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ABSTRACT

One of the most fundamental problems in natural language processing involves words

that are not in the dictionary, or unknown words. The supply of unknown words

is virtually unlimited – proper names, technical jargon, foreign borrowings, newly

created words, etc. – meaning that lexical resources like dictionaries and thesauri

inevitably miss important vocabulary items. However, manually creating and main-

taining broad coverage dictionaries and ontologies for natural language processing is

expensive and difficult. Instead, it is desirable to learn them from distributional lex-

ical information such as can be obtained relatively easily from unlabeled or sparsely

labeled text corpora. Rule-based approaches to acquiring or augmenting repositories

of lexical information typically offer a high precision, low recall methodology that fails

to generalize to new domains or scale to very large data sets. Classification-based ap-

proaches to organizing lexical material have more promising scaling properties, but

require an amount of labeled training data that is usually not available on the neces-

sary scale.

This dissertation addresses the problem of learning an accurate and scalable

lexical classifier in the absence of large amounts of hand-labeled training data. One

approach to this problem involves using a rule-based system to generate large amounts

of data that serve as training examples for a secondary lexical classifier. The viability

of this approach is demonstrated for the task of automatically identifying English

loanwords in Korean. A set of rules describing changes English words undergo when
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they are borrowed into Korean is used to generate training data for an etymological

classification task. Although the quality of the rule-based output is low, on a sufficient

scale it is reliable enough to train a classifier that is robust to the deficiencies of the

original rule-based output and reaches a level of performance that has previously been

obtained only with access to substantial hand-labeled training data.

The second approach to the problem of obtaining labeled training data uses the

output of a statistical parser to automatically generate lexical-syntactic co-occurrence

features. These features are used to partition English verbs into lexical semantic

classes, producing results on a substantially larger scale than any previously reported

and yielding new insights into the properties of verbs that are responsible for their

lexical categorization. The work here is geared towards automatically extending the

coverage of verb classification schemes such as Levin, VerbNet, and FrameNet to other

verbs that occur in a large text corpus.
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CHAPTER 1

INTRODUCTION

1.1 Overview

One of the fundamental problems in natural language processing involves words that

are not in the dictionary, or unknown words. The supply of unknown words is vir-

tually unlimited – proper names, technical jargon, foreign borrowings, newly created

words, etc. – meaning that lexical resources like dictionaries and thesauri inevitably

miss important vocabulary items. However, manually creating and maintaining broad

coverage dictionaries and ontologies for natural language processing is expensive and

difficult. Instead, it is desirable to learn them from distributional lexical information

such as can be obtained relatively easily from unlabeled or sparsely labeled text cor-

pora. Rule-based approaches to acquiring or augmenting repositories of lexical infor-

mation typically offer a high precision, low recall methodology that fails to generalize

to new domains or scale to very large data sets. Classification-based approaches to

organizing lexical material have more promising scaling properties, but require an

amount of labeled training data that is usually not available on the necessary scale.

This dissertation addresses the problem of learning accurate and scalable lex-

ical classifiers in the absence of large amounts of hand-labeled training data. It

considers two distinct lexical acquisition tasks:

• Automatic transliteration and identification of English loanwords in Korean.
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• Lexical semantic classification of English verbs on the basis of automatically

derived co-occurrence features.

The approach to the first task exploits properties of phonological loanword adaptation

that render them amenable to description by a small number of linguistic rules. The

basic idea involves using a rule-based system to generate large amounts of data that

serve as training examples for a secondary lexical classifier. Although the precision

of the rule-based output is low, on a sufficient scale it represents the lexical patterns

of primary statistical significance with enough reliability to train a classifier that is

robust to the deficiencies of the original rule-based output. The approach to the

second task uses the output of a statistical parser to assign English verbs to lexical

semantic classes, producing results on a substantially larger scale than any previously

reported and yielding new insights into the properties of verbs that are responsible

for their lexical categorization.

1.2 General Methodology

The task of automatically assigning words to semantic or etymological categories

depends on two things – a reference set of words whose classification is already known,

and a mechanism for comparing an unknown word to the reference set and predicting

the class it most likely belongs to. The basic idea is to build a statistical model

of how the known words are contextually distributed, and then use that model to

evaluate the contextual distribution of an unknown word and infer its membership in

a particular lexical class.
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1.2.1 Loanword Identification

In the loanword identification task, a word’s contextual distribution is modeled in

terms of the phoneme sequences that comprise it. Table 1.1 contains an example of

the type of lexical representation used in the loanword identification task. Statistical

Source Word Phonemes

t* u k* 2 N k p a c e l i s th 1 æ
Korean /t*uk*2N/ 1 1 1 1 1
Korean /t*2kpap/ 1 1 1 2 1
English /Ùellis1th1/ 1 1 2 1 1 1 2
English /pæll2s1th1/ 1 1 2 1 1 2 1

Table 1.1: Example lexical feature representation for loanword identification experi-
ments

differences in the relative frequencies with which certain sets of phonemes occur in

Korean versus English-origin words can be used to automatically assign words to one

of the two etymological classes. For example, aspirated stops such as /th/ and the

epenthetic vowel /1/ tend to occur more often in English loanwords than in Korean

words.

1.2.2 Distributional Verb Similarity

Many people have noted that verbs often carry a great deal of semantic informa-

tion about their arguments (e.g., Levin, 1993; McRae, Ferretti, and Amyote, 1997),

and have proposed that children use syntactic and semantic regularities to bootstrap

knowledge of the language they are acquiring (e.g., Pinker, 1994). For example, un-

derstanding a sentence like Jason ate his nattou with a fork requires using knowledge

about eating events, people, forks and their inter-relationships to know that Jason

is an agent, nattou is the patient and fork is the instrument. These relations are
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mediated by the verb eat, and knowing them allows us to infer that nattou, the thing

being eaten by a person with a fork, is probably some kind of food.

Conversely, when we encounter a previously unseen verb, we can infer some-

thing about the semantic relationships of its arguments on the basis of analogy to

similar sentences we have encountered before to figure out what the verb probably

means. For example, the verb in a sentence like I IM’d him to say I was running about

5 minutes late can be understood to be referring to some means of communication

on the basis of an understanding of what typically happens in a situation like this.

Because verbs are central to people’s ability to understand sentences and also play a

central role in several theories of the organization of the lexicon (e.g., McRae et al.,

1997: and references therein), the second lexical acquisition problem this dissertation

looks at is automatic verb classification – more specifically, how previously unknown

verbs can be automatically assigned a position in a verbal lexicon on the basis of their

distributional lexical similarity to a set of known verbs. In order to examine this prob-

lem, we compare several verb classification schemes with empirically determined verb

assignments.

For the verb classification task, context was defined in terms of grammatical

relations between a verb and its dependents (i.e., subject and object). Table 1.2

contains a representation of verbs in such a feature space. The features in this space

are grammatical subjects of the verbs in column 2 of the table. The values of the

features are the number of times each noun occurred as the subject of each verb, as

obtained from an automatically parsed version of the New York Times subsection of

the English Gigaword corpus (Graff, 2003). The verb class assignments in Table 1.2

come from the ESSLLI 2008 Lexical Semantics Workshop verb classification task and

are based on Vinson and Vigliocco (2007).
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Verb Class Verb Subjects of Verb

bank company stock share child woman
exchange acquire 362 2047 46 38 56 40
exchange buy 2844 7405 300 308 166 711
exchange sell 3893 17065 681 634 104 340
motionDirection rise 684 2437 20725 35166 23 213
motionDirection fall 881 2580 19289 31907 299 431
bodyAction cry 2 26 0 1 191 190
bodyAction listen 12 55 1 1 187 121
bodyAction smile 0 2 0 3 29 125

Table 1.2: Example verb-subject frequency co-occurrence matrix

In Table 1.2, bank and company tend to occur relatively often as subjects of

the exchange verbs acquire, buy and sell. Similarly, the values for share and stock tend

to be highest when they correspond to subjects of motionDirection verbs, whereas the

bodyAction verbs tend to be associated with higher counts for child and woman. This

systematic variability in the frequencies with which certain nouns appear as subjects

of verbs of different classes can be used to classify verbs. In essence, the frequency

information associated with each noun can serve to predict something about which

class a verb belongs to – i.e., high counts for child and woman are indicators for

membership in the bodyAction class. When an unknown verb is encountered, its

distribution of values for these nouns can be assessed to assign it to the most likely

class.

1.3 Structure of Dissertation and Summary of Contributions

The remainder of this dissertation is structured as follows. Chapters 2 – 4 deal with

the transliteration and identification of English loanwords in Korean. Chapter 2
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describes the preparation of the data set and the results of large scale quantitative

analysis of English loanwords in Korean. The primary contributions of Chapter 2

include:

• The preparation of a freely available set of 10,000 English-Korean loanword

pairs that are three-way aligned at the character level (English orthography,

English phonology, Korean orthography).

• A quantitative analysis of a set of phonological adaptation rules which shows

that consonant adaptation is fairly regular but that vowel adaptation is much

less predictable.

• A quantification of the extent to which English orthography influences loanword

adaptation in Korean, particularly with respect to vowel transliteration.

• The identification of an interaction between English orthography and Korean

phonological processes as they relate to epenthesis following word final voiceless

stops.

Chapter 3 deals with the automatic transliteration of English loanwords in

Korean. The primary contributions of Chapter 3 include:

• The implementation of a statistical transliteration model which is robust to

small amounts of training data.

• A modified version of the statistical transliteration model which incorporates

observations about the variability of vowel adaptation to generate a ranked list

of transliteration candidates that obtains substantially higher precision than

previous n-best transliteration models.

Chapter 4 deals with automatically identifying English loanwords in Korean.

The primary contributions of Chapter 4 include:

• A demonstration of the suitability of a sparse logistic regression classifier to the

task of automatic loanword identification.
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• A highly efficient solution to the problem of obtaining labeled training data that

utilizes generative phonological rules to create large amounts of pseudo-training

data. These data are used to train a classifier that distinguishes actual English

and Korean words as accurately as one trained entirely on hand-labeled data.

Chapters 5 and 6 cover distributional verb similarity. Chapter 5 describes

previous studies on automatic verb classification which provide a springboard for the

current research and describes in general terms the elements that go into determining

distributional verb similarity. Chapter 6 contains the results of a series of experi-

ments that deal with various aspects of assigning and evaluating distributional verb

similarity. The parameters explored here can be used to extend the coverage of verb

classification schemes such as Levin, VerbNet, and FrameNet to unclassified verbs

that occur in a large text corpus. The primary contributions of Chapter 6 include:

• A comparison of 5 lexical semantic verb classification schemes – Levin (1993),

VerbNet, FrameNet, Roget’s Thesaurus, and WordNet – in terms of how each

partitions verbs into classes.

• An examination of interactions between a larger number of the parameters that

determine empirical verb similarity – feature sets, similarity measures, feature

weighting, and feature selection – than has previously been considered in studies

of distributional verb similarity.

• A quantification of the extent to which synonymy influences verb assignments

in Levin’s, VerbNet’s, and FrameNet’s classifications of verbs.

Chapter 7 concludes the dissertation.
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CHAPTER 2

DESCRIPTIVE ANALYSIS OF ENGLISH LOANWORDS IN KOREAN

This chapter presents a large scale quantitative analysis of English loanwords in Ko-

rean. The analysis is based on a list of 10,000 orthographically and phonologically

aligned English words attested as loanwords in Korean, and it details a number of

previously unreported effects of orthography on the phonological adaptation of En-

glish loanwords in Korean. The loanwords analyzed here are also used as data in

a series of experiments on English-Korean transliteration 3 and identifying English

loanwords in Korean 4.

The remainder of this chapter describes the data set and aspects of English

loanword adaptation in Korean. Section 2.1 deals with details of the construction

of the data set including criteria for inclusion, data formatting, obtaining English

phonological representations, and aligning orthographic and phonological forms. Sec-

tion 2.2 presents an analysis of how orthography influences the adaptation of English

loanwords in Korean, particularly with respect to vowels.

2.1 Construction of the Data Set

This analysis is based on a list of 10,000 English words attested as loanwords in Ko-

rean. The majority of the words (9686) come from the National Institute of the Ko-

rean Language’s (NIKL) list of foreign words (NIKL, 1991) after removing duplicate

entries, proper names and non-English words. Entries considered duplicates in the
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NIKL list are spelling variants like traveller/traveler, analog/analogue, hippy/hippie,

etc. The remainder (314) were manually extracted from a variety of online Korean

text sources.

The original NIKL list of foreign words used in Korean contains 20,420 items

from a number of languages, including Italian, French, Japanese, Greek, Latin, Hindi,

Hebrew, Mongolian, Russian, German, Sanskrit, Arabic, Persian, Spanish, Viet-

namese, Malaysian, Balinese, Dutch, and Portuguese. Non-English words are often

labeled according to their etymological source, whereas English words (the majority)

are not labeled.

In many cases, however, a word which follows a non-English pattern of adap-

tation is not labeled. For example, certain terms like acetylase and amidase are

labeled in the NIKL list as German, whereas terms like catalase and aconitase are

not labeled. However, the latter items are pronounced in Korean following the sound

patterns of the labeled German words – in particular, the final syllable is given as

/aaÙe/, as shown in Table 2.1. This pronunciation contrasts with other words ending

Etymological Label Orthographic Form Kr. Orthography Kr. Pronunciation
German acetylase ��[j�9�����]j /asethillaaÙe/
German amidase ��p�����]j /amitaaÙe/
None catalase 
�»1Ï����]j /khathalaaÙe/
None aconitase ���ïm�����]j /akhonithaaÙe/

Table 2.1: Example of labeled and unlabeled German loanwords

in the orthographic sequence -ase, which are realized in Korean as /eis1/ as would be

expected on the basis of the English pronunciation (Table 2.2).

Unlabeled words whose pronunciation matched labeled non-English words were

removed, as were words not contained in an online dictionary (American Heritage

Dictionary, 2004). The ultimate decision to include a word as English came down
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Etymological Label Orthographic Form Kr. Orthography Kr. Pronunciation
None periclase �̀o�9þtYUs�Û¼ /pherikh1leis1/
None base Z�s�Û¼ /peis1/

Table 2.2: Example of unlabeled English loanwords

to a subjective judgment: if the word was recognized as familiar, it was included;

otherwise, it was discarded.

Each entry in the list corresponds to an orthographically distinct English word

and consists of four tab-separated fields: English spelling, English pronunciation,

linearized hangul transliteration, and orthographic hangul transliteration. The first

three fields in each entry are aligned at the the character level. An example entry is

shown below.

s-pi-der s-pY-dX- s|paid^- Û¼��s��8

Figure 2.1: Example loanword alignment

The list is stored in a single, UTF-8 encoded text file, with one entry per line.

UTF-8 is a variable length character encoding for Unicode symbols that uses one byte

to encode the 128 US-ASCII characters and uses three bytes for Korean characters.

Because it is a plain text file, it is not tied to any proprietary file format and can be

opened with any modern text editor.

2.1.1 Romanization

Korean orthography is based on an alphabetic system that is organized into syllabic

blocks containing two to four characters each. In standard Korean character encodings

such as EUC-KR or UTF-8, each syllabic block is itself coded as a unique character.
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This means that there is no longer an explicit internal representation of the individual

orthographic characters composing that syllable. For example, in UTF-8 the Korean

characters �, a, and � are represented as ‘\u1112’, ‘\u1161’, and ‘\u1102’,

respectively. However, the Korean syllable composed of these characters, ô�Ç, is not

represented as ‘\u1112\u1161\u1102’ but as its own character ‘\uD55C’. Therefore,

determining character-level mappings (i.e., phoneme-to-phoneme or letter-to-letter)

between Korean and English words is possible only by converting the syllabic blocks

of Korean orthography into a linear sequence of characters. One way to do this is to

convert hangul representations into an ASCII-based character representation.

For romanization of the data set, priority was given to a one-to-one mapping

from hangul letters to ASCII characters because this simplifies many string-based

operations like aligning and searching. Multicharacter representations such as Yale

romanization (Martin, 1992) or phonemic representations like those in the CMU Pro-

nouncing Dictionary (Weide, 1998) require additional processing or an additional

delimiter between symbols. Furthermore, the symbol delimiter must be distinct from

the word delimiter.

As much as possible, romanization of the data set is phonemic in the sense

that it uses ASCII characters that are already in use as IPA symbols. Consonant

transliteration follows Yoon and Brew (2006), which in turn is based on Revised

Romanization of Korean. We modified this transliteration scheme so that tense con-

sonants are single character and velar nasal is single character. Table 2.3 (left column)

shows the list of consonant equivalences. Vowels were romanized on the basis of the

IPA transliterations given in Yang (1996: 251, Table III), using the ASCII equiva-

lents from the Hoosier Mental Lexicon (HML) (Nusbaum, Pisoni, and Davis, 1984).

Vowel equivalents are shown in Table 2.3, right column. This dissertation uses Yale
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Consonants Vowels

Hangul IPA Romanized Hangul IPA Romanized
� /k/ g a /a/ a
� /k*/ G b /æ/ @
� /n/ n e /2/ ^

� /t/ d f /E/ e
� /t*/ D i /o/ o
� /l/ l n /u/ u
� /m/ m u /i/ i
� /p/ b s /1/ |

� /p*/ B ��,#�,\V, etc. /ja,j2,jæ/ y+ vowel
	 /s/ s

 /s*/ S
� /N/ N
� /Ù/ j

 /Ù*/ J
� /Ùh/ c
� /th/ t
� /kh/ k
� /ph/ p

Table 2.3: Romanization key for transliteration of Korean words into English

romanization to represent Korean orthographic sequences and IPA-based translitera-

tion when pronunciation is of primary importance, following Yang (1996) and Yoon

and Brew (2006).

2.1.2 Phonemic Representation

2.1.2.1 Source of Pronunciations

English pronunciations in the data set are represented with the phonemic alphabet

used in the HML (Nusbaum et al., 1984). The chief motivation for choosing this

phonological representation was ease of processing, which in practical terms means an
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ASCII-based, single character per phoneme pronunciation scheme. Pronunciations for

English words were derived from two main sources: the HML (Nusbaum et al., 1984)

and the Carnegie Mellon Pronouncing Dictionary (CMUDict) (Weide, 1998). The

HML contains approximately 20,000 words, and CMUDict contains approximately

127,000. Loanwords contained in neither of these two sources were transcribed with

reference to pronunciations given in the American Heritage Dictionary (2004).

2.1.2.2 Standardizing Pronunciations

There are several differences between the transcription conventions used in the HML

and CMUDict which had to be standardized for consistent pronunciation. The

relevant differences are briefly summarized below, followed by the procedure used for

normalizing these differences and standardizing pronunciations.

1. Different alphabets. CMUDict uses an all-capital phoneme set, with many

phonemes represented by two characters (e.g., AA /a/, DH /D/, etc.). Two-

character phones requires using an additional delimiter to separate unique sym-

bols. The HML uses upper and lower case letters, with only one character per

phoneme, which does not require an additional delimiter.

2. CMUDict represents three levels of lexical stress with indices 0, 1, or 2 at-

tached to vowel symbols; the HML does not explicitly represent suprasegmen-

tal stress. For example, chestnut CEsn^t (HML) versus CH EH1 S N AH2 T

(CMUDict).

3. The HML distinguishes two reduced vowels (| /1/ vs. x /�/); CMUDict treats

both as unstressed schwa (AH0 /�/). For example, wicked wIk|d (HML) and

W IH1 K AH0 D (CMUDict) versus zebra zibrx (HML) and Z IY1 B R AH0

(CMUDict).
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4. The HML uses distinct symbols for syllabic liquids and nasals; CMUDict treats

these as unstressed schwa followed by a liquid or nasal. For example, tribal

trYbL (HML) versus T R AY1 B AH0 L (CMUDict); ardent ardNt (HML)

versus AA1 R D AH0 N T (CMUDict).

5. CMUDict consistently transcribes /o�/ sequences as AO R O� where HML tran-

scribes them as or /o�/. For example, sword sord (HML) versus S AO1 R D

(CMUDict); sycamore sIkxmor versus S IH1 K AH0 M AO2 R (CMUDict).

CMUDict pronunciations were converted to HML pronunciations using the

following procedure. In general, information was removed when it could be done so

unambiguously rather than attempting to add information from one scheme into the

other.

1. CMUDict unstressed schwa AH0 was converted to HML unstressed schwa x.

For example, action AE1 K SH AH0 N → AE1 K SH x N; callous K AE1 L AH0

S → K AE1 L x S.

2. CMUDict stressed schwa AH1 or AH2 was converted to HML stressed schwa ^.

For example, blowgun B L OW1 G AH2 N → B L OW1 G ^ N; blood B L AH1 D

→ B L ^ D.

3. Remaining stress information was deleted from CMUDict vowels. For exam-

ple, blowgun B L OW1 G ^ N → B L OW G ^ N; callous K AE1 L x S → K AE

L x S

4. CMUDict AO R was converted to HML o r. For example, sword S AO R D→

S o r D; sycamore S IH K x M AO R → S IH K x M o r.

5. Remaining CMUDict symbols were converted to their HML equivalents using

the equivalence chart shown in Table 2.4.
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6. HML syllabic liquids and nasals were converted to an unstressed schwa + non-

syllabic liquid (nasal) sequence. HML syllabics were expended with schwa fol-

lowing CMUDict as this made mapping to Korean#Q /2/ easier. For example,

tribal trYbL → trYbxl; ardent ardNt → ardxNt.

7. HML reduced vowel | /1/ was converted to schwa x. For example, abandon

xb@nd|n → xb@ndxn; ballot b@l|t → b@lxt.

8. The distinction between HML X /Ä/ and R /Ç/ was removed. For example,

affirm xfRm → xfXm.

HML CMUDict Example HML CMUDict Example
a AA odd b B be
@ AE at C CH cheese
^ AH1, AH2 above, hut d D dee
x AH0 about D DH thee
c AO ought f F fee
W AW cow g G green
Y AY hide h HH he
E EH Ed J JH gee
R ER hurt k K key
e EY ate l L lee
I IH it m M me
i IY eat n N knee
o OW oat G NG ping
O OY toy p P pee
U UH hood r R read
u UW two s S sea

S SH she
t T tea
T TH theta
v V vee
w W we
y Y yield
z Z zee
Z ZH seizure

Table 2.4: Hoosier Mental Lexicon and CMUDict symbol mapping table.
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2.1.3 Alignments

In order to look at the influence of both orthography and pronunciation on English

loanwords in Korean, we wanted a three-way, character level alignment between an

English orthographic form, its phonemic representation, and corresponding linearized

Korean transliteration. English spellings were automatically aligned with their pro-

nunciations using the iterative, expectation-maximization based alignment algorithm

detailed in Deligne, Yvon, and Bimbot (1995). The Korean transliteration was aligned

with the English pronunciation using a simplified version of the edit-distance proce-

dure detailed in Oh and Choi (2005). The algorithm described in Oh and Choi (2005)

assigns a range of substitution costs depending on a set of conditions that describe

the relation between a source and target symbol. For example, if the source and

target symbol are phonetically similar, a cost of 0 is assigned; an alignment between

a vowel and a semi-vowel incurs a cost of 30; an alignment between phonetically dis-

similar vowels costs 100, and aligning phonetically dissimilar consonants costs 240.

Manually constructed phonetic similarity tables are used to determine the relation

between source and target symbols.

We tried a simpler strategy of assigning consonant-consonant or vowel-vowel

alignments a low cost consonant-vowel alignments a high cost and found that values

of 0 and 10, respectively, performed reasonably well. These costs were determined by

trial and error on a small sample. Because there are symbols in one representation

that don’t have a counterpart in the other (e.g., Korean epenthetic vowels or English

orthographic characters that are not pronounced), it is necessary to insert a special

null symbol indicating a null alignment. The null symbol is ‘-’. The resulting align-

ments are all the same length. The costs assigned determine alignments that tend to

obey the following constraints.
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1. consonants align with consonants; vowels align with vowels

English Spelling k a n g a r o o

English Pronunciation k @ G g X - u -

Korean k @ N g ^ l u -
2. ‘silent vowels’ align with the null character

English Spelling m a r i n e

English Pronunciation m X - i n -

Korean m ^ l i n -
3. phonemes align at the left edge of orthographic character clusters

English Spelling f i - g h t -

English Pronunciation f Y - - - t -

Korean p a i - - t |

4. Korean epenthetic vowels align with the null character in the English orthogra-

phy and pronunciation

English Spelling s - m o k e -

English Pronunciation s - m o k - -

Korean s | m o k - |

Because the accuracy of the alignments is crucial to the quality of any analyses of the

data set, each alignment was checked by hand and corrected if necessary to ensure

that the above constraints are satisified.

This representation of the correspondences between English and Korean char-

acters makes it easy to possible to derive alignments between any two levels sans the

third by deleting correspondences between the null character. For example, align-

ments between English spelling and pronunciation can be obtained by deleting a ‘-’

that arises from Korean vowel epenthesis:

English Spelling s - m o k e - → s m o k e

English Pronunciation s - m o k - - → s m o k -

Alignments between English pronunciation and Korean can be obtained by deleting

a ‘-’ that arises from silent orthographic characters:
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English Pronunciation s - m o k - - → s - m o k -

Korean s | m o k - | → s | m o k |

Many-to-many correspondences between two levels may be obtained by consuming the

null character in either level and concatenating symbols at both levels. For example,

correspondences between English phones and orthographic character sequences can

be obtained as:

English Spelling f i - g h t - → f igh t

English Pronunciation f Y - - - t - → f Y t

Correspondences between English spelling and Korean can be obtained as:

English Spelling f i - g h t - → f igh t

Korean p a i - - t | → p ai t|

Correspondences between English pronunciation and Korean can be obtained as:

English Pronunciation f Y - - - t - → f Y t

Korean p a i - - t | → p ai t|

2.2 Analysis of English Loanwords in Korean

In recent years, computational and linguistic approaches to the study of English

loanwords in Korean have developed in parallel, with little sharing of insights and

techniques. Computational approaches are oriented towards practical problem solv-

ing, and are framed in terms of identifying a function that maximizes the number

of correctly transformed inputs. Linguistic analyses are oriented towards finding evi-

dence for a particular theoretical point of view and are framed in terms of identifying

general linguistic principles that account for a given set of observations. One of the

main differences between these two approaches is the relative importance each places

on the role of source language orthography in determining the form of a borrowed

word. English orthography figures prominently in computational approaches. Early

work derived mappings directly between English and Korean spellings (e.g., Kang
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and Choi, 2000a), while later work considers the joint contribution of orthographic

and phonological information (e.g., Oh and Choi, 2005).

Many linguistic analyses of loanword adaptation, however, consider orthogra-

phy a confound, as in Kang (2003: 234):

“problem of interference from normative orthographic conventions”

or uninteresting, as in Peperkamp (2005: 10):

“Given the metalinguistic character of orthography, adaptations that are

(partly) based on spelling correspondences are of course of little interest

to linguistic analyses”

Linguistic accounts of English loanword adaptation in Korean instead focus on

whether the mechanisms of loanword adaptation are primarily phonetic or phono-

logical. Other analyses of loanword adaptation in other languages acknowledge that

orthography interacts with these mechanisms (e.g., Smith (2008) on English loanword

adaptation in Japanese).

This section looks at some influences of orthography on English loanwords

in Korean, and shows that English spelling accounts for substantially more of the

variation in Korean vowel adaptation than phonetic similarity does. The relevance

of this correlation is illustrated for the case of variable vowel epenthesis following

word final voiceless stops, and discussed more generally for understanding English

loanword adaptation in Korean.

The Korean Ministry of Culture and Tourism (1995) published a set of phono-

logical adaptation rules that describe the changes that English phonemes undergo

when they are borrowed into Korean. Example rules are shown below (Korean Min-

istry of Culture and Tourism, 1995: p. 129: 1(1), 2).
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1. after a short vowel, word-final voiceless stops ([p], [t], [k]) are written as codas

(p, s, k)

book [bUk] → puk
2. 1 is inserted after word-final and pre-consonantal voiced stops ([b], [d], [g])

signal [sIgn�l] → sik1n�l
These rules were implemented as regular expressions in a Python script and

applied to the phonological representations of English words in the data set (this

procedure is explained in detail in Chapter 3 Section 3.3.1). The output of the

program was compared to the attested Korean forms, and the proportion of times

the rule applied as predicted was calculated for each English consonant. These results

are shown in Table 2.5.

Stops Fricatives Nasals Glides

p 0.990 f 0.999 m 1.000 r 0.988
t 0.989 v 0.985 n 0.997 l 0.987
k 0.990 T 0.978 N 0.983 w 0.967
b 0.996 D 1.000 j 0.859
d 0.996 s 0.975
g 0.984 z 0.733S 0.985Z 1.000Ù 0.951� 0.969

h 0.983

Table 2.5: Accuracy by phoneme of phonological adaptation rules. Mean = 0.97

In general the rules do a good job of predicting the borrowed form of English

consonants in Korean. On average, consonants were realized as predicted by the

phonological conversion rules 97% of the time. The prediction rates for /z/ and /j/

were substantially below the mean at 0.73 and 0.86, respectively. Based on Korean
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Ministry of Culture and Tourism (1995: p. 129: 2, 3(1)) the following rules for the

adaptation of English /z/ in Korean loanwords were implemented:

1. word-final and pre-consonantal [z℄ → Ý¼ Ù1
jazz [jæz℄ → F�Ý¼ /ÙæÙ1/

2. otherwise, [z℄ → � /Ù/

zigzag [zIgzæg℄ → t�ÕªF�Õª /Ùik1Ù�k1//z/ occurred 704 times in English words in the data set; it was realized accord-

ing to the rule as� Ù 512 times and realized as	 s 188 times. In 117 of these cases,

the unpredicted form corresponds to English word-final /z/ representing the plural

morpheme (orthographic ‘-s’). Examples include words like users /juzÄz/ → Ä»$�
Û¼ /juÙ2s1/, broncos /braNkoÄz/ → ÚÔ2�x�ïÛ¼ /p1loNkhos1/, and bottoms /bat�mz/
→ �Ð)3�Û¼ /poth2ms1/. The contingency table in 2.6 shows how often /z/ is real-

ized as predicted with respect to the English grapheme spelling it. The χ2 signifi-

cance test indicates that /z/ is significantly more likely to become 	 s in Korean

when the English spelling contains a corresponding ‘s’ than when it does not (Yates’

χ2 = 100.547, df = 1, p < 0.001).

s ¬s English Orthography/z/→� Ù 300 212/z/→	 s 185 3

Table 2.6: Contingency table for the transliteration of ‘s’ in English loanwords in
Korean

Although this result indicates that English spelling is a more reliable indicator

of the adapted form of /z/ than its phonological identity alone, it does not tease apart

the question of whether low level phonetics or morphological knowledge of English

is responsible for this adaptation pattern. English word-final /z/ often devoices (e.g.
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Smith, 1997); if the adaptation of these words is based on [s℄ rather than /z/, these

cases would be regularly handled under the rule for the adaptation of English /s/.
Alternatively, these borrowed forms may represent knowledge of the morphological

structure of the English words, in which a distinction between � Ù and 	 s is

maintained in the borrowed forms.

The following rule predicts the appearance of English /j/ in English loanwords

in Korean (Korean Ministry of Culture and Tourism, 1995):

[j] → y.

/j/ occurred 368 times in English loanwords in the data set; 275 of these cases

were adapted as the predicted j (e.g., yuppie /j2pi/ → #�x� /j2phi/), while 35 were

adapted as i (e.g., billion /bIlj�n/→yn=o���� /pilli2n/) and 58 were adapted as ∅ (e.g.,

cellular /sEljUlÄ/ → !sqÀÒ�Q /sellull2/). These cases are examined separately in the

χ2 tables 2.7 and 2.8. Table 2.7 shows how often English /j/ transliterates as Korean

s� /i/ with respect to whether the English spelling contains a corresponding ‘i’. The

i ¬ij→j 7 64j→∅ 29 4

Table 2.7: Contingency table for the transliteration of /j/ in English loanwords in
Korean

results of the χ2 test indicate that when the English orthography contains the vowel ‘i’,/j/ is more likely to be transliterated ass� /i/ (Yates’ χ2 = 57.192, df = 1, p < 0.001).

Table 2.8 shows how often English /j/ is produced in the adapted form with respect

to whether the English orthography contains a corresponding character. The results

of the χ2 test indicate that /j/ shows a tendency to drop when the orthography does

not support its inclusion (e.g, cellular) (χ2 = 4.725, df = 1, p ≤ 0.03).
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y ∅j→j 54 204j→ ∅ 5 53

Table 2.8: Contingency table for the transliteration of ‘i’ in English loanwords in
Korean

Whereas the behavior of English consonants in loanwords in Korean is reliably

expressed with a handful of phonological rules, the behavior of vowels is considerably

less constrained. Table 2.9 shows the number of transliterations found in the data set

for each English vowel. The average number of transliterations per vowel is 8.46.

English Vowel Number of Korean Transliterations
a 7æ 6O 6
e 11U 5I 9
o 10
i 9
u 6Ç 15� 12E 92 5

Table 2.9: Average number of transliterations per vowel in English loanwords in
Korean

Korean Ministry of Culture and Tourism (1995) does not provide phonological

rules describing the adaptation of English vowels to Korean. However, Yang (1996)

provides acoustic measurements of the English and Korean vowel systems. Based on

this data, it is possible to estimate the acoustic similarity of the English and Korean
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vowels, and examine the relation between the cross language vowel similarity and

transliteration frequency. The prediction is that acoustically similar Korean vowels

will be substituted for their English counterparts more frequently than non-similar

vowels. Recognizing that acoustic similarity is not necessarily the best predictor of

perceptual similarity (e.g., Yang, 1996), we nonetheless applied two measures of vowel

distance and correlated each with transliteration frequency.

The first measurement was the Euclidean distance between vowels using F1

through F3 measurements for English and Korean vowels from Yang (1996):

(2.1)

√

√

√

√

3
∑

i=1

(FEi− FKi)2

The notion of a perceptual F2′ has been recognized as relevant since Carlson,

Granström, and Fant (1970) introduced it for accounting for the perceptual integra-

tion of the higher formants. We calculated F2′ according to the formula in Padgett

(2001: 200):

(2.2) F2′ = F2 +
F3− F2

2
×

F2− F1

F3− F1

and applied the Euclidean distance formula in 2.3 to calculate vowel distance:

(2.3)
√

(FE1− FK1)2 + (FE2′ − FK2′)2

The correlation between vowel distance and frequency of transliteration in an

acoustic-perceptual space is very weak. Table 2.10 shows the associated correlations

between each of the distance measures and vowel transliteration frequency.
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Measure Correlation
Euclidean -0.256
F2′ -0.331

Table 2.10: Correlation between acoustic vowel distance and transliteration frequency

However, in many cases the Korean vowel corresponds to a normative “IPA

reading” of the English orthographic vowel, regardless of its actual pronunciation.

A much stronger correlation is found between the number of ways a vowel is writ-

ten in English and the number of adaptations of that vowel in Korean (r = 0.92).

For example, � is represented orthographically in a variety of ways in English (e.g.,

action, Atlanta, cricket, coxswain, instrumentalism) and shows a variety of realiza-

tions in loanwords in Korean (e.g., Ó�o��� ayksyen, E�d�¦�½��� aythullayntha, ß¼o�H�àÔ

khulikeythu, 9�qÛ¼J?��� khoksuweyin, ���Û¼àÔÀÒF'p_O�o�7£§ insuthulwumeynthellicum).

This correlation is depicted graphically in Figure 2.2.

Finally, we note an orthography-sensitive distinction that concerns epenthesis

following word final voiceless stops. Kang (2003) observes that English tense vowels

preceding a voiceless stop often trigger final vowel epenthesis. The standard conver-

sion rules also specify this phenomenon, in terms of vowel length (Korean Ministry

of Culture and Tourism, 1995: 1.3). Examples are shown in Table 2.11.

In English, orthographic ‘o’ is typically pronounced one of two ways: /o/

(e.g. hope, smoke) and /a/ (e.g., pot, lock). These words are typically borrowed

into Korean in one of two ways, as well. English words containing pre-final /o/
are typically produced in Korean with o ‘i’ plus epenthesis (e.g., rope �ÐáÔ lophu,

smoke sumokhu). However, many English words pronounced /a/ are borrowed with

/o/ ‘i’ as well, presumably on the basis of the English orthography (e.g., hardtop
�

×¼�ÐáÔ hatuthop, headlock K�×¼2�¤ heytulok, etc.). Although the form of the adapted
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Figure 2.2: Correlation between number of loanword vowel spellings in English and
Korean

vowel is the same in both cases, epenthesis is significantly less likely to occur for

orthographically derived /o/ than when /o/ corresponds to the English pronunciation

as well (Yates’ χ2 = 107.57; df = 1; p < .0001). Examples are given in Table 2.12,

which contains a breakdown of the epenthesis data for /o/ by identity of the following

stop. For /k/ and /p/, epenthesis is very unlikely when the English letter ‘o’ is

pronounced /a/; for /t/, orthographically derived /o/ is as likely to epenthesize as

pronunciation-based /o/1. In essence, the Korean phonology preserves a distinction

1This difference may reflect morphophonemic constraints on final /t/ in Korean nouns (Kang,
2003).
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English Korean
rope �ÐáÔ lophu
smoke Û¼�̧ß¼ sumokhu
part ��àÔ phathu
make Bjs�ß¼ meyikhu

Table 2.11: Examples of final stop epenthesis after long vowels in English loanwords
in Korean

between phonologically and orthographically derived /o/ in terms of epenthesis on

the final voiceless stop.

Eng. Pron. Examples Epenthesis No Epenthesis/ap/ desktop/X<Û¼ß¼d�v teysukhuthop
turboprop/'��ÐáÔ�ÐáÔ thepophulophu† 0 27/op/ rope/�ÐáÔ lophu†

soap/�èáÔ sophu† 32 0/ak/ hemlock/Ù�2�¤כ heymlok
smock/Û¼3lq sumok 5 36/ok/ spoke/Û¼�íß¼ suphokhu†

stroke/Û¼àÔ�Ðß¼ suthulokhu† 15 0/at/ ascot/E�Û¼9�w aysukhos
boycott/�Ðs�9�w poikhos 11 12/ot/ tugboat/'�Õª�ÐàÔ thekupothu†

vote/�ÐàÔ pothu† 26 0

Table 2.12: Vowel epenthesis after voiceless final stop following Korean /o/. † indi-
cates epenthesis

2.3 Conclusion

This chapter described the preparation of a set of English-Korean loanwrods that

is aligned at the character level to show correspondences between English spelling,

prounciation and the Korean form of borrowed English words. This is the only
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resource of its kind that is freely available for unrestricted download: http://purl.

org/net/kbaker/data. Several analyses of the data were presented which highlight

previously unreported observations about the influence of orthography on English

loanword adaptation in Korean. Orthography has a particularly noticeable influence

on the realization of vowel in English loanwords in Korean. Vowel adaptation is not

reliably predicted form the phonological representation of vowels in English source

words in the absence of orthographic information, whereas consonant transliteration

is reliably captured by a small set of phonological conversion rules.

The analysis presented here also identified cases where English orthography

interacts with the Korean phonological process of word final vowel epenthesis follow-

ing voiceless stops. These findings are important for accounts of English loanword

adaptation in Korean because they provide a quantification of the extent to which

orthography influences the form of borrowed words, and indicate that accounts of

loanword adaptation which focus exclusively on the phonetics or phonology of the

adaptation process are overlooking important factors that shape the realization of

English loanwords in Korean. The next chapters use the data set described here in a

series of experiments on automatic English-Korean transliteration and foreign word

identification. /a/ /o/ English pronunciation of ‘o’
Korean /o/ ‘i’, with Epenthesis 16 73
Korean /o/ ‘i’, no Epenthesis 75 0

Table 2.13: Relation between voiceless final stop epenthesis after /o/ ‘i’ and
whether the Korean form is based on English orthography ‘o’ or phonology /a/.
χ2 = 107.57; df = 1; p < .001
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CHAPTER 3

ENGLISH-TO-KOREAN TRANSLITERATION

3.1 Overview

3.2 Previous Research on English-to-Korean Transliteration

Three types of automatic English-to-Korean transliteration models have been pro-

posed in the literature: grapheme-based models (Lee and Choi, 1998; Jeong, Myaeng,

Lee, and Choi, 1999; Kim, Lee, and Choi, 1999; Lee, 1999; Kang and Choi, 2000a;

Kang and Kim, 2000; Kang, 2001), phoneme-based models (Lee, 1999; Jung et al.,

2000), and ortho-phonemic models (Oh and Choi, 2002, 2005; Oh, Choi, and Isa-

hara, 2006b). Grapheme-based models work by directly transforming source language

graphemes into target language graphemes without explicitly utilizing phonology in

the bilingual mapping. Phoneme-based models, on the other hand, do not utilize

orthographic information in the transliteration process. Phoneme-based models are

generally implemented in two steps: first obtaining the source language pronunci-

ation and then converting that representation into the target language graphemes.

Ortho-phonemic models consider the joint influence of orthography and phonology

on the transliteration process. They also involve a two-step process, but rather than

discarding the orthographic information after the pronunciation of a source word has

been determined, they utilize it as part of the transliteration process.
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3.2.1 Grapheme-Based English-to-Korean Transliteration Models

Grapheme-based transliteration models attempt to define mappings directly from

English to Korean orthography.

3.2.1.1 Lee and Choi (1998); Lee (1999)

Lee (Lee and Choi, 1998; Lee, 1999) proposed a Bayesian grapheme-based English-

to-Korean transliteration model that generates the most likely transliterated Korean

word K̂ from an English source word E on the basis of Equation 3.1.

(3.1) K̂ = argmax
K

P (K|E) = argmax
K

P (E|K)P (K)

Lee’s model begins by segmenting an English word into a sequence of graphones

(Deligne et al., 1995; Bisani and Ney, 2002), or multi-letter sequences that corre-

spond to English phonemes. For example, the word speaking can be represented as a

sequence of five graphones (from Bisani and Ney, 2002: 105):

speaking/spikiN/ =
s p ea k ing

/s/ /p/ /i/ /k/ /iN/
In order to identify the most likely Korean graphone for each English graphone,

Lee and Choi (1998) and Lee (1999) generate all possible graphone sequences for

each English word and the corresponding Korean transliteration. For example, the

English word data can be segmented into the following 8 possible subsequences data,

dat-a, da-ta, da-t-a, d-ata, d-a-ta, d-at-a, d-a-t-a, and the corresponding Korean

transliteration deit� can be segmented into 16 possible subsequences: deit�, deit-�,
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dei-t-�, etc. Maximum likelihood estimates specifying the probability with which each

English graphone maps onto each Korean graphone are obtained via the expectation

maximization algorithm (Dempster, Laird, and Rubin, 1977).

The probability of a particular Korean graphone sequence K = (k1, . . . , kL) oc-

curing is represented as a first-order Markov process (Manning and Schütze, 1999: Ch.

9) and is estimated as the product of the probabilities of each graphone ki (Equation

3.2):

(3.2) P (K) ∼= P (k1)

L
∏

i=2

p(ki|ki−1)

The probability of observing an English graphone sequence E = (e1, . . . , eL) given a

Korean sequence K is estimated from the observed graphone alignment probabilities

as

(3.3) P (E|K) ∼=

n
∏

i=1

p(ei|ki)

This approach suffers from two drawbacks (Oh, Choi, and Isahara, 2006a; Oh

et al., 2006b). The first is the enormous time complexity involved in generating all

possible graphone sequences for words in both English and Korean. There are an

exponential number of ordered substrings to consider for a string of length L (e.g.,

string |L| has 2|L|−1 possible ordered subsequences). Because this number of substrings

must be considered for both languages, the approach is impossible to implement for

a large number of transliteration pairs. The second consideration involves the nature

of the alignment procedure for identifying within-language graphones. Alignment

errors in this stage propagate to the cross-language alignments, leading to incorrect

transliterations that might otherwise be avoided. This model obtained recall of 0.47

31



when evaluating the 20 best transliteration candidates per word in a comparison

reported in Jung et al. (2000: 387, Table 3; trained on 90% of an 8368 word data set

and tested on 10%). Recall is defined as the number of correctly transliterated words

divided by the number of words in the test set.

3.2.1.2 Kang and Choi (2000a,b)

Kang and Choi (2000a, b) describes a grapheme-based transliteration model that uses

decision trees to convert an English word into its Korean transliteration. Like Lee

and Choi (1998) and Lee (1999), it is based on alignments between source and target

language graphones. However, this approach differs in terms of how the alignments

are obtained.

Kang and Choi (2000a, b) explicitly mentions some of the steps undertaken

to mitigate the exponential growth of the graphone mapping problem, noting that

the number of combinations can be greatly reduced by disallowing many-to-many

mappings and null correspondences from English to Korean. Furthermore, Kang

and Choi (2000a, b) does not apply an initial English grapheme-phoneme alignment

step, but directly aligns English and Korean graphones. Character alignments are

automatically obtained using a modified version of a depth-first search alignment

algorithm based on Covington (1996).

Covington (1996)’s alignment procedure is a variant of the string edit-distance

algorithm (Levenshtein, 1966) that treats string alignment as a way of stepping

through two words performing a match or skip operation at each step. Kang and Choi

(2000a, b) extends Covington’s algorithm by adding a bind operation that removes

null mappings in the alignment and allows many-to-many correspondences between

source and target characters. For example, Covington’s edit distance algorithm aligns

board and /pot1/ as
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b o a r d -

p o - - t 1
which produces null mappings (the ‘-’ symbol) in both the source and target strings.

Kang and Choi’s modifications produce the following alignment

b oar d

p o t1
in which the null mapping has been replaced by a binding operation that produces

many-to-many correspondences. Kang and Choi further modify the original align-

ment procedure by assigning different costs to matching symbols on the basis of their

phonetic similarity (i.e., phonetically dis-similar alignments such as consonant-vowel

receive higher penalties than an alignment between phonetically similar consonants

such as /f/ and /ph/). The penalties are heuristic in nature and are based on the

following two observations:

• English consonants tend to transliterate as Korean consonants, and English

vowels tend to transliterate as Korean vowels;

• there are typical Korean transliterations of most English characters.

These heuristics are implemented in terms of penalties involving the matching, skip-

ping, or binding of specific classes of English and Korean characters (Kang and Choi,

2000a: 1139, Table 2).

Kang and Choi (2000a, b) models the transliteration process in terms of a

bank of decision trees that decide, for each English letter, the most likely Korean

transliteration on the basis of seven contextual English graphemes (the left three,

the target, and the right three). For example, given the word board and its Korean

transliteration <potu>, 5 decision trees would attempt to predict the Korean output

on the basis of the representations in Table 3.1.

Kang and Choi (2000a, b) used ID3 (Quinlan, 1986), a decision tree learning

algorithm that splits attributes with the highest information gain first. Information
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> > > (b) o a r → p
> > b (o) a r d → o
> b o (a) r d > → -
b o a (r) d > > → -
o a r (d) > > > → tu

Table 3.1: Feature representation for transliteration decision trees used in Kang and
Choi (2000a, b)

gain is defined as the difference between how much information is needed to make a

correct decision before splitting versus how much information is needed after splitting.

In turn, this is calculated on the differences in entropies of the original data set and

the weighted sum of entropies of the subdivided data sets (Dunham, 2003: 97–98).

Kang and Choi (2000b) reports word-level transliteration accuracy of 51.3% on a 7000

item data set (90% training, 10% testing) when generating a single transliteration

candidate per English word. Word accuracy is defined as the number of correct

transliterations divided by the number of generated transliterations.

3.2.1.3 Kang and Kim (2000)

Kang and Kim (2000) models English-to-Korean transliteration with a weighted finite

state transducer that returns the best path search through all possible combinations

of English and Korean graphones. Like Kang and Choi (2000a, b), Kang and Kim

(2000) employs an initial heuristic-based bilingual alignment procedure. As with

Lee and Choi (1998) and Lee (1999), all possible English-Korean graphone chunks

are generated from these alignments. Evidence for a particular English sequence

transliterating as a particular Korean sequence is quantified by assigning a frequency-

based weight to each graphone pair. This weight is computed in terms of a context
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and an output, where context refers to an English graphone ei and output refers to an

aligned Korean graphone ki as in Equation 3.4 (Kang and Kim, 2000: 420, Equation

4),

(3.4)

weight(context : output) =
C(output)

C(context)
len(context)

= weight(ei : ki) =
C(ki ∩ ei)

C(ei)
len(ei)

where C(x) refers to the number of times x occured in the training set. The weight

is multiplied by the length of the English graphone sequence so that longer chunks

receive more weight than shorter chunks.

A transliteration network is constructed as a finite state transducer where

arcs between nodes are weighted with the weights obtained from the aligned training

data. The best transliteration is found via the Viterbi algorithm (Forney, 1973) as

the optimal path through the network.

3.2.2 Phoneme-Based English-to-Korean Transliteration Models

Phoneme-based transliteration models map directly from English phonemes to Korean

graphemes.

3.2.2.1 Lee (1999); Kang (2001)

Oh et al. (2006a, b) summarizes two phoneme-based transliteration model originally

proposed by Lee (1999) and Kang (2001). Lee (1999)’s model generates Korean

transliterations from English words through a two-step process. The first step in-

volves the statistical segmentation of English words into graphones using the align-

ment procedure described in Section 3.2.1.1. At this point, instead of taking the
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orthographic component as the representation of an English word, the phonological

representation is used instead.

English phonemes are transformed into Korean graphemes on the basis of

a set of standard English-to-Korean conversion rules (Korean Ministry of Culture

and Tourism, 1995). These rules are expressed as context-sensitive rewrite rules of

the form AEXEBE → YK, meaning that the English phoneme X becomes Korean

grapheme Y in the context of English phonemes A and B. For example, the following

rule S→ si
‘si’

/ #

states that English S becomes <si> at the end of words.

This approach suffered from two main problems: the propagation of errors that

result from the statistical alignment procedure, and limitations in the set of phono-

logical rewrite rules. Because the standard conversion rules are expressed in terms

of phonological natural classes, there is a poor contextual mapping onto the statisti-

cally derived phoneme chunks. Furthermore, a great deal of the variability associated

with loanword adaptation is simply not amenable to description by contextual rewrite

rules.

Kang (2001)’s model takes the pronunciation of English words directly from

a pronouncing dictionary without relying on an automatic English grapheme-to-

phoneme alignment procedure. Decision trees are constructed which convert English

phonemes into Korean graphemes using the training procedure described in Section

3.2.1.2. The only difference between this model and the grapheme-based model de-

scribed earlier is that the phoneme-based model applies to a phonological represen-

tation rather than an orthographic one. A drawback of the model is that it does
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not provide a method for estimating the pronunciation of English words not in the

dictionary, making it impossible to generalize to a larger set of transliteration pairs.

3.2.2.2 Jung, Hong, and Paek (2000)

Jung et al. (2000) presents a phoneme-based approach to English-to-Korean translit-

eration that models the process with an extended Markov window consisting of the

current English phoneme, the preceding and following English phoneme, and the cur-

rent and preceding Korean grapheme. The first step of the transliteration process

involves converting an English word to a pronunciation string using a pronouncing

dictionary. A transcription automaton is used to generate pronunciations for words

not contained in the dictionary. The next step involves constructing a phonological

mapping table that links English and Korean pronunciation units. Pronunciation

units may consist of vowel or consonant singletons, or larger units made up of combi-

nations of consonant and vowel sequences. Mappings are based on hand-crafted rules

that come from examining a set of English-Korean transliteration pairs. For each

English pronunciation unit, a list of possible Korean transliterations is determined.

Some examples are shown in Table 3.2 (Jung et al., 2000: 388–389, Tables 6-1 and

6-2).

English pronunciation unit Korean orthographic unit(s)

/p/ �,�,áÔ,� ‘p,b,p1,bb’
/s/ 	,Û¼,�,
,
 ‘s,s1,j,ss,jj’/ur/ n#Q,0> ‘u�,w�’

Table 3.2: Example English-Korean transliteration units from (Jung et al., 2000: 388–
389, Tables 6-1 and 6-2)

English pronunciations are aligned with Korean orthographic strings in a two

step heuristic-based process. In the first stage, English and Korean consonants are
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aligned. The second pass aligns vowels with vowels while respecting the previously

determined consonant alignments. Relying on the table of phonological mappings to

constrain the alignment procedure results in a unique alignment for each English-

Korean pair. For the generation stage of the transliteration process, all possible

segmentations of the English word are produced and the segmentation leading to the

most likely Korean transliteration is selected as the transliterated output.

Jung et al. (2000) model the transliteration process in terms of the joint prob-

ability of an English word and its Korean transliteration, P (E, K). This probability

is approximated by substituting the English word E with its segmented phonemic

representation S. The joint probability of E and S can be expressed in terms of a

conditional probability according to Equation 3.5 (Jung et al., 2000: 385, Equation

2),

(3.5)

K̂ = argmax
K

P (E, K)

∼= argmax
K

P (S, K) = argmax
K

P (K|S)P (S)

where S = (s1, s2, . . . , sn) and K = (k1, k2, . . . , kn), with si an English pronunciation

unit and ki a Korean orthographic segment.

In order to determine ki, four contextual variables are taken into account:

the current English segment si, the preceding and following English segments si−1

and si+1, and the preceding Korean segment ki−1. The transliteration term P (K|S)

can be approximated as a product of the probabilities of each ki conditioned on the

contextual variables:

(3.6) P (K|S) ∼=

n
∏

i=1

P (k1|ki−1, si, si−1, si+1)
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The probability of a given English phonemic segmentation S is estimated from a

bigram language model:

(3.7) P (S) ∼=

n
∏

i=1

P (s1|si−1)

Jung et al. (2000) describes further enhancements to the basic model in terms

of estimating backoffs to combat data sparsity and redundancies in feature predic-

tion. In comparing their model to the grapheme-based approach, the authors note

that grapheme-based models may have an advantage in transliterating proper names,

which are often absent from pronouncing dictionaries (Jung et al., 2000: 388). This

model obtains word level transliteration accuracy, defined as the number of correct

transliterations divided by the number of generated transliterations of 53% on a data

set containing 8368 items (90% training, 10% testing).

3.2.3 Ortho-phonemic English-to-Korean Transliteration Models

More recent research has explored models that combine orthographic and phonemic

information in the transliteration process. In general, models that incorporate ortho-

graphic and phonemic information outperform models that include only one source

of conditioning information.

3.2.3.1 Oh and Choi (2002)

Oh and Choi (2002) considered the joint influence of English orthography and pronun-

ciation on the transliteration process in the form of ortho-phonemic transliteration

rules. Oh and Choi’s model begins by applying the heuristic bilingual alignment pro-

cedure described in Kang and Choi (2000a, b). English phonological representations

are taken from the Carnegie Mellon Pronouncing Dictionary (CMUDict) (Weide,
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1998). English phonemes are converted into Korean graphemes using the Korean Min-

istry of Culture and Tourism’s standard English-to-Korean conversion rules described

in Section 3.2.2.1 (Lee, 1999). Before converting phones, however, an additional layer

of linguistic processing is applied to attempt to improve transliteration accuracy. The

first step involves an analysis of out-of-dictionary words to see if they can be analyzed

as a compound, while the second involves morphological pattern-matching to see if a

word can be classified as etymologically Greek.

If a word is not contained in CMUDict, it is checked to see whether it can be

segmented into two substrings that are contained in the dictionary. The segmentation

procedure is a left-to-right scan that incrementally splits a word into two at the current

index. For example, cutline can be segmented into c+utline, cu+tline, cut+line, at

which point the pronunciation of both cut and line are retrieved from the dictionary.

In case a pronunciation can not be found after all segmentations have been attempted,

one is automatically generated using a decision tree learning algorithm (Quinlan,

1993).

Oh and Choi (2002) observe that English words of Greek origin are often

transliterated into Korean exclusively on the basis of orthography. For example,

hernia /hÇni�/ is transliterated asK�ÀÒm��� heylwunia and acacia /�keS�/ is translit-

erated as ��
�r��� akhasia. Oh and Choi (2002) apply prefix and suffix pattern

matching to try to identify a word as etymologically Greek. The prefixes and suffixes

they use for classifying words as etymologically Greek are shown in Table 3.3 (Oh and

Choi, 2002: Table). For these words, a separate grapheme-based transliteration model

is employed. For words not classified as Greek, a system of orthographic/phonemic

context sensitive rewrite rules is used.

Oh and Choi (2002)’s phoneme-based transliteration model is based on the

set of standard English-to-Korean conversion rules described in Section 3.2.2.1. They
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Prefix amphi-, ana-, anti-, apo-, dia-, dys-, ec-, acto-, enantio-, endo-, epi-, cata-,
cat-, meta-, met-, palin-, pali-, para-, par-, peri-, pros-, hyper-, hypo-, hyp-

Suffix -ic, -tic, -ac, -ics, -ical, -oid, -ite, -ast, -isk, -iscus, -ia, -sis, -me, -ma

Table 3.3: Greek affixes considered in Oh and Choi (2002)to classify English loanwords

applied these rules to 200 randomly selected words from CMUDict and observed

transliteration errors in the output. On the basis of these observations, they selected

27 high frequency rules and augmented them with orthographic information. Table

3.4 contains examples of some of these rules (Oh and Choi, 2002: Table).

Orthography Pronunciation Transliteration Examples

C+le �l s� ul assemble bustle
eseympul pesul
#Q!lr�̂¦ !Q_þt

sm# zm 7£§ cum barbarism chauvinism
papelicum syopinicum
��!Qo�7£§ ®éq�m�7£§

or# Ä e e alligator doctor
ayllikeyithe tokthe
î�qo�>�s�'� 1lq'�

Table 3.4: Example transliteration rules considered in Oh and Choi (2002)

An analysis of their results shows that joint orthographic-phonemic rules out-

perform either grapheme-only or phoneme-only models (word level transliteration

accuracy of 56% versus 35% for a grapheme-only model and 41% for a phoneme-only

model). One of the biggest sources of transliteration error occurs for words whose

English pronunciation must be automatically generated; i.e., out-of-dictionary items

(word level transliteration accuracy of 68% when the pronunciation of the source word

is known versus 52% when the pronunciation is automatically generated).
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3.2.3.2 Oh and Choi (2005); Oh, Choi, and Isahara (2006)

Oh and Choi (2005); Oh et al. (2006b) presents a generalized framework for combining

orthographic and phonemic information into the transliteration process. Oh and Choi

(2005) applies three different machine learning methods (maximum entropy modeling,

decision tree learning, and memory-based learning) to the transliteration task and

evaluates the results.

Oh and Choi’s method begins with establishing alignments between English

graphemes and phonemes, and then alignments from English grapheme-phoneme pairs

to Korean graphemes. English phonological representations are taken from CMU-

Dict (Weide, 1998). Alignments are obtained automatically using a heuristically

weighted version of the edit distance algorithm (Levenshtein, 1966). The cost schemes

are borrowed from Kang and Choi (2000a, b). The first step involves aligning English

graphemes with English phonemes (GE → PE) and then aligning English phonemes

with Korean graphemes (PE → GK). Using the English phoneme as a pivot, English

graphemes are aligned with Korean graphemes (GE → PE → GK). The (GE → PE)

alignments are used to construct training data for a procedure that can be used to

generate the pronunciation of words that are not in CMUDict (the actual procedure

is not specified).

Oh and Choi model the transliteration process in terms of a function that

maps a set of source language contextual features onto a target language grapheme.

Four types of features are used: graphemes, phonemes, generalized graphemes, and

generalized phonemes. These features are described in Table 3.5 (Oh and Choi,

2005: 1743, Table 6).

Figure 3.1 (Oh and Choi, 2005: 1744, Figure 6) illustrates the principle of

using these features to predict the transliteration of the word board (�Ð×¼ ‘bo-d1’).
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Feature Possible Values

English Graphemes {a, b, c, . . . , x, y, z}
English Phonemes {/AA/, /AE/, . . .}
Generalized Graphemes Consonant (C),Vowel (V)
Generalized Phonemes Consonant (C),Vowel (V),Semi-vowel (SV),Silence (∅)

Table 3.5: Feature sets used in Oh and Choi (2005) for transliterating English loan-
words in Korean

The grapheme currently being transliterated is represented in the center of a context

of three preceding and three following features. It can be described in terms of a 28-

feature vector consisting of the current grapheme plus six contextual graphemes, the

current phoneme plus six contextual phonemes, the current generalized grapheme plus

six generalized graphemes, and the current generalized phoneme plus six generalized

phonemes.























L3 L2 L1 ▽ R1 R2 R3
G = ( ∅ ∅ ∅ b o a r )
P = ( ∅ ∅ ∅ /b/ /o/ ∅ /r/ )

GG = ( ∅ ∅ ∅ C V V C )
GP = ( ∅ ∅ ∅ C V ∅ C )























→� ‘b’

Figure 3.1: Feature representation of English graphemes

Oh and Choi apply three machine learning models to the feature representa-

tion described in Figure 3.1: maximum entropy modeling, decision tree learning, and

memory based learning. The maximum entropy model (Jaynes, 1991; Berger, Pietra,

and Pietra, 1996) is a probabilistic framework for integrating information sources. It
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is based on the constraint that the expected value of each feature in the final maxi-

mum entropy model must equal the expectation of that same feature in the training

set. Training the model consists of finding the probability distribution subject to

the constraints that has the maximum entropy distribution (Manning and Schütze,

1999: Chapter 16, 589–591). For the decision tree, Oh and Choi used C4.5 (Quin-

lan, 1993), a variant of the ID3 model described in Section 3.2.1.2 (Kang and Choi,

2000a, b). Memory-based learning is a k-nearest neighbors classifier (Hastie, Tibshi-

rani, and Friedman, 2001). Training instances are stored in memory, and a similarity

metric is used to compare a new instance with items in memory. The k most similar

items are stored, and the majority class label is assigned to the new instance. Oh

and Choi used TiMBL (Tilburg Memory-Based Learner) (Daelemans, Zavrel, van

der Sloot, and van den Bosch, 2003), an efficient knn implementation geared towards

NLP applications. The results of these comparisons are shown in Table 3.6.

3.2.4 Summary of Previous Research

Table 3.6 contains a summary of the results of previous English-to-Korean translit-

eration experiments. The reported results are for 1-best transliteration accuracy,

defined as the number of correct transliterations divided by the number of gener-

ated transliterations, and include a mixture of words whose English pronunciation

was automatically generated and words whose English pronunciation was found by

dictionary lookup. Because not all results are reported over the same data set using

the same methodology, they should be interpreted as representative of the various

approaches to English-Korean transliteration rather than as strict comparisons. In

general, the combined models outperform models that only include one source of in-

formation in the transliteration process. On average, the grapheme-based models are
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more accurate than the phoneme-based models, indicating that orthography alone is

a more reliable indicator of the form of a transliterated word than phonology alone.

Model Method Accuracy
Ortho-phonemic Max-Ent Oh et al. (2006a: 137, Table 11) 73.3

TiMBL Oh et al. (2006b: 200, Table VI) 66.9
Rewrite Rules Oh and Choi (2002: 6, Table 8) 63.0
Decision Tree Oh et al. (2006b: 200, Table VI) 62.0

Grapheme-based Weighted FST Kang and Kim (2000: 422, Table 3) 55.3
Decision Tree Kang and Choi (2000b: 138, Section 5) 51.3

Phoneme-based Markov Window Jung et al. (2000: 387, Figure 4) ≈53
Decision Tree Kang (2001), from Oh et al. (2006b: 200, Table VI) 47.5

Table 3.6: Summary of previous transliteration results

It may or may not be worth attempting to straighten out a mischaracterization

of the standard English-to-Korean transliteration rules (Korean Ministry of Culture

and Tourism, 1995) that is repeated in one strand of English-to-Korean transliteration

research:

However, EKSCR does not contain enough rules to generate correct Ko-

rean words for corresponding English words, because it mainly focuses on

a way of mapping from one English phoneme to one Korean character

without context of phonemes and PUs. For example, an English word

‘board’ and its pronunciation ‘/B AO R D/’, are transliterated into ‘bo-

reu-deu’ by EKSCR – the correct transliteration is ‘bo-deu’ (Oh and Choi,

2002: 5) .

Second, the EKSCR does not contain enough rules to generate relevant

Korean transliterations since its main focus is on a methods of mapping

from one English phoneme to one Korean grapheme without the context
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of graphemes and phonemes. For example, the English word board and

its proununciation /B AO R D/ are incorrectly transliterated into ‘bo-

reu-deu’ by EKSCR. However, the correct one, ‘bo-deu’, can be acquired

when their contexts are considered (Oh and Choi, 2005: 1740).

The other problem is that EKSCRs does not contain enough rules to

generate relevant Korean transliterations for all the corresponding English

words since its main focus is on mapping from one English phoneme to

one Korean grapheme without considering the context of graphemes and

phonemes. For example, the English word board and its proununciation /B

AO R D/ are incorrectly transliterated into “boreudeu” by EKSCRs. If

the contexts are considered, they are correctly transliterated into “bodeu”

(Oh et al., 2006b: 191).

While it is true that the standard conversion rules do not adequately encap-

sulate the various ways in which English phonemes transliterate into Korean, the

characterization of them as focusing mainly on a one-to-one bilingual mapping in the

absence of contextual information is misleading. It is also incongruent with the de-

scription of the transliteration rules as “context-sensitive rewrite rules” given in (Oh

et al., 2006a: 123). Instead, the rules are expressed in traditional phonological terms

of phonologically conditioned sound change.

However, there is no rule that explicitly deals with the conversion of ///r/

into Korean in this context. This is because the rules focus on alternations in the

pronunciation of English phonemes, i.e., environmentally conditioned changes. /r/
is always dropped in this context, so no rule is included. Nothing predicts that

board would transliterate as polutu. On the other hand, there are lots of examples of
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post-vocalic /r/ followed by a consonant that would indicate that board would not

transliterate as polutu (Korean romanization not part of the original):

1.3 part [pa:t℄ ��àÔ phatu

3.2 shark [Sa:k℄ ��ß¼ syakhu

5.1 corn [ko:n℄ �BH khon

9.1 word [w�:d℄ 0>×¼ wetu

9.2 quarter [kwO:t�℄ 3$'� khwethe

9.3 yard [ja:d℄ ��×¼, yearn [y�:n℄ ��� yatu, yen

So while the general sentiment is true, repeating this same example over and

over results in a mischaracterization of the standard conversion rules to the larger

research community.

3.3 Experiments on English-to-Korean Transliteration

This section describes and analyzes two ortho-phonemic models for transliterating

English loanwords into Korean. The first model is based on a set of phonological

conversion rules that describe the changes English words undergo when they are

borrowed into Korean. The second model is a statistical model that produces the

highest scoring Korean transliteration of an English word based on a set of combined

orthographic and phonemic features. The behavior of these two models with respect

to the amount of training data required to produce optimal results is examined, and

the models are compared to each other in terms of the accuracy of the transliterations

each produces. Both models are compared to a maximum entropy transliteration

model which has obtained state-of-the-art results in previous research, and scenarios

for which each of the models exhibit particular advantages are discussed.

The sections below report the results of a series of experiments on English-to-

Korean transliteration. The first experiment deals with the rule based transliteration
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model, first describing it in detail and then reporting the results of using it to translit-

erate a set of English-Korean loanwords. The second experiment presents a modified

version of the rule based model which incorporates orthographic information into the

transliteration process and examines its transliteration accuracy. The third exper-

iment presents a statistical transliteration model and compares its performance to

both the rule based models and a maximum entropy transliteration model. The last

section of the chapter summarizes the characteristics of each model with respect to

their applicability to situations where aligned bilingual training data is easily obtain-

able versus situations where it is harder to obtain.

3.3.1 Experiment One

3.3.1.1 Purpose

The purpose of this experiment is to investigate the use of phonological conversion

rules for transliterating English words into Korean.

3.3.1.2 Description of the Transliteration Model

The transliteration model used in this experiment is a regular expression-based im-

plementation of the Korean Ministry of Culture and Tourism (1995)’s set of English-

to-Korean standard conversion rules. Although prescriptive in tenor, these rules are

expressed in terms of feature-based phonological classes and are congruent with de-

scriptive accounts of English loanword adaptation in Korean (e.g., stop and fricative

adaptation (Kang, 2003; Kenstowicz, 2005; Lee, 2006; Park, 2007); vowel substitution

(Yang, 1996)). The Korean Ministry of Culture and Tourism (1995)’s set of English-

to-Korean standard conversion rules were manually converted into regular expressions

in a computer program that takes a phonological representation of an English word
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as input and produces a Korean transliteration of it as output. The programming

language used was Python1, although any language which provides regular expression

support is suitable.

In this experiment, the transliteration process was modeled in three steps.

First, a preprocessing step is applied to the English phonological representations

that expands the single character representation of diphthongs used by the Hoosier

Mental Lexicon (Nusbaum et al., 1984) into two vowel symbols. This step is per-

formed because it reduces the number of symbols and transformation rules needed

for transliteration. The second step consists of the successive application of a sequence

of regular expression substitutions which transform a string of English phonemes into

a Korean phonological representation. Finally, an optional post-processing step may

be performed to syllabify the Korean string and convert it to hangul.

This transliteration model assumes the definition of the following two character

classes.

:shortvowel: = IE@aUcx^

:vowel: = ieou + :shortvowel:

In addition to these definitions, a set of intermediate vowel symbols was used to handle

word boundaries and epenthesis and /r/ deletion. # is inserted at the beginning and

end of words; ∼ serves as a placeholder for deleted /r/, and ! and % stand for the

epenthetic vowels /1/ and /i/, respectively. Reserving extra symbols for epenthetic

vowels facilitates the application of the phonological conversion rules such that rules

that apply later are not inadvertently triggered by a vowel that was not present in

the input. The preprocessing step consists of the following six character expansions.

Y -> ai

1Distributed under an open source license: http://www.python.org.
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O -> oi

e -> ei

W -> au

X,R -> xr, xr

The transliteration step consists of the following regular expression substitutions, ap-

plied in the order presented below. In the description below, the following conventions

for representing regular expression substitution are employed. Brackets [] are used

to enclose a class of characters; e.g., [:vowel:] stands for any character that is a

vowel. ^ inside brackets negates the character class; e.g., [^:vowel:] stands for any

character that is not a vowel. Parentheses () are used to enclose regions of the regular

expression that can be referred to in the substitution phase by index. Regions are

numbered consecutively from the left starting at 1. For example, in the expression

(first)(class), \1 refers to first and \2 refers to class. Text starting at %%

contains examples meant to illustrate the application of each regular expression, but

is not part of the regular expression itself.

1. /r/ deletion

r([^:vowel:]) -> ~\1 %% e.g., ‘church’ #CxrC# -> #Cx~C#

2. /ts, dz/ epenthesis

ts([^:vowel:]) -> C!\1 %% e.g., ‘Pittsburgh’ #pItsbx~g# -> #pIC!bx~g#

dz([^:vowel:]) -> J!\1 %% e.g., ‘odds’, #adz# -> #aJ!

3. voiceless obstruent epenthesis

([^:shortvowel:])([ptk])([^:vowel:]) -> \1\2!\3

%% e.g., ‘cape’ #keip# -> #keip!#
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([sTf])([^:vowel:]) -> \1!\2

%% e.g., ‘first’ #fx~st!# -> #fx~s!t!#

4. voiced obstruent/affricate epenthesis

([vbdzg])([^:vowel:]) -> \1!\2 %% e.g., ‘cape’ #keip# -> #keip!#

([CJSZ])([^:vowel:]) -> \1%\2 %% e.g., ‘church’ #Cx~C# -> #Cx~C%#

5. short vowel voiceless stop substitution

([:shortvowel:])p([^:vowel:]) -> \1b\2

%% e.g., ‘apt’ #@pt!# -> #@bt!#

([:shortvowel:])t([^:vowel:]) -> \1d\2

([:shortvowel:])k([^:vowel:]) -> \1g\2

6. /l/ gemination

([:vowel:~!%])l([:vowel:]) -> \1ll\2

%% e.g., ‘clasp #k!l@s!p!# -> #k!ll@s!p!#

7. unconditioned consonant substitutions

f -> p

v -> b

T -> s

D -> d

[zZ] -> J

8. unconditioned vowel substitutions

c -> o

I -> i
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x -> ^

[U|] -> u

@ -> E

3.3.1.3 Experimental Setup

This experiment used the list of 10,000 English-Korean loanword pairs described in

2.1. The phonological representation of each English item in the list was transliterated

via the rule based model and the resulting form was compared to the actual Korean

adaptation of that English source word. Because the rule based model does not

require training data, it was applied to all of the items in the data set.

3.3.1.4 Results and Discussion

The first evaluation of the rule based transliteration model measured transliteration

accuracy in terms of the number of transliterated items that exactly matched the

actual Korean form. Overall transliteration accuracy, measured as

# of correct transliterations

# of actual transliterations

was 49.2%. A strict comparison between the current work and previous research is

not feasible given the range of approaches represented therein on different data sets2.

However, these results are in line with previous phoneme-based approaches (≈ 53%

reported in Jung et al., 2000; 47.5% reported in Kang, 2001).

Based on the analysis of English loanwords in Korean provided in 2.1, it is

known that vowel transliteration is harder to predict by phonological rule than con-

sonant transliteration (Table 2.5). Therefore, we also examined the performance of

2Repeated efforts to obtain access to previously used data sets were unsuccessful.
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the rule based model in terms of the number of correctly transliterated consoants

per item. This comparison was made by deleting input vowels from both the pre-

dicted form (after transliteration) and the actual form, and comparing the remaining

sequence of consonants. An input vowel is a transliterated vowel whose presence in

the transliterated form is due to a direct mapping from the original English vowel

phoneme. In other words, epenthetic vowels were retained in the predicted and ac-

tual forms. For example, given the English word pocket and actual transliteration of

�íÖ¿	 phokheys, a predicted transliteration of ��Ö¿	 phakheys counts as containing all

correctly transliterated consonants (phkhs = phkhs).

Consonant sequence transliteration accuracy, defined as

# of correct consonant sequence transliterations

# of consonant sequence transliterations

was 89.9%. This is a stricter measure than overall character accuracy (cf. Kang and

Kim, 2000; Oh and Choi, 2002), because it requires that all consonants in a word

are correctly generated and ordered to count as correct. It also requires that rules

concerning vowel epenthesis have correctly applied, as these rules often change the

nature of the preceding consonant (e.g., whether it is an aspirated syllable onset or

an unaspirated coda).
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The congruence of the full word transliteration results with previous models

and the disparity between full word transliteration and consonant sequence transliter-

ation reported here suggest that the phonological information represented in this data

set alone does not convey sufficient information to reliably predict the transliterated

form of vowels in English loanwords in Korean. On the basis of this observation and

the analysis of English loanwords in Chapter 2.1, we modified the rule based model to

incorporate orthographic information into the transliteration of vowels. This modified

rule based transliteration model is described in the next section.

3.3.2 Experiment Two

Previous researchers have examined the performance of transliteration models that

produce a set of transliteration candidates for a given input string (Lee, 1999; Jung

et al., 2000; Kang and Kim, 2000). The motivation for this approach to transliteration

is spelled out in Kang and Choi (2000b), which points out that multiple translitera-

tions of the same English word are often found in large document collections, creating

problems for information retrieval. For example, the English word digital appears var-

iously in Korean as ticithel, ticithal, and ticithul even though ticithel is the standard

transliteration (Kang and Choi, 2000b: 133). Following this strand of research, this

experiment examines the performance of a rule based model that produces a set of

transliteration candidates.

3.3.2.1 Purpose

The purpose of this experiment is to investigate the performance of an ortho-phonemic

rule based transliteration model for generating sets of transliteration candidates for

English loanwords in Korean.
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3.3.2.2 Description of the Model

0ne of the main sources of transliteration variability for vowels lies in the effect of

orthography on pronunciation, where the orthographic vowels ‘a’, ‘e’,‘i’,‘o’,‘u’ are

often transliterated with their IPA values of /a,e,i,o,u/ regardless of their actual

pronunciation (Oh and Choi, 2005). Therefore, we modified the rule-based model to

produce both orthographic and pronunciation-based version of English vowels. This

model was modified to accept an aligned orthographic and phonological representation

of an English word. For each phonological vowel in the input up to two transliterations

are produced: one is based on phonological substitution and the other is based on

orthographic copying. In case the phonological value of a vowel is equivalent to its

orthographic representation (e.g., smoke /smok/) only one vowel transliteration is

produced.

Prior to transliteration, the alignment between an orthographic and phonemic

representation of a word is converted into a finite state automaton whose arcs are

labeled with phonemes. A vowel alignment produces up to two arcs from a preceding

to a following state. One arc is labeled with a phoneme symbol and the other is labeled

with an orthographic character. An example finite state automaton is shown in Figure

3.2 for the alignment between the orthographic and phonological representations for

cactus-k@ktxs. We used the AT&T Finite-State Machine Library (Mohri, Pereira,

and Riley, 1998) to process the finite state automata produced for transliteration.

Taking all paths through the finite state automaton in Figure 3.2 yields four strings

which are each input to the rule based transliteration model described in Experiment

1: k@ktxs, k@ktus, kaktxs, kaktus. If a phonological vowel aligns with more than

one orthographic vowel, e.g., head:hE-d, the only orthographic vowel produced is the

one aligned directly to the phonological vowel. In other words, the null symbol ‘-’ in
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the phonological representation does not produce any additional paths through the

finite state machine. In principle, if a word contains V phonological vowels, up to

0 1
k

2
a

@
3

k
4

t
5

u

x
6

s

Figure 3.2: Example rule-based transliteration automaton for cactus

2V unique transliterations may be produced: every vowel may result in two paths

through the finite state automaton, so the final number of transliteration candidates

will be 2v1×2v2 . . .×2vV . In practice, because the orthographic and phonemic vowels

are often equivalent, far fewer candidates are produced (average 3.4 per word).

3.3.2.3 Experimental Setup

This experiment used the list of 10,000 English-Korean loanword pairs described in

2.1. The aligned orthographic and phonological representation of each English item in

the list was transliterated via the orttho-phonemic rule based model and the resulting

forms were compared to the actual Korean adaptation of that English source word.

Because the ortho-phonemic rule based model does not require training data, it was

applied to all of the items in the data set.

3.3.2.4 Results and Discussion

Following Lee (1999), Jung et al. (2000) and Kang and Kim (2000), we report whole

word transliteration accuracy as the average number of correctly transliterated words

divided by the actual number of loanwords (recall)

# of correct transliterations

# of actual transliterations
.
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We also report macroaveraged transliteration precision, which takes into account the

total number of transliteration candidates produced

# of correct transliterations

# of generated transliterations

.

The ortho-phonemic rule based model returns recall and precision values of

0.78, 0.23. In applications such as bilingual information retrieval where the cost of

false positives are low or the chance of generating a false hit is unlikely (Kang and

Choi, 2000b, 2002), this model offers benefits over the rule based model in terms

of coverage. Once again, these results are compatible with previous research that

has reported transliteration accuracy over multiple transliteration candidates (Lee

1999; Jung et al. 2000; Kang and Kim 2000). However, the current model offers two

advantages over previous statistical approaches to English-Korean transliteration.

One is that a rule based approach does not require a bilingual training set. Its

only requirement is a monolingual pronunciation dictionary, which for English at

least is readily available (Weide, 1998). This means that a rule based approach to

transliteration can be extended to a large number of language pairs more quickly and

with less expenditure of resources than approaches that require aligned bilingual data

(see Section 3.3.5 for elaboration of this point).

A second advantage of the current model over previous n-best approaches is

that by focusing attention on the transliteration units that exhibit the most vari-

ability (vowels), we are able to generate a relatively small number of transliteration

candidates per word. Furthermore, the set of candidates is tuned to the input in such

a way that relatively invariant items (e.g., a word with one phonological vowel whose

pronunciation matches its orthographic form like smoke /smok/) produce a small set
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of transliteration candidates. Inputs that are likely to exhibit greater variation pro-

duce larger candidate sets. Finally, we are able to offer a direct comparison between

the current approach and previous ones in terms of the precision given a correctly

generated transliteration. On average, when the correct transliteration appears in the

candidate set the ortho-phonemic rule based model generates 2.85 candidates, giving

a precision when correct of 1/2.85 = 0.35. The size of the candidate set considered

by previous researchers varies – Lee (1999) evaluated transliteration accuracy on the

basis of the 20 most likely transliteration candidates, giving a precision when correct

of 0.05; Jung et al. (2000) considered the top 10 transliteration candidates giving a

precision when correct of 0.10, and Kang and Kim (2000) used the top 5, giving a

precision when correct of 0.20, all of which are considerably lower than the current

results.

Although the relative performance of the ortho-phonemic transliteration model

represents an improvement over previous work, its overall precision is quite low. A

further disadvantage of the model is that it does not rank transliteration candidates

by any measure of goodness. Many statistical models do allow an ordering of a set of

transliteration candidates. Therefore, we conducted a third experiment with a statis-

tical transliteration model that produces a ranked list of transliteration candidates,

and compare its performance to the rule based models.

3.3.3 Experiment Three

3.3.3.1 Purpose

The purpose of this experiment is to examine the performance of a statistical translit-

eration model and compare it to the ortho-phonemic rule based model in terms of

ranking transliteration candidates.
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3.3.3.2 Description of the Model

In this experiment we model the task of producing a transliterated Korean character

in terms of the probability of that character being generated by a given sequence of

graphones and phonemes. Under this approach, the task of transliterating an English

word into Korean can be formulated as the problem of finding an optimal alignment

between three streams of symbols













GE = g1, ..., gL

ΦE = ϕ1, ..., ϕL

K = κ1, ..., κL













where GE is a sequence of English graphemes, ΦE is a sequence of English phonemes,

and K is a sequence of Korean graphemes. We assume that the three sequences have

equal length (L) due to the insertion of a null symbol (‘-’) when necessary, and assume

a one-to-one alignment between symbols in the three strings. For example, the English

word ‘first’ and its Korean transliteration (�Û¼àÔ /ph2s1th1/ can be represented as













GE = f i r s − t −

ΦE = f Ç − s − t −

K = ph1 22 −3 s4 15 th6 17












with the symbol alignments (f, f, ph), (i,Ç, 2), (r,−,−), etc.

We are interested in obtaining the Korean string K that receives the highest

score given (GE, ΦE , K). Computing the score of (GE , ΦE , K) can be formulated as a

decoding problem that consists of finding the highest scoring Korean string K̂ given

the aligned sequences of English graphemes and phonemes GE and ΦE .
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The score of a particular Korean string given GE and ΦE is the product of the

scores of the alignments comprising the three sequences:

Score(K|GE , ΦE) =
L
∏

i=1

p(κi|gi, ϕi)

In order to account for context effects of adjacent graphemes and phonemes on the

transliteration of a particular English grapheme-phoneme pair, we define gi and ϕi

as subsequences of GE and ΦE , respectively, centered at i and containing elements

<gi−2, ..., gi+2> and <ϕi−2, ..., ϕi+2>, respectively. For example, if κ4 = s in the

preceding example, then g4 = <i, r, s,−, t> and ϕ4 = <Ç,−, s,−, t>. Positions

i < 1 and i > L are understood to contain a boundary symbol (#) to allow modeling

context at word starts and ends. We estimate the probability of κi given subsequences

gi and ϕi with relative frequency counts:

p(κi|gi, ϕi) =
p(gi, ϕi, κi)

p(gi, ϕi)
≈

c(gi, ϕi, κi)

c(gi, ϕi)
.

Given the relatively large context window (2 preceding and 2 following ortho-

graphic phoneme pairs), the chance of encountering an unseen feature in the test set

is relatively high. In order to mitigate the effect of data sparsity on the transliter-

ation model described above, we modified it to use a backoff strategy that involved

successively decreasing the size of the context window centered at the Korean charac-

ter currently being predicted until a trained feature was found. The specific backoff

strategy used in this model is to search for features in the following order starting at

the top of the list, where Si represents the source orthographic-phoneme pair at the

index of the Korean letter being predicted and si represent preceding and following

ortho-phonemic pairs:
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si−2si−1Sisi+1si+2

si−2si−1Sisi+1

si−1Sisi+1si+2

si−1Sisi+1

si−2si−1Si

Sisi+1si+2

si−1Si

Sisi+1

Si

As soon as a trained feature is found, iteration stops and the most highly ranked

Korean target corresponding to that feature is produced. In the event that no feature

corresponding to Si is found, no prediction is made. This backoff strategy was based

on the intuition that larger contextual units provide more reliable statistical cues to

the transliteration of an English segment; it was determined prior to assessing its

performance on any of the data and was not altered in response its performance on

the data.

In order to establish a comparison between previous statistical transliteration

approaches and the current work, we also applied a maximum entropy model (Berger

et al., 1996; Pietra, Pietra, and Lafferty, 1997) that was demonstrated to outperform

other machine learning approaches to English-Korean transliteration in previous com-

parisons (Oh and Choi, 2005; Oh et al., 2006a). The maximum entropy model is a
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conditional probability model that incorporates a heterogenous set of features to con-

struct a statistical model that represents an empirical data distribution as closely as

possible (Berger et al., 1996; Zhang, 2004). In the maximum entropy model, events

are represented by a bundle of binary feature functions that map an outcome even y

and a context x to {0, 1}. For example, the event of observing the Korean letter ‘p’

in the context of ##boa in a word like board can be represented as

f(x, y) =















1 if y=p and x=##boa

0 otherwise.

Once a set of features has been selected, the corresponding maximum entropy

model can be constructed by adding features as constraints to the model and adjusting

their weights. The model must satisfy the constraint that the empirical expectation

of each feature in the training data equals the expectation of that feature with respect

to the model distribution. Among the models that meet this constraint is one with

maximum entropy. Generally, this maximum entropy model is represented as

p(y|x) =
1

Z(x)
exp

[

k
∑

i=1

λifi(x, y)

]

where p(y|x) denotes the conditional probability of outcome y given contextual feature

x, k is the number of features, fi(x, y) are feature functions, and λi is a weighting

parameter for each feature. Z(x) is a normalization factor defined as
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Z(x) =
∑

y

exp
[

∑

λifi(x, y)
]

to guarantee that
∑

y p(y|x) = 1 (Berger et al., 1996; Zhang, 2004).

In this experiment, we used Zhang Le’s maximum entropy toolkit (Zhang,

2004). In addition to the contextual features used by the statistical decision list model

proposed here, we added grapheme-only and phoneme-only contextual features to the

maximum entropy model in order to provide a close replication of the feature sets

described by Oh et al. (2006a, b). Thus, each target character ki is represented by a

bundle of orthographic, phonemic, and ortho-phonemic contextual features. The full

feature set is represented in Table 3.7 for the transliteration of target ‘p’ in the word

board.

Feature Target

Orthographic ##boa, ##bo, #boa, #bo, ##b, boa, #b, bo, b ‘p’
Phonemic ##bo-, ##bo, #bo-, #bo, ##b, bo-, #b, bo, b ‘p’
Ortho-phonemic ##boa:##bo-, ##bo:##bo, #boa:#bo-,

#bo:#bo, ##b:##b, boa:bo-, #b:#b, bo:bo,
b:b

‘p’

Table 3.7: Feature bundles for transliteration of target character ‘p’

3.3.3.3 Experimental Setup

We evaluated both models by splitting the list of loanwords used in Experiments 1 and

2 into a training set and a disjoint set used for testing. 10% of the data was fixed as a

test set, and the remainder of the total data set was used to select training data. The

size of the training split ranged from 5% (500 items) to 90% (9000 items) of the total
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data set in 5% intervals. Each training split was tested on the same 10% test set. This

procedure was repeated 10 times, and the results were averaged. Following Oh and

Choi (2005), we trained the maximum entropy model using the default Gaussian prior

of 0; in addition we used 30 iterations of the default L-BFGS method of parameter

estimation and did not change any other default settings. However, we note that a

training regime which utilizes development data to tune the Gaussian parameter and

uses more training iterations may produce better results than those obtained here.

3.3.3.4 Results and Discussion

The first evaluation of the statistical transliteration models is reported in terms of

1-best whole word transliteration accuracy, defined as

# of correct transliterations

# of actual transliterations
.

Figure 3.3 depicts transliteration accuracy for the two statistical models as a function

of size of the training set. This figure also shows the performance of the rule based

model for comparison. Because the rule based model does not require training data,

its performance is flat. For both statistical models, transliteration accuracy clearly

depends on the amount of training data. As the amount of training data increases,

the performance of the maximum entropy model and the statistical model proposed

here nearly converge, but for all trials reported here the performance of the maximum

entropy model never exceeds the performance of the newly proposed model.

The best transliteration accuracy obtained by the statistical transliteration

model and the maximum entropy models is 73.4% and 71.9%, respectively. The

proposed model is relatively robust even to small amounts of training data, performing

better than the rule based model with as few as 500 training items (5% training data).
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The performance difference between the statistical decision model and the maximum

entropy model is most noticeable for small amounts of training data. On 500 training

items (5% training data), the statistical decision model performs nearly 20 percentage

points higher than the maximum entropy model, indicating a potential advantage for

the use of this model in situations where training data is scarce.
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Figure 3.3: Performance of three transliteration models as a function of training data
size

We also examined the performance of the statistical decision model with re-

spect to transliteration accuracy of consonant sequences (Experiment 1). The sta-

tistical decision model returns 90.8% consonant sequence transliteration accuracy,

comparable to that of the rule based model (89.9%). These facts suggest that conso-

nant transliteration is decidely less variable than vowel transliteration, and that the
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main advantage that statistical models have over the rule based model is in accounting

for the contextual effects of orthography on vowel transliteration.

In order to compare the statistical decision model to the ortho-phonemic rule

based model under the condition of producing multiple transliteration candidates,

the statistical model was modified to produce up to two Korean characters for each

phonological vowel in an English input. For example, given an input of cactus-k@ktxs,

the model produces a weighted finite state automaton whose weights correspond to

the negative log probabilities of each Korean character given a source feature (Figure

3.4). Transliteration candidates are ranked according to the cost of their path through

0 1
k/-0

2
E/0.465

a/1.014
3

g/-0
4

t/0.052
5

u/0.693

^/0.693
6

s/-0
7/0

U/-0

Figure 3.4: Example probabilistic transliteration automaton for cactus

the finite state automaton. For the cactus example, we obtain the following ranking

of transliteration candidates: kEgtusU, kEgt^sU, kagtusU, kagt^sU, with the correct

transliteration kEgt^sU coming in second place.

Figure 3.5 contains precision and recall curves as a function of the amount of

training data for the statistical decision list model producing multiple transliteration

candidates. When trained on 90% of the data, the statistical model obtains recall and

precision scores of 0.84 and 0.49. The rule based model returns recall and precision

values of 0.78 and 0.23, and does not systematically vary with respect to the amount

of training data. One reason for the higher precision of the statistical model is that

it generates on average fewer candidates than the rule based model – 1.9 versus 3.4,

respectively. The reason that the statistical model generates fewer candidates is that

very often the second Korean character produced by the decision list is the same as

the first, in which case the model only makes one prediction.
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Figure 3.5: Performance of the statistical decision list model producing multiple
transliteration candidates as a function of training data size

This situation occurs when a more specific feature predicts a single vowel, and

in order to obtain the second transliteration candidate, the backoff model described

above is traversed, and the next feature encountered also predicts the same vowel.

When this happens only one transition for that feature is generated in the corre-

sponding finite state automaton. In this way the statistical decision list model is

taking advantage of converging statistical evidence to limit the number of candidates

it produces.
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The statistical decision list model also offers an advantage over the ortho-

phonemic rule based model in that it is capable of producing a ranked list of translit-

eration candidates, with the best candidate appearing at the beginning of the list.

In order to compare the statistical model with the rule based model in terms of

candidate ranks, we computed the mean reciprocal rank. The reciprocal rank of a

transliteration candidate is the multiplicative inverse of the rank of that candidate.

For example, if the correct transliteration occurred as the second candidate in the

list, that item’s reciprocal rank is 1/2 = 0.5. The mean reciprocal rank is the average

of the reciprocal ranks of each transliterated item. In case the correct answer does

not appear in the list of transliteration candidates for a given item, a reciprocal rank

of 0 is assigned. The mean reciprocal rank for the statistical model is 0.77 versus 0.54

for the rule based model3.

3.3.4 Error Analysis

Examination of transliterations missed by the statistical model shows that many of

these items are ones for which vowel transliteration follows an orthographic translit-

eration, e.g., oxalis → /oksallis1/, orangutan → /olaNuthan/, ketene → /kheten/,

antivitamin → /anthipithamin/, delphi → /telphi/, lazuli → /laÙulli/, alkali →

/alkhalli/. An alternative explanation for orthographic transliteration is that the

word is not borrowed directly from English but is borrowed in both languages from

another source or has come to Korean from English via Japanese (Kang, Kenstowicz,

and Ito, 2007). Although the ability to assess a detailed etymological history of newly

encountered foreign words is difficult to implement in an automatic transliteration

system, knowledge of the frequency of a word’s usage in non-English text (such as

3The rule based model does not impose a ranking on transliteration candidates, so the default
hash order of the Python dictionary object was used to order candidates in the rule based model.
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would be available, e.g., from Google estimates of language specific document counts

for a word) could be explored for its utility in influencing the expectation of an En-

glish phonological versus orthographic transliteration. Work along these lines remains

for future research.

A second area where both the statistical and rule-based models had difficulty

is consonant transliteration corresponding to internal word boundaries in compounds

like taphole, spillover, blackout, kickout, locknut, and cakework. In these cases the

actual transliterations mark the presence of the internal word boundary by applying

the expected end of word transliteration rule. For example, in the transliteration

of the word black, the final /k/ becomes an unaspirated coda in Korean: /p1llæk/.

In intervocalic position, English voiceless stops typically aspirate and are realized

as syllable onsets. For example in the word Utah, the English /t/ becomes Ko-

rean /th/, as in/yutha/. In compound words like blackout, however, the intervocalic

stop follows the end of word transliteration pattern and becomes /p1llækaus/. This

transliteration is unexpected if only the segmental context is considered, where the

intervocalic consonant would typically become an onset of the following syllable black-

out → */p1llækhaus/). Applying a module to pre-identify potential compound words

and insert a word boundary symbol (e.g., blackout → #black#out#) is one way to

incorporate additional morphological knowledge into the transliteration process and

would be expected to improve transliteration accuracy in these cases.

3.3.5 Conclusion

This chapter presented two novel transliteration models, both of which are robust

to small amounts of data and are parsimonious in terms of the number of parame-

ters required to estimate them and the number of outputs they produce. The rule

69



based model is defined by a small set of regular expressions and requires no train-

ing data. By modifying it to produce both orthographic and pronunciation based

vowel transliterations, its coverage is substantially increased. Relative to previous

n-best transliteration models, its precision is high; however, its precision is substan-

tially lower than that of the statistical decision list model when the latter model is

modified to produce multiple transliteration candidates as well.

The statistical decision list model achieves reasonable results on small amounts

of training data. As the amount of training data increases, the performance of the

two statistical models becomes much closer, although the simpler statistical model

slightly outperforms the maximum entropy model on all trials in the experiments

reported here. However, the maximum entropy model provides greater flexibility

for incorporating multiple sources of information, and its performance may increase

given a richer feature set for which the statistical decision list model is less suited.

Furthermore, its performance may improve given a suitable Gaussian penalty. These

possibilities remain to be explored in future research.

The rule based and statistical models lend themselves to situations where

bilingual training data is scarce or unavailable. Although the cost of developing an

aligned list of loanwords for an arbitrary pair of languages may be lower than the cost

of developing a richer lexical resource such as a large syntactically and semantically

annotated corpus, it is not negligible. We are not aware of any accounts of the cost of

developing a list of aligned English-Korean loanwords from scratch, but can provide

an estimate of the amount of data that would be required to produce a similar list of

English loanwords in Chinese.

Chinese is similar to Korean in that it has recently begun importing English

loanwords into its lexicon as well (Riha and Baker, 2008a, b). However, in Chinese,
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these words are often borrowed “as is”, i.e., in the original English orthography. Be-

cause these words occupy a distinct range of character codes when stored in electronic

orthographic form, they are easy to extract from Chinese text using standard regular

expression utilities (e.g., Perl or grep). Figure 3.6 displays the number of unique

Roman letter strings in the 2004 CNA subsection4 of the Chinese gigaword corpus

(Graff, 2007) against the number of Chinese characters read before encountering each

new instance. For example, the figure shows that in order to come across 5,000 unique

Roman letter words, 17 million Chinese characters have to be read (conservatively,

4.25 million words on the basis of estimates average length of Chinese words in Tea-

han, Wen, Mcnab, and Witten 2000); in order to extract 10,000 unique Roman letter

words, 37 million Chinese characters (9.25 million words) have to be read.

For language pairs that are not as well attested (e.g., Danish-Korean, Italian-

Korean), the amount of material required to produce similar lists would be substan-

tially greater or non-existent at the requisite scale. However, phonological accounts of

loanword adaptation such as that provided by Li (2005) contain phonological conver-

sion rules for adapting loanwords into Korean from many languages, including Danish,

Italian, Thai, Romanian, and Swedish among others. Furthermore, it is possible to

find similar accounts for additional pairs of languages like French and Vietnamese

(Barker, 1969). In such situations, the cost and time required to develop even a

moderately sized list of aligned loanwords for each of these language pairs is likely

to exceed the cost and time required to deploy a rule based transliteration model.

The next chapter demonstrates the utility of a low precision rule based transliteration

model for bootstrapping a statistical model that classifies words according to their

etymological source.

4This is the section of the corpus with the highest percentage of Roman letter words (Riha and
Baker, 2008a, b).
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CHAPTER 4

AUTOMATICALLY IDENTIFYING ENGLISH LOANWORDS IN KOREAN

4.1 Overview

This chapter deals with the task of automatically classifying unknown words ac-

cording to their etymological source. It focuses on identifying English loanwords in

Korean, and presents an approach for automatically generating training data for use

by supervised machine learning techniques. The main innovation of the approach

presented here is its use of generative linguistic rules to produce large quantities of

training data, circumventing the need for manually labeled resources.

Being able to automatically identify the etymological source of an unknown

word is important for a wide range of NLP applications. For example, automatically

translating proper names and technical terms is a notoriously difficult task because

these items can come from anywhere, are often domain-specific and are frequently

missing from bilingual dictionaries (e.g., Knight and Graehl, 1998; Al-Onaizan and

Knight, 2002). In the case of borrowings across languages with unrelated writing sys-

tems and dissimilar phonemic inventories (i.e., English and Korean), the appropriate

course of action for an unknown word may be transliteration or back-transliteration

(Knight and Graehl, 1998). However, in order to transliterate an unknown word cor-

rectly, it is necessary to first identify the originating language of the unknown word.

Etymological classification also plays a role in information retrieval and cross-lingual
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information retrieval systems where finding equivalents between a source word and

its various target language realizations improves indexing of search terms and subse-

quently document recall (e.g., Kang and Choi, 2000b; Oh and Choi, 2001; Kang and

Choi, 2002).

Source language identification is also a necessary component of speech syn-

thesis systems, where the etymological class of a word can trigger different sets of

letter-to-sound rules (e.g., Llitjós and Black, 2001; Yoon and Brew, 2006). In Korean,

for example, a phonological consonant tensification rule applies to semantically trans-

parent compounds of Sino-Korean origin. For example, the Sino-Korean syllable #î


pyeng corresponds to two homographic morphemes illness and anger, both of which

have two pronunciations in compounds: untensed initial /p/ (e.g., �o#î
 hwapyeng

[hwapy�N] vase,  ño�#î
 holipyeng [hoRiby�N] genie’s bottle and t�#î
 cipyeng [Ùiby�N]
terminal illness and tensed initial /p/ (e.g., c+t��#î
 khollapyeng [khol:ap*y�N] �o
#î
 hwapyeng [hwap*y�N] anger disease and )�o�#î
 helipyeng [h�lip*y�N] backache)

(Yoon and Brew, 2006: 367). In addition, words of English origin often undergo /s/-

tensification that is not orthographically indicated (e.g., [j{9� seyil [s*eil] ‘sale’, Ò�Û¼

phelsu [ph�ls1] ‘pulse’ (Yoon and Brew, 2006: 372).

The sections that follow describe and evaluate statistical approaches to identi-

fying English loanwords in Korean. Section 4.2 describes previous work on identifying

English loanwords in Korean. Section 4.3 lays out the current approach and describes

the supervised learning algorithm used in the experiments that are presented in Sec-

tion 4.4.

4.2 Previous Research

Identifying foreign words is similar to the task of language identification (e.g., Beesley,

1988), in which documents or sections of documents are classified according to the
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language in which they are written. However, foreign word identification is made more

difficult by the fact that words are nativized by the target language phonology and

the fact that differences in character encodings are removed when words are rendered

in the target language orthography. For example, French and German words are often

written in English just as they appear in the original languages – e.g., tête or außer-

halb. In these cases, characters like ê and ß provide reliable cues to the etymological

source of the foreign word. However, when these same words are transliterated into

Korean, such character level differences are no longer maintained: tête becomes _�àÔ

theytu and außerhalb becomes ��Äº"f½+ÉáÔ awusehalpu (Li, 2005: 132). Instead, in-

formation such as transition frequencies between characters or the relative frequency

of certain characters in known Korean words versus known French or German words

can be used to distinguish these classes of words.

Oh and Choi (2001) describes an approach along these lines to automatically

identifying and extracting English words from Korean text. Oh and Choi (2001)

formulates the problem in terms of a syllable tagging problem – each syllable in a

hangul orthographic unit is identified as foreign or Korean, and each sequence of

foreign-tagged syllables is extracted as an English word. Hangul strings are modeled

by a hidden Markov model where states represent a binary indication of whether a

syllable is Korean or not. Transitional probabilities and the probability of a syllable

being English or Korean are calculated from a corpus of over 100,000 words in which

each syllable was manually tagged as foreign or Korean. Oh and Choi (2001) reports

precision and recall values ranging from 96% to 98% for identifyin foreign word tokens

in their corpus, but is not clear whether these values are obtained from a disjoint

train/test split of the data or indicate performance of their system on trained data.

Kang and Choi (2002) employs a similar Markov-based approach that alle-

viates the burden of manually syllable tagging an entire corpus, but relies instead
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on a foreign word dictionary, a native word dictionary, and a list of 2000 function

words obtained from a manually POS-tagged corpus. Kang and Choi (2002) uses

their method to extract a set of 799 potential foreign terms from their corpus, and

restrict their analysis to this set of terms. Kang and Choi (2002) reports precision

and recall for foreign word extraction over this candidate set of 84% and 92%, respec-

tively. While these results are promising, the burden of manually labeling data has

not been eliminated, but deflected to external resources.

The experiments presented in the next section describe an accurate, easily

extensible method for automatically classifying unknown foreign words that requires

minimal monolingual resources and no bilingual training data (which is often difficult

to obtain for an arbitrary language pair). It does not require tagging and uses corpus

data that is easily obtainable from the web, for example, rather than hand-crafted

lexical resources.

4.3 Current Approach

While statistical approaches have been successfully applied to the language identifica-

tion task, one drawback to applying a statistical classifier to loanword identification

is the requirement for a sufficient amount of labeled training examples. Amassing a

large list of transliterated foreign words is expensive and time-consuming. We address

this issue by using phonological conversion rules to generate potentially unlimited

amounts of pseudo training data at very low cost. Although the rules themselves are

not highly accurate, a classifier trained on sufficient amounts of this automatically

generated data performs as well as one trained on actual examples. The classifier

used here is a sparse logistic regression model. The sparse logistc regression model

has been shown to provide state of the art classification results on a range of natural

language classification tasks such as author identification (Madigan, Genkin, Lewis,
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Argamon, Fradkin, and Ye, 2005a), verb classification (Li and Brew, 2008), and ani-

macy classification (Baker and Brew, accepted). This model is described in the next

section.

4.3.1 Bayesian Multinomial Logistic Regression

At a very basic level of description, learning is about observing relations that hold

between two or more variables and using this knowledge to adapt future behavior

under similar circumstances. Regression analysis models this type of learning in

terms of the way that one variable Y varies as a function of a vector of variables

X. This function is represented in terms of the conditional distribution of Y given

X and a set of weighted parameters β. Bayesian approaches to regression modeling

involve setting up a distribution on the parameter vector β that encodes prior beliefs

about the elements of β. The prior distribution should be strong enough to allow

accurate estimation of the model parameters without overfitting the model to the

training data (e.g., Genkin, Lewis, and Madigan, 2004; Gelman, Carlin, Stern, and

Rubin, 2004: 354). The statistical inference task involves estimating the parameters β

conditioned on X and Y (Gelman et al., 2004: 354). The simplest and most flexible

regression model is the normal linear model (Hays, 1988; Gelman et al., 2004), which

states that each value of Y is equal to a weighted sum of the corresponding values of

the predictors in X:

(4.1a) Y i = β0 +
P
∑

p=1

βpX ip

In Equation (4.1a), i indexes over examples in the training set, and β0 is the y-

intercept or bias, which is analogous to the prior probability of class k in a naive

Bayes model. This formulation assumes that the true relationship between Y and X
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falls on a straight line, and that the actual observations of these variables are normally

distributed around it. Equation (4.1a) is often expressed in equivalent notation as

(4.1b) Y i =

P
∑

p=0

βpX ip where Xi0 ≡ 1

or in matrix notation as

(4.1c) Y i = βX i where X i0 ≡ 1.

The regression function for model (4.1a) expresses the expected value of Y as a

function of the weighted predictors X :

(4.2) E{Y i} = β0 +
P
∑

p=1

βpX ip

In simple linear regression the expected value of Y i ranges over the set of real numbers.

However, in classification problems of the type considered here, the desired output

ranges over a finite set of discrete categories. The solution to this problem involves

treating Y i as a binary indicator variable where a value of 1 indicates membership

in a class and a value of 0 indicates not belonging to that class.

When Y i is a binary random variable, the expected outcome E{Y i} has a

special meaning. The probability distribution of a binary random variable is defined

as follows:

Y i Probability
1 P (Y i = 1) = πi

0 P (Y i = 0) = 1− πi

Applying the definition of expected value of a random variable (Kutner, Nachtsheim,
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and Neter, 2004: 643, (A.12)) to Y i yields the following:

(4.3)

E{Y i} =
∑

y∈Y

yP (y) [Definition of Expectation]

E{Y i} = 1(πi) + 0(1− πi) = πi

= P (Y i = 1)

Equating (4.2) and (4.3) gives

(4.4) E{Y i} = β0 +
P
∑

p=1

βpX ip = πi = P (Y i = 1)

Thus, when Y i is binary, the mean response E{Y i} is the probability that Y i =

1 given the parameterized vector X i. Since E{Y i} represents a probability it is

necessary that it be constrained as follows:

(4.5) 0 ≤ E{Y i} = π ≤ 1

This constraint rules out a linear regression function, because linear functions range

over the set of real numbers instead of being restricted to [0, 1]. Instead, one of a

class of sigmoidal functions which are bounded between 0 and 1 and approach the

bounds asymptotically are used (Kutner et al., 2004: 559). One such function having

the desired characteristics is the logistic function or logit (Agresti, 1990; Christensen,

1997), defined as

(4.6) π =
eη

1 + eη

and having the shape shown in Figure 4.1.
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Figure 4.1: Standard logistic sigmoid function

A regression model which assumes a bounded curvilinear relationship between

X and Y is known as a generalized linear model (e.g., Ramsey and Schafer, 2002). A

generalized linear model is a probability model that relates the mean of Y to X via

a non-linear function applied to the regression equation. Generalized linear models

are linear in the predictors and non-linear in the output. Logistic regression models

are a type of generalized linear model.

Multinomial logistic regression is an extension of the binary regression model

described above to multiple classes. The basic method for handling more than two

outcomes for Y is to compare only two things at a time, i.e., to model multiple binary

comparisons (Christensen, 1997). In essence, this requires constructing a separate
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logit model for each class and choosing the model which assigns the highest probability

to X i. The multinomial logistic regression model has the form

(4.7)

π̂1K = log
P (Y 1 = 1|X = x)

P (Y 1 = K|X = x)
= β10 +

P
∑

p=1

β1px

π̂2K = log
P (Y 2 = 1|X = x)

P (Y 2 = K|X = x)
= β20 +

P
∑

p=1

β2px

...

π̂(K−1)K = log
P (Y K−1 = 1|X = x)

P (Y 2 = K|X = x)
= β(K−1)0 +

P
∑

p=1

β(K−1)px

The ratio inside the log function represents the odds of obtaining class k relative to

class K. The choice of denominator is arbitrary in so far as the estimates π̂k are

equivariant once the denominator is fixed (Hastie et al., 2001; Kutner et al., 2004).

The classifier used in this dissertation is an implementation of the pooled

response model (Christensen, 1997: 152) specified in Madigan, Genkin, Lewis, and

Fradkin (2005b) and compares Y k to the total of all other classes Y k′ 6=k, e.g., model

(4.8) log
P (Y k)

∑

k′ 6=k P (Y k′)
, k = 1, . . . , K

which represents the odds of getting class k relative to not getting class k.

The multinomial logistic regression model used in this dissertation is a condi-

tional probability model of the form shown in 4.9 (Madigan et al., 2005b: 1, Equation

(1)).

(4.9) P (yk = 1|x, B) =
exp(βT

k x)
∑

k′ 6=k exp(βT
k′x)

, k = 1, . . . , K
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The model is parameterized by the matrix B = [β1, . . . , βK ], where the columns of β

are parameter vectors that correspond to one of the classes k: βk = [βk1, . . . , βkP ]T .

That is,

B =

























β11 . . . βk1 . . . βK1

...
...

...

β1p . . . βkp . . . βKp

...
...

...

β1P . . . βkP . . . βKP

























Classification of a new instance is based on the vector of probability estimates pro-

duced by model (4.9) (or equivalently (4.7)). The class with the highest conditional

probability estimate is chosen (Madigan et al., 2005b: 2):

ŷ(x) = argmax
k

P (yk = 1|x)

Estimates for the values of B are obtained from the training set via the method

of maximum likelihood (e.g., Kutner et al., 2004: 27-32). Maximum likelihood estima-

tion involves choosing values of B that are most consistent with the sample data, e.g.,

the likelihood of B given a data set is maximized. The basic idea behind maximum

likelihood estimates of B involves the fact that each observation Y i is expressed in

terms of the expected value of the parameter vector βi applied to the observed values

of X i, i.e., E{Y i} = βT
i X i (Equation 4.4).

In the normal regression model, each Y i is assumed to be normally distributed

with standard deviation σ. The likelihood of obtaining a particular value of βi can

82



be assessed with respect to the probability of seeing that value given a normal dis-

tribution with mean E{Y i}. Maximum likelihood estimation uses the density of the

probability distribution at Y i as an estimate for the probability of seeing that ob-

servation. For example, Figure 4.2 shows the densities of the normal distribution for

two possible parameterizations of βi. If Y i is in the tail (4.2b), it will be assigned

µ = βiX i

Y i Y i

µ′ = β′iX i

Figure 4.2: Normal probability distribution densities for two possible values of µ

a low probability of occurring. On the other hand, if it is closer to the center of the

distribution (4.2a), it will be assigned a higher probability of occurrence. The method

of maximum likelihood estimates for βi involves choosing values of βi that favor a

value of Y i that is near the center of its probability distribution. The parameters

must be optimized over all of the observations in the training sample.

Bayesian approaches to logistic regression involve specifying a distribution on

B that reflects prior beliefs about about likely values of the parameters. In the typical

classification setting involving large data sets in a high dimensional feature space, a

reasonable prior distribution for B is one that assigns a high probability that most
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entries of B will have values at 0 (Krishnapuram, Carin, Figueiredo, and Hartemink,

2005; Madigan et al., 2005b). In other words, it is reasonable to expect that many of

the features are redundant or noisy, and only a small subset are most important for

classification. The goal of such so-called sparse classification algorithms is to learn

a model that achieves optimal performance with as few of the original features as

possible.

A common choice of prior is the Laplacian (Figure 4.3), which favors values

of B of 0 (Krishnapuram et al., 2005; Madigan et al., 2005b). The basic idea behind

specifying a Laplacian prior on B is illustrated in Figure 4.3, which compares the

Laplacian distribution to the normal distribution with the same mean and variance.

Compared to the normal distribution, the Laplacian is more peaked at the mean,
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Figure 4.3: Density of the normal (dashed line) and Laplacian distributions with the
same mean and variance
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while the normal distribution is relatively flat and wide around the mean. When the

distribution is relatively flat in the region around the maximum likelihood estimate,

the maximum likelihood estimate is not as precise because a large number of values of

βi are nearly as consistent with the training data as the maximum likelihood estimate

itself (Kutner et al., 2004: 29-30). Because the Laplacian is sharply peaked about the

mean, estimates of βi that are slightly away from the mean will receive drastically

lower probabilities than an estimate of 0. Only those features which receive strong

support in the training data will receive a non-zero estimate. Thus, when applied to

the original features, automatic feature selection is obtained as a side-effect of training

the model (Krishnapuram et al., 2005: 958). The Laplacian prior embodies a bias

which allows for efficient model fitting in situations where the number of predictor

variables is large and exceeds the number of observations. Because of this property

it is expected to be suitable for large scale natural language classification tasks.

There are a number of algorithms in use for fitting regression models. Unlike

for ordinary least squares regression, a closed-form analytic solution for training a

multinomial regression model does not exist (Kutner et al., 2004; Mitchell, 2006).

Instead, iterative methods for finding approximations to the roots of a real-valued

function are used (e.g., iteratively reweighted least squares (Krishnapuram et al.,

2005)). These methods produce a converging sequence of approximations to the

actual root that can be used as approximations of the actual values of B. Detailed

discussion of the algorithmic details and computational techniques involved in training

a logistic regression classifier are provided in Hastie et al. (2001), Gelman et al. (2004),

Krishnapuram et al. (2005), and Madigan et al. (2005b).
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4.3.2 Naive Bayes

For comparison purposes, we also use a naive Bayes classifier in the first experiment

below. The motivation for including the naive Bayes classifier is its simplicity and

the fact that it is often competitive with more sophisticated models on a wide range

of classification tasks (Mitchell, 2006). The naive Bayes classifier is a conditional

probability model of the form

P (C|F1, . . . , Fn)

where C stands for the class we are trying to predict and F1, . . . , Fn represent the

features used for prediction. The class-conditional probabilities can be estimated

using maximum likelihood estimates that are approximated with relative frequenices

from the training data. Therefore, the conditional distribution over the class variable

C can be written

P (C|F1, . . . , Fn) ≈ P (C)

n
∏

i=1

P (Fi|C)

This rewrite is possible only under the assumption that the features are independent.

When used for classification, we are interested in obtaining the most likely class given

a particular set of values of the input features, i.e.,

classify(fi, . . . , fn) = argmax
c

P (C = c)
n
∏

i=1

P (Fi = fi|C = c)

In the experiments reported here we use a balanced data set (i.e., the same number

of English and Korean words) and therefore do not include the prior probability of a

word being English or Korean in the model.
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4.4 Experiments on Identifying English Loanwords in Korean

4.4.1 Experiment One

4.4.1.1 Purpose

The purpose of this experiment is to establish classification accuracy for identify-

ing English loanwords in Korean using hand labeled data in a supervised learning

scenario. The accuracy obtained with hand labeled data will serve as a target for

subsequent experiments which utilize automatically generated training data.

4.4.1.2 Experimental Setup

The data in this experiment consisted of the list of 10,000 English loanwords de-

scribed in Chapter2 Section 2.1 and 10,000 Korean words selected at random from the

National Institute of the Korean Language’s frequency list of Korean words (NIKL,

2002). No distinction between native Korean and Sino-Korean words was maintained.

Standard Korean character encodings represent syllables rather than individual let-

ters, so we converted the original hangul orthography to a character-based representa-

tion, retaining orthographic syllable breaks. Words are represented as sparse vectors,

with each non-zero entry in the vector corresponding to the count of a particular

character trigram that was found in the word. The count of a given trigram in a

single word was rarely more than one. For example, the English loanword user is

produced in Korean as Ä»$� yuce and is represented as

(∅∅y : 1, ∅yu : 1, yu− : 1, u− c : 1,−ce : 1, ce∅ : 1, e∅∅ : 1)
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where ∅ is a special string termination symbol and ‘-’ indicates an orthographic

syllable boundary.

The decision to use trigrams instead of syllables as in Oh and Choi (2001)

and Kang and Choi (2002) was based on the intuition that segment level transitions

provide important cues to etymological class that are lost by only considering syllable

transitions. Unigrams or bigrams are not as likely to be sufficiently informative, while

going to 4-grams or higher results in severe problems with data sparsity. This feature

representation resulted in 2276 total features; English words contained 1431 unique

trigrams and Korean words contained on 1939 unique trigrams.

This experiment used a 10-fold, 90/10 train/test split. We report identification

accuracy, which is computed as the number of correctly classified words in the test

set divided by the total number of words in the test set, averaged over ten trials.

Baseline accuracy for all experiments is 50%.

4.4.1.3 Results

Mean classification accuracy using labeled data was 91.1% for the Bayes classifier

and 96.2% for the regression classifier. This is expected, in accordance with the

observation that discriminative models typically perform better than generative ones

(Ng and Jordan, 2002). Taking these results as a reasonable baseline for what can be

expected using hand-labeled data, the next experiment looks at using phonological

rules to automatically generate English training data.
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4.4.2 Experiment Two

4.4.2.1 Purpose

The purpose of this experiment is to use phonological transliteration rules to generate

a set of possible but unattested English loanwords in Korean and train a classifier to

automatically distinguish actual English loanwords from actual Korean words.

4.4.2.2 Experimental Setup

This experiment applied the phonological rule based transliteration model presented

in Chapter 3 Section 3.3.1 to the pronunciations of English words in the CMU Pro-

nouncing Dictionary (Weide, 1998) to create a set of possible but unattested English

loanwords in Korean. These items served as training data for the distinction between

actual English loanwords and Korean words. The number of pseudo-English train-

ing instances ranged from 10,000 to 100,000. The test items were all 20,000 items

from the experiment above. The training data did not include any of the test items.

This means that if the phonological conversion rules produced a form that was ho-

mographic with any of the actual English loanwords, this item was removed from the

training set. Note that this is conservative: in practical situations we would expect

that the conversion rules would sometimes manage to duplicate actual loanwords,

with the possibility of improved performance. We had a total of 62688 labeled actual

Korean words (Sino-Korean plus native Korean). In order to keep the same number

of items in the English and Korean classes, i.e., in order to avoid introducing a bias in

the training data that was not reflected in the test data, we used a random sampling

with replacement sampling model for the Korean words.

89



4.4.2.3 Results

Figure 4.4 shows the classification accuracy of the regression classifier as a function

of the amount of training data. Classifier accuracy appears to asymptote at around

90,000 instances of each class within 0.3% (95.8% correct) of the classifier trained on

actual English loanwords.
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Figure 4.4: Classifier accuracy trained on pseudo-English loanwords and classifying
actual English loanwords

While this experiment demonstrates the feasibility of approximating a set of

English loanwords with phonological conversion rules, it still relies on a manually con-

structed dictionary of Korean words. The next experiment investigates the feasibility

of approximating a label for the Korean words as well.

90



4.4.3 Experiment Three

4.4.3.1 Purpose

The purpose of this experiment is to examine the performance of the loanword iden-

tifier on distinguishing actual English loanwords from actual Korean words when it

is trained on pseudo-English loanwords and unlabeled items that serve as examples

of Korean words.

4.4.3.2 Experimental Setup

Based on observations of English loanwords in Japanese (Graff and Wu, 1995) and

Chinese (Graff, 2007) newswires, we believe that the majority of these items will occur

relatively infrequently in comparable Korean text. This means that we are assuming

that there is a direct relationship between word frequency and the likelihood of a word

being Korean, i.e., the majority of English loanwords will occur very infrequently.

Accordingly, we sorted the items in the Korean Newswire corpus (Cole and Walker,

2000) by frequency on the assumption that Korean words will tend to dominate the

higher frequency items, and examined the effects of using these as a proxy for known

Korean words.

We identified 23406254 Korean orthographic units (i.e., eojeol) in the Korean

Newswire corpus (Cole and Walker, 2000). Because we believe that high frequency

items are more likely to be Korean words, we applied a sampling without replacement

sampling scheme to the instances extracted from the corpus. This means that the

frequencies of items in our extracted subset approximately match those in the actual

corpus, i.e., we have repeated items in the training data. Thus, the classifier for this

experiment was trained on automatically generated pseudo-English loanwords as the
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English data and unlabeled lexical units from the Korean Newswire as the Korean

data. Again, the test items were all 20,000 items from Experiment 1. The training

data did not include any of the test items.

4.4.3.3 Results

Figure 4.5 shows the classification accuracy of the regression classifier as a function

of the amount of training data. Classifier accuracy again asymptoted around 90,000

items per training class at 3.7% below (92.4%) the classifier trained on actual English

loanwords.
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Figure 4.5: Classifier accuracy trained on pseudo-English loanwords and pseudo-
Korean items

The assumption that frequent items in the Korean Newswire corpus are all

Korean is false. For example, of the 100 most frequent items we extracted, 5 were

English loanwords. These words and their rank are shown in Table 4.1. However, we

believe that the performance of the classifier in this situation is encouraging, and that

using a different genre for the source of the unlabeled Korean words might provide
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Word Rank Frequency

���½+Ë¾»Û¼ Yeonhab News 30 51792
(�G'pàÔ percent 32 49367
¾»6 ¤ New York 89 19652
�Qr��� Russia 91 19162
9þt�2;��� Clinton 94 18860

Table 4.1: Frequent English loanwords in the Korean Newswire corpus

slightly better results. This is because of the nature of a news corpus: it reports on

international events, so foreign words are relatively frequent compared to a period

novel or something like that.

4.5 Conclusion

The experiments presented here addressed the issue of obtaining sufficient labeled

data for the task of automatically classifying words by their etymological source.

We demonstrated an effective way of using linguistic rules to generate unrestricted

amounts of virtually no-cost training data that can be used to train a statistical clas-

sifier to reliably discriminate instances of actual items. Because the rules describing

how words change when they are borrowed from one language to another are relatively

few and easy to implement, the methodology outlined here can be widely applied to

additional languages for which obtaining labeled training data is difficult.

For example, Khaltar, Fujii, and Ishikawa (2006) describes an approach to

identifying Japanese loanwords in Mongolian that is also based on a small number

of phonological conversion rules, and Mettler (1993) uses a set of katakana rewrite

rules to find English loanwords in Japanese. The current approach is novel in that

the identification of loanwords is not limited to those items explicitly generated by
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the conversion rules, but generalizes beyond a specific set of input items to identify

loanwords that are not contained in the training material. As a point of comparison

on the current data set, we can take the performance of the rule-based translitera-

tion models described in Chapter 3 as indicative of a direct rule-based approach to

identifying English loanwords on this data set. The phonological rule-based model

correctly transliterates (i.e., identifies) about 49% of the loanwords in the data set,

and the ortho-phonemic rule-based model finds 78%. The identification model trained

on the output of the phonological rule-based model and approximated Korean labels

performs about 15% higher than the ortho-phonemic model would, and the model

trained on pseudo-English and actual Korean words performs about 18% higher.
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CHAPTER 5

DISTRIBUTIONAL VERB SIMILARITY

5.1 Overview

The idea of lexical similarity provides the basis for the description of a wide range

of linguistic phenomena. For example, morphological overgeneralizations resulting

in new forms such as dived for dove proceed by analogy to existing irregular inflec-

tional paradigms (Prasada and Pinker, 1993). Priming studies show that people are

quicker to respond to a target word after very brief exposure to a phonologically or

semantically related stimulus (e.g., O’Seaghdha and Marin, 1997). The concept of

syntactic category can be approached in terms of classes of words that appear in

similar structural configurations (e.g., Radford, 1997), and lexical semantic relations

like synonymy and hyponymy are often understood in terms of words that can be

substituted for one another without changing the truth conditions of a sentence (e.g.,

Cruse, 1986).

One particular strand of research has focused attention more narrowly on un-

derstanding and describing patterns of lexical similarity among verbs. Of specific

interest here is research that looks at ways to automatically assess lexical similarity

of verbs in terms of their contextual distribution in large text corpora. This research

is motivated by the idea, expressed as early as Harris (1954), that words that occur in
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similar contexts tend to have similar meanings. The majority of research on distribu-

tional verb similarity, exemplified by work such as Lapata and Brew (1999); Schulte im

Walde (2000); Merlo and Stevenson (2001); Joanis (2002); Lapata and Brew (2004);

Li and Brew (2007) and Li and Brew (2008) has utilized Levin’s (1993) organization

of English verbs into syntactically and semantically homogeneous classes.

Levin’s classification is based on the hypothesis that verbs which exhibit sim-

ilar alternations in the realization of their argument structure also share components

of meaning and form semantically coherent classes (Levin, 1993). While a number

of studies have examined the induction of Levin’s verb classes from text data us-

ing clustering techniques (e.g., Schulte im Walde and Brew, 2002; Brew and Schulte

im Walde, 2002; Schulte im Walde, 2003), the majority of the studies on assessing

distributional verb similarity have dealt with the application of supervised learning

techniques to corpus data for the purpose of automatic verb classification. The cur-

rent study also deals with the assessment of distributional verb similarity, but focuses

on the task of characterizing the nature of the distributional structure that underlies

the performance of automatic verb classification techniques rather than the specific

task of training a classifier to distinguish explicit verb classes. The goal of this ap-

proach is to quantify interactions between the components that determine empirical

distributional verb similarity and predictions made about verb similarity by a variety

of lexical semantic verb classification schemes.

The remainder of this chapter provides background for understanding the as-

sessments of distributional verb similarity carried out in Chapter 6 and is organized

as follows. Section 5.2 describes previous studies on automatic verb classification

which provide a springboard for the current research. Section 5.3 frames the current

approach and sets out its specific purposes and goals. Section 5.4 describes in general

terms the elements that go into determining distributional verb similarity.
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5.2 Previous Work

A substantial body of research deals with the task of automatically classifying verbs

according to their membership in lexical semantic classes on the basis of features

extracted from their distribution in a large text corpus (e.g., Lapata and Brew, 1999;

Stevenson and Merlo, 1999; Schulte im Walde, 2000; Joanis, 2002; Schulte im Walde

and Brew, 2002; Tsang, Stevenson, and Merlo, 2002; Joanis and Stevenson, 2003;

Lapata and Brew, 2004; Li and Brew, 2008). This section provides an overview of

several studies which serve as a springboard for the current research. In particular,

the types of features which have been used by these studies for extracting Levin’s

classification of English verbs from empirical data are relevant to the current study1.

5.2.1 Schulte im Walde (2000)

Schulte im Walde (2000) explores the hypothesis that verbs can be clustered seman-

tically on the basis of their syntactic alternations. Schulte im Walde applies two

unsupervised hierarchical clustering algorithms to 153 English verbs selected from 30

Levin classes. 103 of these verbs belong to a single Levin class, 35 of these verbs be-

long to exactly two classes, 9 belong to exactly three classes, and 6 belong to exactly

four classes. Each verb is represented by a distribution over subcategorization frames

extracted from the British National Corpus (Clear, 1993) using a statistical parser

(Carroll and Rooth, 1998). Schulte im Walde investigates the features relevant to au-

tomatic verb clustering by evaluating three different components of subcategorization

frames:

• syntactic frames, which are relevant to capturing argument alternations (e.g.

NP-V-PP)

1Portions of Section 5.2 were co-authored with Jianguo Li.
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• prepositions, which are able to distinguish, e.g., directions from locations (e.g.

NP-V-PP(into), NP-V-PP(on))

• selectional preferences, which encode participant roles (e.g. NP(PERSON)-V-

PPon(LOCATION)).

Using Levin’s verb classification as a basis for evaluation, 61% of the verbs

are correctly classified into semantic classes. The best clustering result is achieved

when when using subcategorization frames enriched with PP information. Adding

selectional preferences actually decreases the clustering performance, a finding which

is attributed to data sparsity that results from the specificity of the features produced

when selectional preferences are incorporated.

5.2.2 Merlo and Stevenson (2001)

Merlo and Stevenson (2001) describes an automatic classification of three types of En-

glish intransitive verbs including unergatives, unaccusatives, and object-drop. They

select 60 verbs with 20 verbs from each verb class. However, verbs in these three se-

lected classes show similarities with respect to their argument structure in that they

can all be used as transitives and intransitives. Therefore, syntactic cues alone can-

not effectively distinguish the classes. Merlo and Stevenson define five linguistically-

motivated verb features that describe the thematic relations between subject and

object in transitive and intransitive usage. These features are collected from an au-

tomatically tagged corpus (primarily the Wall Street Journal corpus (LDC, 1995)).

Each verb is represented as a five-feature vector on which a decision tree classifier

is trained. Merlo and Stevenson (2001) reports 69.8% accuracy for a task with a

baseline of 33.3%, and an expert-based upper bound of 86.5%.
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The approach described in Merlo and Stevenson (2001) requires deep linguistic

expertise to identify the five verb features, which are crucial for the success of the

classification experiments. The need for such linguistic expertise limits the applica-

bility of the method because these features are designed specifically to the particular

class distinctions investigated, and are unlikely to be effective when applied to other

classes. Later work has proposed an analysis of possible class distinctions exhibited

by Levin verbs that generalizes Merlo and Stevenson’s features to a larger space of

features that potentially cover any verb classes (Joanis, 2002; Joanis and Stevenson,

2003; Joanis, Stevenson, and James, 2006). These more general features fall into four

groups:

• syntactic slots,

• slot overlaps,

• tense, voice and aspect, and

• animacy of NPs.

These features are extracted from BNC using the chunker described in Abney (1991).

This more general feature space is potentially applicable to any class distinction

among Levin classes and is relatively inexpensive in that it requires only a POS

tagger and chunker. Joanis et al. (2006) presents experiments on classification tasks

involving 15 verb classes and 835 verbs using a support vector machine with the

proposed feature space. These experiments achieve a rate of error reduction ranging

from 48% to 88% over a chance baseline, across classification tasks of varying difficulty.

In particular, these experiments yield classification accuracy comparable to or even

better than that of the feature sets manually selected for each particular task.
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5.2.3 Korhonen et al. (2003)

Korhonen et al. (2003) presents an investigation of English verb classification that

concentrates on polysemic verbs. Korhonen et al. employs an extended version of

Levin’s verb classification that incorporates 26 classes introduced by Dorr (1997), and

57 additional classes described in Korhonen and Briscoe (2004) . 110 test verbs are

chosen, most of which belong to more than one verb class. After obtaining subcatego-

rization frame frequency information from the British National Corpus (Clear, 1993)

using the parser described in Briscoe and Carroll (1997), two clustering methods are

applied: 1) a naive method that collects the nearest neighbor of each verb, and 2) an

iterative method based on the information bottleneck method (Tishby, Pereira, and

Bialek, 1999). Neither of these clustering methods allow the assignment of a single

verb to multiple verb classes.

In analyzing the impact of polysemy on cluster assignments, Korhonen et al.

(2003) makes a distinction between regular and irregular polysemy. A verb is said

to display regular polysemy if it shares its full set of Levin class memberships with

at least one other verb. A verb is said to display irregular polysemy if it does not

share its full set of Levin class memberships with any other verb. Korhonen et al.

finds that polysemic verbs with one predominant sense and those with similar regular

polysemy are often assigned to the same clusters, while verbs with irregular polysemy

tend to resist grouping are likely to be assigned to singleton clusters.

5.2.4 Li and Brew (2008)

Li and Brew (2008) evaluates a wide range of feature types for performing Levin-style

verb classification using a sparse logistic regression classifier Genkin et al. (2004) on

a substantially larger set of Levin verbs and classes than previously considered. In
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addition to a replication of the feature set used in Joanis et al. (2006), this study ex-

amined a number of additional feature sets that focus attention on ways to combine

syntactic and lexical information. These additional feature sets include dependency

relations, contextual co-occurrences, part-of-speech tagged contextual co-occurrences,

and subcategorization frames plus co-occurrence features. All features are extracted

automatically from the English gigaword corpus (Graff, 2003) using Clark and Cur-

ran’s (2007) CCG parser. Results are reported over 48 Levin verb classes involving

around 1300 single-class verbs. For the 48-way classification task, Li and Brew (2008)

reports a best classification accuracy of 52.8% obtained with features derived from a

combination of subcategorization frames plus co-occurrence features.

5.3 Current Approach

The current research also deals with automatic verb classification, but represents a

departure from the work described above in two fundamental ways. The first way in

which the current study differs from previous work relates to the scope and nature

of the class structure assumed to be at work in organizing the structure of the verb

lexicon. The second difference has to do with the type of evaluation that is applied

to assessing distributional verb similarity. These differences are discussed below.

5.3.1 Scope and Nature of Verb Classifications

Previous research has tended to focus on assigning verbs to classes based directly

on or derived from Levin (1993), investigating either a small number of verbs (e.g.,

Schulte im Walde, 2000) or a small number of classes (e.g., Joanis et al., 2006), but

see Li and Brew (2008) for consideration of a larger set of Levin verbs. Rather

than restricting the assessment of distributional verb similarity to a single linguistic
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classification, the current study analyzes distributional verb similarity with respect

to multiple verb schemes. Three of these Levin (1993) – VerbNet (Kipper, Dang, and

Palmer, 2000), and FrameNet (Johnson and Fillmore, 2000) – explicitly incorporate

some form of frame-based syntactic information into their organization of verbs, while

the other two – WordNet (Fellbaum, 1998) and an online version of Roget’s Thesaurus

(Roget’s Thesaurus, 2008) – are organized primarily around the semantic relations

of synonymy and antonymy. Furthermore, the first three classification schemes place

verbs into a comparatively small number of classes on the basis of shared semantic

components such as MOTION or COGNITION. This type of class structure has no

direct analogy in Roget or WordNet, which essentially create separate classes for each

lexical entry (e.g., run heads its own class of synonyms, draw heads its own class,

etc).

5.3.2 Nature of the Evaluation of Verb Classifications

The differences in organizational structure discussed above and the goal of obtaining

a consistent comparison across classification schemes lead to the second way in which

the current research departs from previous work. Rather than training a classifier

to assign verbs to a predefined set of classes or clustering verbs with respect to a

particular taxonomy, the current study approaches the evaluation of distributional

verb similarity from the standpoint of obtaining a pairwise matrix of similarities

between all of the verbs under consideration. This conceptualization of the problem

of measuring distributional lexical similarity is found as well in work on automatic

thesaurus construction (e.g., Lin, 1998a; Curran and Moens, 2002; Weeds, 2003),

which typically deals with techniques for grouping nouns into sets of lexically related

items.
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5.3.3 Relation to Other Lexical Acquisition Tasks

In many ways the task of extracting distributionally similar words from a corpus

is analogous to the classic information retrieval task of retrieving documents from

a collection in response to a query. For example, the vector-based representation

of a target word can be considered a query and the vector-based representations of

other words in the corpus can be treated as documents that are ranked by order of

decreasing similarity to the target. This conceptualization of the task of assessing

distributionally similar lexical items lends itself to evaluation techniques commonly

used in information retrieval such as precision, recall, and F1. However, one differ-

ence between the evaluation of distributionally similar lexical items and information

retrieval is that the former is primarily concerned with the quality of the first few

highly ranked words (precision) rather than extracting all items that belong to the

same class as the target word (recall).

Representative work on automatic thesaurus extraction (e.g., Lin, 1998a; Cur-

ran and Moens, 2002; Weeds, 2003; Gorman and Curran, 2006) adopts measures that

reflect the importance of correctly classifying the top few items such as inverse rank

(Curran and Moens, 2002; Gorman and Curran, 2006) or precision-at-k (Lin (1998a);

Curran and Moens (2002), Manning, Raghavan, and Schütze (2008: 148) without em-

phasizing recall of the entire set of class members. Other more general applications of

distributional similarity that emphasize the quality of a small subset of highly ranked

class members over exhaustive identification of all class members include dimension-

ality reduction techniques that preserve local structure (e.g., Roweis and Saul, 2000;

Saul and Roweis, 2003) and semisupervised learning techniques that rely on the iden-

tification of a lower dimensional manifold in a high dimension ambient space (e.g.,

Belkin and Niyogi, 2003, 2004).
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5.3.4 Advantages of the Current Approach

The points of departure from previous research outlined above present the follow-

ing opportunities for increasing our understanding of the application of automatic

classification techniques to distributional verb similarity.

• Taking the union of verbs that occur in multiple classification schemes greatly

increases the number of verbs that can be included for evaluation. Many previ-

ous verb classification studies have examined a relatively small number of verbs

belonging to relatively few classes (e.g., Schulte im Walde, 2000; Joanis, 2002;

Joanis et al., 2006). One problem with such restrictions is not knowing how well

those findings extend to other verbs in the classification that were excluded from

the study.

• Considering a broader range of verb classification criteria allows us to tease

apart some of the elements that are responsible for the organization of the

various verb schemes.

Levin and VerbNet verbs are grouped according to similarity in both syntactic

behavior and meaning, but it is not always clear which of these criteria are actually

responsible for placing an individual verb in a certain class (Baker and Ruppenhofer,

2002). For example, the BUTTER verbs (Levin, 1993: 120) comprise a semantically

diverse class, including items such as asphalt, buttonhole, lipstick, mulch, poison,

sulphur, and zipcode on the basis of their behavior with respect to the locative and

conative alternations (*Lora stained tea on the shirt/Lora stained the shirt with tea;

Lora stained the shirt/*Lora stained at the shirt).

For other classes of verbs Levin explicitly indicates that the syntactic alterna-

tion forming the basis of their grouping only applies to some members of the class.

For example, for the the DRIVE verbs, comprised of barge, bus, cart, drive, ferry,
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fly, row, shuttle, truck, wheel, and wire (money)), Levin indicates that the dative al-

ternation only applies to “some verbs” (Levin, 1993: 136) but does not specify which

ones. The current study, which separately considers synonymy as a potential selec-

tion criteria for verb classification, will shed light on the extent to which semantic

similarity versus syntactic similarity influences automatic verb classification.

5.4 Components of Distributional Verb Similarity

A number of interdependent factors go in to the process of determining distributional

lexical similarity. The factors considered in this dissertation and discussed in the

following sections are

• how to determine the features over which lexical similarity is measured,

• how to determine an appropriate numeric representation of those features,

• how to determine an appropriate measure of distributional similarity,

• and how to evaluate the results of ranking items according to their empirically

determined similarity.

Implicit in the concept of lexical similarity is a method for comparing words along

some set of characteristics that are relevant to the particular distinction being made

(e.g., phonological, semantic, etc.). A procedure for doing this can be operationalized

in terms of a vector X over which observations of a word are made. Under this sce-

nario, a word can be conceptualized as a distribution of values over X, and similarity

between two words y1 and y2 can be computed by application of a similarity metric

to their respective distributional vectors X1 and X2. When the task involves deter-

mining lexical semantic similarity, the relevant characteristics are generally taken to

be those words which co-occur with a target item. The following section describes

various approaches to defining context in terms of word co-occurrences.
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5.4.1 Representation of Lexical Context

In computational approaches to determining word similarity, distributional similarity

is typically defined in terms of a word’s context, and words are said to be distribution-

ally similar to the extent that they occur in similar contexts. Applying this definition

to corpus data often yields word classes that overlap the classifications assigned by

traditional lexical semantic relations such as synonymy and hyponymy. For example,

Lin (1998a) describes a method for automatically extracting synonyms from corpus

data that yields word classes such as {brief, affidavit, petition, memorandum, depo-

sition, slight, prospectus, document, paper, . . . } (p. 770). Just as often, applying

this definition yields sets of words whose relation is best described in terms of topical

associations. For example, Kaji and Morimoto (2005) describes a procedure for auto-

matic word sense disambiguation using bilingual corpus data that groups words into

lexical neighborhoods such as {air, area, army, assault, battle, bomb, carry, civilian,

commander, . . . } (p. 290 (a)). In this example, the common thread among these

words is that they all co-occurred with the words tank and troop. Broadly speak-

ing, the context representations which give rise to a distinction between topically

associated and semantically similar words fall into two categories: models that use a

bag-of-words representation, and those that model grammatical relations.

5.4.2 Bag-of-Words Context Models

Bag-of-words models take the context of a word to be some number of words preced-

ing and following the target word. The order of items within this context is often not

considered. The context of a target word can be delimited by index (i.e., n words

before or after the target) or structurally (i.e., the paragraph or document the target
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occurs in). For example, Schütze (1998) describes a method for automatically dis-

criminating word senses that uses a 50-word context window centered on the target

word, and (Gale, Church, and Yarowsky, 1992) use a 100-word window.

In the Hyperspace Analogue to Language approach to word similarity (Lund,

Burgess, and Audet, 1996), context is defined as a window of 10 words preceding

and following a target word. Word order is weakly accounted for in this model by

assigning a weight to context words which is inversely proportional to their distance

from the target. In the Latent Semantic Analysis (Deerwester, Dumais, Landauer,

Furnas, and Harshman, 1990) approach to lexical similarity, context is defined as an

entire document, and word co-occurrences are calculated in a document space. One

of the main advantages of the bag-of-words context model is its relative simplicity

when applied to languages that naturally delimit words with whitespace – in its

most basic form, no corpus pre-processing is required to determine a context window.

However, a series of pre-processing steps are typically applied before the context

model is constructed. These steps involve procedures such as word stemming, text

normalization, stopword removal, and lemmatization that are designed to obtain a

more consistent representation of items in the corpus.

5.4.3 Grammatical Relations Context Models

A second approach to modeling distributional context is to define it in terms of gram-

matical dependency relations. Lin (1998a) defines context on the basis dependency

relations between words in a sentence. For example, in the sentence “I have a brown

dog”, the context of dog can be represented as the set of dependency triples {(dog Obj-

of have), (dog Adj-mod brown), (dog Det a)} (Lin, 1998a: 769, (2)). Other approaches

to automatic lexical acquisition that consider the role that syntactic relationships play

in determining distributional word similarity include work on noun clustering (e.g.,
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Pereira, Tishby, and Lee, 1993; Caraballo, 1999; Weeds, 2003) and verb classification

(e.g. Lapata and Brew, 1999; Stevenson and Merlo, 1999; Schulte im Walde, 2000; Li

and Brew, 2008).

Applying a grammatical relations context model requires a deeper level of lin-

guistic extraction than flat context models, and this analysis invariably entails most

of the pre-processing steps involved in the bag-of-words model before grammatical

relations can be extracted. Tools for extracting grammatical relations range from rel-

atively straightforward Bayesian models (e.g., Curran and Moens, 2002) to full-blown

parsers like MiniPar (Lin, 1998b) and the C&C CCG Parser (Clark and Curran, 2007).

The extra linguistic processing has been justified through direct comparison to bag-

of-words models (e.g., Padó and Lapata, 2007) and in terms of a distinction between

“loose” and “tight” thesauri (Weeds, 2003: 19) that are automatically derived from

bag-of-words and grammatical relations context models, respectively. Previous work

has claimed to show that using grammatical relation data yields sets of words which

are semantically related (e.g., Kilgarriff and Yallop, 2000; Weeds, 2003), whereas flat

context models generate word sets that are topically related.

However, it is not always easy to disentangle semantic similarity from topical

similarity, and all lexical context models group items according to a variety of asso-

ciational relations. Following Weeds (2003) we take the position that grammatical

relations are a sufficient information resource to allow for meaningful study of the

process of calculating and assessing distributional lexical similarity. Accordingly, this

dissertation focuses on using grammatical relations to define context models.
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5.5 Evaluation

This section describes some common approaches to evaluating a set of empirically

determined lexical similarity scores. The three approaches considered are application-

based evaluation, comparison to human judgments, and comparison to an accepted

standard. This dissertation primarily deals with evaluation by comparison to an

accepted standard.

5.5.1 Application-Based Evaluation

Application-based evaluation tasks evaluate distributional lexical similarity scores by

judging their usefulness in some other NLP application. For example, in information

retrieval, the primary objective is to retrieve documents that are related to a user

query. Query expansion (Xu and Croft, 1996) is a technique for augmenting a given

query with similar terms so that a greater number of relevant documents can be

found. In this case, the performance of the information retrieval system could be

evaluated with and without using query expansions based on distributionally similar

words to assay the utility of the lexical similarity matrix.

Many additional applications of distributional lexical similarity scores are dis-

cussed in (Weeds, 2003: Chapter 2, Section 2). Some of these include language mod-

eling, where the probability estimate of a previously unseen co-occurrence can be

generated from the co-occurrence probability of distributionally similar items; prepo-

sitional phrase attachment, where the likelihood of a particular syntactic configuration

can be estimated from smoothed estimates obtained from clusters of distributionally

similar items; and spelling correction, where the detection of real word spelling errors

(e.g., principle for principal) can be enhanced when distributionally-defined semantic

plausibility is considered.
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5.5.2 Evaluation Against Human Judgments

Evaluations against human judgments look at the correlation between distributional

similarity scores and human similarity judgments for the same set of items. For

example, McDonald and Brew (2004) presents a computational model of contextual

priming effects that is based on a probabilistic distribution of word co-occurrences

in the British National Corpus (Clear, 1993). These data are compared to lexical

decision response times for a set of 96 prime-target pairs taken from Hodgson (1991)

that represent a range of lexical relations including synonyms, antonyms, phrasal and

conceptual associates, and hyper/hyponyms (McDonald and Brew, 2004: 21).

Padó and Lapata (2007) presents a general framework for constructing dis-

tributional lexical models that define context on the basis of grammatical relations.

Model selection is based on correlations between empirical similarities and a set of

human similarity judgments from Rubenstein and Goodenough (1965). These data

consist of ordinal similarity ratings for a set of 65 noun-noun pairs that ranged from

highly synonymous to unrelated (Padó and Lapata, 2007: 177). Additional research

making use of the same data set is referenced in (Padó and Lapata, 2007: 177).

In general, evaluations against human judgments involve comparisons between

small data sets, chiefly due to the time and cost involved in gathering the requisite

judgments from human subjects. Furthermore, the stimuli used in human subjects ex-

periments may not be well-attested in the corpus being used for evaluating automatic

word similarity measures (e.g, McDonald and Brew (2004) discarded 48 potential

pairs due to low frequency), leading to a potential confound between low frequency

items and the performance of the automatic technique.
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5.5.3 Evaluation Against an Accepted Standard

The most common way to evaluate a wide variety of NLP techniques is to compare

a procedure’s output with the answers provided by a standard that is generally ac-

cepted by the NLP community. For example, Landauer and Dumais (1997) applied

their latent semantic indexing technique to a set of ToEFL2 multiple choice synonym

and antonym questions, and report the number of correct answers. Parser evaluation

frequently makes use of the Penn Treebank (Marcus, Santorini, and Marcinkiewicz,

1993) to measure the number of correctly generated parse trees. Word sense disam-

biguation tasks often train and test on data from a sense-tagged corpus like SemCor

(Palmer, Gildea, and Kingsbury, 2005). In each case, the output from an automatic

technique is compared to a manually created standard that is appropriate to the task.

Because of the link between distributional similarity and semantic similarity,

evaluations of distributional similarity techniques often proceed by comparison to an

accepted lexical semantic resource like WordNet (Fellbaum, 1998) or Roget’s The-

saurus (Roget’s Thesaurus, 2008). For example, Lin (1998a) describes a technique

for evaluating distributional similarity measures that is based on the hyponymy rela-

tion in WordNet. Budanitsky (1999) provides an extensive survey of lexical similarity

measures based on the WordNet nominal hierarchy. Many of these measures involve

treating the hierarchy as a graph and computing distance between words in terms

of weighted edges between nodes. This strand of research tends to focus on the dis-

tributional similarity of nouns in part because the noun hierarchy is the most richly

developed of the lexical hierarchies in WordNet (Budanitsky, 1999: 15). It is not clear

that the types of lexical relations that are used to organize nouns (e.g, hyponym,

meronymy) extend to the categorization of other parts of speech, namely verbs.

2Test of English as a Foreign Language
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A second strand of research has dealt with the classification of verbs. In this

setting, empirically defined similarities between verbs are typically evaluated with

respect to a lexical semantic verb classification such as that given in (Levin, 1993),

VerbNet (Kipper et al., 2000), or FrameNet (Johnson and Fillmore, 2000). This

dissertation evaluates a number of distributional similarity measures against 5 widely

used lexical semantic standards: Levin (1993), VerbNet, FrameNet, WordNet and

Roget’s Thesaurus. The next sections outline the organizational principles behind

each and quantify some of the similarities and differences among them with respect

to how they organize the same set of verbs.

5.5.3.1 Levin (1993)

Levin’s classification of English verbs rests on the hypothesis that a verb’s meaning

determines the syntactic realization and interpretation of its arguments (e.g., Lapata

and Brew, 2004: references therein). Levin argues that verbs which participate in the

same diathesis alternations share certain components of meaning and form seman-

tically coherent classes. The converse of the hypothesis Levin assumes is that the

syntactic behavior of verbs can be used to provide clues to aspects of their mean-

ing. Levin groups verbs into classes of items that participate in the same syntactic

alternation.

For example, the dative alternation, exemplified below,

(1) a. Brian passed DJ the ball.

b. Brian passed the ball to DJ.

involves an alternation between the double object construction (1-a) and a preposi-

tional phrase headed by to (1-b). Verbs that participate in the alternation, like give,

feed, rent, sell, trade etc., are all grouped into the the class of GIVE verbs. Levin
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identifies around 77 such syntactic alternations and uses them to group 3,004 verbs

into 191 classes such as SEND (FedEx, UPS, slip, smuggle, etc.) and CLING (adhere,

cleave, cling).

5.5.3.2 VerbNet

VerbNet closely follows Levin’s classification, adding some verbs (3626 total) and

classes (237 total). In addition, VerbNet specifies selectional preferences for some

verbs (e.g., ±ANIMATE, ±LOCATION) that are not explicitly expressed in Levin’s

original classification.

5.5.3.3 FrameNet

Verbs in FrameNet are organized around semantic frames, which are schematic rep-

resentations of situation types that tie lexical units to frames of semantic knowledge.

For example, the GIVING frame relates the subject, object, and indirect object of

a verb like give to the donor, theme, and recipient semantic roles. Other verbs that

evoke the GIVING frame are bequeath, donate, endow, fob off, foist, gift, give out,

hand, hand in, hand out, hand over, pass, pass out, and treat. FrameNet classifies

2307 verbs into 321 classes.

5.5.3.4 WordNet

WordNet arranges specific senses of nouns, verbs, adjectives, and adverbs into syn-

onym sets that express a distinct concept. Synonym sets are further linked by a

number of lexical relations like hyponymy, antonymy, coordinate terms, etc. For ex-

ample, the verb brachiate is synonymous with swing and sway and is a hyponym of

move back and forth. WordNet organizes 11529 verbs in 13767 synonym sets. In
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addition to synonymy, WordNet defines hyponymy relations between verbs, which

often correspond to Roget synonyms. For example, Roget synonyms of argue such as

quibble, quarrel, dispute, and altercate are classified as hyponyms by WordNet.

5.5.3.5 Roget’s Thesaurus

Roget’s Thesaurus (2008) is an online thesaurus published by Lexico Publishing

Group. It contains around 14,000 verbs, and each entry consists of an indication

of its part of speech, a dictionary-style definition, synonyms and possibly antonyms.

An example entry for gargle is shown below:

Main Entry: gargle

Part of Speech: verb

Definition: rinse

Synonyms: irrigate, swash, trill, use mouthwash

Querying the online thesaurus for verbs contained in the previously described verb

classification schemes returned synonym sets for 3786 entries.

5.5.3.6 Comparison of Verb Classification Schemes

The fact that multiple classification schemes have been proposed and instantiated

for a reasonably large number of English verbs suggests that the optimal criteria for

determining verbs categories are open to debate. At the very least, the existence

of multiple categorization schemes suggests that the criteria for verb classification

differ according to the particular aspect of lexical similarity that is of interest to the

lexicographer. One of the purposes of this dissertation is to examine distributionally
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similar verb assignments with respect to multiple verb classification schemes. Before

doing so, it is useful to quantify the extent to which the five schemes outlined above

agree on their assignments of verbs to lexical classes.

Figure 5.1 compares the five schemes in terms of the number of senses each

assigns to verbs. For WordNet, senses are explicitly distinguished and labeled in a
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Figure 5.1: Distribution of verb senses assigned by the five classification schemes.
The x-axis shows the number of senses and the y-axis shows the number of verbs
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verb’s entry, for example

Synonyms/Hypernyms of verb run

Sense 1: run

Sense 2: scat, run, scamper, turn tail, . . .

Sense 3: run, go, pass, lead, extend

...

Sense 39: melt, run, melt down

Sense 40: ladder, run

Sense 41: run, unravel

Roget’s Thesaurus also distinguishes verb senses in the form of multiple entries headed

by the same item with distinct definitions (e.g., run1: move fast, run2: flow, run3:

operate, run4: manage, run5: continue, run6: be candidate). For Levin, VerbNet,

and FrameNet, we treat the number of classes to which a verb is assigned as the

number of senses of that verb. For example, Levin and VerbNet assign run to the

PREPARING, SWARM, MEANDER, and RUN classes (4 senses); FrameNet as-

signs run to the SELF MOTION, LEADERSHIP, IMPACT, FLUIDIC MOTION,

and CAUSE IMPACT classes (5 senses).

As Figure 5.1 shows, Levin, VerbNet, FrameNet, and Roget’s Thesaurus are

quite similarly distributed, and do not assign more than 10 senses to any verb. The

overall distribution of senses to verbs is similar in WordNet as well, but WordNet

makes substantially more sense distinctions (up to 59) for a small number of verbs.

Figure 5.2 compares Levin, VerbNet, and FrameNet in terms of how the size

of the verb classes each defines. Because Roget’s Thesaurus and WordNet do not

explicitly define verb classes, only sets of synonyms, they are not included in this

figure. Overall, the distribution of class sizes between Levin and VerbNet is similar, as

is expected since VerbNet is based on Levin’s original classification. The largest Levin
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117



class is the CHANGE OF STATE verbs (255 members) and the largest VerbNet class

(383 members) also contains change of state verbs (OTHER CHANGE OF STATE).

Classes in FrameNet tend to be smaller (since there are more classes); the largest

FrameNet class is the SELF MOTION verbs (123 members).

Figure 5.3 shows the number of neighbors that verbs are assigned by each of

the five classification schemes. Senses are not distinguished in Figure 5.3, meaning

that neighbors of a verb are calculated according to all of the classes that a verb

belongs to. For example, the Levin neighbors of run include all of the verbs that

belong to the PREPARING, SWARM, MEANDER, and RUN classes. Similarly for

Roget and Levin, we followed the methodology employed by Curran and Moens (2002)

and conflated the sense sets of each verb. For example, the Roget neighbors of run

include all of the synonymoms in the flow sense (e.g., flow, bleed, cascade, etc.), all

of the synonyms in the operate sense (e.g., operate, maneuver, perform, etc.), all

of the synonyms in the manage sense (e.g., manage, administer, boss, etc.), all of

the synonyms in the continue sense (e.g., continue, circulate, cover, and all of the

synonyms in the campaign sense (e.g., challenge, compete, contend, etc.).

The distributions of the five schemes are fairly different in terms of the number

of neighbors each assigns to a verb. In particular, WordNet defines relatively small

synonym sets, and Levin, VerbNet, and Roget show a relatively even distribution of

neighborhood sizes. The distribution of neighborhood sizes for FrameNet is relatively

skewed toward smaller sizes.

The next comparisons involve a closer examination of assignments made by

each of the five schemes for the set of 1313 verbs common to all of the schemes;

i.e., their intersection. Table 5.1 contains the pairwise correlation matrix between

schemes with respect to the number of senses each assigns to the same set of verbs.

As expected, Levin and VerbNet are the most highly correlated pair (r = 0.93) with
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Figure 5.3: Distribution of neighbors per verb. The x-axis shows the number of
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VerbNet FrameNet Roget WordNet

Levin 0.93 0.33 0.32 0.40
VerbNet 0.35 0.35 0.44
FrameNet 0.31 0.35
Roget 0.71

Table 5.1: Correlation between number of verb senses across five classification schemes

respect to the number of classes (number of senses) they assign this subset of verbs

to. Roget and WordNet are the next most similar pair (r = 0.71), while the other

comparisons are not strongly correlated. This indicates substantial differences in

distinctions the lexicographers behind each classification scheme considered necessary

for distinguishing usages of a verb.

Table 5.2 contains the pairwise correlation matrix between schemes with re-

spect to the number of neighbors each assigns to the same set of verbs. Again, Levin

VerbNet FrameNet Roget WordNet

Levin 0.99 0.59 0.09 0.09
VerbNet 0.59 0.09 0.08
FrameNet -0.03 -0.01
Roget 0.67

Table 5.2: Correlation between number of neighbors assigned to verbs by five classi-
fication schemes

and VerbNet are highly correlated (r = 0.99), and Roget and WordNet are correlated

as well (r = 0.67). FrameNet is similar to Levin and VerbNet (r = 0.59), but none of

the other comparisons are correlated beyond chance.

Finally, Table 5.3 contains the pairwise distance matrix obtained by comput-

ing the correlations between verb schemes with respect to which verbs in the subset
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are neighbors of one another. In other words, for each verb scheme, a pairwise affinity

VerbNet FrameNet Roget WordNet

Levin 0.97 0.48 0.21 0.09
VerbNet 0.49 0.21 0.10
FrameNet 0.23 0.10
Roget 0.27

Table 5.3: Correlation between neighbor assignments for intersection of verbs in five
verb schemes

matrix was computed where every pair of verbs received a score of 1 if they belong

to the same class and a score of 0 if they do not. For Roget and WordNet, two verbs

received a score of 1 if either was the synonym of the other, and a score of 0 other-

wise. We assessed the extent to which each pair of verb schemes correspond in their

assignment of verbs to classes by computing Pearson’s product moment correlation

coefficient between their resulting affinity matrices. In other words, each individual

affinity matrix is treated as a flat sequence of numbers (e.g., 1,1,0,0 versus 1,0,1,0)

and the correlation between each pair of sequences is computed. These results are

shown in Table 5.3.

The only comparison with any substantial correlation is again VerbNet and

Levin (r = 0.97, with FrameNet forming the third member of that group with a

correlation of about 0.49. Otherwise, there is very little agreement between the

schemes about which verbs are neighbors of one another.

The purpose of the above comparisons is to quantify some of the differences

in a set of widely accepted lexical semantic standards for verb classification. As

discussed in Weeds (2003: Chapter 2, Section 2.3.1), the use of an accepted standard

to evaluate natural language processing techniques is not perfect. For example, if the
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standard was prepared for a particular domain or data set, it may not generalize to

data from another source.

Another issue that is particularly relevant here is whether there is more than

one correct answer – that is, whether experts themselves disagree over the assignments

made by a given standard. Such disagreements make it difficult to judge disparities

between an empirical classification and the standard being used (Weeds, 2003: 37).

With this overview of evaluation techniques complete, the next section turns to a

discussion of measures of distributional lexical similarity.

5.6 Measures of Distributional Similarity

A wide variety of measures have been proposed for quantifying distributional lexical

similarity. Strictly speaking, many of these are more properly referred to as distance,

divergence, or dissimilarity measures (Weeds, 2003: 46), but in practice these dis-

tinctions are often blurred. This is because distance and similarity are two ways of

describing the same relationship: items that are a short distance apart are highly sim-

ilar, whereas items that score low in terms of similarity score high in terms of distance.

Functions to convert distance to similarity exist (e.g., Dagan, Lee, and Pereira, 1999),

and in applications which require only a rank ordering of lexical neighbors, the dis-

tinction between distance and similarity is often irrelevant as both types of measures

may be used to produce equivalent results.

Strictly speaking, a distance metric is a function defined on a set X that meets

the following criteria for all x, y, z in X:

122



d(x, y) ≥ 0 [non-negativity]

d(x, y) = 0 iff x = y [distance is zero from a point to itself]

d(x, y) = d(y, x) [symmetry]

d(x, z) ≤ d(x, y) + d(y, z) [triangle inequality]

However, not all of the proposed lexical similarity measures are metrics – for ex-

ample, some divergence measures such as the Kullback-Leibler divergence (Manning

and Schütze, 1999: 304) are asymmetric, as is the information-theoretic measure of

word similarity measure proposed in Lin (1998a). Weeds (2003) argues extensively

that lexical similarity is inherently asymmetric, particularly with respect to hierarchi-

cal nominal relations such as hyponymy (e.g., a banana is a fruit but not all fruits are

bananas), and that similarity functions which exploit this asymmetry are preferable

to those that do not.

This dissertation only considers similarity measures which are strictly metric.

This decision is based partly on consideration of the algorithmic complexity involved

in computing the nearest neighbors for a large set of words in a high-dimensional

feature space. In naive form, for a set of n lexical items and m features this computa-

tion requires mn2 comparisons – the number of features times the distances between

every pair of items in the set. However, if sim(x, y) is symmetric, then only half of

the distances need to be computed, because sim(x, y) equals sim(y, x). In this case,

the calculation of the pairwise distance matrix reduces to mn2−mn
2

comparisons (as-

suming there is no reason to calculate sim(x, x)). Over a large data set that involves

multiple computation of distance matrices over a variety of experimental conditions,

the constant time savings are appreciable. Additional time savings may be obtained

by splitting the distance matrix into a number of submatrices that are computed in

parallel (B).
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However, the primary reason that we restrict ourselves to similarity (distance)

metrics has to do with the difficulty of applying clustering or classification techniques

when sim(x, y) 6= sim(y, x). In order to deal with this confound previous researchers

have adopted a variety of strategies for converting asymmetric measures into de facto

metrics. For example, Lin (1998a, c) proposes an asymmetric measure of similarity,

and considers two words w1 and w2 neighbors if and only if the maximally similar

neighbor of w1 is w2, and the maximally similar neighbor of w2 is w1. Using skew

divergence, Brew and Schulte im Walde (2002) computes similarity in both directions

and takes the larger of sim(w1, w2), sim(w2, w1) as the measure of two words’ similar-

ity. Information radius (Section 5.6.3.1) takes the average similarity between (w1, w2)

and (w2, w1). Although we are not averse to the claim that lexical similarity is in-

herently asymmetric, we do not explicitly adopt this approach here for the reasons

outlined above.

The various lexical similarity metrics can be grouped into classes according

to their conceptualization of the computation of similarity. Although the distinction

blurs in practice, this dissertation groups similarity measures into three classes – set-

theoretic, geometric, and information-theoretic – each of which is discussed in the

following sections.

5.6.1 Set-Theoretic Similarity Measures

Set-theoretic measures conceive of similarity between items on the basis of the cardi-

nality of shared versus unshared features. In their basic instantiation, these measures

are based solely on the concept of set membership, meaning that the number of times

a feature occurs with a target word does not contribute to the measure of similar-

ity (although numerous frequency-weighted variants have been proposed (e.g., Curran
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and Moens, 2002)). Most set-theoretic similarity measures consider the ratio of shared

features to some combination of shared and unshared features.

5.6.1.1 Jaccard’s Coefficient

Jaccard’s coefficient is defined as the ratio of the intersection of two feature sets to

their union (Manning and Schütze 1999: 299, Table 8.7; Weeds 2003: 3.1.3.1 and

references therein):

|A ∩B|

|A ∪B|

5.6.1.2 Dice’s Coefficient

Dice’s coefficient is similar to Jaccard’s coefficient, but takes the total number of

elements as the denominator. Multiplying by 2 scales the measure to [0, 1]:

2|A ∩B|

|A|+ |B|

Dice’s coefficient and Jaccard’s coefficient are monotonically equivalent3 in terms

of the relative similarities they assign to a group of objects (Evert, 2000; Weeds,

2003). However, similarity drops off faster with Jaccard’s coefficient than with Dice’s

coefficient. Dice’s coefficient penalizes a small number of shared features less than

Jaccard’s coefficient does (Manning and Schütze, 1999: 299), and in general assigns

higher similarity scores than Jaccard’s coefficient.

3
Jaccard = Dice

2−Dice
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5.6.1.3 Overlap Coefficient

The overlap coefficient measures the ratio of the intersection of two sets to the mini-

mum cardinality of those sets (Manning and Schütze, 1999: 299, Table 8.7):

|A ∩ B|

min(|A|, |B|)

The overlap coefficient has a value of 1 if either set is a subset of the other, and a

value of 0 if no entries are shared between the two sets.

5.6.1.4 Set Cosine

The set cosine is defined as the ratio of the intersection of two sets to the square root

of the product of their cardinality (Manning and Schütze, 1999: 299, Table 8.7):

|A ∩B|
√

|A| × |B|

The set cosine is identical to Dice’s coefficient for sets with the same number of

elements (Manning and Schütze, 1999: 299), but penalizes less when the cardinality

of the sets is very different (i.e, because of the square root in the denominator).

5.6.2 Geometric Similarity Measures

Geometric measures express similarity in terms of the distance between points or the

angle between vectors and as such assume an underlying real-valued geometric space.

Within this framework features represent the dimensions of the space and the number

of features determines its dimensionality. In general, the value of each dimension for a

given item contains a count of how many times that feature occurred with the target
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item. Some scaling procedure is typically applied to count vectors before similarity

is computed.

5.6.2.1 L1 Distance

L1 distance (variously called Manhattan distance, city block distance, or taxicab

distance among others) represents the distance between two points traveling only in

orthogonal directions (i.e., walking around the block without taking any shortcuts).

It can be computed as

n
∑

i=1

|xi − yi|

5.6.2.2 L2 Distance

L2 distance, more widely known as Euclidean distance, yields the straight line distance

between two points. It can be calculated as

√

√

√

√

n
∑

i=1

(xi − yi)2

If only the rank ordering is import, the square root can be treated as a constant and

removed. L1 and L2 distance are particular instances of the more general class of the

generalized Lm or Minkowski distance measure (Black, 2006), defined as

(

n
∑

i=1

|xi − yi|
m

)
1

m
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Both measures are widely used in computing distributional lexical similarity (Weeds,

2003: 48). L2 distance is more sensitive to large differences in the number of non-

zero elements between two vectors, because it squares differences in each dimension,

and for some applications is less effective than L1 distance (Weeds, 2003: 48, and

references therein).

5.6.2.3 Cosine

In its geometric interpretation, the cosine measure returns the cosine of the angle

between two vectors. The cosine is equivalent to the normalized correlation coeffi-

cient (i.e., Pearson’s product moment correlation coefficient) (Manning and Schütze,

1999: 300), and as such is a measure of similarity rather than distance. The cosine is

bounded between [-1,1]; when applied to vectors whose elements are all greater than

or equal to zero, it is bounded between [0,1] with 1 being identity and 0 being orthog-

onal vectors. The cosine of the angle between real-valued vectors can be calculated

as (Manning and Schütze, 1999: 300, (8.40))

∑n

i=1 xiyi
√
∑n

i=1 x2
i

∑n

i=1 y2
i

The set cosine (Section 5.6.1.4) is equivalent to applying the above definition of cosine

to binary vectors. In general, real valued vectors result in the term in the denominator

being larger, so that the value of cosine based on real-valued vectors tend to be smaller

than the corresponding binary measure.

5.6.2.4 General Comparison of Geometric Measures

In general, differences in ranking produced by the various distance measures are influ-

enced by how differences in values along shared and unshared features are calculated.
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For example, in calculating cosine, corresponding elements between two vectors are

multiplied; L1 distance subtracts corresponding elements and L2 squares the difference

between corresponding elements. In large, sparse feature spaces, it is often the case

that an element with a non-zero value in one vector has a corresponding value of zero

in another vector. For cosine, these differences essentially cancel out because of the

multiplication by zero. For L1 and L2, larger differences between vectors accumulate

along these unshared dimensions.

Because of the normalization factor in its denominator, cosine is invariant

to constant scalings of a vector, e.g., it returns the same score for a vector of raw

counts as for unit vectors or probability vectors. Weightings which alter the ratio of

values within a vector such as binary, log-likelihood, etc., impact the assignment of

rankings given by cosine. Euclidean and L1 distance are sensitive to all weightings

of the data in that they do not contain a normalization factor. For unit vectors,

Euclidean(x, y) = 2(1− cos(x, y)), so the order of proximities coincide (Manning and

Schütze, 1999: 301).

5.6.3 Information Theoretic Similarity Measures

Information theoretic measures assume an underlying probability space, and are based

on a comparison of two probability distributions. For example, the relative entropy

(also known as Kullback-Leibler divergence, information gain, among others) of two

probability mass functions p and q is defined as (Manning and Schütze, 1999: 72,

(2.41))

D(p||q) =
∑

i

pilog
pi

qi
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and measures the average number of bits (when log = log2) required to express events

drawn from distribution p in terms of q. D(p||q) ranges from [0,∞] when 0log0
q
≡ 0

and plogp

0
≡ ∞. However, this is problematic when applied to the sparse vectors

typically associated with distributions of lexical co-occurrences, because zeros in one

distribution or the other are so common that nearly everything ends up with a distance

of ∞. Furthermore, D(p||q) is asymmetric, doubling the necessary computation

of a pairwise distance matrix and requiring some further decision when D(p||q) 6=

D(q||p). One option for producing a symmetric version of relative entropy is to use

a variant known as Jensen-Shannon divergence or information radius.

5.6.3.1 Information Radius

Information radius is defined as (Lin, 1991)

IRad(p, q) = D
(

p||
p + q

2

)

+ D
(

q||
p + q

2

)

=
∑

i

pilog
pi

1
2
pi + 1

2
qi

+
∑

i

qilog
qi

1
2
pi + 1

2
qi

and overcomes two problems with using relative entropy in a sparse vector space.

First, it is symmetric, and second, because we are not interested in events which have

zero probability under both p and q, pi + qi is greater than zero, and p
i
+q

i

2
> 0

which eliminates the problem of division by zero. Information radius ranges from 0

for identical distributions to 2log2 for maximally different distributions, and measures

the amount of information lost if two words represented by p and q are described by

their average distribution (Manning and Schütze, 1999: 304).

Although information radius is the only information theoretic measure con-

sidered in this dissertation, nothing in practice prevents vector space measures from

being applied to probability vectors. For example, applying cosine to probability
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vectors yields results identical to those obtained for vectors scaled by any other con-

stant factor (e.g., unit vectors, which have been normalized to have vector length 1).

When L1 distance is applied to probability vectors, the result can be interpreted as

the expected proportion of events that differ between p and q (Manning and Schütze,

1999: 305).

5.7 Feature Weighting

The basic representation of words as a distribution of lexical co-occurrences is a vector

whose elements are counts of the number of times features f1, . . . , fn occurred in the

context of target word wi. The assumption is that the frequency with which certain

subsets of features co-occur with particular groups of words is an indication of those

words’ lexical similarity. However, using raw co-occurrence counts is not the most ef-

fective method of weighting features (Manning and Schütze, 1999: 542), because gross

differences in the frequency of two target words can overwhelm subtler distributional

patterns. Therefore, feature weighting schemes which rely on some transformation of

the original frequency counts are used. We divide these transformation schemes into

two classes: intrinsic feature transformations, which use only frequency information

which is contained in an individual target word’s vector, and extrinsic feature trans-

formations, which consider the distribution of a feature over all of the target words

in addition to its local frequency information.

5.7.1 Intrinsic Feature Weighting

5.7.1.1 Binary Vectors

The simplest feature weighting scheme is to disregard all frequency information and

replace co-occurrence counts with a binary indication of presence versus absence.
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This is the distributional representation assumed by set theoretic measures of lexical

similarity 5.6.1.

5.7.1.2 Vector Length Normalization

A common transformation procedure is to convert a vector to a unit vector, which is

done by dividing every element in the vector by the length of the vector, defined as

|x| =

√

√

√

√

n
∑

i=1

x2
i

A unit vector has unit length according to the Euclidean norm

|x| =
n
∑

i=1

x2
i = 1

Working with unit vectors yields a couple of useful properties. The cosine of two unit

vectors is equal to their dot product

cos(x, y) = x · y

=

n
∑

i=1

xiyi

which provides for an efficient calculation of the cosine and gives the same ranking

as the Euclidean distance metric when applied to unit vectors with no values smaller

than 0.

5.7.1.3 Probability Vectors

Converting a vector of counts to a vector of probabilities is done by dividing every

element in the vector by the sum of all elements in the vector.
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Other intrinsic transformation procedures are available; for example in Latent

Semantic Analysis, a vector is scaled by the entropy of the vector (Landauer, Foltz,

and Laham, 1998). However, constant scalings of a vector do not change the relative

ordering of similarities produced by the measures considered in this dissertation, with

the exception of L1 and L2 distance.

5.7.2 Extrinsic Feature Weighting

Extrinsic feature weighting schemes try to capture the strength of the association be-

tween a feature and a target word relative to all of the target words. The assumption

is that a feature that occurs very frequently with a small set of target words is impor-

tant and should be weighted more highly than a feature that occurs frequently with

all of the target words. Numerous approaches have been described, and many of these

are summarized in Curran and Moens (2002) and Weeds (2003). This dissertation

considers three representative ones.

5.7.2.1 Correlation

Rohde, Gonnerman, and Plaut (submitted) propose a feature weighting method based

on the strength of the correlation between a word a and a feature b, defined as (Rohde

et al., submitted: 3, (Table 4)):

w′
a,b =

Twa,b −
∑

j wa,j ·
∑

i wi,b

(
∑

j wa,j · (T −
∑

j wa,j) ·
∑

i wi,b · (T −
∑

i wi,b))
1

2

T =
∑

i

∑

j

wi,j

The intuition behind using correlation to weight features is that the conditional rate

of co-occurrence is more useful than raw co-occurrence. Correlation addresses the
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question of whether feature f occurs more or less often in the context of word w

than it does in general (Rohde et al., submitted: 6). Values of features weighted by

correlation are in [−1, 1]. Following Rohde et al. (submitted), we eliminate features

that are negatively correlated with a word on the basis of their observation that

retaining negatively correlated features hurts performance.

Rohde et al. (submitted) find that correlation outperforms other weighting

schemes for modeling human word pair similarity judgments and Li and Brew (2008)

also reports success using correlation as a feature weight in an automatic classification

study of Levin verbs.

5.7.2.2 Inverse Feature Frequency

Inverse feature frequency is a family of weighting schemes taken from the field of

information retrieval which are characterized by term co-occurrence weights, docu-

ment frequency weights, and a scaling component (Manning and Schütze, 1999: 543).

We adapt the scheme defined in Manning and Schütze (1999: 543, (15.5)) for use in

distributional lexical similarity:















1 + log(freq(f, w))log W
words(f)

if freq(f, w) ≥ 1

0 if freq(f, w) = 0

where freq(f, w) is the number of times feature f occurs with word w, W is the total

number words, and words(f) is the number of words that f occurs with.
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5.7.2.3 Log Likelihood

A third approach to feature weighting is based on hypothesis testing, where the

strength of the relation between a word and a feature is expressed in terms of the ex-

tent to which their co-occurrence is greater than chance. A number of parametric sta-

tistical tests have been applied to the task of identifying above-chance co-occurrences,

notably the t-test (e.g., Church and Hanks, 1989) and Pearson’s χ2 test (e.g., Church

and Gale, 1991).

Dunning (1993) introduced the log-likelihood ratio (G-test) as an alternative

to the χ2 test that is more appropriate for sparse data that violates the assumption of

normality. Like the χ2 test, the log-likelihood ratio can be applied to a contingency

table like Table 5.4, and measures the ratio of the frequency observed in a cell to the

Word ¬Word
Feature a b a + b
¬Feature c d c + d

a + c b + d N = a + b + c + d

Table 5.4: An example contingency table used for computing the log-likelihood ratio

expected frequency of that cell if the null hypothesis is true.

The general formula for G is (Wikipedia, 2008)

G = 2
∑

i

Oi · ln
(Oi

Ei

)
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which can be calculated in terms of Table 5.4 as (Rayson, Berridge, and Francis,

2004: 929)

G = 2(alna + blnb + clnc + dlnd + N lnN−

(a + b)ln(a + b)− (a + c)ln(a + c)− (b + d)ln(b + d)− (c + d)ln(c + d)).

5.8 Feature Selection

Automatic lexical acquisition tasks that take data from large corpora have to deal with

an enormous number of potential features – on the order of hundreds of thousands

to millions. Of this potential feature set, a small fraction provides nearly all of its

discriminatory power, meaning that most of the feature do no work at all or even

obscure potential patterns of relatedness. Therefore, it is common or even necessary

to eliminate features that are not expected to contribute to the desired classification.

All feature reduction techniques rely in their core on frequency information

contained in the feature set. The simplest reduction technique is to apply a frequency

threshold to the feature set. An alternative to this relies on class-conditional frequen-

cies, and a third choice, dimensionality reduction, indirectly incorporates frequency

information into a matrix approximation of the original feature set.

5.8.1 Frequency Threshold

Applying a frequency threshold to a data set simply means removing any items that

occur less than a specified number of times. In the early days of statistical NLP (i.e.,

the early 1990’s), a frequency cutoff was applied more because of physical storage

and processing limitations than anything else. There is no principled justification for

choosing a particular cutoff value; however, the intuitive justification is that extremely
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low frequency features provide little or no generalizability and should be discarded

to improve some downstream processing. For example, a feature that occurs only

one time with one word in the whole data set does not relate to any other item in

the data set, and retaining it only serves to increase the distance between all points.

This reasoning extends from 1 to some arbitrary cutoff. Because of the frequency

distribution of words in language, where there are a few high frequency items, more

medium frequency items, and lots of low frequency items (e.g., Zipf’s law; Manning

and Schütze, 1999: 24), relatively low frequency thresholds can drastically reduce the

size of a lexical feature set.

5.8.2 Conditional Frequency Threshold

A similar approach to feature selection uses class-conditional frequency information

to order features by their ability to partition the data set into the desired classes.

For example, the ID3 technique for constructing a decision tree (e.g., Quinlan, 1986)

selects features with the highest information gain, which is defined in terms of the

reduction of entropy achieved by splitting on that feature (Dunham, 2003: 97-98).

The Rainbow text classifier (McCallum, 1996) provides a similar utility for selecting

features with the highest class-conditional average mutual information.

Other statistical techniques for data reduction in general and feature selection

in particular include class-based correlation and covariance (Richeldi and Rossotto,

1997). However, all of these techniques rely on prior knowledge of class assignments

for their computation, and therefore may not be applicable in machine learning set-

tings where class labels are either unknown or, as in the case of determining a word’s

nearest lexical neighbors, irrelevant.
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5.8.3 Dimensionality Reduction

A number of feature reduction techniques are based on the eigendecomposition of a

large set of interrelated features into a new set of uncorrelated features of reduced

dimensionality. These techniques, such as principal components analysis (e.g., Hastie

et al., 2001), singular value decomposition (e.g., Manning and Schütze, 1999), and

locally linear embedding (e.g., Roweis and Saul, 2000; Saul and Roweis, 2003) work

by forming linear combinations of the original features that successively account for

the variance in the original data set. The first component accounts for the greatest

variance, the second accounts for the next largest amount of variance, and successive

components account for progressively smaller amounts of the variance in the original

data set (Richeldi and Rossotto, 1997: 274). All of the components are orthogonal to

each other.

Singular value decomposition is by far the most widely used dimensionality

reduction technique in the statistical NLP literature, especially for information re-

trieval and document classification. Results obtained using singular value decompo-

sition are somewhat unclear. Landauer and Dumais (1997) achieve optimal results

on the ToEFL task with 300 dimensions versus using the entire feature set. Rohde

et al. (submitted)’s results show that for some word judgment tasks, the full feature

set outperforms lower dimensional representations, while for other tasks the reverse

is true. Cook, Fazly, and Stevenson (2007) reports that performing singular value de-

composition hurts classification of idioms into literal or idiomatic readings. Sahlgren,

Karlgren, and Eriksson (2007) argues against using dimensionality reduction for tasks

such as affective text classification (i.e., does it evoke positive or negative emotion),

and suggest that its use may be appropriate for determining paradigmatic similarity,

but not syntagmatic similarity.
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CHAPTER 6

EXPERIMENTS ON DISTRIBUTIONAL VERB SIMILARITY

This chapter describes a series of experiments that deal with various aspects of as-

signing and assessing lexical similarity scores to a set of English verbs on the basis

of their distributional context in the English gigaword corpus. These experiments

simultaneously varied four parameters that influence distributional lexical similarity

with respect to five different verb classification schemes. The verb classifications con-

sidered were Levin (1993), VerbNet, FrameNet, Roget’s Thesaurus, and WordNet.

The parameters considered were choice of feature set, measure of lexical similarity,

feature weighting, and feature selection. The purpose of this series of experiments

is to examine interactions between these parameters with respect to the five verb

schemes mentioned above and described in Chapter 5.

The remainder of this chapter is organized as follows. Section 6.1 describes the

set of verbs and corpus used in the experiments. Section 6.2 describes two measures

for evaluating distributional lexical similarity used in the experiments. Section 6.3

discusses the feature sets and procedures for extracting features from the corpus.

Section 6.4 describes the experiments performed.
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6.1 Data Set

6.1.1 Verbs

The set of verbs used in the following experiments was selected from the union of

Levin, VerbNet, and FrameNet verbs that occurred at least 10 times in the English

gigaword corpus (i.e., were tagged as verbs at least 10 times by the Clark and Cur-

ran CCG parser; details of the parsing procedure are in Section 6.3.2). Roget and

WordNet contain many more items than each of Levin, VerbNet, and FrameNet, so

in order to maintain an approximately equal number of verbs in each verb scheme,

we restricted the selection of verbs from Roget and WordNet to ones that appear in

either Levin, VerbNet, or FrameNet. This selection procedure resulted in a total of

3937 verbs; the number of items per verb scheme is shown in Table 6.1.

Verb Scheme Total Num. Verbs Num Verbs Included in Exps.
Levin 3004 2886
VerbNet 3626 3426
FrameNet 2307 2110
WordNet 11529 3762
Roget ≈14000 2879

Table 6.1: Number of verbs included in the experiments for each verb scheme

Following Curran and Moens (2002)’s work on automatic thesaurus extraction,

we do not distinguish between senses of verbs in the evaluation for two reasons.

First, because we aggregate all occurrences of a verb into a single context vector, the

extracted items represent a conflation of senses. Second, items that are ostensibly

classified as belonging to only one class in, e.g., Levin or FrameNet rarely belong

to only one class in practice. For example, one of the most frequent verbs in the

English gigaword corpus is add, which Levin places exclusively in the MIX class (e.g.,

140



combine, join, link, merge, etc.). However, in the English gigaword corpus, this verb

is used most often as a synonym for say (e.g., “I don’t think I’ll really fully realize

the impact until I swear in,” Bush added.), and FrameNet places it exclusively in

the STATEMENT class. Because of the recognized difficulties in establishing an

inventory of senses for verbs in particular and words in general (e.g., Manning and

Schütze, 1999: 229-231), we conflated senses in the verb schemes and defined items

as neighbors as follows.

1. Levin, VerbNet, FrameNet: two items are neighbors if the intersection of the

classes they belong to is non-empty; e.g., they share at least one sense which

puts them in the same class. For example, for VerbNet link ∈ {MIX, TAPE}

and harness ∈ {BUTTER, TAPE} are neighbors because {MIX, TAPE} ∩

{BUTTER, TAPE} = {TAPE}.

2. Roget, WordNet: two words are neighbors if either is listed as a synonym of the

other.

Table 6.2 shows the average number of neighbors per verb in our study for

each of the verb schemes using these criteria. Table 6.3 contains the baselines that

Levin VerbNet FrameNet Roget WordNet
Mean (Std. Dev.) 86.3 (85.0) 103.5 (120.5) 40.4 (41.9) 31.9 (20.1) 12.6 (10.9)
Max 513 669 248 185 76
Median 49 48 23 39 10
Min 2 1 1 4 1

Table 6.2: Average number of neighbors per verb for each of the five verb schemes

indicate the chance that two verbs in our study selected at random are neighbors.

For all five schemes, the baseline is less than 3%.
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Verb Classification Baseline
Levin 0.029
VerbNet 0.028
FrameNet 0.018
Roget 0.006
WordNet 0.001

Table 6.3: Chance of randomly picking two verbs that are neighbors for each of the
five verb schemes

6.1.2 Corpus

The English gigaword corpus (Graff, 2003) is composed of nine years of newspaper

text (1994–2002) from four distinct international sources of English newswire: Agence

France Press English Service, Associated Press Worldstream English Service, The

New York Times Newswire Service, and The Xinhua News Agency English Service.

This text covers a wide spectrum of subjects and is not tied to any particular domain,

although it is skewed towards political and economic news.

6.2 Evaluation Measures

As discussed in Chapter 5, framing the task of extracting distributionally similar verbs

in terms of an information retrieval task or thesaurus construction enables the use of

evaluation measures commonly used in those domains. Following representative work

on automatic thesaurus extraction such as Lin (1998a); Curran and Moens (2002),

and Weeds (2003) we utilize measures of precision and inverse rank score in evaluating

the results of the experiments reported here. These measures are presented in the

following sections along with a discussion of their key characteristics.
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6.2.1 Precision

Following the methodologies for evaluating distributional lexical similarity reported

in, e.g., Lin (1998a), Curran and Moens (2002), and Weeds (2003), one evaluation

measure that we report here is precision at k, where k is a fixed, usually low level

of retrieved results. We report precision at k for k = 1, 5, 10. However, Manning

et al. (2008: 148) point out that the highest point on the precision recall curve can

be of no less interest than mean single point summaries such as F1, R-precision,

or mean average precision. For the purposes of comparing feature sets and distance

measures across verb schemes, we report microaveraged maximum precision (MaxP),

defined as the point on the precision recall curve at which precision is the highest.

We compute maximum precision for each individual verb and report the average of

these values. It is always the case in our study that the trends reported for MaxP

also hold for k = 1, 5, 10.

When precision is high and k is relatively large, this indicates that many same

class items are clustered within the most highly ranked neighbors of a target verb

(e.g., appeal in Figure 6.1). Low precision values associated with large k indicate

that very few of the distributionally most similar items belong to the same class as

the target (enshrine in Figure 6.1). High precision and small k suggest that only

a few of the actual same-class items are contained within the set of highly ranked

empirical neighbors (reply in Figure 6.1), or that the size of the class is small. The

relative size of the class is shown in the precision curve by those portions of the curve

that jag upwards, indicating that a cluster of same-class items has been retrieved

at some lower value of k. However, precision alone does not account for the overall

distribution of matches within the ranked set of results. A measure that does a better
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Figure 6.1: Precision at levels of k for three verbs
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job of accounting for the relative positions of matches within the total set of results

is the inverse rank score.

6.2.2 Inverse Rank Score

Following Curran and Moens (2002); Gorman and Curran (2006), we also evaluate

distributional similarity in terms of inverse rank score, which is the sum of the inverse

of the rank of each same class item in the top ranked m items:

InvR =

m
∑

k=1

xk

k

where xk is an indicator variable defined as

xk =















1 if the class of the kth item matches the target class

0 otherwise.

For example, if items at rank 2, 3, and 5 match the target class, the inverse rank

score is 1
2
+ 1

3
+ 1

5
= 1.03. In the experiments reported here, only the 100 most highly

ranked items were retained, so the maximum InvR score is 5.19. InvR is a useful

measure because it distinguishes between result lists that contain the same number of

same-class items but rank them differently. InvR assigns higher scores to result lists

in which same-class items are highly ranked. For example, a result list containing 5

matches at ranks 1, 2, 3, 5, 8 receives an InvR score of 2.16; another list containing

the same 5 items at rank 3, 4, 5, 6, 7 receives an InvR score of 1.09.

As with MaxP, discretion is required in interpreting InvR in the current

study. For example, if one word has five synonyms and another has ten synonyms,

and both sets are returned as the highest ranked items, the inverse rank score of
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the second word will be higher than the score for the first word without indicating a

difference in the quality of the ranked synonyms. Similarly, a word with many lowly

ranked synonyms can receive a higher InvR score than a word with only a few highly

ranked synonyms. For example, a word with only five synonyms ranked in positions

2–6 would receive an InvR score of 1.45; a word with eleven synonyms in positions

1, 15–24 would receive an InvR score of 1.48.
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Finally, because InvR is sensitive to the number of matched items, we cannot use it

to compare across verb schemes that assign different numbers of neighbors to each

verb. In this case, we only report measures of precision.

6.3 Feature Sets

This section describes the feature sets used here for assessing distributional verb sim-

ilarity1. We evaluated four different feature sets for their effectiveness in extracting

classes of distributionally similar verbs: Syntactic Frames, Labeled Dependency Rela-

tions, Unlabeled Dependency Relations, and Lexicalized Syntactic Frames. Syntactic

frames contain mainly syntactic information, whereas the other three feature sets

encode varying combinations of lexical and syntactic information. Each of these fea-

ture types has been used extensively in previous research on automatic Levin verb

classification.

6.3.1 Description of Feature Sets

Syntactic Frames. Syntactic frames have been used extensively as features in early

work on automatic verb classification due to their relevance to the alternation be-

haviors which are crucial for Levin’s verb classification (e.g., Schulte im Walde, 2000;

Brew and Schulte im Walde, 2002; Schulte im Walde and Brew, 2002; Korhonen et al.,

2003). Syntactic frames provide a general feature set that can in principle be applied

to distinguishing any number of verb classes. However, using syntactic information

alone does not allow for the representation of semantic distinctions that are also rele-

vant in verb classification. Work in this area has been primarily concerned with verbs

taking noun phrase and prepositional phrase complements. To this end, prepositions

1Portions of Section 6.4.4 were co-authored with Jianguo Li.

147



have played an important role in defining relevant syntactic frames. However, only

knowing the identity of prepositions is not always enough to represent the desired

distinctions.

For example, the semantic interpretation of the syntactic frame NP-V-PP(with)

depends to a large extent on the NP argument selected by the preposition with. In

(1), the same surface form NP-V-PP(with) corresponds to three different underlying

meanings. However, such semantic distinctions are totally lost if lexical information

is disregarded.

(1) a. I ate with a fork. [INSTRUMENT]

b. I left with a friend. [ACCOMPANIMENT]

c. I sang with confidence. [MANNER]

Lexicalized Frames. This deficiency of unlexicalized subcategorization frames has

led researchers to incorporate lexical information into the feature representation. One

possible improvement over subcategorization frames is to enrich them with lexical

information. Lexicalized frames are usually obtained by augmenting each syntactic

slot with its head noun (2).

(2) a. I ate with a fork. [INSTRUMENT] → NP(I )-V-PP(with:fork)

b. I left with a friend. [ACCOMPANIMENT] → NP(I )-V-PP(with:friend)

c. I sang with confidence. [MANNER] → NP(I )-V-PP(with:confidence)
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The analysis of feature sets previously used in automatic verb classification suggests

that both syntactic and lexical information are relevant in determining meaning of

Levin verbs (e.g., Li and Brew, 2008). This agrees with the findings in previous

studies on WSD (Lee and Ng, 2002) that although syntactic information on its own

is not very informative in automatic word sense disambiguation, its combination with

lexical information results in improved disambiguation. The next two feature types

focus on various ways to mix syntactic and lexical information.

Dependency relations. Recall that subcategorization frames are limited as verb

features in the properties of verb behaviors they tap into. Lexicalized frames, with

potentially improved discriminatory power, suffer from increased exposure to data

sparsity. One way to overcome data sparsity is to break lexicalized frames into depen-

dency relations. Dependency relations contain both syntactic and lexical information

(3).

(3) a. SUBJ(I ), PP(with:fork)

b. SUBJ(I ), PP(with:friend)

c. SUBJ(I ), PP(with:confidence)

However, since we augment prepositional phrases with the head nouns selected by

prepositions, as in PP(with:fork), the data sparsity problem still exists. We therefore

break all prepositional phrases in the form PP(preposition:noun) into two separate

dependency relations: PP(preposition) and PP-noun, as shown in (4).

(4) a. SUBJ(I ), PP(with), PP-fork

b. SUBJ(I ), PP(with), PP-friend

c. SUBJ(I ), PP(with), PP-confidence
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Although dependency relations have proved effective in a range of lexical acquisition

tasks such as word sense disambiguation (McCarthy, Koeling, Weeds, and Carroll,

2004), construction of a lexical semantic space (Padó and Lapata, 2007), and detection

of polysemy (Lin, 1998a), their utility in automatic verb classification has not been

as thoroughly examined.

Unlabeled Dependency Relations. In order to further examine the separate

contributions of lexical and syntactic information, we removed the syntactic tag from

the labeled dependency relations, leaving a feature set that consists only of lexical

items that were selected on the basis of their structural relation to the verb. However,

the distinction between, e.g., Subject, Object, and Prepositional Object is no longer

explicitly represented in the unlabeled feature set. The representation of the examples

above using this feature set is shown in (5).

(5) a. I ate with a fork → {I, with, fork}

b. I left with a friend → {I, with, friend}

c. I sang with confidence → {I, with, confidence}

6.3.2 Feature Extraction Process

The experiments reported here used Clark and Curran’s (2007) CCG parser, a log-

linear parsing model for an automatically extracted lexicalized grammar, to automat-

ically extract the features described above from the English gigaword corpus (Graff,

2003). The lexicalized grammar formalism used by the parser is combinatory cate-

gorial grammar (CCG) (Steedman, 1987; Szabolcsi, 1992), and the grammar is auto-

matically extracted from CCGbank (Hockenmaier and Steedman, 2005). The parser

produces several output formats; we use grammatical relations (Briscoe, Carroll, and
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Watson, 2006) and employ a post-processing script to extract four types of grammat-

ical relations that are relevant to verbs: Subject-Type, Object-Type, Complement-

Type, and Modifier-Type.

The primary feature type that we extract from the parser’s output is lexicalized

syntactic frame. Syntactic frames are defined in terms of the syntactic constituents

used in the Penn Treebank (Marcus et al., 1993) style parse trees. For example, a

double object frame exemplified by a sentence like Sam handed Tom the flute can be

represented as NP1-V-NP2-NP3. A lexicalized syntactic frame augments the struc-

tural information represented by a syntactic frame with the lexical head of each

constituent, e.g., NP1(Sam)-V(hand)-NP2(Tom)-NP3(flute).

Extracting Subject-Type Relations. Table 6.4 illustrates the three types of

Subject-Type relations extracted from the parser’s output. The first column indi-

cates the relation, the second column contains and example of the relation, the third

column contains representative output from the parser, and the fourth column con-

tains the lexicalized frame that is extracted as a result of processing the parser’s

output.

Each relation is represented by the parser as a quadruple, with the first element

in the quadruple always containing the name of the relation. The order of the other

elements depends on the type of relation. For Subject-Type, the verb is always the

second element of the quadruple. Each lexical entry in the parser’s output is indexed

according to its position in the input sentence.

This index also points to each item’s position in a lemmatized, part-of-speech

tagged representation of the sentence that is also part of the parser’s output. In order

to extract features from the ncsubj relation, we combine the lemmatized form of the

verb with the lemmatized form of the third element in the quadruple. Similary, in or-

der to extract features from the xsubj and csubj relations, we combine the lemmatized
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form of the verb with the lemmatized form of the fourth element in the quadruple. If

the fourth element is ‘ ’, we do not lexicalize the relation, which is the same thing as

lexicalizing it with a null element.

Grammatical Relation Parser Output Extracted Feature

non-clausal subject
Kim left (ncsubj left Kim ) SUBJ(Kim)-V(leave)

unsaturated clausal subject
leaving matters (xsubj matters leaving ) SUBJ(NONE )-V(matter)

saturated clausal subject
that he came matters (csubj matters came that) SUBJ(that)-V(matter)

Table 6.4: Examples of Subject-Type relation features

Extracting Object-Type Relations. Table 6.5 illustrates the three types of

Object-Type relations extracted from the parser’s output. Object-Type relations

are represented as triples; the verb is always the second element, and the object is

always the third element. In order to extract features from the Object-Type relation,

we combine the lemmatized form of the verb with the lemmatized form of the third

element in the quadruple.

Grammatical Relation Parser Output Extracted Feature

direct object
likes her (dobj likes her) V(like)-DOBJ(her)

second object
gave Kim toys (obj2 gave toys) V(give)-IOBJ(toy)

indirect object
flew to Paris (iobj flew to) V(fly)-PP(to)

Table 6.5: Examples of Object-Type relation features
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Extracting Complement-Type Relations. Table 6.6 illustrates the three types of

Complement-Type relations extracted from the parser’s output. Prepositional phrase

complement type relations (pcomp) are represented as triples; the verb is the second

element, and the preposition is the third element. xcomp relations are represented

as quadruples; the verb is the third element and the lexical head of the prepositional

phrase is the fourth element. In order to extract features from the pcomp relation, we

combine the lemmatized form of the verb with a “PP” label and the third element in

the pcomp triple. In order to extract features from the xcomp relation, we combine

the lemmatized form of the verb with the lemmatized form of the third element in

the quadruple with a “GER” label indicating that the third element represents the

lexical head of a gerundive.

Grammatical Relation Parser Output Extracted Feature

PP complement
pass by the shop (pcomp pass by) V(pass)-PP(by)

unsaturated VP complement
enjoy running (xcomp enjoy running) V(enjoy)-GER(run)
hate to go (xcomp to hate go) V(hate)-GER(go)

clausal complement
knew that you left (xcomp that knew left) V(know)-GER(leave)

Table 6.6: Examples of Complement-Type relation features

Extracting Adjunct-Type Relations. Table 6.7 illustrates the three types of

Adjunct-Type relations extracted from the parser’s output. Adjunct-Type relations

are represented as quadruples; the verb is always the third element and the modifying

item is always the fourth element. In order to extract Adjunct-Type relations, we

combine the lemmatized form of the verb with the lemmatized form of the third

element in the quadruple. The label of the relation is obtained by index into the
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lemmatized, part-of-speech tagged representation of the sentence that is also part of

the parser’s output and comes from the part-of-speech tag of the the third element

in the quadruple.

Grammatical Relation Parser Output Extracted Feature

non-clausal modifier
sit on a table (ncmod sit on) V(sit)-PP(on)
left early (ncmod left early) V(leave)-ADVP(early)

unsaturated clausal modifier
entered smiling (xmod entered smiling) V(enter)-GER(smile)
left to catch her (xmod left to) V(leave)-INFV(to)
returned alive (xmod returned alive) V(return)-ADJP(alive)

clausal modifier
when he came, Kim left (cmod left when) V(leave)-S(when)

Table 6.7: Examples of Adjunct-Type relation features

The process of extracting lexicalized syntactic frames from CCG output is

illustrated in Table 6.8 for the input sentence Two men broke the door with a hammer.

• Identify verbs in the grammatical relations output by the parser by index into

the lemmatized, part-of-speech tagged representation of the sentence. For ex-

ample, broke is identified as a verb by its index of 2, which points to the element

broke|break|VBD.

• Identify dobj dependents of prepositions among the dependency relations. For

example, with is identified as a preposition by its Penn Treebank-style part of

speech tag IN, and hammer is identified as its object: PP(with) hammer.

• Identify dependents of the verb by extracting items from the grammatical re-

lations whose index points to the verb. For example, door and with are iden-

tified as direct and indirect objects of broke, respectively; men is identified

as its subject. The lemmatized form of each item is combined along with its
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grammatical relation to for a lexicalized syntactic frame: SUBJ(man)-V(break)-

DOBJ(door)-PP(with) hammer.

• Other feature types are adapted from this primary representation. For exam-

ple, syntactic frames are obtained by removing lexical material from the frame2:

SUBJ-V-DOBJ-PP(with). Labeled dependencies are obtained by splitting the

frame and representing it as a set comprised of its individual lexicalized depen-

dents: {SUBJ(man), V(break), DOBJ(door), PP(with) hammer}. Unlabeled

dependencies are retained by discarding the structural information associated

with each element in the frame and retaining only the lexical heads: {man,

break, door, with, hammer}.

Input Sentence:

Two men broke the door with a hammer
Output Relations:

(det door 4 the 3)
(dobj broke 2 door 4)
(det hammer 7 a 6)
(dobj with 5 hammer 7)
(iobj broke 2 with 5)
(ncsubj broke 2 men 1 )
(det men 1 two 0)
Output part of speech tags

Two|two|CD men|man|NNS broke|break|VBD the|the|DT door|door|NN
with|with|IN a|a|DT hammer|hammer|NN

Table 6.8: Example of grammatical relations generated by Clark and Curran (2007)’s
CCG parser

One consideration to be given to the construction of different feature sets is

their scalability in terms of the potential number of features that will be generated.

2The lexical heads of prepositional phrases were retained.
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The main motivation for using a large corpus like the English gigaword corpus is that

relatively infrequent items may still be attested often enough to allow generalizations

that would not be possible using a smaller resource. A potential downside of using

such a large corpus is the bulk of data that will be generated and must be processed.

Most similarity metrics run in time linear to the number of non-zero elements in two

vectors being compared. Therefore, the more features, the longer the run time for

finding nearest neighbors. Figure 6.2 shows the increase in the number of features

as a function of the number of verb instances encountered in the English gigaword

corpus.
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Figure 6.2: Feature growth rate on a log scale
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Due to their highly specific nature, lexicalized frames constitute the largest

feature set. This is because the chance of the exact combination of a verb and its

lexical arguments, including prepositional phrases, occurring more than once in any

corpus is very small. Therefore, most of the lexical frame features are relatively

infrequent. The number of labeled and unlabeled dependency relation features is

fairly close. This means that including the structural information in the feature set

does not greatly impact storage or performance, and if the grammatical labels improve

verb classification, that could be considered a reason for using them with relatively

little downside. Eliminating lexical information in the syntactic frames results in

the smallest feature set, as syntactic frames do tend to occur fairly frequently across

verbs.

6.4 Experiments

This section describes a series of experiments that examine the interaction of distance

measure, feature set, similarity measure, feature weighting, and feature selection on

the assignment of distributionally similar verbs. The verbs used in this study come

from the union of Levin, VerbNet, and FrameNet verbs that occur at least 10 times in

the English gigaword corpus (3937 verbs total). The basic setup for each experiment

is the same, and consists of computing a pairwise similarity matrix between all of the

verbs in the study for each of the feature sets, feature weights, selected features, and

distance measures under study. Each evaluation of verb distances with respect to a

given verb classification scheme was restricted to only the verbs that are included

in that scheme; i.e., in evaluating Levin verbs, verbs which did not occur in Levin’s

classification were excluded as both target items and as empirical neighbors.

The following sections contain the results of the experiments and are organized

as follows. Section 6.4.1 contains an evaluation of distributional verb similarity with
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respect to the choice of distance measure. Section 6.4.2 evaluates the effect of feature

weighting on distributional verb similarity. Section 6.4.3 compares the different verb

schemes described early with respect to how well their respective classifications match

distributionally similar verbs, and Section 6.4.4 compares feature sets.

6.4.1 Similarity Measures

The purpose of this analysis is to examine the performance of different distance mea-

sures on identifying distributionally similar verbs. Three types of distance measure

– set theoretic, geometric, and information theoretic – are compared across verb

schemes and feature sets. For each type of distance measure only one feature weight-

ing was employed: the set theoretic measures were applied to binary feature vectors,

the geometric distance measures were applied to vector-length normalized count vec-

tors, and the information theoretic measures were applied to count vectors normalized

to probabilities.

6.4.1.1 Set Theoretic Similarity Measures

Table 6.9 contains the precision results of the nearest neighbor classifications for three

set theoretic measures of distributional similarity, using the 50,000 most frequently

occurring features of each feature type. The full set of precision results using a range

of feature frequencies is given in Appendix C, Figures C.1 – C.5. Table F.1 (Appendix

F) contains the corresponding inverse rank scores.

Overall, for MaxP cosine returned the best results across feature types and

verb classifications (MaxP = 0.43); Jaccard’s coefficient performed close to cosine

(MaxP = 0.40), and overlap performed substantially lower (MaxP = 0.10). Similarly

for InvR, cosine gave the overall best results (InvR= 0.81), followed by Jaccard’s
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Verb Classification Feature Type Distance Measure Mean
cosine Jaccard overlap

Levin Syntactic Frame 0.40 0.39 0.14 0.31
Lexical 0.50 0.47 0.08 0.35
Dep. Triple 0.57 0.56 0.10 0.41
Lex. Frame 0.49 0.48 0.11 0.36

Mean 0.49 0.48 0.11

VerbNet Syntactic Frame 0.38 0.38 0.15 0.30
Lexical 0.48 0.45 0.08 0.34
Dep. Triple 0.55 0.53 0.10 0.39
Lex. Frame 0.48 0.46 0.11 0.35

Mean 0.47 0.46 0.11

FrameNet Syntactic Frame 0.36 0.35 0.09 0.27
Lexical 0.48 0.44 0.07 0.33
Dep. Triple 0.54 0.51 0.10 0.38
Lex. Frame 0.49 0.46 0.11 0.35

Mean 0.47 0.44 0.09

Roget Syntactic Frame 0.28 0.27 0.06 0.20
Lexical 0.52 0.47 0.08 0.36
Dep. Triple 0.61 0.53 0.10 0.41
Lex. Frame 0.54 0.49 0.11 0.38

Mean 0.49 0.44 0.09

WordNet Syntactic Frame 0.13 0.12 0.04 0.10
Lexical 0.23 0.20 0.06 0.17
Dep. Triple 0.28 0.25 0.11 0.22
Lex. Frame 0.24 0.22 0.10 0.19

Mean 0.22 0.20 0.08

Table 6.9: Average maximum precision for set theoretic measures and the 50k most
frequent features of each feature type

coefficient (InvR= 0.74) and overlap (InvR= 0.23). In terms of verb scheme, focusing

just on the cosine measure, Roget, Levin, VerbNet, and FrameNet perform nearly

identically (MaxP≈0.48), followed by WordNet at MaxP = 0.22.
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For MaxP, the best performing feature type across verb scheme and distance

measure is lexically specified dependency triples. Again focusing on the cosine, across

verb schemes dependency triples return around 0.51 maximum precision, followed

by unlabeled dependents and lexicalized frames MaxP≈0.44, and finally syntactic

frames (MaxP≈0.31). These trends are mirrored in the InvR results.

6.4.1.2 Geometric Measures

Table 6.10 contains the MaxP results of the nearest neighbor classifications for three

geometric measures of distributional similarity, using the 50,000 most frequently oc-

curring features of each feature type. The context vectors were vectors of counts,

normalized by vector length. The full set of MaxP results using a range of feature

frequencies are given in Appendix D, figures D.1 – D.5. Table F.2 (Appendix F)

contains results of the geometric measures as evaluated by InvR.

Overall, the neighbors assigned by cosine similarity (mean MaxP = 0.35;

mean InvR = 0.63) resemble the given verb classifications more than the neighbors

assigned by L1 distance (mean MaxP = 0.25; InvR=0.41) for both evaluation mea-

sures. In terms of feature type, for MaxP frame-based features did not perform as

well as lexical-based features for either distance measure. For cosine, labeled and

unlabeled lexical dependents performed at a very similar rate across verb schemes

(mean MaxP = 0.40 for lexical-only versus mean MaxP = 0.39 for labeled depen-

dency triples). These trends are mirrored in the InvR results.

For L1, the difference between lexical-only and labeled dependency triples

was more pronounced: MaxP = 0.33 versus MaxP = 0.23, respectively. These

trends are mirrored in the InvR results. This difference is likely due to the fact

that the labeled dependency triples form a relatively sparser feature space than the

unlabeled feature space and differences in how the two measures handle zeros when
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Verb Classification Feature Type Distance Measure Mean
Cosine (=Euclidean) L1

Levin Syntactic Frame 0.38 0.40 0.39
Lexical 0.45 0.38 0.42
Dep. Triple 0.44 0.25 0.35
Lex. Frame 0.35 0.17 0.26

Mean 0.41 0.30

VerbNet Syntactic Frame 0.36 0.38 0.37
Lexical 0.44 0.36 0.40
Dep. Triple 0.43 0.25 0.34
Lex. Frame 0.34 0.18 0.26

Mean 0.39 0.29

FrameNet Syntactic Frame 0.33 0.33 0.33
Lexical 0.44 0.36 0.40
Dep. Triple 0.45 0.24 0.35
Lex. Frame 0.34 0.17 0.26

Mean 0.39 0.28

Roget Syntactic Frame 0.25 0.28 0.27
Lexical 0.44 0.37 0.41
Dep. Triple 0.45 0.26 0.36
Lex. Frame 0.34 0.10 0.22

Mean 0.37 0.25

WordNet Syntactic Frame 0.11 0.13 0.12
Lexical 0.21 0.17 0.19
Dep. Triple 0.20 0.13 0.16
Lex. Frame 0.15 0.05 0.10

Mean 0.17 0.12

Table 6.10: Average maximum precision for geometric measures using the 50k most
frequent features of each feature type

comparing two vectors. Because the calculation cosine of the angle between two

vectors involves multiplying corresponding features, an element with a value of zero

in one vector essentially cancels out a corresponding non-zero element in the other
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vector. For L1, a zero element is subtracted from the corresponding non-zero element,

and larger differences accumulate along the many zero dimensions. In a sparse space

with many zeros, differences along non-shared dimensions overwhelm similarity along

shared dimensions. Since the labeled and unlabeled dependency triples represent

much of the same contextual information, but the ambient space is slightly denser for

the unlabeled triples, L1 distance performs better in that space, while the cosine is

relatively unaffected.

Using geometric measures of similarity, Levin verbs are picked up slightly

more often than the other classes, with MaxP of 0.41 versus MaxP = 0.39 for

VerbNet and FrameNet. Roget verbs are identified slightly less often at MaxP =

0.37, while WordNet synonyms are relatively unlikely to appear in the top-ranked set

of distributionally similar verbs (MaxP = 0.17).

6.4.1.3 Information Theoretic Measures

Table 6.11 contains the results of the nearest neighbor classifications for two informa-

tion theoretic measures of distributional similarity, using the 50,000 most frequently

occurring features of each feature type. The context vectors were vectors of proba-

bilities of counts. When L1 distance is applied to vectors of probabilities, the result

can be interpreted as the expected proportion of events that differ between the two

probability distribution (Manning and Schütze, 1999: 305), and is included here for

comparison. The full set of results using a range of feature frequencies are given in

Appendix E, figures E.1 – E.5. Table F.3 (Appendix F) contains the corresponding

inverse rank scores.

Overall, information radius and L1 distance performed similarly across feature

types and verb schemes for both MaxP and InvR (MaxPinforad = 0.45; MaxPL1 =

0.44; InvRinforad = 0.81; InvRL1 = 0.87).
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Verb Classification Feature Type Distance Measure Mean
Information Radius L1

Levin Syntactic Frame 0.47 0.45 0.46
Lexical 0.55 0.55 0.55
Dep. Triple 0.56 0.57 0.56
Lex. Frame 0.46 0.47 0.46

Mean 0.51 0.51

VerbNet Syntactic Frame 0.45 0.44 0.45
Lexical 0.54 0.54 0.54
Dep. Triple 0.55 0.55 0.55
Lex. Frame 0.45 0.45 0.45

Mean 0.50 0.50

FrameNet Syntactic Frame 0.43 0.41 0.42
Lexical 0.55 0.55 0.55
Dep. Triple 0.57 0.57 0.57
Lex. Frame 0.46 0.46 0.46

Mean 0.50 0.50

Roget Syntactic Frame 0.39 0.35 0.37
Lexical 0.62 0.61 0.62
Dep. Triple 0.64 0.63 0.64
Lex. Frame 0.37 0.33 0.35

Mean 0.51 0.48

WordNet Syntactic Frame 0.17 0.16 0.16
Lexical 0.29 0.29 0.29
Dep. Triple 0.29 0.29 0.29
Lex. Frame 0.17 0.15 0.16

Mean 0.23 0.22

Table 6.11: Average maximum precision for information theoretic measures using the
50k most frequent features of each feature type

With the information theoretic measures, for MaxP a difference in classifica-

tion accuracy is observed between Roget style synonyms, which are identified sub-

stantially more often than neighbors classed by any of the other verb schemes when
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labeled dependencies are used (MaxPinforad = 0.64 versus MaxPinforad = 0.57 for

next best FrameNet). Labeled and unlabeled lexical dependency relations perform

better than the two syntax based feature types.

6.4.1.4 Comparison of Similarity Measures

Across the three types of similarity measure, the relative performance of verb scheme

and feature type was the same. Therefore, in order to get a sense of the differences

in classification performance of the various similarity measures, this section focuses

on the classification of Roget synonyms using labeled dependency triples, as this

combination consistently returned the highest precision and inverse rank. Table 6.12

shows the precision values for k = 1, 5, 10,MaxP and the average number of neighbors

(kMaxP) that resulted in the maximum precision. The relative performance of each

distance measure is the same for each value of k presented in the table. Table F.4

(Appendix F) shows the corresponding inverse rank scores.

P1 P5 P10 MaxP kmax

Set Theoretic
binary cosine 0.47 0.30 0.22 0.61 8.1
Jaccard 0.43 0.27 0.20 0.57 8.1
overlap 0.03 0.03 0.04 0.11 26.8

Geometric
cosine (=Euclidean) 0.32 0.20 0.15 0.45 12.9
L1 0.19 0.10 0.07 0.26 13.1

Information Theoretic
Information Radius 0.51 0.33 0.24 0.64 3.6
L1 0.50 0.32 0.24 0.63 7.9

Table 6.12: Measures of precision and average number of neighbors yielding maximum
precision across similarity measures
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Several trends are evident from the data in Tables 6.12 and F.4. First, overlap

performs substantially worse than any of the other distance measures. Secondly,

binary cosine, information radius, and L1 have very similar MaxP values. From this

point of view, binary cosine can be considered an information theoretic measure in

the sense that it is computing the correlation between two distributions of numbers,

and the fact that it is applied to binary vectors can be considered a particular feature

weighting scheme. That is, the calculation of cosine does not change when it is applied

to binary vectors, only the feature weighting.

Although binary cosine, information radius, and L1 distance all achieve the

same average maximum precision, they do so at different values of k. Information

radius tops out with k around 3.6, while binary cosine and L1 are between 8.1 and 7.6.

Pairwise t-tests, adjusted for multiple comparisons, show that on average, information

radius tops out significantly earlier than binary cosine and L1 distance, which are not

significantly different from each other. This means that although the precision is the

same, L1 distance returns just under twice as many actual neighbors as information

radius does for the same precision. For k = 1, 5, 10, the three measures are nearly

equal.

The geometric measures, i.e., cosine and L1 applied to normalized count vec-

tors, return lower precision values than the information theoretic measures do. How-

ever, whereas the feature weighting for set theoretic and information theoretic mea-

sures is fixed at {0,1} and Prob(f), respectively, many other feature weightings are

available to which the more general geometric measures can be applied. The next

section considers the effect of feature weighting on the performance of geometric sim-

ilarity measures.
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6.4.2 Feature Weighting

This section considers six feature weighting schemes and their interaction with lexical

similarity measures. Three of the weightings (binary, normalized, and probabilities),

were considered in the context of comparing distance measures. The other three, log-

likelihood, correlation, and inverse feature frequency, are introduced into this study

here. The three distance measures considered are cosine, Euclidean distance, and L1

distance.

Within verb schemes and across feature sets, the relative performance of the

different feature weighting schemes remained constant. Overall, labeled dependency

triples performed the best, followed by unlabeled triples, lexicalized frames, and syn-

tactic frames.

Tables 6.13 and F.6 show precision results for verb classifications using labeled

dependency triples. Across verb schemes, the trends between feature weight and

distance measure hold fairly consistently. Overall, the best performing combination

of feature weight and distance measure was achieved by applying the cosine to vectors

weighted by inverse feature frequency: 58% of the 1-nearest neighbors computed with

this combination are classified as synonyms by Roget’s thesaurus, with a maximum

precision of 71%. This combination performed the best for the other verb schemes as

well, ranging from MaxP = 63% for Levin to MaxP = 34% for WordNet.

In terms of the interactions between feature weight and distance measure, the

following tendencies are observed. For Euclidean distance, the following ranking of

feature weights in terms of precision approximately holds:

normalized > probability > iff > binary, log-likelihood, correlation
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Feature Weighting Distance Measure
Cosine Euclidean L1

P1 MaxP kmax P1 MaxP kmax P1 MaxP kmax

Levin binary 0.43 0.57 8.8 0.19 0.29 7.7 0.19 0.29 7.7
probability 0.31 0.44 12 0.28 0.40 14 0.43 0.57 9.5
normalized 0.31 0.44 12 0.31 0.44 12 0.17 0.25 9.9
log-likelihood 0.44 0.58 8.9 0.19 0.29 7.8 0.19 0.29 7.8
correlation 0.38 0.55 10 0.20 0.27 6.4 0.10 0.15 5.6
inv feat freq 0.49 0.63 7.7 0.27 0.38 6.1 0.19 0.28 6.4

VerbNet binary 0.43 0.55 10 0.19 0.29 9.5 0.19 0.29 9.5
probability 0.30 0.43 14 0.27 0.39 15 0.41 0.55 11
normalized 0.30 0.43 14 0.30 0.43 14 0.17 0.25 14
log-likelihood 0.41 0.56 10 0.19 0.30 9.1 0.19 0.29 9.1
correlation 0.37 0.54 11 0.22 0.29 7.1 0.12 0.16 6.3
inv feat freq 0.47 0.62 8.8 0.27 0.38 7.1 0.19 0.29 8.2

FrameNet binary 0.41 0.54 7.7 0.18 0.28 4.3 0.18 0.26 4.3
probability 0.33 0.45 10 0.29 0.40 11 0.45 0.58 8.7
normalized 0.33 0.45 10 0.33 0.45 10 0.18 0.24 9.2
log-likelihood 0.42 0.55 7.6 0.17 0.26 4.3 0.17 0.26 4.3
correlation 0.42 0.57 7.6 0.16 0.22 2.3 0.02 0.06 2.6
inv feat freq 0.49 0.61 6.8 0.27 0.36 3.5 0.18 0.26 3.7

Roget binary 0.47 0.61 8.1 0.19 0.25 4.9 0.19 0.25 4.9
probability 0.32 0.45 12.9 0.29 0.42 14.2 0.50 0.63 7.9
normalized 0.32 0.45 12.9 0.32 0.45 12.9 0.19 0.26 13.1
log-likelihood 0.48 0.62 7.7 0.19 0.26 3.7 0.19 0.26 3.7
correlation 0.43 0.60 8.6 0.19 0.24 5.9 0.03 0.04 2.8
inv feat freq 0.58 0.71 6.1 0.28 0.35 3.5 0.19 0.24 3.0

WordNet binary 0.19 0.28 10 0.08 0.12 5.4 0.08 0.12 5.4
probability 0.13 0.20 12 0.12 0.19 13 0.21 0.29 9.6
normalized 0.13 0.20 12 0.13 0.20 12 0.09 0.13 9.9
log-likelihood 0.19 0.29 10 0.07 0.12 4.8 0.08 0.12 4.8
correlation 0.18 0.28 11 0.08 0.11 4.8 0.01 0.03 3.2
inv feat freq 0.24 0.34 9.3 0.11 0.16 4.7 0.08 0.11 4.7

Table 6.13: Nearest neighbor average maximum precision for feature weighting, using
the 50k most frequent features of type labeled dependency triple

For Euclidean distance, the tendency for normalized vectors to produce better neigh-

bors can be explained by the fact that Euclidean distance is quadratic in the un-

shared terms; normalized vectors exhibit the smallest absolute feature values of the

six weights considered, so these differences will be minimized.
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Interestingly, inverse feature frequency performs better than the other three

weights although the average feature weight is much larger than for binary, log-

likelihood, or correlation. This suggests that inverse feature frequency does a better

job of capturing the relevance of the association between a verb and a feature than

log-likelihood or correlation.

For L1 distance, the following ranking of feature weights holds:

probability ≫ binary, log-likelihood, iff > normalized ≫ correlation

Probability vectors outperform any of the other weighting methods by a substan-

tial margin (nearly 2:1), lending credence to its interpretation as a measure of the

difference between probability distributions. The differences between binary, log-

likelihood, and inverse feature frequency were slight and varied unpredictably across

verb schemes. Once again, weighting by correlation performed poorly.

For cosine, the following ranking of feature weights was found:

iff > log-likelihood, binary, correlation ≫ normalized, probability

In this combination, inverse feature frequency returned appreciably better results

across the verb schemes. As with Euclidean distance, binary feature weights perform

just as well as log-likelihood and correlation, which in turn outperform normal vector

scalings.

These results indicate that two ingredients are needed for successful nearest

neighbor identification of verbs. One is an extrinsic weighting method which models

the relative strength of the association between a verb and a feature as a function of

both co-occurrence frequency and its proclivity to occur with other verbs. The second

consideration is an appropriate scaling of the magnitude of the feature weights. In
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the case of cosine, the distance measure itself provides the scaling; in the case of the

other distance measures, a scaling such as normalization improves the selection of

lexical neighbors.

Given that log-likelihood and inverse feature frequency both provide functions

for measuring this associational strength, it appears that the inverse feature frequency

measure is a better choice than log-likelihood for this task, which attempts to model

co-occurrence strength in terms of a prior asymptotic χ2 distribution. This distribu-

tion may not be as appropriate for describing the distribution of word co-occurrences

as a function which models co-occurrence distributions directly. A possible explana-

tion for the poor performance of correlation is that in this feature space, all correla-

tions are very small. It is likely that the average correlation between a verb and a

feature are too small to be very informative. Unlike Rohde et al. (submitted) who

combat this problem by taking the square root of the correlations as a post processing

step, we did not make any further alternations to the correlation score.

6.4.3 Verb Scheme

One picture that consistently emerges across feature sets, distance measures, and

weighting schemes is that empirically determined nearest neighbors match Roget’s

synonym assignments substantially more closely than they match any of the other

schemes. Furthermore, WordNet synonym assignments show the lowest correspon-

dence to empirical nearest neighbors than any of the other schemes.

However, in addition to synonymy, WordNet defines hyponymy relations be-

tween verbs, which often correspond to Roget synonyms. For example, Roget syn-

onyms of argue such as quibble, quarrel, dispute, and altercate are classified as hy-

ponyms by WordNet, and as such were not counted as matches. In these cases,

WordNet provides a further refinement of verb relations that may match more closely

169



to distributionally similar verb assignments than its stricter definitions of synonymy.

Exploring these more finely grained lexical distinctions is left for future research.

Levin, VerbNet, and FrameNet place verbs into classes based on both simi-

larity in meaning and similarity along more schematic representations of syntactic

or semantic behavior such as alternations (Levin, VerbNet) or participation in se-

mantic frames (FrameNet). In an effort to tease apart the independent criteria of

semantic and syntactic similarity, we can look at the proportion of items in a class

that are independently classified as synonyms by a thesaurus, and compare this to

the proportion of empirical neighbors that are either synonyms or not by the same

standard.

The left column in Table 6.14 shows the average number of synonyms that are

found within a verb class for Levin, VerbNet, and FrameNet.

Verb Scheme %Synonyms in Class %Synonyms in k-nn

k = 1 5 10
Levin 23 71 57 48
VerbNet 23 73 58 50
FrameNet 38 76 65 56

Table 6.14: Average number of Roget synonyms per verb class

This number was calculated from the number of same class items that are

listed as synonyms in Roget’s online thesaurus; i.e., on average 23% of a Levin verb’s

neighbors are recognized as synonyms by the thesaurus. The right column shows

the average percentage of empirically determined 1-nearest neighbors that are also

synonyms. For example, of the empirically determined 1-nearest neighbors that are

put into the same class by Levin, 71% turn out to be synonyms by Roget’s thesaurus;

this figure is slightly higher for VerbNet and FrameNet. This means that when highly

similar Levin-style neighbors are identified empirically, they are over three times more
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likely to be synonyms than would be expected based on the prior class probability

of being synonyms; similarly for VerbNet. The fact that a greater percentage of

FrameNet verbs are synonyms is to be expected given that FrameNet emphasizes

semantic relatedness and does not explicitly include participation in syntactic alter-

nations as a criterion for partitioning verbs into classes (Baker, Fillmore, and Lowe,

1998; Baker and Ruppenhofer, 2002). Also apparent in Table 6.14 is the fact that

as k increases, the number of synonyms decreases for all three verb schemes. Again

this points to the interpretation that highly distributionally similar items are likely

to be synonyms, and that the additional grouping criteria used Levin, VerbNet, and

FrameNet are not represented as well using the feature sets examined here.

The upshot of this analysis is that regardless of the four feature sets applied

here, distributionally similar verbs assignments correspond to thesaurus style syn-

onyms more than they correspond to the groupings in Levin, VerbNet, and FrameNet.

As noted above, distributionally similar verbs do not correspond well to WordNet’s

more restrictive definitions of synonymy. This is most likely due to the fact that

WordNet is conservative in assigning synonymy to verbs, and makes subtler lexical

distinctions than Roget’s thesaurus does.

6.4.4 Feature Set

Tables 6.15 and F.5 show the performance of the four feature sets across verb classes

for the best performing feature weight/distance measure combination of inverse fea-

ture frequency and cosine. In this setting, the following ranking of feature sets in

terms of precision of empirically determined nearest neighbors holds:

labeled dependencies > unlabeled dependencies > lex. frames > syntactic frames
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Verb Classification Feature Type P1 P5 P10 MaxP kmax

Levin Syntactic Frame 0.29 0.24 0.21 0.45 11
Lexical 0.42 0.30 0.25 0.56 8.9
Dep. Triple 0.49 0.38 0.32 0.63 7.7
Lex. Frame 0.37 0.29 0.25 0.52 10

VerbNet Syntactic Frame 0.27 0.22 0.20 0.43 13
Lexical 0.40 0.29 0.24 0.54 10
Dep. Triple 0.47 0.36 0.30 0.62 8.8
Lex. Frame 0.36 0.27 0.24 0.51 11

FrameNet Syntactic Frame 0.29 0.21 0.18 0.41 7.3
Lexical 0.45 0.30 0.24 0.57 7.2
Dep. Triple 0.49 0.35 0.28 0.61 6.8
Lex. Frame 0.40 0.28 0.23 0.53 8.3

Roget Syntactic Frame 0.21 0.14 0.12 0.34 14.1
Lexical 0.50 0.31 0.23 0.64 7.5
Dep. Triple 0.58 0.38 0.29 0.71 6.1
Lex. Frame 0.43 0.29 0.22 0.58 8.5

WordNet Syntactic Frame 0.09 0.06 0.05 0.16 12
Lexical 0.20 0.12 0.08 0.30 10
Dep. Triple 0.24 0.14 0.10 0.34 9.3
Lex. Frame 0.17 0.11 0.08 0.26 11

Table 6.15: Nearest neighbor precision with cosine and inverse feature frequency

For other settings of feature weight and distance measure, there was often no ap-

preciable difference between labeled and unlabeled dependencies; the other relations

between feature sets hold consistently.

The main conclusion to draw from these patterns is that lexical and syntactic

information jointly specify distributional cues to lexical similarity. It is useful to

differentiate between whether a verb’s argument appeared as a subject or object

versus simply recording the fact that it appeared as an argument. It is likely that the

lexicalized frames are overly specific and result in very large, sparse feature sets.
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Other researchers have noted this problem of data sparsity, (e.g., Schulte im

Walde, 2000), and have explored the additional use of selectional preference features

by augmenting each syntactic slot with the concept to which its head noun belongs in

an ontology (e.g. WordNet). For example, replacing a frame like eat, <Joe, Subj>,

<corn, Obj> with eat, <Person, Subj>, <Plant, Obj> provides a level of general-

ization that overcomes some of the data sparsity problem. Although the problem of

data sparsity can be mitigated through the use of such techniques, these features have

generally not been shown to improve classification performance (Schulte im Walde,

2000; Joanis, 2002).

It is not surprising that syntactic frames perform worse than the other feature

sets. A lexically unspecified syntactic frame conveys relatively little information, and

any given frame may be shared by many verbs regardless of their semantic class or

synonym set. The fact that syntactic information alone can achieve around 40%

precision on a semantic classification task with a negligible baseline provides support

for semantic theories that relate syntactic structure to verb meaning. It is interesting

that syntactic frames do a better job of identifying Roget synonyms, which are not

explicitly organized around syntactic behavior, than of identifying Levin neighbors,

which do explicitly incorporate syntactic behavior. However, Levin’s classification

involves specific syntactic alternations that preserve meaning rather than general

syntactic frames that are not tied to a given semantic interpretation. The failure

of syntactic frames to identify Levin neighbors more precisely is probably due to a

mismatch between the information they represent and the criteria used in Levin’s

original classification.
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6.5 Relation Between Experiments and Existing Resources

One application of the techniques developed here would be to assist in extending

existing verb schemes such as VerbNet, FrameNet, or Roget’s thesaurus by suggesting

neighbors of unclassified verbs. In order to estimate the coverage of the five verb

schemes studied here, we compared the number of verbs in each scheme that occur at

least 10 times in the English gigaword corpus to the number of verbs in the union of the

five verbs schemes. There are 7206 verbs in the union of Levin, VerbNet, FrameNet,

Roget, and WordNet that occur at least 10 times in the English gigaword corpus3.

Table 6.16 contains these comparisons. For each verb scheme, the average frequency

of verbs included in that scheme is indicated along with the average frequency of

verbs not included in that scheme.

Verb Scheme Contained Missing
Levin 2886 4320

Avg. Freq 47231 23479

VerbNet 3426 3780
Avg. Freq 44504 22558

FrameNet 2110 5096
Avg. Freq 94374 7577

Roget 5660 1546
Avg. Freq 61915 1151

WordNet 7110 96
Avg. Freq 33433 351

Table 6.16: Coverage of each verb scheme with respect to the union of all of the verb
schemes and the frequency of included versus excluded verbs

3The reason that there are more Roget and WordNet verbs here than in the experiments is that
the experiments used the union of Levin, VerbNet, and FrameNet and extracted Roget and WordNet
synonyms from those; here we are looking at the union of all five verb schemes.
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For all of the verb schemes, the average token frequency of verbs included in

the scheme is greater than the average frequency of excluded verbs. FrameNet covers

the smallest number of verbs, but the verbs that it does contain occur on average

more frequently than verbs in the other verb schemes. Levin and VerbNet show

the least disparity between the average frequency of included versus excluded verbs

(about 2:1), while WordNet and Roget show the greatest difference (about 95:1 and

81:1, respectively). In other words, there are many verbs that occur with relatively

high frequency in the English gigaword corpus but which Levin and VerbNet do not

cover.

We can take the precision results obtained on known verbs as an indication

of the expected performance when using distributional similarity as a tool for as-

signing unknown verbs to lexical semantic classes. In this setting, we would assign

an unknown verb to the class(es) of the distributionally most similar verbs in each

verb scheme. Table 6.17 contains the expected proportion of correct assignments of

unknown verbs to lexical semantic classes for each of Levin, VerbNet, and FrameNet.

These proportions are the 1-nearest neighbor precision results using cosine similarity

applied to labeled dependency triples weighted by inverse feature frequency over the

50,000 most frequent features.

Verb Scheme Baseline Accuracy Expected Acc.
Num. Classes Minimum Average Maximum

Levin 191 (1) 0.01 (1.39) 0.01 (10) 0.05 0.49
VerbNet 237 (1) 0.00 (1.37) 0.01 (10) 0.04 0.47
FrameNet 321 (1) 0.00 (1.35) 0.00 (8) 0.02 0.49

Table 6.17: Expected classification accuracy. The numbers in parentheses indicate
raw counts used to compute the baselines

175



For each verb scheme, we also indicate baseline classification accuracy. Be-

cause we have conflated verb senses, the 1-nearest neighbor precision results indicate

that a verb was correctly classified if it belongs to any one of the classes that its

distributionally most similar neighbor belongs to. Therefore, for each verb scheme

we show three baselines:

• The most restrictive case, when the distributionally most similar known verb

belongs to exactly one class, defined as 1 divided by the total number of classes

in the verb scheme.

• The average case, defined as the average number of classes to which a verb

belongs divided by the total number of classes.

• The least restrictive case, defined as the maximum number of classes any verb

in the verb scheme belongs to divided by the total number of classes.

6.6 Conclusion

This chapter presented the results of a large-scale comparison of a variety of pa-

rameters which determine distributional lexical similarity over five lexical semantic

classifications of English verbs. The main findings are summarized below.

• Of the distance measures considered here, cosine (viz. correlation coefficient)

yielded the best results.

• Of the feature sets considered here, labeled dependency triples yielded the best

results.

• Of the feature weightings considered here, inverse feature frequency yielded the

best results.

• Using the parameters studied here, distributionally similar verb assignments

correspond more closely to Roget-style synonyms than to Levin, VerbNet, or

FrameNet classes or WordNet synonyms.
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• The parameters explored here can be used to extend the coverage of Levin,

VerbNet, and FrameNet to other verbs that occur in a large text corpus with

an expected accuracy of around 49% (over a baseline accuracy of about 5%).

Based on these findings, we conclude more generally that:

• Syntactically informed lexical co-occurrence features do a better job of identify-

ing synonyms than of identifying neighbors based on the other lexical semantic

criteria that Levin, VerbNet, and FrameNet rely on (e.g., shared components of

meaning such as MOTION or COVERING; participation in semantic frames).

• Extrinsic feature weightings, which quantify the association between a feature

and a target verb with respect to that feature’s overall distribution among verbs,

do a better job of identifying neighbors than feature weightings which do not

account for overall feature distribution.

• In addition to extrinsic feature weightings, scaling a weighted context vector

(i.e., via cosine or vector length normalization) improves neighbor identification.
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CHAPTER 7

CONCLUSION

This dissertation addressed the problem of learning accurate and scalable lexical

classifiers in the absence of large amounts of hand-labeled training data. It considered

two distinct lexical acquisition tasks, both of which rely on an appropriate definition

of distributional lexical similarity:

• Automatic transliteration and identification of English loanwords in Korean.

For this problem, lexical similarity was defined over phonological co-occurrence

features.

• Lexical semantic classification of English verbs on the basis of automatically

derived co-occurrence features. For this problem, similarity was defined in terms

of grammatical relations.

7.1 Transliteration of English Loanwords in Korean

The first task focused on ways to mitigate the effort of obtaining large amounts of

labeled training data for transliterating and identifying English loanwords in other

languages, using Korean as a case study. The key ideas that emerged from the

transliteration task are:

• Consonant transliteration is highly regular and can be expressed reliably using

a small number of phonological adaptation rules.
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• Vowel transliteration is irregular and is heavily influenced by the orthographic

forms of source words.

• These two observations can be used to constrain the predictions made by a

statistical transliteration model, resulting in a model that is robust to small

amounts of training data and produces a small number of transliterations per

input item.

Two transliteration models were devised – a phonological rule-based model,

and a statistical model that combined orthographic and phonological information.

These models were applied to a set of 10,000 attested English loanwords in Korean.

The rule-based model obtained 1-best transliteration accuracy of 49.2%, compared to

73.4% for the statistical model. When vowels are excluded from the output translit-

erations, the performance of the rule-based model and the statistical model is much

closer: 89.9% for the rule-based model versus 90.8% for the statistical model. These

figures underscore the variability associated with vowel transliteration.

7.2 Identification of English Loanwords in Korean

For the identification task, the basic idea involved using a rule-based system to gen-

erate large amounts of data that serve as training examples for a secondary lexical

classifier. Although the precision of the rule-based output was low, on a sufficient

scale it represented the lexical patterns of primary statistical significance with enough

reliability to train a classifier that was robust to the deficiencies of the original rule-

based output. The primary contributions of this study of loanword identification

include:

• A demonstration of the suitability of a sparse logistic regression classifier to the

task of automatic loanword identification.
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• A highly efficient solution to the problem of obtaining labeled training data for

etymological classification.

• A demonstration of the fact that automatically generated pseudo-data can be

used to train a classifier that distinguishes actual English and Korean words as

accurately as one trained entirely on hand-labeled data.

Three experiments were conducted which systematically varied the quantity

and quality of labeled training data. The first experiment, conducted entirely on

hand-labeled training data, obtained classification accuracy of 96.2%. The second

experiment used the rule-based transliteration model from Chapter 3 to produce

large amounts of pseudo-English loanwords that were used in conjunction with actual

Korean words to train a classifier capable of identifying actual English loanwords with

95.8% accuracy. The third experiment used pseudo-English loanwords and unlabeled

items that served as examples of Korean words to train a classifier that identified

actual English loanwords with 92.4% accuracy.

7.3 Distributional Verb Similarity

The second lexical acquisition task considered in this dissertation was the assignment

of English verbs to lexical semantic classes on the basis of their distributional context

in a large text corpus. The approach to this task used the output of a statistical

parser to automatically generate a feature set that was used to assign English verbs

to lexical semantic classes. This study produced results on a substantially larger scale

than any previously reported and yielded new insights into the properties of verbs

that are responsible for their lexical categorization. A series of experiments were

conducted which examined the interactions between a number of parameters that

influence empirical determinations of distributional lexical similarity. The parameters

examined were:
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• Similarity measure. Three classes of similarity measure were considered – set

theoretic, geometric, and information theoretic.

• Feature type. Four feature types based on grammatical dependencies were

examined – syntactic frames, labeled and unlabeled dependency relations, and

lexicalized syntactic frames.

• Feature weighting. Intrinsic weightings such as vector length normalization were

compared to extrinsic weighting schemes such as correlation.

• Feature selection. Feature selection was limited to cutoff by frequency.

These parameters were further evaluated with respect to five verb classification

schemes – Levin, VerbNet, FrameNet, Roget’s Thesaurus, and WordNet. The main

picture that emerged from this analysis is that a combination of cosine similarity

measure with labeled dependency triples and inverse feature frequency consistently

yielded the best results in terms of how closely empirical verb similarities matched

the labels of the five verb schemes. Performance asymptotes at around 50,000 of the

most frequent features of each type.

Simultaneously considering multiple verb classification schemes allowed for

a comparison of the criteria used by each scheme for grouping verbs. One of the

main findings along these lines is that using the feature sets considered here, verbs

within a given classification scheme that are related by synonymy are identified more

reliably than verbs related by criteria such as diathesis alternations or participation

in semantic frames. This approach also allowed for an examination of the relation

between each verb scheme and empirically determined verb similarities. Here we

saw that Roget synonyms were identified more reliably than Levin, VerbNet, and

FrameNet verbs. Extrapolating the precision of empirical neighbor assignments for

each of the five verb schemes to unknown verbs allowed an estimate of the expected

accuracy that would be obtained for automatically extending the coverage of each
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scheme to new verbs. Using the best performing combination of parameters mentioned

in the preceding paragraph, Roget synonyms were correctly identified 58% of the

time; Levin, VerbNet, and FrameNet verbs obtained approximately 49% accuracy,

and WordNet synonyms were correctly identified 24% of the time. Together, these

findings indicate that we should pay closer attention to the relation between the

various criteria used in each verb scheme and which of those criteria are primarily

reflected in the feature sets commonly used in automatic verb classification.
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APPENDIX A

ENGLISH-TO-KOREAN STANDARD CONVERSION RULES

Ministry of Education and Human Resources Development Publication 85-11 (1986.1.7)
Foreign Word Transcription

Section 1 Transcription of English
Write according to the first rule, or write with regard to the items that come next.
Part 1 Voiceless Stops ([p℄,[t℄,[k℄)

1) Word-final voiceless stops ([p℄,[t℄,[k℄) following a short vowel are written as
codas.
<Examples>
gap [gæp] → kæp cat [kæt] → khæs
book [bUk℄ → puk

2) Voiceless stops ([p℄,[t℄,[k℄) that occur between short vowels and any consonants
except liquids and nasals ([l℄,[r℄,[m℄) are written as codas.
<Examples>
apt [æpt] → æpth1 setback [setbæk] → sespæk
act [ækt] → ækth1

3) For cases of word-final and pre-consonantal voiceless stops ([p℄,[t℄,[k℄) other
than those above, ‘1’ is inserted.
<Examples>
stamp [stæmp℄ → s1thæmph1 cape [keip℄ → kheiph1
nest [nest℄ → nes1th1 part [pa:t℄ → phath1
desk [desk℄ → tes1kh1 make [meik℄ → meikh1
apple [æpl℄ → æph1l mattress [mætris℄ → mæth1lis1
chipmunk [tSipm2Nk℄ → Ùiph1m�nkh1 sickness [siknis℄ → sikh1nis1

Part 2 Voiced Stops ([b℄,[d℄,[g℄)
1) ‘1’ is inserted after word-final and all pre-consonantal voiced stops.

<Examples>
bulb [b2lb℄ → p�lp1 land [lænd℄ → lænt1
zigzag [zigzæg℄ → Ùik1Ùæk1 lobster [lObst�℄ → lob1s1th�
kidnap [kidnæp℄ → khit1næph1 signal [sign�l℄ → sik1n�l

Part 3 Fricatives ([s℄, [z℄, [f℄, [v℄, [T℄, [D℄, [S℄, [Z℄)
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1) ‘1’ is inserted after word-final and preconsonantal ([s℄, [z℄, [f℄, [v℄, [T℄, [D℄)
<Examples>
mask [ma:sk℄ → mas1kh1 jazz [�æz] → ÙæÙ1
graph [græpf] → k1læph1 olive [Oliv] → → ollip1
thrill [Tril] → s1lil bathe [beiD] → peit1

2) Word-final [S℄ is written as ‘Si’, preconsonantal [S℄ is written as ‘Syu’, and pre-
vocalic [S℄ is written according to the following vowel as `sya', `syæ', `sy2', `sye',`syo', `syu', `si'.
<Examples>
flash [flæS] → p1llæsi shrub [Sr2b] → syul�p1
shark [Sa:k] → syakhu shank [SæNk] → syæNkh1
fashion [fæS�n] → phæsy�n sheriff [Serif] → syeliph1
shopping [SO piN] → syophiN shoe [Su:] → syu
shim [Sim] → sim

3) Word-final and preconsonantal [Z℄ is written as ‘Ùi’ and prevocalic [Z℄ is written
as ‘Ù’.
<Examples>
mirage [mira:Z] → milaÙi vision [viZ�n] → piÙ�n

Part 4 Affricates ([ts℄,[dz℄,[tS℄,[dZ℄)
1) Word-final and preconsonantal [ts℄, [dz℄ are written ‘Ùh1’, ‘Ù1’; [tS℄, [dZ℄ are

written ‘Ùhi’, ‘Ùi’.
<Examples>
Keats [ki:ts] → khiÙh1 odds [Odz] → oÙ1
switch [swiÙ] → s1wiÙhi bridge [bri�] → p1liÙi
Pittsburgh [pitsb�:g] → phiÙh1p�k1 hitchhike [hiÙhaik] → hiÙhihaikh1

2) Prevocalic [tS℄, [dZ℄ are written as ‘tSh’, ‘tS’.
<Examples>
chart [Ùa:t] → Ùhath1 virgin [v�:�in] → piÙin

Part 5 Nasals ([m℄,[n℄,[N℄)
1) Word-final and preconsonantal nasals are all written as codas.

<Examples>
steam [sti:m℄ → s1thim corn [kO:n℄ → khon
ring [riN℄ → liN lamp [læmp℄ → læmph1
hint [hint℄ → hinth1 ink [iNk℄ → iNkh1

2) Intervocalic [N℄ is written as the coda → N of the preceding syllable.
<Examples>
hanging [hæNiN℄ <hæNiN> longing [lOnging℄ loNiN

Part 6 Liquids ([l℄)
1) Word-final and preconsonantal [l℄ is written as a coda.

<Examples>
hotel [houtel] → hothel pulp [p2lp] → ph�lph1

2) When word-internal [l℄ comes before a vowel or before a nasal ([m℄,[n℄) not
followed by a vowel, it is written <ll>. However, [l℄ following a nasal ([m℄,[n℄)
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is written <l> even if it comes before a vowel.
<Examples>
slide [slaid] → s1llait1 film [film] → phill1m
helm [helm] → hell1m swoln [swouln] → s1w�ll1n
Hamlet [hæmlit] → hæmlis Henley [henli] → henli

Part 7 Long Vowels
The length of a long vowel is not separately transcribed.
<Examples>
team [ti:m] → thim route [ru:t] → luth1

Part 8 Diphthongs ([ai℄, [au℄, [ei℄, [Oi℄, [ou℄, [au�℄)
For diphthongs, the phonetic value of each monophthong is realized and
written separately, but [ou℄ is written as <o> and [au�℄ is written as
<aw2>.
<Examples>
time [taim] → thaim house [haus] → haus1
skate [skeit] → sukheyithu oil [Oil] → oil
boat [bout] → pothu tower [tau�] → thaw�

Part 9 Semivowels ([w℄,[j℄)
1) [w℄ is written according to the following vowel as [w�℄, [wO℄, [wou℄ become

<w2>, [wa℄ becomes <wa>, [wæ℄ becomes <wæ>, [we℄ becomes <we>, [wi℄
becomes <wi>, and [wu℄ becomes <u>.
<Examples>
word [w�:d] → w�t1 want [wOnt] → w�nth1
woe [wou] → w� wander [wand�] → want�
wag [wæg] → waek1 west [west] → wes1th1
witch [wiÙ] → wiÙhi wool [wul] → ul

2) When [w℄ occurs after a consonant, two separate syllables are written; however,[gw℄, [hw℄, [kw℄ are written as a single syllable.
<Examples>
swing [swiN℄ → s1wiN twist [twist℄ → th1wis1th1
penguin [peNgwin℄ → pheNkwin whistle [hwisl℄ → hwis1l
quarter [kwO:t�℄ → khw�th�

3) The semivowel [j℄ combines with the following vowel to be written <ya>,
<yæ>, <y2>, <ye>, <yo>, <yu>, <i>. However, [j�℄ following [d℄, [l℄,[n℄ is written individually as <di-2>, <li-2>, <ni-2>.
<Examples>
yard [ja:d] → yat1 yank [jæNk℄ → yæNkh1
yearn [y�:n℄ → yen yellow [jelou℄ → yello
yawn [yO:n℄ → yon you [ju:℄ → yu
year [ji�℄ → i�
Indian [indj�n℄ → inti�n battalion [b�tæly�n℄ → p�thælli�n
union [ju:nj�n℄ → yuni�n

Part 10 Compound Words
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1) In a compound, words that can stand alone that have combined to form the
compound are written as they are when they occur independently.
<Examples>
cuplike [k2plaik℄ → kh�plaikh1 bookend [bukend℄ → pukent1
headlight [hedlait℄ → het1laith1 touchwood [t2tSwud℄ → th�Ùhut1
sit-in [sitin℄ → sisin bookmaker [bukmeik�℄ → pukmeikh�
flashgun [flæSg2n℄ → ph1læsik�n topknot [tOpnOt℄ → thopnos

2) Words written with spaces in the source language may be written with or with-
out spaces in Korean.
<Examples>
Los Alamos [lOs æl�mous℄ → los1ællemos1/los1 æll�mos1
top class [tOpklæs℄ → thopkh1llæs1/thop kh1llæs1
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APPENDIX B

DISTRIBUTED CALCULATION OF A PAIRWISE DISTANCE MATRIX

The basic idea for distributing the task of computing one half of a symmetric pairwise

distance matrix in a set of p independent processes each consisting of an approximately

equal number of comparisons is illustrated as follows. Assuming a proper distance

metric and five items [1, 2, 3, 4, 5], the minimum set of comparisons needed to compute

the distance between every pair of points is
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1, 2

1, 3

1, 4

1, 5

2, 3

2, 4

2, 5

3, 4

3, 5

4, 5

For point 1, 5 − 1 = 4 comparisons are needed, for point 2, 5 − 2 = 3 comparisons

are needed, etc. More generally, for each i in the sequence

i = 1, 2, . . . , n

n−i comparisons are necessary. The upshot of this fact is that simply dividing the list

into p approximately equal sized parts will not give an approximately equal number of

comparisons. That is, comparing [1, 2] to all 5 neighbors requires (5−1)+(5−2) = 7

pairs, and [3, 4] only requires (5 − 3) + (5 − 4) = 3 comparisons. Instead of equal

sized parts, we need to divide the list into an approximately equal number of pairwise
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comparisons. In order to be efficient, we should avoid actually enumerating the

comparisons.

For 10 items, we have the following distribution of comparisons (item number

10 is excluded because we do not compare 10 to itself):

Item Comparisons

1

2

3

9

8

7



























24

4

5

6

7

8

9

6

5

4

3

2

1







































































21

The number of comparisons forms a decreasing arithmetic series. In order to get

roughly the same number of comparisons, we can index the list at the point where

the sum of the comparisons up to a given index is approximately equal (i.e., 24 and

21 for splitting the list into two parts in the example above). This means finding the

sum of the arithmetic series giving the number of comparisons for a given point, and

dividing by the desired number of splits. The formula for the sum of the arithmetic

series of integers from 1 to n is

n(n + 1)

2
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Dividing this sum by the desired number of processes gives the (rounded) number of

comparisons to make per process. Based on this number, starting and stopping points

can be indexed into the list, and parallel jobs containing a start index, a stop index,

and a pointer to the list (on disk or in memory) can be submitted for independent

processing. After all jobs have terminated, the results can be merged to find pairwise

distances between all points in the list. An algorithm for doing this is given below.

1: list ⊲ List of items.
2: p ⊲ Number of parallel processes.
3: sum← list.length(list.length + 1)/2 ⊲ Sum of comparisons.
4: k ← sum/p ⊲ Number of comparisons per process.
5: L← list.length− 1 ⊲ Initial number of comparisons.
6: start← 0, stop← 0
7: while start < list.length do
8: c← 0
9: while c ≤ k and L > 0 do

10: c← c + L ⊲ Accumulate comparisons.
11: L← L− 1
12: stop← stop + 1
13: end while
14: submitJob(start, stop, listP tr)
15: start← stop
16: end while

This algorithm does not guarantee that all submitted jobs are of the same size,

only close. Furthermore, most vector comparisons are O(n). In practice, a vector of

length m ≫ n takes appreciably longer to compute for, e.g., Euclidean distance. In

a sparse vector space, care should be taken that very long vectors are not clustered

early in the list, or those jobs will take much longer to compute than others and load

balancing will be bad.
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APPENDIX C

FULL RESULTS OF VERB CLASSIFICATION EXPERIMENTS USING

BINARY FEATURES
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Figure C.1: Classification results for Levin verbs using binary features
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Figure C.2: Classification results for VerbNet verbs using binary features
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Figure C.3: Classification results for FrameNet verbs using binary features
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Figure C.4: Classification results for Roget verbs using binary features
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Figure C.5: Classification results for WordNet verbs using binary features
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APPENDIX D

FULL RESULTS OF VERB CLASSIFICATION EXPERIMENTS USING

GEOMETRIC MEASURES
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Figure D.1: Classification results for Levin verbs using geometric distance measures
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Figure D.2: Classification results for VerbNet verbs using geometric distance measures
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Figure D.3: Classification results for FrameNet verbs using geometric distance mea-
sures
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Figure D.4: Classification results for WordNet verbs using binary features
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Figure D.5: Classification results for Roget verbs using binary features
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APPENDIX E

FULL RESULTS OF VERB CLASSIFICATION EXPERIMENTS USING

GEOMETRIC MEASURES
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Figure E.1: Classification results for Levin verbs using information theoretic distance
measures
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Figure E.2: Classification results for VerbNet verbs using information theoretic dis-
tance measures
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Figure E.3: Classification results for FrameNet verbs using information theoretic
distance measures
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Figure E.4: Classification results for WordNet verbs using information theoretic dis-
tance measures
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Figure E.5: Classification results for Roget verbs using information theoretic distance
measures
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APPENDIX F

RESULTS OF VERB CLASSIFICATION EXPERIMENTS USING INVERSE

RANK SCORE
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Verb Classification Feature Type Distance Measure Mean
cosine Jaccard overlap

Levin Syntactic Frame 0.82 0.78 0.21 0.60
Lexical 1.01 0.92 0.11 0.68
Dep. Triple 1.28 1.21 0.14 0.88
Lex. Frame 1.06 1.01 0.17 0.74

Mean 1.04 0.98 0.16

VerbNet Syntactic Frame 0.78 0.75 0.24 0.59
Lexical 0.96 0.87 0.11 0.65
Dep. Triple 1.22 1.14 0.14 0.83
Lex. Frame 1.01 0.96 0.16 0.71

Mean 0.99 0.93 0.16

FrameNet Syntactic Frame 0.66 0.62 0.12 0.47
Lexical 0.88 0.79 0.08 0.58
Dep. Triple 1.08 1.00 0.12 0.74
Lex. Frame 0.94 0.86 0.14 0.65

Mean 0.89 0.82 0.12

Roget Syntactic Frame 0.42 0.40 0.07 0.30
Lexical 0.82 0.71 0.10 0.55
Dep. Triple 1.07 0.95 0.15 0.72
Lex. Frame 0.93 0.80 0.16 0.63

Mean 0.81 0.71 0.12

WordNet Syntactic Frame 0.18 0.17 0.05 0.13
Lexical 0.31 0.28 0.13 0.24
Dep. Triple 0.40 0.36 0.18 0.31
Lex. Frame 0.36 0.31 0.12 0.26

Mean 0.31 0.28 0.12

Table F.1: Average inverse rank score for set theoretic measures, using the 50k most
frequent features of each feature type
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Verb Classification Feature Type Distance Measure Mean
Cosine (=Euclidean) L1

Levin Syntactic Frame 0.78 0.80 0.79
Lexical 0.93 0.68 0.81
Dep. Triple 0.95 0.45 0.70
Lex. Frame 0.70 0.28 0.49

Mean 0.84 0.55

VerbNet Syntactic Frame 0.75 0.78 0.76
Lexical 0.88 0.64 0.76
Dep. Triple 0.91 0.45 0.68
Lex. Frame 0.66 0.29 0.48

Mean 0.80 0.54

FrameNet Syntactic Frame 0.60 0.59 0.59
Lexical 0.83 0.59 0.71
Dep. Triple 0.90 0.40 0.65
Lex. Frame 0.61 0.27 0.44

Mean 0.73 0.46

Roget Syntactic Frame 0.36 0.41 0.39
Lexical 0.68 0.55 0.61
Dep. Triple 0.72 0.37 0.55
Lex. Frame 0.45 0.13 0.29

Mean 0.55 0.36

WordNet Syntactic Frame 0.14 0.16 0.15
Lexical 0.27 0.23 0.25
Dep. Triple 0.27 0.17 0.22
Lex. Frame 0.18 0.05 0.12

Mean 0.22 0.15

Table F.2: Average inverse rank score for geometric measures using the 50k most
frequent features of each feature type
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Verb Classification Feature Type Distance Measure Mean
Information Radius L1

Levin Syntactic Frame 0.91 1.00 0.96
Lexical 1.17 1.20 1.19
Dep. Triple 1.09 1.30 1.20
Lex. Frame 0.86 1.01 0.93

Mean 1.01 1.13

VerbNet Syntactic Frame 0.87 0.96 0.91
Lexical 1.12 1.15 1.13
Dep. Triple 1.06 1.23 1.15
Lex. Frame 0.82 0.96 0.89

Mean 0.97 1.08

FrameNet Syntactic Frame 0.75 0.81 0.78
Lexical 1.08 1.10 1.09
Dep. Triple 1.02 1.18 1.10
Lex. Frame 0.78 0.88 0.83

Mean 0.91 0.99

Roget Syntactic Frame 0.57 0.54 0.55
Lexical 1.08 1.06 1.07
Dep. Triple 1.09 1.14 1.12
Lex. Frame 0.57 0.57 0.57

Mean 0.83 0.83

WordNet Syntactic Frame 0.21 0.21 0.21
Lexical 0.43 0.42 0.43
Dep. Triple 0.41 0.44 0.42
Lex. Frame 0.22 0.23 0.23

Mean 0.32 0.33

Table F.3: Average inverse rank score for information theoretic measures using the
50k most frequent features of each feature type
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Set Theoretic
binary cosine 0.61
Jaccard 0.53
overlap 0.10

Geometric
cosine (=Euclidean) 0.72
L1 0.37

Information Theoretic
Information Radius 1.09
L1 1.14

Table F.4: Inverse rank score results across similarity measures

Verb Classification Feature Type InvR

Levin Syntactic Frame 0.97
Lexical 1.18

Dep. Triple 1.46
Lex. Frame 1.14

VerbNet Syntactic Frame 0.92
Lexical 1.12

Dep. Triple 1.40
Lex. Frame 1.10

FrameNet Syntactic Frame 0.83
Lexical 1.10

Dep. Triple 1.29
Lex. Frame 1.05

Roget Syntactic Frame 0.55
Lexical 1.12

Dep. Triple 1.36
Lex. Frame 1.04

WordNet Syntactic Frame 0.22
Lexical 0.43

Dep. Triple 0.51
Lex. Frame 0.39

Table F.5: Inverse rank score with cosine and inverse feature frequency
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Feature Weighting Distance Measure
Cosine Euclidean L1

Levin binary 1.28 0.50 0.50
probability 0.95 0.81 1.30
normalized 0.95 0.95 0.45
log-likelihood 1.29 0.52 0.52
correlation 1.25 0.40 0.18
inv feat freq 1.46 0.68 0.48

VerbNet binary 1.22 0.53 0.53
probability 0.91 0.77 1.23
normalized 0.91 0.91 0.45
log-likelihood 1.23 0.54 0.54
correlation 1.21 0.45 0.22
inv feat freq 1.40 0.68 0.50

FrameNet binary 1.08 0.40 0.40
probability 0.90 0.75 1.18
normalized 0.90 0.90 0.40
log-likelihood 1.09 0.41 0.41
correlation 1.18 0.31 0.07
inv feat freq 1.29 0.58 0.40

Roget binary 1.07 0.39 0.39
probability 0.72 0.64 1.14
normalized 0.72 0.72 0.37
log-likelihood 1.09 0.40 0.40
correlation 1.12 0.32 0.04
inv feat freq 1.36 0.56 0.38

WordNet binary 0.40 0.16 0.16
probability 0.27 0.26 0.44
normalized 0.27 0.27 0.17
log-likelihood 0.42 0.16 0.16
correlation 0.39 0.12 0.02
inv feat freq 0.51 0.21 0.15

Table F.6: Nearest neighbor average inverse rank score for feature weighting, using
the 50k most frequent features of type labeled dependency triple
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