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ABSTRACT

In this dissertation, we introduce the class of asymptotically CAT(0) groups, the

principal objective being to study their algebraic properties and provide examples.

The initial focus is on δ-CAT(0) groups, which form a special class of asymptoti-

cally CAT(0) groups. These have many desirable algebraic properties, in particular,

they are semihyperbolic and satisfy Novikov’s Conjecture on Higher Signatures. We

observe that there are examples of metric spaces which are asymptotically CAT(0)

but not δ-CAT(0).

We proceed to study the general theory of asymptotically CAT(0) groups, explain-

ing why such a group has finitely many conjugacy classes of finite subgroups, is F∞

and has solvable word problem. We provide techniques to combine asymptotically

CAT(0) groups via direct products, amalgams and HNN extensions.

The universal cover of the Lie group PSL(2,R) is shown to be an asymptotically

CAT(0) metric space. Therefore, cocompact lattices in ˜PSL(2,R) provide the first

examples of asymptotically CAT(0) groups which are neither CAT(0) nor hyperbolic.

Another potential rich source of examples is the class of relatively hyperbolic groups.

We conclude with a selection of interesting questions which arise out of this dis-

sertation.
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CHAPTER 1

INTRODUCTION

Metric spaces of non-positive curvature have been the central objects of study among

geometric group theorists for more than two decades. A fundamental theorem of

Riemannian Geometry states that the universal cover of a complete Riemannian n-

manifold with constant sectional curvature is isometric to Hn, Rn or Sn. In geometric

group theory, CAT (κ) spaces are ‘modelled’ on these three spaces. They encapsulate

in a metric fashion, the traditional notion of sectional curvature that is bounded

above.

The study of groups of isometries of non-positively curved spaces has proved to be

very fruitful in enhancing our understanding of finitely presented groups. A CAT(0)

space (see [4]) has many fascinating properties. Indeed, it is always contractible and

it exhibits a rather desirable local-to-global phenomenon.

A group G is said to act geometrically on a metric space (X, d) if it acts properly and

co-compactly by isometries on X. Groups acting geometrically on CAT(0) spaces or

CAT(0) groups have soluble word and conjugacy problems. All free abelian subgroups

of CAT(0) groups are finitely generated and a CAT(0) group can contain only finitely

many conjugacy classes of finite subgroups. These are a few highlights of the subject
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but they portray how well the geometry of the space complements the algebra of the

group acting geometrically on it.

The other profound notion that greatly enhanced our knowledge of infinite groups

was δ-hyperbolicity (found in [12]). The isoperimetric function of a hyperbolic group

is linear and so there is an efficient solution to the word problem. Hyperbolic groups

satisfy all the desirable properties we mentioned earlier with regard to CAT(0) groups.

Further, many notoriously difficult conjectures like the Novikov and the Baum-Connes

are known to be true for this class of groups.

There seems to be great merit in generalizing the notion of non-positive curvature for

the purpose of studying infinite discrete groups. It has been done in the past. Gromov

suggested the idea of relatively hyperbolic groups which turned out to be invaluable

in the study of fundamental groups of complex hyperbolic manifolds with cusps. Juan

Alonso and Martin Bridson defined and studied semihyperbolic groups in [2]. Many

of the results regarding CAT (0) groups can be extended to semihyperbolic groups.

However it is still unknown whether a semihyperbolic group can have infinitely many

conjugacy classes of finite subgroups or if a torsion free semihyperbolic group has

a finite Eilenberg-MacLane space or for that matter, if an abelian subgroup of a

semihyperbolic group can be of infinite rank.

More recently, systolic complexes were introduced by Tadeusz Januszkiewicz and

Jacek Swiatkowski in [15] and independently by Frederic Haglund in [13]. These

are simply connected simplicial complexes satisfying a local combinatorial condition
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which is reminiscent of nonpositive curvature. Systolic groups too share many proper-

ties with CAT (0) groups. As explained in [15] an aspherical manifold M of dimemsion

at least 3 can never be systolic. It is worth mentioning here, that we are still in the

dark as to whether every δ-hyperbolic group acts geometrically on a metric space of

nonpositive curvature. The same question may be asked about the class of systolic

groups.

In this thesis, I propose the theory of asymptotically CAT(0) groups: these are groups

acting geometrically on a geodesic space all of whose asymptotic cones are CAT(0).

Heuristically speaking, asymptotic cones provide the perspective of a metric space

from infinitely far away. Hence, an asymptotically CAT(0) space appears to have

non-positive curvature when viewed from increasingly distant observation points.

The objective of my thesis is to provide examples and investigate the algebraic prop-

erties of groups acting geometrically on asymptotically CAT(0) geodesic spaces.

Before I proceed to outline the principal results appearing in the different chapters, I

want to explain the relationship between the CAT(0) property and quasi-isometries

(see Appendix A for definition). The class of CAT(0) metric spaces is not invariant

under quasi-isometries. For example, the metric spaces (Rn, ||.||1) and (Rn, ||.||2)

are quasi-isometric (in fact, bi-Lipschitz equivalent). The latter is the quintessential

example of a CAT(0) space; on the other hand, Rn endowed with the l1 norm is very

far from being CAT(0). Indeed, a normed real vector space is CAT(0) if and only if

the norm arises from an inner product. Moreover, the class of CAT(0) groups is not

invariant under quasi-isometry. Co-compact lattices in ˜PSL(2,R) are quasi-isometric
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to co-compact lattices in H2 × R; however, they cannot act properly by semisimple

isometries on any CAT(0) space (Section 3.3).

Outline of Chapter 2

Chapter 2 concentrates on δ-CAT(0) groups, which form a special class of asymptot-

ically CAT(0) groups. The main definitions are presented and some basic properties

of δ-CAT(0) spaces are described. The first examples of δ-CAT(0) spaces are CAT(0)

spaces. I verify that hyperbolic spaces are δ-CAT(0).

A graph is a 1-complex endowed with the path metric in which every edge has length

1. For graphs the notion of hyperbolicity coincides with that of geodesic triangles

being δ-CAT(0).

Proposition 4 A graph is δ-CAT(0) if and only if it is hyperbolic.

I investigate how one may combine δ-CAT(0) groups to obtain new ones. Two results

in this vein are the following.

Theorem 5 and 6 The class of δ-CAT(0) groups for δ ≥ 0 is closed under taking

finite direct products and free products.

I show that all δ-CAT(0) groups are semihyperbolic and this provides some vital

corollaries. Indeed, it follows that a δ-CAT(0) group G is always finitely presented

and satisfies a quadratic isoperimetric inequality. Further, the word and conjugacy

problems for G are solvable, G is of type FP∞ and every abelian subgroup is finited
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generated and quasi-isometrically embedded in G with respect to any choice of word

metrics. Finally, G has no Baumslag Solitar subgroups, BS(p, q), for |p| 6= |q|.

A deep and intriguing conjecture in group theory is Novikov’s Conjecture about the

homotopy invariance of the ‘higher signatures’. Kasparov and Skandalis proved that

the Conjecture is true for a large class of groups which can act on metric spaces

with some distinctive properties. These are the bolic spaces and I demonstrate that

δ-CAT(0) spaces are bolic, a result that also follows from the work of Bucher and

Karlsson in [5]. This yields

Corollary 14 A δ-CAT(0) group satisfies Novikov’s Conjecture on higher signatures.

In the final sections of the second chapter, I introduce asymptotic cones of δ-CAT(0)

spaces. The main content of this part of the dissertation is an example, ‘The plane

with the Wrinkled Quadrant’, which is used to prove the proposition below.

Proposition 18 There exists an asymptotically CAT(0) space which is not δ-CAT(0),

for any δ ≥ 0.

Outline of Chapter 3

The third chapter is devoted exclusively to the theory of asymptotically CAT(0)

spaces and groups. A metric characterization (Theorem 19) of asymptotically

CAT(0) geodesic spaces is obtained. This says that a geodesic space is asymptot-

ically CAT(0) if and only if balls of radius r satisfy the f(r)-CAT(0) inequality for

triangles, where f : R+ → R is a monotonically non-decreasing function with special

decay properties.
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Using the metric characterization, I investigate finite subgroups of groups acting on

asymptotically CAT(0) geodesic spaces. It is possible to prove the existence of a

fixed point for any finite subgroup in a CAT(0) group. Unfortunately, the same

may not be true for an asymptotically CAT(0) group. Rather I show that if H is a

finite subgroup of an asymptotically CAT(0) group then there exists an H-invariant

subspace of uniformly bounded diameter. The consequence of this is Theorem 20.

Theorem 20 An asymptotically CAT(0) group has finitely many conjugacy classes

of finite subgroups.

Asymptotically CAT(0) groups have nice finiteness properties: indeed, every asymp-

totically CAT(0) group is of type F∞, which means that there is a CW-complex

K(π, 1) with finitely many cells in each dimension. Moreover, the word problem for

an asymptotically CAT(0) group is solvable. These are explained in Sections 3.5 and

3.6.

In Section 3.4, I provide techniques for combining asymptotically CAT(0) groups. The

class of asymptotically CAT(0) groups is shown to be closed under taking finite direct

products. Moreover one can form amalgams and HNN extensions of asymptotically

CAT(0) groups, provided the hypotheses of Theorems 25, 27 are true. In particular

I consider amalgamating along finite subgroups and prove the theorems below.

Theorem 28 and 29 The class of asymptotically CAT(0) groups is closed under free

products with amalgamation and HNN extensions along finite subgroups.
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The remaining part of the third chapter is used to outline examples of asymptoti-

cally CAT(0) groups. The bolic spaces of Kasparov and Skandalis are asymptotically

CAT(0) (Lemma 21). I explain why co-compact lattices in ˜PSL(2,R) are examples

of groups which are neither hyperbolic nor CAT(0); the proof that they are asymp-

totically CAT(0) is presented in Chapter 5.

Outline of Chapter 4

A potentially rich source of examples is the class of relatively hyperbolic groups and

these are the focus of Chapter 4. Given that the group G is relatively hyperbolic with

respect to a subgroup H and that H acts geometrically on a space X, one wonders if

there is a natural choice for a space Y that supports a geometric G-action. I provide

a construction for such a space Y ; using the space Y , I prove the result below.

Theorem 35 Let the group G be relatively hyperbolic with respect to a subgroup H.

Then, if H is asymptotically CAT (0), so is G.

As a corollary, we obtain that systolic groups with isolated flats are asymptotically

CAT(0).

Outline of Chapter 5

In many ways, ˜PSL(2,R) is the most intriguing of Thurston’s eight geometries. It

is neither hyperbolic, nor does it support a CAT (0) metric (See Section 3.3). I

exploit the Riemannian geometry of ˜PSL(2,R) to show that ˜PSL(2,R), endowed

with the Sasaki metric is (1, π)-quasiisometric to H2×R, endowed with its Riemannian
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metric. The induced maps at the level of asymptotic cones are therefore, isometries.

Moreover, ‘taking asymptotic cones’ commutes with direct products. Hence,

Theorem 44 The Lie group ˜PSL(2,R), endowed with the Sasaki metric is asymp-

totically CAT(0); in particular, co-compact lattices in ˜PSL(2,R) are asymptotically

CAT(0).

Ouline of Chapter 6

In this chapter I gather some of the interesting questions that arise out of this dis-

sertation. These involve asymptotically CAT(0) graphs, Artin groups, Novikov’s

Conjecture for asymptotically CAT(0) groups and some special Lie groups.
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CHAPTER 2

GROUPS ACTING ON δ-CAT(0) SPACES

2.1 Main Definitions, Properties and Examples

A geodesic segment, denoted [xy], joining two points x and y of a metric space (X, d)

is the isometric image of a path of length d(x, y) joining x and y. A geodesic triangle

in X consists of its three vertices, call them x, y, z and a choice of geodesic segments

[xy], [yz] and [zx] joining these vertices. We will denote such a geodesic triangle by

4(x, y, z) (Caution: X may not be uniquely geodesic).

A triangle 4̄(x̄, ȳ, z̄) in E2 is called a comparison triangle for 4(x, y, z) if d(x, y) =

d(x̄, ȳ), d(y, z) = d(ȳ, z̄), and d(z, x) = d(z̄, x̄). It is a consequence of the triangle

inequality that given a triangle in X, there is always a comparison triangle in E2.

Definition 1. (δ-CAT(0) metric spaces) Let 4 be a geodesic triangle in X with

comparison triangle 4̄ in E2. Let δ > 0. Then, 4 is said to satisfy the δ-CAT(0)

inequality if for all p, q ∈ 4 and comparison points p̄, q̄, we have

d(p, q) ≤ d(p̄, q̄) + δ.

X is called a δ-CAT(0) space if X is a geodesic metric space and there is a δ ≥ 0

such that all geodesic triangles in X satisfy the δ-CAT(0) inequality.

9



Some properties of δ-CAT(0) spaces

It is useful to investigate the convexity properties of δ-CAT(0) spaces in some detail.

We say that a function α : X → R is k-convex if, there exists a k > 0 such that for

any geodesic path c : I → X, parametrized proportional to arc-length, the function

t 7→ α(c(t)) defined on the interval I satisfies α(c(s)) ≤ (s− 1)α(c(0)) + sα(c(1)) + k,

for all s ∈ [0, 1].

Proposition 1. If X is a δ-CAT(0) space, then the distance function d : X×X → R

is 2δ-convex, that is, given any pair of geodesics f ,g : [0, 1] → X, parametrized pro-

portional to arc-length, the following inequality holds for all t ∈ [0, 1]: d(f(t), g(t)) ≤

(1− t)d(f(0), g(0)) + td(f(1), g(1)) + 2δ.

Proof. We first assume that f(0) = g(0) and consider a comparison triangle 4̄ ⊆ R2

for 4(f(0), f(1), g(1)). Given t ∈ [0, 1], we know that d( ¯f(t), ¯g(t)) = td( ¯f(1), ¯g(1)) =

td(f(1), g(1)). The δ-CAT(0)inequality implies that

d(f(t), g(t)) ≤ d( ¯f(t), ¯g(t)) + δ.

Hence, we obtain, d(f(t), g(t)) ≤ td(f(1), g(1)) + δ.

In the general case, consider a linearly reparametrized geodesic h : [0, 1] → X with

h(0) = f(0) and h(1) = g(1). By applying the preceeding case to f and h and then

to h and g with reversed orientation, we get: d(f(t), h(t)) ≤ td(f(1), h(1)) + δ and

d(h(t), g(t)) ≤ (1− t)d(h(0), g(0)) + δ.

This implies that d(f(t), g(t)) ≤ d(f(t), h(t)) + d(h(t), g(t))

≤ td(f(1), g(1)) + (1− t)d(f(0), g(0)) + 2δ.

Hence, the metric on X is 2δ-convex.
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Remarks

1. A δ-CAT(0) space X is not necessarily uniquely geodesic. However, the above

proposition shows that geodesics with common endpoints stay uniformly close

to each other. Suppose f , g : [0, d(p, q)] → X are geodesics issuing from p and

ending in q. Then, d(f(t), g(t)) ≤ 2δ for all t ∈ [0, d(p, q)].

2. Unlike CAT(0) spaces, balls in a general δ-CAT(0) space X may not be convex

or contractible. Moreover, X may not be simply connected. However, it is easy

to see that balls in X are δ-quasiconvex i.e. a geodesic joining two points of a

ball B in X stays within a δ-neighbourhood of B.

3. Geodesics vary almost continuously with their endpoints, and the extent of

discontinuity is always uniformly bounded in terms of δ. Let pn and qn be

sequences of points converging to p and q, respectively. Let c, cn and c′n be

linear parametrizations of geodesic segments [p, q], [pn, qn] and [p, qn], respec-

tively. Then, d(c(t), cn(t)) ≤ d(q, qn) + d(p, pn) + 2δ. Hence, for n large enough,

d(c(t), cn(t)) ≤ 2δ, for all t ∈ [0, 1].

Triangles to Quadrilaterals

Lemma 2. Let X be a δ-CAT(0) space and let (x1, . . . , x4) be a geodesic quadrilateral

in X. Then there exists a convex quadrilateral in the Euclidean plane with vertices

(x̄1, . . . , x̄4), such that d(xi, xi+1) = d(x̄i, x̄i+1) for all i, modulo 4, and

d(xi, xj) ≤ d(x̄i, x̄j) + δ, for all i 6= j = 1, ..., 4.
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Proof. Let X be a δ-CAT(0) space and (x1, . . . , x4) be a geodesic quadrilateral in

X. Form a quadrilateral in E2 as follows: fix a line segment [x̄1, x̄3] with d(x1, x3) =

d(x̄1, x̄3) and form the comparison triangles [x̄1, x̄3, x̄2] and [x̄1, x̄3, x̄4] so that x̄2 and

x̄4 are on the opposite sides of this line segment.

If the resulting quadrilateral is convex to start with, then the diagonals [x̄1, x̄3] and

[x̄2, x̄4] intersect at a point say, ā in the interior of the quadrilateral. Choose a point

a on a geodesic joining x1 and x3 so that d(a, x1) = d(ā, x̄1). Note that d(x2, x4) ≤

d(x2, a) + d(a, x4) ≤ d(x̄2, ā) + d(ā, x̄4) + 2δ = d(x̄2, x̄4) + 2δ. By construction,

d(x1, x3) = d(x̄1, x̄3). This shows that (x̄1, . . . , x̄4) is a quadrilateral in E2 of the

required description.

Now consider the case when the quadrilateral (x̄1, . . . , x̄4) is not convex. We may

assume that x̄3 lies in the interior of the convex hull of x̄1, x̄2, and x̄4. This implies

that the interior angle at x̄3 is more than π. Extend the line joining x̄2 and x̄3 up to

the point x′4 such that d(x̄3, x
′
4) = d(x̄3, x̄4). Note that d(x̄2, x

′
4) ≥ d(x̄2, x̄4). Clearly,

there is a Euclidean triangle with sides d(x̄1, x̄2), d(x̄1, x̄4) and d(x̄2, x̄3) + d(x̄3, x̄4).

This triangle satisfies all properties of the quadrilateral we were looking for.

Examples

1. CAT(0) spaces. Trivially, a CAT(0) space is δ-CAT(0), for δ = 0.

2. Hyperbolic spaces. A short proof of this is provided in Section 2.2. In fact,

by Proposition 4, a graph is δ-CAT(0) if and only if it is hyperbolic, for some
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δ ≥ 0: a graph is a one-dimensional complex endowed with the path metric in

which every edge has unit length.

3. Direct products of finitely many δ-CAT(0) metric spaces. This is proved in

Section 2.3.

4. Banach spaces: A finite dimensional real vector space endowed with the lp norm

is δ-CAT(0) if and only if p = 2. See Section 2.7.

5. Tree of Spaces: A tree of spaces in which every vertex space is δ-CAT(0) and

every edge space is trivial is also δ-CAT(0). This is the content of Lemma 7.

2.2 Hyperbolic Spaces

There are several equivalent definitions of hyperbolicity and here, we use the ‘Thin

Triangles’ condition. Given any three positive numbers a, b and c, the tripod T (a, b, c)

is a simplicial metric tree with at most three edges, of length a, b and c, and at most

one vertex of valency greater than one.

Now letM be a metric space. Suppose that 4(A,B,C) is a geodesic triangle inM.

By the triangle inequality there exist unique, non-negative numbers a, b and c such

that d(A,B) = a+ b, d(A,C) = a+ c and d(B,C) = b+ c. The collection of vertices

{A,B,C} of ∆ map isometrically to the vertices of the tripod T (a, b, c). Moreover,

this isometry extends uniquely to a map π : ∆→ T (a, b, c) whose restriction to each

side of ∆ is an isometry.
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Let δ ≥ 0. The triangle ∆ is said to be δ-thin if P,Q ∈ π−1(t) ⇒ d(P,Q) ≤

δ, for all t ∈ T (a, b, c).

Definition 2. A geodesic metric space M is said to be δ-hyperbolic if all geodesic

triangles in M are δ-thin for some δ ≥ 0.

Proposition 3. A δ-hyperbolic space is δ-CAT(0).

Proof. Let M be a geodesic space, equipped with a δ-hyperbolic metric. We will

show that every geodesic triangle in M satisfies the δ-CAT(0) inequality.

Suppose that 4(A,B,C) is a geodesic triangle in M and let a, b and c be as above.

Let X be the point on the geodesic joining A and B such that d(A,X) = a. Similarly,

choose Y on BC and Z on AC such that d(B, Y ) = b and d(C,Z) = c. By the δ-thin

condition, we know that the three quantities d(X, Y ), d(Y, Z) and d(X,Z) are no

larger than δ.

Now let P and Q be two points on 4. Take a comparison triangle 4̄(Ā, B̄, C̄) in the

Euclidean plane and mark off the comparison points X̄, Ȳ , Z̄, P̄ and Q̄. We may

assume that P lies on the segment AX, whence it suffices to consider the following

four possibilities for the point Q.

1) The point Q lies on the segment AZ. Let P ′ be the point on AZ such that

d(A,P ′) = d(A,P ). Then, by the Thin Triangles condition, d(P, P ′) ≤ δ. Moreover,

d(P ′, Q) = |d(A,Q) − d(A,P )|. Therefore d(P,Q) ≤ |d(A,Q) − d(A,P )| + δ =

|d(Ā, Q̄)− d(Ā, P̄ )|+ δ ≤ d(P̄ , Q̄) + δ.

2) The point Q lies on the segment BY . In this case, d(P,Q) ≤ d(P,X)+d(Q, Y )+δ.
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On the other hand, d(P̄ , Q̄) ≥ |d(B̄, P̄ )−d(B̄, Q̄)| = |d(B̄, X̄)+d(X̄, P̄ )− (d(B̄, Ȳ )−

d(Ȳ , Q̄))| = d(P̄ , X̄) + d(Q̄, Ȳ ) = d(P,X) + d(Q, Y ).

3) The point Q lies on the segment CY . Once again, d(P,Q) ≤ d(P,X)+d(Q, Y )+δ.

Note that d(P̄ , Q̄) ≥ |d(Ā, C̄) − d(Ā, P̄ ) − d(C̄, Q̄)|. But, this last quantity is equal

to d(P,X) + d(Q, Y ).

4) The point Q lies on the segment CZ. This is similar to case 2.

Hence, in all possible cases, d(P,Q) ≤ d(P̄ , Q̄) + δ.

Proposition 4. A graph is hyperbolic if and only if it is δ-CAT(0), for some δ ≥ 0.

Proof. By the preceeding proposition, every δ-hyperbolic space is δ-CAT(0). The

converse is a consequence of a simple geometric fact, proved in [19]; that geodesic

triangles in a graph are thin if bigons in the graph are thin.

A bigon in a graph Γ is a pair of geodesics γ, γ′ with γ(0) = γ′(0) and γ(l) = γ′(l)

where l = length(γ). We say that bigons in Γ are ε-thin if for any bigon, (γ, γ′), we

have d(γ(t), γ′(t)) < ε, for every t, 0 < t < l. On the other hand, a bigon (γ, γ′) is

M -thick if d(γ(t), γ′(t)) > M , for some t ∈ (0, l).

Now, suppose that Γ is a graph. If Γ is not hyperbolic, then by [19], it contains

r-thick bigons, for all r > 0. But this is impossible in a δ-CAT(0) space, as geodesics

joining a pair of points in a δ-CAT(0) space stay uniformly close together.
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2.3 Direct Products

Theorem 5. The class of δ-CAT(0) metric spaces for all δ ≥ 0, is closed under

taking finite direct products. More precisely, if (X, d) and (Y, d′) are δ-CAT(0) and

δ′-CAT(0) respectively, then (X × Y,
√
d2 + (d′)2) is

√
2max{δ, δ′}-CAT(0).

Proof. Let (X, d) and (Y, d′) be δ-CAT(0) metric spaces. Consider X × Y , denoted

Z, with the product metric, that is, d′′ =
√
d2 + d′2. Let p = (p1, p2), q = (q1, q2) and

r = (r1, r2) be three points in Z and 4 denote a geodesic triangle in Z with vertices

p, q and r. Fix x = (x1, x2) and y = (y1, y2) ∈ 4. We may assume that x lies on the

geodesic side [p, q] joining p and q while y lies on the geodesic [q, r] joining q and r.

Since d′′ =
√
d2 + d′2, the geodesics z(t) in Z are obtained as a product z(t) =

(x(t), y(t)) of geodesics x(t), y(t) in X and Y respectively. This gives that

d(p1, x1)

d(x1, q1)
=
d′(p2, x2)

d′(x2, q2)
and

d(q1, y1)

d(y1, r1)
=
d′(q2, y2)

d′(y2, r2)
. (2.1)

Consider the geodesic triangle 4X = 4(p1, q1, r1) in X. Note that x1 lies on the

geodesic side [p1, q1] of 4X and y1 ∈ [p1, r1]. Let 4̄X ⊂ E2 be its comparison triangle

having vertices p̄1, q̄1, r̄1. Similarly, let 4Y = 4(p2, q2, r2) ⊂ E2 be a geodesic triangle

in Y whose comparison triangle 4̄Y has vertices p̄2, q̄2, r̄2.

Let x̄1 ∈ [p̄1, q̄1] be the point on the segment [p̄1, q̄1] of 4̄X which is of distance

d(p1, x1) from p̄1, i.e. so that d(p̄1, x̄1) = d(p1, x1). Let ȳ1 ∈ [q̄1, r̄1] be chosen so that

d(q̄1, ȳ1) = d(q1, y1). Thus the points x̄1 and ȳ1 on the sides of 4̄X are comparison

points for x1 and y1 ∈ 4X .
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Similarly define points x̄2, ȳ2 ∈ 4̄Y which are comparison points for x2 and y2 in 4Y .

This means d(p̄2, x̄2) = d′(p2, x2) and d(q̄2, ȳ2) = d′(q2, y2).

Using the δ-CAT(0) inequality , we have

d(x1, y1) ≤ d(x̄1, ȳ1) + δ, d′(x2, y2) ≤ d(x̄2, ȳ2) + δ. (2.2)

We now build a comparison triangle 4̄ = 4(p̄, q̄, r̄) in E4 for 4 with vertices p̄, q̄, r̄

defined in the following way:

p̄ := (p̄1, p̄2), q̄ := (q̄1, q̄2), r̄ := (r̄1, r̄2).

Since d′′2 = d2 + d′2, it is immediate that the sides of 4̄ have the same length as the

sides of 4. Moreover, 4̄ lies in a 2-dimensional subspace inside E4 and therefore can

be considered as a comparison triangle for 4 in E2.

Let x̄ := (x̄1, x̄2). Since x̄1 ∈ [p̄1, q̄1] and x̄2 ∈ [p̄2, q̄2] and the first equality in (2.1)

holds we see that x̄ is on the side [p̄, q̄] of 4̄ and

d′′(p, x) =
√
d(p1, x1)2 + d′(p2, x2)2 =

√
d(p̄1, x̄1)2 + d(p̄2, x̄2)2 = d(p̄, x̄).

Thus, x̄ is a comparison point for x in 4̄. Similarly define ȳ := (ȳ1, ȳ2) which by (2.1)

lies on the side [q̄, r̄] of 4̄ and in the same way see that ȳ is a comparison points for

y. Now, by (2.2) we have

d′′(x, y)2 = d(x1, y1)2 + d′(x2, y2)2

≤ (d(x̄1, ȳ1) + δ)2 + (d(x̄2, ȳ2) + δ′)2

≤ d(x̄1, ȳ1)2 + d(x̄2, ȳ2)2 + 2∆(d(x̄1, ȳ1) + d(x̄2, ȳ2)) + 2∆2, where ∆ = max{δ, δ′}

≤ (
√
d(x̄1, ȳ1)2 + d(x̄2, ȳ2)2 +

√
2∆)2 = (d(x̄, ȳ) +

√
2∆)2.
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In the above argument, we have used the fact for real numbers a and b, (a + b) ≤√
2(a2 + b2).

2.4 Free Products

Theorem 6. The free product of two δ-CAT(0) groups is δ-CAT(0).

Proof. Let A and B be two groups acting geometrically on the δ-CAT(0) spaces

X and Y respectively. We build a space Z on which the free product A ∗ B acts

geometrically and show that Z supports a δ-CAT(0) metric. Set G = A ∗B.

Recall that the free product G acts without inversions on a tree T , with fundamental

domain an edge (for more on Bass Serre Theory, see [14]). The tree T is unique up

to graph isomorphism. Select representatives γα for the left cosets α of A in G and

similarly, choose θβ, representatives for the left cosets of B in G. The edges of T are

in one-one correspondence with the elements of G; the vertices of T are in one-one

correspondence with the set G/A
∐
G/B, that is the disjoint union of the left cosets

of A in G and of B in G. Each edge is identified with two vertices of the tree using

the natural maps φ : G→ G/A and ψ : G→ G/B.

We build the space Z, with the tree T as guide. Choose a base point x0 ∈ X and

similarly, a base point y0 ∈ Y . Set

Z =
(G/A×X)

∐
(G× [0, 1])

∐
(G/B × Y )

∼

where the equivalence relation∼ is given by (g, 0) ∼ (φ(g), x0), and (g, 1) ∼ (ψ(g), y0),
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for all g ∈ G. One makes Z into a metric space in a natural way using the quotient

metric.

We now describe the action of the free product G on Z. For each α ∈ G/A and g ∈ G,

let a(α,g) be the element of A such that gγα = γgα a(α,g). Similarly, define b(β,g) ∈ B,

such that gθβ = θgβ b(β,g).

Define the action of G on G/A×X by

g.(γα, x) = (γgα, a(α,g)x), for all g ∈ G, x ∈ X, α ∈ G/A.

Similarly define the action of G on G/B × Y by

g.(θβ, y) = (θgβ, b(θ,g)y), for all g ∈ G, y ∈ Y, β ∈ G/B.

Finally, G acts on G× [0, 1] by left multiplication on the first component.

It is clear that this is an action on each component of the space Z prior to gluing.

Using Bass Serre theory, we deduce that the gluing respects this action and so we

have an induced action of G on Z. Note that

Z/G ∼=
X/A

∐
[0, 1]

∐
Y/B

∼

where the relation ∼ simply identifies the two ends of the interval [0, 1] with the

equivalence class of x0 on one side and with the class of y0 on the other. This implies

that the action of G on Z is co-compact. On the other hand, G acts properly on the

tree T . Hence, it follows from the construction of Z that the action of G on Z is

proper if the actions of A and B on X and Y are proper. Therefore, if A and B act

geometrically on X and Y then G acts geometrically on Z.
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We now observe that Z is a geodesic metric space. The tree T maps on to the space

Z via the canonical projection π of Z onto T which sends any point of the form (α, x)

(and (β, y)) to α (and β, respectively). Let p 6= q be two points of Z. If π(p) and

π(q) coincide then they lie in the same copy of X or Y , hence they can be joined by

a geodesic in X or Y . On the other hand, if π(p) 6= π(q), it suffices to consider the

situation when p comes from a point (α, x) and q comes from a point (β, y). In this

case, p and q may be joined by a geodesic that is the union of three paths: a geodesic

in X joining (α, x) to (α, x0), followed by a geodesic in the (image of the) tree joining

(α, x0) to (β, y0), followed by a geodesic in Y joining (β, y0) to (β, y).

Lemma 7. The metric space Z is δ-CAT(0).

Proof of Lemma 7. Let P , Q and R be three distinct points in Z. If the three points

project to the same point of T , then they belong to the same copy of X or Y in

Z. In contrast, if they project to three distinct points in T , then any triangle with

vertices at these points is a tripod. In these two cases, the claim is clearly true. It

thus suffices to consider points, two of which project to some α and the third projects

to some β.

Let P = (β, y), Q = (α, x1) and R = (α, x2) and let ∆ denote a choice of triangle in

Z with vertices at these three points. Now, ∆− [Q,R] is a tripod with a branching

point at (α, x0). Set P ′ = (α, x0). Then ∆ = [P, P ′] ∪ ∆′, where ∆′ is a geodesic

triangle in (α,X) with vertices P ′, Q and R. We claim that ∆ satisfies the δ-CAT(0)

inequality.

First, we prove a simple Lemma from Euclidean geometry.
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Lemma 8. Let LMN and L′M ′N ′ be two triangles in the Euclidean Plane and r >

0. Suppose that d(M,N) = d(M ′, N ′), d(L′,M ′) = d(L,M) + r and d(L′, N ′) =

d(L,N) + r. Then, ∠LMN ≤ ∠L′M ′N ′.

Proof of Lemma 8. Let X and Y denote the points on L′M ′ and L′N ′ respectively

such that d(L′, X) = r = d(L′, Y ). Then to prove that ∠LMN ≤ ∠L′M ′N ′, the

cosine law says we need to show that d(L,N) ≤ d(X,N ′).

Now ∆L′XY is an isosceles triangle. Hence, ∠L′Y X is an acute angle and conse-

quently ∠XYN ′ is an obtuse angle. This implies that XN ′ is the largest side of the

triangle XYN ′ and so the side of XN ′ is at least as large as the side Y N ′. Therefore,

d(L,N) ≤ d(X,N ′) and we conclude that ∠LMN ≤ ∠L′M ′N ′.

Let S and T be two points on the triangle ∆. We assume first that S lies on the

geodesic QR and that T lies on one of the geodesic segments QP ′, P ′R or P ′P . The

cases when T lies on QP ′ and RP ′ are similar and so we will only consider the first.

We denote the comparison triangle P̄ Q̄R̄ for ∆ by ∆̄ and the comparison triangle

P̄ ′Q̄′R̄′ for ∆′ by ∆̄′. Let S̄ and S̄ ′ be the comparison points for S on ∆̄ and ∆̄′,

respectively.

Case 1. The point T lies on P ′Q

Choose comparison points T̄ and T̄ ′ for T on ∆̄ and ∆̄′, respectively. As X is δ-

CAT(0), we have d(T, S) ≤ d(S̄ ′, T̄ ′) + δ. But by Lemma 8, ∠P̄ ′Q̄′R̄′ ≤ ∠P̄ Q̄R̄. By

the Cosine Law, d(S̄ ′, T̄ ′) ≤ d(S̄, T̄ ). Therefore, d(T, S) ≤ d(S̄, T̄ ) + δ.

Case 2a. The point T lies on PP ′ and T coincides with P .
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Figure 2.1: A generic triangle in a tree of δ-CAT(0) spaces.

As X is δ-CAT(0), we have d(P ′, S) ≤ d(P̄ ′, S̄ ′) + δ. Moreover, d(P, S) = d(P, P ′) +

d(P ′, S). So we need to show that d(P, P ′) + d(P̄ ′, S̄ ′) ≤ d(P̄ , S̄). Identifying [Q̄, R̄]

with [Q̄′, R̄′], we see that the points P̄ , P̄ ′, Q̄, R̄ and S̄ in the Euclidean plane satisfy

d(Q̄, P̄ )− d(Q̄, P̄ ′) = d(P, P ′) = d(R̄, P̄ )− d(R̄, P̄ ′).

Therefore, these points may be placed in a configuration such that Q̄ and R̄ lie on

the same branch of a hyperbola with foci at P̄ and P̄ ′. As S̄ lies on the line joining

two points which belong to the same branch of a hyperbola and the latter is convex,

we have d(S̄, P̄ )− d(S̄, P̄ ′) ≥ d(P, P ′). This is the required inequality.

Case 2b. The point T lies on PP ′

We argue that this follows from cases 1 and 2a. Suppose that T̃ Q̃R̃ is a comparison

triangle for TQR. Then we deduce from the analysis of case 2a that d(S, T ) ≤

d(S̃, T̃ ) + δ, where S̃ is the comparison point for S on the segment Q̃R̃. We are now
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in a position to appeal to case 1, which tells us that d(S̃, T̃ ) ≤ d(S̄, T̄ ). Therefore,

d(S, T ) ≤ d(S̄, T̄ ) + δ.

Finally we consider the case when S lies on P ′Q and T lies on P ′R. As before, choose

comparison points S̄ and T̄ on ∆̄ for S and T . Similarly choose S̄ ′ and T̄ ′ on ∆̄′. Now,

d(S, T ) ≤ d(S̄ ′, T̄ ′)+δ and so it suffices to establish the inequality d(S̄ ′, T̄ ′) ≤ d(S̄, T̄ ).

This is done by direct computation with the Cosine Law.

Set d(P, P ′) = r, d(P ′, S) = s, d(P ′, T ) = t, d(P ′, Q) = a, d(P ′, R) = b, d(S̄ ′, T̄ ′) = h,

d(S̄, T̄ ) = h̄ and d(Q,R) = c. Using the Cosine Law, we have

h2 = s2 + t2 − 2st

[
a2 + b2 − c2

2ab

]
= (s− t)2 + st

[
c2 − (a− b)2

ab

]

h̄2 = (s+ r)2 + (t+ r)2 − 2(s+ r)(t+ r)

[
(a+ r)2 + (b+ r)2 − c2

2(a+ r)(b+ r)

]
= (s− t)2 + (s+ r)(t+ r)

[
c2 − (a− b)2

(a+ r)(b+ r)

]
Therefore, h̄2 − h2 = (c2 − (a− b)2)

[
(s+ r)(t+ r)

(a+ r)(b+ r)
− st

ab

]
= (c2 − (a− b)2)

[
asr(b− t) + brt(a− s) + r2(ab− st)

ab(a+ r)(b+ r)

]
.

Now, c2− (a−b)2 ≥ 0, by the triangle inequality. Clearly, (b− t), (a−s) and (ab−st)

are all non-negative. Therefore, h̄2 − h2 ≥ 0 and so d(S̄ ′, T̄ ′) ≤ d(S̄, T̄ ).

This shows that Z is δ-CAT(0).

The proof of the above lemma completes the proof of Theorem 6.
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2.5 Semihyperbolicity and δ-CAT(0) Groups

In this section, we prove that groups acting geometrically on δ-CAT(0) spaces are

semihyperbolic and list some consequences. We use the characterisation of semihy-

perbolic groups given below.

Let G be a finitely generated group with generating set A. The free monoid (A±1)∗

consists of all words in the alphabet A±1. Let P(G) denote the set of all subsets of

G. There is a natural map from (A±1)∗ to P(G) that takes a word w in G to the

discrete path t 7→ w(t), where w(t) is the image in G of the prefix of length t in w.

Proposition 9 (Proposition III.Γ.4.5 [4]). Let G be a finitely generated group with

generating set A. Then, G is semihyperbolic if and only if there exist positive constants

λ, ε, l and a choice of words {wg| g ∈ G} ⊆ (A±1)∗, such that wg = g in G and the

discrete paths t 7→ wg(t) are (λ, ε)-quasigeodesics satisfying the property:

d(wg(t), a.wa−1ga′(t)) ≤ l, for all a, a′ ∈ A±1 ∪ {1} and for all t ∈ N.

Theorem 10. A δ-CAT(0) group is semihyperbolic.

Proof. We first choose a convenient set of generators for G. Fix x0 ∈ X. As G acts

geometrically on a δ-CAT(0) space X, there is a D > 0 such that G.B(x0, D/3) = X.

In this case, the collection A = {a ∈ G | B(x0, D) ∩ aB(x0, D) 6= ∅} is a generating

set of G. Further, the map g 7→ g.x0 defines a (say, (λ, κ)-) quasi-isometry from G to

X.

To each g ∈ G, we associate a word wg in the generators A as follows: let cg be a

geodesic joining x0 = cg(0) to g.x0 in X. For each n ∈ N, let wg(n) be such that

d(cg(n), wg(n)x0) ≤ D/3, with the convention that wg(0) = 1 and wg(n) = g for
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Figure 2.2: Semihyperbolicity

n ≥ d(x0, g.x0). Note that an := wg(n − 1)−1wg(n) ∈ A ∪ {1}. Define wg to be the

empty word if 1 = g ∈ G or else, define wg to be a1a2...ak, where k is the smallest

integer exceeding the quantity d(x0, gx0). Note that g = wg in G.

Now, by construction, for t ∈ N, wg(t) = a1a2...at with the understanding that if

t ≥ k, then wg(t) = a1a2...ak . Hence, the discrete paths t 7→ wg(t) are quasigeodesics,

being images of geodesics from x0 to g.x0 under the natural quasi-isometry between

G and X.

For any a, a′ ∈ A±1 ∪ {1} and t ∈ N we have

dG(wg(t), a.wa−1ga′(t)) ≤ λ(d(wg(t).x0, a.wa−1ga′(t).x0) + κ)

≤ λ (d(wg(t).x0, cg(t)) + d(cg(t), a.ca−1ga′(t)) + d(a.ca−1ga′(t), a.wa−1ga′(t).x0) + κ)

= λ(d(wg(t).x0, cg(t)) + d(cg(t), a.ca−1ga′(t)) + d(ca−1ga′(t), wa−1ga′(t).x0) + κ)
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≤ λ
(
D
3

+ (2δ + 1) + D
3

+ κ
)
≤ λ (D + 2δ + κ+ 1) .

In the last line we have used the inequality d(cg(t), a.ca−1ga′(t)) ≤ 2δ + 1 which is a

consequence of Proposition 1.

Therefore, we can take the constant l in Proposition 9 to be λ(D + 2δ + κ + 1) and

it follows that G is semihyperbolic.

Corollary 11. Suppose that the group G acts on a δ-CAT(0) space. Then,

1. The group G is finitely presented and satisfies a quadratic isoperimetric inequal-

ity. Further, the word and conjugacy problems for G are solvable.

2. The group G is of type FP∞.

3. If H is a finitely generated abelian group, then every monomorphism φ : H ↪→ G

is a quasi-isometric embedding with respect to any choice of word metrics.

4. If S ⊂ G is a finite subset, then the centraliser of S in G is finitely generated

and so the centre Z(G) of G is also a finitely generated abelian group.

5. A polycyclic group P is a subgroup of G if and only if P is virtually abelian.

6. If |p| 6= |q|, then 〈x, t | t−1xpt = xq〉 cannot be a subgroup of G.

Proof. Indeed, all these follow from the fact that G is semihyperbolic. For 1 and 3-6,

see [BH] and for 2, see [A].
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2.6 Novikov Conjecture and δ-CAT(0) Groups

In [16], Gennadi Kasparov and Georges Skandalis introduce a class of metric spaces

which they call bolic and go on to prove that Novikov’s Conjecture on Higher Signa-

tures (see Appendix B) is true for any discrete group acting properly by isometries

on a weakly bolic, weakly geodesic metric space of bounded coarse geometry. In what

follows, we show that δ-CAT(0) metric spaces are 4δ-bolic and use their criteria to de-

duce the Novikov Conjecture for δ-CAT(0) groups. We first present a few definitions

as they appear in the aforesaid paper.

Let ε be a nonnegative real number. A function (not necessarily continuous) f : X →

X ′ between metric spaces (X, d) and (X ′, d′) is said to be a δ-isometry if for every

pair (x, y) of elements of X we have |d′(f(x), f(y))− d(x, y)| ≤ ε.

Further, a metric space (X, d) is said to be ε-geodesic if for every pair (x, y) ∈ X,

there exists an ε-isometry f between [0, d(x, y)] and X such that f(0) = x and

f(d(x, y)) = y.

Definition 3. The space (X, d) is said to be weakly ε-geodesic if for every pair (x, y) of

points of X, and every t ∈ [0, d(x, y)] there exists a point a ∈ X such that d(a, x) ≤ t+ε

and d(a, y) ≤ d(x, y) − t + ε. The point a ∈ X is called a ε-middle point of x and y

if |2d(x, a)− d(x, y)| ≤ 2ε and |2d(y, a)− d(x, y)| ≤ 2ε.

We will say that the space (X, d) admits ε-middle points if there exists a map m :

X ×X → X such that for any x, y ∈ X, the point m(x, y) is a ε-middle point of x

and y. Note that every ε-geodesic space is weakly ε-geodesic.

Definition 4. A metric space (X, d) is δ-bolic if:
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1. For all r > 0, there exists R > 0 such that for every quadruple x, y, z, t of

points of X satisfying d(x, y) + d(z, t) ≤ r and d(x, z) + d(y, t) ≥ R, then we

have d(x, t) + d(y, z) ≤ d(x, z) + d(y, t) + 2δ.

2. There exists a map m : X × X → X such that for all x, y, z ∈ X, we have

2d(m(x, y), z) ≤
√

2d(x, z)2 + 2d(y, z)2 − d(x, y)2 + 4δ.

Theorem 12 (Main Theorem of [16]). If a group G acts geometrically by isometries

on a metric space X which is ε-geodesic, δ-bolic and of bounded coarse geometry, then

it satisfies Novikov’s Conjecture on Higher Signatures.

In [5], the authors prove that the second condition in the definition of δ-bolicity

implies the first. It is a technical result, an immediate consequence of which is the

following:

Theorem 13. (Bucher, Karlsson) A δ-CAT(0) space X is 4δ-bolic.

We give a simple alternative proof that bypasses the result in [5].

Proof of Theorem 13. Let X be a δ-CAT(0) metric space and r, a positive real num-

ber. Suppose that x, y, z and t are four points in X such that d(x, y) + d(z, t) ≤ r.

By the δ-CAT(0) inequality for quadrilaterals, there exist four points say x̄, ȳ, z̄ and

t̄ in the Euclidean plane satisfying d(x, y) = d(x̄, ȳ), d(y, t) = d(ȳ, t̄), d(z, t) = d(z̄, t̄),

d(x, z) = d(x̄, z̄), d(x, t) ≤ d(x̄, t̄) + 2δ and d(y, z) ≤ d(ȳ, z̄) + 2δ.

Now, we know that the Euclidean plane is δ-bolic for arbitrarily small δ. In fact,

there is a choice of R > 0 for which If d(x̄, ȳ) + d(z̄, t̄) ≤ r and d(x̄, z̄) + d(ȳ, t̄) ≥ R,

then d(x̄, t̄) + d(ȳ, z̄) ≤ d(x̄, z̄) + d(ȳ, t̄).
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Hence, applying the above inequalities, we get:

if d(x, y) + d(z, t) ≤ r and d(x, z) + d(y, t) ≥ R, then d(x, t) + d(y, z) ≤ d(x̄, t̄) +

d(ȳ, z̄) + 4δ ≤ d(x̄, z̄) + d(ȳ, t̄) + 4δ = d(x, z) + d(y, t) + 4δ.

We now need to consider middle point maps. By definition, our spaces are geodesic

and hence, midpoints exist. Moreover, all geodesics joining a pair of points stray at

most δ apart and therefore any two choice of middle points vary by the same amount.

Moreover, in the Euclidean plane there are unique midpoints. So, suppose that m

is a midpoint between two points, x and y in our δ-CAT(0)space X and z is some

other point in X. Take a geodesic triangle with vertices x, y and z. Let m′ be the

midpoint of the geodesic joining x and y. Then d(m,m′) ≤ δ.

Now draw a comparison triangle 4̄(x̄, ȳ, z̄) in the Euclidean plane, taking m̄′ to be

the comparison point for m′ in the segment [x̄, ȳ]. By the cosine law, 2d(z̄, m̄′) =√
2d(x̄, z̄)2 + 2d(z̄, ȳ)2 − d(x̄, ȳ)2. Therefore, 2d(z,m) ≤ 2d(z,m′) + 2δ ≤ 2d(z̄, m̄′) +

4δ. Hence, 2d(z,m) ≤
√

2d(x, z)2 + 2d(y, z)2 − d(x, y)2 + 4δ.

We can now appeal to Theorem 12 to deduce Novikov’s Conjecture for δ-CAT(0)

groups. We consider an orbit Y of our group G in the δ-CAT(0) space X on which

it acts. Then Y with the subspace metric is weakly ε-geodesic for a suitable ε and

δ-bolic. Since the action is assumed to be geometric, it is of bounded coarse geometry.

This implies the following theorem:

Corollary 14. If a group G acts geometrically on a δ-CAT(0) metric space, then it

satisfies Novikov’s Conjecture on higher signatures.
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Remark. In the light of Theorem 13, one may view the δ-CAT(0) property as a

combinatorial (though potentially weaker) version of δ-bolicity.

2.7 Asymptotic Cones of δ-CAT(0) Spaces

In this section we discuss asymptotic cones of δ-CAT(0) spaces. For a definition

of asymptotic cones, see Appendix A. The following statement is a consequence of

Lemma 21.

Observation 15. All asymptotic cones of a δ-CAT(0) space are CAT(0).

Using the above observation, one can identify the finite dimensional Banach spaces

which are δ-CAT(0). By Lemma 52, if V is a finite dimensional Banach space, then

Coneω(V ) is canonically isomorphic to V . Moreover the space Rn with the lp metric

is CAT(0) if and only if p = 2. (See proposition II.1.14 in [4]).

Remark 16. The Banach space, Rn, endowed with the lp norm is δ-CAT(0) for some

δ if and only if p = 2.

It is tempting to ask if the converse to Observation 15 is true. More precisely, if

all asymptotic cones of a geodesic space X are CAT(0), then is it true that X is

δ-CAT(0) for some δ ≥ 0? The answer turns out to be negative and we present an

example that demonstrates this in the following section. The lemma below proves to

be very useful for the example and elsewhere.
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A Preliminary Lemma

If F : X → Y is a map of metric spaces which distorts distances in a controlled

fashion then there is an induced map at the level of asymptotic cones taking the class

of (xn) to the class of (F (xn)). We make this precise in the lemma below and prove

that under suitable hypotheses, the induced map is an isometry.

Lemma 17. Let c ≥ 0 and let F : X → Y be a map of metric spaces such that

d(y, F (X)) ≤ c, for all y ∈ Y . Suppose that there exists a monotonically non-

decreasing function f : R → R satisfying limr→∞
f(r)
r

= 0. Moreover, |d(x, x′) −

d(F (x), F (x′))| ≤ f(d(x, x′)), for all x, x′ ∈ X. Then Fω : Coneω(X, (an), (pn)) →

Coneω(Y, (an), (F (pn))), given by (xn) 7→ (F (xn)), is an isometry.

Proof. Let F : X → Y be a map of metric spaces satisfying the hypotheses of the

lemma. Let (xn) be an element of Xω. Then the sequence (d(F (xn), F (pn))/an)

is bounded because d(F (xn), F (pn)) ≤ d(xn, pn) + f(d(xn, pn)) for all n ∈ N and

(d(xn, pn)/an) is a bounded sequence. This means that Fω is well-defined.

By hypothesis, there exists a c ≥ 0 such that d(y, F (X)) ≤ c for all y ∈ Y . Let (yn) be

an element of Yω. For each n ∈ N, there exists an xn ∈ X such that d(yn, F (xn)) ≤ c.

But then the class of (yn) is the same as the class of (F (xn)) in Yω. This shows that

the map Fω is surjective.

Finally, let (xn), (x′n) ∈ Xω. Then, for each n ∈ N, we have the inequality∣∣∣∣d(xn, x
′
n)

an
− d(F (xn), F (x′n)

an

∣∣∣∣ ≤ f(d(xn, x
′
n))

d(xn, x′n)

d(xn, x
′
n)

an
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If limω d(xn, x
′
n) is finite then limω

d(xn,x′n)
an

= 0. In this case, the points (xn) and (x′n)

coincide and consequently dω((xn), (x′n)) = dω((F (xn)), (F (x′n))).

On the other hand, if limω d(xn, x
′
n) is not finite, then limω

f(d(xn,x′n))
d(xn,x′n)

= 0. It follows

that the right hand side of the above inequality is equal to zero and so dω((xn), (x′n)) =

dω((F (xn)), (F (x′n))). This proves that Fω is an isometry.

2.8 The Plane with the Wrinkled Quadrant

Proposition 18 (The plane with the wrinkled quadrant). There is a metric space

Y which is not δ-CAT(0), for any δ ≥ 0 but all its asymptotic cones are isometric to

a CAT(0) space.

Proof. For each integer n ≥ 2, take Sn to be the trapezium in the first quadrant of

the Euclidean plane, bounded by the x-axis, the y-axis, and the lines, x+y = n(n+1)

and x + y = n(n − 1). Now let Pn be a solid with five faces: the base of Pn is the

trapezium Sn; two isosceles triangles, each of base length 2n and side length
√
n2 + 1

form two of the faces. The remaining two faces are trapezia, one with sides
√
n2 + 1,

√
2n(n + 1),

√
n2 + 1 and

√
2n2 and the other with sides,

√
n2 + 1,

√
2n(n − 1),

√
n2 + 1 and

√
2n2. Note that each prism is of height 1. Attach Pn isometrically

along its base to the trapezium Sn. Finally, remove the interior of each Pn, along

with the interior of the base, Sn. Give the resulting space Y , the induced path metric;

it can be loosely described as ‘the plane with the wrinkled quadrant’.

We claim that the space Y is not δ-CAT(0) for any δ ≥ 0 but all of its asymptotic

cones are CAT(0).
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Figure 2.3: The Plane with The Wrinkled Quadrant, showing T5 and γ5.
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The geodesic γn in Y joining the origin to the point
(
n(n+1)

2
, n(n+1)

2

)
is by direct

computation, of length dn =
√

2 +
∑n

k=2 2
√

1 + k2

2
.

Now consider triangles Tn, one for each integer n ≥ 1, whose vertices are at the

origin, and the points (0, n(n + 1)) and (n(n + 1), 0). Then, (n(n+1)
2

, n(n+1)
2

) is the

mid-point mn of the side [(0, n(n + 1)), (n(n + 1), 0)] and the Euclidean distance

d̄n := dE2((0, 0),mn) is exactly
∑n

k=1 k
√

2.

The triangle Tn, for each n ≥ 1 therefore coincides along its boundary with its

Euclidean comparison triangle. The difference between dn and d̄n is given by

n∑
k=2

(
2

√
k2

2
+ 1−

√
2k

)
.

The summand is equal to 4√
2k2+4+k

√
2
. As this is no smaller than 4

k(
√

2+
√

3)
and the

harmonic series diverges, Y is not δ-CAT(0), for any δ ≥ 0.

We claim that every asymptotic cone of Y is isometric to the Euclidean plane. Imagine

a juxtaposition of Y and E2 in which Y lies above E2 and the x and y axes in E2

coincide with the copy of the axes in Y . There is a projection π of Y onto E2 that

maps every point in Y to the point in E2 directly below it.

We want to estimate the quantity f(p, q) := |d(p, q)−d(π(p), π(q))|. If a path joining

two points p and q in Y crosses n wrinkles, then by the triangle inequality, the

difference f(p, q) is at most 2n. On the other hand, any path crossing n wrinkles

must travel a distance of at least k+(k+1) · · ·+(n+k). Now, k+(k+1) · · ·+(n+k)

is equal to (n+k)(n+k+1)/2−k(k+1)/2, which is no smaller than n2/2. Therefore

we see that the quantity f(p, q) is bounded above by a linear function of
√
d(p, q).
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The function π satisfies the hypotheses of Lemma 17. Hence, every asymptotic cone

of Y is isometric to the Euclidean plane.

Proposition 18 motivates an exploration of what we call asymptotically CAT(0)

spaces.

Definition 5. A metric space X is said to be asymptotically CAT(0) if all asymptotic

cones of X are CAT(0).

Unlike negatively curved or finite dimensional Banach spaces, not all metric spaces

have unique asymptotic cones. The isometry type of an asymptotic cone depends on

the choice of the ultrafilter and the base point. However, if the metric space supports

a cocompact group action, then one can remove this dependence on the base point.

The dependence on the choice of the ultrafilter is a far more delicate matter. In

[27], Simon Thomas and Boban Velickov present an example of a finitely generated

group whose Cayley Graph gives non-isometric asymptotic cones for different choices

of non-principal ultrafilters.

A weaker notion to ‘asymptotically CAT(0)’ is that of a metric space being lacunary

CAT(0), i.e. it has at least one CAT(0) asymptotic cone. In [18], the authors provide

an example of a finitely generated group G such that at least one asymptotic cone of G

is the infinitely branching homogeneous R-tree while some other asymptotic cones of

G are not even simply connected. This shows that there exist metric spaces which are

lacunary CAT(0) but not asymptotically CAT(0). We study asymptotically CAT(0)

spaces in detail in the following chapter.
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CHAPTER 3

ASYMPTOTICALLY CAT(0) GROUPS

Recall that a metric space X is said to be asymptotically CAT(0) if all its asymptotic

cones are CAT(0).

Definition 6. A group G is asymptotically CAT(0) if it acts geometrically on an

asymptotically CAT(0) geodesic space.

Convention As before we will refer to a proper and co-compact action of a group

by isometries as a ‘geometric’ action.

3.1 Asymptotically CAT(0) metric spaces

The purpose of this section is to obtain a characterisation of asymptotically CAT(0)

spaces in terms of their metric properties.

Theorem 19. A geodesic metric space is asymptotically CAT(0) if and only if there

exists a function f : R+ → R+ such that limr→∞
f(r)
r

= 0 and every ball of radius r

in X is f(r)-CAT(0).

Caveat In the statement above we do not assume that the balls in X are convex.

We simply mean that any geodesic triangle in X with vertices in a ball of radius r

satisfies the f(r)-CAT(0) inequality.
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Proof of Theorem 19. We first consider the sufficiency statement. Take a 4-tuple of

points (x1, x2, x3, x4) ∈ Coneω(X), where xi = (xi,n) for i = 1, 2, 3, 4. Note that

for each n, (x1,n, x2,n, x3,n, x4,n) is a 4-tuple of points in (X, dn) of some diameter

rn. Since any ball of radius rn satisfies a f(rn)-CAT(0) inequality for triangles, we

know that it also satisfies a f(rn)-CAT(0) inequality on quadrilaterals. This implies

that there is a 4-tuple of points (y1,n, y2,n, y3,n, y4,n) in the Euclidean plane E2 such

that d(xi,n, xi+1,n) = d(yi,n, yi+1,n) for i = 1, 2, 3, 4, modulo 4 and d(xi,n, xj,n) ≤

d(yi,n, yj,n) + 2f(rn) for 1 ≤ i < j ≤ 4. For each n, we may choose y1,n to be the

origin.

Then yi = (yi,n), i = 1, 2, 3, 4 is a 4-tuple of points in Coneω(E2). By Lemma 52 in

Appendix A, the Euclidean plane is isometric to any of its asymptotic cones. The

above construction therefore provides us with a 4-tuple of points in E2 which satisfies

d(xi, xi+1) = d(yi, yi+1), for i = 1, 2, 3, 4, modulo 4, and for 1 ≤ i < j ≤ 4, d(xi, xj) =

limω dn(xi,n, xj,n) ≤ limω(dn(yi,n, yj,n) + 2f(rn)
an

). But, limω
f(rn)
an

= limω
f(rn)
rn

rn
an

. By

hypothesis, limr→∞
f(r)
r

= 0 and further, limω
rn
an

is the diameter of the four tuple of

points in the asymptotic cone. We therefore conclude that d(xi, xj) ≤ d(yi, yj) for

1 ≤ i < j ≤ 4.

Conversely, suppose that all asymptotic cones of a geodesic space X are CAT(0).

Define f(r) to be the supremum of the difference between d(p, q) and d(p̄, q̄), where

p and q are points on a geodesic triangle in X, whose vertices lie in a ball of radius

r. We claim that limr→∞
f(r)
r

= 0.

Suppose not. Then there exists a non-principal ultrafilter ω and a sequence (an) of
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positive real numbers such that limn→∞ an =∞ and

for some ε > 0, ω({n :
f(an)

an
> 2ε}) = 1.

For each n ∈ N, there exists a geodesic triangle ∆n, with vertices in a ball of radius

an in X and a comparison triangle ∆̄n for ∆n in the Euclidean plane such that a pair

pn, qn of points in ∆n satisfies the condition

f(an) ≥ d(pn, qn)− d(p̄n, q̄n) ≥ f(an)− 1.

Here, p̄n and q̄n are as usual the comparison points for pn and qn in ∆̄n.

Now consider the asymptotic cone Xω of X with respect to the scaling sequence (an),

ultrafilter, ω and sequence of base points (pn). The ω-limit of the triangles ∆n is a

geodesic triangle ∆ in a ball of radius 1 in Xω. Observe that if ∆̄ denotes the ω-limit

of the triangles ∆̄n, then ∆̄ is a comparison triangle for ∆ in the Euclidean plane.

The comparison points for limω pn and limω qn in ∆̄ are precisely the ω-limits of the

sequences (p̄n) and (q̄n), respectively.

As ω{n ∈ N | 1
an
< ε} = 1, we deduce that

ω

{
n ∈ N | d(pn, qn)

an
− d(p̄n, q̄n)

an
≥ ε

}
= 1.

Therefore, dω(limω pn, limω qn) ≥ dω(limω p̄n, limω q̄n)) + ε. This contradicts the as-

sumption that Xω is CAT(0). We conclude that limr→∞
f(r)
r

= 0.

3.2 Finite Subgroups

Theorem 20. An asymptotically CAT(0) group G has finitely many conjugacy classes

of finite subgroups.
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Proof. Let Y be a non-empty bounded subset of a proper asymptotically CAT(0)

metric space. Define

rY = inf{r > 0|Y ⊂ B(x, r) for some x ∈ X}, and

C(Y ) = {x ∈ X|Y ⊂ B(x, rY )}.

With this notation, rY is the (circum)radius of Y and C(Y ) is the set of barycentres

of Y . By a standard argument, C(Y ) is not empty. We wish to estimate the diameter

of C(Y ). Now, by Theorem 19, we know there exists a function f and a > 0 such

that if r > a, then f(r) < r
32

and every ball of radius r is f(r)-CAT(0).

Choose x1, x2 ∈ C(Y ) and let ε > 0 be given. For each y ∈ Y , consider a geodesic

triangle [y, x1, x2] along with [Oy, x̄1, x̄2], its comparison triangle in the Euclidean

plane. Suppose m is the midpoint of the geodesic joining x1 and x2. Denote its

comparison point in [Oy, x̄1, x̄2] by my. Now, if d(my, Oy) ≤ rY − f(rY ) − ε for all

y ∈ Y , then d(m, y) ≤ rY − ε for all y ∈ Y and this violates the definition of rY .

Therefore there must exist some z ∈ Y for which the distance between the points Oz

and mz exceeds rY − (f(rY ) + ε). Thus,

d(x̄1, x̄2) ≤ 2
√
d(x̄1, Oz)2 − d(Oz,mz)2

≤ 2
√
r2
Y − (rY − (f(rY ) + ε))2.

= 2
√

2rY (f(rY ) + ε)− (f(rY ) + ε)2.

⇒ 2rC(Y ) ≤ 2
√

2rY f(rY )− f(rY )2.

⇒ If rY > a, then rC(Y ) ≤ rY
4

.

Let H be a finite subgroup of G. Fix x ∈ X. Set Y = Hx, the orbit of x under the

action of H. Then Y is a bounded subset of X. If rY > a, then we inductively define
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a sequence (Yn) of subsets of X, by setting Y0 to be Y and Yn, to be C(Yn−1). We

deduce from the previous paragraphs that

for n > log4

rY
a
, we have rYn < a.

Choose m to be the least such n. Note that, by construction, the sets Yn are invariant

under the action ofH. Let x̄ be an element of Ym andD > 0 be such thatG.B(x,D) =

X. There exists some g ∈ G with d(gx, x̄) ≤ D. Hence, for any z ∈ Ym, we have

d(g−1z, x) ≤ d(g−1z, g−1x̄) + d(g−1x̄, x) ≤ 2a+D.

Let h ∈ H. Then,

d(g−1hgx, x) ≤ d(g−1hgx, g−1hg.g−1z) +d(g−1hg.g−1z, x)

= d(x, g−1z) + d(g−1(hz), x).

The set g−1Ym is invariant under the action of g−1Hg and g−1(hz) ∈ g−1Ym. Hence,

d(g−1hgx, x) ≤ 2(2a+D) and g−1Hg.x ⊂ B(x, 2(2a+D)).

The properness of the action of G ensures that there are only finitely many subgroups

with the property that the orbit of a point x lies in the 2(2a+D)-ball around x. This

proves the theorem.

3.3 Examples

In this section, we concentrate on providing examples of asymptotically CAT(0) met-

ric spaces and groups. The following are known classes of examples:

1. Hyperbolic Groups: Indeed every asymptotic cone of a hyperbolic group is

isometric to an R-tree. See [6].

40



2. CAT(0) metric spaces: Every asymptotic cone of a CAT(0) metric space is

also CAT(0). A proof of this may be found in [4]. Alternatively, see Lemma 21

below.

Bolic Spaces

We have already encountered the concept of δ-bolicity in Section 2.6. Recall that a

metric space (X, d) is said to be δ-bolic if there exists a map m : X ×X → X such

that for all x,y, and z ∈ X,

2d(m(x, y), z) ≤
√

2d(x, z)2 + 2d(y, z)2 − d(x, y)2 + δ.

This class not only includes both hyperbolic and CAT(0) groups, but also groups

acting geometrically on a δ-CAT(0) space. In the following paragraph we present a

general proof of the fact that any asymptotic cone of a δ-bolic metric space is CAT(0).

Lemma 21. Let (X, d) be a δ-bolic metric space. Then for any non-principal ul-

tra filter ω, scaling sequence (an) and base point (xn), the asymptotic cone Xω :=

Coneω(X, (xn), (an)) is CAT(0).

Proof. Recall that a geodesic metric space Y is CAT(0) if for all p,q, r ∈ Y , and all

m ∈ Y with d(q,m) = d(r,m) = d(q, r)/2, one has

d(p, q)2 + d(p, r)2 ≥ 2d(m, p)2 +
1

2
d(q, r)2.

(See [4], for this characterisation of the CAT(0) property).

We first argue that Xω is a geodesic space. The asymptotic cone Xω is a complete

metric space since the ultralimits of all sequences of metric spaces are complete ([4],
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Lemma I.5.53). By definition, between any two points in X, is an ‘approximate’

midpoint and so mid-points exist in the asymptotic cone. But, a complete metric

space in which midpoints exist is a geodesic space.

Now take any choice of points (pn), (qn) and (rn) in Xω and let M be the midpoint of

the geodesic joining (qn) and (rn). Then for each n, m(qn, rn) satisfies the inequality

2d(m(qn, rn), pn) ≤
√

2d(qn, pn)2 + 2d(rn, pn)2 − d(qn, rn)2 + δ.

Note that the equivalence class of M is the same as that of (m(qn, rn)). Taking the

ω-limit of the last inequality, we have that

2 limω d(m(qn, rn), pn)

≤
√

2 limω d(qn, pn)2 + 2 limω d(rn, pn)2 − limω d(qn, rn)2

⇒ d((pn), (qn))2 + d((pn), (rn))2 ≥ 2d(M, (pn))2 + 1
2
d((qn), (rn))2.

This proves that Xω is CAT(0).

Remark 22. It would be interesting to define an asymptotic notion of bolicity and

extend existing techniques to prove Novikov’s Conjecture for asymptotically CAT(0)

groups.

Co-compact Lattices of ˜PSL(2,R)

In Chapter 5, we will show that every asymptotic cone of ˜PSL(2,R) is isometric to a

direct product of the real line with the infinitely branching homogeneous R-tree. This

will establish that co-compact lattices in ˜PSL(2,R) are examples of asymptotically

CAT(0) groups.
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Co-compact lattices in ˜PSL(2,R) are central extensions of cocompact lattices in

PSL(2,R) by Z. Typical examples of these are the fundamental groups of T 1(S),

where T 1(S) denotes the unit tangent bundle of a closed surface S of genus at least

2. These groups are neither hyperbolic nor can they act properly by semisimple

isometries on any CAT(0) space. This is a consequence of the geometry of ˜PSL(2,R)

and the following theorem about CAT(0) groups.

Theorem 23. (Theorem II.6.12 in [4]) Let X be a CAT(0) metric space and let Γ be

a finitely generated group acting by isometries on X. If Γ contains a central subgroup

A ∼= Zn that acts faithfully by hyperbolic isometries, then there exists a subgroup of

finite index H ⊂ Γ which contains A as a direct factor.

The fundamental groups of S and of T 1(S) are linked by the short exact sequence

given below.

1→ Z→ π1(T 1(S))→ π1(S)→ 1

Observe first π1(T 1(S)) contains free abelian subgroups of rank 2 and therefore it is

not hyperbolic.

As described in Theorem 4.15 of [20], ˜PSL(2,R) does not contain the fundamental

group of any closed surface of genus ≥ 2. Every finite index subgroup of π1(S) is

the fundamental group of such a surface and so, the short exact sequence above

cannot split, even after passing to a subgroup of finite index in π1(S). Now, we

appeal to Theorem 23 and conclude that co-compact lattices in ˜PSL(2,R) cannot

act geometrically on a CAT(0) space.
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Hence, the fundamental groups of T 1(S) are examples of asymptotically CAT(0)

groups which are neither CAT(0) nor hyperbolic.

Relatively Hyperbolic Groups

Relatively hyperbolic groups provide further examples of asymptotically CAT(0)

groups. We show in Chapter 4 that if a group G is hyperbolic relative to an asymp-

totically CAT(0) subgroup H, then G is also asymptotically CAT(0).

3.4 Direct Products, Amalgams and HNN Extensions

In this section, we provide methods for combining asymptotically CAT(0) groups

using direct products, amalgams and HNN extensions.

Direct Products

Proposition 24. The category of asymptotically CAT(0) groups is closed under finite

direct products.

Proof. This follows from a simple observation: if two groups G and H act geometri-

cally on (X, dX) and (Y, dY ) respectively, then the direct product G×H acts geomet-

rically on (X × Y,
√
d2
X + d2

Y ), the action being defined component-wise. Moreover,

Coneω(X×Y, (xn, yn)) is isometric to Coneω(X, (xn))×Coneω(Y, (yn)), where xn ∈ X,

yn ∈ Y and ω is a non-principal ultrafilter. This implies that if all asymptotic cones

of X and Y are CAT(0), then so are all asymptotic cones of X × Y . Hence, if G and
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H are asymptotically CAT(0) then the direct product G ×H is also asymptotically

CAT(0).

Amalgams and HNN Extensions with Isometric Gluing

We now describe techniques to form amalgams and HNN extensions from asymptot-

ically CAT(0) groups. The hypotheses on the amalgamated subgroup in theorem 25

and 27 appear restrictive at first. However the conditions are met among others, by

finite subgroups with fixed points, virtually cyclic subgroups in CAT(0) groups or by

the central infinite cyclic subgroups of lattices in ˜PSL(2,R).

Theorem 25. Let G1, G2 and H be groups acting geometrically on asymptotically

CAT(0) geodesic spaces X1, X2 and A respectively. Suppose that for i = 1, 2,

there exist monomorphisms, φi : H → Gi and a φi-equivariant isometric embed-

ding fi : A → Xi. Then, the amalgam G = G1 ∗H G2 associated to the maps φi acts

geometrically on an asymptotically CAT(0) geodesic space.

Proof. The amalgam G = G1 ∗H G2 acts simplicially on a tree T which is unique up

to graph isomorphism. The vertices of T are in bijection with the cosets of G1 and

G2 in G, while the unoriented edges of T may be identified with the cosets of H in G.

Given spaces on which the groups G1, G2 and H act geometrically, one asks if there

exists a space Z, which supports a geometric action of G by isometries. Indeed, there

is a well-known construction which serves this purpose, provided the maps fi and φi

in the statement of the theorem exist.
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We present the construction in some detail here, following the treatment in Theo-

rem II.11.18 of [4]. Start with an equivalence relation ≈ on the disjoint union of

G × X1, G × [0, 1] × A and G × X2. The equivalence relation ≈ is generated by:

(gg1, x1) ≈ (g, g1x1), (gg2, x2) ≈ (g, g2x2), (gh, t, a) ≈ (g, t, ha), (g, f1(a)) ≈ (g, 0, a)

and (g, f2(a)) ≈ (g, 1, a) for all g ∈ G, g1 ∈ G1, g2 ∈ G2, h ∈ H, x1 ∈ X1, x2 ∈ X2,

a ∈ A and t ∈ [0, 1].

For i = 1, 2, let X̄i be the quotient of G × Xi by the above relation and similarly,

let Ā be the quotient of G × [0, 1] × A by the above relation. Then X̄i is isometric

to G/Gi × Xi; this is because each g × Xi contains exactly one element from each

equivalence class of G × Xi. Similarly, Ā is isometric to G/H × [0, 1] × A. We are

now in a position to describe Z. Recall that T denotes the Bass Serre tree of G.

The space Z is a tree of spaces with underlying tree T such that the vertex spaces

are isomorphic to the Xi and the edge spaces are isomorphic to A. More precisely,

Z :=
(G/G1 ×X1)

∐
(G/H × [0, 1]× A)

∐
(G/G2 ×X2)

∼

The relation ∼ is given via the canonical surjections G/H → G/G1 and G/H →

G/G2: (gH, 0, a) ∼ (gG1, f1(a)) and (gH, 1, a) ∼ (gG2, f2(a)), for all gH ∈ G/H and

a ∈ A.

The group G acts by left multiplication on the first component of each of G × X1,

G× [0, 1]×A and G×X2. This action is compatible with the gluing and so there is an

induced action of G on Z. The quotient of Z via this action of G is a compact space

obtained via a gluing of X1/G1, X2/G2 along A/H × [0, 1]. Therefore the action is

cocompact.
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If G1, G2 and H act properly on X1, X2 and A, respectively, then G acts properly on

Z. The subgroup of G leaving a copy of M , for M ∈ {X1, X2, A}, fixed is a conjugate

of Gi or of H. On the other hand, if an element g of G does not leave a copy of M

invariant then g maps this copy of M to a different one. Consequently, every point

is moved by a distance of at least 2 and hence, the action of G on Z is proper.

Endowed with the quotient metric, Z is a geodesic space. There is a natural projection

π from Z to the Bass Serre tree T of G, which takes the equivalence classes of (g, x1),

(g, x2) and (g, t, a) to (gG1, 0), (gG2, 1) and (gH, t), respectively. Moreover π is G-

equivariant. We describe a geodesic γ joining the equivalence class (gG1, x1) to the

equivalence class of (g′G2, x2). Recall that A is a proper metric space and the maps

fi are isometries. Therefore there is a point x̄1 in (gG1, f1(A)) which is closest to the

point (gG1, x1) in Z. Similarly there is a point x̄2 in (g′G2, f2(A)) which is closest to

the point (g′G2, x2) in Z. The geodesic γ then is a concatenation of three geodesics,

the first joining (gG1, x1) to x̄1 in (gG1, X1), the second joining x̄1 to x̄2 in A×T and

the third, joining x̄2 to (g′G2, x2) in (g′G2, X2). We deduce from this and Bass Serre

theory that the action of G on Z is by isometries.

Our main task now is to show that Z is asymptotically CAT(0). The space Z supports

a proper cocompact G-action and so, the choice of base point is not crucial. Let ω

be a non-principal ultrafilter and choose a sequence (an) of positive real numbers

such that limn→∞ an = ∞. We will show that the canonical asymptotic cone (see

Appendix A) Zω := Coneω(Z, (an)) is a CAT(0) space.

Denote the canonical asymptotic cones of X1, X2, T and A with respect to the
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non-principal ultrafilter ω and scaling sequence (an) by (X1)ω, (X2)ω, Tω and Aω,

respectively. Observe that the isometric embeddings fi induce isometries Fi at the

level of asymptotic cones. We construct a new space Z as a tree of spaces with

underlying tree, Tω.

Z :=
(Tω × (X1)ω)

∐
(Tω × Aω)

∐
(Tω × (X2)ω)

∼
,

where, (t, F1(a) ∼ (t, a) ∼ (t, F2(a)), for all a ∈ Aω and t ∈ Tω.

The proof of the Theorem will therefore follow from the next proposition.

Proposition 26. The spaces Zω and Z are isometric. Moreover, Z is CAT(0).

Proof. We first show that Z is CAT(0). We have assumed that the spaces Xi and A

are asymptotically CAT(0). It follows that Tω ×Aω, is CAT(0). By Theorem II.11.3

of [4], a tree of spaces in which every vertex and edge space is CAT(0) is also CAT(0).

Hence, Z is CAT(0).

We now define a map η from Zω to Z, which furnishes us with the required isometry.

Let (zn) ∈ Zω. Define X1 = {n ∈ N | zn ∈ G/G1 × (X1 − f1(A))}, X2 = {n ∈

N | zn ∈ G/G2 × (X2 − f2(A))} and A = {n ∈ N | zn ∈ G/H × [0, 1] × A}. Then,

X1

∐
A
∐
X2 = N. This implies that exactly one of these three sets has ω-measure 1,

and so zn belongs to exactly one of T ×A, G/G1×X1 and G/G2×X2 with ω-measure

1.

Observe that the copy of (T×A)ω ∼= Tω×Aω in Zω is isometric to the copy of Tω×Aω

in Z. Therefore, the restriction of η to Tω ×Aω ⊂ Zω can be taken to be the identity

map.
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Now suppose that ω(X1) = 1. For each n ∈ N, let tn be the projection of zn on to the

copy of T in Z. Since the projection map decreases distances, (tn) defines a point in

the tree Tω in Zω. For n ∈ X1, define wn to be the projection of zn onto X1, otherwise

take wn to be any point in X1. Let η((zn)) = ((tn), (wn)). Similarly, define η for the

case when ω(X2) = 1.

Observe that the copies of (T ×A)ω, (X1)ω and (X2)ω in Zω and Z are isometric and

moreover η is a bijection. It follows that η defines an isometry from Zω on to Z. This

proves that Zω is CAT(0).

One can construct HNN extensions of asymptotically CAT(0) groups in the same

fashion.

Theorem 27. Let G and H be groups acting properly by isometries on asymptotically

CAT(0) spaces X and A. Suppose that for i = 1, 2, there exist monomorphisms

φi : H → G and φi-equivariant embedding fi : Y → X. Then the HNN extension

G∗H acts properly by isometries on an asymptotically CAT(0) space.

Proof. The proof is similar to that of the previous theorem. The only difference lies

in the definition of the space Z. For an HNN extension Γ of G over the subgroup H,

define Z to be as follows.

Z :=

(
Γ/G1 × X̃

)∐
(Γ/H × [0, 1]× A)

∼

where (γH, 0, a) ∼ (γG, f1(a)) and (γH, 1, a) ∼ (γG, f2(a)), for all a ∈ A and for all

γ ∈ Γ. Conclude as before that Z and hence Γ is asymptotically CAT(0).
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Amalgams and HNN Extensions along Finite Subgroups

Theorem 28. Let G1 and G2 be asymptotically CAT(0) groups and let C be a finite

group, endowed with monomorphisms φ : C → G1 and ψ : C → G2. Then the

amalgam G := G1 ∗C G2 associated to φ and ψ is also asymptotically CAT(0).

Proof. Let G1, G2 and C be as above; let X1 and X2 be the asymptotically CAT(0)

spaces associated to G1 and G2 respectively. To prove the theorem, we need to

construct an asymptotically CAT(0) space which supports a geometric G-action.

Fix x1 ∈ X1 and x2 ∈ X2. Let H1 be the stabilizer of x1 in G1. Likewise, denote

the stabilizer of x2 in G2 by H2. For fixed x1 ∈ X1, the set map G1 → G1/H1 gives

a canonical map π1 : G1 → G1.x1 from the group G1 to the orbit G1.x1. Similarly,

there exists a natural map π2 : G2 → G2.x2. Define

Z :=
(G/G1 ×X1)

∐
(G/C × [0, 1]× C)

∐
(G/G2 ×X2)

∼

where (γC, 0, c) ∼ (γG1, π1 ◦φ(c)) and (γC, 1, c) ∼ (γG2, π2 ◦ψ(c)), for all c ∈ C and

for all γ ∈ G.

By a similar argument as before, the amalgam G acts properly and co-compactly

on Z by isometries. We claim that Z is asymptotically CAT(0). There is a natural

projection of Z to the Bass Serre tree T of G. Consider the tree of spaces Z̃ with

underlying tree T and vertex spaces X1 and X2; that is, a vertex of the form gG1 of

T corresponds to a copy of X1 and a vertex of the form gG2 of T corresponds to a

copy of X2. Observe that Z is (1, ε)-quasi-isometric to Z̃, where ε depends solely on

the diameter of C.x1 in X1 and the diameter of C.x2 in X2.
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It follows from the argument in Theorem 25 that Z̃ is asymptotically CAT(0). More-

over, by Lemma 17, a (1, ε) quasi-isometry induces an isometry at the level of asymp-

totic cones. Hence, the space Z is asymptotically CAT(0).

Theorem 29. The class of asymptotically CAT(0) groups is closed under HNN ex-

tensions along finite subgroups.

Proof. Here again, it suffices to describe the space Z. Let G1 be an asymptotically

CAT(0) group with associated space X1; let C be a finite subgroup of G1 along

with monomorphisms φ, ψ : C → G1. Let G be the HNN extension of G1 over C,

corresponding to φ and ψ.

Fix x ∈ X1. Let H be the stabilizer of x in G1 and let π : G1 → G1/H ∼= G1.x be

the canonical map from G1 onto the orbit of x. Define the space Z to be as follows.

Z :=
(G/G1 ×X1)

∐
(G/C × [0, 1]× C)

∼

where (γC, 0, c) ∼ (γG1, π ◦ φ(c)) and (γC, 1, c) ∼ (γG2, π ◦ ψ(c)), for all c ∈ C and

for all γ ∈ G. Conclude as before that Z and hence G is asymptotically CAT(0).

3.5 Finiteness Properties

Let G be an asymptotically CAT(0) group. There exists a space X on which G acts

geometrically and such that all asymptotic cones of X are CAT(0). Any CAT(0)

space is contractible. The fact that all asymptotic cones of X are contractible has

implications for the finiteness properties of G. In fact, it implies that G is of type

F∞ (and hence FP∞), as we shall now explain.
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Given a group G, a K(G, 1) is a path-connected space whose fundamental group is

isomorphic to G and which has a contractible universal covering space. The existence

of a ‘nice’ K(G, 1) has a central place in algebraic topology.

Definition 7. A group G is said to be of type Fn if there exists a CW-complex

K(G, 1), whose n-skeleton is finite.

Definition 8. A group G is said to be of type FPn if there exists a resolution

Pn → Pn−1 → · · · → P0 → Z→ 0

of the trivial G-module Z by finitely generated projective G-modules.

Remarks If G is of type Fn, then G is of type FPn. We say that G is of type F∞

if there is a CW-complex K(G, 1) with finitely many cells in each dimension; G is of

type FP∞ if there is projective resolution of Z by finitely generated G-modules.

Theorem 30. (Theorem 2.6.D of [26]) If G is a finitely generated group with a word

metric such that all asymptotic cones of G are n-connected, then G is of type Fn+1.

Therefore, if all asymptotic cones of G are contractible, then there exists a CW-

complex with finitely many cells in each dimension and whose fundamental group is

isomorphic to G.

Now, suppose that G is asymptotically CAT(0) and X is as above. The group G is

finitely generated and by the well-known Svărc-Milnor Lemma (Proposition I.8.19 in

[4]), G with any word metric, is quasi-isometric to the space X. But, by Observation

53, a quasi-isometry induces a bi-Lipschitz homeomorphism at the level of asymptotic
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cones. Since X is asymptotically CAT(0), all asymptotic cones of X are contractible.

This implies that all asymptotic cones of G are also contractible and hence, G is of

type F∞. We have therefore the following proposition.

Proposition 31. An asymptotically CAT(0) group is of type F∞.

3.6 The Word problem

Theorem 32. (Theorem 4.6 in [6]) Let X be a geodesic space. If the isoperimetric

function for every asymptotic cone of X is quadratic then the following is true:

for every ε > 0, there exists lε such that the ‘area’ of a minimal diagram of boundary

length l is at most l2+ε, for all l ≥ lε.

As the isoperimetric function for any CAT(0) space is quadratic, this theorem applies

to asymptotically CAT(0) spaces. One wonders if the above estimate can be improved

to a quadratic bound. Nevertheless the isoperimetric function for any asymptotically

CAT(0) group is sub-cubic.

Proposition 33 (See [23]). If G is a finitely presented group, then the word problem

for G is solvable if and only if the isoperimetric function for G is recursive.

We conclude from the above discussion that

Observation 34. The word problem for asymptotically CAT(0) groups is solvable.
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CHAPTER 4

RELATIVE HYPERBOLICITY

The aim of this chapter is to prove the following theorem:

Theorem 35. If a group G is relatively hyperbolic with respect to a subgroup H and

H is asymptotically CAT(0), then so is G.

Relatively hyperbolic groups were first introduced by Gromov in [12] and later studied

by Farb ([9]), and Bowditch ([3]), among others. The motivating examples were the

fundamental groups of complex hyperbolic manifolds with cusps. The presence of the

cusp subgroups ensure that these groups are not negatively curved. The class of rel-

atively hyperbolic groups also includes (1) groups acting geometrically by isometries

on ‘CAT(0) spaces with isolated flats’; these include limit groups; (2) fundamental

groups of hyperbolic manifolds of finite volume (that is, non-uniform lattices in rank

one semisimple groups with trivial center); these are hyperbolic relative to their cusp

subgroups; (3) hyperbolic groups; these are hyperbolic relative to the trivial subgroup

(4) free products of groups; these are hyperbolic relative to their factor subgroups;

and (5) fundamental groups of non-geometric Haken manifolds with at least one hy-

perbolic component; these are hyperbolic relative to the fundamental groups of the

maximal graph-manifold components and to the fundamental groups of the tori and

Klein bottles not contained in graph-manifold components.
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We will define relatively hyperbolic groups in terms of the ‘coned-off Cayley graph’

and bounded coset penetration.

4.1 Definitions

The coned-off Cayley Graph

Let G be a finitely generated group with generating set S and let H be a subgroup of

G. We may assume for simplicity that S contains a generating set for H. Consider

the Cayley graph C of G with respect to the given generating set. Let X be an

enumeration of the cosets of H in G. Build a new graph C, whose vertex set contains

all the vertices of C, along with new vertices, vX , one for each X ∈ X . The edge set

of C contains all the edges of C, along with edges e(X, g), where X ∈ X and g is an

element of the coset X. Assign length one to each edge. The resulting graph C is

called the ‘coned-off’ Cayley graph of G with respect to H.

Bounded Coset Penetration Property

Given a path w ∈ C, locate all maximal subwords in w formed by the generators of

H, reading w from left to right. Suppose that such a subword z goes from g to g.z̄ in

C. Replace the path labelled z by a concatenation of two edges, the first joining g to

the cone point vgH and the second running from vgH to the vertex gz in C. Repeat

for all maximal subwords. This procedure produces from w, a path w̃ in C.
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Terminology

If w is a geodesic (or λ-quasigeodesic), then w̃ is called a relative geodesic (or λ-

quasigeodesic, respectively).

A path w ∈ C is said to penetrate a coset if w̃ passes through a cone point.

A path w is without backtracking if w does not penetrate a given coset twice.

Definition 9 (Bounded Coset Penetration). The pair (G,H) is said to have bounded

coset penetration if for every λ > 0 there exists α = α(λ) > 0 with the following

property. Suppose u and v are two relative λ-quasigeodesics without backtracking

such that dC(u, v) ≤ 1. Then,

1. If u penetrates a coset X and v does not, then u travels a C-distance of at most

α in X, and

2. If both u and v penetrate a coset X, then the vertices of C at which they first

enter X are at most distance α apart in C. Similarly the vertices at which u

and v exit the coset are at most distance α apart in C.

Definition 10 (Relative hyperbolicity). A finitely generated group G is said to be

relatively hyperbolic with respect to a subgroup H if

1. the coned-off Cayley graph of G with respect to H is δ-hyperbolic for some δ ≥ 0

2. the pair (G,H) has the bounded coset penetration property.

The subgroup H is called a parabolic subgroup.

Remark. The definition of relative hyperbolicity has been proved to be independent

of the generating set. See [9], for instance.
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4.2 Proof of Theorem 35

Let a group G be hyperbolic relative to an asymptotically CAT(0) subgroup H. There

exists a geodesic space X such that all asymptotic cones of X are CAT(0) and H

acts geometrically on X. We construct a geodesic metric space Y which supports a

geometric G-action and go on to prove that all asymptotic cones of Y are CAT(0).

The space Y has been described in [8], in the special case where H is a finitely

generated free abelian group.

The space Y

Assume that the group G is hyperbolic with respect to the subgroup H. Let B be

a generating set for H such that there exists a point x0 in X which is not fixed by

any element of B. Since H acts geometrically on X such a set exists. Now choose a

generating set A for G which intersects H in B. The word metric induced on G by the

generating set A is written dA and similarly, dB denotes the word metric on H coming

from B. Note that the metric dB gives a natural choice of metric for each coset gH

of H in G. Start with the Cayley graph C for G with respect to the generating set

A. The elements of a coset gH along with all edges between them that are labelled

by B comprise a copy of the Cayley graph for H in C.

Define c = min{d(b.x0, x0) | b ∈ B}. By choice of x0, c is strictly positive. Now, for

each of the generators b in B, assign the distance d(x0, b.x0) to the edge in C that

connects the identity to b. Extend this metric to all copies of the Cayley graph of

H in C, using the action of G on itself by left multiplication. Continue to call the

Cayley graph of G as C.
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Figure 4.1: ‘The Cusped Cayley Graph’.
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The subgraph of C with vertices from the coset gH and with edges labelled by B is

denoted Z(g,H, 0). Form Z(g,H, 1) by taking Z(g,H, 0) and making each edge in

the latter a fourth of its original length. Join corresponding edges of Z(g,H, 0) and

Z(g,H, 1) with edges of length c
4
. Perform this construction on each coset of H in G.

The space obtained is denoted Y 1.

Define Y n inductively from Y n−1 by forming for every coset gH, a graph Z(g,H, n)

with edges of length 2−2n-th of the original and then gluing it to Z(g,H, n − 1) via

edges of length c/22n. Endow Y n with the natural path metric and form the metric

completion Y ∞ of
⋃
Y n. In Y ∞, each coset has a cone point which is at a distance

of
∑

2−2n < 1
2
. The graph Y ∞ is quasi-isometric to the coned off Cayley graph of G

and therefore, it is δ-hyperbolic, for some δ.

Lemma 36. Let Yg be the space obtained by performing the above construction to

all cosets of H other than gH. There exists ρ > 0 such that for all x and y in gH,

dgH(x, y) ≤ ρdYg(x, y).

The lemma is largely a consequence of the property of Bounded Coset Penetration.

Lemma 37. There exists a k ≥ 0 such that each of the graphs Z(g,H, k) is isomet-

rically embedded in Y k.

Proof of Lemma 37. Let C(g,H) denote the union of the Z(g,H, j)’s for j = 1, . . . , k,

along with all the edges of length c/22j that join a Z(g,H, j−1) to Z(g,H, j). Suppose

there exists a pair u, v ∈ Z(g,H, k) such that the geodesic γ joining them does not

lie completely in Z(g,H, k). Then, this geodesic must leave the set C(g,H).
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Let x be the point at which γ leaves C(g,H) and y denote the point at which it re-

enters C(g,H). Let x1 and y1 be the points at which γ exits Z(g,H, k) and re-enters

Z(g,H, k). By construction, the part of γ between u and x is made of the edges of

length c/22j that join a Z(g,H, j − 1) to Z(g,H, j) and the same applies to the part

of γ between y and v. Therefore, dgH(x, y) = 22kdZ(g,H,k)(x1, y1). Moreover, by the

previous Lemma,

dYg(x, y) +
c

2
≤ dZ(g,H,k)(x1, y1) =

dgH(x, y)

22k
≤ ρ

dYg(x, y)

22k
.

This implies that ρ
22k − 1 > 0. Therefore, k = [ log2 ρ

2
] + 1 is the required constant.

This proves the Lemma.

Choose k large enough such that each of the graphs Z(g,H, k) is isometrically embed-

ded in Y k. Such a k exists by Lemma 37. Let CH denote a copy of the Cayley graph

of H in C. With C perturbed as described before, there is a natural embedding µ of

CH into X such that for all g ∈ G and b ∈ B, the vertex g of CH maps to the point

gx0 and the edge (g, gb) of CH maps isometrically to a geodesic joining gx0 to gbx0.

Glue a copy of X to every copy of CH in Y k via the embedding µ, rescaling metrics

involved by 22k. Denote the resulting space by Y . Let Ξ denote the collection of X’s

that are adjoined to C. Since each of the graphs Z(g,H, k) is isometrically embedded

in Y , the same is true for every element of Ξ. Moreover, the left action of G on itself

induces a natural action of G on Y by isometries.

The action of H on X is cocompact and so we deduce that the action of G on Y is

co-compact. Indeed, the quotient of Y by the action of G comprises the standard
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1-complex of G corresponding to the generating set A and a concatenation of k edges

emanating from the unique vertex of the 1-complex and terminating in the compact

space X/H. At each vertex other than the initial and terminal ones in the aforesaid

path of k edges, is a suitably rescaled copy of the standard 1-complex of H with

respect to the generating set B. An element of G either fixes a C(g,H) or else maps

it to a different one. Therefore, the properness of the action of H on X implies that

the action of G on Y is proper.

The Asymptotic Cones of Y

In order to describe the asymptotic cones of Y , we have to introduce ‘tree graded’

spaces.

Definition 11. Let M be a complete geodesic space and let P be a collection of closed

geodesic subsets (called pieces) of M . Then, M is said to be tree graded with respect

to P if the following two properties are satisfied:

1. Two different pieces have at most one common point.

2. Every simple geodesic triangle (a simple loop composed of three geodesics) in M

is contained in one piece.

One characterisation of relative hyperbolicity is via tree graded asymptotic cones.

Theorem 38 (Theorem 1.11 in [7]). A finitely generated group G is relatively hyper-

bolic with respect to H if and only if every asymptotic cone Coneω(G) is tree-graded

with respect to ω-limits of sequences of cosets of the subgroup H.
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Let ω be a non-principal ultrafilter and (an), a sequence of positive real numbers such

that limn→∞ an = 0. Choose for each n ∈ N, a point pn ∈ Y .

Recall that Ξ is the collection of the different copies of X that are attached to

C. Set X = {Coneω(Z) | Z ∈ Ξ}, where Coneω(Z) refers to the ω-limit of Z in

Coneω(Y, (an), (pn)).

Claim. The asymptotic cone Yω := Coneω(Y, (an), (pn)) is tree graded with respect

to X .

The fact that Yω is a complete geodesic space follows from Lemmas 50 and 51.

As the action of G on Y is proper and co-compact, G is quasi-isometric to Y . But

by the above theorem, G is asymptotically tree graded with respect to the cosets of

H. Theorem 5.1 in [7] states that the property of being asymptotically tree-graded

is preserved under quasi-isometries. It follows, that Y is asymptotically tree-graded

with respect to X .

Lemma 39. The space Yω is CAT(0).

Proof. The asymptotic cone Yω is tree-graded with respect to X and by hypothesis,

each piece is CAT(0). We know that every simple triangle in Yω is contained in a

piece. Hence, we may assume that our triangle ABC in Yω has the form A′B′C ′ ∪

AA′ ∪ BB′ ∪ CC ′, where A′B′C ′ is a geodesic triangle that lies in some piece of the

asymptotic cone while AA′, BB′ and CC ′ are simply geodesics.

We will use the ‘Bruhat-Tits’ inequality for CAT(0) spaces. This says that a geodesic
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Figure 4.2: A generic triangle in Yω.

space M is CAT(0) if and only if for all triples (p, q, r) ∈ M3 and all m ∈ M with

d(q,m) = d(m, p) = d(p, q)/2, we have

d(p, q)2 + d(q, r)2 ≥ 2d(m, p)2 + d(q, r)2/2.

To show that the triangle ABC satisfies the CAT(0) property, take M to be the

midpoint of the side BC. The case when M lies on the geodesic BB′ or the geodesic

CC ′ is trivial. So assume that M ∈ B′C ′. There is a comparison triangle A′1B
′
1C
′
1

with comparison point M1 on B′1C
′
1 for M . Since each piece of the asymptotic cone

is CAT(0) we have d(A′,M) ≤ d(A′1,M1).

Let ĀB̄C̄ be a comparison triangle for ABC with comparison point M̄ for M . Let

a = d(A′, B′), b = d(A′, C ′), c = d(B′, C ′), x = d(M,B′), r = d(A,A′), p = d(B,B′),
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q = d(C,C ′), h = d(Ā, M̄) and h′ = d(A′1,M1). We know that d(A,M) = d(A,A′) +

d(A′,M) ≤ h′ + r. Hence it suffices to prove that h′ + r ≤ h.

Case 1. The value of r is 0.

Note that x = (c+ q − p)/2, so using the Cosine Law,

h′2 = a2 +

(
c+ q − p

2

)2

−
(
a2 + c2 − b2

c

)(
c+ q − p

2

)
=

2a2 + 2b2 − c2

4
+

(q − p)2

4
+

(
q − p

2

)(
b2 − a2

c

)
.

On the other hand,

h2 =
2(a+ p)2 + 2(b+ q)2 − (c+ q + p)2

4

=
2a2 + 2b2 − c2

4
+

(q − p)2

4
+

4ap+ 4bq − 2pc− 2cq

4
.

h2 − h′2 =
4ap+ 4bq − 2pc− 2cq

4
−
(
q − p

2

)(
b2 − a2

c

)
=
p(b2 − (a− c)2) + q(a2 − (b− c)2)

2c
.

That the final expression is non-negative is a consequence of the triangle inequality

for A′B′C ′.

Case 2. The value of r is not zero.

By case 1 the result holds for the triangle A′BC. Now, let α = d(A′, B), β = d(A′, C)

and γ = d(B,C). Further, set α′ = α + r and β′ = β + r.

Then,

h′ + r =

√
2α2 + 2β2 − γ2

4
+ r, and h =

√
2α′2 + 2β′2 − γ2

4
.
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Manipulating the above two expressions, one reduces the inequality h′ + r ≤ h to√
2α2 + 2β2 − γ2 ≤ α + β or equivalently to (α + β)2 − γ2 ≤ 0. This again is a

consequence of the triangle inequality. This proves that Yω is CAT(0).

The proof of the lemma completes the proof of Theorem 35.

Systolic groups with Isolated Flats

As a corollary to Theorem 35, we obtain that systolic groups with isolated flats are

asymptotically CAT(0).

Definition 12. A simplicial complex is said to be flag if every finite set of vertices

pairwise connected by edges spans a simplex. A simplicial complex X is said to be

6-large if it is flag and every cycle of length 4 or 5 has a diagonal. A simplicial

complex X is said to be systolic if it is connected, simply connected and the link of

every non-empty simplex in X is 6-large.

A two dimensional flat in a systolic complex X is a subcomplex F which is isomorphic

to the triangulation of R2 by congruent equilateral triangles. There is no systolic

triangulation of Rn for n ≥ 3 (see [15]) and so one does not consider flats of dimension

more than 2. Two flats in a systolic complex are considered to be equivalent if they

are at finite Hausdorff distance to one another.

A cocompact systolic complex X has isolated flats property if there exists a function

ψ : N→ N such that the c-neighbourhood of any flat F intersects the c-neighbourhood

of a non-equivalent flat F ′ over a diameter of at most ψ(c).

The main theorem about systolic groups with isolated flats is the following.
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Theorem 40. (Theorem B in [25]) Let X be a systolic complex with the Isolated Flats

Property and G a group acting geometrically on X. Then the group G is relatively

hyperbolic with respect to a family of maximal virtually abelian subgroups of rank 2.

The above theorem, together with Theorem 35 implies the corollary below.

Corollary 41. Let X be a systolic complex with the Isolated Flats Property and G,

a group acting cocompactly and properly discontinuously on X. Then the group G is

asymptotically CAT(0).

Question 42. Are all systolic groups, asymptotically CAT(0)?
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CHAPTER 5

THE UNIVERSAL COVER OF PSL(2,R)

5.1 Geometry of Unit Tangent Bundles

In this section we describe the geometry of ˜PSL(2,R) which is a Riemannian manifold

with the additional structure of a Lie group. It is well known that PSL(2,R) acts on

the hyperbolic plane by Mobius transformations. This action can be used to identify

the group with the unit tangent bundle T 1(H2) of the hyperbolic plane. The universal

cover of the latter is then ˜PSL(2,R).

It is possible to give the tangent bundle TM of a Riemannian manifold M a Rieman-

nian metric. There is therefore an induced Riemmanian metric on the unit tangent

bundle T 1(M) of M . Unit tangent bundles of Riemannian manifolds have been stud-

ied in some detail by Sasaki in [21] and [22].

Convention In this section alone, the word ‘geodesic’ will refer to curves in a Rie-

mannian manifold with constant speed parametrization. More precisely, if M is a

Riemannian manifold and ∇ is its Riemannian connection, then a geodesic in M is a

curve γ such that ∇ dγ
dt

dγ
dt

= 0.
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The Sasaki metric on T (M)

Let M be an n-dimensional Riemannian manifold and let TM be its tangent bundle.

Consider the projection π : TM → M that sends a point θ = (x, v) in TM to the

point x ∈ M . The map π is a Riemannian submersion. The kernel V (θ) of its

differential is made of vectors in TθTM that are tangent to the fibre Tx(M) at x.

These vectors are said to be ‘vertical’. On the other hand, the vectors which are

orthogonal to the fibre at x are the ‘horizontal’ vectors. These are denoted H(θ) and

more formally, they form the kernel of the covariant map.

A curve σ in TM is given by the pair (α(t), v(t)), where α is a path in M and v(t) is a

vector field along α. If V is an element of TθTM , then V comes from an infinitesimal

path σ : (−ε, ε) → TM , which satisfies σ′(0) = V . One may now compute the

covariant derivative of the vector field v(t) along α′. This measures the rate at which

v(t) varies from the tangent vector to the curve α.

The covariant map Kθ at the point V is defined to be (∇α′v)(0), where ∇ denotes

the Riemannian connection of M . One can show that H(θ) is precisely the kernel of

the covariant map, that the linear map dθπ gives an isomorphism of TxM with H(θ)

while Kθ gives a linear isomorphism of V (θ) with TxM . Moreover, the vector space

TθTM is a direct sum of H(θ) and V (θ).

One defines the Sasaki metric 〈〈., .〉〉θ on TθTM so that these two components are

orthogonal. For V and W in TθTM ,

〈〈V,W 〉〉θ := 〈dθπ(V ), dθπ(V )〉x + 〈Kθ(V ), Kθ(V )〉x .
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Note that a curve σ(t) = (α(t), v(t)) in TM is horizontal if its tangent vector is hori-

zontal, which is the same as saying that the vector field v(t) is the parallel transport

of its initial vector along α(t).

The collection of unit tangent vectors T 1(M) is a Riemannian subspace of TM with

the induced Riemannian metric.

Geodesics in T 1(H2)

We will now describe the geodesics of the unit tangent bundle of the hyperbolic plane,

endowed with the induced Sasaki metric. The account in this paragraph follows

Sasaki’s work from [22].

A curve Γ on T 1(H2) is a unit vector field y(σ) along a curve x(σ) = π(Γ) in H2, where

σ is the arc length of Γ. Let x′ denote dx
dσ

and ∇ denote the Riemannian connection of

H2. (We work throughout with the upper half plane model of the hyperbolic plane).

Then 〈〈Γ′,Γ′〉〉 = 1, which is equivalent to

〈x′, x′〉+ 〈∇x′y,∇x′y〉 = 1.

Putting c2 = 〈∇x′y,∇x′y〉 we have 〈x′, x′〉 = 1 − c2 and 0 ≤ c ≤ 1. The conditions

for Γ to be a geodesic in T 1(H2) are that c is a constant and x(σ) and y(σ) satisfy

the differential equations

x′′ = by − a∇x′y, ∇x′∇x′y = −c2y.

where a = 〈x′, y〉 and b = 〈x′,∇x′y〉.

Using c, one may characterize the geodesics in T 1(H2) into the following types:
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1. Horizontal type or c = 0: In this case, ∇x′y = 0 and so Γ is a horizontal geodesic

in the unit tangent bundle. Its corresponding π image in the hyperbolic plane

is also a geodesic.

2. Vertical type or c = 1: In this case the image of Γ under π is a point and the

geodesic Γ is a great circle that lives entirely in the fibre above that point.

3. Oblique type or 0 < c < 1 : See below.

Geodesics of Oblique type

Definition 13. An equidistant curve is the locus of points which lie at a constant

distance from a given geodesic.

Let T , N denote the unit tangent vector and the principal normal vector of x in H2; let

κ be the curvature of x and s, its arclength. Then, ds
dσ

=
√

1− c2 and x′ =
√

1− c2T

while x′′ = (1 − c2)κN . One can show that (1 − c2)2κ2 = c2 and so κ is always

constant. Hence, x is an equidistant curve, a horocycle or a circle in the hyperbolic

plane, depending on whether κ2 is less than 1, equal to 1 or greater than 1.

In [22], Sasaki shows that the vector field component y has the form

y(σ) = cos 2cσT (σ)− sin 2cσN(σ).

Observe that the vector field y has period π
c
.

Length in ˜PSL(2,R)

Assume that c ∈ ( 1√
2
, 1). Then the projection of a T 1(H2)-geodesic is a proper circle.

Consider the following configuration of points in the upper half plane: P = (0, 1),
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Q = (0, eD) and M is the midpoint of the geodesic joining P and Q. Note that

d(P,Q) = D while M = (0, e
D
2 ).

Consider the geodesic in the upper half plane which passes through M and is perpen-

dicular to the y-axis at M . Every point on this semi-circle corresponds to the center

of a circle that passes through the points P and Q. Fix such a point C.

Let θ denote the angle PCM and L = d(C,P ). The hyperbolic sine law implies that

sinhL = sinhD/2
sin θ

. Moreover the circumference of a circle in the upper half plane of

radius L is given by 2π sinhL. Hence the length of the arc of the circle at C subtended

by the angle PCQ is given by
2θ sinh D

2

sin θ
. Therefore, for θ ∈ (0, π), a geodesic in T 1(H2)

covering the arc from P to Q has length
2θ sinh D

2√
1−c2 sin θ

.

Using all previous relations for c, we deduce that this length is the same as

2√
2c2 − 1

Arcsin

(√
2c2 − 1

1− c2
sinh

D

2

)
,

where Arcsin is the continuous version of arcsin, taking all values between −∞ to

+∞. More precisely, for any real number x, we have

Arcsin(x) =
(2k − 1)π

2
+ arcsin (x− (2k − 1)).

where k = [x−1
2

]. Denote this length by l.

Geodesics in ˜PSL(2,R)

Fix a section of the hyperbolic plane in ˜PSL(2,R) so that parallel transport of tangent

vectors along vertical geodesics in the upper half plane preserve the section. With

respect to this section, any point in ˜PSL(2,R) maybe given in the form (P, r), where
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P is a point in the hyperbolic plane and r is a real number. Suppose that a geodesic

between P̃ = (P, r) and Q̃ = (Q, s) projects to a geodesic of length l, as above in

T 1(H2). Since the corresponding vector field has period π
c
, we deduce that |s− r| =

l
π/c

. Hence, any geodesic in T 1(H2) that lifts to a geodesic between P̃ and Q̃ must

satisfy

|s− r| = 2c

π
√

2c2 − 1
Arcsin

(√
2c2 − 1

1− c2
sinh

D

2

)
.

Call this function φD(c).

To understand geodesics in ˜PSL(2,R), one has to study the function φD. From the

definition of Arcsin, it follows that limc→1− φD(c) =∞. On the other hand, since for

sufficiently small values of x, Arcsin may be approximated by x, we have

lim
c→ 1+√

2

φD(c) =
2

π
sinh

D

2
.

The function φD for fixed D is monotonic for values of c bounded away from 1√
2
.

Close to 1√
2
, the function is oscillatory, with the number of oscillations depending on

the value of D. However, for every value of D, there are only finitely many pre-images

corresponding to a given function value.

Observation 43. The length of the distance-minimising geodesic joining P̃ and Q̃

is given by π
x
|s− r|, where x is the largest value of c that satisfies φD(c) = |s− r|.

5.2 Asymptotic Cones of ˜PSL(2,R)

Theorem 44. There exists a (1, π)-quasi-isometry from ˜PSL(2,R) to H× R.
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Proof. The proof exploits the structure of ˜PSL(2,R) as a Riemannian manifold. We

saw that the action of PSL(2,R) on the hyperbolic plane by Mobius transformations

gives an identification of PSL(2,R) with the unit tangent bundle T 1(H2) of H2. Thus,

˜PSL(2,R) is the universal cover of T 1(H2). One uses the Sasaki metric to make the

tangent bundle of H2 into a Riemannian manifold. The Riemannian metric on T 1(H2)

is the induced Sasaki metric. Let π : ˜PSL(2,R)→ H2 denote the canonical projection

of ˜PSL(2,R) onto the hyperbolic plane.

We now describe an identification of ˜PSL(2,R) with H2 × R. Fix a base point ∗

on H2 and a reference unit vector v ∈ T 1
∗ (H2). For any curve α ∈ H2, denote by

Pα(w), the parallel transport of a vector w along α. Using (∗, v), form a section s

of T 1(H2) → H2 as follows: given x ∈ H2, let γ be the unique geodesic joining ∗ to

x in the hyperbolic plane. Define s(x) = (x, Pγ(v)). Since H2 is simply connected,

the section s lifts to a section s̃ of H2 to ˜PSL(2,R). With this global section, one

can describe a point P in ˜PSL(2,R) with an ordered pair (π(P ), θ(P )) ∈ H2 × R,

where π(P ) is the projection of P to H2 and θ(P ) is the distance of P from s̃(π(P ))

in ˜PSL(2,R).

We know that a geodesic in ˜PSL(2,R) projects, via the map π, to one of the following:

a point, an H2-geodesic or an arc of a proper circle, a horocycle or an equidistant curve.

Since a ˜PSL(2,R)-geodesic η is simply a vector field along the projection η̄ := π(η),

the general form of a geodesic joining two points, P and Q (which are identified with

(π(P ), θ(P )) and (π(Q), θ(Q)) respectively) is given by η(t) = (η̄(t), Pη̄(w) + tcη),

where w is the initial vector of η and |cη| ≤ 1 is the rate of rotation of w along η̄.
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Let η be a distance-minimising geodesic in ˜PSL(2,R) from P to Q. We may assume,

without loss of generality that θ(Q) ≥ θ(P ). The length l(η) in the Sasaki metric is

given by

l(η) =
√
l(η̄)2 + (θ(Q)− θ(P )− Pη̄(w))2.

Observe that if the points P and Q are joined by the minimal length curve α in

˜PSL(2,R) whose projection in H2 is the geodesic joining π(P ) and π(Q), then l(η) ≤

l(α), and

l(α) =
√
d(π(P ), π(Q))2 + (θ(Q)− θ(P ))2.

On the other hand, |Pη̄(w)| ≤ π, which implies that if θ(Q) − θ(P ) ≥ π then the

length of η is at least
√
l(η̄)2 + (θ(Q)− θ(P )− π)2.

Let d = d(π(P ), π(Q)), r = θ(Q) − θ(P ), L = l(η) and D =
√
d2 + r2. Note

that D is the distance between the images of P and Q in H2 × R, while L is the

distance between them in ˜PSL(2,R). As the length L = l(η) of η is no larger than√
d(π(P ), π(Q))2 + (θ(Q)− θ(P ))2, we deduce that L ≤ D.

If θ(Q) − θ(P ) ≤ π then by the triangle inequality, D ≤ d + r ≤ L + π. If however,

θ(Q)− θ(P ) ≥ π, then l(η) ≥
√
d(π(P ), π(Q))2 + (θ(Q)− θ(P )− π)2. So, d2 + (r −

π)2 ≤ L2 and thus, D2 ≤ L2+2πr−π2. But r ≤ L+π. Hence, D2 ≤ L2+2π(L+π)−π2

which implies that D2 ≤ (L+ π)2.

In all cases, we have L ≤ D ≤ L+ π.

Corollary 45. The asymptotic cones of ˜PSL(2,R) and H × R are isometric and

hence, ˜PSL(2,R) is asymptotically CAT(0).
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Proof. By observation 54, a (1, π)-quasi-isometry induces an isometry at the level of

asymptotic cones and so every asymptotic cone of ˜PSL(2,R) is a direct product of

the real line with the infinitely branching homogeneous R-tree.
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CHAPTER 6

CONCLUDING REMARKS

Asymptotically CAT(0) groups are a natural enlargement of the class of non-positively

curved groups. There are many interesting questions one may ask about asymptoti-

cally CAT(0) groups. In the paragraphs below, I present a selection.

Asymptotically CAT(0) graphs

The conjecture below is commonly attributed to Erdós and Pach; unfortunately, I

know no reference for it. In any case, it deserves a mention here.

Conjecture 1. The integer points in the Euclidean Plane may be connected to form

a graph which is (1, k)-quasi-isometric to the Euclidean plane.

It was proved in Section 2.2 that a graph is δ-CAT(0) if and only if it is hyperbolic.

One wonders if this is also the case with asymptotically CAT(0) graphs. I would like

to propose the following conjecture.

Conjecture 2. A graph is asymptotically CAT(0) if and only if it is δ-hyperbolic.

Observe that an affirmative answer to the second conjecture implies a negative answer

to the first. Indeed, if there exists a graph X with vertex set Z2 such that X is (1, k)-

quasi-isometric to the Euclidean plane, then all asymptotic cones of X are isometric to
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the Euclidean plane and thus CAT(0). But then, X is hyperbolic, which contradicts

the assumption that X is quasi-isometric to the Euclidean plane.

More generally, one may ask, under what conditions are simplicial complexes asymp-

totically CAT(0).

Novikov’s Conjecture for Asymptotically CAT(0) Groups

There are many different approaches by which the Novikov Conjecture may be proved

for asymptotically CAT(0) groups. One has been mentioned before: develop an

asymptotic notion of δ-bolicity so that existing techniques from [16] may be extended

to establish the conjecture.

Alternatively, one can appeal to boundary theory. Keeping in mind that asymptoti-

cally CAT (0) spaces are genuinely non-positively curved when viewed from infinitely

far away, one may define a (Tits) metric d∞ on the equivalence classes of geodesic

rays with the formula defined below.

Let c1,c2 : [0,∞)→ X be geodesic rays emanating from a point in an asymptotically

CAT(0) space X. Set

2 sin
1

2
d∞([c1], [c2]) = lim

t→∞

1

t
dX(c1(t), c2(t)).

Study properties of this boundary: does it provide an ‘EZ-structure’ for G (for

details, see [10]), where G is a group acting geometrically on X?

A coherent notion of a Tits boundary can also help one study isometries of asymp-

totically CAT(0) groups.
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Artin Groups

Some Artin groups are known to be CAT(0). Is it possible that all Artin groups are

asymptotically CAT (0)? This will prove that the word problem is solvable for Artin

groups.

Other Lie Groups

One wonders if the methods of Chapter 5 may be used to show that Lie groups other

than ˜PSL(2,R) are asymptotically CAT(0).

Recall that the universal cover of SL(2,R) can be identified with the universal cover of

the unit tangent bundle of the hyperbolic plane. Also the maximal compact subgroup

of SL(2,R) is the special orthogonal group SO(2) and π1(SO(2)) ∼= Z.

A symmetric space is a homogeneous space G/K, where G is a Lie group and H is the

maximal compact subgroup of G. A special class of symmetric spaces are the Hermi-

tian ones. These come equipped with additional structure: a Hermitian symmetric

space is a Riemannian symmetric space endowed with a parallel complex structure

compatible with the Riemannian metric. We understand Hermitian symmetric spaces

of non-compact type via the theorem below.

Theorem 46 (Theorem VIII.6.1, [13]). The non-compact irreducible Hermitian sym-

metric spaces are exactly the manifolds G/K where G is a connected noncompact sim-

ple Lie group with trivial center and K has non-discrete center and is the maximal

compact subgroup of G. Further, the center of the group K is analytically isomorphic

to the circle group.
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In view of this theorem, it can be decided immediately which of the spaces in the

classification of irreducible Riemannian symmetric spaces are Hermitian symmetric.

We list them in the table below.

Type G/K Rank Dimension

AIII SU(p, q)/S(Up × Uq), p ≥ q ≥ 1 min(p, q) 2pq

BDI SO◦(p, 2)/SO(p)× SO(2), p ≥ 3 2 2p

DIII SO∗(2n)/U(n), n ≥ 3 [n/2] n(n− 1)

CI Sp(n,R)/U(n) n n(n+ 1)

EIII (E6(−14), so(10) + R) 2 32

EVII (E7(−25), E6 + R) 3 54

We isolate the rank 1 cases of minimal dimension here. There are three; namely,

SU(1, 1), SO∗(6) and Sp(1,R). A special isomorphism identifies the group SU(1, 1)

with the group Sp(1,R). Both these groups are isomorphic to SL(2,R), which was

the object of study in Chapter 5. The group SO∗(6) is isomorphic to SU(3, 1), the

isometry group of complex hyperbolic 3-space.

In order to apply the methods of this dissertation to the Lie groups given above, one

has to describe the geodesics of their unit tangent bundles. Let M be a symmetric

space and let T 1(M) denote the unit tangemt bundle of M . Then, under the canonical

projection T 1(M) → M , geodesics in the unit tangent bundle map to curves of

constant geodesic curvature. This is proved in [17]. So the task at hand is to identify

the curves of constant curvature in the symmetric spaces listed above.
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Appendix A

ULTRAFILTERS AND ULTRALIMITS

There are different ways of defining a non-principal ultrafilter ω on a non-empty set

N . The set theoretic approach exploits the structure of the power set P(N) as a

Boolean algebra and a non-principal ultrafilter is defined to be a maximal ideal of

this Boolean algebra . In this exposé however, we will take a different approach.

A.1 Ultrafilters

Definition 14. A non-principal ultrafilter on a non-empty set N is a finitely additive

measure on P(N) with values in {0, 1} such that every finite subset of N is null.

The existence of non-principal ultrafilters is a non-trivial fact that involves Zorn’s

Lemma. Hence, one cannot produce explicit examples of non-principal ultrafilters. In

the following paragraph we give an outline of the proof that non-principal ultrafilters

exist.

Let N be a set. A filter on N is a function µ : P(N)→ {0, 1} which has the following

properties:

1. µ(∅) = 0,

2. µ(N) = 1
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3. if S ⊂ T , then µ(S) ≤ µ(T )

4. if µ(S) = 1 = µ(T ), then µ(S ∩ T ) = 1.

An ultrafilter µ is a filter which has the property that for every subset S of N ,

µ(S) + µ(Sc) = 1. There are two types of ultrafilters : the principal and the non-

principal. For any element s of N , one can define an ultrafilter µs by specifying

µs(T ) = 1⇐⇒ s ∈ T . Such an ultrafilter is said to be principal; an ultrafilter which

is not principal is said to be non-principal.

The collection of all filters on a set N carry a natural ordering: µ1 ≤ µ2 if for every

S ⊂ N , µ1(S) ≤ µ2(S). A filter is an ultrafilter precisely when it is maximal under

this ordering. In addition if N is an infinite set, an ultrafilter ω is non-principal if

and only if ω ≥ m, where m(S) = 1 on a set S if and only if the complement of S is

finite.

Let F= {µ | µ is a filter on N and µ ≥ m}. This is a non-empty partially ordered

set in which every chain has a maximal element. Hence, by Zorn’s Lemma, F has a

maximal element.

Proposition 47. Let ω be a non-principal ultrafilter on N. For any bounded sequence

(an) of real numbers, there exists a unique l ∈ R such that:

for every ε > 0, ω({n ∈ N | |an − l| < ε}) = 1.

Definition 15. The number l is called the ultralimit or more specifically, the ω-limit

of the sequence (an).
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Remark 48. Ultralimits exist in more general circumstances. In the above definition,

the real line can be replaced with any metric space, whence any sequence of points in

a compact subspace of the metric space will have a unique ultralimit.

A.2 Ultralimits of Metric Spaces

We are now in a position to discuss ultralimits of metric spaces. Let (Xn, dn) be

a sequence of metric spaces and ω a non-principal ultrafilter on N. For n ∈ N, let

pn ∈ Xn.

Let Xc = {(xn) ∈
∏
Xn | (dn(xn, pn)) is a bounded sequence of real numbers}. By

definition, for any two points (xn) and (yn) ∈ Xc, (dn(xn, yn)) is a bounded sequence

of real numbers and hence by proposition 47, has an ultralimit. Define this unique

real number to be the pseudo-distance dω between the two points. The tuple (Xc, dω)

is a pseudometric space.

Identifying all points of Xc which are at ω-distance zero to each other, one obtains

a metric space (Xω, dω) which is called the ultralimit or the ω-limit of the Xn’s with

respect to the base point (an).

Notation 49. The ω-limit of a sequence (Xn, dn) with respect to base point (pn) is

written as limω(Xn, dn, (pn)) or Xω, for short. The equivalence class of a sequence

(xn) in Xω is denoted limω xn.

The following important lemma appears in many places in the literature. A proof

may be found, for example in [19].

82



Lemma 50. Ultralimits of metric spaces are complete.

Lemma 51. Any ultralimit of a sequence of geodesic metric spaces is a geodesic space.

Proof. Let Xω be the ultralimit of metric spaces (Xn, dn) with respect to a base

point (an). Let (xn), (yn) ∈ Xω. Since each Xn is geodesic there is a geodesic

γn : [0, 1] → Xn joining the points xn and yn. Define γ : [0, 1] → Xω be the map

defined by γ(t) = limω γn(t). Clearly, γ is a geodesic joining the two given points.

A.3 Asymptotic Cones

An asymptotic cone of a metric space is a special case of an ultralimit. Let (X, d)

be a metric space and ω be a non-principal ultrafilter on N. Let (an) be a sequence

of positive real numbers that tend to infinity as n tends to infinity. In the definition

of ultralimit above, for each n ∈ N, take Xn to be X and define dn to be the metric

d/an; that is, dn(x, y) = d(x, y)/an. Let (pn) be a sequence of points in X.

Definition 16. The ω-limit of the system (Xn, dn, (pn)) is called the asymptotic

cone of X with respect to the ultrafilter ω and base point (pn). It is denoted as

Coneω(X, (pn)) or as Coneω(X) or simply as Xω.

It is worth mentioning here, that the asymptotic cone of a metric space or for that

matter, any ultralimit depends on the choice of the ultrafilter. If ω 6= ω′, then

Coneω(X) may not in general, be isometric to Coneω′(X).

The canonical asymptotic cone: If the space X supports a cocompact group

action then the isometry types of its asymptotic cones do not depend on the base
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point. Let x ∈ X. Then for all sequences (xn) of points of X, Coneω(X, (xn), (an)) is

isometric to Coneω(X, (x), (an)). So we will refer to the asymptotic cone of a space

X with respect to the ‘constant’ sequence base point, as the canonical asymptotic

cone of X for the given choice of sequence (an) and ω.

Lemma 52. Let V be a finite dimensional real Banach Space. Then every asymptotic

cone of V is canonically isomorphic to V .

Proof. We may assume that the base point is at (0). Define a map φ : V → Coneω(V )

such that φ(v) = (anv). Observe that φ is a one-one map.

Now let (vn) be an element of Coneω(V ). There exists a constant r > 0 such that

||vn||/an ≤ r. In other words, the vectors vn
an

are all contained in the closed ball B

of radius r in V . But as V is finite dimensional, B is compact. Consequently, the

sequence ( vn
an

) has an ultralimit in B. Set v = limω
vn
an

. Clearly, φ(v) = (vn).

A.4 Asymptotic Cones and Quasi-isometries

Definition 17. Let f : X → Y be a map of metric spaces. If there exist constants

λ ≥ 1 and ε ≥ 0 such that 1
λ
d(x, x′) − ε ≤ d(f(x), f(x′)) ≤ λd(x, x′) + ε, for all

x and x′ ∈ X, then f is called a (λ, ε)-quasi-isometric embedding of X into Y . If

moreover f(X) is quasi-dense in Y , that is, there exists a constant c ≥ 0 such that

d(y, f(X)) ≤ c for all y ∈ Y , then f is called a quasi-isometry.

Observation 53. A (λ, ε)-quasi-isometry induces a bi-Lipschitz homeomorphism at

the level of asymptotic cones.
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Proof. Let f : X → Y be a quasi-isometry between metric spaces, with associated

constants λ, ε and c, as above. Let ω be a non-principal ultrafilter and (an) a sequence

of positive real numbers such that limn→∞ an =∞. Let (pn) be a sequence of points

from X.

Set Xω = Coneω(X, (an), (pn)) and Yω = Coneω(Y, (an), (f(pn))). The function f

induces a map F : Xω → Yω, defined by limω xn 7→ limω f(xn). Observe that if

(xn) denotes an equivalence class in Xω, then d(xn, pn)/an is a bounded sequence of

real numbers. Since f is a quasi-isometry, it follows that d(f(xn), f(pn))/an is also

bounded and so the map F is well-defined.

Now let limω xn and limω x
′
n be elements of Xω. Then, for every n ∈ N, we have

1

λ

d(xn, x
′
n)

an
− ε

an
≤ d(f(xn), f(x′n))

an
≤ λ

d(xn, x
′
n)

an
+

ε

an
. This implies that

1

λ
dω(lim

ω
xn, lim

ω
x′n) ≤ dω(F (lim

ω
xn), F (lim

ω
x′n)) ≤ λdω(lim

ω
xn, lim

ω
x′n).

The function f has a ‘quasi-inverse’, g : Y → X, which is a (λ′, ε′) quasi-isometric

embedding. Moreover, there exists a constant k ≥ 0 such that d(gf(x), x) ≤ k and

d(fg(y), y) ≤ k, for all x ∈ X and for all y ∈ Y . The function g induces a map

G : Yω → Xω at the level of asymptotic cones. As before, every pair (limω yn, limω y
′
n)

of points from Yω satisfies

1

λ′
dω(lim

ω
yn, lim

ω
y′n) ≤ dω(G(lim

ω
yn), G(lim

ω
y′n)) ≤ λ′dω(lim

ω
yn, lim

ω
y′n).

Moreover, GF (x) = x for all x ∈ Xω and FG(y) = y for all y ∈ Yω.

We conclude from the above discussion that F is a bilipschitz homeomorphism be-

tween Xω and Yω.
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Observation 54. A (1, ε)-quasi-isometry satisfies the hypotheses of Lemma 17 and

thus induces an isometry at the level of asymptotic cones.
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Appendix B

NOVIKOV’S CONJECTURE

Novikov’s Conjecture on Higher Signatures is about homotopy invariants for closed

orientable manifolds. In the nineteen fifties, Hirzebruch defined the L-class L(M)

for a manifold M . This is a special element of the ring ⊕i≥0H
4i(M,Q) and its i-th

component is written Li. Hirzebruch showed that if M is a 4k-dimensional manifold

and [M ] denotes the fundamental class of M , then evaluating Lk against [M ] produces

the signature of M . This is the well-known Signature Theorem. The signature of

M is known to be a homotopy invariant. Novikov’s Conjecture involves the other

components of the L-class.

One wants to investigate the rational numbers given by 〈x ∪ Li, [M ]〉, for all x ∈

Hn−4i(M), where n is the dimension of M . Novikov proved in [24] that if n = 4k+ 1

and x ∈ H1(M), then these numerical expressions are indeed homotopy invariants

and subsequently, proposed his conjecture.

Let G be a discrete group and BG its classifying space. In other words, BG is a CW-

complex with contractible universal covering and with fundamental group isomorphic

to G. Let f : M → BG be a continuous map from a closed oriented n-dimensional

manifold M to BG, and x ∈ Hn−4i(BG; Q).

The rational numbers 〈f ∗(x) ∪ Li(M), [M ]〉 obtained for all possible choices of f and
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x are the higher signatures of M . Novikov conjectured that the higher signatures are

homotopy invariant; this means, given any f and x as above and g : N → M , an

orientation-preserving homotopy equivalence, we have

〈f ∗(x) ∪ Li(M), [M ]〉 = 〈g∗(x) ∪ Li(N), [N ]〉 .

The work of Mishchenko, Kasparov and Connes showed that if the Baum-Connes

assembly map

µG : KG
∗ (BG)→ K∗(C

∗
r (G))

is rationally injective then Novikov’s Conjecture is true for G. Here, KG
∗ (BG) denotes

the equivariant K-homology of G and K∗(C
∗
r (G)) is the K-theory of the reduced C∗-

algebra of G. In [16], the authors adopt this route to prove Novikov’s Conjecture

for groups acting geometrically on weakly geodesic, δ-bolic metric spaces of bounded

coarse geometry.

We refer the reader to [11] for detailed references to Novikov’s Conjecture.
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