(t0, x0)

ŷAK(t0, x0) = ÂAK(x0) + λ⋆(t0, x0)
⊤y⋆(t0).

This procedure can be combined with any predictive model producing a predictor

having the form λ(t0, x0)
⊤y(t0). We introduce a predictor based on a Gaussian process

model with hyper priors next.

3.2.4 The HAK Predictor

We use the Gaussian stochastic process model that has been proposed in Chap-

ter 2. Given parameters β = (β1, . . . , βT )⊤, σ = (σ2
1, . . . , σ

2
T )⊤, and ρ = (ρ1, . . . , ρT )⊤

where ρt = (ρt,1, . . . , ρt,d)
⊤, our GaSP model views the output y(t, x) as a realization

of

Y (t, x) = βt + Zt(x),
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where Zt(x) is a stationary Gaussian stochastic process with mean zero, variance σ2
t ,

and the Gaussian correlation function; i.e.,

Cov(Zt(x1), Zt(x2)) =

d∏

i=1

ρ
(x1,i−x2,i)

2

t,i .

Further, Z1(·), . . . , ZT (·) are mutually independent Gaussian processes.

Following the above model, one can do prediction using either the frequentist or

the Bayesian method. Here we use the hierarchical Bayesian predictor (the HQQV

predictor) proposed in Chapter 2 so that our predictor can share the merits of both the

ANOVA kriging and the Bayesian analysis in that the prediction of the response at one

level can borrow information about the common shape and the correlation structure

from the responses at all the levels. Thus, this chapter proposes ŷHAK(t0, x0) as the

HQQV ANOVA kriging (HAK) predictor. Next, ŷHAK(t0, x0) is compared with two

alternative predictors in a numerical example next.

3.2.5 An Example Having One Quantitative Input and One

Qualitative Input Having Three Levels

Let ŷKOH(·) and ŷHQV (·) denote the predictors in Kennedy and O’Hagan (2001)

and the HQQV predictor in Chapter 2, respectively. This section compares ŷKOH(·),

ŷHQV (·), and ŷHAK(·) in three cases described in Chapter 2.4.3. In these cases, the

true data are three quadratic curves having the form y(1, x) = b01 + b11x + b21x
2,

y(2, x) = b02 + b12x + b22x
2, and y(3, x) = b03 + b13x + b23x

2 for x ∈ [0, 1], and the

observations are x ∈ {0, 0.25, 0.5, 0.75, 1} for t=1,2 and x ∈ {0.5, 0.75, 1} for t = 3.

As studied in Section 2.4.3, (x1, x2, . . . , xnpred
) = (0.5, 0.51, . . . , 1.00) for interpo-

lation and (x1, x2, . . . , xnpred
) = (0, 0.01, . . . , 0.50) for extrapolation. For each of the

three cases, 30 true data sets were generated and the interpolation and extrapolation
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RMSPEs in (2.16) were computed. The boxplots in Figures 3.1 and 3.2 display RM-

SPEs of the three predictors for both interpolation and extrapolation. We can see
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Figure 3.1: Boxplots of the 30 interpolation RMSPEs of ŷKOH(·), ŷHQV (·), and
ŷHAK(·). The three panels correspond to Mechanism 1 (the left panel), Mechanism 2
(the middle panel), and Mechanism 3 (the right panel).
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Figure 3.2: Boxplots of the 30 extrapolation RMSPEs of ŷKOH(·), ŷHQV (·), and
ŷHAK(·). The three panels correspond to Mechanism 1 (the left panel), Mechanism 2
(the middle panel), and Mechanism 3 (the right panel).

that ŷHAK generally has the smallest RMSPEs than the other two predictors for all

the cases. Intuitively, the HAK predictor has the advantage of the HQQV predictor
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because it builds on the HQQV model. Further, the HAK predictor generally has

smaller prediction error than the HQQV predictor because it takes into account the

common trend. Further, the HAK kriging predictor can borrow information of the

common shapes in a data adaptive fashion so that the predictor chooses level 1 and 2

for case 1 and case 3 where the three curves have similar shapes; the predictor selects

level 2 for case 2 where the curve at level 1 has a different shape comparing with the

other two curves. Because of this feature, ŷHAK has smaller prediction than ŷKOH in

the middle panel of Figure 3.2 where ŷKOH uses the data at all the levels.

3.3 The HAK Predictor for Computer Experiments Having

Multiple Qualitative Inputs

In this section, we extend the current HAK predictor to computer experiments

having multiple qualitative inputs. Our idea is to estimate the main/interaction

effects using a subset of the training data and combining the deviations and the

main/interaction effects. We introduce the HAK predictor for computer experiments

having two qualitative inputs in Section 3.3.1. We extend the work to computer

experiments having an arbitrary number of qualitative inputs in Section 3.3.2.

3.3.1 The HAK Model for Computer Experiments Having

Two Qualitative Inputs

Suppose the input has the form (t(1), t(2), x), where t(1) ∈ {1, . . . , T1} and t(2) ∈

{1, . . . , T2} are two qualitative inputs. The estimation of the average effect A(·), the

main effects of t(1) and t(2), and their interaction effect are described next.

To estimate the average effect, which is the common trend of the responses at all

the levels {(1, 1), . . . , (1, T2), . . . , (T1, 1), . . . , (T1, T2)}, our method constructs a new
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qualitative variable t having T1 × T2 levels. So each level of t corresponds to a

combination of the values of t(1) and t(2). Then we follow the Steps 1−7 in Section 2.3

to compute the trend. We regard ÂAK(x) as the estimated average effect in the step

5 in Section 3.2.3 and y⋆(t(1), t(2), x) as the deviation obtained by subtracting the

average effect ÂAK(x) from the true response y(t(1), t(2), x).

The main effect of t(1) = t1 is the average of the outputs at levels (t(1), t(2)) = (t1, 1)

and (t(1), t(2)) = (t1, 2). To estimate the main effect of t(1), we use the data points

having t(1) = t1 to estimate the main effect using Formula 3.2. So the main effect of

the first qualitative input at t1 is

ÂAK(t(1) = t1, x) =

T2∑

t
(2)
2 =1

1

T2
λ(t1, t

(2), x)⊤y(t1,t(2)). (3.18)

In this way, we can use the data y⋆(·) with t(1) = 1 to estimate the average effect

ÂAK(t(1) = 1, x) and the new deviation y⋆
1(·) computed by subtracting ÂAK(t(1) =

1, x) from y⋆(·). Similarly, we regard the deviation after taking out the effects of both

t(1) and t(2) as y⋆
1,2(·). To estimate the interaction effect of t(1) and t(2), we use the

data y⋆
1,2(·) with a fixed value of (t(1), t(2)) to predict the response y⋆

1,2(t
(1), t(2), ·). For

example, if the computer experiment has two qualitative inputs and we are interested

in the prediction at (t(1), t(2)) = (1, 1), the prediction of the interaction effect will use

the data y⋆
1,2(·) at (t(1), t(2)) = (1, 1). We regard the prediction for y⋆

1,2(1, 1, ·) as the

interaction effect at (t(1), t(2)) = (1, 1).

The prediction of y(t1, t2, x0) (for t1 ∈ {1, . . . , T1}, t2 ∈ {1, . . . , T2}, and x0 ∈

[0, 1]) with the estimated main and interaction effects is computed as

ŷHAK(t1, t2, x0) = ÂAK(x0) + ÂAK(t1, x0) + ÂAK(t2, x0) + ŷ⋆
1,2(t1, t2, x0). (3.19)
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It is possible that only the effect of one qualitative input is believed to be signif-

icant. Then one needs to estimate the overall average effect and the main effect of

one qualitative input only. For example, if only the main effect of t(1) is believed to

be significant, then the HAK prediction of y(t(1) = t1, t
(2) = t2, x0) is

ŷHAK(t1, t2, x0) = ÂAK(x0) + ÂAK(t1, x0) + ŷ⋆
1(t1, t2, x0). (3.20)

3.3.2 The HAK Predictor for Computer Experiments Hav-
ing an Arbitrary Number of Qualitative Inputs

The idea of the HAK predictor for multivariate qualitative input factors is to con-

struct the predictor using the estimated average effect and the estimated important

main/interaction effects. The prediction is obtained by summing up the estimated ef-

fects and the prediction of the corresponding deviation. Before applying this method,

one should determine which main/interaction effects are significant by using expert

knowledge or by conducting sensitivity analysis (Saltelli, Chan and Scott (2000)).

Specifically, suppose the d dimensional quantitative input is x ∈ [0, 1]d and there

are K quantitative inputs are t(1), . . . , t(K), where the kth input t(k) has Tk levels for all

k = 1, . . . , K. We construct a new qualitative input with
∏K

k=1 Tk levels corresponding

to the
∏K

k=1 Tk combinations of the K qualitative inputs. Then we compute ÂAK(·)

and the deviation y⋆(·) following Steps 1–6 in Section 3.2.3.

For each of the important main/interaction effects, our approach uses the data at

certain level(s) of the qualitative input(s) to compute the effect and the corresponding

new deviation. The HAK predictor is the sum of the average effects and the prediction

of the corresponding deviation. For example, if J main and (or) interaction effects
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are believed to be significant, the prediction of y(t(1) = t1, . . . , t
(K) = tK , x0) is

ŷHAK(t0,1, . . . , t0,K , x0) = ÂAK(x0) +
J∑

j=1

Âj(x0) + ŷ⋆
J+1(t0,1, . . . , t0,K , x0), (3.21)

where Âj(x0) denotes the jth estimated main or interaction effect and ŷ⋆
J+1(t0,1, . . . , t0,K ,

x0) denotes the prediction of

y⋆
J+1(t0,1, . . . , t0,K , x0) = y(t0,1, . . . , t0,K , x0) −

(
ÂAK(·) +

J∑

j=1

Âj(·)

)
.

3.3.3 An Example Having One Quantitative Input and Two
Qualitative Inputs

Suppose that both qualitative inputs have two levels and the quantitative input

is in [0, 1]. We predict the observations at combination (t(1), t(2)) = (1, 1), where 4

data points were acquired. At each of the other three (t(1), t(2)) combinations, 10 data

points were acquired. We made the 10 input points and the 4 input points equally

spaced over [0, 1] by using LHDs. We generated data y(t(1), t(2), x) using the following

four equations:

y(1, 1, x) = 0.3x + 0.1 sin(2.5πx) + 0.5(x − 0.5)2; (3.22)

y(2, 1, x) = 0.1 + 0.3x + 0.1 sin(2.5πx) + 2.5(x − 0.5)4 − 0.4x5; (3.23)

y(1, 2, x) = 0.2 + 0.3x + 0.1 sin(2πx) + 0.5(x − 0.5)2; (3.24)

y(2, 2, x) = 0.3 + 0.3x + 0.1 sin(2πx) + 2.5(x − 0.5)4 − 0.4x5. (3.25)

Figure 3.3 shows the observations and the true curves. We see that the curve

at (t(1), t(2)) = (1, 1) shares the sine curve trend 0.1 sin(2.5πx) with the curve at

(t(1), t(2)) = (2, 1); the (t(1), t(2)) = (1, 1) curve also shares the quadratic trend (0.5(x−

0.5)2) with the curve at (t(1), t(2)) = (1, 2). An ideal predictor should be able to capture

these two trends.
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Figure 3.3: Raw data and the four true curves. Observations on the curves at level
(1, 1), (2, 1), (1, 2), and (2, 2) are denoted by plus signs, circles, triangles, and squares,
respectively.

We apply three predictors to this problem. The first predictor ŷHQV (·) is the

HQQV predictor described in Chapter 2 (after converting the two qualitative variables

into a single one with 4 levels). The second is the HAK predictor ŷHAK
1 (·) that

estimates AAK(·) only. The third predictor is another HAK predictor ŷHAK
1,2 (·) that

estimates AAK(·) as well as the main and the interaction effects.

The RMSPEs of ŷHQV (·), ŷHAK
1 (·), and ŷHAK

1,2 (·) at 101 input points x ∈ {0, 0.01, . . . ,

0.99, 1} are 0.0384, 0.0237, and 0.0182. Thus, ŷHAK
1 (·) and ŷHAK

1,2 (·) have relative im-

provement rates of 38.2% (≈ 0.0384−0.0237
0.0384

) and 52.6% (≈ 0.0384−0.0182
0.0384

) over ŷHQV (·).

Figure 3.4 depicts the true curve at (t(1), t(2)) = (1, 1) and the predicted y(t(1), t(2), x)

at (t(1), t(2), x) = (1, 1, 0), (1, 1, 0.01), . . . , (1, 1, 0.99), (1, 1, 1) using ŷHQV (·), ŷHAK
1 (·),
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and ŷHAK
1,2 (·). Visually we can see that ŷHAK

1,2 (·) is closer to the truth than ŷHQV (·)

and ŷHAK
1 (·).
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Figure 3.4: The true response y(1, 1, ·) (the solid curve), ŷHQV (1, 1, ·) (the dashed
dots), ŷHAK

1 (1, 1, ·) (the solid points), and ŷHAK
1,2 (1, 1, ·) (the x-mark).

In summary, ŷHAK
1,2 (1, 1, ·) has the smallest predictive error and both the HAK

predictors have better predictive accuracies than the HQQV predictor having one

qualitative input with four levels, which implies that the HAK predictor can effectively

capture the common trend as well as the main/interaction effects.

3.4 An Application of the HAK Predictor to a Hip Resur-
facing System

Long and Bartel (2006) described a hip resurfacing system whose shell geometry is

representative of several designs of the prosthetic devices including the BriminghamTM
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(Smith and Nephew, London, England), the Conserve Plus (Wright Medical Tech-

nology, Arlington, TN), and the DuromTM (Zimmer, Warsaw, IN). This implant was

particularly designed for males under 60 because they were the main patients in the

hip resurfacing surgery. One cadaveric bone was taken from a 37 year old male donor

(Bone 1) and one from a 47 year old male donor (Bone 2). The two upper panels

in Figure 3.5 (source: Long (2008)) show the left side of the two bones. The bones

are of different sizes. The femur’s head diameters are 50mm and 46mm. The neck

lengths are 55mm and 54mm. The neck-shaft angles are 130o and 132o. The head-to-

neck diameter ratio are 1.4 and 1.3. Given the differences, two finite element analysis

computer codes were developed to simulate the two resurfacing proximal femurs. The

two lower panels in Figure 3.5 (source: Long (2008)) show the simulated resurfacing

proximal femurs drawn using a finite element mesh.

One of the goals of the computer simulation is to approximate the conditions

causing damage (or abnormal behavior) to the resurfaced bone. The principal strain

at the edge of the femoral resurfacing component was considered to be an important

quantity determining the femur’s function in that a minimum principal strain (MinPS)

lower than -0.004 was believed to result in the resurfaced system’s being under a high

risk of malfunction (Long and Bartel (2006)). Thus a computer code was developed

to simulate the MinPS. Among the inputs to the computer experiment, eight were

considered significant so that we include these eight inputs in our analysis. Among

them, five inputs were quantitative and three were qualitative with nominal values.

Each of the three qualitative inputs has two levels. The five quantitative inputs were

62



Figure 3.5: Two bones and the finite element models of the two bones with implants.
Upper left panel: Bone 1; upper right panel: Bone 2; lower left panel: the finite
element model of Bone 1 with its implant; lower right panel: the finite element model
of Bone 2 with its implant. Source: Long (2008).

1. Density-modulus function weight (W ): a parameter governing the choice of

modulus-density relationship; W is assumed to have a symmetric triangular

distribution having mean 0.5 and support [0, 1];

2. In-plane head load angle (θi): a angle that describes the head load direction; θi

distributed as truncated normal with mean 0, standard error 5.5, and the lower

and upper bounds being −11 and 11;
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3. Out-of-plane head load angle (θo): an angle describing the head load direction;

θo was distributed as truncated normal with mean 0, standard error 1.0, and the

lower and upper bounds being −2 and 2. (The variations in the head load direc-

tion was roughly planar so that a least-square plane was fit and the head load

direction can be uniquely described by the in-plane and out-of-plane angles.)

4. Abductor-head load ratio (A): the abductor load at the point in time where

the peak head load occurs; A is taken to be a linear function of θi plus a

random noise distributed as truncated normal with mean 0, standard deviation

√
0.064 + 0.142, and the lower and upper bounds −2 ×

√
0.064 + 0.142 and

2 ×
√

0.064 + 0.142, respectively.

5. Stem friction coefficient (µ): the Coulomb friction coefficient along the stem-

bone interface where µ is a design input in [0.1, 0.5].

The three qualitative inputs were

1. Bone (B): a qualitative input with value 0 corresponding to the 37 year old

donor and value 1 corresponding to the 47 year old donor.

2. Stem-stem hole geometry (S): an input with value 0 corresponding to a design

having a 0.5o tapered stem in a 0.5o tapered hold (line to line) and with value 1

corresponding to a design with a 0.5o tapered stem in a straight hole (not line

to line).

3. Shell fixation (F ): an input with value 0 corresponding to a bonded shell surface

having a displacement compatible interface and with value 1 corresponding to

a deboned shell interface having a Coulomb friction interface.
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The training data set in our analysis consisted of 80 points. The design matrix

was obtained by the following three steps; i.e.,

1 Simulating 10 realizations of (W, θi, θo, A) from their distributions;

2 Assigning each of the 8 combinations of B, S, and F to the 10 realizations;

3 Making the design of µ to be equally spaced in [0.1, 0.5] for each 10 runs having a

same (B, S, F ) combination.

The test data set consisted of 10 inputs with (B, S, F, µ) = (0, 0, 0, 0.3) whose

outputs were thought to be close to −0.004 based on a preliminary analysis. As

described before, the predictive accuracy at these inputs were critical for the study of

the resurfacing system. Thus, we attempt to develop a predictor with high predictive

accuracy for the outputs less or equal to −0.004.

Using the sensitivity analysis, we detect that the significant effects are the main

effects of B, S, and F, and the interaction effect between B and S. We implement

and compare three HAK predictors by investigating their predictive accuracies for

predicting the responses in the testing data set. The first predictor estimates only

the common trend of the new qualitative input having 8 levels. The second predictor

estimates the common trend and the main effects of B, S, and F. The third predictor

estimates the common trend, main effects, as well as the interaction effect between

B and S.

The cross validation procedure shows that none of the levels other than (B, S, F ) =

(0, 0, 0) is selected when estimating the overall average effect, which indicates that

the eight response surfaces, corresponding to the eight combinations of (B, S, F ),
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have no common trend. Thus, the common trend does not help improve the pre-

dictive accuracy of ŷHAK over ŷHQV . Table 3.1 lists the true responses, the pre-

dictions, and the RMSPEs of ŷHAK
1,2,3 and ŷHAK

1,2,3,12. It shows that by combining the

main and the interaction effects, the RMSPEs over the ten points have been de-

creased from 0.0005309 to 0.0003832 and to 0.0002594. The improvement rates of

ŷHAK
1,2,3 and ŷHAK

1,2,3,12 over ŷHAK are 27.8% = (0.0005309 − 0.0003832)/0.0005309 and

51.1% = (0.0005309 − 0.0002594)/0.0005309. The third HAK predictor, which es-

timates the significant main and interaction effects, is therefore the most accurate

predictor. Using ŷHAK
1,2,3,12, one could accurately predict the minimum principal strain

with a limited number of simulation runs and thus can reasonably design the implant

to let MinPS be higher than -0.004 so that the resurfacing system would be more

likely to work well.

Testing data cases y(·) ŷHAK (or ŷHQV ) ŷHAK
1,2,3 ŷHAK

1,2,3,12

1 -0.003850 -0.0035321 -0.0042721 -0.0040023
2 -0.003657 -0.0033484 -0.0042359 -0.0039446
3 -0.003946 -0.0034618 -0.0040383 -0.0038851
4 -0.003864 -0.0034843 -0.0043196 -0.0040240
5 -0.003766 -0.0030408 -0.0037451 -0.0036372
6 -0.003799 -0.0034083 -0.0040588 -0.0038231
7 -0.004363 -0.0034644 -0.0041865 -0.0039190
8 -0.003340 -0.0033852 -0.0040799 -0.0038706
9 -0.004165 -0.0034369 -0.0041192 -0.0039634
10 -0.003674 -0.0031988 -0.0039753 -0.0037082

RMSPE — 0.0005309 0.0003832 0.0002594

Table 3.1: True responses of the testing data inputs and predictions of ŷHAK, ŷHAK
1,2,3 ,

and ŷHAK
1,2,3,12.
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3.5 Summary and Future Research

This chapter proposes a methodology for predicting the output from computer

experiments having both quantitative and qualitative inputs. The method can deal

with an arbitrary number of qualitative inputs. The examples in Sections 3.2.5,

3.3.3, and 3.4 demonstrate that the HAK predictor captures the common shape of

responses at different levels if such a common shape exists, and uses this to improve

the overall prediction. In the proposed cross validation procedure, the HAK predictor

uses only the data at the levels that share the similar trend of the data at the level

for prediction.

For future research on the HQQV ANOVA kriging predictor, one issue is to con-

struct a predictive (or credible) interval for the HAK predictor. Another is to extend

this method to predict the response from a physical experiment using the data from

both the physical experiment and one or more computer simulation codes having the

same set of quantitative and qualitative inputs. To predict physical experiments, the

following result can be used.

Proposition 3. Suppose that

1. There are T − 1 computer codes simulating the physical experiment;

2. The computer experiments are unknown deterministic functions and the phys-

ical experiment is a sum of an unknown deterministic function and a random

error;

3. The input variables to the computer experiments and the physical experiment

are identical and the inputs are all quantitative.
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If we create a discrete variable t ∈ {1, . . . , T} and regard the physical experiment as

being at level t0 and the computer experiments as being at the other T − 1 levels,

then Proposition 1 in Section 3.2.2 holds; i.e.,

V OK(t0, x0) − V AE(t0, x0) =
2

T
BD − 1

T 2
D2,

where

B = λ(t0, x0)
⊤y(t0) − y(t0, x0)

and

D =
∑

t6=t0


λ(t0, x0)

⊤




y(t, x
(t0)
1 )

...

y(t, x
(t0)
nt0

)


− y(t, x0)


 .

Proof. Suppose that in the physical experiment, the noise term ǫ(x) has mean 0 and

variance σ2. The predictive error of ŷOK(t0, x0) is

V OK(t0, x0) = E(ŷOK(t0, x0) − y(t0, x0))
2 = B2 + σ2. (3.26)

By (3.11), ŷAE(t0, x0) = ŷOK(t0, x0) − 1
T
D so that the predictive error of ŷAE(t0, x0)

is

V AE(t0, x0) = E(ŷAE(t0, x0) − y(t0, x0))
2 = (B − D)2 + σ2. (3.27)

By (3.26) and (3.27),

V OK(t0, x0) − V AE(t0, x0) = B2 − (B − 1

T
D)2 =

2

T
BD − 1

T 2
D2.

Research on combining Proposition 3 with a plausible statistical model and with

a procedure that selects levels to be used to construct the HAK predictor for the

physical experiment is underway.
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CHAPTER 4

SIMULTANEOUS CALIBRATION AND TUNING FOR
COMPUTER EXPERIMENTS

4.1 Introduction

Many computer codes have been developed and used in settings where physical

experiments are also available for describing the true input/output relationship of

interest (chapter 1 of Santner et al. (2003) and chapter 1 of Fang et al. (2005)). In

this chapter, we are interested in settings where both types of data are available but

the computer code takes sufficiently long to run so that the number of computer code

runs is limited.

In this setting, statistical models are needed to predict the output from the com-

puter code and the physical experiment. Such statistical models must incorporate

different types of input variables required by computer codes, such as control inputs,

tuning parameters, and calibration parameters. Next we review current methods for

tuning and calibration and discusses their limitations.

Park (1991) and Cox et al. (1996) set tuning parameters to make the computer

code output fit the physical observations as closely as possible in an integrated pre-

diction error sense. Approaches that search for “best” tuning parameters gives the
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selection of the tuning parameters without providing uncertainties associated with

the proposed ideal values of the tuning parameters.

Previous proposals for calibration have been primarily Bayesian. Their goal has

been to simulate the posterior distributions of the calibration parameters and to pre-

dict unknown responses. Craig, Goldstein, Seheult and Smith (1996) and Craig, Gold-

stein, Rougier and Seheult (2001) developed a Bayesian linear forecasting method,

which can be seen as an approximation to a fully Bayesian analysis. Kennedy and

O’Hagan (2001) described a Bayesian calibration framework based on a model having

a bias function and a (modular) Bayesian analysis. Higdon et al. (2004) proposed a

fully Bayesian implementation for the model in Kennedy and O’Hagan (2001). Gat-

tiker, Williams and Rightley (2005) developed a methodology for calibration when

the outputs are multivariate. Gattiker (2005) implemented the model in Higdon et al.

(2004) and Gattiker et al. (2005) in MATLAB. Loeppky, Bingham and Welch (2006)

proved that whose procedure would lead to asymptotically correct estimation of the

calibration parameters if the true values of the calibration parameters are such that

they reduce the bias of the computer simulation to zero. We will discuss a lemma in

Loeppky et al. (2006) in Section 4.4.1.

We note that some models used to “validate” computer experiments (or “assess”

the usefulness of a computer code) are similar to the models for Bayesian calibration.

For example, Bayarri, Berger, Paulo, Sacks, Cafeo, Cavendish, Lin and Tu (2007b)

presented a framework with a Bayesian model for validation and Bayarri, Berger,

Cafeo, Garcia-Donato, Liu, Palomo, Parthasarathy, Paulo, Sacks and Walsh (2007a)

used wavelet decomposition based on the same Bayesian model to validate computer

experiments having multivariate or functional outputs.
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Because the methods above focus on either tuning or calibration, these methods

may suffer limitations in applications where there are both tuning and calibration

parameters. Specifically, using either methodology in a problem involving both types

of parameters can be problematic. For example, if one applies a method for tuning

to a problem involving both tuning and calibration parameters, it becomes unable to

quantify the possible uncertainties of the calibration parameters. If one uses a cali-

bration methodology regarding both tuning and calibration parameters as calibration

parameters, one can get biased estimations and/or undesired estimated uncertainties

of the tuning and calibration parameters as we will show below. These misleading

estimations and estimated uncertainties can lead to large prediction errors.

To demonstrate the limitations described above, we will use the Bayesian cali-

bration program (gpmsa) described in Gattiker (2005) to set tuning and calibration

parameters for an application described in Rawlinson et al. (2006). This project

originally compared the damage in two knee implants (the Install-Burstein (IB) man-

ufactured by Zimmer, Inc. and the Optetrak produced by Exactech, Inc.). The

responses from the physical experiment for this study were the measurements made

on the kinematics and kinetics of knees tested in an Instron-Stanmore KC1 testing

device, a “knee simulator.” The loading (magnitude, angle, and rate) and knee de-

sign were modeled in a finite element analysis (FEA) computer code whose output

included the kinematics, kinetics, and stresses experienced by the knee component.

Specifically, the anterior-posterior displacement (APD), an important kinematic out-

put of fore-aft motion during knee function, was measured in both the knee simulator

and the computer simulation. The APD was roughly proportional to the anterior-

posterior force that, coupled with the vertical joint load, contributed to damage of the

71



0 10 20 30 40 50 60 70 80 90 100
−12

−10

−8

−6

−4

−2

0

2

4

6

8

Figure 4.1: Scatter plot of the measured APD over the gait cycle, from the knee
simulator (triangles) and the FEA computer code (dots).

prosthesis. This computer experiment had one control variable (the percentile in gait

cycle), two tuning parameters (finite element mesh density and load discretization),

and two calibration parameters (friction and initial position).

In our application we consider only the IB knee implant. The design of the com-

puter and the physical experiments were roughly Maximin Latin Hypercube designs

(McKay et al. (1979)). A pilot study of the APD for this design acquired 439 ob-

servations from the computer code and 36 observations from the physical experiment

for the purpose of tuning and calibration. Figure 4.1 depicts the training data. A

previous sensitivity analysis (Saltelli et al. (2000)) found that APD was not sensitive

to friction and mesh density. Therefore below we only study load discretization (a

tuning parameter) and initial position (a calibration parameter).

Using gpmsa, we regarded both load discretization and initial position as calibra-

tion parameters, whose prior distributions were near uniform distribution. We ran
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gpmsa with 8000 burn-in iterations and 2000 production runs, and based our infer-

ences on 100 equally-spaced values of each parameter taken from the production runs.

Figure 4.2 shows the simulated posterior distributions of these two parameters. The

posterior distribution of load discretization is bimodal and the one of initial position

has the mode on lower values but has large variation. Thus, plausible values of the

tuning and calibration parameters remain unclear, which makes the determination of

their values impossible. We will demonstrate that our methodology can significantly
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Figure 4.2: Simulated posterior distributions of load discretization (the left panel)
and initial position (the right panel).

improve the selection of the tuning and calibration parameters in this application.

Chapter 4 is organized as follows: Section 4.2 introduces a hierarchical Bayesian

model describing the response from a physical experiment together with the output

from the computer simulation code having both tuning and calibration parameters.

Section 4.3 proposes our methodology for setting these parameters simultaneously.

Section 4.4 compares our methodology with an approach that treats all parameters

as calibration parameters. Section 4.5 summarizes this chapter.
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4.2 A Hierarchical Bayesian Model for Tuning and Calibra-
tion

Let x denote the vector of control variables, t denote the vector of tuning pa-

rameters, and t⋆ denote the “best” values of the tuning parameters, where t⋆ will

be defined in Section 4.3. (Warning: in Chapters 2 and 3, t denotes qualitative in-

puts, while in this chapter t denotes tuning parameters.) Let c denote the vector

of calibration parameters and θc denote the unknown true values of the calibration

parameters. Assume x ∈ [0, 1]px, t ∈ [0, 1]pt, and c ∈ [0, 1]pc or they can be so scaled.

Let {(xs
i , ci, ti), ys(xs

i , ci, ti); i = 1, 2, . . . , ns} denote the training data from the

computer experiment and {xp
j , y

p(xp
j ); j = 1, 2, . . . , np} denote the training data from

the physical experiment. Here ns and np are the numbers of runs for each type of

data. A more complete notation for the physical experiment response is yp(x, θc);

throughout this paper, yp(x) and yp(x, θc) are equivalent. Let ys be the ns×1 vector

with ith element ys(xs
i , ci, ti) and yp be the np × 1 vector with jth element yp(xp

j ).

The model and the prior distribution proposed here are similar in spirit to the

ones in Kennedy and O’Hagan (2001) and Higdon et al. (2005) except that our model

incorporates both the tuning and calibration parameters. Roughly, the response from

the physical experiment is the sum of the “true response” and a random noise; the

output from the computer experiment is the difference between the true response

and the code bias. The proposed model assumes that the output from the computer

experiment and the bias can be described as draws from Gaussian stochastic processes.

Specifically, we regard yp(·) as a realization of

Y p(x) = η(x, θc) + ǫ(x), (4.1)
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where η(x, θc) = E(Y p(x)) is the true response at x and ǫ(·) is the white noise

Gaussian process with the mean 0 and the covariance Cov(ǫ(x1), ǫ(x2)) = 0 if x1 6= x2

and Cov(ǫ(x1), ǫ(x2)) = σ2
ǫ if x1 = x2. Thus yp can be viewed as a realization of the

random vector Y p whose jth element is Y p(xp
j).

The proposed hierarchical Bayesian model views ys(·) as a realization of the Gaus-

sian stochastic process

Y s(x, c, t) = f⊤
Z(x, c, t)βZ + Z(x, c, t). (4.2)

The mean of Y s(x, c, t) is f⊤
Z(x, c, t)βZ , where f⊤

Z(x, c, t) is a vector of known re-

gression coefficients and βZ is a vector of unknown regression parameters. If Y s(·)

is assumed to have a constant mean, then f⊤
Z(x, c, t)βZ = βZ,0. In (4.2), Z(·) is the

stationary Gaussian stochastic process with the mean 0, variance σ2
Z , and product

Gaussian correlation

Cor(Z(x1, c1, t1), Z(x2, c2, t2)|ρZ) =

px∏

i=1

ρ
4(x1

i −x2
i )

2

Z,x,i ×
pc∏

j=1

ρ
4(c1j−c2j)

2

Z,c,j ×
pt∏

k=1

ρ
4(t1

k
−t2

k)
2

Z,t,k

(4.3)

with correlation parameters ρZ = (ρZ,x,1, . . . , ρZ,x,px
, ρZ,c,1, . . . , ρZ,c,pc

, ρZ,t,1, . . . , ρZ,t,pt
)⊤.

Thus ys can be viewed as a realization of the random vector Y s whose ith element

is Y s(xs
i , ci, ti).

We define δ(x, c, t) to be the bias of the simulation at (x, c, t); i.e.,

δ(x, c, t) = η(x, θc) − ys(x, c, t). (4.4)

The model views δ(·) as a draw from the Gaussian stochastic process

∆(x, c, t) = f⊤
D(x, c, t)βD + D(x, c, t), (4.5)

where fD(x, c, t) is a vector of known regression coefficients and βD is a vector

of unknown regression parameters. When ∆(·) is assumed to have a constant mean,
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f⊤
Z(x, c, t) βZ = βD,0. Similar to Z(·), D(·) is assumed to be the stationary Gaussian

stochastic process with the mean 0, variance σ2
D, and correlation function

Cor(D(x1, c1, t1), D(x2, c2, t2)|ρD) =

px∏

i=1

ρ
4(x1

i −x2
i )

2

D,x,i ×
pc∏

j=1

ρ
4(c1j−c2j)

2

D,c,j ×
pt∏

k=1

ρ
4(t1

k
−t2

k)
2

D,t,k ,

(4.6)

where ρD = (ρD,x,1, . . . , ρD,x,px
, ρD,c,1, . . . , ρD,c,pc

, ρD,t,1, . . . , ρD,t,pt
)⊤. Finally, Y s(·),

∆(·), and ǫ(·) are assumed to be mutually independent.

The parameters in our model are θc, β = (β⊤
Z , β⊤

D)⊤, σ = (σ2
Z , σ2

D, σ2
ǫ )

⊤, and ρ =

(ρ⊤
Z , ρ⊤

D)⊤. For a generic parameter (vector) ν, let [ν] denote its prior distribution.

We assume that the priors of the calibration parameters, process means, process

variances, and process correlations are independent so that

[θc, β, σ, ρ] = [θc] × [β] × [σ] × [ρ]. (4.7)

In the examples below, vague priors are constructed for θc, β, σ, and ρ; of course,

if expert knowledge is available it should be used to provide informative priors. In

particular, because the calibration parameters are scaled to [0, 1]pc, all the elements

of θc are taken to have an independent and identical truncated normal distribution

with the mean 0.5, standard deviation 2, and support [0, 1]. This prior is close to a

uniform distribution on [0, 1]pc. We take f⊤
Z(·)βZ = βZ,0 and f⊤

D(·)βD = βD,0 and set

βZ,0 to be the average of the outputs from the computer experiment and βZ,0 + βD,0

to the average of the responses from the physical experiment, which are comparable

to the degenerate priors for the process means assumed by Gattiker (2005). The prior

distributions of the variance parameters are set to be independent inverse Gamma

distributions. The notation IG(α, γ) denotes the inverse gamma distribution with

mean and the variance 1/[γ(α − 1)] and 1/[γ2(α − 1)2(α − 2)], respectively. We take
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σ2
Z ∼ IG(αZ , γZ), σ2

ǫ ∼ IG(αǫ, γǫ), and σ2
D ∼ IG(αD, γD) where the parameters are

set data-adaptively.

In detail, the prior parameters of the IG priors are constructed by first computing

the sample variances of the output from the computer experiment and the physical

experiment; we denote these quantities by σ̂2
s and σ̂2

p , respectively. Let σ2
Z have a

mildly informative prior distribution by setting (αZ , γZ) = (10, 0.1/σ̂2
s) and σ2

ǫ have

a prior with small magnitude and variation by taking (αǫ, γǫ) = (1, 100/σ̂2
s). We use

the value of (σ̂2
p − σ̂2

s) to set the prior for σ2
D. If σ̂2

p > σ̂2
s , σ2

D is set to have a mildly

informative prior by taking (αD, γD) = (10, 0.1/(σ̂2
p − σ̂2

s)) while if σ̂2
p ≤ σ̂2

s , σ2
D is set

to have a prior with small magnitude and variation where (αD, γD) = (1, 100/σ̂2
s).

Finally, we take the prior for the correlation parameters to be independently and

identically distributed with Beta(1, 0.5) distribution which says that they have prior

mean equal to 2/3, prior model close to 1, and a rather diffuse support over (0, 1).

We let φ = (β, σ, ρ). Then the joint prior distribution of all the parameters is

[θc, φ]. For a fixed t, Y p(x) = η(x, θc) + ǫ(x) = ys(x, c, t) + δ(x, c, t) + ǫ(x). Thus

the likelihood can be regarded as a function of t (and (θc, φ)). The posterior density

has the form

[θc, φ|ys, yp, t] ∝ [yp, ys|θc, φ, t] × [θc, φ, t]

∝ [yp, ys|θc, φ, t] × [θc, φ].

The posterior density is proportional to the product of the joint prior density

[θc, φ|t] and the likelihood [ys, yp|θc, φ, t]. We can derive [θc, φ|t] by computing the

prior densities of [θc], [β], [σ], and [ρ] and applying (4.7). The density [ys, yp| θc, φ, t]

is derivable analytically because ys and yp are viewed as observations from Gaussian
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stochastic processes. Specifically, our model is

Y s(xs
i , ci, ti) = f⊤

Z(xs
i , ci, ti)βZ + Z(xs

i , ci, ti)

and

Y p(xp
j ) = Y s(xp

j , θc, t) + ∆(xp
j , θc, t) + ǫ(xp

j )

for all i = 1, . . . , ns and j = 1, . . . , np. The mean values of Y p(xp
j ) and Y s(xs

i , ci, ti) are

f⊤
Z(xs

i , ci, ti)βZ + f⊤
D(xs

i , ci, ti)βD and f⊤
Z(xp

j , θc, t)βZ respectively. The covariance

matrix between Y s and Y p given (θc, φ, t) is an ns×np matrix whose (i, j)th element

is

Cov(Y s(xs
i , ci, ti), Y

p(xp
j )|(θc, φ, t)) = Cov(Z(xs

i , ci, ti), Z(xp
j , θc, t)|(θc, φ, t)),

which can be computed using (4.3).

With the joint prior density and the likelihood, we simulate draws from [θc, φ|ys,

yp, t] by implementing a Metropolis-Hastings (MH) algorithm, which updates each of

the parameters with the specifications listed in Table 4.1. For all the parameters, the

proposal distributions are uniform distributions. The centers of the uniform distribu-

tions are set to be the previous draws and the lengths of the uniform distributions are

specified in the last column of Table 4.1. For any correlation parameter ρ, the proposal

draws are made on ξ = −4log(ρ). With the model and the simulated joint posterior

distribution [θc, φ|ys, yp, t] for any given t, the methodology for simultaneous tuning

and calibration is proposed next.
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Model parameter Prior distribution Support Initial value Length
All elements of θc TN(0.5, 22) [0, 1] 0.5 0.1
All elements of ρz, ρδ Beta(1, 0.5) (0, 1) 2/3 0.3
σ2

z IG(10, 0.1
bσ2

s
) (0, +∞) 1

bσ2
s

0.2
bσ2

s

σ2
D, if σ̂2

s > σ̂2
p IG(1, 100

bσ2
s
) (0, +∞) 100

bσ2
s

10
bσ2

s

σ2
D, if σ̂2

s < σ̂2
p IG(10, 0.1

bσ2
p−bσ2

s
) (0, +∞) 1

bσ2
p−bσ2

s

0.1
bσ2

p−bσ2
s

σ2
ǫ IG(1, 100

bσ2
s

(0, +∞) 100
bσ2

s

2
bσ2

s

Table 4.1: Specifications of the Metropolis-Hastings algorithm. The four columns,
from left to right, correspond to the prior distributions, the lower and upper bounds
of the parameters as the program iterates, the initial values of the parameters, and the
lengths of the uniform distributions. We let TN(µ, σ2) on [a, b] denote the truncated
normal distribution with mean µ and variance σ2 on the support [a, b].

4.3 Methodology for Simultaneous Tuning and Calibration

4.3.1 The Discrepancy Function

First we select a discrepancy function between the computer code output and the

physical experiment response. The discrepancy, regarded as a function of (c, t), is used

to define the “true” tuning parameter. Three, of many, possible discrepancy func-

tions are L2 discrepancy
∫ 1

0
(η(x, θc) − ys(x, c, t))2 dx, L1 discrepancy

∫ 1

0
|η(x, θc)−

ys(x, c, t)|dx, and L∞ discrepancy maxx |η(x, θc) − ys(x, c, t)|. In this article, we

use L2 discrepancy but our methodology can be applied with any other discrepancy

function.

We let S2(x, c, t) = (η(x, θc) − ys(x, c, t))2, then

S2(x, c, t) = [δ(x, θc, t) + (ys(x, θc, t) − ys(x, c, t))]2 (4.8)

by applying (4.4). If θc = c in (4.8), then S2(x, θc, t) = δ2(x, θc, t) (because

ys(x, θc, t) − ys(x, c, t) = 0 with θc = c) and so the L2 discrepancy for t is

∫ 1

0
S2(x, θc, t)dx =

∫ 1

0
δ2(x, θc, t)dx. Similarly, if θc has a posterior distribution
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[θc|ys, yp, t], the L2 discrepancy for t is

∫ 1

0

∫ 1

0
S2(x, θc, t)[θc|ys, yp, t]dθcdx =

∫ 1

0

∫ 1

0
δ2(x, θc, t)[θc|ys, yp, t]dθcdx. We take the

objective of tuning to be the estimation of

t⋆ = argmin
t

∫ 1

0

∫ 1

0

δ2(x, θc, t)[θc|ys, yp, t]dθcdx. (4.9)

The objective of calibration is to compute the posterior distribution [θc|ys, yp, t⋆];

notice that posterior distribution used in calibration is at t⋆, the true value of t.

4.3.2 Simultaneous Tuning and Calibration

To review, the main idea is to estimate t⋆ by a proposed t that minimizes the

estimated squared discrepancy function and to conduct calibration with the estimated

t⋆. Next, we describe our estimation of δ2(x, θc, t), t⋆, and [θc|ys, yp, t⋆] and then

summarize the methodology as a 3-step procedure.

First, we estimate δ2(x, θc, t) by the posterior mean E(∆2(x, θc, t)|ys, yp, t), which

is the Bayes predictor of δ2(x, θc, t) under squared error loss (Santner et al. (2003)).

Notice that E(∆2(x, θc, t)|θc, φ, ys, yp, t) is equal to

[E(∆(x, θc, t)|θc, φ, ys, yp, t)]2 + V ar(∆(x, θc, t)|θc, φ, ys, yp, t); (4.10)

both [E(∆(x, θc, t)|θc, φ, ys, yp, t)]2 and V ar(∆(x, θc, t)|θc, φ, ys, yp, t) can be de-

rived analytically based on the probability density of the multivariate normal distri-

bution.

We provide the derivation next. Following (4.5) and (4.6), we compute

[E(∆(x, θc, t)|θc, φ, ys, yp, t)]2 = [f⊤
D(x, θc, t)βD + Σ⊤

DZΣ−1
ZZDt]

2

and

V ar(∆(x, θc, t)|θc, φ, ys, yp, t) = σ2
D − Σ⊤

DZΣ−1
ZZΣDZ ,
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where ΣDZ is the vector of covariances between ∆(x, θc, t) and (Y s⊤, Y p⊤)⊤, ΣZZ

is the variance-covariance matrix of (Y s⊤, Y p⊤)⊤, and Dt is the difference between

the data and the expectation; i.e., Dt = (yp⊤ys⊤)⊤− (E(Y p|t)⊤E(Y s|t)⊤)⊤. We list

the elements in Σ∆Z , ΣZZ , and Dt below.

• The ith element of ΣDZ is Cov(∆(x, θc, t), Y p(xp
i ) |(θc, φ, t)) = Cov(∆(x,

θc, t), ∆(xp
i , θc, t)|(θc, φ, t)) for i = 1, 2, . . . , np. The ith element of ΣDZ is

Cov(∆(x, θc, t), Y
s(xs

i−np
, ci−np

, ti−np
)| (θc, φ, t)) = 0 for i = np + 1, np +

2, . . . , np + ns.

• We parametrize ΣZZ as

ΣZZ =

(
ΣPP ΣPS

Σ⊤
PS ΣSS

)
, where (4.11)

– ΣPP is an np × np matrix whose (i1, i2)th entry is Cov(Y p(xp
i1
), Y p(xp

i2
)|

(θc, φ, t));

– ΣPS is an np × ns matrix whose (i, j)th entry is Cov(Y p(xp
i ), Y s(xs

j , cj ,

tj)|(θc, φ, t));

– ΣSS is an ns × ns matrix whose (j1, j2)th entry is Cov(Y s(xs
j1

, cj1, tj1),

Y s(xs
j2, cj2, tj2) |(θc, φ, t)), for all i, i1, i2 = 1, 2, . . . , ns and j, j1, j2 =

1, 2, . . . , np.

• The ith element of Dt is yp(xp
i ) − f⊤

Z(xi, θc, t) βZ − f⊤
D(xi, θc, t) βD for i =

1, 2, . . . , np. The ith element is ys(xs
i−np

, ci−np
, ti−np

)− f⊤
Z(xi−np

, ci−np
, ti−np

)

βZ for i = np + 1, np + 2, . . . , np + ns.

It is worth noting that the two terms in (4.10) reflect the intuition of simultaneous

tuning and calibration. A large value of [E(∆(x, θc, t)| θc, φ, ys, yp, t)]2 implies a
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large discrepancy between the computer experiment and the physical experiment. So

[E(∆(x, θc, t)|θc, φ, ys, yp, t)]2 can be interpreted as squared prediction bias. The

term V ar(∆(x, θc, t)|θc, φ, ys, yp, t) is a measure of the uncertainty of ∆(x, θc, t)

given (θc, φ, ys, yp, t). Intuitively, our methodology favors a t that minimizes the

sum of the squared prediction bias and the uncertainty.

Given that E(∆2(x, θc, t)|ys, yp, t) = E[θc,φ|ys,yp,t][E(∆2(x, θc, t)|θc, φ, ys, yp, t)]

and that [θc, φ|ys, yp, t] can be simulated by the Metropolis-Hastings algorithm, the

Law of Large Numbers guarantees

E(∆2(x, θc, t))
2|ys, yp, t) ≈ 1

NMC

NMC∑

l=1

E(∆2(x, θ̂c,l, t)|θ̂c,l, φ̂l, y
s, yp, t), (4.12)

where (θ̂c,l, φ̂l) is a sequence of (approximately independent) draws of (θc, φ) from

[θ, φ|ys, yp, t] and NMC is a sufficiently large number. Thus, we can asymptotically

approximate E(∆2(x, θc, t)|ys, yp, t).

Second, we estimate t⋆ by

t̂
⋆

= argmin
t

∫ 1

0

∫ 1

0

E[(∆(x, θc, t))
2|ys, yp, t][θc, φ|ys, yp, t]dθcdx

≈ argmin
t

∫ 1

0

1

NMC

NMC∑

l=1

E[(∆(x, θ̂c,l, t))
2|θ̂c,l, φ̂l, Y

s, Y p, t]dx. (4.13)

The integral over x in (4.13) can be approximated by a Monte Carlo integration that

averages (4.12) over a grid of x inputs. In our examples, we took

t̂
⋆ ≈ argmin

t

1

Nx

1

NMC

Nx∑

i=1

NMC∑

l=1

E[(∆(xi, θ̂c,l, t))
2|θ̂c,l, φ̂l, y

s, yp, t], (4.14)

where {xi ∈ [0, 1]px|i = 1, . . . , Nx} are points taken to approximate the integration

in (4.13). In the examples we consider, we use an equally-spaced grid of values of x

for the Monte Carlo integration and take Nx = 101. By the Law of Large numbers,
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t̂
⋆

converges to t⋆ almost everywhere as Nx and NMC go to infinity. We regard t̂
⋆

in

(4.14) as the estimator of t⋆ and the quantity
∑Nx

i=1

∑NMC

l=1 E[(∆(xi, θ̂c,l, t))
2| θ̂c,l, φ̂l,

ys, yp, t]/(NxNMC) as the estimated squared discrepancy.

Third, we estimate the posterior distribution [θc|ys, yp, t⋆]. Because t̂
⋆

con-

verges to t⋆ almost everywhere, [θc|ys, yp, t̂
⋆
] converges to [θc|ys, yp, t⋆] in distri-

bution. We therefore estimate the distribution [θc|ys, yp, t⋆] using the draws of θc

from [θc, φ|ys, yp, t̂
⋆
].

Operationally, we conduct simultaneous tuning and calibration as follows.

Step 1 For each possible t in a grid of the tuning parameter vectors, make draws

{(θ̂c,l, φ̂l); l = 1, . . . , NMC} from [θc, φ|ys, yp, t] and compute the estimated

squared discrepancy at a set of inputs {xi; i = 1, . . . , Nx}.

Step 2 Compute t̂
⋆

= argmint
1

Nx

1
NMC

∑Nx

i=1

∑NMC

l=1 E(∆2(xi, θ̂c,l, t)| θ̂c,l, φ̂l, y
s, yp, t).

Step 3 Estimate [θc|ys, yp, t̂
⋆
].

We call this the STaC procedure, which stands for Simultaneous Tuning and Calibra-

tion.

4.3.3 Prediction

In addition to tuning and calibration, we can predict ys(·) and η(·) and con-

struct the predictive intervals using t̂
⋆

and draws {(θ̂c,l, φ̂l)} from [θc|ys, yp, t̂
⋆
].

Given t̂
⋆
, the BLUP of ys(x, c, t) is E(Y s(x, c, t) |ys, yp, t̂

⋆
) = E»

θc,φ|ys,yp,
bt

⋆
–

[E(Y s(x, c, t)|ys, yp, t̂
⋆
, θc, φ)]. By the Law of Large Numbers,

ŷs(x, c, t) ≈ 1

NMC

NMC∑

l=1

E(Y s(x, c, t)|ys, yp, t̂
⋆
, θ̂c,l, φ̂l). (4.15)
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Similarly, the predictor of η(x, θc) is

η̂(x, θc) ≈
1

NMC

NMC∑

l=1

E(Y s(x, θ̂c,l, t̂
⋆
) + ∆(x, θ̂c,l, t̂

⋆
)|ys, yp, t̂

⋆
, θ̂c,l, φ̂l). (4.16)

The uncertainty in the predicted ys(x, c, t) can be approximated by

V ar(Y s(x, c, t)|ys, yp, t̂
⋆
)

= E»
θc,φ|ys,yp,

bt
⋆

–
[
V ar(Y s(x, c, t)|ys, yp, t̂

⋆
, θc, φ)

]

+V ar»
θc,φ|ys,yp,

bt
⋆

–
[
E(Y s(x, c, t)|ys, yp, t̂

⋆
, θc, φ)

]

≈ 1

NMC

NMC∑

l=1

V ar(Y s(x, c, t)|ys, yp, t̂
⋆
, θ̂c,l, φ̂l)

+
1

NMC

NMC∑

l=1

[
E(Y s(x, c, t)|ys, yp, t̂

⋆
, θ̂c,l, φ̂l)

]2

−
[

1

NMC

NMC∑

l=1

E(Y s(x, c, t)|ys, yp, t̂
⋆
, θ̂c,l, φ̂l)

]2

. (4.17)

By the similar arguments, the uncertainty in the predicted η(x, θc) is the conditional

variance of Y s(x, θc, t̂
⋆
) + ∆(x, θc, t̂

⋆
). This quantity can be approximated by

V ar(Y s(x, θc, t̂
⋆
) + ∆(x, θc, t̂

⋆
)|ys, yp, t̂

⋆
)

≈ 1

NMC

NMC∑

l=1

V ar(Y s(x, θ̂c,l, t̂
⋆
) + ∆(x, θ̂c,l, t̂

⋆
)|ys, yp, t̂

⋆
, θ̂c,l, φ̂l)

+
1

NMC

NMC∑

l=1

[
E(Y s(x, θ̂c,l, t̂

⋆
) + ∆(x, θ̂c,l, t̂

⋆
)|ys, yp, t̂

⋆
, θ̂c,l, φ̂l)

]2

−
[

1

NMC

NMC∑

l=1

E(Y s(x, θ̂c,l, t̂
⋆
) + ∆(x, θ̂c,l, t̂

⋆
)|ys, yp, t̂

⋆
, θ̂c,l, φ̂l)

]2

. (4.18)

Next we derive E(Y s(x, c, t)|ys, yp, t, θc, φ), E(Y s(x, θc, t) +∆(x, θc, t)| ys, yp,

t, θc, φ), V ar(Y s(x, c, t)|ys, yp, t, θc, φ), and V ar(Y s(x, θc, t) +∆(x, θc, t)| ys, yp,

t, θc, φ). Using (4.2), (4.3), (4.4), (4.5), (4.6), and the following results, one can

compute (4.15), (4.16), (4.17), and (4.18) by taking (t, θc, φ) to be (̂t
⋆
, θ̂c,l, φ̂l).
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• The conditional expectation of Y s(x, c, t) is E(Y s(x, c, t)|ys, yp, t, θc, φ) =

f⊤
Z (x, c, t) βZ +Σ⊤

0ZΣ−1
ZZDt, where Σ0Z is an (np +ns)×1 vector of covariances

between Z(x, c, t) and the entries of (Y p⊤, Y s⊤)⊤. The ith element of Σ0Z

is Cov(Z(x, c, t), Z(xp
i , θc, t)|(θc, φ, t)) if i = 1, . . . , np. The ith element is

Cov(Z(x, c, t), Z(xs
i−np

, ci−np
, ti−np

)| (θc, φ, t)) for i = np + 1, . . . , np + ns.

• The conditional variance of Y s(x, c, t) is V ar(Y s(x, c, t)|ys, yp, t, θc, φ) = σ2
Z−

Σ⊤
0ZΣ−1

ZZΣ0Z .

• The conditional mean of η(x, θc) is E(Y s(x, θ, t)|ys, yp, t, θc, φ)+ E(∆(x, θ, t)|

ys, yp, t, θc, φ).

• The conditional variance of Y s(x, θ, t)+∆(x, θ, t) is V ar(Y s(x, θ, t)+ ∆(x, θ, t)|

ys, yp, t, θc, φ) = σ2
Z + σ2

D − (Σ⊤
0Z+ Σ⊤

DZ)Σ−1
ZZ(Σ0Z + Σ⊤

DZ).

Based on (4.15), (4.16), (4.17), (4.18), and the results listed above, we can compute

point-wise 100(1 − α)% prediction bands for ys(x, c, t) and η(x, θc) as

ŷs(x, c, t) ± zα/2

√
V ar(Y s(x, c, t)|ys, yp, t̂

⋆
)

and

η̂(x, θc) ± zα/2

√
V ar(Y s(x, θc, t̂

⋆
) + ∆(x, θc, t̂

⋆
)|ys, yp, t̂

⋆
),

where zα/2 is the upper α/2 critical point of the standard normal distribution.

4.4 Examples and Comparison

4.4.1 Discussion

In this section, the gpmsa program is compared with STaC. Bayesian calibration

requires setting a prior distribution on the tuning parameters as well as the calibra-

tion parameters. On the other hand, STaC minimizes a discrepancy between the
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computer and the physical experiment output to set the tuning parameters and sam-

ples an appropriate posterior distribution to assess calibration parameters. Thus the

necessary and sufficient condition that Bayesian calibration and STaC are equivalent

is that the marginal posterior distribution of t and the discrepancy measure give the

same estimation of the tuning parameters. Lemma 1 in Loeppky et al. (2006) shows

that, roughly, for their Gaussian stochastic process model, under the conditions that

(a) the discrepancy between the computer and the physical experiments can be min-

imized to be zero and

(b) infinitely many runs from the computer simulation and the physical experiment

are available,

the MLE of the discrepancy converges to zero as the number of the computer runs goes

to infinity and the MLE of the calibration parameters can minimize the discrepancy

asymptotically. Based on their Lemma 1, Bayesian calibration and STaC can give

comparable estimates of t⋆ in our model if

(a⋆) by setting the calibration (or tuning) parameters to certain values, the discrep-

ancy δ(·) can be minimized sufficiently close to zero,

(b⋆) the number of the observations from the computer experiment is reasonably

large, and

(c⋆) the posterior mode of every calibration parameter is close to the MLE of the

parameter.

However, (a⋆), (b⋆), and (c⋆) can be hard to verify (or false) in many applications,

which is caused by three major reasons. The discrepancy δ(·) need not be minimized
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to zero because of the complexity of the real world phenomena and the inadequacy of

the computer simulation code. The numbers of the computer and physical experiment

runs are typically limited. The posterior mode of a calibration parameter can differ

from the MLE if either the prior for θc or the prior for ∆(·) is informative. Therefore,

the Bayesian calibration may fail to minimize the difference between the computer

and the physical experiments.

4.4.2 An Illustrative Example with Known t⋆ and θc

In this example there are four real-valued inputs to a computer code: a control

variable x, one tuning parameter t, and two calibration parameters c1 and c2. All the

four inputs have support [0, 1]. The output from the computer code was generated as

ys(x, c1, c2, t) = c1e
−c2x + 10 × (t − 0.5)2

and the response from the physical experiment was generated as

yp(x) = η(x, θc) + ǫ(x) = e−x + ((x − 0.5)2 − 0.125) + ǫ(x),

where ys(·) and yp(·) denote the outputs from the computer code and the physical

experiment and ǫ(x) denotes the white noise Gaussian random error having mean 0

and standard deviation 0.01. In this example the bias term is

e−x(1 − C1e
x−c2x) + x2 − x − 10t2 + 10t − 2.375,

which can not be driven to zero by any setting of (c1, c2, t). However, it can be checked

that by setting c1 = c2 = 1, ys(x, 1, 1, t) and yp(x) have the same exponential part

for all t and that (c1, c2, t) = (0.94, 1.0, 0.5) minimizes the L2 discrepancy
∫ 1

0
(e−x +

((x−0.5)2−0.125)−ys(x, c1, c2, t))
2 dx. (The minimizers of L1 and L∞ discrepancies
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are (c1, c2, t) = (0.91, 1.0, 0.5) and (c1, c2, t) = (1.0, 1.0, 0.5).) We therefore desire the

estimate of t to be close to 0.5 and the posterior distributions of c1 and c2 to be

concentrated on values near 1.

We generated 50 inputs (x, c1, c2, t) for the computer experiment and 20 inputs x

for the physical experiment using Maximin Latin Hypercube Designs. The Bayesian

calibration program gpmsa (Gattiker (2005)) was run treating c1, c2, and t as cali-

bration parameters with unknown true values θc1 , θc2, and θt. Following 8000 burn-in

iterations and 2000 production ones, we regarded 100 equally spaced samples drawn

from the 2000 production runs as independent draws from the joint posterior distri-

bution of (θc1 , θc2, θt). The estimated posterior distributions of θt, θc1, and θc2 are

shown in Figure 4.3. The estimated [θt|yp, ys] fails to pinpoint that t = 0.5 and nei-

ther do the estimated [θc1 |yp, ys] and [θc2 |yp, ys] clearly suggest large values. Thus,

determining the tuning and calibration parameters is difficult for this data. We next
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Figure 4.3: Simulated posterior distributions of θt (the left panel), θc1 (the middle
panel), and θc2 (the right panel) using the Bayesian calibration program.

used gpmsa to predict η(x, θc) = η(x, θc1, θc2) over a grid of equally-spaced inputs; i.e.,

x = 0, 0.02, . . . , 1. Figure 4.4 depicts the training data, the true response curve, and
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the predictions. Although the predictions are quite accurate when x ∈ [0.2, 0.6], the

predictions are biased when x is close 0 or 1. We compute the RMSPE as a measure

of the predictive accuracy. The RMSPE of a generic predictor η̂(·) is defined as

RMSPE(η̂) =

√√√√ 1

51

51∑

i=1

(η(xi, θc) − η̂(xi, θc))2.

The RMSPE of the predictor obtained by gpmsa is 0.1662.

Figure 4.4: The training data (solid circles), the true response curve (the solid line),
and the predictions (pluses) obtained by gpmsa.

Next we apply STaC to this example with NMC = 100 and Nx = 101. The number

of iterations in the burn-in period, the number of production runs, the sampling

space, and the prediction inputs are the same as used for gpmsa. Table 4.2 lists the

L2 discrepancy for a grid of t and the corresponding estimated squared discrepancies.

Thus, STaC picks t̂⋆ = 0.5. We then simulated the posterior distributions of θc1 and

θc2 . Figure 4.5 shows histograms of the simulated posterior distributions of θc1 and

θc2 ; both posteriors are concentrated on values close to one.
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t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Equation (4.14) 7.85 16.62 14.27 3.64 0.83 21.42 29.50 65.90 14.32

Table 4.2: Grid of t and the approximate integral (4.14)
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Figure 4.5: Simulated posterior distributions of θc1 (the left panel) and θc2 (the right
panel) using STaC

Figure 4.6 plots the predictions and the 99% two-sided prediction bands for true

input-output function η(x, θc) using STaC. We see that the predictions are close

to the true responses and the 99% prediction band contains the true curve for all

x ∈ [0, 1]. The RMSPE of the predictor obtained by the STaC program is 0.0445. The

relative improvement of STaC compared with the gpmsa-based predictor is 73.23%

(= (0.1662 − 0.0445)/0.1662× 100%).

We conclude that for this example, the inferences of the tuning and calibration

parameters and the predictions with STaC are more informative and more accurate

than using Bayesian calibration.
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Figure 4.6: The training data (solid circles), true response curve (the solid line),
predictions (pluses), and 99% prediction bands (dashes) using the STaC program.

4.4.3 A Biomechanics Example

We apply STaC to the biomechanics application sketched in Section 2. The num-

ber of burn-in and production runs are identical to those used in our first example.

The left panel of Figure 4.7 plots the estimated squared discrepancies for the tun-

ing parameter equal to 15, 16, . . . , 30 (with NMC = 100 and Nx = 101); this figure

shows that the computer simulation best matches the knee simulator when the load

discretization is set to t̂⋆ = 19. The right panel shows the histogram of the simu-

lated posterior distribution [θc|Y p, Y s, t̂⋆ = 19]. We can see from Figure 4.7 that the

simulated posterior distribution of initial position has mode −1.7 with substantially

smaller uncertainty than the Bayesian calibration program (gpmsa). These results can

be used for future runs of the FEA code to study the anterior-posterior displacement.

Figure 4.8 depicts the predictions and 99% prediction bands for the anterior-

posterior displacement in the physical experiment using the current data. Once initial
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Figure 4.7: A plot of the estimated squared discrepancy against the value of the tuning
parameter (the left panel) and a histogram of the simulated posterior distribution of
the calibration parameter (the right panel).

position and load discretization are set using STaC, the predictions clearly match

those provided by the knee simulator.
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Figure 4.8: The training data (triangles), predictions (pluses), and 99% prediction
bands (dashes) using the STaC program.
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4.5 Summary and Future Research

In this chapter, we introduce a Bayesian methodology for simultaneous tuning and

calibration and demonstrate, with examples, that STaC performs well for tuning, cal-

ibration, and prediction of the true input-output relationship. When the bias in the

computer experiment output cannot be reduced to zero by setting the calibration

parameter equal to its true value, one should treat tuning and calibration parameters

differentially. Given this is typically the case, we recommend that STaC is a con-

servative method for setting parameters. In particular, we recommend that tuning

parameters should be set using a discrepancy measure. The conditional distribution

of θc given the data and the best choice of the tuning parameters should be used to

make inference about the calibration parameters.

Research is continuing on three topics concerning STaC. Currently, determining

the tuning parameters in the first step of STaC can be time consuming; additional

work on speeding up the computation is needed. Second, a measure of the uncertainty

in the estimated tuning parameter t̂
⋆
, perhaps based on the curvature of the integral

∫ 1

0

∫ 1

0
δ2(x, θc, t)[θc|ys, yp, t]dθcdx, is needed. The third topic is more long-range. It

would be of interest to extend STaC to other settings, for example, to cases where

outputs are multivariate and to applications where both the computer output and

the physical experiment have mixed quantitative and qualitative inputs.
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