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ABSTRACT

We consider statistical procedures for feature selection defined by a family of regu-

larization problems with convex piecewise linear loss functions and penalties of l1 or l∞

nature. For example, quantile regression and support vector machines with l1 norm penalty

fall into the category. Computationally, the regularization problems are linear program-

ming (LP) problems indexed by a single parameter, which are known as ‘parametric cost

LP’ or ‘parametric right-hand-side LP’ in the optimization theory. Their solution paths can

be generated with certain simplex algorithms. This work exploits the connection between

the family of regularization methods and the parametric LP theory and lays out a general

simplex algorithm and its variant for generating regularized solution paths for the feature

selection problems. The significance of such algorithms is that they allow a complete ex-

ploration of the model space along the paths and provide a broad view of persistent features

in the data. The implications of the general path-finding algorithms are outlined for various

statistical procedures, and they are illustrated with numerical examples.
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CHAPTER 1

INTRODUCTION

Regularization methods cover a wide range of statistical procedures for estimation and

prediction, and they have been used in many modern applications. To name a few, examples

are ridge regression (Hoerl and Kennard; 1970), the LASSO regression (Tibshirani; 1996),

smoothing splines (Wahba; 1990), and support vector machines (SVM) (Vapnik; 1998).

Given a training data set, {(yi, xi) : xi ∈ X , yi ∈ Y ; i = 1, · · · , n} and a feature

space F , many statistical problems can be phrased as the problem of finding a functional

relationship between the covariates, x ∈ X , and the response y ∈ Y within F based

on the observed pairs. For example, a regularization method for prediction looks for a

model f(x; β) ∈ F with unknown parameters β that minimizes a prediction error over

the training data while controlling its model complexity. To be precise, let L(y, f(x; β))

be a convex loss function for the prediction error and J(f(x; β)) be a convex penalty

functional that measures the model complexity. The training error with respect to L is

defined by L(Y , f(X; β)) := 1
n

∑n
i=1 L(yi, f(xi; β)), where Y := (y1, · · · , yn)′ and

X := (x′1, · · · , x′n)′. Formally, the solution to a regularization problem is defined to be

f with the model parameters β̂ that minimize:

L(Y , f) + λ · J(f), (1.1)
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where λ ≥ 0 is a pre-specified regularization parameter. The λ determines the trade-off

between the prediction error and the model complexity, and thus the quality of the solution

highly depends on the choice of λ. Identification of a proper value of the regularization

parameter for model selection or a proper range for model averaging is a critical statistical

problem. Note that β̂(λ) is a function of λ. As in (1.1), each regularization method defines

a continuum of optimization problems indexed by a tuning parameter. In most cases, the

solution as a function of the tuning parameter is expected to change continuously with λ.

This allows for the possibility of complete exploration of the model space as λ varies, and

computational savings if (1.1) is to be optimized for multiple values of λ.

Alternatively, the regularization problem in (1.1) can be formulated to bound the model

complexity or the penalty. In this complexity-bounded formulation, the optimal parameters

are sought by minimizing:

L(Y , f) s.t. J(f) ≤ s, (1.2)

where s is an upper bound of the complexity.

For a certain combination of the loss L and the complexity measure J , it is feasible to

generate the entire solution path of the regularization problem. Here, the path refers to the

entire set of solutions to the regularization problem, for instance, β̂(λ) in (1.1) as a function

of λ (or β̂(s) in (1.2) as a function of s). Some pairs of the loss and the complexity are

known to allow such fast and efficient path finding algorithms; for instance, LARS (Efron

et al.; 2004), the standard binary SVM (Hastie et al.; 2004), the multi-category SVM (Lee

and Cui; 2006), and the l1-norm quantile regression (Li and Zhu; 2008). Rosset and Zhu

(2007) study general conditions for the combination of L and J such that solutions indexed
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by a regularization parameter are piecewise linear and thus can be sequentially character-

ized. They provide generic path-finding algorithms under some appropriate assumptions

on L and J .

In this thesis, we focus on an array of regularization methods aimed for feature selection

with penalties of l1 nature and piecewise linear loss functions. Many existing procedures

are subsumed under this category. Examples include the l1-norm SVM (Zhu et al.; 2004)

and its extension to the multi-class case (Wang and Shen; 2006), l1-norm quantile regres-

sion (Li and Zhu; 2008), Sup-norm multi-category SVM (Zhang et al.; 2006), the functional

component selection step (called “θ-step”) for structured multi-category SVM (Lee et al.;

2006), and the Dantzig selector (Candes and Tao; 2007). We also note that the ε-insensitive

loss in the SVM regression (Vapnik; 1998) and relative absolute loss (also called relative

absolute error in Narula and Wellington (1977)) fit into the category of a piecewise linear

loss, and the sup norm gives rise to a linear penalty just as the l1 norm in general.

There is a great commonality among these methods. That is, computationally the asso-

ciated optimization problems are all linear programming (LP) problems indexed by a single

regularization parameter. This family of LP problems are known as the parametric cost lin-

ear programming and have long been studied in the optimization theory. Furthermore, there

already exist efficient algorithms for the solution paths. Despite the commonality, so far,

only case-by-case treatments of some of the problems are available as in Zhu et al. (2004);

Li and Zhu (2008) and Wang and Shen (2006). Although Wang and Shen (2006) no-

tice that those solution path algorithms have fundamental connections with the parametric

right-hand-side LP (see (2.6) for the definition), such connections have not been adequately

3



explored for other problems with generality. As noted, Rosset and Zhu (2007) have a com-

prehensive take on the computational properties of regularized solutions, however they did

not tap into the LP theory for general treatments of the problems of our focus.

The goal of this thesis is to make the link between the parametric LP and a family of

computational problems arising in statistics for feature selection via regularization more

explicit and put those feature selection problems in perspectives. To this end, we pull to-

gether results from the linear programming literature and summarize them in an accessible

and self-contained fashion.

Chapter 2 begins with an overview of the standard LP and parametric LP problems,

gives a brief account of the optimality conditions for their solutions, and then introduces the

simplex algorithm and the tableau-simplex algorithm for finding the entire solution paths

of the parametric LP problems. Chapter 3 describes various examples of LP for feature

selection, paraphrasing their computational elements in the LP terms. More computational

issues including tableau simplification and a detailed comparison of the simplex algorithm

with the existing algorithm for the l1-norm SVM (Zhu et al.; 2004) are given in Chapter

4 highlighting the generality of the proposed approach. Numerical examples and data ap-

plication of the algorithm follow in Chapter 5 for illustration. Technical proofs except for

the key theorems and a description of the R package developed for generating LP solution

paths, lpRegPath, are collected into Appendices.

4



CHAPTER 2

LINEAR PROGRAMMING

Linear programming (LP) is one of the cornerstones of the optimization theory. Since

the publication of the simplex algorithm by Dantzig in 1947, there has been a wide range

of applications of LP in operation research, microeconomics, business management, and

many other engineering fields. For statistical applications, Wagner (1959) pointed out that

LP can be used to solve the least absolute deviation problem (also known as median re-

gression) and the least maximum deviation problem. Fisher (1961) further described the

mathematical LP formula for least absolute deviation method and suggested several ways

to add extra systematic constraints to the method.

We give an overview of LP here and describe the optimality conditions of the LP solu-

tion pertinent to our discussion of path-finding algorithms. The conditions are well known

in the optimization literature, but we include them and their proofs for completeness. Our

treatment of LP closely follows that in standard references such as Bertsimas and Tsitsiklis

(1997) and Murty (1983). The readers are referred to them and references therein for more

complete discussions.
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2.1 Standard Linear Programs

A standard form of LP is




min
z ∈ RN

c′z

s.t. Az = b
z ≥ 0,

(2.1)

where z is an N -vector of variables, c is a fixed N -vector, b is a fixed M -vector, and A is

an M ×N fixed matrix. Without loss of generality, it is assumed that M ≤ N and A is of

full row rank. Standard techniques for solving LP include simplex method, dual simplex

method, tableau method, and interior point methods.

Geometrically speaking, the standard LP problem in (2.1) searches the minimum of

a linear function over a polyhedron whose edges are defined by hyperplanes. Therefore,

if there exists a fixed solution for the LP problem, at least one of the intersection points

(formally called basic solutions) of the hyperplanes should attain the minimum. For formal

discussion of the optimality, a brief review of some terminologies in LP is provided. Let

N denote the index set {1, · · · , N} of the unknowns, z, in the LP problem in (2.1).

Definition 1 A set B∗ := {B∗
1 , · · · , B∗

M} ⊂ N is called a basic index set, if AB∗ :=

[AB∗1 , · · · , AB∗M ] is invertible, where AB∗i is the B∗
i th column vector of A for i ∈ B∗. AB∗

is called the basic matrix associated with B∗. Correspondingly, a vector z∗ ∈ RN is called

the basic solution associated with B∗, if z∗ satisfies
{

z∗B∗ := (z∗B∗1 , · · · , z∗B∗M )′ = A−1
B∗b

z∗j = 0 for j ∈ N \ B∗.

Definition 2 Let z∗ be the basic solution associated with B∗.

• z∗ is called a basic feasible solution if z∗B∗ ≥ 0;

• z∗ is called a non-degenerate basic feasible solution if z∗B∗ > 0;
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• z∗ is called a degenerate basic feasible solution if z∗B∗ ≥ 0 and z∗B∗i = 0 for some

i ∈M := {1, · · · ,M};

• z∗ is called an optimal basic solution if z∗ is a solution of the LP problem.

Since each basic solution is associated with its basic index set, the optimal basic solu-

tion can be identified with the optimal basic index set as defined below.

Definition 3 A basic index set B∗ is called a feasible basic index set if A−1
B∗b ≥ 0. A

feasible basic index set B∗ is also called an optimal basic index set if
[

c−A′ (A−1
B∗

)′
cB∗

]
≥ 0.

The following theorem indicates that the standard LP problem can be solved by finding

the optimal basic index set (see Bertsimas and Tsitsiklis (1997) Theorem 3.1 for a more

complete version).

Theorem 4 For the LP problem in (2.1), let z∗ be the basic solution associated with B∗,

an optimal basic index set. Then z∗ is an optimal basic solution.

Proof We need to show c′z ≥ c′z∗ or c′(z−z∗) ≥ 0 for any feasible vector z ∈ RN with

Az = b and z ≥ 0. Denote d := (d1, · · · , dN) := (z − z∗). From

Ad = AB∗dB∗ +
∑

i∈N\B∗
Aidi = 0,

we have

dB∗ = −
∑

i∈N\B∗
A−1
B∗Aidi.

Then,

c′(z − z∗) = c′d = c′B∗dB∗ +
∑

i∈N\B∗
cidi

=
∑

i∈N\B∗
(ci − c′B∗A

−1
B∗Ai)di.
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Recall that for i ∈ N \ B∗, z∗i = 0, which implies di := (zi − z∗i ) ≥ 0. Together with[
c−A′ (A−1

B∗
)′

cB∗
]
≥ 0, it ensures (ci − c′B∗A

−1
B∗Ai)di ≥ 0. Thus, we have c′d ≥ 0.

2.2 Parametric Linear Programs

In practical applications, the cost coefficients c or the constraint constants b in (C.2)

are often partially known or controllable so that they may be modeled linearly as (c + λa)

or (b + ωb∗) with some parameters λ and ω ∈ R. A family of regularization methods for

feature selection to be discussed share this characteristic. Although every parameter value

creates a new LP problem in the setting, it is feasible to generate solutions for all values

of the parameter via sequential updates. The new LP problems indexed by the parame-

ters are called the parametric-cost LP and parametric right-hand-side LP, respectively. For

reference, see Bertsimas and Tsitsiklis (1997), p. 217-221, and Murty (1983), p. 278-293.

The standard form of a parametric-cost LP is defined as




min
z ∈ RN

(c + λa)′z

s.t. Az = b
z ≥ 0.

(2.2)

Since the basic index sets of the parametric-cost LP do not depend on the parameter

λ, an optimal basic index set B∗ for some fixed value of λ would remain optimal for a

range of λ values, say, [λ, λ], which is called the optimality interval of B∗. The following

corollary originally proposed by Saaty and Gass (1954) describes an approach for finding

the optimality interval.
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Corollary 5 For a fixed λ∗ ≥ 0, let B∗ be an optimal basic index set of the problem in (2.2)

at λ = λ∗. Define

λ := max
{j : ǎ∗j > 0; j ∈ N \ B∗}

(
− č∗j

ǎ∗j

)
(2.3)

and λ := min
{j : ǎ∗j < 0; j ∈ N \ B∗}

(
− č∗j

ǎ∗j

)
,

where ǎ∗j := aj − a′B∗A
−1
B∗Aj and č∗j := cj − c′B∗A

−1
B∗Aj for j ∈ N . Then, B∗ is an optimal

basic index set of (2.2) for λ ∈ [λ, λ], which includes λ∗.

Proof From the optimality of B∗ for λ = λ∗, we have A−1
B∗b ≥ 0 and

[
c−A′ (A−1

B∗
)′

cB∗
]

+ λ∗
[

a−A′ (A−1
B∗

)′
aB∗

]
≥ 0,

which implies that č∗j + λ∗ǎ∗j ≥ 0 for j ∈ N . To find the optimality interval [λ, λ] of B∗,

by Theorem 4, we need to investigate the following inequality for each j ∈ N :

č∗j + λǎ∗j ≥ 0. (2.4)

It is easy to see that A−1
B∗AB∗i = ei for i ∈ M since AB∗i is the ith column of AB∗ .

Consequently, the jth entries of (c′−c′B∗A
−1
B∗A) and (a′−a′B∗A

−1
B∗A) are both 0 for j ∈ B∗,

and č∗j + λǎ∗j = 0 for any λ. So, the inequality holds for any λ ∈ R and j ∈ B∗. When

ǎ∗j > 0 (or ǎ∗j < 0) for j ∈ (N \B∗), (2.4) holds if and only if λ ≥ −č∗j/ǎ∗j (or λ ≤ −č∗j/ǎ∗j ).

Thus, the lower bound and the upper bound of the optimality interval of B∗ are given by

the λ and λ in (2.3).

Note that č∗j and ǎ∗j define the relative cost coefficient of zj . Since the number of basic

index sets is finite for fixed A, there exist only a finite number of optimal basic index sets of

the problem in (2.2). Corollary 5 implies that a version of the solution path of the problem

as a function of λ, z(λ), is a step function.
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On the other hand, if the parametric cost LP in (2.2) is recast in the form of (1.2), then

the stepwise constant property of the solution path changes. The alternative complexity-

bounded formulation of (2.2) is given by



min
z ∈ RN , δ ∈ R

c′z

s.t. Az = b
a′z + δ = s
z ≥ 0, δ ≥ 0.

(2.5)

It can be transformed into a standard parametric right-hand-side LP problem:



minz ∈ RN+1
c′z

s.t. Az = b+ ωb∗
z ≥ 0

(2.6)

by setting ω = s, z =

[
z
δ

]
, c =

[
c
0

]
, b =

[
b
0

]
, b∗ =

[
0
1

]
, andA =

[
A 0
a′ 1

]
.

Note that when A in (2.6) is of full rank, so is A. Let B∗ be an optimal basic index

set of (2.6) at ω = ω∗. Similarly, we can show that B∗ is optimal for any ω satisfying

zB∗ =A−1

B∗(b+ωb∗) ≥ 0, and there exist ω and ω such that B∗ is optimal for ω ∈ [ω, ω].

This implies that a version of the solution path of (2.6) is a piecewise linear function.

2.3 Generating the Solution Path

Based on the basic concepts and the optimality condition of LP introduced in Section

2.1, we describe algorithms to generate the solution path for (2.2), namely, the simplex

and tableau-simplex algorithms. The algorithms were originally proposed by Saaty and

Gass (1954); Gass and Saaty (1955a,b) for solving the parametric cost LP problem only.

However, we realized that the same algorithms also produce the solution path for (2.5) as

stated in Theorem 7, and the proof could be new in the LP literature. Since the examples of

the LP problem in Chapter 3 for feature selection involve non-negative a, λ, and s only, we

assume that they are non-negative in the following algorithms and take s = 0 (equivalently

λ = ∞) as a starting value.
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2.3.1 Simplex Algorithm
Initialization

Let z0 := (z0
1 , · · · , z0

N)′ denote the initial solution of (2.5) at s = 0. a′z0 = 0 implies

z0
j = 0 for all j /∈ Ia := {i : ai = 0, i ∈ N}. Thus, by extracting the coordinates of c, z,

and the columns in A corresponding to Ia, we can simplify the initial LP problem of (2.2)

and (2.5) to




min
zIa ∈ R|Ia|

cIa
′zIa

s.t. AIazIa = b
zIa ≥ 0

, (2.7)

where |Ia| is the cardinality of Ia. Accordingly, any initial optimal basic index set, B0 of

(2.2) and (2.5) contains that of the reduced problem (2.7) and determines the initial solution

z0.

Main Algorithm

For simplicity, we describe the algorithm for the solution path of the parametric-cost

LP problem in (2.2) first, and then discuss how it also solves the complexity-bounded LP

problem in (2.5).

Let Bl be the lth optimal basic index set at λ = λl−1. For convenience, define λ−1 :=

∞, the starting value of the regularization parameter for the solution path of (2.2). Given

Bl, let zl be the lth joint solution, which is given by zl
Bl = A−1

Bl b and zl
j = 0 for j ∈ N \Bl.

Since the optimal LP solution is identified by the optimal basic index set as in Theorem 4,

it suffices to describe how to update the optimal basic index set as λ decreases. By the

invertibility of the basic matrix associated with the index set, updating amounts to finding

a new index that enters and the other that exits the current basic index set.
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By Corollary 5, we can compute the lower bound of the optimality interval of Bl de-

noted by λl and identify the entry index associated with it. Let

jl := arg max
{j : ǎl

j > 0; j ∈ (N \ Bl)}

(
− čl

j

ǎl
j

)
, (2.8)

where ǎl
j := (aj − a′BlA

−1
Bl Aj) and čl

j := (cj − c′BlA−1
Bl Aj). Then, the lower bound is given

by λl := −čl
jl/ǎl

jl , and Bl is optimal for λ ∈ [λl, λl−1].

To determine the index exiting Bl, consider the moving direction from zl to the next

joint solution. Define dl := (dl
1, · · · , dl

N) as

dl
Bl = −A−1

Bl Ajl , dl
jl = 1, and (2.9)

dl
i = 0 for i ∈ N \ (Bl ∪ {jl}).

Lemma 12 in Appendix shows that dl is the moving direction at λ = λl in the sense that

zl+1 = zl + τdl for some τ ≥ 0. For the feasibility of zl+1 ≥ 0, the step size τ can

not exceed the minimum of −zl
i/d

l
i for i ∈ Bl with dl

i < 0, and the index attaining the

minimum is to leave Bl. Denote the the exit index by

il := arg min
i∈{j: dl

j<0, j∈Bl}

(
−zl

i

dl
i

)
. (2.10)

Therefore, the optimal basic index set at λ = λl is given by Bl+1 := Bl ∪ {jl} \ {il}. More

precisely, we can verify the optimality of Bl+1 at λ = λl by showing that

(c + λla)−A′ (A−1
Bl+1

)′
(cBl+1 + λlaBl+1) (2.11)

= (c + λla)−A′ (A−1
Bl

)′
(cBl + λlaBl).

The proof is given in Appendix A.2. Then the fact that Bl is optimal at λ = λl implies that

Bl+1 is also optimal at λ = λl. As a result, the updating procedure can be repeated with
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Bl+1 and λl successively until λl < 0 or equivalently čl
jl ≥ 0. The algorithm for updating

the optimal basic index sets is summarized as follows.

1. Initialize the optimal basic index set at λ−1 = ∞ with B0.

2. Given Bl, the lth optimal basic index set at λ = λl−1, determine the solution zl by

zl
Bl = A−1

Bl b and zl
j = 0 for j ∈ N \ Bl.

3. Find the entry index

jl = arg max
j : ǎl

j > 0; j ∈ N \ Bl

(
− čl

j

ǎl
j

)
.

4. Find the exit index

il = arg min
i∈{j: dl

j<0, j∈Bl}

(
−zl

i

dl
i

)
.

If there are multiple indices, choose one of them.

5. Update the optimal basic index set to Bl+1 = Bl ∪ {jl} \ {il}.

6. Terminate the algorithm if čl
jl ≥ 0 or equivalently λl ≤ 0. Otherwise, repeat 2 – 5.

If −zl
il
/dl

il
= 0, then zl = zl+1, which may result in the problem of cycling among

several basic index sets with the same solution. We defer the description of the tableau-

simplex algorithm which can avoid the cycling problem to Section 2.3.2. For brevity, we

just assume that zl + τdl ≥ 0 for some τ > 0 so that zl 6= zl+1 for each l and call this non-

degeneracy assumption. Under this assumption, suppose the simplex algorithm terminates

after J iterations with {(zl, λl) : l = 0, 1, · · · , J}. Then the entire solution path is obtained

as described below.
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Theorem 6 The solution path of (2.2) is




z0 for λ > λ0

zl for λl < λ < λl−1, l = 1, · · · , J
τzl + (1− τ)zl+1 for λ = λl and τ ∈ [0, 1], l = 0, · · · , J − 1.

(2.12)

Likewise, the solutions to the alternative formulation of (2.5) with the complexity bound

can be obtained as a function of s. By the correspondence of the two formulations, the lth

joint of the piecewise linear solution is given by sl = a′zl, and the solution between the

joints is a linear combination of zl and zl+1 as described in Theorem 7 below. Its proof is

in Appendix A.3. To the best of our knowledge, such a connection between parametric-cost

LP and parametric right-hand-side LP has not been proved in linear algebraic language. It

may be our contribution to the LP literature.

Theorem 7 For s ≥ 0, the solution path for (2.5) can be expressed as
{

sl+1 − s
sl+1 − sl

zl + s− sl
sl+1 − sl

zl+1 if sl ≤ s < sl+1 and l = 0, · · · , J − 1

zJ if s ≥ sJ .

2.3.2 Tableau-Simplex Algorithm

The non-degeneracy assumption in the simplex method that any two consecutive joint

solutions are different may not hold in practice for many problems. When some columns

of a basic matrix are discrete, the assumption may fail at some degenerate joint solutions.

To deal with more general settings where the cycling problem may occur in generating the

LP solution path by the simplex method, we discuss the tableau-simplex algorithm.

A tableau is a big matrix which contains all the information about the LP. It consists of

the relevant terms in LP associated with a basic matrix such as the basic solution and the

cost.

Definition 8 For a basic index set B∗, its tableau is defined in Table 2.1.
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zeroth column pivot columns
cost row −c′B∗A

−1
B∗b c′ − c′B∗A

−1
B∗A

penalty row −a′B∗A
−1
B∗b a′ − a′B∗A

−1
B∗A

pivot rows A−1
B∗b A−1

B∗A

Table 2.1: Tableau for linear programming

We follow the convention for the names of the columns and rows in the tableau. For

reference, see Murty (1983) and Bertsimas and Tsitsiklis (1997). Note that the zeroth

column contains z∗B∗ := A−1
B∗b, the non-zero part of the basic solution, −c′B∗A

−1
B∗b =

−c′z∗, the negative cost, and −a′B∗A
−1
B∗b = −a′z∗, the negative penalty of z∗ associated

with B∗, and the pivot columns contain č∗j ’s and ǎ∗j ’s. The algorithm to be discussed updates

the basic index sets by using the tableau, in particular, by ordering some rows of the tableau.

To describe the algorithm, we introduce the lexicographic order of vectors first.

Definition 9 For v and w ∈ Rn, we say that v is lexicographically greater than w (de-

noted by v
L
> w) if the first non-zero entry of v − w is strictly positive. We say that v is

lexicographically positive if v
L
> 0.

Consider the parametric-cost LP in (2.2).

Initial Tableau

With the index set B0, initialize the tableau. Since z0
B0 = A−1

B0 b ≥ 0 and the columns

of A can be rearranged such that the sub-matrix with the first M columns of A−1
B0 A is I,

we assume that the pivot rows, [A−1
B0 b A−1

B0 A], of the initial tableau are lexicographically

positive. In other words, there is a permutation π : N → N which maps B0 to M :=

{1, · · · ,M}, and we can replace the problem with the π-permuted version (e.g., zπ(N ) and
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Aπ(N )). How to find the initial basic index set is another issue that will be addressed in

Chapter 4 with examples.

Updating Tableau

Given the current optimal basic index set Bl, the current tableau is

zeroth column pivot columns
cost row −c′BlA−1

Bl b c′ − c′BlA−1
Bl A

penalty row −a′BlA−1
Bl b a′ − a′BlA−1

Bl A
pivot rows A−1

Bl b A−1
Bl A

Suppose all the pivot rows of the current tableau are lexicographically positive. The tableau-

simplex algorithm differs from the simplex algorithm only in the way the exit index is de-

termined. The following procedure is generalization of Step 4 in the simplex algorithm for

finding the exit index.

Step 4. Let ul := (ul
1, · · · , ul

M)′ := A−1
Bl Ajl . For each i ∈ M with ul

i > 0, divide the ith

pivot row (including the entry in the zeroth column) by ul
i. And, among those rows, find

the index, il∗, of the lexicographically smallest row. Then, il := Bl
il∗

is the exit index.

Remark Since ul = −dl
Bl , if il in (2.10) is unique with zl

il
> 0, then it is the same as

the lexicographically smallest row that the tableau-simplex algorithm seeks. Hence the two

algorithms coincide. The simplex algorithm determines the exit index based only on the

zeroth column in the tableau while the lexicographic ordering involves the pivot columns

additionally. The optimality of Bl for λ ∈ [λl, λl−1] immediately follows by the same step

3, and (2.11) remains to hold true for the exit index il of the tableau-simplex algorithm,

which implies the optimality of Bl+1 at λ = λl.
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Some characteristics of the updated tableau associated with Bl+1 are described in the

next theorem and its corollary. The proof is adapted from that for the lexicographic pivoting

rule in Bertsimas and Tsitsiklis (1997) p. 108–111. See Appendix A.4 for details.

Theorem 10 For the updated basic index set Bl+1 by the tableau-simplex algorithm,

i) all the pivot rows of the updated tableau are still lexicographically positive, and

ii) the updated cost row is lexicographically greater than that for Bl.

Since A−1
Bl+1b is the ‘zeroth column’ of the pivot rows, i) says that the basic solution

for Bl+1 is feasible, i.e., zl+1 ≥ 0. Moreover, it implies that the updating procedure can be

repeated with Bl+1 and the new tableau.

It is not hard to see that zl+1 = zl if and only if zl
il

= 0 (see the proof of Theorem 10

in the Appendix for more details). When zl
il

= 0, zl+1 = zl, however the tableau-simplex

algorithm uniquely updates Bl+1 such that the previous optimal basic index sets Bl’s never

reappear in the process. This anti-cycling property is guaranteed by ii). By ii), we can

strictly order the optimal basic index sets Bl based on their cost rows. Because of this and

the fact that all possible basic index sets are finite, the total number of iterations must be

finite. This proves the following.

Corollary 11 The tableau updating procedure terminates after a finite number of itera-

tions.

Suppose that the tableau-simplex algorithm stops after J iterations with λJ ≤ 0. In par-

allel to the simplex algorithm, the tableau-simplex algorithm outputs the sequence {(zl, sl, λl) :

l = 0, · · · , J}, and the solution paths for (2.2) and (2.5) admit the same forms as in Theo-

rem 6 and Theorem 7 except for any duplicate joints λl and sl.
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CHAPTER 3

STATISTICAL APPLICATIONS

The connection between LP and regularization methods that arise in statistics for fea-

ture selection has been noted on a case-by-case basis (e.g., multi-category SVM in Wang

and Shen (2006)). In this chapter, more concrete examples (including known examples and

new examples) are given, and, for each example, its elements in the parametric LP form

are identified. Through the examples, we systematically study the applications of LP in a

certain family of regularization methods, and provide a unified LP perspective on under-

standing and solving the associated problems. Arguably, the general treatment with the LP

algorithm may be at odds with computational efficiency in dealing with each of particular

settings. And this issue will be discussed in Chapter 4.

3.1 Parametric Procedures

3.1.1 l1-Norm Quantile Regression

Quantile Regression (QR) is a regression technique, introduced by Koenker and Bassett

(1978), intended to estimate the conditional quantile functions. It is obtained by replacing

the squared error loss of the classical linear regression for the conditional mean function

with a piecewise linear loss called the check function. For a general introduction to QR,

see Koenker and Hallock (2001).
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For simplicity, assume that the conditional quantiles are linear in the predictors. Given

a data set, {(xi, yi) : xi ∈ Rp, yi ∈ R, i = 1, · · · , n}, the τ th conditional quantile function

is estimated by

min
β0 ∈ R, β ∈ Rp

1
n

∑n
i=1 ρτ (yi − β0 − xiβ) , (3.1)

where β0 and β := (β1, . . . , βp)
′ are the quantile regression coefficients for τ ∈ (0, 1), and

ρτ (·) is the check function defined as

ρτ (t) :=

{
τ · t for t > 0
−(1− τ) · t for t ≤ 0.

When τ = 1/2, QR amounts to median regression, least absolute error (LAE) , or least

absolute deviation (LAD) (Bloomfield and Steiger; 1980). The standard QR problem in

(3.1) can be cast as an LP problem itself, and enumeration of the entire range of quan-

tile functions parametrized by τ is feasible as noted in Koenker (2005b), p.185. Since it

is somewhat different from an array of statistical optimization problems for feature selec-

tion that we intend to address in this thesis, we leave an adequate treatment of this topic

elsewhere and turn to a regularized QR.

Aiming at estimating the conditional quantile function simultaneously with selecting

relevant predictors, Li and Zhu (2008) propose the l1-norm QR. It is defined by the follow-

ing constrained optimization problem:
{

min
β0 ∈ R, β ∈ Rp

1
n

∑n
i=1 ρτ (yi − β0 − xiβ)

s.t. ‖β‖1 ≤ s,

where s > 0 is a regularization parameter. Equivalently, with another tuning parameter λ ,

the l1-norm QR can be recast as
{

min
β0 ∈ R, β ∈ Rp, ζ ∈ Rn

1
n

∑n
i=1[τ(ζi)+ + (1− τ)(ζi)−] + λ‖β‖1

s.t. β0 + xiβ + ζi = yi for i = 1, · · · , n,
(3.2)
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where (x)+ = max(x, 0) and (x)− = max(−x, 0). The optimization problem in (3.2) can

be formulated as an LP parametrized by λ, which is a common feature of the examples

discussed. For the non-negativity constraint in the standard form of LP, consider both

positive and negative parts of each variable and denote, for example, ((β1)+, . . . , (βp)+)′

by β+ and ((β1)−, . . . , (βp)−)′ by β−. Note that β = β+ − β− and the l1-norm ‖β‖1 :=

∑p
i=1 |βi| is given by 1′(β+ + β−) with 1 := (1, · · · , 1)′ of appropriate length. Let Y :=

(y1, · · · , yn)′, X := (x′1, · · · , x′n)′, ζ := (ζ1, · · · , ζn)′, and 0 := (0, · · · , 0)′ of appropriate

length. Then the following elements define the l1-norm quantile regression in the standard

form of a parametric-cost LP in (2.2)

z := ( β+
0 β−0 (β+)′ (β−)′ (ζ+)′ (ζ−)′ )′

c := ( 0 0 0′ 0′ τ1′/n (1− τ)1′/n )′

a := ( 0 0 1′ 1′ 0′ 0′ )′

A := [ 1 −1 X −X I −I ]
b := Y

with a total of N = 2(1 + p + n) variables and M = n equality constraints.

Any joint solution β(λl) (including the intercept) in the solution path of an l1-norm

QR depends on the dataset only through a subset of the observation pairs with ζi = 0.

The cardinality of the subset equals the number of β’s whose indices are in the associated

basic index set. In other words, if the lth basic index set contains indices for pl covariates

(including the intercept), the expression of β(λl) depends on the dataset only through pl

observation pairs. It is analogous to the well known fact that a sample median depends

on the entire sample only through the middle values. And this property is consistent with

the conclusions by Koenker (2005a) (page 34) for QR without penalty. As a consequence,

when n is small but p is large (i.e., small n large p), the number of selected variables can

not be larger than n. The proof is straightforward from the structure of the associated basic

matrix, and is omitted in this thesis.
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3.1.2 Quantile Regression with Grouped Variables

In real applications, the covariates are often grouped in nature where group selection

may be more interesting than individual variable selection. In this section, we explore an

LP algorithm that can do group selection for QR. Since QR can be viewed as an extension

of median regression, we first give the LP application to median regression with grouped

variables, and then the QR version follows.

Consider a linear model with J groups of variables:

Y =
J∑

j=1

Xjβj + ε,

where Y and ε are n-vectors, Xj is an n × pj matrix associated with the jth group of

variables, and βj := (β1j, · · · , βpjj)
′ is a coefficient vector of size pj for j = 1, · · · , J .

Let β := (β′1, · · · , β′J)′ and X := (X1, · · · , XJ). We are interested in selecting impor-

tant variable groups and estimating the corresponding β. To achieve this goal, Yuan and

Lin (2006) proposed a convex grouped lasso penalty defined as

‖β‖glasso :=
J∑

j=1

‖βj‖2,

where ‖βj‖2 is the l2-norm of βj . Grouped lasso estimates β by minimizing

1

n

∥∥∥∥∥Y −
J∑

j=1

Xjβj

∥∥∥∥∥

2

2

+ λ‖β‖glasso.

Unlike the lasso penalty (Tibshirani; 1996), the grouped lasso penalty is not a piecewise

linear function of β. Its solution path in general is not piecewise linear, and thus has to be

calculated at each λ.

For piecewise linearity, one may consider another penalty for grouped variable selection

(tentatively called G-penalty) given as

‖β‖g :=
J∑

j=1

‖βj‖∞,
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which is suggested by Robert Cohen at SAS Institute through personal communication.

This section addresses median regression with G-penalty first, and a toy example of the

method can be found in Section 5.1.3.

Here, β is estimated by minimizing

1

n

∥∥∥∥∥Y − β0 −
J∑

j=1

Xjβj

∥∥∥∥∥
1

+ λ‖β‖g. (3.3)

In order to reduce bias, the intercept term β0 is not penalized with G-penalty. The opti-

mization problem in (3.3) can be transformed into a parametric LP problem. To explicitly

describe the transformation, we introduce the slack variables ξ, ρ+ := (ρ+
1 , · · · , ρ+

J ), and

η+ := (η+
1
′
, · · · , η+

J
′
)′ that satisfy

ξ := ξ+ − ξ− := Y − β0 −
J∑

j=1

Xjβj,

ρ+
j 1 = β+

j + β−j + η+
j with βj = β+

j − β−j ; j = 1, · · · , J,

ξ+, ξ−, ρ+, η+, β+, β− ≥ 0.

Then the median regression with G-penalty in (3.3) can be recast as

min
1

n
1′(ξ+ + ξ−), (3.4)

s.t. ξ+ − ξ− := Y − (β+
0 − β−0 )−

J∑
j=1

Xj(β
+
j − β−j )

(ρ+
1 1′p1

, · · · , ρ+
J 1′pJ

)′ = β+ + β− + η+

w.r.t. ξ+, ξ−, ρ+, η+, β+, β− ≥ 0.

By matching the elements in (3.4) and (2.2), we have
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z := ( (ξ+)′ (η+)′ (ξ−)′ β+
0 β−0 (β+)′ (β−)′ (ρ+)′ )′

c := ( 1′/n 0′ 1′/n 0 0 0′ 0′ 0′ )′

a := ( 0′ 0′ 0′ 0 0 0′ 0′ 1′ )′

A :=

[
I
0

0
I

−I
0

1
0

−1
0

X
I

−X
I

0
−G

]

b :=

(
Y
0

)

where G :=




1p1 0p1 · · · 0p1

0p2 1p2 · · · 0p2

...
... . . . ...

0pJ
0pJ

· · · 1pJ


 .

For QR in general, we find β0 and β that minimize

τ

n

(
Y − β0 −

J∑
j=1

Xjβj

)

+

+
1− τ

n

(
Y − β0 −

J∑
j=1

Xjβj

)

−

+ λ‖β‖g.

The standard form of LP for the QR with G-penalty is the same as that for median

regression except

c := (τ1′/n,0′, (1− τ)1′/n, 0, 0,0′,0′,0′)′.

3.1.3 Dantzig Selector

In this section, we adopt the notation used in Section 3.1.1. For variable selection

with large p small n data, Candes and Tao (2007) proposed Dantzig selector. The method

achieves model selection for linear models via the following regularization

min
β
‖β‖1 subject to‖X′(Y − β01− Xβ)‖∞ ≤ λD,

where λD is a tuning parameter. It has been noted that there exist many connections be-

tween LASSO and Dantzig selector (Meinshausen et al.; 2007; James et al.; 2008).

The Dantzig selector can be equivalently rewritten as

min
β0, β

‖X′(Y − β01− Xβ)‖∞ + λ‖β‖1.
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To cast Dantzig selector in the form of a parametric LP, we introduce the following

slack variables:

ξ := X′Y − X′1β0 − X′Xβ,

η+ and ρ+ satisfying ξ+ + ξ− + η+ = ρ+1.

Then, the associated parametric LP is defined by setting

z := ( (ξ+)′ (η+)′ (ξ−)′ β+
0 β−0 (β+)′ (β−)′ ρ+)′

c := ( 0′ 0′ 0′ 0 0 0′ 0′ 1 )′

a := ( 0′ 0′ 0′ 0 0 1′ 1′ 0 )′

A :=

[
I 0 − I
I I I

X′1 −X′1
0 0

X′X −X′X
0 0

0
−1

]

b :=

(
X′Y
0

)
.

3.1.4 l1-Norm Support Vector Machine

Consider a binary classification problem where yi ∈ {−1, 1}, i = 1, · · · , n denote the

class labels. The Support Vector Machine (SVM) introduced by Cortes and Vapnik (1995)

is a classification method that finds the optimal hyperplane maximizing the margin between

the classes. It is another example of a regularization method with a margin based hinge loss

and the ridge regression type l2 norm penalty. The optimal hyperplane (β0 + xβ = 0) in

the standard SVM is determined by the solution to the problem:

min
β0 ∈ R, β ∈ Rp

1

n

n∑
i=1

{1− yi (β0 + xiβ)}+ + λ‖β‖2
2.

Replacing the l2 norm with the l1 norm for selection of variables, Bradley and Man-

gasarian (1998) and Zhu et al. (2004) arrive at a variant of the soft-margin SVM:
{

min
β0 ∈ R, β ∈ Rp, ζ ∈ Rn

1
n

∑n
i=1(ζi)+ + λ‖β‖1

s.t. yi(β0 + xiβ) + ζi = 1 for i = 1, · · · , n.
(3.5)
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Both SVM and l1-norm SVM can be viewed as regularized versions of the Minimization of

the Sum of Deviations (MSD) method (Freed and Glover; 1981a,b) which in fact minimizes

the empirical risk with respect to the hinge loss.

Similarly to MSD, this l1-norm SVM can be formulated as a parametric cost LP with

the following elements

z := ( β+
0 β−0 (β+)′ (β−)′ (ζ+)′ (ζ−)′ )′

c := ( 0 0 0′ 0′ 1′/n 0′ )′

a := ( 0 0 1′ 1′ 0′ 0′ )′

A := [ Y −Y diag(Y )X −diag(Y )X I −I ]
b := 1.

This example will be revisited in great detail in Section 4.3.

Extending the definition of the support vector for the standard SVM, we call an obser-

vation pair (yi, xi) a support vector if yi(β0 + xiβ) ≤ 1. Referring to (3.5), we can see

that (yi, xi) is a support vector if and only if ζi ≥ 0. The following remark describes the

relationship between the size of dataset, the number of support vectors, and the number of

selected variables for l1-norm SVM.

Remark The expression of any joint solution β(λl) (including the intercept) in the solu-

tion path of an l1-norm support vector machine depends on the dataset only through the set

of support vectors whose indices are not in the associated basic index set. The cardinality

of such a set of support vectors equals the number of β’s whose indices are in the associ-

ated basic index set. Consequently, for a small n large p problem, the number of selected

variables can not be larger than the size of dataset.

3.1.5 Multi-category Support Vector Machine

For generality, consider a k-category problem with potentially different misclassifica-

tion costs. A class label of y is also coded by a k-vector; y = (y1, . . . , yk)′ with yj = 1
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and −1/(k − 1) elsewhere if y = j. L(yi) = (L1
yi
, . . . , Lk

yi
) is a misclassification cost

vector, where Lj
yi

is the cost of misclassifying the class index of yi as j. A multi-category

classification method aims to find f = (f 1, . . . , fk)′ closely matching an appropriate class

code y given x which induces a classifier φ(x) = arg maxj=1,...,k f j(x). Lee et al. (2004)

extended the binary SVM to Multi-category SVM (MSVM) with a multi-category hinge

loss

L(y){f(x)− y}+.

A standard form of L(y) has Lj
y =

{
0 if y = j
1 if y 6= j

. Using this loss, the MSVM method

finds f by minimizing

1

n

n∑
i=1

k∑
j=1

I(yi 6= j)

{
f j(xi) +

1

k − 1

}

+

or, equivalently,
1

n

n∑
i=1

k∑
j=1

I(yi 6= j)
{
f j(xi) + 1

}
+

.

Consider the linear classifier with f j(x) = βj
0 + xβj . Let β := [β1, · · · , βk] :=

[β′1, · · · , β′p]
′, where βj is the jth column vector of β and βt is the tth row vector of β for

j = 1, · · · , k and t = 1, · · · , p. We denote a family of matrix norms as follows:

‖β‖c(r) :=
∥∥(‖β1‖r, · · · , ‖βp‖r)

′∥∥
c
; c, r ≥ 1.

For example, the Frobenius norm is ‖β‖2(2), ‖β‖1(1) =
∑p

t=1 ‖βt‖1 =
∑k

j=1 ‖βj‖1, and

‖β‖1(∞) =
∑p

t=1 ‖βt‖∞.

One way to achieve variable selection is to penalize the sum of ‖βj‖1’s as in Wang and

Shen (2006, 2007). Its associated optimization problem is

min
β0, β

1

n

n∑
i=1

k∑
j=1

I(yi 6= j)
{
βj

0 + xiβ
j + 1

}
+

+ λ‖β‖1(1)

s.t. β1 = 0 and
k∑

j=1

βj
0 = 0.
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Zhang et al. (2008) suggest to select important variables via sup-norm for MSVM. The

regularization formulation for their method is:

min
β0, β

1

n

n∑
i=1

k∑
j=1

I(yi 6= j)
{
βj

0 + xiβ
j + 1

}
+

+ λ‖β‖1(∞)

s.t. β1 = 0 and
k∑

j=1

βj
0 = 0.

Again, both of the two MSVM methods can be cast as parametric LP problems. The

corresponding elements of LP for the two MSVM methods can be derived in a similar way

as in the previous sections, so will not be listed here.

3.2 Nonparametric Procedures

So far, parametric regularization procedures have been discussed. Despite the simplic-

ity and their broad applications, they may be limited in some situations that call for more

flexible model/feature spaces. This section regards nonparametric regularization proce-

dures, which consider a potentially infinite dimensional model/feature space.

When a Reproducing Kernel Hilbert Space (RKHS) H is chosen as the feature space

F , one may take the squared functional norm of a model f in H (i.e., J(f) := ||f ||2H)

or its projection in a subspace as a measure of the model complexity. Such a choice of

the feature space and the model complexity provides a wide range of nonparametric pro-

cedures for statistical estimation and prediction. To name a few, examples are smoothing

splines (Wahba; 1990), support vector machines (SVM) (Vapnik; 1998), nonparametric QR

(Koenker; 2005a).

The popularity of the nonparametric regularization methods is partially ascribed to

their versatility and competitive prediction accuracy as demonstrated in many applica-

tions. Their main flexibility is achieved by embedding of attributes or variables into a
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high-dimensional feature space via kernel mapping, where complex models can make the

empirical risk arbitrarily close to zero. Such embedding does not need to be explicit for

prediction as the fitted model is expressed as a linear combination of the data representers

determined by the pre-specified reproducing kernel. For an implicit mapping, the solution

is given as a “black box” function, which may not provide clear explanation of the impor-

tance of each variable involved in the solution. This drawback can be remedied with the

scheme of functional Analysis of Variance (ANOVA) decomposition (Wahba; 1990; Gu;

2002).

In functional ANOVA, a model f is a multivariate function of p covariates x := (x1, · · · ,

xp)
′ defined on X := X1× · · · ×Xp, where xα ∈ Xα for α = 1, · · · , p. Consider an RKHS

H that is constructed as a tensor product of functional subspaceHα, an RKHS of functions

on Xα. Further decompose Hα as {1} ⊕ H̄α, where H̄α is the subspace of Hα orthogonal

to {1}. The overall feature space is then given by

H := {1} ⊕p
α=1 H̄α ⊕α<β {H̄α ⊕ H̄β} ⊕ · · · .

And an ANOVA-like decomposition of f ∈ H is in the form of

f(x) = f0 +

p∑
α=1

fα(xα) +
∑

α<β

fαβ(xα, xβ) + · · · , (3.6)

where f0 ∈ {1}, fα ∈ H̄α, fαβ ∈ {H̄α ⊕ H̄β}, and so on. Truncating a set of subspaces

inH for higher-order interactions results in the corresponding simplification ofH. Relabel

the remaining subspaces as Fν for ν ∈ {1, · · · , d} after truncation, and let the resulting

RKHS be

F := {1} ⊕ F̄ with F̄ := ⊕d
ν=1Fν . (3.7)

Setting the model penalty to be the sum of squared norms of all the terms in (3.6) com-

monly used for the ANOVA-like decomposition (e.g., smoothing spline ANOVA (Wahba;
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1990)), we define a regularization procedure that minimizes

1

n

n∑
i=1

L(yi, b + h(xi)) + λ‖h‖2
F̄ :=

1

n

n∑
i=1

L(yi, f(xi)) + λ

d∑
ν=1

‖P νf‖2
F , (3.8)

where f(·) := b+h(·) with b being a constant and h ∈ F̄ , ‖ · ‖F̄ and ‖ · ‖F are respectively

the norms defined on the RKHS F̄ and F , P ν is the orthogonal projection operator from F

onto Fν . P νf is called the functional component of f on Fν . As is well known, an RKHS

can be characterized by its associated reproducing kernel. Let Kν denote the reproducing

kernel for Fν . Then the kernel for F̄ in (3.7) is given by
∑d

ν=1 Kν .

Analogous to the parametric cases, an important issue in nonparametric modeling and

prediction is to determine which covariates or functional components should be included

in the model f . To address the problem, we parameterize the feature space F̄ as F̄θ with

re-scaling parameter vector θ := (θ1, . . . , θd)
′ ≥ 0. The non-negative weights θν’s are

introduced for re-calibration of the functional components fν . For fixed θ, the feature

space is the RKHS F̄θ characterized by the kernel K =
∑d

ν=1 θνKν . Accordingly, the

objective function in (3.8) becomes

1

n

n∑
i=1

L(yi, b + h(xi)) + λ‖h‖2
F̄θ

:=
1

n

n∑
i=1

L(yi, f(xi)) + λ
d∑

ν=1

θ−1
ν ‖P νf‖2

F . (3.9)

It is easy to see that, if θν = 0 for some ν, we have θ−1
ν ‖P νf‖2

F = ∞ for any f satisfying

‖P νf‖F 6= 0, thus any reasonable optimal solution for the regularization problem should

have the corresponding functional component fν := P νf equal to zero.

Identification of a model in the parametrized feature space requires estimation of θ as

well as f ∈ F . For simultaneous model fitting and functional component selection, we

consider another layer of regularization of the solution with a penalty on θ, which leads

to a general procedure for functional component pursuit akin to basis pursuit (Chen et al.;

1999). The procedure under consideration can be formulated as the problem of finding
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f ∈ F that minimizes

1

n

n∑
i=1

L(yi, b + h(xi)) + λ◦‖h‖2
F̄θ

+ λθP(θ) subject to θ ≥ 0, (3.10)

where λ◦ and λθ are positive tuning parameters, andP(θ) is a measure of kernel complexity

different from the model complexity, ‖h‖2
F̄θ

. For example, the l1 penalty P(θ) = ‖θ‖1 =

∑d
ν=1 θν has been used in COSSO (Lin and Zhang; 2006) and structured support vector

machines (Lee et al.; 2006) for measuring kernel complexity.

By the representer theorem (Wahba; 1990), the solution of the problem in (3.9) is of the

form

f̂(x) := b̂ + ĥ(x) with ĥ(x) :=
n∑

i=1

ciK(xi, x) =
d∑

ν=1

θν

n∑
i=1

ciKν(xi, x) =
d∑

ν=1

θν ĥν(x),

where ĥν(x) :=
∑n

i=1 ciKν(xi, x). Therefore, the regularization problem can be reduced to

the minimization of

1

n

n∑
i=1

L(yi, b +
n∑

j=1

d∑
ν=1

Kν(xi, xj)cj) + λ◦
d∑

ν=1

θνc
′Kνc + λθP(θ) (3.11)

with respect to c ∈ Rn and θ ≥ 0,

where c := (c1, · · · , cn)′, and Kν := [Kν(xi, xj)]
n
i,j=1. Note that, by utilizing the kernel

structure, the connection between f̂ and each of the functional components in (3.6) can

be established through individual Kν’s, and then the estimated f̂(x) has an ANOVA-like

interpretation in terms of the corresponding functional components.

An efficient way to solve the problem in (3.11) is to alternately update c and θ, termed

as the c-step and θ-step, respectively, which has been applied in Lin and Zhang (2006) and

Lee et al. (2006). Detailed discussions of the idea can be found in Lin and Zhang (2006);

Gunn and Kandola (2002); Zhang (2006); Lee et al. (2006). More generally, Micchelli and

Pontil (2005) treat it as a regularization procedure for optimal kernel combination.
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This section discusses the application of linear programming (LP) algorithms for solv-

ing the nonparametric regularization problems with structured kernels. If L and P in (3.10)

are both convex linear functions with respect to the kernel coefficients, the corresponding

θ-step of the nonparametric regularization problem can be rephrased as a parametric LP

problem, and then its solution path can be computed by simplex algorithm. As mentioned

before, our motivation comes from the interpretability of the nonparametric models and the

fact that the θ-step in (3.11) can be treated as a regularization problem in its own right.

3.2.1 Structured Multi-category Support Vector Machine

Consider the “θ-step” of the Structured Multi-category SVM (SMSVM) in Lee et al.

(2006), which yields another parametric cost LP problem. Following the notation defined in

Section 3.1.5, suppose that each f j is of the form cj
0+hj(x) := cj

0+
∑n

i=1 cj
i

∑d
ν=1 θνKν(xi, x).

By the reproducing property of F̄θ, ‖hj‖2
K = (cj)′

(∑d
ν=1 θνKν

)
cj , where cj := (cj

1, . . . , c
j
n)′

is the jth coefficient vector, and Kν is the n by n kernel matrix associated with Kν . With

the extended hinge loss L{yi, f(xi)} := L(yi){f(xi) − yi}+, the SMSVM finds f with c

and θ minimizing

1

n

n∑
i=1

L(yi)[f(xi)− yi]+ + λ◦
k∑

j=1

‖hj‖2
K + λθ

d∑
ν=1

θν (3.12)

subject to θν ≥ 0 for ν = 1, . . . , d. By alternating estimation of c and θ, we attempt to

find the optimal kernel configuration (a linear combination of pre-specified kernels) and

the coefficients associated with the optimal kernel. The θ-step refers to optimization of the

functional component weights θ given c. More specifically, treating c as fixed, the weights

of the features are chosen to minimize

1

n

k∑
j=1

(Lj)′
(

cj
01 +

d∑
ν=1

θνKνc
j − yj

)

+

+ λ◦
k∑

j=1

(cj)′
(

d∑
ν=1

θνKν

)
cj + λθ

d∑
ν=1

θν ,
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where Lj := (Lj
y1

, . . . , Lj
yn

)′ and yj = (yj
1, . . . , y

j
n)′.

This optimization problem can be rephrased as




min
ζ ∈ Rnk, θ ∈ Rd

1
n

∑k
j=1(L

j)′(ζj)+ + λ◦
∑d

ν=1 θν

(∑k
j=1(c

j)′Kνc
j
)

+ λθ

∑d
ν=1 θν

s.t.
∑d

ν=1 θνKνc
j − ζj = yj − cj

01 for j = 1, . . . , k
θν ≥ 0 for ν = 1, . . . , d.

Let

g := (g1, · · · , gd)
′ with gν := λ◦

∑k
j=1(c

j)′Kνc
j

L :=
(
(L1)′, · · · , (Lk)′

)′
, ζ :=

(
(ζ1)′, · · · , (ζk)

)′

X :=



K1c

1 · · · Kdc
1

... . . . ...
K1c

k · · · Kdc
k




Y := ((y1)′, · · · , (yk)′)′

c0 := (c1
0, · · · , ck

0)
′,

(3.13)

then the following elements define the θ-step as a parametric cost LP indexed by λθ with

N = d + 2nk variables and M = nk equality constraints

z := ( θ′ (ζ+)′ (ζ−)′ )′

c := ( g′ L′/n 0′ )′

a := ( 1′ 0′ 0′ )′

A := [ X −I I ]
b := (Y − c0 ⊗ 1n).

The SMSVM with l1-norm penalty often selects a small portion of the available func-

tional components, and the number of selected components can not exceed the sample size

n. Such a property may be a limitation for many applications, especially for small n large p

data. Intuitively, if one component is selected in the classifier, SMSVM with l1 penalty in-

tends to exclude other components that are numerically similar to the selected components.

To overcome this drawback, one can additionally set an upper bound u on the coefficients

of θ or penalize θ according to the ranks of its elements.

The former can be formulated as the θ-step with a combination of l1-norm and l∞-norm

of θ (l1− l∞ penalty) as the kernel complexity, which is given by one of the two following
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equivalent forms



min
ζ ∈ Rnk, θ ∈ Rd

1
n

∑k
j=1(L

j)′(ζj)+ + λ◦
∑d

ν=1 θν

(∑k
j=1(c

j)′Kνc
j
)

+ λθ

∑d
ν=1 θν

s.t.
∑d

ν=1 θνKνc
j − ζj = yj − cj

01 for j = 1, . . . , k
θ ≥ 0 and ‖θ‖∞ ≤ u.

(3.14)

and 



min
ζ ∈ Rnk, θ ∈ Rd

1
n

∑k
j=1(L

j)′(ζj)+ + λ◦
∑d

ν=1 θν

(∑k
j=1(c

j)′Kνc
j
)

+λθ

∑d
ν=1 θν + λ∞‖θ‖∞

s.t.
∑d

ν=1 θνKνc
j − ζj = yj − cj

01 for j = 1, . . . , k
θ ≥ 0.

,

where ‖θ‖∞ := max{θν : ν = 1, · · · , d}, u is the upper bound of θ’s, and λ∞ is a tuning

parameter.

An example of the kernel complexity measure for the latter is OSCAR (Octagonal

Shrinkage and Clustering Algorithm for Regression) penalty proposed by Bondell and Re-

ich (2008). OSCAR is proposed to simultaneously achieve model fitting and variable se-

lection while grouping variables into clusters. The clustering property may further enhance

the interpretability of the fitted model.

Recall that θ re-scales the functional components in the ANOVA decomposition with

θ = 1 corresponding to the original scale. For shrinkage, one may restrict each θν ≤ 1 or

‖θ‖∞ ≤ 1. In general, we treat the upper bound of θ, u, as yet another tuning parameter.

The inequality ‖θ‖∞ ≤ u can be represented as a constraint θν + ην = u with a slack

variable ην subject to θν ≥ 0 and ην ≥ 0 for ν = 1, · · · , d. Then, with the notation in

(3.13), the SMSVM with l1 − l∞ penalty can be recast as



min
ζ ∈ Rnk, θ ∈ Rd

1
n

∑k
j=1(L

j)′(ζj)+ + λ◦
∑d

ν=1 θν

(∑k
j=1(c

j)′Kνc
j
)

+ λθ‖θ‖1

s.t.
∑d

ν=1 θνKνc
j − ζj = yj − cj

01 for j = 1, . . . , k
θ + η = u1
θ ≥ 0, η ≥ 0.

Similarly to the θ-step for the SMSVM in the previous section, the θ-step for the new

SMSVM has
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z := ( θ′ η′ (ζ+)′ (ζ−)′ )′

c := ( g′ 0′ L′/n 0′ )′

a := ( 1′ 0′ 0′ 0′ )′

A :=

[
X
I

0
I

−I
0

I
0

]

b :=

(
Y − c0 ⊗ 1n

u1

)

as its elements for LP. Note that the rank of A for this LP problem is (n+d), which is larger

than the number of kernel components d. Thus, the number of selected kernel components

is not limited by the sample size n. By controlling the tuning parameter λθ and upper bound

u, flexible functional component selection can be attained for large p small n applications.

With OSCAR penalty, the SMSVM is formulated as




min
ζ ∈ Rnk, θ ∈ Rd

1
n

∑k
j=1(L

j)′(ζj)+ + λ◦
∑d

ν=1 θν

(∑k
j=1(c

j)′Kνc
j
)

+λθ

∑
1≤ν≤ω≤d

max(θν , θω)

s.t.
∑d

ν=1 θνKνc
j − ζj = yj − cj

01 for j = 1, . . . , k
θ ≥ 0.

(3.15)

Let ei be the vector with its ith element equal to 1 and other elements being 0. And

let ∆ denote a d(d + 1)/2 × d matrix whose row vectors are in the form of (ei − ej) for

1 ≤ i < j ≤ d. Adopting the notation defined in (3.13), the θ-step SMSVM with OSCAR

penalty can be rephrased as a parametric LP problem with

z := ( θ′ (η+)′ (η−)′ (ζ+)′ (ζ−)′ )′

c := ( g′ 0′ 0′ L′/n 0′ )′

a := ( d(d− 1)1′/2 1′ 1′ 0′ 0′ )′

A :=

[
X
∆

0
I

0
−I

−I
0

I
0

]

b :=

(
Y − c0 ⊗ 1n

0

)
.
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3.2.2 Structured Nonparametric Quantile Regression

Extending the parametric QR with l1 penalty, Park et al. (2006) applied the idea of

structured kernels to nonparametric QR. Similarly as the SMSVM in (3.12), the Structured

Nonparametric QR (SNQR) finds c0 ∈ R, c := (c1, · · · , cn)′ ∈ Rn, and θν ≥ 0 for

ν = 1, . . . , d that minimize

τ

n
1′

(
Y− c01−

d∑
ν=1

θνKνc

)

+

+
1− τ

n
1′

(
Y− c01−

d∑
ν=1

θνKνc

)

−

+λ◦c′
(

d∑
ν=1

θνKν

)
c + λθ

d∑
ν=1

θν .

Define 



g := (g1, · · · , gd)
′ with gν := λ◦c′Kνc

ζ := (ζ1, · · · , ζn)′ with ζi = yi −
(
c0 +

∑d
ν=1 θνe

′
iKνc

)

X :=
[ K1c, · · · , Kdc

]
Y := (y1, · · · , yn)′,

(3.16)

Thus, its θ-step can be rephrased as a parametric LP problem with

z := ( θ′ (ζ+)′ (ζ−)′ )′

c := ( g′ τ1′/n (1− τ)1′/n )′

a := ( 1′ 0′ 0′ )′

A := [ X I −I ]
b := (Y − c01).

Similarly, other variants of SNQR with l1−l∞ penalty or OSCAR penalty can be useful.

SNQR with l1 − l∞ penalty finds c0 ∈ R, c := (c1, · · · , cn)′ ∈ Rn, and 0 ≤ θν ≤ u for

ν = 1, . . . , d that minimize

τ1′

n

(
Y− c01−

d∑
ν=1

θνKνc

)

+

+
(1− τ)1′

n

(
Y− c01−

d∑
ν=1

θνKνc

)

−

+λ◦c′
(

d∑
ν=1

θνKν

)
c + λθ

d∑
ν=1

θν .

Using the terms defined in (3.16), the θ-step for SNQR with l1 − l∞ penalty can be

written as a parametric LP problem with
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z := ( θ′ η′ (ζ+)′ (ζ−)′ )′

c := ( g′ 0′ τ1′/n (1− τ)1′/n )′

a := ( 1′ 0′ 0′ 0′ )′

A :=

[
X
I

0
I

I
0

−I
0

]

b :=

(
Y − c01

u1

)
.

With OSCAR penalty, the SNQR method selects and clusters the functional compo-

nents by minimizing

τ

n
1′

(
Y− c01−

d∑
ν=1

θνKνc

)

+

+
(1− τ)

n
1′

(
Y− c01−

d∑
ν=1

θνKνc

)

−

+ λ◦c′
(

d∑
ν=1

θνKν

)
c + λθ

∑

1≤ν≤ω≤d

max(θν , θω).

The θ-step for SNQR with OSCAR penalty is now a parametric LP problem with

z := ( θ′ (η+)′ (η−)′ (ζ+)′ (ζ−)′ )′

c := ( g′ 0′ 0′ τ1′/n 1− τ1′/n )′

a := (d(d− 1)1′/2 1′ 1′ 0′ 0′ )′

A :=

[
X
∆

0
−I

0
I

−I
0

I
0

]

b :=

(
Y − c01

0

)
.
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CHAPTER 4

COMPUTATIONAL ISSUES

As mentioned in Chapter 3, a general LP algorithm for solving a family of regulariza-

tion methods is usually inefficient in terms of computation complexity. Now, we discuss

the techniques that could be applied to accelerate the general tableau-simplex algorithm

(see Section 2.3.2). By making the most of the structural characteristics of the associated

statistical regularization methods, the simplification techniques aim to reduce the memory

size that is necessary to store a tableau and therefore achieve fast computation. We also

show that the current l1-norm SVM solution-path algorithm (Zhu et al.; 2004) is a simpli-

fied simplex algorithm.

4.1 Finding Initial Basic Index Sets

The tableau simplex algorithm discussed in Chapter 2 begins with an initial basic index

set B∗ whose tableau has lexicographically positive pivot rows. This section mainly ad-

dresses how to identify proper initial basic index sets for some of the examples described

in Chapter 3.

The LP problems for the four foregoing examples (l1-norm SVM, l1-norm QR, and θ-

step for SMSVM and SQR with l1 penalty) share a similar structure that can be exploited

in computation. First of all, each of the A matrices has both I and −I as its sub-matrices,
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and the entries of the penalty coefficient vector a corresponding to I and −I in A are zero.

Thus, the ranks of A and AIa are M , and the initial optimal solution exists and can be

easily identified. Due to the special structure of AIa , it is easy to find a basic index set

B∗ ⊂ Ia for the initial LP problem in (2.7) which gives a feasible solution. For instance,

a feasible basic solution can be obtained by constructing a basic index set B∗ such that for

bj ≥ 0, we choose the jth index from those for I, and otherwise from the indices for −I.

After some modification, the same idea can be applied to find initial basic index sets

for QR with grouped variables, SMSVM and SQR with l1− l∞ penalty or OSCAR penalty,

which do not have the aforementioned form of A originally. For modification, we aug-

ment A with additional columns and z with extra slack variables. Take QR with grouped

variables as an example. Its modified z and A are

z := ( (ξ+)′ (η+)′ (ξ−)′ (η−)′ β+
0 β−0 (β+)′ (β−)′ (ρ+)′ )′

A :=

[
I
0

0
I

−I
0

0
−I

1
0

−1
0

X
I

−X
I

0
−G

]
.

Compared with its counterpart in Section 3.1.2, the modified LP contains extra slack vari-

ables, η−, and its A is now of the form [I,−I, A∗
]. Correspondingly, we augment c and a

with NA entries for symbolic extension. They are given as

a := ( 0′ 0′ 0′ NA 0 0 0′ 0′ 1′ )′

c := ( 1′/n 0′ 1′/n NA 0 0 0′ 0′ 0′ )′ .

Then, redefine Ia := {i : ai = 0 or NA, i ∈ N}, whereN is for the extended z. We require

that any i ∈ N with ci = NA or ai =NA should not be selected as an element in the initial

basic index set nor in the candidate set of entry indices for update of the optimal index

set later. After augmentation of the LP elements with NA, the basic index set obtained by

the initialization step would have no index corresponding to η−. In other words, η− is

forced to be 0 at the initial stage. Furthermore, as the NA labels prevent the elements in η−
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from being selected in the following stages, the modification does not change the original

problem.

It may be a concern that such a modification would substantially increase the compu-

tational complexity or consumption of computer memory. This concern can be resolved

through tableau simplification discussed in next section.

To update the initial basic index set using the simplex algorithm, we need to generalize

the vector operations involving c and a as follows:

c′z :=
∑

{i:ci 6=NA}
cizi and a′z :=

∑

{i:ai 6=NA}
aizi.

The same principle applies wherever the operations involve a vector containing NA entries.

In practice, the initial basic index set is often derivable by setting the model parameters

to zero. We next illustrate this idea with Dantzig selector (see Section 3.1.3), where the

augmentation trick is not directly applicable.

With β0 = 0 and β = 0, the expression of the largest absolute covariance between

xj and residuals, ‖X′(Y − β01 − Xβ)‖∞ = ‖X′Y ‖∞ is simplified via a permutation

π : N1 → N1 which sorts the absolution values of the elements in X′Y in an ascending

order, where N1 := {1, . . . , p}.

Correspondingly, define

Y ∗ := {diag[sign(X′Y )]X′Y }π(N1),

X∗ := {diag[sign(X′Y )]X′X}π(N1),

X∗
0 := {diag[sign(X′Y )]X′1}π(N1).

Then, the elements in Y ∗ are all nonnegative and ascendingly ordered, and the last (or pth)

element of Y ∗ equals ‖X′Y ‖∞. Recast the LP problem with
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z := ( (ξ+)′ (η+)′ (ξ−)′ β+
0 β−0 (β+)′ (β−)′ ρ+)′

c := ( 0′ 0′ 0′ 0 0 0′ 0′ 1 )′

a := ( 0′ 0′ 0′ 0 0 1′ 1′ 0 )′

A :=

[
I 0 − I
I I I

X∗
0 −X∗

0

0 0
X∗ − X∗

0 0
0
−1

]

b :=

(
Y ∗

0

)

For β0 = 0 and β = 0, we have ξ+ = Y ∗ and ξ− = 0. Since ξ+ + ξ− + η+ = ρ+1 leads

to ρ+ = ξ+
p ≥ 0 and η+

i ≥ 0 for i = 1, · · · , (p − 1), a feasible initial basic index set, B∗,

can be specified by collecting all possible positive variables {ξ+, η+
1 , · · · , η+

p−1, ρ
+}, which

guarantees A−1
B∗b ≥ 0.

For some examples (e.g., the θ-step of SMSVM or SQR with l1, l1 − l∞, or OSCAR

penalty), the initial basic index set B∗ is already optimal with respect to the initial tuning

parameter, and it gives a trivial initial solution. However, for many other examples (e.g., the

l1-norm SVM, l1-norm QR, and Dantzig selector), B∗ defined above may not be optimal.

In the case, the initial optimal basic index set can be obtained by extra runs of simplex

algorithm starting from B∗. In general, the tableau-simplex algorithm in Section 2.3 can be

used to find the optimal basic index set of a standard LP problem. For the l1-norm SVM,

l1-norm QR, and Dantzig selector, the necessary modification of the algorithm for standard

LP problems is that, at Step 3, the entry index jl ∈ N could be any index j satisfying

čl
j < 0 and aj = 0. For B∗, all but the indices j for β+

0 and β−0 satisfy čl
j ≥ 0. Therefore,

one of the indices for β0 will move into the basic index set first by the algorithm, and it may

take some iterations to get the initial optimal index set for the regularization problems.

4.2 Computational Complexity

A tableau contains all the information on the current LP solution and the terms neces-

sary for the next update. To discuss the computational complexity of the tableau updating
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algorithm in Section 2.3.2, let Tl denote the tableau, an (N + 1)× (M + 2) matrix associ-

ated with the current optimal basic index set Bl. For a compact statement of the updating

formula, assume that the tableau is rearranged such that the pivot columns and the pivot

rows precede the zeroth column and the cost row and the penalty row, respectively. For the

entry index jl and exit index il defined in the algorithm, Tl
jl denotes its jlth column vector,

Tl′
il∗ the il∗th row vector of Tl, and Til∗jl the il∗j

lth entry of Tl. The proof of Theorem 10 in

Appendix A.4 implies the following updating formula:

Tl+1 = Tl − 1

Til∗jl

(
Tl

jl − eil∗

)
Tl′

il∗ . (4.1)

Therefore, the computational complexity of the tableau updating is approximately O(MN)

for each iteration in general.

For some examples in Chapter 3, tableau update can be further streamlined. Exploiting

the structure of A with paired columns and fixed elements in the tableau associated with

Bl, we can compress each tableau, retaining the information about the current tableau, and

update the reduced tableau instead.

The following sections discuss common structural properties of LP for the regulariza-

tion problems of interest in detail, which allow substantial savings in the computational

complexity of the proposed algorithm and its implementation.

4.2.1 Symmetry in A

Suppose the A matrix of a parametric-cost LP is of the form [A0
,−A0

], where A0 is of

full row rank. Correspondingly, we can split z into [z⊕, zª], the cost vector c into [c⊕, cª],

and the penalty vector a into [a⊕, aª], such that A′
z = A0

z⊕−A0
zª, c′z = c′⊕z⊕+c′ªzª,

and a′z = a′⊕z⊕ + a′ªzª. Then the tableau is decomposed as
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zeroth column pivot columns
cost row ⊕ −c′B∗A

−1
B∗b c′⊕ − c′B∗A

−1
B∗A

0

cost row ª c′B∗A
−1
B∗b −(c′ª + c′B∗A

−1
B∗A

0
)

penalty row ⊕ −a′B∗A
−1
B∗b a′⊕ − a′B∗A

−1
B∗A

0

penalty row ª a′B∗A
−1
B∗b −(a′ª + a′B∗A

−1
B∗A

0
)

pivot rows A−1
B∗b A−1

B∗A
0

Since, by definition, we have c′− c′B∗A
−1
B∗A = [c′⊕− c′B∗A

−1
B∗A

0
, c′ª+ c′B∗A

−1
B∗A

0
] and

a′ − a′B∗A
−1
B∗A = [a′⊕ − a′B∗A

−1
B∗A

0
, a′ª + a′B∗A

−1
B∗A

0
], the step for finding the entry index

is the same as the one described in Section 2.3.2. If the entry index jl > N
2

, replace the

Step 4 in Section 2.3.2 with

Step 4∗. Let ul := (ul
1, · · · , ul

M)′ := A−1
Bl A0

jl−N
2

. For each i ∈ M with ul
i < 0, divide

the ith pivot row (including the entry in the zeroth column) by ul
i. And, among those rows,

find the index, il∗, of the lexicographically largest row. Then, il := Bl
il∗

is the exit index.

Otherwise, follow the original Step 4 in Section 2.3.2. This simplification results in an

algorithm whose computational complexity is half of that for the original tableau-simplex

algorithm. By allowing c and a to contain NA entries, we can equivalently formulate

each LP problem to have the symmetry in A of the form [A0
,−A0

]. Therefore, such a

tableau simplification is useful even if the A for the original LP is partially symmetric or

asymmetric.

4.2.2 Redundancy

Another feature of the tableau that enables a compact coding of its representation is that

the term A−1
B A in the tableau always contains an identity matrix as its sub-matrix, since

AB is a permuted sub-matrix of A given B. For the same reason, a cost row c′ − c∗BA−1
B A
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(or a penalty row a′− a∗BA−1
B A) contains a zero sub-vector whose elements are indexed by

B. Therefore, for given B, a tableau (or a symmetrically simplified tableau) can be further

reduced in size by removing those columns that are pre-determined.

Here, we only consider a tableau with A := [A0
,−A0

] and A0 being an M ×N/2 ma-

trix. For simplicity, relabel the elements Bi in a basic index set B that are greater than N/2,

as N/2−Bi for i = 1, · · · ,M , and denote the new basic index set by B0 := {B0
1 , · · · , B0

M}

and A0
B0 := [sign(B0

i )A
0
|B0

i |]
M
i=1 = AB. Then,

[
A0
B0

]−1

A0 retains all the information in

A−1
B A, but its size is M × (N/2−M) and much smaller than the size of A−1

B A, M ×N .

Suppose the tableau algorithm stops in J iterations. And let p be the number of vari-

ables, d denote the number of kernel functions, and k be the number of categories. As a

result of the previous simplification, the computational complexity of both l1-norm SVM

and l1-norm QR as a whole is O(pnJ) since their M = n and N/2 = n + p + 1. The com-

plexity for the θ-step of SMSVM with l1 penalty is roughly O(dnkJ), that with l1 − l∞

penalty is roughly O(2dnkJ), and with OSCAR penalty is roughly O(d(nk+d(d−1)/2)J).

The complexity for other methods can be derived in the similar way.

4.2.3 Structural Simplification

For certain problems, their associated tableau can be further simplified by utilizing the

structural traits of the problems.

Here, we sketch out an example for θ-step of SMSVM with l1 − l∞ penalty. Other

examples can be similarly dealt with on a case-by-case basis. Consider the tableau with

matrix A defined in (3.2.1):

A :=

(
X
I

0
I
−I

0
I
0

)
.
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Assume an X is a n × p matrix with p >> n. Its associated A may be too large to store.

However, if we can store X, all the information about A would be known. Therefore, the

key to simplification of the tableau of this kind is to sufficiently utilize its structural traits

to obtain the tableau based only on X.

Given a basic index set B, with an appropriate column and row permutation AB can be

re-arranged as

AB :=




X∗
1

X∗
2

I
0

0
0
0
I

0
I∗
0
0

I∗1
0
I2

0


 ,

where I∗, I∗1, and I2 are all diagonal matrices satisfying I∗I∗ = I, I∗1I2 = 0, and (I∗1I∗1+I2) =

I. And [X∗
1
′, X∗

2
′]′ is a permuted sub-matrix of X.

The inverse of AB is of the form

A−1
B :=




−I2(I∗1 − X∗
1I2)

−1

0
I∗X∗

2I2(I∗1 − X∗
1I2)

−1

(I∗1 − X∗
1I2)

−1

0
0
I∗
0

I + I2(I∗1 − X∗
1I2)

−1X∗
1

0
−I∗X∗

2I2(I∗1 − X∗
1I2)

−1

−(I∗1 − X∗
1I2)

−1X∗
1

0
I
0
0


 .

Through the simplification, technically, the entire tableau can be stored with a matrix

whose size is about two times the size of X (about 2(nk)d). So, the size of the matrix we

actually handle can be much smaller than (nk)d + d2 resulting from the simplification in

Section 4.2.1 and 4.2.2.

4.3 A Closer Look at the l1-Norm Support Vector Machine

Taking the l1-norm SVM as a case in point, we describe the implications of the tableau-

simplex algorithm for generating the solution path. Zhu et al. (2004) provide a specific

path-finding algorithm for the l1-norm SVM in the complexity-bounded formulation of

(2.5) and give a careful treatment of this particular problem. We discuss the correspondence

and generality of the tableau-simplex algorithm in comparison with their algorithm.
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4.3.1 Status Sets

For the SVM problem with the complexity bound s, i.e. ‖β‖1 ≤ s, let β0(s) and

β(s) := (β1(s), · · · , βp(s)) be the optimal solution at s. Zhu et al. (2004) categorize the

variables and cases that are involved in the regularized LP problem as follows:

• Active set: A(s) := {j : βj(s) 6= 0, j = 0, 1, . . . , p}

• Elbow set: E(s) := {i : yi{β0(s) + xiβ(s)} = 1, i = 1, . . . , n}

• Left set: L(s) := {i : yi{β0(s) + xiβ(s)} < 1, i = 1, . . . , n}

• Right set: R(s) := {i : yi{β0(s) + xiβ(s)} > 1, i = 1, . . . , n}.

Now, consider the solution z(s) given by the tableau-simplex algorithm as defined in Sec-

tion 3.1.4 and the equality constraints of Az(s) = b, that is,

Az(s) := β0(s)Y + diag(Y )Xβ(s) + ζ(s) = 1.

It is easy to see that for any solution z(s), its non-zero elements must be one of the follow-

ing types, and hence associated with A(s), L(s), and R(s):

• β+
j (s) > 0 or β−j (s) > 0 (but not both) ⇒ j ∈ A(s);

• ζ+
i (s) > 0 and ζ−i (s) = 0 ⇒ i ∈ L(s);

• ζ+
i (s) = 0 and ζ−i (s) > 0 ⇒ i ∈ R(s).

On the other hand, if ζ+
i (s) = 0 and ζ−i (s) = 0, then i ∈ E(s), the elbow set.

From the perspectives of the simplex method, the algorithm in Zhu et al. (2004) can

be explained as follows. Consider a non-degenerate joint solution zl associated with its

optimal basic index set Bl. With some abuse of notation, zl
Bl can be expressed as

abs
(
βA(sl)(s

l), ζ+
U(sl)

(sl),−ζ−L(sl)
(sl)

)′
,
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where abs[·] is the absolute-value function, βA(sl) consists of βi’s for i ∈ A(sl), and ζ+
U(sl)

and ζ−L(sl)
can be interpreted similarly. Because each column vector in ABl associated with

nonzero ζ’s has only one nonzero entry and the entry equals either 1 or -1 (see Table 3.1.4),

the invertibility of ABl ensures that there exists a pair of permutations to order indices of

the row and column vectors for ABl such that the structure of the permuted ABl is of the

form: [
P 0
Q I∗

]
.

Here P, Q, and I∗ are all matrices, and I∗ is a diagonal matrix with nonzero entries being

either 1 or -1.

Tentatively assume that j ∈ N \Bl is the entering index at s = sl, such that we can find

dl by solving ABldl
Bl = −Aj . Let AP

j and AQ
j denote the sub-vectors of Aj corresponding

to the sub-matrices P and Q in ABl . Based on zl+1 = zl + τdl, define ∆βA(sl) as

∆βA(sl) = −P−1AP
j ,

then,

∆βA(sl) ∝ abs
(
βA(sl)(s

l+1)
)− abs

(
βA(sl)(s

l)
)

and the corresponding permuted −dl
Bl = A−1

Bl Aj equals
[

P 0
Q I∗

]−1
[

AP
j

AQ
j

]
=

[
−∆βA(sl)

I∗(Q∆βA(sl) + AQ
j )

]
.

Consequently, we obtain an alternative procedure to compute ǎl
j := (aj − a′BlA

−1
Bl Aj),

čl
j := (cj − c′BlA−1

Bl Aj), and the ratio − čl
j

ǎl
j

through ∆βA(sl), which can be plugged into the

step 2 of the simplex method. In principle, the algorithm in Zhu et al. (2004) is the same as

the procedure just being discussed.

Remark The assumption for the simplex algorithm is slightly different from the one used

in Zhu et al. (2004). It requires non-degenerate zl (i.e., zl > 0) at each joint solution where
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their updating algorithm applies, while the simplex algorithm assumes zl+1 6= zl. Since

zl > 0 implies zl+1 6= zl, the non-degeneracy assumption is more restrictive than the one

for the simplex algorithm. It is appealing that the tableau-simplex algorithm needs neither

of them.

4.3.2 Assumption

Suppose that the lth joint solution at s = sl is non-degenerate. Then zj(s
l) > 0 if and

only if j ∈ Bl. This gives

|A(sl)|+ |L(sl)|+ |R(sl)| = n.

Since E(s) ∪ L(s) ∪ R(s) = {1, . . . , n} for any s, the relationship that |A(sl)| = |E(sl)|

must hold for all the joint solutions. In fact, the equality of the cardinality of the active set

and the elbow set is stated as an assumption for uniqueness of the solution in the algorithm

of Zhu et al. (2004). The implicit assumption of zl
Bl > 0 at each joint implies zl+1 6= zl,

the non-degeneracy assumption for the simplex algorithm. Thus the simplex algorithm is

less restrictive. In practice, the assumption that joint solutions are non-degenerate may not

hold, especially when important predictors are discrete or coded categorical variables such

as gender. For instance, the initial solution of the l1-norm SVM violates the assumption in

most cases, requiring a separate treatment for finding the next joint solution after initializa-

tion. In general, there could be more than one degenerate joint solutions along the solution

path. This would make the tableau-simplex algorithm appealing as it does not rely on any

restrictive assumption.
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4.3.3 Duality in Algorithm

To move from one joint solution to the next, the simplex algorithm finds the entry index

jl. For the l1-norm SVM, each index is associated with either βj or ζi. Under the non-

degeneracy assumption, the variable associated with jl must change from zero to non-zero

after the joint (s > sl). Therefore, only one of the following “events” as defined in Zhu

et al. (2004) can happen immediately after a joint solution:

• βj(s
l) = 0 becomes βj(s) 6= 0, i.e., an inactive variable becomes active;

• ζi(s
l) = 0 becomes ζi(s) 6= 0, i.e., an element leaves the elbow set and joins either

the left set or the right set.

In conjunction with the entry index, the simplex algorithm determines the leaving index,

which accompanies one of the reverse events.

The algorithm in Zhu et al. (2004), driven by the Karush-Kuhn-Tucker optimality con-

ditions, seeks the event with the smallest “∆loss/∆s,” in other words, the one that de-

creases the cost with the fastest rate. The simplex algorithm is consistent with this existing

algorithm. As in (2.8), recall that the entry index jl is chosen to minimize (čl
j/ǎl

j) among

j ∈ N \ Bl with ǎl
j > 0. N \ Bl contains those indices corresponding to j /∈ A(sl) or

i ∈ E(sl). Analogous to the optimal moving direction dl in (2.9), define vj = (vj
1, . . . , v

j
N)′

such that

vj
Bl = −A−1

Bl Aj, v
j
j = 1, and vj

i = 0 for i ∈ N \ (Bl ∪ {j}).

Then ǎl
j := (aj−a′BlA

−1
Bl Aj) = a′vj ∝ ∆sj and čl

j := (cj−c′BlA−1
Bl Aj) = c′vj ∝ ∆lossj .

Thus, the index chosen by the simplex algorithm in (2.8) maximizes the rate of reduction

in the cost, ∆loss/∆s.
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The existing l1-norm SVM path algorithm needs to solve roughly p groups of |E|-variate

linear equation systems for each iteration. Its computational complexity can be O(p|E|2 +

p|L|) if Sherman-Morrison updating formula is used. On the other hand, the computational

complexity of the tableau-simplex algorithm is O(pn) for each iteration as mentioned in

Section 4.2.2. Therefore, the former could be faster if n/p is large; otherwise, the tableau-

simplex algorithm is faster.

Most of the arguments in this section also apply for the comparison of the simplex

algorithms with the extended solution path algorithm for the l1-norm multi-class SVM by

Wang and Shen (2006).
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CHAPTER 5

NUMERICAL STUDIES

We illustrate the use of the tableau-simplex algorithm for the parametric LP in statistical

applications with simulated examples and analysis of real data sets, and discuss model

selection or variable selection problems therein. The computation for generating the entire

solution paths was carried out with R package lpRegPath. Its brief descrption is given

in Appendix C.

5.1 Simulation

5.1.1 l1-norm Support Vector Machine

Consider a simple binary classification problem with linear classifiers. In this sim-

ulation, 10-dimensional independent covariates are generated from the standard normal

distribution, x := (x1, . . . , x10) ∼ N(0, I), and the response variable is generated via the

following probit model:

Y = sign(β0 + xβ + ε), (5.1)

where ε ∼ N(0, σ2), and x and ε are assumed to be mutually independent. Let φ(x) =

sign(β̂0 + xβ̂) denote a linear classifier with β̂0 and β̂ estimated from data. Under the

probit model, the theoretical error rate of φ(x) can be analytically obtained as follows.
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Given β0 and β,

Pr
{

Y 6= sign(β̂0 + Xβ̂)
}

= Φ (−û0) + E

{
Φ

(
− u0 + û′uZ√

(1 + 1/SNR)− (û′u)2

)
sign(Z + û0)

}
,

where Φ(·) is the cumulative distribution function of the standard normal distribution, Z is

a standard normal random variable, u0 := β0/‖β‖2, u := β/‖β‖2, û0 := β̂0/‖β̂‖2, and

û := β̂/‖β̂‖2. The SNR refers to the signal-to-noise ratio defined as var(Xβ)/σ2 in this

case. Note that the error rate is invariant to scaling of (β̂0, β̂). Setting σ2 = 50, β0 = 0,

and β = (2, 0, 2, 0, 2, 0, 0, 0, 0, 2)′, we have the SNR of 0.32. Then, for the Bayes decision

rule, in particular, we have the error rate of

Pr {Y 6= sign(β0 + Xβ)} =
1

2
− 1

π
arctan

√
SNR ≈ 0.336, (5.2)

which is the minimum possible value under the probit model (5.1).

Figure 5.1 shows the coefficient paths of the l1-norm SVM indexed by− log(λ) (piece-

wise constant) and s (piecewise linear) for a simulated data set of size 400 from the model.

Clearly, as 1/λ or s increases, those estimated coefficients corresponding to the non-zero

βj’s (j = 1, 3, 5, and 10) grow large very quickly. The error rate associated with the so-

lution at each point of the paths is theoretically available for this example, and thus the

optimal value of the regularization parameter can be defined. However, in practice, λ (or

s) needs to be chosen data-dependently, and this gives rise to an important class of model

selection problems in general. For the feasibility of data-dependent choice of λ, we car-

ried out cross validation and made comparison with the theoretically optimal values. The

dashed lines in Figure 5.1 indicate the optimal values of λ (or s) chosen by five-fold cross

validation with 0-1 loss (blue) and hinge loss (red), respectively. The discontinuity of the
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0-1 loss tends to give jagged cross validation curves, which have an adverse effect on iden-

tification of the optimal value of the tuning parameter. To increase the stability, one may

smooth out individual cross validated error rate curves by averaging them over different

splits of the data. To that effect, cross validation was repeated 50 times with respect to the

0-1 loss and the hinge loss for averaging.
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Figure 5.1: The solution paths of the l1-norm SVM for simulated data. The numbers at the
end of the paths are the indices of β’s. The values of − log(λ) (or s) with the minimum
five-fold cross validated error rate and hinge loss are indicated by the blue and red dashed
lines, respectively.

Figure 5.2 displays the path of average misclassification rates from five-fold cross val-

idation over the training data and the true error rate path for the l1-norm SVM under the

probit model. The true error rates were approximated by numerical integration up to the

precision of 10−4. Selection of s by cross validation with the 0-1 loss and hinge loss gave

very similar results. The smallest error rate achieved by the l1-norm SVM for this partic-

ular training data set is approximately 0.34, which is fairly close to the Bayes error rate.
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We observe that the linear classifiers at both of the chosen values include the four relevant

predictors.
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Figure 5.2: Error rate paths. The left panel shows the path of average misclassification rates
from five-fold cross validation of the training data repeated 50 times, and the right panel
shows the true error rate path for the l1-norm SVM under the probit model. The vertical
dashed lines are the same as in Figure 5.1. The cross on the path in the right panel pinpoints
the value of s with the minimum error rate, and the gray horizontal dashed line indicates
the Bayes error rate.

5.1.2 l1-norm Quantile Regression

For another example, consider a QR problem where covariates are simulated by the

same setting as in the previous example, but a continuous response variable is defined by

Y = β0 + xβ + ε. Under the assumption that ε ∼ N(0, σ2), the theoretical τ th conditional

quantile function is given by mτ (x) = σΦ−1(τ) + β0 + xβ. Restricting to linear functions

only, suppose that an estimated τ th conditional quantile function is f(x) = β̂0 + xβ̂. With
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respect to the check function as a loss, one can calculate the risk of f , which is defined by

R(f ; β0, β) := E
{

τ(Y − β̂0 − Xβ̂)+ + (1− τ)(Y − β̂0 − Xβ̂)−
}

=



τ − Φ


 β̂0 − β0√

σ2 + ‖β − β̂‖2
2






 (β0 − β̂0)

+

√
σ2 + ‖β − β̂‖2

2

2π
exp

{
− (β̂0 − β0)

2

2(σ2 + ‖β − β̂‖2
2)

}
.

For each τ , the true risk of mτ (x) is (σ/
√

2π) exp{−Φ−1(τ)2}, which represents the mini-

mal achievable risk. Note that the maximum of the minimal risks occurs when τ = 0.5 in

this case, i.e., for the median, and the true conditional median function is m0.5(x) = β0+xβ

with the risk of σ/
√

2π ≈ 2.821.

Figure 5.3 shows the coefficient paths of the l1-norm median regression applied to sim-

ulated data of size 400. Similarly, Figure 5.4 shows the corresponding path of the averaged

10-fold cross validated risk with respect to the check loss from 10 repetitions and its corre-

sponding theoretical risk path. At the chosen value of λ by cross validation, the four correct

predictors and one extra predictor have non-zero coefficients, and the theoretical risk of the

selected model is not far from the minimal risk denoted by the horizontal reference line.

We note that the complete risk path levels off roughly after − log λ = 5, implying that

moderately regularized models are almost as good as the full model of the unconstrained

solution. In terms of the risk, the realized benefit of penalization appears little compared to

the previous classification example.

5.1.3 Median Regression with Grouped Variables

The median regression with G-penalty is designed to implement simultaneous group

selection and model estimation. It is illustrated with a toy example. Data are simulated
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Figure 5.3: The solution paths of the l1-norm median regression for simulated data. The
dashed lines specify the value of the regularization parameter with the minimum of 10-fold
cross validated risk with respect to the check loss over the training data.

from a linear model:

yt =
J∑

j=1

pj∑
i

xtijβij + εt for t = 1, · · · , 1000,

where xtij
i.i.d.∼ N(0, 1) and εt

i.i.d.∼ N(0, 50) for j = 1, · · · , J and i = 1, · · · , pj .

With the number of groups J = 3, the true β is set to be ((2, 3, 2, 0), (0, 0, 0), (−3, 2,−2)))′

and its elements are indexed by ((11,12,13,14), (21,22,23), (31,32,33)). And the intercept

β0 is set to 0.

Figure 5.5 shows solution paths for median regression on the simulated dataset. The

computation took 19.50 seconds including user time 17.54 seconds and system time 1.80

seconds on a Pentium M 2GHz personal computer. From the figure, we can see that variable

group 1 and variable group 3 stand out at the early stage of the solution path as expected.

To make it clearer, the plot in the right panel shows the same solution path but in terms

of the absolute values of the coefficients. It illustrates the general characteristic of group
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Figure 5.4: Estimated risk path and its theoretical counterpart. The left panel shows the
averaged risk of the l1-norm median regression function from 10-fold cross validation over
the training data repeated 10 times. The right panel shows the theoretical risks of the
regression functions corresponding to the coefficient paths with the minimum indicated by
the cross. The vertical dashed lines locate the value of − log(λ) with the minimum cross
validated risk, and the horizontal dashed lines indicate the minimal theoretical risk.

selection that the coefficients in each group form a stem in the begining and then branch

out later for a better fit to the data. With only 9 variables, overfitting is not an issue for this

simulation study. We can also see that, at the end of the solution path, all the estimated

coefficients are fairly close to their respective true values.

5.1.4 Structured Support Vector Machine

Consider binary classification problems where the optimal classification rules are non-

linear in covariates. Data are simulated by the following scheme:

Y = sign

[
p1∑
i=1

(
e−Xi − eXi − .5 sin(4πXi)

)
+

p1+p2∑
j=p1+1

(
e2Xj − e−2Xj

)
+ ε

]
,

where X1, · · · , Xp
i.i.d.∼ Uniform[−.5, .5] and ε ∼ N(0, 1). (5.3)
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Figure 5.5: Solution paths of coefficients (left) and absolute coefficients (right) for median
regression with G-penalty.

Under this setting, the variance of
(
e−Xi − eXi − .5 sin(4πXi)

)
is about .3838, and that for

(
e2Xj − e−2Xj

)
is about 3.9228.

Among the p covariates, the class labels depend on two groups of covariates only (p1

variables in the first group and p2 variables in the second group). Each group shares the

specified functional form. The Structured SVM (SSVM) was applied to the simulated data.

Our R program for SSVM is based on the software, SMSVM v1.2.1, that can be down-

loaded at http://www.stat.osu.edu/˜yklee/software.html. By treating

all the covariates equally, the initial kernel was set to be

K(x, x∗) =

p∑
ν=1

θνKν(xν , x
∗
ν),

where x∗ := (x∗1, · · · , x∗p)
′, Kν(·) is the univariate spline kernel function, and θν = 1 for

ν = 1, · · · , p. The ordinary SVM classifier was calculated first. In c-step, the tuning

parameter λ◦ was chosen by five-fold cross validation (CV) with four repetitions using the
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hinge loss. Then, with the updated c, θ-step was carried out to choose the optimal θ also by

five-fold CV with four repetitions. The entire procedure of data simulation and functional

component pursuit was repeated 100 times.

Small p Large n Case

With p1 = 1, p2 = 1, p = 6, and n = 200, the Bayes error rate for this simulation setting

is about 0.1803. Note that the class label in (5.3) depends on the functional components of

the first two covariates only. So θ1 and θ2 are expected to be selected much more frequently

than other θν’s. Figure 5.6 illustrates a set of simulated data with the first two covariates,

class labels, and the boundary of the Bayes decision rule.
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Figure 5.6: Simulated data and the Bayes classification boundary.

Table 5.1 summarizes the error rates of the structured SVM for the simulation study.

Table 5.2 shows the relative selection frequency of the functional components. Here, the
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Mean S.D. Median
c-step .1983 .0012 .1967
θ-step (l1 penalty) .2042 .0030 .1967
θ-step (l1 − l∞ penalty) .2032 .0029 .1967
θ-step (OSCAR penalty) .2031 .0029 .1967

Table 5.1: Mean, standard deviation, and median of error rates

Method X1 X2 X3, X4, X5, X6

SSVM with l1 penalty .9620 .9873 .2405
SSVM with l1 − l∞ penalty .9620 .9873 .2088
SSVM with OSCAR penalty .9620 .9873 .3323

Table 5.2: Relative selection frequencies of functional components

relative selection frequency is defined as the proportion of selection of each functional com-

ponent. Since X3 through X6 are irrelevant to Y , their selection frequencies are aggregated

into a single value. From the tables, we can see that the θ-step has the effect of keeping

similar test error rates as c-step, but correctly identifying the important components and

excluding the majority of the irrelevant components. This result confirms the common ob-

servation that even as a black-box like prediction algorithm, the regular SVM attains high

prediction accuracy, and the main utility of the θ-step is to improve its interpretability.

Figure 5.7 displays typical solution paths of θ and their associated risk curves. Figure

5.8 shows the boxplots of optimal θ’s for SSVM with three different kinds of kernel penalty.

The solution paths with l1 and OSCAR penalty are similar. Especially at the early stage,

they are almost identical. As pointed out by Bondell and Reich (2008), the OSCAR penalty

often yields merged pieces in its solution paths. For example, θ3 (in blue) and θ4 (in sky
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blue) follow the same trajectory at their early stage, while their paths are separate with

quite large l1 penalty. l1 penalty is sometimes too greedy in selection. When two or more

components have a similar kernel matrix derived from training data, the θ-step with l1

penalty tends to select only one of them. The solution path with the additional upper bound

of 3 on θ has selected the correct functional components as well as the SSVM with l1

penalty only. However, a too small upper bound could cause faulty selection of functional

components. The risk curves in Figure 5.7 also suggest that the hinge loss may be more

reliable than the 0-1 loss for functional component pursuit, since its risk curves are usually

smoother than those for 0-1 loss.

Large p Small n Case To assess the performance of structured SVM on large p small

n data, this simulation sets p1 = 10, p2 = 10, p = 100, and n = 50. The selection

frequency associated with the first group of variables, X1, · · · , X10, and the second group

of variables, X11, · · · , X20, is expected to be significantly larger than that for the rest of

the variables irrelevant to Y (call them Group Three). For large p case, the structured

SVM with OSCAR penalty is not applicable due to its large computational complexity, so

is not pursued here. Figure 5.9 shows typical solution paths of θ, the number of selected

components, and the risk curves. We can see that the number of selected components is

roughly linearly increasing in the l1 penalty. For SSVM with l1 penalty, the number of

selected components can not exceed the observation size, 50; while, for SSVM with l1

penalty and an upper bound 4, the observation size is not any more a hard limitation on the

number of selected components.

Table 5.1.4 shows that functional components in Group Two have the highest selection

frequency (about .3810), and the selection frequency for the components in Group Two

is much higher than that for the components in Group Three. However, due to the small
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Method X1, · · · , X10 X11, · · · , X20 X21, · · · , X100

SSVM with l1 penalty .2010 .3810 .1165
SSVM with l1 − l∞ penalty .3080 .5290 .2526

Table 5.3: Relative selection frequencies of functional components

sample size, the contrast between the relevant variables and the rest in terms of the selection

frequency is not as strong as in the small p and large n case. Table 5.1.4 also shows that

setting upper bound for the recalibration parameter of functional components (i.e. l1 − l∞

penalty) significantly increases the selection frequencies for all the functional components.

In summary, this simulation study exemplifies that the proposed algorithms are useful

for functional component pursuit with large p small n data.

5.2 Real Data Analysis

5.2.1 Income Data Analysis

For a real application, we take the income data in Hastie et al. (2001), which are ex-

tracted from a marketing database for a survey conducted in the Bay area (1987). The data

set is available at http://www-stat.stanford.edu/˜tibs/ElemStatLearn/.

It consists of 14 demographic attributes with a mixture of categorical and continuous vari-

ables, which include age, gender, education, occupation, marital status, householder status

(own home/rent/other), and annual income among others. The main goal of the analysis is

to predict the annual income of the household (or personal income if single) from the other

13 demographics attributes.

The original response of the annual income takes one of the following income brackets:

< 10, [10, 15), [15, 20), [20, 25), [25, 30), [30, 40), [40, 50), [50, 75), and ≥ 75 in the unit
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of $1,000. For simplification, we created a proxy numerical response by converting each

bracket into its middle value except the first and the last ones, which were mapped to some

reasonable values albeit arbitrary. Removing the records with missing values yields a total

of 6,876 records. Because of the granularity in the response, the normal-theory regression

would not be appropriate. As an alternative, we considered median regression, in partic-

ular, the l1 norm median regression for simultaneous variable selection and prediction. In

the analysis, each categorical variable with k categories was coded by (k-1) 0-1 dummy

variables with the majority category treated as the baseline. Some genuinely numerical but

bracketed predictors such as age were also coded similarly as the response. As a result, 35

variables were generated from the 13 original variables.

The data set was split into a training set of 2,000 observations and a test set of 4,876 for

evaluation. All the predictors were centered to zero and scaled to have the squared norm

equal to the training sample size before fitting models. Inspection of the marginal associa-

tions of the original attributes with the response necessitated inclusion of a quadratic term

for age. We then considered linear median regression with the main effect terms only (35

variables plus the quadratic term) and with two-way interaction terms as well as the main

effects. There are potentially 531 two-way interaction terms by taking the product of each

pair of the normalized main effect terms from different attributes. In an attempt to exclude

nearly constant terms, we screened out any product with the relative frequency of its mode

90% or above. This resulted in addition of 69 two-way interactions to the main effects

model. Note that the interaction terms were put in the partial two-way interaction model

without further centering and normalization for the clarity of the model. Approximately

three quarters of the interactions had their norms within 10% difference from that of the

main effects. Figure 5.10 shows the coefficient paths of the main effects model in the left
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panel and the partial two-way interaction model in the right panel for the training data set.

The coefficients of the dummy variables grouped for each categorical variable are of the

same color. In both models, several variables emerge at early stages as important predictors

of the household income and remain important throughout the paths. Among those, the fac-

tors positively associated with household income are home ownership (in dark blue relative

to renting), education (in brown), dual income due to marriage (in purple relative to ‘not

married’), age (in skyblue), and being male (in light green). Marital status and occupation

are also strong predictors. As opposed to those positive factors, being single or divorced

(in red relative to ‘married’) and being a student, clerical worker, retired or unemployed

(in green relative to professionals/managers) are negatively associated with the income. So

is the quadratic term of age in blue as expected. In general, it would be too simplistic to

assume that the demographic factors in the data affect the household income additively.

Truthful models would need to take into account some high order interactions, reflecting

the socio-economic fabric of the household income structure. Some of the two-way inter-

actions worthwhile to mention are ‘dual income ∗ home ownership’, ‘home ownership ∗

education’, and ‘married but no dual income ∗ education’ with positive coefficients, and

‘single ∗ education’ and ‘home ownership ∗ age’ with negative coefficients.

As in the QR simulation, we chose optimal values of s by cross validation with the

absolute deviation loss. Five-fold cross validation was repeated 5 times for different splits

of the training data, and the resulting risks were averaged. Figure 5.11 displays the paths

of actual risks over the test set for the main effect models (left) and for the partial two-way

interaction models (right). The dashed lines indicate the minimizers s of the averaged risks

and the solid lines those of the actual risks over the test set. Cross validation seems to give

a reasonable choice of s in terms of risk. Note that there is a range of optimal values with
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about the same risk in both panels, which suggests that one may as well average the models

in the range. A notable difference between the risk paths is the amount of regularization de-

sired to attain the minimum risk in comparison with the full models. That is, regularization

improves the two-way interaction models much more than the main effects models. More-

over, the selected two-way interaction model has a smaller risk over the test set than the

main effect model in accordance with our understanding of the data. On the basis of evalu-

ation over the test data, 95% confidence intervals of the true risk associated with the main

effects and the two-way interaction models selected by the CV criteria are 7.799 ± 0.238

and 7.653± 0.236, respectively. In particular, a 95% confidence interval of the risk differ-

ence of the main effects model from the two-way model is given by 0.146± 0.0585, which

indicates that the latter improves the former significantly in terms of the risk.

5.2.2 Breast Cancer Data Analysis

Biologically, it is speculated that a malignant disease can cause characteristic changes

in certain gene expressions of patients’ blood. Blood samples are much easier to collect

than traditional clinical samples (diseased tissues and cells) because they do not rely on

the prior knowledge of disease status. If the hypothesis is true, one may be able to design

an inexpensive prognosis for breast cancer by testing peripheral blood cells of women.

Aiming at the goal, Sharma et al. (2005) collected data to identify important genes that

are numerically relevant to breast cancer. The dataset contains batch-adjusted expression

levels (mRNA) of 1368 genes from 60 blood samples of 56 women. Among the 56 women,

24 women are breast cancer patients, and the rest were previously suspected to have breast

cancer but no sign of the disease. A preliminary gene-by-gene examination indicates that

there exist correlations between breast cancer and gene expressions. For example, the
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scatter plots in Figure 5.12 suggest that the lower the expression levels of gene 56 or 801

there is the higher possibility of the breast cancer occurrence. Figure 5.13 shows that

certain combinations of gene expressions may provide fairly accurate information about

breast cancer status.

Sharma et al. (2005) applied the nearest-shrunken-centroid method (Tibshirani et al.;

2002) to the dataset and identified 37 genes. For comparison, we applied l1-norm SVM

and structured SVM as alternatives. In the original paper, the external leave-one-out CV

(Ambroise and McLachlan; 2002) was used for unbiased evaluation of the error rate. It

means that each time one observation was left out and the error was obtained on the ob-

servation for the nearest-shrunken-centroid method with its threshold chosen by internal

leave-one-out CV. Instead, we used external 6-fold CV for all the methods, that is, we split

60 observations into a training set of 50 and a test set of 10 and applied internal 5-fold CV

or its variant for choice of tuning parameters.

For structured SVM method, we specified the kernel function for each of the gene

expressions to be a spline kernel with linear and smooth parts combined, and set the initial

kernel of the overall feature space to be the sum of all the individual kernel functions. In

c-step, a regular SVM method was applied for a sequence of tuning parameter values of λ.

The value with the minimum of 5-fold CV error rate averaged over 20 different splits of

the training set was chosen and passed to the next θ-step. Then, in θ-step, we generated

the paths of the kernel coefficients and selected the optimal λθ via 5-fold CV procedure

with 20 different splits. For l1-norm linear SVM, we considered two classifiers: one with

standardized gene expressions as covariates and the other with additional square terms. The

CV was done similarly as in the θ-step of structured SVM.
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To illustrate the utility of solution paths, with all the 60 observations, we generated

the coefficient paths of the l1-norm SVM and structured SVM as given in Figure 5.14 and

Figure 5.18 respectively. In addition, Figure 5.15 shows the corresponding 5-fold CV error

rate curves for l1-norm SVM; Figure 5.17 and Figure 5.19 are the counterparts for c-step

and θ-step of structured SVM. We notice that the estimated error rate curves in Figures

5.15, 5.17, and 5.19 all have a valley in the middle. Roughly speaking, to the left side of

the valley over-penalization occurs, which causes insufficient utilization of the data. On the

other hand, to the right side of the valley over-fitting occurs, which results in unsatisfactory

prediction performance. Therefore, an advantage of having such error rate curves is that

we can select models or classifiers balancing data fit and penalty.

For comparison of the four methods, we carried out external 6-fold CV and Table 5.4

lists the estimated error rates (p̂) and their standard errors (
√

p̂(1− p̂)/60). Among the

methods, structured SVM gives the smallest error rate followed by the nearest-shrunken-

centroid method. We also see that the error rate of l1-norm SVM with linear terms only

(about 0.197) is much smaller than that with additional square terms (about 0.279). Because

the latter contains more covariates than the former, one may expect that the classifier with

both linear and square terms would outperform the one with linear terms only. However,

having more covariates also increases the chance to wrongly include some covariates, and

as a consequence the prediction accuracy may drop. The results show that at least for the

data, adding those square terms degrades the accuracy.

Other than error rates, it is of statistical interest to compare the variability of the es-

timated coefficients and selection frequencies of genes for each method. Here, we give a

result for assessment of the variability of the l1-norm SVM with linear terms only. Similar

analysis can be done for other methods, which is to be carried out in the future.
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To emulate the setting for external 6-fold CV in terms of the training set size yet to cre-

ate more replicates, we randomly selected 50 observations out of the total 60 and applied

the l1-norm SVM to the subset. The optimal classifier was selected by using 5-fold CV

with 10 different splits. And the entire procedure was repeated 20 times, yielding 20 repli-

cates of l1-norm SVM classifiers. Each classifier contained about 20 genes with nonzero

coefficients. Figure 5.16 shows the boxplots of the coefficients for the genes selected at

least 5 times. They are ordered by the absolute values of their median coefficients. The

selection frequencies are also given on the left side. None of the boxplots contains both

positive and negative coefficients. It means that for each gene in the figure, its estimated

non-zero coefficients are consistent in the sign. In addition, we investigated consistency

in ranks of the coefficients for each pair of the 20 replicated classifiers by computing the

Kendall’s τ (also called Kendall’s correlation coefficient proposed by Kendall (1938)). As

mentioned before, only 20 genes out of 1368 had nonzero coefficients on average, and this

sparsity would lead to too many ties in the rank. To reduce the effect of the ties on the

Kendall’s τ , for each pair, we removed the genes with zero coefficients in both classifiers,

and computed the Kendall’s τ only based on the ranks of the rest. As it is often the case that

the importance of a predictor is measured by the absolute value of its estimated coefficient,

the Kendall’s τ is also computed for the absolute values of the coefficients. Figure 5.20

shows the histogram of the Kendall’s τ ’s for coefficients of all pairs of 20 replicates in the

upper panel and that for absolute coefficients in the lower panel, respectively. The former

is centered at .33 while the latter is roughly centered at 0. Expectedly, Kendall’s τ ’ for

coefficients is higher than that for the absolute values on average. However, the result that

the correlation in the importance of the covariates (excluding those with zero coefficient) is

nearly zero from replicate to replicate requires some explanation. It is conjectured that due
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Method Setting for internal CV Error rate SE
Nearest Shrunken Centroid 5-fold 0.186 .050

l1-norm SVM with linear terms 5-fold with 20 different splits 0.197 .051
l1-norm SVM with additional 5-fold with 20 different splits 0.279 .058

square term
Structured SVM 5-fold with 20 different splits 0.170 .048

Table 5.4: Comparison of error rate for four classification methods

to the large p small n data structure, there usually exist a large number of covariates that

are equally correlated with the responses, and this would make the Kendall’s correlation

for the absolute coefficients close to zero on average.

In summary, similarly to the results in Sharma et al. (2005), our data analysis also

suggests that breast cancer even during early stages of disease development affects the ex-

pression pattern of certain genes. By identifying these genes and analyzing their expression

pattern, it is possible to develop a blood-based gene expression test for early detection of

breast cancer.
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Figure 5.7: Solution paths of the recalibration parameter θ and empirical risk curves for
Structured SVM. The red and black dashed lines locate θ’s of the minimum empirical risks
with respect to the hinge and 0-1 loss functions.
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Figure 5.9: Solution paths of the recalibration parameter θ and empirical risk curves for
Structured SVM on a large p small n dataset. The red and black dashed lines locate θ’s of
the minimum empirical risks with respect to the hinge and 0-1 loss functions.
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Figure 5.18: The path of recalibration parameters for structured SVM. The colored num-
bers are the associated gene indices. The black dashed line indicates the parameters with
the minimum 5-fold cross validated error rate averaged over 20 different splits, and the red
dashed line indicates that with the minimum risk in the hinge loss. The parameters are
grouped into three panels depending on the first value of s at which they become nonzero.
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Figure 5.19: Error rate path for the θ-step of the structured SVM. The path is the average of
5-fold cross validated error rate curves for 20 different splits of the data. The black dashed
line locates the minimum error rate along the curve.
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CHAPTER 6

CONCLUSION

This thesis has focused on elucidating the link between computational problems with

linear constraints for feature selection in statistical modeling and the linear programming

theory. Tapping into a rich theory of linear programming and its algorithmic developments,

we have provided a broad and unified perspective on the properties of solutions to a wide

family of regularization methods for feature selection. We have shown that the solutions

can be characterized completely by using the parametric linear programming techniques.

As for implementation, a single umbrella procedure can serve for all of the methods in the

family in order to generate the entire set of regularized solutions. Efficiency can be gained

further when the procedure is tailored to each individual method by utilizing the structure of

the computational elements specific to the method. The connection does not only provide

a useful computational tool but also helps understand the nature of the estimators given by

the methods in consideration. For instance, the sparsity of the estimators in either variables

or observations can be clearly apprehended via the tableau.

As illustrated, the solution paths offer rich information about how constrained models

evolve with features. Especially, they make it easy to recognize persistent features in the

data, which are of general interest in data analysis. In addition to facilitating computation

and tuning, the path-finding algorithms for feature selection can equip the data analyst with
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a useful tool for visualization of a model path. Combined with risk measures, such a path

can portray a full spectrum of potentially good models for selection and averaging.

Moving beyond LP, we know that many statistical regularization methods can be cast

as Parametric Quadratic Programming (PQP) problems. Examples are LASSO, SVM, non-

parametric QR, etc. The PQP problem under consideration can be standardized as

min
1

2
z′Cz + λc′z

s.t. Az = b and z ≥ 0.

General simplex-like methods for solving the problem have been proposed and developed

by Wolfe (1959), Jagannathan (1966), Panne and Whinston (1969), Rusin (1971), and other

researchers. Parallel to the approach presented in this thesis, it would be very interesting to

develop a unified perspective and practical algorithms for solving such a class of statistical

regularization problems.

Also, more flexible statistical regularization methods can be formulated with multiple

tuning parameters instead of a single tuning parameter. For example, the θ-step of SQR

with l1 − l∞ penalty (see Section 3.2.2) can be viewed as a regularization method with

two tuning parameters, λθ and an upper bound u. Multi-parametric linear or quadratic

programming (Gal; 1979; Pistikopoulos et al.; 2007) would be relevant to handling multiple

tuning parameters systematically.

A massive dataset often results in a large-scale optimization problem, which may im-

pede many current algorithms whose computational complexities increase rapidly with the

size of the dataset. Therefore, it would be necessary to develop alternative procedures

that can quickly approximate the solution with reasonable accuracy. For such large scale

problems, computing the entire solution path exactly would be unnecessary and perhaps
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impractical. Instead, we may choose a relatively small set of values of the tuning param-

eter and calculate the corresponding optimal solutions with more efficient methods for a

single value such as the interior-point method.

With the entire model path at hand, the data analyst is faced with the problem of model

selection or averaging. Cross Validation (CV) is widely used to evaluate the performance

of the models along the solution path. However, as shown in the numerical examples, the

risk curve of potential models, now available in a very fine scale, could be quite jagged.

For a stable mapping from the tuning parameter to the risk, smoothing techniques may be

useful to reduce the variance of the risk curves and eventually lead to better model selection

procedures.
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APPENDIX A

PROOFS

A.1 Lemma 12

Lemma 12 Suppose that Bl+1 := Bl ∪ {jl} \ {il}, where il := Bl
il∗

. Then

zl+1 = zl − zl
il

dl
il

dl.

Proof First observe that

zl+1
Bl+1 = A−1

Bl+1b = A−1
Bl+1ABlA−1

Bl b = [A−1
Bl+1ABl ]zl

Bl .

Without loss of generality, the il∗th column vector Ail of ABl is replaced with Ajl to give

ABl+1 . For the ABl+1 ,

[A−1
Bl+1ABl ]−1 = A−1

Bl ABl+1 (A.1)

= [e1, · · · , eil∗−1, u
l, eil∗+1, · · · , eM ]

=




1 ul
1

. . . ...
ul

il∗... . . .
ul

M 1




,
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where ul := A−1
Bl Ajl = −dl

Bl . Thus, we have

A−1
Bl+1ABl =




1 − ul
1

ul
il∗

. . . ...
1

ul
il∗... . . .

−ul
M

ul
il∗

1




. (A.2)

Then it immediately follows that

zl+1
Bl+1 = zl

Bl − zl
il

dl
il

dl
Bl − zl

il

dl
il

eil∗ .

Hence, zl+1 = zl − (zl
il
/dl

il
)dl.

A.2 Proof of (2.11)

For l = 0, · · · , J − 1, consider the following difference

[
(c + λla)−A′ (A−1

Bl+1

)′
(cBl+1 + λlaBl+1)

]
−

[
(c + λla)−A′ (A−1

Bl

)′
(cBl + λlaBl)

]

= −A′ (A−1
Bl

)′ (
A−1
Bl+1ABl

)′
(cBl+1 + λlaBl+1) + A′ (A−1

Bl

)′
(cBl + λlaBl).

By the intermediate calculation in Lemma 12, we can show that the difference is κλl
A′ (A−1

Bl

)′
eil∗ ,

where

κλl
:= (cB

il∗
+ λlaB

il∗
)− cjl + λlajl

ul
il∗

+
∑

i∈“Bl+1 \ {jl}
”

(ci + λlai)u
l
i

ul
il∗

=
(cBl + λlaBl)′A−1

Bl Ajl − (cjl + λlajl)

ul
il∗

= − čl
jl + λlǎl

jl

ul
il∗

.

Since λl := −čl
jl/ǎl

jl , κλl
= 0, which proves (2.11).
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A.3 Proof of Theorem 7

Let Bl := Bl ∪ {jl} for l = 0, · · · , J − 1, and BJ := BJ ∪ {N + 1}, where Bl, BJ ,

andjl are as defined in the simplex algorithm. We will show that, for any fixed s ∈ [sl, sl+1)

(or s ≥ sJ ), Bl (or BJ ) is an optimal basic index set for the LP problem in (2.6).

For simplicity, let jJ := N + 1, cN+1 := 0, AN+1 := 0, and aN+1 := 1. The inverse of

ABl =

[
ABl Ajl

aBl
′ ajl

]

is given by

A−1

Bl =

[
A−1
Bl 0
0′ 0

]
+

1

ajl − aBl
′A−1

Bl Ajl

[
−A−1

Bl Ajl

1

] [
−aBl

′A−1
Bl

1

]′

for l = 0, · · · , J .

First, we show thatABl is a feasible basic index set of (2.6) for s ∈ [sl, sl+1], i.e.

A−1

Bl (b+ sb∗′) ≥ 0. (A.3)

Recalling that zl
Bl = A−1

Bl b, zl
jl = 0, sl = a′zl = (al

B
′A−1

Bl b), dl
Bl = −A−1

Bl Ajl , and

dl
jl = 1, we have

A−1

Bl (b+ sb∗′) = A−1

Bl

{[
b
0

]
+ s

[
0
1

]}
(A.4)

=

[
A−1
Bl b
0

]
+

(s− aBl
′A−1

Bl b)

ajl − aBl
′A−1

Bl Ajl

[
−A−1

Bl Ajl

1

]

=

[
zl
Bl

zl
jl

]
+

s− sl

ajl + aBl
′dl
Bl

[
dl
Bl

dl
jl

]
.

From zl+1 − zl = −(zl
il
/dl

il
)dl and sl+1 − sl = a′(zl+1 − zl) = −(zl

il
/dl

il
)(ajl + aBl

′dl
Bl),

it can be shown that

(A.4) =

[
zl
Bl

zl
jl

]
+

s− sl

sl+1 − sl

{[
zl+1
Bl

zl+1
jl

]
−

[
zl
Bl

zl
jl

]}
.

85



Thus, (A.4) is a convex combination of zl and zl+1 for s ∈ [sl, sl+1], and hence it is non-

negative. This proves the feasibility ofABl for s ∈ [sl, sl+1] and l = 0, . . . , J − 1. For

s ≥ sJ , we have

A−1

BJ

{[
b
0

]
+ s

[
0
1

]}

=

[
A−1
BJ b
0

]
+ (s− aBJ

′A−1
BJ b)

[
0
1

]

=

[
A−1
BJ b
0

]
+ (s− sJ)

[
0
1

]
≥ 0.

Next, we prove that ABl is an optimal basic index set of (2.6) for s ∈ [sl, sl+1] by

showing c−A′
(A−1

Bl )′cBl ≥ 0. For i = 1, · · · , N , the ith element of c−A′
(A−1

Bl )′cBl

is

ci −
[

cBl

cjl

]′
A−1

Bl

[
Ai

ai

]

= ci − cBl
′A−1

Bl Ai −
cjl − cBl

′A−1
Bl Ajl

ajl − aBl
′A−1

Bl Ajl

(ai − aBl
′A−1

Bl Ai)

=

{
čl
i + λlǎl

i for i = 1, · · · , N
λl for i = N + 1.

Similarly, for s ≥ sJ ,

ci −
[

cBJ

0

]′
A−1

BJ

[
Ai

ai

]
= ci − cBJ

′A−1
BJ Ai

=

{
čJ

i for i = 1, · · · , N
0 for i = N + 1.

Clearly, the optimality condition holds by the non-negativity of all the elements as defined

in the simplex algorithm. This completes the proof.
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A.4 Proof of Theorem 10

i) By (A.2), we can update the pivot rows of the tableau as follows:

(the ith pivot row of Bl+1) (A.5)

=





(the ith pivot row of Bl)− ul
i

ul

il∗
(the il∗th pivot row of Bl) for i 6= il∗;

1
ul

il∗
(the il∗th pivot row of Bl) for i = il∗.

If ul
i = 0, the ith pivot row of Bl+1 is the same as the ith pivot row of Bl(

L
> 0). For

i = il∗, the ith pivot row of Bl+1 is (1/ul
il∗
) (the ith pivot row of Bl)

L
> 0. If i 6= il∗ and

ul
i < 0, which imply−ul

i/u
l
il∗

> 0, the ith pivot row of Bl+1
L
> 0 since the sum of any

two lexicographically positive vectors is still lexicographically positive. According

to the tableau update algorithm, we have ul
il∗

> 0, where il∗ is the index number of

the lexicographically smallest pivot row among all the pivot rows for Bl with ul
i > 0.

For i 6= il∗ and ul
i > 0, by the definition of il∗,

the il∗th pivot row of Bl

ul
il∗

L
<

the ith pivot row of Bl

ul
i

.

This implies that

(the ith pivot row for Bl+1)

=
(
the ith pivot row of Bl

)− ul
i

ul
il∗

(
the il∗th pivot row of Bl

) L
> 0.

Therefore, all the updated pivot rows are lexicographically positive.

Remark If zl
il

= 0, (A.5) implies that zl
Bl

i
= zl+1

Bl
i

for i 6= il∗, i ∈ M. and zl+1
jl = 0.

Hence zl+1 = zl. On the other hand, if zl
il

> 0, zl+1
jl = (zl

il
/ul

jl) > 0 while zl
jl = 0

since jl /∈ Bl. This implies zl+1 6= zl. Therefore, zl+1 = zl if and only if zl
il

= 0.
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ii) When the basic index set Bl is updated to Bl+1, čl
jl < 0. Since jl ∈ Bl+1, čl+1

jl = 0

Then, (cjl − c′Bl+1A−1
Bl+1Ajl)− (cjl − c′BlA−1

Bl Ajl) = (čl+1
jl − čl

jl) > 0.

Similarly as the proof of (2.11),

(
c′ − c′Bl+1A−1

Bl+1A
)
−

(
c′ − c′BlA−1

Bl A
)

= κle′il∗A
−1
Bl A,

where κl := (c′Blu
l − cjl)/ul

il∗
. e′

il∗
A−1
Bl A is the il∗th pivot row for Bl, which is

lexicographically positive. Since the jlth entry of e′
il∗

A−1
Bl A is strictly positive, that

of (c′ − c′Bl+1A−1
Bl+1A) − (c′ − c′BlA−1

Bl A) must share the same sign with κl. Thus,

we have κl > 0. Then the updated cost row is given as

[
−c′Bl+1A−1

Bl+1b, c′ − c′Bl+1A−1
Bl+1A

]

=
[
−c′BlA−1

Bl b, c′ − c′BlA−1
Bl A

]
+ κle′il∗

[
A−1
Bl b, A−1

Bl A
]
.

Clearly, the cost row for Bl+1 is lexicographically greater than that for Bl.

A.5 Proof of (5.2)

Pr {Yi 6= sign(xiβ)}

= Pr {xiβ > 0 and xiβ + εi < 0}+ Pr {xiβ < 0 and xiβ + εi > 0}

= 2Pr {xiβ > 0 and xiβ + εi < 0}

Let W := (W1,W2)
′ := (

xiβ√
V

, εi

σ
)′, where V = var(xiβ). By the model settings, we have

W :=

[
W1

W2

]
∼ N (0, I) .
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Then,

Pr {Yi 6= sign(xiβ)}

= 2Pr{W1 > 0 and
√

V W1 + σW2 < 0}

= 2

∫ ∞

0

∫ −
√

V w1
σ

−∞

1

2π
exp

{
−1

2
(w2

1 + w2
2)

}
dw2dw1 (by using polar coordinates)

=
1

π

∫ π
2

arctan
√

V
σ

∫ ∞

0

r exp{−r2/2}drdθ

=
1

2
− 1

π
arctan

√
V

σ2
,

where w1 := r cos θ and w2 := −r sin θ.
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APPENDIX B

PARAMETRIC QUADRATIC PROGRAMMING

Consider the standard for of a Parametric Quadratic Programming (PQP) problem given

by

min
z

1

2
z′Cz + λc′z (B.1)

s.t. Az = b and z ≥ 0,

where C is a nonnegative definite matrix. Wolfe (1959) proposed a simplex method to solve

the problem. This section is a summary of the Wolfe simplex algorithm.

Theorem 13 The PQP problem in (B.1) is solvable if and only if there exist z∗ ≥ 0,

v∗ ≥ 0, and u∗ with Az∗ = b such that

z∗′v∗ = 0 (B.2)

Cz∗ − v∗ + A′
u∗ = −λc.

If the condition is satisfied, z∗ is a solution of the problem in (B.1).

The key to this theorem is the Karush-Kuhn-Tucker (KKT) optimality conditions, which

can be found in many optimization textbooks (e.g., Mangasarian (1994); Bertsimas (1999)).
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The conditions in (B.2) are sufficient for the optimality of z∗, which can be proved easily

by showing that, for any w ≥ 0 with Aw = b, we have

(
1

2
w′Cw + λc′w

)
−

(
1

2
z∗′Cz∗ + λc′z∗

)

=
1

2
(w − z∗)′C(w − z∗) + z∗′C(w − z∗) + λc′(w − z∗)

=
1

2
(w − z∗)′C(w − z∗) + (w − z∗)′(Cz∗ + λc)

=
1

2
(w − z∗)′C(w − z∗) + (w − z∗)′(v∗ −A′

u∗)

=
1

2
(w − z∗)′C(w − z∗) + w′v∗

≥ 0.

Proving that they are also necessary is more technical and not provided here, but it can be

done by checking certain regularity conditions associated with KKT Theorem.

The solution of a PQP problem with given λ = λ∗ ≥ 0 can be found by solving the

following associated LP problem

min 1′w

s.t. [−I, C, A′
,−A′

, I](v′, z′, (u+)′, (u−)′, w′)′ = −λ∗c

(v′, z′, (u+)′, (u−)′, w′)′ ≥ 0

under a side condition v′z = 0. Note that the LP problem is not a parametric LP, so we can

apply a regular simplex algorithm to solve it (see Bertsimas and Tsitsiklis (1997) Chapter

3). With the simplex algorithm, the side condition can be satisfied by controlling the entry

element of the basic index set at each iteration. The control ensures that the index of vi (or

zi), the ith element of v (or z), can not enter if zi (or vi) is in the current basic index set

for i = 1, · · · , n. By Theorem 13, if the PQP problem is solvable, the solution w for the
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LP problem has to be 0, and the corresponding solutions for v, z, and u have to satisfy the

conditions in (B.2). Thus, that z solves the PQP problem at λ = λ∗.

Furthermore, in order to efficiently generating the entire solution path for the PQP

problem, we can first obtain the optimal basic index set for the previous LP problem at

λ = 0, and use this set as the initial basic index set for a simplex algorithm that solves the

following LP problem

max λ

s.t. [−I, C, A′
,−A′

, c′](v′, z′, (u+)′, (u−)′, λ)′ = 0

(v′, z′, (u+)′, (u−)′, λ)′ ≥ 0.

Because the basic index set has the same basic matrices associated with it for both of the

two LP problems, its feasibility for the former LP problem guarantees that for the latter.

Then, by Theorem 13 and with the control of optimal basic index set (for the side condition

v′z = 0), each iteration of the simplex algorithm for solving the latter LP problem pro-

duces a joint solution for the original PQP problem, and therefore sequentially generates

its entire solution path.

92



APPENDIX C

PARAMETRIC LINEAR PROGRAMMING PACKAGE FOR
REGULARIZATION METHODS

Software Description lpRegPath is an R package (see http://www.r-project.

org/ for more information) designed for solving a family of regularization problems that

satisfy certain conditions on their loss and penalty.

By incorporating an additive penalty, regularization methods modify many commonly

used statistical procedures to deal with both ill-posedness and over-fitting. For instance,

LASSO (Tibshirani; 1996) is a modified version of linear regression via l1-norm penalty

on regression coefficients. Such modification can ensure that the solution is unique and

continuous in the data. In general, a regularization method involves a tuning parameter

which controls the trade-off between goodness of fit and model complexity. Instead of

solving the regularization problem for a fixed value of the tuning parameter, lpRegPath

implements an algorithm that generates the entire solution path as a function of the tuning

parameter. Such a solution path offers rich information about how constrained models

evolve with features and what features are persistent in the data, which are of general

interest in data analysis. In addition to facilitating computation and tuning, the path-finding

algorithm for feature selection can equip the data analyst with a useful tool for visualizing
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a path of the fitted models instead of a single one. With the aid of risk measures, such a

path can portray a full spectrum of potentially good models for selection and averaging.

The regularization methods for feature selection that the package can currently handle

include l1-norm Support Vector Machine (SVM) (Zhu et al.; 2004), l1-norm Quantile Re-

gression (Li and Zhu; 2008), and functional component selection for kernel methods (e.g.,

θ-step of multi-category SVM (Lee et al.; 2006)). For each of the regularization methods,

lpRegPath generates the entire solution path, empirically evaluates the performance of

all the models in the path, selects the most plausible model or features, outputs numerical

as well as graphical summaries, and make predictions for new data sets.

The family of the regularization methods in consideration can be rephrased as paramet-

ric linear programming (LP) problems as noted in Yao and Lee (2007). To take advantages

of the commonality in the problems for computational efficiency, the package has the core

module that implements a tailored tableau-simplex method for generating the solution path

of the parametric LP. In addition, for each regularization method, it has a shell function that

identifies the corresponding components in the standard form of the LP and calls the same

core module for computation. Due to this structural division of the core module and shell

functions, other regularization procedures with convex and piecewise linearity can be easily

incorporated in the package. For example, the path-finding algorithm can be extended to

Dantzig selector (Candes and Tao; 2007) and Support Vector regression with ε-insensitive

loss (Vapnik; 1998) by writing relevant shell functions.

Methodology To further illustrate the core-shell relationship, we mathematically de-

scribe the connections between the parametric LP and regularization methods. LetL(y, f(x))

denote a convex loss function for the prediction error and J(f) be a convex penalty func-

tional that measures the model complexity. The empirical risk with respect to L is defined
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by L(Y , f(X)) := 1
n

∑n
i=1 L(yi, f(xi)), where Y := (y1, · · · , yn)′ and X := (x′1, · · · , x′n)′.

Formally, the regularization problems are defined to be

min L(Y , f) + λ · J(f) or (C.1)

min L(Y , f)

subject to J(f) ≤ s with respect to f ∈ F ,

where λ and s are the pre-specified nonnegative regularization parameters, and F denotes

a model space. Its solution can be viewed as a function of λ or s, called the solution path.

Consider the model space F := {f(x; β) : β ∈ D} with β and D respectively being

the model parameter and the parameter space. The regularization problem in (C.1) can be

transformed into a parametric LP problem, if both of L and J are convex piecewise linear

functions with respect to β, and D is a polyhedron. Take the l1-norm SVM as an example

which can be written as

min
β0, β

{
1

n

n∑
i=1

ξ+
i + λ‖β‖1

}
s.t. ξi = 1− yi(β0 + β′xi) for i = 1, · · · , n.

The LP formulations for (C.1) under the conditions L and J are respectively





min
z ∈ RN

(c + λa)′z

subject to Az = b
z ≥ 0,

or





min
z ∈ RN

c′z

subject to Az = b
a′z ≤ s
z ≥ 0,

(C.2)

where z is an N -vector of variables, c and a are fixed N -vectors, b is a fixed M -vector,

and A is an M ×N fixed matrix. The transformation is implemented by shell functions in

lpRegPath. The former in (C.2) is the standard form of the parametric-cost LP, whose

solution is a piecewise constant function of λ. And the latter can be viewed as a special

case of the parametric right-hand-side LP, whose solution is a piecewise linear function of

s. To characterize the solutions completely, it is sufficient to identify the joint solutions
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at a finite sequence of λl. By the correspondence between the two formulations in (C.2),

solving one of them will produce the solution to the other.

Tableau-simplex algorithm is a reliable and efficient way to generate the solution path

for a parametric-cost LP problem (Murty; 1983; Bertsimas and Tsitsiklis; 1997). By using

the commonality in the structure of A (that is A = [A∗
, I,−I]) for the regularization meth-

ods in consideration, the tableau-simplex algorithm can be tailored into a faster algorithm.

Finding each joint solution, the computational complexity of the tailored algorithm is less

than O(M(N − 2M)) compared with O(MN) for the original one. Such a simplification

is the theoretical basis of the core program in lpRegPath.

By connecting regularization with parametric LP, the package proposes a broad and

unified paradigm that can be adopted to solve a wide family of regularization problems

through the same core program. To the best of my knowledge, none of the published R

packages deals with generic parametric LP problems, although standard LP can be solved

by lpSolve. Therefore, lpRegPath can be useful for both regularization methods and

parametric LP algorithms.
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Getting Started with lpRegPath

Before using lpRegPath, we should have R ready, which can be obtained at http:

//cran.r-project.org. The current version of package lpRegPath is down-

loadable at http://www.stat.osu.edu/˜yao/software.html for both WIN-

DOWS and UNIX systems. Under WINDOWS environment, we can install lpRegPath

by clicking the menu item “Packages→Install package(s) from local zip files...”

> utils:::menuInstallLocal()

package ’lpRegPath’ successfully unpacked and MD5 sums

checked updating HTML package descriptions

The installation does not load lpRegPath for a running R session. To load the package,

use the command:

> require(lpRegPath)

Loading required package: lpRegPath

The reference manual is available online. One can look up the usage of particular com-

mands and the relevant examples by typing

> ? lpRegPath

For illustration of the package, take l1-norm SVM as an example. First, generate simu-

lated data with the following code:

set.seed(980);

n=400; p=10; sd=sqrt(50);

beta=c(2,0,2,0,2,0,0,0,0,2);

x=array(rnorm(p*n),c(n,p));

y=as.vector(sign(x%*%beta+rnorm(n,0,sd)))
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Then, compute and display the solution path of the associated l1-norm SVM with the com-

mands:

sp=path.svm.L1(y, x)

plot.path(sp); plot.path(sp, xtype="lam")

Figure C.1 shows the solution path in terms of s and λ respectively.
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Figure C.1: An example of a solution-path plot of coefficients for l1-norm SVM.

As described before, a solution path represents a set of optimal solution functions in

terms of tuning parameter. “sp” in the example is a list that stores the information of all the

joint solutions, from which the entire solution path can be derived.

names(sp)

[1] "coeff" "n_iter" "s_penalty" "lambda" "intercept"
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Using the object-oriented-programming facility in R (see R Language Definition (2008)

Chapter 2), we introduced two new class attributes: “path” and “risk” for lpRegPath,

with which the solution paths and risk curves for a variety of solution path methods can be

plotted by calling the generic “plot” function. For example,

plot(sp); plot(sp, xtype="lam")

lpRegPath estimates risk curves by calling “risk” methods, which carry out cross

validation to evaluate the predictive performance of the models/classifiers in a solution

path. For example, to get a five-fold cross validated error rate curve with l1-norm SVM,

use

Est.risk=risk.svm.L1(y, x, fold=5, repetition=10)

plot.risk(Est.risk); plot.risk(Est.risk, xtype="lam")

or

plot(Est.risk); plot(Est.risk, xtype="lam")

Figure C.2 displays an example of the risk curves. To make estimation of the risk more

reliable, one may repeat cross validation for different splits of the data and take the average

of the resulting risk estimates. The number of replicates is controlled by the input argument

“repetition”.

Given risk curves, we can select the “best” tuning parameters in the solution paths in

terms of either s or λ.

> Est.risk$optER.s

s minimum risk

0-1 loss 1.427117 0.3325104
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Figure C.2: An example of risk curves for l1-norm SVM.

hinge loss 2.151852 0.7298276

> Est.risk$optER.lam;

lambda minimum risk

0-1 loss 0.07169844 0.3325104

hinge loss 0.02930853 0.7315266

By combining the solution path with the “best” tuning parameter, we can select the

“best” model/classifier. The “best” model/classifier usually involves only a subset of avail-

able covariates or features, which amounts to variable/feature selection. This can be done

by

> model=select(sp, Est.risk)

> names(model)
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[1] "opt.model" "intercept"

The previous sequence of commands for analysis is streamlined into one function,

“svm.L1”. Figure C.3 is the plot generated by “svm.L1”, which computes the solution

path, estimates the risk and identifies the “best” classifiers in terms of 0-1 loss and hinge

loss respectively.

> fit=svm.L1(y,x, fold=5, rep=10)

> names(fit)

[1] "opt.model" "sp" "est.risk.path" "intercept"

So far we have provided an example for l1-norm SVM. The usage of the functions for

other methods is similar. Their examples can be found in the manual of lpRegPath.
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Figure C.3: An example of risk curves for l1-norm SVM.
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